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Abstract

We present a machine learning (ML) framework HEART (HydrogEn storAge

propeRty predicTor) for identifying suitable families of metal alloys for hydro-

gen storage under ambient conditions. Our framework includes two ML models

that predict the hydrogen storage capacity (HYST) and the enthalpy of hydride

formation (THOR) of multi-component metal alloys. We demonstrate that a

chemically diverse set of features effectively describes the hydrogen storage prop-

erties of the alloys. In HYST, we use absorption temperature as a feature which

improved H2wt% prediction significantly. For out-of-the-bag samples, HYST

predicted H2wt% with R2 score of 0.81 and mean absolute error (MAE) of 0.45

wt% whereas R2 score is 0.89 and MAE is 4.53 kJ/molH2 for THOR. These

models are further employed to predict H2wt% and ∆H for ∼ 6.4 million multi-

component metal alloys. We have identified 6480 compositions with superior

storage properties (H2wt% > 2.5 at room temperature and ∆H < 60 kJ/molH2).

We have also discussed in detail the interesting trends picked up by these models

like temperature dependent variation in H2wt% and alloying effect on H2wt%

and ∆H in different families of alloys. Importantly certain elements like Al,

Si, Sc, Cr, and Mn when mixed in small fractions with hydriding elements,

systematically reduce ∆H without compromising the storage capacity. Further

upon increasing the number of elements in the alloy i.e from binary to ternary
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to quaternary, the number of compositions with lower enthalpies also increases.

From the 6.4 million compositions, we have reported new alloy families having

potential for hydrogen storage at room temperature. Finally, we demonstrate

that HEART has the potential to scan vast chemical spaces by narrowing down

potential materials for hydrogen storage.
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1. Introduction

The globe has reached a point where switching to renewable or green energy

sources is one of the few viable options for a sustainable environment. Even

today, 80% of the world’s energy requirements are met by depleting fossil fuels.

Therefore, exploring new avenues for environment-friendly energy generation is5

at the forefront of the research focused on renewable fuel sources.[1, 2] In this

milieu of sustainability, hydrogen as an energy carrier is the linchpin in achieving

energy security due to its high energy density (142 MJ/Kg).[3, 4, 5] One of the

major roadblocks to the hydrogen economy is its economic storage.[6, 7] While

compressed and liquefied hydrogen is utilized widely in industries, operational10

conditions, such as elevated pressure and cryogenic temperature, often restrict

its wider usage. Storing hydrogen in a metal or alloys via chemical absorption

offers higher volumetric energy densities than compressed gas or liquid hydrogen

at ambient conditions.[8, 9]

The storage of hydrogen in metal/alloy is a multi-step process that involves15

the adsorption of molecular hydrogen, followed by dissociation, penetration,

and diffusion through metal lattices to form the hydride. Each step of the

process possesses a unique energy barrier that influences the hydrogen storage

properties.[10] Further, the energy barrier and the hydrogen storage capacity

are both dependent on the absorption temperature as well as pressure. A vari-20

ety of options ranging from metal organic frameworks, metal hydrides, complex
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hydrides, to high entropy alloys (HEA) are explored for solid-state hydrogen

storage.[11, 12, 13] As far as storage in metal alloys is concerned, ideally it

requires high hydrogen storage capacity, fast kinetics, and favorable thermody-

namics at ambient conditions to be economically viable.[14] Despite the promis-25

ing potential of metal hydrides for hydrogen storage, none of the existing alloys

have yet met the targets set by the U.S. Department of Energy for their practical

applicability, which indeed underlines the complexity of the problem.

The ability of an alloy to store and release hydrogen is influenced by its

composition. Numerous studies have demonstrated that these properties can30

be modified by altering the relative chemical composition, resulting in a wide

range of potential candidates.[15, 16, 17, 18, 19, 20] Therefore, a more com-

prehensive exploration of the chemical domain is necessary to identify suitable

alloys for solid-state hydrogen storage. Conventional screening of chemical space

typically entails the intuitive selection of a composition based on domain knowl-35

edge, followed by the synthesis and testing of its hydrogen holding capacity at

various temperatures and pressures via kinetic study. Generally to measure en-

thalpy of hydride formation, PCT analysis at different temperatures is carried

out.[21] However, these experimental methods are time-consuming and resource-

intensive, thereby limiting the number of compositions that can be examined40

for their suitability as solid-state hydrogen storage materials. In light of this,

the development of machine learning models for predicting the hydrogen stor-

age properties of alloys before conducting experiments is a highly promising

approach for reducing the chemical space for experimental exploration.

Machine learning is a powerful tool that has been extensively used in vari-45

ous scientific fields to solve complex problems.[22, 23] In the field of solid state

hydrogen storage, there are several ML models which have reported valuable

insights on factors affecting hydrogen storage properties of metal alloys. For

instance, Rahnama et al. developed an ML model that leverages experimen-

tal parameters such as the enthalpy of hydride formation, pressure, material50

class, and temperature to predict the hydrogen storage capacities of metal hy-

drides. They extended this work to perform a detailed study of the correlation
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between these parameters. As expected, their results showed a positive corre-

lation between hydrogen storage capacity, enthalpy of hydride formation, and

temperature. They also concluded that material class, temperature, and en-55

thalpy of hydride formation are most influential features for the prediction of

hydrogen storage capacity.[24, 25] However, such models use experimental pa-

rameters as features and thus cannot be deployed for future predictions. On

the other hand, Witman et al. trained gradient boosting regression (GBR)

