INOSITOL 1,3-ACETALS AS VERSATILE INTERMEDIATES FOR THE SYNTHESIS OF CYCLITOL DERIVATIVES

THESIS
SUBMITTED TO
SAVITRIBAI PHULE PUNE UNIVERSITY
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN CHEMISTRY

BY
RICHA SHARADCHANDRA SARDESSAI

RESEARCH SUPERVISOR
Dr. M. S. SHASHIDHAR

DIVISION OF ORGANIC CHEMISTRY CSIR-NATIONAL CHEMICAL LABORATORY PUNE 411 008, INDIA

FEBRUARY 2017

Dedicated to
Chamma, Lop and CKanik Maka

CERTIFICATE

This is to certify that the work incorporated in the thesis entitled "Inositol
1,3-acetals as versatile intermediates for the synthesis of cyclitol derivatives" submitted by Richa S. Sardessai was carried out by her under my supervision at the National Chemical Laboratory, Pune, India. Such materials, obtained from other sources have been duly acknowledged in the thesis.

Date:
Division of Organic Chemistry
(Dr. M. S. SHASHIDHAR)
National Chemical Laboratory
Research Supervisor
Pune-411 008, India

 National Chemical Laboratory, Pune (India)

DECLARATION

I hereby declare that the thesis entitled "Inositol 1,3-acetals as versatile intermediates for the synthesis of cyclitol derivatives" submitted for Ph.D. degree to the University of Pune has been carried out at National Chemical Laboratory, under the supervision of Dr. M. S. Shashidhar. This work is original and has not been submitted in part or full by me for any degree or diploma to any university

Date:
Division of Organic Chemistry,

Acknowledgements

On completion of one of the most significant academic endeavour I have undertaken, I wish to thank all the people who have supported and encouraged me.

At the outset I wish to express my deep sense of gratitude and profound thanks to my research supervisor ©T.M. S. Shashidhar for not only mentoring me but for going above and beyond the call of duty. His meticulous and thorough style of working, kind heartedness, endless patience and humanitarianism are attributes I strive to take forward with me along with the chemistry that I Cearnt from him.

I would like to thank X-ray crystallography group, Dr. R. G. Gonnade and Dr. (Mrs.) Shobhana Krishnaswamy for their great help in determining the x-ray structures. I wish to express my gratitude to Dr. Kumar Vanka for teaching me theoretical (DFT) calculations. I would like to thank. Prof. (D. D. Dhavale for his valuable suggestions and scientific discussion during assessment of my Ph.D. work.

My sincere thanks to scientists of the division; Dr. P.K. Tripathi,(HOD) Dr. G. Pandey, Dr. N. N. Joshi, , Dr. S. P. Chavan, Dr. V. R. Kalkote, Dr. R. A. Joshi, $\mathcal{D r}$.(Mrs.) V. A. Kumar, Dr. \mathcal{N}. P. Argade, Dr. G. J. Sanjayan, Dr. H. V. Thulasiram, Dr. C. V. Ramana, Dr. D. S. Reddy, Dr. R. P. Singh, Dr. Santosh Mhaske, Dr. S. Iyer, Dr.(Mrs.) A. P. Lißhithe, Dr. (Mrs.) S. P. May6hate, Dr. Muthukrishnan, Dr. A. T. Biju and others. I wish to thank Dr. P. A. Joy, M Mrs. Puranik and MMrs. Kothe (SAC office) for their help. Help from analytical units for characterization of compounds is gratefully acknowledged. I thank, Dr. Rajmohanan for \mathcal{N} MRR, M Mrs. Damse, for IR facility M Mrs. S. P. Kunte, for $\mathcal{H P L C}, \mathcal{D r}$. P. L. Joshi (and Mrs. Sawant, M Mrs. Sanas) for microanalysis Dr.(Mrs.) Shanthakumari, Pranafi Jadhav and Bhushan for HRMS.

I am forever indebted to my from school teachers, M Mrs. Maragaret and Mrs. Lopes; college teachers, Dr. Vdai $\mathcal{N a i k}$, Dr. Vrinda Borkar, Varsha Ma'am, Sonia Ma'am, Suchana Ma'am, Deepa Ma'am; M. Sc. teachers, Prof. Tifve, Prof. S. P. Kamat, and Prof. V. P. Kamat, for their impeccable teaching.

It gives me immense pleasure to express my sincere thanks to my senior colleagues; Dr. (Mrs.) MadЋuri Patil, Dr. Rajendra Jagdhane, Dr. Shailesh Dixit, Dr. Bharat Gurale, Dr. $\mathcal{A l s o n}$ Mart, and especially Dr. Tambofi Majid for their friendly nature, and for the excellent training, valuable discussion and support I received from them. I am also deeply grateful to $\mathcal{D r}$. Manmath Patil, Dr. Ravi Jagtap and Dr. Revannath Sutar for their help. I am thankful to my Labmates Veer, Nivedita, $\mathcal{N i t a i}, \mathcal{N i}$ lesh, \mathcal{N} iharika, Rohit, Santosh, Amartyo, Priyadarshini, Parmeshwari, Aleena, and Archana, for maintaining cheerful atmosphere in the lab. I also am grateful to my extended la6 members Ekta, Sridhar, Samir, Pranaya, Debamitra, Rupesh for all their help in crystallography. I would like to thank Moreji for help and lab maintenance.

I would like to thank Dr. (Mrs.) Vidya Shashidhar, Mrs. Vaishali Gonnade, Dr. (Mrs.) Vedavati Puranik and $\mathcal{M r s .}$ Nandini Dixit for their advices and help.

I am most grateful to my friends from $\mathcal{N C L}$, Dr. Roshana and Dr. Remya (fellow tea enthusiast) for their support, encouragement and friendship. I wish to thank all my friends at $\mathcal{N} \subset \mathcal{L}, \mathcal{D} r$. Gouri Priya, Dr. Priyanka, Kiran Jawade, © r. $\mathcal{A t u l}$, Dr. Pravat, Dr. Kiran, Dr. Kailash, Dr. Bhausahe6, Dr. Deepak, Dr. An反ush, Dr. Seema, Rincy Raju, Nilofer, Kritika, Shiva Kumara, Krishna Prasad, Suresh, Ragini, Manisha, Vishwnadh (adopted junior), Nishamole, Arati, Shakuntala, Reema, Rashmi, Sneha B. Sanjeev, Sachin, Rahul, AÆshay, Vasudevan, Kashinath, Gajanan, Vidya, Rofini, Sneha, Bindu Ba6y, Anshu, Jaya, Pushpanjafi, Leena, and my room mates Soumya, Rubina,Prajitha, Meenal, Himani, Monika, Sumana, for keeping my spirits up outside the la6.

I wish to thank my friends \mathfrak{N} ancy, Shawn, Archit, Pranay, Sonafi, Mira, Sandesh, Amit, Hari and seniors Dr. Gayatri and Dr. Priyanka for always being with me through thick and thin.

I wish to sincerefy thank, Sawant kaka and family for their never ending support at each and every step. I also wish to thank. Uday kaka, Anna and (late)Naveen kaka and their families for their love.

Words will never be enough to appreciate the love and blessings I have received from my famify: (Cate) Kashi kaka, Sucha Baba, Jyotsna atya, (late) Pendya 6aba, Vinod atya, Raghu Mauso, Lafu maushi, Anand Mama, Vishnudas Mauso, Sho6ha Maushi, Sunil Mauso, Utai, Baburao Mama, Neelam Mami, Nandan Mauso, Mitai, Sucha, Ujja, Pondu, Parag Bhaiyya, Vinda, Vishwesh, Laxmi, Suraj, Sujay, Raunak, Parth, Ved and Agastya.

I wish to especially thank, Manik, kaka for his constant support, advise, Love, and encouragement at every juncture. I am indescribably indebted to Mamma and Pop for their seffless love, hardships, sacrifice, encouragement, support and for teaching me that a strong will and an optimistic outlook, can move mountains. They have been the wind beneath my wings and pushed me to pursue my dreams without inhifitions.

Finally, though I may not be of a large enough stature, I wish to thank, the Prime Mover in the grand scheme of life for 6oth; the blessings and the blessings in disguise.

CONTENTS

Section	TITLE	$\begin{gathered} \text { PAGE } \\ \text { NO } \end{gathered}$
	Abbreviations	i
	Synopsis of the thesis	iv
	List of publications and posters	xvi
	CHAPTER 1. A review of the synthetic utility of inositol- 1,3-acetals.	
1.1	Introduction	2
1.2.	Preparation of myo-inositol-1,3-acetals by the reductive cleavage of orthoesters	9
1.2a.	Reductive cleavage of inositol orthoesters with DIBAL-H	9
1.2b.	Reductive cleavage of inositol orthoesters with trimethyl aluminium	12
1.2c.	Reductive cleavage of inositol orthoesters with Grignard reagents	15
1.3.	Structure and conformation of inositol derived 1,3-acetals	15
1.4.	Syntheses involving myo-inositol-1,3-acetals	18
1.5.	Conclusions	22
1.6.	References	23
	CHAPTER 2. A study of the regioselectivity of reductive cleavage of myo-inositol orthoesters with DIBAL-H	
2.1.	Introduction	28
2.2.	Results and discussion	29
2.2a.	DFT Analysis of miscellaneous compounds	35
2.3.	Conclusions	39
2.4.	Experimental	40
2.5	References	47
	APPENDIX I	50

Section	TITLE	PAGE NO
	CHAPTER 3. Investigations to delineate the role of the 1,3 acetal bridge in inososes for nucleophilic addition to the carbonyl group.	
3.1.	Introduction	$\mathbf{8 7}$
3.2.	Results and discussion	91
3.3.	Conclusion	100
3.4.	Experimental	101
3.5.	References	105
	Appendix II	107
	CHAPTER 4. Achieving molecular stability of racemic 4- O-benzyl-myo-inositol-1,3,5- orthoformate through crystal formation	121
4.1.	Introduction	124
4.2.	Results and discussion	137
4.2 a.	Crystallization and crystal structure of the racemic benzyl ether 4.1.	141
4.3.	Conclusions	143
4.4.	Experimental	146
4.5.	References	148
	Appendix III	

Abbreviations

Ac	Acetyl
AcBr	Acetyl bromide
$\mathrm{Ac}_{2} \mathrm{O}$	Acetic anhydride
AcCl	Acetyl chloride
AIBN	Azobisisobutyronitrile
All	Allyl
Anhd.	Anhydrous
aq.	Aqueous
Bn	Benzyl
BnBr	Benzyl bromide
BuLi	Butyl lithium
Calcd	Calculated
Cat.	Catalytic
Concd	Concentration
CSA	Camphorsulfonic acid
COSY	Correlation Spectroscopy
DCC	N,N'-Dicyclohexylcarbodiimide
$\mathrm{D}_{2} \mathrm{O}$	Deuterium Oxide
DCM	Dichloromethane
DDQ	2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
DFT	Density Functional Theory
DIBAL-H	Diisobutyl aluminium Hydride
dil.	Dilute
DIPEA	Di-isopropyl ethyl amine
DMAP	N, N-dimethylamino pyridine
DMF	N, N-Dimethylformamide
DMSO	Dimethyl sulfoxide
eq.	Equivalent
EDC• HCl	1-Ethyl-3-(3-dimethyllaminopropyl)carbodiimide hydrochloride
$\mathrm{Et}_{3} \mathrm{~N}$	Triethylamine

g	Gram
GPI	Glycophosphatidylinositol
h	Hour (s)
Hz	Hertz
$i \mathrm{BuNH}_{2}$	iso-Butyl amine
IBX	2-Iodoxybenzoic acid
IR	Infrared
LC-MS	Liquid chromatography-mass spectrometry
Mp	Melting point
Me	Methyl
MeOH	Methanol
MeI	Methyliodide
Mes	Mesityl
mg	Milli gram
min.	Minute(s)
mL	Milliliter
mmol	Milli moles
NaBH_{4}	Sodium borohydride
NaN_{3}	Sodium azide
NaOMe	Sodium methoxide
NMR	Nuclear magnetic Resonance
ORTEP	Oak Ridge Thermal Ellipsoid Plot Program
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	Tetrakis(triphenylphosphine)palladium
Ph	Phenyl
PI-PLC	Phosphatidylinositol-specific phospholipase C
PMB	4-Methoxy benzyl
PCB	4-Chloro benzyl
PBB	4-Bromo benzyl
PIP_{3}	Phosphatidylinositol-3,4,5-tris-phosphate
Py	Pyridine
rac-	Racemic
rt	Room temperature ($23-30^{\circ} \mathrm{C}$)

TMS	Trimethylsilyl
TMSOTf	Trimethylsilyl triflate
TFA	Trifluoroacetic acid
TFAA	Trifluroacetic anhydride
Tf $_{2} \mathrm{O}$	Trifluoromethanesulfonic anhydride
THF	Tetrahydrofuran
TLC	Thin layer chromatography
TsCl	4-Toluene sulfonyl chloride
TsOH	4-Toluene sulfonic acid

SYNOPSIS OF THE THESIS

Introduction:

The thesis entitled 'Inositol 1,3 acetals as versatile intermediates for the synthesis of cyclitol derivatives' consists of four chapters. Chapter 1 is a review of literature reports on the synthetic potential and utility of 1,3 -acetals, with emphasis on myoinositol 1,3-acetals. The latter have been used for the synthesis of biologically or medicinally relevant natural products, natural and unnatural inositol derivatives such as phosphoinositols and their analogs. Chapter 2 deals with the study of the effect of the orthoester moiety on regioselective reductive cleavage of myo-inositol orthoesters to the corresponding 1,3-acetals by DIBAL-H. Chapter 3 investigates the role of the 1,3 -acetal bridge during the selective nucleophilic addition to the ketone in myo-inositol-1,3-acetal derivatives. Chapter 4 highlights the stabilization of racemic 4- O -benzyl-myo-inositol-1,3,5-orthoformate molecules in their crystal; this benzyl ether is a key intermediate for the synthesis of phosphoinositols, and other inositol derivatives.

Chapter 1. A review on the synthetic utility of inositol 1,3-acetals.

myo-Inositol and its derivatives / analogs have become conspicuous in the literature related to chemistry and biology due to the involvement of phosphoinositols in cellular signal transduction mechanisms and anchoring of certain proteins to cell membranes. ${ }^{1}$ However, the intricacies and biological implications of the myo-inositol cycle are not yet fully unraveled. Many synthetic methodologies and techniques have been developed in the recent past for the synthesis of inositol derivatives useful in the study of the inositol cycle. Some of these methods have also been used for the synthesis of natural products (other than inositol derivatives) and their analogs. ${ }^{2}$
1,2 acetal derivatives 2-4 (Scheme 1) of myo-inositol have been frequently used as early intermediates for the synthesis of various classes of compounds mentioned above, although the acetalization of myo-inositol (1) often leads to the formation of isomeric acetals 2-4, which have to be separated by chromatography.

Scheme 1. (a) DMF, $\mathrm{R}^{1} \mathrm{COR}^{1}$, TsOH ; (b) $\mathrm{DMF}, \mathrm{R}^{2} \mathrm{C}(\mathrm{OEt})_{3}$ or $\mathrm{R}^{2} \mathrm{C}(\mathrm{OMe})_{3}, \mathrm{TsOH}$, 110-140 ${ }^{\circ} \mathrm{C}$; (c) DMF, NaH or LiH, alkyl halide; (d) DCM, DIBAL-H (2.2 eq), rt; (e) DCM, $\mathrm{Me}_{3} \mathrm{Al}$, rt; (f) benzene, $\mathrm{R}^{4} \mathrm{MgX}$ (2 eq), reflux.

In contrast, the myo-inositol orthoesters 7 can be prepared as sole products in good yields. The differentially protected myo-inositol 1,3-acetals $\mathbf{8 - 1 3}$ can be obtained via the reductive cleavage of O-protected orthoester derivatives of myo-inositol. The acetals $\mathbf{8}$ can be obtained by reduction ${ }^{3,4}$ of $\mathbf{7}$ with DIBAL-H while acetals $\mathbf{9 - 1 3}$ can be obtained by cleavage of 7 with trimethylaluminium ${ }^{4}$ or Grignard reagents. ${ }^{5}$ There does not appear to be any report on the preparation of myo-inositol derived 1,3-acetals from the corresponding 1,3 -diols by classical acid catalyzed ketalization reactions. These bridged acetals provide opportunities (Figure 1) for new selective reactions (of the inositol hydroxyl groups) since conformation of the two six membered rings deviate from the normal chair conformation.

Figure 1. Synthetic utility of myo-inositol derived 1,3 acetals

Hence, 1,3-acetals of myo-inositol derivatives have the potential to emerge as useful intermediates for the preparation of many biologically relevant inositol derivatives.

The contents of this chapter have been published. B. P. Gurale, R. S. Sardessai, M. S. Shashidhar, myo-Inositol 1,3-acetals as early intermediates during the synthesis of cyclitol derivatives, Carbohydr. Res. 2014, 399, 8-14. http://dx.doi.org/10.1016/j.carres.2014.08.010

Chapter 2. A study of the regioselectivity of the reductive cleavage of myoinositol orthoesters with DIBAL-H.

As discussed in chapter 1 the cleavage of myo-inositol orthoformate by trimethyl aluminium or Grignard reagent generates the 1,3-acetals 34-42 whereas cleavage by DIBAL-H generates the 1,3 acetals $\mathbf{4 3 - 5 1}$ as major products. ${ }^{4,16-22}$

25, 34, $43 R^{1}=H, R^{2}=R^{3}=R^{4}=B n$
26, 35, $44 R^{1}=H, R^{2}=$ TBDMS, $R^{3}=R^{4}=B n$
27, 36, $45 R^{1}=H, R^{2}=R^{3}=B n, R^{4}=P M B$
28, 37, $46 R^{1}=P h, R^{2}=R^{3}=R^{4}=B n$
29, 38, $47 R^{1}=H, R^{2}=R^{3}=R^{4}=P M B$
30, 39, $48 R^{1}=P h, R^{2}=R^{3}=R^{4}=A$ Il
31, 40, $49 R^{1}=H, R^{2}=P M B, R^{3}=R^{4}=B n$
32, 41, $50 R^{1}=P h, R^{2}=P M B, R^{3}=R^{4}=B n$
33, 42, $51 \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{PBB}, \mathrm{R}^{3}=\mathrm{PMB}, \mathrm{R}^{4}=\mathrm{All}$

Scheme 2: Reductive cleavge of myo-inositol orthoesters.
Close scrutiny of the reports indicated (due to lack of material balance) that in most reports the 1,3-acetals $\mathbf{4 3 - 5 1}$ may not have formed exclusively. The results could not be compared to get an insight into the regioselectivity of this reductive cleavage since the experimental conditions were not comparable. Hence in order to obtain a deeper insight into this aspect, myo-inositol orthoesters which vary only at the apical orthoester substituent were prepared and their reductive cleavage with DIBAL-H studied under comparable conditions. myo-inositol orthoesters 56-58 were prepared and subjected to cleavage by DIBAL-H and the results are shown in Scheme 3.

$5 \mathrm{R}=\mathrm{H}$
$54 \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$
$55 \mathrm{R}=\mathrm{CH}_{3}$

$62 \mathrm{R}=\mathrm{H}$
$60 \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$
$63 \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$
$64 \mathrm{R}=\mathrm{CH}_{3}$

$0 \% 68 \mathrm{R}=\mathrm{H}$
$45 \% 66 \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$
$44 \% 67 \mathrm{R}=\mathrm{CH}_{3}$
Scheme 3. (a) DMF, $\mathrm{RC}(\mathrm{OEt})_{3}$ or $\mathrm{RC}(\mathrm{OMe})_{3}, \mathrm{TsOH}, 110-140{ }^{\circ} \mathrm{C}, 70-90 \%$; (b) DMF, $\mathrm{LiH}, \mathrm{AllBr}, 24 \mathrm{~h}, 60-80 \%$; (c) DMF, NaH, MeI, $24 \mathrm{~h}, 60-80 \%$ (d) dry DCM, DIBALH (2.5eq), 2.5h, $0{ }^{\circ} \mathrm{C}$ TO RT, $65-92 \%$.

The results clearly indicated that selectivity for the formation of the 1,3-acetals 65-67 decreased on going from orthoformate to orthobenzoate to orthoacetate. DFT calculations were carried out to estimate the relative stability of the possible DIBALH complexes 59-64 that lead to the isomeric 1,3-acetals (Scheme 3). The results revealed that the difference in stability between the two different complexes increases as the orthoester group changes from orthoformate to orthobenzoate to orthoacetate (Figure 2). This is in concurrence with the trend of the decreasing regioselectivity observed. This implies that as the orthoester group becomes streically challenged the regioselctivity of the reduction suffers.

Figure 2: Energy minimized structures of the DIBAL-H complexes of the orthoesters. $\Delta \mathrm{E}_{59-62}=1.5 \mathrm{Kcals} / \mathrm{mole} ; \Delta \mathrm{E}_{60-63}=2.1 \mathrm{Kcals} / \mathrm{mole} ; \Delta \mathrm{E}_{61-64}=2.6 \mathrm{Kcals} / \mathrm{mole}$. For the orthoacetate, since the difference in energy between the two DIBAL-H complexes is higher, the rate of inter- convertibility is much less, and each intermediate perhaps has enough time to form the respective cleavage product, giving rise to the almost equitable mixture. In contrast, for the orthoformate, since the difference in energy between the two DIBAL-H complexes is lower, the rate of interconvertibility is much higher, and if one DIBAL-H complex (59) gets reduced faster than the other ($\mathbf{6 2}$), the reductive cleavage can result in very high regio-selectivity. The effective bulk of the phenyl ring being intermediate between that of H and Me (owing to its planarity), the observed selectivity for the reductive cleavage of the orthobenzoate is between that of the orthoformate and the orthoacetate.
Chapter 3. Investigations to delineate the role of the $\mathbf{1 , 3}$ acetal bridge in inososes for nucleophilic addition to the carbonyl group.
Inososes form important intermediates for the synthesis of many biologically important cyclitol derivatives (Figure 3).

Figure 3: Synthetic utility of the inositol derived ketones.
Previous work in our laboratory had shown that the addition to inositol derived ketones containing a 1,3 acetal bridge led to the formation of a single product (Scheme 4). This chapter seeks to investigate the role played by the 1,3-acetal bridge in this highly selective addition reaction.

Scheme 4. Diethyl ether, $\mathrm{R}^{3} \mathrm{MgBr},-10^{\circ} \mathrm{C}, 2 \mathrm{~h}, 90-94 \%$
In order to ascertain the role of the 1,3 acetal bridge, the the ketone $\mathbf{1 0 1}$ without the 1,3 acetal bridge was prepared and subjected to hydride reduction as well as Grignard reaction.

Scheme 5 (a) DMF, NaH, BnBr, rt, 3 h, 92%; (b) DCM, DIBAL-H, $0{ }^{\circ} \mathrm{C}-\mathrm{rt}, 90 \%$; (c) DMF, NaH, AllBr, rt, 3 h, 92%; (d) (i) $\mathrm{HCl}, \mathrm{MeOH}, 12 \mathrm{~h}$; (ii) DMF, $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{rt}, 3$ h, 82% over 2 steps; (e)ethanol, anhy. $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, reflux, $48 \mathrm{~h}, 86 \%$, (f) EtOAc , IBX, 6h, 96%; (g) toluene, MeMgI, rt, 1h, (h)MeOH, NaBH_{4}, reflux, 24h; (i)Pyridine, $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, 48h, RT.

As shown in Scheme 5, both these reactions resulted in the formation of a mixture of products. These results conclusively established the role of the acetal bridge in directing selective addition to the carbonyl group. The precursor $\mathbf{1 0 0}$ for the ketone 101 was extremely difficult to generate from the allyl ether 99. Various attempts to cleave the allyl ether were unsuccessful due to the steric crowding around the allyl group, as revealed by single crystal X-ray diffraction analysis (of 99 and 100). In some experiments, the cleavage of the allyl ether in 99 was concomitant with the cleavage of the benzyl group to yield a complex mixture of products.

Chapter 4. Achieving molecular stability of racemic 4-O-benzyl-myo-inositol-

1,3,5-orthoformate through crystallization.

This chapter describes the stabilization of racemic 4-O-benzyl-myo-inositol orthoformate (108) through crystal formation. The racemic monobenzyl ether $\mathbf{1 0 8}$ is an important intermediate in the synthesis of many biologically important inositol derivatives (Figure 4).

However racemic 108 (a gummy compound as reported in the literature) is inherently unstable when left in the gummy state and hence cannot be stored over long periods of time without compromising on its purity. We needed to prepare bulk quantities of 108 as a part of an ongoing program on the study of regioselective reactions in myoinositol orthoesters. A survey of the literature reports indicated that most of the 4-Osubstituted myo-inositol orthoformates were stable solids. Hence we wondered whether the stability of racemic $\mathbf{1 0 8}$ would improve if it could be coaxed to form crystals. We also carried out experiments to investigate the cause of instability of racemic $\mathbf{1 0 8}$ in the gummy state. This required the comparison of the stability of the orthoacetate and orthobenzoate analogs of 108. Gist of all these experiments is shown in Scheme 6. Our investigations revealed that in the gummy state orthoester moiety is cleaved, to form the corresponding hydroxyl esters. These esters prevent crystallization of racemic $\mathbf{1 0 8}$ and hence cause further decomposition. However, in the crystalline state racemic $\mathbf{1 0 8}$ is stable and can be stored over extended period of time.

Scheme 6.

