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Chapter 1: The first chapter contains a concise introduction of the fundamental concepts of
cluster chemistry. Brief classification of clusters, prominent historical achievements, method of
synthesis and their properties including the fundamental differences with common materials are
included. The geometric and electronic shell effect which are the two major contributing factor
in cluster stabilization are also discussed in detail. Few important topics regarding the stabi-
lization like Mackay’s icosahedra series, spherical and deformed jellium models and odd—even
effect are also covered. Other important theoretical models like the spherical cluster approxi-
mation or the liquid drop models are added as well. The chapter is intended to cover all the
essential topics which are of importance for the later chapters included in this thesis.

Chapter 2: The present chapter provides a brief introduction to the fundamental concepts of
the density functional theory (DFT) which is used for majority of the calculations included in
the thesis. Starting from the basics of quantum chemistry, crucial components of the density
functional theory (DFT) are covered. Significant works from antiquity, like the Thomas—Fermi
model are included as well. The fundamentals of modern DFT including the Hohenberg—Kohn
theorem and the Kohn—Sham model are discussed. A separate section is included in order to
discuss conceptual density functional theory and few additional topics.

Chapter 3: In this chapter, energetics and the in-depth reaction mechanism of the oxidative
addition step of the cross-coupling reaction are studied in the framework of density functional
theory (DFT) on aluminum nanoclusters. Aluminum metal in its bulk state is totally inactive
towards carbon-halogen bond dissociation but selected Al nanoclusters (size ranging from 3 to
20 atoms) have shown a significantly lower activation barrier towards the oxidative addition re-
action. The calculated energy barriers are lower than the gold clusters and within a comparable
range with the conventional and most versatile Pd catalyst. Further investigations reveal that the
activation energies and other reaction parameters are highly sensitive to the geometrical shapes
and electronic structures of the clusters rather than their size, imposing the fact that compre-
hensive studies on aluminum clusters can be beneficial for nanoscience and nanotechnology.
To understand the possible reaction mechanism in detail, the reaction pathway is investigated
with the ab initio Born Oppenheimer Molecular Dynamics (BOMD) simulation and the Natural
Bond Orbital (NBO) analysis. In short, the present chapter highlights the thermodynamic and
kinetic details of C-I bond dissociation on aluminum clusters for future endeavors in cluster
chemistry.

Xii


http://nclwebapps.ncl.res.in/spal/index.htm

Chapter 4: The influence of spin on the properties of small sized transition metal doped alu-
minum clusters are investigated in the framework of density functional theory (DFT). Detailed
analysis on minimum spin doped aluminum clusters has shown prominent indication of odd—
even oscillation in various calculated properties, supporting the presence of jellium shell struc-
tures within them. However, optimized high spin ground state counterparts, on the other hand,
show rather smooth trends consistent with the properties of bulk materials. Resemblance to the
bulk transition metals is further reflected in the gradual declining trends of heat of adsorption
of CO, molecule on cluster surface by sequentially changing the dopant atom from scandium
to zinc. All the observations are also compared and found to be consistent with the earlier
theoretical and experimental findings as obtained in the current literature. The similarities in
the properties between atomic clusters and the bulk material is of utter importance and indeed
precious considering the promising influence of the acquired information in understanding the
process of evolution of nanoparticles from constituent atoms.

Chapter 5: The stability and electronic structure of radical attached aluminum nanoclusters are
investigated using density functional theory (DFT). A detailed investigation shows good corre-
lation between the thermodynamic stability of radical attached clusters and the stability of the
attached radical anions. All other calculated parameters like HOMO-LUMO gap and charge
transfer are also found to be consistent with the observed thermodynamic stabilities of the com-
plexes. Investigation of the electronic structure of radical attached complexes further shows the
presence of jellium structures within the core similar to the ligated clusters. Comparison with
available experimental and theoretical data also proves the validity of superatomic complex the-
ory for the radical attached clusters as well. Based on the evaluated thermodynamic parameters,
selected radical attached clusters are observed to be more thermodynamically stable in compari-
son with experimentally synthesized ligated clusters. Stabilization of small metal clusters is one
of the greatest challenges in current cluster science and the present investigation confirms the
fact that radical attached clusters can provide a viable alternative to ligated clusters in the future.

Chapter 6: The activation process of carbon—iodine bond on neutral and cationic niobium
metcar its cation is investigated using density functional theory and related computational tech-
niques. Metalcarbohedrenes or metcars are a class of stable metal-carbide clusters of fixed
stoichiometry and of great interest to cluster chemists since their first discovery. The detail re-
action mechanism along with the overall energy profile of the C-I dissociation reaction on nio-
bium metcar and its cation is presented. The tunneling corrected rate constants and the related
reaction parameters like the pre—exponential factor are also included alongside. The major dif-
ferences between the reaction mechanism of the neutral and cationic metcar is also highlighted.
Despite the available experimental results, the carbon—iodine bond dissociation on metcars has
mostly remained an unexplored problem in the theoretical and computational domain. Thus,
the present investigation can fill in the gap and may also able to provide new insight provoking
further developments in cluster chemistry in future.

Chapter 7: A short summary of all the works included within the thesis is presented in this
chapter. The possible future prospects of the included works are also discussed.
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Chapter 1

A Preface to Cluster Chemistry

1.1 Introduction

On the trail of evolution, intelligence is a rare commodity seldom achieved by individual species
as a result of unpredictable genetic modifications. Among the extensive biodiversity found in
our home planet, the humans are among the few, fortunate enough to possess this trait in order
to not only comprehend the universe around them but also capable to reshape it in accordance
to their necessities. In this eternal quest of mankind versus nature, the humans have been suc-
cessfully utilized the available natural resources to their benefits since the first representative
of extant human walked on the surface of the earth. Considering this aspect it can be argued,
if not straight—away discarded, that the voyage of material science has began few billion years
ago from the unknown corner of a dimly lit cave. However, despite the obscure origin, there is
certainly no denial about the impact and influence of modern material science in shaping our
day to day lifestyle of the 21* century. Especially, the present time can be considered as the
absolute pinnacle of material science, an achievement which would seem to be a far cry even
just five decades ago. The major credit to this accomplishment is certainly be attributed to the
recent innovation of new state—of—the—art experimental technique with better precision and con-
trol over the test subject. The rapid progress in the high performance computing systems and
advanced electronics in the past years also have aided adequately in this revolution. Due to the
widespread variation of material science, choosing a particular field of preference is surely no
easy task. However, it can be said with enough assurance that to a novice scout, few topic that
can be more intriguing than that of cluster chemistry. In the common language of chemistry, a
‘Cluster’ is defined as a collection of atoms or molecules which are intermediate in size between
atoms or molecules and the bulk solids. As clusters represents very small fraction of the total
number of atoms which can be considered negligible for a bulk solid, their properties usually
widely differ than that of a bulk material. From an alternative perspective, a cluster can also
be viewed as a collection of atoms where the electrons are confined in a shallow potential well,
resulting in discrete energy levels rather than the continuous band structure. It is needless to
say that both this viewpoints are interrelated and collectively define the properties of a cluster.
The unique characteristics of the cluster is the sole reason of their worth and allure to material
chemists. By investigating the properties of clusters, an actuated scientific mind can scavenge
crucial information about the growth of bulk matter from the unit of atom. Moreover, quantita-
tive studies on cluster may guide us to design new materials with unique properties which may
eventually aid in the real life problems. Let us clarify this statement by citing few fascinating
examples from popular literature. As we all know that the all the material known to mankind
are composed of atoms as assigned in the periodic table. A lesser known fact is that not all
element can be mixed with another element in the bulk phase. A prominent example of this
kind is that the miscibility of alkali metal with aluminum. Even in molten state the miscibility
of potassium metal with molten aluminum is 10~4%.! Thus, the property as well as the pos-
sible potential of a binary metal composed of aluminum and potassium is totally unknown to
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us. However, in cluster state, a single potassium or more can easily be doped into an aluminum
cluster resulting in new moieties with indefinite possibilities. As a second example, the ‘f” block
element gold is infamous for its inertness in bulk state and a honored member of the class of
noble metals. However, in cluster state, gold is observed to be exceptionally reactive and can
even catalyze complex reaction like cross—coupling®® which in bulk state is only possible on
specific transition metals. Due to the presence of discrete electronic shells, specific clusters also
known to have striking resemblance with the properties of atoms.*® Thus, clusters can provide
an alternative basis of artificially tailored materials with innovative applications.

Up to this point, it is expected that we have convinced ourselves about the importance and
impact of cluster chemistry in modern material world. Before exploring further, it will be wise
to clarify few arguments which often baffle newcomers in this particular research field. Based
on the definition cited earlier, one of the most popular question which can be raised is about
the fundamental difference of atomic clusters with molecules or nanoparticles.! The question
is a legitimate one because both molecules and nanoparticles are also just aggregates of atoms
similar to the atomic clusters. The differences with molecules are obvious and is summarized in
Table 1.1. However, citing the differences with nanoparticles is certainly tricky, if not downright

TABLE 1.1: Major difference between molecules and clusters

Topic Molecules Clusters

Origin Naturally available and abundant. Majority are synthesized artificially.

Stability Usually stable in ambient condition.  Highly reactive, stable in inert of near vacuum condition.
Interaction Weakly interact with each other. Weak or strong interaction depending the nature of the cluster.
Size and Composition | Composition and size are fixed Variable composition and size.

Isomers Number of isomers are limited. Large number of possible isomer.

Coalescence No tendency to coalesce. Metastable, therefore have high tendency to coalesce.

Nature of Bonding Bonding is either covalent or ionic. Variable bonding types: vdW, metallic, ionic or covalent.

impossible. The major reason is that in the early stage of development, both research fields of
cluster and small particles (the term ‘nanoscience’ was still not a fashionable scientific term)
were widely different. Clusters were usually smaller than 1 nm, whereas, nanoparticles were
much larger in size(> 10 nm). However, with the technological progress this difference has now
been reduced, nanoparticles with size lower than few nanometers or atomic cluster containing
few thousand atoms can now easily be synthesized. Hence, considering the present scenario, a
more convenient way to define an atomic cluster is,

“ An aggregates of atoms whose size and composition is exactly known and whose change of
properties can be studied (by experimental or theoretical methods) one atom at a time"'

In simpler terms, if an atomic aggregates is composed of countable number of atoms and the
change of the properties is significant upon addition or reduction of a single atom, it is called
a cluster. Beyond a particular size scale it becomes difficult to determine the exact composi-
tion also the change in the properties becomes less drastic upon addition or subtraction of a
single atom. From this size range onward, the aggregates are addressed as nanoparticle. So, the
definition is a variable one, with the advancement in the experimental precision and measure-
ment techniques, larger sized nanoparticles may eventually be considered as clusters. Thus, in
modern literature clusters are often refereed as ‘nanoclusters’ irrespective of their sizes, just to
recollect this firm connection between the two research fields.
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1.2 A Link to the Past

Like the enticing properties and potential of atomic clusters, the antiquity of the research field is
not less exciting. Although the major development in the field may have started just 30-40 years
ago, the term ‘Cluster’ was often used in scientific contents. The oldest reference to clusters
probably have been made by the famous Robert W. Boyle (FRS) in 1661. In the proposition II
of his famous book ‘The Sceptical Chymist: or Chymico-Physical Doubts & Paradoxes’ he has
mentioned,’

“Neither is it impossible that of these minute particles divers of the smallest and neighbouring
ones were here and there associated into minute masses or clusters, and did by their coalitions
constitute great store of such little primary concretions or masses as were not easily dissipable
into such particles as composed them.”