to predict the equilibrium plateau pressure, enthalpy, and entropy of hydride60

formation using 145 features generated by the Magpie code. Their results re-

veal that metal hydride equilibrium plateau pressure significantly relies on a

volume-based descriptor. Further the model was updated by adding more data

and relevant volume and enthalpy-based features to improve its performance for

high-throughput screening of high-entropy alloys (HEAs). The updated model65

was used to predict the equilibrium plateau pressure and enthalpy of hydride

formation for 674 equimolar HEAs of refractory elements.[26, 27]. Similarly,

Hattrick-Simpers et. al. developed an ML model to estimate the enthalpy of

hydrogenation for metal hydrides. They have also used the magpie generated

145 features to train RepTree, Random Forest Regression, and Neural Network70

models and identified 6110 potential alloys as hydrogen compressors.[28] In sum-

mary, these studies demonstrated the use of ML-based models to gain insights

and predict thermodynamic properties of metal alloys using simple elementary

features. It is pertinent to note that the addition of more relevant features and

data set improves model’s accuracy. Succeeding this, Suwarno et. al. trained75

a model to investigate the effect of elements used for alloying on the heat of

formation, phase abundance, and H2wt% of the AB2 alloys. ML models like

Multivariate Regression, Decision Tree, and Random Forest are trained and

tested on 314 data points curated from the literature. Analysis of model has

shown that Ni controls the enthalpy of hydride formation, Cr is the significant80

element determining the phase fraction of the Laves phase C14 and Mn influ-

ences the H2wt%. This work demonstrates that how ML-based models bring

out the trends depending upon the features used to represent the data.[29] On
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similar lines Lu et al. built composition specific ensemble learning method to

predict the H2wt% of V-Ti-Cr-Fe alloys. The dataset consist of 81 composi-85

tions of V-Ti-Cr-Fe, V-Ti-Fe, V-Ti-Cr, and V-Fe alloys. Model is trained on

19 features consisting of weighted averages of elemental properties along with

absorption temperature. Ensemble learning model was able to predict H2wt%

with a MAE of 0.187 wt%.[30] Such ML models with high accuracy of predic-

tion highlights the importance of asking appropriate questions and designing90

suitable features. Needless to note that all models have limitations and there is

always a scope for improvement. One of the major limitations of a composition

specific model is its transferability to other material classes and compositions.

We have compared all the models discussed so far in Table 1 along with the

model that we have developed.95

ML Feature Target MAE

Model Set Size

GBR 145 ln(Peq) 1.52[26]

GBR 146 ln(Peq) 1.4 [27]

GBR 145 ∆H 6.1 kJ/molH2[26]

GBR 146 ∆H 5.5 kJ/molH2[27]

RF 145 ∆H 8.56 kJ/molH2[28]

RF 8 ∆H 4.36 kJ/molH2[29]

ETR 15 ∆H 5.76 kJ/molH2

NN 5 H2wt% 0.0030 wt%[24]

RF 8 H2wt% 0.101 wt%[29]

Ensemble 19 H2wt% 0.187 wt%[30]

Method

ETR 16 H2wt% 0.31 wt%

Table 1: A list of reported ML models for various hydrogen storage properties of metal

hydrides. The results from this work are highlighted in red color.

Form Table 1 it is clear that some models have large number of features.[26,

27, 28] Models with smaller feature set are trained on database of specific com-

positions to understand the variation of hydrogen storage properties as function

of composition.[29, 30] Although, these models have better accuracy, since they
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are trained on a subset of the data, their transferability is compromised. And100

hence, could not be effectively used to scan the chemical space. Further H2wt%

depends critically on the absorption temperature. None of the models published

so far predicted H2wt% as a function of absorption temperature. We attempt

to overcome these limitations by designing our feature set by including compo-

sition based features which represent key alloy properties, elemental properties105

that influence the chemical nature of the alloy, DFT based features to account

for metal-metal and metal-hydrogen interaction and finally absorption temper-

ature which is the most crucial factor in determining hydrogen storage capacity

of any alloy. Based on these newly designed features we have built machine

learning models for prediction of hydrogen storage capacity (H2wt%) at differ-110

ent temperatures and enthalpy of hydride formation (∆H) for multi-component

metal alloys.

2. Computational Details

The training dataset is derived from the hydrogen storage material database

(HydPARK).[31] The database includes composition, hydrogen storage capac-115

ity, enthalpy, and entropy of hydride formation of 2722 alloys. For HYST, all

compositions with experimentally measured H2wt% at a given absorption tem-

perature (T) are selected from HydPARK. After preprocessing, the dataset is

narrowed to 857 data points across five classes of compositions, viz. AB, A2B,

AB2, AB5, SS, and MIC. We have appended this dataset with 105 new points120

from the literature published after 2005. Thus our dataset contains 962 points

in all. To train a model for ∆H, we appended the ML-ready-HydPARK dataset

preprocessed by Witman and group. The ML-ready-HydPARK[26] dataset con-

sists of 386 unique compositions of alloys and their enthalpy of hydride formation

which is appended with 28 new entries from the literature.125

To build a predictive ML model, it is vital to choose/design features which

are readily available or easy to calculate. We have computed component-

weighted elemental properties as features to describe each composition in the
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training set and the search space. The component-weighted elemental prop-

erties for a given composition are calculated as: P =
∑

i cipi where ci is the130

weight fraction and pi represents the elemental property of the ith element in

a given composition. The designed features can be broadly classified into three

classes and are mentioned below:

(1) Fundamental properties of elements: First Ionization Energy (FIE), Elec-

tron Affinity (EA), Atomic Density (AD), Atomic Mass (AM), Boiling Point(BP),135

Heat of Fusion (HF), Specific Heat (SH), Bulk Modulus (BM), Molar Volume

(MV), and Thermal Conductivity (TC).

(2) Interactions-based features: The interactions between metal-metal and

metal-hydrogen are used as features. These interactions are quantified in terms

of bond-energy and bond-length between various metals and hydrogen by em-140

ploying DFT to compute M-M dimer bond-energy (MM Eng), M-M dimer bond-

length (MM BL), M-H dimer bond-energy (MH Eng), and M-H dimer bond-

length (MH BL).

