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1. Introduction 
The exponential growth of technology in almost every sector brought us an increasing 

demand for fossil fuels and energy. Only 16 % of global energy requirement comes from 

low-carbon resources like biofuels, wind, hydropower, solar and nuclear. At the same time, 

oil and coal are significant contributors to fulfilling the energy necessities1. Today, carbon 

dioxide concentration in the atmosphere has crossed 420 ppm, and its growing trend has 

become a global concern. According to the latest IPCC report, the major contributors to CO2 

emissions are Asia and USA due to population density. If this trend continues, we will pass 

the 1.5oC threshold of average global temperature within two decades2. The current industrial 

utilization of carbon dioxide is less than 1 % of the total global emissions, out of which 57 % 

is consumed in the production of urea used as agricultural fertilizer and 34 % in enhanced oil 

recovery3.  

The major challenge for the conversion of carbon dioxide is the thermodynamic stability and 

its activation. Accordingly, energy must generally be supplied to drive the desired 

transformation. Otherwise, a proper selection of material which can activate carbon dioxide 

to interact with other molecules is necessary. In this thesis, we worked on different reaction 

schemes like hydrogenation, cyclic carbonates and carboxylation. We proposed the processes 

for three important industrial molecules – dimethyl formamide, styrene carbonate and 

salicylic acid. The detailed work in process development, process intensification and catalysis 

is discussed and presented in the thesis 
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2. Statement of the problem 

2.1 Hydrogenation of CO2 to dimethyl formamide 

CO2 is the cheapest and most readily available source, and its conversion to C1 value-added 

chemicals is adopted by researchers worldwide. Hydrogenation in the presence of a catalyst 

leads to several essential chemicals like methanol, methane, carbon monoxide, formaldehyde 

and formic acid. Research and development on methanol synthesis from CO2 have reached 

the level of commercial plant development, whereas geological and biological routes 

generally produce methane. The formic acid synthesis is explored by researchers, with most 

of the reports available on homogenous catalysts4-6. The significant challenges with the 

available catalyst are to overcome the use of phosphine-based toxic catalysts with greener 

and recyclable heterogeneous material and to increase the extent of selective hydrogenation 

to formic acid. 

2.2 Cycloaddition of CO2 in styrene oxide 

Organic carbonates are becoming important solvents due to their low toxicity, as monomers 

for synthesizing polymeric materials, as electrolytes in secondary batteries and as a chemical 

ingredient for pharmaceutical products. The critical prerequisite for cycloaddition reaction is 

the presence of Lewis acids and basic cites in catalysts for epoxide ring opening and CO2 

activation. Cycloaddition of CO2 proceeds with 100 % atom economy and several industrial 

processes are reported for producing ethylene and propylene carbonates7,8. In regards to other 

cyclic carbonates like styrene carbonate, glycerol carbonate, and cyclohexane carbonate, 

there is a plenty of research that needs to be done with catalysis, process intensification and 

continuous flow synthesis.  

2.3 Carboxylation of phenol to salicylic acid 

The preparation of salicylic acid from phenol and carbon dioxide is well known Kolbe-

Schmitt process. The current industrial process consists of 3 steps – preparation of phenoxide 

salt using sodium hydroxide, drying of salt followed by carbon dioxide addition with the 

process yield of 55 % at 80 – 90 atm pressure at 170 oC9. Very few reports available for 

carboxylation reaction suggest using potassium carbonate as a catalyst for single pot 

synthesis resulting in 40 – 50 % reaction yield. There is a need for significant development of 

the selective catalytic system with process intensification.  
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3. Objectives 
� To develop processes for maximum conversion of CO2 to chemicals 

� To develop a green, recyclable heterogeneous catalyst for the hydrogenation of carbon 

dioxide to formic acid and its derivative – dimethyl formamide 

� To develop the reaction kinetics understandings for the scale-up of the process 

� To develop a continuous synthesis process for cyclo addition of CO2 in styrene oxide 

� To develop a novel process and catalyst system for the synthesis of ortho-salicylic 

acid from phenol 

4. Methodology 
The methodology involved an in-depth literature review, finding the gaps in the research 

studies, developing a newer catalytic system for the conversion of carbon dioxide, process 

intensification and development and continuous flow synthesis.  

Studies on the hydrogenation of carbon dioxide were carried out in a high-pressure batch 

reactor. The different heterogeneous catalysts were prepared using the co-precipitation 

method as reported and tested for hydrogenation. After optimizing the catalyst system and 

metal compositions, detailed catalyst characterization was done to understand the catalyst 

properties and reaction mechanism. Process optimization was carried out in a batch reactor, 

and a kinetic model was developed and validated for the experimental findings. Reaction 

samples were analyzed using gas chromatography equipped with a polar column and FID 

detector 

Cycloaddition of CO2 in styrene carbonate was carried out using the reported catalyst in a 

batch reactor. The process optimization and kinetics study data were used to develop a 

continuous flow synthesis coiled reactor. The in-house developed setup of the helically coiled 

reactor used for the process optimization and reaction was monitored using gas 

chromatography on the FID detector. 

A catalyst for the carboxylation of phenol was prepared using the wet-impregnation method 

and tested for the process in a high-pressure autoclave reactor. The carbon dioxide was fed 

into the reactor using a liquid CO2 pump, and the reaction was monitored by HPLC using a 

UV detector. 
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5. Results / Summary / Conclusions 

5.1 Hydrogenation of CO2 to dimethyl formamide 

In this work, we proposed dimethylformamide (DMF) synthesis using ruthenium-doped 

Mg/Al calcined hydrotalcite CO2 hydrogenation in dimethylamine (DMA). At optimized 

conditions, complete conversion of dimethylamine was achieved with more than 92% product 

yield at 170 ◦C and 13 MPa pressure with a reaction time of 6 hrs. Fundamental catalyst 

properties were determined using X-ray powder diffraction (XRD), X-ray photoelectron 

spectroscopy (XPS), CO2-temperature programmed desorption (TPD), H2 temperature-

programmed reduction (TPR) and Fourier transform infrared (FTIR). The surface 

morphology was determined using a field emission scanning electron microscope (FE-SEM) 

and high-resolution transmission electron microscopy (HR-TEM), and observed the planer 

distorted sheet morphology for the synthesized hydrotalcites. At the same time, the chemical 

composition was verified by energy-dispersive X-ray (EDS) and observed 1.3 mole % of 

ruthenium loading in the catalyst. In addition, kinetic modelling is performed using the two-

site Langmuir-Hinshelwood-Hougen-Watson model. The regressed kinetic parameters gave 

an appropriate fit with experimental concentration values, and activation energy is calculated 

as 413 kJ/mol. 

5.2 Cycloaddition of CO2 in styrene oxide 

In this work, we proposed the process intensification, reaction kinetics modeling and 

continuous flow synthesis of styrene carbonate by cycloaddition of CO2 in styrene oxide 

using tetrabutylammonium bromide as a catalyst. An optimized process was developed with 

complete conversion of styrene oxide with 83 % of product yield at 140 oC and 2 mole % 

catalyst loading within 60 minutes. Important reaction parameters such as temperature and 

catalyst loading were optimized. The dimethylformamide used as a solution played a crucial 

role in CO2 solubility and overcoming the mass transfer limitations. Due to higher CO2 

solubility, the first-order homogenous reaction kinetic model was used to determine the 

reaction kinetic parameter, and the activation energy was calculated as 98 kJ/mol. The 

process was also optimized for the continuous flow synthesis of styrene carbonate in a coiled 

reactor operated at 20 bar pressure. 

5.3 Carboxylation of phenol to salicylic acid 

Salicylic acid is industrially produced by carboxylation of phenol using sodium hydroxide as 

a catalyst (Kolbe-Schmitt process) in three steps. In this work, we prepared potassium-doped 
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NaX zeolites for the single-pot synthesis of salicylic acid. Catalyst characterization was done 

to interpret the catalyst properties and required sites for reaction activation. At the optimized 

reaction conditions, 20 % of salicylic acid yield was obtained with more than 95 % selectivity 

at 200 oC within 6 hrs of reaction time in supercritical conditions of CO2. The change in the 

reaction phase from subcritical to supercritical phase shows the enhanced effect on reaction 

yield due to higher mass transfer rates. 

6. Future directions 
� Development of a continuous process pilot plant for the hydrogenation of CO2 based 

on the understanding developed at lab scale batch reactions. 

� Catalyst development for milder reaction conditions which will further improve 

economics of the process. 

� Downstream process development for the generating commercial grade styrene 

carbonate. 

� Pilot plant design and process validation for synthesis of styrene carbonate. 

� Development better catalyst system to improve reaction kinetics and subsequently 

intesifying process by developing continuous reactor setup for salicylic acid synthesis. 
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Introduction 
 

“This chapter introduces about carbon dioxide, its effects, need of 
CO2 utilization and strategies to convert into value added 

chemicals” 
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Chapter 1 

Introduction 
 

1.1 CO2 and global warming 
The 21st century is experiencing exponential developments in each sector's new technologies, 

leading to growing energy consumption. Despite such developments, according to the World 

Energy Outlook Report 2021, the primary energy sources are still coal, oil, and natural gas, 

contributing to 81 % of total energy requirements1. These sources emit greenhouse gases such 

as CO2 and NOx. Today, total CO2 emission has crossed 37 billion tons per year, as shown in 

Figure 1.1, and it has doubled in the last five decades2.  

 

Figure 1.1: CO2 emissions sources, source: OurWorldInData.org3 

CO2 is one of the main greenhouse gases, and its concentration in the atmosphere increased to 

421 ppm in 2023. Every year, the average rise in CO2 emission is 2 billion tons, leading to a 

continuous increase in concentration and eventually global warming. The rise in Earth’s 

average temperature is primarily attributed to the accumulation of greenhouse gases in the 

atmosphere, which traps heat and contributes to the greenhouse effect. According to the IPCC 

report4, there is an urgent need to reduce greenhouse emissions to mitigate the effects of 

climate change. One of the most significant consequences of rising CO2 levels is the 

intensification of the greenhouse effect. CO2 absorbs and re-emits infrared radiation, 
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preventing it from escaping into space and effectively trapping heat within the atmosphere. 

This leads to a gradual increase in the Earth’s atmosphere, which is resulting in a range of 

adverse effects, such as the melting of polar ice caps, sea-level rise, extreme weather events, 

and shifts in ecosystems4.  

Scientific evidence indicates that the Earth’s average temperature has risen by approximately 

1.1 oC since the pre-industrial era (Figure 1.2), and a substantial proportion of this increase 

can be attributed to human-induced CO2 emissions. This warming trend has been observed 

across various regions, affecting land and ocean temperatures.  

 

 

Figure 1.2: Global temperature rise and CO2 concentrations, source: climate.govglobal5 

To address the growing concern of global warming, international efforts have been 

established to limit global temperature rise to below 1.5 degrees Celsius above pre-industrial 

levels6. These targets require substantial reductions in CO2 emissions and the adoption of 

renewable energy sources and practices to transition towards a low-carbon economy. 

Also, the conversion of CO2 to valuable chemicals represents a crucial avenue in the quest for 

a sustainable future. By harnessing the potential of CO2 as a resource, it is possible 

simultaneously to address climate change, promote circular economy principles, drive 

innovation and economic growth, and foster the development of cleaner and more sustainable 

industries. As research and technological advancements continue to accelerate, the 

conversion of CO2 holds tremendous promise in reshaping our approach to lowering global 

warming and creating a more sustainable world. 
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1.2 CO2 as a C1 feedstock 

CO2, once viewed solely as a greenhouse gas and environmental concern, is now being 

recognized as a valuable and abundant C1 carbon source for the chemical industry. Many 

chemical processes are well established in CO2 chemistry but are not significant for reducing 

its concentrations from the atmosphere. Researchers are looking at CO2 as an alternative to 

C1 sources like carbon monoxide which is challenging to handle.  

Also, utilizing CO2 as a C1 carbon source promotes the concept of circular economy 

principles. By transforming CO2 into chemicals and fuels, a closed-loop system can be 

established where waste becomes a valuable feedstock, minimizing waste generation and 

optimizing resource utilization.   

1.2.1 Current industrial applications of CO2 

Today the yearly emission of CO2 is more than 35 billion tons while the total consumption is 

approximately 250 million tons only which accounts for less than 1 % of total emissions. The 

report by International Energy Agency, suggests that early markets in CO2 consumption are 

emerging but the future scale is uncertain7 and it is expected to rise CO2 usage by only 10 % 

in the next 2-3 years based on current growth in CO2 consumption. Figure 1.3 shows the slow 

growth in CO2 consumption over the last two decades.   

 

Figure 1.3: Current CO2 consumption, projections are based on current average 

consumptions. Source: International Energy Agency7. 
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The majority of CO2 currently being used is in the fertilizer industry for the production of 

urea where approximately 130 million tons of CO2 is used which accounts for 57 % of total 

CO2 consumption. The second large use of CO2 is for enhanced oil recovery with a 

consumption of 70 to 80 million tons annually7. Only a small amount of CO2 is used in 

extractions processes like the decaffeination of coffee, as fire extinguishers, in food industries 

for beverages, and in the pharmaceutical industry to produce salicylic acid. Figure 1.4 

explains current industrial chemical synthesis processes using CO2 as a feedstock and their 

applications.  

 

Figure 1.4: Industrial chemical processes using CO2 as feedstock. 

1.3 Need for CO2 utilization 

The need for CO2 utilization arises from the urgent global challenges posed by climate 

change, resource scarcity, and the transition to a sustainable future. Reducing CO2 emissions 

alone may not be sufficient to meet global climate targets. While transitioning to renewable 

energy sources and adopting cleaner technologies are crucial steps, it is equally important to 

actively remove CO2 from the atmosphere. CO2 utilization presents a viable pathway to 

accomplish this by repurposing emissions into useful and economically viable products.  

Additionally, CO2 utilization holds tremendous potential for economic growth and 

innovation. It presents opportunities to develop new industries and markets focused on 

converting CO2 into valuable products such as chemicals, fuels, building materials, and even 
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food additives. By utilizing CO2 as a raw material, reliance on fossil fuels can be reduced and 

it can promote the production of sustainable alternatives.  

Furthermore, CO2 utilization enables the transformation of a harmful waste stream from 

chemical industries into a valuable resource and chemicals. By recovering CO2, a circular 

economy can be adopted minimizing waste generation and reducing dependence on finite 

sources. CO2 utilization necessitates research and development in advanced technologies, 

catalysis, and chemical engineering. As CO2 conversion techniques are being explored 

globally, technological advancements are enhancing leading to further scientific 

breakthroughs and innovations. This also creates economic opportunities and job prospects in 

energy sectors.  

