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Summary 

The immune system forms the sentinel of our body that protects it from infectious 

disease and cancer. However, the complexity of the immune regulatory network that 

governs the differential responses of T-cells under varied antigenic challenges, 

leading to immune-suppression, remains elusive through experimental approaches. 

In order to unveil these intricate biological regulatory mechanisms underlying 

immune-suppression during Cancer and Leishmaniasis (commonly known as Kala 

Azar, a Neglected Tropical Disease caused by the protozoan parasite Leishmania sp.), 

we have used various mathematical and computational approaches, to identify the 

regulatory modules of the immunological network to stimulate T cell effector 

functions against Leishmaniasis and Cancer, understand the role of TH cell Plasticity/ 

differentiation for the control disease progression and design treatment strategies to 

enhance immune clearance and disease prognosis. 

Manual reconstruction of T-cell pathway and Boolean Modelling was used to gain a 

holistic understanding of the co-receptor mediated pathways. Multiple in silico 

knock-out analysis followed by synchronous and asynchronous model simulations 

revealed minimal combination of proteins (TCR:CD3, CRAC and OX40) that is 

absolutely essential to achieve sustained T-cell proliferation and activation of 

effector functions. Co-receptor molecules CD27 and LTBR were identified to play 

major role in the regulation of Interleukin expression during antigenic challenges.  

To study T-cell immune-suppression during Cutaneous Leishmaniasis and identify 

signalling routes regulating the switching of T-cell responses from healing TH1 to 

non-healing TH2 response, the T-cell model was further integrated with infected APC 

(Antigen Presentation Cell) pathways. Here, for the first time, we report that 

Leishmania infection induced IFN-β contributes to TH1/TH2 switching response via 

TYK2-mediated pathway. Two novel combinations have been proposed that can 

trigger healing immune responses for complete removal of infection. Boolean 
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attractor analysis was performed to compare the efficacy of each combination. Here, 

it was observed targeting TLR3 and SHP2 produced anti-Leishmania response better 

than conventional IFN-γ or IL12 treatment. A putative host-pathogen interactome 

between Leishmania donovani and Human has also been predicted using Interolog 

and Domain mapping strategies. Network analysis revealed key signalling routes 

mediating the host pathogen interaction. A novel combination of protein targets 

(UBC+1433Z+HS90A) has also been identified which governs the host immune 

response, parasite survival strategies and visceralization of the infection during 

Visceral Leishmaniasis. 

To study the tumor-immune interaction, an ODE based mathematical model has 

been developed related to the Seed Soil hypothesis of tumor development that gives 

rise to tumor heterogeneity. Model analysis revealed as the differentiation of Cancer 

Stem Cells (CSC) shifts from symmetric to asymmetric pattern, resistant cancer cells 

start accumulating in the tumor that makes it refractory to therapeutic interventions. 

Three novel feedback regulations governing tumor progression, resistance and 

relapse have been proposed in the study. The model has been further used to 

explore the failure of conventional treatment strategies and propose improvised 

combinatorial protocol that shows promising results in suppressing resistant tumor 

for better Cancer remission.  

The outcome of the research presented in the thesis cater to the experimental 

biologists and clinicians by providing novel target molecules and treatment 

strategies for infectious diseases and Cancer, while the mathematical models 

developed in the study acts as tools for target identification, optimization of drug 

dosage and time schedules for designing advanced treatment protocols in future. 
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CHAPTER 1 

GENERAL INTRODUCTION AND SCOPE OF THE THESIS 

1.1. Background 

The immune system forms the defence mechanism of the body that protects it from 

various bacterial or viral infectious diseases and cancer. The eukaryotic immune 

system is formed of a network of closely interacting cells that are capable of 

detecting foreign non-self molecules (proteins, toxins or other chemical substances) 

in the body called ‘antigens’ and undergoing differentiation into specialized 

activated forms, known as the Effector Cells that mediate an immune response. The 

Adaptive Immune system, composed mainly of the T and B lymphocytes is 

responsible for maintaining this defence mechanism of the body as it helps to 

generate immune responses specific to the type of antigenic challenge that the body 

encounters [1]. The Helper T-cells (TH) forms the central orchestrators of the entire 

immune-regulatory network. They have been known to have essential roles in the 

recognition of the antigen when presented on the surface of the Antigen Presenting 

Cells (APC), e.g. Macrophages, Dendritic Cells (DC), etc., and secrete cytokines that 

aid in the proliferation of the Cytotoxic T (TC) cells and B-cells, thereby playing an 

active role in stimulating both the humoral as well as the cell mediated immunity [2]. 

The effector functions of this immune system are mediated mainly by the cytokines 

and other microbicidal molecules secreted by these APCs and the T lymphocytes as a 

result of the activation of complex biochemical signalling pathways inside the 

immune cells. The TH cells themselves produce a high amount of effector molecules 

(e.g. cytokines) via TCR and co-receptor mediated pathways that mediate apoptosis 

of infected and cancerous cells [3,4]. However, during Chronic Infection or Cancer, 

this immune-surveillance mechanism of the body is subdued by the virtue of an 

immune-suppressive micro-environmental condition that leads to altered immune 

Bulk of this chapter has been taken verbatim from the Book Chapter: Bhowmick R, Ganguli P, Sarkar RR (2020) T-Cell 
Activation and Differentiation: Role of Signalling and Metabolic Cross-Talk. (Chapter 6) In: Singh S. (eds) Systems and 
Synthetic Immunology. Springer, Singapore, pp:153-182, Online ISBN: 978-981-15-3350-1, DOI: 10.1007/978-981-15-
3350-1_6 
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signalling pathways regulating the activation and differentiation of the T cells and 

Macrophages, which leads to immune-tolerance. This delicate balance between the 

immune-surveillance and immune-tolerance regulates the outcome of any disease. 

The changes in the signalling pathways and the gene regulatory network of these 

cells during infectious diseases or cancer is manifested in the form of T-cell anergy, 

reduced production of effector molecules, an altered pattern in the secretion of 

cytokines and generation of immune cell subtypes responsible for immune-

suppression and further progression of the disease. Hence, in order to identify the 

key regulators of T cell hypo-responsiveness, it is important to delve deep into the 

study of the biochemical pathways to unveil the molecular mechanisms responsible 

for the changes in the immune response as well as design treatment strategies for 

controlling the disease mediated immune suppression.  

1.2. Cell Signalling Pathways regulates Differentiation and Effector 
Function of Immune Cells 

The immune responses or effector functions generated in the body on encountering a 

foreign antigen by the activated immune cells is regulated by a complex network of 

biochemical reactions that translates the cues from the diseased/infected 

microenvironment to the naïve T-cells and Macrophages. These intracellular and 

intercellular signal transduction pathways and their crosstalks activate specific 

transcription factors to produce effector molecules such as Cytokines (e.g. 

Interleukins (IL), Interferons (IFN) etc.), Chemokines and other microbicidal 

molecules. Depending on the cue and the polarizing signal that the immune cell 

receives from its microenvironment, in the form of co-stimulatory signals, polarizing 

cytokine milieu, and type and strength of the antigenic stimulus, various 

intracellular signalling pathways, such as the PI3K-AKT, JAK-STAT, Toll-like 

Receptor (TLR) pathways, TNF pathways, etc. as well as their cross-talking 

pathways, are triggered inside the cell that regulates its differentiation and effector 
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function specific to the antigenic challenge. The activation of these intracellular 

signalling pathways is intricately regulated by the various co-receptor molecules that 

are present on the surface of the Antigen Presenting Cells and the T-lymphocytes 

and the paracrine intercellular signalling cross-talks existing among them. The 

differential regulation of these signalling cascades culminates in the altered 

regulation of the sub-type specific transcription factors that lead to differentiation of 

the immune cells into classically activated subtypes or alternatively activated 

subtypes of the immune cells that have different effector functions and phenotypic 

responses. 

1.3. Activation and Polarization of Antigen Presenting Cells 

In order to elicit an effective immune response that is capable of eliminating the 

antigenic challenge encountered by the body, it is essential to first detect its presence 

as ‘non-self’. The Helper T-cells (TH) cells cannot directly recognize the presence of 

the antigens in the body. This antigen recognition function is carried out by 

phagocytic cells of Innate Immunity that act as Professional Antigen Presenting Cells 

(e.g. Macrophages, B-cells, Dendritic Cells). These cells can recognize the Pathogen-

associated molecular patterns (PAMPs) present on the surface of the invaded 

microbes and other exogenous and endogenous ligands via complementary 

pattern recognition receptors (PRRs) present on their surface such as Toll-Like 

Receptors (TLR), Type 3 Complement Receptor (CR3), Scavenger Receptors (SR), 

Mannose Receptor (MR), etc [5]. The APCs then engulf the antigenic molecule, 

process it via the Antigen Processing Pathway and present it on the cell surface along 

with the Major Histocompatibilty II (MHC II) complex that can be recognized by the 

T-cell Receptor (TCR).   

The Dendritic Cells and Macrophages display a plethora of TLRs on its surface that 

triggers signal transduction pathways in its downstream. TLR1, TLR2, TLR4, TLR5, 
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and TLR6 are located on the cell surface and recognize bacterial components [6,7]. 

On the other hand TLR3, TLR7, TLR8, and TLR 9 are found mostly on membranes of 

the endocytic compartments [7,8]. The signalling pathways triggered by the different 

TLRs by recruiting the adaptor molecules MyD88, TIRAP (MAL), TRIF (TICAM1), 

and TRAM in various combinations, culminates in the activation of the transcription 

factors NF-κB and AP-1, that leads to the production of inflammatory cytokines and 

chemokines. These TLRs work in a concerted way with themselves (e.g. TLR2 form 

heterodimers with TLR6 and TLR1) as well as with other PRRs such as CD36 and 

Dectin-1 to modulate the innate immune response and secretion of pro-

inflammatory cytokines by the downstream activation of various signalling pathway 

cross-talks according to the type of antigenic challenge detected [8-10]. This classical 

activation pathway leads to the formation of M1 macrophages with pro-

inflammatory functions and high microbicidal activities that is characterised by the 

secretion of IFN-γ, IL-12, TNF-α and generation of Reactive Oxygen Species (ROS) 

and Reactive Nitrogen Species (RNS) [11].  

On the other hand, the Alternate Activation pathways triggered by the IL-4 and IL-

13 pathways produce polarized M2 Macrophages that have anti-inflammatory 

functions with essential roles in tissue repair. While, the early source of IL-4 remains 

to be Basophils and mast cells, due to tissue injury, these cells can also produce IL-4 

during some fungal or parasitic infections in response to chitin, a structural 

biopolymer [12]. These alternatively activated M2 Macrophages are often harmful to 

the host as they suppress the production of the pro-inflammatory cytokines and 

hinder the clearance of the infection. In Cancer, the Tumor Associated Macrophages 

(TAM) having M2 characteristics also have proven to aid in the further progression 

of the tumor. A comprehensive review of the Macrophage activation, polarization 

and effector functions have been discussed by Mosser and Edwards [12]. 
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In addition to the functions of the innate immunity, the Macrophages and Dendritic 

Cells also play a crucial role in recruiting the components of adaptive immunity. For 

example, the M1 Macrophages produce chemokines CXCL9, CXCL10, and CXCL11 

that bind to the CXCR3 receptor aiding the trafficking of CD4+ Helper T cells, 

CD8+ Cytotoxic T cells, and the Natural Killer (NK) cells that plays a pivotal role in 

the elimination of infected and cancerous cells [11,13]. Thereafter the cytokines 

secreted by these Macrophages and Dendritic cells create a polarizing 

microenvironment for the activation and differentiation of the TH-cell into specific 

sub-types that is essential for generating the required immune response. 

1.4. Micro-environmental Cues for T-Cell Activation and Diversity  

The T lymphocytes respond to the presence of the MHC bound antigen complex 

(Ag-MHC) by the activation of the αβ T-cell receptors (TCRs) mediated signalling 

pathway. The MHC molecules exist in two forms, viz. Class I and Class II Major 

Histocompatibilty Complexes. In contrast to the MHC-class-II molecule, which is 

only expressed by professional APCs like Macrophages and Dendritic Cells, the 

MHC-class-I is expressed by all nucleated cells including the APCs. For optimal 

binding of the TCR to the Ag-MHC complex, the T cells require the additional 

binding of the co-receptors CD8 and CD4 to the MHC-class-I or the MHC-class-II 

molecules respectively. While the immature thymoctes of Lymphoid origin, called 

the Double Positive Cells, express both CD4 and CD8 molecules, they gradually 

differentiate into the CD8+ Cytotoxic (Tc) and the CD4+ Helper TH Cells having 

distinct effector functions [14].  

1.4.1. CD4+ Helper T-cell (TH) 

The CD4+ Helper T-cells (TH) display high plasticity that helps them to differentiate 

into specialized TH cells according to the type of the antigenic challenge and the 

micro-environmental conditions (Figure 1). The early events of the T-cell activation 
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play a major role in the determination of the pattern of differentiation of the naïve 

TH-cell. The micro-environmental cues, in the form of cytokines, activate the 

signalling pathways of the TH cells that eventually lead to the changes at the gene-

regulatory levels [15]. The selective activation of specific transcription factors 

mediates the differentiation of the naïve cells into specialized CD4+ TH effector cells, 

viz. TH1, TH2, TH17, etc. (Table 1) [16]. Additionally, another type of CD4+ TH cell called 

the Regulatory T cells (iTreg) has a role in maintaining the TH cell homeostasis.  

 

Figure 1: Polarizing signal and transcription factors that dictate TH cell differentiation, 
proliferation and effector function. Signature cytokine profiles of each sub-set are also shown. 

The mechanism of T-cell differentiation is governed initially by the strength of 

stimulus that the TCR receives from the APC. In vitro experiments have revealed that 

a stimulus of a lower strength induces the expression of the GATA-3 transcription 

factor, the master regulator of TH2 cells. Simultaneously, the expression of the IL2 

cytokine activates STAT5 that synergizes with GATA-3 to transcribe IL-4 gene that 

eventually leads to the differentiation of the naïve cell into the TH2 subtype [17]. On 

the other hand, a stronger stimulus favours the activation of the T-bet transcription 

factor that helps in the differentiation into the TH1 subtype and triggers the 

production of IFN-γ and IL12 cytokines. The differentiation of naive CD4+ T cells 
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into TH17 cells is induced by TGF-β/IL-6 in combination with TCR stimulation. This 

triggers the production of IL-23R that induces the transcription factor RORγt, as well 

as produce IL-17, and IL-21. The STAT-3 protein plays an important role in the 

production of the TH17 effector molecules and requires the activation of the ICOS co-

stimulatory pathway. However, under the TH17 inducing conditions, the presence of 

IL2/STAT5 induces the expression of the Foxp3 transcription factor that leads to the 

differentiation of the naïve cells into iTreg cells. The strength of TCR stimulus also 

plays a role in the TH17/iTreg determination process, where it has been observed that 

a weak stimulus favour the differentiation in iTreg cells that are known to have a 

role in immune-suppression [17]. 

Each of the TH sub-type has a specific effector function to perform [15-18]. A balance 

between all the TH cell subtypes is necessary for the proper functioning of the 

immune system. The effector molecules, in the form of Interleukins, Interferons, 

Tumor Necrosis Factor, etc., produced by these diverse groups of immune cells, 

maintain the integrity of the immune-regulatory network (Table 1). However, 

during any disease condition, this defence mechanism gets subdued. 

1.4.2. CD8+ Cytotoxic T-cell (TC) 

The CD8+ Cytotoxic T-cell (Tc) recognizes the presence of intracellular pathogens 

and transformed cancerous by the MHC Class I molecule that combines with the 

antigenic peptide and is presented on the surface of the target cell. The Tc cells bind 

to these targets cells via the CD8 co-receptor that activates distinct signalling 

pathways and effector functions of the Tc cells. The Tc cells induce apoptosis of the 

target cells principally by three mechanisms [19]. The first is the secretion of 

cytokines (e.g. TNF-α and IFN-γ) having anti-tumour and anti-viral microbial 

effects. The second mechanism is the production of and release of cytotoxic granules 

containing the enzymes Perforin, and Granzymes [20]. While the Perforin forms a 
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pore in the membrane of the target cell, the granzymes, which are serine proteases, 

enter the infected or malignant cell. The Granzymes then cleave the proteins inside 

the cell and induces apoptosis of the target cell. The Tc cells, when activated can also 

express Fas ligand, which binds to its receptor, Fas, on the surface of the target cell 

and activate the caspase signalling cascade, which results in apoptosis of the target 

cell [20]. These CD8+ cytotoxic cells thus play important role in administration of 

immunotherapy against different diseases. 

Table 1: Summary of TH cell diversity, polarizing factors and effector functions  

CD4+  
Subset 

Polarizing 
Cytokines 

Transcription 
factors 

Inhibitory 
transcription 

factors 
Effector Functions 

TH1 IL12, IFNγ 
T bet, STAT1, 
STAT4, Runx 3, 
Eomes, Hlx 

GATA3 

Cell mediated immunity against 
intracellular pathogens and 
phagocyte-dependent protective 
responses 

TH2 IL4, IL2 

GATA3, STAT6, 
STAT5, STAT3, 
Gfi-1, c-Maf, 
IRF4 

T-bet, Runx3 

Immune response against 
extracellular parasites, bacteria, 
allergens, and toxins. They help in 
activation and maintenance of the 
humoral, or antibody-mediated, 
immune response and promote 
tissue repair 

TH17 

IL6, IL 21, 
IL 23, TGF-
β 

RORγt, STAT3, 
RORα, Runx1, 
Batf, IRF4, AHR 

T-bet+ Runx1, 
Smad3 
Runx1+FOXP3 

Immune response against bacterial 
and fungal Infection 

Tfh IL6, IL21 Bcl6, STAT3 Not known 
Help B cells produce antibody 
against foreign pathogens 

iTreg TGF-β, IL2 
FOXP3, Smad2, 
Smad3, STAT5, 
NFAT 

Not known Suppression of Immune Response 

TH9 TGF-β, IL4 IRF4 Not known 

Promotes mast cell and T cell 
growth, stimulates mucous secretion 
to enhance Innate Immunity. Plays a 
role in allergic responses 

Tr1 IL27, IL10 c-Maf, AhR Not known Suppression of T effector cells 
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1.5. Immune responses for Infectious and Non-Infectious Diseases 

Changes in the micro-environmental conditions lead to alterations in the biochemical 

reaction network that disrupts the balance between the effector cell populations and 

favours the progression of the disease. This immune-suppression is observed very 

frequently in the cases of chronic infections (e.g., Chronic Leishmania infection) and 

Cancer. The following sections deal with the changes in the immune-regulatory 

network during these diseased conditions.  

1.5.1. Immune Responses during Leishmaniasis 

The immune responses generated during infectious diseases have baffled 

immunologists since ages [21]. On one hand, while in some cases, it has been 

observed that our immune system has been capable of protecting our body from 

these invading pathogens, very often these infections have led to serious diseased 

conditions where the immune responses generated have only favoured the 

continued survival of the pathogen in our body [22].  

Cell-mediated immunity (CMI), responsible for confronting the infections caused 

due to invasion of intra-cellular pathogens, primarily involves the interactions of the 

phagocytic Antigen Presenting Cells (APCs) and the T-lymphocytes. This leads to 

the activation of a series of intra-cellular and inter-cellular biochemical signalling 

processes, which culminates into synthesis of certain diffusible effector molecules 

that includes proteins (mostly the cytokines) and microbicidal molecules (e.g. Nitric 

Oxide) helping in the clearance of the disease [23]. However, the activities of this 

defense mechanism are severely compromised during Leishmaniasis, a neglected 

tropical disease, caused due to infection by the protozoan parasites of the genus 

Leishmania. This is transmitted to the human through the infected bites of the 

Phlebotomine sand flies during their blood meal [23]. The promastigote form of the 

parasite once injected into the human host, is engulfed by the APC (macrophages 
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and dendritic cells) to form a phagolysosome, where it differentiates into its 

amastigote form and takes control of its entire cellular machinery in a way that 

reduces the immuno-competency of the immune cells thereby hindering the body's 

natural parasite clearance process (Figure 2 a) [24]. 

During Leishmania infection, the T-lymphocytes elicits either of the two types of 

immune responses, viz. healing and non-healing responses, depending on the 

parasite load and the host immunity [25]. The healing response is obtained in case of 

low parasitic load, in which a pronounced Type-I helper T-cell (or TH1) response 

occurs due to up-regulation of the TH1 cytokines, such as the IFN-γ from the 

stimulated T-cells, and thus naturally clears the pathogen from the system [23,26]. 

On the other hand, higher pathogen load gives rise to a non-healing response in 

which an up-regulation of the TH2 cytokines (e.g. IL10) is observed, which favours 

the persistence of the Leishmania. Simultaneously, during this non-healing response, 

the production of the protective TH1 cytokines, such as IL12, and the microbicidal 

molecules, such as Nitric Oxide (NO) is also down-regulated, thus creating an 

immune-suppressed condition suitable for further progression of the disease [27]. 

This TH1/TH2 immune response switching paradigm has perplexed both clinicians 

and immunologists and calls for an in-depth analysis of the biochemical pathway to 

unravel the mysteries of this healing versus non-healing immune responses 

generated during Leishmaniasis or Kala-azar that threaten the lives of millions in the 

tropical and sub-tropical countries ranging from the rainforests in Central and South 

America to deserts in western Asia and the Middle East [WHO, 2018]. Depending on 

the species of Leishmania infecting the individual and the resistance offered to the 

parasite by the host immune system, Leishmaniasis manifests itself as Cutaneous, 

Muco-cutaneous and Visceral forms. The immune responses generated during the 

disease vary according to the severity of the disease and the mechanism of immune 

modulation by the invading pathogen [21]. In this context, immune responses 
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during Leishmaniasis can be studied from two different perspectives, viz., species 

specific immune responses and depending on the severity of the disease, i.e., Acute 

and Chronic Leishmania infection (Figure 2 b). 

 

Figure 2: Immune Responses generated during Leishmania infection (a) Alterations in signalling 
pathways in the macrophages by the antigen molecules of Leishmania; (b) Changes in the immune 
responses depending on the infecting species and the severity of the infection. 
 

1.5.1.1. Species specific responses 

Cutaneous Leishmaniasis (CL), caused by the species Leishmania major, Leishmania 

tropica, and Leishmania aethiopica, is characterized by the formation of ulcers on the 

skin, and disfiguring lesions on the nose, mouth and lips. However, the infection is 

mostly restricted to the skin. This is a less severe form of the disease and may be 

healed gradually by the immune mechanisms of our body [28].  The visceral form of 

Leishmaniasis, caused by the species such as Leishmania infantum and Leishmania 

donovani, is the most severe form of the disease characterized by the spread of the 

infection to the visceral organs like the liver and spleen, eventually leading to death. 

The Muco-cutaneous (MCL) and Visceral Leishmaniasis (VL) damage the mucosal 

lining of our body and invades the visceral organs and is highly fatal if left 

untreated. The antigenic challenge posed to the host by these different Leishmania 

species differs, giving rise to changes in expression of macrophage proteins, as seen 

in visceral versus cutaneous infections [29]. Through in-vivo experiments, certain 

Bulk of this chapter has been taken verbatim from previously published article: Mahanta A#, Ganguli P#, Barah P, 
Sarkar RR, Sarmah N, Phukan S, Bora M and Baruah S, (2018). Integrative approaches to understand the mastery 
in manipulation of host cytokine networks by protozoan parasites with emphasis on Plasmodium and Leishmania 
species. Frontiers in Immunology, 9: 296, DOI: 10.3389/fimmu.2018.00296 (#Equal First Authors) 
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proteins have been identified in the visceral species alone, which when transfected 

into the cutaneous species, leads to manifestation of VL [30]. These proteins are thus 

characterized as Visceralizing Factor for promoting metastasis of the infected 

macrophages from cutaneous regions to the visceral organs [29]. In this context, 

Leishmania proteins such as A2, have been identified as the causal proteins for 

visceral infections [31,32], however, there are few studies that elucidate the 

mechanisms by which the host pathway is altered. The difference in macrophage 

protein expression profile, e.g. increased production of COX2 and PGE2 production 

in the case of L. donovani infection (as opposed to L. major) [33], indicates different 

Leishmania species selectively activates or inhibits different host pathways due to 

differences in the antigenic challenge. Also, L. donovani, which is known to cause VL, 

may in rare cases give rise to CL [29]. This behaviour may be attributed to host’s 

resistance to the disease which restricts the spread of infection to visceral organs and 

keeps it localized to cutaneous regions [34]. From the host perspective, many groups 

have identified the effect of Leishmania antigen molecules on host signalling 

pathways to inhibit the functions of the Macrophage and subvert the host immune 

response [35]. Leishmania also devices regulatory mechanism to inhibit the ability of 

the host cell for antigen presentation to T-cells [35]. At the same time, they also 

modulate the activation of the co-stimulatory signalling pathways [36]. The visceral 

species of Leishmania express certain unique genes, LinJ.15.0900, LinJ.28.0340, 

LinJ.36.2480 and LinJ.22.0670, which when inserted into the cutaneous species can 

cause infection to visceral organs, thereby signifying their role in visceralization of 

the infection [29,31,37,38]. The increased synthesis of PGE2 in L. donovani infected 

macrophages has been shown to contribute to parasite survival and visceralization 

[32].  

Several groups of experimental biologists have studied the effect of Leishmania 

infection on macrophage expression profiles [39], the effect of altered signalling 

pathways on T cell responses (36), and the effect of drugs and immunostimulators 
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on the progression of VL [40]. However, the clinical manifestation of the disease also 

depends on the severity of the infection and host immune defences. 

1.5.1.2. Acute Infection 

During the invasion of Leishmania parasites into the antigen presenting cells of the 

host, the coat proteins of Leishmania interact with the Toll-like-receptor proteins 

present on the macrophages membrane [11]. The activation of the TLRs triggers the 

downstream signalling pathways such as the RAS-RAF mediated MAPK pathway, 

canonical and non-canonical NFKB pathway, JAK-STAT pathway, PI3K-PLC 

Gamma pathway and the JNK pathway [12]. Subsequently, several transcription 

factors, e.g. ERK1/2, NFKB, NFAT, AP1, STAT3, etc. gets activated in the nucleus 

that initiates the synthesis and secretion of several cytokines, growth factors, 

chemokines and anti-microbicidal molecules such as Nitric Oxide, which are 

responsible for a robust host immune responses [13].  During acute infection, the 

immune signalling pathways activated in the macrophages leads to the synthesis of 

an increased amount of the IL-12 cytokine. Under such micro-environmental 

conditions, the naïve T-cells differentiates into the TH1 cells that produce IFN-γ. This 

healing TH1 response helps in the elimination of the infected cells in the host. 

1.5.1.3. Chronic Infection 

During chronic infection, the antigenic molecules of the Leishmania parasite activate 

the phosphatases proteins in the macrophage, eg. SHP-1 and PTP1B, which leads to 

the dephosphorylation and deactivation of selected signalling pathways [14]. This 

leads to down-regulation of expression of iNOS and Nitric Oxide (NO) in the 

infected macrophages, thereby making the cell incompetent of performing its 

microbicidal functions, and creating an immune-suppressed condition, which is 

favourable for the continued survival of the pathogen inside APC.  Simultaneously, 

the production of the cytokines such as IL-12 and TNF-α gets severely reduced [15]. 
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Such changes in the cytokine expression pattern of the antigen presenting cells leads 

to the alteration of the phenotypic responses of the T-cells that now start showing a 

bias towards the non-healing TH2 immune response that is characterized by an 

increased production of IL-4, IL-10, IL-13 and TGF-β cytokines [16], and the 

suppression of IFN-γ that regulates the healing TH1 response  [10]. The transcription 

factors T-bet and GATA3 play a pivotal role in the regulation of the TH1/TH2 ratio 

during the infection [17]. Studies reveal to ensure its continued survival inside the 

host, Leishmania also inhibits the ability of the host cell for antigen presentation to 

other immune cells, by repressing MHC class II gene expression [18] and modulating 

the interaction of co-stimulatory molecules B7-1/CD28 [19] and CD40/CD40L [20].  

1.5.2. Immune Responses during Cancer 

In contrast to infectious diseases, the immune response generated in Cancer involves 

the recognition of the self-antigens as non-self-entities. These Cancer Antigens can be 

categorized into the following classes, viz. (a) Differentiation Antigens, e.g., 

melanocyte differentiation antigens, Melan-A/MART-1, tyrosinase, gp-100; (b) 

Mutational Antigens, e.g., abnormal forms of p53; (c) Overexpressed/Amplified 

Antigens, e.g., HER-2/neu; (d) Viral Antigens, e.g., EBV and HPV; and (e) Cancer-

Testis (CT) Antigens [41]. Lack of expression of any of these antigen molecules on 

the cell-surface may help the tumor in masquerading as a normal cell, thereby 

escaping detection by naïve T-cells. This is one of the primary reasons that a tumor 

with low antigenicity is able to escape immune-surveillance, whereas an aggressive 

tumor with higher number of mutations can be easily detected by the immune cells 

[42].  Once activated, the T-cell tries to kill the cancer cells. This phase called the 

Elimination phase of tumor-immune interaction, where the components of both the 

innate and adaptive immunity attack the tumor cell with an enhanced production of 

IFNγ, perforin and granzymes [41]. The CD8+ Cytotoxic T cells and the TH1 helper 

cell are the principal mediators of this anti-tumor immune response. 
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However, the immune cells face many challenges in the immune-suppressive 

microenvironment created by the tumor that resists the elimination of the 

transformed cells [43]. The elimination phase is followed by a period of Equilibrium 

and Escape phases, where the Cancer cells take over the immune system and 

synthesize molecules that suppress the proliferation of the effector cells. These three 

phases of tumor-immune interaction, collectively termed as Tumor Immuno-editing, 

has been an area of active research for the past few years that have revealed the 

importance of the tumor microenvironment in regulation of Cancer progression [44]. 

1.5.2.1. The Seed and Soil Hypothesis of Tumor Development 

A malignant tumor is formed of heterogeneous population of cancerous cells. 

According to the Cancer Stem Cell (CSC) Hypothesis, a tumor of heterogeneous cells 

is formed from a distinct group of cells having stem-like properties that are able to 

differentiate and renew for an indefinite period of time [45]. Popularly referred to as 

the Seed and Soil hypothesis, researchers believe that the CSCs acts like ‘seed’ and 

form the tumor initiating population of cells, which is responsible for the growth, 

sustenance, metastasis and relapse of Cancer [46]. These CSCs have the ability to 

differentiate both symmetrically and asymmetrically to form the terminally 

differentiated cancer cells as well as renew the pool of CSCs [47]. However, during 

proliferation, various extrinsic and intrinsic environmental factors give rise to 

random mutational events, such as, chromosomal breakage, translocation, aberrant 

signalling events and drug efflux, which are responsible for transformation and 

adaptation of the cell to resist the effect of drug and conventional therapeutic 

strategies [48]. This results in the formation of distinct cellular sub-populations that 

are drug resistant and impair the treatment of cancer. 

On the other hand, the tumor microenvironment, composed mainly of the immune 

cells and the cytokines, plays a crucial role in determining cancer prognosis [44]. As 

the tumor develops, each of the tumor cell sub-populations starts manipulating the 
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microenvironment and induces the production of pro-tumorigenic molecules. The 

CSCs and the Cancer cells induce the production of immune-modulatory molecules 

such as IL-10, IL-13 and TGF-β that are conducive to the proliferation of the M2-

Tumor Associated Macrophages (M2-TAM), the Type II T-helper (TH2) cells and the 

T-regulatory (Treg) cells [49,50]. The IL-10 mediated positive feedback loop between 

the tumor and the M2-TAMs helps in the rapid proliferation of the tumor sub-

populations and the progression of the disease [51]. The CSCs also expresses high 

levels of co-inhibitory molecule PD-L1 that inhibit the activation of Cytotoxic T (Tc) 

cells [52]. Additionally, the CSC also tries to evade recognition by the immune cell 

by suppressing the expression of Major Histocompatibility Complex (MHC) by the 

macrophage cells in the tumor microenvironment. This is achieved by the release of 

exosomal miRNAs, such as miR-9 and miR-21, into the microenvironment by the 

tumor that is taken up by the immune cells, mediating changes in the cytokine 

expression pattern, antigen-recognition and immune responses [53,54]. Along with 

these strategies of immune evasion, CSC also secretes VEGF, a growth factor that 

promotes angiogenesis during tumor progression and plays a pivotal role in 

suppressing the maturation of the T cells [55,56]. These chemokines, cytokines and 

growth factors secreted by the stem cells lead the system to an inflammatory state.  

This also mediates crosstalk between different groups of cells in the tumor 

microenvironment that are crucial for cancer initiation, progression and metastases 

formation [57,58]. These regulatory mechanisms that operate in the tumor 

microenvironment serve to suppress the anti-tumorigenic effect of the Cytotoxic T 

(Tc) cells and the Type I T-helper (TH1) cells. This immune-suppressed tumor 

microenvironment acts as the ‘soil’ that nourishes and augments the growth of both 

the drug-sensitive as well as the drug-resistant sub-populations of the tumor, 

thereby posing a further challenge to the therapeutic strategies adopted to control 

cancer [59]. 
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1.5.2.2. Role of Tumor Microenvironment in Immunoediting 

Each of the components of the tumor microenvironment has a unique role to play in 

controlling the proliferation of the cancer cells at the different stages of tumor 

development. In the elimination phase of Tumor Immunoediting, the TH1, γδ-T cells 

and Natural Killer (NK) cells produce Interferon-γ (IFN-γ) and IL-12, the two 

principal cytokines that induce anti-proliferative, pro-apoptotic and angiostatic 

effects on the tumor. The macrophages activated by IFN-γ express tumoricidal 

products such as reactive oxygen and reactive nitrogen intermediates while NK cells 

activated either by IFN-γ kill tumor cells via TRAIL and perforin-dependent 

mechanisms. The cytolytic enzymes produced by the Cytotoxic T cells are also 

crucial mediators of anti-tumor immune response in the Elimination phase. The 

Tumor Associated Macrophages (TAMs) acts as the antigen-processing cells in the 

tumor microenvironment and manifest themselves as the M1-TAMs and the M2-

TAMs [60]. While the former helps in the generation of the TH1 immune response, the 

M2-TAMs along with the TH2 and the Treg cells produce inflammatory cytokines 

such as IL-4 and IL-10 that primarily help in the sustained proliferation of the tumor 

by suppression of the immune effector cells [61]. This is a characteristic feature of the 

Escape phase where that tumor tries to program the immune cells to synthesize 

suppressive molecules and escape immune-surveillance. The transitions from the 

Elimination to Escape phase is intervened by the phase of Equilibrium where the 

host immune system and the tumor cell variants that have survived the elimination 

phase enter into a dynamic equilibrium. In this phase the tumoricidal effects of the 

immune cells on the tumor cells that is enough to control, but not fully extinguish 

these tumor clones which has reduced immunogenicity and are genetically unstable 

and highly mutating. This is the longest of the three phases of Cancer-

Immunoediting that may last for as long as 20 years. A plausible explanation for this 

behavior has been attributed to the theory of Darwinian selection, where it may be 

said that although many of the original tumor cell variants are destroyed in the 
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elimination phase by the virtue of the immune cells, new variants of tumor cells arise 

carrying different mutations that provide them with increased resistance to immune 

attack. At the end of the equilibrium process, new populations of heterogeneous 

tumor cells arise that are resilient to any therapeutic interventions and have the 

potential to modulate the tumor microenvironment to ensure its own survival. The 

Escape phase brings in a fresh set of challenges for the immune system when the 

Cancer cells and the Cancer Stem Cells start proliferating rapidly and start 

synthesizing TGF-β and VEGF that serves to promote Angiogenesis. These 

molecules also induce the recruitment of Myeloid-Derived Suppressor Cells 

(MDSCs) that support tumor growth and metastases by the protection of tumor cells 

from immune-surveillance, remodelling of the tumor microenvironment, 

participating in the formation of a pre-metastatic niche and by facilitating the 

epithelial to mesenchymal transition (EMT) [62,63]. Additionally, the CSC express 

high levels of co‐stimulatory molecule ligand (PD‐L1) that inhibits the proliferation 

of the tumor infiltrated cytotoxic cells [64]. This helps the tumor to overpower the 

immunes system completely. 

1.6. Need for Immunotherapy in the treatment for Leishmaniasis and Cancer 

The collateral toxicity, adverse side-effects of chemotherapeutic interventions have 

led to the adoption of combinatorial treatment strategies for the treatment of chronic 

infectious diseases and cancer. This involves the use of immunotherapy along-with 

the chemotherapeutic drugs that can effectively overcome the immune suppression 

imposed by the infection or cancer and generate specific immune responses that can 

eliminate the disease. This is mostly achieved by immunopharmacology where small 

molecules and immunostimulatory drugs are administered to stimulate the 

production of specific cytokines by the immune cells [65].  However, in order to 

achieve this, the identification of important immunotherapeutic targets, signalling 

pathways and the study of immune-regulatory mechanisms are essential for the 
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design of optimal treatment strategies for diseases such as Leishmaniasis and Cancer 

that causes suppression of the immune effector functions. 

For example, the general therapeutic strategy adopted for the treatment of 

Leishmaniasis is primarily aimed to expedite the process of parasite clearance for 

faster healing by stimulating the TH1 or healing response. In the case of Cutaneous 

Leishmaniasis therapeutics, chemotherapeutic drugs, such as pentavalent 

antimonials, liposomal amphotericin B has been shown to be useful to reduce the 

dermal lesions and the chances of further destructive mucosal inflammations and 

visceral infections [66,67]. However, the successive clinical studies have shown that 

these chemotherapeutic drugs are also associated with adverse side effects, such as 

nausea, intense headache, diarrhoea, musculoskeletal and abdominal pain etc. [67-

71]. In several cases, relapse of the disease and developing resistant strains are also 

reported after the use of these drugs, which necessitates the development of better 

treatment protocols with higher clinical efficacy [72]. Although immunotherapeutic 

strategies involving the administration of exogenous IFN-γ is found to be effective in 

suppressing Leishmaniasis [73,74], the high production of IL10 during early stage of 

infection often suppresses its activity, thereby hindering NO production and disease 

clearance [75].  

On the other hand, the low success rate of chemotherapy and radiotherapy in the 

treatment of tumor due to the presence of the slowly replicating Cancer Stem Cells 

calls for an urgent requirement of combinatorial therapies involving immune-

stimulation. Literature evidences have shown the presence of few tumor associated 

antigens (TAA) that helps in the recognition of the tumor cells by the infiltrated T 

cells and the generation of effective immune responses upon Dendritic Cell (DC) 

vaccination which throws light on the possibility of control of the disease using 

immunotherapy [76]. Some studies have clearly indicated the role of Tc cells and 

IFN-γ in controlling Cancer progression [76]. Recent findings have suggested that 
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synergistic activation of Tc cells and γδ-T cells are efficacious against HMLER-

derived Breast Cancer stem-like cells, where γδ-T cells act as an early source of IFN-

γ in tumor immunity, under special in vitro conditions [77]. The development of 

Chimeric Antigen Receptor (CAR) T-cell has opened up new avenues for research in 

tumor immunity [78]. However, lack of truly CSC specific markers leads to on-

target/off-tumor toxicity, where the CAR-T cells or any other CSC-targeted therapy 

kills the normal cells as well as those that display the same markers as that of CSCs 

[78,79]. 

1.7. Computational strategies employed for the study of immunoregulatory 

modules in Leishmaniasis and Cancer  

The immune regulatory network forms a complex mesh of interacting cells and 

biochemical reactions that work in a coordinated fashion to eliminate the pathogen 

infected cells and trigger the remission of any neoplastic growth inside the body. A 

need to unveil these regulation mechanisms has driven experimental researchers as 

well as computational biologists to implement different omic studies and model the 

immunome under different antigenic stimulus to gain understanding from the 

differential gene expression as well as the pathway regulations perspectives. 

Transcriptomic analysis, e.g., Microarray, RNAseq, have opened up new avenues of 

research that allows the analysis of gene expression profile of several patient cohorts 

under various disease conditions. Researchers have exploited these techniques to 

unearth the immunome landscape in the tumor microenvironment where the spatio-

temporal dynamics of 28 different immune cell-types (immunome) have been 

studied using 105 human colorectal cancer patient data. Here the immunome was 

made up of mRNA transcripts specific for most innate and adaptive immune cell 

subpopulations. Using an integrative analysis, it has been elucidated that the 

densities of T follicular helper (Tfh) cells and innate cells increased, whereas most 

other T cell densities decreased along with tumor progression. However, the Tfh and 
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B cell numbers are inversely correlated with the disease progression and recurrence, 

and CXCL13 and IL21 genes are essential for the Tfh/B cell axis that is correlated 

with higher chances of survival of the patient [80,81]. 

RNAseq analyses in case of Leishmaniasis have been performed that has revealed 

Leishmania species specific differences in the expression of mammalian macrophage 

genes due to infection [82]. Such analyses have helped in the understanding of the 

changes in immune response generated during infection by unveiling the notable 

changes induced in the cytokine expression profiles during Leishmania invasion. 

Experiments using Microarray techniques have been used to assess the host cell 

genes and pathways in human dendritic cells associated with early L. major infection. 

The study revealed 728 genes were significantly differentially expressed in the 

infected cells and the molecular signalling pathway revealed that the type I IFN 

pathway was significantly enriched. Here it was elucidated that L. major 

induces expression of IRF2, IRF7, and IFIT5, which indicates that the regulation of 

type I IFN-associated signalling pathways is responsible for the production of IL-12. 

However, this is not observed in the case of L. donovani [83]. 

On the other hand, the understanding of the intra and inter cell signalling pathways 

involved in the generation of immune responses requires the study of a complex 

network of biochemical pathways under different diseases affected micro-

environmental conditions. This is an extremely challenging task that can rarely be 

achieved using in-vitro or in-vivo experimental techniques. In order to gain insight 

into the immune-regulatory modules involved in T-cell functioning as well as study 

the immune-modulatory mechanisms employed by pathogen and the tumor cells, 

computational tools and mathematical modelling approaches have been extremely 

useful in obtaining a systems level understanding. Mathematical models have also 

been useful in delineating the multiplicity of the complex interactions governing the 
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dynamics of the tumor-immune or host-pathogen interactions that remains elusive 

through in-vitro experiments. These have also helped the researchers and medical 

practitioners in the identification of precise targets for immunopharmacology and 

immunostimulation, prediction immunotherapeutic strategies and design of 

combinatorial treatment protocols.  

The development of the signalling pathway databases such as KEGG [84] and 

Reactome [85] provides the experimentalist important sources of information that 

contain collated pathway data from experimental studies regarding the intracellular 

signalling pathways in different immune cells [86,87]. Additionally, for the analysis 

of these biochemical pathways, the database such as BIOPYDB [88] also provide an 

integrated platform for performing network analysis, logical steady state analysis, 

knock-out analysis, etc.  

For the analysis of large biochemical pathways Graph Theory and Boolean Logic 

based models have been extensively used for the study of cell signalling pathways 

and identification of drug targets for the treatment of Cancer and other diseases 

[89,90]. Logical models have been developed for the study of T-cell signalling 

pathways where the observations made from the in-silico analysis were 

experimentally validated to establish the authenticity of their logic-based model. 

Using this model, the authors have predicted an alternative pathway of activation 

from CD28 to JNK that does not involve the canonical pathway involving LAT 

signalosome, nor does it involve the activation of PLCγ1 or Calcium flux, but 

depends on the activation of the nucleotide exchange factor Vav1 which activates 

MEKK1 via the small G-protein Rac1 [91]. Another model employing Boolean 

formalism has been used in the study of differentiation of naive cells into TH1, TH2, 

TH17 and Treg subtypes under different environmental conditions [92]. This model 

provides evidences that Foxp3+ Treg cells and TH17 cells are highly plastic and labile, 

whereas the TH1 and TH2 subtypes remain steady under different environmental 
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conditions. However, this model also predicts the existence of hybrid states and 

cyclic attractors expressing markers characteristic of two or more canonical cell types 

under certain environmental conditions that lay the foundation for oscillatory 

behaviour of T-cell differentiation.  This study further elucidates that under proper 

polarising environments, the Treg cells may differentiate into TH1 or TH2 subtypes 

[92]. Later another model based on the Boolean formalism was developed to study 

the molecular mechanisms controlling the Cytokine-driven TH cell differentiation 

and plasticity. This model explained the role of peroxisome proliferator-activated 

receptor gamma (PPARγ) in the regulation of TH17 to iTreg cells switching that gives 

promising cues for the prediction of therapeutic target for deregulated immune 

responses and inflammation [93]. 

Ordinary Differential Equations (ODE) based models have also been helpful to 

unravel some of the intriguing problems in immunology. Several dynamic models 

have been developed for the study of immune responses for several diseases [94-98]. 

The study of Tumor Immune interaction using mathematical ODE based models has 

helped clinicians in the prediction of tumor evolution and the determination of 

dosage schedules and treatment protocols [99-101]. A seminal work by Kirschner 

and Panetta has led to the development of many such similar models with further 

improvisations [102]. The model developed by them represents an ODE based model 

of the Tumor-Immune interaction and the production of IL-2 that has important 

roles in the regulation of tumor-immune response. The model considers that the 

proliferation of the effector immune cells increases proportional to the antigenicity of 

the tumor. In this model, the antigenicity of the tumor has been considered as an 

essential parameter that regulates the dynamics of the effector cell population. This 

model explains short-term oscillations in tumor sizes as well as long-term tumor 

relapse. This model has been further used to explore the effects of adoptive cellular 

immunotherapy for tumor elimination [102]. A more recent tumor-immune 
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interaction model developed for understanding the dynamics of immune-mediated 

tumor rejection focus mainly on the role of natural killer (NK) and CD8+ T cells in 

tumor surveillance. Here the techniques of parameter estimation and sensitivity 

analysis have been exploited for the model calibration and validation with 

experimental results. This study has revealed the variable to which the model is 

most sensitive is patient specific and that there exists a direct positive correlation 

between the patient-specific efficacy of the CD8+ T cell response and the likelihood of 

a patient favourably responding to immunotherapy treatments [103]. 

Dynamic ODE based model has also been developed to study CD14, EGF, TNF and 

PI3K mediated signalling pathways and their cross-talks in Leishmania infected 

macrophage, which shows modulation of host signalling pathways that lead to 

immune-suppression. This model analyses revealed that EGF and TNF pathways 

can be considered as potent pharmacological targets to curb Leishmaniasis [104]. 

1.8. Existing challenges in target identification for Immunostimulation and 

Immunopharmacology 

A comprehensive understanding of the complex regulations underlying the immune 

responses under different environmental conditions, antigenic challenges, the 

strength of stimulus has challenged the implementation of successful 

immunotherapy. The intricacies of the immune signalling network are far from 

being completely understood and the regulations governing the differential immune 

response of the T-cells under the varied antigenic challenges still remains elusive to 

immunologists. In this context, the knowledge regarding the signalling routes and 

their cross-talks is essential to gain a holistic understanding and identify the 

immunostimulatory targets precisely and understand the mechanistic regulations 

such as the feedback and feed-forward loops and the alternative signalling pathways 

that govern the production of effector molecules from the lymphocytes. Hence, an 
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in-depth study of the different co-receptor mediated signalling pathways and their 

cross-talks is essential through in-depth curation of the pathway specific data and 

development of detailed mathematical models that will provide valuable 

information regarding the pathways involved in the cytokine regulation and effector 

functions of the immune cells under various micro-environmental conditions.  

T-cell plasticity that determines their differentiation, de-differentiation and sub-type 

specification under different diseased conditions is yet another area that has 

remained very less explored. Such studies are required to elucidate the modulations 

of T-cell ratios that have a substantial impact on the disease prognosis and response 

of a patient to an immunotherapeutic intervention. The study of T-cell plasticity 

under Leishmania infected conditions to elucidate the TH1/TH2 switching mechanism is 

essential for the determination of the clinical outcome of chronic infections both in 

the cases of Cutaneous and Visceral Leishmaniasis. Again, the causes for the changes 

in the immune responses in the chronic versus the acute infection is a study of great 

importance that will help us gain knowledge of how to regulate the immune 

response generated during infection so as to trigger the healing immune responses 

to curb the disease. In the case of Visceral Leishmaniasis, the study of host pathogen 

interaction is required to predict and identify the host pathways that are triggered 

by the pathogenic secretome.  

In the case of Cancer, the study of tumor immunity has become a field of utmost 

importance. Here we observe that in the tumor microenvironment, the multiple 

immune-regulatory effects of the effector cells on the tumor is counter balanced by 

an even larger number of negative regulation imposed on the immune cells by the 

tumor thats make cancer remission difficult and highly refractory to therapeutic 

interventions. The role of the pleiotropic cytokines, such as IL-1, IL-6, IL-10, IL-21 

and TNF, in Cancer has been poorly elucidated and many contradictory reports have 
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been found describing their effect in Cancer progression. The unveiling of the 

paradoxical roles of these pleiotropic cytokines and the Tumor Associated 

Macrophages promises their potential application in Oncology. Also, the studies 

related to cancer stem cell differentiation and their effect on the development of drug 

resistance is an area that remains to be further explored that will open up avenues in 

the design of treatment protocols for combating tumor heterogeneity and cancer 

relapse. 

1.9. Scope and Specific Objectives of the Thesis 

Identification of important immunotherapeutic targets and regulatory mechanisms 

is essential for the design of optimal treatment strategies for diseases such as 

Leishmaniasis and Cancer that causes suppression of the immune effector functions. 

The study of T-cell plasticity under Leishmania infected conditions is essential to 

elucidate the TH1/TH2 switching mechanism for promoting a healing response that 

determines the clinical outcome of chronic Cutaneous Leishmaniasis [105,106]. The 

study of Visceral Leishmaniasis however requires a detailed study and prediction of 

the host pathogen interactome to identify the intracellular signalling routes that lead 

to visceralization in Leishmaniasis. On the other hand, lack of a comprehensive 

study of the interactions of the tumor microenvironment with the heterogeneous 

sub-population of tumor cells that arise from the differentiation of Cancer Stem Cells 

(CSC) has limited our understanding of the development of drug resistance and 

treatment failures in Cancer [45,107,108]. Hence a study of the deregulations of the 

intercellular and intracellular signalling pathways leading to the suppression of the 

immune system and further progression of the infectious diseases and cancer is 

essential for eliciting immune effector functions, which is a prerequisite to 

preventing relapse and a designing successful treatment strategy for these diseases. 

The understanding of intra and inter cell signalling pathways involved in the 

generation of immune responses requires the study of a complex network of 
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biochemical pathways under different diseases affected micro-environmental 

conditions. In view of the challenges in relation to infectious diseases and Cancer, 

the objectives of the thesis have been defined as follows: 

x Identification of regulatory modules of the Immunological Network to 

stimulate T cell effector functions against various diseases 

x Understanding the role of TH cell Plasticity/ differentiation for the control 

disease progression 

x Designing treatment strategies to enhance immune clearance and disease 

prognosis 

In order to address the objectives of the thesis, detailed studies of intracellular and 

intercellular signalling pathways of immune cells have been performed through 

manual curation of the signalling pathway information available in various literature 

and pathway databases as well as predicting PPI for host pathogen interactions and 

then modelling the PPI networks using various mathematical and computational 

approaches to identify the key regulators of immune response in case of 

Leishmaniasis and Cancer.  

1.10. Outline of the Thesis 

In Chapter 2, the materials and methods used in the thesis have been discussed in 

details. This chapter contains the information regarding the different biochemical 

pathway databases and other sources that have been used to curate the information 

regarding the immune signalling pathways and develop the mathematical models. 

The software, tools, packages and computational platforms that have been used for 

the model simulations and parameter estimation have also been discussed here. 

Chapter 3 focuses on the study of co-receptor and calcium signalling crosstalks that 

regulate the activation and effector functions and cytokine production of TH-cell 
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using a comprehensive pathway map of T-cell activation network has been 

reconstructed manually and analyzed using Logical Steady State Analysis (LSSA). 

In Chapter 4, the role of TH cell Plasticity/differentiation for the control disease 

progression has been studied with respect to the infectious disease Leishmaniasis. 

Using a reconstructed signalling network of the intracellular and intercellular 

reactions between a Leishmania infected APC and T-cell, a LSSA based model has 

been proposed to predict the inhibitory effect of the Leishmania infected APC on the 

T-cell and to identify the regulators of the TH1/TH2-switching behaviour and 

immunotherapeutic targets for triggering anti-Leishmania immunity. 

In Chapter 5, the host-pathogen interactome between L. donovani secretome derived 

virulence factors and the Human host proteins are predicted using Interolog and 

Domain mapping strategies. Pathway enrichment and graph-theory based analysis 

is used to model the PPI network to identify the hub proteins and signalling routes 

targeted by the parasite during Visceral Leishmaniasis. 

In Chapter 6, an ODE based tumor-interaction model has been developed to study 

the regulations governing the stem cell differentiation and tumor development along 

with the influence of the tumor micro-environment. Here the model has then been 

used for testing known treatment protocols to explore the reasons for failure of 

conventional treatment strategies and propose an improvised protocol combining 

Chemo, Radio and Immunotherapy that shows promising results in suppressing the 

proliferation of all the cellular sub-populations of the tumor and restoring a healthy 

TH1/TH2 ratio that assures better Cancer remission even with the presence of resistant 

Cancer cells. 

In Chapter 7, the conclusions and future directions of the thesis have been discussed.  
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CHAPTER 2 

MATERIALS AND METHODS 

 

2.1. Collation of Signalling Pathway information 

Reconstruction of the intra-cellular and inter-cellular signalling pathways is a pre-

requisite for gaining a holistic understanding of the regulatory networks. This has 

been accomplished through manual curation of protein protein interaction (PPI) data 

from the available literature as well as the information available in the pathway and 

PPI databases. To ensure the validity of the reconstructed network, only the 

interaction having some experimental evidences of physical interaction were 

considered in the development of the model. 

The signalling pathway databases are important sources of information that collate 

pathway information from experimental studies regarding the intracellular 

signalling pathways in different immune cells. The KEGG database provides 

information regarding the core TCR-mediated pathway along with a few co-receptor 

signalling pathways [84]. The database also contains the pathways responsible for 

the TH1, TH2 and TH17 differentiation. Another popular database called Reactome 

provides detailed the biochemical reactions involved in each step of the protein-

protein interactions involved in the T-cell signalling pathway [85]. It also enlists the 

pathway information related to CD28 and PD-1 co-receptor mediated signalling 

pathways. Simultaneously, Reactome forms a very important source for Cytokine 

signalling pathways that include different Interleukin families, Interferons, Tumor 

Necrosis Factor and few Growth Hormones. However, the information regarding 

the intercellular cross-talks in the immune system is lacking in most of these 

databases that can be extracted through a thorough Literature survey.  

Bulk of this chapter has been taken verbatim from Methods Section of our previously published articles related to the 
Thesis (See Publication List): (i) Ganguli et al. (2015) Journal of Biosciences, 40(4), pp 769-789; (ii) Ganguli et al. 
(2015) Eurasip Journal on Bioinformatics and Systems Biology, 2015(1), pp 1-19; (iii) Ganguli and Sarkar (2018) 
PloS ONE, 13(9), e0203030; (iv) Panditrao et al. (2021) Submitted 
 



 
 

Chapter 2 
Materials and Methods 

30 

 

Few databases also provide data regarding the changes in the pathway during 

disease condition. The KEGG database has a sufficient amount of pathway 

information regarding the endocytosis of the Leishmania pathogen as well as the 

signalling events that occurs inside the infected macrophage. BioLegend database 

contains the Cancer Immune-editing network that consists of the inter-cellular 

signalling cross-talks governing the immune responses generated during Cancer. 

2.1.1. Reconstruction of T-cell Pathways and Cross talks 

In Chapter 3, in order to capture all the regulations that operate to control the 

proliferation and activation of a T-cell, getting a comprehensive picture of the entire 

signalling cascade involved in the process was an essential prerequisite. Since a 

complete map of the pathway was lacking from any single source, the pathway had 

to be reconstructed by manually collating human cell specific data from about 21 

popular signalling pathway databases, such as KEGG, Protein Lounge, Pathway 

Central, Biocarta, NetPath, etc. [84,109,110]; protein-protein interaction databases, 

such as, HPRD, BioGRID3.2, etc. [111,112] along with more than 200 literatures 

published in peer reviewed journals (searched using PUBMED and Google Scholar). 

The protein-protein interaction data obtained were knitted together to reconstruct 

the entire signalling cascade (Figure 7). The diagram of the reconstructed pathway 

was drawn using CellDesigner version 4.3 [113], a freely available software package 

that allows to easily create gene-regulatory and biochemical network images using a 

graphical user interface. The overall reaction process of this pathway starts at the 

immunological synapse, the signal is then transduced via the T-cell membrane 

proteins, comprising of the receptors and co-receptors, down to the cytoplasmic 

proteins, which ultimately leads to the activation of certain transcription factors. 

These activated transcription factors then translocate into the nucleus and induce the 

expression of important output proteins, and cytokines (effector molecules) that are 
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crucial in maintaining the T-cell proliferation as well as in mediating the clearance of 

the antigen that has entered our body. 

2.1.2. Reconstruction of Leishmania infected APC Pathways 

In Chapter 4, gene correlation networks of the significantly expressed genes, 

observed in two independent microarray experiments for APC (E-GEOD: 42088) and 

T-cell (E-GEOD: 48978), were constructed. The signalling pathways from these 

networks were then enriched to identify the pathways significantly influenced by 

the invasion of Leishmania pathogen in APC. However, the pathways found to be 

enriched in this analysis do not provide a complete understanding of the molecular 

mechanisms through which the Leishmania pathogens infect the APCs. It is also 

unable to describe the signalling cross talks of the secreted proteins/cytokines from 

both APC and T-cell, and its subsequent effects on the regulation of each other's 

activities in both uninfected and infected scenarios, respectively. Hence, in addition 

to the enriched pathways, manual reconstructions of the complete inter- and intra-

cellular signalling cascades, regulating the APC and T-cell functions has been 

performed.    

2.1.2.1. Construction of gene correlation network 

The time course microarray expression data of Leishmania major infected human 

dendritic cell (APC) was obtained from the EBI-ArrayExpress (ID: E-GEOD-42088) 

database [114]. Here the authors have predicted total of 849 genes, which are 

significantly expressed after the invasion of Leishmania pathogen in human APC. In 

this analysis, the time course expressions (at 0, 2, 4, 8 and 24 hours) of these 849 

probes or genes were extracted and used for the construction of gene co-expression 

network. In order to do that, at first, the Pearson's correlation coefficients of each 

pair of genes across the time course microarray data samples were calculated by 

using the in-built function corr available in MATLAB R2012. This function also 

calculates the corresponding P-values of the correlation coefficient for each pair of 
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genes in the data set and stores them in the form of a symmetric square matrix. The 

P-value matrix was then used to construct an adjacency matrix (A) in which the 

matrix elements (Aij) are either 1 (if P-value < 0.01) or 0 (otherwise). The matrix 

element Aij = 1 signifies that the gene 'i' is significantly co-expressed with the gene 'j' 

and there is a connection or undirected arc present between these two genes. In this 

analysis, total of 139,382 arcs are present among 849 significantly expressed genes (or 

nodes). The possible clusters of genes, formed by at least 3 nodes in the network, are 

then identified from this huge network using the open source network analysis 

software: Cytoscape's (version 2.8) GPU enabled App AllegroMCODE (version 2.1) 

[115]. There are a total of 10 clusters or functional modules identified through this 

App. The network diagrams of the clusters generated from this analysis are shown 

in Appendix B: Figure B.1. The names of the nodes in all the cluster diagrams are 

assigned in the figure according to the probe IDs used in HG-U133_Plus_2 

Affymetrix GeneChip for human cell. The genes from each identified functional 

module are then used for the further pathway enrichment analysis in 

bioCompendium (http://biocompendium.embl.de/) web servers. The names of the 

enriched pathways found for each of the clusters in bioCompendium pathway 

enrichment web servers are enlisted in Appendix B: Table B.1.                    

Similar analysis was also performed for activated, time course T-cell microarray 

expression datasets generated by Zhao et al., and the datasets are available in GEO 

(ID: GSE48978) and EBI-ArrayExpress (E-GEOD-48978) [116]. Their analysis has 

revealed that in the stimulated state, total of 2274 genes get significantly expressed in 

active T-cells. The co-expression network generated by these significant genes has 

551,031 arcs. There is a total of 24 clusters identified from this huge gene co-

expression network, which are depicted in Appendix B: Figure B.2. In the figure, the 

node names used in each cluster are in accordance with the probe IDs used in 

Affymetrix HT_HG-U133_Plus_PM array plate. The pathway enrichment analysis of 
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each cluster are performed in GeneCodis [117] and the enriched pathways found 

through this web server are enlisted in Appendix B: Table B.2. Only the 

genes/probes from first the 10 enlisted clusters gave significantly enriched pathways.  

2.1.2.2. Integrating Intra-cellular and Inter-cellular Signalling Crosstalk of 
T-cell and Macrophage during Leishmaniasis 

In order to capture the functional regulations that operate between these 

significantly enriched pathways within the two cells, i.e., APC and T-cell, 

reconstruction of a comprehensive map of signalling processes depicting the effect of 

Leishmania infection on immune response was necessary. Hence, in Chapter 4, a 

detailed T-cell and APC interaction pathway diagram was created after a thorough 

study of existing literatures and databases. Protein-protein interaction (PPI) and the 

biochemical signal transduction data were collated from various cell signalling and 

PPI database, and various published research articles [84,109-111]. The Leishmania 

proteins were then introduced in the network and the interactions of these proteins 

were established with the existing APC molecules depending on the biological 

evidences [118-120]. The Leishmania antigenic molecules used in the model, viz. 

LPG_L, GP63_L, LFAA_L and EF1_ALPHA_L, are known to be present in almost all 

the Leishmania species so as to create a generalized Leishmania infection model 

(LFAA_L is a hypothetical molecule which we considered in our model to show the 

activation of ASMASE for the production of CERAMIDE [121]; it is abbreviated for 

Leishmania factor activating ASMASE). With certain modifications (required to build 

the juxtacrine and paracrine interactions between the cells) the T-cell pathway 

(Section 2.1.1 and Chapter 3) was used to understand the T-cell-APC cross-talks and 

to monitor the immunological response generated during Leishmania infection [122]. 

A detailed description of the reconstructed pathway network has been provided. 
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Figure 3: Simplified pathway diagram showing the Leishmania-APC and T-cell Interaction. The 
diagram shows the juxtacrine and paracrine regulations between the different cells. The Leishmania 
antigen molecules are shown in orange. The cytoplasmic and nuclear proteins of the APC and T-cell 
are color coded as blue and peach respectively. The target molecules that are produced as output by 
the two cells are colored green (for protein) and deep-pink (for non-protein molecules). 

 

a) Leishmania-APC interaction  

In our reconstructed pathway (Figure 12), both the promastigote and the amastigote 

stages of the parasite have been considered. The interaction of the promastigote with 

the APC occurs at the membrane region where the surface molecules of the 

pathogen such as GP63_L and LPG_L binds with the complement receptor CR3 of 

the host cell facilitating the pathogen’s entry [123,124]. The LPG_L molecule of the 

parasite has also been shown to interact with toll like receptors found on the APC 

membrane receptors like the TLR2 and TLR4 which are known to phosphorylate the 

ERK and p38MAP kinases downstream [125]. The binding of IgG, present on the 

surface of the opsonized pathogen, to the FC_GAMMAR (i.e. the receptor for 
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binding Fc region of the immunoglobulin molecule) on APCs [126] which has been 

shown to stimulate IL10 production by directly activating ERK1/2 [119] has also been 

considered. During Leishmaniasis, sphingomyelinase ASMASE gets activated in the 

extracellular region, which produces CERAMIDE on the surface of APC [121], have 

also been incorporated here in our model by assuming the presence of a factor 

LFAA_L (abbreviated for Leishmania factor activating ASMASE), produced by the 

pathogen, that activates ASMASE for the production of CERAMIDE. CERAMIDE 

once produced, activates PP1 and PP2A both of which are responsible for the 

inhibition of PKC and de-phosphorylation of AKT in APC cytoplasm [119]. 

A transition line has been shown in the model indicating the entry of the flagellate 

motile Leishmania promastigote form of the pathogen inside the APC, where it 

differentiates into a non-motile aflagellate amastigote form. Inside the cell, the LPG 

molecule has been shown to interfere with the APC signalling cascade and 

negatively influence the PKC pathway [127]. The LPG molecule that forms a 

complex with MHC_CLASS_II in the APC is presented to the T cell to cause its 

activation. The inhibitory effects of GP63_L have also been established in our 

pathways by showing its inhibitory effects on AP1, NFkB, MARCKS, MRP, c_FOS 

and mTOR proteins in APC cytoplasm [128-131]. GP63_L also activates the 

phosphatases SHP1, TCPTP and PTP1B as they help in de-phosphorylation of 

various signalling proteins of APC during Leishmania invasion [132]. Another 

Leishmania protein that has been included in our model is Elongation factor 1 alpha 

EF1_ALPHA_L which is also known to activate SHP1 [120]. These tyrosine 

phosphatases (viz. SHP1, TCPTP and PTP1B) de-phosphorylates and mediates 

deactivation of important downstream transcription factors such as ERK1/2, P38 and 

JNK [118,133,134] and STAT1_ALPHA [135-137]. 
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b) APC-T-cell interaction 

In order to establish the effect of Leishmania infection on the outcome of the T-cell 

protein expression pattern and the immune responses elicited during the infection, 

the ligands and the output molecules expressed by the APC have been connected to 

the T-cells molecules. The APCs have been shown to be presenting the Leishmania 

antigen epitope in a processed form denoted as MHC_Class_II:LPG [138]. As shown 

in our model, the TCR: CD3 and MHC_Class_II:LPG interaction triggers the T-cell 

signal transduction pathways that lead to the activation of the Src family kinases 

LCK and FYN, and formation of the LAT signalosome [23,139,140]. After this point, 

the signal cascade branches out into a network of diverse signalling routes, which 

includes the MAPK pathway, the calcium-mediated NFAT pathway, and the NFKB 

pathway [141]. Upon a pathogenic invasion, the APC expresses a multitude of co-

signalling molecules such as B7 and TNF-like molecules that bind with their 

corresponding co-receptors on the T-cell membrane to amplify the signal coming 

from the infected cell and thus causes a sustained T-cell proliferation [142]. Here it 

can be seen that while the B7 molecules (CD80 and CD86) binds to the CD28 co-

receptor to activate the SOS:GRB2 mediated MAPK and the PI3K pathways, the 

TNF-like molecules (TNFRSF9, ICOSL, OX40L, LIGHT) propagates the signal to the 

interior of the cell principally through the TRAF pathway [142,143]. Apart from 

these juxtacrine signalling at the immunological synapse, we have also considered 

the CRAC channel that senses the microenvironment of the T-cell for the presence of 

Ca2+ ions and activates the Calcium Pathway. The diffusible cytokines (viz. IL1, IL2, 

IL10, IL12, TNF-α and IFN-β) that are produced by the APCs as a result of the 

pathogen load, and also by the T-cell itself has been shown to further regulate the T-

cell proliferation in a paracrine and autocrine fashion respectively [144-147]. 

The pathway also reveals that T-cell and APC interaction has an influence on the 

expression of both the cells. The T-cell regulates the APC through the CD40 pathway 
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which activates MKP1 and MKP3 that further dephosphorylate MAPK proteins P38 

and ERK1/2 respectively [148]. On the other hand, CD40 can also bind with TRAF 

proteins (TRAF2, TRAF3, TRAF5 and TRAF6) for the activation of MAPK proteins 

P38 and ERK1/2 [119,149]. Activated T-cell produces effector molecules such as IL10, 

IL4, IL6, IFN-γ and TNF-α, that in-turn controls the signal propagation through the 

JAK-STAT and TRADD-TRAF pathways of the APC cell [24,27,150]. 

c) Output proteins  

The flow of signal from the infected extracellular environment into the cytoplasm 

and down to the nucleus of these immune cells leads to the activation of specific 

transcription factors which are responsible for the production of certain effector 

molecules. These effector molecules that have been included in our model comprises 

mostly of secreted proteins belonging to the cytokine family, which consists of 

different interleukins (IL10, IL12, IL1_ALPHA, IL1_BETA, etc.), interferons 

(IFN_GAMMA, IFN_BETA) and tumour-necrosis factors (TNF_ALPHA) having 

diverse functions. The other effector molecules produced by the immune cells 

consists of the growth factors (TGF_BETA), and microbicidal molecules (NO). 

2.2. Logical Steady State Analysis of Signalling Pathways 

Logical modelling is gradually being recognized as a simple yet powerful tool in 

Systems Biology for the study of large and complex reaction networks. Here the 

information flow from one node to another in a network is determined by a 

combination of input and their relation is specified using logic gates - AND, OR, 

NOT. It was first explained by Kauffmann where he modeled the gene as a binary 

device that can be either in the ‘ON’ or ‘OFF’ stage [151]. Here he elucidated that a 

distinct advantage in this choice of a binary model for gene activity lies in the fact 

that the number of different possible rules by which a finite number (K) of inputs 

may affect the output behavior of a binary element is finite, i.e., 22K. This concept was 
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later used by Huang and Ingber [152] to model cell signalling networks for 

demonstrating that cellular phenotypes correspond to the dynamic steady states of 

the intra-cellular signalling molecules in a logic-based model. A key advantage of 

this strategy is that it does not require the knowledge of parameter values which is 

often not available for large biochemical networks. 

Figure 4 shows a simple toy model of three nodes interacting with each other. The 

reaction network can be represented using Boolean rules or equations (Eq 1, Eq. 2 

and Eq. 3). The truth tables and the state transitions graphs of the reaction network 

show the temporal evolution of the states (0 or 1) of the nodes starting from different 

input combinations (Figure 4). Here, in this example we observe under the different 

input conditions the system tends to reach certain point steady state attractors, i.e., 1-

0-0 and 1-1-1 or cyclic attractor, i.e. 1-0-1 ÅÆ  1-1-0.  

                           …..Eq. 1 

                        ..…Eq. 2 

                 …..Eq. 3 

Several software packages such as BoolNet (R-based), BooleanNet (Python based), 

CellNetAnalyzer (software with GUI) are available for performing Logical Steady 

State Analysis of large biochemical networks [153-155].  

 

Figure 4: Toy Model for LSSA: Interaction Graph, Truth Table and State Transition Graph for a Logic 
Based Toy Model (Figure adapted from [156]) 
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2.2.1. Model Formulation and Transition Functions 

The dynamic analysis of such a large network requires precise kinetic data, which is 

rarely available and thus we had to restrict ourselves to a semi-dynamic approach of 

modelling this signalling pathway, i.e., “Logical Analysis”, where an up-regulation 

in the protein expression is considered as ‘1’ or ‘ON’, while a down-regulation of a 

protein expression is considered as ‘0’ or ‘OFF’ (binary states). In Chapter 3 and 

Chapter 4, the logical equations of the target molecules have been written using 

different combinations of molecules (‘source’) along with ‘AND’, ‘OR’ and/or ‘NOT’ 

(logical gates) relations depending on how these molecules influence the expression 

of each other in a biologically relevant way. The molecules in the model associated 

with 'AND' operation signifies the cumulative or multiplicative effects of a 

combination of proteins on their downstream targets, whereas the presence of 'OR' 

operation signifies the alternative routes of signal propagation. The molecules kept 

in ‘NOT’ relation are principally the inhibitors of the target molecule. Different 

biochemical reaction mechanisms (such as phosphorylation, transcriptional 

activation, ubiquitylation, nuclear transport, inhibition, and different feedbacks 

reactions etc.) are considered in the model and transformed in terms of Boolean or 

logical equations.      

From the reconstructed T-cell pathway that consists of 206 molecules (nodes) a  

complex mesh-like network formed of 435 protein-protein interactions (Chapter 3), 

the Boolean model developed consists of 167 logical equations (hyper-arcs), which 

control the expression pattern of the dependent variables, otherwise called the 

‘target molecules’ (nodes) (Appendix A: Table A. 1). The remaining 39 independent 

‘Input’ molecules (which did not have any transition functions governing update 

rules) were considered as the inputs to the system, which includes 13 ligand 

molecules (e.g. MHC CLASS II-Ag complex, LIGHT, B7_1, B7_2, CD70, etc.) that 

come into play in the extracellular environment (APC surface in case of T-cell), 2 
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non-protein molecules and remaining are core T-cell protein molecules. Another 39 

molecules (e.g., BCL2, FKHR, P21, BCLX, IL1, IL2, etc.) were considered as the 

‘Output’ of the system, many of which have a feedback that has a positive or 

negative impact on cell proliferation. The equations were written using Python code 

and simulated using the BooleanNet-1.2.4 software [157] (Appendix A: Table A. 1). 

In Chapter 4, the integrated signalling network of T cell and APC, consisting of a 

total of 293 nodes, which includes 82 APC molecules, 206 T-cell molecules, and 5 

Leishmania related molecules are involved in more than 400 protein-protein 

interactions. The interactions of the entire network, including all important 

regulations between T-cell and APC, were translated into Logical equations 

(signifying reactions or hyperacrs) using the logical gates, in a biologically 

meaningful way (Appendix B: Table B. 4). In order to capture the regulations at the 

post-transcriptional level, the alternatively spliced isoforms of the T-cell and APC 

output molecules with known functions have been also included in our model 

(Appendix B: Table B. 3). Here the selection of isoforms is based on the presence of 

certain cis-regulatory elements and trans-acting factors that has been collectively 

referred to as ‘FACTORi’ where [i=1, 2, ...., 23]. These 23 FACTORi represent specific 

Spliceosomes responsible for the splice site recognition in each case. The model was 

simulated synchronously and asynchronously until the steady state is reached [157].  

2.2.2. Phenotypic Response Functions 

The Logical Equations for nodes representing the Phenotypic Response functions 

were written using the appropriate ‘Output’ molecules (related to that particular 

phenotype) of the model, depending on the biological functions of the molecules and 

the phenotype they are associated with, respectively.  

In Chapter 3, in order to study the effect of the co-stimulatory signals on the T-cell 

phenotypic response, three additional equations were formulated in the model 
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signifying, (a) Cell Proliferation ("Proliferating T-Cell") for the actively proliferating 

effector T-cells that are capable of effector functions and immune clearance; (b) Cell 

Survival ("Inactive T-Cell") for the inactive/naïve T-cells that do not perform any 

effector functions; and (c) Cell Death ("Dead T-Cell") for the T-cells that have 

undergone apoptosis and are eliminated from the system. The equations have been 

described subsequently. 

a) Cell Proliferation: After encountering an Antigen Presenting Cell (APC), T 

cell proliferation increases. This process is regulated by different Cyclins 

(CYCLIN_A, CYCLIN_D1 and CYCLIN_D2) and Cyclin Dependent Kinase (CDK4) 

that mediate cell division [158,159], the anti-apoptotic molecule (BCLX)  that 

prevents cell death [160], interleukins, such as, IL2, IL4 and IL6 [161-163] and TNF-

like molecules (FASL) that enhances the proliferation of the immune cells [164]. The 

logical equation governing the fraction of cells in the proliferative state after 

receiving the stimulus from an APC is as follows:  

                        

                                                   
                                                                   ….. Eq. 4 

b) Cell Survival: When a T cell has not encountered an APC and has not 

received any stimuli, it remains in its naïve resting state and do not proliferate, 

although its normal cell survival and cell division may still continue to occur. This 

resting state of T cell is maintained mainly by the anti-apoptotic factors (BCL2 and 

BCLX) that keep the T cell alive, while the normal cell homeostasis is maintained by 

the TNF molecules (e.g. TNF_ALPHA) [165] and cell cycle proteins-the Cyclins 

(CYCLIN_A, CYCLIN_D1 and CYCLIN_D2) and CDKs (CDK4) [159]. The logical 

equation for this phenotype of T cell is written as follows: 
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                      ……   Eq. 5 

 

c) Cell Death: When the proteins promoting T cell proliferation and survival are 

absent, and an immunosuppressive condition is produced by the presence of certain 

molecules like IL10 [166], the chances of T cell proliferation and survival decreases 

and that of cell death increases. Such a situation has been termed as 'T cell death' or 

'Dead T-Cell' in our model. Hence, following the logical relationship the equation for 

such a phenotype is written as: 

              
                                                             
           ………Eq. 6 

Similarly, in Chapter 4, three phenotypic responses equations have been formulated, 

viz., "TH_1_response", "TH_2_response" and "NO_response", which reflect the type 

of T-cell responses elicited and production of NO from the APC in response to an 

infection (Eq. 7, Eq. 8 and Eq. 9). The molecules used for defining these functions are 

principally the molecules involved in eliciting these responses, as reported in 

literatures [167]. 

               

                                                      ….....Eq. 7 

                                                       ……..Eq. 8  

                         ……Eq. 9 

                        

2.2.3. Update of Logical Rules - Synchronous and Asynchronous Simulation 

In Chapter 3 and Chapter 4, the Boolean transition equations were updated at each 

step, first ‘Synchronously’ (for the purpose of validation), and later 

‘Asynchronously’ (for further analysis). In Boolean models, a major assumption is 
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that irrespective of the nature of the reaction, all equations of the system take an 

equivalent amount of time for state transition. In the synchronous model, the 

assumption is that all molecules are updated at each step and at the same time, i.e. 

from t to (t+1). Consequently, each state of the model at time t can transition to only 

one possible successor at (t+1) [168]. However, in a signalling network, the protein 

expression levels are likely to change at different points of time and updates 

randomly [157]. Hence to capture such scenario, in the asynchronous model it is 

assumed that the update/execution of the Boolean transition functions occurs 

randomly at each step. In other words, as opposed to synchronous simulation where 

the updates of the transition functions are performed in a listed order, and the state 

change of the nodes are observed only at the end of the update round, in 

asynchronous simulation the updates of the functions are performed in random 

order where the states of the nodes immediately reflect the changes. This makes the 

asynchronous model stochastic [157]. The asynchronous model is simulated as 

multiple replicate simulations and the percentage of simulations that have Closure = 

1 is recorded and plotted. This leads to observation of transition states of nodes as 

fractional values between 0 and 1. This analysis also helps us to monitor the small 

fluctuations in the expression pattern of the pathway species over time, which occurs 

due to the stochasticity in the execution of the pathway reactions inside the cell. The 

asynchronous simulation also ensures that the errors in the synchronous 

simulations, as well as attractor analysis (through selection of independent random 

samples) are minimized, and further presents an average behavior of the entire 

system over time. 

2.2.4. Omics Data for Model Validation 

In order to validate the model, protein expression data for the output molecules, i.e., 

whether the protein is up-regulated or down-regulated, were curated from various 

literature sources to qualitatively determine the model accuracy at steady state. 
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However, since the data to study the temporal variation of the protein expression 

were not easily available, transcriptomic data, such as Microarray expression data, 

that are routinely used for the study of differential gene expression and signalling 

pathways deregulations under various disease scenarios were used for our studies 

[169].  

Hence in Chapter 3, microarray data were obtained from EBI-ARRAYEXPRESS 

microarray database [ArrayExpress ID: E-GEOD-48978] [170]. The differential gene 

expression data obtained from the database was a time-course microarray data of 

gene expression kinetics of human T helper cells at six time points (i.e., at 0, 2, 4, 6, 

24 and 72 hours respectively) over a time period of 3 days. Array used in the 

experiment was an Affymetrix HT HG-U133+ PM Array Plate [116]. However, it was 

observed that the gene expression values of the microarray data decline after the 6 

hour time-point. Since the constructed model is of T cell activation, and we are 

interested in the study of interleukin expression (which is highest at 6 hour time 

point [171]), we have not considered the expression data of 24 and 72 hour time-

points, and only the values of 0, 2,4 and 6 hours values were used for further 

analysis. 

In Chapter 4, in order to validate the T-cell-APC model with experimental data, 

time-course microarray expression data for the two cells (viz. T-cell and APC) were 

obtained from two separate experiments from the EBI ARRAYEXPRESS database (E-

GEOD: 48978 and 42088, for T-cell and APC respectively) [170]. In these microarray 

experiments, expression profile of activated human T- helper cell (Affymetrix HT 

HG-U133+ PM Array Plate) and Leishmania major infected dendritic cells (Affymetrix 

HG-U133 Plus 2.0 Gene Chip) were studied at discrete time-points [114,116]. 

However, it should be noted that the experimental data for the expression of NO 

(Nitric Oxide) molecule is considered as proportionate to the expression values of 

INOS of the microarray data. In our analysis, we only considered the expression 
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values at 4 time-points, i.e., 0, 2, 4, and 6 hours (time-points) for T-cell and 0, 2, 4, 8 

hours (time-points) for dendritic cells. 

2.2.5. Binarization of Expression Data 

The temporal expression data were binarized to 0 and 1 signifying down-regulation 

and up-regulation of expression of the nodes respectively. Here the binarization was 

performed using the K-means clustering method. The K-means clustering is used to 

partition a given set of input data in K-th partitions or cluster; in this case K=2, i.e. 0 

and 1. In our analysis, we used this technique to binarize the time course microarray 

expression data [116] and then used the binarized data as input for the Boolean 

model. In order to perform the K-means clustering on the time series microarray 

expression data, we have used the binarization function in the BoolNet1.63 in R 

[172]. 

In Chapter 3, the expression data at time points 0, 2, 4, and 6 hours of the RNA 

transcripts corresponding to the proteins in our model was extracted. The expression 

values of the molecules considered for binarization were the mean of the expression 

values of the RNA transcripts of different isoforms/or subunits of the corresponding 

protein molecules. The mean value of the individual molecules at each of the four 

time points was chosen and then binarized [172].  In Chapter 4, the microarray 

expression data for the APC was also binarized using a similar technique. 

2.2.6. Model Initialization  

In Chapter 3, the binarized data at 0-hour time point was used to initialize the 

system (i.e., value of the simulation at time step 0). The initial value of the 7 APC 

molecules (viz. MHC CLASS II-Ag, B7-1, B7-2, CD70, LIGHT, PDL and TNFSF9) and 

3 non-protein molecules (CRE, CALCIUM-OUT and DAG) were considered ‘ON’ to 

activate/provide a stimulus to the T-cell signalling cascade (Appendix A : Table A. 

2).  
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Similarly, in Chapter 4, the T-cell-APC model was initialized using the binarized 

value at the 0th with either ON or OFF depending on whether the protein shows an 

up-regulation or a down-regulation at the 0th hour (Appendix B: Table B. 5). The 

initial values of the Leishmania proteins were considered ON in the infected scenario, 

and OFF in the uninfected scenario.  

2.2.7. Attractor Analysis 

The Boolean attractors of the T-cell-APC model in Chapter 4 were determined by 

generating all possible combinations (ON or OFF) of the 51 input molecules of the 

system. The simulation was repeated for 20 samples, where 7 proteins have been 

selected from a uniform random distribution of 51 input molecules, thereby 

generating 27 X 20 (= 2560) combinations of input molecules.  However, due to lack 

of Human cell specific Leishmania major infected RNAseq data of APC, the logical 

states (activation or inactivation) of the FACTORi determining alternative splicing of 

the output molecules could not be explicitly determined in Leishmania infected 

scenario. Hence, in our model these FACTORi were assumed to be ON in all our 

simulations, signifying that all the alternative isoforms have equal probability of 

getting expressed. The analysis was performed separately for the uninfected and the 

infected scenarios, which were created by initializing the Leishmania antigen 

molecules OFF and ON respectively in the two cases using synchronous Boolean 

update rules. The analysis was performed separately for the uninfected and the 

infected scenarios, which were created by initializing the Leishmania antigen 

molecules OFF and ON respectively in the two cases using synchronous Boolean 

update rules. Thereafter, the steady state logical values (i.e. attractor) of all the 294 

nodes in 2560 different input combinations from both the scenarios were identified 

by using in-built functions available in BooleanNet-1.2.4 and the in-house code 

written in Perl script. However, to present these attractor(s) of each sample in a 

simplified way, only the steady state binary values of the 10 macrophage output 
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molecules (viz. IFN_BETA, IL1_ALPHA, IL1_BETA, IL10, IL12, INOS, IP10, NO, 

TNF_ALPHA and c_FOS) were plotted from each attractor(s) state using the 

network visualization software Gephi (http://gephi.github.io/), and were 

successively tested for the presence of multiple attractors in the system in uninfected 

and infected scenarios. On the other hand, the differential activation of the FACTORi 

in splicing mechanism and its role in the regulation of the network dynamics are 

further analyzed and discussed in Appendix B: Table B. 3. 

2.2.8. In-silico Knock-in and Knock-out Analysis 

The models in Chapter 3 and Chapter 4 were further analyzed by perturbing it with 

different combinations of knock-in and knock-out mutations.  The in-silico knock-in 

and knock-out mutation were generated keeping the value of the target molecule as 

constitutively ‘ON’ or  ‘OFF’ throughout the simulation by using the built-in library 

function ‘boolean2.modify_states’ in the BooleanNet-1.2.4 software [157]. In such 

cases, the transition or update function for the node has been eliminated from the 

model equation list to ensure that the node does not change its state in the following 

state transition step. To analyze the significant variations (p< 0.05) in the temporal 

protein expression patterns observed in mutated scenario with respect to the normal 

scenario, Mann Whitney U Test was performed and important proteins with 

significant variations are extracted [173]. Through this study, we can identify the 

proteins, which are being regulated upon certain perturbations and can 

simultaneously identify the routes along which the effect of that perturbed signal is 

processed. 

2.3. Prediction of Protein-Protein Interactions between Host and Pathogen 

In Chapter 5, the host pathogen interactome between the secretome proteins from 

Leishmania donovani and the human host is predicted based on sequence and 

structure-based data. 50 actively secreted secretory proteins identified as candidate 
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virulence factors by Maxwell et al. through the LC-MS/MS method from the 

secretome of L. donovani were used as the Leishmania effectors (source nodes) for 

prediction of the L. donovani-human Interactome [174]. The detailed list of these 

virulence factors with its information is provided in the supplementary material 

Appendix C: Table C. 1. 

2.3.1. Interolog Mapping from Secretome data 

To predict the interactions for the 50 secretome proteins with human proteins, 

Interolog Mapping approach was used. This approach identifies homolog for the 

query protein for which a known Host-Pathogen Interaction has been reported and 

the homologous HPI is transferred to the pathogen query protein and is assigned the 

homologous partner host protein [175]. The 50 secretory proteins were used as a 

query to two resources HPI-DB [176] and BIPS [177] to extract Interologs using a cut-

off of 1e-20 for E-value, minimum of 80% query coverage and 40% identity [178,179]. 