In simple words, that it is not impossible to combine atoms to forms clusters which will be
stabler than the atoms itself and will not easily dissociate into constituent atoms. However, first
experimental investigation of clusters in modern science was never began before Eduard Zintl’s
studies on Zintl phases!? within the period 1930-1940’s. Zintl phases (A term first coined by
Fritz Laves in 1941) are a variation of stable inter metallic clusters usually diamagnetic or have
temperature independent paramagnetism. However, The term ‘Cluster’ was probably first used
in modern context by the eminent American inorganic chemist Frank A. Cotton in the 1960’s to
describe compounds containing intermetallic bonds.!! The existence of geometric magic num-
bers due to icosahedral close packing in inert gas clusters was first reported by Recknagel et
al. at the end of 1981.!2 Despite these noteworthy mentions, two discoveries, occurred almost
simultaneously in two consecutive years is considered as the foundation of current cluster chem-
istry. The first one is the observation of the abundance spectra in alkali metal clusters by W.D.
Knight and coworkers in the year 1984.!3 In that paper, for the first time it was observed that
closed shell metal clusters are more stable than the open shell ones, resulting in variable abun-
dance in the mass spectra. The relative stabilities and related properties were also explained
by invoking the jellium model, which is still considered as one of the fundamental models for
predicting the properties of metal clusters. The second innovation is the discovery and the pre-
diction of the weird structure of the well known Cgy molecule by Kroto , Heath, O’Brien, Curl,
and Smalley at Rice University in 1985.'* Although, it must be mentioned that the structure of
Ceo was already been predicted theoretically by Japanese computational chemists Eiji Osawa
in 1970, during his search for an possible superaromatic molecule.'>!® However, during the
experimental discovery it was still unknown as the paper by Osawa was published in Japanese
journal (Kagaku) rather than a international peer reviewed one. Despite the innovation of Ceg
in 1984, the first conformation of the structure was achieved five years later (1990) when W.
Kritschmer and his coworkers first discovered a bulk synthesis method of Cgo from carbon
soot.!” The natural occurrence of fullerenes in ‘Shungite’ ore was discovered two years later
in 1992.18 In 1994, fullerences were found in the fragment of ‘Allende’ meteorite (Mexico,
1969).1920 As of latest, in 2010, Cgo and higher fullerenes were proven to exists in planetary
nebula.?! The year 1992, is also famous for the innovation of dual tetrahedral cluster TigCj,
by Castleman and coworkers.?2 The TigCj, cluster is an honorable member of a new class of
stable clusters of same stochiometry, commonly abbreviated as metcars.?>?* Beside fullerenes,
metcars are the only carbon containing network clusters which are relatively stable, although the
process to synthesize them in bulk amount is still unknown. In the first decade of the present 21*
century, Castleman, Khanna and coworkers had discovered that specific clusters can behave like
atoms based on their jellium shell structure.*8 Thus, clusters can be considered as an alternative
building blocks of materials aside from atoms and hence, they constitutes a new dimension of
the periodic table of elements.
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Classification of Atomic Clusters

[Rare Gas Clusters] [ Metal Clusters } [ Ionic Clusters } [Network Clusters ] [Assembled Clusters J
(Van der Waals)

FIGURE 1.1: A schematic of five common classes of atomic clusters.

FIGURE 1.2: A list of Matrix and Non—Matrix based cluster synthesis methods.
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1.3 Classification of Atomic Clusters

Due to the wide variation in the properties of atomic clusters it is often difficult to properly clas-
sify the clusters into separate categories. Moreover, the classifications available in the current
literature are often biased by the research interest and the personal preferences of the author(s).
Therefore, In this thesis, we have decided to include a classification (Figure 1.1) solely based on
our personal choice and which are relevant for this thesis. Although the classification are based
on our personal liking, we have ensured that the listed classes are general enough to provide
the readers a flavor of overall variations in the cluster chemistry. The examples cited here are
mostly taken from abundant literature and can be considered as simplest examples available for
the specific kind.

a. Rare Gas Clusters: If rare gases like He, Ne, Ar etc are cooled enough to very low tem-
peratures, they can combine with each other and forms clusters. Due the filled octet structure,
the dominant attractive forces in rare gas clusters are mainly weak short range dispersion force
(van der Waals) countered by short range quantum mechanical repulsive force due to the atomic
cores. The binding energies are certainly low (~ 0.3-0.5 eV/atom). The stability of these clus-
ters solely depends on geometrical close packing rather that of electronic origin. As a common
observation it has been found that clusters with close packed icosahedral structure is stabler than
the others. As the interacting force within the clusters can easily be modeled by two particle
forces, van der Waals clusters are of interest for classical dynamics simulations or in the phase
transition problems. Few rare research fields includes superfluidity and quantum effects. Most
common examples are Hey, Ney, Rny etc. Closed shell molecular clusters like (I2)y, (SFe)n »
(N2)n also belongs to this category.

b. Metal Clusters: The family of metal clusters are probably the most extensive classes of
atomic clusters known to chemists till date. A major portion of the present thesis is also fo-
cused on these type of clusters. The metal clusters can further be subdivided in subcategories
based on the type of metals by which they are composed of. Thus, cluster consists of alkali
metals(Group 1), alkaline earth(Group 2),coinage metals(Group 11) and transition metal atoms
each forms separate subcategories with variable properties. In addition to that, bimetallic clus-
ters(composed with two different type of metal atoms) and other ‘s’ and ‘p’ block metals (like
Al) are also part of this category. The properties and stabilities of simple metal clusters can be
explained by the famous jellium model, however, the situation is far more complicated for more
complex clusters and new models fro reproducing their behavior is still under development. Al-
though modeling metallic bonding is a difficult task as they can not be simplified by two body
potential. Hence, modeling this type of clusters is extremely difficult considering the classical
picture. In the quantum reign, although advanced algorithm for optimization and dynamics are
available, due to higher computational cost they cannot be utilized to investigate the properties
of larger clusters. Related investigations like the phase transition of different type of metal clus-
ters, catalysis and magnetic properties of ‘d’ block clusters are still popular among the material
chemists.

c. Ionic Clusters: Ionic clusters are usually formed when two type of elements with large
electronegativity differences are combined to form a cluster. lonic cluster can be synthesized
combining an electropositive element from the left side of the periodic table with an electroneg-
ative element of the right hand side. The overall stability of the cluster is due to the attractive
electrostatic interaction between the counter—ions. The presence of a short range repulsion in
between the ionic core is also observed. The strong Coulombic attraction is the sole reason
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for high binding energy of these type of clusters(~ 3—4 eV/atom). The shape of these clus-
ters shows high resemblance with bulk materials or alloys. The clusters can be considered
as small cubic or rectangular units of the bulk solids. Common examples of this kinds are
[NamCln](mfn)Jr’[Mgmon]2(m7n)+‘

d. Network Clusters: Elements with predominant covalent character like C,Si and Ge forms
this type of clusters. The bonding within the atoms in this clusters are predominantly covalent
and directional. The binding energies are also strong within ~ 1-4 eV/atom. The elements like
Si and Ge are semiconductors in bulk state. Hence, some variation of network clusters are also
often addressed as semiconductor clusters. The most prominent example of network cluster is
the family of fullerenes where each carbon is ‘sp?>” hybridized. The cluster of Si are also well
studied. However, unlike fullerenes, they do not form cage like structures and hence the ground
state structure of Si clusters usually widely differ than of carbon clusters. Another interesting
example of this kind is the family of metcar which are formed by combining carbon with early
‘d’ block transition elements.

e. Assembled Clusters: Composing new stable materials by combining atomic clusters is one
of the recent research topic to cluster chemists. The last category is solely devoted to this type of
materials which are composed of clusters. As the field is of recent interest and due to the techni-
cal difficulties of assembling clusters by keeping its identity intact, such examples are extremely
rare as by now. One of the most prominent example of this kind is the fullerite solid ([Ceoln,
which is composed of Cgo units.?> Other possible candidates to synthesize cluster assembled
solids are Alj3~ or Al;pX, where ‘X’ is a group 14 element which were studied extensively.
Although, no stable bulk solids is still reported experimentally.

1.4 Experimental Production of Atomic Clusters

Throughout the past three—four decades, there has been an enormous progress in the field of
synthetic chemistry. As an obvious consequence, artificial synthesis methods of atomic clusters
have now grown quite a vast almost beyond comprehension. Therefore, it is nearly impossible(
also beyond the scope of the present thesis) to include all of the latest developments and their
associated details in this present thesis. However, for the sake of the readers, we have included
few important methods along with examples taken from the abundant literature. In a broader
sense, the methods to synthesize cluster can be classified into two sub—categories, matrix and
non—matrix based methods. In matrix based methods clusters are synthesized in solvents or inert
materials, which often prevent embedded clusters from coalescence and protect from reacting
with impurities and active substances present in the vicinity. The non—matrix methods consist
of synthesize clusters in the gas phase. Due to the high reactivity, gas phase synthesis of clusters
are usually done in inert or near vacuum atmosphere using high purity source material.

