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Abstract 
“...when you have eliminated the impossible, whatever remains, 

however improbable, must be the truth.” 

– Sir Arthur Conan Doyle, The Sign of the Four, Chap. 6, 1890 
A biological cell communicates with the environment through numerous pathways initiating 

from the receptors at the membranes and extending to the interior of the cell, coordinating a large 

number of functional activities. To understand the underlying molecular mechanisms behind 

these phenomena are of primary concern towards rational drug designing. This thesis aims to 

investigate the thermodynamic basis of two major aspects of information propagation in 

biomolecular signaling, i.e. allostery (intra-protein) and protein-protein interactions (inter-

protein), by capturing the complexity of the underlying free energy landscape in the form of 

physicochemical interactions. We have used conventional molecular dynamics simulations and 

metadynamics to investigate the conformational changes, dynamics and thermodynamics of 

these biophysical processes. Two model systems: PDZ domain and Rho GTPases were chosen to 

understand the molecular details of the allosteric regulation and biomolecular recognition 

process in signaling pathways, respectively. 

PDZ domain proteins are classic examples of dynamic allostery where allostery has been 

attributed to purely entropic effects. In contrast, in this thesis, we show that the signal induced by 

perturbation (ligand binding, pH-induced protonation) propagates in the form of internal 

redistribution and rewiring of electrostatic interactions (enthalpic contributions) leading to a 

“population shift” in the hydrogen bonded network and salt bridges. In addition, we have 

explored the underlying mechanism of molecular recognition processes in Rho family of 

GTPases. We demonstrate a fine energetic balance of molecular interactions that leads to 

nucleotide dependent conformational selections of the switch-I region of RhoA GTPase and its 

subsequent role in effector recognition. Moreover, we extended our investigation to understand 

the phosphorylation-mediated regulation of Rac1 GTPase and RhoGDI interaction. We derive a 

mechanistic model based on conformational free energy landscape that exhibits rearrangement of 

hydrogen bonds between Rac1 and GDI upon phosphorylation. Our results are important in the 

context that understanding of the intricate aspects of signaling in the form of the molecular 

interactions would be helpful in the prediction of allosteric sites and drug discovery. 
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Chapter 1  
1 Introduction 

“Ce que nous connaissons est peu de chose; ce que nous ignorons est immense. 

What we know is not much. What we do not know is immense.”  

– Pierre Simon Laplace 
 

ignal transduction process is a complex chain of organised biochemical reactions generated 

in response to the external or intracellular stimuli. These external or internal stimuli which 

initiate or activate the signal transduction pathways are known as primary messengers and can be 

chemical stimuli (e.g. metal ions, ligands, hormones, neurotransmitters, chemokines, paracrine 

and autocrine factors) or physical stimuli (e.g. pressure, light, heat)1-5.  These signals are capable 

of generating cascades of tightly controlled responses at multiple steps in the pathways. Proteins 

form an elementary unit of these signal transduction cascades. It is a highly specific protein-

protein interaction driven process which regulates events linked for the survival of the cell (e.g. 

gene expression, enzyme activity and cell division activity). A general notion is that these 

intermediate steps amplify the signal so that a small signal can generate a large response leading 

to change in cell function. The binary switching on and off states of a signaling protein plays a 

crucial role in the signal propagation. A typical cell membrane hosts a variety of transmembrane 

proteins such as G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTK), ions 

channels acting as receptors for these external stimuli6-10. Over the last few decades, the receptor 

activation mechanism has been extensively studied to understand the selectivity and specificity 

between the interacting entities. The effect of receptor activation is reflected in terms of protein 

activation/deactivation through binding of small molecules termed as secondary messengers 

(cAMP, cGMP, Ca2+ ions, IP3) or protein directed post-translational modifications such as 

phosphorylation, ubiquitination or localisation in the cell11. This chapter provides an overview of 

the evidences from previous studies to understand the molecular basis of signaling mechanism. 

In addition, a greater emphasis has been provided to understand how molecular thermodynamics 

and dynamics govern the biomolecular signaling processes. 

S 
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1.1  Protein-Protein Interactions 

Protein-protein interactions play a pivotal role in regulating signaling pathways11. In particular, 

how two proteins recognise each other is one of the most fundamental problems in biology.  The 

entire activity is highly specific, based on sequence-based recognition or structural properties of 

proteins such that the information is transduced via molecular recognition process to downstream 

effectors. The complex nature of signaling mechanism could be approximated with the 

information that a single protein can interact with multiple proteins at the same time and in the 

same space or at different times or locations. These interactions are dictated by various kinds of 

non-bonded interactions at the molecular scale, namely electrostatic, hydrogen bonding, van der 

Waals and hydrophobic interactions. The binding interfaces could differ depending on the 

interacting partners such as protein-membrane10, protein-protein12, or protein-nucleic acid13. A 

comparative analysis of the proteins and their complexes reveals that the spatial distribution of 

charged and non-polar amino acids differs on these interfaces14. For example, in DNA-Histone 

complex, DNA is highly negatively charged, and histone proteins are positively charged largely 

due to lysine side chains15. These differences in the distribution of the amino acids have been 

exploited as targets for drug designing and prediction of protein-protein interaction sites using 

machine learning techniques. 

Most of the signaling proteins are stable three-dimensional domains that are capable of 

independent functions. Multiple domains can coexist in a single signaling protein. These 

domains recognise post-translational modifications such as tyrosine phosphorylation (pTyr), 

methylation or short amino acid sequence motifs containing a specific pattern of amino acids 

such as hydrophobic amino acids, proline-rich and evolutionary conserved amino acid at specific 

positions16-18.  It is well established that the binding site in proteins is characterised by the 

presence of hydrophobic residues surrounded by charged residues or vice-versa19. Such is the 

case of ligand binding in PDZ domain. PDZ domains are one of the most potential regulators of 

signal transduction that bind to the specific recognition sequences at the C-terminal of proteins, 

often transmembrane receptors (more than 80 GPCRs, ion channels)20. The carboxylate-binding 

site in PDZ domain is characterised by the highly conserved loop (R/K-XXX-G-Φ-G-Φ motif, 

where X is any amino acid residue, and Φ is any hydrophobic residue) that creates a hydrophobic 

pocket for ligand recognition21,22. Many proteins contain several PDZ domains (e.g. GRIP 
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contains 7 PDZ domains) which can bind individually to multiple subunits of a channel inducing 

localisation and clustering of transmembrane receptors23. A collective analysis of more than 

3000 ligands reveals three major classes of PDZ domains which bind to specific sequence motifs 

at the C-terminal of ligands containing Serine/Threonine/Φ(hydrophobic amino acid)20,24. 

Several studies have investigated the crucial role of the pairing of electrostatic interactions (salt-

bridges, hydrogen bonds) and hydrophobicity in ligand recognition specificity in PDZ domain25-

27. However, a mechanism that ensures the selectivity and specificity of protein-protein 

interactions at the molecular level remains elusive. 

In addition, these binding interfaces constitute amino-acids with ionizable side-chains 

(e.g. Arg, Lys, His, Asp and Glu) that undergoes post-translational charge altering modifications 

such as phosphorylation, acetylation or pH-induced protonation-deprotonation15,19,28. For 

example, SH2, SH3 or PTB (pTyr-binding) domains present in cytosolic signaling proteins such 

as phospholipase Cγ, Ras GTPase activating protein (GAP) and protein-tyrosine kinases 

recognise phosphotyrosine containing sequence motifs in activated receptor tyrosine kinases 

(RTK)29,30. Interestingly, under physiological conditions, the protein-protein interfaces exhibit 

different degrees of solvation and spatial distribution of water depending on the structural 

properties (polarity and geometry) of the interface. Several studies suggest water-mediated 

interactions as a part of biomolecular recognition process where it can act as a shield that 

weakens the unfavourable charge-charge interactions upon ligand binding31 or as a linker 

between indirect charge-charge interactions13,32. Furthermore, it insists that these interactions 

favour enthalpically but can also enhance ligand binding affinity entropically, in case the water 

resides in the hydrophobic cavities33,34. It was observed that water molecules inside a non-polar 

cavity would have more freedom and hence, higher entropy as compared to the bulk, where the 

water molecules participate in the water network. This diversity of possible interactions requires 

spatiotemporal regulation of protein-protein interactions, and although our knowledge about the 

diverse interacting partners in signaling process is broad, it is important to have a detailed 

molecular view of the undergoing processes. 
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1.2  Activation and Deactivation of Proteins 

Protein regulation is one of the most complex and ubiquitous processes in biology. With the 

development of biophysical and biochemical techniques, the major focus is to understand the 

activation/deactivation mechanism and the molecular nature of the inactive and active states of 

the signaling proteins which are part of signal transduction cascade35. Previous studies reveal two 

major modes of mechanism, namely, covalent modification of amino acid residues at different 

sites36 and conformational changes in the proteins37 as imprints of activated/deactivated state of a 

protein in signaling pathways. One of the most diverse and important covalent modification is 

protein phosphorylation. This post-translational modification method imparts a molecular switch 

behaviour through activation and deactivation of a large number of enzymes and transmembrane 

receptors by kinases and phosphatases respectively38. The signaling cascade involving protein 

kinase activity aims to propagate and concurrently amplify the signal in terms of promoting or 

inhibiting the protein-ligand or protein-protein interactions. For example, in case of receptor 

tyrosine kinases (RTKs) activated signaling pathway, several proteins (Src, PLC γ, Ras-GAP, 

Raf, PI3K) and secondary messengers (cAMP, cGMP, Ca2+ and diacylglycerol (DAG)) facilitate 

the activation of downstream protein kinases (PKC, PKA, CaM)30. Experimental studies show 

PKA mediated serine phosphorylation at the PDZ recognition site of K+ channels results in the 

uncoupling of the channel from second PDZ domain of PSD-95 and subsequent inhibition of K+ 

conductance39 whereas PKC mediated serine phosphorylation of RhoGDI stimulates its 

dissociation from Rho GTPase, thereby resulting in Rho GTPase activation40,41. 

In addition, the activation and deactivation mechanisms are dominated by allosteric 

events leading to the change in molecular conformation of the target molecule42. These events 

have been underappreciated and often intertwine with covalent modifications in the cell. Over 

recent years, there have been evidences of conformational driven signaling pathways43. The 

active and inactive states of signaling proteins exist in a conformational equilibrium with tunable 

population distribution, where there can be multiple metastable states separated by activation 

barrier over a free energy landscape44. The existence of multiple metastable states highlight that 

there may not be a single active state and ligand binding can activate diverse downstream 

signaling pathways. The binding of an external ligand to a transmembrane receptor or 

cytoplasmic protein within a cell shifts the conformational equilibrium from an inactive to a 
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functionally active state45. Several experimental evidences and computational studies on 

transmembrane receptors and protein complexes provide detailed insight into the dynamic 

processes and conformational changes during the activation9,46,47. It is evident from these studies 

that the activation and deactivation mechanisms involve a wide range of phenomenon ranging 

from conformational population shift47, allostery network48 or in some case exposure of novel 

interfaces (T cell receptor (TCR)-CD3 complex)49. Collectively, all these pathways involve 

signal propagation either through protein-protein interactions (inter-protein) or by allosteric 

mechanisms (intra-protein). In this thesis, we aim to understand the underlying mechanism of 

signal transduction pathways at these two different levels, i.e. intra-protein and inter-protein 

using two representative protein systems involved in a large number of signaling pathways, PDZ 

domain and Rho GTPases respectively. 

1.3  Molecular Basis of Inter-protein Signal Propagation in Rho GTPases 

Protein-protein interaction between two signal transduction pathways, i.e. crosstalk, increases the 

complexity and specificity of actions of different extracellular signals. The molecular 

interactions that underline the binding specificity between this crosstalk represent the key events 

in defining their functions. Unlike heterotrimeric GTPases which interact with the activated 

GPCRs, there exist a large number of other G-proteins that take part in intracellular signaling50. 

Small GTPases of Ras superfamily is one such class of G-proteins which are involved in 

regulatory processes such as cell division, cell polarity, shape and migration that require 

crosstalk between multiple signaling pathways51. The Ras superfamily is further divided into 

Ras, Rho, Ran, Rab and Arf GTPases. These GTPases undergo protein-protein interaction 

mediated complex cycle of regulation and deregulation in the signal propagation pathways52-54. 

Rho GTPases are part of Ras superfamily of G-proteins that regulate actin cytoskeleton 

dynamics and thereby coordinate a large number of signal transduction pathways in eukaryotic 

cells53-58. Alteration in Rho GTPases expression and activation contributes to the human cancer 

development59-62, neurological abnormalities63 and bacterial infections64-66. These are small, 

monomeric GTPases which comprises of a common G-domain containing 6β strands and 5α 

helices, and differ from other GTPases with the presence of a distinct insert region between β5 

and α4 region67-69. Previous studies have shown that the insert region is important for interaction 

with certain effector proteins for downstream signaling70. Rho GTPases share common sequence 
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and structural features of G-domain, which consists of switch I and switch II regions involved in 

nucleotide exchange mechanism71-76. Over recent years, more than 20 members of Rho GTPases 

have been identified and classified into eight subgroups77 (Fig. 1.1).  

 

Figure 1.1 (a) Crystal structure of RhoA in the GDP bound state (PDB ID: 1FTN). Switch I and 

II regions are highlighted in magenta and blue, respectively. The highly conserved P-loop motif 

is highlighted in orange. GDP and Mg2+ ion are in ball-and-stick model in green colour. (b) 

Classification of Rho subfamily of GTPases according to the sequence similarity. Members of 

each subgroup are highlighted using the same colour code.  

Rho GTPases share around 30% amino acid sequence identity with Ras protein and 45-

90% identity within the family51,78,79. Majority of the functional information about the Rho 

GTPases is obtained from three proteins, namely RhoA Rac1 and cdc42. Rho protein has three 

isoforms RhoA, RhoB and RhoC, which share >85% amino acid sequence identity80. Despite the 

high sequence similarity between these isoforms, distinct modifications at the C-terminal and 

subsequent different localisation results in different expression level and cellular functions in the 

cell. 

Role of regulatory proteins: GEFs, GAPs and GDIs  

Like all other G-proteins, these proteins function as molecular switches that regulate cellular 

functions by using a simple biochemical strategy of switching between an active GTP bound 
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state and inactive GDP bound state. This catalytic cycle is regulated by three proteins, namely 

GTPase-activating proteins (GAPs), guanine nucleotide exchange factors (GEFs) and guanine 

nucleotide dissociation inhibitors (GDIs)76,81,82 (Fig. 1.2).  

 

Figure 1.2 Rho GTPase cycle between GTP-bound active and GDP-bound inactive states. In the 

active state, Rho GTPases interact with downstream effector proteins. The GTPase cycle is 

regulated by three classes of proteins: (1) Guanine nucleotide exchange factors (GEFs) that 

catalyse nucleotide exchange and activates GTPase (2) GTPase-activating proteins (GAPs) 

catalyse GTP hydrolysis, and guanine nucleotide dissociation inhibitors (GDIs) inhibit the 

dissociation of GDP and subsequent binding of GTP. 

GAPs stimulate the intrinsic GTPase activity of Rho proteins and accelerate the 

formation of GDP-bound inactive state. Biochemical and structural data suggest the role of 

evolutionary conserved catalytic arginine residue (R305) of RhoGAP in accelerating GTP 

hydrolysis by stabilising charges developed during the transition state83-85. In the Rho GTPase 

cycle, GDIs act as a negative regulator by binding to the prenylated form of Rho GTPases in the 

GDP bound state82. Several transmembrane proteins such as GPCRs, RTKs, TK-associated 

receptors and integrins activate Rho GTPases directly or indirectly through activation of 

GEFs10,86,87. Upon activation, Rho GTPase proteins interact with a wide range of effectors 

initiating a network of cytoplasmic and nuclear signaling cascade that control processes ranging 

from cytoskeletal rearrangements54,88,89 to gene transcription90,91. Thus, Rho GTPases act as 

signaling nodes that can transmit information from upstream receptors activated by diverse 

external stimuli to specific downstream targets92. 
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Regulation by post-translational modifications 

In addition to the GTP hydrolysis mechanism, Rho GTPases are also regulated by the specific 

protein-protein complex formation and post-translation modifications93. This ensures the 

spatiotemporal regulation of GTPase in order to interact with various effectors. The post-

translational modifications include lipid modification (prenylation, palmitoylation), 

phosphorylation94-98 and ubiquitylation99-102 for regulating GTPase activity and levels inside the 

cell. Lipid modifications play a pivotal role in subcellular localisation of Rho GTPases to distinct 

membrane compartments and regulate the downstream signaling pathways (Fig. 1.3).  

 

Figure 1.3 Types of lipid modifications in Rho GTPases. (a) Illustration of a typical G-domain in 

Rho GTPases. The P-loop motif (red) and switch regions (I (blue) & II (green)) are highly 

conserved and involved in binding to the nucleotide (GDP/GTP). The hypervariable region 

defines the specificity in Rho GTPases. The sequence shown is specific for RhoA. The CAAX 

motif (red) at the C-terminal undergoes post-translational lipid modifications for membrane 

attachment. (b) The box shows the chemical structure of palmitoyl, farnesyl and geranylgeranyl 

group attached to the cysteine residue. These modifications defer in their hydrophobicity, 

selectivity and position of modification and regulation.  

Rho GTPases are characterised by the tetrapeptide motif CAAX (C- cysteine, A-any 

aliphatic amino acid, X-any amino acid) at carboxyl-terminal. This motif acts as an initiation site 

for the addition of farnesyl (15-carbon chain) or geranylgeranyl (20-carbon chain) moiety 
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mediated by FTase (farnesyl transferase) and GGTase (geranylgeranyl transferase) enzymes 

respectively103,104. This is followed by the cleaving of –AAX peptide by endoprotease105 and 

finally, carboxymethylation of cysteine residue106,107. The addition of lipid tail increases the 

hydrophobicity of the terminal and facilitates membrane association of the Rho GTPase at 

different locations108. On the other hand, phosphorylation of residues close to the lipid 

modifications can alter the localisation at the membrane by enhancing its interaction with 

RhoGDIs. Experimentally, it has been shown that phosphorylation on Ser188 of RhoA inhibits 

the activity by decreasing its association with effector protein ROCK and increasing its 

association with RhoGDI109.  

1.3.1 Thermodynamic View of Effector Recognition Mechanism 

Rho GTPases are capable of interacting with a large number of effectors regulating diverse 

cellular functions108,110. These effectors bind specifically to the GTP-bound active state of Rho 

GTPases. Several crystal structures highlight the conformational changes in the switch regions 

between the GDP-bound inactive state and GTP-bound active state68,69,111. Interestingly, effector 

proteins must recognise these differences/distinct features between the GTP-bound and GDP-

bound states for downstream signaling. The lists of Rho binding proteins include upstream 

regulators (GEFs, GAPs) and downstream effectors such as Ser/Thr kinases (Protein Kinase N, 

Rho-kinase, PAK), lipid kinases, SH3 domain containing proteins and others. Mutations and 

structural studies identify an essential role of switch I region for the effector protein recognition 

and hence termed “effector region”112. Sequence analysis reveals diverse and variable amino acid 

residues in the switch I region, suggesting its association with different effector proteins. For 

example, TPR domain of NADPH oxidase binds to Rac1 with specific residues Ala27 and Gly30 

in the switch I region113. Experimentally, TPR domain was shown to bind cdc42 after mutating 

residues at these key positions 27 and 30 to Alanine and Glycine respectively. Similarly, protein 

kinase N recognises specific residues in the switch I of RhoA which are different from 

corresponding residues in cdc42 and thus maintaining specificity for effector activation114. 

Further studies indicate that some effectors bind outside the Switch I region for activation. Using 

point mutations, it has been shown that ROCK and rhophilin require sequence outside effector 

region (switch I) for binding to RhoA115. Similarly using Rac1/RhoA chimeras, the importance 
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of C-terminal of Rac1 for the activation of PAK and p67phox (a subunit of NADPH oxidase) was 

highlighted116.   

Over the last two decades, several mutational and structural analyses have revealed 

multiple mechanisms behind the selectivity and specificity between the effectors and Rho 

GTPases117-121. Comparison between the binding affinities for different effectors binding to the 

members of Ras superfamily suggests large differences in the energetics122-126. Further, energy 

decomposition of Ras-effector complexes show that the enthalpy and entropy balance each other, 

contributing favourably towards the binding free energy of the complex formation. For example, 

Rho proteins exhibit different thermodynamic signatures upon binding to peptide effectors 

(Cdc42-WASP complex) and large domains (Rac1-TPR domain of p67phox). Here, Cdc42-WASP 

complex has high enthalpic contribution along with high negative entropy, whereas Rac1-TPR 

domain complex has positive enthalpy compensated by high entropic contributions for 

favourable binding113,127. Previous studies have shown that Ras superfamily proteins and 

effectors exhibit charge complementarity on the binding surfaces showing the involvement of 

electrostatic interactions or hydrophobic contributions in protein-protein interactions31,127. 

Interestingly these energetic signatures that govern the effector activation are still elusive, and 

therefore, it is important to understand the molecular mechanism of Rho GTPase recognition by 

the effectors thermodynamically. 

1.3.2 Regulation of Rho GTPase Activities by RhoGDI 

RhoGDIs (Guanine nucleotide dissociation inhibitors) play a critical role in the spatiotemporal 

regulation of signaling events by controlling the timing and localisation of Rho proteins110,128,129. 

RhoGDIs act in the background like an ‘invisible hand’ as described by Garcia-Mata et al., 

regulating the level of activated/deactivated GTPases in the cell82. Interestingly, only three genes 

encode for RhoGDIs ( α, β, γ) as compared to the diverse and large number of Rho GTPase 

family members130. RhoGDIα is ubiquitously expressed131, whereas RhoGDIβ is expressed 

selectively in haematopoietic cells132,133. Another one, RhoGDIγ is associated with cellular 

membranes134,135 (Golgi complexes) and interacts specifically with RhoB and RhoG. RhoGDIα 

is the best-characterised member and interacts with a number of Rho GTPases (RhoA, Cdc42, 

Rac1, Rac2). Several experimental evidences suggest multiple interactions between GDIs and 
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GTPases (Table 1.1) and changes in GDI expression levels have been associated with cancers136. 

The up-regulated or down-regulated expression levels of GDI in different cancer types have been 

correlated with increased invasion, resistance to chemotherapy or degree of malignancy137. These 

changes in the expression are manifested through their interactions with multiple Rho GTPases, 

which are further regulated by different mechanisms.  

Table 1.1 Diversity of interaction between Rho GTPases and GDI. Here, the ‘+/-’ symbol 

denotes the experimentally observed presence or absence of interaction between Rho protein and 

GDI. The symbol ‘?’ denotes that no experimental proof has been found so far. 

Rho GTPases RhoGDI 
(GDI-1, α) 

D4GDI 
(GDI-2, β) 

RhoGDIγ 
(GDI-3) 

Cdc42138,139 + + - 

Rac1140,141 + + - 

Rac2140,141 + + - 

Rac3 ? ? - 

RhoG12,134 + ? + 

Rac1b142 - ? - 

RhoA131 + + - 

RhoB12,134,143 
- ? + 

+ ? - 

RhoC12 + ? - 

Rnd3/RhoE144,145 +/- ? ? 

RhoH/TTF12  Weak ? ? 



1.3  Molecular Basis of Inter-protein Signal Propagation in Rho GTPases 

12 

 

Figure 1.4 Newly synthesized Rho protein is geranylgeranylated by GGTase enzyme followed by 

membrane attachment at the cytoplasmic side of endoplasmic reticulum (ER). (b) After 

geranylgeranylation, Rho protein is post-translationally modified by RCE1 and ICMT for the 

removal of –AAX motif at the C-terminal and subsequent carboxyl methyltransferase.  (c) 

RhoGDI binds to the Rho protein and sequesters the prenyl moiety to prevent its degradation in 

soluble cytosolic form. (d) RhoGDI-GTPase complex is regulated between the cytosol and 

membrane by post-translational modifications by lipids, phosphatases and kinases. (e) Rho 

protein attached to the membrane in the absence of GDI is regulated between GTP bound active 

state and GDI bound inactive state. RhoGDI extracts the inactive form of Rho-GDP complex. 

RhoGDI controls the activity of Rho GTPases by three distinct biochemical mechanisms. 

GDIs were initially found to inhibit the dissociation of GDP from the inactive GTPase by 

blocking GEF-mediated exchange, thus acting as a negative regulator of Rho proteins131,138. 

Later, it was also shown in Cdc42 that GDIs are also capable of binding to the GTP-bound active 

state of Rho proteins and block both interactions with the downstream effectors and GAP-

catalysed GTP hydrolysis146. Structural studies on Rho-GDI complexes suggest that the binding 

of the N-terminal region of RhoGDI at switch regions of Rho proteins prevents the nucleotide 

exchange required for GTPase activity. Interestingly, GDI forms a hydrogen bond with Thr35 

(cdc42) in the switch-I region which is also required for GEF-catalysed nucleotide exchange. 
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Similarly, in the case of Rac1, structural studies show that GEF Tiam1 and GDI interact 

with similar residues in the switch regions to exhibit opposite effects129. However, the most 

crucial function of RhoGDI is the ability to regulate the GTPases between the soluble cytosolic 

pool and membrane-bound states. RhoGDI plays a unique role by appropriate localisation of Rho 

GTPases (Fig. 1.4). In the absence of GDI, Rho proteins are attached to the cell membrane 

through an isoprenyl moiety (geranylgeranyl or farnesyl)103,147-149. However, GDI binds to these 

prenylated forms creating a soluble cytosolic Rho.GDP-RhoGDI complex regulating the 

cytoplasmic pool of each of the Rho family GTP-binding proteins. 

Regulation of GTPase-GDI complexes by diverse stimuli/factors 

RhoGDI expression levels in a cell are roughly equal to the total amount of Rho GTPases 

(RhoA, cdc42, Rac1) combined, suggesting a large amount of GTPase existing as cytosolic GDI 

complexes. The activation of Rho GTPases mediated by GEF-catalysed nucleotide exchange or 

GAP-catalyzed GTP hydrolysis requires its release from the RhoGDI complex. Unlike Rab 

family of GTPases, the existence of conserved GDI dissociation factor (GDF) which would 

promote dissociation of the RhoGDI-RhoGTPase complex and render the Rho protein active and 

free150, has not been found. Experimental studies highlight different mechanisms for the 

dissociation of Rho GTPases from the RhoGDI complexes to facilitate the downstream 

activation process. Early work suggests dissociation or decrease in the affinity of RhoGDI-

GTPase complexes by lipids such as phosphatidic acids, phosphoinositides, saturated and 

unsaturated fatty acids151,152. In case of RhoA-GDI complex, phosphoinositides disrupt the 

complex partially to facilitate GEF-catalyzed nucleotide exchange. Interestingly, experimental 

studies suggest phosphorylation/acetylation of RhoGDIs by diverse kinases (Pak1, PKA, PKCα) 

as key post-translational modifications for the dissociation of the complexes where some kinases 

act as bonafide GDFs (GDI dissociation factor)41,130,147,153-156. However, relatively little is known 

about the molecular basis of dissociation between specific Rho GTPase and RhoGDIs. 

1.4  Molecular Basis of Intra-protein Signal Propagation alias ‘Allostery’ 

Allosteric regulation of proteins is a process in which the protein activity is modulated through 

perturbation/stimulus at one site (allosteric site) altering the function/properties of another distant 

site (orthosteric site)43,157,158. The perturbation at the allosteric site can result from a wide range 
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of effects such as ligand binding, post-transcriptional modifications, pH and temperature induced 

changes159. Allosteric events involve signal propagation across membranes, cells or large 

multiple protein complexes which can occur through multiple pathways. Since the discovery of 

allostery, various models have been proposed to understand and describe the mechanism of 

allosteric regulation. In the 1960s, two phenomenological models were proposed, namely, the 

Monod-Wyman-Changeux (MWC) model160 and the Koshland-Nemethy-Filmer (KNF) 

model161. These models described the allosteric effect in terms of conformational changes of the 

active site through ligand binding (Fig. 1.5). 

 

Figure 1.5 Illustrative representation of the difference between the induced fit model (KNF) and 

conformational selection model (MWC). According to these models, proteins exist in two 

different predefined conformations (Open and Closed). The ligand binds either to the “Closed” 

conformation which exists in equilibrium with the Open conformation (MWC), or it binds to the 

Open conformer and induces conformational transition (KNF). 

According to the MWC model, allosteric protein exists in equilibrium between a relaxed 

(R) conformation and a tensed (T) conformation and can shift between these two states upon 

ligand binding. It was used to describe allostery in proteins such as GroEL, CheY, and others. On 

the contrary, KNF model suggests induced-fit mechanism to exhibit the inherent flexibility of the 

binding site. The model, also known as sequential model, proposes a ligand-induced 
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conformational change in the protein, which further induces positive or negative cooperativity in 

the protein (e.g. CAP protein and its ligand c-AMP).  For decades, the structure based definition 

of allostery aimed to elucidate the allosteric mechanism through conformational changes on 

effector binding. For example, in the case of haemoglobin, with the knowledge of the T and R 

conformational states, it supported the structure based allostery phenomenon. However, these 

models do not provide any mechanistic insight into how signal propagation occurs between two 

distantly situated sites in allosteric proteins. This is because, the biomolecules exist in 

conformational ensembles rather than explicitly in two states, open and closed as considered by 

these models. These biomolecules continuously shift between these dynamic ensembles over a 

free energy landscape, and hence, they must be described statistically and not statically162. 

Later in 1984, Cooper and Dryden introduced the term “dynamic allostery” for the 

allosteric regulation without structural changes breaking the long-established paradigm of 

structure-based allostery163. In an inspiring work, these authors based on the statistical 

thermodynamics correlate thermal fluctuations and dynamic behaviour with the cooperative 

binding energies on the order of few kcal/mol, emphasising the role of conformational entropy in 

allostery. Apparently, the changes in the dynamics linked to the conformational entropy provide 

potential information about the free energy of protein-ligand association42,164-166. This idea 

established that allostery is a thermodynamically driven process which is governed by both 

enthalpic and entropic changes167-172.  

1.4.1 Ensemble Nature and Thermodynamic View of Allostery 

Solution NMR provides useful insight into the dynamics and characteristic thermodynamics of 

the protein173,174. It highlights the ensemble nature of protein dynamics over a wide range of 

timescales. These fluctuations range from side chain motions with ps-ns timescales to collective 

motion of large domains on the µs-ms timescale. The internal motions (thermal fluctuations) are 

phenomenologically associated with the conformational entropy of the system and provide an 

indirect measure of the structural ensembles that describes the thermodynamics of the system. 

NMR analyses have revealed varying degree of changes in dynamics that are associated with the 

allosteric transitions. 
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Figure 1.6 Illustrative representation of dynamic continuum of allostery phenomena that shows 

the allosteric systems with increasing dynamics or disorder. 

For example, in the case of haemoglobin, the allosteric mechanism supports the notion 

that it can be explained by observable changes in the ensemble average structure. In contrast, 

CAP dimer and PDZ domain show that the conformational entropy is associated with an 

allosteric response via backbone and side-chain dynamics, respectively165,175. These systems 

highlight not only the importance of dynamics in allostery but also the limitations of the static 

view of allosteric mechanisms. Interestingly, intrinsically disordered proteins (IDPs) that lack a 

proper structure have also been shown to exhibit allostery through disordered to ordered 

transition. (e.g. Phd/Doc toxin-antitoxin system). This association between different 

contributions of conformational entropy (measure of dynamics) and degree of structural changes 

is also described as the “dynamic continuum of allostery” (Fig. 1.6) ranging from ordered rigid 

body conformational changes (e.g. haemoglobin) to the highest conformational fluctuations in 

intrinsically disordered proteins158.  

Protein regulation mechanisms can be best understood in terms of modulation in the free 

energy landscape where different energy states represent conformational ensembles with a 

certain distribution. Allosteric regulation has been viewed in terms of population shift or 

redistribution of conformational states under various conditions such as ligand binding 

/unbinding, temperature, pH, mutations and other physical or chemical factors42,176-179. For an 

allosteric protein, the conformational states pre-exist for the active, inactive and transition states 

over a free energy landscape. The population shift stabilises one of these conformational states 

depending upon the allosteric trigger event (ligand, mutation). Fig. 1.7 represents a simple two-

state activation model of allostery which correlates the thermodynamic view of allostery with  
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Figure 1.7 Thermodynamic view of allostery via a bi-stable switch. The figure illustrates the free 

energy landscape with respect to the active and inactive conformational states that are separated 

by a free energy barrier. Each minima represents an ensemble of conformations, and the depth 

of the basin determines the relative population in each state. Before activation, the inactive state 

population dominates the active conformational ensemble. With the increase in ligand 

concentration, the allostery event is observed as a population shift in favour of the active state.  

population shift between active and inactive conformations. Nussinov and co-workers highlight 

that the extent of the population shift or the free energy difference between conformational states 

(ΔΔG) determines the allosteric efficacy rather than the binding affinity of the ligand to the 

protein162. Recently, a thermodynamic basis for allostery based on the degree of conformational 

changes ranging from entropy-driven side chain dynamics to the enthalpy-driven large domain 

motions has been proposed162. Allosteric proteins may have multiple pre-existing allosteric 

pathways and favour one depending on the perturbation events such as ligand binding, 

mutations, covalent modifications and changes in the cellular physiological conditions180. Over 

last 40 years, experimental techniques and several computational methods have been developed 

to characterise allostery in proteins; however, a physical understanding of signal propagation 

between distant sites of an allosteric protein at the molecular level is still lacking. 
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1.4.2 Experimental Methods to Probe Allosteric Mechanism 

X-ray crystallography is one of the most widely used experimental techniques to understand 

major biological processes such as structure-based drug-design, enzyme mechanisms or allostery 

at the molecular level. Allostery involves conformational changes that can be captured using X-

ray crystallography under different conditions such as ligand bound/unbound state, enzyme 

complexes, and site-directed mutagenesis181-185. Majority of the proposed models of allosteric 

mechanisms (classical MWC and KNF model160,161, Cooperon model, TTS model186, Szabo and 

Karplus model187, and Lee and Karplus model188) are based on the classical example of 

cooperativity and allostery observed in haemoglobin189,190. Most of the results regarding the 

functional mechanism of haemoglobin are based on the information from the X-ray crystal 

structures.  The allosteric effect in haemoglobin is characterised by the rotation of one 𝛼𝛽 unit of 

the dimer by 15° with respect to its partner. Perutz proposed a novel stereochemical mechanism 

for cooperativity and allostery in haemoglobin in the form of inter- and intra- subunit salt bridges 

that drives the transition between the low oxygen affinity (Tensed, T-state) and high oxygen 

affinity (Relax, R-state) states191,192. 

Evidently, this classic example shows how charge-charge interactions can govern the 

equilibrium shift between different conformations. Recently data collections at synchrotron 

radiation sources have enabled a time-resolved crystallographic analysis to obtain time-

dependent structural information of the protein molecule at high resolution as it undergoes a 

conformational change193,194. However, the allosteric effect may not always be defined based on 

the noticeable conformational changes that can be captured by X-ray crystallography. This is 

predominantly observed in case of proteins exhibiting allostery with no significant change in the 

conformation (also called dynamic allostery). 

