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Synopsis

The aim of the thesis is threefold

1. To connect the mean-field behaviour with the real three dimensional sys-

tem where structural, dynamic and thermodynamic properties have been

studied.

2. To find the jamming transition in the mean-field system in the three di-

mensional limit.

3. To examine the glass forming ability and the role of mixing entropy in the

system.

The thesis is divided into eight chapters. The outline of each chapters are

given below

• Chapter1 introduces to the general area of research described in the the-

sis. A brief summary to the phenomenology of the dynamic and thermody-

namic signatures of slow dynamics and the relevant theoretical approaches

are discussed.

• Chapter2 describes the different properties of the glass transition. The

definitions and different technique for the calculation of different properties

are discussed.

• The dynamics and thermodynamics in the glass-forming system are still

not completely understood. Most of the theories in the glass community

are mean-field in nature. It cannot fully explain the experiments and

simulations results, and thus we have found an innovative way where a 3

dimensional system develops mean-field like properties. In chapter3, we

propose a novel model for a glass-forming liquid which allows to switch in

a continuous manner from a standard three-dimensional liquid to a fully

connected mean-field model. This is achieved by introducing k additional

particle-particle interactions which thus augments the effective number of

neighbors of each particle. Our computer simulations of this system show
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that the structure of the liquid does not change with the introduction

of these pseudo neighbors and by means of analytical calculations, we

determine the structural properties related to these additional neighbors.

• In chapter4, we discuss the relaxation dynamics of the mean-field system

slows down very quickly with increasing k and that the onset and the mode-

coupling temperatures increase. The systems with high values of k follow

the MCT power law behavior for a larger temperature range compared

to the ones with lower values of k and the heterogeneity of the system

decreases with increase in k.

• In chapter5, we study the thermodynamic properties of the mean-field

model, we surprisingly find that the usual thermodynamic integration(TI)

method of calculating the entropy provides unphysical results. It predicts

the vanishing of configurational entropy at state points at which both the

collective and the single-particle dynamics of the system show complete

relaxation. We then employ a new method known as the two-phase ther-

modynamics (2PT) method to calculate the entropy. We find that in the

temperature range studied, the entropy calculated via the 2PT method

satisfies the Adam-Gibbs (AG) relationship between the relaxation time

and the configurational entropy, whereas the entropy calculated via the TI

method shows a strong violation of the same.

• In chapter6, we show the behavior of the mean-field system near the jam-

ming transition. We find the jamming transition happens at lower volume

fraction with increase in k and it shows a power-law behavior of pres-

sure and energy of the system with volume fraction in the vicinity of the

jamming transition. The contribution of the nearest neighbor in the coor-

dination number at the jamming state decreases with increasing in k and

the contribution of the pseudo neighbor increases with k.

• Most of the systems which show glassy behavior have global crystalline

order. Glass forming ability (GFA) depends on the barrier to crystallize

in the system. It can easily crystallize if the system crosses the barrier.

With the increase of the computational facility, it has been found some

glass forming systems show partial crystallinity. In chapter7, we have

estimated the glass forming ability of some glass forming systems. We

have shown which systems are best glass former. We have found some

system shows higher free energy barrier because of the loss of demixing

entropy but for some other system it has lower free energy barrier for

Ujjwal Kumar Nandi 9 CSIR-NCL
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different crystalline structure which does not allow this system to be a

good glass former.

• In chapter8, we finally conclude the whole work and discuss the future

perspective of our work.

Ujjwal Kumar Nandi 10 CSIR-NCL
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Chapter 1

Introduction to glassy dynamics,

thermodynamics and existing

theories

1.1 Introduction

Glass is very useful in our daily life and ubiquitous in nature. It is very important

in the processing of foods. Best known engineered glass is made of silica. It has

lots of use in optical fibre, preservation of insect life in extremely cold weather.

Some metallic glasses are used in the soft magnetism and corrosion resistance.

The basic features of the glass are solid and amorphous.

Glasses can be formed in many ways, and one of the methods is, to begin

with, liquid and cool it down. If we cool a liquid, it undergoes crystallization

below melting temperature (Tm) and forms a crystal. But if we cool the liquid

fast enough, it does not get time to crystallize and remains in a liquid state

below the melting temperature, called supercooled liquid. On further cooling

the supercooled liquid, it goes to a glassy state. Glass is mechanically solid and

structurally liquid. There is no specific definition of glass transition temperature

(Tg). It depends on the rate of cooling of the liquid. It is assumed that the liquid

reaches to glassy state if the viscosity of the liquid becomes 1012 to 1013 poise.

The schematic diagram (Fig.1.1) shows how Tg depends on the rate of cooling.

There are few dynamic properties in the glassy systems that show the signature

of the glassy nature.

As the supercooled liquid state remains in the metastable state, the dynamic

and thermodynamic properties of the glass are predicted by the study of the

equilibrium supercooled liquid state. Most of the theories in the glass are mean-

field theory, and mean-field systems in experiments and simulation are very

14
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Figure 1.1: Schematic representation of glass transition phenomena. Tg

depends on the rate of cooling. Reprinted with permission from[1]. Copyright
[1996] American Chemical Society.

rare.

1.2 Slow Dynamics

As the liquid bypasses the crystallization, then upon cooling the liquid, its dy-

namics slows down very fast. In the end, the relaxation time of the system

exceeds the experimental time scale and this out of equilibrium liquid forms

glass. Most of the properties of glass are found in the equilibrium supercooled

liquid state. The properties of the supercooled liquid are still not fully under-

stood.

1.2.1 Two step relaxation

The most accepted definition of glass transition is purely dynamic. Viscosity or

diffusion, which marks the onset of glassiness, is the integral of some dynamic

Ujjwal Kumar Nandi 15 CSIR-NCL
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correlation functions. These integrals give a number wrapping up the entire

correlation function. Thus lots of information on the glass are lost behind the

number. So it is good to study the correlation function instead of its integration.

The dynamic correlation function is defined as

c(t) =
1

N

N∑
k=1

〈
ϕk(t)ϕk(0)

〉
where c(t) is the correlation function between two generic quantities (ϕk(t), ϕk(0))

with time difference t and k is the particle identity. The most studied corre-

lation function in the liquid is the correlation between the Fourier transform

of the density fluctuations. Fourier transform of the density fluctuation is

δρk(q, t) = exp[−iq.rk(t)] for fixed momentum q. This dynamic correlation is

correlated with the intermediate scattering function FS(q, t)[3]. The correlation

at high temperature decays very quickly. It shows a very short-time ballistic

regime (see Fig.1.2) without colliding other particles and then followed by a

dissipate regime, which shows exponential decay

c(t) = c0 exp(−t/τ)

τ is the relaxation time and c0 is constant.

With lowering the temperature, τ grows rapidly. As the system goes towards

glass transition temperature, the numerical value of τ increases, which does not

show any qualitative signature of glass. But the dynamic correlation shows the

qualitative shape, which changes significantly when the system approaches Tg.

As the temperature is lowered, the correlation function starts to show two-step

relaxation, as shown in Fig.1.2. Two-step relaxation is the most insightful re-

mark in the study of glass transition. One is short time relaxation called β

relaxation, and another is long time relaxation called α relaxation. β relaxation

overlaps with the early α relaxation process. β process shows the plateau in

the decay of the correlation. Region of plateau increases with decreasing tem-

perature, i.e. approaching Tg, plateau region becomes large. The origin of the

two-step relaxation is the caging in the system, i.e. when particles can not move

for a while when their neighbor can not move. This arresting time increases

with lowering the temperature, which is the β region, and after a while, the

correlation function decay, which is the α relaxation.

Ujjwal Kumar Nandi 16 CSIR-NCL
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Figure 1.2: Fs(k, t) at low temperature. Three regions of the relaxation are
shown here.

1.2.2 Dynamical Heterogeneity

The dynamic correlation function decays into two steps at a lower temperature,

which does not mean that the decay from the plateau is exponential. This late

relaxation is non-exponential. The late relaxation follows Kohlraush-Williams-

Watts[4, 5] stretched exponential form.

c(t) = c0 exp(−(t/τ)β)

Where β < 1.The value of β decreases with decreasing the temperature [6]. But

β = 1 at high temperature where correlation function decays exponentially. The

origin of the non-exponential relaxation is due to the heterogeneous dynamics in

the system. When the different region of the system has different relaxation time

with pure relaxation then averaging over all region would give a non-exponential

decay. Another explanation is homogeneous relaxation, where each region has

equally non-exponential relaxation.

The supercooled liquids in experiment[7, 8, 9, 10] and numerical simulation

[11, 12, 13] have showed the relaxation is heterogeneous. Thus there are some

regions where particles move fast and some regions where particles move slow.

The slowing down of the dynamics is associated with the length scale of the

system. This dynamic length scale increases with decreasing temperature or

increasing density.

Ujjwal Kumar Nandi 17 CSIR-NCL
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1.2.3 Fragility

The Arrhenius law is the benchmark for the increase of relaxation time. That’s

why the data is generally plotted as the function of 1
T
.

τ = τ0 exp(∆E/T )

where ∆E is the activation energy. The Angell′s plot [14, 15] shows how the vis-

cosity of different systems changes with temperature with respect to their glass

transition temperature. Some systems show that the logarithmic of viscosity in-

creases linearly with 1
T
which follows Arrhenius behaviour. Some other systems

show that the increase of viscosity becomes steeper and steeper with decreas-

ing temperature. When both kinds of systems reach a glassy state, one which

follows Arrhenius law is called strong glass. The other has steeper relaxation

time with decreasing temperature (non-Arrhenius), which is called fragile glass.

For strong liquid and high temperature fragile glass-former liquid, this ∆E is

independent of temperature. Thus the logarithmic viscosity shows the linear

behavior. But the activation energy of supercooled liquid at low temperature

has temperature dependence and one possible model for the temperature depen-

dence of relaxation time in supercooled liquids is the Vogel-Fulcher-Tammann

(VFT) expression,

τ = τ0 exp[
A

T − T0

] (1.1)

where τ0 is the high temperature relaxation time, A is the temperature depen-

dent fragility index and T0 is the divergence temperature where the relaxation

time of the system diverges and the temperature is known as the VFT tempera-

ture. The fragility of a system measures how steeply the viscosity (or relaxation

time) increases and fragility increases as the system approaches the glass tran-

sition temperature. Fragility is estimated as

m =
[d(log(τ/τ0))

d(Tg/T )

]
T=Tg

= K(1 +K
T0

A
) (1.2)

where K = log(τ(Tg)/τo)

Ujjwal Kumar Nandi 18 CSIR-NCL
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1.3 Breakdown of Stokes-Einstein relationship

Diffusion coefficient is very important parameter in the study of the glass transi-

tion. The diffusion equation of a tagged particle in a liquid with a given density

ρ(r, t) is

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
(1.3)

where D is the diffusion coefficient of the tagged particle. Mean-square displace-

ment is the average distance travelled by particle.

< x2(t) >=

∫ ∞

0

dxx2ρ(x, t) (1.4)

Time derivative of the mean-square displacement relates the diffusion and the

mean-square displacement as

d

dt
< x2(t) >=

d

dt

∫ ∞

0

dxx2ρ(x, t) (1.5)

Now if we apply Eq.1.3 into Eq.1.5 then we get

d

dt
< x2(t) >= D

∫ ∞

0

dxx2∂
2ρ(x, t)

∂x2
(1.6)

d

dt
< x2(t) >= D[x2∂ρ(x, t)

∂x

∣∣∣∞
0
− 2

∫ ∞

0

dxx
∂ρ(x, t)

∂x
] (1.7)

Using the boundary condition, the solution of the Eq.1.7 becomes

< x2(t) >= 2Dt (1.8)

Mean-square displacement can be calculated directly from the particle ve-

locity

< x2(t) >=

∫ t

0

dt′
∫ t

0

dt” < v(t′)v(t”) > (1.9)

where v(t’) and v(t”) are the velocity of particle at time t’ and t” respectively.

If we use the concept of time translation and compare Eq.1.9 and Eq.1.8 we

get

D =

∫ t

0

dt′ < v(t′)v(0) > (1.10)

We can link diffusion to friction using the Langevin equation for the particle
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of mass m

mv̇(t) = −ζv(t) + f(t) (1.11)

ζ is the frictional coefficient and f(t) noise with delta-correlated in time. The

solution of the differential equation (Eq.1.11) is given as

v(t) = exp(−ζt/m)v(0) +

∫ t

0

dt′ exp(−ζ(t− t′)/m)f(t′)/m (1.12)

The relation between amplitude of friction and temperature is given by the

static fluctuation dissipation theorem

< f(t)f(t′) >= 2ζkBTδ(t− t′) (1.13)

Now if we compare Eq.1.5 and Eq.1.13 and put into Eq.1.10 then we obtain

the Einstein’s relation for the diffusion coefficient.

D =
kBT

ζ
(1.14)

The stoke’s relation links viscosity (η) of the system with the frictional co-

efficient (ζ) as

ζ = CηR (1.15)

where C is constant and R is the radius of the particle.

Combining Einstein’s relation and Stoke’s relation, we get the Stokes-Einstein

relation given by

D =
kBT

CηR
(1.16)

The Stokes-Einstein relation usually holds for a diffusing sphere with a size

larger than the size of molecules which comprises the fluid. It also shows simi-

lar behavior whether describing self-diffusion of a molecules surrounded by the

same size of molecule. Dη
T

should be constant irrespective of the temperature

of the system. Usually, we use α relaxation time equivalent of η
T

to save the

computational cost. Some time the Stokes-Einstein relation fails when the vis-

cosity of the system becomes very high. The breakdown of the Stokes-Einstein

relation happens because of the dynamic heterogeneity in the system. Most of

the glass-forming system follows this relation at high temperature and break

down happens when the system undergoes supercooling.
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1.4 Jump in specific heat

When the system reaches a glassy state, then the system can not visit the whole

phase space. Below the glass transition temperature, it is impossible for the sys-

tem to be in equilibrium. Because of the unavailability of the whole phase space

system lacks accessibility of the degrees of freedom. Thus the inaccessibility of

the degrees of freedom reduces the specific heat of the system. It causes a drop

of specific heat of the order 2 or 3 at Tg. The experimental time scale becomes

smaller than the ergodicity time. The time taken by the system to visit a repre-

sentative fraction of the phase space is called the ergodicity time. The specific

heat (Cp) drops to the value of the crystalline phase. The crystal is thermo-

dynamically at global energy minima vibrates around its equilibrium position

with a frequency without any configurational rearrangement. The nature of the

specific heat shows that the particles in the glassy state vibrate around their

equilibrium position without any rearrangement of the configurations. However,

the ergodicity is broken in the glass and the confined particle position analogue

to crystal particle results in a similar specific heat below the glass transition

temperature.

1.5 Entropy crisis

It seems impossible to look at the system at low temperatures because we do

not have enough time to make an equilibrium measurement. Kauzmann [15]

extrapolated equilibrium data to low temperature and predicted the thermo-

dynamic properties (entropy, enthalpy, free energy) at that temperature. The

most famous analysis was the entropy at low temperature. The entropy of the

liquid decreases with decreasing temperature, and it decreases faster than the

crystal since the entropy is the derivative of specific heat and the specific heat

of liquid is higher than the crystal.

dS

dT

∣∣∣
p
=

Cp

T
(1.17)

The difference between the liquid and the crystal entropy is called excess

entropy

∆S(T ) = Sliquid(T )− Scrystal(T ) (1.18)

∆S decreases when the temperature is decreased. Normalizing the ∆S with

it’s value at melting temperature (Tm), i.e. if we plot ∆S(T )
∆S(Tm)

vs T
Tm

then we

can see different liquids in the same plot (Fig.1.3). For some liquids, we find

that extrapolated excess entropy goes to zero at finite temperature, and that
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temperature is defined as the Kauzmann temperature (TK). This suggests that

the entropy of the supercooled liquid is lower than the entropy of the crystal

below TK . This phenomenon is called the Kauzmann paradox or entropy in

crisis. Though the glass is in a metastable state, the entropy is lower than the

crystal, energetically more stable state. This is counterintuitive. Thus TK is a

very significant quantity to study on.

Figure 1.3: Kauzmann entropy crisis. The low temperature extrapolation of
the entropy normalizing by the melting point value. In several cases excess
entropy vanishes at temperature larger than zero. [Figure is taken from [24]

The other thermodynamic variables also show the difference between crystal

and liquid vanishes at finite temperature. But the temperature at which ∆S

disappears, the free energy difference (∆F ) does not vanish. Kauzmann noticed

that ∆F does not go to zero extrapolating the equilibrium data. Thus TK can

not be the locus of continuous transition from liquid to crystal.

1.6 Theories of glass

As how a supercooled liquid becomes amorphous rigid solid is poorly understood,

glass transition remains an active problem in the field of statistical mechanics.

There are several theories and models for the glass transition, and no one is

superior to the other. There is no so-called “The Theory” for glass transition,

and all the theories have their advantages and disadvantages. We will discuss
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some of them which are more popular.

1.6.1 Free Volume Theory

Free Volume Theory in the glassy system [17] is one of the earlier theories to

understand the glass transition phenomenon. It was first introduced by Cohen

and Turnbull [17, 18, 19] and later on it was extended by Cohen and Grest

[19, 20]. The free volume theory in glass relies on a set of assumptions.

• A volume in molecular scale of each molecule can always be defined.

• There is a excess volume beyond a critical value vc of v, vf = v − vc.This

excess volume can be treated as free.

• The redistribution of the free volume vf = v − vc does not associate with

free energy.

• A molecule can only move when vf for that molecule becomes larger than

a certain value v∗f .

From the last assumption, it can be said that when the local volume v exceeds

some critical volume due to the spontaneous density fluctuation, it results in

diffusive transport. Thus the molecular motion goes to a diffusive regime when

v exceeds vc + v∗f , where v∗f is the minimum amount of free volume required to

diffuse. So we can write the average diffusion coefficient as below,

D =

∫ ∞

v∗f

D(v)P (v)dv. (1.19)

Where D(v) is the diffusion coefficient of a molecule with free volume v and

P (v) is the probability density of finding a cell with a free volume between v

and v+dv. Now, we have to find P (v) for a system in which no energy exchange

is associated with a redistribution of the free volume. The average free volume

is

vf = Vf/N (1.20)

where Vf is the total free volume and N is the total number of molecules in the

system. Total free volume can be divided into small regions with average free

volume vi of each molecule in the ith region. If Ni is the number of molecules in

the ith region, then we can write

γ
∑
i

Nivi = Vf (1.21)
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where γ is a geometric factor which corrects the overlap of the free volume.∑
i

Ni = N (1.22)

The number of ways of redistributing the free volume without changing the Ni

is

W = Ni/
∏
i

Ni! (1.23)

Now using Lagranges multiplier method to maximize W for a given N and Vf ,

we get

Ni = exp[−(λ+ βvi)] (1.24)

where λ and β are the Lagrangian multipliers. By obtaining λ and β from

Eq.(1.21) and (1.24), and passing them to the continuum limit for vi, we get

P (v) = (γ/vf )exp[−γv/vf ] (1.25)

As D(v) is slowly varying function, so we put it equal to Dv∗f
in Eq. (1.19) and

get

D = Aexp[−γv∗f/vf ] (1.26)

Where A is constant. Thus it predicts that D will vanish when no free volume

is available for the random redistribution (i.e. vf = 0). Since the free volume

may be assumed to possess a linear temperature dependence, over narrow tem-

perature interval (i.e. vf ∝ αp(T − T0), where αp is the coefficient of thermal

expansivity), so eq(1.26) can be written as

η(T ) = Aexp[B/(T − T0)] (1.27)

which is the Vogel-Fulcher-Tamann (VFT) [21, 22, 23] form, where T0 is the

temperature at which the free volume vanishes (and thus viscosity diverges).

1.6.2 Adam Gibbs Theory

Adam, Gibbs and Di Marzio first attempted to connect the increase of corre-

lation length with the decrease of configurational entropy. Adam-Gibbs[24, 25]

first connected the dynamic quantity (relaxation time) with the thermodynamic

quantity (configurational entropy). A remarkable calculation by Flory[26] in the

context of the polymer where he obtains a temperature (melting temperature)

below which the number of accessible configurations becomes less than 1. The

basic idea of the Adam-Gibbs relation is that the relaxation happens at low
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temperature through a larger region of correlated particles, and this region is

called the cooperative rearranging region (CRR)[25, 27, 28]. Adam-Gibbs de-

fined the CRR as the smallest region which can be rearranged without affecting

the surroundings. The number of states (Ω) available to a CRR is constant, and

it is independent of temperature (T) or size of the CRR. So the total number of

available states can be found in the global system is

N = ΩN/n, (1.28)

where N is the total number of particles in the system and n is the average

number of particles in each CRR. Then the total number of CRRs is N/n. The

configurational entropy Sc of the system is the logarithmic density of the number

of the locally stable states.

Sc =
1

N
logN =

logΩ

n
. (1.29)

The above equation can be rearranged and the average number of particles in

each CRR can be written as

n = logΩ/Sc. (1.30)

As Sc decreases with decreasing temperature and Ω is constant, there is an

increase in n with decreasing temperature. As the increase in n is equivalent to

the increase in the length scale of CRR, which is related as n ξd where ξ is the

linear size of CRR. The relation between the size of the CRR and the energy

barrier (∆) to rearrange the region is proportionate in nature. According to the

AG theory, ∆ ∼ n ∼ 1/Sc. If we compare it with the Arrhenius Law, we get

τ = τ0exp(
B

TSc(T )
), (1.31)

where B is a constant. Thus AG theory can explain how the length scale of the

system and the relaxation time increases when the configurational entropy and

the temperature decreases. This theory is very useful and well accepted in the

study of glass-forming liquids to understand the behaviour of relaxation time

with configurational entropy.

1.6.3 Random First Order Transition theory

Random first-order transition (RFOT) theory [29, 30, 31, 32] proposed by Kirk-

patrick, Thirumalai and Wolynes give insight into the relation between super-

cooled liquid and p-spin class of mean-field glasses. If we agree that the finite-

dimensional system has many states, then a different physical portion of the
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system can be found in different states. An interface separates each portion of

the system. There is some energy cost associated with the interface because

of the dissimilar amorphous configuration between two physical portions of the

system. Thus we have two different states separated by an interface that causes

surface tension. The energy cost is proportional to the surface tension and the

surface area. As the surface tension is the free energy cost per unit area to

create an interface, free energy cost in the supercooled liquid can be written as,

△Fcost = Y Rθ (1.32)

θ ≤ d− 1, where d is the physical dimension of the system. Y is the generalised

surface tension to create an interface, and R is the size of the domain. This R

is the range of the CRR region as shown by the AG theory. Now the question

is that what fixes the critical size of the region. AG theory fixes the size by

the pure combinatorial way neglecting the surface tension between the CRRs.

In contrast, RFOT theory takes inspiration from the classical nucleation theory

(CNT), where the size of the critical nucleus is fixed, balancing surface tension

cost and thermodynamic gain. Surface tension cost is already defined earlier.

The thermodynamic drive comes from the fact that to rearrange a droplet of

radius R, having an exponential number of states in the region, the rearrange-

ment can happen to any state. If the region does not rearrange, the region stays

in a single state, which results in an entropic penalty. Thus the thermodynamic

drive is the free energy contribution coming from the configurational entropy of

that region.

△Fgain = −TScR
d (1.33)

Where T is the temperature and Sc is the configurational entropy. Thus the

total free energy of the system will be,

Ftot = △Fcost +△Fgain = Y Rθ − TScR
d (1.34)

Classical nucleation theory states that a new state will form when the two op-

posing forces (surface tension and thermodynamic gain) will balance, dFtot

dR
= 0

and as a result a new length scale comes out,

ξ =
(Y (T )

TSc

) 1
d−θ

(1.35)
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1.6.4 Mode coupling theory

Mode coupling theory (MCT) is a microscopic theory[33, 34, 35, 36] for the glassy

dynamics. This is the first theory, which can quantify and predicts the dynamics

in glass-forming systems. In the earlier sections, it has been discussed about the

physical picture of the glass forming system considering cooperativity or the

number of accessible states. MCT was introduced to make more quantitative

measures and to predict the dynamics of the system. Earlier, we have found

that supercooled liquid shows a two-step relaxation at low temperatures. The

physical reason behind the two-step relaxation is the cage effect, where one

particle is stuck by its neighbor, and the particle is arrested temporarily, and it

comes out of the cage after a while, which causes the two-step relaxation in the

system. MCT predicts the cage formation perfectly[37]. The main assumption

in the MCT is the absence of activation energy in the system, which makes

this theory mean-field in nature. The crucial part of the MCT is that it takes

the structure of the system as input in the equation and gives the dynamics of

the system as an output. Though we know that the structure near the glass

transition temperature is a boring quantity that does not change much, on the

other hand, the dynamics of the system changes a lot. But the MCT shows

a lot of change in dynamics for the small change in structure. MCT predicts

the way the correlation function reach the plateau and leaves the plateau in a

quantitative manner. Thus MCT can explain both the β and α relaxation. So

far, MCT captures both the short time and large time relaxation along with

quantitative predictions about the approach and departure from the plateau. It

shows good agreement with the experimental data.

One drawback of the MCT is that it predicts the length of the plateau and

results in the divergence in the α relaxation time at finite temperature Tc. MCT

predicts the power-law divergence as

τα ≃ (T − Tc)
−γ

(1.36)

Where γ is the fitting parameter and Tc is the divergence temperature. It has

been found that Tc is finite and experimental data does not show such divergence.

Thus it can be treated as the artefact of the theory. Despite some drawbacks,

in theory, it has lots of contribution to understand the dynamics of the glass-

forming liquids.
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1.7 Conclusions

Many theories and models have been studied in glass physics, and some of

them have been discussed here. None of the theories or models can explain the

properties of glass completely. Thus it requires lots of studies to understand the

glass better. We have seen that MCT, the most popular theory which predicts

the dynamics or the RFOT, which predicts the length scale in the glass-forming

system, are mean-field in nature, and we know that mean-field means each

particle is connected with the rest of the system. Suppose we increase the

dimensions of the system, then the connectivity increases. But the experiments

and most computer simulation studies are three or lower dimensional systems.

Though the MCT is a mean-field theory, it does not entirely explain even the

higher dimensional systems. Thus, it is important to connect the mean-field

theory with the real glass-forming system by modifying its mean-field nature.

In this thesis, we have made a novel real system that can go d dimensional

system to mean-field system continuously. In practice, we do this by increasing

for each particle the number of particles it can interact with, thus increasing

the effective interaction of the particle with the rest of the system. In contrast

to the studies discussed above, our method does not modify in a significant

manner the local structure of the liquid even when the MF limit is reached,

i.e. the structure is always similar to the one of the 3D system. So this al-

lows us to study how increasing connectivity affects the relaxation dynamics

without modifying in a noticeable manner the structure, and hence to probe

the dynamics upon approaching the MF limit. We will discuss structure and

dynamics of this novel mean-field system in chapter3 and chapter4 respectively.

In chapter5, we have studied the thermodynamics of the mean-field system and

its correlation with the dynamics and we find that the regular thermodynamic

integration (TI) method of calculating the entropy provides unphysical results.

It predicts that while both the collective and the single-particle dynamics of

the system survives, the entropy disappears. We then employ the two-phase

thermodynamics(2PT) method to calculate the entropy. We find that with an

increase in k, the difference in the entropy calculated using the two methods

(2PT and TI) increases. We also find that in the temperature range studied,

the entropy calculated via the 2PT method shows a validity of the AG relation-

ship, whereas the entropy calculated via the TI method shows a strong violation

of the same. We have studied the jamming transition in the mean-field system

and how the properties of the jamming transition change as we go from the real

3D system to the mean-field system, which is described in chapter6. We find

that the jamming transition point (ϕj) goes to a lower volume fraction with an
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increasing mean-field nature.

In chapter7, we present a comparative study of the glass-forming ability

of binary systems with varying compositions, where the systems have similar

global crystalline structures (CsCl+fcc). Most of the systems which show glassy

behavior have global crystalline order. Glass forming ability (GFA) depends on

the barrier to crystallize in the system. It can easily crystallize if the system

crosses the barrier. With the increase of the computational facility, it has been

found that some glass-forming systems show partial crystallinity. In this thesis,

we have tried to estimate the glass-forming ability of some glass-forming systems.

We have shown which systems are the best glass former. We have found some

systems show a higher free energy barrier because of the loss of demixing entropy,

but for some other systems, it has a lower free energy barrier for a different

crystalline structure which does not allow this system to be a good glass former.
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Chapter 2

Properties of glass transition

2.1 Structural properties

The structure of supercooled liquids (even the glass) is very much similar to

high-temperature liquids. The easiest way to express the structural quantity is

the radial distribution function, g(r)[1, 2] (See Fig.2.1[Left]).

g(r) =
1

4πr2ρ

〈 N∑
i=1

N∑
j ̸=i

δ(r − rij)
〉

(2.1)

where ρ is the density of the system and N is the total number of particles in

the system. rij = rj − ri.

It shows the local density of the particle (ρg(r)) in the system at a distance r.

The total number of particles in the system can be calculated using the following

equation

∫ ∞

0

dr4πr2ρg(r) = N − 1 (2.2)

Different phases of the system can be understood very well using rdf. As the

local density of the system changes at different phases, the peak height of rdf

changes at a different phases of the system.

The easiest way to analyze the structure in the experiment is the structure

factor, S(q), which is computed using the inelastic neutron scattering. This is

the Fourier integral of the radial distribution function.

S(q) = 1 + 4πρ

∫ ∞

0

drr2
sin(qr)

qr
(g(r)− 1) (2.3)
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Figure 2.1: (Left) Radial distribution function at different temperatures. As
the temperature decreases, the peak height of the plot increases. (Right) S(q)
shows the similar effect at low and high temperatures.

It shows the structural properties in the momentum space q. As the density of

the system is increased or the temperature is lowered, these structural quantities

become sharper, and the peak height also increases (See Fig.2.1[Right]).

2.2 Dynamic properties

Most of the predicted theories for the glass transition are dynamic in nature. It

shows lots of changes in dynamics near the glass transition temperature. Most

of the dynamic properties are computed from the time correlation function and

the displacements.

2.2.1 Relaxation time

We have calculated the relaxation times obtained from the decay of the overlap

function q(t), where q(t = τα, T )/N = 1/e. It is defined as

⟨Q(t)⟩ ≡
〈∫

drρ(r, t0)ρ(r, t+ t0)

〉
=

〈
N∑
i=1

N∑
j=1

δ(rj(t0)− ri(t+ t0))

〉

=

〈
N∑
i=1

δ(ri(t0)− ri(t+ t0))

〉

+

〈
N∑
i=1

∑
j ̸=i

δ(ri(t0)− rj(t+ t0))

〉
(2.4)

The overlap function is a two-point correlation function of local density ρ(r, t).

In the thesis, we consider only the self-part of the total overlap function (i.e.
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neglecting the i ̸= j terms in the double summation). Earlier it has been shown

to be a good approximation to the full overlap function. So, the self part of the

overlap function can be written as,

⟨Q(t)⟩ ≈

〈
N∑
i=1

δ(ri(t0)− ri(t+ t0))

〉
(2.5)
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Figure 2.2: Fs(k, t) at low temperature. Three regions of the relaxation are
shown here.

Again, the δ function is approximated by a window function ω(x) which

defines the condition of “overlap” between two-particle positions separated by

a time interval t:

⟨Q(t)⟩ ≈

〈
N∑
i=1

ω(| ri(t0)− ri(t+ t0) |)

〉
ω(x) = 1, x ≤ a implying “overlap”

= 0, otherwise (2.6)

where the function ω(x) is 1 if 0 ≤ x ≤ a and ω(x) = 0 otherwise. The parameter

a is chosen to be 0.3, a value that is slightly larger than the size of the cage.

Thus the quantity Q(t) tells whether or not at time t a tagged particle is still

inside the cage it occupied at t = 0. Another way to calculate the relaxation

time is from the self part of the intermediate scattering function. This is the
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self part of the density-density time correlation function in momentum space.

Fs(k, t) =
1

N

〈 N∑
i=1

exp(−ik.(ri(t)− ri(0)))
〉

(2.7)

Dynamics shows the two-step relaxation when the system undergoes a super-

cooled state, as shown in Fig.2.2 . One is small-time relaxation which is called β

relaxation, and another one is long time relaxation which is called α relaxation.

Mean square displacement

The origin of the two-step relaxation can be analyzed with the mean square

displacement (MSD) with respect to a tagged particle.

⟨r2(t)⟩ = 1

N

N∑
i=1

〈
|ri(t)− ri(0)|2

〉
(2.8)

MSD has the early regime where r ∝ t (See Fig.2.3). In this regime, the

particle shows ballistic motion without colliding other particles, and the size

of this regime is the cage size of the system. Particle enters into the diffusive

regime when collisions happen with other particles. Then ⟨r2⟩ ∝ t.
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low T

Ballistic regime

Diffusive
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Figure 2.3: Mean square displacement at low temperature.
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2.2.2 Dynamic Fragility

A rapid increase in relaxation time with decreasing temperature is a signature

of the glass-forming liquids. When the relaxation time increases exponentially

with decreasing temperature (Arrhenius behavior) then it is called strong glass,

and in some systems, the relaxation time grows faster than the exponential

behavior, which is called fragile glass. The fragile system follows the Vogel-

Fulture-Tamann (VFT) equation

τ(T ) = τ0 exp
[ 1

K(T/T0 − 1)

]
. (2.9)

Here T0 is the so-called VFT temperature at which the relaxation time of

the system is predicted to diverge. The parameter K describes the curvature of

the data in an Arrhenius plot and hence can be considered as a measure for the

fragility of the glass-former.

2.2.3 MCT Power law behavior

Mode coupling theory (MCT) predicts that close to the critical temperature Tc

of the theory the relaxation times show a power-law divergence:

τ(T ) = τMCT(T − Tc)
−γ . (2.10)

Using this functional form to fit the temperature dependence of the relax-

ation time, we obtain Tc(k). However, at the lowest T ’s deviations are observed,

and the increase in τ is weaker than the power-law predicted by MCT. This

deviation is usually attributed to the existence of “hopping processes”, i.e. a

component in the relaxation dynamics that is not taken into account in the

idealized version of the MCT.

2.2.4 Dynamic Heterogeneity

One of the hallmarks of glassy dynamics is that time correlation functions are

stretched in time. The reason for this non-Debye relaxation has been a long-

standing puzzle with the contrasting views that each small domain of the sample

shows the same stretched time dependence or, alternatively, that the stretch-

ing is related to dynamical heterogeneities [28]. Experiments and simulations

have shown that the homogeneous scenario is not compatible with the obser-

vations, i.e. glass-forming systems do have a significant amount of dynamical

heterogeneities (DH) [4, 5, 6, 7].
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One first step to probe the DH is to look at the so-called non-Gaussian

parameter (NGP) α2(t) which is defined by

α2(t) =
3 ⟨r4(t)⟩
5 ⟨r2(t)⟩2

− 1 (2.11)

where r(t) is the displacement of a tagged particle within a time t. Thus α2(t)

measures whether or not the distribution of the particle displacement is Gaus-

sian [8, 9, 4, 10].

Next, we discuss the other parameter that is often related to the dynamic

heterogeneity i.e. the dynamic susceptibility. The fluctuations of the overlap

function Q(t) are related to a dynamic susceptibility, which indicates whether

or not the system relaxes in a cooperative manner, i.e., shows dynamical het-

erogeneities [12, 12, 13] Thus, one defines as,

χ4(t) =
1

N

[
⟨Q2(t)⟩ − ⟨Q(t)⟩2

]
(2.12)

as a measure to quantify this cooperativity.

2.3 Thermodynamic Properties

Ideal gas entropy

Particles in the ideal gas limit do not interact with each other with any kind of

potential; they only have momentum. The total Hamiltonian of the ideal gas

system

H({pi}) =
∑
i

p2i
2mi

where pi is the momentum and mi is the mass of the ith particle.

The partition function for the monodisperse ideal gas in d- dimensional sys-

tem at temperature T (β = 1
kBT

) can be written as

Z(β) = ΠN
i=1

1

hd

∫
ddqid

dpi exp
[
− β

p2i
2mi

]
=

V N

hdN

{∫
ddpi exp

[
− β

p2

2m

]}N

=
V N

λdN

(2.13)

where λ =
√

βh2

2πm
and h is the planck constant.

Now for the indistinguishable particles, the partition function is written as
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Z(β) =
1

N !

V N

λdN

We know Sid = −dF
dT
. Where F is the free energy. F can be written as

F = −kBT lnZ

If we consider d=3 then Sid can be written as

Sid

kB
= ln(V ) +

3

2
ln

2πmT

h2
− lnN +

5

2
(2.14)

Since most of the systems studied in this thesis are binary, a similar analysis

can be done for the binary system (with type A and type B particles).

Z(β) =
1

NA!NB!

V NA+NB

λdNA
A λdNB

B

where λA =
√

βh2

2πmA
and λB =

√
βh2

2πmB
. mA is the mass of type A particles and

mB is the mass of type B particles.

The ideal gas entropy for the binary system in 3D can be written as

Sid

kB
= N ln(V )−NA lnNA −NB lnNB − 3NA lnλA − 3NB lnλB +

5

2
N (2.15)

However, if the particles are divided into ’M’ distinguishable species such

that N =
∑M

i=1Ni then the ideal gas entropy per particle can written as,

Sd
ideal =

5

2
− ln(ρ) +

3

2
ln
(2πT

h2

)
+

1

N
ln

N !

ΠM
i=1Ni!

(2.16)

2.3.1 Excess entropy

The excess entropy (Sex) is the loss of entropy in the system due to the interac-

tion between particles i.e. the differences between the total entropy (Stot), and

the ideal gas entropy.

Stot = Sideal + Sex (2.17)

Sex = Stot − Sid (2.18)

We have calculated Stot using two different methods one is thermodynamic in-

tegration (TI) and another is the two-phase thermodynamic (2PT) method. If

we subtract Sid from the Stot then we get the Sex from both the methods.
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Thermodynamic integration

The method for the calculation of excess entropy is described in details in

Reference[14]. Sex is evaluated via thermodynamics integration from infinite

temperature to the target temperature (T ∗) using the Eq.2.19

Sex(β
∗) = β∗〈U〉

−
∫ β∗

0

dβ
〈
U
〉

(2.19)

where β∗ = 1
kBT ∗ and < U > is the average per particle potential energy of the

system at target temperature.

Two-phase thermodynamic method

2PT is another conventional method to compute the entropy of liquid[15, 16]. In

2PT, the thermodynamics quantities can be computed using the density of state

(DOS) of the liquid. One can decompose the DOS of liquid as a sum of solid-

like and gas-like contributions. To compute the thermodynamic quantities, the

phonon in the solid-like DOS was treated as a non-interacting harmonic oscilla-

tor, as in the Debye model[17]. On the other hand, gas-like DOS was described as

a low-density hard-sphere fluid, which can be computed analytically[17]. Using

the 2PT description, Lin et al.,[15, 16] demonstrated that the thermodynamics

quantities of the LJ fluid can be computed very accurately over a wide range of

thermodynamics state points using a very small MD trajectory. In a later work,

Lin et al.[18] calculated entropy of the binary fluid using the 2PT method. Here,

we provide a brief overview of the decomposition of DOS in 2PT. Nevertheless,

we refer the reader to the original papers[15, 16] for a full 2PT description.

The density of state function, g(ν), can be computed from the mass-weighted

atomic spectral densities, defined as[15, 16],

g(ν) =
2

kBT

N∑
j=1

3∑
k=1

mjs
k
j (ν) (2.20)

where mj is the mass of the jth atom, k denotes the direction in the Cartesian

coordinates, and skj (ν) are the atomic spectral densities defined as,

skj (ν) = lim
τ→∞

∣∣∣∫ τ

−τ
vkj (t)e

−i2πνtdt
∣∣∣2

2τ
(2.21)

where vkj (t) denotes the velocity component of jth atom in the kth direction.

Atomic spectral density, skj (ν), can be computed from the Fourier transform of

the velocity auto-correlation function (VACF) ckj (t).
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skj (ν) = lim
τ→∞

∫ τ

−τ

ckj (t)e
−i2πνtdt (2.22)

where ckj (t) is given by:

ckj (t) = lim
τ→∞

1

2τ

∫ τ

−τ

vkj (t+ t′)vkj (t
′)dt′ (2.23)

Thus, Eq. 2.20 can be rewritten as:

g(ν) =
2

kBT
lim
τ→∞

∫ τ

−τ

N∑
j=1

3∑
k=1

mjc
k
j (t)e

−i2πνtdt (2.24)

As we mentioned above, g(ν) can be decomposed into solid and gas-like

components in 2PT formalism. Based on the diffusivity of the system compared

to hard-sphere gas at the same density, Lin et al.[15] proposed a self-consistent

fluidity factor,f , which decides the degree of freedom shared in solid and gas

components. The relationship between f and dimensionless diffusivity, ∆, can

be derived (for the details of the derivation, readers are referred to ref [15]).

2∆−9/2f 15/2 − 6∆−3f 5 −∆−3/2f 7/2+

6∆−3/2f 5/2 + 2f − 2 = 0
(2.25)

The dimensionless diffusivity constant, ∆, depends on the material proper-

ties.