Results presented in this chapter are published. R. Sardessai, S. Krishnaswamy, M. S. Shashidhar, Achieving molecular stability of racemic 4-O-benzyl-myo-inositol-1,3,5orthoformate through crystal formation, CrystEngComm, 2012, 14, 8010-8016. DOI: 10.1039/C2CE26199E

Results presented in this chapter are published. R. Sardessai, S. Krishnaswamy, M. S. Shashidhar, Achieving molecular stability of racemic 4-O-benzyl-myo-inositol-1,3,5orthoformate through crystal formation, CrystEngComm, 2012, 14, 8010-8016. DOI: 10.1039/C2CE26199E

References :

1. a) B. V. L. Potter, Comprehensive Medicinal Chemistry, Vol 4, Pergamon Press 1990; b) D. C. Billington, The Inositol Phosphates: Chemical synthesis and biological significance. VCH, New York, N.Y. 1993; c) K. Hinchliffe, R. Irvine, Nature, 1997, 390, 123; d) M. A. J. Ferguson, A. F. Williams, Annu. Rev. Biochem. 1988, 57, 285; e) Phosphoinositides: chemistry, biochemistry and biochemical applications, K. S. Bruzik, Ed.; ACS symposium series 718. American chemical society, Washington D.C. USA, 1999.
2. a) J. Duchek, D. R. Adams, T. Hudlicky, Chem. Rev. 2011, 111, 4223 and references cited there in; b) S. Pilgrim, G. Kociok-K€ohn, M. D. Lloyd, S. E. Lewis, Chem. Commun. 2011, 47, 4799.
3. I. H. Gilbert, A. B. Holmes, M. J. Pestchanker, R. C. Young, Carbohydr. Res. 1992, 234, 117.
4. C. Murali, M. S. Shashidhar, C. S. Gopinath, Tetrahedron, 2007, 63, 4149.
5. S-M. Yeh, G. H. Lee, Y. Wang, T-Y. Luh, J. Org. Chem. 1997, 62, 8315.
6. Swarbrick, J. M.; Gaffney, P. R. J. J. Org. Chem. 2010, 75, 4376-4386.
7. Swarbrick, J. M.; Cooper, S.; Bultynck, G.; Gaffney, P. R. J. Org. Biomol. Chem. 2009, 7, 1709-1715.
8. Conway, S. J.; Gardiner, J.; Grove, S. J. A.; Johns, M. K.; Lim, Z.-Y.; Painter, G. F.; Robinson, D. E. J. E.; Schieber, C.; Thuring, J. W.; Wong, L. S. M.; Yin, M.-X.; Burgess, A. W.; Catimel, B.; Hawkins, P. T.; Ktistakis, N. T.; Stephens, L. R.; Holmes, A. B. Org. Biomol. Chem. 2010, 8, 66-74
9. Jagdhane, R. C.; Shashidhar, M. S. Eur. J. Org. Chem. 2010, 2945-2953.
10. Jagdhane, R. C.; Shashidhar, M. S. Tetrahedron, 2011, 67, 7963-7970.
11. Song, F.; Zhang, J.; Zhao, Y.; Chen, W.; Lib, L.; Xi, Z. Org. Biomol. Chem. 2012, 10, 3642-3654.
12. Moris, M. A.; Caron, A. Z.; Guillemette, G.; Rognan, D.; Schmitt, M.; Schlewer, G. J. Med. Chem. 2005, 48, 1251-1255.
13. Garrett, S. W.; Liu, C.; Riley, A. M.; Potter, B. V. L. J. Chem. Soc. Perkin Trans 1, 1998, 1367-1368.
14. Ballereau, S.; Poirier, S. N.; Guillemette, G.; Spiess, B.; Schlewer, G. J. Chem.Soc., Perkin Trans. 1, 1998, 1859-1864.
15. Eisch, J. J.; Rhee, S. G. J. Am. Chem. Soc., 1974, 96, 7276-7284.
16. Gilbert, I. H.; Holmes, A. B.; Young, R. C. Tetrahedron Lett. 1990, 31, $2633-$ 2634.
17. Gilbert, I. H.; Holmes, A. B.; Pestchanker, M. J.; Young R. C. Carbohydr. Res. 1992, 234, 117-130.
18. Grove, S. J. A.; Gilbert, I. H.; Holmes, A. B.; Painter, G. F.; Hill, M. L. Chem. Commun. 1997, 1633-1634.
19. Capolicchio, S.; Thakor, D. T.; Linden, A.; Jessen, H. J. Angew. Chem. Int. Ed. 2013, 52, 6912-6916.
20. Mart, A; Shashidhar, M. S. Tetrahedron, 2012, 68, 9769-9776.
21. Jagdhane, R. C.; Shashidhar, M. S. Tetrahedron, 2011, 67, 7963-7970.
22. Gurale, B. P.; Krishnaswamy, S.; Vanka, K.; Shashidhar, M. S. Tetrahedron, 2011, 67, 7280-7288.
23. Jagdhane, R. C.; Shashidhar, M. S. Eur. J. Org. Chem. 2010, 2945-2953.
24. Swarbrick, J. M.; Cooper, S.; Bultynck, G.; Gaffney, P. R. J. Organic \& Biomolecular Chemistry, 2009, 7, 1709.
25. Swarbrick, J. M.; Gaffney, P. R. J. The Journal of Organic Chemistry, 2010, 75, 4376.
26. Gigg, J.; Gigg, R. Carbohydrate Research, 1997, 299, 77.
27. Sarmah, M. P.; Shashidhar, M. S.; Sureshan, K. M.; Gonnade, R. G.; Bhadbhade, M. M. Tetrahedron, 2005, 61, 4437.
28. Riley, A. M.; Murphy, C. T.; Lindley, C. J.; Westwick, J.; Potter, B. V. L. Bioorganic \& Medicinal Chemistry Letters, 1996, 6, 2197.
29. Mondal, S.; Prathap, A.; Sureshan K. M. J. Org. Chem., 2013, 78, 7690-7700.
30. Song, F.; Zhang, J.; Cui, Q., Wang, T.; Chen, W.; Li, L.; Xi Z. Tetrahedron Lett., 2012, 53, 1102-1104.
31. Baudin, G.; Glänzer, B. I.; Swaminathan, K. S.; Vasella, A. Helv. Chim. Acta, 1988, 71, 1367-1378.
32. Kim, S.; Lee, S.1; Cheong, C. Bull. Korean Chem. Soc., 2004, 25, 1578-1580.
33. Sato, K.; Akai, S.i; Sugita, N.; Ohsawa, T.; Kogure, T.; Shoji, H.; Yoshimura, J. J. Org. Chem., 2005, 70, 7496-7504.

List of publications and posters

1. Sardessai, R. S.; Krishnaswamy, S.; Shashidhar, M. S. 'Achieving molecular stability of racemic 4-O-benzyl-myo-inositol-1,3,5-orthoformate through crystal formation' CrystEngComm, 2012, DOI: 10.1039/C2CE26199E.
2. Gurale, B. P.; Sardessai, R. S.; Shahsidhar, M. S. ' myo-Inositol 1,3-acetals as early intermediates during the synthesis of cyclitol derivatives. ' Carbohydr Res. 2014 http://dx.doi.org/10.1016/j.carres.2014.08.010
3. Sardessai, R. S.; Shashidhar, M. S. ' A study of the regioselectivity of the reductive cleavage of myo-inositol orthoesters with DIBAL-H. ', manuscript under preparation.

Poster Presentations

1. Achieving molecular stability of racemic 4-O-benzyl-myo-inositol-1,3,5orthoformate through crystal formation. Richa S. Sardessai, Mysore S. Shashidhar, presented at National Science Day, NCL, 2013.
2. Study of the regioselectivity of DIBAL cleavage of inositol orthoesters

Richa S. Sardessai, Mysore S. Shashidhar, presented at National Science Day, NCL, 2014 and $10^{\text {th }}$ J-NOST Conference held at IIT Madras 2014.

This chapter is published in- Gurale, B. P; Sardessai, R. S., Carbohydr. Res. 2014, 399,814. http://dx.doi.org/10.1016/j.carres.2014.08.010

1.1. Introduction

myo-Inositol and its derivatives / analogs have become conspicuous in the literature related to chemistry and biology due to the involvement of phosphoinositols in cellular signal transduction mechanisms and anchoring of certain proteins to cell membranes. ${ }^{1-5}$ Realization of the fact that the production and destruction of pyrophosphates of inositol are highly regulated by enzymes in living cells (bacteria to mammals) has recently augmented the interest in the synthesis of phosphorylated inositol derivatives and their analogs. ${ }^{6-8}$ Phosphatidylinositol (1.2) is a component of mammalian cell membranes. Phosphorylated derivatives of $\mathbf{1 . 2}$ play fundamental role in a multitude of cellular processes. ${ }^{9}$ Derivatives of inositols other than phosphoinositols are also important since several of them occur in nature. Amino derivatives of inositols are present in antibiotics ${ }^{10-13}$ and a few others act as glycosidase inhibitors. ${ }^{14-16}$ Illustrative examples of natural products and biologically active compounds containing cyclitol moiety as the main core are shown in Chart 1.

1.6 Fortimicin A

1.9 Pancratistatin

$1.10 \mathrm{R}=\mathrm{OH}$ Valiolamine
1.11 R= H Validamine

1.7 $\mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{CH}_{2} \quad$ Hygromycin A
$1.8 \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me} \quad$ Methoxyhygromycin

Chart 1. Structure of natural products containing inositol moieties.

Interestingly, myo-inositol does not occur in the free-state in nature. Perhaps, the most abundant naturally occurring myo-inositol derivative is phytic acid (myo-inositol hexakisphosphate), which is present in larger quantities in plants. Nine isomers of
inositol (1,2,3,4,5,6-hexahydroxy cyclohexane) are reported in the literature (Chart 2). All of them, except the chiro-inositol have the meso-configuration. Enantiomeric derivatives of chiro-inositol (pinitol and quebrachitol) occur in nature. myo-Inositol (1.1), has five equatorial hydroxyl groups and an axial hydroxyl group with a plane of symmetry passing through two carbon atoms.

1.1 myo-

1.18 cis-

1.13 scyllo-

1.19

1.14 neo-

Chart 2. Reported isomers of inositol.
According to convention, ${ }^{17}$ anti-clockwise numbering in an unsymmetrically substituted myo-inositol leads to the configurational D-prefix and clockwise numbering gives the substituted myo-inositol an L-prefix. An IUBAC recommendation allowing all biologically relevant compounds to be denoted as Disomers has also been proposed (Chart 3). ${ }^{18}$

$1.21 \mathrm{D}-1$ or $\mathrm{L}-3 \quad \mathrm{R} \neq \mathrm{H}$

$1.22 \mathrm{~L}-1$ or $\mathrm{D}-3$

Chart 3. Ring C -atom numbering in unsymmetrical myo-inositol derivatives. All the asymmetrically substituted myo-inositol derivatives reported are racemic; however, only one of the enantiomers is shown in all the schemes.

Cyclitols and their derivatives have been synthesized from different kinds of starting materials, such as naturally occurring inositols (myo- and chiro-inositols and
their derivatives, Chart 4), ${ }^{19,20,21}$ sugars (glucose, ribose etc.) ${ }^{22-28}$ benzene and its derivatives (toluene, naphthalene, benzoquinone), ${ }^{29}$ and norbornyl derivatives (Chart 5). ${ }^{30-32}$

Chart 4. Illustrative examples of inositol derivatives synthesized from myo-inositol. See references 19, 20, 21 for details.

Chart 5. Illustrative examples for the preparation of inositol derivatives from non-inositol sources. See references 22, 24-26, 29, 30, 32 for details.
myo-Inositol (1.1) is perhaps the most frequently used starting material for the synthesis of phosphoinositols and their analogs. This is because myo-inositol is relatively inexpensive due to its abundance and the relative reactivity of its hydroxyl
groups as well as many of its derivatives is quite well understood. ${ }^{17,18}$ The stereochemical structure and its consequences on the derivatization of the hydroxyl groups of myo-inositol is well documented in the literature (Chart 3). myo-Inositol has also been utilized for the synthesis of several natural products (other than phosphoinsitols) and their analogs (Chart 6). ${ }^{33-36}$

Both enantiomers of aminocyclitol unit of Hygromycin A
Chart 6. Illustrative examples of natural products and their analogues synthesized from myo-inositol.
As is evident from the structure of myo-inositol, any synthetic sequence utilizing it as the starting material, requires extensive protection and deprotection of its hydroxyl groups. Regioselective protection of myo-inositol hydroxyl groups is an arduous task since all the hydroxyl groups are secondary and the reactivity differences between them is subtle. Hence, reaction of myo-inositol (or its partially protected derivatives) with most reagents leads to the formation of a mixture of products; formation of acetals 1.53-1.56 of myo-inositol is shown in Scheme 1 as an example.

Scheme 1. (a) $\mathrm{R}^{1}(\mathrm{OMe})_{2}$ / mineral acid; $\mathrm{R}^{1}=$ isopropylidene or cyclohexylidene.
Acetalization of myo-inositol leads to the formation of 1,2 -acetals of its hydroxyl groups (vicinal diols, numbers 1 and 2 refer to the relative position of the hydroxyl groups rather than conventional numbering of myo-inositol ring carbon atoms which are not italicized - see $\mathbf{1 . 1}$ in Chart 2) and there is no report on the formation of inositol-1,3-bridged acetals (from 1,3-diols, numbers 1 and 3 refer to the relative position of the hydroxyl groups) in any of these reactions. The latter acetals can only be obtained by the partial cleavage of myo-inositol-1,3,5-orthoesters (see below). Preparation and the use of 1,3 -acetals of polyols and carbohydrates, other than inositols, have been reported (Chart7). ${ }^{37-47}$ However, as expected, such instances are relatively rare compared to those of 1,2-acetals.

Chart 7. Illustrative examples of 1,3 acetals derived from polyols other than inositol. See references 45-47 for details.

Since acetalization of myo-inositol leads to the formation of at least three isomeric products (Scheme 1, and perhaps oligomeric acetals as well) the isolated yield of each of these acetals is seldom more than 35%. Hence these acetals are not good as early intermediates in syntheses starting from myo-inositol, since the yield of the final product is compromised right in the beginning of the synthetic scheme. A way around this is to use orthoesters of myo-inositol, which can be obtained as single products, often in yields excess of 90%. Reaction of myo-inositol with trialkyl-orthoesters results in the formation of myo-inositol-1,3,5-orthoesters as the sole product in high yield (1.66-1.69, Scheme 2), wherein three hydroxyl groups are protected simultaneously. ${ }^{48-53}$

Scheme 2. (a) $\mathrm{HC}(\mathrm{OEt})_{3}$, TsOH, DMF, $110^{\circ} \mathrm{C}, 4 \mathrm{~h}$; (b) $\mathrm{MeC}(\mathrm{OEt})_{3}$, TsOH, DMF, $90-100^{\circ} \mathrm{C}, 4 \mathrm{~h}$; (c) $\mathrm{PhC}(\mathrm{OMe})_{3}, \mathrm{CSA}, \mathrm{DMSO}, 8{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$; (d) n-BuC(OMe) 3 , CSA, DMSO, $60^{\circ} \mathrm{C}$. (e) $\mathrm{R}^{2} \mathrm{X}, \mathrm{NaH}, \mathrm{DMF} ;(\mathrm{f})$ $\mathrm{R}^{3} \mathrm{X}$, NaH, DMF; (g) $\mathrm{R}^{4} \mathrm{X}$ in DMF, n-BuLi, THF; (h) R ${ }^{5} \mathrm{X}$, NaH, DMF; (i) $\mathrm{R}^{6} \mathrm{X}$, LiH, DMF; (j) R ${ }^{7} \mathrm{X}$, $\mathrm{NaH}, \mathrm{DMF} . \mathrm{R}^{2}-\mathrm{R}^{7}=$ combination of Me, Allyl, Bn, PMB, PBB.

Due to the strong intramolecular hydrogen bonding between the C4- and C6-hydroxyl groups of myo-inositol orthoesters $\mathbf{1 . 6 6 - 1 . 6 9}$, and differences in the ability of the hydroxyl groups of diols $\mathbf{1 . 7 0}$ to form chelates with metal ions, reaction of the hydroxyl groups of these orthoesters with alkyl halides can be controlled to obtain mono-, di- or triethers exclusively (Scheme 2). ${ }^{54-56}$

Hence a variety of orthogonally protected myo-inositol derivatives can be obtained in a short time. Reductive cleavage of these orthoesters results in the formation of 1,3 acetals (consequently releasing one of the three hydroxyl groups of the orthoester moiety), which are fast becoming early intermediates for
phosphoinositol synthesis. Similarly regioselective acylation of myo-inositol orthoesters can also be carried out to obtain a variety of mono-, di- and tri-esters. ${ }^{57-58}$ However, they are not generally useful for the preparation of 1,3 -acetals, since esters are not stable to reductive cleavage conditions required to obtain 1,3 -acetals from orthoesters.

1.2. Preparation of myo-inositol-1,3-acetals by the reductive cleavage of orthoesters

1.2a. Reductive cleavage of inositol orthoesters with DIBAL-H

Reductive cleavage of myo-inositol orthoesters carrying different groups at the 2$O, 4-O$ and $6-O$-positions of the inositol ring with DIBAL-H affords the corresponding myo-inositol-1,3-acetal (Scheme 3) liberating the C5-hydroxyl group, predominantly. ${ }^{8,35,58-63}$

$R^{1}=H, R^{2}=R^{3}=R^{4}=B n$	1.76	1.85	1.94
$R^{1}=H, R^{2}=T B D M, R^{3}=R^{4}=B n$	1.77	1.86	1.95
$R^{1}=H, R^{2}=R^{3}=B n, R^{4}=P M B$	1.78	1.87	1.96
$R^{1}=P h, R^{2}=R^{3}=R^{4}=B n$	1.79	1.88	1.97
$R^{1}=H, R^{2}=R^{3}=R^{4}=P M B$	1.80	1.89	1.98
$R^{1}=P h, R^{2}=R^{3}=R^{4}=A l l$			
$R^{1}=H, R^{2}=P M B, R^{3}=R^{4}=B n$	1.81	1.82	1.90
$R^{1}=P h, R^{2}=P M B, R^{3}=R^{4}=B n$	1.83	1.91	1.99
$R^{1}=P h, R^{2}=P B B, R^{3}=P M B, R^{4}=A l l$	1.84	1.93	1.100
			1.101

Scheme 3. Cleavage of myo-inositol orthoesters with DIBAL-H (2.2-2.7 equivalents, -78 to $0{ }^{\circ} \mathrm{C}$). The 1,3 -acetals shown are to illustrate the orthoester bond cleaved; the conformation of these molecules could vary from those shown. See end of section for a discussion on the conformational aspects of inositol 1,3-acetals.
Use of excess of DIBAL-H resulted in complete cleavage of the orthobenzoate $\mathbf{1 . 7 9}$ to the diol $\mathbf{1 . 1 0 4}$ (Scheme 4). ${ }^{62,64,}{ }^{65}$ Since reduction of $\mathbf{1 . 7 9}$ with two equivalents of DIBAL-H results in the formation of the C5-alcohol, it is clear that the 1,3-acetal 1.103 formed undergoes further reduction to form the racemic diol 1.104.

Scheme 4. (a) DIBAL-H (excess), dichloromethane, 93-100\%.
The observed selectivity in this reductive cleavage reaction (Scheme 3) is thought to be due to the steric bulk of the organometallic reducing reagent. ${ }^{59,62,65}$ The stereoselectivity of the reductive cleavage of the orthoformate $\mathbf{1 . 7 6}$ has been investigated and the mechanisms proposed. ${ }^{66-68}$ In the DIBAL-H reduction of $\mathbf{1 . 7 6}$ to $\mathbf{1 . 8 5}$ it was determined that at least 2 molar equivalents of DIBAL-H are required for the reaction to proceed to completion (Scheme 5). It was proposed that the first equivalent of DIBAL-H acts as a Lewis acid, coordinating to the C5-oxygen, perhaps the most sterically accessible oxygen in 1.76. Subsequent cleavage of the orthoformate affords the oxocarbenium ion 1.106, the unfavorable 1,3-steric interactions in which can be accommodated by a ring-flip to the boat conformation 1.107. Reduction of this oxocarbenium ion by a second equivalent of DIBAL-H from the less hindered face produces the 1,3 -acetal $\mathbf{1 . 8 5}$ exclusively. Deuterium labeling experiments with $\mathbf{1 . 7 6}$ ruled out the delivery of hydride to $\mathbf{1 . 1 0 5}$ resulting in the cleavage of the orthoester moiety. ${ }^{68}$ Although the experimental results available so far cannot distinguish between the delivery of hydride to $\mathbf{1 . 1 0 6}$ and $\mathbf{1 . 1 0 7}$ the delivery of hydride to $\mathbf{1 . 1 0 7}$ seems more likely, due to the 1,3-diaxial strain present in $\mathbf{1 . 1 0 6}$ (which results in a conformational change to 1.107).

Scheme 5. Proposed mechanism for the cleavage of the symmetrically substituted myo-inositol orthoformates by DIBAL-H. ${ }^{66,68}$

The DIBAL-H mediated cleavage of symmetrically substituted orthoesters always resulted in almost exclusive cleavage (see below) at the C5-positon of myo-inositol (Scheme 5). However, regioselectivity of the reductive cleavage of myo-inositol orthoesters carrying unsymmetrical substituents could not be ascertained clearly. ${ }^{56,68}$ Reduction of the un-symmetrically O-substituted orthoformate racemic $\mathbf{1 . 7 8}$ gave the C5-alcohol $\mathbf{1 . 8 7}$ as a single isolated product ${ }^{69}$ while, reduction of the orthobenzoate moiety in $\mathbf{1 . 8 4}$ resulted in the formation of a mixture of products from which the benzylidene acetal $\mathbf{1 . 9 3}$ was isolated in 60% yield. ${ }^{56}$
Reduction of $\mathbf{1 . 8 4}$ with an excess of DIBAL-H gave a mixture of isomeric diols $\mathbf{1 . 1 0 9}$ and 1.110, ${ }^{56}$ but this result is not sufficient to conclude the sole intermediacy of the 1,3 -acetal $\mathbf{1 . 1 0 8}$ (Scheme 6). This is because no data on the regioselectivity of the reductive cleavage of 1,3 -acetals or the relative ease of reduction of the myo-inositol 1,3 - and 1,5 -acetals (such as $\mathbf{1 . 9 3}, \mathbf{1 . 1 0 2}$ and $\mathbf{1 . 1 0 8}$) are available.

Scheme 6. (a) Excess DIBAL-H, dichloromethane, 73\% (mixture of $\mathbf{1 . 1 0 9}$ and 1.110).
Results on the cleavage of the ring C-substituted myo-inositol orthoesters (Scheme 7) showed that the nature of the product formed was dependent on the inositol ring Csubstituent. Most of these orthoesters yielded a mixture of the 3,5-acetal $\mathbf{1 . 1 1 2}$ and the triol $\mathbf{1 . 1 1 3}$ on reaction with DIBAL-H. Generation of the 3,5-O-benzylidene acetal shows that the initial attack of DIBAL-H need not necessarily occur at the 5-O position as observed for symmetric inositol orthoesters (Scheme 3). ${ }^{64,65}$

Scheme 7. (a) DIBAL-H, dichloromethane. $\mathrm{R}^{1}=\mathrm{H}, \mathrm{Me}, n-\mathrm{Bu}, t-\mathrm{Bu}, \mathrm{Ph}, i-\mathrm{Pr}$

1.2b. Reductive cleavage of inositol orthoesters with trimethyl aluminium

In contrast to the DIBAL-H cleavage of inositol orthoesters (Scheme 3), the trimethylaluminium-mediated cleavage of inositol orthoesters exclusively afforded the corresponding racemic 1,5-acetal, which results from the cleavage of either the C1-O or the C3-O bond in the myo-inositol orthoester (Scheme 8). ${ }^{51,59,66,70}$

$$
\begin{aligned}
& 1.76,1.117 R^{1}=H ; R^{2}=R^{3}=R^{4}=B n \\
& 1.114,1.118 R^{1}=H ; R^{2}=B n ; R^{3}=R^{4}=A l l \\
& 1.115,1.119 R^{1}=M e ; R^{2}=R^{3}=R^{4}=B n \\
& 1.116,1.120 R^{1}=H ; R^{2}=\left(C H_{2}\right)_{4} O T B S ; R^{3}=A l l, R^{4}=B n
\end{aligned}
$$

Scheme 8. Cleavage of myo-inositol orthoesters with trimethylaluminum; (a) AlMe_{3} (2.5 equivalents), $0^{\circ} \mathrm{C}$.

This outcome indicated that trimethylaluminium is presumably sufficiently small to coordinate to one or both of the equivalent oxygen atoms at the C 1 - or C 3 -position, resulting in the oxocarbenium ion $\mathbf{1 . 1 2 2}$. Delivery of a methyl group to the exo-face of the oxocarbenium 1.123 affords the corresponding racemic 1,5-acetal 1.117 (Scheme 9).

Scheme 9. Proposed mechanism for the regioselective cleavage of the orthoformate $\mathbf{1 . 7 6}$ by $\mathrm{Me}_{3} \mathrm{Al}^{66}{ }^{66}$

The orthoformate derivative $\mathbf{1 . 1 2 4}$ on reaction with trimethylaluminium led to the formation of a mixture of epimeric acetals $\mathbf{1 . 1 2 5}$ and $\mathbf{1 . 1 2 6}$ (Scheme 10). ${ }^{70}$ However, only one of these epimers (1.125) was expected according to the mechanism proposed (Scheme 9). ${ }^{66}$
Trimethylaluminium mediated cleavage of orthogonally protected orthoformate $\mathbf{1 . 1 2 7}$ led to the formation of a mixture of acetals $\mathbf{1 . 1 2 8}$ and $\mathbf{1 . 1 2 9}$ (Scheme 10). ${ }^{71}$

Scheme 10. (a) AlMe ${ }_{3}$, dichloromethane, $-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$.
Whether the epimeric acetals (eg., $\mathbf{1 . 1 2 5}$ and $\mathbf{1 . 1 2 6}$) were formed directly from an intermediate such as $\mathbf{1 . 1 2 3}$ (Scheme 9) or they were formed due to epimerization (as observed in the 1,3-benzylidene derivatives, Scheme 11) of one of the acetals, subsequent to its formation, is not clear. The 1,3-benzylidene acetals $\mathbf{1 . 1 3 0}, \mathbf{1 . 1 3 1}$ and 1.134 underwent epimerization at the acetal carbon on heating, in the molten state, just above their melting point. Interestingly, the same epimerization reaction did not proceed either in the crystalline state or in solution. DFT calculations suggested that the epimeric acetals $\mathbf{1 . 1 3 2}, \mathbf{1 . 1 3 3}$ and $\mathbf{1 . 1 3 5}$ obtained by this thermal process are relatively more stable than the 1,3 -acetals $\mathbf{1 . 1 3 0}, \mathbf{1 . 1 3 1}$ and $\mathbf{1 . 1 3 4}$ obtained by the reductive cleavage of the corresponding orthobenzoate. ${ }^{72}$

Scheme 11. Epimerization of myo-inositol derived 1,3-acetals. (a) $120^{\circ} \mathrm{C}, 12 \mathrm{~h}$ for $\mathbf{1 . 1 3 0}, \mathbf{1 . 1 3 1}$ and 30 h for 1.134 .

