Synthesis of Optically Pure Pharmaceuticals Employing Aziridines/Epoxides as Chiral Synthons and Development of Novel Biologically Active Compounds based on Benzopyran-4-ones

Thesis Submitted to AcSIR
For the Award of the Degree of
DOCTOR OF PHILOSOPHY
In

CHEMICAL SCIENCES

By
 Viswanadh Nalla

(Registration Number: 10CC13J26008)

Under the guidance of
Dr. M. Muthukrishnan

> Organic Chemistry Division CSIR-National Chemical Laboratory Pune - 411008 , Maharashtra, INDIA.

Dedicated to

My Beloved Family,
My Guide and Friends

For their endless love, support and
encouragement

सीएसआईआर - राष्ट्रीय रासायनिक प्रयोगशाला

(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद)
डॉ. होमी भाभा मार्ग, पुणे - 411 008, भारत

THESIS CERTIFICATE

This is to certify that the work incorporated in this Ph.D. thesis entitled "Synthesis of optically pure pharmaceuticals employing aziridines/epoxides as chiral synthons and development of novel biologically active compounds based on benzopyran-4-ones," submitted by Mr. Viswanadh Nalla to Academy of Scientific and Innovative Research (AcSIR) in fulfillment of the requirements for the award of the Degree of Doctor of Philosophy, embodies original research work under my supervision. I further certify that this work has not been submitted to any other University or Institution in part or full for the award of any degree or diploma. Research material obtained from other sources has been duly acknowledged in the thesis. Any text, illustration, table etc., used in the thesis from other sources, have been duly cited and acknowledged.

Ciescoanadh 1412018

Viswanadh Tala
(Research Student)

Dr. M. Muthukrishnan
(Research Supervisor)

T

FAX
Director's Office : +91-20-25902601
COA's Office : +91-20-25902660 SPO's Office : +91-20-25902664

Declaration by the Candidate

I hereby declare that the original research work embodied in this thesis entitled, "Synthesis of optically pure pharmaceuticals employing aziridines/epoxides as chiral synthons and development of novel biologically active compounds based on benzopyran-4-ones" submitted to Academy of Scientific and Innovative Research for the award of degree of Doctor of Philosophy (Ph.D.) is the outcome of experimental investigations carried out by me under the supervision of Dr. M. Muthukrishnan, Principal Scientist, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune. I affirm that the work incorporated is original and has not been submitted to any other academy, university or institute for the award of any degree or diploma.
$2^{\text {nd }}$ April 2018
CSIR-National Chemical Laboratory
$\frac{\text { Císuranadh }}{\text { Ciswanadi Nalla }}$
(Research Student)

During the long period of my research work, I have been acquainted, accompanied and supported by many people. It is a pleasant aspect that I have now the opportunity to express my gratitude for all of them.

It is my great privilege to express my deepest sense of gratitude to my teacher and honorific supervisor Dr. M. Muthukrishnan for excellent guidance, constant encouragement, and constructive criticism during my doctoral research. I consider extremely fortunate to have an advisor who not only educated me in chemistry but also taught me discipline and shown unique ways to achieve my goals. I sincerely acknowledge the freedom rendered by him in the laboratory for the independent thinking, planning, and execution of the research. I believe the better way of thanking him would be through my future contribution to the scientific community.

I owe to thank my Doctoral Advisory Committee members, Dr. Dhanasekharan Shanmugan, Dr. A. K. Bhattacharya, and Dr. H. V. Thulasiram for their continued support, guidance, and suggestions. I am grateful to Prof. Dr. Ashwini K. Nangia, Director, NCL, Dr. Vijayamohanan K. Pillai and Dr. Sourav Pal (Former Directors, NCL), Dr. S. P. Chavan, Head, Division of Organic Chemistry and Dr. Pradeep Kumar (Former HoD, Organic Chemistry Division) for giving me this opportunity to work and avail research amenities at CSIR-NCL.

My sincere thanks to Dr. P. R. Rajamohanan, Dr. Uday Kiran, Snehal, Shrikant, Dinesh, Pramod for their timely help in NMR analysis. My special thanks to Mrs. S. S. Kunte for her help in the HPLC analysis and also thank Mrs. Shantakumari, Mr. Swapnil for HRMS facility. I would also like to thank Dr. Rajesh Gonnade, Ms. Ekta Sangthani for their help in X-Ray crystallographic analysis. I would like to extend my thanks to Mrs. Catherine, Mrs. Kolhe, Mr. Iyer and all OCD and SAC office staff for their cooperation. I thank Dr. Vinita and the entire IP group for their support in the patent filing.

My sincere thanks to all my collaborators for their help in various projects with special mention to Dr. D. Sriram, Dr. P. Yogeeswari (BITS-Pilani), Dr. M. Karthikeyan (NCL), Dr. Renu Vyas (MIT College), Prof. K. Parang, Dr. R. K. Tiwari and Dr. A . N. Shirazi (Chapman University).

My sincere thanks to Dr. Pradeep Kumar, Dr. C. V. Ramana, Dr. H. V. Thulasiram, Dr. D. S. Reddy, Dr. A. K. Bhattacharya, Dr. A. Sudalaih, Dr. Alok Sen, Dr. A. T. Bijju, Dr. N. P. Argade, Dr. H. B. Borate, Dr. M. S. Shashidhar, Dr. S. P. Chavan, Dr. Vincent Paul, Dr. N. T. Patil, Dr. Amitava Das, Dr. K. Ravinder, Dr. S. Iyer, Dr. G. J. Sanjayan, Dr. B. Sentil Kumar, Dr. S. Sandip, Dr. B. L. V. Prasad, Dr. T. Raja, Dr. C. P. Vinod, Dr. S. B. Mhaske, Dr. M. Fernandes, Dr. V. S. Pore and all other scientists of NCL for their motivation, constant encouragement and support.

I am immensely thankful to my senior Dr. Mr. Mohammad Mujahid, Dr. Sasi Kumar for their valuable inputs and support in my research learning. It is also my pleasure to thank all my labmates Dr. Basavang, Prashanth, Anjaneyulu, Ganesh, Mahesh, Jambu, Velayudham, Vishal, Sachin, Yogesh More, Sohan, Abhi, Aslam, Shinde, Sagar for devoting their precious time and made many valuable suggestions, which indeed helped me during this research work. A special thank goes to Abilash, Yogesh, Kamal Peshwani, Lanjewar, Rahul, Pavan, Haritha, Priyanka, Sumedh and Jibin past summer research fellows for their help in various projects.

I am very glad to have nice room partners Dr. B. Naresh, Dr. V. Ramu, Dr. B. Sateesh for their friendly and moral support in day to day life at NCL \& S.P. Pune University. I would like to acknowledge my senior colleagues for their helping hands and friendly affection including Dr. Seetaram, Dr. Rambabu, Dr. Chandrababu, Dr. Venu, Dr. Ramireddy, Dr. Yadagiri, Dr. Suneel, Dr. Chaitanya Kiran, Dr. Manoj, Dr. Chaitanya, Dr. K. Chaitanya, Dr. Trinadh, Dr. S. V. Reddy, Dr. Nookaraju, Dr. Laxmi Prasad, Dr. Suresh, Dr. Gopal Krishna, Dr. Kiran, Dr. Upendra, Dr. Nagendra, Dr. Narendra, Dr. Srinivas, Dr. Kashinath, Dr. Rajesh, Dr. Dama, Dr. Venkat, Dr. Sudhakar, Dr. Devdatta, Dr. Bhogesh, Dr. Vasu, Dr. Ashok, Dr. Narashimha, Dr. Narashimha, Dr. Sutar, Dr. Kishore, Dr. Mahender, Dr. Tamboli, Dr. Richa S, Dr. Hemender, Dr. Sandeep, Dr. Kailash and Dr. Krishanu.

No words are sufficient to acknowledge my prized friends in and out of NCL who have helped me at various stages of my work in NCL. I wish to thank Innaiah, Tharun, Eswar, Kumarraja, Bhaskar, Hanuman, Venkanna, Niveditha, Ekta, Veer, Nitai, Prabhakar, Praveen, Sagar, Swamy, Vannur, Naresh, Srikanth, Hari, Jachak, Rahul, Madhukar, Durgaprasad, Satej, Brijesh, Bansode, Amol, Popat, Pradip, Somsurva,

Ravindra, Sanket, Appasaheb, Dinesh, Nitin, Tony, Manikandan, Milind, Pankaj, Jyothi, Ranjeet, Ulhas, Vijay Swetcha, Tushar, Sayantan Digambar, Sagar, and Borade. I always enjoy their company and they are my strength for many things. I am lucky to have such a big family, which I have got a kind gift in NCL.

Without the funding I received, this Ph.D. would not have been possible and I would like to express my sincere appreciation to University Grant Commission (UGC)New Delhi for awarding JRF and SRF.

Words can't be sufficient in paying my gratefulness for what I achieved and learned from all my respected teachers, especially Suresh, Patnaik, Sharma, Suryarao, Ashok, Kameshwara Rao sir and Sundari, Vardini, Padmini madam who believed in me and educated me with great efforts and patience to prepare me for the future.

Personally, I am immensely thankful to my lecturers in college Dr. Satti Babu and Dr. Kondala Rao who taught me how to learn organic chemistry. I also owe to Prof. P. V. V. Satyanarayana, Prof. B. Syama Sundar, Dr. B. Kesava Rao, Dr. B. Hari Babu, Dr. Y. Sunandamma and Dr. Anitha C Kumar for their valuable teachings in my masters.

It's my pleasure to thank all my school and college friends Sai Chandrasekhar, Madhu, Chaitu, Srikanth, Naresh, Venkataraman, Srinivas, Devaraj, Basavaiah, Santhosh, Dr. Adusumalli, Koti, Sravan, Vani, Phani, and many for all their love and care.

My family is always a source of inspiration and great moral support for me in perceiving my education, I used to thank the god of almighty for providing me such a beautiful family. I take this opportunity to my sense of gratitude to my parents Rukumini (mother), Ramarao (father), my lovely brothers Suresh Kumar, Venkatesh and my grandparents Savitramma, Laxmanrao, Thavitamma, Venkanna, Kalavathi, Prakashrao for their tons of love, sacrifice, blessings, unconditional support, and encouragement.

I wish to thank the great scientific community whose achievements are a constant source of inspiration for me.

Above all, I thank God Almighty for His enormous blessings.

Page No.

Abbreviations i
General remarks vi
Synopsis viii
Chapter 1
Chiral aziridine ring opening: Facile syntheses of (\boldsymbol{R})-mexiletine, (R)-phenoxybenzamine hydochloride and (S)-metolachlor
1.1 Section 1: Introduction to enantiopure epoxide and aziridines in organic synthesis
1.1.1 Introduction to chirality 1
1.1.1.1 Chirality in living systems 2
1.1.1.2 Chirality in pharmaceuticals 3
1.1.1.3 Methods for the preparation of enantiopure compounds 3
1.1.2 Epoxides in organic synthesis 7
1.1.2.1 Reactivity of epoxides 8
1.1.2.2 Synthetic methods to enantiopure epoxides 9
1.1.2.3 Nucleophilic ring opening reactions of epoxides 11
1.1.3 Aziridines in organic synthesis 13
1.1.3.1 Reactivity of aziridines 13
1.1.3.2 Synthetic methods to enantiopure aziridines 14
1.1.3.3 Nucleophilic ring opening reactions of aziridines 17
1.1.4 References 20
1.2 Section 2: Facile synthesis of (\boldsymbol{R})-mexiletine and (\boldsymbol{R})-phenoxybenzaminehydrochloride via chiral aziridine ring opening
1.2.1 Introduction 23
(R)-Mexiletine 24
1.2.2 Review of Literature 25
1.2.3 Present Work 32
1.2.4 Results and Discussion 33
1.2.5 Conclusion 34
1.2.6 Experimental Section 34
1.2.7 Spectra 38
1.2.8 Chiral HPLC analysis data 42
(R)-Phenoxybenzamine hydrochloride 44
1.2.9 Review of Literature 45
1.2.10 Present Work 48
1.2.11 Results and Discussion 49
1.2.12 Conclusion 51
1.2.13 Experimental Section 51
1.2.14 Spectra 58
1.2.15 Chiral HPLC analysis data 65
1.2.16 References 67
1.3 Section 3: Efficient synthesis of optically active (S)-metolachlor via reductive ring opening of aziridine
1.3.1 Introduction 70
1.3.2 Review of Literature 71
1.3.3 Present Work 75
1.3.4 Results and Discussion 76
1.3.5 Conclusion 77
1.3.6 Experimental Section 78
1.3.7 Spectra 82
1.3.8 Chiral HPLC analysis data 86
1.3.9 References 87

Chapter 2

Asymmetric syntheses of (\boldsymbol{R})-2-benzylmorpholine, both enantiomers of calcium channel blocker bepridil and anti-obesity drug lorcaserin

2.1 Section 1: An enantioselective synthesis of appetite suppressant (R)-2-benzyl- morpholine
2.1.1 Introduction 88
2.1.2 Review of Literature 89
2.1.3 Present Work 91
2.1.4 Results and Discussion 92
2.1.5 Conclusion 94
2.1.6 Experimental Section 94
2.1.7 Spectra 101
2.1.8 Chiral HPLC analysis data 108
2.1.9 References 110
2.2 Section 2: A new and efficient enantioselective synthesis of both enantiomers ofcalcium channel blocker bepridil
2.2.1 Introduction 112
2.2.2 Review of Literature 114
2.2.3 Present Work 116
2.2.4 Results and Discussion 117
2.2.5 Conclusion 120
2.2.6 Experimental Section 121
2.2.7 Spectra 127
2.2.8 Chiral HPLC analysis data 131
2.2.9 References 134
2.3 Section 3: An alternate synthesis of anti-obesity drug lorcaserin
2.3.1 Introduction 136
2.3.2 Review of Literature 138
2.3.3 Present Work 142
2.3.4 Results and Discussion 142
2.3.5 Conclusion 144
2.3.6 Experimental Section 144
2.3.7 Spectra 150
2.3.8 Chiral HPLC analysis data 156
2.3.9 References 158

Chapter 3

Development of novel biologically active compounds based on benzopyran-4-one motif

3.1 Section 1: Synthesis, biological evaluation and molecular modeling studies of novel triazole-chromone conjugates as potent anti-TB agents
3.1.1 Introduction 160
3.1.2 Present work 163
3.1.3 Results and Discussion 164
3.1.4 Conclusion 173
3.1.5 Experimental Section 173
3.1.6 Spectra 188
3.1.7 References 211
3.2 Section 2: Synthesis, biological evaluation and molecular modeling studies of novel chromone/aza-chromone fused α-aminophosphonates as c-Src kinase inhibitors
3.2.1 Introduction 214
3.2.2 Present work 216
3.2.3 Results and Discussion 216
3.2.4 Conclusion 227
3.2.5 Experimental Section 227
3.2.6 Spectra 242
3.2.7 References 258
List of publications/patents 261
Erratum 262

Abbreviations

Ac	Acetyl
AcCl	Acetyl chloride
AcOH	Acetic acid
$\mathrm{Ac}_{2} \mathrm{O}$	Acetic anhydride
ACN	Acetonitrile
ADME	Absorption, distribution, metabolism, and excretion
ATP	Adenosine triphosphate
AlCl_{3}	Aluminium chloride
Aq.	Aqueous
$\mathrm{NH}_{4} \mathrm{Cl}$	Ammonium chloride
$\mathrm{NH}_{4} \mathrm{OH}$	Ammonium hydroxide
A	Angstrom
atm	Atmosphere
Br	Bromo
Br_{2}	Bromine
Bn	Benzyl
PhH	Benzene
BH_{3}	Boron hydride
BuOH	Butanol
$n-\mathrm{Bu}_{4} \mathrm{NBr}$	tetra- n-Butylammonium bromide
TBAI	tetra- n-Butylammonium iodide
Boc	tert-Butoxy carbonyl
t-Bu	tertiary-Butyl
DBAD	Di-tert-butyl azodicarboxylate
TBHP	tert-Butyl hydroperoxide
C	Carbon
CBr_{4}	Carbon tetrabromide
Cbz	Carboxybenzyl
Cat.	Catalytic
cm^{-1}	1/centimetre
$\mathrm{DCM}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$	Dichloromethane

Abbreviations

CHCl_{3}	Chloroform
CDCl_{3}	Deuterated chloroform
CuI	Copper iodide
CuOTf	Copper triflate
CuSO_{4}	Copper sulfate
Conc.	Concentrated
J	Coupling constant (in NMR)
${ }^{\circ} \mathrm{C}$	Degree Celsius
DEA	Diethylamine
DEAD	Diethylazocarboxylate
DET	Diethylltartarate
DIAD	Diisopropylazocarboxylate
DIPT	Diisopropyl tartrate
DMAP	N, N-dimethylaminopyridine
DMF	N, N-dimethylformamide
DMSO	Dimethylsulphoxide
DMSO-d6	Deutriated dimethylsulphoxide
ee	Enantiomeric Excess
EtOH	Ethanol
Et	Ethyl
ESI	Electrospray ionization
EtOAc	Ethyl acetate
$\mathrm{Et}_{2} \mathrm{O}$	Diethyl ether
equiv.	Equivalent
v	Frequency
g	Gram (s)
h	Hour (s)
HRMS	High resolution mass spectrometry
HPLC	High-pressure liquid chromatography
HCl	Hydrochloric acid
H_{2}	Hydrogen

Abbreviations

Hz	Hertz
h	Hour (s)
In vitro	Outside a living organism
IC_{50}	Half-maximal inhibitory concentration
IR	Infrared
In vivo	Inside a living organism
I	Iodo
Kcal	Kilocalorie (s)
lit.	Literature
$\mathrm{LiAlH}_{4}(\mathrm{LAH})$	Lithium aluminium hydride
LiBr	Lithium bromide
m/z	Mass to charge ratio
MP	Melting point
Me	Methyl
MeOH	Methanol
MHz	Megahertz
M.P	Melting point
MsCl	Methanesulfonyl chloride
min	Minute(s)
$\mu \mathrm{g}$	Microgram
$\mu \mathrm{M}$	Micromolar
mg	Milligram (s)
mL	Milliliter (s)
mmol	Millimole (s)
MIC	Minimum inhibitory concentration
M	Molarity
Mtb	Mycobacterium tuberculosis
MS	Molecular sieves
N	Normality
nM	Nanomolar (s)
NMR	Nuclear magnetic resonance

Abbreviations

ppm	Parts per million
Pd	Palladium
$\mathrm{Pd}(\mathrm{OH})_{2}$	Palladium hydroxide
Pr	Propyl
$i-\mathrm{Pr}$	iso-Propyl
Ph	Phenyl
psi	Pounds per square inch
$\mathrm{K}_{2} \mathrm{CO}_{3}$	Potassium carbonate
KOH	Potassium hydroxide
t-BuOK	Potassium tertiary butoxide
PDB	Protein Data Bank
Py	Pyridine
RMSD	Root-mean-square deviation
rt	Room temperature
RM	Reaction mixture
RuO_{2}	Ruthenium oxide
Na	Sodium
NaNH_{2}	Sodium amide
NaN_{3}	Sodium azide
NaBH_{4}	Sodium borohydride
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	Sodium carbonate
NaIO_{4}	Sodium periodate
NaOPh	Sodium phenoxide
NaH	Sodium hydride
NaOH	Sodium hydroxide
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	Sodium sulfate
Red-Al	Sodium bis(methoxyethoxy)aluminum hydride
tert	Tertiary
$\mathrm{Ti}(\mathrm{OEt})_{4}$	Titanium(IV) ethoxide
$\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}$	Titanium(IV) isopropoxide
TEA	Triethyl amine

Abbreviations

PBu_{3}	Tributylphosphine
HSiCl_{3}	Trichlorosilane
TFA	Trifluoroacetic acid
$\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$	Trifluoroacetic anhydride
$\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$	Trifluoromethanesulfonic acid
PPh_{3}	Triphenylphosphine
THF	Tetrahydrofuran
TLC	Thin layer chromatography
SOCl	
$p-\mathrm{TsCl}$	Thionylchloride
UV	para-Toluenesulfonyl chloride
$\mathrm{H}_{2} \mathrm{O}$	ultraviolet
	water

Abbreviations used for NMR spectral information

br	broad	s	singlet	dd	doublet of doublets
d	doublet	t	triplet	ddd	doublet of doublet of doublets
m	multiplet	q	quartet	quint	quintet
sept	septet				

Abbreviations used for amino acids

Ala	Alanine	Asn	Asparagine	Asp	Aspartic acid
Gln	Glutamine	Gly	Glycine	Glu	Glutamic acid
Leu	Leucine	Lys	Lysine	Met	Methionine
Phe	Phenylalanine	Thr	Threonine	Trp	Tryptophan
Tyr	Tyrosine	Ser	Serine	Val	Valine

* All reagents, starting materials, and solvents were obtained from commercial suppliers and used as such without further purification.
* Solvents were distilled and dried using standard protocols. Reactions were carried out in anhydrous solvents under argon atmosphere in oven-dried glassware.
* Petroleum ether refers to the fraction collected in the boiling range $60-80{ }^{\circ} \mathrm{C}$. Organic layers after every extraction were dried over anhydrous sodium sulfate.
* Air sensitive reagents and solutions were transferred via syringe or cannula and were introduced to the apparatus via rubber septa.
* All reactions are monitored by thin layer chromatography (TLC) with 0.25 mm precoated E-Merck silica gel plates (60F-254). Visualization was accomplished with either UV light, Iodine adsorbed on silica gel or by immersion in an ethanolic solution of phosphomolybdic acid (PMA), p-anisaldehyde or KMnO_{4} followed by heating with a heat gun for $\sim 15 \mathrm{sec}$.
* All evaporations were carried out under reduced pressure on Buchi rotary evaporator below $50^{\circ} \mathrm{C}$ unless otherwise specified.
* Column chromatography was performed on silica gel (100-200 or 230-400 mesh size).
* Deuterated solvents for NMR spectroscopic analyses were used as received. NMR spectra were recorded on Bruker AV200 (200.13 MHz for ${ }^{1} \mathrm{H}$ NMR and 50.03 MHz for ${ }^{13} \mathrm{C}$ NMR), AV 400 ($400.13 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and 100.03 MHz for ${ }^{13} \mathrm{C}$ NMR) and DRX 500 ($500.13 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and 125.03 MHz for ${ }^{13} \mathrm{C}$ NMR) spectrometers.
* Chemical shifts (δ) reported are referred to internal reference tetramethylsilane (TMS). Chemical shifts have been expressed in ppm units relative to TMS, using the residual solvent peak as a reference standard. Coupling constants were measured in Hertz.
* All the melting points are uncorrected and were recorded using a scientific melting point apparatus (Buchi B-540).
* Mass spectra were recorded on LC-MS/MS-TOF API QSTAR PULSAR spectrometer, samples introduced by fusion method using Electrospray Ionization Technique.
* High-resolution mass spectra (HRMS) were recorded on a Thermo Scientific QExactive, Accela 1250 pump and also EI Mass spectra were recorded on Finnigan MAT-1020 spectrometer at 70 eV using a direct inlet system.
* Infrared (IR) spectra were recorded on an FT-IR spectrometer as thin films in chloroform using NaCl plates and absorptions were expressed in cm^{-1}.
* Optical rotations were recorded on a P-2000 polarimeter at 589 nm (sodium D-line). Specific rotations $[\alpha]_{D}$ are reported in deg/dm, and the concentration (c) is given in $\mathrm{g} / 100 \mathrm{~mL}$ in the specific solvent.
* Chemical nomenclature (IUPAC) and structures were generated using Chem Bio Draw Ultra 13.0 software.

Synopsis

S. Annopsis of the Thesis to be submitted to the Academy of Scientific and Innovative Research for Award of the Degree of Doctor of Philosophy in Chemistry	
Name of the Candidate	Viswanadh Nalla
AcSIR Enrolment No. \& Date	Ph. D in Chemical Sciences (10CC13J26008); January 2013
Title of the Thesis	Synthesis of Optically Pure Pharmaceuticals Employing Aziridines/Epoxides as Chiral Synthons and Development of Novel Biologically Active Compounds based on Benzopyran-4-ones
Research Supervisor	Dr. M. Muthukrishnan

The proposed thesis is divided into three chapters. The first chapter gives a brief introduction to epoxides and aziridines, their significance in organic synthesis. In addition, facile synthesis of (R)-mexiletine, (R)-phenoxybenzamine hydrochloride and (S)-metolachlor via aziridine ring opening is also described in this chapter. Asymmetric synthesis of (R) benzylmorpholine, R and S enantiomers of bepridil and anti-obesity drug lorcaserin is described in the second chapter. The third chapter deals with the design, synthesis, biological and molecular modeling studies of two series of chromone embedded triazoles and chromone/azachromone fused α-aminophosphonates. The details are given below.

Chapter 1: Chiral aziridine ring opening: Facile syntheses of (\boldsymbol{R})-mexiletine, (\boldsymbol{R}) phenoxybenzamine hydrochloride and (S)-metolachlor

Section I: Introduction to epoxides and aziridines in organic synthesis
Epoxides and aziridines are valuable synthetic intermediates in organic synthesis. Due to its high ring strain and reactivity, they can be ring opened with wide variety of nucleophiles and that 1,2-difunctional ring-opened products
 represent common motifs in many interesting organic molecules. A brief account of the significant organic transformations utilizing epoxides and aziridines is presented in this section.

Section II: Facile synthesis of (R)-mexiletine and (R)-phenoxybenzamine hydrochloride via chiral aziridine ring opening
Mexiletine is an important β-amino aryl ether class of anti-arrhythmic drug and phenoxybenzamine hydrochloride (Dibenzyline ${ }^{\circledR}$) is the β-chloroethylamine class of drug belongs to α-blocker series, widely used in the treatment of hypertension. In this section, concise and efficient synthetic routes developed for the active enantiomers of these two important drugs, employing chiral aziridine as a key intermediate have been described. Simple procedures, readily available starting materials and high enantioselectivity are some of the salient features of this approach. ${ }^{1,5}$

Section III: Efficient synthesis of optically active (S)-metolachlor via reductive ring opening of aziridine

Metolachlor belongs to the class of chloroacetamide herbicide. The high herbicidal activity resides in (S)-enantiomer of metolachlor. Some of the drawbacks associated with the previous synthetic routes are low enantioselectivity, protection-deprotection steps and expensive reagents etc. In this section, we describe an efficient synthesis of (S)-metolachlor in five steps via reductive ring opening of aziridine.

Chapter 2: Asymmetric syntheses of (R)-2-benzylmorpholine, both enantiomers of calcium channel blocker bepridil and anti-obesity drug lorcaserin

Section I: An enantioselective synthesis of appetite suppressant (R)-2-benzylmorpholine employing Sharpless asymmetric epoxidation strategy

C-substituted morpholine analogues, in particular, the non-racemic ones are important structural scaffolds present in many pharmaceutically important compounds (Reboxetine, Viloxazine etc). In that series, (R)-2-benzylmorpholine is a classical example, known to be a potent appetite suppressant. Despite their wide utility, synthetic routes to these valuable compounds especially the non-racemic ones are very limited. In this section, we describe an alternate synthesis of (R)-2-benzylmorpholine starting from readily available trans-cinnamyl alcohol employing Sharpless asymmetric epoxidation strategy. ${ }^{2}$

Section II: A new and efficient enantioselective synthesis of both enantiomers of calcium channel blocker bepridil

Bepridil (Trade name: Vascor ${ }^{\circledR}$) is a long-acting calcium-blocking agent with significant antianginal activity. Pharmacological studies reveal that (R)-isomer of bepridil is more active than (S)-enantiomer. However, there are no reports on the enantioselective preparation of bepridil enantiomers are available. Recent studies indicate the potential use of bepridil in many new therapeutic indications including anti-ebola virus activity. In this section, the development of a new enantioselective synthetic route to bepridil enantiomers using Jacobsen's hydrolytic kinetic resolution strategy has been described. ${ }^{3}$

Section III: An alternate synthesis of anti-obesity drug lorcaserin
Lorcaserin is a novel anti-obesity drug approved by the FDA in 2012 for the treatment of obesity. Several methods have been reported for the synthesis of lorcaserin and some of the drawbacks associated these methods are complicated workups, expensive and unstable reagents etc. This section illustrates the development of an alternate strategy for the synthesis of lorcaserin from commercially available (S)-propylene oxide. ${ }^{5}$

Chapter 3: Development of novel biologically active compounds based on benzopyran-4-one motif

Section I: Synthesis, biological evaluation and molecular modeling studies of novel triazolechromone conjugates as potent anti-TB agents

Tuberculosis (TB) remains one of the leading contagious diseases caused by bacterial pathogen Mycobacterium tuberculosis responsible for high mortality worldwide. Therefore, the discovery and development of effective anti-TB drugs are urgently needed. In this section, synthesis of novel chromone embedded 1,4 disubstituted [1,2,3]-triazole derivatives, followed by their in vitro biological evaluation against Mycobacterium tuberculosis H37Rv is described. We identified one potent compound with MIC value $1.56 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$. In addition, molecular docking and chemoinformatics tools were applied to identify the probable molecular target as well drug likeliness of the synthesized compounds.

Section II: Synthesis, biological evaluation and molecular modeling studies of novel chromone/aza-chromone fused α-aminophosphonates as c-Src kinase inhibitors

This section deals with the synthesis of new series of chromone/azachromone fused α amino phosphonate conjugates and evaluated their c-Src kinase inhibitory activity. Few compounds exhibit moderate inhibition. Further, molecular docking analyses were performed to study the interactions with kinase Src tyrosine protein.

Noteworthy Findings:

$>$ Accomplished a new synthesis of (R)-mexiletine, (R)-phenoxybenzamine hydrochloride and (R)-metolachlor employing aziridine as a key intermediate.
$>$ Developed a simple and efficient synthetic route to (R)-benzylmorpholine, $(R) \&(S)$-bepridil and lorcaserin utilizing epoxide as a valuable chiral synthon.
$>$ Designed and synthesized chromone embedded 1,2,3-triazole conjugates \& chromone/azachromone based α-aminophosphonates, studied their biological potential against MTB and cSrc kinase protein respectively.

References:

1. Viswanadh, N.; Velayudham, R.; Jambu, S.; Sasikumar, M.; Muthukrishnan, M. Tetrahedron Lett.2015, 56, 5269.
2. Viswanadh, N.; Mujumdar, P.; Sasikumar, M.; Kunte, S. S.; Muthukrishnan, M. Tetrahedron Lett.2016, 57, 861.
3. Mujahid, M.; Subramanian, J.; Viswanadh, N.; Sasikumar, M.; Kunte, S. S.; Muthukrishnan, M. New J. Chem.2017, 41, 824.
4. Viswanadh, N.; Velayudham, R.; Karthikeyan, M.; Muthukrishnan, M. New method for the synthesis of R-phenoxybenzamine hydrochloride employing aziridine ring opening as a key step. Indian patent Appln No. 1844/DEL/2014.
5. Muthukrishnan, M.; Velayudham, R.; Viswanadh Nalla. A process for the preparation of 8-chloro-1-methyl-2,3,4,5-tetrahydro-1-H-3-benzo[D]azepine and its enantiomers. PCT, WO 2015/170346 A1.

CHAPTER 1

Chiral aziridine ring opening: Facile syntheses of (R)-mexiletine, (R)phenoxybenzamine hydrochloride and (S)-metolachlor

1.1. SECTION 1

Introduction to enantiopure epoxides and aziridines in organic synthesis

1.1.1. Introduction to chirality

Chirality is a fundamental and structural property of three-dimensional structure of an object. The term chirality means "handedness", the two enantiomers or optical isomers of a chiral compound cannot be superimposed which are mirror images to each other. ${ }^{1}$ In an achiral environment, a pair of enantiomers of a chiral drug exhibit same physical and chemical properties except that they differ in their interaction with plane polarized light. The mirror image of a pair of enantiomers that rotates the plane polarized light in opposite directions with equal magnitude. Optical activity refers to the ability of a chiral molecule to rotate the plane of polarized light and it can be measured by an instrument known as a polarimeter. ${ }^{2}$ If an optically active compound rotates the plane of polarized light to the right (clockwise direction) are said to be dextrorotatory (d) or (+) enantiomer and the same substance that rotates the plane of polarized light to the left (anticlockwise direction) are said to be levorotatory (l) or (-) enantiomer. The D/L (dexter/laevus) notation (FischerRosanoff convention $)^{3}$ corresponds to the relative configuration of the molecule, compared with the relative configurations of glyceraldehyde enantiomers as the standard compound mainly applied for assigning the α-amino acids and carbohydrates. The Cahn-Ingold-Prelog (CIP) convention ${ }^{4}$ describes the R/S (rectus/sinister) nomenclature to assign the absolute configurations of each chiral center.

Figure 1. Chiral molecules and its nomenclature

1.1.1.1. Chirality in living systems

Chirality is an important phenomenon and plays a vital role in living systems. Living organisms are composed of chiral biological molecules such as amino acids, sugars, proteins, enzymes, lipids and nucleic acids. In nature, these biomolecules exist in only one of the two possible enantiomeric forms e.g., amino acids in proteins are configurated only in L-form while sugars in DNA and RNA are configurated in D-form. ${ }^{5}$ In a chiral environment (i.e. chiral living systems), one enantiomer of a chiral drug may have different pharmacokinetics, pharmacodynamics and toxicity responses over the other enantiomer. ${ }^{6}$ Thus, one enantiomeric form of a chiral drug may have desired therapeutic activity (eutomer), while the other isomer (distomer) may be inactive or less active or adverse or toxic effect, or may give rise to an entirely different pharmacological response. ${ }^{7}$

(R)-Thalidomide, sedative
(S)-Thalidomide, teratogen

D-Aspargine, sweet L-Aspargine, bitter

(R)-Carvone, spearmint odor (S)-Carvone, caraway odor

L-DOPA, parkinsons agent D-DOPA, granulocytopenia

(S)-Naproxen, anti-inflammatory (R)-Naproxen, liver toxin

(S, S)-Ethambutol, anti-TB agent (R, R)-Ethambutol, blindness

Figure 2. Chiral drugs with different biological activity

According to the receptor theory, enantiomer of the chiral drugs specifically binds to the biologically active sites such as proteins (enzymes, receptors), nucleic acids (DNA, RNA) and biomembranes (phospholipids, glycolipids, sterols). The pharmacological activity of drugs mainly depends on their interaction between the enantiomers of a drug molecule and a biologically active site. All these receptor binding sites composed of homochiral biomolecules having three-dimensional complex structures preferably interacts with only one of the enantiomeric form of a chiral drug. ${ }^{8}$ In 1957, a drug namely thalidomide has been introduced into the market as a racemate for treating morning sickness
and nausea in pregnant women. Unfortunately, due to the remarkable side-effects of this drug, more than 10,000 babies were born with missing or abnormal arms, hands, legs, or feet. The reason is, only (R)-enantiomer of thalidomide possessed the desired therapeutic activity, whereas (S)-thalidomide caused severe birth defects such as a mutation in the fetus. ${ }^{9}$ Due to the differential, the biological and pharmacological behavior of two enantiomers and the adverse side effects associated with the non-functional enantiomer in the racemic drug, the stereochemistry in chiral drugs is a critically important issue for the pharmaceutical industries as well as the regulatory authorities. The regulatory authorities United States Food and Drug Administration (US FDA) in 1992 and European Union agency (EU) in 1994 have officially announced a policy statement concerning the development of stereoisomeric drugs, which favor the development of single-enantiomers over the racemates. ${ }^{10}$

1.1.1.2. Chirality in pharmaceuticals

In 1990's, most of the chiral synthetic drugs introduced into the market were racemates, only 12% of the chiral drugs were single enantiomers. ${ }^{11}$ After the enforcement of new FDA's marketing guidelines on chiral drugs, there was a sharp decrease in the market of racemic drugs. ${ }^{12}$ In 2004, out of 16 newly approved drugs, 13 synthetic drugs were marketed as a single enantiomer and rest of the 3 drugs were racemates. In 2007, 70\% of the FDA approved drugs of the newly launched synthetic drugs were single enantiomers. Currently, a single-enantiomer product is a major area of concern in the modern pharmaceutical research. ${ }^{13}$ Many drugs that have been approved as racemates are being reevaluated and re-marketed as single-enantiomers. Therefore, the production of a singleenantiomer of a chiral drug has become an intense research area.

1.1.1.3. Methods for the preparation of enantiopure compounds ${ }^{14}$

The classical methods for the synthesis of enantiomerically pure compounds are mainly categorized into three groups:

1) Resolution of racemates
2) Chiral pool approach
3) Asymmetric synthesis

Figure 3. Various methods for the synthesis of enantiopure compounds.

1) Resolution of racemates: For the preparation of enantiopure compounds, one of the oldest and widely used protocols is the resolution of racemates in which resolution is performed at the end of a racemic reaction sequence with the help of a chiral compound. As in most of the cases, only one enantiomer is useful, half of the synthetic product is often discarded. Further, this method requires an equimolar amount of an enantiomerically pure compound which cannot be reused or recycled. But, still, this method is widely used in industries. For example, synthesis of antidepressant drug duloxetine was carried out via resolution method using (S)-mandelic acid (Scheme 1). ${ }^{15}$

Scheme 1. Synthesis of duloxetine via resolution method
2) Chiral pool approach: The term "chiral pool" refers to the many naturally occurring chiral building blocks with a high degree of enantiomeric purity. Chiral pool approach is one of the most economical and scalable methods to synthesize the enantiomerically pure intermediate compounds from the inexpensive chiral precursors derived from natural sources. Commonly used naturally occurring enantiopure starting compounds includes α -
amino acids, carbohydrates, alkaloids, α-hydroxy acids, terpenes etc., ${ }^{16}$ In this approach, these enantiopure starting compounds are incorporated into the molecule or manipulated using an achiral reagent retaining its chirality to provide the desired target molecule during the course of successive synthetic sequences. The most significant considerations for the chiral pool approach are: (i) the cost and availability of the enantiopure starting materials; (ii) Whether accessible to both enantiomers; (iii) Whether racemization will occur while manipulation or introduction of the chiral center during the synthetic steps.

Figure 4. Examples of naturally occurring chiral building blocks
3) Asymmetric synthesis: Asymmetric synthesis (enantioselective synthesis or stereoselective synthesis) is the synthesis of enantiopure compounds from the prochiral or achiral substrates in the presence of a chiral entity (chiral catalyst, chiral auxiliary, chiral solvent). It can be catalyzed by a chemocatalyst or a biocatalyst. It has emerged as a powerful and widely employed method for the effective preparation of enantioenriched biologically active compounds. In an asymmetric reaction, the prochiral substrate combines with chiral entity results in the formation of two diastereomeric transition states. These asymmetric reactions can be categorized into four methods, according to how the chiral induction is exerted. ${ }^{17}$
a) First generation asymmetric synthesis (substrate-controlled diastereoselectivity).
b) Second generation asymmetric synthesis (auxiliary-controlled diastereoselectivity).
c) Third generation asymmetric synthesis (reagent-controlled diastereoselectivity).
d) Fourth generation asymmetric synthesis (catalyst-controlled diastereoselectivity).
a) Substrate-controlled asymmetric synthesis: In these reactions, the new chiral center is formed by the reaction of the chiral substrate with the achiral reagent at a diastereotopic center controlled intramolecularly by an adjacent chiral center which already exists in the chiral substrate.
b) Auxiliary-controlled asymmetric synthesis: The formation of the new stereogenic center by reaction of the prochiral substrate with the chiral auxiliary via diastereoselective reaction. The asymmetric induction is controlled by the chiral auxiliary in the substrate intramolecularly. This method is similar to the first generation method but the only difference is the extra two steps in the synthesis, is the attachment and removal of the chiral auxiliary in the later stage. The requirements of the chiral auxiliary are: easily available in the pure enantio-enriched form, can be easily attached to the functional group in the prochiral substrate, induce excellent stereocontrol, can be easily removable of chiral auxiliary and preferably recycled.
c) Reagent-controlled asymmetric synthesis: The direct formation of enantiopure products from the prochiral substrate in the presence of the chiral reagent. The newly formed chiral center is achieved by the reagent control and stereoselectivity is controlled by the structure and chirality of the chiral reagent used. In contrast to the above two methods, the chiral induction is not the part of the substrate and the stereocontrol is achieved intermolecularly in this method.
d) Catalyst-controlled asymmetric synthesis: The above three methods require enantiomerically pure compounds in stoichiometric quantities which lowers the efficiency of the above methods. To overcome this drawback, the most important development in asymmetric synthesis in the last few decades was the introduction of chiral catalysts to produce an enantiomerically enriched product from the prochiral substrate. In this method, the prochiral substrate is transformed into an enantiomerically pure compound in the presence of catalytic amounts of chiral catalyst in a single step.

Asymmetric catalysis: A chiral catalyst promotes selective conversion of one enantiomer or formation of one enantiomer over the other enantiomer. In this method, catalytic amounts of chiral catalysts are required to provide large quantities of enantiomerically enriched product. The chiral catalyst may be biocatalyst (enzymes) or chemocatalyst (small organic molecules) or metal catalyst (metal complexes). The major breakthrough in asymmetric catalysis from the pioneering works of three eminent scientists William S. Knowles, R. Noyori and K Barry Sharpless shared the Nobel Prize in Chemistry based on the development of asymmetric catalyzed hydrogenation and oxidation reactions in the production of single enantiomer drugs or chemicals in 2001. Enantioselective catalyzed reactions such as asymmetric hydrogenation, asymmetric epoxidation, asymmetric dihydroxylation, asymmetric aldol reaction, asymmetric Diels-Alder reactions and asymmetric ring opening reactions have become very important tools in the production of enantiomerically pure pharmaceuticals and chemicals. ${ }^{18}$ These diverse asymmetric catalytic reactions provide access to wide variety of products with new chiral $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{S}$ bond forming reactions.

Figure 5. Schematic representation of enantioselective synthesis using a chiral catalyst

1.1.2. Epoxides in organic synthesis

Epoxide or oxirane is a three-membered strained oxygencontaining heterocyclic compound (Fig. 6). ${ }^{19}$ Due to its high Baeyer ring strain ($27 \mathrm{kcal} / \mathrm{mol}$) and induced a partial positive charge on carbon

Fig 6. Epoxide atoms due to the electronegative oxygen atom, these serve as reactive electrophiles. These are highly reactive and it can easily undergo nucleophilic ring opening reactions with a wide range of nucleophiles (carbon, nitrogen, hydrogen, oxygen, halogen, and sulfur) to access
many 1,2-disubstituted or defunctionalized ring-opened products in highly regio- and stereoselective manner. ${ }^{20}$ In particular, enantiopure epoxides are versatile synthetic intermediates in pharmaceutical and natural product synthesis. ${ }^{21}$ In addition, these strained epoxide moieties are found in a number of biologically significant natural products.

Figure 6. Examples of few natural products possessing epoxide ring

1.1.2.1. Reactivity of epoxides

Epoxides participate in nucleophilic ring opening reactions under acidic, basic or neutral conditions. Under these conditions, non-symmetrical epoxides provide different products. In general, the nucleophile approaches from the rear side of the epoxide carbon resulting in the inversion of configuration at the electrophilic center. In acid-catalyzed nucleophilic ring opening reactions, the nucleophile attacks predominantly at the sterically more hindered carbon due to the formation of stable protonated transition state supported by the borderline $\mathrm{S}_{\mathrm{N}} 2$ mechanism. In case of basic or neutral medium, the attack of nucleophile predominantly at the sterically less substituted carbon through $\mathrm{S}_{\mathrm{N}} 2$ type mechanism (Scheme 2).

Scheme 2. Ring opening of epoxides under acid and base-catalyzed reaction conditions.

Importantly, enantiopure epoxides are powerful synthons for the synthesis of many natural products as well as pharmaceutically important compounds. Due to their immense utility in organic synthesis, the preparation of enantiopure epoxides has been of great interest to organic chemists.

1.1.2.2. Important synthetic methods to enantiopure epoxides

In the last three decades, several enantioselective strategies have been developed for the preparation of enantiopure epoxides, however, only a few of them are of significant value and lead to the desired enantiomers in high yields with excellent enantiomeric excess. Currently, direct asymmetric epoxidation of alkenes and kinetic resolution of racemic epoxides are the most widely employed chemical methods for the preparation of enantiopure epoxides.

a) Sharpless Asymmetric Epoxidation

In 1980, Sharpless and co-workers reported the enantioselective epoxidation of alkenes popularly known as the Sharpless-Katsuki asymmetric epoxidation reaction. ${ }^{22}$ In this asymmetric transformation, the allylic alcohols are transformed into their corresponding enantiopure epoxyalcohols using titanium isopropoxide $\left[\mathrm{Ti}^{(\mathrm{IV})}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}\right]$ as the catalyst, tertbutyl hydroperoxide (TBHP) as the terminal oxidant and chiral tartrate as the chiral ligand (Scheme 3). In this reaction, the epoxy alcohols are obtained in high yields with excellent enantiomeric excesses. These reactions are performed at low temperature $\left(-20^{\circ} \mathrm{C}\right)$ and at inert atmosphere using anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a common solvent.

Scheme 3. Sharpless asymmetric epoxidation of allylic alcohols

Mechanistically, the titanium complex and desired tartrate ligand formed the titanium-tartrate complex. After addition of TBHP oxidant, the titanium-tartrate complex exchanges the ligands by displacement of one of the tartrate carbonyl group as well as an isopropoxide ligand. Finally, the diacetal oxygen atom from TBHP oxidant coordinates to
the titanium-tartrate complex activates the peroxide and facilitates the intramolecular transfer of peroxide. The hydroxyl group of allylic alcohol coordinates to the axial site of the titanium complex, therefore, the olefin bond is activated and facilitates for intramolecular oxygen transfer leads to complete stereoselectivity control. Sharpless developed the empirical rule to predict the absolute configuration of the resulting epoxyalcohol. The mechanism of the oxygen atom deliver depends upon the tartrate ligand used. When $(S, S)-(-)$-tartrate ligand is used as a chiral ligand, the oxygen atom is transferred from "above" the plane of allylic alcohol where $(R, R)-(+)$-tartrate ligand is used the oxygen atom is transferred from "below" the plane of allylic alcohol. This catalytic asymmetric reaction is an effective robust method and it can be performed with highly functionalized allylic alcohols. Sharpless asymmetric epoxidation reaction serves as a powerful tool in the key steps for the total synthesis of many natural products and biologically active molecules. ${ }^{23}$ For example, Spur et al. have utilized the Sharpless asymmetric epoxidation to generate key stereochemistry and functionality in the total synthesis of leukotrienes LTA4 methyl ester (Scheme 4). ${ }^{24}$

Scheme 4. Total synthesis of leukotriene LTA 4 methyl ester

b) Hydrolytic Kinetic Resolution (HKR)

Kinetic resolution involves resolution of a racemic mixture into its enantiomers based on the differential rates of reaction of the enantiomers of a racemate towards a chiral catalyst or reagent. Hydrolytic kinetic resolution (HKR) is an efficient protocol to resolve the variety of terminal racemic epoxides using metal-salen complexes as a chiral catalyst. In 1997, Jacobsen group ${ }^{25}$ developed an effective method for the preparation of enantioenriched terminal epoxides along with enantiopure vicinal diols from its corresponding racemic terminal epoxides using $\operatorname{Co}($ III) $)$-(Salen)-OAc $\{(R, R)-\mathbf{1} \&(S, S)$-1 $\}$ catalyst and water as the nucleophile. The commercially available inactive $\mathrm{Co}(\mathrm{II})$-(Salen)complex catalyst converted into the corresponding $\mathrm{Co}(\mathrm{III})$-(salen)-OAc precatalyst by aerobic oxidation with acetic acid at room temperature (Scheme 5). In this method, the selective hydrolysis of one of the enantiomer of the racemic epoxide leads to the enantiomeric 1,2-
diol, while the opposite enantiomer remains as unhydrolyzed epoxide in pure enantiomeric form (Scheme 6).

Scheme 5. Aerobic oxidation of Jacobsen's catalyst provides Co(III)-Salen precatalyst

Scheme 6. Co-catalyzed hydrolytic kinetic resolution of racemic terminal epoxide

The salient features of HKR strategy includes: Commercial availability of both cobalt salen catalysts $\{(R, R) /(S, S)-\mathrm{Co}(\mathrm{II})$-(salen)complex $\mathbf{1}\}$, readily available racemic epoxides, low catalytic loading (0.2 to $2 \mathrm{~mol} \%$), safe and inexpensive reagent (0.55 equiv $\mathrm{H}_{2} \mathrm{O}$), mild reaction conditions (RT), both products obtained in high enantiopurity ($\geq 98 \%$ ee), easy isolation of the products due to large difference in the boiling point and polarity and applicable to large scale production. Since its discovery, HKR has been successfully utilized for the synthesis of complex biologically active natural products and pharmaceuticals. ${ }^{26}$

1.1.2.3. Nucleophilic ring opening reactions of epoxides

Epoxides have been extensively used as versatile synthetic precursors that serve as "reactive electrophiles" for nucleophilic ring-opening reactions. Despite the importance of reactivity of strained ring, epoxides undergo synthetically useful transformations with a wide range of nucleophiles to provide a variety of oxygen-containing 1,2-functionalized
compounds (Figure 6). ${ }^{27}$ The regioselectivity of the ring opening reactions depends on several factors such as reaction conditions, nature of nucleophile and the nature of the substituent in the epoxide.

Figure 6. Nucleophilic ring opening reactions of epoxides
The ring opening reactions and rearrangements of epoxides have provided efficient ways to generate molecular complexity during the synthesis of many biologically active molecules (Figure 7).

Figure 7. Synthesis of various bioactive molecules via an epoxide intermediate

1.1.3. Aziridines in organic synthesis

Like epoxides, aziridines ${ }^{28}$ are also valuable three-membered nitrogen-containing heterocyclic compounds. Due to its high ring strain ($26.7 \mathrm{kcal} / \mathrm{mol}$) and reactivity, these are highly prone to undergo regioand stereoselective ring opening reactions ${ }^{29}$ with a wide variety of

Fig 8. Aziridine carbon and heteroatom nucleophiles, there as to allow access towards various functionalized nitrogen-containing compounds like amino alcohols, amino acids etc., ${ }^{29}$ In particular, enantiopure aziridines (Fig. 8) are used as important chiral building blocks, chiral auxiliaries and chiral ligands in asymmetric synthesis. ${ }^{30}$ Growing synthetic accessibility of chiral aziridines has propelled their use in ring opening reactions in organic synthesis. ${ }^{31}$ In addition, the biological activity of aziridines lies in their property as powerful alkylating agents. The aziridine functionality is also present in many naturally occurring molecules such as azinomycins, mitomycins, FR-900482, ficellomycin, miraziridine, maduropeptin, and azicemicins are of significant interest (Figure 9). ${ }^{32}$

Figure 9. Representative natural products possessing aziridine ring moiety

1.1.3.1. Reactivity of aziridines

Aziridines are reactive and versatile substrate because of certain inherent features within their structure. These include high ring strain, a reactive π bond, a lone pair of electrons on the nitrogen, and the ability to undergo ring cleavage reactions. The more S character of the lone pair on nitrogen results in the lower basicity than the acyclic aliphatic amines which reduce the ability of π-character. To release the strain of the ring these are participating in the ring opening reactions. The pyramidal inversion of the nitrogen atom in aziridine ($8-12 \mathrm{kcal} / \mathrm{mol}$) is higher than the open chain amines. In aziridine, due to increase in ring strain makes to prevent the inversion of nitrogen (Figure 10). ${ }^{33}$

Figure 10. Basicity and pyramidal inversion of the nitrogen atom of aziridine

Due to the lower electronegativity of nitrogen compared to oxygen, ring-opening reactions of aziridines are less facile than the opening of the corresponding epoxides. The main and characteristic property of aziridine is their high reactivity towards a variety of nucleophilic reagents either by employing acidic catalysis or by electron withdrawing group on nitrogen atom to activate the aziridine ring. ${ }^{34}$ Depending upon the nature of the substituent on nitrogen atom, aziridines are classified as "activated" and "non-activated" aziridines. Activated aziridines have an electron-withdrawing substituent on nitrogen during nucleophilic ring-opening capable of stabilizing the negative charge that develops on the nitrogen atom. Non-activated aziridines contain a basic nitrogen atom or an N -alkylated or N-arylated substituent and nucleophilic ring-opening reactions usually take place under acid catalysis (Lewis or Bronsted acids). ${ }^{35}$

1.1.3.2. Synthetic methods to enantiopure aziridines

Over the past few decades, numerous synthetic routes have been developed for the preparation of aziridines. However, most of the traditional methods are the insertion of nitrogen source to olefins, transfer of a suitable carbon source to imines, and intramolecular cyclization of vicinal amino derivatives. The asymmetric strategy is the important tool in the synthesis of enantiopure aziridines which are useful precursors in the synthesis of various nitrogen-containing biologically important molecules via ring opening transformations. ${ }^{36}$ Chiral aziridines can be prepared from other chiral pool starting materials such as amino acids, carbohydrates, and hydroxy acids. In general, methods such as asymmetric aziridination of olefins or imines in the presence of chiral catalysts/chiral auxiliaries, or asymmetric synthesis of aziridines starting from enantiopure epoxides, amino alcohols and diols has been widely employed. ${ }^{37}$ Only selected methods are described below.

a) Metal-catalyzed asymmetric aziridination

The insertion of nitrene to olefin is the most popular methods to synthesize aziridines due to easy availability of olefins starting materials. In the recent years, several enantioselective methodologies have been developed towards the synthesis of many natural products and bioactive molecules. ${ }^{38}$ Jacobsen ${ }^{39}$ and Evans ${ }^{40}$ independently reported the catalytic asymmetric aziridination of olefins for direct conversion of alkenes to an aziridine. In both the methods, the addition of nitrene source ($\mathrm{PhI}=\mathrm{NTs} ; N$-(p-toluenesulfonyl)iminophenyliodinane) to the aryl-substituted alkenes are catalyzed by copper (I) triflate. Evans employed the enantioselective aziridination of aryl substituted alkenes utilizing chiral 4-4'-disubstituted bis-oxazolinones as a chiral ligand. Jacobsen has also been successfully employed the asymmetric aziridination of benzylidene derivatives using Salen complex as a chiral catalyst. In these protocols, the N-tosyl-aziridines were obtained in moderate to excellent yields with enantioselectivity up to 97% ee (Scheme 7).

Scheme 7. Catalytic asymmetric aziridination of olefins using a copper catalyst

Katsuki and co-workers ${ }^{41}$ have been reported the catalytic asymmetric aziridination of olefins using organic azide as a nitrene source and chiral Ru-Salen(CO) complexes as a chiral catalyst. In this reaction, nitrene was generated either by induction of UV irradiation or heating. Under these conditions, numbers of various olefins are transformed to corresponding N -substituted aziridines with high enantiopurities ($>99 \%$ ee) excellent yields (up to 99%) (Scheme 8).

Scheme 8. Asymmetric aziridination of olefins using chiral Ru-Salen (CO) complexes

b) From chiral pool starting material ${ }^{42}$

Naturally occurring amino acids and carbohydrates are used as chiral starting materials for the preparation of enantiopure aziridines (Scheme 9). Using this strategy, the synthesis of enantiopure aziridines are limited due to the restricted availability of suitable chiral starting materials and it requires multistep synthesis.