∆(T, ρ,m, g0) =
2g0
9N

(
6

π

)2/3(
πkBT

m

)1/2

ρ1/3 (2.26)

where, g0 = g(0) is the DOS of the system at zero-frequency. Using f

obtained from Eq. 2.25 , 2.26, the DOS in the gas-like diffusive component can

be obtained using a hard-sphere diffusive model:

gg(ν) =
g0

1 +
[
πg0ν
6fN

]2 (2.27)

Given the DOS in the gas-like component, one can compute the solid-like

DOS, gs(ν), using the equation,

g(ν) = gg(ν) + gs(ν) (2.28)

Once the decomposition of DOS has been done, any thermodynamic quantity,A,

can be computed using the corresponding weight function
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A = β−1

[∫ ∞

0

gg(ν)W g
Adν +

∫ ∞

0

gs(ν)W s
Adν

]
(2.29)

The weight function for entropy in solid, Ws
S, and gas like, Wg

S, component

is defined as

Ws
S(ν) = WHO

S (ν) =
βh̄ν

exp (βh̄ν)− 1
− ln [1− exp (−βh̄ν)] (2.30)

where β = 1
kT

and h̄ is the Plank’s constant.

Wg
S(ν) =

1

3

SHS

k
(2.31)

where, SHS denotes the entropy of the hard sphere. Using the Eq.2.28,2.31,

the total entropy of the system can be written as,

Stot = Ss + Sg (2.32)

2.3.2 Vibrational Entropy

Stillinger and Weber first introduced the formalism of the inherent structure

and established the concept of the basin in the potential energy surface [19].

Vibrational entropy is calculated by making a harmonic approximation about

a local minimum [20, 21, 22, 23]. To obtain the vibrational density of states

(DOS), we calculate the Hessian (see section 2.4) and then diagonalize it. Once

we obtain the DOS, Svib is calculated using the following calculations.

First we calculate the canonical partition function of a harmonic oscillator

in one dimension with frequencies ωi and mass ’m’ is given by,

zharm(ω, T, V ) =

∫
dpdq

h
exp

(
− βp2

2m
− βmω2q2

2

)
=

1

h3N

∫
d3Npexp(−βp2

2m
)

×
∫

d3N−3qexp− βmω2
i q

2

2

∫
d3q

=
1

h3N

(2mπ

β

) 3N
2

3N−3∏
i=1

( 2π

βmω2
i

) 1
2
V

= Λ−3N

3N−3∏
i=1

( 2π

βmω2
i

) 1
2 V

(2.33)

where Λ is the thermal de Broglie wavelength. Λ =
√

βh2

2πm
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βfbasin = − ln zharmonic,

βfbasin = −3N

2
ln(

2π

h2β
)− ln(V )− 1

2

3N−3∑
i=1

ln(
2π

βmω2
i

)
(2.34)

The basin entropy, Sbasin can be written as,

Nsvib = Sbasin = −δfbasin
δT

=
3N

2
ln(

2π

h2β
) + ln(V ) +

1

2

3N−3∑
i=1

ln(
2π

βmω2
i

) + T [
3N

2

1

T
+

1

2
(3N − 3)

1

T
]

=
3N

2
ln(

2π

h2β
) + ln(V ) +

1

2

3N−3∑
i=1

ln(
2π

βmω2
i

) + (3N − 3

2
)

(2.35)

Svib =
3

2
ln
(2πT

h2

)
+

ln(V )

N
+

1

2N

3N−3∑
i=1

ln
( 2πT

mωi
2

)
+ 3− 3

2N
(2.36)

2.3.3 Configurational entropy

Configurational entropy is the count of minimum in the potential energy land-

scape. In the supercooled liquid regime, the configurational space can be divided

into inherent structure minima and vibrational motion around them. The num-

ber of these inherent structure minima are called the configurational entropy

(Sc) of the system, which can be calculated by subtracting vibrational entropy,

Svib from the total entropy of the system.

Sc = Stot − Svib

= Sideal + Sex − Svib

(2.37)

2.4 Hessian Calculation

We need to calculate the frequencies (ω) for the calculation of vibrational entropy

(Svib). We calculate ω from the hessian calculation. Hessian is the double

derivative of the two-body potential (ujk) with respect to the coordinate of

particles j and k. For the mean-field system, the total interaction energy utot =

u+ upseudo which will be discussed in detail in chapter3.

The total hessian for this system is
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Htot(j, k) =
∂

∂r⃗j

∂

∂r⃗k
utot =

∂

∂r⃗j

∂

∂r⃗k
(u+ upseudo)

Here

H(j, k) =
∂

∂r⃗j

∂

∂r⃗k
u

and

Hpseudo(j, k) =
∂

∂r⃗j

∂

∂r⃗k
upseudo

We are going to calculate hessian for the potential energy of the pseudo

particles.

Hpseudo(j, k) =
∂

∂r⃗j

∂

∂r⃗k
upseudo(rjk − Ljk)

Let us assume rjk − Ljk = r′jk

∂r′jk
∂xj

=
∂(rjk − Ljk)

∂xj

=
xj − xk

rjk
=

xjk

rjk
(2.38)

∂r′jk
∂xk

=
∂(rjk − Ljk)

∂xk

= −xj − xk

rjk
= −xjk

rjk
(2.39)

First derivative:

∂upseudo(r′jk)

∂r⃗k
= î

∂upseudo(r′jk)

∂xk

+ ĵ
∂upseudo(r′jk)

∂yk
+ k̂

∂upseudo(r′jk)

∂zk
(2.40)

î
∂upseudo(r′jk)

∂xk

= î
∂r′jk
∂xk

∂upseudo(r′jk)

∂r′jk
(2.41)

∂upseudo(r′jk)

∂r⃗k
= −

∂upseudo(r′jk)

∂r′jk
r̂jk (2.42)

Second derivative:

∂

∂r⃗j
(−

∂upseudo(r′jk)

∂r′jk
r̂jk) = (̂i

∂

∂xj

+ ĵ
∂

∂yj
+ k̂

∂

∂zj
)(−

∂upseudo(r′jk)

∂r′jk
r̂jk) (2.43)

î
∂

∂xj

(−
∂upseudo(r′jk)

∂r′jk
r̂jk) = î

∂

∂xj

(−
∂upseudo(r′jk)

∂r′jk
)⊗ r̂jk −

∂upseudo(r′jk)

∂r′jk
(̂i

∂

∂xj

⊗ r̂jk)

(2.44)
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Let us do the calculation for first term

−î ∂

∂xj

(
∂upseudo(r′jk)

∂r′jk
)⊗ r̂jk = −î

∂r′jk
∂xj

∂

∂r′jk
(
∂upseudo(r′jk)

∂(r′jk)
)⊗ r̂jk = −î

xjk

rjk

∂2upseudo(r′jk)

∂2r′jk
⊗ r̂jk

(2.45)

= −
∂2upseudo(r′jk)

∂2r′jk

r⃗jk
rjk
|x−component ⊗

r⃗jk
rjk

(2.46)

= − 1

r2jk

∂2upseudo(r′jk)

∂2r′jk
(r⃗jk ⊗ r⃗jk)x-component (2.47)

Now looking at the second term

−
∂upseudo(r′jk)

∂r′jk
(̂i

∂

∂xj

⊗ r̂jk) (2.48)

= −
∂upseudo(r′jk)

∂r′jk
(̂i

∂

∂xj

⊗ xjk î+ yjkĵ + zjkk̂

rjk
(2.49)

= −
∂upseudo(r′jk)

∂r′jk

[ î

rjk
⊗ ∂

∂xj

(xjk î+ yjkĵ + zjkk̂) + î
∂

∂xj

(
1

rjk
)⊗ r⃗jk

]
(2.50)

= −
∂upseudo(r′jk)

∂r′jk

[ 1

rjk
î⊗ î+ î

∂rjk
∂xj

∂

∂rjk
(

1

rjk)
⊗ r⃗jk

]
(2.51)

= −
∂upseudo(r′jk)

∂r′jk

[ 1

rjk
î⊗ î+ î

xjk

rjk
(− 1

r2jk
)⊗ r⃗jk

]
(2.52)

= −
∂upseudo(r′jk)

∂r′jk

[ 1

rjk
î⊗ î− î

xjk

r3jk
⊗ r⃗jk

]
(2.53)

= − 1

rjk

∂upseudo(r′jk)

∂r′jk
(I)x-component +

1

r3jk

∂upseudo(r′jk)

∂r′jk
r⃗jk ⊗ r⃗jk|x-component

(2.54)

Combining first and second term , the second derivative becomes
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Hpseudo(j, k) =
∂

∂r⃗j

∂

∂r⃗k
upseudo(rjk − Ljk)

=
(
− 1

r2jk

∂2upseudo(r′jk)

∂2r′jk

+
1

r3jk

∂upseudo(r′jk)

∂r′jk

)
r⃗jk ⊗ r⃗jk −

1

rjk

∂upseudo(r′jk)

∂(r′jk)
I

(2.55)

If we follow the similar calculation for the regular hessian (H(j, k)) then we

get,

H(j, k) =
∂

∂r⃗j

∂

∂r⃗k
u(rjk)

=
(
− 1

r2jk

∂2u(rjk)

∂r2jk

+
1

r3jk

∂u(rjk)

∂rjk

)
r⃗jk ⊗ r⃗jk −

1

rjk

∂u(rjk)

∂(rjk)
I

(2.56)

2.5 Weight histogram analysis method

In many systems, it has been found that the systems stuck in a local minimum

of the free energy surface because of the high activation energy barrier from the

trapped state to the surrounding state. Then system spends a large time in the

trapped state and apparently undergoes the breakdown of the ergodicity. In

order to avoid this problem, we employ a biased potential in the system so that

the probability of visiting the low probability state increases. We remove the

effect of the bias potential and get an estimation of the free energy surface of that

phase space. Glassy system is such an example where the system stuck in the

metastable state many a time at low temperature. The most effective method

to estimate free energy is the weight histogram analysis method (WHAM)[24].

Now, we will work on the WHAM equation.

In the umbrella sampling and in the free energy perturbation methods the

Hamiltonian H{λ}(x)

H{λ}(x) = H0(x) +
L∑
i=1

λiVi(x) =
L∑
i=0

λiVi(x) (2.57)

where λ0 = 1 and V0(x) is identical to H0(x), x is the coordinate of the

particles, λi are the coupling parameter. L is the number of independent sets of

simulation with L different coupling parameter (λi). The {λ} represents the set
of values λ1,λ2,λ3...λL. V1(x),V1(x)....VL(x) are the restraining potential, and it
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is function of x. The restraining potential is chosen such a way that sampling

distribution to be shifted along the reaction coordinate. The reaction coordinate

(ξ) is function of x. The sample can be equilibriated at any reaction coordinate

by adjusting the coupling parameter. The potential mean force (PMF) or free

energy at that sate point can be estimated with the correction in the restraining

potential.

The probability density from a simulation with hamiltonian H{λ}(x) can be

written as

P{λ},β(ξ) = exp
[
−βW{λ},β(ξ)

]
= ⟨δ[ξ − ξ̂(x)]⟩{λ},β (2.58)

where β = 1
kBT

, kB is the boltzmann constant and T is temperature. W{λ},β(ξ)

is the PMF for the simulation with coupling parameter {λ} and temperature T.

The single histogram equation is used to calculate the free energy of a sin-

gle simulation. Let us assume that a simulation is carried out at temperature

T1 = 1
kBβ1

with λ0 = 1 and with the restraining potentials weighted by the

coupling parameter λ1, λ2...λL. The quantity of interest is then the probability

Pβ2(ξ) where the coordinate ξ would take the system to a equivalent state like a

simulation is done with λ0 = 1 and other coupling parameters are set to zero at

temperature T2 =
1

kBβ2
. PMF profiles can be generated by taking the logarithm

of the probabilities. The histogram is generated by putting the data into bins

and the single histogram equation becomes,

P̃β2 [ξ ∈ (ξm, ξm+1)]

=

∑η(m)
j=1 exp

[
(β1 − β2) Ṽ

(m)
0,j +

∑L
i=1 λiβ1Ṽ

(m)
i,j

]
∑B

k=1

∑η(k)
j=1 exp

[
(β1 − β2) Ṽ

(k)
0,j +

∑L
i=1 λiβ1Ṽ

(k)
i,j

] (2.59)

where the expression gives the probability that the ξ has value between ξm and

ξm+1 in the mth bin at temperature T2. V̂
(k)
i,j is the value that the restraining

potential Vi takes at the j
th snapshot of the kth bin. η(k) is the total number of

data points that the simulation yields in the kth bin; it is just the value taken

on by the histogram at the bin numbered k. B is the total number of bins that

the data has been divided into.

Eq.2.59 can be rewritten in terms of N{λ},β1(V, ξ), which is the value taken

by the histogram at {V } and ξ for the simulation at temperature T1 with the

coupling parameter {λ}.
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P̃β2(ξ) =∑
{V }

N{λ},β1({V }, ξ) exp

[
(β1 − β2)V0 +

L∑
i=1

λiβ1Vi

]
∑
{V },ξ

N{λ},β1({V }, ξ) exp

[
(β1 − β2)V0 +

L∑
i=1

λiβ1Vi

] (2.60)

The WHAM equations are the generalization of the single histogram equa-

tions. Let us consider R sets of simulations with ith simulation is performed at

temperature Ti with coupling parameter {λ} using Eq.2.57 and the number of

snapshots taken from the ith simulation is ni. So the probability histogram can

be written as,

P{λ},β({V }, ξ) =

∑R
k=1 Nk({V }, ξ) exp

(
−β

∑L
j=0 λjVj

)
∑R

|=1 nm exp
(
fm − βm

∑L
j=0 λj,mVj

) (2.61)

and the free energy can be written as,

exp (−fj) =
∑
{V },ξ

P{λ},βj
({V }, ξ) (2.62)

where fj is the dimension less free energy. fj = βjAj where Aj is the Helmholtz

free energy of the system during jth simulation. Eq.2.61 and Eq.2.62 are together

called WHAM equations and these can be derived minimizing the error in the

overlapping probability distribution function[25, 26].

Ujjwal Kumar Nandi 48 CSIR-NCL



Bibliography

[1] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed.

(Academic, London, 1986).

[2] M. Allen and D. Tildesley, Computer Simulations of Liquids (Clarendon

Press, Oxford, 1987).

[3] M. D. Ediger, Annual Review of Physical Chemistry 51, 99 (2000).

[4] W. Kob, C. Donati, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys.

Rev. Lett. 79, 2827 (1997).

[5] B. Doliwa and A. Heuer, Phys. Rev. Lett. 80, 4915 (1998).

[6] M. M. Hurley and P. Harrowell, The Journal of Chemical Physics 105,

10521 (1996).

[7] K. Kim and S. Saito, The Journal of Chemical Physics 138, 12A506 (2013).

[8] T. Odagaki and Y. Hiwatari, Phys. Rev. A 43, 1103 (1991).

[9] W. Kob and H. C. Andersen, Phys. Rev. E 51, 4626 (1995).

[10] F. W. Starr, J. F. Douglas, and S. Sastry, The Journal of Chemical Physics

138, 12A541 (2013).

[11] L. Berthier et al., The Journal of Chemical Physics 126, 184503 (2007).

[12] L. Berthier et al., The Journal of Chemical Physics 126, 184504 (2007).

[13] D. Coslovich, M. Ozawa, and W. Kob, The European Physical Journal E

41, 62 (2018).

[14] M. Ozawa, W. Kob, A. Ikeda, and K. Miyazaki, Proceedings of the National

Academy of Sciences 112, 6914 (2015),

[15] S.-T. Lin, M. Blanco, and W. A. Goddard, The Journal of Chemical Physics

119, 11792 (2003).

49



PhD Thesis AcSIR

[16] W. A. G. Shiang-Tai Lin, Prabal K. Maiti, he Journal of Physical Chemistry

B 114, 8191 (2010).

[17] D. A. McQuarrie, Statistical Mechanics book (1975).

[18] P.-K. Lai, C.-M. Hsieh, and S.-T. Lin, Phys. Chem. Chem. Phys. 14, 15206

(2012).

[19] F. H. Stillinger and T. A. Weber, Phys. Rev. A 25, 978 (1982).

[20] S. Sastry, Nature 409, 164 (2001).

[21] S. Sengupta, F. Vasconcelos, F. Affouard, and S. Sastry, The Journal of

Chemical Physics 135, 194503 (2011).

[22] F. Sciortino, Journal of Statistical Mechanics: Theory and Experiment

2005, P05015 (2005).

[23] B. Doliwa and A. Heuer, Phys. Rev. Lett. 80, 4915 (1998).

[24] S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Koll-

man, Journal of Computational Chemistry 13, 1011 (1992).

[25] A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988).

[26] A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).

Ujjwal Kumar Nandi 50 CSIR-NCL



Chapter 3

Connecting real glasses to

mean-field models: A study of

structure

3.1 Introduction:

The details of the relaxation dynamics of glassy system and the properties of the

glass has been and continues to be in the focus of an intense research activity [1].

These investigations are motivated by the fact that glasses are not only impor-

tant for many daily and technological applications but are also an intellectual

challenge for fundamental studies since so far there is no theoretical framework

that is able to give a satisfactory description of the unusual properties of glassy

systems and glasses. Although there are sophisticated mean-field theories, like

the mode-coupling theory (MCT) of the glass transition [2, 3, 4, 5], or the ran-

dom first order transition theory [6, 7, 11], that are able to give in some cases

a surprisingly good description of real glass former [8, 5, 11, 12, 13, 6], these

approaches still have many flaws since they fail to give a reliable description

of many features of glass-forming systems opening thus the door to other ap-

proaches that attempt to describe glassy systems [15, 30, 17, 18, 19, 20]. Note

that these theories are mean-field in nature, whereas the experiments and com-

puter simulation studies are three or lower dimensional systems. Moreover, it

has been found that MCT, although expected to be mean-field in nature, does

not become exact even at high dimensions [21, 22], a flaw which might, however,

be related to the approximations used to describe the structure of the liquid in

high dimensions. Thus it is important to understand how these theories are

connected to real glass-forming systems and how the properties change as the

mean-field character of the system is modified. To establish such a connection
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it is useful to study systems whereby varying a parameter one can go from d

dimensional system to mean-field (MF) system. In the past various possibilities

have been proposed to take this limit, see Ref. mari-kurchan for an overview,

but most of them do have some drawbacks that prevent to reach a solid un-

derstanding how three-dimensional (3d) and MF systems are related to each

other [28].

One interesting model that allows approaching the MF limit in a continuous

manner has been proposed by Mari and Kurchan (MK) [28]. The MK-model is

a hard-sphere system in which the interaction range between two particles i and

j is a random variable with a variance that allows switching from a standard

three-dimensional system to MF like system. For this model, it is found that

with increasing interaction range the Stokes-Einstein relation holds down to

lower temperatures and that the dynamic heterogeneity of the system, measured

by the four-point susceptibility and non-Gaussian parameter, decreases. The

increase in interaction range also makes the system follow MCT like behaviour

for a larger range in temperature. Although all these results indicate that the

MK model can indeed be used to study the transition from 3d to MF, there

are certain features of the model that are disturbing. First of all, the structural

properties of the system becomes very different from the one of a normal liquid if

the MF limit is approached in that, e.g., the radial distribution function becomes

gas-like. Related to this is the fact that the three-point correlation functions

vanish. As a consequence one looses the property that nearest neighbors can

cage a tagged particle, a notion that is fundamental for the slowing down of the

dynamics in real glass-forming systems [1]. Secondly, the maximum attainable

packing fraction diverges in the MF limit, a behavior that is very different from

the one found in finite dimensions. Some of these oddities are avoided if one

considers models on a lattice [24]. However, lattice models, notably kinetic Ising

models with non-conserved particle density, do have the drawback that it is not

obvious to what extent their relaxation dynamics is related to any off-lattice

systems. As a consequence one has to be cautious when applying results from

lattice models to describe the dynamics of real systems.

In the present chapter we introduce a simple approach that allows crossing

over in a continuous manner from a normal 3d liquid to a MF system. In practice

we do this by increasing for each particle the number of particles it can interact

with, thus increasing the effective interaction of the particle with the rest of the

system. In contrast to the studies discussed above, our method does not modify

in a significant manner the local structure of the liquid even when the MF limit

is reached, i.e. the structure is always similar to the one of the 3d system.
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3.2 Details of system and simulations

As mentioned in the Introduction, our system is given by N particles that in-

teract with each other via a standard short-range potential. In addition, each

particle interacts also with “pseudo neighbors”, i.e. particles that are not neces-

sarily close in space. Hence the total interaction potential of the system is given

by

Utot(r1, ...rN) =
N∑
i=1

N∑
j>i

u(rij) +
N∑
i=1

k∑
j=1

upseudo(rij) (3.1)

= U + Upseudo
k . (3.2)

The first term on the right-hand side is the regular interaction between parti-

cles while the second term is the interaction each particle has with its pseudo

neighbours. Here we consider the case that the regular interaction describes a

binary Lennard-Jones (LJ) system, with 80% of the particles of type A and 20%

of the particles of type B. Thus the interaction between the particles i and j is

given by

u(rij) = 4ϵij

[(σij

rij

)12

−
(σij

rij

)6]
, (3.3)

where rij is the distance between the particles, σij is the effective diameter of

the particle and ϵij is the interaction strength. We use σAA and ϵAA as the unit

of length and energy, setting the Boltzmann constant kB = 1. The values of the

other parameters are given in Ref. [8], i.e. σAB = 0.8, σBB=0.88, ϵAB=1.5, and

ϵBB=0.5, a choice which makes this binary system to be a good glass-former.

This potential is cut and shifted at rc = 2.5σij. The masses are mA = mB = 1

and time is expressed in units of
√
mAσ2

AA/ϵAA.

The interaction potential with the pseudo neighbours is modelled in terms

of a modified LJ potential,

upseudo(rij) = u(rij − Lij) (3.4)

= 4ϵij

[( σij

rij − Lij

)12

−
( σij

rij − Lij

)6]
, (3.5)

where Lij is a random variable defined below. In our simulations we impose

the restriction that any two particles interact either via u(rij) or via upseudo(rij).

This condition determines how for a given configuration equilibrated with the

potential u the pseudo neighbors and the values Lij are chosen: Taking this
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Figure 3.1: The partial radial distribution functions for k = 0 and k = 28 at
T = 0.9. The structure remains invariant under the introduction of the pseudo
neighbours.

configurations we select for each particle, i, k random numbers Lij in the range

rc ≤ Lij ≤ Lmax, where Lmax ≤ Lbox/2− rc, with Lbox the size of the simulation

box. (The distribution of these random variables will be denoted by P(Lij)

and in the following, we will consider the case that the distribution is uniform.)

Subsequently we choose k distinct particles j with rij > rc and use the Lij to

fix permanently the interaction between particles i and j. This procedure thus

makes that each particle i interacts not only with the particles that are within

the cutoff distance but in addition to k particles that can be far away. Note that

once the particle j is chosen as a pseudo neighbour of particle i, automatically

particle i becomes a pseudo neighbour of particle j. The system, as defined

here, can then be simulated using a standard simulation algorithms.

The molecular dynamics (MD) simulation have been done using N = 2744

particles. We have performed constant volume, constant temperature simula-

tions (velocity rescaling) at density ρ = 1.2, thus Lbox = 13.1745, using a time

integration step of ∆t = 0.005. For Lmax we have taken 4.0, slightly below

the maximum value of 4.09. We have simulated four different systems with the

number of pseudo neighbours, k = 0, 4, 12, and 28.

3.3 Results

3.3.1 Structure of the liquid

To start, we discuss the effect of the pseudo neighbours on the structure of the

liquid. In Fig. 3.1 we show the three partial radial distribution function, gαβ(r)

with α, β ∈ {A,B} [14], for the k = 0 and the k = 28 systems. The temperature
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Figure 3.2: The partial structure factors for k = 0 and k = 28 at T = 1.0.
Similar to what we have obtained in the radial distribution function, the
structure remains invariant under the introduction of the pseudo neighbours.

is T = 0.9, which for the k = 0 system is slightly above the onset temperature,

see Ref. [8], while for the k = 28 system it corresponds to a state at which

the system is already rather viscous (see below). The graph shows that the

radial distribution functions for the two systems overlap perfectly well, i.e. the

structure is independent of k for this value of k. Thus this indicates that the

interactions due to the pseudo neighbours do not affect the local structure of

the system, one of the reasons for our choice of the interactions of the model.

To probe whether the structure of the liquid on a large scale is influenced by

the introduction of the pseudo neighbors we have calculated the partial static

structure factors and show them in Fig. 3.2 for the case of k = 0 and k = 28.

Since the two sets of curves match each other perfectly well, we can conclude

that also the large scale structure is not influenced by the additional neighbors.

3.3.2 Static properties of the pseudo neighbors

In this subsection, we characterize some of the structural properties of the pseudo

neighbors with respect to a tagged particle.

To start, we first calculate the probability PL that a given pseudo neighbor

j interacts with the tagged particle i, where L = Lij. Neglecting the indirect in-

teractions (via the direct neighbors) between the tagged particle and the pseudo

neighbor one can express PL as

PL =

∫
Vacc

dr e−βu(r−L)y(r)∫
Vacc

dr e−βu(r−L)
. (3.6)

Here β = 1/kBT , Vacc is the volume accessible to the pseudo neighbor, and y(r)
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is a step function that takes into account that the potential is cut off at 2.5σαβ,

i.e. y(r) = 1 if L ≤ r ≤ L + 2.5σαβ and y(r) = 0 for all other values of r. The

volume integrals in Eq. (3.6) can be decomposed into a spherical part that is

contained inside the cubic box, and the rest. The latter volume is given by
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Figure 3.3: Probability that a pseudo neighbour is within the interaction range
as a function of temperature. The pink line is the theoretical prediction from
Eqs. (3.11) and (3.12). Inset: Same quantities extending the temperature
range to T = 0. The theoretical curve shows a sigmoidal shape.

∆V = L3
box −

4

3
π
(Lbox

2

)3

(3.7)

= L3
box(1−

π

6
) . (3.8)

A spherical integration in Eq. (3.6) gives then

PL =

∫ L+rc
L

dr r2e−βu(r−L)∫ Lbox/2

L
dr r2e−βu(r−L) +∆V

. (3.9)

Note that in the above expression, L = Lij is fixed. Hence for a distribution

of L, the probability of finding a pseudo neighbour within the interaction range

of the tagged particle is given by

P =

∫ Lmax

rc

dLP(L)

∫ L+rc
L

dr r2e−βu(r−L)∫ Lbox/2

L
dr r2e−βu(r−L) +∆V

. (3.10)

In the numerator we make the substitution r′ = r − L which allows to

interchange the two integrals:

P =

∫ rc

0

dr′
∫ Lmax

rc

dLP(L)
(r′ + L)2e−βu(r′)∫ Lbox/2

L
dr r2e−βu(r−L) +∆V

. (3.11)

Ujjwal Kumar Nandi 56 CSIR-NCL



PhD Thesis AcSIR

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

r´

-0.5

0

0.5

1

1.5

2

2.5

3

g
A

A

p
se

u
d

o
(r

´)

k=4
k=12
k=28
Eq. (16)

exp(-βu(r´))

T=1.0

Figure 3.4: Radial distribution function for pseudo neighbours from
simulations at T = 1.0 for k = 4, 12 and 28. The distribution function of the
pseudo neighbours is independent of k. The solid line is the result from the
theoretical expression given by Eq. (3.16). The dashed line is the theoretical
prediction from the bare potential.

We thus find that this probability is independent of k, a result that is rea-

sonable since we have neglected any correlations between the pseudo neighbors.

Also note that P depends on the interaction potential via u(r) and rc. For a bi-

nary system, we can generalize this calculation to obtain the partial probabilities

Pαβ and then the total probability is given by

P = x2
APAA + 2xAxBPAB + x2

BPBB , (3.12)

where xα is the concentration of species α. In the simulation, this probability

can be obtained by calculating the ratio ke/k, where ke is the number of pseudo

neighbors that have a non-zero interaction with the tagged particle. In Fig. 3.3

we show the temperature dependence of P as obtained from Eqs. (3.11) and

(3.12) (solid line) and compare it with the corresponding quantity ke/k deter-

mined from the simulations (symbols). One recognizes that ke/k is as expected

independent of k and that the simulation data matches perfectly well the the-

oretical prediction given by Eqs. (3.11) and (3.12). Note that at the lowest

temperatures at which we could equilibrate the systems for the different value

of k the probability is around 0.3, i.e. for the glassy dynamics we will discuss

below only a relatively small part of the pseudo neighbors are actually interact-

ing with the tagged particle. The inset of the figure shows that P becomes 0.5

at around T = 0.4, a temperature at which already the k = 0 system is very

viscous [15], and for T → 0 the probability becomes 1, as expected.

To characterize the relative position of a pseudo-neighbor j with respect to a

tagged particle i we can consider the corresponding radial distribution function
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gpseudo(r′) =
ρk

4πr2

N∑
i=1

k∑
j(i)

⟨δ(r′ − |ri − rj|+ Lij)⟩ , (3.13)

where in the second sum the index runs over the pseudo neighbors of the tagged

particle i and ρk is the average pseudo neighbour density,

ρk =

∫ Lmax

rc

kP(L)

V − 4
3
πL3

dL , (3.14)

where V is the total volume of the system.

To calculate gpseudo(r) analytically we can make use of our result for P given

by Eqs. (3.11) and (3.12). The number ke of pseudo neighbours within the

interaction range can be expressed in terms of gpseudo(r′) as

ke = ρk

∫ rc

0

dr′gpseudo(r′)

∫ Lmax

rc

dLP(L)4π(r′ + L)2. (3.15)

Since ke can also be written as ke = k × P we get, using Eq. (3.11) and

Eq. (3.15)

gpseudo(r′)ρk

∫ Lmax

rc

dLP(L)4π(r′ + L)2

= k

∫ Lmax

rc

dLP(L)
(r′ + L)2e−βu(r′)∫ Lbox/2

L
drr2e−βu(r−L) +∆V

(3.16)

from which one obtains directly gpseudo(r′). Note that gpseudo(r′) is independent

of k, since ρk is directly proportional to k, see Eq. (3.14).

Fig. 3.4 shows the radial distribution function gpseudo(r′) from the simulations

of three different values of k (symbols) and we recognize that, as predicted by

Eq. (3.16) the function is indeed independent of k. We have also included the

analytical result from Eq. (3.16) and we see that the theory describes perfectly

well the simulation data, thus demonstrating that the approximation that the

structure of the pseudo neighbors can be obtained well by the bare interaction

with the tagged particle is very accurate, at least for the k values considered

in the present work. We also note that since one has the relation gpseudo(r′) =

exp(−βu(r′)), which can be derived from Eq. (3.16), the function gpseudo(r′) can

also be obtained directly from the bare interaction potential u(r′) as shown in

Fig.3.4.

Within the standard theory of liquids, the radial distribution function allows

to obtain the potential energy [14]. Due to the presence of the pseudo neighbors

this is no longer possible, and thus the usual expression has to be modified as

follows. (Note that in the following we give the expressions for a one-component
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system. For the binary system considered here, one will have to do the sum

over the various partials.) Since the potential energy of the system has two

contributions, one is the regular neighbour and the other the pseudo neighbour

(see Eq. (6.2)), the total potential energy Utot is given by,

Utot

N
=

ρ

2

∫ ∞

0

u(r)g(r)4πr2dr

+
ρk
2

∫ ∞

0

u(r)gpseudo(r)

∫ Lmax

rc

P(L)4π(r + L)2dLdr.

(3.17)

At this stage it is useful to introduce an “effective radial distribution” func-

tion geff(r) by defining

ρeffg
eff(r) = ρg(r) + ρkg

pseudo(r)

∫ Lmax

rc
P(L)(r + L)2dL

r2
, (3.18)

where the effective particle density is given by

ρeff = ρ+ ρk . (3.19)

Note that since ρk increases linearly with k, for large k the density ρeff is

dominated by ρk and hence in that limit geff will be directly proportional to

gpseudo(r).

Using geff(r) we now can express the total potential energy of the system as

a function of the radial distribution function geff(r):

Utot

N
=

ρeff
2

∫ ∞

0

u(r)geff(r)4πr2dr . (3.20)

In Fig. 3.5 we present geff(r) for the A-A correlation for different values

of k. Since the regular radial distribution function g(r) is independent of k

(see Fig. 3.1) and gpseudo(r) can be calculated analytically from Eq. (3.16) it

is possible to obtain geff for arbitrary values of k. The graph shows that with

increasing k, the radial distribution function loses its characteristic structure

with the multiple peaks and converges toward a distribution that has a single

peak at r = 1. This result can be understood directly from Eq. (3.18) since

for large k the first term on the right-hand side vanishes (if divided by ρeff)

while the second term is gpseudo(r) multiplied by an r−dependent factor that

is independent of k. So we see that in the large k limit the effective radial

distribution function develops a dominant sharp peak at a finite distance. With

decreasing temperature, this peak increases since most of the pseudo neighbors

will condensate at the optimal distance Lij. It is this growing peak that signals

the increasing number of constraints in the system which induce the slowing

down of the relaxation dynamics. This loss of structure of the radial distribution
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function is a typical signature of mean-field-like systems, such as the hard-sphere

system of Ref. [mari-kurchan]. (However, unlike the results in the present study,

in the hard-sphere system there is no peak at r = 1.)
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Figure 3.5: The effective A-A particle radial distribution function for
k = 0, 28, 125, and 1250. With increasing k the multi-peak structure
disappears. Inset: geffAA/y(k) vs r where y(k) is the height of the main peak.
The smoothing of the undulation with increasing k is clearly seen.

3.4 Inherent structure in the mean-field system

We have found so far that there is no change in local structure between the k=0

and other k systems and gpseudo(r) is also independent of k. But the situations

change when we consider the zero temperature configurations. We find that

the inherent normal neighbor structure of mean-field systems reach effective at

high temperature states than the k=0 system. Fig.3.6 shows that peak height

of radial distribution function of the inherent structure of k=28 system become

higher than the k=0 system, although the equilibrium temperature is same for

both the systems. On the other hand, the gpseudo(r) becomes sharper for k=28

system than the k=0 system (see Fig.3.7). Radial distribution function using

two body potential gives the similar result as gpseudo(r) of the equilibrium state.

3.5 Conclusion

We have introduced a simple glass-forming system which allows to tune in a

smooth manner its mean-field character. This is achieved by introducing addi-

tional k “pseudo neighbors” with which a particle can interact. These additional

interactions are long-ranged and hence with increasing k, each particle becomes

increasingly connected with the rest of the system. However, since we also keep
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Figure 3.6: Comparison of radial distribution function of the regular neighbor
at minimum energy state between k=0 and k=28 systems. Both the equilibrium
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Figure 3.7: gpseudoAA at T=0.9 both from simulation, analytical expression and at
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the original interaction between nearest-neighbor particles, our model has the

advantage of maintaining a liquid-like structure even in the mean-field limit,

i.e. the nearest neighbor distances are always of the order of the particle di-

ameter, which is in contrast to other models that allow tuning their mean-field

character [28].

We find that the structure of the system, as characterized by the radial

distribution function or the static structure factor, remains unchanged with the

addition of the pseudo neighbours, also this in contrast to previous models. Due

to the way the model is set up, it is possible to analytically calculate all the static

structural properties of the system from the knowledge of the k = 0 system. This

allows us to understand that the additional interactions give rise to an effective
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potential that increases with k, thus influencing the relevant temperature scale

of the system.

In an earlier study involving different glass-formers evidence was given that

the locally preferred structures (LPS) are connected to the dynamics only for

systems which are not mean field like [48]. The ability of the present model

to continuously tune the mean-field behaviour makes it thus an ideal system to

check the validity of this observation. Since we find that with increasing number

of pseudo neighbours the LPS remains unchanged whereas the dynamics slows

down, this suggests that with an increase in the mean field nature the correlation

between the LPS and the dynamics decreases, a result that corroborates the

earlier findings from Ref. [48].

The range of k that we were able to access in the present simulation is rel-

atively modest since for larger k the relaxation dynamics became too slow to

equilibrate the system within a reasonable amount of computer time. It is, how-

ever, of interest to make an educated guess on what will happen if k is increased

further. Our analytical results for the structure, Fig. 3.5, shows that with in-

creasing k the main peak in the effective radial distribution function becomes

very high. In this limit one can thus expect that the contribution from the

pseudo neighbors will start to dominate the one from the real nearest neighbors

and hence will make the system mean-field like. However, from the graph we

recognize that this increase becomes strong only once k is larger than O(102),

i.e., a value that is at present somewhat beyond the reach of standard computer

simulations. It can be expected, however, that in the near future improved

algorithms will allow to deal with this bottleneck. In that case our approach

will thus allow to make more stringent investigations on how the properties of

a normal three dimensional glass-former can be connected to the corresponding

system in the mean field limit.

This summary clearly indicates that the details how the mean-field limit is

approached are important and future studies are needed to clarify this point.

Finally, we note that the approach we propose here on how the mean-field char-

acter is tuned can be applied to any system. Hence it will be interesting to study

whether other types of interaction potentials, such as the Coulomb potentials

used to describe oxide glass-formers, will give qualitatively the same behavior,

or in other words, whether the approach to the mean-field limit depends on the

nature of the local structure of the system.
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Chapter 4

Connecting real glasses to

mean-field models:A study of

dynamics

4.1 Introduction:

Another approach to connect the properties of 3d systems with the MF behavior

has been proposed in a series of papers by Miyazaki and coworkers who have

studied the properties of the Gaussian-Core-Model (GCM) [8, 9, 10]. Due to

the long interaction range, each particle has a large number of neighbours, and

hence the system can be expected to be MF like. These authors showed that

compared to the (short-ranged) Kob-Andersen (KA) model [8], in the GCM

the Stokes-Einstein relation is followed till a lower temperature regime and that

the relaxation dynamics shows a qualitatively better agreement with the MCT

predictions [9]. Furthermore, it was found that the GCM shows less dynamic

fluctuation and that activated processes are suppressed [8], in agreement with

recent studies of the thermodynamic properties of this system [11].

A further possibility to connect the properties of low dimensional systems

with the MF predictions is to consider systems with increasingly higher di-

mensions. Sengupta et al. have studied the properties of some standard glass

formers in 2, 3, and 4 dimensions and found that with increasing dimensional-

ity the breakdown of the Stokes-Einstein relation becomes less pronounced and

that the dynamical heterogeneity decrease [12]. Charbonneau et al. have stud-

ied systems up to 6 dimensions and found that the shape of the cage does not

become Gaussian-like, as expected from MF [13], showing that the approach to

this limit might be more complex than expected.

In the present paper we introduce a simple approach that allows crossing over
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in a continuous manner from a normal 3d liquid to a MF system. In practice

we do this by increasing for each particle the number of particles it can interact

with, thus increasing the effective interaction of the particle with the rest of the

system. In contrast to the studies discussed above, our method does not modify

in a significant manner the local structure of the liquid even when the MF limit

is reached, i.e. the structure is always similar to the one of the 3d system. So this

allows us to study how increasing connectivity affects the relaxation dynamics,

without modifying in a noticeable manner the structure, and hence to probe the

dynamics upon approaching the MF limit.

4.2 Results

4.2.1 Relaxation dynamics

We now analyze how the presence of the pseudo neighbours affects the relaxation

dynamics. To characterize this dynamics we consider the self part of the overlap

function Q(t) and the mean squared displacement (MSD) of a tagged particle,

∆r2(t). The former observable is defined as

Q(t) =
1

N

N∑
i=1

⟨ω(|ri(t)− ri(0)|)⟩ , (4.1)

where the function ω(x) is 1 if 0 ≤ x ≤ a and ω(x) = 0 otherwise. The

parameter a is chosen to be 0.3, a value that is slightly larger than the size of

the cage (determined from the height of the plateau in the MSD at intermediate

times [8].) Thus the quantity Q(t) tells whether or not at time t a tagged particle

is still inside the cage it occupied at t = 0.

In Fig. 4.1 we show the time dependence of Q(t) for different values of k.

The temperature is T = 0.9 which corresponds for k = 0 to a T that is around

the onset temperature [8, 2]. The graph demonstrates that with increasing k,

the relaxation dynamics slows down quickly, in that the correlator for k = 28

decays on a time scale that is about two orders of magnitude larger than the

one for k = 0. Also note that for the largest k we clearly see a two-step relax-

ation, i.e., the hallmark of glassy dynamics in which the particles are temporally

trapped by their neighbors [1], while for k = 0 one has just a simple one-step

relaxation, i.e., a normal liquid state relaxation. These results demonstrate that

the presence of the pseudo neighbors does have the sought after effect of strongly

slowing down the relaxation dynamics of the system, although, as demonstrated

above, the overall structure of the liquid is not changed. Interestingly the shape

of the time correlation function in the α-relaxation regime does not seem to
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Figure 4.1: Time dependence of the self part of overlap function Q(t) for
systems with different values of k at T = 0.9. With increasing k the relaxation
dynamics quickly slows down.

have a noticeable dependence on k, indicating that the relaxation mechanism is

weakly dependent on k. However, this conclusion only holds for length scales

on the order of ′a′ while it could be that on larger scales differences become

noticeable. Here we also note that for other mean-field like models, such as the

one introduced by Mari and Kurchan [28], an increase of the interaction range

leads to an acceleration of the dynamics, i.e. the hoped for slowing down of the

dynamics is not necessarily guaranteed.

