
DIFFUSION THROUGH CROWDED
ENVIRONMENT: AN MD SIMULATION STUDY

Thesis submitted to AcSIR for the award of
the degree of

DOCTOR OF PHILOSOPHY
in Chemical Sciences

By

Sayantan Acharya
Registration Number: 10CC16J26017

Under the guidance of

Dr. Sarika Maitra Bhattacharyya
(Research Supervisor)

February 2020



To those who inspired it and will not read it...

Maa and Baba



Acknowledgements

”Two roads diverged in a yellow wood,

And sorry I could not travel both...”

I love making and digging up interesting stories. So, I made films and did my Ph.D side by side

and tried my best to enjoy both. In search of true interesting events and the reasonings behind those

I managed to finish this thesis. I believe Ph.D is a very demanding process. It demands tenacity

and penitence and energy and optimism and skill to an extreme extent in the prime time of one’s

life. And It drains one out physically and emotionally some days, and also gives one a kind of

self-believe, teaches one to sustain, keeping up the spirit and hope every day. At the end the roller

coaster ride reforms one in a complete new way.

Although it sounds like a horrible nightmare but at the end of the day it is just another journey.

And, I, myself, consider myself lucky enough and always feel rejuvenated from the core of my

heart when I think about my journey of completing this thesis as a Ph.D. student in CSIR NCL. I

would like to extend my warmest and most humble appreciation possible to all those who played

the supporting role in the testing time that is ones PhD tenure. Let it dub like these individuals took

the effort which are no less than my own in the completion of this journey.

First and foremost, I would like to take this opportunity to express my keenest and most generous

appreciation and reverence towards my research supervisor Dr. Sarika Maitra Bhattacharyya who’s

effortless guidance enriched me throughout the course of this work. Not only her expertise helped

me to take a stand in this field, but she played the role of a local guardian in the most crucial phases

of my health. I thank her for the stimulating scientific discussions and for constantly keeping me on

my toes which ensured that I can see it through seamlessly.

I acknowledge my sincere gratitude to Dr. Sourav Pal and Dr. Ashwini Kumar Nangia, Directors,

CSIR-NCL, Pune for allowing me to do my research in Indias most prestigious, well-equipped and

biggest chemical laboratory. I would like to thank and acknowledge the members of my Doctoral

Advisory Committee (DAC), Dr. Ulhas Kharul, Dr. Kumar Vanka and Dr. Ram Rup Sarkar for their

crucial inputs, suggestions and constant support.

ii



To my parents, and my first two and most favorite teachers Pulak Acharya and Mandira Acharya,

thank you for your love, encouragement and faith on me. Thank you for keeping the patience all

through the years. I am truly indebted. My sincere love and gratitude for the infinite love and

believe I saw in their eyes for me, my Dada, Dadubhai, Didi and Pakuma. Unfortunately Dada, I

couldn’t finish my thesis and show it to you before it was too late. The wind and the sunlight will

carry my heartfelt greetings to you, wherever you are.

I find this an exceptional opportunity to acknowledge my present and past colleagues and lab

mates at NCL: Ujjwal, Manoj, Atreyee, Alam, Indranil, Palak and Mohit providing a stimulating

and fun environment in which to learn and grow. I thank Manoj especially for grooming me for my

PhD admission tests. Ujjwal is one true friend in need. In all my pain, whether it is because of the

physical illness or mental stress, Ujjwal was always there as my elder brother. Nevertheless, I would

like to thank both Manoj and Ujjwal for creatively making fantastic Bengali sweets in weekends.

The unexpected virtue of having such friends can only be acknowledged by a true Bengali heart

staying far away from the land of sweets.

I am indebted to few of my friends, Specially Neha, Noopur, Tanaya, Vishwa and Priyanka

for constantly encouraging me to continue and finish the journey negotiating all the rough times.

Without their push I would have given up much earlier. I am grateful to my dear friends: the

one-and-only Khan in CSIR NCL, Muzammil (MK), the Kopites Sayan, the ’self-acclaimed dude’

and a very talented musician Gaurav, the real dude Zinoy, ’Mr. focused’ party boy Amit, the keep-

calm-and-be-like-Rahul Rahul himself, the real Real Madrid fan Samik, Avinash-the-technician-

electrician-computatian-guy, Deepak Pandit the influencer, fitness freak Pavan, ever-enthusiastic

Ravi, Vipin G and Vipin Z, Vidyanand for giving me wonderful memories in all the late night parties.

I thank Sujit da, Bappa Ghosh, Subhrashish, Tapas and Ranga Rajan for helping me in arranging

my initial establishment in Pune. I thank Souvik da and Kumar sir for introducing me to NCL Film

Club. The grass is always greener in this particular corner in NCL days where I used to feel most

rejuvenated. I thank Deepak and Ravi Jangir for allowing me for introducing short film competition

to NCL people and Kumar sir for initiating and organizing the film club with the students from the

very beginning. I am grateful to Ruchi, Reema, Vrushali, Sneha, Shubhra Jyothsna, Rupa and Piyali

for always being there with me whenever I needed help.

iii



I would like to convey my infinite love to Bori, Pluto and Snowy. They never left me alone.

I would like to acknowledge my teachers, especially Sanjib Chakrabarty, Dr. Bidhan Chandra

Bag and Dr. Pranab Sarkar for giving me inspiration constantly since my collage days and Dr.

Suman Chakravarty for his useful inputs time to time. I convey my gratitude for supporting and

encouraging me in my NCL activities and in research as a well wisher to two of my older friends

Dr. Kumar Vanka and Dr. Manohar Badiger.

I would also like to thank the Council of Scientific and Industrial Research (CSIR) and Depart-

ment of Science and Technology (DST) for providing funding for the various projects.

Finally, I conclude my acknowledgement with the words by Robert Frost on which I wish I can

be loud one day,

“ I shall be telling this with a sigh

Somewhere ages and ages hence:

Two roads diverged in a wood, and I

I took the one less traveled by,

And that has made all the difference.”



Contents

Acknowledgements ii

Abstract ix

List of Publications 1

1 Introduction to Diffusion In Crowded Environment 2

1.1 Diffusion and Stokes-Einstein Relation . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Anomalous Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Fickian but Non-Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Definitions, Methods and Models 13

2.1 Calculation of dynamical properties . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Relaxation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Overlap function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Calculation of static properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Radial distribution function . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Static structure factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Pair excess entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 The model and simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

v



Contents

3 Diffusion of Small Solute Particles in Viscous Liquids: Cage Diffusion, a Result of

Decoupling of Solute-Solvent Dynamics,Leads to Amplification of Solute Diffusion 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Simulation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Oscillator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.2 Our Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.3 Mode Coupling Theory Prediction . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Comparative Study Of Anomalous Size Dependence Of Charged And Neutral Solute

Diffusion In Water 30

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Intermolecular Potential Functions . . . . . . . . . . . . . . . . . . . . . . 31

4.2.2 Simulations Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.4 Calculation of Diffusion Coefficient . . . . . . . . . . . . . . . . . . . . . 33

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Neutral Solutes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2 Charged Solutes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Fickian Yet Non-Gaussian Behaviour: A Dominant Role of the Intermittent Dynam-

ics 44

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Simulation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vi



Contents

6 Summary and Future Work 53

vii



List of Tables

3.1 The parameters used in the model systems, where σ11, σ12 and σ22 are solvent,

solute-solvent and solute diameters, respectively, ε11, ε12 and ε22 are interaction

parameters for solvent-solvent, solute-solvent and solute-solute pairs respectively

which are scaled by ε. Here for all the systems σ11 = 1, ε22 = 0.5 and we have con-

sidered a range of solute radius as, σ22 = 0.073, 0.098, 0.122, 0.171, 0.2, 0.22, 0.244, 0.293, 0.317, 0.366.

Mixed potential is referred to attractive interaction (LJ) between solvent-solvent

and repulsive interaction (WCA) between solute-solvent and solute-solute pairs. m1

is the solvent mass and m2 is the solute mass which is 1 . . . . . . . . . . . . . . . 24

3.2 Solvent Diffusion values for all the systems. We also present a representative solute

diffusion value (for σ22 = 0.073) to show the decoupling of solute-solvent dynamics. 24

4.1 Normalized variance in the coordination number, κ = <N2
c>−<Nc>2

<Nc>
, for qs = ±0.3e 40

4.2 Normalized variance in the coordination number, κ = <N2
c>−<Nc>2

<Nc>
, for qs = ±1e . 40

5.1 Solute, solvent diffusion values D1 and D2 respectively and their ratio D2/D1 for

different systems. In every system ε11 is 1 and ε22 is 0.5. . . . . . . . . . . . . . . 46

viii



Abstract

Abstract

“In three words I can sum up everything I’ve learned about life: it goes on.”

- Robert Frost,

According to Fick’s law, particles (molecules, atom, ions etc.) tend to move from high concen-

trated regime to regime where the concentration is low driven by concentration gradient. We call

this motion as diffusion. However, there are multiple definition and equatuions exist to explain

diffusion, we focus only on the Stokes-Einstein equation. According to this equation the diffusion

of tracer particles are found to be inversely proportional to its radius. But in several instances, and

scientific experiments, people have seen this law to be violated for a certain range of solute radius.

In this thesis we try to understand and unfold some of these unexplained phenomena. Through

performing computer simulation studies of few different types of systems and also proposing some

new theories we try to achieve our goal.

In the first chapter we introduce the problems we study in this thesis, and talk about the

backstories behind each problems. In the second chapter we describe the methods, tools and few

definitions we have used in our work.

In the third chapter, we study the diffusion of small solute particles through solvent keeping the

solute-solvent interaction repulsive and varying the solvent properties. The study involves computer

simulations, development of a new model to describe diffusion of small solutes in a solvent and also

mode coupling theory (MCT) calculations. In a viscous solvent a small solute diffuses via coupling

to the solvent hydrodynamic modes and also through the transient cages formed by the solvent.

The model developed can estimate the independent contributions from these two different channels

of diffusion. While the solute diffusion in all the systems show an amplification, the degree of it

increases with solvent viscosity. The model correctly predicts that when the solvent viscosity is high

the solute primarily diffuses by exploiting the solvent cages. In such a scenario the MCT diffusion

performed for a static solvent provides a correct estimation of the cage diffusion.

Next, we present a study of the dynamics of small solute particles in a solvent medium where the

solute is much smaller in size, mimicking the diffusion of small particles in crowded environment.
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Abstract

The solute exhibits Fickian diffusion arising from non-Gaussian Van Hove correlation function.

Our study shows that there are at least two possible origins of this non-Gaussian behaviour: the

decoupling of the solute-solvent dynamics and the intermittency in the solute motion, the latter

playing a dominant role. In the former scenario when averaged over time long enough to explore

different solvent environments, the dynamics recovers the Gaussian nature. In the case of intermittent

dynamics the non-Gaussianity remains even after long averaging and the Gaussian behaviour is

obtained at a much longer time. Our study further shows that only for an intermediate attractive

solute-solvent interaction the dynamics of the solute is intermittent. The intermittency disappears

for weaker or stronger attractions.

In the fifth chapter, we present a comparative study of size dependence of diffusion for charged

and neutral solutes in water. Although both show nonmonotonicity of the size dependence of

diffusion, their nature and origin are quite different. For neutral solutes, the peak position and the

value of diffusion at the maximum are both independent of the solutewater interaction. Interestingly,

for charged solutes, with an increase in solutewater interaction strength, the peak position shifts

to lower solute sizes and with an increase in charge, it shifts to higher solute sizes. The diffusion

value at the peak reduces with an increase in both solutewater interaction and solute charge. We

show that all these features observed for charged solutes can be understood in terms of the interplay

between ionic and nonionic interactions which is definitely absent for neutral solutes. Some of

the earlier studies addressing the nonmonotonicity in diffusion did suggest the interplay between

the two interactions to be the cause. However, this is the first time we show that such an interplay

gives rise to the nonmonotonicity in the potential energy which is a prerequisite for obtaining the

nonmonotonicity in the diffusion. Such nonmonotonicity in the potential energy is absent for neutral

solutes.

In the final chapter, we try to summarize the problems addressed and studied in this thesis and

discuss about future scopes.
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Introduction to Diffusion In Crowded

Environment
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“I have never started a poem yet whose end

I knew. Writing a poem is discovering.”

Robert Frost

1.1 Diffusion and Stokes-Einstein Relation

Study of transport properties, especially self-diffusion coefficient, D, is a long standing problem

in widely different crowded environments, such as proteins in cytoplasm, personal care products

through skin membrane, metallurgy, zeolites, clay metals etc. People have been extensively studying

the nature of the size dependence and the other factors like solvent viscosity and structure which

controls the diffusion of particles in these systems. Different theoretical approaches have been

proposed to understand its nature. This report is dedicated to the molecular dynamics investigations

in neutral and ionic liquids and the probable origins of the anomaly found in the nature and trend in

self-diffusion in solute-solvent systems having a range of solvent viscosity in both ionic and neutral

liquids.

