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Synopsis Report 

Introduction 

Secondary metabolites produced by plants are valuable for their essential roles in 

food, medicine, and agrochemicals. Several of them have positive effects on health, 

such as reducing the risks of many chronic diseases like cardiovascular diseases, 

diabetes and cancer. They also show a wide range of pest control activities and have 

long been used to produce pesticides. However, the information about the 

classification of secondary metabolites and their known protein targets in human 

diseases is scattered in many publications. Furthermore, large data of published 

findings is available, which needs to be analyzed and managed for the best use and 

efficacy of the available products. Chemoinformatics techniques can use the vast 

chemical and bioactivity experimental data of various compounds and convert it into 

valuable knowledge for drug or lead design. Chemoinformatics tools and other in-

silico drug designing software play an important role in designing novel drugs with no 

or fewer side effects and other drug interactions. We performed chemoinformatic 

analysis for ligand-based drug designing from secondary metabolites of plants. The 

analysis revealed that several bioactive compounds could serve as scaffolds for 

developing novel drugs, which can be analyzed further by experimental methods. 

Lipinski’s “Rule of Five” approach was quickly adopted in the field of agrochemical 

discovery and led to the establishment of rules for pesticide-likeness. The challenges 

identified in this study will serve as a useful reference for future intensive research in 

drug and pesticide discovery. 
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Statement of the problem 

1. To develop a computational protocol and a toolkit for generating novel 

potential drug candidates from bioactive molecules of Indian medicinal and 

aromatic plants through a chemoinformatics approach 

2. To design drug-like and lead-like molecules based on chemoinformatics and 

UHPLC-MS/MS analysis of secondary metabolites of soybean 

3. To design plant-defense specific novel molecules with pesticidal properties. 

Methodology 

Secondary metabolites obtained from food crops and medicinal plants having specific 

activities against human diseases were used to build a focused virtual library of novel 

molecules by extracting scaffolds and functional groups. For this purpose, we text-

mined the literature related to Indian medicinal plant species and food crops like 

soybean for identifying chemical names of the molecules associated with each plant 

species. Chemical names of the extracted plant molecules were converted into 

SMILES (Simplified Molecular Input Line Entry System) strings and screened for 5-6 

membered rings containing molecules up to 1000 molecular weight. We extracted 

molecular scaffolds from these molecular structures and used diverse scaffolds to 

build a focused virtual library. A representative virtual library of novel molecules was 

generated and prioritized further by virtual screening methods. The novel molecules 

were prioritized by progressive drug-like (PDL), progressive lead-like (PLL), drug-

like failure (DLF), lead-like failure (LLF), and Toxicophoric, Pharmacophoric, and 

Chemophoric (TPC) scores. Molecules having good scores can be used for further 

analysis through molecular docking and molecular dynamics techniques etc. The 

same computational protocols were followed for designing pesticide-like molecules 

from secondary metabolites involved in plant defense, also known as allelochemicals. 
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In the future, the results of this project can lead to the development of efficient and 

more target specific drugs and pesticides from readily available plant sources in 

minimum time.  

Results 

The results of the present work are divided into three sections based on the objectives 

are:- 

1. Design of Novel Drug-like Molecules using Informatics Rich Secondary 

Metabolites Analysis of Indian Medicinal and Aromatic Plants 

Several medicinal plants are being used in Indian medicine systems from ancient 

times. However, in most cases, the specific molecules or the active ingredients 

responsible for the medicinal or therapeutic properties are not yet known. The 

objective of this study was to develop a computational protocol as well as a tool for 

generating novel potential drug candidates from the bioactive molecules of Indian 

medicinal and aromatic plants through the chemoinformatics approach. We employed 

chemoinformatics approaches to in-silico screened metabolites from 104 Indian 

medicinal and aromatic plants and designed novel drug-like bioactive molecules. For 

this purpose, 1665 ring-containing molecules were identified by text mining of 

literature related to the medicinal plant species, which were later used to extract 209 

molecular scaffolds for building a focused virtual library. Virtual screening was 

performed with cluster analysis to predict drug-like and lead-like molecules from 

these plant molecules in the context of drug discovery. 

 The predicted drug-like and lead-like molecules were evaluated using 

chemoinformatics approaches and statistical parameters, and only the most significant 

molecules were proposed as the candidate molecules to develop new drugs. A supra 
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network of molecules and scaffolds identifying the relationships between the plant 

molecules and drugs was developed. Cluster analysis of virtual library molecules 

showed that the novel molecules had more pharmacophoric properties than 

toxicophoric and chemophoric properties. These predicted molecules need to be 

subjected to biological screening to identify potential molecules for drug discovery 

research. We also developed a Java-based open-source toolkit-cum-database called 

DoMINE (Database of Medicinally Important Natural products from plantaE) to 

advance the natural product-based drug discovery through chemoinformatics 

approaches. This study will be useful in developing new drug molecules from the 

known medicinal plant molecules. We hope that this work will encourage 

experimental organic chemists to synthesize these molecules based on the predicted 

values.  

2. Bridging In-Silico and Experimental: Chemoinformatics Investigation for 

Mass Spectrometry-Based Metabolomics Study of Soybean 

Soybean (Glycine max L. Merr.) is a globally important legume crop and contains 

various small organic molecules that are valuable sources for drug development. This 

study intended to identify, analyze and design a virtual library of prioritized novel and 

promising drug-like molecules based on the analysis of secondary metabolites of 

soybean using chemoinformatics and untargeted mass spectrometry (UHPLC-

MS/MS) approaches. In this study, we performed chemoinformatics analysis of 

previously reported and unreported secondary metabolites from four soybean 

varieties. The secondary metabolites were identified by UHPLC-MS/MS analysis and 

text mining, and a virtual library of novel molecules was generated. The 

metabolomics data were analyzed using machine learning-based quantitative and 

qualitative methods for identifying putative metabolites by spectral matching and 
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multivariate statistical analysis. A representative virtual library of novel molecules 

was generated and prioritized further by virtual screening methods. We detected 6628 

annotated mass features for small molecules that have not been reported in soybean 

before, in addition to 443 mass features of molecules that were previously reported in 

the literature. Tandem mass spectrometry (MS/MS) confirmed the presence of 14 new 

and six previously reported soybean molecules. We found high molecular diversity in 

seed and leaf tissues of four soybean varieties (NRC-119, JS-335, JS-7105, and JS-

9305). We identified 25 common scaffolds and 231 molecules through scaffold-

molecule networks between soybean molecules and known drugs. Five representative 

scaffolds were used to build a focused virtual library of novel molecules (n= 1225), 

which were virtually screened to obtain potential drug-like candidates (n= 815) for 

further studies. We developed a novel virtual library of molecules with drug-like and 

lead-like properties for further drug discovery-related studies. This study suggests that 

a combinatorial approach employing high-throughput metabolomics and 

chemoinformatics methods can efficiently identify new drug-like and lead-like 

candidates from plant metabolites. 

3. Chemoinformatics Investigation on Chemical Defense in Plants 

Chemical defense against predation has been studied for a long time. Plants produce 

many secondary metabolites called allelochemicals to protect themselves against 

herbivores, pests and pathogens. In this study, we performed chemoinformatics 

investigations to build combinatorial libraries of allelochemicals that were then 

quantitatively evaluated for their pesticide properties. We identified five common 

scaffolds and 15 common molecules through scaffold-molecule networks between 

allelochemicals and pesticides. Scaffolds (74) were extracted from allelochemicals 

used for building a focused virtual library of novel molecules (380). We propose new 
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virtual molecules with pesticide-likeness properties according to rules published by 

Hao et al. (2011) (Hao, Dong and Yang 2011) for further agrochemical studies. Their 

LC-50 and EC-50 values for daphnid, mysids, algae, and fishes like Fathead minnow, 

etc., were predicted by ECOSAR- QSAR methods. These values indicate their lethal 

concentration for lower aquatic organisms, which will be used for their pesticide 

activities. This study shows that a combinatorial approach employing QSAR studies 

provides a novel perspective to the future directions for pesticides of natural origin. 

Summary and future directions 

Considering the demand for organic production of food and drugs, novel and 

innovative approaches are required. Natural products derived from plants are 

emerging as valuable alternatives for human needs and rescuing from the bio-

apocalypse. In the present study, we report a novel computational protocol and a tool 

to access the database with structural information, plant information, and traditional 

therapeutic use and generate scaffolds to perform in-silico based combinatorial 

synthesis of the virtual library from Indian medicinal plant molecules. This is a 

simple, fast, and cost-effective computational protocol. Soybean plant was chosen as a 

case study where we successfully bridged the gap between chemoinformatics and 

experimental mass spectrometric approaches to identify and screen drug-like and 

lead-like compounds. We also demonstrated pesticide-like activities of 

allelochemicals and virtual novel molecules designed from them with pesticide-

likeness and ECOSAR- QSAR methods. The outcomes from this study will serve as 

the foundation for the development of drugs and pesticide molecules by the inclusion 

of novel methods of rational drug designing and machine learning in screening 

molecules against multiple targets. 
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Chapter 1: Introduction and Review of Literature 

1.1 A brief overview of chemoinformatics and metabolomics 

Metabolomics is an emerging and valuable technology that involves a comprehensive 

analysis of metabolites and their interactions in biological systems (Clish 2015). The 

study of human diseases is one of the most important applications of metabolomics. 

Plant secondary metabolites have been shown to possess various biological effects, 

such as disease prevention and treatment (Fakhri et al. 2020, Leicach and Chludil 

2014). Secondary metabolites from plants provide lead molecules for the development 

of drugs (Verpoorte 1998). Besides, plant secondary metabolites have been earlier 

used in agriculture to protect crops from pests and are currently contributing to 

integrated pest management (Bennett and Wallsgrove 1994). Metabolomics relies on 

analytical chemistry techniques and technology platforms such as mass spectrometry 

(MS) and nuclear magnetic resonance (NMR) spectroscopy, which help to identify 

and isolate a range of metabolites (Ren et al. 2018). The implementation of data 

mining techniques and chemoinformatics approaches facilitate the easy use of 

metabolomic platforms. Cheminformatics is a field of information science that 

focuses on storing, indexing, analyzing, and applying information about chemical 

compounds (Wishart 2007). This chapter discusses the role of plant secondary 

metabolites in drug development, plant defense, and ultimately how metabolic data 

enables generation of novel molecules through the chemoinformatics approach. 

1.2 Technological trends in plant metabolomics 

Natural plant products can serve as important, economical, and viable sources to 

develop drugs. The metabolites produced by plants, also called phytochemicals, can 

have pharmacological effects on humans and animals . (Hussein and El-Anssary 2018)
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Many of these compounds are produced in plants via secondary metabolism and are 

not essential for their survival. However, these compounds often play important role 

in plant defense against herbivory and interaction with other species. Many of these 

compounds are also used as medicines, flavorings, etc. Secondary metabolites vary in 

their chemical structures and functions and are grouped into classes such as 

flavonoids, terpenoids, alkaloids, etc. (Kris-Etherton et al. 2002). They are formed as 

by-products or intermediates of primary metabolism (Figure 1.1) and are usually 

produced in small amounts. Several of them have positive effects on health, such as 

reducing the risks of many chronic diseases such as cardiovascular diseases, diabetes, 

and cancer (Bahmani et al. 2014, Shin et al. 2018). However, the information about 

the secondary metabolites or bioactive compounds and their known protein targets in 

human diseases is scattered in many publications. Chemoinformatics techniques can 

use the vast chemical and bioactivity experimental data of various compounds and 

convert it into the knowledge useful for drug or lead design. 

Chemoinformatics tools and other in-silico drug designing software can help 

in efficiently designing novel drugs with no or fewer side effects and other drug 

interactions. They can also identify drug targets and predict novel drugs (Wadood et 

al. 2013). Several tools and software for drug designing and visualization are 

available, which can be employed to develop drugs based on natural products. The 

cost of inventing a new drug through conventional approaches is increasing day by 

day. However, using chemoinformatics tools makes it possible to quickly develop a 

new drug at a much-reduced cost (Xu and Hagler 2002, Martinez-Mayorga et al. 

2020). Hence, pharmaceutical industries are increasingly employing 

chemoinformatics tools to analyze the vast amount of experimental data available in 

the public domain and repurposing the already known drugs.  
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Figure 1.1: Schematic view of biosynthesis of secondary metabolites in plants 

With the advances in biochemistry, many drugs were found to exert their 

effects on biological macromolecules such as enzymes. This led to the development 

of computer-aided drug designing, which can help in rapid and efficient drug 

discovery. Drug designing became a more computer-aided procedure after the advent 

of classical QSAR (Quantitative Structure-Activity Relationship) techniques like 

Hansch analysis guided by protein 3D structures (Jhanwar et al. 2011). Structure-

Activity Relationship (SAR) based drug design can be performed when some 

effective drugs or ligands for a target are known. QSAR models are constructed to 

study the relationship between activities and quantitative structure properties of small 
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molecules having similar pharmacological effects. QSAR / 3D-QSAR models can be 

used to screen a chemical library for potential drug leads (Kubinyi 1993).  

The availability of a curated library of information about plants, their related 

natural products, and a repository of their chemical structures can aid in the 

identification of new drugs. In this regard, significant progress has been made in the 

development of natural product databases such as Nutrichem (Jensen et al. 2015), 

Phytochemica (Pathania, Ramakrishnan and Bagler 2015), TCM-Mesh (Zhang et al. 

2017) and COCONUT online (Sorokina et al. 2021), which can aid in the virtual 

screening of prospective drug compounds or the investigation of plant-disease 

associations. However, in terms of traditional Indian medicine, there have been 

limited initiatives to create online databases that cover Indian medicinal plants, 

phytochemicals, and therapeutic applications. In 2011, an in silico library of natural 

products from Ayurvedic medicines was developed with structural information, plant 

origin, and traditional therapeutic uses of the natural products (Polur et al. 2011). In 

this study also, the chemical structures of compounds identified from Traditional 

Indian Medicine (TIM) were compared with drugs from DrugBank and a structural 

similarity network was constructed. This was achieved by matching the traditional 

medicinal uses of the plants with the medicinal use of the drugs that are structurally 

similar to the plant components. In this way, novel natural leads were identified from 

medicinal plants used to prepare Ayurvedic medicines. The Phytochemica (Pathania 

et al. 2015) database gathered information on five Indian medicinal plants and their 

963 phytochemicals and gave chemical structures and pharmacological effects of the 

phytochemicals inside its database. The IMPPAT (Mohanraj et al. 2018), a curated 

database, comprises data on 1742 Indian medicinal plants, 9596 phytochemicals, and 
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1124 therapeutic uses, with 27074 plant-phytochemical correlations and 11514 plant-

therapeutic associations. 

1.2.1 Experimental approach 

New techniques associated with genomics, transcriptomics, proteomics and 

metabolomics have been used to depict the pharmacological mechanisms of 

Ayurvedic medicines. For metabolomics studies, sophisticated analytical 

spectroscopic and chromatographic techniques coupled with mass spectrometry have 

been applied as it is difficult to identify each of the metabolites in biological samples 

(Teo et al. 2011). Gas Chromatography coupled with Mass Spectrometry (GC-MS) 

and Nuclear Magnetic Resonance (NMR) is used for primary metabolite profiling in 

plants (Bhalla, Narasimhan and Swarup 2005, Kumar 2015) (Figure 1.2). NMR is 

currently the most powerful tool available for organic structure determination 

(Mannina, Sobolev and Capitani 2012). High-Performance Liquid Chromatography 

(HPLC) is a type of liquid chromatographic technique that can identify, quantify and 

purify the individual components of a mixture of compounds.  

 

 

Figure 1.2: Plant metabolomics workflow 
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High-Performance Liquid Chromatography coupled with Mass Spectrometry 

(HPLC-MS) and NMR are usually used for secondary metabolite profiling (Yang et 

al. 2012). Gas or liquid chromatography is used to separate molecules, whereas Mass 

Spectrometry is used to identify small molecules. In this way, when both the 

technologies are combined, a powerful analytical tool is developed (Marney et al. 

2014). The speed, efficiency, sensitivity, and ease of operation of HPLC are superior 

to Liquid Chromatography (LC) (Manayi, Vazirian and Saeidnia 2015, Zare et al. 

2014). In a previous study, NMR and GC/LC-MS were used to investigate the 

responses of Arabidopsis thaliana to various environmental stressors such as heat, 

freezing, drought and salinity, etc. (Tian, Lam and Shui 2016). Such experimental 

studies help acquire knowledge on the metabolic profiles of the specific plants and 

genetic and biochemical mechanisms related to plant growth, development and stress 

responses, etc. 

1.2.2 Computational approach 

Computation is an easy and efficient method to solve various problems in 

computational chemistry and biology. Traditional methods of screening plants and 

extracting compounds following bioassays are time-consuming and tedious processes. 

Through computational approaches, the nature of chemicals can be predicted based on 

chemical structures. These chemical data are then linked to pharmacological profiles 

and system biology functional data by constructing networks (Tao et al. 2013, Zhao, 

Jiang and Zhang 2010).
 
The selected bioactive compounds can be further processed 

with QSAR and docking computational methods to evaluate the potential drug-like or 

lead-like molecules (Aguiar-Pulido et al. 2013). Applying docking algorithms to such 

models can help predict the structures of small and large target protein molecules in a 

simulated system of verifiable thermodynamic properties. The analysis and 
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interpretation of such models can help the process of drug designing (Meetei et al. 

2016).  

 A large amount of experimental metabolomics data is available in the 

literature, and various databases such as the human metabolome database, 

BioMagResBank (BMRB- metabolomics), BiGG (database of biochemical, genetic, 

and genomic metabolic network reconstructions), Fiehn metabolome database, Golm 

metabolome database, etc., which need to be analyzed and interpreted. With the help 

of chemoinformatics, this information can be processed in a short time to contribute 

to drug design and development (Lusher et al. 2011). In chemoinformatics, lead 

identification and optimization play an important role in the discovery of new drugs 

from existing compounds (Jorgensen 2009). Lead optimization aims to enhance the 

most promising compounds to improve efficiency, reduce toxicity or increase 

absorption. Many lead discovery technologies overlap with lead optimization as 

researchers attempt to incorporate the best drug characteristics early in the process. 

New lead-like and drug-like molecules can be generated by structural analogy with 

existing drugs. Through chemoinformatics, it is easy to search and identify molecules 

having toxicophore, pharmacophore and chemophore (TPC) properties (Karthikeyan 

and Vyas 2015) (Figure 1.3). 

 



8 

 

Figure 1.3: Chemoinformatics methods in designing of novel molecules from organic 

metabolites of plants (VL- Virtual Library, PDL- Progressive Drug Like score, PLL- 

Progressive Lead Like score, DLF- Drug Like Failure, LLF- Lead Like Failure, TPC 

– Toxicophoric, Pharmacophoric and Chemophoric scores) 

 

In medicinal chemistry, the molecules identified as ‘Pharmacophore’ possess 

molecular substructure responsible for pharmacological interactions (Karthikeyan and 

Vyas 2014). ‘Toxicophore’ refers to the substructural groups, which are toxic, such as 

azides, diazo structures, triazenes, aromatic azo moieties, aromatic hydroxylamines, 

aliphatic halides, etc. and which cannot be used as potential drugs. Whereas 

‘Chemophores’ are those substructural groups that are either too reactive, inert or 

synthetically inaccessible. Similarly, molecules with drug-like properties were scored 

with progressive drug-likeness (PDL) and progressive lead-likeness (PLL). Whereas, 

the molecules that fail to possess drug-like properties were scored with drug-like 

failure (DLF) and lead-like failure (LLF). 
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With the molecules prioritized by virtual screening, scaffolds are generated or 

extracted based on which the virtual library can be synthesized after attachment of 

linker atoms and functional groups (Polur et al. 2011). Scaffolds are the basic core of 

the molecule without functional groups attached to it (Karthikeyan and Vyas 2014). 

The structure of a scaffold might be the same for more than one molecule. These 

scaffolds are used to enumerate a virtual library by supplying linkers and functional 

groups. A virtual library is an important tool in drug discovery. A virtual library is a 

combinatorial library of chemical compounds generated from multiple combinations 

of functional groups with scaffolds (Van Drie and Lajiness 1998). These libraries are 

analyzed and screened by virtual screening methods. Virtual screening is a 

computational technique used in drug discovery to search libraries of small molecules 

to identify those structures, which are drug-like or lead-like (Lionta et al. 2014, 

Sheppard and MacRitchie 2013). Such computational techniques are important for 

lead-specific drug designing. 

QSAR based virtual screening methods are one of the computational methods 

that help find potential leads with different scaffolds from a chemical library (Neves 

et al. 2018). QSAR or Quantitative Structure-Activity Relationships is a statistical 

method that complements molecular modeling (Aguiar-Pulido et al. 2013, Roy and 

Mitra 2011). In QSAR analysis, the biological activity of a set of molecules is 

measured using statistical methods based on their structures. QSAR models first 

summarize the supposed relationship between chemical structures and biological 

activities in a virtual library of compounds. Based on the analysis, QSAR models can 

then predict the activities of new compounds. The molecular descriptions in the 

QSAR study are expressed in numerical values known as molecular descriptors. 

Molecular descriptors are divided into two classes, viz. 2D and 3D descriptors (Garro 
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Martinez et al. 2015, Roy and Das 2014). 2D descriptors use atoms and connection 

information of molecules for calculation like molecular weight, Log of octanol/ water 

partition coefficient (logP o/w), etc. Whereas, 3D descriptors are based on 3D 

coordinate information of each molecule like the radius of gyration (rgyr), Van der 

Waals surface area (VSA), etc. 

In computational chemistry, small molecule modeling, protein modeling, and 

QSAR are interrelated and synergistically help in the progress of drug discovery and 

designing. By integrating the results of various methods for calculating drug-likeness 

for a particular set of molecules, determination and screening of drug-like and lead-

likeness can be performed. Such selection criteria are based on the Lipinski’s “rule of 

five” (Benkendorff 2013, Zhong et al. 2013), derived from a comprehensive study of 

orally active drugs. These rules state that hydrogen bond donors should be less than 

five, hydrogen bond acceptors should be more than ten, the molecular mass should be 

less than 500 Daltons, and the octanol-water partition coefficient i.e., LogP should not 

be greater than five.  

The Lipinski’s “rule of five” approach was quickly adopted in the field of 

agrochemical discovery and led to the establishment of rules for pesticide-likeness 

(Hao et al. 2011) (Table 1.1). The authors described easy-to-implement and 

straightforward rules for pesticide-likeness by including molecular weight (MW), 

lipophilicity (expressed as logP), number of H-bond acceptors (HBA), and donors 

(HBD), number of rotatable bonds (RB), and number of aromatic bounds. In contrast, 

the traditional method of discovering pesticides is based on the synthesis of large 

numbers of compounds and mass screening which is an expensive and time-

consuming method (Das 2016). We believe that a similar treatment of pesticide-

likeness will support the agrochemical discovery sector. 
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Table 1.1: Rule-based filters for drugs and pesticides 

Molecular descriptors Lipinski’s Rule 

(Drugs) 

Hao’s Rule 

(Pesticides) 

MW (Da) ≤ 500 ≤ 435 

logP ≤ 5 ≤ 6 

HBD ≤ 5 ≤ 2 

HBA ≤ 10 ≤ 6 

RB ≤ 3 (for lead-likeness) ≤ 9 

Aromatic bonds - ≤ 17 

 

This chapter reviews the classification of phytochemicals, their occurrences in 

plants, biological activities in human health regarding nutrition, and their roles in drug 

and pesticide discovery. The benefits of integrating the knowledge of medicinal plants 

and food crops in chemoinformatics-driven drug and pesticide discovery have been 

discussed. This can be done by predicting the biological activity of novel natural 

compounds from these plants following the structural similarity principle. Through 

this analysis, we found that various compounds have novel drug-like and lead-like 

properties, and at least some of them can be used to develop new drugs. In addition to 

identifying novel bioactive molecules, the chemoinformatics-based natural product 

protein target network that we developed could also be helpful in drug repurposing. 