1.2c. Reductive cleavage of inositol orthoesters with Grignard reagents

Selective cleavage of the orthoester moiety in myo-inositol orthoesters at C1-O bond could also be effected with Grignard reagents (Scheme 12). ${ }^{73}$ The observed regioselectivity for the cleavage of the orthoester was rationalized owing to the presence of the equatorial oxygen at the C 2 position which could serve as an auxiliary to form a chelate such as $\mathbf{1 . 1 4 2}$. This mechanism was supported by the reaction of methylmagnesium iodide with $\mathbf{1 . 1 4 3}$ which resulted in cleavage of the orthoester moiety; whereas in the reaction of the analogous scyllo-inositol orthoester derivative 1.145 with methylmagnesium iodide, a diastereomeric mixture of 1.146 (2:1) was obtained in 56% yield. No C-O bond cleavage at the orthoester moiety in $\mathbf{1 . 1 4 5}$ was observed. The methoxy group in $\mathbf{1 . 1 4 5}$ apparently directs the selectivity of the ring opening reaction at the benzylidene moiety. As observed with the reduction of DIBAL-H (Scheme 5), inositol 1,3-acetals initially produced could be cleaved with excess of the Grignard reagent to the corresponding diols. ${ }^{73}$

Scheme 12. (a) MeMgI in diethylether, benzene, room temperature to reflux, 16 h ; (b) EtMgBr in diethylether, benzene; (c) PhMgBr in diethylether, benzene.

1.3. Structure and conformation of inositol derived 1,3acetals

Since inositol derived 1,3-acetals are bridged bicyclic systems, in principle, the conformation of the two rings (the inositol carbocyclic ring and the heterocyclic acetal ring) could vary depending on the substitution on the ring carbon atoms as well as phase (solid, solution, vapor) in which these molecules are present. For example, in the 1,3-acetal 1.130 (Scheme 13), inositol ring can be in chair form or boat form and
so is the acetal ring. Hence there are four possible representations for 1.130: both rings chair 1.130 CC ; both rings boat 1.130 BB ; inositol ring chair and acetal ring boat 1.130 CB ; inositol ring boat and acetal ring chair 1.130BC.

Scheme 13. Four possible ring conformations for inositol derived 1,3 -acetals.
DFT calculations on a few 1,3 -acetals has shown that conformation in which both rings are boat has very high energy and hence flips to one of the other three conformations. All the other three conformations have been experimentally observed, $36,66,72,74$ although the difference in energy between them is not very high (as suggested by DFT calculations).

Scheme 14. (a) DIBAL-H (excess), dichloromethane, 93-100\% (b) EtOAc, IBX, reflux (c) THF/MeOH, $\mathrm{NaBH}_{4}, \mathrm{RT}, 1 \mathrm{~h} 94 \%$ (d) THF, $\mathrm{NaH}, \mathrm{CS}_{2}$, reflux, $1 \mathrm{~h}, \mathrm{MeI}, \mathrm{rt}, 16 \mathrm{~h}, 98 \%$

For example 1.79 when cleaved with DIBAL-H forms the alcohol $\mathbf{1 . 8 8}$ that has the inositol ring in the boat conformation whereas the acetal bridge has a chair conformation. Oxidation of $\mathbf{1 . 1 4 7}$ to $\mathbf{1 . 1 4 8}$ and subsequent reduction gives the neoinositol derivative $\mathbf{1 . 1 4 9}$ which has the chair conformation in both the rings implying the release of strain leads the inositol ring to revert to the chair form. In contrast, in the case of $\mathbf{1 . 1 5 0}$ the conversion to its xanthate forces the acetal bridge to flip to the boat conformation. ${ }^{74}$ Moreover the existence of a 1,3-acetal in different conformations in solid and solution state (Chart 8) is also reported. ${ }^{36,66,74}$

SOLID STATE

1.134 CB

1.153 CB

SOLUTION STATE

1.152 CC

1.154 BC

Chart 8. Examples of 1,3- accetals that exist in conformations in solid and solution states.
Hence it is likely that especially in the solution state, these conformations (Chart 8) could coexist. To the best of our knowledge, there is no report on in depth investigation of conformational aspects of these 1,3 -acetals. But there are reports of similar myo-inositol- 1,3 -acetals portrayed to be existing in different conformations. Compound $\mathbf{1 . 1 1 7}$ was reported to exist in the CC conformation whereas it actually exists in BC conformation (Chart 9). ${ }^{66,75}$

1.117 BC

1.117 CC

Chart 9. Examples of inositol derived 1,3-acetals which are shown to exist in different conformations in different publications.
However such representations of the molecular structure generally do not have serious consequences since most 1,3 -acetals are used as transient protecting groups in long synthetic schemes that leave the structure of the inositol ring unperturbed. However, the conformational aspects of 1,3 -acetals do become important in reactions which lead to modifications on the inositol ring. ${ }^{36,74,76}$

1.4. Syntheses involving myo-inositol-1,3-acetals

Scheme 15 demonstrates the synthetic utility of myo-inositol-1,3-acetals. Derivatives from 1,3 -acetals were utilized for the synthesis of unsymmetric diphospho-inositol polyphosphates. ${ }^{8}$ Some of these acetals were also used for the synthesis of affinity probes 1.156 (\mathbf{a} to \mathbf{h}) which were useful in the identification of proteins in the PI-3 kinase signaling pathway; ${ }^{68}$ inhibitors toward human inositol monophosphatase; ${ }^{76}$ and analogs to investigate the structure activity relationship on the interaction of the second-messenger, $\mathrm{D}-\mathrm{Ins}(1,4,5) \mathrm{P}_{3}$ with its receptor. ${ }^{70}$ In higher eukaryotes, the PPInsPs are critical components in cancer cell migration and metastasis insulin secretion, insulin sensitivity, and host-cell immune response during viral invasion. The PP-InsPs $\mathbf{1 . 1 6 5}$ could be easily accessed through 1,3 -acetal $\mathbf{1 . 1 6 0}{ }^{77}$ The purinyl analog $\mathbf{1 . 1 6 7}$ of $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$ behaved as a potent full agonist at the $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$-receptor. ${ }^{71}$ Recent developments on the synthesis and biological utility of synthetic phosphoinositols and their analogs have been reviewed. ${ }^{78-80}$

Scheme 15. Phosphoinositols and their analogs synthesized from 1,3 -acetals of myo-inositol. Numbers (in bold) on arrows represent the 1,3-acetal intermediate used in the respective synthesis; these structures have appeared in earlier schemes. ${ }^{8,51,68-70,75}$

Acetal $\mathbf{1 . 8 2}$ was converted to both the enantiomers of the aminocyclitol unit of hygromycin A (Scheme 16).

Scheme 16. (a) (i) DCM , py., $\mathrm{Tf}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (ii) $\mathrm{HMPA}, \mathrm{NaN}_{3}, \mathrm{rt}, 12 \mathrm{~h}, 94 \%$ (starting from 1.1); (b) THF: $\mathrm{MeOH}, \mathrm{HCl}$, reflux, $1 \mathrm{~h}, 98 \%$; (c) $\mathrm{H}_{2} \mathrm{C}(\mathrm{OMe})_{2}$, TMSOTf, 2,6-Lutidine, $0{ }^{\circ} \mathrm{C}-\mathrm{rt}$; (d) MeOH , TsOH (cat), reflux, $12 \mathrm{~h}, 94 \%$ (for 2 steps); (e) DCM, R(-)-O-acetylmandelic acid, DCC, rt, 3 h ; (f) $\mathrm{MeOH}, \mathrm{KOH}, \mathrm{rt}, 2 \mathrm{~h}, 98-99 \%$; (g) MeOH, $\mathrm{AcOH}, \mathrm{H}_{2}(400 \mathrm{psi}), 20 \% \mathrm{Pd} / \mathrm{C}, \mathrm{RT}, 40 \mathrm{~h}, 92-94 \%$.

Similarly the acetal $\mathbf{1 . 1 4 7}$ (Scheme 17) served as a versatile intermediate and was converted to various inositol derivatives like sequoyitol (1.24) ${ }^{51}$ neo-inositol hexaacetate (1.176), myo-inosamine hexaacetate (1.181) and neo-inosamine hexaacetate(1.179). ${ }^{21}$

Scheme 17. (a) IBX, EtOAc, 2.5h, 98%; (b) $\mathrm{THF} / \mathrm{MeOH}, \mathrm{NaBH}_{4}, \mathrm{RT}, 1 \mathrm{~h}, 94 \%$ (c) $\mathrm{EtOH}, 20 \%$ $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{RT}, 6 \mathrm{~h}$; (d) Pyridine, $\mathrm{Ac}_{2} \mathrm{O}$, RT,40h; (e) NaH , MeI, DMF, rt, $1 \mathrm{~h}, 98 \%$; (f) MeOH ,
$\mathrm{Pd}(\mathrm{OH})_{2}$, reflux, 20h, 94%; (g) DCM, py., $\mathrm{Tf}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (h) HMPA, $\mathrm{NaN}_{3}, \mathrm{rt}, 12 \mathrm{~h}, 94 \%$; (i) DMF, NaN_{3}, rt, $12 \mathrm{~h}, 88 \%$; (j)TFA, EtOH, $\mathrm{H}_{2}, 20 \%, \mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{RT}, 44 \mathrm{~h}$.

Scheme 18. (a)(i) DMF, $\mathrm{NaH}, \mathrm{PMBCl}, 0^{\circ} \mathrm{C}$ to RT $1 \mathrm{~h}, 98 \%$ over two steps; (ii)TFA, EtOH- $\mathrm{H}_{2} \mathrm{O}$, reflux, $2 \mathrm{~h}, 93 \%$; (b)(i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OSCCl}$, DMAP, $\mathrm{MeCN}, 20 \mathrm{~h}$, (ii) $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}, 4 \mathrm{~h}, 96 \%$ over two steps.

Scheme 19: (a) $\mathrm{AcBr}, \mathrm{Ac}_{2} \mathrm{O}, 120^{\circ} \mathrm{C}, 6 \mathrm{~h} 11 \%$; (b) $\mathrm{NaN}_{3}, 10 \%$ aq. DMF, $90^{\circ} \mathrm{C}$ then $\mathrm{Ac}_{2} \mathrm{O} /$ pyridine, 80% (c) $2 \mathrm{M} \mathrm{HCl}, \mathrm{EtOH} 92 \%$ (d) 2,2-dimethoxypropane, p - TsOH , DMF, 30%,(e) $\mathrm{RuO}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, $\mathrm{BnN}(\mathrm{Et})_{3} \mathrm{Cl}, \mathrm{NaIO}_{4}, \mathrm{CHCl}_{3}-\mathrm{H}_{2} \mathrm{O}, 88 \%$; (f) L-selectride, THF, 75% (g) DMF, NaH, MeI , RT, 3h 86% (h)Raney-Ni, H_{2}, $\mathrm{EtOH}, 84 \%$; (i) aq.AcOH 11%; (j)DCM, py., $\mathrm{Tf}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}(\mathrm{k}) \mathrm{DMF}, \mathrm{NaN}_{3}$, rt, 12 h (l) DCM- $\mathrm{H}_{2} \mathrm{O}, \mathrm{DDQ}, \mathrm{RT}, 2.5 \mathrm{~h}, 88 \%$; (m)DMF, $\mathrm{NaH}, \mathrm{MeI}$, rt, 3h (n) $\mathrm{MeOH}, \mathrm{HCl}, 20 \%, \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, (400psi) $55^{\circ} \mathrm{C}, 12 \mathrm{~h}$ (o) Pyridine, DMAP, $\mathrm{AC}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}, 12 \mathrm{~h} 81 \%$ over 3 steps.

Comparison of the overall yields and the number of steps involved in converting myoinositol to some of its derivatives (shown in Schemes $15-19$) via 1,3-acetals and other intermediates is given below for illustration. Yield of $\operatorname{Ins}(1,2,3) \mathrm{P}_{3}$ in the 1,3 -acetal mediated synthesis was $23 \%{ }^{68}$ while the synthesis not mediated by 1,3 -acetal was $12 \% .{ }^{81}$ The overall yield obtained for the conversion of myo-inositol to neo-inositol (1.14) through the intermediacy of a 1,3 -acetal was 68% (six steps), ${ }^{21}$ while the yield not involving 1,3 -acetal was $14-43 \% .{ }^{82,83}$ Racemic valiolamine (1.10) could be
obtained in 8% overall yield (15 steps) from myo-inositol ${ }^{35}$ while the overall yield involving intermediates other than 1,3 -acetals was 0.5% (10 steps). ${ }^{84}$ The aminocyclitol unit of methoxyhygromycin could be obtained in 61% yield (7 steps) from myo-inositol via its 1,3 -acetal; ${ }^{36}$ the yield of the same aminocyclitol was much lower (11%) using other intermediates (four steps). ${ }^{83}$ (See scheme 19). These comparisons clearly illustrate the advantage and economy of using myo-inositol 1,3acetals as early intermediates for the synthesis of cyclitol derivatives.

1.5. Conclusions

Although the chemistry of inositols has been investigated for the past several decades, the use of inositol 1,3 -acetals in synthesis is a fairly recent phenomenon and the synthetic utility of these 1,3 -acetals has not been exploited to the full extent possible. Since many of the inositol 1,3 -acetals can be obtained as single products from myo-inositol, synthetic sequences involving these early intermediates are often high yielding and economical. These 1,3 -acetals being bicyclic and conformationally flexible, reveal unusual and interesting structural aspects, that could be exploited for synthesis. Inositol 1,3-acetals allow convenient access to isomeric inositols and their analogs, natural and unnatural phosphoinositols as well as cyclitol moieties of natural products, hopefully opening up new avenues for the total synthesis of these natural products. The next two chapters of this thesis present detailed investigations on the formation of inositol-1,3-acetals from myo-inositol orthoesters by reductive cleavage with DIBAL-H and the role played by the 1,3 -acetal bridge during nucleophilic addition to inosose derivatives.

1.6. References

1. Ferguson, M. A. J.; Williams, A. F. Annu. Rev. Biochem. 1988, 57, 285-320.
2. Schmittberger, T.; Waldmann, H. Synlett. 1988, 574-584.
3. Hinchliffe, K; Irvine, R. Nature 1997, 390, 123-124.
4. Phosphoinositides: Chemistry, Biochemistry and Biomedical Applications; Bruzik, K. S., Ed.; ACS Symposium Series 718; American Chemical Society: Washington, DC, 1999.
5. Cell Signaling, Hancock, J. T., Oxford University Press, 2005.
6. Zhang, H.; Thompson, J.; Prestwich, G. D. Org. Lett. 2009, 11, 1551-1554.
7. Koumbis, A. E.; Duarte, C. D.; Nicolau, C.; Lehn, J. ChemMedChem 2011, 6, 169-180.
8. Capolicchio, S.; Thakor, D. T.; Linden, A.; Jessen, H. J. Angew. Chem. Int. Ed. 2013, 52, 6912-6916.
9. Di Paolo, G.; De Camilli, P. Nature 2006, 443, 651-657.
10. Walker, J. B. Appl. Environ. Microbiol. 2002, 68, 2404-2410.
11. Busscher, G. F.; Rutjes, F. P. J. T.; van Delft, F. L. Chem. Rev. 2005, 105, 775-791 and references cited therein.
12. Delgado, A. Eur. J. Org. Chem. 2008, 3893-3906.
13. Diaz, L.; Casas, J.; Bujons, J.; Llebaria, A.; Deglado, A. J. Med. Chem. 2011, 54, 2069-2079.
14. Asano, N. J. Enzyme Inhib. 2000, 15, 215-234.
15. Egido-Gabás, M.; Serrano, P.; Casas, J.; Llebaria, A.; Delgado, A. Org. Biomol. Chem. 2005, 3, 1195-1201.
16. Mehta, G.; Ramesh, S. S. Can. J. Chem. 2005, 83, 581-594.
17. Parthasarathy, R.; Eisenberg, F. Biochem. J. 1986, 235, 313-322.
18. Nomenclature committee - IUB, Biochem. J. 1989, 258, 1-2.
19. Sarmah, M. P.; Shashidhar, M. S.; Sureshan, K. M.; Gonnade, R. G.; Bhadbhade, M. M. Tetrahedron 2005, 61, 4437-4446. 20.
20. Patil, M. T.; Krishnaswamy, S.; Sarmah, M. P.;Shashidhar, M. S. Tetrahedron Lett. 2011, 52, 3756-3758.
21. Murali, C.; Gurale, B. P.; Shashidhar, M. S. Eur. J. Org. Chem., 2010, 755764.
22. Pistara, V.; Barili, P. L.; Catelani, G.; Corsaro, A.; D’Andrea, F.; Fisichella, S. Tetrahedron Lett. 2000, 41, 3253-3256.
23. Takahashi, H.; Kittaka, H.; Ikegami, S. J. Org. Chem. 2001, 6, 2705-2716.
24. Stockton, K. P; Greatrex, B. W.; Taylor D. K. J. Org. Chem. 2014, 79, 5088-5096.
25. Rodriguez, J.; Walczak, M. A. Tetrahedron Lett 2016, 57, 3281-3283.
26. Panda, A.; Biswas, R. G.; Pal, S. Tetrahedron Lett, 2016, 57, 3625-3628.
27. Luchetti, G.; Ding, K.; Ornienko, A.; d'Alarcao, M. Synthesis 2008, 31483154
28. Catelani, G.; D'Andrea, F.; Griselli, A.; Guazzelli, L.; Legnani, L.; Toma, L. Tetrahedron Lett. 2008, 49, 4534-4536.
29. Vitelio, C.; Bellomo, A.; Brovett, M.;Seoane, G.; Gonzalez, D. Carbohydr. Res. 2004, 339, 1773-1778.
30. Kowarski, C. R.; Sarel, S. J. Org. Chem. 1973, 38, 117-119.
31. Mehta, G.; Lakshminath, S. Tetrahedron Lett. 2000, 41, 3509-3512;
32. Chola, J.; Masesane I. B. Tetrahedron Lett. 2008, 49, 5680-5682.
33. Tse, B.; Kishi, Y. J. Am. Chem. Soc. 1993, 115, 7892-7893.
34. Chida, N.; Ogawa, S. Chem. Commun. 1997, 807-813.
35. Jagdhane, R. C.; Shashidhar, M. S. Tetrahedron, 2011, 67, 7963-7970.
36. Gurale, B. P. Shashidhar, M. S. and Gonnade, R. G., J. Org. Chem. 2012, 77, 5801-5807 and references cited therein.
37. Zemplen, G.; Csiiros, Z.; Angyal, S. Ber. Dtsch. Chem. Ges. 1937, 70, 1848.
38. Garegg, J.; Hultberg, H.; Oscarson, S. J. Chem. Soc., Perkin Trans. I, 1982, 2395-2397.
39. Stork, G.; Rychnovsky, S. D. J. Am. Chem. Soc. 1987, 109, 1565-1567.
40. Wipf, P.; Tsuchimoto, T.; Takahashi, H. Pure Appl. Chem. 1990, 71, 415-421.
41. Zhang, Z.; Magnusson, G. J. Org. Chem. 1996, 61, 2383-2393.
42. Guiso, M.; Procacoio, C.; Fizzano, M. R.; Piccioni, F. Tetrahedron Lett. 1997, 38, 4291-4294.
43. Ghosh, A. K.; Liu, C. Chem. Commun. 1999, 1743-1744.
44. Honda, T.; Endo, K.; Ono, S. Chem. Pharm. Bull. 2000, 48, 1545-1548.
45. Johann Mulzer Chem. Commun. 2007, 2107-2120.
46. Lin, C.; Hou, C.; Guo, Y.; Cheng, W . Org. Lett. 2016, 18, 5216-5219
47. Martinez-Solorio, D.; Jennings, M. P. J. Org. Chem. 2010, 75, 4095-4104.
48. Garrett, S. W.; Liu, C.; Riley, A. M.; Potter, B. V. L. J. Chem. Soc. Perkin Trans 1, 1998, 1367-1368.
49. Lee, H. W.; Kishi, Y. J. Org. Chem. 1985, 50, 4402-4404.
50. Biomonte, M. A.; Vasella, A. Helv. Chim. Acta. 1998, 81, 688-694.
51. Riley, A. M.; Potter, B. V. L. Tetrahedron Lett. 1998, 39, 6769-6772.
52. Praveen, T.; Shashidhar, M. S. Carbohydr. Res. 2001, 330, 409-411.
53. Bhosekar, G.; Murali, C.; Gonnade, R. G.; Shashidhar, M. S.; Bhadbhade, M. M. Cryst. Growth. Design 2005, 5, 1977-1982.
54. Billington, D. C.; Baker, R.; Kulagowski, J. J.; Mawer, I. M.; Vacca, J. P.; de Solms, S. J.; Huff, J. R. J. Chem. Soc. Perkin Trans. 1 1989, 1423-1429.
55. Devaraj, S.; Shashidhar, M. S.; Dixit, S. S. Tetrahedron 2005, 61, 529-536.
56. Jagdhane, R. C.; Shashidhar, M. S. Eur. J. Org. Chem. 2010, 2945-2953.
57. Sureshan, K. M.; Shashidhar, M. S.; Praveen, T.; Das, T. Chem. Rev. 2003, 103, 4477-4503.
58. Laxmansingh, T. P.; Yuh-Sheng, W.; Shang-Cheng, H. Chem. Commun. 2010, 46, 5524-5526 and references cited therein.
59. Gilbert, I. H.; Holmes, A. B.; Young, R. C. Tetrahedron Lett. 1990, 31, $2633-$ 2634.
60. Šala, M.; Kolar, J.; Strlič, M.; Kočevarb, M. Carbohydr. Res. 2006, 341, 897902.
61. Grove, S. J. A.; Gilbert, I. H.; Holmes, A. B.; Painter, G. F.; Hill, M. L. Chem. Commun. 1997, 1633-1634.
62. Murali, C.; Shashidhar, M. S.; Gopinath, C. S. Tetrahedron 2007, 63, 41494155.
63. Mart, A; Shashidhar, M. S. Tetrahedron 2012, 68, 9769-9776.
64. Swarbrick, J. M.; Cooper, S.; Bultynck, G.; Gaffney, P. R. J. Org. Biomol. Chem. 2009, 7, 1709-1715.
65. Swarbrick, J. M.; Gaffney, P. R. J. J. Org. Chem. 2010, 75, 4376-4386.
66. Gilbert, I. H.; Holmes, A. B.; Pestchanker, M. J.; Young R. C. Carbohrydr. Res. 1992, 234, 117-130.
67. Eisch, J. J.; Rhee, S. G. J. Am. Chem. Soc. 1974, 96, 7276-7284.
68. Conway, S. J.; Gardiner, J.; Grove, S. J. A.; Johns, M. K.; Lim, Z.-Y.; Painter, G. F.; Robinson, D. E. J. E.; Schieber, C.; Thuring, J. W.; Wong, L. S. M.; Yin, M.-X.; Burgess, A. W.; Catimel, B.; Hawkins, P. T.; Ktistakis, N. T.;

Stephens, L. R.; Holmes, A. B. Org. Biomol. Chem. 2010, 8, 66-74 and references cited therein.
69. Painter, G. F.; Grove S. J. A.; Gilbert, I. H.; Holmes, A. B.; Raithby, P. R.; Hill, M. L.; Hawkins, P. T.; Stephens, L. R. J. Chem. Soc., Perkin Trans. 1 1999, 923-935.
70. Ballereau, S.; Poirier, S. N.; Guillemette, G.; Spiess, B.; Schlewer, G. J. Chem. Soc., Perkin Trans. 1 1998, 1859-1864.
71. Moris, M. A.; Caron, A. Z.; Guillemette, G.; Rognan, D.; Schmitt, M.; Schlewer, G. J. Med. Chem. 2005, 48, 1251-1255.
72. Gurale, B. P.; Krishnaswamy, S.; Vanka, K.; Shashidhar, M. S. Tetrahedron 2011, 67, 7280-7288.
73. Yeh, S. M.; Lee, G. H.; Wang, Y.; Luh, T. Y. J. Org. Chem. 1997, 62, 83158318.
74. Gurale, B. P.; Kumar V.; Shashidhar, M. S. Carbohydr. Res. 2012, 351, $26-$ 34.
75. Song, F.; Zhang, J.; Zhao, Y.; Chen, W.; Lib, L.; Xi, Z. Org. Biomol. Chem. 2012, 10, 3642-3654.
76. Schmitt, L.; Spiess, B.; Schlewer, G. Tetrahedron Lett. 1998, 39, 4817-4820.
77. Hager, A.; Wu, M.; Wang, H.; Brown, Jr. N. W.; Shears, S. B.; Veiga, N.; D. Fiedler, D. Chem. Eur. J. 2016, 22, 12406 - 12414.
78. Conway, S. J.; Miller, G. J. Nat. Prod. Rep. 2007, 24, 687-707.
79. Best, M. D.; Zhang, H.; Prestwich, G. D. Nat. Prod. Rep. 2010, 27, 14031430.
80. Jessen, H. J.; Capolicchio, S.; Pavlovic, I.; Thakor, D. T. Synlett 2014, 14941498.
81. Spiers, I.D.; Freeman, S.; Poyner, D. R.; Schwalbe, C. H. Tetrahedron Lett., 1995, 36 2125-2128.
82. Riley, A. M.; Jenkins, D. J.; Potter, B. V. L. Carbohydr. Res. 1998, 314, 277281.
83. Chida, N.; Nakazawa, N.; Ohtsuka, M.; Suzuki, M.; Ogawa, S. Chem. Lett. 1990, 423-426.
84. Ogawa, S.; Ohishi, Y.; Asada, M.; Tomoda, A.; Takahashi, A.; Ooko, Y.; Mori, M.; Itoh, M.; Korenaga, T. Org. Biomol. Chem. 2004, 2, 884-889.