Next, we compare the time dependence of the mean squared displacement,

averaged over all the particles, of two systems, k = 0 and k = 28, Fig. 4.2. For
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Figure 4.2: Time dependence of the mean squared displacement for the k = 0
and k = 28 systems in the high and low temperature regimes. The curves are
for similar value of relaxation time. The k = 28 system shows a weak
sub-diffusive behaviour at high and low temperature.
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Figure 4.3: Double-logarithmic derivative of the MSD of the A particles as a
function of time. (a) System for k = 0. If temperature is decreased the
derivative shows at low T a local minimum, indicating the presence of caging.
(b) System for k = 12. Qualitatively the same time dependence as in panel (a)
but now at higher temperatures. (c) System for k = 28. One sees that the
curves show at intermediate times a plateau that is due to the caging caused
by the pseudo neighbors. The arrows pointing upward [downward] in panels
(a)-(c) indicate τ2 [τ4], the location of the peak in the non-Gaussian parameter
α2(t) [in the dynamic susceptibility χ4(t)]. (d) MSD of the A particles for
different waiting times tw (see legend). No waiting time dependence is
noticeable.

the k = 0 system we show the MSD for T = 0.82, i.e., a temperature close to

the onset T and as a consequence one sees that the curve shows between the

ballistic regime at short times, ∆r2(t) ∝ t2, and the diffusive regime at long

times, ∆r2(t) ∝ t1, a weak shoulder. Qualitatively the same time-dependence is

found for the k = 28 system, but this time at the higher temperature, T = 1.5,

indicating that the increase of k leads to an increase of the onset temperature.

If for the k = 0 system the temperature is lowered to 0.445, the MSD shows

at intermediate times a very pronounced plateau that is due to the temporary

caging of the particles [1]. The same behavior is found in the k = 28 system

at T = 0.82 with a plateau height and length that is very close to the one of

the k = 0 system. (This similarity is due to our choice of the temperature

T = 0.82). Since we have seen above that the local structure of the system

at fixed temperature hardly depends on k, see Fig. 3.1, the pronounced caging
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for the k = 28 system (at T=0.82) is thus due to the pseudo neighbors, i.e.,

the non-local interactions. From these curves we hence can conclude that the

presence of the additional interactions leads to a substantial slowing down of

the relaxation dynamics while the details of the MSD, such as the height of the

plateau or its width, at the same effective temperature (discussed below) are

modified only mildly, at least in the parameter regime probed here.
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Figure 4.4: (a) Inherent structure energy, EIS, as a function of temperature for
the k = 0, 4, 12, and 28 systems. (b) Shifted (by EIS(T = 4.0)) inherent
structure energy vs. T . Near Tonset the energy starts to deviate from its high
temperature value allowing to determine Tonset. With increasing k, Tonset

moves to higher temperatures.

At sufficiently long times the motion of the particles is expected to be diffu-

sive, and hence the MSD should increase linearly in time. Fig. 4.2 shows that for

the k = 0 system, this is indeed the case and that this diffusion sets in once the

MSD has reached a value around 1.0. Interestingly one observes for the k = 28

system even at the longest times a sub-diffusive behavior, with an exponent that

is around 0.8, and this even for values of the MSD that are on the order of 10.

This behavior can be noticed better by calculating the slope of the MSD in the

log-log presentation, see Fig. 4.3. For k = 0, panel (a), we see that at short

times the slope is 2.0, as expected for a ballistic motion. At high temperatures

the slope crosses over to 1.0 at around t = 3, i.e. the system becomes diffusive.

If T is lowered, the slope starts to show a dip with a depth and width that

increase rapidly with decreasing temperature. For long times we see, however,

that the curves again attain the value of 1.0, i.e. the system is diffusive. Quali-

tatively the same behavior is found for k = 4 (not shown) and k = 12, panel (b).

However, a closer inspection of the curve for T = 2.0 reveals that after the first

dip in the slope, the curve does not rise immediately to the value 1.0 but shows

instead a plateau at a height of around 0.9 in the time window 5 ≤ t ≤ 200. The
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asymptotic value 1.0 is thus reached only at longer times, i.e. the MSD shows

a sub-diffusive regime. Qualitatively the same behavior is found for k = 28,

panel (c), but now the mentioned plateau at intermediate times becomes more

visible since its height has decreased to 0.8, i.e. the deviation from the diffusive

regime become more pronounced. We now clearly see that if the temperature

is lowered the curves reach this second plateau at a later time, but its height is

unchanged (see the curves for T = 1.0 and 0.82). Note that this plateau at long

times is indeed a distinct dynamic regime and not just a brief transient during

which the system approaches the diffusive limit. We also exclude the possibility

that this new plateau is just an out-of-equilibrium phenomenon since, see panel

(d), the MSD for different waiting times show no waiting time dependence. We

interpret this new regime as a consequence of the interaction of the tagged par-

ticle with its pseudo neighbors. These interactions will vanish only if all the

involved pairs have moved by a radial distance of around rc, and, because of

geometrical reasons (the volume of the spherical cap increases with Lij) and the

fact that Lij > rc, this takes certainly more time than cutting just the interac-

tions between the tagged particle and its nearest neighbors, which explains the

long time tail in the MSD. Note, however, that for sufficiently long times the

MSD can be expected to become diffusive for all values of k, see, e.g., the curve

for T = 2.0 in panel (c). This behaviour is thus similar to that observed earlier

in systems where there are two length-scales [17]. In order to distinguish in the

following the two mentioned processes, we will refer to the one corresponding to

the particles leaving their nearest neighbor cage as the “NN-α-process”, while

the dynamics in which the pseudo-neighbors leave the interaction range of the

tagged particle will be referred to as the “PN-α-process”. Note that although

Fig. 4.3 clearly indicates that there are two processes, we will see in the following

that not all observables reveal this in a direct manner. For example, the time

dependence of Q(t), presented in Fig. 4.1, does not indicate an obvious presence

of two different α−processes, although the pseudo-neighbors can be expected to

affect not only the relaxation time but also the details of the correlator.

Since the onset temperature is an important point on the energy scale of

the system, we now have a closer look at the k-dependence of Tonset. As men-

tioned above, this temperature can be identified from the first occurrence of a

plateau in the MSD. Alternatively one can study the inherent structure energy,

EIS, which shows at Tonset a marked change in its T -dependence [39, 29]. (We

recall that EIS of a configuration is the potential energy evaluated at the local

minimum of the energy reached from the configuration via the steepest descent

procedure.) In Fig. 4.4(a) we show EIS as a function of T , with the different

curves corresponding to different values of k. From the graph, one recognizes
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Figure 4.5: (a) Arrhenius plot of the α-relaxation time, τ , and the relaxation
time obtained from the MSD, τD, for systems with different values of k. Open
and full symbols are for τ and τD, respectively. The lines are fits to τ with the
Vogel-Fulcher-Tammann expression, Eq. (4.2). (b) Same data as in (a) but
now as a function of the scaled temperature Tg/T , with τ(Tg) = 103. (c)
Temperature dependence of the ratio τD/τ for different values of k. The
arrows indicate Tonset.

that with increasing k the energy decreases, an effect that is due to the presence

of the pseudo neighbors which can lower the energy by occupying the well in

the interaction potential. Less trivial is the fact that the temperature at which

the curve starts to decrease rapidly, i.e. the onset temperature, increases with

increasing k. Thus the increase of Tonset with k can be seen directly from this

static observable. In order to see better the k-dependence of Tonset, we plot in

Fig. 4.4(b) the inherent structure energy shifted by EIS(T = 4.0). (The choice of

T = 4.0 for this normalization is not crucial.) The resulting graph clearly shows

that the bend in the inherent structure energy occurs at higher temperatures

with growing k, demonstrating the increase of the onset temperature. Fitting

two straight lines to the data for T > Tonset and T < Tonset, their intersection

point can be used to determine Tonset. As we will show elsewhere [20], the so

obtained values are compatible with the values of onset temperature as deter-

mined from the entropy [2]. In Table 5.1 we list the values of Tonset obtained

from these curves and one sees that for k = 28 this temperature is about 90%

higher than Tonset for k = 0.
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Table 4.1: The value of the characteristic temperatures and the kinetic
fragility parameter for systems with different values of k. Tonset is the onset
temperature at which the inherent structure energy starts to deviate
significantly from its high temperature value. Tc is the MCT transition
temperature. T0 is the singular temperature of the Vogel-Fulcher-Tammann
equation, Eq.(4.2). All characteristic temperatures increase with increasing k.
Also included are the normalized differences between various temperatures. K
is the kinetic fragility defined in Eq. (4.2). x(k) is the prefactor needed for the
scaling plot shown in Fig. 4.6(b).

k Tonset Tc T0
Tonset−Tc

Tc

Tonset−Tc

Tonset

Tonset−T0

T0

Tc−T0

T0
K x(k)

0 0.74 ±0.04 0.43 0.283 0.72 0.42 1.61 0.52 0.184 1.0

4 0.83± 0.08 0.51 0.362 0.63 0.38 1.29 0.41 0.237 1.55

12 1.03± 0.07 0.62 0.465 0.66 0.40 1.22 0.33 0.286 2.0

28 1.28± 0.22 0.80 0.610 0.60 0.38 1.10 0.31 0.297 2.1

A further important quantity to characterize the relaxation dynamics of a

glass-former is the α-relaxation time τ . Here we define this time scale via Q(τ) =

1/e. This definition is reasonable since we have seen in Fig. 4.1 that the shape of

the time correlation functions is basically independent of k. (Note that with this

definition of τ we do not distinguish between the NN-α-process and the PN-α-

process discussed in the context of Fig. 4.1. For the values of k considered here,

this is justified since the final decay of Q(t) involves both processes.) Fig. 4.5(a)

is an Arrhenius plot of τ for the different systems. One clearly sees that with

increasing k, the dynamics quickly slows down and that the bending of the curve

seems to increase, i.e. the system becomes more fragile. To quantify this trend

as a function of k, we have fitted τ(T, k) at intermediate and low temperatures

to a Vogel-Fulcher-Tammann(VFT)-law:

τ(T ) = τ0 exp
[ 1

K(T/T0 − 1)

]
. (4.2)

Here T0 is the so-called VFT temperature at which the relaxation time of

the system is predicted to diverge. The parameter K describes the curvature of

the data in an Arrhenius plot and hence can be considered as a measure for the

fragility of the glass-former. The figure demonstrates that this functional form

gives a good fit to the data (solid lines) and hence allows to estimate T0 and K.

The values of T0 are included in Tab. 5.1 as well and one sees that T0 changes

by about a factor of two if k is increased from 0 to 28, i.e. a factor that is compa-

rable to the one found for Tonset. In contrast to this we find that the parameter
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K occurring in the Vogel-Fulcher-Tammann-law, Eq. (4.2), increases by about

30% in the considered k-range, see Tab. 5.1. This indicates that the intro-

duction of the pseudo neighbors renders the system increasingly more fragile.

Another way to see this is to define an effective glass transition temperature Tg

via τ(Tg) = 103 and to plot the relaxation time as a function of Tg/T [1, 21].

This is done in Fig. 4.5(b) and one sees that the curves for large k are indeed

more bent than the ones for small k, i.e. the fragility of the system increases with

k. This trend is thus qualitatively similar to the observation of Ref. sastry-SE

in which it was found that increasing the dimensionality of a glass-former gives

rise to a higher fragility.

Since the MSD has shown that the system has two kind of α−processes it is
useful to study how the corresponding relaxation times relate to each other. For

the k > 0 systems particles are caged by their nearest neighbours as well as by

their pseudo neighbours. When a particle leaves its NN cage the overlap function

decays and this timescale is captured by τ . We now define a relaxation time τD

for the PN-process as the time scale at which the system becomes diffusive, i.e

the time where the logarithmic derivative of the MSD goes to 1 [22]. In practice

we consider t = τD for which dlog(MSD)
dlog(t)

= 0.97. In Fig. 4.5(a) we have included

the T -dependence of τD for the k = 0 and the k = 28 systems and one recognizes

that τD is significantly larger than τ but that its T -dependence is weaker. To see

the latter in a clearer way we show in panel (c) the T -dependence of the ratio

τD/τ for all value of k considered. We recognize that the ratio starts to decrease

quickly for temperatures that are below Tonset, i.e. once the systems start to

show glassy dynamics. Since this decrease is very pronounced for k > 0, we

conclude that the slowing down of the overall dynamics of the system is mainly

governed by the NN α-process (which is strongly influenced by the presence of

the pseudo neighbors).

These results show that the pseudo neighbors strongly influence the relax-

ation dynamics of a tagged particle in that the leaving of the cage formed by

the nearest neighbors is strongly slowed down, as indicated by τ(T ). In addition

the pseudo neighbors also induce a new slow process, the PN-α process, which

is related to the motion of the pseudo neighbors with respect to the tagged

particle. However, this slow process does not depend very strongly on T since

there is no structural correlation between the pseudo neighbors of a given tagged

particle (this in contrast to the nearest neighbors which are correlated because

of the local steric hindrance). As a consequence this slow PN-α process is not

the mechanism responsible for the slowing down of the overall dynamics of the

system. The relevant mechanism for this is thus given by the NN-α process.
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4.2.2 MCT power law

Having presented our findings regarding the relaxation dynamics of the system

we now probe whether this dynamics can be described by means of mode cou-

pling theory. MCT predicts that close to the critical temperature Tc of the

theory the relaxation times show a power law divergence:

τ(T ) = τMCT(T − Tc)
−γ . (4.3)

Using this functional form to fit the temperature dependence of the relax-

ation time we obtain Tc(k) (values are given in Tab. 5.1). In Fig. 4.6(a) we

present a log-log plot of the relaxation time as a function of the normalized

temperature (T − Tc)/Tc. One recognizes that for k = 0, the increase of τ with

decreasing T is described well by a power law (dashed line), in agreement with

previous simulations [23, 8]. However, at the lowest T ’s deviations are observed,

and the increase in τ is weaker than the power law predicted by MCT. This

deviation is usually attributed to the existence of “hopping processes”, i.e. a

component in the relaxation dynamics that is not taken into account in the ide-

alized version of the MCT. The two arrows in the plot delimit the T -range in

which the power law gives a good description to the data.
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Figure 4.6: (a) The relaxation time obtained from the overlap function as a
function of the scaled temperature (T − Tc)/Tc for the k = 0 and the k = 28
systems. (b) Same data as in (a) but now with τ multiplied with a scaling
factor x(k). (c) Same data as in (b) as a function of Tc(k)/T .
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For the system with k = 28 the temperature dependence of τ is qualitatively

very similar to the one for the k = 0 system, if one plots the data as a function

of the reduced temperature (T − Tc)/Tc. The highest temperature at which the

data follows the power law (dashed line), marked by an arrow, is around 2Tc,

and very close to the corresponding reduced temperature for the k = 0 system.

However, the lower (reduced) temperature at which τ starts to deviate from this

power law, see arrow, is smaller for the k = 28 system than the corresponding T

for the k = 0 system, showing that for the former system the mentioned hopping

processes are less important, i.e., the system is more mean-field like. For the

k = 28 system, this lower limit is about a factor of 3 smaller than the limit

for k = 0; thus the T -range in which the idealized MCT can be expected to be

reliable has increased significantly by the introduction of the pseudo neighbors.

In Tab. 5.1 we have also included the value of Tc and one recognizes that the

critical temperature for k = 28 is about 90% higher than the one for k = 0,

i.e. the k-dependence of Tc is very similar to the one of Tonset.

According to the analytical calculations for the mean-field p-spin model, for

which there is no activated dynamics, the onset temperature coincides with the

MCT temperature which is also the temperature at which the dynamics diverges

[24, 12, 26]. (Note that this is only true in the thermodynamic limit while for

finite systems one has very strong finite-size effects that completely wash out

these transitions,see Ref. [27]). For the GCM it was found that the relative

distance between the three temperatures Tonset, Tc, and T0, is much smaller

than the one we find here for the k = 0 system [9, 11]. Thus the reduction of

this relative distance with increasing k, given in Tab. 5.1, can also be taken as

a signature of increasing mean-field like behaviour.

From Fig. 4.6(a) we recognize that the relaxation times for the k = 28

system are shorter than the ones for the k = 0 system if compared at the same

reduced temperature. In fact, as plotted in Fig. 4.6(b) on an intermediate time

scale the two data sets can be superimposed with high accuracy by applying

a multiplicative factor x(k) (see Tab. 5.1 for values). Thus we conclude that

the main difference in the two data sets is the prefactor τMCT in Eq. (4.3). A

decrease in τMCT implies a faster motion inside the cage, and this is in fact very

reasonable since with increasing k the tagged particle is interacting with more

particles, thus making its effective cage stiffer. Another way to present this

result is to plot the time scale τ ·x(k) as a function of Tc/T , see Fig. 4.6(c). We

find that this representation of the data gives rise to a collapse of the curves for

the different values of k, demonstrating that the T -dependence is indeed very

similar at intermediate temperatures. Hence we conclude that the introduction

of the pseudo neighbors does not only increase the α-relaxation time strongly
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but also increase somewhat the attempt frequency with which the particle tries

to leave the cage.

4.2.3 Wave-vector Dependence of Relaxation Process

The relaxation time of glass-forming systems depends on the observable consid-

ered. Within MCT this dependence is, however, encoded in a prefactor, τMCT

in Eq. (4.3), while Tc and the exponent γ are expected to be independent of the

observable. While for many glass-forming systems this is indeed the case, see

e.g. Ref. kob-andersen-II, the present system has at least two relevant length

scales, the nearest neighbor distance and the mean distance between the parti-

cles and their pseudo neighbors, and hence it is of interest whether the mention

factorization works here as well. To probe this we consider the self intermediate

scattering function Fs(q, t), where q is the wave-vector [14]:

Fs(q, t) =
1

N

N∑
j=1

⟨exp[−iq.(rj(t)− ri(0))]⟩ . (4.4)

We define the relaxation time τ(q) via Fs(q, τ(q))) = 1/e and thus can study

its dependence on the length scale. In Fig. 4.7 we show the q-dependence of

τ(q) for three values of k. Since one expects that at small wave-vectors τ(q)

is proportional to q−2, i.e. the hydrodynamic behavior, we plot directly q2τ(q).

Panel (a) is for a fixed reduced temperature slightly below the onset temperature

while panel (b) corresponds to a significantly supercooled state. In the context of

Fig. 4.6(b) we have seen that, at a fixed reduced temperature, the relaxation time

τ , obtained from the decay of the overlap function, shows a weak dependence on

k, leading to the introduction of the factor x(k). In order to take into account

this k-dependence we have multiplied also in Fig. 4.7 the relaxation times τ(q)

with the same factor x(k). The graphs shows that for q ≈ 6.5, i.e. close to the

peak of the static structure factor, the relaxation times for the different systems

coincide perfectly, which demonstrates that for this wave-vector the overlap and

Fs(q, t) probe the same type of dynamics. For the other wave-vectors considered,

the τ(q) curves for the different systems show a q−dependence that depends on
k, but this dependence is relatively weak. Hence we conclude that the presence

of the pseudo neighbors does not introduce a new length scale that influences

the relaxation dynamics in a significant manner.

4.2.4 Dynamic Heterogeneity

One of the hallmarks of glassy dynamics is that time correlation functions are

stretched in time. The reason for this non-Debye relaxation has been a long-
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Figure 4.7: q2τ(q) · x(k) as a function of the wave-vector q. Panels (a) and (b)
are for two different reduced temperatures. The values of x(k) are given in
Table 5.1

.

standing puzzle with the contrasting views that each small domain of the sample

shows the same stretched time dependence or, alternatively, that the stretching

is related to dynamical heterogeneities [28]. Experiments and simulations have

shown that the homogeneous scenario is not compatible with the observations,

i.e. glass-forming systems do have a significant amount of dynamical hetero-

geneities (DH) [29, 30, 31, 32, 33]. In this final section, we therefore discuss

the k-dependence of these DH and probe whether with increasing k one does in-

deed find a decrease of these fluctuations, the behavior expected for a mean-field

system.

One first step to probe the DH is to look at the so-called non-Gaussian

parameter (NGP) α2(t) which is define by

α2(t) =
3 ⟨r4(t)⟩
5 ⟨r2(t)⟩2

− 1 , (4.5)

where r(t) is the displacement of a tagged particle within a time t. Thus α2(t)

measures whether or not the distribution of the particle displacement is Gaus-

sian [34, 8, 29, 35].

In Fig.4.8(a) we plot the NGP for the k = 28 system. Interestingly one finds
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Figure 4.8: (a) The time dependence of the non-Gaussian parameter, α2, at
different temperatures for the k = 28 system. α2(t) shows a double peak
structure. (b) α2(t) at fixed reduced temperature and different values of k.
The peak at short times is independent of k while the one at long times grows
with increasing k.
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Figure 4.9: The peak height of α2 as a function of the reduced temperature
(T − Tc)/Tc for different values of k.

that at high temperatures α2(t) has two peaks: A first one at t around 0.6 and a

second one at t ≈ 150. The first time is close to the timescale at which the MSD

crosses over from the ballistic regime to the diffusive one and thus corresponds
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to the start of the NN-α-process, in agreement with earlier studies [8]. The

second peak has so far not been seen in the glass-forming systems considered

before and is likely due to the breaking of the bonds with the pseudo neighbors,

i.e. the PN-α-relaxation. Note that the presence of this second peak is coherent

with our findings for the MSD, see Fig. 4.3(c), for which we observed a plateau

in the slope that, for T = 2.0, ended at around t = 102 and we had argued

that this is due to the motion of the pseudo neighbors. If T is lowered, the first

peak in α2(t) rises quickly and dominates the second peak, i.e. on overall the

time dependence of the NGP becomes again quite similar to the one that has

been observed in previous studies of glass-forming systems. The main difference

is that in our case the second peak will make the decay of α2(t) slow since

at long times the dynamics will be influenced by the pseudo neighbors, which

decorrelate only slowly (see the data for the MSD in Fig. 4.3).

The influence of the pseudo neighbors on α2(t) is shown in Fig. 4.8(b) where

we plot this function for different values of k but keeping (T − Tc)/Tc constant.

One sees that at short and intermediate times, i.e. around the peak, the curves

are independent of k, which shows that the NN-α-process is not affected by the

presence of the pseudo-neighbors. Only at longer times, the curves for large k

are higher than the ones for small k, showing that the pseudo neighbors affect

the NGP only at time scales that are beyond the time scale of the first maximum

in the NGP. Since with decreasing temperature the peak corresponding to the

NN-α-relaxation grows quicker than the second peak we can conclude that the

dominant feature in α2(t) is due to the NN-α-process, except if k becomes much

larger than the values we consider here.

10
0

10
1

10
2

10
3

10
4

τ·x

10
-1

10
0

10
1

α
2

p

k=0
k=4
k=12
k=28

x=2.1 for k=28

x=1 for k=0

x=2.0 for k=12
x=1.55 for k=4

α
2

P
 ~ τ

ζ

ζ = 0.362

Figure 4.10: The peak height of α2 as a function of the α-relaxation time τ
multiplied by x(k) for different values of k. Also included is a fit to the data
with a power law.

In Fig. 4.9 we show αp
2, the height of the peak in α2(t), as a function of

Ujjwal Kumar Nandi 79 CSIR-NCL



PhD Thesis AcSIR

10
0

10
1

10
2

10
3

10
4

τ

10
0

10
1

10
2

10
3

τ
2

k=0

k=4

k=12

k=28

κ = 0.70τ
2
 ~ τ

κ

Figure 4.11: The time scale τ2 at which α2(t) peaks, as a function of the
α-relaxation time τ . The solid line is a power law with an exponent κ = 0.70.

10
-2

10
-1

10
0 10

(T-T
c
)/T

c

10
0

10
1

10
2

10
3

τ
2
·x

κ

k=0
k=4
k=12
k=28

τ
2
·x

κ

 ~  ((T-T
c
)/T

c
)
-1.54

Figure 4.12: τ2x(k)
κ as a function of the reduced temperature (T − Tc)/Tc.

The solid line is a power law with exponent -1.54.

the reduced temperature (T − Tc)/Tc. Surprisingly we find that this quantity

is completely independent of k, i.e. the strength of the non-Gaussianity of the

relaxation dynamics does not depend on whether or not the system is mean-

field like. In other words, the statistics of the displacement of a tagged particle

is independent of the number of pseudo neighbors, if measured at the same

reduced temperature. This result reflects the fact that the first peak in α2(t) is

dominated by the dynamics in which the tagged particle leaves the cage formed

by its nearest neighbors.

Note that αp
2 shows a bend at around (T − Tc)/Tc ≈ 0.1. Although we did

not investigate the origin of this change in the T -dependence, we expect it to

be the signature of the onset of the hopping processes mentioned above. The

bend indicates that these processes start to become prominent at around 10%
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above Tc, a value that seems to be coherent with the observation from Fig. 4.6

regarding the T -dependence of the relaxation times.

One might wonder whether the master curve in Fig. 4.9 is just due to the

choice of the scaling factor of the temperatures, i.e. Tc. To test this possibility, we

show in Fig. 4.10 the same data as a function of the relaxation time τ multiplied

by the same factor x(k) that was used to obtain a master curve in Fig. 4.6(b).

We recognize that this representation leads to a very nice collapse of the data

onto a master curve which, for intermediate and long relaxation times, can be

described well with a power law with an exponent close to 0.36 (see solid line in

the figure). It is remarkable that the hopping processes discussed above, which

lead to the bends in the different curves if the temperature approaches Tc, do

not seem to affect the validity of the power law. At present, it is not clear up

to which value of τ this power law will hold, in particular, whether it will be

observed at temperatures below Tc. Future studies on this point will certainly

be of interest to understand better the relaxation dynamics of glass-forming

liquids.

In Fig. 4.11 we plot τ2, the time at which α2(t) peaks, as a function of the

α-relaxation time τ . Surprisingly we find that the two quantities show a simple

relation with each other in the form of a power law with an exponent κ = 0.70

(solid line). This result can be rationalized within the framework of MCT as

follows: α2(t) is related to the shape of the self part of the van Hove function in

that it measures its deviation from a Gaussian [34, 8]. At the end of the caging

regime, i.e. the β-relaxation, some of the particles will have already left their

cage, thus giving rise to a tail to the right of the main peak of the van Hove

function. It is this tail that is responsible for the non-Gaussian shape of the van

Hove function and hence leads to an increase of α2(t). Thus it is reasonable to

assume that τ2 is directly related to the time scale of the β-relaxation τβ. MCT

predicts that the latter time scale increases like

τβ ∝ (T − Tc)
−1/(2a) . (4.6)

The α-relaxation time τ is instead predicted by MCT to increase like

τ ∝ (T − Tc)
−1/(2a)−1/(2b) = (T − Tc)

−γ . (4.7)

In Eqs. (4.6) and (4.7) the parameters a and b can in principle be calculated

from the T -dependence of the static structure factor or, exploiting Eq. (4.7),

determined from the T -dependence of the relaxation time [2, 1, 36]. For the

k = 0 system it has been found that a is around 0.324 and b is around 0.627

[36, 8, 37, 38]. Combining these last two equations gives, under the assumption
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that τ2 ∝ τβ,

τ2 ∝ τ b/(a+b) . (4.8)

Thus we find a power law dependence with an exponent of 0.66 (using the

mentioned values of a and b), which is indeed very close to our exponent κ

from the fit (0.7). We mention here that the observed power law extends over

the whole accessible range of τ , i.e. it also includes the temperature regime in

which we expect hopping processes to be present. To the best of our knowledge

this simple connection between τ2 and τ has not been reported before. Since,

however, we find it to hold for all values of k, we expect it to be valid for other

glass-forming systems as well and hence it will be of interest to check this in the

future.

To get Eq. (4.8) we have made the assumption that τ2 is proportional to

τβ. As argued above, this hypothesis is reasonable since it can be expected that

the non-Gaussian parameter peaks at a time at which a substantial number of

particles start to leave their cage and MCT defines τβ as the time at which the

correlator starts to drop below the plateau at intermediate times [3]. Previous

studies have therefore made the assumption that τβ can be determined from

the minimum in the slope of the MSD [39]. However, we argue that such an

identification might be misleading: For the case of a system with Newtonian

dynamics, the phonons that govern the short-time dynamics mask the critical

decay of the time correlation functions thus also masking the correlation be-

tween the above-mentioned minimum and τβ. (This effect is, however, absent

if the system has a Brownian dynamics [37].) Therefore we think it is more

appropriate to determine τβ from a quantity that is not directly influenced by

these vibrational modes, such as the α2(t) considered here. In Fig. 4.3(a)-(c) we

have also included for the various curves the times τ2, arrows pointing upward,

and one sees that they do not correspond to the location of the minimum in the

curves but that they are located at somewhat larger times, as expected because

of the mentioned effect of the phonons. Although at present we do not have any

solid proof why τ2 does indeed correspond to τβ, our finding that the relation

between τ2 and τ given by Eq. (4.8) is obeyed by our data does speak in favour

of this identification. More tests on this using a system with Brownian dynamics

would certainly be useful to clarify this point further.

Finally we show in Fig. 4.12 the time at which α2(t) peaks, τ2, as a function

of (T − Tc)/Tc. Since we have argued in the context of Fig. 4.6 that the k-

dependence of τ will include a factor x(k) that is related to the short time

dynamics, and we also showed that τ2 ∝ τκ (Fig. 4.11), we plot directly τ2 ·x(k)κ,
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Figure 4.13: (a) The time dependence of the dynamical susceptibility χ4(t) for
different temperatures for the k = 28 system. χ4(t) increases with decreasing
temperature. (b) Time dependence of χ4 at a fixed reduced temperature
(T − Tc)/Tc for different values of k.

with the values of x(k) obtained from Fig. 4.6 and κ from Fig. 4.11. We recognize

that the data for the different values of k fall nicely on a master curve which

follows a power law with an exponent around -1.54. Also this result can be

understood within the framework of MCT since Eq. (4.6) predicts that the

slope should be given by −1/(2a) which for a = 0.324 results in an exponent of

−1.54, in excellent agreement with the data from the fit in Fig. 4.12.

Next we discuss the other parameter which is often related to the dynamic

heterogeneity, the dynamic susceptibility. The fluctuations of the overlap func-

tion Q(t) are related to a dynamic susceptibility which indicates whether or

not the system relaxes in a cooperative manner, i.e. shows dynamical hetero-

geneities [40, 41, 15]. Thus one defines

χ4(t) =
1

N

[
⟨Q2(t)⟩ − ⟨Q(t)⟩2

]
(4.9)

as a measure to quantify this cooperativity. In Fig. 4.13(a) we show the time

dependence of χ4 for the system with k = 28 at different temperatures. In agree-

ment with earlier studies,[12], we find that χ4 shows a marked peak the height

of which increases with decreasing temperature and also its position shifts to
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larger times upon decreasing T , i.e. the cooperativity becomes more pronounced

and occurs at later times. In panel (b) of the figure we present χ4 for differ-

ent values of k while keeping the normalized temperature (T − Tc)/Tc constant.

The graph demonstrates that with increasing k the height of the peak decreases

quickly, indicating that the system does indeed become more mean-field like, as

expected, and in agreement with previous simulations of mean-field like mod-

els [28, 12]. This k-dependence is thus very different from the one seen for the

height of the peak in α2, highlighting the difference between the two quantities,

despite their (apparently) similar time dependence. We also note that with in-

creasing k the location of the peak in χ4(t) shifts to shorter times, in qualitative

agreement with the fact that, at fixed reduced temperature, the α-relaxation

time decreases somewhat, see Fig. 4.6(a).
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Figure 4.14: Height of the peak in χ4(t) as a function of the reduced
temperature for different values of k. The dashed lines are power laws with
exponent -1.2 and the solid line is a power law with an exponent -2.

To probe in more detail how the height of the peak in χ4(t), χ
p
4, depends on T

and k we show in Fig. 4.14 this height as a function of the reduced temperature.

We see immediately that this representation of the data does not give rise to a

master curve. With increasing k, the curves move downwards, a k-dependence

that is in contrast to the one we found for αp
2 shown in Fig. 4.9. Thus we conclude

that with increasing k the dynamical heterogeneities decrease, i.e. the system

becomes more mean-field like. However, we point out that even in the mean-

field limit these heterogeneities cannot be expected to vanish completely [28, 42]

which shows that this aspect of the dynamics is a delicate feature that is highly

non-trivial.

From the figure, one can conclude that for reduced temperatures higher than

around 0.1 the height of the peak shows a power law dependence on the reduced
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temperature and we find an exponent of -1.2 that is independent of k, which

implies that the dependence of χp
4 on the number of pseudo neighbors is encoded

in the prefactor of the power law.

The presence of power laws in χp
4 can be rationalized by means of MCT. This

theory predicts that the dynamical susceptibility in the NV T ensemble is given

by

χNVT
4 (t) = χNVE

4 (t) +
T 2

cV

(
dQ(t)

dT

)2

, (4.10)

where cV is the specific heat at constant volume [40, 41, 15]. Evaluating this

expression at t = τ , thus giving the height of the peak, χp
4, one finds that the

first term on the right-hand side of the equation increases like (T − Tc)
−1 while

the second one is found to be proportional to (T − Tc)
−2. Hence the power

law with exponent -1.2 we find at intermediate and higher temperatures can be

interpreted to be due to the power law from the first term, i.e. with an exponent

-1.0, which is somewhat augmented by the presence of the second term, thus

giving rise to a power law with an effective exponent smaller than -1. Thus

if the mentioned hopping processes would be absent one would expect that at

sufficiently low temperatures, the power law crosses over to one with an exponent

-2. Whether this is indeed the case will have to be tested for systems in which

one is able to suppress these hopping processes, a work that is left for the future.
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Figure 4.15: The height of the peak in χ4 as a function of τ · x(k) for different
values of k. The solid line is a power law fit to the data for k = 4. The two
dashed lines are power laws with exponents that correspond to the theoretical
upper and lower bounds from Eq. (4.11).

Since the representation of the data in Fig. 4.14 depends on the choice of Tc,

it is also useful to look at the k-dependence of χp
4 in a more direct manner. This

is done in Fig. 4.15 where we plot this quantity as a function of the α-relaxation
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time τ . (Also here we use τ · x(t) as abscissa, in order to take into account

the trivial k dependence of the relaxation time.) We see that the shape of the

curves for the different k is basically independent of k, but that the absolute

value of χp
4 at fixed τ ·x(k) decreases with increasing k. (The same conclusion is

reached if one uses just τ as the abscissa.) Hence we confirm the conclusion from

Fig. 4.13(b) that the heterogeneity of the system decreases with increasing k.

For small and intermediate values of τ , the data falls approximately on a straight

line, and a power law fit gives an exponent 0.51 (solid line). Expressing the T -

dependence on the right hand side of Eq. (4.10) as a function of τ = (T −Tc)
−γ,

see Eq. (4.3), we obtain for the height of the peak

χp
4 = Aτ 1/γ +Bτ 2/γ , (4.11)

where A and B are expressions that have only a weak T -dependence. Using

our value γ = 2.4 gives for the exponent of the first and second term 0.42 and

0.83, respectively. These values are thus upper and lower bounds (included in

Fig. 4.15 as well) and the exponent we extract from our data, 0.51, is thus

not too far from the lower limit. So, although our data do not allow to make

strong statements about the validity of Eq. (4.11), because of the lack of suffi-

ciently large window in the dynamics, we can at least say that our findings are

compatible with the theoretical prediction, in agreement with the results from

Ref. coslovichozawakob.
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Figure 4.16: The location of the peak in χ4(t) as a function of the α-relaxation
time τ . The symbols are for different values of k and different T , and the solid
line is a power law with exponent 1.0. Inset: τ2 as a function of τ4 showing a
power law connection between the two quantities. The straight line has a slope
of 0.70.

Finally, we note that for large τ we find clear deviations of our data from the

predicted power law in that the growth of χp
4 is weaker than predicted. So in
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this regime, we can again invoke the argument that hopping processes decrease

the cooperativity of the relaxation dynamics.

Fig. 4.13(a) shows that the location of the peak in χ4(t), τ4, quickly moves

to larger times if the temperature is lowered. To determine the connection be-

tween the α-relaxation time τ and the time scale τ4 we plot in Fig. 4.16 τ4 as a

function of τ . Also included in the graph is the line τ4 = τ (solid line) and one

recognizes that all the data points fall on this line with high accuracy. Hence

we can conclude that the time scale at which the system shows maximum co-

operativity is on the time scale of the α-process, which is in agreement with

earlier results [35]. Also note that this conclusion is independent of k, i.e. the

strength of the mean-field character does not play a role for this result. This re-

sult demonstrates that the α-relaxation process is tightly related to the presence

of the dynamical heterogeneities and that hence it is useful to study the latter

in order to understand the slowing down of the relaxation dynamics. Finally we

mention that the direct proportionality of τ4 to τ and the power law connection

between τ2 and τ , (see Fig. 4.11) implies that we have the simple connection

τ2 ∝ τκ4 , with an exponent κ given by b/(a+ b), see Eq. (4.8). That this relation

works indeed well is shown in the inset of Fig. 4.16. Since the exponent κ is less

than unity, we see that τ2 is smaller than τ4, as expected [10]. This can also be

concluded from Fig. 4.3 where we have added in panels (a)-(c) the values of τ4

(downward arrows), in that one recognizes that at low T , these are indeed to

the right of the arrows presenting τ2. These graphs also show that, interestingly,

the (logarithmic) slope of the MSD at t = τ4 is independent of T but weakly

dependent on k.

4.3 Conclusion

Due to the presence of the pseudo neighbors, the relaxation dynamics shows a

very strong dependence on k in that the onset temperature as well as the critical

temperature of mode-coupling theory increase with increasing k. However, once

the relaxation times are expressed in terms of the critical temperature of MCT

one finds only a mild k−dependence, indicating that for this class of systems

Tc is the most relevant parameter for the dynamics, at least in the T−range
investigated here. We note that the range in temperature in which MCT seems

to give a good description of the relaxation dynamics increases systematically

with increasing k, thus indicating that in the mean-field limit, the theory be-

comes exact. This is also confirmed by the observation that the dynamical het-

erogeneities, characterized by the dynamic susceptibility χ4(t), decrease with

increasing k.
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It is often believed that the fragility of the glass-former is directly related

to the presence of dynamical heterogeneities (or more precisely to the value of

the stretching parameter β in the Kohlrausch-Williams-Watts function used to

fit the time-correlation functions) [44, 45, 46]. Since we find that the fragility

of the system increases with k while the dynamic heterogeneity decreases we

conclude that there is no such (strict) connection between these two quantities,

although we do not want to exclude the possibility that in practice there might

be a certain correlation. This result is in qualitative agreement with the findings

in earlier studies [12, 47]. Sengupta et. al. have, e.g., reported that compared to

a three-dimensional system, the corresponding four-dimensional system was less

heterogeneous but more fragile [12]. This is also corroborated by experimental

data analyzed by Dyre, which indicate that there is no direct connection between

fragility and heterogeneity [47].

The possibility to tune the mean-field character of the system without chang-

ing the structure also allows elucidating the relation between the non-Gaussian

parameter α2(t) and χ4(t). While previous studies have often considered both

functions to be indicators for the dynamical heterogeneities, our analysis shows

that this is not the case at all since their dependence on k is very different.

Therefore our work clearly shows that these two observables convey informa-

tion that is very different, a conclusion that is in line with previous results

that showed that the peak in α2(t) has a temperature dependence which differs

from the one of χp
4 [12]. Furthermore, we also recall that for the MK-model,

Ref. mari-kurchan, one finds that χp
4 decreases with increasing mean-field char-

acter of the system, i.e. the same behavior as we have found here, but that also

the value of αp
2 decreases, while in our case we find that αp

2 is independent of k.

Also in the case of the Gaussian core model, it was found that it’s α2(t) peak is

lower than the one for the Kob-Andersen model, whereas the χ4 peak is much

higher [9, 8]. The authors of these papers justified this results by stating that

α2 provides a measure of the degree of dynamic heterogeneity and thus its peak

value should be lower for more mean-field like models and χ4 provides a measure

of the size of the domains and systems which have larger domains should have

higher value of χ4. Although this interpretation might apply to the Gaussian

core model, it is not in agreement for the system studied here and hence not

general. This suggests that further studies are required to understand the exact

information provided by χ4 and α2 and if these two quantities are indeed related

to each other.

Finally, we also note that the decrease of χ4 with increasing k can be due to

the fact that the fluctuations in the overlap function do indeed decrease, i.e. the

relaxation dynamics of the system becomes more homogeneous, as expected for
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a mean-field-like system. However, since with increasing k the characteristic

temperatures of the system also increase, the fluctuations should decrease. So

for the moment, it is not clear which one of the two mechanisms is the main

cause for the decrease of χp
4 that we observe in the present work.