1.4 Challenges in CO2 utilization 

Although CO2 is an abundant and freely available C1 source, the utilization of CO2 presents 

several challenges that need to be addressed for its effective implementation. Some key 

challenges include: 

• Carbon capture, separation, and storage: The first step in CO2 utilization is capturing 

and separating CO2 from industrial emissions or the atmosphere. Since the 

concentration of CO2 in the atmosphere is only 0.04 %, concentrating and purifying 

CO2 for utilization purposes can be energy-intensive and expensive. Also, developing 

cost-effective, efficient, and scalable technologies for carbon capture and separation 

from a mixture of gases coming out of industrial emissions is crucial. Additionally, 

finding suitable storage sites for the captured CO2 can be challenging as it requires 

geologically stable formations that can steadily store the gas without leakage. 

• Energy requirements: Several processes involving CO2 chemical conversion require 

significant energy input, particularly CO2 reductions. Exploring low-energy or 

renewable energy pathways is essential to reduce the overall carbon footprint. Also, 

an efficient thermochemical catalyst is needed, which can reduce the energy required 

to convert carbon dioxide.  

• Reactivity and conversion: Carbon dioxide is a thermodynamically stable molecule, 

making its conversion into valuable products challenging. Developing catalysts and 

chemical processes that efficiently convert CO2 is an ongoing research area 

worldwide. 
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• Scale-up and commercialization: Many technologies involving CO2 utilization are in 

the early stages of development, facing challenges in scaling up to commercial levels. 

While some pilot projects like the reduction of CO2 to methanol, DME, cyclic 

carbonates, etc have shown promise, there is a need to demonstrate scalability and 

cost-effectiveness to make a significant impact on reducing CO2 levels.  

• Market size: The demand for CO2-derived products plays an important role in the 

success of CO2 utilization technologies. Creating viable markets and establishing 

supply chains for CO2-based processes can be challenging, especially when 

competing with existing products that have well-established markets. Market policies 

and incentives can play a significant role in driving demand for such products  

• Environmental impact: Comprehensive evaluation of CO2 utilization processes need 

to be done to assess their environmental impact. Life cycle analysis considering the 

entire value chain from CO2 capture to product utilization is necessary to ensure that 

the overall carbon footprint is reduced. Also, it is essential to assess potential negative 

impacts associated with the technologies. For example, the extraction of minerals 

required for CO2 utilization processes can have environmental concerns if not 

managed appropriately.  

• Policy and regulatory frameworks: There is a lack of socio-economical driving forces 

for enhanced CO2 utilization and lower emissions. Regulatory bodies need to provide 

incentives, funding, and clear guidelines to encourage industries and people to 

manage CO2 emissions and to encourage research and development of CO2 utilization 

projects.  

1.4.1 Thermodynamics of CO2 conversion 

CO2 is a thermodynamically very stable molecule with standard Gibbs free energy at 298 K is 

– 394 kJ/mole and heat of formation at 298 K is -394 kJ/mole. The bond energy for C = O in 

CO2 is 736 kJ/mol hence requires high energies to make it react. As CO2 is highly stable and 

often kinetically inert, its activation is a permanent challenge for researchers to convert it into 

selective reactions under mild conditions. Thus, most of the reactions involving CO2 

conversions are exothermic.  
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Figure 1.5: Carbon dioxide phase diagram. 

Figure 1.5 shows the carbon dioxide phase diagram. The lowest pressure at which CO2 is in 

liquid form is 5.1 bar and thus it sublimes at atmospheric pressure. The critical point is at 

73.8 bar and 31 oC above which forms a supercritical fluid where the density of CO2 is in the 

order of liquids while viscosity is in the order of gas. Compared to other solvents, the 

supercritical region of CO2 occurs at relatively accessible conditions making it a perfect 

solvent as well as reactant due to higher diffusion rates in solid catalysts and higher mass 

transfer due to solubility. Also, liquid and supercritical CO2 (scCO2) has gained special 

attention as a green solvent for chemical reactions, extractions, and chromatography8–11. The 

scCO2 can have a range of polarity from that of pentane to pyridine by varying its density 

making it a versatile solvent for many chemical reactions12.  

1.4.2 Strategies for CO2 conversion and utilization  

The research on CO2 utilization is going on which will help to achieve a sustainable future. 

There are several strategies which need to be considered for CO2 conversion and utilization 

aimed at mitigating carbon emissions and finding productive applications. Some of the 

common strategies include: 
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• Carbon capture and storage (CCS): CCS involves capturing CO2 emissions from 

industrial processes or power plants, compressing it, and storing it in underground 

geological formations13. This process prevents the release of CO2 into the 

atmosphere, effectively reducing emissions.  

• Carbon capture and utilization (CCU): CCU involves carbon capture and its 

conversion to valuable products. It can be converted to chemicals like methanol, urea, 

polymers etc.14 Several technologies are already developed by researchers for 

conversion of CO2 to chemicals and extensive research is going on for its scalability. 

Also, CO2 can react with certain minerals to form stable carbonates like calcium 

carbonate. CO2 mineralization is still in its early stages of development and holds 

promise for long-term CO2 storage.  

• Direct air capture (DAC): This method involves capturing CO2 directly from ambient 

air by technologies like absorption and cryogenic separation and storing it for further 

applications15. This approach is mostly used to remove CO2 from the atmosphere.  

• Biological conversion: Certain microorganisms can consume CO2 and convert it into 

useful compounds16. For example, algae can be used to capture CO2 and produce 

biofuel.  

• Enhanced oil recovery (EOR): The majority of CO2 is being currently used for oil 

recovery where it is injected into depleted oil reservoirs. This process helps in oil 

production as well as storing CO2 underground17. Although, this is a commercial 

process, improving its efficiency is emerging research. 

• Building Materials: CO2 can be used as a feedstock for the production of building 

materials such as concrete, aggregates, or carbon fibre. This material can potentially 

sequester CO2 for extended periods.  

1.4.3 Recent research and development in catalytic CO2 conversion 

Numerous efforts are being made for the activation of CO2 and its conversion to value-added 

chemicals using thermal catalysis, photocatalysis, and electrochemical methods and 

remarkable conclusions have been achieved by various researchers. CO2 activation is the 

main research challenge for its conversion. Andrea et al. explained the various routes for its 

activation as shown in figure 1.618. CO2 conversion methods are categorised by its activation 

process like thermal activation, photo activation, plasma activation, and electro activation.  
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Figure 1.6: Catalytic CO2 activation routes presented by Andrea et al18.  

Thermal activation of CO2 can be occurred by two methods – Metal activation and acid base 

activation. In metal activation, electron transfer takes place from metal surface to CO2 

molecule forming CO2- radical. The energy requirement for this process is higher due to large 

work functions of metal surfaces and thus higher temperatures promotes such type of 

reactions19. According to Liu, bonding of transition metals like Fe, Cu, Co, Ni with CO2- 

radical is stronger with lower energy barriers for CO2 acitivation20. Most of the metal 

catalysed reactions involving CO2 are perfomed in the presence of hydrogen to form 

chemicals like CH3OH, HCOOH, CH4, CO. The main role of hydrogen in these reactions is 

the formation formate intermediate species21. The detailed literture on this topic is discussed 

in chapter 2. 

Carbon dioxide is known as slightly acidic molecule and it is attracted by basic sites in solid 

catalytic surfaces. Genrally acid-base solid catalysts are metal oxides like MgO, Al2O3, ZrO2, 

CeO2, etc. As shown in figure 1.6,  metal oxide surface can act as Lewis base when the 

carbon atom of CO2 interacts through O2-  sites and Lewis acid when CO2 interacts with the 

surface thorough metal cation. CO2 activation by acid-base sites occurred by forming 

intermediate species like carbonate (CO32-) and bicarbonate ions (HCO3-)22. 

The major advantage of acid-base solid catalysts is their fine tunability. The strength of acidic 

and basic sites can be tunes based on single or mixed metal oxides, compositions, structure of 
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catalyst, and various transition metals. The detailed study on such catalytic system is done in 

this thesis are represented in chapter 2. 

Some of the important research areas for the thermochemical conversion of CO2 are listed 

below. 

1.4.3.1 Hydrogenation of CO2 

Hydrogenation of CO2 can lead to several single-carbon products like methanol, methane, 

formic acid, and carbon monoxide while C2+ products like dimethyl ether, gasoline, higher 

alcohols, and liquid fuels23–25. The selection of proper catalyst and reaction parameters are the 

main contributors to product choice26–28. The hydrogenation of CO2 to C1 products is 

commercially viable while excess energy and additional active sites are required for C – C 

coupling. 

CO2 hydrogenation to methanol is mainly carried out on copper-based heterogeneous 

catalysts and its research has extended to plant-scale production26,29,30. Meanwhile, formic 

acid production from CO2 needs selective active sites, and researchers have proposed several 

catalysts worldwide31–34. Although hydrogenation of CO2 promises industrial valuable 

research, there is a significant need for the development of efficient catalysts with higher 

reaction efficiency to make the process industrially feasible. Table 1.1 shows the recent 

catalytic systems used for CO2 hydrogenation processes. 

Table 1.1 : Recent catalytic sytems for CO2 hydrogenation process. 

Process Product Catalysts 

 

 

 

CO2 hydrogenation 

Methanol Cu/ZnO/Al2O3 29,30, Cu(core)-ZnO(shell)35, Pd-

Cu/SiO236, Au/ZnO 37, Cu/Ga2O3/ZrO2 38, 

Pd/ZnO/Al2O3 39.  

Formic acid Ru/Mg-Al HT33, Ru NP40, Pd Ni/CNT41, 

Ir/Silica42, Au NP / Mg-Al HT32 , Ir/Bpy-CTF31, 

Ru-DBU/Al2O343. 

Methane Ni/ZrO2 44, Ni/MgAl2O4 45, Ni/La2O3 46, Fe-

Ni/Al2O3 47, Ni-Co/ZrO2 48, Ru-Mn-Ni/Al2O3 49, 

Rh/Al2O3 50. 
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1.4.3.2 Mineral carbonation 

The formation of stable carbonates like CaCO3 and MgCO3 from the carbonation of metal 

oxides has gained the interest of researchers due to their wide applications in 

pharmaceuticals, paints, explosives, and cosmetic industries.  

There are mainly two routes for mineral carbonation. One is a direct method where gaseous 

CO2 is directly reacted with minerals or alkaline solids. Due to very low reaction rates, this 

method is not been practised. While in the indirect method, aqueous carbonation is done for 

alkaline solids or Ca/Mg silicates are converted to hydroxide followed by dry carbonation.  

1.4.3.3 Linear and cyclic carbonates 

One of the actively investigated fields in recent years is the production of organic carbonates 

from CO2 due to their applications in polycarbonates and polymers51,52. Synthesis of these 

carbonates from CO2 can replace conventional methods that use hazardous chemicals like 

carbon monoxide and phosgene53. Synthesis of ethylene and propylene carbonate are already 

been accepted by industries and the research for other acyclic and cyclic carbonates promises 

economical and convenient processes.  

Other research studies for the utilization of CO2 like the formation of gas hydrates, fuels, 

polymers, and carbamates have limited applications due to their high energy demand and less 

market value. Although research in these areas is at the initial stages, it shows potential for 

better CO2 conversions.  

1.5 Motivation 
The demand for energy is rising day by day, leading to excess CO2 emissions and, eventually 

global warming. The primary sources of energy are still carbon-based fuels and there is a 

significant need to develop alternative renewable sources. Reducing CO2 emissions alone 

may not be sufficient to meet global climate crises; there is a significant need to remove CO2 

from the atmosphere and convert it into viable and valuable products. Also, CO2 utilization 

has huge potential for economic growth and innovation. The circular economy can be 

adopted by converting CO2, minimizing waste generation, and reducing reliance on finite 

sources. 

In the proposed thesis, Processes for three industrially important molecules: dimethyl 

formamide (DMF), styrene carbonate (SC), and ortho-salicylic acid (OSA) have been 

developed. The current industrial synthesis of these compounds needs significant 
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improvement in terms of efficient and green catalysts, restricted use of toxic substrates, 

development of efficient process, single pot synthesis, and process intensification to 

maximize product viability in the market. 

Considering these research gaps, the thesis work mainly focuses on sustainable and non-toxic 

catalyst synthesis, process development, and reaction kinetics for a scale-up protocol in the 

synthesis of dimethyl formamide by hydrogenation of CO2. While process intensification was 

done using kinetic studies for the cycloaddition of CO2 in styrene carbonate. The single pot 

synthesis of ortho-salicylic acid has been proposed using a heterogenous catalyst that is easy 

to recycle and reuse. 
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Chapter 2 

Hydrogenation of carbon dioxide to dimethyl formamide 

Abstract 

Increasing demand for fossil fuels and consequently increasing carbon dioxide (CO2) 

concentrations in the atmosphere has become a global concern for environmentalists and 

researchers. CO2 is one of the main contributors to global warming and its chemical 

conversion to industrial chemicals is an attractive route to lower its impact. Due to 

thermodynamic challenges and high industrial demand, its conversion to formic acid is been 

studied worldwide for a few decades and remarkable progress has been made in terms of 

homogeneous catalytic systems and process parameter optimization. The main gap in 

research so far is to replace phosphine-based metal-organic homogenous catalysts which 

makes the process non-feasible concerning economics and safety. In this work, a process 

involving in-situ derivatization of formic acid to dimethyl formamide (DMF) to increase the 

reaction yields is developed using ruthenium-doped Mg/Al calcined hydrotalcite in the 

presence of dimethyl amine (DMA).  

The current work focuses on synthesising a non-toxic, cheap, and recyclable solid catalyst 

for CO2 hydrogenation to formic acid and process development for batch and continuous 

synthesis. At the optimum conditions, complete conversion of DMA is achieved with more 

than 92 mole % selectivity of product at 170 oC and 13 MPa pressure within 6 hours of 

reaction time. Key catalyst properties were determined using X-ray powder diffraction 

(XRD), X-ray photoelectron spectroscopy (XPS), CO2-temperature programmed desorption 

(TPD), H2 temperature-programmed reduction (TPR), and Fourier transform infrared 

(FTIR). The surface morphology was determined using a field emission scanning electron 

microscope (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). At 

the same time, the chemical composition was verified by energy-dispersive X-ray (EDS). In 

addition, kinetic modelling is performed using the two-site Langmuir-Hinshelwood-Hougen-

Watson (LHHW) model. The regressed kinetic parameters gave an appropriate fit with 

experimental concentration values, and activation energy is calculated as 413 kJ mol-1. 
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2.1 Introduction  

Utilizing a large amount of captured carbon dioxide has been a massive challenge for 

industries realizing its activation and other viable, economical, and available synthesis routes. 