2.1. Introduction

myo-Inositol, its derivatives and analogs frequently figure in the contemporary literature of chemistry and biology. Most of these reports pertain directly or indirectly, towards unraveling the intricacies of the myo-inositol cycle in eukaryotic cells. Impairment of the myo-inositol cycle has been implicated in the cause of several diseases including sleeping sickness, cancer, diabetes and manic depression. ${ }^{1-9}$ Understandably, these developments in biology and medicine led to optimism about the pharmacological intervention of the myo-inositol cycle for the treatment of several diseases. Consequently, several synthetic methodologies and techniques to generate natural inositol derivatives and their analogs were developed, perhaps the most common being the use of abundantly available myo-inositol as the starting material. ${ }^{10-}$ ${ }^{14}$ Since myo-inositol has six secondary hydroxyl groups which have subtle differences in reactivity, regioselective functionalization of one of these hydroxyl groups is an arduous task. Hence most early synthetic sequences starting from myo-inositol resorted to initial (and transient) protection of the myo-inositol hydroxyl groups as the corresponding 1,2 -acetals (Scheme 1, 2.1, 2.2, 2.3). This step invariably generated several regio-isomers, which had to be separated before further synthetic transformations.

Scheme 1. Protection of myo-inositol hydroxyl groups as 1,2-acetals and orthoesters.
Subsequently, methods for the simultaneous protection of three myo-inositol hydroxyl groups as the corresponding orthoester were developed. These orthoester derivatives are obtained as single products and hence laborious separation procedures are circumvented. Reductive cleavage of myo-inositol orthoesters generates 1,3-acetals
and these appear to have potential to be key intermediates for the synthesis of inositol derivatives (Chapter 1). ${ }^{15}$ Although, the reductive cleavage of inositol orthoesters can give rise to two isomeric 1,3 -acetals, conditions for the selective cleavage of certain myo-inositol orthoesters are reported. ${ }^{16}$ Incidentally, in contrast to 1,2 -acetals, which have rigid molecular frames, the 1,3 -acetals are relatively flexible and (in principle) can exist in different conformations. ${ }^{17}$ Hence they are interesting from the point of view of synthesis as well as molecular structure. Substitution of the orthoformate hydrogen with methyl and phenyl groups respectively generates the corresponding orthoacetate and orthobenzoate derivatives. Reductive cleavage of an orthoformate, orthoacetate and orthobenzoate respectively generate the corresponding methylidene, ethylidene and benzylidene derivatives (Scheme 1, 2.5/2.6 R ${ }^{1}=\mathrm{H}$, Methyl, Phenyl respectively). ${ }^{16,18}$ These acetals have varying hydrolytic stabilities (methylidene > ethylidene > benzylidene) and (unlike the methylidene and ethylidene acetals) the benzylidene acetal on further reduction generates the corresponding benzyl ether, which is a common protecting group for alcohols. The present chapter delineates our attempts to understand the regioselectivity of the reductive cleavage of myo-inositol orthoesters with DIBAL-H due to variation in the apical orthoester substituent. Mechanism and selectivity of the cleavage of orthoesters by DIBAL-H have been investigated. ${ }^{13,14,16}$

2.2. Results and discussion

Although myo-inositol orthoesters can be cleaved with metal-organic reagents ${ }^{16,18}$ the most convenient and frequently encountered cleaving reagent is DIBAL-H. ${ }^{18}$ The mechanism of the cleavage with DIBAL-H, to explain the composition of the products formed has been discussed in detail in Chapter 1. As already mentioned the substitution on the orthoester may hold bearing on the regioselectivity. (See Chapter 1, Scheme 4 and Scheme 5). This implies that the symmetry (or rather the lack of it) with regards to the O-substitution in myo-inositol orthoesters does not account for the ratio of the products formed. Hence it was speculated that the orthoester moiety might be playing a determining factor for the observed selectivity. However, the selectivity data in the literature reports on the DIBAL-H mediated cleavage of in myo-inositol
orthoestrs preclude any conclusion since the experimental conditions and the associated data are neither uniform nor consistent.

Hence we prepared myo-inositol orthoformate, orthobenzoate and orthoaceate derivatives carrying the same ethers at $\mathrm{C} 2, \mathrm{C} 4$, and C 6 -positions on the inositol ring, and subjected them to cleavage with DIBAL-H, under comparable conditions, and the results are shown in Scheme 2.

92\% $2.13 \mathrm{R}=\mathrm{H}$ 44\% $2.14 \mathrm{R}=\mathrm{CH}_{3}$ 45\% $2.15 \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$

$2.16 \mathrm{R}=\mathrm{H}$
31\% $2.17 \mathrm{R}=\mathrm{CH}_{3}$
$24 \% 2.18 \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$

Scheme 2. a) DMF, LiH, AllBr, $24 \mathrm{~h}, 0^{\circ} \mathrm{C}$ to RT , 69-77 \% b) NaH, MeI, DMF, $2 \mathrm{~h}, 0^{\circ} \mathrm{C}, 85-95 \% \mathrm{c}$) DIBAL-H (2.5eq), dry DCM, $2.5 \mathrm{~h}, 0^{\circ} \mathrm{C}$ to RT.

The triols 1.66-1.68 were allylated selectively at the $4-O$ - and $6-O$-positions, using allyl bromide and lithium hydride. We had shown earlier that this reaction is highly selective due to chelation of the C4- and C6-oxygen atoms with lithium ions. ${ }^{19}$ The C2- hydroxyl group was then methylated to obtain the corresponding methyl ethers 2.10-2.12. All the three orthoesters were subjected to reductive cleavage by DIBAL-H under comparable conditions. The results of cleavage of the three orthoesters 2.102.12 (Scheme 2) clearly show that the steric bulk of the substitutent at the apical orthoester carbon contributes significantly to the observed regioselectivity of the reductive cleavage reaction. The selectivity towards formation of the 1,3-acetals 2.13-2.15 decreases on going from orthoformate to orthobenzoate to orthoacetate. We could isolate the 1,3-methylidene acetal $\mathbf{2 . 1 3}$ in 92% yield as a single product, on
reduction of the orthofomate $\mathbf{2 . 1 0}$ and hence we presume that the corresponding 1,5methylidene acetal 2.16 was either not formed or the yield was low to be isolated. Cleavage of the orthobenzoate $\mathbf{2 . 1 3}$ yielded the two isomeric benzylidene acetals $\mathbf{2 . 1 5}$ and $\mathbf{2 . 1 8}$ in the ratio 1.9:1. The structures of the isomeric products were established by the single crystal X-ray diffraction analysis of the C5-alcohol 2.15 and the p nitrobenzoate ester (2.19) of the C3-alcohol 2.18. The ratio of the 1,3 - to 1,5 -acetals on reductive cleavage of the orthoacetate $\mathbf{2 . 1 1}$ was $1.4: 1$. Hence the selectivity towards the formation of the 1,3 -acetal on cleavage of myo-inositol orthoesters with DIBAL-H reduces as the bulk of the substituent at the apical orthoester carbon increases $(\mathrm{H}>\mathrm{Ph}>\mathrm{Me})$. It is pertinent to note that though the phenyl ring might appear larger compared to a methyl group, by virtue of its planarity, phenyl ring could offer less steric hindrance (compared to the non-planar methyl group) to the incoming reducing agent.

It is apposite to mention that although the isomeric 1,3-benzylidene acetals $\mathbf{2 . 1 5}$ and $\mathbf{2 . 1 8}$ could be separated establishing the structure of $\mathbf{2 . 1 8}$ took some effort. The 1,3acetal $\mathbf{2 . 1 5}$ was stable and also afforded good crystals suitable for single crystal X-ray diffraction studies, which unequivocally established its structure [Figure 1(a)]. The 1,5-benzylidene acetal $\mathbf{2 . 1 8}$ on the other hand was prone to hydrolysis (see below) and failed to crystallize. Hence it was converted to the corresponding p-nitrobenzoate $\mathbf{2 . 1 9}$ (Scheme 3) which could be crystallized and structure determined by single crystal Xray diffraction experiments. [Figure 1(b)]

Figure 1. ORTEP of (a) $\mathbf{2 . 1 5}$ (b) 2.19. Thermal ellipsoids are drawn at 50% probability level. Hydrogen atoms are depicted as small spheres of arbitrary radii.

A CDCl_{3} solution of $\mathbf{2 . 1 9}$ rapidly hydrolysed (perhaps due to the presence of traces of acid in CDCl_{3}) to yield the corresponding diol and benzladehyde (see Appendix for NMR spectrum). However, a good NMR spectrum could be obtained by recording the spectrum of a freshly prepared solution of 2.19.

Scheme 3. a) Pyridine, p-nitrobenzoyl chloride, DMAP, $34 \mathrm{~h}, 0^{\circ} \mathrm{C}$ to RT, 77%; (b) CDCl_{3}
The detailed mechanism explaining the formation of $\mathbf{2 . 1 3}$ to $\mathbf{2 . 1 8}$ is shown in Scheme 4.

We carried out DFT calculations to estimate the relative stability of the intermediate complexes (2.22-2.24 and 2.31-2.33) to gain insight into the cause of observed selectivity during the cleavage of myo-inositol orthoesters (Scheme 4 and Figure 2).

Scheme 4. Plausible mechanism for the formation of 1,3- and 1,5-acetals of myo-inositol by reductive cleavage of the corresponding orthoester.

The results of the DFT calculations suggested that the difference in energy between the regioisomeric DIBAL-H - orthoester complexes is in the order orthoformate (1.5 $\mathrm{Kcal} / \mathrm{mol}$) < orthobenzoate ($2.1 \mathrm{Kcal} / \mathrm{mol}$) < orthoacetate ($2.6 \mathrm{Kcal} / \mathrm{mol}$). In each of these pairs, the DIBAL-H complex where the C5-oxygen atom is involved is relatively more stable than the complex where the C 3 (or C 1)-oxygen atom is involved. This could explain the predominant cleavage of the C5-O bond in all the three orthoesters leading to the formation of the corresponding 1,3-acetals in higher yields. These differences in energy values also imply that the ease of inter-conversion between the two isomeric complexes is in the order orthoformate > orthobenzoate > orthoacetate. These are in the increasing order of the steric bulk of the substituent at the apical carbon of the orthoester moiety. These results taken together with the experimentally observed ratio of the two cleavage (C 3 and C 5 of the inositol ring) products appear to suggest that the rate of formation of C5 cleavage products (2.132.15) is higher than the rate of formation of C3 cleavage products (2.16-2.18).

Figure 2. The optimized geometries for the intermediate DIBAL-H complexes with myo-inositol orthoesters that lead to the formation of 1,3 - and 1,5 -acetals. The energy difference $\Delta \mathrm{E}$ represents the relative stability of the isomeric complexes.

Hence observed selectivity for the cleavage of the orthoformate is highest, while that of the orthoacetate is lowest and the orthobenzoate is between these two extremes. In other words, for the orthoacetate, since the difference in energy between the two intermediates is higher, the rate of inter- convertibility is much less, and each intermediate perhaps has enough time to form the respective cleavage product, giving rise to the almost equitable mixture. In contrast, for the orthoformate, since the
difference in energy between the two intermediates is lower, the rate of interconvertibility is much higher, and if one DIBAL-H complex (2.22) gets reduced faster than the other (2.31), the reductive cleavage can result in very high regio-selectivity (Scheme 4). The bulk of the phenyl ring (owing to its planarity) being intermediate between that of H and Me , the observed selectivity for the reductive cleavage of the orthobenzoate is between that of the orthoformate and the orthoacetate.

It is pertinent to note at this point that in the case of the orthobenzoate and orthoacetate derivatives, there are four possible products that may be formed (Chart 1, two pairs of enantiomers - 2.40, 2.41 and 2.42, 2.43).

2.40

2.41

2.42

2.43

$$
\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} / \mathrm{CH}_{3}
$$

Chart 1: The possible diastereomers formed by the cleavage of the orthoester.

The existence of diastereomers was suggested by the fact that in the NMR spectra of 2.17 and 2.18 broadening of the signals was observed (see Appendix). However we were not able to estimate the relative ratios or isolate the diastereomers formed. This anyway does not have bearing on the conclusions of this chapter.

2.2a. DFT Analysis of miscellaneous compounds

Since we had also observed differences in the cleavage pattern of myo-inositol orthoformate depending on the O-alkyl groups at 2-, 4- and 6-positions we carried out DFT calculations for the cleavage of the trimethyl ether $\mathbf{1 . 1 3 6}$ and tribenzyl ether $\mathbf{1 . 7 6}$ with DIBAL-H (Scheme 5, Figure 3).

Scheme 5. The reduction of $\mathbf{1 . 1 3 6}$ and $\mathbf{1 . 7 6}$ with DIBAL-H

Figure 3. The optimized geometries for the intermediate DIBAL-H complexes with myo-inositol $\mathbf{1 . 1 3 6}$ and $\mathbf{1 . 7 6}$ orthoesters The energy difference ΔE represents the relative stability of the isomeric complexes.

Results of these calculations substantiate that the observed selectivity in the orthoester cleavage could also depend on the substituent at the C2, C4 and C6-hydroxyl groups, although they are far removed from the site of DIBAL-H cleavage.

Following in the same vein, we were curious to see whether the Grignard reduction of the orthoester could also be rationalized on the basis of DFT analysis. As mentioned earlier in Chapter 1 (Section 1.2c), the orientation of the C2-methoxyl group played a decisive role during the reaction of the orthoester $\mathbf{1 . 1 4 3}$ with Grignard reagents.

Scheme 6. (a) MeMgI in diethylether, benzene, RT to reflux, 16 h .
There are three possible chelates that could be involved during the reaction of inositol orthoformate with Grignard reagents (reaction of $\mathbf{1 . 7 6}$ and $\mathbf{1 . 1 3 6}$ with methylmagnesium bromide is shown in scheme 7 as an example): (a) between the C3 and C5 oxygens ($\mathbf{2 . 5 0}$ and $\mathbf{2 . 5 1}$); (b) between the C1 and C3 oxygens ($\mathbf{2 . 5 4}$ and $\mathbf{2 . 5 5}$) and (c) between the C 1 and C 2 oxygens ($\mathbf{2 . 5 6}$ and 2.57). During geometrical optimization we observed that the chelates $\mathbf{2 . 5 4}$ and $\mathbf{2 . 5 5}$ inherently rearranged to $\mathbf{2 . 5 6}$ and 2.57 suggesting that $\mathbf{2 . 5 4}$ and 2.55 were not energetically favored (and hence were probably not involved in the reaction). From the energy differences (Figure 4) it was amply clear that the intermediates $\mathbf{2 . 5 6}$ and $\mathbf{2 . 5 7}$ were decidedly more stable than 2.50 and 2.51.

Scheme 7. The reduction of $\mathbf{1 . 1 3 6}$ and $\mathbf{1 . 7 6}$ with Grignard reagent MeMgBr .

Figure 4. The optimized geometries for the intermediate MeMgBr . complexes with myo-inositol $\mathbf{1 . 1 3 6}$ and $\mathbf{1 . 7 6}$ orthoesters. The energy difference $\Delta \mathrm{E}$ represents the relative stability of the isomeric complexes.

Hence results of DFT calculations are in good agreement with the results obtained by experiment. This reinforces the credibility of DFT calculations and the associated interpretation of the experimental results of the reductive cleavage of inositol orthoesters presented in this chapter.

2.3. Conclusion

From the experimental observations as well DFT analysis it was concluded that the orthoester group influences the regioselctivity of DIBAL- H reduction. As the bulk of the orthoesester group from increases H to phenyl to methyl, the selectivity decreases. The effect of the substituting groups was also discussed. The DFT analysis of the reaction of the orthoesters with the Grignard reaction also highlight the involvement of the C2- hydroxyl group in influencing the regio-selectivity. Hence it may not be easy to arrive at experimental conditions to attain selectivity during the cleavage of myo-inositol orthoesters with DIBAL-H, so as to obtain either 1,3-acetal or 1.5-acetal exclusively.

2.4. Experimental

2.4.1. X-ray Data (Collection, Structure Solution and Refinement)

Single crystal X-ray studies were carried out on a Bruker SMART APEX single crystal X-ray CCD diffractometer with graphite-monochromatized (Mo $\mathrm{K}_{\alpha}=$ $0.71073 \AA$) radiation. The X-ray generator was operated at 50 kV and 30 mA . Diffraction data were collected with ω scan width of 0.3° at different settings of $\varphi\left(0^{\circ}\right.$, $90^{\circ}, 180^{\circ}$ and 270°) keeping the sample-to-detector distance fixed at 6.145 cm and the detector position (2θ) fixed at -28°. The X-ray data acquisition was monitored by SMART program (Bruker, 2003). ${ }^{20}$ All the data were corrected for Lorentzian and polarization effects using SAINT programs (Bruker, 2003). ${ }^{20}$ A semi-empirical absorption correction (multiscan) based on symmetry equivalent reflections was applied by using the SADABS program (Bruker, 2003). ${ }^{20}$ Lattice parameters were determined from least squares analysis of all reflections. The structure was solved by direct method and refined by full matrix least-squares, based on F^{2}, using SHELX-97 software package. ${ }^{21}$ Molecular diagrams were generated using SHELXTL and ORTEP-32. ${ }^{22}$

2.4.2. Computational details

All the density functional theory calculations were carried out using the Turbomole suite of programs. ${ }^{23}$ The DFT Geometry optimizations were performed using the B-P 86 functional. ${ }^{24}$ The electronic configuration of the atoms was described by a triplezeta basis set augmented by a polarization function (TURBOMOLE basis set TZVP) ${ }^{25}$ along with the multipole accelerated resolution of identity (marij) ${ }^{26}$ approximations were employed for an accurate and efficient treatment of the electronic Coulomb term in the density functional calculations. Solvent effects have been incorporated using the COSMO model, 44 with toluene $(\text { epsilon }=2.38)^{27}$ as the solvent.

2.4.3. General Experimental Methods

All the solvents were purified according to the literature procedure ${ }^{28}$ before use. All air or moisture sensitive reactions were carried out in an atmosphere of argon or nitrogen. Dry DMF and dry THF were used as solvents in all the experiments involving metal hydrides. Sodium hydride used in experiments was 60% suspension in mineral oil. Thin layer chromatography was performed on E. Merck pre-coated 60 F_{254} plates and the spots were rendered visible either by shining UV light or by
charring the plates with chromic acid solution. Column chromatographic separations (silica gel, 100-200 mesh) and flash column chromatographic separations (silica gel, 230-400 mesh) were carried out with light petroleum-ethyl acetate mixtures as eluent. 'Usual work-up' implies washing of the organic layer with water followed by brine, drying over anhydrous sodium sulfate, and removal of the solvent under reduced pressure using a rotary evaporator. IR spectra were recorded (in CHCl_{3} solution, or as a Nujol mull or as a neat film) with a Shimadzu FTIR-8400 or PerkinElmer spectrophotometer. NMR spectra (200 MHz for ${ }^{1} \mathrm{H}$ and 50.3 MHz for ${ }^{13} \mathrm{C}$) were recorded with a Bruker ACF 200 spectrometer unless otherwise mentioned. Chemical shifts (δ, ppm) reported are referred to internal tetramethylsilane (0 ppm) for ${ }^{1} \mathrm{H}$ NMR and $\mathrm{CDCl}_{3}(77 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$ NMR. Microanalytical data were obtained using a Carlo-Erba CHNS-0 EA 1108 elemental analyzer. HRMS data was collected on Thermo Fischer Scientific Q- Exactive. All the melting points reported are uncorrected and were recorded using a Büchi B-540 electro-thermal melting point apparatus. Yields refer to chromatographically and spectroscopically pure compounds. All the asymmetrically substituted myo-inositol derivatives reported are racemic; however only one of the enantiomers is shown in all the schemes for convenience and clarity. Compounds previously reported in the literature were characterized by comparison of their melting points and/or ${ }^{1} \mathrm{H}$ NMR spectra with the reported data.

4, 6-Di-O-allyl-myo-inositol-1, 3, 5-orthoacetate (2.8): To a solution of orthoacetate triol $1.67(0.518 \mathrm{~g}, 2.539 \mathrm{mmol})$, in dry DMF (30 mL), lithium hydride $(0.121 \mathrm{~g}$, 15.234 mmol) was added at $0^{\circ} \mathrm{C}$ and stirred subsequently for 1 hour at ambient temperature. To the above solution (thick slurry) allyl bromide ($0.231 \mathrm{~mL}, 2.64$ mmol) was added and stirred for 12 h . Ice was added to the reaction mixture and stirred for 2 h , solvents were removed under reduced pressure and the residue worked up with ethyl acetate and dried over anhydrous sodium sulphate to obtain $\mathbf{2 . 8}$ as gum. The crude product was purified by column chromatography (eluent: 30% ethyl acetate in light petroleum, 100-200 mesh) to afford $2.8(0.400 \mathrm{~g}, 69 \%)$ as a gum. TLC $R f=0.3$ (in 25\% ethyl acetate/light petroleum.)
Data for 2.8: IR (Chloroform): v 3550-3400 $\mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $5.81-5.91$ (m, 2 H), 5.28 (dd, $J=17.36,1.72 \mathrm{~Hz}, 2 \mathrm{H}$), $5.16-5.20$ (m, 2 H), 4.31 4.35 (m, 1 H), 4.18-4.25 (m, 4 H), 4.00-4.12 (m, 5 H), 2.96 (d, $J=11.83 \mathrm{~Hz}, 1 \mathrm{H}$,
$\mathrm{OH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), $1.43(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=133.8$ $\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 117.2\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 108.9\left(\mathrm{CH}_{3} \mathrm{CO}_{3}\right), 73.3$ (Ins C), $73.0($ Ins C$), 70.3\left(\mathrm{CH}_{2}\right.$ O), 67.6 (Ins C), $60.2\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; HRMS: m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{Na}^{+}$: $307.1152\left[M+\mathrm{Na}^{+}\right]$; found: 307.1157.
4,6-Di- \boldsymbol{O}-allyl-myo-inositol-1,3,5-orthobenzoate (2.9): To a solution of orthobenzoate triol 1.68 ($7 \mathrm{~g}, 26.3 \mathrm{mmol}$) in dry DMF (350 mL), lithium hydride ($0.836 \mathrm{~g}, 105 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and stirred subsequently for 1 hour at ambient temperature. To the above solution (thick slurry) allyl bromide ($5 \mathrm{~mL}, 58 \mathrm{mmol}$) was added and stirred for 12 h . Ice was added to the reaction mixture and stirred for 2 h , solvents were removed under reduced pressure and the residue worked up with ethyl acetate and dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure to obtain the crude to obtain 2.9 as gum. The crude product was purified by column chromatography (eluent: 18% ethyl acetate in light petroleum, silica 100-200 mesh) to afford 2.9 ($7 \mathrm{~g}, 77 \%$ yield) as a gum. TLC $R f=0.3$ (in 25% ethyl acetate/light petroleum.)
Data for 2.9: IR (Chloroform): v $3400 \mathrm{~cm}^{-1}{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.59$ 7.67 (m, 2 H), $7.31-7.43$ (m, 3 H), 5.91 (m, J=17.09, 10.53, 5.42, $5.42 \mathrm{~Hz}, 2 \mathrm{H}$), 5.32 (m, $J=17.24,1.58 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{~m}, J=10.38,1.32 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{~m}, J=3.32$, $1.72 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.43(\mathrm{~m}, 4 \mathrm{H}), 4.07-4.19(\mathrm{~m}, 5 \mathrm{H}), 3.08(\mathrm{~d}, J=11.90 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable) $\mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=136.67(\mathrm{PhCO} 3)$, $133.82\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 129.4\left(\mathrm{C}_{\text {arom }}\right), 127.8\left(\mathrm{C}_{\text {arom }}\right), 124.9\left(\mathrm{C}_{\text {arom }}\right), 117.3\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 74.1$ (Ins C), 73.15 (Ins C), $70.5\left(\mathrm{CH}_{2}-\mathrm{O}\right), 68.4$ (Ins C), 60.4 (Ins C) ppm; HRMS: m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{6} \mathrm{Na}^{+}$: 347.1489 [$M+\mathrm{Na}^{+}$]; found: 347.1485.

4, 6-Di- \boldsymbol{O}-allyl-2-methyl-myo-inositol-1,3,5-orthoacetate (2.11): To a solution of the alcohol $2.8(0.396 \mathrm{~g}, 1.4 \mathrm{mmol})$, in dry DMF (21 mL), sodium hydride (0.083 g , 2.1 mmol), was added and stirred for 10 min . Methyl iodide ($0.13 \mathrm{~mL}, 2.1 \mathrm{mmol}$) was then added drop-wise and the reaction mixture was stirred for 3 h ambient temperature. Excess of sodium hydride was quenched by the addition of ice-cold water. The solvent was evaporated under reduced pressure and the residue was worked up with ethyl acetate and dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure to afford the crude ether $\mathbf{2 . 1 1}$ which was then purified by column chromatography (eluent 25% ethyl acetate/light petroleum , silica 100-200 mesh) to obtain 2.11 as a gum ($0.4 \mathrm{~g}, 96 \%$) purified by column TLC $R f=$ 0.35 (in 25\% ethyl acetate/light petroleum).

Data for 2.11: IR (Chloroform): v 3600-3200 cm^{-1}; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 5.75-6.03 (m, 2 H), 5.13-5.44 (m, 4 H), $4.35(\mathrm{~d}, J=3.03 \mathrm{~Hz}, 3 \mathrm{H}), 4.20-4.30(\mathrm{~m}, 2$ H), 3.98-4.20(m, 4 H$), 3.67(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta=134.2\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 117.6\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 109.0\left(\mathrm{CH}_{3} \mathrm{CO}_{3}\right)$, 73.5 (Ins C), $70.7\left(\mathrm{OCH}_{2}-\mathrm{CH}=\right), 70.6$ (Ins C), 68.5 (Ins C), 68.1 (Ins C), $56.9\left(\mathrm{CH}_{3} \mathrm{CO} 3\right), 24.3$ $\left(\mathrm{OCH}_{3}\right) \mathrm{ppm}$; HRMS: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Na}^{+}$: $321.1309\left[M+\mathrm{Na}^{+}\right]$; found: 321.1302 .