(3) Composition-dependent properties: This class includes features like lat-

tice distortion (atm sz diff), the entropy of mixing (dSmix), valance electron145

concentration (VEC), and electronegativity difference (EN diff). These features

are derived from the Hume-Rothery rules. For a given composition, the resul-

tant structure of the alloy would depend upon magnitude of these parameters.

Hence it is expected that in case of a multi-component alloy, the crystal struc-

ture and the stability of the alloys will be reflected in these properties. These150

parameters are used in various machine learning models to predict phases of

multi-component alloys successfully.[32, 33], We have incorporated these pa-

rameters as features to add more structure-relevant information to our model’s

learning. The mathematical formulas used for the calculation of these parame-

ters are listed in SI.155

(4) Temperature (K): The hydrogen storage capacity varies substantially

with absorption temperature and hence absorption temperature is one of the

features of HYST, the ML model predicting H2wt% for a given composition.

However, the enthalpy of hydride formation is temperature independent, so we
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exclude temperature as a feature for THOR.160

The Pearson correlation coefficient is computed to identify correlated fea-

tures and is shown in SI-Fig. 1. The multicollinearity between features may

affect the model’s performance and makes it difficult to identify the impact of

the individual feature on the target property. Therefore, we have examined the

correlation matrix for each model to select the right set of features that would165

enhance learning and uplift the model’s predictive performance. Performance of

these models as function of cut-off values of correlation coefficients for selecting

feature sets is tabulated in SI- Tab. I and II. Based on this analysis we have

selected 0.8 as cutoff value of the correlation coefficient for selecting features.

Eight supervised machine learning algorithms from three different categories170

of linear, kernel, and tree based are evaluated. Since these algorithms are em-

ployed on small datasets, they are selected for estimating their performance in

predicting hydrogen storage capacity and enthalpy of hydride formation of a

given alloy. The three linear models trained to analyze the data are Linear Re-

gression (LR), Ridge Regression (RR), and LASSO, which are the most basic ML175

models, mapping the linear relationship between an existing input variable and

the target property. Following that, the Kernel Ridge Regression (KRR) and

Gaussian Process Regression (GPR) algorithms are trained to estimate their

performance. These algorithms use a kernel trick to bring out non-linearity

in the dataset, reducing calculation tasks and can perform better than linear180

models for nonlinear data. We also tested three tree-based algorithms, Random

Forest Regression (RFR), Extra Tree Regression (ETR), and Gradient Boosting

Regression (GBR). These algorithms are chosen for their high predictive ability

for nonlinear data paired with ease of interpretation, making complex predictive

models much easier to understand.185

The scikit-learn python library is used to implement all models. The dataset

is rescaled for both linear and kernel-based algorithms using three scalars, Stan-

dardScalar, MinMaxScalar, and MaxAbsScalar. GridSearchCV from scikit-

learn is used to analyze all possible combinations of hyper-parameter values

in order to find the optimal values of hyper-parameters. The dataset is split190
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into 80-20 ratio for the train and test set. Monte Carlo cross-validation is per-

formed with 100 random train/test splits, i.e., 100 random leave-n-out trials,

to assess the model’s performance and ensure that it does not over-fit the data.

The learning curve is plotted to appraise the model’s performance and to check

for over-fitting (see SI-Fig. II). The error evaluation metrics, R2 score and195

Mean Absolute Error (MAE) are used to evaluate the model’s performance.

All these algorithms are trained and tested for H2wt% and ∆H. Mean abso-

lute error (MAE) and R2 score for all the models are tabulated in SI-Table III

and SI-Table IV for H2wt% and ∆H, respectively. After comparing R2 scores

and MAEs averaged over 100 iterations for all models on training, testing, and200

out-of-bag dataset, we selected Extra Tree Regression (ETR) as the final model.

3. Results and Discussions

3.1. Model evaluation and interpretation

Model MAE R2 Score MAE R2 Score

Test set Test set Validation set Validation set

Temperature 0.35 0.73 0.53 0.64

Independent (H2wt%)

HYST (H2wt%) 0.31 0.80 0.45 0.81

THOR (kJ/MolH2) 5.76 0.70 4.53 0.89

Table 2: MAE and R2 score for test and validation set of temperature in/dependent H2wt%

and ∆H models. Temperature as feature has significantly improved H2wt% prediction.

For H2wt% and ∆H, the tree-based ETR model outperforms other models

with lowest MAE and highest R2 score. For H2wt%, the inclusion of tempera-205

ture as a feature has significantly improved model’s performance compared to

the temperature-independent model, as tabulated in Table 2. A considerable

rise in R2 score for the validation set (unseen data) is observed when temper-

ature is included as one of the features. The average MAE and R2 score for

the model predicting enthalpy of the hydride formation turned out to be 5.76210

kJ/molH2 and 0.70, respectively. With 15 features we have achieved accuracy
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comparable with the published work listed in Table 1. Even though we have

trained our models over diverse data of metal alloys, the MAE turned out to be

within acceptable limits, indicating better learning, as shown in Figure 1.

Figure 1: ML predicted versus Experimentally reported (a) H2wt% and (b) ∆H. MAE for the

final ETR models cross validated over 100 trials are 0.31 wt% and 5.76 kJ/molH2 respectively.

Figure 2: Feature ranking plot by the ETR model for H2wt% and ∆H. The essential features

for predicting both properties indicate that the model’s learning aligns with the fundamental

aspect of hydrogen storage.

Next we plot the feature ranking in descending order of importance (for215

H2wt%) and averaged over 100 trials (shown in Fig. 2). Same plots with error

bars are shown in SI (see SI-Fig. 3 and SI-Fig. 4). Since we are comparing
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feature importance of two different properties, error bars are not shown here.