Recent advancements in the NMR methods highlight use of chemical shifts, residual 

dipolar coupling and relaxation dispersion to probe and characterise equilibrium dynamics in the 

free and bound states of the allosteric protein195,196. Interestingly, allostery associated 

conformational changes at ps-ns time scale can be probed using NMR spin relaxation that 

captures the fluctuations of bond vectors197,198. This method is highly successful in understanding 

the dynamic allostery using the backbone amide order parameter (S2) in several systems such as 

cAMP binding in CAP199, CRIPT ligand binding in PDZ domain and functional role of α3 helix 
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in PDZ3175. In addition, biochemical technique such as double-mutant cycle analysis (DMC) has 

been successfully used to quantitatively determine the energetic connectivity between any two 

protein residues200. This technique can be used to characterise/measure higher order 

cooperatively between intermolecular interactions. DMC analysis has been extensively used to 

map energetic networks in PDZ domain in homologous proteins (e.g. PTP-BL PDZ2, SAP97 

PDZ2 and PSD-95 PDZ3)201-204. 

1.4.3 Computational Approaches to Probe Allosteric Mechanism 

Sequence-based Methods 

Amino acid sequences in a given protein family are not only constrained by the biochemical 

functionality but also by the evolutionary history of the proteins. Protein sequence analysis can 

be a useful tool in detecting allosteric pathways based on evolutionary and energetically coupled 

sites205,206. One of the remarkable methods, statistical coupling analysis (SCA)207-211 successfully 

predicted surface sites/residues that are energetically linked to the functional sites in E. coli 

DHFR (dihydrofolate reductase), G-protein212,213, GPCRs214 and PDZ domain. SCA has also 

been used to engineer a light-sensitive LOV2 domain215,216, design an artificial WW domain217 

and predict potential sites for drug design for antigen 85C of M. tuberculosis218 and cathepsin 

K219. However, it has been debated that the energetic coupling based on the statistical analysis 

(SCA) may not be a true reporter of allostery201. Also, sequence-based methods are limited by 

input sequence selection and required number of sequence for multiple sequence alignment 

(MSA). Often lowering the stringency of the search parameters to obtain a statistically 

meaningful number of sequences is susceptible to the increased noise level in MSA. Hence, such 

methods primarily based on MSA conservation poses a challenging task to determine the specific 

biological roles for the identified evolutionary significant residue. 

Topology and feature based predictive methods 

The ability to determine the protein structure using X-ray and NMR technique has given rise to 

the development of structural analysis methods focused on decoding allostery. These methods 

are based on several intrinsic features such as contact patterns220, hydrophobicity, interatomic 

distances221, bond-to-bond propensity222 and protein-protein interactions for a given protein 

molecule.  The developed algorithms reproduce previously known allostery networks in 
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DHFR223, caspase-1, CheY and H-Ras and CAP (Catabolite activator protein) and further predict 

key allosteric interactions in a set of 17 other proteins222. Thus far, several methods have been 

developed to identify and characterise allosteric sites in the protein and validated through the 

high throughput screening by experimental techniques. Allosteric Database (ASD) serves as a 

comprehensive platform with manually curated data about all the experimentally confirmed 

allosteric evidence along with allosteric molecules and features and allosteric networks224. Based 

on this incredible data resource of the allosteric mechanisms, feature-based predictive models 

have been developed225, but at the same time, these models suffer from biased application as 

often the information used for the prediction is limited depending on the available experimental 

data. However, it is challenging to predict allosteric sites from structure or topological based 

methods, as in some of the cases, allosteric sites cannot be easily predicted from the apo structure 

as they may be present in the intermediate states which is difficult to be captured by X-ray/NMR 

technique. The mechanism of dynamic allostery requires further investigation as the average 

structure does not change, but the allostery effect is transmitted through changes in dynamics. 

Normal mode analysis based methods 

Normal mode analysis is an alternative approach to computationally intensive MD simulation, 

which assumes that the protein undergoes harmonic fluctuations around energy minimised 

equilibrium conformation. It has been a powerful method to explore the dynamics of proteins 

that do not undergo major allosteric transitions and functions close to their native structure. 

NMA has been coupled with techniques such as coarse grain MD simulations, protein modelling, 

modification of selective spring constants or incorporation of electrostatic forces to better 

account for structural dynamics of residues that are likely to participate in the allosteric 

mechanism226-230. Further, an atomistic ensemble NMA approach based on all available crystal 

structures for a given protein family under study was applied to two allosteric proteins, namely 

Hemoglobin and Caspase 7, after an improved performance in accurate prediction of residue 

level dynamic coupling in heterotrimeric Gα231. NMA is a computationally inexpensive high-

throughput approach that can be automated. Taking advantage of this, a number of NMA method 

based web servers such as SPACER232-235, PARS236,237, DynOmics238 have been used to predict 

allosteric pathways with its ability to provide global/local modes that imply functional 

significance. However, it is still doubtful that NMA (ENM model) is sufficiently accurate to 
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capture the essential features required for predicting allosteric network analysis. The method is 

focused on examining the harmonic fluctuations of a protein around an energetically minimised 

conformation, which means that it misses out on large-scale conformational changes involving 

local unfolding or rigid body movements158. 

Molecular dynamics based methods 

Molecular dynamics (MD) simulation has proven to be an important method that can 

reproduce/explore local and large-scale conformational changes in the protein. The structural 

changes associated with the allosteric mechanism have been supported by two major ideas: 

induced-fit (conformational change) or population-shift (conformational selection). Further, it is 

defined as the change in the relative population of the preexisting accessible conformational 

ensembles upon perturbation. In principle, using long molecular dynamics simulations can 

generate sufficient conformation sampling (ensembles) to understand allostery mechanism44,239. 

Multiple methods such as correlation analysis, mutual information, and ENM based dynamical 

network are used to identify/evaluate a pathway of coupled residues based on the simulation 

data240-244. However, allostery phenomenon is characterised by motions and conformational 

changes with a wide range of timescales (ns-ms). Atomistic MD simulation technique is 

restricted with the timescale limitation to explore the entire energy landscape or significant large-

scale conformational changes corresponding to allostery effects.  Hence MD simulations are 

often complemented with the use of enhanced sampling technique, which enables to overcome 

the free energy barriers and explore the conformational space between the two states. 

Various enhanced sampling techniques such as bias-exchange metadynamics (BEMD) 

simulations, targeted molecular dynamics (TMD), umbrella sampling have been extensively used 

to explore transition conformations and propose the allosteric activation mechanism in multiple 

allosteric systems (for example; bovine chymosin upon P8-P4 κ-casein or open/close transition 

in calmodulin) within feasible simulation and computational time245. Moreover, classical MD 

simulation technique for all-atom systems is limited by the system size because the 

computational cost and the time required are directly proportional to the number of degrees of 

freedom. As an alternative, Coarse-grained method has enabled the simulation of large systems 

of realistic size (e.g. Virus envelope, actin filaments) with the reduction in complexity by 

representing atomic systems in the form of beads with unique parameterisation. The CG models 
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have been used to understand induced-fit or population shift models of allostery in different 

protein systems (e.g. glutamate-binding protein, adenylate kinase)246,247. This method has been 

hugely successful in understanding the molecular mechanism and nature of conformational 

changes that take place during the transmembrane receptor activation (GPCRs, T-cell receptor). 

Interestingly, MD simulations play an essential role in understanding the allosteric 

mechanism in proteins that do not undergo structural change upon perturbation and the 

information is transmitted to the active site without detectable conformational changes (for 

example; methionine repressor MetJ, Catabolite activator protein (CAP) and PDZ domain). This 

phenomenon is also characterised as dynamic allostery. With the development of new methods 

and analysis algorithm based on molecular dynamics simulations data, multiple structural 

perturbations sites and propagating pathways have been defined for these systems. A method 

termed as force distribution analysis which can reveal how a ligand-induced mechanical strain is 

dissipated through the protein in the form of inter-atomic forces was applied to methionine 

repressor MetJ and Catabolite activator protein (CAP) to propose well-defined signal 

propagation pathway248,249. Both the studies suggest change in dynamics as the regulatory 

driving force and the communication pathway largely of entropic nature. 

Another typical example of dynamic allostery is PDZ domain where several MD based 

studies have been performed to identify the allosteric signaling pathway based on structural or 

energetic fluctuations24,167,172,175,250-259. In addition, two non-equilibrium MD methods, namely, 

PPMD- Pump-probe MD260 and ATD- anisotropic thermal diffusion261, have also been used to 

study PDZ domain. In the first method, selective residue His76 mimicking the ligand binding 

effect was excited with a set of oscillating forces and the propagation of the perturbation is 

probed using Fourier transform of the atomic fluctuations while the second method measures the 

thermal diffusion of kinetic energy from His76 within PDZ domain. The signaling pathway was 

elucidated by tracking the most significant thermal diffusion pathway. However, these methods 

mimic the ligand binding event by perturbing a single residue (His76) which does not correspond 

to an exact ligand bind effect. Hence the generated dynamic response in the protein may not be 

the true reporter of the ligand binding event.  
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1.4.4 Dynamic Allostery in PDZ Domain: An Unsolved Puzzle 

The existential models for allostery mechanism are based on the structural approach in which the 

two states of protein must differ significantly so that the conformational ensembles of these 

states are separated by a large thermodynamic barrier on the energy landscape. However, these 

models do not explain dynamic allostery where the conformational ensembles exhibit structural 

changes which are accessible to thermal fluctuations. Despite numerous studies on proteins such 

as GPCRs, heat shock protein (HSP), MetJ repressor and immune cell receptors, a physical 

understanding of how communication/signal propagation occurs between the distant sites in 

allosteric proteins remains elusive. With the identification of allostery in monomeric single-

domain, PDZ domain has been a popular model system to study single domain allostery163,177,262. 

PDZ domains are novel modules implicated in the localisation of membrane receptors and ion-

channels and are associated with the cellular signal transduction20,23. These are ubiquitous 

protein-protein interacting domains structurally conserved throughout evolution in various 

species. They can bind to the specific recognition sequences at the c-terminal of proteins21, or 

they can dimerise with other modular protein domains (WW, SH2, SH3, PH, etc.)20. 

A number of communication networks have been proposed based on key residues 

identified using both theoretical256,258,260 and experimental techniques175,250 to provide insights 

into allosteric communication in PDZ domains. Such structural perturbations have been studied 

based on the normal mode analysis, elastic network models and correlation of dynamical 

changes251,252,263. With the evolving paradigm of dynamic allostery, the long range 

communication between the ligand binding site and the distant regions of in PDZ domain has 

been described based on entropy changes resulting from dynamics without changing the average 

position of the structure. Recent studies demonstrate a direct interrelation between the allosteric 

communications and energy propagation along the pathways24,264-267. Interestingly, dynamic 

allostery can also be explained in terms of population shift between two distinct conformations 

driven by entropy and/or enthalpy159,162,180. A thermodynamic basis of dynamic allostery will 

provide physical and molecular insight into how the interactions and subsequent dynamics of 

these conformational ensembles play an important role in signal propagation across a protein. 
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1.5  “Thermodynamics” and “Molecular Insights” into the Biomolecular Signaling  

Deciphering the molecular details of the protein-protein interactions has been a crucial and 

challenging problem in the signal transduction pathways. One of the fundamental aspects of the 

biological process is the understanding of functional mechanisms in terms of physical 

interactions, for example, electrostatic complementarity, van der Waals interactions and 

hydrogen bonds that contribute to the thermodynamic properties of the system. Experimental 

evidences based on kinetic assays along with the sequence and structural data have been the 

primary source of information to improve our knowledge and understanding of the functional 

mechanisms. However, many of these experimental techniques do not provide a direct molecular 

interaction-based information/picture between the proteins. With the recent development in the 

computations modelling and simulation techniques, it has been possible to furnish real-time 

imaging and information of the system at atomistic-level resolution. Unlike experimental 

methods, molecular dynamics simulations have been useful for in silico investigation of 

biological processes to provide molecular interactions and structural dynamical information. 

 Biological cells employ a large number of intracellular signaling pathways to regulate 

their functional activity in response to external/internal stimuli. All these signaling pathways 

involve the transfer of information either through biomolecular recognition or by allosteric 

mechanisms. The work in this thesis is directed towards understanding the underlying 

mechanism of signal transduction pathways at these two different levels of activation and 

deactivation of signaling proteins. With respect to this, the thesis is organized into seven 

different chapters. 

This chapter (chapter 1) provides an overview of the molecular basis of the signal transduction 

pathways. We review historical developments and evidences that show how conformational 

ensembles and molecular interactions play a role in biomolecular recognition and allostery, and 

illustrate using relevant examples, how interactions modulate thermodynamics and structural 

properties in the signaling process. 

Chapter 2 discusses the basic theory of molecular dynamics simulations, free energy calculation 

methods and enhanced sampling techniques to explore rare events. In this thesis, we have 

performed conventional molecular dynamics simulations and metadynamics simulation for 
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enhanced sampling. This chapter discusses the practical and technical aspects of the methods 

used to analyse data discussed in the following chapters. 

Chapter 3 investigates the energetic basis of dynamic allostery in PDZ3 domain. Our work 

provides molecular insights into the internal redistribution and re-wiring of side-chain 

interactions and accompanied population shift in specific electrostatic interactions that drives the 

allosteric modulation in PDZ3 domain. 

In Chapter 4, we examine pH-driven dynamic allostery in PDZ3 domain in terms of change in 

the electrostatic interaction network identified in our previous work (Chapter 3). Here, we 

demonstrate that various perturbation events such as ligand binding, or change in cellular 

conditions (protonation) follow a universal response system in PDZ3 domain in terms of 

modulation in the dynamics and intra-protein interaction network. 

Chapter 5 investigates the nucleotide dependent conformational signatures in Rho GTPases that 

facilitates effector recognition. This chapter discusses the energetic balance of molecular 

interactions between the switch-I region residues with the nucleotide and solvent that leads to 

preferential stabilisation of some conformational states over other depending on the nucleotide 

and its subsequent role in effector recognition. 

In Chapter 6, we extend our investigation to understand the molecular view of the dissociation 

of Rac1 GTPase and RhoGDI complex. This chapter provides insights into the conformational 

dynamics and interactions that play an important role in the phosphorylation-mediated regulation 

of GTPase-GDI complex. Here, we propose a molecular-interaction based mechanistic model for 

the dissociation of the complex as an effect of phosphorylation. 

Chapter 7 concludes the thesis by highlighting the important findings from the molecular 

investigation of the protein-protein interactions and allosteric regulation processes. It also 

discusses the implications of these findings in the field of drug designing.  
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Chapter 2  
2 Methodology 

“….everything that living things do can be understood in terms of the jiggling and 

wiggling of atoms.”  

– Richard Feynman, Lectures on Physics Vol. 1, Chap. 3, 1963 
 

iological macromolecules are inherently dynamic systems in which the internal motions 

and the resulting conformational changes play an important role in their functional activity. 

A fundamental understanding of biological processes would require the knowledge and 

connection between the structure, dynamics, energetics and function of the macromolecule.1,2 

The traditional approach is to understand underlying physiological mechanisms through 

experimental techniques such as X-ray crystallography, NMR and Raman spectroscopy. These 

mechanisms involve interactions that are governed at macroscopic (thermodynamic properties) 

and microscopic level (atomistic). The experimental techniques provide an inadequate 

physicochemical based understanding of interactions at the molecular level. This information gap 

is overcome by the atomistic level description of the systems using concepts of theoretical 

chemistry and statistical mechanics.3,4 Several computer simulations have been carried out by 

generating a physical model of the system to study the equilibrium properties of the system. Two 

main simulation techniques used to obtain structural and thermodynamic properties of the system 

are molecular dynamics simulations and Monte Carlo simulations.5 Molecular dynamics 

simulation is a powerful technique used to study the dynamics and molecular interactions of 

biological systems such as protein, nucleic acids and cell membranes at the atomic level.6 It 

enables the visualisation of events such as protein folding, protein-drug interaction or functional 

dynamics associated with the biomolecules, which cannot be observed by experimental 

techniques. In this thesis, we have used molecular dynamics simulation as the primary method to 

gain insight into the dynamics and energetics of the protein systems.  

  

B 
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2.1   Molecular Dynamics Simulations: Background and Theory 

The earliest known computer simulation study was carried out in 1953 to compute the 

thermodynamic properties of liquid modelled as hard spheres.7 This study laid down the 

foundations of presently known as ‘Metropolis Monte Carlo simulation’. The very first 

molecular dynamics study was performed by Alder and Wainright for a system of hard spheres 

to obtain dynamic properties using the solutions of Newton’s equation of motions.8 This was 

followed by the remarkable work by Rahman in 1964 on the molecular dynamics simulation of 

liquid Argon using soft sphere (LJ) potential which proved as an important step for modern 

simulations.9 With these background studies, rapid attempts were followed to model large 

systems such as proteins. The first molecular dynamics simulation for a protein was performed in 

vacuum in 1977.10 Since then, there has been phenomenal development in the simulation 

techniques and computing power resulting in simulation of larger systems (> 106 atoms) and 

long production run (ns-µs).  Molecular dynamics simulation is a technique in which the 

positions and velocities of atoms of an N-particle system is calculated using classical mechanics 

Newton’s equation of motion,  

 ( )
2

2i
i

i
dF m rt
dt

=  (2.1) 

Here, Fi is the force acting on the ith atom at time t, ri(t) is the position of the atom at time t, mi is 

the mass of the atom. The idea is to calculate the force on each atom using potential energy 

function based on the interactions between the N-particles. The force on atom i can be given as,  

 ( ) ( )ir
i

i

V
F t

r

∂
= −

∂
 (2.2) 

where 𝑉(𝑟𝑖) is the potential of the system. Thus, the potential enegy of the system is a function of 

the atomic coordinates of the N-particles. This force can be used to calculate the position, 

velocity and acceleration of each individual atom by solving numerically Newton’s equation of 

motions using an integration algorithm. Repeating this process after discrete time steps gives the 

evolution of the individual particle motions of a molecular system as a function of time. Thus, 
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molecular dynamics simulation technique aims to explore the energy landscape of a system by 

generating an ensemble of successive conformations. 

2.1.1 Molecular Dynamics Integrators 

Multiple algorithms can be used to integrate Newton’s equation of motions. A good molecular 

dynamics program requires a good integration algorithm. The criteria for a good integration 

algorithm are: 

1. Requires minimum number of cycle to calculate forces per time step, i.e. computationally 

efficient and occupy less memory. 

2. Should conserve energy and momentum. 

3. Should be time reversible. 

4. Should converse phase volume. 

5. Should have higher accuracy. 

6. Should be stable and produce no artefact with larger Δt (time steps). 

The algorithm can be derived using simple Taylor series expansion for the positions r(t) to 

determine the time evolution of positions, velocities and accelerations of the system in phase 

space.  

 ( ) ( )
2 3

2 3
2 3

1 1
2 3!

dr d r d rr t t r t t t t
dt dt dt

δ δ δ δ+ = + + + +… (2.3) 

 ( ) ( ) ( ) ( ) 21
2

r t t r t v t t a t tδ δ δ+ = + + +… (2.4) 

Steps in a typical molecular dynamics program: 

1. Initialisation of the system (Assign initial positions and velocities. Positions are obtained 

from Cartesian coordinates and velocities are assigned based on the Maxwell distribution 

at a given temperature.) 

2. Compute forces on all the atoms of the system using the forcefield potential function 

form. 

3. Integrate Newton’s equations of motion. Compute the positions, velocities and 

accelerations at every Δt time step. 
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4. Repeat steps 2 and 3 to obtain the time evolution of the system for the desired time 

length. 

Here we describe some most commonly used integrators in molecular dynamics which are stable, 

accurate and computationally efficient. 

1. Verlet algorithm 

This algorithm is one of the simplest and earliest used in molecular dynamics simulations. The 

verlet algorithm determines the positions of atoms from the Taylor expansion of the coordinate 

of the particles at time (t - Δt) and (t + Δt). 

 ( ) ( ) ( ) ( ) 21
2

r t t r t v t t a t t+ ∆ = + ∆ + ∆ +…  (2.5) 

 ( ) ( ) ( ) ( ) 21
2

r t t r t v t t a t t− ∆ = − ∆ + ∆ −…  (2.6) 

After adding these two equations, we get: 

 ( ) ( ) ( ) ( ) 22r t t r t r t t a t t+ ∆ ≈ − − ∆ + ∆  (2.7) 

Here Δt is the time step in the simulation. This algorithm is also known as position verlet 

algorithm, as the velocities are not used to calculate the new positions. However, one can derive 

velocities using 

 ( ) ( ) ( )
2

r t t r t t
v t

t
+ ∆ − − ∆

=
∆

 (2.8) 

The computed velocities are used to calculate the kinetic energy and hence the instantaneous 

temperature. 

Highlights: 

1. At time t=0, the algorithm requires position at –Δt, which is undetermined. The problem 

can be solved by using a different algorithm for the first time step or by using Taylor 

expansion about r(t). 

2. Minimum storage requirement and straightforward. 
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3. Large errors in velocity approximation (Moderate precision). 

2. Leap-frog algorithm 

Leap-frog algorithm is derived from the Verlet scheme and hence give rise to identical 

trajectories. It is the most commonly used integrator. In this algorithm, the velocities are 

evaluated at half-integer time steps and subsequently used to compute the new positions. The 

algorithm can be written as: 

 ( )
2 2
t tv t v t a t t∆ ∆   + = − + ∆   

   
 (2.9) 

 ( ) ( )
2
tr t t r t v t t∆ + ∆ = + + ∆ 

 
 (2.10) 

Here, the position at time t and velocity at previous half time step (t - Δt/2) are used to calculate 

the velocity at next half time step (t + Δt/2). From the latter, one can calculate the positions at 

next integer time step (t + Δt). Thus, the velocity takes a leap over the position by half time step, 

and then the position leaps over the velocity to give position at full-time step. 

Highlights: 

1. Velocities are explicitly calculated. Elimination of addition of small terms to larger terms. 

Improved evaluation of velocities. 

2. Computationally expensive than Verlet.  

3. Velocity-verlet algorithm 

This algorithm is a better implementation of the Leap-frog integration method. It calculates the 

position, velocities and accelerations at the same time.  

 ( ) ( ) ( ) ( ) 21
2

r t t r t v t t a t t+ ∆ = + ∆ + ∆  (2.11) 

 ( ) ( ) ( ) ( )1
2

v t t v t t a t a t t + ∆ = + ∆ + + ∆   (2.12) 
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Highlights: 

1. Explicitly incorporates velocity. 

2. System at t+Δt can be directly calculated from quantities at time t. 

3. More precise. Error in positions and velocities is of the order O(Δt4). 

2.2  Force Field 

Ideally, the molecular dynamics simulation of a system can be performed using interatomic 

forces calculated from ab-initio quantum mechanical calculations. However, this approach is 

computationally expensive and limits the use of a system of reasonable size (several hundreds of 

particles). This limitation is overcome by the use of empirical force field based methods with 

higher approximations. The use of force field allows simulating a system consisting of several 

thousands of atoms for time scales of the order of microseconds. A force field defines an 

empirical set of potential functions and parameters to describe the interactions between atoms 

and the energy of the system as a function of the coordinates of each atom. The accuracy of the 

simulations is directly related to the parameters, and potential energy function used to describe 

the interatomic interactions. A number of force fields have been developed depending upon the 

energy function formulae and the strategy used for parameterisation. The potential energy 

function consists of terms representing bonded (covalent) and non-bonded (non-covalent) 

interactions (Fig. 2.1). A typical potential function in Amber force field can be written as, 

 bonds angles dihedral impropers LJ coulV V V V V V V= + + + + +  (2.13) 
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∑ ∑

∑ ∑

∑ ∑ ∑ ∑

 (2.14) 

Here, the first term in the function describes bond length between two particles as harmonic 

spring with spring constant Kr and the displacement from the equilibrium bond length (r0) as ( r-
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r0 ). The description of bond vibration as the harmonic function implies that the bonds cannot be 

broken and hence, no chemical process can be studied using classical force field based MD. The 

bond angles are also modelled by the harmonic function where Kθ represents the bending force 

constant and the displacement from the reference bond angle (θ) as (θ - θ0). 

 

Figure 2.1 Representation of potential energy terms of a typical force field. The carbon atoms 

are shown in black, nitrogen in blue and oxygen in red. 𝑉𝑏𝑜𝑛𝑑𝑠 is the bond-streching potential, 

𝑉𝑎𝑛𝑔𝑙𝑒𝑠 angle-bending potential, 𝑉𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 and 𝑉𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠 are torisonal potentials, 𝑉𝐿𝐽 and 𝑉𝑐𝑜𝑢𝑙 

are the non-bonded van der Waals and coulomb’s potentials respectively. 

In any molecule with more than four atoms, the variation in the energy due to rotation 

about bonds is included as dihedral torsional potential as described by the third term. Torsional 

energy is expressed as a cosine function where Vn represents the height of the potential barrier, φ 

is the dihedral angle, γ is the phase factor and n is the multiplicity. In addition, improper torsion 

potential term is included to ensure planarity of sp2 hybridised carbon in amino acids carbonyl 

group or aromatic rings. This term accounts for positive contribution to the potential energy of 

out-of-plane motions. Here, ω is the improper angle related to the deviation from the planarity. 

The last two terms represent a contribution to the potential energy based on interactions between 

particles separated by more than three covalent bonds. Here, the fifth term corresponds to the 

short-range interatomic van der Waals interaction modelled by the 12-6 form of Lennard-Jones 

potential. In equation 2.14, ε is the well depth, σ is the width of LJ potential, and the repulsion 

and attractive forces vary as r -12 and r -6 respectively. The final term in the equation represents 

the long range electrostatic interactions, which are described by Coulomb’s law. 
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The force constants, equilibrium structural parameters and the partial atomic charges are 

derived from ab-initio quantum mechanical calculations and refined by fitting to experimental 

data from X-ray diffraction, NMR, Raman, infrared and neutron spectroscopy. The potential 

function form and/or parameters may differ for various available force fields depending on the 

systems and properties against which it has been characterised. In this thesis, we have used 

different force fields, namely Charmm2711, Charmm3612 and Amber99sb-Ildn13 for protein 

simulations.  

2.3  Technical Details of Molecular Dynamics Simulations 

2.3.1 Periodic Boundary Conditions  

Molecular dynamics simulations aim to provide the structural and thermodynamic properties of a 

macroscopic system with a large number of particles. In order to simulate bulk properties of N-

particle system, the surface effects can be overcome by introducing periodic boundary conditions 

(Fig. 2.2). The periodic boundary conditions mimic the presence of infinite bulk surrounding by 

replicating an infinite replica of the original simulation box around itself. This removes the 

artefact of unwanted boundaries and subsequent edge/surface effects.  

 

Figure 2.2 Schematic representation of periodic boundary condition in a 2D system. A cutoff 

radius (rc) is shown around the water in blue-magenta colour in the central box. This molecule 
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can interact with any other atom that lies within the cutoff radius, whether it is in the same box 

or across PBC. 

It is necessary because the fraction of all particles/atoms present at the surface/boundary 

walls is proportional to N-1/3. While this fraction is negligible in a macroscopic system with a 

large number of particles (~1023), the surface effects become significant for typical systems used 

in computer simulations in the order of 103~106. In PBC, at any time during the simulation, only 

N-particles inside the original cell are considered explicitly. The implications of PBC ensures 

that if a particle leaves the simulation box from one side, its image from the replica 

instantaneously enters the box from the opposite direction, thus keeping the number of particles 

in the simulation box constant. The idea of using periodic boundary condition introduces an 

artificial periodicity which consists of an original box and all its replicas at the multiples of box 

length. It is problematic to simulate fluctuations with wavelengths greater than the length of the 

simulation box. Hence, the box length must be sufficiently large to study properties with long 

range-correlations. 

2.3.2 Minimum Image Convention and Truncation of Interactions 

With the inclusion of periodic boundary conditions in the system, the number of interacting 

particles increases enormously. This is because the particles in the original simulation box can 

interact with all its replica images. This limitation is overcome by using minimum image 

convention, which ensures that at a time an atom can interact with at most one image of other 

atoms in the box or nearest images. However, for an N particle system, the computational time 

required for pairwise interactions scales with an order of N2.  Hence, the minimum image 

convention is used along with the truncation of interactions method to reduce the computational 

time by restricting the calculation of number of interactions. The method is much effective for 

calculation of short-range interactions as the interaction potential decays more rapidly than r -3 

(u(r) ~ 1/rn; n >3). In this method, a spherical cut-off is defined taking into account all the 

pairwise interaction in the closest image.  

 ( ) ( ) ,       
   

 0,              
c

trunc
c

U r r r
U r

r r
 ≤

= 
>

 (2.15) 
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Here, the potential U(r) beyond the cutoff (𝑟 > 𝑟𝑐) is set zero where rc is the cutoff distance. The 

cutoff must be chosen such that the potential beyond rc can be safely neglected. Further, in 

consistence with the minimum image convention, the cutoff radius cannot be larger than half the 

length of the simulation box to prevent interaction of a particle with more than two images.  The 

use of simple truncation scheme leads to large fluctuations in energy due to discontinuity in the 

potential at rc. This is overcome by the use of  truncated and shifted potential: 

 ( ) ( ) ( ) ,       
   

 0,                              
c c

trunc
c

U r U r r r
U r

r r
 − ≤

= 
>

 (2.16) 

This method shifts the potential energy surface such that the potential would be zero at the cutoff 

rc. Further, it must be highlighted that the truncation methods must be used only to describe 

short-range interactions and never be used for long-range interactions such as electrostatic 

interactions. 

2.3.3 Long-range Interactions 

The calculation of non-bonded interactions, i.e. van der Waals and electrostatic interactions are 

the most computationally expensive step in molecular dynamics simulation. With the inclusion 

of periodic boundary condition, a particle interacts with all other particles in its own image and 

also within all periodic images. For an N-particle system, the Coulomb contribution of the 

potential energy is given by, 

 
'

0 1 1

1
2 4

N N
i j

n i j i ij

q q
V

r nLπε= = = +

=
+∑∑ ∑  (2.17) 

where L is the cubic box length, n represents all periodic images, prime on the summation 

represents the sum runs over all the periodic images. Unlike short-range interactions, the 

truncation method cannot be applied to long range interactions as the potential function decays as 

r -1 (faster than r -3) giving rise to huge errors in force calculations. Different techniques have 

been developed to handle long-range interactions such as Ewald summation,14 Particle mesh 

Ewald summation,15 and multipole method. 
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In Ewald summation, the long range interactions are calculated in two parts: the real-

space contribution and the reciprocal space contribution. It is assumed that a point charge qi is 

surrounded by a Gaussian charge distribution cloud of opposite sign. Hence, the electrostatic 

potential energy has three contributions; (1) electrostatic potential due to a point charge qi (2) 

due to screening charge cloud with net charge -qi (3) due to the counter neutralising charge cloud 

with charge qi. The electrostatic potential between the point charge and screening charge 

distribution can be computed by direct summation and is performed in real space. The interaction 

with the compensating charge cloud is performed in the reciprocal space. Further, the final 

potential form includes two more terms: (1) to correct for the inclusion of self-interaction 

between the point charge qi and the compensating charge distribution and (2) in case the medium 

surrounding the charge has infinite dielectric constant. The total electrostatic potential energy is 

given by, 

 
( ) ( ) ( ) ( )r k self dipolarV V V V V= + + +  (2.18) 
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Here 𝑉(𝑟) is the real space contribution, 𝑉(𝑘) is the reciprocal space contribtion, 𝑉(𝑠𝑒𝑙𝑓) is the self 

energy correction and 𝑉(𝑑𝑖𝑝𝑜𝑙𝑎𝑟) is the dipolar correction. In the case of large systems, the 

traditional Ewald summation method is inefficient as the calculation in the reciprocal space 

scales as N2. The limitation is overcome by Particle mesh approaches where the charges in the 

systems are interpolated on a grid which are solved using Fast Fourier Transform algorithm.15 

The FFT based particle mesh method scales as NlogN.  

2.3.4 Neighbour and Cell Lists 

As described earlier, the truncation method reduces the total number of pair interactions. 

However, this method requires the calculation of the distance between an atom i with the 

remaining N-1 atoms to determine which ones lie within the cutoff radius (rc). Thus at any time 
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step, despite truncating potential, one needs to calculate the N(N-1)/2 pairwise distances and the 

time scales as N2. Hence, to speed up the calculation of non-bonded interactions, neighbour and 

cell list techniques are developed such that the computing time scales as N3/2 or N. In neighbour 

list (verlet list) method, another cutoff (rlist) is introduced at the beginning of the simulation such 

that rlist > rc and a list of all the atoms within rlist is maintained. In the subsequent steps, 

interactions are calculated for only atoms included in the neighbour list, thus reducing a large 

number of unnecessary calculations and increasing overall performance. The list is updated 

every 10-20 steps when the atoms are displaced more than rlist−rc. The cell list method is used 

when the number of atoms is large, and the length of the simulation box is much greater than the 

cutoff radius (rc). In this method, the box is divided into several cells with edge equal to or 

slightly larger than rc. At the beginning of the simulation, a list of atoms in the same or 

neighbouring cell is maintained and remains unchanged unless the domain changes during the 

simulation. Thus at any time step, the interaction for any atom i is calculated with all atoms 

within the volume defined by same and neighbouring cell (27 cells), i.e. 4/3.πrc
3. The cell list 

method is fast and efficient as compared to the verlet list as the method scales as N. 

2.3.5 Thermodynamics Ensembles 

The thermodynamic properties of a system can be derived using a number of ensembles based on 

the concepts of statistical mechanics. Ideally, molecular dynamics simulation is an evolution of 

system of N particles in a fixed volume V and constant total energy E. Thus, the time average 

thermodynamic properties for this system can be derived from the ensemble average in the 

microcanonical ensemble (NVE). However, most reactions and experimental observations are 

performed at constant pressure and temperature with the possibility for the system to interact 

with the surrounding and undergo fluctuations in the energy or volume or number of particles.  

In molecular dynamics simulations, this is achieved using two thermodynamics ensembles, 

namely canonical ensemble (N,V,T) and isothermal-isobaric ensemble (N,P,T). In NVT 

ensemble, the temperature, number of particles and volume is kept fixed whereas, in NPT 

ensemble, temperature, number of particles and pressure are constant while the volume of the 

system is allowed to fluctuate. To achieve these ensembles, the system is coupled to thermostat 

or barostat (external baths) at a constant temperature and pressure, respectively. In this thesis, 
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NVT ensemble was used during temperature equilibration while NPT ensemble was used during 

all production runs. 

Thermostat (Constant Temperature Simulations) 

The temperature of the system is directly correlated to the kinetic energy by the equipartition 

theorem of energy, 

 21 3
2 2 bmv Nk T=  (2.20) 

Based on this well-known theorem, several ways have been proposed to control the temperature 

of the system. 

1. Velocity rescaling 

The most trivial way of controlling the temperature is by modifying the velocities of atoms. The 

idea is to scale the velocities of the particles in the system such that the average kinetic energy of 

the systems matches with the system at target temperature. In this method, velocities are scaled 

by a factor,  

 
( )

λ BT
T t

=  (2.21) 

where TB is the desired temperature, and T(t) is the instantaneous temperature before scaling.  

2. Berendsen thermostat 

The Berendsen thermostat is an example of modified velocity rescaling and weak coupling 

thermostat.16 It is a more physical way of controlling temperature by weakly coupling of the 

system to an external heat bath maintained at the desired temperature (TB). It is achieved by 

modifying Newton’s equation of motions by introducing a pseudo friction coefficient γ(t). The 

temperature is scaled by factor λ given by,  

 
1

2

λ 1 1BTt
Tτ

 ∆  = + −    
 (2.22) 

where Δt is the time step, and τ is the coupling parameter between the heat bath and system. 
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In this thesis, we have used velocity rescaling temperature coupling method17 that is basically a 

modified Berendsen thermostat with an additional stochastic term to generate a correct Canonical 

ensemble given by, 

 ( ) 0
0 2  

T f T

KKdt dWdK K K
Nτ τ

= − +  (2.23) 

where K is the kinetic energy, Nf  is the number of degrees of freedom, dW a Wiener process and 

𝜏𝑇 is the temperature coupling time constant. 