4,6-Di- \boldsymbol{O}-allyl-2-methyl-myo-inositol-1, 3,5-orthobenzoate (2.12): To a solution of the alcohol 2.9 ($8.341 \mathrm{~g}, 24.1 \mathrm{mmol}$) in dry DMF (100 mL), sodium hydride (1.444 g , 36.12 mmol) was added and stirred for 10 min . Methyl iodide $(2.251 \mathrm{~mL}, 36.12$ mmol) was then added drop-wise and the reaction mixture was stirred for 3 h at ambient temperature. Excess of sodium hydride was quenched by the addition of icecold water. The solvent was evaporated under reduced pressure and the residue was worked up with ethyl acetate and dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure to afford the crude ether $\mathbf{2 . 1 2}$ which was then purified by column chromatography (eluent 20% ethyl acetate in light petroleum, silica 100-200 mesh) as a colorless solid ($8.6 \mathrm{~g}, 84 \%$). TLC $R f=0.3$ (in 15% ethyl acetate/light petroleum).

Data for 2.12: M.p. $59-63{ }^{\circ} \mathrm{C}$. (Crystallized from ethyl acetate-light petroluem); IR (Chloroform): $v 3405 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.59-7.70(\mathrm{~m}, 2 \mathrm{H})$, 7.28-7.39 (m, 3H), 5.82-6.04 (m, 2H), 5.18-5.40 (m, 4 H), 4.51-4.59 (m, 3H), 4.38-4.47(m, 2 H), 4.04-4.25 (m, 4 H), 3.79 (s, 1 H), $3.54(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=137.1\left(\mathrm{C}_{\text {arom }}\right), 134.1(\mathrm{CH}), 129.3\left(\mathrm{C}_{\text {arom }}\right), 127.8\left(\mathrm{C}_{\text {arom }}\right), 125.3$ $\left(\mathrm{C}_{\text {arom }}\right), 117.6\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 107.8\left(\mathrm{PhCO}_{3}\right), 73.6\left(\right.$ Ins C), $71.0\left(\right.$ Ins C), $70.84\left(\mathrm{OCH}_{2}{ }^{-}\right.$ $\mathrm{CH}=$), 68.8 (Ins C), 68.5 (Ins C), $56.8\left(\mathrm{CH}_{3}\right)$ ppm; HRMS: m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}^{+}: 383.1465\left[M+\mathrm{Na}^{+}\right]$; found: 383.1458 .

Reductive cleavage of the orthoformate 2.10 with DIBAL-H: 1 M solution of DIBAL-H in toluene ($9.5 \mathrm{~mL}, 9.5 \mathrm{mmol}$) was added drop-wise over a period of 15 min to a solution of the orthoformate $\mathbf{2 . 1 0}(1.071 \mathrm{~g}, 3.6 \mathrm{mmol})$ in dry dichloromethane $(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and then stirred at room temperature for 2.5 h . The reaction mixture was poured into a stirred solution of sodium potassium tartrate (35 mL) and saturated solution of ammonium chloride (28.5 mL) and stirred for 12 h . The mixture was extracted with ethyl acetate, washed with brine and dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure to obtain the crude
alcohol. $2.13(0.916 \mathrm{~g}, 85 \%)$ as a gum which was then purified by column chromatography (eluent 20\% ethyl acetate in light petroleum, silica 100-200 mesh) to obtain 2.13 as a gum.
Data for 2.13: IR (Chloroform): $v 3600-3200 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 5.73-6.11 (m, 2 H), 5.11-5.42 (m, 4 H), 4.85-5.01 (m, 2 H), 4.44-4.57 (m, 1 H), 4.06-4.36 (m, 6 H), 3.75-4.04 (m, 3 H), 3.53 ($\mathrm{s}, 3 \mathrm{H}$), $3.20\left(\mathrm{~d}, J=6.69 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable) ppm; ${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=134.23\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 117.44$ $\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 85.36\left(\mathrm{CH}_{2}\right), 80.82$ (Ins C), 71.93 (Ins C), $71.07\left(\mathrm{CH}_{2}-\mathrm{CH}=\right.$), 70.20 (Ins C), $56.04(4 \mathrm{C}, \mathrm{s})$ ppm; HRMS: m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Na}^{+}: 309.1309\left[M+\mathrm{Na}^{+}\right]$; found: 309.1313.

Reductive cleavage of the orthoacetate 2.11 with DIBAL-H:1 M solution of DIBAL-H in toluene ($1.9 \mathrm{~mL}, 1.9 \mathrm{mmol}$), was added drop-wise over a period of 15 min to a solution of $\mathbf{2 . 1 1}(0.232 \mathrm{~g}, 0.77 \mathrm{mmol})$, in dry dichloromethane (6 mL) at 0 ${ }^{\circ} \mathrm{C}$ and then stirred at room temperature for 2.5 h . Saturated solutions of sodium potassium tartrate $(7.32 \mathrm{~mL})$ and ammonium chloride (6 mL) to obtain a mixture of 2.14 and 2.17 which were separated using column chromatography (eluent 20-30\% ethyl acetate in light petroleum, silica $230-400$ mesh) to obtain $2.14(0.051 \mathrm{~g}, 44 \%$; TLC $R f=0.3$ (in 25% ethyl acetate/light petroleum) and 2.17 ($0.036 \mathrm{~g}, 31 \%$; TLC $R f=0.4$ in 25% ethyl acetate/light petroleum) in the ratio of 1.4:1. (0.116 g , starting material recovered.)

Data for 2.14: IR (Chloroform): v $3500-3200 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 6.09-5.80 (m, 2 H), 5.42-5.17 (m, 4 H), $4.95(\mathrm{~d}, ~ J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.05(\mathrm{~m}, 6$ H), 3.82-3.61 (m, 3 H), 3.48 (s, 3 H), $3.24(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.55(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1$ H), $1.34(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (126 MHz ,CHLOROFORM-d) $\delta=$ $134.0\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 118.0\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 89.8\left(\mathrm{CH}_{3} \mathrm{CH}\right), 81.5($ Ins C), 73.9 (Ins C), 72.6 (Ins C), $70.7\left(\mathrm{OCH}_{2}-\mathrm{CH}=\right), 70.2\left(\right.$ Ins C), $56.9\left(\mathrm{OCH}_{3}\right), 21.2\left(\mathrm{CH}_{3} \mathrm{CO}\right)$ ppm; HRMS: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}^{+}$: $323.1465\left[M+\mathrm{Na}^{+}\right]$; found: 323.1468 .
Data for 2.17: IR (Chloroform): v 3500-3200 $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 6.02-5.70 (m, 2 H), 5.49 (q, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.39-5.13(\mathrm{~m}, 4 \mathrm{H}), 4.74-3.61$ (m, 10 H), $3.52(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.36-1.11(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz} \quad, \mathrm{CDCl}_{3}\right) \quad \delta=134.5\left(\mathrm{CH}_{2}=\mathrm{CH}\right), \quad 134.0\left(\mathrm{CH}_{2}=\mathrm{CH}\right), \quad 117.8\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, $117.3\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 90.16\left(\mathrm{CH}_{3} \mathrm{CH}\right)$, 81.6(Ins C), 74.4(Ins C), 73.0(Ins C), $71.8\left(\mathrm{OCH}_{2}{ }^{-}\right.$ $\mathrm{CH}=), 70.6\left(\mathrm{OCH}_{2}-\mathrm{CH}=\right), 68.8($ Ins C$)$, $67.8($ Ins C$)$, $56.4\left(\mathrm{OCH}_{3}\right), 21.69\left(\mathrm{CH}_{3} \mathrm{CO}_{3}\right)$ ppm.; HRMS: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}^{+}: 323.1465\left[M+\mathrm{Na}^{+}\right]$; found: 323.1465 .

Reductive cleavage of the orthobenzoate 2.12 with DIBAL-H: 1 M solution of DIBAL-H in toluene (7.45 mL ,), was added drop-wise over a period of 15 min to a solution of $\mathbf{2 . 1 2}(1 \mathrm{~g}, 2.98 \mathrm{mmol})$, in dry dichloromethane $(24 \mathrm{~mL})$ at $-5^{\circ} \mathrm{C}$ and then stirred for 3 h 30 min at room temperature. The reaction mixture was poured into a stirred solution of sodium potassium tartrate (24 mL) and saturated solution of ammonium chloride (22 mL) and stirred for 12 h . The mixture was extracted with ethyl acetate, washed with brine and dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure to obtain a mixture of $\mathbf{2 . 1 5}$ and $\mathbf{2 . 1 8}$ (0.797 g) which were separated using column chromatography (eluent 25-30\% ethyl acetate in light petroleum, silica 230-400 mesh) to obtain 2.15 ($0.322 \mathrm{~g}, 45 \%$; TLC $R f=0.3$ in 20% ethyl acetate/light petroleum) and 2.17 ($0.144 \mathrm{~g}, 24 \%$; TLC $R f=0.3$ in 10% ethyl acetate/light petroleum) in the ratio of in the ratio 1.9 : 1. (0.089 g of starting material was recovered.)

Data for 2.15: M.p. $84-86^{\circ} \mathrm{C}$ (Crystallized from ethyl acetate-light petroluem); IR (Chloroform): $v 3300-3550 \mathrm{~cm}^{-1}$ (broad); ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.54-$ $7.49(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 3 \mathrm{H}), 5.95(\mathrm{~m}, J=5.5,10.9,16.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.73(\mathrm{~s}, 1$ H), $5.38-5.32(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~m}, J=1.5,10.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H})$, 4.30-4.25 (m, 2 H), $4.15(\mathrm{~m}, ~ J=6.1,12.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.79-$ $3.73(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) 2.65\left(1 \mathrm{H}, \mathrm{d}, J=2.53 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable) ppm; ${ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=137.8\left(\mathrm{C}_{\text {arom }}\right), 133.9\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, $129.2\left(\mathrm{C}_{\text {arom }}\right), 128.3\left(\mathrm{C}_{\text {arom }}\right), 126.3\left(\mathrm{C}_{\text {arom }}\right), 118.0\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 92.6(\mathrm{PhCH}), 81.2$ (Ins C), $73.5($ Ins C$), 73.0($ Ins C$), 70.7\left(\mathrm{OCH}_{2}-\mathrm{CH}=\right), 70.1($ Ins C$), \quad 56.5\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; HRMS: m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Na}^{+}: 385.1622\left[M+\mathrm{Na}^{+}\right]$; found: 385.1613

Data for 2.18: IR (Chloroform): v 3500-3200 $\mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $7.50-7.40(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 3 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~m}, J=4.8 \mathrm{~Hz}$, $2 \mathrm{H}), 5.41-5.13(\mathrm{~m}, 4 \mathrm{H}), 4.60(\mathrm{~m}, 1 \mathrm{H}), 4.45-4.17(\mathrm{~m}, 4 \mathrm{H}), 4.17-3.81(\mathrm{~m}, 5 \mathrm{H})$, 4.17-3.83 (d, $J=14.1 \mathrm{~Hz}, 5 \mathrm{H}$), 3.57 (s, 3 H), 3.22 ($\mathrm{d}, 1 \mathrm{H} \mathrm{D}_{2} \mathrm{O}$ exchangeable) ppm; ${ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=135.61\left(\mathrm{C}_{\text {arom }}\right), 135.08\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 130.37\left(\mathrm{C}_{\text {arom }}\right)$, $129.62\left(\mathrm{C}_{\text {arom }}\right), 117.91\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 82.25$ (Ins C), 81.75 (Ins C), 75.42 (Ins C), 74.59 (Ins C), $73.15\left(\mathrm{CH}_{2}-\mathrm{CH}=\right)$, $62.58\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; HRMS: m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Na}^{+}$: $385.1622\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]$; found: 385.1626.
p-nitrobenzoyl derivative of racemic 1(3), 5-O-Benzylidene-2-O-methyl-4,6-di- O -allyl-myo-5-inositol (2.19):To a solution of $0.5 \mathrm{~g}, 1.38 \mathrm{mmol}$) of $\mathbf{2 . 1 8}$ in pyridine
(5 mL) p-nitrobenzoyl chloride $(0.384 \mathrm{~g}, 2.071 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and then stirred at ambient temperature for 34 h . The reaction mixture was quenched with ice and solvents evaporated in vacuo. The resulting solid was extracted with ethyl acetate, washed with brine and dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure to obtain pale yellow solid which was then purified by column chromatography (eluent 17% ethyl acetate in light petroleum) to obtain 2.19 as a gum ($0.512 \mathrm{~g}, 78 \%$) TLC $R f=0.3$ (25% ethyl acetate in light petroleum). M.p. $87-90^{\circ} \mathrm{C}$; IR (Chloroform): $1712 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz , CHLOROFORMd) $\delta=8.38-8.18(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 3 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H})$, 6.02-5.78 (m, 2 H), 5.69-5.56 (m, 1 H), 5.42-5.13 (m, 4 H), 4.75-4.63(m, 1 H$)$, 4.52-3.99 (m, 8 H), $3.42(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz ,CHLOROFORM-d) $\delta=$ $150.6(-\mathrm{C}=\mathrm{O}), \quad 137.9\left(\mathrm{C}_{\text {arom }}\right), \quad 135.7\left(\mathrm{C}_{\text {arom }}\right), \quad 134.2\left(\mathrm{CH}_{2}=\mathrm{CH}\right), \quad 134.0\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, $130.8\left(\mathrm{C}_{\text {arom }}\right), 129.1\left(\mathrm{C}_{\text {arom }}\right), 128.4\left(\mathrm{C}_{\text {arom }}\right), 126.1\left(\mathrm{C}_{\text {arom }}\right), 123.6\left(\mathrm{C}_{\text {arom }}\right), 118.0\left(\mathrm{CH}_{2}=\mathrm{CH}-\right)$, $117.7\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 93.0(\mathrm{PhCHO})$, 77.9 (Ins C), 73.9(Ins C), 73.5(Ins C), $72.2\left(\mathrm{CH}_{2}{ }^{-}\right.$ $\mathrm{CH}=$), $72.1\left(\mathrm{CH}_{2}-\mathrm{CH}=\right), 70.9$ (Ins C), 70.4 (Ins C), $68.4($ Ins C$), 58.8\left(\mathrm{OCH}_{3}\right) \mathrm{ppm}$; HRMS: m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{9} \mathrm{NH}^{+}$: $512.1915\left[M+\mathrm{H}^{+}\right]$; found: 512.1909.

2.5. References

1. B. V. L. Potter, Comprehensive Medicinal Chemistry, Vol 4, Pergamon Press 1990.
2. D. C. Billington, The Inositol Phosphates: Chemical synthesis and biological significance. VCH, New York, N.Y. 1993.
3. Hinchliffe, K.; Irvine, R. Nature 1997, 390, 123-124.
4. Ferguson, M. A. J.; Williams, A. F. Annu. Rev. Biochem. 1988, 57, 285.
5. Phosphoinositides: chemistry, biochemistry and biochemical applications, K. S. Bruzik, Ed.; ACS symposium series 718.American chemical society, Washington D.C. USA, 1999.
6. Benjamin, D. I.; Louie, S. M.; Mulvihill, S. M.; Kohnz, R. A.; Li, D. S.; Chan, L. G.; Sorrentino, A.; Bandyopadhyay, S.; Cozzo, A.; Ohiri, A.; Goga, A.; Ng, S.; Nomura, D. K. Chem. Biol. 2014, 9, 1340-1350.
7. Patassini, S.; Begley, P.; Xua, J.; Church, S. J.; Reid, S. J.; Kim, E. H.; Curtis, M. A.; Dragunow, M.; Waldvogel , H. J.; Snell, R. G.; Unwin, R.D.; Faull, R. L.M.; Cooper, G. J. S. Biochimica et Biophysica Acta, 2016, 1862, 16501662.
8. Chang, H.-H.; Chao, H.-N.; Walker, C. S.; Choong, S.-Y.; Phillips, A.; Loomes, K. M. Am J Physiol Renal Physiol, 2015, 309: F755-F763.
9. Frej, A. D.; Clark, J.; Le Roy, C. I.; Lilla, S.; Thomason, P. A.; Otto, G. P.; Churchill, G.; Insall, R. H.; Claus, S. P.; Hawkins, P.; Stephens, L.; Williams, R. S. B. Mol. Cell Biol, 2016, 36, 1464 -1479.
10. Swarbrick, J. M.; Cooper, S.; Bultynck, G.; Gaffney, P. R. J. Org. Biomol. Chem.

2009, 7, 1709-1715.
11. Swarbrick, J. M.; Gaffney, P. R. J. J. Org. Chem. 2010, 75, 4376-4386.
12. Eisch, J. J.; Rhee, S. G. J. Am. Chem. Soc. 1974, 96, 7276-7284.
13. Conway, S. J.; Gardiner, J.; Grove, S. J. A.; Johns, M. K.; Lim, Z.-Y.; Painter, G. F.; Robinson, D. E. J. E.; Schieber, C.; Thuring, J. W.; Wong, L. S. M.; Yin, M. X.; Burgess, A. W.; Catimel, B.; Hawkins, P. T.; Ktistakis, N. T.; Stephens, L. R.;

Holmes, A. B. Org. Biomol. Chem. 2010, 8, 66-74. and references cited therein.
14. Painter, G. F.; Grove, S. J. A.; Gilbert, I. H.; Holmes, A. B.; Raithby, P. R.; Hill, M. L.; Hawkins, P. T.; Stephens, L. R. J. Chem. Soc., Perkin Trans. I 1999, 923-935.
15. Gurale, B. P.; Sardessai, R. S., Carbohydr. Res. 2014, 399,8-14.
16. Gilbert, I. H.; Holmes, A. B.; Pestchanker, M. J.; Young, R. C. Carbohydr. Res. 1992, 234, 117-130.
17. Gurale, B. P.; Vanka, K.; Krishnaswamy, S.; Shashidhar, M. S. Tetrahedron, 2011, 67, 7280-7288.
18. Yeh, S. M.; Lee, G. H.; Wang, Y.; Luh, T. Y. J. Org. Chem. 1997, 62, 83158318.
19. Devaraj, S. D.; Shashidhar, M. S.; Dixit, S. S. Tetrahedron 2005, 61, 529-536.
20. Bruker (2003). SADABS (Version 2.05), SMART (Version 5.631), SAINT (Version 6.45) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
21. Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.
22. Farrugia, L. J. J. Appl. Cryst. 1997, 30, 565-565.
23. (a) Ahlrichs, R.; Bär, M.; Baron, H.-P.; Bauernschmitt, R.; Böcker, S.; Ehrig, M.; Eichkorn, K.; Elliott, S.; Furche, F.; Haase, F.; Häser, M.; Horn, H.; Huber, C.; Huniar, U.; Kattannek, M.; Kölmel, C.; Kollwitz, M.; May, K.; Ochsenfeld, C.; Öhm, H.; Schäfer, A.; Schneider, U.; Treutler, O.; von Arnim, M.; Weigend, F.; Weis, P.; Weiss, H. TURBOMOLE (Version 5.3); Universität Karlsruhe, Karlsruhe, Germany, 2000; (b) Schäfer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829-5835; (c) Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123-141.
24. (a) Becke, A. D. Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098-3100; (b) Perdew, J. P. Phys. Rev. B: Condens. Matter Mater. Phys. 1986, 33, 88228824.
25. Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571-2577. The resolution of identity (RI), Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. Chem. Phys. Lett. 1995, 240, 283-290.
26. Sierka, M.; Hogekamp, A.; Ahlrichs, R. J. Chem. Phys. 2003, 118, 91369148.
27. Klamt, A. J. Phy. Chem. 1995, 99, 2224-2235.
28. Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, 2nd edition, Pergamon Press, Oxford, U.K., 1988.

Appendix I

Appendix I Index

Sr. No.	Description / Table / Diagram / Spectrum / Compound No.	Page No.
1.	Ball and stick figure and crystal data table for $\mathbf{2 . 1 2}$	51
2.	Crystal data table for $\mathbf{2 . 1 5}$	52
3.	Crystal data table for $\mathbf{2 . 1 9}$	53
4.	${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 2.8	54
5.	DEPT spectra of $\mathbf{2 . 8}$	55
6.	${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 . 9}$	55
7.	${ }^{13} \mathrm{C}$ NMR and DEPT spectra of 2.9	56
8.	${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 . 1 1}$	57
9.	DEPT spectra of $\mathbf{2 . 1 1}$	58
10.	${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 . 1 2}$	58
11.	${ }^{13} \mathrm{C}$ NMR and DEPT spectra of $\mathbf{2 . 1 2}$	59
12.	${ }^{1} \mathrm{H}$ NMR and ${ }^{\text {I3 }} \mathrm{C}$ NMR spectra of $\mathbf{2 . 1 3}$	60
13.	DEPT spectra of $\mathbf{2 . 1 3}$	61
14.	${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 . 1 4}$	61
15.	${ }^{13} \mathrm{C}$ NMR and DEPT spectra of $\mathbf{2} .14$	62
16.	${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2} .15$	63
17.	DEPT spectra of $\mathbf{2 . 1 5}$	64
18.	${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 . 1 7}$	64
19.	${ }^{13} \mathrm{C}$ NMR and DEPT spectra of $\mathbf{2 . 1 7}$	65
20.	${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 . 1 8}$	66
21.	DEPT spectra of $\mathbf{2 . 1 8}$	67
22.	${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 . 1 9}$	67
23.	${ }^{13} \mathrm{C}$ NMR and DEPT spectra of $\mathbf{2 . 1 9}$	68
24.	${ }^{1} \mathrm{H}$ NMR spectrum of (2.20+2.21)	69
25.	The atomic symbol followed by the Cartesian coordinates in \AA for geometry optimized compounds	70-85

Crystal data table for 2.12	
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}$
Formula weight	360.39
Temperature	296(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	P1
Unit cell dimensions	$\mathrm{a}=9.803(2) \AA \quad \alpha=85.714(15)^{\circ}$.
	$\mathrm{b}=9.812(2) \AA \quad \beta=85.401(16)^{\circ}$.
	$\mathrm{c}=19.047(4) \AA \quad \gamma=86.484(17)^{\circ}$.
Volume	1818.3(7) \AA^{3}
Z	4
Density (calculated)	$1.317 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.097 \mathrm{~mm}^{-1}$
F(000)	768
Crystal size	$0.32 \times 0.21 \times 0.08 \mathrm{~mm}^{3}$
Theta range for data collection	2.08 to 28.88°.
Index ranges	$-13<=\mathrm{h}<=13,-13<=\mathrm{k}<=13,-23<=1<=25$
Reflections collected	29616
Independent reflections	15203 [R (int) $=0.1627]$
Completeness to theta $=28.88^{\circ}$	96.3 \%
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	15203 / 3 / 941
Goodness-of-fit on F^{2}	1.069
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.1422, \mathrm{wR} 2=0.2306$
R indices (all data)	$\mathrm{R} 1=0.2370, \mathrm{wR} 2=0.2743$
Absolute structure parameter	-0.6(19)
Largest diff. peak and hole	0.425 and -0.435 e. \AA^{-3}

Crystal data table for 2.15

Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6}$
Formula weight	362.41
Temperature	296(2) K
Wavelength	0.71073 £
Crystal system	Orthorhombic
Space group	Pccn
Unit cell dimensions	$\mathrm{a}=11.4462(5) \AA \AA^{\circ} \quad \alpha=90^{\circ}$.
	$\mathrm{b}=16.5302(8) \AA \AA^{\circ} \quad \beta=90^{\circ}$.
	$\mathrm{c}=20.2606(10) \AA \quad \gamma=90^{\circ}$.
Volume	$3833.5(3) \AA^{3}$
Z	8
Density (calculated)	$1.256 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.092 \mathrm{~mm}^{-1}$
F(000)	1552
Crystal size	$0.50 \times 0.40 \times 0.30 \mathrm{~mm}^{3}$
Theta range for data collection	2.16 to 30.49°.
Index ranges	$-16<=\mathrm{h}<=16,-23<=\mathrm{k}<=23,-28<=1<=28$
Reflections collected	32487
Independent reflections	5840 [$\mathrm{R}(\mathrm{int})=0.0393]$
Completeness to theta $=30.49^{\circ}$	99.6 \%
Max. and min. transmission	0.9729 and 0.9554
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5840 / 0 / 238
Goodness-of-fit on F^{2}	1.059
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0610, \mathrm{wR} 2=0.1526$
R indices (all data)	$\mathrm{R} 1=0.0991, \mathrm{wR} 2=0.1747$
Extinction coefficient	0.0001(2)
Largest diff. peak and hole	1.245 and -0.558 e. $\AA^{-}{ }^{-3}$

Crystal data table for 2.19	
Empirical formula	$\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{9}$
Formula weight	511.51
Temperature	296(2) K
Wavelength	0.71073 £
Crystal system	Monoclinic
Space group	P $2{ }_{l} / \mathrm{c}$
Unit cell dimensions	$\mathrm{a}=14.0160(10) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=23.1916(16) \AA \quad \beta=103.969(4)^{\circ}$.
	$\mathrm{c}=8.0892(6) \AA \quad \gamma=90^{\circ}$.
Volume	2551.7(3) \AA^{3}
Z	4
Density (calculated)	$1.332 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.100 \mathrm{~mm}^{-1}$
F(000)	1080
Crystal size	$0.41 \times 0.25 \times 0.12 \mathrm{~mm}^{3}$
Theta range for data collection	1.74 to 25.00°.
Index ranges	$-16<=\mathrm{h}<=16,-27<=\mathrm{k}<=27,-9<=1<=9$
Reflections collected	36275
Independent reflections	$4492[\mathrm{R}(\mathrm{int})=0.0579]$
Completeness to theta $=25.00^{\circ}$	99.8\%
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4492 / 4 / 372
Goodness-of-fit on F^{2}	1.355
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.1235, \mathrm{wR} 2=0.1930$
R indices (all data)	$\mathrm{R} 1=0.1298, \mathrm{wR} 2=0.1953$
Extinction coefficient	0.0012(4)
Largest diff. peak and hole	0.266 and -0.281 e. $\AA^{-}{ }^{-3}$