Considering the historical process of producing fossils by natural carbon-hydrogenation 

during the photosynthesis process, the hydrogenation of CO2 is probably the best modern 

approach to regenerate exhausted hydrocarbons. The thermal stability of CO2 indicated by 

high bond energy of 806 kJ/mole and the required high cost of renewable energy restricts the 

large-scale CO2 hydrogenation processes. Tackett et al. also stated that the net reduction in 

CO2 would be achieved if a process emits less than 0.2 kg of CO2 / kWh of electricity1.  

CO2 reduction to chemicals is generally carried out by three routes- thermocatalytic, 

electrochemical and photocatalytic. As the activation and subsequent conversion of CO2 are 

energy-demanding, its reduction using hydrogen produced by renewable energy and thermal 

catalysis is a promising research direction due to flexibility in catalyst combinations and its 

greater reaction dynamics2. At the same time, photocatalysis and electrocatalysis have low 

energy efficiency3–5.  

 
Figure 2.1: CO2 hydrogenation products 

Hydrogenation of carbon dioxide can lead to several hydrocarbon products, as shown in 

figure 2.1. The selection of proper catalyst and reaction parameters are the main contributors 

to product choice6–9.  
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2.2 Current industrial status of CO2 hydrogenation 

Even though CO2 hydrogenation to speciality fine chemicals and fuels studies are currently 

limited to lab scale, only methanol is scaled up to industrial level. Carbon Recycling 

International (CRI), Iceland developed the process to produce renewable methanol (Green 

methanol) and recycled carbon to methanol using hydrogen produced from water electrolysis 

executed using renewable sources and hydrogen from waste gases combined with CO2. The 

production started in Anyang, China and the process is based on Emissions to Liquids (ETL) 

technology and can capture 160,000 tonnes of carbon dioxide every year, producing 110,000 

tonnes of methanol. CRI’s second project in China is also announced and is expected to start 

by the end of 2023. Althoughsome industries start commercial synthesis of methanols, global 

acceptance will be achieved if technology with mild reaction conditions is developed.  

Various researchers are exploring the methods for the volarization of CO2 to chemicals and 

making it industrially feasible.  

2.3 Hydrogenation of carbon dioxide to C1 feedstock chemicals  

Carbon dioxide is the cheapest C1 source of carbon, and its hydrogenation to single carbon 

products like methanol, methane, carbon monoxide and formic acid are commercially viable 

with selective catalyst and reaction conditions. While, the hydrogenation of CO2 to C2+ 

products like liquid fuels, light olefins, dimethyl ether, gasoline and higher alcohols occurs 

via the Fischer-Tropsch mechanism or methanol-mediated route needs excess energy and 

additional active sites in a catalyst for C – C coupling10–13. 

2.3.1 CO2 to Methanol  

The catalytic hydrogenation of CO2 into methanol exhibits strong potential due to commonly 

reported high reaction rates. Historically, methanol also called wood alcohol was produced as 

a byproduct in the charcoal synthesis from wood and was used for lighting, cooling and 

heating purposes14.  

Methanol is a primary raw material for the chemical industry, used in the MTO (methanol to 

olefins) process, as an intermediate for the production of chemicals like formaldehyde, 

methyl ter-butyl ether, and acetic acid14. Most of these chemicals are building blocks for 

many commodity products in our daily life including paints, plastics, resins, adhesives, and 
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antifreezants. Additionally, methanol can be directly used in fuel cells, and is also proven to 

be a good fuel blend for internal combustion engines. The derivative of methanol, dimethyl 

ether (DME) with a high cetane number of 55 offers attractive properties over standard diesel 

fuel with a cetane number of 40 – 5515.  

In the early nineteenth century, BASF developed processes for organic oxygenates and 

methanol from syngas and commercialized methanol production process from syngas using 

sulphur-resistant zinc chromite (ZnO-Cr2O3) catalyst at 320 oC and 250 – 350 bar pressure. 

 
Scheme 2.1: Hydrogenation of CO2 to methanol 

Later in the 1960s, Imperial Chemical Industries (ICI) developed copper-based zinc oxide 

supported on alumina catalyst with higher selectivity of methanol for CO2 hydrogenation. 

Although many catalysts with different compositions have been found active for the selective 

synthesis of methanol by CO2 hydrogenation, the Cu-ZnO system remains most investigated 

due to its high activity and methanol selectivity16–23. Typically, copper-based catalysts used 

for methanol synthesis commercially are prepared by co-precipitation method and contain 

about 50 – 70 mole % of copper, 20 – 50 % of zinc and 5 – 20 % of aluminium. These 

catalysts are generally calcined and reduced under a hydrogen atmosphere to obtain specific 

copper (0) sites. It is proposed that Cu0 metal is the main catalytic site for the reactivity in 

CO2 activation while Arena et al. stated that ZnO acts as a reservoir for hydrogen and 

eventually speeds up the hydrogenation of intermediates24. Kunkes et al. did the DFT 

calculations and concluded that intermediates in CO2 hydrogenation are bound through an 

oxygen atom to the catalyst surface and the addition of Zn acts as a promoter while CO 

hydrogenation is activated through carbon atoms and Zn blocks these sites and hindered 

hydrogenations25.   

Various reports indicated the reaction mechanism for methanol synthesis via formate route 

via transformation to dioxymethylene (CH2O2*), formaldehyde (CH2O*), and then to 

methoxy (CH3O*), however only formate and methoxy species were observable as 

intermediates26. Chen et al. explored the possibilities of the RWGS reaction route for the 
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methanol synthesis as direct hydrogenation and RWGS are two major competing reactions as 

shown in Scheme 2.227 .  

 

Scheme 2.2: Methanol synthesis by direct CO2 hydrogenation and via RWGS reaction 

By Le Chatelier’s principle, it can be stated that the use of high pressures and low 

temperatures should be advantageous due to the exothermic nature of direct hydrogenation of 

CO2 towards methanol formation and has been proved by several authors17,28.  

2.3.2 CO2 to Methane  

French chemist Paul Sabatier reported CO2 methanation for the first time in 1902. Due to the 

increasing demand for mitigating global warming and storing surplus renewable power, this 

ancient art has attracted renewed attention. The Sabatier reaction is an advantageous way to 

store renewable energy such as wind and solar power, to transfer biogas effectively to 

biomethane, and to convert CO2 to chemical feedstock and fuels29,30.  

 
Scheme 2.3: Hydrogenation of CO2 to methane 

CO2 methanation can be catalyzed by various transition metal-based catalysts like Co, Ni, Ru, 

Rh, and Pd. Out of which, Ruthenium and rhodium showed greater activity for 

hydrogenation31–35. Nickel-based catalysts are preferred for industrial purposes due to their 

ease of availability and higher CH4 selectivity. The insertion of second metal on the surface 

of a monometallic catalyst changes the electronic and geometric structures of the catalyst and 

with this concept, Beuls et al. proposed the complete selective hydrogenation of CO2 towards 

methane at 150 oC and 2 bar pressure using rhodium doping on gamma alumina surface. In 

most cases, loading more than one metal makes a significant synergic effect on CO2 

methanation. Rh and Ni catalysts give low selectivity when used separately while when used 



Chapter 2: Hydrogenation of carbon dioxide to dimethyl formamide 

CSIR – National Chemical Laboratory, Pune  24 
 

together, activity is increased due to the supportive properties of each metal site. Rhodium is 

used as a storage source of CO2 adsorption and also helps in dissociation, while nickel sites 

help in hydrogen adsorption and activation via spillover mechanism36.  

CO2 methanation is an exothermic reaction with high equilibrium conversion between 25 – 

400 oC and studied by various authors37,38, Whereas it can proceed via either the CO route or 

formate route which is explained by various activity of metals and their supports.  

Although CO2 methanation can be an alternative way of utilizing CO2, the geothermal 

availability of methane makes it non-feasible for commercialization until the new technology 

develops with better activity at milder reaction conditions. 

2.3.3 CO2 to CO  

Hydrogenation of CO2 to carbon monoxide (CO) is a well-known reverse water gas shift 

(RWGS) reaction with positive enthalpy of 41 kJ/mol. Due to the endothermic nature of the 

reaction, higher reaction temperatures favour the conversion of CO2 according to Le 

Chatelier’s principle. Also, the CO2 conversions are maximized by increasing the H2/CO2 

ratio by various authors 39–41. It's been noticed that, lower temperature favour the CO2 

methanation and equilibrium reaches for RWGS41. 

 
Scheme 2.4: Hydrogenation of CO2 to carbon monoxide 

RWGS reaction plays a crucial role in chemical industries due to its usage in methanol 

synthesis and Fischer – Tropsch (FT) process to synthesize a variety of hydrocarbons. CO2 

hydrogenation can proceed via two routes – redox mechanism and association mechanism. In 

redox mechanism, CO2 is directly reduced to CO on catalyst surface while hydrogen reduced 

catalyst again to regain its activity42. Iron based catalyst are the most explored in this regard 

due to its high temperature stability and oxygen mobility43,44.  

In association mechanism, intermediate species like formate, carbonate, carboxyl, and 

bicarbonate forms with dissociated hydrogen and adsorbed CO2 on the catalyst surface which 

further decomposed to CO and water. Whereas the intermediate varies with catalyst 

composition and activity45–47. Although the RWGS reaction can proceed via different 
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mechanism, the key properties in the catalyst requires adsorption of CO2, dissociation of 

hydrogen, disruption of one carbon oxygen bond, and formation of water by dissociated 

hydrogen. 

Even though the RWGS reaction is commercially practiced, direct hydrogenation of CO2 to 

value added chemicals has increasing demand considering the integrated processes and 

minimizing the risk associated with toxicity of carbon monoxide.  

2.3.4 CO2 to formic acid and its derivatives  

CO2 hydrogenation to formic acid (FA) has gained special attention from researchers due to 

its non-favourable thermodynamics48 and its emerging role as a green energy carrier49. It is a 

highly reversible endergonic reaction with Gibbs free energy of 32.9 kJ/mole, and formic 

acid exhibits significant potential as a liquid hydrogen carrier with a hydrogen capacity of 53 

g/L50. In addition, formic acid is considered a crucial intermediate for synthesizing valuable 

oxygen-containing compounds like alcohols, esters and acids51. Though various homogenous 

catalysts comprising molecular metal complexes and ligands are reported for hydrogenation 

of CO2 to formic acid with exceptional activities52–58, research concerning heterogeneous 

catalyst systems and non-toxic compounds needs more attention. Also, to break the reaction 

equilibrium according to Le Chatelier’s principle, the derivatization of formic acid in situ has 

become an important step. 

 
Scheme 2.5: CO2 hydrogenation to formic acid and DMF 

Formic acid can be derivatized to N,N dimethyl formamide (DMF) using dimethyl amine as a 

reactant substrate as shown in scheme 2.5. DMF is used primarily as a solvent in chemical 

processes and is being industrially produced at 70 – 100 oC and 2 – 10 MPa by carbonylation 
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of N,N dimethyl amine (DMA)59. Many authors explored the production of DMF by CO2 

hydrogenation and DMA using different transition metal-based homogenous catalysts with 

high turnover numbers (TON) and frequencies (TOF)53,60–64. Although few heterogeneous 

catalytic systems without halides and phosphine have been reported in recent years8,65, 

efficient, non-toxic, cheap and green catalysts are needed for commercial applications. Most 

of the available reports suggest the use of noble metals in the heterogeneous catalyst, which 

are well known for hydrogenation reactions9,64–66. In this work, ruthenium-doped hydrotalcite 

as a phosphine-free heterogeneous catalytic system is proposed for the direct hydrogenation 

of carbon dioxide to dimethyl formamide using dimethyl amine under supercritical conditions 

of carbon dioxide. 

2.4 Prior art  

2.4.1 Catalysis and mechanistic approach 

Catalyst plays crucial role in CO2 hydrogenation to formic acid to overcome the high kinetic 

barrier and research has resulted in remarkable success for catalyst development to both 

homogenous and heterogeneous catalyst67–69. Various metal complexes with metal centres 

and ligands have demonstrated exceptional activities for homogeneous CO2 reduction to 

formic acid. Filonenko et al.70 presented Ru-PNP pincer complex with activity up to 1100000 

h-1 TOF while Nozaki et al.71 reported similar Ir-PNP complex with TON as high as 3500000 

where pyridine part of the Ir-PNP complex was proposed to enhance H2 activation and proton 

transfer over Ir centres.  

In spite of excellent activity of molecular complexes, its application became impractical due 

to difficult separation and recycling of metal complexes, and air sensitive ligands. Thus, easy 

handling, recyclable heterogeneous catalyst system gained importance to researchers and 

series of supported metal based catalyst have been reported in last two decades68,72,73 

although it usually show lower catalytic activity due to poor atom utilization efficiency. The 

table 2.1 shows the various reported homogenous and heterogeneous catalyst with their 

activities towards CO2 hydrogenation to formic acid and DMF.
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Reaction pathway for the formation of formic acid over metal complexes were explained by 

various researchers. Leitner et al.74 explained the reaction mechanism on RhCl(TPPTS)3 

catalyst using 1H and 31P NMR spectroscopic measurements as shown in figure 2.2.  

 
Figure 2.2: Suggested mechanism for formic acid on RhCl(TPPTS)3 by Leitner et al. 

Leitner explained that in the absence of dimethylamine, RhCl(TPPTS)3 was shown to react 

with H2 yielding the expected RhH2Cl(TPPTS)3 and the cationic [RhH2(TPPTS)3]Cl 

dihydrides. While, the key intermediate in this mechanism is the monohydridorhodium 

complex, RhH(TPPTS)3L (L = H2O or HNMe2) which forms only in the presence of HNMe2. 

Therefore, HNMe2 is not only a sink for formic acid but also plays an active role in the 

formation of the catalytically active rhodium species. At the time of the investigations, no 

direct NMR evidence could be obtained for RhH(TPPTS)3L. Later, the analogous 

monohydrido complex RhH(TPPMS)3(H2O), formed in strongly basic aqueous solutions, was 

explicitly characterized by Joo et al.88  

In case of heterogenized molecular catalyst, reaction mechanisms are similar to their 

homogeneous counterparts whereas, support plays important role towards affinity of 

reactants, reaction products, and solvent. Filonenko et al.83 proposed gold nanoparticles 
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supported on alumina for the formation of formic acid with formates and bicarbonates are the 

key intermediates in the catalytic process. In the proposed mechanism as shown in figure 2.3, 

dissociation of hydrogen occurs on Au/support interface producing surface hydroxyl and 

metal hydride species. 