3. Anderson thermostat 

In this constant temperature method, the system is coupled to a heat bath represented by 

stochastic collisions of randomly selected particles with the heat bath.18 At each collision, new 

velocity is assigned to the particle from a Maxwell-Boltzmann distribution corresponding to the 

desired bath temperature keeping all other particles unaffected. The collision frequency (v) 

determines the strength of the coupling with the heat bath. The distribution of time intervals 

between two stochastic collisions is given as, 

 ( ), vtP v t ve−=  (2.24) 

4. Nose-Hoover thermostat 

This method is based on extended Lagrangian with an additional new degree of freedom (s) and 

effective mass Q associated with a fictional heat bath.19,20 The Lagrangian can be written as 
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Here, the last two terms represent the potential energy and kinetic energy of the heat bath.  

Barostat (Constant Pressure Simulations) 

Similar to the thermostat, in constant pressure simulations, the system can be coupled to pressure 

bath with desired pressure, which is achieved by scaling the volume of the simulation box. In 



2.  Methodology 

59 

other terms, in the NPT ensemble, the shape and size of the cell are rescaled to maintain constant 

pressure. The rate of change of pressure with respect to time is given by, 

 ( )1
B

P

dP P P
dt τ

= −  (2.26) 

 ( )λ 1 κ B
P

t P Pδ
τ

= − −  (2.27) 

where κ is the isothermal compressibility of the system and is given by: 

 
1

T

V
V P

κ ∂ = −  ∂ 
 (2.28) 

Thus, at each step, the coordinates, as well as the box lengths, are scaled by λ to maintain the 

pressure at P0. In this thesis, we have used Parrinello-Rahman Pressure Coupling method.21 

2.4  Steps in Running Molecular Dynamics Simulation 

The entire molecular dynamic simulation process can be divided into four steps: 

1. System Setup 

To start a simulation, one needs to generate initial conformation of the system from pre-

existing models such as structural data or by placing the molecules or particles randomly 

inside a box which represents the volume of the system. In the case of biological entities 

such as proteins and nucleic acids, the atomic coordinates of the system can be obtained 

from the three-dimensional structure solved using x-ray diffraction or NMR technique. 

Appropriate force-field is selected to assign non-bonded and bonded parameters of the 

atoms/particles in the system which will be used for the calculation of potential energy at 

a later stage. To replicate biological conditions, the system (protein/nucleic acids) is 

solvated by adding water and ions in the simulation box. 

2. Energy Minimization and Equilibration 

The system is then energy minimised using either steepest descent or conjugate gradient 

method to remove any atom overlapping and steric stress between two extremely close 

atoms. The initial velocities of the atoms are assigned randomly from a Maxwellian 
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distribution centred around the desired temperature, and then the resulting velocities are 

scaled to modify the average kinetic energy to the desired value. The initial state of the 

system could be far away from the thermodynamic equilibrium conditions in which the 

simulation has to be performed. Hence, a two-step NVT and NPT equilibration are 

performed by coupling system to thermostat and barostat respectively, so that the system 

reaches equilibrium. Sometimes the solute part in the system is position restrained to 

enable the equilibration of solvent part at the desired conditions. 

 

3. Production Run 

Once the system is equilibrated, it is made to evolve through the conformational space in 

the production run. The time steps for the calculation of position and velocities must be 

sufficient to account for the fastest event in the simulation (~2fs), and the production run 

must be sufficiently long to ensure adequate sampling of the phase space. 

4. Data Analysis 

The production run generates data about the position and velocities of the atoms with 

time, which can be used to calculate various physical properties of the system. Some of 

the conventional analyses performed for protein systems are root-mean-square deviation, 

root-mean-square fluctuations and radius of gyration, geometric clustering. In this thesis, 

we have used two other techniques, namely principal component analysis and k-means 

clustering to explore the conformational dynamics of the system. 

2.5  Data Analysis Methods  

2.5.1 Root Mean Square Deviation 

Root mean square deviation (RMSD) is defined as the deviation of a set of atoms in a molecule 

with respect to the similar set of atoms in  reference structure rref with time and is calculated as, 

 ( ) ( )
1

22

1

1 N
ref

i i i
i

RMSD t m r t r
M =

 
= − 

 
∑  (2.29) 
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where N is the total number of atoms, mi is the mass of the atom i, 𝑟𝑖(𝑡) is the position of atom i 

at time t and 𝑀 = ∑ 𝑚𝑖
𝑁
𝑖=1  is the total mass. The above equation (2.29) is for mass-weighted 

RMSD calculation after least square fitting the structure at time t to the reference structure. 

2.5.2 Root Mean Square Fluctuation 

Root mean square fluctuation (RMSF) is the  deviation of an atom i with respect to the reference 

position 𝑟𝑖
𝑟𝑒𝑓 over the time (T). The reference position can be also a time-average position of the 

atom i, i.e., 𝑟𝑖
𝑟𝑒𝑓 = 𝑟𝚤�. 
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 
∑  (2.30) 

The difference between RMSF and RMSD is that the RMSF is averaged over time, whereas the 

RMSD is the deviation with time. 

2.5.3 Radius of Gyration 

Radius of gyration defines the distribution of atoms about an axis through the center of mass of 

the molecule.  
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 (2.31) 

where 𝑚𝑖 is the mass and 𝑟𝑖 is the position of atom i. This technique is used to define the 

compactness or size of the molecule; for example proteins, polymer chains 

2.5.4 Hydrogen Bonds 

A hydrogen bond is defined between a donor atom (hydrogen attached) and an acceptor atom by 

following geometric criterion:  

(i) distance between the donor atom and the acceptor atom 𝑟 ≤ 0.35 𝑛𝑚 

(ii) angle A-D-H 𝛼 ≤ 30° 

In this thesis, we have used Gromacs utility g_hbond and VMD Hbonds plugin to identify all 

hydrogen bonds between any two groups of atoms.  
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2.5.5 Principal Component Analysis 

A typical molecular dynamics trajectory contains a large number of variables (atomic 

coordinates or internal coordinates) that can be correlated or dependent on each other. In 

molecular dynamics simulation, principal component analysis (PCA) is one of the most 

commonly used techniques to probe the correlated functionally significant motions in the 

protein. PCA is a multivariate statistical technique used to reduce the dimension of data obtained 

from 3N atomic coordinates to minimal selective degrees of freedom while retaining maximum 

variation in the data set.  

Steps in Principal Component Analysis: 

1. Calculate the covariance matrix: 

Any PCA calculation starts with the construction of a covariance matrix or correlation 

matrix for a set of atomic coordinates from the molecular dynamics trajectory. Initially, a 

rotational-fit is performed over the trajectory to remove translational and rotational 

motions to remove dynamics that do not contribute to the internal motions of the system. 

The standard procedure is to align the sampled structures to a reference structure which 

can be an average structure from the trajectory or native structure obtained from NMR/X-

ray diffraction technique. Once aligned, one can calculate the covariance matrix. For a 

system with N atoms, the covariance matrix can be described as, 

( ) ( )ij i i j jC r r r r= − − −      (2.32) 

where Cij is the covariance between ith and jth atoms, r1 . . r3N are mass-weighted cartesian 

coordinates and <…> is the average over all conformations sampled. The element Cij 

will be large and positive if the atoms i and j deviate largely from their respective 

equilibrium positions and in the same direction and vice-versa. One of the crucial steps is 

the selection of atoms for the calculation of covariance matrix where depending on the 

type of motion to be identified such as large-scale global motions or localised motions, 

the atoms selection varies from all atoms, all non-hydrogen atoms or α-carbon atoms. 

2. Calculate eigenvectors and eigenvalues: 

The next step is to diagonalise the covariance matrix to obtain the eigenvector (vi) and 

eigenvectors (λi) which describe the modes and amplitude of collective motion. 
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3. Arrange the eigenvectors in decreasing order of eigenvalues: 

The eigenvalue decomposition of the covariance matrix gives a set of orthogonal 

eigenvectors and corresponding eigenvalue which characterises different motions of the 

system. The eigenvalues (λi) are arranged in the decreasing order of the magnitude i.e. 

λ1≥λ2≥λ3…≥0. The largest eigenvalues correspond to the reduced representation of large 

motions in the protein.  

4. Calculate the principal components: 

The principal components (PC) can be calculated by the projection of the data r = (r1 . . 

r3N)T over the eigenvectors (vi). 

.i iV v r=      (2.33) 

All PCs are uncorrelated and geometrically orthogonal. A scatter plot of two PC modes 

shows how the system explored the conformational space defined by the selected PCs.  

Based on the atomic fluctuations, a protein’s conformational space has been divided into two 

subspaces, namely essential subspace and constrained subspace. It has been shown that the first 

few PC modes represent fluctuations/motions which are relevant to protein function (opening 

and closing of the loop, hinge bending, domain motions) and constitute the essential subspace. 

While the remaining PC modes correspond to the irrelevant local fluctuations described as 

constraint subspace. However, this technique is limited by the conformational space sampled in 

the molecular dynamics simulations.  

2.5.6 K-means Clustering 

Cluster analysis is another common method used to analyse multivariate data. K-means is an 

unsupervised clustering algorithm which is used to partition a given data set into a priori defined 

number of clusters. Let 𝑋 = {𝑥𝑖}, 𝑖 = 1, … , 𝑛 be the set of n data points to be partitioned into K 

clusters, C = {𝑐𝑘}, 𝑘 = 1, … , 𝐾. The aim is to partition n data points into k clusters such that the 

sum of the squared error over all K clusters is least. Let µk be the mean of cluster ck. Then, 

 ( ) 2
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where ||xi - µk||2 is the squared error between the data points in the cluster ck and mean µk. The 

following steps are involved in K-means algorithm: 

1. Initialise k data points as initial cluster centers, c1….ck 

2. For each data point, assign it to the closest cluster. 

3. Compute new cluster centers by averaging over all the points assigned to it. 

4. Repeat steps 2 and 3 until convergence (No change in the cluster centers). 

5. Return {c1…ck}. 

 

Figure 2.3 Schematic representation of K-means algorithm: (a) Cluster input data into two 

clusters (k=2). (b) Initialise two data points as cluster centers (c, d, e) Compute the distance 

between data points and cluster center. Recompute cluster center and reassign data points. 

Repeat these steps until no change in cluster center is observed (f) Final clusters after 

convergence. 

The k-means clustering algorithm requires three pre-defined parameters: number of 

clusters (k), distance metric and cluster initialisation. K-means clustering can be viewed as a 

greedy algorithm that converges to local minima with different initialisation leading to different 

clusters. This can be overcome if the clusters are well separated or by running algorithm multiple 

times using different initialisation for given k clusters. Euclidean metric is usually used to 

calculate the distance between the cluster center and the data points. There is no theoretical 
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solution for determining the optimal number of clusters a prior for a given data set. A simple 

approach is to perform k-means clustering for a given data set independently for multiple values 

of k and choose the partition based on known criteria. 

2.6  Free Energy Calculations 

In nature, all the biochemical and physical processes such as protein-ligand binding, molecular 

recognition and protein folding are governed by the underlying free energy landscape. The 

understanding of their functional mechanisms at the molecular level requires the description of 

such processes in terms of thermodynamics. Statistical mechanics describes the equilibrium 

ensembles by a probability distribution and connects the microstates of a system to the 

macroscopic thermodynamic properties such as free energy, temperature, density. Free energy is 

a thermodynamic quantity that describes the spontaneity of a chemical process and thus 

determines the equilibrium state of a system. 

The free energy of a system is usually described as Helmholtz or Gibb’s free energy. 

Using statistical mechanics, the Helmholtz free energy in a Canonical ensemble can be expressed 

in terms of the partition function Q: 

 ( )ln , ,BA k T Q N V T= −  (2.36)  

    

Similarly, the characteristic state function of isothermal-isobaric ensemble, i.e. Gibbs free energy 

can be described as, 

 ( )ln , ,BG k T Z N V T= −  (2.37) 

In the case of canonical ensemble, the partition coefficient Q(N,V,T) for N particle system is 

defined as, 
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where r and p are 3N dimensional vector corresponding to the coordinates and momenta of all 

particles of the system. Complex processess such as enzyme-catalysed transformations or protein 
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folding occurs in a high-dimensional phase space that involves a large number of degrees of 

freedom resulting in rough energy landscapes. Moreover, the calculation of free energy becomes 

difficult as a realistic biochemical system involves interaction with solvent molecules, ions and 

other substrates generating local minima and sub-minima on free energy surface populated with 

conformations. Hence, the free energy calculations are performed along a set of coordinates 

which defines the progress of a chemical process along the reduced degrees of freedom or 

characterise the end states of the reaction. These are typically referred to as collective variables 

or reaction coordinates. The reaction coordinates are usually defined as the functions of 

Cartesian coordinates of atoms in the system. The choice of the reaction coordinate (collective 

variable) entirely depends upon the reaction process to be monitored. For example, in a bond-

dissociation process, the bond length between the associated atoms can be used to describe the 

progress of the reaction. The distinct folded and unfolded states of protein can be characterised 

by using different sets of reaction coordinates such as dihedral angles (phi-𝜑, psi-𝜓), radius of 

gyration (Rg) and hydrogen bonds.  

2.6.1 Potential of Mean Force 

Theoretically, one can calculate exact free energy for a system using equation 2.36; however, 

practically, it is not computationally possible to calculate it for a system which has a high free 

energy barrier. Hence, once a reaction coordinate is identified that describes the physical 

progress of a reaction, one can construct a free energy profile based on it. At the same time, one 

cannot ignore the remaining degrees of freedom that determines how free energy changes along 

the reaction coordinate. This is achieved by averaging over all other degrees of freedom. This 

free energy profile is referred to as potential of mean force (PMF). The PMF is given by, 

 ( ) ( )( ) ( )ln    N N N
BA X k T dr f r X exp U rδ β = − ∫ − − 

 (2.39) 

where 𝛿(𝑓(𝑟𝑁) − 𝑋) is the dirac delta function for the reaction coordinate X with respect to 

position coordinates of all particles (rN). The above equation (2.39) gives the reduced free energy 

along a reaction coordinate with average effects of all other degrees of freedom. Based on the 

relationship between partition coefficient and free energy, the PMF along a reaction coordinate 

can also be defined from the average distribution function,  
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 ( ) ( )lnBA X k T P X c= − +  (2.40) 

where P(X) is the probability distribution for any reaction coordinate X of interest. The method 

has been successfully used for free energy calculations in processes such as organic reactions in 

water22 and biological systems such as nucleic acid base flipping,23 ion transport through 

membranes.24   

2.6.2 Rare Event Sampling 

In nature, several biochemical and physical events occur at time scales which are inaccessible by 

conventional molecular dynamics simulations. Such systems exhibit complex free energy 

landscape with stable states separated by large free energy barrier, e.g. protein folding,25,26 

nucleation of first-order phase transitions.27 In such processes, the probability distribution P(X) 

in the equation 2.40 cannot be computed correctly as the probability that a fluctuation will 

sample the stable states becomes exponentially small with the increase in the barrier height 

greater than kBT. Thus, during conventional molecular dynamics, the system gets trapped into the 

local minima and the free energy surface isn’t sufficiently sampled. To overcome this problem, a 

range of enhanced sampling techniques28 have been developed, such as umbrella sampling,29 

metadynamics,30,31 and replica exchange molecular dynamics.32  

Umbrella Sampling 

The umbrella sampling technique is often used to overcome the sampling problem by 

introducing a bias potential so that the probability of visiting the stable states separated by large 

free energy barriers is increased.29,33 The idea is to calculate the PMF along a chosen reaction 

coordinate by adding a bias which is usually a harmonic potential of the form, 

 ( ) ( )2
0W X k X X= −  (2.41) 

where k is the harmonic restraint on the CV, X0 is the equilibrium state in each window. The 

harmonic restraint or bias function is applied to keep the system close to the equilibrium state. 

This is added to the original potential 𝑈0(𝑟) so the total potential becomes, 

 ( ) ( ) ( )0U r U r W X= +  (2.42) 
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The reaction coordinate is defined such that the equilibrium value of bias potential can be chosen 

as a set of intermediate points between the two end states. Sampling in each window/umbrella 

will yield biased probability distribution around each point. Then, the ensemble average of 

quantity F for an unbiased trajectory becomes, 

 
( )

( )0

exp

exp
U

U
U

F W
F

W

β

β=
 (2.43) 

where U indicates, the system is sampled using biased potential. Umbrella sampling technique 

involves simulations at multiple windows, thus generating multiple PMF along the reaction 

coordinate.  

 

Figure 2.4 Illustration of umbrella Sampling technique. The attractive harmonic potential is 

added along the free energy landscape in the form of multiple windows. The conformations are 

sampled using these parabola potentials and are processed using WHAM method to reconstruct 

the original free energy surface. 

Weighted Histogram Analysis Method (WHAM) is a standard technique used to combine 

the multiple simulations to generate a complete PMF.34,35 The accuracy of the umbrella sampling 

lies in the sufficient overlapping of the windows and the choice of biased potential. Several 

methods have been introduced to estimate and reduce error due to insufficient sampling.36-39 This 

method has been widely used to study large conformational changes in protein such as protein 

misfolding, ligand binding events and movement of permeants in ions channels.38,40,41   
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Metadynamics 

Metadynamics is another technique used for enhanced sampling and to reconstruct free energy 

landscape as a function of selective collective variables.30,42 Unlike umbrella sampling, this 

method pushes the system out of the local minima by addition of repulsive bias potential to 

accelerate the sampling of rare events.43 A history-dependent bias potential is added with time, 

such that the bias potential at time t can be written as the sum of repulsive Gaussian deposited 

along the trajectory and is given by, 

 ( )( )
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where s(t) = S(x(t)) is the value of collective variable at time t, 𝜎 is the Gaussian width and w is 

the Gaussian height.  

The addition of biased potential pushes the system away from the free energy minima. 

Thus, the time interval between the addition of successive hills (deposition frequency) must 

allow the system to relax to the nearest local minimum. The Gaussian width and height, along 

with the deposition frequency, determine the accuracy and efficiency of the reconstructed free 

energy profile. Addition of larger hills or too quickly (higher deposition frequency), results in 

large errors as the system fails to get back to nearest minima whereas addition of smaller hills 

though produces more accurate FES, increases the computational time. Hence, there should be a 

balance between the selections of these three parameters. 
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Figure 2.5 Schematic representation of metadynamics technique: In this technique, the repulsive 

bias added in the form of Gaussians, which acts as sand that fills the valleys on the free energy 

surface. With time, the addition of sufficient Gaussian hills, i.e. accumulation of sand in the 

minima A forces the system to cross the barriers and explore new minima B.  

In metadynamics, it is assumed that after addition of sufficient number of Gaussian hills 

over a long time, the bias potential provides an estimate of the unbiased energy landscape, 

 ( ) ( ),  GV S t F S c→ ∞ =− +  (2.47) 

where c is a constant. However, the first version of metadynamics technique is limited by the 

convergence, often leading to overfilling of the free energy space. This limitation is overcome by 

another approach referred as well-tempered metadynamics.44 In well-tempered metadynamics, 

the bias potential is given by, 

 ( ) ( ),
, ln 1B

B

N S t
V S t k T

k T
ω 

= + 
 ∆ 

∆  (2.48) 

where V(S,t) is the bias potential, N(S,t) is the histogram of the collective variable S, ΔT has a 

unit of temperature and controls the degree to which the biased trajectory can explore free energy 

surface away from minima. In other words, the CV is sampled at enhanced temperature (𝑇 +

∆𝑇) and by tuning ∆𝑇 one can limit the exploration of the FES region to the physically 
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meaningful regions in the CV space. In this method, the rate of Gaussian deposition decrease 

over time which is implemented by rescaling the height of the Gaussians as, 

 

( ),V S t
T

Gw eωτ
 

−  ∆ =  (2.49) 

where 𝜔 is the initial bias deposition rate, 𝜏𝐺 is the time interval. The rate of deposition 

decreases as 1/t. Further, the FES can be estimated as, 

 ( ) ( ),  G
TV S t F S c

T T
∆

→ ∞ =− +
+ ∆

 (2.50) 

Therefore, in two limiting cases, at ∆𝑇 = 0, the bias is equal to zero and represents unbiased 

simulation and at ∆𝑇 → ∞, the deposition rate becomes constant and 𝑉𝐺(𝑆, 𝑡 → ∞) =  −𝐹(𝑆). 

Metadynamics technique has been widely used to study reaction pathways and identify structural 

entities corresponding to metastable states as the system escapes the minima through the lowest 

energy saddle point.45-48 It is also useful to reconstruct complete free energy landscape without a 

prior knowledge about the landscape. In this thesis, we have used well-tempered metadynamics 

to generate free energy surfaces with desired collective variables. 

2.7  Other Computational Details 

The graphs were plotted using the Xmgrace and Gnuplot plotting program. The structural figures 

were generated using VMD49 and PyMOL50 molecular visualisation program. 
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Chapter 3  
3 Hidden Electrostatic Basis of Dynamic 

Allostery in a PDZ3 Domain 
 

3.1  Introduction 

Allosteric regulation of proteins plays a key role in physiological cell functions, biochemical and 

signal transduction pathways and drug discovery1-3. It has remained a challenge to understand 

how the thermodynamic perturbation caused by ligand binding at one site would propagate and 

modulate the structure and dynamics of distal regions of proteins. The prevailing models of 

structure-based allostery4,5 do not apply to the more recent examples of allostery without 

conformational change such as PDZ domain6, CAP dimer7 and met repressor8. These examples 

have triggered the concept of “dynamic allostery”, where the side-chain dynamics is modulated 

on ligand binding, and the origin has often been attributed to changes in the conformational 

entropy9,10. The modern view of allostery invokes a thermodynamic picture, where a “population 

shift” among pre-existing conformational states occurs upon binding the allosteric effector11,12,13 . 

It has also been suggested in the context of allostery without conformational change that “not 

observed does not imply that it is not there”10 since crystallographic techniques may not resolve 

the relatively minor population shifts. An interesting idea has emerged that all proteins might be 

allosteric in nature!14 

PDZ domain has been a classic model system to study single domain allostery without 

major structural changes9,15,16. PDZ domains are evolutionary conserved protein-protein 

interaction modules associated with the cellular signaling and are implicated in localization of 

membrane receptors and ion-channels17,18. They can dimerise with other modular protein 

domains (e.g. WW, SH2, SH3, PH etc.) or can bind specific recognition sequences at the C-

terminus of proteins in a hydrophobic groove between β2-α2 regions17,19. At present, more than 

200 structures of PDZ domains and its complexes are available in PDB database which provides 

detailed information about the specificity and selectivity in ligand binding. PDZ domains exhibit 
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a highly conserved carboxylate-binding loop which forms a hydrophobic pocket for protein-

protein and protein-ligand interactions17,19,20. The loop is characterised by a conserved motif 

R/K-XXX-G-Φ-G-Φ, (where X is any amino acid and Φ is any hydrophobic residue) which 

recognises specific C-terminal motifs of the binding partner. PDZ domains are divided into three 

main classes17: (1) class I domains recognise the motif S/T-X-Φ; (2) class II domains recognise 

the motif Φ-X-Φ; and (3) class III domains recognise the motif D/E-X-Φ. The variability in the 

motif allows the interaction of PDZ domains with multiple proteins in the signaling pathway. 

Allostery has been one of the profound regulatory mechanisms of PDZ protein-protein 

interactions. The signature of the allosteric effects observed in PDZ domains has been purely in 

terms of the dynamics of the side chains. Solution NMR studies20,21 as well as molecular 

dynamics (MD) simulations22,23 have confirmed that binding the effector ligand leads to 

substantial modulation of side chain dynamics in the PDZ domain. In particular, Lee and 

coworkers have unearthed a “hidden dynamic allostery” in the PDZ3 domain, where deletion of 

a non-canonical distal α3 helix domain reduces the ligand binding affinity by 21 times6. Their 

work has highlighted the role of differential side chain motions towards the allosteric response 

and attributed the origin of dynamic allostery to purely entropic effects since the enthalpic 

contribution towards change in binding affinity upon α3 helix deletion was minimal. 

Interestingly, they have also hinted towards a possibility that internal structural adjustments 

could lead to cancellations in individual changes of enthalpy, which will be demonstrated to be 

the case in our work.  

Prior simulation studies have attempted to understand the allosteric communication 

pathways in terms of correlations in structural or energetic fluctuations in PDZ domain24,25. 

Karplus and coworkers have revealed two continuous correlation pathways in a PDZ2 domain 

and highlighted the existence of such pathways even in the absence of the ligand24. A number of 

theoretical23,26,27 and experimental studies6,28 propose multiple allosteric pathways for PDZ 

domains based on evolutionary information29,30, local structural changes22,31,32, heat diffusion 

pathways33,34 and energy connectivity networks35,36. Most of the existing approaches look for 

correlated motions or energy fluctuations to characterise the allosteric effects. While such 

correlations may demonstrate the effect of allostery, they do not explain the specific origin of 

such coupling. It has also been debated that the statistical analysis of evolutionarily coupled 

residues may not be the true reporter of functional coupling since the evolutionary information 
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does not include the molecular details of the interactions31,37. Thus, a molecular thermodynamic 

approach that utilises the perturbations in the non-bonded interactions upon ligand binding would 

provide a more direct view of the functional energetic coupling between the protein residues38-40. 

In this chapter, we argue that protein dynamics is governed by the underlying energy 

landscape. Our objective is to understand the perturbation in the internal energy landscape of the 

allosteric protein due to ligand binding and how that manifests into functional changes in distal 

sites. To achieve this goal, we performed atomistic MD simulations both in the ligand bound and 

unbound states of a PDZ3 domain protein and compared the changes in non-bonded interactions 

energies for each residue as well as contributions from individual pair-wise interactions. We 

track the large energetic perturbations upon ligand binding as signature of allosteric effects. We 

show that despite the subtle structural changes, the protein-protein and protein-water electrostatic 

interactions undergo dramatic re-distribution upon ligand binding. We construct a residue-pair-

wise energetic perturbation network where the binding site and distal allosteric regions are 

connected by the non-canonical α3 helix, which has been suggested to play a significant role in 

the dynamic allostery in PDZ3 domain6. Finally, we elucidate the molecular basis of this 

perturbation network to be a “population shift” between the pair-wise hydrogen bonded network 

involving the protein side-chains to be the primary reason behind the observed thermodynamic 

and dynamical effects. Based on our observations, we suggest a “hidden energetic allostery” 

driven by the population shift in specific electrostatic interactions and internal re-distribution of 

non-bonded interactions to be the driving force behind the “dynamic allostery” in PDZ3 domain.  

3.2  Methods 

3.2.1 System Setup 

The peptide bound and unbound structures for MD simulations were obtained from the crystal 

structure of PDZ3 domain bound with peptide CRIPT (PDB ID: 1BE9)19. The unbound structure 

was obtained by removing the peptide CRIPT (KQTSV) and equilibrating for 100ns. The C-

terminus of the protein and N-termini of both protein and ligand were capped by N-methyl amide 

and acetyl groups, respectively.  
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3.2.2 Simulation Parameters 

All MD simulations were performed using GROMACS 5.0.7 software41 with Amber99SB-Ildn 

force field42 and TIP4P-Ew water model43. The resultant solvated boxes contained around 8800 

water molecules for all the systems. The protonation states for the titrable residues were 

determined using MCCE method44 as follows: all Asp, Glu, Arg and Lys residues were charged, 

and His residues were neutral. Although the MCCE protocol identified a minor population of the 

protonated charged species for the two histidine residues, we have decided to use the neutral 

species with major population for both bound and unbound states. The systems were neutralised 

by adding appropriate number of Na+ ions. The structures were energy minimised followed by 

two-step equilibration, namely NVT equilibration followed by NPT equilibration. Temperature 

was controlled through velocity rescaling45 at 300K with a time constant of 0.1 ps and pressure 

was controlled using Parrinello-Rahman barostat46 at 1bar. The particle mesh Ewald algorithm47 

was applied to calculate long-range electrostatic interactions. The cutoff for short-range 

electrostatics and van der Waals’ interaction was 1.0 nm.  Four independent MD simulations of 

500ns each were performed (total 2.0μs) for the PDZ3 domain in the bound and unbound states 

with LINCS constraints for all bonds48 and frames were recorded at every 2ps.   

3.2.3 Analysis 

Differential contact map 

Two residues were defined to be in contact if the distance between any two atoms of these 

residues was less than 4.5Å49. Since a particular contact may form and break during the course of 

a dynamic trajectory, we defined a “contact frequency map” by 𝑓𝑖𝑗 = 𝑛𝑖𝑗 𝑁⁄  , where  𝑛𝑖𝑗 is the 

number of frames where the residues i and j were in contact and N is the total number of frames. 

Thus, 𝑓𝑖𝑗 = 1 for a contact that is present in all the frames. The “differential contact map” (𝐶𝑖𝑗) is 

the difference between the contact frequency map (𝑓𝑖𝑗) obtained from simulations of the bound 

state and the unbound state: 𝐶𝑖𝑗 = 𝑓𝑖𝑏𝑜𝑢𝑛𝑑 − 𝑓𝑖𝑢𝑛𝑏𝑜𝑢𝑛𝑑, where the values of 𝐶𝑖𝑗 would lie 

between -1 and +1, where 𝐶𝑖𝑗 = −1 and 𝐶𝑖𝑗 = +1 would indicate a contact between residue 

pairs i and j to be present exclusively in unbound and bound states exclusively, respectively. 
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Perturbation in non-bonded interaction energies 

The average non-bonded interaction energy was computed for each residue (𝐸𝑖) as well as all 

residue pairs (𝐸𝑖𝑗) and compared between the ligand bound and unbound states in the following 

manner. The change in average non-bonded energy of i-th residue is given by: ∆𝐸𝑖 =

〈𝐸𝑖〉𝑏𝑜𝑢𝑛𝑑 − 〈𝐸𝑖〉𝑢𝑛𝑏𝑜𝑢𝑛𝑑, where the 〈 〉 notation indicates an ensemble average over the trajectory 

for that particular state (bound/unbound). Note that this difference in average energy can be 

further broken down in terms of the contributions from ligand, protein and water in the following 

manner: 

 protein ligand water
i i i iE E E E∆ = ∆ + ∆ + ∆  (3.1) 

 
, , , , ,ligand b protein b protein u water b water u

i i i i i iE E E E E E   ∆ = + − + −     (3.2) 

where the terms  ∆𝐸𝑖
𝑝𝑟𝑜𝑡𝑒𝑖𝑛, ∆𝐸𝑖

𝑙𝑖𝑔𝑎𝑛𝑑 and ∆𝐸𝑖𝑤𝑎𝑡𝑒𝑟 denote the change in the average non-bonded 

interaction energy between the bound (b) and unbound (u) state due to the interactions between 

the i-th residue and ligand/protein/water, respectively. Here the interaction energies were 

calculated for all atoms of protein and ligand, whereas for computing the interaction energy with 

water molecules, a large cut-off of 2nm has been used. We have separately computed the 

contributions due to Lennard Jones (LJ) and electrostatic (Coulomb) non-bonded interactions to 

∆𝐸𝑖, but the LJ terms were generally found to be numerically much smaller than the respective 

electrostatic terms, so we have primarily focused on the electrostatic interactions while 

dissecting the perturbation in pair-wise interactions ∆𝐸𝑖𝑗. This helped us to discover the 

significant role of specific electrostatic interactions towards observed allosteric response as 

discussed later. 
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3.3  Results 

Side-chain rearrangement leads to dramatic change in energetics 

The basic premise of the “dynamic allostery” phenomenon has been the lack of structural 

changes between the ligand bound and unbound states as observed in the respective crystal 

structures. To be precise, the presence or absence of significant structural changes is evaluated 

based only on the backbone structure, and side-chains are not invoked in this description in 

general. As a first step towards characterising the structural features and differences (if any) 

between the available crystal structures for the PDZ3 domain with and without the ligand (PDB 

ID: 1BE9 and 1BFE, respectively), we performed energy minimisation of the crystal structures 

while restraining the position of the backbone atoms. Only the side chain atoms were allowed to 

move in order to investigate the significance of side-chain rearrangement on the interaction 

pattern. In order to maintain a consistent comparison, we used an identical length of the two 

protein structures (residues 306 to 415). Fig. 3.1a shows a superposition of the structures (bound 

and unbound) after energy minimisation, which preserves the well-known characteristics of the 

crystal structures that there is almost no structural difference (in backbone) between the two 

states except minor rearrangement in the β1-β2 and β2-β3 loop regions. 

 

Figure 3.1 (a) Superposition of the structures after energy minimisation of the respective crystal 

structures in the unbound and bound states (PDB IDs: 1BFE and 1BE9, respectively). Bound 

and unbound states are coloured in red and blue, respectively. The peptide ligand is highlighted 

in orange. (b) Residue-based RMSF profile for PDZ3 domain in the unbound state (black) and 

bound state (red). There is overall decrease in fluctuations in the ligand bound state as 
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compared to the unbound state exhibiting flexibility in the domain in the absence of ligand, and 

subsequently, ligand binding activity quenches fluctuations in the loop regions prominently. 

Subsequently, we turn our attention to the possible rearrangement of the side-chains. 

Looking for differences in the residue pair-wise contact map has been a popular choice for 

identifying the significant interaction pathways. After all, the non-bonded interactions are 

intimately coupled to the presence of contacts and their rearrangements. As a matter of fact, in 

the context of allosteric coupling it has been suggested that the residues which are in spatial 

proximity forming contacts are more likely to be coupled as compared to the distal residues37, 

and models have been proposed to construct a biophysical framework based on contacts acting as 

structural support for the propagation of information50-52. We took a similar approach of 

identifying the possible differences in the side-chain contacts between the two end states by 

constructing the differential contact map in Fig. 3.2a. The contacts present exclusively in the 

ligand bound and unbound states are marked in red and blue, respectively. This visual 

representation clearly indicates that majority of the pair-wise contacts remain the same (light 

pink regions), whereas there are a few inter-residue contacts which completely disappear or 

appear on ligand binding. Evidently, the side chain contact map reveals relatively minor 

structural rearrangement in the contact pattern. 

Finally, we turn our attention to the arguably most fundamental parameter: non-bonded 

interaction energy. Ligand binding is likely to cause significant local energetic perturbation in 

the binding site of the protein, which should propagate through the intra-protein interaction 

network to the allosteric site. Thus we have investigated the changes in the residue-wise non-

bonded interaction energy (∆𝐸𝑖) with the rest of the protein (and ligand). Figs. 3.2c and 3.2d 

present the electrostatic (∆𝐸𝑖𝑒𝑙𝑒𝑐 = 𝐸𝑖
𝑒𝑙𝑒𝑐,𝑏𝑜𝑢𝑛𝑑 − 𝐸𝑖

𝑒𝑙𝑒𝑐,𝑢𝑛𝑏𝑜𝑢𝑛𝑑) and van der Waals’ (∆𝐸𝑖
𝐿𝐽 =

𝐸𝑖
𝐿𝐽,𝑏𝑜𝑢𝑛𝑑 − 𝐸𝑖

𝐿𝐽,𝑢𝑛𝑏𝑜𝑢𝑛𝑑 ) components of the change in total interaction energy of the i-th residue 

upon ligand binding. Remarkably, we find that there is a wide range of variation in the change of 

electrostatic energy (∆𝐸𝑖𝑒𝑙𝑒𝑐) (up to ±90 kcal/mol) for both protein-only and ligand-only 

interactions. On the other hand, the changes in van der Waals’ interaction energy (∆𝐸𝑖
𝐿𝐽) show 

relatively modest range of variation up to ±6 kcal/mol. Evidently, the non-bonded interactions, 

particularly the electrostatic interaction energy, provide a highly sensitive probe towards 

identifying the subtle structural changes. Thus, even though the backbone and side chain 
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structural parameters (e.g. RMSD, cut-off based contact map etc.) show a minor change, the 

interaction energies show a substantial change between the two states and in our subsequent 

analysis we shall further demonstrate that the electrostatic interaction energy indeed captures the 

nature of allosteric coupling in the PDZ3 domain. We further emphasize that our analysis proves 

that indeed there is structural change at the side chain level (even in the crystal structure) that can 

be significant in terms of energetics (Fig. 3.2b). 