Diffusion is often measured by the famous Stokes-Einstein (SE) Relation. For a tagged particle

in a liquid of density ρ(x, t), if we consider the diffusion equation,

here D is the diffusion coefficient of the tracer. The mean square displacement (MSD) is a

measure of the average squared distance that a particle travels. We define MSD as,

If we take a derivative of Eq.??, it gives a relation between MSD and diffusion,

After applying the boundary conditions,

which implies < x2 >= 2Dt.

LHS of Eq.?? can be calculated directly from the relation,

where v(t) is the velocity of the particle. We take the time derivative of Eq.?? and we use the

invariance of time-translation to obtain,

For a particle of mass m, using the Langevin equation we link the diffusion coefficient to friction,

where ζ is the friction coefficient and f(t) is the fluctuating noise of the system, the time average

of f(t) should be zero and to ensure the balance between amplitude of the temperature and noise,

the second moment of it should be delta-correlated in time ,

Sayantan Acharya 3 CSIR-NCL
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where kB is the Boltzman constant and T is the temperature of the system. We solve Eq.?? to

get the instantaneous velocity in terms of the initial velocity v(0) and the noise,

Now, noise and velocity doesn’t correlate. So, we can write,

By using Eq.??, Eq.?? and Eq.?? for t→∞ limit we get,

Where

At a given temperature T this is the Einstein relation between diffusion coefficient (D) of the

Brownian particle and the friction coefficient (ζ) of the liquid. Now, to link with viscosity η in this

relation, we use the Stokes formula. This formula relates friction coefficient ζ and viscosity η as,

ζ = CηR, (1.1)

where C is a constant and R is the radius of the particle. Now, from the last two equations we obtain

the “Stokes-Einstein”(SE) relation given by,

The equation predicts an inverse dependence of the solute diffusion, D, on the solvent viscosity,

η, and solute radius R.

1.2 Anomalous Diffusion

The study of transport, in simple and complex fluids and also biological systems, has always been an

extremely important field of research. Many a times the understanding derived from simple systems

helps us understand the more complex ones. Amongst the transport properties, the self-diffusion

coefficient is the one, studied extensively both in experimental and theoretical work. Phenomenon

such as adsorption, separation, catalytic activity etc, are found to be dependent on self diffusion[? ?

? ]. Now, we know the self diffusion in simple liquids is usually described by the Stokes-Einstein

(SE) relation which was first derived by Einstein to address the diffusion of a “Stokes” particle

undergoing Brownian dynamics[? ? ? ].

where s = 6 for stick boundary condition and 4 for slip boundary condition. This powerful equation

although derived in the hydrodynamic limit where the solvent appears to be a continuum to the

solute, is found to be valid even at microscopic levels where the solute and the solvent are of

similar sizes. According to the mode coupling theory (MCT) since both the friction which describes

the diffusion and the viscosity are determined by the solvent structures and its dynamics thus the
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relation between them is valid even at the microscopic level [? ]. According to this study as long as

the solute friction is determined primarily by the solvent dynamics the SE relation will hold.

However, even for simple liquids the SE relationship in some cases is found to breakdown [? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ].

In case of supercooled liquids the breakdown of this relationship is connected to the system

developing different dynamic domains and becoming heterogeneous[? ? ? ? ? ? ? ]. The diffusion

of small solute particle is also known to show a deviation from the SE relation [? ? ? ? ? ? ? ? ? ].

Different experimental, theoretical and computational simulation studies attribute this deviation to

apparently different phenomena.

Decoupling between solute and the solvent

In some cases an empirical modification of the SE relation, assuming a fractional viscosity de-

pendence, is used to explain the deviation [? ? ? ? ? ]. However, the origin of the micro-

viscosity/fractional viscosity and the effective radius, are not well understood. Bhattacharyya and

Bagchi have shown that the small solutes have faster dynamics than the solvent[? ]. This leads to

the decoupling between the solute and the solvent. In such a scenario although the solvent viscosity

is primarily determined by the solvent structure and its dynamics the solute friction/diffusion due to

the decoupling becomes independent of the same. This decoupling leads to the lowering of friction

giving rise to larger diffusion[? ] which leads to the breakdown of SE relation. In another study it

was shown that for smaller solute this deviation becomes stronger at higher density [? ].

Levitation Effect in Neutral Solute

Many a times the breakdown marks changes appearing in the system and its transport mechanism. In

another study an effective radius, determined by the solute-solvent size ratio is assumed to provide

the correct results [? ].

Sharma and Yashonath have argued that small solutes explore the solvent cages and when the

interaction between the solute and the solvent is attractive, for certain solute sizes there is a force

balance which leads to faster diffusion of the solute through the cage[? ? ? ? ]. This effect which is

known as Levitation effect is responsible for the breakdown of the SE relation[? ]. From all these
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seemingly contradictory results it is difficult to conclude what change in the transport phenomena

leads to the breakdown of SE relation for small solutes (Fig. 1.1).

In chapter 3 we study the diffusion of small solute particles over a range of solute diameters.

The solvent properties are also varied over a large range to explore solvents with both high and low

viscosity. Earlier studies have shown that diffusion in strikingly different medium like diffusion in

solid porous Zeolites[? ] and viscous medium show similar characteristics[? ]. The levitation effect

arising in the porous system, due to the cage diffusion is also present in the latter. This similarity

has been explained in terms of presence of transient solvent cages in a solute-solvent system.[? ]

Note that when the dynamics of the solute is faster than the solvent, for a certain time, the latter

will appear like a solid to the former. Only in this limit the solute can explore these solvent cages.

Thus in a solute-solvent system there exits two different modes of diffusion, the viscous diffusion

and the cage diffusion. We develop a model of solute diffusion which describes the diffusion of

the solute when it is coupled to the solvent hydrodynamic modes and also can diffuse through the

solvent cages. Since the cage diffusion is a phenomena where the solvent appears like a solid to the

solute we model this using the concepts of Oscillator model proposed by Bhatia and coworkers to

describe the diffusion of a particle through a solid cylindrical nanopore [? ? ? ]. Oscillator model

has successfully described the size dependence of solute diffusion both for attractive and repulsive

interactions[? ? ].

Levitation Effect in Ionic Solute

Anomalous diffusion of ions in water or any other polar solvent is a long-standing problem [? ?

? ? ? ? ? ]. According to Walden’s rule, ionic conductivity, i.e. diffusion of ions should be

inversely proportional to the ion radius [? ? ? ? ]. However, in polar solvents, this relation is not

followed. There is a breakdown in the linear behavior, and a size dependent peak in the conductivity

is observed. Over the years, several theories developed by different groups have been put forward to

explain this anomaly[? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ].

In the continuum picture[? ? ? ? ? ? ? ? ? ? ? ], the friction on the ion has a viscous and

a dielectric part. The dielectric friction is higher for smaller sizes whereas the viscous friction

for larger sizes. An interplay between the two terms gives rise to a diffusivity maximum (Fig.
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1.2). There have also been molecular theories like that of Wolynes[? ] where the friction on

an ion was separated into that arising from the soft and hard part of the potential. The theory

in certain limits reproduced the continuum picture. Later, Bagchi and co-workers[? ? ] have

extended this approach by including the intermolecular orientational correlations of the solvent as

well as the self-motion of the ion. According to their study, the diffusivity maximum arises due to

cancellation between hard-sphere and electrostatic part of the interaction. Lee and Rasaiah have

done detailed computer simulation studies of the nature of diffusion of alkali and halide ions in

water as a function of their size and also the structure and dynamics of the water around these ions [?

? ]. The authors could reproduce the experimental results [? ? ? ] and show that the structure and

dynamics of a solvent cage around an ion vary with the size of the ion. Rasaiah and coworkers have

also done a comparative study of different theories and their approximations were tested against

simulation results [? ]. Chandra and coworkers, through a simulation study, tried to connect this

size dependency of the diffusivity maximum with hydrogen bonding [? ].

Ghorai and Yashonath[? ] have studied the size dependence of the diffusivity in a model system

of charged solutes in water. They have shown that above a certain value of the charge, the system

shows a diffusivity maximum which they claimed as the Levitation effect (LE) observed in their

earlier studies on neutral systems [? ? ? ? ? ? ]. The concept of Levitation is usually connected to

force balance. According to the authors, for attractive solute-solvent interaction, the small solutes

while passing through the transient solvent cages feel an attraction towards one side and thus get

stuck which gives rise to reduced diffusion. However, when the size of the solute is about 80%

of the size of the opening of the cage, the attractive forces from all directions become equal but

opposite,causing a force balance. This allows the solute to freely pass through without getting

attached to the wall. The studies suggest that this force balance is universal and is responsible for

the diffusity maximum observed in case of charged and neutral solute systems.

Neighbor shell rearrangement

In some recent works, people have related diffusivity maxima of tracer particles in ionic systems

with the rearrangement of the solvation shell which can be explained in terms of fluctuation of the

ion coordination number[? ? ? ]. According to the theoretical model prescribed by Orekhov[? ]
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motion of a solute particle is correlated with the motion of the solvation shell formed around it and

the motion from the rearrangement of the shell (Fig. 1.3). So, the overall diffusion of the solutes

can be estimated as a sum of contributions from both viscous part and neighbor shell rearrangement.

The author claimed that, for some intermediate solute sizes, the solute-solvent interactions are

comparatively low, so, the fluctuation in the coordination number is more and thus its contribution

to solute diffusion value is more leading to diffusivity maxima.

In this work, we calculate the co-ordination number (CN) around a single solute particle over

the time frames in two different ways. As calculated in [? ? ? ], the ion coordination number is

determined as,

Nc =

Nneutral∑
i=1

1− (d/d0)24

1− (d/d0)48
. (1.2)

Here, d0 is a distance from ion to the first minimum of Radial distribution function (RDF) and d

is ion-molecule distance. To avoid the fractional jumps we also calculate the CN just by counting

the integer numbers (Nr) in the first neighbor shell. The distance between the solute and the

first solvation shell is measured in our calculation as the position of the first minimum of RDF.

We consider every changes in the numbers of CN and count a jump every time. Finally, we

plot a probability distribution of these jumps to understand the significance of these jumps or

rearrangement in solvation shell in solute diffusion value.

1.3 Fickian but Non-Gaussian

There are other aspects of diffusion in solute-solvent medium. Another behaviour which is being

observed, is the diffusive particle usually show a Gaussian distribution of probability displacement

or van Hove correlation function.

These two events, the diffusive regime and Gaussianity of van Hove function are mutually

correlated. Mathematically this can be shown. From continuity equation we know,

The corresponding constitutive equation by Ficks law is,

This assumes the dynamics to be diffusive (Fickian) where, D is self-diffusion constant. Com-

bining these two equation gives the diffusion equation:

in reciprocal space,
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Where ρ(s)
k is a Fourier component of the tagged-particle density at t=0. If we multiply both

sides of last Eqn by ρ(s)
−k and average over initial conditions, we find the normalized correlation

function is,

Where n is the total number of tagged particles and we have used the fact that the coordinates

of tagged particles are mutually uncorrelated. Now, we know, that the self-part of the density

autocorrelation function given in hydrodynamic limit as,

Van Hove self correlation is actually the Fourier transform of this equation,

This is clearly Gaussian in nature. So, mathematical prediction says, for Brownian particles,

when the diffusion is Fickian then distribution of probability displacement will be Gaussian in

nature.

Although these relations are believed to be valid in only for macroscopic particles even for

microscopic particles these behaviours are usually found to be present.

Diffusion of smaller particles in a crowded medium is ubiquitous in nature and has huge

industrial and academic relevance [? ? ? ? ? ? ? ? ? ? ? ? ? ]. The diffusion of sodium chloride

through granular soil bed is important in understanding the ground water contamination from solid

waste landfills [? ]. In the study of conductance in polyelectrolytes the knowledge of salt diffusion

in polar polymer matrix is important. In metallurgy we need to have the knowledge of diffusion of

alloying elements like hydrogenated titanium powder into metal matrices like Titanium [? ]. The

diffusion of protein in cytoplasm, colloidal beads through dense actin filament network, mimicking

the cytoskeleton [? ? ], skin care products through membranes can also be modeled in terms of

small particle diffusion in crowded medium. The diffusion of the solute particle depends on its size,

its interaction with the solvent and also the dynamics and the structure of the solvent [? ]. When

the mean square displacement is linear with time then the solute is expected to follow the laws of

Brownian motion originally derived by Einstein to explain the diffusion of a large solute molecule

through a medium [? ? ? ].