Temperature, MM BL, VEC, SH, Mass, and dSmix are ranked high in predict-

ing the H2wt% of metal alloys. Temperature is an external parameter which220

helps in boosting the rate of absorption as demonstrated by the variation in the

experimentally measured hydrogen storage capacity. Therefore it is an impor-

tant factor to be considered for more reliable predictions which also reflects in

model’s feature importance. Apart from temperature, structure of the alloy is

also crucial in determining its hydrogen holding capacity. However, structural225

phases are not known for all the compositions. The features like MM BL, VEC,

Mass, and dSmix are closely associated with the structural phase of the com-

position and indeed these features have ranked higher. For enthalpy of hydride

formation (∆H), THOR has identified properties like MM BL, molar volume,

bulk modules, specific heat, and the heat of fusion as the most important fea-230

tures. Witman et. al. have also reported volume based descriptor and elastic

properties as important features for ∆H which is the take-home message of

our model as well. Interestingly the new features derived from DFT to quan-

tify metal-metal and metal-hydrogen interactions are significantly important for

predicting both H2wt% and ∆H. Finally, to validate the model’s accuracy and

Figure 3: Validation of model’s prediction via predicting (a) H2wt% and (b) ∆H for out-of-

the-bag compositions

235

transferability, H2wt% and ∆H are predicted for unseen data. These data sets

of H2wt% (105 compositions) and ∆H (28 compositions) are curated from pa-

pers published after 2005. These compositions are not part of our training set

11



and the performance of HYST and THOR is shown in Fig. 3.

Composition Temperature Experimentally T-independent HYST

(K) Reported (wt%) model (wt%) (wt%)

Mg-30wt%LaNi5[34] 470 3.8 5.0 3.78

Mg-30wt%LaNi5[34] 623 4.66 5.0 5.14

Mg88Y12[35] 373 2.63 5.08 2.72

Mg88Y12[35] 423 3.94 5.08 3.32

Mg88Y12[35] 653 6 5.08 5.14

Table 3: Composition, Temperature, experimentally reported H2wt% at that temperature,

ML (temperature independent model) predicted H2wt%, and HYST predicted H2wt% are

shown in the table to bring out the effect of temperature on the model’s performance. In

the absence of temperature as one of the features, model predicts same value at different

temperatures whereas HYST picks up the variation due to temperature quite well.

Next we demonstrate the importance of including temperature as one of the240

feature. Values predicted using temperature independent model and HYST are

noted in Table 3 and are compared with the experimentally measured H2wt% to

demonstrate that HYST has picked up the temperature-dependent variation. As

expected, the temperature-independent model could not capture the variation

observed in H2wt% with temperature. In contrast, HYST has predicted H2wt%245

as a function of temperature for a given composition which is at par with the

experimentally reported results.

We also note some of the limitations of the model. Figure 4 (a) compares

experimentally measured H2wt% (shown as green bars) with those of predicted

ones (orange bars) for Mg based alloys which are subset of the validation set.250

The blue dots (connected with red line) represent the temperature at which

H2wt% is measured. A clear trend emerges out. The mismatch between the

experimentally measured and predicted values is evident at lower temperatures

whereas predictions follow closely experimentally measured values at higher tem-

peratures. This trend could be understood if we examine the data on which the255

model is trained. In Figure 4 (b), all the Mg based compositions which are part

of the training set are shown with their respective H2wt% and corresponding

temperature. A closer look at the data brings out the fact that all data points
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Figure 4: (a) Error bars for predicting a subset of composition for the validation set at different

temperatures. Mg-based compositions with lower wt% at high temperatures and higher wt%

at low temperatures have higher error bars. (b) The distribution of Mg-based compositions

present in our training data, along with their corresponding absorption temperatures. All the

data points with lower temperature are marked by circle.

with lower temperature have lower H2wt%. These points are marked by circle

to aid an eye. Thus the model gets biased by the input which is reflected in260

the output by predicting mostly lower H2wt% than the measured ones at lower
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temperatures.

We also note that the number of outliers are more in the higher weight

percent regions for the testing data of H2wt% model as shown in Figure 1 (a).

These outliers can be a result of the insufficient data in the higher weight percent265

region, and to improve the performance, we added new data points published

post HydePARK dataset to the training set which comprised of higher weight

percent compositions. On retraining with the appended dataset, we observed

that the number of outliers in the test data were reduced as shown in SI-Fig.

5. This again proves that with addition of relevant data we can improve on270

model’s learning. Our second model, THOR, performs well in predicting the

enthalpy of hydride formation for the validation set collected from the literature.

Comparison between the known and predicted values revealed a lower MAE of

4.53 kJ/molH2. The models are retrained using both archival and hold-out data

and used for all subsequent predictions of new compositions.275

3.2. Trends in Predicted Hydrogen Storage Properties

To discover new potential hydrogen storage materials, we predicted the hy-

drogen storage capacity and enthalpy of hydride formation for possible combi-

nations of 38 elements i.e Li, Mg, Ca, Al, Si, Ga, Sn, In, Pb, Sc, Ti, V, Cr, Mn,

Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Rh, Pd, Ag, Hf, Pt, La, Ce Pr, Nd, Sm,280

Gd, Tb, Dy, Ho, Er. For these 38 elements, binary, ternary, and quaternary

alloy combinations (nCr) are constructed by varying elemental concentration

fraction from 0.05 to 0.95 with a difference of 0.05 for binary alloys and 0.1 to

0.9 with a difference of 0.1 for ternary and quaternary alloys, which accounts to

approximately 6.4 million compositions. We employed HYST to predict hydro-285

gen holding capacity at different temperatures and THOR to predict enthalpy

of hydride formation for these 6.4 million compositions. What follows next are

the trends observed and insights gained from these predictions.