Ph. D. Thesis

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

FINAL HEAT OF FORMATION = -1554.168782

O	0.779496	2.236865	-1.530919	H	-2.053191	6.571104	-0.630963
C	0.088379	1.076579	-1.847276	H	-3.677671	5.871842	1.082161
O	-1.349644	1.249977	-1.513494	H	-4.483815	4.721732	-0.136799
C	-1.939706	2.327933	-2.320438	Al	-2.139739	0.524199	0.260172
C	-1.155161	3.616109	-1.968793	H	-1.095861	-0.717754	0.339971
C	0.315890	3.358246	-2.330945	C	-4.033182	0.192736	-0.322998
C	0.451867	3.044527	-3.822631	C	-1.800163	1.998781	1.580814
C	-0.294472	1.721780	-4.071553	H	-4.443312	1.130585	-0.749200
C	-1.803443	1.874552	-3.782620	C	-4.320700	-0.974734	-1.289765
O	0.200387	0.686271	-3.177065	H	-4.631693	0.042021	0.598966
O	1.836022	2.991451	-4.137835	C	-5.771775	-0.957878	-1.794627
C	2.104841	3.061199	-5.533001	H	-3.663939	-0.870519	-2.175821
O	-2.439037	2.803259	-4.655572	C	-4.001374	-2.326031	-0.637238
C	-3.086312	2.180100	-5.790303	H	-4.187560	-3.163852	-1.327507
C	-4.342760	1.456766	-5.406919	H	-2.952554	-2.376342	-0.309940
C	-4.560899	0.156331	-5.622674	H	-4.637912	-2.481351	0.251441
O	-1.564489	4.774806	-2.682160	H	-5.974498	-1.787603	-2.492357
C	-2.835206	5.326959	-2.276845	H	-6.470501	-1.053755	-0.948618
C	-2.832908	5.837129	-0.865281	H	-6.005121	-0.014155	-2.312468
C	-3.704210	5.457946	0.073911	H	-2.635029	2.726991	1.581587
H	-0.053324	3.845517	-4.394904	C	-1.566637	1.519658	3.029260
H	0.951307	4.207392	-2.053227	H	-0.910273	2.566518	1.250169
H	-1.230340	3.769936	-0.877612	C	-1.210123	2.681819	3.968018
H	-2.995687	2.383601	-2.028753	C	-2.780247	0.750700	3.568220
H	-2.274291	0.879327	-3.856290	H	-0.708202	0.821756	3.024033
H	-0.118319	1.338229	-5.084804	H	-1.013675	2.336471	4.996577
H	3.193713	3.141591	-5.636376	H	-0.316507	3.216197	3.612001
H	1.767325	2.159714	-6.076677	H	-2.036612	3.410965	4.012603
H	1.632016	3.950319	-5.990419	H	-2.620302	0.411173	4.603483
H	-3.309123	3.021611	-6.464107	H	-3.680568	1.388111	3.559097
H	-2.392295	1.498234	-6.316210	H	-3.002727	-0.141884	2.961064
H	-5.106753	2.066241	-4.912536	H	0.433230	0.260721	-1.204263
H	-5.495560	-0.325545	-5.330382				
H	-3.812907	-0.475102	-6.110603				
H	-2.993115	6.154922	-2.985394				
H	-3.650889	4.597747	-2.428597				

FINAL HEAT OF FORMATION $=-1593.444707$

O	0.830584	2.414382	-1.618317	C	1.043416	0.123715	-1.059430
C	0.318194	1.146858	-1.890141	Al	-2.031210	0.449791	0.262264
O	-1.154065	1.140862	-1.515675	H	-1.351471	-1.016568	0.351463
C	-1.889467	2.129523	-2.319112	C	-3.980871	0.503594	-0.245042
C	-1.277027	3.513327	-1.995480	C	-1.397809	1.804703	1.606754
C	0.199315	3.453961	-2.407555	H	-4.302006	1.553507	-0.398590
C	0.325674	3.153189	-3.901550	C	-4.506181	-0.372532	-1.400995
C	-0.241110	1.741813	-4.119513	H	-4.512541	0.205190	0.682528
C	-1.743840	1.691058	-3.783766	C	-5.974508	-0.065833	-1.733842
O	0.409645	0.789217	-3.238545	H	-3.915789	-0.155019	-2.312491
O	1.692376	3.281725	-4.272673	C	-4.330235	-1.866111	-1.097920
C	1.885326	3.427929	-5.674426	H	-4.667157	-2.490222	-1.940660
O	-2.535812	2.524898	-4.624207	H	-3.280682	-2.112897	-0.882454
C	-3.049927	1.848157	-5.793276	H	-4.925179	-2.150073	-0.213728
C	-4.139231	0.870812	-5.464108	H	-6.340833	-0.675835	-2.576574
C	-4.121094	-0.420485	-5.808341	H	-6.618051	-0.275833	-0.863862
O	-1.868437	4.601671	-2.690355	H	-6.112811	0.995083	-1.997139
C	-3.176374	4.988996	-2.222917	H	-2.082609	2.676378	1.600453
C	-3.164045	5.538450	-0.826822	C	-1.276752	1.287732	3.055795
C	-3.935356	5.086464	0.166790	H	-0.418278	2.205000	1.284591
H	-0.304008	3.875318	-4.453448	C	-0.726548	2.360610	4.007958
H	0.726183	4.381592	-2.153860	C	-2.619101	0.753395	3.573561
H	-1.331764	3.657688	-0.901553	H	-0.563023	0.442291	3.060051
H	-2.935744	2.055831	-2.001452	H	-0.604182	1.975791	5.033834
H	-2.077991	0.640382	-3.843704	H	0.251674	2.730507	3.665345
H	-0.039769	1.374864	-5.134911	H	-1.410794	3.224318	4.052414
H	2.958415	3.596477	-5.826909	H	-2.542885	0.398845	4.613239
H	1.591275	2.524911	-6.240957	H	-3.388745	1.542977	3.543868
H	1.323198	4.294360	-6.071721	H	-2.984701	-0.089441	2.964028
H	-3.438470	2.663834	-6.422334	H	2.093053	0.125184	-1.377021
H	-2.237506	1.347464	-6.352659	H	0.983852	0.386623	0.002451
H	-4.987756	1.279184	-4.904353	H	0.605496	-0.867540	-1.213280
H	-4.944645	-1.092383	-5.560417				
H	-3.282465	-0.852278	-6.362124				
H	-3.486960	5.766013	-2.938230				
H	-3.893486	4.152827	-2.308987				
H	-2.472821	6.370406	-0.652315				
H	-3.911856	5.534231	1.161940				
H	-4.627420	4.252567	0.018888				

FINAL HEAT OF FORMATION $=-1784.989289$

O	0.971138	2.467474	-1.868565	C	1.139684	0.138674	-1.427731
C	0.433501	1.226130	-2.194582	C	1.722119	0.423490	-0.187594
O	-1.037649	1.231388	-1.774291	C	2.366058	-0.589293	0.525141
C	-1.777117	2.276112	-2.496452	C	2.432807	-1.883033	0.002732
C	-1.126400	3.625919	-2.117187	C	1.853184	-2.163934	-1.237465
C	0.334336	3.561036	-2.577400	C	1.206125	-1.157170	-1.953050
C	0.408952	3.341865	-4.088513	H	1.673342	1.436198	0.211865
C	-0.192273	1.955185	-4.364664	H	2.818678	-0.364417	1.492550
C	-1.685172	1.912261	-3.984329	H	2.935963	-2.673568	0.562919
O	0.474322	0.945911	-3.560700	H	1.901611	-3.173749	-1.648923
O	1.765107	3.469776	-4.493282	H	0.750703	-1.370387	-2.919670
C	1.921736	3.677430	-5.891457	Al	-2.071187	0.246386	-0.204890
O	-2.485419	2.796585	-4.763595	H	-1.350845	-1.197829	-0.174265
C	-3.063418	2.172576	-5.932443	C	-3.887228	0.213426	-1.100171
C	-4.138037	1.183559	-5.589850	C	-1.754742	1.491153	1.350108
C	-4.139098	-0.092283	-5.988070	H	-3.737380	0.062245	-2.187336
O	-1.709138	4.768353	-2.727607	C	-4.816628	-0.908675	-0.585869
C	-3.037427	5.097665	-2.268712	H	-4.429230	1.175921	-1.001254
C	-3.088139	5.451926	-0.811836	C	-6.061873	-1.074508	-1.470377
C	-3.876885	4.845671	0.080781	H	-4.256393	-1.861669	-0.621815
H	-0.224847	4.104182	-4.578884	C	-5.230976	-0.669888	0.871905
H	0.889877	4.461990	-2.290621	H	-5.887116	-1.472865	1.242373
H	-1.148017	3.706193	-1.015501	H	-4.359878	-0.614869	1.542883
H	-2.815151	2.205691	-2.150944	H	-5.780582	0.281796	0.966165
H	-2.040654	0.871925	-4.083900	H	-6.709748	-1.894004	-1.117470
H	-0.030038	1.641237	-5.404431	H	-6.660982	-0.148614	-1.470128
H	2.989888	3.859326	-6.062697	H	-5.781700	-1.290841	-2.513243
H	1.345217	4.556734	-6.236318	H	-2.728881	1.893520	1.691755
H	-3.479467	3.015482	-6.505238	C	-1.006610	0.913042	2.569871
H	-2.282751	1.693982	-6.553387	H	-1.200386	2.374345	0.977961
H	-4.955340	1.567958	-4.970224	C	-0.656731	1.999435	3.599556
H	-4.949106	-0.775639	-5.727083	C	-1.806489	-0.213882	3.236790
H	-3.329935	-0.498572	-6.601838	H	-0.056819	0.472703	2.214956
H	-3.315511	5.965372	-2.886454	H	-0.094984	1.588791	4.455006
H	-3.746482	4.283149	-2.499737	H	-0.047665	2.797165	3.145953
H	1.618832	2.797635	-6.488826	H	-1.574210	2.466814	3.994358
H	-2.427203	6.267716	-0.498012	H	-1.272411	-0.631253	4.105025
H	-3.896500	5.146168	1.129564	H	-2.780786	0.160913	3.593075
H	-4.538586	4.023553	-0.207355	H	-1.996195	-1.040201	2.534018

FINAL HEAT OF FORMATION $=-1554.166332$

O	1.903024	2.387155	-2.153627	H	0.787355	6.188675	-4.960531
C	1.693291	1.270189	-3.065193	H	-3.112575	3.236977	-6.098143
O	0.518025	0.584078	-2.714905	H	-1.636635	2.442464	-6.709632
C	-0.659954	1.432565	-2.863593	H	-3.977251	0.964792	-5.295519
C	-0.487414	2.601032	-1.864002	H	-3.443267	-0.817305	-6.909542
C	0.800626	3.342405	-2.254434	H	-2.058710	0.212923	-7.604606
C	0.702070	3.864658	-3.689407	H	-3.439991	3.947716	-1.342261
C	0.592644	2.640318	-4.617423	H	-3.096179	2.202508	-1.431970
C	-0.711113	1.860734	-4.339344	H	-2.015601	4.084692	0.795039
O	1.699536	1.729611	-4.381015	H	-2.452207	2.142233	2.245616
O	1.835497	4.680625	-3.948337	H	-3.048272	1.167319	0.777649
C	1.675312	5.538615	-5.072470	H	5.378797	3.847439	-1.249334
O	-1.874702	2.633962	-4.619239	H	4.859051	6.153241	-0.526515
C	-2.423979	2.393562	-5.934171	H	4.096240	1.071342	-1.318467
C	-3.158948	1.087773	-6.013850	H	2.459992	2.826876	1.744248
C	-2.871401	0.111286	-6.880253	H	1.248898	2.030377	0.756911
O	-1.538355	3.555297	-1.869856	H	2.563803	-0.133331	0.934938
C	-2.694493	3.176081	-1.096980	H	4.370618	-0.300418	2.664172
C	-2.422634	3.156794	0.378649	H	4.824190	0.817966	1.361892
C	-2.648687	2.105926	1.172883	H	4.274369	1.455482	2.930303
Al	3.393740	2.387007	-0.667977	H	1.925674	-0.618052	3.308128
C	4.323984	4.127690	-1.062860	H	1.756937	1.126980	3.620781
C	4.294180	5.312814	-0.077316	H	0.654033	0.320140	2.482779
C	4.987492	4.971351	1.248013	H	2.861548	6.709711	0.821075
C	2.327892	2.015683	1.003986	H	2.383943	6.107360	-0.782260
C	2.662366	0.672598	1.686924	H	2.249009	5.049416	0.650505
C	4.112779	0.657728	2.186742	H	5.004748	5.834969	1.931579
C	1.696344	0.352391	2.837427	H	4.468688	4.147462	1.763292
C	2.868014	5.823808	0.165985	H	6.028772	4.655346	1.079735
H	-0.233970	4.448666	-3.768286	H	3.947457	4.460878	-2.048656
H	1.030087	4.155259	-1.555208	H	2.543775	0.598712	-2.915716
H	-0.346537	2.166208	-0.858631				
H	-1.519883	0.798533	-2.611661				
H	-0.698763	0.936738	-4.942468				
H	0.670828	2.927566	-5.674196				
H	2.575382	6.163996	-5.116527				
H	1.591104	4.980832	-6.023595				

OAll FINAL HEAT OF FORMATION $=-1593.440525$

C	1.605189	2.548801	-1.890173	H	-2.393460	2.572914	-3.970261
C	1.139877	1.256783	-2.577585	H	-1.016452	1.597028	-4.546135
C	-0.282728	0.871597	-2.115482	H	-3.560552	0.431135	-3.193483
C	-0.213134	0.697959	-0.591678	H	-3.200493	-1.412200	-4.788302
C	0.306219	1.934225	0.175577	H	-1.674010	-0.566612	-5.433938
O	0.742389	-0.365609	-0.328600	H	-2.193301	4.066785	0.428428
C	2.031411	-0.092411	-0.844591	H	-2.398675	2.315114	0.192666
O	2.016784	0.158087	-2.224794	H	-1.072485	3.591794	2.702823
C	1.696375	2.257640	-0.392972	H	-2.341811	1.852043	3.899017
O	2.565299	1.105806	-0.156407	H	-3.021081	1.224436	2.284163
O	-1.271803	1.837455	-2.463254	H	5.732358	3.233480	0.985338
C	-1.819675	1.651469	-3.786889	H	4.598625	5.189679	2.030734
C	-2.709795	0.447666	-3.883135	H	5.296654	0.388815	0.285491
C	-2.518827	-0.561319	-4.738842	H	3.386163	0.961011	3.631629
C	2.915282	-1.279852	-0.573250	H	2.486086	-0.090179	2.553008
O	2.871250	3.010865	-2.340452	H	4.492267	-1.631675	2.409699
C	2.804865	3.732223	-3.564183	H	6.386923	-1.331688	4.008129
Al	4.240063	1.238500	1.173207	H	6.296442	0.015624	2.854719
C	3.511038	0.261700	2.782831	H	5.710053	0.229966	4.524588
C	4.363577	-0.933478	3.259833	H	4.285113	-2.579659	4.716435
C	3.684786	-1.711728	4.396539	H	3.540558	-1.061262	5.275061
O	-0.461207	3.123964	0.049293	H	2.693393	-2.079181	4.091126
C	-1.761352	3.082097	0.667673	H	2.591152	4.896105	3.468113
C	-1.706740	2.886145	2.154316	H	2.212117	4.556040	1.769583
C	-2.384886	1.941302	2.811862	H	2.428406	3.210429	2.921319
C	4.634985	3.218462	1.139150	H	4.908117	4.507595	4.391901
C	4.301811	4.160642	2.315205	H	4.850378	2.791063	3.929418
C	2.801038	4.207851	2.633564	H	6.187911	3.816447	3.365733
C	5.106035	3.800667	3.570892	H	4.239133	3.637873	0.195113
C	5.767374	-0.481543	3.683801	H	2.507267	-2.135112	-1.124879
H	0.828452	3.323650	-2.028753	H	3.936857	-1.067389	-0.905564
H	2.154675	3.096690	0.138640	H	2.920585	-1.505980	0.499187
H	0.415617	1.640262	1.235276				
H	-1.171125	0.336547	-0.195939				
H	-0.530124	-0.114465	-2.546619				
H	1.205313	1.334131	-3.671300				
H	3.823462	4.078218	-3.778999				
H	2.464794	3.105089	-4.408787				
H	2.135002	4.608881	-3.481374				

FINAL HEAT OF FORMATION $=-1784.985875$

O	1.875809	2.068643	-2.151170	H	-1.960802	2.431889	-6.373392
C	1.252635	0.856151	-2.759009	H	-4.454102	1.567105	-4.732908
O	-0.014826	0.666058	-2.172673	H	-4.374527	-0.401971	-6.212185
C	-0.934255	1.763503	-2.434743	H	-2.860159	0.278319	-7.051261
C	-0.327673	3.013185	-1.758179	H	-2.717943	5.256535	-1.444677
C	1.044180	3.246699	-2.406042	H	-2.986658	3.497411	-1.450095
C	0.895243	3.470068	-3.909637	H	-1.343563	5.006176	0.719881
C	0.334616	2.173433	-4.508115	H	-2.457567	3.425117	2.245673
C	-1.076609	1.871139	-3.959658	H	-3.337489	2.640612	0.805844
O	1.181584	1.053838	-4.145401	H	5.073416	3.917279	-0.881527
O	2.162585	3.840310	-4.437486	H	4.231813	6.149389	-0.235115
C	2.084542	4.464767	-5.713092	H	4.359551	1.084850	-0.998823
O	-2.039799	2.862047	-4.307350	H	1.912946	2.505765	1.702863
C	-2.697532	2.608926	-5.568182	H	1.168962	1.301283	0.660032
C	-3.672508	1.471418	-5.494743	H	3.024094	-0.316302	1.233540
C	-3.633084	0.395275	-6.286341	H	4.509777	0.166967	3.179673
O	-1.063327	4.218481	-1.915390	H	4.805277	1.305713	1.848986
C	-2.280168	4.291012	-1.147197	H	3.862508	1.821504	3.269998
C	-2.046053	4.258471	0.334894	H	2.206688	-0.839530	3.543015
C	-2.638412	3.399371	1.169862	H	1.473346	0.779716	3.650277
Al	3.296959	2.200376	-0.519560	H	0.853354	-0.397281	2.471487
C	3.979676	4.083474	-0.827638	H	2.079870	6.441354	0.974065
C	3.721507	5.246099	0.153820	H	1.804493	5.898166	-0.692052
C	4.322002	4.960585	1.536291	H	1.656104	4.742359	0.658852
C	2.146710	1.645755	1.046819	H	4.190888	5.816882	2.216842
C	2.760298	0.520472	1.906192	H	3.841934	4.085877	2.002781
C	4.056406	0.977489	2.587545	H	5.399767	4.748756	1.463455
C	1.770341	-0.018484	2.949947	H	3.715850	4.397430	-1.855543
C	2.234149	5.601224	0.278051	C	2.125663	-0.344151	-2.485815
H	0.154276	4.278489	-4.054273	C	3.242388	-0.576519	-3.298182
H	1.564121	4.088803	-1.939200	C	4.060558	-1.678887	-3.054504
H	-0.176338	2.773554	-0.690296	C	3.770438	-2.550509	-2.000562
H	-1.885464	1.463035	-1.976149	C	2.655305	-2.317796	-1.191866
H	-1.384454	0.877609	-4.330059	C	1.829892	-1.217103	-1.433126
H	0.345300	2.194163	-5.606169	H	3.467443	0.113298	-4.110817
H	3.104748	4.772290	-5.973301	H	4.933348	-1.853712	-3.685771
H	1.716099	3.780014	-6.499298	H	4.415915	-3.409646	-1.807519
H	1.433256	5.358647	-5.686750	H	2.424146	-2.995274	-0.367701
H	-3.220580	3.551573	-5.791646	H	0.956934	-1.033748	-0.807607

FINAL HEAT OF FORMATION $=-2092.014600$

C	5.369917	0.684010	-0.129617	C	-3.952022	0.833679	-3.072564
C	4.651705	-0.390007	0.410875	C	-3.991538	0.596700	-4.597062
C	4.561416	-0.510760	1.806587	C	-2.607512	0.237656	-5.152459
C	5.173437	0.426113	2.640233	C	-4.571366	1.804197	-5.349683
C	5.894640	1.491928	2.090091	C	-5.803987	-1.601180	1.727474
C	5.993178	1.618883	0.703193	H	0.702046	-1.040276	1.390199
C	4.003073	-1.422698	-0.487610	H	2.209582	0.374417	-0.140386
O	2.625888	-1.680460	-0.179649	H	2.228619	-0.508071	-2.593019
C	1.755911	-0.583783	-0.450823	H	0.126412	0.758665	-3.215093
C	1.353514	-0.482467	-1.930997	H	-1.430655	1.501614	-1.424301
C	0.493100	0.778849	-2.173834	H	-1.390719	0.251036	0.745730
C	-0.742347	0.662803	-1.263008	H	-1.178697	-2.592956	-1.859103
C	-0.434040	0.467466	0.233516	H	2.560923	3.290335	-2.592811
C	0.469641	-0.782600	0.349838	H	2.672355	1.696881	-3.376128
O	-1.436031	-0.554525	-1.702516	H	2.087946	1.701797	-5.643946
C	-0.573905	-1.749325	-1.512333	H	0.730536	2.545946	-7.547411
O	0.550074	-1.630075	-2.319568	H	-1.013657	4.283612	-7.160811
O	-0.292416	-1.910419	-0.162033	H	-1.387542	5.175107	-4.863649
O	1.193839	1.986108	-1.902287	H	-0.024352	4.330544	-2.961005
C	1.965925	2.469566	-3.020203	H	-0.980099	1.677375	2.489468
C	1.127139	2.964843	-4.177021	H	0.626053	0.920336	2.652592
C	0.143083	3.944966	-3.969358	H	0.126954	2.717142	4.693752
C	-0.623514	4.414766	-5.036480	H	1.102694	4.843415	5.510920
C	-0.411752	3.916839	-6.327376	H	2.198317	6.415850	3.912024
C	0.565862	2.943940	-6.544331	H	2.308124	5.833271	1.490876
C	1.327479	2.468695	-5.471916	H	1.328948	3.687317	0.673973
O	0.157032	1.647511	0.746398	H	4.492099	-2.400987	-0.366926
C	0.078298	1.752667	2.168402	H	4.128379	-1.124238	-1.545980
C	0.667725	3.065775	2.625686	H	5.443962	0.788659	-1.215797
C	1.283635	3.949031	1.731488	H	6.549492	2.451281	0.267437
C	1.830346	5.150084	2.196322	H	6.375378	2.222892	2.743040
C	1.770145	5.478146	3.552252	H	5.095463	0.323393	3.724495
C	1.155912	4.596861	4.448590	H	3.999537	-1.344730	2.233773
C	0.607965	3.399568	3.986958	H	-3.418019	-2.205126	-2.593434
Al	-3.496667	-0.734992	-1.904210	H	-3.285315	1.696254	-2.867484
C	-4.131809	-0.726990	0.004217	H	-4.656556	-0.265551	-4.791930
C	-5.392079	-1.586143	0.247916	H	-3.935310	2.692332	-5.197743
C	-6.565491	-1.128193	-0.628889	H	-2.645488	0.042832	-6.235845

H	-1.898655	1.068309	-4.991894	
H	-2.198840	-0.659870	-4.663850	
H	-4.337552	0.306731	0.346361	
H	-3.321658	-1.105469	0.655979	
H	-5.152047	-2.626305	-0.041409	
H	-7.462108	-1.745554	-0.462226	
H	-6.832155	-0.081268	-0.408796	
H	-6.321471	-1.188927	-1.702605	
H	-6.676892	-2.250781	1.904519	
H	-4.980754	-1.960272	2.364074	
H	-6.067064	-0.584656	2.064644	

FINAL HEAT OF FORMATION $=-2092.012309$

C	5.554052	0.763262	-0.289275	C	-1.772153	-2.053691	2.534781
C	4.943678	-0.463662	0.000633	C	-0.849513	-3.678155	4.225871
C	4.859513	-0.879636	1.339338	C	2.280712	-7.040289	-1.642755
C	5.371684	-0.081506	2.362694	H	1.090796	-1.186103	0.763424
C	5.981509	1.142010	2.062111	H	2.559496	0.367977	-0.652819
C	6.073715	1.562757	0.734161	H	2.558809	-0.275176	-3.178047
C	4.380384	-1.336328	-1.099789	H	0.446862	1.049750	-3.649267
O	2.994036	-1.666628	-0.914074	H	-1.105871	1.569630	-1.781008
C	2.111435	-0.558836	-1.053297	H	-1.023555	0.131956	0.256324
C	1.687276	-0.312751	-2.511102	H	-0.853795	-2.409554	-2.630265
C	0.821909	0.962751	-2.614097	H	2.883865	3.511178	-2.781695
C	-0.402294	0.730992	-1.711826	H	3.015496	1.996955	-3.706710
C	-0.075575	0.407842	-0.242714	H	2.416215	2.167190	-5.962631
C	0.845247	-0.835962	-0.245725	H	1.070193	3.172836	-7.795961
O	-1.095039	-0.436412	-2.241073	H	-0.652765	4.896008	-7.275832
C	-0.272181	-1.568680	-2.238978	H	-1.020177	5.609250	-4.915221
O	0.885632	-1.423551	-2.999431	H	0.330020	4.601455	-3.084059
O	0.080813	-1.921353	-0.864694	H	-0.616196	1.338874	2.114667
O	1.521379	2.139891	-2.226429	H	1.046377	0.707089	2.229181
C	2.299278	2.728270	-3.287394	H	0.421967	2.306325	4.395433
C	1.467209	3.321514	-4.402639	H	1.193975	4.457082	5.355889
C	0.493089	4.292758	-4.119435	H	2.120534	6.233396	3.867776
C	-0.267003	4.853378	-5.146562	H	2.264900	5.832585	1.411902
C	-0.059446	4.455349	-6.472464	H	1.486802	3.664383	0.450058
C	0.907417	3.491326	-6.764522	H	4.887398	-2.312100	-1.122512
C	1.662929	2.925692	-5.732340	H	4.546402	-0.853636	-2.082096
O	0.515394	1.532987	0.378359	H	5.622660	1.097897	-1.328327
C	0.431048	1.524788	1.804543	H	6.544125	2.518127	0.493632
C	0.907064	2.848546	2.355251	H	6.380234	1.766229	2.863739
C	1.427822	3.846613	1.523627	H	5.303128	-0.416565	3.399639
C	1.861958	5.059306	2.069561	H	4.382583	-1.834649	1.573087
C	1.781926	5.285617	3.445095	H	-1.948802	-3.722222	-0.615473
C	1.263008	4.289496	4.279166	H	0.798918	-3.036541	2.053101
C	0.828733	3.079315	3.736885	H	-2.020015	-4.176366	2.497799
Al	-0.391749	-3.843965	-0.160150	H	0.411074	-4.737022	2.073759
C	0.688822	-5.075251	-1.324119	H	-1.710338	-3.497910	4.890316
C	1.767106	-5.965056	-0.671981	H	-0.493960	-4.704478	4.403498
C	2.940036	-5.134939	-0.137133	H	-0.041165	-2.990864	4.528159
C	-0.016775	-3.748748	1.814699	H	-2.633171	-1.854640	3.191815
C	-1.211357	-3.464782	2.748354				