Diffusing diffusivity

According to the theory of classical random walk a system which shows Brownian motion/Fickian

diffusion should also have Gaussian distribution of the displacement probability [? ]. However, there
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have been a number of studies on a diverse range of systems showing the Fickian but non-Gaussian

behaviour [? ? ? ? ? ? ]. Usually, this phenomena is attributed to the slow changing environment

compared to the timescale of motion of the small diffusing particle (solute) [? ? ? ? ] (Fig. 1.4). It

has been argued that this can lead to changing diffusivity of the solute as the solvent environment

changes and has been termed as diffusing diffusivity [? ? ]. The diffusing diffusivity leads to

Fickian but non Gaussian behaviour at short times, however the displacement distribution is shown

to become Gaussian at longer times [? ? ? ? ]. Granick[? ? ] and group has explained the overlap

of multiple van Hove plots with different widths arising from different diffusive regime is causing

the non-Gaussianity of the resulting van Hove function.

Dynamic heterogenity

Note that, in supercooled liquids, although there is no timescale difference between the solute and

the solvent dynamics, and the solute particles are seen to be diffusive, a similar observation of

non-Gaussian distribution of displacement probability (van Hove function) has also been observed

(Fig. 1.5). In supercooled liquids and granular medium, domains of different dynamical properties

(fast and slow) form and the diffusion is found to become intermittent due to the formation of these

domains [? ]. This intermittency of the solute particles is probably the reason for the non Gaussianity

in the van Hove function. Chaudhuri et al have also shown that the dynamic heterogeneity which

leads to the decoupling of the diffusion and the structural dynamics is responsible for the tail in the

distribution function.

There has also been studies (single particle tracking microscopy in biological cells) where this

anomaly in the dynamics has been attributed to weak ergodicity breaking [? ]. They have discussed

the behaviour of the time averaged mean squared displacement for two prominent stochastic

processes. These are fractional Brownian motion and continuous time random walks.

Thus we find that this Fickian but non-Gaussian behaviour of the dynamics is omnipresent in a

wide range of systems.
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1.4 Thesis outline

chapter 1 In this chapter we introduce the problems we have explored in the whole thesis.

chapter 2 Here, we have explained the tools we have used in our study.

chapter 3 In this study we show that even for repulsive solute-solvent interaction the cage diffusion

is responsible for the amplified solute diffusion. However the study further shows that the exploration

of the solvent cage is only possible when the solvent viscosity is high and there is a decoupling

between the solute and the solvent dynamics. Fitting our model to the simulation results we can

estimate the contribution from the viscous diffusion and the diffusion due to cage exploration. Thus

the study bridges the gap between studies[? ? ] presenting apparently contradictory explanations of

the origin of the breakdown of the SE relation for small solutes.

chapter 4 Here, we present a comparative study of diffusion of both charged and neutral solutes

in water. We show that although both the charged and the neutral solute systems show a diffusivity

maximum, their nature and their origin are different. For the charged solute system, the potential

energy of the solute as a function of its size shows a nonmonotonicity which arises from the interplay

between the ionic and the nonionic parts of the interaction. We also show that this nonmonotonicity

is a prerequisite for obtaining the diffusivity maximum for charged solute systems. On the other

hand, for neutral solute systems which exhibit such diffusivity maximum, nonmonotonicity in the

potential energy is absent.

chapter 5 In chapter 5 we aim to explore the origin of this non-Gaussian behaviour in details via

computer simulation studies. We study diffusion of small solute particles through solvent molecules

where the solvent molecules are always bigger in size compared to the solute. We vary the mass of

the solvent and also the solute-solvent interaction energy from repulsive to strongly attractive. We

find that in most of the cases the solute dynamics are Fickian but non-Gaussian. Our study reveals

that there are two possible origins of non-Gaussian distribution of displacement probability, one

arising from decoupling of the solute from the solvent dynamics and the other from intermittency

in the solute motion. For systems which show only decoupling in dynamics, when averaged over
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a long time the probability distributions recover their Gaussian nature but for systems where the

solute dynamics is also intermittent the displacement probability distribution remains non-Gaussian,

even at long times. The intermittency seems to provide dominant contribution in the non-Fickian

dynamics.

chapter 6 Here, we have discussed about the future scopes and possibilities about the studies we

have presented in this thesis.
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“We dance round in a ring and suppose, but

the secret sits in the middle and knows.”

Robert Frost

We have discussed about the anomaly found in the diffusion behaviour and the fact that unex-

pectedly some particles show fickian diffusion although the distribution of displacement or the van

Hove function is found non-Gaussian. Here we describe some of the useful and relevant definitions

used to compute the different quantities and tools we have used in our study.

2.1 Calculation of dynamical properties

2.1.1 Diffusivity

The diffusion coefficient, D can be obtained from both mean-square displacement (MSD) and

velocity autocorrelation function (vacf). We calculate the MSD as,

where, ri(t) is the position at time t and N is the number of particles. From the long time behaviour

of MSD, the diffusion coefficient D can be written as,

At longer time by fitting the MSD with time, we obtain D from the slope of the fitted plot.

The diffusion value can also be obtained from vacf as,

where, vi(t) is the center-of-mass velocity of a single molecule at time t.

2.1.2 Relaxation time

Relaxation time is the time after when the system forgets its initial conditions or the correlation

goes away.

The relaxation time (τ ) is the characteristic time that a system takes to go spontaneously (owing

to incessant atomic motions) from a given microscopic configuration at an arbitrary initial time t =

0 to another completely uncorrelated microscopic configuration.

The relaxation time can also be explained as the time taken by a system to go back to the

equilibrium after it was sud- denly taken out of equilibrium condition at t = 0. Generally, it is

measured from the decay of appropriate correlation functions.
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2.1.3 Overlap function

The dynamics is also studied is this thesis by a two-point time correlation function of local density,

which is called the overlap function (q(t)), and it is defined below as,

Here we have implied the averaging over time origins t0. Like F (k~, t), overlap function can also

be separated into self and distinct terms:

In this work, the self part is calculated by neglecting j 6= i terms in the double summation.

Here, we examine the self part of the total overlap function based on the observations that the

results obtained from the self part are not signicantly different from the observations are obtained

by considering the collective overlap function.

Further, for numerical computation, a window function w(x) is used to approximate the δ

function. The condition of overlap between two particle positions separated by a time interval t can

be defined by the window function as,

However, this time dependent overlap function depends on the choice of the cut-off parameter a,

which we take as 0.3. The choice of this parameter is such that particle positions separated by the

small amplitude vibrational motion are treated as the same, or that a2 is comparable to the value of

the MSD in the plateau between the ballistic and diffusive regimes.

2.2 Calculation of static properties

2.2.1 Radial distribution function

The particle distribution functions intends to measure how much structure of a fluid can deviate

from complete randomness. Radial distribution function (rdf) defines the probability of finding

a particle from another tagged particle at a distance r. The RDF is primarily dependent on the

attraction of the particles so will vary greatly for solids, gases and liquids.

If the radial distribution function g(r) of the system is known the thermodynamic properties can

be obtained via various ways.

This radial distribution function or pair correlation function, g(r), is nothing but the probability

of finding a particle at a distance r from a tagged particle and thus, it describes how the density
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varies as a function of distance from a reference particle. In Fig.?? a typical radial distribution

function is shown for spherical particles in a homogeneous system.

The definition of radial distribution function g(r) is given by writing the probability of a

configuration of N particles in equilibrium with a heat bath at temperature T in a volume V :

Here and are potential energy.

We write the probability of the particle 1 is in the volume dr1 around r1 and particle 2 is in dr2

around r2 from Eq. (??) as,

We define the pair distribution function as,

here ρ is the homogeneous density of the system.

For N particle system the local particle density can be defined as and the density function of a

single particle is

This ensemble average is not dependent on particle label. For one particle we compute the

average. The average can be written as,

Similarly, for two particle systems, the density distribution function is,

Using the same logic for single particle density function, the prev Eq.(??) can be written as,

From last equation we can write g(r1, r2) as,

Now if we express the right hand side of Eq.(??) as,

Hence, for isotropic and homogeneous system we can write,

For a binary system the pair correlation function is given by,

Here system volume is V, Nα is the number of particle of type α and the position of i−th particle

is ri.

2.2.2 Static structure factor

The static structure factor S(k) is a mathematical description of how incident radiation is scattered

by a material and the correlations between the positions of the particles in the fluid is calculated by

us as,

where, ρk is a Fourier component of ρ(r) (local particle density). It can be defined as ρ(r) =∑N
i=1 δ(r− ri), where N is the number of particles in the fluid and it is given by,

and k is the wave vector. So, S(k) can be written as,
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Now, we relate the Fourier transform of g(r) with the static structure factor S(k). First, we

devide the above mentioned sum into self, i=j, and distinct, i 6= j, contributions. Then Eq. (??)

looks like,

We can write from Eq. ??, using the definition of g(r1, r2),

Homogeneous and isotropic fluid, g(r1, r2) only depends on |r1 − r2|:

The partial structure factors Sαβ(k), for binary mixture, can be defined as,

For MCT calculation the partial structure factor data can be used.

2.2.3 Pair excess entropy

By using Kirkwood factorization [? ] of the N-particle distribution function [? ? ? ], the excess

entropy Sex can be expanded in an infinite series,

Sn are partial entropies which can be obtained by a suitable re-summation of spatial density

correlations involving n-particle multiplets. The pair excess entropy S2 for binary system reads as,

where density of the system is ρ, gαβ(r) is the atom-atom pair correlation function between type

α and type β, xα is the mole fraction of type α and the Blotzmann constant is kB. The residual

multiparticle entropy (RMPE) is ∆S = Sex − S2. It contains the higher order (beyond two body)

contribution to the excess entropy [? ? ? ? ].

2.3 The model and simulation details

We have performed an extensive molecular dynamics simulations for three-dimensional mono-

disperse as well as binary mixtures in the canonical ensemble. The system contains total N number

of particles with density ρ = N/V , where V is the volume of the system. The system is under

periodic boundary conditions. For binary mixtures total N contains NA particles of type A and NB

particles of type B. The models studied here, are the well-known models of glass-forming liquids:

the binary Kob-Andersen Lennard-Jones (LJ) liquids [? ] and the corresponding WCA version

(WCA) [? ], the binary network forming (NTW) model [? ] and one-component Gaussian core

model (GCM) [? ]. The molecular dynamics (MD) simulations have been carried out using the

LAMMPS package [? ]. For all state points, three to five independent samples with run lengths >
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100τ (τ is the α- relaxation time) are analyzed.

We have performed MD simulations in the canonical ensemble (NVT) using Nosé-Hoover

thermostat with a particular integration timestep depending on the systems.The time constants for

Nosé-Hoover thermostat are taken to be 100 timesteps. The sample is kept in a cubic box with

periodic boundary condition.
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Diffusion of Small Solute Particles in

Viscous Liquids: Cage Diffusion, a Result of

Decoupling of Solute-Solvent

Dynamics,Leads to Amplification of Solute

Diffusion

”The strongest and most effective force in

guaranteeing the long-term maintenance of

power is not violence in all the forms

deployed by the dominant to control the

dominated, but consent in all the forms in

which the dominated acquiesce in their

own domination.”

Robert Frost
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3.1 Introduction

We study the diffusion of small solute particles through solvent keeping the solute-solvent interaction

repulsive and varying the solvent properties. The study involves computer simulations, development

of a new model to describe diffusion of small solutes in a solvent and also mode coupling theory

(MCT) calculations. In a viscous solvent a small solute diffuses via coupling to the solvent

hydrodynamic modes and also through the transient cages formed by the solvent. The model

developed can estimate the independent contributions from these two different channels of diffusion.

While the solute diffusion in all the systems show an amplification, the degree of it increases with

solvent viscosity. The model correctly predicts that when the solvent viscosity is high the solute

primarily diffuses by exploiting the solvent cages. In such a scenario the MCT diffusion performed

for a static solvent provides a correct estimation of the cage diffusion.

The next section contains Simulation Details. Section 3 contains the Results and Discussion

followed by Conclusion in section 4.

3.2 Simulation Details

In this work we perform an equilibrium Molecular Dynamics simulation with an atomistic model

where particle type ‘i’ is interacting with particle type ‘j’with truncated and shifted Lennard-Jones

(LJ) pair potentials, given by

Where Φij
LJ(rij, σij, εij) = 4εij[(

σij
rij

)
12− (

σij
rij

)
6
], rij is the distance between pairs, rijc = 2

1
6σij

for Weeks-Chandler-Andersen (WCA) system [? ] and rijc = 2.5σij for LJ system. Here i, j = 1, 2,

where 1 refers to solvent and 2 refers to solute. For all the systems we consider that the interaction

between the solvent and the solute has a soft core which allows inter-penetration between solute-

solvent pair (see Table 1).

We take a system with 1000 particles where 10 of them are solute and rest are solvent. We study

four different systems varying the interaction potential, solvent mass and the interspecies interaction

length given in the Table 1.