 
Figure 2.3: Suggested mechanism for formic acid on Au/Al2O3 by Filonenko et al. 

Since the reaction was performed in DMF as a solvent, which adsorbed on the catalyst 

surface, hydrogen dissociation is followed by DMF desorption. This is followed by CO2 

reaction with surface hydroxyl groups formic bicarbonate species on the catalytic surface. 

The hydride ion from Au surface reacts with bicarbonate species to form formate ion on Au-

support interface.  

It was observed that, the main steps in reaction mechanism are – CO2 activation and 

hydrogen dissociation. For the activation of CO2, surface oxides which are basic in nature are 

found to be more active while noble metals are proven for hydrogenation reactions. 

Considering these factors, Ruthenium doped hydrotalcites is proposed as catalyst in this 

work. 

2.4.2 Hydrotalcites as a catalyst  

Hydrotalcites are a basic anionic layered clay material. These are the types of lamellar ionic 

compounds used as adsorbents, ion-exchangers, stabilizers, and catalyst precursors89, and it 

has a greater CO2 adsorption capacity than other basic materials. The structure of hydrotalcite 
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resembles the form of brucite Mg(OH)2 with fractional change in M(II) ions replaced with 

M(III) as shown in figure 2.4. A positive charge is balanced by balancing anions in the inter-

lamellar space apart from water molecules.  

 
Figure 2.4: Hydrotalcite structure 

The composition of hydrotalcites can be varied by replacing M(II) with isomorphs M(III) 

cations having nearly the same size90. The dependency of adsorption capacity for CO2 on 

microporous volume, interlayer spacing, and charge density of hydrotalcite has been 

explained by Alirio E. Rodrigues et al.91,92. Basicity of hydrotalcite can be tuned by changing 

the nature and ratio of M2+/M3+ metal or by replacing a suitable anion between the interlayer. 

It can also be achieved by doping various elements or controlling thermal activation. Mg:Al 

calcined hydrotalcite have intermediate basic sites that form bi-dentate carbonates on the 

adsorption of CO2. High surface area, uniform distribution of cations, and high thermal 

stability makes hydrotalcite-based metal oxides a suitable catalyst. The Hydrotalcite structure 

can hold significant variations in the type of interlayer anions and different cations with +2 

and +3 oxidation states 
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2.4.3 Thermodynamics of CO2 hydrogenation to formic acid  

The formation of formic acid from carbon dioxide and hydrogen involves a phase change 

from gaseous reagents into liquid product and its highly reversible reaction and 

thermodynamically not favourable with positive Gibbs free energy of 32.9 kJ/mol as 

discussed earlier.  

However, CO2 hydrogenation becomes favourable at higher pressures, in aqueous medium or 

with the use of base such as amines, alkali or ammonia in the reaction to remove the formic 

acid formed from the reaction system by forming an complex in a subsequent reaction93,94. 

Jessop et al. suggested to hydrate all the reactants and products to decrease the Gibbs free 

energy in slightly negative value of -4 kJ/mol and in the presence of bases such as NaOH, 

NaHCO3 or amines as it absorb the generated proton decreasing the gibbs free energy further 

to -9.5 kJ/mol95 as shown in table 2.2 

Table 2.2: Thermodynamic parameters for CO2 hydrogenation to formic acid 

Reaction ΔGo 

(kJ/mol) 
ΔHo 

(kJ/mol) 
ΔSo 

(J/molK) 

CO2(g) + H2(g) →   HCOOH (l) 32.9 -31.2 -215 

CO2(aq) + H2(aq) →  HCOOH (aq) - 4 -- -- 

CO2 (aq) + H2 (aq) + NH3 (aq) → NH4
+ (aq) + HCOO- (aq)   -9.5 -84.3 -250 

Enthaler et al. suggested not to separate the formic acid from the amine if the purpose for 

formic acid synthesis is to use it for hydrogen storage96 and Dobrovolna et al. did the 

decomposition of ammonium salt of formic acid into hydrogen, CO2 and ammonia over Pd/C 

at room temperature97.  

2.5 Experimental procedures 

2.5.1 Catalyst preparation  

The hydrotalcites with required metals and their mole ratios were prepared using the co-

precipitation method at constant pH, as reported by Cavani et al. and Basile et al.89,98. For the 

preparation of ruthenium doped Mg:Al calcined hydrotalcite, Magnesium nitrate hexahydrate 

(40 mmol) and Aluminium nitrate nonahydrate (10 mmol) supplied by Merck limited and 

Ruthenium (III) chloride hydrate (0.5 mmol) supplied by Sigma-Aldrich was dissolved in 100 
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ml of water and mixed on a magnetic stirrer. The second solution of 0.5 M Na2CO3 was 

prepared and added dropwise to the nitrate mixture at 80 °C, as shown in figure 2.5. The 

blend was aged for 24 h at 80 °C. After filtration, the solid cake was washed with warm water 

to remove potassium and nitrate ions and dried at 100 °C for 12 h. The resulting dried catalyst 

powder was calcined at 550 °C in the air for 4 h and tested for reaction activity. 

 
Figure 2.5: Catalyst synthesis setup 

2.5.2 Catalyst characterization  

X-ray diffraction (XRD) patterns of the catalysts were measured by Rigaku Dmax 500 

diffractometer using nickel filtered Cu Ka radiation. The sample was rotated to minimize the 

textural effect. The diffractometer was recorded in a range between 10° to 80° 2q at a 

scanning rate of 0.01°/s at a temperature of 25 °C.  

The surface areas of the catalyst samples were determined by nitrogen adsorption with the 

Thermo-Scientific Surfer instrument at – 196 oC and calculated using the Brunauer-Emmett-

Teller (BET) surface area analysis method. 

 Basic sites of the catalyst were determined by CO2 – temperature programmed desorption 

(TPD) and reduction properties of the catalyst were quantified by H2 – temperature 

programmed reduction (TPR) studies.  
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Surface morphology studies were performed using a field emission scanning electron 

microscope (FE-SEM) at an accelerating voltage of 10 kV and a high-resolution transmission 

electron microscope (HR-TEM) on the Jeol JEM 200 model operated at an accelerating 

voltage of 200 kV. Catalyst surface composition was confirmed by Energy dispersive X-ray 

(EDS) analysis coupled with HR-TEM observations.  

X-ray photoelectron spectroscopy (XPS) measurements were performed on Thermo Fisher 

Scientific Instrument equipped with Al Ka source and multichannel plate (MCP) detector.  

The Infrared (IR) spectra were recorded in 600-4000 cm-1 using Perkin Elmer Spectrum One 

Fourier transform infrared spectrometer. 

2.5.3 Batch reaction procedure and reaction monitoring  

CO2 hydrogenation was carried out in 300 ml stainless steel high-pressure batch reactor 

supplied by Parr Instrument. The reactor is equipped with overhead magnetic stirrer, PID 

temperature controller, pressure gauge, and digital pressure transmitter. The gaseous reactants 

– hydrogen and carbon dioxide was connected to dip tube present in the reactor as shown in 

figure 2.6.  

 
Figure 2.6: Schematic of high pressure batch reactor  

In a specific experiment, 40% aqueous DMA, catalyst, KHCO3, and methanol as solvent 

were charged with required quantities into the reactor. After purging with hydrogen, the 

reactor was pressurized to 5-10 MPa with hydrogen and carbon dioxide with requisite mole 
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ratio and heated to the necessary temperature. The reaction mixture was then kept for stirring 

at a constant temperature for a pre-determined time. After the reaction, reactor was cooled to 

room temperature and unreacted gases were vent off through scrubber and liquid reaction 

charge was collected in sample container.  

The reaction sample was filtered to remove solid catalyst, diluted with methanol analysed 

using Agilent 7890B gas chromatography(GC) installed with an auto sampler and HP - 

carbowax 30m capillary column with 250 micron of pore diameter connected to a flame 

ionization detector. Also, the gas samples were analysed using Agilent Micro GC 490 to 

identify any gaseous reaction side products. 

Reaction activity was monitored using external standard calibration method on GC where 

response factor of all reaction components were recorded prior to experiment using pre-

defined quantities. The calibration curves and their response factors with detailed GC method 

are mentioned in supporting information, table S-1.1 and figure S-1.1. Also, figure S-1.2 in 

supporting information shows GC separation of compounds. 

The reaction outcome parameters are calculated using standard equations as shown in eq. 1 to 

eq. 3 

%	$%&'()*+%& =
-./0/12	3425678/.12	34256	48	9:;

-./0/12	34256	48	9:;
∗ 100     (1) 

%	?(@(AB+'+BC =
:4256	48	D56/E5D	FE4DGH0	84E35D

:4256	48	9:;	H4.I5E05D
∗ 100     (2) 

%	J+(@K =
:4256	48	D56/E5D	FE4DGH0	84E35D

-./0/12	34256	48	9:;
∗ 100      (3) 
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2.5.4 Continuous fixed bed reactor  

 
Figure 2.7: Fixed bed reactor for continuous CO2 hydrogenation 

The fixed bed reactor, as shown in figure 2.7 was made with SS 316 tube and fittings in-

house for the continuous synthesis of DMF. Liquid reactant (DMA in methanol) was fed 

through a high-pressure piston pump (P-1) supplied by Gilson, Inc., CO2 was fed using a 

liquid CO2 pump (P-2) supplied by Jasco, and hydrogen through a mass flow controller 

(MFC) provide by Bronkhosrt. The catalyst was pelletized, sieved in the 500 – 1000 micron 

range and filled to the tubular reactor (R-1), and the reactor was installed with 7-micron 

stainless steel frit on both ends to prevent entrainment of catalyst particles in the downstream 

process. A product cooler (HE-1) was installed after the reactor, followed by a filter element 

and back pressure regulator (V-2) to maintain the required pressure in the complete system. 

Finally, the gas-liquid separator (S-1) was installed after the back pressure regulator 

separated the liquid products and unreacted gases, which were sent for analysis purposes.  
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2.6 Results and discussion 

2.6.1 Catalyst characterization 

2.6.1.1 Surface morphology 

The hydrotalcite structure is stable below 300 oC and upon calcination at 550 oC, it 

transforms to distorted sheet of Mg/Al mixed oxides. From the FE – SEM images, it clearly 

showed the expected sheet morphology for calcined Mg:Al hydrotalcite as shown in figure 

2.8. The similar surface behaviour is explained by Venugopal et al.99 for hydrotalcites.  

 
Figure 2.8: FE-SEM images of a) Mg-Al and b)Mg-Al-Ru calcined hydrotalcite 

As shown in figure 2.8 a, planer sheets are observed for Mg/Al oxide whereas, deposition of 

particles are observed on the surface of ruthenium doped Mg/Al hydrotalcite (figure 2.8 b). 

The deposition features the ruthenium metal doped over the surface of hydrotalcite. 

HR – TEM elemental mapping as shown in figure 2.9 (a&b) shows the uniform distribution 

of all metals in the catalyst. Also the d-spacing values of Mg/Al hydrotalcite (194.7 pm) and 
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ruthenium doped hydrotalcite (197. 5) shows no difference in inter lattice as shown in figure 

2.9 (c) and supports the claim that doping of ruthenium occurred on the surface of 

hydrotalcite.  

 

 
Figure 2.9: HR-TEM elemental mapping of a)Mg:Al and b)Mg:Al:Ru calcined hydrotalcite, 

d-spacing values of c)Mg:Al and d)Mg:Al:Ru calcined hydrotalcite, respectively. 
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2.6.1.2 BET surface area and elemental composition 

BET surface area of different hydrotalcites with and without noble metal doping are 

presented in table 2.3. The loss of interstitial water and carbon dioxide in calcined 

hydrotalcite leads to amorphous oxide with a high surface area100. A decrease in surface area 

after noble metal doping as shown in table 2.3 is due to meal blocking by large-size 

ruthenium particles on the catalyst's external edge surface, which can be also seen from FE-

SEM images (figure 2.8). A similar decrease in surface area and pore size after the insertion 

of ruthenium is observed by Maru et al101. 

Table 2.3: BET surface area of different synthesized and calcined hydrotalcites 

SN Catalyst BET surface area (m2/gm) 

1 Mg:Al (4:1) 851.3 

2 Cu:Al (4:1) 413.4 

3 Mg:Al:Ru (4:1) 337.7 

4 Mg:Al:Ir (4:1) 315.2 

5 Mg:Al:Pd (4:1) 403.5 

6 Cu:Al:Ru (4:1) 219.9 

Energy dispersive X-ray (EDS) analysis confirmed the atomic percentage of metals available 

in the catalyst. For ruthenium doped Mg:Al hydrotalcite, atomic mole of Ru is found to be 

1.3 % of total metals present in the catalyst. 

2.6.1.3 X – ray photo spectroscopy (XPS) 

The electronic states of metals present in the catalyst were confirmed using XPS analysis. As 

shown in figure 2.10-a, Ru3d scan showed the presence of different oxidation states of 

ruthenium. Peak i at B.E. 280.3 eV shows the Ru (IV)O2, peak ii at 282.5 eV represents 
Ru(VI)O3, while peaks iii and iv at B.E. 284.5 eV and 286.1 shows the metal incorporation of 

ruthenium oxide and Ru(II)O respectively99,102. The marginal shifting in binding energies of 

ruthenium could be due to the stress of metal (M2+/M3+) incorporation in the catalyst. These 

observations can also be cross-linked with FE-SEM morphological study and even dispersion 

of ruthenium in elemental mapping, as described in figure 2.8 and figure 2.9.  

The Mg1s and Al2p scan showed the different characteristics peaks of magnesium oxide and 

aluminium oxide as represented in figure 2.10 – b & c. The additional binding energies also 

show the crosslinking of aluminium and magnesium metals available in hydrotalcites. 
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Figure 2.10: XPS scan for a) Ru3d, b) Mg1s, and c) Al2p. 
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2.6.1.4 Fourier transform infrared (FTIR) 

The FTIR spectrum of the uncalcined Mg:Al:Ru hydrotalcite is shown in figure 2.11. The 

concentrated broadband between 3800 – 3000 cm-1 represents vibrations of structural OH- 

groups, physically adsorbed water, and vibrations of carbonate-hydroxyl and hydroxyl-

hydroxyl groups in hydrotalcite. This broadband may also represent stretching vibration of 

magnesium-hydroxide bond in hydrotalcite as suggested by Parida et al.103. The band at 1360 

cm-1 represents the presence of carbonate ions and some impurities of nitrate ions due to 

synthesis solution in uncalcined hydrotalcite. Finally, the broadband at 663 cm-1 was implied 

in reports as a superposition of the characteristic bonds of hydrotalcites. Upon calcination of 

HT, it is observed that carbonate and water peaks have vanished, and the loss of hydrotalcite 

structure is confirmed by the absence of broadband at 663 cm-1. FTIR spectrum of spent 

calcined hydrotalcite showed the intact nature of the catalyst as represented in figure 2.11.  