H	-1.001672	-1.296316	2.762450	
H	-2.102324	-1.910871	1.494012	
H	1.160055	-4.497301	-2.143303	
H	-0.051890	-5.726141	-1.827261	
H	1.314585	-6.493415	0.188983	
H	3.699694	-5.771942	0.343111	
H	3.424758	-4.587668	-0.962030	
H	2.606866	-4.387662	0.598431	
H	3.030645	-7.695571	-1.169421	
H	1.457271	-7.674096	-2.005495	
H	2.750399	-6.570667	-2.523046	

FINAL HEATOF FORMATION $=-1399.535809$

C	1.338569	-0.005652	-2.828211	H	0.050506	-2.805581	4.629291
C	1.973914	-0.269522	-1.443665	H	0.277181	-1.198538	3.908077
C	0.817489	-0.477486	-0.452118	H	1.635697	-1.999666	4.737847
C	-0.205476	0.685745	-0.399567	H	1.887929	-2.158395	2.257222
C	-0.733424	0.881781	-1.831387	C	1.911549	-4.151168	3.032624
C	0.427336	1.220834	-2.785601	H	1.249851	-4.861643	3.555274
H	2.085143	0.100208	-3.624846	H	2.244385	-4.629676	2.099813
H	2.539275	-1.218326	-1.504114	H	2.798158	-3.992117	3.666136
H	1.194664	-0.741969	0.544063	C	2.045144	-4.094247	-0.777476
H	-1.042183	0.348051	0.244322	H	2.157027	-3.714322	-1.812634
H	-1.516883	1.649430	-1.845672	H	2.818705	-3.565666	-0.185789
H	0.993684	2.066688	-2.350764	C	2.374186	-5.604144	-0.789188
O	2.806515	0.778895	-0.972429	C	1.464214	-6.366520	-1.762261
C	4.125767	0.735530	-1.520108	H	1.684479	-7.445347	-1.757638
H	4.607577	-0.239476	-1.324567	H	1.611426	-5.999347	-2.791864
H	4.133622	0.925876	-2.607710	H	0.400052	-6.233261	-1.516827
H	4.696341	1.527267	-1.019938	H	2.195776	-6.015879	0.223209
O	0.021265	1.511042	-4.114715	C	3.850329	-5.863795	-1.126630
C	-0.584415	2.791032	-4.262076	H	4.089053	-5.472990	-2.129877
H	-1.569698	2.852531	-3.766745	H	4.087866	-6.940089	-1.120315
H	-0.727630	2.944742	-5.338749	H	4.517486	-5.364914	-0.406952
H	0.064485	3.594009	-3.864390				
C	-1.211357	-3.464782	2.748354				
O	0.296587	1.930116	0.044369				
C	0.699516	1.941474	1.414326				
H	1.649606	1.402789	1.564920				
H	-0.079831	1.502997	2.064567				
H	0.842956	2.994253	1.686561				
O	-1.381197	-0.350158	-2.238672				
C	-0.472900	-1.398987	-2.289057				
O	0.058211	-1.639856	-0.923968				
H	-1.000379	-2.319596	-2.556790				
O	0.580853	-1.200694	-3.171856				
Al	0.230539	-3.540066	-0.103450				
H	-1.071520	-4.114482	-0.882495				
C	-0.044407	-3.065403	1.832904				
C	1.168455	-2.838161	2.758057				
C	0.765985	-2.170341	4.082183				

O	-0.069811	-0.171304	-3.146441	C	1.892185	-1.446925	-5.331081
C	0.890150	0.825138	-2.661963	H	2.542888	-0.759009	-4.752830
C	1.585712	0.186888	-1.438284	C	2.373906	-2.892690	-5.085811
C	0.493327	-0.085378	-0.391068	H	2.089799	-1.180258	-6.386825
O	-0.449138	-1.016440	-0.996858	C	-2.804444	1.223649	-7.643580
C	-1.072254	-0.457109	-2.121551	H	-2.509149	-0.830041	-7.102211
C	-0.322662	1.165390	0.020042	C	-3.273782	0.201861	-5.388186
C	-0.949821	1.719607	-1.269966	H	-3.855439	1.091939	-7.950006
C	0.158564	2.107927	-2.268443	H	-2.704923	2.232565	-7.208990
O	-1.801447	0.693759	-1.838524	H	-2.179911	1.189638	-8.549437
O	2.605602	1.001848	-0.881059	H	-4.338539	0.138630	-5.663514
C	3.866928	0.852701	-1.538589	H	-3.056147	-0.636916	-4.709255
O	0.401030	2.221084	0.623937	H	-3.122946	1.137610	-4.825630
C	0.951060	1.894571	1.898814	C	3.789560	-3.128136	-5.633144
O	-0.319353	2.728244	-3.452027	C	2.308451	-3.268207	-3.601089
C	-0.686654	4.093603	-3.273590	H	1.693264	-3.578205	-5.624854
H	1.577661	1.007447	-3.496660	H	4.118902	-4.169875	-5.486132
H	1.994667	-0.790489	-1.754473	H	3.841914	-2.905156	-6.709735
H	0.912340	-0.610225	0.476516	H	4.514625	-2.470839	-5.123744
H	-1.135381	0.816475	0.688528	H	2.611887	-4.313156	-3.432272
H	-1.610013	2.565184	-1.043371	H	2.992120	-2.629411	-3.013925
H	0.881275	2.759852	-1.741782	H	1.291699	-3.142407	-3.197573
H	4.206746	-0.198444	-1.515384				
H	3.835942	1.193184	-2.587974				
H	4.580186	1.475885	-0.985735				
H	-1.001672	-1.296316	2.762450				
H	-1.566593	4.212364	-2.616738				
H	-0.940333	4.478561	-4.268670				
H	0.150818	4.684436	-2.857425				
H	1.805501	1.202815	1.810248				
H	0.185849	1.453233	2.564077				
H	1.304839	2.836326	2.335736				
H	-1.737030	-1.210341	-2.554965				
Al	-0.065957	-1.070151	-5.038930				
H	-0.990009	-2.318625	-4.554297				
C	-0.878118	0.305566	-6.248726				
H	-0.725348	1.302584	-5.791206				
H	-0.273479	0.317789	-7.175554				
C	-2.367401	0.158536	-6.625651				

FINAL HEAT OF FORMATION $=-4347.465290$

C	1.052987	4.474878	1.672942	H	-1.747376	1.453140	-0.088729
C	0.582586	3.363124	2.383285	C	-0.175127	-3.158862	-1.423723
C	0.797102	3.295863	3.767344	H	3.254525	2.838541	-3.540651
C	1.455770	4.329765	4.435760	H	2.723254	1.281117	-4.213620
C	1.921140	5.438412	3.722626	H	2.305679	1.535879	-6.500644
C	1.722153	5.503890	2.341036	H	1.277053	2.754376	-8.408625
C	-0.193068	2.262882	1.700981	H	0.058741	4.892661	-8.010319
O	0.138291	2.209333	0.309947	H	-0.128188	5.797780	-5.695510
C	-0.704328	1.355371	-0.458439	H	0.914680	4.578961	-3.791457
C	-0.241968	-0.116877	-0.316901	H	-1.282063	2.451282	1.803751
C	1.151420	-0.191831	-0.926621	H	0.018959	1.299790	2.203761
C	0.972617	-0.163323	-2.439945	H	0.445414	2.425376	4.328560
C	0.449375	1.254323	-2.817902	H	1.613197	4.265503	5.514299
C	-0.738430	1.799625	-1.958322	H	2.441349	6.245514	4.241962
O	0.108103	-1.211496	-2.947631	H	2.089796	6.363922	1.777600
C	-0.727553	-1.882637	-2.030331	H	0.901498	4.519121	0.593924
O	-1.240436	-0.948793	-1.020493	H	3.668675	-0.886339	-1.477901
O	-1.961269	1.456296	-2.529509	H	3.546099	-0.113908	0.123371
O	1.910471	-1.282668	-0.400917				
C	3.322718	-1.043855	-0.439176				
C	4.062196	-2.210978	0.164853				
C	3.514203	-2.954044	1.219402				
C	4.233888	-4.006045	1.791084				
C	5.513669	-4.320828	1.325070				
C	6.067899	-3.581377	0.276758				
C	5.342188	-2.538322	-0.303431				
O	1.562996	2.159168	-2.690045				
C	2.368896	2.272451	-3.870183				
C	1.691584	2.986149	-5.022392				
C	1.780181	2.478793	-6.324990				
C	1.201028	3.162347	-7.398670				
C	0.516973	4.359123	-7.175347				
C	0.412550	4.866520	-5.875500				
C	0.999886	4.187525	-4.807416				
H	-0.226113	-0.452373	0.730420				
H	1.651733	0.753756	-0.647988				
H	1.938431	-0.314357	-2.946219				
H	0.076782	1.233905	-3.854814				
H	-0.602488	2.899704	-1.946761				

C	0.903495	1.150537	-2.512796	H	0.520850	1.044239	-3.541041
C	0.903495	1.150537	-2.512796	H	-0.928988	2.025578	-1.735686
C	0.903495	1.150537	-2.512796	H	-0.840953	0.598490	0.438720
C	0.903495	1.150537	-2.512796	H	3.046690	3.536577	-3.235053
C	0.903495	1.150537	-2.512796	H	3.098624	1.868249	-3.849368
C	0.903495	1.150537	-2.512796	H	2.556207	1.759860	-6.127020
C	0.903495	1.150537	-2.512796	H	1.186100	2.457472	-8.080797
C	0.903495	1.150537	-2.512796	H	-0.597201	4.176819	-7.802549
C	0.903495	1.150537	-2.512796	H	-0.998759	5.193604	-5.561733
C	1.737765	-0.077317	-2.120475	H	0.379346	4.495178	-3.610091
C	2.354802	0.162978	-0.747815	H	-1.286920	2.416664	1.850367
C	1.277392	0.203235	0.389390	H	0.339139	1.923001	2.376307
C	0.028707	1.064967	-0.063541	H	-1.115244	3.898700	3.932020
C	-0.304175	1.138111	-1.577417	H	-0.590410	6.193008	4.713543
O	-1.085322	0.021316	-2.065139	H	0.911981	7.662018	3.366901
C	-0.528420	-1.226604	-1.773754	H	1.879891	6.809730	1.233489
O	0.932450	-1.308285	-2.120464	H	1.350791	4.497582	0.455849
O	0.163457	2.429418	0.356754	H	4.966023	-0.128848	0.266733
C	-0.206566	2.629318	1.718637	H	3.610973	-0.365928	1.425294
C	0.097035	4.045175	2.144495	H	6.328966	-2.119331	-0.451856
C	0.936614	4.874774	1.391288	H	7.131388	-4.404719	0.119023
C	1.226405	6.170584	1.831319	H	5.942586	-5.747614	1.846345
C	0.684757	6.650016	3.026164	H	3.954541	-4.800767	3.009222
C	-0.156597	5.825979	3.781090	H	3.163610	-2.504434	2.453779
C	-0.450027	4.534406	3.340527	H	-1.138362	-2.077308	-3.651186
O	0.946639	-1.076553	0.804463	H	-0.780335	-3.276034	-2.364733
Mg	1.719051	-2.437218	-0.356671	H	-2.285502	-2.318492	-2.296605
Br	1.520008	-4.818016	-0.663626	H	-0.576934	-1.408288	-0.682975
O	3.250539	-0.976548	-0.546930				
C	4.164530	-0.813452	0.587012				
C	4.693826	-2.165507	0.962798				
C	4.032898	-2.926849	1.940877				
C	4.480337	-4.212160	2.256143				
C	5.594607	-4.742417	1.602124				
C	6.261152	-3.989194	0.630168				
C	5.811420	-2.707702	0.309767				
C	-1.224001	-2.293906	-2.578169				
H	1.710681	0.791975	1.229002				
H	2.948723	1.087977	-0.780292				
H	2.533883	-0.282728	-2.851975				

FINAL HEATOF FORMATION $=-3655.000683$

C	-0.726042	-1.108298	-2.650251
O	-0.020840	-1.211535	0.949327
C	0.465463	0.061399	0.666743
C	1.716346	-0.026701	-0.263787
C	1.318661	-0.122401	-1.754622
O	0.547423	-1.372955	-1.960008
C	0.495573	1.118481	-2.088148
C	-0.871658	0.944127	-1.425359
C	-0.670265	0.983061	0.109844
O	-1.522216	-0.292208	-1.831478
O	2.576913	1.093085	-0.065482
C	3.941954	0.843601	-0.397355
O	0.477437	1.338408	-3.503483
C	0.128273	2.676674	-3.857928
O	-0.446753	2.372331	0.389569
C	-0.786332	2.748081	1.719808
H	0.836101	0.552511	1.590152
H	2.254448	-0.952380	0.035948
H	2.196715	-0.182910	-2.414320
H	0.995510	1.968249	-1.588933
H	-1.552827	1.767732	-1.685952
H	-1.604111	0.634927	0.588751
C	-1.441972	-2.414703	-2.890761
H	-0.615494	3.829698	1.794466
H	-1.849145	2.531489	1.937447
H	-0.160913	2.238069	2.473377
H	4.501056	1.745096	-0.117879
H	4.339283	-0.017418	0.170713
H	4.092796	0.657631	-1.476326
H	0.224428	2.744230	-4.948484
H	-0.908716	2.928338	-3.574948
H	0.812183	3.404340	-3.385139
Mg	0.140102	-2.612886	-0.280906
H	-2.317561	-2.228518	-3.526198
H	-0.781503	-3.133342	-3.391269
H	-1.818227	-2.865201	-1.957169
H	-0.461929	-0.605094	-3.592133
Br	0.261720	-4.993608	-0.488760

2.57

FINAL HEATOF FORMATION $=-3655.010863$

O	-1.026804	-0.331953	-2.571748
C	-0.642551	-1.519122	-1.737997
O	-0.555271	-1.220332	-0.374494
C	0.207656	-0.027106	-0.079382
C	-0.720320	1.100673	-0.550474
C	-0.717024	1.013919	-2.078456
C	1.634392	0.026315	-0.685884
C	1.779550	0.451849	-2.198476
O	1.812775	-0.646584	-3.048953
C	0.653939	1.461971	-2.587395
O	2.360100	0.905890	0.187887
C	3.755817	0.621433	0.231362
Mg	0.400174	-0.551015	-4.355143
Br	-0.519898	-1.438725	-6.382301
O	0.615728	1.490241	-4.052467
C	0.010766	2.653202	-4.637320
O	-0.334650	2.430769	-0.234751
C	-0.370123	2.722225	1.162432
H	0.323097	-0.034801	1.011701
H	2.060377	-0.995073	-0.635115
H	2.736121	1.014512	-2.252678
H	0.876324	2.470939	-2.215555
H	-1.517356	1.647421	-2.490774
H	-1.729684	0.887774	-0.148403
C	-1.706899	-2.563855	-1.957235
H	-0.230694	3.806338	1.255185
H	-1.345214	2.444910	1.604016
H	0.441379	2.209910	1.703883
H	4.203701	1.342694	0.926835
H	3.942447	-0.404430	0.599816
H	4.237849	0.732016	-0.755997
H	0.044211	2.508375	-5.723608
H	-1.037871	2.774542	-4.321908
H	0.585722	3.550345	-4.362862
H	-1.806886	-2.784629	-3.028741
H	-1.419727	-3.486676	-1.435036
H	-2.672429	-2.212721	-1.569700
H	0.353659	-1.821959	-2.109673

3.1. Introduction

The previous chapters presented the potential of inositol 1,3 -acetals to function as key intermediates for the synthesis of inositol derivatives and the reasons for the differences in observed selectivity during their formation by reductive cleavage of the corresponding myo-inositol-1,3,5-orthoester. Inososes are often used as precursors for the preparation of unnatural isomeric inositols (Scheme 1), ${ }^{1}$ their derivatives (Scheme 2 and Scheme 3$)^{2,3}$ especially analogs of naturally occurring phoshoinositols (Scheme 4). ${ }^{4-6}$

Scheme 1. (a) THF, $\mathrm{MeOH}, \mathrm{NaBH}_{4}, 93 \%$; (b) (i) $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Pd}-\mathrm{C}, \mathrm{TsOH}$, reflux, 92%; (ii) EtOH , THF, TFA, $\mathrm{Pd}-(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{rt}, 94 \%$; (c) THF, $\mathrm{MeOH}, \mathrm{NaBH}_{4}, 90 \%$; (d) DMF, $\mathrm{NaH}, \mathrm{PBBBr}, 94 \%$; (e) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DIBAL-H (5.5 eq., as in Scheme 6, chapter 1); (f) DMF, NaH, BnBr, 68%.

Scheme 2. (a) THF, MeMgI, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 6 \mathrm{~h}, 74 \%$; (b) $\mathrm{MeOH}, \mathrm{NaOMe}, 12 \mathrm{~h}$, reflux, 94%; (c) Pyridine, $\mathrm{Ac}_{2} \mathrm{O}$, RT, $24 \mathrm{~h}, 95 \%$; (d) MeOH , iso- BuNH_{2}, reflux, $12 \mathrm{~h}, 96 \%$; (e) aq. TFA, $1 \mathrm{~h}, 100 \%$; (f) Pyridine, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{DMAP}, 24 \mathrm{~h}, 93 \%$.

Scheme 3. (a) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 0.5 \mathrm{~h} 50 \%$ for $\mathbf{3 . 1 3}, 31 \%$ for $\mathbf{3 . 1 4}, 89 \%$ for $\mathbf{3 . 1 6}$

Scheme 4. (a) $\mathrm{MePPh}_{3} \mathrm{Br}$, t-BuOK, THF, 91%; (b) (i) $9-\mathrm{BBN}, \mathrm{THF}, 5{ }^{\circ} \mathrm{C}$; (ii) $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{OH}^{-}, 97 \%$ (c) 1 M $\mathrm{HCl} / \mathrm{MeOH}, 1: 10,5{ }^{\circ} \mathrm{C}$, $30 \mathrm{~min} .87 \%$.

The inososes also serve as precursors for ring substituted derivatives of inositols, some of which occur in nature and are present in several natural products (Chart 1)., ${ }^{2,7,}$ 8

Chart 1. Ring substituted derivatives and natural products of inositols from inosose.
Previous work in our laboratory ${ }^{9}$ had suggested that nucleophilic addition to a myoinosose derivative carrying a 1,3-acetal bridge results in the selective formation of the corresponding neo-inositol derivative (Scheme 5).

Scheme 5. (a) THF-MeOH, $\mathrm{NaBH}_{4}, \mathrm{RT}, 1 \mathrm{~h}, 94 \%$; (b) $\mathrm{EtOH}, \mathrm{Pd}(\mathrm{OH})_{2}$-C, H_{2} (50 Psi), $6 \mathrm{~h}, 82 \%$; (c) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, $\mathrm{RT}, 4 \mathrm{~h}, 89 \%$.

Literature reports ${ }^{10}$ suggest that in many instances the reaction of inositol derivatives in the presence of metal ions proceed with good selectivity due to the chelation of the metal ion with the reacting inositol derivative (Scheme 5). The inositol orthoester triols (ex. 1.66 and 1.67) give the dialkylated products (3.30-3.32) with high selectivity. The results were attributed to the Li^{+}ion chelating between the diol.

Scheme 6. (a) LiH or BuLi, RT, 22-40h, THF-DMF, BnBr or AllBr
Similarily the epi-inosose $\mathbf{3 . 3 3}$, bearing a β-hydroxy group on reaction with MeMgI resulted in exclusive product formation of $\mathbf{3 . 3 4}$ in high yield; whereas the scylloinosose $\mathbf{3 . 3 5}$, lacking an axial hydroxy group gave a mixture of products. The results were ascribed to the formation of a stable chelate $\mathbf{3 . 3 8}$ between the 2 oxygens with the Mg atom that directed the incoming nucleophile to the opposite side of the chelate. ${ }^{11}$

Scheme 7. MeMgI, THF, $0^{\circ} \mathrm{C}$-ambient temp
Hence we undertook the work described in this chapter to understand if the high selectivity observed during reactions of inososes carrying a 1,3-acetal bridge is due to chelation effects or due to any role played by the 1,3 -acetal bridge. The latter possibility arises since the presence of 1,3-acetal bridge in an inositol derivative
imparts certain amount of rigidity to the molecule, although not as much rigidity imparted by the presence of an orthoester in myo-inositol-1,3,5-orthoesters. Accordingly the rest of this chapter describes and compares the results of sodium borohydride reduction and Grignard reactions of inososes containing a 1,3-acetal and the corresponding inositol derivative devoid of 1,3-acetal bridge.

3.2. Results and Discussion

Previous work in our laboratory had shown that the addition to inositol derived ketones containing a 1,3 -acetal bridge led to the formation of the corresponding neoinositol derivative as the single product (Scheme 8). Since these ketones can in principle exist in three conformations, it was not obvious to conclude that the observed selectivity in product formation was due to the presence of the 1,3-acetal bridge in these molecules.

3.39

$3.40 R^{2}=B n$

R^{1}
1.148 Bn
3.41 PMB
$R^{1} \quad R^{2}$
3.42 Bn Me
3.43 Bn Bn
3.44 Bn Ph
3.45 PMB Me

3.46

3.47

3.48
Different conformations of inosose

Scheme 8. (a) Diethyl ether, $\mathrm{R}^{2} \mathrm{MgBr},-10^{\circ} \mathrm{C}, 2 \mathrm{~h}, 90-94 \%$
Hence in order to ascertain the role of the 1,3 acetal bridge, the ketone without the 1,3 acetal bridge was prepared and subjected to hydride reduction as well as Grignard reaction (Scheme 9).

The penta-protected inosose $\mathbf{3 . 5 3}$ was prepared from myo-inositol via its orthoformate
1.66. All the three hydroxyl groups in $\mathbf{1 . 6 6}$ were benzylated using sodium hydride and
benzyl bromide. The tribenzyl ether $\mathbf{1 . 7 6}$ was subjected to reductive cleavage with DIBAL-H to release the C5-hydroxyl group. The monohydroxyl derivative $\mathbf{1 . 1 5 0}$ was converted to its allyl ether 3.49. Acid hydrolysis of the acetal in $\mathbf{3 . 4 9}$ afforded the diol 3.50, which was O-benzylated to obtain the pentabenzyl ether 3.51. Cleavage of the allyl ether followed by oxidation with IBX gave the pentaprotected ketone $\mathbf{3 . 5 3}$ (without the 1,3-acetal bridge).

Scheme 9. (a) DMF, NaH, BnBr, RT, 3 h, 92%; (b) DCM, DIBAL-H, $0{ }^{\circ} \mathrm{C}$ - RT, 90%; (c) DMF, NaH, AllBr, RT, $3 \mathrm{~h}, 92 \%$; (d) HCl, MeOH, 12h; (e) DMF, NaH, BnBr, RT, 3 h, 82% over 2 steps; (f) ethanol, anhy. $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, reflux, 48h, 86%, (g) EtOAc, IBX, 6h, 96%.

However the cleavage of the allyl ether in the hexaprotected myo-inositol derivative 3.51 proved to be a task more onerous than we had anticipated. The steric crowding in the molecule hindered easy access to the allyl group. Various experimental conditions attempted for the cleavage of the allyl ether in $\mathbf{3 . 5 1}$ are shown in Table 1.

Oxidative conditions (entries $1,2,5$). ${ }^{12}$ resulted in a mixture of products, perhaps due to concomitant cleavage of both the allyl and benzyl ethers in 3.51. Separation of the required product from this mixture did not appear to be practical. The allyl ether in 3.51 could not be isomerized to the corresponding vinyl ether (to enable acid hydrolysis) under strongly basic conditions (entry 4). ${ }^{13}$ Isomerization of the allyl ether could however be carried out in the presence of palladium but the yields were low (entries 5 and 6). ${ }^{14}$ Better yields were obtained for the cleavage of the allyl ether in 3.51 in the presence of palladium chloride in acetic acid, but the yields were not consistent (entry 7). ${ }^{15}$ The allyl ether in $\mathbf{3 . 5 1}$ also resisted cleavage with sodium borohydride in the presence of lithium chloride as well as with N bromosuccinimide. ${ }^{16,17}$ Fortunately, the allyl ether in $\mathbf{3 . 5 1}$ could be cleaved with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ to obtain the $\mathbf{C 5}$-alcohol $\mathbf{3 . 5 2}$ in good isolable yield.