The range of k that we were able to access in the present simulation is rel-

atively modest since for larger k the relaxation dynamics became too slow to

equilibrate the system within a reasonable amount of computer time. It is, how-

ever, of interest to make an educated guess on what will happen if k is increased

further. Our analytical results for the structure, Fig. 3.5, shows that with in-

creasing k the main peak in the effective radial distribution function becomes

very high. In this limit one can thus expect that the contribution from the

pseudo neighbors will start to dominate the one from the real nearest neighbors

and hence will make the system mean-field like. However, from the graph we

recognize that this increase becomes strong only once k is larger than O(102),

i.e., a value that is at present somewhat beyond the reach of standard computer

simulations. It can be expected, however, that in the near future improved

algorithms will allow to deal with this bottleneck. In that case our approach

will thus allow to make more stringent investigations on how the properties of

a normal three dimensional glass-former can be connected to the corresponding

system in the mean field limit.
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Chapter 5

Connecting real glasses to

mean-field models:A study of

thermodynamics

5.1 Introduction:

The slowing down of the dynamics in supercooled liquids and its correlation with

the thermodynamics of the system have been topics of intense research. There

are several characteristic temperatures where both the thermodynamic and dy-

namic properties of the system change in a significant manner. At the onset

temperature (Tonset), the relaxation dynamics of the system start to differ from

that of a typical liquid because due to the lowering of temperature, the system

begins to explore the underlying free energy landscape [1]. This onset tempera-

ture can also be identified as the temperature where the pair part of the excess

entropy becomes less than the total excess entropy of the system [2, 3]. Below

Tonset, the temperature dependence of the dynamics can be described reasonably

well by the so-called mode-coupling theory (MCT), which predicts a power-law

divergence of the relaxation times at a dynamic transition temperature Tc.[4]

However, experimental and numerical studies found [5, 6, 7, 8, 9, 10] that the

relaxation time does not diverge at Tc as predicted by the MCT, but instead

shows a smooth crossover to weaker temperature dependence. This crossover

scenario is consistent with the predictions of the so-called random first-order

transition (RFOT) theory [11, 12] and it has been related to the properties of

the underlying potential energy landscape [13].

According to the RFOT theory and the phenomenological Adam-Gibbs (AG)

theory [14], the low-temperature dynamics of supercooled liquid is controlled by

its configurational entropy (Sc), which measures the number of possible dis-
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tinct states accessible to the system. The AG theory predicts the following

relationship between the α relaxation time (τ) and the configurational entropy

(Sc): τ = τ0 exp(−A/TSc) where τ0 is a microscopic timescale and A is a system-

dependent constant. Thus according to the AG theory, the temperature T0 where

the relaxation time diverges is the same as the Kauzmann temperature TK where

the configurational entropy goes to zero [15]. For a large number of systems the

AG relationship is found to hold [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. There

has been a recent study which showed that it is the diffusion coefficient which

follows the AG relationship for the widest temperature range [26].

The validity of the AG theory in the form presented above has recently

been challenged [16]. It has been argued that according to the RFOT the-

ory, the reduction in the configurational entropy is related to the growth of

a static correlation length over which the activation happens, giving rise to

the relaxation process. This theory predicts a generalized AG relation given

by τ = τ0 exp(−A/TSα
c ), where α can be different from unity. It was further

shown that the generalized AG relation holds [16] both in experiments and in

simulations. Note that even according to the generalized AG relationship, the

relaxation timescale should diverge below T = TK when the configurational

entropy vanishes.

In a recent study, some of us have developed a novel of glass-forming liq-

uid where we can switch between a 3-dimensional liquid and a fully connected

mean-field system in a continuous manner [9]. The parameter that is introduced

to achieve this is k added pseudo neighbours for each particle. The structure,

dynamics, and dynamical heterogeneity of this model have been studied as a

function of k. It was shown that the structure given by the radial distribution

function (rdf) of the usual neighbours remains almost unchanged with k. How-

ever, the pseudo neighbours do contribute to the total rdf that shows a weaker

modulation with distance, a typical mean-field like behaviour [9, 28]. With

increase in k, the dynamics also slows down and the transition temperatures

(T0, Tc, Tonset) move to higher values. The range over which a system follows the

MCT power-law behaviour becomes wider with an increase in k. The hetero-

geneity decreases with an increase in k. Thus it was shown that with an increase

in k the system becomes more mean-field like.

The goal of the present work is to study the thermodynamic properties of

this system and its correlation with the dynamics. In order to do so, we employ

the well-known thermodynamic integration (TI) method to calculate the total

entropy and the configurational entropy of the system [29]. We find that with

an increase in k, the Kauzmann temperature becomes higher which is similar

to that found for T0. However, we also find a violation of the AG relation. As
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discussed before, the breakdown of the AG relationship is a possibility but for

larger k systems we find that close to the onset temperature where the dynamics

continues and is reasonably fast, the configurational entropy disappears. In our

opinion, this is an unphysical result not even supported by the generalized AG

relationship. This implies that the TI method of entropy calculation needs to

be re-examined.

We thus employ a completely different method to calculate the entropy of

the system, namely the two-phase thermodynamics (2PT) method. It is another

conventional method [30, 31]. It has provided accurate entropy values over a

wide range of thermodynamic state points for the LJ fluid and different water

models [30, 32]. We first test this model for a regular Kob-Anderson model

system which is the k = 0 system in the mean-field model. We compare the

entropy values obtained via the TI and the 2PT methods and find them to be

close to each other. We then employ the 2PT method for different mean-field

systems and compare with the results obtained by the TI method. We find that

with an increase in k the difference in entropy obtained by the two methods

increases. We also find that using the entropy calculated via the 2PT method,

the AG relationship holds in the range of temperature studied here.

In the discussion of the possible failure points of the TI method, we note that

for usual systems in the TI method we assume that particles are indistinguish-

able. On the other hand, in this mean-field system, each particle has a distinct

set of pseudo neighbours. Thus the particles might appear to be distinguishable.

We also find that for the mean-field system not only the AG relation but the

Rosenfeld relationship between the excess entropy and the dynamics fails.

The rest of this chapter is organized as follows: The system and simulation

details are described in Sec. 5.2. In Sec. 5.3, we describe different methods for

the calculation of entropy. In Sec.5.4, we present the result of our analysis for

the mean-field system. We discuss the implication of the results in Sec. 5.5 and

conclude in Sec. 5.7.

5.2 Details of system and simulations

The system details are given elaborately in the ’Details of system and simula-

tions’ section in Chapter3.

5.3 Different methods to calculate entropy

We have calculated entropy of the systems using two different methods one

is thermodynamic integration method and another one is two phase thermo-

Ujjwal Kumar Nandi 95 CSIR-NCL



PhD Thesis AcSIR

dynamics method. The details are discussed in section 2.3 (Thermodynamic

properties) in chapter. 2.

5.4 Results for Mean-field system

In this section, we will discuss the entropy of the mean-field system and its

correlation with the dynamics. We will first discuss the results obtained using

the TI method and its shortcomings and then discuss the results obtained from

the 2PT method.

5.4.1 Entropy using thermodynamic integration method

In the estimation of the entropy using the TI method, we need to calculate the

excess entropy and the vibrational entropy. The configurational entropy is then

obtained from Eq.2.37.

Excess entropy

Note that in the calculation of the excess entropy via the TI method, we need

the information of the internal energy (Eq.2.19). For the mean-field systems, the

internal energy has two parts, one is the contribution from the regular neighbor

(NN) and the other is the contribution from the pseudo-neighbor (PN). A similar

decomposition is present for the entropy, where we can write Sex = SNN
ex +SPN

ex .

The first term on the r.h.s refers to the contribution from the regular neighbours

and the second term from that of the pseudo neighbours. These are given by,

SNN
ex (β∗, k) = β∗〈U〉

−
∫ β∗

0

dβ
〈
U
〉

(5.1)

and

SPN
ex (β∗, k) = β∗〈Upseudo

k

〉
−
∫ β∗

0

dβ
〈
Upseudo
k

〉]
(5.2)

In Fig.5.1, we plot the temperature dependence of Sex from the TI method

for different k systems. In the TI method, we assume the particles to be in-

distinguishable. We find that the excess entropy decreases with increasing k.

Our earlier study showed that with an increasing k the structure of the system

remains unchanged [9]. Thus the contribution of the regular neighbours to the

entropy does not change with k. However, with an increase in the number of

pseudo neighbours and thus Upseudo
k , the total excess entropy decreases. Thus
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the decrease in excess entropy obtained via the TI method can be attributed to

the increase in the pseudo neighbour interactions.
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Figure 5.1: Plot of per particle excess entropy Sex vs. T for k = 0, 4, 12 and 28
systems. Sex is estimated using the TI method. With increase in k, the excess
entropy becomes more negative.

Vibrational entropy

We next calculate the vibrational density of states (VDOS) for different k values.

We find that with an increase in pseudo neighbours, there is a suppression of

the low-frequency modes, and the whole spectrum moves to a higher frequency

range as shown in Fig.5.2. A similar effect was also seen in the high-temperature

dynamics where it was shown that with the increase in the pseudo neighbours,

the cage becomes stiffer and the dynamics inside the cage becomes faster [9].

The temperature dependence of the vibrational entropy Svib(obtained from

the VDOS) is plotted in Fig.5.3. We find that with increasing k, as the vibra-

tional spectrum shifts to higher frequencies, the vibrational entropy decreases.

Configurational entropy

Next, we study the configurational entropy of the system. For all the systems

the data is plotted below their respective onset temperatures (see Table.5.1)[9].

The systems follow the expected linear relationship between TSc and T (Fig.5.4).

The Kauzmann temperature T TI
K is obtained by fitting to TSc = KT (

T
TK
− 1).

We find that T TI
K increases with k. This is expected as in the earlier study it

was found that with an increase in pseudo neighbours, the α relaxation time

of the system appears to diverge at a higher temperature [9]. However, the

unphysical part of the result is the vanishing of the configurational entropy for

larger k systems (k=12 and 28) at comparatively high temperatures where the
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Figure 5.2: Vibrational density of states (VDOS), D(ω) vs. ω, for
k = 0, 4, 12, 28 systems. With the increase in k, the low-frequency modes are
suppressed and the whole spectrum shifts to higher frequencies.

system can be equilibrated in simulations. Especially for the k = 28 system,

the temperature where the configurational entropy vanishes is close to the onset

temperature of glassy dynamics[9]. The T TI
k values are listed in the Table.5.1.

In the same Table, we also list the respective T0 values. For many systems, it

is found that TK ≃ T0 which suggests that the slowing down of dynamics is

driven by thermodynamics [14]. On the contrary, in Table 5.1 we find that the

difference between the T TI
K and T0 increases with increase in k. The correlation

between the dynamics and thermodynamics is also given by the Adam-Gibbs

(AG) relation, τ = τ0exp(− A
TSc

). Note that this expression implies that the di-

vergence of the relaxation time is an effect of the vanishing of the configurational

entropy and if we replace the expression of TSc in terms of TK then we get back

the VFT expression provided we assume TK = T0. If the system follows the

AG relation then the semi-log plot of τ vs 1
TSc

should follow a linear behaviour

which it does for most systems [14, 17, 18, 19, 20, 21, 22, 23, 24, 25] In Fig.5.5,

we study the validity of the AG relationship and find that with an increase in k

there is a departure from the linearity. We next show that for the k = 28 system

at T = 0.82 which is much below the T TI
K = 1.19, both the collective overlap

function and the intermediate scattering function decay with time and reach

their respective longtime values (Qtot(t → ∞) = 0.135 and F (q, t → ∞) = 0).

Note that because of the introduction of the pseudo neighbours at a distance

“Lij”, the system has more than one length scale. Thus to make sure that the

relaxation persists at length scale that are larger and smaller than the nearest

neighbor distance, we plot the Intermediate scattering function at wave numbers

larger and smaller than qmax = 2π
σmax

where σmax is the position of the first peak

in the radial distribution function. We find that the intermediate scattering
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Figure 5.3: The vibrational entropy Svib vs. T for k = 0, 4, 12 and 28 systems.
With an increase in k, the DOS shifts to higher frequencies leading to a
decrease in the vibrational entropy.

function relax to zero at all length scales. Note that more than the breakdown

of the AG relation which has been suggested to be a possibility [16], the fact

that the dynamics shows full relaxation where the configurational entropy van-

ishes suggests that we need to revisit the TI method of calculating the entropy.

In the TI method, we need information about the ideal gas entropy, the excess

entropy, and the vibrational entropy. The vibrational entropy calculation was

cross-checked by calculating it from the Fourier transform of the velocity au-

tocorrelation function which matched the data obtained from the Hessian (See

Appendix I).

5.5 Possible reasons for the failure of the TI

method

Let us first summarize the main observations made here when the entropy is

calculated using TI method (i) Negative values of Sc at low temperatures for

large values of k; (ii) Full relaxation of the dynamical quantities at temperatures

lower than the temperature at which Sc goes to zero; (iii) Breakdown of the AG

relation. In this section, we discuss the possible failure points of the TI method.

5.5.1 Ideal gas entropy

In the calculation of the configurational entropy (Eq.2.37), we need the infor-

mation of the ideal gas entropy. To make the entropy an extensive quantity we

calculate the ideal gas entropy (Eq.2.16) by assuming the particles to be indis-
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Figure 5.4: TSc vs. T for k = 0, 4, 12 and 28 systems where the Sc is calculated
using the TI method. The value of the Kauzmann temperature T TI

K increases
with increasing k. The value of T TI

K (see Table.5.1) for k = 28 system is close
to its onset temperature. For k = 12, 28 systems, T TI

K values are high enough
such that temperatures below T TI

K are accessible in simulation. Consequently,
SC becomes negative for temperatures below.

tinguishable. However, in the mean-field system, each particle has a different

set of pseudo neighbours with different L values. Thus one might argue that the

particles are distinguishable.

If we assume all particles to be distinguishable i e. m = N , then the entropy

in the thermodynamic limit will diverge (Eq.2.16). However, for finite N, we can

estimate the entropy which will increase by a factor that is proportional to log(N)

but independent of k. From our analysis, it appears that with an increase in ’k’

the error in the entropy calculation increases. This implies that the correction

term should depend on ’k’. Apart from the distinguishability factor, there is

one other issue that can affect the ideal gas term. Here the way the interaction

between a particle and its pseudo neighbour is designed restricts the particle to

access a certain part of the total volume. Per pseudo neighbour this volume is a

spherical region of radius Lij. Thus in the ideal gas limit, the whole volume of

the system is not accessible to a particle. The per particle inaccessible volume

should increase with ’k’ which will lower the entropy of the system. Thus the

distinguishability factor will increase the entropy whereas inaccessible volume

will decrease the entropy, the former is independent of ’k’ but the latter depends

on ’k’. This might appear to solve the ’k’ dependence of the correction term.

However, if we combine the distinguishability and inaccessible volume part then

we will find that for systems with small values of ’k’ the volume correction is

really small and the distinguishability factor which is independent of ’k’ increases

the entropy by a large amount. Thus the dynamics for these systems will be
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Figure 5.5: Testing the Adam-Gibbs relation between the relaxation time τ
and 1/TSc, for the k = 0, 4 and 12 systems. The AG relation is obeyed for the
k = 0 system, but is violated for non-zero k systems. The relaxation time τ is
estimated from the self-part of the overlap function.

similar to the k=0 system but the entropy calculated in this way will be much

higher.

Another possibility is that the distinguishability is not a binary function but

is a function ’k’. When we have these extra connections with the pseudo neigh-

bours replacing particles with another one while keeping the identity of pseudo

contacts the same can increase the energy of the system, and the larger the num-

ber of pseudo contacts the higher is the increase in the energy. This appears

quite similar to the case of polydisperse systems with continuous polydispersity

where depending on the size range of the two particles the replacement may

or may not keep the system in the same minimum [42]. It was argued that

after particle swapping if the system remains in the same inherent structure

minima then the two particles are indistinguishable and if not then they be-

long to different species. Thus to find the number of species we need to swap

particle positions. Swapping particles while keeping the identity of the pseudo

neighbours the same is not straightforward. The swap should make sure that

in the new position of the particle none of the pseudo neighbours are within

the interaction range rc. With the increase in the number of pseudo neighbours

these swaps will be mostly rejected thus making it impossible to quantify the

number of species and thus the entropy.
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Figure 5.6: Time dependence of the intermediate scattering function and the
collective overlap function for the k = 28 system at a temperature T = 0.82
which is lower than T TI

K (see Table.5.1). It shows that even when the
configurational entropy vanishes the self and the collective dynamics continues.

5.5.2 Excess entropy and the validity of the Rosenfeld

relationship

We next test the accuracy of the excess entropy value calculated via the TI

method. Apart from the AG relationship which is valid in the low-temperature

regime and connects the configurational entropy to the dynamics, there is an-

other phenomenological relationship, namely the Rosenfeld relation between the

excess entropy and the dynamics [43, 44]. According to the Rosenfeld rela-

tion, any dimensionless transport property will follow the excess entropy scal-

ing. For the relaxation time it can be written as, τ ∗ = Rexp(−KSex) where

τ ∗ = τρ−1/3T 1/2m−1/2. For simple liquids, it has been found that R ≃ 0.6 and

K ≃ 0.8, and this relationship is valid in the high-temperature regime showing

a data collapse between scaled diffusion and Sex [45] and also scaled relaxation

time and Sex [46, 47]. A recent study has also shown that scaled viscosity and

diffusion coefficient for a large number of systems show a quasi universal excess

entropy scaling extending over both high and low temperature regimes [48]. In

Fig. 5.7 we plot τ ∗ vs. Sex for the different mean-field systems and do not find

any data collapse. Thus we find a breakdown of the Rosenfeld relation and also

the quasi universal excess entropy scaling [48]. The deviation from the Rosen-

feld relationship might appear quite weak. However note that, unlike the AG

relationship where we deal with the configurational entropy which has a very

small value, in the Rosenfeld relationship we deal with the excess entropy which

has a large value. Thus the Rosenfeld relation is not sensitive to small errors in

the calculation of the entropy.
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Figure 5.7: Scaled relaxation time vs. excess entropy. Rosenfeld scaling
relation does not show universal scaling for all k systems. It deviates more
from the universal scaling with increasing k.

In the mean-field system, we find that the excess entropy has a strong de-

pendence on the number of pseudo neighbours. On the other hand, the study

of the dynamics of the mean-field system showed that the interaction with the

pseudo neighbours slows down the overall dynamics of the system, but has a

weak effect on the structural relaxation [9]. Thus it appears that the role of the

pseudo neighbours is not the same for the TI entropy and the dynamics.

5.5.3 Entropy using the 2PT method

In this section, we present the results of the calculation of entropy using a

completely different technique. In the 2PT method (discussed in chapter2), we

primarily use the information of the dynamics, namely the velocity to determine

the entropy. We know that the TI method works well for a regular KA model.

Thus to validate the 2PT method we compare it with the TI method for a

regular KA system (k = 0). As shown in Appendix I, the 2PT method works

well. At temperatures close to the mode-coupling transition temperature, the

2PT method shows some deviation which is identified as an averaging issue.

Thus we use the results from the 2PT method in the temperature range where

the upper bound is the onset temperature and the lower bound is above the

respective mode-coupling theory transition temperature[9]. In this section, we

will first compare the total entropy obtained using the 2PT (Eq.2.32) and the TI

(Eq.2.17) methods for the different mean-field systems. In the TI method, we

assume the particles to be indistinguishable. As shown in Fig.5.8 the difference

in total entropy between TI and 2PT method increases systematically with

increasing k. This suggests that for this system the TI method of calculating the
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entropy is not correct. We next study the configurational entropy as predicted

by the 2PT method and also its correlation with the dynamics. To calculate

the configurational entropy, we need the information of the vibrational entropy

which is the same as that used in the TI method. In Fig.5.9 we show the TSc vs

T plots. We find that for all the systems T 2PT
K is smaller than T TI

k and close to T0

(see Table.5.1). In Fig.5.10 we have a semi-log plot of τ against 1
TSc

. It clearly

shows the validity of the AG relation for all the systems in the temperature

range studied.
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Figure 5.8: Comparison of the TI and 2PT method of calculation of entropy:
(a) Stot vs. T . Filled symbols represent the TI method and open symbols
represent the 2PT method. Stot computed by the 2PT method is higher than
that by the TI method. (b) The difference in total entropy, ∆Stot between 2PT
and TI method increases with increasing k. (c) The relative difference in the
total entropy, ∆Stot

Stot(TI)
between 2PT and TI shows similar behavior as Fig.5.8b.

5.6 Pair and higher order entropy terms

Following Kirkwood expansion the per particle excess entropy of a liquid can be

written in terms of two body and higher order correlations as,

Sex = S2 + S3 + ...+ Sn (5.3)

Where Sn is the entropy due to n-body correlation. Sex can also be calculated

via thermodynamic integration as the pair part of the excess entropy is expressed
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Figure 5.9: TSc vs. T for k = 0, 4, 12, and 28 systems using 2PT method.
Values of T 2PT

K , which are in the same range as T0, are given in Table.5.1.
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Figure 5.10: Testing the AG relation τ vs. 1
TSc

for k = 0, 4, 12, and 28 systems
with entropy computed by the 2PT method. All the systems follow the AG
relation in the range of temperature studied here.

in terms of the rdf as

S2 = −2π
∫ ∞

0

ρ
[
g(r) ln g(r)− (g(r)− 1)

]
r2dr (5.4)

The higher order contributions are clubbed together, S3+S4+ ... = ∆S and

∆S is the residual multiparticle entropy (RMPE).

5.6.1 MCT power law behavior

In earlier studies it has been found that there is a overlap between the MCT and

the AG regime and Sc follows MCT like behaviour over the same temperature

regime as the relaxation time [56, 11]. It was also shown that the vanishing of
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Table 5.1: The value of all characteristic temperatures for systems with
different k values. T0 is the VFT temperature where the dynamics of the
systems diverges. T TI

K is the Kauzmann temperature estimated from TI. T 2PT
K

is the Kauzmann temperature estimated from the 2PT method.
T TI
K (distinguishable) is the Kauzmann temperature when we consider all

particles in the pseudo neighbor system are distinguishable.

k Tonset T0 TTI
K T2PT

K TK2

0 0.74 ±0.04 0.28 0.28 0.24 0.465
4 0.83± 0.08 0.36 0.46 0.31 0.572
12 1.03± 0.07 0.46 0.68 0.41 0.734
28 1.28± 0.22 0.61 1.19 0.55 0.1.07

the pair configurational entropy, Sc2 at Tc is the origin of this predicted disap-

pearance of the total configurational entropy which is avoided due to positive

values of RMPE. For the Sc to follow MCT power-law behaviour a prerequisite

is the validity of the AG relationship. In the MCT regime τ ∝ (T−Tc

Tc
)−γ and

according to the AG relation ln τ ∝ 1
TSc

. Thus 1
TSc
∝ T−Tc

Tc
plot. In the Fig.5.11,

we plot 1
TSc

vs T−Tc

Tc
for k=0, 4, and 12 systems where the entropy is calcu-

lated using the TI method. As expected we find that for systems which do not

follow the AG relationship the entropy follows the MCT power-law behaviour

in a narrower regime. The reason is for these systems the pair configurational

entropy disappears at temperatures higher than TC as shown in Fig.5.12 and

also tabulated in Table.5.1. Thus we can say that the error in the entropy value

obtained via the TI method appears even at the pair level. Note that if the

problem is in the excess entropy calculation as suggested from the breakdown

of the Rosenfeld scaling then most likely the error is in the pair part. This is

because the PN interaction has only two body correlation as seen from the rdf

(g(r) = exp(−βu(r)) (Chapter3).
Here we show that when there is only two body correlation, excess entropy

calculated via thermodynamic integration is exactly equal to the two body excess

entropy expressed via the radial distribution function.

Sex(β
∗) = β∗〈U〉

−
∫ β∗

0

dβ
〈
U
〉

(5.5)

Where
〈
U
〉
is the per particle potential energy written as,

〈
U
〉
= 2πρ

∫ ∞

0

u(r)g(r)r2dr (5.6)

Here u(r) is the interaction energy between two particles situated at distance
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r and g(r) is the radial distribution function. Let us now assume that the

system is such that there are only two body correlation. This will imply that

g(r) = exp(−βu(r)). The average potential energy per particle level can now

be written as

〈
U
〉
= 2πρ

∫ ∞

0

u(r) exp(−βu(r))r2dr (5.7)

Using Eq.5.7, we will go from Eq.5.5 to Eq.5.4. First we will put the value

of
〈
U
〉
from Eq.5.7 into Eq.5.5.

Sex =2πρ
[ ∫ ∞

0

β∗u(r) exp(−β∗u(r))r2dr

−
∫ β∗

0

dβ

∫ ∞

0

u(r) exp(−βu(r))r2dr
] (5.8)

First term of Eq.5.8 can be written as∫ ∞

0

β∗u(r) exp(−β∗u(r))r2dr

=

∫ ∞

0

(−) ln[exp(−β∗u(r))] exp(−β∗u(r))r2dr

= −
∫ ∞

0

ln[g(r)]g(r)r2dr

= −
∫ ∞

0

g(r) ln[g(r)]r2dr

(5.9)

as exp(−β∗u(r)) = g(r)

If we integrate the second term of Eq.5.8 for the β variable then we get as

−
∫ β∗

0

dβ

∫ ∞

0

u(r) exp(−βu(r))r2dr

= −
∫ ∞

0

[
u(r)

−1
u(r)

exp(−βu(r))
]β∗

0
r2dr

=

∫ ∞

0

[
exp(−βu(r))

]β∗

0
r2dr

=

∫ ∞

0

[
exp(−β∗u(r))− 1

]
r2dr

=

∫ ∞

0

[
g(r)− 1

]
r2dr

(5.10)

as exp(−β∗u(r)) = g(r)

Now Eq.5.8 can be rewritten using Eq.5.9 and Eq.5.10 as
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Sex = 2πρ
[
−

∫ ∞

0

g(r) ln[g(r)]r2dr +

∫ ∞

0

[
g(r)− 1

]
r2dr

]
= −2πρ

[ ∫ ∞

0

g(r) ln[g(r)]r2dr −
∫ ∞

0

[
g(r)− 1

]
r2dr

]
= −2πρ

∫ ∞

0

[
g(r) ln g(r)− (g(r)− 1)

]
r2dr

(5.11)

We find Eq.5.4 and Eq.5.11 are exactly same i.e. Sex = S2. Thus we know

that the PN interaction only contributes to the pair excess entropy.

Next we show in Fig.5.13 that the entropy calculated via the 2PT method

follows the MCT power-law behavior. Similar to that observed for the relaxation

time the temperature range over which the power-law behaviour is valid is wider

for higher ’k’ systems. In the 2PT method we cannot separately calculate the

contribution of the pair and higher order terms. Thus we cannot comment on

the TK2 value and compare it with TC . However it appears that if the AG

relationship is valid and if TK ≃ T0 then Sc follows a power law behavior and

appears to vanish at TC . However this is an avoided transition and at low

temperatures there is a departure from this power-law behaviour. The power-

law range for the entropy increases with ’k’.
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Figure 5.11: 1
TSc

vs. T−Tc

Tc
for k=0, 4 and 12 systems. Except k=0, no system

follows the linear relationship like AG fit. As the Sc becomes negative for k=28
system, we could not plot here and for the same reason the most state points
are absent in the plot for k=12 system.

5.6.2 Residual multiparticle entropy

In this section, we discuss ’k’ dependence of the residual multiparticle entropy.

RMPE denotes the contribution of the many body correlation in the entropy. In
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Figure 5.12: TSc2 vs. T for k=0,4,12 and 28 systems. The value of TK2

increases with increasing k. The values of TK2 for k=0, 4, 12 and 28 systems
are 0.465, 0.572, 0.734 and 1.07 respectively.
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Figure 5.13: 1
TSc

vs. T−Tc

Tc
for k=0, 4, 12 and 28 systems. Here, the value of Sc

have been estimated using the 2PT method. All systems follows the linear
relationship like AG fit within the range.

a large number of systems it was shown that with decrease in temperature the

RMPE undergoes a change in sign and the temperature where RMPE vanishes

is similar to the freezing or the onset temperature [54, 55, 2, 11]. At higher

temperatures, the RMPE has a negative value suggesting that due to many

body interaction the entropy decreases. However at lower temperatures it has a

positive value and it appears that many body interaction increases the entropy

of the system. It has been suggested that this increase in entropy is akin to

the hopping mechanism [2, 11, 56] and we can see that below the MCT transi-

tion temperature where the pair configurational entropy disappears the RMPE

becomes the only source of entropy [56]. However, another study has shown
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that it is only for three dimensional systems that vanishing of ∆S happens at

the onset/freezing temperature/density. For higher dimensional systems RMPE

disappears at a density higher than the freezing density [57]. Thus it can be

assumed that mean filed systems will show similar behaviour as these higher

dimensional system.

As discussed earlier the TI method overestimates the entropy for the mean

field system. Thus the question arises that can we calculate the RMPE accu-

rately in this system. Since the PN correlation is only two body in nature it

only affects the pair excess entropy and not the RMPE. Thus the RMPE is

independent of ’k’. We have shown in chapter4 that the onset temperature in-

creases with increasing k. Thus we show in Fig.5.14 that ∆S changes sign at a

temperature which is lower than the onset temperature and with increase in ’k’,

the difference between these two temperatures increases. This result is similar

to that observed by Truskett et al .[57]. This is another proof that higher ’k’

system shows more mean-field like behaviour.
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Figure 5.14: ∆S vs. T for all k. Arrows show the onset temperature.

As discussed before in earlier studies the positive value of ∆S was associated

with activated hopping dynamics [2, 11, 56]. Since with increase in ’k’ the ∆S

remains constant but the temperature range of the supercooled liquids shifts to

higher temperatures the dominance of the activated dynamics reduces. Even-

tually we expect that for higher ’k’ systems the supercooled temperature range

will shift completely in the range where RPME is negative. In Fig.5.15 we plot

the ’k’ dependence of the different transition temperatures and extrapolate the

dependence to higher ’k’ values. We also show the temperature where RMPE=0

by magenta dashed line. Above this temperature, RMPE is negative and below

this temperature, it is positive. We find that around ’k=60’ the TK value be-

comes equal to the temperature where RMPE vanishes. This implies that for
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systems k > 60 RMPE will be always negative even in the supercooled regime,

there will be no activated dynamics and the system will behave like a mean field

system.
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Figure 5.15: All characteristic temperatures vs. k plot. Solid lines are fitted
graph. Dashed horizontal line is the temperature at which ∆S become zero.

5.7 Conclusion

In chapter 3 and chapter 4, we have described the development of the model for

glass-forming liquid whereby changing a parameter the system can continuously

switch from a standard three-dimensional liquid to a fully connected mean-field

like system [9]. The parameter is k, the number of additional particle-particle

interactions that are introduced per particle on top of the regular interactions

in the system. With increasing k, the structure and the dynamics were studied

which showed more mean-field like behaviour at higher k values. The present

work aims to study the thermodynamics of the system and understand its cor-

relation with the dynamics. To study thermodynamics, we first calculate the

entropy using the well-known TI method [29]. We then study the correlation

of the entropy with the dynamics. This model shows super-Arrhenius dynamics

similar to conventional glassy liquids [9], suggesting that the RFOT description

should apply. However, we find that the relaxation times calculated from both

single-particle and collective dynamics remain finite at temperatures where the

configurational entropy vanishes. This is different from the prediction of RFOT

and the behavior seen in conventional glass-forming liquids for which the (ex-

trapolated) values of TK and T0 are found to be close to each other [14, 16, 53].

We discuss the possible source of error in the TI method of calculation of the

entropy for the mean-field system. However, at this point, we do not know
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how to modify the TI method to correctly calculate the entropy of these model

systems.

We thus use another technique namely the 2PT method to calculate the

entropy. The 2PT method assumes that a liquid can be represented as partially

a gas and partially a solid and this fraction is a function of the thermodynamic

parameters of the system and also of the size of the particles. The 2PT method

has been extensively used to calculate the entropy for many systems, mostly

in the high-temperature regime [38, 30]. In recent work, this method was also

extended to lower temperatures [32]. We find that for the KA system at k = 0,

both the 2PT method and the TI method provide similar results. We then

compare the total entropy calculated by the 2PT method with that by the TI

method for different mean-field systems. We find that the difference between

the entropy values obtained in the two methods systematically increases with

increasing k. We also find that the entropy calculated via the 2PT method

describes the dynamics quite well and confirms the RFOT prediction. The

results of the mean-field systems appear quite similar to that of the pinned

particle system studied earlier [33]. Thus our analysis suggests that for a certain

class of systems, the TI method in its current form fails to predict the correct

value of the entropy. At this point, we are unable to comment exactly why the TI

method which has a microscopic basis fails whereas the 2PT method which is in a

way heuristic in nature succeeds in predicting the dynamics. Also, the possible

source of error in the TI method of entropy calculation for the two different

systems may or may not be the same. In the mean-field system the source of

error in the entropy calculation using the TI method can be the ideal gas term

as the particles due to their fixed set of pseudo neighbours can appear to be

distinguishable and also the total volume of the system might not be accessible

to the particles even at infinite temperature limit. The mean-field system shows

a breakdown of the Rosenfeld scaling when the excess entropy is calculated

using the TI method. A recent study has shown that for the pinned system the

correlation between the local pair excess entropy and the dynamics breaks down

[52]. These two results appear similar in spirit. The excess entropy calculation

only depends on the interaction between particles. Thus for the mean-field

system, we may be overestimating the interaction between the particle. This

conjecture needs to be tested and more such systems need to be studied to

understand the role of interaction in the estimation of entropy using the TI

method.

Appendix I: Comparison of 2PT and TI method for KA model

For a binary system in the 2PT method of entropy calculation, we need to

provide the information of the partial volume fraction which can be calculated
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as [38],

V̄i =
σ3
i∑

j xjσ3
j

V

N
(5.12)

where, Vi = V̄iNi.

Partial volume fraction depends on the radii of the particles. In the KA

system, the diameter of the A and B particles are 1 and 0.88. However, the

potential in the KA model is designed in such a way that it allows interpene-

tration between the A and the B particles (σAB < (σA + σB)/2). Thus if we

assume that the B particles are surrounded by all A particles then the effective

diameter of a B particle will be 0.6. To understand the role of partial volume

fraction on the entropy we calculated Stot from the 2PT method, assuming the

B particle diameter to be 0.8 and 0.6. We find that at high temperatures the

0.6 value provides a better result but at low temperatures, the entropy is almost

independent of the small changes in the partial volume fraction. Thus for these

systems, we assume the diameter of the B particles to be 0.6.

We compare the total entropy of the system as estimated from the TI [39]

and from the 2PT [30] methods. Fig.5.16 shows that the Stot obtained TI and

2PT methods have similar values. The error bar for the 2PT data is estimated

from a set of ten runs at each temperature. We find some deviation in the

low temperature. At low temperatures as the dynamics become slow, we need

longer runs to get a converged DOS. Fig.5.17 shows the effect the time step has

on the value of total entropy at lower temperatures. Initially, with an increase

in time step the entropy value faster approaches the value calculated using the

TI method. However, at longer times, the slope of the curve reduces.
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Figure 5.16: Stot vs.T for the KA model using the TI and the 2PT method.
The two methods agree reasonably well. A small systematic deviation in the
low-temperature regime is due to limited averaging possible for the 2PT
method, see Fig.5.17.
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Figure 5.17: The total entropy via the 2PT method as a function of the
number of time frames over which the velocity autocorrelation function is
integrated to obtain the spectral density at a low temperature T = 0.45. For
comparison, we also plot the entropy value obtained using the TI method. The
difference decreases with increasing time interval, but the rate of convergence
becomes slower at longer times.

Configurational entropy, Sc obtained in the two different methods is plotted

in Fig.5.18 We find that the values of Kauzmann temperature (TK) using two

different methods are close which validates the applicability of the 2PT method

for the calculation of the configurational entropy.
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Figure 5.18: TSc vs. T for the KA model using the TI and the 2PT methods.
The value of TK estimated by the two methods are similar (T TI

K =0.27,
T 2PT
K =0.24).
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Chapter 6

Connecting real glasses to

mean-field models:A study on

jamming

6.1 Introduction:

Jamming is the transition of the disordered matter to rigidity. Different systems

like Emulsions, foams, colloidal suspensions, pastes, granular media and glasses

can jam in rigid, disordered states, and they respond essentially elastically to

small applied shear stresses. However, these jammed states can easily be made

to yield (unjam) and flow by tuning various control parameters. The jamming

transition can be influenced by varying thermodynamic variables, such as tem-

perature or density also by mechanical variables such as the stress applied to

the sample.

It is impossible to compress a disordered assembly of rigid particles beyond

a maximal packing fraction. In the idealized case of hard, spherical, frictionless

particles, a critical value of the volume fraction is defined in the thermodynamic

limit[1, 2], beyond which the system cannot be compressed, and this critical

point is called the jamming point. The jammed system corresponds to a crit-

ical point (“point J”) with remarkable scaling properties observed when J is

approached from either side[1, 3, 2]. Although the different initial state points

show different jamming points when we plot pressure(P) vs (ϕ−ϕJ), it shows a

universal scaling behaviour, and similarly, the energy of the system also shows

the universal scaling behaviour with different exponent[4, 1]. Below the jam-

ming transition, the average number of particles in contact jumps from a finite

value(ZJ) to zero. ZJ is the number of particles in contact at the jamming point.

Maxwell’s estimate for the rigidity transition is compatible with the value of ZJ .
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It states that each particle has minimum contacts to exist the rigid state, which

is called the isotactic state[5, 6]. less spheres. We consider a packing of N soft

particles in the d dimensions. The average number of contacts at a particle,

equals to Z and the total number of contacts equals to ZN
2

because each contact

is shared by two particles. Thus the system needs ZN
2

contact forces balance on

all the particles, which yields dN number of constraints on ZN
2

force degrees of

freedom. The isotactic stability occurs when ZcN
2

becomes equal to Nd. Thus

Zc becomes 2d. The additional contacts are added when the system reaches

above the jamming transition. This additional contacts (∆Z = Z − ZJ) follow

a universal scaling law with the change of volume fraction (∆ϕ = ϕ − ϕJ) as

∆Z ∝ ∆ϕδ (where δ = 0.5 for harmonic sphere system)[4, 1].

There are lots of similarities between the glass transition and the jamming

transition. The glass transition is reached by cooling the equilibrium liquid fast,

whereas the jamming transition is achieved by compressing systems rapidly.

One argument is that the jamming transition is the zero-temperature limit of

glass transition[7]. However, the numerical study[8] show that these two transi-

tions are distinct and complicated in nature. We do not know how the jamming

transition occurs and the scaling behavior in the vicinity of the jamming tran-

sition in the mean-field systems. In earlier work[9], we have added k number

of pseudo neighbor (k) with each particle, and we have found the systems be-

come more mean-field like as we go to higher k systems. Our aim is to find the

jamming point and to see the scaling properties near the jamming transition for

mean-field systems with the different pseudo neighbors.

In this chapter, we numerically investigate jamming transition and the scal-

ing properties for different mean-field systems. We find the for higher k systems

the jamming transition occurs at lower volume fraction. Energy and pressure

show a good scaling behavior near the the jamming state. Total coordination

number increases rapidly with increase in k. However the increase in coordi-

nation number as a function of volume fraction do not show the same scaling

behavior for all the systems, we find the exponent increases with increase in k.

The contribution of the nearest neighbor in ZJ decreases with increase in k and

on the other hand, the contribution of the pseudo neighbor in ZJ increase with

increase in k and we predict that around k=136 the jamming will be dominated

by the pseudo neighbours. The local structure of the system estimated from the

radial distribution function (rdf) show a diverging behaviour near the contact

distance and a double second peak for both k=0 and large k systems. RDF also

shows a power-law behavior near the contact distance, where the exponent is k

dependent.

The rest of this chapter is organized as follows: The system and simulation
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details are described in Sec. 6.2. In Sec. 6.3, we describe system details. In

Sec.6.4, we have discussed energy minimization technique and the algorithm.

We show the results and its implications in Sec. 6.5 and conclude in Sec. 6.6.

6.2 Simulation details

We have performed molecular dynamics simulations for three-dimensional binary

mixtures using soft repulsive harmonic potential.

Uij(r) =

(1− r
σ
)2, r ≤ σ

0, r > σ
(6.1)

The system contains total N number of particles with density ρ = N
V
, where

V is the volume of the system. The system is under periodic boundary condi-

tions. For binary mixtures total N contains NA particles of type A (50%) and

NB particles of type B (50%). We have performed constant volume and constant

temperature (velocity rescaling) simulation (NVT) using time step ∆t = 0.002.

We use σAA and ϵAA as the unit of length and energy, setting the Boltzmann

constant kB = 1. We have used reduced time unit in terms of
√

mAAσ2
AA

ϵAA
and

mass of both type of particles are same (mA = mB). We have used 50% of

A particles and 50% of B particles with the diameter σAA=1.0, σAB=1.2 and

σBB=1.4. The interaction strength between the particles are ϵAA=1.0, ϵAB=1.0

and ϵBB=1.0.

6.3 System details

The mean-field system is given by N particles that interact with each other via

a standard short-range potential. In addition, each particle also interacts with

“pseudo neighbors”, i.e. particles that are not necessarily close in space. Hence,

the total interaction potential of the system is given by,

Utot(r1, ...rN) =
N∑
i=1

N∑
j>i

u(rij) +
1

2

N∑
i=1

k∑
j=1

upseudo(rij) (6.2)

= U + Upseudo
k . (6.3)

The first term on the right-hand side is the regular interaction between parti-

cles, while the second term is the interaction each particle has with its pseudo

neighbours. Here we consider the case that the regular interaction as described
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by the Eq.6.1.