NPT simulations are carried in a cubic box at a reduced temperature T*=1.663, and reduced

pressure 7. To avoid crystallization, system 2 is simulated at T*=2. Simulations are performed
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with time step of 0.001τ , where τ =

√
mσ2

11

ε
. In this study, length and temperature are given in the

units of , σ11 and kBT
ε

. All the above mentioned systems are equilibrated for 1-2ns followed by a

production run of 4ns. Systems with larger mass are simulated with longer equilibration time. The

molecular dynamics simulations are carried out using LAMMPS package [? ].

3.3 Results and Discussion

We find that the solutes in all the systems studied here show an amplification of diffusion. However

since the solvent viscosity shows a large variation, in order to do a comparative study of the degree

of amplification in different systems, we use the SE relation as a measure. The solvent diffusion at

high temperatures is known to be coupled to the viscosity[? ? ]. Thus in eq ?? by replacing the η

value by the solvent diffusion we can write,

where D2 is the solute diffusion, D1 is solvent diffusion, σ11 and σ22 are the solvent and solute

diameters respectively. In ?? we plot D2

D1
as a function of 1

σ22
(as σ11 = 1).

We find that the deviation from the SE prediction increases with the solvent viscosity. The

origin of this is not fully understood. As mentioned earlier, different studies have attributed this

large diffusion to apparently different phenomena. In one case it is the decoupling of solute-solvent

motion[? ] and in other case it is the Levitation effect which was found to be responsible for it[? ].

The later is known to arise from solute exploring solvent cages. As mentioned in the Introduction

when the solute dynamics is orders of magnitude faster than the solvent in the initial time the solvent

appears like a solid to the solute. This allows the solute to explore the solvent cages. However

when the decoupling in dynamics is not strong in later times the solute might also be able to explore

the viscous properties of the solvent. Thus a small solute diffusing in a viscous system has two

different contribution to its diffusion. In simulation studies of solute diffusion it is not possible to

individually make an estimation of these two independent components. In order to decouple these

two contributions to solute diffusion we propose a model where the contribution from the solvent

hydrodynamic modes is assumed to be given by the SE relation as we assume in this regime the

solute the solvent dynamics are coupled and the cage diffusion is modeled using Oscillator Model

(OM) [? ? ] which was developed for studying diffusion through a nanoporous solid.
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3.3.1 Oscillator Model

According to the Oscillator model of Bhatia and coworkers [? ? ? ], particle diffusing through

a cylindrical nanopore at low particle density oscillates along the plane perpendicular to the tube

axis. Here, the transport diffusivity of the particle of mass ‘m’ at temperature T is given by,

Dt = kBT
m

< τ >, where < τ > is the average oscillation time of the trajectory in the nanopore

at temperature, T. The bigger the pore, the longer will be the time of oscillation and the collision

frequency will reduce. This in turn will reduce the rate of axial momentum loss of the confined

particle thus leading to higher diffusion along the pore axis. Following the same logic a similar

effect of increase of diffusion value can be obtained by keeping the pore radius fixed and reducing

the particle size. Using Hamiltonian equation of motion the oscillation time for a particle moving in

a radial potential function can be written as, [? ]

Where rc0 is the radial position at the point closest to center, the point of reflection near the wall

is rc1 and the radial momentum profile, pr(r′, r, pr, pθ), can be written as,

when Φfs(r) is the radial potential field. We get rc0 and rc1 value by solving pr(r′, r, pr, pθ) = 0.

Averaging the oscillation time τ over the canonical distribution of r, pr and pθ, the low-density

transport coefficient in the presence of a one-dimensional potential field in a cylindrical pore is

given by,

where pr and pθ are momentum parameters and Q =
∫∞

0
reβΦfs(r)dr.

It was shown that for hard spheres (HS) systems eq ?? reduces to the classical Knudsen model

[? ? ],

where rph is the maximum displacement possible from the center of the pore to the pore

wall. We calculate the diffusion coefficients DWCA and DHS as obtained from the OM where the

interaction between the particle and the nanopore is given by WCA and hard sphere(HS) potentials,

respectively. The calculations were done for a fixed size of the nanopore, rpore and varying the

size of the diffusing particle, σ22. We compare DWCA and DHS at temperature 1.663 with the

classical Knudsen model (??). Although all three models predict the diffusive to be linear with rph,

(rph = rpore − σ22
2

), DKnudsen shows slightly stronger rph dependence whereas the rph dependence

of DWCA and DHS are similar in nature. The diffusion values for the WCA systems are a bit lower

because the length-scale of the WCA potential is larger than the hard sphere (HS) potential making
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the pore narrower (??).

3.3.2 Our Model

As discussed before, in a solute-solvent system the solvents form transient cages through which

a small solute can diffuse [? ? ]. The neck of the cage can be considered as an nanopore. The

diffusion of a particle through a neck is similar to that along the pore axis. Thus the Oscillator

Model can be used to understand the diffusion of a solute through the transient solvent cages.

However unlike a fixed radius of a nanopore the solvent cages have a distribution of neck sizes[? ].

The distribution can be approximated by a Gaussian function, g(rneck) = 1
h
√

2π
exp−1

2
( rneck−ν

h
)2,

where gneck is the distribution of neck size in the solution. rneck is the radius of the neck formed by

the solvent particles. ν is the mean position and h is the full width at half maxima of the distribution.

From earlier studies we find that ν = 0.2σ11 and h = 0.0583σ11[? ]. For a repulsive solute-solvent

interaction (given by WCA potential) the diffusion of solute through the solvent cages, incorporating

the neck size distribution of these cages can be written as,

The second equality is written assuming linear dependence of DWCA on rph and obtaining the slope

‘c’ from ??. The rph is defined as a function of rneck, which can be written as, rph = rneck+rpene−σ22
2

.

Note that in our model σ12 is smaller than that predicted by additive Lorentz-Berthelot rule[? ] (see

Table 1), thus the solute can partially penetrate a solvent particle. The inter-penetration distance is

given by rpene = σ11+σ22
2
− (0.171 + σ22). As shown in the inset of ?? presence of the distribution

of neck sizes although predicts a small deviation of the DWCA
neck from that predicted by the OM the

behavior remains similar.

We describe the diffusion of a solute as a sum of that predicted by the SE relation and the

diffusion through transient solvent cages. Note that in the rest of the article the neck diffusion and

diffusion through the cage will be used synonymously. The total diffusion can be written as,

P is the average neck population that a solute particle encounters in the timescale of its Stokes-

Einstein diffusion. Replacing the expression of DWCA
neck (given in eq ?? ) in eq ?? the Dtot can be

written as,

Considering the solvent to follow SE relation eq ?? can be rewritten as,

In the above equation the neck population explored by the solute, P , has been kept as a fitting
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Table 3.1: The parameters used in the model systems, where σ11, σ12 and σ22 are solvent,
solute-solvent and solute diameters, respectively, ε11, ε12 and ε22 are interaction parameters for
solvent-solvent, solute-solvent and solute-solute pairs respectively which are scaled by ε. Here
for all the systems σ11 = 1, ε22 = 0.5 and we have considered a range of solute radius as,
σ22 = 0.073, 0.098, 0.122, 0.171, 0.2, 0.22, 0.244, 0.293, 0.317, 0.366. Mixed potential is referred
to attractive interaction (LJ) between solvent-solvent and repulsive interaction (WCA) between
solute-solvent and solute-solute pairs. m1 is the solvent mass and m2 is the solute mass which is 1

sys-Potentials ε11
ε

ε12
ε

m1 σ12

1-WCA 1 1 1 σ22 + 0.171
2-Mixed 3 1 1 σ22 + 0.171
3-Mixed 1 1 10 σ22 + 0.171
4-Mixed 1 1 100 σ22 + 0.171

Table 3.2: Solvent Diffusion values for all the systems. We also present a representative solute
diffusion value (for σ22 = 0.073) to show the decoupling of solute-solvent dynamics.

system D1 D2

1 0.182 6.2
2 0.023 5.4
3 0.0273 5.3
4 0.007 5
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parameter. Fitting this equation to the simulation results as a function of solute size should give us

an estimation of P . Note that systems 2, 3 and 4 show a strong amplification of solute diffusion,

thus the diffusion in these systems cannot be explained completely via SE relation (DSE) and should

be primarily given by diffusion due to neck exploration, Dneck. However Dneck shows a linear σ22

dependence (inset, ??) whereas Dtot is a nonlinear function of σ22 (??). Thus the model predicts

that in order to fit eq ?? to the simulation data, P should have a dependence on the solute size. We

note that a smaller solute which can diffuse faster should explore larger number of cages compared

to a bigger solute, thus as predicted by our model, the explored neck population should indeed be

dependent on the size of the solute. To incorporate this dependence we consider the population to

be a function of DSE and DWCA
neck . Thus we write it as,

where α is the proportionality constant.

Replacing eq ?? in eq ?? and using α as a fitting parameter we compare the simulation results

with the diffusion values as predicted by our model. We find that our model provides a good

description of the σ22 dependence of the diffusion for all the systems studied here (??). Next

we analyze the contributions from the different components of diffusion, DSE and Dneck for the

different systems as predicted by the model. For system 1 which is less viscous (see Table 2) the

larger solute particles diffuse via coupling to solvent dynamics and thus follow SE behavior and the

diffusion is given primarily via DSE . However for smaller solutes both the modes of diffusion are

active with the neck contributing little more as the solute size is decreased (Fig. ??). Note that this

system shows a weak deviation from SE behavior (??). For system 2, 3 and 4 where the solvent

viscosity is quite high (see Table 2), the model predicts that the diffusion, specially for smaller

solute particles take place primarily via Dneck (Fig. ??,??,??), DSE has a negligible contribution.

The viscosity here has two-fold effects. A system with high viscosity has slower moving solvent

thus reducing the motion of the solute which is coupled to it. However, high solvent viscosity and a

diffusing solute implies a decoupling between solute-solvent dynamics where the solvent appears

like a solid to the solute with long lived transient cages. In this limit the solute diffusion mimics the

diffusion through a porous medium and depends only on the static structure of the solvent. This is

precisely what we observe when we compare diffusion values of systems 1, 3, and 4 (see ??) where

the diffusion values for system 3 and 4 are almost independent of the solvent dynamics. Note that
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the dynamics of the solvent in system 3 when compared to system 4 is faster by about a factor of

four, whereas the solute dynamics remains same (see Table 2). The observation that diffusion values

grow with the growth of the neck diffusion is similar to that reported by Sharma and Yashonath

although for an attractive solute-solvent interaction [? ].

Sayantan Acharya 26 CSIR-NCL



Ph.D Thesis AcSIR

3.3.3 Mode Coupling Theory Prediction

As mentioned earlier according to the study based on MCT calculation it was shown that the

decoupling between solute-solvent motion leads to breakdown of Stokes-Einstein prediction [?

]. Our present study also reveals that this decoupling is essential for exploration of solvent cages

which eventually leads to the breakdown of SE relation. In an earlier work involving some of us

we have shown that MCT calculations can explain the Levitation dynamics of small solute, even

describing the non-monotonic solute size dependence of diffusion for an attractive solute-solvent

interaction [? ]. Given the success of MCT in earlier studies it is impetus to do a MCT calculations

for our present systems.

According to MCT the diffusion coefficient of a tagged solute particle can be written as[? ],

Here Γ(z) is the frequency dependent friction. Due to difference in timescale the friction term

is divided into two parts , the short time part arises from the binary friction (ΓB(z)) and the long

time part (ΓR(z)) comes from the repetitive collisions which are correlated[? ],

It has been earlier shown that for solutes having same size or smaller than the solvent the longtime

part is dominated by the density contribution[? ]. However mode-coupling calculations have further

predicted that the decoupling of the solute motion from the solvent dynamics leads to the breakdown

of the SE relation[? ]. When there is a complete decoupling between the solute-solvent dynamics

the only contribution to the solute friction primarily comes from binary component. Amongst

the systems that we have studied here we find that diffusion in the systems with higher viscosity

(system 2, 3 and 4) takes place primarily through neck diffusion (??). Thus for these systems we

can consider a complete decoupling between the solute-solvent dynamics . The diffusion value for

these systems as predicted by MCT can be written as,

where, , where ω2
012 is Einstein frequency of the solute in presence of the solvent. It is expressed as,

here g12(r) is the radial distribution function and Φ12(r) is the inter atomic potential of the

solute-solvent pair[? ]. In the expression of ΓB(t), the relaxation timescale, τς , is determined from

the second derivative of ΓB(t = 0)[? ],

here S(q) is the static structure factor of the solvent, µ is the reduced mass of the solute- solvent

pair. γαβd (q) is combination of the second moments of transverse and longitudinal current correlation

function, γtd(q) and γld(q), respectively and it is given by,
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Here, and [? ].