N-Tosylated
L-phenylalanine

Scheme 9. Enantiopure aziridines from amino acids and carbohydrates

c) Asymmetric hydrolytic and aminolytic kinetic resolution (HKR \& AKR)

A large number of highly enantiopure aliphatic and aromatic terminal aziridines are synthesized from the wide range of inexpensive racemic terminal epoxides via hydrolytic kinetic resolution and aminolytic kinetic resolution by using water or a protected amine as a nucleophile using Jacobsen's chiral Co ${ }^{\text {III }}$-Salen complex as a catalyst. Jacobsen et.al. have developed the hydrolytic kinetic resolution strategy using carbamates as a nucleophile and the chiral $\mathrm{Co}^{\text {III }}$-Salen complex as the catalyst to produce N-protected amino alcohol derivatives followed by intramolecular ring closure reaction afforded the enantiopure aziridine in high enantiopurity (Scheme 10). ${ }^{43}$

Scheme 10. Hydrolytic kinetic resolution of terminal epoxides to enantiopure aziridines

In 2004, Bartoli and co-workers has utilized Jacobsen's $\mathrm{Co}^{\text {III }}$-Salen-catalyzed asymmetric aminolytic kinetic resolution (AKR) of racemic terminal epoxides with N protected amines results in enantiopure N-protected 1,2-amino alcohols followed by intramolecular ring closure of 1,2 amino alcohol derivative to produce N-protected aziridine derivatives in moderate to good yields with high enantiopurity (>99\% ee) (Scheme 11). ${ }^{44}$

Scheme 11. Aminolytic kinetic resolution of terminal epoxides to enantiopure aziridines

1.1.3.3. Nucleophilic ring opening reactions of aziridines

Nucleophilic ring opening reactions are the most characteristic reactions of aziridines. Like epoxides, aziridines are facile to stereo- and regioselective nucleophilic ring opening reactions to release ring strain, provides various nitrogen-containing 1,2difunctional enantiopure products (Figure 11). ${ }^{45}$

Figure 11. Nucleophilic ring opening reactions of aziridine

Various methods have been reported for the nucleophilic ring opening reactions of aziridines with a wide range of heteroatom nucleophiles such as carbon-centered, nitrogencentered, halogen centered, sulfur centered nucleophiles and with organometallic reagents and reducing agents. These are also capable of participating in cycloaddition reactions, polymerization and rearrangement reactions. The regioselectivity of nucleophilic ring opening reactions of aziridine depends upon the reaction conditions and the nature of substituent on the nitrogen atom of an aziridine. ${ }^{46}$

Aziridines serves as versatile intermediates which undergo a variety of synthetic transformations. Over the years, many research groups have developed various methodologies to generate highly valuable enantiopure aziridines and utilized them successfully for the synthesis of many pharmaceutically important drugs and biologically active natural products (Figure 12). ${ }^{47}$

Figure 12. Synthesis of various bioactive molecules via aziridine intermediate

Thus, chiral epoxides and aziridines are an important starting point for the preparation of a plethora of biologically active natural products as well as pharmaceutically important compounds.

1.1.4. References

1. (a) S. Mauskopf, A history of chirality, in: Chiral analysis (eds. K. W. Busch, M. A. Busch), Elsevier B. V. 2006, p 3-24; (b) Mislow, K. Top. Stereochem. 1999, 22, 1.
2. Moss, G. P. Pure Appl. Chem. 1996, 68, 2193.
3. Rosanoff, M. A. J. Am. Chem. Soc. 1906, 28, 114.
4. Cahn, R. S.; Ingold, C.; Prelog, V. Angew. Chem., Int. Ed. Engl. 1966, 5, 385.
5. Kasprzyk-Hordern, B. Chem Soc Rev 2010, 39, 4466.
6. (a) Drayer, D. E. Clin. Pharmacol. Ther. 1986, 40, 125; (b) Lee, E. J. D.; Williams, K. M. Clin. Pharmacokinet. 1990, 18, 339.
7. (a) Holmstedt, B.; Frank, H.; Testa, B.; Editors Chirality and Biological Activity. Proceedings of an International Symposium Held at Tuebingen, Fed. Rep. Ger., April 5-8, 1988; Alan R. Liss, Inc., 1990; (b) Eichelbaum, M.; Gross, A. S. Adv. Drug Res. 1996, 28, 1; (c) McConathy, J.; Owens, M. J. Prim Care Companion J Clin Psychiatry 2003, 5, 70.
8. Lin, G.-Q.; You, Q.-D.; Cheng, J.-F.; Editors Chiral Drugs: Chemistry and Biological Action; John Wiley \& Sons, Inc., 2011
9. (a) Kim, J. H.; Scialli, A. R. Toxicol. Sci. 2011, 122, 1; (b) Lenz, W. Teratology 1988, 38, 203.
10. (a) FDA's policy statement for the development of new stereoisomer drugs. Chirality. 1992, 4, 338; (b) Investigation of chiral active substances, European MedicinesAgency,1994, http://www.ema.europa.eu/pdfs/human/qwp/3cc29aen.pdf.
11. Millership, J. S.; Fitzpatrick, A. Chirality 1993, 5, 573.
12. Subramanian, G.; Editor Chiral Separation Techniques: A Practical Approach, Second Edition; Wiley-VCH, 2001.
13. Nguyen, L. A.; He, H.; Pham-Huy, C. Int J Biomed Sci 2006, 2, 85.
14. Mane, S. Anal. Methods 2016, 8, 7567.
15. Fujima, Y.; Ikunaka, I.; Inoue, T.; Matsumoto, J. Org Process Res Dev. 2006, 10, 905.
16. (a) Hanessian, S. Organic Chemistry Series, Vol. 3: Total Synthesis of Natural Products: The "Chiron" Approach; Pergamon, 1983; (b) Blaser, H. U. Chem. Rev.

1992, 92, 935; (c) Chida, N.; Sato, T. In Chiral pool synthesis: chiral pool syntheses starting from carbohydrates 2012 Elsevier B.V.; pp 207-239.
17. (a) Lin, G.-Q.; Li, Y.-M.; Chan, A. S. C. Principles and Applications of Asymmetric Synthesis; John Wiley \& Sons, Inc., 2001; (b) Taylor, M. S.; Jacobsen, E. N. Proc. Natl. Acad. Sci. 2004, 101, 5368.
18. (a) Hawkins, J. M.; Watson, T. J. N. Angew. Chem., Int. Ed. 2004, 43, 3224; (b) Nugent, W. A.; RajanBabu, T. V.; Burk, M. J. Science 1993, 259, 479.
19. Bergmeier, S. C.; Lapinsky, D. J. Prog. Heterocycl. Chem. 2012, $24,89$.
20. (a) Smith, J. G. Synthesis 1984, 629; (b) Buchanan, J. G.; Sable, H. Z. Selec. Org. Transform. 1972, 2, 1.
21. Jacobsen, E. N. Acc. Chem. Res. 2000, 33, 421.
22. Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974.
23. Heravi, M. M.; Lashaki, T. B.; Poorahmad, N. Tetrahedron: Asymmetry 2015, 26, 405.
24. Rodriguez, A.; Nomen, M.; Spur, B. W.; Godfroid, J.-J.; Lee, T. H. Eur. J. Org. Chem. 2000, 2991.
25. (a) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936; (b) Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 1307.
26. (a) Kumar, P.; Naidu, V.; Gupta, P. Tetrahedron 2007, 63, 2745; (b) Kumar, P.; Gupta, P. Synlett 2009, 1367.
27. (a) Schneider, C. Synthesis 2006, 3919; (b) Saddique, F. A.; Zahoor, A. F.; Faiz, S.; Naqvi, S. A. R.; Usman, M.; Ahmad, M. Synth. Commun. 2016, 46, 831; (c) Bonollo, S.; Lanari, D.; Vaccaro, L. Eur. J. Org. Chem. 2011, 2587.
28. Weissberger, A. Heterocyclic Compounds with Three- and Four-Membered Rings. Vol. I and Vol. II; Interscience, 1964.
29. (a) Tanner, D. Pure Appl. Chem. 1993, 65, 1319; (b) Tanner, D. Angew. Chem. 1994, 106, 625.
30. Mueller, P.; Fruit, C. Chem. Rev. 2003, 103, 2905.
31. Osborn, H. M. I.; Sweeney, J. Tetrahedron: Asymmetry 1997, 8, 1693.
32. Hodgkinson, T. J.; Shipman, M. Tetrahedron 2001, 57, 4467.
33. Nielsen, I. M. B. J. Phys. Chem. A 1998, 102, 3193.
34. Wu, J.; Hou, X.-L.; Dai, L.-X. J. Chem. Soc., Perkin Trans. 1 2001, 1314.
35. Ham, G. E. J. Org. Chem. 1964, 29, 3052.
36. Sweeney, J. B. Chem. Soc. Rev. 2002, 31, 247.
37. (a) Degennaro, L.; Trinchera, P.; Luisi, R. Chem. Rev. 2014, 114, 7881; (b) Sabir, S.; Kumar, G.; Jat, J. L. Asian J. Org. Chem. 2017, 6, 782.
38. Watson, I. D. G.; Yu, L.; Yudin, A. K. Acc. Chem. Res. 2006, 39, 194.
39. Li, Z.; Conser, K. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1993, 115, 5326.
40. Evans, D. A.; Faul, M. M.; Bilodeau, M. T.; Anderson, B. A.; Barnes, D. M. J. Am. Chem. Soc. 1993, 115, 5328.
41. (a) Nishikori, H.; Katsuki, T. Tetrahedron Lett. 1996, 37, 9245; (b) Kawabata, H.; Omura, K.; Katsuki, T. Tetrahedron Lett. 2006, 47, 1571.
42. Wipf, P.; Miller, C. P. Tetrahedron Lett. 1992, 33, 6267.
43. Kim, S. K.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2004, 43, 3952
44. Bartoli, G.; Bosco, M.; Carlone, A.; Locatelli, M.; Melchiorre, P.; Sambri, L. Org. Lett. 2004, 6, 3973.
45. (a) McCoull, W.; Davis, F. A. Synthesis 2000, 1347; (b) Pellissier, H. Adv. Synth. Catal. 2014, 356, 1899.
46. Yadav, J. S.; Reddy, B. V. S.; Parimala, G.; Reddy, P. V. Synthesis 2002, 2383.
47. Degennaro, L.; Trinchera, P.; Luisi, R. Chem. Rev. 2014, 114, 7881.

1.2. SECTION 2

Facile synthesis of (R)-mexiletine and (R)-phenoxybenzamine

 hydrochloride via chiral aziridine ring opening
1.2.1. Introduction

Synthesis of compounds in their enantio-enriched form became very important in the marketplace, especially in the pharmaceutical sector. ${ }^{1}$ This is mainly because; the enantiomers of chiral drugs often exhibit significantly different pharmacological, toxicological, pharmacodynamic and pharmacokinetic properties. ${ }^{2}$ Hence the development of newer methods aiming the synthesis of active enantiomer or both isomers (for careful evaluation of individual enantiomers) of chiral drugs is a main focus of research in many academic and industrial laboratories. ${ }^{3}$ In this context, optically pure amines are prevalent and versatile building blocks in biologically active compounds such as pharmaceutical drugs, several natural products, and agrochemical active ingredients (Figure 1). These are also incorporated as chiral ligands, resolving agents and chiral auxiliaries or chiral bases in many asymmetric transformations and also serves as valuable precursors in the synthesis of many biologically active compounds. Hence, the development of novel and efficient synthetic strategies to access this kind of enantiopure compounds are in high demand.

Cinacalcet
(Calcimimetic agent)

antagonist)

Sitagliptin phosphate (DPP-IV inhibitor)

(R)-Sumanirole (Anti-Parkinson's agent) (Neurotransmitter drug)

L-DOPA

Rivastigmine (Alzheimer's)

Figure 1. Examples of pharmaceutically significant chiral amines

Numerous methods have been established to obtain enantiopure compounds employing resolution methods, chiral pool approaches, and asymmetric synthesis. ${ }^{4}$ In the last two decades, asymmetric synthesis has proven attractive and efficient methods to access optically pure compounds. ${ }^{5}$ In this context, optically pure epoxides and aziridines are considered as an important chiral non-racemic precursor that can be readily transformed into valuable enantiomerically enriched building blocks such as amines, amino alcohols and amino acids etc., ${ }^{6}$ Aziridines, in particular, enantiopure aziridines are versatile chiral building blocks or intermediates in organic synthesis for the preparation of various nitrogencontaining natural products as well as biologically significant compounds. Due to its high ring strain ($26.7 \mathrm{kcal} / \mathrm{mol}$), and versatile reactivity, they can easily undergo regio- and stereoselective ring opening under mild conditions to provide useful amino derivatives. ${ }^{7}$ This inherent ability of aziridines has been well studied in the case of natural product synthesis, however its potential utility in the preparation of chiral drug molecules are scarce. In this section, the development of new and efficient synthetic routes to (R)-mexiletine $R \mathbf{- 1}$ and (R)-phenoxybenzamine hydrochloride R - $\mathbf{2}$ using chiral aziridine as a key intermediate has been described (Figure 2).

R-Mexiletine R-1 antiarrhythmic

R-Phenoxybenzamine. HCI R-2 antihypertensive

Figure 2. Structure of (R)-mexiletine R - $\mathbf{1}$ and (R)-phenoxybenzamine hydrochloride R - $\mathbf{2}$

(R)-Mexiletine

Mexiletine, an orally active anti-arrhythmic drug belongs to Type IB class of antiarrhythmic agents that includes tocainide, lidocaine, and phenytoin (Figure 3). ${ }^{8}$ It acts as non-selective voltage-gated sodium channel (VGSC) antagonist used in the treatment of ventricular arrhythmia, allodynia and myotonic syndromes, etc,. Racemic form of mexiletine is available in the market with the trade name Mexitil ${ }^{\circledR}$. However, in vivo and in vitro pharmacological studies shows that (R)-isomer of mexiletine $R-\mathbf{1}$ is more potent than the (S)-isomer in experimental arrhythmias and in binding studies on cardiac sodium
channels. ${ }^{9}$

Figure 3. Type IB antiarrhythmic agents
Further, mexiletine undergoes rapid and extensive in vitro metabolism in human liver mediated by cytochrome P 450 to the number of metabolites via by aromatic hydroxylation to p-hydroxy mexiletine (PHM) and m-hydroxy mexiletine (MHM), aliphatic hydroxylation to hydroxymethyl mexiletine (HMM) and N-oxidation to N-hydroxymexiletine (NHM) and are shown in Figure $4 .{ }^{10}$

p-hydroxymexiletine (PHM)

m-hydroxymexiletine (MHM)

hydroxymethylmexiletine N -hydroxymexiletine (HMM)
(NHM)

Figure 4. Mexiletine metabolites in human liver

1.2.2. Review of Literature

Various methods for the synthesis of optically pure mexiletine have been reported in the literature. Detail reports of significant syntheses of (R)-mexiletine $R \mathbf{- 1}$ are described below.

Turgeon approach (1991) ${ }^{11}$

Turgeon et al. employed chemical resolution method to prepare the mexiletine enantiomers $R-\mathbf{1}$ and S - $\mathbf{1}$ from the rac-mexiletine rac-1 using a chiral resolving agent (+)-Di-p-toluoyl-D-tartaric acid (Scheme 1).

Scheme 1. Reagents and conditions: (i) (+)-Di-p-toluoyl-D-tartaric acid, MeOH.

Franchini's approach (1994) ${ }^{12}$

Franchini et al. have reported the synthesis of (R)-mexiletine R - $\mathbf{1}$ with chiral starting material (+)-(S)-3-bromo-2-methyl-1-propanol 4. Phenol 3 on O-alkylation with bromoalcohol 4 under basic condition gave hydroxy ether 5 (Scheme 2). The alcohol 5 on oxidation in the presence of catalytic amount of ruthenium dioxide and sodium periodate as a co-oxidant to its corresponding acid 6. Subsequently, carboxylic acid 6 was converted to amide 7 followed by Hofmann degradation condition afforded $R-\mathbf{1} . \mathrm{HCl}$

Scheme 2. Reagents and conditions: (i) $10 \% \mathrm{NaOH}$, reflux to rt, $3 \mathrm{~h}, 40 \%$; (ii) cat. RuO_{2}, $\mathrm{EtOAc} / 10 \%$ aq. $\mathrm{NaIO}_{4}(1: 1)$, rt, 2 days, 75%; (iii) (a) SOCl_{2}, reflux, 1 h , (b) conc. $\mathrm{NH}_{4} \mathrm{OH}$, $0^{\circ} \mathrm{C}$ to rt, $12 \mathrm{~h}, 60 \%$; (iv) (a) $\mathrm{Br}_{2} / \mathrm{NaOH}$, reflux, 4 min, (b) $0.5 \mathrm{~N} \mathrm{HCl}, \mathrm{rt}, 40 \%$.

Martin's approach (1999) ${ }^{13}$

Martin and co-workers prepared both enantiomers of mexiletine $R-\mathbf{1}$ and $S \mathbf{- 1}$ using chiral derivatizing agent tetrahydropyranyl protected (R)-mandelic acid (THPMA) from the rac-mexiletine 1 (Scheme 3). The rac-mexiletine rac-1 was subjected to chemical resolution method with tetrahydropyranyl-protected (R)-mandelic acid (THPMA) provided diastereomeric mixture of the acylated products 8 and 9 followed by deprotection of tetrahydropyranyl (THP) in the presence of acidic medium gave the diastereomeric mixture amides $\mathbf{1 0}$ and 11. After separation by column chromatography, hydrolysis of $\mathbf{1 0}$ and $\mathbf{1 1}$ gave enantiopure mexiletine hydrochloride $R \mathbf{- 1 . H C l}$ and $S \mathbf{- 1} . \mathrm{HCl}$ respectively.

Scheme 3. Reagents and conditions: (i) dicyclohexylcarbodiimide (DCC), THPMA, EtOAc, $0{ }^{\circ} \mathrm{C}$ to rt, $2 \mathrm{~h}, 97 \%$; (ii) conc. $\mathrm{HCl}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(4: 1), 12 \mathrm{~h}, 85 \%$; (iii) (a) 4 M $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O} /$ Dioxane, $80^{\circ} \mathrm{C}, 72 \mathrm{~h}, 88 \%$, (b) $20 \% \mathrm{HCl}$ in methanol.

Loughhead's approach (1999) ${ }^{14}$

In this approach, Loughhead and co-workers described the stereospecific synthesis of both enantiomers of mexiletine $R-\mathbf{1}$ and $S \mathbf{- 1}$ starting from commercially available homo chiral (R)-2-amino-1-propanol 13. Aromatic nucleophilic substitution of compound $\mathbf{1 3}$ with 1,3-dimethyl-2-fluorobenzene tricarbonyl chromium 12 in toluene gave chromium complex 14. Oxidative decomposition of chromium complex 14 in the presence of iodine in THF afforded (R)-mexiletine in 32% yield and 99% ee (Scheme 4).

Scheme 4. Reagents and conditions: (i) NaH , THF, 2 h , rt; (ii) $\mathrm{I}_{2}, \mathrm{rt}, 2 \mathrm{~h}, 64 \%$; (iii) 1 M $\mathrm{HCl}, \mathrm{Et}_{2} \mathrm{O}, 32 \%$.

Lentini's approach (2000) ${ }^{15}$

Lentini and co-workers developed a synthetic route to both enantiomers of mexiletine from the commercially available enantiomerically pure propylene oxide $\mathbf{1 5}$
(Scheme 5). Regioselective ring opening of epoxide 15 with 2,6-dimethyl phenol 3 afforded the (S)-1-(2,6-dimethylphenyloxy)-2-propanol 16. Secondary alcohol 16 was subjected to Mitsunobu reaction with phthalimide gave phthalimido derivative 17, which on hydrazinolysis afforded (R)-mexiletine R-1 in 66% yield and 96% ee.

Scheme 5. Reagents and conditions: (i) 2,6-dimethyl phenol 3, $\mathrm{NaOH}, \mathrm{ACN}, 12 \mathrm{~h}, \mathrm{rt}, 53 \%$; (ii) phthalimide, $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{DEAD}, \mathrm{THF}, 12 \mathrm{~h}, \mathrm{rt}, 68 \%$; (iii) hydrazine hydrate $\left(\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\right)$, $\mathrm{AcOH}, \mathrm{MeOH}$, reflux, 6 h, 66%.

The same research group ${ }^{16}$ have reported an alternative synthetic route starting from homochiral (R)-(-)-2-amino-1-propanol 13 that is depicted in Scheme 6.

Scheme 6. Reagents and conditions: (i) phthalic anhydride, $\mathrm{Et}_{3} \mathrm{~N}$, toluene, reflux, $3 \mathrm{~h}, 78 \%$; (ii) 2,6-dimethyl phenol 3, PPh_{3}, DEAD (or) DIAD, THF, rt, $24 \mathrm{~h}, 65 \%$,; (iii) $\mathrm{SOCl}_{2}, \mathrm{Py}$, THF, $60^{\circ} \mathrm{C}, 6 \mathrm{~h}$ (when $\mathrm{X}=\mathrm{Cl}$); $\mathrm{HBr}(\mathrm{g})$ or $\mathrm{HI}(\mathrm{g}),-5^{\circ} \mathrm{C}$ to $\mathrm{rt}, 18 \mathrm{~h}, 80^{\circ} \mathrm{C}, 2 \mathrm{~h}($ when $\mathrm{X}=\mathrm{Br}$ or I); p-TsCl, pyridine, rt, 18 h (when $\mathrm{X}=\mathrm{OTs}$); (iv) 2,6-dimethyl phenol 3, DMF, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, $130{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (v) $\mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{AcOH}$, EtOH, reflux, 2 h.

Gastaldi's approach (2007) ${ }^{17}$

Gastaldi and co-workers reported the enzymatic resolution of rac-mexiletine $\mathbf{1}$ using Candida antartica lipase-B (CALB, Novozym 435) and lauric acid as an acyl donor. The acetylation is more selective towards the (R)-enantiomer under these reaction conditions (Scheme 7).

Scheme 7. Reagents and conditions: (i) lauric acid, CAL-B, heptane, $80^{\circ} \mathrm{C}, 7 \mathrm{~h}, 19(39 \%$, 98% ee), S-1 (27%, 99% ee).

Han \& Lee's approach (2008) ${ }^{18}$

In this approach, Han and co-workers synthesized both isomers of mexiletine via nucleophilic substitution of 2-(sulfonyloxymethyl)aziridine $\mathbf{2 0}$ with 2,6-dimethylphenol $\mathbf{3}$ as shown in the Scheme 8. The synthesis started from (2R)-1-[1'(R)- α-methylbenzyl](ptoluenesulfonyloxymethyl)aziridine 20 via two diastereomers $2 R$ - and $2 S$-(2,6-dimethylphenoxy)methyl aziridines $\mathbf{2 1}$ and $\mathbf{2 3}$ followed by hydrogenolysis afforded both $R \mathbf{- 1}$ and $S-\mathbf{1}$ in 84% and 87% yields respectively.

Scheme 8. Reagents and conditions: (i) 2,6-dimethyl phenol 3, acetone/DMF (1:1), $\mathrm{K}_{2} \mathrm{CO}_{3}$, reflux, 4 h, $76 \%(\mathbf{2 1 : 2 3}=84: 16)$; (ii) $\mathrm{H}_{2}(1 \mathrm{~atm}), \mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{MeOH}, \mathrm{rt}, 84 \%(R-\mathbf{1}), 97 \%(S-$ 1).

Ortiz-Marciales approach (2008) ${ }^{19}$

In this approach, Ortiz-Marciales et al. employed asymmetric reduction strategy for the preparation of (S)-enantiomer of mexiletine S-1 (Scheme 9).

Scheme 9. Reagents and conditions: (i) $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, rt, $24 \mathrm{~h}, 84 \%$; (ii) $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}$, pyridine, $\mathrm{EtOH}, 0^{\circ} \mathrm{C}, 12 \mathrm{~h}, 57 \%$; (iii) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{DMF},-30^{\circ} \mathrm{C}$ to rt, $12 \mathrm{~h}, 84 \%$; (iv) 10 $\mathrm{mol} \%$ Spiroborate ester, BH_{3}.THF, 1,4-dioxane, $0^{\circ} \mathrm{C}, 48 \mathrm{~h}, 84 \%, 94 \%$ ee

Treatment of 2,6-Xylenol 3 with 1-bromoacetone 24 under basic condition afforded desired ketone 25 in 84% yield. Ketone 25 was converted into oxime in the presence of $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$ and pyridine followed by O-benzylation with benzyl bromide gave (Z)benzyloxime ether 27. Finally, reduction of oxime ether 27 using 10% spiroborate ester developed by Marciales gave $S \mathbf{- 1}$.

Muthukrishnan'sapproach (2009) ${ }^{21}$

Muthukrishnan and co-workers employed Jacobsen's hydrolytic kinetic resolution strategy to synthesize (R)-mexiletine (Scheme 10).

Scheme 10. Reagents and conditions: (i) epichlorohydrin, $\mathrm{K}_{2} \mathrm{CO}_{3}$, dry acetone, reflux, 24 h ,
80%; (ii) (R, R)-Salen $\mathrm{Co}(\mathrm{III})-29$ ($0.5 \mathrm{~mol} \%$), $\mathrm{H}_{2} \mathrm{O}$ (0.55 equiv.), $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 30 \mathrm{~h}$.

The epichlorohydrin on treatment with 2,6-Xylenol 3 under reflux condition afforded the 2,6 dimethylglycidyl ether 28. The rac-glycidyl ether 28 was subjected to Jacobsen's hydrolytic kinetic resolution employing Jacobsen's catalyst (R, R)-salen Co(III)29 and water afforded enantiomerically pure epoxide $\mathbf{3 0}$ in 43% yield along with enantiopure diol in 47% yield. Reductive ring opening of enantiomerically pure epoxide $\mathbf{3 0}$ with LAH, followed by Mitsunobu reaction with phthalimide and phthalimido ether 17 formed was treated with hydrazine hydrate in ethanol afforded (R)-mexiletine $\boldsymbol{R} \mathbf{- 1}$ in 86% yield and >99\% ee (Scheme 11).

Scheme 11: Reagents and conditions: (iii) LAH, dry THF, $0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 92 \%$; (iv) phthalimide, $\mathrm{Ph}_{3} \mathrm{P}$, DIAD, dry THF, rt, $2 \mathrm{~h}, 83 \%$; (v) $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, EtOH, reflux, $3 \mathrm{~h} ; 86 \%$.

Ryan's approach (2015) ${ }^{20}$

Ryan et al. utilized chiral auxiliary approach for the synthesis of both isomers R 1. HCl and $S-1 . \mathrm{HCl}$.

Scheme 12. Reagents and conditions: (i) (R)-tert-butanesulfinamide 31, $\mathrm{Ti}(\mathrm{OEt})_{4}, 9{ }^{\circ} \mathrm{C}$, MW, 1 h ; (ii) $\mathrm{NaBH}_{4}, \mathrm{CuSO}_{4}, 20^{\circ} \mathrm{C}$, THF, 5 h ; (iii) $4 \mathrm{M} \mathrm{HCl}, 1,4$-dioxane, 3 h .

As depicted in Scheme 12, the 3-(2,6-dimethylphenyloxy)-2-propanone 25 on condensation with (R)-tert-butanesulfinamide $\mathbf{3 1}$ in neat $\mathrm{Ti}(\mathrm{OEt})_{4}$ under microwave condition gave (R)-tert-butanesulfinyl imine 32. Further, reduction of imine intermediate 32 gave the two diastereomeric N-tertbutanesulfinyl chiral amines ($R c, R s$)- and ($S c, R s$)-33 in $\mathrm{dr}=4.0: 1.0$ ratio. Finally, the removal of the chiral auxiliary from the major product ($R c$, $R s)-\mathbf{3 3}$ with 4 N HCl afforded $(R) \mathbf{- 1} \mathbf{H C l}$ in high enantiopurity.

1.2.3. Present work

Objective

The medicinal properties of (R)-mexiletine have attracted a great deal of interest among various chemists. Approaches that have been used so far to prepare enantiopure mexiletine enantiomers involve a chiral pool, chemo/enzymatic resolution strategy or using stereoselective protocols. In this section, the development of simple and efficient approach towards the preparation of R-mexiletine $R \mathbf{- 1}$ via the reductive ring opening reaction of the enantiopure aziridine as a key step has been described. A retrosynthetic analysis of $R \mathbf{- 1}$ is outlined in Scheme 13.

Scheme 13. Retrosynthetic analysis of (R)-mexiletine

As shown in Scheme 13, it has been envisaged that chiral aziridine 35 could serve as a key intermediate for the synthesis of (R)-mexiletine $R-\mathbf{1}$. The intermediate $\mathbf{3 5}$ can be converted to the target molecule via simple reductive ring opening reaction. The chiral aziridine $\mathbf{3 5}$ in turn, could be prepared from regioselective ring opening of enantiopure
epoxide 30 followed by intramolecular ring closure employing Mitsunobu reaction. The epoxide $\mathbf{3 0}$ could be easily obtained from the commercially available starting material (R) epichlorohydrin and 2,6-dimethylphenol 3.

1.2.4. Results and Discussion

As illustrated in Scheme 14, synthesis of (R)-mexiletine R - $\mathbf{1}$ began with the commercially available 2,6-dimethyl phenol 3 which on O-alkylation with (R) epichlorohydrin in anhydrous acetone in the presence of potassium carbonate at reflux for 20 h gave enantiopure 2,6-dimethyl phenyl glycidyl ether $\mathbf{3 0}$ in 73% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum of glycidyl ether $\mathbf{3 0}$, the methylene protons of epoxide resonate at $\delta 3.78$ and 4.07 ppm as a doublet of doublet, while in the ${ }^{13} \mathrm{C}$ NMR the methylene carbon resonate at $\delta 72.9$ ppm. Next, the regioselective ring opening of enantiopure epoxide $\mathbf{3 0}$ with benzylamine in the presence of catalytic amount of lithium bromide under the neat condition for 6 h furnished amino alcohol derivative 34 in 76% yield. ${ }^{22}$ In the ${ }^{1} \mathrm{H}$ NMR spectrum, the methylene protons of amino alcohol $\mathbf{3 4}$ resonate as a multiplet at $\delta 3.81-3.90 \mathrm{ppm}$. On the other hand, the methylene carbons displayed resonance signals at $\delta 53.9$ and 51.3 ppm in ${ }^{13} \mathrm{C}$ NMR supported the formation of amino alcohol 34. The IR spectrum showed the characteristic -OH absorption at $3593 \mathrm{~cm}^{-1}$. Subsequently, the amino alcohol 34 was subjected to intramolecular ring closure employing Mitsunobu reaction in the presence of

Scheme 14. Reagents and conditions: (i) (R)-epichlorohydrin, $\mathrm{K}_{2} \mathrm{CO}_{3}$, dry acetone, reflux, $20 \mathrm{~h}, 73 \%$; (ii) benzylamine, cat. LiBr (neat), $6 \mathrm{~h}, 76 \%$; (iii) PPh_{3}, DIAD, dry toluene, $0{ }^{\circ} \mathrm{C}$ to reflux, $12 \mathrm{~h}, 84 \%$; (iii) $\mathrm{H}_{2}(50 \mathrm{psi}), 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{rt}, 6 \mathrm{~h}, 73 \%$.
triphenylphosphine, DIAD using toluene as a solvent at reflux condition for 12 h gave key intermediate aziridine 35 in 84% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 5}$, the shielded methylene protons of aziridine unit resonated as a doublet at $\delta 1.58$ and $\delta 1.83 \mathrm{ppm}$. The formation of aziridine $\mathbf{3 5}$ was further confirmed by HRMS spectrum at $\mathrm{m} / \mathrm{z} 268.1696$ corresponding to molecular formula $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$with calculated value m / z 268.1696. Finally, the aziridine intermediate $\mathbf{3 5}$ was subjected to reductive ring opening under H_{2} pressure (50 psi) in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in methanol for 6 h gave the (R)-mexiletine $(R-\mathbf{1})$ in 73% yield with an overall yield of $34 \%,[\alpha]^{25}{ }_{D}-2.4\left(c 5.0, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. ${ }^{15}[\alpha]^{25}{ }_{\mathrm{D}}{ }^{-}$ 2.7 (c 4.7, CHCl_{3}) \}. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $R \mathbf{- 1}$, the disappearance of benzyl protons and appearance of characteristic signals of methyl protons resonate as a doublet at $\delta 1.17$ ppm and $-\mathrm{NH}_{2}$ as a broad singlet at $\delta 1.67 \mathrm{ppm}$ confirmed the formation of the target molecule (R)-mexiletine $R \mathbf{- 1}$. The physical and spectroscopic data of all synthesized molecules were confirmed by means of IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS analysis.

1.2.5. Conclusion

In conclusion, a concise and efficient route for the synthesis of active enantiomer of antiarrhythmic drug (R)-mexiletine $R \mathbf{- 1}$ has been realized using reductive ring opening of chiral aziridine intermediate as a key step. Simple procedures, the ready availability of the starting materials and good overall yields are some of the salient features of this approach. Further, this strategy can be exploited for the preparation of other optically active mexiletine analogs.

1.2.6. Experimental Section

1) (S)-2-((2,6-dimethylphenoxy)methyl)oxirane (30)

A solution (R)-epichlorohydrin ($2.6 \mathrm{~mL}, 0.0327 \mathrm{~mol}$) was added slowly to a stirred solution of 2,6-dimethylphenol 3 ($2 \mathrm{~g}, 0.0163 \mathrm{~mol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.3 \mathrm{~g}, 0.0458 \mathrm{~mol})$ in anhydrous acetone (25 mL), and the resulting mixture was heated at reflux for 20 h . When the reaction was complete (TLC), the reaction mixture was filtered, washed with acetone and concentrated the solvent. The crude residue was dissolved in ethyl acetate ($3 \times 20 \mathrm{~mL}$) and
extracted with $1 \mathrm{M} \mathrm{NaOH}(3 \times 10 \mathrm{~mL})$ and the collected organic layers were washed with brine ($2 \times 10 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by column chromatography [silica-gel, petroleum ether/acetone (96:4)] gave 30 as a yellow oil.

Yield: $2.11 \mathrm{~g}, 73 \%$;
Molecular Formula: $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$;
Specific rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=+2.5\left(c 2.0, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. $\left.{ }^{21}[\alpha]^{25}{ }_{\mathrm{D}}=+2.5\left(c 2.0, \mathrm{CHCl}_{3}\right)\right\}$;
IR ($\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{-1}$): $v_{\text {max }} 3436,3020,1600,1497,1215,1045,929,669$;
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 2.34(\mathrm{~s}, 6 \mathrm{H}), 2.73-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.91(\mathrm{~m}, 1 \mathrm{H}), 3.37-$
$3.41(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=11.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=11.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.98$ (m, 1 H), 7.04 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl $_{3}$): $\delta 155.4$ (C), 130.7 (C, 2 carbons), 128.7 ($\mathrm{CH}, 2$ carbons), $123.9(\mathrm{CH}), 72.9\left(\mathrm{CH}_{2}\right), 50.4(\mathrm{CH}), 44.4\left(\mathrm{CH}_{2}\right), 16.1\left(\mathrm{CH}_{3}, 2\right.$ carbons);
HRMS (ESI): m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$179.1067, found 179.1068.
2) (S)-1-(benzylamino)-3-(2,6-dimethylphenoxy)propan-2-ol (34)

A round bottomed flask charged with (S)-2-((2,6-dimethylphenoxy)methyl)oxirane 30 (1.9 $\mathrm{g}, 0.0106 \mathrm{~mol}), \mathrm{LiBr}$ (cat.) and benzylamine ($0.93 \mathrm{~mL}, 0.0085 \mathrm{~mol}$) was stirred at room temperature for 6 h . When the reaction was complete (TLC), $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and the mixture was extracted with (methyl tert-butyl ether) MTBE ($3 \times 20 \mathrm{~mL}$). The organic layers were combined, washed with brine ($2 \times 10 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude residue was purified by column chromatography [silica-gel, EtOAc/petroleum ether (18:82)] gave $\mathbf{3 4}$ as a colorless solid.
Yield: 2.31g, 76\%;
MP: $61-62{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2}$;
Specific rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=+2.7\left(c\right.$ 2.0, $\left.\mathrm{CHCl}_{3}\right)$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3593,3445,3322,3059,3016,2945,2962,1666,1590,1495,1481$, 1433, 1206, 1127, 1049, 719, 676;
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 2.29(\mathrm{~s}, 6 \mathrm{H}), 2.86(\mathrm{dd}, J=11.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=$ $12.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.90(\mathrm{~m}, 4 \mathrm{H}), 4.08-4.13(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.96(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27-7.30 (m, 1 H), 7.35 (d, $J=4.3 \mathrm{~Hz}, 4 \mathrm{H}$);
${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 155.3$ (C), 140.0 (C), 130.7 (C, 2 carbons), 128.9 (CH, 2 carbons), 128.4 ($\mathrm{CH}, 2$ carbons), 128.1 ($\mathrm{CH}, 2$ carbon), 127.1 (CH), 123.9 (CH), 74.3 $\left(\mathrm{CH}_{2}\right), 69.2(\mathrm{CH}), 53.9\left(\mathrm{CH}_{2}\right), 51.3\left(\mathrm{CH}_{2}\right), 16.2\left(\mathrm{CH}_{3}, 2\right.$ carbons $)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$286.1802, found 286.1803.

3) (R)-1-benzyl-2-((2,6-dimethylphenoxy)methyl)aziridine (35)

To a stirred solution of $34(2 \mathrm{~g}, 0.0070 \mathrm{~mol})$ in dry toluene (3 mL), was added $\mathrm{PPh}_{3}(3.67 \mathrm{~g}$, $0.0140 \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$, and the solution was stirred for 15 min . A solution of DIAD (2.1 mL , 0.0105 mol) in dry toluene (2 mL) was added dropwise over 20 min at $0^{\circ} \mathrm{C}$ and the mixture was then stirred for 30 min . After 30 min the reaction mixture allowed to room temperature and reflux for 12 h . When the reaction was complete (TLC), the reaction mixture was concentrated under reduced pressure and the crude residue was purified by column chromatography [silca-gel, EtOAc/petroleum ether (4:96)] gave $\mathbf{3 5}$ as a colorless oil.

Yield: $1.57 \mathrm{mg}, 84 \%$;
Molecular Formula: $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}$;
Specific rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=+40.5$ (c 1.0, CHCl_{3});
Chiral HPLC: ee $>97 \%$ [The ee of $\mathbf{3 5}$ was determined by chiral HPLC analysis; Chiralcel OD-H (250 X 4.6 mm) column; eluent: n-hexane/isopropanol (99.5:0.5); flow rate: 1 $\mathrm{mL} / \mathrm{min}$; detector 220 nm ; (R)-isomer $t_{R}=12.59 \mathrm{~min} . ;(S)$-isomer $\left.t_{R}=13.8 \mathrm{~min}.\right]$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{\mathbf{- 1}}$): $v_{\max } 3017,2925,1595,1474,1262,1020,915,764$;
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 1.58(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-$ $2.07(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 3.49(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.84$ (m, 2 H), $6.93(\mathrm{t}, J=7.3,1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.37(\mathrm{~m}$, $2 \mathrm{H}), 7.41$ (d, $J=7.6,2 \mathrm{H}$);
${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 155.7$ (C), 139.0 (C), 130.9 (C, 2 carbons), 128.7 (CH, 2 carbons), 128.3 ($\mathrm{CH}, 2$ carbons), 128.0 (CH, 2 carbons), $127.0(\mathrm{CH}), 123.7(\mathrm{CH}), 74.5$ $\left(\mathrm{CH}_{2}\right), 64.3\left(\mathrm{CH}_{2}\right), 38.6(\mathrm{CH}), 31.7\left(\mathrm{CH}_{2}\right), 16.3\left(\mathrm{CH}_{3}, 2\right.$ carbons $)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$268.1696, found 268.1696.

4) (R)-1-(2,6-dimethylphenoxy)propan-2-amine (R-1)

To the stirred solution of $35(0.250 \mathrm{~g})$ in methanol (10 mL) was added palladium on activated carbon ($0.060 \mathrm{~g}, 10 \mathrm{wt} \%$) and the reaction mixture was stirred under hydrogen atmosphere (50 psi) for 6 h at room temperature. When the reaction was completed (TLC), the catalyst was filtered over the bed of Celite (EtOAc eluent) and the solvent was evaporated under reduced pressure. The crude product was purified by chromatography [basic alumina, methanol/EtOAc (5:95)] afforded $R \mathbf{- 1}$ as a colorless oil.
Yield: 0.122 g, 73\%;
Molecular Formula: $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}$;
Specific rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=-2.4\left(c 5.0, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. $^{15}[\alpha]^{25}{ }_{\mathrm{D}}=-2.7\left(c\right.$ 4.7, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$;
Chiral HPLC: ee $>97 \%$ [The ee of $R \mathbf{- 1 a}$ (as N-acetyl derivative) was determined by chiral HPLC analysis of the corresponding N-acetyl derivative; Chiralcel OD-H (250 X 4.6 mm) column; eluent: n-hexane/isopropanol (90:10); flow rate: $0.6 \mathrm{~mL} / \mathrm{min}$; detector 220 nm ; (R) isomer $t_{R}=13.43 \mathrm{~min}$.; (S)-isomer $t_{R}=20.58 \mathrm{~min}$.];
IR (Neat, $\mathbf{c m}^{-1}$): $v_{\max } 3019,2400,1667,1476,1263,1215,1092,1028,928,853$;
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 1.17(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{bs}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H})$, 3.35-3.41 (m, 1 H$), 3.53-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.67(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.94(\mathrm{~m}, 1 \mathrm{H}), 7.01$ (apparent d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR ($125 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 155.5$ (C), 130.8 (C, 2 carbons), 128.8 ($\mathrm{CH}, 2$ carbons), $123.8(\mathrm{CH}), 78.3\left(\mathrm{CH}_{2}\right), 47.3(\mathrm{CH}), 19.8\left(\mathrm{CH}_{3}\right), 16.3\left(\mathrm{CH}_{3}, 2\right.$ carbons $)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$180.1383, found 180.1383 .

1.2.7. Spectra

S-5A.ESP
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of compound $\mathbf{3 4}$

1.2.8. Chiral HPLC analysis data

Chiral HPLC analysis of Compound 35

Conditions: Chiralcel OD-H ($250 \times 4.6 \mathrm{~mm}$) column; eluent: n-hexane/isopropanol (99.5:0.5); flow rate: 1 mL/min; detector 220 nm .

Racemic

Chiral

Chiral HPLC analysis of Compound \boldsymbol{R}-1a (as \boldsymbol{N}-acetyl derivative)

Conditions: Chiralcel OD-H (250 X 4.6 mm) column; eluent: n-hexane/isopropanol (90:10); flow rate: $0.6 \mathrm{~mL} / \mathrm{min}$; detector 220 nm .
Racemic

Chiral:

(R)-Phenoxybenzamine hydrochloride

Phenoxybenzamine hydrochloride (R-2, PB ; trade name Dibenzyline ${ }^{\circledR}$) is an important β-chloroethylamine class of drug belongs to α-blocking agents (Figure 5). ${ }^{23}$ It is an irreversible, long-acting, non-competitive α-adrenoreceptor antagonist widely used in the treatment of hypertension associated with phaeochromocytoma. ${ }^{24}$ It has also found application in treating benign prostatic hyperplasia (BPH) and hypoplastic left heart syndrome etc,. ${ }^{25}$ Pharmacological studies reveal that (R)-enantiomer of phenoxybenzamine hydrochloride (R-2) is 14.5 times more potent than its (S)-enanatiomer. ${ }^{26}$

Tolazoline

Figure 5. Representative non-selective α-adrenergic receptor blockers

Therapeutic actions of phenoxybenzamine

The chloroethylamine group in phenoxybenzamine binds to α-adrenergic receptors covalently causing irreversible blockade. The drug action of phenoxybenzamine is slower but the duration of action is long-lasting (3-4 days of single dose) due to its irreversible antagonism. It promotes the relaxation of vascular smooth muscle and leads to dilation of blood vessels results in a lowering of blood pressure (Figure 6). In addition to this, phenoxybenzamine inhibits the release of norepinephrine from the adrenergic nerve endings and prevents the neuronal uptake at higher concentrations ($10^{-5} \mathrm{~g} / \mathrm{mL}$) results may enhance in transmitter release. ${ }^{27}$

Figure 6. Mechanism of action of PB

1.2.9. Review of Literature

A few reports have appeared in the literature for the synthesis of phenoxybenzamine hydrochloride enantiomers. A detailed report of these syntheses is described below.

Kerwin approach (1951) ${ }^{28}$

Kerwin et al. reported the synthesis of racemic phenoxybenzamine hydrochloride rac-2 starting from phenol 36 (Scheme 15). The reaction of phenol 36 with propylene

Scheme 15. Reagents and conditions: (i) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$, reflux, 5 h ; (ii) SOCl_{2}, benzene, reflux; (iii) ethanolamine, reflux; (iv) benzylchloride, $\mathrm{K}_{2} \mathrm{CO}_{3}$, EtOH , reflux, 9 h ; (iv) $\mathrm{SOCl}_{2}, \mathrm{HCl}, \mathrm{CHCl}_{3}$, reflux.
chlorohydrin $\mathbf{3 7}$ in the presence of a base gave secondary alcohol $\mathbf{3 8}$. Alcohol $\mathbf{3 8}$ was converted to chloro derivative 39 followed by treatment with ethanolamine at $160{ }^{\circ} \mathrm{C}$ under neat condition afforded amino alcohol 40. N-benzylation followed by chlorination of compound 41 using thionyl chloride gave rac-phenoxybenzamine hydrochloride (rac-2).

Portoghese approach (1971) ${ }^{26}$

Portoghese and co-workers accomplished the synthesis of both enantiomers of phenoxybenzamine hydrochloride $R-2$ and S-2 employing chiral pool approach (Scheme 16). Commercially available unnatural amino acid (D)-alanine 42 was N-benzoylated followed by reduction with LAH provided (R)- N-benzylalanine 43. Replacement of hydroxy group by chloride by treating aminoalcohol 43 with thionyl chloride afforded chloro derivative 44 . Compound 44 on treatment with sodium phenoxide for prolonged
reaction period (120 h) gave secondary amine 46. Finally, the target molecule $R-2 . \mathrm{HCl}$ was obtained by treating amine derivative 46 with ethylene oxide followed by treating amino alcohol derivative 47 with thionyl chloride in refluxing chloroform. Using the same strategy, S-enantiomer has also been prepared.

Scheme 16. Reagents and conditions: (i) benzoylchloride, aq. NaHCO_{3}; (ii) $\mathrm{LiAlH}_{4}, \mathrm{THF}$, reflux; (iii) $\mathrm{SOCl}_{2}, \mathrm{PhH}$, reflux, 80%; (iv) $\mathrm{NaOPh}, \mathrm{EtOH}$, reflux, 120 h, 43%; (v) Ethylene oxide, $\mathrm{H}_{2} \mathrm{O}$, sealed tube, $120^{\circ} \mathrm{C}, 6 \mathrm{~h}, 84 \%$; (vi) $\mathrm{SOCl}_{2}, \mathrm{CHCl}_{3}$, reflux, 55%.

Giardina approach (1997) ${ }^{29}$

Giardina and co-workers reported the chemical resolution strategy for the synthesis of PB analogue enantiomers $R-\mathbf{2}^{\prime}$ and S-2' (Scheme 17). As shown in Scheme 17, chemical resolution of rac- N -(3-methoxybenzyl)-1-phenoxypropan-2-amine intermediate 48 with D-$(+)-$ or L-(-)- O, O^{\prime}-dibenzoyl tartaric acids afforded the respective enantiomers 49 and 50 respectively. Further treatment of secondary amine derivatives 49 and 50 with 2bromoethanol gave amino alcohol derivatives 51 and 52 respectively. Finally, chlorination of amino alcohols $\mathbf{5 1}$ and $\mathbf{5 2}$ on treatment with thionyl chloride in chloroform, saturated with $\mathrm{HCl}(\mathrm{g})$ provided $R-\mathbf{2}^{\prime}$ and S-2' respectively.

Scheme 17. Reagents and conditions: (i) $\mathrm{D}-(+)-$ or $\mathrm{L}-(-)-O, O^{\prime}$-dibenzoyl tartaric acid, MeOH , rt; (ii) 2-bromoethanol, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{EtOH}$; (iii) $\mathrm{SOCl}_{2}, \mathrm{HCl}(\mathrm{g}), \mathrm{CHCl}_{3}$.

Muthukrishnan's approach (2010) ${ }^{30}$

Muthukrishnan and co-workers described the enantioselective synthesis of (R) phenoxybenzamine hydrochloride via Jacobsen's hydrolytic kinetic resolution and Fukuyama-Mitsunobu strategy as a key reaction steps (Scheme 18). O-alkylation of phenol 36 with rac-epichlorohydrin under basic condition afforded the rac-phenyl glycidyl ether 53 in 90% yield. The rac-glycidyl ether 53 was subjected to Jacobsen's hydrolytic kinetic resolution conditions gave the enantiopure (S)-glycidyl ether 54 along with its diol. The reductive ring opening of epoxide 54 with LAH provided β-hydroxy ether 55. Subsequently, the β-hydroxy ether 55 was subjected to Fukuyama-Mitsunobu protocol with N-benzyl-2-nitrosulfonamide 56, followed by denosylation afforded the secondary amine derivative 46. N-alkylation followed by chlorination of amino alcohol 47 on treatment with thionyl chloride afforded (R)-phenoxybenzamine hydrochloride $R-\mathbf{2}$ in 52% yield and 99% ee enantiopurity.

Scheme 18. Reagents and conditions: (i) epichlorohydrin, $\mathrm{K}_{2} \mathrm{CO}_{3}$, dry acetone, reflux, 8 h , 90%; (ii) (R, R)-Salen Co (III)-29 ($0.5 \mathrm{~mol} \%$), $\mathrm{H}_{2} \mathrm{O}$ (0.55 equiv.), $0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 30 \mathrm{~h}$; (iii) LiAlH_{4}, dry THF, $0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$, 93%; (iv) N-benzyl-2-nitro-benzenesulfonamide 56, $\mathrm{Ph}_{3} \mathrm{P}$, DIAD, dry THF, rt, $2 \mathrm{~h}, 81 \%$; (v) thiophenol, $\mathrm{K}_{2} \mathrm{CO}_{3}$, dry acetonitrile, rt, $2 \mathrm{~h}, 87 \%$; (vi) bromoethanol, $\mathrm{K}_{2} \mathrm{CO}_{3}$, ethanol, $110{ }^{\circ} \mathrm{C}$, sealed tube, $72 \mathrm{~h}, 82 \%$; (vii) $\mathrm{SOCl}_{2}, \mathrm{HCl}(\mathrm{g})$, dry $\mathrm{PhH}, 0^{\circ} \mathrm{C}$ to reflux, $8 \mathrm{~h}, 52 \%$.

1.2.10. Present work

Objective

The syntheses documented in the literature for the preparation of PB $R-\mathbf{2}$ mainly utilizes the chiral pool or chemical resolution strategies. Further, reported methods suffer from drawbacks such as expensive starting materials, catalysts, harsh reaction conditions and multistep synthesis etc,. In this section, we explored the chemistry of aziridine to develop an improved and efficient synthesis of (R)-phenoxybenzamine $\mathrm{HCl} R-2$ via reductive ring opening reaction of the enantiopure aziridine as a key step.

A retrosynthetic analysis of (R)-phenoxybenzamine $\mathrm{HCl} R-2$ is outlined in Scheme 19. The aziridine derivative 59 was visualized as a key intermediate for the synthesis of (R) phenoxybenzamine $\mathrm{HCl} R-\mathbf{2}$. The key intermediate 59 can be extended to the ester derivative 61 via reductive ring opening and N-alkylation reactions. Simple reduction and chlorination of ester amine 61 can lead to the target molecule R-2. Further, the chiral
aziridine 59, in turn, could be derived from commercially available phenol 36 via O alkylation followed by intramolecular ring closure sequences.

Scheme 19. Retrosynthetic analysis of (R)-phenoxybenzamine HCl

1.2.11. Results and Discussion

Synthetic strategy followed for the synthesis of (R)-phenoxybenzamine $\mathbf{H C l} \boldsymbol{R} \mathbf{- 2}$ is outlined in Scheme 20. At first, phenol 36 was O-alkylated with (R)-epichlorohydrin in anhydrous acetone in the presence of potassium carbonate at reflux condition for 16 h gave epoxide 54 in 82% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 4}$, the methylene protons of ether resonate as a doublet of doublet at $\delta 3.95$ and 4.22 ppm , while in the ${ }^{13} \mathrm{C}$ NMR spectrum, methylene carbon of ether was discernible at $\delta 68.6 \mathrm{ppm}$ indicates the formation of product 54. Our next objective was to convert the enantiopure epoxide 54 into the key aziridine intermediate 59 by employing the same two step sequences (ring opening followed by Mitsunobu protocols) used for the preparation of (R)-mexiletine $R-\mathbf{1}$). The epoxide $\mathbf{5 4}$ was opened regioselectively with benzylamine in the presence of catalytic amount of lithium bromide under a neat condition at room temperature for 9 h gave amino alcohol derivative 58 in 83% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the signals corresponding to methine and benzylic protons in 58 resonated at $\delta 4.09-4.15$ (m) and 3.98 (d) while in the ${ }^{13} \mathrm{C}$ NMR spectrum, the benzylic carbon displayed the resonance signal at $\delta 51.2 \mathrm{ppm}$ ascertain the formation of product 58. In the IR spectrum of amino alcohol 58, the absorption bands corresponding to -OH and -NH group at $3593 \mathrm{~cm}^{-1}$ and $3322 \mathrm{~cm}^{-1}$ respectively. Subsequently, the amino alcohol derivative 58 was subjected to Mitsunobu reaction with triphenylphosphine, DIAD in toluene at reflux condition for 16 h afforded the key

Scheme 20. Reagents and conditions: (i) (R)-epichlorohydrin, $\mathrm{K}_{2} \mathrm{CO}_{3}$, dry acetone, reflux, $16 \mathrm{~h}, 82 \%$; (ii) (a) benzylamine, cat. LiBr (neat), $9 \mathrm{~h}, 83 \%$; (b) PPh_{3}, DIAD, dry toluene, 0 ${ }^{\circ} \mathrm{C}$ to reflux, $16 \mathrm{~h}, 78 \%$;
intermediate aziridine 59 in 78% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum, appearance of signals at δ 1.59 (d), 1.87 (d) and 1.98-2.04 (m) corresponds to the shielded protons of aziridine unit confirms the formation of $\mathbf{5 9}$. On the other hand, the methine and methylene carbons of aziridine unit in the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 9}$ displayed resonance signals at $\delta 37.9$ and δ 32.0 ppm respectively. Next, our aim was to convert aziridine derivative $\mathbf{5 9}$ to secondary amine derivative 60 without a deprotecting N-benzyl group (Scheme 21). We tried several reaction conditions to achieve conversion. Gratifyingly, reductive ring opening of $\mathbf{5 9}$ in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ under H_{2} pressure (50 psi) in MeOH for 45 min afforded the

Scheme 21. Reagents and conditions: (iii) $\mathrm{H}_{2}(50 \mathrm{psi}), 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{rt}, 45 \mathrm{~min}, 72 \%$; (iv) $\mathrm{BrCH}_{2} \mathrm{COOEt}, \mathrm{K}_{2} \mathrm{CO}_{3}$, dry DMF, $80^{\circ} \mathrm{C}, 12 \mathrm{~h}, 66 \%$; (v) LiAlH_{4}, dry THF, $0^{\circ} \mathrm{C}$ to rt, 3h, 72%; (vi) $\mathrm{SOCl}_{2}, \mathrm{HCl}$ (g), dry PhH , reflux, $8 \mathrm{~h}, 56 \%$.
secondary amine derivative 60 in 72% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the signals correspond to methyl protons of ring-opened product $\mathbf{6 0}$ resonate as a doublet at $\delta 1.23 \mathrm{ppm}$ and in the ${ }^{13} \mathrm{C}$ NMR spectrum, the signal correspond to methyl carbon resonated at $\delta 17.1$ ppm. It was further confirmed by HRMS, which displayed a peak at $m / z 242.1532$ corresponding to molecular formula $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$, with calculated value m / z 242.1539. To incorporate the chloroethyl moiety on nitrogen, firstly the secondary amine $\mathbf{6 0}$ was N-alkylated with ethyl bromoacetate in the presence of potassium carbonate as a base to obtain a tertiary amine product $\mathbf{6 1}$ in 66% yield. In the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 1}$, the characteristic peak of ester carbonyl carbon resonated at $\delta 172.5 \mathrm{ppm}$ and in the IR spectrum of 61, the absorption band of ester carbonyl group displayed at $1724 \mathrm{~cm}^{-1}$ confirmed the formation of product 61. Reduction of aminoester 61 using LAH in anhydrous THF for 3 h gave amino alcohol 47 in 72% yield. In the ${ }^{13} \mathrm{C}$ NMR spectrum of 47, the disappearance of ester carbonyl carbon signal at $\delta 172.5 \mathrm{ppm}$ and appearance of the absorption band of the primary hydroxyl group in the IR spectrum of 47 at $3323 \mathrm{~cm}^{-1}$ indicates the formation of amino alcohol derivative 47. Finally, the hydroxyl group of 47 was replaced by a chloride employing thionyl chloride in dry benzene under HCl (g) condition for 8 h furnished (R)-phenoxybenzamine $\mathrm{HCl} R-\mathbf{2}$ in 56% with an overall yield of $10.5 \%,[\alpha]^{22}{ }_{\mathrm{D}}+18.2(c 4.0, \mathrm{EtOH})\left\{\mathrm{lit} .^{30}[\alpha]_{\mathrm{D}}^{22}+18.0(c 4.0, \mathrm{EtOH})\right\}$. The physical and spectroscopic data were in full agreement with the literature. ${ }^{30}$

1.2.12. Conclusion

In conclusion, a practical and efficient route for the synthesis of active enantiomer of antihypertensive agent (R)-phenoxybenzamine $\mathrm{HCl} R-2$ has been described via controlled reductive ring opening of chiral aziridine intermediate as a key step. The merits of the present approach being high enantioselectivity, simple procedures and ready availability of the starting materials. The synthetic strategy described herein has significant potential for the synthesis of a variety of other biologically important nitrogen-containing compounds.