1.4.1 Matrix Based Methods

a. Condensation on Substrate: If the metal vapor generated by extreme heating either by laser
source or by oven is condensed on a inert substrate like metallic oxide or salt like solid materials,
clusters of nano—meter size range is synthesized via aggregation. Use of a scanning tunneling
microscope (STM) provides further control over the cluster arrangement on the substrate and
well organized array of nano—clusters can be synthesized by this way. Thin films decorated
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with cluster nano—fabrication has also been synthesized. Further complex micro—structures can
also be synthesized by direct condensation of cluster beams on the substrate instead of atoms.
The resulting materials may have important application in nano—electronics and semiconductor
industries.

b. Chemical Reaction: Synthesizing clusters by chemical reactions is probably the oldest
method available to cluster chemists. Stable clusters with size ranging from 1-50 nm can be
synthesized by chemical reaction. The process may vary from simple precipitation,hydrolysis,
reduction even thermal decomposition. As for example, mono—dispersed cobalt clusters can be
synthesized by the thermal decomposition of Co,(CO)g as the following,

C0,(CO)g — 2Co +8CO (1.1)

Using surfactants and stabilizing materials one can control the growth of cluster and also can
protect the clusters against oxidation. Gold clusters can be synthesized by reducing solution of
gold salts with dispersed reducing agent like sodium,

Na+ AuSR —— NaSR + Au (1.2)

where ‘S’ is sulfur atom and ‘R’ is alkyl group. Ligated gold clusters can be synthesized from
AuSR using excess RSSR as the following,

N(AuSR) — Aux(SR)m (1.3)

where usually N > M. Similarly, ligated aluminum clusters like Al4(Cp*)4 [Cp* = CsMes]
is prepared reacting MgCp*, with dissolved AICI solution resulting in very high yield of the
complex ~ 90 %,

toluene

4 AIC1+4 [MgCp*y] N [Al4Cp*4] +2 [mgCICp*(OEty)]2 (1.4)

Another alternative method for synthesizing the same complex via reductive dehalogenation is

given below,
Cp*SiMe;

« 1 K .
—CISiMes 2[AICLCp™y] — [AL4Cp™y] (1.5)

2 Al Clg

c. Irradiation of Solids: Aggregation of atoms can also be generated if beam of high energy
particles being bombarded on well ordered crystal lattices. As for example, lithium clusters of
variable size can be formed if crystal lattices of LiF or Li,O being bombarded with high energy
neutron particle. Impure or mixed clusters can also be synthesized via the same way by using
lattice of metal alloys or by mixing two separate metals in an inert substrate followed by irra-
diation. Tweaking the strength and irradiation time, the size and concentration of the generated
clusters can be controlled.

d. Immersion of Porous Materials: In this methods aggregates of atoms are synthesized by
immersing a specially tailored porous material into the liquid or molten metal followed by the
application of very high pressure. Small droplets composed of atoms are formed within the
pores of the material which can further be utilized for practical application like catalysis. Some
specific glass like materials or zeolites with well defined pore sizes are usually used for this
purpose. By controlling the pore sizes and the applied pressure, cluster of various size ranges
can be synthesized.
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1.4.2 Non-Matrix Based Methods

a. Liquid Metal Ion Source: The Liquid Metal Ion Source method is suitable for synthesizing
clusters of metals with very low melting point. In this methodology first the metal is distilled
out from the source via differential heating and passed into a preheated tungsten capillary tube
within which the metal remains in liquid form. Using a very high potential difference (~ 2
kV) between the capillary tube and an extraction electrode, metal cluster ions with different
size ranges are synthesized. Few electrostatic lenses were used around the direction of flow to
collimate the cluster ions. Single as well as multiple charged clusters can be synthesized via this
method.

b. Ion Bombardment: When a steady stream of inert gas ions (e.g Xe*) is bombarded on a
solid surface with very high kinetic energy (e.g > 11 eV), Sputtering of clusters ions is observed
by the impact. The ion beam is focused onto a very small spot of the solid surface which is of
1-2 mm by diameter. The method is relatively cheap and clusters of noble gases, transition
elements and ionic materials can be synthesized by this way. The method is also suitable for
the generation of clusters of solids with high melting point. Detailed studies have proven that
the generation of clusters stream is due to the spontaneous collision chain initiated by a single
bombarded ions. Although argument exists whether the formation of cluster is the result of the
fragmentation of lattice sites or an outcome of the statistical reorganization of independently
ejected free atoms due to ion bombardment.

c¢. Supersonic Expansion: The supersonic expansion methods is one of the mode widely used
non—matrix based methods for cluster synthesis in gas phase. In the procedure the metal source
is vaporized via heating in an oven or by laser irradiation. The resulting vapor with a pressure
ranging from 103 to 10° Pa is mixed with a stream of inert carrier gas (e.g He, Ne, Ar) which is
kept in an stagnant high pressure (Po) of 10° to 10° Pa and high temperature (Tp) of 100-1500
K. The metal and inert carrier gas mixture then suddenly expanded through a very small ori-
fice(nozzle) of radius (r) 0.015-0.5 mm into vacuum (10~ '=1073 Pa). The resulting adiabatic
supersonic expansion cools the gas mixture and clusters are formed with variable sizes as the
expanded gas become supersaturated with the atoms. The production of clusters usually termi-
nated within few nozzle diameter from the orifice as the vapor gets less dense. It is observed
that the formation of clusters occurs within the nozzle as well as at the outside region. However,
the factor can be controlled via the parameter Por. For a low value of Pyr , more numbers of
clusters will form in the inner region of the nozzle and beyond a particular threshold value, each
increment of Pyr will result increase in the formation rate of the clusters in the outer region of
the expansion nozzle. In a similar fashion the average size range of the produced clusters can
also be controlled by regulating Py, T and A, the cross section of the nozzle aperture. The av-
erage size of cluster increases with increasing Py and A, whereas high temperature favors small
sized clusters. The use of carrier gases is not essential. Synthesis of molecular and inert gas
clusters including cluster composed of metals with very low melting point has been achieved
without the aid of any carrier gases. For van der Waals clusters low temperature (below room
temperature) is needed for cluster condensation.

1.5 The Rules of Stabilization

Up to this point of the discussion, it is apparent that atomic clusters are a separate class of
material much different from either atoms, molecules or even bulk solids. However, the dissim-
ilarities of the properties of atomic clusters with these well known materials do not end there.



Chapter 1. A Preface to Cluster Chemistry 9

One of the fundamental differences lies within is the stability of individual clusters when com-
pared with the rest of the series. Due to their metastable nature, atomic cluster obeys some
stabilization rules which is uncommon in molecules or bulk metals.The stabilization principle
depending on various factor like the composition, bonding, electron density distribution of the
cluster, which of course differs from one cluster series to another. If carefully observed, it can
be seen that each series of cluster types have their unique way of stabilization. However, despite
the variation, two major factors which plays dominant role in the stabilization process, is pri-
marily of two different origin, geometric and electronic. In this section we will take a brief look
on this two stabilization factors and their influences on the stabilities and other related properties
of relevant clusters.

1.5.1 The Geometric Shell Effect

Among the wide variation within the cluster family, the geometric stabilization is predominantly
important for clusters composed of noble(rare) gases. Due to the filled octet, nobel gas clusters
cannot achieve electronic stabilization via molecular orbital (MO) formation. The situation can
easily be illustrated by only considering the situation for the simplest noble element,i.e. the He-
lium(He) gas. The ‘He’ atom has a closed shell 1s configuration. Hence in the diatomic species,
He,, two electrons will occupy the bonding 6, MO and the rest two will be placed in the an-
tibonding o, orbital resulting no net gain in the overall stabilization of the cluster. Thus, the
only binding interaction present in rare gas clusters are non covalent van der Waals(vdW) inter-
actions, the primary contribution in which is the long range attractive London dispersion forces
(LDF). The London attractive interaction arises from the random fluctuation of the electron
density within the atom resulting in instantaneous dipolar and multipolar interactions among
the local neighbors. The LDF is the weakest attractive interactions when compared with other
two attractive vdW forces namely, Keesom (dipole—dipole) and Debye (dipole—induced dipole)
interactions. All this three contributing forces varies with the inverse sixth power of the dis-
tance. In a summarized way the vdW interaction energy between an asymmetric pair A and B

can be represented as,

A AL +Ap+A
Viaw = == = ===~ (1.6)

Upon expanding the terms,

1 3Ldgopop  UiUG
(47'68())27”6 2 Iy+1p 3k, T

where, o ,u are respectively the polarizabilities and dipole moment of the two species, 1 is
the ionization potential and &y is the permittivity of the vacuum. Other terms have their usual
significance. If we also consider the higher order contribution, the overall dispersion energy can
be expressed as a series,

Veaw = —{ +(u,§a3+u§aA)] (1.7)

Avaw Ay Aj ] (1.8)

Vdisp:|: /6 +ﬁ+m+u-

However, as the higher order terms are usually very low in magnitude in comparison with the
vdW term, usually the series is truncated after the first term for the sake of simplicity. Therefore,
the Vi, term essentially reduces to,

Ava
Vdisp = VydW = — ;6W (19)
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Apart from the long range dispersion attraction there exists short range repulsive interac-
tion between two atoms. The repulsion arises from two major factors, first is the electrostatic
repulsion between two closely placed nuclei, second is the Coulombic repulsion in between
the electron density of two atoms. In addition to that there is also Pauli repulsion in between
the electron with same spins. All these repulsive interactions can be modeled by a rin depen-
dent repulsive potential, where n is generally set to 12. (It is important to mention that later
improvements has proven that an exponential dependence exp~*", known as the Buckingham
potential represents the repulsive interaction more accurately). Combination of the attractive
dispersion term deduced earlier and this short range repulsion term generates the popular 612
model potential or Lennard—Jones (LJ) pair potential,

wese (9O e[ )] o

where € is the depth of the potential well, ¢ is the distance where inter—particle potential is
zero, 1 is the distance between the two species and r0(=2%6) is the equilibrium inter—nuclear
distance. Although for bigger clusters simple two body potential is not sufficient, since many
body interactions within the neighbors becomes more significant with cluster growth, however, it
is observed that even for a large cluster the many body contribution is found to be less significant
(< 8-10% of total lattice energy). For this reason, two body pair potential is still widely used
for the determination of the global minimum structure of inert gas clusters.

As the major interaction forces in noble gas clusters is primarily two body interactions,
therefore noble gas clusters are essentially stabilized by maximizing their near neighbor con-
tacts resulting in closely packed structures with high cluster binding energy (B.E). Thus ground
state structure of pristine inert gas clusters with 3 atoms (n=3) is found to be equilateral triangle,
n=4 is tetrahedral and so on. The larger structures are formed by combining tetrahedral units in
a compact manner, a pattern which is commonly known as the polytetrahedral growth. Thus for
n=7, the global minimum is pentagonal bipyramind (five tetrahedral unit) and the structure for
n=13 is the famous icosahedra, where 20 tetrahedral units share a common vertex at the very
center of the cluster. It is crucial to mention that, the icosahedral structure is one of the member
of the platonic solids family, a collection of structures which are known to be naturally abun-
dant and favored. According to the scientific definition, ‘a platonic solid is a regular, convex
polyhedron constructed by congruent regular polygons such a way that the number of faces
converged to each vertex remains the same.” The platonic solids are known since antiquity due
to their highly symmetric structure and mathematical interpretations. The curved stone balls
of Scotland which made by Neolithic people (2000 B.C) shows high resemblance with the five
platonic solids. Ancient Greek philosopher Plato, in his dialogue Timaeus(360 B.C), had postu-
lated the platonic solids as the shape of five fundamental elements of nature namely, earth, air,
water, fire and ether. Figure 1.3 depicts the five platonic solids with associated details included
in Table 1.2. Although the platonic solids are observed to be structurally different, all five can
be related via a simple mathematical equation known as the Euler’s rule for convex polyhedra,

V_E+F=2 (1.11)

where V,E and F are respectively the number of vertices, edges and faces of the associated
platonic solids (Table 1.2). Each solids is observed to obey further two common relations which
can be verified from Table 1.2 ,

pF =2FE

1.12
qV =2F ( )
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where p is the number of sides of each face, and q is the number of edges meeting at each

TABLE 1.2: The Geometrical Details of the Five Platonic Solids

Platonic Solids ~ Schliifli symbol {p,q} V E F  Point Group

Tetrahedron {3,3} 4 6 4 T
Octahedron {3,4} 6 12 8 Oy,
Hexahedron {4,3} 8 12 6 Oy,
Icosahedron {3,5} 12 30 20 I
Dodecahedron {5,3} 20 30 12 I

vertex. These two parameters is cumulatively represented by Schlifli symbol({p,q}) presented
in the second column of Table 1.2. If we now substitute the value of F = %E and V= %E obtained
from equation 1.6 in equation 1.7 , resulting,

1 1 1 1
Sto=Ets (1.13)
From this equation it is evident that the only possibilities for the {p,q} are (3,3),(3,4),(4,3),(3,5)
and (5,3), signifying that only the five platonic solids is physically possible and no others. As
mentioned earlier, that all of these five structures are very common in nature and the molecular
universe is no different. The tetrahedral arrangement of directional orbitals, cubic crystal (lat-
tice) structures, octahedral organometallic complexes, and dodecahedral shaped Cyy are among
a few common examples. Hence, the icosahedral structure of vdW clusters are no surprise and
can be considered as a natural preference just as the others.