The MCT prediction for system 2, 3 and 4 are plotted in ?? along with the simulation results.

Note that in this calculation the solvent is considered to be static and only its static structural

information is required for the calculation of the friction. Our calculation shows that the binary

diffusion although slightly overestimates, can explain both the simulation results and the predicted

neck diffusion. The marginal overestimation is due to the absence of the density term which has a

small contribution to friction. Thus we show that a decoupling between solute and solvent dynamics

is essential for the solute to explore the solvent cages and in that case the binary component of the

MCT diffusion value can predict the contribution coming from neck diffusion. The success of MCT

also implies that in its present framework it can also describe the diffusion through porous medium.

3.4 Conclusions

In this article we present our study of diffusion of small solutes in solvents by varying the size

of the solute and also by varying the solvent parameters. The difference between a diffusion of a

small and a large solute is that small solutes are known to not only diffuse by being coupled to the

hydrodynamic modes of the solvent, which involves density fluctuation and also the transverse and

longitudinal currents in the solvent, they can also diffuse through the transient solvent cages if the

neck of the cage is big enough to allow the solute through it. The diffusion values as obtained from

the simulation studies although contain both the components, are unable to differentiate between

them. The present study involves both analytical and computational studies. Computer simulations

are performed to obtain the diffusion values and a model is developed to independently access the

contribution to diffusion from the solvent hydrodynamic modes and that which is coming from the

exploration of transient solvent cages. The exploration of transient solvent cages is similar to the

diffusion through a porous solid medium. Thus cage diffusion is modeled based on the OM [? ? ? ]

originally developed to calculate the diffusion of particles through solid cylindrical nanopores.

In our model using a single fitting parameter, which is proportional to the population of the

cage explored by the solutes, we can describe the solute size dependence of four different systems

in different viscosity regimes. The model correctly predicts that the solutes which diffuse faster
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is able to explore larger population of the cages. The model can further predict the different

diffusion contributions. We find that the contribution from the two different modes (viscous and

cage exploration) depends on the viscosity/dynamics of the solvent as compared to that of the solute

and the solute-solvent size ratio. For larger solutes the diffusion is primarily given byDSE . However

as the size of the solutes are decreased the DSE reduces and Dneck grows. When the viscosity of the

solvent is large the solute particles show an amplified diffusion and primarily diffuses through the

cage mode. In this regime the solute diffusion becomes independent of the properties of the solvent

dynamics and it mimics the diffusion through a porous medium where the pores are described by

the solvent static structure. In these systems we also perform MCT calculation. We show that the

binary collisions which depend only on the static structure of the solvent primarily determines the

diffusion. Thus similar to the neck diffusion the MCT calculation is performed for a solvent which

is static. The results suggest that the present MCT framework with static solvent is capable of

explaining diffusion of solute in a porous medium.

Finally we would like to conclude that the previous observations attributing the break down of

the SE relation to apparently two different phenomena, the decoupling of solute-solvent motion [? ]

and the Levitation effect [? ] are not contradictory to each other. In this present study we deal with

systems where the solute-solvent interactions are always repulsive thus there is no force balance

and hence no Levitation effect. However the Levitation effect reported earlier and our present study

both rely on the ability of the solute to explore solvent cage. As shown in the present study this is

possible when there is a decoupling of the solute-solvent dynamics. Thus for Levitation to help the

solute diffuse faster the solute dynamics must decouple from the solvent motion so that the solvent

cages appear stationary in the timescale of solute dynamics.
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CHAPTER 4

Comparative Study Of Anomalous Size

Dependence Of Charged And Neutral

Solute Diffusion In Water

“Forgive me my nonsense as I also forgive

the nonsense of those who think they talk

sense.”

Robert Frost

4.1 Introduction

In this chapter, we present a comparative study of diffusion of both charged and neutral solutes in

water. We show that although both the charged and the neutral solute systems show a diffusivity

maximum, their nature and their origin are different. For the charged solute system, the potential

energy of the solute as a function of its size shows a nonmonotonicity which arises from the interplay

between the ionic and the nonionic parts of the interaction. We also show that this nonmonotonicity

is a prerequisite for obtaining the diffusivity maximum for charged solute systems. On the other

hand, for neutral solute systems which exhibit such diffusivity maximum, nonmonotonicity in the

potential energy is absent.
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The next section contains computational details. Section 3 talks about methodology, section 4

includes the results and discussion followed by the conclusion in section 5.

4.2 Computational Details

4.2.1 Intermolecular Potential Functions

Water-Water. We consider the SPC/E water model [? ? ] in our simulations. This is a three point

water structure. The three sites are representing one Oxygen (O) and two Hydrogen (H) atoms.

The O-H bond length is 1 Å. The HOH angle is 109.47o. The charge of an individual O atom,

qO=-0.8476e and H atom, qH=+0.4238e. A short range Lennard-Jones (LJ) potential along with a

long range Coulomb potential makes the whole equation look like,

here, εOO and σOO are LJ parameters between Oxygens of two water molecules and are defined

in this model as 0.650 kJ/mol and 3.166 Å respectively. rOO is the distance between them. The

charge at site i is qi.

Solute-Solute. The interaction between two solute particles is considered as a sum of short range

LJ and long range Coulomb potential. This is expressed as,

here, the σss=1.5 Å and εss=0.2608 kJ/mol are fixed. We consider the charge on the solute as,

qs = 0,±0.001e,±0.01e,±0.05e, ±0.3e and ±1.0e.

Solute-Water. We consider the solutes to be charged spheres. It has a short range LJ interaction

with water Oxygen and long range Coulombic interaction with both Oxygen and Hydrogen atoms

of a water molecule. The form of the potential looks like,

Here, ΦLJ
sw depicts the LJ part of the interaction and ΦCoul

sw depicts the Coulombic part of the

interaction. σsO is the solute-Oxygen diameter, rsO is solute-Oxygen distance and rsH is solute-

Hydrogen distance. The solute-Oxygen interaction strength is εsO. We have done the study by

changing both the εsO and qs values. In one case we fix and vary interaction as εsO=1.58 kJ/mol,

3.00 kJ/mol and 6.00 kJ/mol. In another case, we keep εsO=1.58 kJ/mol, and vary the charge

qs=0.05e, 0.3e and 1.0e. We allow interpenetration between solute and water, so the σsO does not

obey the Lorentz-Berthelot combination rule. We keep the σss fixed but vary σsO by varying the

interpenetration. We take a range of σsO values as, from 0.9 Å to 1.3 Å with a gap of 0.1 Å, from
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1.3 Å to 2.5 Å with a gap of 0.2 Å and 3.0 Å to 5.5 Å with a gap of 0.5 Å. While choosing the range

of radius, we make sure that at a small distance, the repulsive part of the LJ interaction between

the solute and Oxygen atom of water dominates over the Coulombic interaction. This is especially

important in case of -ve charges as for small sizes, the Coulombic interaction between the -ve charge

and the Hydrogen atom of water can be very strong and this will result in the -ve charge sitting

on the H atom. So, for q=-0.01e and -0.05e, the minimum σsO value is 1.3 Å, while for q=-0.3e

the minimum σsO value is 1.7 Å. However, note that, for +ve charges, the repulsive part of the LJ

potential dominates at small distances and this issue doesn’t arise. But since, the simulations are

done with an equal number of +ve and -ve charges, we keep the range same for both the charges.

4.2.2 Simulations Details

We perform Molecular Dynamics (MD) simulations using GROMACS package [? ? ]. We take

22 pairs of ions and as mentioned above SPC/E model of water. Earlier work by Lee and Rasaiah

has shown that simulation studies with SPC/E water model can closely reproduce the experimental

results of the size dependence of ionic diffusion[? ]. Thus our choice of water model is justified.

Dilution effect is checked for all charges and the systems with the least number of water molecules

which reproduces the results in the dilute regime are used for the analysis. For the system with

charge qs=±1.0e since the ion-ion interaction strength is higher we have 2136 water molecules

(4098 water molecules for charge q=1.0e), for the rest of the systems (charges qs=±0e, 0.01e,

0.001e, 0.05e and 0.3e), we have 851 water molecules.

We use the isothermal-isobaric ensemble (NPT) simulation for equilibration run at T=300 K

and a reduced pressure of 0.7 Bar. The production run is done in microcanonical (NVE) ensemble.

The MD simulations are performed in a cubic box using Nosé-Hoover thermostat[? ] and

Berendsen barostat. The integration step is varied for different charges depending on the strength

of the ion-water interaction. We have a range of integration steps from 0.6 fs to 0.0002 fs. For

smaller sizes and higher charges, integration steps are smaller. Because of the strong interaction,

small displacement can lead to a large change in energy. In this study, length and temperature are

given in real units. All the above mentioned systems are equilibrated for 150-300 ps followed by a

production run of 800-2000 ps. Systems with higher charges are equilibrated over longer times.
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4.2.3 Methodology

4.2.4 Calculation of Diffusion Coefficient

The diffusion coefficient, D can be obtained from both mean-square displacement (MSD) and

velocity autocorrelation function (vacf). We calculate the MSD as,

where, ri(t) is the position at time t and N is the number of particles. From the long time

behavior of MSD, the diffusion coefficient D can be written as,

At longer time by fitting the MSD with time, we obtain D from the slope of the fitted plot.

The diffusion value can also be obtained from vacf as,

where, vi(t) is the center-of-mass velocity of a single molecule at time t.

4.3 Results and Discussion

In this work, we study the nonmonotonicity of diffusion as a function of solute size. Although the

primary focus of this work is to study the diffusion of charged solutes (ions) in water, for the sake

of comparison, we first present a study of the diffusion of neutral solutes in water.

4.3.1 Neutral Solutes

Yashonath and coworkers in their study of diffusion of neutral solutes in water, interacting only via

LJ interaction, at T=180K, have shown that for solute-water interaction εsO = 1.5846 kJ/mol there

is a nonmonotonicity in the size dependence of diffusion [? ]. In the present study, we focus on

room temperature water dynamics, i.e. T=300K. At room temperature, with solute-water interaction

1.5 kJ/mol the nonmonotonicity in size dependence of diffusion disappears [? ? ]. Thus, to obtain a

nonmonotonicity in solute diffusion, we arbitrarily increase the εsO value to 15 and 22.5 kJ/mol,

which is about 10 and 15 times the value used in the earlier study [? ].

As shown in Fig. ??a, the diffusion as a function of 1/σsO does show a non monotonic behavior

with a peak at σsO '1.05 Å. Note that, the position of the peak is similar to that obtained earlier[?

? ? ] but at lower temperatures. Apart from just the presence of diffusivity maximum, there are

other observations made from this study. Firstly, the position of the peak doesn’t change with the
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εsO value. The second observation is that the enhancement of diffusion increases with εsO. We are

not going to analyze these results in details as they have already been done in earlier studies [?

]. Similar nonmonotonic size dependence of diffusion observed in the solute-solvent system has

been explained using mode coupling theory where it was shown that a size dependent decoupling

between the solute-solvent dynamics and strong solute-solvent attraction leads to the nonmonotonic

enhancement of diffusion [? ? ]. In Fig. ??b we show that although the diffusion is nonmonotonic

the potential energy shows no such nonmonotonicity. We also analyze the probability distribution

of first shell water orientation P (θ), around solute particles where θ is the angle between the vector

bisecting the water molecule w.r.t the vector connecting the water Oxygen to the solute (Fig. 4.9a

in the Appendix I). We plot the P (θ) for two different solutes, the biggest and the smallest size

studied here which are larger and smaller than the size where the diffusion peak is obtained. We find

that water orientation is independent of the size of the solute and is dominated by the water-water

hydrogen bonding. We also plot the Nc trajectory around these two solute particles (Fig. 4.9b in the

Appendix I). We find that although the value of Nc changes with the size of the solute, the dynamics

remain the same. In the rest of the article, we will compare the features obtained for neutral solutes

with that of charged solutes and try to understand the diffusion phenomena of charged solutes.

4.3.2 Charged Solutes

Next, we study the diffusion of charged solute particles in water. In earlier studies, it has been

observed that for alkali ions there is a nonmonotonicity in the size dependence of the diffusion

coefficient[? ? ? ? ? ? ]. However, for a systematic study of the effect of solute-water interaction

and solute charge on the size dependent diffusivity maximum, we start with a neutral solute and

slowly increase the charge on the solute. We also fix a value of the charge on the solute and vary

the solute-water nonionic interaction strength (LJ part). These model systems, although artificial,

provide us a wider range of systems where the nature of the diffusivity maximum changes with

solute-water interaction strength and with the charge on the solute, allowing us to explore the effect

of the interplay between nonionic and ionic interactions.