1.2.13. Experimental procedure

1) (S)-2-(phenoxymethyl)oxirane (54)

To a stirred solution of phenol $36(2 \mathrm{~g}, 0.0212 \mathrm{~mol})$ in anhydrous acetone (20 mL) was added potassium carbonate $(5.87 \mathrm{~g}, 0.0425 \mathrm{~mol}),(R)$-epichlorohydrin $(2.5 \mathrm{~mL}, 0.0318 \mathrm{~mol})$ under an inert atmosphere and refluxed for 16 h . When the reaction was complete (TLC), the reaction mixture was filtered, washed with acetone and concentrated the solvent. The crude residue was dissolved in ethyl acetate (3 x 20 mL) and extracted with $1 \mathrm{M} \mathrm{NaOH}(3 \mathrm{x}$ 10 mL) and the collected organic layers were washed with brine ($2 \times 10 \mathrm{~mL}$), dried over NaSO_{4} and concentrated under reduced pressure. The crude residue was purified by column chromatography [silica-gel, petroleum ether/acetone (98:2)] afforded $\mathbf{5 4}$ as pale yellow colored oil.

Yield: $2.61 \mathrm{~g}, 82 \%$;
Molecular Formula: $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$;
Specific rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=+5.1\left(c 7.5, \mathrm{CHCl}_{3}\right)\left\{\mathrm{lit.}^{31}[\alpha]^{23}{ }_{\mathrm{D}}=+5.2\left(c 7.5, \mathrm{CHCl}_{3}\right)\right\}$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3436,3020,1600,1497,1215,1045,929,669$;
${ }^{1} \mathbf{H}$ NMR ($200 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 2.75(\mathrm{dd}, J=4.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.92(\mathrm{~m}, 1 \mathrm{H}), 3.32-$
$3.40(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=11.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=11.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-7.03$
(m, 3 H), 7.26-7.36 (m, 2 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 158.5$ (C), 129.5 (CH, 2 carbons), $121.2(\mathrm{CH}), 114.6(\mathrm{CH}$, 2 carbons), $68.7\left(\mathrm{CH}_{2}\right), 50.1(\mathrm{CH}), 44.7\left(\mathrm{CH}_{2}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$301.1434, found 301.1405.

2) (S)-1-(benzylamino)-3-phenoxypropan-2-ol (58)

To (S)-2-(phenoxymethyl)oxirane $54(2.5 \mathrm{~g}, 0.0166 \mathrm{~mol})$ and LiBr (cat.) was added dropwise benzylamine ($3.64 \mathrm{~mL}, 0.0332 \mathrm{~mol}$) and the reaction mixture was stirred at room temperature for 9 h . After completion of the reaction (TLC), $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and the mixture was extracted with diethyl ether ($2 \times 10 \mathrm{~mL}$). The organic layers were combined, washed with brine ($2 \times 5 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue was purified over column chromatography [silica-gel, EtOAc/petroleum ether (30:70)] afforded 58 as a colorless solid.

Yield: $3.55 \mathrm{~g}, 83 \%$;

MP: $73-74{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$;
Specific rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=-6.3\left(c 1.05, \mathrm{CHCl}_{3}\right)$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3593,3445,3322,3059,3016,2945,2962,1666,1590,1495,1481$, 1433, 1206, 1127, 1049, 719, 676;
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 2.46(\mathrm{bs}, 2 \mathrm{H}), 2.80-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.95(\mathrm{~m}, 1 \mathrm{H})$, $3.84-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.09-4.15(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.99(\mathrm{~m}, 3 \mathrm{H}), 7.26-$ 7.38 (m, 7 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 158.6$ (C), 139.8 (C), 129.4 (CH, 2 carbons), 128.4 (CH, 2 carbons), $128.1(\mathrm{CH}, 2$ carbons), $127.1(\mathrm{CH}), 121.0(\mathrm{CH}), 114.5(\mathrm{CH}, 2$ carbons), 70.3 $\left(\mathrm{CH}_{2}\right), 68.4(\mathrm{CH}), 53.7\left(\mathrm{CH}_{2}\right), 51.2\left(\mathrm{CH}_{2}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 258.1489$, found 258.1490.

3) (R)-1-benzyl-2-(phenoxymethyl)aziridine (59)

A solution of DIAD ($3.44 \mathrm{~mL}, 0.0174 \mathrm{~mol}$) was added slowly to a stirred solution of amino alcohol 54 ($3 \mathrm{~g}, 0.0116 \mathrm{~mol}$), triphenylphosphine ($6.12 \mathrm{~g}, 0.0233 \mathrm{~mol}$), in anhydrous Toluene (10 mL) at $0{ }^{\circ} \mathrm{C}$ under inert atmosphere and the resulting solution was stirred for 30 min . The reaction mixture was then refluxed for 16 h . After completion of the reaction (TLC), $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and extracted with ethyl acetate (3 x 10 mL). The combined organic layers were washed with brine ($2 \times 5 \mathrm{~mL}$), dried over NaSO_{4} and concentrated under reduced pressure. The crude residue was purified by column chromatography [silica-gel, EtOAc/petroleum ether (18:82)] gave $\mathbf{5 9}$ as a colorless liquid.

Yield: $2.25 \mathrm{~g}, 78 \%$.
Molecular Formula: $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}$;
Specific rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=+5.9\left(c 1.0, \mathrm{CHCl}_{3}\right)$;
Chiral HPLC: ee $>98 \%$ [The ee of $\mathbf{5 9}$ was determined by chiral HPLC analysis; Chiralcel OD-H (250 X 4.6 mm) column; eluent: n-hexane/isopropanol (98:2); flow rate: $1 \mathrm{~mL} / \mathrm{min}$; detector 220 nm ; (R)-isomer $t_{R}=16.0 \mathrm{~min}$.; (S)-isomer $\left.t_{R}=11.64 \mathrm{~min}.\right]$;

IR ($\left.\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{\mathbf{- 1}}\right): v_{\max } 3324,3060,2983,2829,2073,1735,1707,1599,1586,1497,1692$, 1350, 1240, 1033, 733, 694;
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 1.59(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-$ $2.04(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.89-6.96(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.30$ (m, 3 H), 7.33-7.40 (m, 4 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 158.6$ (C), 138.8 (C), 129.4 (CH, 2 carbons), 128.3 ($\mathrm{CH}, 2$ carbons), 128.0 ($\mathrm{CH}, 2$ carbons), $127.1(\mathrm{CH}), 120.7(\mathrm{CH}), 114.5(\mathrm{CH}, 2$ carbons), 70.0 $\left(\mathrm{CH}_{2}\right), 64.2\left(\mathrm{CH}_{2}\right), 37.9(\mathrm{CH}), 32.0\left(\mathrm{CH}_{2}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+} 240.1383$, found 240.1378 .
4) (R)- N -benzyl-1-phenoxypropan-2-amine (60)

To a stirred solution of aziridine $\mathbf{5 9}(2 \mathrm{~g}, 0.0083 \mathrm{~mol})$ in methanol $(20 \mathrm{~mL})$ was added 10% $\mathrm{Pd} /$ activated carbon $(0.2 \mathrm{~g})$ and the mixture was vigorously stirred under hydrogen pressure (50 psi) at room temperature for 45 min . After completion of the reaction (TLC), the catalyst was filtered through a bed of Celite and washed with methanol (10 mL). The filtrate was evaporated under reduced pressure and purified by column chromatography [silica-gel, EtOAc/petroleum ether (14:86)] gave $\mathbf{6 0}$ as a colorless oil.
Yield: $1.45 \mathrm{~g}, 72 \%$;
Molecular Formula: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}$;
Specific rotation: $[\alpha]^{22}{ }_{\mathrm{D}}=+10.7(c 4.0, \mathrm{EtOH})\left\{\mathrm{lit} .^{24}[\alpha]^{22}{ }_{\mathrm{D}}=+10.2(c 4.0, \mathrm{EtOH})\right\}$;
IR ($\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{-1}$): $v_{\max } 3433,3327,3059,3032,2962,2962,1724,1597,1494,1458,1481$, 1244, 1074, 1039, 725, 696;
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z ~ C D C l} 3$) : $\delta 1.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.70(\mathrm{bs}, 1 \mathrm{H}), 3.16-3.23(\mathrm{~m}, 1$ H), 3.83-3.98 (m, 4 H), 6.91-6.98 (m, 3 H), 7.25-7.39 (m, 7 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 158.7$ (C), 140.0 (C), 129.4 (CH, 2 carbons), 128.4 (CH, 2 carbons), 128.1 ($\mathrm{CH}, 2$ carbons), $127.0(\mathrm{CH}), 120.8(\mathrm{CH}), 114.5(\mathrm{CH}, 2$ carbons), 71.7 $\left(\mathrm{CH}_{2}\right), 51.7(\mathrm{CH}), 51.1\left(\mathrm{CH}_{2}\right), 17.1\left(\mathrm{CH}_{3}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$242.1539, found 242.1532.
5) (R)-ethyl-2-(benzyl(1-phenoxypropan-2-yl)amino)acetate (61)

A solution of ethyl-2-bromoacetate ($2.22 \mathrm{~mL}, 0.0199 \mathrm{~mol}$) in anhydrous DMF (3 mL) was added slowly to a stirred solution of amine $\mathbf{6 0}(1.2 \mathrm{~g}, 0.0049 \mathrm{~mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.330 \mathrm{~g}, 2.39$ mmol) in anhydrous DMF (2 mL) was added dropwise and heated to reflux at $80^{\circ} \mathrm{C}$ for 12 h. When the reaction was complete (TLC), $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$ was added and extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine ($2 \times 5 \mathrm{~mL}$), dried over NaSO_{4} and concentrated under reduced pressure. The crude residue was purified by column chromatography [silica-gel, EtOAc/petroleum ether (10:90)] afforded $\mathbf{6 1}$ as a colorless liquid.
Yield: $1.07 \mathrm{~g}, 66 \%$;
Molecular Formula: $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{3}$;
Specific rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=+33.4\left(c 0.92, \mathrm{CHCl}_{3}\right)$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3194,3080,2962,2905,2253,1724,1646,1554,1470,1393,1264$, 1191, 1160, 1003, 911, 720, 650;
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 1.21-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.25-1.27(\mathrm{~m}, 3 \mathrm{H}), 3.31-3.37(\mathrm{~m}, 1 \mathrm{H})$, 3.40-3.54 (m, 2 H), 3.89-3.97 (m, 3 H), 4.05-4.13 (m, 3 H), 6.86-6.96 (m, 3 H), 7.24-7.33 (m, 5 H), 7.41-7.43 (m, 2 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 172.5$ (CO), 158.8 (C), 139.8 (C), 129.4 (CH, 2 carbons), $128.6(\mathrm{CH}, 2$ carbons), $128.2(\mathrm{CH}, 2$ carbons), $127.0(\mathrm{CH}), 120.6(\mathrm{CH}), 114.5(\mathrm{CH}, 2$ carbons), $70.5\left(\mathrm{CH}_{2}\right), 60.3(\mathrm{CH}), 55.3\left(\mathrm{CH}_{2}\right), 54.7\left(\mathrm{CH}_{2}\right), 52.1\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right), 14.1$ $\left(\mathrm{CH}_{3}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$328.1907, found 328.1902.
6) (R)-2-(benzyl(1-phenoxypropan-2-yl)amino)ethan-1-ol (47)

A solution of ester $\mathbf{6 1}(0.900 \mathrm{~g}, 0.0027 \mathrm{~mol})$ in anhydrous THF (3 mL) was added drop wise
to a suspension of $\mathrm{LiAlH}_{4}(0.208 \mathrm{~g}, 0.0054 \mathrm{~mol})$ in anhydrous THF $(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 2 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and cold water (1 ml) was added drop wise followed by the addition of 3 M KOH solution $(1 \mathrm{ml})$. After being stirred at room temperature for 30 min , the mixture was filtered through the bed of Celite and concentrated under reduced pressure. The crude residue was purified by column chromatography [silica-gel, EtOAc/petroleum ether (5:95)] afforded 47 as a colorless oil.

Yield: $0.562 \mathrm{~g}, 72 \%$;
Molecular Formula: $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2}$;
Specific rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=+15.2(c 4.0, \mathrm{EtOH})\left\{\right.$ lit. $\left.{ }^{26}[\alpha]^{25}{ }_{\mathrm{D}}=+15.0(c 4.0, \mathrm{EtOH})\right\}$;
IR ($\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{-1}$): $v_{\max } 3323,3061,3061,3028,2972,2928,2872,1799,1599,1494,1379$, 1244, 1170, 1059, 1039;
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 1.16(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.72-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.90$ (m, 1 H), 3.31-3.39 (m, 1 H), 3.47-3.52 (m, 1 H), $3.55-3.61$ (m, 1 H), $3.70(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1$ H), 3.87-3.90 (m, 2 H), 4.00-4.04 (m, 1 H$), 6.92(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96-7.00(\mathrm{~m}, 2 \mathrm{H})$, 7.25-7.38 (m, 7 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta 158.5$ (C), 139.7 (C), 129.4 (CH, 2 carbons), 128.6 (CH, 2 carbons), 128.3 ($\mathrm{CH}, 2$ carbons), $127.0(\mathrm{CH}), 120.8(\mathrm{CH}), 114.4$ (CH, 2 carbons), 69.5 $\left(\mathrm{CH}_{2}\right), 58.7\left(\mathrm{CH}_{2}\right), 54.6\left(\mathrm{CH}_{2}\right), 53.3(\mathrm{CH}), 51.0\left(\mathrm{CH}_{2}\right), 11.7\left(\mathrm{CH}_{3}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$286.1802, found 286.1794.
7) (R)-N-benzyl- N-(2-chloroethyl)-1-phenoxypropan-2-amine hydrochloride (R-2)

To a pre-cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of alcohol $47(0.3 \mathrm{~g}, 0.0011 \mathrm{~mol})$ in anhydrous benzene (20 $\mathrm{mL}), \mathrm{HCl}$ gas was bubbled slowly for 15 min . Then $\mathrm{SOCl}_{2}(0.1 \mathrm{~mL}, 0.0014 \mathrm{~mol})$ in anhydrous benzene (5 mL) was added dropwise and the resulting mixture was refluxed for 8 h. The excess thionyl chloride was removed under reduced pressure. The residue was basified with a NaHCO_{3} solution and extracted with diethyl ether ($2 \times 10 \mathrm{~mL}$). Removal of the solvent afforded the crude product which was purified by flash chromatography [silica-
gel, EtOAc/petroleum ether (5:95)] afforded (R)-phenoxybenzamine hydrochloride $R-\mathbf{2}$ as a colorless solid.

Yield: $0.28 \mathrm{~g}, 56 \%$;
MP: $125-26{ }^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{26} \mathrm{mp}: 123-24{ }^{\circ} \mathrm{C}$);

Molecular Formula: $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{ClNO}$;

Specific rotation: $[\alpha]^{22}{ }_{\mathrm{D}}=+18.2(c 4.0, \mathrm{EtOH})\left\{\right.$ lit. $\left.{ }^{30}[\alpha]^{22}{ }_{\mathrm{D}}=+18.0(c 4.0, \mathrm{EtOH})\right\}$;
Chiral HPLC: ee $>99 \%$ after recrystallization in MeOH [The ee of $R \mathbf{- 2}$ was determined by chiral HPLC analysis; Chiralcel OJ-H (250 X 4.6 mm) column; eluent: petroleum ether/isopropanol (90:10); flow rate: $1 \mathrm{~mL} / \mathrm{min}$; detector 254 nm ; (R)-isomer $t_{R}=14.42$ min.; (S)-isomer $t_{R}=9.10 \mathrm{~min}$.];
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{\mathbf{- 1}}\right): v_{\max } 3063,2958,2928,2884,1726,1595,1492,1458,1284,1246,1126$, 1074, 1035, 750, 696;
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 1.20(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.91-3.05(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.30(\mathrm{~m}$, 1 H), 3.39 (apparent $\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.76-3.89(\mathrm{~m}, 3 \mathrm{H}), 4.02-4.06(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=$ 8.1 Hz, 2 H), 6.94-6.97 (m, 1 H$)$, 7.25-7.39 (m, 7 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 158.8$ (C), 140.3 (C), 129.4 (CH, 2 carbons), 128.4 (CH, 2 carbons), 128.3 ($\mathrm{CH}, 2$ carbons), $127.0(\mathrm{CH}), 120.7(\mathrm{CH}), 114.4(\mathrm{CH}, 2$ carbons), 70.3 $\left(\mathrm{CH}_{2}\right), 55.8\left(\mathrm{CH}_{2}\right), 54.8(\mathrm{CH}), 53.0\left(\mathrm{CH}_{2}\right), 43.0\left(\mathrm{CH}_{2}\right), 13.3\left(\mathrm{CH}_{3}\right)$;
MS $(\mathrm{m} / \mathrm{z}): 322\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 268[\mathrm{M}-\mathrm{Cl}]^{+}$;
1.2.14. Spectra

1.2.15. Chiral HPLC analysis data

Chiral HPLC analysis of Compound 59

Conditions: Chiralcel OD-H (250 X 4.6 mm) column; eluent: n-hexane/isopropanol (98:2);
flow rate: 1 mL/min; detector 220 nm .

Racemic

Chiral

Chiral HPLC analysis of Compound \boldsymbol{R}-2

Conditions: Chiralcel OJ-H (250 X 4.6 mm) column; eluent: pet. etherfisopropanol (90:10); flow rate: $1 \mathrm{~mL} / \mathrm{min}$; detector 254 nm .

Racemic

Chiral

1.2.16. References

1. (a) Triggle, D. J. Drug Discovery Today 1997, 2, 138; (b) Brooks, W. H.; Guida, W. C.; Daniel, K. G. Curr. Top. Med. Chem. 2011, 11, 760.
2. (a) Islam, M. R.; Mahdi, J. G.; Bowen, I. D. Drug Saf. 1997, 17, 149; (b) Wainer, I. W.; Editor Drug Stereochemistry: Analytical Methods and Pharmacology: Second Edition, Revised and Expanded. [In: Clin. Pharmacol., 1993; 18]; Dekker, 1993.
3. (a) Lin, G.-Q.; You, Q.-D.; Cheng, J.-F.; Editors Chiral Drugs: Chemistry and Biological Action; John Wiley \& Sons, Inc., 2011; (b) Reddy, I. K.; Mehvar, R.; Editors Chirality in Drug Design and Development; Marcel Dekker, Inc., 2004.
4. (a) Jacques, J.; Collet, A.; Wilen, S. H. Enantiomers, Racemates, and Resolutions; John Wiley and Sons, 1981; (b) Taylor, M. S.; Jacobsen, E. N. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5368.
5. (a) Nugent, T. C.; El-Shazly, M. Adv. Synth. Catal. 2010, 352, 753; (b) Kukula, P.; Prins, R. Top.Catal. 2003, 25, 29.
6. Yudin, A.; Editor Aziridines and Epoxides in Organic Synthesis; Wiley-VCH Verlag GmbH \& Co. KGaA, 2006.
7. McCoull, W.; Davis, F. A. Synthesis 2000, 1347; (b) Tanner, D. Angew. Chem. 1994, 106, 625.
8. (a) Rizzon, P.; Di, B. M.; Favale, S.; Visani, L. Eur Heart J 1987, 8 Suppl A, 21; (b) Fenster, P. E.; Comess, K. A. Pharmacotherapy 1986, 6, 1.
9. (a) Hill, R. J.; Duff, H. J.; Sheldon, R. S. Mol. Pharmacol. 1988, 34, 659; (b) De Luca, A.; Natuzzi, F.; Falcone, G.; Duranti, A.; Lentini, G.; Franchini, C.; Tortorella, V.; Conte Camerino, D. Naunyn-Schmiedeberg's Arch. Pharmacol. 1997, 356, 777.
10. (a) Cavalluzzi, M. M.; Lentini, G.; Lovece, A.; Bruno, C.; Catalano, A.; Carocci, A.; Franchini, C. Tetrahedron Lett. 2010, 51, 5265; (b) Lonsdale, R.; Fort, R. M.; Rydberg, P.; Harvey, J. N.; Mulholland, A. J. Chem. Res. Toxicol. 2016, $29,963$.
11. Turgeon, J.; Uprichard, A. C. G.; Belanger, P. M.; Harron, D. W. G.; GrechBelanger, O. J. Pharm. Pharmacol. 1991, 43, 630.
12. Franchini, C.; Cellucci, C.; Corbo, F.; Lentini, G.; Scilimati, A.; Tortorella, V.; Stasi, F. Chirality 1994, 6, 590.
13. Aav, R.; Parve, O.; Pehk, T.; Claesson, A.; Martin, I. Tetrahedron: Asymmetry 1999, 10, 3033.
14. Loughhead, D. G.; Flippin, L. A.; Weikert, R. J. J. Org. Chem. 1999, 64, 3373.
15. Carocci, A.; Franchini, C.; Lentini, G.; Loiodice, F.; Tortorella, V. Chirality 2000, 12, 103.
16. Carocci, A.; Catalano, A.; Corbo, F.; Duranti, A.; Amoroso, R.; Franchini, C.; Lentini, G.; Tortorella, V. Tetrahedron: Asymmetry 2000, 11, 3619.
17. Nechab, M.; Azzi, N.; Vanthuyne, N.; Bertrand, M.; Gastaldi, S.; Gil, G. J. Org. Chem. 2007, 72, 6918.
18. Han, S.-M.; Ma, S.-h.; Ha, H.-J.; Lee, W. K. Tetrahedron 2008, 64, 11110.
19. Huang, K.; Ortiz-Marciales, M.; Stepanenko, V.; De Jesus, M.; Correa, W. J. Org. Chem. 2008, 73, 6928.
20. Ryan, D. A.; Okolotowicz, K. J.; Mercola, M.; Cashman, J. R. Tetrahedron Lett. 2015, 56, 4195.
21. Sasikumar, M.; Nikalje, M. D.; Muthukrishnan, M. Tetrahedron: Asymmetry 2009, 20, 2814.
22. Chakraborti, A. K.; Rudrawar, S.; Kondaskar, A. Eur. J. Org. Chem. 2004, 3597.
23. Giardina, D.; Crucianelli, M.; Angeli, P.; Buccioni, M.; Gulini, U.; Marucci, G.; Sagratini, G.; Melchiorre, C. Bioorg. Med. Chem. 2002, 10, 1291.
24. (a) Benfey, B. G. Br. J. Pharmacol. Chemother. 1961, 16, 6; (b) Frang, H.; Cockcroft, V.; Karskela, T.; Scheinin, M.; Marjamaki, A. J. Biol. Chem. 2001, 276, 31279.
25. (a) Caine, M.; Perlberg, S.; Meretyk, S. Br J Urol 1978, 50, 551; (b) Guzzetta, N. A. Anesth Analg 2007, 105, 312.
26. Portoghese, P. S.; Riley, T. N.; Miller, J. W. J. Med. Chem. 1971, 14, 561.
27. Enero, M. A.; Langer, S. Z.; Rothlin, R. P.; Stefano, F. J. E. Brit. J. Pharmacol. 1972, 44, 672.
28. Kerwin, J. F.; Hall, G. C.; Milnes, F. J.; Witt, I. H.; McLean, R. A.; Macko, E.; Fellows, E. J.; Ullyot, G. E. J. Am. Chem. Soc.1951, 73, 4162.
29. Giardina, D.; Crucianelli, M.; Marucci, G.; Angeli, P.; Melchiorre, C.; Antolini, L. Bioorg.Med. Chem. 1997, 5, 1775.
30. Nikalje, M. D.; Sasikumar, M.; Muthukrishnan, M. Tetrahedron: Asymmetry 2010, 21, 2825.
31. Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 1307.

1.3. SECTION 3

Efficient synthesis of optically active (S)-metolachlor via reductive ring opening of aziridine

1.3.1. Introduction

Chloroacetanilides are selective, systemic pre-emergence and early post-emergence herbicides used for effective control of most annual grass and broadleaf weeds using in corn, soybeans, peanuts, rice, sorghum, maize, cotton and in various agronomically several crops. ${ }^{1}$ It acts as growth inhibitors by suppressing the biosynthesis of several important plant constituents like proteins, lipids, fatty acids, flavonoids and isoprenoids. ${ }^{2}$ These are N, N-disubstituted aniline derivatives and usually differ by their alkyl substituents on the nitrogen atom. Alachlor, acetochlor, butachlor, metolachlor, and propachlor are most commonly and extensively used herbicides (Fig.1) and these are rapidly biodegradable and extensively metabolized in soil, plant and mammals system. ${ }^{3}$ The mode of action of these herbicides is via inhibition of very long chain fatty acids and elongation in plants due to interference with the function of specific enzymes. Alachlor was a first commercialized herbicide in this chemical group and metolachlor is widely used and most abundantly applied herbicides. ${ }^{4}$

Acetochlor

Pretilachlor

Butachlor

Figure 1. Chloroacetanilides based herbicide chemical family

Firstly, in 1972 metolachlor was described as an N -chloroacetylated, N alkoxyalkylated ortho disubstituted aniline and marketed under the trade name DUAL ${ }^{\circledR}$. It is widely used for selective weed control in maize and protecting a variety of other important
crops over 20 years in more than 70 crops across the world. ${ }^{5}$ It comprises four stereoisomers, two of which are inactive and other two are active towards the herbicidal activity. The stereoisomers arise due to the presence of two chiral elements from the combination of a chiral centre in the aliphatic side chain and a chiral axis (atropisomerism, due to restricted rotation around the $\mathrm{C}-\mathrm{N}$) between aromatic ring and the nitrogen atom. ${ }^{6}$ Previously, metolachlor was applied as a racemate, but later it was found that about 95% of the herbicidal activity of metolachlor exists in the two 1-S diastereomers which means that (S)-enantiomers exhibits high herbicidal activity than the (R)-enantiomers (Figure 2). ${ }^{7}$ The herbicidal activity mainly governed by the stereogenic carbon atom in the alkyl moiety. In 1996, the active ingredient was commercialized by Novartis (formerly Ciba-Geigy). Since 1997, the racemate was replaced by enantiopure (S)-metolachlor which is an active ingredient of DUAL MAGNUM ${ }^{\circledR}$ to reduce the ca 40% of environment load. ${ }^{8}$ The estimated production of this chiral grass herbicide is more than $30,000 \mathrm{t} / \mathrm{ye}$ ar in world-wide.

Active stereoisomers of (S)-Metolachlor
(S)-isomers > (R)-isomers

Figure 2. Active isomers of metolachlor

1.3.2. Review of Literature

Several approaches have been reported in the literature for the synthesis of racemic as well as optically active (S)-metolachlor. Most of these methods rely upon asymmetric hydrogenation as a key step. ${ }^{9}$ A detailed report of these syntheses is described below.

Blaser's approach (1976) ${ }^{10}$

Blaser and co-workers reported the industrial process of rac-metolachlor rac-1. Thus as shown in Scheme 1, the reductive alkylation of 2-ethyl-6-methylaniline 2 (MEA) with aqueous methoxyacetone $\mathbf{3}$ in the presence of Pt / C and catalytic amounts of sulfuric acid at $50^{\circ} \mathrm{C}$ and 5 bar to give methyl ester derivative 4 followed by N-acetylation with
chloroacetylchloride afforded the rac-metolachlor rac-1.

Scheme 1. Reagents and conditions: (i) Pt / C, cat. $\mathrm{H}_{2} \mathrm{SO}_{4}, 50^{\circ} \mathrm{C}$, 5 bar; (ii) $\mathrm{ClCOCH}_{2} \mathrm{Cl}$

Cho's approach (1992) ${ }^{11}$

Cho and co-workers utilized the asymmetric hydrogenation of N-phenyl ketimine derivative $\mathbf{6}$ using the chiral boron hydride 5 as a chiral catalyst for the synthesis of (S) metolachlor S-1 (Scheme 2). Thus, N-phenyl ketimine derivative $\mathbf{6}$ was prepared by treating 2-ethyl-6-methyl aniline $\mathbf{2}$ with methoxyacetone in the presence of catalytic amount of p toluene sulfonic acid. Further, the imine derivative 6 was subjected to asymmetric hydrogenation with 1 M Itsuno's reagent 5 (chiral hydride), afforded the corresponding amine derivative 7 in 87% yield. Finally, N-chloroacetylation of amine precursor 7 afforded the optically active metolachlor S - 1 in 62% ee.

Scheme 2. Reagents and conditions: (i) methoxyacetone, cat. p-TsOH, benzene; (ii) 1 M Itsuno's reagent 5 , THF, $30^{\circ} \mathrm{C}$, 2 days, 87%, (iii) $\mathrm{ClCOCH}_{2} \mathrm{Cl}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, benzene.

Blaser's approach (1999) ${ }^{12}$

In 1999, Blaser and co-workers again reported the asymmetric synthesis of (S)metolachlor via enantioselective hydrogenation strategy using Iridium catalyst (Scheme 3). Thus, imine derivative 6 was subjected to enantioselective $\mathrm{C}=\mathrm{N}$ hydrogenation in the presence of Iridium $/(R)$-Xylipos catalyst in the presence of iodine and acetic acid under H_{2} atmosphere gave (S)- N-alkylated aniline 7 in 80% ee. Subsequently, N-acetylation of aniline
derivative $\mathbf{7}$ under basic condition afforded (S)-metolachlor $S \mathbf{- 1}$.

Scheme 3. Reagents and conditions: (i) $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2} /(R)-X y l i p o s, \mathrm{H}_{2}(80 \mathrm{bar}), \mathrm{I}_{2}, \mathrm{AcOH}$, $50^{\circ} \mathrm{C}, 14 \mathrm{~h}$; (ii) $\mathrm{ClCOCH}_{2} \mathrm{Cl}, \mathrm{Na}_{2} \mathrm{CO}_{3}$.

Zheng's approach (2006) ${ }^{13}$

Zheng and co-workers employed chemoenzymatic approach towards the synthesis of (S)-metolachlor (Scheme 4). Treatment of 2-ethyl-6-methyl aniline 2 with methyl-2bromopropionate in NaHCO_{3} gave N -(2-ethyl-6-methylphenyl)alanine methyl ester 8. Next, biocatalytic hydrolysis of racemic methyl ester $\mathbf{8}$ using CAL-B in aqueous buffer afforded 9 and 10. The desired product 9 was reduced to its alcohol derivative $\mathbf{1 1}$ in 92% yield. Treatment of compound $\mathbf{1 1}$ with chloroacetylchloride under basic condition followed by etherification of compound $\mathbf{1 2}$ yielded the $S \mathbf{- 1}$ with the optical purity 91% ee.

Scheme 4. Reagents and conditions: (i) methyl-2-bromopropionate, $\mathrm{NaHCO}_{3}, 125^{\circ} \mathrm{C}, 18 \mathrm{~h}$, 67%; (ii) CAL-B, phosphate buffer ($\mathrm{P}^{\mathrm{H}} 8$), $15 \% \mathrm{v} / \mathrm{v} \mathrm{Et} 2 \mathrm{O}$; (iii) NaBH_{4}, THF, Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, rt, $24 \mathrm{~h}, 92 \%$; (iv) $\mathrm{ClCOCH}_{2} \mathrm{Cl}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, benzene, $15-20^{\circ} \mathrm{C}, 3 \mathrm{~h}, 95 \%$; (v) 2,2-dimethoxypropane, $p-\mathrm{TsOH}, \mathrm{MeOH}$, reflux, $36 \mathrm{~h}, 66 \%$.

Stefania's approach (2009) ${ }^{14}$

Stefania and co-workers reported the enantioselective preparation of (S)-metolachlor via Lewis base promoted the asymmetric reduction of methoxyacetone imine 6 using 10 $\mathrm{mol} \% \mathrm{~N}$-picolinoylamide of $(1 S, 2 R)$-ephedrine 13. As usual, the aniline derivative 7 was chloroacetylated to give (S)-metolachlor S-1 in 67-70\% ee (Scheme 5).

Scheme 5. Reagents and conditions: (i) $13(10 \mathrm{~mol} \%), \mathrm{HSiCl}_{3}, \mathrm{CHCl}_{3}, 0^{\circ} \mathrm{C}$ or $-20^{\circ} \mathrm{C}, 15 \mathrm{~h}$, $67-84 \%$; (ii) $\mathrm{ClCOCH}_{2} \mathrm{Cl}$.

Hou's approach (2012) ${ }^{15}$

Hou et al. utilized the Iridium-catalyzed asymmetric hydrogenation using BINOLbased phosphine phosphoramidite ligand for the synthesis of (S)-metolachlor (Scheme 6). Thus, imine 6 was hydrogenated to its corresponding amine 7 in the presence of Iridium catalyst and BINOL derived phosphine phosphoramidite ligand under hydrogen atmosphere (80 bar) in DCM solvent followed by N-acetylation yielded (S)-metolachlor in 80% ee.

Scheme 6. Reagents and conditions: (i) $\left[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}_{2}(0.0005 \%),(R c, R a)-\mathbf{1 4}\right.$ (0.0011%), $\mathrm{Bu}_{4} \mathrm{NI}, \mathrm{H}_{2}$ (80 bar), DCM, $100{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (ii) $\mathrm{ClCOCH}_{2} \mathrm{Cl}, 96 \%$.

Wang approach (2017) ${ }^{16}$

Very recently, Wang et al. accomplished the enantioselective preparation of (S) metolachlor $S-1$ from the commercially available (R)-propylene oxide 15 (Scheme 7). Thus,
regioselective ring opening of (R)-propylene oxide 15 with methanol under basic condition afforded compound 16, which was further subjected to Mitsunobu reaction condition with 4-nitro- N-phenylbenzenesulfonamide 17 afforded compound 18 with inversion of configuration. Finally, deprotection followed by chloroacetylation of amine derivative 18 gave (S)-metolachlor S-1 in 99% ee.

Scheme 7. Reagents and conditions: (i) $\mathrm{NaOH}, \mathrm{MeOH}$, reflux, $5 \mathrm{~h}, 79 \%$; (ii) 4-nitrobenzene sulfonyl chloride, pyridine, $\mathrm{DCM}, \mathrm{rt}, 2.5 \mathrm{~h}, 95 \%$; (iii) $\mathrm{DIAD}, \mathrm{PPh}_{3}$, toluene, $50{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$, 99%; (iv) 2-mercaptonic acid, DBU, $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{rt}, 85 \%$; (v) $\mathrm{ClCOCH}_{2} \mathrm{Cl}, \mathrm{KOH}, 80 \%$.

1.3.3. Present work

Objective

The reports available for the synthesis of (S)-metolachlor, which involves asymmetric processes mainly hydrogenation of imine or enamide, enzymatic resolution, and chiral pool approaches. Some of these methods suffer from certain drawbacks such as low enantioselectivity, less overall yield, protection-deprotection steps, expensive reagents and catalysts, drastic reaction conditions etc. Very recently, Wang and co-workers demonstrated a new route for the synthesis of (S)-metolachlor. ${ }^{16}$ Although this method seems to be impressive, it involves nosylation-denosylation steps which limit the superiority of this method. So, still, there is a scope for developing a new method that can overcome these drawbacks. In this section, we explored an alternative route for the synthesis of (S) metolachlor starting from commercially available 2-ethyl-6-methyl aniline 2 and (R)epichlorohydrin 19.

Scheme 8. Retrosynthetic analysis of (S)-metolachlor S-1

Retrosynthetically, it is envisioned that enantiomerically pure epichlorohydrin 19 can be used a chiral starting material for the synthesis of (S)-metolachlor. The aziridine 21 was visualized as a key intermediate for the synthesis of $S-1$, which in turn could be obtained from the epoxide 19 by regioselective ring opening followed by intramolecular Mitsunobu reaction. This aziridine 21 intermediate can be transformed to the final product S-1 via reductive ring opening followed by acetylation protocols (Scheme 8).

1.3.4. Results and Discussion

Synthetic strategy followed for the synthesis of (S)-metolachlor $S \mathbf{- 1}$ is outlined in Scheme 9. At first, 2-ethyl-6-methyl aniline 2 was treated with (R)-epichlorohydrin 19 in refluxing methanol for 6 h . Subsequently, the crude reaction mixture was treated with oven dried freshly crushed KOH at $0{ }^{\circ} \mathrm{C}$, followed by stirring at room temperature for 8 h afforded the amino alcohol $\mathbf{2 0}$ in 96% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 20, the signals resonated as a singlet at $\delta 3.42 \mathrm{ppm}$ due to $-\mathrm{OCH}_{3}$ and multiplet in the range of δ 3.96-4.00 ppm due $-\mathbf{C H O H}$ proton, while in the ${ }^{13} \mathrm{C}$ NMR spectrum, signals corresponding to methoxy and methine carbon resonated at $\delta 69.6$ and 59.2 ppm respectively. The IR spectrum of $\mathbf{2 0}$, the absorption band of hydroxyl group displayed at $3421 \mathrm{~cm}^{-1}$. Next, the secondary alcohol 20 was subjected to intramolecular ring closure reaction employing Mitsunobu condition in the presence of PPh_{3} and DIAD using anhydrous toluene as a solvent gave key intermediate aziridine 21 in 86% yield without any loss in enantiopurity.

Scheme 9. Reagents and conditions: (i) (a) dry methanol, reflux, 6 h; (b) KOH, rt, 8 h, 96% (2steps); (ii) PPh_{3}, DIAD, dry toluene, $0{ }^{\circ} \mathrm{C}$ to reflux, $3 \mathrm{~h}, 86 \%$; (iii) H_{2} (1 atm), $10 \% \mathrm{Pd} / \mathrm{C}$, $\mathrm{MeOH}, 1 \mathrm{~h}, \mathrm{rt}, 78 \%$; (iv) $\mathrm{ClCH}_{2} \mathrm{COCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, toluene, $0^{\circ} \mathrm{C}-\mathrm{rt}, 1 \mathrm{~h}, 79 \%$.

The key aziridine 21 on reductive ring opening under H_{2} pressure in the presence of catalytic amount of $10 \% \mathrm{Pd} / \mathrm{C}$ and using methanol as a solvent furnished the required metolachlor precursor 7 in high enantiopurity (ee>99\%). In the ${ }^{13} \mathrm{C}$ NMR spectrum of 7, signals corresponding to $\mathrm{CH}_{2}, \mathrm{CH}$ and CH_{3} carbons of ring-opened product resonate at δ 76.2, 52.9 and 18.5 ppm respectively indicates the formation of secondary amine 7. Finally, N-chloroacetylation of secondary amine derivative 7 was carried out with chloroacetylchloride under basic condition in toluene afforded (S)-metolachlor S - $\mathbf{1}$ with an overall yield of $50.8 \%,[\alpha]^{25}{ }_{\mathrm{D}}-5.7$ (c 2.80, n-hexane) $\left\{\right.$ lit. ${ }^{5}[\alpha]^{25}{ }_{\mathrm{D}}-8.2$ (c 2.1, n-hexane $\}$. The structure of $S-\mathbf{1}$ was confirmed by its IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and mass analysis.

1.3.5. Conclusion

In conclusion, developed an efficient new route for the synthesis of enantiopure (S)metolachlor, an active ingredient of DUAL MAGNUM ${ }^{\circledR} S$ - 1 via reductive ring opening of aziridine. The attractive feature of the present protocol includes ready availability of the starting materials, simple chemical transformations, high enantiopurity and good overall yield. This simple protocol may find application in the large-scale synthesis of the (S)metolachlor in high enantiopurity.

1.3.6. Experimental Section

1) (R)-1-((2-ethyl-6-methylphenyl)amino)-3-methoxypropan-2-ol (20)

To a stirred solution of epichlorohydrin $19(2 \mathrm{~g}, 21.6 \mathrm{mmol})$ in methanol (15 mL) was added 2-ethyl-6-methyl aniline $2(3.2 \mathrm{~g}, 23.7 \mathrm{mmol})$ and the resulting mixture was refluxed for 6 h . After completion of the reaction (monitored by TLC), crushed $\mathrm{KOH}(3.0 \mathrm{~g}, 54.0$ mmol) was added portion wise at a temperature $<25^{\circ} \mathrm{C}$. After completing the addition, the reaction mixture was stirred vigorously for 8 h at room temperature. After completion of the reaction (monitored by TLC), excess methanol was evaporated under reduced pressure. The crude mixture was then poured into water (20 mL) and extracted with EtOAc ($2 \times 15 \mathrm{~mL}$). The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. The crude product was purified by silica gel column chromatography using EtOAc/petroleum ether (10:90) gave alcohol product 20 as a pale brown oil.

Yield: 4.6 g, 96\%;
Molecular Formula: $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{2}$;
Specific rotation: $[\alpha]^{21}{ }_{\mathrm{D}}=+4.93\left(c 2.09, \mathrm{CHCl}_{3}\right)$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3421,3009,2966,1593,1466,1377,1216,1129,968,667$;
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 1.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.66-2.71(\mathrm{~m}, 2 \mathrm{H})$, $2.98(\mathrm{dd}, J=12.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=12.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{dd}, J=$ $9.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=9.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-4.00(\mathrm{~m}, 1 \mathrm{H}), 6.91$ (apparent $\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{~Hz}, \mathbf{C D C l}_{3}$): $\delta 145.0$ (C), 136.2 (C), 130.6 (C), 128.8 (CH), 126.7 (CH), $122.6(\mathrm{CH}), 75.3\left(\mathrm{CH}_{2}\right), 69.6(\mathrm{CH}), 59.2\left(\mathrm{CH}_{3}\right), 51.5\left(\mathrm{CH}_{2}\right), 24.2\left(\mathrm{CH}_{2}\right), 18.5\left(\mathrm{CH}_{3}\right), 14.8$ $\left(\mathrm{CH}_{3}\right)$;
MS: $m / z 224[\mathrm{M}+1]^{+}, 246[\mathrm{M}+\mathrm{Na}]^{+}$.
2) (S)-1-(2-ethyl-6-methylphenyl)-2-(methoxymethyl)aziridine (21)

A solution of DIAD ($3.0 \mathrm{~mL}, 15.4 \mathrm{mmol}$) in dry toluene (5 mL) was added dropwise to a solution of amino alcohol $\mathbf{2 0}(2.3 \mathrm{~g}, 10.3 \mathrm{mmol})$ and triphenylphosphine ($4.0 \mathrm{~g}, 15.4 \mathrm{mmol})$ in a dry toluene (25 mL) under N_{2} atmosphere at $0^{\circ} \mathrm{C}$. The reaction mixture was refluxed for 3 h . After completion of reaction (monitored by TLC), the solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography using EtOAc/petroleum ether (5:95) afforded aziridine product 21 as a yellow oil.
Yield: 1.8 g, 86 \%;
Molecular Formula: $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}$;
Specific rotation: $[\alpha]^{21}{ }_{\mathrm{D}}=-120.5\left(c 1.0, \mathrm{CHCl}_{3}\right)$;
Chiral HPLC: ee $>99 \%$ [Chiral HPLC analysis: Chiralcel OD-H ($250 \times 4.6 \mathrm{~mm}$) column; eluent: n -hexane/isopropanol $=99.75: 0.25$; flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$; detector: 220 nm];
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{\mathbf{- 1}}\right): v_{\max } 3419,2967,2875,1915,1745,1592,1460,1378,1355,1276,1217$, 1188, 1108, 965, 929, 900, 666;
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 1.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.04(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}$, $3 \mathrm{H}), 2.41-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.93$ (dd, $J=10.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.88 (apparent $\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.95-7.04 (m, 2 H);
${ }^{13} \mathbf{C}$ NMR ($50 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 149.9$ (C), 134.9 (C), 129.1 (C), 128.8 (CH), 126.9 (CH), $122.0(\mathrm{CH}), 74.0\left(\mathrm{CH}_{2}\right), 59.1\left(\mathrm{CH}_{3}\right), 39.4(\mathrm{CH}), 34.9\left(\mathrm{CH}_{2}\right), 24.3\left(\mathrm{CH}_{2}\right), 19.3\left(\mathrm{CH}_{3}\right), 14.3$ $\left(\mathrm{CH}_{3}\right)$;

MS: $m / z 206[\mathrm{M}+1]^{+}, 228[\mathrm{M}+\mathrm{Na}]^{+}$.

3) (S)-2-ethyl-N-(1-methoxypropan-2-yl)-6-methylaniline (7)

To a solution of aziridine $21(1.0 \mathrm{~g}, 4.87 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ was added palladium on activated carbon $(0.065 \mathrm{~g}, 10-20 \mathrm{wt} \%)$ and the reaction mixture was stirred under
hydrogen atmosphere (balloon) for 1 h . After completion of the reaction (monitored by TLC) the catalyst was filtered over the Celite bed (EtOAc eluent) and the solvent was evaporated under reduced pressure. The crude product was purified by silica gel column chromatography using EtOAc/petroleum ether (2:98) afforded amine product 7 as a pale yellow oil.

Yield: $0.79 \mathrm{~g}, 78 \%$;
Molecular Formula: $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}$;
Specific rotation: $[\alpha]^{21}{ }_{\mathrm{D}}=+11.68\left(c 2.0, \mathrm{CHCl}_{3}\right)$;
Chiral HPLC: ee >99\% [Chiral HPLC analysis: Chiralcel OD-H ($250 \times 4.6 \mathrm{~mm}$) column; eluent: n-hexane/isopropanol $=99.75: 0.25$; flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$; detector: 220 nm];
IR ($\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{-1}$): $v_{\max } 3409,3019,2969,2877,2401,1593,1465,1385,1215,1103,928$, 669;
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 1.19-1.21(\mathrm{~m}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$, $2.67(\mathrm{q}, ~ J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.32-3.37(\mathrm{~m}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 6.88$ (apparent $\mathrm{t}, J=7.4 \mathrm{~Hz}, 1$ H), 7.00-7.06 (m, 2 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 144.2(\mathrm{CH}), 135.5(\mathrm{CH}), 129.8(\mathrm{CH}), 128.7(\mathrm{CH}), 126.5$ $(\mathrm{CH}), 121.7(\mathrm{CH}), 76.2\left(\mathrm{CH}_{2}\right), 58.9\left(\mathrm{CH}_{3}\right), 52.9(\mathrm{CH}), 24.2\left(\mathrm{CH}_{2}\right), 18.9\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right)$, $14.5\left(\mathrm{CH}_{3}\right)$;
MS: $m / z 208[\mathrm{M}+1]^{+}, 230[\mathrm{M}+\mathrm{Na}]^{+}$.

4) (S)-2-Chloro-N-(2-ethyl-6-methyl-phenyl)-N-(2-methoxy-1-methyl-ethyl)-acetamide

 ((S)-metolachlor S-1)

To a stirred solution of $7(0.1 \mathrm{~g}, 0.48 \mathrm{mmol})$ and sodium carbonate $(0.102 \mathrm{~g}, 0.96 \mathrm{mmol})$ in toluene (3 mL) was added chloroacetyl chloride $(0.065 \mathrm{~g}, 0.57 \mathrm{mmol}, 46 \mu \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 1 h at room temperature. After completion of the reaction (monitored by TLC), toluene was removed under reduced pressure and the residue was diluted with water (3 mL) and extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The phases were separated, and the organic phase was washed with brine $(2 \times 5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered. The
solvent was removed under reduced pressure and the crude residue was purified by silica gel column chromatography using EtOAc/petroleum ether (10:90) gave $S \mathbf{- 1}$ as a colorless oil.
Yield: $0.108 \mathrm{~g} ; 79 \%$;

Molecular Formula: $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{ClNO}_{2}$;

Specific rotation: $[\alpha]^{25}{ }_{D}=-5.7(c 2.80$, n-hexane $)\left\{\right.$ lit. ${ }^{13}[\alpha]^{25}{ }_{D}=-8.2(c 2.1$, n-hexane $\}$;
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{\mathbf{- 1}}\right): v_{\max } 3464,3019,1664,1462,1215,1112,765,669$;
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 1.13-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}$, major+minor), 2.48-2.69 (m, 2 H), 3.28 ($\mathrm{s}, 3 \mathrm{H}$, major+minor), 3.45-3.54 (m, 1 H), 3.61 (s , 2 H , major+minor), 3.66-3.78 (m, 1 H), 4.15-4.28 (m, 1 H), 7.11-7.31 (m, 3 H);
${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl ${ }_{3}$): $\delta 166.8$ (CO), 142.5 (C, minor), 142.4 (C, major), 137.1 (C), 136.9 (C, major), 136.8 (C, minor), 128.9 ($\mathrm{CH}, 2$ carbons), 126.9 (CH , major), 126.79 (CH , minor), $74.54\left(\mathrm{CH}_{2}\right)$, $58.5\left(\mathrm{CH}_{3}\right), 55.3\left(\mathrm{CH}\right.$, minor), $55.2\left(\mathrm{CH}\right.$, major), $42.9\left(\mathrm{CH}_{2}\right.$, major), $42.8\left(\mathrm{CH}_{2}\right.$, minor), $23.8\left(\mathrm{CH}_{2}\right.$, minor), $23.6\left(\mathrm{CH}_{2}\right.$, major), $18.9\left(\mathrm{CH}_{3}\right)$, $15.5\left(\mathrm{CH}_{3}\right.$, minor), $15.3\left(\mathrm{CH}_{3}\right.$, major), $14.2\left(\mathrm{CH}_{3}\right.$, major), $13.9\left(\mathrm{CH}_{3}\right.$, minor $)$;
MS: $m / z 284[\mathrm{M}+1]^{+}, 306[\mathrm{M}+\mathrm{Na}]^{+}$.

1.3.7. Spectra

1.3.8. Chiral HPLC analysis data

Chiral HPLC analysis of Compound 7

Conditions: Chiralcel OD-H (250 X 4.6 mm) column; eluent: n-Hexane/isopropanol (99.75:0.25); flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$; detector 220 nm .

Racemic

Chiral

1.3.9. References

1. Krieger, R.; Editor Hayes' Handbook of Pesticide Toxicology, 3rd Edition; Academic Press, 2010.
2. (a) Kearney, P. C.; Kaufman, D. D.; Editors Herbicides, Chemistry, Degradation, and Mode of Action, Vol. 2. 2nd Ed; Dekker, 1976; (b) Roberts, T. R.; Editor Metabolic Pathways of Agrochemicals, Part 1: Herbicides and Plant Growth Regulators; Royal Soc. Chem., 1998.
3. Stamper, D. M.; Tuovinen, O. H. Crit. Rev. Microbiol. 1998, $24,1$.
4. Chesters, G.; Simsiman, G. V.; Levy, J.; Alhajjar, B. J.; Fathulla, R. N.; Harkin, J. M. Rev. Environ. Contam. Toxicol. 1989, 110, 1.
5. O'Connell, P. J.; Harms, C. T.; Allen, J. R. F. Crop Prot. 1998, 17, 207.
6. Moser, H.; Rihs, G.; Sauter, H. P.; Boehner, B. In Atropisomerism, chiral center and activity of metolachlor 1983 Pergamon; pp 315
7. Moser, H.; Rihs, G.; Sauter, H. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1982, 37B, 451.
8. Poiger, T.; Muller, M. D.; Buser, H.-R. Chimia 2002, 56, 300.
9. (a) Blaser, H.-U.; Spindler, F. Top. Catal. 1998, 4, 275; (b) Blaser, H.-U. Adv. Synth. Catal. 2002, 344, 17.
10. Blaser, H.-U.; Buser, H.-P.; Coers, K.; Hanreich, R.; Jalett, H.-P.; Jelsch, E.; Pugin, B.; Schneider, H.-D.; Spindler, F.; Wegmann, A. Chimia 1999, 53, 275.
11. Cho, B. T.; Chun, Y. S. Tetrahedron: Asymmetry 1992, 3, 337.
12. (a) Spindler, F.; Pugin, B.; Blaser, H. U. Angew. Chem. 1990, 102, 561; (b) Blaser, H.-U.; Buser, H.-P.; Jalett, H.-P.; Pugin, B.; Spindler, F. Synlett 1999, 867.
13. Zheng, L.; Zhang, S.; Wang, F.; Gao, G.; Cao, S. Can. J. Chem. 2006, 84, 1058.
14. Guizzetti, S.; Benaglia, M.; Cozzi, F.; Annunziata, R. Tetrahedron 2009, 65, 6354.
15. Hou, C.-J.; Wang, Y.-H.; Zheng, Z.; Xu, J.; Hu, X.-P. Org. Lett. 2012, 14, 3554.
16. Yang, P.; Wang, X.; Peng, L.; Chen, F.; Tian, F.; Tang, C.-Z.; Wang, L.-X. Org. Process Res. Dev. 2017, 21, 1682.