2.3.2. Domain-Domain Interaction Mapping  

The Interologs identified were further subjected to Domain-Mapping based 

approach which is a form of structure-interaction based validation for the sequence-

based Interolog approach. This would help to characterize the predicted interactions 

as more physical rather than just functional associations which are obtained from the 

Interolog mapping. Domain mapping for the predicted Interologs was performed 

using 3DID database. 3DID provided predicted domain-domain interaction pair for 

proteins based on structure from the Protein Data Bank [180]. 3DID contains a total 

of 11723 domain-domain interactions. Pfam domains for the 50 secretome proteins 

were extracted from UNIPROT using in-house codes. Domain-Domain Interaction 

(DDI) mapping was implemented such that if domain x of the query sequence (Px) is 

known to interact with domain y of a target sequence (Py) then the two proteins Px 

and Py can be established to be interacting pair of proteins. To apply this approach 

an in-house code was written where Pfam domain IDs of 50 secretome proteins were 
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mapped to 11723 3DID domain interaction pairs and the partner interacting domains 

were identified for 50 secretome proteins to verify the interactions predicted from 

the Interolog approach. To validate our predicted partners which were predicted by 

both HPI-DB and BIPS, but could not be verified from the 3DID database, we used 

the recently updated dataset from NEGATOME 2.0 to scan through our predicted 

protein pairs [181]. This database contains non-interacting protein pairs which are 

curated by manual curation of literature and by analyzing protein complexes from 

PDB. Domain mapping followed by NEGATOME analysis was done to eliminate 

false positives in our interactome predicted partners.  

2.3.3. Integration and development of Host-Pathogen PPI network and 

Qualitative Ranking of predicted Interactors 

Further to get a complete overview of the interaction between the L. donovani 

secretome proteins with the human host proteins, we integrated the predicted 

interactome with intra-species PPI of human as well as of L. donovani. The predicted 

interacting human partner proteins which were verified further by Domain-mapping 

approach were used as a query to extract human PPI from a comprehensive human 

PPI database PICKLE 2.0 considering only those PPI which had experimental 

evidence for the physical interaction reported. It is to be mentioned here that the 

interactions only upto the 2nd shell have been considered in our study [182]. This 

procedure was similarly followed for extracting L. donovani intra-species PPI. The 

secretome proteins were used as query to STRING database and the template PPI of 

L. infantum was used [183,184]. The identified PPI proteins were further mapped to 

L. donovani proteins with sequence identity cut-off of 90% and above.  

Ranks were assigned to the interactions on a qualitative basis. The interactions 

which are predicted by Interolog by both methods (HPI-DB and BIPS) but not 

verified by DDI-mapping were assigned Rank 1. These PPI are however cross-
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verified with the latest available data of the NEGATOME database. The interactions 

which are predicted by any one Interolog-source (HPI-DB/BIPS) and verified by 

DDI-mapping are Rank 2, interactions predicted by both the interolog-sources and 

also verified by DDI-mapping were assigned Rank 3. The Intra-species PPIs curated 

to the extended network are all assigned Rank 4 (experimentally verified). It is to be 

mentioned here that all the four ranks of PPI prediction have been ranked based on 

the source of information and bear some direct or indirect experimental proof and 

hence are considered equally likely in our study. The ranks have been retained for 

easily differentiating and filtering out the interactions if necessary, for further 

investigation and does not discriminate the interactions as high or low confidence.  

2.3.4.  Gene Ontology and Pathway Enrichment 

The Gene Ontology (GO) terms for the cellular component were enriched for all the 

predicted host proteins using DAVID 6.8 [185]. Thereafter these proteins were 

enriched for the pathways that they were associated with. The predicted host 

proteins partners corresponding to each secretome proteins were enriched 

separately to identify the pathways associated with each secretome protein. This is 

an important step in the verification of predicted Host-Pathogen PPIs where it is 

expected and has been observed in various literatures that each pathogen protein 

targets multiple host proteins associated with related or similar biological pathways 

and processes. 

All the GO process term enrichment, KEGG pathway enrichment, cellular 

component enrichment was carried out using DAVID 6.8 statistical test of Benjamini-

Hochberg based validation using a p-value cut-off of 0.05 [185]. 

2.3.5.  Network Analysis 

Network analysis and topological parameters calculation were done using 

Cytoscape [186] and R package igraph and stats [187]. Degree distribution and 
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power law fit were done using Cytoscape: NetworkAnalyzer [186,188] and further 

plotted using R custom script. The centrality measures calculations like hubs and 

bottlenecks identification, betweenness centrality, eigenvector centrality were done 

using Cytohubba. Shortest Path distance calculations between all nodes in the 

network and sub-networks distance calculation was carried out using custom R 

script using R package igraph. All visualizations were done using Cytoscape 3.7.1 

and Gephi 0.9.2 [189]. 

2.3.6.   Identification of Phenotypic Response Nodes and Sub-Networks 
using experimental data  

A proteomics study has identified Differentially Modulated Proteins (DMP)  in 

THP1-cells infected with L. donovani at 3 time points (12 hr, 24 hr and 48 hr) by 

performing Liquid chromatography–mass spectrometry (LC-MS) method [190]. In 

this study, we hypothesize that the cause for this differential expression may be due 

to the presence of the secretome Virulence Factors (VFs) of the parasite that would 

directly or indirectly influence the host proteins upon infection. Hence, we mapped 

these DMPs on to our network to be further used as response proteins (target nodes). 

The mapping of these experimentally reported differentially modulated proteins 

provides a verification of the predicted network. The DMPs identified in our 

network were further enriched for their Biological process using DAVID 6.8 using a 

p-value cut-off of 0.05. From the enrichment results, we identified GO process terms 

relating to immunological response and pathogen’s survival and protein sets were 

categorized into two phenotypic response sets: (i) host response proteins involved in 

Immune response (IR); and (ii) host proteins involved in Intracellular survival of the 

pathogen (SUR). These two sets represent the early infection phase of our analysis. 

Since the proteomic study was limited to an infection time point of 48 hours it was 

not possible to check for protein sets specific for visceralization process. Through a 

thorough literature mining approach, a set of proteins were identified which defined 



 
 

Chapter 2 
Materials and Methods 

52 

 

the Visceralization (VIS) phenotypic response reported by various experimental 

studies during the later phase of the infection [39,191-197]. The protein sets 

identified in these three sets were thus referred to as the “Phenotypic Response 

Nodes” (PRNs) in our study. Details of these individual nodes (response proteins) 

identified for the sub-networks are provided in Appendix C: Table C. 4.       

To extract all possible paths from the L. donovani secretory Virulence Factors to the 

PRNs we have calculated shortest paths using Cytoscape app: PeSca’s tool: isolated 

nodes [198] forming three phenotype sub-networks namely, IR sub-network, SUR 

sub-network and VIS sub-network. This tool employs Dijsktra’s algorithm to identify 

the shortest paths from the given source nodes to all the target nodes. This was 

performed for all 24 VF nodes used as source nodes to all the response nodes as the 

target nodes. The three sub-networks thus consist of source nodes, i.e., L. donovani 

VFs, the path intermediates and the response nodes i.e. PRNs. Each of these sub-

network was further subjected to KEGG Pathway enrichment using DAVID using 

statistical method of Benjamini-Hochberg FDR correction and p-value cut-off of 0.05 

[185]. 

2.3.7.  Target identification using in-silico perturbation based on Path 
distance analysis and shortest path depletion 

Betweenness Centrality defines a protein as the one through which maximum 

shortest paths pass through and thus it will be the key information carrier in that 

network [188,199]. Based on this, top ten proteins were extracted based on their 

betweenness centrality within each sub-network and ten proteins were chosen from 

these 3 lists which are common in at least two of the sub-networks. These ten 

proteins were used for the perturbation study of the HPI network. Further, to study 

the effect of perturbation, each of the candidate protein was serially knocked-out in-

silico, that is, the protein was deleted from the network along with all its associated 

edges which defined the connections of the target protein to the other proteins in the 
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network. Post knockout, the shortest path length from the secretory proteins to the 

response nodes were calculated again and the deviation in the average path length 

was calculated using Mann-Whitney test where the p-value calculated signifies the 

statistical significance of the deviation in path distance caused due to the 

perturbation created in the network upon the in-silico knockout. 

Perturbation of shortest paths (PSP) in each sub-network upon knockout was 

calculated using Eq.10. The PSP scores are scaled in percentage where 0% denotes no 

deletion of shortest paths post knockout and thus no effect of knockout on depletion 

of shortest paths. The scale leads upto 100%, where 100% denotes all shortest paths 

to the response nodes deleted after knockout and thus indicate complete disruption 

of communication of that secretory protein to any of the response nodes for that sub-

network. All calculations were done using the R igraph package [187]. Heatmaps 

were plotted using R gplots for ease of visualization to study the perturbation effects 

created upon knockout [200]. 

        
   

            …..Eq. 10 

Here, SPk indicates the number of shortest paths remaining after the knockout and 

SPT is the total number of shortest paths for that sub-network.  

Pathway enrichment using DAVID KEGG pathways with and FDR cutoff of 0.05 

was done before and after knockout to observe deletion or addition of pathways as 

an effect of knockout on the perturbed sub-networks [185]. The enriched pathways 

were quantified in terms number of proteins from that sub-network protein set 

enriched for a particular pathway after the knockout. For the representation of this 

analysis R packages dplyr and ggplot2 were used to create bubble plots, where the 

bubble size reflects the count of the number of proteins enriched for a pathway in 

each sub-network. To normalize the observation of this depletion across all three 

sub-networks, we calculated the ratio of the number of enriched proteins to the total 
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proteins in the sub-network and have used this ratio to plot the charts. This way we 

could uniformly compare the depletion in the number of enriched proteins for any 

pathway after the knockout between the three sub-networks. Additionally, we also 

wanted to quantify the extent of the effect of knockout on the enriched pathways by 

observing the depletion in the number of proteins enriched for those pathways after 

knockout. Here we calculated the difference in the number of proteins enriched for 

the pathway before and after knockout and plotted this difference in the form of pie 

chart to denote the distribution of affected pathways in the perturbation study for 

each phenotypic sub-network. 

2.4. Immune Cell Crosstalk in Cancer Microenvironment 

In order to study the regulatory mechanisms involved in the immune-escape 

mechanism of the tumor cells, in Chapter 6, an ODE-based mathematical model of 

the tumor-immune interaction has been developed that captures the development of 

a malignant tumor from the ‘seed’, the Cancer Stem Cells (CSC), and its interaction 

with the ‘soil’, the tumor microenvironment. The tumor-immune interaction model, 

depicted in Figure 5 a, can be perceived as three regulatory modules – (i) the core 

tumor along with the tumor infiltrated Tc cells (red box), (ii) the immune-stimulators 

consisting of M1 cells, TH1 cells, IL2 and IFN-γ cytokines (green box) and (c) the 

immune-suppressors consisting of M2 cells, TH2 cell, Treg cells and IL10 cytokines 

(orange box). The interactions between these components of the model are based on 

known experimental evidences and immunological relevance. The tumor-immune 

interaction network has been modelled using 13 Ordinary Differential Equations 

(Eq. 11- Eq. 23) and 71 parameters. A detailed description of the model along with 

the mathematical assumptions, based on the biological phenomenon, used in its 

mathematical formulation has been described subsequently.  
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Figure 5: Diagrammatic representation of the Tumor-Immune interaction model (a) Cellular 
interaction network representing the key players of the tumor microenvironment, viz. Cancer Stem 
Cells (S), Cancer cells (C), their drug resistant counterparts (SR and CR), M1-TAM, M2-TAM, TH1, TH2, 
Tc, Treg immune cells, and cytokines IL10, IFN-γ and IL-2 ; The tumor microenvironment has been 
grouped into three parts, viz.- core tumor and infiltrated Tc cells (red box), the immune-stimulators 
(green box) and the immune-suppressors (orange box); the Black arrows represents Activation, while 
the Red arrow represent Inhibition; (b) Stem cell differentiation pattern. 

 

The state variables and parameters used in the formulation of the model have been 

listed in Appendix D: Table D. 1. The initial values of the model variables have been 

listed in Appendix D: Table D. 2. Here the initial value of the stem cell S0=1, while 

SR, C, CR have been initialized as zero such that all the tumor sub-populations 

develop from the symmetric and asymmetric differentiation of a single stem cell that 

ensures the conservation of the stem cell hypothesis. 

2.4.1. Model Formulation 

2.4.1.1. Tumor formation 

The core tumor consists of the Cancer Stem Cells (S), the Cancer Cells (C) and their 

drug resistant counterparts Resistant Stem Cells (SR) and Resistant Cancer Cells (CR) 
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(Figure 5 a, red box). The model takes into consideration the different patterns of 

stem cell differentiation, viz. the symmetric and asymmetric stem cell differentiation 

(Figure 5 b). In the asymmetric differentiation, one stem cell (S) produces one 

daughter stem cell (S) and a differentiated progenitor Cancer cell (C) with 

probability p1, while in the symmetric differentiation one stem cell (S) produce either 

two Cancer cells (C) with probability p2 or two stem cells (S) with probability p3 

(where, p1+p2+p3=1). The stem cells undergoing asymmetric differentiation acquire 

mutation (represented with a black dotted line in Figure 5 a) with a probability mS 

that leads to the transformation of a stem cell (S) to a resistant stem cell (SR). Since 

the probability that this mutation hits the daughter stem cell and not the 

differentiated cancer cell is 0.5, the probability of formation of SR from S is further 

multiplied by p1/2. The symmetric differentiation leads to the renewal of the non-

mutant stem cell (S) pool with a probability (1-mS)(1-p1-p2) [47]. Considering these 

factors (as described by Tomasetti and Levy [47]), we assume that the growth rate of 

S can be mathematically represented as  γ                   , while the rate of 

depletion of the stem cell pool, that includes the differentiation of S to C and the 

transformation S to SR can be represented as          γ   γ  
       

 
   . It may 

be mentioned here that γS and δS represent the natural birth and death rates of S 

cells. A similar nomenclature has been followed for all the other cell types. 

The resistant stem cells are formed from the transformation of an S to SR. The SR 

follows a similar pattern of self-renewal and differentiation that leads to the 

replenishment of the SR pool and the formation of differentiated CR cells [47]. Here, it 

may be assumed that the SR represents the compartment of stem cells that 

accumulate all the mutations in its pool, such that no separate compartment for any 

secondary mutations has been considered here in this model. 
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The Cancer cells (C) are formed from the stem cells (S) with the probability p1+p2. 

These C cells follow a Gompertzian growth kinetics that can be mathematically 

represented by γ          
    

 , where Cmax is the carrying capacity of the tumor [201]. 

Here, it has been assumed that during proliferation these C cells acquire mutations 

with a probability mC and get transformed into CR cells. Hence the probability of 

proliferation of the non-mutant C cell is further multiplied by a factor (1-mC). The CR 

cells are formed from the differentiation of the SR cells with probability p1+p2 and the 

transformation of the C to CR cells with probability mC. The CR cells also follow 

similar Gompertzian growth kinetics. The total carrying capacity of these non-stem 

tumor cells has been considered as Ktumor, while each of C and CR has a carrying 

capacity of Ktumor/2, so that both the cell populations can use the nutrients equally 

and have an equal advantage in proliferation. 

2.4.1.2. Immune cells in the Tumor Microenvironment 

As the tumor develops the resident TAMs, both M1 and M2, encounters the C and 

CR cells of the tumor and gets activated (Figure 5 a) [202]. It may be assumed that 

this cell-to-cell interaction will follow a saturating kinetics where even in the 

presence of a high number of tumor cells, the availability of TAMs acts as the 

limiting condition. Hence a Michaelis-Menten type functional form may be used to 

represent the TAM activation, e.g.       
           
       

 . These M1 and M2 TAMs now 

activate the TH1 and TH2 cells respectively [203]. Here the abundance of the TH cells 

acts as the limiting condition. In a similar way, the M2-TAMs also activate the Treg 

cells present in the tumor microenvironment [204]. The Tc cells, on the other hand, 

infiltrate the tumor, gets directly activated by C and CR cells (Figure 5 a). However, 

the S and SR cells of the tumor inhibit the Tc cell proliferation [52]. This is a 

bidirectional reaction, as the activated Tc also tries to kill the tumor cell sub-

populations via its cytotoxic activity [205,206]. The Treg cells act as immune-
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suppressor of the system and try to inhibit Tc proliferation, whereas the TH1 cells act 

as immune-stimulator of the system that helps in Tc proliferation and tumor 

infiltration [207,208]. All these cell to cell interactions tend to follow saturation 

growth kinetics and hence have been modelled using the Michaelis Menten form 

discussed earlier [102]. 

2.4.1.3. Cytokines and Feedbacks 

Tumor formation triggers the immune system to produce cytokines. In this model, 

three important cytokines have been considered, viz. IFN-γ, IL-2 and IL-10 (Figure 5 

a). The activation of the TH1 cells stimulates the production of IL-2 cytokine from 

them. The amount of cytokine produced is directly proportional to the abundance of 

effector cells activated. Hence, this has been modelled using the Law of Mass Action, 

e.g.                , where βTh1CK3 (units: ng cell-1day-1) is the rate of production of 

IL2 from TH1 cells [209]. This IL2 is responsible for the auto-regulation and sustained 

proliferation of the TH1 cells. Hence, we have considered a positive feedback loop 

from IL2 to TH1 cell that has been modelled using a saturating function 

                  
      

, where the cytokine acts as the limiting factor [102,209]. Similarly, the 

IFN-γ is produced by TH1 and Tc cells which have a negative feedback effect on all 

the tumor cell sub-populations. The production of IL10 is regulated by M2, Treg and 

TH2 cells. An auto-regulatory positive feedback loop exists between IL10 and the 

Treg cells. IL10 also plays an important role in the proliferation of the C and CR cells 

and inhibition of the TH1 cells. This IL10 mediated regulation captures the inhibitory 

actions of TH2 on TH1 cells that are often observed in Cancer scenario.  

2.4.2. Model Equations 

Based on the biological relevance and mathematical assumptions discussed above, 

the equations representing the tumor-immune interaction network comprising of 13 
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Ordinary Differential Equations (Eq. 11- Eq. 23) and 71 parameters have been 

enlisted below: 
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2.4.3. Control and Therapeutic Intervention 

In order to design treatment protocols for triggering Cancer remission, in Chapter 6, 

we have introduced Radiotherapy, Chemotherapy and Immunotherapy control 

terms to the model.  

a. Radiotherapy (R) - With the aim to reduce the tumor cell proliferation, control 

variables were introduced in our model. Here, the control variable u1 signifies 

the probability of cell death due to Radiotherapy (Eq. 24),  

               –    
           …..Eq. 24 

where α and β are the parameters governing the radio-sensitivity of the cells, 

and dR is the dose of radiotherapy applied, measured in Grey (Gy) units [101]. 

The value of α and β depends on the oxygenation state of the cell [210].  In our 

model, it has been considered that Radiotherapy affects only the Cancer (C) and 

the Cancer Resistant (Cr) populations of the tumor. It has no effect on the stem 

cells owing to their slow growth rate. 

b. Chemotherapy (C) - The control variable u2, signifying chemotherapy has an 

effect on the drug-sensitive stem (S) and cancer (C) cells of the tumor (Eq. 25 and 

Eq. 26). u2_S and u2_C are defined as the probabilities of cell death, due to 

chemotherapy, of Stem cells and Cancer cells respectively (Eq. 25 and Eq. 26). 

                                  ….Eq. 25 

                               ….Eq. 26 

Here, fC denotes the frequency of chemotherapy per day, M is defined as the 

efficiency of the chemotherapeutic drug in m2mg-1 denoting the area of the 

tumor affected per mg of the drug and dC is the concentration of the drug in mg 

m-2. The efficacy of the chemotherapy of the stem cells depends on the factor kS 
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that represents the inhibitory effect of IL-4 on the stem cells that reduces the 

efficacy of the drugs. Sequestration of IL-4 makes the stem cells sensitive to 

chemotherapy [211,212]. 

 Immunotherapy (I) - The parameter set was systematically screened to identify 

key parameters governing the negative feedback of the immune cells on the Tumor 

population. Then, the immunotherapy was introduced in our model as perturbations 

to the system in order to overcome the immunosuppressive effect of the tumor cells 

and to restore a healthy TH1 /TH2 balance.                                                                               
                                    .….Eq. 27 

                                        .…Eq. 28 

Eq. 27 and Eq. 28 depicts the control variables for providing immune-boost to the TC 

and TH1 cells, respectively. dI signifies the dose of immunostimulant, measured in 

mg day-1 that must be given to the system, while MTC and MTH1 are the measures of 

the sensitivity of the TC and TH1 cells, respectively. 

2.4.4. Designing Treatment Protocols 

The protocols are designed using various combination of the above mentioned 

treatment strategies, viz. Radiotherapy, Chemotherapy and Immunotherapy. The 

dosage, time duration and number of cycles for each therapy are varied to determine 

the optimal combination that gives us maximum fold changes in the tumor 

reduction. The general form of the protocols can be described as follows: 

          
                                         

Here, R denotes Radiotherapy, Ch denotes Chemotherapy, I denotes 

Immunotherapy and FT signifies a treatment-free period or relaxation time. The 

model was run till 200 days before the start of any therapeutic interventions. This 

has been considered as the standard detection time (DT) for a full grown tumor. 
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Here the subscripts (tR, tC and tI) denotes the time duration for which the treatment 

was given, and the superscripts (dR, dC and dI) represent the dosage. The subscript 

outside the bracket (nR, nC and tI) denotes the number of cycles for which that 

treatment was repeated. 

Protocol 1: This Protocol is an adaptation of the standard treatment protocol used for 

applying chemo and radiotherapy (adapted from British Columbia Cancer Agency 

Protocol GIGAJCPRT - http://www.bccancer.bc.ca/). It was applied to our model to 

observe the fold changes in the tumor cell population.  The protocol can be 

summarized as follows: 

                      
                          

Protocol 2: This Protocol was designed as a combinatorial treatment protocol of 

Chemotherapy, Radiotherapy and Immunotherapy to enhance the treatment 

efficacy. Based on Protocol 1, this Protocol is an improvisation where 

Immunotherapy has been included that boosts both the TH1 and Tc simultaneously. 

In order to design this combinatorial treatment protocol, the dose of Radio, Chemo 

and Immunotherapy were varied over wide ranges in order to create 1000 treatment 

combinations. The treatment efficacy of each combination was plotted in a 4-

dimensional scatter plot, measured in terms of fold change and TH1/TH2 ratio 

(Appendix D: Figure D. 1). The Protocol 2 can be summarized as follows: 

                      
                                     

Measuring treatment efficacy 

The efficacy of a treatment protocol is measured by the reduction in the size of the 

tumor and the overall recovery from the immune-suppression induced by the tumor, 
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to ensure minimal chances of tumor relapse. Hence we have defined two parameters 

that can be used as an indicator of Cancer prognosis: 

a. Fold Change – The treatment efficacy was estimated by measuring the fold 

change of the tumor mass at the end of the treatment period as compared to 

the tumor mass measured at the time of detection. 

b. TH1/TH2 ratio - In order to ensure maximum treatment efficacy and minimize 

chances of Cancer relapse, the TH1/TH2 ratio was used as an indicator for 

disease prognosis. A minimum threshold of TH1/TH2 ≥ 5 was chosen to 

optimize treatment protocol. 

2.4.5. Positivity and Boundedness 

This system of equations (Section 2.4.2, Eq. 11-23) can be analyzed with the initial 

conditions (Appendix D: Table D. 2) defined in the thirteen-dimensional variable 

space 

  
                                                    

                                                         

It can be proven, that all solutions of the system in    
   remain in    

  . Hence,    
    is 

positively invariant, and it is sufficient to consider solutions only in    
  . In this 

region, the usual existence, uniqueness and continuation results hold for the system. 

From our numerical simulations also, we have observed the existence of positive 

solutions. The solution set we get for the set of ODEs represents the effective cell 

population and protein concentrations of the species considered in the model at 

different time points during the tumor development. The fixed point attained by all 

the variables of the model is a part of this positive solution space.  
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Also, we observe that the right-hand side of Eq. 11-23 (Section 2.4.2) are smooth 

functions of the variables (S, SR, C, CR, M1, M2, TH1, TH2, Tc, Treg, IL10, IFNγ, IL2). 

Also, since all the parameters are non-negative, local existence and uniqueness 

properties hold in   
  , and if the following necessary conditions are satisfied, 

1. S0 > 0 

2. p1+p2 < 1 

3. mS < 1 

4. mC < 1 

5. γS(1-p2) > δS 

then, we can state the following proposition. 

Proposition 1: All the solutions of Eq. 11-23 (Section 2.4.2) which initiate in   
   are 

uniformly bounded.  

Proof: The proof of Proposition 1 is obvious as all the variables satisfy the condition 

of positive invariance for all the solutions of Eq. 11-23 (Section 2.4.2)  which initiate 

in   
   , the assumptions and necessary conditions (stated in Section 2.4.5 ) [213]. 

2.4.6. Sensitivity Analysis  

The sensitivity analysis of the tumor-immune interaction model (Eq. 11 – Eq. 23) was 

performed by the extended Fourier Amplitude Sensitivity Test eFAST technique 

using a MATLAB based toolbox [214]. The sensitivity analysis was carried out using 

the whole set of parameters [k=71]. 100 samples were chosen per search curve and 

resampling of the search curves was carried out 5 times [NS =100, NR =5]. Hence, the 

total number of model simulations N=(k+1)*Ns*NR=36000. The Sensitivity Indices 

(Si) of the parameters (p<0.05) for the variables governing the growth of the tumor 

sub-populations, viz. S, SR, C and CR were estimated at different stages of the tumor 

development (Figure 6 a-d). Here it may be observed that at different time points 
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that Si values of the parameters change, signifying the importance of the parameters 

in the different stages of the tumor development. The knowledge from this 

sensitivity analysis was used to determine the parameters that have a maximum 

effect on the tumor development. 

2.4.7. Parameter Estimation from Cancer cell line data 

The model (in Chapter 6) comprises of a total of 71 parameters. The values of 21 

parameters of the model were curated from the existing literature. The unknown 

parameters were estimated (few were ‘assumed’ within the biological feasible 

ranges) using the MATLAB based toolbox that employs the MCMC-DRAM 

algorithm for parameter estimation [215]. The time course experiment cytometric 

data for cancer cell proliferation obtained for 7 days in for Gastric cancer cell line 

(SGC7901) that was fitted for approximating the cancer cell behaviour during the 

growth phase (Figure 6 f) [216]. Parameters that were sensitive for the growth of 

the Cancer (C sub-population) cells were varied in biologically feasible ranges. The 

prior distribution was assumed to be normal and the MCMC simulation was 

carried out for 5,00,000 iterations to ensure the convergence of the chain (Figure 6 

e). The estimated parameter values for the model have been listed in Appendix D: 

Table D. 1. 

2.4.8. Experimental Data for Model Calibration 

Apart from the parameters estimated using the MCMC method, the remaining 

unknown parameters governing the steady state behaviour of the system were 

manually adjusted within the biologically feasible ranges for the calibration of the 

model so as to ensure that the simulation results corroborated with the various 

experimental observations. These parameter values (labelled as ’Expected’) used for 

the numerical simulation of the model have been enlisted in Appendix D:Table D. 1. 
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The experimental data used for this purpose were extracted from the available 

literature. For the validation of the growth kinetics of the resistant Cancer cells, time-

course data of resistant cell lines were obtained from Breast cancer cell line MCF-

7/TAX-resistant to Paclitaxel [217], Hepatocellular Carcinoma cell line SK-

Hep1/CDDP3-resistant to Cisplatin [218], Colon Cancer cell lines SW-620-L-OHP 

and LoVo-L-OHP-resistant to Oxaliplatin [219].  

 

Figure 6: Sensitivity Analysis and Parameter Estimation: (a-d) Sensitivity Analysis plots for S, SR, C 
and CR respectively. The x-axis represents the parameters with p<0.05; (e) Trace Plot showing the best 
fitting parameter values as estimated by the MCMC algorithm; (f) Predictive plot of cancer 
proliferation using the estimated parameter values. The red circles represent the cancer cell 
proliferation values as obtained from Cell Counting experiments using Gastric Cancer cell line [216]. 

The cytometric data obtained for the validation of the immune cell ratios were 

mostly obtained from Gastric Cancer, Ovarian Cancer and Osteosarcoma studies 
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[202,220-224]. The data for the validation of cytokine expression were obtained from 

cases of Gastric and Breast Cancer studies [225-227]. These data used came from 

heterogeneous sources as none of the previously performed experiments was found 

to report the values of all cytometric data in a single experiment. Moreover, the use 

of data from the different Cancer studies ensures that the model is generic and 

mimics the average behaviour observed in most Cancer studies. The use of data 

from both in vitro studies as well as data obtained from Cancer patients ensures the 

reliability of the model for its use in designing therapeutic control. In order to make 

the model specific for a single type of Cancer, one needs to simply obtain the 

cytometric data from a single experimental source and adjust the parameters 

accordingly.  

2.4.9. Interior Equilibria 

To ensure positivity and existence of the interior equilibrium solutions, 36000 

random parameter sets were generated (as mentioned in Section 2.4.6) within the 

biologically feasible ranges. Thereafter the model is simulated up to 800 days for 

each set of parameter. It was observed that each model simulation led to the positive 

interior equilibrium solution. Hence, we can state and prove the following 

Proposition. 

Proposition 2: Positive interior equilibria exist for the set of equations Eq. 11-23 

(Section 2.4.2). 

Proof: The interior equilibrium points are the steady-state solutions of the Eq. 11-23 

(Section 2.4.2) under the necessary conditions (Section 2.4.5) in the biologically 

feasible ranges of parameter values and initial conditions (Appendix D: Table D. 1 

and Table D. 2). 
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2.4.10. Model Initialization and Numerical Simulation 

The tumor mass is formed by the sub-populations S, SR, C, CR. In our model, the S 

cell sub-population has been initialized to 1, while all the other tumor cell sub-

populations have been considered as 0. The initial values of the remaining variables 

have been initialized based on cytometric data and cytokine expression values of 

healthy individuals, curated from the literature.  The details have been provided in 

the Appendix D: Table D. 2. The model was simulated numerically using the 

variable-step, variable order solver, ode15s, in MATLAB® 2017a platform. 
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CHAPTER 3 

STUDY OF CO-RECEPTOR AND CALCIUM SIGNALLING 

CROSSTALKS REGULATING TH-CELL ACTIVATION AND 

EFFECTOR FUNCTIONS 

3.1. Motivation 

The ‘two signal hypothesis’ of T-cell activation establishes that the complete 

activation of the T-cell responses and the expression of the major interleukin 

molecules cannot be achieved by T-cell receptor (TCR) and MHC class II protein 

interaction alone, but requires the successful interaction of the various co-

stimulatory molecules with its co-receptors. The activation of the calcium channel 

has also been observed to play a crucial role in regulating the T-cell responses [142]. 

However, during various antigenic challenges such Infectious diseases and Cancer, 

these immune signalling pathways are deregulated and the expression of effector 

molecules are altered. This leads to an immune-suppressed condition. To overcome 

such scenarios, it is necessary to have an in-depth knowledge of the intra-cellular 

signalling pathway crosstalks of the TH cell that will help us to identify important 

immune-stimulatory modules that can elicit the desired effector functions. 

Experimental studies have provided us with discrete information regarding each co-

receptor molecule and pathway. Several modelling and computational studies [87] 

on the core T-cell signalling network have revealed numerous hidden facts about 

this pathway, but till now none of the studies has considered the importance of all 

the co-receptor signalling pathways including the core network during T-cell 

activation. A previous study using systems level model on the sequential 

phosphorylation of T-cell antigen receptor (TCR) by LCK molecule has revealed the 

importance of having multiple phosphorylation sites on TCR and the successive 

Bulk of this chapter has been taken verbatim from our previously published article: Ganguli P, Chowdhury S, 
Bhowmick R, and Sarkar RR (2015). Temporal protein expression pattern in intracellular signalling cascade during T-
cell activation: A computational study. Journal of Biosciences, 40(4), pp 769-789, DOI: 10.1007/s12038-015-9561-1 
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differential binding of ZAP70 on those phosphorylated sites with ultrasensitivity or 

switch-like response architecture in TCR signalling network [228]. In another study, 

the activation mechanism of primary T-cell by TCR, CD4/CD8 co-receptor, and CD28 

molecules after encountering APC has been studied using Boolean formalisms [229]. 

In the successive study, the same model has also been studied as a continuous model 

by transforming its Boolean formalisms to evaluate the temporal behavior of the 

entire TCR network by measuring the time course concentration level of its 

component protein molecules [230]. In order to encounter the stochastic effect of the 

protein expression pattern of T-cell signalling network in large granular lymphocyte 

(T-LGL) leukemia condition, a study has also been performed by using the 

asynchronous Boolean update rules on the T-cell network [231]. In this study, the 

author has mainly used core TCR network to study the network dynamics of T-LGL 

and successively identified 19 possible therapeutic drug targets. However, it should 

be noted that all of these models have mainly considered the core T-cell pathway, 

although the experimental studies have already revealed the importance of other co-

stimulatory and co-inhibitory accessories, which also require in parallel for the 

proper functioning of core T-cell network [142]. 

For gaining a holistic understanding of the complex molecular regulations 

underlying the effector functions and phenotypic responses of TH cell, it is important 

to employ systems level approach. Hence, in order to achieve this, the reconstruction 

of the complete intra-cellular T-cell signalling network that includes the core TCR 

pathways, co-receptor signalling pathways as well as Calcium signalling pathway is 

of paramount importance. This will help in identification of the regulatory modules 

to stimulate a sustained proliferation of the immune cell, to overcome disease 

induced T-cell anergy, to identify targets for stimulating of cytokine production as 

well as understand the mechanisms of TH cell differentiation. 
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Hence, in order to address the First Objective of the Thesis, in this chapter, we aim to 

explore the intra-cellular signalling network of TH cell to decipher the function of the 

co-receptor molecules and the Calcium channel CRAC on the regulation of the 

phenotypic responses and the changes in the temporal expression pattern of 

Interleukins and other effectors molecules from the TH-cells. 

In this work, our main hypothesis is that the temporal expression patterns of various 

T-cell effector molecules as well as the phenotypic responses, such as T-cell 

proliferation, inactivation, cell death (T cell anergy), Interleukin production, can be 

regulated by selective modulation of the co-receptor signalling pathways and 

stimulation of Ca+2 signalling pathway.  Here we aim to identify the minimum 

combination of pathways that are essential for the sustained proliferation of the TH 

cell as well as identify the key co-receptor molecules and pathways that play the 

major role in regulating the Interleukin production and effector functions. 

In order to accomplish this, we have manually reconstructed a comprehensive T-cell 

receptor mediated signalling pathway coupled with other intracellular important 

cell signalling pathways (e.g., MAPK, Ca+2 signalling pathway etc.) by collating the 

signal propagation data from various literature and cell signalling databases 

(Section 2.1.1). Using the reconstructed pathway map of T-cell activation, and the 

concept of semi-dynamic Boolean or logical equations, we have constructed a 

mathematical model of the activation of T-cell signalling network using the ‘AND’, 

‘OR, ‘NOT’ logic gates (Section 2.2, Appendix A: Table A. 1). The initial expression 

levels (i.e. logical states) of all the nodes/species of this pathway are considered from 

the published microarray expression data (Section 2.2.4), which is binarized by K-

means clustering method (Section 2.2.5, Appendix A: Table A. 2). Using this semi-

dynamic computational approach, we observe various temporal protein expression 
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patterns and changes in phenotypic responses generated upon introducing different 

stimulation and co-stimulation signal on the T-cell receptor proteins.  

 It is to be mentioned here that, one of the main assumptions used for simulation and 

validation of the T-cell activation is the association of time with the Boolean model. 

Here, in order to gain an understanding of the temporal changes in the protein 

expression, each step of Boolean update was associated with a unit of time. For this, 

both the synchronous and asynchronous models were run for different time steps 

and the time step at which the simulation reached its steady state was determined 

(Section 2.2.3). The asynchronous model was simulated for 100 iterations (range 

=100) and the mean of the expression value for each time point of each node was 

taken. With the 0 hour value as the initial value and the APC molecules as ‘ON’, the 

39 output molecules of the model were validated with 0, 2, 4 and 6 hours binarized 

expression data, the time when the interleukin production is highest/ at its peak and 

the T cell is most active [171,232]. Here each time step was assumed to be equal to 0.5 

hours. This calibration of the time scale was optimized only after determining the 

time step at which the model reached its steady state. 

3.2. Results 

3.2.1. Reconstruction of T-cell co-receptor Signalling Pathways 

The T cell pathway that has been reconstructed (Figure 7) provides a complete 

picture of the entire signalling cascade. The data has been collated through thorough 

literature survey and pathway databases (Section 2.1). In this pathway, we have 

taken into account all the co-stimulatory and co-inhibitory receptors that are 

expressed on the surface of the T lymphocyte and paired them with their 

corresponding ligand molecules expressed on the surface of the APC. These co-

stimulatory pathways play a pivotal role in regulating the T cell activation, effector 

function and survival, without which TCR alone cannot provide the signal for the 
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full activation of the cell [142]. The pathway clearly shows the Antigen (Ag) in 

complex with the MHC Class II molecule, the 5 co-stimulatory (CD70, LIGHT, 

TNFSF9, OX40L and ICOSL) and 1 co-inhibitory (PD1) ligand molecules that are 

expressed on the APC. The B7-1 and B7-2 molecules have a dual role to play. These 

molecules can interact with two types of co-receptors on the T cell surface, viz. the 

CD28 co-stimulatory co-receptor and the CTLA4 co-inhibitory co-receptor [142]. In 

the pathway (Figure 7), the molecules have been coded in different colors according 

to their location in the membrane (dark green), cytoplasm (yellow) and nucleus 

(orange). The pathway shows 39 output molecules (colored light green), many of 

which have feedback loops (color-coded as deep pink lines) that regulate the 

proliferation of the T cell pathway in an auto-regulatory fashion (e.g., IL2 has a 

positive impact, whereas PD1 and CTLA4 have a negative effect). The functions of 

the co-stimulatory co-receptors have further been elucidated by different 

perturbation studies discussed subsequently. The pathway we report consist of 206 

molecules (nodes) and complex mesh-like network formed of 435 protein-protein 

interactions, which is the highest as compared to other T cell signalling pathway 

models reported to date in Databases and Literatures [84,229]. 

In order to decompose this complex pathway and study how the signal propagates 

through this complex network of proteins and molecules, we used this pathway to 

construct the Logical model to understand the dynamics of protein expression 

during the transition of a T cell from its inactive to its activated state. 
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Figure 7: Reconstructed T-cell Pathway. The pathway consists of 206 molecules and 435 protein-
protein interactions. The interaction lines have been color-coded according to their types: activation 
(green), inhibition (red), phosphorylation (blue), transcriptional activation (light pink), feedback 
(deep pink), nuclear transport (yellow-brown), complex formation (yellow), ubiquitylation (orange), 
physical interaction (black). The protein molecules in the network have been differently color-coded 
according to their location: membrane (dark green), cytoplasm (yellow), nucleus (orange), and output 
molecules (light green). For denoting the non-protein molecules, a light yellow colored oval shape has 
been used. 

 

3.2.2. Model Analysis - Simulation and State Transition 

The Boolean model constructed using 167 logical equations and was first simulated 

synchronously and then asynchronously (Section 2.2, Appendix A: Table A. 1). The 

input for both the cases was the 0 hour binarized data extracted from Microarray 

gene expression of a normal human T cell [116] (Appendix A: Table A. 2). The 

models were iterated for 21 rounds of update (time-steps) to see the pattern of signal 
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flow in the network, starting from the receptor and co-receptors down to the 

cytoplasmic proteins, leading to the activation of the transcription factors and finally 

the expression of the 39 output proteins. The model reached its steady state at 14th 

rounds of updates (6.5 hours) for the synchronous and at 10th time points (approx 5.5 

hours) in the case of asynchronous simulation. It is worthy to note that experimental 

data is also taken up to 6 hours duration with 2 hours interval. In order to compare 

the synchronous and asynchronous temporal protein expression pattern with the 

experimental data, we have plotted the experimental as well as simulation data in 

Figure 8, where the state transition pattern of the 39 output molecules (Appendix A: 

Table A. 3) were plotted as a continuous heat plot (Figure 8 A: microarray data, 

Figure 8 B: synchronous data, Figure 8 C: asynchronous data). While the 

synchronous deterministic model simulation (Figure 8 B) show distinct up and 

down-regulation of the protein expressions of one run of simulation, the heat-plot of 

the asynchronous simulation (Figure 8 C) show a gradual change of protein 

expression pattern as a result of averaging the values of protein expression for each 

node at each of the 21 time-steps for 100 runs of the simulation. The pattern thus 

generated shows the dynamics and fluctuations in the protein expression over the 

time period of T cell activation. By using this asynchronous update, we are able to 

rule out certain limitations of the Boolean modelling approach (the ‘all’ or ‘none’ 

output), as by this method we are able to generate a protein expression pattern that 

clearly shows that even though some proteins in Figure 8 B shows a complete down- 

regulation  at certain time points, it becomes evident from Figure 8 C that some 

amount of protein expression is still occurring in low amount  (e.g. in Figure 8 B the 

proteins CTLA4, PD1, IFN-γ  apparently show an absence of expression at certain 

time points between 1.5 – 5.0 hours, whereas Figure 8 C shows that the expression is 

not completely absent, and a low level of expression continues to occur at those time 

points - comparable with the microarray data). Also, Figure 8 C eliminates the delay 
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in protein expression of many interleukins and STAT proteins as shown in Figure 8 

B, and gives us a better understanding of the change in expression dynamics of the 

vital T cell output proteins over time.  

 

Figure 8: Continuous heat plot showing state transition pattern of output proteins. (A) Binarized 
microarray data of 39 T-cell output proteins at 0, 2, 4 and 6 hours, (B) Temporal protein expression 
pattern observed in synchronous update up to 21 time points (0 to 10 hours), (C) Temporal protein 
expression pattern observed in asynchronous update up to 21 time points (0 to 10 hours). Red 
coloured cell denotes an up-regulation in protein expression, while blue signifies down regulation. 

 

3.2.3. Phenotypic enrichment of output proteins 

The 39 output proteins were classified according to the function regulating the 

behaviour of a T cell (Appendix A: Table A. 3). The proteins were grouped into five 

classes - (a) T cell proliferation: consists of 12 proteins, which includes 

proteins/molecules responsible for the T cell survival, anti-apoptotic molecules, cell 

cycle proteins, TNF molecules [164], transcription factor STAT5 [233], etc.; (b) 

Negative regulator of T cell proliferation: consists of 7 proteins including PD1 and 

CTLA4 co-receptors that aid in co-inhibition of T cell pathway [234], 
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immunosuppressant TGF_BETA [235], NUR-77, which is a calcium-mediated T cell 

apoptotic factor [236], etc.; (c) Immune Response: consists of molecules responsible 

for initiating immune responses in the system, examples include GM-CSF [237], 

Interferon IFN-Gamma [238], and STAT1 and STAT3 transcription factors 

responsible for transcription of genes involved in eliciting an immune response 

[239]; (d) Interleukins: includes 11 interleukin molecules possessing different 

functions, e.g. IL2, IL4, and most of the other interleukins positively regulates T cell 

proliferation and are involved in immune responses, while IL10 is involved in T cell 

apoptosis [144] and (e) Growth factors: includes proteins (e.g. PDGF, PDGFRB, 

VEGF, HBEGF) secreted by the T cell that often acts as potent mitogenic factors for 

other cell and mediates immune suppression [240-243]. 

3.2.4. Comparison with Experimental Observations 

The 14 time-steps that were required for the model to reach its steady state was 

scaled to 7 hours-time for the purpose of validation of the model. The time scale 

division was chosen keeping in mind with the experimental evidences, which 

indicate 6 hours to be the time required for the full activation of a naïve T 

lymphocyte, when the production of the interleukins is the highest [171,232]. In 

order to compare the simulation results of our model with the experimental data, the 

16 time points (up to 8 hours; each time-step corresponds to 30 minutes) of both the 

synchronous and asynchronous simulation results were plotted along with four 

discrete time points (0, 2, 4 and 6 hours) from experimental observation (Appendix 

A: Figure A. 1). 

The results of our simulation obtained at the time step 12 (~ 6 hours) of the 39 output 

proteins were then validated with the 6 hours binarized experimental data. Here, 

while comparing deterministic or synchronous simulation vs. experimental data, we 

found the logical states of 34 proteins (from synchronous updates) out of the 39 
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output proteins were matching with the 6 hours protein expression results observed 

in the experimental data. The percentage of validation of our simulation results with 

the experimental data have been provided in Table 2. Out of the remaining proteins, 

the expressions of which appeared to differ with the deterministic model, 

TGF_BETA matches with the asynchronous model with a small time-lag, while 

NUR_77 protein showed down-regulation in protein expression slightly earlier than 

the expected 6 hours time step. Both the synchronous and asynchronous simulations 

showed a clear match in the nature of the curves. Also, we found that the 

deterministic model showed a match of 14 very essential T-cell proteins (viz. BCL2, 

CYCLIN_D2, FASL, FKHR, GMCSF, IL1, IL2, IL3, IL8, P21, P70, PDGF, STAT3 and 

VEGF) with the experimental microarray data at all the four timesteps i.e., 0, 2, 4 and 

6 hours respectively. It is interesting to see that the T-cell proliferating factors (such 

as anti-apoptosis, cell cycle progression, cell survival etc.) governed by the proteins 

BCL2, CYCLIN_D2, FASL were up-regulated during T-cell activation in both the 

synchronous and asynchronous simulation results, and successively validated 

against the experimental findings (Appendix A: Figure A. 1). On the other hand, the 

expression of apoptotic factor FKHR was also found to be down-regulated in our 

simulation result and well matched with the experimental observations (Appendix 

A: Figure A. 1). Down regulation of this protein is required during the T-cell 

proliferation process after T-cell activation. Simultaneously, the up-regulation of 

immune responsive proteins, such as, GMCSF and STAT3, and the interleukin 

expressions (e.g., IL1, IL2, IL3, and IL8) are also important during the T-cell 

activation process. In our simulation outcomes, we have found the exact outcomes, 

which are well corroborated with the experimental data (Appendix A: Figure A. 1). 

However, to maintain the homeostasis of T-cell proliferation, the cell cycle 

progression inhibitor P21 was found to be simultaneously up-regulated in our 

simulation results. Important growth factors, such as, PDGF and VEGF, which were 
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found to be up-regulated in the experimental data, were also shown to be up-

regulated in the simulation outcomes. Hence, on the basis of these validation results, 

it can be concluded that the model outcomes generated by using synchronous and 

asynchronous update rules are correctly predicting the temporal protein expression 

patterns in T-cell signalling network during T-cell activation procedure and thus 

prove the robustness of our in-silico model.  

Table 2: Validation of Results 

Total number of species 206 

Number of output molecules 39 

No of output molecules matching at 6 hours 34 (87.18%) 

No of output molecules matching at 4 hours 27 (69.23%) 

No of output molecules matching at 2 hours 20 (51.28%) 

No of molecules matching at every time point 14 

 

3.2.5. Phenotypic Pattern Generation and Validation 

The equations of the three nodes, viz. Cell Proliferation, Cell Survival and Cell Death, 

related to the T-cell phenotypes, contains various combinations of these output 

molecules according to the functions that they are associated with (Section 2.2.2, Eq. 

4, Eq. 5, Eq. 6). The values of these three nodes were then plotted in different 

scenarios that were created by performing various perturbations to the system.  

a) LAT mutation scenario: The equations for the study of the phenotype were 

validated by matching the change in the phenotypes observed in experimental 

studies after giving different perturbations to the model and simulated 

asynchronously. For this purpose, a study on LAT mutation was chosen, and we 

attempted to reproduce the experiment to observe how the phenotypic expression 

changes [244].  In this in-silico experiment, the trans-membrane protein LAT was 
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knocked out by keeping it constitutively in the "OFF" state so that it cannot 

transduce any signal downstream. The knock-out mutation of LAT, a very important 

protein molecule regulating the T cell signalling cascade, leads to poor proliferation 

of the active T-cell population (Figure 9 A). This poor proliferation of the T cell 

population could only be reverted by turning the CRAC channel constitutively ON 

(which reproduces the same effect as using ionomycin reported in the experiment), 

leading to an increased influx of calcium, which activates the calcium pathway 

inside the T cell.  

 

Figure 9: Cell Phenotype in different situation under LAT mutated condition. Frequencies of 
Proliferating T-cells, Inactive T-cells, and Dead T-cells in LAT knock-out and (A) without any 
stimulation; (B) TCR:CD3 and CD28 stimulation; (C) TCR:CD3, CD28 and CRAC channel stimulation; 
(D) only CRAC channel stimulation conditions respectively. The frequencies of Proliferating T-cell, 
Inactive T-Cell and Dead T-cell are shown in Green, Blue and Red lines, respectively. 
 

Although stimulation of the TCR:CD3 complex and the CD28 co-receptor could 

reduce the depth of the kink in the proliferation curve, and the proliferation 

dynamics reached its steady state earlier compared to no stimulation scenario 

(proliferation reach steady state at 10th hour time-step, which signifies delayed 
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proliferation in (Figure 9 A), and at 9th hour time-step signifying early proliferation 

in (Figure 9 B), but it was unable to completely overcome the deficit in proliferation 

of the T cell population between the duration 4th to 8th hour time-steps. On the other 

hand, it is reported in the experiment that the CRAC channel was enough to induce 

a much better proliferation in the LAT mutated condition both in the presence and 

absence of additional stimuli, which is also observed through our simulation (Figure 

9 C- Figure 9 D).  Similarly, in the cases of inactive T-cell frequency and T-cell death 

frequency curves in Figure 9 A and Figure 9 B show two local maxima near the 2nd 

and 7th hour time-points, signifying higher chances of the T cell to remain in the 

inactive state or die. Whereas in the CRAC active situations (Figure 9 C- Figure 9 D) 

the inactive T-cell frequency and T-cell death frequency curves show only a single 

peak around 2nd hour time-point signifying that in CRAC stimulated situation the 

probability of T cell inactivation is much reduced. The result of the simulation has 

also been summarized in Table 3. 

Table 3: LAT mutation analysis 

b ) Effects of Co-receptor Signalling: In order to capture the effect of the co-receptor 

molecules and ion channel on cell phenotype dynamics, we have performed a 

perturbation analysis, the observations of which have been tabulated in Table 4 and 

the corresponding graphs have been plotted in Figure 10. From here we have 

observed that complete sustained proliferation of the T cell population can only be 

achieved when TCR and co-receptors and the CRAC channel are activated together 

(Figure 10 F and Figure 10 G). TCR when activated alone (Figure 10 B) show a 

Mutation 
Observation Reference Knock-in 

(‘ON) 
Knock-out 

(‘OFF’) 
- LAT Poor proliferation (Figure 4A) 

[244] 
TCR:CD3, CD28 LAT Poor proliferation (Figure 4B) 

TCR:CD3, CD28, CRAC LAT Improved proliferation (Figure 4C) 

CRAC LAT Improved proliferation (Figure 4D) 
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phenotypic behaviour similar to the no stimulation condition (all stimulations ‘OFF’ 

or ‘0’, Figure 10 A), where a high frequency of inactive cells is observed, whereas the 

frequency of proliferative cell is low [141].  

 

Figure 10: Effect of Co-receptor signalling on Cell fate determination. Phenotypic responses 
generated on different mutational analysis scenarios. (A) No stimulation. (B) TCR:CD3 stimulation. 
(C) Calcium channel (CRAC) as ON state. (D) Receptors and Co-receptors turned ON or activated. 
CRAC inhibited or OFF. (E) Only TCR:CD3 and CRAC turned ON. (F) Only TCR:CD3, CRAC and 
OX40 turned ON. (G) All receptors and Co-receptors turned activated or ON. 

 

On the other hand, CRAC when activated alone (Figure 10 C) can lead to an increase 

in T cell proliferation initially [147], which after sometime starts oscillating with cell 

death curve due to prolonged exposure to calcium influx, which activates NFAT that 

controls two opposing T cell phenotypes i.e. cell proliferation and cell death 
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[141,147]. The situation is also similar when TCR:CD3 and CRAC are activated 

simultaneously (Figure 10 E). The importance of CRAC channel in the regulation of 

T cell proliferation becomes evident further in Figure 10 D, where we observe that in 

spite of all the stimulations being present, CRAC knock-down mutation blocks cell 

proliferation completely. The oscillation of proliferation and death curve observed in 

Figure 10 C and Figure 10 E could be overcome by activating the co-stimulatory 

receptors (Figure 10 F and Figure 10 G), where a full proliferation occurs and the cell 

death curve declines [160]. 

3.2.6. Effect of multiple mutations on Interleukin Production 

Biological networks are highly robust systems, and thus a single mutation usually 

cannot perturb the entire signalling cascade as many alternative paths exist [245]. 

Diseases are mostly caused as a result of multiple mutations. The effects of such 

multiple mutations have also been observed in the deregulation of different cell 

types including T cells, where severe pathological manifestations have been 

observed by several research groups [89,246,247]. Simultaneously, in other 

experiments, significant variations in the interleukin production in different 

pathological conditions or diseases have also been reported [248-250]. However, the 

effects of multiple mutations on interleukin productions mechanism are not 

observed thoroughly by any other experiments and hence the mechanism, which 

govern these phenomenon is not clear yet. Although the effect of few co-stimulatory 

molecules (e.g. CD28-B7, CD40-CD40L), which regulate the interleukin production 

[251,252], and the deregulation in interleukin expression as a consequence of their 

mutation have been discretely studied, but the multiple mutation of other co-

stimulatory molecules on interleukin production is yet to be analyzed extensively. 

Hence, in this study, we have focused on the mutations of co-stimulatory proteins 

CD27 and LTBR and analysed their effect on interleukin production. It is worth 
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mentioning that although here we have reported one multiple mutation scenario 

(i.e., CD27 and LTBR knockout), one can also generate different conditions using our 

in-silico model.  

Table 4: Effect Co-receptor molecule knock-out in T cell proliferation  

Scenario 

T
C

R
: C

D
3 

C
D

4 

C
D

28
 

O
X

40
 

C
D

40
 

IF
N

R
1/

R
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Observation Ref 

 No 
stimulation 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

No proliferation, 
but the cells survive 
in its inactive state 
(Figure 10 A)  

[253] 

TCR:CD3 
stimulated 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 

No proliferation, 
but the cells survive 
in its inactive state 
(Figure 10 B) 

[141] 

CRAC 
activated 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 

T cell proliferation 
rises initially, but 
later begins to 
oscillate with the 
death curve. 
Number of inactive 
cells decline (Figure 
10 C) 

[147] 

All 
activated 
CRAC 
inhibited 

1 1 1 1 1 1 1 1 1 1 1 1 1 0 
No proliferation 
(Figure 10 D) [147] 

TCR:CD3 
and CRAC 
activated 

1 0 0 0 0 0 0 0 0 0 0 0 0 1 

T cell proliferation 
rises initially, but 
later begins to 
oscillate with the 
death curve. 
Number of inactive 
cells decline (Figure 
10 E) 

[147] 

Co-
stimulator
y receptor 
activated 

1 0 0 1 0 0 0 0 0 0 0 0 0 1 

T cell proliferation; 
T cell death curve 
declines (Figure 10 
F) 

[160] 

All 
receptors 
and Co-
receptors 
activated 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Full T cell 
proliferation 
observed (Figure 10 
G) 

[142] 
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a) CD27 and LTBR knock-out scenario:  The co-stimulatory receptors CD27 and 

LTBR (influencing the NFKB pathway) are involved in increased T cell proliferation  

[254,255], and the mutations of these molecules have been implicated in different 

immune-deficient conditions [256,257]. In this study, we have observed that CD27 

and LTBR together are responsible for the regulation of cytokine production. Using 

this in-silico knock-down model of CD27 and LTBR proteins, we have observed that 

mutation of these molecules may lead to a significant decrease in cell proliferation 

(Figure 11 B) as compared to the normal scenario (Figure 11 A), by decreasing the 

interleukin production (Figure 11 C- Figure 11 D). As compared to the normal 

scenario of interleukin expression pattern (Figure 11 B), the mutation analysis shows 

these co-stimulatory receptors can regulate 6 out of 11 interleukin molecules 

considered in our model, out of which the expression patterns of five interleukins 

show an oscillatory behavior (viz. IL1, IL12, IL3, IL6 and IL8) while IL2 shows a 

delay in activation (Figure 11 D). The down-regulation of these six interleukins, 

which are mostly involved in T cell proliferation, accounts for the decrease in T cell 

proliferation and rise in T cell death phenotype as shown in Figure 11 C. As the 

mutation of these molecules is not involved in controlling the normal cell cycle 

proteins, the function defining the probability of T cell survival (denoted by the 

frequency of Inactive T cell) remains unchanged. 

b) Fluctuations in intermediate proteins and other output proteins: To find out 

the reason/ mechanism for the deregulation of the interleukin production and the 

change in phenotypic dynamics, we performed the Mann Whitney U test, where we 

found that the mutation of these two genes leads to an altered expression of 25 genes 

in the entire network. Here, we observe that in addition to the NFKB pathway (NIK-

mediated non-canonical NFKB pathway) molecules, CD27 and LTBR can also 

regulate the expression of the MAPK pathway molecules (MEKK, MKK4/7, COT, 

GCKR) and the JNK pathway molecules (T3JAM), which again is responsible for the 
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regulation of a collection of other important T cell molecules that regulates its 

proliferation, survival and effector functions. The remaining molecules that are 

regulated by these co-receptors include TRAF2, TRAF3, IL2R, GMCSF, CCL19, 

VEGF, GLK, RIP1, TAK:TAB complex and IKK-Alpha, that plays a very important 

role in the regulation of T cell activity. CD27 and LTBR also regulate the expression 

of TRAF1, which is known to have an inhibitory effect on NFKB [258]. Here, we 

further observed that a knock-out of TRAF1 can nullify the effect of CD27 and LTBR 

mutation to a great extent (data not shown).  

 

Figure 11: Changes in Cell Phenotypes and corresponding Interleukin Expression pattern due to 
CD27 and LTBR mutation. (A), (B) normal condition; (C), (D) CD27 and LTBR mutated condition. 
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3.3. Discussion 

The study of T-cell signalling pathway is an essential prerequisite to the 

identification of the immune-stimulatory targets for the treatment of different 

diseases. Hence, in order to gain a holistic understanding of the signalling events 

regulating the T-cell activation and effector functions, the pathway data from 

various signalling pathway databases and literature sources (including the pathway 

information from the previously mentioned models) were collated. The 

reconstructed T-cell signalling network consists of the core TCR mediated pathway 

along with the pathways triggered by all the co-stimulatory, co-inhibitory receptors 

and the calcium channel CRAC that are crucial for the production of the various 

cytokines, chemokines, microbicidal molecules that mediates the T-cell immune 

responses and maintains its homeostasis (Figure 7). The pathway integrates discrete 

information about the regulatory mechanisms, from known experimental studies, in 

one frame that are missing in most of the biochemical pathway databases. Since we 

have used Protein-Protein Interaction (PPI) data to reconstruct the pathway and 

build our model, we have been able to incorporate the effect of other crosstalk 

molecules (e.g. components of the MAPK pathway) and feedback loops regulating 

the cellular phenotype to understand its role in the regulation of the T-cell immune 

responses and its state of activation or inactivation in response to various external 

stimuli and micro-environmental conditions. 

Using a semi dynamic Boolean modelling approach the protein interactions of the 

network have then been translated into logical equations according to the regulation 

of a single or a combination of proteins on the expression of another downstream 

protein in the network, in a biologically relevant way. Binarized time series 

microarray data of naïve T-cell activation process was used to initialize and validate 

the model using synchronous and asynchronous logical update rules (Appendix A: 
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Figure A. 1 and Table 2). While the results from the synchronous simulation 

returned a deterministic value of the protein expression showing a clear up or down-

regulation of the protein expression in our model, the asynchronous simulation was 

performed to observe the gradual variation in the protein expression pattern over 

time (Figure 8). This approach gave us the advantage of analyzing the changes in the 

signal propagation through the T-cell pathway in response to various in silico 

perturbations mimicking the selective activation/inactivation of the co-stimulatory 

pathways under various antigenic challenges. This helped us to gain a better insight 

into the dynamics of signalling events in the T-cell network as compared to other T-

cell models that have been developed using the Boolean formalism [228-231].  

The equations (Eq.4, Eq.5 and Eq.6) formulated to study the phenotypic behaviour 

of the T-cell were standardized with the minimum combination of proteins that are 

required for the maintenance of the T-cell functional activation, which is also, 

validated using various perturbation experiments reported in different literatures. 

Using this approach, we have then tried to answer how the co-receptor molecules 

and the Calcium channel regulate the cellular behaviour of T-cell. Through a careful 

study of the signal propagation through the network using Mann-Whitney U Test 

we have been able to identify the precise routes of this signal propagation that 

regulates the Interleukin expression of the T-cells. 

Our model analysis captures the effect of CRAC channel in the regulation of the T-

cell proliferation, under LAT mutated conditions, where we demonstrate that the 

mutation of the channel leads to a suppression of proliferation under any 

circumstances, i.e. even if all the other stimulation and co-stimulations are present. 

The observation from our model corroborates well with the experimental findings 

[244]. Thereafter using multiple in silico knock-out analysis we try to identify the 

minimal combination of the co-receptor molecules that can stimulate and maintain a 
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sustained proliferation of the T-cell. Here we observed that the activation of the 

TCR:CD3 complex, the CRAC channel and the OX40 molecule are enough to sustain 

the T-cell proliferation even when the other co-receptor mediated signalling 

pathways are inactive. The model analysis further establishes the role of the co-

receptors CD27 and LTBR in the regulation of the T-cell effector functions that are 

essential for the generation of T-cell immune responses. In silico mutation studies 

clearly brings out the role of these molecules in maintaining the T-cell functionalities 

and regulation of the levels of interleukin production viz. IL1, IL12, IL3, IL6, IL8 and 

IL2 (Figure 11). Our studies also reveal the precise route of signal propagation of the 

effects of the mutations where we have seen that deregulation of the molecules (viz. 

MEKK, MKK4/7, COT, GCKR, T3JAM etc.) involved in the MAPK and JNK 

pathways, as a result of the mutation, is the cause of the observed changes in the 

behaviour of interleukin production.  

Although the main limitation of our modelling approach is its inability to capture 

the concentration specific data of signalling molecules for which we need better 

dynamic model with precise kinetic data, nevertheless the model is able to capture 

the dynamic regulation of the T-cell activation dynamics and agrees with the 

published experimental data. In this model, we have tried to integrate various 

aspects of T-cell activation pathway by using simple but powerful, discrete logical 

modelling approach. The key advantage of the model is that it only requires the 

logical relationship between the proteins at the time of signal transduction and does 

not depend on any kinetic rate parameter values; hence, it is easier to implement and 

simulate temporal protein expression patterns with less time and effort. Using our 

model, one can also perform different predictions and can monitor the temporal 

protein expression patterns as well as the effect of phenotypic responses in-silico. By 

generating the temporal protein expression patterns in the signal flow network for 

different pathological conditions, it becomes easier to monitor the proteins, which 
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are getting activated or inhibited throughout a specific interval of time. This 

proposed computational approach and analysis to study the protein expression 

pattern generation will not only be useful for study of various T-cell phenotypic 

behaviours but also be helpful for the future researchers to develop therapeutic 

strategies to combat against various immune diseases as has been demonstrated in 

Chapter 4.  
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CHAPTER 4 

IDENTIFICATION OF TH1/TH2 REGULATORY SWITCH TO 

PROMOTE HEALING RESPONSE DURING LEISHMANIASIS 

4.1. Motivation 

The general therapeutic strategy adopted for the treatment of Leishmaniasis is 

primarily aimed to expedite the process of parasite clearance for faster healing by 

stimulating the TH1 or healing response. In case of Cutaneous Leishmaniasis 

therapeutics, chemotherapeutic drugs, such as Pentavalent antimonials, liposomal 

amphotericin B have been shown to be useful to reduce the dermal lesions and the 

chances of further destructive mucosal inflammations and visceral infections [66,67]. 

However, the successive clinical studies have shown that these chemotherapeutic 

drugs are also associated with adverse side effects, such as nausea, intense headache, 

diarrhoea, musculoskeletal and abdominal pain etc. [67-71]. In several cases, relapse 

of the disease and developing resistant strains are also reported after the use of these 

drugs, which necessitates the development of better treatment protocols with higher 

clinical efficacy [72]. Although immunotherapeutic strategies involving the 

administration of exogenous Interferon Gamma is found to be effective in 

suppressing Leishmaniasis [73,74], the high production of IL10 during early stage of 

infection often suppresses its activity, thereby hindering the Nitric Oxide (NO) 

production and disease clearance [75]. Based on these experimental outcomes, a 

number of mathematical models have also been proposed simultaneously to 

untangle the complexities that appear as hurdles to device a successful treatment 

strategy in Leishmaniasis [259,260]. In one of such studies, "granulomas" formation 

during Leishmania donovani infection has been modelled using Petri net analysis by 

considering the inter-cellular interactions of macrophage, lymphocyte, NK cells etc. 

Bulk of this chapter has been taken verbatim from our previously published article: Ganguli P, Chowdhury S, 
Chowdhury S and Sarkar RR (2015) Identification of Th1/Th2 regulatory switch to promote healing response during 
leishmaniasis: a computational approach. Eurasip Journal on Bioinformatics and Systems Biology, 2015(1), pp 1-19, 
DOI: 10.1186/s13637-015-0032-7 
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The outcomes of these cell population based models have emphasized cytokine 

therapy by the exogenous injection of Interferon Gamma and the suppression of IL10 

to eradicate the Leishmania pathogens in macrophage cell [261]. However, Interferon 

Gamma molecule is a pro-inflammatory molecule and also has short half-life time, 

which in turn requires its repeated administration into the body at a regular interval 

of time that may have harmful consequences [262,263]. Hence, to circumvent these 

problems, implementation of better therapeutic strategies, by identifying novel 

drugs, drug target molecules and immunostimulators are required and demands 

higher attention from the vast majority of clinical and experimental pharmacologists. 

However, in order to develop an effective immunotherapeutic strategy, it is 

important to have a comprehensive understanding of the TH1/TH2 dichotomy in 

Leishmaniasis so as to identify the regulators through which the TH1/TH2 switching 

behavior can be effectively controlled. The identification of such important 

molecular switch and their corresponding reaction routes through which the 

immunostimulation could be enhanced is highly required in this field of study. As 

the exact intra-cellular reaction cascades governing the T-cell response after 

encountering with Leishmania infected APCs is not clearly understood yet, the 

mechanisms through which this response dynamics and the Nitric Oxide (NO) 

production work in the immune cells is still unknown. Besides, the mechanism 

through which the Leishmania antigens override the APCs intra-cellular network by 

varying the expressions of the immunostimulatory proteins, and force to redirect the 

immune responses towards the non-healing or TH2 response is not comprehensively 

studied yet. The study of these regulatory mechanisms by analyzing such a large 

system using conventional experimental techniques is time consuming and also 

difficult to perform, and therefore in-silico mathematical models of inter and intra-

cellular reaction cascades in APC and T-cell in presence of Leishmania antigens 

would probably be the best strategy to counteract these problems. This may also 
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help to address some of the unexplored questions of Leishmania immunotherapy, 

such as the limitations of the Interferon Gamma treatment, the reason for which 

Interferon Beta treatment is only effective at low doses and the means by which the 

Toll-like Receptor (TLR) molecules expressed by the APCs can regulate the immune 

responses of the T-cell to shift the dynamics towards a higher healing TH1 response 

[75, 264-266].  

In this study, we have tried to address the above mentioned problems in Leishmania 

major infection scenario by using mathematical model and in-silico analysis. We have 

hypothesized that in order to achieve better therapeutic results without adverse side 

effects, the stimulation of Type-I T-helper cells (TH1) and a simultaneous up-

regulation of NO production by using immunostimulator would be the best 

therapeutic strategy to clear the Leishmania pathogens from the body. In order to 

develop a suitable in-silico model that may enhance our understanding of Leishmania 

immunobiology, we have manually reconstructed a comprehensive cell signalling 

pathway map of a Leishmania infected APC and a normal CD4+ T-cell (helper T-cell), 

considering the important physical interactions and the cross-talks by the secreted 

diffusible molecules between the two cells (Section 2.1.2). The Leishmania infection 

has been introduced in the model by establishing the interaction of the Leishmania 

antigens, known from the literature and databases, with the appropriate host protein 

molecules in the APC. However, the dynamic analysis of such a large network is 

difficult to perform due to the unavailability of kinetic parameters and concentration 

values. Hence, to assess the gene or protein expression patterns of large scale signal 

transduction networks under different pathological conditions, the concept of 

discrete dynamic Boolean or logical modelling approach has been utilized 

successfully [89,267,268]. Large scale, intracellular T-cell signalling network is also 

analyzed by using this modelling technique and eventually various structural and 

functional properties of this network under normal and disease conditions are 
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studied successfully [269,270]. A logic based modelling technique is also applied to 

analyze the temporal expression patterns of the genes/proteins of T-cell, which are 

strongly influenced by the intra-cellular T-cell signal transduction cascade in the 

presence or absence of infection [122].       

Here, the entire reaction mechanisms are translated into logical equations with the 

objective to simulate and understand the effect of the presence and absence of the 

Leishmania antigens on the signalling events of the host’s APCs and T-cells (Section 

2.2, Appendix B: Table B. 4). Followed by the Boolean attractor analysis (Section 

2.2.7) and the successful validation of the simulation outcomes with the time-course 

microarray expression data as well as the phenotypic responses obtained from 

published experimental observations, the model is then used to compare the protein 

expression pattern for normal and Leishmania infected scenarios. With an aim to 

understand the mode of regulations that occur due to the infection at the molecular 

level inside the T-cell, the comparison of the two scenarios is then used to extract the 

important T-cell proteins, which are highly influenced under the pathogen burden. 

The result of this analysis is further used to predict the unknown changes occurring 

at the pathway level in the T-cell during infection. Moreover, the knowledge of these 

de-regulated pathways is thereafter used to predict the targets for the in-silico 

perturbation analysis. Perturbations of the logical states of proteins in the network 

are performed to study the effect of the known immunostimulants (viz. IL12 and 

Interferon Gamma) as well as to propose some new combinations of molecules that 

act as a molecular switch to regulate the TH1/TH2 and NO response dynamics. 

Subsequently, these identified novel combinations of proteins were tested for 

stability and robustness by examining the attractors of the system under these 

perturbations. Thereafter it was ascertained that the proposed combinations of 

protein targets can be used as the potential immunomodulators, targeting of which 

may bypass the inhibitory activities of the pathogens and enhance the anti-
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Leishmania immune responses as well as the microbicidal activities of the body's 

immune cells. 

4.2. Results 

4.2.1. Pathway Enrichment  

The gene clusters identified from the co-expression networks of the two microarray 

expression data sets can be considered as the "functional modules" of the gene 

interaction networks of the Leishmania major infected APC and the activated T-cell 

respectively (Section 2.1.2.1). Total 10 and 24 clusters or functional modules are 

found from the gene co-expression networks of APC and T-cell respectively 

(Appendix B: Figure B.1, Figure B.2). Pathway enrichment analyses of the genes 

found in these clusters have identified various important intracellular signalling 

pathways (e.g. Cytokine-cytokine receptor, Toll like receptor, JAK-STAT, MAPK, 

mTOR, T-cell receptor, Calcium signalling, PI3 kinase, Interleukin signalling 

pathways etc.) of two different cells. The complete list of the pathways found to be 

enriched in this analysis for APC and T-cell are given in Appendix B: Table B.1, 

Table B.2 respectively.  These enriched pathways, corresponding to the significantly 

expressed genes of APC and T-cell microarray expression data sets, represent the 

pathways that are influenced by the Leishmania pathogen in the APC and in the 

activated T-cell. However, it should be noted that the pathways found to be enriched 

in this analysis do not provide a complete understanding of the molecular 

mechanisms through which the pathogen infect the APCs. Also, we are unable to 

capture the dynamic interactions of the APC and T-cells' molecules in the Leishmania 

infected scenario. Hence, the reconstructions of the complete inter- and intra cellular 

signalling cascades regulating the APC and T-cell functions are performed.                 



 
 

Chapter 4 
Identification of TH1/TH2 regulatory switch to promote healing response during 

Leishmaniasis 

96 

 

4.2.2. Features of the Reconstructed Pathway 

The reconstructed pathway network integrates all possible inter-cellular and intra-

cellular signalling events that occur between the two immune cells during Leishmania 

invasion (Figure 12). Here the interaction of the Leishmania molecules, produced 

from the promastigote and the amastigote forms, with the APC molecules are 

considered separately. The entire signalling network (i.e., intra and inter cellular) 

consists of a total of 293 nodes, which includes 82 APC molecules, 206 T-cell 

molecules, and 5 Leishmania related molecules, that are involved in more than 400 

protein-protein interactions. The intra-cellular signalling cascades considered for 

modelling the APC and the T-cell consists of the major co-receptor signalling 

pathways, the cytokine pathways, TLR pathways, etc. that play a pivotal role in 

regulating the outcome of the immune cell’s functional responses. In case of APC, 

the pathways, which are considered in our model, include the CD40 pathway, the 

Interleukin pathways (viz. IL4, IL6 and IL10), TLR pathways (TLR2, TLR3, TLR4), 

and the pathways involved in TNF_ALPHA, IFN_GAMMA signalling. Again in T-

cell, in addition to the core TCR mediated signalling, seven co-receptor signalling 

pathways (viz. CD28, CD27, LTBR, CTLA4, ICOS, PD1 and OX40), cytokine 

pathways (viz. IL1, IL2, IL10, IL12, TNF and IFN mediated pathways) and the CRAC 

channel mediated Calcium pathway are considered. 

Various crosstalk reactions are also considered in the model, which depicts the bi-

directional regulation that exists between the two immune cells. These crosstalk 

reactions mainly comprise of the juxtacrine signalling events stimulated directly by 

binding of the co-receptors and the ligand molecules expressed on the T-cell and the 

APC membranes, and the paracrine signalling that are mediated by the diffusible 

output molecules (mostly cytokines) produced by each cell. Overall, 10 crosstalk 

interactions between the T-cell and the APC that effectively regulates the expression 



 
 

Chapter 4 
Identification of TH1/TH2 regulatory switch to promote healing response during 

Leishmaniasis 

97 

 

pattern of each other are considered. These include IFN_GAMMA_T, IL4_T, IL6_T, 

IL10_T, TNF_ALPHA_T molecules secreted from the T-cell, and IFN_BETA, 

TNF_ALPHA, IL12 secreted from the APC that diffuses and activates their 

corresponding receptor/co-receptors on their neighbouring cell to trigger their 

downstream signalling cascades. The co-receptor ligand molecule interaction 

considered to be the most important in the model is the one that involves the 

binding of the CD40 and CD40L_T molecules [271]. 

 

Figure 12: Reconstructed diagram of T-cell, APC and Leishmania pathogenic protein-protein 
interaction network. The diagram presents an integrated view of the T-cell and APC interaction 
signalling pathway during Leishmania infection. The different molecules involved in the signalling 
cascade have been color coded according to their type and cellular location. The molecules colored as 
red signify the Leishmania antigen molecules. The interaction lines have been color coded according to 
the type of chemical reaction such as phosphorylation (blue), inhibition (red), activation (green) etc.  

 

The model depicts the physical binding of the T-cell and APC receptors/co-receptors 

with their corresponding ligands and the subsequent activation mechanism of the 

downstream proteins in both the cells. The model considers the activation of Toll-

like-receptor proteins, present in the APC membrane, activate their downstream 
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proteins, which in turns diverges into important signalling routes such as the RAS-

RAF mediated MAPK pathway, canonical and non-canonical NFKB pathway, JAK-

STAT pathway, PI3K-PLC Gamma pathway, JNK pathway, etc., and leading to the 

activation of several transcription factors (e.g. ERK1_2, NFKB, NFAT, AP1, STAT3, 

etc.) in the nucleus, that in due course, singly or in combination with other 

transcriptional co-factors initiates the mRNA transcription [119]. These mRNA are 

then considered to undergo alternative splicing to produce different proteins 

isoforms with diverse biological functions that regulate the expression of the output 

molecules. During Leishmania invasion, the antigenic molecules produced by the 

pathogen activate certain phosphatases (e.g. SHP1, PTP1_B, TCPTP, etc.) that 

interfere with the signalling events of the APC. The antigen molecules considered in 

the network, such as LPG_L, GP63_L and EF1_Alpha, are shown to have a direct 

effect on the activities of the ERK1/2 and AP1 transcription factors, the former being 

up-regulated and the latter inhibited or degraded (a detailed description of all the 

signalling events have been provided in Section 2.1.2.2).  

4.2.3. Model Analysis 

4.2.3.1. Attractors 

The Boolean attractor analysis performed on 20 independent random samples in the 

uninfected and the infected scenarios have been plotted in Figure 13. Here 128 

combinations of input in each of the 20 samples have been grouped together with a 

specific color code (Section 2.2.7). For simplicity, for the attractor only the sequence 

of logical states of the molecules in the order of IFN_BETA, IL10, IL12, IL1_ALPHA, 

IL1_BETA, INOS, IP10, NO, TNF_ALPHA and c_FOS, is depicted in the network 

graph. The results of the analysis reveal that given all the FACTORs regulating 

alternative splicing is assumed to be in ON state, all the 2560 combinations of input 

(called basins of attractor; each basin is represented as a node in the network graph) 
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in the uninfected scenario, reaches the same Boolean attractor (...0111110111...) 

(Figure 13a), while in the infected scenario four different attractors are obtained, viz. 

(...1100001011...), (...0101100011...), (...1101101011...) and (...0100000011...) (Figure 13 

b). However it is to be noted in the infected scenario, 2000 among the 2560 basins 

(i.e. 78.125%) reached the (...1100001011...) attractor (including both steady state and 

cyclic attractor), hereby referred to as the major attractor of the system in the infected 

scenario. These 2000 basins of the major attractor spans all the 20 random samples 

selected, among which 13 samples exclusively drive to the major attractor, while the 

remaining 7 samples reach multiple attractors. The (...1101101011...), (...0100000011...) 

and (...0101100011...) attractors have been attained from 9.375%, 9.375% and 3.125% 

basins respectively.  

 

Figure 13: Boolean attractor analysis in (a) uninfected and (b) infected scenarios. The binary values 
shown in the attractor represents the logical steady state values of 10 macrophage output proteins in 
the sequence of IFN_BETA, IL1_ALPHA, IL1_BETA, IL10, IL12, INOS, IP10, NO, TNF_ALPHA, and 
c_FOS respectively. Different color codes are used to represent the 20 different random samples, and 
within each sample 128 nodes represent the input combinations of 7 proteins selected randomly from 
51 inputs of the model. In total there are 2560 combination of initial states denoting the basins of 
attraction for the entire system. 

4.2.3.2. Model Validation with Experimental Data 

The temporal expression profiles of the APC output molecules viz. c_FOS, 

IL1_ALPHA, IL1_BETA, IFN_BETA, IL10, IL12, IP10, INOS, NO, TNF_ALPHA in 
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the infected (red) and the uninfected scenarios (green) are plotted along-with the 

binarized microarray data at 0, 2, 4 and 8 hours’ time-points (black diamond) in 

Figure 14 (Section 2.2.4). This figure depicts that the expression levels of all the 10 

output molecules are reaching the steady state values either at 1 (i.e. up-regulation) 

or 0 (i.e. down-regulation). Here we observe that the expression value of the output 

molecules at steady state is exactly similar to the value obtained as the major 

attractor of the system in both the uninfected as well as the infected scenarios 

(Figure 13). Qualitative comparison of the expression values reveals that out of these 

10 selected output molecules, the steady-state expression value of total 7 molecules 

viz. c_FOS, IL1_ALPHA, IL1_BETA, IL10, IL12, INOS and NO in the infected 

scenario shows the exact match with the experimental observations [114]. While 

c_FOS and IL10 show an expression value of 1 (high expression) in the infected 

scenario, the other output molecules such as IL1_ALPHA, IL1_BETA, IL12, INOS 

and NO has an expression value of 0 (low or no expression) in the infected scenario.  

Also, Figure 14 depicts that at “4 and 8 hours” time points, c_FOS and IL10 proteins 

get up-regulated in the simulated infected scenario, which is exactly comparable 

with the experimentally observed expression levels in microarray data at the same 

time points. However, it should be noted that although the expression level of c_FOS 

protein at “2 hours” time point in the simulated infected scenario is not exactly 

matching with the experimental findings, but the infected model is able to show the 

down regulation of this protein between the intervals of “0 to 1 hour” time points. 

Both the proteins IL1_ALPHA and IL1_BETA get up regulated at “1 hour” time 

point and subsequently get down regulated at “6 hours” time point of the simulated 

infected scenario. In the experimental data, both of them get up-regulated at “2 

hours” time point and get down regulated at “4 hours” and “8 hours” time points 

respectively.  
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Figure 14: Time-course expression profile of APC output molecules. Expression levels of the output 
molecules c_FOS, IFN_BETA, IL1_ALPHA, IL1_BETA, IL10, IL12, INOS, IP10, NO and TNF_ALPHA 
found in infected, uninfected and experimental conditions. The validation was performed by 
comparing the expression levels of the infected situations (shown in red) with the microarray 
experimental data (black diamond). 

 

In case of IL12, it is observed from Figure 14 that except a small time-interval 

between 0 and 1 hour, this protein remains in the down regulated state throughout 

the rest of the time points. The time course microarray data of this protein also 

shows similar expression level except at “4 hours” time point, in which this protein 

shows up-regulation. Similarly, INOS and NO also show similar expression level at 

“2 and 8 hours” time points as compare to the experimental data. Altogether, the 
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percentage of validation of the simulated L. major infected scenario for all the 10 

selected proteins at all the three time-points i.e., 2, 4 and 8 hours are 80%, 50% and 

70% respectively.  

Also, it can be observed that 9 out of 10 output molecules match exactly at least at 

two time-points. Even though in few cases, the simulation results of the expression 

values at a particular time point show an apparent mismatch with the experimental 

observation at that same time point, but the expression pattern essentially remains 

the same over time. It can be observed that although the time-course expression of 

c_FOS from the simulation results appear to be inconsistent with experimental data, 

i.e., down-regulation at 2 hours’ and again up-regulation at 4 hours’ time point, the 

overall dynamics of the expression essentially remains the same over time, with only 

a slight deviation of the expression levels (up or down) observed in the respective 

time points of experimental and simulation data. Such deviations are also observed 

in the expression dynamics of IL1_ALPHA, IL12, NO and INOS molecules. The 

successful validation of the expression levels of these molecules can be used as 

valuable indicators of the immune functions of the APC and can be used for fine-

tuning of our model to ensure its proper functioning. On the other hand, Figure 14 

also brings out the differences in the expression of the APC output molecules due to 

the presence of the infection. Here it is observed that even though the steady state 

values of the two scenarios (viz. infected and the uninfected) is sometimes similar, as 

in the cases of c_FOS, IL10 and TNF_ALPHA, the overall temporal expression 

pattern clearly indicates the differences are emerging due to the presence of antigen 

molecules in the model simulation. In the uninfected scenario, the expression of the 

IL10 and the TNF_ALPHA remains low (in the first few hours) as compared to the 

infected scenario. 
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4.2.3.3. Comparison of Uninfected and Infected Scenarios 

The interference of Leishmania proteins in the signalling cascade of APC cell not only 

modulate the expression of the output molecules and microbicidal activities of APC, 

but also deregulates the expression of the T-cell output molecules by manipulating 

the normal functioning of T-cell activation pathway [272]. Comparing the expression 

of the APC output proteins in infected and uninfected scenarios (Figure 15 a, b), the 

simulation results show that invasion of Leishmania antigen molecules severely 

down-regulates the expression of IL12, which is a potent T-cell stimulator [24,27]. 

Simultaneously, the production of INOS and Nitric Oxide (NO) is also greatly 

reduced in the infected APC, thereby rendering the cell incapable of performing its 

microbicidal functions, and creating an immune-suppressed condition, which is 

favourable for the continued survival of the pathogen inside APC [24,271]. Besides, 

in Figure 15 b, the production of IFN_BETA, IP10 (a chemokine) also show an up-

regulation, indicating an attempt of the APC to eliminate the pathogen from the 

system [114,266,271]. IL1_ALPHA and IL_BETA show minor fluctuations in 

expression during the infection and slight down-regulation [24,273]. The effect of 

Leishmania infection on the expression pattern of T-cell output proteins (Figure 15 c, 

d) becomes evident from the fact that production of the protective cytokine from the 

cell, such as IFN_GAMMA_T, is down-regulated during the infection, while the 

productions of interleukins, such as IL10_T, IL4_T, IL5_T and IL6_T are up-

regulated, which are mostly implicated as proteins favouring Leishmania survival 

[150,272,274,275]. These results supported by the previous experimental findings 

also strengthen the validity of our model to a greater extent and enhances its 

acceptability for further analysis.   
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Figure 15: Expression profile of T-cell and APC during asynchronous simulation. (a) and (b) 
Expression of the APC output molecules in the uninfected and infected scenarios, respectively; (c) and 
(d) Expression of the T-cell output proteins in the uninfected and the infected scenarios, respectively. 

 

4.2.3.4. Effect of infection on T-cell signalling cascade 

The results of Mann Whitney U test reveal that out of the expression of 62 proteins in 

the infected scenario that exhibits a deviation from the uninfected scenario, 20 

proteins get significantly de-regulated (p<0.05). The temporal expression profiles of 

these 20 proteins (Figure 16) show that the Leishmania infection causes the significant 

down-regulation of the protective cytokines, such as IFN_GAMMA_T, and enhances 

the synthesis of TGF_BETA_T and IL10_T from the T-cell, which contributes to the 

decline in the immune-competency of the T-cell and formation of an immune-

suppressed condition as observed during L.major infections in susceptible patients 

[26,27,276,277]. It is interesting to note that while the activation of the cytokines, such 

as IL4_T, IL5_T, IL6_T and the receptors, IL12R_T [275] and IL1R_T [278], show 

fluctuations with respect to the control (uninfected scenario), certain other 
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molecules, such as RAP1_T, P19_T, C3G_T, CRKL_T, TYK2_T and SOC3_T, are 

distinctly up-regulated as a result of the infection. Also, it is observed that the 

members of the JAK-STAT pathway, such as JAK2_T and STAT4_T are down-

regulated in the infected scenario (Figure 16 b). 

 

Figure 16: Expression profile of 20 T-cell proteins which shows significant de-regulation in Mann-
Whitney U test. The heat maps depict the protein expression pattern of the T-cell signalling proteins 
under (a) Uninfected scenario (control); (b) Infected scenario. Significant changes in the expression 
dynamics are observed for these proteins under these two conditions, which clearly show the effect of 
Leishmania antigens in the regulation of T-cell signalling events. 