 
Figure 2.11: FTIR spectrum of Mg:Al and Ruthenium doped Mg:Al hydrotalcites. 
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2.6.1.5 X-ray powder diffraction (XRD) 

The hydrotalcite structure was stable below 300 °C and transformed into a distorted sheet of 

Mg/Al mixed oxides after calcination to 550 °C. It is known that the hydrotalcite structure 

was demolished upon calcination and can be regenerated by the addition of water or being 

exposed to the atmosphere104,105. Powder XRD pattern of uncalcined Mg:Al hydrotalcite 

depicted all representative peaks of pure carbonate-containing hydrotalcites as given by 

sharma et al.106. A comparison of the XRD spectra of Mg:Al (4:1) hydrotalcite and after 

doping with ruthenium is shown in figure 2.12. The absence of any additional peak in 

ruthenium doped hydrotalcite confirmed the original crystalline nature. Whereas, slight 

decrease in intensity after doping of ruthenium shows the decrease in crystalline nature. This 

may be due to penetration of some amount of ruthenium particles in the intra-crystalline 

spaces (hydrotalcite spaces) of magnesium and aluminium. The spent catalyst in the reaction 

was washed with water and re-calcined at 550 °C for 4 h, and its XRD pattern showed no loss 

in crystalline nature. 

 
Figure 2.12: XRD pattern for Mg:Al and Ruthenium doped Mg:Al hydrotalcites. 
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2.6.1.6 Temperature programmed desorption and reduction (TPD and TPR) 

The basic sites on ruthenium doped Mg:Al calcined hydrotalcite were quantified by CO2-

TPD at different desorption peaks at 100 – 190 oC and 200 – 500 oC, representing weak and 

medium sites. As shown in figure 2.13, Mg-Al catalyst has a large amount of medium basic 

sites while, after insertion of ruthenium on Mg/Al oxide support, medium basic sites are 

decreased due to the acidic nature of ruthenium. These basic sites on Mg/Al oxide layer are 

responsible for CO2 activation, while ruthenium helps in hydrogenation. According to Shen et 

al.107, calcined Mg-Al hydrotalcite at higher temperatures possess stronger basic sites than 

acidic ones. With the increase in calcination temperature up to 600 oC, acidic sites are 

reduced to a minimum while basic sites attain a peak. 

Reduction of Mg:Al:Ru calcined hydrotalcite was studied using H2-TPR. Major Peaks at 200 

– 400 oC and small, broad peak at 450 – 600 oC shows the reduction of Ru2O with different 

degree of interaction on Mg-Al oxide support as represented in figure 2.14. These 

interpretations are in line with Apuzzo et al.108. 

 
Figure 2.13: CO2 – TPD profiles of Mg:Al and Mg:Al:Ru hydrotalcites 
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Figure 2.14: H2 – TPR profile of Mg:Al:Ru hydrotalcite 

2.6.2 Catalyst screening  

In initial studies, a series of calcined hydrotalcites were tested for hydrogenation of CO2 in a 

high pressure batch reactor with the general formula M(II): M(III), where M(II) = Mg, Cu, 

and Zn, and M(III) = Al and Cr with atomic ratio 4:1. Among the catalyst studied, Mg:Al and 

Cu:Al HT showed a considerable yield of DMF as presented in table 2.4. This suggests that 

appropriate basic sites in Mg and Cu systems contribute to mediating the reaction. As per the 

reports, the basicity of HT can be adjusted by varying Mg/Al molar ratio or activation at a 

suitable temperature109, and it is mainly due to their O2- (Lewis basicity) and hydroxyl groups 

(Bronsted basicity) present in it. The increased Mg content in HT resulted in higher DMF 

selectivity due to the increased basic character of HT. A trace amount of trimethylamine 

(TMA) was formed in the reaction as a side product by methylation of dimethylamine110, and 

in the case of a lesser extent of CO2 hydrogenation, DMF yield is low, and DMA conversion 

is higher due to formation of dimethylammonium dimethylcarbamate (DIMCARB) with 

excess CO2 in the reaction111. 
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Table 2.4: Catalyst Screening. Reaction conditions: DMA 80 mmol, solvent MeOH 100ml, 
temperature 170 °C, H2: CO2 3:1, reaction pressure 10 MPa, time 3 h, catalyst amount 1 wt 
%, additive KHCO3 4.5 mmol 

Entry Catalyst 

(HT) 

DMA 

conversion (%) 

DMF  

yield (%) 

1 Cu:Al(4:1) 33.0 7.6 
2 Zn:Al(4:1) 6.7 0.3 
3 Mg:Cr(4:1) 1.2 0.2 
4 Mg:Al(4:1) 24.2 7.0 
5 Mg:Al(2:1) 23.3 4.2 
6 Mg:Al(6:1) 22.7 2.4 
7 Mg:Al:Cu(4:1:0.05) 11.1 6.8 
8 Mg:Al:Ni(4:1:0.05) 5.2 2.2 
9 Mg:Al:Zn(4:1:0.05) 5.7 0.4 

10 Mg:Al:Co(4:1:0.05) 2.1 1.5 
11 Mg:Al:Cr(4:1:0.05) 4.5 0.3 
12 Mg:Al:Pd(4:1:0.05) 7.9 3.5 
13 Mg:Al:Rh(4:1:0.05) 20.3 8.6 
14 Mg:Al:Ir(4:1:0.05) 57.3 46.1 
15 Mg:Al:Ru(4:1:0.05) 88.4 78.8 

Further, different transition and noble metal (1 mol %) doped Mg/Al HT were studied. 

According to Basile et al.112, Al3+ ions may partially replace by Rh3+, Ru3+, and Ir3+, having in 

octahedral coordination ionic radius values in the range required for the synthesis of HT 

phases, whereas Mg2+ ions may be substituted by  Pd2+, Ni2+, Co2+and Cu2+. Comparing the 

results obtained with Ru, Ir, Pd, and Rh-containing catalysts (Table 2.4, entry 12-15) with 

other transition metal catalysts (Table 2.4, entry 7-11) makes it perceptible that preferential 

coordination is possible to play a more critical role than the ion size. Ruthenium forms a 

strong coordinated covalent bond in the form of Lewis acid-base interaction, which promotes 

the hydrogenation step in the reaction mechanism. Higher selectivity and conversion with 

Ru-HT show that ruthenium has major active sites for the reaction (Table 2.4, entry 15). 
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2.6.3 Parametric study 

2.6.3.1 Effect of reaction temperature and time 

The reaction temperature and time greatly influence catalyst performance towards the 

hydrogenation reaction by supplying the required activation energy and interaction time. The 

screened ruthenium doped Mg:Al calcined hydrotalcite was tested for different temperature 

and observed that DMF yield increased with temperature up to 170 oC as shown in figure 

2.15-a . The further increase in temperature promoted the side reaction of DMA with 

methanol to yield trimethyl amine (DMA) which is a temperature driven process as reported 

by Kita et al113. Also, gradual increase in reaction product observed with time resulting the 

complete conversion of DMA with 92.5 % yield of DMF as presented in figure 2.15-b. Detail 

reaction kinetics are discussed in subsequent section 2.6.6.  

 

 
Figure 2.15: Effect of reaction temperature and time. ■  DMA conversion; ▲ DMF yield. 
Reaction conditions: 1 wt % catalyst loading, solvent: MeOH, H2:CO2: 3:1, additive KHCO3: 
4.5 mmole, DMA : 80 mmole, a) time : 6 h, b) temperature : 170oC. 
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2.6.3.2 Effect of solvent 

The experiments were carried out using different polar and non-polar solvents and observed 

that the reaction yields were maximum with methanol and ethanol as a solvent as shown in 

figure 2.16. This effect is might be due to the involvement of alcohols as a hydrogen bond 

donor or proton donor in concerted ionic hydrogenation mechanism. Solvents may not 

involve directly in the mechanism in the presence of CO2 and base, but it may also interact 

with catalyst surface, change surface properties, and increase the solubility of reactants. 

Reaction with water as a solvent resulted in formation of DIMCARB salt instead of 

hydrogenation due to solubility of CO2 and DMA in water. Non-polar solvent like toluene did 

not showed the reaction activity as shown in figure 2.16 due to non-miscible phase formation 

inside the reaction. 

 
Figure 2.16: Effect of solvent. Reaction conditions: 1 wt % catalyst loading, H2:CO2: 3:1, 
additive KHCO3: 4.5 mmole, DMA : 80 mmole, time : 6 h, temperature : 170 oC. 

2.6.3.3 Effect of H2 / CO2 mole ratio 

Although the theoretical requirement of CO2 and H2 for formic acid synthesis is equimolar, 

higher concentration of hydrogen resulted in optimum reaction yields as shown in figure 

2.17. The excess amount of hydrogen up to three equivalent showed the maximum yield and 

further increase in mole ratio did not made any effect due to the fact that, excess available 

hydrogen occupies the ruthenium active sites and suppress the parallel reactions forming 

TMA and DIMCARB. 
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Figure 2.17: Effect of H2:CO2 mole ratio. Reaction conditions: 1 wt % catalyst loading, 
Solvent: MeOH, additive KHCO3: 4.5 mmole, DMA: 80 mmole, time: 6 h, temperature: 
170oC. Total pressure :13 MPa. 

2.6.3.4 Effect of phase change (pressure) 

 
Figure 2.18: Effect of phase change. ■  DMA conversion; ▲ DMF yield. Reaction 
conditions: 1 wt % catalyst loading, solvent: MeOH, H2: CO2: 3:1, additive KHCO3: 4.5 
mmole, DMA : 80 mmole, time : 6 h,  temperature : 170oC. 
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The total pressure in the reaction plays a significant role in the diffusion of reactants on solid 

catalyst surfaces. Several reports indicate the benefits of supercritical phase of CO2 in terms 

of higher diffusion and solubility of compounds leading to lower mass transfer limitations 

and higher reaction yields66,114,115. The same trend of DMF yield is observed in the current 

study. With increased pressure up to 13 MPa, complete conversion of DMA is observed with 

92.5 % DMF yield. As shown in figure 2.18, reaction yield and conversion is comparatively 

low in the subcritical phase than in the supercritical phase of CO2. 

2.6.3.5 Effect of catalyst loading 

The catalyst amount reliability on reaction conversion and yield is shown in figure 2.19. 

DMF yield is gradually increased with catalyst amount up to 1 wt % of DMA at 170 °C for 6 

h. Further increase in catalyst loading does not have any effect on product yield. Whereas, 

with lower catalyst loading, side reactions like DIMCARB and TMA formation are 

governing over hydrogenation reaction leading to higher conversions of DMA but poor DMF 

selectivity as shown in figure 2.19. In addition, the experimental studies show that the 

reaction does not proceed at all in the absence of the catalyst. 

 

Figure 2.19: Effect of catalyst loading. ■  DMA conversion; ▲ DMF yield. Reaction 
conditions: Total pressure: 130 MPa, solvent: methanol, H2:CO2 : 3:1, additive KHCO3: 4.5 
mmole, DMA : 80 mmole, time : 6 h,  temperature : 170oC. 
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2.6.3.6 Effect of base addition 

Addition of base in reaction promote the equilibrium in forward direction by trapping formed 

acid molecules and different homogeneous bases like triethylamine are explored by various 

researchers76. In current work, the different basic salts like KOH, KHCO3, NaOH, K2CO3 are 

compared as an additive in reaction medium and observed that reaction proceeds better with 

potassium bicarbonate (KHCO3) as it may help in reaction mechanism by trapping formate 

ions. With other salts, instead of hydrogenation of CO2, carbonation of salts is occurred in 

greater extend. Also, the comparison study of reaction monitoring with and without addition 

of additive base explained the required basic sites in the prepared catalyst as shown in figure 

2.20. It can be also deduced that, addition of base enhanced the reaction rate reducing the 

total time required for complete conversion.  

 
Figure 2.20: Effect of base addition. Reaction conditions: DMA 80 mmol, H2: CO2 3:1, time 
6 h, temperature 170 °C, reaction pressure 13 MPa, catalyst Mg:Al:Ru HT (1 wt%),  solvent: 
MeOH, base KHCO3: 4.5 mmole 

2.6.3.7 Catalyst recycle studies 

The used ruthenium doped catalyst was filtered, washed with water, dried at 110 oC, and 

reused for the reaction to check its activity. It was observed that catalyst activity is slightly 

reduced with yield of DMF decreased to 72 mole % from 92 mole %. The ICP analysis 

confirmed the leaching of ruthenium in reaction mass and ruthenium content is decreased 

from 1.3 atomic percent to 1.05. This is due to the removal of weakly interacted ruthenium on 
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Mg/Al surface. Further recycle studies shown no change in catalyst activity as shown in 

figure 2.21 indicates no further ruthenium leaching.  

 

Figure 2.21: Catalyst recycle study. Reaction conditions: 1 wt % catalyst loading, Solvent: 
methanol, additive KHCO3: 4.5 mmole, H2:CO2 : 3:1 DMA : 80 mmole, time : 6 h, 
temperature : 170oC. Total pressure :13 MPa. 

 

2.6.4 Continuous synthesis in fixed bed reactor 

The proof of concept for continuous flow synthesis of formic acid is developed on an 

available fixed bed reactor which was developed in-house the lab as discussed in 

experimental procedures. In the study of temperature, it was found that maximum reaction 

selectivity is observed at 170 oC. Increasing temperature beyond 170 oC resulted in the loss of 

selectivity as the enhanced temperature promoted side reactions, as shown in figure 2.22-a. 

Unlike batch process, supercritical conditions favoured the reaction, and a 16 % yield was 

observed within two minutes of residence time, as shown in figure 2.22-b.  
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Figure 2.22: Effect of a) temperature and b) pressure in fixed bed reactor. Reaction 
conditions: solvent: MeOH, residence time: 2 minute, reactor volume: 5 ml, catalyst loading: 
2 gms, Catalyst: Mg:Al:Ru, a) pressure: 100 bar, b) temperature: 170 oC. 

2.6.5 Mechanistic approach  

CO2 hydrogenation to formic acid mainly requires the basic sites in the catalyst for CO2 

activation and noble metals are well known for hydrogenation reactions. In the proposed 

reaction system, the formation mechanism of DMF requires cooperation between both the 

acidic and basic sites. Base catalyzed hydrogenation was observed with heterolytic 

dissociation of hydrogen in H+ and H – species as shown in figure 2.23, whereas amination 
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involves DMA dissociating into – NR2 and H+. In the reaction, basic Mg/Al oxides sites are 

responsible for CO2 activation, whereas Ru2+ and O2- act as hydrogenation sites.  