1.3 Classification of phytochemicals in plants 

Phytochemicals are classified into four major groups based on the major chemical 

constituent as phenolics, phytosterols, phytate, and nitrogenous compounds.  
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1.3.1 Phenolic compounds 

a. Polyphenols 

Polyphenols are the biggest group of phytochemicals with phenolic structural features 

present in virtually all food plants. More than 8000 polyphenols and 4000 flavonoids 

have been identified (Patel et al. 2018, Mutha, Tatiya and Surana 2021). Polyphenols 

are characterized based on their chemical structures of the aglycones such as (a) 

phenolic acids - benzoic acid and cinnamic acid derivatives based on C1–C6 and C3–

C6 backbones, (b) flavonoids - isoflavones, flavonols, etc. (c) anthocyanidins - 

cyanidin, delphinidin and pelargonidin, etc. (d) polyphenolic amides - capsaicinoids, 

avenanthramides, etc. and (e) other polyphenols - resveratrol, ellagic acid, curcumin, 

etc. Plants produce polyphenols to protect themselves from other organisms. They 

also play an important role in maintaining human health due to their antioxidant and 

anti-inflammatory activities (Hussain and Tan 2016, Saric and Sivamani 2016). The 

ongoing research on polyphenols has opened up a promising field for drug 

development and treatment of various cancers. Extensive reviews have discussed the 

anticancer (Abdal Dayem et al. 2016, Niedzwiecki et al. 2016, Zhou et al. 2016, 

Amararathna, Johnston and Rupasinghe 2016, Moga et al. 2016), anticardiac (Hussain 

and Tan 2016) and antidiabetic (Coe and Ryan 2016) properties of polyphenols 

including their protective effects against neurodegenerative (Cirmi et al. 2016b, 

Caruana, Cauchi and Vassallo 2016) and neurodevelopmental disorders (Vacca et al. 

2016). For example, daidzein (Table 1.2, entry 1) from soybean has anticancer 

activity against various types of cancers such as prostate, breast cancers, etc. (De 

Lemos 2001, Adjakly et al. 2013). 
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b. Phytoestrogen 

 Phytoestrogen is diphenolic nonsteroidal compound derived from plants or their 

seeds. They have estrogen-like properties due to similarity in chemical structure with 

estrogen (Yuan et al. 2014). Phytoestrogens are divided into three classes: 

isoflavones, coumestans, and lignans (Murkies, Wilcox and Davis 1998). 

Phytoestrogens exhibit physiological effects in humans and protect against diseases 

such as cardiovascular diseases (Ishimi 2015), various types of cancers (Lee, Hwang 

and Choi 2016a), menstrual problems (Rietjens, Louisse and Beekmann 2016, 

Sobenin, Myasoedova and Orekhov 2016, Dittfeld et al. 2015), osteoporosis (Ishimi 

2015) and antimicrobial diseases for which many studies have been performed (Rishi 

2002). Lignans such as Justicidin B (Table 1.2, entry 2) isolated from Justicia, 

Phyllanthus, Haplophyllum and Linum species act as antiprotozoal agents against 

Trypanosoma brucei for the treatment of tropical diseases (Hemmati and Seradj 

2016).
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Table 1.2: Examples of 2D chemical structures of bioactive compounds with their phytochemical classification and bioactivities 

Sr. 

No. 

Phytochemicals Classification Plant Source 2D structure Bioactivity Ref. 

1 Daidzein Polyphenols: 

flavonoids 

Soybean 

 

Anticancer (Mahmoud, Yang 

and Bosland 

2014) 

2 Justicidin B 

 

Phytoestrogen: 

Lignan 

Justicia, Phyllanthus, 

Haplophyllum and 

Linum species 
 

Antiplatelet, anti-

inflammatory, 

antiprotozoal 

agent 

(Hemmati and 

Seradj 2016) 

3 Campesterol Phytosterols Vegetable oils, nuts, 

seeds, cereals 

 

Anticardiac (Genser et al. 

2012) 
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Sr. 

No. 

Phytochemicals Classification Plant Source 2D structure Bioactivity Ref. 

4 Phytic acid Phytate Cereals, legumes, 

oilseeds and nuts 

 

Antioxidant (Graf and Eaton 

1990, Graf, 

Empson and 

Eaton 1987) 

5 Morphine Nitrogenous 

compounds: 

alkaloid 

Opium poppy 

 

Analgesic (Ghelardini, Di 

Cesare Mannelli 

and Bianchi 2015) 

6 Linustatin Nitrogenous 

compounds: 

cyanogenic 

glycosides 

Linum usitatissimum 

or Flax 

 

Chemical defense 

against predators 

(Niedźwiedź-

Siegień 1998) 
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1.3.2 Phytosterols 

Phytosterols are the bioactive compounds present in all plants and foods in varying 

concentrations. They perform similar functions in plants as cholesterol in animals due 

to the similarity in structures, except the side chains in phytosterols containing 

additional double bonds and methyl and/or ethyl groups (Gylling and Simonen 2015). 

Phytosterols exist as free sterol, sterol esters, sterol glycosides, acylsterol glycosides, 

etc. These are not found in animals hence referred to as plant sterols. Beta-sitosterol, 

stigmasterol, campesterol (Table 1.2, entry 3) are the major sterols present in higher 

plants and foods. The enzymes involved in the synthesis of phytosterols are 3-

hydroxy-3-methylglutaryl-CoA reductase, C24-sterol methyltransferase, and C22-

sterol desaturase (Valitova, Sulkarnayeva and Minibayeva 2016). They are present in 

vegetable foods such as vegetable oils, nuts, seeds, cereals, etc. (Piironen and Lampi 

2004, Klingberg et al. 2008). Primarily, phytosterols are known to reduce cholesterol 

absorption in the intestine and maintain the serum level of cholesterol. Phytosterol 

supplements are also prescribed in patients to reduce LDL- cholesterol (Ostlund Jr 

2004). Hence, natural dietary phytosterols help reduce the risk of cardiovascular 

diseases (Racette et al. 2015). Phytosterols are also beneficial in reducing various 

forms of cancer such as breast, lung, prostate, stomach, etc. (Ramprasath and Awad 

2015). 

1.3.3 Phytates 

Phytic acid (Table 1.2, entry 4) is also known as myoinositol 1,2,3,4,5,6-hexakis 

dihydrogen phosphate (Gupta, Gangoliya and Singh 2015). There are two kinds of 

phytates i.e., 3-phytase and 6-phytase, based on the first phosphate hydrolyzation. 

Phytate occurs in cereals (0.50%- 1.89%), legumes (0.40% - 2.06%), oilseeds (2.00% 
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– 5.20%) and nuts as the primary storage form of phosphorus (Martinez Dominguez, 

Ibanez Gomez and Rincon Leon 2002, Harland and Oberleas 1987, Reddy, Sathe and 

Salunkhe 1982). They have the potential to reduce mineral absorption as they are 

potent chelators of cations such as iron, zinc, magnesium, and calcium (Sparvoli and 

Cominelli 2015, Zhou and Erdman 1995). Hence, they are beneficial for preventing 

calcification and stone disease (Grases and Costa-Bauza 1999) and lowering blood 

glucose and lipids (Katayama 1999). In addition to anti-nutritional properties, phytate 

also has beneficial effects such as antioxidative and anti-carcinogenic effects 

(Nawrocka-Musial and Latocha 2012, Shamsuddin and Vucenik 1999, Shamsuddin, 

Vucenik and Cole 1997). 

1.3.4 Nitrogenous compounds 

a. Alkaloids  

 Alkaloids are heterocyclic nitrogenous compounds present in some plants to protect 

themselves from predators due to their potent toxic activity and bitter taste (Zenk and 

Juenger 2007). Alkaloids are produced in various forms in specific plants. For 

example, tropane alkaloids are present in Solanaceae (nightshade family) (Pigatto et 

al. 2015), such as Atropa belladonna (deadly nightshade), Datura spp. (thorn apples), 

etc., pyrrolizidine alkaloids in Asteraceae (daisy family) such as Senecio spp. 

(Ragworts) (Stegelmeier 2011) and in Boraginaceae (borage family) (Stegelmeier 

2011), isoquinoline alkaloids in Papaveraceae (poppy family) (Opletal et al. 2014) 

and Berberidaceae (barberry family) (Alamzeb et al. 2015), methylxanthine alkaloids 

in Coffea arabica (coffee) (Ashihara 2006), Theobroma cacao (cocoa) (Sugimoto et 

al. 2014) and pseudoalkaloids produced by Taxaceae (yew family) (Hou et al. 2014). 

Alkaloids show gastroprotective and anti-ulcer activities (De Sousa Falcao et al. 
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2008) and are known to act as an anti-platelet agent used for treating various diseases 

such as malaria, diabetics, cancer, cardiac dysfunction, etc. (De Sousa Falcao et al. 

2008). The morphine alkaloid (Table 1.2, entry 5) synthesized in opium poppy is 

used as a painkiller (Ghelardini et al. 2015). β-carboline alkaloids are known to 

reduce the growth of Trypanosoma cruzi, the organism responsible for Chagas’ 

disease (Cavin, Krassner and Rodriguez 1987). 

b. Cyanogenic glucosides/glucosinolates 

Cyanogenic glucosides and glucosinolates are very effective compounds in the 

chemical defense of plants from grazing animals and other predators (Zagrobelny and 

Møller 2011). Because after consuming the plant parts containing these compounds, 

poisonous HCN and aldehydes are released in the body, which can even cause the 

animal’s death (Cavin et al. 1987). For example, cyanogenic glucosides present in 

Prunus spp. lead to poisoning in livestock and insects (Patton et al. 1997). However, 

some of the plants containing cyanogen compounds are used as staple foods as well as 

for medicinal treatment. For example, flax seeds containing cyanogenic compounds 

such as diglucoside linustatin (Table 1.2, entry 6) and neolinustatin are seen as 

causing no health hazard (Oomah, Mazza and Kenaschuk 1992, Stijve and De Meijer 

1999). Whereas, cyanogenic glycosides extracted from Prunus persica seeds have 

been shown to produce antitumor promoting activities (Fukuda et al. 2003). 

1.4 Role of secondary metabolites as bioactive compounds 

1.4.1 Role of bioactive compounds from food crops 

Bioactive compounds in food are present in small amounts and are considered as 

extra-nutritional constituents. These compounds have specific functions in our body 

to maintain health and prevent diseases (Abuajah, Ogbonna and Osuji 2015). For 
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example, lycopene present in tomato and its products help to reduce prostate cancer 

(Giovannucci et al. 2002), isoflavones such as daidzein, genistein, etc. present in 

soybean are beneficial in menstrual-related problems, cardiovascular diseases, cancers 

and help in lowering cholesterol (Brouns 2002). Fruits and vegetables have great 

potential in cancer prevention because of their phytochemical content. Citrus fruits 

contain flavonoids, which may act as anticancer drugs (Cirmi et al. 2016a). The food 

contains diverse kinds of bioactive compounds, which influence human homeostasis 

and are responsible for various diseases.  

Phytochemicals have high therapeutic potential with a great diversity of 

chemical structures as depicted in Table 1.2. Chemoinformatics tools can help 

understand biological and chemical aspects of pharmacological actions of 

phytomedicines (Lawless et al. 2016). The scaffold and functional groups of bioactive 

molecules play a significant role in drug discovery by providing it a particular 

therapeutic property (Kumar et al. 2013, Sravanthi and Manju 2016). Scaffolds 

extracted from bioactive compounds of plants can be used for building a focused 

virtual library of molecules with drug-like and lead-like properties (Karthikeyan et al. 

2015a). Likewise, various food crops with medicinal properties due to their 

phytochemical content can be used to further studies in drug discovery. 

1.4.2 Role of bioactive compounds from medicinal plants 

Indian medicinal plant species are used for treating various diseases as described in 

ancient literature of Ayurveda and Siddha (Patwardhan, Vaidya and Chorghade 2004). 

Herbal medicines are considered to be less toxic and possessing fewer side effects 

than chemically synthesized drugs. The prevalence of natural products derived 

medicinal properties is due to the evolution of bioactive compounds in medicinal 

plants. For example, ajmaline isolated from the roots of Rauwolfia serpentina comes 
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under FDA approved drug as an antiarrhythmic agent (Makarevich et al. 1979), 

Cannabidiol identified in Cannabis sativa used for the treatment of Dravet syndrome 

was approved for marketing under the brand name Epidiolex in the US (Saade and 

Joshi 2015). Colchicine is a major alkaloid present in Colchicum species. It is used to 

treat familial Mediterranean fever as an approved drug (Zemer et al. 1991). 

Bioactive molecules identified from medicinally important plants used in 

Ayurvedic preparations provide a vast range of chemical structures (Mishra and 

Tiwari 2011). Their scaffolds compared with drug molecules resulted in the natural 

products-based drug discovery (Polur et al. 2011). The abundant scaffold diversity in 

medicinal plants is continuously used for purposeful drug designing in a biologically 

friendly way (Cragg and Newman 2013). The current status of natural product 

databases indicates that there is a need to exploit the knowledge of traditional 

therapeutics. Chemoinformatics and molecular approaches not only help to 

consolidate the experimental data but also help to make use of natural products easier 

than before (Harvey 2000). 

1.4.3 Network analysis of bioactive compounds  

To understand the biological and chemical aspects of pharmacological actions of 

phytochemicals, we performed a network analysis of phytochemicals, their respective 

protein targets, and pathways involved in various chronic diseases (Figure 1.4). For 

this purpose, we selected five food crops and five Indian medicinal plants mentioned 

in the Ayurveda. Table 1.3 describes the functions of bioactive compounds identified 

from food crops and medicinal plants, having therapeutic potential by targeting 

various proteins. Some bioactive compounds are present among multiple plants 

(Supplementary Tables S1.1, S1.2, S1.3). For example, betulinic acid is present in 
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food crops such as soybean (Glycine max) and Jamun (Syzygium cumini), as well as in 

medicinal plants such as Chaulmoogra (Hydnocarpus wightianus).  

For this study, protein targets for bioactive compounds were identified from 

the literature. The biological pathways of the protein targets involved in respective 

diseases were also retrieved from the literature. Figure 1.4 shows the medicinal 

effects of multi-targeting bioactive molecules. Most of the bioactive compounds were 

found to target multiple proteins. For example, betulinic acid acts on diacylglycerol 

acyltransferase, nitric oxide synthase, 5-alpha reductase, glycogen phosphorylase, 

DNA polymerase-beta, NADPH oxidase, and LXR-alpha. Therefore, bioactive 

compounds acting on multiple targets would be beneficial to treat more than one 

disease using the same compound/drug. However, on the contrary, this can also cause 

side-effects. Hence, both these aspects must be carefully examined before using a 

bioactive compound having multiple targets. A single protein target might be involved 

in several biological pathways. For example, NADPH oxidase is involved in 

leukocyte-endothelial migration, osteoclast differentiation, ROS generation and 

oxidative stress pathways (Fayaz, Kumar and Rajanikant 2014). The network analysis 

shows that all the selected protein targets for phytochemicals are involved in diabetes-

related pathways. Whereas, most of them are also involved in cancer-related 

pathways. Apart from this, many proteins are also involved in other chronic diseases 

such as Parkinson’s disease, cardiovascular disease, hepatitis, etc. 
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Figure 1.4: Network containing food crops and Ayurvedic medicinal plants with their respective bioactive compounds targeting various proteins 

involved in respective diseases. (Nodes = 53, edges = 138; Black edges: Interactions/ hidden relationships, Color edges: Respective pathways) 
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Table 1.3: Bioactive compounds identified from food crops and medicinal plants with their protein targets involved in respective diseases. 

Sr. 

no. 

Plant Source Bioactive compounds Ref. Protein target Pathway Disease Ref 

Food crops 

1 

Soybean 

(Glycine max. 

L.) Daidzein 

(Kalaiselvan et 

al. 2010) 

Glycogen 

phosphorylase, 

DNA 

topoisomerase-2 

Glycogen 

degradation, 

Cell cycle, and 

DNA 

replication, 

Diabetes, 

Cancer 

(Matsumura et 

al. 2005) 

2 

Fenugreek 

(Triginella 

foenum-

graecum) Diosgenin 

(Fuller and 

Stephens 2015) 

Aldose reductase, 

LXR-alpha 

Galactose 

metabolism, 

PPAR 

signaling 

pathway 

Diabetes, 

Ischemia 

(Makishima, 

Takahashi and 

Kawada 2010) 

3 

Jamun 

(Syzygium 

cumini) 

Betulinic acid 

(Ramteke, 

Kurrey and Kar 

2015) 

Diacylglycerol 

acyltransferase, 

NADPH oxidase 

Glycerolipid 

metabolism, 

Leukocyte 

endothelial 

migration 

Diabetes, 

Liver 

disease 

(Chung et al. 

2006) 
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Sr. 

no. 

Plant Source Bioactive compounds Ref. Protein target Pathway Disease Ref 

4 

French bean 

(Phaseolus 

vulgaris) 

Delphinidin 

(Lin et al. 2008) MAPK 

Stat-3 signaling 

pathway, 

Aldosterone 

regulated 

sodium 

reabsorption 

Arthritis, 

Liver 

disease 

(Oak et al. 2006) 

5 
Perilla 

frutescens 

Protocatechuic acid 

(Speijers et al. 

2010) 

Aldose reductase, 

Catechol-o-

methyltransferase 

Galactose 

metabolism, 

steroid 

hormone 

biosynthesis 

 

Schizophren

ia, 

Parkinson's 

disease 

(Bonifácio et al. 

2007, Woodard 

et al. 1980) 

Ayurvedic medicinal plants 

6 

Ginger 

(Zingiber 

officinale) Shogaol 

(Chen et al. 

2013) 
MAPK, NFK-beta 

Osteoclast 

differentiation, 

apoptosis 

Cancer, 

Arthritis 
(Kim et al. 2015) 
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Sr. 

no. 

Plant Source Bioactive compounds Ref. Protein target Pathway Disease Ref 

7 
Swertia 

chirayita 

Mangiferin 

(Mahendran et 

al. 2014) 

Alpha-

glucosidase, 

Steroid-5-alpha 

reductase type-2 

N-Glycan 

biosynthesis, 

sucrose 

metabolic 

process 

Diabetes, 

Liver 

disease 

(Yoshikawa et 

al. 2001) 

8 

Arjun tree 

(Terminalia 

arjuna)  

Ellagic acid 

(Kaur, Grover 

and Kumar 

1997) 

Aldose reductase, 

alpha- glucosidase 

Fructose and 

mannose 

metabolism, 

sucrose 

metabolic 

process 

Diabetes, 

Cancer 

(Benalla, 

Bellahcen and 

Bnouham 2010) 

9 

Brahmi 

(Bacopa 

monnieri) 
Apigenin 

(Umbelliferae) 

Aldose reductase, 

20-alpha-

hydroxysteroid 

dehydrogenase 

Galactose 

metabolism, 

Fructose and 

mannose 

metabolism 

Hepatitis, 

Diabetes 

(Qiang et al. 

2012) 



26 

Sr. 

no. 

Plant Source Bioactive compounds Ref. Protein target Pathway Disease Ref 

10 

Chaulmoogra 

(Hydnocarpus 

wightianus)  

Luteolin 

(Sahoo et al. 

2014) 

5-alpha reductase, 

DNA polymerase-

beta, NADPH 

oxidase 

Steroid 

hormone 

biosynthesis, 

Purine 

metabolism, 

Osteoclast 

differentiation 

Tuberculosis

, 

Atherosclero

sis 

(Zainal et al. 

2014) 

*(For more information, please refer to Supplementary Tables S1.1, S1.2, S1.3.) 
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1.5 Role of secondary metabolites in plant defense 

Plants are sessile organisms, and millions of insect species, microbes, animals, etc., 

depend on them for their survival. While in many cases, such relationships are 

mutually beneficial, in several cases, the plants get adversely affected. Thus, plants 

have evolved defense mechanisms to counter predators and parasites. However, these 

organisms, in turn, have developed molecular tools to overcome plant defense. During 

such co-evolution, plants have evolved a specific defense system against herbivores. 

Two kinds of defense mechanisms are present in plants. One is by structural defense 

mechanisms such as thorns, thick bark, etc., making it difficult for the pests to attack 

the plants. While, the second is by biochemical defense mechanisms in which plants 

produce toxic chemicals, pathogen degrading enzymes, etc.  

 Allelochemicals are the secondary metabolites produced by plants to defend 

themselves against herbivores, insects, pests etc. (Putnam 1988) (Table 1.4). Various 

allelochemicals show a wide range of pest control activities and have long been used 

in the production of pesticides (Koul and Walia 2009). For example, azadirachtin 

from neem tree is used in commercial pesticide named Azamax against various pests 

and insects (Nisbet 2000). Similarly, sanguinarine from Chelidonium majus possesses 

strong insecticidal activity against Lymantria dispar (moth) larvae (Zou et al. 2019). 

Likewise, the powder and extract from the dried flowers of the pyrethrum daisy, 

Chrysanthemum cinerariaefolium contain various pyrethrins and are used as 

insecticides to controls weevils, beetles, grain borers, mealworms etc. (Gallo et al. 

2017). These observations show that allelochemicals play an important role in pest 

control and, therefore, in increasing crop production. 
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Table 1.4: Examples of allelochemicals induced in plants resistant to pathogens, animals, and insects 

Sr. 

no. 

Plant Source 2D structure of Allelochemicals Pathogens or Animals or Insects or Others Refs 

1 
Alfa alfa (Medicago 

sativa)  

1. Medicarpin 

Fungus: Phytophthora megasperma, Phoma 

medicaginis, Nectria haematococca, 

Colletotrichum trifolii 

(Blount, Dixon and 

Paiva 1992) 

2 
Arabidopsis 

(Arabidopsis thaliana) 
 

Camalexin 

Gram-negative bacteria: Pseudomonas 

syringae; Fungus: Alternaria brassicicola, 

Botrytis cinerea 

(Ahuja, Kissen and 

Bones 2012) 

3 Broad bean (Vicia faba) 

 

 

Wyerone 

Fungus: Botryris cinerea, B. fabae, B. allii 
(Letcher et al. 

1970) 
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Sr. 

no. 

Plant Source 2D structure of Allelochemicals Pathogens or Animals or Insects or Others Refs 

4 
Neem (Azadirachta 

indica) 

 

Azadirachtin 

Insects: Mosquitoes: Anopheles sp., tobacco 

hornworm (Manduca sexta) in tobacco, fall 

armyworm (Spodoptera frugiperda) in cotton 

seedling 

(Maia and Moore 

2011, Senthil-

Nathan 2013, Raffa 

1987) 

5 
Milkweed (Asclepias 

syriaca L.) 

 

Cardenolide 

Insects: Butterflies (Danaini), bees, wasps, 

beetles, moths, and true bugs 

(Singh and Rastogi 

1970) 
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1.6 Conservation of endangered species of valuable plants and trees 

Several medicinally and economically important plants have become endangered due 

to over-harvesting and destruction of their natural habitats. Urbanization and the 

unrestricted extraction of valuable plants from the wild leads to overexploitation of 

natural resources (Najar and Agnihotri 2012). Several medicinal plant species, such as 

Picrorhiza kurroa, a perennial herb, once plentiful in the valleys of Kullu, have now 

become depleted because of habitat degradation, overexploitation, and loss of natural 

regeneration (Rawat 2008). Similarly, there are a large number of other plants and 

trees, which are beneficial for humankind’s survival and well-being but are not being 

properly conserved and serious efforts need to be taken for their conservation. Some 

of the plant conservation approaches are in situ and ex situ conservation. For long-

term conservation of all our natural resources, sustainable living is a viable solution 

by integrated management of human diseases (International Union for Conservation 

of Nature and Ecosystems 2006). 