 

4.2.3.5. Immune Response & Immunotherapeutic Strategies 

The effector molecules produced at the end of the signalling processes in both T-cell 

and APC manifest itself in the form of a change in the phenotypic behaviours of the 

cell that leads to disease clearance. Through the model, these immune responses of 

the entire system are simulated using the functions: TH_1_response (Eq. 7), 

TH_2_response (Eq. 8) and NO_production (Eq. 9) - signifying healing response 

(green line), non-healing response (red line) and disease clearance (black triangular 

markers) respectively (Figure 17).  

The pathogen load is one of the major factors, which determines the type of immune 

response that will be elicited during the infection [25]. When the antigens are OFF 

(i.e. mimicking a situation with low pathogen load, or no infection), the TH1 and the 
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NO responses are higher as compared to the TH2 response (Figure 17 a) [6, 44]. On 

the contrary, when the antigen molecules are switched ON (i.e. infection is present), 

a higher Th2-response is obtained (Figure 17 b) [25,279].  

After validating these immune response functions with published literatures, these 

functions (Eq. 7, 8 and 9) confirm their acceptability and authenticity to study the 

effect of the conventional immunotherapeutic strategies in Leishmaniasis (i.e., IL12 

and IFN_GAMMA_T), and also to predict some immunostimulatory targets to 

enhance anti-Leishmania immunity (Table 5). Here, at first, we have tried to study the 

effect of the commonly practiced IL12 (Figure 17 c) and IFN_GAMMA_T (Figure 17 

d) treatments and have observed that even though these immunostimulants can 

enhance the TH1 response and down-regulate the TH2 response, they fail to enhance 

the NO response. Thereafter, through perturbation analysis we have been able to 

identify three T-cell molecules (viz. MKP_T, SHP2_T and SHC_T) and two APC 

molecules (viz. TLR3 and TLR2) that may have positive role in disease clearance. In-

silico mutation study of these molecules reveals that in the MKP_T in-silico knock-in 

scenario (Figure 17 e), even though the TH1 response or the NO response does not 

increase, the TH2 response gets down-regulated as compared to the infected scenario 

(Figure 17 b). Knock-in mutation of the APC molecule TLR3 gives rise to an increase 

in NO response, although it has no significant effect on the T-cell response (Figure 17 

f). In the case of in-silico knock-out mutation studies, we have observed that 

inhibition of SHP2_T leads to up-regulation of the TH1 response and down-regulation 

of the TH2 response (Figure 17 g). SHC_T inhibition on the other hand, does not 

exhibit any significant change in T-cell or NO responses as compared to the infected 

scenario (Figure 17 h). However, if we use a combinatorial therapy by activating the 

proteins TLR3 while simultaneously inhibiting SHP2_T, we get a better anti-

Leishmania immune response (Combination 1, Figure 17 j). Alternatively, TLR3 

knock-in when combined with SHC_T OFF (knock-out) and MKP_T ON (knock-in) 



 
 

Chapter 4 
Identification of TH1/TH2 regulatory switch to promote healing response during 

Leishmaniasis 

107 

 

can also give rise to a similar effect (Combination 2, Figure 17 k). Besides these 

combinations, interestingly we have also found that if we inhibit only the expression 

of TLR2 protein in APC, a very high TH1 response is obtained and simultaneously the 

NO production is also increased drastically (Figure 17 i).  

 

Figure 17: Response dynamics of TH1, TH2 and NO in uninfected, infected and in different 
treatment scenarios. (a) uninfected; (b) infected; (c) IL12 [ON]; (d) IFN_GAMMA_T [ON]; (e) MKP_T 
[ON]; (f) TLR3 [ON]; (g) SHP2_T [OFF]; (h) SHC_T [OFF]; (i) TLR2 [OFF]; (j) TLR3 [ON] and SHP2_T 
[OFF]; (k) TLR3, MKP_T [ON] and SHC_T [OFF]. 
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A summary of the combinatorial therapeutic strategies and their outcomes as 

observed from our analysis is provided in Table 5. 

Table 5: Unique combinations of proteins that can be used as promising 
immunotherapeutic targets 

 

Further, the results of the Boolean attractor analysis, performed to confirm the 

robustness of our predictions, reveal that the uninfected and infected scenarios 

created in our model reaches to unique attractors, viz. (...110...) and (...001...) 

respectively (Figure 18 a, b). Here the attractor denotes the presence/ absence of the 

NO, TH1 and TH2 responses (Figure 18). The attractor analysis of perturbation studies 

reveals that the scenario with IFN_GAMMA_T treatment leads to a single attractor 

(...010...), which is distinct from either the infected or the uninfected attractors 

(Figure 18 c). However, our predicted targets, viz. TLR2 (Figure 18 d), Combination 

1 (TLR3 ON and SHP2_T OFF; Figure 18 e), and Combination 2 (TLR3, MKP_T ON 

and SHC_T OFF; Figure 18 f) mostly lead to the infection-free attractor (...110...) 

similar to the uninfected scenario. Among these, it can be observed that all the 2560 

basins in the Combination 1 scenario lead only to the infection-free attractor (...110...) 

(Figure 18 e), while in Combination 2 we observe the presence of a bi-stable 

attractor, oscillating between the (...100...) and (...110...) states (Figure 18 f). TLR2 

Knock-in Knock-out TH1 
(up) 

NO 
(up) 

TH2 
(down) 

Anti-
Leishmania 
Immunity 

Figure 

IL12 - Yes No Yes No 17c 
IFN_GAMMA_T - Yes No Yes No 17d 

MKP_T - No No Yes No 17e 
TLR3 - No Yes No No 17f 

- SHP2_T Yes No Yes No 17g 
- SHC_T No No No No 17h 

- TLR2 Yes Yes Yes Yes 17i 

TLR3 SHP2_T Yes Yes Yes Yes 17j 
TLR3, MKP_T SHC_T Yes Yes Yes Yes 17k 
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mutation scenario also shows the presence of two attractors, i.e., (...001...) and 

(...110...). However, in all these three perturbations the major attractor attained by 

the system continues to be the desired (...110...) infection-free attractor. 

 

Figure 18: Attractor analysis of (a) uninfected, (b) infected, (c) IFN_GAMMA_T [ON], (d) TLR2 

[OFF], (e) TLR3 [ON] and SHP2_T [OFF], (f) TLR3, MKP_T [ON] and SHC_T [OFF].                            

 

4.3. Discussion  

Inadequate knowledge of the complete mechanism of Leishmania invasion inside the 

host immune system is the key reason for the low success in devising an effective 
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cure to Leishmaniasis. Hence, through this in-silico modelling study, we have tried to 

unravel these regulatory mechanisms by focusing on three important aspects of 

Leishmania immunobiology- (a) effect of Leishmania infection on the gene expression 

or the protein activation pattern in APC and microbicidal activities, (b) effect of the 

infection on the T-cell gene/protein expression pattern at the molecular level and 

their influence in pathway level to identify the molecular routes by which Leishmania 

inhibits T-cell functions and (c) identification of specific regulators 

(immunostimulators) that could act as a regulatory switch to skew the TH1/TH2 

dynamics towards the healing TH1 response and simultaneously enhance the NO 

production in order to accelerate the parasite clearance from the host cell. 

In order to achieve these objectives, in this model, we have manually curated the 

complete signalling cascades of the immune cells depicting the detailed mechanism 

of regulation of the host protein-protein interaction network by the antigen 

molecules at various levels of signal transduction and transcriptional activities. Here, 

we have been able to integrate all the possible routes by which the antigen subverts 

the host immune responses and modulates the proper functioning of the APCs and 

the T-cells. 

Boolean attractor analysis reveals the presence of a single attractor in the uninfected 

scenario and four attractors in the infected scenarios, signifying that depending on 

the severity of the infection and the presence or absence of certain molecules in the 

system, Leishmania infection may lead the system to multiple levels of infection with 

varying protein expressions and clinical manifestations (Figure 13). It can also be 

observed that the major attractor obtained in these uninfected and infected scenarios 

matches exactly with the expression values as obtained through our simulations 

using experimental data in both the scenarios. Asynchronous Boolean simulation is 

also performed to obtain an average behavior of the entire system under different 

conditions. Such comparative studies of the infected and uninfected scenarios using 
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asynchronous Boolean simulations brings out the effect of the Leishmania infection on 

the expression of the output molecules in both the APC and the T-cell (Figure 14, 

Figure 15), which nicely corroborates with previous experimental studies and 

strengthens the reliability and authenticity of the model outcomes. We have 

observed that Leishmania infection down-regulates the production of protective 

cytokines, such as IL12, IL1_ALPHA and IL1_BETA, and microbicidal molecules, 

such as NO, and simultaneously up-regulating the production of the chemokine, 

IP10 [271]. The simulation also reveals that in the infected scenario the production of 

the cytokine IFN_BETA is also up-regulated, which is known to have protective 

functions but only at low doses [266]. The T-cell expression profile shows that 

during Leishmania infection, the interleukin molecules viz. IL10_T, IL4_T, IL5_T and 

IL6_T, gets up-regulated, while the expression of IFN_GAMMA_T gets down-

regulated (Figure 15 c, d). The higher production of the proteins, such as IL10_T and 

IL4_T and repression of IFN_GAMMA_T synthesis, produces conditions that favour 

Leishmania survival [274], and skews the TH1/TH2 dynamics towards a non-healing 

response (Figure 17 b) [24,273].  

A close observation on the results of our Mann-Whitney U test analysis (Figure 16) 

also predicts some novel and interesting facts about the signalling regulations 

imposed by the presence of the Leishmania infection at the pathway level. Identified 

from our simulation, this regulatory mechanism of the signalling cascades is 

presented in Figure 19. It can be observed that Leishmania infection increases the 

production of the protein IFN_BETA (green upward arrow) and suppresses IL12 

(red downward arrow) from the APC. IFN_BETA diffuses and interacts with their 

corresponding receptors on the T-cell thereby enhancing the activation of its 

downstream TYK2 molecule (black arrow) inside the T-cell. Through this analysis, 

we have tried to determine the possible role of L. major infection in modulating the 

T-cell behavior at the pathway level, and infer that the pathogen up-regulates the 
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molecules involved in the TYK-CRKL-C3G pathway. Eventually, it enhances the 

production of SOCS3 and RAP1 proteins in the T-cell (Figure 19 a), two potential 

negative regulators of JAK-STAT and the RAS mediated MAPK pathways 

respectively (red arrow), which divulges the probable harmful effects of the high 

levels of IFN_BETA production from the APC that is known to occur during 

Leishmania infection [280,281]. Moreover, it can be observed that in the T-cell (Figure 

19 b), the pathogen down-regulates the JAK2-STAT4 pathway by inhibiting the 

synthesis of IL12 cytokine, which results in down-regulation of IFN_GAMMA 

production (red downward arrow) and a consequent increase in the IL4_T, IL5_T 

and IL6_T expression (green upward arrow). These findings of the changes 

occurring at the pathway level have helped us further to identify the key regulators 

that can act as potential immunostimulators during the infection. 

 

Figure 19: T-cell pathways de-regulated during Leishmaniasis. (a) Infected APC produces high 
amount of IFN_Beta, which up-regulates SOCS3 and RAP1 proteins that inhibits down-stream JAK-
STAT and MAPK pathways; (b) Infected APC inhibits the production of the IL12 which results in up-
regulation of IL4, IL5 and IL6 secretion from the T-cell by regulating the JAK/STAT and 
IFN_GAMMA_T protein production.  



 
 

Chapter 4 
Identification of TH1/TH2 regulatory switch to promote healing response during 

Leishmaniasis 

113 

 

Cytokine therapy is the most widely practiced method of immunotherapy, is 

employed in the treatment of Leishmaniasis. Immunologists have tried to enhance 

the expression of IL12 and IFN_GAMMA, the two most potent TH1 response 

stimulators, which are known to play important role in the alleviation of the disease. 

But the most common problem faced in such immunotherapies is the inhibitory 

effect of the IL10 protein, which is over expressed during the infection that increases 

the susceptibility to the disease by inhibiting the effects of IFN Gamma treatment 

and often blocking the synthesis of NO [282], thereby preventing an effective anti-

Leishmania immunity. In this work, we have tried to simulate the effect of these two 

immunotherapeutic strategies, viz. IL12 treatment (Figure 17 c) and 

IFN_GAMMA_T treatment (Figure 17 d), where we have observed that although 

they are able to enhance the TH1 response and reduce TH2 response, but these 

strategies fail to induce the NO response, which is necessary to eliminate the disease 

causing pathogen.  

Hence, to devise a successful combinatorial immunotherapy, which can bypass the 

inhibitory effects of immune-suppressive molecules, various molecules that directly 

or indirectly influence the de-regulated T-cell pathways (i.e. JAK2-STAT4 pathway 

and the TYK2-mediated IFN_BETA pathways) and TLR molecules of the Antigen 

Presenting Cell are selectively knocked-in and knocked-out separately and then in 

combination (Table 5). Thereafter, a set of minimal combinations of protein 

molecules are identified that could act as regulatory switch to control the TH1/TH2 

response and also effectively enhance an anti-Leishmania response (Table 5). These 

molecules include three T-cell molecules (viz. SHP2_T, MKP_T and SHC_T), which 

are also implicated in various cancers and infectious disease treatments, and two 

APC molecules (viz. TLR2 and TLR3), which are popular targets in many diseases 

including Leishmaniasis [283-286]. A list of antagonist and agonist of these 

molecules is provided in Appendix B: Table B. 6. 
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Through our study, we suggest that TLR2, which is debated to have controversial 

roles in Leishmania treatment [264], helps in the parasite survival. This agrees with a 

recent experimental finding [265], and we propose that TLR2 inhibition can be a 

useful strategy to up-regulate TH1 and NO response (Figure 17 i). On the other hand, 

it can be understood that TLR3 alone may have a positive role to play in Leishmania 

treatment and may be a positive regulator of NO production (Figure 17 f). It is also 

interesting to note that although TLR2 inhibition alone is sufficient to drastically 

enhance the TH1 response and the NO production (Figure 17 i), TLR3 activation 

requires a synergistic inhibition of the SHP2_T molecule, a phosphatase that inhibits 

the activity of the JAK-STAT pathway, to gain the desired anti-Leishmania response 

(Figure 17 j). Surprisingly, it is also observed the MAPK phosphatase (MKP_T) 

when up-regulated may inhibit the non-healing TH2 response (Figure 17 e). 

However, MKP_P and TLR3 up-regulation when combined with the inhibition of the 

adapter molecule SHC_T, a positive regulator of the MAPK cascade, can act as a 

useful combinatorial target in Leishmaniasis treatment (Figure 17 k). 

Nevertheless, to combat Leshmaniasis, it may be noted here that since the TH1 subset 

of helper T-cells produces inflammatory cytokines, a constant high TH1 response may 

often be undesirable in order to avoid harmful side-effects, and hence the two 

combinations: (i) Combination 1: up regulation of TLR3 (i.e. ON state) and down 

regulation of SHP2_T (i.e. OFF state) and (ii) Combination 2: up regulations of TLR3, 

MKP_T and down regulation of SHC_T, can be considered as better 

immunotherapeutic strategies than solitary TLR2 inhibition.  

The robustness of our predicted combinations was further confirmed through the 

Boolean attractor analysis, where we observed that the major attractor attained by all 

the three predicted immunotherapeutic targets resembles with the infection-free 

attractor (...110...). This is also observed in the uninfected scenario (Figure 18 d, e, f), 
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where the NO and TH1 responses are high and the TH2 response is low. In contrast, it 

can be observed that none of the basins in the IFN_GAMMA_T treatment scenario is 

able to move the system to this desired (...110...) attractor, which clearly brings out 

the shortcomings of the conventional immunotherapeutic targets (Figure 18 c).  

The result of this analysis also highlights the controversial outcomes that may be 

expected from targeting TLR2 (as mentioned earlier), i.e., TLR2 knock-out may lead 

to two separate attractors, (...100...) and (...110...). However, it is to be noted that the 

major attractor obtained in the TLR2 knock-out scenario is the infection-free attractor 

(...110...), while only a small fraction reaches the attractor (...100...), where although 

the NO production is high, both the TH1 and the TH2 responses get down-regulated 

(Figure 18 d).  

A comparative analysis of the Combination 1 and Combination 2 scenarios reveals 

that Combination 1 may be considered a better target as compared to the others, as 

this is the only scenario where we can observe a complete reversal of the infected 

scenario to a situation (...110... attractor) similar to the uninfected scenario. However, 

since the Combination 2 is leading to a bi-stable attractor, which is oscillating 

between the major attractor (...110...) and minor attractor (...100...) states, this may 

also be useful in cases where a constant high NO production is required 

accompanied with an intermittent up-regulation of TH1 response for patients 

predisposed to inflammatory diseases.  

It is important to note that in order to reduce the complexity of the model and due to 

lack of complete information about the functional regulations of the isoforms in 

Leishmania infected situations, we have only focused on the alternative splicing 

mechanism at the post-transcriptional level. However, this model may further be 

extended to study the effect of the alternatively spliced isoforms of the input 

molecules [287]. For example, TLR3 mRNA molecule is alternatively spliced to 
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produce a smaller 60kDa isoform, which has been observed to be over expressed in 

Glioblastoma cell lines. In future, RNA seq analysis of Leishmania infected human 

APC may provide further insight into the expression of such alternatively spliced 

isoforms in the case of the Leishmania infection scenario. This may also give a better 

understanding of the precise regulatory mechanisms underlying the differential 

protein expression due to the pathogenic invasion. 
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CHAPTER 5 

DELINEATING INFECTION STRATEGIES AND IMMUNE 

RESPONSES DURING VISCERAL LEISHMANIASIS 

 

5.1. Motivation 

The study of host-pathogen protein interactions networks contributes to the 

understanding of the mechanisms of evasion of the pathogen from the host immune 

system, its persistence inside the host and its further replication [288-290]. One of the 

underlying mechanisms for host immune evasion by Leishmania and other 

intracellular pathogens involve active secretion of virulence factors (VFs) into the 

host cell cytosol [291,292]. These virulence factors which are secreted proteins are 

expected to play a major role in establishing and acquiring the host system during 

the infection phase of the parasite. Nevertheless, the understanding of the 

functionality of these virulence factors and their mode of modulation of the host 

responses at the time of infection is limited in case of Visceral Leishmaniasis (VL) in 

spite of several in-vitro studies which majorly focuses on proteomic analysis of the 

differentially modulated proteins inside the host macrophage cells [190]. A system-

level understanding of the interplay between these virulence factors and host 

proteins is lacking, which is necessary to understand the strategies employed by the 

parasite to ensure its survival in the host, effective modulation of the host immune 

response as well as initiation of the visceralization of the infection. A deeper 

understanding of functional relationship between a pathogen and host can be 

established through identification and interrogation of protein interactions between 

the two species [293]. This will help in unveiling the mechanisms and the 

interactions of these secretory proteins that act at the interface of pathogen and the 

host and capture all possible signalling pathways routes that can be employed by the 

Bulk of this chapter has been taken verbatim from our submitted article: 
Panditrao G, Ganguli P and Sarkar RR (2021) Delineating infection strategies of Leishmania donovani secretory 
proteins in Human through Host-Pathogen protein Interactome prediction.(Submitted,Under review) 
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parasite to regulate the host defenses. As the in-vitro identification of such pathogen-

host interactions at a large scale is expensive and scarce, several studies have 

effectively implemented computational methods for predicting these interactions in 

various pathogens to delineate infection mechanisms [293, 294].  

Pertaining to high mortality in the case of Visceral Leishmaniasis, the virulence 

factors secreted by the causative species L. donovani have been given special attention 

in the recent past [295]. A study carried out on L. donovani in its late promastigote 

stage has used a quantitative proteomic approach based on LC-MS/MS method to 

identify all possible secreted proteins in L. donovani. In this study, based on 

quantitative analysis 151 actively secreted proteins, through both classical as well as 

non-classical secretion pathways, have been identified [174]. Based on their general 

properties the putative mechanisms of secretion, as well as their functional role in 

the context of infection have been postulated. 50 proteins out of these are candidate 

virulence factors which are enriched in the medium. Although this study states the 

functional roles for these proteins, it is not yet identified with which host proteins 

these proteins interact and which pathways are elicited to establish infection. Given 

the high virulence and large number of identified virulence factors for this organism, 

one can surmise that multiple robust mechanisms exists that contribute to the 

infection process. 

Although traditional in vivo methods of protein-protein interaction identification like 

yeast two hybrid assays, co-immunoprecipitation exists, they are expensive, time-

consuming methods and also do not provide with a comprehensive overview of 

interactions of all these proteins together with the host proteins and the responses 

they elicit upon infection and post infection period. Computational methods play a 

key role in creating a global perspective of the interaction components under study 

[296]. Methods for predicting protein-protein interactions utilize high-throughput 

data [297] using several sequence, structure and genome based features that are 
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related to physical and function relationships pertaining to the interactions. Such 

methods include phylogenetic profile based, gene-neighbourhood and gene cluster 

methods and Interologs [179, 298]. Interolog-based approach assumes that 

homologous pair of proteins preserve their ability to interact with each other 

[299,300]. One such study which relies on this Interolog based approach has 

predicted HPI for 15 eukaryotic parasites including Leishmania sp. with the human 

proteome [288]. The pathogen proteins considered here in the study mostly includes 

a large number of computationally predicted secretome proteins from the pathogen 

proteome using the standard secretory signal peptide sequence. However, previous 

studies have shown that the protein secretion of L. donovani occurs via multiple non 

classical secretion pathways that are unlikely to be identified by these computational 

techniques that rely on the classical amino-terminal secretion signal [174]. Hence, the 

predicted host-pathogen interactome does not span the complete L. donovani 

secretome proteins that have been observed using quantitative mass spectrometric 

analysis [174]. 

Hence, through our study we seek to obtain a holistic understanding of the role of 

these secretory proteins from L. donovani in subverting the host defense mechanism 

by constructing a Host-Pathogen Interactome (HPI) between the L. donovani 

secretory Virulence Factors (VF) and the human proteins. Here, we aim to identify 

the major mediator proteins through which the secretory proteins approach and 

manipulate the immune response and cellular defense mechanisms. Using a 

combinatorial strategy of homology-based prediction of host-pathogen interaction 

from a known HPI, called Interolog-mapping and further filtering and validating 

these interactions based on Domain- mapping approach, we have identified putative 

host-pathogen interactions of high confidence (Section 2.3). To identify the 

pathways through which these secretory proteins are affecting the phenotype-

associated proteins specifically playing major role in host immune responses, 
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parasite intracellular survival and visceralization, we extend the interactome to form 

a more comprehensive network of the secretome with the host system.  

Further, we employ pathway enrichment and graph-theory based analysis to model 

the Protein-Protein Interaction (PPI) network where nodes represent proteins and 

edges between them represent physical interactions between those proteins [301]. As 

the topological and structural properties of these networks often contribute to better 

understanding of the functional roles of the key components in the system, we 

analyze the L. donovani-Human interaction PPI network to identify its key nodes and 

regulators (Section 2.3.5). Here we try to delineate the key signalling routes between 

L. donovani Virulence Factors (source nodes) and the deregulated host response 

proteins (target nodes) through analysis of shortest paths from the VFs eliciting the 

phenotypic host response through which the information flow occurs [301]. This led 

to identification of important signalling pathways involved in the host pathogen 

interaction. We further identify key mediator target proteins in the network by 

studying the global network properties using in silico network perturbation studies 

through node knockout experiments involving shortest path calculation that 

demonstrate the vitality of certain unique protein combinations that controls 

pathways to the host response proteins regulating phenotypes such as parasite 

survival, immune responses and visceralization during the infection (Section 2.3.7). 

Based on network perturbation analysis, our study has for the first time identified 

protein combination which effectively perturbs key enriched signalling pathways 

that are elicited by the VFs during the infection phase. This protein combination can 

be further tested in vivo in L. donovani infected macrophages and can serve as 

potential targets for drugs or immunomodulators to control phenotypic host 

responses during Visceralization. 
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Figure 20: L. donovani and Human PPI Network prediction workflow: a) Interolog Mapping 
strategy implemented in Interactome prediction; b) Prediction Pipeline with the resultant output at 
each step of prediction of the Host Pathogen Interaction network prediction. 

5.2. Results 

5.2.1. Predicted L. donovani-Human PPI Interactome 

The interactome map between L. donovani secretory proteins and the human host 

proteins were identified based on the Interolog-based approach using HPI-DB [176] 

and BIPS [177] (Figure 20) (Section 2.3). 113 human interactors from HPI-DB and 

6606 from BIPS were identified. There were a total of 6719 interactions predicted for 

24 out of 50 L. donovani secretome proteins. The remaining 26 virulence factors did 

not identify any significant hits from HPI-DB and BIPS and were thus were not 

considered in the current interactome. These 6719 interactions identified were 

further filtered and validated by structure-knowledge based approach using 

experimentally verified domain-domain interaction pairs from 3DID. Domain-

Interaction based filtering yielded in a total of 638 out of 6719 interactions. 175 

interactions which were identified from both HPI-DB and BIPS but could not 

verified by 3DID were cross-verified with the latest updated data in the 

NEGATOME 2.0 database and retained in the network. This step is crucial to 

identify any false positives in our predicted interactions as this database harbours 
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protein pairs which, in no capacity, can interact with each other [181]. The final inter-

species Interactome PPI prediction led to a total of 813 predicted interactors for the 

24 virulence factors.  The detailed statistics of these interactors have been 

represented in the venn diagram (Figure 21 b) (Appendix C: Table C. 2).  

 
Figure 21: Predicted Protein Interactome: (a) L. donovani-Human PPI Network with proteins 
represented in the form of nodes and interactions represented in the form of edges; (b) Prediction 
statistics of the Network based on the resultant number of Interacting proteins obtained from 
Interolog and Domain Mapping resources; (c) Correlation between Degree (k) and Betweenness; (d) 
Correlation between Degree (k) and Clustering Coefficient (CC); (e) Degree distribution of the 
network follows Power Law (plot shown in log-scale). 
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Further integration of the predicted Interactome with the human intra-species PPI 

from the STRING database resulted into L. donovani VF- Human PPI network having 

a total of 73195 interactions and 24 L. donovani virulence factors as Effector Nodes 

(Figure 21a) (Appendix C: Table C. 2). Since the nodes E9BSB0_LEISH and 

E9BQR2_LEISH were observed to be isolated from the final Integrated interactome 

and did not produce any results in further sub-network analysis they were 

eliminated from the downstream network analysis leading to final of 22 L. donovani 

VFs (Effector Nodes) in the Network (Appendix C: Table C. 1). An enrichment 

analysis for the GO Cellular Component (CC) of these predicted interactors was 

performed to ensure that the location of the predicted proteins was mostly 

cytoplasmic or cytosolic (Appendix C: Figure C. 1). It is to be mentioned here that 

for the initial prediction of the HPI network, tissue specificity has not been 

considered to gain a holistic understanding. The sub-networks created using the host 

response nodes was obtained from experimental studies with tissue specificity for 

the further analysis. 

5.2.2. Structural Analysis and Sanity test of the Network  

Structural analysis of the network revealed a scale free nature where the degree 

distribution of the network is observed to follow the power law having an α value of 

2.104 [199] (Figure 21 e). This structural property is observed in most biological 

networks and essentially indicates that the network consists of few nodes having a 

very high degree compared to other nodes in the network. These nodes with high 

number of interactions have various functional implications in the network and 

ensure the robustness of the network from external perturbations thus making it 

resistant to random errors [199].  

To verify the sanity and credibility of the predicted network, the Shapiro-Wilk 

normality test was performed to check if any random node from the network follows 

a normal distribution [302]. The Shapiro-Wilk normality test conducted on the 
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degree distribution of the network suggested that the predicted interactions do not 

follow a normal distribution [303] (p-value= 2.2e-16). This test indicates that the hub 

proteins and their sub-networks present in the network are not by chance further 

indicating that the predicted interactome arises from a sturdy biological growth 

process and is not formed by spurious interactions.  

A correlation coefficient between the Degree and Betweenness Centrality of the 

network using Spearman test resulted in ρ=0.938 thus indicating that these 

centralities of the network is highly positively correlated (Figure 21 c). On the other 

hand, the Spearman correlation coefficient for log of degree to the clustering 

coefficient was observed to have a value of ρ= -0.385 (Figure 21 d) indicating a fairly 

negative correlation. These patterns of correlation of topological properties have also 

been reported in other inter-species networks [294].  

5.2.3. Functional Correlation based on Pathway Enrichment Analysis 

The number of direct host interactors predicted for each virulence factor and the 

pathways in which they are enriched is shown in (Appendix C: Table C. 3). Maxwell 

et al. [174] has categorized these secretome proteins into four classes viz, 1) 

Intracellular survival, 2) Signal transduction, 3) Immunosupression, 4) Vessicle 

Transport based on the putative biological process in which they are expected to 

participate. We hypothesize that the direct protein interactors predicted in the 

network for all these secretome derived virulence factors should be involved in a 

pathway whose function corroborates with these biological processes. Hence, to 

verify our predicted interactions based on such functional similarity, we enriched 

KEGG pathways for the predicted direct host Interactors corresponding to each 

secretome protein and compared them with their putative biological processes stated 

by Maxwell et.al (Appendix C: Table C. 3). It is to be mentioned here that, we opted 

for pathway enrichment, instead of GO Biological Process, since we wanted to 

investigate our predicted Interactome for pathways through which these virulence 
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factors regulate the host machinery. This comparison study revealed that the 

pathways significantly enriched (p-value<0.050) for the host interactor proteins 

corroborated well with the putative functions of each secretome protein. For 

example, the Leishmania virulence factor Glutathione peroxidase (E9BI90), is known 

to be involved in mediating intracellular survival of the parasite by its antioxidant 

properties [174]. From our analysis, we observe that the predicted protein targets are 

enriched for the pathways such as Glutathione metabolism, Purine and Pyrimidine 

metabolism and p53 signalling pathway. Similarly, the predicted protein targets of 

Mitogen-activated protein kinase (E9BA99) of the parasite are enriched for MAPK, 

Neurotrophin, ErBB, GnRH and related pathways. On the other hand, Peptidyl-

prolyl cis-trans isomerase (E9BHJ8) having immunosuppressive properties targets 

host pathways related to VEGF, B cell receptor pathway and T cell receptor 

signalling pathway. Similar observation is consistent with other secretory proteins 

and their predicted protein partners (Appendix C: Table C. 3). 

5.2.4. Extraction of Phenotypic Response sub-networks targeted by  
L. donovani virulence factors based on shortest path analysis 

The infection process by the parasite elicits various types of phenotypic responses 

inside the host. One of the key goals of this study is to identify how the secretome 

derived virulence factors play a role in modulating these phenotypic responses of 

the host during the infection. In order to identify the host proteins from our network 

that are deregulated by the parasite and are responsible for causing the changes in 

the phenotypic response, we identified a total of 136 (111 for early phase infection 

and 25 for late phase infection) differentially modulated proteins (DMPs) of the host 

from the literature from various experimental studies performed using L. infantum 

and L. donovani which mapped in our network (Section 2.3.6). In order to associate 

these DMPs to the phenotypic responses, they were enriched for their GO biological 

process terms and segregated to specific phenotypic responses. The three major 
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phenotypic responses selected for the study were Immune Response (IR), 

Intracellular survival (SUV) of the parasite, and Visceralization (VIS). The DMPs 

selected for each of these three sub-networks resulted in identification of 20 

phenotypic response nodes (PRNs) for IR Phenotype, 14 PRNs for SUR phenotype 

and 25 PRNs for VIS phenotype (Appendix C: Table C. 4). 

Subsequently, in order to study the effect of the virulence factors on these PRNs we 

extracted all the shortest paths through which these virulence factors 

(source/Effector Nodes) interact with the PRNs (sink/Target Nodes). This shortest 

path extraction led to formation of three sub-networks-IR, SUR and VIS exhibiting 

three phenotypes under study, each containing paths from all 24 virulence factors to 

their respective PRNs in that phenotype class (Figure 22 a-c). The resulting sub-

networks consist of 372 shortest paths for IR, 127 shortest paths for SUR and 614 

shortest paths for VIS comprising of direct source-sink interaction or alternate cross-

talking pathway routes connecting the parasite (source) and host PRNs (sink).  

5.2.5. Sub-networks of Phenotypic Responses reveal unique pathways 

regulated by the virulence factors  

Pathway enrichment of the three sub-networks revealed that the virulence factors 

primarily target some common pathways such as MAPK Pathway, T-cell receptor 

signalling pathway, Toll-like receptor signalling pathway, PI3K-Akt signalling 

pathway, TNF singalling pathway, Ras signalling pathway (Appendix C: Table C. 

5). The Neurotrophin Signalling pathway is also one of the major pathways targeted 

by the parasite that is involved in the Nitric Oxide production. This pathway has 

also been implicated in Macrophage chemotaxis that may be responsible for 

visceralization of infection. The parasite also targets the ErbB signalling pathway 

that is responsible for immune responses as well as visceralization.  
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Figure 22: The three Phenotypic sub-networks representing the source and target nodes extracted 
from shortest path analysis: (a) Immune Response, (b) Survival, (c) Visceralization; (d) Protein 
interactions sub-graph from the Network showing inter-linking of the direct interactors of the 
Virulence factors from all three phenotypic responses. Node size arranged based on increasing order 
of betweenness centrality values. 

In VIS sub-network the virulence factors of Leishmania is observed to enact through 

mTOR pathway. mTOR plays a crucial role in regulation of M2 macrophage 

polarization and direct the innate immune homeostasis towards parasite survival 

inside host [304]. 
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Through this study we identified certain unique pathways enriched from the VIS 

sub-network which included Hippo signalling pathway, Glucagon signalling 

pathway, Antigen processing and presentation, protein processing in endoplasmic 

reticulum which have not been previously reported. It is known that some released 

proteases can directly modulate the activity of macrophage by interacting directly 

with the host cell surface or following entry into the macrophage Endoplasmic 

reticulum (ER) from the phagosome [305]. The enrichment of pathway for protein 

processing in ER for the VIS sub-network in our network suggests that this 

modulation activity specifically contributes majorly for visceralization and infection 

prolongation inside the host. Hippo signalling pathway that has been reported to 

play a pivotal role in Cancer metastasis and cell migration has also been identified 

from our VIS sub-network. The involvement of these pathways in visceralization of 

the Leishmaniasis have not been reported earlier. 

5.2.6. Study of sub-network cross-talk to identify key proteins targeted by 
the parasite based on nearest neighbour 

In order to study the PRNs of the sub-networks that are in direct contact with the 

virulence factors and the cross-talks amongst each other, we extracted the sub-

network of all direct interactions (having the least shortest path length) from 

virulence factors to the PRNs of all three sub-networks in unison to observe the 

cross-talks (Figure 22 d). This reveals that the virulence factors E9BQM1, E9BKF5 

and E9BC27 have direct interaction (shortest path length=1) with the host UBC 

protein, which has highest Betweenness centrality for the IR subnetwork. The 

virulence factors are observed to target 1433Z as the most central protein in SUR 

sub-network through direct interaction (shortest path length=2). For the VIS sub-

network we observed that the virulence factor E9BA99 alone has a direct interaction 

(shortest path length=1) with 6 PRNs with the HS90A protein with highest 

betweenness centrality of that sub-network. These results highlight the importance 
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of the protein UBC for the IR phenotype being distance wise close to the virulence 

factors and similarly that of the proteins 1433Z for SUR and HS90A for VIS 

phenotypes. 

Further, the comparison of the average shortest path distances from all virulence 

factors to each sub-network and to the whole network revealed that all three sub-

networks were observed to be closer to the virulence factors with average shortest 

path distance of 2.77 for IR, 2.90 for SUR and 2.91 for VIS as compared to the 

distance to the whole network which was 3.17 (p-value <0.05). The immune response 

(IR) phenotype is observed to be the closest phenotype to the virulence factors set 

indicating that one of the key strategies employed by the parasite is targeting the 

host immune signalling pathways. The virulence factor E9BA99, MAP Kinase is 

observed to be the closest to all the sub-networks with lowest average shortest path 

distance of 2.02 to the three sub-networks compared to other virulence factors 

(Appendix C: Figure C. 2). This protein is also observed to have maximum number 

of direct interactions with PRNs belonging to the VIS phenotype as stated earlier. 

Our analysis highlights the importance of influence of the MAP kinase E9BA99 

virulence factor in pathogenesis and specifically in the visceralization process. 

5.2.7. Network Perturbation Analyses to identify important proteins that 
regulate each sub-network 

Key regulators of any biological network system are characterized by the nodes in 

that network whose absence perturbs the structure of the network. In this study our 

network represents a static state of interaction between the L. donovani virulence 

factors with the human host proteins. The key components in any biological network 

are positioned to be important for diffusion of information and signal throughout 

the network and thus tend to be easy targets in the infection process by any virus or 

parasite. The hubs which are characterized by high Degree are important for local 
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network organization whereas the bottlenecks which are characterized by high 

Betweenness centrality are important for global diffusion of information throughout 

the network. If such candidate proteins having a considerably high degree and 

betweenness centrality are removed from the network, it is expected to perturb the 

information flow and the natural signalling process in the network. Thus, such 

proteins can be identified as key modulatory proteins important for regulating the 

phenotypic responses in the host. In our case, we associated the break in information 

flow or perturbation of network structure to be measured in the form of two 

analyses: 1) significant increase in average shortest path distance 2) Percent 

depletion of shortest paths (Section 2.3.7). 

In order to identify the candidate proteins from the host for the knockout analysis, 

top 10 proteins were identified based on the betweenness centrality from the three 

sub-networks, viz. EGFR, A4, 1433Z, UBC, HS90A, AKT1, SRC, MK01, TRAF6 and 

GSK3B (Appendix C: Table C. 6). Individual knockouts of these 10 proteins and the 

associated deviation in average shortest path distance, as well as the percent 

depletion in shortest paths, have been depicted in Figure 23. To identify the 

knockout analysis which is statistically significant the non-parametric Mann 

Whitney’s test was performed.  

First, the distance analysis shows that for the IR sub-network, UBC and A4 knock-

outs significantly increase average path distance for majority of the virulence factors 

with a p-value of 0.00098 and 0.02386 respectively, for the SUR sub-network, 1433Z 

and A4 have significant impact with p-value of 0.0003 and 0.0486 respectively 

whereas for VIS sub-network it is observed that HS90A, UBC, A4 and EGFR have 

significant impact with p-value of 0.0001, 0.02953, 0.04734 and 0.04876 respectively 

(p-value<0.05) (Figure 23 a). It was also observed that the UBC knockout completely 
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disrupted the interaction of the virulence factor E9BC27, myo-inositol-1-phospahte 

with all the PRNs of all three phenotypic sub-networks.  

The second analysis of percent path depletion also showed similar results. The 

heatmaps representing detailed individual knockout effect on the shortest path 

percent depletion is shown in Figure 23 d-f. For the IR phenotype, impact of UBC 

knockout alone was observed with 100% path depletion from virulence factors 

E9BC27, E9BFJ3, E9BFK5, E9BID4, E9B8M5 and E9BQM1, about 70-80% depletion 

from virulence factors E9BN59 and E9B7I1 and about 40-50% depletion from 

virulence factors E9BQ78, E9BIZ5, E9BTM6 and E9BIV4. Affecting overall 12 

virulence factors post knockout it showed a p-value of 0.0003404 proving to be 

statistically significant impact. The maximum impact was for the virulence factors 

belonging to the proteasome assembly as well as inositol and heat shock protein. For 

SUR phenotype, impact of 1433Z knockout alone was observed with 100% path 

depletion from virulence factors E9B7I1, E9BQ78, E9BU45 and E9B8M5, about 70-

80% path depletion from virulence factors E9BIZ5 and about 40-50% depletion from 

virulence factors E9BK16, E9BI90 and E9BA99. Affecting overall 8 virulence factors 

post knockout it showed a p-value of 0.005988 thus proving a statistically significant 

impact. The maximum impact was on the virulence factor category of MAP kinases, 

proteasome assembly and 1433Z host proteins. Finally, for the VIS phenotype 

knockout of UBC and HS90A was observed to be statistically significant with a p-

value of 0.01552 and 0.000126 respectively. 

The UBC knockout resulted in 100% path depletion for virulence factors E9BQM1 

and E9BC27, about 70-80% path depletion for E9BFK5 and about 40-50% depletion 

for E9BID4 whereas HS90A knockout resulted in 100% path depletion for virulence 

factors E9BI90, about 70-80% depletion for E9BIV4 and about 40-50% depletion for 

E9B8I6 and E9B7I1. The overall effect was on 5 virulence factors by UBC and 4 
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virulence factors by HS90A with maximum impact on the VF category of 

Proteasome assembly and inositol by UBC and Glutathione peroxidase by HS90A. 

 

Figure 23: Network perturbation analysis: (a, b, c) Distance Analysis Web-graph representing 
deviation in the average shortest path distance upon individual knockout by each candidate protein 
from each Virulence factor to the phenotypic response node of all three sub-networks IR, SUR, VIS 
respectively; (d,e,f) Heatplots showing depletion in number of shortest paths upon individual 
knockout by each candidate protein. The scale 0%-100% represents 0% indicating no shortest path 
deleted to 100% indicating all shortest path deleted; (g, h, i) Heat plots representing percent shortest 
path depletion analysis of final four combinations of shortlisted knockout candidates. 
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5.2.8. Identification of protein combinations that regulate the overall 
phenotypic responses during L. donovani infection 

Combining the results from individual knock-out studies, we identified three 

common host proteins UBC, HS90A and 1433Z creating statistically significant 

impact individually on the three phenotypic sub-networks (Figure 23). In order to 

identify a combination of proteins which can potentially act as key modulators in the 

early as well as late infection phase, knockout analyses were performed for all 

possible combinations of the three identified candidate proteins UBC, HS90A and 

1433Z. The possible combinations were UBC+HS90A, UBC+1433Z, HS90A+1433Z 

and UBC+HS90A+1433Z. The distance analysis for these combinations reveals that 

all combinations showed a statistically significant (p<0.05) impact of knockout on all 

three phenotypes except the combination of HS90A+1433Z which did not show any 

significant impact on IR phenotype (Figure 23 g-i). The distance analyses are also 

depicted in the form of Probability Density distribution of each VF to the target 

nodes in each sub-network as a function of their average distances before and after 

knock-out (Appendix C: Figure C. 3). This additional analysis was done to observe 

the shift in Gaussian Curve peak for the shift in the average shortest path distance 

post knockout for each combination. 

The path depletion analysis shows that for IR phenotype the combination 

HS90A+1433Z showed a poor impact with p-value of 0.09072 whereas all other three 

combinations showed a statistically significant impact with p-values < 0.05. For SUR 

phenotype the combination 1433Z+HS90A showed a poor impact with a p-value of 

0.17290 whereas all other three combinations showed statistically significant impact 

with p-values <0.05. For VIS phenotype we observed that all combinations were 

impacting in a significant way (p-value<0.05) (Figure 23 g-i). 

Pertaining to above results from both analyses it was clear that the combinations 

HS90A+1433Z and UBC+HS90A were to be eliminated due to poor impact. This 
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resulted in only two possible significant combinations UBC+1433Z and 

UBC+HS90A+1433Z. We carried out Pathway enrichment analysis of the three sub-

networks before and after knockout in case of both knockout combinations, i.e., (a) 

UBC+1433Z and (b) UBC+1433Z+HS90A. Here we aimed to observe depletion of one 

or many pathways amongst the significantly enriched signalling pathways or at least 

depletion in the number of proteins enriched for a particular pathway after the 

knockout. This analysis would reflect the effect of the perturbation of the protein 

combination to disturb the identified signalling pathways that are targeted by the 

VFs for the three phenotypic outcomes during infection.  In case of UBC+1433Z 

combination, it did not yield any significant difference in depletion of enriched 

pathways post knockout thus reflecting a lower perturbation effect. Significant 

perturbation effect on depletion of pathways was observed for the knockout of 

combination UBC+1433Z+HS90A.  

Figure 24 (a, b and c) represent the pathways statistically significantly (FDR<0.05) 

enriched in the three sub-networks where the bubble size corresponds to the number 

of proteins from the sub-network enriched for the corresponding pathway depicted 

on y-axis and the fraction of proteins involved in that enriched pathway out of the 

total proteins in the sub network depicts the ratio value spanning across the x-axis. 

The signalling pathways like PI3K-Akt, MAPK, Neurotrophin and chemokine are 

observed to be amongst the highest enriched pathways in all three sub-networks. 

Certain unique pathways are also observed to be enriched in specific phenotypes 

such as NF-kappa B signalling pathway in IR (Figure 24 a), cAMP signalling 

pathway in SUR (Figure 24 b) and Adipocytokine, Oxytocin and Wnt signalling 

pathway in VIS phenotype (Figure 24 c). The pie chart representation of the analysis 

depicts the difference in the proteins enriched for the pathways after knockout. 

Insulin Signalling Pathway (SP) enriched in the IR and SUR sub-network was 
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observed to have maximum impact with respect to highest loss of proteins enriched 

for that pathway after knockout (Figure 24 d). 

 

Figure 24: Pathway Depletion analysis: Upper Panel: Pathways statistically significantly enriched for 
the shortest paths for each sub-network a) IR, b) SUR and c) VIS. The circle size represents count of 
genes/proteins enriched from the sub-network for that particular pathway and the color scale 
represents enrichment confidence in the form of FDR value. Lower Panel: Charts representing 
fraction of enriched genes/proteins from corresponding pathways depleted after the knockout 
UBC+HS90A+1433Z for the enriched pathways previously identified in each sub-network d) IR, e) 
SUR and f) VIS respectively. 

Additionally, this effect was observed in SUR sub-network for cAMP and thyroid 

hormone signalling pathway. In VIS sub-network highest protein loss was observed 

for pathway PI3K-Akt, FoxO and Chemokine signalling pathway. Here it is to be 

noted that cAMP signalling pathway was also observed to be uniquely enriched for 

the SUR sub-network thus implying the ability of the VFs to attack phenotype-
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specific pathways through these modulatory proteins UBC, 1433Z and HS90A. This 

highlights the importance of the role of these modulator proteins used as key 

mediators by the parasite to attack the host defences activated during the parasite 

survival process.  

The components of Adipocytokine signalling pathway, essentially secretions from 

fat cells include proteins such as IL-6, IL1β, TNFα. TNFα is up-regulated PRN 

whereas IL1β is down-regulated. Previous studies suggest macrophage apoptosis 

inhibition during intracellular L. donovani infection by induced gene expression of 

TNFα, TGFβ and IL-6 [306,307]. These cytokines in our VIS sub-network are PRNs. 

Above observations suggest that these PRNs are triggered by L. donovani VFs 

(E9BK16_LEISH) LACK (Activated protein kinase C) protein, (E9BRX9_LEISH) 

Casein kinase, (E9BHJ8_LEISH) peptidyl-prolyl cis-trans isomerase, 

(E9BFJ3_HUMAN) proteasome, (E9BTM6_HUMAN) proteasome-subunit and 

(E9BIZ5_HUMAN) Small GTP-binding protein Rab1 based on our shortest path 

analysis.  Also, it is recently observed that inhibition of Wnt5a signalling pathway 

during L. donovani infection antagonizes Visceralization since this pathway is 

specifically targeted in Visceral Leishmaniasis [191]. 

5.3. Discussion 

The study of host-pathogen interaction (HPI) networks has been invaluable for 

understanding infection strategies and identification of drug targets for various 

infectious diseases. In case of Leishmaniasis, although much work has already been 

done for Cutaneous Leishmaniasis, a holistic understanding of Visceral 

Leishmaniasis (VL) is still scarce due to scanty knowledge of the mechanism of 

visceralization and parasitic survival strategies. The inadequate knowledge of 

Visceral Leishmaniasis at the pathway level also makes the device of an effective 

treatment strategy difficult. Hence, in this study, using the Interolog and Domain 

mapping approach we predict a total of 813 Host Pathogen interactions for 24 
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secretome derived VFs of L. donovani. Further extension of the HPI with the intra-

species Human and L. donovani network resulted in a total Interactome of 73195 

interactions (Figure 20 and Figure 21). Thereafter, the network has been validated 

qualitatively based on its topological and functional properties and mapped with 

experimentally obtained expression data for the extraction and study of important 

sub-networks responsible for the immune response (IR), parasite survival (SUR) and 

visceralization (VIS) of the disease.  

Based on these sub-networks IR, SUR and VIS (Figure 22), we have identified the 

shortest paths through which the VFs modulate the host response proteins (PRNs) 

during the early and late phases of infection. Pathway enrichment analysis divulge 

some pathways common in all three sub-networks which includes MAPK, 

Neurotrophin, Toll-like receptor, Wnt, TNF, p53, VEGF [308]. Some of these have 

been previously reported to play important role in infection process of L. donovani 

leading to fatalities of VL. On the other hand, amongst the uniquely enriched 

pathways for Visceralization, we found two pathways which have not been studied 

in L. donovani infection or Visceral Leishmaniasis in Humans. These include Hippo 

and Glucagon signalling pathway. It is known that Hippo signalling pathway, 

identified as one of the central pathways has previously been associated with cancer 

[309] and viral infectious diseases [310-312]. Along with its key role in determination 

of cell polarity, tissue regeneration, apoptosis and cell proliferation, it has also been 

identified as a key regulator in the mammalian adaptive immune responses and cell 

migrations which may play a vital role in the visceralization of the infected cells 

[313]. However, the role of Glucagon signalling pathway in VL remains to be 

elucidated although it may have some implications towards M2 polarization of the 

Macrophages.  

On the other hand, from the parasite perspective, our analysis of shortest path 

distance from the VFs to the phenotypic sub-networks and the whole network 



 
 

Chapter 5 
Delineating Infection strategies and Immune Responses during Visceral 

Leishmaniasis 

138 

 

revealed that the VF E9BA99, which is a MAP Kinase, is the closest to all three 

phenotype responses. This observation produces a possibility of this secretory 

protein in the involvement in modulating the MAPK pathway for subverting the 

proinflammatory responses that is crucial for eliciting immune responses aiding 

parasite clearance which is compromised during Visceral Leishmaniasis. Further 

investigation is warranted for this observation through in vitro and in vivo 

experiments. 

The phenotypic sub-networks constructed from the predicted Interactome prompted 

to further answer questions such as which key proteins in the host act as the central 

regulators to modulate the phenotypic responses? In this study we have 

implemented an in-silico knockout strategy to identify these key modulators driving 

all the paths for the VFs towards the phenotypic response proteins. One of the most 

striking observations seen from the individual knockouts of the candidate proteins 

was that UBC knockout completely disrupted the path of E9BC27 to the response 

nodes in all three phenotypic sub-networks through both distance as well as path 

depletion analysis (Figure 23). The shortest paths extracted for this protein for IR 

sub-network is only one direct interaction i.e., path length 1 of E9BC27 with UBC, no 

shortest path to any SUR response nodes and 4 shortest paths of path length 2 to 

four response nodes of VIS sub-network namely, RAC1, NOS2, IRAK1 and TNFA.  

All these paths pass through the UBC protein. Maxwell et al. [174] has stated this 

protein E9BC27 to have massive export with the highest relative abundance ratio 

and thus the most enriched secretory protein in the conditioned medium. Myo-

inositol-1-phosphate synthase is required for de novo biosynthesis of myo-inositol, a 

precursor of vital inositol phospholipids such as those found in the GPI membrane 

anchors of nearly all Leishmania surface proteins and other glycoconjugates such as 

GP63 and lipophosphoglycan. This study states its putative role in intracellular 

survival since it is known to be essential for cell growth and survival in inositol-
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limited environments [174]. A Leishmania myo-inositol-1-phosphate synthase 

knockout study has shown complete avirulence in mice [314]. Our knockout study 

for the first time identifies the host protein UBC in human through which this 

virulence protein modulates the infection responses inside the host. We thus 

postulate that the modulation of Ubiquitin-C expression can be effectively 

implemented to impart avirulence and can be further tested in Human infected 

subjects to develop effective immunomodulators [315]. 

Similarly, we also observed the effects of these knockouts on other VFs. Our analysis 

shows that the complete disruption of paths to VFs (E9BC27, E9BFJ3, E9BFK5, 

E9BID4, E9B8M5 and E9BQM1) belonging to the proteasome signalling family 

(Figure 23) in the IR sub-network indicates these VFs mainly targets the induced 

host protective immune responses through modulation of UBC protein to subvert 

the immune response pathways such as TLR2 signalling pathway. A previous study 

shows that L. donovani promastigote interferes with the ubiquitination of TRAF6 by 

activation of host de-ubiquitinating enzyme A20 through the mechanism of TLR2-

mediated suppression [316]. This is done through inhibition of IKK-NF-kB cascade. 

However how this modulation of host A20 deubiquitination occurs is not yet clear. 

Inhibition of ubiquitination of TRAF6 leads to persistence of TRAF3 in signalosome 

complex during infection thereby leading to deactivation of MAPK pathway which 

thereby facilitates parasite survival in host macrophages [317]. TRAF6 and TRAF3 

have been observed as intermediate nodes in the phenotypic sub-networks. Our 

results suggest the involvement of UBC modulation by the parasite through 

proteasome assembly in its secretome which in turn assists in de-ubiquitination. This 

Ubiquitin-proteasome pathway plays crucial role in canonical and non-canonical 

pathways of NF-kB activation. The pathway enrichment results support this 

observation as it shows the enrichment of NF-kappa B signalling pathway for all 

three phenotypes. This also shows the interlinking of the modulation of immune 
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responses as a phenotype supporting the parasite survival inside the host 

environment. This observation also validates the inclusion of VFs in the category of 

putatively involved in intracellular survival of the parasite by Maxwell et.al. [174]. 

UBC knockout has also shown significant impact on disruption of all paths in the 

Visceralization phenotype sub-network for the VFs E9BQM1 and E9BC27. We 

observed that all the shortest paths for these VFs to the VIS response nodes were 

through UBC and affected nodes were NOS2, IRAK1, RAC1 and TNFA. 

Thereafter we have identified a combination of protein molecules i.e., 

UBC+HS90A+1433Z, which has a significant impact in the regulation of all three 

phenotypes under study in the L. donovani-Human HPI. Our analysis revealed 

knock-out of the combination lead to deletion of a significant number of shortest 

paths from each sub-network which involved loss of genes regulating important 

pathways e.g. Insulin and PI3k-Akt signalling pathway. Although this combination 

could not significantly perturb the unique pathways for VIS phenotype response, the 

identified pathways play a crucial role in the overall infection process from immune 

response generation to infecting visceral organs. These pathways and genes altered 

due to the knock-out may be targeted for therapeutic interventions as they play 

crucial role in progression of the disease. However, it may be mentioned here that 

one major drawback of this study is that it involves a static analysis of the HPI and 

the inferences are drawn completely on the basis of graph theoretical analysis alone. 

A further analysis of the network using LSSA may further give useful insights into 

the dynamics of the system. Nevertheless, the proposed HPI will be invaluable for 

gaining a holistic understanding of the L. donovani Human interactions and will be 

extremely useful for the generation of new testable hypothesis and identification of 

new targets to fight Visceral Leishmaniasis. 
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CHAPTER 6 

UNVEILING IMMUNO-REGULATORY MECHANISMS IN THE 

TUMOR MICROENVIRONMENT AND DESIGN OF PROTOCOLS FOR 

TRIGGERING CANCER REMISSION 

6.1. Motivation 

The tumor microenvironment comprising of the immune cells and cytokines acts as 

the ‘soil’ that nourishes a developing tumor. Lack of a comprehensive study of the 

interactions of this tumor microenvironment with the heterogeneous sub-population 

of tumor cells that arise from the differentiation of Cancer Stem Cells (CSC), i.e. the 

‘seed’, has limited our understanding of the development of drug resistance and 

treatment failures in Cancer. 

Mathematical models have been useful in delineating the multiplicity of the complex 

interactions governing the dynamics of the tumor-immune interaction that remains 

elusive through in-vitro experiments. In this context, in-silico studies have shown 

light on the CSC differentiation pattern and its effect on the tumor growth dynamics 

[47]. Here it has been observed that symmetric stem cell division shows a correlation 

with cancer progression [47]. This is in contrast to another report that mentions 

symmetric stem cell division lowers cancer risk as it reduces the accumulation of 

cellular damage [318]. However, the effect of CSC differentiation on drug-resistivity 

and the outcome of the interaction of these differentiated cells with the tumor 

microenvironment have not been explored sufficiently. On the other hand, models 

on tumor-immune interaction considering the involvement of tumor, immune 

effector cell and IL2 have enhanced our understanding about oscillations in tumor 

sizes, long-term tumor relapse and the conditions under which tumor elimination 

may be achieved using Adoptive Cellular Immunotherapy [102]. Mathematical 

Bulk of this chapter has been taken verbatim from our previously published article: Ganguli P and Sarkar RR (2018). 
Exploring immuno-regulatory mechanisms in the tumor microenvironment: Model and design of protocols for cancer 
remission. PloS ONE, 13(9), e0203030, DOI: 10.1371/journal.pone.0203030 
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models are now being exploited for the study of the efficacy of adaptive immunity 

for the elimination of aggressive tumors [103,319], the existence of an angiogenic 

switch that regulates Cancer progression [320] and as a powerful tool in the design 

of optimal control strategies for Cancer [321,322].  

However, the study of the CSC differentiation pattern and the outcome of the 

interaction of these heterogeneous tumor cell sub-populations with the immune cells 

and cytokines present in the microenvironment is a challenge yet to be achieved in 

both experiments as well as modelling studies. With the aim to gain a clearer and 

unambiguous picture of the regulatory mechanisms involved in the immune-escape 

mechanism of the tumor cells, we propose a 13 variable ODE-based mathematical 

model of the tumor-immune interaction (Figure 5, Eq. 11- Eq. 23) that captures the 

development of a malignant tumor from the ‘seed’, the CSCs, and its interaction 

with the ‘soil’, the tumor microenvironment (Section 2.4). In this model, we consider 

the three different modes of CSC differentiation, as well as the effect of random 

mutations and ask the question, how the stem cell differentiation patterns regulate 

the different cellular sub-populations in the tumor and how it affects the 

development of drug resistance? Using this model we have tried to address the 

unresolved question of the correlation of M2 macrophages with more resistant 

tumors by exploring the regulatory feedback loops that govern the dynamics of the 

tumor-sub-population and the roles of the cytokine feedbacks in shaping the tumor 

microenvironment. Prior to these studies, the model has been calibrated and the 

unknown parameters of the model have been estimated by fitting the initial growth 

kinetics of the model with data obtained from Gastric Cancer cell line using the 

MCMC-DRAM algorithm [216] (Section 2.4.7 and 2.4.8). Moreover, the steady state 

behaviours of the entire model variables have been quantifiably validated with 

previously reported experimental data obtained from cytometric and protein 

expression studies from both in-vitro studies as well as data obtained from different 
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Cancer patients to establish the generic behaviour of our model and ensure its 

acceptability in the design of treatment strategies.    

In order to design treatment protocols for triggering the Cancer remission, we have 

introduced radio and chemotherapeutic strategies and observed the fold changes in 

the tumor mass in the presence and in the absence of resistant cells, where we 

demonstrate the failure of the conventional treatment strategies for curing Cancer. 

Thereafter, we have ventured the use of immunotherapy that has also been a 

popular choice for the elimination of the CSCs that are resistant to chemo and radio-

therapeutic interventions [76,323]. Hence, using the leads from our model analysis, 

we have attempted to propose combinatorial treatment strategies and design 

protocols that help in better suppression of the tumor, even in the presence of 

resistant cells. However, it may be mentioned here that a vital assumption in our 

model is that the drug-sensitive and drug-resistant population of tumor cells elicit 

similar immune responses. The resistant population of cells represents a fraction of 

the tumor cells that are unresponsive to the conventional treatment strategies. Thus, 

the difference in their behaviour arises when the treatment/control is applied. Our 

novel modelling approach and strategy for the design of treatment protocol throws 

light on the ways to optimize drug schedules, dosage and treatment cycles required 

for the elimination of the tumor cells. This model may be used as a potential tool for 

the prediction of Cancer prognosis and calculation of fold changes in the tumor sub-

populations in response to a new treatment regimen. 

6.2. Results 

6.2.1. Model Validation with Experimental Data 

6.2.1.1. Tumor Growth (without therapy) 

The growth kinetics of the tumor is estimated by four variables of our model, S, SR, C 

and CR, signifying the four sub-populations of cells that are found in the tumor. In 
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order to validate the growth kinetics of these tumor cell sub-populations of our 

model, we have used data from different experimental and theoretical studies of 

tumor growth estimation. The early temporal growth kinetics of the Stem (S) and 

Resistant Stem cells (SR) were validated over a period of 5 days, with the reports of 

Tomasetti and Levy [47], by choosing the parameter values γS = 2 day-1 and δS = 0.2 

day-1 (Figure 25 a). Here, it was observed that the Stem cells (S) start proliferating 

exponentially during this initial growth phase of tumor formation. During this time 

frame, the stem cells also start acquiring mutations and start producing the Resistant 

Stem Cells (SR) that gradually starts proliferating slowly and is maintained in very 

low numbers inside the tumor [47]. It is to be noted that for all our subsequent 

simulations we have used γS = 0.15 day-1 and δS = 2 x10-7day-1, as reported in 

Appendix D: Table D. 1. 

Temporal behaviours of the Cancer (C) and Resistant Cancer (CR) sub-populations 

have been simulated to validate our model with experimental data (Figure 6 f and 

Figure 25 b). Figure 25 b depicts the temporal growth kinetics of the Breast cancer 

cell line MCF-7/TAX-resistant to Paclitaxel [217], Hepatocellular Carcinoma cell line 

SK-Hep1/CDDP3-resistant to Cisplatin [218], and Colon Cancer cell lines SW-620-L-

OHP and LoVo-L-OHP-resistant to Oxaliplatin [219]. Our simulation result mimics 

the average behaviour of the resistant cancer cell lines over the time period of 5 days 

(Figure 25 b), using the parameter set estimated through the MCMC method 

(Section 2.4.7). 

The model was simulated for a sufficiently long time to study the temporal 

evolution of the drug-sensitive and drug-resistant cancer cells without any 

therapeutic interventions (Figure 25 c). Here, it was observed that during the early 

stages of tumor development, the stem cells (S) show a very slow rate of 

proliferation. According to our simulation results, it is observed that although a 
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single stem cell initiates the formation of the entire tumor, the stem cells maintain a 

very low number during the first few months of tumor development. The rapid 

proliferation of the Cancer cells (C) during the early growth phase leads to their 

transformation to the resistant CR species that soon start proliferating rapidly, 

thereby giving rise to a tumor. At the end of the exponential growth phase, the 

cancer progression is impeded by the activated M1, TH1 and Tc immune cells. This 

phase mimics the Elimination Phase of Tumor Immunoediting. The systems stay 

relatively stable for some time (Equilibrium phase) until the stem cells start 

proliferating exponentially and form the main bulk of the tumor (Escape Phase). Our 

simulation results indicate that the first resistant stem cell of the tumor is detected at 

400 days. Around 800 days the model reaches its steady state. The total tumor 

density at steady state can be estimated to be around 2.5x1010 cells/ml, i.e., 25 times 

higher than the reported minimum threshold of a clinically detectable tumor [47]. 

From here we calculate the relative abundance of the sub-populations of the tumor 

cells and derive that at steady state, the tumor is composed of 94.59% Stem cells (S), 

4.49% Cancer cells (C), 1% Cancer Resistant cells (CR) and small fraction of Stem 

Resistant cells (SR) that comprises 0.001% of the tumor mass. 

6.2.1.2. Immune cell-ratio comparison with Cytometric data 

Our simulations results revealed the dynamics of the adaptive immune responses 

generated during the tumor development (Figure 25 c). Here we observe that as the 

tumor sub-populations begins to proliferate, the Tc cells show enhanced activation 

that is required for the natural regression of the tumor (Figure 25 c). However, as the 

tumor continues to proliferate and the resistant cancer cells (CR) peaks to 1.5x109 

cells/ml, there is a sharp rise in the M1 and TH1 cells proliferation. The combined 

effect of the Tc, M1 and TH1 cells helps to impede the tumor development and 

decrease it by 3 folds which then falls below the limit of tumor detection (i.e. 109 
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cells/ml, [47]) and apparently stays dormant till 400 days. Thereafter, as the stem (S) 

and resistant stem (SR) cells start proliferating, the adaptive immunity becomes 

active again. However, this is also accompanied with the increase in abundance of 

M2 and Treg cells (Figure 25 c), which helps in the sustenance and continued 

survival of the tumor cells. 

In order to analyse the changes in the immune activation state before and after 

tumor formation, the immune cell ratio values obtained at the steady state are 

estimated and compared to the cell ratios in the normal disease-free condition 

(Figure 25 f). It may be mentioned here, in Figure 25 e and Figure 25 f, CD4 depicts 

the summation of both the TH1 and TH2 cells of our model, while CD8 implies Tc cells. 

From our model analysis, we observe that, during Cancer, the ratio of CD4 and CD8 

cells reaches a mean value of 2.75, that is in sharp contrast to the normal healthy 

individuals which show a value of 1.48 (Figure 25 f) [220]. On the other hand, the 

value of CD4:Treg ratio in Cancer shows a value of 15.2 that is higher than the ratio 

observed in the normal scenario. This happens due to the enhanced TH2 proliferation 

during tumor development. This also explains the reason for the elevated CD4/Treg 

ratio. However, the CD8:Treg ratio shows a decrease in Cancer patients and reaches 

to about 5.5, which is a characteristic of resistant tumors in mammals [221]. In Figure 

25 e, we have compared these results of our numerical simulation with experimental 

data obtained from various literatures. Here, we clearly observe that our simulation 

corroborates very well with the experimental observations made from blood samples 

of Cancer patients (Figure 25 e) [222, 223]. Additionally, we have observed the 

changes in the TH1:TH2 and M1:M2 ratios that have important implications in Cancer 

prognosis. We find that both TH1:TH2 ratio and M1:M2 ratio get decreased during 

Cancer as compared to the normal disease-free conditions (Figure 25 f) [202,224]. 

These results are in excellent agreement to the literature that suggests Cancer 

patients showing TH1:TH2 ratio below 8 show poor disease prognosis [224].  
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6.2.1.3. Cytokine Production 

IL10 production is a characteristic feature for Cancer detection. During Cancer, the 

marked increase in IL10 production has been noted in blood samples of various 

cancer patients, where an average concentration of 0.01 ng/ml has been recorded in 

various protein expression studies [225-227]. The temporal protein expression 

profile, from our simulations, suggests the IL10 expression starts increasing around 

the 15th day until it reaches to a concentration of 0.005 ng/ml (Figure 25 d). The IFN-γ 

production begins along with the proliferation of the Tc cells and increases sharply 

with the activation of the TH1 cells (Figure 25 d). This is accompanied by IL2 

production that helps in the continued proliferation of the TH1 cells. After the 

proliferation of the stem cells, the cytokine production increases further. The IL10 

concentration starts increasing rapidly and attains a concentration of 0.009 ng/ml at 

steady state. The steady state concentrations of IFN-γ and IL2 reach 9.6 ng/ml and 

0.6 ng/ml respectively. The cytokine expression levels from our simulation lie close 

to the experimentally observed ranges of protein expression in tumor 

microenvironment prior to their treatment [225]. 

6.2.2. Model Analysis 

6.2.2.1. Development of Drug Resistance is governed by the pattern of stem 
cell differentiation 

With the assumption that the stem cells predominantly tend to renew their pool of 

stem cells, i.e., with a probability p3, we have varied p1 and p2 to observe the effect 

of the asymmetric and symmetric differentiation of the stem cell on the development 

of drug resistance (Figure 26 a-d). Here it may be observed that as we increase the 

values of p1 and p2, the rate of the stem cell renewal decreases gradually, thereby 

leading to decrease in the steady state values of S and SR (Figure 26 a-b). 



 
 

Chapter 6 
Unveiling Immuno-regulatory mechanisms in the tumor microenvironment and 

design of protocols for triggering cancer remission 

148 

 

 

Figure 25: Model Validation with experimental data: (a) Stem and Stem resistant cell proliferation at 
γS=2 day-1 and δS=0.2 day-1; (b) Proliferation of the Cancer Resistant cells as observed in experiments 
along with the observations from our simulation; figure depicts growth kinetics of the Breast cancer 
cell line MCF-7/TAX-resistant to Paclitaxel, Hepatocellular Carcinoma cell line SK-Hep1/CDDP3-
resistant to Cisplatin, and Colon Cancer cell lines SW-620-L-OHP and LoVo-L-OHP-resistant to 
Oxaliplatin; (c) Temporal cellular behavior of the components of the model during tumor formation 
showing the Elimination, Equilibrium and Escape phases of Tumor Immunoediting; (d) Temporal 
cytokine expression pattern during tumor formation; (e) Immune Cell Ratio at steady state- 
experiment versus simulation results (f) Immune cell ratio in the disease free condition versus cancer 
scenario. Note: CD4= TH1 + TH2; CD8=Tc 

However, in the case of C cells (Figure 26 c), we observe that as we increase the 

value of p1, the steady state values of C decreases, whereas the variation of p2 has 

little effect on the steady states of C (Figure 26 c). The steady state level of CR on the 
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other hand is greatly influenced by p1 and p2 (Figure 26 d). With the increase in the 

value of p1 and p2, the steady states value of CR increases, signifying as the mode of 

stem cell differentiation changes, the tumor cell sub-populations tend to transform 

into the resistant Cancer cells. Hence, from our results, we may infer that higher 

asymmetric stem cell division may be associated with a high rate of drug resistance. 

6.2.2.2. Dual Role of Tumor Associated Macrophages  

The differential regulatory behaviour of the type I and type II TAMs on the tumor 

cells was studied by varying the γM1 and γM2 parameters, governing the growth 

rate of the M1 and M2 macrophages (Figure 26 e-h). Here it was observed, as we 

increase the birth rate of M1, the steady state values of all the sub-populations of the 

tumor decreases. However, on varying γM2, we observe that although the S, SR and 

C sub-populations show a decrease in the steady state values, the CR population 

increases (Figure 26 e-h). This result corroborates with the experimental 

observations that indicate that while M1 macrophages may have an important role 

in suppression of the tumor growth, a higher abundance of M2 macrophages may 

lead to poor disease prognosis [324]. From our model analysis, we infer that a higher 

proliferation of M2 TAMs leads to an increased accumulation of resistant cancer cells 

in the tumor. This is primarily because of the feedback regulations that govern the 

dynamics of the tumor-immune interaction network.  

6.2.2.3. IFN-γ and IL10 feedbacks regulate Cancer progression 

The cytokines are the key regulators of the Tumor-Immune interaction network. The 

IFN-γ produced by the TH1 cells helps in maintaining the steady state dynamics of 

the entire system. Parameter variation studies reveal that as we increase IFN-γ 

production from the TH1 cells by changing the value of βTh1Ck2 between 10-7 and 10-2 

ng/cell/day, the S and SR cells show a dampening oscillation in their temporal 
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behaviour and these stem cell populations gradually decrease to a very low value. 

On the other hand, with the increasing βTh1Ck2 values, the temporal behaviour of C 

and CR cell population changes from dampening to stable oscillations at βTh1Ck2 = 0.1 

(Figure 26 i). The increased production of IFN-γ leads to the rapid killing of the S 

and SR populations, whose oscillations dampen with time resulting in complete 

elimination of the stem cells from the system (Figure 26 j). However, the high rate of 

C proliferation balances out the negative feedback effect of the high IFN-γ 

production, which keeps oscillating the system (Figure 26 k). The phase-plot depicts 

the feedback regulation that operates between the Cancer (C) cells and IFN-γ that 

regulates the Cancer relapse. As the Cancer proliferation reaches 4x106 cells, the IFN-

γ production starts increasing which reduces the Cancer proliferation. When the 

Cancer cells fall below 1x106 cells, the IFN-γ production also starts decreasing. 

However, at low levels IFN-γ, the Cancer cells start proliferating again (Figure 26 

k). This leads the system into stable steady state oscillations. 

Another important feedback regulation that is crucial for the determination of tumor 

progression is the negative feedback effect of the IL10 cytokine on the TH1 

proliferation. This is governed by the parameter μTh1Ck1. As the value of μTh1Ck1 is 

increased, the TH1/TH2 ratio decreased rapidly (Figure 26 l). This results in the further 

proliferation of all the tumor sub-populations, i.e., S, SR, C and CR, and the fold 

changes in the steady state values of all four increases with increasing μTh1Ck1 values 

(Figure 26 m). Here it may be observed that inhibition of TH1 cells by IL10, results in 

higher fold changes of the steady state of SR cells. 
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Figure 26: Parameter Variation study. (a-d) Surface plot of the steady state values of S, SR, C and CR 
under varying p1 and p2; (e-h) Surface plot of the steady state values of S, SR, C and CR under varying 
γM1 and γM2; (i) Temporal Plot at βTh1Ck2=0.1; (j-k) Phase plane of S vs. IFN-γ and C vs. IFN-γ at 
βTh1Ck2=0.1; (l) TH1/TH2 ratio at varying μTh1Ck1; (m) Fold change in steady states at varying μTh1Ck1 
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6.2.3. Development of Treatment Strategies 

6.2.3.1. Failure of Chemo and Radiotherapies due to the presence of 
resistant cells 

Chemotherapy and Radiotherapy are effective for controlling tumor proliferation in 

the absence of the resistant cells, i.e., when the rate of transformation of the stem and 

cancer cells to their resistant counterparts reduces. Here we have tried to simulate 

the cancer scenario without any mutational pressure, i.e., mC = 0 and mS = 0. Under 

such conditions, when we apply the Treatment Protocol 1, we observe the Stem and 

the Cancer cells population decreases rapidly and an overall reduction in the tumor 

population is observed (Figure 27).  However, during the formation of a tumor, a 

certain fraction of the tumor cells acquire resistance to drugs. Under such conditions, 

i.e. mC > 0 and mS > 0, when the Treatment Protocol 1 is applied at the end of the 

detection time (DT=200 days), we observe that even though the drug-sensitive 

populations viz. S and C decreases, the resistant populations SR and CR remain 

unaffected during the chemotherapeutic cycles. Thereafter, during the Radiotherapy 

cycles, the SR cell population being completely unaffected by radiation proliferates 

rapidly, while the C and CR population sharply decreases for some time and then 

becomes stable. In the next treatment-free stage, SR, C and CR start proliferating 

again. This activates the IFN-γ from the TH1 and Tc cells that help to bring down the 

SR and CR populations a little, that are then sustained by the M2 and the Treg cells of 

the tumor microenvironment. The last phase of Chemotherapy does not have any 

effect on SR and CR populations. Hence the reduction in the overall tumor mass is not 

substantial. Also, it may be noticed here that at the end of this treatment regimen the 

TH1/TH2 ratio is reduced to 2.5 that is indicative of a poor disease prognosis. 

6.2.3.2. Immune Interventions for effective Tumor Remission 

Combinatorial treatment protocol was designed to reduce the tumor burden and 

restore healthy TH1/TH2 ratio. Parameter variation studies revealed the importance of 
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the TC and the TH1 cells in the regulation of the steady state levels of the tumor cells. 

Here, Immunotherapy was introduced as two control variables, i.e., u3_Tc and 

u3_TH1, which boost the production of the TC and TH1 respectively.  

 

Figure 27: Changes in the tumor growth after therapeutic interventions. Protocol 1 has been applied 
without and with the presence of resistant cells. Protocol 2 efficiently suppresses tumor in spite of the 
presence of resistant cells. Color code: Black-without treatment, Green-Chemotherapy, Red-
Radiotherapy, Pink-Immunotherapy 
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The stimulus to the TH1 and TC cells was started at the end of the last 

chemotherapeutic cycle and was administered for 20 days followed by 1 day rest. 

This was repeated for 10 cycles. The dosage of each therapy was varied in wide 

ranges, and it was observed that when Immunotherapy is low, the change in Radio 

and Chemotherapies does not affect the tumor population significantly which is 

reflected in the very small tumor fold change and low TH1/TH2 ratio (Appendix D: 

Figure D. 1). As the Immunotherapy is increased, the fold change of tumor 

population increases along with the TH1/TH2.  However at very high doses of 

immunostimulation, the fold changes decreases and the TH1/TH2 ratio increases 

abruptly that leads to extreme suppression of the TH2 cells in the system. Hence the 

region 1.5 < dI < 2.5 can be considered as the ideal dosage of immunostimulation 

required for triggering the remission of Tumor. Using the leads from this analysis, 

the Protocol 2 was designed. At the end of this treatment regimen, it was observed 

that all the four tumor sub-populations showed a huge reduction in their 

proliferation, i.e., 136 fold reduction in tumor mass (Protocol 2). The TH1/TH2 ratio 

was boosted to 8.8. 

6.3. Discussion 

The model developed here throws light into the development of a full-grown tumor 

from a single cancer stem cell (S), and the influence of the tumor microenvironment 

during its maturation. The study of the temporal evolution of tumor development 

from our model captures the three phases of Immuno-editing – Elimination, 

Equilibrium and Escape phases (Figure 25 c). The model shows that although the 

CSC forms the ‘seed’ from which the tumor emanates, the stem cell population 

remains low in the beginning. These cancer stem cells, owing to their slow 

replication, are intrinsically resistant to radiotherapy and are only partially sensitive 

to chemotherapy [211,325]. Additionally, the stem cell sub-populations have a strong 

immune-suppressive effect on the tumor microenvironment [326]. This phenomenon 
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has been captured in our model in the study of the temporal evolution of the tumor-

immune interaction dynamics, where we observe that coincident with the 

proliferation of the stem and resistant stem cell there is also an increased 

proliferation of the M2 and Treg cells (Figure 25 c). This consequently leads to the 

lowering of the M1/M2 and TH1/TH2 ratio that is associated with the formation of 

resistant tumors (Figure 25 f). Moreover, it has been observed in our study that the 

proliferation of stem cell sub-populations leads to suppression of the Tc cells and the 

activation of the Treg cells, that results in the lowering the CD8/Treg ratio during 

Cancer (Figure 25 f). This happens primarily because of the direct negative 

regulatory effects of the stem and resistant stem cells on the growth of the Tc cells. 

Hence, an early detection of the tumor is crucial for an effective treatment, when the 

stem cell population in the tumor remains low and the resistant stem cell population 

is not yet formed. 

The model also captures the different patterns of CSC differentiation and its role in 

determining the fate of the tumor. Here, it has been observed that as the 

differentiation pattern of CSC shifts towards the asymmetric pattern, the CSC pool 

begins to deplete and the CSC starts producing the terminally differentiated cancer 

cells that have a finite lifespan. The reduction in the stem cell population helps in the 

reduction of its immune-suppressive effects on the Tc cells. At the same time, the 

differentiation of the stem into the cancer cells stimulates the Tc cells to get activated 

that now inhibit the tumor via the negative feedback regulation. However, the steady 

state value of the resistant cancer cells increases and overrides the negative feedback 

effect of the immune cells, reinforcing the observations that a higher asymmetric 

stem cell differentiation may be associated with the formation of more resistant 

tumors. Our model analysis also indicates that at low p1 value, as the probability of 

symmetric differentiation (p2) of stem cells is increased, the steady state levels of 

stem cells rapidly decrease, however it has little effect on the steady state value of 
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Cancer cells. On the contrary, at high p1 value, the increase in p2 leads to the 

transformation of the cancer to resistant cancer cells. These results signify that 

reduction in stem cell symmetric renewal (p3) of the cell leads to its differentiation 

into more resistant tumors. 

The model further elucidates a dual role of the M2-TAMs in regulating the tumor 

formation (Figure 26 e-h). Here we observe that on one hand, the M2-TAMs aid in 

the suppression of the S, SR and C cells of the tumor. This is because M2 is a prime 

source for the production of IL10 cytokine that has an important role in positively 

regulating the proliferation of the Cancer (C) cells. Hence, as the M2-TAMs increase 

in abundance, the cancer cells begin to proliferate via a positive feedback loop. This 

leads to the activation of both the Tc and TH1 cells that inhibits the tumor cells via 

their negative feedback by producing a higher amount of IFN-γ and higher cytotoxic 

activity of the Tc cells (Figure 28 a). However, on the other hand, it may be observed 

that M2-TAMs help in the growth of the CR cells via the positive feedback loop, while 

the negative feedback has little effect on the CR sub-population. This observation 

explains the reason for the refractory behavior of the tumor to treatment strategies 

under the presence of the M2-TAMs [327].  

7.1  

Figure 28: Regulatory Feedback Loops. (a) The M2 macrophage triggers two feedback loops. The first 
loop through IL10 is a positive feedback that triggers tumor proliferation. This, in turn, activates the 
second loop through IFN- γ that inhibits the tumor; (b) TH1 derived IFN- γ inhibits the tumor via a 
negative feedback that leads to an oscillation in the population of tumor cells; (c) Positive feedback 
loop through IL10 is responsible for the maintenance of tumor and suppression of TH1/ TH2 ratio. 

Our study reveals the functional behavior of the feedback mechanisms that regulate 

the behaviour of the entire tumor-immune interaction network. From our parameter 
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variation studies, the importance of the IFN-γ production in regulating the temporal 

behavior of the tumor development is observed. Here, we found that as the rate of 

IFN-γ production from the TH1 cells increases, the negative feedback effect of IFN-γ 

on the tumor helps in the suppression of the tumor cells (Figure 26 i and Figure 28 

b). However, the replicative potential of the Cancer and resistant Cancer balances 

out the negative effect of the IFN-γ leading to an oscillatory tumor-relapsing 

behaviour, whereas the slowly replicating stem and resistant cells sub-populations 

gradually get eliminated from the tumor due to the high production of the IFN-γ 

cytokine (Figure 26 j-k). This finding explains the  IFN-γ paradox and has 

important implications in the design of Immunotherapeutic protocols, where we 

observe the differential behaviour of the tumor cells in response to high IFN-γ 

production [328,329]. Using our model, we further explore the effects of the negative 

feedback of the IL10 cytokine on the TH1 cells (Figure 26 l-m and Figure 28 c). We 

also make an important observation, where we find that as the sensitivity of TH1 cells 

to IL10 increases, the TH1/TH2 ratio decreases sharply. This leads to the increased 

proliferation of the tumor cells. The fold change in the steady values of the resistant 

stem cells is the greatest signifying the prognostic role of the TH1/TH2 ratio in 

predicting tumor progression and the formation of a resistant tumor with higher 

proportion of resistant stem cells.  

With the knowledge of the regulatory mechanisms governing the differential 

response of the tumor sub-populations to the microenvironment, we have tried to 

explore the effect of treatment strategies conventionally adopted for the treatment of 

Cancer (Figure 27). Using our model, we have been able to show that the reason for 

the failure of conventional Chemotherapy and Radiotherapy is primarily due to the 

formation of the resistant cancer stem cells SR and resistant cancer cells CR within the 

tumor. Under the conditions where there are no mutations conferring drug 

resistivity to the tumor, a significant reduction in tumor mass may be achieved using 
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Chemo and Radio therapy alone. However, in reality, a small population of resistant 

tumor cells exists in the tumor that remains refractory to these treatment protocols. 

In order to successfully remove the tumor, a combination of the conventional 

treatment protocol along with Immuno-therapy can help alleviate the disease 

scenario. There can be several ways of boosting the immune system. However, in 

this work, we propose that a synergistic stimulus to both TH1 and Tc cells is required 

for the generation of an adaptive immune response that is capable of reducing both 

the drug-sensitive as well as the drug-resistant sub-populations of the tumor. In 

order to achieve this, dosage of Radio, Chemo and Immunotherapies were varied to 

create 1000 different treatment combinations and thereafter a treatment protocol 

(Protocol 2) has been designed to ensure maximal reduction in the tumor mass, as 

well as the restoration of a healthy TH1/TH2 balance.  

In this model, we try to capture the high complexity of the tumor microenvironment 

with a simple ODE model that represents the interaction of the tumor cell sub-

populations and the immune cells at the phenotypic level. Here we assume that the 

parameters governing these cellular interactions are a cumulative outcome of the 

various molecular and intracellular signalling events occurring in the 

microenvironment that influence the immune evasion but have not been explicitly 

considered in this model for its simplification. However, it is worth mentioning that 

depending on the availability of data and hybrid modelling techniques involving a 

combination of different mathematical tools and strategies, this model may further 

be improvised by considering the effect of the various molecular events such as 

angiogenesis, the role of the miRNA, exosomes and chemokines in mediating the 

cellular interactions, the metabolic pathways as well as the hypoxic conditions [330], 

that may further help us unravel unknown regulations underlying the tumor 

immune interaction and the development of drug-resistance.   
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CHAPTER 7 

CONCLUSION AND FUTURE DIRECTIONS 

 

7.1. Conclusion 

Identification of important immunotherapeutic targets and regulatory mechanisms 

is essential for the design of optimal treatment strategies for infectious diseases (e.g. 

Leishmaniasis) and Cancer that causes suppression of the immune effector functions. 

However, the complexity of the immune regulatory network that governs the 

differential immune response of the T-cells under varied antigenic challenges still 

remains elusive. In this context, the knowledge regarding the signalling pathway 

cross talks is essential to understand the mechanistic regulations that govern the 

effector functions of the lymphocytes. Hence, in this thesis, we aim to delve deep 

into the intricate network of intracellular and intercellular signalling pathway 

crosstalks that regulate the immune responses and effector functions during 

Leishmaniasis and Cancer using mathematical modelling and computational 

approaches. 

In order to gain insight into the immune-regulatory modules involved in T-cell 

functioning as well as study the immune-modulatory mechanisms employed by 

pathogen and the tumor cells, the study of T-cell signalling pathway is an essential 

prerequisite to the identification of the immune-stimulatory targets for the treatment 

of different diseases. Hence in Chapter 3, first we have aimed to study the role of 

various T-cell co-receptor molecules and calcium channel CRAC in the maintenance 

of cell’s functional responses and regulation of the production of effector molecules, 

principally the cytokines mediating T cell immune response. Here, through manual 

reconstruction of the pathway map of T-cell activation and model development 

using LSSA, the role of co-receptor molecules has been studies that govern the 
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expression patterns of Interleukins under a variety of micro environmental 

conditions and stimuli, the changes in the phenotypic behaviours of the T-cell 

population and the signalling routes through which the response is propagated in 

the cytoplasm. This integrative computational approach serves as a valuable 

technique to study the changes in protein expression patterns and helps to predict 

variations in the cellular behaviour through which we identify that a sustained T-cell 

proliferation can only be achieved when the TCR:CD3 complex, the Ca+2 channel 

CRAC and the T-cell co-receptor molecule OX40 are stimulated simultaneously. The 

model also throws light on the role of the co-receptors CD27 and LTBR in the 

regulation of Interleukins IL1, IL12, IL3, IL6, IL8 and IL2 expression which are 

essential for the T-helper cell immune functions during an antigenic challenge [122].  