Here we first choose εsO = 1.5 kJ/mol. When the solute is neutral, this system does not show

any nonmonotonicity at T=300K. Thus, we make sure that this chosen strength of the LJ interaction
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alone is not enough to produce a diffusivity maximum. In Fig. ??a and Fig. ??b we plot the

diffusion values as a function of inverse σsO for different charges. Our observations are similar

to those reported by Ghorai and Yashonath [? ]. We find that above a certain value of charge the

diffusion value as a function of solute size shows a nonmonotonicity and a diffusivity maximum

arises. The appearance of the maximum not only depends on the magnitude of the charge but also

on the sign (+ve or -ve) of the charge and the temperature of the system (not shown here). The

dependence on the sign of the charge tells us that the water structure near +ve and -ve charges are

different, which has been reported earlier [? ? ]. We next, keep the qs constant (qs=0.05e) and

change the LJ interaction strength. Note that for these interaction values the LJ interaction alone

does not produce any nonmonotonicity in the range of σsO values studied here. However, as seen in

Fig. 2c in the presence of charge there appears a nonmonotonicity.

If we now compare the size dependent diffusion anomaly as observed in the case of charged

(Fig. ??) and neutral (Fig. ??a) solutes, we find that (i) for charged solutes with an increase in

charge the peak of the diffusivity maximum shifts to larger solute sizes and with an increase in

εsO it shifts to smaller solute sizes. In the case of neutral solutes with an increase in εsO it remains

fixed, (ii) for charged solutes the enhancement of diffusion decreases with an increase in interaction

(both ionic and nonionic) whereas the opposite trend is observed neutral solutes. We also find that

the range of sizes where the diffusivity maximum is present is different for the charged and the

neutral solutes. Thus although both charged and neutral solutes show a nonmonotonicity in size

dependence of diffusion, the nature of the nonmonotonicity is different.

Interplay between LJ and Coulombic interaction

In this section, we show that all the features observed for the charged solute diffusion can be

explained in terms of the interplay between LJ and Coulombic interactions.

There is a basic difference in the way the interaction potential changes with size for charged

and neutral solutes. For neutral LJ solute, the shape of the potential remains the same but its range

shifts with solute-water diameter. In case of a charged solute both Coulombic and LJ interactions

are present. The LJ part is size dependent, but the Coulombic part is not. This leads to a change in

both the shape and the range of the potential as a function of the solute-water diameter. This shape
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and range further changes with the solute-water interaction and charge on the solute. To analyze

this effect we plot the average per particle potential energy and its components, the ΦLJ
pot and ΦCoul

pot

for some representative values of qs (Fig. ?? and Fig. 4.10 and Fig. 4.11a in Appendix I) and some

εsO values (Fig. ?? and Fig. 4.11b in Appendix I).

We show that for charged solutes, at large sizes, the potential is primarily dominated by the LJ

part. This is precisely the reason the diffusion coefficient for the large sizes are similar to that of

the neutral solutes (Fig. ??). As the solute size decreases the charge density of the solute increases

and the Coulombic part dominates over the LJ part. For most cases, this leads to a crossover as a

function of solute size from the LJ dominated to the Coulomb dominated regime as shown in Fig.

??. As we increase the charge on the solute, due to an increase in charge density the crossover to the

Coulomb dominated regime takes place at a larger solute size leading to a shift of the crossover to

higher sizes. If we now increase the εsO value keeping qs constant the strength of the LJ interaction

increases leading to a shift of the crossover to smaller solute sizes as seen in Fig. ??. As shown

in Fig. ?? and Fig. ?? whenever there is a crossover it gives rise to a nonmonotonicity in the

potential energy. The diffusivity maximum appears to be a causal effect of this nonmonotonicity

in the potential energy. Note that, for systems where there is no crossover the potential energy is

monotonic (Fig. ??) and also there is no diffusivity maximum.

Although we claim that the nonmonotonicity in potential energy and diffusivity are connected,

the position of the peaks may not be identical. In comparison to the potential energy peak in some

cases, we do see a marginal shift of the diffusivity peak to smaller solute sizes. This is because

diffusion is not only determined by the potential energy but also by the size of the particle. Initially,

the potential energy increases with decreases in size and thus both potential energy and solute size

facilitate the diffusion process. However, after a certain size when the potential energy decreases

with a decrease in size then they act in the opposite direction. The former hinders the diffusion

process and the latter facilitates it. This competition can lead to a shift in the diffusivity maximum

to smaller solute sizes. Eventually when the potential energy has a large negative value then it wins

over the size dependence and the diffusion seems to be determined predominantly by the potential

energy. Thus, our analysis clearly shows that for the charged solutes the nonmonotonicity in the

potential energy arising from the interplay between the LJ and the Coulombic parts is a prerequisite
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for obtaining a nonmonotonicity in the diffusion. For neutral solutes above a certain value of the

solute-water interaction we do find a diffusivity maximum, but no such nonmonotonicity.

Next, we analyze the second point, i.e. the decrease in the peak value as a function of solute

charge and solute-water interaction strength. We find that for systems where the charge is increased,

keeping the LJ interaction constant, the diffusivity maximum shifts to larger sizes and corresponding

smaller diffusion coefficients. For systems where the LJ interaction is increased keeping the charge

constant this reduction in the peak value is an effect of stronger LJ interaction.

Although both positively and negatively charged solutes show a diffusivity maximum there are

some subtle differences. The diffusivity maximum for the negatively charged solute appears at a

lesser value of solute charge compared to the positively charged solute. Also for the model systems

where both the type of charges show a diffusivity maximum, the one for the negatively charged

solute appears at a larger solute size when compared to that of the positively charged solute. This is

similar to the observations made in experimental studies [? ? ? ] and earlier simulation study of real

ions [? ]. Here we show that this shift in the position of the diffusivity maximum is accompanied

by the shift of the crossover from the LJ to the Coulomb dominated regime (compare Fig. ?? in

the main text with Fig. 4.10 in the Appendix I). Thus our model study suggests that for the same

value of charge and solute size, the negatively charged solute can stabilize more from the Coulomb

interaction compared to the positively charged solute. This is because the positively charged solute

faces a steric hindrance while approaching the Oxygen atom whereas the negatively charged solute

does not face any such hindrance while approaching the Hydrogen atom.

As discussed earlier, for systems where both ionic and nonionic (in this case LJ) interactions are

present, the variation of charge renormalizes the effect of LJ interaction and vice versa [? ]. Here

we find that the increase in charge has a weaker effect on the LJ dominated regime (Fig. 4.11a in

Appendix I), however the increase in εsO has a stronger effect on the Coulomb dominated regime

(Fig. 4.11b in Appendix I). In the LJ regime, the value of ΦLJ
sw doesn’t change much with qs whereas

the value of ΦCoul
sw increases with εsO i.e. effect of Coulombic attraction reduces. This can be

understood from the solute-Oxygen radial distribution function, gsO(r) (Fig. ??). We compare the

gsO(r) for two different εsO values. This is done for two representative solute sizes, one where the LJ

interaction is dominant (larger solutes) and the other where the Coulombic interaction is dominant
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(smaller solutes). For larger solute sizes the gsO(r) peak remains at the same position and the peak

becomes sharper with an increase in εsO. However, for smaller solute sizes where the Coulombic

interaction dominates the scenario is different. Here, with the increase in εsO the gsO(r) peak value

reduces and the peak shifts to a higher value of ’r’. As the εsO increases, the steric hindrance at

smaller ’r’ due to the LJ interaction increases sharply leading to the shift in gsO(r). This finally leads

to a weaker effect of the Coulombic part. This effect of LJ interaction on the Coulomb dominated

regime should also depend on the qs value and the effect is expected to decrease with the increase in

qs. Interestingly with an increase in qs the width of the Coulomb dominated regime increases (i.e.

it starts from a larger solute size) whereas with the increase in εsO the width of the LJ dominated

regime does not change much. From the analysis of the solute-Oxygen radial distribution function

we suggest that for systems where the nonionic interaction is given by a LJ kind of potential, the

hydrophilicity of the solute will also depend on the strength of this potential. For solutes having the

same charge the one that has stronger nonionic interaction will be less hydrophilic.

Ordering of water around the ions

In this section, we study both orientation of water molecules and the stability of the water solvation

shell around solute particles. We chose systems where εsO=1.58 kJ/mol and solutes charges qs=0.05e,

0.3e and 1.0e. For each value of charge we take two different solute sizes, one which is in the LJ

dominated regime (2.5 Å for both qs = 0.05e and qs = 0.3e and 5.5 Å for qs = 1.0e) and the other

which is in the Coulomb dominated regime (1.5 Å for qs = 0.05e, 1.9 Å for qs = 0.3e and 2.3 Å

for qs = 1.0e). As seen from Fig. 3 these regimes are dependent on qs values and so are the solute

sizes. For comparison, we also study the system where the solute is neutral.

Orientation: We analyze the probability distribution of first shell water orientation P (θ), around

solute particles where θ is the angle between the vector bisecting the water molecule w.r.t the

vector connecting the water Oxygen to the solute (Fig. ??). We find that for larger solutes, in

the LJ dominated regime, the probability distributions are similar for the -ve and +ve solutes. We

further find that they are also similar to that obtained for a neutral solute (also see Fig. 4.10a in

the Appendix I). For these systems, there is a broad distribution with a peak around 100 degree

(Fig. ??a, Fig. ??c and Fig. ??e). This kind of distribution is usually obtained when the water
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orientation around the solute is determined by the water-water hydrogen bonding[? ? ]. For smaller

solutes in the Coulomb dominated regime we find some finite peaks and as expected, these peak

positions are different for the +ve and the -ve solutes. These peaks also become sharper with an

increase in the charge. This shows that for these solutes some of the water molecules participate

in the solvation process and the orientations of those water molecules are fixed at certain angles

and dominated by the solute-water ionic interaction. The position of the peak and the observation

that peak becomes sharper with an increase in charge density is similar to that reported earlier for

real ions [? ? ? ] (Fig. ??b, Fig. ??d and Fig. ??f). These P (θ) distributions obtained in this study

can explain observations made earlier by Lee and Rasaiah[? ]. In their simulation study of cations

in water they found that the water in the first shell around a bigger size cation, Cs+ does not have

any specific orientation, whereas around a smaller size cation, Li+ some of the water dipoles are

oriented towards the cation.

Neighbour shell rearrangement: In this section we study the effect of solute charge and size

on the neighbour/solvation shell rearrangement dynamics. For this we first plot the trajectory of

coordination number Nc, which is the number of water molecules in the first neighbour shell of

the solute, i.e. within the first peak of the solute-water RDF. Like orientation, we compare the

solvation shell dynamics of charged (both +ve and -ve) and neutral solutes. As shown in Fig. ?? for

charged solutes which are in the LJ dominated regime (larger size) the solvation shell shows large

fluctuations and this is similar to that found for a neutral solute of the same size. For charged solutes

which are in the Coulomb dominated regime (smaller size), the solvation shell is stable and the Nc

trajectory is different from that of a neutral solute of the same size which shows large fluctuations.

These observations made here are coherent with the simulation results of residence time correlation

function of first shell water molecules around cations [? ].

We also calculate the normalized variance in the coordination number, κ = <N2
c>−<Nc>2

<Nc>
which

is related to the local compressibility [? ]. The values are given in Tables 1 and 2. For both sets

of data (qs = ±0.3 and qs = ±1.0) κ values are less for solutes in the Coulomb dominated regime

compared to those in the LJ dominated regime. When we compare the κ values for -ve and +ve

charges we find that for the same size they are less for -ve charges. We also find that κ values

for solutes in the LJ dominated regime are similar to that of neutral solutes of the same size and
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the value increases with size. For comparison, we calculate the bulk water κ by computing the

coordination number fluctuation in a hydration shell shaped volume around an arbitrary point in

bulk water [? ]. The κ value for bulk water is 0.26 corresponding to a solute with σsO = 2.5Å and

0.28 corresponding to a solute with σsO = 5.5Å. Thus for large neutral solute or solute in the LJ

dominated regime the κ value is either the same or higher than that of bulk water. This observation

is similar to that reported earlier [? ? ].