The Mackay Icosahedra Series

The unusual stabilities of icosahedral structures compared to others is reflected in the mass
spectrum of the clusters. The mass spectrum of xenon clusters (n<150) studied by Echt and
coworkers!? shows the abundance peaks are not smoothly varied with the size of the clusters.
Specific sized clusters show higher abundance peaks than the others, signifying that they are
stabler than the rest and denoted as ‘magic’, an analogy rented from the nuclear chemistry. The
primary stability peaks is observed for n=13, 55 and 147. The secondary stability peaks which
are somewhat less prominent is also noticed in several other sizes e.g. at n=19, 23, 26, 81, 101
and 135. The primary magic numbers can easily be explained as they corresponds to the number
of atoms needed to form icosahedral closed packed structured and can be fitted in a numerical

series, commonly called Mackay icosahedra sequence,”’
N
ng=1+Y (10k*+2) (1.14)
k=1
which can be expanded into,
1
ng:§(10N3—|—15N2+11N+3) (1.15)

First five geometric magic numbers are 13, 55, 147, 309 and 561 for N =1, 2, 3, 4 and 5 respec-
tively. Each of these numbers signifies the completion of a stable icaosahedric geometrical shell
resulting in their high abundance in the mass spectrum. The structures of first five Mackay’s
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FIGURE 1.3: A simple illustration of the five platonic solids

FIGURE 1.4: The first five geometrical shells in accordance to the Mackay
icosahedra series.
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icosahedra shell is shown in Fig 1.4. The major abundance peaks of bigger inert gas clusters can
also be explained in a similar fashion using the same mathematical series.

Explaining the occurrence of secondary stability peaks is not as straight forward as the
primary ones. In order to explain the full set of secondary magic numbers it is necessary to
understand the growth of inert gas clusters starting from the smaller ones. As depicted in Figure
1.5, the smallest icosahedral cluster n=13 (Ic13) can be decorated in either two possible ways.
In the first case, The new atoms are arranged onto the faces(F) and vertices (V) of Ic3 skeleton.
As Ic13 is composed of 20 triangular faces, 30 edges and 12 vertices (Table 1.2), this type of
decoration results in a new cluster containing a subtotal of 45 (13+20+12)atoms. The common
nomenclature of this arrangement is called as the anti-Mackay or face centered (FC) packing.
In the second type of decoration, the new atoms occupies the vertices (V) and the edges (E)
of underlying cluster, generating the next cluster with 55 (13+12+30) atoms, which is nothing
but the next icosahedra in accordance to the Mackay series. Therefore, this second type of
decoration is known to be multilayered icosahedral (MIC) packing. In the overall growth process
of the clusters both of this decoration patterns are always in competition with each other and
depending on the size scale and type of the constituent atoms one is usually favored over the
other. In the very initial stages of growth, i.e. from Ic3 the FC decoration gets more favored
than the MIC. The prime reason of that is at this size range, arranging atoms in the FC mode
results in the generation of larger number of shorter bonds than in MIC arrangement increasing
the stability of the cluster. Considering the FC mode as the preferred way of decoration in the
initial stage, the occurrence of the secondary stability peaks can be attributed to a sub—shell
closure of the respective cluster. As for example, the Ic;3 cluster gets slight stability boost when
a pentagonal cap consisting six atoms is completed on top of Ic;3 skeleton resulting a double
icosahedra structure (Fig 1.6) with total atom count of 19 (13+6). Adding another four atoms
on the adjacent side results in the completion of a second sub—shell with a total atom count
23 (19+4). A third sub—shell is completed at N=26 which is also corresponds to a secondary
stability peaks. However, with the increment in the number of completed sub—shell, the internal
strain of the cluster predominates and soon at the range of N ~ 27-30, MIC decoration gets
favored over the FC. The transition from FC to MIC can be achieve by a reordering of the atoms
in the outer shell since both decorations are mutually exclusive. The next set of secondary magic
numbers e.g 32, 36, 39, 43, 46 and 49 can similarly be explained considering the sub—shell
closure of MIC covering. Thus, considering either FC or MIC as the favored way of decorations
for a particular size region, most of the secondary magic numbers can be explained and also
theoretically validated.

Although at small size scale the FC and MIC decoration are observed to be competitive
in nature, the situation changes for bigger clusters composed of thousands of atoms where FC
decoration gets favored over the MIC one. This observation is expected, because although
in small scale the icosahedral structure is more stable due to higher number of near neighbor
contact, its five fold symmetric structure is totally incompatible to form a close packed periodic
bulk crystal lattice. Thus, as the cluster grows larger, it is expected that there must be some
critical size, beyond which the atomic arrangement would mimic the bulk lattice arrangement
which is incidentally FCC for rare gases. The transition from MIC to FC in the critical size
range can also alternatively be viewed from the perspective of simple geometry. The edge or
side length (s;.) of a regular icosahedron is ~5% longer than the radius (r;.) of the enclosing
sphere,

sre = 1.0514ry, (1.16)

Therefore, if a perfect icosahedral structure is attempted to be constructed using 13 rigid sphere,
although all the spheres on the surface will be in direct contact with the central one but they will
not be in contact with each other. Such scenario is certainly destabilizing for the cluster, as we
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have already seen that the vdW clusters essentially get stabilized by increasing the number of
near neighbor contacts as the principle interaction is two body in nature. In order to achieve the
stabilization, the surface atoms usually reduced their contact distances in expense of the radial
distance from the center of the icosahedron. This reduction of the radial distances generate a
repulsive elastic strain within the core of the icosahedral cluster. For smaller clusters, the gain in
the stability due to the lowering of surface energy outweighs the effect of the strain. However,
as the cluster grows bigger initially via MIC pathway, after a particular size limit the elastic
strain eventually destabilizes the MIC structure compared to the FCC geometries. From that
point onward the FC growth pattern is continues till the bulk limit is reached.

1.5.2 The Electronic Shell Effect

Aside from the geometric stabilization, another important contributing factor which controls
the stability of an atomic cluster is of electronic in origin. In the early 1980’s Knight and
coworkers!3?® observed that in the mass spectrum of alkali metal clusters generated by super-
sonic expansion, there is some non—-monotonic variation of abundance with cluster size. Some
specific even numbered clusters e.g. N = 8, 20, 40, 58 and 92, shows higher abundance than the
rest of them. The observed stability trend can either results from the occurrence of unknown
stable geometries at those specific sizes or may be of electronic origin. However, in depth
studies have shown, that those specific ‘magic’ clusters also have very high ionization energy
and low electron affinity compared to the two adjacent clusters (with atom count of N-1 and
N+1 respectively) which are ‘non—magic’ in nature. This observation proves that the primary
contributing factor responsible for the unusual stability of these ‘magic’ alkali metal clusters
are certainly electronic in nature, and in order to explain the stability and related phenomena,
requirement of a new theoretical model has soon emerged as an absolute priority. In order to
explain the anomalous abundance and related properties Knight and coworkers proposed a the-
oretical model known as the ‘jellium shell model’. It is important to mention though, that the
jellium shell model was originally developed earlier in order to explain the unusual stability of
some specific atomic nuclei as observed during radioactive decay. The scientific term ‘magic’
which is often used to emphasize unusually stable clusters, is also coined from nuclear chem-
istry due to its similar analogy. The jellium model including its later modifications are probably
the finest theory available to cluster chemists till date and is able to explain the properties and
trends of atomic clusters with quantitative prediction upto a respectable level of complexity in
the cluster size and composition.

In the spherical jeliium shell model a ‘N’ atomic metal cluster is considered as an uniform,
positively charged ionic sphere surrounded by the free electron gas composed of valence elec-
trons of each metal atoms. In such a picture, the finer structure of the ionic core i.e. the exact
location of each atom is totally ignored and the valence electrons are considered as completely
free. The core potential is usually replaced by a theoretically modeled weak pseudo—potential,
whose lowest eigenstates must corresponds to the valence states of the atomic clusters. The
assumption is widely similar with the common picture of an atom (Figure 1.7) and therefore
must be compared. In an atom the positively charged nucleus is considered to be stationary at a
particular point, hence, the resulting positive charge is zero elsewhere. In a simple mathematical
fashion,

ni(r)=n9.8(r) (1.17)

where, n = Z,, i.e. the atomic number and §(r) is the delta function which has a value of 1 at
the position of nuclei and zero elsewhere. In a similar fashion,the positive charge distribution of
the central ionic core can be presented as,

ni(r) =nlOR—r) (1.18)
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FIGURE 1.5: A depiction of MIC and FC covering of Ic13 skeleton.

13 19 23

FIGURE 1.6: A simple illustration of the secondary geometric shell closure for
n=19and n=23
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R is the radius of the ionic sphere, the parameter ®@(R — r) is essentially a step function, whose
value is 1 when r<R and 0 when r>R. The constant n‘i is related with the valence number(Z)

by the following equation,
Z
0

== 1.19
== (1.19)
where Q is the mean volume per atom in the bulk metal, .i.e.,
4nR®  Anr
Q- — ws 1.20
3N 3 (1.20)

where r is the Wigner—Seitz radius which is radius of a sphere whose volume is equal to the
volume per atom in the bulk solid. The jellium potential can be empirical or effective potential
can be generated by ab initio methods like Density Functional Theory (DFT) of simple Hatree
Fock (HF) method. At this point it is important to mention that the validity of spherical jellium
model strictly based on some pre—determined assumptions. Firstly, the model is only valid if
the valence electron of a metal cluster is very weakly bound and hence can be considered as
free. The central ionic core also must be sensitive to external perturbation. Lastly, but most
importantly the spherical approximation of the ionic core and the negligence of the finer struc-
ture works well if the cluster is in molten state i.e. there is no well defined three dimensional
structure within the core. All of these approximation are found to be well valid for alkali metal
clusters and also noble metal (e.g. Cu, Ag and Au) clusters.