 

Figure 3.2 (a) Differential contact map between the bound and unbound states (energy 

minimised structures). Contacts unique in bound (including the contacts with the ligand) and 

unbound states are shown in red and blue, respectively. The common contacts are shown in light 

pink. The secondary structural elements have been highlighted along both axes as visual guides. 

(b) Energetic perturbation based on minimised crystal structures with identical backbone 

structure. The figure highlights four such pairs of residues with large ∆𝐸𝑖𝑗 as a consequence of 
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explicit hydrogen bond formation between the unbound and bound states. (c) Electrostatic 

(Coulomb) and (d) van der Waals’ (Lennard Jones) components of the residue-wise change in 

total interaction energy between the bound and unbound states (∆𝐸𝑖 = 𝐸𝑖𝑏𝑜𝑢𝑛𝑑 − 𝐸𝑖𝑢𝑛𝑏𝑜𝑢𝑛𝑑). A 

few residues with significant change between the two states have been marked on each figure. 

The ∆𝐸𝑖 due to interaction with ligand (∆𝐸𝑖
𝑙𝑖𝑔𝑎𝑛𝑑) and other protein residues (∆𝐸𝑖

𝑝𝑟𝑜𝑡𝑒𝑖𝑛) have 

been marked in red and black, respectively. 

The results presented in Fig. 3.2 confirm that the inherent energy landscapes of the bound 

and unbound states can be drastically different even when the backbone structures are almost 

identical. The subtle rearrangement and rewiring of the side chain interactions can lead to 

dramatically different energetic coupling (Fig. 3.2b). But the crystal structures may not be a true 

representative of the respective structural ensemble in solution due to crystal packing and 

crystallisation conditions. Moreover, a crystallographic view of single static structure often does 

not capture the biologically significant ensemble of conformations and dynamic fluctuations. 

Thus, in order to investigate the signatures of “dynamic allostery” in PDZ3 domain, we shall 

base our subsequent analyses on the MD simulation trajectories to capture the “population” of 

the significant interactions (between the side chains) that might lead to allosteric modulation. 

The local dynamical variations in the PDZ3 domain has been captured in the residue-wise 

root mean square fluctuations (RMSF) with respect to the average structure for both the ligand 

bound and unbound states (Fig. 3.1b). Overall the fluctuations decrease in the presence of the 

ligand in the β1-β2 and β2-β3 loop regions and towards the C-terminal region. In contrast, the 

fluctuation increases in the presence of ligand around residues 381-385 (α2-β5 loop). This 

emphasizes greater flexibility and plasticity in the unbound state as compared to the bound state 

as already discussed in the literature25. Although it has been well established that the overall 

dynamics of the PDZ3 domain is modulated upon ligand binding (hence the term “dynamic 

allostery), but the reason behind it is not completely clear. We shall argue that dynamics is 

governed by the underlying energy landscape. Thus, understanding the perturbation or 

modulation in the intra-protein interaction network is likely to provide the answer. 
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Contact maps do not capture the specific nature of contacts (ionic/polar/non-polar)  

We have shown in Fig. 3.2a that the side-chain contact maps undergo only a minor 

rearrangement. Of course, proteins in solution are flexible entities, and thus contacts may 

break/form with certain population. In order to understand the differences in the contact pattern 

in the dynamic system, we have computed the differential contact frequency map between the 

trajectories for bound and unbound states (Fig. 3.3a). Five major regions (C1 to C5) are marked 

on Fig.3.3a corresponding to the significant changes in the intra-protein contact map (involving 

both backbone and side chain atoms). Red and blue regions signify exclusive contacts present in 

bound and unbound states, respectively.  

 

Figure 3.3 (a) Differential contact frequency map between the bound and unbound states as 

obtained from the MD simulation trajectories. The regions with high differential contact 

frequency (�𝐶𝑖𝑗� > 0.5) are highlighted as clusters (C1 to C5). Positive values (red regions) and 

negative values (blue regions) indicate exclusive contacts present in the bound and unbound 

states, respectively. The values of differential contact frequency of these residue pairs have been 

shown in Table 3.1. (b) The representative snapshots showing changes in contact pattern 

between unbound and bound states for cluster C1 (ionic: R354-E305 to non-polar: R354-I307) 

and (c) C2 (non-polar: E395-I307 to ionic: E395-R309). 

We notice that the N-terminus region (residues 305-309) is involved in contact(s) with 

the α1-β4 (C1), β5-α3 (C2) and C-terminus (C3) loop/coil regions. For all these clusters, there is 
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an upward movement (N- to C- terminus) on going from unbound to bound state. This minor 

change in contact pattern seems insignificant since the contact map is agnostic to the specific 

nature of the contacts (ionic/polar/non-polar). Let us focus on two specific cases for the clusters 

C1 (Fig. 3.3b) and C2 (Fig. 3.3c) to understand the nature of interactions between these contacts. 

For cluster C1: there exists a salt bridge (ionic interaction) between the oppositely charged 

species E305 (negative)-R354 (positive) in the unbound state, whereas in the bound state this 

converts to non-polar contacts between hydrophobic I307/P308 and charged R354 (positive). 

Similarly, for the cluster C2: there is non-polar contact between I307 (hydrophobic) and E395 

(negative) in the unbound state, and this converts to a salt bridge between R309 (positive) and 

E395 (negative) in the bound state. 

Note that in both the cases, the contact region shifts by only 2 residues in the N terminal 

region, whereas the specific nature of the interaction dramatically changes between non-polar to 

ionic and vice versa. Thus, we argue that looking at purely structural parameters 

(distance/position based) is not enough to understand the allosteric modulation unless the 

chemical identity (charge distribution) is being considered. Thus, in subsequent sections, we 

shall exclusively focus on the energetics as the yardstick to identify the interaction network that 

connects the binding site to the allosteric site. Here the non-bonded interaction energy captures 

both the structural parameters (through distance dependence) and chemical identities (through 

partial charges for electrostatic and Lennard-Jones parameters for van der Waals’ interactions) of 

the molecular systems. 
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Table 3.1 List of residues with net contact frequency (�𝑪𝒊𝒋� ≥ 𝟎. 𝟓), positive value would indicate 

a contact between residue pairs i and j to be present exclusively in bound state and negative 

value states contact is predominantly formed in unbound state.  

ResID Residues list with net contact frequency �𝐶𝑖𝑗� ≥ 0.5 
G303 S409 (-0.6) 
E304 S408 (-0.5) 
E305 R354 (-0.8), Y392 (-0.8), G410 (-0.7)  
D306 S409 (0.7), R411 (0.6)  
I307 P394 (-0.9), K393 (-0.9), V406 (-0.8), S409 (0.7), E395 (-0.6), R411 (0.9), R354 (0.9)  
P308 R354 (0.6), Q391 (-0.9)  
R309 Y392 (0.9), K393 (0.8), P394 (0.9), E395 (0.7), V406 (0.8), G410 (0.8)  
E310 Y392 (0.9) 
E331 G335 (0.7), A370 (-0.5)  
D332 N369 (-0.6) 
G335 E331 (0.7) 
R354 E305 (-0.8), I307 (0.9), P308 (0.6)  
N369 D332 (-0.6) 
A370 E331 (-0.5) 
Q391 P308 (-0.9) 
Y392 E305 (-0.8), R309 (0.9), E310 (0.9) 
K393 I307 (-0.9), R309 (0.8)  
P394 I307 (-0.9), R309 (0.9)  
E395 I307 (-0.6), R309 (0.7)  
V406 I307 (-0.8), R309 (0.8)  
S408 E304 (-0.5) 
S409 G303 (-0.6), D306 (0.7) I307 (0.7)  
G410 E305 (-0.7), R309 (0.8)  
R411 D306 (0.6), I307 (0.9)  
K5 I328 (0.8), G329 (0.7), H372 (0.8) 
Q6 N326 (1.0), I327 (0.9), I328 (0.9), S339 (0.8), F340 (0.7), H372 (0.7)  
T7 F325 (0.7), N326 (1.0), I327 (1.0), I328 (0.9), H372 (1.0), A376 (1.0)  
S8 F325 (1.0), N326 (1.0), I327 (1.0), L342 (0.7), K380 (0.6)  

V9 R318 (0.8), T321 (0.7), G322 (1.0), L323 (1.0), G324 (1.0), F325 (1.0), N326 (1.0), 
I327 (1.0), A376 (0.9), L379 (1.0), K380 (0.7)  
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Electrostatic energy is the key determinant of allosteric modulation in PDZ3 domain 

So far, we have established that non-bonded interactions provide the most sensitive yardstick to 

capture the structural rearrangement as compared to any purely position/distance-based 

parameters. Now we are going to demonstrate the perturbation in the intra-protein interaction 

network caused by the ligand and how this perturbation might propagate through pair-wise 

interactions between protein residues. For this purpose, we have evaluated the average 

interaction energy of each residue with the various components of its environment, namely 

protein, ligand and water. The changes in each of these energy terms were calculated between 

the ligand bound and unbound states. All of these results are summarized in Fig. 3.4a: protein-

only and ligand-only, Fig. 3.4b: water-only and Fig. 3.4c: total (protein+ligand+water). Here we 

focus on only the electrostatic component of the respective ∆𝐸𝑖 = 〈𝐸𝑖〉𝑏𝑜𝑢𝑛𝑑 − 〈𝐸𝑖〉𝑢𝑛𝑏𝑜𝑢𝑛𝑑 terms 

in Fig. 3.4. Corresponding van der Waals’ (Lennard Jones) terms are much smaller in magnitude 

(< 3 kcal mol) as shown in Fig. 3.4d.  

Our results unequivocally prove that the electrostatic interaction energy provides a 

sensitive yardstick towards capturing the allosteric effects in this system. While the van der 

Waals’ interactions are crucial towards attaining the functional structure of the protein, the 

allosteric modulation due to ligand binding seems to be strongly associated with the electrostatic 

interactions. Our findings provide further support to the already established view regarding the 

significant role of electrostatic interactions in biomolecular functions including allostery53-58. 

Evidently, a negative ∆𝐸𝑖 signifies an interaction more favorable in the bound state as compared 

to the unbound state and vice versa. In Fig. 3.3a we can easily recognise the residues interacting 

strongly and favorably with the ligand (red lines), e.g. R318, E331, E373 and K380 have 

contributions more negative than −30 kcal/mol. On the other hand, there are residues (black 

lines) that do not interact with the ligand at all or spatially far away from the ligand, but still 

exhibit very large magnitude of ∆𝐸𝑖, e.g. E305, R309, R354, E395, E401 etc. These residues 

clearly demonstrate the effect of “allosteric” modulation in terms of their energetics. Thus, 

interactions with the ligand are leading to internal structural rearrangements (or population shift) 

in the protein in such a way that the intra-protein interaction network is significantly perturbed.  

Another interesting observation to make here is the contribution from the ligand and 

protein-only interactions towards ∆𝐸𝑖 are often in the reverse direction, e.g. R312, R318, E331, 
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E334, E352 etc. The favorable interaction with the ligand (∆𝐸𝑖 
𝑙𝑖𝑔𝑎𝑛𝑑 < 0) forces the side-chains 

of these residues to attain certain orientations that lead to unfavorable interactions (or break 

previously favorable interactions) with the other residues of the protein (∆𝐸𝑖 
𝑝𝑟𝑜𝑡𝑒𝑖𝑛 > 0). Such 

locally unfavorable protein-protein interaction is likely to initiate further downstream 

rearrangement to release the energetic stress, much like a domino effect! We must also note that 

there are positive ∆𝐸𝑖 
𝑝𝑟𝑜𝑡𝑒𝑖𝑛 values for a few residues, e.g. E305, R312, R318, E334, R354, 

R368, K393 etc. This signifies that there exist certain favorable interactions for these residues in 

the unbound state, which was broken in the process of ligand binding and subsequent allosteric 

modulation. We shall further dissect the molecular basis of these long range perturbations in the 

subsequent sections. 

 

Figure 3.4 Residue-wise changes in average electrostatic energy between bound and unbound 

states (∆𝐸𝑖𝑒𝑙𝑒𝑐 = 〈𝐸𝑖𝑒𝑙𝑒𝑐〉𝑏𝑜𝑢𝑛𝑑 − 〈𝐸𝑖𝑒𝑙𝑒𝑐〉𝑢𝑛𝑏𝑜𝑢𝑛𝑑) as obtained from MD simulation trajectories: 

(a) The contribution due to ligand and rest of the protein have been shown separately as red and 

black lines, respectively. (b) Contribution due to water only, where average interaction energy 

between the i-th residue and water molecules with 2nm cut-off radius has been used to compute 
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∆𝐸𝑖𝑤𝑎𝑡𝑒𝑟. (c) The ∆𝐸𝑖 due to the full environment comprising of ligand, protein and water 

molecules within 2nm, i.e. ∆𝐸𝑖 = ∆𝐸𝑖
𝑝𝑟𝑜𝑡𝑒𝑖𝑛 + ∆𝐸𝑖

𝑙𝑖𝑔𝑎𝑛𝑑 + ∆𝐸𝑖𝑤𝑎𝑡𝑒𝑟. (d) Van der Waals’ 

(Lennard Jones) component of the residue-wise change in total interaction energy between the 

bound and unbound states ∆𝐸𝐿𝐽𝑇𝑜𝑡𝑎𝑙 = 〈𝐸𝑖,𝐿𝐽𝑇𝑜𝑡𝑎𝑙〉𝑏𝑜𝑢𝑛𝑑 − 〈𝐸𝑖,𝐿𝐽𝑇𝑜𝑡𝑎𝑙〉𝑢𝑛𝑏𝑜𝑢𝑛𝑑. The change in 

interaction energy is less than 3 kcal/mol which is relatively very low as compared to the 

difference in the electrostatic interaction energy between the bound and unbound state. This 

highlights the major contribution of electrostatic effect in the allosteric phenomenon upon ligand 

binding. 

Prior studies on allostery have primarily focused on the structure and dynamics of the 

protein itself; whereas a few studies highlight the effect of solvation forces and water mediated 

interactions towards allosteric modulation59,60. Fig. 3.4b demonstrates the modulation in the 

residue-wise solvation energy (to be precise, the average electrostatic interaction energy with 

water) upon ligand binding. Here the electrostatic interaction energy for each residue was 

calculated with respect to the water molecules within 2nm cutoff. As expected, the solvent exerts 

a dielectric screening effect that goes in the reverse direction of the electrostatic contributions 

due to protein and ligand only. The residue-wise changes in the total interaction energy including 

the solvation energy (∆𝐸𝑖 = ∆𝐸𝑖 
𝑝𝑟𝑜𝑡𝑒𝑖𝑛 + ∆𝐸𝑖 

𝑙𝑖𝑔𝑎𝑛𝑑 + ∆𝐸𝑖 𝑤𝑎𝑡𝑒𝑟) is shown in Fig. 3.4c. Evidently, 

the contributions due to the charged residues still remain the most significant. In addition, Fig. 

3.4c highlights the relatively large ∆𝐸𝑖 values and oscillatory patterns for the residues in and 

around the binding site, e.g. G324, I328, G330, F337 etc. Most of these residues have favorable 

interaction with the ligand, but an unfavorable desolvation penalty associated with ligand 

binding. The local solvation environment may have substantially altered for certain residues, e.g. 

for residues D306, D348, E352, D366, R405 we observe that |∆𝐸𝑖 𝑤𝑎𝑡𝑒𝑟| > �∆𝐸𝑖 
𝑝𝑟𝑜𝑡𝑒𝑖𝑛�. This 

implies that the solvation energy may overcompensate the changes due to protein-protein 

interactions in these cases due to redistribution in the protein-protein versus protein-water 

interaction pattern. Our future work would dissect the more specific roles of water mediated 

interactions towards allosteric regulation.  

An interesting feature of the total ∆𝐸𝑖 reported in Fig. 3.4c is that there is an oscillatory 

pattern of residues with large positive ∆𝐸𝑖 and large negative ∆𝐸𝑖 values. This indicates that the 
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ligand binding leads to a massive internal rearrangement or redistribution of the non-bonded 

interactions. There is a clear separation of the residues in terms of favorable and unfavorable 

interactions. Due to these cancellation effects, the total non-bonded interaction energy of the 

protein is perturbed to a much lower extent as compared to the local perturbation or energy 

redistribution at the residue level. Thus, it is not that enthalpy does not play a role in the 

“dynamic allostery” observed in PDZ3 domain; rather it plays a significant role in terms of the 

local rearrangement and rewiring of the specific interactions. 

Energetic perturbation network connects the binding site and allosteric site 

Now that we have identified the protein residues that undergo a magnificent energetic 

perturbation between the bound and unbound states, we attempt to dissect the residue-pair-wise 

contributions towards this change so that we can build a connectivity network of the energetic 

perturbation. In order to achieve this, we have dissected the ∆𝐸𝑖
𝑝𝑟𝑜𝑡𝑒𝑖𝑛 (shown in Fig. 3.4a) into 

all residue-pair-wise contribution terms: ∆𝐸𝑖𝑗 , where ∆𝐸𝑖𝑗 = 〈𝐸𝑖𝑗〉𝑏𝑜𝑢𝑛𝑑 − 〈𝐸𝑖𝑗〉𝑢𝑛𝑏𝑜𝑢𝑛𝑑. Note 

that ∆𝐸𝑖𝑗 involves the short range electrostatic component of the interaction only. The numerical 

values of ∆𝐸𝑖𝑗 for residues with |∆𝐸𝑖| > 6 kcal/mol have been shown in Table 3.2. The ∆𝐸𝑖𝑗 

values are summarized and visualized in Fig. 3.5, which now leads to an energetic perturbation 

network that dramatically connects the ligand binding site to the allosteric side (distal regions) of 

PDZ3 domain. The caption of Fig. 3.5 provides a detailed description of the visualization scheme 

used to build the network. 

A detailed analysis of the network presented in Fig. 3.5 gives us a multitude of significant 

insights into the nature of the communication pathways between the binding site and allosteric 

site: (i) Direct perturbation by ligand: The solid black lines indicates that the ligand perturbs 

most of the binding site residues (in β1-β2 loop, β2 sheet and α2 helix (K380, E373)), but also 

induces changes in energetics of the β2-β3 loop and distant residues (D348, E352) through long 

range electrostatic interactions. Our analysis successfully captures the effect on residues already 

known for their involvement in ligand binding e.g. R318, G322, N326, I327, I328, D332,  

K38027,29,31,33,35 (ii) Perturbation in intra-protein interactions: Interestingly, we can observe an 

extensive energetic redistribution at the distal side (possibly, the allosteric site) comprised of the 

N- and C-termini, α3-helix and α1-β4 unstructured regions. The solid lines indicate the 
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interactions that have become more favourable in the ligand bound state as compared to unbound 

state, and the dashed lines indicate more unfavourable ones.  

 

 

Figure 3.5 A comprehensive network view of the perturbation in pair-wise electrostatic 

interaction energies (∆𝐸𝑖𝑗 = 〈𝐸𝑖𝑗〉𝑏𝑜𝑢𝑛𝑑 − 〈𝐸𝑖𝑗〉𝑢𝑛𝑏𝑜𝑢𝑛𝑑). Visualization scheme: (i) The blue 

spheres indicate residues with �∆𝐸𝑖𝑡𝑜𝑡𝑎𝑙� or �∆𝐸𝑖
𝑙𝑖𝑔𝑎𝑛𝑑� > 6 kcal/mol. A few residues with large 

�∆𝐸𝑖𝑗�, but �∆𝐸𝑖𝑡𝑜𝑡𝑎𝑙� < 6 kcal/mol have been highlighted as blue spheres as well, e.g. R312, 

R354, K355, R399, E401 and R411. (ii) Connections with negative and positive ∆𝐸𝑖𝑗 values are 

indicated with solid and dashed lines, respectively, i.e. a solid (or dashed) line indicates a 

contact more (or less) favourable in bound (or unbound) state. (iii) The connections are 

coloured on the basis of magnitude of �∆𝐸𝑖𝑗� > 10 kcal/mol (red), > 6 kcal/mol (green), > 4 

kcal/mol (purple) and > 3 kcal/mol (pink). The black lines represent connections between 

peptide ligand and residues with �∆𝐸𝑖𝑗� > 6 kcal/mol. The connections based on ∆𝐸𝑖𝑗 > 3 

kcal/mol were considered only for residues which are directly perturbed upon ligand binding. 

The ∆𝐸𝑖𝑗 values for all significant pairs have been reported in Table 3.2. 
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The presence of comparable number of solid and dashed lines in the allosteric site 

indicates that an extensive rearrangement and rewiring of interactions have taken place in this 

region. In particular, a few pairs connected by red lines (�∆𝐸𝑖𝑗� > 10  kcal/mol) indicate that 

D332-E334, E395-R399 and E305-R354 interactions are more favourable in the unbound state, 

whereas E334-R399, E395-R309, R309-D306, E305-D357, E304-R411, E352-R354, R354-

D357 and K355-E401 become more favorable in the bound state. As we can speculate, many of 

these pairwise interactions between charged residues would involve strong electrostatic 

interaction (salt bridges) or hydrogen bonded interactions as we shall show in the next section. 

Interestingly, the binding site and allosteric site are connected through the α3 helix 

mediated by a salt bridge interaction between E334 and R399. Thus, our energy perturbation 

network re-establishes the experimental results of Lee and coworkers regarding the significant 

role of α3 helix towards “hidden dynamic allostery” in PDZ3 domain6 and subsequent simulation 

studies showing the hydrogen bonded interactions between the α3 helix and β2-β3 loop region 

that controls this connection61. As we have already seen before, both ∆𝐸𝑖
𝑝𝑟𝑜𝑡𝑒𝑖𝑛 and ∆𝐸𝑖𝑗 values 

show large variation with opposite signs that leads to cancellations resulting in small change in 

the total energy/enthalpy of the protein. Similarly, a few residues have a large change in ∆𝐸𝑖𝑗 

with |∆𝐸𝑖| < 6 kcal/mol, e.g. R312, R354, K355, R399, E401 and R411 (Table 3.2). This 

observation again highlights the phenomena of massive internal rearrangement without changing 

the total interaction energy due to cancellation between pair-wise interactions in reverse 

directions. The residues with large number of connections as shown in Fig. 3.5 are likely to play 

the role of intermediate hubs in the network of energetic propagation of allosteric modulation.  
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Table 3.2 Breakdown of perturbation in pair-wise interactions, where �∆𝐸𝑖𝑗� > 2 kcal/mol. 

Residues with �∆𝐸𝑖𝑗� > 10 kcal/mol are highlighted in red. 

ResID Residue-pair-wise contribution : ijE∆ (kcal/mol)  

E304 R411 (-10.8)  

E305 
R354 (57.8), D357 (-11.4), R312 (8.8), K393 (6.4), E396 (-5.0), E395 (-4.9),  
R399 (4.7), E334 (-3.4), K355 (3.2), R405 (3.1), E401 (-3.1), E352 (-2.6), 
E304 (2.3), R368 (2.1), N407 (-2.1) 

D306 R309 (-12.1), R411 (-9.5), E395 (3.7), R354 (2.8)  

R309 

E395 (-41.3), D306 (-12.1), R411 (9.9), D357 (-7.3), R405 (6.8), R354 (6.1), 
K355 (5.3), Q391 (-5.1), E401 (-4.9), R312 (4.9), E310 (4.7), N407 (-4.3), 
P394 (3.6), K393 (3.6), D348 (-2.9), E396 (-2.7), I307 (-2.6), E304 (-2.4), 
E352 (-2.4), R399 (2.3) 

R312 R354 (13.1), E305 (8.8), E310 (-8.4), P308 (-5.2), R309 (4.9)  
R318 K380 (4.9), N381 (-4.5), T321 (3.9), G383 (3.8)  

E331 
E334 (8.3), E373 (-3.6), G330 (3.2), E401 (2.9), R399 (-2.9), E396 (2.6), 
K355 (-2.4), H372 (-2.2), A370 (2.2), Q374 (2.2), G333 (-2.0) 

D332 E334 (15.6), R399 (-8.4), E396 (4.2), D366 (-3.5), R368 (2.9), G333 (-2.7)  
E334 D332 (15.6), R399 (-13.3), E331 (8.3), K393 (4.7), E305 (-3.4)  
E352 R354 (-11.1)  

R354 
E305 (57.8), R312 (13.1), D357 (-11.3), E352 (-11.1), R309 (6.1), E310 (-6.0), 
G351 (-5.0), P308 (-4.3), R411 (-4.0), D348 (-3.9), D306 (2.8), R313 (2.1), 
R405 (-2.1)  

K355 E401 (-13.2), R309 (5.3), E305 (3.2), Y397 (2.8), E304 (-2.4), E331 (-2.4)  

D357 
E305 (-11.4), R354 (-11.3), R309 (-7.3), E310 (4.7), P308 (4.3), E395 (3.0), 
R411 (-2.7)  

D366 D332 (-3.5)  
R368 E334 (3.0), D332 (2.9), K393 (2.3), E305 (2.1)  
H372 E331 (-2.2)  
E373 E331 (-3.6)  
K380 R318 (4.9)  
Q391 R309 (-5.1), K393 (-3.5)  
K393 E305 (6.4), E395 (-4.7), E334 (4.7), R309 (3.6), Q391 (-3.5), R368 (2.3), P308 (2.0)  

E395 
R309 (-41.3), R399 (11.0), E305 (-4.9), K393 (-4.7), E396 (-4.5), D306 (3.7), 
E310 (3.3), D357 (3.0), P394 (-2.8), R411 (-2.6), R312 (-2.5), I307 (2.3)  

R399 E334 (-13.3), E395 (11.0), D332 (-8.4), E305 (4.7), E331 (-2.8), E405 (-2.0)  
E401 K355 (-13.2), Y397 (-6.8), R309 (-4.9), E305 (-3.1), E331 (2.9)  
R405 R309 (6.8), E305 (3.1)  
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N407 R309 (-4.3)  
R411 E304 (-10.8), R309 (9.9), D306 (-9.5), E310 (-4.1), R354 (-4.0)  

Population shift of hydrogen bonded network leads to allosteric modulation.  

So far, we have unravelled that ligand binding leads to significant perturbation in the intra-

protein electrostatic interaction pattern. Let us now investigate the nature of these specific 

interactions that rearranges and rewires upon ligand binding. Towards this goal, we have 

shortlisted the residue pairs with �∆𝐸𝑖𝑗� > 8 kcal/mol and found that most of these pairs are 

capable of forming hydrogen bonds (H-bonds) either through side chains or backbones. Fig. 3.6 

shows representative snapshots from the unbound and bound trajectories that highlight the 

possible differences in the H-bonding pattern between these selected residue pairs. Interestingly, 

these H-bonds are not exclusive in nature, i.e. a certain pair that forms H-bond in unbound state 

may be present in the bound state as well, but with a different population. 

 

Figure 3.6 Rearrangement and re-wiring of side chain interaction network between unbound 

and bound states. These pairs have been chosen based on large �∆𝐸𝑖𝑗� (see Fig. 6 for values). 

Note that these specific interactions can be transient and not all hydrogen bonds are present at 

all frames due to inherent dynamical fluctuations (Fig. 6 for population distribution of these 

interactions). We have shown selected frames that highlight the nature of the hydrogen bonded 

network leading to the electrostatic coupling between the binding site and allosteric site. Polar 
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contacts (e.g. hydrogen bonds or salt bridges) formed between the side chains are shown using 

dashed lines. 

This aspect of “population shift” of the pair-wise interactions has been further elucidated 

in Fig. 3.7. Here we show the population distribution of the minimum approach distance between 

a set of representative residue pairs with large �∆𝐸𝑖𝑗� values. The minimum distance has been 

computed between all possible pairs of atoms (including hydrogens) between the residues. 

Interestingly, for most of the cases, we observe that there are at least two peaks where one 

corresponds to strong interaction at a short distance (around 0.2nm) and broken/weaker 

interactions at larger distances for both the unbound and bound states. The strong peaks observed 

around 0.2nm signify the existence of specific polar interactions (e.g. hydrogen bond or salt 

bridge) between these pairs. For example, Fig. 3.7a shows the interaction between E331-E334, 

where the peak around 0.2nm signify the H-bonded interaction between the backbone atoms of 

these residues (Fig. 3.6b for a representative structure). The population of this state is 

significantly higher in the bound state as compared to unbound state, but it is still present in the 

unbound state. Similar observations can be made for other pairs as well. 

Interestingly, there are examples where this “population shift” in pair-wise interaction is 

very subtle, e.g. E334-R399 (Fig. 3.7c) and K355-E401 (Fig. 3.7g). Here the peak for the H-

bonded species gets stronger (increased population) without changing the overall shape of the 

distribution function. Yet, these pairs exhibit large ∆𝐸𝑖𝑗 values (around -13 kcal/mol). There are 

only two examples, where the distribution function changes in an almost exclusive non-

overlapping manner and very large values for ∆𝐸𝑖𝑗, e.g. E305-R354 (Fig. 3.7h, ∆𝐸𝑖𝑗 = 57.8 

kcal/mol) and R309-E395 (Fig. 3.7e, ∆𝐸𝑖𝑗 = −41.3 kcal/mol). As indicated by the signs of the 

∆𝐸𝑖𝑗 values and distance distribution, the E305-R354 salt bridge interaction exists almost 

exclusively in the unbound state. On the other hand, the R309-E395 interaction becomes highly 

favourable instead in the ligand bound state. A structural implication of this observation is that in 

the unbound state the disordered N terminus region interacts strongly with the α1-β4 coil region 

(involving R354), whereas on ligand binding the interactions shift to α3 helix region (R309-

E395) implicated as mediator in dynamic allostery, and also the C terminus coil region (e.g. 

E304-R411). Fig. 3.6 provides a structural view of these specific H-bonded interactions that 

undergoes subtle to dramatic population shift upon ligand binding. 
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The above analysis also provides a clear mechanistic picture into the initiation and 

propagation of the energetic perturbation through the population shift in the H-bonded network 

much like trapeze artists changing their partners. As shown in Fig. 3.6, the positively charged 

lysine (K5) of ligand interacts strongly with the E331 and E332 residues in the β2-β3 loop, 

which in turn makes the backbone H-bonding between E331-E334 stronger (Fig. 3.7a). This 

controls the orientation of E334 side-chain to increase the population of the H-bond (salt bridge) 

formed with R399 in the α3 helix (Fig. 3.7c). The role of the interaction between β2-β3 loop and 

α3 helix has been already shown in an earlier study61. Interestingly, there exists a significant 

population (6%) for the intra-helical i-i+4 salt bridge formation between the side-chains of E395-

R399 in the unbound state (Fig. 3.7d). This interaction gets weaker (1%) in the ligand bound 

state as E395 starts interacting with R309, and R399 interacting with E334 (Figs. 3.6, 3.7e and 

3.7c). Thus, the combination of Figs. 3.6 and 3.7 paint a detailed mechanistic picture of the 

rearrangement of H-bonded interactions induced by ligand and resultant changes in pair-wise 

electrostatic interaction energies. Also, we have proven the molecular basis of the strong 

influence of the extra-domain α3 helix on the ligand binding and the conformational preference 

of sidechain rotamers. These dynamic interactions and energetic coupling between the side chain 

orientations/interactions provide the key towards the dynamic allosteric modulation in PDZ3 

domain. 
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Figure 3.7 Probability distribution of pairwise minimum distance between residue pairs with 

�∆𝐸𝑖𝑗� > 10 kcal/mol for unbound (black line) and bound (red line)) states. The ∆𝐸𝑖𝑗 values have 

been indicated for all pairs. The strong peak around 0.2nm would signify presence of polar 

contact (e.g., hydrogen bond or salt bridge). The hydrogen bond occupancy (percentage) based 

on standard geometric criteria have been marked for all the pairs (except D332-E334). 

We must note that for most of the residue pairs dissected in Fig. 3.7, there is a significant 

tightening of the polar contacts (H-bonds) on ligand binding. Thus the underlying free energy 
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landscape of these pair-wise interactions become narrower, thus providing a direct connection 

with the entropic view of “dynamic allostery”, where the tightening of the H-bonding 

interactions leads to reduced conformational entropy for these residues. 

Role of solvation energy in allosteric regulation 

Prior studies on protein-water interactions highlight the role of bulk and hydration water in the 

conformational fluctuations of proteins and there exists a strong coupling between solvent and 

protein dynamics62,63. It is debated that water slaves/controls the protein motions or vice-versa.64-

68. So far, we have defined the allostery in terms of perturbation in the change in the interaction 

energy in protein. In our previous analysis, we have dissected the change in total interaction 

energy for each residue into three components depending upon the interacting partner: protein, 

ligand and water. We have observed large values for the residue-wise average electrostatic 

interaction energy with water i.e. 𝐸𝑖,𝑤𝑎𝑡𝑒𝑟 which is in the opposite direction to the 𝐸𝑖,𝑝𝑟𝑜𝑡𝑒𝑖𝑛. We 

have attributed this neutralizing effect to the dielectric screening. However, it will be interesting 

to observe if there is any anticorrelation between the energetic contributions of protein and 

water. Recently, Bagchi and coworkers showed that the self energy (protein-protein interaction) 

and cross-interaction energy fluctuations (protein-water interaction) are anticorrelated and 

exhibit power law decay69. The study was performed on five different protein-water systems 

where the whole system was divided into two ensembles: protein and water. Hence, the 

anticorrelated energy fluctuations exhibit a global picture between water and whole protein. Our 

aim is to explore if any such anticorrelations exist for the residue-wise interaction energy of the 

protein and water.  

Figure 3.8 shows the residue-wise protein and water interaction energy fluctuations for 

selective residues which show large change in ∆𝐸𝑖,𝑃𝑟𝑜𝑡𝑒𝑖𝑛 and are involved in hydrogen bond 

rearrangement network. Further, a comparison was done between the bound and unbound states. 

As shown in Fig. 3.8a, b we observe dramatic anticorrelation between  𝐸𝑖,𝑝𝑟𝑜𝑡𝑒𝑖𝑛 and 𝐸𝑖,𝑤𝑎𝑡𝑒𝑟 for 

residues E355 and R399. Both these residues are involved in hydrogen bonding network with 

difference in hydrogen occupancy > 50%, accompanied by rearrangement in side chain 

orientation between unbound and bound states. In addition, Fig. 3.8c, d highlight the signatures 
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of two states in the energy distributions of these residues. Since, the small scale motions such as 

side chain fluctuations are coupled to the water molecules in the hydration layer. 

 

Figure 3.8 (a, b, e, f) Energetic fluctuations of protein-protein interaction and protein-water 

interaction with time for residues K355 and R399 for unbound and bound states. ∆𝐸𝑖(𝑡) =

𝐸𝑖(𝑡) − 〈𝐸𝑖〉. Anticorrelation between ∆𝐸𝑖,𝑝𝑟𝑜𝑡𝑒𝑖𝑛 and ∆𝐸𝑖,𝑤𝑎𝑡𝑒𝑟 fluctuations can be observed for 
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residues K355 and R399. (c, d, g, h) 2D probability distribution for energy contributions from 

protein (𝐸𝑖,𝑝𝑟𝑜𝑡𝑒𝑖𝑛)  and water (𝐸𝑖,𝑤𝑎𝑡𝑒𝑟)  for residues K355 and R399.  The negative slope of the 

distribution indicates anticorrelation. 