Thereafter, the role of TH cell Plasticity/ differentiation for the control of disease 

progression has been studied with respect to the infectious disease Leishmaniasis, 

caused by Leishamania sp., which devices its survival strategy by suppressing the 

host's immune functions leading to switching of the T-cell responses from a healing 

TH1 response to a non-healing TH2 response. Using a reconstructed signalling network 

of the intracellular and intercellular reactions between a Leishmania infected APC 

and T-cell, we propose a LSSA based model to predict the inhibitory effect of the 

Leishmania infected APC on the T-cell and to identify the regulators of this TH1/TH2-

switching behavior as observed during Leishmania infection. This has important 

implications in developing strategies for effective regulation of the switching 

mechanism for devising a proper cure for the disease. In Chapter 4, we have been 

able to capture some of the vital aspects of Leishmania infection and the mechanism 

through which the interaction of the Leishmania antigen molecules with the APC 

signalling proteins modulate the microbicidal activity of both the APC and T-cell. 

Although our model does not deal with the dynamics of the entire system due to the 

large number of unknown parameter sets, but through the logical analysis of the 
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integrated Leishmania-APC-T-cell model, we have been able to precisely highlight the 

inhibitory effects of Leishmania infection on the T-cell’s signalling routes and TH1/TH2 

immune responses. Here we observe that Leishmania infection enhances the secretion 

of the IFN_BETA from the APC, which in turn can up-regulate the production of the 

RAP1 and SOCS3 proteins inside the T-cell, the potential inhibitors of MAPK and 

JAK-STAT signalling pathways respectively, via the TYK2-mediated pathway; the 

other T-cell pathway affected in Leishmania infection being the JAK2-STAT4 

pathway. Enhancing the activity of this pathway in the T-cell by inhibition of the 

phosphatase SHP2, and simultaneously regulating the activity of the TLR3 molecule 

in the APC, we have also been able to identify certain unique combinations of 

proteins, which can act as regulatory switch to shift the TH2 response towards the TH1 

response, and at the same time can increase the production of NO. The study 

highlights a negative role of the T-cell SHC molecule and a positive role of the MKP 

molecule in Leishmaniasis treatment. Attractor analysis study firmly establishes the 

reasons for the failure of the conventional immunotherapeutic targets, such as 

IFN_GAMMA_T treatment, and ensures that our proposed combinations of protein 

molecules when targeted reverts the system to an infection-free attractor. This study 

not only enhances our knowledge in understanding the TH1/TH2 regulatory switch to 

promote healing response during leishmaniasis but also helps to identify 

combinations of target molecules can be efficiently used as potent 

immunostimualtors to yield an effective anti-Leishmania immune response and 

expedite the process of parasite clearance from the system [331,332].  

In Chapter 5, we address the problem of Visceral Leishmaniasis, where we aim to 

identify the important regulatory modules to study the parasite strategies to subvert 

the host immune responses, secure its survival inside the host and further the spread 

of infection to the visceral organs. Here the host pathogen interaction network 

between secretome derived virulence factors of Leishmania donovani, one of the 
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causative agents of Visceral Leishmaniasis, and the Human Protein Protein 

Interaction (PPI) network has been proposed using Interlog and Domain mapping 

strategies. Shortest path analysis and extraction of important sub-networks 

governing distinct phenotypes lead to the identification of important signalling 

pathways targeted by the parasite. Thereafter we propose a novel combination of 

protein targets (UBC, HS90A and 1433Z), using graph theoretical analysis to 

determine the pathways which are significantly de-regulated in shortest path 

depletion analysis and can be implicated to play a crucial role in regulating the 

phenotypic responses such as Immune Response, Parasite Survival and 

Visceralization in the predicted L. donovani and Human host pathogen interactome.  

On the other hand, lack of a comprehensive study of the interactions of the tumor 

microenvironment with the heterogeneous sub-population of tumor cells that arise 

from the differentiation of Cancer Stem Cells (CSC) has limited our understanding of 

the development of drug resistance and treatment failures in Cancer [45,107,108]. 

 Hence, in Chapter 6, with respect to the long standing ‘seed and soil’ hypothesis, we 

propose a model that throws light into the previously unexplored regulations 

governing tumor-immune interaction. This novel approach of developing of a 

tumor-immune interaction model considering both the stem cell differentiation 

pattern as well as the effect of the microenvironment has helped us in unveiling the 

effect of stem cell differentiation on the development of drug resistance and the 

different mechanistic regulations governing the tumor-immune interaction 

dynamics. However, this model does not capture the diffusion kinetics of the 

cytokines or the time delay associated with the cytokine regulations. Nonetheless, 

the observations derived from the model have been corroborated extensively with 

the experimental observations in cytometric and protein expression studies that 

strengthen the reliability of our model for the prediction of mechanistic regulations 

of tumor-immune interaction and design of the treatment protocols.  
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Using this model we report that as the CSC differentiation shifts from symmetric to 

asymmetric pattern, resistant cancer cells start accumulating in the tumor that makes 

it refractory to therapeutic interventions. Model analyses unveiled the presence of 

feedback loops that establish the dual role of M2 macrophages in regulating tumor 

proliferation and a shift towards the formation of more resistant tumors. The study 

further revealed oscillations in the tumor sub-populations in the presence of 

TH1 derived IFN-γ that eliminates CSC but retains a fraction of the differentiated cells 

that explains the IFN-Υ paradigm in the treatment of Cancer; and the role of IL10 

feedback in the regulation of TH1/TH2 ratio. These analyses expose important 

observations that are indicative of Cancer prognosis. Further, the model has been 

used for testing known treatment protocols to explore the reasons of failure of 

conventional treatment strategies and propose an improvised protocol that shows 

promising results in suppressing the proliferation of all the cellular sub-populations 

of the tumor and restoring a healthy TH1/TH2 ratio that assures better Cancer 

remission [333]. 

7.2. Future Directions 

The study on the T cell pathway provides a comprehensive understanding of the 

crosstalks of the co-receptor mediated pathways that are essential for gaining a 

holistic understanding of the Helper T cell responses. The outcome of the thesis 

provides several testable hypotheses for the design of immunotherapy for 

Leishmaniasis and Cancer. The insights gained into the pathway regulations of the T 

cells during Leishmania infection provides a fundamental understanding of the 

parasite strategies in suppressing the host immune responses that paves the path for 

further experimental studies conforming the effect of Leishmania infection on 

immune suppression and T cell differentiation and polarization. On the other hand, 

the proposed combinations of target molecules predicted through the study can be 

efficiently used as potent immunostimulators to yield an effective anti-
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Leishmania immune response and expedite the process of parasite clearance from the 

system. Immuno-pharmacological studies involving virtual screening and molecular 

docking studies can be further performed to identify the drug-like small molecules 

that may help to regulate these identified targets to elicit a robust anti-Leishmania 

immune response. The pathways reconstructed and the models developed for the 

study of Cutaneous and Visceral Leishmaniasis provides useful insights into the 

study and prediction of host pathogen interactions for other infectious diseases that 

devices its survival strategy by mediating immune suppression of the host.  

Additionally, the study on tumor immune interaction provides insights into the 

mechanisms regulating the development of tumor heterogeneity and resistance as 

well as throw light into feedback regulations that answers few of the major questions 

of tumor biology. Simultaneously, the model developed in the study caters to the 

oncologists to optimize treatment strategies, drug dosage and time schedules for 

designing advanced treatment protocols for Cancer.  

As a continuation of the work on the tumor development presented in the thesis, we 

have also been able to develop a mathematical to study the effect of drug 

combinations, comprising of novel Acridone derivatives (AC26, AC2 and AC7) and 

Temozolomide (TMZ), on heterogeneous tumor subpopulations [334]. Here using 

our modelling strategy the dosage combinations of the novel drugs that show high 

tumor cytotoxity and high synergy and efficacy towards the reduction of TMZ 

resistant Glioma have been determined. Our model outcomes nicely corroborate 

with our in vitro studies on two Glioma cell lines (T-98 and U-87). Molecular Docking 

studies have been further performed to unveil the interaction of the Acridone 

derivatives with the drug resistance causing proteins P-GP, MGMT, MRP that 

explains the plausibility of the drug synergy. The drugs show high cytotoxicity and 

lipophillicity. In silico analysis has also been performed to predict the Blood Brain 

Barrier permeability. Through this study we propose three novel drug combinations 
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with the optimal dosages that provide new hopes for the treatment of drug resistant 

Glioma as well as develop a mathematical model that will be an invaluable tool to 

estimate dosage and effectiveness of other drugs for Glioma therapy in future. To 

establish the clinical usefulness of the proposed combinations, further in vitro and in 

vivo assays using orthotropic xenografts can be performed for determining the 

clinical efficacy and estimation of the other important pharmacokinetic parameters 

of the drugs.  

Thus, the outcomes of the thesis not only contribute to the understanding of the 

fundamental questions of T-cell biology, but also through the development of the 

mathematical models we have been able to provide several tools for identification of 

important immune-stimulatory targets for better treatment and alleviation of 

infectious diseases and Cancer.  
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APPENDIX A 
 

Table A. 1: Logical Equations 

1.            AKT*=(CARMA1) or (CDC42+RAC) or (COT) or (GRB7) or (IKK_ALPHA and 
IKK_BETA) or (PAK) or (PDK1) or (PKC) 

2.            AP1*=( not GSK3_BETA) or (ATF2 and JUN and  not GSK3_BETA) or (CRE and ATF2 
and JUN and  not GSK3_BETA) or (CRE and JUN and  not GSK3_BETA) or (FOS and 
JUN and  not GSK3_BETA) or (JUN and  not GSK3_BETA) or (NUC_ERK1_2 and FOS 
and JUN and  not GSK3_BETA) or (NUC_JNK and FOS and JUN) or (NUC_P38 and FOS 
and JUN and  not GSK3_BETA) 

3.            ASK1*=(TRAF2) 

4.            ATF2*=(NUC_P38) 

5.            BAD*=( not AKT) or (JNK and  not AKT) 
6.            BCL10*=(CARMA1 and PKC_THETA and not IKK_ALPHA and not IKK_BETA and not   

IKK_GAMMA) 

7.            BCL2*=( not JNK) or (ETS) or (NUC_CREB) 

8.            BCLX*=( not BAD) or ( not JNK) or (ETS) or (NUC_NFKB) 

9.            C3G*=(CRK_L) 

10.         CABIN1*=( not CAMK4) 
11.         CALCINEURIN*=( not CABIN1 and CAM) or (CAM and  not CALCIPRESSIN and  not 

CABIN1) 

12.         CALCIUM_IN*=(CRAC and CALCIUM_OUT) 

13.         CAM*=(CALCIUM_IN) or (VAV and CALCIUM_IN) 

14.         CAMK4*=(CAM) 

15.         CARMA1*=(PKC_THETA) 

16.         CCL19*=(NUC_NFKB) 

17.         CD2*=(FYN) or (LCK) 

18.         CD3*=(LCK) 

19.         CD4*=(LCK) 

20.         CD8*=(LCK) 

21.         CDC25*=(NUC_MYC) 

22.         CDC42*=(PAK) or (RAS) or (VAV) 

23.         CDC42+RAC*=(VAV and  not RAC_GAP) 

24.         CDK_4*=(NUC_MYC) 

25.         COT*=(RIP1) or (TRAF2) 

26.         CRAC*=(IP3) 

27.         CREB*=(RSK) or (not GSK3_BETA) 
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28.         CRK_L*=(TYK2) 

29.         CYCLIN_A*=(AP1 and  not GSK3_BETA) or (NUC_CREB) or (NUC_MYC) 
30.         CYCLIN_D1*=(AP1 and  not GSK3_BETA) or (ETS) or (NUC_CREB) or (NUC_MYC) or 

(NUC_NFKB) 

31.         CYCLIN_D2*=(NUC_MYC) 

32.         CYCLIN_E*=(NUC_MYC) 

33.         DAG*=(PIP2) 

34.         ELK1*=(NUC_ERK1_2) 

35.         ERK1_2*=(MEK1_2 and  not MKP) 

36.         ETS*=(NUC_ERK1_2) 

37.         FASL*=(ETS) or (NUC_NFKB) 

38.         FKHR*=( not AKT) 

39.         FOS*=(ELK1) or (ETS) or (JUN) or (NUC_P38) 

40.         FYN*=( not PAG+CSK) or (CD45 and  not PAG+CSK and  not CBL) 

41.         GAB1*=(ERK1_2) or (SHC) 

42.         GCKR*=(TRAF2) 

43.         GLK*=(TRAF2) 

44.         GM_CSF*=(ETS and NUC_NFKB) or (ETS and NUC_NFKB and AP1) 

45.         GRB2+SOS*=(B7_1 and CD28) or (B7_2 and CD28) or (RAS_GRP) 

46.         GSK3_BETA*=( not AKT) or (IFN_GAMMA) 

47.         HBEGF*=(ETS) 

48.         HPK1*=(LAT) 

49.         IFN_GAMMA*=(NUC_NFAT and AP1) 

50.         IKB_ALPHA*=( not IKK_BETA) 
51.         IKB_BETA*=( not IKK_ALPHA and  not IKK_BETA) or ( not IKK_ALPHA and  not 

IKK_BETA and  not IKK_GAMMA) 

52.         IKK_ALPHA*=(NIK) or (TRAF2) 

53.         IKK_BETA*=(BCL10) or (IKK_ALPHA) or (PKC_THETA) or (TRAF2) 
54.         IKK_GAMMA*=(BCL10 and MALT1 and CARMA1) or (CARMA1 and MALT1 and 

BCL10 and IKK_ALPHA and IKK_BETA) or (IKK_ALPHA and IKK_BETA) or (RIP1) or 
(TAK1+TAB and RIP1) or (TRAF6 and MALT1) 

55.         IL1*=(NUC_NFKB) 

56.         IL10*=(AP1 and CREB and  not GSK3_BETA) or (NUC_NFAT) 

57.         IL12*=(ETS and NUC_NFKB) 

58.         IL13*=(NUC_NFAT and AP1) 
59.         IL2*=(AP1 and NUC_NFAT and  not GSK3_BETA) or (ETS and NUC_NFKB) or 

(NUC_NFAT and AP1) or (NUC_NFKB) 

60.         IL2R*=(NUC_NFKB) 
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61.         IL3*=(ETS and NUC_NFKB) 

62.         IL4*=(AP1 and NUC_NFAT) or (AP1 and NUC_NFAT and  not GSK3_BETA) 

63.         IL5*=(AP1 and  not GSK3_BETA) 

64.         IL6*=(AP1 and CREB and  not GSK3_BETA) or (NUC_NFKB) 

65.         IL8*=(NUC_NFKB) 

66.         IL9*=(AP1) or (NUC_NFAT) or (NUC_NFKB) 

67.         IP3*=(PIP2) 

68.         ITK*=(CD2) or (LCK) 
69.         JAK*=( not SOCS3) or (GRB2) or (IFN_ALPHA and IFNAR1_R2) or (IFNAR1_R2 and 

IFN_BETA) or (IFNAR1_R2 and IFN_OMEGA) or (SHC) 

70.         JAK2*=( not SHP2) 

71.         JNK*=(MKK) or (MKK4_7 and  not MKP) or (MKK7) or (T3JAM) 

72.         JUN*=(FOS) or (NUC_JNK) 

73.         LAT*=(ITK) or (ZAP70) 

74.         LAT+GRB2+SOS1*=(LAT and GRB2 and SOS1) 
75.         LCK*=( not PAG+CSK and  not LYP) or ( not PAG+CSK and CD4 and 

MHC_CLASS_II+AG) or (CD4 and MHC_CLASS_II+AG and  not PAG+CSK and  not 
LYP) or (CD45 and CD4 and MHC_CLASS_II+AG and CD28 and  not CBL and  not LYP 
and  not PAG+CSK) 

76.         LYP*=( not CSK) 

77.         MALT1*=(CARMA1) or (PKC_THETA) 
78.         MEF2*=(CALCINEURIN and P300) or (CALCINEURIN and P300 and  not CABIN1 and  

not HDAC) or (MEF2A and MEF2B and MEF2C and MEF2D) 

79.         MEK1_2*=(PAK and  not MKP) or (RAF and  not MKP) or (RAF1 and  not MKP) 

80.         MEKK*=(CDC42+RAC) or (GCKR) or (HPK1) or (PAK) 

81.         MEKK1_4*=(CDC42+RAC) or (RAC1) 

82.         MEKK3*=(OSM) 

83.         MEKK4_7*=(CDC42+RAC) 

84.         MKK*=(ASK1) or (MEKK) 

85.         MKK3_6*=(MEKK1_4) or (MEKK3) or (MLK3) 

86.         MKK4_7*=(ASK1) or (COT and  not MKP) or (MEKK4_7 and  not MKP) 

87.         MKK7*=(MEKK) or (TAK1) 

88.         MLK2*=(PAK) 

89.         MLK3*=(CDC42 and  not AKT) or (RAC) 

90.         NCK*=( not RAS) or (PKC and  not RAS) 

91.         NCK+SOS*=(NCK and SOS) 

92.         NFAT*=(CALCINEURIN) 

93.         NFAT+P300+MEF2*=(NFAT and P300 and MEF2) 
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94.         NFKB*=(OX40 and OX40L and PKC_THETA and TRAF2 and RIP1 and CARMA1 and 
MALT1 and BCL10 and IKK_ALPHA and IKK_BETA and IKK_GAMMA and  not 
IKB_ALPHA and  not IKB_BETA) or (not TRAF1) or ( not IKB_BETA and  not 
IKB_ALPHA and NIK) 

95.         NIK*=(COT) or (TRAF2) or (TRAF5) 

96.         NUC_CREB*=(CREB) or (NUC_ERK1_2) 

97.         NUC_ERK1_2*=(ERK1_2) 

98.         NUC_JNK*=(JNK) 

99.         NUC_MYC*=(NUC_ERK1_2) or (NUC_NFKB) 

100.     NUC_NFAT*=(NFAT) or (NFAT and  not GSK3_BETA) 

101.     NUC_NFKB*=(NFKB) or (NFKB and IL1) 

102.     NUC_P38*=(P38) 

103.     NUR_77*=(NFAT+P300+MEF2) 

104.     OSM*=(RAC1) 

105.     P15*=(NUC_MYC) 

106.     P21*=(AKT) or (NUC_MYC) 

107.     P21RAS*=(JAK2) or (LAT+GRB2+SOS1) 

108.     P38*=(MKK3_6) 

109.     P70*=(PDK1) 
110.     PAG+CSK*=(PAG and CSK and FYN and  not CD45) or (PAG and CSK and LCK and  not 

CD45) 

111.     PAK*=(ERK1_2 and  not PIP) or (GRB2) or (NCK and  not PIP) 

112.     PDGF*=(ETS) 

113.     PDGFRB*=(NUC_MYC) 

114.     PDK1*=(CARMA1) or (PIP3) 
115.     PI3K*=(B7_1 and CD28) or (B7_2 and CD28) or (GAB1) or (GRB2) or (ICOSL and ICOS) or 

(RAS) or (SHP2) 

116.     PIP2*=(PI3K) or (PLC_GAMMA) 

117.     PIP3*=(PIP2) or (PTEN) 

118.     PKC*=(JAK) 

119.     PKC_THETA*=(AKT) or (DAG) or (GLK) or (PDK1) 

120.     PLC_GAMMA*=(GAB1) or (GRB2) or (ITK) or (LAT) or (SHC) or (SHP2) 
121.     RAC*=(PAK and  not RAC_GAP) or (RAS and  not RAC_GAP) or (VAV and  not 

RAC_GAP) 

122.     RAC_GAP*=(DAG) 

123.     RAC1*=(NCK) or (VAV) 

124.     RAF*=(PAK) or (PKC and  not AKT) or (RAS) 

125.     RAF1*=(P21RAS) 
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126.     RAP1*=(C3G) 
127.     RAS*=( not RAP1) or ( not RAS_GAP) or (GRB2+SOS) or (GRB7 and  not RAS_GAP and  

not RAP1) or (NCK+SOS and  not RAS_GAP and  not RAP1) or (RAS_GRP) or 
(SHC+GRB2+SOS and  not RAS_GAP and  not RAP1) or (SHP1+GRB2+SOS and  not 
RAS_GAP and  not RAP1) or (SHP2+GRB2+GAB1+SOS and  not RAS_GAP and  not 
RAP1) 

128.     RAS_GAP*=(GRB2) or (NCK) 

129.     RAS_GRP*=(DAG and IP3) or (LAT) 

130.     RIP1*=(TRAF2) 

131.     RSK*=(ERK1_2) 

132.     SHC*=(IL2 and IL2R) or (PI3K) or (PKC) 

133.     SHC+GRB2+SOS*=(SHC and GRB2 and SOS) 

134.     SHP1*=( not ERK1_2) or (B7_1 and CTLA4) or (B7_2 and CTLA4) or (PDL and PD1) 

135.     SHP1+GRB2+SOS*=(SHP1 and GRB2 and SOS) 

136.     SHP2*=( not LCK) or (B7_1 and CTLA4) or (B7_2 and CTLA4) or (ERK1_2) or (SHC) 

137.     SHP2+GRB2+GAB1+SOS*=(SHP2 and GRB2 and GAB1 and SOS) 

138.     SLP76*=(ITK) 

139.     SOCS3*=(CRK_L) or (NCK) 

140.     SOS1*=(ERK1_2) 

141.     STAT1*=(PKC) 

142.     STAT3*=(PKC) 

143.     STAT5*=( not SHP2) or (JAK2) or (P38) or (PAK) 

144.     T3JAM*=(TRAF3) 

145.     TAK1*=(BCL10) 

146.     TAK1+TAB*=(RIP1) 

147.     TCR+CD3*=(TCR and CD3) 

148.     TGF_BETA*=(AP1 and  not GSK3_BETA) 

149.     TNF_ALPHA*=(AP1 and  not GSK3_BETA) 

150.     TRADD*=(TNF_ALPHA and TNFR) or (TNF_BETA and TNFR) 

151.     TRAF1*=(TNFSF9 and TNFRSF9) or (NUC_NFKB) 
152.     TRAF2*=(CD70 and CD27) or (LIGHT and LTBR) or (OX40L and OX40) or (TNFSF9 and 

TNFRSF9) or (TRADD) 

153.     TRAF3*=(CD70 and CD27) or (LIGHT and LTBR) or (TNFSF9 and TNFRSF9) 

154.     TRAF5*=(CD70 and CD27) or (LIGHT and LTBR) 

155.     TRAF6*=(MALT1) 
156.     TYK2*=(IFNAR1_R2 and IFN_ALPHA) or (IFNAR1_R2 and IFN_BETA) or (IFNAR1_R2 

and IFN_OMEGA) 

157.     VAV*=(JAK) or (LAT and GADS and SLP76) 
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158.     VEGF*=(NUC_NFKB) 

159.     WASP*=(NCK) 
160.     ZAP70*=(ABL and TCR+CD3 and MHC_CLASS_II+AG and  not SHP1) or (LCK and  not 

SHP1) or (LCK and TCR+CD3 and  not LYP and FYN and ABL and VAV and  not SHP1 
and MHC_CLASS_II+AG) or (TCR+CD3 and MHC_CLASS_II+AG and FYN and  not 
SHP1) 

161.     CTLA4*=(NUC_NFAT) 

162.     CD28*=(not TNF_ALPHA) 

163.     P53*=(ETS and NUC_P38) 

164.     PD1*=NUC_NFAT 

165.     GRB2*=PAK or SHC 

166.     GRB7*=SHC 

167.     PAG*=(not CD45 and LCK) or (not CD45 and FYN) 

*Target nodes 

Table A. 2: Initial Values of Nodes 

MHC_CLASS_II+AG 
=True FYN=False MEKK1_4=True STAT1=False 

B7_1=True GAB1=True MEKK3=True STAT3=False 

B7_2=True GADS=False MEKK4_7=True STAT5=False 

CALCIUM_OUT=True GCKR=False MKK3_6=False T3JAM=True 

CRE=True GLK=True MKK4_7=False TAK1=True 

PDL=True GM_CSF=False MKK7=True TCR=True 

LIGHT=True GRB2=False MKP=False TCR+CD3=False 

CD70=True GRB7=False MLK3=False TGF_BETA=False 

TNFSF9=True GSK3_BETA=True NCK=True TNF_ALPHA=False 

ABL=False HBEGF=False NFAT=False TNF_BETA=False 

AKT=True HDAC=True NFKB=False TNFR=False 

ATF2=False HPK1=True NIK=False TNFRSF9=False 

BAD=True ICOS=False NUR_77=False TRADD=True 

BCL10=False ICOSL=False OX40=False TRAF1=False 

BCL2=False IFN_ALPHA=False OX40L=True TRAF2=False 

BCLX=False IFN_BETA=False P15=False TRAF3=False 

C3G=True 
IFN_GAMMA 
=False P21=False TRAF5=True 

CABIN1=True IFN_OMEGA=True P21RAS=False TRAF6=False 

CALCINEURIN=False IFNAR1_R2=True P300=True TYK2=True 

CALCIPRESSIN=True IKB_ALPHA=False P38=False VAV=False 

CAM=True IKB_BETA=False P53=False VEGF=False 

CAMK4=True IKK_BETA=True P70=False ZAP70=False 

CARMA1=False 
IKK_GAMMA 
=False PAG=True AP1=False 
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CBL=True IL1=False PAK=False ASK1=False 

CCL19=False IL10=False PD1=False CALCIUM_IN=False 

CD2=False IL12=False PDGF=False CDC42+RAC=False 

CD27=True IL13=False PDGFRB=False GRB2+SOS=False 

CD28=False IL2=False PDK1=True IKK_ALPHA=False 

CD3=True IL2R=False PI3K=True IP3=False 

CD4=True IL3=False PIP=False LAT+GRB2+SOS1=False 

CD45=True IL4=False PKC=False MKK=False 

CD8=False IL5=False 
PKC_THETA 
=True MLK2=False 

CDC25=True IL6=False 
PLC_GAMMA 
=True NCK+SOS=False 

CDC42=False IL8=False PTEN=True NFAT+P300+MEF2=False 

CDK_4=False IL9=False RAC=False NUC_CREB=False 

COT=False ITK=False RAC_GAP=True NUC_ERK1_2=False 

CRAC=True JAK=True RAC1=False NUC_JNK=False 

CREB=False JAK2=True RAF=True NUC_MYC=False 

CRK_L=True JNK=True RAF1=True NUC_NFAT=False 

CSK=True JUN=False RAP1=True NUC_NFKB=False 

CTLA4=False LAT=False RAS=False NUC_P38=False 

CYCLIN_A=True LCK=True RAS_GAP=False OSM=False 

CYCLIN_D1=False LTBR=True RAS_GRP=True PAG+CSK=False 

CYCLIN_D2=False LYP=False RIP1=True PIP2=False 

CYCLIN_E=True MALT1=False RSK=True PIP3=False 

DAG=True MEF2=True SHC=False SHC+GRB2+SOS=False 

ELK1=False MEF2A=False SHP1=False SHP1+GRB2+SOS=False 

ERK1_2=True MEF2B=True SHP2=False 
SHP2+GRB2+GAB1+SOS 
=False 

ETS=False MEF2C=True SLP76=False TAK1+TAB=False 

FASL=False MEF2D=False SOCS3=False WASP=False 

FKHR=True MEK1_2=True SOS=True 
 FOS=False MEKK=True SOS1=True  
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Figure A. 1: Protein expression dynamics observed in Experiment, Synchronous and Asynchronous 
simulation. 'Experimental' data is the binarized time course microarray expression data of total 39 
output proteins of the model, which is compared against the 'synchronous' and 'asynchronous' 
simulation results. Out of the 39 output proteins, the expressions of total 34 proteins match at 6th hour, 
while the temporal expression patterns of 14 proteins (viz. BCL2, CYCLIN_D2, FASL, FKHR, GMCSF, 
IL1, IL2, IL3, IL8, P21, P70, PDGF, STAT3 and VEGF) from the simulations match exactly with the 
experimental data at all the four time points (0, 2, 4, and 6 hours).  
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Table A. 3: Functional classification of T-cell output protein 

No. of molecules List of molecules Function Ref 

T cell Proliferation 
(12) 

CYCLIN 
A,CYCLIN- D1, 
CYCLIN D2, 
CYCLIN E, CDK4 

Cell cycle progression [158,159] 

BCL2, BCLX Anti-apoptosis [160,335] 
FASL, 
TNF_ALPHA, 
CDC25, STAT5, 
P70  

T cell proliferation, survival 
[164,165,233
,336,337] 

Negative Regulator 
of T cell Proliferation 

(7) 

P21, FKHR, 
CTLA4, 
PD1,TGF_BETA, 
NUR77, P15 

Co-inhibitory signal transduction, 
Immunosuppression, inhibition of 
cell cycle progression 

[234-
236,338-340] 

Immune Response 
(5) 

STAT1, STAT3, 
GM-CSF, IFN-
GAMMA, CCL19 

Immunity against parasitic infection, 
T cell homing, T cell homeostasis, as 
immune adjuvant, dendritic cell 
maturation, control of allergic 
diseases 

 [237-
239,341,342] 

Interleukins (11) 

IL1 
T helper cell proliferation and 
differentiation 

[343] 

IL2 Proliferation [161] 

IL3 

Immune Response; critical for the 
development, survival and function 
of mast cells and basophils, role in 
allergic diseases 

[344] 

IL4 
T cell proliferation, differentiation, 
inflammatory response 

[144,162] 

IL5 

Differentiation and function of 
myeloid cells; leads to growth, 
activation, mobilization, 
differentiation, and survival of 
eosinophils 

[144] 

IL6 T cell proliferation [163] 

IL8 
Proinflammatory cytokine, 
chemotactic factor 

[345] 

IL9 
Growth factor for T cells and mast 
cells 

[346] 

IL10 T cell suppression [166] 

IL12 T cell proliferation [347] 

IL13 
Antibody class switching, activation 
of eosinophils and mast cells, defense 
against parasite infections 

[144] 

Growth Factors (4) 
PDGF, PDGFRB, 
VEGF, HBEGF 

Growth factors secreted by T cells 
acting as potent mitogens for other 
cells 

[240-243] 
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APPENDIX B 
 

 

Figure B.1: Gene clusters identified in Leishmania major infected APC microarray data. This figure 
contains total 10 clusters or functions modules, which have been identified from the gene co-expression 
network generated from the time course microarray expression data of Leishmania major infected APC 
[EBI-ArrayExpress (ID: E-GEOD-42088)]. The names of the nodes in all the cluster diagrams are 
assigned according to the probe IDs used in HG-U133_Plus_2 Affymetrix GeneChip for human cell. 
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Figure B.2: Gene clusters identified in active T-cell microarray data. This figure contains total 24 
clusters or functions modules, which have been identified from the gene co-expression network 
generated from the time course microarray expression data of activate T-cell [EBI-ArrayExpress (E-
GEOD-48978)]. The node names used in each cluster are in accordance with the probe IDs used in 
Affymetrix HT_HG-U133_Plus_PM array plate. 
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Table B.1: Pathway Enrichment of the significantly expressed genes in the 
microarray experiment of Leishmania infected APC 

Clusters Pathway Enrichment 

Cluster 1 

Cytokine-cytokine receptor interaction, Fc gamma R-mediated 
phagocytosis, Toll-like receptor signalling pathway, MAPK signalling 
pathway , Jak-STAT signalling pathway, mTOR signalling pathway, 
Antigen processing and presentation, Chemokine signalling pathway, 
Apoptosis, Nitrogen metabolism , etc. 

Cluster 2 

Endocytosis, Toll-like receptor signalling pathway, Fc gamma R-
mediated phagocytosis, Cytokine-cytokine receptor interaction, Jak-
STAT signalling pathway, MAPK signalling pathway, Chemokine 
signalling pathway, Spliceosome, etc. 

Cluster 3 
Fc gamma R-mediated phagocytosis, Phosphatidylinositol signalling 
system, TGF-beta signalling pathway, Cell cycle, Cell adhesion 
molecules (CAMs), etc. 

Cluster 4 
Cytokine-cytokine receptor interaction, Fc gamma R-mediated 
phagocytosis, MAPK signalling pathway, Phosphatidylinositol 
signalling system, Spliceosome, Cell cycle, etc. 

Cluster 5 

Toll-like receptor signalling pathway, Cytosolic DNA-sensing 
pathway, Jak-STAT signalling pathway, MAPK signalling pathway, 
mTOR signalling pathway, T cell receptor signalling pathway, 
Chemokine signalling pathway, etc. 

Cluster 6 
MAPK signalling pathway, p53 signalling pathway, TGF-beta 
signalling pathway, Leukocyte trans-endothelial migration, etc. 

Cluster 7 

Jak-STAT signalling pathway, Phosphatidylinositol signalling system, 
Fc gamma R-mediated phagocytosis, Chemokine signalling pathway, 
Antigen processing and presentation, Nitrogen metabolism, 
Spliceosome, etc. 

Cluster 8 
Antigen processing and presentation, Cytokine-cytokine receptor 
interaction, Apoptosis, Ubiquitin mediated proteolysis, etc. 

Cluster 9 
Phosphatidylinositol signalling system, Chemokine signalling 
pathway, Leukocyte transendothelial migration, Calcium signalling 
pathway, Cell adhesion molecules (CAMs), etc. 

Cluster 10 Spliceosome  
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 Table B.2: Pathway Enrichment of the significantly expressed genes in the 
microarray experiment of activated T-cell 

Cluster Pathway Enrichment 

Cluster 1 

T cell receptor signalling pathway, Calcium signalling pathway, 
Cytokine-cytokine receptor interaction, Chemokine signalling 
pathway, Interleukin signalling pathway, Toll-like receptor signalling 
pathway, MAPK signalling pathway, Ras Pathway, Jak-STAT 
signalling pathway, PI3 kinase pathway, Antigen processing and 
presentation, p53 signalling pathway, Cell cycle, Apoptosis, Ubiquitin 
mediated proteolysis, Spliceosome, etc. 

Cluster 2 
T cell receptor signalling pathway, Cytokine-cytokine receptor 
interaction, Chemokine signalling pathway, Jak-STAT signalling 
pathway, Apoptosis, Spliceosome, etc. 

Cluster 3 

T cell receptor signalling pathway, T cell activation, MAPK signalling 
pathway, Chemokine signalling pathway, PI3 kinase pathway, 
Inflammation mediated by chemokine and cytokine signalling 
pathway, Apoptosis, etc. 

Cluster 4 DNA replication, Tryptophan metabolism, etc. 

Cluster 5 
Interleukin signalling pathway, Cell cycle, TGF-beta signalling 
pathway, etc. 

Cluster 6 

T cell receptor signalling pathway, Interleukin signalling pathway, 
MAPK signalling pathway, Calcium signalling pathway, Jak-STAT 
signalling pathway, Ras Pathway, PI3 kinase pathway, Chemokine 
signalling pathway, Inflammation mediated by chemokine and 
cytokine signalling pathway, Apoptosis signalling pathway, 
Spliceosome, etc.  

Cluster 7 
MAPK signalling pathway, Apoptosis signalling pathway, Leukocyte 
trans-endothelial migration, Regulation of actin cytoskeleton, etc. 

Cluster 8 

T cell receptor signalling pathway, Interleukin signalling pathway, 
Cytokine-cytokine receptor interaction, MAPK signalling pathway, 
Jak-STAT signalling pathway, Inflammation mediated by chemokine 
and cytokine signalling pathway, etc. 

Cluster 9 Cytokine-cytokine receptor interaction 

Cluster 10 

Cytokine-cytokine receptor interaction, MAPK signalling pathway, 
Inflammation mediated by chemokine and cytokine signalling 
pathway, Leukocyte trans-endothelial migration, Cell adhesion 
molecules (CAMs), etc. 
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Table B. 3:  List of all known alternatively spliced isoforms of the output molecules 
of both APC and T-cell 

 
A. Isoforms considered included in our model 

 
I. Isoforms with similar function 

Protein (as 
used in the 

model) 

Principal 
Isoform 

(canonical 
isoform) 

Alternatively 
spliced Isoforms 
(non-canonical 

isoforms) 

Functional significance of spliced 
variants 

PDGF_T 
PDGF_AL_T 
(211) 

PDGF_AS_T (196) 

PDGF_AL_T and PDGF_AS_T differ in 
their ability to associate with the 
extracellular matrix and to bind heparin 
in vitro. PDGFA_S_T has a lower 
binding affinity. The overall function 
remains similar [348]. 

TGF_BETA_T 
TGFB1_T(390), 
TGFB2_T(414), 
TGFB3_T(414) 

Several minor 
isoforms 

All TGF Beta isoforms have similar 
effect on immune cells. Functions of 
minor isoforms not known [349]. 

CYCLIN_D1_T CYCLIN_D1a_T CYCLIN_D1b_T 

Functions of both the isoforms are 
similar. Unlike CYCLIN_D1a_T, the 
non-canonical oncogenic 
CYCLIN_D1b_T isoform is found only 
in the nucleus. However 
CYCLIN_D1b_T is expressed only in 
cancer derived cell lines [350]. 

CYCLIN_D2_T 
CYCLIN_D2_iso
1_T(289) 

CYCLIN_D2_iso2
_T(209) 

Functions similar. CYCLIN_D2_iso2_T 
is overexpressed in certain types of 
cancer [351]. 

C_FOS 
C_FOS_canonic
al 

C_FOS_2 (169) 
C_FOS_2 is degraded at a faster rate 
than the C_FOS_canonical isoform [352]. 

P15_T 
P15_138aa_T 
(138) 

P10_T (78) 

P15 inhibits cell cycle progression by 
binding to CDK4 and CDK6 and also via 
p53 pathway. P10 also inhibits the cell 
cycle progression, but its function is 
mediated only via the p53 pathway. P10 
does not interact with CDK4 and CDK6 
[353]. 

PDGFRB_T 
PDGFRB_iso1_T 
(1106) 

PDGFRB_iso2_T 
(336) 

Functions similarly [354]. 
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II. Isoforms with antagonistic functions 

Protein 
(as used 

in the 
model) 

Principal 
Isoform 

(canonical 
isoform) 

Alternatively 
spliced Isoforms 
(non-canonical 

isoforms) 

Functional significance of spliced variants 

IL4_T 
IL4_long_T 
(153) 

IL4_short_T (137) 
The shorter IL4 isoform (IL4delta2) 
antagonizes the function of the longer 
canonical IL4 isoform [355]. 

IL6_T IL6_native_T IL6_Delta4_T 
IL6_Delta4_T antagonizes the function of the 
native IL6 protein [356]. 

FASL_T FASLm_T (281) FASLs_T (127) 

FAS ligand membrane and soluble isoforms 
has functional differences. The membrane 
bound form induces apoptosis while the 
soluble form does not [357,358]. 

BCLX_T 
BCLX_L_T 
(233) 

BCLX_S_T (170), 
BCLX_BETA_T (227) 

BCLX_L_T is anti-apoptotic. BCLX_S_T 
inhibits the function of BCL-2, hence 
indirectly helps in apoptosis. The function of 
BCLX_BETA_T is unknown [359]. 

 

B. Isoforms not included in our model 
 

I. Proteins with Single Functional Isoform 

 
Protein (as used in the model) Principal Isoform (canonical isoform) 

1.  P19_T P19_T(166) 

2.  P21_T P21_T(164) 

3.  HBEGF_T HBEGF_T(208) 

4.  GM_CSF_T GM_CSF_T(144) 

5.  IL2_T IL2_T(153) 

6.  IL3_T IL3_T(152) 

7.  IFN_GAMMA_T IFN_GAMMA_T(166) 

8.  IL9_T IL9_T(144) 

9.  IL10_T IL10_T(178) 

10.  TNF_ALPHA_T TNF_ALPHA_T(233) 

11.  IFN_BETA IFN_BETA(187) 

12.  IL10 IL10 (178) 

13.  TNF_ALPHA TNF_ALPHA (233) 

14.  IP10 IP10(98) 

15.  IL1_ALPHA IL1_ALPHA (271) 

16.  IL1_BETA IL1_BETA (269) 

17.  IL5_T IL5_T(134) 

18.  INOS iNOS 

19.  CYCLIN_A_T CYCLIN_A2_T (432) 
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II. Functional Significance of Alternatively Spliced (non-canonical) Isoforms 
not known 

 
Protein (as used 

in the model) 
Principal Isoform 

(canonical isoform) 
Alternatively spliced Isoforms 

(non-canonical isoforms) 

1.  BCL2_T BCL2_ALPHA_T(239) BCL2_BETA_T(205) 

2.  NUR77_T NUR77_T(598) 
Two other isoforms of length 611aa 
and 325aa have been identified. 

3.  IL12_T 
IL12p40a_T(375); 
IL12p35_T (328) 

IL12p40b_T(330), IL12p40c_T(330);  

4.  P27_T P27_T(198) 
Two other isoforms of length 205aa 
and 104aa have been identified. 

5.  IL13_T IL13_T(146) 
Another isoform of length 144aa 
has been isolated 

6.  IL12 
IL12p40a(375); 
IL12p35(328) 

IL12p40b(330), IL12p40c (330); 

7.  CYCLIN_E_T CYCLIN_E1L_T(410) 
CYCLIN_E1S_T(367), 
CYCLIN_E1_iso3_T(395) 

 

Here, the expressions of different isoforms from single gene transcript are dependent 

on the presence of certain cis-regulatory elements and trans-acting factors that has 

been collectively referred as ‘FACTOR’ in our model. These FACTORs represents 

specific Spliceosomes responsible for the splice site recognition in each case. However, 

due to lack of Human cell specific Leishmania major infected RNA seq data of APC, the 

logical states (activation or inactivation) of the FACTORs determining alternative 

splicing of the output molecules could not be explicitly determined in Leishmania 

infected scenario. Hence, in our model these FACTORs were assumed to be ON in all 

our simulations, signifying that all the alternative isoforms have equal probability of 

getting expressed.  

However, the concept of attractor analysis was further exploited to understand the 

differential regulations of the identified 23 FACTORs [FACTORi where (i=1, 2, …, 23) ] 

associated with the splicing events of 11 output genes. Hence, to observe the effects of 

the differential activations of all these 23 FACTORS in the production of the 

corresponding isoforms and the regulation of the dynamics of the entire network, in 



 
 

Appendix B 182 

 

total 223 combinations of initial states of all the FACTORs have to be considered. Since, 

finding the attractors of this huge number of input combinations is computationally 

difficult; hence, to achieve this goal, we have randomly changed the logical states (i.e., 

0 or 1) of the 23 FACTORS, and generated 1000 input random samples for both the 

uninfected and infected scenarios. The inputs files of each of these samples are then 

used for the simulations and followed by the attractor identifications of uninfected 

and infected scenarios.   

 

Figure B. 3: Attractor analysis of the uninfected and infected scenarios under the differential 
activation of the splicing factors. (A) In the uninfected scenario the system reaches two stable steady 
state attractors, in which the expressions of IFN_BETA, IL10, IL12, IL1_ALPHA, IL1_BETA, INOS, IP10, 
NO, TNF_ALPHA and C_FOS proteins are (0111110111) or (0110010111). (B) In the infected scenario, 
the system reaches two stable steady state attractors namely (1100001011) and (1101101011), 
respectively.  

From the simulations of the uninfected and infected scenarios it is observed that both 

the scenarios are reaching at two stable attractors separately (Figure B. 3). It is also 

observed in the uninfected scenario that the system has reached at two stable steady 

state attractors, in which the expressions of IFN_BETA, IL10, IL12, IL1_ALPHA, 

IL1_BETA, INOS, IP10, NO, TNF_ALPHA and C_FOS proteins are either (0111110111) 

or (0110010111). The first attractor (0111110111) was also found in the simulation in 

which the probabilities of all the splicing isoforms were taken equally i.e., the initial 
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logical states of all the FACTORs were kept at ON state (Figure 13 a). Hence, it can be 

assumed that the emergence of the second attractor (0110010111) in the simulation is 

occurring due to the differential expressions and the dynamic interactions of the 

isoforms in the model. In Figure B. 3A, these two attractor nodes (placed at the middle 

of the circular layouts) are represented by light green and orange colors respectively. 

The other small nodes, which are connected to these two nodes, are the different 

samples. Moreover, the subsequent analysis of the logical steady states of NO 

production, TH1 Response, and TH2 Response are reaching at only one steady state (i.e., 

110), which is also accordance with the experimental observations found in the 

previous studies.  

On the other hand, in case of infected scenario, the system is also reaching at two 

different steady state attractors (1100001011) and (1101101011). Similar to the 

uninfected scenario, the first attractor (1100001011) is same as the attractor found 

while keeping all FACTORs at ON state (Figure 13 b), and the other attractor 

(1101101011) is found due to the differential expressions of the different splicing 

factors in the model. In (Figure B. 3 B), these two attractor nodes are shown by deep 

green and deep yellow colors at the middle of the circular layout or network. The 

logical steady states of NO production, TH1 Response, and TH2 Responses observed in 

the 1000 samples are reaching at two different steady states i.e., either at (001) or (000) 

and are corresponding to the observed logical steady state attractors (1100001011) and 

(1101101011), respectively. The logical states of the immune responses (001) are also in 

accordance with the clinical observations of the Leishmania infected APCs. However, 

the states (000) do not comply with the real biological situation of Leishmania infected 

immune response patterns. Hence, we have excluded the samples which are driving 

the systems of the infected scenario towards the second attractor (1101101011) and 

only take the samples, which are going to the first attractor (1100001011) for further 

perturbation or drug target identification studies.  
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Table B. 4: Logical Equations used to model the reaction mechanisms in T-cell and 
APC during Leishmania infection 

   AKT_T*= (CARMA1_T) OR (CDC42+RAC_T) OR (COT_T) OR (GRB7_T) OR (IKK_ALPHA_T 

AND IKK_BETA_T) OR (PAK_T) OR (PDK1_T) OR (PKC_T) 

   AKT*= (IL4R AND JAK3 AND PI3K AND IL4_T) 

   AP1_T*= (  NOT IFN_GAMMA_T) OR (ATF2_T AND C_JUN_T AND   NOT IFN_GAMMA_T) 

OR (C_FOS_T AND C_JUN_T AND   NOT IFN_GAMMA_T) OR (C_JUN_T AND   NOT 

IFN_GAMMA_T) OR (CRE_T AND ATF2_T AND C_JUN_T AND   NOT IFN_GAMMA_T) OR 

(CRE_T AND C_JUN_T AND   NOT IFN_GAMMA_T) OR (NUC_ERK1_2_T AND C_FOS_T AND 

C_JUN_T AND   NOT IFN_GAMMA_T) OR (NUC_JNK_T AND C_FOS_T AND C_JUN_T) OR 

(NUC_P38_T AND C_FOS_T AND C_JUN_T AND   NOT IFN_GAMMA_T) 

   AP1*= (  NOT GP63_L AND ERK1_2) OR (  NOT LPG_L AND ERK1_2) 

   ARP2_3_T*= (WASP_T) 

   ASK1_T*= (TRAF2_T) 

   ATF2_T*= (NUC_P38_T) 

   BAD_T*= (  NOT AKT_T) OR (JNK_T AND   NOT AKT_T) 

   BAD*= ( NOT  AKT) 

  BCL10_T*= (CARMA1_T) OR (PKC_THETA_T) 

  BCL2_T*= (  NOT JNK_T) OR (ETS_T) OR (NUC_CREB_T) 

  BCLX_L_T*=   (  NOT BAD_T AND FACTOR20 OR NOT FACTOR21) OR (  NOT JNK_T  AND 

FACTOR20 OR NOT FACTOR21) OR (ETS_T  AND FACTOR20 OR NOT FACTOR21) OR 

(NUC_NFKB_T  AND FACTOR20 OR NOT FACTOR21) 

  BCLX_S_T*=   (  NOT BAD_T AND FACTOR21 OR NOT FACTOR20) OR (  NOT JNK_T  AND 

FACTOR21 OR NOT FACTOR20) OR (ETS_T  AND FACTOR21 OR NOT FACTOR20) OR 

(NUC_NFKB_T  AND FACTOR21 OR NOT FACTOR20) 

  BCLX_T*= (BCLX_L_T AND NOT BCLX_S_T) OR (BCLX_L_T) 

  C_FOS_2*=   (ERK1_2 AND   NOT GP63_L AND FACTOR11 OR NOT FACTOR10) OR 

(NUC_STAT3 AND FACTOR11 OR NOT FACTOR10) OR (NUC_ELK1 AND FACTOR11 OR NOT 

FACTOR10) 

  C_FOS_CANONICAL*=   (ERK1_2 AND   NOT GP63_L AND FACTOR10 OR NOT FACTOR11) 

OR (NUC_STAT3 AND FACTOR10 OR NOT FACTOR11) OR (NUC_ELK1 AND FACTOR10 OR 

NOT FACTOR11) 

  C_FOS_T*= (C_JUN_T) OR (ELK1_T) OR (ETS_T) OR (NUC_P38_T) 

  C_FOS*= (C_FOS_CANONICAL OR C_FOS_2) 

  C_JUN_T*= (C_FOS_T) OR (NUC_JNK_T) 

  C3G_T*= (CRKL_T) 

  CABIN1_T*= (  NOT CAMK4_T) 

  CALCINEURIN_T*= (  NOT CABIN1_T AND CAM_T) OR (CAM_T AND   NOT 

CALCIPRESSIN_T AND   NOT CABIN1_T) 

  CALCIUM_IN_T*= (CRAC_T AND CALCIUM_OUT_T) 

  CAM_T*= (CALCIUM_IN_T) OR (VAV_T AND CALCIUM_IN_T) 
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  CAMK4_T*= (CAM_T) 

  CARMA1_T*= (PKC_THETA_T) 

  CD2_T*= (FYN_T) OR (LCK_T) 

  CD3_T*= (LCK_T) 

  CD4_T*= (LCK_T) OR (MHC_CLASS_II+LPG_L) 

  CD40*= (CD40L_T) 

  CD8_T*= (LCK_T) 

  CDC42_T*= (PAK_T) OR (RAS_T) OR (VAV_T) 

  CDC42+RAC_T*= (VAV_T AND   NOT RAC_GAP_T) 

  CERAMIDE*= (LFAA_L AND ASMASE) 

  COT_T*= (RIP1_T) OR (TRAF2_T) 

  CR3*= (GP63_L) OR (LPG_L) 

  CRAC_T*= (IP3_T) 

  CREB_T*= (RSK_T) 

  CRKL_T*= (TYK2_T) 

  CTLA4_T*=(NUC_NFAT_T) 

  CYC_T*= (  NOT AKT_T) 

  CYCLIN_A_T*= (AP1_T AND   NOT IFN_GAMMA_T) OR (NUC_CREB_T) OR (NUC_MYC_T) 

  CYCLIN_D1_T*= (CYCLIN_D1A_T OR CYCLIN_D1B_T) 

  CYCLIN_D1A_T*=   (AP1_T AND   NOT IFN_GAMMA_T AND FACTOR6 OR NOT FACTOR7) 

OR (ETS_T AND FACTOR6  OR NOT FACTOR7) OR (NUC_CREB_T AND FACTOR6  OR NOT 

FACTOR7) OR (NUC_MYC_T AND FACTOR6  OR NOT FACTOR7) OR (NUC_NFKB_T AND 

FACTOR6  OR NOT FACTOR7) 

  CYCLIN_D1B_T*=   (AP1_T AND   NOT IFN_GAMMA_T AND FACTOR7 OR NOT FACTOR6) 

OR (ETS_T AND FACTOR7 OR NOT FACTOR6) OR (NUC_CREB_T AND FACTOR7 OR NOT 

FACTOR6) OR (NUC_MYC_T AND FACTOR7 OR NOT FACTOR6) OR (NUC_NFKB_T AND 

FACTOR7 OR NOT FACTOR6) 

  CYCLIN_D2_ISO1_T*=   (NUC_MYC_T AND FACTOR8 OR NOT FACTOR9) 

  CYCLIN_D2_ISO2_T*=   (NUC_MYC_T AND FACTOR9 OR NOT FACTOR8) 

  CYCLIN_D2_T*= (CYCLIN_D2_ISO1_T OR CYCLIN_D2_ISO2_T) 

  CYCLIN_E_T*=   (NUC_MYC_T) 

  DAG_T*= (PIP2_T) 

  ELK1_T*= (NUC_ERK1_2_T) 

  ELK1*= (ERK1_2) 

  ERK1_2_T*= (MEK1_2_T AND   NOT MKP_T) 

  ERK1_2*= (CD40 AND MKP3) OR (  NOT PP2A) OR (  NOT SHP1 AND   NOT TCPTP AND   

NOT PTP1B AND TLR4 AND TRIF) OR (  NOT SHP1 AND   NOT TCPTP AND TRIF AND   NOT 

PTP1B AND TLR3) OR (LPG_L AND TLR2) 

  ETS_T*= (NUC_ERK1_2_T) 

  FASL_T*= (FASLM_T AND NOT FASLS_T) OR (FASLM_T) 

  FASLM_T*=   (ETS_T AND FACTOR16 OR NOT FACTOR17) OR (NUC_NFKB_T AND 

FACTOR16 OR NOT FACTOR17) 
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  FASLS_T*=   (ETS_T AND FACTOR17 OR NOT FACTOR16) OR (NUC_NFKB_T AND FACTOR17 

OR NOT FACTOR16) 

  FKHR_T*= (  NOT AKT_T) 

  FYN_T*= (  NOT PAG+CSK_T) OR (CD45_T AND   NOT PAG+CSK_T AND   NOT CBL_T) 

  GAB1_T*= (ERK1_2_T) OR (SHC_T) 

  GCKR_T*= (TRAF2_T) 

  GLK_T*= (TRAF2_T) 

  GM_CSF_T*= (NUC_NFKB_T) OR (ETS_T AND AP1_T) 

  GRB2_T*=PAK_T OR SHC_T 

  GRB2+SOS_T*= (CD80 AND CD28_T) OR (CD86 AND CD28_T) OR (RAS_GRP_T) 

  GRB7_T*=SHC_T 

  GSK3_BETA_T*= (  NOT AKT_T) 

  HBEGF_T*= (ETS_T) 

  HPK1_T*= (LAT_T) 

  IFN_ALPHAR1_T*= IFN_BETA 

  IFN_ALPHAR2_T*= IFN_BETA 

  IFN_BETA*= (TLR3 AND TRIF AND IRF3) OR (TLR4 AND TRIF AND IRF3) 

  IFN_GAMMA_T*= (NUC_NFAT_T AND AP1_T AND NUC_STAT4_T) OR (  NOT IL10) 

  IFN_GAMMAR*= IFN_GAMMA_T 

  IKB_ALPHA_T*= (  NOT IKK_ALPHA_T AND   NOT IKK_BETA_T) OR (  NOT IKK_BETA_T) 

  IKB_BETA_T*= (  NOT IKK_ALPHA_T AND   NOT IKK_BETA_T AND   NOT IKK_GAMMA_T) 

  IKK_ALPHA_T*= (NIK_T) OR (TRAF2_T) 

  IKK_ALPHA*= (TRADD) 

  IKK_BETA_T*= (BCL10_T) OR (IKK_ALPHA_T) OR (PKC_THETA_T) OR (TRAF2_T) 

  IKK_GAMMA_T*= (BCL10_T AND MALT1_T AND CARMA1_T) OR (CARMA1_T AND 

MALT1_T AND BCL10_T AND IKK_ALPHA_T AND IKK_BETA_T) OR (IKK_ALPHA_T AND 

IKK_BETA_T) OR (RIP1_T) OR (TRAF6_T AND MALT1_T) 

  IL1_ALPHA*= (NUC_NFKB) 

  IL1_BETA*= (NUC_NFKB) 

  IL10_T*= (AP1_T AND CREB_T AND   NOT IFN_GAMMA_T) OR (NUC_NFAT_T AND   NOT 

IFN_GAMMA_T) 

  IL10*= (NUC_ERK1_2) 

  IL10R*= (IL10_T) OR (IL10) 

  IL12_T*= (ETS_T AND NUC_NFKB_T) 

  IL12*= (  NOT MTOR AND NOT IL10 AND NUC_P38 AND NUC_NFKB AND 

NUC_STAT1_ALPHA_P) OR (NUC_AP1) 

  IL12R_T*= (IL12) 

  IL12R*= IL12 

  IL13_T*= (NUC_NFAT_T AND AP1_T) 

  IL1R_T*= (IL1_BETA) 

  IL2_T*= (AP1_T AND NUC_NFAT_T AND   NOT IFN_GAMMA_T) OR (ETS_T AND 

NUC_NFKB_T) OR (NUC_NFAT_T AND AP1_T) OR (NUC_NFKB_T) 
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  IL2R_T*=(NUC_NFKB_T) 

  IL3_T*= (ETS_T AND NUC_NFKB_T) 

  IL4_LONG_T*=   (AP1_T AND NUC_NFAT_T AND   NOT IFN_GAMMA_T AND FACTOR12 OR 

NOT FACTOR13) 

  IL4_SHORT_T*=   (AP1_T AND NUC_NFAT_T AND   NOT IFN_GAMMA_T AND FACTOR13 

OR NOT FACTOR12) 

  IL4_T*= (IL4_LONG_T AND NOT IL4_SHORT_T) OR (IL4_LONG_T) 

  IL4R*= IL4_T 

 IL5_T*= (AP1_T AND   NOT IFN_GAMMA_T) 

 IL6_DELTA4_T*=   (AP1_T AND CREB_T AND   NOT IFN_GAMMA_T AND FACTOR15 OR 

NOT FACTOR14) OR (NUC_NFKB_T AND AP1_T AND CREB_T AND   NOT IFN_GAMMA_T 

AND FACTOR15 OR NOT FACTOR14) 

 IL6_NATIVE_T*=   (AP1_T AND CREB_T AND   NOT IFN_GAMMA_T AND FACTOR14 OR 

NOT FACTOR15) OR (NUC_NFKB_T AND AP1_T AND CREB_T AND   NOT IFN_GAMMA_T 

AND FACTOR14 OR NOT FACTOR15) 

 IL6_T*= (IL6_NATIVE_T AND NOT IL6_DELTA4_T) OR (IL6_NATIVE_T) 

 IL6R*= (IL6_T) 

 IL9_T*= (AP1_T) OR (NUC_NFAT_T) OR (NUC_NFKB_T) 

 INOS*= (TLR3 AND NUC_NFKB AND NUC_STAT1_ALPHA_P AND P38 AND TLR2) OR 

(NUC_AP1) OR (  NOT IL10) 

 IP10*= (TLR3 AND TRIF AND IRF3) OR (TLR4 AND TRIF AND IRF3) 

 IP3_T*= (PIP2_T) 

 IRAK1_P*= (IRAK4 AND MYD88+TIR+IRAK1) 

 IRF3*= (LPG_L AND TLR4 AND TRIF) OR (TLR3 AND TRIF) 

 ITK_T*= (CD2_T) OR (LCK_T) 

 JAK1_T*= (  NOT SOCS3_T) OR (GRB2_T) OR (IFN_ALPHAR1_T AND IFN_ALPHA_T) OR 

(IFN_ALPHAR1_T AND IFN_OMEGA_T) OR (IFN_ALPHAR2_T AND IFN_ALPHA_T) OR 

(IFN_ALPHAR2_T AND IFN_OMEGA_T) OR (SHC_T) OR (IFN_ALPHAR1_T AND IFN_BETA) 

OR (IFN_ALPHAR2_T AND IFN_BETA) 

 JAK1*= (IL6_T AND IL6R) 

 JAK2_T*= (  NOT SHP2_T) OR (IL12R_T AND IL12) 

 JAK2*= (IFN_GAMMA_T AND IFN_GAMMAR) OR (IL12 AND IL12R) 

 JAK3*= (IL4_T AND IL4R) 

 JNK_T*= (MKK_T) OR (MKK4_7_T AND   NOT MKP_T) OR (MKK7_T) OR (T3JAM_T) 

 JNK*= (  NOT SHP1 AND   NOT TCPTP AND   NOT PTP1B AND IL1_BETA) OR (  NOT SHP1 

AND   NOT TCPTP AND   NOT PTP1B AND TNF_ALPHA) OR (TLR3 AND TRIF) OR (TLR4 AND 

TRIF) 

 LAT_T*= (ITK_T) OR (ZAP70_T) 

 LAT+GRB2+SOS1_T*= (LAT_T AND GRB2_T AND SOS1_T) 

 LCK_T*= (  NOT PAG+CSK_T AND   NOT LYP_T) OR (  NOT PAG+CSK_T AND CD4_T AND 

MHC_CLASS_II+LPG_L) OR (CD4_T AND MHC_CLASS_II+LPG_L AND   NOT PAG+CSK_T 

AND   NOT LYP_T) OR (CD45_T AND CD4_T AND MHC_CLASS_II+LPG_L AND CD28_T AND   
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NOT CBL_T AND   NOT LYP_T AND   NOT PAG+CSK_T) 

 LYP_T*= (  NOT CSK_T) 

 MALT1_T*= (CARMA1_T) OR (PKC_THETA_T) 

 MARCKS*= (  NOT GP63_L AND PKC) 

 MEF2_T*= (CALCINEURIN_T AND P300_T) OR (CALCINEURIN_T AND P300_T AND   NOT 

CABIN1_T AND   NOT HDAC_T) OR (MEF2A_T AND MEF2B_T AND MEF2C_T AND 

MEF2D_T) 

 MEK1_2_T*= (PAK_T AND   NOT MKP_T) OR (RAF_T AND   NOT MKP_T) OR (RAF1_T AND   

NOT MKP_T) 

 MEKK_T*= (CDC42+RAC_T) OR (GCKR_T) OR (HPK1_T) OR (PAK_T) 

 MEKK1_4_T*= (CDC42+RAC_T) OR (RAC1_T) 

 MEKK3_T*= (OSM_T) 

 MEKK4_7_T*= (CDC42+RAC_T) 

 MHC_CLASS_II+LPG_L*= (MHC_CLASS_II AND LPG_L) 

 MKK_T*= (ASK1_T) OR (MEKK_T) 

 MKK3_6_T*= (MEKK1_4_T) OR (MEKK3_T) 

 MKK4_7_T*= (ASK1_T) OR (COT_T AND   NOT MKP_T) OR (MEKK4_7_T AND   NOT MKP_T) 

 MKK7_T*= (MEKK_T) OR (TAK1_T) 

 MLK2_T*= (PAK_T) 

 MLK3_T*= (CDC42_T AND   NOT AKT_T) OR (RAC_T) 

 MRP*= (  NOT GP63_L AND PKC) OR (IFN_GAMMAR AND IFN_GAMMA_T) 

 MTOR*= (  NOT PP1 AND   NOT PP2A AND   NOT GP63_L AND AKT) OR (AKT AND IL4R 

AND IL4_T) 

 MYD88*= (LPG_L AND TLR4) OR (LPG_L AND TLR2) 

 MYD88+TIR*= (MYD88 AND TIR) 

 MYD88+TIR+IRAK1*= (MYD88+TIR AND IRAK1) 

 NCK_T*= (  NOT RAS_T) OR (PKC_T AND   NOT RAS_T) 

 NCK+SOS_T*= (NCK_T AND SOS_T) 

 NFAT_T*= (CALCINEURIN_T) 

 NFAT+P300+MEF2_T*= (NFAT_T AND P300_T AND MEF2_T) 

 NFKB_T*= (  NOT IKB_BETA_T AND   NOT IKB_ALPHA_T) OR (NIK_T) OR (OX40_T AND 

OX40L AND PKC_THETA_T AND TRAF2_T AND RIP1_T AND CARMA1_T AND MALT1_T 

AND BCL10_T AND IKK_ALPHA_T AND IKK_BETA_T AND IKK_GAMMA_T AND   NOT 

IKB_ALPHA_T AND   NOT IKB_BETA_T) OR (TRAF6_T AND TAK1_T AND IKK_BETA_T AND   

NOT IKB_BETA_T) 

 NFKB*= (ERK1_2 AND TLR3 AND TRIF) OR (ERK1_2 AND TLR4 AND TRIF AND NOT MTOR) 

OR (  NOT GP63_L AND ERK1_2 AND TLR3 AND TRIF) OR (  NOT GP63_L AND ERK1_2 AND 

TLR4 AND TRIF) OR (IRAK1_P AND TRAF6) OR (TRAF2 AND IKK_ALPHA AND NOT MTOR) 

 NIK_T*= (COT_T) OR (TRAF2_T) OR (TRAF5_T) 

 NO*= (INOS) 

 NUC_AP1*= (AP1) 

 NUC_CREB_T*= (CREB_T) OR (NUC_ERK1_2_T) 
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 NUC_ELK1*= (ELK1) 

 NUC_ERK1_2_T*= (ERK1_2_T) 

 NUC_ERK1_2*= (CD40 AND TRAF6 AND ERK1_2) OR (ERK1_2) OR (IGG AND FC_GAMMAR 

AND ERK1_2) 

 NUC_JNK_T*= (JNK_T) 

 NUC_MYC_T*=(NUC_ERK1_2_T) OR (NUC_NFKB_T) 

 NUC_NFAT_T*= (NFAT_T) 

 NUC_NFKB_T*=(NFKB_T) 

 NUC_NFKB*= (NFKB) 

 NUC_P38_T*=(P38_T) 

 NUC_P38*= (CD40 AND TRAF2 AND P38) OR (CD40 AND TRAF3 AND P38) OR (CD40 AND 

TRAF5 AND P38) OR (P38) 

 NUC_STAT1_ALPHA_P*= (STAT1_ALPHA_P) 

 NUC_STAT3_T*= (STAT3_T) 

 NUC_STAT3*= (STAT3) 

 NUC_STAT4_T*= (STAT4_T) 

 NUR77_T*= (NFAT+P300+MEF2_T) 

 OSM_T*= (RAC1_T) 

 P10_T*=   (NUC_MYC_T  AND FACTOR19 OR NOT FACTOR18) 

 P15_138AA_T*=   (NUC_MYC_T  AND FACTOR18 OR NOT FACTOR19) 

 P15_T*= (P15_138AA_T OR P10_T) 

 P19_T*= (AP1_T AND NUC_NFKB_T AND   NOT IFN_GAMMA_T) 

 P21_T*= (AKT_T) OR (NUC_MYC_T) 

 P21RAS_T*=(JAK2_T) OR (LAT+GRB2+SOS1_T) 

 P27_T*= (  NOT AKT) OR (NUC_MYC_T) 

 P38_T*= (MKK3_6_T) 

 P38*= (CD40 AND MKP1) OR (  NOT SHP1 AND   NOT TCPTP AND   NOT PTP1B AND 

IL1_BETA) OR (  NOT SHP1 AND   NOT TCPTP AND   NOT PTP1B AND TNF_ALPHA) OR 

(LPG_L AND TLR4) OR (TLR3 AND TRIF) OR (TLR4 AND TRIF) 

 P53_T*=(ETS_T AND NUC_P38_T) 

 P70_T*= (PDK1_T) 

 PAG_T*=( NOT  CD45_T AND LCK_T) OR ( NOT  CD45_T AND FYN_T) 

 PAG+CSK_T*= (PAG_T AND CSK_T AND FYN_T AND   NOT CD45_T) OR (PAG_T AND CSK_T 

AND LCK_T AND   NOT CD45_T) 

 PAK_T*= (ERK1_2_T AND   NOT PIP_T) OR (GRB2_T) OR (NCK_T AND   NOT PIP_T) 

 PD1_T*=NUC_NFAT_T 

 PDGF_AL_T*=   (ETS_T AND FACTOR1 OR NOT FACTOR2) 

 PDGF_AS_T*=   (ETS_T AND FACTOR2 OR NOT FACTOR1) 

 PDGF_T*= (PDGF_AL_T OR PDGF_AS_T) 

 PDGFRB_ISO1_T*=   (NUC_MYC_T AND FACTOR22 OR NOT FACTOR23) 

 PDGFRB_ISO2_T*=   (NUC_MYC_T AND FACTOR23 OR NOT FACTOR22) 

 PDGFRB_T*= (PDGFRB_ISO1_T OR PDGFRB_ISO2_T) 
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 PDK1_T*= (CARMA1_T) OR (PIP3_T) 

 PI3K_T*= (CD80 AND CD28_T) OR (CD86 AND CD28_T) OR (GAB1_T) OR (GRB2_T) OR (ICOSL 

AND ICOS_T) OR (RAS_T) OR (SHP2_T) 

 PIP2_T*= (PI3K_T) OR (PLC_GAMMA_T) 

 PIP3_T*= (PIP2_T) OR (PTEN_T) 

 PKC_T*= (JAK1_T) 

 PKC_THETA_T*= (AKT_T) OR (DAG_T) OR (GLK_T) OR (PDK1_T) 

 PKC*= (  NOT PP1 AND   NOT LPG_L) OR (  NOT PP2A AND   NOT LPG_L) 

 PLC_GAMMA_T*= (GAB1_T) OR (GRB2_T) OR (ITK_T) OR (LAT_T) OR (SHC_T) OR (SHP2_T) 

 PP1*= (CERAMIDE) 

 PP2A*= (CERAMIDE) 

 PTP1B*= (GP63_L) 

 RAC_GAP_T*= (DAG_T) 

 RAC_T*= (PAK_T AND   NOT RAC_GAP_T) OR (RAS_T AND   NOT RAC_GAP_T) OR (VAV_T 

AND   NOT RAC_GAP_T) 

 RAC1_T*= (NCK_T) OR (VAV_T) 

 RAF_T*= (PAK_T) OR (PKC_T AND   NOT AKT_T) OR (RAS_T) 

 RAF1_T*= (P21RAS_T) 

 RAP1_T*= (C3G_T) 

 RAS_GAP_T*= (GRB2_T) OR (NCK_T) 

 RAS_GRP_T*= (DAG_T AND IP3_T) OR (LAT_T) 

 RAS_T*= (  NOT RAP1_T) OR (  NOT RAS_GAP_T) OR (GRB2+SOS_T) OR (GRB7_T AND   NOT 

RAS_GAP_T AND   NOT RAP1_T) OR (NCK+SOS_T AND   NOT RAS_GAP_T AND   NOT 

RAP1_T) OR (RAS_GRP_T) OR (SHC+GRB2+SOS_T AND   NOT RAS_GAP_T AND   NOT 

RAP1_T) OR (SHP1+GRB2+SOS_T AND   NOT RAS_GAP_T AND   NOT RAP1_T) OR 

(SHP2+GRB2+GAB1+SOS_T AND   NOT RAS_GAP_T AND   NOT RAP1_T) 

 RIP1_T*= (TRAF2_T) 

 RSK_T*= (ERK1_2_T) 

 SHC_T*= (GRB7_T) OR (IL2_T AND IL2R_T) OR (PI3K_T) OR (PKC_T) 

 SHC+GRB2+SOS_T*= (SHC_T AND GRB2_T AND SOS_T) 

 SHP1_T*= (  NOT ERK1_2_T) OR (CD80 AND CTLA4_T) OR (CD86 AND CTLA4_T) OR (PDL 

AND PD1_T) 

 SHP1*= (EF1_ALPHA_L) OR (GP63_L) 

 SHP1+GRB2+SOS_T*= (SHP1_T AND GRB2_T AND SOS_T) 

 SHP2_T*= (  NOT LCK_T) OR (CD80 AND CTLA4_T) OR (CD86 AND CTLA4_T) OR (ERK1_2_T) 

OR (SHC_T) 

 SHP2+GRB2+GAB1+SOS_T*= (SHP2_T AND GRB2_T AND GAB1_T AND SOS_T) 

 SLP76_T*= (ITK_T) 

 SOCS3_T*= (CRKL_T) OR (NCK_T) 

 SOS1_T*= (ERK1_2_T) 

 STAT1_ALPHA_P*= (IFN_GAMMAR AND JAK2 AND IFN_GAMMA_T) OR (STAT1_ALPHA) 

 STAT1_ALPHA*= (PTP1B AND STAT1_ALPHA_P) OR (SHP1 AND STAT1_ALPHA_P) OR 
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(TCPTP AND STAT1_ALPHA_P) 

 STAT1_T*= (PKC_T) 

 STAT3_T*= (PKC_T) OR (IL10R_T AND TYK2_T AND IL10) 

 STAT3*= (IL6R AND JAK1 AND IL6_T) OR (IL10R AND TYK2 AND IL10_T) OR (IL12 AND IL12R 

AND JAK2) 

 STAT4_T*= (JAK2_T AND IL12R_T AND IL12) OR (JAK2_T) 

 STAT5_T*= (  NOT SHP2_T) OR (JAK2_T) OR (P38_T) OR (PAK_T) 

 T3JAM_T*= (TRAF3_T) 

 TAK1_T*= (BCL10_T) 

 TAK1+TAB_T*= (RIP1_T) 

 TCPTP*= (GP63_L) 

 TCR+CD3_T*= (MHC_CLASS_II+LPG_L) OR (TCR_T AND CD3_T) 

 TGF_BETA_T*= (TGFB1_T OR TGFB2_T OR TGFB3_T) 

 TGFB1_T*=   (AP1_T AND   NOT IFN_GAMMA_T AND FACTOR3 OR NOT FACTOR4 OR NOT 

FACTOR5) 

 TGFB2_T*=   (AP1_T AND   NOT IFN_GAMMA_T AND FACTOR4 OR NOT FACTOR3 OR NOT 

FACTOR5) 

 TGFB3_T*=   (AP1_T AND   NOT IFN_GAMMA_T AND FACTOR5 OR NOT FACTOR3 OR NOT 

FACTOR4) 

 TLR2*= LPG_L 

 TNF_ALPHA_T*= (AP1_T AND   NOT IFN_GAMMA_T) OR (NUC_STAT3_T) 

 TNF_ALPHA*= (  NOT IL10 AND NUC_NFKB) OR (NUC_STAT3) 

 TNF_ALPHAR_T*= (TNF_ALPHA) 

 TNF_ALPHAR*= (TNF_ALPHA_T) 

 TRADD_T*= (TNF_ALPHA_T AND TNF_ALPHAR_T) OR (TNF_BETA_T AND 

TNF_ALPHAR_T) OR (TNF_ALPHA AND TNF_ALPHAR_T) 

 TRADD*= (TNF_ALPHA AND TNF_ALPHAR) OR (TNF_ALPHA_T AND TNF_ALPHAR) 

 TRAF1_T*= (TNFSF9_T AND TNFSF9R_T) 

 TRAF2_T*= (TNFSF9_T AND TNFSF9R_T) 

 TRAF2*= (TNF_ALPHAR AND TRADD AND TNF_ALPHA_T) OR (OX40L AND OX40_T) 

 TRAF3_T*= (CD70 AND CD27_T) OR (LIGHT AND LTBR_T) 

 TRAF3*= (CD40L_T AND CD40) 

 TRAF5_T*= (CD70 AND CD27_T) OR (LIGHT AND LTBR_T) 

 TRAF5*= (CD40L_T AND CD40) 

 TRAF6_T*= (MALT1_T) OR (IL1R_T AND IRAK1_T AND IRAK4_T AND IL1_BETA AND 

MYD88_T) 

 TRAF6*= (CD40L_T AND CD40) 

 TRIF*= (LPG_L AND TLR4) OR (TLR3) 

 TYK2_T*= (IFN_ALPHAR1_T AND IFN_ALPHA_T) OR (IFN_ALPHAR1_T AND 

IFN_OMEGA_T) OR (IFN_ALPHAR2_T AND IFN_ALPHA_T) OR (IFN_ALPHAR2_T AND 

IFN_OMEGA_T) OR (IFN_ALPHAR1_T AND IFN_BETA) OR (IFN_ALPHAR2_T AND 

IFN_BETA)  
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 VAV_T*= (JAK1_T) OR (LAT_T AND GADS_T AND SLP76_T) 

 WASP_T*= (NCK_T) 

 ZAP70_T*= (ABL_T AND TCR+CD3_T AND MHC_CLASS_II+LPG_L AND   NOT SHP1_T) OR 

(LCK_T AND   NOT SHP1_T) OR (LCK_T AND TCR+CD3_T AND   NOT LYP_T AND FYN_T 

AND ABL_T AND VAV_T AND   NOT SHP1_T AND MHC_CLASS_II+LPG_L) OR (TCR+CD3_T 

AND MHC_CLASS_II+LPG_L AND FYN_T AND   NOT SHP1) 

 TH_1_RESPONSE*= IL2_T AND GM_CSF_T AND TNF_ALPHA_T AND IFN_GAMMA_T 

 TH_2_RESPONSE*= IL4_T AND IL5_T AND IL6_T AND IL10_T 

 NO_PRODUCTION*=NO 

*Target Nodes 

Here, the nodes FACTORi (where i=1, 2,.....23) are the combinations of the cis and 

trans-regulatory factors associated with the alternative splicing of the isoforms.      