1.7 Genesis of the thesis 

Based on literature reports spanning over the last few decades, we can most certainly 

propose that the scaffolds and functional groups of metabolites present in food crops 

and medicinal plants have a modulatory role in designing novel compounds (Figure 

1.5). 
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Figure 1.5: Hypothesis for designing of novel drug-like, lead-like, and pesticide-like 

molecules from natural plant resources 

 

Further, the rich reservoir of bioactive molecules obtained from such plants 

having specific activities against human diseases can be used to build a focused 

virtual library of novel molecules. The novel molecules can be prioritized by 

progressive drug-like (PDL), progressive lead-like (PLL), drug-like failure (DLF), 

lead-like failure (LLF), and Toxicophoric, Pharmacophoric, and Chemophoric (TPC) 

 

Plant 
species 

Bioactive molecule 

Virtual Library of 
novel molecules 

 
HITS 

 
(PDL, PLL, 
DLF, LLF) 

Drugs 
 

 

 
 

 

Scaffold 

Functional groups 

+ 

Novel compound 

Natural 
product 

Validated by Molecular docking, 
molecular dynamics etc 

Food and 
Nutrition 



32 

scores computed using inhouse developed ChemScreener software (Karthikeyan and 

Vyas 2015). This program shows the number of chemophore, toxicophore, and 

pharmacophore matches, which may be used to fine-tune the library created. 

Molecules having good scores (high pharmacophoric and low toxicophoric scores and 

chemophoric scores lower than pharmacophoric scores) can be used for further 

analysis through molecular docking and molecular dynamics. In the future, the results 

of this work can lead to the development of efficient and more targeted drugs and 

pesticides from readily available plant sources in minimum time. Indian medicinal 

plants are the biggest source of bioactive molecules against various diseases. As 

several medicinal Ayurvedic plants are not readily available and are endangered, they 

need to be conserved for our future well-being. 

Several bioactive molecules are produced by multiple plant species, including 

crop plants. Hence, such plants could be used to extract bioactive compounds, saving 

the endangered medicinal plants. Moreover, some scaffolds are found to be shared 

among multiple bioactive molecules. Therefore, proper use of valuable and bioactive 

compounds can lead to the development of novel compounds like drugs. Considering 

the demand for organic production of food and drugs, novel and innovative 

approaches are required. Natural products derived from plants are emerging as 

valuable alternatives to human needs and rescuing from the bio-apocalypse. This 

study highlights the roles of bioactive compounds in food and medicine, including the 

conservation of beneficial plants. Network analysis of bioactive compounds from 

food crops and medicinal plants mentioned in Ayurveda and their protein targets 

involved in various disease-related pathways was performed. The results obtained 

from this study could be useful in constructive experiments for preparing polyherbal 

formulations against particular diseases. 



33 

In conclusion, bioactive compound scaffolds are the key to optimize chemical 

diversity in drugs. Furthermore, large data of published findings are available, which 

needs to be analyzed and managed for the best use and efficacy of the available 

products. This study provides the information to plan research and fill that void. 

The present thesis has been organized in the following manner: 

Chapter 1: Introduction and review of the literature (this Chapter) 

Chapter 2: Design of Novel Drug-like Molecules using Informatics Rich Secondary 

Metabolites Analysis of Indian Medicinal and Aromatic Plants 

Chapter 3: Bridging in-silico and experimental: Chemoinformatics Analysis for 

Mass Spectrometry-Based Metabolomics Study of Soybean  

Chapter 4: Chemoinformatics Investigation on Chemical Defense in Plants  

Chapter 5: Summary and future directions 
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Chapter 2: Design of Novel Drug-like Molecules using 

Informatics Rich Secondary Metabolites Analysis of Indian 

Medicinal and Aromatic Plants 

2.1 Introduction 

A large amount of experimental data related to biological and chemical researches is 

available in the public domain. These data can be of immense use in drug discovery 

(Yoo et al. 2012, Kostoff 2005). With the help of various chemoinformatics tools, 

these data can be mined and analyzed to discover candidate biomolecules. 

Chemoinformatics techniques can help in an accurate prediction of bioactive 

molecules and their activities, making drug discovery quicker and precise (Bellis et al. 

2011). This includes mining of molecules from scientific literature, predicting their 

structures and functions, as well as those of their targets, ligand-target screening, 

building compound libraries, predicting the drug-like and lead-like molecules, etc.  

 The Indian subcontinent has rich plant biodiversity, and several plants are 

medicinally and economically important (Samal 2015). There are about 17,000 

species of flowering plants in India, of which 7,500 are medicinally important (Kala, 

Dhyani and Sajwan 2006). Of these, about 1,300 plant species are aromatic (Shiva 

1998). These plants produce and exude aromatic substances such as essential oils, 

which are used in cooking, cosmetics, as well as for making perfumes and in 

pharmaceutical industries (Chauhan 1999). The plant families such as Lauraceae, 

Umbelliferae, Myrtaceae, and Labiatae have several aromatic as well as medicinal 

species (Wojdylo, Oszmianski and Czemerys 2007). Many of these aromatic and 

medicinal plants have been screened for biological activities, and several bioactive 
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compounds have been isolated from them (Raut and Karuppayil 2014). However, a 

large number of medicinally relevant compounds are yet to be discovered due to the 

enormous structural diversity and biological activities of plant-derived compounds. 

The increased demand for plant-based drugs has resulted in the over-exploitation of 

the medicinally important species from their native habitats (Verma et al. 2012). 

Over the past six decades, the Council of Scientific and Industrial Research 

(CSIR) has contributed to the essential oil-based aroma industry and medicinal plants-

driven drug discovery in India (Baruati and Gogoi 2020). The “CSIR-Aroma and 

Phytopharmaceutical Mission” was conceptualized in 2016 to bring a decisive and 

transformative change in the current rural economy, market dynamics and growth 

opportunity through research on aromatic plants, in which end-to-end technology and 

value addition solutions will be provided across the country at a sizable scale. 

Comprehensive knowledge of the metabolic profile of plants is essential for 

assessing their medicinal values. Chemoinformatics techniques can help in making a 

sense of the vast chemical and bioactivity data and convert it into knowledge useful in 

drug discovery. Previous studies in our lab identified medicinally important molecules 

from marine organisms (Karthikeyan and Vyas 2015). In the present work, we have 

developed a Java-based database cum toolkit for collecting the data regarding Indian 

medicinal & aromatic plants and associated molecules, their structural information, 

plant information, and traditional therapeutic use for comparing with drug molecules 

and for virtual library generation. There are some important recent efforts for building 

online databases (Mohanraj et al. 2018, Pathania, Ramakrishnan and Bagler 2015, 

Polur et al. 2011) about Indian medicinal plants, their phytochemicals, and therapeutic 

uses. Polur et al. (2011) compiled the information on Ayurvedic plants with their 

phytochemical and therapeutic properties and also studied the structural similarity of 
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phytochemicals with drugs from DrugBank, which is an important step in drug 

discovery. Subsequently, the Phytochemica database (Pathania et al. 2015) provided 

963 phytochemicals derived from five Indian medicinal plants with chemical 

structures and pharmacological properties. The IMPPAT (Mohanraj et al. 2018) 

database recently compiled information on 1742 Indian medicinal plants and their 

9596 phytochemicals and 1124 therapeutic uses.  

The features of some of the previously reported databases have been compared 

(Table 2.1) with DoMINE (Database of Medicinally Important Natural products from 

plantaE) that we have developed. It was found that the previous databases are limited 

to categorizing and classifying the medicinal plants, their phytochemicals and 

therapeutic properties. However, building a virtual library of novel molecules from 

known medicinal molecules and virtual screening of those novel molecules also plays 

a pivotal role in drug development provided by DoMINE. It also includes the 

catalogue of Indian medicinal plants, their phytochemicals, therapeutic properties and 

scaffold similarity comparison with approved drugs by the generation of 

physicochemical descriptors. For this purpose, we text mined the literature related to 

medicinal plant species and identified ring containing molecules (n = 1665) associated 

with each plant species. We extracted molecular scaffolds (n = 209) from these 

molecules and used diverse scaffolds to build a focused virtual library. Using 

chemoinformatics approaches, we predicted drug-like and lead-like molecules from 

these medicinal plant molecules to elucidate the molecular basis of therapeutic 

indications of Indian medicinal and aromatic plants. 
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Table 2.1: Comparison of DoMINE with other databases on Indian medicinal plants and their metabolites for drug development 

Database DoMINE IMPATT Phytochemica Polur et al. 

(2011) 

Input Data     

Number of Indian medicinal plants 104 1742 5 295 

Number of text mined metabolites 3459 9596 963 1829 

Number of therapeutic properties/ uses 16 1100 Nil Nil 

Number of Scaffolds and functional groups extracted from plant 

metabolites 

209 and 97 Nil Nil Nil 

Number of drugs from DrugBank 2334  

(FDA Approved 

drugs) 

2069  

(FDA 

Approved 

drugs) 

Nil 4887 

Number of scaffolds and functional groups extracted from drug 

molecules 

306 and 291 Nil Nil Nil 
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Database DoMINE IMPATT Phytochemica Polur et al. 

(2011) 

Images of plants with their parts Yes Nil Nil Nil 

Interconnections     

Plant - Family Yes Nil Nil Nil 

Plant- metabolites Yes Yes Yes Yes 

Plant- therapeutic properties Yes Yes Nil Yes 

Metabolite- Scaffolds and Functional groups Yes Nil Nil Nil 

Drugs- Scaffolds and Functional groups Yes Nil Nil Nil 

Structural similarity search between plants and drugs (molecules, 

scaffolds based) 

Yes (molecules 

and scaffolds 

based) 

Yes 

(molecules 

based) 

Yes  

(molecules 

based) 

Yes 

(molecules 

based) 

Other features     

Web interface / GUI application Yes Yes Yes Nil 



49 

Database DoMINE IMPATT Phytochemica Polur et al. 

(2011) 

Chemical structure representation (2D and 3D)  Yes Yes Yes (3D) Nil 

Downloadable structure file formats Yes Yes Yes Nil 

Physiochemical properties (2D) Yes Yes Yes Nil 

Similarity search (sub, similar, super, formula) Yes Nil Nil Nil 

Scaffold and functional groups extraction Yes Nil Nil Nil 

Virtual library generation Yes Nil Nil Nil 

Virtual screening (Prediction of chemical properties- TPC, PDL, 

PLL, DLF, LLF scores) 

Yes Nil Nil Nil 
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2.2 Materials and methods 

2.2.1 Data Collection 

The databases from which the plant data were collected include the Indian Medicinal 

Plants Database (IMPD) (http://www.medicinalplants.in/) and “The Wealth of India” 

(Bhat 1997) (Table 2.2). The IMPD contains information about the plants used in 

Ayurveda (2559), Siddha (2267), Unani (1049) and Homeopathy (460). From these 

four systems of medicine, the names of common medicinal and aromatic plants 

(n = 104) were identified, which also included the “CSIR-Aroma Mission 2016” 

based medicinal plants of India. “The Wealth of India” consists of a bibliographic 

full-text database of Indian medicinal and aromatic plants (Bhat 1997). The database 

covers over 5,000 plant species belonging to about 1,800 plant genera. All the 

available information about the medicinal plants was manually extracted from these 

databases. Sowa rigpa and folk plants were not included in this study as the 

information about them is passed on from one generation to the next through word of 

mouth. Similarly, FDA-approved drugs were obtained from DrugBank (Wishart et al. 

2017) for the structural comparison with plant molecules. 

http://www.medicinalplants.in/
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Table 2.2: List of medicinal plant databases 

Sr. 

no. 

Database URL 

Number of 

Plants# 

1. Indian Medicinal Plants Database  http://www.medicinalplants.in/  

 Ayurveda http://www.medicinalplants.in/showfulllist/ayurveda  2559 

 Siddha http://www.medicinalplants.in/showfulllist/siddha 2267 

 Unani http://www.medicinalplants.in/showfulllist/unani  1049 

 Homeopathy http://www.medicinalplants.in/showfulllist/homeopathy 460 

2. The Wealth of India (1948-1992) (Bhat 

1997) 

http://www.niscair.res.in/includes/images/wealthofindia/woi-

article.pdf  

>5000 

#: No. of plants as of March 2021 

 

http://www.medicinalplants.in/
http://www.medicinalplants.in/showfulllist/ayurveda
http://www.medicinalplants.in/showfulllist/ayurveda
http://www.medicinalplants.in/showfulllist/siddha
http://www.medicinalplants.in/showfulllist/siddha
http://www.medicinalplants.in/showfulllist/unani
http://www.medicinalplants.in/showfulllist/unani
http://www.medicinalplants.in/showfulllist/homeopathy
http://www.medicinalplants.in/showfulllist/homeopathy
http://www.niscair.res.in/includes/images/wealthofindia/woi-article.pdf
http://www.niscair.res.in/includes/images/wealthofindia/woi-article.pdf
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2.2.2 Computational protocol 

The computational protocol followed in the present study is presented in Figure 2.1 

and Supplementary File S2.1. Being quick and cost-effective, this methodology can 

evaluate a large number of novel and potential drug candidates against diseases for 

further experimental studies. We used the traditional therapeutic properties of plants 

to establish the predicted bioactivities of their natural molecules. The details of 

bioactivity studies already performed on the Indian medicinal plants are listed in 

Supplementary Table S2.1.1. Supplementary Table S2.1.2 shows the classification 

of Indian medicinal plants according to the Indian systems of medicines, i.e., 

Ayurveda, Siddha, Unani, and Homeopathy. The molecules text mined from these 

plants (Keywords: Name of Medicinal plants through PubMed literature, Dec. 2019) 

were used to identify particular scaffolds or drug-like or lead-like compounds with 

expected bioactivity. 

Metabolite names (n = 3459) were extracted from PubMed abstracts of each 

medicinal plant through text mining using PubTator (Wei, Kao and Lu 2013) 

(Supplementary Table S2.2). Every text mined molecule was manually verified, and 

its presence in their respective medicinal plant was confirmed by reading the 

concerned PubMed abstract(s). Chemical names of the extracted plant molecules were 

converted into SMILES (Simplified Molecular Input Line Entry System) strings and 

screened for 5-6 membered ring-containing molecules up to 1000 molecular weight. 

Similarly, a representative list of Indian medicinal and aromatic plants with their 

therapeutic categories and PubMed counts is presented in Table 2.3. Scaffolds 

(n = 209) and functional groups (n = 97) (Supplementary Table S2.3.1) were 

generated from the ring containing molecules (n = 1665) employing an in-house 

developed program ChemScreener (Karthikeyan, Pandit and Vyas 2015b, 
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Karthikeyan and Vyas 2014). Similarly, scaffolds (n = 306) and functional groups 

(n = 291) were also extracted from the approved drug molecules (n = 2354) 

(Supplementary Table S2.3.2).  

  

Figure 2.1: Workflow highlighting the steps of extracting drug-like molecules from 

medicinal and aromatic plants (TPC = Toxicophoric, Pharmacophoric, and 

Chemophoric, PDL= Progressive Drug Like, PLL= Progressive Lead Like, DLF= 

Drug Like Failure, LLF= Lead Like Failure features as generated in ChemScreener 

program, PBC= Plant-Based Clustering) 
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Table 2.3: A representative list of Indian medicinal and aromatic plants with their therapeutic categories and PubMed counts (as of March 2021) 

(* For more therapeutic categories, please refer to Supplementary Table S2.1) 

Sr. 

no. 
Plant Species Common Name Therapeutic Properties 

Number of 

Therapeutic 

Properties 

Number of 

PubMed 

Publications 

1 Valeriana jatamansi Garden valerian 

Carminative or laxative, stimulant, hypnotic, analgesic, 

diuretic, diaphoretic or antipyretic, anti-inflammatory, 

neuroprotective 

8 101 

2 Centella asiatica Gotu kola 

Anti-inflammatory, anti-diabetic, neuroprotective, anti-

cardiac, analgesic, anticancer, antimicrobial, 

carminative or laxative 

8 899 

3 

Semecarpus 

anacardium 

Marking nut 

Anti-inflammatory, antimicrobial, stimulant, anticancer, 

anti-cardiac, expectorant, carminative or laxative 

7 141 

4 Allium sativum Garlic 

Diaphoretic or antipyretic, expectorant, anticancer, 

diuretic, anti-cardiac, stimulant, anti-diabetic 

7 7088 
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Sr. 

no. 
Plant Species Common Name Therapeutic Properties 

Number of 

Therapeutic 

Properties 

Number of 

PubMed 

Publications 

5 

Cymbopogon 

winterianus 

Java citronella 

Anticancer, stimulant, analgesic, carminative or 

laxative, antimicrobial, expectorant 

6 56 

6 Santalum album Indian sandalwood 

Anti-cardiac, antimicrobial, diuretic, diaphoretic or 

antipyretic, expectorant, anti-inflammatory 

6 138 

7 Cymbopogon martini 

Palmarosa or Indian 

geranium 

Carminative or laxative, antimicrobial, stimulant, 

expectorant, anti-cancer 

5 

 

8 Cannabis sativa Bhang or Marijuana 

Hallucinogenic, hypnotic, anti-inflammatory, analgesic, 

anti-cancer 

5 

 

25 

24538 
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All the scaffolds and molecules extracted from the Indian medicinal and 

aromatic plants related to scientific literature were compared with the drug scaffolds 

by generating a network. Five random scaffolds of molecules identified from the 

medicinal plants were selected to form a cluster. Six clusters of unique scaffolds were 

built. These scaffolds were used as seeds for generating a virtual library using 

ChemScreener. The scaffolds in the virtual library were annotated using 

Toxicophoric, Pharmacophoric and Chemophoric (TPC) scores and progressive drug-

like (PDL), progressive lead like (PLL), drug-like failure (DLF), and lead-like failure 

(LLF) scores using ChemScreener to get a focused set of novel and virtual bioactive 

molecules. 

2.2.3 Softwares and Databases 

A total of 91,206 PubMed abstracts related to the 104 Indian medicinal and aromatic 

plant species were downloaded (Sood and Ghosh 2006).
 
We used PubTator (Wei et al. 

2013), a web-based text mining tool from NCBI, to extract chemical entities (n = 

3459) from PubMed literature using PMID numbers. Structures of approved drugs 

were obtained from DrugBank (Wishart et al. 2017). The chemical names of the 

molecules were converted into SMILES by using the JChem-Base ChemAxon tool 

(Weber 2008). All the data were converted to SDF format for easy access in 

Molecular Operating Environment (MOE) used for descriptor generation and 

principal component analysis (PCA) (Chemical Computing Group 2008). 

ChemScreener was used for generating scaffolds and a virtual library with TPC, PDL, 

PLL, DLF, and LLF scores. Cytoscape 3.7.1 (Ross 2010) was used to generate 

networks of Indian medicinal and aromatic plants, medicinal plant families, their text 

mined ring containing molecules and their scaffolds, drug molecules, and their 

scaffolds. We extracted scaffolds and functional groups from the text-mined 
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molecules from literature and built a focused virtual library of novel molecules. 

StatistiXL 1.8 (Robert and Wither 2007) was used to generate dendrograms from 

clusters with Euclidean distance matrix calculation for plant-based clustering method; 

whereas, LibMCS 6.1.0 provided by ChemAxon (Zloh et al. 2017), was used for 

clustering all the molecules based on their maximum common substructures in a 

hierarchical manner. 

2.3 Results and Discussion 

This study aimed to utilize traditional knowledge about the Indian medicinal plants to 

identify natural bioactive molecules to design novel drugs. From the various 

medicinal systems (Ayurveda, Siddha, Unani, and Homeopathy) and databases 

(IMPD and “The Wealth of India”) of Indian medicinal plants, common medicinal 

and aromatic plants were identified. These Indian medicinal plants are traditionally 

used in Ayurvedic medicines in polyherbal formulations prescribed mainly for healthy 

living rather than the treatment of diseases (Gogte 2000, Parasuraman, Thing and 

Dhanaraj 2014). We categorized the 104 Indian medicinal and aromatic plants into 16 

selected generally studied therapeutic properties (Figure 2.2). Among them, 15 

medicinal plants, including Atropa belladonna, Aconitum ferox, also produce high 

levels of toxic compounds like atropine and scopolamine (Glatstein et al. 2014, Panda 

and Debnath 2010). These are the main toxic tropane alkaloids that were 

quantitatively determined in Atropa belladonna, Datura stramonium, and other 

species of the Solanaceae family (Boros et al. 2010). Atropine and scopolamine have 

anticholinergic properties and have legitimate medical applications in very low doses. 

Seven plant species, including Solanum virginianum, Ricinus communis, were found 

to be mildly poisonous as some of their parts contain toxic metabolites, while other 

plant parts can be used for medicinal purposes (Khan et al. 2014, Scarpa and Guerci 
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1982). LC-MS methods were used to identify the toxic alkaloids in Ricinus communis, 

3-carbonitrile-4-methoxy-N-methyl-2-pyridone (ricinine), and its carboxylic acid 

derivative, 3-carboxy-4-methoxy-N-methyl-2-pyridone (Wachira et al. 2014). 

Ricinine is one of the main compounds obtained from Ricinus communis, which 

shows insecticidal effects against leaf-cutting ant (Atta sexdens rubropilosa) (De 

Melo Cazal et al. 2009), Spodoptera frugiperda, etc. (Ramos-López et al. 2010).  

As expected, several medicinal and aromatic plants had multiple medicinal 

properties. For example, Centella asiatica is reported to have at least eight therapeutic 

properties such as anti-inflammatory, anti-diabetic, neuroprotective, anti-cardiac, 

analgesic, anticancer, antimicrobial, carminative, and laxative (Duarte and Rai 2015). 

LC-MS fingerprint analysis of Centella asiatica extracts revealed asiatic acid and 

madecassic acid as the dominant components (Jiang et al. 2016). The combination of 

asiatic acid and madecassic acid shows an effective means to intervene in 

neurodegenerative diseases in which neurotrophin deficiency is involved. Allium 

sativum has been reported for seven therapeutic properties such as diaphoretic or 

antipyretic, expectorant, anticancer, diuretic, anti-cardiac, stimulant and anti-diabetic 

(Augusti 1996). Polyphenolic compounds and sterol were identified from Allium 

species using the HPLC-UV-MS method (Vlase et al. 2013, Martins, Petropoulos 

and Ferreira 2016). Allicin present in garlic (Allium sativum) is responsible for its 

typical flavor and has antimicrobial properties (Pacirc et al. 2010). Among all the 

medicinal properties studied in this work, most of the medicinal plants possess 

biological activities like anti-inflammatory, anti-microbial, anti-cancer, carminative, 

and laxative. 
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Figure 2.2: Schematic view of 16 medicinal properties of 104 Indian medicinal and 

aromatic plants (* List of all other medicinal plants with their medicinal properties is 

provided in Supplementary Table S2.4). 

  

2.3.1 Chemoinformatics Analysis Based on Scientific Literature Mining 

Text mining was performed to identify plant molecules from PubMed literature, citing 

Indian medicinal and aromatic plants. The scientific trend in publications dealing with 

botanical families of promising medicinal plant species is presented in Figure 2.3 and 

Supplementary Table S2.4.1. The families with the highest number of records were 
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Poaceae, Brassicaceae, Fabaceae, Solanaceae, and Asteraceae. The Poaceae family 

was the most studied with 13,2544 publications whereas, only 179 publications were 

reported for the Caesalpiniaceae family. This is because the number of plants found 

under the Poaceae family is more and readily available, which is the opposite in the 

case of the Caesalpiniaceae family. Similarly, many other Indian medicinal plants are 

yet to be scientifically explored, such as Hygrophila schulli with only two 

publications, Agave cantala with three publications, Anamirta cocculus with three 

publications, etc. Hence, very few or no molecules could be mined from the 

publications mentioning these plants. 