Figure 5 illustrates the relative percentage (noted in red color) and the num-

ber of compositions in a specific class (noted in black color) over the range of290

wt% at different temperatures for scanned compositions. For binary, ternary,
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Figure 5: (a), (b), and (c) Plot of the relative percentage of compositions (noted in red color)

and number of compositions in a specific class (noted in black color) over the range of wt%

at different temperatures for binary, ternary, and quaternary alloys, respectively. A gradual

shift towards higher H2wt% is observed with increasing temperature, i.e. from 300K to 600K.
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and quaternary alloys, maximum number of compositions are observed with

H2wt% between 1.5 to 2 wt% irrespective of the absorption temperature as

shown in Figure 5 (a), (b), and (c). Moreover, as temperature increases, the

number of compositions with higher H2wt% increases. For instance, while only295

about 2% of binary compositions have H2wt% between 3-7 wt% at 300K, this

rises to above 7% at 600K. Similar trends are observed for H2wt% range 2-2.5

wt% and 2.5-3 wt%. Since total number of compositions is same, the reverse

trend is observed for lower wt% ranges i.e. with increasing temperature the

number of compositions with lower H2wt% decreases i.e between 0-1.5. Another300

important point to be noted is that although the relative percentage of ternary

and quaternary compositions at higher H2wt% (i.e. > 2.5) is less (compared

to that of binary alloys) the actual number of such compositions is substan-

tially more. Total number of ternary alloy compositions scanned are 3,03,714

and the number of compositions with H2wt% more than 2.5 is 5487 at room305

temperature. The number increases to 34709 at 600K as shown in Figure 5 (b).

Interestingly for quaternary alloys, the relative number of compositions with

higher wt% have also increased substantially. About 49404 compositions have

H2wt% > 2.5 at 300K and the number shoots up to more than 400,000 at 600K

as shown in Figure 5 (c). In Fig. 6 enthalpy of hydride formation is plotted310

for binary, ternary, and quaternary alloys. Compositions having ∆H less than

40 kJ/molH2 or more than 60 kJ/molH2 are less in number, and the maximum

number of compositions fall in the range of 40-60 kJ/molH2. Although for all

types of alloys (binary, ternary, and quaternary) the peak lies in the range of

40-50 kJ/molH2, a closer look brings out an interesting observation. With in-315

creasing number of elements in the alloys, the enthalpy of hydride formation

decreases. For example, percentage of alloys with ∆H between 40-50 kJ/molH2

increases as we move from binary to ternary to quaternary. Also, as we move

from binary to ternary and then to quaternary, the number of alloy compositions

having H2wt% > 2.5 at relatively lower ∆H is increasing as shown in Figure320

7, which signify how alloying of different elements results in a material with

modified hydrogen storage properties. Overall, out of 6.4 million compositions
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Figure 6: A plot of the relative percentage of binary, ternary, and quaternary compositions

in different range of ∆H. A maximum number of compositions are observed in the 40-60

kJ/molH2 of ∆H range.

there are more than 55000 compositions which are having H2wt% > 2.5 at room

temperature and more than 786000 compositions which are having enthalpy <

40 kJ/molH2.325

We need to understand these numbers with caution. Right now the variation

in the composition is carried out with step of 0.1 (or 10% change in the fraction).

This is chosen arbitrarily and if it is reduced further to 0.05 or increased to 0.2,

the actual number will change accordingly.

3.3. Prediction of New Alloys Families: Insights from Machine Learning330

Series Elements

Metals Si, Li, Mg, Ca, Ga, Sn, Pb, In, Al

Transition metals Zn, Hf, V, Mn, Y, Zr, Sc, Rh, Nb, Pd,

Cu, Cr, Ni, Ti, Pt, Fe, Co, Mo, Ag

Lanthanides La, Dy, Tb, Er, Ce, Sm, Ho, Pr, Nd, Gd

Table 4: 38 elements classified into three classes metals, transition metals, and lanthanides.

Metals could be further classified as metalloid (Si), alkali metal (Li), alkaline earth metal

(Ca), poor metals (Ga, Pb, In, and Al)
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Figure 7: Distribution of number of composition having H2wt% > 2.5wt% with

(a) ∆H < 40 kJ/molH2, (b) ∆H < 50 kJ/molH2 and (c) ∆H < 60 kJ/molH2 in three classes

of binary, ternary, and quaternary alloys. For a given cutoff of H2wt% and ∆H the number

of alloy compositions having relatively lower ∆H are increasing with number of elements in

an alloy.

Figure 8: Heat map representing (a) H2wt% at 300(K) and (b) ∆H of Mg-based system when

mixed with metals, transition metals and lanthanides.

We analyze the predicted properties to identify systematic chemical trends

that are exhibited by various compositions of the prediction set. First, we

18



classified the 38 selected elements into three distinct classes, as listed in Table

4. Next, we plot the elements from each series against the others to determine

the influence of alloying on predicted properties. The Figure 8 (a) shows the335

systematic change in H2wt% at room temperature due to alloying of Mg with

elements from different series. Alloying with poor metals like Ga, Sn, Pb, and

In, all lanthanides and late transition metals like Rh, Pt, Ag, and Hf in Mg-

based alloy results into poor hydrogen holding capacity. These elements are

larger in size and have poor affinity towards hydrogen which makes them poor340

substituents to enhance hydrogen storage capacity. On the other hand elements

like Al, Ca, Sc, V, Ti, Co, Cr, Mn, Fe, Co, Zr, and Y have shown improved

hydrogen holding capacity when alloyed with Mg at room temperature. It is

also observed in previous studies that when these elements are alloyed with Mg,

they alter the crystal structure and composition of the Mg based alloy which345

leads to an ease of hydrogen ab/desorption even at lower temperatures.[36, 37]

For simplicity, here we explained only the trends observed for Mg when alloyed

with the other 37 elements. However in supplementary information we have

also examined the effect of alloying on other hydriding elements like Li, Ti, and

V. Trends in predicted H2wt% and ∆H for Li, Ti, and V when alloyed with350

the other 37 elements are shown in the SI-Fig. 6, SI-Fig. 7, and SI-Fig. 8

respectively.