 

Table B. 5: Binary initial values of the reaction nodes considered in the Logical 
equations from binarization of microarray expression data 

ABL_T=False  IL4_T=False  PIP3_T=False 

AKT_T=True  IL4R=False  PKC_T=True 

AKT=True  IL5_T=False  PKC_THETA_T=True 

AP1_T=False  IL6_T=False  PKC=True 

AP1=True  IL6R=False  PLC_GAMMA_T=True 

ARP2_3_T=False  IL9_T=False  PP1=False 

ASK1_T=False  INOS=False  PP2A=False 

ASMASE=True  IP10=False  PTEN_T=True 

ATF2_T=False  IP3_T=False  PTP1B=False 

  BAD_T=True  IRAK1_P=True  RAC_GAP_T=True 

  BAD=True  IRAK1_T=False  RAC_T=False 

  BCL10_T=False  IRAK1=True  RAC1_T=False 

  BCL2_T=False  IRAK4_T=True  RAF_T=True 

  BCLX_T=False  IRAK4=True  RAF1_T=True 

  C_FOS_T=False  IRF3=True  RAP1_T=True 

  C_FOS=True  ITK_T=False  RAS_GAP_T=False 

  C_JUN_T=False  JAK1_T=True  RAS_GRP_T=True 

  C3G_T=True  JAK1=False  RAS_T=False 

  CABIN1_T=True  JAK2_T=True  RIP1_T=True 

  CALCINEURIN_T=False  JAK2=False  RSK_T=True 

  CALCIPRESSIN_T=True  JAK3=False  SHC_T=False 

  CALCIUM_IN_T=False  JNK_T=True  SHC+GRB2+SOS_T=False 

 CALCIUM_OUT_T=Random  JNK=True  SHP1_T=False 

  CAM_T=True  LAT_T=False  SHP1+GRB2+SOS_T=False 

  CAMK4_T=True  LAT+GRB2+SOS1_T=False  SHP1=True 
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  CARMA1_T=False  LCK_T=True  SHP2_T=False 

  CBL_T=True  LFAA_L=True SHP2+GRB2+GAB1+SOS_T=False 

  CD2_T=False  LIGHT=False  SLP76_T=False 

  CD27_T=True  LPG_L=True  SOCS3_T=False 

  CD28_T=False  LTBR_T=True  SOS_T=True 

  CD3_T=True  LYP_T=False  SOS1_T=True 

  CD4_T=False  MALT1_T=False  STAT1_ALPHA_P=False 

  CD40=False  MARCKS=False  STAT1_ALPHA=False 

  CD40L_T=False  MEF2_T=True  STAT1_T=False 

  CD45_T=True  MEF2A_T=False  STAT3_T=False 

  CD70=False  MEF2B_T=True  STAT3=False 

  CD8_T=False  MEF2C_T=True  STAT4_T=False 

  CD80=False  MEF2D_T=False  STAT5_T=False 

  CD86=False  MEK1_2_T=True  T3JAM_T=True 

  CDC42_T=False  MEKK_T=True  TAK1_T=True 

  CDC42+RAC_T=False  MEKK1_4_T=True  TAK1+TAB_T=False 

  CERAMIDE=True  MEKK3_T=True  TCPTP=True 

  COT_T=False  MEKK4_7_T=True  TCR_T=False 

  CR3=False  MHC_CLASS_II+LPG_L=True  TCR+CD3_T=False 

  CRAC_T=True  MHC_CLASS_II=True  TGF_BETA_T=False 

  CRE_T=False  MKK_T=False  TIR=True 

  CREB_T=False  MKK3_6_T=False  TLR2=True 

  CRKL_T=True  MKK4_7_T=False  TLR3=False 

  CSK_T=True  MKK7_T=True  TLR4=True 

  CTLA4_T=False  MKP_T=False  TNF_ALPHA_T=False 

  CYC_T=False  MKP1=True  TNF_ALPHA=False 

  CYCLIN_A_T=True  MKP3=True  TNF_ALPHAR_T=False 

  CYCLIN_D1_T=False  MLK2_T=False  TNF_ALPHAR=True 

  CYCLIN_D2_T=False  MLK3_T=False  TNF_BETA_T=False 

  CYCLIN_E_T=True  MRP=False  TNFSF9_T=False 

  DAG_T=True  MTOR=False  TNFSF9R_T=False 

  EF1_ALPHA_L=True  MYD88_T=True  TRADD_T=True 

  ELK1_T=False  MYD88+TIR+IRAK1=False  TRADD=False 

  ELK1=False  MYD88+TIR=False  TRAF1_T=False 

  ERK1_2_T=True  MYD88=False  TRAF2_T=False 

  ERK1_2=True  NCK_T=True  TRAF2=False 

  ETS_T=False  NCK+SOS_T=False  TRAF3_T=False 

  FASL_T=False  NFAT_T=False  TRAF3=False 

  FC_GAMMAR=False  NFAT+P300+MEF2_T=False  TRAF5_T=False 

  FKHR_T=True  NFKB_T=False  TRAF5=True 

  FYN_T=False  NFKB=False  TRAF6_T=True 

  GAB1_T=True  NIK_T=False  TRAF6=False 

  GADS_T=False  NO=False  TRIF=False 
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  GCKR_T=False  NUC_AP1=False  TYK2_T=True 

  GLK_T=True  NUC_CREB_T=False  TYK2=True 

  GM_CSF_T=False  NUC_ELK1=False  VAV_T=False 

  GP63_L=True  NUC_ERK1_2_T=False  WASP_T=False 

  GRB2_T=False  NUC_ERK1_2=True  ZAP70_T=False 

  GRB2+SOS_T=False  NUC_JNK_T=False  NO_PRODUCTION=False 

  GRB7_T=False  NUC_MYC_T=False  TH_1_RESPONSE=False 

  GSK3_BETA_T=True  NUC_NFAT_T=False  TH_2_RESPONSE=False 

  HBEGF_T=False  NUC_NFKB_T=False  FACTOR1= TRUE 

  HDAC_T=True  NUC_NFKB=False  FACTOR2= TRUE 

  HPK1_T=True  NUC_P38_T=False  FACTOR3= TRUE 

  ICOS_T=False  NUC_P38=False  FACTOR4= TRUE 

  ICOSL=False NUC_STAT1_ALPHA_P=False  FACTOR5= TRUE 

  IFN_ALPHA_T=False  NUC_STAT3_T=False  FACTOR6= TRUE 

  IFN_ALPHAR1_T=True  NUC_STAT3=False  FACTOR7= TRUE 

  IFN_ALPHAR2_T=True  NUC_STAT4_T=False  FACTOR8= TRUE 

  IFN_BETA=False  NUR77_T=False  FACTOR9= TRUE 

  IFN_GAMMA_T=False  OSM_T=False  FACTOR10= TRUE 

  IFN_GAMMAR=True  OX40_T=False  FACTOR11= TRUE 

  IFN_OMEGA_T=True  OX40L=False  FACTOR12= TRUE 

  IGG=True  P15_T=False  FACTOR13= TRUE 

  IKB_ALPHA_T=False  P19_T=False  FACTOR14= TRUE 

  IKB_BETA_T=False  P21_T=False  FACTOR15= TRUE 

  IKK_ALPHA_T=False  P21RAS_T=False  FACTOR16= TRUE 

  IKK_ALPHA=False  P27_T=True  FACTOR17= TRUE 

  IKK_BETA_T=True  P300_T=True  FACTOR18= TRUE 

  IKK_GAMMA_T=False  P38_T=False  FACTOR19= TRUE 

  IL1_ALPHA=False  P38=False  FACTOR20= TRUE 

  IL1_BETA=False  P53_T=False  FACTOR21= TRUE 

  IL10_T=False  P70_T=False  FACTOR22= TRUE 

  IL10=True  PAG_T=True  FACTOR23= TRUE 

 IL10R_T=True  PAG+CSK_T=False  

 IL10R=False  PAK_T=False  

 IL12_T=False  PD1_T=False  

 IL12=False  PDGF_T=False  

 IL12R_T=True  PDGFRB_T=False  

 IL12R=True  PDK1_T=True  

 IL13_T=False  PDL=False  

 IL1R_T=False  PI3K_T=True  

 IL2_T=False  PI3K=True  

 IL2R_T=False  PIP_T=False  

 IL3_T=False  PIP2_T=False  
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Table B. 6: List of agonist and antagonist of the proposed targets 
 

Targets Antagonist/ Agonist Reference 

TLR2 Antagonist- C16H15NO4 [360] 

TLR3 Agonist- polyIC12U [361] 

MKP Agonist- JWH015 [362] 

SHC 
Antagonist- PP2 
Inhibitor of Shc/Grb2 interaction- actinomycin D 

[363,364] 

SHP2 
Antagonist- 8-hydroxy-7-(6-sulfonaphthalen-2-yl) 
diazenyl-quinoline-5-sulfonic acid (NSC-87877) 

[365] 
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APPENDIX C 
 

Table C. 1: L. donovani Virulence factors (pathogen source nodes/effector nodes) 
considered in the final L. donovani VF-Human PPI Network 

No. 
Secretome protein 

Functional Category 
[366] 

L.donovani 
Virulence factors 

(Source node) 
Protein Name (Description) 

1 

Signalling 

E9BQ78_LEISH Mitogen activated protein kinase, putative 

2 E9BK16_LEISH Activated protein kinase c receptor (LACK) 

3 E9BRX9_LEISH Casein kinase, putative 

4 E9BA99_LEISH Mitogen-activated protein kinase (EC 2.7.11.24) 

5 E9BN59_LEISH ADP-ribosylation factor, putative 

6 

Intracellular Survival 

E9B7I1_LEISH Proteasome regulatory non-ATPase subunit 6, 

putative 

7 E9BU45_LEISH 14-3-3 protein-like protein 

8 E9BFJ3_LEISH Proteasome subunit alpha type (EC 3.4.25.1) 

9 E9BTM6_LEISH Proteasome subunit alpha type (EC 3.4.25.1) 

10 E9BC27_LEISH Myo-inositol-1-phosphate synthase 

11 E9BNU4_LEISH Superoxide dismutase (EC 1.15.1.1) 

12 E9BB84_LEISH Carboxypeptidase, putative 

13 E9B8I6_LEISH Dipeptidyl peptidase 3 (EC 3.4.14.4) (Dipeptidyl 

aminopeptidase III) (Dipeptidyl peptidase III) 

14 E9BC06_LEISH Enolase 

15 E9BFK5_LEISH Proteasome subunit alpha type (EC 3.4.25.1) 

16 E9BI90_LEISH Glutathione peroxidase 

17 E9BIV4_LEISH Proteasome endopeptidase complex (EC 3.4.25.1) 

18 E9BID4_LEISH Heat shock protein 70-related protein 

19 E9B8M5_LEISH Proteasome subunit beta (EC 3.4.25.1) 

20 E9BQM1_LEISH Proteasome regulatory non-ATP-ase subunit 11, 

putative 

21 
Immunosuppression 

E9BHJ8_LEISH Peptidyl-prolyl cis-trans isomerase (PPIase) (EC 

5.2.1.8) 

22 Vesicle transport E9BIZ5_LEISH Small GTP-binding protein Rab1, putative 
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Table C. 2: Statistics of the Host Pathogen Interactome 

Statistics Interaction type (Rank) No. of Interactions Source 

HPI+BIPS 1 175 

Prediction HPI/BIPS+DDI 2 635 

HPI+BIPS+DDI 3 3 

Experimental 4 74225 STRING 

Total No. of Interations 75038   

 

 Total Interactions (Edges) of Interactome predicted: 75038 

 No. of Self loops: 1843  

 No. of Interactors in the final network: 73195 

 

Table C. 3: Correlation of virulence factors putative function as stated by Maxwell 
et.al with their corresponding predicted partner interologs on the basis of their 
DAVID pathway enrichment (FDR <0.05) 

L.donovani 
Virulence 
factor 

Protein Name 
No. of 

Predicted 
Interactors 

DAVID enriched 
pathways for the 

interactors 
(KEGG/Reactome) 

Putative 
function of VFs 
from Proteomic 

analysis 
[366] 

Intracellular Survival 

E9B7I1 
Proteasome regulatory non-
ATPase subunit 6, putative 

36 Proteasome 
Proteolysis 
(Intracellular 
survival) 

E9BTM6 
Proteasome subunit alpha 
type (EC 3.4.25.1) 

09 Endocytosis 
Proteolysis 
(Intracellular 
survival) 

E9BU45 14-3-3 protein-like protein 11 

1)AMPK signalling 
pathway 
2)cGMP-PKG 
signalling pathway 

Anti-apoptotic 
(Intracellular 
survival) 

E9BNU4 
Superoxide dismutase (EC 
1.15.1.1) 

28 

1)Chromatin 
Organization 
2) RMT Methylate 
histone arginines 
(arginine methylation) 

Antioxidant 
(Intracellular 
survival) 

E9BQM1 Proteasome regulatory non- 3 1)DNA Repair-DNA Proteolysis 
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ATP-ase subunit 11, 
putative 

damage recognition in 
GG-NER 
DNA repair 
2)Formation of TC-
NER Pre-incision 
complex 

(Intracellular 
survival) 

E9B8I6 

Dipeptidyl peptidase 3 (EC 
3.4.14.4) (Dipeptidyl 
aminopeptidase III) 
(Dipeptidyl peptidase III) 

23 

1)Antigen processing 
and presentation 
2)Estrogen signalling 
pathway 
3)Spliceosome 
4)Protein processing 
in endoplasmic 
reticulum 
5)Endocytosis 
6)MAPK signalling 
pathway 

Proteolysis 
(Intracellular 
survival) 

E9B8M5 
Proteasome subunit beta 
(EC 3.4.25.1) 

16 Proteasome 
Proteolysis 
(Intracellular 
survival) 

E9BC06 Enolase 15 

1)Glycolysis / 
Gluconeogenesis 
2)RNA degradation 
3)HIF-1 signalling 
pathway 

Plasminogen 
binding, 
Invasion 
(Intracellular 
survival) 

E9BFJ3 
Proteasome subunit alpha 
type (EC 3.4.25.1) 

8 Proteasome 
Proteolysis 
(Intracellular 
Survival) 

E9BFK5 
Proteasome subunit alpha 
type (EC 3.4.25.1) 

54 

1)Chemokine 
signalling pathway 
2)Cytokine-cytokine 
receptor interaction 
3)Cysteine and 
methionine 
metabolism 

Proteolysis 
(Intracellular 
survival) 

E9BI90 Glutathione peroxidase 8 

1)Purine metabolism 
2)Glutathione 
metabolism 
3)p53 signalling 
pathway 
4)Pyrimidine 
metabolism 

Antioxidant 
(Intracellular 
survival) 

E9BID4 
Heat shock protein 70-
related protein 

47 
5)Protein processing 
in endoplasmic 
reticulum 

Protein stability 
(Intracellular 
survival) 
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E9BSB0 
 

Aminopeptidase P, Putative 1 

No significant 
Pathway Enrichment 
Molecular Function: 
plays important role 
in collagen 
metabolism 
Go process: Cellular 
aminoacid metabolic 
process 

Proteolysis 
(Intracellular 
Survival) 

E9BB84 
 

Carboxypeptidase, putative 2 

No significant 
Pathway Enrichment 
Function:  
Go process: 
proteasomal protein 
catabolic process, 
negative regulation of 
proteolysis, protein 
localization to 
cytosolic proteasome 
complex involved in 
ERAD pathway, 
apoptotic process, 
immune response-
activating cell surface 
receptor signalling 
pathway 
Go function: 
proteasome binding 

Proteolysis 
(intracellular 
survival) 

E9BC27 
 

Myo-inositol-phosphate 
synthase 

1 

No significant 
Pathway Enrichment 
KEGG pathway 
annotation:  
PPAR Singalling 
Pathway 

Inositol 
biosynthesis 
(Intracellular 
surivival) 

E9BIV4 
 

Proteasome alpha 7 subunit, 
putative 

25 

1)SLBP independent 
Processing of Histone 
Pre-mRNAs (Homo 
sapiens) 
2)SLBP Dependent 
Processing of 
Replication-
Dependent Histone 
Pre-mRNAs (Homo 
sapiens) 
3)snRNP Assembly 
(Homo sapiens) 
4)mRNA Splicing – 
Minor Pathway 

Proteolysis 
(intracellular 
survival) 
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(Homo sapiens) 

E9BQR2 
Putative uracil 
phosphoribosyltransferase 

5 

No significant 
Pathway Enrichment 
GO process: Actin 
cytoskeleton 
organization, barbed-
end actin filament 
capping 

Pyrimidine 
Salvage 
(Intracellular 
survival) 

Signal Transduction 

E9BRX9 Casein kinase, putative 24 

1)Apoptosis 
2)RIG-I-like receptor 
signalling pathway 
3)Toll-like receptor 
signalling pathway 
4)TNF signalling 
pathway 

Kinase 
(Signal 
transduction) 

E9BA99 
Mitogen-activated protein 
kinase (EC 2.7.11.24) 

257 

1)MAPK signalling 
pathway 
2)Neurotrophin 
signalling pathway 
3)Fc epsilon RI 
signalling pathway 
4)ErbB signalling 
pathway 
5)GnRH signalling 
pathway 
6)T cell receptor 
signalling pathway 
7)TNF signalling 
pathway 
8)Toll-like receptor 
signalling pathway 
9)Insulin signalling 
pathway 

Kinase 
(Signal 
transduction) 

E9BK16 
Activated protein kinase c 
receptor (LACK) 

23 

1)Ras signalling 
pathway 
2)Chemokine 
signalling pathway 

Kinase receptor 
(Signal 
transduction) 

E9BN59 
ADP-ribosylation factor, 
putative 

56 

1)Endocytosis 
2)Fc gamma R-
mediated 
phagocytosis 
3)Lysosome 

GTPase 
mediated signal 
transduction 
(Signal 
transduction) 

E9BQ78 
Mitogen activated protein 
kinase, putative 

3 
1)GnRH signalling 
pathway 
2)MAPK signalling 

Kinase 
(Signal 
transduction) 
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pathway 

Immunosuppression 

E9BHJ8 
Peptidyl-prolyl cis-trans 
isomerase (PPIase) (EC 
5.2.1.8) 

20 

1)VEGF signalling 
pathway 
2)B cell receptor 
signalling pathway 
3)T cell receptor 
signalling pathway 

Immunosuppres
sive 
(Immunosuppres
sive protein) 

Vessical Transport 

E9BIZ5 
Small GTP-binding protein 
Rab1, putative 

137 
1)Endocytosis 
2)Phagosome 

Endosome/Golgi 
trafficking 
(Vessical 
transport 
processes) 

 

 

 

 

 

Figure C. 1: Cellular location of direct interactors: predicted interolog partner proteins) of virulence 
factors based on GO Term (CC) enrichment (Bejamini-Hochberg correction FDR <0.05) 
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Table C. 4: List of PRNs* and their associated GO terms (biological process) for 
each Phenotype category (Early infection)- 1) IR 2) SUR and Literature-curated for 
(late infection) 3) VIS# 

Early Infection Phase Late Infection Phase 
IR PRNs SUR PRNs VIS PRNs 
1. CH60_HUMAN 
2. GSTP1_HUMAN 
3. HS71A_HUMAN 
4. IL1B_HUMAN 
5. ITB2_HUMAN 
6. MAVS_HUMAN 
7. NPM_HUMAN 
8. PARP1_HUMAN 
9. PDIA1_HUMAN 
10. PRDX3_HUMAN 
11. PTN6_HUMAN 
12. RIPK1_HUMAN 
13. RL40_HUMAN 
14. RS27A_HUMAN 
15. SODC_HUMAN 
16. SODM_HUMAN 
17. TBB4B_HUMAN 
18. TBB5_HUMAN 
19. UBB_HUMAN 
20. UBC_HUMAN 

1. 1433Z_HUMAN 
2. ANXA5_HUMAN 
3. COF1_HUMAN 
4. EF1A2_HUMAN 
5. ENPL_HUMAN 
6. GRP75_HUMAN 
7. HMGA2_HUMAN 
8. HNRPK_HUMAN 
9. HP1B3_HUMAN 
10. HYOU1_HUMAN 
11. KPYM_HUMAN 
12. LMNA_HUMAN 
13. SCRIB_HUMAN 
14. TOP1_HUMAN 

1. TNFA_HUMAN 
2. COX2_HUMAN 
3. DVL1_HUMAN 
4. GSK3B_HUMAN 
5. TSC1_HUMAN 
6. TSC2_HUMAN 
7. SFRP4_HUMAN 
8. SFRP2_HUMAN 
9. RHEB_HUMAN 
10. RAC1_HUMAN 
11. NOS2_HUMAN 
12. TGFB1_HUMAN 
13. STAT6_HUMAN 
14. CXCR2_HUMAN 
15. TEBP_HUMAN 
16. PTGDS_HUMAN 
17. LTBP2_HUMAN 
18. HS90A_HUMAN 
19. HS90B_HUMAN 
20. JAK2_HUMAN 
21. DUS6_HUMAN 
22. MK01_HUMAN 
23. PTPA_HUMAN 
24. DUS1_HUMAN 
25. IRAK1_HUMAN 

GO TERMS for IR GO TERMS for SUR   
 
The PRNs for the VIS module 
have been identified from the 
experimental studies reported 
in the Literature. 

x GO:0051092~positive 
regulation of NF-kappaB 
transcription factor activity 
x GO:0035666~TRIF-
dependent toll-like receptor 
signalling pathway 
x GO:0032480~negative 
regulation of type I interferon 
production 
x GO:0010803~regulation 
of tumor necrosis factor-mediated 
signalling pathway 
x GO:0002755~MyD88-
dependent toll-like receptor 
signalling pathway 
x GO:0032479~regulation 
of type I interferon production 

x GO:0043066~negative 
regulation of apoptotic 
process 
x GO:0010939~regulati
on of necrotic cell death 
x GO:0043065~positive 
regulation of apoptotic 
process 
x GO:0006977~DNA 
damage response, signal 
transduction by p53 class 
mediator resulting in cell 
cycle arrest 
x GO:0071456~cellular 
response to hypoxia 
x GO:2001240~negative 
regulation of extrinsic 
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x GO:0002756~MyD88-
independent toll-like receptor 
signalling pathway 
x GO:0000302~response to 
reactive oxygen species 
x GO:0007249~I-kappaB 
kinase/NF-kappaB signalling 
x GO:0032757~positive 
regulation of interleukin-8 
production 
x GO:0030512~negative 
regulation of transforming 
growth factor beta receptor 
signalling pathway 
x GO:0007179~transformin
g growth factor beta receptor 
signalling pathway 
x GO:0043123~positive 
regulation of I-kappaB 
kinase/NF-kappaB signalling 
x GO:0042542~response to 
hydrogen peroxide 
x GO:0042267~natural 
killer cell mediated cytotoxicity 
x GO:0033209~tumor 
necrosis factor-mediated 
signalling pathway 
x GO:0038061~NIK/NF-
kappaB signalling 
x GO:0016236~macroautop
hagy 
x GO:0045429~positive 
regulation of nitric oxide 
biosynthetic process 
x GO:0000303~response to 
superoxide 

apoptotic signalling pathway 
in absence of ligand 
x GO:2001237~negative 
regulation of extrinsic 
apoptotic signalling pathway 
x GO:0012501~program
med cell death 
x GO:0050665~hydroge
n peroxide biosynthetic 
process 
x GO:0034599~cellular 
response to oxidative stress 

*These PRNs are categorized for each Early infection Phenotype (IR/SUR) based on 

the GO Biological process terms which were curated based on the association of the 

biological process of the 111 DMPs [367] with the infection phenotype to be studied. 

For example, the GO terms “TRIF-dependent toll-like receptor signalling pathway” 

and “negative regulation of type I interferon production” were assumed to be 

associated with the phenotype IR and thus corresponding DMPs enriched for these 

terms were categorized into IR PRNs and similar was followed for the SUR PRNs. 
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#The PRNs for Late infection phenotype (VIS) were curated from Literature 

(Literature sources referred in the main manuscript) as the DMPs identified in Singh 

et.al [367] study was not identified for sufficiently longer period of incubation (>72 

hrs) which is previously observed to be required for the visceralization process to be 

established during the infection. 

Table C. 5: Signalling Pathways enriched for each sub-network  

IR SUR VIS 

hsa04722: Neurotrophin 
signalling pathway 

hsa04722: Neurotrophin 
signalling pathway 

hsa04010: MAPK signalling 
pathway 

hsa04664: Fc epsilon RI 
signalling pathway 

hsa04010: MAPK signalling 
pathway 

hsa04012: ErbB signalling 
pathway 

hsa04660: T cell receptor 
signalling pathway 

hsa04660: T cell receptor 
signalling pathway 

hsa04014: Ras signalling 
pathway 

hsa04012: ErbB signalling 
pathway 

hsa04012: ErbB signalling 
pathway 

hsa04015: Rap1 signalling 
pathway 

hsa04662: B cell receptor 
signalling pathway 

hsa04370: VEGF signalling 
pathway 

hsa04022: cGMP-PKG signalling 
pathway 

hsa04668: TNF signalling 
pathway 

hsa04664: Fc epsilon RI 
signalling pathway 

hsa04024: cAMP signalling 
pathway 

hsa04068: FoxO signalling 
pathway 

hsa04912: GnRH signalling 
pathway 

hsa04062: Chemokine signalling 
pathway 

hsa04010: MAPK signalling 
pathway 

hsa04071: Sphingolipid 
signalling pathway 

hsa04064:NF-kappa B signalling 
pathway 

hsa04064:NF-kappa B signalling 
pathway 

hsa04917: Prolactin signalling 
pathway 

hsa04066: HIF-1 signalling 
pathway 

hsa04620: Toll-like receptor 
signalling pathway 

hsa04621: NOD-like receptor 
signalling pathway 

hsa04068: FoxO signalling 
pathway 

hsa04912: GnRH signalling 
pathway 

hsa04915: Estrogen signalling 
pathway 

hsa04071: Sphingolipid 
signalling pathway 

hsa04915: Estrogen signalling 
pathway 

hsa04062: Chemokine signalling 
pathway 

hsa04115: p53 signalling 
pathway 

hsa04621: NOD-like receptor 
signalling pathway 

hsa04668: TNF signalling 
pathway 

hsa04150: mTOR signalling 
pathway 

hsa04370: VEGF signalling 
pathway 

hsa04068: FoxO signalling 
pathway 

hsa04151: PI3K-Akt signalling 
pathway 

hsa04015: Rap1 signalling 
pathway 

hsa04910: Insulin signalling 
pathway 

hsa04152: AMPK signalling 
pathway 

hsa04062: Chemokine signalling 
pathway 

hsa04015: Rap1 signalling 
pathway 

hsa04310: Wnt signalling 
pathway 

hsa04151: PI3K-Akt signalling 
pathway 

hsa04150: mTOR signalling 
pathway 

hsa04370: VEGF signalling 
pathway 

hsa04066: HIF-1 signalling hsa04620: Toll-like receptor hsa04390: Hippo signalling 
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pathway signalling pathway pathway 

hsa04014: Ras signalling 
pathway 

hsa04919: Thyroid hormone 
signalling pathway 

hsa04550: Signalling pathways 
regulating pluripotency of stem 
cells 

hsa04622: RIG-I-like receptor 
signalling pathway 

hsa04662: B cell receptor 
signalling pathway 

hsa04620: Toll-like receptor 
signalling pathway 

hsa04071: Sphingolipid 
signalling pathway 

hsa04066: HIF-1 signalling 
pathway 

hsa04621: NOD-like receptor 
signalling pathway 

hsa04910: Insulin signalling 
pathway 

hsa04024: cAMP signalling 
pathway 

hsa04622: RIG-I-like receptor 
signalling pathway 

hsa04917: Prolactin signalling 
pathway 

hsa04151: PI3K-Akt signalling 
pathway 

hsa04660: T cell receptor 
signalling pathway 

hsa04024: cAMP signalling 
pathway 

hsa04014: Ras signalling 
pathway 

hsa04662: B cell receptor 
signalling pathway 

hsa04919: Thyroid hormone 
signalling pathway 

hsa04022: cGMP-PKG signalling 
pathway 

hsa04664: Fc epsilon RI 
signalling pathway 

hsa04022: cGMP-PKG signalling 
pathway 

hsa04622: RIG-I-like receptor 
signalling pathway 

hsa04668: TNF signalling 
pathway 

hsa04921: Oxytocin signalling 
pathway 

hsa04550: Signalling pathways 
regulating pluripotency of stem 
cells 

hsa04722: Neurotrophin 
signalling pathway 

hsa04115: p53 signalling 
pathway 

hsa04064:NF-kappa B signalling 
pathway 

hsa04910: Insulin signalling 
pathway 

hsa04152: AMPK signalling 
pathway 

hsa04115: p53 signalling 
pathway 

hsa04912: GnRH signalling 
pathway 

hsa04310: Wnt signalling 
pathway 

hsa04921: Oxytocin signalling 
pathway 

hsa04915: Estrogen signalling 
pathway 

hsa04920: Adipocytokine 
signalling pathway 

hsa04920: Adipocytokine 
signalling pathway 

hsa04917: Prolactin signalling 
pathway 

hsa04550: Signalling pathways 
regulating pluripotency of stem 
cells 

hsa04310: Wnt signalling 
pathway 

hsa04919: Thyroid hormone 
signalling pathway 

  
hsa04920: Adipocytokine 
signalling pathway 

  
hsa04921: Oxytocin signalling 
pathway 

  
hsa04922: Glucagon signalling 
pathway 
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Figure C. 2: Average shortest path length from each Virulence Factor to the response nodes of each 
phenotypic subnetwork. E9BA99 is observed to be closest to all the phenotypes. 

 

 

Table C. 6: Top 10 knockout candidates identified based on Betweenness centrality 
measure in the three sub-networks 

No
. 

Knockout Candidate 
Protein (Node) 

Protein 
Betweenness 

Centrality 
Degree 

1 A4_HUMAN Amyloid-beta precursor protein 0.06405442 740 

2 EGFR_HUMAN Epidermal growth factor receptor 0.06245475 644 

3 HS90A_HUMAN Heat shock protein HSP 90-alpha 0.05881114 604 

4 UBC_HUMAN Polyubiquitin-C 0.03804491 518 

5 P53_HUMAN Cellular tumor antigen p53 0.01793926 476 

6 SRC_HUMAN 
Proto-oncogene tyrosine-protein 
kinase Src 

0.02759134 449 

7 AKT1_HUMAN 
RAC-alpha serine/threonine-
protein kinase 

0.02456149 403 

8 TRAF6_HUMAN TNF receptor-associated factor 6 0.01380817 377 

9 1433Z_HUMAN 14-3-3 protein zeta/delta 0.01051357 352 

10 GSK3B_HUMAN Glycogen synthase kinase-3 beta 0.01578974 283 
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Figure C. 3: Distance deviation Analysis for the combination knockout in IR, SUR and VIS 
subnetworks. Probability density graphs using Gaussian curve based Epanechnikov method 
representing the deviation in the average shortest path distance before and after knockout.  
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APPENDIX D 
Table D. 1: List of Parameters 

 Parameter Description Units Value Reference# 

1.  βM2 Rate of IL-10 production from 
M2 cells 

ng cell-1day-1 1x10-15 Expected 

2.  βTc Rate of IFN-γ production from 
Tc cells 

ng cell-1day-1 1x10-8 Expected 

3.  βTh1CK2 Rate of IFN-γ production from 
TH1 cells 

ng cell-1day-1 1x10-7 Expected 

4.  βTh1CK3 Rate of IL-2 production from 
TH1 cells 

ng cell-1day-1 1 x10-8 Expected 

5.  βTh2 Rate of IL-10 production from 
TH2 cells 

ng cell-1day-1 1 x10-9 Expected 

6.  βTreg Rate of IL-10 production from 
Treg cells 

ng cell-1day-1 1 x10-10 Expected 

7.  γC Birth rate of Cancer cells day-1 0.1282 Estimated 

8.  γCR 
Birth rate of Cancer resistant 
cells 

day-1 
0.1282 

Expected 

9.  γM1 Birth rate of M1 cells day-1 0.7 Expected 

10.  γM2 Birth rate of M2 cells day-1 0.01 Expected 

11.  γS Birth rate of Stem cells day-1 0.15 Expected 

12.  γTc Birth rate of Tc cells day-1 1.0 [368] 

13.  γTh1 Birth rate of TH1 cells day-1 2.0 [369] 

14.  γTh2 Birth rate of TH2 cells day-1 2.0 [369] 

15.  γTreg Birth rate of Treg cells day-1 0.3 [370] 

16.  δC Death rate of Cancer cells day-1 0.8055 Estimated 

17.  δCk1 Degradation rate of IL-10 day-1 19.757 Estimated 

18.  δCk2 Degradation rate of IFN-γ day-1 6.1212 Estimated 

19.  δCk3 Degradation rate of IL-2 day-1 8.664339 
Calculated 

[100] 

20.  δCR Death rate of Resistant Cancer 
cells 

day-1 5.37 x10-5 Estimated 

21.  δM1 Death rate of M1 cells day-1 1.02 [371] 

22.  δM2 Death rate of M2 cells day-1 0.05 [371] 

23.  δS Death rate of Stem cells day-1 2 x10-7 Expected 

24.  δTc Death rate of Tc cells day-1 5.2939 Estimated 

25.  δTh1 Death rate of TH1 cells day-1 2.0 [372] 

26.  δTh2 Death rate of TH2 cells day-1 2.0 Expected 

27.  δTreg Death rate of Treg cells day-1 1.0 [373] 

28.  λM1 Saturation constant for M1 
activation 

cells ml-1 1x108 Expected 

29.  λM2 Saturation constant for M2 
activation 

cells ml-1 1 x106 Expected 

30.  λTc1 Saturation constant for Tc cells ml-1 1 x105 Expected 
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activation by cancer cells 

31.  λTc2 Saturation constant for Tc 
inhibition by stem cells 

cells ml-1 5 x105 Expected 

32.  λTc3 Saturation constant for Tc 
inhibition by Treg cells 

cells ml-1 5 x1010 Expected 

33.  λTc4 Saturation constant for Tc 
activation by TH1 cells 

cells ml-1 1 x105 Expected 

34.  λTh1 Saturation constant for TH1 cells ml-1 1 x105 Expected 

35.  λTh2 Saturation constant for TH2 cells ml-1 1 x105 Expected 

36.  λTreg2 Saturation constant for Treg cells ml-1 1 x107 Expected 

37.  μC1 Rate of activation of C and CR 
by IL-10 

day-1 0.75 [374] 

38.  μC2 
Rate of killing of C and CR by 
IFN-γ  

day-1 0.9 
[375] 

39.  μS 
Rate of killing of S by IFN-
gamma 

day-1 0.17 
[375] 

40.  μSR 
Rate of killing of SR by IFN-
gamma 

day-1 0.18 
Expected 

41.  μTcS 
Rate of Tc killing by S and SR 
cells 

day-1 1 x10-10 
[376] 

42.  μTcTreg Rate of Tc killing by Treg cells day-1 1.5x10-5 [377] 

43.  μTh1Ck1 Rate of TH1 killing by IL-10 day-1 1 x10-9 [378] 

44.  μTh1Ck3 Rate of TH1 activation by IL-2 day-1 0.1245 [102] 

45.  μTregCk1 Rate of Treg activation by IL-
10 

day-1 1 x10-7 
Expected 

46.  
Cmax=Ktum

or/2 

Carrying capacity for Cancer 
cells , where Ktumor=2 x1010 is 
the total Carrying capacity of 
non-stem tumor cells 

cells ml-1 1 x1010 [47] 

47.  
CRmax=Ktu

mor/2 

Carrying capacity for Resistant 
Cancer cells, where Ktumor=2 
x1010 is the total Carrying 
capacity of non-stem tumor 
cells 

cells ml-1 1 x1010 Expected 

48.  k1 Saturation constant for 
inhibition of S by IFN-γ  

ng ml-1 10.0 Expected 

49.  k11 Saturation constant for 
activation of Treg by IL-10 

ng ml-1 0.001 Expected 

50.  k2 Saturation constant for 
inhibition of SR by IFN-γ 

ng ml-1 10.0 Expected 

51.  k3 Saturation constant for 
activation of C by IL-10 

ng ml-1 2.0531 Estimated 

52.  k4 Saturation constant for 
inhibition of C by IFN-γ 

ng ml-1 3.02 Estimated 

53.  k5 Saturation constant for 
activation of CR by IL-10 

ng ml-1 6.7979 Estimated 

54.  k6 Saturation constant for 
inhibition of CR by IFN-γ 

ng ml-1 6.9937 Estimated 
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55.  k8 Saturation constant for 
inhibition of TH1 by IL-10 

ng ml-1 0.01 Expected 

56.  k9 Saturation constant for 
activation of TH1 by IL-2 

ng ml-1 0.001 Expected 

57.  ktc1 Saturation constant for 
inhibition of S by Tc 

cell ml-1 1 x109 Expected 

58.  ktc2 Saturation constant for 
inhibition of SR by Tc 

cell ml-1 1 x108 Expected 

59.  ktc3 Saturation constant for 
inhibition of C by Tc 

cell ml-1 1 x109 Expected 

60.  ktc4 Saturation constant for 
inhibition of CR by Tc 

cell ml-1 1 x109 Expected 

61.  mC 
Probability of Stem cell 
transformation into Stem 
resistant cells 

- 0.01 Expected 

62.  mS 
Probability of Cancer cell 
transformation into Cancer 
resistant cells 

- 4 x10-7 [47] 

63.  p1 Probability of Asymmetric 
differentiation of stem cells 

- 0.2 [47] 

64.  p2 
Probability of Symmetric 
differentiation into two 
differentiated cancer cells 

- 0.05 [47] 

65.  r1 constant  0.0001 Expected 

66.  r2 constant  1x x10-5 Expected 

67.  Tck 
Rate of killing of tumor by Tc 
cells 

day-1 0.1 Expected 

68.   µM1Ck2 Rate of M1 activation by IFN-γ day-1 0.01 Expected 

69.  µM2Ck1 Rate of M2 activation by IL10 day-1 0.01 Expected 

70.  k7 Saturation constant for 
proliferation of M1 by IFN-γ 

ng ml-1 0.2 Expected 

71.  k10 Saturation constant for 
proliferation of M2 by IL10 

ng ml-1 0.01 Expected 

 

# Estimated parameter values have been determined by the MCMC techniques using 

the time course experiment cytometric data for cancer cell proliferation for Gastric 

cancer cell line (SGC7901) (Section 2.4.7). 

Expected parameter values are estimated by varying the parameters within the 

biologically feasible ranges found in various Literatures so as to determine its 

expected value to calibrate the model with experimental observations. 
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Table D. 2: List of Initial values 

Variable Symbol Initial Values Reference 

Stem Cell S 1 - 
Stem Resistant Cell SR 0 - 
Cancer Cell C 0 - 
Cancer Resistant Cell CR 0 - 
Type-I Tumor Associated Macrophage M1 85000 Calculated [371] 
Type-II Tumor Associated Macrophage M2 15000 Calculated [371] 
Type-I Helper T Cell TH1 71000 [16] 
Type-II Helper T Cell TH2 12000 [16] 
Cytotoxic T Cell Tc 56000 [16] 
Regulatory T Cell Treg 8000 [16] 
Interleukin-10 IL10 0.0085 [17] 
Interferon-γ IFN-γ 0.12 [17] 
Interleukin-2 IL2 0.0094 [17] 

 

 

 

 
 

Figure D. 1: Treatment conditions under varying dose of Radiotherapy, Chemotherapy and 
Immunotherapy. The scatter plot depicts (a) the fold change of tumor population and (b) TH1/TH2 ratio 
under 1000 treatment combinations. 
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Title of the thesis: Identification of Immuno-regulatory modules and optimal treatment 
strategies for eliciting effector functions against different diseases 
--------------------------------------------------------------------------------------------------------------- 
The immune system protects it from various infectious disease and cancer. However, 
regulations governing suppression of T-cells under varied antigenic challenges 
remains elusive through experimental approaches. In order to unveil the regulatory 
mechanisms underlying immune-suppression during Cancer and Leishmaniasis, we 
have used various mathematical and computational approaches, to identify the 
regulatory modules of the immunological network and design novel treatment 
strategies. 

Manual reconstruction of T-cell pathway and Boolean Modelling was used to gain a 
holistic understanding of the co-receptor mediated pathways. In silico knock-out 
analysis revealed minimal combination of proteins (TCR:CD3, CRAC and OX40) that 
are absolutely essential to achieve sustained T-cell proliferation and activation of 
effector functions. Co-receptor molecules CD27 and LTBR were identified to play 
major role in the regulation of Interleukin expression during antigenic challenges.  

For Cutaneous Leishmaniasis, signalling routes regulating the switching of T-cell 
responses from healing TH1 to non-healing TH2 response, were identified using Logical 
Steady State Analysis. Novel targets for eliciting robust anti-Leishmania immune 
response are also proposed through this study. For the study of Visceral 
Leishmaniasis, a putative host-pathogen interactome between Leishmania donovani and 
Human has been predicted using Interlog and Domain mapping strategies. Network 
analysis revealed key signalling routes mediating the host pathogen interaction. A 
novel combination of protein targets (UBC+1433Z+HS90A) has also been identified 
which governs the host immune response, parasite survival strategies and 
visceralization of the infection during Visceral Leishmaniasis. 

To study the tumor-immune interaction, an ODE based model has been developed 
related to the Seed Soil hypothesis of tumor development. Model analysis revealed the 
role of Cancer Stem Cell differentiation pattern on the development o drug resistance. 
Three novel feedback regulations governing tumor progression, resistance and relapse 
have been proposed in the study. The model has been further used to propose 
improvised combinatorial treatment protocol that shows promising results in 
suppressing resistant tumor for better Cancer remission.  
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Various T-cell co-receptor molecules and calcium channel CRAC play a pivotal role in the maintenance of cell’s
functional responses by regulating the production of effector molecules (mostly cytokines) that aids in immune
clearance and also maintaining the cell in a functionally active state. Any defect in these co-receptor signalling
pathways may lead to an altered expression pattern of the effector molecules. To study the propagation of such defects
with time and their effect on the intracellular protein expression patterns, a comprehensive and largest pathway map of
T-cell activation network is reconstructed manually. The entire pathway reactions are then translated using logical
equations and simulated using the published time series microarray expression data as inputs. After validating the
model, the effect of in silico knock down of co-receptor molecules on the expression patterns of their downstream
proteins is studied and simultaneously the changes in the phenotypic behaviours of the T-cell population are predicted,
which shows significant variations among the proteins expression and the signalling routes through which the
response is propagated in the cytoplasm. This integrative computational approach serves as a valuable technique to
study the changes in protein expression patterns and helps to predict variations in the cellular behaviour.

[Ganguli P, Chowdhury S, Bhowmick R and Sarkar RR 2015 Temporal protein expression pattern in intracellular signalling cascade during T-cell
activation: A computational study. J. Biosci. 40 769–789] DOI 10.1007/s12038-015-9561-1

1. Introduction

Exhibition of diverse patterns in the biological world has been
observed in various systems, starting from ecosystems to em-
bryogenesis and organogenesis (Othmer et al. 1993). Precise
understanding of such patterns, evolved in nature, requires
knowledge of the underlyingmechanisms thoughwhich various
components of that system interact with each other and subse-
quently emerge towards different configurations. Reaction-
Diffusion model of morphogens (Turing effect) in the develop-
ment of embryo is one of the most studied areas in the field of
pattern formation in biological system. In this model it is as-
sumed that a well-structured pre-pattern of morphogen is

formed before the embryogenesis and accordingly the cells
within the embryo respond, proliferate and develop into a
well-structured morphology (Turing 1952). Chemical rate pa-
rameters and diffusion co-efficient of morphogen determine the
chemical stability of the entire systems, which in certain cases
leads to the oscillation or unstable dynamics that may further
develop different spatial structures (Turing 1952; Maini et al.
1997). Many such models have been developed to study the
biological systems, most of which discuss either the pattern
generation in ecological systems (e.g. host–parasite interaction,
consumer–resource interactions, habitat and species richness,
etc.) or the development of body pigmentation, embryogenesis
and physiological activities (e.g. heart beats, information
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processing in neural network, synaptic pattern recognition of
immune cells, etc.) of living organisms (Cohen and Grossberg
1983; Sinha et al. 1984; Qi et al. 2001; Gilad et al. 2004; Potse
et al. 2006; Rietkerk and Van de Koppel 2008).

The counter proposal of Turingmodel ofmorphogen has also
been proposed where it is assumed that the distribution of
cellular density forms the mechano-chemical gradient in the
developing tissue and helps the cell differentiations and prolif-
eration (Murray 2003). Although later it is proven that the
phenotypic responses (e.g. cellular growth, cell death, prolifer-
ation, pigmentation, etc.) shown by a cell is not only dependent
on morphogen or mechano-chemical gradient, but also depen-
dent on its intracellular biochemical signalling cascades, which
eventually turn on or off specific sets of genes responsible for
such phenotypic responses (Raspopovic et al. 2014; Srinivasan
et al. 2014). However, it is still not clear that how these genes are
regulated by these extracellular fluctuations and how their con-
certed effort develops different robust biological patterns (Eldar
et al. 2002). During the last few decades, the advancement of
molecular biology, genomics and proteomics experiments have
come up with several significant discoveries indicating the role
of various signalling networks in different cellular physiologies
and pattern formation (Álvarez-Buylla and Ihrie 2014;
Gaarenstroom and Hill 2014; Rentzsch and Adamska 2014).
Although most of the mathematical models have focused on the
pattern formation of the phenotypic signatures of tumour growth
and embryological development, very few models have
discussed on the context of molecular basis (e.g. gene, protein
expression, signalling and metabolic network, etc.) of such
pattern development processes. One of the major reasons behind
this is the unavailability of detailed molecular mechanisms
through which the information or signal upon interacting with
different extracellular fluctuations is passed from one molecule
to another molecule inside the cell. On the other hand, analysis
of temporal protein expression patterns have proven to be im-
portant by various experimental groups (Velardo et al. 2004; Li
et al. 2014), and is of utmost importance to study different
physiological and development processes. Hence, integrating
the cellular responses with the gene/protein expression patterns
inside the cell, a comprehensive study using suitable mathemat-
ical and computational approaches is required.

Several attempts have been made to study the progression of
various cancers, birth defects, organogenesis, etc., in human
cells and tissues by studying different signalling pathways, such
as Hedgehog, Notch, MAPK, WNT, etc. (Rosner et al. 2002;
Corson et al. 2003; Chowdhury et al. 2013; Chowdhury and
Sarkar 2013; Hall et al. 2014). Moreover, during the last few
decades, researchers have also focused on the evolution of
temporal gene/protein expression patterns observed in our im-
mune system under different immunological disorders (Rangel
et al. 2004; Rosenwald et al. 2001). The immune system, the
central defence system of our body against the foreign invaders
(i.e. antigens), is constituted by different cell types, such as

lymphocytes, macrophages, etc. Out of the other cell types of
our immune system, study of gene or protein expression patterns
in intracellular activation network of T-cell (one of the most
important components of immune system) has been performed
by several research groups, by using different experimental and
computational tools and techniques (Rangel et al. 2004;
Coombs et al. 2011; Teku et al. 2014). However, one of the
main drawbacks of these techniques is that most of these
methods deal with the gene expression data obtained from
microarray experiment, which is inherently unable to correlate
various functional responses with temporal protein expression
patterns involved in T-cell signalling pathway. Hence, in order
to understand the activity of our immune systems properly, it is
very important to study this particular cell type from various
aspects.

Activation of T-cell is also a delicate system and pattern
recognition process which functions in response to different
external stimuli. At the time of activation of naive T-cell into
cytotoxic or T-helper cells, the population of naive T-cells has to
pass through the pattern recognition process of the identification
of antigenic peptide sequences (self or non-self antigen), which
in turn decides whether the naive T-cells will be converted into
the active T-cells (which will further proliferate) or inactive T-
cells (no further proliferation but the cells will survive) or dead
T-cells (which will further trigger apoptotic pathway and cell
death) (Carter 2000; Coombs and Goldstein 2005). Hence,
certain deregulation of this sensitive mechanism can destabilize
our body’s immune system and can trigger various diseases, like
auto-immune diseases, severe combined immune deficiency
syndrome (SCID), etc. (Shlomchik et al. 1987; Fischer et al.
2005; Baecklund et al. 2014). However, the complete activation
of the T-cell responses and the expression of the major interleu-
kin molecules cannot be achieved by T-cell receptor (TCR) and
MHC class II protein interaction alone, but requires the success-
ful interaction of the various co-stimulator molecules with its co-
receptors and the activation of the calcium channel as well (Chen
and Flies 2013). The exact molecular pathways involved in the
regulation of the T-cell effector molecules by the co-signalling
and the calcium pathways are still not clear and thus require a
better understanding of the intracellular T-cell activation net-
work. After receiving the signal (by interacting with the antigen
presenting cell) and the successive activation of the TCR-
mediated pathway, the co-signalling pathways, and the calcium
pathways, the expression of different cytosolic and nuclear
proteins inside the T-cell is changed, and hence such temporal
protein expression pattern can then decide the phenotypic re-
sponses to be expressed. In this work, our main hypothesis is
that the temporal protein expression patterns of various T-cell
signalling component proteins as well as the phenotypic re-
sponses (such as proliferation, inactivation, cell death, interleu-
kin production, etc.) can be regulated by tuning various co-
stimulatory and co-inhibitory molecules including Ca+2 signal-
ling pathway. Several other previously published models on T-
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cell network have not considered the effect of these parallel
pathways along with the core T-cell signalling cascades and
thus are unable to discuss the effect of these membrane bound
co-receptor molecules in the downstream of T-cell intracellular
network as well as the cross-talks with other pathways inside the
cell.

In order to accomplish this work successfully, we have
manually reconstructed a new, comprehensive T-cell signalling
pathway coupled with other intracellular important signalling
pathways (e.g. MAPK, Ca +2 signalling pathway etc.) by col-
lating the signal propagation data from various literatures and
cell signalling databases. The reconstructed pathway map of T-
cell activation, which has been used in our model, is the largest
T-cell activation pathway to the best of our knowledge till date.
Using this collated signal transduction data and the concept of
semi-dynamic Boolean or logical equations, we have construct-
ed a mathematical model of the activation of T-cell signalling
network. The initial expression levels (i.e. logical states) of all
the nodes/species of this pathway were considered from the
published microarray expression data, which is binarized by
K-means clustering method. Using this semi-dynamic compu-
tational approach, we have been able to observe various tem-
poral protein expression patterns, generated upon introducing
different stimulation and co-stimulation signal on the T-cell
receptor proteins. We also tried to correlate the temporal ex-
pression of proteins with three T-cell populations, i.e. Activated
or Proliferated T-cells, Inactive T-cells and Dead T-cells. Using
our model, we have been able to reproduce such phenotypic
responses of T-cells reported in different published experimen-
tal results. We have also been able to predict in silico temporal
protein expression patterns and its effect on cellular phenotypic
responses by perturbing the expression of two important co-
stimulatory proteins, viz. CD27 and LTBR. Through this work,
we are proposing a novel computational approach, which is
easy to implement for understanding the correlation of temporal
protein expression pattern with different phenotypic expressions
generated upon the activation of T-cell signalling network.
Moreover, by successfully simulating different experimental
scenarios with the protein knock-out and/or knock-in condi-
tions, our model depicts its potential to predict future drug
targets for the treatment of various T-cells, immune-related
diseases. We hope this approach will be helpful for the theoret-
ical and experimental biologists to dissect its intricate complex-
ities while studying various pathological disorders directed by
T-cell activation process.

2. Materials and methods

2.1 Pathway reconstruction

In order to capture all the regulations that operate to control
the proliferation and activation of a T-cell, getting a

comprehensive picture of the entire signalling cascade in-
volved in the process was an essential prerequisite. Since a
complete map of the pathway was lacking from any single
source, the pathway had to be reconstructed by manually
collating human cell specific data from about 21 popular
signalling pathway databases, such as, KEGG, Protein
Lounge, Pathway Central, Biocarta, NetPath, etc. (Kanehisa
and Goto 2000; Nishimura 2001, Kandasamy et al. 2010);
protein-protein interaction databases, such as, HPRD,
BioGRID3.2, etc. (Prasad et al. 2009; Chatr-aryamontri
et al. 2013) along with more than 200 literatures published
in peer reviewed journals (searched using PUBMED and
Google Scholar). The protein-protein interaction data obtain-
ed were knitted together to reconstruct the entire signalling
cascade. The diagram of the reconstructed pathway was
drawn using CellDesigner version 4.3 (Funahashi et al.
2003), a freely available software package that allows to
easily create gene-regulatory and biochemical network im-
ages using a graphical user interface. The overall reaction
process of this pathway starts at the immunological synapse,
the signal is then transduced via the T-cell membrane pro-
teins, comprising of the receptors and co-receptors, down to
the cytoplasmic proteins, which ultimately leads to the acti-
vation of certain transcription factors. These activated tran-
scription factors then translocate into the nucleus and induce
the expression of important output proteins, and cytokines
(effector molecules) that are crucial in maintaining the T-cell
proliferation as well as in mediating the clearance of the
antigen that has entered our body.

2.2 Logical analysis

The dynamic analysis of such large network requires precise
kinetic data, which is rarely available and thus we had to
restrict ourselves to a semi-dynamic approach of modeling
this signalling pathway, i.e. ‘Logical Analysis’, where an up-
regulation in the protein expression is considered as ‘1’ or
‘ON’, while a down-regulation of a protein expression is
considered as ‘0’ or ‘OFF’ (binary states). The logical equa-
tions of the target molecules have been written using differ-
ent combinations of molecules (‘source’) along with ‘AND’,
‘OR’ and/or ‘NOT’ (logical gates) relations depending on
how these molecules influence the expression of each other
in a biologically relevant way. The molecules in the model
associated with ‘AND’ operation signifies the cumulative or
multiplicative effects of a combination of proteins on their
downstream targets, whereas the presence of ‘OR’ operation
signifies the alternative routes of signal propagation. The
molecules kept in ‘NOT’ relation are principally the inhibi-
tors of the target molecule. Different biochemical reaction
mechanisms (such as phosphorylation, transcriptional acti-
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vation, ubiquitylation, nuclear transport, inhibition, and dif-
ferent feedbacks reactions, etc.) are considered in the model
and transformed in terms of Boolean or logical equations.

For example, the Src family kinase (SFK), FYN is regu-
lated by the complex formed by the association of the trans-
membrane adaptor protein PAG and protein tyrosine kinase
CSK (PAG:CSK). These two proteins remain associated
with each other which inhibit the activation of the FYN
protein. The other two proteins regulating the expression of
FYN are tyrosine phosphatase CD45, which positively reg-
ulates the activation of Fyn, and the proto-oncogene CBL,
which has an inhibitory effect. The PAG:CSK complex
being a strong negative regulator of FYN, its absence is
absolutely necessary even in the presence of its positive
regulator CD45. Using this biologically relevant information
from the literature sources, one can thus write the following
equation of the above reaction mechanisms (Andoniou
et al. 2000; Brdička et al. 2000; Trowbridge and Thom-
as 1994).

FYN! ¼ NOTPAG:CSKð ÞOR

CD45AND NOTPAG:CSKð ÞAND NOTCBLð Þ½ &

ð1Þ

From the reconstructed pathway consisting of 206 mole-
cules (nodes) and complex mesh-like network formed of 435
protein–protein interactions, our model consists of such 167
logical equations (hyper-arcs), which control the expression
pattern of the dependent variables, otherwise called the ‘tar-
get molecules’ (nodes). The remaining 39 independent ‘In-
put’ molecules (which did not have any transition functions
governing update rules) were considered as the inputs to the
system, which includes 13 ligand molecules (e.g. MHC
CLASS II-Ag complex, LIGHT, B7_1, B7_2, CD70, etc.)
that come into play in the extracellular environment (APC
surface in case of T-cell), 2 non-protein molecules and

remaining are core T-cell protein molecules. Another 39
molecules (e.g. BCL2, FKHR, P21, BCLX, IL1, IL2, etc.)
were considered as the ‘Output’ of the system, many of
which have a feedback that has a positive or negative impact
on cell proliferation. The equations were written using Py-
thon code and simulated using the BooleanNet-1.2.4 soft-
ware (Albert et al. 2008).

2.3 Functional response

Three additional nodes were added to the model signifying,
Cell Proliferation (‘Proliferating T-Cell’), Cell Survival (‘In-
active T-Cell’) and Cell Death (‘Dead T-Cell’). The Logical
Equations for these nodes were written using the appropriate
‘Output’ molecules (related to that particular phenotype) of
the model, depending on the biological functions of the
molecules and the phenotype they are associated with, re-
spectively. The details of the logical constructions of these
nodes and corresponding equations according to their bio-
logical functions are discussed subsequently.

2.3.1 Cell proliferation: After encountering an Antigen
Presenting Cell (APC), T-cell proliferation increases. This
process is regulated by different Cyclins (CYCLIN_A,
CYCLIN_D1 and CYCLIN_D2) and Cyclin Dependent Ki-
nase (CDK_4) that mediate cell division (Berridge 2014;
Wells and Morawski 2014), the anti-apoptotic molecule
(BCLX) that prevents cell death (Rogers et al. 2001), inter-
leukins, such as, IL2, IL4 and IL6 (Kupper et al. 1987;
Cantrell et al. 1988; Van Epps 2006) and TNF-like mole-
cules (FASL) that enhances the proliferation of the immune
cells (Suzuki et al. 2000). The logical equation governing the
fraction of cells in the proliferative state after receiving the
stimulus from an APC is as follows:

ProliferatingT ‐Cell ¼ IL2ANDCYCLIN AANDCYCLIN D1ANDCYCLIN D2ANDBCLX ANDCDK 4AND IL4ANDFASLAND IL6½ & ð2Þ

2.3.2 Cell survival: When a T-cell has not encountered
an APC and has not received any stimuli, it remains in
its naïve resting state and do not proliferate, although its
normal cell survival and cell division may still continue
to occur. This resting state of T-cell is maintained mainly
by the anti-apoptotic factors (BCL2 and BCLX) that

keep the T-cell alive, while the normal cell homeostasis
is maintained by the TNF molecules (e.g. TNF_ALPHA)
(Shi et al. 2007), and cell cycle proteins: Cyclins
(CYCLIN_A, CYCLIN_D1 and CYCLIN_D2) and
CDKs (CDK_4) (Berridge 2014). The logical equation
for this phenotype of T-cell is written as follows:

InactiveT‐Cell ¼ CYCLIN AANDCYCLIN D1ANDCYCLIN D2ANDBCL2ANDBCLX ANDCDK 4ANDTNF ALPHA½ & ð3Þ
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2.3.3 Cell death: The probability of T-cell proliferation and
survival decreases and that of cell death increases whenever
the proteins promoting T-cell proliferation as well as surviv-
al are absent, and an immunosuppressive condition is pro-
duced by the presence of certain molecules, like IL10 (Akdis
et al. 2000). Such a situation has been termed as ‘T-cell
death’ or ‘Dead T-Cell’ in our model. Hence, following the
logical relationship the equation for such a phenotype is
written as:

Dead T‐Cell

¼ IL10AND NOT InactiveT‐Cellð ÞAND NOTProliferatingT‐Cellð Þ½ &

ð4Þ

2.4 Update rule of transition functions

The Boolean transition equations were updated at each step,
first ‘Synchronously’ (for the purpose of validation), and
later ‘Asynchronously’ (for further analysis). In the synchro-
nous model, the assumption is that all molecules are updated
at the same time. However in a signalling network the
protein expression levels are likely to change at different
points of time and updates randomly (Albert et al. 2008),
hence to capture such scenario, in the asynchronous model
we have assumed asynchronous/random update/execution of
the Boolean transition equations.

2.5 Microarray data extraction

After constructing the model, the next most important step
was to assign initial values to the individual nodes. The
value of all the nodes at step 0 (time point 0 h) was initialized
using the binarized values of the extracted microarray data
obtained from EBI-ARRAYEXPRESS microarray database
[ArrayExpress ID: E-GEOD-48978] (Parkinson et al. 2005).
The differential gene expression data obtained from the
database was a time-course microarray data of gene expres-
sion kinetics of human T helper cells at six time points (i.e. at
0, 2, 4, 6, 24 and 72 h respectively) over a time period of 3
days. Array used in the experiment was an Affymetrix HT
HG-U133+ PM Array Plate (Zhao et al. 2014). However, it
was observed that the protein expression values of the mi-
croarray data decline after the 6 h time-point. Since the
constructed model is of T-cell activation, and we are inter-
ested in the study of interleukin expression (which is highest
at 6 h time point (Yeh et al. 2008)), we have not considered
the expression data of 24 and 72 h time-points, and only the

values of 0, 2, 4 and 6 h values were used for further
analysis.

2.5.1 Binarization of expression data: The expression data
at time points 0, 2, 4, and 6 h of the RNA transcripts
corresponding to the proteins in our model was extracted.
Out of the 206 molecules in our model, data of 168
molecules was obtained. The remaining molecules were not
found in the array which consisted of 7 APC molecules, 7
inorganic molecules, 11 protein complexes, 7 nuclear
components of transcription factors of NFKB, NFAT, etc.
(their cytoplasmic counterparts were already considered
among the 168 molecules extracted), and 6 other protein
molecules. The expression values of the 168 molecules
considered for binarization were the mean of the
expression values of the RNA transcripts of different
isoforms/or subunits of the corresponding protein molecules.
The mean value of the individual molecules at each of the
four time points was chosen and then binarized in ‘R’ using
the BoolNet 1.63 package’s binarization function (Müssel
et al. 2010). The binarization was done using K-means
clustering method (discussed in the next sub-section).

The binarized data at 0 h time point was used to initialize
the system (i.e. value of the simulation at time step 0). The
initial value of the 7 APC molecules (viz. MHC CLASS II-
Ag, B7-1, B7-2, CD70, LIGHT, PDL and TNFSF9) and 3
non-protein molecules (CRE, CALCIUM-OUT and DAG)
were considered ‘ON’ to activate/provide a stimulus to the
T-cell signalling cascade. All the remaining molecules, the
expression data of which could not be obtained from the
microarray expression data could safely be initialized as
‘OFF’, since all of them will get updated in the next step
of iteration using the transition functions considered in the
model.

2.5.2 K-means clustering: K-means clustering is used to
partition a given set of input data in K-th partitions or cluster.
However, in our analysis we used this powerful statistical
technique to binarize the time course micro array expression
data (Zhao et al. 2014) and then used the binarized data as
input for Boolean model. In order to perform the K-means
clustering on the time series microarray expression data, we
have used Boolnet (a software package of ‘R’) (Müssel et al.
2010).

2.6 Simulation of the model

2.6.1 Validation: In order to validate the model, both the
synchronous and asynchronous models were run for
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different time steps and the time step at which the simulation
reached its steady state was determined. The asynchronous
model was simulated for 100 times (range =100) and the mean
of the expression value for each time point of each node was
taken. With the 0 h value as initial value and the APC
molecules as ‘ON’, the 39 output molecules of the model
were validated with 0, 2, 4 and 6 h binarized expression
data, the time when the interleukin production is highest/ at
its peak and the T-cell is most active (Fukushima 2003; Yeh
et al. 2008). Here each time step was assumed to be equal to
0.5 h. This calibration of the time scale was optimized only
after determining the time step at which the model reached its
steady state.

2.6.2 Perturbation analysis: The model was further analysed
by perturbing it with different combinations of knock-in and
knock-out mutations. The in silico knock-in and knock-out
mutation were generated keeping the value of the target
molecule as constitutively ‘ON’ or ‘OFF’ throughout the
simulation by using the built-in library function
‘boolean2.modify_states’ in the BooleanNet-1.2.4 software
(Albert et al. 2008). To analyse the significant variations
(p<0.05) in the temporal protein expression patterns observed
in mutated scenario with respect to the normal scenario,
Mann Whitney U Test was performed and important proteins
with significant variations are extracted (McKnight and
Najab 2010). Through this study, we can identify the pro-
teins, which are being regulated upon certain perturbations,
and can simultaneously identify the routes along which the
effect of that perturbed signal is processed.

3. Results

3.1 Reconstructed T-cell signalling pathway

The T-cell pathway that has been reconstructed (shown in
figure 1) provides a complete picture of the entire signalling
cascade. In this pathway, we have taken into account all the
co-stimulatory and co-inhibitory receptors that are expressed
on the surface of the T lymphocyte and paired them with
their corresponding ligand molecules expressed on the sur-
face of the APC. These co-stimulatory pathways play a
pivotal role in regulating the T-cell activation, effector func-
tion and survival, without which TCR alone cannot provide
the signal for the full activation of the cell (Chen and Flies
2013). The pathway clearly shows the Antigen (Ag) in
complex with the MHC Class II molecule, the 5 co-
stimulatory (CD70, LIGHT, TNFSF9, OX40L and ICOSL)
and 1 co-inhibitory (PD1) ligand molecules that are
expressed on the APC. The B7_1 and B7_2 molecules have
a dual role to play. These molecules can interact with two
types of co-receptors on the T-cell surface, viz. the CD28 co-
stimulatory co-receptor and the CTLA4 co-inhibitory co-

receptor (Chen and Flies 2013). In the pathway (figure 1),
the molecules have been coded in different colours accord-
ing to their location in the membrane (dark green), cyto-
plasm (yellow) and nucleus (orange). The pathway shows 39
output molecules (coloured light green), many of which have
feedback loops (colour-coded as deep pink lines) that regu-
late the proliferation of the T-cell pathway in an auto-
regulatory fashion (e.g. IL2 has a positive impact, whereas
PD1 and CTLA4 have a negative effect). The functions of
the co-stimulatory co-receptors have further been elucidated
by different perturbation studies discussed subsequently. The
pathway we report consist of 206 molecules (nodes) and
complex mesh-like network formed of 435 protein–protein
interactions, which is the highest as compared to other T-cell
signalling pathway models reported till date in different
databases and literatures (Kanehisa and Goto 2000; Saez-
Rodriguez et al. 2007).

In order to decompose this complex pathway and study
the propagation of signal through this complex network of
proteins and molecules, it was essential to further analyse
this pathway using Network Analysis and the semi-dynamic
Boolean approach (Chowdhury et al. 2013). But since our
aim was to study the dynamics of the signal propagation over
time we did not perform network analysis, which is a static
approach. Rather, we used this pathway to construct the
logical model to understand the dynamics of protein expres-
sion during the transition of a T-cell from its inactive to its
activated state.

3.2 Model analysis

3.2.1 Simulation and state transition: The Boolean model
constructed was simulated first synchronously and then
asynchronously. The input for both the cases was the 0 h
binarized data extracted from mRNA expression profile of
normal human T-cell (Zhao et al. 2014). The models were
iterated for 21 rounds of update (time-steps) to see the
pattern of signal flow in the network, starting from the
receptor and co-receptors down to the cytoplasmic proteins,
leading to the activation of the transcription factors and
finally the expression of the 39 output proteins. The model
reached its steady state at 14th rounds of updates (i.e. 7 h) for
the synchronous and at 10th time points (i.e. 5 h) in the case
of asynchronous simulation. It is worthy to note that exper-
imental data is also taken up to 6 h durations with 2 h
interval. In order to compare the synchronous and asynchro-
nous temporal protein expression pattern with the experi-
mental data, we have plotted the experimental as well as
simulation data in figure 2, where the state transition pattern
of the 39 output molecules (see supplementary table 1) were
plotted as a continuous heat plot (figure 2A: microarray data,
figure 2B: synchronous data, figure 2C: asynchronous data).
While the synchronous deterministic model simulation
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(figure 2B) show distinct up and down-regulation of the pro-
tein expressions of one run of simulation, the heat-plot of the
asynchronous simulation (figure 2C) show a gradual change of
protein expression pattern as a result of averaging the values of
protein expression for each node at each of the 21 time-steps
for 100 runs of the simulation. The pattern thus generated
shows the dynamics and fluctuations in the protein expression
over the time period of T-cell activation. By using this asyn-
chronous update, we are able to rule out certain limitations of
the deterministic or synchronous Boolean modeling approach
(the ‘all’ or ‘none’ output), as by this method we are able to
generate a protein expression pattern that clearly shows that
even though some proteins in figure 2B shows a complete
down- regulation at certain time points, it becomes evident
from figure 2C that some amount of protein expression is still
occurring in low amount (e.g. in figure 2B the proteins
CTLA4, PD1, IFN-Gamma apparently show an absence of
expression at certain time points between 1.5 and 5.0 h, where-
as figure 2C shows that the expression is not completely
absent, and a low level of expression continues to occur at
those time points – comparable with the microarray data).
Also, figure 2C eliminates the delay in protein expression of
many interleukins and STAT proteins as shown in figure 2B,
and gives us a better understanding of the change in expression
dynamics of the vital T-cell output proteins over time.

3.2.2 Phenotypic enrichment of output proteins: The 39 output
proteins were classified according to the function regulating the
behaviour of a T-cell (supplementary table 1). The proteins

were grouped into five classes: (a) T-cell proliferation:
consists of 12 proteins, which includes proteins/molecules
responsible for the T-cell survival, anti-apoptotic molecules,
cell cycle proteins, TNF molecules (Suzuki et al. 2000),
transcription factor STAT5 (Welte 1999), etc.; (b) Negative
regulator of T-cell proliferation: consists of 7 proteins
including PD1 and CTLA4 co-receptors that aid in co-
inhibition of T-cell pathway (Parry et al. 2005), immuno-
suppressant TGF_BETA (Delisle et al. 2013), NUR_77,
which is a calcium-mediated T-cell apoptotic factor (Youn
and Liu 2000), etc.; (c) Immune Response: consists of
molecules responsible for initiating immune responses in
the system, examples include GMCSF (Shi et al. 2006),
Interferon IFN-Gamma (Green et al. 2013), and STAT1 and
STAT3 transcription factors responsible for transcription of
genes involved in eliciting the immune response (Barbi
et al. 2009); (d) Interleukins: includes 11 interleukin mole-
cules possessing different functions, e.g. IL2, IL4, and most
of the other interleukins positively regulates T-cell prolifer-
ation and are involved in immune responses, while IL10 is
involved in T-cell apoptosis (Akdis et al. 2011) and (e)
Growth factors: includes proteins (e.g. PDGF, PDGFRB,
VEGF, HBEGF) secreted by the T-cell that often acts as
potent mitogenic factors for other cell and mediates
immunesupression (Blotnick et al. 1994; Daynes et al.
1991; Mor et al. 2004; Ohm et al. 2003).

3.2.3 Comparison with experimental observations: The 14
time-steps that were required for the model to reach its steady

Figure 2. Continuous heat plot showing state transition pattern of output proteins. (A) Binarized microarray data of 39 T-cell output
proteins at 0, 2, 4 and 6 h, (B) temporal protein expression pattern observed in synchronous update up to 21 time points (0 to 10 h), (C)
temporal protein expression pattern observed in asynchronous update up to 21 time points (0 to 10 h). Red-coloured cell denotes an up-
regulation in protein expression, while blue signifies down-regulation.
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state was scaled to 7 h time for the purpose of validation of the
model. The time scale division was chosen keeping inmind the
experimental evidences, which indicate 6 h to be the time
required for the full activation of a naïve T lymphocyte, when
the production of the interleukins is at the highest peak
(Fukushima 2003; Yeh et al. 2008). In order to compare the
simulation results of our model with the experimental data, the
16 time points (up to 8 h; each time-step corresponds to 30
minutes) of both the synchronous and asynchronous simula-
tion results have been plotted along with four discrete time
points (0, 2, 4 and 6 h) from the experimental observation
(figure 3 and supplementary figure 1).

The results of our simulation obtained at the time step 12
(~6 h) of the 39 output proteins were then validated with the
6 h binarized experimental data. Here, while comparing
deterministic or synchronous simulation vs. experimental
data, we found the logical states of 34 proteins (from syn-
chronous updates) out of the 39 output proteins were
matching with the 6 h protein expression results observed
in the experimental data. The percentage of validation of our
simulation results with the experimental data have been pro-
vided in table 1. Out of the remaining proteins, the expressions
of which appeared to differ with the deterministic model,
TGF_BETA matches with the asynchronous model with a
small time lag, while NUR_77 protein showed down-
regulation in protein expression slightly earlier than the ex-
pected 6 h time step. Both the synchronous and asynchronous
simulations showed a clear match in the nature of the curves.
Also, we found that the deterministic model showed a beauti-
ful match of 14 very essential T-cell proteins (viz. BCL2,
CYCLIN_D2, FASL, FKHR, GMCSF, IL1, IL2, IL3, IL8,
P21, P70, PDGF, STAT3 and VEGF) with the experimental
microarray data at all the four time steps i.e. 0, 2, 4 and 6 h
respectively. In supplementary table 1, the corresponding phe-
notypic responses of these 14 protein molecules are men-
tioned. It is interesting to see that the T-cell proliferating
factors (such as anti-apoptosis, cell cycle progression, cell
survival etc.) governed by the proteins BCL2, CYCLIN_D2,
FASL were up-regulated during T-cell activation in both the
synchronous and asynchronous simulation results, and succes-
sively validated against the experimental findings (figure 3).
On the other hand, the expression of apoptotic factor FKHR
was also found to be down-regulated in our simulation result
and well matched with the experimental observations (fig-
ure 3). Down-regulation of this protein is required during the
T-cell proliferation process after T-cell activation. Simulta-
neously, the up-regulation of immunoresponsive proteins,
such as, GMCSF and STAT3, and the interleukin expressions
(e.g. IL1, IL2, IL3, and IL8) are also important during the T-
cell activation process. In our simulation outcomes, we have
found the exact outcomes, which are well corroborated with
the experimental data (figure 3). However, to maintain the
homeostasis of T-cell proliferation, the cell cycle progression

inhibitor P21 was found to be simultaneously up-regulated in
our simulation results. Important growth factors, such as,
PDGF and VEGF, which were found to be up-regulated in
the experimental data, were also shown to be up-regulated in
the simulation outcomes. Hence, on the basis of these valida-
tion results, it can be concluded that the model outcomes
generated by using synchronous and asynchronous update
rules are correctly predicting the temporal protein expression
patterns in T-cell signalling network during T-cell activation
procedure and thus prove the robustness of our in silicomodel.

3.3 Phenotypic pattern generation

3.3.1 Scenario Creation: The equations of the three nodes,
viz. Cell Proliferation, Cell Survival and Cell Death, related
to the T-cell phenotypes, which have been defined in sec-
tion 2 contains various combinations of these output mole-
cules according to the functions that they are associated with.
The values of these three nodes were then plotted in different
scenarios that were created by performing various perturba-
tions to the system.

(i) Validation of equations depicting different phenotypes

a) LAT mutation: The equations for the study of the
phenotypes were validated by comparing the change
in the phenotypes observed in experimental studies
after performing different perturbations to the model
and asynchronous simulation. For this purpose, a study
on LAT mutation was chosen, and we attempted to
reproduce the experiment to observe the changes in the
phenotypic expression patterns (Sommers et al. 2002).
In this in silico experiment, the trans-membrane protein
LAT was knocked out by keeping it constitutively in
the ‘OFF’ state, so that it cannot transduce any signal
downstream. The knock-out mutation of LAT, a very
important protein molecule regulating the T-cell sig-
nalling cascade, leads to poor proliferation of the active
T-cell population (figure 4A). This poor proliferation
of the T-cell population could only be reverted by
turning the CRAC channel constitutively ON (which
reproduces the same effect as using Inonomycin re-
ported in the experiment), leading to an increased
influx of calcium, which activates the calcium pathway
inside the T-cell (Sommers et al. 2002).

Although the stimulation of the TCR:CD3 complex
and the CD28 co-receptor molecules in LAT knocked-
out T-cells (figure 4B) reached its proliferation dynam-
ics (shown as green lines) at steady state (i.e. prolifer-
ation reached steady state at 10th h time-step, which
signifies delayed proliferation in figure 4A, and at 9th h
time-step signifying early proliferation in figure 4B)
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earlier than the no stimulation scenario (figure 4A), but
it was unable to completely overcome the deficit in
proliferation of the T-cell population between the du-
ration 4th to 8th h time-steps. On the other hand it is
reported in the experiment that the CRAC channel was
enough to induce a much better proliferation in the
LAT mutated condition both in presence and absence
of additional stimuli, which was also observed through
our simulation (figure 4C-4D) (Sommers et al. 2002).

Similarly in the cases of inactive T-cell frequency and
T-cell death frequency curves in figure 4A and 4B
show two local maxima near the 2nd and 7th h time-
points, signifying higher chances of the T-cell to re-
main in the inactive state or die. Whereas in the CRAC
active situations (figure 4C and D) the inactive T-cell
frequency and T-cell death frequency curves show
only a single peak around 2nd h time-point signifying
that in CRAC stimulated situation the probability of

Figure 3. Protein expression dynamics observed in Experiment, Synchronous and Asynchronous simulation. ‘Experimental’ data is the
binarized time course microarray expression data of total 39 output proteins of the model, which is compared against the ‘synchronous’ and
‘asynchronous’ simulation results. Out of the 39 output proteins, the expressions of total 34 proteins match at 6th h, while the temporal
expression patterns of 14 proteins (viz. BCL2, CYCLIN_D2, FASL, FKHR, GMCSF, IL1, IL2, IL3, IL8, P21, P70, PDGF, STAT3 and
VEGF) from the simulations match exactly with the experimental data at all the four time points (0, 2, 4, and 6 h). The expression dynamics
of the remaining 25 proteins are presented in supplementary figure 1.
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T-cell inactivation is much reduced. The result of the
simulation has also been summarized in table 2.

b) Effects of co-receptor signalling: The ‘two-signal
model’ states that, for the activation of naïve T-cell,
two signalls are required: (i) signal elicited from the
interaction of the TCR: CD3 complex with the
MHC:Antigen complex presented on the APC
membrane; and (ii) the co-stimulatory signalls ema-
nating from APC that leads to the activation of the
co-receptors present on the T-cell surface (Chen and
Flies 2013). Without this second co-stimulatory sig-
nal, the T-cell cannot sustain its proliferation for
long, and this will ultimately lead to a state of
unresponsiveness, called ‘T-cell anergy’ or cell
death (Yamagishi and Watanabe 2012).

In order to capture the effect of these co-receptor
molecules and ion channel on cell phenotype dy-
namics, we have performed a perturbation analysis,
the observations of which have been tabulated in
table 3 and the corresponding graphs have been
plotted in figure 5A–G. Here we observed that com-
plete sustained proliferation of the T-cell population
can only be achieved when TCR along with the co-
receptor molecules and the CRAC channel are acti-
vated together (figure 5F and 5G). TCR when acti-
vated alone (figure 5B) showed a phenotypic
behaviour similar to the no stimulation condition
(all stimulations ‘OFF’, figure 5A), where a high
frequency of inactive cells was observed, and the
frequency of proliferative cells was low (Yamagishi
and Watanabe 2012). On the other hand, CRAC
when activated alone (figure 5C) can lead to an
increase in T-cell proliferation initially (Qu et al.
2011), which after sometime started oscillating with
cell death curve due to prolonged exposure to cal-
cium influx, which activates NFAT that controls
two opposing T-cell phenotypes, i.e. cell prolifera-
tion and cell death (Qu et al. 2011; Yamagishi and

Watanabe 2012). The situation was also similar
when TCR:CD3 and CRAC were activated simulta-
neously (figure 5E). The importance of CRAC
channel in the regulation of T-cell proliferation be-
comes evident further in figure 5D, where we ob-
served that in spite of all the stimulations being
present, CRAC knocked-down mutation blocked
cell proliferation completely. The oscillation of pro-
liferation and death curve observed in figure 5C and
5E could be overcome by activating the co-
stimulatory receptors (figure 5F and 5G), where a
full proliferation occurred and the cell death curve
declined (Rogers et al. 2001).

(ii) Effect of multiple mutations on Interleukin Production

Biological networks are highly robust systems, and
thus a single mutation usually cannot perturb the entire
signalling cascade as many alternative paths exist
(Barabasi and Oltvai 2004). Diseases are mostly caused
as a result of multiple mutations. The effects of such
multiple mutations have also been observed in the de-
regulation of different cell types including T-cells, where
severe pathological manifestations have been observed
by several research groups (Loeb et al. 2003; Buckley
2004; Chowdhury et al. 2013). Simultaneously, in other
experiments, significant variations in interleukin produc-
tion in different pathological conditions or diseases have
also been reported (Hirano andKishimoto 1989; Hirooka
et al. 1993; Street 1995). However, the effects of multi-
ple mutations on interleukin productions mechanism are
not observed thoroughly by any other experiments and
hence the mechanism, which govern theses phenomenon
is not clear yet. Although the effect of few co-stimulatory
molecules (e.g. CD28-B7, CD40-CD40L), which regu-
late the interleukin production (Cella et al. 1996; Harris
and Ronchese 1999), and the deregulation in interleukin
expression as a consequence of their mutation have been
discretely studied, but the multiple mutation of other co-
stimulatory molecules on interleukin production is yet to
be analysed extensively. Hence, in this study we have
focused on the mutations of co-stimulatory proteins
CD27 and LTBR and analysed their effect on interleukin
production. It is worth to mention that although here we
have created one multiple mutation scenario, but one can
also generate different conditions using our in-silico
model by altering the logical states of different pathway
components.

a) CD27 and LTBR knock-out scenario: The co-
stimulatory receptors CD27 and LTBR (influencing
the NFKB pathway) are involved in increased T-cell
proliferation (DeBarros et al. 2011; Wang and Fu
2004), and the mutations of these molecules have

Table 1. Validation of results

Total number of species 206

Number of output* molecules 39
No of output molecules matching
at 6 h

34 (87.18%)

No of output molecules matching
at 4 h

27 (69.23%)

No of output molecules matching
at 2 h

20 (51.28%)

No of molecules matching at
every time point

14

* Protein molecules (e.g. Interleukins, cytokines, growth factors)
which are expressed at the end of the signalling pathway.
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been implicated in different immune-deficient con-
ditions (Seymour et al. 2006; van Montfrans et al.
2012). In this study, we have observed that CD27
and LTBR together are responsible for the regula-
tion of cytokine production. Using this in-silico
knock-down model of CD27 and LTBR proteins,
we observed that the mutation of these molecules
may lead to significant decrease in cell proliferation
(figure 6B) as compared to the normal scenario
(figure 6A), by decreasing the interleukin produc-
tion (figure 6C–D). As compared to the normal
scenario of interleukin expression pattern
(figure 6B), the mutational analysis showed these
co-stimulatory receptors can regulate 6 out of 11
interleukin molecules considered in our model, out
of which the expression patterns of five interleukins
showed an oscillatory behaviour (viz. IL1, IL12,
IL3, IL6 and IL8) while IL2 showed a delay in
activation (figure 6D). The down-regulation of these
six interleukins, which are mostly involved in T-cell

proliferation (see supplementary table 1 for individ-
ual function), accounted for the decrease in T-cell
proliferation and rise in T-cell death phenotype as
shown in figure 6C. As the mutation of these mol-
ecules are not involved in controlling the normal cell
cycle proteins, the function defining the probability
of T-cell survival (denoted by the frequency of
Inactive T-cell) remains unchanged.

b) Fluctuations in intermediate proteins and other out-

put proteins: To find out the reason/ mechanism for
the deregulation of the interleukin production and the
change in phenotypic dynamics (mentioned above),
we performed the Mann Whitney U test, where we
found that the mutation of these two genes leads to an
altered expression of 25 genes in the entire network.
Here, we observed that in addition to the NFKB
pathway (NIK-mediated non-canonical NFKB path-
way) molecules, CD27 and LTBR can also regulate
the expression of the MAPK pathway molecules
(MEKK, MKK4/7, COT, GCKR) and the JNK

Figure 4. Cell Phenotype in different situation under LAT mutated condition. Frequencies of Proliferating T-cells, Inactive T-cells, and
Dead T-cells in LAT knock-out and (A) without any stimulation; (B) TCR:CD3 and CD28 stimulation; (C) TCR:CD3, CD28 and CRAC
channel stimulation; (D) only CRAC channel stimulation conditions respectively. The frequencies of Proliferating T-cell, Inactive T-Cell
and Dead T-cell are shown in Green, Blue and Red lines, respectively.
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pathway molecules (T3JAM), which again is respon-
sible for the regulation of a collection of other impor-
tant T-cell molecules that regulates its proliferation,
survival and effector functions. The remaining mole-
cules that are regulated by these two co-receptor
molecules include TRAF2, TRAF3, IL2R, GMCSF,
CCL19, VEGF, GLK, RIP1, TAK:TAB complex and
IKK-Alpha, all of which plays a very important role
in the regulation of T-cell activity. CD27 and LTBR
also regulate the expression of TRAF1 protein, which
is known to have an inhibitory effect on NFKB
(Zapata and Reed 2002). From our model, we further
observed that a knock-out mutation of TRAF1 can
nullify this effect (i.e. the effect of CD27 and LTBR
mutation) of down-regulation of cell proliferation to a
great extent (data not shown).

4. Discussion

Integration of apparently diverse two biological phenomena
– gene/protein expression and phenotypic responses can
only be done by analysing different signalling pathways
(e.g. Hedgehog, Notch, T-cell receptor pathway, etc.), which
play a vital role in receiving the signal from extracellular
regions, processing the signal in the cytoplasm followed by
the regulation of gene transcription network inside the nu-
cleus (Chowdhury et al. 2013). Hence, successful execution
of these reaction mechanisms requires proper regulation of
the activity of some biomolecules (e.g. genes, proteins, ions,
metabolites, etc.) at precise time points. As a matter of fact, it
is obvious that certain deregulation of these concerted efforts
may trigger various abnormalities in our body and can cause
various diseases such as cancer, tumour, auto-immune dis-
eases, etc. (Parekh 2010; Chowdhury et al. 2013). In order to
know these diseases properly, it is indeed necessary to un-
derstand the temporal protein expression patterns which are
associated with these severe diseases through different sig-
nalling pathways.

However, monitoring the temporal protein expression
patterns at the time of signal propagation in intracellular

signalling pathway is a time-consuming and complicated
process. Hence, in this context, a well-established computa-
tional approach can perform better and can generate expect-
ed results for studying different intracellular pathways within
a short interval of time (Orton et al. 2005; Chowdhury et al.
2013; Chowdhury and Sarkar 2013). The importance of T-
cell signalling pathway study needs no special mention.
Several modelling and computational studies (Sherriff and
Sarkar 2008) on the core T-cell signalling network have
revealed numerous hidden facts about this pathway, but so
far no study has considered the importance of all the co-
receptor signalling pathways including the core network
during T-cell activation. A previous study using systems
level model on the sequential phosphorylation of T-cell
antigen receptor (TCR) by LCK molecule has revealed the
importance of having multiple phosphorylation sites on TCR
and the successive differential binding of ZAP70 on those
phosphorylated sites with ultrasensitivity or switch-like re-
sponse archi tec ture in TCR signal l ing network
(Mukhopadhyay et al. 2013). In another study, the activation
mechanism of primary T-cell by TCR, CD4/CD8 co-recep-
tor, and CD28 molecules after encountering with APC has
been studied using Boolean formalisms (Saez-Rodriguez
et al. 2007). In the successive study, the same model has
also been studied as a continuous model by transforming its
Boolean formalisms to evaluate the temporal behaviour of
the entire TCR network by measuring the time course con-
centration level of its component protein molecules
(Wittmann et al. 2009). In order to encounter the stochastic
effect of the protein expression pattern of T-cell signalling
network in large granular lymphocyte (T-LGL) leukemia
condition, a study has also been performed by using the
asynchronous Boolean update rules on the T-cell network
(Saadatpour et al. 2011). In this study, the author has mainly
used core TCR network to study the network dynamics of T-
LGL and successively identified 19 possible therapeutic drug
targets. However, it should be noted that all of these models
have mainly considered the core T-cell pathway, although the
experimental studies have already revealed the importance of
other co-stimulatory and co-inhibitory accessories, which also
require in parallel for the proper functioning of core T-cell
network (Chen and Flies 2013). The effect of temporal protein
expression patterns of the T-cell output molecules by

Table 2. LAT mutation analysis

Mutation

Knock-in (‘ON’) Knock-out (‘OFF’) Observation Reference

- LAT Poor proliferation (figure 4A) Sommers et al. 2002
TCR:CD3, CD28 LAT Poor proliferation (figure 4B)
TCR:CD3, CD28, CRAC LAT Improved proliferation (figure 4C)
CRAC LAT Improved proliferation (figure 4D)
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regulating the T-cell co-receptor pathway is not extensively
studied in these models and hence was included in our newly
developed model. Moreover, to identify the important regula-
tors in T-cell network, the study of the effects of various
components of this pathway with different phenotypic re-
sponses of T-cells (i.e. T-cells in proliferative, inactive and
dead stages) was also performed in this work. Through this
analysis we have also been able to show the necessity of
various co-receptor molecules in regulating the normal func-
tioning of T-cell network during T-cell activation.

Hence, to perform the above-mentioned analysis and to
overcome the limitations of the previous models, in this
work, we first collated the pathway data from various sig-
nalling databases and literature sources (including the path-
way information from the previously mentioned models) to
reconstruct the entire T-cell signalling network consisting of
the core TCR mediated pathway along with the pathways
triggered by all the co-stimulatory and co-inhibitory recep-
tors (e.g. CD27, LTBR, PD1, CTLA4, etc.) that are crucial
for the proper functioning of the T-cell pathway and

Figure 5. Effect of co-receptor signalling on cell fate determination. Phenotypic responses generated on different mutational analysis
scenarios. (A) No stimulation. (B) TCR:CD3 stimulation. (C) Calcium channel (CRAC) as ON state. (D) Receptors and Co-receptors turned
ON or activated. CRAC inhibited or OFF. (E) Only TCR:CD3 and CRAC turned ON. (F) Only TCR:CD3, CRAC and OX40 turned ON.
(G) All receptors and Co-receptors turned activated or ON.
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regulation of its effector functions, which includes interleu-
kin production. This reconstructed pathway map is the larg-
est as compared to other T-cell signalling pathway models
reported till date. The pathway itself provides a lot of
scattered information about the T-cell regulation, compiled
into one frame, which are missing in most of the publicly
available databases and previously published literatures.
Since we have used Protein–Protein Interaction (PPI) data
to reconstruct the pathway and build our model, we have
been able to provide a comprehensive picture of the T-cell
signalling pathway regulation by other cross-talk molecules.
We have also considered the calcium signalling pathway,
which plays a very important role in the regulation of the T-
cell proliferation. By incorporating all the probable co-
receptor signalling pathways and the calcium pathway, we
were able to capture a more realistic scenario of T-cell
regulation, which the other previously published works were
not able to show in their respective models. Previous models
on T-cell network which considered the core T-cell network
including co-receptors CD4/CD8 and CD28 have shown the
effects of these molecules in wild type and knock-out T-cell
pathway during its activation process, and the identification
of the probable activation pathways between the proteins of
interest (Saez-Rodriguez et al. 2007). That study is limited to
only these two co-receptor molecules, but our study has
focused more number of co-receptor pathways including
CD4/CD8 and CD28, and their downstream effects to regu-
late other pathways (e.g. MAPK, JNK, NFKB pathways,

etc.). On the other hand, the logical model on T-cell signal-
ling network in T-LGL leukemia cell has tried to search the
potential therapeutic targets in T-cell signalling network to
perturb the T-cell activation process in T-LGL (Saadatpour
et al. 2011). However, our model does not address such
question in this work, but has the ability to perform such
analysis by creating diseased conditions, and in silico per-
turbation study to identify potential therapeutic targets etc. In
this work, we have also shown the effects of perturbation
analyses by tuning various co-receptors and other pathway
molecules to reproduce the experimental observations,
which provides an additional advantage of our model for
future therapeutic studies. Moreover, the phenotypes such as
cell proliferation, survival and death considered in our model
as 3 additional nodes allow us to easily monitor the changes
in cell fate dynamics due to any mutation related to any
diseased condition. Also, the interleukin expression pattern
generated using our model provides an immediate idea about
the reasons for the change in cell phenotype in any patho-
logical condition.

The reconstructed comprehensive pathway diagram (fig-
ure 1) is further used as a master model for the in silico
simulation studies. In this work, by using the semidynamic
logical modelling approach we have performed a computa-
tional study of the reconstructed T-cell activation network (i.e.
on the master model) to understand the dynamics of protein
expression pattern over a time period. For this, the reconstruct-
ed T-cell pathway was used to build a model where all the

Figure 6. Changes in Cell Phenotypes and corresponding Interleukin Expression pattern due to CD27 and LTBR mutation. (A) and (B)
Normal condition; (C) and (D) Cd27 and LTBR mutated condition.
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protein–protein interactions are translated into logical equa-
tions using the ‘AND’, ‘OR’ or ‘NOT’ logical gates according
to the regulation of a single or a combination of proteins on the
expression of another protein, in a biologically relevant way.
Extensive literature searches have helped us to extract different
types of signal cascade reactions, which govern the regulation
of each protein in this pathway. Using this collated informa-
tion, a total of 167 logical equations were written to transform
the whole biochemical reaction cascades of the newly recon-
structed T-cell network in terms of logical equations. The
model consists total 206 molecules, out of which 39 molecules
are inputs (having no incoming signal), 128 molecules are
intermediate (having both incoming and outgoing signal) and
39 molecules are output or target nodes (having only incoming
signal). The detailed description of the model formulation is
provided in section 2 (subsection 3.2). Time series microarray
data of naïve T-cell activation process were extracted and
binarized using K-means clustering method, which were then
used as the initial values for running the simulation both
synchronously and asynchronously. The use of binarized mi-
croarray data helped us to assign the initial values of the nodes
in a more biologically relevant manner and also to validate our
model for temporal protein expression pattern during T-cell
activation in the normal scenario. The results from the syn-
chronous simulation returned a deterministic value of the
protein expression showing a clear up or down-regulation of
the protein expression in our model, whereas the asynchronous
simulation results showed the gradual variation in the protein
expression pattern over time.

Hence, to capture the small fluctuations in protein expres-
sion over time, and also to observe the probability of lower
levels of protein expressions, which is overlooked in the
synchronous update (i.e. deterministic Boolean analysis),
we used the asynchronous update rule that eliminates such
errors that might creep in due to the use of synchronous or
deterministic Boolean approach. This approach gives us the
liberty to get a more dynamic way of analysing the large T-
cell network as compared to other logical models published
earlier (Saez-Rodriguez et al. 2007; Wittmann et al. 2009;
Saadatpour et al. 2011; Mukhopadhyay et al. 2013). In this
study, the asynchronous update of the Boolean transition
equations reveals the fluctuations and oscillation patterns of
protein expression in many diseased/mutated conditions per-
formed in silico (e.g. as shown in the case of CD27 and
LTBR mutations in figure 6).

While formulating equations of the cell phenotype behav-
iour, we are also able to standardize the minimum combina-
tion of proteins that are required for the maintenance of the
T-cell proliferation, which is also validated using various
perturbation experiments reported in different literatures.
These equations (2–4) depicting the phenotypic behaviour
of the T-cell can further be used in various mutation studies
for predicting the behaviour of the T-cell. The reason for the

change in the phenotypic behaviour under such mutated
scenarios can then be concluded by a careful analysis of
the change in the protein expression pattern over time using
our model. Moreover, through our modelling approach, for
the first time we have been able to reproduce the effect of
CRAC channel in the regulation of the T-cell proliferation,
such that its mutation may lead to a complete suppression of
proliferation under any circumstances, i.e. even if all the
stimulation and co-stimulations are present. The necessity
of the different co-receptor molecules in T-cell biology, such
as OX40, CD27 and LTBR, becomes clear in the different
mutations studies performed by our model simulation, where
we have also observed that not only the presence of the
TCR:CD3 and the activation of CRAC channel are required
for the proliferation of the T-cell, but the activation of the co-
receptor signalling pathways is necessary for its continued
proliferation (figure 5E–F). Finally through our study, the
impact of the co-receptors CD27 and LTBR mutation clearly
brings out the role of these molecules maintaining the T-cell
functionalities and regulation of the levels of interleukin
production, and their prime target molecules are IL1, IL12,
IL3, IL6, IL8 and IL2 (figure 6D). Our studies also reveals
the precise route of signal propagation of the effects of the
mutations where we have seen that a deregulation of the
molecules (e.g. MEKK, MKK4/7, COT, GCKR, T3JAM,
etc.) involved in the MAPK and JNK pathways, as a result of
the mutation, is the cause of the observed changes in the
behaviour of interleukin production.