The interaction potential with the pseudo neighbours is modelled in terms

of a modified LJ potential,

upseudo(rij) = u(rij − L) (6.4)

= (1− rij − L

σij

)2 (6.5)

where L is a fixed value defined below. In our simulations we impose the restric-

tion that any two particles interact either via u(rij) or via upseudo(rij). We have

chosen fixed L values for all the systems and all the pairs of particles. This con-

dition determines how for a given configuration equilibrated with the potential

u the pseudo neighbors and the values L are chosen: L ≤ Lbox/2− rc, with Lbox

the size of the simulation box. Subsequently we choose k distinct particles j with

rij > rc and use the L to fix permanently the interaction between particles i and

j. This procedure thus makes that each particle i interacts not only with the

particles that are within the cutoff distance but in addition to k particles that

can be far away. Note that once the particle j is chosen as a pseudo neighbour

of particle i, automatically particle i becomes a pseudo neighbour of particle j.

The system, as defined here, can then be simulated using standard simulation

algorithms.

NVT molecular dynamics (MD) simulation is performed in a cubic box using

velocity rescaling method for N = 1000 particles at ρ = 0.51 ( Lbox = 12.515),

using a time integration step of ∆t = 0.002. We have taken L=1.5. We have

simulated four different systems with the number of pseudo neighbours, k =

0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100.

6.4 Inherent structure

One of the most common tasks in computational material science is to find

mechanically stable equilibrium configurations in the atomistic system, which

corresponds to find the minimum potential energy starting from an initial con-

figuration. Here we have used a simple but powerful MD scheme for structural

relaxation. This method relies on inertia. Thus it is called a Fast Inertia Re-

laxation engine (FAST) algorithm[10]. It searches the fastest way to reach the

bottom of the potential energy landscape (E(x)) of a state point using the fol-

lowing equation
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v̇(t) = F(t)/m− γ(t)|v(t)|[v̂(t)− F̂(t)] (6.6)

where m is the mass, v = ẋ, the force F = −∆E(x) and hat signifies the

corresponding unit vector. The strategy for searching the energy surface is

to introduce an acceleration in the direction that is steeper than the current

direction of motion via the function γ(t) if the power P (t) = F(t).v(t) is positive

and it stops the velocity as soon as power becomes negative to avoid the uphill

motion. FIRE can be calculated using any Molecular Dynamics integrator.

Practically FIRE algorithm can be performed using few steps. Two kinds of

velocity are required to adjust the MD trajectories continuously. (1) immediate

stop the velocity upon uphill motion (2) a mixing of the global velocity (3N

dimensional) and force vectors v→ (1− α)v+ αF̂|v|, resulting from an Euler-

discretization of the last term in Eq.6.6 with time step Deltat and α = γ∆t

are treated as dynamically adaptive quantities. Deltat and α are dynamically

adaptive quantities. FIRE algorithm follows some propagation rules

1. Initialize the values of ∆t, α = αstart, global vector x = 0 and v = 0.

2. Calculate x, F = −∆E(x) and v needs to calculate using any MD inte-

grator.

3. Calculate P = F.v

4. set v→ (1− α)v+ αF̂|v|

5. if P → 0 and the number of steps since P was negative is larger than

Nmin, increase the time step Deltat → min(∆tfinc,∆tmax) and decrease

α→ αfα

6. id P ← 0, decrease time step ∆t → ∆tαdec, freez the system v → 0 and

set α back to αstart.

7. Return to MD

6.5 Result and discussion

To generate configurations near the jamming point, we take high-temperature

configurations with low volume fraction (ϕ) and quench them at zero temper-

ature using the FIRE algorithm (see section6.4 ) with that fixed volume frac-

tion. Then we increase the diameter of the particle by 10−5, and again do the
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minimization using the FIRE algorithm in the higher volume fraction, and we

continue this process. During the compression, the system reaches the jammed

state and go beyond the jamming volume fraction (ϕJ) on further compression.

When the system reaches a volume fraction higher than ϕJ , we decompress the

system by decreasing the diameter of the particle with the same amount as

compression, and again we come across the jamming transition. In this chap-

ter, we have analysed and present all the data which is obtained during the

decompression cycle.

The jamming point is not fixed, it exists over a continuous window, and it

depends on the protocol to generate the jammed state. Many studies have shown

that if the initial equilibrium system has a higher density or lower temperature,

then the jamming point shifts towards higher volume fraction[4, 11, 12, 13]. This

effect is not the same as the mean-field system. We have found that as we go

to higher k system the jamming transition happens at lower volume fractions

as shown in Fig.6.1. Thus with increasing k the jamming point shifts towards

lower volume. We obtain ϕJ by fitting E ∝ (ϕ− ϕJ)
α and the values of ϕJ and

α are given in Table6.1. We find that the pressure also diverges at the same ϕJ

as shown in Fig.6.1.

In Fig.6.2 we plot the ’k’ dependence of ϕJ . In our system, when we increase

the number of pseudo neighbors, the network of the interaction increases. Since

the pseudo neighbours also contribute to the jamming transition this lowering

of jamming volume fraction is expected. This is similar to the observation made

in the earlier study [9] where we found that with an increase in k, the transition

temperatures increase. Note that these pseudo neighbours effectively increase

the density of the system. In the earlier study[9], we have have explained the

effective density of the system as ρeff = ρ + ρk, where ρ is the regular density

of the system and ρk is the pseudo neighbor density. In a similar manner that

we have used to define the regular volume fraction (ϕ) we can define the volume

fraction due to the pseudo neighbours as (ϕk =
k
2

4
3
π[(σAA/2)3+(σBB/2)3]

BOX3− 4
3
πL3 ) and thus

we define an effective volume fraction in the system ϕeff = ϕ+ϕk. We estimate

the effective jamming volume fraction (ϕeff
J ) for all the systems, and we find

ϕeff
J does not change much with increase in k as shown with red symbols in

Fig.6.2. Also the E vs. ϕeff and the P vs. ϕeff show a near data collapse (see

Fig.6.3).

Although ϕJ is different for different k systems, the scaling properties near

the jamming transition are not different. Fig.6.4(a) shows that all the systems

follow the power-law behaviour for energy vs ϕ − ϕJ plot, and the exponent is

near 2. Fig.6.4(b) shows that pressure vs ϕ − ϕJ follow the similar universal

power-law behavior for all k systems with an exponent close to 1. We also find
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Figure 6.1: (a)Energy vs. Volume fraction plot for different k systems.
Jamming point goes to lower volume fraction with increasing k. (b) Pressure
vs. Volume fraction plot for different k systems. Jamming point goes to lower
volume fraction with increasing k.

that in the energy vs ϕeff−ϕeff
J and pressure vs ϕeff−ϕeff

J plots the power-law

behaviour remains quite similar (see Fig.6.4). In Fig.6.5, we plot the ϕ− ϕJ vs

ϕeff − ϕeff
J . We find that as we increase k the slope of the line deviates from

1. However the deviation is weak and even for k=100 the slope is 0.91. This

is the reason both ϕ − ϕJ and ϕeff − ϕeff
J appear to be good parameters in

describing the behaviour of energy and pressure near the jamming point. Right

now, we are unable to comment on which volume fraction, ϕ and ϕeff should

better describe the system. This will require further study.

The geometry at the jamming point is nontrivial, and the systems at a

jamming point are isotactic [14] which is the sharply defined minimum required

of the average contact number to stabilize the jamming state. The contact

number at a jamming point can be argued from the number of degrees of freedom

and the constraints in the system[5, 6] and the coordination number at the
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Figure 6.2: ϕJ or ϕeff
J vs k plot. ϕJ goes to lower volume fraction as we go to

the higher k system. But ϕeff
J almost remains same with increase in k.

Table 6.1: The values of jamming volume fraction, coordination number at
jamming point and their corresponding exponents are given here. ϕJ is the
volume fraction at jamming point and α is the corresponding exponent. ZJ and
ZNN

J are the total coordination number and coordination number with only
normal neighbor respectively. β and βNN are the corresponding exponents.

k ϕJ α ZJ β ZNN
J βNN

0 0.6530 1.99 5.46 0.490 5.46 0.490
10 0.6477 1.99 5.41 0.496 5.28 0.490
20 0.6433 1.98 5.40 0.506 5.15 0.492
30 0.6369 2.00 5.46 0.529 5.09 0.514
40 0.6299 2.00 5.51 0.550 4.95 0.521
50 0.6259 1.97 5.64 0.569 4.90 0.541
60 0.6176 1.98 5.60 0.579 4.75 0.540
70 0.6113 1.99 5.51 0.578 4.52 0.530
80 0.6010 2.02 5.35 0.576 4.14 0.519
90 0.5935 1.99 5.48 0.604 4.15 0.550
100 0.5864 1.98 5.50 0.614 4.05 0.563
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Figure 6.3: (a)Energy vs. effective Volume fraction plot for different k systems.
Jamming point does not change much with increase in k. It shows close to
master plot. (b) Pressure vs. effective Volume fraction plot for different k
systems. It shows the similar behavior as energy plot.

jamming point in the 3-dimensional system should be 6. Another nontrivial

property of the geometry in the jamming state is that the g(r) diverges at the

contact distance when the system is in the jammed state. g(r) shows a power-law

behavior near contact distance. Next, we discuss the geometry of our systems at

the jamming point. Similar to the energy and pressure, we find a sudden jump

in the coordination number of the particle near the jamming transition. In our

systems, two types of coordination numbers are present in the system; one is

the nearest neighbor coordination number (ZNN), and another is the pseudo

neighbor coordination number (ZPN). The total coordination number in the

system is defined as Z = ZNN + ZPN . Interestingly we find (Fig.6.6) that all

three coordination numbers (Z,ZNN ,ZPN) jump near ϕJ . We estimate the total

coordination number at jamming point by fitting the equation Z−ZJ = (ϕ−ϕJ)
β
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Figure 6.4: (a) Energy vs. (ϕ− ϕJ) plot which shows power law scaling for all
k.(b) Energy vs. (ϕ− ϕeff

J ) plot which shows power law scaling for all k. (c)
Pressure vs. (ϕ− ϕJ) plot which shows power law scaling for all k. The
exponent is near 1. (d) Pressure vs. (ϕ− ϕeff

J ) plot which shows power law
scaling for all k. The exponent is near 1

where ϕJ is taken from the E vs ϕ fitting, ZJ and β are treated as the fitting

parameter and their values are given in Table6.1. We also plot Z against ϕeff

which shows a near overlap of the lines. We find that the value of ZJ for all the

systems is below 6, which is the coordination number at the isotactic condition.

It is well known that at the jamming point there are rattlers in the system.

Rattlers are those particles that do not have any contact. When we calculate

the coordination number, we have not neglected the rattlers, and this might

be the reason we get a lower coordination number at the jamming point than

the coordination number at the isotactic condition, which is 6. Unlike pressure

and energy, the total coordination number as shown in Fig.6.7 does not follow

the master plot. The value of the exponent increases with increasing k. Note

that in a regular 3D system the coordination number can increase from 6 at

the jamming point to around 13. However for mean field system due to the

contribution of the pseudo neighbours this upper limit is a function of k. This

leads to a sharper rise in the Z value as a function of ϕ.

We need to investigate more to find out the source of increasing the values

of exponents.
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We have already shown (see Fig.6.2) that as the number of pseudo neighbors

increases, the jamming happens at a lower volume fraction. We next analyse

the role of PN in the jamming transition. To do that we obtain the ZNN
J and

ZPN
J as a function of ’k’. Fig.6.8 shows that the contribution of regular neighbor

in the coordination number at jamming point decreases with increasing k, and

the contribution of the pseudo neighbor increases with increasing k. When we

extrapolate the plot we get a cross over at a value of k ≃ 136. This implies

that beyond this value of ’k’, the jamming will be dominated by the pseudo

neighbours.

Next we analyze the effective radial distribution function which is calculated

in the same way as discussed in Chapter4. Near the jamming point we find a

sharp peak of the geffAA (r) at the contact distance (see Fig.6.10). This g(r) is

plotted just below the jamming point. We also find the characteristic double

peak structure near the second peak for both the k=0 and k=100 systems. In

Fig.6.9 we find that all the systems show the power-law singularity near the

contact distance. However the exponent appears to be k dependent. For the

k=0 system the exponent as found earlier is 0.5 but it decreases with k. We

need better statistical averaging for the geff (r) analysis.

6.6 Conclusion

We investigate the jamming transition in the mean-field system using the soft

repulsive harmonic potential where each particle in the system is allocated a fixed

set of pseudo neighbors in addition to the normal neighbor. Pseudo particles are

present outside the normal interaction range, and by design they do not interact

Ujjwal Kumar Nandi 129 CSIR-NCL



PhD Thesis AcSIR

0.4 0.5 0.6 0.7 0.8 0.9
φ

0

5

10

15

Z

k=0
k=10
k=20
k=30
k=40
k=50
k=60
k=70
k=80
k=90
k=100

(a)

0.5 0.6 0.7 0.8 0.9
φ

0

5

10

15

Z
N

N

k=0
k=10
k=20
k=30
k=40
k=50
k=60
k=70
k=80
k=90
k=100

(b)

0.5 0.6 0.7 0.8 0.9
φ

0

1

2

3

4

Z
PN

k=10
k=20
k=30
k=40
k=40
k=60
k=70
k=80
k=90
k=100

(c)

0.6 0.7 0.8 0.9 1

φeff

0

5

10

15

Z

k=0
k=10
k=20
k=30
k=40
k=50
k=60
k=70
k=80
k=90
k=100

(d)

Figure 6.6: (a) Z vs. ϕ plot for all k systems. (b) ZNN vs. ϕ plot for all k
systems. (c) Zpseudo vs. ϕ plot for all k systems. (d) Z vs. ϕeff plot for all k
systems. All kinds of coordination number show jump at their respective
jamming points.

with each other. We have made ten such mean-field systems with k=10, 20, 30,

40, 50, 60, 70, 80, 90, 100. The aim of the present study is to find how these

pseudo interaction affect the jamming transition. We find that at the jamming

point both energy and pressure show a jump. The value of ϕJ is determined from

the scaling behavior between energy and volume fraction. The pressure and the

volume fraction also show the same ϕJ values. We find that with increase in k

ϕJ decreases. This can be connected to the network formation because of the

pseudo neighbors. When we calculate the effective volume fraction which takes

into consideration the PN interaction we find that the effective jamming volume

fraction remains almost constant for all the systems.

We also find that the power-law behavior of E vs ϕ − ϕJ and P vs ϕ − ϕJ

remains same for all the systems. The total coordination number at the jamming

point remains almost constant for all the mean-field systems. We find that at

the jamming point both NN and PN contribute and with increase in the k the

contribution from the former decreases whereas from the latter increases. We

extrapolate the NN and PN contacts as a function of k and it appears that above

k=136 the pseudo neighbours will dominate the jamming transition. Apart

from the coordination number, another important quantity which provides the
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Figure 6.7: Both (a) Z − ZJ vs ϕ− ϕJ plot and (b) Z − ZJ vs ϕ− ϕeff
J for all

k systems do not show any collapse into the master plot.

information of the geometry is the g(r). Near the jamming point the effective

radial distribution function for both the k=0 and k=100 systems show a sharp

peak at contact distance. Near the contact distance all the systems show a

power-law behavior of geffAA , however the exponent is a function of k. Thus we

find that although most of the properties near the jamming transition is similar

for all the systems the pseudo neighbours do affect values of certain exponents.

We will need further investigation and better averaging to better understand

the role of pseudo neighbours in the jamming transition.
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Figure 6.8: ZJ vs k plot. Regular neighbor and pseudo neighbor contributions
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decreases with increasing k and the contribution of the pseudo neighbor
increases with increasing k.
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Figure 6.9: The pair correlation shows a power-law singularity near contact at
jamming transition. Pair correlation function of type A particles has been
considered here. It shows a spread in the data. (a) It shows the power-law in
the effective radial distribution function. (b) It shows the power-law in the
regular radial distribution function.
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Chapter 7

Composition dependence of the

glass forming ability in binary

mixtures: The role of demixing

entropy

7.1 Introduction

A liquid upon cooling undergoes first order phase transition and forms a crys-

tal. However if the cooling rate is increased it cannot crystallize and forms an

amorphous glassy material [1]. In addition to fast supercooling, there are other

methods to favor glass formation over crystallization. In bulk metallic glass com-

munity the usual rules of thumb are to at least have a two component mixture

with negative enthalpy of mixing and a 12% size ratio between the components

[2]. Single component systems are known to crystallize in a fcc+hcp structure

[3], thus multi-component systems are commonly used for making glasses. The

negative enthalpy of mixing makes sure that the components remain in a mixed

state and do not demix to form single component crystals, whereas the size ratio

provides frustration in packing. Although there is an array of experimental sys-

tems which form glasses, in computer simulation studies there is only a handful

of systems known to be good glass formers [4, 5, 6, 7, 8]. Note that most of the

glass forming systems have global crystalline minima [9, 10]. Thus depending

on the barrier to crystallization it is just a matter of time for the systems to

crystallize. With the increase in the available computational power some of the

well known glass formers like Kob-Anderson (KA) model and Wahnstrom (WA)

model are now found to partially crystallize [11, 12]. Thus in order to design

better glass formers we need to be able to estimate the glass forming ability
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(GFA) of these systems.

In order to quantify GFA, first we need to understand the origin of the stabil-

ity against crystallization. This is an active field of research and different studies

have attributed the GFA to different phenomena [13, 14, 15, 16, 17, 10, 18]. The

most popular among them is the theory of frustration first proposed by Frank

[13]. According to him, the local liquid ordering is different from the crystalline

order and this frustrates the system and decreases the rate of crystallization. It

has also been argued that regions with locally favored structures (LFS) give rise

to domains and are connected to the slow dynamics in the supercooled liquids

[14, 15]. Sometimes the LFS can also be related to the underlying crystalline

structure [16, 17, 10]. In some cases the LFS which is connected to crystal struc-

ture grows more than the one connected to the liquid structure [17]. The LFS

can vary in different dimensions. There are LFS, like the icosahedral ordering,

which can cause frustration in the Euclidean space but tile the curved space

[15]. Frustrations are not always structural but can also be energetic in nature

[18].

Most binary equimolar mixtures form crystalline structures [19], where the

crystal structure may vary according to the size ratio of the components. There

are also some exceptions like the equimolar CuZr structure which is found to

be a good glass former [8]. However, when the compositions of the mixtures

are changed then it is usually found that close to the deep eutectic point many

of them form glasses. One of the argument in favor of the deep eutectic point

being a good glass forming zone is that the viscosity is highest at this point

so kinetically it takes a longer time to form a crystal nucleus. However it has

also been shown that the structural frustration between two different crystal

structures can make this region a good glass former. This kind of phase diagram

(in temperature vs. composition space) is often referred to as V-shaped phase

diagram where the bottom of the V is the glass forming region [20, 21, 22, 23, 25].

In a recent work by some of us we have shown that even though all the

systems at equimolar mixture undergo crystallization, as the composition of the

larger size particles increases, the zone which forms CsCl crystal at equimolar

composition does not crystallize any more [25]. It is already known from the

study of energetics that the global free energy minima of these systems are

CsCl+fcc crystals [9]. The well known KA glass former is one of the systems

present in this more generic CsCl zone. So far only in one study it has been

reported to crystallize but in a structure which is different from that of the

global minimum [11]. In the earlier study we have shown that in the CsCl+fcc

crystal structure the bigger “A” particles need to have two different populations

where there is a large difference in the order parameter (coordination number
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and bond orientational order parameter) of these two populations. According

to us, this large difference in order parameter creates frustration. Note that in

this system the LFS is bicapped square anti prism which is structurally quite

close to CsCl[24]. Thus unlike systems discussed earlier where the geometric

frustration is between icosahedral and fcc structure [14, 15, 17], in this system

it is between CsCl and fcc structure which stabilizes it against crystallization

[25].

In this present work we study a similar series of binary systems by changing

the composition and also the inter species interaction length. Many of the

binary systems studied here are good glass formers and have a global minima

which is CsCl+fcc structure. Thus according to our earlier study the structural

frustration for these systems are similar. However, these systems are expected

to have different glass forming ability. The goal of this work is to get a relative

estimate of the GFA of different systems and then explore the origin of their

differences. Our study shows that the free energy cost for CsCl crystallization

increases with the composition of the smaller particles. The system with lowest

free energy cost also shows a pre-crystalline demixing in the liquid phase near

the liquid/crystal interface. The demixing takes place due to the structural

frustration between the CsCl and fcc structures. Upto a certain composition,

the composition dependence of the free energy cost to create a crystal nucleus can

be related to the composition dependence of this demixing entropy. Our study

of energetics shows that although in the whole range of composition the global

minima is CsCl+fcc crystal the driving force of crystallization in a certain region

is the CsCl crystal and in another region is fcc crystal. In the former region the

system tends to demix and form CsCl+fcc crystal and demixing frustrates the

crystallization process. However, in the latter region we show that demixing does

not play a crucial role. It is primarily the slow dynamics near eutectic point

and LFS around the smaller “B” particles which frustrate the crystallization

process.

The simulation details are given in the next section. In section III we present

the definition and method for evaluating different quantities, in section IV we

have the results and discussion, and section V ends with a brief summary.

7.2 Simulation Details

The atomistic models which are simulated are two component mixtures of classi-

cal particles (larger “A” and smaller “B” type), where particles of type i interact

with those of type j with pair potential, Uij(r), where r is the distance between

the pair. Uij(r) is described by a shifted and truncated Lennard-Jones (LJ)
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potential, as given by:

Uij(r) =

U
(LJ)
ij (r;σij, ϵij)− U

(LJ)
ij (r

(c)
ij ;σij, ϵij), r ≤ r

(c)
ij

0, r > r
(c)
ij

(7.1)

where U
(LJ)
ij (r;σij, ϵij) = 4ϵij[(σij/r)

12 − (σij/r)
6] and r

(c)
ij = 2.5σij. Subse-

quently, we’ll denote A and B types of particles by indices 1 and 2, respectively.

The different models are distinguished by different choices of lengths and

composition parameters. Length, temperature and time are given in units of σ11,

kBT/ϵ11 and
√
(m1σ

2
11/ϵ11), respectively. Here we have simulated various binary

mixtures with the interaction parameters σ11 = 1, σ22 =0.88 , ϵ11 =1, ϵ12 =1.5,

ϵ22 =0.5, m1 = m2 = 1 and the inter-species interaction length σ12 = 0.7, 0.8. In

some cases we have used the symbol S, where S = σ12/σ11. We have simulated

systems with different compositions, varying xB from 0.50 to 0.0, where xB is

the mole fraction of the smaller B type particles [11, 26].

The molecular dynamics (MD) simulations have been carried out using the

LAMMPS package [27]. We have performed MD simulations in the isother-

mal isobaric ensemble (NPT) using Nosé-Hoover thermostat and Nosé-Hoover

barostat with integration timestep 0.005τ . The time constants for Nosé-Hoover

thermostat and barostat are taken to be 100 and 1000 timesteps, respectively.

Except for the liquid/crystal interface study where we use a rectangular box,

all of the other studies are performed in a cubic box with periodic boundary

condition. The free energy barrier calculations are done via biased Monte Carlo

method. All the studies are performed at P = 0.5.

7.3 Definitions

7.3.1 Bond Orientational Order Parameter

Bond Orientational Order (BOO) parameter was first prescribed by Steinhardt

et al. to characterize specific crystalline structures [28]. To characterize specific

crystal structures we have calculated the locally averaged BOO parameters (q̄lm)

of l -fold symmetry as a 2l+1 vector,[29]

q̄l =

√√√√ 4π

2l + 1

l∑
m=−l

|q̄lm|2 (7.2)
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where

q̄lm(i) =
1

Ñi

Ñi∑
0

qlm(k). (7.3)

Here Ñi is the number of neighbours of the i-th particle and the particle i itself.

qlm(i) is the local BOO of the i-th particle.

qlm(i) =
1

Ni

Ni∑
0

Ylm(θ(rij), ϕ(rij)) (7.4)

where Ylm are the spherical harmonics, θ(rij) and ϕ(rij) are spherical coordinates

of a bond rij in a fixed reference frame, and Ni is the number of neighbours of

the i-th particles. Two particles are considered neighbours if rij < rmin, where

rmin is the first minimum of the radial distribution function (RDF). For the

liquids and the crystals the rmin has been chosen as the first minima of the

respective partial RDF of the “A” type of particles. For the pure CsCl crystal

this comprises of 14 neighbours and for fcc 12 neighbours.

In Fig.7.1 we plot the probability distribution of q̄6 of the liquid at three

different composition and also the same for pure CsCl and fcc crystals. We note

that at the level of this parameter all the three liquids can be clearly separated

from the two different crystal forms.
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Figure 7.1: The probability distribution of the locally averaged BOO, q̄6 for
the liquid at three different compositions xB = 0.38, 0.3, 0.2 at T = 0.5. We
also plot the same for the CsCl crystal made up of “A” and “B” type of
particles and pure fcc made up of “A” particles.
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7.3.2 Relaxation Time

We have calculated the relaxation times obtained from the decay of the overlap

function q(t), where q(t = τα, T )/N = 1/e which is explained in chapter 2.

7.4 Results

7.4.1 Melting Temperatures

In order to calculate the crystallization rate and thus the glass forming ability we

first determine the melting temperatures of the different crystals. The melting

temperature is studied by calculating the temperature dependent growth/melting

rate of the crystal and fitting them to a straight line. The temperature at which

the growth rate cuts the temperature axis is the predicted melting tempera-

ture where the growth rate goes to zero [10]. The simulations are done at

P = 0.5. With the crystal at the center of the box and the crystal particles

being pinned the liquid of 8000 particles is equilibrated at T=1.5. The system

is then quenched to the target lower temperatures and the crystal particles are

unpinned. We then run a short equilibration of 1000 steps for the quenched

system. Depending on the temperature and the composition of the liquid the

central seed either grows or melts. In the xB = 0.38 and 0.3 systems we study

the melting temperature of CsCl crystal with an initial crystal seed of 432 par-

ticles. In the xB = 0.2 mixture we study the melting temperature of the pure

fcc crystal comprising of 500 “A” particles. The growth of the seed is monitored

by cluster analysis where the q̄6 is calculated for each particle and if the value of

q̄6 > 0.3 (Fig.7.1) and it has a neighbour which is part of the existing cluster then

it is included in the cluster. The cluster growth is monitored for about 100-500

τα, where τα is the temperature dependent α relaxation time that varies across

different systems. 5-10 independent runs are generated at each temperature

by starting from the same initial configuration but randomized initial velocity.

The growth rate is calculated by scaling the time w.r.t the corresponding τα.

From the average growth/decay rate we approximate the melting temperature

as the temperature where the predicted growth or decay rate is zero (Fig.7.2).

The melting points obtained from Fig.7.2 is used to construct the composition

dependent phase diagram reported in Fig.7.3.

We find that the xB = 0.38 mixture phase separates and forms a CsCl+fcc

crystal structure (Fig.7.4a). The xB = 0.3 mixture also shows similar tendency

however the crystal growth rate is slower and within our simulation timescale the

demixing is not complete. We also try to grow the CsCl crystal in the xB = 0.2

mixture but we find that instead of CsCl , fcc structure of “A” particles grow
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Figure 7.2: The growth rate (negative for melting) of the pure CsCl/fcc crystal
as a function of temperature for different compositions: (a) CsCl in xB = 0.38
system, the predicted melting temperature (Tm) is 0.651. (b)CsCl in xB = 0.3,
Tm = 0.528. (c) fcc in xB = 0.2, Tm = 0.447.

around the initial seed (Fig.7.4b). This is similar to the observation reported

earlier [31]. When a fcc seed is inserted in the same mixture it continues to

grow.

In the above mentioned method it is not possible to calculate the melting

temperature of the mixed CsCl+fcc crystal as the growth of such crystal never

happens within our simulation timescale. For this calculation at each compo-

sition (xB = 0.05 − 0.5) we heat the mixed crystal (CsCl+fcc) starting from

temperature 0.2-0.3 and increase it up to 0.59-1.0 (depending on the melting

temperature of the crystal) with temperature interval of 0.05. Closer to the

melting temperature heating is done with 0.01 temperature interval. At each

temperature equilibration is done for 107 steps. The size of the initial crystal

structure is in the range of 468-612. The total number of particles are chosen

in such a way that a perfect mixed crystal can be created. Periodic boundary

condition is applied in all directions. Similar study is done for the pure and

distorted fcc crystal for xB = 0.0, 0.1, 0.2 systems. For xB = 0.0 we get pure fcc

and for xB = 0.05 and 0.1 the “A” particles form fcc crystal but with distortion

due to presence of the “B” particles. In the xB = 0.2 system within our simula-

tion run we do not observe the formation of the fcc crystal. However as reported

earlier in a MKA2 model, if the interaction between the two species is reduced,

then the system forms crystal [11]. In a similar method by keeping the ϵ12 = 0.96

we first form a distorted fcc crystal of the xB = 0.2 system. Once the crystal

is formed we switch back to the larger inter species interaction of ϵ12 = 1.5 and

study its melting. The melting of all the crystals happens instantaneously. The
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Figure 7.3: The melting temperatures of different crystal forms in different
binary mixtures. The melting temperature for the pure fcc and CsCl crystal is
obtained by studying the growth/melt rate of the crystal. The melting
temperature is where the predicted rate disappears (see Fig 7.2). The melting
temperature of the mixed CsCl+fcc crystal and the distorted fcc crystal are
obtained by step wise heating the system.

melting temperatures are reported in Fig.7.3.

7.4.2 Free Energy of Nucleation and Role of Demixing

In this section we perform a comparative study of the Gibbs free energy (po-

tential of mean force) of crystalline nucleation/growth in different binary mix-

tures using umbrella sampling technique with the reaction coordinate being

the size of the largest crystalline cluster present in the system. The studies

are performed at the same degree of undercooling at 0.8Tm, where the melting

temperatures used are those calculated by studying the temperature dependent

growth/melting rate for the pure CsCl and fcc crystals. A crystalline cluster is

defined by a neighborhood criteria (within a cut-off distance determined by the

first minimum of the partial radial distribution of function of “A”-type particles

for respective systems) of “crystal-like” particles (with the criterion of q̄6 > 0.3).

To grow the clusters we use a biased Monte Carlo approach, where we apply an

external harmonic potential of the form 1
2
k(n − nc)

2, where k is the force con-

stant, n is the number of particles in the largest cluster, and nc is the position

of the bias window. We use k = 0.1 for xB = 0.38, and k = 0.2 for xB = 0.30

and xB = 0.20. We have used 5-7 umbrella windows (depending on the system)

in the cluster size range of 15-35. After equilibration, the data is collected for

104 Monte Carlo steps per window and Weighted Histogram Analysis method

(WHAM)[32] is then used to compute the free energy as a function of the size
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Figure 7.4: (a) Snapshot of the xB = 0.38 system after 107 steps post quench
at temperature 0.52. The system shows clear demixing and grows into
CsCl+fcc crystal. (b) Snapshot of the initial seed and the cluster that has
grown around it for xB = 0.2 system after 2× 107 steps post quench at
temperature 0.4. Around the CsCl seed we find the growth of fcc crystal of
“A” particles. For both the systems the initial CsCl crystal seed consists of
432 particles which is inserted in a liquid of 8000 particles.

of the largest cluster as reported in Fig.7.5.

While our calculations focus on the pre-critical region of the free energy

surfaces, we can compare the relative free energy cost to form a crystalline

nucleus of certain size as the composition of the system is varied. We observe

that the free energy cost to grow a nucleus from 15 to 35 for all the systems are

quite high (in the range of 10-20 kBT ), which explains why all these systems

are good glass formers. A comparative study of the cost of free energy shows

that xB = 0.38 has a lower cost to grow a CsCl crystal compared to xB = 0.3.

This explains the slow growth of the CsCl crystal in the latter system which

is observed during the melting study. We also try to grow CsCl crystal for

xB = 0.2, which we do not observe during our simulation time. This implies

that the free energy cost for CsCl crystal growth in this system is even larger.

However, similar to the melting study the crystal that grows around the initial

CsCl cluster in the xB = 0.2 system is made up of only “A” particles. Next

we study the free energy cost for fcc crystallization in xB = 0.2 system. We

find that the free energy cost to grow a fcc crystal from 15-35 cluster size in

xB = 0.2 system is lower than the free energy cost to grow a similar size range

CsCl crystal for xB = 0.3. This implies that in the xB = 0.2 system the free
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Figure 7.5: Gibbs free energy for crystallization as obtained from the umbrella
sampling simulations as a function of the largest cluster size for the three
systems. For xB = 0.38 and 0.3 we can grow the CsCl cluster, whereas for
xB = 0.2 we can only grow the fcc cluster. Even with a initial small CsCl seed
the cluster that grows consists of “A” particles forming fcc lattice which is
similar to that we find for melting study.

energy cost for fcc crystallization is lower than the CsCl crystallization. Note

that although we make this comparative statement we are unable to determine

the free energy cost for growing a CsCl crystal in the xB = 0.2 which leads us

to believe that the cost must be very high.

We next analyze the origin of the difference in the free energy cost to grow a

CsCl crystal in different systems. In a recent study of crystallization in Pd−Ag

mixture it has been found that the barrier to crystallization for the mixed system

is about 10KBT higher than the pure system [33]. The Pd and the Ag have

a small difference in their sizes and form fcc crystal structure. Thus unlike

structural frustration between the CsCl and fcc crystal present in the systems

studied here [31, 25] there exists no structural frustration in the Pd−Ag system.

However due to higher Pd−Pd interaction the crystal nucleus for the Pd−Ag

system has a higher concentration of the Pd molecules compared to that in the

bulk. This leads to demixing in the system and the authors have concluded that

this demixing leads to higher barrier. In a separate study it is shown that the

phase that nucleates easily is the one which has composition closer to the liquid

[34]. In this present study we note that in the CsCl crystallization process,

except for the equimolar mixture the composition of the nucleus is different

from that of the liquid. The difference increases as we go towards smaller xB

values. Thus it is obvious that the growth of CsCl crystal leads to demixing in

the system. However, we would like to investigate if signature of demixing is

present in the liquid which surrounds the crystal.
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Figure 7.6: Distance dependence of the composition from the liquid/crystal
interface along the perpendicular direction. We plot the fraction of “B”
particles, fB, as obtained within each slab of width one σ11 as a function of the
distance from the interface. The interface that has “A” particles is taken and
the plot is done for xB = 0.38 and xB = 0.3. We find that for the former
system where the initial rate of crystallization is higher the interface has
higher concentration of “B” particles compared to the bulk. Thus there is
pre-crystalline demixing in the liquid phase.

In a recent study it has been shown that the liquid in the crystal/liquid

interface shows some compositional ordering [8]. In a similar spirit we now

look at the crystal/liquid interface and investigate if the demixing takes place

in the pre-crystalline liquid. For this study we perform NPZT calculation in a

rectangular box where PZ = 0.5. Initially the system consists of 432 CsCl crystal

particles (equal amount of “A” and “B” particles) and 864 liquid particles. The

010 layer of the crystal faces the liquid where the last layer of the crystal on one

side has “A” particles and on the other side has “B” particles. The box length

in the x and y direction is 6.92σ11. The box length in the z direction is 20.76σ11.

Periodic boundary condition is applied in all directions. Since we want to study

the interface property it is important not to have a rugged interface. Thus the

study is performed above the melting temperature of the pure CsCl crystal in the

respective liquid (1.2Tm) by pinning the crystal particles. Although performed

above the melting temperature while equilibrating the xB = 0.38 system we find

the growth of a layer of particles on both sides of the crystal. In the analysis we

consider these two layers, which are not pinned, to be part of the crystal. Thus

for this system after equilibration there are 504 crystal particles and 792 liquid

particles. The liquid particles span over more than 13σ11 distance which makes

it possible to study both the interfacial and bulk properties of the liquid. For the

xB = 0.3 system an extra layer of “A” particles grow on the surface which has

“B” particles facing the liquid. Due to the scarcity of “B” particles no extra “B”
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Figure 7.7: The mixing entropy of the liquid, Smix(lq), that of the partially
demixed pre-crystalline liquid Sprecrys

mix (lq) and the difference between them
∆Smix plotted at different compositions. We also plot the Tm∆Smix where Tm

is the melting temperature of the mixed CsCl+fcc crystal. The ∆Smix shows a
non monotonic composition dependence with a maximum around xB = 0.2.

layer grows on the other side. In this analysis we consider the surface where the

extra layer of “A” particle has grown. We calculate the fraction of “B” particles,

fB, within each slab of width 1σ11, as a function of distance from the interface

(Fig.7.6). The first point (z=0) in this plot is taken within the crystal which

for the both the systems show same value of fB. Interestingly we find that

for the xB = 0.38 system the concentration of the “B” particles are higher at

the interface and it gradually reaches the bulk value around z=4. However for

xB = 0.3 system the concentration of the “B” particles are same at the interface

and at the bulk. Thus we show that the liquid which has a lower free energy cost

for crystal growth also undergoes a pre-crystalline demixing in the liquid phase.

Similar to the earlier study [8] we find that the liquid/crystal interface properties

differ for apparently similar systems with different glass forming ability.

Thus we show that the process of crystallization requires demixing which

takes place in the pre-crystalline liquid. We now analyze the role of demixing

in the free energy barrier. Note that the per particle mixing entropy in a liquid

can be written as,

Smix(lq) = −
∑

xi lnxi (7.5)

where xi is the mole fraction of the components. To form CsCl+fcc crystal

the liquid needs to demix. We show here that the demixing takes place in a

liquid state (refer to Fig.7.6). Although the demixing process happens step wise

here we calculate the total effect of demixing. Thus we consider that to form a

CsCl+fcc crystal, part of the liquid needs to form a equimolar mixture and the

Ujjwal Kumar Nandi 147 CSIR-NCL



PhD Thesis AcSIR

other part should have pure “A” particles. Thus the per particle mixing entropy

in the pre-crystalline partially demixed liquid should be,

Sprecrys
mix (lq) = −2.0xB

∑
xi lnxi (7.6)

The difference between these two entropies, ∆Smix = Smix(lq)− Sprecrys
mix (lq),

is the mixing entropy at per particle level that a liquid will loose in the process

of partial demixing. ∆Smix as a function of xB is shown in Fig.7.7 which shows

a non-monotonic behaviour with a maximum around xB ≃ 0.2. Note that

this kind of non monotonic behaviour is obtained in the free energy barrier to

crystallization for the Pd− Ag mixture which as discussed earlier is attributed

to the demixing process[33]. Thus our demixing entropy study can explain the

increase in the free energy cost for CsCl crystal growth with decrease in xB

till it reaches a value of 0.2. However this study does not explain why in the

xB = 0.2 system where CsCl+fcc is the global minima, the free energy cost for

fcc crystllization is much lower than the cost for CsCl crystallization, the latter

being so high that an estimation of it is beyond the scope of the present study.

7.4.3 Analysis from Energetics

In order to understand the origin of lower free energy cost for fcc crystallization

we analyze the role of different crystal structures in crystallization by studying

the energetics. In Fig.7.8a we plot the energy per particle of the liquid, the

mixed crystal, the fcc crystal and the CsCl crystal for different compositions

at 0.8 times the melting temperature of their respective mixed crystals (given

in Fig.7.3). This is the melting temperature which has been obtained by step

wise heating the mixed crystal. We find that the energy of the mixed crystal is

always lower than the supercooled liquid, which implies that the liquid is in a

metastable state. The energy of the CsCl crystal is always lower than the liquid.

However for higher xB values the energy of the fcc crystal is above the liquid and

at lower xB values although it becomes less than the liquid it is always higher

than the CsCl value. This would imply that the CsCl crystal always drives the

crystallization process. However this does not explain why both in the melting

study and the free energy barrier calculation at xB = 0.2 although we can not

grow CsCl crystal we can grow fcc crystals. Our subsequent analysis will explain

this discrepancy.

Next we make an estimation of energy of the mixed crystal, ECsCl+fcc(est),

at the per particle level, at different compositions by assuming that 2xB of the

crystal forms CsCl and the rest forms fcc.
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ECsCl+fcc(est) = ECsCl(est) + Efcc(est)

= 2xBECsCl + (xA − xB)Efcc (7.7)

Here ECsCl and Efcc are the energy of the CsCl and fcc crystal respectively, at

per particle level calculated for each system at their respective 0.8Tm. ECsCl(est)

and Efcc(est) are the estimated contribution from the respective CsCl and fcc

crystal part of the mixed crystal again presented at the per particle level. Note

that the values of ECsCl(est) and Efcc(est) take into account the fraction of

the system which is in different crystal form. In this calculation we of course

make certain approximations by neglecting the surface energy. However we find

that the value of energy per particle of the mixed crystal thus calculated is not

too different from the value of the actual crystal (Fig.7.8b). These are again

calculated at the same temperatures as reported in Fig.7.8a. We now break up

the contribution of the two components, the contribution from CsCl and that

from fcc and plot them separately. Once we do that we find that although at

higher xB values the CsCl formation drives the crystallization, at lower xB values

it is the fcc formation which drives the crystallization. Although the energy per

particle of the fcc crystal is still lower than that of the CsCl, the larger fraction

of the fcc crystal wins over. A cross over happens just above xB = 0.2. This

explains why the system at xB = 0.2, whose global minima is the mixed crystal,

shows higher tendency towards fcc formation.