 

Figure 2.3: Distribution of the number of PubMed publications for the top 10 families 

of the medicinal and aromatic plants (as of March 2021) 

 

 All the plants were categorized based on their therapeutic properties 

(Supplementary Table S2.4.2). The top ten promising plants were selected from 

them, which are reported to possess the maximum number of therapeutic properties. 

The number of publications obtained by using the scientific names of these promising 
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plants as keywords is presented in Figure 2.4 and Supplementary Table S2.2. It was 

found that the most studied plants based on bioactivity assessments were Cannabis 

sativa, Piper cubeba, and Allium sativum with 24538, 8820, and 7088 publications, 

respectively. Whereas, the least studied plants based on the biological evaluation were 

Cymbopogon khasianus and Hygrophila schulli, with only 2 and 3 publications, 

respectively.  

 

Figure 2.4: Distribution of the number of PubMed publications for the top 10 

medicinal and aromatic plants (as of March 2021) 

 

 The molecules extracted through text mining for medicinal plants have 

pharmacological effects. For example, 6-gingerol, and 6-paradol extracted from 

ginger (Zingiber officinale) have anticancer activities (Mishra, Kumar and Kumar 

2012), withaferin A from Withania somnifera exhibits anti-arthritic and anti-

inflammatory activities (Uddin et al. 2012), etc. The text mined data from the 

literature related to Indian medicinal plants shows that there is still a lot of hidden 

potential in the Indian medicinal and aromatic plants, which needs to be explored. We 



62 

believe that this hidden treasure can be explored and untangled by applying various 

chemoinformatics tools and methods. 

 A 2D principal component analysis (PCA) of all the molecules was performed 

to study their distribution in the chemical space. The analysis depicts the diverse 

nature of the chosen molecules due to their different chemical structures. The PCA 

was performed by generating molecular descriptors such as the number of hydrogen 

bond acceptor atoms, number of H-bond donor atoms, Lipinski druglike test, log 

solubility in water, number of rings, molecular weight, Weiner path number, number 

of rotatable bonds, etc. for all the molecules (Supplementary Table S2.5). The 

molecules having more unique features in their chemical structures occupied separate 

regions in the plot (Figure 2.5). Some of the representative molecules of Indian 

medicinal plants were randomly picked up, such as curcuminoid D, turpethoside B, 

bisgingerdione A, etc., and are highlighted in the 2D PCA plot figure. It was found 

that most of the outlier molecules in the PCA plot figure had complex polycyclic 

structures. Scaffolds were extracted from all these unique molecules. A few 

representative scaffolds are presented in Table 2.4 with their 2D structures, 

therapeutic properties, molecule names, and source of plant species. This table clearly 

shows that the scaffolds extracted from the bioactive molecules obtained from the 

medicinal plants can be used to synthesize drug-like and lead-like molecules. It was 

found that Scaffold ID 2 was common between carvacrol and crocin from the plants 

Majorana hortensis and Crocus sativus, representing anti-inflammatory and 

diaphoretic or antipyretic properties, respectively. It has been reported that the 

chemical nature of a molecule is associated with its chemical structure 

(Harikarnpakdee and Chuchote 2018). Here, the chemical structure of the molecule is 

represented by both scaffolds and functional groups. Hence, different therapeutic 

properties are not only based on scaffolds but also on their linked functional groups. 
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Figure 2.5: The 2D PCA plot representing the molecular diversity of natural products from Indian medicinal plants (Supplementary Table S2.5) 
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Table 2.4: Representative scaffolds from 104 aromatic and medicinal plant molecules representing 16 medicinal properties (* For more 

scaffolds, please refer to Supplementary Table S2.1) 

 

 

Scaffold ID: 1 

Molecule Name: Bacopaside II 

Plant source: Bacopa monnieri 

Therapeutic category: Antihistamine 

 

 

 

 

Scaffold ID: 2 

Molecule Name: Carvacrol 

Plant source: Majorana 

hortensis 

Therapeutic category: Anti-

inflammatory 

 

 

 

 

Scaffold ID: 3 

Molecule Name: Lotaustralin 

Plant source: Linum usitatissimum 

Therapeutic category: carminative 

or Laxative 

 

 

 

Scaffold ID: 4 

Molecule Name: Cannabinol 

Plant source: Cannabis sativa 

Therapeutic category: 

Hallucinogenic 
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Scaffold ID: 2 

Molecule Name: Crocin 

Plant source: Crocus sativus 

Therapeutic category: Diaphoretic or 

Antipyretic 

 

 

 

Scaffold ID: 5 

Molecule Name: Borneol 

Plant source: Artemisia 

nilagirica 

Therapeutic category: 

antimicrobial 

 

 

Scaffold ID: 6 

Molecule Name: tetrandrine 

Plant source: Centella asiatica 

Therapeutic category: 

neuroprotective 

 

 

 

Scaffold ID: 7 

Molecule Name: patchoulol 

Plant source: Pogostemon 

cablin 

Therapeutic category: 

analgesic 
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Scaffold ID: 8 

Molecule Name: Ajmaline 

Plant source: Rauvolfia serpentina 

Therapeutic category: Anti-venom 

 

 

 

Scaffold ID: 9 

Molecule Name: alpha-

humulene 

Plant source: Ocimum 

gratissimum 

Therapeutic category: 

Anticancer 

 

 

Scaffold ID: 10 

Molecule Name: Aristolochic acid 

Plant source: Asarum europaeum 

Therapeutic category: Stimulant 

 

 

 

Scaffold ID: 11 

Molecule Name: Santalene 

Plant source: Santalum album 

Therapeutic category: 

Expectorant 
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Scaffold ID: 12 

Molecule Name: Beta- elemene 

Plant source: Ocimum gratissimum 

Therapeutic category: anti-diabetic 

 

Scaffold ID: 13 

Molecule Name: delphinidin 

Plant source: Crocus sativus 

Therapeutic category: 

Anticardiac 

 

 

Scaffold ID: 14 

Molecule Name: Ferulic acid 

Plant source: Linum usitatissimum 

Therapeutic category: Diuretic 

 

Scaffold ID: 15 

Molecule Name: Papaverine 

Plant source: Papaver 

somniferum 

Therapeutic category: 

Hypnotic 
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2.3.2 Scaffold Drug Network of the Indian Medicinal and Aromatic Plant Species  

A large network depicting relationships among the scaffolds obtained from medicinal 

plant species and approved drug molecules was constructed (Figure 2.6). The 

structural similarity of plant molecules was matched with the drug molecules based on 

their scaffolds to infer the similarity between traditional medicinal use of the plants 

with the medicinal use of the drugs (Lagunin et al. 2014). In this network, scaffolds 

act as linkers between molecules from medicinal plants and known drugs. Seven 

networks (Drug molecules, Drugs, and their Scaffolds, Medicinal plants, Medicinal 

plant families, Medicinal Plants and their families, Medicinal plant small molecules, 

and Medicinal plant small molecules and their scaffolds) were constructed to study 

the inter-relationship between scaffolds and molecules of the Indian medicinal plant 

species and the drugs. All the scaffold networks were then merged to create a 

supra-network containing 4623 nodes and 6216 edges. The network analysis of the 

topological features computed for the merged network showed an average number of 

neighbors with 2.689 and characteristic path length with 3.173 scores depicting the 

maximum connectivity of all molecules and their common scaffolds. The set of 

neighbors of a particular node ‘n’ is known as its neighborhood. The size of n’s 

neighborhood is given by ‘kn’, which is its connectedness. The average number of 

neighbors reflects a node’s average connectedness in the network. The predicted 

distance between two linked nodes is given by the average shortest path length, also 

known as the characteristic path length. 
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Indian medicinal aromatic plants molecules (n = 1665) [Node size = 100] 

 

Drug molecules (n = 2354) [Node size = 100] 

 Scaffolds [Node size = 35] 

 

Indian medicinal aromatic plants families (n = 47) [Node size = 500 with 47 different colors for each family] 

 Indian medicinal aromatic plants (n = 104) [Node size = 200 with 104 different colors for each plant] 

 Common scaffolds between Indian medicinal aromatic plants molecules and drugs: (n = 23) [Node size = 500] 

 Common molecules among Indian medicinal aromatic plants: (n = 169) [Node size = 100] 

 

Figure 2.6: Indian medicinal aromatic plant molecules, drug molecules, and scaffolds merged network as depicted in organic and edge-weighted 

spring embedded layout (for selected nodes only) in Cytoscape. Nodes = 4623, edges = 6216 (Nodes: Molecules, scaffolds, plants and plant 

families; Edges: Family-Plant-Molecule-Scaffold Interactions/ hidden relationships) 
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The scaffolds obtained from plant molecules and drugs were compared to 

obtain common scaffolds among them (Table 2.5 and Supplementary Table S2.6). 

Some molecules were identified from multiple plant sources; e.g. eugenol has been 

reported from several plant species such as Cinnamomum verum, Cymbopogon 

martini, Linum usitatissimum, Ocimum basilicum, Ocimum gratissimum, Ocimum 

tenuiflorum, Pogostemon cablin, Majorana hortensis, Mucuna pruriens, Myristica 

fragrans, etc. (Dardouri 2019, Ross 2010, Khan and Ahmad 2011, Harikarnpakdee 

and Chuchote 2018, Swamy and Sinniah 2015, Padalia et al. 2014, Du et al. 2014). 

Twenty-three scaffolds were common between Indian medicinal & aromatic plant 

molecules and drugs, e.g., eugenol from Ocimum basilicum, L-alpha-curcumene from 

Curcuma longa, secoisolariciresinol from Linum usitatissimum, have similar scaffolds 

to the drugs Midodrine, Esmolol, and Masoprocol, respectively. The scaffold ID 14 of 

eugenol was similar to that of Midodrine, which is a vasoconstrictor agent (Thulesius, 

Gjöres and Berlin 1979). The same scaffold was shared among multiple plant 

molecules such as vanillin, thymol, carvacrol, etc. Likewise, scaffold ID 17 of L-

alpha-curcumene showed similarity with the scaffold extracted from Esmolol, a 

cardio-selective beta-1 receptor blocker (Lee et al. 2016b). It was found that 182 plant 

molecules and 227 drugs shared common scaffolds (n = 23). The medicinal plants 

(n = 90 out of 104) which contain these 182 molecules belong to a specific group of 

families (n = 42), whereas 169 molecules shared among all the Indian medicinal 

plants were identified. 

 Thus, this analysis revealed that the metabolites from the Indian medicinal 

plant species possess properties or bioactivities similar to that of known drugs, based 

on their common scaffold structures, as structural descriptors encode activity. The 

inferred similarity in bioactivities of these molecules makes the concerned plant 

species prospective candidates for the future development of new drugs. By analyzing 

the molecule scaffold network, we propose employing such an ethnopharmacological 

approach to identify lead molecules from plants and use them to develop novel drugs. 
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Table 2.5: Similar scaffolds identified from 104 Indian medicinal and aromatic plants molecules and drug molecules in supra network with their 

therapeutic category information (n = 8) (Sc: Scaffold) 

Sr. 

No 
Plant source Plant molecules Similar scaffold Drug 

 

1. 

Cinnamomum verum, 

Cymbopogon martini, Linum 

usitatissimum, Ocimum basilicum, 

Ocimum gratissimum, Ocimum 

tenuiflorum, Pogostemon cablin, 

Majorana hortensis, Mucuna 

pruriens, Myristica fragrans  

Eugenol 

 

 

 

Sc ID: 14 

 

 

 

Midodrine: Vasoconstrictor agent 

 

 

DrugBank ID: DB00211 

Sc ID: 2 

2. Curcuma longa, Croton tiglium L-alpha-Curcumene 

 

 

 

 

Esmolol: Cardioselective beta1 receptor 

blocker 
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Sr. 

No 
Plant source Plant molecules Similar scaffold Drug 

 

Sc ID: 17 
 

DrugBank ID: DB00187 

Sc ID: 3 

3. Linum usitatissimum Secoisolariciresinol 

 

 

 

Sc ID: 18 

 

 

 

 

Masoprocol: Antineoplastic agent, 

antioxidant, a cyclooxygenase inhibitor, 

lipoxygenase inhibitor 

 

DrugBank ID: DB00179 

Sc ID: 4 
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Sr. 

No 
Plant source Plant molecules Similar scaffold Drug 

4. Apium graveolens Resorcinol 

 

Sc ID: 19 

 

 

Mexiletine: Antiarrhythmic agent 

 

DrugBank ID: DB00379 

Sc ID: 5 

5. Strychnos nux-vomica Ephedrin 

 

Sc ID: 20 

 

 

Phentermine: Sympathomimetic amine 

anorectic agent 

 

DrugBank ID: DB00191, Sc ID: 6 

6. Brassica nigra Brassinin  L-tryptophan: Anti-depressive agent, 

dietary supplement 
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Sr. 

No 
Plant source Plant molecules Similar scaffold Drug 

 

Sc ID: 21 

 

 

DrugBank ID: DB00150 

Sc ID: 7 

7. Chrysopogon zizanioides Prometryn 

 

Sc ID: 23 

 

 

Altretamine: antineoplastic 

 

DrugBank ID: DB00488 

Sc ID: 9 
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Sr. 

No 
Plant source Plant molecules Similar scaffold Drug 

8. Zingiber officinale 3-Hydroxy-5-(4-hydroxy-3-

methoxyphenyl)pentanal 

 

Sc ID: 24 

 

 

 

Isoetarine: fast-acting bronchodilator 

 

DrugBank ID: DB00221 

Sc ID: 10 
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2.3.3 Screening of the Virtual Library  

Large combinatorial virtual libraries have previously been developed to emphasize the 

chemical space of molecules as drugs by analyzing structure-activity relationships 

(Ghose, Viswanadhan and Wendoloski 1999). Hence, to obtain insights into the 

distribution of molecular data, we created clusters of virtual library molecules and 

studied the characteristics of each cluster. Cluster analysis was performed by two 

methods: (i) plant-based clustering and (ii) scaffold or fragment-based clustering. In 

each method, six clusters of novel virtual molecules were generated using unique but 

randomly selected scaffolds and functional groups (Singh et al. 2009). The molecules 

of the focused virtual library were prioritized based on standard properties such as 

toxicophoric, pharmacophoric and chemophoric (TPC), progressive drug-like (PDL), 

progressive lead-like (PLL), drug-like failure (DLF), and lead-like failure (LLF) 

(Table 2.6). The molecules which scored less T, DLF, LLF scores and more P score 

with stable and non-reactive C score with their respective PDL and PLL scores were 

selected for future drug development. Thus, the scaffolds were further subjected to an 

in-silico enumeration for the generation of focused virtual libraries to design novel 

molecules from known molecules using the already well-established algorithms and 

methods (Karthikeyan and Vyas 2014). 
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Table 2.6: Virtual Library (VL) with PDL, PLL and P, T, C, DLF, and LLF scores (for selected n = 6 molecules of each cluster from Plant-based 

clustering method) 

Cluster 2D Structure of VL molecule PDL
a 

PLL
b 

DLF LLF P T C 

1 

 

0.833 1.000 0 1 17 11 8 

2 

 

0.166 0.817 0 1 36 14 12 

3 

 

0.555 1.908 0 2 42 39 13 
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Cluster 2D Structure of VL molecule PDL
a 

PLL
b 

DLF LLF P T C 

4 

 

0.544 2.129 0 2 56 32 19 

5 

 

0.500 1.477 0 1 44 20 12 

6 

 

0.278 1.000 0 1 42 19 11 

 

a
: Progressive drug-like score; 

b
: Progressive lead-like score; DLF: Drug Like Failure; LLF: Lead Like Failure; P: Pharmacophoric score; T: 

Toxicophoric score; C: Chemophoric score. For more PDL, PLL and P, T, C, DLF and LLF scores, please refer Table S6 and S7. 
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2.3.4 Cluster Analysis of Virtual Library 

a. Plant-Based Clustering 

In plant-based clustering, six clusters were constructed based on unique therapeutic 

properties of medicinal plants, i.e., analgesic, carminative/ laxative, anti-

inflammatory, antimicrobial, diaphoretic/ antipyretic, and expectorant 

(Supplementary Table S2.7.1). Each cluster of novel virtual bioactive molecules was 

built with their extracted three to five scaffolds and functional groups. Hence, six 

clusters of virtual libraries were built representing each therapeutic property. The TPC 

fingerprints were generated for each virtual library (Supplementary Table S2.7.2 –

 S2.7.7) in the form of binary data (Supplementary Table S2.7.8). The total sum was 

calculated for all the molecular fingerprints belonging to their respective scores data, 

such as pharmacophore (n = 297), toxicophore (n = 209), and chemophore (n = 124) 

for all the clusters. Dendrograms were generated based on the sum calculation of 

fingerprints of all clusters for TPC scores by calculating the Euclidean distance matrix 

(Figure 2.7 and Supplementary Table S2.7.9). 
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Figure 2.7: Dendrograms for toxicophoric (a), pharmacophoric (b), and chemophoric (c) fingerprints of virtual library molecules based on plant-

based clustering (Distance/Similarity Measure = Euclidean Distance, Cluster Method = Nearest Neighbor) (Please refer to Supplementary Table 

S2.7.9 for Distance matrix (Euclidean distance)) 
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 The dendrograms for toxicophoric scores (Figure 2.7a) as well as 

chemophoric scores (Figure 2.7c) showed that cluster 2 and cluster 6 were the nearest 

neighbors, which means that the molecules of clusters 2 and 6 contain similar kind of 

chemical fragments, which make them more toxicophoric and chemophoric than 

pharmacophoric. The dendrogram for pharmacophoric scores (Figure 2.7b) showed 

that cluster 4 and cluster 5 had more similar molecules, which might be due to the 

similar kind of chemical fragments like scaffolds and functional groups in them. 

However, cluster 1 and cluster 3 contain several classes of molecules that are 

toxicophoric, chemophoric, and pharmacophoric substructures. The total sum of the 

fingerprint scores was converted to binary form, and absolute differences were 

calculated between each cluster of similar properties. The final result showed that all 

the molecules from the virtual library of the Indian medicinal plants had more 

pharmacophoric (n = 297) and less toxicophoric (n = 209) and chemophoric (n = 124) 

fingerprints. 

b. Scaffold or Fragment-Based Clustering 

In this method, bioactive molecules were divided into clusters (n = 122) based on 

their maximum common substructures. Among them, the top five clusters with the 

highest number of molecules were selected and six clusters were built with three to 

five scaffolds and functional groups (Supplementary Table S2.8.1) for generating 

the virtual library (Supplementary Table S2.8.2- S2.8.7). These molecules belong to 

various medicinal plants having different therapeutic properties. Further screening 

analysis is the same as mentioned in “Plant-based clustering”. The result showed that 

all the novel molecules from the virtual library of Indian medicinal plants had more 

pharmacophoric (n = 250) and less toxicophoric (n = 193) and chemophoric (n = 104) 

fingerprints (Supplementary Table S2.8.8).  
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 This analysis revealed that the differences in the chemical nature of the 

molecules were due to their different fragment structures, which involved scaffolds 

and functional groups represented in the form of fingerprints. The TPC sum ratio in 

plant-based clustering was 1.69 : 2.40 : 1.00, whereas, for scaffold /fragment-based 

clustering, it was 1.86 : 2.40 : 1.00, which was slightly varied for the toxicophoric 

property. These results reveal those novel molecules generated from the bioactive 

molecules of plants having the same therapeutic properties show less toxicity than the 

molecules selected based on similar scaffolds. For example, if the virtual library is 

generated by combining molecules from plants with different therapeutic categories 

such as expectorant, antidiabetic, anticancer, etc., the toxicity of novel molecules 

would increase despite having a similar scaffold structure. Alternatively, if the virtual 

library is generated using the molecules identified from plants having similar 

therapeutic properties, the chances of getting toxic drug-like molecules would 

decrease. It has been suggested that natural templates for generating virtual libraries 

show greater biological relevance by specific distribution properties of natural 

compounds (Lee and Schneider 2001a). Therefore, it is necessary to carefully select 

the molecular scaffolds from the plants having similar therapeutic properties for 

designing novel drug-like molecules. 

2.3.5 Applications of the Virtual Library 

Using the classical drug discovery methods, it usually takes over ten years for a new 

drug from initial discovery to come into the market (Torjesen 2015). Further, the 

estimated cost of research and development of a successful drug is approximately 2.8 

million USD, including the cost of thousands to millions of compounds that did not 

succeed (DiMasi, Grabowski and Hansen 2016). Thus, the probability of clinical 

success decreases to a very low value. Comparatively, modern drug discovery 
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employs virtual libraries and virtual screening to identify new potential drug 

candidates (Gordon et al. 1994). Using various computational tools, possibly an 

infinite number of diverse and novel molecular structures can be designed and 

screened virtually in a very short time (Blondelle, Perez-Paya and Houghten 1996). 

Several tools are now available to generate virtual libraries from molecules, including 

open-source (Truchon and Bayly 2006, Truszkowski et al. 2011, Schuller, Hahnke 

and Schneider 2007) and commercial software (Stevenson and Mulready 2003, 

Kochev 2017, Sud, Fahy and Subramaniam 2012, Buntrock 2002, Liao et al. 2005, 

Feuston et al. 2005, Leach et al. 1999, Yasri et al. 2004) using a multi-step process to 

enumerate the virtual library using scaffolds and functional groups extracted from 

molecules by combinatorial means.  

 Scaffold hopping or lead hopping is an alternate method for discovering 

structurally novel compounds by modifying the central core structure of the molecule 

(Sun, Tawa and Wallqvist 2012, Martin and Muchmore 2009). In silico screening 

based on various chemo- and bioinformatics approaches can be performed to identify 

potentially useful molecules from virtual libraries, which can be chemically 

synthesized and evaluated as potential drug candidates. Diverse molecular scaffolds 

provide diverse chemical accessibility by increasing the possibilities for drug and lead 

structure optimization (Abel et al. 2002). Such combinatorial techniques provide new 

possibilities to pharmaceutical industries by providing an enormous number of 

molecules for in silico screening, increasing the potential of discovering new drug 

candidates quickly, instead of starting with only a few chemically synthesized or 

natural bioactive compounds for screening. Hence, the in-silico enumerated focused 

virtual library that we developed using the open-source software “ChemScreener”, 

integrated with “Scaffolder” (a program to identify the biologically relevant 
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molecular scaffolds from the list of secondary metabolites identified and listed from 

Indian Medicinal Plants), can serve as a powerful resource to screen the molecules as 

candidate drugs for diverse diseases (Karthikeyan and Vyas 2015). This can help 

pharmaceutical industries identify new potential drugs from the Indian medicinal and 

aromatic plants quickly and efficiently and reduce the time required to bring a new 

drug into the market. 

2.3.6 DoMINE  

A chemoinformatics-oriented database of Indian medicinal plants and their natural 

metabolites is the single most productive source of leads for drug development. This 

encouraged us to embark on the project of identifying and cataloguing natural 

compounds reported in the literature, thereby connecting species, molecules, and 

diseases. A vast amount of data about the species, chemicals, and drugs was collected, 

filtered, and used to extract the relevant information from up-to-date literature. 

Several chemoinformatics tools, databases, and techniques have previously been 

employed to achieve similar results. However, they do not include designing novel 

virtual molecules from the known Indian medicinal plant molecules (Polur et al. 2011, 

Pathania et al. 2015, Mohanraj et al. 2018). Hence, we developed a chemoinformatics 

open-source toolkit DoMINE (Database of Medicinally Important Natural products 

from plantaE), using Java. It can be used to build and access the Indian medicinal 

plant database created in this study and generate a scaffold and virtual library (Figure 

2.8). The program comprises a curated database of chemical information gathered 

from various Indian traditional plants. The database consists of the data relating to the 

plant species, chemical compounds, their molecular properties, scaffolds, drug 

molecules, diseases, biological significance, therapeutic uses, plant images (plant, 
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flower, seed and bark) and relevant PubMed references. DoMINE allows the user to 

access the relevant data fields easily by writing a structured query.   