Considering the jellium picture, the Schrodinger equation for a single electron which is con-
strained within the sphere under the influence of the effective potential from the ionic core can
be solved. Due to the spherical nature of the jellium potential, the solution of the Schrédinger
equation can be separated into radial and angular parts,

l//nlml(r797¢) :Rnl(r)-Ylin1(97¢) (121)

Thus, similar to an atom the energy levels of the electrons constrained within a spherically sym-
metric potential can be characterized by four different quantum numbers,

a. The principle or radial quantum number n, with values 1,2,3 ...

b. The angular moment quantum number /, allowed values of / are 0,1,2,3 ... with no restriction.
c¢. The magnetic quantum number my, from +/ to -/ including 0, a subtotal of 2/+1 values.

d. The spin quantum number m; with only two values +% and —%.

It is important to mention that the principle quantum number ‘n’ in jellium model differs
from the principle quantum number (n,) used in the atomic picture due to its origin from nuclear
physics. The two quantum numbers is mutually related as,

n=ng—1 (1.22)

where [ is the angular momentum quantum number. Thus the number of radial nodes in a jellium
orbital is also equal to n-/, rather than n,-/-1 for atomic orbitals.

Solving the Schrodinger equation yields different jellium orbitals similar to the atomic or-
bitals and also denoted like the same. Thus the n = 1, / =0, m; = 0 corresponds to the 1S orbital
(use of Uppercase is just to emphasize the difference between jellium and atomic orbitals), n =
2,1=1,m; =0, £ 1 is the threefold degenerate 2P orbitals. Similarly the energy also increases
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FIGURE 1.7: A pictorial comparison of the classical model of an atom with the
jellium picture of clusters.
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FIGURE 1.8: The relative order of jellium orbitals in three different potential.
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with the increment of the principle quantum number n and angular momentum quantum number
[, and the orbital degeneracy is also equal to (2/ + 1). However, the exact energy ordering of
the jellium orbitals are dependent on the radial form of the effective potential. Figure 1.8 in-
cludes such an orbital ordering with degeneracy for three commonly used potentials, harmonic,
Woods—Saxon and the square well potential. Among all three of them, the most accurate one is
the Woods—Saxon potential which is expressed as,

_ o
exp[(R—Rp) /o] +1

Vs = (1.23)
where R is the radius of the cluster, and o is a scaling constant with unit of distance (usually
1.5 Bohr. Vj is the sum of Fermi energy(Er) and the work function(Wj) of the bulk solid,

Vo=Er+W, (1.24)

From Fig 1.8, it is evident that the shape of the W.S potential is just the intermediate between
harmonic and square well potentials. The orbital energy ordering is also intermediate of the two
extremities. Both the W-S and the square well potential shows similar orbital ordering upto
2D jellium orbital. The discrepancy between the two models starts to be pronounced after 68
jellium electrons.

The Prediction of the Jellium Model

Until now, we were discussing the fundamental concepts and theoretical development of the
spherical jellium shell model. In this subsection we will attempt to demystify the abundance
spectrum and stability trend of the metal clusters in the light of the spherical jellium model.
Explanation of the experimentally observed trend of few other associated properties will also be
discussed. Before continuing the discussion regarding the metal cluster and the jellium model,
as both atomic and jellium model are nearly similar by principle, let us first focus on the atomic
picture and the stability trend observed therein. In the atomic world, it is well known the atoms
with filled shell (octet) such as noble gases are the most stable ones compared to the rest in the
periodic table. The unusual stabilization of these atoms are due to the pairing of electrons which
lowers the energy of the highest filled shell resulting in large energy gaps between the filled shell
and the lowest unoccupied atomic orbital. Due to the enhanced stabilization, the noble gases
also have very high ionization energy and low electron affinity due to the filled octet. In a similar
manner the stability trend of metal cluster can be explained with the help of jellium model. The
metal clusters with filled shell are more stable and therefore show high abundance in the mass
spectra. Considering the orbital ordering via Woods—Saxon potential as implemented in Figure
1.8, such shell closing occurs at valence electron count of 2, 8, 18, 20, 34, 40, 58... and so
on. The set essentially covers all the magic numbers obtained by Knight and coworkers!*?® for
alkali metal clusters. As alkali metals are mono—valent in nature, the shell closing numbers also
corresponds to the number of atoms present in the cluster as well. Thus, the high abundance of
those specific clusters are primarily due the occurrence of the filled jellium shell at those specific
sizes. The observation of the high I.LE and low E.A of these specific clusters are also due to the
same reason. In case of the anionic alkali metal clusters, the shell closing will happen at specific
nuclearities which are one less than the neutral ones (N = 7, 17, 19, 33, 39, 57 etc). Likewise,
the magic numbers for cationic alkali metal will be observed at N = 3, 9, 19, 21, 35, 41, 59 etc.
For a neutral clusters composed of divalent metal the respective magic numbers will occur at
nuclearities which are half than the monovalent metal. Thus, for neutral magnesium the magic
numbers corresponds to 4, 9, 10, 17, 20, 29, etc. The situation of a trivalent metal is also similar.
Thus, for aluminum first few magic clusters are Al;*, Alj3~, Alys*. All of these predictions
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FIGURE 1.9: The ground state optimized structures of first few (N = 2-13)
aluminum clusters.
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FIGURE 1.10: The ellipsoidal shell model and the splitting of spherical jellium
‘np’ orbitals upon ellipsoidal distortion.
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have been proven correct via numerous experimental investigations throughout the years and
henceforth, the jellium model is considered as one of the most reliable tool for explaining the
properties of simple metal clusters available to cluster chemists till date.

However, to our surprise, the resemblance of metal clusters with the atoms does not end
there. Since the past few decades it has been observed that specific metal clusters not only
shows resemblance with that of specific atoms in terms of jellium shell configuration, but also
able to mimic there properties to a considerable extent. Such type of metal clusters is nick-
named as the ‘Superatoms’. Few prominent example of this kind can be cited from the family
of aluminum clusters. The ground state optimized structures of first few aluminum clusters with
size range N = 2—13 are shown in Figure 1.9. In the free state the ‘3s’ and ‘3p’ state of alu-
minum atom are separated by an energy gap of ~ 5 eV. Thus, in low coordination i.e. in smaller
clusters aluminum atom behaves as a monovalent element.”” As a consequence smaller clusters
upto N = 5 is observed to be planar similar to that of alkali metals. However, as the clusters
start to grow bigger the ‘s’ and ‘p’ hybridization become more pronounced and from Alg the
aluminum cluster becomes three dimensional. Starting from ~ Al;—Alg the s—p hybridization
becomes pronounces and in Alj3 and beyond the s—p hybridization can be considered as com-
plete. Considering three valence electrons per atom the jellium configuration of Al;3 cluster (39
e) becomes, 15?2 1P® 1D'? 282 1F!4 2P i.e just one electron less to achieve a filled magic shell
configuration of 40 jellium electrons. Thus, the electron configuration of Al;3 cluster is very
similar to that of halogens in which there also exists a similar vacancy in the ‘2p’ shell just one
electron shorter to achieve a filled octet. Theoretical investigation have shown that Aljs has a
high electron affinity ~ 3.57 eV which is just intermediate between Cl (3.62 eV) and Br (3.36
eV).! Experimental investigation supported by theory also have shown like halogens, Al;3 forms
covalent bond with iodine,>® produce polyhalide like compounds,® generates salt like material
with superalkai countercations like K30*.83! All of these observations proves the ‘superatomic’
behavior of Al;3 moiety. In a similar way, the anionic form Al;3~ which has a magic shell con-
figuration of 40e is observed to be inert like nobel gases with high HOMO-LUMO gap of ~
1.9 eV. Although the bulk aluminum is susceptible to oxygen etching, Al;3~ is observed to be
resistant to oxygen and other reactive reagents.”f34 On the other hand, Al;~ (22e) is known
for its variable oxidation state like Germanium,*> Al;* with closed shell 20e configuration is
observed to be inert and stable like Aly3~.

The jellium shell effect has also been successfully utilized to artificially stabilized suitable
non—magic clusters via ligand attachment. A detailed account of which can be found at chapter
5. In short, if a cluster has jellium electron count higher than a magic configuration, suitable
numbers of electron withdrawing ligand can be attached such that the jellium configuration of
the core reduced to the nearby close shell magic configuration. The principle is commonly
known as the ‘Super—Atomic Complex Theory (SACT)’. Successful implementation of SACT
is observed for numerous clusters of Au and Ag and also for small and medium sized aluminum
clusters.?-3% Tt is needless to say that with the innovation of the ‘Superatoms’, the material
chemists now have access to an entire new dimension of periodic table with infinite possibility
to synthesize novel materials using clusters as the building units instead of atoms. With the
discovery of each new superatoms such a possibility is certainly not very far ahead.

The Clemenger—Nilsson Jellium Model and the Odd-Even Effect

Although the spherical jellium model (SJM) is able to explain the relative stability and related
properties of simple metal clusters, detailed investigation have shown there exists some finer
anomalies within the experimental results, which can not be explained by the SJIM. The pri-
mary reason behind these discrepancies are due to the non—spherical shape of the atomic clus-
ters which reduces the degeneracy of the jellium orbitals. Such loss to the orbital degeneracy
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generates some unusual systematic periodic oscillation in the properties of the metal clusters
commonly known as the odd—even effect. Few instances of the odd—even effect for specific
cluster series can be summarized as the following,

a. The measured ionization energy of alkali metal clusters with even number of atoms is ob-
served to be systematically higher than their odd neighbors. An opposite trend is noticed for the
electron affinities of alkali metal clusters.

b. For cationic and anionic noble metal clusters systematic alteration in their abundances is no-
ticed upto N < 40. Clusters composed of odd number of atoms is observed to be more abundant
than their even neighbors.

c. The odd—even effect is also observed in the dissociation energy trend of small alkali as well
as noble metal clusters. The dissociation energy of a cluster is the minimum amount of energy
needed to dissociate a cluster into two separate fragments amount of energy needed to evaporate
one single atom from the cluster. For a cluster with ‘N’ number of atoms, the dissociation energy
can be represented as,

AEiss = Eljuster + Eatom — E¢) (1.25)

cluster cluster

As for example in Cuy, cluster series, the dissociation energies of odd numbered clusters are
larger than their even size neighbors.