σsO(Å) qs = 0e qs = +0.3e qs = −0.3e

1.9 0.21 0.16 0.10
2.5 0.25 0.22 0.21

Table 4.1: Normalized variance in the coordination number, κ = <N2
c>−<Nc>2

<Nc>
, for qs = ±0.3e

σsO(Å) qs = 0e qs = +1e qs = −1e

2.3 0.22 0.13 0.11
5.5 0.59 0.52 0.51

Table 4.2: Normalized variance in the coordination number, κ = <N2
c>−<Nc>2

<Nc>
, for qs = ±1e

From the study of the water orientation and also the neighbour shell fluctuation, we find that

the water molecules around a solute in the Coulomb dominated regime are strongly bound to it

and the solute probably behaves like a water structure maker, i.e. kosmotrope [? ? ]. On the other

hand, the solute in the LJ dominated regime behaves like a neutral hydrophobic solute. Although,

we find that compared to bulk water the κ values are higher for some of the solutes (like for

σsO = 5.5Å) suggesting that the water structure around them is more flexible, we are hesitant to

call them water structure breaker, i.e. chaotrope. This is because other studies have shown that

water around a hydrophobic solute, smaller than a nanometer, maintains bulk like structure and

there is a size dependent order-disorder transition around one nanometer [? ? ]. Moreover, Yethiraj

and coworkers have shown that simulation studies using similar ion-water models fail to show the

structure breaking properties of certain salts which are experimentally known to have chaotropic

properties[? ].
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Excess entropy and diffusion

The connection between the excess entropy and the anomalies in the diffusivity plot is demonstrated

here. The excess entropy is evaluated using a fairly accurate structural information in form of pair

correlation function. At the same temperature (T) and density (ρ) the excess entropy (Sex) is defined

as the difference between total entropy (S) and ideal gas entropy (Sid). Also, Sex can be expanded in

an infinite series or a multi-particle correlation expansion, as, Sex = S2 + S3 + ... using Kirkwoods

factorization function. Here, Sn is the n body contribution to the entropy. The main contribution in

excess entropy comes from the pair excess entropy S2. For a binary system at temperature (T) the

pair excess entropy S2 can be written in terms of the partial radial distribution functions [? ](ref 35

in JCP 125, 204501),

where gαβ(r) is the atom-atom pair correlation between atoms of type α and β, kB is the

Boltzmann constant, N is the total number of particles and x is the mole fraction of component in

the mixture.

To analyze a corresponding state relationship between diffusivity and the excess entropy, we

plot the S2 against 1/σsO in Fig. ??. The peak positions in the entropy plot show a similar trend like

the diffusion plots in Fig. ??. Excess entropy values are higher when the particles are moving faster

and vice versa. Increasing charge, the maxima of the peak value in the diffusion plots shift to bigger

sized solute particles. That shift is reflected in entropy values also. In the inset of Fig. ??, we have

plotted the logarithm of the diffusivity (lnD) against the corresponding excess entropy and we see

almost linear relationship between them, which is in good agreement with the observations noted in

some earlier studies[? ? ].

4.4 Conclusion

In this work, we do a comparative study of the size dependence of diffusion for both charged and

neutral solutes in water. Both the type of systems show a size dependent diffusivity maximum.

However, the nature of the maximum as a function of interaction strength is different for the neutral

and the charged solute systems. For the neutral solute system the position of diffusivity maximum

is independent of solute-water interaction, whereas for the charged solute system with an increase
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in solute-water interaction the maximum shifts to smaller solute sizes and with an increase in

solute charge it shifts to larger solute sizes. We also find that for charged solutes the height of the

maximum decreases with an increase in the interaction strength and increase in the charge. This is

different from that observed for neutral solutes.

We show that for charged solutes with a decrease in the solute size, there is a cross over

from the LJ dominated to the Coulomb dominated regime. This interplay between the LJ and the

Coulomb interactions leads to a nonmonotonicity in the potential energy. We further show that this

nonmonotonicity in the potential energy is a prerequisite for obtaining the diffusivity maximum.

Earlier studies on real systems have connected the diffusivity maximum to the interplay between

the nonionic and ionic interactions [? ? ? ? ? ? ? ? ? ? ? ? ]. However, as far as our knowledge

this is the first time it is shown that this leads to a nonmonotonicity in the potential energy which is

then connected to the nonmonotonicity in diffusion. Although we claim that the potential energy

has a LJ and a Coulomb dominated regime, they are not completely independent of each other. Our

study shows that the effect of the charge is weak in the LJ dominated regime however the strength

of the LJ interaction has a strong effect on the Coulomb dominated regime. It also suggests that

the nonionic interaction strength will play a role in determining the degree of hydrophilicity of an

ionic solute. The increase in strength of the nonionic interaction will make a charged particle less

hydrophilic. Similarly, other observations made here can be helpful in modeling force fields.

We further show that the probability distribution of orientation of the water molecules around

a charged solute depends on whether the solute is in the LJ dominated regime or in the Coulomb

dominated regime. For solutes in the LJ dominated regime the probability distribution is independent

of the sign of the charge and also similar to that found around a neutral solute. The probability

distribution, in this case is determined by the water-water hydrogen bond. However, when the solute

is in the Coulomb dominated regime the probability distribution is different with peaks at certain

angles suggesting that the water orientation is dominated by the solute-water ionic interaction and

some water molecules are oriented in a specific way to solvate the ion. As expected, the distribution

is also different for the +ve and the -ve charges.We also study the normalized variance in the

coordination number for solutes in the LJ and Coulomb dominated regime, and for bulk water. We

find that the κ values broadly follow the order- large neutral solutes or solutes in the LJ dominated
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regime > bulk water > solutes in the Coulomb dominated regime. The higher the κ value the more

compressible is the system and also the water is less structured. However, it appears that within

the range of solute sizes studied here, identifying water structure breakers are tricky [? ? ? ]. A

recent coarse-grained model study where the ion-water interaction was modeled using the concepts

of ion solvation energy was able to reproduce the experimental results, predicting chaotropic, water

structure breaking behaviour of the solutes [? ]. In this work to identify the solutes in the LJ

dominated regime as water structure breaker we need to study the water dynamics as a function of

solute concentration, which will be taken up in the future.

4.5 Appendix

These are few additional figures related to ordering of water around neutral solute particles and

potential entropy plots for positive solute particles.
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CHAPTER 5

Fickian Yet Non-Gaussian Behaviour: A

Dominant Role of the Intermittent

Dynamics

“The chief reason for going to school is to

get the impression fixed for life that there is

a book side for everything.”

Robert Frost

5.1 Introduction

We present a comparative study of size dependence of diffusion for charged and neutral solutes in

water. Although both show nonmonotonicity of the size dependence of diffusion, their nature and

origin are quite different. For neutral solutes, the peak position and the value of diffusion at the

maximum are both independent of the solute-water interaction. Interestingly, for charged solutes,

with an increase in solute-water interaction strength the peak position shifts to lower solute sizes and

with an increase in charge, it shifts to higher solute sizes. The diffusion value at the peak reduces

with an increase in both solute-water interaction and solute charge. We show that all these features

observed for charged solutes can be understood in terms of the interplay between ionic and nonionic
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interactions which is definitely absent for neutral solutes. Some of the earlier studies addressing the

nonmonotonicity in diffusion did suggest the interplay between the two interactions to be the cause.

However, this is the first time we show that such interplay gives rise to the nonmonotonicity in the

potential energy which is a prerequisite for obtaining the nonmonotonicity in the diffusion. Such

nonmonotonicity in the potential energy is absent for neutral solutes.

The next section contains simulation details. Section 3 contains the results and discussion

followed by the conclusion in section 4.

5.2 Simulation Details

In this work we perform an equilibrium Molecular Dynamics (MD) simulation with an atomistic

model where particle type ‘i’ is interacting with particle type ‘j’with truncated and shifted Lennard-

Jones (LJ) pair potentials, given by

Where is the distance between pairs, for Week Chandler Anderson (WCA) system [? ] and

rij
c = 2.5σij for LJ system. Here i, j = 1, 2, where 1 refers to solvent and 2 refers to solute. For

all the systems we consider that the interaction between the solvent and the solute has a soft core

which allows inter-penetration between solute-solvent pair.

We take a system with 1000 particles where 10 of them are solutes and rest are solvents. In

this simulation we study different systems varying the interaction potential (both attractive and

repulsive), solvent mass and the interspecies interaction length.

We have done isothermal-isobaric ensemble (NPT) simulation at a reduced temperature 1.663

(initially the crystals are melted in a higher temperature, later it is cooled down) and at reduced

pressure 7 where the average density of the system is 0.8867 which ensures a crowded environment.

The MD simulations are performed in a cubic box using Nosé-Hoover thermostat and barostat

[? ? ]. The integration step is 0.001τ , where τ =

√
Mσ2

11

ε
, where the solute mass M = 1. In this

study, length and temperature are given in the units of , σ11 and kBT
ε

. We consider solvent mass,

’m’, over a wide range, 0.5,1,10 and 100 for both attractive and repulsive systems. σ11 is taken as

1, σ22 is .171 and σ12 = σ22 + .171. All the above mentioned systems are equilibrated for 1-2 ns

followed by a production run of 4 ns (in Argon units). Systems with larger mass are equilibrated
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Table 5.1: Solute, solvent diffusion values D1 and D2 respectively and their ratio D2/D1 for
different systems. In every system ε11 is 1 and ε22 is 0.5.

system solvent mass (m) ε12 D1 D2 D2/D1

LJ 0.5 6 0.119 .5 4.2
LJ 1 6 0.08 .35 4.375
LJ 10 6 0.0278 .23 8.27
LJ 100 6 0.0088 .207 23.5
LJ 100 2 0.0087 1.5 172.41
LJ 100 4 0.0084 .44 52.4
LJ 100 16 0.0086 .02 2.33
LJ 100 24 0.0087 .016 1.84
WCA 100 1 0.0087 1.6 183.90

over longer times.

We perform Molecular Dynamics (MD) simulations using LAMMPS package [? ].

5.3 Results and Discussion

In this study we work with a solute-solvent system where the solute size is chosen to be small so

that the solute can explore the inter-solvent cage [? ]. In earlier studies [? ? ] it has been shown that

for such small solute particles the non-Gaussian behaviour of the van Hove correlation function is

due to decoupling in solute-solvent dynamics. In order to understand how slowing down of solvent

dynamics, which leads to the decoupling, effects the solute motion, we study a set of systems

where we vary the solvent mass. As observed earlier [? ? ] with the increase in solvent mass the

decoupling between the solute and the solvent dynamics increases as seen from the D2/D1 values

in Table 1. In these studies the solute-solvent interaction is kept moderately attractive (ε12=6). The

mean square displacement (MSD) is calculated from single particle trajectory, r(t), and then time

averaging and also particle averaging is performed,

Here, T is the overall measurement time, N is the number of particle, which is 10 in our case.

The MSD of the solute in all the systems are linear with time and for higher solvent mass the linear

region sets in at an earlier time as has been observed in previous studies [? ] (Fig.??). A possible

reason for this observation can be, for large solute-solvent decoupling solute does not expect the
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solvent to have any dynamics thus the diffusive dynamics for the solute in these systems sets in

at earlier assuming the solvent to be static. The linearity of the MSD predicts that the motion is

diffusive. The van Hove correlation function which is the distribution of probability displacement

(Gs(r, t) = 1
N
〈
∑N

i=1 δ(r + ri(0)− ri(t))〉), is calculated at the time where the MSD is linear and

< 4r2(t) >= 18. Although the MSD is linear the Gs(r, t) shows non-Gaussian nature (Fig.??). In

order to check the ergodicity of the system we also calculate the mean square displacement from the

probability distribution. The mean squared displacement can be expressed as the second moment of

van Hove correlation function,

Using Eq. ?? we calculate MSD at few points which are shown as open circles in Fig.??. We

find that the MSD obtained using both the methods are identical indicating the systems to be ergodic.

Thus we have a set of ergodic systems which show Fickian and non-Gaussian dynamics.

We show in Fig.??a that the non-Gaussian behaviour of Gs(r, t) increases with the increase in

solvent mass. In order to measure the departure from Gaussianity we also plot P (log10(r; t)) =

4πr3ln(10)Gs(r, t) (Fig.??b). When the van Hove function is Gaussian then the peak value of

P (log10(r, t)) ' 2.13 [? ]. It’s decrease in value is a measure of the degree of departure from Gaus-

sianity. The departure from Gaussian behaviour is pronounced in Fig.??. As expected, comparing

figures Fig.??(a) and (b) we find that systems which show larger departure from Gaussianity in the

former, has smaller peak values in the latter. We find a positive correlation between the departure

from Gaussianity and decoupling of solute-solvent dynamics which is similar to what has been

reported earlier [? ? ]. It has been argued that although the solute reaches a diffusive dynamics, due

to slow solvent dynamics it is unable to explore different solvent environments thus leading to the

non-Gaussian behavior of the probability distribution. It is found that for such systems the van Hove

correlation function at later times, which is long enough to explore the ergodic solvent dynamics,

is Gaussian. Although our results apparently look similar to that observed in earlier studies, for

our systems with large solvent mass we do not obtain the Gaussian behaviour even when the van

Hove correlation function is calculated at about 70 times τα, where τα is the α relaxation time of

the solvent (Fig.??).