 A huge network was built showing the relationships between the plant species, 

chemical compounds, scaffolds, drugs, disease and therapeutic use. The database is 

compatible with chemoinformatics oriented sub-structure, exact structure and similar-

structure queries to retrieve the details of chemical structure relevant to the particular 

medicinal plants with active chemical ingredients along with their therapeutic 

importance. The program also supports adding details of new plant species, as well as 

updating the existing details. Currently, we have constructed the database with 104 

Indian medicinal plants possessing therapeutic properties that were used for scaffold 

generation and building novel bioactive molecules and subsequently predicting TPC 

scores for prioritizing molecules in the virtual screening process.  
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Figure 2.8: The DoMINE cheminformatics toolkit. A. DoMINE showing the 

medicinal plant species Abrus precatorius with its therapeutic properties. B. DoMINE 

showing virtual molecules built from Indian medicinal plant molecules with TPC 

scores. 
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2.4 Conclusions 

In the present study, we developed a simple, quick, and cost-effective computational 

protocol for generating novel potential drug candidates from the bioactive molecules 

of Indian medicinal and aromatic plants through a chemoinformatics approach. We 

also developed the DoMINE toolkit for the advancement of natural product-based 

drug discovery through chemoinformatics approaches. This study will be useful in 

developing new drug molecules from the known medicinal plant molecules. Hence, 

this work will encourage experimental organic chemists to synthesize these molecules 

prioritized based on the predicted values. These synthesized molecules need to be 

subjected to biological screening to identify potential molecules for drug discovery 

research. 
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Chapter 3: Bridging In-Silico and Experimental: 

Chemoinformatics Analysis for Mass Spectrometry-Based 

Metabolomics study of Soybean 

3.1 Introduction 

Soybean (Glycine max L. Merr.) has global importance and is one of the most widely 

cultivated legumes worldwide. It is rich in seed protein (~36%) and oil content 

(~20%) (https://en.wikipedia.org/wiki/Soybean) and is used for both human and 

animal consumption as well as for industrial purposes. It is also used in folk, Chinese, 

and modern medicine (http://envis.frlht.org/implad). Considering its significance, the 

Indian Council of Agricultural Research (ICAR) established an All India Coordinated 

Research Project on Soybean in 1967, with its headquarters initially in New Delhi and 

subsequently in Pantnagar. ICAR-Indian Institute of Soybean Research was 

established at Indore (M.P.), which is a premier soybean research institute that has 

developed and maintained various soybean germplasm accessions for high oil content, 

high oleic acid content, high protein, bold seeds, good germinability, rust resistance, 

YMV tolerance, and other characteristics. 

The major secondary metabolites in soybean are: (i) phytic acid (1.0 - 2.2%), 

(ii) sterols (0.23-0.46%), (iii) saponins (0.17-6.16%), (iv) isoflavones (0.10-0.30%), 

and (v) lignans (0.02%), which play diverse and indispensable roles in plant 

development, reproduction, defense, etc. (Kang et al. 2010). Soybean has a favorable 

nutrient profile for heart health, decreasing the negative effects of menopause and 

reducing the risks for cancer, paralysis, diabetes, kidney diseases, allergies 

(Choudhary and Tran 2011), etc. Genistein and daidzein are the most potent 

https://en.wikipedia.org/wiki/Soybean
http://envis.frlht.org/implad
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antioxidants among the soy isoflavones.
 
Genistein plays a vital role in immunity and 

inhibits allergic inflammatory responses (Sakai and Kogiso 2008). Likewise, several 

other soybean metabolites such as isoflavones, terpenoids, alkaloids, etc., have 

therapeutic properties against several chronic diseases such as cancer, cardiovascular, 

obesity, and osteoporosis (Munro et al. 2003, Barnes et al. 1996, Balandrin, Kinghorn 

and Farnsworth 1993). 

 Developing drugs from plant-derived compounds is being practiced for 

centuries (Potterat and Hamburger 2008). However, in modern drug discovery, in-

silico pharmacology tools such as building virtual libraries from natural products, 

virtual screening, predicting properties based on 2D and 3D molecular structures, etc., 

are routinely employed (Rollinger, Stuppner and Langer 2008, Lavecchia and Di 

Giovanni 2013, Cheng et al. 2012). These tools can virtually screen a large number of 

molecules in a short time and are highly efficient in identifying potential drugs; 

saving time, energy, and cost. They can effectively filter out the molecules not having 

drug-like or lead-like properties and can provide precise candidates to the 

pharmaceutical industry (Reddy et al. 2007). The integration of experimental and 

computational technologies is a powerful tool for drug development (Yu and 

Adedoyin 2003, Chaturvedi, Decker and Odinecs 2001). Mass spectrometry, coupled 

with the liquid chromatography (LC-MS) method of metabolite screening, plays an 

essential role in drug development (Rossi and Sinz 2001). However, there are very 

few reports on LC-MS analyses in soybean samples to identify the medicinally 

important compounds. Most of the reports are focused on soybean root and seed 

tissue samples for targeted mass spectrometric quantification (Wu et al. 2008, Gu et 

al. 2017, Brechenmacher et al. 2010, Griffith and Collison 2001).  
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 To our knowledge, this is the first study integrating chemoinformatics with 

LC-MS analysis of metabolites for drug designing and development. A 

comprehensive understanding of the metabolite profile of plants is essential for 

assessing their medicinal values. We have previously identified medicinally important 

molecules from Indian medicinal and aromatic plants (Karade et al. 2020). Several 

databases related to soybean have been previously reported, which include 

SoyMetDB (Joshi et al. 2010), SoyCyc (http://soybase.org/soycyc), and Soybean 

Knowledge Base (SoyKB) (Joshi et al. 2014), which were developed explicitly for 

genomics, transcriptomics, proteomics and metabolomics data analyses. This inspired 

us to study and analyze soybean metabolomics data for drug discovery research. This 

chapter focuses on designing drug-like and lead-like molecules based on 

chemoinformatics and UHPLC-MS/MS analysis of secondary metabolites of soybean. 

 For this purpose, soybean small molecules (n=1622) from SoyKB, SoyCyc, as 

well as those text mined from PubMed, and the FDA-approved drugs (n=2354) from 

DrugBank (Wishart et al. 2017), were used to extract corresponding molecular 

scaffolds. UHPLC-MS/MS analyses were performed to detect and validate the known 

and unknown molecules from four soybean varieties (NRC-119, JS-335, JS-7105, and 

JS-9305). Scaffolds obtained from drugs and previously reported soybean small 

molecules were compared by combining annotated mass features of small organic 

molecules detected by UHPLC-MS/MS analyses (n = 7185; including reported and 

unreported molecules) to reveal common scaffolds among them. Later, scaffolds of 

the previously reported molecules were supplied with linkers and functional groups to 

enumerate diverse virtual libraries. The new virtual molecules were prioritized by 

annotation with drug-like and lead-like scores, and (n = 523) potential drug-like 

http://soybase.org/soycyc
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molecules were identified. In summary, this research will be useful in the discovery of 

natural products-based drugs. 

3.2 Materials and methods 

In the present study, soybean was considered a test case. We implemented 

chemoinformatics and UHPLC-MS/MS-assisted approaches to identify and analyze 

small organic molecules to design a virtual library of the novel drug-like and lead-like 

molecules. Figure 3.1 presents an overview of the steps deployed in the present 

methodology. 

3.2.1 Chemoinformatics analysis 

a. Data collection 

Soybean is endowed with several diverse forms of phytochemicals having 

pharmaceutical properties (Salim, Chin and Kinghorn 2008, Nuraini, Rahayu and 

Rifai 2019, Shlyankevich 1995). A list of soybean small molecules (n=1622) was 

prepared from the databases such as SoyKb (SoyKB: Soybean Knowledge Base - 

Metabolite Search -), SoyCyc (https://pmn.plantcyc.org/SOY/class-

tree?object=Compounds#) and by text mining (keywords used: ‘soybean’, ‘Glycine 

max’; Mar 2020) the PubMed literature (https://www.ncbi.nlm.nih.gov/pubmed/) 

(Supplementary Table S3.1.1). Structural information about FDA-approved drugs 

(n=2354) was downloaded from DrugBank (Law et al. 2014) (Supplementary Table 

S3.1.2). 

b. Chemoinformatics tools 

The data about soybean-related small molecules were extracted by text mining the 

PubMed abstracts (https://www.ncbi.nlm.nih.gov/pubmed/) (n = 47,541) using 

PubTator (Wei et al. 2013) (a web-based text mining tool for recognizing the term as 

chemical). The chemical names text mined from PubMed literature were manually 

verified against their PMID numbers for their presence in soybean. Chemical names 

http://soykb.org/search/metabolite.php
http://soykb.org/search/metabolite.php
https://pmn.plantcyc.org/SOY/class-tree?object=Compounds
https://pmn.plantcyc.org/SOY/class-tree?object=Compounds
https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pubmed/
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were converted into SMILES (Simplified Molecular Input Line Entry System) strings 

using the JChem-Base ChemAxon tool (Weber 2008) and screened for 5-6 membered 

rings containing molecules up to 1000 molecular weight. All the data were converted 

to SDF format for easy access in Molecular Operating Environment (MOE) 

(Chemical Computing Group 2008) and the in-house developed ChemScreener 

program (Karthikeyan et al. 2015b, Karthikeyan and Vyas 2014). Descriptor 

generation and analysis were performed using MOE, while ChemScreener was used 

to generate scaffolds and functional groups that were further enumerated with drug-

like and lead-like properties. Cytoscape (Shannon et al. 2003) was used to view and 

analyze the network of the soybean molecules, drugs, and their scaffolds, 

respectively.  
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Figure 3.1: An overview of the analytical steps deployed in the present study 
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3.2.2 Metabolomics analysis 

a. Plant material 

Four soybean varieties (NRC-119, JS-335, JS-7105, and JS-9305) from the 

germplasm collection of the Indian Institute of Soybean Research (IISR), Indore, 

India, were used for this study. These varieties are resistant to lodging, shattering, 

stem fly, bold-seeds, and good germinability. Detailed information about the varieties 

is presented in Table 3.1. The four varieties were sown in a randomized block design 

with three replications during June 2017 in plots at CSIR-National Chemical 

Laboratory, Pune, India. A spacing of 30 cm between rows and 5 cm between plants 

was maintained, and two seeds per hill were sown. Leaf samples were collected 

before the flowering stage, while the seeds were harvested at maturity, from two 

randomly selected plants of each variety in each replication. Both leaf and seed 

samples were ground in liquid nitrogen comprising six biological replicates for each 

of the four soybean varieties. Metabolites from 100 mg of the crushed seed and leaf 

tissue were extracted with 350 ml of 70% ice-cold methanol followed by sonication 

for 20 min and centrifugation at 4°C at 10,000 rpm for 20 min. The supernatant was 

syringe filtered with a 0.22 μm nylon filter (Chromatopak, India) and stored at -80°C 

until further use. 
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Table 3.1: Morpho-physiological characteristics of the four soybean varieties used for 

the study 

Sr 

No 

Character NRC119 JS335 JS7105 JS9305 

1 Growth type Semi-

determinate 

Semi-

determinate 

Determinate Semi-

determinate 

2 Flower color White Purple Purple Purple 

3 Seed size Bold Small Small Small 

4 Seed color Yellow Yellow Yellow Yellow 

5 Hilum Light black 

to Black 

Black Light black 

to Black 

Black 

6 Seed longevity -N.A.- High Poor High 

7 Resistance to lodging -N.A.- No Yes No 

8 Resistance to 

shattering 

Yes Yes No Yes 

9 Tolerant to stem fly Yes Yes Yes Yes 

10 Resistance to 

bacterial pustule 

Yes Yes Yes Yes 

11 Resistant to Yellow 

Mosaic Virus (YMV) 

Yes No Yes Yes 

12 Resistance to 

Myrothecium Leaf 

Spot 

Highly 

resistant 

Moderately 

resistant 

Moderately 

susceptible 

Highly 

resistant 

-N.A.-: Data not available 

b. UHPLC-MS/MS profiling and analysis 

The Accela™ ultra-high-performance liquid chromatography (UHPLC) system 

(Thermo Fisher Scientific, USA) was operated using Xcalibur Ver. 2.0 (Thermo 
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Fisher Scientific, USA) software platform. It was coupled online via a heated 

electrospray ionization source (HESI) with a Q-Exactive-Orbitrap mass spectrometer, 

which was employed for non-targeted metabolomics profiling. The sample injection 

volume was 3 μl, and the metabolites were profiled using a reverse-phase UHPLC 

C18 column: 2.1 × 150 mm, 1.9 μm i.d., and Accela 1250 pump. The column oven 

temperature was set at 40°C, and the sample manager was maintained at 4°C. The 

mobile phase consisted of solvent A (water containing 0.1% formic acid) and B 

(acetonitrile (ACN) containing 0.1% formic acid) employed both in electrospray 

ionization positive (ESI(+)) and negative (ESI(-)) polar modes. The flow rate was 350 

μl/min with a linear gradient elution over 15 min. From the start to 0.3 min, eluent A 

was held at 2%, linearly increased to 45% till 10 min and then to 98% in 13 min. 

Subsequently, eluent B was returned to 2% in 13 min and held for an additional 1.3 

min before returning to the initial conditions. The sample sequence was random. In 

the ESI(+) and ESI(-) modes, the MS spray voltage was 4.2 and 3.6 kV, respectively. 

The capillary temperature was set at 320°C with the sheath gas at 45 arbitrary units 

and the aux gas at 12 arbitrary units. The tube lens was set to 50 V, and the mass 

spectra were recorded over the range 81.034-999.5043 m/z. The resolution of the 

Orbitrap was set at 70,000. The tandem mass spectrometry (MS/MS or MS
2
) data 

were collected with the collision energy between 10 and 35 eV. 

c. Data processing and analysis 

Metabolomics data handling tasks were divided into two steps, i.e., data processing 

and data analysis (Katajamaa and Oresic 2007). LC-MS raw data files (n=48; 4 

soybean varieties x 6 replicates x 2 tissues) were converted to .mzxml formats using 

the MSConvert module of ProteoWizard Ver. 3.0.10922 (Holman, Tabb and Mallick 

2014). The files were then analyzed using two methods (Figure 3.2): (i) XCMS 
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online used with PUTMEDID-LCMS tool (Brown et al. 2011, Tautenhahn et al. 

2012) and (ii) ProbMetab (Silva et al. 2014), an R package. XCMS online is a web-

based platform for processing untargeted metabolomics data. PUTMEDID-LCMS is a 

tool operating in Taverna workflow to identify metabolites from accurate molecular 

mass data acquired in LC-MS studies 

(http://www.mcisb.org/resources/putmedid.html). ProbMetab is an R package based 

on the Naive Bayes machine learning method for probabilistic annotation of 

compounds. ProbMetab was also used to incorporate the information about possible 

biochemical pathways of identified molecules from LC-MS experiments by 

comparing with the Kyoto Encyclopedia of Genes and Genomes (KEGG) soybean 

pathway. Statistical analysis was performed using MetaboAnalyst 4.0 (Chong, 

Wishart and Xia 2019) online, which is a suite of tools for metabolomics analysis of 

MS data. 

 In the first method of preprocessing and identification of metabolites, the 

processed raw data of the positive and negative ionization modes were uploaded in 

XCMS Online (https://xcmsonline.scripps.edu/) for calculating ANOVA. The analysis 

was conducted using the following parameters in a custom-designed R script: (i) 

General parameters: polarity = positive/ negative, retention time format = minutes (for 

statistical analysis in MetaboAnalyst) or seconds (for putative metabolic identification 

in PUTMEDID Taverna workflow); (ii) Feature detection: centWave method, ppm = 

2.5 min. and max peak width = 5 and 20, S/N threshold = 10, mzdiff = 0.01, 

integration method = 1, prefilter peaks = 3, prefilter intensity = 5000, Noise 

filter = 1000; (iii) Retention time correction: Obiwarp method, profStep = 1; (iv) 

Alignment: mzwid = 0.015, minfrac = 0.5, bw = 5, max = 100, minsamp = 1; (v) 

Statistics: statistical test = ANOVA parametric test, p-value threshold = 0.05, fold 

http://www.mcisb.org/resources/putmedid.html
https://xcmsonline.scripps.edu/
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change threshold = 1.5; (vi) Annotation: search for = isotopes and adducts, m/z 

absolute error = 0.015, ppm error = 5; (vii) Identification: ppm tolerance = 2, adducts 

(+ve) = [M+H+]+, [M+Na]+, sample biosource = soybean (biocyc), pathway ppm 

deviation = 5; and (viii) Visualization: EIC width = 100. The obtained peak lists were 

normalized for multivariate statistical analysis using MetaboAnalyst. ANOVA, 

principal component analysis (PCA), and partial least squares discriminant analysis 

(PLS-DA) applied after Pareto scaling were evaluated for sample discrimination in 

data scaling for normalization. 
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Figure 3.2: Workflow highlighting UHPLC-MS/MS data analysis grouped into three categories: preprocessing, metabolite identification and 

statistical analysis
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The LC-MS data were putatively feature annotated using PUTMEDID 

operated in the Taverna workflow environment. The accurate mass for each peak of 

the experimentally determined matching mass was assigned by a single or multiple 

molecular formulae. The LC-MS metabolites matching the molecular formula in the 

Manchester Metabolomics Database (Brown et al. 2009) were compared with a mass 

error of less than ±5 ppm. In the second method of spectral annotation, ProbMetab 

was used for probabilistic annotation of compounds. It is based on matching spectra 

or exact masses from unknown compounds against the spectral data deposited in the 

KEGG database related to soybean. The annotation in a network is displayed in a 

visualization scheme exported to Cytoscape Ver. 2.8.1, wherein observed mass peaks 

are connected if their candidate metabolites are substrate/product of known 

biochemical reactions. 

Tandem mass spectrometry was also performed to confirm the presence of the 

annotated metabolites in the soybean samples using Competitive Fragmentation 

Modeling for Metabolite Identification (CFM-ID) (Allen et al. 2014) webserver. The 

MS/MS sample was prepared by pooling 10 µL of the sample solution, each from the 

48 samples of soybean varieties. Input data of small organic molecules (n=50) for 

MS/MS run was prepared according to their intensity, probability score, and ppm 

error analyzed by ProbMetab and PUTMEDID-LCMS methods. Fragmented 

molecules were identified from KEGG and HMDB (using exact mass and MS/MS 

fragmentation patterns) databases using CFM-ID under the compound identification 

section. Venn diagrams were created using Venny Ver. 2.1 (Oliveros 2015) and the 

heat maps were drawn using the ggplot2 R package (Wickham 2011). 
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3.3 Results and Discussion 

3.3.1 Chemoinformatics analysis of soybean phytochemicals 

In this study, we performed chemoinformatics analysis to identify drug-like and lead-

like molecules from soybean and develop a virtual library of prioritized novel and 

promising drug candidate molecules. For this purpose, molecular structures of 

soybean plant metabolites and drugs were identified and downloaded from databases 

such as SoyKb, SoyCyc, DrugBank, as well as through a literature survey by text 

mining. We also performed mass spectrometry analysis of four Indian varieties of 

soybean to confirm the presence of the molecules in soybean seed and leaf tissues. 

LC-MS data were also used for multivariate analysis. 

a. Descriptor space of soybean small organic molecules 

The chemical space of the soybean metabolites was analyzed by computing the 

descriptors implemented in MOE for the soybean small molecules and drugs. 

Chemical names of the extracted soybean molecules and drugs were converted into 

SMILES strings and screened for 5-6 membered rings containing molecules up to 

1000 molecular weight. A total of 186 2D descriptors were computed for all the 

soybean small molecules and drugs (Supplementary Table S3.1.3, S3.1.4). All these 

descriptors follow the “Lipinski’s rule of five” (Lipinski et al. 1997), which assesses 

the biological activities of orally active drugs. The 2D calculated descriptors encode 

physical properties such as molecular weight, molecular mass density, log S and log 

P, number of rings, number of rotatable bonds, and the number of hydrogen bond 

donors and acceptors. The ranges of descriptors for soybean small molecules were 

computed and compared concerning the generally accepted ranges for the properties 

of drug-like and lead-like molecules. The histograms in Figure 3.3 illustrate the 
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respective ranges obtained for the soybean small molecules and drug molecules. The 

complexity and diversity were also assessed in the molecules from soybean that 

possesses drug-like and lead-like features. 

The molecular weight of the identified soybean small molecules ranged from 

100 – 660. The generally acceptable range for drugs is 100 – 1000, indicating that 

several soybean molecules possessing medicinal properties might be suitable as drug 

molecules. The Oprea (Oprea 2000) number of rotatable bonds for soybean 

phytochemicals ranged from 1 to 16, which falls between the drug range, i.e., 1 to 20. 

The diversity and complexity of the soybean phytochemicals were ascertained by 

computing parameters such as molecular mass density (0.66 – 1), number of hydrogen 

bond acceptors (1 – 10), number of hydrogen bond donor (1 – 7), the log of the 

aqueous solubility (mol/l), i.e., log S (-5 – 1), the log of the octanol/ water partition 

coefficient, i.e., log P, (-2 – 8.5), number of rings (1 – 6), etc., which were closer to 

the corresponding drug range values. For almost all the drug molecules, the number of 

rings was between 1 and 8. It was found that for hydrogen bond donors, almost all the 

soybean phytochemicals were located in the acceptable range of drug molecules. 

These descriptors emphasize the fact that soybean molecules are complex and diverse 

and possess drug-like and lead-like features, which can be further fine-tuned to 

develop potential drugs. All these filtered soybean small molecules (n=660) were used 

to extract scaffolds (n=58) and functional groups (n=59) using ChemScreener 

(Supplementary Table S3.1.5). Scaffolds (n= 306) and functional groups (n= 291) 

were also extracted from all the approved drug molecules (Supplementary Table 

S3.1.6). 
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Figure 3.3: Histograms depicting descriptor ranges of soybean small molecules and approved drug 
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3.3.2 Metabolomics profiling 

Chemical class identification and metabolic profiling using non-targeted LC-MS-

based analysis are well-established. The untargeted UHPLC-MS analysis was 

performed to identify the metabolites in seed and leaf tissues of soybean varieties. All 

the data were processed systematically to MS Level 2 identification of metabolites 

(Acevska et al. 2015). The data were preprocessed using XCMS, which included 

feature detection, retention time correction, and alignment of metabolites. The XCMS 

provides a table of m/z values, retention time, p-value, and folds change for each 

feature, along with the integrated feature intensities from all aligned samples 

(Supplementary Table S3.2). The cloud plot generated by XCMS for positive ion 

mode showed 8810 significant features with p-value <= 0.05 (Figure 3.4), and for 

negative ion mode, 7488 significant features with p-value <= 0.05 (Figure 3.5). These 

results of m/z values and retention time were used as inputs for quantitative and 

qualitative data analysis. For quantitative analysis, ProbMetab and PUTMEDID-

LCMS methods were used to identify the putative metabolites by spectral matching. 