CHAPTER 2

Asymmetric syntheses of (R)-2-benzylmorpholine, both enantiomers of calcium channel blocker bepridil and anti-obesity drug lorcaserin

An enantioselective synthesis of appetite suppressant (R)-2benzylmorpholine

2.1.1. Introduction

Morpholines are widely used in organic synthesis, mainly as a simple base or as an N-alkylating agent. ${ }^{1}$ However, synthesis of C-functionalized morpholine derivatives is quite less explored area. ${ }^{2}$ C-Functionalized morpholines are found in various natural products as well as in drugs. ${ }^{3}$ They are potential therapeutic agents for a wide variety of medical disorders such as depression (Reboxetine, Viloxesine), ${ }^{4}$ anorectics (Phenmetrazine, Phendimetrazine), ${ }^{5}$ chemotherapy-induced nausea \& vomiting (Aprepitant) ${ }^{6}$ etc,. The synthesis of morpholine moiety bearing a reactive functional at C 2 -position is more challenging. Despite their wide utility, synthetic routes to these valuable compounds especially the non-racemic ones are very limited.

Figure 1. Representative pharmaceutically significant chiral C2-substituted morpholine analogues

In general, synthetic routes to construct the enantiopure morpholine moiety rely upon naturally occurring amino acids or optically pure amino alcohols or other chiral precursors chiral pool approaches. ${ }^{7}$ In recent years, enantioselective oxidation reactions such as Sharpless epoxidation, aminohydroxylation, dihydroxylation and related reactions have been extensively studied to access enantiopure morpholine analogues. ${ }^{8}$ (R)-2Benzylmorpholine $R-\mathbf{1}$ is a classical example of chiral 2-morpholine analogues, known to be a potent appetite suppressant and widely studied for its pharmacological properties. ${ }^{9}$

Figure 2. (R)-2-Benzylmorpholine R - $\mathbf{1}$

2.1.2. Review of Literature

A few approaches have appeared on asymmetric synthesis of (R)-benzylmorpholine. These involve the use of chemical/enzymatic resolution, proline-catalyzed α-aminoxylation strategy etc,. Some significant synthesis of (R)-2-benzylmorpholine R - $\mathbf{1}$ is described below.

Brown's approach (1990) ${ }^{10}$

Brown et.al. described the chemical resolution method to synthesize both enantiomers of $R-\mathbf{1} . \mathrm{HCl}$ and $S \mathbf{- 1 . H C l}$ (Scheme 1). As shown in Scheme 1, at first benzyloxirane $\mathbf{4}$ was prepared from allylbenzene $\mathbf{2}$ in two steps. Regioselective ring opening of epoxide 4 with ethanolamine- O-sulphate in basic medium gave sulfate ester 5. Subsequent ring closure of compound 5 with sodium hydroxide in toluene at $65^{\circ} \mathrm{C}$ for 8 h afforded rac-benzylmorpholine rac-1 in 38% yield. Finally, rac-benzylmorpholine upon chemical resolution employing (+)- and (-)-dibenzoyltartaric acids as resolving agents in 2propanol under reflux condition for 18 h gave the (R)-benzylmorpholine hydrochloride R 1. HCl and (S)-benzylmorpholine hydrochloride $S-\mathbf{1} . \mathrm{HCl}$ in 18% and 26% yields respectively.

Scheme 1. Reagents and conditions: (i) N -bromosuccinimide, $\mathrm{H}_{2} \mathrm{O}$, rt, 48 h ; (ii) NaOH , $\mathrm{H}_{2} \mathrm{O}, 65^{\circ} \mathrm{C}, 45 \mathrm{~min}, 67 \%$; (iii) ethanolamine- O-sulphate, $16 \mathrm{M} \mathrm{NaOH}, \mathrm{MeOH}, 40^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (iv) NaOH , toluene, $65^{\circ} \mathrm{C}, 8 \mathrm{~h}, 38 \%$; (v) (+)-dibenzoyltartaric acid, reflux, $18 \mathrm{~h}, 18 \%$

Arrigo's approach (1998) ${ }^{11}$

Arrigo and co-workers have prepared (R)-2-benzylmorpholine R - $\mathbf{1}$ employing chemo-enzymatic approach (Scheme 2). Accordingly, (Z)- α-bromo cinnamaldehyde 6 upon reduction in the presence of Baker's yeast, XAD1180 resin at $25{ }^{\circ} \mathrm{C}$ for 48 h afforded the (S)-bromoalcohol 7 in 91% yield. The intramolecular ring closure reaction of bromo alcohol 7 in aqueous basic condition gave (R)-benzyloxirane $\mathbf{8}$ in 73% yield. The chiral epoxide $\mathbf{8}$ was treated with ethanolamine- O-sulphate in the presence of sodium hydroxide in methanol at $40^{\circ} \mathrm{C}$ for 2 h gave sulfate ester 9 . Base-catalyzed ring closure of compound 9 with NaOH in toluene at $65^{\circ} \mathrm{C}$ for 7 h afforded (R)-2-benzylmorpholine $R-\mathbf{1}$ in 66% yield.

Scheme 2. Reagents and conditions: (i) Baker's yeast, XAD1180 resin, $25^{\circ} \mathrm{C}, 48 \mathrm{~h}, 91 \%$; (ii) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, 65^{\circ} \mathrm{C}, 45 \mathrm{~min}, 73 \%$; (iii) ethanolamine- O-sulphate, $16 \mathrm{M} \mathrm{NaOH}, \mathrm{MeOH}$, $40^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (iv) NaOH , toluene, $65^{\circ} \mathrm{C}, 7 \mathrm{~h}, 66 \%$.

Waghmode's approach (2010) ${ }^{12}$

Waghmode and co-workers developed an enantioselective synthesis of (R)-2-benzylmorpholine R - $\mathbf{1}$ employing L-proline catalyzed asymmetric α-aminoxylation and palladiumcatalyzed intramolecular reductive amination as a key steps (Scheme 3). Readily available 3-phenylpropanaldehyde 10 was subjected to L-proline-catalyzed asymmetric α-aminoxylation protocol afforded the diol 11 in 69% yield. Selective tosylation of diol 11 followed by azidation gave azido derivative $\mathbf{1 2}$ in 88% yield. Azido alcohol $\mathbf{1 2}$ on treatment with allyl bromide gave azidoallyl ether $\mathbf{1 3}$ in 98% yield. The azido ether $\mathbf{1 3}$ on dihydroxylation with potassium osmate in NMO at room temperature for 10 h followed by oxidative cleavage of an olefin with sodium metaperiodate gave azido aldehyde 14. Finally, reductive amination of azido aldehyde 14 in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ afforded target
molecule $R-1$ in 57% yield and $>95 \%$ ee.

Scheme 3. Reagents and conditions: (i) (a) PhNO, L-proline ($25 \mathrm{~mol} \%$), $\mathrm{CH}_{3} \mathrm{CN},-20{ }^{\circ} \mathrm{C}$, 24 h then $\mathrm{MeOH}, \mathrm{NaBH}_{4}, 30 \mathrm{~min}$, (b) $\mathrm{H}_{2}(1 \mathrm{~atm}), 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 10 \mathrm{~h}, 69 \%$ (2 steps); (ii) (a) dibutyltin oxide ($2 \mathrm{~mol} \%$), $p-\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1 \mathrm{~h}$; (b) NaN_{3}, DMF, $70{ }^{\circ} \mathrm{C}, 10 \mathrm{~h}, 88 \%$ (2 steps); (iii) allyl bromide, NaH , DMF, $0{ }^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 98 \%$; (iv) (a) $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mol} \%)$, NMO , acetone: $\mathrm{H}_{2} \mathrm{O}(8: 2)$, rt, 10 h , (b) NaIO_{4}, acetone: $\mathrm{H}_{2} \mathrm{O}$ (9:1), 0 ${ }^{\circ} \mathrm{C}$, rt, 4 h ; (v) $\mathrm{H}_{2}(1 \mathrm{~atm}), 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 12 \mathrm{~h}, 57 \%$ (3 steps).

2.1.3. Present work

Objective

Literature search revealed that although there are few reports available on the synthesis of (R)-2-benzylmorpholine $R \mathbf{- 1}$, most of them suffer from drawbacks such as the use of expensive reagents, low overall yields, low enantiopurity, etc,. Hence the development of new and alternative route that can overcome these drawbacks is highly desirable. Thus, the objective of the present work is to develop a new alternative route for the asymmetric synthesis of (R)-2-benzylmorpholine $R \mathbf{- 1}$ with high enantiopurity.

The retrosynthetic analysis of $R-1$ is presented in Scheme 4. As shown in Scheme 4, we envisaged that the amino alcohol 19 would serve as a key intermediate for the synthesis of (R)-2-benzylmorpholine R - $\mathbf{1}$ which can be transformed to the final product via N acetylation, cyclization followed by amide reduction. Now the key intermediate 19 could be obtained from the chiral epoxy alcohol 16 via tosylation, azidation followed by hydrogenation. Further, this chiral epoxide $\mathbf{1 6}$ can be obtained from commercially available trans-cinnamyl alcohol 15 using Sharpless asymmetric epoxidation (SAE) strategy.

(R)-benzyl morpholine R - 1

15

16

Scheme 4. Retrosynthetic analysis of (R)-benzylmorpholine $R \mathbf{- 1}$

2.1.4. Results and Discussion

Synthetic strategy followed for the synthesis of (R)-2-benzylmorpholine $R-\mathbf{1}$ is outlined in Scheme 5. As illustrated in Scheme 5, synthesis commenced with the readily available trans-cinnamyl alcohol 15 which was subjected to Sharpless asymmetric epoxidation conditions ((+)-DIPT, $\left.\mathrm{Ti}(\mathrm{OiPr})_{4}, \mathrm{TBHP}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-2{ }^{\circ} \mathrm{C}\right)$ gave enantiomerically pure epoxy alcohol 16 in 86% yield (ee $>99 \%$). In the ${ }^{1} \mathrm{H}$ NMR spectrum of epoxyalcohol 16, the disappearance of olefinic unit and signals of methine protons of epoxide unit resonate as a multiplet at $\delta 3.18-3.23 \mathrm{ppm}$ and a doublet at 3.89 ppm confirms the formation of compound 16. On the other hand, in the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 6}$, the methine carbons of epoxide moiety resonated at $\delta 51.63$ and 56.28 ppm . Subsequently, the epoxy alcohol 16 was converted into the corresponding azido epoxide $\mathbf{1 8}$ by carrying out O-tosylation at a low temperature $\left(-20^{\circ} \mathrm{C}\right)$ followed by azidation using sodium azide in dry DMF. In the IR spectrum of $\mathbf{1 8}$, the absorption band at $2101 \mathrm{~cm}^{-1}$ indicating the presence of azide functionality. Next, the azido epoxide $\mathbf{1 8}$ was subjected to palladium carbon-catalyzed concomitant hydrogenolysis of epoxide and hydrogenation of azide moiety in a single step afforded amino alcohol 19 in 75% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 9}$, the signal corresponds to methine hydrogen resonates as a multiplet at $\delta 3.68-3.80 \mathrm{ppm}$, while in the ${ }^{13} \mathrm{C}$ spectrum, resonance signals of methine carbon appeared at $\delta 73.0 \mathrm{ppm}$. The formation of $\mathbf{1 9}$ was further confirmed by the IR spectrum, the absorption band of amine functionality displayed at $3570 \mathrm{~cm}^{-1}$. It is worth noting that although the regioselective ring opening of azido epoxide $\mathbf{1 8}$ with various nucleophiles have been studied, the concomitant

Scheme 5. Reagents and conditions: (i) TBHP, L-(+)-DIPT, $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}, 4 \AA$ MS, dry $\mathrm{CH}_{2} \mathrm{C1}_{2},-20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 4 \mathrm{~h}, 86 \%$; (ii) (a) p-TsCl, TEA, DMAP, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 8 \mathrm{~h}$, (b) NaN_{3}, dry DMF, $0^{\circ} \mathrm{C}$ to rt, $12 \mathrm{~h}, 72 \%$ (2 steps); (iii) $\mathrm{H}_{2}(50 \mathrm{psi}), 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 6 \mathrm{~h}$, RT, 75%; (iv) chloroacetychloride, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, toluene- $\mathrm{H}_{2} \mathrm{O}, 5^{\circ} \mathrm{C}, 2 \mathrm{~h}, 87 \%$; (v) t-BuOK, dry isopropanaol, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 3 \mathrm{~h}, 69 \%$; (vi) Red-Al, dry THF, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 12 \mathrm{~h}, 85 \%$.
hydrogenolysis of epoxide and hydrogenation of azide in a single step to produce enantiopure β-amino alcohols have not been examined. Considering the significance of enantiopure β-amino alcohols as important structural elements present in many natural products as well as pharmaceuticals, this reaction represents the valuable alternative to prepare enantiopure β-amino alcohol, utilizing SAE strategy. Further, the amino alcohol 19 on N -acylation with chloroacetyl chloride under basic condition provided compound $\mathbf{2 0}$ in 87% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 0}$, the signals correspond to methylene protons of acetyl group resonated at $\delta 4.07 \mathrm{ppm}$, while in the ${ }^{13} \mathrm{C}$ NMR spectrum, the characteristic carbonyl carbon of acetyl group resonated at $\delta 166.70 \mathrm{ppm}$. Further, the formation of product 20 was supported by the IR spectrum, absorption band was observed at $1741 \mathrm{~cm}^{-1}$ corresponds to the carbonyl of the amide moiety. Subsequent cyclization induced by t BuOK in isopropanol gave the morpholinamide derivative 21 in 69% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 21, the signals corresponding to methylene protons of morpholinone moiety resonated as a multiplet at $\delta 3.16-3.37 \mathrm{ppm}\left(-\mathrm{CHCH}_{2} \mathrm{NHC}=\mathrm{O}\right)$ and $4.09-4.33 \mathrm{ppm}(-$ $\mathrm{OCH}_{2} \mathrm{C}=\mathrm{ONH}-$). Further, in the ${ }^{13} \mathrm{C}$ NMR spectrum, the deshielded methylene carbon ($\left.\mathrm{NH}(\mathrm{C}=\mathrm{O}) \mathbf{C H}_{2}\right)$ was discernible at $\delta 67.59 \mathrm{ppm}$ confirms the formation of amide product 21.

Finally, the reduction of amide bond using Red-Al in THF completed the synthesis of (R)-2benzylmorpholine $R-\mathbf{1}$, an overall 24% yield with enantiopurity $>99 \%$ ee, $[\alpha]_{25}{ }^{\mathrm{D}}=+1.31$ (c 5, CHCl_{3}); $\left\{\right.$ lit. $\left.^{12}[\alpha]_{25}{ }^{\mathrm{D}}=+1.28\left(\mathrm{c} 5, \mathrm{CHCl}_{3}\right)\right\}$. The structure of (R)-2-benzylmorpholine R 1 was confirmed by means of IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS analysis.

2.1.5. Conclusion

In conclusion, the development of new and alternate synthesis of (R)-2-benzylmorpholine $R \mathbf{- 1}$, an appetite suppressant agent employing Sharpless asymmetric epoxidation as a key step has been described here. Simple procedures, inexpensive starting materials, and high enantiopurity are some of the salient features of this approach. Further, this simple approach offers flexibility in making diverse lead like C-2 chiral morpholine scaffolds for application in a range of therapeutic areas.

2.1.6. Experimental Section

1) ((2S,3S)-3-phenyloxiran-2-yl)methanol (16)

To a stirred solution of 1 g of activated $4 \AA$ molecular sieves (activated at $180^{\circ} \mathrm{C}$ overnight in the oven) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL}), \mathrm{Ti}(\mathrm{OiPr})_{4}(0.44 \mathrm{~mL}, 1.49 \mathrm{mmol})$ was added under an inert atmosphere. The reaction mixture was cooled to $-20^{\circ} \mathrm{C}$ and $\mathrm{L}-(+)$-diisopropyl tartrate (0.37 $\mathrm{mL}, 1.78 \mathrm{mmol}$) added and stirred for 15 min after that $5-6 \mathrm{M}$ solution of TBHP in undecane ($6 \mathrm{~mL}, 29.8 \mathrm{mmol}$) was added at the same temperature. The resulting mixture was allowed to stir at $-20^{\circ} \mathrm{C}$ for 1 h and then a solution of (E)-3-phenyl-2-propenol $15(2 \mathrm{~g}, 14.9$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise over 30 min . After 3 h at $-20^{\circ} \mathrm{C}$, the reaction was quenched with 10% aqueous solution of NaOH and saturated with NaCl (2 $\mathrm{mL})$ at $-20^{\circ} \mathrm{C}$. After diethyl ether (30 mL) was added, the cold bath was allowed to warm to $10{ }^{\circ} \mathrm{C}$, stirring was maintained at $10{ }^{\circ} \mathrm{C}$, while $\mathrm{MgSO}_{4}(1.5 \mathrm{~g})$ and Celite (400 mg) were added. After another 15 min of stirring, the mixture was allowed to settle, and the clear solution was filtered through a pad of Celite and washed with diethyl ether. Azeotropic removal of TBHP with toluene at a reduced pressure and high vacuum crude product as yellow oil. Recrystallization from petroleum ether-diethyl ether gave epoxy alcohol $\mathbf{1 6}$ as
white crystals.
Yield: 1.92 g, 86\%;
MP: $52-53{ }^{\circ} \mathrm{C}$ (lit. ${ }^{13} \mathrm{mp}: 51.5-53{ }^{\circ} \mathrm{C}$);
Molecular Formula: $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$;
Specific rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=-54.3\left(c\right.$ 2.4, $\left.\mathrm{CHCl}_{3}\right) ;\left\{\right.$ lit. $\left.{ }^{13}[\alpha]^{25}{ }_{\mathrm{D}}=-49.6\left(c 2.4, \mathrm{CHCl}_{3}\right)\right\}$;
Chiral HPLC: ee $>99 \%$ [The ee of $\mathbf{1 6}$ was determined by chiral HPLC analysis; Chiralcel OD-H ($250 \times 4.6 \mathrm{~mm}$) column; eluent: isopropanol/n-hexane (5:95); flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; detector: $220 \mathrm{~nm}\left[(S)\right.$-isomer $\mathrm{t}_{\mathrm{R}}=17.275$ (major); (R)-isomer $\mathrm{t}_{\mathrm{R}}=19.317$ (minor)].
IR ($\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{-1}$): $v_{\max } 3444,3019,2401,1673,1462,1216,1068,929,863,769$;
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 2.80(\mathrm{bs}, 1 \mathrm{H}), 3.18-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=12.8,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.0(\mathrm{dd}, J=12.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.37(\mathrm{~m}, 5 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 136.5$ (C), 128.4 (CH, 2 carbons), $128.2(\mathrm{CH}), 125.6(\mathrm{CH}$, 2 carbons), $62.5(\mathrm{CH}), 61.2\left(\mathrm{CH}_{2}\right), 55.6(\mathrm{CH})$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 173.0572$, found 173.0572.

2) ((2S,3S)-3-phenyloxiran-2-yl)methyl 4-methylbenzenesulfonate (17)

To a stirred solution of epoxyalcohol $16(1.8 \mathrm{~g}, 11.9 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added DMAP $(0.15 \mathrm{~g}, 1.19 \mathrm{mmol})$, anhydrous triethylamine ($3.34 \mathrm{~mL}, 23.9 \mathrm{mmol}$), at $-20^{\circ} \mathrm{C}$ and stir it for 30 min . After that the solution of p-toluenesulfonyl chloride (2.97 g , 15.6 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise about 15 min at $-20^{\circ} \mathrm{C}$ and resulting mixture was stirred at $-20^{\circ} \mathrm{C}$ for 7 h . After completion of reaction (monitored by TLC), water ($2 \times 10 \mathrm{~mL}$) was added and then the organic phase was separated. The aqueous layer was extracted with dichloromethane ($2 \times 15 \mathrm{~mL}$). The combined organic extracts were washed with brine ($2 \times 10 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure gave tosylated product 17 as a colorless solid which was used for further step without purification.
Yield: 3.45 g , 95%;
MP: 64-66 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{14} \mathrm{mp}: 68-69{ }^{\circ} \mathrm{C}$); ;
Molecular Formula: $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}$;

Specific rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=-44.5\left(c\right.$ 2.5, $\left.\mathrm{CHCl}_{3}\right) ;\left\{\right.$ lit. $\left.^{14}[\alpha]^{25}{ }_{\mathrm{D}}=-45.0\left(c 2.5, \mathrm{CHCl}_{3}\right)\right\}$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3375,3024,2404,1649,1600,1450,1366,1217,1037,978,851$, 762, 669;
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 2.46(\mathrm{~s}, 3 \mathrm{H}), 3.23-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.76$ (apparent d, $J=1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=11.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=11.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.23(\mathrm{~m}, 2$ H), 7.32-7.37 (m, 5H), 7.83 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 145.1$ (C), 135.5 (C), 132.6 (C), 129.9 ($\mathrm{CH}, 2$ carbons), 128.6 ($\mathrm{CH}, 2$ carbons), $128.5(\mathrm{CH}), 128.0(\mathrm{CH}, 2$ carbons), 125.6 (CH, 2 carbons), 69.4 $\left(\mathrm{CH}_{2}\right), 58.5(\mathrm{CH}), 56.4(\mathrm{CH}), 21.6\left(\mathrm{CH}_{3}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 305.0842$, found $305.0836 ; \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}$327.0662, found 327.0655.

3) (2S,3S)-2-(azidomethyl)-3-phenyloxirane (18)

To a stirred solution of tosylated compound 17 ($3 \mathrm{~g}, 9.8 \mathrm{mmol}$) in anhydrous DMF (15 mL) was added sodium azide $(0.64 \mathrm{~g}, 9.8 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 5 h at $0^{\circ} \mathrm{C}$ and allowed to room temperature for further 10 h . After completion of reaction (monitored by TLC), EtOAc (20 mL) and ice cold water ($3 \times 10 \mathrm{~mL}$) were added and then the organic phase was separated. The aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with brine ($2 \times 10 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure gave azide product 18.

Yield: $1.31 \mathrm{~g}, 76 \%$;
Molecular Formula: $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}$;
Specific rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=-59.6\left(c 1.86, \mathrm{CHCl}_{3}\right)$;
IR ($\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{\mathbf{- 1}}$): $v_{\max } 3346,3017,2927,2863,2101,1670,1450,1357,1266,1220,1098$, 1027, 977, 877, 761, 665;
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{2 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 3.21$ (ddd, $J=5.2,3.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.42(\mathrm{dd}, J=13.6,5.1$
$\mathrm{Hz}, 1 \mathrm{H}$), 3.63 (dd, $J=13.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.22-7.37 (m, 5 H);
${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 136.0(\mathrm{C}), 128.5(\mathrm{CH}, 2$ carbons), $128.4(\mathrm{CH}), 125.6(\mathrm{CH}, 2$ carbons), $60.2(\mathrm{CH}), 56.3(\mathrm{CH}), 51.6\left(\mathrm{CH}_{2}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}\left[\mathrm{M}-\mathrm{N}_{3}\right]^{+} 133.0648$, found 133.0647.

4) (R)-1-amino-3-phenylpropan-2-ol (19)

To a stirred solution of azide $18(1.5 \mathrm{~g}, 8.46 \mathrm{mmol})$ in methanol (10 mL) was added 10% palladium on activated carbon $(0.15 \mathrm{~g})$ and the reaction mixture was stirred under hydrogen atmosphere (50 psi) for 5 h . After completion of the reaction (monitored by TLC), the catalyst was filtered through the bed of Celite (EtOAc eluent) and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography [basic alumina, EtOAc/petroleum ether (10:90)] afforded amino alcohol 19 as pale yellow oil.

Yield: $0.97 \mathrm{~g}, 75 \%$;

Molecular Formula: $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}$;

Specific rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=+1.84\left(c 1.02, \mathrm{CHCl}_{3}\right)$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3668,3570,3367,3019,2929,1651,1577,1492,1457,1330,1217$, 1084, 1035, 927, 764, 668;
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 2.02(\mathrm{bs}, 3 \mathrm{H}), 2.52-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.85(\mathrm{~m}, 2 \mathrm{H})$, 3.68-3.80 (m, 1 H), 7.19-7.35 (m, 5 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 138.3$ (C), 129.3 ($\mathrm{CH}, 2$ carbons), 128.4 ($\mathrm{CH}, 2$ carbons),
$126.3(\mathrm{CH}), 73.0(\mathrm{CH}), 46.8\left(\mathrm{CH}_{2}\right), 41.4\left(\mathrm{CH}_{2}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 152.1070$, found 152.1070; $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}$ $\left[^{M}+\mathrm{Na}\right]^{+} 174.0889$, found 174.0889 .
5) (R)-2-chloro-N-(2-hydroxy-3-phenylpropyl)acetamide (20)

To a stirred solution of amino alcohol $19(0.7 \mathrm{~g}, 4.6 \mathrm{mmol})$ in toluene (5 mL) was added sodium carbonate $(0.932 \mathrm{~g}, 8.8 \mathrm{mmol})$ in water $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 15 min , to the above resulting mixture chloroacetyl chloride ($0.590 \mathrm{~g}, 5.2 \mathrm{mmol}, 416 \mu \mathrm{~L}$) in toluene (5 mL) was
added over 30 min . The resulting mixture was stirred for 1 h at $5^{\circ} \mathrm{C}$. After completion of the reaction (monitored by TLC), the residue was diluted with water (5 mL) and extracted with toluene ($3 \times 5 \mathrm{~mL}$). The phases were separated, and the organic phase was washed with brine ($2 \times 5 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered. The solvent was removed under reduced pressure and the crude residue was purified by column chromatography [silica gel, EtOAc/petroleum ether (25:75)] gave acetylated product $\mathbf{2 0}$ as a colorless oil.
Yield: $0.915 \mathrm{~g}, 87 \%$;
Molecular Formula: $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNO}_{2}$;
Specific rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=-6.3\left(c\right.$ 1.4, $\left.\mathrm{CHCl}_{3}\right)$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{\mathbf{- 1}}$): $v_{\max } 3423,3022,2928,2403,1741,1594,1532,1423,1216,1030,927$, 765, 672;
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 2.33(\mathrm{bs}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=13.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J$ $=13.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.97-4.01(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 2$ H), 6.99 (bs, 1 H), 7.21-7.23 (m, J=7.5 Hz, 1 H), 7.26-7.36 (m, 4 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 166.7$ (CO), 137.1 (C), 129.3 (CH, 2 carbons), $128.8(\mathrm{CH}$, 2 carbons), $126.9(\mathrm{CH}), 71.6(\mathrm{CH}), 45.0\left(\mathrm{CH}_{2}\right), 42.6\left(\mathrm{CH}_{2}\right), 41.5\left(\mathrm{CH}_{2}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{NCl}[\mathrm{M}+\mathrm{H}]^{+}$228.0786, found 228.0785; $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{NCl}[\mathrm{M}+\mathrm{Na}]^{+} 250.0605$, found 250.0605.

6) (R)-2-benzylmorpholin-3-one (21)

Potassium tertiary butoxide ($0.98 \mathrm{~g}, 8.78 \mathrm{mmol}$) in dry isopropanol (10 mL) was added dropwise to a stirred solution of acetylated compound $20(0.80 \mathrm{~g}, 3.51 \mathrm{mmol})$ in dry isopropanol (5 mL) at $0{ }^{\circ} \mathrm{C}$ under N_{2}. The resulting mixture was stirred for 2 h at room temperature. After completion of the reaction (monitored by TLC), the reaction was quenched with 1 N HCl solution (10 mL) extracted with ethyl acetate ($2 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine ($2 \times 5 \mathrm{~mL}$) dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was purified by column chromatography [basic alumina, methanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4:96)] afforded amide product 21 as a colorless solid.

Yield: $0.465 \mathrm{~g}, 69 \%$;
MP: 106-108 ${ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2}$;
Specific rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=-30.7$ (c 1.81, CHCl_{3});
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3406,3019,2400,1681,1496,1455,1427,1341,1215,1114,1027$, 928, 669;
${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl $\left.)_{3}\right): \delta 2.76(\mathrm{dd}, J=13.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=13.9,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.16-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.97(\mathrm{~m}, 1 \mathrm{H}), 4.2(\mathrm{q}, J=16.9,14.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{bs}, 1 \mathrm{H})$, 7.18-7.36 (m, 5 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 169.1(\mathrm{CO}), 136.7(\mathrm{C}), 129.1(\mathrm{CH}, 2$ carbons), $128.6(\mathrm{CH}, 2$ carbons), $126.8(\mathrm{CH}), 73.8(\mathrm{CH}), 67.6\left(\mathrm{CH}_{2}\right), 45.9\left(\mathrm{CH}_{2}\right), 39.1\left(\mathrm{CH}_{2}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N} \quad[\mathrm{M}+\mathrm{H}]^{+}$192.1019, found 192.1019; $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{Na}]^{+}$214.0838, found 214.0838.

7) (R)-2-benzylmorpholine (R-1)

To a stirred solution of amide derivative, $21(0.2 \mathrm{~g}, 1.04 \mathrm{mmol})$ in THF (10 mL) was added slowly a solution of $\operatorname{Red}-\mathrm{Al}(65 \% \mathrm{w} / \mathrm{w}$ in toluene, $845 \mu \mathrm{~L}, 4.18 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 12 h , the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with dropwise addition of water (1 mL) followed by the addition of an aqueous 4 N KOH solution (2 mL). The resulting crude residue was filtered over Celite bed, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the crude residue by flash chromatography [silica-gel, methanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3:97)] afforded (R)-2-benzylmorpholine $R \mathbf{- 1}$ as a colorless oil. Yield: $0.157 \mathrm{~g}, 85 \%$;
Molecular Formula: $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}$;
Specific rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=+1.31\left(c 5.0, \mathrm{CHCl}_{3}\right) ;\left\{\mathrm{lit.}^{12}[\alpha]^{25}{ }_{\mathrm{D}}=+1.28\left(c 5.0, \mathrm{CHCl}_{3}\right)\right\}$;
Chiral HPLC: ee > 99.9\% [The ee of $R-\mathbf{1}$ was determined by chiral HPLC analysis; Chiralcel OD-H ($250 \times 4.6 \mathrm{~mm}$) column; eluent: $\mathrm{EtOH} / \mathrm{n}$-hexane/TFA (10:90:0.1); flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; detector: $254 \mathrm{~nm}\left[(R)\right.$-isomer $\mathrm{t}_{\mathrm{R}}=6.625$ (major); (S)-isomer $\mathrm{t}_{\mathrm{R}}=8.075$ (minor)];

IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\text {max }} 3020,2400,1652,1403,1215,1099,929,669$;
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 2.40(\mathrm{bs}, 1 \mathrm{H}), 2.51-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.93(\mathrm{~m}, 4 \mathrm{H})$, 3.51-3.71 (m, 2 H), 3.83-3.89 (m, 1 H), 7.17-7.32 (m, 5 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 137.6$ (C), 129.2 ($\mathrm{CH}, 2$ carbons), 128.3 ($\mathrm{CH}, 2$ carbons), $126.4(\mathrm{CH}), 77.1(\mathrm{C}), 67.6\left(\mathrm{CH}_{2}\right), 50.3\left(\mathrm{CH}_{2}\right), 45.3\left(\mathrm{CH}_{2}\right), 40.2\left(\mathrm{CH}_{2}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$178.1226, found 178.1226.

2.1.7. Spectra

(S,S)-3P.esp
(S,S)-3C.ESP

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 7}$
(S,S)-3AC.ESP

${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 18

2.1.8. Chiral HPLC analysis data

Chiral HPLC analysis of Compound 16
Conditions: Chiralcel OD-H (250 X 4.6 mm) column; eluent: n-Hexane/isopropanol (95:05); flow rate: $1 \mathrm{~mL} / \mathrm{min}$; detector 254 nm .

Racemic

Chiral

Chiral HPLC analysis of Compound $\boldsymbol{R} \mathbf{- 1}$

Conditions: Chiralcel OD-H (250 X 4.6 mm) column; eluent: n-Hexanelethanol/TFA (90:10:0.1); flow rate: $1 \mathrm{~mL} / \mathrm{min}$; detector 254 nm .

Racemic

Chiral

2.1.9. References

1. (a) Verma, M.; Gujrati, V. R.; Sharma, M.; Saxena, A. K.; Bhalla, T. N.; Sinha, J. N.; Bhargava, K. P.; Shanker, K. Pharmacol. Res. Commun. 1984, 16, 9; (b) Letavic, M. A.; Keith, J. M.; Ly, K. S.; Bonaventure, P.; Feinstein, M. A.; Lord, B.; Miller, K. L.; Motley, S. T.; Nepomuceno, D.; Sutton, S. W.; Carruthers, N. I. Bioorg. Med. Chem. Lett. 2008, 18, 5796. (c) Wong, E. H. F.; Sonders, M. S.; Amara, S. G.; Tinholt, P. M.; Piercey, M. F. P.; Hoffmann, W. P.; Hyslop, D. K.; Franklin, S.; Porsolt, R. D.; Bonsignori, A.; Carfagna, N.; McArthur, R. A. Biol. Psychiatry 2000, 47, 818. (d) Berg, S.; Larsson, L.-G.; Renyi, L.; Ross, S. B.; Thorberg, S.-O.; Thorell-Svantesson, G. J. Med. Chem. 1998, 41, 1934.
2. (a) Wijtmans, R.; Vink, M. K. S.; Schoemaker, H. E.; Van Delft, F. L.; Blaauw, R.; Rutjes, F. P. J. T. Synthesis 2004, 641; (b) Loftus, F. Synth. Commun. 1980, 10, 59.
3. (a) Guillonneau, C.; Charton, Y.; Ginot, Y.-M.; Fouquier-d'Herouel, M.-V.; Bertrand, M.; Lockhart, B.; Lestage, P.; Goldstein, S. Eur. J. Med. Chem. 2003, 38, 1; (b) Melloni, P.; Della Torre, A.; Lazzari, E.; Mazzini, G.; Meroni, M. Tetrahedron 1985, 41, 1393; (c) Fang, Q. K.; Han, Z.; Grover, P.; Kessler, D.; Senanayake, C. H.; Wald, S. A. Tetrahedron: Asymmetry 2000, 11, 3659.
4. (a) Hajos, M.; Fleishaker, J. C.; Filipiak-Reisner, J. K.; Brown, M. T.; Wong, E. H. CNS Drug Rev. 2004, 10, 23; (b) Pinder, R. M.; Brogden, R. N.; Speight, T. M.; Avery, G. S. Drugs 1977, 13, 401.
5. Banks, M. L.; Blough, B. E.; Fennell, T. R.; Snyder, R. W.; Negus, S. S. Drug Alcohol Depend. 2013, 130, 158.
6. Rapoport, B. L.; Jordan, K.; Boice, J. A.; Taylor, A.; Brown, C.; Hardwick, J. S.; Carides, A.; Webb, T.; Schmoll, H.-J. Support Care Cancer 2010, 18, 423.
7. (a) Tiecco, M.; Testaferri, L.; Marini, F.; Sternativo, S.; Santi, C.; Bagnoli, L.; Temperini, A. Tetrahedron: Asymmetry 2003, 14, 2651; (b) Bouron, E.; Goussard, G.; Marchand, C.; Bonin, M.; Pannecoucke, X.; Quirion, J.-C.; Husson, H.-P. Tetrahedron Lett. 1999, 40, 7227; (c) Breuning, M.; Winnacker, M.; Steiner, M. Eur. J. Org. Chem. 2007, 2100; (d) Fritz, S. P.; Mumtaz, A.; Yar, M.; McGarrigle, E. M.; Aggarwal, V. K. Eur. J. Org. Chem. 2011, 3156.
8. (a) Zhai, H.; Borzenko, A.; Lau, Y. Y.; Ahn, S. H.; Schafer, L. L. Angew. Chem., Int. Ed. 2012, 51, 12219; (b) O'Brien, P. Angew. Chem., Int. Ed. 1999, 38, 326.
9. Bentley, J. M.; Dawson, C. E.; Guba, W.; Hebeisen, P.; Monck, N.; Pratt, R. M.; Richter, H.; Roever, S.; Ruston, V. PCT Int. Appl., WO2006077025A2, 2006.
10. Brown, G. R.; Forster, G.; Foubister, A. J.; Stribling, D. J. Pharm. Pharmacol. 1990, 42, 797.
11. D'Arrigo, P.; Lattanzio, M.; Fantoni, G. P.; Servi, S. Tetrahedron: Asymmetry 1998, 9, 4021.
12. Sawant, R. T.; Waghmode, S. B. Tetrahedron 2010, 66, 2010.
13. Gao, Y.; Klunder, J. M.; Hanson, R. M.; Masamune, H.; Ko, S. Y.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765.
14. Brunner, H.; Sicheneder, A. Angew. Chem. 1988, 100, 730.

2.2. SECTION 2

A new and efficient enantioselective synthesis of both enantiomers of calcium channel blocker bepridil

2.2.1. Introduction

Calcium channel blockers (CCBs) or calcium antagonists are a class of drugs developed as potent vasodilators and identified by the German physiologist Albrecht Fleckenstein in mid-1960's. ${ }^{1}$ Calcium channel blockers are widely used in treating various cardiovascular diseases such as hypertension, angina pectoris, cardiac arrhythmia (abnormal heart rhythms), Raynaud's phenomenon and migraine. It inhibits the influx of calcium $\left(\mathrm{Ca}^{2+}\right)$ ions into cell membrane by blockade of calcium ion channel. ${ }^{2}$ Based on the chemical structure and functional distinctions, L-type calcium channels are categorized into three classes namely (Figure 1), ${ }^{3}$
a) 1,4-Dihydropyridines (DHPs) (e.g. Amlodipine, felodipine, isradipine, nicardipine)
b) Phenylalkylamines (PAAs) (e.g. Verapamil, bepridil)
c) Benzothiazepines (BTZs) (e.g. Diltiazem)

Amlodipine

Isradipine

Felodipine

Figure 1. Representative examples of calcium channel blockers (CCBs)

Majority of CCBs are 1,4-Dihydropyridines. The pharmacostudies of these classes of drugs shows that dihydropyridines have greater selectivity for vasodilator activity than benzothiazepines and phenylalkylamines. One newer class, the diarylaminopropanolethers e.g. bepridil operates through a slightly different mechanism associated with T (transient)type channels. ${ }^{4}$

The basic mechanism of action of calcium channel blocker is a blockade of voltagegated calcium channels (VGCCs). When calcium enters into the vascular and cardiac muscles it causes smooth muscle contraction. Many CCBs (antihypertensive/antianginal), that block the passage of calcium ions into heart and blood vessel muscle cells promotes the relaxation of smooth muscles around the blood vessels results in widening of blood vessels (vasodilation), reduces the flow of blood supply to the heart muscle results in reduction of systolic and diastolic blood pressure (arterial pressure), and helping to prevent hypertension, chest pain as well as abnormal heart rhythms. Most of the CCBs are high lipophilic in nature and well absorbed orally ($>90 \%$) and extensively metabolized in the liver via firstpass hepatic metabolism. ${ }^{5}$

Bepridil

Bepridil (Trade name: Vascor ${ }^{\circledR}$) is a non-selective, long-acting calcium channel blocker with significant antianginal and anti-ischemic activities (Figure 2). ${ }^{6}$ It has antihypertensive and selective anti-arrhythmia activities and acts as a calmodulin antagonist. ${ }^{7}$ It is generally administered as a racemate. However, as expected, pharmacological studies reveal that there are significant differences in activity amongst bepridil enantiomers and (R)-enantiomer of bepridil is more active than (S)-enantiomer. ${ }^{8}$

Figure 2. Bepridil

Importantly, repurposing or repositioning of approved drugs has significant benefits over traditional drug development for finding new indications for rare and neglected diseases to minimize costs, duration and risks. ${ }^{9}$ In recent years, drug repositioning has accounted for approximately 30% of the newly approved drugs by the FDA. In this context, bepridil has been recognized as a potential candidate in new therapeutic areas such as alzheimer's, antiviral, atrial fibrillation and in certain neurological disorders. Recently, Olinger and co-workers identified bepridil as a potential lead molecule against Ebola virus disease (EBOV). ${ }^{10}$ They screened about 2600 bioactive small molecules, including FDA approved drugs and molecular probes against Ebola virus. In the preliminary in vitro screening, they identified 171 scaffolds as novel inhibitors of Ebola virus disease (EBOV) infection. Among these, they selected thirty promising drugs for further study (in vivo studies in mice model). The in vivo studies revealed that two drugs such as bepridil (a calcium channel blocker) and sertraline (a selective serotonin reuptake inhibitor) are a promising candidate to treat Ebola virus infection. These findings are a really significant discovery as there is no effective treatment currently available for Ebola infection. According to this research, bepridil being an approved drug, repurposing of this may rapidly move to human testing and have a potential to become a frontline against Ebola virus infection.

2.2.2. Review of Literature

Very few reports are available in the literature for the synthesis of racemic as well as optically active (R)-bepridil $R \mathbf{- 1}$. Detail reports of these syntheses of $R \mathbf{- 1}$ are described below.

Mauvernay's approach (1976) ${ }^{11}$

Mauvernay et al. described the synthesis of rac-bepridil rac-1 starting from epichlorohydrin 2 (Scheme 1). Epichlorohydrin 2 on treatment with isobutanol in NaOH afforded isobutyl glycidyl ether 3. Subsequently, the regioselective opening of epoxide 3 with pyrrolidine provided amino alcohol derivative 4 , followed by treatment with thionyl chloride in chloroform gave corresponding chloro derivative 5. Finally, the chloro derivative 5 was treated with N-benzyl aniline and sodium amide in xylene afforded the racbepridil rac-1.

Scheme 1. Reagents and conditions: (i) isobutanol, NaOH ; (ii) pyrrolidine; (iii) SOCl_{2}, $\mathrm{CHCl}_{3}, 45^{\circ} \mathrm{C}$; (iv) N -benzylaniline, NaNH_{2}, xylene, $135^{\circ} \mathrm{C}, 6 \mathrm{~h}$.

Winslow's approach (1985) ${ }^{12}$

Winslow et al. reported the chemical resolution strategy for the preparation of (R) isomer of bepridil R - $\mathbf{1}$ (Scheme 2). α-[(2-methylpropoxy)-methyl]-1-pyrrolidine-ethanol 4 was resolved with D -(+)dibenzoyl tartaric acid monohydrate in anhydrous ethanol gave corresponding salt, which was further treated with NaOH afforded enantiopure secondary alcohol $\mathbf{6}$ in 27% yield. Alcohol 6, on treatment with thionyl chloride in anhydrous toluene at $75{ }^{\circ} \mathrm{C}$ afforded the corresponding chloro derivative 7, which on treatment with N benzylaniline afforded (R)-bepridil R - 1 .

Scheme 2. Reagents and conditions: (i) D-(+) dibenzoyl tartaric acid monohydrate, EtOH , $\mathrm{NaOH}, 27 \%$; (ii) SOCl_{2}, toluene, $75^{\circ} \mathrm{C}, 2 \mathrm{~h}, 75 \%$; (iii) N -benzylaniline, toluene, $80{ }^{\circ} \mathrm{C}$, 74%.

2.2.3. Present work

Objective

In view of the significance of bepridil in many new therapeutic indications, it seemed timely to develop a new and effective enantioselective synthetic route to bepridil enantiomers. Importantly, there is no asymmetric synthetic route to this molecule is reported yet. Previously, we developed a new enantioselective synthesis of (R)-bepridil from the easily available starting materials by taking advantage of Jacobsen's hydrolytic kinetic resolution strategy. ${ }^{13}$ In this approach, the required epoxide 3 was obtained by treating epichlorohydrin 2 with isobutanol under basic condition (Scheme 3). Epoxide 3 was subjected to Jacobsen's hydrolytic kinetic resolution condition with (R, R)-Salen Co (III)OAc afforded the enantiopure epoxide $\mathbf{8}$ in 40% along with diol $\mathbf{9}$ in 42% yield.

Scheme 3. Reagents and conditions: (i) isobutanol, cat. TBAI, aq. KOH ($50 \% \mathrm{w} / \mathrm{w}$), rt, 12 $\mathrm{h}, 62 \%$; (ii) $0.5 \mathrm{~mol} \%(R, R)-\mathrm{Salen} \mathrm{Co}(\mathrm{III})-\mathrm{OAc}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 24 \mathrm{~h}$; (iii) aniline, cat. LiBr , $\mathrm{MeOH}, 12 \mathrm{~h}, 90 \%$; (iv) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 85 \%$; (v) succinimide, DIAD, $\mathrm{Ph}_{3} \mathrm{P}$, THF, $0{ }^{\circ} \mathrm{C}$-rt, $12 \mathrm{~h}, 40 \%$; (vi) Borane-DMS, THF, reflux, $12 \mathrm{~h}, 70 \%$.

Subsequently, the regioselective ring opening of epoxide $\mathbf{8}$ with aniline followed by N benzoylation of amino alcohol $\mathbf{1 0}$ with benzoyl chloride gave amide derivative $\mathbf{1 1}$ in 85% yield. Amide 11 was subjected to Mitsunobu reaction with succinimide in PPh_{3} and DIAD gave succinimide derivative $\mathbf{1 2}$ in 40% yield along with undesired benzoyl migrated product 13 in 25% yield. Finally, the reduction of amide bonds in compound 12 with borane-DMS afforded (R)-bepridil $R \mathbf{- 1}$. Although R-enantiomer of bepridil $R \mathbf{- 1}$ has been successfully synthesized using this strategy mentioned above, this method suffered from two limitations such as (1) overall yield is not satisfactory (only 9%) (2) problematic Mitsunobu step that gives undesired side product in 25% yield. Hence, in this section, the development of modified approach towards the synthesis of both enantiomers of bepridil $R \mathbf{- 1} \& S \mathbf{- 1}$ has been described.

2.2.4 Results and Discussion

Highly active enantiomer (R)-bepridil $R \mathbf{- 1}$ has been selected for initial investigation and the retrosynthetic analysis is outlined in Scheme 4. It has been envisioned that the amino alcohol $\mathbf{1 4}$ could be visualized as a key intermediate for the synthesis, which can be transformed to the amide precursor 15 using Mitsunobu protocol. Further, compound $\mathbf{1 5}$ can be transformed to the target molecule R - $\mathbf{1}$ via simple amide reduction. The key intermediate 14, in turn, can be obtained from the regioselective ring opening of $\mathbf{8}$ with N-benzylaniline. The chiral epoxide 8 could be easily prepared from its racemic epoxide $\mathbf{3}$ with high enantiopurity employing hydrolytic kinetic resolution (HKR) strategy.

Scheme 4. Retrosynthetic analysis of (R)-bepridil $R-\mathbf{1}$

A modified synthetic sequence for the synthesis of (R)-bepridil $R \mathbf{- 1}$ is shown in Scheme 5. The synthesis commenced with the readily available starting material 2(isobutoxymethyl)oxirane 3, which was subjected to Jacobsen's hydrolytic kinetic resolution with 0.55 equivalents of water in the presence of a Jacobsen cobalt catalyst $[(R, R)$-Salen $\mathrm{Co}(\mathrm{III})-\mathrm{OAc}(0.5 \mathrm{~mol} \%)]$ at ambient temperature for 24 h gave the enantiomerically pure epoxide $\mathbf{8}$ in 40% yield $\left\{[\alpha]^{22}{ }_{\mathrm{D}}=+3.4\left(c 1.99, \mathrm{CHCl}_{3}\right)\right\}$ followed by (R)-3-isobutoxypropane-1,2-diol 9 in 42% yield. The desired epoxide $\mathbf{8}\left(75^{\circ} \mathrm{C}, 8 \mathrm{mbar}\right)$ was easily isolated from the more polar diol $9\left(150{ }^{\circ} \mathrm{C}, 8 \mathrm{mbar}\right)$ by vacuum distillation. Importantly, the undesired diol $\mathbf{9}$ can be easily converted to the desired epoxide $\mathbf{8}$ as per the reported procedure. ${ }^{14}$

R-Bepridil R-1

Scheme 5. Reagents and conditions: (i) $0.5 \mathrm{~mol} \%(R, R) \mathrm{Salen} \mathrm{Co}$ (III)-OAc, $\mathrm{H}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}$-rt, 24 h ; (ii) N -benzylaniline, MeOH, reflux, $12 \mathrm{~h}, 73 \%$; (iii) succinimide, PPh_{3}, DIAD, THF, reflux, $12 \mathrm{~h}, 88 \%$ (Table 1); (iv) Red-Al, toluene, rt, $20 \mathrm{~h}, 86 \%$.

As the HKR on epoxide $\mathbf{8}$ is unknown, we wanted to ensure its enantiopurity before proceeding further. However, our attempts to separate the rac epoxide 2 under various HPLC conditions were unsuccessful. Hence, it has been decided to check its enantiopurity at the next step. Accordingly, the epoxide $\mathbf{8}$ on regioselective ring opening with readily available N-benzyl aniline in refluxing methanol for 12 h afforded the corresponding amino
alcohol 14 in 73% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 4}$, signals corresponding to methine proton and hydroxyl proton resonated at $\delta 4.15-4.23 \mathrm{ppm}$ and $\delta 2.57 \mathrm{ppm}$ and in the ${ }^{13} \mathrm{C}$ NMR, the signals of methine carbon attached to the hydroxy group was discernible at $\delta 68.6 \mathrm{ppm}$ confirms the formation of ring-opened product 14 . Further, the IR spectrum of $\mathbf{1 4}$ displayed absorption band of the hydroxyl group at $3394 \mathrm{~cm}^{-1}$. Our next aim was to replace the hydroxyl group by a succinimide moiety without loss of enantioselectivity. A variety of Mitsunobu conditions were examined to achieve a good yield of the Mitsunobu product with high enantiopurity (Table 1). It has been found that Mitsunobu reaction in the presence of PPh_{3} (4 equiv.), DIAD (3 equiv.), succinimide (4 equiv.) using THF as a solvent under reflux conditions (Table 1, entry 8) is optimal to obtain relatively higher yields (88%) and high enantioselectivity (ee $>99 \%$). In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound

Table: 1. Attempted Mitsunobu reaction conditions

Entry	Reaction conditions	Yield $\mathbf{c}(\%)$ $\mathbf{1 5}$	ee (\%) $)^{\text {d }}$ $R-\mathbf{1}$
1^{a}	PPh_{3}, DIAD, toluene, rt, 24 h	N.R	--
2^{a}	PPh_{3}, DIAD, toluene, $60{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$	<5	--
3^{a}	PPh_{3}, DIAD, toluene, reflux, 12 h	92	89
4^{a}	PPh_{3}, DEAD, toluene, $60{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$	90	95
5^{a}	PPh_{3}, DEAD, ether, reflux, 12 h	20	91
6^{a}	PPh_{3}, DIAD, ether, reflux, 12 h	15	91
7^{a}	PPh_{3}, DIAD, THF, rt, 24 h	N.R	--
8^{b}	$\mathbf{P P h}_{3}$, DIAD, THF, reflux, $\mathbf{1 2 ~ h}$	$\mathbf{8 8}$	$\mathbf{9 9}$
9^{a}	PBu_{3}, DEAD, EtOAc, reflux, 12 h	N.R	--
10^{a}	PPh_{3}, DBAD, ether, reflux, 12 h	N.R	--

a) PPh_{3} (2 equiv.), DIAD/DEAD/DBAD (1.5 equiv.) used b) PPh_{3} (4 equiv.), DIAD (3 equiv.), succinimide (4 equiv.) used c) isolated yields. d) Determined by chiral HPLC analysis of final molecule $R-\mathbf{1}$

15, the signals of methylene protons ranging from $\delta 2.19-2.25(\mathrm{~m}, 4 \mathrm{H})$ while in the ${ }^{13} \mathrm{C}$ NMR spectrum, the characteristic signals of two carbonyl carbons resonated at $\delta 177.7 \mathrm{ppm}$ correspond to succinimide moiety in compound 15. In the IR spectrum of 15, the absorption band of carbonyl group displayed at $1660 \mathrm{~cm}^{-1}$. Finally, the amide reduction of succinimido derivative $\mathbf{1 5}$ using Red-Al in anhydrous toluene at room temperature for 20 h furnished the target molecule R-bepridil $R-1\left\{[\alpha]^{22}{ }_{\mathrm{D}}=-5.2(c 1.23, \mathrm{MeOH})\right\}$ with an overall yield of 18%. The enantiomeric purity of $R-\mathbf{1}$ was found to be 99%.

(S)-Bepridil S-1

Similarly, S-enantiomer of bepridil S - $\mathbf{1}$ was also synthesized successfully employing the same procedure (Scheme 6). Here, (S, S) Salen Co (III)-OAc was used as a catalyst to get the required (R)-epoxide as a starting material. Using the same sequences depicted in Scheme 6, (S)-bepridil S-1 was obtained with an overall yield of 17%; $[\alpha]^{22}{ }_{\mathrm{D}}=+5.15(c$ $1.23, \mathrm{MeOH})$. The enantiomeric excess of $S-\mathbf{1}$ was determined by chiral HPLC analysis and found to be 98% ee.

Scheme 6. Reagents and conditions (i) $0.5 \mathrm{~mol} \%(S, S)$ Salen Co (III)-OAc, $\mathrm{H}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}$-rt, 24 h ; (ii) N -benzylaniline, MeOH , reflux, $12 \mathrm{~h}, 70 \%$; (iii) PPh_{3}, DIAD, THF, reflux, 12 h , 89%; (iv) Red-Al, toluene, rt, $20 \mathrm{~h}, 84 \%$.

2.2.5. Conclusion

In conclusion, motivated by the lack of efficient methods for the preparation of bepridil enantiomers, we have developed a short and efficient method for the enantioselective preparation of both the enantiomers of bepridil for the first time in an overall yield about
18% and ee $>98 \%$. Simple procedures, high enantioselectivities, and the ready availability of the starting materials are some of the salient features of this approach. Further, the strategy could be exploited for the preparation of chiral bepridil analogues that are required for ongoing drug research focused on finding new therapeutic applications of bepridil.

2.2.6. Experimental Section

1) (S)-2-(isobutoxymethyl)oxirane (8)

A mixture of epoxide $3(5 \mathrm{~g}, 38.4 \mathrm{mmol})$ and (R, R)-Salen Co (III)-OAc complex (0.055 g , $0.0812 \mathrm{mmol})$ was vigorously stirred for 15 min , then cooled to $0^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(0.38 \mathrm{~mL}, 21.12$ mmol) was added from a microsyringe over 15 min and the resulting mixture was stirred at room temperature for 12 h . Additional of (R, R)-Salen $\mathrm{Co}(\mathrm{III})$-OAc complex (0.055 g , 0.0812 mmol) was then added, and stirring was continued for additional 12 h . The resulting mixture was diluted with ethyl acetate (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The epoxide 8 from residual liquid was isolated by vacuum distillation ($75{ }^{\circ} \mathrm{C}, 8$ mbar) as a colorless oil, followed by the diol $9\left(150{ }^{\circ} \mathrm{C}, 8 \mathrm{mbar}\right)$ as light yellow oil.