Note that for attractive solute-solvent interaction and large solvent mass we not only have the

decoupling of the dynamics but the solute motion also becomes intermittent. The second peak or
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the shoulder in the P (log10(r, t)) plot is a signature of this intermittency which is observed for

m =10 and 100 (Fig.??(b)). We believe that for certain systems both, this intermittency and the

decoupling, contribute to the non-Gaussian van Hove correlation function. In order to understand

their independent contribution we study a system where the solute-solvent interaction is repulsive in

nature. For repulsive solute-solvent interaction although the decoupling in dynamics exists [? ] the

solute dynamics is not expected to be intermittent. We find that similar to the LJ systems the van

Hove correlation function and P (log10(r, t)) plots (calculated at a time where < 4r2(t) >≈920)

show a larger departure from Gaussianity when the solvent mass increases (Fig.??). However

note that compaired to the LJ systems the departure form Gaussianity is much weak for the WCA

systems. In Fig.?? we show the time evolution of P (log10(r, t)) for m = 100, which shows

maximum departure from Gaussianity at short times. Unlike for the case of attractive solute-solvent

interaction the probability distribution becomes Gaussian at longer times and the P (log10(r, t))

does not show any bimodal behaviour. From the absence of the double peak in P (log10(r, t)) we

may conclude that as expected, the WCA system does not have intermittent dynamics. Note that by

changing the solute-solvent interaction the structure and dynamics of the solvent remains almost

unchanged. As a representative plot we show the overlap function of the solvent when m = 100 for

both WCA and LJ systems (Fig.??). We also show the corresponding solvent structure factor in the

inset of Fig ??. Thus the difference in behaviour between the LJ and WCA systems is not due to

the solvent structure or dynamics but due to the difference in the solute dynamics. In one case (LJ

systems) the solute dynamics is intermittent and in other case (WCA systems) it is not.

The intermittency in the solute motion appears quite similar to that found in supercooled liquids.

In supercooled liquids there is formation of domains which give rise to the intermittency. In

our present system there is no domain formation and the intermittency is the effect of attractive

solute-solvent interaction. While undergoing random walk, the solute explores the transient solvent

cage [? ? ]. As the solute is small when it passes through the neck of the cage it feels uneven

attraction from the different solvent particles and spends longer time near a particular solvent,

which can be envisaged as a sticky point and leads to the intermittency in the solute dynamics.

Thus we may expect that larger the attraction the more intermittent is the dynamics. In order to

understand the connection between solute-solvent interaction, intermittency and non-Gaussianity
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of Gs(r, t) we study a series of system by varying the strength of the solute-solvent interaction

from repulsive to highly attractive (Fig.??). In all these cases the solvent mass is kept at 100 where

the LJ system (ε12=6) shows maximum deviation from Gaussianity. Our next analysis reveals that

for LJ systems the non-Gaussianity is a combined effect of dynamical decoupling and intermittent

solute dynamics and it has a non-monotonic dependence on the solute-solvent interaction strength.

While the decoupling decreases with increasing strength of interaction the intermittency shows a

non-monotonic dependence on the same and this gives rise to non trivial results.

For repulsive and small attractive interaction there is a large decoupling between the solute and

the solvent dynamics as seen from the D2/D1 values in Table 1. However the time evolution of

P (log10(r, t)) does not show any bimodal nature thus predicting no strong intermittency in the solute

dynamics. Thus, although the large solute-solvent decoupling initially gives rise to non-Gaussian

Gs(r, t), at longer times it becomes Gaussian as seen in Fig.?? for WCA system and Fig.??a for

LJ system with ε12=2. On the other hand, for very large solute-solvent interaction (ε12 > 6) the

decoupling of the solute and the solvent dynamics reduces as seen from the D2/D1 values in Table

1. Similar to the repulsive and small attractive systems, the time evolution of P (log10(r, t)) does not

show any bimodal nature thus the intermittency in the solute dynamics is also not present. Hence

the dynamics remains almost Gaussian for short, intermediate and long times (Fig.??). However, for

intermediate solute-solvent interaction (2 < ε12 < 12) there is strong enough decoupling between

the solute and the solvent dynamics (Table 1) and strong intermittency in the dynamics as observed

in the clear bimodal behaviour of the time evolution of the P (log10(r, t)) (Fig.?? and Fig.??b). In

these two cases till about 70τα the dynamics is non-Gaussian. Note that in all these systems the

timescale of the solvent dynamics are similar as seen from diffusion values in Table 1 and the overlap

function in Fig.??. Thus if the non-Gaussian behaviour is only due to the slow solvent dynamics

then the recovery of the Gaussian nature should happen over the same time period, which does not

appear to be the case. Note that for all the systems the P (log10(r, t)) is plotted till about 70τα. Thus

our study predicts that in crowded systems at least there are two different sources of non-Gaussian

behaviour. One is the difference in timescale of the solute and solvent dynamics and the other is the

intermittency in the solute dynamics which arises for attractive solute-solvent interaction. In the

first case where there is just dynamical decoupling, the Gaussian nature is recovered at longer times,
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however in the second case where along with the dynamical decoupling there is also intermittency

in the solute dynamics, the non-Gaussian nature remains even at about 70τα. For ε12=4 and 6 we do

find that although around 70τα the non-Gaussian behaviour as seen in the P (log10(r, t)) plot still

persists the intermittency in the dynamics starts to disappear. For these two systems we calculate the

P (log10(r, t)) till longer times (3565τα for both ε12=4 and 6) and find that eventually the dynamics

appears to become close to Gaussian (Fig.??). However note that in these two cases the recovery of

the Gaussian nature is not due to long averaging over solvent dynamics but the dissappearance of

intermittency.

Let us compare between the WCA and LJ (ε12=6) systems when mass=100. Note that the WCA

system shows larger decoupling of the solute-solvent dynamics (Table 1). However if we compare

the P (log10(r, t)) plots (Fig ?? and ??) we find that the LJ system, which also has intermittency

in its dynamics, shows larger departure from Gaussianity. Along with this we find that for the

LJ system the non-Gaussian nature also persists for longer times. Thus the study reveals that

intermittency in the solute dynamics provides a dominant contribution to the non-Gaussian nature

of Gs(r, t).

However, note that just attractive solute-solvent interaction is not sufficient to give rise to

intermittency. For small ε12 values although there is decoupling but the interaction is not strong

enough to produce intermittency. For large ε12 values the solute dynamics cannot decouple from

the solvent dynamics. Only for intermediate ε12 values the strength of the interaction is such that

there is enough decoupling between the solute and the solvent dynamics and also enough attraction

between the two species.
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5.4 Conclusion

When the dynamics of a particle is Brownian it is supposed to have Gaussian distribution of its

displacement probability (van Hove correlation function) which eventually gives rise to Fickian

diffusion where the MSD remains linear with time. However there are systems where although the

diffusion is Fickian the distribution of displacement probability is non-Gaussian. This anomaly has

been explained as an effect of different phenomena like weak ergodicity breaking [? ], decoupling

of solute-solvent motion [? ? ] and diffusing diffusivity [? ? ]. In order to further understand this

Fickian but non-Gaussian dynamics in this work we study a wide range of solute-solvent systems

where the solute size is kept small so that it can explore the inter solvent cage and mimic the

diffusion in a crowded environment. The mass of the solvent is varied to study the effect of the

solute-solvent dynamical decoupling on the solute motion and the solute-solvent interaction is also

varied to study the effect of it on the solute dynamics.

We find that similar to that reported earlier as the decoupling of the solute and the solvent

dynamics increases the van Hove correlation function becomes more non-Gaussian [? ? ]. However,

for repulsive and weak attractive values of solute-solvent interaction the dynamics becomes Gaussian

when averaged over long enough time so that the solute explores all possible solvent environments.

For these systems the origin of the non-Gaussian dynamics is the solute-solvent decoupling. We

find that apart from this there is at least one more phenomena, the intermittency in the solute

dynamics, which gives rise to non-Gaussian nature. Intermittency in particle dynamics, also giving

rise to non-Gaussian dynamics, is usually reported in supercooled liquids [? ]. The origin of this

intermittency is the formation of dynamically heterogeneous domains. In our system there is no such

domain formation and the intermittency is an effect of attractive interaction between the solute and

the solvent. Surprisingly the intermittency is maximum for intermediate solute-solvent attraction

and reduces substantially when the solute-solvent attraction is decreased or increased. The reason

behind this is to produce intermittency the attraction on one hand should be weak enough to have

decoupling in the solute-solvent dynamics and on the other hand strong enough to produce sticky

points in the solute path. In case of intermittent dynamics the non-Gaussian behaviour persists over

a longer time.

Thus our study reveals that for diffusion in a crowded environment for certain range of attractive
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interaction between the solute and the solvent it is possible to have intermittency in the dynamics

and this can play a dominant role in giving rise to the non-Gaussian but Fickian dynamics.
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“My long two-pointed ladder’s sticking

through a tree

Toward heaven still,

And there’s a barrel that I didn’t fill

Beside it, and there may be two or three

Apples I didn’t pick upon some bough.

But I am done with apple-picking now. ”

Robert Frost,

After Apple-Picking

The anomalies in diffusion still remains a problem yet to be completely solved. We have learned

about size dependence in anomalous diffusion in ionic[? ? ? ? ? ? ? ? ? ? ? ] and neutral

solutes[? ? ? ? ? ? ? ]. Besides these works, numerous theories have been proposed to explain

the non-Gaussianity of the van Hove function or distribution of displacement when the diffusion is

fickian [? ? ? ? ].

In the first chapter we have introduced some of the important concepts and the existing problems

regarding different types of diffusion anomalies.

We have discussed all the methods and mathematical tools used in our work in the next chapter.

In the third chapter we have introduced a model to predict the diffusion of neutral solutes which

are smaller in size than the solvent and interacts with the solvent via a repulsive potential. We have

shown how the departure from SE prediction changes with change in solute-solvent interaction. We

have predicted the formation of transient solvent cages and explained how the timescale of these

transient cages contributes to the diffusion anomaly. We have modeled the diffusion of the solute in

the solvent as a combination of viscous diffusion and cage diffusion and have shown that the model

correctly predicts the contribution of these two diffusions in different environments. Our study

shows that decoupling between solute solvent dynamics is essential for the solvent to explore these

cages. The more stable the cages appears to the solvent, the more the cage diffusion contributes to

the total.

After studying the anomalous diffusion for neutral solutes, in the following chapter, we have

introduced the Coulombic interaction in our system and we have elaborated the discussion about

the trend of size dependency of diffusion anomaly for the charged solutes in water.
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In this work, we have extensively studied the role of interplay between Coulombic and LJ

interaction potential in explaining this diffusion anomaly. We have shown that as a function of

solute size there are two different regimes, one where the interaction is dominated by the LJ potential

and the other where the interaction is dominated by the Coulombic potential, We have also discussed

the orientation of water molecules around the solute particles of various charge and size. We have

also checked the stability of the solvation shell and it’s dependency on the solute size. Both the

orientation and the solvent shell stability predicted the presence of two different regimes which are

dominated by the two different kinds of interactions.

Similarly, to identify the solutes in the LJ dominated regime as water structure breaker we need

to study the water dynamics as a function of solute concentration, which can be taken up in the

future.

When the dynamics of a particle is Brownian it is supposed to have Gaussian distribution of its

displacement probability (van Hove correlation function) which eventually gives rise to Fickian

diffusion where the MSD remains linear with time. However there are systems where although the

diffusion is Fickian the distribution of displacement probability is non-Gaussian. This anomaly has

been explained as an effect of different phenomena like weak ergodicity breaking [? ], decoupling

of solute-solvent motion [? ? ] and diffusing diffusivity [? ? ].

However, in our study, we have shown that for repulsive and weak attractive values of solute-

solvent interaction the dynamics becomes Gaussian when averaged over long enough time so that

all possible solvent environments are explored by the solutes. For these systems, the origin of the

non-Gaussian dynamics is the solute-solvent decoupling. We find that, apart from the solute-solvent

decoupling, there is at least one more phenomena, the intermittency in the solute dynamics, which

gives rise to non-Gaussian nature. Unlike in supercooled liquids the origin of this intermittency is

not the formation of dynamically heterogeneous domains. We show that this intermittency arises due

to solute-solvent interaction and is maximum for intermediate solute-solvent attraction. This study

can be realized in more realistic systems like bio-polymer filaments, lipids and other biological

systems where there is a range of interactions present between the tracer particle and the media.

Diffusion of smaller particles in a crowded environment is potentially much larger topic to dis-

cuss. How pesticides or herbicides goes through the pores in the soil and mix with the groundwater,
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how a sunscreen lotion takes care of our skin or how a drug molecule enters into a cell through the

lipid bilayer, all these real life fundamental problems are commonly associated with a single topic,

dynamics of a tracer particle when the solvent viscosity is high. From diffusion in carbon nanotube

to diffusion through zeolite, the SE relation is either valid or it is not followed. In this entire work,

we tried to predict and measure all different types of diffusion anomalies. However, I still believe it

is not enough. There are more colorful doors to be opened.
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