For qualitative statistical analysis, multivariate approaches were used via 

MetaboAnalyst online tools. 
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Figure 3.4: Cloud plot generated by XCMS for positive ion mode 

 

 

Figure 3.5: Cloud plot generated by XCMS for negative ion mode 
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The soybean metabolites were identified using two methods, PUTMEDID-

LCMS workflow operating in the Taverna environment and ProbMetab 

(Supplementary Table S3.3.1). The metabolites were identified by PUTMEDID-

LCMS workflow operated in the Taverna environment by correlation analysis after 

annotating adducts, isotopes, dimers and fragments. However, isomers were detected 

with the same mass and retention time and hence they were difficult to be 

differentiated. Therefore, all the identified isomers have been listed in the analysis 

report. ProbMetab has the advantage of combining positive and negative polar mode 

LC-MS data files, which cannot be done by PUTMEDID-LCMS workflow. Hence, 

single result files were generated for seed and leaf tissues of the four soybean 

varieties. The molecules were prioritized based on ppm error identified from 

PUTMEDID-LCMS workflow and probability scores from ProbMetab. Table 3.2 

depicts the metabolites identified from soybean seed and leaf tissues by PUTMEDID-

LCMS and ProbMetab methods in positive and negative ion modes. UHPLC-MS 

analyses confirmed the presence of small molecules identified by text mining and 

soybean databases in the four soybean varieties. A Venn diagram was created to 

depict differences between the numbers of detected metabolites in soybean seed and 

leaf tissues as identified by ProbMetab (for probability score: 1) and PUTMEDID-

LCMS (up to 2 ppm error) (Figure 3.6). Leaf (n= 18,020; 24.8%) had high metabolic 

content than seeds (n=14,847; 8.8%), and 66.5% (n=13,111) of the metabolites were 

common between the leaf and seed tissues (Supplementary Table S3.3.2). 
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Table 3.2: Small organic molecules (n=20) validated through tandem mass spectrometry by performing in silico fragmentation approach (CFM-

ID) using putatively annotated and identified molecules in UHPLC-MS experiments having up to 2 ppm error and highest probability score i.e., 

1 for soybean samples in positive and negative polar modes 

Sr. 

no. 

m/ z Retenti

on 

Time 

(min.) 

Molecul

ar 

Formul

a 

Adduct ppm 

erro

r 

Proba

bility 

score 

Molecule 

name 

Structure Sam

ple 

Tiss

ue 

Polarity Reported/ Unreported 

1 416.

1499 

7.45 C22H24

O8 

[M]- 

[M+Cl]- 

[M+HC

OOK]- 

0.32 1 1-

Acetoxypin

oresinol 

 

 

Leaf

, 

seed 

Negative Non-reported for 

soybean 

(Reported in Olea 

europaea Linne) 

(Kadowaki et al. 2003)  

2 430.

2102 

11.79 C23H30

N2O6 

[M]- 

[M+HC

OOH]- 

0.00

021 

1 Cinegalline  

 

 

Leaf

, 

seed 

Positive Non-reported for 

soybean 

(Reported in Genista 

cinerea) (Faugeras and 

Paris 1968) 
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Sr. 

no. 

m/ z Retenti

on 

Time 

(min.) 

Molecul

ar 

Formul

a 

Adduct ppm 

erro

r 

Proba

bility 

score 

Molecule 

name 

Structure Sam

ple 

Tiss

ue 

Polarity Reported/ Unreported 

3 448.

19 

11.97 C27H28

O6 

[M]- 

[M-H]- 

2.72 1 Lonchocarp

enin 

 

 

Leaf

, 

seed 

Positive, 

Negative 

Non-reported for 

soybean 

(Reported in Millettia 

richardiana) 

(Rajemiarimiraho et al. 

2013) 

4 570.

1944 

9.41, 

9.45 

C26H34

O14 

[M]- 

[M+Cl]- 

- 1 Decuroside 

III 

 

 

 

Leaf

, 

seed 

Negative Non-reported for 

soybean 

(Reported in 

Peucedanum decursivum 

Maxim.) (Matano et al. 

1986) 
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Sr. 

no. 

m/ z Retenti

on 

Time 

(min.) 

Molecul

ar 

Formul

a 

Adduct ppm 

erro

r 

Proba

bility 

score 

Molecule 

name 

Structure Sam

ple 

Tiss

ue 

Polarity Reported/ Unreported 

5 596.

1386 

7.94, 

8.35 

C26H28

O16 

[M]- 

[M+Na+

HCOON

a]- 

0.19 1 Quercetin 

3-O-[beta-

D-xylosyl-

(1->2)-beta-

D-

glucoside] 
 

 

Seed Negative Non-reported for 

soybean 

(Reported in Eucommia 

ulmoides) (Yang et al. 

2014) 

6 772.

2056 

7.39, 

7.54 

C33H40

O21 

[M]- - 1 Kaempferol 

3-

sophorotrios

ide 

 

 

 

Leaf Positive, 

Negative 

Non-reported for 

soybean 

(Reported in Ficus 

carica L.) (Nadeem and 

Zeb 2018) 
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Sr. 

no. 

m/ z Retenti

on 

Time 

(min.) 

Molecul

ar 

Formul

a 

Adduct ppm 

erro

r 

Proba

bility 

score 

Molecule 

name 

Structure Sam

ple 

Tiss

ue 

Polarity Reported/ Unreported 

7 824.

4615 

7.95, 

8.09  

C43H68

O15 

[M]- - 1 Yiamolosid

e B 

 

 

 

Leaf

, 

seed 

Positive, 

Negative 

Non-reported for 

soybean 

(Reported in Phytolacca 

octandra) (Moreno and 

Rodriguez 1981) 

8 926.

52 

12.44, 

12.45 

C48H78

O17 

[M]- 

[M-H]- 

0.05 1 Saikosaponi

n BK1 

 

 

 

Leaf Negative Non-reported for 

soybean 

(Reported in Bupleurum 

kunmingense Y.) (Luo et 

al. 1987) 
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Sr. 

no. 

m/ z Retenti

on 

Time 

(min.) 

Molecul

ar 

Formul

a 

Adduct ppm 

erro

r 

Proba

bility 

score 

Molecule 

name 

Structure Sam

ple 

Tiss

ue 

Polarity Reported/ Unreported 

9 85.0

9 

2.04, 

2.08 

C5H11

N 

[M]+ 

[M+K+H

COOH]+ 

[M+Na+

HCOOH

]+ 

[M+HC

OONa]+ 

[M+H+H

COOH]+ 

0.70 1 Piperidine  

 

Leaf

, 

seed 

Positive Reported in soybean 

(Luo et al. 1987) 

10 146.

0368 

6.92, 

6.94 

C9H6O

2 

[M]+ 

[M+H]+ 

0.03 1 Coumarin  

 

 

Leaf

, 

seed 

Positive Reported in soybean 

(Beyer et al. 2019) 
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Sr. 

no. 

m/ z Retenti

on 

Time 

(min.) 

Molecul

ar 

Formul

a 

Adduct ppm 

erro

r 

Proba

bility 

score 

Molecule 

name 

Structure Sam

ple 

Tiss

ue 

Polarity Reported/ Unreported 

11 194.

0942 

13.22 C11H14

O3 

[M]+ - 1 Zingerone  

 

 

Leaf

, 

seed 

Positive, 

Negative 

Non-reported for 

soybean 

(Reported in Ginger) 

(Monge, Scheline and 

Solheim 1976) 

12 235.

1205 

2.59, 

2.63 

C13H17

NO3 

[M+K]+ 

[M+Na]

+ 

0.91 1 Lophophori

ne 

 

 

 

Leaf

, 

seed 

Positive Non-reported for 

soybean 

(Reported in 

Lophophora) (Bruhn et 

al. 1978) 

13 238.

0738 

7.10, 

7.11 

C14H10

N2O2 

[M]- - 1 Halfordinol  

 

 

Leaf

, 

seed 

Negative Non-reported for 

soybean 

(Reported in Aeglopsis 

Chevalieri Swing.) 

(Dreyer 1968) 
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Sr. 

no. 

m/ z Retenti

on 

Time 

(min.) 

Molecul

ar 

Formul

a 

Adduct ppm 

erro

r 

Proba

bility 

score 

Molecule 

name 

Structure Sam

ple 

Tiss

ue 

Polarity Reported/ Unreported 

14 268.

0361 

3.15 C15H8

O5 

[M+2Na]

2+ 

[M+NH3

]+ 

0.11 1 Coumestrol  

 

 

Leaf

, 

seed 

Negative Reported in soybean 

(Hutabarat, Greenfield 

and Mulholland 2000) 

15 273.

2663 

12.73 C16H35

NO2 

[M]+ 

[M+H]+ 

0.73 1 Hexadecasp

hinganine 

 

 

 

Leaf

, 

seed 

Positive Non-reported for 

soybean 

(Reported in Manduca 

sexta) (Abeytunga et al. 

2008) 

16 287.

0548 

6.51, 

6.52 

C15H10

O6 

[M+H]+ 0.76 - Aurantinidi

n 

 

 

Leaf

, 

seed 

Positive Non-reported for 

soybean 

(Reported in Impatiens 

aurantiaca) (Iwashina 

2000) 
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Sr. 

no. 

m/ z Retenti

on 

Time 

(min.) 

Molecul

ar 

Formul

a 

Adduct ppm 

erro

r 

Proba

bility 

score 

Molecule 

name 

Structure Sam

ple 

Tiss

ue 

Polarity Reported/ Unreported 

17 301.

2977 

13.53 C18H39

NO2 

[M]+ 

[M+H]+ 

1.70 1 Sphinganine  

 

 

Leaf

, 

seed 

Positive Reported in soybean 

(Ohnishi and Fujino 

1982) 

18 303.

05 

7.93, 

7.95 

C15H10

O7 

[M+H]+ 0.79 - Delphinidin  

 

 

Leaf Positive Reported in soybean 

(Lee et al. 2017) 

19 330.

1211 

8.14, 

8.16 

C17H18

N2O5 

[M]+ 

[2M+Na]

+ 

[M+Na]

+ 

0.17 1 Miraxanthin

-III 

 

 

 

Leaf

, 

seed 

Positive, 

Negative 

Non-reported for 

soybean 

(Reported in Beta 

vulgaris L.) (Kugler, 

Stintzing and Carle 

2004) 
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Sr. 

no. 

m/ z Retenti

on 

Time 

(min.) 

Molecul

ar 

Formul

a 

Adduct ppm 

erro

r 

Proba

bility 

score 

Molecule 

name 

Structure Sam

ple 

Tiss

ue 

Polarity Reported/ Unreported 

20 162.

0316 

5.42 C9H6O

3 

[M]+ 

[M+H]+ 

0.83 1 Umbellifero

ne 

 

 

Leaf

, 

seed 

Positive Reported in soybean 

(Dardanelli et al. 2010) 
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Figure 3.6: Venn diagram showing the differences between soybean seed and leaf annotated mass features of small molecules identified using 

two methods: ProbMetab (for probability score: 1) and PUTMEDID LC-MS in Taverna workflow (up to 2 ppm error) 
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a. Multivariate analysis 

In the present study, we used chemometric approaches to investigate the intervarietal 

differences in soybean. The LC-MS data analysis was combined with multivariate 

chemometric techniques such as PCA and PLS-DA. These provide a powerful 

solution for investigating and comparing the metabolism of various species or 

varieties, which can be employed in drug discovery and drug development (Lee, Kim 

and Yoo 2011, Acevska et al. 2015). Unlike univariate statistics (ANOVA), 

multivariate statistics like PCA score plots reveal grouping between different samples 

of soybean varieties. PCA is an unsupervised method that best explains the variance 

of a data set (X) without referring to class labels (Y). 

In contrast, PLS is a supervised method that uses multivariate regression 

methods to extract information that can predict class labels (Y) through a linear 

combination of data set variables (X). The Variable Importance in Projection (VIP) 

scores estimate the importance of each variable in the projection used in a PLS model 

and are often employed for variable selection. The VIP score plot shows how the 

variables or metabolites contribute to the variations among the samples. This finding 

is consistent with the results of the PCA. Hence, PCA was applied without 

considering the correlation between dependent and independent variables. In contrast, 

PLS-DA is applied based on correlations. A dendrogram was generated to study the 

hierarchical cluster analysis (HCA). 

The peak lists obtained from XCMS were normalized using MetaboAnalyst to 

a constant sum method, which is a commonly used metabolomic normalization 

method. After Pareto scaling of the data, PCA was performed to reveal any variations 

due to outliers in all dataset samples. The PCA 2D score plot of all the samples is 

presented in Figure 3.7. The score plot indicated that the two principal components 
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(PC1 and PC2) cumulatively accounted for 42.3% (26% and 17.7%) of the total 

variance of the dataset for ESI(+) mode and 31% (21.9% and 9.1%) of the total 

variance of the dataset for ESI(-) modes, respectively (Figure 3.7A and 3.7B). The 

score plot reveals a two-dimensional representation of 48 samples (i.e., six biological 

replicates each of seed and leaves of four different varieties) for ESI(+) and ESI(-) 

modes. The PC score plots showed a distinctive and isolated cluster of leaf and seed 

samples for the variety JS-7105 among the eight samples, indicating characteristic 

intervarietal variations of metabolites in positive polar mode. The leaf samples of JS-

7105 formed a different cluster, whereas all other samples were interacting with each 

other due to the presence of similar metabolites.  

However, in the negative polar mode, it was observed that the outlying 

grouping of seed and leaf samples of JS-9305 indicated variations among all other 

samples in the dataset. For further analysis, HCA plots clearly show the segregation 

of leaf and seed samples of JS-7105 apart from each other due to the presence of 

different metabolites in the positive mode (Figure 3.7 C). Similarly, the leaf and seed 

samples of JS-9305 formed a cluster, except for one sample of leaf and seed of NRC-

119 for negative polar mode (Figure 3.7 D). It also reveals that leaf samples of JS-

7105 formed a cluster due to the presence of specific and common metabolites in the 

sample and different from all other soybean varieties. 
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Figure 3.7: Statistical analysis by ANOVA for +ve and -ve polar molecules. PCA plots (A.) +ve (B.) –ve; HCA (C.) +ve (D.) –ve; PLS-DA 

loadings for top 15 important features of differentially co accumulated metabolites in soybean seed and leaf (E.) +ve (F.) –ve. L1: Leaf sample of 

variety NRC119, L2: Leaf sample of variety JS335, L3: Leaf sample of variety JS7105, L4: Leaf sample of variety JS9305, S1: Seed sample of 

variety NRC119, S2: Seed sample of variety JS335, S3: Seed sample of variety JS7105, and S4: Seed sample of variety JS9305. 
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 The PLS-DA model was constructed and validated using MetaboAnalyst. The 

15 most significant variables were selected according to the VIP scores after the 

Pareto scaling for sample discrimination and to identify the features essential for 

group classification (Figure 3.7 E and 3.7 F). It is also provided with the patterns of 

change for those variables, i.e., the concentration of the metabolites in arbitrary units 

in the seed and leaf data sets of the four varieties. This shows the differences between 

molecular features for their content in the four varieties of sample tissues. The 

resonances corresponding to those variables are attributable to metabolites whose 

levels were significantly different either in seed or leaf among the four soybean 

varieties. The results of the VIP plot considerably contributed to the characterization 

of the metabolic profile of each variety based on the PC scores. These results suggest 

that LC-MS-based multivariate analytical approaches are useful for the evaluation of 

potential intervarietal comparison. 

b. Metabolic accumulation in soybean varieties according to KEGG pathways  

Metabolomics plays an essential role in unraveling the mechanistic changes between 

species or varieties, whether due to genetics or environmental conditions by providing 

information about the main pathways and metabolites for phenotypes and genotypes 

of interest (Fiehn 2002, Schauer and Fernie 2006). In this study, the comprehensive 

analysis and identification of small organic molecules in four soybean varieties were 

performed using ProbMetab. This includes the information from peak ranking, 

probabilistic annotation of compounds, and associates with metabolic pathways 

retrieved from the KEGG database (Supplementary Table S3.3.3, Figure 3.8).  
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a. Variety 1 – NRC119 
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b. Variety 2 – JS335 
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c. Variety 3 – JS7105 
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d. Variety 4 – JS930 

Figure 3.8: Metabolic pathway network with the list of pathway names and the number of molecules involved in it for four varieties of soybean 

retrieved from KEGG soybean pathways 
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The workflow presented in Figure 3.2 for ProbMetab involves preprocessing, 

identification of metabolites from UHPLC-MS data, and identifying the metabolic 

pathways for these metabolites by merging them with previously known soybean 

pathways in KEGG. By doing this, small organic molecules were annotated and 

identified by probabilistic ranking using the Bayesian method. The associated 

metabolic pathways were retrieved from KEGG soybean pathways for all the four 

soybean varieties in the form of a Cytoscape network. The top ten pathways were 

selected from the soybean pathways extracted for the four varieties based on the 

medicinally important and drug-like metabolites involved in these pathways 

(Verpoorte 1998, Julsing et al. 2006).  

Further, these ten pathways were divided into three categories based on the 

similarities of type of phytochemical pathways; viz. Category 1: Flavonoids- 

Flavonoid biosynthesis, Flavone and flavonol biosynthesis, Isoflavonoid biosynthesis; 

Category 2: Terpenoid alkaloids- Ubiquinone and other terpenoid-quinone 

biosynthesis, Isoquinoline alkaloid biosynthesis, Tropane, piperidine, and pyridine 

alkaloid biosynthesis; and, Category 3: Others- Phenylpropanoid biosynthesis, 

Betalain biosynthesis, Pentose and glucuronate biosynthesis, 2-Oxocarboxylic acid 

metabolism. Based on this, a heatmap of soybean seed and leaf metabolites identified 

through UHPLC-MS analysis for the ten selected biochemical pathways was 

generated for the four varieties of soybean (Figure 3.9).  
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Figure 3.9: Metabolic accumulation in soybean varieties according to KEGG 

pathways. The heat maps were drawn using the R package ggplot2, and the green-red 

color represents the transformed raw data of soybean metabolites with significant 

differences among four sample varieties. Green and red colors indicate an increase 

and a decrease in metabolite levels, respectively. Categories represent the type of 

metabolic pathways. Category 1: Flavonoids, Category 2: Terpenoids and Category 3: 

Others.  
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The heat maps show that the soybean variety JS-7105 had the highest 

metabolic accumulation and the variety JS-335 had the lowest metabolic 

accumulation in the selected pathways according to the KEGG soybean pathway. 

These outcomes confirm the results of PCA plots for multivariate statistical analysis.  

Metabolic pathway networks with the list of pathway names and the number 

of molecules involved were also retrieved for the other three varieties (NRC-119, JS-

335, and JS-9305) of soybean from KEGG soybean pathways. The remaining data of 

the pathway network and the list of small organic molecules with probability scores 

for the four soybean varieties are presented in Supplementary Table S3.3.3 and 

Figure 3.8. It was observed that the metabolic pathways obtained for JS-7105 were 

more diverse than those for the other three varieties due to higher metabolic 

accumulation, which is visible in the heatmap. Figure 3.8d shows the metabolic 

pathway network with a list of pathway names and the number of molecules involved 

in it for the soybean variety JS-7105 retrieved from KEGG soybean pathways. The 

heatmap also shows the clustering of metabolic pathways in all four soybean varieties 

according to their metabolite content. The number of metabolites extracted under each 

pathway for each soybean variety is limited as the metabolic data for soybean 

extracted from the KEGG database is sparse. Hence, more mass spectrometric 

analysis-based research is required in soybean. 

c. Tandem mass spectrometry 

Tandem mass spectrometry or MS/MS or MS
2
 is a method to screen the molecules 

based on their fragmented molecular masses in an untargeted metabolomics 

experiment (McLafferty 1981). Here, we used tandem mass spectrometry to screen 

and validate the small molecules identified putatively using ProbMetab and 

PUTMEDID-LCMS methods. The input data of metabolites for MS/MS run were 



146 

prepared according to their high intensity, high probability score, and low ppm error 

analyzed using ProbMetab and PUTMEDID-LCMS. ProbMetab was used to annotate 

the molecules by combining mass spectral peaks of negative and positive modes for 

leaf and seed samples of the four soybean varieties. ProbMetab can also be used to 

annotate the molecules by combining the number of sample spectra files, which in this 

case is of a combination of seed and leaf spectral files in negative and positive polar 

modes of the four soybean varieties (Supplementary Table S3.3.3); whereas, 

PUTMEDID-LCMS method is limited to analyze a single file at a time 

(Supplementary Table S3.3.1).  

 Later, all the small molecules obtained using ProMetab and PUTMEDID-

LCMS were filtered with a probability score of 1 and ppm error up to 2, respectively. 

Thus, 211 and 8018 annotated mass features of small molecules were identified in the 

variety NRC119; 198 and 9177 in variety JS335; 242 and 14190 in variety JS7105; 

and 226 and 13608 in variety JS9305, using ProMetab and PUTMEDID-LCMS, 

respectively. The total number of putatively annotated molecules obtained after 

removing duplicate molecules for all the four soybean varieties by combining these 

two methods with the highest probability score i.e., 1 and up to 2 ppm error was 7185, 

of which 557 molecules were known to be present in soybean (Supplementary Table 

S3.4.1). Among these known molecules, 443 molecules were previously reported 

(Text mined + SoyCyc + SoyKB), while the remaining were identified and extracted 

from KEGG soybean pathways using the ProMetab R package. From these, 50 

molecules containing both known and unknown molecules were selected for 

performing tandem mass spectrometry. 

 The CFM-ID webserver was employed to confirm the structures of small 

molecules (n=20) by searching against all the databases present in the webserver 
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(using exact mass and MS/MS fragmentation patterns). However, confirmed 

structures could be obtained only from the KEGG and HMDB databases, most of 

them being identified from KEGG. The query spectra in the form of a list of m/z and 

intensity, parent ion mass and adduct type (neutral for both positive and negative 

polar molecules) were used as inputs for comparing with the pre-trained model to 

select the most likely candidate compound from the databases (KEGG or HMDB). 

The top 10 score ranking lists were considered for molecule validation according to 

the Jaccard scoring function rule. Thus, we identified and validated previously 

reported six small molecules (piperidine (Arai et al. 1966), coumarin (Colpas et al. 

2003), coumestrol (Hutabarat et al. 2000), sphinganine (Ahn and Schroeder 2002), 

delphinidin (Buzzell, Buttery and MacTavish 1987) and umbelliferone (Rao and 

Cooper 1995)) in soybean (Table 3.2, Supplementary Table S3.4.2, and S3.4.3).  

 We also detected and validated 14 new molecules (lophophorine, halfordinol, 

zingerone, 1-acetoxypinoresinol, saikosaponin BK1, lonchocarpenin, decuroside III, 

yiamoloside B, miraxanthin-III, quercetin 3-O-[beta-D-xylosyl-(1->2)-beta-D-

glucoside], cinegalline, hexadecasphinganine, kaempferol 3-sophorotrioside and 

aurantinidin) for the first time in soybean. Most of these molecules were detected in 

both the seed and leaf tissue samples of soybean varieties, except one molecule 

(quercetin 3-O-[beta-D-xylosyl-(1->2)-beta-D-glucoside]) detected only in seed 

tissues and three molecules (kaempferol 3-sophorotrioside, delphinidin and 

saikosaponin BK1) that were detected only in leaf tissues.  

 Many of these molecules have been previously analyzed for their therapeutic 

properties and their beneficial effects on human health. As an example, the lignan, 1-

acetoxypinoresinol (Table 3.2, entry 1) is a derivative of pinoresinol. It is effective in 

leukemia treatment and inhibits P-glycoprotein transporter-mediated MDR-1 gene 
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(Gonzalez et al. 2017). Its beneficial effect on fatty acid synthase (FASN) expression 

in human breast epithelial cell lines to induce anti-cancer effects has also been 

reported (Menendez et al. 2008). Likewise, lonchocarpenin (Table 3.2, entry 3) is a 

hydroxycoumarin reported for its antiprotozoal activities (Rajemiarimiraho et al. 