Epoxide 8

Yield: $2.0 \mathrm{~g}, 40 \%$;
Molecular Formula: $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$;
Specific rotation: $[\alpha]^{22}{ }_{\mathrm{D}}=+3.45\left(c\right.$ 1.99, $\left.\mathrm{CHCl}_{3}\right)$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{\mathbf{- 1}}$): $v_{\max }$ 2960, 2873, 1522, 1474, 1421, 1097;
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 0.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.86(\mathrm{sp}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 2.59$ (dd, $J=5.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.76-2.80 (m, 1 H), $3.09-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.28(\mathrm{~m}, 2 \mathrm{H}), 3.22-$ 3.41 (m, 1 H), 3.69 (dd, $J=11.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 78.3\left(\mathrm{CH}_{2}\right), 71.4\left(\mathrm{CH}_{2}\right), 50.8(\mathrm{CH}), 44.1\left(\mathrm{CH}_{2}\right), 28.4(\mathrm{CH})$, $19.2\left(\mathrm{CH}_{3}, 2\right.$ carbons);
HRMS (ESI): m / z calculated for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$131.1067, found 131.1067.

Diol 9

Yield: $2.4 \mathrm{~g}, 42 \%$;
Molecular Formula: $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}_{3}$;
Specific rotation: $[\alpha]^{22}{ }_{\mathrm{D}}=-2.02\left(c\right.$ 2.1, $\left.\mathrm{CHCl}_{3}\right)$;
IR ($\left.\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}\right): v_{\max } 3751,3574,2961,2875,1524,1477,1400,1031$;
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.78-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.64$ (dd, $J=5.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.82(\mathrm{dd}, J=5.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.51$ (m, 2 H), 3.68-3.75 (m, 2 H), 3.82-3.92 (m, 1 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 78.4\left(\mathrm{CH}_{2}\right), 72.5\left(\mathrm{CH}_{2}\right), 70.6(\mathrm{CH}), 64.2\left(\mathrm{CH}_{2}\right), 28.3(\mathrm{CH})$, $19.2\left(\mathrm{CH}_{3}, 2\right.$ carbons);
MS: m/z $171[\mathrm{M}+\mathrm{Na}]^{+}$.

2) (S)-1-(N-benzyl- N-phenylamino)-3-isobutoxypropan-2-ol (14)

To stirred solution of $\mathbf{8}(0.2 \mathrm{~g}, 1.53 \mathrm{mmol})$ in dry $\mathrm{MeOH}(4 \mathrm{~mL})$ was added N-benzyl aniline ($0.281 \mathrm{~g}, 1.53 \mathrm{mmol}$) and the resulting mixture was refluxed for 12 h under N_{2} atmosphere. After completion of the reaction (indicated by TLC), the solvent was evaporated under reduced pressure. Water (15 mL) was added and the mixture was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The organic layers were combined, washed with brine ($2 \times 10 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude residue by column chromatography [silica gel, EtOAc/petroleum ether (8:92)] gave 14 as a colorless oil.
Yield: $0.35 \mathrm{~g}, 73 \%$;
Molecular Formula: $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{2}$;
Specific rotation: $[\alpha]^{22}{ }_{\mathrm{D}}=+4.8\left(c 1, \mathrm{CHCl}_{3}\right)$;
Chiral HPLC: ee $>\mathbf{9 9 \%}$ [The ee of $\mathbf{1 4}$ was determined by chiral HPLC analysis; Chiralcel OD-H (250 x 4.6 mm) column; eluent: n-hexane/ethanol/trifluoroacetic acid (85:15:0.1);
flow rate $0.5 \mathrm{~mL} / \mathrm{min}$; detector: 254 nm ; (S)-isomer $\mathrm{t}_{\mathrm{R}}=9.49 \mathrm{~min}$];
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3687,3394,3022,2403,1600,1216,1116,929$;
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 0.99(\mathrm{dd}, J=6.6,3.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.90-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.57$ (bs, 1 H), $3.29(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{dd}, J=9.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.66$ (dd, $J=15.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.34-7.38(\mathrm{~m}, 2 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl $_{3}$): $\delta 148.5$ (C), 138.4 (C), 129.1 (CH, 2 carbons), 128.5 (CH, 2 carbons), $126.7(\mathrm{CH}), 126.5(\mathrm{CH}, 2$ carbons), $116.7(\mathrm{CH}), 112.6(\mathrm{CH}, 2$ carbons), 78.3
$\left(\mathrm{CH}_{2}\right), 72.4\left(\mathrm{CH}_{2}\right), 68.6(\mathrm{CH}), 54.9\left(\mathrm{CH}_{2}\right), 54.1\left(\mathrm{CH}_{2}\right), 28.3(\mathrm{CH}), 19.31\left(\mathrm{CH}_{3}\right), 19.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 314.2115$, found 314.2112.

3) (R)-1-(N-benzyl- N-phenylamino)-3-isobutoxypropan-2-ol (14a)

The enantiomeric amino alcohol prepared in the same way as $\mathbf{1 4}$ by the reaction of $\mathbf{8 a}$ (0.2 $\mathrm{g}, 1.5 \mathrm{mmol}$) and N-benzyl aniline ($0.281 \mathrm{~g}, 1.53 \mathrm{mmol}$) in dry MeOH to obtain $\mathbf{1 4 a}$ as a colorless oil. The spectroscopic data corresponds with those of $\mathbf{1 4}$.
Yield: $0.33 \mathrm{~g}, 70 \%$;
Specific rotation: $[\alpha]^{22}{ }_{\mathrm{D}}=-4.4\left(c \quad 1, \mathrm{CHCl}_{3}\right)$;
Chiral HPLC: ee $>99 \%$ [The ee of 14a was determined by chiral HPLC analysis; Chiralcel OD-H ($250 \times 4.6 \mathrm{~mm}$) column; eluent: n-hexane/ethanol/TFA (85:15:0.1); flow rate 0.5 $\mathrm{mL} / \mathrm{min}$; detector: $254 \mathrm{~nm} ;(R)$-isomer $\left.\mathrm{t}_{\mathrm{R}}=11.27 \mathrm{~min}\right]$.
4) ((R)-1-(1-(benzyl(phenyl)amino)-3-isobutoxypropan-2-yl)pyrrolidine-2,5-dione (15)

A solution of DIAD ($0.37 \mathrm{~mL}, 1.9 \mathrm{mmol}$) in dry THF (5 mL) was added dropwise to a solution of $14(0.2 \mathrm{~g}, 0.64 \mathrm{mmol})$, succinimide $(0.25 \mathrm{~g}, 2.55 \mathrm{mmol})$ and triphenylphosphine $(0.67 \mathrm{~g}, 2.55 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. Subsequently, the
reaction mixture was refluxed for 12 h . After completion of the reaction (monitored by TLC), the reaction mixture was cooled to room temperature, the solvent was removed under reduced pressure and the residue was purified by column chromatography [silica gel, EtOAc/petroleum ether (12:88)] to afford $\mathbf{1 5}$ as a colorless oil.
Yield: $0.22 \mathrm{~g}, 88 \%$;
Molecular Formula: $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}$;
Specific rotation: $[\alpha]^{22}{ }_{\mathrm{D}}=+46.4$ (c 1.4, CHCl_{3});
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\text {max }} 3397,3023,2403,1708,1660,1515,1217,1116$;
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 0.87(\mathrm{dd}, J=6.8,2.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.82(\mathrm{sp}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$,
2.19-2.25 (m, 4 H), 3.14 (dd, $J=8.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.22 (dd, $J=8.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65$3.71(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{dd}, J=9.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=15.2,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=$ $16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.78(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.19-7.26 (m, 5 H), 7.30-7.34 (m, 2 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 177.7$ (CO, 2 carbons), 148.5 (C), 138.5 (C), 129.1 (CH, 2 carbons), 128.4 (CH, 2 carbons), 126.9 (CH, 2 carbons), $126.8(\mathrm{CH}), 117.3(\mathrm{CH}), 113.5$ $\left(\mathrm{CH}, 2\right.$ carbons), $77.9\left(\mathrm{CH}_{2}\right), 67.8\left(\mathrm{CH}_{2}\right), 54.4\left(\mathrm{CH}_{2}\right), 49.6(\mathrm{CH}), 49.1\left(\mathrm{CH}_{2}\right), 28.3(\mathrm{CH})$, $27.8\left(\mathrm{CH}_{2}, 2\right.$ carbons $), 19.1\left(\mathrm{CH}_{3}, 2\right.$ carbons $)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 395.2329$, found 395.2327.

5) (S)-1-(1-(benzyl(phenyl)amino)-3-isobutoxypropan-2-yl)pyrrolidine-2,5-dione (15a)

The enantiomeric amide derivative prepared in the same way as $\mathbf{1 5}$ by reaction of DIAD $(0.2 \mathrm{~mL}, 1.1 \mathrm{mmol})$, succinimide $(0.14 \mathrm{~g}, 1.4 \mathrm{mmol})$, triphenyl phosphine $(0.37 \mathrm{~g}, 1.4$ $\mathrm{mmol})$ and $\mathbf{1 4 a}(0.11 \mathrm{~g}, 0.35 \mathrm{mmol})$ in dry THF to obtain 15a as a colorless oil. The spectroscopic data corresponds with those of $\mathbf{1 5}$.

Yield: $0.12 \mathrm{~g}, 89 \%$;
Specific rotation: $[\alpha]^{22}{ }_{\mathrm{D}}=-42.8\left(c\right.$ 1.4, $\left.\mathrm{CHCl}_{3}\right)$.

6) (R)-N-benzyl- N-(3-isobutoxy-2-(pyrrolidin-1-yl)propyl)aniline (R-1)

To a stirred solution of $15(0.1 \mathrm{~g}, 0.24 \mathrm{mmol})$ in toluene (2 mL) was added, at $0{ }^{\circ} \mathrm{C}$, a solution of Red-Al (70% in toluene, $0.34 \mathrm{~mL}, 1.2 \mathrm{mmol}$). The resulting mixture was stirred at room temperature for 20 h . The reaction mixture, diluted with ethyl acetate (6 mL), was washed with 1 M aq. NaOH . The aqueous phase was extracted with ethyl acetate (2×10 mL), and the combined organic layers, after being washed with water, were dried over sodium sulfate, filtered, and evaporated in vacuo. The crude product was purified by column chromatography [silica gel, EtOAc/petroleum ether (20:80)] afforded (R)-1 as a pale yellow oil.

Yield: $0.075 \mathrm{~g}, 86 \%$;
Molecular Formula: $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}$;
Specific rotation: $[\alpha]^{22}{ }_{\mathrm{D}}=-5.2(c 1.23, \mathrm{MeOH})$;
Chiral HPLC: ee $>99 \%$ [The ee of $R \mathbf{- 1}$ was determined by chiral HPLC analysis; Conditions: Chiralcel OD-H (250 X 4.6 mm) column; eluent: ethanol/n-hexane/DEA (2:98:0.1); flow rate: $1 \mathrm{~mL} / \mathrm{min}$; detector $254 \mathrm{~nm} ;(R)$-isomer $\mathrm{t}_{\mathrm{R}}=3.90 \mathrm{~min}$];
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3061,3026,2957,2799,1943,1806,1735,1598,1505,1452,1354$, 1294, 1224, 1112, 987, 873, 746, 694;
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 0.95(\mathrm{dd}, J=9.1,6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.77-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.94$ ($\mathrm{sp}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.67-2.88 (m, 5 H), 3.15-3.22 (m, 2 H), 3.55-3.62 (m, 2 H), 3.66-3.81 (m, 2 H), 4.61-4.73 (m, 2 H), $6.69(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.25$ (m, 5 H), 7.26-7.33 (m, 2 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 148.5$ (C), 138.7 (C), 129.1 (CH, 2 carbons), 128.4 (CH, 2 carbons), $128.2(\mathrm{CH}), 126.5(\mathrm{CH}, 2$ carbons), $116.1(\mathrm{CH}), 112.4(\mathrm{CH}, 2$ carbons), 78.3 $\left(\mathrm{CH}_{2}\right), 69.0\left(\mathrm{CH}_{2}\right), 60.9(\mathrm{CH}), 54.6\left(\mathrm{CH}_{2}\right), 51.1\left(\mathrm{CH}_{2}, 3\right.$ carbons $), 28.3(\mathrm{CH}), 23.3\left(\mathrm{CH}_{2}, 2\right.$ carbons), $19.6\left(\mathrm{CH}_{3}\right), 19.5\left(\mathrm{CH}_{3}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 367.2744$, found 367.2740 .
7) (S)-N-benzyl- N-(3-isobutoxy-2-(pyrrolidin-1-yl)propyl)aniline (S-1)

(S)-bepridil prepared in the same way as $R \mathbf{- 1}$ by reaction of Red-Al (70 \% in toluene, 0.34 $\mathrm{mL}, 1.2 \mathrm{mmol})$ and $\mathbf{1 5 a}(0.1 \mathrm{~g}, 0.24 \mathrm{mmol})$ in toluene to obtain $S \mathbf{- 1}$ as a pale yellow oil.

Yield: $0.074 \mathrm{~g}, 84 \%$;
Specific rotation: $[\alpha]^{22}{ }_{\mathrm{D}}=+5.15$ (c 1.23 , MeOH);
Chiral HPLC: ee $>98 \%$ [The ee of $S-\mathbf{1}$ was determined by chiral HPLC analysis; Conditions: Chiralcel OD-H (250 X 4.6 mm) column; eluent: ethanol/n-Hexane/DEA (2:98:0.1); flow rate: $1 \mathrm{~mL} / \mathrm{min}$; detector 254 nm ; (S)-isomer $\mathrm{t}_{\mathrm{R}}=4.32 \mathrm{~min}$; The spectroscopic data corresponds with those of $S \mathbf{- 1}$.

2.2.7. Spectra

2.2.8. Chiral HPLC analysis data

Chiral HPLC analysis of compound 14

Conditions: Chiralcel OD-H (250 X 4.6 mm) column; eluent: n-hexanelethanol/trifluoro acetic acid (85:15:0.1); flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$; detector: 254 nm

Racemic

Chiral

Chiral HPLC analysis of compound 14a

Chiral

Chiral HPLC analysis of compound $\boldsymbol{R} \mathbf{- 1}$

Conditions: Chiralcel OD-H (250 X 4.6 mm) column; eluent: Ethanol/n-Hexane/DEA (2:98:0.1); flow rate: $1 \mathrm{~mL} / \mathrm{min}$; detector 254 nm .

Racemic

Chiral

Chiral HPLC analysis of compound S-1

Chiral

2.2.9. References

1. a) Dolphin, A. C. Br. J. Pharmacol. 2006, 147, S56; b) Godfraind, T. Front Pharmacol 2017, 8, 286.
2. a) Schwartz, A.; Triggle, D. J. Annu. Rev. Med. 1984, 35, 325; b) Janis, R. A.; Triggle, D. J. J. Med. Chem. 1983, 26, 775; c) Elliott, W. J.; Ram, C. V. S. J. Clin. Hypertens. 2011, 13, 687.
3. Ozawa, Y.; Hayashi, K.; Kobori, H. Curr. Hypertens. Rev. 2006, 2, 103.
4. a) van Zwieten, P. A.; Pfaffendorf, M. J. Hypertens. 1993, 11, S3; b) Yedinak, K. C. Am Pharm 1993, NS33, 49; c) Sica, D. A. J Clin Hypertens 2006, 8, 53.
5. a) Katz, A. M. J Clin Hypertens 1986, 2, 28S; b) Zakhari, S. Drugs Exp. Clin. Res. 1986, 12, 817.
6. Opie, L. H. Cardiovasc. Drugs Ther. 1987, 1, 411.
7. a) Li, Y.; Sato, T.; Arita, M. J. Pharmacol. Exp. Ther. 1999, 291, 562; b) Prystowsky, E. N. Am. J. Cardiol. 1985, 55, 59; c) L. M. Hollingshead, D. Faulds, A. Fitton, Drugs 1992, 44, 835-857
8. a) Van Amsterdam, F. T. M.; Zaagsma, J. Naunyn-Schmiedeberg's Arch. Pharmacol. 1988, 337, 213; b) Winslow, E.; Wright, P.; Campbell, J. K.; Marshall, R. J. Eur. J. Pharmacol. 1989, 166, 241.
9. a) Ashburn, T. T.; Thor, K. B. Nat. Rev. Drug Discovery 2004, 3, 673; b) Ekins, S.; Williams, A. J.; Krasowski, M. D.; Freundlich, J. S. Drug Discov Today 2011, 16, 298; c) Vora, P. K.; Somani, R. R.; Jain, M. H. Mini-Rev. Org. Chem. 2016, 13, 363.
10. Johansen, L. M.; DeWald, L. E.; Shoemaker, C. J.; Hoffstrom, B. G.; Rooney, C. M. L.; Stossel, A.; Nelson, E.; Delos, S. E.; Simmons, J. A.; Grenier, J. M.; Pierce, L. T.; Pajouhesh, H.; Lehar, J.; Hensley, L. E.; Glass, P. J.; White, J. M.; Olinger, G. G. Sci. Transl. Med. 2015, 7, 1.
11. Mauvernay, R. Y.; Busch, N.; Moleyre, J.; Monteil, A.; Simond, J. US patent 3962238, 1976.
12. Winslow, E.; Johannes, E. M.; EP 0146155 A1, 1985.
13. Mujahid, Mohammad. (2013). Asymmetric syntheses of pharmaceutically important compounds employing hydrolytic kinetic resolution strategy and development of novel chromone based derivatives as potent antitubercular agents (Doctoral
dissertation). Pune University, India.
14. (a) Dar, A. R.; Aga, M. A.; Kumar, B.; Yousuf, S. K.; Taneja, S. C. Org. Biomol. Chem. 2013, 11, 6195; (b) Tripathi, D.; Pandey, S. K.; Kumar, P. Tetrahedron 2009, 65, 2226.

2.3. SECTION 3

An alternate synthesis of anti-obesity drug lorcaserin

2.3.1. Introduction

Obesity or overweight is considered as one of the most serious chronic and stigmatized diseases and become a significant public health concern globally. ${ }^{1}$ According to the World Health Organization, obesity has been described as 'global epidemic' and the rate of prevalence of obesity in adults and children has increased more than doubled across the world over the past three decades. ${ }^{2}$ According to the new predictions, eight in 10 men and seven in 10 women will be obese or overweight by 2020 . Obesity significantly enhances the risk factor for other disorders such as type 2 diabetes mellitus, hypertension, cardiovascular diseases, stroke, and certain other serious cancer diseases. ${ }^{3}$ The degree of obesity was measured in terms of body mass index (BMI). It is measured by dividing the body mass by height and expressed in kg per square meter units. Generally in adults, overweight defined as BMI of 25.0 to $29.9 \mathrm{~kg} / \mathrm{m}^{2}$, obesity as BMI of $30.0 \mathrm{~kg} / \mathrm{m}^{2}$ or more in adults. ${ }^{4}$

Obesity-medications

In the late 1950's, central nervous acting agents, such as amphetamines and their derivatives were introduced as primary appetite-suppressant drugs used for the treatment of obesity. ${ }^{5}$ Appetite-suppressants phentermine (1959), diethylpropion (1959), benzphetamine (1960) and phendimetrazine (1982) are approved for short-term obesity. ${ }^{6}$ The FDA approved appetite suppressants fenfluramine (1973) and dexfenfluramine (1996), stimulates serotonin release in the brain and remarkably reduces body weight when used alone or in combination therapy with phentermine. However, in 1997 both fenfluramine and dexfenfluramine were discontinued due to the adverse cardiovascular risk, significant side effects, and safety concern. ${ }^{7}$ During the same period, three drugs were approved namely sibutramine (Meridia ${ }^{\circledR}$ and Reductil ${ }^{\circledR}$), rimonabant (Acomplia ${ }^{\circledR}$) and orlistat (Xenical ${ }^{\circledR}$ and Alli ${ }^{(8)}$) in the European market. ${ }^{8}$ Later, rimonabant (2008) and sibutramine (2010) were withdrawn from the market due to adverse side effects. During the past six years, the newly approved anti-obesity drugs are lorcaserin, phentermine/topiramate, naltrexone /bupropion
and liraglutide (Figure 1). ${ }^{9}$

Phentermine/Topiramate ER
(Qsymia ${ }^{\circledR}$)

Figure 1. Currently available weight loss drugs in the market

Lorcaserin

Lorcaserin hydrochloride (formerly known as APD356, Lorqess) chemically (R)-8-chloro-1-methyl-2,3,4,5-tetrahydro-1 H -3-benzazepine hydrochloride, is a novel, potent and selective 5-hydroxytryptamine $\left(5-\mathrm{HT}_{2 \mathrm{C}}\right)$ receptor agonist used in long-term treatment for weight loss developed by Arena pharmaceuticals marketed under the trade name Belviq ${ }^{\circledR}$ (Figure 2). ${ }^{10}$ It was approved by FDA in June 2012. ${ }^{11}$ It helps to promote weight loss in obese and overweighted people associated with diabetes type 2, high blood pressure and dyslipidemia.

Figure 2. Lorcaserin $R-\mathbf{1}$

The mechanism of action of lorcaserin is believed to suppress appetite and promotes feelings of satiety by selectively stimulates the serotonin 2 C receptors present in the hypothalamus. ${ }^{12}$ The in vitro and in vivo studies showed that the affinity of the drug towards the $5-\mathrm{HT}_{2 \mathrm{C}}$ receptors about 104 -fold selectivity compared with the $5-\mathrm{HT}_{2 \mathrm{~B}}$ receptors and 18fold than that of the $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptors. ${ }^{13}$

2.3.2. Review of Literature

The synthetic methods available for the preparation of lorcaserin $R-\mathbf{1}$ are reviewed. These involve chemical resolution methods, chiral pool approaches, and enantioselective protocols. Some of the important reports of these syntheses are described below.

Smith's approach (2003) ${ }^{14}$

Smith and co-workers reported the first synthetic process for the preparation of rac1orcaserin rac-1. Thus, commercially available 2-(4-chlorophenyl)ethanamine $\mathbf{2}$ on treatment with trifluoroacetic anhydride afforded the trifluoroacetamide 3, which was further iodination at aromatic ring gave iodinated compound 4 . The amide intermediate $\mathbf{4}$ on N-allylation followed by palladium catalyzed intramolecular Heck reaction gave exomethylene derivative 6. Finally, hydrogenation followed by deprotection afforded the raclorcaserin rac-1 (Scheme 1).

Scheme 1. Reagents and conditions: (i) $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (ii) Iodochloride, MeOH or bis(pyridine)iodonium tetrafluoroborate, $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iii) allylbromide, $\mathrm{NaOH}, \mathrm{K}_{2} \mathrm{CO}_{3}, n-\mathrm{Bu}_{4} \mathrm{NBr}$, toluene- $\mathrm{H}_{2} \mathrm{O}$; (iv) $\mathrm{PPh}_{3}, \mathrm{Pd}(\mathrm{OAc})_{2}, n-\mathrm{Bu}_{4} \mathrm{NBr}, \mathrm{CH}_{3} \mathrm{COOK}$,

DMF; (v) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, ethanol; (vi) $\mathrm{NaOH}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$

In 2005, the same research group have reported the chemical resolution method for the synthesis of optically pure lorcaserin hydrochloride $R-\mathbf{1}$. HCl employing intramolecular Friedel-Craft's alkylation as a key step (Scheme 2). Thus, acylation of 2-(4-chlorophenyl)ethanamine 2 with 2-chloropropionyl chloride gave the amide intermediate $\mathbf{8}$, which was further cyclized in the presence of anhydrous aluminium chloride at $150-200{ }^{\circ} \mathrm{C}$ gave the cyclized amide precursor 9 . The reduction of amide 9 in the presence of BH_{3}-ether afforded the rac-lorcaserin rac-1. Finally, chemical resolution of racemate compound rac-1 with L-(+)-tartaric acid followed by treatment with sodium hydroxide gave $R-\mathbf{1} . \mathrm{HCl}$.

Scheme 2. Reagents and conditions: (i) 2-chloropropionyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{3} \mathrm{CN}$; (ii) $\mathrm{AlCl}_{3}, 150-200{ }^{\circ} \mathrm{C}$; (iii) BH_{3}, ether; (iv) a) L-(+)-tartaric acid, b) NaOH , c) 1 M HCl in ether.

Fritch's approach (2008) ${ }^{15}$

In 2008, Fritch and co-workers also reported chemical resolution method for the synthesis of lorcaserin hydrochloride $R \mathbf{- 1} \mathbf{H C l}$ starting from 2-(4-chlorophenyl)acetic acid 10 (Scheme 3). Accordingly, the coupling of compound 10 with 1-amino2-propanol in the presence of coupling agent 3,4,5-fluorobenzeneboronic acid afforded the amide derivative 11. The amide derivative $\mathbf{1 1}$ was transformed to its chloro derivative $\mathbf{1 3}$ by amide reduction followed by treatment with thionyl chloride. Further, chloro derivative $\mathbf{1 3}$ was subjected to intramolecular Friedel-Craft's alkylation with anhydrous aluminium chloride gave raclorcaserin rac-1. Finally, chemical resolution of rac-lorcaserin rac-1 using L-(+)-tartaric acid as a chiral resolving agent afforded the optically pure $R-1 . \mathrm{HCl}$.

Scheme 3. Reagents and conditions: (i) 1-aminopropan-2-ol, 3,4,5-fluorobenzene boronic acid; (ii) $\mathrm{BH}_{3} / \mathrm{THF}$; (iii) SOCl_{2}, DMA; (iv) $\mathrm{AlCl}_{3}, 1,2$-dichlorobenzene; (v) a) L-(+)-tartaric acid, b) NaOH , HCl -saturated EtOAc.

Ivana's approach (2014) ${ }^{16}$

Ivana and co-workers described the stereoselective synthesis of optically pure R -

1. HCl starting from homochiral (R)-1-aminopropan-2-ol 14 (Scheme 4). At first,

Scheme 4. Reagents and conditions: (i) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeOH}, 60^{\circ} \mathrm{C}, 30 \mathrm{~min}, 97 \%$; (ii) a) SOCl_{2}, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 3 \mathrm{~h}, 90 \%$; (iii) aq. NaIO_{4}, cat. $\mathrm{RuO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to rt, 4 h , 80%; (iv) 1-chloro-3-iodo-benzene, $i \mathrm{PrMgCl}, \mathrm{Et}_{2} \mathrm{O}$, cat. $\mathrm{CuI},-10^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 12 \mathrm{~h}, 86 \%$; (v) $6 \mathrm{M} \mathrm{HCl}, \mathrm{THF}, 4{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 78 \%$; (vi) chloroacetylchloride, $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 10^{\circ} \mathrm{C}, 3 \mathrm{~h}$, 95%; (vii) $\mathrm{BH}_{3} / \mathrm{THF}, \mathrm{HCl}, \mathrm{Et}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 15 \mathrm{~h}, 76 \%$; (viii) $\mathrm{AlCl}_{3}, 150^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

Boc-protection of homochiral (R)-1-aminopropan-2-ol 14, followed by treatment with thionyl chloride and further oxidation with $\mathrm{NaIO}_{4} /$ cat. RuO_{2} afforded oxathiazolidine derivative 17. Subsequently, the ring opening of oxathiazolidine derivative 17 with 1-chloro-3-iodo-benzene in i - PrMgCl gave amine derivative 18 in 86% yield. The deprotection of amine $\mathbf{1 8}$ followed by N -acetylation provided the acetamide derivative $\mathbf{2 0}$. Reduction of amide functionality of compound $\mathbf{2 0}$ followed by intramolecular FriedelCraft's alkylation in the presence of aluminium chloride at $150^{\circ} \mathrm{C}$ furnished $\mathrm{R} \mathbf{- 1} . \mathrm{HCl}$.

Yugen's approach (2015) ${ }^{17}$

Yugen and co-workers also described chemical resolution method for the preparation of lorcaserin hydrochloride $R \mathbf{- 1} \mathbf{H C l}$, very similar to Smith's method (Scheme 5). Thus, Boc protection followed by N-allylation of 2-(4-chlorophenyl)ethanamine 2 afforded the key intermediate N-(4-chlorophenethyl)prop-2-en-1-amine 23. Deprotection followed by intramolecular Friedel-Craft's alkylation gave rac-lorcaserin rac-1 in 92%. Finally, $r a c$-lorcaserin $r a c-\mathbf{1}$ was resolved with L-(+)-tartaric acid gave $R \mathbf{- 1 . H C l}$.

Scheme 5. Reagents and conditions: (i) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, cat. DMAP, $0{ }^{\circ} \mathrm{C}$ to rt, $2 \mathrm{~h}, 95 \%$; (ii) allylbromide, $\mathrm{K}_{2} \mathrm{CO}_{3}$, toluene, $\mathrm{KOH}, \mathrm{TBAI}, 8{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}, 96 \%$; (iii) $\mathrm{HCl}, \mathrm{EtOAc}, \mathrm{P}^{\mathrm{H}} 2$, rt, 89%; (iv) $\mathrm{AlCl}_{3}, 1,2$-dichlorobenzene, $110{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 92 \%$; (v) L-(+)-tartaric acid, $\mathrm{H}_{2} \mathrm{O}, 50^{\circ} \mathrm{C}$, acetone, $10{ }^{\circ} \mathrm{C}, 33 \%$ (vi) a) $20 \% \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{P}^{\mathrm{H}} 8-9$, cyclohexane, b) HCl-saturated EtOAc, $\mathrm{EtOH}, \mathrm{P}^{\mathrm{H}} 2,5 \mathrm{~h}, \mathrm{rt}, 91 \%$.

2.3.3. Present work

Objective

As discussed above lorcaserin has attracted a great deal of attention due to its unique weight-lowering action. As most of the reported methods utilize chemical resolution strategy, still there is an avenue for developing an asymmetric synthetic route to this valuable molecule. In this section, the development of the facile synthesis of lorcaserin $R \mathbf{- 1}$ starting from readily available starting materials has been discussed. The retrosynthetic analysis of $R-1$ is outlined in Scheme 6.

Scheme 6. Retrosynthetic analysis of lorcaserin $R-1$

Retrosynthetic analysis of lorcaserin $R \mathbf{- 1}$ reveals that protected chiral amino alcohol derivative 29 could serve as a key intermediate for the synthesis. The protected amino alcohol derivative 29 could be achieved by the regioselective ring opening of (S)-propylene oxide 28 with an appropriate amine derivative 27 . The key intermediate 29 can be transformed into the target molecule $R \mathbf{- 1}$ by halogenation followed by intramolecular Friedel-Craft's alkylation and N -deprotection sequences.

2.3.4. Results and Discussion

Synthetic strategy followed for the synthesis of lorcaserin $R \mathbf{- 1}$ is outlined in Scheme 7. Accordingly, synthesis commenced with the readily available starting material 2-(4-chlorophenyl)ethanamine 2, which on protection using 2-nitrobenzenesulfonylchloride

26 in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and triethylamine at $0{ }^{\circ} \mathrm{C}$ to room temperature for 12 h gave nosyl protected secondary amine derivative 27 in 96% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 27, signals corresponding to the nosyl group resonated at $\delta 7.69-7.75(\mathrm{~m}), 7.83(\mathrm{~d})$, and $\delta 8.04$ (d). Subsequently, the regioselective ring opening of (S)-propylene oxide 28 with nosylamine 27 and a catalytic amount of lithium bromide in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under reflux condition for 12 h afforded the key intermediate protected amino alcohol derivative 29. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 9}$, the resonance signals corresponding to methyl and methine protons resonated at $\delta 1.20$ (d), 3.99-4.06 (m) and in the ${ }^{13} \mathrm{C}$ NMR spectrum, signals corresponds to methine and methyl carbon resonated at $\delta 20.8 \mathrm{ppm}$ and 66.0 ppm respectively.

Scheme 7. Reagents and conditions: (i) 2-nitrobenzene sulfonylchloride 26, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0$ ${ }^{\circ} \mathrm{C}$-rt, $12 \mathrm{~h}, 96 \%$; (ii) (S)-propylene oxide 28, cat. LiBr, DCM, reflux, $12 \mathrm{~h}, 89 \%$.

Next, we turned our attention to convert the secondary - OH into a halo compound then try for cyclization. Accordingly, amino alcohol 29 was converted into its corresponding halo derivatives $\mathbf{3 0}$ and $\mathbf{3 1}$ by treating with thionyl chloride for chloro compound $\mathbf{3 0}$ and with $\mathrm{CBr}_{4} / \mathrm{PPh}_{3}$ (Appel reaction) for bromo compound 31 (Scheme 8). Subsequently, both the halo derivatives $\mathbf{3 0}$ and $\mathbf{3 1}$ were subjected to intramolecular Friedel-Crafts's alkylation with anhydrous aluminium chloride in chlorobenzene at room temperature for 12 h afforded the cyclized product 32. It has been observed that chloro compound $\mathbf{3 0}$ produced cyclized

29

Scheme 8. Reagents and conditions: (iii) SOCl_{2}, pyridine, $50{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 79 \%$ (30); CBr_{4}, $\mathrm{PPh}_{3}, \mathrm{DCM}, 5{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 98 \%$ (31); (iv) AlCl_{3}, chlorobenzene, rt, 12 h , (from 30, 45\%, 74% ee), (from 31, 33\%, 76\% ee); (v) thiophenol, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $2 \mathrm{~h}, \mathrm{rt}, 71 \%$.
product 32 in 45% yield with 74% enantiopurity. Similarly, bromo compound 31 gave compound 32 with 33% yield and 76% enantiopurity. Finally, compound $\mathbf{3 2}$ was denosylated by treating with thiophenol and potassium carbonate in anhydrous DMF at room temperature for 2 h afforded lorcaserin $R \mathbf{- 1}$. The structures of all the synthesized compounds were confirmed by its ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and HRMS analysis.

2.3.5. Conclusion

In conclusion, developed a new and alternative synthesis of anti-obesity agent lorcaserin, starting from readily available starting materials. Although expected enantiopurity couldn't achieved in this method, efforts are in progress to achieve high enantiopurity by modifying reaction parameters.

2.3.6. Experimental Procedure

1) N -(4-chlorophenethyl)-2-nitrobenzenesulfonamide (27)

To a solution of 4-chlorophenethylamine $2(1 \mathrm{~g}, 6.5 \mathrm{mmol})$ in dry dichloromethane (10 mL) and triethylamine ($1.2 \mathrm{~mL}, 8.4 \mathrm{mmol}$) was added 2-nitrobenzenesulfonylchloride (1.2 gm , $5.2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred at room temperature for 12 h . Upon completion of the reaction (TLC), the reaction mixture was diluted with water (25 mL) and extracted with DCM ($3 \times 15 \mathrm{~mL}$). The combined organic layer was washed with brine (2 x 10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography packed with silica gel using EtOAc/petroleum ether (15:85) afforded nosylated product 27 as a pale yellow solid.

Yield: 2.1 gm, 96 \% yield;
Molecular Formula: $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}$;
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 2.82(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.35$
(apparent $\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.75$
(m, 2 H), 7.83 (apparent d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.04 (apparent d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 147.7$ (C), 135.9 (C), 133.8 (C), $133.4(\mathrm{CH}), 132.8(\mathrm{CH})$, $132.7(\mathrm{C}), 130.7(\mathrm{CH}), 130.0(\mathrm{CH}, 2$ carbons), $128.7(\mathrm{CH}, 2$ carbons), $125.4(\mathrm{CH}), 44.9$ $\left(\mathrm{CH}_{2}\right), 35.4\left(\mathrm{CH}_{2}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{ClS}[\mathrm{M}+\mathrm{Na}]^{+}$363.0177, found 363.0170.
2) (S)-N-(4-chlorophenethyl)- N-(2-hydroxypropyl)-2-nitrobenzenesulfonamide (29)

To a solution of (S)-propylene oxide $28(4.1 \mathrm{~mL}, 51.61 \mathrm{mmol})$ in dry dichloromethane (25 mL) were added catalytic amount of lithium bromide ($5 \mathrm{~mol} \%$) and a solution of nosylated compound 27 ($2.0 \mathrm{gm}, 5.88 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. The resulting reaction mixture was refluxed (under cold water circulation) for 12 h . Upon completion of the reaction (TLC), the reaction mixture was diluted with water $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic layer was washed with brine ($2 \times 10 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatography packed with silica gel using EtOAc/petroleum ether (30:70) furnished alcohol product 29 as a pale yellow semi-solid.

Yield: $2.1 \mathrm{~g}, 89$ \%;
Molecular Formula: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{~S}$;
Specific rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=+2.233\left(c 1.2, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 1.20(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.83-2.95(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~d}, J=$ $15.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=15.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.69(\mathrm{~m}, 1 \mathrm{H})$, 3.99-4.06 (m, 1 H), 7.09 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.20(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.73(\mathrm{~m}, 3 \mathrm{H})$, 7.98 (dd, $J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 147.9$ (C), 136.4 (C), 133.6 (CH), 133.1 (C), 132.4 (C), $131.7(\mathrm{CH}), 130.9(\mathrm{CH}), 130.1(\mathrm{CH}, 2$ carbons), $128.7(\mathrm{CH}, 2$ carbons), $124.2(\mathrm{CH}), 66.0$ $(\mathrm{CH}), 54.8\left(\mathrm{CH}_{2}\right), 50.1\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{2}\right), 20.8\left(\mathrm{CH}_{3}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{ClS}[\mathrm{M}+\mathrm{Na}]^{+} 421.0595$, found 421.0589 .

3) (R)-N-(4-chlorophenethyl)- N -(2-chloropropyl)-2-nitrobenzenesulfonamide (30)

To the stirred solution of alcohol $29(1.2 \mathrm{~g}, 3.01 \mathrm{mmol})$ in dry pyridine $(10 \mathrm{~mL})$ was added freshly distilled thionyl chloride ($0.7 \mathrm{~mL}, 6.03 \mathrm{mmol}$) drop-wise at room temperature. After completion of the addition, the reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction (TLC), the reaction mixture was cooled to room temperature and diluted with water (20 mL) which was extracted with ethyl acetate (3 x 25 mL). The collected organic phase was washed with diluted $\mathrm{HCl}(2 \times 20 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product, which was purified by column chromatography packed with silica gel using EtOAc/petroleum ether (15:85) gave chloro product 30 as pale yellow semi-solid.

Yield: $0.97 \mathrm{~g}, 79 \%$;
Molecular Formula: $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$;
Specific rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=-11.184\left(c 1.8, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 1.54(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.79-2.91(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.59(\mathrm{~m}$,
$2 \mathrm{H}), 3.63-3.74(\mathrm{~m}, 2 \mathrm{H}), 4.17-4.25(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 2 H), 7.61-7.74 (m, 3 H), 7.95 (apparent d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 147.8$ (C), 136.1 (C), 133.7 (CH), 132.9 (C), 132.4 (C), $131.8(\mathrm{CH}), 130.7(\mathrm{CH}), 130.0(\mathrm{CH}, 2$ carbons), $128.6(\mathrm{CH}, 2$ carbons), $124.3(\mathrm{CH}), 55.3$ $(\mathrm{CH}), 54.9\left(\mathrm{CH}_{2}\right), 49.9\left(\mathrm{CH}_{2}\right), 33.8\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{3}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 439.0257$, found 439.0250.

4) (R)-N-(2-bromopropyl)- N-(4-chlorophenethyl)-2-nitrobenzenesulfonamide (31)

To a stirred solution of alcohol $29(0.5 \mathrm{~g}, 1.24 \mathrm{mmol})$ and in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added recrystallized $\mathrm{PPh}_{3}(1.0 \mathrm{~g}, 3.72 \mathrm{mmol})$ at room temperature under inert atmosphere. After stirred for 5 minutes, to the above reaction mixture recrystallized $\mathrm{CBr}_{4}(0.84 \mathrm{~g}, 2.50 \mathrm{mmol})$ was added. The resulting mixture was refluxed for 8 h . After completion of the reaction
(TLC), the reaction mixture was quenched by addition of water (10 mL), and then neutralized with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The reaction mixture was filtered through a pad of Celite and washed with ethyl acetate. The resulting filtrate was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$) and water ($3 \times 5 \mathrm{~mL}$). The collected organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum and purified by column chromatography using EtOAc/petroleum ether (15:85) afforded the bromo product 31 as a colorless oil.

Yield: $0.56 \mathrm{~g}, 98 \%$;
Molecular Formula: $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrClN}_{2} \mathrm{O}_{4} \mathrm{~S}$;
Specific rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=-27.132\left(c\right.$ 2.3, $\left.\mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 1.72(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.79-2.91(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.59(\mathrm{~m}$, $1 \mathrm{H}), 3.63-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.82(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (apparent d, $J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.19 (apparent d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.63-7.75 (m, 3 H), 7.98 (dd, $J=7.8,1.4$ $\mathrm{Hz}, 1 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 147.9$ (C), 136.0 (C), 133.7 (CH), 133.0 (C), 132.6 (C), $131.8(\mathrm{CH}), 130.9(\mathrm{CH}), 130.1(\mathrm{CH}, 2$ carbons), $128.7(\mathrm{CH}, 2$ carbons), $124.4(\mathrm{CH}), 55.4$ $\left(\mathrm{CH}_{2}\right), 49.8\left(\mathrm{CH}_{2}\right), 46.0(\mathrm{CH}), 33.8\left(\mathrm{CH}_{2}\right), 23.3\left(\mathrm{CH}_{3}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{BrClS}[\mathrm{M}+\mathrm{Na}]^{+} 484.9731$, found 484.9719.
5) (R)-8-chloro-1-methyl-3-((2-nitrophenyl)sulfonyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepine (32)

To a stirred solution of $\mathbf{3 0}(0.5 \mathrm{~g}, 1.20 \mathrm{mmol})$ or $\mathbf{3 1}(0.5 \mathrm{~g}, 1.08 \mathrm{mmol})$ in anhydrous chlorobenzene (6 mL) was added anhydrous $\mathrm{AlCl}_{3}(0.83 \mathrm{~g}, 6.0 \mathrm{mmol})$, under an inert atmosphere. The resulting reaction mixture was stirred at room temperature for 12 h . After completion of reaction (TLC), the reaction mixture was quenched by slow addition of water $(15 \mathrm{~mL})$, and then neutralized with saturated aqueous NaHCO_{3}. The reaction mixture was filtered through a pad of Celite and washed with ethyl acetate. The resulting filtrate was partitioned between ethyl acetate ($3 \times 15 \mathrm{~mL}$) and water ($3 \times 10 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum and purified by
column chromatography using EtOAc/petroleum ether (15:85) gave cyclized product 32 as a colorless liquid.

Yield: ($0.21 \mathrm{~g}, 45 \%$ from 30); ($0.14 \mathrm{~g}, 33 \%$ from 31);
Molecular Formula: $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}$;
Specific rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=-9.120\left(c \quad 0.3, \mathrm{CHCl}_{3}\right)$;
Chiral HPLC: ee > 74\% (from 30) [The ee of $\mathbf{3 2}$ was determined by chiral HPLC analysis;
Kromasil OJ-H ($250 \times 4.6 \mathrm{~mm}$) column; eluent: n-hexane/isopropanol (70:30); flow rate:
$1.0 \mathrm{~mL} / \mathrm{min}$; detector: $222 \mathrm{~nm}\left[(S)\right.$-isomer $\mathrm{t}_{\mathrm{R}}=39.667$ (minor); (R)-isomer $\mathrm{t}_{\mathrm{R}}=44.967$ (major)]; ee > 76% (from 31) [The ee of 32 was determined by chiral HPLC analysis; Kromasil OJ-H ($250 \times 4.6 \mathrm{~mm}$) column; eluent: n-hexane/isopropanol (70:30); flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; detector: $222 \mathrm{~nm}\left[(S)\right.$-isomer $\mathrm{t}_{\mathrm{R}}=40.442$ (minor); (R)-isomer $\mathrm{t}_{\mathrm{R}}=45.667$ (major)];
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 1.39(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.95-3.01(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.19$ (m, 2 H), 3.36-3.55 (m, 4 H$), 7.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.71(\mathrm{~m}, 3$ H), 7.95-7.98 (m, 1 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 147.9$ (C), 145.8 (C), 137.5 (C), $133.4(\mathrm{CH}), 133.0$ (C), $132.5(\mathrm{C}), 131.6(\mathrm{CH}), 131.5(\mathrm{CH}), 130.8(\mathrm{CH}), 127.5(\mathrm{CH}), 126.5(\mathrm{CH}), 124.1(\mathrm{CH}), 53.4$ $\left(\mathrm{CH}_{2}\right), 47.7\left(\mathrm{CH}_{2}\right), 40.5(\mathrm{CH}), 36.3\left(\mathrm{CH}_{2}\right), 17.3\left(\mathrm{CH}_{3}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{ClS}[\mathrm{M}+\mathrm{Na}]^{+} 403.0490$, found 403.0484 .

6) (R)-8-chloro-1-methyl-2,3,4,5-tetrahydro-1 \boldsymbol{H}-benzo[d]azepine (R-1)

To a stirred solution of $\mathbf{3 2}(0.15 \mathrm{~g}, 0.39 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.16 \mathrm{~g}, 1.18 \mathrm{mmol})$ in dry DMF $(5 \mathrm{~mL})$ was added drop-wise thiophenol $(0.05 \mathrm{~mL}, 0.47 \mathrm{mmol})$ at room temperature. The resulting mixture was stirred at room temperature for 2 h . After completion of reaction (TLC), the reaction mixture was diluted with water (8 mL) and washed with cold aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The reaction mixture was extracted with ethyl acetate (3 x 10 mL). The collected organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, distilled off under reduced pressure and the crude residue was then purified over column chromatography (methanol/EtOAc 20:80) afforded target product $\boldsymbol{R} \mathbf{- 1}$.

Yield: $0.055 \mathrm{~g}, 71 \%$;
Molecular Formula: $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClN}$;
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 1.32(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.00(\mathrm{bs}, 1 \mathrm{H}), 2.61-2.74(\mathrm{~m}, 1$
H), 2.85-3.10 (m, 6 H$), 7.00(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 147.4$ (C), 139.7 (C), 131.8 (C), 130.9 (CH), 126.6 (CH), $125.7(\mathrm{CH}), 54.6\left(\mathrm{CH}_{2}\right), 47.8\left(\mathrm{CH}_{2}\right), 41.6(\mathrm{CH}), 39.0\left(\mathrm{CH}_{2}\right), 17.5\left(\mathrm{CH}_{3}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NCl}[\mathrm{M}+\mathrm{H}]^{+} 196.0888$, found 196.0888.

2.3.7. Spectra

OH-C.ESP

2.3.8. Chiral HPLC analysis data

Chiral HPLC analysis of Compound 32

Conditions: Chiralcel OJ-H (250 X 4.6 mm) column; eluent: n-hexane/isopropanol (70:30); flow rate: $1 \mathrm{~mL} / \mathrm{min}$; detector 220 nm .

Racemic

Chiral Sample Chromatograph (from compound 30)

Chiral Sample Chromatograph (from compound 31)

2.3.9. References

1. (a) Srivastava, G.; Apovian, C. M. Nat. Rev. Endocrinol. 2018, 14, 12; (b) Chan, R. S. M.; Woo, J. Int J Environ Res Public Health 2010, 7, 765.
2. World Health Organization Fact sheet: obesity and overweight. Available online http://www.who.int/mediacentre/factsheets/fs311/en/.
3. Colon-Gonzalez, F.; Kim, G. W.; Lin, J. E.; Valentino, M. A.; Waldman, S. A. Mol. Aspects Med. 2013, 34, 71.
4. Anonymous World Health Organ Tech Rep Ser 2000, 894, i.
5. Heal, D. J.; Smith, S. L.; Gosden, J.; Nutt, D. J. J Psychopharmacol 2013, 27, 479.
6. Hsu, Y.-W.; Chu, D.-C.; Ku, P.-W.; Liou, T.-H.; Chou, P. J. Exp. Clin. Med. 2010, 2, 118.
7. Connolly, H. M.; Crary, J. L.; McGoon, M. D.; Hensrud, D. D.; Edwards, B. S.; Edwards, W. D.; Schaff, H. V. N. Engl. J. Med. 1997, 337, 581.
8. Padwal, R. S.; Majumdar, S. R. Lancet 2007, 369, 71.
9. (a) Haslam, D. Int J Clin Pract 2016, 70, 206; (b) Ioannides-Demos, L. L.; Piccenna, L.; McNeil, J. J. J. Obes. 2011, 179674.
10. Hopkins, C. R. ACS Chem. Neurosci. 2010, 1, 718.
11. Nikolic, D.; Toth, P. P.; Ferlita, A.; Di Bartolo, V.; Montalto, G.; Banach, M.; Rizzo, M. Clin. Lipidol. 2014, 9, 179.
12. Higgins, G. A.; Higgins, G. A.; Zeeb, F. D.; Fletcher, P. J.; Zeeb, F. D.; Fletcher, P. J. J Psychopharmacol 2017, 31, 1403.
13. Thomsen, W. J.; Grottick, A. J.; Menzaghi, F.; Reyes-Saldana, H.; Espitia, S.; Yuskin, D.; Whelan, K.; Martin, M.; Morgan, M.; Chen, W.; Al-Shamma, H.; Smith, B.; Chalmers, D.; Behan, D. J. Pharmacol. Exp. Ther. 2008, 325, 577.
14. (a) Smith, J.; Smith, B. U.S. Patent 2003225057; (b) Smith, B.; Smith, J. U.S. Patent 6953787, 2005
15. Gharbaoui, T.; Tandel, S. K.; Ma, Y.-A.; Carlos, M.; Fritch, J. R. PCT Int. Appl., WO 2008070111A2, 2008.
16. Gaj, S.; Cluzeau, J.; Richter, F.; Laus, G.; Gazic Smilovic, I. PCT Int. Appl., WO2014173928A1, 2014.
17. Zhu, Q.; Wang, J.; Bian, X.; Zhang, L.; Wei, P.; Xu, Y. Org. Process Res. Dev. 2015, 19, 1263.

CHAPTER 3

Development of novel biologically active compounds based on benzopyran-4-one motif

3.1. SECTION 1

Synthesis, biological evaluation and molecular modeling studies of novel triazole-chromone conjugates as potent anti-TB agents

3.1.1. Introduction

Tuberculosis is a major infectious disease caused by pathogenic bacterial species Mycobacterium tuberculosis (Mtb) and it is a leading global threat to public health. ${ }^{1}$ In 2017 alone, according to World health organization (WHO) report 10.4 million new cases and 1.7 million deaths, of which developing countries showed 95% of the share. ${ }^{2}$ Globally, 45% of the total estimated TB cases from South Asian countries, in which the leading number of TB cases from India followed by Indonesia, China, Bangladesh, Philippines, and Pakistan. A recent study reveals that a large number of people with estimated TB cases in India is two to three times higher than previous estimates. ${ }^{3}$ Furthermore, the emergence of a drugresistant microorganism, especially multidrug-resistant (MDR-TB) one along with lethal combination of TB and HIV infection and extensively drug-resistant TB (XDR-TB) strains makes this disease even more challenging. ${ }^{4}$ MDR-TB strains of M. tuberculosis that resists to two key potent anti-TB drugs rifampicin and isoniazid, with or without resistance to other first and second line TB drugs. XDR-TB is defined as MDR-TB with additional resistance to any fluoroquinolone and any one of the three-second line injectable agents. ${ }^{5}$ The rate of mortality is more in XDR-TB than MDR-TB due to the limited number of effective treatments. In the past few decades, only a few drugs have been approved by the FDA to treat TB. ${ }^{6}$ Therefore, the discovery and development of novel anti-TB agents with new chemotypes, acting on novel drug targets is an important task for infectious diseases research program. ${ }^{7}$

Nature has always been proved to be an important source of new drugs and they are recognized as evolutionarily selected and biologically pre-validated starting point for any successful drug discovery. ${ }^{8}$ Additionally, natural products have been extensively utilized to elucidate complex cellular mechanisms, including signal transduction and cell cycle regulation leading to the identification of important targets for therapeutic intervention. ${ }^{9}$ As a result of recent advances in biology, there is now an increased demand for new natural
product-like small molecules. ${ }^{10}$ Despite the increased need for new natural products, their isolation and structure elucidation still remains a highly laborious and time-consuming process. ${ }^{11}$ Therefore, synthesis of natural products inspired compound collections and their biological evaluation is a highly promising strategy for the identification of unique biologically relevant compound classes.

In this context, Chromones (4H-chromen-4-one, 4H-1-benzopyran-4-one) are ubiquitous structures, widely distributed naturally occurring compounds of plant origin. ${ }^{12}$ They are oxygen-containing benzo-annulated heterocycles with oxa-pyran ring and it is the core backbone of flavonoid (2-aryl substituted chromones) family, such as flavones, isoflavones, and flavonols (Figure 1). ${ }^{13}$ Due to their abundance in nature and their low mammalian toxicity, naturally occurring and synthetic chromone analogues exhibit a vast range of pharmacological properties like antioxidant, anti-inflammatory, antiviral, anticancer, anti-HIV, immunostimulators and anti-bacterial. ${ }^{14}$ Some pharmaceutically important compounds possessing chromone framework are presented in Figure 2.

Chromone

Flavone

Flavonol

Isoflavone

Figure 1. Chromone and flavonoid scaffolds.

Interestingly, many natural and natural product inspired chromone analogs exhibit significant antimycobacterial activity (Figure 3). ${ }^{15}$ Recently, several research groups successfully demonstrated their mode of action by identifying their molecular targets. ${ }^{16} \mathrm{~A}$ good safety profile, the possibility of oral administration, ${ }^{17}$ and easy synthesis are the major factors contributing to the growing interest in exploring the pharmacological activities of chromones.

Khellin diuretic, vitiligo

Cromolyn anti-inflammatory

LY294002 cyototoxic agent

Psorospermin natural antitumor antibiotic

Quercetin Antioxidant

Flavoxate anticholinergic

Figure 2. Chromone based compounds used as clinical agents

Perforamones A

Peucenin-7-methyl ether

Lachnones B

O-Methylalloptaeroxylin

Bauhinoxepins A

Figure 3. Some naturally occurring chromone scaffolds possessing antimycobacterial activity

3.1.2. Present work

Objective

Figure 4. Design strategy for chromone embedded [1,2,3]-triazole as an antitubercular agent

In view of our continuing interest in the chemistry of privileged chromone motif, in particular, the design and synthesis of novel natural products like small molecules based on the chromone motif for various biological applications, in this section, design and synthesis of a series of novel chromone embedded 1,4 disubstituted [1,2,3]-triazole analogues and their biological evaluation against M. Tuberculosis H37Rv has been described (Figure 4). The interest in incorporation of [1,2,3]-triazole moiety stems from the advent of click chemistry protocol which has been used in various applications including drug discovery process. ${ }^{18}$ In addition, triazole embedded heterocyclic frameworks exhibit a plethora of biological activities, especially anti-mycobacterial activity (Figure 5). ${ }^{19}$

Figure 5. Representative [1,2,3]-triazole analogues possessing anti-mycobacterial activity

3.1.3. Results and Discussion

Chemistry

A four-step synthetic strategy was followed for the preparation of novel chromone embedded [1,2,3]-triazoles 6a-t is outlined in Scheme 1. At first, 3-formyl chromone 2 was synthesized by formylation of O-hydroxy acetophenone 1 using Vilsmeier-Haack reagent (POCl_{3} in DMF) at $55^{\circ} \mathrm{C}$ for 5 h in 75% yield. In the ${ }^{1} \mathrm{H}$ NMR of 2, the signals appeared for newly formed - CHO was discernible at $\delta 10.4 \mathrm{ppm}$ while in the ${ }^{13} \mathrm{C}$ NMR, the resonance signals for characteristic carbonyl carbon was observed at $\delta 188.6 \mathrm{ppm}$ confirmed the formation of aldehyde derivative $\mathbf{2}$.