In order to rectify such limitations of SIM and also to explain the odd—even effect Clemenger
has developed a modified jellium model in 1985 which is applicable for ellipsoidal metal clus-
ters. The Clemenger model was originally based on a similar method invented by Nilsson
(1955)to describe the properties of ellipsoidally distorted atomic nucleus. The so called odd—
even effect is the consequence of the interplay between cluster deformation and electron multi-
plicity. When a jellium orbital like ‘P’ shell remains partially filled, the electron density become
spherically asymmetric, resulting a distortion of the perfect spherical shape which in turn leads
to the splitting of the ‘P’ subshells. In the ellipsoidal jellium model a perturbed harmonic poten-
tial is used with three distinct force constants, ki, k, and k, oriented along three Cartesian axis.
The axial symmetry is always maintained such a way that a minimum of two force constants
always remains equal. The deviation from the spherical symmetry results in the loss of (21 + 1)
degeneracy of jellium orbitals as obtained in the SJM. As the axial symmetry is conserved, the
splitting generates a set of £m; shells and m; = 0 remains separate. As depicted in Figure 1.10,
two different types of ellipsoidal distortions are possible which are named as oblate and prolate.

In the oblate deformation the ordering of the respective force constant is k, = ky < k.. The
moment of inertial also follows a similar order (Figure 1.10). As the motion of the electron along
‘z’ axis is restricted compared to their motion in the ‘xy’ plane, which results the increment of
the energy of those orbitals whose greatest amplitude are directed along the ‘z’ axis (For a simple
analogy, it is well known from the simple particle in a box model that the energy increase with
the reduction of the box length). Thus the ‘P’ jellium shell in a oblate shaped cluster will split
such a way that the P, and P, will remain degenerate and will be lower in energy whereas the
energy of P, will be elevated. A similar but opposite scenario will be noticed for prolate shape.
In this case the set of | m; | = 1 will be energetically higher than the P, shell. The observed odd—
even effect can easily be explained with the splitting of jellium orbitals in combination with the
spin pairing effect. Similar splitting of the ‘d’ shell can explain the odd—even effects observed
for clusters made with heavier atoms.
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1.6 Additional Theoretical Models

Aside from the most popular theoretical models of atomic clusters described in the previous
section, there exists a few different ones which were specifically developed for theoretical pre-
dictions of selected properties and their variation with the size of clusters. These proposed
models are usually very straightforward in nature however, the oversimplifications implemented
in these models often provide inaccuracy for quantitative estimation, especially for clusters with
complex electronic and geometric influences. Nevertheless, for specific scenarios, these sim-
plistic models can still be used for quick qualitative determination of selected properties or may
aid in the explanation of experimental trends. The present section include such few standard
models of atomic clusters. However, for the sake of convenience we have only introduced a
brief account of each, further details can be obtained from the cited references.

1.6.1 The Simple Spherical Cluster Model

The simple spherical cluster model (SSCM) or spherical cluster approximation (SCA) is one of
the most elementary theoretical model exist for atomic clusters. According to this model any
cluster is approximated as a perfect sphere composed of N number of atoms. It is needless to
say which is definitely not true for smaller clusters, however as clusters get quite larger with
enough number of surface atoms and a finite surface to volume ratio, the SCA becomes a better
approximation and the derived equations works well in this large cluster limit. The primary
assumption of SCA is that for a finite size spherical cluster composed of N atoms, the radius of
the cluster (r.), surface area (S.), and volume (V.) can be related to the respective parameters,
namely, radius (r,), surface area (S,) and volume (V) of the constituent atoms by some simple
mathematical equations. Firstly, the cluster volume is approximated as the volume of an atom
multiplied by the total number of atoms within the cluster,

Ve=N.V, (1.26)

Again, as mentioned earlier , the equation represents a rigorous oversimplification, since it does
not include the fact that any number of hard spheres cannot be closely pack to fill the entire
space as there must exists some vacant interstitial spaces. However, as the model is specifically
focused on deriving parameters for qualitative agreement or for obtaining scaling relationships,
we assume that neglecting the packing fraction will not cause much deficit here. Now, equating
the volume of the clusters with the total volume of ‘N’ number of atoms,

4 4

gmg = Ngnrz (1.27)
Rearranging the equation we obtain the relation between cluster radius ((r.) with that of con-
stituent atomic radii (r,),

re=N3r, (1.28)

By a similar fashion the relation between the surface area of the cluster can be related to that of

an atom,
2

2
S, = d4nr? = 4m (N%ra) — N3S, (1.29)
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The equations can further be utilized to determine the total number of surface atoms (Nj) in
a finite sized cluster, which is simply the ratio of the surface area of the cluster to the cross-
sectional area of an atom (A,),

2
Se 47N 72
A, w2

Wity

N, = — 4N

(1.30)

Many important properties of atomic clusters are dependent on the fraction of total number of
atoms (f) resides on the surface of the cluster. For a spherical clusters the quantity can be
defined as, N
s _1

fs= N =4N73 (1.31)
Again, the relationship is observed to deviate for smaller clusters, however, as the cluster grows
bigger the value of f; slowly converges to the limiting value i.e. N ~3 as predicted by the equa-
tion. For practical purposes, the atomic radii (r,) is often substituted by the so called Wigner—
Seitz radii (r,,s), which is the radius of a sphere whose volume is equal to the average volume
per atom. Common way to estimate r,, is to define it in terms of molar mass (M) and density

(p) of the material,
1

rws:< M )3 (1.32)

47PNy

The Empirical Laws of Scaling

The SSCM model can effectively be utilized to determine many generic cluster properties , such
as ionization energy (L.LE) or ionization potential(I.P), electron affinity (E.A), melting tempera-
ture (T,,) and cohesive or binding energy (E;) for large clusters as they show a regular variation
with cluster size in this size regime. By this approximation the smooth cluster size effect (CSE)
behavior can be described by simple scaling equations, which can be expressed either in powers
of the cluster radius(r.),

x(re) = x(eo) +ar.® (1.33)

or, dependent on the number of atoms in the cluster,
O(N) = (o) +br P (1.34)

where o in the parenthesis signifies the value of the respective properties (¥ or ¢) in the bulk size
limit. a,b, o and 3 are empirically fitted constants. According to the experimental observations,
for large sized clusters with significant surface to volume ratio most important properties usually
depend on the fraction of total number of atoms resides on the surface (fy), and as we have
already seen that f; < N 3 o !, hence most usual choice of ¢ is 1 and of f is % As for
common example, we can cite?® the fitted equation for the IP. of potassium clusters with N>
100,

1%(rc)/eV =2.3+5.35(r./A)"!

(1.35)
IK(N)/eV =2.3+2.04N "5

The interpolation is proven to be highly accurate for the given size range of potassium clusters.
Similarly, the melting temperature of large gold structure can be expressed as,

T2(r.)/K = 1336.15 — 5543.65(r. /A) ™! (1.36)
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This equation also works as expected for large Au clusters, however, major deviation can be
seen for medium and smaller cluster with dominant presence of CSE.

1.6.2 The Liquid Drop Model

The liquid drop model (LDM) is a classical treatment of metal clusters utilizing the principle
of fundamental electrostatics. The model is solely developed for obtaining the scaling laws of
various properties of metal clusters with incremental size. In this model a metal cluster of finite
size is assumed to be an uniform conducting sphere, and similar to the SCA, the scaling laws are
represented in the form of an equation relating the respective property of the cluster with the bulk
property of the same. As for example, the amount of energy needed to eject an electron from
bulk metal surface is called the ‘work function(W;)’. According to the mathematical treatments
of LDM, parameters the ionization energy (I.E) must decrease with cluster growth,.i.e, ejecting
an electron from a larger cluster requires less energy than in smaller ones. Therefore, the L.E
of any metal clusters can be written in terms of the work function (W;) of bulk metal and the
reciprocal of the cluster radius (r.),

3

1 =W,
(re) st 32meyr,

(1.37)

If we represent LE in the unit of eV and the radius of the cluster (r.) in terms of , the equation
reduces to,
I(re)/eV = (Wy/eV) +5.4(r./A)! (1.38)

The equation is very similar with the equation obtained in SCA (e.g. for potassium cluster).
In both the cases the ionization energy has inverse dependence on the cluster radius (r;). In a
similar manner the electron affinity can also be presented,

5
E(re) =W — Saneor. (1.39)
of,
E(re))eV = (W /eV) —9.0(r./A) ! (1.40)

Thus, according to the prediction of LDA the E.A of a cluster increases with the growth of the
cluster. From both the equation it is evident that as the size of the cluster grows towards the
bulk limit, N — oo and hence r_ 1'_5 0. Therefore, in bulk limit both the values of LE and E.A,
eventually converges to the work function of the bulk metal.

The predicted I.E and E.A by the LDM can further be utilized to calculate other important
properties like HOMO-LUMO gap of metal clusters. According to Koopman’s theorem, the
HOMO and LUMO energy 1s approx1mated by L.E and E.A of the cluster respectively. Since,
both LE and E.A shows a ! or N~ 3 dependence, it is expected that the HOMO-LUMO gap
will also follows the same. Also according to the LDM equations, as at the bulk limit both L.LE
and E.A monotonically converges to the work function, the HOMO-LUMO gap would then
definitely be reduced to zero. This result is indeed valid, since it is well known that any metal
is characterized by a zero band gap. The liquid drop model can also be utilized to predict
other associated properties of larger clusters. As for example, the electronic spectrum of a
small sized metal cluster is consists of discrete peaks due the presence of discrete electronic
shell. However in large size cluster the discrete spectrum are replaced by a single broader
peak due to the collective valence electronic excitation against the positive charged core. This
phenomenon is commonly called as the Mie resonance. The frequency (wys) and the linewidth
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(I'yr) of Mie resonance can similarly be expressed in an equation for like I.E or E.A. Thus, for
silver nanoparticle with diameter 2 > d.. leg 10 nm,

0.58

0.59
Ty (de =0.04 1.42
u(do)fev =004+ =0 (1.42)

In both the expression, the dependence of inverse power of the diameter, i.e. on the inverse
power of cluster radius must be noticed.