Reaction proceeds with hydrogenation or hydrogen adsorption on the ruthenium surface, 

followed by CO2 activation by creating carbonate species on Mg/Al calcined hydrotalcite 

surface as shown in figure 2.23. The similar mechanism for CO2 hydrogenation are given by 

Maru et al.101 for rhodium as a active species and Jia et al.6 for metal oxides as a promoting 

sites. 

Once the carbonate species forms on catalyst surface, the lone pair on oxygen atom attacks 

the hydronium ion of ruthenium surface and subsequently, hydride ion attacks on 

electrophilic carbon centre releasing formic acid and catalyst. Further reaction of formed 

formic acid with DMA forms dimethyl formate, which can be easily dehydrated to form 

DMF. 

 

Figure 2.23: Proposed reaction mechanism over Ru doped Mg:Al calcined hydrotalcite 
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2.6.6 Reaction kinetics  

The kinetic model was developed to understand the reaction dynamics and experiments were 

performed at various process temperature for model regression. As discussed earlier in 

catalytic mechanism, reaction proceeds with two active sites in the catalyst and accordingly 

Langmuir-Hinshelwood-Haugen-Watson (LHHW) kinetic model was established. The 

general procedure to develop and solve LHHW model is executed as described by Vernuccio 

et al. for hydrogenation reaction 116. The table 2.5 illustrates the surface mechanism 

considering the non-competitive adsorption of CO2 and H2 on two types of active sites.   

Table 2.5: Reactions on hydrotalcite surface 

+)	MN + 2?Q																	 			2M. ?Q  

++)	$SN + ?T																	 			$SN. ?T  

+++)	M. ?Q + $SN. ?T					 		$SSM. ?T + ?Q  

+')	$SSM. ?T + M. ?Q	 		M$SSM. ?T + ?Q  

')	M$SSM. ?T													 		M$SSM + ?T  

From the above table, step i and ii are adsorption steps for hydrogen and carbon dioxide on 

the catalyst surface, respectively, while step iii is considered as rate-limiting irreversible 

surface reaction between adsorbed hydrogen and CO2 species. Under these assumptions, the 

rate equation generated for hydrogenation is as follows (equation 4). Step iv is the formation 

of absorbed formic acid species, while step v is the desorption step of formic acid from the 

catalyst's surface.  

)U = VU. ?Q
W . ?TXY.T                              (4)                                                                                                                         

Where,  

Occupied Hydrogen Sites:	?QW = M. ?Q 

Unoccupied Hydrogen Sites:	?Q 

Occupied CO2 sites:	?/.T 

Unoccupied CO2 sites: ?T  

The concentration of Components' i' : $/ 

The equilibrium constants for the surface reactions mentioned in the table 2.5 are stated as 

follows:  
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VZ : H2 adsorption constant = [\
]Y

T\.[\
                                      (5)                                                                                                                                                                                                                                                                                                                                                      

VN: CO2 adsorption constant  =
[^_Y.^

T^_Y.[^
                                                                                  (6)              

V` : Reaction rate constant of step iv	= [\^__\.^.[\
[^__\.^.[\

]                                                                (7)                       

Va : Formic acid desorption constant =
?M$SSM.$

M$SSM.?$
            (8)                                                                  

The fractional coverages of occupied and unoccupied sites are derived from the mass balance 

equations (9) and (10). Equation (9) demonstrates the active sites for hydrogen species while, 

equation (10) represents the mass balance of all carbon dioxide adsorbed sites.  

?Q + ?Q
W = 1                            (9)                                                                                                                                        

?TXY.T + ?QTXXQ.T + ?TXXQ.T +	?T = 1                                                                  (10)                                                    

The equations (5) and (9) are combined to yield, 

?Q
W =

bcd.T\

bcd.T\eZ
                                   (11)                                                                                                                                      

?Q =
Z

bcd.T\eZ
		                                                                                                                     (12)                                

Similarly, equations (6), (7), (8), and (10) are solved simultaneously, and the final equation is 

expressed as equation (13),  

?TXY.T =
cY∗T^_Y

fcY∗T^_Yecg∗T\^__\eZh
                          (13)                                                                                                           

Finally, equations (11) and (13) are substituted in equation (4) to deduce the final reaction 

rate equation as, 

)U = VU.
bcd.T\

bcd.T\eZ
∗

cY∗T^_Y
(cY∗T^_Yecg∗T\^__\eZ)

                (14)  

The developed kinetic model was solved in MATLAB using an ode45 solver and appropriate 

initial conditions. The variation in experimental and calculated data concentration values was 

minimized using fminsearch, and regressed parameters were recorded. The detailed 

MATLAB code is presented in supporting information. 
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Figure 2.24: Comparison between experimental data with the LHHW model 

The regressed kinetic parameter fitted well with the coefficient of determination (R2) between 

calculated and experimental values is more than 0.99 for both experimental trials of 150°C 

and 170 °C as shown in figure 2.24 

The model accurately describes the observed trends with changes in operating temperature, as 

shown in figure 2.24. The kinetic parameters were optimized with good precision after 

multiple iterations.  

The estimated kinetic parameters are known to follow the Arrhenius temperature dependence 

as shown in equation (15) and are depicted in the table 2.6. 

	VU = jkexp	(
7o1

U.p
)                             (15)       

Where,                                                                                                 

jk: Pre-Exponential Factor (L. mol-1.min-1) 

qr: Activation Energy (kJ.mol-1) 

s : Universal Gas Constant (J.mol-1. K-1) 
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Table 2.6: Estimated kinetic parameters using LHHW model 

Temperature 

Parameters        

150°C 170 °C Units 

V/ 

V// 

VI 

VU 

qr 

0.3717 0.00018 mol.molcat-1.min-1 

0.7109 0.5329 mol.molcat-1.min-1 

9.98 63.805 mol.molcat-1.min-1 

 0.03153 7.68 L. mol-1.min-1 

413.1 kJ.mol-1 

 

2.7 Conclusion and the path forward 

Different hydrotalcite-like compounds with a molar ratio 4:1 were prepared and have been 

tested for hydrogenation of CO2 to DMF under supercritical conditions of CO2. Results show 

that the basic sites in the catalyst have a considerable influence on the reaction yield. The 

optimum yield can be obtained from balancing the number of basic and metallic sites, and the 

hydrogenation was favoured by a topology of metallic sites. Mg/Al HT with a molar ratio 4 

was found to be most active within other bimetallic hydrotalcite. The activity of the catalyst 

increased by impregnating various noble metals on hydrotalcite. The selectivity of DMF 

increases with the increase in the basicity of catalysts, suggesting that formic acid is the 

primary product. This might be because catalyst particles have a large surface area and have 

sufficient basic sites to carry out hydrogenation. Among the four noble metal promoters, the 

Ruthenium effect is more noticeable than the other promoters. This could be due to the 

different effects of these promoters on CO2 adsorption, hydrogenation, or product formation. 

Thus it is concluded that Mg:Al:Ru CHTls with higher thermal stability and a molar ratio of 

4:1:0.05 is a promising candidate for hydrogenation of CO2 to DMF with 92.5% yield and 

would be able to replace traditional homogeneous catalysts. The kinetic model developed is 

in-line with the experimental trends, and the regression performed resulted in kinetic 

parameters with desirable accuracy. 

Reaction kinetics suggests a slower reaction rate, and proof of concept for continuous flow 

synthesis in fixed bed reactor is developed for the system. While development of pilot scale 

continuous reactor and its process development is the next goal for the system, making it 

industrially feasible. 
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“This chapter introduces about process intensification in flow 
reactor for the synthesis of styrene carbonate with detailed process 

development and reaction kinetics” 
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Chapter 3 

Cycloaddition of CO2 in styrene oxide 

Abstract 

The need for CO2 utilization lies in transforming a greenhouse gas into valuable chemicals, 

addressing climate change and resource scarcity. Utilization technologies offer sustainable 

pathways to reduce CO2 emissions while producing valuable products. In the proposed work, 

a sustainable process was developed for the utilization of CO2 in one of the highly 

demandable product, styrene carbonate (SC), by cycloaddition of CO2 in styrene oxide (SO). 

The cycloaddition of CO2 in epoxides is a 100 % atom efficiency reaction that occurs on the 

catalytic surface with both acidic and basic sites. Styrene carbonate is five-membered cyclic 

carbonate with applications in several industries. In the present work, the batch and 

continuous flow processes are developed for styrene carbonate synthesis using 

tetrabutylammonium bromide as a catalyst. At the optimum conditions in the batch reactor, 

complete conversion of SO is observed with 85 % yield of SC at 120 oC, 20 bar pressure, 2 

mole % catalyst, and CO2:SO ratio of 1.5 within 2 hours. The reaction kinetics studies 

suggested fast reaction rates with the required activation energy of 97.9 kJ/mol to proceed 

with the reaction. Also, the estimated reaction conversion using obtained kinetic parameters 

resulted in a good fit with the experimental values with an r-squared value of 0.982. 

The developed continuous flow process has several advantages over batch reactors in terms 

of high heat transfer rates, high surface-to-volume ratio, improved mixing, and reduced 

reactant concentrations at any particular time. At optimum flow conditions, 95 % conversion 

of SO is observed with 79 % SC yield at 80 oC within 80 minutes of residence time. 

The developed continuous flow process provides a practical and sustainable approach 

towards CO2 utilization and cyclic carbonate synthesis. 
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3.1 Introduction 

The increasing concentration of carbon dioxide (CO2) in the earth’s atmosphere has become a 

pressing global concern. CO2 is a waste from various chemical and mechanical industries 

making it an inexpensive, renewable and infinite carbon source. Hence, it is a fascinating 

challenge for the development of chemical processes which can use CO2 as a feedstock for 

the production of valuable industrial chemicals, fuels, plastic precursors, etc1–5. Although 

CO2 is cheaply available, its utilization has become challenging due to several limitations like 

energy requirements, scale and efficiency, selectivity and catalysts, purified source of CO2, 

and indirect carbon cost to power CO2 conversion due to its thermodynamic stability6,7. 

Despite such limitations, remarkable progress has been made in recent years in the utilization 

of CO2 to value chemicals8–16.  

 

Scheme 3.1: Cycloaddition of CO2 in Epoxide 

One potential strategy is to convert CO2 to five-membered cyclic carbonates by 100 % atom 

economical reaction cycloaddition of CO2 in epoxides, as shown in scheme 3.117,18. This 

transformation not only provides a practical and sustainable route for the utilization of CO2 

but also allows the synthesis of valuable compounds with diverse applications. 

Epoxides, also known as oxiranes, are three-membered cyclic ethers containing a reactive 

strained oxygen bridge. Their unique reactivity and versatility have made them key 

intermediates in various organic transformations. The cycloaddition of CO2 to epoxides is a 

highly efficient and atom-economical process leading to the formation of cyclic carbonates. 

These carbonates are valuable compounds due to their stability, polarity, and potential as 

building blocks for the synthesis of polymers, pharmaceuticals, and fine chemicals19,20 as 

shown in Figure 3.1. 
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Figure 3.1: Industrial uses of cyclic carbonates21 

Catalysts with both acidic and basic sites are required for the activation of epoxides and CO2, 

and different homogeneous and heterogeneous catalysts like amines, quaternary ammonium 

salts, metal complexes, metal oxides, organo-catalyst, ionic liquids etc., are reported by serval 

authors for this reaction22–29. However, the detailed process development, reaction kinetics, 

and continuous flow synthesis of cyclic carbonates are scarcely available in the literature.  

In this work, the process development with detailed reaction kinetics in a batch reactor is 

developed along with continuous flow reactor for the synthesis of styrene carbonate by 

cycloaddition of CO2 in styrene oxide using tetrabutylammonium bromide (TBAB) as a 

catalyst.  

3.2 Current industrial status cycloaddition of CO2 in epoxides 

Several industries have adopted the process for the synthesis of ethylene and propylene 

carbonates using the cycloaddition of the CO2 route. The shell omega process uses ethylene 

carbonate produced from cycloaddition to synthesize ethylene glycol by hydrolysis, while in 

Japan, Asahi Kasei process, ethylene carbonate is reacted with methanol to produce dimethyl 

carbonate and ethylene glycol30,31 which is used to produce polycarbonate as shown in Figure 

3.2. 
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Figure 3.2: Asahi Kasei’s polycarbonate production process32 

Earlier polycarbonate was produced using the phosgene route but with the developed process 

by Asahi Kasei, the process became phosgene-free, methylene chloride free and process 

water free.  

Propylene carbonate is also being manufactured by industries like Huntsman Corp., BASF 

SE, Solvay SA, and Eastman chemical company by cycloaddition of CO2 in propylene oxide 

using ammonium salts as a catalyst.  

3.3 Cycloaddition of CO2 in Styrene oxide – Prior art 

Styrene oxide is a chemical compound from the family of epoxides derived from styrene, an 

aromatic hydrocarbon. It is highly reactive due to the presence of epoxy functional group, 

making it very useful in various industrial applications. The cycloaddition of CO2 in styrene 

oxide results in lower reaction yields compared to ethylene and propylene oxide, probably 

due to the bulky epoxide and low reactivity of the β – carbon atom of SO33. Various authors 

explored the homogenous and heterogeneous catalytic systems for the synthesis of styrene 

carbonate and proposed the mechanistic approach for the reaction.  

Very scarce literature is available on the thermodynamics and reaction kinetics for the cyclo-

addition of CO2 to styrene oxide. Rehman et al. studied the reaction kinetics with ZnBr2 

catalyst and TBAB as a co-catalyst34. The authors found the reaction to be kinetically 

controlled and endergonic with positive values of enthalpy (∆" =	18.5 kJ/mol) of activation 

and Gibb’s free energy (∆% =	77.3 kJ/mol) of activation.  
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Generally, the acid-base catalyst is required for the cycloaddition of CO2 in an epoxide ring 

which is activated by the interaction with Lewis acid on an oxygen atom and ring opening by 

Lewis base or nucleophile to form an alkoxide intermediate as shown in figure 3.3 by 

Rehman et al34. The negatively charged alkoxide helps to insert CO2 and carbonate 

intermediate forms after rearrangement and displacement of nucleophiles. A similar 

mechanism is reported with various catalysts like metal halides, metal oxides, ammonium 

salts, ionic liquids, and organocatalyst-containing acid-base sites by researchers worldwide35–

41.  