The main drawback of our model is its inability to capture
the concentration specific data of signalling molecules for
which we need better dynamic model with precise kinetic data.
However, despite this drawback, our model is close enough to
capture the dynamic regulation of the T-cell activation dynam-
ics and agrees with the published experimental data. In this
model, we have tried to integrate various aspects of T-cell
activation pathway by using simple but powerful, discrete
logical modelling approach. As our model only requires the
logical relationship between the proteins at the time of signal
transduction and does not depend on any kinetic rate parameter
values, it is easier to implement and simulate temporal protein
expression patterns with less time and effort. Using our model,
one can also perform different predictions and can monitor the
temporal protein expression patterns as well as the effect of
phenotypic responses in silico. By generating the temporal
protein expression patterns in the signal flow network for
different pathological conditions, it becomes easier to monitor
the proteins, which are getting activated or inhibited through-
out a specific interval of time. We hope the proposed compu-
tational approach and analysis to study the protein expression
pattern generation will not only be useful for study of various
T-cell phenotypic behaviours but also be helpful for the future
researchers to develop therapeutic strategies to combat against
various immune diseases.
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Abstract

Leishmania devices its survival strategy by suppressing the host’s immune functions. The antigen molecules
produced by Leishmania interferes with the host’s cell signaling cascades and consequently changes the protein
expression pattern of the antigen-presenting cell (APC). This creates an environment suitable for the switching of
the T-cell responses from a healing Th1 response to a non-healing Th2 response that is favorable for the continued
survival of the parasite inside the host APC. Using a reconstructed signaling network of the intracellular and
intercellular reactions between a Leishmania infected APC and T-cell, we propose a computational model to predict
the inhibitory effect of the Leishmania infected APC on the T-cell and to identify the regulators of this Th1-/Th2-
switching behavior as observed during Leishmania infection. In this work, we hypothesize that a complete removal
of the parasite could only be achieved with a simultaneous up-regulation of the healing Th1 response and
stimulation of nitric oxide (NO) production from the APCs, and downregulation of the non-healing Th2 response
and thereby propose several unique combinations of protein molecules that could elicit this anti-Leishmania
immune response. Our results indicate that TLR3 may play a positive role in eliciting NO synthesis, while TLR2 may
be responsible for inhibiting an anti-Leishmania immune response. Also, TLR3 overexpression (in the APC), when
combined with SHP2 inhibition (in the T cell), produces an anti-Leishmania response that is better than the
conventional IFN-gamma or IL12 treatment. A similar anti-Leishmania response is also obtained in another
combination where TLR3 (in APC) is overexpressed, and SHC and MKP (of T cell) are inhibited and activated,
respectively. Through our study, we also observe that Leishmania infection may induce an upregulation of IFN-beta
production from the APC that may lead to an upregulation of the RAP1 and SOCS3 proteins inside the T cell, the
potential inhibitors of MAPK and JAK-STAT signaling pathways, respectively, via the TYK2-mediated pathway. This
study not only enhances our knowledge in understanding the Th1/Th2 regulatory switch to promote healing
response during leishmaniasis but also helps to identify novel combinations of proteins as potential
immunomodulators.
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1 Introduction
Cell-mediated immunity (CMI), responsible for con-
fronting the infections caused due to invasion of intra-
cellular pathogens, primarily involves the interactions
of the phagocytic antigen-presenting cells (APCs) and
the T-lymphocytes. This leads to the activation of a
series of intra-cellular and inter-cellular biochemical
signaling processes, which culminates into synthesis of
certain diffusible effector molecules that includes pro-
teins (mostly the cytokines) and microbicidal molecules
(e.g., nitric oxide) helping in the clearance of the dis-
ease [1]. However, the activities of this defense mechan-
ism are severely compromised during leishmaniasis, a
neglected tropical disease, caused due to infection by
the protozoan parasites of the genus Leishmania. This
is transmitted to the human through the infected bites
of the phlebotomine sand flies during their blood meal
[1]. The promastigote form of the parasite, once
injected into the human host, is engulfed by the APC
(macrophages and dendritic cells) to form a phagolyso-
some, where it differentiates into its amastigote form
and takes control of its entire cellular machineries in a
way that reduces the immuno-competency of the im-
mune cells thereby hindering the body’s natural parasite
clearance process [2].
The surface molecules produced by Leishmania, such

as, lipophosphoglycan (LPG), glycoprotein 63 (GP63),
and the elongation factor EF1-alpha directly or indirectly
activate a series of phosphatases inside the human APCs
(e.g., SHP1, PTP1B, and TCPTP), that leads to dephos-
phorylation and de-activation of important signaling
molecules inside the host cell [3]. Inside the APC, the
LPG molecules act as antigens and are presented to the
surrounding T-lymphocytes to elicit either of the two
types of immune responses, viz. healing and non-healing
responses, depending on the parasite load and the host
immunity [4]. The healing response is obtained in case
of low parasitic load, in which a pronounced Type-I
helper T-cell (or Th1) response occurs due to up-
regulation of the Th1 cytokines, such as the interferon-
gamma from the stimulated T cells, and thus naturally
clears the pathogen from the system [1, 5]. On the other
hand, higher pathogen load gives rise to a non-healing
response in which an upregulation of the Th2 cytokines
(e.g., IL10) is observed, that favors the persistence of the
Leishmania. Simultaneously, during this non-healing re-
sponse, the production of the protective Th1 cytokines,
such as IL12, and the microbicidal molecules, such as
nitric oxide is also downregulated, thus creating an
immune-suppressed condition suitable for the further
progression of the disease [6].
It is experimentally shown that all types of leishmania-

sis viz. cutaneous, muco-cutaneous, and visceral leish-
maniasis elicit these types of immune responses in

human body [7]. Hence, the general therapeutic strategy
adopted for the treatment of Leishmaniasis is primarily
aimed to expedite the process of parasite clearance for
faster healing by stimulating the Th1 or healing re-
sponse. In case of cutaneous leishmaniasis therapeutics,
chemotherapeutic drugs, such as pentavalent antimo-
nials, liposomal amphotericin B has been shown to be
useful to reduce the dermal lesions and the chances of
further destructive mucosal inflammations and visceral
infections [8, 9]. However, the successive clinical studies
have shown that these chemotherapeutic drugs are also
associated with adverse side effects, such as nausea, in-
tense headache, diarrhea, musculoskeletal and abdom-
inal pain etc. [9–13]. In several cases, relapse of the
disease and developing resistant strains are also reported
after the use of these drugs, which necessitates the
development of better treatment protocols with higher
clinical efficacy [14]. Although immunotherapeutic
strategies involving the administration of exogenous
interferon-gamma is found to be effective in suppressing
leishmaniasis [15, 16], the high production of IL10 dur-
ing early stage of infection often suppresses its activity,
thereby hindering NO production and disease clearance
[17]. Based on these experimental outcomes, a number
of mathematical models have also been proposed simul-
taneously to untangle the complexities that appear as
hurdles to device a successful treatment strategy in
leishmaniasis [18, 19]. In one of such studies, “granu-
lomas” formation during Leishmania donovani infection
has been modeled using Petri net analysis by considering
the inter-cellular interactions of macrophage, lympho-
cyte, NK cells etc. The outcomes of these cell population
based models have emphasized cytokine therapy by the
exogenous injection of interferon-gamma and the sup-
pression of IL10 to eradicate the Leishmania pathogens
in macrophage cell [20]. However, interferon-gamma
molecule is a pro-inflammatory molecule and also has
short half-life time, which in turn requires its repeated
administration into the body at a regular interval of time
that may have harmful consequences [21, 22]. Hence, to
circumvent these problems, implementation of better
therapeutic strategies, by identifying novel drugs, drug
target molecules and immunostimulators are required
and demands higher attention from the vast majority of
clinical and experimental pharmacologists.
However, in order to develop an effective immunothera-

peutic strategy, it is important to have a comprehensive un-
derstanding of the Th1/Th2 dichotomy in leishmaniasis so
as to identify the regulators through which the Th1/Th2
switching behavior can be effectively controlled. This mech-
anism still remains very less explored. The identification of
such important molecular switch and their corresponding
reaction routes through which the immunostimulation
could be enhanced is highly required in this field of study.
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As the exact intra-cellular reaction cascades governing the
Tcell response after encountering with Leishmania infected
APCs is not clearly understood yet, the mechanisms
through which this response dynamics and the nitric oxide
(NO) production work in the immune cells is still un-
known. Besides, the mechanism through which the Leish-
mania antigens override the APCs intra-cellular network
by varying the expressions of the immunostimulatory pro-
teins, and force to redirect the immune responses towards
the non-healing or Th2 response is not comprehensively
studied yet. The study of these regulatory mechanisms by
analyzing such a large system using conventional experi-
mental techniques is time consuming and also difficult to
perform, and therefore in silico mathematical models of
inter and intra-cellular reaction cascades in APC and T cell
in presence of Leishmania antigens would probably be the
best strategy to counteract these problems. This may also
help to address some of the unexplored questions of Leish-
mania immunotherapy, such as the limitations of the
interferon-gamma treatment, the reason for which
interferon-beta treatment is only effective at low doses, and
the means by which the toll-like receptor (TLR) molecules
expressed by the APCs can regulate the immune responses
of the T cell to shift the dynamics towards a higher healing
Th1 response [17, 23–25].
In this study, we have tried to address the above

mentioned problems in Leishmania major infection
scenario by using mathematical model and in silico ana-
lysis. We have hypothesized that in order to achieve
better therapeutic results without adverse side effects,
the stimulation of type-I T-helper cells and a simultan-
eous upregulation of NO production by using immu-
nostimulator would be the best therapeutic strategy to
clear the Leishmania pathogens from the body. In order
to develop a suitable in silico model that may enhance
our understanding of Leishmania immunobiology, we
have manually reconstructed a comprehensive cell
signaling pathway map of a Leishmania infected APC
and a normal CD4+ T cell (helper T cell), considering
the important physical interactions and the cross-talks
by the secreted diffusible molecules between the two
cells. The Leishmania infection has been introduced in
the model by establishing the interaction of the Leish-
mania antigens, known from the literature and data-
bases, with the appropriate host protein molecules in
the APC. However, the dynamic analysis of such a large
network is difficult to perform due to the unavailability
of kinetic parameters and concentration values. Hence,
to assess the gene or protein expression patterns of
large scale signal transduction networks under different
pathological conditions, the concept of discrete dy-
namic Boolean or logical modeling approach has been
utilized successfully [26–28]. Large scale, intracellular
T cell signaling network is also analyzed by using this

modeling technique and eventually various structural
and functional properties of this network under normal
and disease conditions are studied successfully [29, 30].
A logic-based modeling technique is also applied to
analyze the temporal expression patterns of the genes/
proteins of T cell, which are strongly influenced by the
intra-cellular T cell signal transduction cascade in pres-
ence or absence of infection [31].
Here, the entire reaction mechanisms are translated

into logical equations with the objective to simulate and
understand the effect of the presence and absence of the
Leishmania antigens on the signaling events of the host’s
APCs and T cells. Followed by the Boolean attractor
analysis and the successful validation of the simulation
outcomes with the time-course microarray expression
data as well as the phenotypic responses obtained from
published experimental observations, the model is then
used to compare the protein expression pattern for nor-
mal and Leishmania-infected scenarios. With an aim to
understand the mode of regulations that occur due to
the infection at the molecular level inside the T cell, the
comparison of the two scenarios is then used to extract
the important T cell proteins, which are highly influ-
enced under the pathogen burden. The result of this
analysis is further used to predict the unknown changes
occurring at the pathway level in the T cell during infec-
tion. Moreover, the knowledge of these deregulated
pathways is thereafter used to predict the targets for the
in silico perturbation analysis. Perturbations of the lo-
gical states of proteins in the network are performed to
study the effect of the known immunostimulants (viz.
IL12 and interferon-gamma) as well as to propose some
new combinations of molecules that act as a molecular
switch to regulate the Th1/Th2 and NO response dy-
namics. Subsequently, these identified novel combina-
tions of proteins were tested for stability and robustness
by examining the attractors of the system under these
perturbations. Thereafter, it was ascertained that the
proposed combinations of protein targets can be used as
the potential immunomodulators, targeting of which
may bypass the inhibitory activities of the pathogens and
enhance the anti-Leishmania immune responses as well
as the microbicidal activities of the body’s immune cells.

2 Materials and methods
2.1 Construction of gene correlation network
Gene correlation networks of the significantly expressed
genes, observed in two independent microarray experi-
ments for APC (E-GEOD: 42088) and T cell (E-GEOD:
48978), were constructed in this work by calculating the
Pearson correlation coefficient of each pair of genes from
the temporal gene expression data followed by the calcula-
tion of P values. The P values of all pair of genes from the
two microarray data sets were stored in symmetric square
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matrices from which the corresponding adjacency matri-
ces were generated. In the adjacency matrices, the
elements are either 1 (P value < 0.01) or 0 (otherwise).
These adjacency matrices are then used for the construc-
tion of co-expression or correlation networks of the two
microarray gene expression datasets. The networks are
then analyzed for the identification of probable clusters
(or functional modules) in Cyctoscape (version 2.8) GPU
based App AllegroMCODE (version 2.1) [32]. The genes
from each functional module identified in this analysis are
further used for the pathway enrichment analysis in
bioCompendium (http://biocompendium.embl.de/) and
GeneCodis [33] web servers [Additional file 1: Text S1/
Table S1 and Text S2/Table S2]. The pictorial representa-
tions of each cluster are provided in Additional file 2:
Figure S1 and Additional file 3: Figure S2.

2.2 Pathway reconstruction/integration
In order to capture the functional regulations that oper-
ate between these significantly enriched pathways within
the two cells, i.e., APC and T cell, reconstruction of a
comprehensive map of signaling processes depicting the
effect of Leishmania infection on immune response was
necessary. Hence, a detailed T cell and APC interaction
pathway diagram was created after a thorough study of
existing literatures and databases. Protein-protein inter-
action (PPI) and the biochemical signal transduction
data were collated from various cell signaling and PPI
databases, such as KEGG, Protein Lounge, Pathway Cen-
tral, Biocarta, NetPath, BIOGRID, etc. and various pub-
lished research articles [34–37]. The Leishmania
proteins were then introduced in the network and the
interactions of these proteins were established with the
existing APC molecules depending on the biological evi-
dences [38–40]. The Leishmania antigenic molecules
used in the model, viz. LPG_L, GP63_L, LFAA_L, and
EF1_ALPHA_L, are known to be present in almost all
the Leishmania species so as to create a generalized
Leishmania infection model (LFAA_L is a hypothetical
molecule which we considered in our model to show the
activation of ASMASE for the production of CER-
AMIDE [41]; it is abbreviated for Leishmania factor acti-
vating ASMASE). With certain modifications (required
to build the juxtacrine and paracrine interactions be-
tween the cells), the T cell pathway reported in our pre-
vious work was used to understand the T cell-APC
cross-talks and to monitor the immunological response
generated during Leishmania infection [31]. The path-
way figure was drawn using Cell Designer software (ver-
sion 4.3) [42]. The signaling molecules (nodes) and
interactions were color coded in accordance with cellu-
lar locations and their chemical nature, respectively.
Also, in order to differentiate the redundant Leishmania
and T cell molecules from the APC molecules, the

names of the protein/non-protein molecules were de-
noted with suffix “L” and “T” for Leishmania and T cell,
respectively (Additional file 4: Figure S3 and Additional
file 1: Text S3).

2.3 Model formulation
The interactions of the entire network, including all im-
portant regulations between T cell and APC, were trans-
lated into logical equations (signifying reactions or hyper
acrs) using the AND, OR, and NOT logical gates, in a
biologically meaningful way (Additional file 1: Text S5).
In order to capture the regulations at the post-
transcriptional level, the alternatively spliced isoforms of
the T cell and APC output molecules with known func-
tions have been also included in our model (Additional
file 1: Text S4/Table S3). Here, the selection of isoforms
is based on the presence of certain cis-regulatory ele-
ments and trans-acting factors that have been collect-
ively referred to as “FACTORi” where {i = 1,2,.....23}.
These 23 FACTORi represent specific spliceosomes re-
sponsible for the splice site recognition in each case.
The model was simulated synchronously (i.e., all equa-

tions updated simultaneously) and asynchronously (i.e.,
random execution of the equations) using BooleanNet-
1.2.4 software until the steady state is reached [43]. In this
model, we also defined three functions, viz. “TH_1_re-
sponse*”, “TH_2_response*”, and “NO_response*”, which
reflect the type of T cell responses elicited and production
of NO from the APC in response to an infection (Eqs. 1,
2, and 3; * denotes the (t+1)th logical state of the re-
sponses). The molecules used for defining these functions
are principally the molecules involved in eliciting these re-
sponses, as reported in literatures [44].

TH–1–response! ¼ IL2–TANDGM–CSF–TAND
TNF–ALPHA–TAND
IFN–GAMMA–T

ð1Þ

TH–2–response ! ¼ IL4–TAND IL5–TAND IL6–TAND IL10–T

ð2Þ

NO–response! ¼ NO ð3Þ

2.4 Boolean attractor, experimental data and validation
The Boolean attractors of the model were determined by
generating all possible combinations (ON or OFF) of the
51 input molecules of the system. The simulation was
repeated for 20 samples, where 7 proteins have been se-
lected from a uniform random distribution of 51 input
molecules, thereby generating 27 × 20 (=2560) combina-
tions of input molecules. However, due to lack of human
cell-specific Leishmania major-infected RNA seq data of
APC, the logical states (activation or inactivation) of the
FACTORi determining that alternative splicing of the
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output molecules could not be explicitly determined in
Leishmania-infected scenario. Hence, in our model,
these FACTORi were assumed to be ON in all our simu-
lations, signifying that all the alternative isoforms have
equal probability of getting expressed. The analysis was
performed separately for the uninfected and the infected
scenarios, which were created by initializing the Leish-
mania antigen molecules OFF and ON, respectively, in
the two cases using synchronous Boolean update rules.
Thereafter, the steady state logical values (i.e., attractor) of
all the 294 nodes in 2560 different input combinations
from both the scenarios were identified by using in-built
functions available in BooleanNet-1.2.4 and the in house
code written in Perl script. However, to present these
attractor(s) of each sample in a simplified way, only the
steady state binary values of the ten macrophage output
molecules (viz. IFN_BETA, IL1_ALPHA, IL1_BETA, IL10,
IL12, INOS, IP10, NO, TNF_ALPHA, and c_FOS) were
plotted from each attractor(s) state using the network
visualization software Gephi (http://gephi.github.io/) and
were successively tested for the presence of multiple
attractors in the system in uninfected and infected scenar-
ios. On the other hand, the differential activation of the
FACTORi in splicing mechanism and its role in the regu-
lation of the network dynamics is further analyzed and
discussed in Additional file 1: Text S4 and Additional file
5: Figure S4.
Furthermore, in order to validate our model with

experimental data, time-course microarray expression
data for the two cells (viz. T cell and APC) were ob-
tained from two separate experiments from the EBI
ARRAYEXPRESS database (E-GEOD: 48978 and 42088,
for T cell and APC, respectively) [45]. In these micro-
array experiments, expression profile of activated hu-
man T-helper cell (Affymetrix HT HG-U133+ PM
Array Plate) and Leishmania major infected dendritic
cells (Affymetrix HG-U133 Plus 2.0 Gene Chip) were
studied at discrete time-points [46, 47]. In our analysis,
we only considered the expression values at four time-
points, i.e. 0, 2, 4, and 6-h time-points for T-cell and 0,
2, 4, 8-h time-points for dendritic cells. These expres-
sion data were then extracted and binarized using the
BOOLNET software that employs K-means clustering
algorithm [48]. The zeroth hour-binarized data was
used to initialize all the nodes of the respective cells,
with either ON or OFF depending on whether the pro-
tein shows an up-regulation or a down-regulation at
the zeroth hour (BooleanNet Software uses TRUE and
FALSE for ON and OFF, respectively; Additional file 1:
Text S6). The initial values of the Leishmania proteins
were considered ON in the infected scenario and OFF
in the uninfected scenario. The model was then simu-
lated using the synchronous update rule and validated
by comparing the expression of the ten APC output

molecules in the infected scenario with the binarized
time-course microarray data of the APC [46]. However,
it should be noted that the experimental data for the
expression of NO molecule is considered as propor-
tionate to the expression values of INOS of the micro-
array data. The model reached its steady state at the
19th time-step in the infected scenario. As a control of
the experiment an uninfected scenario was also created.
However, to calibrate the four experimental time-points
used in microarray data (i.e. 0, 2, 4, and 6 h) with the
discrete time points of our simulation results, logical
states of the proteins up to 24 discrete time-steps were
considered in this analysis (after comparing the steady
state values for both the experimental and simulation
results). Thus, a 1-h duration of experimental data was
associated by three time-steps of the simulations. The
temporal expression profile of the ten output molecules
were plotted till the 24th step (i.e., 8 h of experimental
data). It is to be mentioned here that since the expres-
sion of the output proteins is the best reflection of
functioning of the entire signaling cascade, the valid-
ation of these previously mentioned ten output mole-
cules is assumed to be sufficient to demonstrate the
authenticity of the entire model. The T cell model was
also validated in a similar way, i.e., by comparing the
time-course expression profile of the output protein
molecules as obtained in the synchronous simulation
with the experimental data [31].

2.5 Model analysis and perturbation studies
The model was simulated asynchronously (until steady
state was reached) to make a qualitative analysis of
differences in the expression profiles and functional
responses of the APC and T cell output molecules in
the infected and the uninfected scenarios. The model
was iterated 100 times, and the average values of all
the simulations at each time-point were plotted for
further analysis. This analysis also helped us to moni-
tor the small fluctuations in the expression pattern of
the pathway species over time, which occurs due to
the stochasticity in the execution of the pathway reac-
tions inside the cell. The asynchronous simulation also
ensures that the errors in the synchronous simulations
as well as attractor analysis (through selection of inde-
pendent random samples) are minimized and further pre-
sents an average behavior of the entire system over time.
In order to unravel the effect of Leishmania infection on
the entire T cell signaling cascade at the individual protein
level, and then to understand the changes at the pathway
level, two-tailed Mann-Whitney U test was carried out on
the expression of the 163 T cell intermediate and output
molecules. This helped us to identify the proteins that get
significantly de-regulated during the infection (at 5 % level
of significance). Thereafter, the model was used to predict
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the phenotypic responses (using Eqs. 1, 2, and 3) in vari-
ous treatment scenarios using several gene knock-in
and knock-out experiments created in silico by trying
different combinations of ON and OFF of the protein
molecules using the in-built “boolean2.modify_states”
function of the BooleanNet-1.2.4 software [43]. In
order to further confirm the robustness of our pre-
dicted combinations of immunotherapeutic targets,
Boolean attractor analysis was performed for the per-
turbation scenarios by varying the input molecules of
the model (as mentioned earlier). Logical steady states
of all the 296 nodes of the model from different sce-
narios (i.e., uninfected, infected and perturbed) were
identified and out of these steady state sequences,
only the steady state values of NO, Th1, and Th2 re-
sponses were extracted for the comparisons of the ef-
fect of different perturbations in the infected scenario.
Hence, following this methodology, this study aims to
find the effectiveness of our proposed treatment strat-
egies to revert the infected scenario to an infection-
free attractor similar to the uninfected scenario.

3 Result
3.1 Pathway enrichment analysis
The gene clusters identified from the co-expression net-
works of the two microarray expression data sets can be
considered as the “functional modules” of the gene inter-
action networks of the Leishmania major infected APC
and the activated T cell, respectively. A total of 10 and
24 clusters or functional modules are found from the
gene co-expression networks of APC and T cell, respect-
ively (Additional file 2: Figure S1 and Additional file 3:
Figure S2). Pathway enrichment analyses of the genes
found in these clusters have identified various important
intracellular signaling pathways (e.g., cytokine-cytokine
receptor, toll-like receptor, JAK-STAT, MAPK, mTOR, T
cell receptor, calcium signaling, PI3 kinase, interleukin
signaling pathways etc.) of two different cells. The
complete list of the pathways found to be enriched in
this analysis for APC and T-cell are given in Additional
file 1: Text S1/Table S1 and Text S2/Table S2, respect-
ively. These enriched pathways, corresponding to the
significantly expressed genes of APC and T cell micro-
array expression data sets, represent the pathways that
are influenced by the Leishmania pathogen in the APC
and in the activated T cell. However, it should be noted
that the pathways found to be enriched in this analysis
do not to provide the complete understandings of the
molecular mechanisms through which the pathogen
infect the APCs. Also, we are unable to capture the
dynamic interactions of the APC and T cells’ molecules
in the Leishmania infected scenario. Hence, the recon-
structions of the complete inter- and intra-cellular

signaling cascades regulating the APC and T cell func-
tions are performed.

3.2 Features of the reconstructed pathway
In Fig. 1, a simplified version of the newly reconstructed
pathway diagram is presented to provide the brief de-
scription of the entire reaction cascade. In this simplified
figure, the major inter- and intra-cellular signaling
events triggered by important molecules (e.g., MHC,
CD40, IL10 etc.) of both the cells and pathogen are pro-
vided for the sake of simplicity.
The complete diagram of the newly reconstructed

Leishmania-APC-T-cell pathway model is provided in
Additional file 4: Figure S3. It integrates all possible
inter-cellular and intra-cellular signaling events that
occur between the two immune cells during Leishmania
invasion. Here, the interaction of the Leishmania mole-
cules, produced from the promastigote and the amasti-
gote forms, with the APC molecules are considered
separately. The entire signaling network (i.e. intra- and
inter-cellular) consists of a total of 293 nodes, which in-
cludes 82 APC molecules, 206 T cell molecules, and 5
Leishmania-related molecules, that are involved in more
than 400 protein-protein interactions. The intra-cellular
signaling cascades considered for modeling the APC and
the T cell consists of the major co-receptor signaling
pathways, the cytokine pathways, TLR pathways, etc.
that play a pivotal role in regulating the outcome of the
immune cell’s functional responses. In case of APC, the
pathways, which are considered in our model, include
the CD40 pathway, the interleukin pathways (viz. IL4,
IL6, and IL10), TLR pathways (TLR2, TLR3, TLR4), and
the pathways involved in TNF_ALPHA, IFN_GAMMA
signaling. Again in T cell, in addition to the core TCR-
mediated signaling, seven co-receptor signaling pathways
(viz. CD28, CD27, LTBR, CTLA4, ICOS, PD1, and
OX40), cytokine pathways (viz. IL1, IL2, IL10, IL12,
TNF, and IFN-mediated pathways) and the CRAC
channel-mediated calcium pathway are considered.
Various crosstalk reactions are also considered in the

model, which depict the bi-directional regulation that
exists between the two immune cells. These crosstalk re-
actions mainly comprise of the juxtacrine signaling
events stimulated directly by binding of the co-receptors
and the ligand molecules expressed on the T cell and the
APC membranes, and the paracrine signaling that are
mediated by the diffusible output molecules (mostly cy-
tokines) produced by each cell. Overall 10 crosstalk in-
teractions between the T cell and the APC that
effectively regulates the expression pattern of each other
are considered. These includes IFN_GAMMA_T, IL4_T,
IL6_T, IL10_T, TNF_ALPHA_T molecules secreted from
the T cell, and IFN_BETA, TNF_ALPHA, IL12 secreted
from the APC that diffuses and activates their
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corresponding receptor/co-receptors on their neighbor-
ing cell to trigger their downstream signaling cascades.
The co-receptor ligand molecule interaction considered
to be the most important in the model is the one that
involves the binding of the CD40 and CD40L_T mole-
cules [3].
The signaling events that begin at the membrane

region is then considered to transduce the signal
downstream to activate the major signaling pathways,
such as, the MAPK, JNK, NFKB, JAK-STAT cascades,
which activate a series of transcription factors, that
eventually transcribes the output molecules. During
Leishmania invasion, the antigenic molecules pro-
duced by the pathogen activate certain phosphatases
(e.g. SHP1, PTP1_B, TCPTP etc.) that interfere with
the signaling events of the APC. The antigen mole-
cules considered in the network, such as LPG_L,
GP63_L and EF1_Alpha, are shown to have a direct
effect on the activities of the ERK1/2 and AP1 tran-
scription factors, the former being upregulated and
the latter inhibited or degraded (a detailed description
of all the signaling events have been provided in Add-
itional file 1: Text S3).

3.3 Model analysis
3.3.1 Attractors
The Boolean attractor analysis performed on 20 inde-
pendent random samples in the uninfected and the
infected scenarios have been plotted in Fig. 2. Here,
128 combinations of input in each of the 20 samples
have been grouped together with a specific color
code. For simplicity, for the attractor only the se-
quence of logical states of the molecules in the order
of IFN_BETA, IL10, IL12, IL1_ALPHA, IL1_BETA,
INOS, IP10, NO, TNF_ALPHA, and c_FOS, is
depicted in the network graph. The results of the
analysis reveal that given all the FACTORs regulating
alternative splicing is assumed to be in ON state, all
the 2560 combinations of input (called basins of at-
tractor; each basin is represented as a node in the
network graph) in the uninfected scenario, reaches
the same Boolean attractor (…0111110111…) (Fig. 2a),
while in the infected scenario four different attractors
are obtained, viz. (…1100001011…), (…0101100011…),
(…1101101011…) and (…0100000011…) (Fig. 2b).
However, it is to be noted in the infected scenario,
2000 among the 2560 basins (i.e., 78.125 %) reached

Fig. 1 Simplified pathway diagram showing the Leishmania-APC and T cell interaction. The diagram shows the juxtacrine and paracrine
regulations between the different cells. The Leishmania antigen molecules are shown in orange. The cytoplasmic and nuclear proteins of
the APC and T cell are color coded as blue and peach respectively. The target molecules that are produced as output by the two cells
are colored green (for protein) and deep-pink (for non-protein molecules)
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the (…1100001011…) attractor (including both steady
state and cyclic attractor), hereby referred as the
major attractor of the system in the infected scenario.
These 2000 basins of the major attractor spans all the 20
random samples selected, among which 13 samples exclu-
sively drive to the major attractor, while the remaining 7
samples reach multiple attractors. The (…1101101011…),
(…0100000011…), and (…0101100011…) attractors have
been attained from 9.375, 9.375, and 3.125 % basins,
respectively.

3.3.2 Model validation with experimental data
The temporal expression profiles of the APC output
molecules viz. c_FOS, IL1_ALPHA, IL1_BETA, IFN_-
BETA, IL10, IL12, IP10, INOS, NO, TNF_ALPHA in the
infected (red) and the uninfected scenarios (green) are
plotted along-with the binarized microarray data at 0, 2,
4 and 8 h time-points (black diamond) in Fig. 3. This
figure depicts that the expression levels of all the 10 out-
put molecules are reaching the steady state values either
at 1 (i.e., up-regulation) or 0 (i.e., down-regulation).
Here, we observe that expression value of the output
molecules at steady state is exactly similar to the value
obtained as the major attractor of the system in both the
uninfected as well as the infected scenarios (Fig. 2).
Qualitative comparison of the expression values reveals
that out of these 10 selected output molecules, the
steady-state expression value of total 7 molecules viz.
c_FOS, IL1_ALPHA, IL1_BETA, IL10, IL12, INOS, and
NO in the infected scenario show the exact match with
the experimental observations [46]. While c_FOS and
IL10 show an expression value of 1 (high expression) in
the infected scenario, the other output molecules such
as IL1_ALPHA, IL1_BETA, IL12, INOS, and NO have
an expression value of 0 (low or no expression) in the
infected scenario.

Also, Fig. 3 depicts that at “4 and 8 h” time points,
c_FOS and IL10 proteins get upregulated in the simu-
lated infected scenario, which is exactly comparable with
the experimentally observed expression levels in micro-
array data at the same time-points. However, it should
be noted that although the expression level of c_FOS
protein at “2 h” time point in the simulated infected sce-
nario is not exactly matching with the experimental find-
ings, but the infected model is able to show the
downregulation of this protein between the intervals of
“0 to 1 h” time points. Both the proteins IL1_ALPHA
and IL1_BETA get up regulated at “1 h” time point and
subsequently get downregulated at “6 h” time point of
the simulated infected scenario. In the experimental
data, both of them get upregulated at “2 h” time-point
and get downregulated at “4 h” and “8 h” time-points,
respectively. In case of IL12, it is observed from Fig. 3
that except a small time interval between 0 and 1 h, this
protein remains in the downregulated state throughout
the rest of the time-points. The time course microarray
data of this protein also shows similar expression level
except at “4 h” time-point, in which this protein shows
upregulation. Similarly, INOS and NO also show similar
expression level at “2 and 8 h” time points as compare
to the experimental data. Altogether, the percentage of
validation of the simulated L.major infected scenario for
all the 10 selected proteins at all the three time-points,
i.e., 2, 4 and 8 h are 80, 50, and 70 %, respectively.
Also it can be observed that 9 out of 10 output mole-

cules match exactly at least at two time-points. Even
though in few cases, the simulation results of the expres-
sion values at a particular time point show an apparent
mismatch with the experimental observation at that
same time-point, but the expression pattern essentially
remains the same over time. It can be observed that al-
though the time-course expression of c_FOS from the

Fig. 2 Boolean attractor analysis in uninfected (a) and infected scenarios (b). The binary values shown in the attractor represents the logical
steady state values of 10 macrophage output proteins in the sequence of IFN_BETA, IL1_ALPHA, IL1_BETA, IL10, IL12, INOS, IP10, NO, TNF_ALPHA
, and c_FOS, respectively. Different color codes are used to represent the 20 different random samples, and within each sample, 128 nodes
represent the input combinations of 7 proteins selected randomly from 51 inputs of the model. In total, there are 2560 combination of initial
states denoting the basins of attraction for the entire system
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simulation results appear to be inconsistent with experi-
mental data, i.e., downregulation at 2 h and again upreg-
ulation at 4 h time-point, the overall dynamics of the
expression essentially remains the same over time, with
only a slight deviation of the expression levels (up or
down) observed in the respective time-points of experi-
mental and simulation data. Such deviations are also ob-
served in the expression dynamics of IL1_ALPHA, IL12,
NO, and INOS molecules. The successful validation of
the expression levels of these molecules can be used as
valuable indicators of the immune functions of the APC
and can be used for fine-tuning of our model to ensure
its proper functioning. On the other hand, Fig. 3 also
brings out the differences in the expression of the APC
output molecules due to the presence of the infection.

Here, it is observed that even though the steady state
values of the two scenarios (viz. infected and the unin-
fected) is sometimes similar, as in the cases of c_FOS,
IL10, and TNF_ALPHA, the overall temporal expression
pattern clearly indicates that the differences are emer-
ging due to the presence of antigen molecules in the
model simulation. In the uninfected scenario, the ex-
pression of the IL10 and the TNF_ALPHA remains low
(in the first few hours) as compared to the infected
scenario.

3.3.3 Comparison of uninfected and infected scenarios
The interference of Leishmania proteins in the signal-
ing cascade of APC cell not only modulates the ex-
pression of the output molecules and microbicidal

Fig. 3 Time-course expression profile of APC output molecules. Expression levels of the output molecules c_FOS, IFN_BETA, IL1_ALPHA, IL1_BETA,
IL10, IL12, INOS, IP10, NO, and TNF_ALPHA found in infected, uninfected and experimental conditions. The validation was performed by
comparing the expression levels of the infected situations (shown in red) with the microarray experimental data (black diamond)
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activities of APC, but also deregulates the expression
of the T cell output molecules by manipulating the
normal functioning of T cell activation pathway [49].
Comparing the expression of the APC output proteins in
infected and uninfected scenarios (Fig. 4a, b), the simula-
tion results show that invasion of Leishmania antigen
molecules severely downregulates the expression of IL12,
which is a potent T cell stimulator [2, 6]. Simultaneously,
the production of INOS and nitric oxide (NO) is also
greatly reduced in the infected APC, thereby rendering
the cell incapable of performing its microbicidal functions,
and creating an immune-suppressed condition, which is
favorable for the continued survival of the pathogen inside
APC [2, 3]. Besides, in Fig. 4b, the production of IFN_-
BETA, IP10 (a chemokine) also show an upregulation, in-
dicating an attempt of the APC to eliminate the pathogen
from the system [3, 25, 46]. IL1_ALPHA and IL_BETA
show minor fluctuations in expression during the infec-
tion and slight downregulation [2, 50]. The effect of Leish-
mania infection on the expression pattern of T cell output
proteins (Fig. 4c, d) becomes evident from the fact that
production of the protective cytokine from the cell, such
as IFN_GAMMA_T, is downregulated during the infec-
tion, while the productions of interleukins, such as
IL10_T, IL4_T, IL5_T, and IL6_T are upregulated, which
are mostly implicated as proteins favoring Leishmania sur-
vival [7, 49, 51, 52]. These results supported by the

previous experimental findings also strengthen the validity
of our model to a greater extent and enhances its
acceptability for further analysis.

3.3.4 Effect of infection on T cell signaling cascade
The results of Mann-Whitney U test reveals that out of
the expression of 62 proteins in the infected scenario
that exhibit a deviation from the uninfected scenario, 20
proteins get significantly deregulated (P < 0.05). The
temporal expression profiles of these 20 proteins (Fig. 5)
show that the Leishmania infection causes the signifi-
cant downregulation of the protective cytokines, such as
IFN_GAMMA_T, and enhances the synthesis of
TGF_BETA_T, and IL10_T from the T cell, which con-
tributes to the decline in the immune-competency of the
T cell and formation of an immune-suppressed condi-
tion as observed during L.major infections in susceptible
patients [5, 6, 53, 54]. It is interesting to note that while
the activation of the cytokines, such as IL4_T, IL5_T,
IL6_T, and the receptors, IL12R_T [52] and IL1R_T
[55], show fluctuations with respect to the control (unin-
fected scenario), certain other molecules, such as
RAP1_T, P19_T, C3G_T, CRKL_T, TYK2_T, and
SOC3_T, are distinctly upregulated as a result of the in-
fection. Also, it is observed that the members of the
JAK-STAT pathway, such as JAK2_T and STAT4_T are
downregulated in the infected scenario (Fig. 5b).

Fig. 4 Expression profile of T cell and APC during asynchronous simulation. (a) and (b) expression of the APC output molecules in the uninfected
and infected scenarios, respectively; (c) and (d) expression of the T cell output proteins in the uninfected and the infected scenarios, respectively
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3.3.5 Immune response and immunotherapeutic strategies
The effector molecules produced at the end of the signal-
ing processes in both T cell and APC manifest itself in the
form of a change in the phenotypic behaviors of the cell
that leads to disease clearance. Through the model, these
immune responses of the entire system are simulated
using the functions: TH_1_response (Eq. 1), TH_2_re-
sponse (Eq. 2), and NO_production (Eq. 3)—signifying
healing response (green line), non-healing response (red
line) and disease clearance (black triangular markers),
respectively (Fig. 6). The pathogen load is one of the major
factors, which determines the type of immune response
that will be elicited during the infection [4]. When the
antigens are OFF (i.e., mimicking a situation with low
pathogen load, or no infection), the Th1 and the NO
responses are higher as compared to the Th2 response
(Fig. 6a) [6, 44]. On the contrary, when the antigen mole-
cules are switched ON (i.e., infection is present), a higher
Th2-response is obtained (Fig. 6b) [4, 56].
After validating these immune response functions with

published literatures, these functions (Eqs. 1, 2, and 3)
confirm their acceptability and authenticity to study the
effect of the conventional immunotherapeutic strategies
in Leishmaniasis (i.e., IL12 and IFN_GAMMA_T), and
also to predict some immunostimulatory targets to en-
hance anti-Leishmania immunity (Table 1). Here, at first,
we have tried to study the effect of the commonly prac-
ticed IL12 (Fig. 6c) and IFN_GAMMA_T (Fig. 6d) treat-
ments and have observed that even though these
immunostimulants can enhance the Th1 response and
downregulate the Th2 response, they fail to enhance the
NO response. Thereafter, through perturbation analysis
we have been able to identify three T cell molecules (viz.
MKP_T, SHP2_T, and SHC_T) and two APC molecules
(viz. TLR3 and TLR2) that may have a positive role in
disease clearance. Single in silico mutation study of these

molecules reveals that in the MKP_T in silico knock-in
scenario (Fig. 6e), even though the Th1 response of the
NO response does not increase, the Th2 response gets
downregulated as compared to the infected scenario
(Fig. 6b). Knock-in mutation of the APC molecule TLR3
gives rise to an increase in NO response, although it has
no significant effect on the T cell response (Fig. 6f ). In
the case of in silico knock-out mutation studies, we have
observed that inhibition of SHP2_T leads to upregula-
tion of the Th1 response and downregulation of the Th2
response (Fig. 6g). SHC_T inhibition on the other hand,
does not exhibit any significant change in T cell or NO
responses as compared to the infected scenario (Fig. 6h).
However, if we use a combinatorial therapy by activating
the proteins TLR3 while simultaneously inhibiting
SHP2_T, we get a better anti-Leishmania immune re-
sponse (combination 1, Fig. 6j). Alternatively, TLR3
knock-in when combined with SHC_T OFF (knock-out)
and MKP_T ON (knock-in) can also give rise to a simi-
lar effect (combination 2, Fig. 6k). Besides these combi-
nations, interestingly we have also found that if we
inhibit only the expression of TLR2 protein in APC, a
very high Th1 response is obtained and simultaneously
the NO production is also increased drastically (Fig. 6i).
A summary of the combinatorial therapeutic strategies
and their outcomes as observed from our analysis is pro-
vided in Table 1.
Further, the results of the Boolean attractor analysis,

performed to confirm the robustness of our predic-
tions, reveal that the uninfected and infected scenar-
ios created in our model reaches to unique attractors,
viz. (…110…) and (…001…), respectively (Fig. 7 a, b).
Here, the attractor denotes the presence/absence of
the NO, Th1, and Th2 responses (Fig. 7). The at-
tractor analysis of perturbation studies reveals that
the scenario with IFN_GAMMA_T treatment leads to

Fig. 5 Expression profile of 20 T cell proteins which shows significant deregulation in Mann-Whitney U test. The heat maps depict the protein
expression pattern of the T cell signaling proteins under uninfected scenario (a) (control); infected scenario (b). Significant changes in the
expression dynamics are observed for these proteins under these two conditions, which clearly show the effect of Leishmania antigens in
the regulation of T cell signaling events
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Table 1 Unique combinations of proteins that can be used as promising immunotherapeutic targets
Knock-in Knock-out Th1 response up-regulation NO increase Th2 response down-regulation Anti-Leishmania Immunityb Figure

IL12a – Yes No Yes No 6c

IFN_GAMMA_Ta – Yes No Yes No 6d

MKP_T – No No Yes No 6e

TLR3 – No Yes No No 6f

– SHP2_T Yes No Yes No 6g

– SHC_T No No No No 6h

– TLR2 Yes Yes Yes Yes 6i

TLR3c SHP2_Tc Yes Yes Yes Yes 6j

TLR3, MKP_Td SHC_Td Yes Yes Yes Yes 6k
arepresents previously known and commonly used immunotherapeutic targets; brepresents anti-Leishmania immunity that implies to a state when Th1 and NO
response is up-regulated and the Th2 response is down-regulated; crepresents the proposed Combination 1; drepresents the proposed combination 2
treatment strategy

Fig. 6 Response dynamics of Th1, Th2, and NO in uninfected, infected, and in different treatment scenarios. a uninfected; b infected; c IL12 [ON];
d IFN_GAMMA_T [ON]; e MKP_T [ON]; f TLR3 [ON]; g SHP2_T [OFF]; h SHC_T [OFF]; i TLR2 [OFF]; j TLR3 [ON] and SHP2_T [OFF]; k TLR3, MKP_T
[ON] and SHC_T [OFF]
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a single attractor (…010…), which is distinct from ei-
ther the infected or the uninfected attractors (Fig. 7c).
However, our predicted targets, viz. TLR2 (Fig. 7d),
combination 1 (TLR3 ON and SHP2_T OFF; Fig. 7e),
and combination 2 (TLR3, MKP_T ON and SHC_T
OFF; Fig. 7f ) mostly lead to the infection-free at-
tractor (…110…) similar to the uninfected scenario.
Among these, it can be observed that all the 2560 basins
in the combination 1 scenario lead only to the infection-
free attractor (…110…) (Fig. 7e), while in combination 2,
we observe the presence of a bi-stable attractor, oscillating
between the (…100…) and (…110…) states (Fig. 7f). TLR2
mutation scenario also shows the presence of two attrac-
tors, i.e., (…001…) and (…110…). However, in all these
three perturbations the major attractor attained by the

system continues to be the desired (…110…) infection-
free attractor.

4 Discussion
Inadequate knowledge of the complete mechanism of
Leishmania invasion inside the host immune system is the
key reason for the low success in devising an effective cure
to leishmaniasis. In order to overcome this short-coming,
it is necessary to gain insight into the precise mechanism
of the regulation by which the Leishmania antigen mole-
cules takes control of the host cell’s signaling processes.
Through this in silico modeling study, we have tried to
unravel these regulatory mechanisms by focusing on three
important aspects of Leishmania immunobiology—(a)
effect of Leishmania infection on the gene expression or

Fig. 7 Attractor analysis of the uninfected (a), infected (b), and in silico treatment scenarios (c–f). Here, the binary values at the attractor states
represent only the logical steady states of NO, Th1, and Th2 responses under uninfected (a), infected (b), IFN_GAMMA_T [ON] (c), TLR2 [OFF] (d),
TLR3 [ON] and SHP2_T [OFF] (e), TLR3, MKP_T [ON] and SHC_T [OFF] (f). The logical states of the other nodes/protein molecules are not shown
here for the sake of better visualization. The color codes are kept same as used in Fig. 2

Ganguli et al. EURASIP Journal on Bioinformatics and Systems Biology  (2015) 2015:13 Page 13 of 19



the protein activation pattern in APC and microbicidal
activities, (b) effect of the infection on the T cell gene/pro-
tein expression pattern at the molecular level and their in-
fluence in pathway level to identify the molecular routes
by which Leishmania inhibits T cell functions, and (c)
identification of specific regulators (immunostimulators)
that could act as a regulatory switch to skew the Th1/Th2
dynamics towards the healing Th1 response and simultan-
eously enhance the NO production in order to accelerate
the parasite clearance from the host cell.
In this model, we have manually curated the complete

signaling cascades of the immune cells depicting the de-
tailed mechanism of regulation of the host protein-protein
interaction network by the antigen molecules at various
levels of signal transduction and transcriptional activities.
Here, we have been able to integrate all the possible routes
by which the antigen subverts the host immune responses
and modulates the proper functioning of the sentinels of
our immune systems, viz. the APCs and the T cells. The
model (Additional file 4: Figure S3) depicts the physical
binding of the T cell and APC receptors/co-receptors with
their corresponding ligands and the subsequent activation
mechanism of the downstream proteins in both the cells.
The model considers the activation of toll-like-receptor
proteins, present in the APC membrane, activate their
downstream proteins, which in turns diverges into import-
ant signaling routes such as the RAS-RAF mediated MAPK
pathway, canonical, and non-canonical NFKB pathway,
JAK-STAT pathway, PI3K-PLC Gamma pathway, JNK
pathway, etc., and leading to the activation of several tran-
scription factors (e.g., ERK1_2, NFKB, NFAT, AP1, STAT3,
etc.) in the nucleus, that in due course, singly or in combin-
ation with other transcriptional co-factors initiates the
mRNA transcription [39]. These mRNA are then consid-
ered to undergo alternative splicing to produce different
proteins isoforms with diverse biological functions that reg-
ulates the expression of the output molecules. These pro-
teins (principally the cytokines, growth factors, and the cell
cycle proteins) synthesized at the end of the cascade, in re-
sponse to the pathogenic invasion, manifest externally in
the form of a change in the cellular behavior, here referred
to as a “phenotypic response” viz. the Th1-response, Th2-
response, and NO-response (Eqs. 1, 2, and 3) [5].
Boolean attractor analysis reveals the presence of a sin-

gle attractor in the uninfected scenario and four attractors
in the infected scenarios, signifying that depending on the
severity of the infection and the presence or absence of
certain molecules in the system, Leishmania infection
may lead the system to multiple levels of infection with
varying protein expressions and clinical manifestations
(Fig. 2). It can also be observed that the major attractor
obtained in these uninfected and infected scenarios
matches exactly with the expression values as obtained
through our simulations using experimental data in both

the scenarios. Asynchronous Boolean simulation is also
performed to obtain an average behavior of the entire sys-
tem under different conditions. Such comparative studies
of the infected and uninfected scenarios using asynchron-
ous Boolean simulations brings out the effect of the Leish-
mania infection on the expression of the output
molecules in both the APC and the T cell (Figs. 3 and 4),
which nicely corroborates with previous experimental
studies and strengthens the reliability and authenticity of
the model outcomes. We have observed that Leishmania
infection down-regulates the production of protective cy-
tokines, such as IL12, IL1_ALPHA and IL1_BETA, and
microbicidal molecules, such as NO, and simultaneously
up-regulating the production of the chemokine, IP10 [3].
The simulation also reveals that in the infected scenario
the production of the cytokine IFN_BETA is also upregu-
lated, which is known to have protective functions but
only at low doses [25]. The T cell expression profile shows
that during Leishmania infection, the interleukin mole-
cules viz. IL10_T, IL4_T, IL5_T, and IL6_T, gets upregu-
lated, while the expression of IFN_GAMMA_T gets
downregulated (Fig. 4c, d). The higher production of the
proteins, such as IL10_T and IL4_T and repression of
IFN_GAMMA_T synthesis, produces conditions that
favor Leishmania survival [7], and skews the Th1/Th2 dy-
namics towards a non-healing response (Fig. 6b) [2, 50].
A close observation on the results of our Mann-

Whitney U test analysis (Fig. 5) also predicts some novel
and interesting facts about the signaling regulations im-
posed by the presence of the Leishmania infection at the
pathway level. Identified from our simulation, this regula-
tory mechanism of the signaling cascades is presented in
Fig. 8. It can be observed that Leishmania infection in-
creases the production of the protein IFN_BETA (green
upward arrow) and suppresses IL12 (red downward
arrow) from the APC. IFN_BETA diffuses and interacts
with their corresponding receptors on the T cell thereby
enhancing the activation of its downstream TYK2 mol-
ecule (black arrow) inside the T cell. Through this analysis,
we have tried to determine the possible role of L.major in-
fection in modulating the T-cell behavior at the pathway
level, and infer that the pathogen upregulates the mole-
cules involved in the TYK-CRKL-C3G pathway. Eventu-
ally, it enhances the production of SOCS3 and RAP1
proteins in the T cell (Fig. 8a), two potential negative regu-
lators of JAK-STAT and the RAS-mediated MAPK path-
ways, respectively (red arrow), which divulges the
probable harmful effects of the high levels of IFN_BETA
production from the APC that is known to occur during
Leishmania infection [57, 58]. Moreover, it can be ob-
served that in the T cell (Fig. 8b), the pathogen downregu-
lates the JAK2-STAT4 pathway by inhibiting the synthesis
of IL12 cytokine, which results in downregulation of
IFN_GAMMA production (red downward arrow) and a

Ganguli et al. EURASIP Journal on Bioinformatics and Systems Biology  (2015) 2015:13 Page 14 of 19



consequent increase in the IL4_T, IL5_T, and IL6_T ex-
pression (green upward arrow). These findings of the
changes occurring at the pathway level have helped us fur-
ther to identify the key regulators that can act as potential
immunostimulators during the infection.
Cytokine therapy is the most widely practiced method

of immunotherapy, is employed in the treatment of
Leishmaniasis. Immunologists have tried to enhance
the expression of IL12 and IFN_GAMMA, the two
most potent Th1 response stimulators, which are
known to play important role in alleviation of the
disease. But, the most common problem faced in such
immunotherapies is the inhibitory effect of the IL10
protein, which is overexpressed during the infection
that increases the susceptibility to the disease by inhi-
biting the effects of interferon-gamma treatment and
often blocking the synthesis of NO [59], thereby pre-
venting an effective anti-Leishmania immunity. In this
work, we have tried to simulate the effect of these two
immunotherapeutic strategies, viz. IL12 treatment
(Fig. 6c) and IFN_GAMMA_T treatment (Fig. 6d),
where we have observed that although they are able to
enhance the Th1 response and reduce Th2 response,
but these strategies fail to induce the NO response,
which is necessary to eliminate the disease causing

pathogen. Hence, to devise a successful combinatorial
immunotherapy, which can bypass the inhibitory effects
of immune-suppressive molecules, various molecules
that directly or indirectly influence the de-regulated T
cell pathways (i.e., JAK2-STAT4 pathway and the
TYK2-mediated IFN_BETA pathways) and TLR mole-
cules of the antigen-presenting cell are selectively
knocked-in and knocked-out separately and then in
combination (Table 1). Thereafter, a set of minimal
combinations of protein molecules are identified that
could act as regulatory switch to control the Th1/Th2
response and also effectively enhance an anti-Leish-
mania response (Table 1). These molecules include
three T cell molecules (viz. SHP2_T, MKP_T and
SHC_T), which are also implicated in various cancers
and infectious disease treatments, and two APC mole-
cules (viz. TLR2 and TLR3), which are popular targets
in many diseases including leishmaniasis [60–63]. A list
of antagonists and agonists of these molecules is pro-
vided in Additional file 1: Table S4.
Through our study, we suggest that TLR2, which is

debated to have the controversial roles in Leishmania
treatment [23], helps in the parasite survival. This agrees
with a recent experimental finding [24], and we propose
that TLR2 inhibition can be a useful strategy to up-

Fig. 8 T cell pathways deregulated during leishmaniasis. The schematic diagrams show that the infected APC produces high amount of IFN_Beta,
which in turn up-regulates the production of SOCS3 and RAP1 proteins that has negative regulatory effects on its down-stream JAK-STAT and
MAPK pathways (a); infected APC inhibits the production of the IL12 cytokine which results in upregulation of IL4, IL5, and IL6 cytokine secretion
from the T cell by regulating the JAK/STAT and IFN_GAMMA_T protein production (b). Green upward arrow–protein expression up-regulated; Red
downward arrow–protein expression down-regulated; Black arrow–activation; Red arrow–inhibition
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regulate Th1 and NO response (Fig. 6i). On the other
hand it can be understood that TLR3 alone may have a
positive role to play in Leishmania treatment and may
be a positive regulator of NO production (Fig. 6f ). It is
also interesting to note that although TLR2 inhibition
alone is sufficient to drastically enhance the Th1
response and the NO production (Fig. 6i), TLR3 activa-
tion requires a synergistic inhibition of the SHP2_T
molecule, a phosphatase that inhibits the activity of the
JAK-STAT pathway, to gain the desired anti-Leishmania
response (Fig. 6j). Surprisingly, it is also observed the
MAPK phosphatase (MKP_T) when upregulated may
inhibit the non-healing Th2 response (Fig. 6e). However,
MKP_P and TLR3 upregulation when combined with
the inhibition of the adapter molecule SHC_T, a positive
regulator of the MAPK cascade, can act as a useful com-
binatorial target in leishmaniasis treatment (Fig. 6k).
Nevertheless to combat leishmaniasis, it may be noted
here that since the Th1 subset of helper T cells pro-
duces inflammatory cytokines, a constant high Th1
response may often be undesirable in order to avoid
harmful side-effects, and hence the two combinations:
(1) combination 1: upregulation of TLR3 (i.e. ON
state) and downregulation of SHP2_T (i.e., OFF state)
and (2) combination 2: upregulations of TLR3,
MKP_T, and downregulation of SHC_T, can be con-
sidered as better immunotherapeutic strategies than
solitary TLR2 inhibition.
The robustness of our predicted combinations was fur-

ther confirmed through the Boolean attractor analysis,
where we observed that the major attractor attained by
all the three predicted immunotherapeutic targets re-
sembles with the infection-free attractor (…110…). This
is also observed in the uninfected scenario (Fig. 7 d–f ),
where the NO and Th1 responses are high and the Th2
response is low. In contrast, it can be observed that none
of the basins in the IFN_GAMMA_T treatment scenario
is able to move the system to this desired (…110…) at-
tractor, which clearly brings out the shortcomings of the
conventional immunotherapeutic targets (Fig. 7c). The
result of this analysis also highlights the controversial
outcomes that may be expected from targeting TLR2 (as
mentioned earlier), i.e., TLR2 knock-out may lead to two
separate attractors, (…100…) and (…110…). However, it
is to be noted that the major attractor obtained in the
TLR2 knock-out scenario is the infection-free attractor
(…110…), while only a small fraction reaches the at-
tractor (…100…), where although the NO production is
high, both the Th1 and the Th2 responses gets downreg-
ulated (Fig. 7d). Also, a comparative analysis of the com-
bination 1 and combination 2 scenarios reveals that
combination 1 may be considered a better target as
compared to the others, as this is the only scenario
where we can observe a complete reversal of the infected

scenario to a situation (…110… attractor) similar to the
uninfected scenario. However, since the combination 2
is leading to a bi-stable attractor, which is oscillating be-
tween the major attractor (…110…) and minor attractor
(…100…) states, this may also be useful in cases where a
constant high NO production is required accompanied
with an intermittent up-regulation of Th1 response for
patients pre-disposed to inflammatory diseases.
It is important to note that in order to reduce the

complexity of the model and due to lack of complete
information about the functional regulations of the
isoforms in Leishmania infected situation, we have
only focused on the alternative splicing mechanism at
the post-transcriptional level. However, this model
may further be extended to study the effect of the al-
ternatively spliced isoforms of the input molecules
[64]. For example, TLR3 mRNA molecule is alterna-
tively spliced to produce a smaller 60 kDa isoform,
which has been observed to be overexpressed in Glio-
blastoma cell lines. In future, RNA seq analysis of
Leishmania infected human APC may provide further
insight into the expression of such alternatively
spliced isoforms in case of Leishmania infection sce-
nario. This may also give a better understanding of
the precise regulatory mechanisms underlying the dif-
ferential protein expression due to the pathogenic
invasion.

5 Conclusions
The switching between the Th1/Th2 responses during
Leishmania invasion has important implications in
Leishmaniasis treatment, and hence effective regula-
tion of this switching mechanism is important for
devising a proper cure for the disease. In this work, we
have been able to capture some of the vital aspects of
Leishmania infection and the mechanism through
which the interaction of the Leishmania antigen mole-
cules with the APC signaling proteins modulate the
microbicidal activity of both the APC and T cell. Al-
though our model does not deal with the dynamics of
the entire system due to the large number of unknown
parameter sets, but through the logical analysis of the
integrated Leishmania-APC-T-cell model, we have
been able to precisely highlight the inhibitory effects
of Leishmania infection on the T cell’s signaling routes
and Th1/Th2 immune responses. Here, we suggest
that Leishmania infections enhances the secretion of
the IFN_BETA from the APC, which in turn can up-
regulate the production of the RAP1 and SOCS3 pro-
teins inside the T cell, the potential inhibitors of
MAPK and JAK-STAT signaling pathways, respect-
ively, via the TYK2-mediated pathway. The other T
cell pathway affected in Leishmania infection is the
JAK2-STAT4 pathway. Enhancing the activity of this
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pathway in the T cell by inhibition of the phosphatase
SHP2, and simultaneously regulating the activity of
the TLR3 molecule in the APC, we have also been able
to identify certain unique combinations of proteins,
which can act as regulatory switch to shift the Th2
response towards the Th1 response, and at the same
time can increase the production of NO. The study
highlights a negative role of the T cell SHC molecule
and a positive role of the MKP molecule in leishman-
iasis treatment. Attractor analysis study firmly estab-
lishes the reasons for the failure of the conventional
immunotherapeutic targets, such as IFN_GAMMA_T
treatment, and ensures that our proposed combina-
tions of protein molecules when targeted reverts the
system to an infection-free attractor. Hence, it may be in-
ferred that the proposed combinations of target molecules
can be efficiently used as potent immunostimulators to
yield an effective anti-Leishmania immune response and
expedite the process of parasite clearance from the system.
We also hope that in future this computational study will
be a useful tool for identification of important immune-
stimulatory targets for better treatment and alleviation of
leishmaniasis.

6 Additional files

Additional file 1: This file contains the following Supplementary
Materials. Text S1. Construction of gene co-expression network from
Leishmania infected APC time course microarray data. Table S1. Pathway
Enrichment of the significantly expressed genes in the microarray
experiment of Leishmania infected APC. Text S2. Construction of
gene co-expression network from time course activated T-cell
microarray data. Table S2. Pathway Enrichment of the significantly
expressed genes in the microarray experiment of activated T-cell.
Text S3. Brief description of the Leishmania-APC-T-cell Signaling
Pathways. Text S4. Differential regulation of different splicing
FACTORS and isoforms. Table S3. List of all known alternatively
spliced isoforms of the output molecules of both APC and T-cell.
Text S5. Logical Equations used to model the reaction mechanisms
in T-cell and APC during Leishmania infection. Text S6. Binary initial
values of the reaction nodes considered in the Logical equations from
binarization of microarray expression data. Table S4. List of agonist and
antagonist of the proposed targets (DOCX 128 kb)

Additional file 2: Figure S1. Gene clusters identified in Leishmania
major infected APC microarray data. This figure contains total 10
clusters or functional modules, which have been identified from the
gene co-expression network generated from the time course microarray
expression data of Leishmania major infected APC [EBI-ArrayExpress (ID:
E-GEOD-42088)]. The names of the nodes in all the cluster diagrams are
assigned according to the probe IDs used in HG-U133_Plus_2 Affymetrix
GeneChip for human cell. (TIF 2077 kb)

Additional file 3: Figure S2. Gene clusters identified in active T-cell
microarray data. This figure contains total 24 clusters or functional
modules, which have been identified from the gene co-expression
network generated from the time course microarray expression data
of activate T-cell [EBI-ArrayExpress (E-GEOD-48978)]. The node names
used in each cluster are in accordance with the probe IDs used in
Affymetrix HT_HG-U133_Plus_PM array plate. (TIF 4656 kb)

Additional file 4: Figure S3. Comprehensive diagram of T-cell, APC
and Leishmania pathogenic protein-protein interaction network. The
diagram presents an integrated view of the T-cell and APC interaction

signaling pathway during Leishmania infection. The different molecules
involved in the signaling cascade have been color coded according to its
type and cellular location. The molecules colored as red signify the
Leishmania antigen molecules. The interaction lines have been color
coded according to the type of chemical reaction such as phosphorylation
(blue), inhibition (red), activation (green) etc. (TIF 5212 kb)

Additional file 5: Figure S4. Attractor analysis of the uninfected and
infected scenarios under the differential activation of the splicing factors.
(A) In the uninfected scenario the system reach two stable steady state
attractors, in which the expressions of IFN_BETA, IL10, IL12, IL1_ALPHA,
IL1_BETA, INOS, IP10, NO, TNF_ALPHA and C_FOS proteins are
(0111110111) or (0110010111). (B) In the infected scenario, the system
reach two stable steady state attractors namely (1100001011) and
(1101101011), respectively. (TIF 339 kb)
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Diseases by protozoan pathogens pose a signi!cant public health concern, particu-
larly in tropical and subtropical countries, where these are responsible for signi!cant 
morbidity and mortality. Protozoan pathogens tend to establish chronic infections 
underscoring their competence at subversion of host immune processes, an important 
component of disease pathogenesis and of their virulence. Modulation of cytokine and 
chemokine levels, their crosstalks and downstream signaling pathways, and thereby 
in"uencing recruitment and activation of immune cells is crucial to immune evasion and 
subversion. Many protozoans are now known to secrete effector molecules that actively 
modulate host immune transcriptome and bring about alterations in host epigenome to 
alter cytokine levels and signaling. The complexity of multi-dimensional events during 
interaction of hosts and protozoan parasites ranges from microscopic molecular levels 
to macroscopic ecological and epidemiological levels that includes disrupting metabolic 
pathways, cell cycle (Toxoplasma and Theileria sp.), respiratory burst, and antigen pre-
sentation (Leishmania spp.) to manipulation of signaling hubs. This requires an integrative 
systems biology approach to combine the knowledge from all these levels to identify the 
complex mechanisms of protozoan evolution via immune escape during host–parasite 
coevolution. Considering the diversity of protozoan parasites, in this review, we have 
focused on Leishmania and Plasmodium infections. Along with the biological under-
standing, we further elucidate the current efforts in generating, integrating, and modeling 
of multi-dimensional data to explain the modulation of cytokine networks by these two 
protozoan parasites to achieve their persistence in host via immune escape during 
host–parasite coevolution.

Keywords: cytokine networks, manipulation, Plasmodium, Leishmania, in!ammation, signalling hubs, cross 
regulation, system biology
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INTRODUCTION

Parasitic protozoa are responsible for some of the major diseases 
of humans a!ecting several million people each year resulting 
in signi"cant morbidity and mortality and loss of economic 
activity. #ere have been some gains in reducing the incidence 
of these diseases owing to better intervention strategies, but in 
absence of e!ective vaccines, diseases like malaria, leishmaniasis, 
trypanosomiasis still pose a major public health problem. #ese 
protozoans typically establish chronic infections validating their 
success in evasion and manipulation of host defense and of meta-
bolic processes for their survival, proliferation, and transmission. 
Many of these pathogenic protozoa have adapted to intracellular 
habitat as seen in infections by Plasmodium spp., Leishmania 
spp., and others. #e intracellular niche makes them vulnerable 
to lysosomal enzymes, reactive oxygen intermediates, and detec-
tion by cytosolic sensors of infection, but also o!ers some protec-
tion from adaptive immunity (1). #is dynamic host–pathogen 
interaction, leads to the activation of a series of intracellular and 
intercellular biochemical signaling processes leading to synthesis 
of di!usible e!ector molecules that includes cytokines and reac-
tive oxygen species. “#e earliest stages of infection are a parasite’s 
"rst opportunity to establish itself within its host and conversely, 
it is also the host’s chance to mount a rapid and e!ective response 
to clear, or at least control the infection” (2). Recent studies 
demonstrate that pathogens including protozoa modulate the 
host cell environment by manipulating the host transcriptome 
by epigenetic modi"cations besides targeting the major signaling 
hubs of metabolic, immune, and cell cycle processes to promote 
their growth, multiplication and survival (3–9). Many protozoans 
secrete e!ector molecules that actively modulate host immune 
transcriptome to alter cytokine levels and signaling either to 
escape immune processes as in liver stages of P. falciparum or to 
drive their growth as seen in the blood stages of this pathogen.

Considering the diversity of protozoan pathogenesis, this 
review will focus on manipulation and hijacking of cytokine 
networks by Leishmania and Plasmodium spp. for their survival 
in human host. We will highlight few recently published repre-
sentative omics and systems biology based studies on Leishmania 
and Plasmodium parasites, toward understanding modulation of 
cytokine and chemokine networks in the host by the parasite to 
achieve their persistence in host via immune escape.

CYTOKINES AND CYTOKINE 
REGULATION

Cytokines are small molecules of the immune system, synthesized 
by various cell types that by virtue of binding to their receptors 
present on a multitude of cells mediate immune cell activation, 
di!erentiation, and cross talk to maintain immune homeostasis 
(10, 11). Synthesis and regulation of cytokine expression depends 
on the type of stimulus, cell type, and its state of activation 
(12–14). Expression of cytokine genes is also regulated by epi-
genetic modi"cations that include DNA methylation, histone 
modi"cations, and higher order chromatin interactions (15, 16)  
and posttranscriptional regulation by micro RNA-mediated 

mechanisms (16–19). Di!erentiation of immune cells as in T cell 
subpopulations and macrophage phenotypes is determined and 
regulated by cytokine environment (4, 16, 20, 21) and epigenetic 
modi"cations at cytokine gene loci (22, 23). Cytokine crosstalk 
between IFNα/β and TNF-α was noted to be at level of chroma-
tin wherein IFNs in addition to regulating interferon signaling 
genes, also potentiated the TNF genes (4). Similarly, emerging 
data suggest extensive crosstalk between NLR family proteins 
of in%ammation complex for IL-1β and IL-18 secretion and 
other cytokines integrated signalosome facilitating integration 
of diverse pathways for optimal immune response (24). H3K27, 
methyltransferase enhancer of zeste homolog 1 is reported to 
promote TLR-triggered in%ammatory cytokine production by 
suppressing the TLR negative regulator toll-interacting protein, 
thereby contributing to the full activation of the innate immune 
response against invading pathogens (25).

CYTOKINE SIGNALING MANIPULATION 
BY PROTOZOAN PATHOGENS

Intracellular protozoa modulate cytokine gene expression and 
signaling by some common themes that include targeting of 
transcription factors (15, 23) phosphorylation status of signal-
ing molecules like STATs, immune check point molecules like 
CTLA-4 and PD-1 to drive regulatory pathways (26) as well as 
kinases (5, 6, 27). #e pathways usually targeted by pathogens 
include NF-κB, cell cycle, interferons, MAP Kinase JAK–STAT 
and pathways mediated by TLR and NLR receptors because of 
their wide range of functionality and core association with the 
host genome (28–30).

Toxoplasma spp. secrete dense granular protein (GRA) and 
Rhoptry proteins that activate host kinases and possess kinase 
activity, respectively, into host cell, which by phosphorylating 
STAT3 and STAT6, nuclear translocation of NF-κB or activation 
status of MAPK pathways modulate the levels of IL-4, IL-6, IL-12, 
and IFN-g (31–35). “T. gondii inhibitor of STAT1 transcriptional 
is another secretory protein that recruits the host nucleosome 
remodeling and deaceytlase complex to block STAT1-mediated 
gene transcription” (36). Trypanasoma cruzi modulates NF-κB 
pathway by TLR and NLR mediated signaling for favorable 
cytokine environment (37–39) However, the protozoa is also 
reported to manipulate TGF β pathway (40) and also induces 
the production of IL-10 (40, 41) and arginase for its survival and 
replication.

PLASMODIUM AND HOST 
INFLAMMATORY RESPONSE

Malaria, caused by Plasmodium spp. of Apicomplexa phylum, 
has been the strongest evolutionary selective force in recent 
human history and has shaped human genome (42) and is one 
of the major causes of mortality of children below 5 years of age 
particularly in WHO African region, taking the life of a child 
every 2 min (43). #e life cycle of the parasite is complex and 
completed in multiple stages in the human and in the mosquito 
(female Anopheles spp.) hosts with stage speci"c gene and pro-
tein signatures (44). Brie%y, sporozoites inoculated into human 
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host by bite of infected mosquito travel to liver to mature into 
merozoites that infect RBCs to continue asexual cycle and also 
develop into gametocytes which, a&er fertilization in mosquito 
gut, develop and mature into sporozoites.

During the liver stages of the parasite, the host immune 
response tends to be tolerogenic and circumsporozoite protein was 
seen to inhibit NADPH oxidase and IL-12 and suppressed IL-6 
and TNF-α secretion with simultaneous increase of IL-10 levels, 
allowing parasite to escape detection by immune system (45, 46).

In%ammation is recognized as pivotal feature of immune 
response to blood stages of Plasmodium infection (47). Notably, 
clinical manifestations of the disease are related to erythrocytic 
stage of infection. An early and "nely balanced in%ammatory 
response with increase in levels of pro-in%ammatory IL-12, 
IFN-γ, TNF-α, IL-1β, and IL-6 and of anti-in%ammatory IL-10 
and TGF-β is essential for resolution of parasitemia and of dis-
ease (48–52). However, pathological activation of exaggerated 
levels of the very same pro-in%ammatory cytokines (cytokine 
storm) concomitant with lower levels of regulatory mechanisms 
has been attributed to severe and cerebral malaria syndromes  
(14, 53–57). A recent study examined the levels of di!erent 
biomarkers of immune response and found high concentrations 
of sCDI63 and Fractalkine, which are involved in immune 
response downregulation and modulation of anti-in%ammatory 
responses in asymptomatic malaria (58). #ese authors also 
reported high levels of Neopterin, which is related to increased 
cell-mediated immune responses and macrophage activation in 
severe and cerebral malaria patients, indicating an overall sus-
tained state of in%ammation supporting the hypothesis of intense 
and prolonged in%ammatory response in severe and in cerebral 
malaria patients.

#e question then arises is that why and how would the para-
site drive intense in%ammatory response that has the potential 
to be fatal which could limit parasite transmission and hence 
not be in interest of the pathogen? #e answer appears to lie in  
(a) enhanced expression of adhesion molecules on endothelial 
cells by pro-in%ammatory cytokines (IFNγ and TNFα) (59) 
and (b) by requirement for endothelial adhesion mediated by 
P. falciparum membrane protein 1 (PfEMP1) with CD36 and 
endothelial protein C receptor (EPCR) (60, 61). From the parasite 
view, endothelial sequestration is essential to escape clearance 
in spleen and to facilitate falciparum merozoite maturation. #e 
highly diverse PfEMP1 proteins encoded by parasite var genes 
contain a Du!y-binding like and cysteine-rich interdomain 
region (CIDR) domains. Most CIDRα1 domains bind to EPCR 
and CIDRα2–6 bind CD36 (60, 61). Notably, interaction of EPCR 
with its ligand the activated protein C (APC) has a role in anti-
in%ammatory, coagulation homeostasis, and endothelial barrier 
protection functions (62) and its blockade of these functions by 
PfEMP1–EPCR interaction that is postulated to contribute to 
cerebral malaria pathology (59, 61). Interestingly, Smith et  al. 
(61) found increased association of severe malaria with EPCR 
binding CIDRα1domain containing isolates supporting the 
contention. Interactions with CD36 are also reported to inhibit 
IL-12 synthesis and suppressing dendritic cell (DC) maturation 
and T cell activation.

It is, therefore, not unimaginable that parasite manipulates 
NF-κB and Type 1 interferon pathway to drive in%ammation. 

Plasmodium-derived PAMPs that include GPI anchors, CpG 
motifs, AT-rich motifs, and haemazoin are sensed by PRRs of 
host that include TLRs, NLRs, and AIM2 on cells of monocyte/
macrophage lineage and on DCs (61, 63–65). #ese ligand–
receptor interactions initiate MyD88 and STING-IRF3 mediated 
downstream signaling leading to activation of NF-κB and IRF3 
pathways and synthesis of pro-in%ammatory cytokines and 
interferon α/β (55, 65–68). It is the exaggerated activation of these 
pathways “mediated by IFN-γ pro-in%ammatory priming with 
extreme levels of pro-in%ammatory mediators” with concomitant 
loss of regulatory cytokines that drives malaria pathogenesis  
(46, 57, 68). It has also been proposed that in addition to driving 
in%ammation, P. falciparum by downregulating GATA3 expres-
sion suppresses IL-10 and SOCS3 that are necessary to control 
in%ammation, possibly by exploiting the IFNα/β pathway as 
summarized in Figure 1.

LEISHMANIA: T CELL DIFFERENTIATION 
AND CROSS REGULATION OF CYTOKINE 
SIGNALING

Leishmaniasis caused by Leishmania spp. is a public health 
problem with 1.3 million reported Leishmaniasis cases world-
wide which is intensi"ed by availability of few e!ective drugs 
(70) and vaccine (71, 72). Being an intracellular parasite, it 
needs to overcome host-resistance mechanisms and exploit host 
environment for survival. From the parasite context, metabolism 
of Leishmania possesses a unique metabolic organization that 
can re-route metabolites, the uptake of which is constrained in 
di!erent host environments toward synthesis of speci"c biomass 
metabolites; thereby providing novel mechanisms for metabolic 
adaptations (73, 74). From the host context, the contribution 
of speci"c virulence factors in immune suppression or the 
inability of the host to generate a su'cient immune response 
against the parasite, which promotes infection. Survival strategy 
of Leishmania is to modulate the signaling pathways of the 
macrophages a&er entering the phagolysosome. Depending on 
the type of infection and the parasite burden, either #-1 heal-
ing or the #-2 non-healing immune responses are generated, 
but detailed mechanism is poorly explored. #is can be largely 
understood with respect to the interaction of parasite molecules 
with the host signaling pathways to suppress host immunity 
against infection (71).

During invasion, the surface molecules of Leishmania 
interact with the toll-like-receptor proteins present on the 
macrophages membrane (75). #e activation of the TLRs trig-
gers the downstream signaling pathways such as the RAS–RAF-
mediated MAPK pathway, canonical and non-canonical NF-κB 
pathway, JAK–STAT pathway, PI3K–PLC Gamma pathway, and 
the JNK pathway (76). Subsequently several transcription fac-
tors, such as ERK1/2, NF-κB, NFAT, AP1, STAT3, are activated 
that initiate the synthesis and secretion of several cytokines, 
growth factors, chemokines and antimicrobicidal molecules 
which are responsible for the host immune responses during 
the infection (77).

However, during chronic infection (Figure 2), the antigenic 
molecules of the Leishmania parasite activate the phosphatase 
proteins in the macrophage, e.g., SHP-1 and PTP1B, which leads 



FIGURE 2 | Immuno-modulation by Leishmania parasite: Leishmania antigens interfere with the signaling cascade of the macrophage and promote the Th-2 
non-healing response that helps in the survival of the parasite inside the host.

FIGURE 1 | A hypothetical model summarizing the probable mechanisms of severe in"ammation in malaria. Parasite molecules like Haemazoin, Pf AT-rich DNA 
recruited by TLR and TLR independent (STING) pathways (63, 69). High load of Pf AT rich DNA would lead to increased levels of TRAF3 and of IFN-α. And IFN-α, in 
turn, suppresses GATA3 expression in Th2 cells resulting in low levels of IL-10 and hence down regulated SOCS3 (68). In addition, low levels of IL-2 and T-bet fail to 
mediate switch from IFN-γ+/IL-10− to IFN-γ+/IL-10+ Th1 cells that requires T-bet and IL-2 levels, also explain low levels of IL-10. Finally, downregulated SOCS3, 
which is known to mediate the anti-in"ammatory functions of IL-10, fails to regulate an exaggerated proin"ammatory response. Another contributory role to severe 
in"ammation in malaria is the high prevalence of IL-8-251T/A, which increases IL-8 expression for enhanced recruitment and activation of in"ammatory cells 
neutrophils resulting in increased activation of NF-κB via IL-1β-mediated pathway.
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to the dephosphorylation and deactivation of selected signal-
ing pathways (78). #is leads to downregulation of expression 
of iNOS and nitric oxide in the infected macrophages, thereby 
compromising microbicidal functions of the cell and creating 
an immune-suppressed condition, which is favorable for the 
continued survival of the pathogen inside APC. Simultaneously, 
the production of the cytokines, such as IL-12 and TNF-α, gets 
severely reduced. Such changes in the cytokine expression pat-
tern of the antigen-presenting cells leads to the alteration of the 
phenotypic responses of the T-cells that now start showing a bias 
toward the non-healing #-2 immune response that is character-
ized by an increased production of IL-4, IL-10, IL-13, and TGF-β 
cytokines (79), and the suppression of IFN-γ that regulates the 
healing #-1 response (71). #e transcription factors T-bet and 
GATA3 play a pivotal role in the regulation of the #-1/#-2 ratio 
during the infection (80). Leishmania also inhibits the ability of 
the host cell for antigen presentation to other immune cells, by 
repressing the MHC class II gene expression (81) and by modu-
lating the interaction of the co-stimulatory molecules B7-1/CD28 
(82) and CD40/CD40L (83).

#e di!erence in the antigenic challenge posed to the host 
gives rise to di!erences in expression of the macrophage 
proteins, as seen in visceral versus the cutaneous infections 
(84). #e di!erence in macrophage protein expression pro"le, 
as exempli"ed by increased production of COX2 and PGE2 
production in case of L. donovani infection (as opposed to  
L. major) (85) indicates di!erent Leishmania species selectively 
activate or inhibits di!erent host pathways due to di!erences 
in the antigenic challenge. Also, it has been observed in a study 
that L. donovani, which is known to cause visceral leishmaniasis, 
may in rare cases give rise to cutaneous leishmaniasis (86). #is 
behavior of L. donovani infection may be attributed to host’s 
resistance to the disease which restricts the spread of the infec-
tion to the visceral organs and keeps it localized to cutaneous 
regions (86).

#e CD4+ CD25+ regulatory T cells also play a major role 
in regulating the persistence of the parasite L. major inside 
the host. Inhibition of the T-reg promoting cytokines such as 
IL-10 leads to the clearance of the pathogen from the host (87). 
However, during Leishmaniasis the low production of the IFN-
γ and IL-12 cytokines leads to the increased proliferation of 
the T-reg cells that leads to the re-activation of the Leishmania 
parasites inside the host (87).

SYSTEMS BIOLOGY BASED INTEGRATIVE 
APPROACHES FOR UNDERSTANDING 
THE HOST–PARASITE INTERACTION AND 
CO-EVOLUTIONARY PATTERNS IN 
PROTOZOAN DISEASES

During the interaction of hosts and protozoan parasites, both 
employ mutual selective pressures on each other, which may 
facilitate rapid reciprocal adaptation. Di!erent stages of the 
parasite life cycle introduce another layer of complexity (88). 
Signi"cant amount of molecular, omics, clinical, epidemiologi-
cal as well as ecological data has been generated at in vitro and 

in  vivo levels using various pathogens and respective diseases. 
Integrative analysis of such discretely generated and located data 
from the host and protozoan parasite variants, in laboratory 
as well as natural populations is the most essential necessity 
to identify the complex mechanisms of protozoan evolution 
via immune escape during host–parasite coevolution. Public 
resources such as EuPathDB (89), Pathogen–Host Interactions 
(90), ProtozoaDB (91), together with protozoan species-speci"c 
databases are tremendously useful to collect useful information 
for initiating systems based integrative analysis. #e key steps 
in such integrative approach involves data generation/data col-
lection, data organization, data integration, integrative network 
construction, network analyses, and "nally computer-based 
mathematical simulation and predictive modeling (92). As an 
example, using a reconstructed genome scale metabolic model 
of Leishmania infantum adaptations, (73) have identi"ed the 
robustness of the parasite metabolic network against accidental 
errors and demonstrated the wide array of choices for the parasite 
to achieve optimal survival (73).

Recent advancement in RNA-Seq based techniques has 
facilitated the simultaneous sequencing of both host and parasite 
(including non-model parasites) transcriptomes (93). In a "rst 
of its kind RNA-seq experiment in control human neutrophils 
during priming with pro-in%ammatory cytokines (TNF-α and 
GM-CSF), Wright et  al. have shown the rapid expression of a 
common set of transcripts for cytokines, chem okines, and cell 
surface receptors (CXCL1, CXCL2, IL1A, IL1B, IL1RA, ICAM1) 
(94). #ey have demonstrated the utility of this approach to de"ne 
functional changes in neutrophils following cytokine exposure. 
During a mega scale analysis of 116 malaria patients and infecting 
P. falciparum parasite, Yamagishi et  al. have identi"ed variable 
behaviors of the "eld malaria parasites, which were far more 
complex than those observed under laboratory conditions (95). 
Pittman et al. have generated a large scale T. gondii–host inter-
actome, using dual transcriptional pro"ling of mice and parasite 
during acute and chronic infection (96) to demonstrate the in%u-
ence of parasite development on host gene transcription as well 
as the epigenetic in%uence of the host environment on parasite 
gene transcription. Various systems-wide studies on malaria 
parasites have reported posttranscriptional (97) and translational 
(98) control at various points of the parasite lifecycle. One of such 
controlling mechanism is translational delay, by which protein 
expression in parasite is actively suspended for expressed mRNA 
transcripts. It was shown in P. falciparum that by suppressing 
more than 30% of its genes, the parasite rapidly adapts to new 
environments within the host by remaining undetected to the 
host immune system and undergo developmental switching in 
order to survive (99).

CONCLUSION AND FUTURE 
PERSPECTIVES

#ere is large apparent heterogeneity in o!ense strategies 
employed by the protozoan pathogen in human infections. In 
contrast to this, there appears to be a broad consensus on the 
major signaling hubs manipulated by the pathogens. It would 
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be worthwhile to dissect the host–pathogen interactions at 
cellular, molecular, and systems level to discriminate between 
infections that are virulent with potential for fatal outcomes 
from asymptomatic or uncomplicated infections with limited 
morbidity. It may be hypothesized that immuno regulatory 
mechanisms that confer disease tolerance are distinct from 
immune and metabolic responses to severe diseases and demand 
to be determined by large global studies employing di!erent 
protozoan pathogen systems. However, despite the availability 
of huge amount of multi-dimensional data in host–protozoan 
interaction, functional characterization, and annotation of 
parasite genomes is severely limited by lack of both genetic 
tools and resources in protozoa. Given the size, heterogeneity 
and complexity of the host–parasite interaction data, develop-
ment of new computational tools and user-friendly methods for 
integrating heterogeneous “Big Data” will facilitate to "ll up the 
missing links. #is will be bene"cial for better understanding of 
the evolutionary arm race between the host and the parasite, and 
"nally for the e'cient management and control of the protozoan 
diseases in humans.
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Abstract
The tumor microenvironment comprising of the immune cells and cytokines acts as the ‘soil’
that nourishes a developing tumor. Lack of a comprehensive study of the interactions of this
tumor microenvironment with the heterogeneous sub-population of tumor cells that arise
from the differentiation of Cancer Stem Cells (CSC), i.e. the ‘seed’, has limited our under-
standing of the development of drug resistance and treatment failures in Cancer. Based on
this seed and soil hypothesis, for the very first time, we have captured the concept of CSC
differentiation and tumor-immune interaction into a generic model that has been validated
with known experimental data. Using this model we report that as the CSC differentiation
shifts from symmetric to asymmetric pattern, resistant cancer cells start accumulating in the
tumor that makes it refractory to therapeutic interventions. Model analyses unveiled the
presence of feedback loops that establish the dual role of M2 macrophages in regulating
tumor proliferation. The study further revealed oscillations in the tumor sub-populations in
the presence of TH1 derived IFN-γ that eliminates CSC; and the role of IL10 feedback in the
regulation of TH1/TH2 ratio. These analyses expose important observations that are indica-
tive of Cancer prognosis. Further, the model has been used for testing known treatment pro-
tocols to explore the reasons of failure of conventional treatment strategies and propose an
improvised protocol that shows promising results in suppressing the proliferation of all the
cellular sub-populations of the tumor and restoring a healthy TH1/TH2 ratio that assures bet-
ter Cancer remission.

1. Introduction

Amalignant tumor is formed of heterogeneous population of cells. According to Cancer Stem
Cell (CSC) Hypothesis, this tumor of heterogeneous cells is formed from a distinct group of
cells having stem-like properties that are able to differentiate and renew for an indefinite
period of time [1]. Popularly referred to as the Seed and Soil hypothesis, researchers believe
that the CSCs acts like ‘seed’ and form the tumor initiating population of cells, that is responsi-
ble for the growth, sustenance, metastasis and relapse of Cancer [2]. These CSCs have the
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ability to differentiate both symmetrically and asymmetrically to form the terminally differen-
tiated cancer cells as well as renew the pool of CSCs [3]. However, during proliferation, various
extrinsic and intrinsic environmental factors give rise to randommutational events, such as,
chromosomal breakage, translocation, aberrant signalling events and drug efflux, which are
responsible for transformation and adaptation of the cell to resist the effect of drug and con-
ventional therapeutic strategies [4]. This results in the formation of distinct cellular sub-popu-
lations that are drug resistant and impair the treatment of cancer.