Similar to the SSCM/SCA model the liquid drop model seems to work well with large size
cluster. The linear equations seem to deviate from the experimental points due to the random
oscillation in the calculated properties for small range clusters. The oscillation is primarily
due to the the predominant presence of electronic shell effect (or, quantum size effect (QSE))
in smaller cluster as already mentioned in the context of jellium model. Also, based on the
complexity of real system it is certainly not expected that all the properties of every type of
clusters would show r;l (N _%) dependence. As a matter of fact, in several experiments on
bigger clusters such type of deviations are recorded. The HOMO-LUMO gap of small copper
cluster anions shows and N~!'8 dependence instead of N -3,
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Chapter 2

The Fundamentals of Density
Functional Theory

2.1 Introduction

In the course of the past few decades, the density functional theory or DFT has become the
pivotal computational tool used by the theoretical and experimental chemists around the world.
However, to many physicists as well as chemists the journey of DFT from just a theoretical
concept to the present state of glory is often considered as fortuitous if not outright unjustified.
This disfavor is due the easy achievement of the accuracy of DFT which is often considered as
a difficult task in the ab initio wave function based methods. A majority of theoretical chemists
also found the fundamental theories are somewhat dubious and the simplistic single determin-
istic approach provokes further skepticism. However, considering the accuracy in addition to
the computational cost, the widespread preference to DFT seems a rational choice rather than
a prejudice. As of recent developments, DFT is able to provide all sorts of computational tools
essential to calculate complete set of properties of materials with the additional benefit of eco-
nomical computing and variable implementations, suitable for all type of systems. Due to the
consent to modern DFT, performing accurate complex calculations for a vast number of systems
within a limited time has become possible. Supporting experimental results by theoretical cal-
culations has now been reduced to a days job rather than months with the aid of DFT. Therefore,
the extensive availability of DFT software packages and the ever—growing community must be
viewed as a natural progress rather than a miracle. It goes without saying, all the calculations
presented in this thesis are also evaluated via the implementation of DFT using standard com-
putational packages. Therefore, the present chapter is solely dedicated to provide a very brief
introduction to the fundamentals of density functional theory. Few other relevant topics includ-
ing the fundamental concepts of quantum chemistry are also discussed in short.

2.2 The Schrodinger Equation

The central notion of modern quantum mechanics is the time dependent non—relativistic Schrodinger
equation proposed by Erwin Rudolf Josef Alexander Schrodinger in 1926. In most of the prob-
lems regarding atoms and molecules, the time dependent interactions are often not important,
hence the time—independent variation of the Schrodinger equation is generally considered as the
pivotal equation in the modern quantum chemistry. For a system consisting of M nuclei and N
electrons, the time independent non-relativistic Schrodinger equation is written as,

Ay (551,22, ...,zN,ﬁl,ﬁz,...,ﬁM) — E¥ (551,32, ...,zN,R},R’z,...,EM) .1)

where A is the Hamiltonian operator, X and R are the coordinates of the respective electrons and
nuclei. y; is a many—particle wave function, E is the energy of the system. The Hamiltonian

28
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operator in atomic units is represented as,

PN EED VI W WSO W IF Wk

i—1A=1TiA i=1j>i"l

ZuZs

2.2)

A and B indicates a total of the M nuclei while i and j denote the N number of electrons in
the system. The first two terms in equation 2.2 describe the kinetic energy of the electrons and
nuclei respectively. The rest of the three terms respectively represent the attractive electrostatic
interaction between the nuclei and the electrons, the repulsive potential of the electron-electron
and the nucleus-nucleus interactions. Other associated terms have their usual significance.

Now as nuclei are much heavier than the electrons, hence, they move much slower. There-
fore according to the Born—Oppenheimer approximation we can consider that all of the elec-
trons are existing in the field of fixed nuclei and the nuclear kinetic energy is zero and their
potential energy is merely a constant. Thus, the Hamiltonian can be reduces to only containing
the electronic part,

. N M
A W
i=14=1"iA

i=1

HMz

A
Z* T+ Ve +Vee (2.3)
>I’

Therefore, the solution of the Schrodinger Equation with electronic Hamiltonian yields the elec-
tronic energy (E,) of the system when operated on the electronic wave function(y,),

I:Ie Y = Ee Ye (24)

and the total energy of the system becomes the sum of electronic energy (E.) and the nuclear
repulsion term E, ..
Eior = Ee + Epye (25)

where,

(2.6)

If a system is in the state y, the expectation value of energy for the particular system is given
by
(vIiH]y)

EWI= "0

Q@.7)

where <l//]ﬁl | l,l/> = / w*Hydt. Now according to the Variational Principle the energy calcu-

lated using an guessed y is always an upper bound to the original ground state energy (Eg) of
the system of interest,

(wiAly) . (wlflw)
wly) = 7 {wolwo)

Thus, Full minimization of the given functional E[y] with respect to all of the allowed N-
electronic wave functions will provide the true ground state yp and the corresponding energy
E[y] = Ep. The ground state N electronic wave function is usually represented by an antisym-
metrized product of N numbers of orthonormal spin orbitals ¢;(X), each of which is a product
of spatial orbital y;(¥) and the spin function o (s) = a(s)orf(s). The resulting formulation is

Ely] = 28)
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called as the Slater Determinant,

¢1(X1)  a(X1) - on(F)

$1(¥2) (%) - on(X2)

L || 9() 92(%s) 9 (¥3)
W(xlaxb"'xN):ﬁ (2.9)

HiE) e o v

2.3 Function, Operator and Functional

In this section we will introduce a few important definitions.

2.3.1 Function

A function is a mathematical recipe to map one variable into another. Thus if x and y be two
variable so related that for each and every value of x (defined within a given domain), there are
values of y, then y is a function of x. In the present scenario, x is called a independent variable
or an argument and y is referred as dependent variable. According to the common convention a
function of a dependent variable ‘x’ is denoted by symbols such as f(x),F (x),G(x), y(x), 9 (x)
etc. It may be possible that for a particular value of the independent variable two or more
values of the function is generated. In such cases the function is defined as a multiple—valued
function, otherwise the function is single—valued. However, using proper limitation a multiple
valued function can be separated into several single valued functions. Thus y> = x can be broken
into y = ++/x and y = —/x and so on. A function can also be undefined for some particular
value(s) of the independent variable. thus f(x) = ;1C is undefined for x = 0.

2.3.2 Operator

In common mathematics, an operator is a description of mathematical operation which is op-
erated on a function in order to generate a new function. According to common convention an
operator is symbolically presented like ' or via calligraphy e.g. .%. Some common examples of
% and j—xzz. Few common exam-
ple with simple operations can be included here. Thus, operating the square operator i.e, F' = 2
on a function like cos(x) we get, F'cos(x) = cos*(x). Similarly second derivative of a function
w.r.t x can be calculated by the operator, F = aa—xzz, and the result is £ f(x) = (%22 flx)= %. In
quantum mechanics ‘Nabla’ (V) is the popular differenial operator in three dimensional coordi-

nate. In Cartesian coordinate it is represented as,

20 -2d -0

common operators are multiplication by a constant, square root,

Important parameter like forces (which are vectors) which is the gradients of potential energy
can be calculated by operating V on the potential, Force = —VV. The square of V is called the

Laplacian operator,
2 9%  9?
A=V=(—5+-—5+-—
<8x2 * dy? * 822>
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The V? or A is another important operator in quantum chemistry since it is related with the
kinetic energy operator. An operator is called linear if the following relation holds,

F(Cy)=CFy (2.10)

where ‘C’ is a constant. As for example the first order differentiation ( %) operator is linear.
However, operator like square root is not a linear operator, since,

V(Cy) #C(VY) (2.11)

2.3.3 Functional

A functional is defined as a function of another function. A Functional takes a function as
the input in order to provide the output. In common convenience, a functional is symbolically
presented with the function in square brackets as F[f] = b. As for example we can consider the
integration of a function from —oo to 4o as a functional,

FIf)= [ rtds 2.12)

The mathematical formulation of the expectation value given in (2.8) can also be considered
as the total energy functional(E[y]) of the function y as it takes the function y as input and
provide the value of energy for that particular state ().

The properties of the functionals are also similar to the functions. Like the function, a func-
tional can also have derivatives, the formulation is much similar to the derivatives of functions
as well. The differentiation of a functional F[f] is defined as,

oF

IF[f]=F[f+df]-F[f]= Waf(@dx (2.13)
The rule of differentiation are also similar to the functions,
d oF, oF,

——(CIFI+GFR)=C +C 2.14
a7 TR =g T Ao (249

d oF, oF,
— (N FE F+ F 2.15
a0 M o™ 219

2.4 The Electron Density

The wave function Y introduced earlier has no physical significance as it is not an observable.
However, the square of a wavefunction is directly associated with the probability density of
electrons. The electron density is definitely an observable and can be measured by suitable
experiments like X-ray diffraction. The total electron density of a N electronic system can be
defined as N—times (since electrons are indistinguishable) of the integral of the modulus square
of wavefunction over all the spin coordinates of all electrons and over all but one of the spatial
coordinates (X = 7.s),

) =N [ [ [ W1 oyee Ty, P diads -y (2.16)
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Here p(7) represents the probability of finding any of the N—electrons within a volume
element of d7 with arbitrary spin. Other (N-1) electrons have arbitrary positions and spin as
represented by the state defined by y . Although p(r) represents the probability density, it
is commonly known as the electronic density. p(r) obeys some specific properties mentioned
below,

a. p(r) is a non-negative function of the three spatial variables which integrates to the total
number of electrons and vanishes at infinity,

p(F—>) =0

N\ 1 (2.17)
/ p(F)di=N
b. At the specific position of an atom p(7) shows a discontinuity resulting a cusp.
li J +2Z4|p(F)=0 (2.18)
im |— F) = .
r,-A—>O ar A p

where p(¥) is the spherical average of p(7)

c. p(7) shows a asymptotic exponential decay for large distances from all nuclei within the
system,

p(7) o< exp [—2@|?|] (2.19)

where ‘I’ is the ionization energy.

In a similar fashion the pair density which is the probability of finding two electrons with spins
o1 and o, simultaneously within respectively two different volume elements dr; and dry is
given as,

pz(fl,fz):N(N—1)//'--/‘y/(fl,fz,'--fN,)‘zdf3'--di (2.20)

The remaining N-2 number of electrons is considered have arbitrary positions and spins. The
pair density is also a positive number and normalized to the total number of non—distinct pairs
of electrons .i.e, N(N-1)!

2.5 The Thomas—Fermi Model

Although the journey of the modern density functional theory began just few decades ago, the
first attempt to use electron density in place of wave function is dated back to the early days
of quantum mechanics. Using electron density as the fundamental parameter of a quantum me-
chanical system has always been a tempting topic to theoretical chemists. The prime reason of
that is twofold. Firstly, unlike the wave function, the electron density of a quantum mechan-
ical system is a experimentally measurable quantity. Secondly, it depends on three Cartesian
coordinates, whereas, the wave function of a system composed of ‘N’ number of particles has a
dependency on 4N number of variables (3N for coordinates and N for spin). Thus using density
is far more economical than using the wavefunction if one considered the computational time
and resources. The first simplest approximation of such kind is proposed by Thomas (1927) and
Fermi (1928) and is known as the Thomas—Fermi(TM) model in short.!?