 

Figure 3.3: General reaction mechanism for cycloaddition of CO2 to epoxide. 

The summary of different catalytic systems and their performance for the cycloaddition of 

CO2 in styrene oxide is shown in Table 3.1. Although these catalysts show a radical effect on 

the reaction yields, their synthesis procedures and cost make it challenging for the process to 

scale up to an industrial scale. In the proposed research, styrene carbonate synthesis is 

optimized across tetrabutylammonium bromide (TBAB) catalyst with complete conversion of 

SO and more than 85 % yield of SC. The detailed process parameters, reaction kinetics, and 

flow synthesis are presented in the results and discussion section. 
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3.4 Experimental procedures 

3.4.1 Batch reaction procedure and reaction monitoring  

Experiments were carried out in a 50ml high-pressure reactor supplied by Parr instrument 

company. The reactor was equipped with a dip tube, pressure gauge, digital pressure sensor, 

temperature sensor and overhead magnetic drive, as shown in Figures 3.4 and 3.5. 

 

Figure 3.4: Schematic of high-pressure batch reactor 

Figure 3.5: Actual image of high-pressure batch reactor and detailed sketch 
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The liquid solvent and reactants with catalyst were fed to the reactor vessel, and after packing 

the reactor bomb with its head, CO2 was purged through a dip tube 2 – 3 times to remove air 

present in the reactor. After cleansing, CO2 was fed to the reactor with the required amount 

from the cylinder directly, and the reactor was heated to the required temperature. On 

completion of the reaction, unreacted CO2 was removed using a valve and liquid reaction 

mass was analyzed for composition. 

GC-MS confirmed the products, and their distribution was quantified using gas 

chromatography supplied by Agilent technologies equipped with an HP-50 column connected 

to an FID detector by an external calibration method. In this method, the calibration curve of 

known concentrations for compounds to their GC responses was determined first. The 

response factor is used to quantify the exact quantities present in the reaction mass. The 

detailed GC method, calibration curve and GC peak separation is shown in supporting 

information table S-1.2 and figures S- 1.3 and 1.4 respectively. The reaction parameters were 

calculated using traditional formulae as mentioned below: 

%	#$%&'()*$% =
,-./.01	2314567.-01	23145	37	89

,-./.01	23145	37	89
∗ 100     (1) 

%	='>'?@*&*@A =
B3145	37	C45.D4C	ED3CFG/	73D24C

B3145	37	89	G3-H4D/4C
∗ 100     (2) 

%	I*'>J =
B3145	37	C45.D4C	ED3CFG/	73D24C

,-./.01	23145	37	89
∗ 100      (3) 

3.4.2 Continuous flow reactor development 

Depending upon the batch reaction kinetics, a continuous flow coil tube reactor is developed 

in-house, as shown in Figures 3.6 and 3.7. The solvent (DMF), styrene oxide, and catalyst 

(TBAB) were mixed and fed using a high-pressure syringe pump supplied by Teledyne 

ISCO, and CO2 was inserted through a mass flow controller provided by Bronkhorst 

Instrumentation. Both the reactants were passed through a static mixer to ensure diffusion of 

CO2 in a solvent, followed by a preheater and coiled reactor. The temperature of the reactor 

was controlled with a PID controller, and the reaction mass was cooled down using a coiled 

condenser connected to the reactor. Jasco's back pressure regulator connected after the 

condenser maintained the required pressure throughout the system. The actual image of the 

reactor setup is shown in Figure 3.7. 
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Figure 3.6: Continuous flow reactor PFD for cycloaddition of CO2 in epoxide 

 

Figure 3.7: Actual image of continuous flow reactor 
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3.5 Results and Discussion 

3.5.1 Catalyst screening 

As discussed earlier in the mechanistic approach for cycloaddition reaction, catalysts with 

both acidic and basic sites are required to carry out the reaction. A series of catalysts with 

these properties are screened for the reaction, as shown in Figure 3.8. The heterogeneous 

catalysts like 5% Ru/Al2O3 (5 % RA), pseudo-boehmite (PB), and mixed metal oxides of 

transitions metals (CLR, CSR and MAR) shown the conversion of styrene oxide, but the 

selectivity is more towards the parallel reaction resulting phenyl acetaldehyde formed by 

isomerization reaction54,55. The phenyl acetaldehyde can also be produced by dehydration of 

styrene glycol in the presence of acidic sites56. While using TBAB as a co-catalyst with these 

heterogeneous catalysts has resulted in partial styrene carbonate yield. It was observed that 

the catalyst - tetra butyl ammonium bromide (TBAB) alone shows the maximum output 

without the addition of a co-catalyst which various authors have also reported. It is concluded 

that the cycloaddition requires a specific combination of basic and acidic sites present in 

TBAB; any additional site can lead to the formation of by-products. Also, the quantity of the 

catalyst (TBAB) loading plays very crucial role in selective product formation and discussed 

in further sections. Thus, the same catalyst is considered for further optimization and 

development of continuous flow process. 

 

Figure 3.8: Catalyst screening. Reaction conditions: Catalyst 5 mole %, temperature 120 oC, 

time 2 h, CO2:SO 1.5, total pressure 20 bar, solvent: DMF  15 ml, SO  2 gms. 
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3.5.2 Batch process optimization  

3.5.2.1 Effect of reaction temperature 

The reaction temperature showed a radical effect on the selection of products due to the close 

activation energies of side reactions. The isomerization of styrene oxide can lead to phenyl 

acetaldehyde and dehydration of styrene glycol, which produces in reaction yields to phenyl 

acetaldehyde in the presence of acidic sites as discussed earlier54–56. As shown in Figure 3.9, 

with 2 mole % of TBAB as a catalyst, a CO2:SO mole ratio of 1.5 and pressure of 20 bar, the 

yield of styrene carbonate (% Y) increases till 140 oC to the maximum value of 84 % while, 

sudden drop in selectivity is observed after a further increase in temperature resulting the 

formation of phenyl acetaldehyde within 2 hours. 

 

Figure 3.9: Effect of reaction temperature. Reaction conditions: Catalyst (TBAB) 2 mole %, 

time 2 h, CO2:SO 1.5, total pressure 20 bar, solvent: DMF  15 ml, SO  2 gms. 

3.5.2.2 Effect of catalyst loading 

TBAB has strong cation and anion, making it both acidic and basic sites available for 

reactions. Its concentration in the reaction media plays a vital role in the selective 

cycloaddition of CO2 in styrene oxide. As shown in Figure 3.10 a, at 140 oC, the increased 

concentration of TBAB promotes side reactions, while at lower temperatures (Figure 3.10 

b&c ), the yield of by-products is less due to a lack of activation energy.  
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Figure 3.10: Effect of catalyst loading. Reaction conditions: Catalyst TBAB, time 2 h, 

CO2:SO 1.5, total pressure 20 bar, solvent: DMF - 15 ml, SO 2 gms. 
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3.5.2.3 Effect of pressure 

CO2 is highly soluble in DMF with solubility of 3.3 mol/kg at 20 bar pressure57, making the 

reaction homogeneous in liquid form and proceeding without mass transfer limitations. The 

elevated pressure increases the solubility of CO2 in DMF as a solvent, and as shown in Figure 

3.11, the reaction conversion (% X) increases with pressure up to 20 bar. The complete 

conversion with 84 % yield (% Y) of styrene carbonate was observed at 140 oC, 2 mole % 

catalyst, and 20 bar pressure within 2 hours. Further, the increase in pressure did not have any 

effect on reaction parameters. At lower pressure(s), reaction yield and conversions are less 

due to the lesser diffusion of CO2.  

 

Figure 3.11: Effect of pressure. Reaction conditions: Catalyst TBAB 2 mole %, time 2 h, 

CO2:SO 1.5, temperature 140 oC, solvent: DMF 15 ml, SO 2 gms. 

3.5.2.4 Effect of reaction time 

The cycloaddition of CO2 in styrene oxide is relatively fast, and the reaction conversions with 

respect to time are shown in Figure 3.12. Complete conversion of styrene oxide is observed 

within 2 hours at 140 oC, whereas the initial rate is very high, and 85 % conversion was 

achieved within the first 40 minutes. The reaction conversion and yield at lower temperatures 

gradually increase with time and are shown in Figures 3.12 b & c. Also, as seen in Figure 

3.12, at the very initial stage (0 – 10 min), the selectivity towards styrene carbonate is 

complete. With respect to time, the formation of styrene glycol is increasing, resulting in a 

lower yield of carbonate. The detailed reaction kinetics are discussed in the following section.  
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Figure 3.12: Effect of reaction time. Reaction conditions: Catalyst TBAB 2 mole %, CO2:SO 

1.5, total pressure 20 bar, solvent: DMF 15 ml, SO 2 gms. 
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3.5.2.5 Effect of solvent 

The effect of solvent for cycloaddition of CO2 in styrene oxide was studied at 120 oC reaction 

temperature for 2 hours of residence time in a batch reactor. As shown in Figure 3.13, 

dimethyl formamide (DMF) has shown the best activity for CO2 addition in styrene oxide, 

probably due to the polar nature and the amide group may act as a good promoter58. Also, the 

solubility of CO2 in DMF is more significant than other solvents compared, making the 

reaction mass homogenous and free from mass transfer limitations59. With water as a solvent, 

complete styrene oxide is converted to styrene glycol by hydration reaction and with 

methanol also the same trend is observed where selectivity for styrene glycol is more than 

styrene carbonate.  

Reactions without solvents are considered one of the main principles in green chemistry60 and 

within 2 hours, 45 % conversion with 90 % selectivity is observed without the use of any 

solvent. The lesser conversions are due to gas–liquid mass transfer limitation in batch 

reaction, but the selectivity number suggests better reaction yields for a longer time.  

 

Figure 3.13: Effect of solvent. Reaction conditions: time 2 h, catalyst TBAB 2 mole %, 

CO2:SO 1.5, temperature 120 oC, total pressure 20 bar, solvent 15 ml, SO 2 gms. 
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3.5.2.6 Effect of CO2:SO mole ratio 

Experiments were carried out with excess CO2 and observed that with a CO2:SO mole ratio 

of 2.5 and further, there is no effect on reaction conditions, while at a mole ratio of 1 and 1.5, 

there is only a slight decrease in reaction yield, as shown in Figure 3.14. This indicates the 

excess CO2 is not promoting any further reaction while the soluble CO2 in the reaction media 

of SO and solvent (DMF) is reacting to yield SC. Thus the 1.5-mole ratio is considered the 

optimum with 95 % conversion of SO and 80 % yield at 120 oC within 2 hours.  

 

Figure 3.14: Effect of CO2:SO mole ratio. Reaction conditions: time 2 h, catalyst TBAB 2 

mole %,  temperature 120 oC, total pressure 20 bar, solvent DMF 15 ml, SO 2 gms. 

3.5.3 Reaction kinetics. 

The kinetics were studied to understand reaction dynamics, and experiments were performed 

at various temperatures and times for model regression. The solubility of CO2 in DMF 

(solvent) at higher pressure makes the reaction medium homogenous, and first-order reaction 

kinetic equations were used for parallel reactions, as mentioned in Scheme 3.2. The formation 

of styrene glycol occurs due to the presence of a small amount of water in the catalyst 

(TBAB). 
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Scheme 3.2: Reaction scheme for parallel reaction 

The overall reaction rate for the consumption of styrene oxide (SO) can be written as :  

−
C[89]

C/
= NO[=P] + NR[=P]        (4) 

Where, NO is the reaction rate constant for SC formation and 

NR is the reaction rate constant for SG formation. 

Subsequently, the rate of formation of styrene carbonate (SC) and styrene glycol (SG) can 

also be stated as follows: 

C[8S]

C/
= NO[=P]          (5) 

C[8T]

C/
= NR[=P]          (6) 

Integrating equation (4) with respect to time leads to the final rate expression for SO as: 

[=P] = [=P]U	'
6(WXYWZ)/	        (7) 

Where, [=P]U is the initial concentration of SO in the reaction medium. 

The concentration equations for SC and SG were derived by substituting equation (7) in 

equations (5) & (6), resulting in the following equations. 

C[8S]

C/
= NO	'

6(WXYWZ)/	 and C[8T]
C/

= NR	'
6(WXYWZ)/ 

Upon integrating the above equations with boundary conditions of the initial concentration of 

SG and SC to zero, the final concentration profiles were estimated. 

[=#] =
WX	[89]\
WXYWZ

	[1 − '6(WXYWZ)/]        (8) 
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[=]] =
WZ	[89]\
WXYWZ

	[1 − '6(WXYWZ)/]        (9) 

 

 

Figure 3.15: Comparison between experimental data with first order kinetic model. 
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The final model equations (7), (8) and (9) for concentrations were solved in the solver 

function of Microsoft Excel using an appropriate initial guess of kinetic coefficient and the 

least mean square error between experimental values and calculated values was minimized. 

Figure 3.15 compares the concentration values of all components using regressed kinetic 

parameters with experimental values at 140 oC and 120 oC. The model fitted very well with r-

squared (R2) values of 0.995 and 0.990, respectively for both temperatures. 

The estimated kinetic rate constant was used to calculate the activation energy of the reaction 

using the Arrhenius temperature dependence, as shown in equation (10). 

	N^ = NUexp	(
6b0

^.d
) where, 	N^ = 	NO + 	NR      (10) 

The above equation is modified to estimate activation energy (Ea) using two rate constants at 

different temperatures as, 

	e0 = f. ln i
WjX
WjX
k ∗ i

	dX.	dZ
	dX6	dZ

k        (11) 

Where,	N^O and N^R are rate constant at 120 oC and 140 oC, respectively. 

The final regressed kinetic parameters are shown in the following table:  

Table 3.2: Estimated kinetic parameters using first-order homogenous kinetics. 

Temperature 

Parameters        

120°C 140 °C Units 

N^	(NO + NR) 

NO 

NR 

el 

0.015 0.065 min-1 

0.0125 0.054 min-1 

0.0025 0.011 min-1 

97.9 kJ.mol-1 

The above kinetic parameters were used to estimate reaction concentrations at 130 oC and it 

was observed the excellent fit of experimental data with estimated values and an r-squared 

value of 0.982, as shown in Figure 3.16. Also, the comparison of concentration values at 

different temperatures with experimental and estimated values is shown in Figure 3.17.  
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Figure 3.16: Estimated concentration profiles and experimental values at 130 oC 

 

Figure 3.17: Comparison of experimental and model concentration values at different 

temperatures 
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3.5.4 Continuous flow synthesis  

A flow reactor was built in-house for the continuous flow synthesis of styrene carbonate, as 

discussed in Figures 3.6 and 3.7 in the experimental section. Continuous flow reactors can 

often perform at lower temperatures than batch reactors due to higher heat transfer efficiency, 

reduced reactant concentration at any time, improved mixing, and lower heat loss61–66. The 

same effect is observed when the cycloaddition of CO2 was done in a flow reactor. Figure 

3.18 shows that the reaction yields 80 % of styrene carbonate with 95 % SO conversion at 80 
oC only with 80 min of residence time, 1.7 CO2:SO mole ratio, and 2 mole % of catalyst 

loading. At the same time, it took 120 oC for batch reaction for similar performance. The 

increased temperature of 85 oC promoted the formation of phenyl acetaldehyde, as observed 

in the batch reactor also.  