On the other hand, the tumor microenvironment, composed mainly of the immune cells
and the cytokines, plays a crucial role in determining cancer prognosis [5]. As the tumor devel-
ops, each of the tumor cell sub-populations starts manipulating the microenvironment and
induces the production of pro-tumorigenic molecules. The CSCs and the Cancer cells induce
the production of immune-modulatory molecules such as IL-10, IL-13 and TGF-β that are
conducive to the proliferation of the M2-Tumor Associated Macrophages (M2-TAM), the
Type II T-helper (TH2) cells and the T-regulatory (Treg) cells [6, 7]. The IL-10 mediated posi-
tive feedback loop between the tumor and the M2-TAMs helps in the rapid proliferation of the
tumor sub-populations and the progression of the disease [8]. The CSCs also expresses high
levels of co-inhibitory molecule PD-L1 that inhibit the activation of Cytotoxic T (Tc) cells [9].
Additionally, the CSC also tries to evade recognition by the immune cell by suppressing the
expression of Major Histocompatibility Complex (MHC) by the macrophage cells in the
tumor microenvironment. This is achieved by the release of exosomal miRNAs, such as miR-9
and miR-21, into the microenvironment by the tumor that are taken up by the immune cells,
mediating changes in the cytokine expression pattern, antigen-recognition and immune
responses [10, 11]. Along with these strategies of immune evasion, CSC also secretes VEGF, a
growth factor that promotes angiogenesis during tumor progression and plays a pivotal role in
suppressing the maturation of the T cells [12, 13]. These chemokines, cytokines and growth
factors secreted by the stem cells lead the system to an inflammatory state. This also mediates a
crosstalk between different groups of cells in the tumor microenvironment that are crucial for
cancer initiation, progression and metastases formation [14, 15]. These regulatory mechanisms
that operate in the tumor microenvironment serve to suppress the anti-tumorigenic effect of
the Cytotoxic T (Tc) cells and the Type I T-helper (TH1) cells. This immune-suppressed tumor
microenvironment acts as the ‘soil’ that nourishes and augments the growth of both the drug-
sensitive as well as the drug-resistant sub-populations of the tumor, thereby posing a further
challenge to the therapeutic strategies adopted to control cancer [16]. However, literature evi-
dences showing the presence of a few tumor associated antigens (TAA) that helps in the recog-
nition of these tumor cell sub-populations by the infiltrated T cells and the generation of
effective immune responses upon Dendritic Cell (DC) vaccination throws light on the possibil-
ity of control of the disease using immunotherapy [17]. Hence a thorough understanding of
the tumor-immune interaction, considering tumor sub-populations, is crucial to overcome the
immune-suppression induced by the tumor.

In order to gain insight into the regulatory mechanisms governing these tumor-immune
interactions, several studies have been performed using both theoretical as well as experimen-
tal techniques. Such studies have clearly indicated the role of Tc cells and IFN-γ in controlling
Cancer progression [18]. Recent findings have suggested that synergistic activation of Tc cells
and γδ-T cells are efficacious against HMLER-derived Breast Cancer stem-like cells, where γδ-
T cells act as an early source of IFN-γ in tumor immunity, under special in vitro conditions
[19]. The development of Chimeric Antigen Receptor (CAR) T-cell has opened up new ave-
nues for research in tumor immunity [20]. However, lack of truly CSC specific markers leads
to on-target/off-tumor toxicity, where the CAR-T cells or any other CSC-targeted therapy kills
the normal cells as well that display the same markers as that of CSCs [20, 21].

Immune-regulation in tumor microenvironment
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Mathematical models have been useful in delineating the multiplicity of the complex inter-
actions governing the dynamics of the tumor-immune interaction that remains elusive
through in-vitro experiments. In this context, in-silico studies have shown light on the CSC dif-
ferentiation pattern and its effect on the tumor growth dynamics [3]. Here it has been observed
that symmetric stem cell division shows a correlation with cancer progression [3]. This is in
contrast to another report that mentions symmetric stem cell division lowers cancer risk as it
reduces the accumulation of cellular damage [22]. However, the effect of CSC differentiation
on drug-resistivity and the outcome of the interaction of these differentiated cells with the
tumor microenvironment have not been explored sufficiently. On the other hand, models on
tumor-immune interaction considering the involvement of tumor, immune effector cell and
IL2 have enhanced our understanding about oscillations in tumor sizes, long-term tumor
relapse and the conditions under which tumor elimination may be achieved using Adoptive
Cellular Immunotherapy [23]. Mathematical models are now being exploited for the study of
the efficacy of adaptive immunity for the elimination of aggressive tumors [24, 25], the exis-
tence of an angiogenic switch that regulates Cancer progression [26] and as a powerful tool in
the design of optimal control strategies for Cancer [27, 28].

However, the study of the CSC differentiation pattern and the outcome of the interaction of
these heterogeneous tumor cell sub-populations with the immune cells and cytokines present
in the microenvironment is a challenge yet to be achieved in both experiments as well as
modelling studies. With the aim to gain a clearer and unambiguous picture of the regulatory
mechanisms involved in the immune-escape mechanism of the tumor cells, we propose an
ODE-based mathematical model of the tumor-immune interaction that captures the develop-
ment of a malignant tumor from the ‘seed’, the CSCs, and its interaction with the ‘soil’, the
tumor microenvironment. In this model, we consider the three different modes of CSC differ-
entiation, as well as the effect of randommutations and ask the question, how the stem cell dif-
ferentiation patterns regulate the different cellular sub-populations in the tumor and how it
affects the development of drug resistance? Using this model we have tried to address the unre-
solved question of the correlation of M2 macrophages with more resistant tumors by exploring
the regulatory feedback loops that govern the dynamics of the tumor-sub-population and the
roles of the cytokine feedbacks in shaping the tumor microenvironment. Prior to these studies,
the model has been calibrated and the unknown parameters of the model have been estimated
by fitting the initial growth kinetics of the model with data obtained from Gastric Cancer cell
line using the MCMC-DRAM algorithm [29]. Moreover, the steady state behaviors of all the
model variables have been quantifiably validated with previously reported experimental data
obtained from cytometric and protein expression studies from both in-vitro studies as well as
data obtained from different Cancer patients to establish the generic behavior of our model
and ensure its acceptability in the design of treatment strategies.

In order to design treatment protocols for triggering the Cancer remission, we have intro-
duced radio and chemotherapeutic strategies and observed the fold changes in the tumor mass
in the presence and in the absence of resistant cells, where we demonstrate the failure of the
conventional treatment strategies for curing Cancer. Thereafter, we have ventured the use of
immunotherapy that has also been a popular choice for the elimination of the CSCs that are
resistant to chemo and radio-therapeutic interventions [17, 30]. Hence, using the leads from
our model analysis, we have attempted to propose combinatorial treatment strategies and
design protocols that help in better suppression of the tumor, even in the presence of resistant
cells. However, it may be mentioned here that a vital assumption in our model is that the drug-
sensitive and drug-resistant population of tumor cells elicits similar immune responses. The
resistant population of cells represents a fraction of the tumor cells that are unresponsive to
the conventional treatment strategies. Thus, the difference in their behavior arises when the
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treatment/control is applied. Our novel modeling approach and strategy for the design of
treatment protocol throws light on the ways to optimize drug schedules, dosage and treatment
cycles required for the elimination of the tumor cells. This model may be used as a potential
tool for the prediction of Cancer prognosis and calculation of fold changes in the tumor sub-
populations in response to a new treatment regimen.

2. Model

The tumor-immune interaction model, depicted in Fig 1A, can be perceived as three regula-
tory modules – (i) the core tumor along with the tumor infiltrated Tc cells (red box), (ii) the
immune-stimulators consisting of M1 cells, TH1 cells, IL2 and IFN-γ cytokines (green box)
and (c) the immune-suppressors consisting of M2 cells, TH2 cell, Treg cells and IL10 cytokines
(orange box). The interactions between these components of the model are based on known
experimental evidences and immunological relevance. A detailed description of the model
along with the mathematical assumptions, based on the biological phenomenon, used in its
mathematical formulation has been described in theMethods section.

Based on these biological relevances and mathematical assumptions, the tumor-immune
interaction network has been modelled using 13 Ordinary Differential Equations (Eqs 1–13)
and 71 parameters (as enlisted in theMethods section). The state variables and parameters
used in the formulation of the model have been listed in the S1 Text. The initial values of the

Fig 1. Diagrammatic representation of the tumor-immune interaction model. (a) Cellular interaction network representing
the key players of the tumor microenvironment, viz. Cancer Stem Cells (S), Cancer cells (C), their drug resistant counterparts
(SR and CR), M1-TAM,M2-TAM, TH1, TH2, Tc, Treg immune cells, and cytokines IL10, IFN-γ and IL-2; The tumor
microenvironment has been grouped into three parts, viz.- core tumor and infiltrated Tc cells (red box), the immune-stimulators
(green box) and the immune-suppressors (orange box); the Black arrows represent Activation, while the Red arrow represent
Inhibition; (b) Stem cell differentiation pattern.

https://doi.org/10.1371/journal.pone.0203030.g001
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model variables have been listed in the S1 Text. Here the initial value of the stem cell S0 = 1,
while SR, C, CR have been initialized as zero such that all the tumor sub-populations develop
from the symmetric and asymmetric differentiation of a single stem cell that ensures the con-
servation of the stem cell hypothesis.

3. Therapeutic intervention

The protocols are designed using various combinations of Radiotherapy, Chemotherapy and
Immunotherapy. The dosage, time duration and number of cycles for each therapy are varied
to determine the optimal combination that gives us maximum fold changes in the tumor
reduction as well as enhance the TH1/TH2 ratio to ensure better treatment efficacy. Two treat-
ment protocols have been tested in our model. Protocol 1 is an adaptation from a previously
reported protocol involving Chemotherapy and Radiotherapy, while Protocol 2 is novel com-
binatorial protocol proposed where we have introduced Immunotherapy by triggering the
immune cells of our model (detailed discussion in theMethods section).

4. Results

4.1. Model validation with experimental data

4.1.1. Tumor growth (without therapy). The growth kinetics of the tumor is estimated
by four variables of our model, S, SR, C and CR, signifying the four sub-populations of cells
that are found in the tumor. In order to validate the growth kinetics of these tumor cell sub-
populations of our model, we have used data from different experimental and theoretical stud-
ies of tumor growth estimation. The early temporal growth kinetics of the Stem (S) and Resis-
tant Stem cells (SR) were validated over a period of 5 days, with the reports of Tomasetti and
Levy [3], by choosing the parameter values γS = 2 day-1 and δS = 0.2 day-1 (Fig 2A). Here, it
was observed that the Stem cells (S) start proliferating exponentially during this initial growth
phase of tumor formation. During this time frame, the stem cells also start acquiring mutations
and start producing the Resistant Stem Cells (SR) that gradually starts proliferating slowly and
is maintained in very low numbers inside the tumor [3]. It is to be noted that for all our subse-
quent simulations we have used γS = 0.15 day-1 and δS = 2 x10-7day-1, as reported in the S1
Text.

Temporal behaviors of the Cancer (C) and Resistant Cancer (CR) sub-populations have
been simulated to validate our model with experimental data (Fig 2B; See Methods Section
7.7). Fig 2B depicts the temporal growth kinetics of the Breast cancer cell line MCF-7/TAX-
resistant to Paclitaxel [31], Hepatocellular Carcinoma cell line SK-Hep1/CDDP3-resistant to
Cisplatin [32], and Colon Cancer cell lines SW-620-L-OHP and LoVo-L-OHP-resistant to
Oxaliplatin [33]. Our simulation result mimics the average behavior of the resistant cancer cell
lines over the time period of 5 days (Fig 2B), using the parameter set estimated through the
MCMCmethod.

The model was simulated for a sufficiently long time to study the temporal evolution of the
drug-sensitive and drug-resistant cancer cells without any therapeutic interventions (Fig 2C).
Here, it was observed that during the early stages of tumor development, the stem cells (S)
show a very slow rate of proliferation. According to our simulation results, it is observed that
although a single stem cell initiates the formation of the entire tumor, the stem cells maintain a
very low number during the first few months of tumor development. The rapid proliferation
of the Cancer cells (C) during the early growth phase lead to their transformation to the resis-
tant CR species that soon start proliferating rapidly, thereby giving rise to a tumor. At the end
of the exponential growth phase, the cancer progression is impeded by the activated M1, TH1

and Tc immune cells and the systems stay relatively stable for some time until the stem cells

Immune-regulation in tumor microenvironment

PLOSONE | https://doi.org/10.1371/journal.pone.0203030 September 5, 2018 5 / 25



start proliferating exponentially and form the main bulk of the tumor. Our simulation results
indicate that the first resistant stem cell of the tumor is detected at 400 days. Around 800 days
the model reaches its steady state. The total tumor density at steady state can be estimated to
be around 2.5x1010 cells/ml, i.e. 25 times higher than the reported minimum threshold of a

Fig 2. Model validation with experimental data: (a) Stem and Stem resistant cell proliferation at γS = 2 day-1 and δS = 0.2 day-1; (b) Proliferation of the
Cancer Resistant cells as observed in experiments along with the observations from our simulation; figure depicts growth kinetics of the Breast cancer cell
line MCF-7/TAX-resistant to Paclitaxel, Hepatocellular Carcinoma cell line SK-Hep1/CDDP3-resistant to Cisplatin, and Colon Cancer cell lines SW-
620-L-OHP and LoVo-L-OHP-resistant to Oxaliplatin; (c) Temporal cellular behavior of the components of the model during tumor formation; (d)
Temporal cytokine expression pattern during tumor formation; (e) Immune Cell Ratio at steady state- experiment versus simulation results (f) Immune
cell ratio in the disease free condition versus cancer scenario. Note: CD4 = TH1 + TH2; CD8 = Tc.

https://doi.org/10.1371/journal.pone.0203030.g002
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clinically detectable tumor [3]. From here we calculate the relative abundance of the sub-popu-
lations of the tumor cells and derive that at steady state, the tumor is composed of 94.59%
Stem cells (S), 4.49% Cancer cells (C), 1% Cancer Resistant cells (CR) and small fraction of
Stem Resistant cells (SR) that comprises 0.001% of the tumor mass.

4.1.2. Immune cell-ratio comparison with cytometric data. Our simulations results
revealed the dynamics of the adaptive immune responses generated during the tumor develop-
ment (Fig 2C). Here we observe that as the tumor sub-populations begins to proliferate, the Tc
cells show enhanced activation that is required for the natural regression of the tumor (Fig
2C). However, as the tumor continues to proliferate and the resistant cancer cells (CR) peaks to
1.5x109 cells/ml, there is a sharp rise in the M1 and TH1 cells proliferation. The combined effect
of the Tc, M1 and TH1 cells helps to impede the tumor development and decrease it by 3 folds
which then falls below the limit of tumor detection (i.e. 109 cells/ml, [3]) and apparently stays
dormant till 400 days. Thereafter, as the stem (S) and resistant stem (SR) cells start proliferat-
ing, the adaptive immunity becomes active again. However, this is also accompanied with the
increase in abundance of M2 and Treg cells (Fig 2C), that helps in the sustenance and contin-
ued survival of the tumor cells.

In order to analyse the changes in the immune activation state before and after tumor for-
mation, the immune cell ratio values obtained at the steady state are estimated and compared
to the cell ratios in the normal disease-free condition (Fig 2F). It may be mentioned here, in
Fig 2E and 2F, CD4 depicts the summation of both the TH1 and TH2 cells of our model, while
CD8 implies Tc cells. From our model analysis, we observe that, during Cancer, the ratio of
CD4 and CD8 cells reaches a mean value of 2.75, that is in sharp contrast to the normal healthy
individuals which show a value of 1.48 (Fig 2F) [34]. On the other hand, the value of CD4:Treg
ratio in Cancer shows a value of 15.2 that is higher than the ratio observed in the normal sce-
nario. This happens due to the enhanced TH2 proliferation during tumor development. This
also explains the reason for the elevated CD4/Treg ratio. However, the CD8:Treg ratio shows a
decrease in Cancer patients and reaches to about 5.5, which is a characteristic of resistant
tumors in mammals [35]. In Fig 2E we have compared these results of our numerical simula-
tion with experimental data obtained from various literatures. Here, we clearly observe that
our simulation corroborates very well with the experimental observations made from blood
samples of Cancer patients (Fig 2E) [36, 37]. Additionally, we have observed the changes in the
TH1:TH2 and M1:M2 ratios that have important implications in Cancer prognosis. We find
that both TH1:TH2 ratio and M1:M2 ratio get decreased during Cancer as compared to the nor-
mal disease-free conditions (Fig 2F) [38, 39]. These results are in excellent agreement to the lit-
erature that suggests Cancer patients showing TH1:TH2 ratio below 8 show poor disease
prognosis [39].

4.1.3. Cytokine production. IL10 production is a characteristic feature for Cancer detec-
tion. During Cancer, the marked increase in IL10 production has been noted in blood samples
of various cancer patients, where an average concentration of 0.01ng/ml has been recorded in
various protein expression studies [40–42]. The temporal protein expression profile, from our
simulations, suggests the IL10 expression starts increasing around the 15th day until it reaches
to a concentration of 0.005 ng/ml (Fig 2D). The IFN-γ production begins along with the prolif-
eration of the Tc cells and increases sharply with the activation of the TH1 cells (Fig 2D). This
is accompanied by IL2 production that helps in the continued proliferation of the TH1 cells.
After the proliferation of the stem cells, the cytokine production increases further. The IL10
concentration starts increasing rapidly and attains a concentration of 0.009 ng/ml at steady
state. The steady state concentrations of IFN-γ and IL2 reach 9.6 ng/ml and 0.6 ng/ml respec-
tively. The cytokine expression levels from our simulation lie close to the experimentally
observed ranges of protein expression of cancer treatment prior to their treatment [40].

Immune-regulation in tumor microenvironment
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4.2. Model analysis

4.2.1. Development of drug resistance is governed by the pattern of stem cell differenti-
ation. With the assumption that the stem cells predominantly tend to renew their pool of
stem cells, i.e. with a probability p3, we have varied the values of p1 and p2 to observe the effect
of the asymmetric and symmetric differentiation of the stem cell on the development of drug
resistance (Fig 3A–3D). Here it may be observed that as we increase the values of p1 and p2,
the rate of the stem cell renewal decreases gradually, thereby leading to decrease in the steady
state values of S and SR (Fig 3A and 3B). However, in the case of C cells (Fig 3C), we observe
that as we increase the value of p1, the steady state values of C decreases, whereas the variation
of p2 has little effect on the steady states of C (Fig 3C). The steady state level of CR on the other
hand, is greatly influenced by p1 and p2 (Fig 3D). With the increase in the value of p1 and p2,
the steady states value of CR increases, signifying as the mode of stem cell differentiation
changes, the tumor cell sub-populations tend to transform into the resistant Cancer cells.
Hence, from our results, we may infer that higher asymmetric stem cell division may be associ-
ated with a high rate of drug resistance.

4.2.2. Dual role of tumor associated macrophages. The differential regulatory behavior
of the type I and type II TAMs on the tumor cells was studied by varying the γM1 and γM2

parameters, governing the growth rate of the M1 and M2 macrophages (Fig 3E–3H). Here it
was observed, as we increase the birth rate of M1, the steady state values of all the sub-popula-
tions of the tumor decreases. However, on varying γM2, we observe that although the S, SR and
C sub-populations show a decrease in the steady state values, the CR population increases (Fig
3E–3H). This result corroborates with the experimental observations that indicate that while
M1 macrophages may a have an important role in suppression of the tumor growth, a higher
abundance of M2 macrophages may lead to poor disease prognosis [43]. From our model anal-
ysis, we infer that a higher proliferation of M2 TAMs leads to an increased accumulation of
resistant cancer cells in the tumor. This is primarily because of the feedback regulations that
govern the dynamics of the tumor-immune interaction network.

4.2.3. IFN-gamma and IL10 feedbacks regulate Cancer progression. The cytokines are
the key regulators of the Tumor-Immune interaction network. The IFN-γ produced by the
TH1 cells helps in maintaining the steady state dynamics of the entire system. Parameter varia-
tion studies reveal that as we increase IFN-γ production from the TH1 cells by changing the
value of βTh1Ck2 between 10-7 and 10-2 ng/cell/day, the S and SR cells show a dampening oscilla-
tion in their temporal behavior and these stem cell populations gradually decrease to a very
low value. On the other hand, with the increasing βTh1Ck2 values, the temporal behavior of C
and CR cell population changes from dampening to stable oscillations at βTh1Ck2 = 0.1 (Fig 3I).
The increased production of IFN-γ leads to the rapid killing of the S and SR populations,
whose oscillations dampen with time resulting in complete elimination of the stem cells from
the system (Fig 3J). However, the high rate of C proliferation balances out the negative feed-
back effect of the high IFN-γ production, which keeps oscillating the system (Fig 3K). The
phase-plot depicts the feedback regulation that operates between the Cancer (C) cells and IFN-
γ that regulates the Cancer relapse. As the Cancer proliferation reaches 4x106 cells, the IFN-γ
production starts increasing which reduces the Cancer proliferation. When the Cancer cells
fall below 1x106 cells, the IFN-γ production also starts decreasing. However, at low levels IFN-
γ, the Cancer cells start proliferating again (Fig 3K). This leads the system into stable steady
state oscillations.

Another important feedback regulation that is crucial for the determination of tumor pro-
gression is the negative feedback effect of the IL10 cytokine on the TH1 proliferation. This is
governed by the parameter μTh1Ck1. As the value of μTh1Ck1 is increased, the TH1/TH2 ratio
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Fig 3. Parameter variation study. (a-d) Surface plot of the steady state values of S, SR, C and CR under varying p1 and p2; (e-h) Surface plot of the steady
state values of S, SR, C and CR under varying γM1 and γM2; (i) Temporal Plot at βTh1Ck2 = 0.1; (j-k) Phase plane of S vs. IFN-γ and C vs. IFN-γ at βTh1Ck2 =
0.1; (l) TH1/TH2 ratio at varying μTh1Ck1; (m) Fold change in steady states at varying μTh1Ck1.

https://doi.org/10.1371/journal.pone.0203030.g003
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decreased rapidly (Fig 3L). This results in the further proliferation of all the tumor sub-popula-
tions, i.e., S, SR, C and CR, and the fold changes in the steady state values of all four increases
with increasing μTh1Ck1 values (Fig 3M). Here it may be observed that inhibition of TH1 cells
by IL10, results in higher fold changes of the steady state of SR cells.

4.3. Development of treatment strategies

4.3.1. Failure of chemo and radiotherapies due to the presence of resistant cells. Che-
motherapy and Radiotherapy are effective for controlling tumor proliferation in the absence of
the resistant cells, i.e. when the rate of transformation of the stem and cancer cells to their
resistant counterparts reduces. Here we have tried to simulate the cancer scenario without any
mutational pressure, i.e. mC = 0 and mS = 0. Under such conditions, when we apply the Treat-
ment Protocol 1, we observe the Stem and the Cancer cells population decreases rapidly and
an overall reduction in the tumor population is observed (Fig 4). However, during the forma-
tion of a tumor, a certain fraction of the tumor cells acquire resistance to drugs. Under such
conditions, i.e. mC>0 and mS>0, when the Treatment Protocol 1 is applied at the end of the
detection time (DT = 200 days), we observe that even though the drug-sensitive populations
viz. S and C decreases, the resistant populations SR and CR remain unaffected during the che-
motherapeutic cycles. Thereafter, during the Radiotherapy cycles, the SR cell population being
completely unaffected by radiation proliferates rapidly, while the C and CR population sharply
decreases for some time and then becomes stable. In the next treatment-free stage, SR, C and
CR start proliferating again. This activates the IFN-γ from the TH1 and Tc cells that help to
bring down the SR and CR populations a little, that are then sustained at by the M2 and the
Treg cells of the tumor microenvironment. The last phase of Chemotherapy does not have any
effect on SR and CR populations. Hence the reduction in the overall tumor mass is not substan-
tial. Also, it may be noticed here that at the end of this treatment regimen the TH1/TH2 ratio is
reduced to 2.5 that is indicative of poor disease prognosis.

4.3.2. Immune interventions for effective tumor remission. Combinatorial treatment
protocol was designed to reduce the tumor burden and restore healthy TH1/TH2 ratio. Parame-
ter variation studies revealed the importance of the TC and the TH1 cells in the regulation of
the steady state levels of the tumor cells. Here, Immunotherapy was introduced as two control
variables, i.e., u3_Tc and u3_TH1, which boost the production of the TC and TH1 respectively.
The stimulus to the TH1 and TC cells was started at the end of the last chemotherapeutic cycle
and was administered for 20 days followed by 1 day rest. This was repeated for 10 cycles. The
dosage of each therapy was varied in wide ranges, and it was observed that when Immunother-
apy is low, the change in Radio and Chemotherapies does not affect the tumor population sig-
nificantly which is reflected in the very small tumor fold change and low TH1/TH2 ratio (S1
Fig). As the Immunotherapy is increased, the fold change of tumor population increases along
with the TH1/TH2. However at very high doses of immunostimulation, the fold changes
decreases and the TH1/TH2 ratio increases abruptly that leads to extreme suppression of the
TH2 cells in the system. Hence the region 1.5< dI <2.5 can be considered as the ideal dosage of
immunostimulation required for triggering the remission of Tumor. Using the leads from this
analysis, the Protocol 2 was designed. At the end of this treatment regimen, it was observed
that all the four tumor sub-populations showed a huge reduction in their proliferation, i.e. 136
fold reduction in tumor mass (Protocol 2). The TH1/TH2 ratio was boosted to 8.8.

5. Discussion

The model developed here throws light into the development of a full grown tumor from a sin-
gle cancer stem cell (S), and the influence of the tumor microenvironment during its
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maturation. The study of the temporal evolution of tumor development shows that although
the cancer stem cell forms the ‘seed’ from which the tumor emanate, the stem cell population
remains low in the beginning. These cancer stem cells, owing to their slow replication, are

Fig 4. Changes in the tumor growth after therapeutic interventions. Protocol 1 has been applied without and with the presence of resistant cells.
Protocol 2 efficiently suppresses tumor in spite of the presence of resistant cells. Color code: Black-without treatment, Green-Chemotherapy, Red-
Radiotherapy, Pink-Immunotherapy.

https://doi.org/10.1371/journal.pone.0203030.g004
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intrinsically resistant to radiotherapy and are only partially sensitive to chemotherapy [44, 45].
Additionally, the stem cell sub-populations have a strong immune-suppressive effect on the
tumor microenvironment [46]. This phenomenon has been captured in our model in the
study of the temporal evolution of the tumor-immune interaction dynamics, where we observe
that coincident with the proliferation of the stem and resistant stem cell there is also an
increased proliferation of the M2 and Treg cells (Fig 2C). This consequently leads to the lower-
ing of the M1/M2 and TH1/TH2 ratio that is associated with the formation of resistant tumors
(Fig 2F). Moreover, it has been observed in our study that the proliferation of stem cell sub-
populations leads to suppression of the Tc cells and the activation of the Treg cells, that results
in the lowering the CD8/Treg ratio during Cancer (Fig 2F). This happens primarily because of
the direct negative regulatory effects of the stem and resistant stem cells on the growth of the
Tc cells. Hence, an early detection of the tumor is crucial for an effective treatment, when the
stem cell population in the tumor remains low and the resistant stem cell population is not yet
formed.

The model also captures the different patterns of CSC differentiation and its role in deter-
mining the fate of the tumor. Here, it has been observed that as the differentiation pattern of
CSC shifts towards the asymmetric pattern, the CSC pool begins to deplete and the CSC starts
producing the terminally differentiated cancer cells that have a finite lifespan. The reduction in
the stem cell population helps in the reduction of its immune-suppressive effects on the Tc
cells. At the same time, the differentiation of the stem into the cancer cells stimulates the Tc
cells to get activated that now inhibit the tumor via the negative feedback regulation. However,
the steady state value of the resistant cancer cells increases and overrides the negative feedback
effect of the immune cells, reinforcing the observations that a higher asymmetric stem cell dif-
ferentiation may be associated with the formation of more resistant tumors. Our model analy-
sis also indicates that at low p1 value, as the probability of symmetric differentiation (p2) of
stem cells is increased, the steady state levels of stem cells rapidly decreases, however it has little
effect on the steady state value of Cancer cells. On the contrary, at high p1 value, the increase
in p2 leads to the transformation of the cancer to resistant cancer cells. These results signify
that reduction in stem cell symmetric renewal (p3) of the cell leads to its differentiation into
more resistant tumors.

The model further elucidates a dual role of the M2-TAMs in regulating the tumor forma-
tion (Fig 3E–3H). Here we observe that on one hand, the M2-TAMs aid in the suppression of
the S, SR and C cells of the tumor. This is because M2 is a prime source for the production of
IL10 cytokine that has an important role in positively regulating the proliferation of the Cancer
(C) cells. Hence, as the M2-TAMs increase in abundance, the cancer cells begin to proliferate
via a positive feedback loop (Fig 5A). This leads to the activation of both the Tc and TH1 cells
that inhibits the tumor cells via their negative feedback by producing a higher amount of IFN-
γ and higher cytotoxic activity of the Tc cells (Fig 5A). However, on the other hand, it may be
observed that M2-TAMs help in the growth of the CR cells via the positive feedback loop,
while the negative feedback has little effect on the CR sub-population. This observation
explains the reason for the refractory behavior of the tumor to treatment strategies under the
presence of the M2-TAMs [47].

Our study reveals the functional behavior of the feedback mechanisms that regulate the
behavior of the entire tumor-immune interaction network. From our parameter variation
studies, the importance of the IFN-γ production in regulating the temporal behavior of the
tumor development is observed. Here, we found that as the rate of IFN-γ production from the
TH1 cells increases, the negative feedback effect of IFN-γ on the tumor helps in the suppression
of the tumor cells (Figs 3I and 5B). However, the replicative potential of the Cancer and resis-
tant Cancer balances out the negative effect of the IFN-γ leading to an oscillatory tumor-
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relapsing behavior, whereas the slowly replicating stem and resistant cells sub-populations
gradually get eliminated from the tumor due to the high production of the IFN-γ cytokine (Fig
3J and 3K). This finding has important implications in the design of Immunotherapeutic pro-
tocols, where we observe the differential behavior of the tumor cells in response to high IFN-γ
production. Using our model, we further explore the effects of the negative feedback of the
IL10 cytokine on the TH1 cells (Figs 3L, 3M and 5C). We also make an important observation,
where we find that as the sensitivity of TH1 cells to IL10 increases, the TH1/TH2 ratio decreases
sharply. This leads to the increased proliferation of the tumor cells. The fold change in the
steady values of the resistant stem cells is the greatest signifying the prognostic role of the TH1/
TH2 ratio in predicting tumor progression and the formation of a resistant tumor with higher
proportion of resistant stem cells.

With the knowledge of the regulatory mechanisms governing the differential response of
the tumor sub-populations to the microenvironment, we have tried to explore the effect of
treatment strategies conventionally adopted for the treatment of Cancer (Fig 4). Using our
model we have been able to show that the reason for the failure of conventional Chemotherapy
and Radiotherapy is primarily due to the formation of the resistant cancer stem cells SR and
resistant cancer cells CR within the tumor. Under the conditions where there are no mutations
conferring drug resistivity to the tumor, a significant reduction in tumor mass may be
achieved using Chemo and Radio therapy alone. However, in reality, a small population of
resistant tumor cells exists in the tumor that remains refractory to these treatment protocols.
In order to successfully remove the tumor, a combination of the conventional treatment proto-
col along with Immuno-therapy can help alleviate the disease scenario. There can be several
ways of boosting the immune system. However, in this work, we propose that a synergistic
stimulus to both TH1 and Tc cells is required for the generation of an adaptive immune
response that is capable of reducing both the drug-sensitive as well as the drug-resistant sub-
populations of the tumor. In order to achieve this, dosage of Radio, Chemo and Immunothera-
pies were varied to create 1000 different treatment combinations and thereafter a treatment
protocol (Protocol 2) has been designed to ensure maximal reduction in the tumor mass, as
well as the restoration of a healthy TH1/TH2 balance.

In this model, we try to capture the high complexity of the tumor microenvironment with a
simple ODE model that represents the interaction of the tumor cell sub-populations and the
immune cells at the phenotypic level. Here we assume that the parameters governing these cel-
lular interactions are a cumulative outcome of the various molecular and the intracellular sig-
nalling events occurring in the microenvironment that influence the immune evasion but have

Fig 5. Regulatory feedback loops. (a) The M2 macrophage triggers two feedback loops. The first loop through IL10 is
a positive feedback that triggers tumor proliferation. This, in turn, activates the second loop through IFN- γ that
inhibits the tumor; (b) The TH1 derived IFN- γ inhibits the tumor via a negative feedback that leads to an oscillation in
the population of tumor cells; (c) The positive feedback loop through IL10 is responsible for the maintenance of tumor
and suppression of TH1/ TH2 ratio.

https://doi.org/10.1371/journal.pone.0203030.g005
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not been explicitly considered in this model for its simplification. However, it is worth men-
tioning that depending on the availability of data and hybrid modeling techniques involving a
combination of different mathematical tools and strategies, this model may further be impro-
vised by considering the effect of the various molecular events such as angiogenesis, the role of
the miRNA, exosomes and chemokines in mediating the cellular interactions, the metabolic
pathways as well as the hypoxic conditions [48], that may further help us unravel unknown
regulations underlying the tumor immune interaction and the development of drug-
resistance.

6. Conclusion

With respect to the long standing ‘seed and soil’ hypothesis, we propose a model that throws
light into the previously unexplored regulations governing tumor-immune interaction. This
novel approach of developing of a tumor-immune interaction model considering both the
stem cell differentiation pattern as well as the effect of the microenvironment has helped us in
unveiling the effect of stem cell differentiation on the development of drug resistance and the
different mechanistic regulations governing the tumor-immune interaction dynamics. How-
ever, this model does not capture the diffusion kinetics of the cytokines or the time delay asso-
ciated with the cytokine regulations. Nonetheless, the observations derived from the model
have been corroborated extensively with the experimental observations in cytometric and pro-
tein expression studies that strengthen the reliability of our model for the prediction of mecha-
nistic regulations of tumor-immune interaction and design of the treatment protocols. This
study can further be used to optimize treatment strategies, drug dosage and time schedules for
designing advanced treatment protocols for Cancer.

7. Methods

7.1. Model development

7.1.1. Tumor formation. The core tumor consists of the Cancer Stem Cells (S), the Can-
cer Cells (C) and their drug resistant counterparts Resistant Stem Cells (SR) and Resistant Can-
cer Cells (CR) (Fig 1A, red box). The model takes into consideration the different patterns of
stem cell differentiation, viz. the symmetric and asymmetric stem cell differentiation (Fig 1B).
In the asymmetric differentiation, one stem cell (S) produces one daughter stem cell (S) and a
differentiated progenitor Cancer cell (C) with probability p1, while in the symmetric differenti-
ation one stem cell (S) produce either two Cancer cells (C) with probability p2 or two stem
cells (S) with probability p3 (where, p1+p2+p3 = 1). The stem cells undergoing asymmetric dif-
ferentiation acquire mutation (represented with black dotted line in Fig 1A) with a probability
mS that leads to the transformation of a stem cell (S) to a resistant stem cell (SR). Since the
probability that this mutation hits the daughter stem cell and not the differentiated cancer cell
is 0.5, the probability of formation of SR from S is further multiplied by p1/2. The symmetric
differentiation leads to the renewal of the non-mutant stem cell (S) pool with a probability
(1-mS)(1-p1-p2) [3]. Considering these factors (as described by Tomasetti and Levy [3]), we as-
sume that the growth rate of S can be mathematically represented as (γS(1 −mS)(1 − p1 − p2))
S, while the rate of depletion of the stem cell pool, that includes the differentiation of S to C

and the transformation S to SR can be represented as dS þ ðp2 # gSÞ þ gS #
mS#p1

2

! "
S. It may be

mentioned here that γS and δS represents that natural birth and death rates of S cells. A similar
nomenclature has been followed for all the other cell types.

The resistant stem cells are formed from the transformation of an S to SR. The SR follows a
similar pattern of self-renewal and differentiation that leads to the replenishment of the SR
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pool and the formation of differentiated CR cells [3]. Here, it may be assumed that the SR rep-
resents the compartment of stem cells that accumulate all the mutations in its pool, such that
no separate compartment for any secondary mutations has been considered here in this
model.

The Cancer cells (C) are formed from the stem cells (S) with the probability p1+p2. These C
cells follow a Gompertzian growth kinetics that can be mathematically represented by

gC # log Cmax
Cþr1

# $
, where Cmax is the carrying capacity of the tumor [49]. Here, it has been

assumed that during proliferation these C cells acquire mutations with a probability mC and
get transformed into CR cells. Hence the probability of proliferation of the non-mutant C cell
is further multiplied by a factor (1-mC). The CR cells are formed from the differentiation of the
SR cells with probability p1+p2 and the transformation of the C to CR cells with probability mC.
The CR cells also follow similar Gompertzian growth kinetics. The total carrying capacity of
these non-stem tumor cells has been considered as Ktumor, while each of C and CR has a carry-
ing capacity of Ktumor/2, so that both the cell populations can use the nutrients equally and
have an equal advantage in proliferation.

7.1.2. Immune cells in the tumor microenvironment. As the tumor develops the resi-
dent TAMs, both M1 and M2, encounters the C and CR cells of the tumor and gets activated
(Fig 1A) [38]. It may be assumed that this cell to cell interaction will follow a saturating kinetics
where even in the presence of a high number of tumor cells, the availability of TAMs acts as
the limiting condition. Hence a Michaelis-Menten type functional form may be used to repre-

sent the TAM activation, e.g. gM1 # M1#ðCþCRÞ
M1þlM1

# $
. These M1 and M2 TAMs now activate the TH1

and TH2 cells respectively [50]. Here the abundance of the TH cells acts as the limiting condi-
tion. In a similar way, the M2-TAMs also activate the Treg cells present in the tumor microen-
vironment [51]. The Tc cells, on the other hand, infiltrate the tumor, gets directly activated by
C and CR cells (Fig 1A). However, the S and SR cells of the tumor inhibit the Tc cell prolifera-
tion [9]. This is a bidirectional reaction, as the activated Tc also tries to kill the tumor cell sub-
populations via its cytotoxic activity [52, 53]. The Treg cells act as immune-suppressor of the
system and try to inhibit Tc proliferation, whereas the TH1 cells act as immune-stimulator of
the system that helps in Tc proliferation and tumor infiltration [54, 55]. All these cell to cell
interactions tend to follow saturation growth kinetics and hence have been modelled using the
Michaelis Menten form discussed earlier [23].

7.1.3. Cytokines and feedbacks. Tumor formation triggers the immune system to pro-
duce cytokines. In this model, three important cytokines have been considered, viz. IFN-γ, IL-
2 and IL-10 (Fig 1A). The activation of the TH1 cells stimulates the production of IL-2 cytokine
from them. The amount of cytokine produced is directly proportional to the abundance of
effector cells activated. Hence, this has been modelled using the Law of Mass Action, e.g.
(βTh1CK3 # TH1), where βTh1CK3 (units: ng cell-1day-1) is the rate of production of IL2 from TH1

cells [56]. This IL2 is responsible for the auto-regulation and sustained proliferation of the TH1

cells. Hence, we have considered a positive feedback loop from IL-2 to TH1 cell that has been

modelled using a saturating function mTh1Ck3#IL2#TH1
IL2þk9 , where the cytokine acts as the limiting factor

[23, 56]. Similarly, the IFN-γ is produced by TH1 and Tc cells which have a negative feedback
effect on all the tumor cell sub-populations. The production of IL-10 is regulated by M2, Treg
and TH2 cells. An auto-regulatory positive feedback loop exists between IL10 and the Treg
cells. IL10 also plays an important role in the proliferation of the C and CR cells and inhibition
of the TH1 cells. This IL10 mediated regulation captures the inhibitory actions of TH2 on TH1

cells that are often observed in Cancer scenario.
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7.2. Model equations

Based on the biological relevance and mathematical assumptions discussed above, the equa-
tions representing the tumor-immune interaction network comprising of 13 Ordinary Differ-
ential Equations (Eqs 1–13) and 71 parameters have been enlisted below:

% dS
dt

¼ ðgSð1'mSÞð1' p1 ' p2ÞÞS' dS þ ðp2#gSÞ þ gS #
mS#p1

2

# $
S' mS # S # IFNg

k1 þ IFNg

% &

' tck # S # Tc
ktc1þ Tc

% &
ðEq 1Þ

% dSR
dt

¼ ðgSð1' p1 ' p2Þ ' ðdS þ ðp2#gSÞÞÞ SR þmS#gS # 1' p1

2
' p2

# $
S

' mSR#SR # IFNg
k2 þ IFNg

% &
' tck # Sr # Tc

ktc2þ Tc

% &
ðEq 2Þ

% dC
dt

¼ gC # ð1'mCÞ # log
0:5 # Ktumor

C þ r1

% &
# Cþ gS # ðp1 þ p2Þ # S' dC # C'mC#gC # C

þ mC1 # C # IL10
IL10þ k3

% &
' mC2 # C # IFNg

IFNgþ k4

% &
' tck # C # Tc

ktc3þ Tc

% &
ðEq 3Þ

% dCR

dt
¼ gC # CR # log

0:5 # Ktumor

CR þ r2

% &
þ gS # SR # ðp1 þ p2Þ þmC # gC # C ' dCR # CR

þ mC1 # CR # IL10
IL10þ k5

% &
' mC2 # CR # IFNg

IFNgamma þ k6

% &
' tck # Cr # Tc

ktc4þ Tc

% &
ðEq 4Þ

% dM1

dt
¼ gM1 #M1 #

C þ CR

M1 þ lM1

% &
' dM1 #M1 þ

mM1Ck2 #M1 # IFNg
IFNgþ k7

% &
ðEq 5Þ

% dM2

dt
¼ gM2 #M2 #

C þ CR

M2 þ lM2

% &
' dM2 #M2 þ

mM2Ck1 #M2 # IL10
IL10þ k10

% &
ðEq 6Þ

% dTH1

dt
¼ gTH1 #

TH1 #M1

lTH1 þ TH1

% &
' ðdTH1 # TH1Þ '

mTH1Ck1 # IL10 # TH1

IL10þ k8

þ mTh1Ck3 # IL2 # TH1

IL2þ k9
ðEq 7Þ

% dTH2

dt
¼ gTH2 #

TH2 #M2

lTH2 þ TH2

% &
' ðdTH2 # TH2Þ ðEq 8Þ

% dTc
dt

¼ gTc # Tc #
C þ CR

Tc þ lTc1

% &
þ gTc #

Tc # TH1

Tc þ lTc4
' mTcS # Tc #

Sþ SR
Tc þ lTc2

% &
' dTc # Tc

' mTcTreg # Tc #
Treg

lTc3 þ Treg

 !

ðEq 9Þ
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%
dTreg

dt
¼ gTreg #

Treg #M2

Treg þ lTreg2

 !

' dTreg # Treg þ mTregCk1 #
IL10 # Treg

Treg þ k11

 !

ðEq 10Þ

% dIL10
dt

¼ bM2 #M2 ' dCk1 # IL10þ bTreg # Treg þ bTh2 # TH2 ðEq 11Þ

% dIFNg
dt

¼ bTh1CK2 # TH1 þ bTc # Tc ' dCk2 # IFNg ðEq 12Þ

% dIL2
dt

¼ bTh1CK3 # TH1 ' dCk3 # IL2 ðEq 13Þ

7.3. Control and therapeutic strategies

a. Radiotherapy (R) -With the aim to reduce the tumor cell proliferation, control variables
were introduced in our model. Here, the control variable u1 signifies the probability of cell
death due to Radiotherapy (Eq 14),

u1 ¼ 1' expð'adR ' bdR
2Þ ðEq 14Þ

where α and β are the parameters governing the radio-sensitivity of the cells, and dR is the
dose of radiotherapy applied, measured in Grey (Gy) units [57]. The value of α and β
depends on the oxygenation state of the cell [58]. In our model it has been considered that
Radiotherapy affects only the Cancer (C) and the Cancer Resistant (Cr) populations of the
tumor. It has no effect on the stem cells owing to their slow growth rate.

b. Chemotherapy (C) - The control variable u2, signifying chemotherapy has an effect on the
drug-sensitive stem (S) and cancer (C) cells of the tumor (Eq 15). u2_S and u2_C are
defined as the probabilities of cell death, due to chemotherapy, of Stem cells and Cancer
cells respectively (Eq 15 and Eq 16).

u2 S ¼ fC#ð1' expð'MC
#dCÞÞ ' kS ðEq 15Þ

u2 C ¼ fC#ð1' expð'MC
#dCÞÞ ðEq 16Þ

Here, fC denotes the frequency of chemotherapy per day, M is defined as the efficiency of
the chemotherapeutic drug in m2mg-1 denoting the area of the tumor affected per mg of
the drug and dC is the concentration of the drug in mg m-2. The efficacy of the chemother-
apy of the stem cells depends on the factor kS that represent the inhibitory effect of IL-4 on
the stem cells that reduces the efficacy of the drugs. Sequestration of IL-4 makes the stem
cells sensitive to chemotherapy [44, 59].

c. Immunotherapy (I) - The parameter set was systematically screened to identify key param-
eters governing the negative feedback of the immune cells on the Tumor population.
Then, the immunotherapy was introduced in our model as perturbations to the system in
order to overcome the immunosuppressive effect of the tumor cells and to restore a healthy
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TH1 /TH2 balance.

u3 Tc ¼ dI
#MTC ðEq 17Þ

u3 TH1 ¼ dI
#MTH1 ðEq 18Þ

Eq 17 and Eq 18 depicts the control variables for providing immune-boost to the TC and
TH1 cells, respectively. dI signifies the dose of immunostimulant, measured in mg day-1 that
must be given to the system, while MTC and MTH1 are the measures of the sensitivity of the
TC and TH1 cells, respectively.

7.4. Designing treatment protocols

The protocols are designed using various combination of the above mentioned treatment strat-
egies, viz. Radiotherapy, Chemotherapy and Immunotherapy. The dosage, time duration and
number of cycles for each therapy are varied to determine the optimal combination that gives
us maximum fold changes in the tumor reduction. The general form of the protocols can be
described as follows:

DT200 ! ðRdR=n
tR ÞnR ! FTtFT ! ðChdC

tC ÞnC ! ðIdItI ÞnI

Here, Ch denotes Chemotherapy, R denotes Radiotherapy and FT signifies a treatment-free
period or relaxation time. The model was run till 200 days before the start of any therapeutic
interventions. This has been considered as the standard detection time (DT) for a full grown
tumor. Here the subscripts (tR, tC and tI) denotes the time duration for which the treatment
was given, and the superscripts (dR, dC and dI) represent the dosage. The subscript outside the
bracket (nR, nC and tI) denotes the number of cycles for which that treatment was repeated.

7.4.1. Protocol 1. This Protocol is an adaptation of the standard treatment protocol used
for applying chemo and radiotherapy (adapted from British Columbia Cancer Agency Proto-
col GIGAJCPRT - http://www.bccancer.bc.ca/). It was applied to our model to observe the fold
changes in the tumor cell population. The protocol can be summarized as follows:

DT200 ! ðCh800
14 Þ6 ! ðR60=28

40 Þ ! FT15 ! ðCh800
14 Þ6

7.4.2. Protocol 2. This Protocol was designed as a combinatorial treatment protocol of
Chemotherapy, Radiotherapy and Immunotherapy to enhance the treatment efficacy. Based
on Protocol 1, this Protocol is an improvisation where Immunotherapy has been included that
boosts both the TH1 and Tc simultaneously. In order to design this combinatorial treatment
protocol, the dose of Radio, Chemo and Immunotherapy were varied over wide ranges in
order to create 1000 treatment combinations. The treatment efficacy of each combination was
plotted in a 4-dimensional scatter plot, measured in terms of fold change and TH1/TH2 ratio
(S1 Fig). The Protocol 2 can be summarized as follows:

DT200 ! ðCh800
14 Þ6 ! ðR60=28

40 Þ ! FT15 ! ðCh800
14 Þ6 ! ðI220Þ10

7.4.3. Measuring treatment efficacy. The efficacy of a treatment protocol is measured by
the reduction in the size of the tumor and the overall recovery from the immune-suppression
induced by the tumor, to ensure minimal chances of tumor relapse. Hence we have defined
two parameters that can be used as an indicator of Cancer prognosis:
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a. Fold Change – The treatment efficacy was estimated by measuring the fold change of the
tumor mass at the end of the treatment period as compared to the tumor mass measured at
the time of detection.

b. TH1/TH2 ratio - In order to ensure maximum treatment efficacy and minimize chances of
Cancer relapse, the TH1/TH2 ratio was used as an indicator for disease prognosis. A mini-
mum threshold of TH1/TH2( 5 was chosen to optimize treatment protocol.

7.5. Positivity and boundedness

This system of equations (Section 1.2, Eqs 1–13) can be analyzed with the initial conditions (S1
Text) defined in the thirteen dimensional variable space

R13
þ ¼ ½ðS; SR;C;CR;M1;M2;TH1;TH2;Tc; Treg ; IL10; IFNg; IL2Þ
2 R13jðS; SR;C;CR;M1;M2;TH1;TH2;Tc; Treg ; IL10; IFNg; IL2Þ ( 0*

It can be proven, that all solutions of the system in R13
0þ remain in R13

0þ. Hence, R13
0þ is posi-

tively invariant, and it is sufficient to consider solutions only in R13
0þ. In this region, the usual

existence, uniqueness and continuation results hold for the system. From our numerical simu-
lations also, we have observed the existence of positive solutions. The solution set we get for
the set of ODEs represents the effective cell population and protein concentrations of the spe-
cies considered in the model at different time points during the tumor development. The fixed
point attained by all the variables of the model is a part of this positive solution space.

Also, we observe that the right-hand side of Eqs 1–13 (Section 1.2) are smooth functions of
the variables (S, SR, C, CR, M1, M2, TH1, TH2, Tc, Treg, IL10, IFNγ, IL2). Also, since all the
parameters are non-negative, local existence and uniqueness properties hold in R13

þ , and if the

following necessary conditions are satisfied,

1. S0> 0

2. p1+p2 < 1

3. mS < 1

4. mC < 1

5. γS(1-p2)> δS

then, we can state the following proposition.
Proposition 1: All the solutions of Eqs 1–13 (Section 1.2) which initiate in R13

þ are uni-

formly bounded.
Proof: The proof of Proposition 1 is obvious as all the variables satisfy the condition of posi-

tive invariance for all the solutions of Eqs 1–13 (Section 1.2) which initiate in R13
þ , the assump-

tions and necessary conditions (stated in Section 1.3) [60].

7.6. Sensitivity analysis

The sensitivity analysis of the model was performed by the extended Fourier Amplitude Sensi-
tivity Test eFAST technique using a MATLAB based toolbox [61]. The sensitivity analysis was
carried out using the whole set of parameters [k = 71]. 100 samples were chosen per search
curve and resampling of the search curves was carried out 5 times [NS = 100, NR = 5]. Hence,
the total number of model simulations N = (k+1)#Ns#NR = 36000. The Sensitivity Indices (Si)
of the parameters (p<0.05) for the variables governing the growth of the tumor sub-
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populations, viz. S, SR, C and CR were estimated at different stages of the tumor development
(Fig 6A–6D). Here it may be observed that at different time points that Si values of the parame-
ters change, signifying the importance of the parameters in the different stages of the tumor
development. The knowledge from this sensitivity analysis was used to determine the parame-
ters that have a maximum effect on the tumor development.

7.7. Parameter estimation from Cancer cell line data

The model comprises of a total of 71 parameters. The values of 21 parameters of the model
were curated from the existing literature. The unknown parameters were estimated (few were
assumed within the biological feasible ranges) using the MATLAB based toolbox that employs
the MCMC-DRAM algorithm for parameter estimation [62]. The time course experiment
cytometric data for cancer cell proliferation obtained for 7 days in for Gastric cancer cell line
(SGC7901) that was fitted for approximating the cancer cell behavior during the growth phase
(Fig 6F) [29]. Parameters that were sensitive for the growth of the Cancer (C sub-population)

Fig 6. Sensitivity analysis and parameter estimation: (a-d) Sensitivity Analysis plots for S, SR, C and CR respectively. The x-axis represents the
parameters with p<0.05; (e) Trace Plot showing the best fitting parameter values as estimated by the MCMC algorithm; (f) Predictive plot of cancer
proliferation using the estimated parameter values. The red circles represent the cancer cell proliferation values as obtained from Cell Counting
experiments using Gastric Cancer cell line [29].

https://doi.org/10.1371/journal.pone.0203030.g006
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cells were varied in biologically feasible ranges. The prior distribution was assumed to be nor-
mal and the MCMC simulation was carried out for 5 lakh iterations to ensure the convergence
of the chain (Fig 6E). The estimated parameter values for the model have been listed in S1
Text.

7.8. Experimental data for model calibration

Apart from the parameters estimated using the MCMCmethod, the remaining unknown
parameters governing the steady state behavior of the system were manually adjusted within
the biologically feasible ranges for the calibration of the model so as to ensure that the simula-
tion results corroborated with the various experimental observations. These parameter values
(labelled as ’Expected’) used for the numerical simulation of the model have been enlisted in
S1 Text. The experimental data used for this purpose were extracted from the available litera-
ture. For the validation of the growth kinetics of the resistant Cancer cells, time-course data of
resistant cell lines were obtained from Breast cancer cell line MCF-7/TAX-resistant to Pacli-
taxel [31], Hepatocellular Carcinoma cell line SK-Hep1/CDDP3-resistant to Cisplatin [32],
Colon Cancer cell lines SW-620-L-OHP and LoVo-L-OHP-resistant to Oxaliplatin [33]. The
cytometric data obtained for the validation of the immune cell ratios were mostly obtained
from Gastric Cancer, Ovarian Cancer and Osteosarcoma studies [34–39]. The data for the vali-
dation of cytokine expression were obtained from cases of Gastric and Breast Cancer studies
[40–42]. These data used came from heterogeneous sources as none of the previously per-
formed experiments were found to report the values of all cytometric data in a single experi-
ment. Moreover, the use of data from the different Cancer studies ensures that the model is
generic and mimics the average behavior observed in most Cancer studies. The use of data
from both in vitro studies as well as data obtained from Cancer patients ensures the reliability
of the model for its use in designing therapeutic control. In order to make the model specific
for a single type of Cancer, one needs to simply obtain the cytometric data from a single exper-
imental source and adjust the parameters accordingly.

7.9. Interior equilibria

To ensure positivity and existence of the interior equilibrium solutions, 36000 random param-
eter sets were generated (as mentioned in Section 7.6) within the biologically feasible ranges.
Thereafter the model is simulated up to 800 days for each set of parameter. It was observed
that each model simulation led to the positive interior equilibrium solution. Hence, we can
state and prove the following Proposition.

Proposition 2: Positive interior equilibria exists for the set of equations Eqs 1–13 (Section
1.2).

Proof: The interior equilibrium points are the steady-state solutions of the Eqs 1–13 (Sec-
tion 1.2) under the necessary conditions (Section 1.3) in the biologically feasible ranges of
parameter values and initial conditions S1 Text.

7.10. Model initialization and numerical simulation

The tumor mass is formed by the sub-populations S, SR, C, CR. In our model, the S cell sub-
population has been initialized to 1, while all the other tumor cell sub-populations have been
considered as 0. The initial values of the remaining variables have been initialized based on
cytometric data and cytokine expression values of healthy individuals, curated from the litera-
ture. The details have been provided in the S1 Text. The model was simulated numerically
using the variable-step, variable order solver, ode15s, in MATLAB1 2017a platform.
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Supporting information

S1 Text. Model parameters. The Supplementary Text contains the description of the parame-
ters and state variables used for the model simulations.
(DOCX)

S1 Fig. Treatment conditions under varying dose of Radiotherapy, Chemotherapy and
Immunotherapy. The scatter plot depicts (a) the fold change of tumor population and (b)
TH1/TH2 ratio under 1000 treatment combinations.
(TIF)
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Abstract
Different types of T effector cells function centrally in the immune-regulatory 
network, which acts as a line of defense for the body and elicits immune response 
during any diseased condition. At the molecular level, this functioning is main-
tained by an intricately designed network of signaling and metabolic pathways 
that function via multiple cross-talks to regulate complex immune responses dur-
ing different antigenic challenges. These pathways regulate phenomena such as 
quiescence exit of naïve T cells, their activation, and differentiation into different 
effector T cells. Signaling properties of these T cells and their response to differ-
ent cytokine signals have been well studied. Immune-metabolism is compara-
tively a new area of research that has been identi!ed as driver for immune 
response. However, to gain a holistic understanding of the activation and differ-
entiation of naïve T cells into the subtypes, the integration of signaling and meta-
bolic pathway information is a prerequisite. The bidirectional mode of regulation 
between these cross-talking signaling and metabolic pathways governs the dif-
ferentiation patterns. In this chapter, we review the activation and differentiation 
pattern of naïve T cells from both signaling and metabolic perspectives and also 
look into their cross-talk to understand their mutual regulation during differentia-
tion into effector T cells.
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6.1  Introduction

The immune system forms the sentinel of the body that protects it from infectious 
disease and cancer. The adaptive immune system, composed mainly of the T and B 
lymphocytes, is responsible for maintaining this defense mechanism of the body as 
it helps to generate immune responses speci!c to the type of antigenic challenge that 
the body encounters [1]. The helper T cells (TH) form the central orchestrators of the 
entire immune-regulatory network. They have been known to have an essential role 
in the recognition of the antigen when presented on the surface of the antigen- 
presenting cells and secrete cytokines that aid in the proliferation of the cytotoxic 
T cells and B cells, thereby playing an active role in stimulating both the humoral and 
the cell-mediated immunity [2]. The effector functions of these immune systems are 
mediated mainly by the cytokines and other microbicidal molecules secreted by 
them as a result of the activation of complex biochemical signaling pathways inside 
the immune cells. The TH cells themselves produce a high amount of interferon and 
tumor necrosis factor via TCR and co-receptor mediated pathways that mediates 
apoptosis of infected and cancerous cells [3, 4].

The differentiation of the helper T cells is primarily in"uenced by the changes in 
the micro-environmental conditions that favor the proliferation of a certain subset of 
T cells that leads to disruption of the balance and ratio of the normal proportions of 
T-cell subsets present in a healthy individual [5, 6].

Naive T cells circulate in the body surveying for antigens. The metabolic activ-
ity of these cells is maintained low by allowing low uptake of glucose enough to 
fuel the TCA cycle and OXPHOS to produce ATP [7]. These cells are kept in a 
quiescent state that promotes their survival and persistence. On antigen stimula-
tion, the metabolism of T cells is triggered via increased uptake of glucose, which 
allows quiescence exit and initiates clonal expansion and effector differentiation 
primarily by mTOR-mediated signaling responses [8]. Initially, the focus of stud-
ies remained on the immune receptors and transcriptional regulators involved in 
T-cell quiescence and activation, but recent !ndings highlight cell metabolism as 
a crucial regulator of these processes [9–12]. Receptor-induced signaling and 
metabolic networks in naïve T cells are mutually regulated by each other depend-
ing on the micro- environmental cues obtained by the cell that also in"uence qui-
escence exit. Here we will discuss the bidirectional communication of signaling 
and metabolic pathways that promotes proliferation, quiescence exit, and activa-
tion of naïve T cells and functioning of T cells upon activation. We will take into 
account the different signaling and metabolic events and their cross-talks that lead 
to differentiation of naïve T cells into TH1, TH2, TH17, Treg, or Tfh effector cells. 
Understanding the cross-talks between T-cell signaling and metabolism under 
different environmental cues will be vital for understanding the differentiation 
patterns of naïve T cells during different pathogenic conditions. This will provide 
better prospects of developing novel approaches to modulate protective and 
pathological T-cell responses in human diseases.

R. Bhowmick et al.
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6.2  Signaling and Metabolic Pathways Involved 
in Activation of Naïve T Cell

The activation of TH cell is mediated by a complex chain of signaling events that 
involve the activation of distinct co-stimulators and co-inhibitors present on the 
surface of the lymphocyte. The interaction between the antigen-bound major histo-
compatibility complex (MHC) on the antigen-presenting cells (APCs) and the T-cell 
receptor (TCR) on TH cells triggers the TCR-mediated signaling pathway. The phos-
phorylation of the LAT signalosome by LCK sends signal to three major cell- 
signaling pathways, viz. NFκB, MAPK, and the calcium-mediated NFAT pathways 
[13]. Along with the TCR, the T cell also expresses several other co-receptor mol-
ecules that can be classi!ed into two major functional groups. The !rst group con-
sists of co-signaling receptors that have an immunoglobulin (Ig)-like fold in their 
ectodomains, such as CTLA-4, CD28, PD1, and BTLA [14]. The other co-signaling 
group belongs to the tumor necrosis factor receptor (TNFR) superfamily and 
includes DR3, OX40, 41BB, CD27, CD30, and HVEM [14]. Together with the TCR 
activation, a second signal from the co-stimulatory signal emanating from B7-CD28 
interaction is also necessary for the T-cell activation. This is called the “two signal 
hypothesis” [13]. The B7 molecule present on the APC also binds with the CTLA-4 
receptor of the T cell after the clearance of the antigen. This induces T-cell anergy 
after the antigen is cleared from the system and the T-cell activation is no longer 
required. The other co-receptor signaling pathway in"uences the type of cytokine 
expressed and regulates the T-cell differentiation pattern. Experimental studies have 
shown CD40-L, expressed on the surface of activated T cells, induces the APC to 
produce IL-12, thereby stimulating the TH cells to differentiate into the TH1 cells 
[15, 16]. On the other hand, the TRAF2-mediated OX40 signaling pathway contrib-
utes to long-term survival of TH cells [17]. OX40 has been implicated in the develop-
ment of memory T cells, clonal expansion, and differentiation. It also mediates 
suppression of the Treg cells [17, 18]. The negative regulators of T-cell activation are 
required to maintain homeostasis and deactivate the T cells after the antigen is cleared 
out. This is mediated by the PD1-PDL axis that provides co-inhibitory signal to the 
T-cell activation. The T cell also expresses CD45, a phosphatase, that de- phophorylates 
the carboxyl-terminal tyrosine of p56lck and p59fyn that aids T-cell activation [19]. 
Apart from these, the T cells express several other co-receptors that serve to regulate 
the cytokine expression and differentiation of the cell [20].

The calcium pathway also plays a major role in the proliferation of the TH cell 
activation [21]. The in"ux of Ca2+ ions from the CRAC channels leads to the activa-
tion of the NFAT (Nuclear Factor of Activated T cell) transcription factor that acts as 
the master regulator of T-cell activation and T-cell anergy [22]. The activation of the 
calcium pathway in the T cell is initiated by the binding of the TCR with an antigenic 
peptide presented on MHC complexes of the APC that induces activation of PLC-γ 
that cleaves PIP2 into IP3 and DAG. This IP3 now activates the IP3- receptors located 
on the endoplasmic reticulum membranes inside the T cell, which causes the release 
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of intracellular stores of calcium, leading to a transient elevation in cytoplasmic 
calcium level. This activates the CRAC channels on the T-cell membrane that allows an 
inward "ux of calcium from the extracellular environment. This triggers the calcium-
mediated calmodulin-calcineurin pathway, which leads to the de-phosphorylation 
and nuclear translocation of NFAT proteins where it can cooperate with AP-1 com-
plexes induced by co-stimulatory pathways. The NFAT/AP-1 complexes bind to the 
sites in the promoters of many cytokine genes to activate their transcription to medi-
ate sustained T-cell activation and survival. In the absence of co-stimulation or in the 
presence of anergizing stimuli, sustained increases in intracellular calcium concen-
tration activate NFAT proteins. However, in the absence of concomitant AP-1 activa-
tion, due to lack of co-stimulatory signals, NFAT proteins dimerize and translocate 
into the nucleus, inducing the expression of anergy- inducing genes that include 
E3-ubiquitin ligases, such as Itch, Grail, and Cbl-b that is known to ubiquitinate and 
inactivate the TCR signalosome and the co-stimulatory CD40-ligand, thereby desta-
bilizing the immunological synapse in the anergic T cell. On the other hand, 
the calcium/NFAT-dependent activation of the Ikaros transcription factor in anergic 
T cells leads to the epigenetic changes in the IL-2 promoter by the recruitment of 
HDACs and other chromatin-modifying complexes, which results in stable silencing 
of the IL-2 gene expression [22].

Metabolic regulation of T cell is another aspect that determines activation and 
differentiation of naïve T cells and their functioning upon activation. Naïve T cells 
utilize glucose and glutamine metabolism for activation, and activation signals 
increase glucose and glutamine uptake by T cells through GLUT1 and ASCT2, 
respectively [23, 24]. Thus, both signaling and metabolism cooperate in a bidirec-
tional manner to in"uence T-cell activation and differentiation. On encountering 
pathogenic antigens, a cascade of TCR signals and co-stimulatory signals are initi-
ated, which leads to quiescence exit in naïve T cells. The !rst signal that initiates 
quiescence exit is the transduction of TCR signaling via PI3K/AKT/mTOR path-
way, which induces glycolysis in the naïve T cells [25]. This initiation is marked by 
a trigger in the metabolism of T cells that suf!ces the increasing lipid, nucleotide, 
and amino acid requirement of differentiating cells. During quiescence exit, T cells 
produce lactate to sustain glycolysis. Lactate is also imported into cells through the 
monocarboxylate transporters and converted into pyruvate by lactate dehydroge-
nase A (LDHA). This reaction limits glycolytic programming and proliferation in 
T cells, potentially owing to the attenuated generation of glycolytic intermediates 
such as PEP that sustain glycolysis and biosynthesis reactions [26].

Glutamine metabolism regulates T-cell activation in different ways. It has an 
important role in determining differentiation to TH1 and TH17 cells. TH17 cells utilize 
both glucose and glutamine to fuel the TCA cycle and OXPHOS, which otherwise 
is optional for other T effector cells [27]. It regulates leucine uptake via regulation 
of LAT1-CD98 and together with leucine activates mTORC1 signaling [28]. Other 
amino acid metabolisms like tryptophan and arginine metabolism and their inter-
mediate metabolites such as kynurenine and ornithine differentially regulate T-cell 
survival, apoptosis, and proliferation [29–31].
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Glucose and glutamine metabolism also induce lipid metabolism via mTORC1- 
dependent regulation of AMPK [32]. These pathways are metabolically connected 
to the TCA cycle and OXPHOS, which also affect the redox and oxygen-sensing 
signals in T cells. The conversion of pyruvate to lactate via NAD+-NADH-dependent 
LDH reaction regulates redox signals, and impaired oxygen-sensing machinery of 
OXPHOS results in the formation of ROS, which induces ROS-dependent signaling 
that promotes IL-2 productions and induces T-cell proliferation by activating NFAT 
transcription factor [33].

6.3  TH-Cell Differentiation and Diversity

The TH cells display high plasticity that helps them to differentiate into specialized 
TH cells according to the type of the antigenic challenge and the micro- environmental 
conditions (Fig. 6.1). The early events of the T-cell activation play a major role in 
the determination of the pattern of differentiation of the naïve T cell. The micro- 
environmental cues, in the form of cytokines, activate the signaling pathways of the 
TH cells that eventually lead to the changes at the gene-regulatory levels [34]. The 
selective activation of speci!c transcription factors mediates the differentiation of 
the naïve cells into specialized CD4+ TH effector cells, viz. TH1, TH2, TH17, etc. 
(Table 6.1) [35]. Additionally, another type of CD4+ TH cell called the regulatory T 
cells (iTreg) has a role in maintaining the TH cell homeostasis.

The mechanism of T-cell differentiation is governed initially by the strength of the 
stimulus that the TCR receives from the APC. The strength of stimulus results in dif-
ferential regulation of phosphatidylinositols that triggers different signaling 

Fig. 6.1 Schematic 
diagram of signature 
signaling factors, 
cytokines, metabolites, and 
metabolic paths, which 
dictate TH cell 
differentiation, 
proliferation, and effector 
function
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pathways downstream. It has been observed that while a weak TCR signal generates 
a high level of PIP2 and lower levels of PIP3, which is required for the activation of 
the focal adhesion kinase and phosphorylation of AKTThr308, stronger signal favors 
the activation of mTORC2, and as a result, elevated level of PIP3 and reduced PIP2 
are generated [36]. In vitro experiments have revealed that a stimulus of a lower 
strength induces the expression of the GATA-3 transcription factor, the master regu-
lator of TH2 cells. Simultaneously, the expression of the IL-2 cytokine activates 
STAT5 that synergizes with GATA-3 to transcribe the IL-4 gene that eventually leads 
to the differentiation of the naïve cell into the TH2 subtype [37]. Recent advances in 
the !eld also divulged that during viral infection low TCR signals may also favor the 
formation of Tfh and memory T cells. On the other hand, a stronger stimulus favors 
the activation of the T-bet transcription factor that helps in the differentiation into the 
TH1 subtype and triggers the production of IFN-γ and IL12 cytokines. The differen-
tiation of naive CD4+ T cells into TH17 cells is induced by TGF-β/IL-6 in combination 
with TCR stimulation. This triggers the production of IL-23R, which induces the 
transcription factor RORγt, IL-17, and IL-21. The STAT-3 protein plays an important 
role in the production of the TH17 effector molecules and requires the activation of the 
ICOS co-stimulatory pathway. However, under the TH17-inducing conditions, the 
presence of IL2/STAT5 induces the expression of the Foxp3 transcription factor that 
leads to the differentiation of the naïve cells into iTreg cells. The strength of TCR 
stimulus also plays a role in the TH17/iTreg determination process, where it has been 
observed that a weak stimulus favors the differentiation into iTreg cells that is known 
to have a role in immune- suppression [37].

The effect of signaling in TH cell differentiation is further augmented by the 
action of metabolism within these cells. On activation by the upstream TCR and 
co-stimulatory signals, metabolic pathways trigger the process of T-cell activation 
with the initiation of glycolysis in most of the cases [38]. The utilization of glucose 
is maintained nominal in naïve T cells, just to suf!ce ATP requirement enough to 
maintain survival during quiescence [39]. However, with the transduction of TCR 
signals via mTORC1/2 signaling, the rate of glucose utilization increases, leading to 
quiescence exit and activation of TH cells [8, 38]. Upon activation, differentiation 
patterns are regulated by differential expression of metabolic pathways. For exam-
ple, glutamine metabolism along with leucine induces proliferation and differentia-
tion of TH1 and TH17 cells [27, 28]. In addition, αKG promotes initial programming 
in TH1 cells [40]. Further, glutaminolysis results in the formation of glutathione, 
which is required for TH17 differentiation [41]. An increase in glucose metabolism 
induces lipid metabolism to promote TH2 differentiation [42]. Inhibition of glycoly-
sis and promotion of OXPHOS along with upregulated lipid and mevalonate metab-
olism induce Treg proliferation and differentiation [43, 44]. Intermediate metabolites 
of metabolic pathways, in return, regulate signaling processes as well. For example, 
tryptophan intermediate, kynurenine, and arginine intermediate ornithine regulate 
signaling processes in T cells, which have been discussed in the next section.

Each of the TH sub-type has a speci!c effector function to perform [34, 35, 
37, 45]. A balance between all the TH cell subtypes is necessary for the proper func-
tioning of the immune system. The effector molecules, in the form of interleukins, 
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interferons, tumor necrosis factor, etc., produced by these diverse groups of immune 
cells, maintain the integrity of the immune-regulatory network (Table 6.1). However, 
during any disease condition, this defense mechanism gets subdued. Changes in the 
micro-environmental conditions lead to alterations in the biochemical reaction net-
work that disrupts the balance between the effector cell populations that favors the 
progression of the disease. This immune-suppression is observed very frequently in 
the cases of chronic infections (e.g., chronic Leishmania infection) and cancer.

6.4  Signaling and Metabolic Cross-Talk Mediated by mTOR 
Regulate Differentiation

Activation of naïve T cells is initiated with the tonic signals generated by T-cell recep-
tor (TCR) on their interactions with self-peptides on MHC molecules. There is an intri-
cate design of the signaling and metabolic interactions of these cells, which allow them 
to proliferate and produce effector molecules (Fig. 6.2). Sensitivity toward TCR signal-
ing in the naïve T cells is partially mediated by the mechanistic target of Rapamycin 
complex (mTORC1 and mTORC2) [46]. Peripheral naive T cells circulate in the blood 
and survey antigens. They maintain a low metabolic rate and import a small amount of 
glucose to fuel the TCA cycle and OXPHOS for ATP production [39]. Naive T-cell 
homeostasis is disrupted by the activation of mTOR signaling [47]. The activation of 
mTORC1 signaling enhances glycolytic metabolism in these cells, inducing entry to 
cell cycle and cell growth. The naive T cells, which otherwise remain in a quiescence 
state, are activated by the enhanced glycolytic pathway. Different regulators of mTORC 
affect the process of naive T-cell activation [46].

Fig. 6.2 Cross-talks of signaling and metabolic pathways regulating the activation of the T-bet, 
GATA3, RORγt, and FOXP3 transcription factors that mediate T-cell differentiation
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mTOR signaling is regulated by a set of upstream signaling, which determines 
the formation of mTORC1 and mTORC2 and subsequent signaling. The signal 
induces upon activation of TCR and subsequently the PI3K/Akt pathway [48]. 
Raptor and rictor are the main components of mTORC1 and mTORC2 complexes, 
respectively. mTORC1 signaling is required for differentiation into TH1 and TH17 
effector cells, and an inhibition of mTORC1 has been observed to induce TH2 dif-
ferentiation and prevent TH1 and TH17 differentiation [25]. However, these observa-
tions differ according to the upstream signal received by the complex. Loss of 
tuberous sclerosis complex 1 (TSC1) results in mTORC1 activation [47]. The meta-
bolic activity of naive T cells can also be enhanced by the exposure to IL-2 released 
by activated CD4+ effector cells [49]. Inhibition of mTORC1 by the TSC (Tuberous 
Sclerosis Complex) via Rheb inhibition leads to failure in differentiation into TH1 
and TH17 effector cells [47].

mTORC1 is a master kinase that helps naive T cells to exit quiescence. TCR 
signaling along with costimulatory and IL-2 signals promote the activation of 
mTORC1 during quiescence exit. The magnitude and duration of mTORC1 activity 
likely determine quiescence exit. TCR signals must meet a certain threshold of acti-
vation to induce T-cell proliferation. This threshold is determined by the level of 
mTORC1 activation and expression of IRF4 and c-Myc [50, 51] that regulate ana-
bolic and mitochondrial metabolism. mTORC1 also regulates sterol regulatory 
element-binding proteins (SREBPs) that has a role in metabolic reprogramming in 
naive T cells. Metabolism in turn regulates the activity of mTORC1. Leucine and 
glutamine coordinate with TCR and CD28 signaling to activate mTORC1 and sus-
tain metabolic "ux during quiescence exit [27, 28]. T-cell activation demands for 
the biosynthesis of lipids, cholesterol, nucleotides and amino acids in order to main-
tain the increase in metabolic rates of the activated cells. These increased demands 
are facilitated by the upregulation of hexokinase 2 (HK2), which is the rate-limiting 
enzyme for glycolysis [52, 53]. This induces increased utilization of glucose, which 
can also activate mTORC1 and inhibit the activation of AMP-activated protein 
kinase (AMPK) [32, 54]. AMPK induces lipid and cholesterol biosynthesis through 
the mTORC1-dependent upregulation of SREBP1 and SREBP2 [55]. mTORC1 
forms a bridge between signaling and metabolic responses in T cells that senses 
metabolic cues and mediates signaling regulation over metabolic pathways and 
vice-versa. Thus, mTORC1-dependent responses are crucial in determining prolif-
eration, activation, and functioning of T cells.

TCR signaling targets the transcription factor, c-Myc, in an mTORC1-dependent 
manner. It regulates the transcription of metabolic genes critical for T-cell activation. 
c-Myc induces the transcription factor AP4, which maintains the glycolytic tran-
scriptional program initiated by c-Myc to support T-cell population expansion [50]. 
However, c-Myc expression is not continually sustained after T-cell activation [56].

Metabolites also in"uence T cells in an mTORC1-independent manner. For 
example, post-translational protein modi!cations by glycolytic, lipid, or mevalonate 
by-products allow receptors, enzymes, and scaffolding proteins to properly posit at 
their sites of activity [57, 58]. In T cells, extracellular ATP, glucose, and glutamine 
modulate AMPK activity to promote T-cell responses against bacteria and viruses 
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[54]. The glucose metabolite PEP regulates the activation of Ca2+−calcineurin–NFAT 
signaling [59]. TCR signaling can be altered by cholesterol esters and cholesterol 
sulfate, which alter TCR clustering or af!nity for antigens [60]. Also, N-glycans 
derived from the hexosamine pathway suppress TCR signaling [61].

mTORC2 also contributes to quiescence exit by enhancing glycolytic pathway. 
AKT/mTORC2 represses forkhead box protein O1 (FOXO1) function [62], which 
induces glucose transporter 1 (GLUT1) expression and enhances glycolytic "ux 
[63]. Expression of glucose transporters contribute in determining naïve T-cell sur-
vival. IL-7–IL-7R signaling prevents degeneration of quiescent T cells by increas-
ing glucose and amino acid catabolism [64]. Rate or quantity of glucose uptake via 
the GLUT1 receptor may have a role in determining quiescence versus quiescence 
exit as its expression is lower on naive T cells than on activated T cells. During 
quiescence exit, cell growth and clonal proliferation are favored by glucose metabo-
lism upon survival [51].

Duration and strength of TCR signaling mediate both quiescence and activation 
of T cells. However, based on the type of initiation of these signaling cascades, 
i.e., tonic or antigen-driven, TCR signals differ in both duration and strength. In 
antigen- activated T cells, CD28-mediated co-stimulation of TCR signaling induces 
GLUT1 expression to increase glucose uptake [65]. Expression of the glutamine 
transporter ASCT2 and of sodium-coupled neutral amino acid transporters (SNATs) 
increases on TCR and CD28 co-stimulation [23]. Upregulation of SNATs on T-cell 
activation suggests that they also modulate the rate or quantity of glutamine uptake.

Glutamine metabolism plays a crucial role in determining differentiation to TH1 
and TH17 cells. Glutamine affects LAT1–CD98 activity, which promotes leucine 
uptake to induce the proliferation and differentiation of TH1 cells, TH17 cells, and 
effector CD8+ T cells [23, 66]. Glutamine along with leucine activates mTORC1 
and sustains metabolic "ux during quiescence exit [28]. Further, utilization of glu-
tamine to generate glutathione via glutaminolysis is essential for T-cell proliferation 
and differentiation into TH17 cells [27]. Glutaminolysis also generates α-ketoglutarate 
(α-KG), which promotes initial programming of TH1 cells. Glutaminolysis also 
affects IL-2 signaling, as it has been observed to suppress IL-2-induced mTORC1 
activation during type 1 in"ammation [27]. However, impaired glutaminolysis may 
promote abnormal leucine uptake to increase mTORC1 activation under such 
in"ammatory conditions [23, 66]. Thus, glutamine and glutaminolysis have differ-
ent roles during quiescence exit and upon T-cell activation.

During impaired glutaminolysis, the oxidation of pyruvate acts as a crucial 
checkpoint. The mitochondrial pyruvate carrier (MPC) transports pyruvate into the 
mitochondria to fuel the TCA cycle and OXPHOS and depletes it from the cyto-
plasm. The inhibition of MPC favors glycolysis over OXPHOS, particularly when 
glutaminolysis is also impaired. Downregulation of OXPHOS in T cells require 
inhibition of both MPC and glutaminase 1 (GLS 1) [67]. TH17 cells suf!ce their 
nutrient requirement using both glucose and glutamine, which otherwise is optional 
for other activated T cells. The plausible explanation for this phenomenon is the 
high-level expression of pyruvate dehydrogenase kinase 1 (PDK1) in TH17 cells, 
which prevents conversion of pyruvate to acetyl-CoA in mitochondria [53]. 
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High expression of PDK1 diverts the pyruvate "ux away from TCA in TH17 cells, 
and hence, the cell depends on glutamine to fuel the TCA cycle. The regulation of 
PDK1 is not well understood in TH17 cells; however, studies suggest that hypoxia-
inducible factor 1α (HIF1α) might induce PDK1, promoting TH17 cell responses 
[53]. Also, lactate dehydrogenase A (LDHA), which catalyzes lactate formation 
from pyruvate, sustains glycolytic metabolism and promotes interferon-γ (IFNγ) 
expression in activated T cells [68].

Upon activation, amino acids play an important role in the functioning of acti-
vated T cells. Certain amino acids promote quiescence exit and proliferation of 
naïve T cells, whereas others might suppress proliferation and promote quiescence- 
like programs in naïve T cells. Majority of the biomass of activated T cells is made 
by amino acids. Uptake of essential amino acids such as leucine or conditionally 
essential amino acids such as glutamine are taken up by amino acid transporters, 
such as LAT1–CD98 or ASCT2 [23], but non-essential amino acids accumulate in 
T cells due to in"ux or de novo biosynthesis from glucose or glutamine. Accumulation 
of amino acid intermediates impact the functioning of activated T cells. Accumulation 
of kynurenine, an intermediate of tryptophan metabolism, suppresses T-cell prolif-
eration [30]. Kynurenine accumulation might also result from its uptake through the 
LAT1-CD98 transporters [69]. Ornithine, an arginine intermediate, reduced glucose 
consumption via glycolysis. However, arginine supplementation increases serine 
biosynthesis and OXPHOS [31], which increases T-cell survival and promotes sec-
ondary effector responses.

Balanced redox reactions are one of the prerequisites for T-cell activation [70]. 
The NAD+-NADH-dependent conversion of pyruvate to lactate is a major redox bal-
ancer of T cells. An accumulation of NAD+ increases lysosome biogenesis, which 
can suppress T-cell activation. Mitochondrial reduction of NAD+ levels is utilized to 
promote aspartate synthesis, which is necessary for T-cell proliferation [70]. Both 
NAD+ and ATP cooperatively in"uence T-cell responses. Extracellular ATP aug-
ments quiescence exit and T-cell proliferation via the expression of purinergic recep-
tor P2XY, which induces IL-2 production [71]. Conversely extracellular NAD+ 
promotes T-cell death by increasing the ART2-dependent activation of P2XY [72].

Oxygen sensing by T cells also regulates their effector functioning [73]. OXPHOS, 
which requires oxygen, is essential for both T-cell quiescence and activation [70, 74]. 
OXPHOS generates ROS, which stimulates IL-2 production and promotes T-cell pro-
liferation by activating nuclear factor of activated T-cell (NFAT) transcription factors 
[75]. Under pathological conditions, increased levels of mitochondria- derived ROS can 
have antagonizing T-cell responses, including TH17 cell differentiation [27, 53].

FOXP3 is an important determinant of Treg differentiation and the Treg cell 
responses and regulated via the metabolic regulation exerted by FOXP3 [76]. It pro-
motes OXPHOS and inhibits glycolysis in Treg cells. Survival and function of these 
cells are reduced by excessive PI3K or mTOR activity as it decreases FOXP3 expres-
sion and increases glycolytic metabolism [77]. Treg cells, upon activation, upregu-
late mTOR signaling, which induces lipid synthesis, mevalonate metabolism, and 
mitochondrial function [78, 79]. These pathways in"uence activation programs to 
regulate Treg cell function.
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Mitochondria-derived metabolites like acetyl-Coa, succinate, αKG, and 2-hydrox-
yglutarate (2-HG) alter epigenetic programs. Acetyl-CoA induces histone acetyla-
tion, which is permissive for transcription. α-KG promotes the activity of 
demethylases that target DNA or histones, whereas 2-HG antagonizes demethylases 
[80]. Demethylation in turn allows changes in gene transcription associated with 
speci!c T-cell effector programs. 2-HG accumulation downstream of the von Hippel–
Lindau disease tumor suppressor (VHL)–HIF1α axis in T cells induces changes in 
DNA and histone methylation that increase CD8+ T-cell proliferation [80].

Thus, we observe metabolic regulation of T-cell activation and functioning at dif-
ferent levels. Mitochondria-derived metabolites affect the functioning and/or expres-
sion of various transcription factors through methylation-demythylation, acetylation 
processes or by mitochondria-derived ROS regulations. The effects of glucose metab-
olism in mTOR and c-Myc regulation have been implicated. Metabolites also regulate 
transcription factor activity. For example, transcriptional regulators BAZ1B, PSIP1 
are activated by arginine and lipids or sterols regulate the activities of LXRs, PPARs, 
and SREBPs [81–83]. Further, metabolic processes also regulate processes at post-
transcriptional and translational levels. For example, amino acid deprivation is sensed 
by GCN2 (or EIF2AK4) and leads to inhibition of protein translation by the EIF2α 
pathway, which supposedly leads to suppression of T-cell proliferation [84]. Also, 
GAPDH produced by the glycolytic pathway has been observed to suppress protein 
translational processes [85]. Metabolites also affect the activity of activated T cells by 
the regulation of transporter proteins and complexes. Amino acids like leucine, gluta-
mine, tryptophan, and arginine and the intermediate metabolites generated during the 
biogenesis or catabolism of these amino acids like kynurenine, ornithine, etc., affect 
the functioning of T cells upon activation via the regulation of transporter proteins like 
LAT1-CD98 or ASCT2. To summarize, metabolism can in"uence the processes of 
T-cell differentiation, activation, and functioning by regulating molecular processes at 
different levels starting from gene and transcription regulation.

6.5  Methodologies to Unwind the Regulations 
of the Immune Response

A comprehensive understanding of the complex regulations underlying the immune 
responses under different environmental conditions, antigenic challenges, strength 
of stimulus, and metabolic demands have challenged the implementation of suc-
cessful immunotherapy. A need to unveil these regulatory mechanisms has driven 
experimental researchers as well as computational biologists to implement different 
omic studies and model the immunome under different antigenic stimulus. In the 
following section, we have taken up examples of the studies of T-cell responses and 
differentiation during infectious diseases (e.g., Leishmaniasis) and cancer that will 
give a clear insight of how the immune responses are altered under speci!c anti-
genic challenges.
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6.5.1  Immunomics and Enrichment Analysis

Transcriptomic analysis, e.g., microarray, RNAseq, have opened up new avenues of 
research that allows the analysis of gene expression pro!le of several patient cohorts 
under various disease conditions. While microarray involves detection and quanti!-
cation of gene expression based on the pairing of an mRNA transcript with its probe 
on a chip, RNA-Seq involves direct sequencing of gene transcripts by high- 
throughput sequencing technologies. This enables the RNAseq technique to detect 
novel transcripts as it does not require transcript speci!c probes as well as confers 
higher speci!city and sensitivity for the detection of a wider range of differentially 
expressed genes, allowing detection of genes even with low expression. Following 
the identi!cation of differentially expressed genes, gene ontology (GO) and path-
way enrichment tools enable the identi!cation of the biological processes (BP), 
molecular functions (MF), cellular component (CC), and biochemical pathways 
that are signi!cantly enriched or over-represented in a given scenario. Various 
online tools and web-servers such as DAVID, GeneCodis, Gene Set Enrichment 
Analysis, and Reactome are available freely for performing enrichment analysis 
[86–90].

Researchers have exploited these techniques to unearth the immunome land-
scape in the microenvironment where the spatio-temporal dynamics of 28 different 
immune cell-types (immunome) have been studied using 105 human colorectal can-
cer patient data. Here the immunome was made up of mRNA transcripts speci!c for 
most innate and adaptive immune cell subpopulations. Using an integrative analy-
sis, it has been elucidated that the densities of T follicular helper (Tfh) cells and 
innate cells increased, whereas most other T-cell densities decreased along with 
tumor progression. However, the Tfh and B cell numbers are inversely correlated 
with the disease progression and recurrence, and CXCL13 and IL21 genes are 
essential for the Tfh/B cell axis that is correlated with higher chances of survival of 
the patient [91, 92].