2014). Similarly, piperidine (Table 3.2, entry 9), which acts as a renin inhibitor, is 

suggested as the most promising drug candidate in treating chronic renal failure 

(Märki et al. 2001). Thus, we used the putatively annotated small molecules detected 

with LC-MS, to perform an accurate mass search via an in-silico fragmentation 

approach, which provided a list of the candidate molecules for drug development. 

3.3.3 Soybean scaffold drug network 

A network was constructed to visualize the relationships among the previously 

reported soybean small organic molecules (Text mined + SoyCyc + SoyKB), FDA 

approved drugs, and soybean small organic molecules detected by UHPLC-MS/MS in 

the four soybean varieties to identify common scaffolds that link the soybean 

molecules to drugs (Figure 3.10, Supplementary Table S3.5). The final network 

consists of four merged networks of previously reported soybean small molecules 

(1622), drug molecules (2354), previously reported soybean small molecules 

identified by UHPLC-MS (557), and the previously unreported annotated mass 

features for soybean small molecules identified by UHPLC-MS) (6628), to study the 

inter-relationship between scaffolds and molecules. All the networks were merged to 

create a supra-network containing 10670 nodes and 11482 edges. The network 

analysis of the topological features computed for the network showed an average 

number of neighbors with 2.152 and characteristic path length with 3.477 scores 

depicting the maximum connectivity of all molecules and their common scaffolds. 



149 

 All the drugs and soybean molecules were compared to reveal common 

scaffolds (n=25) among them (Table 3.3). From them, drug molecules with common 

scaffolds between drug and soybean molecules were n=49, and soybean molecules 

with common scaffolds between drug and soybean molecules were n=48. Three 

soybean molecules (nicotinate, pseudooxynicotine, and quinolinate) had similar 

scaffolds with three drugs (DB13882, DB12911, and DB09220), while 13 soybean 

metabolites scaffolds were also similar to 12 drugs scaffolds. For example, the 

scaffold with ID: 15 of sinapaldehyde possesses a scaffold similar to chloroxylenol, 

an antiseptic and disinfectant agent. Likewise, Sc ID: 01 of myoinositol shows 

similarities with scaffold (ID 23) extracted from lindane, an anti-scabies agent. The 

soybean molecules, indol-3-yl) acetate, indole-3-butanoate, and methyl (indol-3-yl) 

acetate had a similar scaffold (ID- 48) with L-tryptophan (DB ID: DB00150), which 

is an anti-depressant and dietary supplement.  

 This analysis reveals that the soybean molecules identified in this study 

possess properties or bioactivities similar to the commercially available drugs based 

on their common scaffold structures, as structural descriptors encode activity. Similar 

bioactivities of these phytochemicals and metabolites make soybean a prospective 

candidate for further use in drug discovery. Similarly, eight soybean molecules were 

found to have similar scaffolds (ID-25) to sixteen drug molecules, which were 

antihypertensive agents, anti-arrhythmia agents, etc. Likewise, 15 soybean molecules 

with scaffold ID-23 had a similar scaffold to nine drugs and four soybean molecules 

(SC ID-38) had a similar scaffold to six drug molecules, which are alpha-1 adrenergic 

receptors agonist.  

 The total number of common molecules between soybean molecules and drugs 

was n=231, as shown in the network. Among them, the common molecules between 



150 

drugs and soybean (reported molecules identified by UHPLC-MS) were n= 3, 

common molecules between drugs and soybean (reported molecules identified by 

UHPLC-MS + Text mined + SoyCyc + SoyKB) were n=26, common molecules 

between unreported and drugs are n=155 and common molecules between soybean 

and drugs are n = 47. For example, Berberine is a previously reported molecule from 

soybean, which is also an antidiarrheal and antifungal drug (DB04115). Similarly, the 

previously reported soybean molecule Papaverine also acts as a muscle relaxant with 

drug bank ID: DB01113.  

 It was found that 443 molecules were common between soybean molecules, 

which have been previously reported (Text mined + SoyCyc + SoyKB), and 

molecules identified from soybean leaf and seed tissue samples identified through 

untargeted UHPLC-MS. The remaining reported soybean molecules were identified 

from the KEGG database for soybean pathways while analyzing the UHPLC-MS raw 

data using ProbMetab. Thus, out of 1622 previously reported molecules, we identified 

443 molecules in soybean varieties through untargeted UHPLC-MS experiments. 

From them, six soybean molecules were validated through tandem mass spectrometry. 

Similarly, 14 molecules that were not previously reported in soybean were also 

validated by tandem mass spectrometry. This comparison shows that common 

molecules between soybean small molecules and drugs have drug-like or lead-like 

properties and could be developed as drugs after further research. 
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Figure 3.10: Soybean small molecules, drug molecules, and scaffold merged network as depicted in an organic layout in Cytoscape. Nodes = 

10670 edges = 11482 (Nodes: Molecules; Edges: Interactions/ hidden relationships) 
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Table 3.3: Common scaffolds identified in soybean small molecules, drug molecules, and scaffold merged network with information about their 

therapeutic categories (n=10) (Sc: Scaffold) 

Sr. 

No. 

Chemical Class 

(a) 

Scaffold 

(b) 

Drug 

(c) 

 

1. 

 

3-hydroxybenzoate 

 

Sc ID: 38 

 

 

 

Phenylephrine: alpha-1 adrenergic receptor 

agonist 

 

Sc ID: 05 

DB ID: DB00179 

2. Sinapaldehyde 

 

 

Sc ID: 15 

 

 

 

Chloroxylenol: antiseptic and disinfectant 

agent 

 

Sc ID: 31 

DB ID: DB11121 
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Sr. 

No. 

Chemical Class 

(a) 

Scaffold 

(b) 

Drug 

(c) 

3. Myo-inositol 

 

Sc ID: 01 

 

 

Lindane: Antiscabies agent 

 

Sc ID: 23 

DB ID: DB00431 

4. Quinolinate 

 

Sc ID: 45 

 

 

Nicorandil: An orally efficacious vasodilatory 

drug and antianginal 

 

Sc ID: 121 

DB ID: DB00198 
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Sr. 

No. 

Chemical Class 

(a) 

Scaffold 

(b) 

Drug 

(c) 

5. Isomethyleugenol 

 

Sc ID: 23 

 

 

Midodrine: Vasoconstrictor agent 

 

Sc ID: 02 

DB ID: DB00211 

6. Chavicol 

 

 

Sc ID: 25 

 

 

 

Metoprolol: Antihypertensive agent, anti-

arrhythmia agent 

 

Sc ID: 26 

DB ID: DB00264 



155 

Sr. 

No. 

Chemical Class 

(a) 

Scaffold 

(b) 

Drug 

(c) 

7. (Indol-3-yl)acetate 

 

 

Sc ID: 48 

 

 

 

L-tryptophan: Anti-depressive agent, dietary 

supplement 

 

Sc ID: 07 

DB ID: DB00150 

8. Trans-cinnamate 

 

Sc ID: 42 

 

 

Phentermine: Sympathomimetic amine 

anorectic agent 

 

Sc ID: 6 

DB ID: DB00191 
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Sr. 

No. 

Chemical Class 

(a) 

Scaffold 

(b) 

Drug 

(c) 

9. Berberine 

 

Sc ID: 36 

 

 

Berberine: antidiarrheal, antifungal  

 

Sc ID: 165 

DB ID: DB04115 

10. Papaverine 

 

Sc ID: 34 

 

 

Papaverine: muscle relaxant 

 

Sc ID: 129 

DB ID: DB01113 
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3.3.4 Development of a virtual library and virtual screening 

Virtual libraries were generated for the soybean small organic molecules, which were 

previously reported and which were also detected using UHPLC-MS (Table 3.4, 

Supplementary Table 3.6). For this, five previously reported soybean molecules 

were selected from diverse groups of phytochemical classifications according to the 

KEGG phytochemical classification (https://www.genome.jp/kegg-bin/get_htext) 

such as phenylpropanoid-anhydrosecoisolariciresinol (Acevska et al. 2015, Kang et al. 

2010), alkaloid- 1-methyl-beta-carboline or harmane (Adachi et al. 1991, Heshmati, 

Nasehi and Zarrindast 2013), terpenoid- campesterol (Rozanski 1966, Yamaya et al. 

2007), flavonoid-medicarpin (Stafford 1997, Silva et al. 2020) and others- phytic acid 

or phytate (Han 1988). All of these molecules have pharmacological significance, as 

reported before.  

 Anhydrosecoisolariciresinol has previously been shown to have anti-HIV-1 

activity in vitro (Shang et al. 2013). Campesterol, a plant sterol, on the other hand, has 

been reported to decrease cholesterol and shows anticarcinogenic properties (Choi et 

al. 2007). Harmane, an alkaloid, was also been described as an anti-HIV drug and a 

reversible inhibitor of monoamine oxidase A. (Glover et al. 1982). Medicarpin is a 

chemopreventive agent, causing apoptosis and increasing the cytotoxicity of 

chemotherapeutic medicines in multidrug-resistant cancer cells (Gatouillat et al. 

2015). Phytic acid is also known as Myo-inositol hexakisphosphate. It acts as a 

hypocalcemic agent by removing traces of heavy metal ions and hence helps prevent 

over-mineralization of joints, blood vessels, and other parts of the body, which is 

common in older persons (Kapral et al. 2012). 

https://www.genome.jp/kegg-bin/get_htext
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 The scaffolds and functional groups extracted from these medicinally active 

molecules were used as seeds for virtual library generation. The virtual molecules 

were prioritized based on their “Progressive Drug-Like” (PDL), “Progressive Lead-

Like” (PLL), toxicophore, pharmacophore, and chemophore (TPC) scores. The PDL 

and PLL scores were computed based on the progressive limits on physicochemical 

properties. The TPC scores are based on the molecular fingerprint pattern recognition 

module. A virtual molecule is considered to be a good drug-like and lead-like 

molecule if it has more pharmacophoric than toxicophoric scores. Chemophoric 

scores indicate reactivity with other molecules, which should be lower than 

pharmacophoric scores.  

 Previous research has found that virtual molecules derived from natural 

product molecules exhibit the same bioactivity as the natural product molecules due to 

the inheritance of identical scaffolds and functional groups (Lee and Schneider 2001b, 

Rollinger et al. 2008). The novel bioactive molecules are predicted to have anti-

microbial, anti-cardiac, anti-cancer, anti-diabetic, etc., properties, based on the 

scaffold similarities with known drugs having therapeutic properties. Thus, from only 

five soybean molecules, 1225 virtual novel molecules were generated. Likewise, a 

large number of virtual molecules could be generated from the remaining soybean 

reported molecules and virtually screened for various parameters to select candidate 

molecules for drug development, which is highly efficient in developing new drugs. 
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Table 3.4: Virtual library novel molecules with their molecular weight, TPC and PDL, PLL scores (n= 10) [Notes: PDL: Progressive Drug-Like, 

PDL: Progressive Lead-Like, T: Toxicophore, P: Pharmacophore, C: Chemophor.] 

Sr. No. VL molecule structure Molecular weight PDL PLL T P C 

1 

 

 

 

326.559 1.278 2.03 1 21 6 

2 

 

 

 

326.559 1.278 2.03 1 20 6 

3 

 

 

 

326.559 1.278 2.03 1 20 6 
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Sr. No. VL molecule structure Molecular weight PDL PLL T P C 

4 

 

 

 

434.739 0.845 2.775 1 26 8 

5 

 

 

 

434.739 0.512 2.593 1 26 8 
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Sr. No. VL molecule structure Molecular weight PDL PLL T P C 

6 

 

 

 

434.739 0.345 1.799 1 26 8 

7 

 

 

 

392.66 0.086 1.115 1 26 8 

8 

 

 

 

392.66 0.086 1.115 1 26 8 
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Sr. No. VL molecule structure Molecular weight PDL PLL T P C 

9 

 

 

 

350.58 -0.007 0.622 1 22 8 

10 

 

 

 

392.66 0.086 1.536 1 26 8 
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3.4 Conclusions 

In this study, we successfully employed the chemoinformatics and experimental mass 

spectrometric approaches to identify and screen drug-like and lead-like compounds 

from soybean. This study suggests a combinatorial approach employing high-

throughput metabolomics and chemoinformatics methods to efficiently identify new 

drug-like plant metabolites for targeted drug development. These molecules can be 

subsequently purified and experimentally evaluated for drug discovery research.  

 



 

 

 

 

CHAPTER 4 

CHEMOINFORMATICS INVESTIGATION 

ON CHEMICAL DEFENSE IN PLANTS 

 

 

 

 



175 

Chapter 4: Chemoinformatics Investigation on Chemical 

Defense in Plants 

4.1 Introduction 

Plants are sessile organisms and provide food, energy and shelter to insects, animals, 

birds, and other organisms, who depend on them for their lives. While in most cases, 

this relationship between plants and other organisms is mutually beneficial, in some 

cases, the plants become victims of parasitism or predation. Hence, during evolution, 

they have evolved a specific defense system against herbivores. Plants have two kinds 

of defense mechanisms. The first line of defense, called a constitutive defense system, 

is offered by physical or mechanical barriers, such as thorns, waxy epidermal cuticles, 

and bark. The second class of defense systems involves chemical warfare, which 

includes the production of toxic chemicals, pathogen-degrading enzymes, etc. This is 

known as the inducible defense system, and is activated only when the plants are 

attacked by herbivores or pathogens (Wu and Baldwin 2010). Plants produce 

secondary metabolites, known as allelochemicals, to defend themselves against 

herbivores, pests and pathogens, as well as abiotic stresses. Their role may involve 

deterrence/anti-feeding activity, toxicity, or precursors to physical defense systems 

like interference in plant growth (Zavala, Nabity and DeLucia 2013). This biological 

phenomenon of eliciting secondary metabolites or allelochemicals also known as 

allelopathy (Latif, Chiapusio and Weston 2017). 
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Figure 4.1: Schematic view of biosynthesis of secondary metabolites for plant defense 
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4.1.1 Role of secondary metabolites 

Secondary metabolites are formed from the by-products or intermediates of primary 

metabolism (Figure 4.1). They are the diverse organic compounds that are not 

directly involved in the normal growth, development, or reproduction of an 

individual. However, they facilitate ecological interactions, which might provide a 

selective advantage to the organism by increasing its survivability or fecundity. 

Secondary metabolites protect primary metabolism by deterring herbivores, reduce 

tissue loss and avoid infection by microbial pathogens. They also attract pollinators, 

seed-dispersing birds and animals and also play roles in plant-plant competition. 

Three groups of secondary metabolites are involved in plant defense (Freeman and 

Beattie 2008): i) Nitrogen-containing secondary products, ii) Phenolic compounds, 

and
 
iii) Terpenes. 

a. Nitrogen-containing secondary metabolites 

Nitrogen-containing secondary metabolites like alkaloids are synthesized primarily 

from amino acids. They are present in less amount in plants as compared to phenolics 

and terpenoids. Nevertheless, they are important because of their bioactivity as drugs 

and toxins. These are synthesized from aliphatic amino acids via the TCA cycle and 

aromatic amino acids via shikimic acid pathways. Alkaloids are low molecular 

weight, bitter-tasting nitrogenous compounds synthesized from lysine, tyrosine and 

tryptophan and are alkaline. Some alkaloids produced by plants are caffeine, cocaine, 

morphine, nicotine etc. Most of them are utilized by humans as pharmaceuticals, 

stimulants or narcotics. (Figure 4.2).  
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Figure 4.2: Examples of 2D structures of alkaloids 

 

b. Phenolic compounds 

Plants contain a diverse form of secondary metabolites containing one or more phenol 

groups called phenolics. Phenolics are aromatic compounds formed via the shikimic 

acid pathway or the malonic acid pathway. Many of them function as defense 

compounds against herbivores and pathogens. Others function in attracting pollinators 

and fruit dispensers. Among the phenolic compounds, isoflavonoids and tannins play 

major roles in defense against herbivores and pathogens. Lignin provides mechanical 

support to plants. Anthocyanins are colored flavonoids that attract pollinators and fruit 

dispersers and help the plants in propagation (Figure 4.3). Flavonoids like quercetin 

and luteolin protect plants by absorbing harmful UV radiation for their proper 

development and growth. Phenylalanine plays an important regulatory role in the 

formation of many phenolic compounds. Phenylalanine production in plants increases 

during environmental stresses such as nutrient deficiency, low temperature, low light 

intensity, fungal infection, etc. Some phenolic compounds are activated by light called 

phototoxic phenolic compounds like umbelliferone, salicylic acid, etc. Their 

production level may increase up to 100-fold in stressed plants. These phototoxic 

phenolic compounds may cause skin rashes in humans. 
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Figure 4.3: Examples of 2D structures of phenolic compounds 

 

c. Terpenes 

Terpenes represent the largest class of secondary metabolites. They are produced from 

the mevalonic acid pathway, which begins with acetyl CoA or primary intermediates 

of glycolysis. Terpenes function as herbivore deterrents. They can be produced in 

response to herbivore feeding and attract predatory insects and parasites. Terpenoids 

are also called isoprenoids and are classified according to their number of constituent 

isoprene units such as monoterpenoids- two isoprene units, diterpenoids- four 

isoprene units, triterpenoids- six units, and so on. Monoterpenes and sesquiterpenes 

are commonly found in glandular hairs on the plant surface and are the primary 

components of essential oils, which are volatile compounds (Paré and Tumlinson 

1999). Many essential oils function as toxins and protect plants against insects, fungal 

or bacterial attacks. Few examples of plants producing terpenoids are basil (Ocimum 

basilicum L.) produces anethole, ocemene; rosemary (Salvia rosmarinus) - rosmarinic 

acid; thyme (Thymus vulgaris) - α-terpinene, carvacrol, thymol, p-cymene, linalool, 

geraniol, terpineol; black pepper (Piper nigrum) – Capsidiol; cinnamon 

(Cinnamomum camphora) - Camphor, α-terpineol, linalool, etc. (Figure 4.4). 
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Figure 4.4: Examples of 2D structures of terpenoids 

 

The study of plant secondary metabolites has many practical applications. 

These bioactive molecules can help in developing lead-like or drug-like compounds 

used in manufacturing medicines. These molecules can also be used in developing 

natural environment-friendly pesticides, insecticides, etc., which ultimately reduce the 

need for certain costly and potentially harmful pesticides. Agrochemicals such as 

pesticides, insecticides, herbicides, fungicides, etc., play a significant role in 

controlling agricultural ecosystems. Transgenic plant technology is a method for 

adapting plant defense with new molecule genes (Gatehouse et al. 1993). When 

transferred to Physcomitrella patens from rice and the moss Hypnum plumaeforme 

through transformation, momilactones genes show similar transcriptional responses to 

the stresses (Okada et al. 2016). Similarly, when a gene involved in the biosynthesis 

of the molecule responsible for resistance to a particular disease, or bacterial or fungal 

infection, is transferred to a susceptible plant, it can produce the molecule and make 

the plant resistant to biotic stress. Thus, this approach offers an alternative to 

pesticides and chemicals (Langenbach et al. 2016). However, several concerns are 

associated with transgenic technology like genetic contamination, horizontal transfer 

of transgene to other microorganisms etc. 
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Hence, there is considerable interest in developing new compounds or 

methods to control pathogens, animals, and insects that are harmful to plant or crop 

growth. Advancements in combinatorial chemistry and high-throughput screening 

allow the discovery of such allelochemicals (drugs, pesticides, etc.) with desirable 

properties in large chemical spaces. In the present study, we have designed 

allelochemicals specific novel virtual molecules with pesticidal properties and 

quantitatively associated them with pesticide-likeness by estimating their LC50 and 

EC50 values for lower aquatic organisms.  

4.2 Materials and Methods 

The workflow deployed in the present study is presented in Figure 4.5. The literature 

related to the chemical defense of plants from pathogens, animals and insects was 

collected using Google Scholar and PubMed searches. A list of chemical names of 

allelochemicals involved in the chemical defense of plants was prepared manually 

from the literature. In this way, allelochemicals (n=280) were identified from plants 

(n=162) related to chemical defense (Supplementary Table S4.1.1). A list of 

chemical names of pesticide molecules was collected from Pesticide Properties 

Database (PPDB) (Lewis et al. 2006) and PAN Pesticides Database 

(http://www.ipacv.ro/proiecte/risk/files/pan_pesticides_database.htm). All the 

chemical names were converted to SMILES format by the ChemAxon program of 

JChem (Csizmadia 2000). Pesticide molecules were imported and processed in 

Molecular Operating Environment (MOE, Ver. 2010.10) (Chemical Computing 

Group 2008) to get unique (Molecular rings = 5 to 6, Mol. weight <=1000) molecules 

(n = 1985) (Supplementary Table S4.1.2). 

 

http://www.ipacv.ro/proiecte/risk/files/pan_pesticides_database.htm
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Figure 4.5: An overview of the steps deployed in the present methodology 

 

Scaffold molecule networks between pesticides and allelochemicals were 

generated using Cytoscape Ver. 3.7.1 (Su et al. 2014). ChemScreener (Karthikeyan et 

al. 2015b), an in-house developed program, was employed to extract corresponding 

molecular scaffolds and functional groups from allelochemicals to build a focused 

virtual library of novel molecules. Allelochemicals and novel virtual molecules were 

filtered according to (Hao et al. 2011) rules for their pesticide-likeness after 

generating their 2D descriptors in MOE. The pesticide-likeness rules include 

molecular weight (MW) ≤ 435, hydrophobicity (LogP) ≤ 6, number of H-bond 

acceptors (HBA) ≤ 6 and donors (HBD) ≤ 2, number of rotatable bonds (RB) ≤ 9, and 
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number of aromatic bounds ≤ 17. To support the beneficial properties of all novel 

molecules, their toxicophoric, pharmacophoric, and chemophoric (TPC) scores were 

also computed by ChemScreener. The toxicity of the molecules to aquatic organisms, 

such as fish, aquatic invertebrates, and aquatic plants, was estimated using Ecological 

Structure-Activity Relationships (ECOSAR) Class program ( ECOSAR Ver. 2.0) 

(Mayo-Bean et al. 2017).  

4.3 Results and Discussion 

The objective of the present study was to design new virtual pesticide-like molecules 

from the natural bioactive compounds, i.e., allelochemicals involved in chemical 

defense in plants, that can potentially act as biopesticides. For this, we made use of 

the information published in the literature for plants related to chemical defense from 

pathogens, animals, and insects. Subsequently, we developed an in silico virtual 

library of molecules from allelochemicals. For the first time, such methodology was 

employed based on structural similarity pairing with pesticide molecules and 

bioactive compounds. 

4.3.1 Chemoinformatics analysis 

Figure 4.6 provides an overview of the chemical defense of plants by their 

allelochemicals content to various damage-causing agents, which has been extracted 

from the published literature. The figure depicts how plants defend themselves from 

various damages caused by pathogens, insects, animals, and other damages caused by 

UV and other ionizing radiations, weeds, herbicides, mechanical damages, etc. 
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Figure 4.6: Allelopathic interactions between a plant and the pathogen, insect, animals, and others (UV, weeds, herbicide, mechanical damage, 

etc.). 
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Some plants also defend themselves from the attack of multiple damages-

causing agents at a time through multiple allelopathic interactions. For example, 

potato (Solanum tuberosum L.) contains solanine, rishitin, lubimin, chaconine, and 

phytuberin allelochemicals in its roots, leaves, and tops, which can defend it from 

herbivorous insects such as Colorado potato beetle (Leptinotarsa decemlineata) and 

livestock animals, pathogens such as Phytophthora infestans, etc. (Osman and 

Moreau 1985, Felton, Workman and Duffey 1992). Some plants are also able to 

defend themselves in response to other physical damaging agents, such as opium 

poppy (Papaver somniferum) induces morphine in response to mechanical damage 

(Sánchez-Campillo et al. 2009), rosemary (Rosmarinus officinalis) induces rosmarinic 

acid, a photoprotective agent, on exposure to UV and other ionizing radiations, etc. 