Scheme 1. Reagents and conditions: (i) $\mathrm{DMF} / \mathrm{POCl}_{3}, 55{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}, 75 \%$; (ii) basic $\mathrm{Al}_{2} \mathrm{O}_{3}$, ${ }^{i} \mathrm{PrOH}, 75{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 82 \%$; (iii) a) $\mathrm{MsCl}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 71 \%$; b) NaN_{3}, DMF, 50 ${ }^{\circ} \mathrm{C}, 5 \mathrm{~h}, 93 \%$; (iv) alkyl/aryl terminal alkynes 5a-t, sodium ascorbate, $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$, t $\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1, \mathrm{v} / \mathrm{v}), 6{ }^{\circ} \mathrm{C}, 1-3 \mathrm{~h}$.

Entry	R	Yield of 6 (\%)	Entry	R	Yield of 6 (\%)
6 a	$\mathrm{C}_{6} \mathrm{H}_{5}$	90	6k	Napthyl-	93
6b	(4-Me) $\mathrm{C}_{6} \mathrm{H}_{4}$	82	61	$\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$	60
6 c	$\left(4-{ }^{n} \mathrm{Et}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	82	6 m	${ }^{n} \mathrm{C}_{4} \mathrm{H}_{9}$	93
6 d	$\left(4-{ }^{n} \mathrm{Pr}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	84	6 n	${ }^{n} \mathrm{C}_{6} \mathrm{H}_{13}$	82
6 e	$\left(4{ }^{-n} \mathrm{C}_{5} \mathrm{H}_{11}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	88	60	Cyclopentyl-	86
6 f	(4-'Bu) $\mathrm{C}_{6} \mathrm{H}_{4}$	96	6p	Cyclohexyl-	80
6 g	(4-OMe) $\mathrm{C}_{6} \mathrm{H}_{5}$	60	69	(Cyclohexyl) $\mathrm{CH}_{2}{ }^{-}$	88
6 h	$\left(4-{ }^{n} \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}\right) \mathrm{C}_{6} \mathrm{H}_{5}$	88	6 r	(9-fluorenol)	58
6 i	$\left(3-\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	85	6 s	Tridecan-1-ol	84
6j	(2-CH3, 4-OCH $)^{\text {C }} \mathrm{C}_{6} \mathrm{H}_{3}$	60	$6 t$	-H	38

Further, reduction of 3-formylchromone 2 with solid supported basic alumina in isopropanol at $75{ }^{\circ} \mathrm{C}$ for 4 h afforded 3-hydroxymethyl chromone $\mathbf{3}$ in 82%. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}$, the signals discernible as a singlet at $\delta 2.12 \mathrm{ppm}$ and 4.60 ppm corresponding to hydroxyl proton and methylene protons respectively indicate the formation of compound 3 . In the IR spectra, the absorption band for hydroxyl group displayed at $3423 \mathrm{~cm}^{-1}$ further confirmed the formation of alcohol derivative 3 . Subsequently, mesylation of chromone alcohol derivative 3 followed by azidation with sodium azide in DMF at $50{ }^{\circ} \mathrm{C}$ for 5 h afforded the key chromone embedded azide intermediate $\mathbf{4}$ in 93% yield. The formation of azide derivative $\mathbf{4}$ was confirmed by its IR spectra, the absorption band displayed for azide group at $2107 \mathrm{~cm}^{-1}$. Finally, the [1,2,3]triazole core was incorporated through copper catalyzed 1,3 dipolar cycloaddition of 2azidomethylchromone 4 with commercially available different alkyl/aryl terminal alkynes 5a-t in the presence of sodium ascorbate in t - $\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1, \mathrm{v} / \mathrm{v})$ solvent mixture resulted in the formation of chromone embedded triazole compounds 6a-t respectively in good to excellent yields (Scheme 1).

The structures of all the newly synthesized compounds 6a-t were completely characterized by the ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and HRMS analysis. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $6 \mathbf{a}$ (representative example), a signal corresponds to the CH_{2} protons that bridges the chromone with triazole moiety was observed at $\delta 5.48 \mathrm{ppm}$ (as a singlet) and the corresponding ${ }^{13} \mathrm{C}$ resonance signal was delineated at $\delta 45.5 \mathrm{ppm}$ and the chromone carbonyl was discernible at $\delta 176.7 \mathrm{ppm}$. In addition, the appearance of a sharp singlet for 1 proton observed at $\delta 8.22 \mathrm{ppm}$ in the PMR, suggested the presence of 1,2,3 triazole CH . The appearance of a sharp singlet $(1 \mathrm{H})$ observed at $\delta 8.15 \mathrm{ppm}$ in the PMR, suggested the presence olefinic C-H of chromone moiety. The HRMS (ESI) for $\mathbf{6 a}$ shows the m / z at 304.1086 for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$.

Anti-mycobacterial evaluation

All the newly synthesized chromone embedded [1,2,3]-triazoles derivatives 6a-t were screened for their in vitro anti-tubercular activity against Mycobacterium tuberculosis H37Rv (ATCC27294) using Microplate Alamar Blue Assay (MABA) method. The minimum inhibitory concentration (MIC; $\mu \mathrm{g} \mathrm{mL}{ }^{-1}$) was determined for each compound. The MIC is defined as the lowest concentration at which complete inhibition was observed of
bacterial growth. Rifampicin and ethambutol were used as reference compounds. The MIC values of the synthesized compounds along with the standard drugs for comparison are reported in Table 1.

Among the 20 chromone embedded [1,2,3]-triazole derivatives tested, seven compounds ($\mathbf{6 f}-\mathbf{6 h}, \mathbf{6 m}, \mathbf{6 0}, \mathbf{6 p}$ and $\mathbf{6 s}$) were found to be active with MIC values in the range of 1.56 to $12.5 \mu \mathrm{gL}^{-1}$. The compound $\mathbf{6 s}$ was found to be highly active among all the compounds tested with a MIC value of $1.56 \mu \mathrm{~g} \mathrm{~m}^{-1}$, which is 4.8 times more active than the standard drug ethambutol (MIC $7.64 \mu \mathrm{~g} \mathrm{~mL}^{-1}$). Based on the results of antimycobacterial assay, the preliminary SAR of the chromone embedded triazole analogues reveals that the compounds bearing phenyl group (6a) as well as substituted phenyl such as 4-methyl, 4-ethyl, 4-propyl, and 4-pentyl ($\mathbf{6 b}, \mathbf{6 c}, \mathbf{6 d}$, and $\mathbf{6 e}$) do not favour better activity, with the exception of $\mathbf{6 f}$ possessing 4 - t-butyl group (MIC, $3.125 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$). It was also observed that alkoxy substitution at 4-position of the phenyl ring ($\mathbf{6 g}$ and $\mathbf{6 h}$) enhances the activity against $M t b$. However, the addition of another methyl group at 2-position of $\mathbf{6 g}$ leads to complete loss of activity, $\mathbf{6 i}$ (MIC, $50 \mu \mathrm{~mL}^{-1}$). Further, replacement of phenyl group with naphthyl ($\mathbf{6 k}$) and pyridyl ($\mathbf{6 l}$) does not appear to enhance the activity (MIC, greater than $50 \mu \mathrm{gLL}^{-1}$). Interestingly, modification on the triazole core by changing R group from aromatic to aliphatic group (cyclic or acyclic) enhances the activity against Mtb. For example, the compound $\mathbf{6 0}$ possessing cyclopentyl substituent at R position and compound $\mathbf{6 m}$, possessing n-butyl substituent exhibits better activity with MIC 3.125 and $6.25 \mu \mathrm{~g} \mathrm{~mL}^{-1}$ respectively, with an exception of $\mathbf{6} \mathbf{n}$ possessing n-hexyl group (MIC, greater than $50 \mu \mathrm{~mL}^{-1}$). Importantly, the most active compound in the series, 6 s possess long aliphatic chain terminated with hydrophilic - OH as a capping group (MIC, $1.56 \mu \mathrm{~g} \mathrm{~mL}$).

All chromone embedded [1,2,3]-triazole analogues were also tested for in vitro cytotoxicity against RAW 264.7 cells at $50 \mu \mathrm{~g}$ concentration using (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. All the analogues showed less than 50\% inhibition, percentage inhibitions of cells are represented in Table 1. The most promising anti-tubercular analogous $\mathbf{6 f}, \mathbf{6 g}, \mathbf{6 h}, \mathbf{6 m}, \mathbf{6 o}$ and $\mathbf{6 s}$ exhibited $20.12 \%, 28.40 \%, 18.68 \%$, $36.82 \%, 18.42 \%$ and 24.68% growth inhibition, respectively, at $50 \mu \mathrm{~g} \mathrm{~mL}$. . The results indicated that potent analogues $\mathbf{6 f}, \mathbf{6 h}, \mathbf{6 0}$, and $\mathbf{6 s}$ are comparatively less toxic and are suitable for further studies.

Table 1. In vitro anti-tubercular activity of chromone embedded [1,2,3]-triazoles against Mycobacterium tuberculosis H37Rv

Sr. No.	Compound	$\begin{gathered} \text { MIC } \\ (\mu \mathrm{g} \\ \left.\mathrm{mL}^{-1}\right)^{\mathrm{a}} \\ \hline \end{gathered}$	Cytotoxicity ${ }^{b}$	Sr. No.	Compound	$\begin{gathered} \text { MIC } \\ (\mu \mathrm{g} \\ \left.\mathrm{mL}^{-1}\right)^{\mathrm{a}} \end{gathered}$	Cytotoxicity ${ }^{b}$
6 a		25	12.86	6k		50	26.12
6b		25	26.82	61		50	30.60
6 c		25	16.12	6m		6.25	36.82
6d		50	20.60	6 n		50	23.74
6 e		25	20.12	60		3.125	18.42
6		3.125	20.12	6 p		12.5	20.12
6g		6.25	28.40	6q		25	28.62
6h		3.125	18.68	6 r		50	30.60
6 i		25	26.82	6 s		1.56	24.68
6j		50	30.34	6 t		50	30.12

Note: ${ }^{\text {a }}$ Rifampicin (MIC $0.24 \mu \mathrm{~g} \mathrm{~mL}$-1); Ethambutol (MIC $7.64 \mu \mathrm{mLL}$); ${ }^{\text {b }}$ Cytotoxicity at $50 \mu \mathrm{~g}$ (RAW 264.7 cells) \% inhibition.

Computational studies

Mycobacterium tuberculosis inhibitors perform an inhibitory action via different mechanistic pathways in the cell. We selected six validated protein targets from each class based on their role and importance in the mechanistic pathways (Table 2). ${ }^{20}$ The biological significance of the selected proteins is discussed in detail herein. Thymidylate kinase (PDB ID: 1G3U) plays role in the catalysis of the transfer of the phosphoryl moiety from the
phosphoryl donor, ATP to TMP which is key intermediate for the DNA blocking builds. ${ }^{21}$ Lumazine synthase (PDB ID: 1W19) catalyzes certain steps in riboflavin biosynthesis. ${ }^{22}$ Enoyl-acyl carrier protein (PDB ID: 1ZID) is essential for fatty acid synthase system (FASII) pathway in mycobacterial cells. ${ }^{23}$ Whereas pantothenate synthase (PDB ID: 3IUB) catalyzes the condensation of pantonate with β-alanine to form pantothenate, a precursor coenzyme A biosynthesis. ${ }^{24}$ MTB phosphotyrosine B [MtbPtpB] (PDB ID: 2OZ5) blocks the signal-regulated kinase and p-38 mediated by IL-6 thereby promoting mycobacterial survival in the host. ${ }^{25}$ Dihydrofolate reductase (PDB ID: 1DG5) helps in regulating the amount of tetrahydrofolate in the cell. Tetrahydrofolate derivatives are key components in purine and thymidylate synthesis which is important for cell proliferation and cell growth. ${ }^{26}$

Table 2. List of tuberculosis targets and mechanistic pathway class

PDB ID	Name of targets	Class
1G3U	Thymidylate kinase	DNA synthesis
1W19	6,7-dimethyl-8-ribityllumazine synthase	Cofactor biosynthesis
1ZID	Enoyl-acyl carrier protein	Mycolic acid biosynthesis
2OZ5	MTB phosphotyrosine phosphatase B	Arrest of phagosome maturation
3IUB	Pantothenate synthetase	β-Alanine metabolism
1DG5	Dihydrofolate reductase	Folate metabolism

Methodology

Preparation of ligands

The two-dimensional structures (.mol) of four compounds i.e $\mathbf{6 f}, \mathbf{6 h}, \mathbf{6 0}$ and $\mathbf{6 s}$ were drawn and the structure was analyzed by using Marvin view. The compounds were converted to three-dimensional structure (.pdb) using LigPrep tool. ${ }^{27}$ LigPrep is a Schrödinger suite tool which is used to generate three-dimensional structures from twodimensional structures, search tautomers, isomers for compounds and carry out energy minimization by applying the OPLS 2005 force field.

Preparation of macromolecule

The protein targets retrieved from RCSB Protein Data Bank are proteins associated with metabolic functioning and proliferation of M. tuberculosis. Enzymes thymidylate kinase (PDB code 1G3U), MTB phosphotyrosine phosphatase B [MtbPtpB] (PDB code 2OZ5) proteins, Enoyl-acyl carrier protein (PDB code 1ZID), Dihydrofolate reductase (PDB code 1DG5), Pantothenate synthetase (PDB code 3IUB) and 6,7-dimethyl-8-
ribityllumazine synthase (PDB code 1 W 19) served as docking receptors. The proteins were fixed for errors in atomic representations and optimized using Protein Preparation Wizard Maestro v10.3 (Maestro, version 10.3: Schrodinger, LLC, New York, NY, USA). The bond orders were assigned to residues, hydrogen atoms were added at $\mathrm{p}^{\mathrm{H}} 7.0$. Minimization was carried out using OPLS 2005 force field with an RMSD cut-off value of 0.3Á.

Molecular docking

The molecular docking was performed and analyzed via the Glide v 6.8 docking tool. ${ }^{28}$ The receptor grid was centered based on the active site of the protein using receptor grid generation tool. Ligands prepared using LigPrep were flexibly docked in grid box using Monte Carlo based simulation algorithm. An extra precision (XP) method was employed that generated binding poses based on energy. The favourably docked molecules were ranked according to the Glide Score (Table 3 and 4).

Table 3. Molecular docking analysis of 6 protein targets with selected compounds. The binding energy was calculated for GLIDE in $\mathrm{kcal} / \mathrm{mol}$

target	GLIDE score Binding energy (kcal/mol)			
	Compound $\mathbf{6}$.	Compound $\mathbf{6 h}$	Compound $\mathbf{6 o}$	Compound 6s
1G3U	-6.551	-6.782	-5.617	-5.912
1W19	-6.852	-4.880	-4.165	-5.600
1ZID	$\mathbf{- 7 . 8 2 6}$	$\mathbf{- 9 . 1 8 9}$	$\mathbf{- 7 . 3 1 6}$	$\mathbf{- 1 1 . 1 2 3}$
2OZ5	-6.899	-7.344	-5.572	-7.967
3IUB	-6.600	-6.602	-5.104	-5.291
1DG5	-4.521	-4.793	-4.475	-6.233

Table 4. Molecular docking analysis of selected compounds

Protein Target	Compound name	Amino acids involved in intermolecular interactions	Binding Energy ($\mathrm{kcal} / \mathrm{mol}$)
1ZID	Compound $\mathbf{6 f}$	$\begin{aligned} & \text { Thr196 } \\ & \text { Phe149 } \end{aligned}$	-7.826
	Compound 6h	$\begin{aligned} & \text { Met98 } \\ & \text { Arg32 } \\ & \hline \end{aligned}$	-9.189
	Compound 6s	$\begin{aligned} & \hline \text { Asp64 } \\ & \text { Trp222 } \\ & \text { Tyr158 } \end{aligned}$	-11.123
	Compound 60	Thr196	-7.316

Molecular docking analysis

Automated docking was used to assess the binding modes and conformation of the ligand molecules. Among the 20 chromone embedded [1,2,3]-triazoles, compounds $\mathbf{6 f}, \mathbf{6 h}$, 60, and 6s were considered as they showed significant activities (Table 1). 1ZID, enoylacyl carrier protein showed better binding score with four chromone-based triazoles when compared with the rest of the proteins (Table 2). Compound $\mathbf{6 s}$ gave a better score when compared with other compounds for the target proteins, with a binding score ranging from 7.3 to $-11.123 \mathrm{kcal} / \mathrm{mol}$. Enoyl-acyl carrier protein reductase is involved in mycolic acid biosynthesis, the inhibition of which leads to the lysis of Mtb. The key intermolecular protein-ligand interactions are depicted in Figure 6. Figure 6 represents the intermolecular amino acid interaction with the compounds $\mathbf{6 f}, \mathbf{6 h}, \mathbf{6 s}$, and $\mathbf{6 0}$. Compound $\mathbf{6 s}$ showed highest binding energy value of $-11.123 \mathrm{kcal} / \mathrm{mol}$. Asp64, Trp222, and Tyr158 amino acids interacted with compound $\mathbf{6 s}$ showing high ligand exposure. Trp222 and Tyr158 had $\pi-\pi$ interaction with the compound $\mathbf{6 s}$. Compound $\mathbf{6 f}$ and 60 similarly showed $\pi-\pi$ interaction with Phe149 and Thr196, respectively. Thus above results suggest that $\pi-\pi$ interaction improves the docking scores.

Compound $\mathbf{6 s}$ is bound to the active site amino acid residues in the pocket region as shown in Figure 7 (A and B). The pocket region of 1ZID is present in a loop region flanked by alpha-helix chains seen in Figure 7 (A). The location and orientation of the triazole group are complementary to the surrounding InhA side chains, which create a specific binding pocket. These observations indicate that compound $\mathbf{6 s}$ may have an important role in anchoring within the active site of the receptor.

Figure 6. Amino acids involved in intermolecular interactions

Figure 7. A) Compound 6s (in magenta) in enoyl-acyl carrier protein (PDB ID:1ZID). B) Alignment of compound $\mathbf{6 s}$ in the binding pocket.

Chemoinformatics Analysis

Six active compounds were analyzed for their drug-like properties (Table 5). Lipinski rule of five was predicted using Screening Assistant 2 tool. ${ }^{29}$ All these compounds including compound $\mathbf{6 s}$ displayed good drug-like properties. The drug-like and lead-like property analysis for most compounds generated a score of 0.25 which gave support to the positive results obtained in Rule of 5. ADME properties were predicted using PreADMET software ${ }^{30}$ in order to check their potential as anti-tubercular compounds.

Table 5. Chemoinformatics analysis

Properties	Compounds					
	6	6g	6h	6m	60	6s
Lipinski Rule ${ }^{\text {a }}$						
Molecular weight	359.429	333.347	389.455	283.331	295.342	453.627
HB accept	3	4	4	3	3	4
HB donor	0	0	0	0	0	1
LogP	3.335	1.792	3.631	1.533	1.409	5.188
Chemical properties						
Weiner path ${ }^{\text {a }}$	2075	1661	2737	1015	1117	4787
Ring count ${ }^{\text {a }}$	4	4	8	5	3	17
PDL/PLL ${ }^{\text {a }}$	0.25	0.25	0.25	0.25	0.25	0.25
ADME properties						
BBB (-3.0-1.2) ${ }^{\text {b }}$	2.88269	1.161	0.23527	0.5112	0.36551	1.14616
CaCo 2 (nms) $(<25$, poor, best $)^{\mathrm{b}}$	34.0619	23.231	32.9739	25.026	16.0711	39.8231
HIA (50-100\%) ${ }^{\text {b }}$	97.41	97.16	97.72	98.34	98.27	96.48
Rotatable bonds $(0-15)^{\mathrm{a}}$	4	4	8	5	3	17
$\begin{array}{lll} \text { TPSA } \\ 200.0)^{\mathrm{b}} \end{array} \quad(7.0 \quad-\quad .$	57.01	66.24	66.24	57.01	57.01	77.24
Toxicity properties ${ }^{\text {c }}$						
DSSTox Carcinogenic potency Mutagenecity	$\begin{gathered} \text { Neg. } \\ (\mathrm{C}: 0.161) \end{gathered}$	$\begin{gathered} \text { Neg. } \\ (\mathrm{C}: 0.202) \end{gathered}$	$\begin{gathered} \text { Neg. } \\ (\mathrm{C}: 0.112) \end{gathered}$	$\begin{aligned} & \text { Neg. } \\ & (\mathrm{C}: 0.110) \end{aligned}$	$\begin{gathered} \text { Neg. } \\ (\mathrm{C}: 0.189) \end{gathered}$	$\begin{aligned} & \text { Neg. } \\ & (\mathrm{C}: 0.115) \end{aligned}$
DSSTox Carcinogenic potency Mouse	$\begin{gathered} \text { Neg. } \\ \text { (C: } \\ 0.083) \end{gathered}$	$\begin{gathered} \text { Neg. } \\ \text { (C: } \\ 0.093) \end{gathered}$	$\begin{gathered} \text { Neg. } \\ \text { (C: } \\ 0.099) \end{gathered}$	$\begin{aligned} & \text { Neg. } \\ & \text { (C: } \\ & 0.107) \end{aligned}$	$\begin{gathered} \text { Neg. } \\ \text { (C: } \\ 0.141) \end{gathered}$	$\begin{aligned} & \text { Neg. } \\ & \text { (C: } \\ & 0.208) \end{aligned}$

${ }^{\text {a }}$ Computed using Screening Assistant 2 program. PDL (Progressive drug-like), PLL (Progressive lead like).
${ }^{\mathrm{b}}$ PreADMET software. ${ }^{\mathrm{c}}$ LAZAR wherein Neg $=$ Negative and $\mathrm{C}=$ Confidence value

The blood-brain barrier (BBB) model values for compound 6s was 1.14616 which clearly lay in range suggesting the compound can penetrate the BBB on theoretical grounds. Most compounds displayed CaCo 2 cell permeability values above $25 \mathrm{nms},{ }^{31}$ topological polar surface area (TPSA) above 7.0 and the human intestinal absorption (HIA) quantities in the 50-100 \% range, indicating that they may be further developed in an oral dosage form. ${ }^{32}$ Lazy structure-activity relationships (LAZAR) software ${ }^{33}$ predicted all the compounds as noncarcinogenic and nonmutagenic, and the probability greater than 0.025 suggesting the
predictions to be reliable. The predicted favourable ADME features for compound $\mathbf{6 s}$ further indicates that it is a promising anti-tubercular lead candidate.

3.1.4. Conclusion

In conclusion, a series of novel chromone embedded [1,2,3]-triazole derivatives were synthesized via an easy and convenient synthetic protocol starting from 2-hydroxy acetophenone. The new 20 analogues 6a-t accomplished in four-step synthetic sequences using click chemistry as a key step and were fully characterized by their NMR and mass spectral data. The in vitro anti-mycobacterial evaluation study of all the compounds revealed that seven compounds found to be active against M.tuberculosis H37Rv. The compound $6 \mathbf{s}$ is the most potent compound in vitro with a MIC value of $1.56 \mu \mathrm{~g} \mathrm{~mL}^{-1}$. Cross-docking studies revealed compound $\mathbf{6 s}$ to be more effective against the enoyl-acyl carrier protein reductase of $M t b$. Molecular docking and chemoinformatics studies proved that compound $6 \mathbf{s}$ displayed drug-like properties against the enoyl-acyl carrier protein reductase. Docking results also indicated that Asp64, Trp222 and Tyr158 amino acids in the binding pocket as potential ligand binding hot-spot residues.

3.1.5. Experimental Section

1) 4-oxo-4H-chromene-3-carbaldehyde (2)

To a stirred solution of dry DMF (40 mL), $\mathrm{POCl}_{3}(20.6 \mathrm{~mL}, 220.34 \mathrm{mmol})$ was added dropwise at $5{ }^{\circ} \mathrm{C}$. The mixture was stirred for 15 min and then the solution of 2 -hydroxy acetophenone ($10 \mathrm{~g}, 73.44 \mathrm{mmol}$) in DMF (20 mL) was added dropwise at $5{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 30 min , then heated and stirred at $55^{\circ} \mathrm{C}$ for another 4 h . The mixture was cooled to room temperature, poured into ice-water (approx. 400 mL) and stirred for 1.5 h . The precipitate was filtered off, washed with ethanol afforded 2.

Yield: 75\% (colorless solid);
MP: 152-154 ${ }^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{34} \mathrm{mp}: 152-154{ }^{\circ} \mathrm{C}$);
Molecular Formula: $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{3}$;

IR ($\left.\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}\right): v_{\max } 3370,3023,2921,2403,1659,1612,1569,1464,1423,1310,1217$, 1027, 930, 766, 671;
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.50-7.56(\mathrm{~m}, 2 \mathrm{H})$, 7.74-7.79 (m, 1 H$), 8.31(\mathrm{dd}, J=7.9$,
$1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~s}, 1 \mathrm{H}), 10.40(\mathrm{~s}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 188.6$ (CO), $175.9(\mathrm{CO}), 160.6(\mathrm{CH}), 156.2(\mathrm{C}), 134.8$ $(\mathrm{CH}), 126.6(\mathrm{CH}), 126.2(\mathrm{CH}), 125.3(\mathrm{C}), 120.3(\mathrm{C}), 118.6(\mathrm{CH}) ;$
HRMS (ESI): m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$175.0390, found 175.0392.

2) 3-(hydroxymethyl)-4H-chromen-4-one (3)

To a stirred solution of 3-formyl chromone 2 ($2 \mathrm{~g}, 5 \%$ of alumina weight) in 100 ml of 2propanol, about 40 g of basic alumina was added. The resulting solution was stirred at 75 ${ }^{\circ} \mathrm{C}$ for 4 hours. The reaction mixture was filtered through Celite bed and the solvent was removed under reduced pressure and the residue was purified by column chromatography over silica gel using EtOAc/petroleum ether (3:7) afforded compound $\mathbf{3}$ as a viscous liquid.
Yield: 82\%;
Molecular Formula: $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{3}$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\text {max }} 3423,3019,2925,2403,1643,1469,1406,1347,1217,1155,1023$, 971, 918, 852, 763, 670;
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{2 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 2.12(\mathrm{bs}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 7.40-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.75$ (m, 1 H), 7.96 (s, 1 H), 8.24 (dd, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 178.4$ (CO), 156.6 (C), 152.8 (CH), 133.9 (CH), 125.6
$(\mathrm{CH}), 125.23(\mathrm{CH}), 123.8(\mathrm{C}), 123.3(\mathrm{C}), 118.2(\mathrm{CH}), 58.5\left(\mathrm{CH}_{2}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 177.0546$, found 177.0546 .

3) 3-(azidomethyl)-4H-chromen-4-one (4)

To a stirred solution of $\mathbf{3}(2.5 \mathrm{~g}, 14.2 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(5.14 \mathrm{~mL}, 36.92 \mathrm{mmol})$, methane sulfonyl chloride ($1.49 \mathrm{~mL}, 18.46 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . After completion of the reaction (monitored by TLC), the reaction mixture was diluted with water (approx. 20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude mesylated product $3 \mathbf{3 a}(2.56 \mathrm{~g}, 71 \%)$ was further used for next step without any purification. To a solution of crude mesylate 3a ($2.5 \mathrm{~g}, 9.84 \mathrm{~mol}$) in anhydrous DMF (20 mL), sodium azide ($1.6 \mathrm{~g}, 24.6 \mathrm{mmol}$) was added batchwise at room temperature. The resulting solution was heated to $50{ }^{\circ} \mathrm{C}$ for 5 h . After completion of reaction (monitored by TLC) reaction mixture was poured into ice-cold water (20 mL) and extracted with ethyl acetate (3 x 10 mL). The combined ethyl acetate layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by flash chromatography gave azide 4.
Yield: 93% (colorless solid);
MP: $50-52{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$;
IR ($\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{\mathbf{- 1}}$): $v_{\max } 3369,3018,2922,2855,2107,1648,1416,1407,1349,1268,1217$, 1106, 1028, 842, 759, 668;
${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl $\mathbf{3}_{3}$): $\delta 4.33$ ($\mathrm{s}, 2 \mathrm{H}$), 7.41-7.51 (m, 2 H), 7.67-7.76 (m, 1 H), 7.97 (s, 1 H), 8.26 (dd, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 176.9$ (CO), 156.5 (C), $153.8(\mathrm{CH}), 134.0(\mathrm{CH}), 125.9$ $(\mathrm{CH}), 125.5(\mathrm{CH}), 123.7(\mathrm{C}), 119.7(\mathrm{C}), 118.2(\mathrm{CH}), 46.4\left(\mathrm{CH}_{2}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$224.0430, found 224.0432.

General procedure for the synthesis of Chromones embedded 1,2,3-triazole derivatives (6a-t)

To a stirred solution of azide 4 (1 equiv.) and aliphatic/aromatic alkynes, 5a-5t (1.3 equiv) in t-butanol (3 mL) was added sequentially copper sulfate pentahydrate ($20 \mathrm{~mol} \%$), sodium ascorbate ($20 \mathrm{~mol} \%$) and distilled water (3 mL). The resulting reaction mixture was stirred for $1-3 \mathrm{~h}$ at $60{ }^{\circ} \mathrm{C}$. After completion of the reaction (monitored by TLC), the reaction mixture was diluted with EtOAc ($1 \times 10 \mathrm{~mL}$) and then washed with water $(2 \times 5 \mathrm{~mL})$, the organic layer was separated, washed with brine solution ($2 \times 5 \mathrm{~mL}$), dried over anhydrous
sodium sulfate and concentrated in vacuo. The crude residue thus obtained was purified over silica gel column chromatography eluted with EtOAc/petroleum ether (1:1) to furnish corresponding chromone embedded [1,2,3]-triazole derivatives 6a-6t.

1) 3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)-4H-chromen-4-one (6a)

Yield: 90% (pale yellow solid);
MP: $154-155{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$;
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{\mathbf{- 1}}\right): v_{\max } 3685,3357,3022,2923,2402,1649,1523,1469,1423,1353,1216$, 1030, 927, 765, 671;
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 5.48$ (s, 2 H), 7.30-7.34 (m, 1 H), 7.39-7.51 (m, 4 H), 7.70$7.74(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{dd}, J=8.0,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 176.7$ (CO), 156.5 (C), $155.8(\mathrm{CH}), 134.4(\mathrm{CH}, 2$ carbons), 130.1 (C), 128.8 (CH, 2 carbons), $128.3(\mathrm{CH}), 125.8$ ($\mathrm{CH}, 3$ carbons), 123.8 (C), $121.3(\mathrm{C}), 119.1(\mathrm{C}), 118.4(\mathrm{CH}), 45.5\left(\mathrm{CH}_{2}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 304.1081$, found 304.1086.
2) 3-((4-(p-tolyl)-1H-1,2,3-triazol-1-yl)methyl)-4H-chromen-4-one (6b)

Yield: 82\% (colorless solid);
MP: $170-172{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$;
IR ($\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{-1}$): $v_{\max } 3687,3189,3022,2403,2356,1645,1523,1469,1422,1216,1037$, 927, 770, 672;
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H})$, 7.42-7.51 (m, 2 H), 7.68-7.77 (m, 3 H), $8.08(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{dd}, J=7.9,1.6$ Hz, 1 H);
${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 176.7$ (CO), 156.5 (C), 155.6 (CH), 148.0 (C), 137.9 (C), $134.3(\mathrm{C}), 129.4(\mathrm{CH}, 2$ carbons), $127.6(\mathrm{C}), 125.8(\mathrm{CH}), 125.8(\mathrm{CH}), 125.6(\mathrm{CH}, 2$ carbons), $123.8(\mathrm{C}), 120.6(\mathrm{CH}), 119.3(\mathrm{C}), 118.4(\mathrm{CH}), 45.2\left(\mathrm{CH}_{2}\right), 21.2\left(\mathrm{CH}_{3}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$318.1237, found 318.1240.
3) 3-((4-(4-ethylphenyl)-1H-1,2,3-triazol-1-yl)methyl)-4H-chromen-4-one (6c)

Yield: 82\% (pale yellow solid);
MP: $149-150{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$;
IR ($\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{-1}$): $v_{\max } 3687,3394,3022,2403,1648,1529,1424,1217,1030,927,769$, 672;
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 1.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.67(\mathrm{q}, J=15.3,7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 5.47 (s, 2 H), $7.22(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.76(\mathrm{~m}, 3 \mathrm{H}), 8.09(\mathrm{~s}, 1$ H), $8.20(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl ${ }_{3}$): $\delta 176.7$ (CO), 156.5 (C), 155.6 (CH), 148.1 (C), 144.3 (C), $134.3(\mathrm{CH}), 128.2(\mathrm{CH}, 2$ carbons), $127.9(\mathrm{C}), 125.8(\mathrm{CH}), 125.8(\mathrm{CH}), 125.7(\mathrm{CH}, 2$ carbons), $123.8(\mathrm{C}), 120.7(\mathrm{CH}), 119.3(\mathrm{C}), 118.4(\mathrm{CH}), 45.2\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 15.5$ $\left(\mathrm{CH}_{3}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$332.1394, found 332.1401.
4) 3-((4-(4-propylphenyl)-1H-1,2,3-triazol-1-yl)methyl)-4H-chromen-4-one (6d)

Yield: 84\% (colorless solid);
MP: $135-136{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3188,3019,2596,2406,1631,1433,1218,1041,768,671$;
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.56-1.75(\mathrm{~m}, 4 \mathrm{H}), 2.60(\mathrm{t}, J=7.6$
$\mathrm{Hz}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.76(\mathrm{~m}, 3 \mathrm{H})$, 8.08 (s, 1 H), 8.19 ($\mathrm{s}, 1 \mathrm{H}$), 8.23 (dd, $J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13}$ C NMR (100 MHz, CDCl 3): $\delta 176.7$ (CO), 156.5 (C), 155.6 (CH), 148.1 (C), 142.7 (C), $134.3(\mathrm{CH}), 128.8(\mathrm{CH}, 2$ carbons), $127.9(\mathrm{C}), 125.8(\mathrm{CH}), 125.7(\mathrm{CH}), 125.6(\mathrm{CH}, 2$ carbons), $123.8(\mathrm{C}), 120.7(\mathrm{CH}), 119.3(\mathrm{C}), 118.4(\mathrm{CH}), 45.2\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 24.4$ $\left(\mathrm{CH}_{2}\right), 13.8\left(\mathrm{CH}_{3}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 346.1550$, found 346.1558.
5) 3-((4-(4-pentylphenyl)-1H-1,2,3-triazol-1-yl)methyl)-4H-chromen-4-one (6e)

Yield: 88\% (colorless solid);
MP: $147-148{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$;
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{\mathbf{- 1}}\right): v_{\max } 3370,3022,2926,2403,1648,1524,1466,1421,1353,1216,1029$, 927, 763, 670;
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 0.89(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.70(\mathrm{~m}$, 2 H), 2.58-2.66 (m, 2 H), 5.48 ($\mathrm{s}, 2 \mathrm{H}$), 7.20 ($\mathrm{s}, 1 \mathrm{H}$), 7.24 ($\mathrm{s}, 1 \mathrm{H}$), 7.42-7.51 (m, 2 H), 7.68$7.76(\mathrm{~m}, 3 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13}$ C NMR (100 MHz, CDCl ${ }_{3}$): $\delta 176.7$ (CO), 156.5 (C), 155.6 (CH), 148.1 (C), 143.0 (C), $134.3(\mathrm{CH}), 128.8(\mathrm{CH}, 2$ carbons), $127.8(\mathrm{C}), 125.8(\mathrm{CH}), 125.7(\mathrm{CH}), 125.6(\mathrm{CH}, 2$ carbons), $123.8(\mathrm{C}), 120.7(\mathrm{CH}), 119.3(\mathrm{C}), 118.4(\mathrm{CH}), 45.2\left(\mathrm{CH}_{2}\right), 35.6\left(\mathrm{CH}_{2}\right), 31.4$ $\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$374.1863, found 374.1868.
6) 3-((4-(4-(tert-butyl)phenyl)-1H-1,2,3-triazol-1-yl)methyl)-4H-chromen-4-one (6f)

Yield: 96\% (colorless solid);
MP: 218-219 ${ }^{\circ} \mathrm{C}$;

Molecular Formula: $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$;
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{\mathbf{- 1}}\right): v_{\max } 3390,3021,2963,2404,1648,1464,1218,1032,927,769,673$;
${ }^{1} \mathbf{H}$ NMR ($200 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 1.34(\mathrm{~s}, 9 \mathrm{H}), 5.48(\mathrm{~s}, 2 \mathrm{H}), 7.41-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.68-7.78$ (m, 3 H), $8.10(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 176.6$ (CO), 156.5 (C), 155.6 (CH), 151.1 (C), 147.9 (C),
$134.3(\mathrm{CH}), 127.7(\mathrm{C}), 125.8(\mathrm{CH}), 125.7(\mathrm{CH}), 125.6(\mathrm{CH}, 2$ carbons), $125.4(\mathrm{CH}, 2$ carbons), $123.8(\mathrm{C}), 120.7(\mathrm{CH}), 119.3(\mathrm{C}), 118.3(\mathrm{CH}), 45.2\left(\mathrm{CH}_{2}\right), 34.6(\mathrm{C}), 31.2\left(\mathrm{CH}_{3}, 3\right.$ carbons);

HRMS (ESI): m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 360.1707$, found 360.1712.
7) 3-((4-(4-methoxyphenyl)-1H-1,2,3-triazol-1-yl)methyl)-4H-chromen-4-one (6g)

Yield: 60% (colorless solid);
MP: $170-171^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$;
IR ($\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{-1}$): $v_{\max } 3687,3022,2403,2356,1648,1511,1467,1424,1351,1217,1030$, 927, 770, 672;
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 3.84(\mathrm{~s}, 3 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H})$, 7.42-7.51 (m, 2 H), 7.68-7.77 (m, 3 H), 8.04 ($\mathrm{s}, 1 \mathrm{H}$), 8.20 (s, 1 H), 8.22-8.27 (m, 1 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 176.8$ (CO), 159.5 (C), 156.5 (C), 155.7 (CH), 147.9 (C), $134.4(\mathrm{CH}), 127.0(\mathrm{CH}, 3$ carbons), $125.8(\mathrm{CH}), 123.8$ (C), 123.2 (C), 120.2 (CH), 119.3 (C), $118.3(\mathrm{CH}), 114.1\left(\mathrm{CH}, 2\right.$ carbons), $55.3\left(\mathrm{CH}_{3}\right), 45.2\left(\mathrm{CH}_{2}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 334.1186$, found 334.1192.

8) 3-((4-(4-(pentyloxy)phenyl)-1H-1,2,3-triazol-1-yl)methyl)-4H-chromen-4-one (6h)

Yield: 85\% (colorless solid);
MP: $154-155{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$;

IR ($\left.\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{\mathbf{- 1}}\right): v_{\max } 3686,3189,3021,2953,2403,1647,1466,1418,1352,1310,1217$, 1039, 926, 768, 671;
${ }^{1} \mathbf{H}$ NMR ($200 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 0.94(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.86(\mathrm{~m}$, 2 H), $3.98(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.51(\mathrm{~m}, 2 \mathrm{H})$, 7.68-7.76 (m, 3 H), $8.03(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 176.7$ (CO), 159.1 (C), 156.5 (C), 155.6 (CH), 147.9 (C), $134.3(\mathrm{CH}), 127.0(\mathrm{CH}, 2$ carbons), $125.8(\mathrm{CH}), 125.7(\mathrm{CH}), 123.8(\mathrm{C}), 123.0(\mathrm{C}), 120.1$ $(\mathrm{CH}), 119.4(\mathrm{C}), 118.4(\mathrm{CH}), 114.7(\mathrm{CH}, 2$ carbons $), 68.0\left(\mathrm{CH}_{2}\right), 45.2\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right)$, $28.1\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 390.1812$, found 390.1821.
9) 3-((4-(m-tolyl)-1H-1,2,3-triazol-1-yl)methyl)-4H-chromen-4-one (6i)

Yield: 85\% (pale yellow solid);
MP: $124-125{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$;
IR ($\left.\mathbf{C H C l}_{3}, \mathbf{c m}^{\mathbf{- 1}}\right): v_{\max } 3685,3190,3021,2403,1646,1523,1468,1418,1352,1217,1043$, 926, 767, 671;
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{2 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 7.09-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.31$ (m, 1 H), 7.39-7.49 (m, 2 H), 7.57-7.74 (m, 3 H), 8.09 (s, 1 H), 8.18-8.24 (m, 2 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 176.7$ (CO), 156.4 (C), 155.6 (CH), 148.0 (C), 138.4 (C), $134.3(\mathrm{CH}), 130.3(\mathrm{C}), 128.8(\mathrm{CH}), 128.6(\mathrm{CH}), 126.3(\mathrm{CH}), 125.7(\mathrm{CH}, 2$ carbons), 123.7 (C), $122.8(\mathrm{CH}), 120.9(\mathrm{CH}), 119.2(\mathrm{C}), 118.3(\mathrm{CH}), 45.2\left(\mathrm{CH}_{2}\right), 21.3\left(\mathrm{CH}_{3}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 318.1237$, found 318.1245.
10)3-((4-(4-methoxy-2-methylphenyl)-1H-1,2,3-triazol-1-yl)methyl)-4H-chromen-4-one (6j)

Yield: 60% (pale yellow solid);
MP: $172-173{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3686,3392,3022,2403,1648,1473,1425,1217,1033,927,769$, 672;
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 2.45(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 5.49(\mathrm{~s}, 2 \mathrm{H}), 6.79-6.83(\mathrm{~m}, 2$ H), 7.42-7.52 (m, 3 H), 7.66-7.77 (m, 2 H), 7.99 ($\mathrm{s}, 1 \mathrm{H}$), 8.21-8.25 (m, 2 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 176.7$ (CO), 159.3 (C), 156.5 (C), 155.6 (CH), 147.1 (C), $137.1(\mathrm{C}), 134.3(\mathrm{CH}), 130.1(\mathrm{CH}), 125.8(\mathrm{CH}), 125.7(\mathrm{CH}), 123.8(\mathrm{C}), 122.6(\mathrm{CH}), 119.4$ ($\mathrm{C}, 2$ carbons), $118.3(\mathrm{CH}), 116.1(\mathrm{CH}), 111.3(\mathrm{CH}), 55.2\left(\mathrm{OCH}_{3}\right), 45.1\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 348.1343$, found 348.1353.
11) 3-((4-(naphthalen-1-yl)-1H-1,2,3-triazol-1-yl)methyl)-4H-chromen-4-one (6k)

Yield: 93% (brick red solid);
MP: $154-155{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3687,3189,3022,2403,2355,1643,1523,1472,1424,1216,1038$, 928, 770, 672;
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 5.56(\mathrm{~s}, 2 \mathrm{H}), 7.42-7.56(\mathrm{~m}, 6 \mathrm{H}), 7.68-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.86-$ 7.91 (m, 2 H), 8.22-8.26 (m, 2 H), 8.28 (s, 1 H), 8.36-8.41 (m, 1 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 176.7$ (CO), 156.5 (C), $155.7(\mathrm{CH}), 147.0(\mathrm{C}), 134.3$ $(\mathrm{CH}), 133.8(\mathrm{C}), 130.9(\mathrm{C}), 128.8(\mathrm{CH}), 128.3(\mathrm{CH}), 127.9(\mathrm{C}), 127.2(\mathrm{CH}), 126.6(\mathrm{CH})$, $125.9(\mathrm{CH}), 125.8(\mathrm{CH}), 125.7(\mathrm{CH}), 125.4(\mathrm{CH}), 125.3(\mathrm{CH}), 123.9(\mathrm{CH}), 123.8(\mathrm{C}), 119.2$ (C), $118.3(\mathrm{CH}), 45.3\left(\mathrm{CH}_{2}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$354.1237, found 354.1246.
12) 3-((4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl)methyl)-4H-chromen-4-one (61)

Yield: 60% (greenish solid);
MP: $175-176{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3686,3189,3022,2403,2355,1648,1523,1469,1420,1352,1217$, 1040, 927, 770, 672;
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 5.52(\mathrm{~s}, 2 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.73$ $(\mathrm{m}, 1 \mathrm{H}), 7.84-7.93(\mathrm{~m}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H})$, 8.71 (s, 1 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 176.4$ (CO), 156.5 (C), 155.4 (CH), 150.1 (C), 149.2 (C), $148.4(\mathrm{C}), 136.9(\mathrm{CH}), 134.3(\mathrm{CH}), 125.9(\mathrm{CH}), 125.8(\mathrm{CH}), 123.8(\mathrm{CH}), 123.3(\mathrm{CH}), 122.8$ $(\mathrm{CH}), 120.3(\mathrm{C}), 119.1(\mathrm{CH}), 118.2(\mathrm{CH}), 45.4\left(\mathrm{CH}_{2}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}$305.1033, found 305.1038.

13) 3-((4-butyl-1H-1,2,3-triazol-1-yl)methyl)-4H-chromen-4-one (6m)

Yield: 93\% (colorless solid);
MP: $87-88^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$;
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{\mathbf{- 1}}\right): v_{\max } 3686,2412,3022,2963,2403,1648,1529,1468,1424,1350,1217$, 1032, 927, 769, 672;
${ }^{1} \mathbf{H}$ NMR ($200 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 0.92(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.74(\mathrm{~m}$, $2 \mathrm{H}), 2.75$ (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 5.44 ($\mathrm{s}, 2 \mathrm{H}$), 7.42-7.52 (m, 2 H), 7.69-7.77 (m, 2 H), 8.178.26 (m, 2 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 176.7$ (CO), 156.5 (C), 155.5 (CH), 148.7 (C), 134.3 $(\mathrm{CH}), 125.8(\mathrm{CH}), 125.7(\mathrm{CH}), 123.8(\mathrm{C}), 121.9(\mathrm{CH}), 119.5(\mathrm{C}), 118.3(\mathrm{CH}), 44.9\left(\mathrm{CH}_{2}\right)$, $31.5\left(\mathrm{CH}_{2}\right)$, $25.3\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{2}\right), 13.8\left(\mathrm{CH}_{3}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$284.1394, found 284.1396.
14) 3-((4-hexyl-1H-1,2,3-triazol-1-yl)methyl)-4H-chromen-4-one (6n)

Yield: 82\% (colorless solid);
MP: $84-85^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$;
IR ($\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{-1}$): $v_{\max } 3414,3022,2404,1647,1433,1218,1030,928,769,673 ;$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 0.86(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.37(\mathrm{~m}, 6 \mathrm{H}), 1.61-1.68(\mathrm{~m}$, $2 \mathrm{H}), 2.67-2.71(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{~s}, 2 \mathrm{H}), 7.43-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.69-7.73(\mathrm{~m}, 1$ H), $8.15(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($\mathbf{5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 176.7$ (CO), 156.5 (C), 155.6 (CH), 148.4 (C), 134.3 (CH), $125.8(\mathrm{CH}), 125.7(\mathrm{CH}), 123.8(\mathrm{C}), 122.2(\mathrm{CH}), 119.3(\mathrm{C}), 118.3(\mathrm{CH}), 45.2\left(\mathrm{CH}_{2}\right), 31.5$ $\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$312.1707, found 312.1711.
15) 3-((4-cyclopentyl-1H-1,2,3-triazol-1-yl)methyl)-4H-chromen-4-one (60)

Yield: 88% (pale yellow solid);
MP: $157-158^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3190,3010,1630,1450,1220,1040,770,670$;
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 1.64-1.81(\mathrm{~m}, 7 \mathrm{H}), 2.03-2.13(\mathrm{~m}, 2 \mathrm{H}), 3.09-3.22(\mathrm{~m}, 1 \mathrm{H})$, 5.39 (s, 2 H), 7.41-7.50 (m, 2 H), 7.58 ($\mathrm{s}, 1 \mathrm{H}$), $7.67-7.76$ (m, 1 H), 8.14 ($\mathrm{s}, 1 \mathrm{H}$), 8.23 (dd, J $=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 176.7$ (CO), 156.5 (C), 155.6 (CH), 152.9 (C), 134.3 $(\mathrm{CH}), 125.8(\mathrm{CH}), 125.7(\mathrm{CH}), 123.8(\mathrm{C}), 120.9(\mathrm{CH}), 119.4(\mathrm{C}), 118.3(\mathrm{CH}), 44.9\left(\mathrm{CH}_{2}\right)$, $36.7(\mathrm{CH}), 33.1\left(\mathrm{CH}_{2}, 2\right.$ carbons), $25.1\left(\mathrm{CH}_{2}, 2\right.$ carbons $)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$296.1394, found 296.1398.

16) 3-((4-cyclohexyl-1H-1,2,3-triazol-1-yl)methyl)-4H-chromen-4-one (6p)

Yield: 80% (pale yellow solid);
MP: $145-146{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3188,3020,1632,1433,1218,1042,768,670$;
${ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, CDCl $\mathbf{C l}_{3}$): $\delta 1.28-1.49(\mathrm{~m}, 5 \mathrm{H}), 1.70-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.96-2.07(\mathrm{~m}, 2 \mathrm{H})$, 2.64-2.80 (m, 1 H), 5.38 (s, 2 H), 7.41-7.50 (m, 2 H), 7.56 ($\mathrm{s}, 1 \mathrm{H}$), 7.67-7.75 (m, 1 H), 8.12 ($\mathrm{s}, 1 \mathrm{H}$), $8.23(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 176.7$ (CO), 156.5 (C), 155.6 (CH), 153.9 (C), 134.2 $(\mathrm{CH}), 125.8(\mathrm{CH}), 125.7(\mathrm{CH}), 123.8(\mathrm{C}), 120.6(\mathrm{CH}), 119.4(\mathrm{C}), 118.3(\mathrm{CH}), 44.9\left(\mathrm{CH}_{2}\right)$, $35.3(\mathrm{CH}), 32.9\left(\mathrm{CH}_{2}, 2\right.$ carbons), $26.1\left(\mathrm{CH}_{2}, 2\right.$ carbons $), 25.9\left(\mathrm{CH}_{2}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 310.1550$, found 310.1557.
17) 3-((4-(cyclohexylmethyl)-1H-1,2,3-triazol-1-yl)methyl)-4H-chromen-4-one (6q)

Yield: 88\% (colorless solid);
MP: $133-134{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$;
IR ($\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{\mathbf{- 1}}$): $v_{\max } 3686,3189,3021,2928,2853,2403,1647,1524,1465,1417,1350$, 1216, 1043, 926, 768, 671;
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 0.89-1.03(\mathrm{~m}, 2 \mathrm{H}), 1.14-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.60-1.72(\mathrm{~m}, 6 \mathrm{H})$, $2.56(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H}), 7.41-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}) 7.67-7.76(\mathrm{~m}, 1 \mathrm{H})$, 8.13 ($\mathrm{s}, 1 \mathrm{H}$), 8.23 (dd, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 176.7$ (CO), 156.5 (C), 155.5 (CH), 147.2 (C), 134.3 $(\mathrm{CH}), 125.8(\mathrm{CH}), 125.7(\mathrm{CH}), 123.8(\mathrm{C}), 122.5(\mathrm{CH}), 119.5(\mathrm{C}), 118.3(\mathrm{CH}), 44.9\left(\mathrm{CH}_{2}\right)$, $38.0(\mathrm{CH}), 33.4\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CH}_{2}, 2\right.$ carbons $), 26.4\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}, 2\right.$ carbons $)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 324.1707$, found 324.1710.
18) 3-((4-(9-hydroxy-9H-fluoren-9-yl)-1H-1,2,3-triazol-1-yl)methyl)-4H-chromen-4-one (6r)

Yield: 58\% (pale yellow solid);
MP: 239-240 ${ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$;
IR ($\left.\mathbf{C H C l}_{3}, \mathbf{c m}^{\mathbf{- 1}}\right): v_{\max } 3687,3188,3022,2403,1645,1522,1467,1421,1216,1043,926$, 769, 671;
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 1.74(\mathrm{bs}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 2 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.53(\mathrm{~m}, 6$ H), 7.61-7.74 (m, 5 H$), 8.13(\mathrm{~s}, 1 \mathrm{H}), 8.14-8.19(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 176.5$ (CO), 156.5 (C), $155.7(\mathrm{CH}), 147.6$ (C, 2 carbons), 139.6 (C, 2 carbons), $134.3(\mathrm{CH}), 129.7(\mathrm{C}), 129.5(\mathrm{CH}, 2$ carbons), $128.5(\mathrm{C}), 128.3(\mathrm{CH}$, 2 carbons), $125.9(\mathrm{CH}), 125.7(\mathrm{CH}), 124.9(\mathrm{CH}), 123.7(\mathrm{C}), 120.3(\mathrm{CH}, 2$ carbons), 120.2 $\left(\mathrm{CH}, 2\right.$ carbons), $119.0(\mathrm{C}), 118.3(\mathrm{CH}), 45.0\left(\mathrm{CH}_{2}\right)$.

HRMS (ESI): m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 408.1343$, found 408.1349.
19) 3-((4-(15-hydroxypentadecyl)-1H-1,2,3-triazol-1-yl)methyl)-4H-chromen-4-one (6s)

Yield: 84% (pale yellow solid);
MP: $123-124{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{3}$;
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{\mathbf{- 1}}\right): v_{\max } 3688,3391,3023,2930,2403,2354,1648,1524,1427,1216,1026$, 928, 768, 671;
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 1.25-1.37(\mathrm{~m}, 22 \mathrm{H}), 1.57-1.72(\mathrm{~m}, 4 \mathrm{H}), 2.68(\mathrm{t}, J=6.57$ $\mathrm{Hz}, 2 \mathrm{H}), 3.65(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H}), 7.41-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.76$ (m, 1 H), $8.13(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 176.7$ (CO), 156.5 (C), 155.5 (CH), 148.7 (C), 134.3 $(\mathrm{CH}), 125.8(\mathrm{CH}), 125.7(\mathrm{CH}), 123.8(\mathrm{C}), 121.9(\mathrm{CH}), 119.5(\mathrm{C}), 118.4(\mathrm{CH}), 63.0\left(\mathrm{CH}_{2}\right)$, $44.9\left(\mathrm{CH}_{2}\right), 32.8\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}, 7\right.$ carbons $), 29.5\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.2$ $\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 454.3064$, found 454.3074.

20) 2-((1H-1,2,3-triazol-1-yl)methyl)-4H-chromen-4-one (6t)

Yield: 38\% (pale yellow solid);
MP: $117-118{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$;
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{\mathbf{- 1}}\right): v_{\max } 3687,3412,3022,2403,2356,1649,1523,1470,1421,1216,1069$, 1025, 927, 770, 672;
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 5.47(\mathrm{~s}, 2 \mathrm{H}), 7.42-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.92$ (s, 1 H), 8.16 ($\mathrm{s}, 1 \mathrm{H}$), 8.23 (dd, $J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 176.7$ (CO), 156.5 (C), 155.5 (CH), 134.3 (CH), 133.9 $(\mathrm{CH}), 125.8\left(\mathrm{CH}, 2\right.$ carbons), $124.8(\mathrm{CH}), 123.8(\mathrm{C}), 119.3(\mathrm{C}), 118.4(\mathrm{CH}), 45.0\left(\mathrm{CH}_{2}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 228.0768$, found 228.0771.