We have also looked into the pairwise interaction energy i.e. 𝐸𝑖𝑗,𝑝𝑟𝑜𝑡𝑒𝑖𝑛 and 𝐸𝑖𝑗,𝑤𝑎𝑡𝑒𝑟 for 

residues involved in network (Fig 3.9). For primary analysis, we selected residue pair E334-

R399. In the previous chapter, we have shown that, this pair undergoes intermittent breaking and 

formation of hydrogen bond in bound and unbound states. A comparison between the energetic 

fluctuations and H-bond dynamics shows a significant anticorrelation.  

 

Figure 3.9 (a, b) Pairwise interaction energy fluctuation for residue pair E334-R399 with time 

shows strong anticorrelation. Here, the interaction energy with water is calculated as 

𝐸𝐸334−𝑅399,𝑤𝑎𝑡𝑒𝑟 = 𝐸𝐸334,𝑤𝑎𝑡𝑒𝑟 + 𝐸𝑅399,𝑤𝑎𝑡𝑒𝑟 (c) Minimum distance plot for residue pair E334-
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R339 between bound and unbound states. The fluctuations show intermittent formation and 

breaking of hydrogen bond with time. On comparison with energy fluctuations, one could see 

correlation between H-bond dynamics and interaction energy. (d, e)  2D probability distribution 

for energy contributions from protein and water.  The negative slope of the distribution indicates 

anticorrelation.  

Based on this preliminary analysis, we speculate that this intermittent H-bond formation 

and breaking could be responsible for the power law decay of interaction energy as observed by 

Bagchi and co-workers. We observe signatures of allostery in the solvation energy contribution 

(interaction energy with water) of the total interaction energy, and it is possible that the water 

dynamics can provide a probe into the dynamics of intermittent intra-protein interactions.  

3.4  Discussion 

The basic premise of this work is to demonstrate that the “dynamic allostery” phenomena in the 

PDZ3 domain protein originates from the modulation of underlying energy landscape dictated by 

ligand binding. Although the prevailing view considers dynamic allostery to be purely entropy 

driven, we argue and demonstrate for the first time that there exists significant energetic re-

distribution in terms of the specific electrostatic interactions between the protein residues. First, 

we demonstrate that the structure/position-based parameters like RMSD, contact map etc. are not 

able to capture the extent of modulation in specific interactions that undergo upon ligand 

binding. It is crucial to understand the nature of the rearranging contacts, namely hydrogen 

bonding, salt bridge, non-polar etc. The non-bonded interaction energy provides the most 

fundamental and robust yardstick for capturing the subtle changes in the side-chain orientation. 

We have shown that the electrostatic interaction energy becomes the key determinant in 

distinguishing the structural ensemble between the ligand bound and unbound states, and 

elucidating the allosteric modulation. There exist extensive competing interactions and 

cancellation effects due to interactions between the protein residues, protein-protein, protein-

ligand and protein-water interactions. Such cancellations lead to relatively minor changes in the 

total enthalpy of the protein, whereas there exists substantial rearrangement or redistribution of 

the interactions at a local level. We have identified the allosteric network by decomposing the 

average pair-wise interaction energies for all PDZ3 domain residues and their perturbation upon 
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ligand binding. This network clearly connects the ligand binding site with the distal allosteric site 

through the α3 helix domain, which has been implicated to play a crucial role in mediating the 

dynamic allostery in this system. 

Our detailed analysis has identified an extended network of hydrogen bonded pairs that 

control the interaction network. The population distribution of these pair-wise interactions 

indicate that a “population shift” mechanism prevails, where the pre-existing conformational 

distribution gets modulated on ligand binding with the tightening of most of the H-bonding 

interactions upon ligand binding (related to the previous reports of reduction in conformational 

entropy). Our study, for the first time, identifies the role of specific electrostatic interactions and 

their population shift towards the allosteric modulation in PDZ3 domain. Moreover, we elucidate 

the molecular basis of the allosteric modulation in the N- and C-terminal regions through major 

rearrangement in the interaction pattern, which would provide valuable mechanistic insights into 

the role of PDZ3 domains in cell signaling. Since the PDZ domains are usually chained together 

in sequence, it is interesting that the allosteric effects propagate to the termini regions possibly 

leading to a global response in terms of the spatial arrangement of these domains upon binding 

with the effector ligands/proteins. 

We must note that the substantial rearrangement of electrostatic interactions upon ligand 

binding and associated structural population shift might alter the pKa values of the titrable 

residues. That would modulate the population of the protonation states of these residues with 

further changes in the electrostatic interaction network. Similar effects have been reported earlier 

for other enzymatic systems70, and our future work would explore the intricacies of such altered 

population of protonation states with the possible consequence of pH-dependent allostery. 

On a futuristic note, our approach of energetic perturbation map would be useful in the 

identification of putative target sites for allosteric drugs. There is a rapidly growing interest in 

allosteric drugs in contrast to the competitive orthosteric inhibitors due to their selectivity and 

ability to both enhance and inhibit the activity in a controllable manner. Prior studies have 

suggested that allosteric drugs work through “anchor” and “driver” atoms, where the anchor 

atom attaches itself to the binding pocket without causing any conformational change and the 

driver atom exerts a “push” or “pull” action to modulate the conformational ensemble towards 

the active or inactive states71. A rigorous analysis of the energetic balance of such interactions 
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(electrostatic, van der Waals’ and water mediated) along with their coupling with the inherent 

energy flow network of the enzyme as elucidated in the current work would be essential for 

rational design of allosteric drugs. 

3.5  Bibliography 

1. Nussinov, R. and C.J. Tsai, Allostery in disease and in drug discovery. Cell, 2013. 
153(2): p. 293-305. 

2. Motlagh, H.N., et al., The ensemble nature of allostery. Nature, 2014. 508(7496): p. 331-
9. 

3. Szilagyi, A., R. Nussinov, and P. Csermely, Allo-network drugs: extension of the 
allosteric drug concept to protein- protein interaction and signaling networks. Curr Top 
Med Chem, 2013. 13(1): p. 64-77. 

4. Koshland, D.E., Jr., G. Nemethy, and D. Filmer, Comparison of experimental binding 
data and theoretical models in proteins containing subunits. Biochemistry, 1966. 5(1): p. 
365-85. 

5. Monod, J., J. Wyman, and J.P. Changeux, On the Nature of Allosteric Transitions: A 
Plausible Model. J Mol Biol, 1965. 12(1): p. 88-118. 

6. Petit, C.M., et al., Hidden dynamic allostery in a PDZ domain. Proc Natl Acad Sci U S 
A, 2009. 106(43): p. 18249-54. 

7. Popovych, N., et al., Dynamically driven protein allostery. Nat Struct Mol Biol, 2006. 
13(9): p. 831-838. 

8. Rafferty, J.B., et al., Three-dimensional crystal structures of Escherichia coli met 
repressor with and without corepressor. Nature, 1989. 341(6244): p. 705-710. 

9. Cooper, A. and D.T.F. Dryden, Allostery without conformational change. European 
Biophysics Journal, 1984. 11(2): p. 103-109. 

10. Nussinov, R. and C.J. Tsai, Allostery without a conformational change? Revisiting the 
paradigm. Curr Opin Struct Biol, 2015. 30: p. 17-24. 

11. Tsai, C.J. and R. Nussinov, A unified view of "how allostery works". PLoS Comput Biol, 
2014. 10(2): p. e1003394. 

12. Nussinov, R., C.J. Tsai, and J. Liu, Principles of allosteric interactions in cell signaling. J 
Am Chem Soc, 2014. 136(51): p. 17692-701. 

13. Weber, G., Ligand binding and internal equilibiums in proteins. Biochemistry, 1972. 
11(5): p. 864-878. 

14. Gunasekaran, K., B. Ma, and R. Nussinov, Is allostery an intrinsic property of all 
dynamic proteins? Proteins: Structure, Function, and Bioinformatics, 2004. 57(3): p. 433-
443. 



3.5  Bibliography 

106 

15. Feher, V.A., et al., Computational approaches to mapping allosteric pathways. Curr Opin 
Struct Biol, 2014. 25: p. 98-103. 

16. Volkman, B.F., et al., Two-state allosteric behavior in a single-domain signaling protein. 
Science, 2001. 291(5512): p. 2429-33. 

17. Lee, H.J. and J.J. Zheng, PDZ domains and their binding partners: structure, specificity, 
and modification. Cell Commun Signal, 2010. 8: p. 8. 

18. Kim, E. and M. Sheng, PDZ domain proteins of synapses. Nat Rev Neurosci, 2004. 
5(10): p. 771-81. 

19. Doyle, D.A., et al., Crystal structures of a complexed and peptide-free membrane 
protein-binding domain: molecular basis of peptide recognition by PDZ. Cell, 1996. 
85(7): p. 1067-76. 

20. Zhang, J., et al., Crystallographic and nuclear magnetic resonance evaluation of the 
impact of peptide binding to the second PDZ domain of protein tyrosine phosphatase 1E. 
Biochemistry, 2010. 49(43): p. 9280-91. 

21. Fuentes, E.J., C.J. Der, and A.L. Lee, Ligand-dependent dynamics and intramolecular 
signaling in a PDZ domain. J Mol Biol, 2004. 335(4): p. 1105-15. 

22. Dhulesia, A., J. Gsponer, and M. Vendruscolo, Mapping of two networks of residues that 
exhibit structural and dynamical changes upon binding in a PDZ domain protein. J Am 
Chem Soc, 2008. 130(28): p. 8931-9. 

23. Lu, C., V. Knecht, and G. Stock, Long-Range Conformational Response of a PDZ 
Domain to Ligand Binding and Release: A Molecular Dynamics Study. J Chem Theory 
Comput, 2016. 12(2): p. 870-8. 

24. Kong, Y. and M. Karplus, Signaling pathways of PDZ2 domain: a molecular dynamics 
interaction correlation analysis. Proteins, 2009. 74(1): p. 145-54. 

25. Morra, G., A. Genoni, and G. Colombo, Mechanisms of Differential Allosteric 
Modulation in Homologous Proteins: Insights from the Analysis of Internal Dynamics 
and Energetics of PDZ Domains. J Chem Theory Comput, 2014. 10(12): p. 5677-89. 

26. Kalescky, R., J. Liu, and P. Tao, Identifying key residues for protein allostery through 
rigid residue scan. J Phys Chem A, 2015. 119(9): p. 1689-700. 

27. Sharp, K. and J.J. Skinner, Pump-probe molecular dynamics as a tool for studying 
protein motion and long range coupling. Proteins, 2006. 65(2): p. 347-61. 

28. Fuentes, E.J., et al., Evaluation of energetic and dynamic coupling networks in a PDZ 
domain protein. J Mol Biol, 2006. 364(3): p. 337-51. 

29. Lockless, S.W. and R. Ranganathan, Evolutionarily conserved pathways of energetic 
connectivity in protein families. Science, 1999. 286(5438): p. 295-9. 

30. Dima, R.I. and D. Thirumalai, Determination of network of residues that regulate 
allostery in protein families using sequence analysis. Protein Sci, 2006. 15(2): p. 258-68. 



3.  Hidden Electrostatic Basis of Dynamic Allostery 

107 

31. Gerek, Z.N. and S.B. Ozkan, Change in Allosteric Network Affects Binding Affinities of 
PDZ Domains: Analysis through Perturbation Response Scanning. Plos Computational 
Biology, 2011. 7(10): p. e1002154. 

32. Raimondi, F., et al., A Mixed Protein Structure Network and Elastic Network Model 
Approach to Predict the Structural Communication in Biomolecular Systems: The PDZ2 
Domain from Tyrosine Phosphatase 1E As a Case Study. Journal of Chemical Theory and 
Computation, 2013. 9(5): p. 2504-2518. 

33. Ota, N. and D.A. Agard, Intramolecular signaling pathways revealed by modeling 
anisotropic thermal diffusion. J Mol Biol, 2005. 351(2): p. 345-54. 

34. Mino-Galaz, G.A., Allosteric communication pathways and thermal rectification in PDZ-
2 protein: a computational study. J Phys Chem B, 2015. 119(20): p. 6179-89. 

35. Ho, B.K. and D.A. Agard, Conserved tertiary couplings stabilize elements in the PDZ 
fold, leading to characteristic patterns of domain conformational flexibility. Protein Sci, 
2010. 19(3): p. 398-411. 

36. Ishikura, T., et al., Energy exchange network of inter-residue interactions within a 
thermally fluctuating protein molecule: A computational study. J Comput Chem, 2015. 
36(22): p. 1709-18. 

37. Chi, C.N., et al., Reassessing a sparse energetic network within a single protein domain. 
Proc Natl Acad Sci U S A, 2008. 105(12): p. 4679-84. 

38. Xiang, Y., et al., Simulating the effect of DNA polymerase mutations on transition-state 
energetics and fidelity: evaluating amino acid group contribution and allosteric coupling 
for ionized residues in human pol beta. Biochemistry, 2006. 45(23): p. 7036-48. 

39. Vijayabaskar, M.S. and S. Vishveshwara, Interaction energy based protein structure 
networks. Biophys J, 2010. 99(11): p. 3704-15. 

40. Bhattacharyya, M. and S. Vishveshwara, Probing the Allosteric Mechanism in 
Pyrrolysyl-tRNA Synthetase Using Energy-Weighted Network Formalism. Biochemistry, 
2011. 50(28): p. 6225-6236. 

41. Abraham, M.J., et al., GROMACS: High performance molecular simulations through 
multi-level parallelism from laptops to supercomputers. SoftwareX, 2015. 1-2: p. 19-25. 

42. Lindorff-Larsen, K., et al., Improved side-chain torsion potentials for the Amber ff99SB 
protein force field. Proteins, 2010. 78(8): p. 1950-8. 

43. Horn, H.W., et al., Development of an improved four-site water model for biomolecular 
simulations: TIP4P-Ew. J Chem Phys, 2004. 120(20): p. 9665-78. 

44. Georgescu, R.E., E.G. Alexov, and M.R. Gunner, Combining conformational flexibility 
and continuum electrostatics for calculating pK(a)s in proteins. Biophysical Journal, 
2002. 83(4): p. 1731-1748. 

45. Bussi, G., D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling. 
J Chem Phys, 2007. 126(1): p. 014101. 



3.5  Bibliography 

108 

46. Parrinello, M. and A. Rahman, Polymorphic Transitions in Single-Crystals - a New 
Molecular-Dynamics Method. Journal of Applied Physics, 1981. 52(12): p. 7182-7190. 

47. Essmann, U., et al., A Smooth Particle Mesh Ewald Method. Journal of Chemical 
Physics, 1995. 103(19): p. 8577-8593. 

48. Hess, B., et al., LINCS: A linear constraint solver for molecular simulations. Journal of 
Computational Chemistry, 1997. 18(12): p. 1463-1472. 

49. Yuan, C., H. Chen, and D. Kihara, Effective inter-residue contact definitions for accurate 
protein fold recognition. BMC Bioinformatics, 2012. 13(1): p. 292. 

50. Di Paola, L. and A. Giuliani, Protein contact network topology: a natural language for 
allostery. Curr Opin Struct Biol, 2015. 31: p. 43-8. 

51. Johnson, Q.R., et al., Mapping allostery through computational glycine scanning and 
correlation analysis of residue-residue contacts. Biochemistry, 2015. 54(7): p. 1534-41. 

52. van den Bedem, H., et al., Automated identification of functional dynamic contact 
networks from X-ray crystallography. Nat Methods, 2013. 10(9): p. 896-902. 

53. Warshel, A., Electrostatic Basis of Structure-Function Correlation in Proteins. Accounts 
of Chemical Research, 1981. 14(9): p. 284-290. 

54. Warshel, A. and J. Aqvist, Electrostatic energy and macromolecular function. Annu Rev 
Biophys Biophys Chem, 1991. 20: p. 267-98. 

55. Nakamura, H., Roles of electrostatic interaction in proteins. Q Rev Biophys, 1996. 29(1): 
p. 1-90. 

56. Sharp, K.A. and B. Honig, Electrostatic interactions in macromolecules: theory and 
applications. Annu Rev Biophys Biophys Chem, 1990. 19: p. 301-32. 

57. Kumar, S. and R. Nussinov, Close-Range Electrostatic Interactions in Proteins. 
ChemBioChem, 2002. 3(7): p. 604-617. 

58. Xiang, Y., et al., Simulating the Effect of DNA Polymerase Mutations on Transition-State 
Energetics and Fidelity:  Evaluating Amino Acid Group Contribution and Allosteric 
Coupling for Ionized Residues in Human Pol β. Biochemistry, 2006. 45(23): p. 7036-
7048. 

59. Prakash, P., A. Sayyed-Ahmad, and A.A. Gorfe, The Role of Conserved Waters in 
Conformational Transitions of Q61H K-ras. PLOS Computational Biology, 2012. 8(2): 
p. e1002394. 

60. Buchli, B., et al., Kinetic response of a photoperturbed allosteric protein. Proc Natl Acad 
Sci U S A, 2013. 110(29): p. 11725-30. 

61. Mostarda, S., D. Gfeller, and F. Rao, Beyond the binding site: the role of the beta(2)-
beta(3) loop and extra-domain structures in PDZ domains. PLoS Comput Biol, 2012. 
8(3): p. e1002429. 



3.  Hidden Electrostatic Basis of Dynamic Allostery 

109 

62. Mukherjee, S., S. Mondal, and B. Bagchi, Distinguishing dynamical features of water 
inside protein hydration layer: Distribution reveals what is hidden behind the average. 
The Journal of Chemical Physics, 2017. 147(2): p. 024901. 

63. Mondal, S., S. Mukherjee, and B. Bagchi, Origin of diverse time scales in the protein 
hydration layer solvation dynamics: A simulation study. The Journal of Chemical 
Physics, 2017. 147(15): p. 154901. 

64. Frauenfelder, H., P.W. Fenimore, and B.H. McMahon, Hydration, slaving and protein 
function. Biophysical Chemistry, 2002. 98(1): p. 35-48. 

65. Caliskan, G., et al., Protein and solvent dynamics: How strongly are they coupled? The 
Journal of Chemical Physics, 2004. 121(4): p. 1978-1983. 

66. Fenimore, P.W., et al., Slaving: Solvent fluctuations dominate protein dynamics and 
functions. Proceedings of the National Academy of Sciences, 2002. 99(25): p. 16047. 

67. Beece, D., et al., Solvent viscosity and protein dynamics. Biochemistry, 1980. 19(23): p. 
5147-5157. 

68. Bellissent-Funel, M.-C., et al., Water Determines the Structure and Dynamics of 
Proteins. Chemical Reviews, 2016. 116(13): p. 7673-7697. 

69. Mukherjee, S., S. Mondal, and B. Bagchi, Mechanism of Solvent Control of Protein 
Dynamics. Physical Review Letters, 2019. 122(5): p. 058101. 

70. Alexov, E., Calculating proton uptake/release and binding free energy taking into 
account ionization and conformation changes induced by protein–inhibitor association: 
Application to plasmepsin, cathepsin D and endothiapepsin–pepstatin complexes. 
Proteins: Structure, Function, and Bioinformatics, 2004. 56(3): p. 572-584. 

71. Nussinov, R. and C.-J. Tsai, Unraveling structural mechanisms of allosteric drug action. 
Trends in Pharmacological Sciences, 2014. 35(5): p. 256-264. 



 

 

 



 

111 

Chapter 4  

4 pH-dependent Dynamic Allostery 
in PDZ3 Domain 

 

4.1  Introduction 

Allosteric regulation of proteins is a complex phenomenon which may involve pH and 

concentration driven dynamic conformations, where often electrostatics plays a dominant role.1-7 

pH varies significantly in different diseased states affecting the ligand binding affinity and/or 

functional activity of various allosteric enzymes. Proteins contain ionizable amino acid residues 

that are either exposed to the solvent or buried, partially or completely in a folded protein. The 

physiochemical environment of the residue strongly influences the pKa values of the ionizable 

groups. The pKa values are largely affected by charge-charge interactions and charge-dipole 

interaction, which includes salt-bridges and hydrogen bonds.8 In addition, the ligand binding 

process is associated with change in the electrostatic interactions that are responsible for pKa 

shifts of the charged groups/amino acids in protein.9-12 These events induce ionisation changes 

through proton uptake/release.13,14 The resulting charge alteration of the ionizable residues as a 

response to change in microscopic pKa is known to trigger protein conformational changes.10,15,16 

Previous studies highlight the coupling between pH-dependent protonation and associated 

structural rearrangements such that, in equilibrium, one of the conformational states will differ in 

pKa values for ionizable residues.17,18 pH-dependent conformational changes and coupled 

ionisation-conformational equilibrium have been studied using molecular dynamics simulations 

techniques for Nitrophorin 4 and Staphylococcal nuclease respectively.18,19  

Majority of the pH-regulated biochemical processes occur within pH range of 5~8. 

Several studies show that at this intermediate pH range, histidine (pKa=6.5 in water) plays an 

important role in regulating two different energetic states of protein in equilibrium.20-23 

Conformational changes coupled to the change in the physiological pH and subsequent effects on 

the protein functions can be associated with pH-dependent allosteric regulation of proteins.24 The 
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Bohr effect in haemoglobin is the classic example of pH-dependent allosteric regulation.25 The 

increase in affinity for oxygen binding is coupled to the deprotonation of His146 residue with 

increasing pH (reduced acidity). This results in the disruption of charge-charge interaction (salt-

bridge) between His146 and Asp94, shifting the equilibrium towards R-state.26,27 Similarly, 

several proteins (also known as pH sensors) are functionally regulated by a change in the 

physiological pH through ionisation of pH sensing residues.28 Computer simulations and 

experimental studies suggest allosteric regulation of pH-sensitive systems such as ion transport 

proteins, channels, pumps and enzymes through protonation of histidine residues.29-33 This 

posttranslational modification by protons can regulate specificity (e.g. histidine protonation 

mediated interaction between RhoGEF and phosphoinositides), allosteric effects (protonation 

induced structural changes) and cooperativity (multiple protonation induced pKa shifts and 

electrostatic coupling).  

More recently, allostery has been viewed in terms of “population shift” of conformational 

sub-states without considerable change in the backbone upon ligand binding.34,35 Previous 

studies based on pH dependent allosteric transitions, exhibit shift in the relative population of the 

states.36 Narayan and Naganathan show a unique role of pH in population redistribution of 

transcriptional co-repressor Cnu.37 Spectroscopic and calorimetric studies reveal that the 

protonation of His45 switches the conformation of Cnu protein to an alternate native ensemble 

which is characterised by the disordered helix. The protonation/deprotonation of ionizable 

residues can cause unfavourable electrostatic frustrations that can drive conformational changes 

in the equilibrium populations. These changes have a marked effect on thermodynamics and 

underlying energy landscape of the system.24  

In the previous chapter, we have highlighted the role of specific electrostatic interactions 

and their population shift towards the allosteric modulation in PDZ3 domain upon ligand 

binding.38 Nussinov and co-workers highlighted that proteins may have multiple pre-existing 

allosteric pathways and favor one depending on the perturbation events such as ligand binding, 

mutations, covalent modifications and changes in the cellular physiological conditions.39 

Previous observation suggests pH dependence of the interaction between PDZ domains and their 

ligand (peptide sequences) through a conserved histidine residue at position 372.40 PDZ3 domain 

has two histidine residues at positions 317 and 372 situated at the β1-β2 loop and α2 helix 

respectively which interacts directly/indirectly with the ligand (Fig. 4.1).  
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Figure 4.1 Representative image of PDZ3 domain (PDB: 3I4W). Histidine residues at positions 

317 and 372 are highlighted in the protonated state. Peptide ligand binds in the cavity between 

β2 and α2 where 372H forms a hydrogen bond with threonine at position -2 of Class-I type 

peptide ligands.  

As shown in Fig. 4.1, both the histidine residues are solvent exposed. PDZ domain is 

involved in membrane localisation of multi-protein signaling complexes which can occur in 

different cellular conditions. Change in the cellular environment or ligand binding event can alter 

the ionisation state of His-317 (317H) or/and His-372 (372H), further modulating the charge 

distribution and affecting the overall electrostatics of the binding site residues. It is also possible 

that the protonation in the ligand binding site may introduce unfavourable/favourable 

electrostatic interactions that will alter the ligand specificity and/or binding affinity. In this 

chapter, we have investigated the effect of protonation states of histidine (at position 317 or 372) 

(another kind of perturbation) on the electrostatic interaction network of the protein and 

associated population shift (if any) in a PDZ3 domain in the unbound state. Moreover, it will be 

interesting to see if there are signatures of pH-dependent dynamic allostery in PDZ3 domain. 

Here, we demonstrate for the first time the existence of pH-driven dynamic allostery in PDZ3 

domain in terms of modulation in distal conformational fluctuations and changes in the 

electrostatic interaction network already identified in our previous work. Further, we hypothesise 

that various perturbation events such as ligand binding, or change in cellular conditions 
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(protonation)  may trigger the same universal response system in PDZ3 domain in terms of 

modulation in the dynamics and intra-protein interaction network.  

4.2  Methods 

4.2.1 System Setup 

MD simulations were performed using the crystal structure of PDZ3 domain in the ligand 

unbound state (PDB ID: 3I4W).41 The crystal structure is without cloning artefact as it is 

assumed that its presence may impede certain dynamic features and thus modulate allosteric 

response network. The termini of the protein were capped to avoid any charge bias. Succinimide 

residue at the position 332 in the β2-β3 loop was modified to aspartate residue as per PDZ3 

domain sequence. Three different systems were generated based on the protonation state of 

histidine residue at positions 317 and 372; (1) neutral- both the histidine at 317 and 372 are 

uncharged, (2) protonation at 317-His only and (3) protonation at 372-His only.  

4.2.2 Simulation Parameters 

We have performed MD simulations of PDZ3 domain in the ligand unbound state (PDB: 3I4W). 

Simulations were performed in three different states: (1) neutral- both the histidine at 317 and 

372 were uncharged, (2) protonation at 317H only and (3) protonation at 372H only. All 

simulations were performed using Gromacs 5.0.742 with AmberSB99-Ildn force field43 and the 

TIP4P-Ew water model.44 The systems were neutralised by adding counter ions followed by 

energy minimisation using steepest descent method. The temperature was maintained at 300K 

using velocity rescale (modified Berendsen) thermostat45 and pressure was kept constant at 1 atm 

using Parinello-Rahman barostat.46 The simulations were performed using periodic boundary 

conditions and particle mesh Ewald method47 was used to treat long range electrostatic 

interactions. The cut-off distance for short-range electrostatic and van der Waals interactions was 

set to 1.0 nm. The bonds were constrained with LINCS.48 Four independent simulations were run 

for 2μs each with frames saved at every 2ps. The initial 500ns of each trajectory was considered 

as a relaxation period (equilibration). The individual trajectories post 500ns were concatenated 

yielding total simulation run of 6μs. 
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4.3  Results 

Thermodynamic fluctuations as signatures of dynamic allostery 

To elucidate the effect of protonation on the dynamics of PDZ domain, we examined the root-

mean-square fluctuations (RMSF) about the mean conformation with (317H and 372H 

protonation) and without protonation states. Previous studies show that PDZ domain exhibits 

greater flexibility and plasticity in the loop regions (β1-β2 and β2-β3) in the unbound state 

(neutral) which is suppressed upon ligand binding introducing rigidity in the domain.49-54 We 

have shown the comparison of fluctuation profile and average structural deviation of each 

residue for the different protonation states in Fig. 4.2. Surprisingly, the conformational flexibility 

of the PDZ domain changes upon protonation at selective sites. The β1-β2 loop shows the least 

structural deviation and reduced fluctuations upon protonation of 317H.  

 

Figure 4.2 (a) Residue-wise fluctuation profile (RMSF) for PDZ3 domain in different 

protonation states. It shows the fluctuations for each residue from the average structure. An 

enhanced flexibility is observed in the β1-β2 and β2-β3 loop regions in the neutral state (absence 

of protonation on histidine). (b) The plot shows the backbone structural deviation (RMSD) for 

each residue from the initial structure. 

This also establishes that protonation selectively enhances the rigidity of the β1-β2 loop 

situated next to the protonation site. In contrast, upon protonation of 372H, overall the 

fluctuations decrease in the loop regions (β1-β2 and β2-β3) with the exceptional increase of 

flexibility towards the C-terminal of α2 helix (α2-β5 loop). The results tend to be similar to the 
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fluctuation profile obtained for ligand bound state in chapter 3 (Fig. 3.1b) emphasising decrease 

in flexibility and plasticity in the β1-β2 and β2-β3 loops and ligand binding site of PDZ domain 

upon ligand binding. Such modulation of conformational flexibility in the binding pocket may 

alter the ligand binding activity.55 Furthermore, we have shown in Fig. 4.3, the comparison of 

average Cα distance of protein residues from the protonation sites (317H and 372H) and net 

change in fluctuation (ΔRMSF) from the neutral state. It is worth noting that the positive charge 

introduced by the protonation has a pronounced effect on the flexibility of the loop regions (β1-

β2 and α2-β5) situated at a distance. The modulation of sidechain dynamics of distal residues 

upon protonation represents the signatures of pH-dependent dynamic allostery. 

 

Figure 4.3 (a, c) Comparison between average Cα minimum distance for each residue from the 

protonation site (317H and 372H), and (b, d) difference in the average fluctuations (ΔRMSF) 

upon protonation from the neutral state.  

Effect of protonation on the energetics of PDZ domain 

In chapter 3, we have highlighted that the electrostatic interaction energy provides a sensitive 

yardstick to capture the allosteric effects in PDZ domain. It is expected that the changes in the 
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charge composition of the protein will directly affect the coulomb (electrostatic) interactions. To 

understand how does a perturbation other than the ligand binding will affect the underlying 

energy landscape, we have calculated the change in the average interaction energy of each 

residue between the protonated state and neutral state. The energy contribution has been 

evaluated for protein and water separately as ∆𝐸𝑖,𝑝𝑟𝑜𝑡𝑒𝑖𝑛 and ∆𝐸𝑖,𝑤𝑎𝑡𝑒𝑟 respectively. Fig 4.4a and 

4.4b demonstrate the modulation in the residue-wise interaction energy upon protonation at 

317H and 372H. We observe large values of ∆𝐸𝑖,𝑝𝑟𝑜𝑡𝑒𝑖𝑛 (> +/- 15 kcal/mol) for residues that are 

located far from the protonation site, for example, D306, R309, R312, E331, etc. 
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Figure 4.4 Residue-wise change in average electrostatic energy between the protonated and 

neutral state �∆𝐸𝑖 = 〈𝐸𝑖,𝑝𝑟𝑜𝑡𝑜𝑛𝑎𝑡𝑒𝑑〉 − 〈𝐸𝑖,𝑛𝑒𝑢𝑡𝑟𝑎𝑙〉� upon protonation at 317H (a, c, e, g) and 

372H (b, d, f, h). The change in interaction energy due to protein with and without contribution 

from the protonated histidine residue are shown separately in figures (a, b) and (c, d) as 

∆𝐸𝑖,𝑝𝑟𝑜𝑡𝑒𝑖𝑛 and ∆𝐸𝑖,𝑟𝑒𝑠𝑡. Contribution due to water only �∆𝐸𝑖,𝑤𝑎𝑡𝑒𝑟� are shown in figures e and f. 
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Figs. g and h show the change in total interaction energy, i.e. 𝐸𝑖,𝑡𝑜𝑡𝑎𝑙 = (∆𝐸𝑖,𝑝𝑟𝑜𝑡𝑒𝑖𝑛 −

∆𝐸𝑖,𝐻𝑖𝑠 ) + ∆𝐸𝑖,𝑤𝑎𝑡𝑒𝑟. 

It is obvious that the introduction of a charge on histidine will contribute significantly to 

the interaction energy due to direct charge-charge interaction. Evidently, we observe that the 

contribution from the protonated histidine residue, ∆𝐸𝑖,𝐻𝑖𝑠 towards ∆𝐸𝑖,𝑝𝑟𝑜𝑡𝑒𝑖𝑛 is as large as +/-

10kcal/mol. Hence in order to identify allosteric response generated due to other protein-protein 

interactions, we calculate  ∆𝐸𝑖,𝑟𝑒𝑠𝑡 = ∆𝐸𝑖,𝑝𝑟𝑜𝑡𝑒𝑖𝑛 − ∆𝐸𝑖,𝐻𝑖𝑠 where ∆𝐸𝑖,𝑟𝑒𝑠𝑡 represents the effect of 

protonation on the ith residue with respect to the rest of the protein. In Fig. 4.4c and 4.4d, a 

negative ∆𝐸𝑖,𝑟𝑒𝑠𝑡 shows interaction of residue ith with other residues as favorable in the 

protonated state and vice versa for the positive ∆𝐸𝑖,𝑟𝑒𝑠𝑡. Interestingly we observe more favorable 

protein-protein interactions (∆𝐸𝑖,𝑟𝑒𝑠𝑡 < 0) for residues, for example, E334, R354, D366, R399, 

E401, etc upon protonation at position 372H as compared to  317H (∆𝐸𝑖,𝑟𝑒𝑠𝑡 > 0) where they 

interact strongly in the neutral state. These results signify that protonation at different sites may 

perturb the intra-protein interaction pattern even far from the protonation site. 

Another interesting observation is that these (energetically perturbed) residues form an 

integral part of the interaction network that undergoes extensive rewiring and rearrangements in 

terms of allosteric modulation upon ligand binding. This clearly demonstrates the effect of 

protonation on the intra-protein interaction network and allosteric modulation in terms of 

electrostatic interaction energy.  Figs. 4.4e and 4.4f demonstrate the effect of protonation on the 

protein-water interactions in terms of change in average electrostatic interaction energy with 

water (within 2 nm cutoff).  We observe that water exerts a dielectric screening effect. The 

protonation (charge addition) may alter the local solvation environment around residues, for 

example, E331, D332, E334, D348, D366 and E401 where we observe either favourable 

(∆𝐸𝑖,𝑤𝑎𝑡𝑒𝑟 < 0) or unfavourale (∆𝐸𝑖,𝑤𝑎𝑡𝑒𝑟 > 0) interaction with water. We observe large 

desolvation penalties (∆𝐸𝑖,𝑤𝑎𝑡𝑒𝑟) as compared to the ∆𝐸𝑖,𝑟𝑒𝑠𝑡 contribution due to the rest of the 

protein. Figs. 3g and 3h demonstrate the changes in total interaction energy (∆𝐸𝑖,𝑡𝑜𝑡𝑎𝑙) that 

indicates that protonation generates both favorable (−∆𝐸𝑖,𝑡𝑜𝑡𝑎𝑙) and unfavorable (+∆𝐸𝑖,𝑡𝑜𝑡𝑎𝑙) 

energetic perturbations, and there exists local rearrangement and energy redistribution similar to 

our earlier observation related to ligand binding.  
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pH-driven energetic perturbation network between protonation site and allosteric site 

To create a network from the identified energetically perturbed residues, we dissect the 

electrostatic component of the protein-protein interaction ∆𝐸𝑖,𝑃𝑟𝑜𝑡𝑒𝑖𝑛 into residue pairwise 

contributions �∆𝐸𝑖𝑗�, where ∆𝐸𝑖𝑗 = 〈𝐸𝑖𝑗〉𝑃𝑟𝑜𝑡𝑜𝑛𝑎𝑡𝑒𝑑 − 〈𝐸𝑖𝑗〉𝑁𝑒𝑢𝑡𝑟𝑎𝑙. As mentioned previously, 

any discrete charge addition (histidine protonation) will contribute to the protein-protein 

interaction energy (> 10 kcal/mol) significantly. Hence, the connections are based on the 

energetic perturbation between residues other than the protonated histidine and the contribution 

of ∆𝐸𝑖,𝐻𝑖𝑠 is not considered for constructing network. Residues with |∆𝐸𝑖,(𝑃𝑟𝑜−𝐻𝑖𝑠)| ≥

5 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 and |∆𝐸𝑖,𝑃𝑟𝑜| ≥ 10 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 were selected for residue pairwise contribution. In 

Fig. 4.5, the selective residues are highlighted as blue spheres. The solid lines represent 

interactions that are more favorable in the protonated state as compared with neutral state and 

vice versa for the dashed lines.  