RNAseq analyses in the case of Leishmaniasis have been performed, that has 
revealed Leishmania species–speci!c differences in the expression of mammalian 
macrophage genes due to infection [93]. Such analyses have helped in the under-
standing of the changes in immune response generated during infection by unveil-
ing the notable changes induced in the cytokine expression pro!les during the 
Leishmania invasion. Experiments using microarray techniques have been used to 
assess the host cell genes and pathways in human dendritic cells associated with 
early Leishmania major infection. The study revealed 728 genes were signi!-
cantly differentially expressed in the infected cells, and molecular signaling path-
way revealed that the type I IFN pathway was signi!cantly enriched. Here it was 
elucidated that L. major induces expression of IRF2, IRF7, and IFIT5, which 
indicates that the regulation of type I IFN-associated signaling pathways is 
responsible for the production of IL-12. However, this is not observed in the case 
of L.donovani [94].
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6.5.2  Computational Methods for the Study of Immune 
Responses

The understanding of intra-cellular and inter-cellular signaling pathways involved 
in the generation of immune responses requires the study of a complex network 
of biochemical pathways under different disease-affected micro-environmental 
conditions. This is an extremely challenging task that can rarely be achieved 
using in vitro or in vivo experimental techniques. In order to gain insight into the 
immune- regulatory modules involved in T-cell functioning as well as study the 
immune- modulatory mechanisms employed by pathogen and the tumor cells, 
computational tools and mathematical modeling approaches have been extremely 
useful in obtaining a systems-level understanding. These have also helped the 
researchers and medical practitioners in the prediction of immunotherapeutic 
strategies and design of treatment protocols. Here we will throw light onto some 
of the most popular tools and techniques used for such studies and also explore a 
few of the mathematical models that have helped us unravel some of the intrigu-
ing problems in immunology.

6.5.2.1  Signaling and Metabolic Pathway Databases
The signaling pathway databases are important sources of information that collate 
pathway data from experimental studies regarding the intracellular signaling path-
ways in different immune cells [95, 96]. The KEGG provides information regarding 
the core TCR-mediated pathway along with a few co-receptor signaling pathways. 
The database also contains the pathways responsible for the TH1, TH2, and TH17 dif-
ferentiation. Another popular database called Reactome provides detailed biochem-
ical reactions involved in each step of the protein–protein interactions involved in 
the T-cell signaling pathway. It also enlists the pathway information related to CD28 
and PD-1 co-signaling pathways. Simultaneously, Reactome forms a very important 
source for cytokine signaling pathways that includes different interleukin families, 
interferons, tumor necrosis factor, and a few growth hormones. A list of few of the 
available databases and the available information in each has been listed down in 
Table 6.2. However, the information regarding the intercellular cross-talks in the 
immune system is lacking in most of these databases that can be extracted through 
a thorough literature survey.

Few databases also provide data regarding the changes in the pathway during 
disease condition. The KEGG database has a suf!cient amount of pathway informa-
tion regarding the endocytosis of the Leishmania pathogen as well as the signaling 
events that occurs inside the infected macrophage. BioLegend database contains the 
cancer immune-editing network that consists of the intercellular signaling cross- 
talks governing the immune responses generated during cancer.

For the analysis of these biochemical pathways, the BIOPYDB database also 
provides an integrated platform for performing network analysis, logical steady- 
state analysis, knock-out analysis, etc. It contains detailed information regarding 
each protein involved in the immunological pathways as well as links them to the 
speci!c diseases associated with them. Apart from the TCR co-receptor-mediated 
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and cytokine pathways, BIOPYDB also contains detailed information about the 
toll-like receptor (TLR) pathways that has an important role in the regulation of 
immune response [97].

With the realization of the importance of immune-metabolism as a decisive 
factor in eliciting immune responses, metabolic databases have started to incorpo-
rate such details into the database structure. Although the advent is very recent and 

Table 6.2 List of a few signaling and metabolic pathway databases containing T-cell-speci!c 
pathway data and related cytokine pathways

Database

T-cell activation/
differentiation 
pathways/network Cytokine pathways URL of database

Kyoto 
Encyclopedia of 
Genes and 
Genomes (KEGG)

T-cell receptor signaling 
pathway, TH1 and TH2 
cell differentiation,TH17 
cell differentiation

IL-17, TNF, calcium 
signaling pathway

http://www.
genome.jp/kegg/

Reactome TCR-mediated pathway, 
CD28 co-signaling 
pathway

IFN-α/β, IFN- γ, TNF- α, 
IL-1, IL-2, IL-3, 
IL-5,GM-CSF, IL-4, 
IL-13, IL-6, IL-7, IL-10, 
IL-12, IL-17, IL-20 
family cytokines

https://reactome.
org/

Wikipathways TCR-mediated pathway, 
B7-CD28, B7-CTLA4, 
PDL- PD1 pathways

IL-2, IL4, IL-5, IL-7, 
IL-9, IL-11, Type-1 IFN, 
TNF-α pathways

http://www.
wikipathways.org

NCI – Pathway 
Interaction 
Database (PID)

TCR signaling network 
in naïve CD4 cells, 
B7-CD28 signaling 
networks

IL-1, IL-2, IL-3, IL-4, 
IL-5, IL-6, IL-8, IL-12, 
IL-23, IL-27, TNF 
signaling networks

http://www.
ndexbio.org

BioLegend T-fh, TH1, TH2, TH17, 
Treg, γδ–T-cell 
signaling pathways

IL-1, IL-2, IL-4, IL-6, 
IL-10, IFN, TNF 
pathways and inter- 
cellular cytokine signaling 
network of immune cells

https://www.
biolegend.com/
pathways/

BIOPYDB TCR-mediated pathway, 
co-receptor-mediated 
T-cell activation 
pathway

IL-1 α, IL-β, IL2, IL-4, 
IL-6, IL-12, IL-18, IL-36 
α, IL-36 β, IL-36 γ, TNF 
α, TNF β, IFN α, IFN β, 
IFN γ, TGF β

http://biopydb.
ncl.res.in/
biopydb/index.
php

HumanCyc TH1, TH2, TH17, Treg- 
associated processes 
and pathways

Cytokine pathways are 
not available separately, 
but integrated with the 
other immune processes

https://biocyc.
org/HUMAN/

Brenda TH1, TH2-related 
processes

IL-1, IL-3, IL-5, IL-6, 
IL-8, IL-12, IL-17, IL-18, 
IL-21, IL-33, IFN-α, 
IFN-β, IFN-γ, TNF-α, 
TNF-β ligands

https://www.
brenda-enzymes.
org/
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only a limited number of databases have included this information. Two of the 
popularly used metabolic databases, HumanCyc [98] and Brenda [99], include 
information about immune-metabolites that are linked to immune responses. 
HumanCyc is the Homo sapiens–speci!c repertoire of the metabolic database 
BioCyc, which enlists metabolism speci!c to human. The database enlists a range 
of “Biological Process” and “Proteins” related to immune system. The biological 
processes are linked to their “Gene Ontology” term. A few of the important immune 
processes listed are “leukocyte-mediated cytotoxicity,” “adaptive immune response,” 
“immune effector process,” “regulation of immune response,” and “immune system 
development.” The GO IDs of these processes link them to pathways and processes 
to which are linked/cross-linked, which are enlisted as “Parent Classes” and metab-
olites/proteins which are involved in these processes are enlisted under “Instances”. 
These metabolites/proteins are linked to their detailed descriptions along with reac-
tions in which they are involved and the reaction mechanism [98]. Brenda also 
provides details of immune-metabolites. The database has a wide range of entries as 
search option. Upon search of immune processes, it provides a variety of immnune-
metabolites and proteins whose “Enzyme Nomenclature,” “Enzyme-Ligand 
Interactions,” “Diseases,” “Functional Parameters,” “Organism-related Information,” 
“General Information,” “Enzyme Structure,” “Molecular Properties,” “Applications,” 
and “References” are provided.

6.5.2.2  Graph Theoretical Analysis
The Graph Theory was initiated with Euler’s famous publication from 1736 on the 
Seven Bridges of Königsberg problem [100]. However, it was applied to biochemi-
cal networks much later with the advent of the concepts of small-world and scale- 
free networks in 1999 that describes the global architecture of any complex 
real-world network such as the network of biochemical reactions in a cell [101, 
102]. Computational biologists have modeled biochemical pathways as network 
where each protein or metabolite has been considered a node and the reaction 
between any two such species have been denoted as an edge, thereby translating the 
entire reaction network as an interconnected mesh of nodes and edges. Various net-
work parameters such as Degree (k), Betweenness Centrality, Closeness Centrality, 
Eccentricity, Edge Betweenness, and Clustering Coef!cient are used to describe the 
topological properties of the network. These parameters help in the identi!cation of 
important hubs, i.e., a highly connected node, and shortest paths in the biochemical 
reaction network that may have signi!cant contribution in the functioning of the 
signaling or metabolic pathways. Tools such as Cytoscape, Gephi, Pajek are freely 
available for performing network analysis of large reaction network [103–105]. 
Cytoscape further offers downloadable plugins for identifying important motifs, 
extracting sub-networks, and performing enrichment analysis and a host of other 
functions required for visualizing and analyzing large biochemical reaction net-
works. These biochemical networks mostly follow the small-world property of a 
network that indicates a relatively short distance from any one node to another and 
a relatively high level of clustering. This network property, termed as scale-free 
property of a network, denotes a connectivity distribution that !ts a power law 
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depicted in Eq. 6.1 where the value of γ lies in the range 2 < γ < 3 [106]. It has been 
observed that networks following the scale-free property are generally resistant to 
perturbations and thus are highly robust:

 
P k! " # $% k &  (6.1)

Graph Theory has successfully been applied to signaling pathway networks where 
the concept of shortest path has been used to hypothesize potential signaling mecha-
nisms in Neuro2A cells downstream of CB1R receptors. Here the cells were stimu-
lated with a CB1R agonist for the assessment of activity of transcription factors. 
This experiment revealed CB1R activation modulates the activity of 23 transcrip-
tion factors [107]. Such methods are useful in the identi!cation of important novel 
signaling routes between a cell-surface receptor and downstream transcription. In a 
recent study, Graph theoretic network analysis has been used to identify protein 
pathways responsible for cell death after neurotropic viral infection by Chandipura 
Virus (CHPV) [108]. Another important application of network analysis is that it 
can be used to identify important hub proteins that can be used as potential drug or 
immunotherapeutic target [109, 110].

6.5.2.3  Logic-Based Models
Logical modeling is gradually being recognized as a simple yet powerful tool in 
systems biology for the study of large and complex reaction networks. Here the 
information "ow from one node to another in a network is determined by a combi-
nation of input nodes and their relation is speci!ed using logic gates – AND, OR, 
NOT. It was !rst explained by Kauffmann where he modeled the gene as a binary 
device that can be either in the ‘ON’ or ‘OFF’ states  signifying whether a gene 
expression is upregulated or downregulated, respectively [111]. Here he elucidated 
that a distinct advantage in this choice of a binary model for gene activity lies in the 
fact that the number of different possible rules by which a !nite number (K) of 
inputs may affect the output behavior of a binary element is !nite, i.e., 22K. 
Figure 6.3a shows a simple toy model of three nodes interacting with one another. 
The reaction network can be represented using Boolean rules or equations (Eqs. 6.2, 
6.3 and 6.4). The truth tables and the state transitions graphs of the reaction network 
show the temporal evolution of the states (0 or 1) of the nodes starting from different 
input combinations (Fig. 6.3a). Here, in this example we observe under the different 
input conditions the system tends to reach certain point steady-state attractors, i.e. 
1–0–0 and 1–1–1 or cyclic attractor, i.e. 1–0–1 ←→ 1–1–0:

 v v v1 1 3= OR NOT( )  (6.2)

 v v v2 1 3= AND  (6.3)

 v v3 2=  (6.4)

Several software packages such as BoolNet (R-based), BooleanNet (Python 
based), and CellNetAnalyzer (software with GUI) are available for performing logi-
cal steady-state analysis of large biochemical networks [112–114]. This concept 
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was later used by Huang and Ingber to model cell signaling networks for demon-
strating that cellular phenotypes correspond to the dynamic steady states of the 
intracellular signaling molecules in a logic-based model. A key advantage of this 
strategy is that it does not require the knowledge of parameter values that is often 
not available for large biochemical networks. Later it has been extensively used for 
the study of cell signaling pathways and identi!cation of drug targets for the treat-
ment of cancer [109, 110]. Logical models have also been developed for the study 
of T-cell signaling pathways where the observations made from the in silico analysis 
were experimentally validated to establish the authenticity of their logic-based 
model. Using this model, the authors have predicted an alternative pathway of acti-
vation from CD28 to JNK that does not involve the canonical pathway involving 
LAT signalosome, nor does it involve the activation of PLCγ1 or calcium "ux, but 
depends on the activation of the nucleotide exchange factor Vav1, which activates 
MEKK1 via the small G-protein Rac1 [115]. A logical steady-state model that cap-
tures the effect of the co-receptor signaling pathway cross-talks has been developed 
that shows that simultaneous activation of the TCR:CD3, CRAC, and OX40 

Fig. 6.3 Computational techniques used for study of large biochemical pathways. (a) Interaction 
Graph, Truth Table, and State Transition Graph for a Logic-Based Toy Model; (b) Temporal 
dynamics of Tumor, Effector cells, and IL-2 from an ODE-based model (adapted from Kirshner, 
et al. 1998 [150]); (c) A toy model describing (i) the "ux distribution of metabolites A, B. and C 
through different reactions, (ii) the formation of stoichiometric matrix “S” and "ux vector “v,” (iii) 
de!ning constraints and (iv) de!ning objective and !nding optimal solution within the solution 
space of linear optimization problem (Adapted from Kauffman et al. 2003 [157])
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pathways are important for sustained T-cell proliferation. At the same time, it has 
been shown that the co-receptor CD27 and LTBR pathways are important for regu-
lating the cytokine production [116]. A further extension of this work for the study 
of immune responses during Leishmaniasis explains how the differentiation of T 
cell is altered during infection [117]. Another model employing Boolean formalism 
has been used in the study of differentiation of naive cells into TH1, TH2, TH17, and 
Treg subtypes under different environmental conditions [118]. This model provides 
evidences that Foxp3+ Treg cells and TH17 cells are highly plastic and labile, whereas 
the TH1 and TH2 subtypes remain steady under different environmental conditions. 
However, this model also predicts the existence of hybrid states and cyclic attractors 
expressing markers characteristic of two or more canonical cell types under certain 
environmental conditions that lays the foundation for the oscillatory behavior of 
T-cell differentiation. This study further elucidates that under proper polarizing 
environments, the Treg cells may differentiate into TH1 or TH2 subtypes [118]. Later 
another model based on the Boolean formalism was developed to study the molecu-
lar mechanisms controlling the cytokine-driven TH cell differentiation and plasticity. 
This model explained the role for peroxisome proliferator–activated receptor 
gamma (PPARγ) in the regulation of TH17 to iTreg cell switching that gives promis-
ing cues for the prediction of therapeutic target for dysregulated immune responses 
and in"ammation [119]. More recently, Probabilistic Boolean Control Network has 
also been employed for the study of TH cell differentiation under varied environ-
mental conditions. Here each input node is activated with a certain user-de!ned 
probability, which makes the system stochastic. Using this study, the authors have 
identi!ed that the T-cell differentiation process is regulated by composition and dos-
age of signals that the cell receives from the environment. They have also predicted 
novel T-cell phenotypes using their model and have identi!ed the speci!c environ-
mental conditions that give rise to them [120].

6.5.2.4  Steady-State Metabolic Models
Immunometabolism has gained momentum in recent years as an emerging !eld of 
investigation at the interface between two highly discussed disciplines of immunol-
ogy and metabolism [9, 10]. The idea of metabolism as a driver of the immune 
response [121] has been appreciated in recent years. However, capturing the bidi-
rectional regulation of signaling and metabolism using a single computational plat-
form is challenging. The mechanism of action of the two cascades is different, and 
the time scales in which the two processes occur also differ enormously. Mostly 
signaling cascades are faster than the metabolic reactions. This, along with the limi-
tation of availability of information about how metabolism regulates immune cell 
responses and functioning, has limited the designing of immune-metabolic models 
to a small scale, mostly considering few parameters to design smaller dynamic 
models. An integrated systems-level computational model of immunometabolism is 
yet to be undertaken. Nevertheless, the currently employed computational 
approaches can be used to address immune-metabolism at a systems-level.

Genome-scale metabolic modeling (GSMM) is currently the most widely used 
systems-level modeling approach that accounts for whole-genome metabolism of 
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biological systems. It is a constraint-based mathematical modeling approach that 
assimilates biochemical, genetic, and genomic information within a single compu-
tational platform [122–126]. It allows the study of the metabolic genotype- phenotype 
relationship of an organism. Genome-scale metabolic models have been used in in 
silico metabolic engineering for the design of studies like de!ning essentiality of the 
reaction/gene [127, 128], the relevance of distant pathways [129] and overexpres-
sion or knockout analyses of metabolites, reactions, and metabolic pathways [130]. 
These are ef!cient tools for the prediction of growth in living cells/tissues exposed 
to different external conditions [131]. They have been used to predict conditional 
and absolute essentiality of metabolites and reactions in metabolic networks.

Flux balance analysis (FBA) is the most popularly used constraint-based 
approach in systems-level metabolic modeling, which works on the basic principles 
of linear optimization [132]. The technique assumes a steady-state approach, where 
all the metabolites of the network are considered to be in steady state; i.e., the rate 
of change of metabolites over time remains zero (Fig. 6.3c). This ensures that the 
rate of formation of a metabolite in the network is always equal to the rate of its 
consumption and hence a net difference in the metabolite concentration over time 
always remains zero. All reactions of the network work as constraints to the optimi-
zation problem. The reactions are bounded between a lower and an upper bound, 
which creates the constraint. The metabolites are connected to respective reactions 
in the form of a stoichiometric matrix, “S,” where the rows represent the metabolites 
(m) and the columns represent reactions (n). Thus, a “m × n” matrix is generated in 
which the involvement of a metabolite in a reaction is represented by its respective 
stoichiometry in that reaction. A positive stoichiometric value represents the forma-
tion of the metabolite and a negative stoichiometric value represents consumption. 
The "ux through the reactions is represented in a separate "ux matrix “v,” which is 
a “n × 1” matrix. The outcome of the optimization is obtained by matrix multiplica-
tion of “S.v  =  0.” The matrix multiplication results in an optimized “v” matrix, 
which assigns an optimized "ux to each of the reactions in the network. Generally, 
whole-genome models are large with a few hundreds of reactions and metabolites, 
which make it a multidimensional optimization problem. An objective is assigned to 
the model that depends on the biological question one wants to address. For exam-
ple, if one wants to observe the behavior of the network when it tries to maximize 
ATP production, then one can assign ATP synthase (ATPS) reaction as the objective 
and try optimizing the model by maximizing the objective function. Thus, the model 
gets optimized a per the requirement of maximizing or minimizing the objective 
function.

A further extension of the modeling technique has been done to incorporate 
dynamic regulation of metabolic regulations by signaling pathways. This is popu-
larly known as dynamic FBA (dFBA), where the initial activation of the metabolic 
FBA model depends on the output of signaling response generated by dynamic 
analysis. In yet another extension of FBA, the initial signaling response is analyzed 
using Boolean analysis. This is known as rFBA. The method that takes into account 
a combined FBA, Boolean regulatory, and ODE approach is known as integrative 
FBA (iFBA).
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There are various tools available for performing these analyses. COBRA Toolbox 
is the most widely used platform for "ux balance analysis [133]. This is a Matlab 
extension, which allows user-interface for ease in analysis. Other platforms are 
COBRApy [134], PSAMM [135], OptFlux [136], FBASimVis [137], FluxViz 
[138], FlexFlux [139], FAME [140], and Escher-FBA [141].

6.5.2.5  Dynamic ODE-Based Immune Models
Several dynamic models have been developed for the study of immune responses 
for several diseases [142–146]. The study of immune responses during tumor for-
mation using mathematical ODE-based models has helped clinicians in the predic-
tion of tumor evolution and the determination of dosage schedules and treatment 
protocols [147–149]. A seminal work by Kirschner and Panetta has led to the devel-
opment of many such similar models with further improvisations [150]. The model 
developed by them represents an ODE-based model of the tumor-immune interac-
tion and the production of IL-2 that has important roles in the regulation of immune 
response generated during tumor progression (Eqs. 6.5, 6.6, and 6.7). The model 
considers that the proliferation of the effector immune cells increases proportional 
to the antigenicity of the tumor. The model equations comprise three variables, viz. 
tumor (T), effector cells (E), and IL2 (IL), that interact among themselves, and 12 
parameters that describe the rate at which these interactions occur. In this model the 
antigenicity, denoted with c, of the tumor has been considered as an essential param-
eter that regulates the dynamics of the effector cell population:
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Figure 6.3b (adapted from Kirshner et al. 1998 [150]) shows the temporal evolution 
of the system and the oscillating steady state behavior of the variables when antige-
nicity parameter c = 0.02. This model explains short-term oscillations in tumor sizes 
as well as long-term tumor relapse. This model has been further used to explore the 
effects of adoptive cellular immunotherapy for the tumor elimination [150].

A more recent tumor–immune interaction model developed for understanding 
the dynamics of immune-mediated tumor rejection focuses mainly on the role of 
natural killer (NK) and CD8+ T cells in tumor surveillance. Here the techniques of 
parameter estimation and sensitivity analysis have been exploited for the model 
calibration and validation with experimental results. This study has revealed the 
variable to which the model is most sensitive is patient speci!c and that there exists 
a direct positive correlation between the patient-speci!c ef!cacy of the CD8+ T-cell 
response and the likelihood of a patient favorably responding to immunotherapy 
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treatments [151]. A more detailed model of immune responses during tumor pro-
gression has been developed using 13 variables and 71 parameters. The model con-
siders cytokine feedbacks and !ve different immune cells present in the tumor 
microenvironment. This model is useful for optimizing combinatorial treatment 
dose and schedules for maximal tumor reduction using immunotherapy [152].

There is a range of ODE models that investigate various pathways involved in 
metabolism under different pathological conditions. Immune metabolic models are 
available for glucose metabolism [153], glutathione metabolism [154], folate- 
mediated one-carbon metabolism [154], and arsenic metabolism [155]. A compos-
ite review of these metabolic models is available in Nijhout et al.’s work [156]. The 
recent understanding from experimental research on the metabolic regulation of the 
immune response [9] will help to adapt these mathematical models to the reality of 
metabolic pathways inside immune cells.

6.6  Challenges and Future Directions

The immune-regulatory network forms a complex mesh of interacting cells and 
biochemical reactions that work in a coordinated fashion to eliminate the pathogen- 
infected cells and trigger the remission of any neoplastic growth inside the body. 
However, the intricacies of the immune signaling network are far from being com-
pletely understood, and the regulations governing the differential immune response 
of the T cells under varied antigenic challenges still remain elusive to immunolo-
gists. In this context, the knowledge regarding the signaling routes is essential to 
understand the mechanistic regulations such as the feedback and feed-forward 
loops and the alternative signaling pathways that govern the production of effector 
molecules from the lymphocytes. Hence, an in-depth study of the co-receptor sig-
naling pathways and their cross-talks is essential that will provide valuable infor-
mation regarding the pathways involved in the cytokine regulation and effector 
functions of the immune cells.

T-cell plasticity that determines their differentiation, de-differentiation, sub-
type speci!cation, and T helper memory cell formation under different environ-
mental conditions is yet another area that has remained very less explored. Although 
the recent developments in the !eld elucidate the process of T-cell differentiation 
with respect to changes in the cytokine milieu under in vitro conditions, the com-
plex interactions in the human immunome needs to be studied using a holistic 
integrative approach in order to gain clear insights into the changes of immune 
responses due to changes in quality and quantity of the antigenic challenge, the 
strength of the stimulus, and the role of the other interacting immune cells. Such 
studies will throw light into the modulations of T-cell subtype ratios that has a 
substantial impact on the disease prognosis and response of a patient to an immu-
notherapeutic intervention.

Metabolic regulation of immune cell in determining T-cell activation, prolifera-
tion, and differentiation is a newer area of research; and studies are in progress to 
understand these processes. Many questions related to immune-metabolism still 
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remain unanswered. How metabolism alters during transition from quiescent T cells 
to activated effector T cells remains poorly understood. Although mTORC1 activity 
has been observed to be central to signaling and metabolic cross-talk and the master 
kinase in guiding quiescence exit of T cells, how nutrients tune mTORC1 activity 
remains to be explored further. Redox metabolism and oxygen sensing have been 
implicated in T-cell proliferation and activation; however, the exact mechanism of 
how they regulate T-cell quiescence and activation in different tissues remains unad-
dressed. Also, the cross-talks between signaling and metabolic pathways are only 
partially explored. A clear understanding of these mechanisms will help augment 
immune responses and pave way for immunotherapy under different pathogenic 
conditions.
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Drug resistance is one of the critical challenges faced in the treatment of Glioma.

There are only limited drugs available in the treatment of Glioma and among them

Temozolomide (TMZ) has shown some effectiveness in treating Glioma patients, however,

the rate of recovery remains poor due to the inability of this drug to act on the drug

resistant tumor sub-populations. Hence, in this study three novel Acridone derivative

drugs AC2, AC7, and AC26 have been proposed. These molecules when combined

with TMZ show major tumor cytotoxicity that is effective in suppressing growth of cancer

cells in both drug sensitive and resistant sub-populations of a tumor. In this study a novel

mathematical model has been developed to explore the various drug combinations that

may be useful for the treatment of resistant Glioma and show that the combinations

of TMZ and Acridone derivatives have a synergistic effect. Also, acute toxicity studies

of all three acridone derivatives were carried out for 14 days and were found safe for

oral administration of 400 mg/kg body weight on albino Wistar rats. Molecular Docking

studies of acridone derivatives with P-glycoprotein (P-gp), multiple resistant protein

(MRP), and O6-methylguanine-DNAmethyltransferase (MGMT) revealed different binding

affinities to the transporters contributing to drug resistance. It is observed that while

the Acridone derivatives bind with these drug resistance causing proteins, the TMZ can

produce its cytotoxicity at a much lower concentration leading to the synergistic effect.

The in silico analysis corroborate well with our experimental findings using TMZ resistant

(T-98) and drug sensitive (U-87) Glioma cell lines and we propose three novel drug

combinations (TMZ with AC2, AC7, and AC26) and dosages that show high synergy,

high selectivity and low collateral toxicity for the use in the treatment of drug resistant

Glioma, which could be future drugs in the treatment of Glioblastoma.

Keywords: acridone derivatives, drug combinations, synergy index, mathematical model, Glioma, drug resistance
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INTRODUCTION

Glioblastoma multiforme or Gliomas are the most commonly
occurring primary tumors in the brain and spinal cord. Repeated
failures and multiple challenges are seen in treating Glioma
due to the development of drug resistance, recurrence, collateral
toxicity to healthy cells, and detrimental adverse effects. Amongst
these, one of the greatest challenges faced is the development of
drug resistance, which can occur as a result of several complex
mechanisms. These include poor absorption of the drug, efflux
transport pumps, metabolic reprogramming, de-regulation in
gene, and protein expression responsible for apoptosis as well as
tumor heterogeneity (1–3).

Over the past few decades, several chemotherapeutic drugs
like Carmustine, Lomustine, Vincristine, Cisplatin, Bevacizumab
etc., have been studied for the treatment of Glioma (4, 5).
However, at present, Temozolomide (TMZ) is the one of the
well-known and the most effective drug used for the treatment
and management of Glioma. It is an alkylating agent belonging
to the tetrazine class (Figure 1A) having a molecular weight
of 194 g/mol and has shown the ability to penetrate the
Blood Brain Barrier (BBB) (6). Reports suggest TMZ increases
survival advantage by 2.5 times when the drug is administered
along with surgery and radiotherapy (7). It is an alkylating
agent that transfers a methyl group (CH3) to a purine base
of DNA (N7-guanine, O6-guanine, and N3-adenine) causing
both single and double stranded breaks leading to apoptotic

FIGURE 1 | Chemical Structure of the drugs TMZ and Acridone derivatives for Glioma Therapy. (A) Temozolomide (TMZ): (3-Methyl-4-oxo-3,4-dihydroimidazo[5,1-d]

[1,2,3,5]tetrazine-8-carboxamide; (B) AC26: N’(1-(2-hydroxyphenyl)ethylidene)-9-oxo-9,10-dihydroacridine-4-carbohydrazide; (C) AC2: 9-oxo-N’-(3-phenylallylidene)-

9,10-dihydroacridine-4-carbohydrazide; (D) AC7: N’-(2-chlorobenzylidene)-9-oxo-9,10-dihydroacridine-4-carbohydrazide.

cell death (8). However, it has been observed that although
the malignant cells respond to this TMZ induced apoptosis
during the initial phases, they gradually develop resistance
to it during the later phase of cancer progression. This is
because the cytotoxic action of TMZ is reversed by removal
of methyl group from O6-methylguanine (O6-MeG) by the
methylguanine methyltransferase enzyme (MGMT) (9). The
MGMT is an enzyme that is overexpressed in the tumor and the
most common reason for the development of drug resistance.
Additionally, administration of TMZ results in certain side effects
like alopecia, fatigue, nausea, vomiting, headache, constipation,
anorexia, convulsions, rash, fever, dizziness, amnesia, insomnia,
lymphopenia, thrombocytopenia, neutropenia, and leucopenia,
and also leads to severe toxicity at high doses (more than
250µM) (10). Furthermore, as per equation proposed by Levin-
log permeability it was observed that TMZ has a very low brain
capillary permeability with a value close to 2.7 × 10−6 cm/s
(11). Hence, it may be assumed that permeability of TMZ can be
improved by combining it with another lipophilic drug and these
acridone molecules fulfill this gap.

However, regardless of these obstacles, TMZ is used as a
standard drug in treating Glioma and is the most promising
drug known to treat Glioma till today. Hence, in this present
study we aim to thwart resistance by combining TMZ with
acridone molecules which may have a synergistic effect and help
in effectively treating the drug resistant tumor cells. Nevertheless,
the question arises which other drugs should be selected that
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would give synergistic effect with TMZ? In order to circumvent
the shortcomings faced due to the use of the known drugs, it
has become crucial to consider novel drugs for fighting Glioma
and the drug resistance. In one of our recent work, we have
shown that certain novel acridone derivatives have shown high
cytotoxic effect against Cervical, Lung, and Breast Cancers (12,
13). In Breast Cancer studies, using MCF-7 cell lines, it has been
observed that certain acridone derivatives have the ability to bind
to multiple targets and prevent multiple mechanisms responsible
for drug resistance in cancer. These molecules can intercalate
with DNA and inhibit the process of cell division, initiate reactive
oxygen species (ROS) mediated oxidative stress, and bind to the
proteins expressed in the plasmamembrane responsible for efflux
of the drugs like P-glycoprotein(P-gp) (14). The studies have
revealed that overexpression of proteins and actions of efflux
pumps are the main reason for the drug resistance as this leads
to drugs failing to accumulate and exert their activity at the site
of action. Apart from this, acridone moieties also showed unique
properties of high lipophilicity enabling penetration of the drug
into the BBB. It has also been observed that certain structural
modifications in these acridone derivatives could result intomore
potent drugs AC2, AC7, and AC26 which have shown 100 times
more cytotoxicity in comparison to the other acridone derivatives
(15) (Figures 1B–D). These Acridone compounds (AC2, AC7,
and AC26) on evaluation of histopathology demonstrated
liver with minimal hyperchromatic, anaplasia, and cellular
infiltration. Studies conducted using these compounds showed
no cardiotoxicity, nephrotoxicity and necrosis. In recent past,
these acridone molecules were able to successfully act on
breast cancer MCF-7 cell line (Michigan Cancer Foundation-
7) at lower concentration and have shown ability to modulate
cytotoxicity in drug resistant MCF-7/ADR (Adriamycin) cell
lines when administered in combination with Vinblastine (14).
Thus, due to high cytotoxicity of acridone compounds at low
dose in MCF-7/ADR cell lines and because of their ability to
overcome drug resistance, we aim to test its effectiveness in
the treatment of Glioma. In order to have an effective Glioma
therapy with minimal toxicity and to overcome drug resistance,
in this study, we have tested different combinations of acridone
derivatives with TMZ. Here, for the first time in-vitro and in-
silico strategies have been employed together to evaluate efficacy
of combinatorial drugs-TMZ+ AC26, TMZ+ AC2, and TMZ+
AC7 in the treatment of Glioma and to evaluate their synergistic
action to overcome the drug resistance in Glioma.

Sulforhodamine B (SRB) Assay of the novel acridone
derivatives, viz., AC2, AC7, and AC26 have been performed
on U-87 (Uppsala 87-WT) and T-98 (Temozolomide resistant)
malignant Glioma cell lines to determine the effectiveness of the
individual drugs on the drug sensitive and drug resistant cancer
cells. In order to gain insights into the molecular mechanism
underlying the effectiveness of the Acridone derivatives in
overcoming the drug resistance in Glioma, Molecular Docking
studies have been performed to compare the binding affinities
of the three Acridone derivatives with MGMT, P-gp, and MRP
proteins which are responsible for conferring resistance to
the Glioma cells. Thereafter, to determine the effectiveness of
these drugs in combination with TMZ and to observe the

dose responses under different dosage combinations, we have
developed a mathematical model to mimic the effect of these
drugs on heterogeneous subpopulation of cancer cells (drug
sensitive cancer cells and drug resistant cancer cells) in a tumor.
The model has been parameterized using the experimental
data and its outcome have been validated with our in vitro
experiments on the Glioma cell lines in order to ensure correct
predictions and to provide the optimum concentration of both
the drugs within the toxicity limits for maximum efficacy.
The dose response matrices generated from the simulation of
the mathematical model have been used for screening 10,000
combinations of doses for each pair of drugs for evaluating the
synergistic intensity of each dose combinations of the TMZ and
Acridone derivative using in-silicomethod. Experimental studies
have also been performed to validate the synergistic dosage
combinations of each pair of drugs. This study throws light on
new treatment strategies for Glioma by the selection of most
beneficial doses of the combinatorial drugs with minimum side
effects and determination of the optimum doses for synergy and
highest efficacy.

MATERIALS AND METHODS

Drugs Characterization
Characterization of acridone derivatives AC2, AC7, and AC26
were carried out by using all the chemicals of analytical
grade. Hydrochloric acid and sodium hydroxide were procured
from Sisco Research Lab Pvt. Ltd (Mumbai, India). Potassium
dihydrogen orthophosphate, methanol and ortho-phosphoric
acid (85% pure) was received from Loba Chemie Pvt. Ltd.
(Mumbai, India). Sodium chloride was received from SD Fine-
Chem Limited (Mumbai, India). Milli-pore water was used
throughout the study. Chemical information like the molecular
weight of compounds was determined by obtaining ESI-MS
spectroscopy using methanol as solvent. pH calculated by using
pH analyzer (Lab India) and PKa determined by using UV-
Vis spectrophotometer (Shimadzu, Japan). Melting point was
calculated by Digital Melting point apparatus (Veego India).
Lipophilicity was determined by using software like Chem Draw
15 and ALGOPS 2.1 (16). In order to determine the Blood Brain
Barrier (BBB) permeability of the compounds, we have used
Online BBB Predictor (https://www.cbligand.org/BBB/predictor.
php) using SVM Machine Learning algorithm and PubChem as
the fingerprint (17).

Molecular Docking
Molecular docking of the Acridone derivatives AC2, AC7, and
AC26 were performed to investigate the binding interactions
and patterns at the active pockets of the drug resistance causing
target proteins. X-ray crystallographic structures of the target
proteins [i.e., P-gp (PDB ID- 6QEX), MRP (PDB ID- 2CBZ), and
MGMT (PDB ID- 1QNT) were retrieved from Protein Data Bank
(PDB) (18)]. All the crystallographic structures were processed
individually in Discovery Studio Visualizer. All the water
molecules, unwanted chains, heteroatoms of respective protein
structure were removed and hydrogen atoms were added in
Discovery Studio Visualizer (19). Receptor cavities of individual
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proteins were identified by selecting the co-crystallized ligand in
the Discovery Studio Visualizer and attributes were documented
for docking calculations (19). Thereafter the processed proteins
were loaded to AutoDock Tools, both Kollman and Gasteiger
charges were added and saved in pdbqt format (20). All the
ligands were sketched in Avogadro software and optimized with
Universal Force Field (UFF) and Steepest Descent algorithm (21).
Prepared ligands were loaded to AutoDock and saved in pdbqt
format. Attributes of individual target protein obtained from
Discovery Studio (Supplementary Table 1), name of protein and
ligands were written in configuration file and submitted to
molecular docking. Docking parameters were optimized using
Genetic Algorithm (GA) approach with 1,000 runs. Docked
pose with highest binding affinity was visualized and interaction
analysis was performed in Biovia Discovery Studio Visualizer. All
the docking calculations were carried out in a laptop running
with Windows 10 64 bit operating system, 8GB RAM and
i3 processor.

Sulforhodamine B Assay for Individual
Drugs
In order to test the growth inhibition potential of the TMZ
and Acridone derivatives on Glioma, the U-87 (Uppsala 87)
Glioma cell lines and T-98 (Temozolomide resistant) Glioma
cell lines were treated with Temozolomide (TMZ) and Acridone
derivatives AC2, AC7, and AC26. The African Green Monkey
Kidney Vero cell lines were used as control for the study.
The Vero cell lines were obtained from the National Center
for Cell Sciences (NCCS), Pune, while the U-87 and T-98 cell
lines were carried in the lab of Dr. GJ Peters, Cancer Center
Amsterdam (CCA), VU University Medical Center, Amsterdam,
Netherlands. The Mycoplasma testing was done by using the
Universal Mycoplasma Detection Kit (ATCC R© 30-1012KTM)
every 6 months. The Vero cell lines have been used as control
as they are normal kidney epithelial cells and are non-cancerous
in nature. The Vero cell lines have been routinely used for testing
cytotoxicity of small molecules by various researchers (22, 23).
Also, in our previous study, Vero cell lines have been used
for testing safety and efficacy of Acridone derivatives for Lung,
Cervical, and Breast Cancer studies (13).

Cell viability was found using the Sulforhodamine B (SRB)
assay to measure the cellular protein content which provides
better sensitivity in comparison to MTT assay (24). Moreover, as
this method is dependent on the property of the SRB dye, it acts
by binding to proteins under slightly acidic conditions and can
be exposed to basic conditions for its extraction. The resulting
amount of bound dye is then utilized as a proxy for cell mass (25).
This cell mass can then be extrapolated to measure cell growth.

Glioma cells were cultured in Gibco (RPMI 1640)
complemented with 10% fetal calf serum (Gibco). The cultures
were then treated with trypsin-EDTA in order to detach/separate
the cells from their culture flasks. The quickly proliferating cells
were harvested, counted and plated at suitable concentrations
in 96-well microplates. These microplates were subsequently
incubated for 24 h. After incubation, drug compounds were
dissolved in the culture media and placed in 96 well plates in

triplicates, which were again incubated at 37◦C under 5% CO2
for 72 h. 72 h later, the plates were removed and the cells were
treated with cold Trichloroacetic acid (TCA) to fix the cultures
and. 0.4% of SRB dissolved in 1% acetic acid was then added
to the culture in order to stain the cells. Next, the bound stain
was dissolved in 150 µl of 10mM unbuffered Tris base left on
a gyrator shaker. Thereafter, absorbance of the solution was
measured at 540 nm utilizing a microplate reader. Absorbance
readings (triplicate values) recorded were used to calculate
percentage growth inhibition due to the effect of drugs using the
following equations.

% Cell growth = Absorbance sample/Absorbance of control
or untreated× 100

% Growth inhibition= 100 - % cell growth
The Inhibitory concentration (IC50) of the drugs were

determined on the basis of concentration that induced 50%
growth inhibition of the treated cells in comparison to untreated
cells after 72-h treatment (as given in Table 4). The IC50 was
calculated based on the log graph sheet which was developed
in-house at the CCA, VU University Medical Center.

Selectivity Index
Selectivity Index (SI) is a ratio that measures the window between
cytotoxicity and anticancer activity of the drugs (26). Thus, to
evaluate effectiveness of all the 4 drugs, SI has been calculated
using the formula SI = CC50 of Vero cell line /IC50 of Cancer
cell line, after 72 h of TMZ/AC treatment (27). Here, IC50 is
the inhibition concentration for inhibiting 50% of cancer cells
and CC50 is cytotoxic concentration causing death of 50% viable
cells in the host. Ideally, IC50 concentration should be below
CC50 concentration suggesting that cancer cells are killed before
host cells.

Model Development
The data obtained from the in-vitro experiments were used
to develop an Ordinary Differential Equations (ODEs) based
model that can mimic the tumor development in-silico. The
model consists of 4 variables representing the heterogeneous
sub-populations of cells in a tumor and 29 parameters that
govern the differentiation pattern and growth dynamics of each
sub-population. The model has been calibrated and parameters
set to capture the growth dynamics of U-87 and T-98 cells
that represent the drug resistant and drug sensitive cell sub-
populations in a developing tumor. The primary objective of
this model development is to screen the effect of varying dosage
combinations of TMZ and the Acridone derivatives on the tumor
growth to determine the dosage combinations showing high
synergistic effects within the toxicity limits.

Tumor Growth Model
The tumor growth model developed (Figure 2), assumes
existence of few non-cancerous precursor cells (N) which
tend to acquire mutation (ρ) over a period of time to form
cancerous cells (C) (Equations 1–4). The process of acquisition
of mutation in non-cancerous precursor cell population can be
the result of their exposure to several factors like radiations,
air pollution, chemicals, other factors (such as Viruses,) etc.,
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FIGURE 2 | Diagrammatic representation of tumor growth model. (A) Tumor growth model showing Non-cancerous precursor cells (N), Cancer cells (C), Drug

sensitive (CS), and Drug Resistant (CR) cells without the effect of drugs; (B) Tumor growth model with combinatorial drug therapy using TMZ and Acridone derivatives

AC26, AC2, and AC7.

(28). Since non-cancerous cells are acquiring mutation with a
probability ρ to form cancer cells, the non-cancerous precursor
cell population tend to renew their pool of cells with (1- ρ)
probability (Equation 1). The model further considers that
cancer cell population undergoes differentiation to give rise to
heterogeneous subpopulations consisting of the resistant cancer
cells (CR) and sensitive cancer cells (CS) (29). The sensitive
cells are susceptible to therapy, while therapy is hardly effective
against resistant cells. The probability that cancer population
would differentiate into Drug resistant cancer population (CR) is
γR and into Drug sensitive cancer (CS) population is ωS where
γR + ωS = 1. Tracing the past footprints in the literature, it
can be understood that transitions are allowed to occur between
drug sensitive cancer cells and drug resistant cancer cells with
more probability ˜(γ R) of transformation occurring in forward
direction and less probability ˜(ωS), that resistant cell population
will switch back into sensitive cancer cell population (29, 30).
This rare transformation process is well-documented in literature
where experiments show that drug resistant cell population
reduces in drug free medium (31) or refractoriness to drug
therapy can be sometimes reversed by epigenetic programming
(32). In mathematical terms, it may be noted here that αC and δc
denote the natural birth and death rates of C cells. An identical
nomenclature has been followed for other types of cells. The
resistant cancer cells are developed from the conversion of a
C to CR. The CR trail an identical pattern of self-renewal and
differentiation resulting in the replenishment of the CR pool and
development of Cs.

Though a plethora of models exist on the basis of the
assumption that proliferation of a constant fraction of tumor

volume follows exponential growth but in this model we
have considered the widely accepted and well-known model
of Gomphertz to describe growth dynamics of cancer cells
and their heterogeneous subpopulations (33, 34). Mathematical
representation of growth kinetics followed by cancer cells
can be given as αC∗C∗ log K

C+µ , where K denotes carrying
capacity of the cancerous cells (35). In this model, it has
been considered that CR and CS follow identical Gompertzian
growth kinetics and all types of cancerous cells have a common
carrying capacity. On the contrary, the model assumes that non-
cancerous precursor cells are growing logistically, which can be
mathematically represented as ∝N ∗N (1− ρ) ∗

(

1− N
K

)

(36,
37).

Model Equations
Based on the biological significance and mathematical
assumptions, four ODEs were developed for four different types
of tumor cells using 29 parameters (Supplementary Table 2) in
order to describe evolutionary dynamics of tumor growth. The
model equations have been listed below:

dN

dt
= ∝N ∗N (1− ρ) ∗

(

1−
N

K

)

−δNN − ∝N∗N∗ρ (1)

dC

dt
= ∝N ∗ρ∗N + αC∗C∗ log

K

C + µ

−γRαCC − ωSαCC − δcC (2)
dCR

dt
= γRαCC + γRαCSCs + αCR∗CR∗ log

K

CR + µ

−δRCR − ωSαCRCR (3)
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dCs

dt
= ωSαCRCR + ωSαCC + αCS∗Cs∗ log

K

CS + µ

−δSCS − γRαCSCs (4)

Parameter Estimation and Validation of Tumor
Growth Model
For the simulation and validation of the tumor growth dynamics,
the calibration of the model has been carried out and the
unknown parameters present in the model have been estimated
by appropriately fitting the initial growth kinetics of the model
with experimental data of drug sensitive and resistant cell lines
of Glioma origin (without the effect of any drugs) for 96 h
(38–40). The parameter estimation was performed using the
MATLAB based toolbox that uses Markov Chain Monte Carlo
(MCMC)-DRAM algorithm (41). Trace plots and Histograms
are given in Supplementary Figure 1. For this purpose, the U-
87 cell growth data has been considered as drug sensitive Glioma
cells as U87 cells express low level of MGMT (42). On the other
hand, T-98 has been considered as drug resistant cell line due to
high expression of cystine-glutamate exchanger (xCT), MGMT,
NAMPT (nicotinamide phosphoribosyl transferase), BER (base
excision repair), ubiquitin-specific peptidase (Usp18) etc. (42).
These protein expressions have been correlated in literature
with activity of the transporters (influx, efflux), metabolism,
increasedDNA repair activity and other processes leading to drug
resistance (43).

In this study, the tumor growth model (without drug) consists
of four variables and 15 parameters. Out of these values, three
parameter values are known from experiments and literature,
10 parameters were estimated using the MCMC technique, and
other two parameters were assumed and labeled as expected
values as these have been estimated to obtain a close fit of all
the four variables during the model simulation The MATLAB
codes for performing the parameter estimation have been made
available in Supplementary Text 2 (Scripts 1–4). The model
contains additional 14 parameters related to TMZ and the
Acridone derivative that regulates drug response behavior of the
model (Section model initialization and numerical simulations).
The parameter values used for the simulation have been enlisted
in Supplementary Table 2.

Model Initialization and Numerical Simulations
Using the parameter values and initial values, the system of ODEs
were solved numerically utilizing Runge-Kutta methods (RK).
In this model, two types of cells non-cancerous cells (N) and
Cancer cells (C) have been considered. The C is thought to be
consisting of subpopulations-Drug resistant cancer cells (CR)
and Drug sensitive cancer cells (CS). Numerical simulation of
this model was carried out using ODE45, variable order solver
present in MATLAB R© 2017a platform. The model was initialized
and simulated by considering initial values of N, C, CR, and CS
similar to that of the initial values considered in experiments
(Supplementary Table 3).

Incorporation of Effects of TMZ and Acridone
Derivative
After validating the natural growth dynamics of the tumor,
without incorporating the effect of any drug, the model equations

have been modified with additional terms to capture the cell
kill dynamics under the influence of individual drugs (TMZ and
Acridone derivative) and when administered in combination. For
this, the Maximum response (Emax) model for drug induced cell
death has been considered in our model for comparing efficacy
of the drugs. Functional form of Emax model along with an
additional parameter (Hill exponent to show steeper relationship
of concentration) to the concentration can be depicted as
[

εmax(Conc)
Hill

C50
Hill+ ConcHill

]

, where C50 is the concentration at 50% of Emax

(44, 45). Similarly, effects of drugs on two different cancerous
cells have been introduced in this mathematical model. In order
to capture this, Equations 3, 4 have been modified as follows:

dCR

dt
= γRαCC + γRαCSCs + αCR∗CR∗ log

K

CR + µ

−δRCR − ωS αCRCR −

[

εD1rmax
D

ηD1r
1

ICηD1r
50D1r + DηD1r

1

]

CR

−

[

εD2rmax
D

ηD2r
2

IC
ηD2r
50D2r + D

ηD2r
2

]

CR (5)

dCs

dt
= ωSαCRCR + ωSαCC + αCS∗Cs∗ log

K

CS + µ

−δSCS − γRαCSCs −

[

εD1smax
D

ηD1s
1

IC
ηD1s
50D1s + D

ηD1s
1

]

CS

−

[

εD2smax
D

ηD2s
2

IC
ηD2s
50D2s + D

ηD2s
2

]

CS (6)

Here D1 is the dose of the TMZ in µM, while D2 is the dose
updated every time with the parameter values of the Acridone
derivatives for AC2, AC7, and AC26 in µM, εmax is given for
Drug 1 and Drug 2 in different cancer cells (Drug resistant
cancer cells and drug sensitive cancer cells), ηD1r and ηD2r (Hill
exponents) represents efficacy of the Drug 1 and Drug 2 in for
resistant cancer cells (similarly ηD1s and ηD2s are for sensitive
cells), while IC50 stands for inhibitory concentration of Drug
1 and Drug 2 at which 50% of tumor response is inhibited.
After incorporation of the effect of drugs (TMZ and Acridone
derivative) the model now consists of 29 parameters. However, it
is to be noted that each of the parameters related to the Acridone
derivative (Drug 2 or D2) can have three possible values related
to AC2, AC7, and AC26, thereby making the total number of
possible values of the parameters 43 (Supplementary Table 2,
Supplementary Text 2: Scripts 5 and 6). Here, the doses for the
four drugs (TMZ, AC2, AC7, and AC26) were varied to study
the change in cellular dynamics under different dosages. The
parameter values related to these drugs considered in our model
equations have been determined by varying the parameters to
obtain a close fit with the experimental observations from the
SRB Assay.

Numerical Simulation With Drug Therapy
Numerical simulations were carried out by varying the dose of
the drug (D1) [i.e., TMZ while keeping the dose of the Acridone
derivative drug (D2) as zero]. Simulations were run using an
ODE variable solver in MATLAB until a steady state solution was
reached. For the study of the effect of the individual drugs on
the inhibition of cellular growth, simulations for AC2, AC7, and
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AC26 were also performed in a similar way by varying the dose
of the Acridone derivatives. These simulation results in capturing
the effect of the individual drugs on the drug sensitive and
resistant cell lines were fitted and validated with our experimental
findings obtained from the Sulforhodamine B Assay mentioned
in Section Sulforhodamine B assay for individual drugs.

Administration of Combinatorial Drugs
After studying the effect of drugs individually on the growth of
different Glioma cells, combinational studies were carried out
to observe how the growth inhibition of TMZ resistant Glioma
cells could be achieved when TMZ and Acridone derivatives
were administered in combination. For this, combinatorial
drugs (AC26 + TMZ, AC2 + TMZ, and AC7 + TMZ) were
administered and their effect on growth of drug resistant cancer
cells and drug sensitive cancer cells were observed. Simulations
were performed by varying doses of both the drugs for each
combinational drug within the range that would not lead to
drug toxicity. Toxicity range was considered as more than 100
µM for Acridone compounds and more than 250 µM for
TMZ (42). Also, because it was observed from the experiment
and the previous simulations that Acridone compounds were
highly cytotoxic and potent at lower concentrations so the range
of Acridone moieties in simulations were varied from 0 to 6
µM only. For each of the drugs, both TMZ and the Acridone
derivatives, 100 dosages were considered and simulated using
our mathematical model to generate 100 × 100 = 10,000 dosage
combinations in silico (Supplementary Text 2: Scripts 7 and 8).
The dose response matrix of CR and CS generated from the
simulation was used to calculate the Synergy Scores (SC) of
each combination.

Sensitivity Analysis
In order to determine the effect of the different model parameters
and the dosages of TMZ and Acridone derivatives on the model
variables and the dose response matrices, the Sensitivity Analysis
was performed using LHS-PRCC (Latin Hypercube Sampling
- Partial Rank Correlation Coefficient) method in MATLAB
(46). This method is useful for global uncertainty analysis for
monotonic systems. The sensitivity analysis was performed on
29 parameters including the parameters related to TMZ (D1)
and Acridone derivatives (D2). The parameters range related
to the Acridone derivatives (D2) were considered such that it
covers the values of all the three derivatives, viz., AC2, AC7,
and AC26. The sensitive parameters were identified for all the
four variables based on their PRCC values with a p < 0.05
(Supplementary Text 2: Scripts 10–12).

In-silico Drug Synergy Estimation
The synergy scores (SC) for each pair of drug combinations in the
resistant cells were calculated using the R-based package Synergy
Finder using the Bliss reference model (47). The dose-response
matrix obtained from the numerical simulation of the model for
the CR cells was used as an input matrix (100× 100) for Synergy
Finder to calculate the synergy scores (SC). For the calculation of
synergy scores, the assumption is that if an experiment drug A
at dose x1 is combined with drug B at dose x2, then the effect of

such a combination is yc as compared to the monotherapy effect
of A at x1 and B at x2. In order to quantify the degree of synergy,
the value of yc needs to be compared with the expected effect ye
of non-interaction. In the Bliss model yc is calculated as

yC = yA + yB − yAyB (7)

The synergy score is calculated as the difference between the
observed effect (yC) and the expected effect (ye). This method
has been used when the two drugs are acting independently on
the phenotype.

Sulforhodamine B Assay for Combinatorial
Drugs
Sulforhodamine B Assay procedure used for evaluation of
combinatorial drugs is the same as that of the individual
drugs. Cell lines were treated with various concentrations of
drug combinations TMZ+AC2, TMZ+AC7, and TMZ+AC26
instead of individual drugs. Combination index (CI) of these
combinatorial drugs were evaluated in drug-sensitive (U-87) and
drug-resistant (T-98) cancer cell lines. The 100µM concentration
of TMZ with IC10 concentration of the AC2, AC7, and AC26
were used for the combination assay. Based on CI values obtained
for these drug combinations, it is possible to determine the
type of interaction. If CI value is <0.8, then combinatorial
drugs show synergism (i.e., its effect is better than the expected
theoretical effect); when CI value lies between 0.8 and 1.2,
combinatorial drugs show additive behavior i.e., it means the
effect of combination will be equal to sum or product of each
separate effect; and whenCI value is more than 1.2, combinatorial
drugs show antagonism i.e., its effect is worse than expected
theoretical effect (48, 49).

Acute Toxicity Study of Acridone
Derivatives
Animal study was conducted for acridone derivatives AC2, AC7,
and AC26 alone and in combination with Temozolomide for
Acute Oral Toxicity - Fixed Dose procedure. The Institutional
Animal Ethics Committee bearing CPCSEA/IAEC/P-52/2016
was approved for undertaking the study. Acute oral toxicity was
conducted on female albino Wistar rats for 8–12 weeks and were
maintained at 25 ± 20C in a conditioned room with 50–60% of
humidity and free access to food and water was given. Rats were
kept for fasting overnight (12 h) before dosing and weights were
recorded periodically. Rats in two groups were given acridone
derivatives alone at a dose of 300 and 2,000mg, rats in two
groups were given a combination of Temozolomide : acridone
derivatives at dose of 10:1 mg/kg and 15:1.5 mg/kg body weight
and one group was kept as control. Dose of Temozolomide
was taken as per previously published article (50). Compounds
alone and combination were suspended in 2.0% of Tween 80
in normal saline and control group was taken for vehicle only.
After administering the compound, food was not provided for
3 h. All the rats were monitored periodically for 1 h upto 12 h on
the 1st day and thereafter twice in a day for mortality, behavioral
changes, signs and symptoms of toxicity for 14 days. Individual
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TABLE 1 | Physical data for acridone derivatives.

Compound name Molecular formula Molecular weight (g/mol) Melting point (0C) Log P pKa

AC-26 C22H17N3O3 371.39 246–250 3.17 6.517

AC-2 C23 H17N3O2 367.40 238–242 3.92 8.028

AC-7 C21H14ClN3O2 375.81 129–134 4.54 9.234

TABLE 2 | Docking of acridones with P-gp and MRP.

S. No. Target Compound

code

Binding affinity

(kcal/mol)

Interactions at the active pocket

Type of interactions Residue information

1 P-glycoprotein (P-gp) AC26 −10.2 Hydrogen bonding

Pi-Pi Stacking

Pi-Alkyl

TYR A:310

TRP A:232; PHE A:343

ALA A:229

2 AC2 −10.1 Hydrogen bonding

Pi-Pi Stacking

Pi-Sulfur

Pi-Alkyl

GLN A:725

TRP A:232; PHE A:343; PHE A:983

MET A:986

ALA A:229; ALA A:987

3 AC7 −9.5 Pi-Sigma

Pi-Pi Stacking

Pi-Alkyl

ILE A:306; PHE A:343

TRP A:232

ALA A:229; MET A:986

1 Multidrug Resistance

Protein (MRP)

AC26 −7.5 Hydrogen bonding

Pi-Anion

Pi-Alkyl

SER A:796; SER A:828; SER A:830; TYR A:831

HIS A:872

LEU A:795; ALA A:800

2 AC2 −7.1 Van Der Waals

Hydrogen bonding

Pi-Pi Stacking

Pi-Anion

Pi-Sigma

Pi-Alkyl

HIS A:801

SER A:830

ALA A:800

HIS A:872

ALA A:800

LEU A:795

3 AC7 −7.2 Hydrogen bonding

Pi-Anion

Pi-Alkyl

SER A:796; ALA A:800; SER A:828; TYR A:831

HIS A:872

LEU A:795

weights of rats were taken for all the 14 days and study was
conducted twice for each dose.

RESULTS

Characterization of the Drugs
Successful delivery of any anti-cancer drug across the blood
brain barrier depends mainly on the lipophilicity of the drug
(51). The Acridone derivatives (AC2, AC7, and AC26) are weak
bases existing in both the uncharged (unprotonated) and charged
(protonated) forms (52). Characteristics of novel Acridone
derivatives like molecular weight, melting point, Log P (or
partition co-efficient) and pKa have been evaluated and results
of the same are shown in Table 1. It seems that the lipophilicity
of the compounds contributes to the anti-neoplastic activity to
some extent. The results from the Online BBB Predictor show
that all the three Acridone derivatives AC2, AC7, and AC26 have
blood brain barrier permeability with BBB scores 0.238, 0.236,
and 0.144, respectively. On the other hand, the tool predicts TMZ
to have a BBB score of 0.034 (Supplementary Figure 3) (17).

Molecular Docking of Acridones With P-gp,
MRP, and MGMT
In order to determine the binding affinities of these Acridone
derivatives with drug resistant causing proteins P-gp, MRP,
and MGMT, Molecular docking studies have been performed.
Acridone derivatives are very much recognized as substrates
of efflux pumps P-gp and MRP proteins with potential DNA
intercalating property for multidrug resistant (MDR) cancers
(52). Acridones being substrates or inhibitors of these efflux
pumps enhances the concentration of drugs like Temozolomide
inside the cell, which can lead to cell death. Also the combination
of anticancer drugs with acridone derivatives can modulate
or prevent the cause of drug resistance (53). Same hypothesis
might have improved the cytotoxicity against drug resistant
cancer cells in SRB assay. To further verify the experimental
results and predict the binding affinity of acridone derivatives,
molecular docking was performed against P-gp, MRP, and
MGMT target proteins.

Docking of Acridones with P-gp has identified AC26 with
highest binding affinity of −10.2 kcal/mol (Table 2). Complex
was found stabilized by hydrogen bonding with TYR A:310;
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FIGURE 3 | 2D docked poses of AC26, AC2, and AC7 with P-gp and MRP. The interactions shown in the figure have been color coded as Green: Hydrogen bonding;

Yellow: Pi-Sulfur; Pink: Pi-Pi Stacking; Light Pink: Pi-Alkyl; Blue: Pi-Sigma.

Pi-Pi Stacking with TYR A:232, PHE A:343, and Pi-Alkyl
interactions with ALA A:229 residues (Figure 3). The AC2 has
demonstrated binding affinity of −10.1 kcal/mol by hydrogen
bonding with GLN A:725, Pi-Pi Stacking with TRP A:232; PHE
A:343; PHE A:983, Pi-Sulfur with MET A:986, and Pi-Alkyl
interactions with ALA A:229, ALA A:987 residues. Most of the
interactions were found common with AC26 unlike hydrogen
bonding and Pi-Sulfur interacting residues. Surprisingly, AC7
was found stabilized with −9.5 kcal/mol without hydrogen
bonding interactions. All the three compounds have interacted
with different binding patterns and interactions with P-gp.
Complex structure and size of active pocket might have led to
different interactions.

Similarly, docking of Acridones withMRP has identified AC26
with binding affinity of −7.5 kcal/mol (Table 2). Interestingly,
complex was found stabilized by hydrogen bonding with four
residues [i.e., SER A:796; SER A:828; SER A:830; TYR A:831, Pi-
anion with HIS A:872, and Pi-alkyl interactions with LEU A:795;
ALA A:800 (Figure 3)]. AC2 and AC7 have exhibited −7.1 and
−7.2 kcal/mol. Only AC2 has formed Van der Waals interaction
with HIS A:801. Pi-alkyl interaction with LEU A:795 and Pi-
anion with HIS A:872 was found common with all the three
compounds. AC7 also demonstrated four hydrogen bonding
interactions. Unlike AC26 and AC2 hydrogen bonding with SER
A:830 was found missing with AC7. This particular interaction
might have reduced the binding affinity to−7.2 kcal/mol. All the

three compounds have exhibited a good number of interactions
at the active pocket of MRP.

Finally, docking of Acridones with MGMT has revealed
interesting insights. The AC2 and AC26 were found stabilized
with good binding affinity of −7.8 and −7.7 kcal/mol (Table 3).
Also AC2 has demonstrated hydrogen bonding with ARG
A:135, Pi-Pi stacking with TYR A:114, Pi-alkyl with ARG
A:128; MET A:134; CYS A:145, and Pi-sulfur with CYS
A:150. Only AC2 has formed Pi-sulfur interaction among the
three compounds (Figure 4). AC7 has also exhibited hydrogen
bonding interactions with ARG A:135; GLY A:132, and other Pi-
Pi stacking, Pi-alkyl, Pi-sigma interactions at the active pocket
of MGMT. Also, only compounds formed Pi-sigma interactions.
Surprisingly, AC26 was found stabilized by Pi-Pi Stacking with
TYR A:114; MET A:134 and Pi-alkyl with ARG A:128; ARG
A:135 interactions. Compound has shown−7.7 kcal/mol binding
affinity with no hydrogen bonding interactions. Pi-Pi stacking
with TYR A:114 and Pi-alkyl with ARG A:128 were found
common with all the three compounds.

Overall, docking calculations revealed that acridones have
good binding affinity to P-gp and MGMT. Compounds have
exhibited lesser binding affinity with MRP compared to
other targets. Particularly, AC26 has demonstrated highest
binding affinity with all the three target proteins. Molecular
docking studies of acridones against P-gp target has revealed
that compounds have the ability to modulate or reverse
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TABLE 3 | Docking of acridones with MGMT.

S. No. Compound

code

Binding affinity

(kcal/mol)

Interactions at the active pocket

Type of interactions Residue information

1 AC26 −7.7 Pi-Pi Stacking

Pi-Alkyl

TYR A:114; MET A:134

ARG A:128; ARG A:135

2 AC2 −7.8 Hydrogen bonding

Pi-Pi Stacking

Pi-Alkyl

Pi-Sulfur

ARG A:135

TYR A:114

ARG A:128; MET A:134; CYS A:145

CYS A:150

3 AC7 −7.1 Hydrogen bonding

Pi-Pi Stacking

Pi-Alkyl

Pi-Sigma

ARG A:135; GLY A:132

TYR A:114

ALA A:127; ARG A:128

ASN A:157

FIGURE 4 | 2D docked poses of AC26, AC2, and AC7 with MGMT. The interactions shown in the figure have been color coded as- Green: Hydrogen bonding;

Yellow: Pi-Sulfur; Pink: Pi-Pi Stacking; Light Pink: Pi-Alkyl; Blue: Pi-Sigma.

TABLE 4 | Dose-effect relationships of TMZ and AC in Glioma cell lines#.

Name of

cell

lines

Vero cell

Line

U-87/WT T-98/TMZRES

Drugs CC50(µM) IC50 (µM) SI IC50 (µM) SI

TMZ 482 23.33 ± 7.57 20.66 190 ± 0.16 2.53

AC26 66.08 0.9 ± 0.1 73.42 0.76 ± 0.053 86.94

AC2 56.21 1.53 ± 0.85 36.73 1.53 ± 0.25 36.73

AC7 48.17 5.67 ± 0.58 8.49 1.05 ± 0.18 45.87

#Selectivity Index (SI) = CC50 of Vero cell line /IC50 of Cancer cell line after 72 h of TMZ

or AC.

#IC50 values are represented in the form of Mean ± Standard Deviations for both the

cell lines.

drug resistance mediated by efflux pumps like P-gp with
good binding affinity. Docking studies have once again
supported that Acridones are known to modulate MDR as P-
gp substrate/inhibitor. Study suggests that Acridone derivatives
can be further optimized for the design of safe and potent
MGMT inhibitors.

Sulforhodamine B Assay for Individual
Drugs
The cell growth inhibition potential of the Acridone derivatives
on the drug sensitive and drug resistant Glioma is studied using
the Sulforhodamine B (SRB) assay. Here the IC50 (µM) values
for the drugs AC2, AC7, AC26, and TMZ were determined and
tabulated in Table 4. We have found out IC50 values of acridone
derivatives using SRB Assay and have confirmed safety dose by
conducting acute toxicity studies on albinoWistar rats. However,
the reported IC50 values of acridone derivatives are based on in
vitro study only and is yet to be tested for clinical application.
Also, this experimental data was used to plot growth inhibition
curves for AC2, AC7, AC26, and TMZ in U-87 drug sensitive
Glioma cell lines and T-98 TMZ resistant Glioma cell lines
(Figure 5). All the four compounds AC26, AC2, AC7, and TMZ
were found active. Here we observe that the compound AC26
containing substituent like 1-(2-hydroxyphenyl) ethylidene have
shown better results in both drug resistant and sensitive types
of Glioma cell lines (U-87 and T-98). Results show that this
substitution is responsible for high anti-proliferative activity.
Also, substitution of –Cl in phenyl group in AC7 was found to
overcome drug resistance to a larger extent in comparison to
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FIGURE 5 | IC50 values obtained from experimental data: (A) Growth Inhibition Curve for AC26 in U-87 Glioma Cell Lines; (B) Growth Inhibition Curve for AC26 in

T-98 Glioma Cell Lines; (C) Growth Inhibition Curve for TMZ in U-87 Glioma Cell Lines; (D) Growth Inhibition Curve for TMZ in T-98 Glioma Cell Lines; (E) Growth

Inhibition Curve for AC2 in U-87 Glioma Cell Lines; (F) Growth Inhibition Curve for AC2 in T-98 Glioma Cell Lines; (G) Growth Inhibition Curve for AC7 in U-87 Glioma

Cell Lines; (H) Growth Inhibition Curve for AC7 in T-98 Glioma Cell Lines. X axis showing log concentration of the drug in µM.

having no substitution in phenyl group in AC2. One important
aspect related to AC7 is that the presence of –Cl group in the
phenyl group is also one of the main reasons for the drug not
being effective on U-87. From this we observe that in comparison
to other Acridone derivatives, AC26 showed highest cytotoxicity
when compared with AC7 and AC2, respectively.

Selectivity Index
Selectivity indices (SI) of all the four drugs, were obtained from
the experiments, have been tabulated (Table 4). A drug with high
SI is able to act against cancer cells effectively at concentrations
below its cytotoxic concentration. The SI data shows that AC26
is more selective toward T-98 (drug resistant cancer cell line) and
U-87 (drug sensitive cancer cell lines) than its selectivity toward
Vero cell lines. These results indicate the supremacy of AC26 as
a better choice of drug for treatment of cancer that would be
effective both on T-98 and U-87 drug lines.

Numerical Simulations and Parameter
Estimation (Without Drug)
In order to mimic the experimental observations in silico,
first the Glioma cell growth model was developed without the
administration of any drug (Equations 1–4). The unknown
values of 10 parameters were estimated by MCMC method.
Sensitive parameters regulating the growth of the variables C,
CR, and CS were varied within biologically feasible ranges. Time
course cell growth experimental data of 96 h for Glioma, U-
87 and T-98 cells lines were used to fit the model parameters
(red circles, Figure 6) (29–31). It was assumed that the prior
distribution is normal. The MCMC simulation was run for

500,000 iterations to assure convergence of the chain. The
final parameter values estimated by MCMC algorithm for the
mathematical model have been listed in Supplementary Table 2.
The simulated predictive plots, with the estimated parameters,
obtained for cancer cells C (Figure 6A), Cancer Resistant
CR (Figure 6B), and Cancer Sensitive cells CS (Figure 6C)
show a good fit with the experimental data points (indicated
with red circles) and mostly lie within the 95% confidence
interval. This ensures the validity of the parameter chosen
and the mathematical model for closely mimicking the in
vitro experiments.

The model was then simulated for 300 h to ensure that all
four variables representing the tumor sub-populations reach
steady state. Figure 6D shows the temporal dynamics of all four
of cellular sub-populations. Here it is observed that at steady
state the CR population reaches a much higher concentration
as compared to the CS cells which makes the tumor resistant to
therapeutic interventions.

Numerical Simulations With TMZ and the
Combinations
After successful validation of the tumor cell growth model,
it is now used to test the cellular inhibition effect of the
drugs individually and then in combinations. Experimental data
from the SRB assay was used to calibrate and validate the
model outcome.

Administration of Individual Drugs
Numerical simulations were performed to study the growth
inhibition of the drug sensitive CS and drug resistant CR cancer
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FIGURE 6 | Parameter estimation and validation studies. Predictive Plots using estimated parameter values for (A) Cancer cells (C), (B) Drug resistant cancer cells

(CR) and (C) Drug sensitive cancer cells (CS). The red circle in predictive plots represents cell proliferation values obtained from Glioma cell line data; (D) Temporal

Dynamics shown by Normal (N), Cancer cells (C), Drug resistant cancer cells (CR), and Drug sensitive cancer cells (CS).

cells by varying the doses of TMZ, AC26, AC2, and AC7
individually. The Figures 7A,B obtained shows relative tumor
growth (%) with the changing concentration of TMZ. Here,
it can be observed that both the simulated data (cyan) and
experimental data (royal blue) closely fit. The spearman’s rank-
order correlation R2 values for both drug resistant cancer cells (T-
98) and drug sensitive cancer cells (U-87) indicating very strong
correlation between both the experimental data and simulated
results. The IC50 values obtained from the simulations alsomatch
with the experimental data pretty well.

Similarly, the growth inhibition effect of the Acridone
derivatives AC26 (Figures 7C,D), AC2 (Figures 7E,F), and AC7
(Figures 7G,H) were also studied on the drug resistant CR and
drug sensitive CS cancer cells. The simulation results show a good
fit of experimental data for all the three drugs (R2 > 0.98).

Administration of Combinatorial Drugs—TMZ With
Acridone Derivative
Various doses of combinatorial drugs D1 -TMZ and D2-
Acridone derivatives (AC26/AC2/AC7) were administered to
the model and the simulations were run until steady state was
reached. The dose response matrix showing the relative growth
percentage (along Z-axis) of drug resistant cancer cells and drug
sensitive cancer cells have been depicted through surface plots
(Figure 8) for 10,000 dosage combinations of each pair of TMZ
andAcridone derivative (AC26/AC2/AC7). The Figure 8A shows

that when dose of D1 (TMZ) is 0, tumor growth is maximum
(represented by red color), but as dose is increased slowly from
0 to 200, the TMZ inhibits tumor growth reduction by 50%. Here
we also observe that, alongside TMZ, as dose of D2 (i.e., AC26)
is increased, drastic fall in the number of drug resistant cancer
cells is observed (more than 20% tumor growth reduction).While
comparing the efficacy of both the drugs, it was observed that
AC26 was more successful in inhibiting drug resistant cancer cell
growth at lower concentration than TMZ. Conversely, Figure 8B
shows that increase in the dose of TMZ results in sudden
fall in concentration of drug sensitive cancer cells (40% tumor
growth reduction) whereas increase in the dose of AC26 leads to
moderate reduction in drug sensitive cancer population (10–20%
of tumor growth reduction).

Similarly, the dosage of the drugs TMZ and AC2 were varied
from 0 to 200 and 0 to 2, respectively (Figures 8C,D), while in the
third drug combination study, TMZ and AC7 were varied from
0 to 200 and 0 to 6, respectively (Figures 8E,F). In both the cases
we observed a better growth inhibition of the resistant tumor cells
on administration of the Acridone derivative AC2 and AC7 when
combined with TMZ as opposed to when they were administered
individually. From the dose response matrices, the fold change
in the IC50 values of TMZ and the Acridone derivatives when
used in combinations as opposed to when they are administered
individually were also calculated (Table 6). Here we observe that
when the drugs are used in combination, the IC50 value of TMZ
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FIGURE 7 | Fitting growth inhibition curves of experimental data with simulated data after administration of drugs on cancer resistant CR (T-98) and sensitive cell lines

CS (U-87). (A) TMZ to CR (T-98); (B) TMZ to CS (U-87); (C) AC26 to CR (T-98); (D) AC26 to CS (U-87); (E) AC2 to CR (T-98); (F) AC2 to CS (U-87); (G) AC7 to CR

(T-98); (H) AC7 to CS (U-87).

and Acridone derivatives reduces substantially. This observation
throws light on the possibility of existence of synergistic effects
of the drugs when used in combination with TMZ in the drug
resistant cancer cells.

In order to determine the parameters that govern this dose
response dynamics of the CR and CS cells, to the administration
of the TMZ and Acridone derivatives, sensitivity analysis was
performed. Here it was observed that the CR cells were sensitive
to 13 out of 29 parameter values (p< 0.05), while the CS cells were
sensitive to 12 parameters (p < 0.05) (Supplementary Figure 2).
However, the Partial Rank Correlation Coefficient calculated for
the parameters show that while the CS cells are more sensitive
(|PRCC| > 0.5) to the parameters governing cellular growth such
as ∝N ,αCS, αCR, K (carrying capacity of the tumor), and the
efficacy of TMZ εD1smaxthe parameters of CR cells with |PRCC| >

0.5 comprises the dosage of Acridone derivative (D2), ICD2r
50 and

the efficacy of TMZ on the resistant cells εD1rmax.The outcome of the
analysis show that there is a strong correlation of the dosage of
the Acridone derivative (D2) with response of the CR cells which
further motivates to determine the dosage combinations where
synergy of the two drugs can be obtained for maximal inhibition
of the drug resistant Glioma cells.

Drug Synergy Estimation
In order to determine the dosage combinations of the drug pairs
(TMZ and Acridone derivatives) that show synergism for the
drug resistant cells, the dose response matrix (Figures 8A,C,E)
for the resistant cells (CR) for all the 10,000 dosage combinations

of each of the three drug pairs (as obtained from the
mathematical model) was tested for synergy. The synergy
scores (SC) have been calculated based on the observed growth
inhibition data obtained from the simulation (Figures 8A,C,E)
with each drug pair for the resistant cell line using the
Bliss Independence method. The corresponding synergy scores
(SC) calculated for each combination have been shown in
Figures 9A–C. Here a positive SI score shows antagonism while a
negative SC score shows synergy. The 10,000 combinations were
simulated for each drug pair and we observed good synergy of
all the three Acridone derivatives, AC2, AC7, and AC26 when
combined with TMZ for a large number of dosage combinations.
The Figure 9 also shows three points on the surface plots that
denote the combination that have been tested using experiment
for the validation of our simulation results.

Sulforhodamine B Assay for Combinatorial
Drugs
With the leads obtained from the synergy estimations in-
silico, CI was calculated for all the three combinatorial drug
pairs using SRB assay (Table 5). The observations from the
experiments showed that combinatorial drugs (TMZ+AC2,
TMZ+AC7, and TMZ+AC26) showed synergistic inhibitory
effect on growth of T-98 cell lines at low concentration (IC50)
with respective CIs of 0.4, 0.41, and 0.32 (marked with red
on Figures 9A–C). It has to be noted here that the Synergy
Score (SC) estimated using the Bliss Independence method
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FIGURE 8 | Drug dosage variation study. The percentage relative growth of drug resistant (CR) and sensitive cancer (CS) cells growth under varying drug

combinations: (A) Resistant cells with TMZ and AC26; (B) Sensitive cells with TMZ and AC26; (C) Resistant cells TMZ and AC2; (D) Sensitive cells with TMZ and

AC2; (E) Resistant cells with TMZ and AC7; (F) Sensitive cells with TMZ and AC7. The figure represents the relative growth (%) for 10,000 dosage combinations for

each pair of drugs.

in silico (Figure 9) has been performed independently from
the CI calculated from the SRB assay (Table 5). However,
the result obtained from the SRB assay corroborates well
within the in-silico findings and we observe synergy for the

same drug dosage combinations from both the in silico and
experimental studies. Our results indicate that, TMZ+AC26
shows the highest synergistic inhibitory effect amongst all
the combinations.
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FIGURE 9 | Synergy Score (SC) of 10,000 drug combinations for each of the three pairs of drugs combining the Acridone derivatives with TMZ on CR cells using Bliss

Independence Method. (A) AC2 and TMZ; (B) AC7 and TMZ; (C) AC26 and TMZ. The red points show the combinations that have been validated with experiments.

The synergy scores have been calculated based on the dose-response matrix represented in Figures 8A,C,E, respectively. The color bar represents the calculated

synergy scores. Here negative value represents synergy, while the positive values represent antagonism of the drug.
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TABLE 5 | Dose-effect relationships of TMZ and AC in Glioma cell lines.

Drugs CI (T-98/TMZRES) at IC50 (µM)

AC26 (IC10) + TMZ (100µM) 0.32 ± 0.1

AC2 (IC10) +TMZ (100µM) 0.4 ± 0.32

AC7 (IC10) + TMZ (100µM) 0.41 ± 0.5

TABLE 6 | Fold change of the combinatorial drugs.

Initial IC50 Final IC50 Fold change =

final IC50/initial

IC50

% fold change

[(final-

initial)/initial]*100

TMZ + AC26

TMZ 190 102.3 0.54 46.17

AC26 0.76 0.67 0.88 11.84

TMZ + AC7

TMZ 190 46.2 0.24 75.68

AC7 1.05 0.96 0.91 8.5

TMZ + AC2

TMZ 190 36.3 0.19 80.8

AC2 1.53 1.48 0.96 3.26

Acute Toxicity
Acridone derivatives AC2, AC7, and AC26 alone and in
combination with Temozolomide were evaluated for oral toxicity
by administering compounds suspended in normal saline with
Tween 80 through oral route. Rats were kept for overnight
night fasting before the day of dosing and for 3 h after dosing.
On the 1st day of dosing, they were monitored periodically
for every hour upto 12 h for mortality, clinical signs, and
behavioral changes. And thereafter observed twice in a day for
14 days and body weight was recorded daily. No clinical sign
of toxicity was observed during the period of 14 days under
observation among the control and treated groups. The gain
in body weight of rats was found to be normal in the control
and treated groups (Supplementary Tables 4–6). Present study
suggests that acridone derivatives alone (of 2,000 mg/kg) and in
combination with Temozolomide (15:1.5 mg/kg) are safe for oral
administration in single dose to albino Wistar rats of female.

DISCUSSION

Drug resistance and recurrence are one of the major issues
associated in the treatment of Glioma. Better strategies are
required to be adapted for enhancing the efficacy of the treatment
of Glioma patients. Development of experimentally validated
mathematical models is a promising approach to estimate the
efficacy of a particular therapy and predicting what percentage
of tumor growth inhibition can be achieved under a particular
therapy. Given the current scenario, various trial and error
experiments for drug screening and drug combination study with
high synergy can be carried out at economical costs and rapid
rate by employing mathematical models for designing effective
cancer therapy.

In this study, we propose three novel drug combinations using
TMZ and Acridone derivatives as well as show their efficacy
of tumor inhibition over a wide range of dosage combinations
using both in-silico and in-vitro studies. The simple four
variable mathematical model developed in this study captures
the formation and development of a malignant Glioma and
its differentiation into drug resistant and sensitive cells. This
model effectively captures the cellular dynamics of a growing
tumor using simple mathematical assumptions and minimal
unknown parameters. The model here has been parameterized
to closely mimic the behavior of U-87 drug sensitive and
T-98 drug resistant Glioma cells using experimental data
(Figure 6). This has been useful in screening the effectiveness
and growth inhibition potential of TMZ andAcridone derivatives
individually and also in combination for a wide range of doses
(Figures 7, 8). Sensitivity Analysis performed on the model
parameters revealed that the inhibition of the drug resistant cells
correlated highly with the dosage of the Acridone derivative
(D2) and the efficacy of TMZ on the drug resistant cells(εD1rmax)
(Supplementary Figure 2). This analysis indicates a need to
determine the optimum dosage of Acridone derivatives as well
as the throws light on the necessity to enhance the effectiveness
of the TMZ on the drug resistant cells which may be achieved
through the inhibition of the resistance causing target proteins.
Our analysis also reveals a significant fold change in the IC50
value of the drugs when used individually as opposed to when
they are used in combination (Table 6). This indicates the
plausibility of synergy between the drugs TMZ and Acridone
derivatives. Hence, the dose response matrix obtained from the
model simulations of the drug resistant cells was used to analyse
the existence of synergy between TMZ and Acridone derivatives
for the treatment of resistant Glioma (Figure 9). Although a
key limitation of this model may be that being a deterministic
model, it is governed by fixed parameters values and thus fails to
capture the immense heterogeneity of Cancer cells, the effect of
angiogenesis, the influence surrounding immune cells and other
micro-environmental factors explicitly, it may be noted that the
parameters are estimated using experimental data that has helped
in calibrating the model to closely mimic a real life scenario.
Nevertheless, the outcomes from our in-silico mathematical
model corroborate well with our experimental findings and
provide insights into the entire synergy landscape of these drugs
when used in combination for the treatment of resistant tumors.

The study of drug synergy revealed that the combination of
TMZ and AC26 was found to show synergistic effect on the
drug resistant Glioma cell lines (T-98) as well as drug sensitive
Glioma cell lines (U-87) with CI 0.6. Here we also observe that
100µM of TMZ and IC10 of AC26 could effectively destroy drug
sensitive cancer cells and IC10 of TMZ and IC50 of AC26 could
exterminate drug resistant cancer cells. Thus, we put forward
a treatment strategy i.e., use of combinatorial drugs 100µM of
TMZ and IC10 of AC26, which is the lowest dose possible, in
order to combat drug resistance in cancers. Furthermore, we also
show that these doses showing synergistic effect are below the
toxicity levels shown by the individual drugs. All these results
have been experimentally validated to confirm effectiveness of
these combinatorial drugs.
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A close observation from the results obtained, reveal
a comparison between the individual activity of acridone
derivatives where we note that the relative efficacy of the
drugs may vary as AC26 > AC7 > AC2. These results are
also confirmed from the experimental observations of drug
combinations, synergy and selectivity index calculations of
the drugs (Table 4) which reinforce the efficacy of the drug
combinations on drug resistant cancer cells in the order TMZ
+ AC26 > TMZ + AC7 > TMZ + AC2. Acute toxicity
studies for 14 days as per OECD guidelines have indicated
that all the acridone derivatives alone and in combination
with Temozolomide were found safe in single dose to female
albino Wistar rats. Additionally, using in silico prediction tool,
it has been observed that all the Acridone derivatives show
BBB permeability higher than TMZ which gives hope for its
clinical efficacy (Supplementary Figure 3). However, to establish
the clinical usefulness of the proposed combination, further in
vitro and in vivo assays are currently being undertaken for the
determination of other pharmacokinetic parameters.

The molecular docking study shows that the synergistic effect
of combining TMZ and Acridone derivatives might be due to
inhibitory action exerted by the acridone derivatives on the
resistant cells due to interactions with P-gp, MRP, and MGMT
proteins that contributes to the development of drug resistance.
Through the in silico studies it has been observed that the
acridone derivatives show particularly good binding affinity to
P-gp and MGMT compared to MRP. Particularly, AC26 have
demonstrated highest binding affinity to all three targets P-
gp, MRP, and MGMT and observed same with experimental
findings. Study suggests that acridone derivatives can be further
optimized for the design of safe and potent MGMT inhibitors.
Good interactions at the active pocket and binding affinity of
AC26 with efflux pumps and MGMT might be responsible for
synergistic effect against resistant Glioma cells in combination
with TMZ. Through our previous studies we have demonstrated
that Acridone derivatives have DNA intercalating property
which implicates that these derivatives might also be effective
in killing resistant glioblastoma through MGMT-independent
mechanisms as well (15, 54, 55). Whether these acridone
derivatives also have an effect on the expression levels of P-gp,
MRP, and MGMT proteins is currently under investigation and
will be reported in another study. It is to be mentioned here that,
although, in this study we have only reported the experimental
verification of one dosage per drug combinations (Table 5), using
our in silico analysis, we have been able to show the entire synergy
landscape for each drug combination pair that can be tested
in vivo using orthotropic xenografts for establishing its clinical
efficacy. Along with the novel drug combinations reported in this
study, we also propose a validated mathematical model, albeit
simple, and in-silico approach to test the efficacy and synergy of
novel drugs combinations in future.

CONCLUSION

The novel drug combinations, involving TMZ and Acridone
derivatives, proposed in this study provides new insights for

the treatment of drug resistant Gliomas. The effective dosages
of each of these combinations suggested in our study have
been supported using both our simulation outcomes as well as
experimental data. For this, the mathematical model developed
here throws light on the effectiveness of each of these dosage
combinations in terms of tumor reduction for wide range dosages
that is not possible to screen experimentally. This is an extremely
important step for the estimation of the synergistic effect of the
drug pairs. Hence, it may be mentioned here that, albeit the
simplicity of the model, which can be further modified in future
with the inclusion of new variables, parameters and stochasticity
to capture the tumor heterogeneity, the model provides useful
insights in the tumor development and drug effectiveness that
have been corroborated experimentally in its present form. Thus,
not only does the experimental finding and docking studies of
this work provide new hopes for the treatment of drug resistant
Glioma, but the mathematical model developed in this study will
be an invaluable tool to estimate dosage and effectiveness of other
drugs for Glioma therapy in future.
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