A different normalization factor N(A;*l) is also used commonly which corresponds to the distinct number of

pairs of electrons.
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In this model Thomas and Fermi has derived the expression of kinetic energy of a quantum
mechanical system based on the electron density alone by utilizing the concept of uniform elec-
tron gas. In this quantum statistical model except the kinetic energy, all other contributions due
to nuclear—electron attraction and electron-electron repulsion are treated in a completely classi-
cal manner. Thus, according to the model the kinetic energy of a quantum mechanical system
can be expressed by the following functional,

3 2 5
Trrlp(P)] = 5373 [ p(®)iar (2.21)

Using the classical contribution the total energy of the system becomes,

Errlp(P)] = —(372)} /p(7)%d?—z/ PO) i // PUVP(R) yriry  222)
10 r 2 rin

As the expression of the kinetic energy expression is a very rough estimate of the actual kinetic
energy of the system and as the exchange and correlation effects are completely ignored, the TF
model shows very poor performance in describing real systems. Thus upon implementing the
TF model for molecular system it is observed that the model is unable to describe the existence
of chemical bond. Thus, the model is hardly of any use for practical purposes. However, the real
importance of Thomas Fermi model is not due to the accuracy of the method but due to that it is
the first instance where the energy of a system is represented as a whole using only the electron
density. However, for that time being no immediate solution was found to rectify the limitation
of the model and hence the wave function based methods remained as the only way to approach
and analyze the real systems. In order to find out the correct density which to be inserted in the
above equation, Thomas and Fermi have utilized the variational principle. They assumed that
the ground state of the system is related to the density for which the expression of total energy
is minimized under the constraint [ p(7)d7 = N. At this point it is important to mention that at
that time it was still unknown that whether expressing the total energy of a system in terms of
density is theoretically justified or using variational principle in the said context is even valid.
Despite the fact, Thomas and Fermi proceeded with the assumption as for that time it was the
only solution that seemed logical and reasonable.

2.6 The Hohenberg and Kohn Theorem

The field of modern density functional theory we know and use today was born when in 1964
Hohenberg and Kohn? proposed and proved two fundamental postulates regarding the electron
density of the system. These two postulates not only solve the queries regarding the justification
of the approximations used in the Thomas Fermi model but also provide the theoretical founda-
tion needed to construct the rigorous density functional theory and related developments. The
two postulates can be summarized as,'-?

I. Every observable of a stationary quantum mechanical system (including energy), can be
calculated, in principle exactly, from the ground-state density alone, i.e., every observable
can be written as a functional of the ground-state density.

II. The ground state density can be calculated, in principle exactly, using the variational
method involving only density,

The original theorems was intended for the time independent stationary ground states, but was
later extended to excited states and time dependent systems as well.*>
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In order to prove the validity of first theorem, Hohenberg and Kohn utilized some valid
assumptions based on the fundamental principles of quantum chemistry. If one considers the
Born-Oppenheimer approximation, the ground state of a electronic system is a direct result of
the potential exerted by the nuclei (called ‘external potential’, V..). This assumption can further
be clarified by looking into the expression of the electronic Hamiltonian (H,) of Equation 2.3.
In that equation the kinetic energy of electrons (T and the electron-electron repulsion term (Vo)
simply ‘adjust’ themselves to the external potential. Thus for a specific value of V,,;, every other
variables of the system including the electron density, adjusts themselves to provide the lowest
possible ground state energy of the electronic system. Thus V,,, can be considered as the only
variable term in the electronic Hamiltonian, and every other parameters indirectly depends on
it.

Entrusting the aforesaid assumption, Hohenberg and Kohn asked a common question, “Is
the parameter V,,; can be uniquely determined just from the knowledge of electron density p (7)
alone? Is it possible (at least by principle, not necessarily to be easy) to get the information
about the position and the type of the nuclei are, if we accurately know the density p(¥) of the
ground state? Is there exists a precise path of mapping from the density (p (7)) to the external
potential (Vex,)?" The answer to all of these questions were found to be affirmative. In reality,
the mapping from p (¥) to V.. is observed to be accurate within a constant, which is not a big
concern since it is well known Schrodinger equations with A, and A, + const provides exactly
the same eigen—states. Only thing that will change in that case is that the energy levels will
be shifted by the value of this const. Now, all measured energies are known only within some
constants which is the reason of the foundation of the frame of reference. Thus, if this is true
the knowledge of only the density is enough to get the complete information about the system.
As p(7) can be utilized to yield the total number of electrons N:

N= / p(7)dF (2.23)

and p(7) also determines the V,;, the knowledge of p(7) is equivalent to the knowledge of v,
i.e., the wave function of the system.

They’ve also provided the mathematical proof of the theorem which is based on reductio ad
absurdum which is as follows,

Let us assume p(7) represents an exact ground state density of a non—degenerate system?
and v is the wave function of the ground state. We may further assume that for that specific
density p(7), there can be two possible external potentials which are V,,; and V/, respectively.
Now these two different external potential will certainly corresponds to two separate electronic
Hamiltonian operators (H, and A, ’) both of them will yield two different wave functions for the
same ground state, ¥ and Y’ respectively.

Therefore, the energies corresponds to each wave function are Ey = (y|H|y) and E} =
(V/|H'|y) respectively. If we now calculate the expectation value of energy for the y’ with the
Hamiltonian A and utilize the variational principle we get,

E,

/ / / / / / (7 7/
Eo <(V'|H|Y) =(V/|H'|y)+(V¥'|H - H'|y') :Eo+/P(7)[Vext —Veuld?  (224)

21t is important to note that later investigations has proven that HK theorems can easily be extended for degenerate
ground states as well.®
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Similarly, the expectation value of energy for the y with the Hamiltonian A’ yields,

Ey < (y|H'|y) = (y|H|y)+(y|H —H|y) = E— / P (7) [Vext — Vo ld7 (2.25)
Ep

Adding equations (2.24) and (2.25) by each sides leads to a contradictory solution,
Ey+E) < Ey+Ej (2.26)

Thus, it is now proven that there cannot be two different V,,; that give the same p(7) for
the ground state. Thus, p(7) uniquely determines N and V,,;, and also all the properties of the
ground state, including the kinetic energy of electrons (7'(p)) and energy of electron interactions
E... Thus, the total ground state energy of the system can be represented as simply a functional
of density alone,

Elp]= Enelp] +T[p]+ Eelp] (2.27)
d dent 3 [
system epen éen universa

where we have retained the subscript ‘Ne’ to emphasize the type of external potential in our case,
which is just the electron and nucleus attraction. We can further grouped together the functionals
which are just responses and can be considered as secondary compared to the En,|[p],

E[p] = En.[p] + Fuk|p] = /P(7)VNe(7)d?+FHK[P] (2.28)

The newly defined Fk functional depends only on density and is universal, i.e., its mathematical
form does not depend on the type of system under consideration. The simple looking Fyx
functional is the most important term used in DFT. If we know the explicit form of both the terms
in it, we would have able to solve the Schodinger equation exactly. However, the exact forms
of both the terms are still unknown and is considered the major challenges in DFT. Although,
the Second term E,.[p] can further be separated into two terms, the classical Coulombic part
(J(p)) and the non-classical contribution (E,[p]) to the E,.[p], which contains self-interaction
correction and the exchange and Coulomb part,

o
Eelpl = 5 [ [P 5,5 4y fp] = J1p] + B 2.9

Until now, the proof of first HK theorem shows that the ground state density alone is suffi-
cient to evaluate all the properties of a system. However, the first theorem does not tell us how
to be sure that the density of our choice is the correct density for the system. The second HK
theorem offers a possible solution to that problem in terms of variational principle introduced in
the earlier section of this present chapter. In a simplified manner, the second theorem tells that
the energy functional E[p] is an upper bound to the exact ground state energy, i.e., Ey. Thus, for
any chosen trial density p(7) which satisfies the necessary boundary conditions like, p(7) > 0
and [ p(7)d7 = N and which corresponds to some external potential V,,,, the calculated energy
E[p] will be either higher or equal to the exact ground state energy Eo[po],

Eolpo] < E[p] = Ene[p] +T[p] + Eee[P] (2.30)

E[p] will only be equal to Ey if and only if the trial density p equals to the exact ground state
density(pp) of the system. The mathematical proof of equation 2.30 is really simple. Since it
is known any trial density must p corresponds to a Hamiltonian (H) and to a wave function
(). The corresponding wave function can now be utilized as the trial wave function for the



Chapter 2. The Fundamentals of Density Functional Theory 36

Hamiltonian originated from the true external potential namely V,,;. Therefore,

(P|H|W) =T[p]+Ece|p +/P E[p] > Eolpo] = {wolH|wo) (2.31)

which is the expected proof.

Before we proceed further, let us focus on few theoretical complexities which are essential
in this present context. As we have already mentioned, in order to the theorem to be valid,
the trial density p must obey few predetermined rules. These conditions are abbreviated as
the representability of density. The first one is called the N-representability which is the
P must sum up to the total electron number ‘N’ upon integration.'"” This condition is easy
to achieve and automatically ensured if p originates from a antisymmetrized wave function.
The second condition which was just mentioned in the previous para, is that the trial density
must be associated with some external potential (V). This condition is known as the V,y
representability (or simply as ‘v’ reprentability) problem'® and which is not as trivial as the
case of N—representability. In a simpler language, among the many trial densities available, not
all are suitable in accordance of the Hohenberg-Kohn theorem. Among many only those those
densities are valid which are mapped with an antisymmetric wave function and therefore with
a Hamilton operator with some type of V. This is still an open problem in DFT since till
date it is not known what condition must a trial density satisfy in order to be V,,, representable.
By taking some reasonable trial densities Levy (1982) and Lieb (1983) has shown that they
cannot be mapped to any V,,;.!"!> Thus, if one chose any of those specific densities it would be
impossible to converge to any physically relevant ground state via variational optimization. If
we restrict ourselves to only N as well as v representable trial densities, the second HK theorem
is considered to be valid in all the cases.

2.7 The Kohn and Sham Method

From the Hohenberg—Kohn theorem we have shown that the ground state energy of a system of
interest can be written as,’

Eo = miny .,y (F[p] + / p(?)VNe(?)ﬁ) (2.32)

where, F[p] is the pre—mentioned universal functional which contains kinetic energy the classi-
cal Coulomb interaction term and the non—classical interactions,

Flp] =T[p]+J[p]+ Enci[p] (2.33)

Among these three only J[p] is known. Unfortunately, the expression of the kinetic energy
(T[p]) is not known with adequate accuracy. Even with the modified Thomas—Fermi, the final
expression is still underdeveloped and not work very well with molecular systems. In 1965,
Kohn and Sham'? proposed an alternative to bypass this limitation and provide an alternative
way to reach the ultimate goal sought by many. Since the kinetic energy of a system can easily
calculated from a known wave function, Kohn and Sham proposed to calculate the exact kinetic
energy of a reference non—interacting system whose electron density is the same with the real
interacting system of interest. Thus,

NM—‘

N
—5 L (il V2 |wr) (2.34)

3fro