 

Figure 4.5 Network representation of the perturbation in pairwise interaction energies: The 

network is mapped onto the three-dimensional protein structure (3I4W). The blue spheres 

represent residues with |∆𝐸𝑖,(𝑃𝑟𝑜−𝐻𝑖𝑠)| ≥ 5 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 and |∆𝐸𝑖,𝑃𝑟𝑜| ≥ 10 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙. 

Connections with negative and positive ∆𝐸𝑖𝑗 values are indicated with solid and dashed lines, 

respectively. The connections are colored on the basis of ∆𝐸𝑖𝑗 values where Red: |∆𝐸𝑖,𝑃𝑟𝑜| >

4 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙, Purple: |∆𝐸𝑖,𝑃𝑟𝑜| > 2.50 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 and Green: |∆𝐸𝑖,𝑃𝑟𝑜| > 2.0 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙. ( Table 

4.1 contains ∆𝐸𝑖𝑗 values for all significant pairs).  
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Table 4.1 Change in the interaction energy per residue for all residues with |∆𝐸𝑖,(𝑃𝑟𝑜−𝐻𝑖𝑠)| ≥

5 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 and |∆𝐸𝑖,𝑃𝑟𝑜| ≥ 10 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 (a) 317H and (b) 372H 

(a) ResID- ΔEi,pro / ΔE(i,pro-

i,His) 
ΔEij (kcal/mol) 

1 E304(-10.8/0.5)  K355(2.5), H317(-11.2) 
2 D306(-16.5/-4.3)  R309(-2.6), E352(-2.8), E395(2.4), H317(-12.3) 
3 R309(28.0/16.6)  E305(7.3), D306(-2.6), R354(2.6), E395(6.6), H317(11.5) 
4 R312(26.7/8.6)  E352(3.0), H317(18.1) 
5 E331(-11.1/-0.2)  R399(-2.3), H317(-10.9) 
6 E334(-5.0/5.8)  R399(6.0), H317(-10.8) 
7 D348(-22.3/-1.8)  R354(2.1), H317(-20.4) 
8 E352(-27.6/-2.4)  E305(-2.2), D306(-2.8), R312(3.0), R354(4.4), H317(-25.3) 

9 R354(28.1/12.3)  E305(2.7), R309(2.6), D348(2.1), E352(4.4), D357(-2.7), 
H317(15.8) 

10 K355(19.7/6.4)  E304(2.5), E401(4.6), H317(13.3) 
11 D357(-22.4/-5.2)  R354(-2.7), H317(-17.1) 
12 R399(18.0/7.3)  E331(-2.3), E334(6.0), E396(5.0), H317(10.7) 
13 E401(-4.1/7.3)  K355(4.6), H317(-11.4) 

(b) ResID- ΔEi,pro / ΔE(i,pro-

i,His) 
ΔEij (kcal/mol) 

1 E304(-17.3/-5.5) D306(2.2), R309(-4.6), R312(-2.2), R354(-7.7), D357(2.3), 
E395(2.1), H372(-11.8) 

2 D306(-16.0/-4.5) E304(2.2), R354(-7.5), H372(-11.5) 
3 R309(20.2/6.9) L302(-2.4), E304(-4.6), E305(6.4), E395(5.6), H372(13.3) 
4 R312(13.9/-2.2) E304(-2.2), R354(-3.0), H372(16.1) 
5 R318(23.6/3.3) T321(3.3), N381(-2.6), H372(20.3) 
6 E334(-26.6/-1.4) R399(-5.0), H372(-25.2) 
7 E352(-11.3/2.7) R354(2.5), H372(-14.0) 

8 R354(5.4/-9.4) E304(-7.7), E305(2.8), D306(-7.5), R312(-3.0), E352(2.5), 
D357(3.1), H372(14.7) 

9 K355(15.7/-4.5) E401(-5.5), H372(20.3) 
10 D357(-15.8/4.6) E304(2.3), R354(3.1), H372(-20.3) 
11 D366(-23.2/-3.0) R368(-4.4), H372(-20.2) 
12 R368(13.9/-3.3) D366(-4.4), H372(17.2) 
13 E395(-11.7/3.0) E304(2.1), E305(-3.2), R309(5.6), H372(-14.7) 
14 E396(-19.8/-1.3) R399(-3.0), H372(-18.5) 
15 R399(13.9/-8.2) E334(-5.0), E396(-3.0), H372(22.1) 
16 E401(-24.8/-4.8) K355(-5.5), H372(-20.0) 
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A comparison between the two networks gives us significant insights into the change in 

the interaction pattern upon histidine protonation at position 317 or 372. In Fig. 4.5, the network 

changes extensively at the distal region (towards N-terminal) from the ligand binding site with a 

differential pattern of pairwise energetic connections between 317H and 372H protonation states.  

Interestingly, we observe a significant reduction in ∆𝐸𝑖𝑗 values (more negative) for certain 

interaction pairs upon 372H protonation as compared to 317H. (Table S4)  In particular, a few 

pairs such as E334-R399, K355-E401, D306-R354, E304-R354, E304-R309 connected by solid 

red lines exhibit favorable interaction upon 372H protonation as compared to 317H where the 

interaction is considerably more favorable in the neutral state (dashed lines). There are examples 

where the change in pairwise interaction energy  (∆𝐸𝑖𝑗) is positive (favourable in neutral state) in 

both the networks, for example, E305-R309, R309-E395, R318-T321, E352-R354 and E305-

R354. This observation highlights that the introduction of a charge on histidine leads to weaker 

interactions among certain residue pairs irrespective of the protonation site.    

Interestingly few connections, for example, E305-R309, R309-E395, E334-R399, K355-

E401, and E305-R354 also appear in energetic perturbation network identified as a consequence 

of ligand binding in chapter 3. This indicates that the PDZ domain has an inherent and intrinsic 

network of nonbonded interactions (H-bonded/salt bridges) that undergo energetic redistribution 

(change in the local protein-protein interaction energy) upon perturbation. Few of these 

interactions, for example, E334-R399, K355-E401 are also present in the ligand bound state with 

significantly higher population. Evidently, a negative ∆𝐸𝑖𝑗 signifies that distal region of the 

protein exhibits more favorable interactions (stronger connections) and extensive rearrangements 

in the intra-protein interaction network upon protonation at 372H (more solid lines) as compared 

to 317H (more dashed lines).  
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Figure 4.6 Probability distribution of pairwise minimum distance between residues with 

|∆𝐸𝑖,𝑃𝑟𝑜| > 4 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙. The minimum distance has been calculated for all pairs of atoms 

(including hydrogen) between the residues. The ∆𝐸𝑖𝑗 values for different protonation states are 

indicated in the plot. The hydrogen bond occupancy (percentage) based on standard geometric 

criteria has been reported in Table 4.2. 

Hydrogen bond population redistribution as a means of dynamic allostery  

In PDZ3 domain, we identified an interaction network based on hydrogen-bonded pairs that 

undergo extensive rearrangement and rewiring on ligand binding in PDZ3 domain. Furthermore, 

we have shown a population shift mechanism for these pairwise hydrogen bonded interactions to 
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demonstrate the allosteric response in PDZ3 domain. Here, we highlight a similar aspect of 

population shift of the pairwise interactions upon protonation in Fig.4.6. For most of the cases, 

we observe that the overall shape of the population distribution does not change with at least two 

peaks present where one at shorter distance signifies strong/specific polar interactions (mostly 

hydrogen bond) and another at a larger distance for weaker interactions. However, we observe 

that a particular interaction (strong/weak) may be present in different protonation states 

simultaneously, but the population distribution may vary between these states. For example, 

residue pairs E304-R309, E304-R354, D306-R354, E334-R399, K355-E401 and E396-R399 

with negative ∆𝐸𝑖𝑗(≥ 5 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙) exhibit significantly higher population in the 372H 

protonation state. On the other hand, these interactions become less favorable (decreased 

population as compared to the neutral state) in 317H protonation with positive ∆𝐸𝑖𝑗. There are 

examples (E305-R309 and R309-E395) where the distribution decreases upon protonation (at 

either site) from the neutral state. In Fig. 4.6, the interaction between R318-T321 in β1-β2 loop 

shows equal population for two probable conformations at 0.2nm (backbone H-bonded) and 

0.6nm in neutral state. Upon 317H protonation, the population exclusively shifts to a single 

conformational ensemble towards weaker interaction between the residue pair. 

Table 4.2 Hydrogen bond occupancy (percentage) for residues with |∆𝐸𝑖,𝑃𝑟𝑜| > 4 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 

based on standard geometric criteria (𝜃 ≤ 30°, 𝑟 < 3.5Å). The table shows residue pairs that 

are connected by red lines in the network in Fig. 3. The H-bond occupancy was calculated for 

residue pairs in neutral and protonated states (317H and 372H). 

Sr. No. Residue Pair 317H 372H Neutral 
1 E304-R309 6 3 5 
2 E304-R354 6 19 4 
3 E305-R309 54 51 74 
4 R309-E395 151 143 164 
5 R318-T321 1 16 44 
6 D306-R354 26 58 33 
7 E334-R399 76 128 101 
8 K355-E401 46 58 49 
9 E396-R399 52 76 63 

In the previous chapter, we have highlighted the strong interaction between the N-

terminus region and the α2-β5 coil region (involving R354) in the ligand unbound state. 
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However, in the present work, we observe a further decrease in the average 𝐸𝑖𝑗 values of the 

pairwise interactions from the neutral state (representative for the ligand unbound state) 

exhibiting stronger interactions upon protonation at 372H. The above observation provides 

insight onto the effect of protonation on the energy landscape of the protein. It is possible that the 

underlying free energy landscape becomes deeper and narrower leading to an increase in the 

barrier between the neutral and protonated state.  

4.4  Discussion  

In summary, our work revealed that protonation of histidine residues in PDZ3 domain as a 

consequence of physiological pH changes in the cellular environment modulates the 

conformational dynamics and the energetics distribution in the domain. In this chapter, we 

highlight that there exist multiple interaction networks in PDZ3 domain, and the allosteric 

modulation can be observed in terms of energetic propagation through any of these networks 

depending upon the perturbation factor. First, we demonstrate that the fluctuations/dynamics in 

the loop region (β1-β2 and β2-β3) and α1-β5 coiled region are suppressed upon protonation at 

position 317 or 372. The enhanced rigidity in the domain may affect the known two-step binding 

process in PDZ domain via a sequential (induced fit) mechanism.56 These decreased fluctuations 

(increased rigidness) in the domain upon protonation at 372H may result in decreased binding 

affinity as observed experimentally. Further, it is important to understand how these 

conformational changes in the loops can play a significant role in peptide binding specificity and 

allosteric transitions. The increased rigidity in PDZ3 domain also provides signatures of pH-

induced dynamic allostery. 

Furthermore, we have identified network based on residue pairwise interaction energy 

that highlights extensive rearrangements of interactions at the distal region of PDZ domain. Our 

work demonstrates how introduction of positive charge on a histidine residue results in subtle 

changes in the population distribution of pairwise interactions in the network. We have shown 

that protonation at different sites have variable effects on the energetics of the protein. Together 

with dynamics, these changes may alter the ligand binding affinity and allosteric signatures in 

PDZ3 domain. In this chapter, we propose that there exists an inherent network of interactions in 

PDZ domain that undergo population redistribution upon perturbation by different factors such 

as ligand binding, pH-induced or any other. This network may respond differently depending 
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upon the perturbation factor. Also, we must note that these changes modulate the underlying 

energy landscape and thus affect the functional aspects of the protein. 
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Chapter 5 
5 Nucleotide Dependent Conformational 

Switching in Rho GTPase 
 

5.1  Introduction 

Biological cells respond to growth factors and hormones through activation of signaling 

pathways involved in the regulation of cell adhesion activity and other aspects of cell behaviour, 

including gene expression. Growth factor-induced alterations frequently include changes in cell 

movement and shape, which play an important role in processes such as embryonic development 

and wound healing1-3. The actin cytoskeleton predominantly governs these aspects of cell 

activity. Signaling to the actin cytoskeleton through GPCRs involves a large number of signaling 

cascades that include Rho family of GTPases (RhoA, cdc42 and Rac1), their regulators (GAPs, 

GEFs, GDIs) and their downstream effector proteins (Rho-kinase, PAK)4-6. These proteins 

regulate a variety of cellular processes such as cell cycle progression, cell migration and gene 

transcription through molecular recognition based protein-protein interactions.  

Rho GTPases are small (~20 kDa), monomeric, Guanine nucleotide binding proteins that 

belong to the RAS superfamily. These proteins are well known bio-molecular switches whose 

activity is regulated by binding to the guanine nucleotide7-10. The highly conserved switching 

mechanism involves shuttling of Rho GTPases between their GTP bound (ON) active state and 

GDP bound (OFF) inactive state11. The transition of Rho GTPases between their ON and OFF 

states is regulated by GEFs (guanine nucleotide exchange factors) and GAPs (GTPases 

activating proteins)12. GEFs catalyse the activation of Rho GTPases by exchanging their bound 

GDP with GTP, whereas GAPs inactivate them by promoting their intrinsic GTP hydrolysing 

capacity. More than 80 GAPs have been identified based on human genome analysis. In GTP-

bound active state, these proteins can interact with more than 100 effectors and promote 

subsequent downstream signaling13,14. GEFs belong to the Dbl family and contains Dbl 

homology (DH or RhoGEF) domain. Another class of structurally distinct GEFs belong to 
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DOCK family of proteins. Around 70 members of Dbl RhoGEFs and 11 members of DOCK 

RhoGEFs have been identified15,16. The combined number of RhoGEFs and RhoGAPs 

outnumbers the known 20 Rho GTPase members. This suggests tight regulation of regulatory 

proteins spatially and temporally, to balance the availability of the active and inactive forms of 

Rho proteins within a cell. Guanine nucleotide dissociation inhibitors (GDIs) provide additional 

regulation by sequestering the GDP bound form to maintain an adequate pool of inactive Rho 

GTPases in the cytosol17.  Aberrations in the functional Rho GTPases, mainly in their switching 

action, have been implicated in a number of diseases like cancers, developmental disorders and 

bacterial infections, where they occur in constitutively active state18-22.  

Several structural studies on small GTPases have shown that two divergent regions in 

these proteins, called switch I (SWI, residues 28 to 40 in RhoA) and switch II (SWII, residues 61 

to 81) regions play critical role in exerting biological functions of these proteins23-28. These two 

regions not only constitute the nucleotide binding pocket but also engage with their regulators 

(GEFs and GAPs) and effectors (like kinases)22,29. These loops also perch the Mg2+ binding site, 

essential for functioning of the protein. In the ON state, the γ-phosphate of the bound GTP forms 

two hydrogen bonds between the side-chain oxygen of SWI Thr37 and the main-chain oxygen of 

SWII Gly62 according to RhoA numbering (Thr35 and Gly60 according to H-Ras numbering, 

respectively). The change in structure upon the loss of the γ-phosphate, on GTP hydrolysis, is 

termed as the loaded-spring mechanism11. This change defines the activation and inactivation 

mechanism of the GTPases. 

Crystal structures of both GTP and GDP bound states of Rho GTPase exhibit multiple 

SWI conformations, suggesting the plausibility of an ensemble of “micro” ON and OFF states. 

Interestingly, NMR studies on H-Ras, a member from the RAS superfamily, have revealed that 

SWI region of the GTP bound state has multiple interconvertible conformations, whereas no 

such conformational fluctuations are seen in the GDP bound state30. Based on these experimental 

studies, the GTP bound state for Ras GTPase has been classified into two states, known as state 

1 (inactive) and state 2 (active)31,32. Modest alterations in the coordination between Thr35 and 

Mg2+ are shown to alter these states of the Ras GTPase. Furthermore, state 2, which is most 

prevalently seen in the crystal structures of the wild type Ras, represents the high affinity state 

for the effectors. 



5.  Conformational Heterogeneity in Rho GTPases 

133 

On the other hand, state 1 represents a different (GDP-like) state of the protein with a 

substantially reduced affinity for effectors, often seen in the crystal structures of mutant of Ras 

(T35S)33. Conformational fluctuations of these two states for Ras GTPases have been 

extensively studied using normal mode analysis and molecular dynamic simulations34-42. The 

minimum energy pathway between the two states has been analysed with the conjugate peak 

refinement method43,44. However, there is very limited information on the conformational states 

of Rho GTPases. Experimental studies on Cdc42, a Rho GTPase, have shown the protein to exist 

only in the state 2 conformation45. It is interesting to note that, despite sharing significant 

structure and sequence homology with H-Ras and having the conserved threonine in the SWI 

region, Cdc42 predominantly exists in the state 2 conformation. 

In this chapter, we explore the conformational states/space of SWI region of Rho 

GTPases and demonstrate the molecular nature of interactions that govern the nucleotide 

dependent conformational selections of the Switch I loop region. To address this problem, we 

have carried out extensive molecular dynamics (MD) simulations on RhoA, a bonafide member 

of Rho Family of GTPases. Availability of several crystal structures of RhoA in different forms 

made this protein an amiable model system to investigate the conformational states. To further 

understand the conformational features, free energy calculations were performed. These studies 

indicate plausibility of existence of state 1 like conformation of GTP bound Rho GTPases. A 

comparative analysis of the structural signatures of SWI conformations, corresponding to the 

free energy minima, provides a qualitative explanation for the sparse occurrence of state 1 

conformation in Rho GTPases. Finally, analysis of conformation of SWI residues in the GTP 

bound state reveals substantial solvent exposure of the hydrophobic residues, where the 

unfavourable solvation energy gets overcompensated by the favourable electrostatic interaction 

with the nucleotide (GTP). Perhaps, this unique conformational state with hydrophobic exposure 

has an important role in effector recognition. 
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5.2  Methods 

5.2.1 System Setup 

The crystal structures of RhoA for GDP bound and GTP bound states were selected as input 

structures for MD simulation (PDB: 1FTN and 1A2B, respectively). The wild type structure for 

GTP bound form was obtained by back mutating the V14G in the crystal structure (PDB: 

1A2B) using Coot program46. In case of GTP bound form, the GTP analogue was converted to 

GTP. The unbound form of the RhoA GTPase was simulated too. The nucleotide freeform for 

RhoA was obtained from the complex with GEF of Dbl family (PDB: 1LB1).  All the systems 

preserved the Mg2+ ion together with the coordinating water molecules.  

5.2.2 Simulation Parameters 

MD simulations were performed using GROMACS 4.6.5 package47. The Charmm27 force field 

with CMAP corrections48 was used for the protein, and the parameters for ligands namely GDP 

and GTP were obtained from SwissParam49, a web service that provides topologies and 

parameters for small organic molecules, compatible with the Charmm all atoms force field, for 

use with the GROMACS software. All the structures were inserted into cubic box with explicit 

solvent described by the TIP3P water model50 and simulated with periodic boundary conditions. 

The box sizes were set to ensure a distance of at least 1 nm between the protein and the box 

boundaries. This results in a 7.78nm wide box with ~14700 water molecules for the nucleotide 

freeform, 7.72 nm wide box with ~14600 water molecules for the GDP bound form and 7.8 nm 

wide box with ~14700 water molecules for the GTP bound form. The systems were found to be 

negatively charged, thus in order to neutralise the simulation systems, 7 Na+ ions in the 

freeform system, 8 Na+ ions in the GDP bound system and 9 Na+ ions in GTP bound system 

were added.  The solvated proteins were energy minimised using the steepest descent algorithm. 

All the systems were equilibrated for 300ns in NPT ensemble using a modified Berendsen 

thermostat51 at 300K and Parrinello-Rahman barostat52 at 1 bar. Long-range electrostatic 

interactions were calculated with the particle mesh Ewald (PME) summation method53 with a 

grid spacing of 0.16 nm and fourth-order cubic interpolation. For short-range electrostatics and 

van der Waals, a cut-off distance of 1 nm was used. All covalent bonds were constrained using 

the LINCS algorithm54. The distance between the Mg2+ ion and the hydroxyl oxygen in Thr17 
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of RhoA was restrained to preserve the interactions between Mg2+ ion and its coordinating 

atoms. The integration time step was set to 2fs. Two different types of simulations were 

performed, atomistic MD simulation and well-tempered metadynamics simulation. The systems 

were equilibrated for 150ns. The atomistic MD simulations were further performed in two 

replicas for 300ns with each frame being saved at every 2ps. Only one replica (300ns) was used 

for the analysis. The metadynamics simulations were carried out for 1μs. 

5.2.3 Analysis 

Distance based RMSD parameter 

Distance based RMSD (DRMSD) measures the structural deviation with respect to a reference 

structure based on the distances between all the pairs of atoms. This approach alleviates the need 

of aligning to a reference structure as required in the usual position based RMSD. The DRMSD 

(Xt) between any conformation at time t and the reference structure (Xref) can be measured as:  

( ) ( ) ( ) ( ) 21, , ,
1

t ref t t ref ref
i j i j

i j

d X X d x x d x x
N N ≠

 = − − ∑                       (5.1) 

where N is the number of atoms and d(xi,xj) represents the distance between atoms i and j. We 

used the set of all Cα atoms of SWI loop for DRMSD calculation. Two reference structures 

(crystal structures of GDP and GTP-bound forms) were used to characterise the structural 

similarity/deviation with respect to the active and inactive states. 

Unsupervised clustering 

We have performed unsupervised clustering using the Weka software to cluster the 

conformations from the trajectories55. The loop and coiled regions in the protein are best 

described by the dihedral angles of the amino-acid residues. The K-means clustering method was 

carried out using the feature set consisting of the φ, ψ and χ dihedral angles of a subset of the 

evolutionary conserved residues of the SWI loop that undergo large changes in the dihedral 

angles between the active and inactive states. The switch region contains ~13 residues. Table 5.1 

shows the list of all residues in the switch-I region and associated dihedral values in the GDP-

bound inactive and GTP-bound active state. The residues for machine learning were selected on 
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the basis of the difference in the torsional angles from the GDP and GTP bound equilibrated 

structure (ΔX= XGDP - XGTP). 

Table 5.1 Selection criteria for residues used in unsupervised clustering. The angles included for 

the analysis include φ, ψ, χ1, χ2. All those residues with major change in the orientation of the 

backbone/side chain (highlighted in red) between the active and inactive state were selected for 

k-means clustering.  

Switch I φGDP φGTP Δφ ψGDP ψGTP Δψ Δ χ1 Δχ2 

Asp28 65.5 67.4 -1.9 38.7 40.0 -1.3   

Gln29 -161.0 -128.3 -32.6 153.4 141.9 11.5   

Phe30 -78.7 -108.7 30.1 136.4 125.0 11.4 2.6 -165.3 

Pro31 -102.6 -53.2 -49.4 107.7 148.6 -40.9   

Glu32 -66.0 -74.0 8.0 -30.5 -36.4 5.9   

Val33 -138.9 -152.5 13.6 157.0 161.7 -4.8   

Tyr34 68.3 -74.0 142.3 41.1 124.0 -82.9 -227.2 48.2 

Val35 -70.7 -110.7 40.0 119.9 128.9 -9.0   

Pro36 -64.6 -53.5 -11.1 162.6 122.9 39.6 78.2 3.2 

Thr37 -58.4 -73.9 15.5 -47.9 128.2 -176.2 -0.8  

Val38 -147.1 -86.9 -60.1 170.5 -54.8 225.3 105.4  

Phe39 -127.3 -144.6 17.3 134.4 150.3 -16.0 -206.7 -11.2 

Glu40 -156.9 -139.3 -17.6 155.6 146.5 9.0   

Thus, the total number of features (dihedral angles) used to describe the switch-I conformation 

were 22 (Table 5.2). The total number of output cluster was limited to four. 
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Table 5.2 List of residues used for k-means clustering. Selection of residues is based on the 

difference in the dihedral angles in the equilibrated GDP bound and GTP bound form as 

highlighted in Table 5.1.  

Sr. No Switch I Residues Dihedral Angles 
1 PHE30 φ, ψ, χ1 , χ2 
2 TYR34 φ, ψ, χ1 ,  χ2 
3 PRO36 φ, ψ, χ1 ,  χ2 
4 THR37 φ, ψ, χ1 
5 VAL38 φ, ψ, χ1 
6 PHE39 φ, ψ, χ1 ,  χ2 

Metadynamics simulations 

We have also carried out well-tempered Metadynamics56 to accelerate the conformational 

sampling of the Switch I region and to obtain the free energy landscape corresponding to the 

different nucleotide-bound states. We have used the Plumed code (ver. 2.0.2)57 to incorporate the 

Metadynamics functionalities in Gromacs. We have used a “dihedral similarity” (S) parameter 

based on the backbone dihedral angles (φ/ψ) as the collective variable to distinguish the various 

conformational states of the Switch I region as defined below. 

( )1 1 cos
2

ref ref
i i

i

S ϕ ϕ = + − ∑     (5.2) 

where the sum runs over the φ and ψ dihedral angles for all the residues of the Switch I region. 

The reference values (  ) have been taken from the respective angles in the crystal structure. 

The width of the Gaussian (  ) has been set to 2.3 degrees for both the CVs with the initial 

height of Gaussians W=0.1 kcal/mol added every 2ps. 

Interaction energy calculation 

The interaction energy for different components for the system, i.e. protein, water, Switch I 

region and Mg2+ ion was calculated using gromacs inbuilt tool g_energy. The total interaction 

energy is calculated as the sum of the electrostatic columbic interaction energy and Van der 

ref
iφ

σ
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Waals interaction energy terms. The cutoff radius was set to 1nm. All the atoms within the cutoff 

were included for the energy calculation. 

5.3  Results 

MD simulations of GDP, GTP and nucleotide free state of RhoA 

To address the conformational heterogeneity in the Rho GTPases, we have superimposed the 

available crystal structures of RhoA in the nucleotide free form, the GDP bound and the GTP 

bound form (Fig. 5.1a).  

 

Figure 5.1 (a) Superimposition of the Switch I loop using the available crystal structures of 

RhoA. The conformational preference of the loop region has been indicated by the following 

colours: nucleotide free (red), GTP bound (blue), and GDP bound (green). (b) open and closed 

conformation in GDP and GTP bound form exhibited by change in the orientation of Tyr34 and 
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Phe39 (c) Root mean square deviation (RMSD) plot shows that the systems are well equilibrated 

and there are no major secondary structural changes in the GTPase. (b) In root mean square 

fluctuations (RMSF) plot, the protein shows enhanced fluctuations in the SwI and SwII region in 

the freeform state. In the GTP bound form, increased fluctuations are observed in the insert helix 

towards the C-terminal. 

Our analysis shows that the high resolution X-ray crystal structures of Rho GTPases in 

GDP bound and GTP bound form show overall close structural similarity. However, switch I and 

switch II regions seem to exhibit the largest deviation among crystal structures with particularly 

large variation between the side chain orientations of Tyr34 and Phe39 (Fig. 5.1b). Although 

structurally diverse, the SWI and SWII regions exhibit consensus sequence which might play an 

important role in effector binding. To further explore the nucleotide dependent conformational 

signatures in Rho GTPases and possible existence of any intermediate state, we performed 1µs of 

atomistic MD simulations on RhoA in its nucleotide free, GDP bound, GTP bound and the GTP 

bound G14V mutated form.  

In the following sections, we have reported extensive structural and thermodynamic 

characterisation of this conformational ensemble. We have calculated the RMSD of the 

backbone atoms with respect to the crystal structures to ensure convergence and stability of the 

protein (Fig. 5.1c). Although the timescales of MD simulation limit to track the complete 

transition of the protein between the active and inactive states, shifting of Tyr34 in open and 

closed conformations, which Rho GTPases exhibit in their GDP and GTP bound state, were 

observed. This aspect will be further discussed in greater detail in subsequent sections. 

A long-held view is that the flexibility of the switch regions plays an important part in 

the effector binding in its active state. The RMSF profile showing residue-wise fluctuations 

exhibits larger fluctuations in the SWI and SWII regions as compared to the other regions of the 

protein (Fig. 5.1d). However, both the loop regions show significantly lower fluctuations upon 

nucleotide binding as compared to the nucleotide free state, which signifies the role of these 

regions in nucleotide binding or effector recognition. Prior simulation studies have shown that 

mutations in the p-loop or switch regions can significantly alter the degree of flexibility of these 

regions58-61. A point mutation (P29V) locks the RAC1 in the GTP bound activated state, 

accompanied by the enhanced flexibility in the Switch I region and rigidity in the switch II 



5.3  Results 

140 

region58. However, this work would retain the focus on the conformational heterogeneity in the 

SWI loop, since our objective is to investigate the presence of conformational substates like 

“state 1” and “state 2” as identified earlier in the H-Ras proteins. 

Identification of conformational states of SWI region in Rho GTPases 

To assess the conformational spread of SWI region from the GTP bound and GDP bound states, 

distance based RMSD (DRMSD) has been used as a metric. Due to the inherent degeneracy of 

RMSD-like quantities, a single reference structure is not enough to characterise the structures 

when the deviation between the reference structure and structures under query are large. Thus, 

we have used two different references structures (crystal structures for GDP-bound inactive state 

and GTP-bound active state) to achieve better resolution in classifying the MD trajectories.  

 

Figure 5.2 (a) Distance based RMSD values (DRMSD) for the trajectories: free form (black), 

GDP bound (red) and GTP bound (blue). The coordinates are obtained as the DRMSD values of 

each structure calculated with respect to both the GTP bound structure (Y axis) and the GDP 

bound structure (X axis) in order to demonstrate the structural distribution and similarities. (b) 

Population Analysis using K-means Clustering. 

Figure 5.2a demonstrates the spread of conformational states sampled in the MD 

simulations of the respective systems. Lower X values (DRMSD w.r.t GDP-bound inactive state) 

and Y values (DRMSD w.r.t GTP-bound active state) indicate higher similarity to GDP and GTP 

bound structures, respectively. The distribution clearly indicates that the SWI region in the 
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nucleotide freeform and GDP bound inactive state has very similar conformations, whereas the 

GTP bound active state has very unique structures corresponding to an isolated domain in this 

conformational landscape. Interestingly, there is a subtle tendency in the freeform to approach 

the GTP bound states, which will be further demonstrated through free energy calculations in a 

later section. Although DRMSD could quantify the similarity/dissimilarity with reference 

structures, it provides a coarsened global picture of the structural differences. In order to achieve 

a more microscopic conformational clustering, such as state 1 and state 2 of the ‘ON’ form (GTP 

bound form), of the observed MD trajectories an unsupervised machine learning approach was 

used. We have employed the k-means clustering method62,63 which has been used earlier to 

group similar structures of the conformational space in different systems64-66 (See Methods 

section for details). A coarse representation of different clusters (Fig. 5.2b) reveals that the GTP 

bound conformational states of the SWI loop region form two distinct clusters (C3 and C4), 

whereas the conformational states of nucleotide freeform and GDP bound states show 

considerable similarity, as observed in case of DRMSD analysis. 

To further investigate the effect of mutation on the conformational states of SWI, the 

procedure was repeated for the simulation results of single mutant (G14V) RhoA-GTP, which is 

observed in myriad type of cancers67,68. Equivalent mutants in H-Ras have shown SWI region of 

this protein to predominantly adopt the state 1 (inactive GDP bound) like conformation69. Hence 

the objective here was to test whether RhoA has similar tendencies. The results obtained from k-

means clustering with the feature set from single mutant RhoA-GTP showed clustering pattern of 

forming two distinct clusters, as observed for the Wild Type RhoA-GTP structures. However, the 

occurrence of one of the state (C2) seems more dominant. This analysis clearly demonstrates that 

GTP bound form of RhoA is capable of adopting two preferential states that might be analogous 

to the state 1 and state 2 of the GTP bound H-Ras. On the contrary, nucleotide free form and 

GDP bound form of RhoA do not exhibit preferential conformational states. It is interesting to 

note that the demarcation of the preferences for the states is more illustrious for the mutant, 

similar to what has been observed for H-Ras. In case of H-Ras, this mutation drives the GTP 

bound protein towards the inactive, state 1 conformation. However, for RhoA, this mutation 

impedes the protein from binding to nucleotides and effectors70. 
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Conformational free energy landscape of Switch I region 

In the case of H-Ras, several MD simulations have been performed to delineate state 1 and state 

2 conformations of the protein. In most of these studies, the distance between Thr35 and the γ-

phosphate of the bound GTP, coordination between Thr35 and Mg2+ ion and the H-bond between 

Gly60 and γ-phosphate are considered as an important structural indicator of the states36,71,72. To 

our knowledge, there are no crystal structures of Rho GTPases attributed to these particular 

conformational states of the SWI loop in the GTP bound form. Hence to identify the structural 

signatures of state 1 and state 2 like conformations in Rho GTPases, there was a need to explore 

a large conformational space of SWI region and sample the conformations based on their free 

energy to identify the energetically stable and metastable states in terms of known active and 

inactive states. Similar to the unsupervised clustering, the free energy surface incorporates the 

information about the possible conformation ensemble describing the energetically stable and 

metastable states. Although unbiased MD simulations provide very useful molecular insights 

regarding the dynamics of biomolecules, such simulations may have limited capabilities in 

sampling a complex free energy landscape.   
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Figure 5.3 Free energy surfaces corresponding to (a) Freeform, (b) GDP bound form, (c) Wild 

type (WT) GTP bound form, and (d) GTP bound form with G14V mutation on the left panel. The 

position of the few representative available crystal structures have been marked on the free 

energy surface with the following colors: GDP (green star) and GTP (blue diamond). On the 
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right panel (e – h), Structural superimpositions of switch I region conformations for different 

minima labelled as A(Blue), B(Green), C(Red). 

In particular, large-scale conformational changes in biomolecules are often associated 

with high free energy barriers (greater than a few kBT) making them inaccessible (or poorly 

sampled) to normal MD simulations. Hence the well-tempered metadynamics method has been 

used to accelerate the conformational sampling of the SWI region in each of the systems under 

different consideration, namely (i) the GDP bound form, (ii) the GTP bound form, (iii) the 

nucleotide freeform, and (iv) the GTP bound form of the G14V mutation, which is known to 

exist in a constitutively active state. The free energy surfaces computed using the re-weighting 

approach73 have been shown in Fig. 5.3. 

Table 5.3 Summary of Crystal structures overlaid on free energy of RhoA, Cdc42, Rac1 of (a) 

GDP bound form and (b) GTP bound form.  