Table 1. A summary of the attempts to cleave the allyl group in $\mathbf{3 . 5 1}$

Sr. No	CONDITIONS	RESULTS (Yields are with respect to $\mathbf{3 . 5 1}$)	REFERENCE
1.	$i-\mathrm{PrOH}, 20 \% \mathrm{Pd}(\mathrm{OH})_{2}(0.2 \mathrm{eq}), \mathrm{Pd} / \mathrm{C}$ (10\%) (0.2eq), reflux 19 h	Complex mixture indicating debenzylation	12
2.	i-PrOH, 20\% $\mathrm{Pd}(\mathrm{OH})_{2}(0.2 e q)$, reflux 2h	Complex mixture indicating debenzylation	12
3.	$\mathrm{CH}_{3} \mathrm{COCH}_{3}: \quad \mathrm{H}_{2} \mathrm{O}, \quad(10: 1), \quad \mathrm{N}-$ bromosuccinimide (1.2eq), 70 minutes $0-5^{\circ} \mathrm{C}$	Complex mixture indicating debenzylation	16
4.	a) DMSO, potassium tert-butoxide, 20h, $100{ }^{\circ} \mathrm{C}$, b) $\mathrm{H}+$,Acetone ,	No reaction	13
5.	$\mathrm{MeOH}+\mathrm{H}_{2} \mathrm{O}, \quad \mathrm{Pd} / \mathrm{C}(10 \%), 0.3 \mathrm{eq} \mathrm{p-}$ TSA	55\% isolated from a complex mixture	14
6.	i - $\mathrm{PrOH}, \mathrm{Pd} / \mathrm{C}(10 \%), 0.3 \mathrm{eq}$ p-TSA	$40 \%, \quad$ isolated from a complex mixture	Modification of ref 14
7.	PdCl_{2} (1.5) NaOAc (6eq) $95 \% \mathrm{AcOH}$, temperature varied from RT-100 C, 6h to 42 h .	60- 80% yield but inconsistent results.	15
8.	LiCl (2.2eq), NaBH_{4} (1.1eq), 0 to RT , 24 h .	No reaction	17

Crystals of the allyl ether $\mathbf{3 . 5 1}$ as well as the pentabenyl ether $\mathbf{3 . 5 2}$ suitable for single crystal X-ray diffraction studies could be obtained after arduous trials to shed light on them (Figure 1). The molecular structure of $\mathbf{3 . 5 1}$ in its crystal revealed crowding of the benzyl ethers near the allyl ether moiety. Hence it is likely that the heavy substitution in $\mathbf{3 . 5 1}$ masks the allyl ether and prevents its facile cleavage.

(a)

(b)

Figure 1. ORTEP of (a) 3.51 (b) 3.52. Thermal ellipsoids are drawn at 50% probability level. Hydrogen atoms are depicted as small spheres of arbitrary radii.

Scheme 10. (a) Toluene, $\mathrm{MeMgI}, \mathrm{RT}$, 1h, (b) $\mathrm{MeOH}, \mathrm{NaBH}_{4}$, reflux, 24h; (c) Pyridine, $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, 48h, RT.

Grignard reaction of the myo-inosose derivative 3.53 gave a mixture of the corresponding myo- and neo-inositol derivatives. The mixture of the products was analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Figure 2. ${ }^{1} \mathrm{H}$ NMR spectrum of mixture of $\mathbf{3 . 5 4}$ and $\mathbf{3 . 5 5}$ in $\left(\mathrm{CDCl}_{3}\right)$.
From previous reports ${ }^{11}$ in our laboratory it was clear that the axial methyl group appears downfield relative to the methyl group at the equatorial position (in inositol derivatives). The spectrum (Figure 2) shows two peaks, at $\delta 1.26$ corresponding to the axial methyl group and the other at $\delta 1.23$ corresponding to the equatorial methyl group. Although this assignment is not confirmed by other supporting data, it is sufficient to show that a mixture of two isomeric products resulted on C-methylation of the inosose 3.53.

Hydride reduction of the myo-inosose derivative 3.53 gave a mixture of the corresponding myo- and neo-inositol derivatives (Scheme 10).

Figure 3. ${ }^{1} \mathrm{H}$ NMR spectrum of mixture of $\mathbf{3 . 5 8}$ and $\mathbf{3 . 5 9}$ in $\left(\mathrm{CDCl}_{3}\right)$
The axial acetate protons (neo-isomer 3.58) also appears downfield at $\delta 2.10$ whereas the equitorial acetate protons (myo-isomer 3.59) appears at $\delta 1.84 .{ }^{18}$ (Figure 3)The results described above (on comparison with earlier reports) ${ }^{18}$ as in Scheme 10 conclusively established the role of the acetal bridge in directing selective addition to the carbonyl group. However it is not unlikely that chelation of the metal ion (in the reducing agent or the Grignard reagent) with the inosose containing the 1,3-acetal bridge contributes to control the selectivty in these nucleophilic addition to the inosose carbonyl group. Since this aspect cannot be easily ascertained by experiment, we carried out DFT calculations on certain model systems to get better insight into this aspect.

A comparison of the result of hydride reduction of inososes and other cyclohexanones containing a β-hydroxyl group (or its protected derivative) revealed that the selectivity towards the formation of the 1,3 -diaxial alcohol was better when the β-substituent was in the axial orientation. ${ }^{18}$ The equatorial orientation of the β-substituent generally led to decrease in the selectivity towards the formation of the 1,3-diaxial diol.

Scheme 11. (a) $\mathrm{NaBH}_{4}, \mathrm{DCM} / \mathrm{MeOH}, 0^{\circ} \mathrm{C}$-RT , 30 min ; (b) pyridine, $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, reflux, 20 h .
Earlier reports on the complexation of inositols with metal ions reveal that the cyclitols which have a sequence of three hydroxyl groups in the axial-equatorial-axial arrangement (as in epi-inositol) are better at forming metal ion complexes. ${ }^{19-21}$ These results taken together implied the possibility of the complexation of the metal ion in the hydride reducing agent with the hydroxyl ketone being a factor in deciding the observed selectivity (as in the scheme 11). When the β-substituent is equatorial, the intramolecular distance between oxygen atoms seems to be relatively large and hence the stability of the resulting chelate is relatively less, leading to loss of selectivity during product formation. Hence, a computational study was undertaken on model systems as shown in Scheme 12. The starting hydroxyl ketone, all the possible chelated intermediates were geometry optimized using DFT calculation. The results are tabulated in Figure 4.

Scheme 12. Hydride reduction of the 3-hydroxy ketones $\mathbf{3 . 7 0}$ and $\mathbf{3 . 7 5}$

Figure 4. The optimized geometries for the intermediate Na^{+}complexes 3.71, 3.73, 3.76 and 3.77. The energy difference $\Delta \mathrm{E}$ represents the relative stability of the complexes.

Hence the stability and therefore the probability of the involvement of the chelate $\mathbf{3 . 7 1}$ is higher as compared to $\mathbf{3 . 7 3}, \mathbf{3 . 7 6}$, and $\mathbf{3 . 7 7}$.

Grignard reaction of protected epi- and scyllo-inososes with methyl magnesium iodide (Scheme 7) resulted in the formation of the C-methyl epi-inositol derivative and a diastereomeric mixture of C-methyl myo- and scyllo-inositol derivatives respectively. ${ }^{11}$
The product selectivity observed in these reactions are similar to those obtained for the hydride reduction of the inososes (Scheme 11). These results suggest that the orientation of the β-hydroxyl group in inososes affect the stereochemistry of addition of carbon nucleophile to the carbonyl group in inososes. Hence a similar study of geometry optimization was undertaken with regard to Grignard reaction on model systems shown in Scheme 13. The results are shown in Figure 5.

Scheme 13. Grignard addition to the 3-hydroxy ketones $\mathbf{3 . 7 0}$ and $\mathbf{3 . 7 5}$

Figure 5. The optimized geometries for the MeMgBr complexes 3.81, 3.79, 3.85, and 3.83. The energy difference $\Delta \mathrm{E}$ represents the relative stability of the isomeric complexes.

The stability and probability of the involvement of the chelates $\mathbf{3 . 8 1}$ during the Grignard reaction is higher as compared to $\mathbf{3 . 7 9}, \mathbf{3 . 8 3}$ and $\mathbf{3 . 8 5}$.

Results of the DFT calculations support the involvement of metal ion chelates during the sodium borohydride reduction and the Grignard reaction of inososes containing the 1,3 -acetal bridge (since in these ketones an axial β-alkoxyl moiety is present).

This could be a major factor in deciding the stereoselectivity of nucleophilic addition to these inososes. The findings of the computational study are in concurrence with the experimental results. Hence it is likely that the observed selectivity in the reaction of inosose derivatives containing the 1,3-acetal bridge is a consequence of conformational change forced by the 1,3-acetal bridge (which places an axial alkoxyl group β - to the reacting keto group as in $\mathbf{3 . 3 9}$, Scheme 8).

3.3. Conclusions

A comparative study of the hydride reduction and Grignard reaction of inososes with and without the 1,3 -acetal bridge reveals the role played by the acetal bridge in directing the product selectivity. Hence inositol derivatives with the 1,3 -acetal bridge could be superior intermediates in synthetic protocols aiming to prepare inositol derivatives.

3.4. Experimental

3.4.1. X-ray Data (Collection, Structure Solution and Refinement)

For compound $\mathbf{3 . 5 1}$ same as in the subsection 2.4.1 (Chapter 2).
X-ray intensity data measurements of $\mathbf{3 . 5 2}$ were carried out on a Bruker D8 VENTURE Kappa Duo PHOTON II CPAD diffractometer equipped with Incoatech multilayer mirrors optics. The intensity measurements were carried out with Mo micro-focus sealed tube diffraction source ($\mathrm{Mo}-\mathrm{K} \alpha=0.71073 \AA$). The X-ray generator was operated at 50 kV and 1.4 mA . A preliminary set of cell constants and an orientation matrix were calculated from three sets of 12 frames. Data were collected with scan width of 0.5° at different settings of and with a frame time of 30 secs keeping the sample-to-detector distance fixed at 5.00 cm . The X-ray data collection was monitored by APEX3 program (Bruker, 2016). ${ }^{22}$ All the data were corrected for Lorentzian, polarization and absorption effects using SAINT and SADABS programs (Bruker, 2016). SHELX-97 was used for structure solution and full matrix least-squares refinement on F^{2}. ${ }^{23}$

3.4.2 Computational details

Same as in the subsection 2.4.2 (Chapter 2).

3.4.3 General Experimental Methods

Same as in the subsection 2.4.3 (Chapter 2).
1,3- \boldsymbol{O}-Methylidene-2,4,6-tri- \boldsymbol{O}-5- \boldsymbol{O}-allyl-myo-inositol (3.49): To an ice cooled solution of 4.835 g (10.4 mmoles) of $\mathbf{1 . 1 5 0}$ was in 6 mL DMF, 1.123 g (46.8 mmoles) of sodium hydride and 4 mL (46.8 mmoles) of allyl bromide was added and stirred subsequently for 3 hour at ambient temperature. Ice was added to the reaction mixture and solvents were removed under reduced pressure and the residue worked up with ethyl acetate, dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure to obtain 3.49. The crude product was purified by column chromatography (eluent 15% ethyl acetate in light petroleum, silica 100-120 mesh) to afford 3.49 ($4.793 \mathrm{~g}, 92 \%$ yield) as a gum. TLC $R f=0.5$ in 20% ethyl acetate in light petroleum).

Data for 3.49: IR (Chloroform): v 3100-2900 $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (200MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=$ $7.44-7.25(\mathrm{~m}, 15 \mathrm{H}), 6.04-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.33-5.05(\mathrm{~m}, 3 \mathrm{H}), 4.82(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1$
H), $4.74-4.51$ (m, 6 H), 4.26 (s, 2 H), $4.13 \mathrm{~m}, 2 \mathrm{H}$), 3.91 (d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.84 (t, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $137.8\left(\mathrm{C}_{\text {arom }}\right), 135.0\left(\mathrm{C}_{\text {arom }}\right), 128.5\left(\mathrm{C}_{\text {arom }}\right), 127.9\left(\mathrm{C}_{\text {arom }}\right), 127.9\left(\mathrm{C}_{\text {arom }}\right), 117.1\left(\mathrm{CH}_{2}\right), 85.5$ $\left(\mathrm{CH}_{2}\right), 82.1$ (Ins C), 80.0 (Ins C), 72.6 (Ins C), $72.1\left(\mathrm{CH}_{2}\right), 71.9\left(\mathrm{CH}_{2}\right), 71.0\left(\mathrm{CH}_{2} \mathrm{O}\right)$, 70.3 (Ins C) ppm; HRMS: m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{O}_{6}$: $503.2434\left[M+\mathrm{H}^{+}\right]$; found: 503.2433 .

1,2,3,4,6-penta- \boldsymbol{O}-benzyl-5-allyl-myo-inositol (3.51):The acetal 3.49 ($1.964 \mathrm{~g}, 3.8$ mmoles) was dissolved in $\mathrm{MeOH}(12 \mathrm{~mL}$) and conc. $\mathrm{HCL}(7 \mathrm{~mL})$ and refluxed for 12 h. The acid was neutralized with solid NaHCO_{3}, the solvent was removed under reduced pressure to yield $\mathbf{3 . 5 0}$. The solvents were removed in vacuo and the compound was dried thoroughly to exclude moisture. The cakey white solid was then used in the next step without further purification as $\mathbf{3 . 5 0}$ was observed to be water soluble on preliminary trials of this reaction. To the crude diol $\mathbf{3 . 5 0}$ in dry DMF (15 $\mathrm{mL}), \mathrm{NaH}(0.3782 \mathrm{~g}, 9.455 \mathrm{mmol})$, benzyl bromide ($1.1 \mathrm{~mL}, 9.455 \mathrm{mmol}$), were added at $0^{\circ} \mathrm{C}$ and then stirred at RT for 2 h . Ice was added to the reaction mixture and solvents were removed under reduced pressure and the residue worked up with ethyl acetate, dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure to obtain 3.51. The crude product was purified by column chromatography (eluent 15% ethyl acetate in light petroleum, 100-200 mesh) to afford 3.51 ($1.864 \mathrm{~g}, 82 \%$) as a solid. TLC $R f=0.3$ (in 25% ethyl acetate in light petroleum.) TLC $R f=0.3$ (in 20\% ethyl acetate in light petroleum.)
Data for 3.51: M.p. $87-89{ }^{\circ} \mathrm{C}$ (Crystallized from chloroform and benzene); IR (Chloroform): $v 3350 \mathrm{~cm}-{ }^{1} ;{ }^{1} \mathbf{H}$ NMR (200MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.46-7.19(\mathrm{~m}, 26 \mathrm{H})$, 6.12-5.81 (m, 1 H), 5.35-5.06 (m, 2 H), 4.94-4.75 (m, 6 H), 4.72-4.50(m, 4 H), $4.35(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.10-3.92(\mathrm{~m}, 3 \mathrm{H}), 3.40-3.22(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=138.9\left(\mathrm{C}_{\text {arom }}\right), 138.4\left(\mathrm{C}_{\text {arom }}\right), 135.3\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 128.3\left(\mathrm{C}_{\text {arom }}\right)$, $128.1\left(\mathrm{C}_{\text {arom }}\right), 127.7\left(\mathrm{C}_{\text {arom }}\right), 127.5\left(\mathrm{C}_{\text {arom }}\right), 127.3\left(\mathrm{C}_{\text {arom }}\right), 116.5\left(\mathrm{CH}_{2}\right), 83.5$ (Ins C), 81.6 (Ins C), 80.8 (Ins C), $75.9\left(\mathrm{CH}_{2}\right), 74.6\left(\mathrm{CH}_{2}\right), 74.4$ (Ins C), $74.1\left(\mathrm{CH}_{2}\right), 72.8$ $\left(\mathrm{CH}_{2}\right)$ ppm. HRMS: m / z calcd for $\mathrm{C}_{44} \mathrm{H}_{47} \mathrm{O}_{6}{ }^{+}: 671.3367\left[M+\mathrm{H}^{+}\right]$; found: 671.3371.

1,2,3,4,6-penta- \boldsymbol{O}-benzyl-myo-inositol (3.52): To a solution of $\mathbf{3 . 5 1}(0.112 \mathrm{~g}$, 0.167 mmoles) and 0.276 g (2 mmol) of anhydrous potassium carbonate in degassed ethanol (3 mL), tetrakis triphenylphosphine palladium was added in 2 parts $(0.045 \mathrm{~g}$
each time), 8 hours apart. The reaction mixture was refluxed for 48 hours. solvents were removed under reduced pressure and the residue worked up with 2 N HCl , ethyl acetate and dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure to obtain 3.52. The crude product was purified by column chromatography (eluent 7\% ethyl acetate in light petroleum, silica 100-120 mesh) to afford 3.52 ($0.092 \mathrm{~g}, 86 \%$ yield) as a white solid. TLC $R f=0.3$ in 15% ethyl acetate in light petroleum. 0.006 g of starting material was isolated.

Data for 3.52:M.p. 182-185 ${ }^{\circ} \mathrm{C}$ (crystallised from benzene and dichloromethane); IR (Chloroform): $3360 \mathrm{~cm}^{-1} . ; \mathbf{H}$ NMR (200MHz, CDCl_{3}) $\delta=7.48-7.27(\mathrm{~m}, 25 \mathrm{H}), 5.01$ - $4.55(\mathrm{~m}, 10 \mathrm{H}), 4.17-3.83(\mathrm{~m}, 3 \mathrm{H}), 3.62-3.28(\mathrm{~m}, 3 \mathrm{H}), 1.97\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exhangeable) ppm; ${ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=138.9\left(\mathrm{C}_{\text {arom }}\right), 138.8\left(\mathrm{C}_{\text {arom }}\right), 138.3$ $\left(\mathrm{C}_{\text {arom }}\right), 128.3\left(\mathrm{C}_{\text {arom }}\right), 128.0\left(\mathrm{C}_{\text {arom }}\right), 127.7\left(\mathrm{C}_{\text {arom }}\right), 127.6\left(\mathrm{C}_{\text {arom }}\right), 127.4\left(\mathrm{C}_{\text {arom }}\right), 81.1$ (Ins C), 80.7 (Ins C), $75.4\left(\mathrm{CH}_{2}\right), 75.1\left(\right.$ Ins C), $74.5\left(\right.$ Ins C), $74.2\left(\mathrm{CH}_{2}\right), 72.6\left(\mathrm{CH}_{2}\right)$ ppm; HRMS: m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{O}_{6}{ }^{+}: 631.3054\left[M+\mathrm{H}^{+}\right]$; found: 631.3054

1,2,3,4,6-penta-O-benzyl-myo-inosose (3.53): To a solution of 3.52 ($0.355 \mathrm{~g}, 0.5628$ mmoles) in 3 mL ethyl acetate 0.472 g (1.688 mmoles) of 2-iodoxy benzoic acid was added. The resulting solution was refluxed for 6 h . The reaction mixture was filtered through sintered glass funnel over celite and washed with ethyl acetate. The combined filtrate and washings were evaporated under reduced pressure to obtain to obtain 3.53. The crude product was purified by column chromatography (eluent 10% ethyl acetate in light petroleum, 100-200 mesh) to afford $\mathbf{3 . 5 3} 0.341 \mathrm{~g}$ (96%) as a white solid. TLC $R f=0.3$ (in 20% ethyl acetate in light petroleum.)
Data for 3.53: M.p. $150-152{ }^{\circ} \mathrm{C}$; IR (Chloroform): $1733 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.48-7.27(\mathrm{~m}, 25 \mathrm{H}), 4.99-4.86(\mathrm{~m}, 4 \mathrm{H}), 4.84-4.72(\mathrm{~m}, 2 \mathrm{H}), 4.70-$ $4.52(\mathrm{~m}, 6 \mathrm{H}), 4.13(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $\left.203.7(\mathrm{C}=\mathrm{O}), 138.5\left(\mathrm{C}_{\text {arom }}\right), 138.2 \mathrm{C}_{\text {arom }}\right), 137.9\left(\mathrm{C}_{\text {arom }}\right), 128.4\left(\mathrm{C}_{\text {arom }}\right), 128.4$ ($\mathrm{C}_{\text {arom }}$), 128.3 ($\mathrm{C}_{\text {arom }}$), 128.1 ($\mathrm{C}_{\text {arom }}$), 127.7 ($\mathrm{C}_{\text {arom }}$), 127.7 ($\mathrm{C}_{\text {arom }}$), 83.1 (Ins C), 79.4 (Ins C), 76.0 (Ins C), $75.0\left(\mathrm{CH}_{2}\right), 73.7\left(\mathrm{CH}_{2}\right), 73.5\left(\mathrm{CH}_{2}\right) \mathrm{ppm} ;$ HRMS: m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{O}_{6}{ }^{+}: 629.2901\left[M+\mathrm{H}^{+}\right]$; found: 629. 2898.

Reaction of methyl magnesium iodide with 3.53: To a cooled $\left(0{ }^{\circ} \mathrm{C}\right)$ solution of the 0.060 g (0.09 mmoles) $\mathbf{3 . 5 3}$ in dry toluene 2 mL was added a solution of MeMgI (6 mmol). in diethyl ether and stirred for 1 h . The reaction mixture was diluted with
diethyl ether, washed with saturated solution of ammonium chloride, water, followed by brine and dried over anhydrous sodium sulphate. The solvent was removed under reduced to give a mixture of alcohols ($\mathbf{3 . 5 4}$ and $\mathbf{3 . 5 5}$) 0.056 g (91%), which was analyzed by ${ }^{1} \mathrm{H}$-NMR spectroscopy.

Reduction of 3.53 with $\mathrm{NaBH}_{4}: 0.007 \mathrm{~g}(0.0477$ mmoles $) \mathrm{NaBH}_{4}$ was added to a solution of 0.037 g (0.058 mmoles) of $\mathbf{3 . 5 3}$ in mixture of 1 mL dichloromethane and 0.25 mL methanol and refluxed for 24 h . The reaction was quenched by adding aqueous ammonium chloride solution. The resulting mixture was concentrated under reduced pressure and the residue was worked up with ethyl acetate. The solid obtained was acetylated without further purification using pyridine 1 mL , acetic anhydride (0.5 mL) and DMAP $(0.010 \mathrm{~g}))$ at room temperature for 48 h . The reaction mixture was quenched by adding few pieces of ice, solvent was removed under reduced pressure and the residue obtained was worked up with ethyl acetate to obtain a mixture of acetates ($\mathbf{3 . 5 8}$ and 3.59) 0.041 g (93%) which was analyzed by ${ }^{1} \mathrm{H}$-NMR spectroscopy.

3.5. References

1. Jagdhane, R. C.; Shashidhar, M. S. Eur. J. Org. Chem. 2010, 2945-2953.
2. Sarmah, M. P.; Shashidhar, M. S.; Sureshan, K. M.; Gonnade, R. G.; Bhadbhade, M. M. Tetrahedron, 2005, 61, 4437-4446.
3. Mohanrao, R.; Asokan, A.; Sureshan, K. M. Chem. Commun., 2014, 50, 67076710.
4. Riley, A. M.; Murphy, C. T.; Lindley, C. J.; Westwick, J.; Potter, B. V. L. Bioorg. \& Med. Chem. Lett. 1996, 6, 2197-2200.
5. Riley, A. M.; Murphy, C. T.; Lindley, C. J.; Westwick, J.; Potter, B. V. L. Bioorg. \& Med. Chem. Lett. 1996, 6, 2197-2200.
6. Riley, A. M.; Guédat, P.; Schlewer, G.; Spiess, B.; Potter, B. V. L. J. Org. Chem. 1998, 63, 295-305.
7. Gigg, J.; Gigg, R. Carbohydrate Research 1997, 299, 77.
8. Mondal, S.; Prathap, A.; Sureshan K. M. J. Org. Chem. 2013, 78, 7690-7700.
9. Murali, C.; Gurale, B. P.; Shashidhar, M. S. Eur. J. Org. Chem. 2010, 755764.
10. Devaraj, S.; Shashidhar, M. S.; Dixit, S. S. Tetrahedron, 2005, 61, 529536.
11. Jagdhane, R.C.; Patil, M. T.; Krishnaswamy, S. Tetrahedron 2013, 69, 51445151.
12. Mart, A; Shashidhar, M. S. Tetrahedron 2012, 68, 9769-9776.
13. Gigg, J.; Gigg, R. J. Chem. Soc. C 1966, 82-86.
14. Boss, R.; Scheffold, R. Angew. Chem. Int. Ed. 1976, 15, 558-559.
15. Smith III, A. B.; Fukui, M.; Vaccaro, H. A.; Empfield. J. R. J. Am. Chem. Soc. 1991, 113, 2071-2092.
16. RajaRam, S.; Chary, K. P.; Salahuddin, S.; Iyengar, D. S. Synthetic Commun. 2002, 32, 133-137.
17. Dim, R. R.; Melgarejo, C. R. Lopez-Espinosa, M. T. P.; Cubero, I. I. J. Org. Chem. 1994, 59, 7928-7929.
18. Patil, M. T.; Krishnaswamy, S.; Sarmah, M. P.; Shashidhar, M. S. Tetrahedron Lett. 2011, 52, 3756-3758.
19. Angyal S. J.; Davis, K. P. J. Chem Soc. D Chem. Commun. 1971, 500-501.
20. Angyal S. J. Pure Appl. Chem. 1973, 35, 131-146.
21. Angyal S. J. Aust. J. Chem. 1972, 25, 1957-1966.
22. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
23. Sheldrick, G. M. Acta Cryst. 2008, A64, 112 - 122.

\square

\square

$\mathrm{HO}_{\mathrm{O}}^{\mathrm{O} \mathrm{Na}}$
3.77

3.85

3.83
\square
\square

B roadening of signals was also observed due to the formation of mixture of inositol derivatives. The ${ }^{1} H$ NMR spectra and the PXRD patterns (Figure 7-9) of the solid samples 4.1D and 4.1E (4.1stored at $-20^{\circ} \mathrm{C}$ for 12 h to obtain a solid, done in order to reproduce the crystals Form I) were very similar to that of Form I crystals, indicating that the they were in fact microcrystalline forms of the latter crystals.

Figure7. PXRD patterns for crystals of (a) black-Form I. and (b) blue-sample 4.1D

ב-