The change in enthalpy of hydride formation due to alloying of Mg with

elements from different series is shown in the Figure 8 (b). In general, ∆H

falls somewhere inbetween enthalpy of hydride formation of the constituent el-355

ements. This trend has been observed in predicted ∆H. The plot shows that

increasing concentration of non-hydriding elements like Si, Sn, Cu, Cr, Ni, Fe,

Co, Mo, Er, and Ho reduces the ∆H of the resulting alloy. On the other hand

mixing of two hydriding elements like Mg with Li, Ca, Pb, Y, Zn, Y, La and Ce

leads to enhanced stability with higher ∆H. This observation is consistent with360

experimentally observed values of the enthalpy of hydride formation in many

alloys like ZrCr1.8, TiCr1.8, NaAl etc.[38] It is also important to mention that

the extent of change in H2wt% and ∆H varies with elements. We have observed
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the addition of small fraction of Al, Sc, Cr, Ti, Mn, Fe, Y, Nb, and Pd leads to

drastic reduction in enthalpy along with improved hydrogen holding capacity.365

This shows that the model has picked up the chemical trends existed in training

data and interpolate well while predicting.

3.4. New Composition Family

We filtered the 6.4 million compositions based on their predicted hydro-

gen storage properties to 6480 potential compositions at 300K which satisfied370

the criteria set by the DOE for stationary applications. The DOE specifies

that materials for stationary application should have a H2wt% > 2.5 at room

temperature and ∆H < 60 kJ/molH2.[39] These 6480 compositions have met

these criteria and show promising potential for hydrogen storage applications.

Through the analysis of 6480 binary, ternary, and quaternary alloys, we have375

identified several promising families of alloys that exhibit potential for further

investigation. Among the binary alloys, 276 compositions comprising 53 dif-

ferent elemental pairs were found to satisfy the criteria. Of these pairs, seven

V-XX pairs (where XX represents Cr, Ti, Sc, Nb, Ga, Mn, and Fe) exhibited

H2wt% > 3, and ∆H < 45 kJ/molH2. The aforementioned predictions align380

with the trends experimentally reported in the existing literature for V-Ti, V-

Cr, and V-Mn binary alloys. However, our model has also predicted some new

binary compositions, such as V-Sc, V-Nb, and V-Ga, that exhibit promising

hydrogen storage properties and warrant further experimental investigation. In

the class of ternary alloys, over 700 compositions were identified that satisfy the385

criteria of H2wt% > 2.5 and ∆H < 60 kJ/MolH2. Furthermore, more than 50

compositions of V-Ti-X, Mg-Ti-X, and V-Mg-X alloys (where X represents Cr,

Ni, Co, Fe, Mn, and Sc) exhibited H2wt% > 3. Our predictions are consistent

with previous experimental values of these parameters for V-Ti-Cr, V-Cr-Mn,

and Ti-Cr-Mn ternary alloy families.[40, 41, 42] Additionally, Mg-Ti-X and V-390

Mg-X (where X represents Cr, Ni, Co, Fe, Mn, and Sc) are new families that

have not yet been explored but exhibit promising hydrogen storage properties

at room temperature.
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Figure 9: List of promising families of binary, ternary, and quaternary metal alloys composi-

tions for solid state hydrogen storage at room temperature.

In the class of quaternary alloy, more than 5500 compositions are satisfying

stationary storage criteria and more than 200 compositions are having H2wt%395

> 3. Alloy families, V-Ti-YY, Mg-Fe-YY, Mg-Ti-YY, Mg-La-YY, Mg-Ce-YY,

and Mg-V-YY, where YY represents Fe-Al, Fe-Cr, Si-Sm, Si-Y, Cr-Mn, Si-

Mn, and Al-Cr had a H2wt% > 3 and ∆H < 50 kJ/molH2. We also predict

some interesting new families like Mg-V-Ti-YY, V-Ti-Cr-YY, and V-Ti-Al-YY,

where YY represents Fe, Sc, Nb, Si, and Mn. Overall, the analysis shows that400

there are many compositions of binary, ternary, and quaternary alloys that

have the potential to be explored further for hydrogen storage. For now, we

have represented pictorially 20 families in Figure 9 from each class that show

potential for hydrogen storage application at room temperature. These families

can be further explored and studied in detail to identify the most promising405
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compositions for practical use in hydrogen storage applications.

4. Conclusion

In this work, we have designed HEART, a machine learning framework, for

prediction of H2wt% at different temperatures (HYST) and ∆H (THOR) of

multicomponent metal alloys. Both models demonstrate good predictive ac-410

curacy for validations set (HYST: R2 score = 0.81 and MAE = 0.45 wt%;

THOR R2 score = 0.89 and MAE = 4.53 kJ/molH2). The study also highlights

the significance of incorporating more data as well as relevant features such

as temperature, metal-metal, metal-hydrogen interactions and compositional

based features along with elemental properties to enhance the models’ learn-415

ing. Addition of temperature as a feature in the HYST model has an added

advantage of predicting the H2wt% of an alloy as a function of temperature.

We flagged limitation in the model’s learning due to inadequate data and sub-

sequent improvement in it with addition of more relevant data in the training

set. Therefore, it is necessary to build an updated dataset specifically for solid-420

state hydrogen storage. Furthermore, addition of alloy’s structural information

as feature can enhance the model’s predictability. We constructed 6.4 million

multi-component (binary, ternary, and quaternary) compositions and used the

trained ML models to predict H2wt% at 300K, 400K, 500K, and 600K along

with ∆H. Significant and systematic changes have been observed in alloys’ pre-425

dicted H2wt% and ∆H as a function of temperature, compositional fraction,

and constituent elements. Following are the trends observed:

� H2wt% of an alloy increases with the absorption temperature across all

the predicted alloy classes. The number of compositions in the higher

H2wt% region increases with temperature from 300-600K.430

� For ∆H, with an increase in the number of constituents elements in the

alloy, i.e. as we move from binary to ternary to quaternary, the ∆H

decreases.

22



� Predicted hydrogen storage capacity and enthalpy of hydrogenation are

significantly affected by the addition of non-hydriding or hydriding ele-435

ments in a different manner.