S.No. PDB Title: GDP bound form 

11# 2G0N 
The crystal structure of the human Rac3 in complex with GDP and 

chloride 

13# 2W2T Rac2 (G12V) in complex with GDP 

14# 1A4R G12V mutant of human placental Cdc42 GTPase in the GDP form 

15# 1AN0 Cdc42Hs-GDP complex 

S.No. PDB Title : GTP bound form 

19# 1KMQ Crystal structure of a constitutively activated RhoA mutant (q63l) 

21# 2GCP Crystal structure of the human RhoC-GSP complex 

23# 3TVD Crystal structure of mouse RhoA-GTP complex 

30# 3SBD Crystal structure of Rac1 P29S mutant 

31# 3SUA 
Crystal structure of the intracellular domain of Plexin-B1 in complex 

with Rac1 

32# 3TH5 Crystal structure of wild-type Rac1 

33# 4GZM Crystal structure of Rac1 F28L mutant 
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To identify the ‘active’ and the ‘inactive’ conformational states of the SWI loop 

“dihedral similarity” (S) collective variable was chosen. The two collective variables SGDP (X 

axis) and SGTP (Y axis) are the S parameters calculated with respect to the GDP bound and GTP 

bound reference structures, respectively, indicate the dihedral similarity of SWI region. 

According to the definition of the S parameter, larger S values would indicate higher similarity 

with the reference structure, e.g. structures with higher SGDP values will have greater degree of 

similarity to the reference GDP bound structure. The two-dimensional space shown in Fig. 5.3 

(SGDP, SGTP) is the reduced representation of the full conformational space of the backbone (2N 

for the φ/ψ angles of N residues). In order to validate this representation, the (SGDP, SGTP) values 

for the SWI loop of total 36 crystal structures of RhoA, Rac1 and cdc42 GTPases in their GDP 

bound and GTP bound form (Table 5.3) were mapped on each of these free energy surfaces. In 

Fig. 5.3, only crystal structures existing in apo nucleotide-bound state have been superimposed. 

Interestingly the (SGDP, SGTP) collective variables corresponding to the majority of GTP and GDP 

bound crystal structures form clusters, which nicely overlap with the global minima in the FES 

of the corresponding system. This clearly indicates that the conformational states discovered by 

the metadynamics sampling closely resemble the available structural data. Also, it is clear from 

the representation that the (SGDP, SGTP) collective variables have the ability to distinguish 

between the active and inactive conformational states. 

A comparative analysis of these maps suggests that in the absence of any nucleotide (Fig. 

5.3a), a large number of conformational states are thermally accessible as indicated by the 

presence of multiple stable states in the dihedral conformational space. This unveils the highly 

flexible nature of the loop in the absence of nucleotide (GDP/GTP). On the other hand, the GDP 

bound structure is characterised with much more structured free energy surface with lower 

number of thermally accessible conformational states compared to the freeform. The FES for the 

GDP bound form (Fig. 5.3b) has three minima separated by rather small (~2 kcal/mol) barrier 

(Table 5.4) indicating a high degree of flexibility between these states. However, the GTP bound 

conformations are never visited in a GDP bound state, which would have required to cross much 

higher free energy barrier (>15 kcal/mol). However, in the case of GTP bound structure, the 

number of deep minima (stable states) is even lower (Fig. 5.3c). This signifies the presence of a 

few distinct conformational states in both nucleotide bound systems unlike the freeform. But the 

position of the minima in the GTP bound state is significantly different as compared to the GDP 
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bound system, indicating the unique conformational signatures of the GTP bound ON state. 

Interestingly, for the GTP bound form other metastable intermediate states, e.g. the state marked 

“B” with slightly higher free energy (~0.7 kcal/mol) than the state “A”, were observed. 

However, the barrier of the interconversion (A to B) is 5 kcal/mol.  

Table 5.4 Relative free energy of the conformational states and the barrier between different 

Minima on Free Energy Surface in nucleotide unbound and bound states.  

S.No. System  Transition States Free Energy (kcal) 

1 Nucleotide freeform ∆G (A) 

∆G (C) 

∆G‡ (A→C) 

0 

4.6 

7 

2 GDP bound state ∆G (A) 

∆G (B) 

∆G‡ (A→B) 

0 

0.5 

2 

3 GTP bound state  

  (a) Wild Type ∆G (A) 

∆G (B) 

∆G‡ (A→B) 

 

0 

0.7 

5 

  (b) Mutant G14V ∆G (A) 

∆G (B) 

∆G‡ (A→B) 

0 

-0.4 

2 

In a previous study by Gorfe et al.35, it has been shown that the Ras mutants occur in the 

intermediate region between the GTP bound active and GDP bound inactive states, and hence 

they have hypothesised the existence of a lower free energy barrier in the oncogenic variants. In 

the case of RhoA, the oncogenic mutation G14V is known to be in a constitutively active state 

leading to an uncontrolled growth68,74. To investigate the effect this mutation on the 

conformational preference of the SWI loop of RhoA, FES for the G14V mutation in the GTP 

bound state was calculated (Fig. 5.3d). Although, the qualitative nature of the FES remains 

similar to the wild-type GTP bound form (Fig. 5.3c), but in the G14V system the identity of the 
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global minimum shifts to an intermediate state (marked “B”). The ∆G for transition from A to B 

is +0.7 kcal/mol and -0.4 kcal/mol for the WT and G14V, respectively. Furthermore, the barrier 

of transition between the GTP bound active and GDP bound inactive states is lowered by 3 

kcal/mol, thus signifying enhanced flexibility of the loop. It has been shown earlier that the 

G14V mutant becomes constitutively active since the chemical step of deactivation (GTP 

hydrolysis) is hindered in this mutant75. Our results for the G14V mutation corroborates the 

decreased free energy barrier with the increased flexibility in the switch I region as observed in 

the earlier study 58. In addition, the current results indicate that the loop region undergoes a 

population shift of the conformational states in addition to increased flexibility, which might 

promote binding to any arbitrary effector proteins through induced fit mechanism. Thus, the 

G14V mutant might be able to activate a large variety of downstream effector with lower degree 

of selectivity/specificity.  

Rho GTPases exhibit signatures of state 1 and state 2 in their GTP bound form 

For H-Ras, the state 1 and state 2 conformations of the GTP bound protein was defined in terms 

of the distance between Thr35 and the γ-phosphate of the bound GTP. However, dynamics of 

other neighbouring residues, such as Tyr32 in H-ras (Tyr34 in RhoA numbering), were also 

shown to contribute in stabilising and defining these states76. For Rho GTPases there is no 

structural data attributing their state 1 and state 2 conformations. Hence all available GTP and 

GDP bound structures of the GTPases belonging to this family were compared to define the 

“active” and “inactive” states of the protein. The only difference expected in the GTP bound 

forms, compared to the GDP bound forms, is stabilisation of the SWI region by the Thr37 and γ-

phosphate mediated interactions. However, for Rho GTPases, in addition to this interaction there 

is a correlated motion of Tyr34 and Phe39. In the GDP bound form the side chain of Tyr34 

points outward; whereas it flips inside to form hydrogen bond with the γ-phosphate in case of the 

GTP bound state (Fig. 5.4a). Similarly, the hydrophobic Phe39 side chain is buried in the GDP 

form, whereas it flips out in the active state to become solvent exposed (Fig. 5.4a)77. 

We have identified the nucleotide dependent correlation between the orientation of Tyr34 

and Phe39 based on the distance between the nearest interacting partner with respective 

sidechain in the unbound and bound state (Fig. 5.4b). This was further substantiated with the 

analysis of average number of water molecules around the Tyr34 and Phe39 sidechains (Fig. 
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5.4c). It is observed that Tyr34 is more solvent exposed in GDP bound form as compared to the 

GTP bound form, whereas Phe39 is more solvent exposed in the GTP bound form as compared 

to the GDP bound form. The 2D plot corroborates our claim that these two residues show 

distinct sidechain orientation in different nucleotide-bound state, and there exists a correlation 

among their orientation. Since these particular residues, Tyr34 and Phe39 and their correlated 

motion is uniquely found in Rho GTPases (Fig. 5.5), conformations akin to these were used as a 

structural signature to define the active and the inactive state of the GTPase.  

 

Figure 5.4 (a) Orientation of Phe39 and Tyr34 in GDP bound crystal structures (Blue) and GTP 

bound crystal structures (Pink). Tyr34 sidechain forms hydrogen bond with the γ-phosphate 

oxygen atom whereas in case of GDP bound form, Phe39 sidechain interacts with Ile23 

sidechain. (b) Minimum distance between the nearest possible interaction. (c) Solvent exposure 

of Tyr34 and Phe39 sidechain. Average number of water molecules was calculated around the 

Tyr34 and Phe39 residues.  

To validate this assignment, conformations of SWI regions of the trajectories 

corresponding to the three minima in the FES of the nucleotide freeform, GDP bound form, GTP 

bound form and GTP bound form of the G14V mutation were carefully examined (Fig. 5.3e–h). 
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The minima corresponding to the nucleotide freeform do not show any correlated conformations 

of Try34 and Phe39, indicating the absence of well-defined states of the GTPase in this form. 

However, the minima corresponding to the GDP bound form have similar conformations of 

Phe39 and a modest change in the open conformation of the Tyr34.  

 

Figure 5.5 Structural states in different systems based on the Tyr34 orientation. (a) Time 

evolution and (b) probability distribution of minimum distance between the oxygen atom of 

hydroxyl group in Tyr34 and oxygen atoms of terminal phosphate group of GDP and GTP 

molecule in GDP bound form, wild type GTP bound form (WT_GTP), single mutation G14V-

GTP bound form (SM_GTP). The peak labelled as 1 represents the existence of hydrogen bond 
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between Tyr34 and the terminal phosphate. The existence of multiple states is evident from the 

probability distribution plot which also exhibits a distinct nucleotide dependent shift of 

population. (c - f) Superimposition images of structures from each of the labelled four states 

coloured as WT-GTP (cyan), G14V-GTP (green), and GDP (magenta). 

Perhaps, they all correspond to the same GDP bound state with marginal deviations. 

Interestingly, for the GTP bound form based on the conformations of the SWI region, the 

minima can be grouped into two distinct classes: one with Phe39 as in the active state (blue) and 

the other class related to the energy minima “B” & “C”, belonging to an intermediate state. In 

these two minima, the Try34 has the active state conformation. Perhaps, these two classes 

represent state 2 (corresponding to “A”) and state 1 (corresponding to “B” or “C”) of the GTP 

bound Rho GTPases, equivalent to those observed for the Ras family of GTPases. 

 

Figure 5.6 Frequency of Tyr34 sidechain orientation. (a) Time evolution and probability 

distribution of χ dihedral angle of Tyr34. 

 In case of GTP bound-G14V mutant, which is known to drive the protein towards state 1 

(inactive), all the minima have Phe39 in an intermediate conformation similar to the one 

designated as the WT-GTP state 1. Thus, this particular observation further corroborates the 

existence of state 1 and state 2 like conformations in Rho GTPases. In Fig. 5.5, we demonstrate 

the probability distribution of the minimum distance between Tyr34 and GTP/GDP, highlighting 

the multiple possible intermediate orientations of Tyr34 depending on the nucleotide binding 

state. The probability distribution of the χ dihedral angle of Tyr34 (Fig. 5.6) also clearly 

demonstrates the dramatic population shift in a nucleotide dependent manner as well as the 
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G14V point mutation.  

Competing molecular interactions leading to conformational selectivity and correlated 

motion 

To further understand the molecular interactions that stabilise the respective active and inactive 

conformational states of the Rho GTPases, the role of solvation was investigated.  The average 

number of water molecules within 4Å distance from each residue was calculated. (Fig. 5.7).  

 

Figure 5.7 Comparison of the average number of water molecules around (a) non-polar residues 

and (b) polar residues. The red and blue bars indicate the GDP bound and GTP bound states, 

respectively. 

It was observed that all the hydrophobic (non-polar) residues have consistently higher solvent 

exposure in the GTP bound state, whereas the hydrophilic (polar/charged) groups have higher 

exposure in the inactive, GDP bound state, suggesting that the SWI region becomes more 

hydrophobic in the GTP bound active state which could further facilitate effector recognition, as 

seen in the case of RhoA-AKAP-Lbc (Rho GEF) 78 and Ras p21-Raf interactions79. In order to 

understand the possible biological significance of the hydrophobic residues in the SWI region, 

we have presented a sequence alignment comparison between the SWI region in H-Ras and 

RhoA (Fig. 5.8). 
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Figure 5.8 Multiple Sequence Alignment of human Rho GTPases using Clustal-Ω. Residues with 

greater than 65% identity/conservation are highlighted using Clustal X colouring scheme. The 

accession numbers are P06749 (RhoA), P01121 (RhoB), P08134 (RhoC), P15154 (Rac1), 

P15153 (Rac2), P25763 (Cdc42), P01116 (K-Ras), P01111 (N-Ras), and P01112 (H-Ras). The 

switch regions in Rho and Ras are highlighted in black and violet colour respectively. 

.  
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Figure 5.9 Structural comparison of H-Ras and RhoA protein in their effector bound state. 

(PDB: 1HE8 (H-Ras) and 1CXZ (RhoA)). (a) The figure highlights the difference in SWI loop 

region between H-Ras (magenta) and RhoA (cyan). (b) Molecular picture of effector recognition 

between K-Ras (cyan) and RhoA (blue). Superimposition of effector bound states in K-Ras and 

RhoA highlights the importance of substitution of Glu37 in K-Ras (RhoA numbering) interaction 

with Ras effector (yellow) eventually increasing the rigidity of the SWI region.  

As compared with H-Ras, the SWI region in RhoA exhibits substitution by multiple non-

polar residues in place of the charged residues in H-Ras at positions 33, 35 and 39 in accordance 

with RhoA numbering. These substitutions should result in significantly different solvation 

behaviour of the solvent exposed region between Ras and Rho GTPases. Prior experimental 

studies highlight the flipping out of hydrophobic residues Val35, Val38, and Phe39 towards the 

solvent region in the GTP bound form74. The importance of hydrophobic contacts of switch I and 

II regions in protein-protein interaction has been illustrated by Dvorsky et.al.80  It is interesting 

to note that the Glu37 (H-Ras Numbering) in H-Ras is substituted by Phe39 (RhoA Numbering) 

in RhoA, which is also found to be in significant correlation with Tyr34 as demonstrated earlier. 

Furthermore, comparison of structures of Ras (PDB: 1HE8) and Rho (PDB: 1CXZ) bound to 

their effectors show significant differences in terms of length of the SWI loop and replacement 

of Phe39 with Glu37. In Ras GTPases, the length of the SWI loop is shorter by almost 12 

residues, compared to its Rho homolog. Also, Glu37 (in H-Ras) provides additional rigidity to 
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the SWI region through either intermolecular or through intra-molecular interactions (Fig. 5.9). 

Thus, these stabilising factors might make the Ras amiable to study the intermediate 

conformations SWI region using ensemble-based experimental techniques. However, for Rho 

GTPases, these additional stabilising factors are unfavourable for capturing the state 1 like 

confirmations. Therefore, biochemical and structural studies of mutants that drive the Rho 

GTPases towards state 1 confirmation could further augment the current observations.  

This observation poses two new questions: how does a conformational state with higher 

solvent exposure of hydrophobic residues can be stabilised in the GTP bound state and why state 

1 like conformations are unfavourable to be detected with ensemble-based experimental 

techniques, such as NMR? Although the stabilisation might come from the hydrogen bonding 

interaction of a few residues (Tyr34 and Thr37) with the γ-phosphate of GTP, it is important to 

obtain a more quantitative picture.  In order to understand the relative role of stabilisation of the 

SWI conformations due to specific interactions, the net total energy of the loop between GDP 

and GTP bound form was computed and the difference of each contribution is shown in Fig. 

5.10. We have also decomposed the difference in total energy into individual contributions of the 

protein, solvent, nucleotide and the Mg2+ ion. 

 

Figure 5.10 The stabilization energy of the GTP bound state with respect to the GDP bound 

conformational state, i.e.  , In addition to the total stabilization energy (blue), GTP GDPE E E∆ = −
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we have also shown the various components due to protein (orange), water (yellow), nucleotide 

(green) and the Mg2+ ion (brown). 

These calculations demonstrate the fine energetic interplay that leads to preferential 

stabilisation of some conformational states over other depending on the nucleotide. In particular, 

the interaction with nucleotide and solvent seems to be the most important factor that affects the 

equilibrium (Fig. 5.11a). In the GDP bound inactive state all the hydrophobic groups are buried 

and the hydrophilic groups are exposed. Thus this conformational state is highly favoured by the 

solvation energy (interaction with water). In case of the GTP bound active state the interaction 

with water becomes highly unfavourable (exposed hydrophobic and buried hydrophilic groups), 

but even higher favourable interaction with the nucleotide (GTP) counterbalances the solvation 

energy term to make the total energy lower for this conformation. This fine balance (energetic 

see-saw) is quite remarkably maintained across all the residues as well81. The residue-wise 

distribution of the interaction energies has been shown in Fig. 5.11b. 

 

Figure 5.11 (a) Interaction energy distribution for GDP and GTP bound state of switch I region. 

It can be observed that the loss in the interaction energy in the GTP bound form due to the 

increase in solvent exposure of the switch I region is compensated by the energy contribution 

due to the nucleotide. (b) Residue-wise distribution of net interaction energy of switch I region 

between the two states, GTP GDPE E E∆ = − , dissected into different components, i.e. total energy 

(blue), protein (orange), water (yellow), nucleotide (green) and the Mg2+ ion (brown). The 

energetic balance between different components can be observed among SWI loop residues. 
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The differential stability between the state 1 and state 2 conformations in the GTP bound 

state may also be explained based on the above energetic considerations. Based on the 

representative structures from free energy landscape, one can speculate that the state 1 

conformation exhibits lack of stabilisation due to the reduced favourable interaction with the 

nucleotide. Furthermore, the energetic balance between the penalty of exposing the hydrophobic 

residues, and the favourable hydrogen bonded interactions of GTP with Tyr34 and Thr37 would 

dictate the thermodynamic stability and population of these conformational substrates. 

5.4  Discussion 

Rho GTPase signalling pathways are based on the formation of distinct protein-protein 

complexes involving a large number of regulators and downstream effectors. A comparative 

study of the intermolecular interaction sites between Rho GTPase and the binding proteins based 

on available structures highlight that most proteins interact with the residues in the switch 

regions of Rho GTPase, thus, making switch regions as an important feature of protein-protein 

interactions irrespective of the conformational states or the functional output of the complex. In 

this chapter, we have explored the ability of the switch I region to adopt a range of interfaces 

(plasticity) and the molecular nature of interactions (specificity) involved in molecular 

recognition of binding partners. We have presented one of the very few fully atomistic MD 

simulations for the Rho GTPases. Using an unsupervised machine learning analysis of the 

conformational ensemble obtained from the MD trajectory as well as free energy calculation, we 

have demonstrated that the SWI loop of the GTPases may exist in various metastable states. In 

the GTP bound form, SWI loop has state 1 and state 2 like conformations. For the G14V like 

mutant, the GTPases shifts more towards the state 1 like conformation. The intermediate 

conformational sub-states have been characterised with respect to the unique side-chain 

orientation, particularly with respect to the residues Tyr34 and Phe39, both of which undergo 

large movement between the active and inactive conformational states. 

We have also demonstrated that we can characterise the GTP bound active 

conformational state by highly exposed hydrophobic groups and less exposed hydrophilic 

groups, whereas the reverse happens in the GDP bound inactive state. The stabilization of the 

exposed hydrophobic groups in the active state occurs because of the highly favourable 

interactions with the GTP. Thus, the fine balance between the interaction between nucleotide 
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and solvent leads to the shift in the conformational equilibrium depending on the nucleotide 

binding state. This observation that binding to GTP significantly pushes the conformational 

ensemble to exposing a hydrophobic patch around the SWI loop in the active state strongly 

suggests that such hydrophobic interactions might play a dominant role in effector recognition 

and binding through this region. The current study provides a framework for looking at GTP 

bound inactive state of Rho GTPases. However, further experimental studies involving 

measurement of affinities of the SWI mutants (especially Y34S, T37S/T37A and F39E) for the 

effectors is required to characterise this state. Perhaps, crystal structures of these mutants might 

throw light on the conformational signatures of these states. 
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 Chapter 6 
6 Molecular Insights into the Regulation of 

Rac1 by Phosphorylation of GDI 
 

6.1  Introduction 

The Guanine Dissociation Inhibitor (RhoGDI) plays a pivotal role in Rho GTPase regulation and 

acts as a negative regulator by blocking the activation of GTPases from the inactive GDP bound 

state1-4. As discussed in the introduction chapter of this thesis, post-translational modification at 

the C-terminal of Rho proteins and subsequent membrane attachment plays an important role in 

the activation of Rho GTPases signaling pathways5-9. In the absence of GDI, Rho proteins are 

membrane localised where the geranylgeranyl moiety attached at the carboxy-terminal cysteine 

residue is inserted into the lipid bilayer10, 11 and anchors the Rho proteins to the cellular 

membrane12-18. However, GDI binds to these prenylated forms creating a soluble cytosolic 

Rho.GDP-RhoGDI complex regulating the cytoplasmic pool of each of the Rho family GTP-

binding proteins19-22. X-ray crystallographic structures reveal two important sites of interaction 

between GDI and Rho proteins23-25; (a) the N-terminal region of the GDI  also called as 

“regulatory arm” folds into helix-loop-helix and binds to the Switch I and II of the Rho proteins 

inhibiting the GDP dissociation and GTP hydrolysis, (b) the C-terminal region of GDI adopts an 

immunoglobin-like fold with a hydrophobic binding pocket which interacts with the 

geranylgeranyl moiety of the Rho proteins leading to the complete sequestration of the prenyl 

moiety from the solvent.  

The binding of GDIs to the Rho GTPases at effector recognition sites leave the complex 

biologically inert with the reduction in the GEF-catalysed nucleotide exchange reaction with Dbl 

family GEFs26, and hence, the activation of Rho proteins by GEFs (Guanine nucleotide exchange 

factors) requires the release of RhoGDI. Biochemical studies based on in vitro kinase assays 

suggest phosphorylation as a mechanism for the dissociation of classical GTPases (RhoA, 

Cdc42, Rac1) from GDIs. In addition, post-translational lysine acetylation was also shown to 
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regulate RhoA activity27. The phosphorylation and lysine acetylation sites are primarily 

concentrated in the geranylgeranyl binding pocket (immunoglobulin domain) and regulatory arm 

of GDI which interacts with switch regions5. Recent studies show more than eight sites of lysine 

acetylation, which also involves the N-terminal domain. Out of this, acetylation at K127 and 

K141 in RhoGDI were found to interfere with the binding of GDI to nonprenylated RhoA28. 

However, post-translational phosphorylation turns out to be a major regulator of RhoGDI’s 

binding to Rho GTPases29-38 (Table 6.1). 

Table 6.1 shows all post-translational phosphorylation sites that regulate RhoGDI-GTPase 

interaction. The residue numbering is based on human RhoGDI-1 (GDI-α ) sequence. The 

symbol ‘?’ denotes the residue position is not known. 

PTM Site Kinase RhoGDI Effect of phosphorylation on the GTPase 
Ser34 PKCα GDI-α  Promotes dissociation of RhoA 
Ser96 PKCα GDI-α  Promotes dissociation of RhoA and RhoG 
Ser101 PAK1 GDI-α  Promotes dissociation of Rac1 (and to a lesser extent Cdc42) 
Ser174 PAK1 GDI-α  Promotes dissociation of Rac1 (and to a lesser extent Cdc42) 
Ser174 PKA GDI-α  Inhibits interaction with RhoA 
Ser148 ND GDI-α  Not determined (ND) 
Thr? PKCζ GDI-α  Promotes dissociation of RhoA, Rac1, Cdc42 

Tyr27 SRC 
GDI-α , 
GDI- β  

Promotes dissociation of RhoA, Rac1, Cdc42 

Tyr156 SRC 
GDI-α , 
GDI-  β  

Promotes dissociation of RhoA, Rac1, Cdc42 

Tyr156 FER GDI-α  Promotes dissociation of Rac1 

The residues that are phosphorylated in GDIs controls the release of specific GTPase 

from the complex. For example, phosphorylation of RhoGDI-1 on Ser101 and Ser174 by p21-

activated kinase 1 (PAK1) promotes the release of Rac1 (but not RhoA)29, whereas 

phosphorylation of RHOGDI-1 on Ser34 by protein kinase Cα (PKCα) selectively releases RhoA 

(but not Rac1 or cdc42)31. It is speculated that Ser34 interferes the interaction of HTH (GDI) 

with Arg68 (RhoA) in the switch region triggering dissociation. However, Arg68 (RhoA) or 

Arg66 (Rac1/Cdc42) is conserved in most of the Rho GTPases, and hence the mechanism behind 

such specificity is still elusive39. Since the number of GDI is limited to three (α, β, γ) that 
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interacts with multiple Rho GTPases3, it has been suggested that “a unique phosphorylation code 

may exist” which control the release of specific Rho GTPases based on the stimuli/response. 

However, relatively little is known about the molecular basis of dissociation between specific 

Rho GTPase and RhoGDIs. 

Interestingly, recent NMR studies show that the N-terminal region of GDI with residues 

9-20 and 36-58 are disordered in the absence of Rho proteins40-43. Crystal structures show that 

the later region of N-terminal domain (residues 36-58) adopts an ordered helix-turn-helix (HTH) 

structure through interactions with switch regions of Rho proteins in all complexes where 

hydrogen bonds stabilise the HTH-Switch I region interaction between conserved residues 

Thr35, Val36 of Rac1 and Asp45, Ser47 of GDI respectively44. However, the extreme N-

terminal residues (9-20) were shown to exist in equilibrium between two conformations 

(random-coil or helix) depending on the GTPase and GDI member in the complex45. It forms a 

small helix at position 10-15 in the recent crystal structures of RhoA-GDI (PDB: 4F38)10 and 

Cdc42-GDI (PDB: 1DOA)24 complexes while exits as an extended loop in Rac1-GDI complex25 

(PDB: 1HH4). Further functional studies using GDI with truncated N-terminal region elucidate 

the differential role of N-terminal domain in the inhibition of GDP dissociation and GTP 

hydrolysis independently.  

Determining the key interactions is crucial in understanding the molecular mechanism of 

the Rho protein and GDI dissociation in the cellular environment. How does phosphorylation of 

specific residues of Rho GDI affect a unique (individual) member of Rho GTPase (either RhoA / 

Rac1 / cdc42) remains an open question and demands study of the molecular interactions at the 

atomistic level. In this chapter, we provide insights into the conformational dynamics and 

interactions that play an important role in defining the “unique phosphorylation code”. We have 

performed conventional molecular dynamics simulations and metadynamics simulations for 

enhanced conformational sampling of the wild-type and phosphorylated state of Rac1-GDI 

complex and propose a molecular-interaction based mechanistic model for the dissociation of the 

complex as an effect of phosphorylation.  
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6.2  Methods 

6.2.1 System Setup 

The classical Rho GTPases namely RhoA, Rac1, cdc42 are geranylgeranylated as compared to 

the other majority of the Rho GTPases which are farnesylated. The crystal structure for the Rac1 

and GDI in the complex25 was selected with geranylgeranyl at the C-terminal of Rac1 (PDB 

ID:1HH4). The missing residues in GDI at position 301-308, 359-365 and 502-504 were 

modelled using Modeller program46. The number of amino acid residues were 189 in Rac1 and 

204 in GDI. The simulations were performed with GDP and Mg2+ ion present in the crystal 

structure. The system was equilibrated for 500ns after modelling the missing residues in the 

loops. Two different systems were generated from the equilibrated structure: (1) Wild type-

without phosphorylation (2) Serine phosphorylation at positions 101, 174 in GDI. The 

phosphorylated structure was further equilibrated for 500ns. The GDI residues were renumbered 

as 301-504 where S401 and S474 represent the phosphorylated serine residues. 

6.2.2 Simulation Parameters 

Molecular dynamics simulations for the wild-type and phosphorylated Rac1-GDI complex were 

performed using Gromacs software (version 5.0.7)47. The Charmm36 force field48 with cmap 

corrections was used for the protein and modified cysteine-geranylgeranyl residue. The 

parameters for GDP molecule were obtained using CGenFF program4, which performs 

automated assignment of parameters and charges by analogy and compatible with Charmm force 

field. All the structures were solvated using TIP3P water model50 and simulated with periodic 

boundary conditions. The systems were found to be negatively charged and were neutralised by 

adding Na+ ions as counter ions. The structures were energy minimised using steepest descent 

algorithm. This was followed by NVT equilibration using modified Berendsen thermostat51 and 

NPT equilibration using Parinello-Rahman barostat52. For the production run, the temperature 

was controlled through velocity rescaling at 300K with a time constant of 0.1 ps and pressure 

was kept constant at 1bar. The cutoff for short-range interactions was 1.0 nm, and the long-range 

electrostatic interactions were calculated using Particle-Mesh Ewald (PME) method53. The bonds 

were constrained using the LINCS algorithm54. We have performed two different types of 

simulations; conventional MD simulation and well-tempered metadynamics simulation55. The 
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conventional MD simulations were performed for 2µs for both the systems with frames saved at 

every 2ps.  The metadynamics simulations were performed until convergence was achieved. 

6.2.3 Analysis 

Principal Component Analysis (PCA) 

Principal component analysis is a method used to reduce the dimensionality of data obtained 

from simulations and identify dominant modes of motions in a system. This is done by 

diagonalisation of the covariance matrix obtained from the Cartesian coordinates of the 

superimposed conformations from the trajectory. In the present study, PCA was carried out on 

the backbone atoms of the individual trajectories of wild type and phosphorylated systems. We 

have compared the configurational space between wild-type trajectory and phosphorylated serine 

trajectory by calculating the first five principal components (PC) which account for the motions 

that constitute the essential subspace. This analysis will help us to identify the coupled low-

frequency motions as well as intermediate conformational states between the two states and the 

effect of phosphorylation in terms of dynamics of the system. 

Energetic perturbation due to phosphorylation 

In chapter 3, we demonstrate that electrostatic interaction provides a highly sensitive yardstick to 

probe the allosteric modulation in contrast to the traditionally used structure-based parameters. 

To explore the effect of phosphorylation, i.e. the effect of addition of negative charge in the 

protein and subsequent energetic perturbation in distal parts of the protein (allostery), we have 

computed the average electrostatic interaction for each residue ( iE ) and compared between the 

wild type and phosphorylated states of the complex. The change in average electrostatic 

interaction energy of i-th residue is given by: 

  , ,i i SP i WTE E E∆ = −  (6.1) 

where iE∆  is the change in the average interaction energy between the wild type (WT) and 

phosphorylated (SP) states due to the interactions between the i-th residue and protein, the   
notation indicates an ensemble average over the trajectory for that particular state (wild type / 
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phosphorylated).  Similarly, the change in average interaction energy for all residue pairs ( ijE ) is 

given by , ,ij ij SP ij WTE E E∆ = − . This analysis will help us to identify how the local energetic 

perturbation due to phosphorylation propagates to distal parts of the protein through 

rearrangement of the intra-protein interaction network. 

Perturbation in intra-protein hydrogen bond occupancy 

One of the major factor that influences the intra-protein interaction pattern is hydrogen bonding 

between the residues which involve both backbone and sidechain atoms. We have shown earlier 

that the rearrangement and re-wiring of such hydrogen bonded network plays a crucial role in 

allosteric signal propagation. The hydrogen bond occupancy (%) is defined as the percentage 

frequency of the hydrogen bond formation between two different residue pairs over all the 

frames in the trajectories given by, /ij ijHb nh N= , where ijHb  is the hydrogen bond (H-bond) 

occupancy (%) between ij-th residue pair,   ijnh  is the number of H-bonds formed between ij-th 

residue pair over all the N frames. It was calculated using HBonds Plugin, Version 1.2 in VMD 

software. The donor-acceptor cutoff distance used was 3.5Å, and the Acceptor-Donor-Hydrogen 

angle must be less than 30°. The frequency of H-bond formation between a residue pair can be 

greater than 100% because there may be more than one H-bond between these residues and each 

H-bond is counted as separately. We have calculated the net H-bond occupancy (%) for all 

residue pairs between wild type and phosphorylated trajectories, given by, 

 SP WT
ij ij ijHb Hb Hb∆ = −  (6.2) 

where ijHb  is the change in H-bond occupancy (%) between i-th and j-th residue pair. This 

analysis will help us to explore how the hydrogen bonded network might be rearranging as a 

response to the phosphorylation. 
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Metadynamics simulations 

We have performed well-tempered metadynamics simulations to enhance conformational 

sampling and explore the free energy surface corresponding to the interaction of the polybasic 

region (PBR) of Rac1 with the cavity residues of GDI and the N-terminal residues of GDI. All 

metadynamics simulations55 were performed using Gromacs code (version 5.0.7)47 and Plumed 

plugin (version 2.3.5)56. We have used coordination number (CN) as the collective variable to 

bias specific interactions between the polybasic region of Rac1 and the N-terminal/cavity of GDI 

that governs the conformational states in the wild type and phosphorylated Rac1-GDI complex. 

The collective variable, coordination number is defined as, 

  
1

6

12
1 1

1
2.5

1
2.5

Rac GDI

ij
N N

i j ij

r

CN
r= =

 
−  

 =
 

−  
 

∑ ∑  (6.3) 

Here, i and j represent indices of a set of selected atoms of the polybasic region of Rac1 (NRac1) 

and the N-terminal/cavity residues of GDI (NGDI) respectively, rij is the distance between the i-th 

and j-th atom. The sum is extended over the selected set of i and j atoms. The cutoff distance was 

chosen as 2.5Å in order to include the distance criteria of the H-bond. Thus, the coordination 

number provides an estimate of the number of hydrogen bonds that are formed between selective 

regions of Rac1 and GDI. The value of CN approaches zero when there is no interaction between 

the defined entities. The hill height (ω ) was set to 0.5 kJ/mol, and the width of the Gaussian 

potential is 2.0 added every 1ps with a bias factor parameter of 5 at 300K.  

6.3  Results 

Structural perturbation in Rac1-GDI complex on phosphorylation 

To examine how serine phosphorylation would affect the structure of the Rac1-GDI complex, we 

have calculated RMSD for Rac1 and GDI separately, of the backbone atoms with respect to the 

initial equilibrated structure. The structural deviation of Rac1 and GDI was compared between 

the wild type and the phosphorylated state (Figs. 6.1a-b). Previous NMR studies highlight the 

flexible nature of GDI N-terminal region40, 42; hence, RMSD for GDI was calculated without the 
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first 30 residues from the N-terminal region. In the case of wild type (Fig. 6.1a), Rac1 and GDI 

were found to be stable with no large deviation from the initial backbone conformation. 

However, the RMSD plot in case of phosphorylated serine (Fig. 6.1b, red line) shows drift of the 

GDI conformation from the initial structure. We observed an increase in the RMSD value at 

around 400ns to ~0.3nm, which changes drastically at around 800ns to ~0.5nm and returns to 

~0.3nm after a brief period of 200ns. However, unlike GDI, we do not observe such deviation for 

Rac1 in the phosphorylated state. 

 

Figure 6.1 (a and b) RMSD plots of wild-type and phosphorylated complex. The RMSD for Rac1 

(black) and GDI without N-terminal residues (blue) was calculated for each system. The 

structure of Rac1-GDI complex was found stable in wild type. In the case of serine 

phosphorylation, RMSD value increases drastically for the GDI. (c, d) RMSF plots for the Rac1 

and GDI in the wild type and phosphorylated complex. The switch regions in Rac1 show large 

fluctuations in case of phosphorylated serine.  

In addition, we have also computed the fluctuations for these proteins with respect to the 

average structure to identify any large motions upon phosphorylation. Interestingly, we observe 
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an increase in fluctuations in switch regions (residues 28-38, 60-72) and geranylgeranylated 

cysteine residue at the C-terminal of Rac1 upon phosphorylation (Fig. 6.1c). Ideally, the 

geranylgeranyl moiety at Rac1 C-terminal is buried in the GDI hydrophobic cavity, and an 

enhanced fluctuation suggests a possible change in dynamics due to phosphorylation. The 

changes in fluctuations in GDI are at the N-terminal region residues (301-340) and the localised 

region around the site of phosphorylation. 