However, this does not explain why the the crystallization process when

driven by fcc formation has a lower free energy cost than when driven by CsCl

formation. In order to understand this, we study the coordination number

between the “B” particles, CNBB in the xB = 0.2 system, before and after

crystallization. Since we cannot crystallize the xB = 0.2 system we study the

crystallization of the MKA2 model (referred earlier in the melting temperature

study) which according to Dyre and coworkers is similar in structure as the KA

model but with a lower viscosity [11]. Confirming their conclusion we find that

the LFS of the MKA2 model appears quite similar to the KA model however

the dynamics is orders of magnitude faster. We now analyze the CNBB as

obtained in the MKA2 system when it is in liquid form at T = 0.4 and when it

forms distorted fcc crystal around T = 0.35. These are plotted in Fig.7.9. For

comparison we also plot the CNBB for the pure CsCl+fcc crystal at T = 0.4.

Note that the probability distribution of CNBB in the CsCl+fcc crystal should

ideally have a peak at 6 but the peak is shifted to smaller value due to the

presence of a large number of surface layer of “B” particles. The study shows

Ujjwal Kumar Nandi 149 CSIR-NCL



PhD Thesis AcSIR

that to form distorted fcc crystal although there is an increase in the CNBB

it is not as much as required for the CsCl+fcc crystal. Thus demixing in the

distorted fcc is much weaker that CsCl+fcc. Analysis of the same kind for the

xB = 0.9 system (not shown here) shows similar behaviour.

Thus on the right hand side of the crossover where CsCl drives the crys-

tallization there should be free energy barriers due to demixing. However on

the left hand side the system can avoid or reduce the loss of mixing entropy by

paying some energetic penalty to form distorted crystals. The lower energetic

stability of the distorted fcc is evident from Fig.7.3. We find that for xB = 0.2

the disordered fcc structure melts at a lower temperature compared to the mixed

CsCl+fcc structure.
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Figure 7.8: (a) The energy per particle of the liquid, mixed crystal (CsCl+fcc)
, CsCl crystal and fcc crystal for different compositions. The calculations are
done at 0.8Tm of each composition, where Tm is the melting temperature
obtained by heating the different mixed crystals. (b) The energy of the mixed
crystal, the estimated energy of the mixed crystal, ECsCl+fcc(est), the
estimated contribution from the CsCl part, ECsCl(est), and that from the fcc
part, Efcc(est), as a function of composition. The calculations are done at
same temperature as in (a).

In order to strengthen our argument that it is indeed the demixing that

frustrates the CsCl driven crystallization process and leads to high free energy

cost, we present a study of a similar system. Reported in a earlier study by some

of us we have shown that for the NaCl system (σ12 = 0.7) the crystallization

takes place not only at equimolar composition but also at smaller value of xB

forming mixed NaCl+fcc crystal [25]. A similar energetic study of the σ12 = 0.7

system is shown in Fig.7.10a. We find that energy of the NaCl crystal is always

lower than the fcc crystal (Fig.7.10a)). A similar crossover is also obtained for

this system where at higher xB values the crystallization is driven by NaCl and

at lower xB values it is driven by fcc (Fig.7.10b). Thus we should expect a

similar crystallization problem in this system which appears not to be the case.

Although the NaCl and CsCl systems appear quite similar there are some
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Figure 7.9: The probability distribution of the CNBB as obtained in the
MKA2 liquid at T = 0.4, the distorted fcc crystal formed by the MKA2 liquid
at T = 0.35 and CsCl+fcc crystal at T = 0.4. The CsCl+fcc is formed at the
same composition as the MKA2 liquid. The demixing required by the
CsCl+fcc liquid is much higher than the distorted fcc.

basic differences. The CsCl crystal is made up of two interpenetrating sc struc-

tures of “A” and “B” type of particles. Thus in the CsCl+fcc crystal the “A”

particles have two different populations, namely one which forms sc and the

other which forms fcc structure. In an earlier work we had mentioned that

this wide difference in the order parameter of the two population causes the

frustration between the two structures[25]. If we are away from the equimolar

mixture the growth of a CsCl will deplete the population of the “B” particles

in the neighbourhood which should promote the formation of fcc structure be-

tween the “A” particles. However a unit cell of fcc is not compatible with the

CsCl structure thus to reduce the structural frustration the system sacrifices the

mixing entropy and increase the concentration of the “B” particles in the liquid

near the cluster as seen in Fig.7.6 to form more CsCl structures till finally it is

devoid of any more “B” particles in the liquid. This is the reason we find “AB”

and “A” rich zone separated in Fig.7.4a. The NaCl crystal on the other hand

is compatible with a fcc crystal as both require the “A” particles to form fcc

structure with same lattice spacing. Thus unlike CsCl and fcc the NaCl and fcc

can grow in a seamless fashion and the system does not require any demixing

which reduces the free energy barrier. A snapshot of the NaCl+fcc structure is

shown in Fig.7.11 which shows that there is no specific “A” rich zone.

The study of the energetics can also explain the glass forming ability of some

systems which has been previously proposed by Dyre and coworkers [11]. In the

above calculation if we decrease the interaction between the “AB” particles then

the contribution from the CsCl in lowering the system energy will decrease and
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Figure 7.10: (a) The energy per particle of the liquid, mixed crystal
(NaCl+fcc) , NaCl crystal and fcc crystal for different compositions. The
calculations are done at 0.8Tm of each composition, where Tm is the melting
temperature obtained by heating the different mixed crystals. (b) The energy
of the mixed crystal, the estimated energy of the mixed crystal, ENaCl+fcc(est),
the estimated contribution from the NaCl part, ENaCl(est), and that from the
fcc part, Efcc(est), as a function of composition. The calculations are done at
same temperature as in (a).

the crossover will happen at a higher xB value. Thus the xB = 0.2 will show

higher tendency of fcc crystallization as has been reported earlier [11]. In the

same system if we make the interaction between the “A” particles repulsive then

in a similar fashion the crossover will shift to lower xB values and this will imply

that the xB = 0.2 system will still be driven by the CsCl crystallization. Since

this will also require demixing thus the system will be a better glass former as

reported earlier [11].

7.4.4 Glass Forming Ability- Role of Demixing and Eu-

tectic Point

We find that the loss of mixing entropy is maximum for xB = 0.2. In the free

energy study within the scope of our calculation we can not grow a CsCl crystal

and thus can not estimate the free energy cost to grow a CsCl crystal in this

system. Which implies that free energy cost is high and w.r.t CsCl formation

the xB = 0.2 system is most frustrated and a better glass former. However

in the free energy calculation and the study of energetics this system shows

a tendency towards fcc crystallization. The fcc crystallization also has a free

energy cost because although without clear demixing the system can crystallize

in fcc structure the presence of the LFS centered around “B” particles can

frustrate this crystallization process. However the cost of free energy to form

a fcc crystal in xB = 0.2 system is lower than the cost of free energy to form

a CsCl crystal in xB = 0.3 system. Thus it is tempting to comment that the
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Figure 7.11: Snapshot of a NaCl+fcc crystal structure at xB = 0.2. The
simulation is done at T=0.6 . The snapshot shows seamless formation of Nacl
and fcc structure with no demixing.

xB = 0.3 system is a better glass former. However the process of crystallization

is not only dependent on the free energy barrier but also on the dynamics of

the system. This is the reason the eutectic point is expected to be a better

glass forming region and our study of dynamics shows that indeed the xB = 0.2

system is the slowest. For the study of the dynamics we calculate τα from overlap

function at the respective 0.8Tm. Note these are the temperatures where the free

energy calculations are done. We find that for the xB = 0.38 system τα = 17.5

at T = 0.52, for the xB = 0.3 system, τα = 1350 at T = 0.42 and for xB = 0.2

system τα = 4954 at T = 0.36. Thus according to the study of the dynamics

the xB = 0.2 system is a better glass former. Note that the MKA2 model which

undergoes crystallization differs from the KA model not in terms of the structure

of the liquid but in terms of dynamics. The local structure around the smaller

“B” particles which actually frustrates the fcc crystallization is present even

in the MKA2 model. However the relaxation timescale of the MKA2 model is

orders of magnitude faster than the KA model. Thus our study confirms that as

stated earlier[11] it is indeed the dynamics/viscosity of the system which makes

KA model a good glass former.

7.5 Conclusion

In this article we study the comparative glass forming ability of different binary

systems. In an earlier study by some of us we have shown that binary systems

which form CsCl crystals in a equimolar mixture fails to crystallize if the mole

fraction of the larger particles are increased [25]. The well known KA model

is one of the systems. Thus the KA model’s stability against crystallization

is more generic and is similar to systems which form equimolar CsCl crystal.
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The global structure for these systems are a mixed form of CsCl+fcc crystal [9].

In the CsCl+fcc crystal the bigger “A” particles need to create two different

populations, namely one which contributes towards the CsCl formation and the

other which contributes towards the fcc formation. The order parameters such

as BOO and coordination number of the “A” particles are quite different in these

two crystal forms. Thus the failure in the crystallization has been attributed to

the frustration between the CsCl and fcc crystal structures. Note that there is

an array of systems which have similar frustration. However the glass forming

ability of these systems although have not been calculated but is believed to be

different. Thus there should be more factors contributing to the glass forming

ability.

In this article we perform a comparative study of binary glass forming liq-

uids all having good glass forming ability and similar global minima. The study

has been performed by changing the composition. We find that the free en-

ergy cost to grow a CsCl nucleus increases as we move away from an equimolar

mixture. The study of the liquid at the liquid/crystal interface shows that the

system which has lowest free energy cost to form a nucleus also shows a demixing

near the crystal surface. We believe that the structural frustration between the

CsCl and fcc structure makes this demixing a prerequisite for crystallization.

Our calculation of the partial demixing entropy in the liquid state shows a non

monotonic dependence on composition. It shows a maxima for xB = 0.2 system.

We could show a connection between the change in free energy cost to create a

crystal nucleus and the change in demixing entropy as a function of composi-

tion. Our study shows that although the xB = 0.2 system is strongly frustrated

against CsCl crystallization, it has tendency towards fcc growth. We can justify

this tendency of fcc growth from the study of the energetics. We show that in

the composition range studied here there are two regions, one which is driven

by the CsCl crystallization and the other at lower xB values is driven by fcc

crystallization. It is primarily in the former region that the structural frustra-

tion between the CsCl and fcc structure leads to the requirement of demixing

which eventually increases the free energy barrier and provides stability against

crystallization. This point has been confirmed by studying a NaCl+fcc system

which naturally undergoes crystallization at all compositions. The study of the

energetics of this system also shows two similar region. However unlike the

CsCl+fcc system, in the region where crystallization is driven by NaCl, due to

the compatibility of the NaCl and fcc structure no demixing has been observed

and the crystal grows in a seamless fashion. In the second region driven by fcc

crystallization we show that demixing is not a stringent criteria and the stability

against crystallization comes from the frustration caused by the presence of the
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“B” particles with well defined LFS and also the system’s proximity to eutectic

point where the dynamics is slow. Thus although we study three very similar

glass formers, which ideally belong to the same class of system and differ only in

composition, we find that they do not share the same origin of stability against

crystallization.

We should also comment that our search of crystal structures is not exhaus-

tive and the system which we claim to be a better glass former can crystallize

in a different crystal form like the Al2Cu structure is found to be a low energy

state of a system belonging to the same class where xB = 0.33[10]. This system

is also known to show resistance towards crystallization. The CuZr liquid which

has a low energy CsCl like structure is also a good glass former [8]. Note that

in these two systems the composition of the crystal is identical to that of the

liquid. Thus even above xB > 0.2 it is not always demixing which provides

stability against crystallization.
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Chapter 8

Summary and future work

8.1 Summary

The dynamics and thermodynamics in the glass-forming system are still not

completely understood. Many experiments, simulations and theories have ex-

plained a lot about the glass transition and the glass-forming systems. Most of

the theories in the glass community are mean-field in nature. It can not fully

explain the experiments and simulations results, and thus it is very important

to understand theories better, which will give more insights into the glass tran-

sition. We have found an innovative way where a 3 dimensional system develops

mean-field like properties. We have also studied the glass-forming ability in the

different systems. We summarize all our achievements of the thesis in this chap-

ter, and we also discuss further aspects and possible work for the future, which

is worth studying.

We have discussed important concepts of the glass transition and the most

popular theories, which explains many properties of the glass transition in

chapter1. In chapter2, we have explained many properties of the glass transition

and discussed the relevant definition and the detailed computational techniques.

After setting up the basic knowledge of the glass and direction of the thesis,

in chapter3, we propose a novel model for a glass-forming liquid which allows

to switch in a continuous manner from a standard three-dimensional liquid to a

fully connected mean-field model. This is achieved by introducing k additional

particle-particle interactions which thus augments the effective number of neigh-

bors of each particle. Our computer simulations of this system show that the

structure of the liquid does not change with the introduction of these pseudo

neighbours and by means of analytical calculations, we determine the structural

properties related to these additional neighbors.

In chapter.4, we show that the relaxation dynamics of the system slows down
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very quickly with increasing k and that the onset and the mode-coupling tem-

peratures increase. The systems with high values of k follow the MCT power law

behaviour for a larger temperature range compared to the ones with lower val-

ues of k. The dynamic susceptibility indicates that the dynamic heterogeneity

decreases with increasing k whereas the non-Gaussian parameter is independent

of it. Thus we conclude that with the increase in the number of pseudo neigh-

bours the system becomes more mean-field like. By comparing our results with

previous studies on mean-field like system we come to the conclusion that the

details of how the mean-field limit is approached are important since they can

lead to different dynamical behavior in this limit.

In chapter5, we presents an extensive study of the thermodynamics of the

above-mentioned model for several values of k and its correlation with the dy-

namics. We surprisingly find that the usual thermodynamic integration (TI)

method of calculating the entropy provides unphysical results for this model. It

predicts the vanishing of configurational entropy at state points at which both

the collective and the single-particle dynamics of the system show complete

relaxation. We then employ a new method known as the two-phase thermody-

namics (2PT) method to calculate the entropy. We find that with an increase in

k the difference in the entropy computed using the two methods (2PT and TI)

increases. We also find that in the temperature range studied, the entropy calcu-

lated via the 2PT method satisfies the Adam-Gibbs (AG) relationship between

the relaxation time and the configurational entropy, whereas the entropy calcu-

lated via the TI method shows a strong violation of the same. Finally, we discuss

the possible reasons for the failure of the TI method of entropy calculation.

In chapter6, we show the behavior of the mean-field system near the jamming

transition. We find the jamming transition happens at lower volume fraction

with increase in k and it shows a power-law behavior of pressure and energy of

the system with volume fraction in the vicinity of the jamming transition. The

contribution of the nearest neighbor in the coordination number at the jamming

state decreases with increasing in k and the contribution of the pseudo neighbor

increases with k.

In chapter7, we have discussed a comparative study of the glass forming abil-

ity of binary systems with varying composition, where the systems have similar

global crystalline structure (CsCl+fcc). Biased Monte Carlo simulations using

umbrella sampling technique shows that the free energy cost to create a CsCl

nucleus increases as the concentration of the smaller particles are decreased. We

find that systems with comparatively lower free energy cost to form CsCl nucleus

exhibit more pronounced pre-crystalline demixing near the liquid/crystal inter-

face. The structural frustration between the CsCl and fcc crystal demands this
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demixing. We show that closer to the equimolar mixture the entropic penalty

for demixing is lower and a glass forming system may crystallize when seeded

with a nucleus. This entropic penalty as a function of composition shows a

non-monotonic behavior with a maximum at a composition similar to the well

known Kob-Anderson (KA) model. Although the KA model shows the maxi-

mum entropic penalty and thus maximum frustration against CsCl formation,

it also shows a strong tendency towards crystallization into fcc lattice of the

larger “A” particles which can be explained from the study of the energetics.

Thus for systems closer to the equimolar mixture although it is the requirement

of demixing which provides their stability against crystallization, for KA model

it is not demixing but slow dynamics and the presence of the “B” particles

which makes it a good glass former. The locally favoured structure around “B”

particles is quite similar to the CsCl structure and the incompatibility of CsCl

and fcc hinders the fcc structure growth in the KA model. Although the glass

forming binary systems studied here are quite similar, differing only in compo-

sition, we find that their glass forming ability cannot be attributed to a single

phenomenon.

8.2 Future work

This summary clearly indicates that the details of how the mean-field limit is

approached are important, and future studies are needed to clarify this point.

Finally, we note that the approach we propose here on how the mean-field char-

acter is tuned can be applied to any system. Hence it will be interesting to study

whether other types of interaction potentials, such as the Coulomb potentials

used to describe oxide glass-formers, will give qualitatively the same behavior,

or in other words, whether the approach to the mean-field limit depends on

the nature of the local structure of the system. In an earlier study involving

different glass-formers, evidence was given that the locally preferred structures

(LPS) are connected to the dynamics only for systems that are not mean-field

like. The ability of the present model to continuously tune the mean-field be-

haviour makes it thus an ideal system to check the validity of this observation.

Since we find that with the increasing number of pseudo neighbours, the LPS

remains unchanged whereas the dynamics slow down, this suggests that with

an increase in the mean-field nature, the correlation between the LPS and the

dynamics decreases, a result that corroborates the earlier findings.

Recent work on polymeric systems showed that systems that demonstrated

higher sub nanosecond anharmonic motions are more ductile and tough [21].

Note that similar to our mean field system, each monomer in a polymeric system
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has both short range nearest neighbour interaction and long range connections.

In our study, we find that although the pseudo neighbours (PN) slow down the

overall dynamics of the system, the structural relaxation has a weak dependence

on this long range connectivity with the pseudo neighbours and strongly depends

on the nearest neighbours (NN). This suggests that the mobility will probably

depend more on the nearest neighbours. The calculation of softness parameter

depends on the radial distribution function. In our model system we find that

the effective rdf has two components, one coming from the contribution of the

nearest neighbours (NN) and the other from the pseudo neighbours (PN). We

will study the role of both NN and PN in the confining potential and also its

softness. We will then study the correlation of the different components of

the softness and the mobility. This will also give us an idea about the role of

connectivity in the sub nanosecond dynamics in polymeric systems.

Note that according to classical nucleation theory, the free energy barrier is

determined by both surface tension and the difference in free energy between

the two phases. Moreover, the surface free energy would also include an entropic

term, which is likely to be influenced by the demixing entropy cost as discussed

in the text. Thus surface tension may play an important role in lowering the

free energy cost of fcc nucleation. However, an estimation of this is beyond the

scope of the present thesis and will be addressed in the future.
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We present a comparative study of the glass forming ability of binary systems with varying composi-
tion, where the systems have similar global crystalline structure (CsCl+fcc). Biased Monte Carlo
simulations using umbrella sampling technique show that the free energy cost to create a CsCl
nucleus increases as the composition of the smaller particles is decreased. We find that systems with
comparatively lower free energy cost to form CsCl nucleus exhibit more pronounced pre-crystalline
demixing near the liquid/crystal interface. The structural frustration between the CsCl and fcc crystal
demands this demixing. We show that closer to the equimolar mixture, the entropic penalty for
demixing is lower and a glass forming system may crystallize when seeded with a nucleus. This
entropic penalty as a function of composition shows a non-monotonic behaviour with a maximum
at a composition similar to the well known Kob-Anderson (KA) model. Although the KA model
shows the maximum entropic penalty and thus maximum frustration against CsCl formation, it also
shows a strong tendency towards crystallization into fcc lattice of the larger “A” particles which can
be explained from the study of the energetics. Thus for systems closer to the equimolar mixture
although it is the requirement of demixing which provides their stability against crystallization, for
KA model it is not demixing but slow dynamics and the presence of the “B” particles make it a good
glass former. The locally favoured structure around “B” particles is quite similar to the CsCl structure
and the incompatibility of CsCl and fcc hinders the fcc structure growth in the KA model. Although
the glass forming binary systems studied here are quite similar, differing only in composition, we
find that their glass forming ability cannot be attributed to a single phenomenon. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4958630]

I. INTRODUCTION

A liquid upon cooling undergoes first order phase
transition and forms a crystal. However if the cooling rate is
increased it cannot crystallize and forms an amorphous glassy
material.1 In addition to fast supercooling, there are other
methods to favor glass formation over crystallization. In bulk
metallic glass community, the usual rules of thumb are to at
least have a two component mixture with negative enthalpy of
mixing and a 12% size ratio between the components.2 Single
component systems are known to crystallize in a fcc+hcp
structure,3 thus multi-component systems are commonly used
for making glasses. The negative enthalpy of mixing makes
sure that the components remain in a mixed state and do
not demix to form single component crystals, whereas the
size ratio provides frustration in packing. Although there is an
array of experimental systems which form glasses, in computer
simulation studies there is only a handful of systems known to
be good glass formers.4–8 Note that most of the glass forming
systems have global crystalline minima.9,10 Thus depending
on the barrier to crystallization it is just a matter of time for
the systems to crystallize. With the increase in the available
computational power, some of the well known glass formers

a)Electronic mail: mb.sarika@ncl.res.in

like Kob-Anderson (KA) model and Wahnstrom (WA) model
are now found to partially crystallize.11,12 Thus in order to
design better glass formers we need to be able to estimate the
glass forming ability (GFA) of these systems.

In order to quantify GFA, first we need to understand
the origin of the stability against crystallization. This is an
active field of research and different studies have attributed
the GFA to different phenomena.10,13–18 The most popular
among them is the theory of frustration first proposed by
Frank.13 According to him, the local liquid ordering is different
from the crystalline order and this frustrates the system and
decreases the rate of crystallization. It has also been argued
that regions with locally favored structures (LFSs) give rise
to domains and are connected to the slow dynamics in the
supercooled liquids.14,15 Sometimes the LFS can also be
related to the underlying crystalline structure.10,16,17 In some
cases the LFS which is connected to crystal structure grows
more than the one connected to the liquid structure.17 The
LFS can vary in different dimensions. There are LFSs, like
the icosahedral ordering, which can cause frustration in the
Euclidean space but tile the curved space.15 Frustrations are
not always structural but can also be energetic in nature.18

Most binary equimolar mixtures form crystalline
structures,19 where the crystal structure may vary according
to the size ratio of the components. There are also some

0021-9606/2016/145(3)/034503/10/$30.00 145, 034503-1 Published by AIP Publishing.



034503-2 Nandi et al. J. Chem. Phys. 145, 034503 (2016)

exceptions like the equimolar CuZr structure which is found
to be a good glass former.8 However, when the compositions
of the mixtures are changed, it is usually found that close
to the deep eutectic point many of them form glasses. One
of the arguments in favor of the deep eutectic point being a
good glass forming zone is that the viscosity is highest at this
point so kinetically it takes a longer time to form a crystal
nucleus. However it has also been shown that the structural
frustration between two different crystal structures can make
this region a good glass former. This kind of phase diagram
(in temperature vs. composition space) is often referred to as
V-shaped phase diagram where the bottom of the V is the
glass forming region.20–23,25

In a recent work by some of us we have shown that
even though all the systems at equimolar mixture undergo
crystallization, as the composition of the larger size particles
increases, the zone which forms CsCl crystal at equimolar
composition does not crystallize any more.25 It is already
known from the study of energetics that the global free energy
minima of these systems are CsCl+fcc crystals.9 The well
known KA glass former is one of the systems present in this
more generic CsCl zone. So far only in one study it has been
reported to crystallize but in a structure which is different
from that of the global minimum.11 In the earlier study we
have shown that in the CsCl+fcc crystal structure the bigger
“A” particles need to have two different populations where
there is a large difference in the order parameter (coordination
number and bond orientational order parameter) of these
two populations. According to us, this large difference in
order parameter creates frustration. Note that in this system
the LFS is bicapped square anti-prism which is structurally
quite close to CsCl.24 Thus unlike systems discussed earlier
where the geometric frustration is between icosahedral and
fcc structure,14,15,17 in this system it is between CsCl and fcc
structure which stabilizes it against crystallization.25

In this present work we study a similar series of binary
systems by changing the composition and also the inter-species
interaction length. Many of the binary systems studied here
are good glass formers and have a global minima which is
CsCl+fcc structure. Thus according to our earlier study the
structural frustration for these systems is similar. However,
these systems are expected to have different glass forming
ability. The goal of this work is to get a relative estimate
of the GFA of different systems and then explore the origin
of their differences. Our study shows that the free energy
cost for CsCl crystallization increases with the composition
of the smaller particles. The system with lowest free energy
cost also shows a pre-crystalline demixing in the liquid phase
near the liquid/crystal interface. The demixing takes place
due to the structural frustration between the CsCl and fcc
structures. Up to a certain composition, the composition
dependence of the free energy cost to create a crystal
nucleus can be related to the composition dependence of
this demixing entropy. Our study of energetics shows that
although in the whole range of composition the global minima
is CsCl+fcc crystal, the driving force of crystallization in a
certain region is the CsCl crystal and in another region
is fcc crystal. In the former region the system tends to
demix and form CsCl+fcc crystal and demixing frustrates the

crystallization process. However, in the latter region we show
that demixing does not play a crucial role. It is primarily
the slow dynamics near eutectic point and LFS around
the smaller “B” particles which frustrate the crystallization
process.

The simulation details are given in Sec. II. In Section III
we present the definition and method for evaluating different
quantities, in Section IV we have the results and discussion,
and Section V ends with a brief summary.

II. SIMULATION DETAILS

The atomistic models which are simulated are two
component mixtures of classical particles (larger “A” and
smaller “B” type), where particles of type i interact with those
of type j with pair potential, Ui j(r), where r is the distance
between the pair. Ui j(r) is described by a shifted and truncated
Lennard-Jones (LJ) potential, as given by

Ui j(r) =


U (LJ )
i j (r;σi j, ϵ i j) −U (LJ )

i j (r (c)i j ;σi j, ϵ i j), r ≤ r (c)i j

0, r > r (c)i j

,

(1)

where U (LJ )
i j (r;σi j, ϵ i j) = 4ϵ i j[(σi j/r)12 − (σi j/r)6] and r (c)i j

= 2.5σi j. Subsequently, we will denote A and B types of
particles by indices 1 and 2, respectively.

The different models are distinguished by different
choices of lengths and composition parameters. Length,
temperature, and time are given in units of σ11, kBT/ϵ11, and√(m1σ

2
11/ϵ11), respectively. Here we have simulated various

binary mixtures with the interaction parameters σ11 = 1,
σ22 = 0.88, ϵ11 = 1, ϵ12 = 1.5, ϵ22 = 0.5, m1 = m2 = 1 and
the inter-species interaction length σ12 = 0.7,0.8. We have
simulated systems with different compositions, varying xB

from 0.50 to 0.0, where xB is the mole fraction of the smaller
B type particles.11,26

The molecular dynamics (MD) simulations have been
carried out using the LAMMPS package.27 We have performed
MD simulations in the isothermal isobaric ensemble (NPT)
using Nosé-Hoover thermostat and Nosé-Hoover barostat
with integration timestep 0.005τ. The time constants for
Nosé-Hoover thermostat and barostat are taken to be 100
and 1000 timesteps, respectively. Except for the liquid/crystal
interface study where we use a rectangular box, all of the other
studies are performed in a cubic box with periodic boundary
condition. The free energy barrier calculations are done via
biased Monte Carlo method. All the studies are performed at
P = 0.5.

III. DEFINITIONS

A. Bond Orientational Order parameter

Bond Orientational Order (BOO) parameter was first
prescribed by Steinhardt et al. to characterize specific
crystalline structures.28 To characterize specific crystal
structures, we have calculated the locally averaged BOO
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parameters (q̄lm) of l-fold symmetry as a 2l + 1 vector,29

q̄l =


4π

2l + 1

l

m=−l
|q̄lm|2, (2)

where

q̄lm(i) =
1
Ñi

Ñi

0

qlm(k). (3)

Here Ñi is the number of neighbours of the i-th particle and
the particle i itself. qlm(i) is the local BOO of the i-th particle,

qlm(i) =
1
Ni

Ni

0

Ylm(θ(ri j), φ(ri j)) (4)

where Ylm are the spherical harmonics, θ(ri j) and φ(ri j) are
spherical coordinates of a bond ri j in a fixed reference frame,
and Ni is the number of neighbours of the ith particles. Two
particles are considered neighbours if ri j < rmin, where rmin is
the first minimum of the radial distribution function (RDF).
For the liquids and the crystals the rmin has been chosen as
the first minima of the respective partial RDF of the “A” type
of particles. For the pure CsCl crystal, this comprises of 14
neighbours and for fcc 12 neighbours.

In Fig. 1 we plot the probability distribution of q̄6 of the
liquid at three different composition and also the same for
pure CsCl and fcc crystals. We note that at the level of this
parameter all the three liquids can be clearly separated from
the two different crystal forms.

B. Relaxation time

We quench the system from a random configuration
to each temperature and equilibrate the system at that
temperature for approximately 100τα, where τα is the alpha
relaxation time. It is calculated from the decay of the overlap
function, q(t = τα,T)/N = 1/e, obtained from the equilibrated

FIG. 1. The probability distribution of the locally averaged BOO, q̄6, for the
liquid at three different compositions xB = 0.38,0.3,0.2 at T = 0.5. We also
plot the same for the CsCl crystal made up of “A” and “B” type of particles
and pure fcc made up of “A” particles.

simulations and is defined as

⟨q(t)⟩ ≡


dr ρ(r, t0)ρ(r, t + t0)


=

 N

i=1

N

j=1

δ(r j(t0) − ri(t + t0))


=

 N

i=1

δ(ri(t0) − ri(t + t0))


+



i



j,i

δ(ri(t0) − r j(t + t0))

. (5)

The overlap function is a two-point time correlation function
of local density ρ(r, t). It has been used in many recent studies
of slow relaxation.30 In this work, we consider only the
self-part of the total overlap function (i.e., neglecting the i , j
terms in the double summation). Earlier it has been shown to
be a good approximation to the full overlap function. So, the
self-part of the overlap function can be written as

⟨q(t)⟩ ≈
 N

i=1

δ(ri(t0) − ri(t + t0))

. (6)

Again, the δ function is approximated by a window
function ω(x) which defines the condition of overlap between
two particle positions separated by a time interval t,

⟨q(t)⟩ ≈
 N

i=1

ω(| ri(t0) − ri(t + t0) |)

,

ω(x) = 1, x ≤ a implying “overlap”
= 0, otherwise. (7)

The time dependent overlap function thus depends on the
choice of the cutoff parameter a, which we choose to be 0.3.
This parameter is chosen such that particle positions separated
due to small amplitude vibrational motion are treated as the
same or that a2 is comparable to the value of the MSD in the
plateau between the ballistic and diffusive regimes.

IV. RESULTS

A. Melting temperatures

In order to calculate the crystallization rate and
thus the glass forming ability we first determine the
melting temperatures of the different crystals. The melting
temperature is studied by calculating the temperature
dependent growth/melting rate of the crystal and fitting them
to a straight line. The temperature at which the growth rate
cuts the temperature axis is the predicted melting temperature
where the growth rate goes to zero.10 The simulations are
done at P = 0.5. With the crystal at the center of the box and
the crystal particles being pinned, the liquid of 8000 particles
is equilibrated at T = 1.5. The system is then quenched to
the target lower temperatures and the crystal particles are
unpinned. We then run a short equilibration of 1000 steps
for the quenched system. Depending on the temperature and
the composition of the liquid, the central seed either grows
or melts. In the xB = 0.38 and 0.3 systems, we study the
melting temperature of CsCl crystal with an initial crystal



034503-4 Nandi et al. J. Chem. Phys. 145, 034503 (2016)

FIG. 2. The growth rate (negative for melting) of the pure CsCl/fcc crystal as
a function of temperature for different compositions: (a) CsCl in xB = 0.38
system, the predicted melting temperature (Tm) is 0.652. (b) CsCl in xB =

0.3, Tm = 0.528. (c) fcc in xB = 0.2, Tm = 0.447.

seed of 432 particles. In the xB = 0.2 mixture we study the
melting temperature of the pure fcc crystal comprising of 500
“A” particles. The growth of the seed is monitored by cluster
analysis where the q̄6 is calculated for each particle and if the
value of q̄6 > 0.3 (Fig. 1) and it has a neighbour which is part
of the existing cluster, then it is included in the cluster. The
cluster growth is monitored for about 100-500 τα, where τα is
the temperature dependent α relaxation time that varies across
different systems. 5-10 independent runs are generated at each
temperature by starting from the same initial configuration but
randomized initial velocity. The growth rate is calculated by
scaling the time with respect to the corresponding τα. From
the average growth/decay rate we approximate the melting
temperature as the temperature where the predicted growth or
decay rate is zero (Fig. 2). The melting points obtained from
Fig. 2 is used to construct the composition dependent phase
diagram reported in Fig. 3.

FIG. 3. The melting temperatures of different crystal forms in different
binary mixtures. The melting temperature for the pure fcc and CsCl crystal
is obtained by studying the growth/melt rate of the crystal. The melting
temperature is where the predicted rate disappears (see Fig. 2). The melting
temperature of the mixed CsCl+fcc crystal and the distorted fcc crystal are
obtained by stepwise heating the system.

FIG. 4. (a) Snapshot of the xB = 0.38 system after 107 steps post-quench at
temperature 0.52. The system shows clear demixing and grows into CsCl+fcc
crystal. (b) Snapshot of the initial seed and the cluster that has grown around
it for xB = 0.2 system after 2×107 steps post-quench at temperature 0.4.
Around the CsCl seed we find the growth of fcc crystal of “A” particles. For
both the systems the initial CsCl crystal seed consists of 432 particles which
is inserted in a liquid of 8000 particles.

We find that the xB = 0.38 mixture phase separates and
forms a CsCl+fcc crystal structure (Fig. 4(a)). The xB = 0.3
mixture also shows similar tendency; however, the crystal
growth rate is slower and within our simulation time scale
the demixing is not complete. We also try to grow the CsCl
crystal in the xB = 0.2 mixture but we find that instead of
CsCl, fcc structure of “A” particles grow around the initial
seed (Fig. 4(b)). This is similar to the observation reported
earlier.31 When a fcc seed is inserted in the same mixture it
continues to grow.

In the above mentioned method it is not possible to
calculate the melting temperature of the mixed CsCl+fcc
crystal as the growth of such crystal never happens within
our simulation time scale. For this calculation at each
composition (xB = 0.05–0.5) we heat the mixed crystal
(CsCl+fcc) starting from temperature 0.2-0.3 and increase
it up to 0.59-1.0 (depending on the melting temperature of
the crystal) with temperature interval of 0.05. Closer to the
melting temperature, heating is done with 0.01 temperature
interval. At each temperature equilibration is done for 107

steps. The size of the initial crystal structure is in the range of
468-612. The total number of particles is chosen in such a way
that a perfect mixed crystal can be created. Periodic boundary
condition is applied in all directions. Similar study is done
for the pure and distorted fcc crystals for xB = 0.0,0.1,0.2
systems. For xB = 0.0 we get pure fcc and for xB = 0.05 and
0.1 the “A” particles form fcc crystal but with distortion due to
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presence of the “B” particles. In the xB = 0.2 system within
our simulation run, we do not observe the formation of the fcc
crystal. However as reported earlier in a MKA2 model, if the
interaction between the two species is reduced, then the system
forms crystal.11 In a similar method by keeping the ϵ12 = 0.96,
we first form a distorted fcc crystal of the xB = 0.2 system.
Once the crystal is formed, we switch back to the larger
inter-species interaction of ϵ12 = 1.5 and study its melting.
The melting of all the crystals happens instantaneously. The
melting temperatures are reported in Fig. 3.

B. Free energy of nucleation and role of demixing

In this section we perform a comparative study of the
Gibbs free energy (potential of mean force) of crystalline
nucleation/growth in different binary mixtures using umbrella
sampling technique with the reaction coordinate being
the size of the largest crystalline cluster present in the
system. The studies are performed at the same degree of
undercooling at 0.8Tm, where the melting temperatures used
are those calculated by studying the temperature dependent
growth/melting rate for the pure CsCl and fcc crystals. A
crystalline cluster is defined by a neighborhood criteria
(within a cutoff distance determined by the first minimum
of the partial radial distribution function of “A”-type particles
for respective systems) of “crystal-like” particles (with the
criterion of q̄6 > 0.3). To grow the clusters, we use a biased
Monte Carlo approach, where we apply an external harmonic
potential of the form 1

2 k(n − nc)2, where k is the force constant,
n is the number of particles in the largest cluster, and nc is the
position of the bias window. We use k = 0.1 for xB = 0.38,
and k = 0.2 for xB = 0.30 and xB = 0.20. We have used
5-7 umbrella windows (depending on the system) in the
cluster size range of 15–35. After equilibration, the data
are collected for 104 Monte Carlo steps per window and
Weighted Histogram Analysis Method (WHAM)32 is then
used to compute the free energy as a function of the size of
the largest cluster as reported in Fig. 5.

While our calculations focus on the pre-critical region
of the free energy surfaces, we can compare the relative free
energy cost to form a crystalline nucleus of certain size as
the composition of the system is varied. We observe that
the free energy cost to grow a nucleus from 15 to 35 for
all the systems is quite high (in the range of 10–20kBT),
which explains why all these systems are good glass formers.
A comparative study of the cost of free energy shows that
xB = 0.38 has a lower cost to grow a CsCl crystal compared to
xB = 0.3. This explains the slow growth of the CsCl crystal in
the latter system which is observed during the melting study.
We also try to grow CsCl crystal for xB = 0.2, which we do
not observe during our simulation time. This implies that the
free energy cost for CsCl crystal growth in this system is even
larger. However, similar to the melting study, the crystal that
grows around the initial CsCl cluster in the xB = 0.2 system is
made up of only “A” particles. Next we study the free energy
cost for fcc crystallization in xB = 0.2 system. We find that
the free energy cost to grow a fcc crystal from 15-35 cluster
size in xB = 0.2 system is lower than the free energy cost
to grow a similar size range CsCl crystal for xB = 0.3. This

FIG. 5. Gibbs free energy for crystallization as obtained from the umbrella
sampling simulations as a function of the largest cluster size for the three
systems. For xB = 0.38 and 0.3 we can grow the CsCl cluster, whereas for
xB = 0.2 we can only grow the fcc cluster. Even with a initial small CsCl
seed the cluster that grows consists of “A” particles forming fcc lattice which
is similar to that we find for melting study.

implies that in the xB = 0.2 system the free energy cost for fcc
crystallization is lower than the CsCl crystallization. Note that
although we make this comparative statement we are unable
to determine the free energy cost for growing a CsCl crystal
in the xB = 0.2 which leads us to believe that the cost must be
very high.

We next analyze the origin of the difference in the free
energy cost to grow a CsCl crystal in different systems. In
a recent study of crystallization in Pd–Ag mixture it has
been found that the barrier to crystallization for the mixed
system is about 10KBT higher than the pure system.33 The
Pd and the Ag have a small difference in their sizes and
form fcc crystal structure. Thus unlike structural frustration
between the CsCl and fcc crystal present in the systems studied
here,25,31 there exists no structural frustration in the Pd–Ag
system. However due to higher Pd–Pd interaction the crystal
nucleus for the Pd–Ag system has a higher concentration of
the Pd molecules compared to that in the bulk. This leads
to demixing in the system and the authors have concluded
that this demixing leads to higher barrier. In a separate study
it is shown that the phase that nucleates easily is the one
which has composition closer to the liquid.34 In this present
study we note that in the CsCl crystallization process, except
for the equimolar mixture, the composition of the nucleus
is different from that of the liquid. The difference increases
as we go towards smaller xB values. Thus it is obvious
that the growth of CsCl crystal leads to demixing in the
system. However, we would like to investigate if signature
of demixing is present in the liquid which surrounds the
crystal.

In a recent study it has been shown that the liquid
in the crystal/liquid interface shows some compositional
ordering.8 In a similar spirit we now look at the crystal/liquid
interface and investigate if the demixing takes place in the pre-
crystalline liquid. For this study we perform N PZT calculation
in a rectangular box where PZ = 0.5. Initially the system
consists of 432 CsCl crystal particles (equal amount of “A”
and “B” particles) and 864 liquid particles. The 010 layer
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of the crystal faces the liquid where the last layer of the
crystal on one side has “A” particles and on the other side
has “B” particles. The box length in the x and y directions
is 6.92σ11. The box length in the z direction is 20.76σ11.
Periodic boundary condition is applied in all directions. Since
we want to study the interface property, it is important not
to have a rugged interface. Thus the study is performed
above the melting temperature of the pure CsCl crystal in
the respective liquid (1.2Tm) by pinning the crystal particles.
Although performed above the melting temperature while
equilibrating the xB = 0.38 system, we find the growth of a
layer of particles on both sides of the crystal. In the analysis
we consider these two layers, which are not pinned, to be part
of the crystal. Thus for this system after equilibration, there
are 504 crystal particles and 792 liquid particles. The liquid
particles span over more than 13σ11 distance which makes it
possible to study both the interfacial and bulk properties of the
liquid. For the xB = 0.3 system an extra layer of “A” particles
grow on the surface which has “B” particles facing the liquid.
Due to the scarcity of “B” particles no extra “B” layer grows
on the other side. In this analysis we consider the surface
where the extra layer of “A” particle has grown. We calculate
the fraction of “B” particles, fB, within each slab of width
1σ11, as a function of distance from the interface (Fig. 6). The
first point (z = 0) in this plot is taken within the crystal which
for the both the systems show same value of fB. Interestingly
we find that for the xB = 0.38 system the concentration of the
“B” particles is higher at the interface and it gradually reaches
the bulk value around z = 4. However for xB = 0.3 system
the concentration of the “B” particles is same at the interface
and at the bulk. Thus we show that the liquid which has a
lower free energy cost for crystal growth also undergoes a pre-
crystalline demixing in the liquid phase. Similar to the earlier
study8 we find that the liquid/crystal interface properties differ
for apparently similar systems with different glass forming
ability.