In-vitro MTB MABA assay

Briefly, the inoculum was prepared from fresh LJ medium re-suspended in 7H9-S medium (7H9 broth, 0.1% casitone, 0.5% glycerol, supplemented oleic acid, albumin, dextrose, and catalase [OADC]), adjusted to a McFarland tube No. 1, and diluted 1:20; 100μ l was used as inoculum. Each drug stock solution was thawed and diluted in 7H9-S at four-fold the final highest concentration tested. Serial two-fold dilutions of each drug were prepared directly in a sterile 96 -well microtiter plate using $100 \mu 17 \mathrm{H} 9-\mathrm{S}$. A growth control containing no antibiotic and a sterile control was also prepared on each plate. Sterile water was added to
all perimeter wells to avoid evaporation during the incubation. The plate was covered, sealed in plastic bags and incubated at $37{ }^{\circ} \mathrm{C}$ in normal atmosphere. After 7 days incubation, 30 ml of Alamar blue solution was added to each well, and the plate was re-incubated overnight. A change in color from blue (oxidized state) to pink (reduced) indicated the growth of bacteria, and the MIC was defined as the lowest concentration of drug that prevented this change in color.

In-vitro cytotoxicity screening

Some compounds were further examined for toxicity in a RAW 264.7 cell line at the concentration of $50 \mu \mathrm{M}$.

	MIC in $\mu \mathrm{M}$
Rifampicin	0.24
Ethambutol	7.64

After 72 h of exposure, viability was assessed on the basis of cellular conversion of MTT into a formazan product using the Promega Cell Titer 96 non-radioactive cell proliferation assay.

3.1.6. Spectra

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2}$

ACS-50C.ESP

3.1.7. References

1. (a) Zumla, A.; Raviglione, M.; Hafner, R.; von Reyn, F. N. Engl. J. Med. 2013, 368, 745; (b) Russell, D. G.; Barry, C. E., III; Flynn, J. L. Science 2010, 328, 852.
2. World Health Organization Global Tuberculosis Report 2017; http://www.who.int/tb/publications/global report/en/
3. Kalia, N. P.; Hasenoehrl, E. J.; Ab Rahman, N. B.; Koh, V. H.; Ang, M. L. T.; Sajorda, D. R.; Hards, K.; Gruber, G.; Alonso, S.; Cook, G. M.; Berney, M.; Pethe, K. Proc. Natl. Acad. Sci. 2017, 114, 7426.
4. (a) Corbett, E. L.; Watt, C. J.; Walker, N.; Maher, D.; Williams, B. G.; Raviglione, M. C.; Dye, C. Arch Intern Med 2003, 163, 1009; (b) Nikalje, A. G.; Mudassar, P. Asian J. Biol. Sci. 2011, 4, 101.
5. Caminero, J. A.; Sotgiu, G.; Zumla, A.; Migliori, G. B. Lancet Infect. Dis. 2010, 10, 621.
6. O’Brien, R. J.; Nunn, P. P. Am. J. Respir. Crit. Care Med. 2001, 162, 1055; (b) Laughon, B. E. Curr. Top. Med. Chem. 2007, 7, 463; (c) Duncan, K.; Barry, C. E., Curr. Opin. Microbiol. 2004, 7, 460.
7. (a) Lienhardt, C.; Vernon, A.; Raviglione, M. C. Curr. Opin. Pulm. Med. 2010, 16, 186; (b) Young, D. B.; Perkins, M. D.; Duncan, K.; Barry, C. E., III J. Clin. Invest. 2008, 118, 1255.
8. (a) Harvey, A. L. Drug Discovery Today 2008, 13, 894; (b) Cragg, G. M.; Grothaus, P. G.; Newman, D. J. In Natural products in drug discovery: recent advances 2012 John Wiley \& Sons, Inc.; pp 1-4; (c) Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2007, 70, 461; (d) Shu, Y.-Z. J. Nat. Prod. 1998, 61, 1053.
9. (a) Hinterding, K.; Alonso-Diaz, D.; Waldmann, H. Angew. Chem., Int. Ed. 1998, 37, 688. (b) Hung, D. T.; Jamison, T. F.; Schreiber, S. L. Chem. Biol. 1996, 3, 623.
10. (a) Frank, R. Curr. Opin. Biotechnol. 2004, 15, 573; (b) Ortholand, J. Y.; Ganesan, A. Curr. Opin. Chem. Biol. 2004, 8, 271; (c) Mehta, G.; Singh, V. Chem. Soc. Rev. 2002, 31, 324; (d) Koch, M. A.; Schuffenhauer, M.; Scheck, M.; Wetzel, S.; Casaulta, M.; Odermatt, A.; Ertl, P.; Waldmann, H. Proc. Natl. Acad. Sci. 2005, 102, 17272.
11. (a) Cordell, G. A.; Shin, Y. G. Pure Appl. Chem. 1999, 71, 1089. (b) Corley, D. G.; Durley, R. C. J. Nat. Prod. 1994, 57, 1484-1490. (c) Cordell, G. A. Phytochemistry 1995, 40, 1585.
12. (a) Ellis, G. P.; Editor Chemistry of Heterocyclic Compounds, Vol. 31: Chromenes, Chromanones and Chromones; Wiley, 1977; (b) Keri, R. S.; Budagumpi, S.; Pai, R. K.; Balakrishna, R. G. Eur. J. Med. Chem. 2014, 78, 340; (c) Sharma, S. K.; Kumar, S.; Chand, K.; Kathuria, A.; Gupta, A.; Jain, R. Curr. Med. Chem. 2011, 18, 3825.
13. (a) Saengchantara, S. T.; Wallace, T. W. Nat. Prod. Rep. 1986, 3, 465; (b) Havsteen, B. Biochem. Pharmacol. 1983, 32, 1141.
14. (a) Park, J. H.; Lee, S. U.; Kim, S. H.; Shin, S. Y.; Lee, J. Y.; Shin, C.-G.; Yoo, K. H.; Lee, Y. S. Arch. Pharmacal Res. 2008, 31, 1; (b) Cottiglia, F.; Dhanapal, B.; Sticher, O.; Heilmann, J. J. Nat. Prod. 2004, 67, 537; (c) Gomes, A.; Neuwirth, O.; Freitas, M.; Couto, D.; Ribeiro, D.; Figueiredo, A. G. P. R.; Silva, A. M. S.; Seixas, R. S. G. R.; Pinto, D. C. G. A.; Tome, A. C.; Cavaleiro, J. A. S.; Fernandes, E.; Lima, J. L. F. C. Bioorg. Med. Chem. 2009, 17, 7218; (d) Emami, S.; Ghanbarimasir, Z. Eur. J. Med. Chem. 2015, 93, 539.
15. Gale, G. A.; Kirtikara, K.; Pittayakhajonwut, P.; Sivichai, S.; Thebtaranonth, Y.; Thongpanchang, C.; Vichai, V. Pharmacol Ther 2007, 115, 307.
16. a) Kissau, L.; Stahl, P.; Mazitscheak, R.; Giannis, A.; Waldmann, H, J. Med. Chem, 2003, 46, 2917; b) Su, Q.; Beeler, A. B.; Lobkovsky, E.; Porco, J. A.; Penek, J. S. Org. Lett., 2003, 5, 2149; c) Boger, D. L., Bioorg Med Chem., 2003, 11, 1607.
17. Vanhoecke, B. W.; Delporte, F.; Van Braeckel, E.; Heyerick, A.; Depypere, H. T.; Nuytinck, M.; De Keukeleire, D.; Bracke, M. E. In Vivo. 2005, 19, 103.
18. (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004.; (b) Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Chem. Rev. 2013, 113, 4905.
19. (a) Xu, Z.; Song, X.-F.; Hu, Y.-Q.; Qiang, M.; Lv, Z.-S. Eur. J. Med. Chem. 2017, 138, 66; (b) Zhang, S.; Xu, Z.; Gao, C.; Ren, Q.-C.; Chang, L.; Lv, Z.-S.; Feng, L.S. Eur. J. Med. Chem. 2017, 138, 501; (c) Zhou, B.; He, Y.; Zhang, X.; Xu, J.; Luo, Y.; Wang, Y.; Franzblau, S. G.; Yang, Z.; Chan, R. J.; Liu, Y.; Zheng, J.; Zhang, Z.Y. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 4573.
20. Mdluli, K.; Spigelman, M. Curr. Opin. Pharmacol. 2006, 6, 459.
21. Munier-Lehmann, H.; Chaffotte, A.; Pochet, S.; Labesse, G. Protein Sci. 2001, 10, 1195.
22. Morgunova, E.; Meining, W.; Illarionov, B.; Haase, I.; Jin, G.; Bacher, A.; Cushman, M.; Fischer, M.; Ladenstein, R. Biochemistry 2005, 44, 2746.
23. Rozwarski, D. A.; Grant, G. A.; Barton, D. H. R.; Jacobs, W. R., Jr.; Sacchettini, J. C. Science 1998, 279, 98.
24. Tizon, L.; Otero, J. M.; Prazeres, V. F. V.; Llamas-Saiz, A. L.; Fox, G. C.; van Raaij, M. J.; Lamb, H.; Hawkins, A. R.; Ainsa, J. A.; Castedo, L.; Gonzalez-Bello, C. J. Med. Chem. 2011, 54, 6063.
25. Grundner, C.; Perrin, D.; Hooft van Huijsduijnen, R.; Swinnen, D.; Gonzalez, J.; Gee, C. L.; Wells, T. N.; Alber, T. Structure 2007, 15, 499.
26. Cheng, Y.-S.; Sacchettini, J. C. Biochemistry 2016, 55, 1107.
27. Rucci, N.; Recchia, I.; Angelucci, A.; Alamanou, M.; Del Fattore, A.; Fortunati, D.; Susa, M.; Fabbro, D.; Bologna, M.; Teti, A. J. Pharmacol. Exp. Ther. 2006, 318, 161.
28. (a) Halgren, T. A.; Murphy, R. B.; Friesner, R. A.; Beard, H. S.; Frye, L. L.; Pollard, W. T.; Banks, J. L. J. Med. Chem. 2004, 47, 1750; (b) Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S. J. Med. Chem. 2004, 47, 1739.
29. Le Guilloux, V.; Arrault, A.; Colliandre, L.; Bourg, S.; Vayer, P.; Morin-Allory, L. J. Cheminf. 2012, 4, 20.
30. Lee, S.K.; Park, S. H.; Hee, I. H.; No, K. T. PreAD-MET Ver. v2.0, BMDRC: 2007, Seoul. Korea.
31. Tripathi, M.; Khan, S. I.; Thakur, A.; Ponnan, P.; Rawat, D. S. New J. Chem. 2015, 39, 3474.
32. Ren, S.; Lien, E. J. Prog. Drug Res. 2000, 54, 1.
33. Maunz, A.; Guetlein, M.; Rautenberg, M.; Vorgrimmler, D.; Gebele, D.; Helma, C. Front. Predict. Toxic. 2013, 4, 00038.
34. Jiang, X.; Wang, J.-M.; Zhang, Y.; Chen, Z.; Zhu, Y.-M.; Ji, S.-J. Org. Lett. 2014, 16, 3492.

3.2. SECTION 2

Synthesis, biological evaluation and molecular modeling studies of novel chromone/aza-chromone fused α-aminophosphonates as c-Src kinase inhibitors

3.2.1. Introduction

Protein tyrosine kinases (PTKs) are a large family of cytoplasmic enzymes that catalyze the phosphorylation of proteins to change their protein activity. Protein phosphorylation is an enzymatic process which involves the transport of the γ-phosphoryl group from ATP to hydroxyl group of the serine, threonine, or tyrosine residue in many proteins. ${ }^{1}$ In this process, adenosine triphosphate (ATP) or guanosine triphosphate (GTP) serves as the phosphoryl donor, while serine and threonine and tyrosine residues are the phosphoryl receptors. The Src family kinases (SFKs) are non-receptor tyrosine kinases comprises of nine different PTKs in mammalian cells including c-Src, c-Yes, Fyn, Lck, Lyn, Hck, Frk, Blk and c-Fgr. ${ }^{2}$ Based on expression pattern in the body, these members are further subclassified into three groups. The first group includes Src, Yes, Fgr, and Fyn, are expressed in wide range of tissues; the second group includes Lyn, Hck, Lck, and Blk, are primarily expressed in hematopoietic cells; in the third group, Frk-related kinases are mainly expressed in epithelial-derived cells. ${ }^{3}$ The organization of Src family kinases consists of five distinct regions: a 14-carbon N-terminal myristoylated segment attached to an SH4 domain, unique domain (non-conserved region) followed by modular SH3 domain, SH2 domain, SH2-kinase regulatory linker region and tyrosine kinase domain (the SH1 domain), and a carboxyl (C)-terminal regulatory segment (Figure 1). ${ }^{4}$

Figure 1. Structural domain of Src family kinases

Tyr416 or Y416 and Tyr527 or Y527 are the two regulatory phosphorylation sites at the activation loop of the kinase domain (SH1) promotes the activity of the enzyme and at Cterminal tail to inactivate the enzyme respectively. ${ }^{5}$ SFKs play important roles in the regulation of a wide array of normal cellular signal transduction pathways, such as cell division, growth factor signaling differentiation, survival, adhesion, migration and invasion. ${ }^{6}$ Sre tyrosine kinase overexpression or mutations are associated with malignant transformation in many human cancer diseases, such as colon, lung, breast, prostate, ovary and pancreas. ${ }^{7}$ Boustinib (SKI-6606), dasatinib (BMS-354825), saracatinib (AZD-0530) and ponatinib are some of the $\mathrm{Src} /$ multikinase inhibitors that have been approved by the FDA for the treatment of chronic myelogenous leukemia and few others KX2-391, INNO-406, XL-999 and XL-228 are in clinical trial for a variety of solid tumors (Figure 2). ${ }^{8}$ In addition, it has been recognized that Src kinases could be important in diseases related to multiple organ systems. For example, Src inhibitor saracatinib is being investigated in six non-oncological indications. Hence, there has been rising interest in the development of Src kinase inhibitors in recent years, both for their use as research probes, delineating the specific functions of these kinases, and as potential anticancer/related therapeutics. ${ }^{9}$

Natural products are well recognized as biologically prevalidated starting points for drug discovery. ${ }^{10}$ Many strategies are being adapted to exploit advantageously the features of natural products in the design of novel small molecules for various biological applications. One such a successful approach is based on the concept of "molecular hybridization approach" as it combines the structural features of different classes of compounds to provide compounds with improved or unprecedented biological activities. ${ }^{11}$

Dasatinib

Saracatinib

Bosutinib

Ponatinib

KX2-391

XL-999

Figure 2. Representative examples of Src kinase inhibitors (marketed drugs/clinical trials)
α-aminophosphonates and α-aminophosphonic acids constitute an important group of naturally occurring compounds that are considered as structural analogues of the natural α amino acids. ${ }^{12}$ They have a broad range of medicinal applications and employed as antibiotics, enzyme inhibitors, herbicides, HIV protease, peptide mimics, plant growth regulators etc,.13 Further, they are well known for their biological activities such as anticancer, antiviral, antifungal and anti-leishmanial. ${ }^{14}$ In many instances, it has been shown that these α-aminophosphonates has been incorporated into the organic heterocycles/natural products and newly generated hybridized molecules often exhibit improved or unprecedented biological properties.

3.2.2. Present work

Objective

In the previous section, synthesis of various chromone-triazole conjugates were prepared and evaluated their anti-TB potential. Further, chromone and coumarin derivatives are known for the inhibition of Src kinase protein as well. ${ }^{15}$ Intrigued by these reports, in this section we describe the synthesis of new chromone/azachromone fused α-amino phosphonates and study their c-Src kinase inhibitory activity. Further, we studied the molecular docking and chemoinformatics analysis to understand the drug-likeliness and effectiveness of these molecules against phosphorylated/unphosphorylated form of Src kinase.

Figure 3. Design of chromone/azachromone fused α-aminophosphonate conjugates

3.2.3 Results and Discussion

Chemistry

Firstly, the precursor 3-chromone/azachromone carboxaldehyde 1a,b was synthesized from commercially available 2-hydroxyacetophenone/2-aminoacetophenone using a Vilsmeier condition as per well known reported procedure. ${ }^{16}$ Synthesis of the
targeted chromone/azachromone fused α-aminophosphonate derivatives ($\mathbf{4} \mathbf{a} \mathbf{- q}$) were prepared through a three-component reaction involving aldehydes, amines and phosphites employing Kabachnik-Fields reaction condition. Usually, this reaction is performed in the presence of suitable Lewis and Bronsted acid catalysts, alkali metal alkoxides, solid catalysts, rare earth element or metal triflates and in ionic liquids. ${ }^{17}$ Furthermore, few methods are catalyzed under solvent-free conditions for the synthesis of α aminophosphonates. ${ }^{18}$ However, many of these reported methods associated with disadvantages such as harsh reaction conditions, moisture sensitive, toxic or hazardous reagents, expensive catalysts, low yields, prolonged reaction times, and tedious workup procedures. Quite, incidentally, we discovered that silica chloride can act as a better catalyst for the Kabachnik-Fields reaction. Accordingly, 3-chromone carboxaldehyde/3-azachromone carboxaldehyde 1a,b on condensation with different aryl amines (2) and diethyl phosphite (3) in the presence of silica chloride in ethanol at $60{ }^{\circ} \mathrm{C}$ afforded chromone/azachromone fused α-aminophosphonate conjugates 4a-q (Scheme 1).

Scheme 1. Reagents and conditions: (i) POCl_{3}, DMF, $\mathrm{H}_{2} \mathrm{O}, 55^{\circ} \mathrm{C}, 7 \mathrm{~h}, \mathbf{1 a}$ (75\%) 1b (85\%); (ii) aromatic substituted amines 2, diethylphosphite 3, silica chloride, EtOH, $60^{\circ} \mathrm{C}, 8-12 \mathrm{~h}$.

Entry	R	Time; Yield
4 a	$\mathrm{C}_{6} \mathrm{H}_{5}$	(8h, 85\%)
4b	(p-OMe) $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{-}$	(12h, 60\%)
4 c	(o-OMe) $\mathrm{C}_{6} \mathrm{H}_{5}$	(10h, 82\%)
4d	$(m-\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{5}{ }^{-}$	(12h, 35\%)
4 e	$(m-\mathrm{F}) \mathrm{C}_{6} \mathrm{H}_{5}$	(12h, 70\%)
4 f	(o-'Pr) $\mathrm{C}_{6} \mathrm{H}_{5}$	(10h, 80\%)
4 g	$(o-\mathrm{Cl}) \mathrm{C}_{6} \mathrm{H}_{5}$	(10h, 78\%)
4 h	(p-OMe) $\mathrm{C}_{6} \mathrm{H}_{5}$	(8h, 80\%)
4 i	$(m-\mathrm{Cl}) \mathrm{C}_{6} \mathrm{H}_{5}{ }^{-}$	(12h, 76\%)

Most of the compounds were obtained in good yields (60-85\%) with a reaction time of 8-12 hours. All the new compounds $\mathbf{4 a - q}$ were fully characterized by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopic analysis. For example, in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a}$, the signals of the two methyleneoxy $\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ protons attached with phosphorus was observed at δ 4.0-4.40 ppm as multiplets and two methyl $\left(-\mathrm{OCH}_{2} \mathbf{C H}_{3}\right)$ protons were discernible at $\delta 1.19 \mathrm{ppm}$ and $\delta 1.34 \mathrm{ppm}$ as triplets. The chemical shifts correspond to two methyl protons $\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ were different due to the low rate of environmental exchange caused by the slow rotation of the P-C bond. Due to the coupling with the phosphorous atom, the signals of methylene proton $(\mathrm{P}(\mathrm{O}) \mathrm{CH})$ appeared at $\delta 5.37 \mathrm{ppm}$ as a doublet with coupling constant ${ }^{2} J_{\mathrm{PH}}=24.0$ Hz . In the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a}$, the signals appeared as doublets at $\delta 176.3,155.1$, $63.8,63.4,45.1,16.4$, and $\delta 16.3 \mathrm{ppm}$ corresponding to carbonyl (CO), C-2 chromone carbon, $-\mathrm{O}_{\mathbf{C}}^{2} \mathrm{CH}_{3},-\underline{\mathbf{C H P}}(\mathrm{O})$ and $-\mathrm{OCH}_{2} \mathbf{C H}_{3}$ with coupling constants $3.8 \mathrm{~Hz}, 5.4 \mathrm{~Hz}, 7.0$ Hz and 5.4 Hz respectively. Further, the formation of $\mathbf{4 a}$ was confirmed by its IR spectra, the absorption band corresponds to carbonyl and -NH displayed at $1643 \mathrm{~cm}^{-1}$ and $3409 \mathrm{~cm}^{-}$ ${ }^{1}$. The structures of all the compounds $\mathbf{4 a - q}$ were further confirmed by HRMS analysis.

c-Src kinase inhibitory activity

An array of all the synthesized compounds ($\mathbf{4 a - q}$) was evaluated for their $\mathrm{c}-\mathrm{Src}$ kinase inhibitory activity. The results of c-Src kinase inhibitory potency $\mathbf{4} \mathbf{a} \mathbf{- q}$ are depicted in Table 1. The IC_{50} value $(\mu \mathrm{M})$ was determined for each compound. Protein kinase inhibitor, Staurosporine, and an Src kinase inhibitor, PP2 were employed as the positive controls. Out of the seventeen compounds screened, three compounds ($\mathbf{4} \mathbf{c}, \mathbf{4} \mathbf{j}, \mathbf{4 0}$) showed moderate c-Src kinase inhibition in the range of IC_{50} values between $15.8-63.6 \mu \mathrm{M}$. In particular, 4-isopropyl derivative ($\mathbf{4} \mathbf{j}$), was identified as the most potent compound with $\mathrm{IC}_{50}=15.8 \mu \mathrm{M}$ in the series. Structure-activity relationship studies suggest that the presence electron donating group 2-methoxy group in compound $\mathbf{4 c}$ exhibits modest activity with IC $_{50}$ value $40.6 \mu \mathrm{M}$ and presence of methoxy group present at C 4 -position of aniline ring $(\mathbf{4 b}, \mathbf{4 h}, \mathbf{4 q})$ didn't show the inhibitory activity. Introduction of electronegative fluorine group at C3-position in amine aromatic ring of aza-chromone derivative 40 showed significant activity with IC_{50} value $63.6 \mu \mathrm{M}$, whereas in chromone derivative $4 \mathbf{e}$ showed the poor inhibitory activity. The replacement with chlorine group at C2-position in amine aromatic ring (4i) exhibited the weaker activity with IC_{50} value $85.0 \mu \mathrm{M}$, whereas in

Table 1. In vitro c-Src kinase inhibitory activity of chromone/aza-chromone fused α aminophosphonates
Entry

[^0]compounds $\mathbf{4 g}, \mathbf{4 k}$ didn't show any significant c-Src kinase inhibitory activity. Furthermore, the 2,2,6,6-tetramethylpiperidine (4l) derivative showed weak inhibitory activity with IC_{50} value $98.1 \mu \mathrm{M}$. The unsubstituted aromatic amine ring of compound $\mathbf{4 a}$ and the rest of the substituted derivatives $(\mathbf{4 d}, \mathbf{4 f}, \mathbf{4 m} \mathbf{- n}, \mathbf{4 p})$ with IC_{50} values more than $150 \mu \mathrm{M}$ showed the poor activity against c-Src kinase.

Computational studies

Methodology

Preparation of macromolecule

The protein targets retrieved from RCSB Protein Data Bank were unphosphorylated proto-oncogenic tyrosine protein kinase Src (PDB code 1Y57) and phosphorylated tyrosine protein kinase Src (PDB code 2 H 8 H) which served as docking receptors. The proteins were fixed for errors in atomic representations and optimized using Protein Preparation Wizard Maestro v10.3. ${ }^{19}$ The bond orders were assigned to residues, hydrogen atoms were added at pH 7.0. Minimization was carried out using OPLS 2005 force field with an RMSD cut-off value of 0.3 Á.

Preparation of ligands

The 2D structures of all compounds i.e. $\mathbf{4 c}, \mathbf{4 i}, \mathbf{4 j}$, staurosporine, and PP2 were drawn and analyzed by Marvin view. The compounds were converted to 3D structure (.pdb) using LigPrep tool. ${ }^{20}$ LigPrep is a Schrödinger suite tool which is used to generate 3D structures from 2D structures, search tautomers, isomers for compounds and carry out energy minimization by applying the OPLS 2005 force field.

Molecular docking

The molecular docking was performed and analyzed via the Glide v6.8 docking tool. ${ }^{21}$ The receptor grid was centered based on the active site of the protein using receptor grid generation tool. Ligands prepared using LigPrep were flexibly docked in grid box using Monte Carlo based simulation algorithm. An extra precision (XP) method was employed that generated binding poses based on energy. The favourably docked molecules were ranked according to the Glide Score.

Molecular docking analysis

With an objective to explore the binding potential of the synthesized and tested molecules for c-Src tyrosine kinase, we performed docking studies as shown in Table 2. Among the 17 structures, compounds $\mathbf{4 c}, \mathbf{4 i}$, and $\mathbf{4} \mathbf{j}$ were mainly investigated further for docking simulations since they exhibit higher inhibitory activity as ascertained from their MIC data (Table 1).

Table 2. Molecular docking analysis of phosphorylated and unphosphorylated c-Src kinase tyrosine protein with selected compounds. The binding energies were calculated using Glide v6.8 docking tool: No docking score was obtained.

		Unphosphorylated Protein: 1Y57		Phosphorylated Protein: 2H8H	
Sr. No	Entry	Aminoacids involved in intermolecular interactions	GLIDE Score $(k c a l / m o l)$	Amino acids involved in intermolecular interactions	GLIDE Score $(\mathrm{kcal} / \mathrm{mol})$
1	4 c	Lys295 Asp404	-4.5	Lys295 Ala390	-5.0
2	4 i	Asp404	-4.4	Lys295	-4.6
3	4 j	Lys295 Ala390	$\mathbf{- 5 . 4}$	Asn391 Lys295	$\mathbf{- 6 . 5}$
4	4 p	-	-	Ala390 Ser345	-6.10
5	4 m	-	Lys295 Ala390	-4.18	
6	Staurosporine	Met341	Met341	-7.6	-
7	PP2		-8.3	-	

Human c-Src tyrosine kinase is a multi-domain protein consisting of 535 amino acids possessing SH3, SH2 domains followed by a short N-terminal and C-terminal regulation segment. ${ }^{22}$ In the unphosphorylated structure, the SH 2 and SH 3 domains lie at a right angle to each other, with the only SH3 domain in contact with the N-terminal lobe. The SH 3 domain is bound between SH 2 and kinase domains in this inactive conformation. ${ }^{23}$ The C-terminal tail folds back to N -terminal, and the active site is exposed as it is not blocked by the activation loop. ${ }^{24}$ Upon phosphorylation of Tyr527 in C-terminal or Tyr 416 in the activation loop, the SH 2 and SH 3 domains lie parallel to the N and C lobes forming an open and closed cleft that determines the access to the catalytic site. ${ }^{25}$ Phosphorylation of Tyr 527 down-regulates the kinase activity and phosphorylation of Tyr 416 is deemed necessary for exhibiting full kinase activity. The binding site for c-Src protein is an ATP
pocket present in the N -lobe region. ${ }^{26}$ The residues lining the binding site of the protein were extracted from the X-ray data (Table 3). Figure 3 displays the four subunits of the unphosphorylated c-Src Tyrosine kinase protein as well as the native ligand imatinib derivative.

Figure 3. A) Structure of c-Src kinase protein (PDB ID: 1Y57) composed of the SH2 domain, SH3 domain, N-lobe, and C-lobe. B) Native ligand imatinib derivative (green) bound to the active site residues (blue).

Table 3. Amino acids residues present in the Src kinase pocket region

Sr no.	Pocket region	Amino acid residues in the binding region
1	Glycine-rich region and P-loop region	Leu273, Gly274, Gln275, Val281
2	Hinge region	Thr338, Gly339, Tyr340, Met341
3	Activation loop	Leu393
4	C terminal region	Trp260, Glu310,
5	DGF Motif	Asn404, Phe405, Gly406
6	$\beta 3$ of the N-terminal lobe	Ala293

All the synthesized compounds were docked into the ATP binding site which is located at a cleft between the N and C-terminal lobes, flanked by the hinge region, P -loop, helix $\alpha \mathrm{C}$ and the activation loop. The docked orientations of the $\mathbf{4} \mathbf{j}$ compound with respect to the native ligands imatinib derivative in unphosphorylated protein (1Y57) and anilino quinazoline derivative with phosphorylated protein $(2 \mathrm{H} 8 \mathrm{H})$ in the pocket site are depicted in Figure 4 and 5 respectively. Compound $\mathbf{4 j}$ and $\mathbf{4 c}$ were bound to the Lys295 residue present in the C-terminal region of the pocket that acts as an important site for catalysis, binding of a compound to the terminal inhibits further kinase activity. Docking against the unphosphorylated protein (1Y57) showed that compound $\mathbf{4 j}$ performed better with -5.4 $\mathrm{kcal} / \mathrm{mol}$ binding energy as compared to $\mathbf{4 c}$ and $\mathbf{4 i}$ which displayed -4.5 and $-4.4 \mathrm{kcal} / \mathrm{mol}$ binding energy respectively and formed only a single hydrogen acceptor bond with Asp 404
(Table 2). It is to be noted here that the compound $\mathbf{4} \mathbf{j}$ displayed a similar good docking score of $-6.5 \mathrm{kcal} / \mathrm{mol}$ with the phosphorylated protein $(2 \mathrm{H} 8 \mathrm{H})$ as well. It formed two key interactions with both the proteins. The interaction with Lys 295 is common in both the receptors, however in the unphosphorylated protein (1Y57) it formed a bonded interaction with Ala390 and in the phosphorylated protein, it formed a bond with the Asn 391 residue (Figure 6).

Fig (6). Amino acids involved in key intermolecular interactions for A) Compound 4c B) Compound 4i C) Compound 4j D) Compound 4p E) Compound 4m F) Staurosporine and G) PP2 for unphosphorylated protein (1Y57) and phosphorylated protein $(2 \mathrm{H} 8 \mathrm{H})$.

As the compounds $\mathbf{4} \mathbf{p}$ and $\mathbf{4} \mathbf{j}$ had no significant difference in the docking scores there was a need to explore a plausible explanation of higher in vitro bioactivity exhibited by the compound $\mathbf{4 j}$. A comparative conformation analysis of the docked poses of $\mathbf{4} \mathbf{j}, \mathbf{4 p}$, and $\mathbf{4 m}$ in the 2 H 8 H pocket region led to a few interesting observations (Figure 7). It is to be noted that the isopropyl aniline and methyl groups of compound $\mathbf{4 j}$ and $\mathbf{4 p}$ respectively fit in the pocket regions, whereas the isopropyl aniline group in the compound $\mathbf{4 m}$ seems to protrude out of the pocket region thereby leading to a lower binding efficiency. In the docked conformation of $\mathbf{4 p}$, the methyl group does not seem to fit well into the active site cavity.

Fig (7). Figure showing the orientation of the compounds A) 4 j B) 4 p and C) 4 m in the 2 H 8 H pocket region. The green dots represent the functional group position of the compounds in the docked complex.

These observations indicate that the para-orientation of the isopropyl group in the aniline ring in compound $\mathbf{4 j}$ may have an important role in anchoring it within the active site of the receptor.

Chemoinformatics Analysis

A druggability check was performed for all the 17 synthesized compounds (Table 4). Lipinski rule of 5 predictions was performed using the Screening Assistant 2 tool. ${ }^{27}$ Most of the compounds displayed no violation of the standard Rule of 5 indicating they possess good drug-like properties. A drug-like and lead-like property analysis generated a score of 0.372 and 0.125 respectively. The notion that these compounds could be further developed as anti-cancer compounds were further assisted by ADME properties predicted using the PreADMET software. ${ }^{28}$ The compounds possessed the desirable range of BBB model suggesting good pharmacological profile. It is well established that for a compound to be accepted in an oral dosage form, CaCo 2 cell permeability selected compound $\mathbf{4 k}$ prioritized in this study fulfilled the above 25 nms and the Human Intestinal Absorption (HIA) quantities should lie in the $50-100 \%$ range. The selected compound $\mathbf{4 j}$ prioritized in this study fulfilled the above criteria indicating that it may be further developed in an oral dosage form. TPSA (Topological polar surface area) results indicated satisfactory values for all the 17 compounds. ${ }^{29}$ Thus most synthesized compounds predicted favourable ADME predictions. LAZAR (Lazy structure-activity relationships) software detects carcinogenic properties based on the similarities in functional group with carcinogenic compounds present in the Lazar database. ${ }^{30}$ Based on this software, all the compounds predicted noncarcinogenic properties wherein the confidence value greater than 0.025 suggested the
model to give highly reliable predictions.
Table 4. Chemoinformatics analysis

Properties	Compounds								
	4 a	4b	4c	4d	4 e	4 f	4g	4h	4i
Lipinski Rule ${ }^{\text {a }}$									
Molecular	387.37	431.42	417.39	403.37	405.36	429.45	421.81	417.39	421.81
weight	2	5	8	1	2	3	7	8	7
HB accept	4	6	5	5	4	4	4	5	4
HB donor	1	1	1	2	1	1	1	1	1
LogP	9.1135	9.0915	9.7864	8.2982	9.1296	$\begin{gathered} 11.211 \\ 8 \end{gathered}$	9.6439	9.7864	9.6439
Chemical properties									
Weiner path ${ }^{\text {b }}$	1704	2424	2046	1882	1882	2233	1861	2130	1882
Ring count ${ }^{\text {a }}$	3	3	3	3	3	3	3	3	3
PDL ${ }^{\text {a }}$	0.375	0.25	0.375	0.25	0.375	0.375	0.375	0.375	0.375
PLL ${ }^{\text {a }}$	0.125	0.25	0.125	0.125	0.125	0.25	0.125	0.125	0.125
ADME properties									
$\begin{gathered} \hline \text { BBB }(-3.0- \\ 1.2)^{\mathrm{c}} \\ \hline \end{gathered}$	1.27	0.65	1.12	0.71	1.21	0.90	1.29	1.07	1.19
CaCo 2 $(\mathrm{nms})(<25$, poor, >500, best $^{\mathrm{c}}$	21.70	21.71	21.70	21.57	21.70	21.71	21.48	21.70	21.51
$\begin{aligned} & \hline \text { HIA (50- } \\ & 100 \%)^{\mathrm{c}} \\ & \hline \end{aligned}$	96.916	97.519	97.30	94.45	96.91	96.73	96.61	98.87	95.02
Rotatable bonds (0 $15)^{a}$	10	13	12	11	10	13	10	12	10
$\begin{gathered} \text { TPSA }(7.0- \\ 200.0)^{\mathrm{b}} \\ \hline \end{gathered}$	73.86	83.09	83.09	94.09	73.86	73.86	73.86	83.09	73.86
Toxicity properties ${ }^{\text {d }}$									
DSSTox Carcinogeni c potency Mouse						-		$\begin{aligned} & \text { Neg. } \\ & \text { (C: } \\ & 0.080) \end{aligned}$	$\begin{gathered} \text { Neg. } \\ \text { (C: } \\ 0.006) \end{gathered}$
Properties	Compounds								
	4j	4k	41	4m	4n	40	4p	4q	
Lipinski Rule ${ }^{\text {a }}$									
Molecular weight	$\begin{gathered} 428.46 \\ 9 \end{gathered}$	$\begin{gathered} 420.83 \\ 3 \end{gathered}$	$\begin{gathered} 449.53 \\ 2 \end{gathered}$	$\begin{gathered} 428.46 \\ 9 \end{gathered}$	$\begin{gathered} 430.39 \\ 7 \end{gathered}$	$\begin{gathered} 404.37 \\ 8 \end{gathered}$	$\begin{gathered} 400.41 \\ 5 \end{gathered}$	$\begin{gathered} 416.41 \\ 4 \end{gathered}$	
HB accept	4	4	6	4	6	4	4	5	
HB donor	1	2	3	2	2	2	2	3	
LogP	9.56	9.5932	$\begin{gathered} 11.041 \\ 8 \end{gathered}$	$\begin{gathered} 11.161 \\ 1 \end{gathered}$	9.2098	9.0789	9.7475	8.6768	
Chemical properties									
Weiner path ${ }^{\text {b }}$	2359	1861	2436	2233	2287	1882	1903	2130	
Ring count ${ }^{\text {a }}$	3	3	3	3	4	3	3	3	
PDL ${ }^{\text {a }}$	0.375	0.375	0.375	0.375	0.375	0.25	0.375	0.25	
PLL ${ }^{\text {a }}$	0.125	0.125	0.25	0.25	0.125	0.125	0.125	0.125	
ADME properties									
BBB (-3.0 -	1.35	1.06	0.40	1.49	0.43	0.73	0.93	0.41	

Chapter 3: Section 2

1.2$)^{\mathrm{c}}$									
CaCo2 $(\mathrm{nms})(<25$, poor, >500, best) $)^{\mathrm{c}}$	$\mathbf{2 1 . 6 9}$	21.19	21.65	21.70	21.62	21.67	21.68	21.48	
HIA (50- $100 \%)^{\text {c }}$	$\mathbf{9 4 . 5 1}$	98.07	91.24	94.51	96.80	97.27	94.28	97.89	
Rotatable bonds (0- $15)^{\mathrm{a}}$	$\mathbf{9}$	10	14	13	10	10	11	12	
TPSA (7.0- $200.0)^{\mathrm{b}}$		76.66	76.66	88.69	76.66	95.12	76.66	76.66	
Toxicity properties ${ }^{\text {d }}$									
DSSTox Carcinogeni c potency Mouse		Neg. $(\mathrm{C}:$ $0.081)$	-	Pos. $(\mathrm{C}:$ $0.009)$	-	Neg. $(\mathrm{C}:$ $0.071)$	-	Neg. $(\mathrm{C}:$	

${ }^{a}$ Computed using Screening Assistant 2 program. PDL (Progressive drug-like), PLL(Progressive lead like).
${ }^{\mathrm{b}}$ Calculated using $\operatorname{MOE}(\mathrm{CCG})$ Chemoinformatics suite. ${ }^{\text {c PreADMET software. }{ }^{\mathrm{d}} \text { LAZAR wherein } \text { Neg }=~=~=~}$ Negative, $\operatorname{Pos}=$ Positive and $\mathrm{C}=$ Confidence value

3.2.4. Conclusion

In conclusion, a series of chromone/azachromone fused α-aminophosphonate conjugates have been synthesized using silica chloride as a new catalyst. The structures of compounds were confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR, and HRMS analysis. All the synthesized compounds were evaluated for their c-Src kinase inhibitory activity and one of the compounds $\mathbf{4 j}$ was found to be effective with an IC_{50} value of $15.8 \mu \mathrm{M}$. Docking studies revealed that compound $\mathbf{4} \mathbf{j}$ to be more effective against the phosphorylated form of Src kinase.

3.2.5. Experimental Section

Preparation of 3-chromone carboxaldehyde/3-azachromone carboxaldehyde (1a, b)

To a stirred solution of dry DMF (40 mL), phosphorous oxychloride (3 equiv.) was added dropwise at $5{ }^{\circ} \mathrm{C}$. The mixture was stirred for 15 min and then the solution of 2hydroxyacetophenone or 2-aminoacetophenone 1 (1 equiv) in DMF (20 mL) was added dropwise at $5{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at same temperature for 30 min and then heated and stirred at $55^{\circ} \mathrm{C}$ for 4 h . The mixture was cooled to room temperature, poured into ice-water (approx. 400 mL) and stirred for 1.5 h . The precipitate was filtered off, washed ethanol yields $\mathbf{1 a}$ (75%, colorless solid) or $\mathbf{1 b}$ (85%, pale yellow solid).

1) 4-oxo-4H-chromene-3-carbaldehyde (1a)

Yield: 75\% (colorless solid);
MP: 152-154 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{31} \mathrm{mp}: 152-154{ }^{\circ} \mathrm{C}$);
Molecular Formula: $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{3}$;
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.50-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.79(\mathrm{~m}, 1 \mathrm{H}), 8.31(\mathrm{dd}, J=7.8$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.56 ($\mathrm{s}, 1 \mathrm{H}$), 10.40 ($\mathrm{s}, 1 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 188.6$ (CO), 176.0 (CO), 160.6 (CH), 156.2 (C), 134.8 $(\mathrm{CH}), 126.6(\mathrm{CH}), 126.2(\mathrm{CH}), 125.3(\mathrm{C}), 120.3(\mathrm{C}), 118.6(\mathrm{CH})$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 175.0390$, found 175.0388.

2) 4-oxo-1,4-dihydroquinoline-3-carbaldehyde (1b)

Yield: 85\% (pale yellow solid);
MP: $>270{ }^{\circ} \mathrm{C}$ (lit. ${ }^{32} \mathrm{mp}:>278{ }^{\circ} \mathrm{C}$);
Molecular Formula: $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{NO}_{2}$;
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{D M S O}-\mathbf{d}_{6}$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.66(\mathrm{~d}, J=7.8,1 \mathrm{H}), 7.55(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=7.8,1 \mathrm{H}), 8.47(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1$ H), 10.19 (s, 1 H), 12.69 ($\mathrm{bs}, 1 \mathrm{H}$);
${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ D M S O - d ~} \mathbf{6}$): $\delta 188.7$ (CO), 176.2 (CO), 143.2 (CH), 139.4 (C), 133.1 (CH), 127.7 (C), 125.4 (C), 125.3 (CH), 119.4 (CH), 116.3 (C);

HRMS (ESI): m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+174.0550$, found 174.0549.

General method for the synthesis of chromone/aza-chromone fused α-aminophosphonates (4a-4q)
To a mixture of 3-chromone/aza-chromone carboxaldehyde (1.0 mmol), substituted amines 2 (1 mmol) and diethyl phosphate $\mathbf{3}(1.0 \mathrm{mmol})$ in ethanol (3 mL) was added silica chloride
$(0.1 \mathrm{~mol} \%)$. The resulting reaction mixture was stirred for $8-12 \mathrm{~h}$ at $60^{\circ} \mathrm{C}$. After completion of the reaction, the catalyst was filtered and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography [silica gel, $\mathrm{EtOAc} /$ petroleum ether (30:70)] afforded pure product $\mathbf{4 a - 4 q}$. Spectroscopic data of all compounds are given below.

1) Diethyl((4-oxo-4H-chromen-3-yl)(phenylamino)methyl)phosphonate (4a)

Yield: 85\% (red brownish solid);
MP: $134-136{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{P}$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3684,3409,2927,2400,1643,1604,1509,1467,1349,1027,974$, 928, 849;
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.02-$ 4.15 (m, 2 H), 4.22-4.29 (m, 2 H), 4.77 (bs, 1 H), 5.37 (d, $\left.J_{\mathrm{PH}}=24.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}\right), 6.67$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.45(\mathrm{~m}, 2 \mathrm{H})$, $7.68(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl $_{3}$): $\delta 176.3$ (d, $J=3.8 \mathrm{~Hz}, \mathrm{CO}$), 156.2 (C), 155.1 (d, $J=5.4 \mathrm{~Hz}$, $\mathrm{CH}), 145.2(\mathrm{C}), 133.8(\mathrm{CH}), 129.4(\mathrm{CH}, 2$ carbons), $125.9(\mathrm{C}), 125.4(\mathrm{CH}), 123.4(\mathrm{C})$, $120.2(\mathrm{C}), 118.8(\mathrm{CH}), 118.3(\mathrm{CH}), 113.6\left(\mathrm{CH}, 2\right.$ carbons), $63.8\left(\mathrm{~d}, J_{\mathrm{PC}}=7.0 \mathrm{~Hz}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.4\left(\mathrm{~d}, J_{\mathrm{PC}}=6.9 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 45.1\left(\mathrm{~d}, J_{\mathrm{PC}}=156.4 \mathrm{~Hz},-\mathrm{CHP}\right), 16.4\left(\mathrm{~d}, J_{\mathrm{PC}}\right.$ $\left.=5.4 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.3\left(\mathrm{~d}, J_{\mathrm{PC}}=5.4 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+} 410.1128$, found 410.1121.
2) Diethy(((4-methoxybenzyl)amino)(4-oxo-4H-chromen-3-yl)methyl)phosphonate (4b)

Yield: 60\% (pale yellow solid);
MP: $152-154{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{6} \mathrm{P}$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3662,3350,2933,2400,1643,1603,1573,1512,1465,1401,1315$, 1128, 1051, 1029, 974, 668;
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 4.04-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.27(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.57$ $\left(\mathrm{d}, J_{\mathrm{PH}}=20.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}\right), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-6.92(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.21(\mathrm{~m}, 1$ H), 7.41-7.49 (m, 2 H), 8.20-8.24 (m, 2 H);
${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 176.4$ (d, $J=4.6 \mathrm{~Hz}, \mathrm{CO}$), 158.7 (C), 156.1 (C), 155.8 (d, $J=6.9 \mathrm{~Hz}, \mathrm{CH}), 155.8(\mathrm{~d}, J=5.4 \mathrm{~Hz}, \mathrm{CH}), 133.6(\mathrm{CH}), 131.3(\mathrm{C}), 129.5(\mathrm{CH}, 2$ carbons $)$, $125.9(\mathrm{CH}), 125.3(\mathrm{CH}), 123.6(\mathrm{C}), 120.1(\mathrm{C}), 113.7(\mathrm{CH}, 2$ carbons $), 63.3\left(\mathrm{~d}, J_{\mathrm{PC}}=6.9 \mathrm{~Hz}\right.$, $\left.-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 62.7\left(\mathrm{~d}, J_{\mathrm{PC}}=6.9 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 55.2\left(\mathrm{CH}_{3}\right), 51.4\left(\mathrm{~d}, J_{\mathrm{PC}}=15.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $49.2\left(\mathrm{~d}, J_{\mathrm{PC}}=157.2 \mathrm{~Hz},-\mathrm{CHP}\right), 16.4\left(\mathrm{~d}, J_{\mathrm{PC}}=6.2 \mathrm{~Hz},-\mathrm{OCH}_{2} \underline{\mathrm{CH}}_{3}\right), 16.3\left(\mathrm{~d}, J_{\mathrm{PC}}=6.2 \mathrm{~Hz},-\right.$ $\mathrm{OCH}_{2} \mathrm{CH}_{3}$);
HRMS (ESI): m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$432.1571, found 432.1566; $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+} 454.1390$, found 454.1383 .

3)Diethyl(((2-methoxyphenyl)amino)(4-oxo-4H-chromen-3-yl)methyl)phosphonate (4c)

Yield: 82\% (pale yellow solid);
MP: $130-131{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{P}$;
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{\mathbf{- 1}}\right): v_{\max } 3683,3358,2916,2400,1643,1601,1514,1466,1425,1027,928$, 624;
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.87(\mathrm{~s}$, $3 \mathrm{H})$, 4.03-4.16 (m, 2 H), 4.22-4.29 (m, 2 H), $5.21(\mathrm{bs}, 1 \mathrm{H}), 5.40\left(\mathrm{~d}, J_{\mathrm{PH}}=23.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{NCH}), 6.59(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.67-6.70 (m, 1 H$), 6.75-6.79(\mathrm{~m}, 2 \mathrm{H})$, 7.40-7.44 (m, 2H), $7.66(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 176.2\left(\mathrm{~d}, J_{\mathrm{PC}}=3.8 \mathrm{~Hz}, \mathrm{CO}\right), 156.2(\mathrm{C}), 155.2(\mathrm{~d}, J=5.4$ $\mathrm{Hz}, \mathrm{CH}), 147.2(\mathrm{C}), 135.3\left(\mathrm{~d}, J_{\mathrm{PC}}=13.1 \mathrm{~Hz}, \mathrm{C}\right), 133.7(\mathrm{CH}), 125.88(\mathrm{CH}), 125.3(\mathrm{CH})$, 123.35 (C), 121.2 (CH), 120.4 (C), 118.2 (CH), $118.0(\mathrm{CH}), 110.9(\mathrm{CH}), 109.5(\mathrm{CH}), 63.7$ $\left(\mathrm{d}, J_{\mathrm{PC}}=6.9 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.3\left(\mathrm{~d}, J_{\mathrm{PC}}=6.9 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 55.4\left(\mathrm{CH}_{3}\right), 45.1\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$ $155.7 \mathrm{~Hz},-\mathrm{CHP}), 16.3\left(\mathrm{~d}, J_{\mathrm{PC}}=6.2 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.2\left(\mathrm{~d}, J_{\mathrm{PC}}=6.2 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$418.1414, found 418.1409; $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+} 440.1233$, found 440.1227.