� These distinct variations of predicted hydrogen storage properties are at-

tributed to the elemental and compositional features incorporated during

the models’ training.

� Compositions comprising light elements like Li, Mg, Al, etc., have high440

H2wt% and ∆H which is an inherent property of light metal hydrides. The

H2wt% of these compositions increases significantly with temperature.

� Compositions with constituent heavier elements like Mo, Rh, Pd, Ag,

Hf, and Pt fall in the lower H2wt% range, i.e., less than 1.5 wt%, even

at an elevated temperature of 600K. This shows that temperature has a445

negligent effect on the H2wt% of these compositions.

� Temperature-dependent variation of H2wt% of compositions also gives

us insights about the combination of elements to look for with enhanced

H2wt% in different temperature regions.

� The models’ predictions are in line with the experimental trends of desta-450

bilization using non-hydriding elements. Specifically, when small amounts

of a subset of non-hydriding elements, such as Cr, Fe, Cu, Ni, Co, Si, and

Sn, are alloyed with hydriding elements like Mg, Al, V, and Ti, ∆H is

decreased without significantly impacting H2wt%.

Finally, our predictions pin pointed 6480 compositions which satisfies the sta-455

tionary storage target properties set by DOE (H2wt% > 2.5 at 300 K and ∆H

< 60 kJ/molH2). From the analysis of 6480 compositions (binary, ternary, and

quaternary alloys), we have reported promising families of alloys that can be

selected for further experimental investigation. This study demonstrates how

ML models can expedite the process of materials discovery, even for alloys.460
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I. FEATURE SELECTION

The performance of machine learning models are evaluated with regards to various sets

of collinear features as shown in Figure 1. Collinear features refer to the variables that share

a high degree of correlation among each other. The presence of such features in a model

can lead to redundancy and over-fitting, thereby deteriorating the model’s performance.5

To assess the impact of collinearity on the performance of both the models, the results

FIG. 1. Pearson’s correlation matrix of feature vector set for (a) HYST (b) THOR. The matrix

shows the pair correlation between the properties.

10

are analyzed and presented in Table I and Table II. The results revealed that features with

high collinearity (0.9) such as Atomic Density, Boiling Point, and MH Eng, had minimal

effect on the model’s performance when excluded from the model. However, the removal

of additional features beyond this point resulted in a decline in the model’s performance.

Hence, it is crucial to carefully select the relevant features by removing as many collinear15

features as feasible in order to achieve a trade-off between accuracy and interpretability.

Composition dependent properties are calculated using the following formulas.

V EC =
∑

n

i=1
ciV ECi

EN diff =
√

∑

n

i=1
ci(χi − χ̄)2

atm sz diff = 100×
√

∑

n

i=1
ci(1−

ri

r̄
)220

dSmix = −R
∑

n

i=1
ci ln ci

2



TABLE I. Feature selection for H2wt% model. Maximum collinearity represents the cut-off used

to limit the number of features. Number in () represent number of features in a set.

Maximum Features MAE R2 Score MAE R2 Score

collinearity Test set Test set Validation set Validation set

0.9 (19) Temperature, AD, EA, BP, 0.31 0.80 0.43 0.81

VEC, FIE, TC, BM, HF, MV,

AM, SH, MM Eng, MM BL,

MH BL, MH Eng, EN.Diff,

atm sz diff, dSmix

0.8 (16) Temperature, EA, VEC, FIE, 0.31 0.80 0.44 0.81

TC, BM, HF, MV, AM, SH,

MM Eng, MM BL, MH BL,

EN.Diff, atm sz diff, dSmix

0.7 (8) Temperature, EA, VEC, FIE, 0.31 0.80 0.49 0.75

AM, MH Eng, EN.Diff, dSmix

0.6 (7) Temperature, VEC, FIE, 0.33 0.78 0.49 0.75

AM, MH Eng, EN.Diff, dSmix

TABLE II. Feature selection for ∆H model. Maximum collinearity represents the cut-off used to

limit the number of features. Number in () represent number of features in a set.

Maximum Features MAE R2 Score MAE R2 Score

collinearity Test set Test set Validation set Validation set

0.9 (18) AD,EA, BP,VEC, FIE,TC, 5.80 0.70 4.55 0.88

BM, HF, MV, AM, SH, MM Eng,

MM BL, MH BL, MH Eng,

EN.Diff, atm sz diff, dSmix

0.8 (15) EA, VEC, FIE, TC, BM, HF, 5.76 0.70 4.53 0.89

MV, AM, SH, MM Eng,

MM BL, MH BL,

EN.Diff, atm sz diff, dSmix

0.7 (12) EA, VEC, FIE, HF, MV 5.91 0.68 4.57 0.86

AM, SH, MM Eng, MM BL,

MH BL, EN.Diff, dSmix

0.6 (9) VEC, FIE, HF, SH, 6.11 0.68 4.98 0.84

MM Eng, MM BL, MH BL,

EN.Diff, dSmix

where ci represents the fraction of the constituent ith element, V ECi represents the valence

electron concentration of the ith element, χi represents the electronegativity of the ith ele-

ment, χ̄ represents the average electronegativity of all the constituent elements, ri represents

3



the radius of the ith element, r̄ represents the average radius of the constituent elements and25

R represents the gas constant.

II. MODEL SELECTION

The process of developing a model for obtaining the desired properties involves extensive

testing and evaluation of multiple models. In this context, eight different algorithms were

subjected to rigorous testing to identify the most suitable one for the desired properties. To30

evaluate the performance of each model, the average Mean Absolute Error (MAE) and R2

score were computed for the train, test, and validation sets over 100 trials, and the results

were recorded in Table III and Table IV.

TABLE III. Evaluation of machine learning models for H2wt%. ETR is selected as the final model.