FIG. 6. Distance dependence of the composition from the liquid/crystal inter-
face along the perpendicular direction. We plot the fraction of “B” particles,
fB, as obtained within each slab of width one σ11 as a function of the
distance from the interface. The interface that has “A” particles is taken and
the plot is done for xB = 0.38 and xB = 0.3. We find that for the former
system where the initial rate of crystallization is higher, the interface has
higher concentration of “B” particles compared to the bulk. Thus there is
pre-crystalline demixing in the liquid phase.

Thus we show that the process of crystallization requires
demixing which takes place in the pre-crystalline liquid. We
now analyze the role of demixing in the free energy barrier.
Note that the per particle mixing entropy in a liquid can be
written as

Smix(lq) = −


xi ln xi, (8)

where xi is the mole fraction of the components. To form
CsCl+fcc crystal, the liquid needs to demix. We show here
that the demixing takes place in a liquid state (refer to
Fig. 6). Although the demixing process happens stepwise
here, we calculate the total effect of demixing. Thus we
consider that to form a CsCl+fcc crystal, part of the
liquid needs to form a equimolar mixture and the other
part should have pure “A” particles. Thus the per particle
mixing entropy in the pre-crystalline partially demixed liquid
should be

Sprecrys
mix (lq) = −2.0xB


xi ln xi. (9)

The difference between these two entropies, ∆Smix

= Smix(lq) − Sprecrys
mix (lq), is the mixing entropy at per particle

level that a liquid will loose in the process of partial
demixing. ∆Smix as a function of xB is shown in Fig. 7 which
shows a non-monotonic behavior with a maximum around
xB ≃ 0.2. Note that this kind of non-monotonic behaviour
is obtained in the free energy barrier to crystallization for
the Pd–Ag mixture which as discussed earlier is attributed
to the demixing process.33 Thus our demixing entropy study
can explain the increase in the free energy cost for CsCl
crystal growth with decrease in xB till it reaches a value
of 0.2. However this study does not explain why in the
xB = 0.2 system where CsCl+fcc is the global minima, the
free energy cost for fcc crystallization is much lower than
the cost for CsCl crystallization; the latter being so high
than an estimation of it is beyond the scope of the present
study.

FIG. 7. The mixing entropy of the liquid, Smix(lq), that of the partially
demixed pre-crystalline liquid S

precrys
mix (lq), and the difference between them

∆Smix plotted at different compositions. We also plot the Tm∆Smix where
Tm is the melting temperature of the mixed CsCl+fcc crystal. The ∆Smix
shows a non-monotonic composition dependence with a maximum around
xB = 0.2.
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C. Analysis from energetics

In order to understand the origin of lower free energy
cost for fcc crystallization, we analyze the role of different
crystal structures in crystallization by studying the energetics.
In Fig. 8(a) we plot the energy per particle of the liquid, the
mixed crystal, the fcc crystal, and the CsCl crystal for different
compositions at 0.8 times the melting temperature of their
respective mixed crystals (given in Fig. 3). This is the melting
temperature which has been obtained by stepwise heating the
mixed crystal. We find that the energy of the mixed crystal is
always lower than the supercooled liquid, which implies that
the liquid is in a metastable state. The energy of the CsCl
crystal is always lower than the liquid. However for higher
xB values the energy of the fcc crystal is above the liquid and
at lower xB values although it becomes less than the liquid,
it is always higher than the CsCl value. This would imply
that the CsCl crystal always drives the crystallization process.
However this does not explain why both in the melting study
and the free energy barrier calculation at xB = 0.2, although
we cannot grow CsCl crystal, we can grow fcc crystals. Our
subsequent analysis will explain this discrepancy.

FIG. 8. (a) The energy per particle of the liquid, mixed crystal (CsCl+fcc),
CsCl crystal, and fcc crystal for different compositions. The calculations are
done at 0.8Tm of each composition, where Tm is the melting temperature
obtained by heating the different mixed crystals. (b) The energy of the
mixed crystal, the estimated energy of the mixed crystal, ECsCl+fcc(est), the
estimated contribution from the CsCl part, ECsCl(est), and that from the fcc
part, Efcc(est), as a function of composition. The calculations are done at
same temperature as in (a).

Next we make an estimation of energy of the mixed
crystal, ECsCl+fcc(est), at the per particle level, at different
compositions by assuming that 2xB of the crystal forms CsCl
and the rest forms fcc,

ECsCl+fcc(est) = ECsCl(est) + Efcc(est)
= 2xBECsCl + (xA − xB)Efcc. (10)

Here ECsCl and Efcc are the energy of the CsCl and fcc
crystal, respectively, at per particle level calculated for each
system at their respective 0.8Tm. ECsCl(est) and Efcc(est) are
the estimated contribution from the respective CsCl and fcc
crystal part of the mixed crystal again presented at the per
particle level. Note that the values of ECsCl(est) and Efcc(est)
take into account the fraction of the system which is in different
crystal form. In this calculation we of course make certain
approximations by neglecting the surface energy. However
we find that the value of energy per particle of the mixed
crystal thus calculated is not too different from the value of
the actual crystal (Fig. 8(b)). These are again calculated at
the same temperatures as reported in Fig. 8(a). We now break
up the contribution of the two components, the contribution
from CsCl and that from fcc and plot them separately. Once
we do that we find that although at higher xB values the CsCl
formation drives the crystallization, at lower xB values it is
the fcc formation which drives the crystallization. Although
the energy per particle of the fcc crystal is still lower than that
of the CsCl, the larger fraction of the fcc crystal wins over.
A cross over happens just above xB = 0.2. This explains why
the system at xB = 0.2, whose global minima is the mixed
crystal, shows higher tendency towards fcc formation.

However, this does not explain why the crystallization
process when driven by fcc formation has a lower free
energy cost than when driven by CsCl formation. In order
to understand this, we study the coordination number between
the “B” particles, CNBB in the xB = 0.2 system, before and
after crystallization. Since we cannot crystallize the xB = 0.2
system we study the crystallization of the MKA2 model
(referred earlier in the melting temperature study) which
according to Dyre and co-workers is similar in structure as
the KA model but with a lower viscosity.11 Confirming their
conclusion we find that the LFS of the MKA2 model appears
quite similar to the KA model; however, the dynamics is orders
of magnitude faster. We now analyze the CNBB as obtained
in the MKA2 system when it is in liquid form at T = 0.4 and
when it forms distorted fcc crystal around T = 0.35. These are
plotted in Fig. 9. For comparison we also plot the CNBB for
the pure CsCl+fcc crystal at T = 0.4. Note that the probability
distribution of CNBB in the CsCl+fcc crystal should ideally
have a peak at 6 but the peak is shifted to smaller value due
to the presence of a large number of surface layer of “B”
particles. The study shows that to form distorted fcc crystal
although there is an increase in the CNBB it is not as much
as required for the CsCl+fcc crystal. Thus demixing in the
distorted fcc is much weaker than CsCl+fcc. Analysis of the
same kind for the xB = 0.9 system (not shown here) shows
similar behaviour.

Thus on the right hand side of the crossover where CsCl
drives the crystallization there should be free energy barriers
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FIG. 9. The probability distribution of the CNBB as obtained in the MKA2
liquid at T = 0.4, the distorted fcc crystal formed by the MKA2 liquid
at T = 0.35, and CsCl+fcc crystal at T = 0.4. The CsCl+fcc is formed at
the same composition as the MKA2 liquid. The demixing required by the
CsCl+fcc liquid is much higher than the distorted fcc.

due to demixing. However on the left hand side the system
can avoid or reduce the loss of mixing entropy by paying
some energetic penalty to form distorted crystals. The lower
energetic stability of the distorted fcc is evident from Fig. 3.
We find that for xB = 0.2 the disordered fcc structure melts at a
lower temperature compared to the mixed CsCl+fcc structure.

In order to strengthen our argument that it is indeed
the demixing that frustrates the CsCl driven crystallization
process and leads to high free energy cost, we present a study
of a similar system. Reported in a earlier study by some of
us we have shown that for the NaCl system (σ12 = 0.7) the
crystallization takes place not only at equimolar composition
but also at smaller value of xB forming mixed NaCl+fcc
crystal.25 A similar energetic study of the σ12 = 0.7 system is
shown in Fig. 10(a). We find that energy of the NaCl crystal
is always lower than the fcc crystal (Fig. 10(a)). A similar
crossover is also obtained for this system where at higher xB

values the crystallization is driven by NaCl and at lower xB

values it is driven by fcc (Fig. 10(b)). Thus we should expect
a similar crystallization problem in this system which appears
not to be the case.

Although the NaCl and CsCl systems appear quite similar
there are some basic differences. The CsCl crystal is made
up of two interpenetrating sc structures of “A” and “B” type
of particles. Thus in the CsCl+fcc crystal the “A” particles
have two different populations, namely, one which forms sc
and the other which forms fcc structure. In an earlier work we
had mentioned that this wide difference in the order parameter
of the two population causes the frustration between the two
structures.25 If we are away from the equimolar mixture the
growth of a CsCl will deplete the population of the “B”
particles in the neighbourhood which should promote the
formation of fcc structure between the “A” particles. However
a unit cell of fcc is not compatible with the CsCl structure
thus to reduce the structural frustration the system sacrifices
the mixing entropy and increase the concentration of the “B”
particles in the liquid near the cluster as seen in Fig. 6 to form
more CsCl structures till finally it is devoid of any more “B”

FIG. 10. (a) The energy per particle of the liquid, mixed crystal (NaCl+fcc),
NaCl crystal and fcc crystal for different compositions. The calculations are
done at 0.8Tm of each composition, where Tm is the melting temperature
obtained by heating the different mixed crystals. (b) The energy of the
mixed crystal, the estimated energy of the mixed crystal, ENaCl+fcc(est), the
estimated contribution from the NaCl part, ENaCl(est), and that from the fcc
part, Efcc(est), as a function of composition. The calculations are done at
same temperature as in (a).

particles in the liquid. This is the reason we find “AB” and “A”
rich zone separated in Fig. 4(a). The NaCl crystal on the other
hand is compatible with a fcc crystal as both require the “A”
particles to form fcc structure with same lattice spacing. Thus
unlike CsCl and fcc the NaCl and fcc can grow in a seamless
fashion and the system does not require any demixing which
reduces the free energy barrier. A snapshot of the NaCl+fcc
structure is shown in Fig. 11 which shows that there is no
specific “A” rich zone.

Since in the xB = 0.2 system the free energy cost for
fcc formation is lower than CsCl formation and also we find
growth of fcc structure around a CsCl nucleus (Fig. 4(b)),
we expect the fcc nucleus to be energetically more stable
than the CsCl nucleus. However, our preliminary study of
the surface interaction energy calculation between the crystal
and the solvent suggests that the CsCl nucleus is more stable.
Note that the surface tension has both energetic and entropic
contributions. Thus this counter-intuitive result obtained in the
surface interaction energy calculation along with the observed
fcc growth suggests that the entropic part, and in this particular
case the demixing entropy part plays an even bigger role. In the
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FIG. 11. Snapshot of a NaCl+fcc crystal structure at xB = 0.2. The simula-
tion is done at T= 0.6. The snapshot shows seamless formation of NaCl and
fcc structure with no demixing.

xB = 0.2 system the less stringent requirement of demixing
makes the fcc a more stable nucleus.

The study of the energetics can also explain the glass
forming ability of some systems which has been previously
proposed by Dyre and co-workers.11 In the above calculation
if we decrease the interaction between the “AB” particles
then the contribution from the CsCl in lowering the system
energy will decrease and the crossover will happen at a higher
xB value. Thus the xB = 0.2 will show higher tendency of
fcc crystallization as has been reported earlier.11 In the same
system if we make the interaction between the “A” particles
repulsive then in a similar fashion the crossover will shift to
lower xB values and this will imply that the xB = 0.2 system
will still be driven by the CsCl crystallization. Since this will
also require demixing thus the system will be a better glass
former as reported earlier.11

D. Glass forming ability-role of demixing
and eutectic point

We find that the loss of mixing entropy is maximum
for xB = 0.2. In the free energy study within the scope of
our calculation we cannot grow a CsCl crystal and thus
cannot estimate the free energy cost to grow a CsCl crystal in
this system, which implies that free energy cost is high and
with respect to CsCl formation, the xB = 0.2 system is most
frustrated and a better glass former. However in the free energy
calculation and the study of energetics this system shows a
tendency towards fcc crystallization. The fcc crystallization
also has a free energy cost because although without clear
demixing the system can crystallize in fcc structure the
presence of the LFS centered around “B” particles can frustrate
this crystallization process. However the cost of free energy
to form a fcc crystal in xB = 0.2 system is lower than the
cost of free energy to form a CsCl crystal in xB = 0.3 system.
Thus it is tempting to comment that the xB = 0.3 system is

a better glass former. However the process of crystallization
is not only dependent on the free energy barrier but also on
the dynamics of the system. This is the reason the eutectic
point is expected to be a better glass forming region and our
study of dynamics shows that indeed the xB = 0.2 system
is the slowest. For the study of the dynamics we calculate
τα from overlap function at the respective 0.8Tm. Note these
are the temperatures where the free energy calculations are
done. We find that for the xB = 0.38 system τα = 13.12 at
T = 0.52, for the xB = 0.3 system, τα = 507 at T = 0.42, and
for xB = 0.2 system τα = 26 450 at T = 0.36. Thus according
to the study of the dynamics the xB = 0.2 system is a better
glass former. Note that the MKA2 model which undergoes
crystallization differs from the KA model not in terms of the
structure of the liquid but in terms of dynamics. The local
structure around the smaller “B” particles which actually
frustrates the fcc crystallization is present even in the MKA2
model. However the relaxation time scale of the MKA2
model is orders of magnitude faster than the KA model. Thus
our study confirms that as stated earlier11 it is indeed the
dynamics/viscosity of the system which makes KA model a
good glass former.

V. CONCLUSION

In this article we study the comparative glass forming
ability of different binary systems. In an earlier study by some
of us we have shown that binary systems which form CsCl
crystals in a equimolar mixture fails to crystallize if the mole
fraction of the larger particles is increased.25 The well known
KA model is one of the systems. Thus the KA model’s stability
against crystallization is more generic and is similar to systems
which form equimolar CsCl crystal. The global structure for
these systems are a mixed form of CsCl+fcc crystal.9 In the
CsCl+fcc crystal the bigger “A” particles need to create two
different populations, namely one which contributes towards
the CsCl formation and the other which contributes towards
the fcc formation. The order parameters such as BOO and
coordination number of the “A” particles are quite different in
these two crystal forms. Thus the failure in the crystallization
has been attributed to the frustration between the CsCl and fcc
crystal structures. Note that there is an array of systems which
have similar frustration. However the glass forming ability of
these systems, although has not been calculated, is believed to
be different. Thus there should be more factors contributing
to the glass forming ability.

In this article we perform a comparative study of binary
glass forming liquids, all having good glass forming ability
and similar global minima. The study has been performed by
changing the composition. We find that the free energy cost
to grow a CsCl nucleus increases as we move away from an
equimolar mixture. The study of the liquid at the liquid/crystal
interface shows that the system which has lowest free energy
cost to form a nucleus also shows a demixing near the crystal
surface. We believe that the structural frustration between the
CsCl and fcc structure makes this demixing a prerequisite
for crystallization. Our calculation of the partial demixing
entropy in the liquid state shows a non-monotonic dependence
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on composition. It shows a maxima for xB = 0.2 system. We
could show a connection between the change in free energy
cost to create a crystal nucleus and the change in demixing
entropy as a function of composition. Our study shows that
although the xB = 0.2 system is strongly frustrated against
CsCl crystallization, it has tendency towards fcc growth.
We can justify this tendency of fcc growth from the study
of the energetics. We show that in the composition range
studied here there are two regions, one which is driven by
the CsCl crystallization and the other at lower xB values is
driven by fcc crystallization. It is primarily in the former
region that the structural frustration between the CsCl and
fcc structure leads to the requirement of demixing which
eventually increases the free energy barrier and provides
stability against crystallization. This point has been confirmed
by studying a NaCl+fcc system which naturally undergoes
crystallization at all compositions. The study of the energetics
of this system also shows two similar region. However unlike
the CsCl+fcc system, in the region where crystallization is
driven by NaCl, due to the compatibility of the NaCl and
fcc structure, no demixing has been observed and the crystal
grows in a seamless fashion. In the second region driven by
fcc crystallization we show that demixing is not stringent
criteria and the stability against crystallization comes from
the frustration caused by the presence of the “B” particles
with well defined LFS and also the system’s proximity to
eutectic point where the dynamics is slow. Thus although we
study three very similar glass formers, which ideally belong
to the same class of system and differ only in composition, we
find that they do not share the same origin of stability against
crystallization. Note that according to classical nucleation
theory the free energy barrier is determined by both surface
tension and the difference in free energy between the two
phases. Moreover, the surface free energy would also include
an entropic term, which is likely to be influenced by the
demixing entropy cost as discussed in the text. Thus surface
tension may play an important role in lowering the free energy
cost of fcc nucleation. However an estimation of this is beyond
the scope of the present study and will be addressed in the
future.

We should also comment that our search of crystal
structures is not exhaustive and the system which we claim
to be a better glass former can crystallize in a different
crystal form like the Al2Cu structure is found to be a low
energy state of a system belonging to the same class where
xB = 0.33.10 This system is also known to show resistance
towards crystallization. The CuZr liquid which has a low
energy CsCl like structure is also a good glass former.8 Note
that in these two systems the composition of the crystal is
identical to that of the liquid. Thus even above xB > 0.2

it is not always demixing which provides stability against
crystallization.
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ABSTRACT

We propose a novel model for a glass-forming liquid, which allows us to switch in a continuous manner from a standard three-dimensional
liquid to a fully connected mean-field model. This is achieved by introducing k additional particle–particle interactions, which thus augments
the effective number of neighbors of each particle. Our computer simulations of this system show that the structure of the liquid does not
change with the introduction of these pseudo-neighbors and by means of analytical calculations, and we determine the structural properties
related to these additional neighbors. We show that the relaxation dynamics of the system slows down very quickly with the increase in k and
that the onset and the mode-coupling temperatures increase. The systems with high values of k follow the mode-coupling theory power law
behavior for a larger temperature range compared to the ones with lower values of k. The dynamic susceptibility indicates that the dynamic
heterogeneity decreases with the increase in k, whereas the non-Gaussian parameter is independent of it. Thus, we conclude that with the
increase in the number of pseudo-neighbors, the system becomes more mean-field-like. By comparing our results with previous studies on
mean-field-like systems, we come to the conclusion that the details of how the mean-field limit is approached are important since they can
lead to different dynamical behavior in this limit.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0038749., s

I. INTRODUCTION

The details of the relaxation dynamics of the glassy system and
the properties of the glass have been and continue to be in the
focus of intense research activity.1 These investigations are moti-
vated by the fact that glasses are not only important for many daily
and technological applications but are also an intellectual challenge
for fundamental studies, since so far, there is no theoretical frame-
work that is able to give a satisfactory description of the unusual
properties of glassy systems and glasses. Although there are sophis-
ticated mean-field (MF) theories, such as the mode-coupling theory
(MCT) of the glass transition2–5 or the random first order transition
theory,6–8 that are able to give in some cases a surprisingly good
description of the real glass former,9–14 these approaches still have
many flaws since they fail to give a reliable description of many
features of glass-forming systems, thus opening the door to other
approaches that attempt to describe glassy systems.15–20 Note that
these theories are mean-field in nature, whereas the experiments

and computer simulation studies are three or lower dimensional sys-
tems. Moreover, it has been found that MCT, although expected to
be mean-field in nature, does not become exact even at high dimen-
sions,21,22 a flaw that might, however, be related to the approxima-
tions used to describe the structure of the liquid in high dimensions.
Thus, it is important to understand how these theories are con-
nected to real glass-forming systems and how the properties change
as the mean-field character of the system is modified. To establish
such a connection, it is useful to study systems whereby varying a
parameter, one can go from a d dimensional system to a mean-field
system. In the past, various possibilities have been proposed to take
this limit (see Ref. 23 for an overview), but most of them do have
some drawbacks that prevent us from reaching a solid understand-
ing how three-dimensional (3D) and MF systems are related to each
other.23

One interesting model that allows approaching the MF limit
in a continuous manner has been proposed by Mari and Kurchan
(MK).23 The MK model is a hard-sphere system in which the
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interaction range between two particles i and j is a random vari-
able with a variance that allows switching from a standard three-
dimensional system to a MF-like system. For this model, it is found
that with the increase in the interaction range, the Stokes–Einstein
relation holds down to lower temperatures and that the dynamic het-
erogeneity of the system, measured by the four-point susceptibility
and non-Gaussian parameter (NGP), decreases. The increase in the
interaction range also makes the system follow MCT-like behavior
for a larger range in temperature. Although all these results indicate
that the MK model can indeed be used to study the transition from
3D to MF, there are certain features of the model that are disturbing.
First of all, the structural properties of the system become very dif-
ferent from the one of a normal liquid if the MF limit is approached
in that the radial distribution function becomes gas-like. Related to
this is the fact that the three-point correlation functions vanish. As
a consequence, one loses the property that nearest neighbors can
cage a tagged particle, a notion that is fundamental for the slow-
ing down of the dynamics in real glass-forming systems.1 Second,
the maximum attainable packing fraction diverges in the MF limit,
a behavior that is very different from the one found in finite dimen-
sions. Some of these oddities are avoided if one considers models
on a lattice.24 However, lattice models, notably kinetic Ising mod-
els with non-conserved particle density, do have the drawback that
it is not obvious to what extent their relaxation dynamics is related
to any off-lattice systems. As a consequence, one has to be cautious
when applying results from lattice models to describe the dynamics
of real systems.

Another approach to connect the properties of 3D systems with
the MF behavior has been proposed in a series of papers by Miyazaki
and co-workers who have studied the properties of the Gaussian-
Core Model (GCM).25–27 Due to the long interaction range, each
particle has a large number of neighbors, and hence, the system can
be expected to be MF-like. These authors showed that compared
to the (short-ranged) Kob–Andersen (KA) model,9 in the GCM,
the Stokes–Einstein relation is followed until a lower temperature
regime and that the relaxation dynamics shows a qualitatively better
agreement with the MCT predictions.26 Furthermore, it was found
that the GCM shows less dynamic fluctuation and that activated pro-
cesses are suppressed,25 in agreement with the recent studies of the
thermodynamic properties of this system.28

A further possibility to connect the properties of low dimen-
sional systems with the MF predictions is to consider systems with
increasingly higher dimensions. Sengupta et al. have studied the
properties of some standard glass formers in two, three, and four
dimensions and found that with the increase in dimensionality, the
breakdown of the Stokes–Einstein relation becomes less pronounced
and that the dynamical heterogeneity decreases.29 Charbonneau
et al. have studied systems up to six dimensions and found that
the shape of the cage does not become Gaussian-like, as expected
from MF,30 showing that the approach to this limit might be more
complex than expected.

In the present paper, we introduce a simple approach that
allows crossing over in a continuous manner from a normal 3D
liquid to a MF system. In practice, we do this by increasing for each
particle the number of particles it can interact with, thus increasing
the effective interaction of the particle with the rest of the system. In
contrast to the studies discussed above, our method does not modify
in a significant manner the local structure of the liquid even when

the MF limit is reached, i.e., the structure is always similar to the one
of the 3D system. Hence, this allows us to study how increasing the
connectivity affects the relaxation dynamics, without modifying in a
noticeable manner the structure, and hence to probe the dynamics
upon approaching the MF limit.

The rest of this paper is organized as follows: The system and
simulation details are described in Sec. II. In Sec. III, we present the
result, while in Sec. IV, we summarize and conclude.

II. DETAILS OF SYSTEM AND SIMULATIONS

As mentioned in the Introduction, our system is given by N
particles that interact with each other via a standard short-range
potential. In addition, each particle interacts also with “pseudo-
neighbors,” i.e., particles that are not necessarily close in space.
Hence, the total interaction potential of the system is given by

Utot(r1, . . . , rN) = N∑
i=1

N∑
j>i u(rij) +

1
2

N∑
i=1

k∑
j=1

upseudo(rij) (1)

= U + Upseudo
k . (2)

The first term on the right-hand side is the regular interaction
between particles, while the second term is the interaction each
particle has with its pseudo-neighbors. Here, we consider the case
that the regular interaction describes a binary Lennard-Jones (LJ)
system, with 80% of the particles of type A and 20% of the parti-
cles of type B. Thus, the interaction between the particles i and j is
given by

u(rij) = 4ϵij
⎡⎢⎢⎢⎢⎣(

σij
rij
)12 − (σij

rij
)6⎤⎥⎥⎥⎥⎦, (3)

where rij is the distance between the particles, σij is the effective
diameter of the particle, and ϵij is the interaction strength. We use
σAA and ϵAA as the unit of length and energy, setting the Boltzmann
constant kB = 1. The values of the other parameters are given in
Ref. 9, i.e., σAB = 0.8, σBB = 0.88, ϵAB = 1.5, and ϵBB = 0.5, a choice that
makes this binary system to be a good glass former. This potential is
cut and shifted at rc = 2.5σij. The masses are mA = mB = 1 and time
is expressed in units of

√
mAσ2

AA/ϵAA.
The interaction potential with the pseudo-neighbors is mod-

eled in terms of a modified LJ potential,

upseudo(rij) = u(rij − Lij) (4)

= 4ϵij
⎡⎢⎢⎢⎢⎣(

σij
rij − Lij )

12 − ( σij
rij − Lij )

6⎤⎥⎥⎥⎥⎦, (5)

where Lij is a random variable defined below. In our simulations, we
impose the restriction that any two particles interact either via u(rij)
or via upseudo(rij). This condition determines how for a given config-
uration equilibrated with the potential u, the pseudo-neighbors and
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the values Lij are chosen: Taking this configurations, we select for
each particle, i, k random numbers Lij in the range rc ≤ Lij ≤ Lmax,
where Lmax ≤ Lbox/2 − rc, with Lbox being the size of the simulation
box. (The distribution of these random variables will be denoted by
P(Lij), and in the following, we will consider the case that the dis-
tribution is uniform.) Subsequently, we choose k distinct particles j
with rij > rc and use the Lij to fix permanently the interaction between
particles i and j. This procedure thus makes that each particle i inter-
acts not only with the particles that are within the cutoff distance
but in addition to k particles that can be far away. Note that once
the particle j is chosen as a pseudo-neighbor of particle i, automat-
ically particle i becomes a pseudo-neighbor of particle j which gives
rise with the 1/2 factor in the second term of Eq. (1). The system,
as defined here, can then be simulated using standard simulation
algorithms.

The molecular dynamics (MD) simulation have been done
using N = 2744 particles. We have performed constant volume, con-
stant temperature simulations (velocity rescaling) at density ρ = 1.2,
thus Lbox = 13.1745, using a time integration step of Δt = 0.005.
For Lmax, we have taken 4.0, slightly below the maximum value of
4.09. We have simulated four different systems with the number of
pseudo-neighbors k = 0, 4, 12, and 28.

III. RESULTS

A. Structure of the liquid

To start, we discuss the effect of the pseudo-neighbors on the
structure of the liquid. In Fig. 1, we show the three partial radial dis-
tribution function, gαβ(r), with α, β ∈ {A, B},31 for the k = 0 and the k
= 28 systems. The temperature is T = 0.9, which for the k = 0 system
is slightly above the onset temperature (see Ref. 9), while for the k
= 28 system, it corresponds to a state at which the system is already
rather viscous (see below). The graph shows that the radial distri-
bution functions for the two systems overlap perfectly well, i.e., the
structure is independent of k for this value of k. Thus, this indicates

FIG. 1. The partial radial distribution functions for k = 0 and k = 28 at T = 0.9. The
structure remains invariant under the introduction of the pseudo-neighbors.

FIG. 2. The partial structure factors for k = 0 and k = 28 at T = 1.0. Similar to what
we have obtained in the radial distribution function, the structure remains invariant
under the introduction of the pseudo-neighbors.

that the interactions due to the pseudo-neighbors do not affect the
local structure of the system, one of the reasons for our choice of the
interactions of the model.

To probe whether the structure of the liquid on a large scale
is influenced by the introduction of the pseudo-neighbors, we have
calculated the partial static structure factors and show them in Fig. 2
for the case of k = 0 and k = 28. Since the two sets of curves match
each other perfectly well, we can conclude that also the large scale
structure is not influenced by the additional neighbors.

B. Static properties of the pseudo-neighbors

In this subsection, we characterize some of the structural prop-
erties of the pseudo-neighbors with respect to a tagged particle.

To start, we first calculate the probability PL that a given
pseudo-neighbor j interacts with the tagged particle i, where L = Lij.
Neglecting the indirect interactions (via the direct neighbors)
between the tagged particle and the pseudo-neighbor, one can
express PL as

PL = ∫Vacc
dr e−βu(r−L)y(r)
∫Vacc

dr e−βu(r−L) . (6)

Here, β = 1/kBT, Vacc is the volume accessible to the pseudo-
neighbor, and y(r) is a step function that takes into account that the
potential is cut off at 2.5σαβ, i.e., y(r) = 1 if L ≤ r ≤ L + 2.5σαβ and y(r)
= 0 for all other values of r. The volume integrals in Eq. (6) can be
decomposed into a spherical part that is contained inside the cubic
box and the rest. The latter volume is given by

ΔV = L3
box − 4

3
π(Lbox

2
)3

(7)

= L3
box(1 − π

6
). (8)
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A spherical integration in Eq. (6) then gives

PL = ∫ L+rc
L dr r2e−βu(r−L)

∫ Lbox/2
L dr r2e−βu(r−L) + ΔV

. (9)

Note that in Eq. (9), L = Lij is fixed. Hence, for a distribu-
tion of L, the probability of finding a pseudo-neighbor within the
interaction range of the tagged particle is given by

P = ∫ Lmax

rc
dLP(L) ∫ L+rc

L dr r2e−βu(r−L)
∫ Lbox/2
L dr r2e−βu(r−L) + ΔV

. (10)

In the numerator, we make the substitution r′ = r − L, which
allows us to interchange the two integrals,

P = ∫ rc

0
dr′ ∫ Lmax

rc
dLP(L) (r′ + L)2e−βu(r′)

∫ Lbox/2
L dr r2e−βu(r−L) + ΔV

. (11)

We thus find that this probability is independent of k, a result
that is reasonable since we have neglected any correlations between
the pseudo-neighbors. Also note that P depends on the interaction
potential via u(r) and rc. For a binary system, we can generalize this
calculation to obtain the partial probabilities Pαβ, and then the total
probability is given by

P = x2
APAA + 2xAxBPAB + x2

BPBB, (12)

where xα is the concentration of species α. In the simulation, this
probability can be obtained by calculating the ratio ke/k, where ke
is the number of pseudo-neighbors that have a non-zero interac-
tion with the tagged particle. In Fig. 3, we show the temperature
dependence of P as obtained from Eqs. (11) and (12) (solid line) and
compare it with the corresponding quantity ke/k determined from
the simulations (symbols). One recognizes that ke/k is as expected
independent of k and that the simulation data match perfectly well
the theoretical prediction given by Eqs. (11) and (12). Note that at
the lowest temperatures at which we could equilibrate the systems
for the different value of k, the probability is around 0.3, i.e., for the
glassy dynamics, we will discuss below that only a relatively small
part of the pseudo-neighbors actually interacts with the tagged par-
ticle. The inset of the figure shows that P becomes 0.5 at around
T = 0.4, a temperature at which already the k = 0 system is very
viscous,32 and for T → 0, the probability becomes 1, as expected.

To characterize the relative position of a pseudo-neighbor j
with respect to a tagged particle i, we can consider the corresponding
radial distribution function,

gpseudo(r′) = ρk
4πr2

N∑
i=1

k∑
j(i)⟨δ(r′ − ∣ri − rj∣ + Lij)⟩, (13)

where in the second sum, the index runs over the pseudo-neighbors
of the tagged particle i and ρk is the average pseudo-neighbor
density,

FIG. 3. Probability that a pseudo-neighbor is within the interaction range as a
function of temperature. The pink line is the theoretical prediction from Eqs. (11)
and (12). Inset: same quantities extending the temperature range to T = 0. The
theoretical curve shows a sigmoidal shape.

ρk = ∫ Lmax

rc

kP(L)
V − 4

3πL3
dL, (14)

where V is the total volume of the system.
To calculate gpseudo(r) analytically, we can make use of our

result for P given by Eqs. (11) and (12). The number ke of pseudo-
neighbors within the interaction range can be expressed in terms of
gpseudo(r′) as

ke = ρk ∫ rc

0
dr′gpseudo(r′)∫ Lmax

rc
dLP(L)4π(r′ + L)2. (15)

Since ke can also be written as ke = k × P, we get, using Eqs. (11)
and (15),

gpseudo(r′)ρk ∫ Lmax

rc
dLP(L)4π(r′ + L)2

= k∫ Lmax

rc
dLP(L) (r′ + L)2e−βu(r′)

∫ Lbox/2
L drr2e−βu(r−L) + ΔV

(16)

from which one obtains directly gpseudo(r′). Note that gpseudo(r′) is
independent of k, since ρk is directly proportional to k [see Eq. (14)].

Figure 4 shows the radial distribution function gpseudo(r′) from
the simulations of three different values of k (symbols), and we rec-
ognize that, as predicted by Eq. (16), the function is indeed indepen-
dent of k. We have also included the analytical result from Eq. (16),
and we see that the theory describes perfectly well the simulation
data, thus demonstrating that the approximation that the structure
of the pseudo-neighbors can be obtained well by the bare interac-
tion with the tagged particle is very accurate, at least for the k values
considered in the present work. We also note that since one has
the relation gpseudo(r′) = exp(−βu(r′)), which can be derived from
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FIG. 4. Radial distribution function for pseudo-neighbors from simulations at
T = 1.0 for k = 4, 12, and 28. The distribution function of the pseudo-neighbors is
independent of k. The solid line is the result from the theoretical expression given
by Eq. (16). The dashed line is the theoretical prediction from the bare potential.

Eq. (16), the function gpseudo(r′) can also be obtained directly from
the bare interaction potential u(r′), as shown in Fig. 4.

Within the standard theory of liquids, the radial distribution
function allows us to obtain the potential energy.31 Due to the pres-
ence of the pseudo-neighbors this is no longer possible, and thus the
usual expression has to be modified as follows. (Note that in the fol-
lowing, we give the expressions for a one-component system. For
the binary system considered here, one will have to do the sum over
the various partials.) Since the potential energy of the system has
two contributions, one is the regular neighbor and the other is the
pseudo-neighbor [see Eq. (1)], the total potential energy U tot is given
by

Utot

N
= ρ

2 ∫
∞

0
u(r)g(r)4πr2dr +

ρk
2 ∫

∞
0

u(r)gpseudo(r)
× ∫ Lmax

rc
P(L)4π(r + L)2dLdr. (17)

At this stage, it is useful to introduce an “effective radial
distribution” function geff(r) by defining

ρeffg
eff(r) = ρg(r) + ρkg

pseudo(r)∫ Lmax
rc

P(L)(r + L)2dL
r2 , (18)

where the effective particle density is given by

ρeff = ρ + ρk. (19)

Note that since ρk increases linearly with k, for large k, the
density ρeff is dominated by ρk, and hence in that limit, geff will be
directly proportional to gpseudo(r).

FIG. 5. The effective A–A particle radial distribution function for k = 0, 28, 125, and
1250. With the increase in k, the multi-peak structure disappears. Inset: geff

AA/y(k)
vs r, where y(k) is the height of the main peak. The smoothing of the undulation
with the increase in k is clearly seen.

Using geff(r), we now can express the total potential energy of
the system as a function of the radial distribution function geff(r),

Utot

N
= ρeff

2 ∫
∞

0
u(r)geff(r)4πr2dr. (20)

In Fig. 5, we present geff(r) for the A–A correlation for differ-
ent values of k. Since the regular radial distribution function g(r) is
independent of k (see Fig. 1) and gpseudo(r) can be calculated analyt-
ically from Eq. (16), it is possible to obtain geff for arbitrary values
of k. The graph shows that with the increase in k, the radial distribu-
tion function loses its characteristic structure with the multiple peaks
and converges toward a distribution that has a single peak at r = 1.
This result can be understood directly from Eq. (18) since for large
k, the first term on the right-hand side vanishes (if divided by ρeff),
while the second term is gpseudo(r) multiplied by an r-dependent fac-
tor that is independent of k. Hence, we see that in the large k limit,
the effective radial distribution function develops a dominant sharp
peak at a finite distance. With the decrease in temperature, this peak
increases since most of the pseudo-neighbors will condensate at the
optimal distance Lij. It is this growing peak that signals the increasing
number of constraints in the system, which induce the slowdown of
the relaxation dynamics. This loss of structure of the radial distribu-
tion function is a typical signature of mean-field-like systems, such
as the hard-sphere system of Ref. 23. (However, unlike the results
in the present study, in the hard-sphere system, there is no peak
at r = 1.)

C. Relaxation dynamics

We now analyze how the presence of the pseudo-neighbors
affects the relaxation dynamics. To characterize this dynamics, we
consider the self-part of the overlap function Q(t) and the mean
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squared displacement (MSD) of a tagged particle, Δr2(t). The former
observable is defined as

Q(t) = 1
N

N∑
i=1
⟨ω(∣ri(t) − ri(0)∣)⟩, (21)

where the function ω(x) is 1 if 0 ≤ x ≤ a and ω(x) = 0 otherwise. The
parameter a is chosen to be 0.3, a value that is slightly larger than
the size of the cage (determined from the height of the plateau in the
MSD at intermediate times.9) Thus, the quantity Q(t) tells whether
or not at time t, a tagged particle is still inside the cage it occupied at
t = 0.

In Fig. 6, we show the time dependence of Q(t) for different
values of k. The temperature is T = 0.9, which corresponds for k =
0 to a T that is around the onset temperature.9,33 The graph demon-
strates that with the increase in k, the relaxation dynamics slows
down quickly in that the correlator for k = 28 decays on a time scale
that is about two orders of magnitude larger than the one for k =
0. Also note that for the largest k, we clearly see a two-step relax-
ation, i.e., the hallmark of glassy dynamics in which the particles
are temporally trapped by their neighbors,1 while for k = 0, one has
just a simple one-step relaxation, i.e., a normal liquid state relax-
ation. These results demonstrate that the presence of the pseudo-
neighbors does have the sought after effect of strongly slowing
down the relaxation dynamics of the system, although, as demon-
strated above, the overall structure of the liquid is not changed.
Interestingly, the shape of the time correlation function in the α-
relaxation regime does not seem to have a noticeable dependence
on k, indicating that the relaxation mechanism is weakly depen-
dent on k. However, this conclusion only holds for length scales
on the order of “a,” while it could be noticeable on larger length
scales. Here, we also note that for other mean-field-like models,
such as the one introduced by Mari and Kurchan,23 an increase
in the interaction range leads to an acceleration of the dynamics,
i.e., the seeked slowing down of the dynamics is not necessarily
guaranteed.

FIG. 6. Time dependence of the self overlap function Q(t) for systems with different
values of k at T = 0.9. With the increase in k, the relaxation dynamics quickly slows
down.

Next, we compare the time dependence of the mean squared
displacement, averaged over all the particles, of two systems: k = 0
and k = 28 (Fig. 7). For the k = 0 system, we show the MSD for
T = 0.82, i.e., a temperature close to the onset T, and as a conse-
quence one sees that the curve shows between the ballistic regime
at short times, Δr2(t) ∝ t2, and the diffusive regime at long times,
Δr2(t) ∝ t1, a weak shoulder. Qualitatively, the same time depen-
dence is found for the k = 28 system, but this time at the higher
temperature, T = 1.5, indicating that the increase in k leads to an
increase in the onset temperature. If for the k = 0 system, the tem-
perature is lowered to 0.445, the MSD shows at intermediate times
a very pronounced plateau that is due to the temporary caging of
the particles.1 The same behavior is found in the k = 28 system at
T = 0.82 with a plateau height and length that is very close to the one
of the k = 0 system. (This similarity is due to our choice of the tem-
perature T = 0.82.) Since we have seen above that the local structure
of the system at fixed temperature hardly depends on k (see Fig. 1),
the pronounced caging for the k = 28 system (at T = 0.82) is thus due
to the pseudo-neighbors, i.e., the non-local interactions. From these
curves, we hence can conclude that the presence of the additional
interactions leads to a substantial slowing down of the relaxation
dynamics, while the details of the MSD, such as the height of the
plateau or its width, at the same effective temperature (discussed
below) are modified only mildly, at least in the parameter regime
probed here.