(Morimoto et al. 2001).  

Most compounds are selectively found in few plants, such as cardenolides 

found in Nerium indicum, Cynanchum genus, Funastrum clausum, Gomphocarpus 

genus, Marsdenia genus, Matelea maritima, Sarcostemma genus, Asclepias genus, 

etc. Some allelochemicals offer resistance to multiple agents by multiple allelopathic 

interactions. These include DIMBOA (2, 4-dihydroxy-7-methoxy-1, 4-benzoxazin-3-

one) in wheat (Triticum spp.), which provides resistance to insects (European corn 

borer (Ostrinia nubilalis), maize plant louse (Rhophalosiphum maydis), and stalk rot 

(Diplodia maydis)), fungus (Northern corn leaf blight (Helminthosporium turcicum)) 

and herbicide (Atrazine), etc. Whereas, oleandrin in oleander (Nerium indicum Mill.) 

provides resistance to animals (Lymnaea acuminata snails, predatory fish Channa 

punctatus) and nematodes (Bursaphelenchus xylophilus, Panagrellus redivivus, and 

Caenorhabditis elegans) as well. Table 4.1 lists 2D structures of several 
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allelochemicals induced in plants, along with their multiple resistant actions against 

pathogens, animals, insects, and others like herbicides, UV, etc.  

Several organic molecules have been well-studied, and their biological 

activities have already been explained and documented in the scientific literature. All 

the 280 ring-containing allelochemicals identified from 162 plants in this study were 

classified into ten phytochemical classes such as flavonoids, alkaloids, amino acid-

related compounds, fatty acids-related compounds, indoles, phenylpropanoids, 

skimate/ acetate - malonate pathway derived compounds, tannins, terpenoids and 

others (Supplementary Table S4.1.3). It was found that among the 280 unique 

molecules, most of the molecules were terpenoids (104), followed by flavonoids (46), 

alkaloids (32), phenylpropanoids (30), etc. The remaining molecules belong to fatty 

acid-related compounds, amino acid-related compounds, tannins, indoles, etc. Some 

examples for terpenoid molecules related to chemical defense in plants were 

rosmarinic acid, avenalumins, brassinolide, etc.; for flavonoids were wighteone, 

arachidin, sakuranetin, pisatin, etc. Table 4.2 provides few examples of 

allelochemicals induced in plants in response to attack by pathogens, animals and 

insects, with their ten different phytochemical classes and their 2D structures. Several 

allelochemicals were also identified in multiple plants such as cardenolides are 

present in Asclepias genus (milkweeds), Cynanchum louiseae, Funastrum clausum, 

Gomphocarpus cancellatus, Marsdenia macrophylla, Matelea maritima, 

Sarcostemma acidum, Telosma cordata, Tylophora indica, Vincetoxicum 

hirundinaria, etc. (Singh and Rastogi 1970). 
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Table 4.1: Examples of allelochemicals induced in plants and imparting resistance to pathogens, animals, and insects (For more examples, please 

refer to Supplementary Table S1.1) 

Sr. 

no. 

Plant  Allelochemicals with their 2D structures Pathogen, animal, insect, or other stress References 

1 Alfalfa 

(Medicago 

sativa) 
 

1. Medicarpin 

 

2. Sativan 

Fungus: Phytophthora megasperma, Phoma 

medicaginis, Nectria haematococca, 

Colletotrichum trifolii 

(Blount et al. 

1992) 

2 Arabidopsis 

(Arabidopsis 

thaliana) 

 

Camalexin 

Gram-negative bacteria: Pseudomonas 

syringae; Fungus: Alternaria brassicicola, 

Botrytis cinerea 

(Ahuja et al. 

2012) 
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Sr. 

no. 

Plant  Allelochemicals with their 2D structures Pathogen, animal, insect, or other stress References 

3 Milkweed 

(Asclepias 

syriaca L.) 

 

Cardenolide 

Insects: Butterflies (Danaini), bees, wasps, 

beetles, moths, and true bugs 

(Singh and 

Rastogi 1970) 

4 Neem 

(Azadirachta 

indica) 

 

Azadirachtin 

Insects: Mosquitoes: Anopheles spp., tobacco 

hornworm (Manduca sexta) in tobacco, fall 

armyworm (Spodoptera frugiperda) on cotton 

seedlings 

(Maia and 

Moore 2011, 

Senthil-

Nathan 2013, 

Raffa 1987, 

Sengottayan 

2013) 

5 Broad bean 

(Vicia faba) 

 

Wyerone 

Fungus: Botrytis cinerea, B. fabae, B. allii (Letcher et al. 

1970) 
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Sr. 

no. 

Plant  Allelochemicals with their 2D structures Pathogen, animal, insect, or other stress References 

6 Coffee (Coffea 

arabica), Tea 

(Camellia 

sinensis), and 

Cocoa 

(Theobroma 

cacao) 

 

Caffeine 

Gram-positive bacteria: Staphylococcus 

aureus, Bacillus cereus; Gram-negative 

bacteria: Escherichia coli, Klebsiella 

pneumonia; Insects: Honey bee (Apis 

mellifera), Tobacco hornworm (Manduca sexta) 

(Sledz et al. 

2015) 

7 Wheat 

(Triticum spp.) 
 

DIMBOA (2,4-dihydroxy-7-methoxy-1,4-

benzoxazin-3-one) 

Insects: European corn borer (Ostrinia 

nubilalis), maize plant louse (Rhophalosiphum 

maydis), and stalk rot (Diplodia maydis); 

Fungus: Northern corn leaf blight 

(Helminthosporium turcicum); Herbicide: 

Atrazine 

(Niemeyer 

1988) 
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Sr. 

no. 

Plant  Allelochemicals with their 2D structures Pathogen, animal, insect, or other stress References 

8 Oleander 

(Nerium indicum 

Mill.) 

 

1. Oleandrin 

 

2. Uzarigenin 

Animals: Lymnaea acuminata snails, predatory 

fish (Channa punctatus); Nematodes: 

Bursaphelenchus xylophilus, Panagrellus 

redivivus, and Caenorhabditis elegans 

(Wang et al. 

2009) 
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Sr. 

no. 

Plant  Allelochemicals with their 2D structures Pathogen, animal, insect, or other stress References 

9 Lupinus genus: 

L. albus, L. 

mutabilis, L. 

luteus, L. albus, 

L. angustifolius 

 

1. Lupinine 

 

2. Sparteine 

Animals: Herbivores (arthropods, vertebrates)- 

mouse, rats, etc.; Bacteria: Serratia 

marcescens, Bacillus megaterium; Fungus: 

Alternaria porri, Piricularia oryzae 

(Wink 1988) 

10 Tomato 

(Solanum 

lycopersicum) 

 

tomatidine 

Insects: Colorado beetle and snails; Fungus: 

Cladosporium fulvum; Bacteria: E. coli and 

Staphylococcus aureus; Weed: hemp sesbania 

(Osbourn 

1996, 

Hoagland 

2009) 
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Table 4.2: Allelochemicals induced in plants in response to attack by pathogens, animals, and insects, with their phytochemical class and 

structures (n=10) (For more examples, please refer to Supplementary Table S4.1.3) 

Sr. No. Plant Allelochemicals Classification 2D Structure 

1 Yellow-Throated Morning 

Glory (Ipomoea parasitica) 

Ergolines Flavonoids 

 

2 Strychnine tree (Strychnos 

nux-vomica) 

Strychnine Alkaloids 

 

3 Rice (Oryza sativa) Momilactone B Terpenoids 

 

4 Broad bean (Vicia faba) Wyerone acid Fatty acids related 

compounds 
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Sr. No. Plant Allelochemicals Classification 2D Structure 

5 Rape Mustard (Brassica 

rapa), B. juncea 

Brassinin Indole 

 

6 Tobacco (Nicotiana 

tabacum), Helianthus 

annusus, Platanus 

acerifolia 

Scopoletin Phenylpropanoids 

 

7 Moutan or Chinese tree 

peony (Paeonia 

suffruticosa) 

Suffruticosol A Skimate / acetate-malonate 

pathway derived compounds 
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Sr. No. Plant Allelochemicals Classification 2D Structure 

8 Oat (Avena sativa) Avenalumins Others: benzoxazines 

 

9 Almonds, apricot, cherries, 

and peaches 

Amygdalin Amino acid-related 

compounds 

 

10 Maize (Zea mays) 2,4-dihydroxy-1,4-

benzoxazin-3-one 

(DIBOA) 

Tannin 
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4.3.2 Scaffold molecule network 

Scaffolds and building blocks extracted from the 280 organic allelochemicals and 

1985 unique pesticides, were 74, 33, and 56, 62, respectively (Supplementary Tables 

S4.1.4, S4.1.5). A network was constructed to visualize the inter-relationship between 

scaffolds and molecules of allelochemicals and pesticides containing 2306 nodes and 

2350 edges where nodes act as molecules and scaffolds and edges are their 

interactions (Figure 4.7, Supplementary Table S4.1.6). The network analysis of the 

topological features computed for the network showed an average number of 

neighbors with 2.038 and characteristic path length with 2.511 scores depicting the 

maximum connectivity of all molecules and their common scaffolds. It was identified 

that five scaffolds and 15 molecules were common between allelochemicals and 

pesticide molecules. Table 4.3 shows the common scaffolds between allelochemicals 

and pesticide molecules. This comparison shows that the common molecules can be 

developed as pesticides after further research. However, it was also found that among 

the 280 organic allelochemicals, 39 molecules were already used as biopesticides 

(Table 4.4; Supplementary Table S4.1.7). The molecular diversity of these 

biopesticides in the chemical space of allelochemicals is presented in Figure 4.8. It 

was found that the molecules with more unique features in their chemical structures 

occupied separate regions in the plot. Some of the representative biopesticides and 

allelochemicals were randomly picked up, such as azadirachtin, avenacoside B, tannic 

acid, etc., and are highlighted in the 2D PCA plot figure. Scaffolds were extracted 

from all these molecules. It was found that most of the outlier molecules in the PCA 

plot figure had complex polycyclic structures. 
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Figure 4.7: Scaffold molecule network between the allelochemicals and pesticides generated using Cytoscape (Nodes- Molecules, scaffolds: 

2306, Edges – Molecule-scaffold Interactions/ hidden relationships: 2350) 
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Table 4.3: Similar scaffolds (n=5) identified from 280 allelochemicals and 1985 unique pesticides by scaffold molecule network 

Sr. 

No 
Allelochemicals Similar Scaffold Pesticide 

1 

Plant Source: Sorghum, Soybean (Einhellig and 

Eckrich 1984, Dos Santos, Ferrarese and Ferrarese-

Filho 2008)
 

 

Ferulic acid 

 

 

 

 

2-para-cymenol 

2 

Plant Source: Ruta graveolens (De Feo, De Simone 

and Senatore 2002) 

 

1,8-cineole 

 

 

 

 

1,8-cineole 
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Sr. 

No 
Allelochemicals Similar Scaffold Pesticide 

3 

Plant Source: Barley (Chaniago, Lovett and Roberts 

2011) 

 

Hordenine 

 

 

 

 

 

 

4-allylanisole 

4 

Plant Source: Lettuce (Li et al. 1993) 

 

trans-cinnamic acid 

 

 

 

 

Methyl salicylate 

5 

Plant Source: P. polyxenes (Wen, Berenbaum and 

Schuler 2006) 

 

Safrole 

 

 

 

 

Safrole 
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Table 4.4: Organic allelochemicals already in the market as biopesticides (n= 5; selected molecules) (For more examples, please refer 

Supplementary Table S4.1.7) 

Sr no. Source Allelochemicals 2D structure 

1. 

Azadirachta indica (Neem) Azadirachtin 

 

2 

Strychnos nux-vomica L. 

(Strychnine tree) 

 

Strychnine 

 

3 

Papaver somniferum (Opium 

poppy) 

Sanguinarine 
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Sr no. Source Allelochemicals 2D structure 

4 

Chrysanthemum 

(Mums or Chrysanths) 

Pyrethrum 

 

5 

Atropa belladonna 

(Belladonna or Deadly 

nightshade) 

Atropine 
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Figure 4.8: The 2D PCA plot representing the molecular diversity of bio-pesticides (n=39) in chemical space of allelochemicals 
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4.3.3 Virtual Library 

A knowledge-based approach for designing combinatorial libraries and virtual 

screening helps to explore the chemical spaces for molecules with desirable 

properties. In this study, we generated a virtual library of n=380 novel molecules from 

five selected scaffolds (having up to three functional groups) and building blocks 

extracted from allelochemicals (Supplementary Table S4.2.1). It was emphasized 

that the pesticide molecules of natural origin should be environment friendly. 

Therefore, to screen them, we used two methods, 1. Virtual screening by molecular 

scoring and 2. Virtual screening by QSAR estimation of pesticidal toxicities. 

a. Virtual screening by molecular scoring 

For virtual screening of novel virtual library molecules, we have calculated their PDL 

(Progressive Drug Like), PLL (Progressive Lead Like), and TPC (Toxicophoric, 

Pharmacophoric, and Chemophoric) scores for all the virtual library molecules and 

pesticides as well. Figure 4.9 shows that the new molecules designed from 

allelochemicals showed more pharmacophoric features and less toxicophoric and 

chemophoric features (Supplementary Table S4.2.2, S4.2.3). The computed TPC 

scores show that these new molecules are neither toxic nor chemophoric or more 

reactive instead of having drug-like characteristics. For both the model graphs above, 

T, P, and C scores increased and decreased in the same proportions. Therefore, these 

values indicate that the allelochemicals specific virtual library molecules will 

probably act as potential environment-friendly pesticides. They were then screened 

with pesticide-like molecules according to the rules defined by (Hao et al. 2011) after 

generating their descriptor values. The screened pesticide-like novel virtual molecules 

(n= 208/380) were listed in Supplementary Table S4.2.4.  
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Figure 4.9: Comparison of TPC proportion model graph between allelochemical specific virtual library molecules and pesticide molecules. 
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b. Virtual screening by QSAR estimation of pesticidal toxicities  

In this method, we used a QSAR based method to predict pesticidal activities of novel 

virtual molecules generated from allelochemicals for lower aquatic organisms. This 

method is based on the analysis of molecular structures of known molecules having 

experimentally measured activities. Before performing QSAR, descriptors were 

generated for the new virtual library molecules to screen them with pesticide-likeness 

rules. For predicting the aquatic toxicities of screened pesticide-like novel virtual 

molecules (n=208), we performed QSAR analysis using ECOSAR, a computerized 

predictive system that estimates aquatic toxicities against fish, aquatic invertebrates, 

and aquatic plants using structure-activity relationships. With this, we evaluated 

pesticide-like allelochemicals and novel virtual molecules for their chemical toxicity 

towards aquatic organisms (Supplementary Table S4.2.5). Depending on the species 

(fish, daphnid or algae), acute aquatic toxicity was calculated as LC50 or EC50 (mg/L). 

Chronic aquatic toxicity estimate was expressed in ChV (in mg/L). Multiple QSAR 

classes were generated for molecules with multiple functional groups (esters, ketones, 

etc.), with different LC50, EC50, and ChVs for each QSAR class. A lower value 

indicates a higher level of toxicity (Di Toro, McGrath and Stubblefield 2007, Tisler 

and Zagorc-Koncan 1997). We screened n=169/208 pesticide-like molecules with 

pesticidal toxic activities (LC50, EC50, ChV) ≥ 1 for lower aquatic organisms 

calculated from ECOSAR (Table 4.5, Supplementary Table S4.2.6). These 

estimated values of screened virtual library molecules can be used for further 

assessment for developing new pesticides.  
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Table 4.5: Examples of virtual library novel pesticide-like molecules with their TPC scores and LC50 and Chronic values for fish and daphnids 

Sr. 

no. 

VL molecule structure Toxicophores Pharmacophores Chemophores ECOSAR 

Class 

Fish 

LC50 - 

96h 

(mg/L) 

Daphnid

LC50 - 

48h 

(mg/L) 

Fish 

Chronic 

value 

(ChV) 

1. 

 

16 36 16 Neutral 

Organics 

41.39 25.65 4.48 

2. 

 

14 28 14 Benzyl 

Alcohols 

16.43 13.93 1.74 
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Sr. 

no. 

VL molecule structure Toxicophores Pharmacophores Chemophores ECOSAR 

Class 

Fish 

LC50 - 

96h 

(mg/L) 

Daphnid

LC50 - 

48h 

(mg/L) 

Fish 

Chronic 

value 

(ChV) 

3. 

 

15 31 15 Neutral 

Organics 

26.91 16.99 2.98 

4. 

 

31 45 23 Benzyl 

Alcohols 

1304.95 1028.12 113.38 

5. 

 

31 45 23 Acrylamid

es 

105.95 285.73 5.21 
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4.4 Conclusions 

In this study, we developed a computational protocol to identify allelochemicals with 

pesticide-like properties through the chemoinformatics approach. We demonstrated 

their pesticidal activities by screening them with pesticide-likeness and QSAR 

modeling. Further modeling studies with a large amount of experimental data are 

needed to increase the predictive ability of the molecules with pesticidal properties. 

The identified allelochemicals with pesticidal properties need to be isolated from the 

respective plant for further experimental validation and synthesized as potential 

biocontrol agents. These natural or nature-identical pesticides will be cost-effective as 

well as environment friendly. 
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Chapter 5: Summary and Future Directions 

5.1 Summary 

Bioactive compounds produced by plants are valuable as food, medicine, and 

biopesticides. While several medicinally important plants have been studied for their 

bioactive properties, many more are yet to be explored. In this study, we used 

chemoinformatics methods to design novel drug-like and lead-like molecules inspired 

by organic metabolites of Indian medicinal and aromatic plants and food crops such 

as soybean. The names of organic metabolites were identified and selected from 

literature through text mining. Common scaffolds were identified between organic 

metabolites and drug molecules that show drug- or lead-like properties based on the 

computed 2D descriptors such as molecular weight, number of hydrogen bond donor 

atoms, number of rotatable bonds, number of rings, etc. Integrated knowledge of 

chemical scaffold composition and similarity with drug molecules has the potential to 

reveal prospective metabolite relationships with biological activities. With the help of 

in-house developed chemoinformatics tools, diverse scaffolds were used for building 

a focused virtual library. Further, the new virtual molecules annotated with desired 

properties can serve as readymade libraries for experimental screening in the context 

of drug discovery. Through network analysis, protein targets involved in various 

chronic disease-related pathways for the bioactive compounds present in food crops 

and Indian medicinal plants were also depicted.  

 To corroborate the results, we also performed UHPLC-MS/MS experiments of 

leaf and seed tissues of four soybean varieties grown in a plot at the Biochemical 

Sciences Division in CSIR-NCL, Pune. A general sample extraction procedure was 

performed with 70% methanol, and untargeted LC-MS metabolomics analysis was 



 

followed. The raw data were processed using various tools like XCMS Online, 

PUTMEDID-LCMS workflow in the taverna environment, ProbMetab in R 

environment, etc. We detected 6628 annotated mass features and identified 443 small 

molecules out of 1622 previously reported molecules in soybean through untargeted 

UHPLC/MS experiments with these analyses. We also identified 14 new soybean 

molecules that were not reported in soybean before and 06 previously reported 

soybean molecules confirmed by Tandem mass spectrometry (MS/MS). The 

methodology allows efficient detection and annotation of a large number of small 

organic molecules by merging previously known biosynthetic pathways from KEGG 

to that of the plant species by compound substructure sharing. Untargeted 

metabolomics revealed the global picture of the metabolite composition of leaf and 

seeds in the four soybean varieties, which included different classes of metabolites. 

This will help to understand the significant correlation between varieties and tissues 

that will make better decisions to select varieties and tissues containing high amounts 

of the target metabolite for drug development. 

 Integrated knowledge of chemical scaffold composition and similarity with 

drug molecules reveals prospective metabolite relationship with biological activities. 

The scaffold network analysis revealed 14 scaffolds and 73 common molecules 

between previously reported soybean molecules and approved drugs. Similarly, 184 

common soybean molecules were identified from the network of soybean molecules 

identified by UHPLC/MS experiments. A virtual library of novel molecules (n=1225) 

was generated from previously reported soybean molecules (n=5), as an example to 

establish the systematic approaches for drug designing. Further, the new virtual 

molecules annotated with desired properties (TPC, PDL, and PLL scores) can serve as 

readymade libraries for experimental screening.  



 

 This study demonstrates the application of chemoinformatics tools and 

UHPLC-MS/MS metabolomics to reveal both the previously known and novel 

molecules. These molecules can be analyzed in silico and those with desired 

properties (such as drug-like, lead-like, pesticide-like, etc.) can be chosen for 

subsequent targeted isolation. Thus, the study would enable the identification and 

isolation of the desired bioactive molecules from plants. Similarly, we have also 

designed allelochemicals-specific environment-friendly novel molecules inspired by 

pesticidal activities through the chemoinformatics approach. Further, we also 

developed a chemoinformatics open-source toolkit DoMINE (Database of 

Medicinally Important Natural products from plantaE) using Java. It can be used to 

build and access the Indian medicinal plant, soybean, and pesticide-inspired 

allelochemical molecular database created in this study, as well as to generate scaffold 

and virtual library. 

5.2 Future directions 

The major aim of this study was to design novel molecules (drug-like, lead-like, and 

pesticide-like) based on the metabolomics of Indian medicinal and aromatic plants, 

food crops i.e., soybean, and plants involved in chemical defense through 

chemoinformatics approach. This study has predicted several potential novel 

molecules concerning drugs and pesticides, which can be investigated in detail in the 

future. Thus, the study can have the following future directions: 

1. Isolation of target molecules from plants and their confirmation through wet-lab 

analyses  

2. Performing bioactivity studies to confirm their bioactive potentials  

3. Employing the active molecules towards synthesis of drugs, pesticides, etc. and 

their efficacy studies 

4. Investigating other sources of natural products for drug development. 
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Bioactive compound scaffolds are the key to optimize chemical diversity in natural 

products. Furthermore, large data of published findings are available, which needs to 

be analyzed and managed for the best use and efficacy of the available products. We 

used chemoinformatics methods to design novel molecules (drug-like, lead-like, and 

pesticide-like) based on the metabolomics of Indian medicinal and aromatic plants, 

food crops i.e., soybean, and plants involved in chemical defense. To validate the 

results, we also performed mass spectrometry experiments of four Indian varieties of 

soybean to confirm the presence of the molecules in soybean seed and leaf tissues 

grown in a plot at the Biochemical Sciences Division in CSIR-NCL, Pune, India. LC-

MS data were also used for multivariate analysis. This study suggests a combinatorial 

approach employing high-throughput metabolomics and chemoinformatics methods 

to efficiently identify new drug-like plant metabolites for targeted drug development. 

Similarly, we have also designed allelochemicals-specific environment-friendly novel 

molecules inspired by pesticidal activities through the chemoinformatics approach. 

Thus, this study has predicted several potential novel molecules concerning drugs and 

pesticides, which can be subsequently purified and experimentally evaluated in detail 

in the future.  
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Abstract 

Indian medicinal plant species are used in medicinal practices from the most ancient 

traditional times. Drug discovery from natural origin is one of the important factors 

for human development and evolution. In the present study, we successfully 

performed and advanced the step of drug discovery. Herein, we reviewed the recent 

development of chemoinformatics tools and methods. We also performed the 

chemoinformatics analysis and designed novel molecules inspired by organic 

metabolites of Indian medicinal and aromatic plants. For this purpose, 887 ring-

containing molecules identified from text mining of literature related to 104 plant 

species were used to extract molecular scaffolds. With the help of chemoinformatics 

tools, diverse scaffolds were used for building a focused virtual library. Virtual 

screening was done with cluster analysis to predict drug-like and lead-like molecules 

from these metabolites in the context of drug discovery. 

 