Class Algorithm MAE R2 Score MAE R2 Score

Test set Test set Validation set Validation set

Linear LR 0.49 0.46 1.36 -0.45

RR 0.48 0.61 1.32 -0.38

LASSO 0.48 0.49 1.33 -0.39

Kernel KRR 0.31 0.76 1.24 0.044

GPR 0.36 0.71 2.86 -2.3

Tree GBR 0.32 0.74 0.50 0.70

RF 0.33 0.75 0.48 0.75

ETR 0.31 0.80 0.43 0.81

Analysis of the results revealed that linear models performed poorly in predicting both

H2wt% and enthalpy of hydride formation. The complexity of these properties could be a35

reason for this poor performance since linear models are not well-suited to capture complex

relationships between variables. On the other hand, kernel models performed better during

training and testing, however they performed with low accuracy for the validation set. Tree-

based models demonstrated relatively better performance than linear and kernel models

during training, testing, and validation. Upon closer inspection of the performance metrics,40

it was found that RF and ETR models had similar performance. However, ETR was selected

as the final algorithm because it demonstrated the lowest MAE and highest R2 score during

training and testing for both properties, i.e., H2wt% and ∆H.
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TABLE IV. Evaluation of machine learning models for enthalpy of hydride formation (∆H). ETR

is selected as the final model.

Class Algorithm MAE R2 Score MAE R2 Score

Test set Test set Validation set Validation set

Linear LR 7.36 0.40 12.81 0.05

RR 7.96 0.47 12.52 0.23

LASSO 7.84 0.5 8.43 0.68

Kernel KRR 7.02 0.46 13.14 0.044

GPR 7.0 0.61 8.52 0.66

Tree GBR 6.17 0.67 4.81 0.85

RF 6.67 0.67 3.88 0.89

ETR 5.76 0.70 4.53 0.89

FIG. 2. Learning curve for (a) HYST and (b) THOR.

Learning curve of final selected models HYST and THOR are shown in Figure 2(a) and

(b), respectively. The learning curves represent the performance of the models on a training45

set and a test set as a function of the number of training examples used. The x-axis represents

the number of training examples, while the y-axis represents R2 score.

The feature ranking for final selected features in descending order of importance for

HYST and THOR identified by the models averaged over 100 trials are shown in Figure 3

and Figure 4, respectively.50
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FIG. 3. Feature ranking plot in descending order of importance by the ETR model averaged over

100 trials for H2wt%.

FIG. 4. Feature ranking plot in descending order of importance by the ETR model averaged over

100 trials for ∆H.

III. EFFECT OF ADDITION OF DATA ON HYST GENERALIZATION

Figure 5 illustrates the training and testing performance of a H2wt% model using dataset

consisting of 857 data points. It is observed from the Figure 5(a) that a greater number of

outliers are present in regions with higher weight percentages (circled data). This suggests
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FIG. 5. ML predicted versus Experimentally reported train and test plot of H2wt% (a) with 857

data point and (b) 962 data point. No of outliers (circled data) reduces with addition of more data

in higher weight percentage region (region highlighted with pink and green color rectangles.)

that the model’s performance is suboptimal for compositions with higher hydrogen storage55

capacity. Subsequently, we curated data from literature and appended it to the original

dataset, resulting in a new database consisting of 962 data points. The newly added data

points predominantly comprised compositions whose experimental weight percentages were

recorded in the higher weight percentage ranges. As anticipated, the model exhibited an

improved performance, with lower number of outliers in higher weight percentage ranges, as60

well as an improved R2 score, as depicted in Figure 5(b).

IV. TRENDS OBSERVED IN PREDICTED HYDROGEN STORAGE PROPER-

TIES

The section discusses the changes observed when lithium (Li), titanium (Ti), and vana-

dium (V) are alloyed with the other 37 elements. The changes are illustrated in Figure 6,65

Figure 7 and Figure 8, respectively.

Figure 6 (a) shows the systematic change in Li based alloys hydrogen storage capacity

(H2wt%) at room temperature with the addition of elements from different series. It is

observed that alloying Li with other small hydriding elements such as magnesium (Mg),

calcium (Ca), and aluminum (Al) results in improved weight percentage (wt%), although70

the enthalpy of hydride formation increases, making hydrogen desorption difficult at lower

temperatures. Moreover, alloying Li with small fractions of transition metals such as zinc
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FIG. 6. Heat map representing (a) H2wt% and (b) ∆H of Li-based alloys when mixed with metals,

transition metals and lanthanides.

(Zn), vanadium (V), yttrium (Y), scandium (Sc), titanium (Ti), and iron (Fe) leads to

relatively higher H2wt% (> 3 wt%). Figure 6(b) represents the change in enthalpy of hydride

formation (∆H) for Li based alloys. It shows that alloying Li with other hydriding elements75

leads to the formation of stable hydrides. However, with an increasing concentration of

certain elements such as silicon (Si), manganese (Mn), niobium (Nb), chromium (Cr), nickel

(Ni), iron (Fe), and molybdenum (Mo), there is a decrease in ∆H of Li based alloys.

Similarly, Figure 7 and Figure 8 show the changes in H2wt% at room temperature and

∆H of Ti and V when alloyed with different series of elements. Ti and V are early lightweight80

transition metals that posses high affinity towards hydrogen and hence can form hydrides

even at room temperature.

As illustrated in Figures 7 and Figure 8 (a) (b), the V-Ti alloy is among the most

promising family with a high weight capacity (3.5 wt%) even at room temperature, along

with lower ∆H. In addition, alloying V and Ti with Mg, Al, and Sc also shows promising85

hydrogen storage properties. Interestingly, the mixing of Ti and V with lanthanides leads
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FIG. 7. Heat map representing (a) H2wt% and (b) ∆H of V-based alloys when mixed with metals,

transition metals and lanthanides.

to the formation of unstable hydrides (lower ∆H), which suggests that a small fraction of

these lanthanides in the promising families of V and Ti can further enhance their kinetics

and thermodynamic properties.
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FIG. 8. Heat map representing (a) H2wt% and (b) ∆H of V-based alloys when mixed with metals,

transition metals and lanthanides.
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