At sufficiently long times, the motion of the particles is expected
to be diffusive, and hence the MSD should increase linearly in time.
Figure 7 shows that for the k = 0 system, this is indeed the case
and that this diffusion sets in once the MSD has reached a value
around 1.0. Interestingly, one observes for the k = 28 system even
at the longest times a sub-diffusive behavior, with an exponent that
is around 0.8, and even for values of the MSD that are on the order
of 10. This behavior can be noticed better by calculating the slope of
the MSD in the log–log presentation (see Fig. 8). For k = 0, panel (a),

FIG. 7. Time dependence of the mean squared displacement for the k = 0 and
k = 28 systems in the high and low temperature regimes. The curves are for sim-
ilar values of the relaxation time. The k = 28 system shows a weak sub-diffusive
behavior at high and low temperatures.
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FIG. 8. Double-logarithmic derivative of
the MSD of the A particles as a function
of time. (a) System for k = 0. If tempera-
ture is decreased, the derivative shows
at low T a local minimum, indicating
the presence of caging. (b) System for
k = 12. Qualitatively, the same time
dependence as in panel (a) but now at
higher temperatures. (c) System for k
= 28. One sees that the curves show
at intermediate times a plateau that is
due to the caging caused by the pseudo-
neighbors. The arrows pointing upward
[downward] in panels (a)–(c) indicate τ2
[τ4], the location of the peak in the
non-Gaussian parameter α2(t) [in the
dynamic susceptibility χ4(t)]. (d) MSD of
the A particles for different waiting times
tw (see the legend). No waiting time
dependence is noticeable.

we see that at short times, the slope is 2.0, as expected for a ballistic
motion. At high temperatures, the slope crosses over to 1.0 at around
t = 3, i.e., the system becomes diffusive. If T is lowered, the slope
starts to show a dip with a depth and width that increase rapidly
with the decrease in temperature. For long times, we see, however,
that the curves again attain the value of 1.0, i.e., the system is diffu-
sive. Qualitatively, the same behavior is found for k = 4 (not shown)
and k = 12 [panel (b)]. However, a closer inspection of the curve for
T = 2.0 reveals that after the first dip in the slope, the curve does
not rise immediately to the value 1.0 but shows instead a plateau at a
height of around 0.9 in the time window, 5 ≤ t ≤ 200. The asymptotic
value 1.0 is thus reached only at longer times, i.e., the MSD shows a
sub-diffusive regime. Qualitatively, the same behavior is found for
k = 28 [panel (c)], but now, the mentioned plateau at intermediate
times becomes more visible since its height has decreased to 0.8, i.e.,
the deviation from the diffusive regime becomes more pronounced.
We now clearly see that if the temperature is lowered, the curves
reach this second plateau at a later time, but its height is unchanged
(see the curves for T = 1.0 and 0.82). Note that this plateau at long
times is indeed a distinct dynamic regime and not just a brief tran-
sient during which the system approaches the diffusive limit. We
also exclude the possibility that this new plateau is just an out-of-
equilibrium phenomenon since [see panel (d)] the MSD for different
waiting times shows no waiting time dependence. We interpret this
new regime as a consequence of the interaction of the tagged parti-
cle with its pseudo-neighbors. These interactions will vanish only if
all the involved pairs have moved by a radial distance of around rc,
and, because of geometrical reasons (the volume of the spherical cap
increases with Lij) and the fact that Lij > rc, this takes certainly more
time than cutting just the interactions between the tagged particle
and its nearest neighbors, which explains the long time tail in the
MSD. Note, however, that for sufficiently long times, the MSD can

be expected to become diffusive for all values of k [see the curve for
T = 2.0 in panel (c)]. This behavior is thus similar to that observed
earlier in systems where there are two length scales.34 In order to
distinguish in the following the two mentioned processes, we will
refer to the one corresponding to the particles leaving their near-
est neighbor (NN) cage as the “NN-α process,” while the dynamics
in which the pseudo-neighbors (PN) leave the interaction range of
the tagged particle will be referred to as the “PN-α process.” Note
that although Fig. 8 clearly indicates that there are two processes,
we will see in the following that not all observables reveal this in
a direct manner. For example, the time dependence of Q(t), pre-
sented in Fig. 6, does not indicate an obvious presence of two dif-
ferent α-processes, although the pseudo-neighbors can be expected
to affect not only the relaxation time but also the details of the
correlator.

Since the onset temperature is an important point on the energy
scale of the system, we now have a closer look at the k-dependence
of Tonset. As mentioned above, this temperature can be identified
from the first occurrence of a plateau in the MSD. Alternatively,
one can study the inherent structure energy, EIS, which shows at
Tonset a marked change in its T-dependence.35,36 (We recall that EIS
of a configuration is the potential energy evaluated at the local min-
imum of the energy reached from the configuration via the steep-
est descent procedure.) In Fig. 9(a), we show EIS as a function of
T, with the different curves corresponding to different values of
k. From the graph, one recognizes that with the increase in k, the
energy decreases, an effect that is due to the presence of the pseudo-
neighbors, which can lower the energy by occupying the well in the
interaction potential. Less trivial is the fact that the temperature at
which the curve starts to decrease rapidly, i.e., the onset tempera-
ture, increases with the increase in k. Thus, the increase in Tonset
with k can be seen directly from this static observable. In order
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FIG. 9. (a) Inherent structure energy, EIS, as a function of temperature for the
k = 0, 4, 12, and 28 systems. (b) Shifted [by EIS(T = 4.0)] inherent structure energy
vs T. Near Tonset, the energy starts to deviate from its high temperature value,
allowing us to determine Tonset. With the increase in k, Tonset moves to higher
temperatures.

to see better the k-dependence of Tonset, we plot in Fig. 9(b) the
inherent structure energy shifted by EIS(T = 4.0). (The choice of
T = 4.0 for this normalization is not crucial.) The resulting graph
clearly shows that the bend in the inherent structure energy occurs
at higher temperatures with growing k, demonstrating the increase
in the onset temperature. Fitting two straight lines to the data for
T > Tonset and T < Tonset, their intersection point can be used to
determine Tonset. As we will show elsewhere,37 only for the k = 0
system, the so obtained values are compatible with the values of
onset temperature, as determined from the entropy.33 In Table I,
we list the values of Tonset obtained from these curves, and one sees
that for k = 28, this temperature is about 90% higher than Tonset
for k = 0.

A further important quantity to characterize the relaxation
dynamics of a glass-former is the α-relaxation time τ. Here, we define
this time scale via Q(τ) = 1/e. This definition is reasonable since we
have seen in Fig. 6 that the shape of the time correlation functions
is basically independent of k. (Note that with this definition of τ, we

do not distinguish between the NN-α process and the PN-α process
discussed in the context of Fig. 6. For the values of k considered here,
this is justified since the final decay of Q(t) involves both processes.)
Figure 10(a) is an Arrhenius plot of τ for the different systems. One
clearly sees that with the increase in k, the dynamics quickly slows
down and that the bending of the curve seems to increase, i.e., the
system becomes more fragile. To quantify this trend as a function of
k, we have fitted τ(T, k) at intermediate and low temperatures to a
Vogel–Fulcher–Tammann (VFT) law,

τ(T) = τ0 exp[ 1
K(T/T0 − 1)]. (22)

Here, T0 is the so-called VFT temperature at which the relax-
ation time of the system is predicted to diverge. The parameter K
describes the curvature of the data in an Arrhenius plot and hence
can be considered as a measure for the fragility of the glass former.
The figure demonstrates that this functional form gives a good fit to
the data (solid lines) and hence allows us to estimate T0 and K.

The values of T0 are included in Table I as well and one sees
that T0 changes by about a factor of 2 if k is increased from 0
to 28, i.e., a factor that is comparable to the one found for Tonset.
In contrast to this, we find that the parameter K occurring in the
Vogel–Fulcher–Tammann law [Eq. (22)] increases by about 30% in
the considered k-range (see Table I). This indicates that the intro-
duction of the pseudo-neighbors renders the system increasingly
more fragile. Another way to see this is to define an effective glass
transition temperature Tg via τ(Tg) = 103 and to plot the relaxation
time as a function of Tg/T.1,38 This is done in Fig. 10(b), and one
sees that the curves for large k are indeed more bent than the ones
for small k, i.e., the fragility of the system increases with k. This trend
is thus qualitatively similar to the observation of Ref. 29 in which it
was found that increasing the dimensionality of a glass former gives
rise to a higher fragility.

Since the MSD has shown that the system has two kinds of
α-processes, it is useful to study how the corresponding relaxation
times relate to each other. For the k > 0 systems, particles are caged
by their nearest neighbors as well as by their pseudo-neighbors.
When a particle leaves its NN cage, the overlap function decays and
this timescale is captured by τ. We now define a relaxation time τD

TABLE I. The value of the characteristic temperatures and the kinetic fragility parameter for systems with different val-
ues of k. Tonset is the onset temperature at which the inherent structure energy starts to deviate significantly from its high
temperature value. Tc is the MCT transition temperature. T0 is the singular temperature of the Vogel–Fulcher–Tammann
equation [Eq. (22)]. All characteristic temperatures increase with the increase in k. Also included are the normalized differ-
ences between various temperatures. K is the kinetic fragility defined in Eq. (22). x(k) is the prefactor needed for the scaling
plot shown in Fig. 11(b).

k Tonset Tc T0
Tonset−Tc

Tc

Tonset−Tc
Tonset

Tonset−T0
T0

Tc−T0
T0

K x(k)

0 0.74 ± 0.04 0.43 0.283 0.72 0.42 1.61 0.52 0.184 1.0
4 0.83 ± 0.08 0.51 0.362 0.63 0.38 1.29 0.41 0.237 1.55
12 1.03 ± 0.07 0.62 0.465 0.66 0.40 1.22 0.33 0.286 2.0
28 1.28 ± 0.22 0.80 0.610 0.60 0.38 1.10 0.31 0.297 2.1
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FIG. 10. (a) Arrhenius plot of the α-relaxation time, τ, and the relaxation time
obtained from the MSD, τD, for systems with different values of k. Open and
full symbols are for τ and τD, respectively. The lines are fits to τ with the
Vogel–Fulcher–Tammann expression [Eq. (22)]. (b) Same data as in (a) but now
as a function of the scaled temperature Tg/T, with τ(Tg) = 103. (c) Temperature
dependence of the ratio τD/τ for different values of k. The arrows indicate Tonset.

for the PN process as the time scale at which the system becomes
diffusive, i.e., the time where the logarithmic derivative of the MSD
goes to 1.39 In practice, we consider t = τD for which d log(MSD)

d log(t) = 0.97.
In Fig. 10(a), we have included the T-dependence of τD for the

k = 0 and the k = 28 systems and one recognizes that τD is signif-
icantly larger than τ but that its T-dependence is weaker. To see
the latter in a clearer way, we show in panel (c) the T-dependence
of the ratio τD/τ for all values of k considered. We recognize that
the ratio starts to decrease quickly for temperatures that are below
Tonset, i.e., once the systems start to show glassy dynamics. Since this
decrease is very pronounced for k > 0, we conclude that the slowing
down of the overall dynamics of the system is mainly governed by
the NN-α process (which is strongly influenced by the presence of
the pseudo-neighbors).

These results show that the pseudo-neighbors strongly influ-
ence the relaxation dynamics of a tagged particle in that the leaving
of the cage formed by the nearest neighbors is strongly slowed down,
as indicated by τ(T). In addition, the pseudo-neighbors also induce
a new slow process, the PN-α process, which is related to the motion
of the pseudo-neighbors with respect to the tagged particle. How-
ever, this slow process does not depend very strongly on T, since
there is no structural correlation between the pseudo-neighbors of
a given tagged particle (this is in contrast to the nearest neighbors
that are correlated because of the local steric hindrance). As a conse-
quence, this slow PN-α process is not the mechanism responsible for
the slowing down of the overall dynamics of the system. The relevant
mechanism for this is thus given by the NN-α process.

D. MCT power law

Having presented our findings regarding the relaxation dynam-
ics of the system, we now probe whether this dynamics can be
described by means of mode coupling theory. MCT predicts that
close to the critical temperature Tc of the theory, the relaxation times
show a power law divergence,

τ(T) = τMCT(T − Tc)−γ. (23)

Using this functional form to fit the temperature dependence of
the relaxation time, we obtain Tc(k) (values are given in Table I). In
Fig. 11(a), we present a log–log plot of the relaxation time as a func-
tion of the normalized temperature (T − Tc)/Tc. One recognizes that
for k = 0, the increase in τ with the decrease in T is described well
by a power law (dashed line), in agreement with previous simula-
tions.9,40 However, at the lowest T’s, deviations are observed, and
the increase in τ is weaker than the power law predicted by MCT.
This deviation is usually attributed to the existence of “hopping pro-
cesses,” i.e., a component in the relaxation dynamics that is not taken
into account in the idealized version of the MCT. The two arrows in
the plot delimit the T-range in which the power law gives a good
description to the data.

For the system with k = 28, the temperature dependence of τ is
qualitatively very similar to the one for the k = 0 system, if one plots
the data as a function of the reduced temperature (T − Tc)/Tc. The
highest temperature at which the data follows the power law (dashed
line), marked by an arrow, is around 2 Tc and very close to the cor-
responding reduced temperature for the k = 0 system. However, the
lower (reduced) temperature at which τ starts to deviate from this
power law (see the arrow) is smaller for the k = 28 system than the
corresponding T for the k = 0 system, showing that for the former
system, the mentioned hopping processes are less important, i.e., the
system is more mean-field-like. For the k = 28 system, this lower
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FIG. 11. (a) The relaxation time obtained from the overlap function as a function
of the scaled temperature (T − Tc)/Tc for the k = 0 and the k = 28 systems. (b)
Same data as in (a) but now with τ multiplied with a scaling factor x(k). (c) Same
data as in (b) as a function of Tc(k)/T.

limit is about a factor of 3 smaller than the limit for k = 0; thus, the
T-range in which the idealized MCT can be expected to be reli-
able has increased significantly by the introduction of the pseudo-
neighbors. In Table I, we have also included the value of Tc and one

recognizes that the critical temperature for k = 28 is about 90%
higher than the one for k = 0, i.e., the k-dependence of Tc is very
similar to the one of Tonset.

According to the analytical calculations for the mean-field p-
spin model, for which there is no activated dynamics, the onset
temperature coincides with the MCT temperature, which is also the
temperature at which the dynamics diverges.41–43 (Note that this is
only true in the thermodynamic limit, while for finite systems, one
has very strong finite-size effects that completely wash out these
transitions, see Ref. 44.) For the GCM it was found that the relative
distance between the three temperatures Tonset, Tc, and T0 is much
smaller than the one we find here for the k = 0 system.26,28 Thus,
the reduction of this relative distance with the increase in k, given in
Table I, can also be taken as a signature of increasing mean-field-like
behavior.

From Fig. 11(a), we recognize that the relaxation times for the
k = 28 system are shorter than the ones for the k = 0 system if
compared at the same reduced temperature. In fact, as plotted in
Fig. 11(b) on an intermediate time scale, the two datasets can be
superimposed with high accuracy by applying a multiplicative fac-
tor x(k) (see Table I for values). Thus, we conclude that the main
difference in the two datasets is the prefactor τMCT in Eq. (23). A
decrease in τMCT implies a faster motion inside the cage, and this
is, in fact, very reasonable since with the increase in k, the tagged
particle interacts with more particles, thus making its effective cage
stiffer. Another way to present this result is to plot the time scale
τ ⋅ x(k) as a function of Tc/T [see Fig. 11(c)]. We find that this rep-
resentation of the data gives rise to a collapse of the curves for the
different values of k, demonstrating that the T-dependence is indeed
very similar at intermediate temperatures. Hence, we conclude that
the introduction of the pseudo-neighbors does not only increase the
α-relaxation time strongly but also increase somewhat the attempt
frequency with which the particle tries to leave the cage.

E. Wave-vector dependence of relaxation process

The relaxation time of glass-forming systems depends on the
observable considered. Within MCT, this dependence is, however,
encoded in a prefactor, τMCT, in Eq. (23), while Tc and the expo-
nent γ are expected to be independent of the observable. While for
many glass-forming systems, this is indeed the case (see Ref. 10),
the present system has at least two relevant length scales, the near-
est neighbor distance and the mean distance between the particles
and their pseudo-neighbors, and hence it is of interest whether the
mention factorization works here as well. To probe this, we con-
sider the self-intermediate scattering function Fs(q, t), where q is the
wave-vector,31

Fs(q, t) = 1
N

N∑
j=1
⟨exp[−iq ⋅ (rj(t) − rj(0))]⟩. (24)

We define the relaxation time τ(q) via Fs(q, τ(q)) = 1/e and
thus can study its dependence on the length scale. In Fig. 12, we
show the q-dependence of τ(q) for three values of k. Since one
expects that at small wave-vectors τ(q) is proportional to q−2, i.e.,
the hydrodynamic behavior, we plot directly q2τ(q). Panel (a) is for
a fixed reduced temperature slightly below the onset temperature,
while panel (b) corresponds to a significantly supercooled state. In
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FIG. 12. q2τ(q) ⋅ x(k) as a function of the wave-vector q. Panels (a) and (b) are for
two different reduced temperatures. The values of x(k) are given in Table I.

the context of Fig. 11(b), we have seen that, at a fixed reduced
temperature, the relaxation time τ, obtained from the decay of the
overlap function, shows a weak dependence on k, leading to the
introduction of the factor x(k). In order to take into account this k-
dependence, we have multiplied also in Fig. 12 the relaxation times
τ(q) with the same factor x(k). The graphs shows that for q ≈ 6.5, i.e.,
close to the peak of the static structure factor, the relaxation times
for the different systems coincide perfectly, which demonstrates that
for this wave-vector, the overlap and Fs(q, t) probe the same type
of dynamics. For the other wave-vectors considered, the τ(q) curves
for the different systems show a q-dependence that depends on k,
but this dependence is relatively weak. Hence, we conclude that
the presence of the pseudo-neighbors does not introduce a new
length scale that influences the relaxation dynamics in a significant
manner.

F. Dynamic heterogeneity

One of the hallmarks of glassy dynamics is that time correlation
functions are stretched in time. The reason for this non-Debye relax-
ation has been a long-standing puzzle with the contrasting views
that each small domain of the sample shows the same stretched

time dependence or, alternatively, that the stretching is related to
dynamical heterogeneities (DHs).45 Experiments and simulations
have shown that the homogeneous scenario is not compatible with
the observations, i.e., glass-forming systems do have a significant
amount of dynamical heterogeneities (DH).46–50 In this final sec-
tion, we therefore discuss the k-dependence of these DHs and probe
whether with the increase in k, one does indeed find a decrease in
these fluctuations, the behavior expected for a mean-field system.

One first step to probe the DH is to look at the so-called non-
Gaussian parameter (NGP) α2(t), which is defined by

α2(t) = 3 ⟨r4(t)⟩
5 ⟨r2(t)⟩2 − 1, (25)

where r(t) is the displacement of a tagged particle within a time t.
Thus, α2(t) measures whether or not the distribution of the particle
displacement is Gaussian.9,46,51,52

In Fig. 13(a), we plot the NGP for the k = 28 system. Inter-
estingly, one finds that at high temperatures, α2(t) has two peaks:

FIG. 13. (a) The time dependence of the non-Gaussian parameter, α2, at different
temperatures for the k = 28 system. α2(t) shows a double peak structure. (b) α2(t)
at fixed reduced temperature and different values of k. The peak at short times is
independent of k, while the one at long times grows with the increase in k.
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A first one at t around 0.6 and a second one at t ≈ 150. The first
time is close to the timescale at which the MSD crosses over from
the ballistic regime to the diffusive one and thus corresponds to the
start of the NN-α process, in agreement with earlier studies.9 The
second peak has so far not been seen in the glass-forming systems
considered before and is likely due to the breaking of the bonds with
the pseudo-neighbors, i.e., the PN-α relaxation. Note that the pres-
ence of this second peak is coherent with our findings for the MSD
[see Fig. 8(c)], for which we observed a plateau in the slope that, for
T = 2.0, ended at around t = 102 and we had argued that this is due
to the motion of the pseudo-neighbors. If T is lowered, the first peak
in α2(t) rises quickly and dominates the second peak, i.e., overall,
the time dependence of the NGP becomes again quite similar to the
one that has been observed in the previous studies of glass-forming
systems. The main difference is that in our case, the second peak will
make the decay of α2(t) slow since at long times, the dynamics will be
influenced by the pseudo-neighbors, which decorrelate only slowly
(see the data for the MSD in Fig. 8).

The influence of the pseudo-neighbors on α2(t) is shown in
Fig. 13(b) where we plot this function for different values of k but
keep (T − Tc)/Tc constant. One sees that at short and intermediate
times, i.e., around the peak, the curves are independent of k, which
shows that the NN-α process is not affected by the presence of the
pseudo-neighbors. Only at longer times, the curves for large k are
higher than the ones for small k, showing that the pseudo-neighbors
affect the NGP only at time scales that are beyond the time scale of
the first maximum in the NGP. Since with the decrease in tempera-
ture, the peak corresponding to the NN-α relaxation grows quicker
than the second peak, we can conclude that the dominant feature in
α2(t) is due to the NN-α process, except if k becomes much larger
than the values we consider here.

In Fig. 14, we show αp2, the height of the peak in α2(t), as a func-
tion of the reduced temperature (T − Tc)/Tc. Surprisingly, we find
that this quantity is completely independent of k, i.e., the strength
of the non-Gaussianity of the relaxation dynamics does not depend
on whether or not the system is mean-field-like. In other words, the

FIG. 14. The peak height of α2(t) as a function of the reduced temperature
(T − Tc)/Tc for different values of k.

statistics of the displacement of a tagged particle is independent of
the number of pseudo-neighbors, if measured at the same reduced
temperature. This result reflects the fact that the first peak in α2(t) is
dominated by the dynamics in which the tagged particle leaves the
cage formed by its nearest neighbors.

Note that αp2 shows a bend at around (T − Tc)/Tc ≈ 0.1.
Although we did not investigate the origin of this change in the
T-dependence, we expect it to be the signature of the onset of the
hopping processes mentioned above. The bend indicates that these
processes start to become prominent at around 10% above Tc, a
value that seems to be coherent with the observation from Fig. 11
regarding the T-dependence of the relaxation times.

One might wonder whether the master curve in Fig. 14 is just
due to the choice of the scaling factor of the temperatures, i.e., Tc. To
test this possibility, we show in Fig. 15 the same data as a function of
the relaxation time τ multiplied by the same factor x(k) that was used
to obtain a master curve in Fig. 11(b). We recognize that this repre-
sentation leads to a very nice collapse of the data onto a master curve,
which, for intermediate and long relaxation times, can be described
well with a power law with an exponent close to 0.36 (see solid line
in the figure). It is remarkable that the hopping processes discussed
above, which lead to the bends in the different curves if the temper-
ature approaches Tc, do not seem to affect the validity of the power
law. At present, it is not clear up to which value of τ this power law
will hold, in particular, whether it will be observed at temperatures
below Tc. Future studies on this point will certainly be of inter-
est to understand better the relaxation dynamics of glass-forming
liquids.

In Fig. 16, we plot τ2, the time at which α2(t) peaks, as a function
of the α-relaxation time τ. Surprisingly, we find that the two quanti-
ties show a simple relation with each other in the form of a power law
with an exponent κ = 0.70 (solid line). This result can be rationalized
within the framework of MCT as follows: α2(t) is related to the shape
of the self-part of the van Hove function in that it measures its devi-
ation from a Gaussian.9,51 At the end of the caging regime, i.e., the
β-relaxation, some of the particles will have already left their cage,

FIG. 15. The peak height of α2 as a function of the α-relaxation time τ multiplied
by x(k) for different values of k. Also included is a fit to the data with a power
law.
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FIG. 16. The time scale τ2 at which α2(t) peaks as a function of the α-relaxation
time τ. The solid line is a power law with an exponent κ = 0.70.

thus giving rise to a tail to the right of the main peak of the van Hove
function. It is this tail that is responsible for the non-Gaussian shape
of the van Hove function and hence leads to an increase in α2(t).
Thus, it is reasonable to assume that τ2 is directly related to the time
scale of the β-relaxation τβ. MCT predicts that the latter time scale
increases like

τβ ∝ (T − Tc)−1/(2a). (26)

The α-relaxation time τ is instead predicted by MCT to increase
like

τ ∝ (T − Tc)−1/(2a)−1/(2b) = (T − Tc)−γ. (27)

In Eqs. (26) and (27), the parameters a and b can, in principle,
be calculated from the T-dependence of the static structure factor
or, exploiting Eq. (27), determined from the T-dependence of the
relaxation time.1,2,53 For the k = 0 system, it has been found that a is
around 0.324 and b is around 0.627.9,53–55 Combining these last two
equations gives, under the assumption that τ2 ∝ τβ,

τ2 ∝ τb/(a+b). (28)

Thus, we find a power law dependence with an exponent of 0.66
(using the mentioned values of a and b), which is indeed very close
to our exponent κ from the fit (0.7). We mention here that the
observed power law extends over the whole accessible range of τ, i.e.,
it also includes the temperature regime in which we expect hopping
processes to be present. To the best of our knowledge, this simple
connection between τ2 and τ has not been reported before. Since,
however, we find it to hold for all values of k, we expect it to be
valid for other glass-forming systems as well, and hence, it will be
of interest to check this in the future.

To get Eq. (28), we have made the assumption that τ2 is pro-
portional to τβ. As argued above, this hypothesis is reasonable since

it can be expected that the non-Gaussian parameter peaks at a time
at which a substantial number of particles start to leave their cage
and MCT defines τβ as the time at which the correlator starts to
drop below the plateau at intermediate times.3 Previous studies have
therefore made the assumption that τβ can be determined from
the minimum in the slope of the MSD.56 However, we argue that
such an identification might be misleading: For the case of a system
with Newtonian dynamics, the phonons that govern the short-time
dynamics mask the critical decay of the time correlation functions,
thus also masking the correlation between the above-mentioned
minimum and τβ. (This effect is, however, absent if the system has
a Brownian dynamics.54) Therefore, we think it is more appropri-
ate to determine τβ from a quantity that is not directly influenced
by these vibrational modes, such as the α2(t) considered here. In
Figs. 8(a)–8(c), we have also included for the various curves the
times τ2, arrows pointing upward, and one sees that they do not
correspond to the location of the minimum in the curves but that
they are located at somewhat larger times, as expected because of
the mentioned effect of the phonons. Although at present, we do not
have any solid proof why τ2 does indeed correspond to τβ, our find-
ing that the relation between τ2 and τ given by Eq. (28) is obeyed by
our data does speak in favor of this identification. More tests on this
using a system with Brownian dynamics would certainly be useful to
clarify this point further.

Finally, we show in Fig. 17 the time at which α2(t) peaks, τ2,
as a function of (T − Tc)/Tc. Since we have argued in the context of
Fig. 11 that the k-dependence of τ will include a factor x(k) that is
related to the short time dynamics and we also showed that τ2 ∝ τκ
(Fig. 16), we plot directly τ2 ⋅ x(k)κ, with the values of x(k) obtained
from Fig. 11 and κ from Fig. 16. We recognize that the data for the
different values of k fall nicely on a master curve, which follows a
power law with an exponent around −1.54. Also this result can be
understood within the framework of MCT since Eq. (26) predicts
that the slope should be given by −1/(2a), which for a = 0.324 results
in an exponent of −1.54, in excellent agreement with the data from
the fit in Fig. 17.

FIG. 17. τ2x(k)κ as a function of the reduced temperature (T − Tc)/Tc . The solid
line is a power law with an exponent of −1.54.
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Next, we discuss the other parameter that is often related to the
dynamic heterogeneity, the dynamic susceptibility. The fluctuations
of the overlap function Q(t) are related to a dynamic susceptibility,
which indicates whether or not the system relaxes in a coopera-
tive manner, i.e., shows dynamical heterogeneities.32,57,58 Thus, one
defines

χ4(t) = 1
N
[⟨Q2(t)⟩ − ⟨Q(t)⟩2] (29)

as a measure to quantify this cooperativity. In Fig. 18(a), we show
the time dependence of χ4 for the system with k = 28 at differ-
ent temperatures. In agreement with earlier studies,29 we find that
χ4 shows a marked peak, the height of which increases with the
decrease in temperature and also its position shifts to larger times
upon decreasing T, i.e., the cooperativity becomes more pronounced
and occurs at later times. In panel (b) of the figure, we present χ4
for different values of k while keeping the normalized temperature
(T − Tc)/Tc constant. The graph demonstrates that with the increase
in k, the height of the peak decreases quickly, indicating that

FIG. 18. (a) The time dependence of the dynamical susceptibility χ4(t) for different
temperatures for the k = 28 system. χ4(t) increases with the decrease in temper-
ature. (b) Time dependence of χ4 at a fixed reduced temperature (T − Tc)/Tc for
different values of k.

the system does indeed become more mean-field-like, as expected,
and in agreement with previous simulations of mean-field-like
models.23,29 This k-dependence is thus very different from the one
seen for the height of the peak in α2, highlighting the difference
between the two quantities, despite their (apparently) similar time
dependence. We also note that with the increase in k, the location
of the peak in χ4(t) shifts to shorter times, in qualitative agreement
with the fact that, at fixed reduced temperature, the α-relaxation time
decreases somewhat [see Fig. 11(a)].

To probe in more detail how the height of the peak in χ4(t), χp4 ,
depends on T and k, we show in Fig. 19 this height as a function of
the reduced temperature. We see immediately that this representa-
tion of the data does not give rise to a master curve. With the increase
in k, the curves move downwards, a k-dependence that is in con-
trast to the one we found for αp2 shown in Fig. 14. Thus, we conclude
that with the increase in k, the dynamical heterogeneities decrease,
i.e., the system becomes more mean-field-like. However, we point
out that even in the mean-field limit, these heterogeneities cannot be
expected to vanish completely,23,59 which shows that this aspect of
the dynamics is a delicate feature that is highly non-trivial.

From the figure, one can conclude that for reduced temper-
atures higher than around 0.1, the height of the peak shows a
power law dependence on the reduced temperature and we find an
exponent of −1.2 that is independent of k, which implies that the
dependence of χp4 on the number of pseudo-neighbors is encoded in
the prefactor of the power law.

The presence of power laws in χp4 can be rationalized by means
of MCT. This theory predicts that the dynamical susceptibility in the
NVT ensemble is given by

χNVT
4 (t) = χNVE

4 (t) +
T2

cV
(dQ(t)

dT
)2

, (30)

where cV is the specific heat at constant volume.32,57,58 Evaluating
this expression at t = τ, thus giving the height of the peak, χp4 ,

FIG. 19. Height of the peak in χ4(t) as a function of the reduced temperature for
different values of k. The dashed lines are power laws with an exponent of −1.2
and the solid line is a power law with an exponent of −2.
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one finds that the first term on the right-hand side of the equation
increases like (T − Tc)−1, while the second one is found to be pro-
portional to (T − Tc)−2. Hence, the power law with an exponent
of −1.2 we found at intermediate and higher temperatures can be
interpreted to be due to the power law from the first term, i.e., with
an exponent −1.0, which is somewhat augmented by the presence
of the second term, thus giving rise to a power law with an effective
exponent smaller than −1. Thus, if the mentioned hopping processes
would be absent, one would expect that at sufficiently low temper-
atures, the power law crosses over to one with an exponent −2.
Whether this is indeed the case will have to be tested for systems in
which one is able to suppress these hopping processes, a work that is
left for the future.

Since the representation of the data in Fig. 19 depends on the
choice of Tc, it is also useful to look at the k-dependence of χp4 in a
more direct manner. This is done in Fig. 20 where we plot this quan-
tity as a function of the α-relaxation time τ. [Also here, we use τ ⋅ x(t)
as abscissa in order to take into account the trivial k dependence of
the relaxation time.] We see that the shape of the curves for the dif-
ferent k is basically independent of k, but that the absolute value of
χp4 at fixed τ ⋅ x(k) decreases with the increase in k. (The same conclu-
sion is reached if one uses just τ as the abscissa.) Hence, we confirm
the conclusion from Fig. 18(b) that the heterogeneity of the system
decreases with the increase in k. For small and intermediate values of
τ, the data fall approximately on a straight line, and a power law fit
gives an exponent of 0.51 (solid line). Expressing the T-dependence
on the right hand side of Eq. (30) as a function of τ = (T−Tc)−γ [see
Eq. (23)], we obtain for the height of the peak

χp4 = Aτ1/γ + Bτ2/γ, (31)

where A and B are expressions that have only a weak T-dependence.
Using our value γ = 2.4 gives for the exponent of the first and sec-
ond term 0.42 and 0.83, respectively. These values are thus upper

FIG. 20. The height of the peak in χ4 as a function of τ ⋅ x(k) for different values
of k. The solid line is a power law fit to the data for k = 4. The two dashed lines
are power laws with exponents that correspond to the theoretical upper and lower
bounds from Eq. (31).

and lower bounds (included in Fig. 20 as well) and the exponent we
extract from our data, 0.51, is thus not too far from the lower limit.
Hence, although our data do not allow us to make strong statements
about the validity of Eq. (31) because of the lack of sufficiently large
window in the dynamics, we can at least say that our findings are
compatible with the theoretical prediction, in agreement with the
results from Ref. 32.

Finally, we note that for large τ, we find clear deviations of
our data from the predicted power law in that the growth of χp4 is
weaker than predicted. Hence, in this regime, we can again invoke
the argument that hopping processes decrease the cooperativity of
the relaxation dynamics.

Figure 18(a) shows that the location of the peak in χ4(t), τ4,
quickly moves to larger times if the temperature is lowered. To deter-
mine the connection between the α-relaxation time τ and the time
scale τ4, we plot in Fig. 21 τ4 as a function of τ. Also included in
the graph is the line τ4 = τ (solid line), and one recognizes that
all the data points fall on this line with high accuracy. Hence, we
can conclude that the time scale at which the system shows maxi-
mum cooperativity is on the time scale of the α-process, which is
in agreement with earlier results.52 Also note that this conclusion is
independent of k, i.e., the strength of the mean-field character does
not play a role for this result. This result demonstrates that the α-
relaxation process is tightly related to the presence of the dynamical
heterogeneities, and hence, it is useful to study the latter in order
to understand the slowdown of the relaxation dynamics. Finally, we
mention that the direct proportionality of τ4 to τ and the power law
connection between τ2 and τ (see Fig. 16) implies that we have the
simple connection τ2 ∝ τκ4 , with an exponent κ given by b/(a + b)
[see Eq. (28)]. That this relation works indeed well is shown in the
inset of Fig. 21. Since the exponent κ is less than unity, we see that
τ2 is smaller than τ4, as expected.60 This can also be concluded from
Fig. 8 where we have added in panels (a)–(c) the values of τ4 (down-
ward arrows) in that one recognizes that at low T, these are indeed
to the right of the arrows presenting τ2. These graphs also show

FIG. 21. The location of the peak in χ4(t) as a function of the α-relaxation time τ.
The symbols are for different values of k and different T, and the solid line is a
power law with exponent 1.0. Inset: τ2 as a function of τ4 showing a power law
connection between the two quantities. The straight line has a slope of 0.70.
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that, interestingly, the (logarithmic) slope of the MSD at t = τ4 is
independent of T but weakly dependent on k.

IV. SUMMARY AND CONCLUSION

We have introduced a simple glass-forming system that allows
us to tune in a smooth manner its mean-field character. This
is achieved by introducing additional k “pseudo-neighbors” with
which a particle can interact. These additional interactions are long-
ranged, and hence with the increase in k, each particle becomes
increasingly connected with the rest of the system. However, since
we also keep the original interaction between nearest-neighbor par-
ticles, our model has the advantage of maintaining a liquid-like
structure even in the mean-field limit, i.e., the nearest neighbor
distances are always of the order of the particle diameter, which
is in contrast to other models that allow tuning their mean-field
character.23

We find that the structure of the system, as characterized by
the radial distribution function or the static structure factor, remains
unchanged with the addition of the K pseudo-neighbors, also in con-
trast to previous models. Due to the way the model is set up, it is
possible to analytically calculate all the static structural properties of
the system from the knowledge of the k = 0 system. This allows us
to understand that the additional interactions give rise to an effec-
tive potential that increases with k, thus influencing the relevant
temperature scale of the system.

Due to the presence of the pseudo-neighbors, the relaxation
dynamics shows a very strong dependence on k in that the onset
temperature and the critical temperature of mode-coupling theory
increase with the increase in k. However, once the relaxation times
are expressed in terms of the critical temperature of MCT, one finds
only a mild k-dependence, indicating that for this class of systems,
Tc is the most relevant parameter for the dynamics, at least in the
T-range investigated here. We note that the range in temperature
in which MCT seems to give a good description of the relaxation
dynamics increases systematically with the increase in k, thus indi-
cating that in the mean-field limit, the theory becomes exact. This
is also confirmed by the observation that the dynamical hetero-
geneities, characterized by the dynamic susceptibility χ4(t), decrease
with the increase in k.

It is often believed that the fragility of the glass former is
directly related to the presence of dynamical heterogeneities (or
more precisely to the value of the stretching parameter β in
the Kohlrausch–Williams–Watts function used to fit the time-
correlation functions).61–63 Since we find that the fragility of the sys-
tem increases with k, while the dynamic heterogeneity decreases, we
conclude that there is no such (strict) connection between these two
quantities, although we do not want to exclude the possibility that in
practice, there might be a certain correlation. This result is in qual-
itative agreement with the findings in earlier studies.29,64 Sengupta
et al. have reported that compared to a three-dimensional system,
the corresponding four-dimensional system was less heterogeneous
but more fragile.29 This is also corroborated by the experimental data
analyzed by Dyre, which indicate that there is no direct connection
between fragility and heterogeneity.64

The possibility to tune the mean-field character of the sys-
tem without changing the structure also allows elucidating the rela-
tion between the non-Gaussian parameter α2(t) and χ4(t). While

previous studies have often considered both functions to be indica-
tors for the dynamical heterogeneities, our analysis shows that this
is not the case at all since their dependence on k is very different.
Therefore, our work clearly shows that these two observables con-
vey information that is very different, a conclusion that is in line
with previous results that showed that the peak in α2(t) has a tem-
perature dependence that differs from the one of χp4 .29 Furthermore,
we also recall that for the MK model,23 one finds that χp4 decreases
with the increase in mean-field character of the system, i.e., the
same behavior as we have found here, but that also the value of
αp2 decreases, while in our case, we find that αp2 is independent of
k. Also, in the case of the Gaussian core model, it was found that
its α2(t) peak is lower than the one for the Kob–Andersen model,
whereas the χ4 peak is much higher.25,26 The authors of these papers
justified these results by stating that α2 provides a measure of the
degree of dynamic heterogeneity and, thus, its peak value should be
lower for more mean-field-like models and χ4 provides a measure of
the size of the domains and systems that have larger domains and
should have higher value of χ4. Although this interpretation might
apply to the Gaussian core model, it is not in agreement with the
system studied here and hence not general. This suggests that fur-
ther studies are required to understand the exact information pro-
vided by χ4 and α2 and how these two quantities are related to each
other.

Finally, we also note that the decrease in χ4 with the increase
in k can be due to the fact that the fluctuations in the overlap func-
tion do indeed decrease, i.e., the relaxation dynamics of the system
becomes more homogeneous, as expected for a mean-field-like sys-
tem. However, since with the increase in k, the characteristic temper-
atures of the system also increase, the fluctuations should decrease.
Hence, for the moment, it is not clear which one of the two mecha-
nisms is the main cause for the decrease in χp4 that we observe in the
present work.

In an earlier study involving different glass-formers, evidence
was given that the locally preferred structures (LPSs) are connected
to the dynamics only for systems that are not mean-field-like.65 The
ability of the present model to continuously tune the mean-field
behavior makes it thus an ideal system to check the validity of this
observation. Since we find that with the increase in the number of
pseudo-neighbors, the LPS remains unchanged, whereas the dynam-
ics slows down, this suggests that with an increase in the mean field
nature, the correlation between the LPS and the dynamics decreases,
a result that corroborates the earlier findings from Ref. 65.

The range of k that we were able to access in the present simu-
lation is relatively modest, since for larger k, the relaxation dynam-
ics became too slow to equilibrate the system within a reasonable
amount of computer time. It is, however, of interest to make an edu-
cated guess on what will happen if k is increased further. Our analyt-
ical results for the structure, Fig. 5, show that with the increase in k,
the main peak in the effective radial distribution function becomes
very high. In this limit, one can thus expect that the contribution
from the pseudo-neighbors will start to dominate the one from
the real nearest neighbors and hence will make the system mean-
field-like. However, from the graph, we recognize that this increase
becomes strong only when k is larger than O(102), i.e., a value that is
at present somewhat beyond the reach of standard computer simula-
tions. It can be expected, however, that in the near future, improved
algorithms will allow us to deal with this bottleneck. In that case, our
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approach will thus allow us to make more stringent investigations
on how the properties of a normal three dimensional glass-former
can be connected to the corresponding system in the mean field
limit.

This summary clearly indicates that the details of how the
mean-field limit is approached are important and future studies
are needed to clarify this point. Finally, we note that the approach
we propose here on how the mean-field character is tuned can be
applied to any system. Hence, it will be interesting to study whether
other types of interaction potentials, such as the Coulomb poten-
tials used to describe oxide glass formers, will give qualitatively
the same behavior or, in other words, whether the approach to the
mean-field limit depends on the nature of the local structure of the
system.
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