4) Diethyl(((3-hydroxyphenyl)amino)(4-oxo-4H-chromen-3-yl)methyl)phosphonate

 (4d)

Yield: 35\% (colorless solid);
MP: 130-131 ${ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{6} \mathrm{P}$;
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{-1}\right): v_{\max } 3671,3291,2929,2400,1644,1612,1575,1523,1467,1424,1350$, 1317, 1167, 1146, 1027, 973, 928;
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.02-$ 4.17 (m, 2 H), 4.22-4.28 (m, 2 H), 5.24-5.37 (m, 2 H), 6.53 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.32-6.44$ (m, 1 H$)$, 6.32-6.44 (m, 1 H$), 7.02-7.06$ (m, 1 H), 7.36-7.47 (m, 2 H), 7.63-7.71 (m, 1 H), 8.17-8.22 (m, 1 H), 8.26 (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 176.1$ (d, $J_{\mathrm{PC}}=3.0 \mathrm{~Hz}, \mathrm{CO}$), 165.6 (C), 163.0 (C), 156.2 (C), $155.2\left(\mathrm{~d}, J_{\mathrm{PC}}=5.2 \mathrm{~Hz}, \mathrm{CH}\right), 147.2\left(\mathrm{t}, J_{\mathrm{PC}}=11.2 \mathrm{~Hz}, \mathrm{C}\right), 133.6(\mathrm{CH}), 130.3(\mathrm{CH}), 126.0$ $(\mathrm{CH}), 125.8(\mathrm{CH}), 124.0(\mathrm{CH}), 120.4(\mathrm{C}), 118.6(\mathrm{CH}), 109.5(\mathrm{CH}), 105.3(\mathrm{CH}), 63.8\left(\mathrm{~d}, J_{\mathrm{PC}}\right.$ $\left.=7.1 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.4\left(\mathrm{~d}, J_{\mathrm{PC}}=7.1 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 45.0\left(\mathrm{~d}, J_{\mathrm{PC}}=156.6 \mathrm{~Hz},-\mathrm{CHP}\right)$, $16.3\left(\mathrm{~d}, J_{\mathrm{PC}}=5.6 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.2\left(\mathrm{~d}, J_{\mathrm{PC}}=5.6 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 404.1258$, found 404.1256.
5) Diethyl(((3-fluorophenyl)amino)(4-oxo-4H-chromen-3-yl)methyl)phosphonate (4e)

Yield: 70\% (pale yellow solid);
MP: $129-130{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{FNO}_{5} \mathrm{P}$;
IR ($\left.\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}\right): v_{\max } 3682,3409,1914,2400,1643,1616,1513,1467,1424,1316,1052$, 1031, 928;
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.02-4.16$ (m, 2H), 4.22-4.29 (m, 2H), 5.32-5.38 (m, 2H), 6.35-6.46 (m, 3H), 7.01-7.07 (m, 1H), 7.40$7.44(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.68(\mathrm{~m}, 1 \mathrm{H}), 8.23-8.27(\mathrm{~m}, 2 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 176.1$ (d, $\left.J_{\mathrm{PC}}=3.1 \mathrm{~Hz}, \mathrm{CO}\right), 165.0$ (C), 162.6 (C), 156.1 (C), $155.2\left(\mathrm{~d}, J_{\mathrm{PC}}=5.4 \mathrm{~Hz}, \mathrm{CH}\right), 147.6\left(\mathrm{t}, J_{\mathrm{PC}}=11.6 \mathrm{~Hz}, \mathrm{C}\right), 133.8(\mathrm{CH}), 130.3\left(\mathrm{~d}, J_{\mathrm{PC}}=9.2\right.$ $\mathrm{Hz}, \mathrm{CH}), 125.8(\mathrm{CH}), 125.4(\mathrm{CH}), 123.3(\mathrm{C}), 120.0(\mathrm{C}), 118.2(\mathrm{CH}), 109.0(\mathrm{CH}), 105.1(\mathrm{~d}$, $\left.J_{\mathrm{PC}}=21.6 \mathrm{~Hz}, \mathrm{CH}\right), 100.7\left(\mathrm{~d}, J_{\mathrm{PC}}=25.4 \mathrm{~Hz}, \mathrm{CH}\right), 63.8\left(\mathrm{~d}, J_{\mathrm{PC}}=7.1 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.4$ $\left(\mathrm{d}, J_{\mathrm{PC}}=6.9 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 45.0\left(\mathrm{~d}, J_{\mathrm{PC}}=156.4 \mathrm{~Hz},-\mathrm{CHP}\right), 16.3\left(\mathrm{~d}, J_{\mathrm{PC}}=5.4 \mathrm{~Hz},-\right.$ $\left.\mathrm{OCH}_{2} \underline{\mathrm{CH}}_{3}\right), 16.2\left(\mathrm{~d}, J_{\mathrm{PC}}=5.4 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{FNO}_{5} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$406.1214, found 406.1208; $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{FNO}_{5} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+} 428.1034$, found 428.1026 .
6) Diethyl(((2-isopropylphenyl)amino)(4-oxo-4H-chromen-3-yl)methyl)phosphonate (4f)

Yield: 80\% (pale yellow solid);
MP: $92-93{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{P}$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3683,3380,2926,2400,1643,1524,1467,1424,1052,1031,928 ;$
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 1.21(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.36(\mathrm{~m}, 9 \mathrm{H}), 3.03(\mathrm{q}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-4.14(\mathrm{~m}, 2 \mathrm{H}), 4.22-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{bs}, 1 \mathrm{H}), 5.37\left(\mathrm{~d}, J_{\mathrm{PH}}=23.5 \mathrm{~Hz}\right.$,
$1 \mathrm{H}, \mathrm{NCH}), 6.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.16(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.70(\mathrm{~m}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H})$, 8.28 (d, J=7.8 Hz, 1 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 176.3\left(\mathrm{~d}, J_{\mathrm{PC}}=3.1 \mathrm{~Hz}, \mathrm{CO}\right), 156.2(\mathrm{C}), 154.9\left(\mathrm{~d}, J_{\mathrm{PC}}=6.2\right.$ $\mathrm{Hz}, \mathrm{CH}), 142.1\left(\mathrm{~d}, J_{\mathrm{PC}}=12.3 \mathrm{~Hz}, \mathrm{CH}\right), 133.8(\mathrm{CH}), 133.0(\mathrm{C}), 126.9(\mathrm{CH}), 125.9(\mathrm{CH})$, $125.4(\mathrm{CH}), 125.2(\mathrm{CH}), 123.4(\mathrm{C}), 120.2(\mathrm{C}), 118.7(\mathrm{CH}), 118.2(\mathrm{CH}), 111.3(\mathrm{CH}), 63.6$ $\left(\mathrm{d}, J_{\mathrm{PC}}=6.9 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.5\left(\mathrm{~d}, J_{\mathrm{PC}}=6.9 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 45.3\left(\mathrm{~d}, J_{\mathrm{PC}}=155.0 \mathrm{~Hz},-\right.$ CHP), $27.4(\mathrm{CH}), 22.3\left(\mathrm{CH}_{3}, 2\right.$ carbons $), 16.4\left(\mathrm{~d}, J_{\mathrm{PC}}=5.4 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.3\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$ $\left.5.4 \mathrm{~Hz},-\mathrm{OCH}_{2} \underline{\mathrm{CH}}_{3}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 430.1778$, found 430.1771.
7) Diethyl(((2-chlorophenyl)amino)(4-oxo-4H-chromen-3-yl)methyl)phosphonate (4g)

Yield: 78\% (pale yellow solid);
MP: $82-83{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClNO}_{5} \mathrm{P}$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3667,3322,2934,1643,1612,1596,1574,1466,1420,1349,1315$, 1167, 1095, 1050, 1030, 975, 929;
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 1.25(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.08-$ 4.19 (m, 2 H), 4.22-4.31 (m, 2 H), 5.33 (bs, 1 H$), 5.42\left(\mathrm{~d}, J_{\mathrm{PH}}=23.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}\right), 6.68$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 2 \mathrm{H})$, $7.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.15-8.17(\mathrm{~m}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 176.1\left(\mathrm{~d}, J_{\mathrm{PC}}=3.1 \mathrm{~Hz}, \mathrm{CO}\right), 156.2(\mathrm{C}), 155.1\left(\mathrm{~d}, J_{\mathrm{PC}}=5.4\right.$ $\mathrm{Hz}, \mathrm{CH}), 141.6(\mathrm{~d}, J=12.3 \mathrm{~Hz}, \mathrm{CH}), 133.9(\mathrm{CH}), 129.2(\mathrm{CH}), 128.0(\mathrm{CH}), 125.9(\mathrm{CH})$, $125.5(\mathrm{CH}), 123.3(\mathrm{C}), 120.0(\mathrm{C}), 119.1(\mathrm{C}), 118.8(\mathrm{CH}), 118.3(\mathrm{CH}), 112.3(\mathrm{CH}), 63.9(\mathrm{~d}$, $\left.J_{\mathrm{PC}}=6.9 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.5\left(\mathrm{~d}, J_{\mathrm{PC}}=6.9 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 44.8\left(\mathrm{~d}, J_{\mathrm{PC}}=155.7 \mathrm{~Hz},-\right.$ $\mathrm{CHP}), 16.4\left(\mathrm{~d}, J_{\mathrm{PC}}=6.2 \mathrm{~Hz},-\mathrm{OCH}_{2} \underline{\mathrm{CH}}_{3}\right), 16.3\left(\mathrm{~d}, J_{\mathrm{PC}}=6.2 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClNO}_{5} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$422.0919, found 422.0912; $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClNO}_{5} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+} 444.0738$, found 444.0731 .
8) Diethyl(((4-methoxyphenyl)amino)(4-oxo-4H-chromen-3-yl)methyl)phosphonate (4h)

Yield: 80\% (red brownish solid);
MP: $116-117{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{P}$;
IR ($\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{-1}$): $v_{\max } 3683,3380,1925,2400,1643,1513,1466,1424,1026,928,624$;
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 1.20(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.69(\mathrm{~s}$, $3 \mathrm{H})$, 4.04-4.15 (m, 2 H), 4.22-4.29 (m, 2 H), $4.50(\mathrm{bs}, 1 \mathrm{H}), 5.29\left(\mathrm{~d}, J_{\mathrm{PH}}=24.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{NCH}), 6.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.13-8.15(\mathrm{~m}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 176.3\left(\mathrm{~d}, J_{\mathrm{PC}}=3.8 \mathrm{~Hz}, \mathrm{CO}\right), 156.2(\mathrm{C}), 155.1\left(\mathrm{~d}, J_{\mathrm{PC}}=5.4\right.$ $\mathrm{Hz}, \mathrm{CH}), 152.9(\mathrm{C}), 139.4\left(\mathrm{~d}, J_{\mathrm{PC}}=14.6 \mathrm{~Hz}, \mathrm{C}\right), 133.8(\mathrm{CH}), 125.9(\mathrm{CH}), 125.4(\mathrm{CH}), 123.4$ (C), $120.2(\mathrm{C}), 118.2(\mathrm{CH}), 114.9\left(\mathrm{CH}, 2\right.$ carbons), $114.8\left(\mathrm{CH}, 2\right.$ carbons), $63.7\left(\mathrm{~d}, J_{\mathrm{PC}}=6.9\right.$ $\left.\mathrm{Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.3\left(\mathrm{~d}, J_{\mathrm{PC}}=6.9 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 55.6(\mathrm{CH}), 46.0\left(\mathrm{~d}, J_{\mathrm{PC}}=156.7 \mathrm{~Hz},-\right.$ CHP $), 16.4\left(\mathrm{~d}, J_{\mathrm{PC}}=5.4 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.3\left(\mathrm{~d}, J_{\mathrm{PC}}=5.4 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$418.1414, found 418.1407; $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+} 440.1233$, found 440.1225 .
9) Diethyl(((3-chlorophenyl)amino)(4-oxo-4H-chromen-3-yl)methyl)phosphonate (4i)

Yield: 76\% (pale yellow solid);
MP: $141-142{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClNO}_{5} \mathrm{P}$;
IR ($\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{-1}$): $v_{\max } 3679,3384,2969,2400,1644,1467,1424,1054,1032,1016,928$;
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.20(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 4.02-$
$4.16(\mathrm{~m}, 2 \mathrm{H}), 4.22-4.29(\mathrm{~m}, 2 \mathrm{H}), 5.26-5.38(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 6.66$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 176.1\left(\mathrm{~d}, J_{\mathrm{PC}}=3.8 \mathrm{~Hz}, \mathrm{CO}\right), 156.2(\mathrm{C}), 155.2\left(\mathrm{~d}, J_{\mathrm{PC}}=5.4\right.$ $\mathrm{Hz}, \mathrm{CH}), 147.0\left(\mathrm{~d}, J_{\mathrm{PC}}=13.1 \mathrm{~Hz}, \mathrm{C}\right), 134.9(\mathrm{C}), 133.8(\mathrm{CH}), 130.3(\mathrm{CH}), 125.9(\mathrm{CH}), 125.4$ $(\mathrm{CH}), 123.3(\mathrm{C}), 119.9(\mathrm{C}), 118.5(\mathrm{CH}), 118.2(\mathrm{CH}), 113.8(\mathrm{CH}), 111.3(\mathrm{CH}), 63.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=\right.$ $\left.6.9 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.4\left(\mathrm{~d}, J_{\mathrm{PC}}=6.9 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 45.0\left(\mathrm{~d}, J_{\mathrm{PC}}=157.2 \mathrm{~Hz},-\mathrm{CHP}\right)$, $16.4\left(\mathrm{~d}, J_{\mathrm{PC}}=5.4 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.2\left(\mathrm{~d}, J_{\mathrm{PC}}=5.4 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClNO}_{5} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$422.0919, found 422.0912; $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClNO}_{5} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+} 444.0738$, found 444.0732.
10) Diethyl(((4-isopropylphenyl)amino)(4-oxo-1,4-dihydroquinolin-3-yl)methyl)phosphonate (4j)

Yield: 88% (pale yellow solid);
MP: 197-198 ${ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\text {max }} 3684,3321,2934,2401,1598,1517,1477,1425,1029,928,851$;
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 1.09-1.13(\mathrm{~m}, 9 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.72(\mathrm{spt}, J=$ 6.8 Hz, 1 H), 3.95-4.03 (m, 1 H$), 4.07-4.16(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.34(\mathrm{~m}, 2 \mathrm{H}), 5.56\left(\mathrm{~d}, J_{\mathrm{PH}}=\right.$ $23.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 6.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.29(\mathrm{~m}, 1$ H), $7.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.90(\mathrm{~m}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 11.47 (bs, 1 H);
${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 176.4\left(\mathrm{~d}, J_{\mathrm{PC}}=3.8 \mathrm{~Hz}, \mathrm{CO}\right), 143.6\left(\mathrm{~d}, J_{\mathrm{PC}}=14.6 \mathrm{~Hz}, \mathrm{C}\right)$, 139.4 (C), 139.2 (C), 137.6 (d, $\left.J_{\mathrm{PC}}=4.6 \mathrm{~Hz}, \mathrm{CH}\right), 131.7(\mathrm{CH}), 127.1(\mathrm{CH}, 2$ carbons), $125.8(\mathrm{CH}), 125.0(\mathrm{C}), 123.8(\mathrm{CH}), 118.1(\mathrm{CH}), 115.4(\mathrm{C}), 113.7(\mathrm{CH}, 2$ carbons), $64.1(\mathrm{~d}$, $\left.J_{\mathrm{PC}}=6.9 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.7\left(\mathrm{~d}, J_{\mathrm{PC}}=6.9 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 46.4\left(\mathrm{~d}, J_{\mathrm{PC}}=155.7 \mathrm{~Hz},-\right.$ CHP), $33.1(\mathrm{CH}), 24.1\left(\mathrm{CH}_{3}, 2\right.$ carbons $), 16.4\left(\mathrm{~d}, J_{\mathrm{PC}}=5.4 \mathrm{~Hz},-\mathrm{OCH}_{2} \underline{\mathrm{CH}}_{3}\right), 16.2\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$ $5.4 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}$);

HRMS (ESI): m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$429.1938, found 429.1935; $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}$451.1757, found 451.1753.
11) Diethyl(((2-chlorophenyl)amino)(4-oxo-1,4-dihydroquinolin-3-yl)methyl)phosphonate (4 k)

Yield: 76\% (orange red liquid);
Molecular Formula: $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{P}$;
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{\mathbf{- 1}}\right): v_{\max } 3672,3344,2932,2400,1645,1611,1513,1467,1441,1401,1349$, 1176, 1104, 1031, 970, 929;
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 4.03-$ $4.21(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.39(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{bs}, 1 \mathrm{H}), 5.67\left(\mathrm{~d}, J_{\mathrm{PH}}=23.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}\right), 6.56-$ 6.65 (m, 1 H), 6.69-6.73 (m, 1 H$), 6.96-7.05$ (m, 1 H), 7.17 (dd, $J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.24-$ 7.32 (m, 1 H), 7.48-7.54 (m, 2 H), 7.91-7.99 (m, 1 H), 8.32 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) 11.78$ (bs, 1 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 176.3\left(\mathrm{~d}, J_{\mathrm{PC}}=4.0 \mathrm{~Hz}, \mathrm{CO}\right), 141.6\left(\mathrm{~d}, J_{\mathrm{PC}}=13.9 \mathrm{~Hz}, \mathrm{C}\right)$, $139.4(\mathrm{CH}), 137.5\left(\mathrm{~d}, J_{\mathrm{PC}}=4.4 \mathrm{~Hz}, \mathrm{CH}\right), 131.8(\mathrm{CH}), 128.9(\mathrm{CH}), 128.0(\mathrm{CH}), 125.7(\mathrm{CH})$, 124.9 (C), $124.0(\mathrm{CH}), 119.6$ (C), $118.7(\mathrm{CH}), 118.3(\mathrm{CH}), 114.8(\mathrm{~d}, J=1.8 \mathrm{~Hz}, \mathrm{C}), 112.7$ $(\mathrm{CH}), 64.3\left(\mathrm{~d}, J_{\mathrm{PC}}=7.0 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.9\left(\mathrm{~d}, J_{\mathrm{PC}}=7.3 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 46.7\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$ $155.5 \mathrm{~Hz},-\mathrm{CHP}), 16.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=5.5 \mathrm{~Hz},-\mathrm{OCH}_{2} \underline{\mathrm{CH}}_{3}\right), 16.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=5.8 \mathrm{~Hz},-\mathrm{OCH}_{2} \underline{C H}_{3}\right)$;

HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$421.1078, found 421.1075; $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+} 443.0898$, found 443.0895.
12) Diethyl((4-oxo-1,4-dihydroquinolin-3-yl)((2,2,6,6-tetramethylpiperidin-4-yl)amino) methyl)phosphonate (41)

Yield: 62% (pale yellow solid);
Molecular Formula: $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{P}$;
MP: 242-244 ${ }^{\circ} \mathrm{C}$;
IR ($\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{-1}$): $v_{\max } 3858,3307,2944,2832,2522,2227,2045,1654,1450,1115$, 1038,971, 822, 756, 667;
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 1.14-1.30(\mathrm{~m}, 17 \mathrm{H}), 1.44(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{~d}, J=$ $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.94-3.00(\mathrm{~m}, 1 \mathrm{H}), 4.00-4.16$ $(\mathrm{m}, 2 \mathrm{H}), 4.28-4.41(\mathrm{~m}, 2 \mathrm{H}), 5.0\left(\mathrm{~d}, J_{\mathrm{PH}}=19.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}\right), 7.25-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.46-$ 7.54 (m, 2 H), $8.05(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 11.98(\mathrm{~s}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl 3): $\delta 176.2$ (CO), 139.7 (C), 139.5 (C), 138.6 (C), 138.5 (CH), $131.5(\mathrm{CH}), 125.9(\mathrm{CH}), 123.7(\mathrm{CH}), 118.4(\mathrm{CH}), 63.6\left(\mathrm{~d}, J_{\mathrm{PC}}=6.9 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.5$ $\left(\mathrm{d}, J_{\mathrm{PC}}=6.9 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 53.0(\mathrm{C}, 2$ carbons $), 47.2(\mathrm{CH}), 45.1(\mathrm{CH}), 44.1(\mathrm{CH}), 33.3$ $(\mathrm{CH}), 27.5\left(\mathrm{CH}_{3}, 2\right.$ carbons $), 27.3\left(\mathrm{CH}_{3}, 2\right.$ carbons $), 16.6\left(\mathrm{~d}, J_{\mathrm{PC}}=5.4 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.3$ $\left(\mathrm{d}, J_{\mathrm{PC}}=6.8 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 450.2516$, found 450.2514 .
13) Diethyl(((2-isopropylphenyl)amino)(4-oxo-1,4-dihydroquinolin-3-yl)methyl)phosphonate (4m)

Yield: 80\% (colorless solid);
MP: $186-187^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3683,3385,2927,2400,1629,1575,1524,1476,1424,1031,928$, 849, 626;
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.83(\mathrm{spt}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-4.06(\mathrm{~m}, 1 \mathrm{H})$, 4.10-4.20 (m, 1 H$), 4.29-4.37(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{bs}, 1 \mathrm{H}), 5.60\left(\mathrm{~d}, J_{\mathrm{PH}}=23.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}\right)$, $6.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-$
$7.80(\mathrm{~m}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 11.31$ (bs, 1 H$)$;
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 176.4\left(\mathrm{~d}, J_{\mathrm{PC}}=3.8 \mathrm{~Hz}, \mathrm{CO}\right), 142.3\left(\mathrm{~d}, J_{\mathrm{PC}}=13.1 \mathrm{~Hz}, \mathrm{CH}\right)$, $139.5(\mathrm{C}), 137.1\left(\mathrm{~d}, J_{\mathrm{PC}}=3.8 \mathrm{~Hz}, \mathrm{CH}\right), 132.7(\mathrm{C}), 131.7(\mathrm{CH}), 127.0(\mathrm{CH}), 126.0(\mathrm{CH})$, $125.1(\mathrm{C}), 124.9(\mathrm{CH}), 123.9(\mathrm{CH}), 118.6(\mathrm{C}), 118.0(\mathrm{CH}), 115.4(\mathrm{C}), 111.8(\mathrm{CH}), 64.2(\mathrm{~d}$, $\left.J_{\mathrm{PC}}=7.0 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.7\left(\mathrm{~d}, J_{\mathrm{PC}}=7.7 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 46.3\left(\mathrm{~d}, J_{\mathrm{PC}}=155.7 \mathrm{~Hz},-\right.$ CHP), $27.4(\mathrm{CH}), 22.2\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{3}\right), 16.5\left(\mathrm{~d}, J_{\mathrm{PC}}=5.4 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.2\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$ $5.4 \mathrm{~Hz},-\mathrm{OCH}_{2} \underline{\mathrm{CH}}_{3}$);

HRMS (ESI): m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$429.1938, found 429.1933; $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}$451.1757, found 451.1750.
14) Diethyl((benzo[d][1,3]dioxol-5-ylamino)(4-oxo-1,4-dihydrquinoin-3-yl)methyl)phosphonate (4n)

Yield: 75\% (red brownish solid);
MP: 193-194 ${ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3681,3386,2923,2400,1628,1525,1476,1424,1054,1032,1017$, 928, 850, 625;
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.03-$ $4.17(\mathrm{~m}, 2 \mathrm{H}), 4.25-4.35(\mathrm{~m}, 2 \mathrm{H}), 5.40\left(\mathrm{~d}, J_{\mathrm{PH}}=22.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}\right), 5.77(\mathrm{~s}, 2 \mathrm{H}), 6.06(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.41(\mathrm{~m}$, $1 \mathrm{H}), 7.46-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 11.41$ (bs, 1 H$)$;
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 176.4$ (d, $J_{\mathrm{PC}}=3.8 \mathrm{~Hz}, \mathrm{CO}$), 148.3 (C), 141.3 (d, $J=15.4$ $\mathrm{Hz}, \mathrm{C}), 140.5(\mathrm{CH}), 139.4(\mathrm{C}), 137.6(\mathrm{~d}, J=4.6 \mathrm{~Hz}, \mathrm{CH}), 131.7(\mathrm{C}), 125.8(\mathrm{CH}), 125.0(\mathrm{C})$, $123.9(\mathrm{CH}), 118.1(\mathrm{CH}), 115.2(\mathrm{C}), 108.5(\mathrm{CH}), 105.6(\mathrm{CH}), 100.6\left(\mathrm{CH}_{2}\right), 97.0(\mathrm{CH}), 64.1$ $\left(\mathrm{d}, J_{\mathrm{PC}}=7.7 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.9\left(\mathrm{~d}, J_{\mathrm{PC}}=6.7 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 47.6\left(\mathrm{~d}, J_{\mathrm{PC}}=154.9 \mathrm{~Hz}\right.$, CHP $), 16.5\left(\mathrm{~d}, J_{\mathrm{PC}}=6.2 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.2\left(\mathrm{~d}, J_{\mathrm{PC}}=6.2 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$431.1366, found 431.1364; $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+} 453.1186$, found 453.1182 .
15) Diethyl(((3-fluorophenyl)amino)(4-oxo-1,4-dihydroquinolin-3-yl)methyl)phosphonate (40)

Yield: 72\% (colorless solid);
MP: $152-154{ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{P}$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3671,3424,2954,2400,1641,1624,1527,1475,1424,1316,1048$, 1024, 928, 756, 667;
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 1.14\left(\mathrm{t}, J_{\mathrm{PH}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.33\left(\mathrm{t}, J_{\mathrm{PH}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right)$, 4.03-4.17 (m, 2 H), 4.23-4.38 (m, 2 H), $5.66\left(\mathrm{~d}, J_{\mathrm{PH}}=23.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}\right), 6.32-6.47(\mathrm{~m}, 3$ H), 6.96-7.05 (m, 1 H), 7.39-7.46 (m, 2 H), 7.61-7.66 (m, 1 H$), 8.23-8.27(\mathrm{~m}, 2 \mathrm{H}), 11.35$ (bs, 1 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta 176.1$ (d, $J_{\mathrm{PC}}=3.1 \mathrm{~Hz}, \mathrm{CO}$), 164.9 (C), 162.5 (C), 156.2
(C), $155.1\left(\mathrm{~d}, J_{\mathrm{PC}}=5.3 \mathrm{~Hz}, \mathrm{CH}\right), 147.5(\mathrm{C}), 133.8(\mathrm{CH}), 130.3\left(\mathrm{~d}, J_{\mathrm{PC}}=9.2 \mathrm{~Hz}, \mathrm{CH}\right), 125.7$ $(\mathrm{CH}), 125.3(\mathrm{CH}), 123.3(\mathrm{C}), 118.3(\mathrm{CH}), 109.1(\mathrm{CH}), 105.1\left(\mathrm{~d}, J_{\mathrm{PC}}=21.7 \mathrm{~Hz}, \mathrm{CH}\right), 100.6$ $\left(\mathrm{d}, J_{\mathrm{PC}}=25.2 \mathrm{~Hz}, \mathrm{CH}\right), 64.1\left(\mathrm{~d}, J_{\mathrm{PC}}=7.1 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.9\left(\mathrm{~d}, J_{\mathrm{PC}}=6.9 \mathrm{~Hz},-\right.$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 45.2\left(\mathrm{~d}, J_{\mathrm{PC}}=156.0 \mathrm{~Hz},-\mathrm{CHP}\right), 16.4\left(\mathrm{~d}, J_{\mathrm{PC}}=5.6 \mathrm{~Hz},-\mathrm{OCH}_{2} \underline{\mathrm{CH}_{3}}\right), 16.2\left(\mathrm{~d}, J_{\mathrm{PC}}\right.$ $=5.6 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}$);

HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 405.1374$, found 405.1367.
16) Diethyl((4-oxo-1,4-dihydroquinolin-3-yl)(p-tolylamino)methyl)phosphonate (4p)

Yield: 82% (pale yellow solid);
MP: 201-202 ${ }^{\circ} \mathrm{C}$;
Molecular Formula: $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$;

IR ($\mathbf{C H C l}_{\mathbf{3}}, \mathbf{c m}^{-1}$): $v_{\max } 3683,3278,2934,2400,1629,1518,1476,1424,1029,928,850$, 625;
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.15(\mathrm{~s}$, $3 \mathrm{H}), ~ 3.95-4.04(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.32(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{bs}, 1 \mathrm{H}), 5.54$ (d, J_{PH} $=22.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 6.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.29(\mathrm{~m}, 1$ H), $7.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 11.36 (bs, 1 H);
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl $_{3}$): $\delta 176.4\left(\mathrm{~d}, J_{\mathrm{PC}}=3.8 \mathrm{~Hz}, \mathrm{CO}\right), 143.3\left(\mathrm{~d}, J_{\mathrm{PC}}=14.6 \mathrm{~Hz}, \mathrm{CH}\right)$, 139.4 (C), $137.5(\mathrm{CH}), 131.7(\mathrm{CH}), 129.7(\mathrm{CH}, 2$ carbons), $127.9(\mathrm{C}), 125.9(\mathrm{CH}), 125.1$ (C), $123.8(\mathrm{CH}), 118.1(\mathrm{CH}), 115.3(\mathrm{C}), 113.9(\mathrm{CH}, 2$ carbons $), 64.1\left(\mathrm{~d}, J_{\mathrm{PC}}=7.0 \mathrm{~Hz},-\right.$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.8\left(\mathrm{~d}, J_{\mathrm{PC}}=7.0 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 46.5\left(\mathrm{~d}, J_{\mathrm{PC}}=155.7 \mathrm{~Hz},-\mathrm{CHP}\right), 20.3\left(\mathrm{CH}_{3}\right)$, $16.5\left(\mathrm{~d}, J_{\mathrm{PC}}=6.2 \mathrm{~Hz},-\mathrm{OCH}_{2} \underline{\mathrm{CH}}_{3}\right), 16.2\left(\mathrm{~d}, J_{\mathrm{PC}}=6.2 \mathrm{~Hz},-\mathrm{OCH}_{2} \underline{\mathrm{CH}}_{3}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$401.1625, found 401.1619; $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+} 423.1444$, found 423.1437.
17) Diethyl(((4-methoxyphenyl)amino)(4-oxo-1,4-dihydroquinolin-3-l)methyl)phosphonate ($4 q$)

Yield: 85\% (dark red semisolid);
Molecular Formula: $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}$;
IR ($\mathbf{C H C l}_{3}, \mathbf{c m}^{-1}$): $v_{\max } 3662,3230,2835,2401,1621,1565,1476,1442,1392,971,822$, 756, 667;
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 1.13(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.65(\mathrm{~s}$, $3 \mathrm{H}), 3.95-4.04(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.38(\mathrm{~m}, 2 \mathrm{H}), 5.51\left(\mathrm{~d}, J_{\mathrm{PH}}=22.5 \mathrm{~Hz}, 1\right.$ $\mathrm{H}, \mathrm{NCH}), 6.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.50$ (m, 2 H), 7.92 ($\mathrm{s}, 1 \mathrm{H}$), 8.32 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 11.63 (bs, 1 H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 176.4\left(\mathrm{~d}, J_{\mathrm{PC}}=3.8 \mathrm{~Hz}, \mathrm{CO}\right), 152.8$ (C), $139.7(\mathrm{~d}, J=14.6$ $\mathrm{Hz}, \mathrm{C}), 139.4(\mathrm{C}), 137.7\left(\mathrm{~d}, J_{\mathrm{PC}}=4.6 \mathrm{~Hz}, \mathrm{CH}\right), 131.6(\mathrm{CH}), 125.8(\mathrm{CH}), 125.0(\mathrm{C}), 123.8$ $(\mathrm{CH}), 118.1(\mathrm{CH}), 115.3(\mathrm{C}), 115.1(\mathrm{CH}, 2$ carbons $), 114.7(\mathrm{CH}, 2$ carbons $), 64.0\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$
$\left.7.0 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.7\left(\mathrm{~d}, J_{\mathrm{PC}}=7.0 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 55.6\left(\mathrm{CH}_{3}\right), 47.1\left(\mathrm{~d}, J_{\mathrm{PC}}=155.7\right.$ $\mathrm{Hz},-\mathrm{CHP}), 16.4\left(\mathrm{~d}, J_{\mathrm{PC}}=6.2 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.2\left(\mathrm{~d}, J_{\mathrm{PC}}=6.2 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$;
HRMS (ESI): m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 417.1574$, found 417.1570.

c-Sre kinase assay

The effect of synthesized compounds on the activity of c-Src kinase was assessed by Transcreener ${ }^{\circledR}$ ADP 2 FI Assay, from Bell Brook Labs, Madison, WI, (catalog no. 3013-1K) according to manufacturer's protocol. 384-well Low volume Black nonbinding surface round bottom microplate was purchased from Corning (\#3676). In summary, the kinase reaction was started in 384 -well low volume black microplate with the incubation of the 2.5 $\mu \mathrm{L}$ of the reaction cocktail (0.7 nM of His ${ }_{6}$-Src kinase domain in kinase buffer) with $2.5 \mu \mathrm{~L}$ of prediluted compounds (dissolved in 10% DMSO, 4X target concentration) for 10 min at room temperature using microplate shaker. The reaction cocktail was made using the kinase buffer HEPES (200 mM, pH 7.5), $\mathrm{MgCl}_{2}(16 \mathrm{mM})$, EGTA (8 mM), DMSO (4%), Brij-35 (0.04%), and 2-mercaptoethanol (43 mM). Kinase reaction was started by adding $5 \mu \mathrm{~L}$ of ATP/substrate $(40 \mu \mathrm{M} / 600 \mu \mathrm{M})$ cocktail and incubated for 30 min at room temperature on microplate shaker. Src optimal peptide (AEEEIYGEFEAKKKK) was used as the substrate for the kinase reaction. Kinase reaction was stopped by adding $10 \mu \mathrm{~L}$ of the 1 X ADP Detection Mixture to the enzyme reaction mixture and mixed using a plate shaker. The mixture was incubated at room temperature for 1 h , and the fluorescence intensity was measured. The 1 X ADP Detection Mixture was prepared by adding ADP^{2} AntibodyIRDyeR QC-1 $(10 \mu \mathrm{~g} / \mathrm{mL})$ and ADP Alexa594 Tracer (8 nM) to Stop \& Detect Buffer $\mathrm{B}(1 \mathrm{X})$. Fluorescence Intensity measurements were performed using fluorescence intensity optical module using the excitation of 580 nm and emission of 630 nm with bandwidths of 10 nm by Optima, BMG Labtech microplate reader. IC_{50} of the compounds were calculated using ORIGIN 6.0 (origin lab) software. IC_{50} is the concentration of the compound that inhibited enzyme activity by 50%. All the experiments were carried out in triplicate.

3.2.6. Spectra

3.2.7. References

1. (a) Hubbard, S. R.; Till, J. H. Annu. Rev. Biochem. 2000, 69, 373; (b) Al-Obeidi, F. A.; Lam, K. S. Oncogene 2000, 19, 5690.
2. (a) Courtneidge, S. A. Semin. Cancer Biol. 1994, 5, 239. Yeatman, T. J. Nat. Rev. Cancer 2004, 4, 470; (b) Engen, J. R.; Wales, T. E.; Hochrein, J. M.; Meyn, M. A., III; Banu Ozkan, S.; Bahar, I.; Smithgall, T. E. Cell. Mol. Life Sci. 2008, 65, 3058.
3. Bolen, J. B. Oncogene 1993, 8, 2025.
4. (a) Cohen, G. B.; Ren, R.; Baltimore, D. Cell 1995, 80, 237; (b) Roskoski, R. Biochem. Biophys. Res. Commun. 2004, 324, 1155; (c) Boggon, T. J.; Eck, M. J. Oncogene 2004, 23, 7918.
5. (a) Adams, J. A. Biochemistry 2003, 42, 601; (b) Superti-Furga, G. FEBS Lett. 1995, 369, 62; (c) Fukami, Y.; Nagao, T.; Iwasaki, T.; Sato, K.-I. Pharmacol. Ther. 2002, 93, 263.
6. (a) Martin, G. S. Nat. Rev. Mol. Cell Biol. 2001, 2, 467; (b) Summy, J. M.; Gallick, G. E. Cancer Metastasis Rev. 2003, 22, 337.
7. (a) Nam, S.; Kim, D.; Cheng, J. Q.; Zhang, S.; Lee, J.-H.; Buettner, R.; Mirosevich, J.; Lee, F. Y.; Jove, R. Cancer Res. 2005, 65, 9185; (b) Goldenberg-Furmanov, M.; Stein, I.; Pikarsky, E.; Rubin, H.; Kasem, S.; Wygoda, M.; Weinstein, I.; Reuveni, H.; Ben-Sasson, S. A. Cancer Res. 2004, 64, 1058; (c) Cartwright, C. A.; Kamps, M. P.; Meisler, A. I.; Pipas, J. M.; Eckhart, W. J. Clin. Invest. 1989, 83, 2025; (d) Verbeek, B. S.; Vroom, T. M.; Adriaansen-Slot, S. S.; Ottenhoff-Kalff, A. E.; Geertzema, J. G. N.; Hennipman, A.; Rijksen, G. J. Pathol. 1996, 180, 383; (e) Lutz, M. P.; Esser, I. B. S.; Flossmann-Kast, B. B. M.; Vogelmann, R.; Luhrs, H.; Friess, H.; Buchler, M. W.; Adler, G. Biochem. Biophys. Res. Commun. 1998, 243, 503.
8. (a) Wheeler, D. L.; Iida, M.; Dunn, E. F. Oncologist 2009, 14, 667; (b) Aleshin, A.; Finn, R. S. Neoplasia 2010, 12, 599; (c) Roskoski, R. Pharmacol. Res. 2015, 94, 9.
9. (a) Bennasroune, A.; Gardin, A.; Aunis, D.; Cremel, G.; Hubert, P. Crit Rev Oncol Hematol 2004, 50, 23; (b) Carlomagno, F.; Santoro, M. Curr. Med. Chem. 2005, 12, 1773.
10. (a) Harvey, A. L.; Edrada-Ebel, R.; Quinn, R. J. Nat. Rev. Drug Discovery 2015, 14, 111; (b) Genilloud, O.; Vicente, F.; Editors Drug Discovery From Natural Products.
[In: RSC Drug Discovery Ser., 2012; 25]; RSC, 2012.
11. (a) Mehta, G.; Singh, V. Chem. Soc. Rev. 2002, 31, 324; (b) Tietze, L. F.; Bell, H. P.; Chandrasekhar, S. Angew. Chem., Int. Ed. 2003, 42, 3996.
12. Fields, S. C. Tetrahedron 1999, 55, 12237.
13. (a) Cioni, J. P.; Doroghazi, J. R.; Ju, K.-S.; Yu, X.; Evans, B. S.; Lee, J.; Metcalf, W. W. J. Nat. Prod. 2014, 77, 243; (b) Hendlin, D.; et, a. Science 1969, 166, 122;
(c) Peyman, A.; Stahl, W.; Wagner, K.; Ruppert, D.; Budt, K.-H. Bioorg. Med. Chem. Lett. 1994, 4, 2601; (d) Kafarski, P.; Lejczak, B. Phosphorus, Sulfur Silicon Relat. Elem. 1991, 63, 193.
14. (a) Kukhar, V. P.; Hudson, H. R.; Editors Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity; Wiley, 2000; (b) Mucha, A.; Kafarski, P.; Berlicki, L. J. Med. Chem. 2011, 54, 5955; (c) Allen, J. G.; Atherton, F. R.; Hall, M. J.; Hassell, C. H.; Holmes, S. W.; Lambert, R. W.; Nisbet, L. J.; Ringrose, P. S. Nature (London) 1978, 272, 56.
15. (a) Lin, L.-G.; Xie, H.; Li, H.-L.; Tong, L.-J.; Tang, C.-P.; Ke, C.-Q.; Liu, Q.-F.; Lin, L.-P.; Geng, M.-Y.; Jiang, H.; Zhao, W.-M.; Ding, J.; Ye, Y. J. Med. Chem. 2008, 51, 4419; (b) Chand, K.; Prasad, S.; Tiwari, R. K.; Shirazi, A. N.; Kumar, S.; Parang, K.; Sharma, S. K. Bioorg. Chem. 2014, 53, 75.
16. Nikitina, P. A.; Kuz'mina, L. G.; Perevalov, V. P.; Tkach, I. I. Tetrahedron 2013, 69, 3249.
17. (a) Bhagat, S.; Chakraborti, A. K. J. Org. Chem. 2007, 72, 1263; (b) Manabe, K.; Kobayashi, S. Chem. Commun. 2000, 669; (c) Bhattacharya, A. K.; Kaur, T. Synlett 2007, 745; (d) Firouzabadi, H.; Iranpoor, N.; Sobhani, S. Synthesis 2004, 2692; (d) Yadav, J. S.; Reddy, B. V. S.; Sreedhar, P. Green Chem. 2002, 4, 436; (e) Ambica; Kumar, S.; Taneja, S. C.; Hundal, M. S.; Kapoor, K. K. Tetrahedron Lett. 2008, 49, 2208; (f) Jafari, A. A.; Nazarpour, M.; Abdollahi-Alibeik, M. Heteroat. Chem. 2010, 21, 397.
18. (a) Azizi, N.; Saidi, M. R. Eur. J. Org. Chem. 2003, 4630; (b) Fang, H.; Xie, X.; Hong, B.; Zhao, Y.; Fang, M. Phosphorus, Sulfur Silicon Relat. Elem. 2011, 186, 2145; (c) Bedolla-Medrano, M.; Hernandez-Fernandez, E.; Ordonez, M. Synlett 2014, 25, 1145; (d) Chandrasekhar, S.; Narsihmulu, C.; Sultana, S. S.; Saritha, B.; Prakash, S. J. Synlett 2003, 505.
19. Bhachoo, J.; Beuming, T. Methods Mol Biol 2017, 1561, 235.
20. Release, S. (2016). 3: LigPrep. Schrödinger, LLC, New York, NY.
21. De, R. J.; Brysbaert, G.; Blossey, R.; Lensink, M. F. Adv Appl Bioinform Chem 2016, $9,1$.
22. Roskoski, R. Pharmacol. Res. 2015, 94, 9.
23. Espada, J.; Martin-Perez, J. Int Rev Cell Mol Biol 2017, 331, 83.
24. Foda, Z. H.; Shan, Y.; Kim, E. T.; Shaw, D. E.; Seeliger, M. A. Nat. Commun. 2015, 6, 5939.
25. Banerjee, M.; Duan, Q.; Xie, Z. PLoS One 2015, 10, e0142119/1.
26. Morando, M. A.; Saladino, G.; D'Amelio, N.; Pucheta-Martinez, E.; Lovera, S.; Lelli, M.; Lopez-Mendez, B.; Marenchino, M.; Campos-Olivas, R.; Gervasio, F. L. Sci. Rep. 2016, 6, 24439.
27. Le Guilloux, V.; Arrault, A.; Colliandre, L.; Bourg, S.; Vayer, P.; Morin-Allory, L. J. Cheminf. 2012, 4, 20.
28. PreADMET, http://preadmet.bmdrc.org/ (Accessed February 12, 2017).
29. Tripathi, M.; Khan, S. I.; Thakur, A.; Ponnan, P.; Rawat, D. S. New J. Chem. 2015, 39, 3474.
30. LAZAR Toxicity predictions, https://lazar.in-silico.de/predict (Accessed August 31, 2017).
31. Jiang, X.; Wang, J.-M.; Zhang, Y.; Chen, Z.; Zhu, Y.-M.; Ji, S.-J. Org. Lett. 2014, 16, 3492.
32. Seixas, R. S. G. R.; Silva, A. M. S.; Alkorta, I.; Elguero, J. Monatsh. Chem. 2011, 142, 731.

Publications and patents

(1) Chiral aziridine ring opening: facile synthesis of (R)-mexiletine and (R) phenoxybenzamine hydrochloride. Viswanadh, N.; Velayudham, R.; Jambu, S.; Sasikumar, M.; Muthukrishnan, M*. Tetrahedron Lett. 2015, 56, 5269.
(2) An alternate synthesis of appetite suppressant (R)-2-benzylmorpholine employing Sharpless asymmetric epoxidation strategy. Viswanadh, N.; Mujumdar, P.; Sasikumar, M.; Kunte, S. S.; Muthukrishnan, M*. Tetrahedron Lett. 2016, 57, 861.
(3) A new and efficient enantioselective synthesis of both enantiomers of the calcium channel blocker bepridil. Mujahid, M.; Subramanian, J.; Viswanadh, N.; Sasikumar, M.; Kunte, S. S.; Muthukrishnan, M*. New J. Chem. 2017, 41, 824.
(4) Transition metal free regio-selective C-H hydroxylation of chromanones towards the synthesis of hydroxyl-chromanones using $\operatorname{PhI}(\mathrm{OAc})_{2}$ as the oxidant. Viswanadh, \mathbf{N}.; Ganesh S. Ghotekar.; Mahesh, B. Thoke.; Velayudham, R.; Aslam C. Shaikh.; Karthikeyan, M.; Muthukrishnan, M*. Chem. Commun., 2018, 54, 2252.
(5) Identification of potent chromone embedded [1,2,3]-triazoles as novel antitubercular agents. Viswanadh, N.; Aslam, S.; Sanket, B.; Vyas, R.; Karthikeyan, M.; Yogeeswari, P.; Sriram, D.; Muthukrishnan, M*. Royal Soc. Open Sci. 2018 (In press).
(6) Synthesis, biological evaluation and molecular modeling studies of novel chromone/azachromone fused α-aminophosphonates as Src kinase inhibitors. Sanket B.; Viswanadh, N.; Mujahid, M.; Amir N. S.; Rakesh K. T.; Keykavous P.; Vyas, R.; Karthikeyan, M.; Muthukrishnan, M^{*}. (Manuscript communicated).
(7) New method for the synthesis of (R)-phenoxybenzamine hydrochloride employing aziridine ring opening as a key step. Viswanadh Nalla.; Velayudham, R.; Karthikeyan, M.; Muthukrishnan, M. Indian patent Appln No. 1844/DEL/2014.
(8) A process for the preparation of 8-chloro-1-methyl-2,3,4,5-tetrahydro-1- H -3benzo[D]azepine and its enantiomers. Muthukrishnan, M.; Velayudham, R.; Viswanadh Nalla.; PCT, WO 2015/170346 A1.

Chiral aziridine ring opening: facile synthesis of (R)-mexiletine and (R)-phenoxybenzamine hydrochloride

N. Viswanadh, R. Velayudham, S. Jambu, M. Sasikumar, M. Muthukrishnan*
Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India

ARTICLE I NFO

Article history:

Received 25 May 2015
Revised 9 July 2015
Accepted 10 July 2015
Available online 16 July 2015

Keywords:

Mexiletine
Phenoxybenzamine
Aziridine

Abstract

A simple and efficient synthesis of chiral drugs (R)-mexiletine $\mathbf{1}$, an anti-arrhythmic drug and (R)-phenoxybenzamine hydrochloride $\mathbf{2}$, an anti-hypertensive drug has been described via controlled reductive ring opening of chiral aziridine as a key step. The target compounds $\mathbf{1}$ and $\mathbf{2}$ were obtained in overall yields of 34% and 10.5%, respectively.

© 2015 Elsevier Ltd. All rights reserved.

Synthesis of compounds in their enantio-enriched form became very important in the market place, especially in the pharmaceutical sector. This is mainly because; the enantiomers of chiral drugs often exhibit significantly different pharmacological, toxicological, pharmacodynamic and pharmacokinetic properties. Hence the development of newer methods aiming the synthesis of active enantiomer or both enantiomers (for careful evaluation of individual enantiomers) of chiral drugs is a main focus of research in many academic and industrial laboratories. ${ }^{1}$

Mexiletine is an important β-amino aryl ether class of drug used in the treatment of arrhythmia, allodynia and myotonic syndromes, etc. and its racemic form of mexiletine is available in the market with the trade name Mexitil ${ }^{\circledR} .{ }^{2}$ However, the (R)-isomer of mexiletine ($\mathbf{1}$) (Fig. 1) is more potent than the (S)-isomer in experimental arrhythmias and in binding studies on cardiac sodium channels. ${ }^{3}$ Similarly, phenoxybenzamine hydrochloride (2, PB; Commercial name Dibenzyline ${ }^{\circledR}$) is an important β-chloroethylamine class of

R-Mexiletine 1 antiarrhythmic

R-Phenoxybenzamine. HCl 2 antihypertensive

Figure 1. Structure of (R)-mexiletine and (R)-phenoxybenzamine hydrochloride.

[^1]drug in the α-blocker series, widely used in the treatment of hypertension. ${ }^{4}$ It has also found application in treating benign prostatic hyperplasia (BPH) hypoplastic left heart syndrome, etc. However, the (R)-isomer of phenoxybenzamine hydrochloride (2) is 14.5 times more potent than its (S)-isomer. ${ }^{5}$ Approaches that have been used so far to prepare enantiopure mexiletine and PB includes chiral pool, chemo/enzymatic resolution strategy or using stereoselective protocols. ${ }^{6,7}$

As part of our ongoing programme on developing a new and improved process for the preparation of various pharmaceutically important compounds for industrial applications, ${ }^{8,9}$ sometime ago we reported the preparation of $\mathbf{1}$ and $\mathbf{2}$ employing hydrolytic kinetic resolution strategy. ${ }^{9 \mathrm{a}, \mathrm{b}}$ Importantly, the potential utility of compounds $\mathbf{1}$ and $\mathbf{2}$ in new therapeutic areas inspired us to develop a robust method for their synthesis preferably from a common precursor there as to make a diverse range of chiral analogues of $\mathbf{1}^{10}$ and $\mathbf{2}$ in a simple manner to test their biological activities. We herein report a simple and efficient approach towards the preparation of $\mathbf{1}$ and $\mathbf{2}$ via the reductive ring opening reaction of the enantiopure aziridine as a key step.

A retrosynthetic analysis of (R)-mexiletine (1) and (R)-phenoxybenzamine. $\mathrm{HCl}(\mathbf{2})$ is outlined in Scheme 1. As shown in Scheme 1, we envisaged that chiral aziridines $\boldsymbol{R}-\mathbf{7} \& \boldsymbol{R}-\mathbf{8}$ would be an ideal key intermediate for the synthesis of both (R)-mexiletine (1) and (R)-phenoxybenzamine $\mathrm{HCl}(\mathbf{2})$, respectively. These intermediates $\boldsymbol{R}-\mathbf{7}$ and $\boldsymbol{R}-\mathbf{8}$ can be converted to the target molecules via reductive ring opening followed by simple synthetic sequences. The chiral aziridines $\boldsymbol{R}-\mathbf{7}$ and $\boldsymbol{R}-\mathbf{8}$ in turn, can be prepared from commercially available phenols via O-alkylation, regioselective ring opening followed by intramolecular ring closure sequences.

An alternate synthesis of appetite suppressant (R)-2benzylmorpholine employing Sharpless asymmetric epoxidation strategy

N. Viswanadh, P. Mujumdar, M. Sasikumar, S. S. Kunte, M. Muthukrishnan*
Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India

A R T I C L E I N F O

Article history:

Received 5 November 2015
Revised 6 January 2016
Accepted 9 January 2016
Available online 11 January 2016

Keywords:

(R)-2-Benzylmorpholine

Sharpless asymmetric epoxidation
Appetite suppressant

Abstract

An alternate synthesis of (R)-2-benzylmorpholine 1, an appetite suppressant agent has been accomplished starting from readily available trans-cinnamyl alcohol employing Sharpless asymmetric epoxidation strategy as a key step, with an overall yield of 24%.

© 2016 Elsevier Ltd. All rights reserved.

C-Substituted morpholine analogues, in particular the nonracemic ones are important structural scaffolds present in many pharmaceutically important compounds (Fig. 1). ${ }^{1}$ They are potential therapeutic agents for a wide variety of medical disorders such as depression (Reboxetine, Viloxazine), ${ }^{2}$ anorectic (Phenmetrazine, Phendimetrazine), ${ }^{3}$ chemotherapy induced nausea and vomiting (Aprepitant), ${ }^{4}$ etc. In that series, (R)-2-benzyl morpholine is a classical example of chiral 2-morpholine analogues, known to be a potent appetite suppressant and widely studied for its pharmacological properties. ${ }^{5}$ Further, its potential utility in treating diabetes mellitus and certain CNS disorders are also under investigation. ${ }^{6}$ Despite their wide utility, synthetic routes to these valuable compounds especially the non-racemic ones are very limited. ${ }^{7}$ So far, methods described in the literature to afford (R)-2-benzyl morpholine involve optical resolution, ${ }^{5}$ chemoenzymatic route ${ }^{8}$ or enantioselective method employing proline catalyzed α-aminooxylation strategy. ${ }^{9}$

As a part of our ongoing programme on developing a new and improved process for the preparation of various pharmaceutically important compounds for industrial applications, ${ }^{10,11}$ we herein report a simple and efficient approach towards the preparation of (R)-2-benzylmorpholine employing Sharpless asymmetric epoxidation (SAE) ${ }^{12}$ strategy.

A retrosynthetic analysis of $\mathbf{1}$ is outlined in Scheme 1. As shown in Scheme 1, the amino alcohol 5 can be visualized as a key

[^2]

Figure 1. Few pharmaceutically important compounds possessing chiral C-2 substituted morpholine structure.
intermediate for the synthesis of (R)-2-benzylmorpholine (1) which can be elaborated to the amide derivative 6 by simple N -acylation. Further, compound 6 might be transformed to the target molecule 1 via cyclization followed by amide reduction.

Cite this: New J. Chem., 2017, 41, 824

Received (in Montpellier, France) 17th September 2016,
Accepted 16th December 2016
DOI: 10.1039/c6nj02928k
www.rsc.org/njc

A new and efficient enantioselective synthesis of both enantiomers of the calcium channel blocker bepridil \dagger

Mohammad Mujahid, ${ }^{\text {ab }}$ Jambu Subramanian, ${ }^{\text {a }}$ Viswanadh Nalla, ${ }^{\text {a }}$ Murugesan Sasikumar, ${ }^{\text {c }}$ Sunita Sharad Kunte ${ }^{a}$ and Murugan Muthukrishnan*a

Abstract

A concise and efficient enantioselective synthesis of both enantiomers of bepridil, a calcium channel blocker, is reported. Jacobsen's hydrolytic kinetic resolution method was utilized to resolve racemic 2-(isobutoxymethyl)oxirane. The incorporation of the succinimide moiety by the Mitsunobu reaction, which was investigated in detail, occurred without any loss of enantioselectivity. Using this strategy, both enantiomers of the target molecule were obtained in good yield and with high enantiopurity (ee $>99 \%$).

Introduction

Calcium channel blockers are an important group of drugs and they have prevalent use in treating hypertension, heart failure, cardiac arrhythmias, etc. ${ }^{1}$ Bepridil (trade name: Vascor ${ }^{\mathbb{R}}$) is a long acting calcium-blocking agent with significant antianginal activity (Fig. 1). It has antihypertensive and selective antiarrhythmia activities and acts as a calmodulin antagonist. ${ }^{2}$ Although it contains one stereogenic centre, it is generally administered as a racemate. However, as expected, pharmacological studies reveal that there are significant variations in the activity amongst bepridil enantiomers and the (R)-enantiomer of bepridil is more active than the (S)-enantiomer in certain cases. ${ }^{3}$

Fig. 1 Bepridil.

[^3]Importantly, many racemic drugs, which previously received FDA approval, are being re-evaluated to determine the potential benefits of the pure enantiomers. ${ }^{4}$ In spite of the fact that the enantiomers of bepridil have been separated from the racemic mixture by the capillary electrophoresis method, there are no reports available on the enantioselective preparation of bepridil enantiomers. ${ }^{5}$ Furthermore, in recent years, it has been recognized that bepridil could be important in new therapeutic areas such as Alzheimer's disease, ${ }^{6 a}$ viral infections, ${ }^{6 b}$ and atrial fibrillation ${ }^{6 c}$ and in certain neurological disorders. ${ }^{6 d}$ Very recently, bepridil has been identified as a potential lead molecule against Ebola virus disease (EBOV) by inhibiting a later stage of viral entry. Presumably, with bepridil being an approved drug, its repurposing may rapidly move to human testing and it has potential to become a frontline against Ebola virus infection. ${ }^{7}$

By understanding the significance of bepridil in many new therapeutic indications, it seemed timely to develop a new and effective enantioselective synthetic route to bepridil enantiomers. These bepridil enantiomers and their analogues would be extremely useful in the early phase of the drug discovery program to ascertain their pharmacological, toxicological, pharmacodynamic and pharmacokinetic characteristics.

Epoxides constitute one of the most widely used functional groups in organic transformations and serve as important building blocks in the industrial syntheses of a wide variety of organic materials. ${ }^{8}$ Over the past few years, investigations in our laboratory have demonstrated the potential utility of these epoxides for the synthesis of many pharmaceutically important compounds. ${ }^{9,10}$ Herein we report a new and simple enantioselective synthetic strategy to access both enantiomers of bepridil starting from commercially available epoxide.

ARTICLETN PRESS

Cite this article: Nalla V, Shaikh A, Bapat S, Vyas R, Karthikeyan M, Yogeeswari P, Sriram D, Muthukrishnan M. 2018 Identification of potent chromone embedded $[1,2,3]$-triazoles
as novel antitubercular agents. R. Soc. open sci. 5: 171750.
http://dx.doi.org/10.1098/rsos. 171750
Received: 30 October 2017
Accepted: 9 March 2018
Subject Category:
Chemistry

Subject Areas:

organic chemistry/medicinal chemistry

Keywords:

chromone, triazole, molecular docking

Author for correspondence:

M. Muthukrishnan
e-mail: m.muthukrishnan@nc.res.in

This article has been edited by the Royal Society of Chemistry, including the commissioning, peer review process and editorial aspects up to the point of acceptance.

Electronic supplementary material is available online at rs.figshare.com.

Identification of potent chromone embedded [$1,2,3]$-triazoles as novel antitubercular agents

Viswanadh Nalla ${ }^{1,2}$, Aslam Shaikh ${ }^{1,2}$, Sanket Bapat ${ }^{4}$, Renu Vyas ${ }^{4}$, M. Karthikeyan ${ }^{1,2}$, P. Yogeeswari ${ }^{3}$, D. Sriram ${ }^{3}$ and M. Muthukrishnan ${ }^{1,2}$

${ }^{1}$ CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India
${ }^{2}$ Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
${ }^{3}$ Tuberculosis Drug Discovery Laboratory, Pharmacy Group, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500 0078, India
${ }^{4}$ MIT School of Bioengineering Sciences and Research, MIT Art, Design and Technology University, Pune 412 201, India
(D) $\mathrm{MM}, 0000-0003-2245-5498$

Abstract

A series of 20 novel chromone embedded [1,2,3]-triazoles derivatives were synthesized via an easy and convenient synthetic procedure starting from 2-hydroxy acetophenone. The in vitro anti-mycobacterial evaluation studies carried out in this work reveal that seven compounds exhibits significant inhibition against Mycobacterium tuberculosis H37Rv strain with MIC in the range of $1.56-12.5 \mu \mathrm{~g} \mathrm{ml}^{-1}$. Noticeably, compound $6 s$ was the most potent compound in vitro with a MIC value of $1.56 \mu \mathrm{~g} \mathrm{ml}^{-1}$. Molecular docking and chemoinformatics studies revealed that compound $6 \mathbf{s}$ displayed drug-like properties against the enoyl-acyl carrier protein reductase of M. tuberculosis further establishing its potential as a potent inhibitor.

1. Introduction

Tuberculosis is a major infectious disease caused by Mycobacterium tuberculosis (Mtb) and it is estimated that there are 10.4 million new cases and 1.4 million deaths in 2015 alone, of which developing countries showed a major share [1]. Recent study reveals that the numbers of TB cases in India are two to three times higher than previously estimated suggesting that global number of TB cases might be largely underestimated [2]. Furthermore, the emergence of a drug resistant microorganism responsible for TB , especially multidrug-resistant one along with lethal combination of TB and HIV infection makes this
(C) 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
||
(10) International Publication Number WO 2015/170346 A1
(43) International Publication Date 12 November 2015 (12.11.2015)
(51) International Patent Classification: C07D 223/14 (2006.01)
(21) International Application Number:

PCT/IN2015/000204
(22) International Filing Date:

8 May 2015 (08.05 .2015)
(25) Filing Language:
(26) Publication Language:
(30) Priority Data: 1252/DEL/2014 9 May 2014 (09.05.2014)

English
English
(71) Applicant: COUNCIL OF SCIENTIFIC \& INDUSTRIAL RESEARCH [IN/IN]; Anusandhan Bhawan, Rafi Marg, New Delhi 110001 (IN).
(72) Inventors: MUTHUKRISHNAN, Murugan; National Chemical Laboratory, Dr. Homi Bhabha Road, Maharashtra 411008 (IN). RAMADOSS, Velayudham; National Chemical Laboratory, Dr. Homi Bhabha Road, Maharashtra 411008 (IN). NALLA, Viswanadh; National Chemical Laboratory, Dr. Homi Bhabha Road, Maharashtra 411008 (IN).
(74) Agents: RAE, Konpal et al.; Lakshmikumaran \& Sridharan, B-6/10, Safdarjung Enclave, New Delhi 110029 (IN).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): $\mathrm{AE}, \mathrm{AG}, \mathrm{AL}, \mathrm{AM}$,
$\mathrm{AO}, \mathrm{AT}, \mathrm{AU}, \mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BH}, \mathrm{BN}, \mathrm{BR}, \mathrm{BW}, \mathrm{BY}$, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).
Declarations under Rule 4.17:
— of inventorship (Rule 4.17(iv))

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

[^0]: ${ }^{\text {a }}$ The concentration of the compound that inhibited enzyme activity by 50%

[^1]: * Corresponding author. Tel.: +91 20 25902284; fax: +91 2025902629.

 E-mail address: m.muthukrishnan@ncl.res.in (M. Muthukrishnan).

[^2]: * Corresponding author. Tel.: +91 20 25902284; fax: +91 2025902629.

 E-mail address: m.muthukrishnan@ncl.res.in (M. Muthukrishnan).

[^3]: ${ }^{a}$ Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India. E-mail: m.muthukrishnan@ncl.res.in
 ${ }^{b}$ P.G. Department of Chemistry, Shri Shivaji College of Arts, Commerce \& Science, Akola-444001, India
 ${ }^{c}$ Department of Chemistry, School of Basic Sciences, Vels University, Chennai-600117, India
 \dagger Electronic supplementary information (ESI) available: Detailed experimental procedures and characterization of all compounds. See DOI: 10.1039/c6nj02928k