Conformational motions in interacting regions of Rac1 and GDI 

Crystal structures of Rho GTPase-GDI complex exhibit two major sites of inter-protein 

interactions that are distantly located from each other (Fig. 6.2a).  

 

Figure 6.2 (a) Representative image of Rac1-GDI complex with serine phosphorylation at 

positions 401 and 474 (GDI numbering starts from 301 to 504). Rac1 is shown in green and GDI 

in magenta. The image highlights the interaction between switch regions (blue) and the helix-

turn-helix region. The geranylgeranyl group is shown inside the cavity (sticks). The 
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phosphorylation sites are also shown as SP401 and SP474. The large distance between the Sw-

HTH interaction and the geranylgeranyl-cavity interaction can be observed in the figure. (b) 

Superimposition of structures from time 100ns (pink) and 850ns (blue) show large structural 

deviation in the switch regions, HTH, and the loop regions. 

For the complex to dissociate, the interactions must break between the switch regions of 

Rac1 and HTH region of GDI along with the removal of prenyl moiety of Rac1 from the 

hydrophobic cavity of GDI. Experimentally the dissociation rate for RhoA-GDI complex bound 

to GDP was observed to be 10-4 s-1 with a half-life of ~60 mins10, which highlights that the 

proteins have a large binding affinity. Hence within MD simulation, it will be computationally 

inaccessible to observe dissociation between the two entities due to the large free energy barrier 

between the free states and the complex. The serine phosphorylation sites are located in the 

immunoglobin domain of GDI which binds the geranylgeranyl moiety of Rac1. Biochemical 

studies (kinase and GTPase activation assays) suggest phosphorylation of both S101 and S174 is 

necessary for GDI dissociation29. Further crystal structures show that these phosphorylated 

residues are within 6-8Å of each other29. Hence based on these evidences, it is speculated that the 

electrostatic repulsion between these negatively charged residues would result in the 

destabilisation of the interactions between the prenyl moiety and GDI cavity residues. 

In the previous section, we have observed a large deviation in the RMSD value of 

RhoGDI upon phosphorylation, which suggests structural deviation from the initial structure. To 

identify these structural changes, we superimpose the structures from different time frames along 

the simulations that show deviation in RMSD values (Fig. 6.2b). Surprisingly, we observe 

destabilisation of interactions between the HTH region of GDI and Switch regions of Rac1, 

situated far from the site of phosphorylation. In addition, we observe deviation in the C-terminal 

polybasic region of the Rac1, which can account for the localised effect of phosphorylation.  

To assess the stability of the interactions and to explore any time-dependent connection 

between the destabilisation of prenyl moiety in the cavity and the HTH-switch regions, we have 

calculated the minimum distance between these different interacting regions of Rac1 and GDI. 

The stability of the geranylgeranyl moiety in the hydrophobic cavity was calculated based on the 

distance between the terminal of the prenyl group (geranylgeranyl) and the selective non-polar 

residues of GDI (L386, L388, I412) which interact with the terminal carbon atom (C18) of the 
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prenyl sidechain. An increase in the distance between these regions would indicate the 

destabilisation of interactions. We observe destabilisation in the position of geranylgeranyl in the 

binding pocket with time (Fig. 6.3a).   

 

Figure 6.3 (a, b and c) Minimum distance analysis between the interacting regions of Rac1 and 

HTH fold of GDI to observe the deviation from the initial structure with time. The distance was 

calculated between the center of mass of the two groups. (a) The minimum distance between the 

terminal carbon of the prenyl group and interacting residues of the hydrophobic cavity was 

calculated to identify destabilisation of prenyl moiety in the cavity. (b, c) Minimum distance 

calculation between the switch regions and HTH show destabilisation of interactions with 

increasing distance. (d, e) Superimposed images of the Rac1-GDI complex in the phosphorylated 
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state at different times of the trajectory. Structures are in magenta at 0ns, green at 1000ns and 

yellow at 1900ns. The structures show destabilisation of prenyl moiety in the cavity and the HTH 

interaction with the switch regions. 

Further, we show that the HTH fold of GDI interacts stably with the switch regions in the 

wild type. However, upon phosphorylation, the distance between the switch regions and HTH 

increases with time, which indicates the destabilisation of the complex (Figs. 6.3b-c). We 

observe a drastic change in the distance between the switch I (residues 34-40) and GDI (residues 

345-353) at around 800ns. Figs. 6.3d and 6.3e show the superimposed image of the interacting 

regions in the phosphorylated complex at different times from the trajectory. Interestingly, we 

find back and forth motion in the HTH region, which suggests intermittent breaking and forming 

of interactions with the switch regions. 

Correlated motions in the Rac1-GDI complex 

We have performed principal component analysis (PCA) using the backbone atoms for the 

individual trajectories to identify the principal components/correlated motions through the 

elimination of small amplitude fluctuations and capture the conformational changes in the 

complex upon phosphorylation in terms of few dominant modes. The results from the PCA are 

presented in Figs. 6.4-6.5. 
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Figure 6.4 (a, b) Principal component analysis: RMSF of the first five eigenvectors for both the 

systems (wildtype and phosphorylated) for Rac1 and GDI, respectively. The switch regions and 

HTH are highlighted in yellow and magenta, respectively. 

Figs. 6.4a-b display the backbone RMSF of the first five eigenvectors for both the 

systems (wildtype and phosphorylated) for Rac1 and GDI respectively. In the principal 

component analysis, the first PC corresponds to the largest motion observed in the system. In 
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both proteins (Rac1 and GDI), comparison of the first eigenvector shows conformational 

changes upon phosphorylation and regions showing large shifts comprise residues 60-69 (switch 

II) of Rac1 and 334-351 (helix turn helix (HTH)) of GDI. Inspection of the motions along the 

eigenvector 1 reveals that the phosphorylation increases the motion in the regulatory arm (HTH) 

of GDI which binds to the Sw-I and Sw-II regions of Rac1. In the later modes (PC2-PC5), we 

also observe conformation fluctuations in the Sw-I region of Rac1 upon phosphorylation. In the 

case of GDI, the lower modes show increased motions in the loop that connects the HTH region 

and the C-terminal domain in wild type and phosphorylated systems. 

 

Figure 6.5 The extreme conformations sampled during the simulation from the average structure 

along the eigenvector1 in case of phosphorylated trajectory. (a, c)The structures on the left and 

right show the extreme conformations (red) sampled with respect to the average structure (cyan.) 

(b) The center figure shows the average structure with the conformational projections along the 

eigenvector1 shown in green. The HTH region and N-terminal region of GDI show correlation 

with the loop connecting the N-terminal domain and C-terminal domain of GDI. 

We used eigenvector 1 to filter the MD trajectories and isolated two extreme structures 

associated with this component to interpret and describe the correlated motions in the system. 

Upon phosphorylation, a large directional motion is visible in the Sw-II of Rac1 and HTH region 

of GDI (Fig. 6.5). In addition, the motions are correlated in the HTH region and N-terminal 
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region of GDI with a loop that connects the immunoglobin domain (C-terminal) with the HTH 

regions. However, these observations do not provide molecular details and physical 

understanding of how phosphorylation would promote the dissociation of Rac1-GDI complex. 

HTH interaction is found to play an important role in the stabilisation of the Rac1-GDI complex 

and prevent nucleotide exchange in Rho GTPases. It is observed that the distance between the 

site of phosphorylation (S401, S474) and the HTH region in GDI is greater than 2nm. Thus a 

long range effect may exist between the site of the phosphorylation and the breaking of 

favourable interactions between the regulatory arm (HTH) of GDI and switch regions of Rac1. In 

the previous chapter (Chapter-4), we have demonstrated the effect of protonation in the PDZ3 

domain in the form of rearrangement of electrostatic interactions and its significant role in 

allosteric communication. Hence, it will be interesting to look at the energetics of the Rac1-GDI 

complex in further analysis to capture any such long range communications due to 

phosphorylation.  

Phosphorylation-induced perturbation in the electrostatic interactions and H-bond 

network 

To probe the effect of negative charge addition on the energetics of the system, we have 

calculated the interaction energies for Rac1 and GDI residues in the wild type and 

phosphorylated state. The electrostatic interaction energy is conformation dependent quantity. 

Any large change in the structure would result in abrupt changes in the interaction energy. 

Hence, we have divided the phosphorylated trajectory into three different segments based on the 

RMSD value for GDI system; SPP1 (100-350ns), SPP2 (450-800ns) and SPP3 (800-1000ns). In 

Figs. 6.6a-b, we can identify residues that show a significant change in interaction energy upon 

phosphorylation. We identify these residues are from switch II (D57, D63, R68, D76 with 

  25 iE∆ ≥± kcal/mol) and polybasic regions in Rac1 (K184, K186, R187, CYSG189). Interestingly, 

the geranylated modified cysteine residue shows a favourable change in interaction energy (

  27.9 iE∆ ≥= − /kcal mol ) upon phosphorylation. Similarly, in GDI (Fig. 6.6c), the N-terminal 

residues comprising of HTH region and residues that are part of the cavity show a large change 

in interaction energy  25 iE∆ ≥ ± kcal/mol. The residue-wise change in interaction energy ( )iE∆  

was further dissected into change in pair-wise interaction energy ( )ijE∆  between Rac1 and GDI 
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to probe the origin of such large energetic difference. Figs. 6.6c-d shows all the interactions 

between the PBR and the N-terminal/cavity region with  ijE∆ ≥ ± 30 kcal/mol. Our analysis 

captures the effect of phosphorylation (addition of negative charge) on the residues with the large 

change in inter-residue interaction energy. 

 
Figure 6.6 (a, b) Residue-wise change in the interaction energy (∆𝐸𝑖) of Rac1 and GDI between 

wild type and phosphorylated system. (c, d) Representative image that shows the pairwise 

interaction energy ( )ijE∆  for all residues with 25 iE∆ ≥ ± kcal/mol (blue spheres). Pairwise 

interactions with 30 ijE∆ ≥  kcal/mol are shown in blue and 30ijE∆ ≥ −  kcal/mol in red. 

We observe the localised effect of phosphorylation in terms of change in the charge-charge 

interactions between Rac1 C-terminal region and GDI. This is characterised by the rearrangement of 
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Rac1-GDI interacting residues which highlights the loosening of the binding of prenyl moiety in the 

hydrophobic cavity. It is trivial that to release/pull out the prenyl moiety from the cavity, some 

interactions must be broken/formed. In Figs. 6.7(a-e), minimum distance plots between selective 

charge-charge residues pairs show that the polybasic region of C-terminal of Rac1 is being 

held/(pulled out) by the N-terminal residues of GDI while the interactions with the GDI cavity 

are broken.  

 

Figure 6.7 Salt bridges/Hydrogen bonds related to the movement (destabilisation) of the prenyl 

group in the hydrophobic cavity. (a-e) Minimum distance between selective residue pairs to 
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identify formation and breaking of interaction with time. (f) Representative image to show the 

rearrangement of interactions. 

Fig. 6.7f shows these change of interactions between the charged residues in the form of H-

bond formation as blue lines and breaking as red lines upon phosphorylation. The time evolution of 

these distances can be directly correlated with the pulling out of the prenyl group (Fig. 6.3a) around 

200-400ns. Thus we have identified the specific interactions responsible for anchoring (in WT) and 

detachment (upon phosphorylation) of the prenyl group. Further, we have identified a few specific 

salt bridges/hydrogen bond interactions (e.g. V361-N419, R358-E421, Q332-S424 in Figs. 6.8d-f), 

which correlate with the outward movement of the HTH domain (Fig. 6.3b) around the 800-1200ns 

time-scale. It can be hypothesised that some hydrogen bonds (/salt bridges) pull the HTH domain like 

a drawbridge (Fig. 6.8g). To summarise, we have identified the specific interactions responsible for 

the structural rearrangements (i) pulling out of prenyl moiety around 200-400 ns, followed by (ii) 

HTH movement around 800-1200ns. 
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Figure 6.8 Specific interactions (salt bridge/H-bond) that control the drawbridge-like motion of 

the HTH domain: (a, b) Minimum distance between selective residue pairs show the difference in 

hydrogen bond formation occupancy in the wild type and phosphorylated state. (g) 

Representative image that shows the draw-bridge-like motions as a consequence of the 

tightening of specific interactions. 

 Mechanistic model for the signal propagation in RhoGDI-GTPase complex 

So far, we have established that phosphorylation results in the change in the electrostatic interaction 

energy of residues of Rac1 and GDI at key interaction sites. We show the destabilisation of the 

interactions between the prenyl moiety (Rac1) and the hydrophobic cavity (GDI) and, the switch 

regions of Rac1 and helix-turn-helix (HTH) region of GDI upon phosphorylation. From our 
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structural and energetic analysis, our results suggest that long range effect exists between the site of 

the phosphorylation and the breaking of favourable interactions between the switch regions of Rac1 

and HTH regions of GDI.  

 
Figure 6.9 Mechanical model to exhibit the multiple steps involved in the signal propagation  
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We have used hydrogen bond occupancy percentage to quantify the effect of phosphorylation 

on the system in terms of hydrogen bonding network. The net H-bond occupancy (%) is calculated 

as the difference of the H-bond occupancy between different parts of the trajectory as mentioned 

in our earlier analysis (e.g. SPP2(450-800ns)−SPP1(100-350ns), SPP3(800-1000ns)−SPP2(450-

800ns)). In Figs. 6.9a-b, H-bond with occupancy > 30% are shown as blue lines (positive values) 

and red lines (negative values) indicating formation and breaking of H-bonds respectively. 

The effect of phosphorylation on the hydrogen bonding can be elucidated based on the 

formation of hydrogen bond between the residues of the polybasic region and N-terminal region 

(R187-316, K188-317, K188-319). This change is accompanied with the breaking of interaction 

with the cavity residues (R187-440, R187-439, 184-409, R185-462, K186-463). We also 

observed an increase in the number of H-bond formation (blue lines) within GDI upon 

phosphorylation. Interestingly, a comparison between Figs. 6.9a-b shows an upward shift in the H-

bond pattern exhibiting the time evolution of perturbation in the form of H-bond network. Moreover, 

in Fig. 6.8, we identified the hydrogen bonds within GDI residues that control the drawbridge-like 

motion. This induced rigidity in the GDI may result in the dissociation of the complex. In Figs. 6.9c-

d, we suggest a two-step mechanical model for the propagation of the signal from the 

phosphorylation site to the HTH region.  In the first step, the effect of phosphorylation results in 

the localised rearrangements of H-bonds and destabilization of the prenyl moiety. In the second 

step, the perturbation propagates to the distal region switch region and HTH interaction. 

Mechanistic model based on conformational free energy landscape 

From our MD simulation studies, it is established that the effect of phosphorylation is mainly 

dominated as differential interaction of polybasic region of Rac1 between the cavity at the C-

terminal domain and N-terminal residues of GDI in wild type and the phosphorylated 

respectively.  According to the hydrogen bonded network and the minimum distance distribution, 

it is evident that the interactions of PBR (Rac1) between these two regions break and form 

intermittently, and involve an energy barrier associated with the transition process. With the 

limitation in standard MD simulations, we have used metadynamics as an enhanced sampling 

technique to overcome the free energy barrier during the transition process. Considering that the 

PBR of Rac1 forms greater number of H-bonds with the cavity (GDI) as compared to the N-

terminal region (GDI) in the wild type whereas vice-versa occurs upon serine phosphorylation. 
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We have used coordination number (CN) based on the distance criteria of hydrogen bond as the 

collective variable to explore the conformational space of the PBR region and identify 

energetically stable and metastable states in the wild type and phosphorylated systems. 

We employ two CVs (1) CN(PBR-Cavity) and (2) CN(PBR-N terminal) to identify the 

conformations of PBR with two different regions of GDI in the wild type and phosphorylated 

systems. The polybasic region in Rac1 consists of residues from position 183-189, which 

includes the modified geranylgeranylated cysteine. Based on hydrogen bond analysis from 

unbiased MD simulation, we have identified a list of residues from the N-terminal (GDI) and 

cavity (GDI) that undergo H-bonds formation and breaking with the PBR (Rac1). The N-

terminal region includes residues from position 315-321, and the residues from cavity region are 

E409, D440, E463, E464 and K467. The CVs are calculated for only atoms that are involved in 

hydrogen bonding, i.e. donor, acceptor and hydrogen atom for the above-mentioned residues. 

According to the definition, greater value for CN would indicate a higher number of possible 

hydrogen bonds between the PBR(Rac1) and the cavity/N-terminal region. Further, one must 

note that the coordination number does not denote the exact total number of H-bonds formed in 

the interacting regions. This is because the angle criteria is not included in the collective variable 

definition and each residue has donor, acceptor and hydrogen atom (involved in H-bond) from 

the main chain and the sidechain (if any). 

Fig. 6.10 shows the two-dimensional representation of the conformational free energy 

surface of the PBR (Rac1) with respect to the interactions with N-terminal/cavity region of GDI. 

A comparative analysis of the maps between the wild type and phosphorylated state suggests the 

enhanced interaction of the PBR with the N-terminal regions upon phosphorylation. In the wild 

type Rac1-GDI complex, the polybasic region strongly interacts with cavity residues of GDI as 

indicated by the presence of single deep minima. On the other hand, the free energy surface for 

the phosphorylated system is characterised by the presence of multiple metastable states. This 

reveals that upon phosphorylation, the interaction of the polybasic region with the cavity 

weakens, followed by the enhanced interactions with N-terminal region. The phosphorylated 

metadynamics run starts with an equilibrated structure with higher interaction of PBR with N-

terminal (GDI) denoted by label “S” in the FES. The FES in the phosphorylated state shows 
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broad deep minima for the interaction between Rac1 and cavity residues with multiple 

conformational states. 

 

Figure 6.10 Free energy surfaces corresponding to (a) wild type (b) Phosphorylated state. The 

higher value for Y-axis and lower value for X-axis indicate higher interactions between PBR-

cavity and lower interaction with N-terminal, and vice-versa. The metastable states are marked 

on individual plots. The position of the starting structure for each system is labelled as “S” on 

the free energy surface.  

Among these states, a region of minima overlaps with the position of minima in the wild 

type FES (labelled as “A” in both FES). Thus, the phosphorylated state is capable of visiting the 

wild type PBR interactions and associated conformations. The FES also shows minima where 

coordination number for both the CVs approaches close to the value of 1 or 2. This signifies that 

there is a possibility where the polybasic region can break interactions from the cavity as well as 

from the N-terminal region. Interestingly, the FES shows interactions between PBR and the N-

terminal as shallow minima of transitional states that are thermally accessible. This unveils the 

effect of phosphorylation in the form of an increase in the coordination number (interaction) 

between PBR (Rac1) and N-terminal (GDI) which is absent in the wild type Rac1-GDI complex. 

This metastable state labelled as “C” in the phosphorylated FES has slightly higher free energy 

than minima “A” and “B” and separated by small free energy barrier (~2.5 kcal/mol).  
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Figure 6.11 Mechanistic model for the transition of the interaction of PBR (Rac1) from the 

cavity to N-terminal (GDI) upon phosphorylation. The free energy surface is labelled with 

different metastable states that correspond to the transition states of interactions of the polybasic 

region from the cavity (GDI) to N-terminal residues (GDI). The representative structure from 

each minima is shown in the figure. The transition path is shown as (
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H A B F E C D→ → → → → → ). The blue spheres represent residues of PBR whereas red 

spheres are residues from cavity and N-terminal. The H-bond interactions in each representative 

structure are marked with black lines. 

The polybasic region in Rho GTPases is highly flexible and plays an important role in the 

specificity and selectivity in the formation of the Rho GTPase and GDI complex. 

Crystallographic studies and kinetic assays show that the modifications (mutation or post-

translational modifications) in the polybasic region are closely related to the Rho GTPase and 

GDI association or dissociation. From our MD studies, we demonstrate the important role of 

interactions involving PBR (Rac1), N-terminal (GDI) and cavity (GDI) regions in the wild type 

and phosphorylated state. Based on our metadynamics simulations, we generate a mechanistic 

model for the transition of interactions of the polybasic region from the cavity to the N-terminal 

residues of GDI upon phosphorylation (Fig. 6.11). In fig 6.10b, multiple metastable states are 

labelled as A, B, C and F. The labelled “A” and “G” corresponds to the same minima. The label 

“H” and “D” represents conformational states with the interaction of PBR exclusively with 

cavity and N-terminal, respectively. 

 Fig. 6.11 explains the mechanism in terms of hydrogen bonds forming and breaking 

during the conformational transition. The conformations represent the various labelled free 

energy state in FES. The global minima marked A/G represents state which overlaps with the 

wild type FES (Fig. 6.10a) and shows interactions with the cavity residues. Interestingly, the 

carboxy-terminal of geranylgeranylated cysteine residue (CYSG189) forms a hydrogen bond 

with K467 of GDI cavity. This hydrogen bond can act as an anchor to firmly hold the prenyl 

moiety inside the cavity. This is supported with the interactions of other PBR residues with the 

cavity region, as shown in the figure. This is followed by the reduction in the number of 

interactions (conformation labelled as “B”) accompanied by the conformation change in the 

polybasic region. The conformational states marked as F, E, C shows the transition with the 

breaking of H-bonds with cavity region and forming with the N-terminal residues. The transition 

from states “F” to “C” is shown through the conformation labelled “E” on FES which is defined 

with multiple transient interactions (for example; K188-D440, R185-E319, K186-N318, K186-

D321, K188-A315). The state “C” involves the rearrangement of H-bonds between the PBR and 

N-terminal residues (R185-N318, K186-D321, R187-E317, K188-A316). Combining the 
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conformational reorganisation of the polybasic regions and associated interactions from the 

metadynamics study, we propose that as a consequence of serine phosphorylation in Rac1, the 

increased interaction of PBR with the N-terminal in the form of H-bonds generates a pulling 

effect that forces the outward movement of geranylgeranyl group from the cavity. In addition, 

the prenyl moiety is tightly bound into the cavity with the favourable interactions with 

hydrophobic residues. Evidently, we find a range of interactions (electrostatic (hydrogen bonds, 

salt bridges) and van der Waals) that stabilize the C-terminal residues of Rac1 with the 

immunoglobin-like C-terminal domain of GDI and we speculate that the complete removal of 

this moiety and dissociation of the polybasic region from the cavity would require crossing a 

high free energy barrier described by multiple reaction coordinates. 

6.4  Discussion 

The regulation mechanism of the interaction between Rho GTPases and GDIs remains still 

elusive and is considered as a complex process. In vitro and in vivo studies suggest p21-activated 

kinase (PAK1) mediated phosphorylation of GDI leads to the selective release of Rac1 for its 

further downstream activation. We performed molecular dynamics simulation studies of the wild 

type and phosphorylated state of Rac1-GDI complex to understand the molecular basis of 

dissociation of the complex upon GDI phosphorylation. Our analyses based on structural 

differences and motions exhibit destabilisation between key interacting regions of the complex 

upon phosphorylation. This is evident in the form of intermittent breaking and forming of 

interactions between these regions in the wild type and phosphorylated state. Using PCA 

technique, we show large scale correlated motions in the GDI, HTH regulatory arm and the C-

terminal domain with the interconnecting loop between the N-terminal domain and C-terminal 

domain of GDI. Further, we show destabilisation of geranylgeranyl group in the cavity and the 

HTH-switch I/II interactions. However, it is unclear how the phosphorylation site and the 

interacting regions of Rac1-GDI complex are connected as the structural and correlated motions 

do not provide insights into the molecular details of this process.  

It is expected that the addition of negative charge upon phosphorylation would affect the 

overall electrostatics of the system and may induce structural changes in the Rac1-GDI complex. 

In chapter 3 and 4 of this thesis, we highlight the importance of electrostatic interaction energy 

as the key determinant in capturing the structural modulation in the system. In accordance with 
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this hypothesis, we observed extensive rearrangements of interactions between the polybasic 

region of Rac1 and the N-terminal region or hydrophobic cavity of GDI as a consequence of the 

change in pairwise electrostatic interaction energy. The resultant energetic perturbation among 

residues destabilises the geranylgeranyl group in the cavity, thereby promoting dissociation of 

the complex. Additionally, we show a long range effect of this charge perturbation in terms of 

change in pairwise electrostatic interaction energy of residues between the switch I/II region and 

HTH (N-terminal domain) of GDI. 

Our analysis on energetic perturbation reveals an increase in interactions between the N-

terminal of GDI and polybasic region of Rac1 upon phosphorylation. We speculate that strong 

interactions with the N-terminal would generate an outward force that would eventually pull the 

prenyl moiety out of the cavity. Interestingly, we identify specific interactions (V361-N419, 

R358-E421, Q332-S424) that are coupled to the drawbridge-like motion of the helix-turn-helix 

region. Moreover, we show this as population shift in the hydrogen bond distribution of these 

specific interactions. Based on a detailed hydrogen bond occupancy analysis, we propose a 

mechanistic model for the signal propagation from the site of phosphorylation to the helix-turn-

helix (regulatory arm) region of RhoGDI in the form of rearrangements of hydrogen bonds and 

charge-charge interactions.  

Here we also performed metadynamics simulations to capture a series of intermediate 

states between the wild state and the phosphorylated state of Rac1-GDI complex. We have 

demonstrated that the polybasic region interacts preferably with the cavity residues with 

minimum interaction with the N-terminal region in wild type. However, upon phosphorylation, 

the polybasic region acquires enhanced flexibility generating multiple metastable states with 

increased interaction with the N-terminal region. During this shifting of interaction from cavity 

residues to N-terminal, we have captured a series of intermediate residues that correspond to the 

metastable states according to the free energy landscape. It is speculated that the inherent 

flexibility of the N-terminal domain plays an important role in overcoming the energetic barriers 

associated with the complex formation and these structural differences may contribute to the 

specificity and selectivity between Rho proteins and GDI interactions. 
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Chapter 7  
7 Conclusions and Future Outlook 

“The woods are lovely, dark and deep,  

But I have promises to keep, 

And miles to go before I sleep, 

And miles to go before I sleep.” 

-Robert Frost, Stopping by Woods on a Snowy Evening, 1923 
 

ellular signaling involves a myriad of complex interactions between large number of 

proteins, lipids, small chemical compounds, ions and water (the universal solvent)1-4. 

Transmembrane receptors (GPCRs, RTKs, ion channels) and their intracellular partners 

(regulators and effectors) form a standard model of signaling that involves extensive protein-

protein interactions between a diverse class of proteins5,6. However, how different types of 

interactions control these cellular processes is yet to be well addressed. The work carried out in 

this thesis provides a molecular understanding of the interactions that drive allosteric regulation 

and molecular recognition in signaling proteins.  

7.1  Decoding Dynamic Allostery in PDZ3 Domain Using Electrostatic Interactions 

Allostery is a unique property that allows signal propagation between two distantly located sites 

in a protein. Understanding allosteric mechanism at the molecular level has been an inspiring 

quest from decades. It has been more fascinating with Cooper and Dryden adding another 

dimension of “dynamic allostery” (allostery without macromolecular conformational change) to 

the existing paradigm of “structure-based allostery”7. So far, most of the computational methods 

used to describe allosteric mechanisms are structure or feature-based approaches that take into 

account well-defined structures/information from the experimental techniques and attempts to 

describe the allosteric networks/pathway between the distinct protein regions/sites8-10. In the 

dynamics based methods, variants of MD simulations can be used to enhance conformation 

sampling and pathway prediction accuracy11-13. Though these computational methods are 

C 
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advanced and are modified appropriately for different systems, they fail to provide a 

physicochemical picture of what drives allostery. 

 PDZ domains are well known, paradigmatic single domain proteins that show dynamic 

allostery, where distal side-chain dynamics is modulated on ligand binding. Unlike large 

conformational changes that are driven by enthalpy, the origin of dynamic allostery in PDZ 

domain has been attributed to entropic effects14. In Chapter 3, we demonstrate that even in 

dynamic allostery, enthalpy plays an important role. We unearth the energetic basis of the 

observed dynamic allostery in a PDZ3 domain protein using molecular dynamics simulations. 

We demonstrate that electrostatic interaction provides a highly sensitive yardstick to probe the 

allosteric modulation in contrast to the traditionally used structure-based parameters. The ligand 

creates a local energetic perturbation at the recognition site (𝛽2 − 𝛼2) that propagates in the 

form of domino-like changes in inter-residue interaction pattern towards the N-terminal and 

𝛼1 − 𝛽4 region (distant region of protein). Albeit without large conformational change, there are 

significant changes in the nature of specific interactions (nonpolar/ polar) between inter-residue 

contacts and accompanied side-chain reorientations that drive the major redistribution of energy. 

Interestingly, this internal redistribution and rewiring of side-chain interactions led to large 

cancellations resulting in small change in the overall enthalpy of the protein, thus making it 

difficult to detect experimentally. In contrast to the prevailing focus on the entropic or dynamic 

effects, we show that the internal redistribution and population shift in specific electrostatic 

interactions drive the allosteric modulation in the PDZ3 domain protein.  

Over the last 60 years, the definition of allostery has emerged from exclusive ligand 

binding event to more like a quantitative description of structural and dynamical changes in the 

biological macromolecules as a consequence of range of perturbation events such as mutations, 

covalent modifications and changes in the cellular physiological conditions12. In chapter 4, we 

extend our investigation to identify signatures of pH-dependent dynamic allostery in PDZ3 

domain. We observe that protonation of histidine residues in PDZ3 domain as a consequence of 

physiological pH changes in the cellular environment modulate the conformational dynamics and 

the energy distribution in the domain. Further, we demonstrate how introduction of a charge on a 

histidine residue results in subtle changes in the population distribution of pairwise interactions 

in the network. Based on our findings, it appears that there exist multiple interactions based 
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universal network in PDZ3 domain. These interactions could be perturbed to different extents 

depending upon the perturbation factor (e.g. ligand binding, change in pH) and the allosteric 

modulation can be observed in terms of redistribution of internal electrostatic interaction energy 

through shifting of hydrogen bonds between residues. 

So far, we have shown that in PDZ3 domain the signal propagation from the ligand 

binding site to the distant N-terminal region of the domain occurs through the 𝛼3-helix. 

Surprisingly, previous studies highlight similar dynamic allostery phenomenon in another PDZ 

domain i.e. second PDZ (PDZ2) from human tyrosine phosphates (hPTP1E) which lacks the 

presence of 𝛼3-helix. Thus, it will be interesting to uncover the molecular basis of dynamic 

allostery in PDZ2 and understand how signal propagation occurs  from the ligand binding site to 

the distal regions of protein in the absence of 𝛼3-helix. Moreover, understanding allosteric 

mechanism in proteins is important for drug discovery and protein engineering. The knowledge 

of allostery provides an alternative means of regulating protein function by engineering a novel 

allosteric site. An improved accuracy in the prediction of allosteric sites may provide additional 

opportunities to design allosteric site targeted drugs for the modulation of pathogenic allosteric 

signaling. 

7.2  Molecular Insights into Rho GTPase Activation and GDI-mediated Regulation 

One of the most important families of intracellular proteins regulating a myriad of cellular 

processes is the Rho family GTPases that belong to the Ras superfamily of small GTPases15. Rho 

GTPases exist as conformational switches in alternate on (GTP-bound) and off (GDP-bound) 

states that are known to regulate the duration and intensity of the intracellular signal propagation. 

Once activated and membrane-localised, Rho GTPases can interact with more than 70 

downstream effectors16,17. Previous experimental evidences highlight the stable association 

between switch regions of Rho proteins and the effectors18,19. 

Structural studies on H-Ras, a member of Ras superfamily suggests multiple 

interconvertible conformations of switch I region in the nucleotide-bound form20-23.  However, 

unlike Ras family of GTPases, for the Rho GTPases, there is no clear evidence for the existence 

of “sub-states” such as state 1 & state 2 in the GTP bound form. In chapter 5, we have explored 

the nucleotide dependent conformational space of the Switch I loop using atomistic molecular 
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dynamics and metadynamics simulations on RhoA. These studies demonstrate that both the 

nucleotide-free state and the GDP bound “OFF” state have very similar conformations, whereas 

the GTP bound “ON” state has unique conformations with signatures of two intermediate states. 

We show that the conformational free energy landscape for these systems suggest the presence of 

multiple intermediate states. Interestingly, the energetic penalty of exposing the non-polar 

residues in the GTP bound form is counterbalanced by the favourable hydrogen bonded 

interactions between the γ-phosphate group of GTP with the highly conserved Tyr34 and Thr37 

residues. These competing molecular interactions lead to a tuneable energy landscape of the 

Switch I conformation, which can undergo significant changes based on the local environment, 

including changes upon binding to effectors.  

The remarkable ability of Rho GTPases to interact with a large number of effectors put 

them into the central role in coordinating distinct signaling pathways that regulate principally 

actin cytoskeletal rearrangements24-26 and other various cellular processes27. Aberrations in these 

pathways lead to the development of diseases28-30 (cancers, autoimmune disorders, etc.) which 

necessitate the stringent regulation of Rho GTPases at various levels. RhoGDI acts as down-

regulator in the GTPase cycling with its ability to prevent GTPase activation and membrane 

localization31,32. These proteins are known to extract Rho GTPases from the membrane in GDP 

bound inactive state and solubilise them in the cytosol. Thus, further activation of GTPase would 

require the dissociation Rho GTPase-GDI complex. 

Biochemical studies suggest kinase-mediated selective phosphorylation of RhoGDI to 

promote the release of GTPase for activation through GEFs33,34. In chapter 6, we investigate the 

molecular basis of dissociation of the complex upon GDI phosphorylation through a comparative 

analysis between the wild-type and phosphorylated state of Rac1-GDI33. We demonstrate 

destabilisation of key interacting regions of Rac1-GDI complex as an effect of phosphorylation 

of serine residues at positions 101 and 174 in GDI. In the previous work on PDZ3 domain, we 

demonstrated that the electrostatic interaction energy acts as a key determinant in probing even 

minor conformational changes as compared to the structure-based parameters. The energetic 

perturbation analysis in GTPase-GDI complex reveals change in electrostatic interaction energies 

between Rac1 and GDI residues as a consequence of phosphorylation. Interestingly, 

phosphorylation induces an increase in the interactions between the N-terminal region of GDI 
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with the polybasic region, suggesting a mechanistic approach for the extraction of prenyl moiety 

out of the cavity. The conformational free energy surface captures the transition of interactions 

of the polybasic regions from the GDI cavity to the GDI N-terminal region. Further, based on a 

detailed hydrogen bond occupancy analysis, we propose a mechanistic model for the signal 

propagation from the site of phosphorylation to the helix-turn-helix (regulatory arm) region of 

RhoGDI in the form of rearrangements of hydrogen bonds and charge-charge interactions.  

Rho GTPase signaling pathways are widely associated with cell cycle progression and 

cell migration activity27,35. Mutations are less common in Rho GTPases as compared to the Ras 

where mutations occur in more than 30% cancers36,37. Rho GTPases are hyperactivated by 

mutations and interact with a unique set of effectors that contribute to tumorigenesis. 

Interestingly, no clinically effective drug targeting Rho GTPases for cancer treatment is available 

till date. Rho GTPase signaling is generally targeted by using nucleotide analogues, covalent 

modifications of Rho proteins (bacterial toxins) or by regulation of interactions with effectors 

and regulators (GAPs, GEFs, GDIs)38,39. Based on our findings, the exposed hydrophobic 

residues of switch-I region play an important role in the effector recognition in Rho GTPases. 

Further, it has been observed that targeting the regulators provide better selectivity and success 

as compared to targeting Rho GTPases directly. This could be useful for identification of novel 

drug pocket and exploit information from the protein-protein interface for optimization of drug 

molecules.  
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