 

Figure 3.18: Effect of temperature in a flow reactor. Reaction conditions: Catalyst TBAB 2 

mole %, residence time 80 min, CO2:SO mole ratio 1.7, pressure 20 bar, Solvent DMF. 

The study of excess CO2 (CO2:SO mole ratio) at different temperatures confirmed that 

reaction is not mass transfer controlled as the excess amount of CO2 did not make any 

remarkable effect of reactions progress. As shown in Figure 3.19 a and b, reaction yields are 

similar at a CO2:SO mole ratio of 1.2 and further. SC yield at 85 oC is lower due to the 

formation of isomer phenyl acetaldehyde, as discussed earlier. 
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Figure 3.19: Effect of CO2:SO mole ratio in a flow reactor. Reaction conditions: catalyst 

TBAB 2 mole %, pressure 20 bar, residence time 80 min, solvent DMF. 

The increased pressure helped in increased solubility of CO2 in solvent (DMF) and eventually 

resulted in higher reaction selectivity and conversion. As observed in the batch reactor, the 
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same trend is seen in the flow process (figure 3.20) that the reaction conversion and yield 

gradually increased up to 15 bar and further increased in pressure did not improve results.  

 

Figure 3.20: Effect of pressure in a flow reactor. Reaction conditions: temperature 80 oC, 

catalyst TBAB 2 mole %, residence time 80 min, CO2:SO mole ratio 1.2, solvent DMF.   

Finally, the effect of residence time was studied in the flow synthesis, and it was observed 

that, reaction conversion and SC selectivity gradually increased with residence time, as 

shown in Figure 3.21 and optimum conditions obtained for continuous flow synthesis of 

cycloaddition of CO2 in styrene oxide.  

As shown in Figure 3.21 a, the conversion of SO gradually increased with residence time and 

temperature and similar trends are observed for SC yield (Figure 3.21 b). With an increased 

residence time of 100 minutes, the reaction results are similar for 75 oC and 80 oC. 

The final reaction parameters for the continuous flow synthesis of styrene carbonate are 

optimized to 80 oC, 80 min residence time, 15 bar pressure, and 1.2 CO2:SO mole ratio with 

95 % conversion of SO and 79 % yield of SC.  
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Figure 3.21: Effect of residence time in a flow reactor. Reaction conditions: catalyst TBAB 2 

mole %, pressure 15 bar, CO2:SO mole ratio 1.2, solvent DMF. 
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3.6 Conclusion and the path forward 

Process for batch and continuous synthesis is developed for the cycloaddition of CO2 to 

styrene oxide in the presence of tetrabutylammonium bromide as a catalyst. The reaction 

mechanism suggests the requirement of both basic and acid sites in the catalyst for the 

reaction, and TBAB has both strong cations and anions. Process optimization results show 

that the amount of catalyst and temperature plays a crucial role in the reaction to avoid side 

reactions. At the optimum conditions of 120 oC temperature, 20 bar pressure, 2 mole % 

catalyst loading, and 1.5-mole ratio of CO2 to SO, complete conversion of styrene oxide is 

achieved with more than 85 % selectivity of styrene carbonate within 2 hours. Other side 

products like styrene glycol and phenyl acetaldehyde also get formed by the isomerization of 

SO. The choice of temperature and catalyst loading was a key factor in minimizing the by-

products.  

Reaction kinetics suggested fast reaction dynamics with an activation energy of 97.9 kJ/mol. 

The obtained kinetic parameters were used to estimate reaction conversions and yield at 130 
oC, and it was observed a good fit of estimated and experimental values with an r-squared 

value of 0.983. Based on the reaction kinetics, a continuous flow reactor was developed, and 

the process was optimized at 80 oC, 80 minutes of residence time with 95 % conversion of 

SO and 80 % yield of SC.  

The process is optimized in terms of reaction conversion and selectivities. The development 

of comprehensive kinetic model with mass transfer considerations and the downstream 

process development comprising the separation of products and solvents is the system's next 

goal, making it an industrially feasible process. 
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Chapter 4 

Carboxylation of phenol to salicylic acid 

Abstract 

Salicylic acid has a wide range of applications in the pharmaceutical and chemical industries. 

The market demand for salicylic acid is over 100 kilotons per annum, increasing rapidly. 

Industrially it is produced by the carboxylation of phenol using CO2 over an alkaline catalyst 

and requires multiple steps. The main challenge in the current process is obtaining an 

anhydrous reaction intermediate, which is needed for selective carboxylation reaction and 

formation of sodium chloride as by product. As its demand increases, this process offers a 

helping hand in CO2 mitigation technologies. 

The present work presents the single-pot synthesis of salicylic acid using potassium-

impregnated NaX zeolites. Zeolites are known for CO2 adsorption, high surface area and 

volumes. At the same time, potassium ion is active in the carboxylation reaction due to its great 

tendency to form phenolate salt, which is the primary intermediate in this reaction.  

The potassium-impregnated catalyst is characterised to understand its properties and detailed 

process optimization was carried out in a high-pressure batch reactor. X-ray diffraction (XRD) 

study confirmed the dispersion of potassium on the zeolite surface and the original structure of 

zeolite upon potassium impregnation. At the same time, Fourier transformed infra-red (FTIR) 

study indicated the main characteristic properties of NaX zeolite. The decrease in the surface 

area has been observed after impregnating potassium on zeolite due to uniform dispersion 

covering the pores of the zeolite. 

 At optimized conditions, more than 98 % selectivity of salicylic acid is obtained with 20 % 

conversion at 200 oC within 5 hours under supercritical conditions of CO2 and without the use 

of any additional solvent. The CO2 above its critical point offers several advantages in terms 

of higher product solubility, enhanced diffusion, and lower mass transfer limitations.  
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3.1 Introduction 

Carboxylation is a fundamental chemical process involving adding a carboxyl group (- COOH) 

to a compound. This transformation plays a crucial role in various areas of organic chemistry, 

including the synthesis of pharmaceuticals and fine chemicals. One notable example of 

carboxylation is the Kolbe-Schmitt process for preparing salicylic acid from phenol. According 

to the global salicylic acid market report by Skyquest, the market demand for salicylic acid is 

102 kilotons valued at USD 510 million and expected to grow to 880 million USD by 20301.  

The carboxylation of phenol to salicylic acid typically involves using carbon dioxide (CO2) as 

the carboxylating agent and is often catalysed by a base like sodium hydroxide. The preparation 

of salicylic acid offers a practical and efficient route for synthesising valuable compounds from 

CO2.  

As shown in Figure 4.1, salicylic acid has many applications in the pharmaceutical, cosmetic, 

and chemical industries. Some of the essential applications are listed below: 

• Pharmaceutical applications: Salicylic acid is commonly used to formulate analgesics, 

anti-inflammatory, and antipyretic drugs2. One of its most famous derivatives is 

acetylsalicylic acid, also known as aspirin which is widely used as a pain reliever and 

blood thinner. 

• Skincare applications: Salicylic acid is a popular ingredient in skincare products, 

particularly targeting acne. It is often found in facial cleansers, toners, spot treatments, 

and peels to combat acne, blemishes, and blackheads3. 

• Dermatological applications: Salicylic acid treats dermatological conditions like 

psoriasis, seborrheic dermatitis, and warts. It helps to remove dead skin, promote skin 

shedding, and reduce scaling and itching3. 

• Haircare applications: Salicylic acid is used in shampoos and scalp treatments to 

address dandruff and scalp conditions4. 

• Industrial applications: Salicylic acid finds various applications in producing dyes, 

fragrances, and rubber chemicals5,6. It is also utilised in the synthesis of agrochemicals, 

including herbicides and plant growth regulators7. 
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Figure 4.1: Industrial uses of salicylic acid 

3.2 Current industrial status salicylic acid production 

The most common processes for the industrial preparation of salicylic acid are the 

carboxylation of phenol and hydrolysis of methyl salicylate. 

 

Scheme 4.1: Preparation of salicylic acid by carboxylation of phenol. 

As discussed earlier, carboxylation of phenol is a well-known Kolbe-Schmitt process and is a 

widely employed method for the industrial synthesis of salicylic acid8,9,10. In this process, 

phenol is first treated with sodium hydroxide to form sodium phenoxide, which later reacts 

with carbon dioxide under elevated temperatures of 120 – 130 oC and pressures of 80 – 90 bar 

to yield sodium salicylate salt. Salicylic acid is formed along with sodium chloride upon 

hydrolysis of sodium salicylate. The salicylic acid can be further purified through 

crystallization. The main challenge in carrying out this reaction is the difficulty of getting 

anhydrous sodium phenoxide for carboxylation10.  
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Another method for industrial production involves the hydrolysis of methyl salicylate, which 

is commonly obtained from natural sources such as wintergreen oil11,12.  

 

Scheme 4.2: Preparation of salicylic acid by hydrolysis of methyl salicylate. 

Methyl salicylate is first reacted with sodium hydroxide to yield sodium salicylate and 

methanol. Then the sodium salicylate is acidified with sulphuric acid to form salicylic acid and 

sodium sulphate.  

Although, these two are most common methods used for industrial production of salicylic acid, 

various attempts are made by researchers to develop other technologies and catalytic system 

for carboxylation of phenol. 

3.3 Carboxylation of phenol – prior art 
Carboxylation of phenol is well known Kolbe-Schmitt process for the synthesis of ortho 

salicylic acid (OSA). In general, substitution of carboxylic acid occurs at the ortho postion of 

phenol, but in some cases para substitution is also known to lead to para-salicylic acid (PSA).  

In 1860, Kolbe first proposed salicylic acid synthesis by heating a mixture of phenol with 

sodium in the presence of carbon dioxide. The salicylic acid was generated by acid precipitation 

of sodium salicylate formed in this reaction.  This process needed various improvements due 

to formation of by-products like sodium carbonate and sodium phenoxide. In addition, some 

amount of phenol was volatilized from the reaction mixture due to direct heating.  

Later, Schmitt modified the process and proposed three step process for of salicylic acid where 

in the first step, phenol was reacted with an aqueous solution of equivalent sodium hydroxide 
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to form sodium phenoxide. The water from sodium phenoxide is evaporated completely at 180 
oC to make dried sodium phenoxide in the second step. Later, CO2 was inserted in reaction 

mass in a closed vessel at 80 – 90 bar pressure and heated for several hours at 120 – 130 oC. 

Under these conditions,  sodium salicylate was formed which is treated with acid solution to 

precipitate salicylic acid8.  The modified Kolbe-Schmitt method remains the standard method 

for the preparation of wide range of aromatic hydroxyl acids. 

 

Figure 4.2: General mechanism of Kolbe-Schmitt reaction 

The general reaction mechanism as shown in figure 4.2, suggest the formation of sodium 

phenolate salt by the interaction of strong electrophile with the lone pair on oxygen atom 

present in phenol. After CO2 insertion, sodium metal interacts with oxygen connected to carbon 

forming sodium salicylate. Upon acid hydrolysis, salicylic acid gets precipitates with sodium 

chloride as a by-product. 

Considering this mechanistic study, researchers have explored different catalytic system for 

the synthesis of salicylic acids and its derivatives. Iijima et al. proposed the direct synthesis of 

salicylic acid catalyzed by K2CO3 under supercritical CO213. As shown in figure 4.3, authors 

suggested the reaction mechanism on solid base catalyst where initial absorption of phenol 

occurs with Lewis acid centre on base catalyst producing phenoxy anion. Simultaneously, an 

oxygen atom from CO2 donates a charge to the cation to which phenoxide group is attached, 

forming a carboxyl group. Salicylic acid is formed by the transfer of a hydrogen atom to the 

carboxyl group. Tsuji proposed that the migration of CO2 on an oxide surface has been 

observed over strong solid bases like metal oxides14. Iijima et al.15 also stated a similar 

mechanism with AlBr3 as a catalyst. 
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Figure 4.3: Reaction mechanism on K2CO3 catalyst proposes by Iijima et al13. 

Miaofei et al16. studied hybrid effects of K2CO3 on the synthesis of salicylic acid and 

derivatives using various alkaline earth metal phenoxides. The authors used different 

combinations of catalysts like ionic liquids, tetrabutylammonium bromide with potassium and 

sodium carbonate. Rahim et al. also investigated the effects of alkaline earth metals on Kolbe-

Schmitt reactions and observed the better selectivities of ortho products with sodium and 

potassium phenoxides17.  

Zeolites are a class of porous crystalline materials with unique three-dimensional framework 

structures composed of interconnected channels and cages. NaX and NaY, the sodium forms 

of zeolites, have shown CO2 adsorption applications due to their high surface area and unique 

pore structure. Boer et al. studies the adsorption capacity of NaX zeolites and offers valuable 

information for the development of efficient CO2 capture system18. 

In the proposed work, potassium-doped NaX zeolites (K/NaX) were explored for carboxylation 

reaction as zeolite has good CO2 adsorption capabilities and potassium shows activity towards 

phenol activation for phenoxide formation. The potassium-doped zeolites has higher basic sites 

compared to plane NaX zeolite due to the addition of active potassium sites. Siriporn et al. 

showed the effect of potassium doping on basic sites of NaX zeolites19. 
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3.4 Experimental procedures 

3.4.1 Catalyst synthesis 

The NaX zeolite was prepared using reported method by Georgiev et al20. The kaolin with 

Si/Al ratio of 1.3 was calcined in muffle furnace at 600 oC for 3 hours. The obtained product 

was mixed with silica to get homogenous mixture. The dried homogenous mixture was added 

into sodium-alumosilicate to obtain gel like solution. The blend was mixed for 1 hour followed 

by calcination at 700 oC and dried NaX was obtained. 

The obtained NaX zeolite was impregnated with an aqueous solution of KOH as mentioned by 

Wenlei et al21. In a typical experiment, 4 gms of zeolite was stirred with 40 ml of 10 % aqueous 

KOH solution for 12 h at ambient temperature. After impregnation, the slurry was filtered using 

Whatman filter paper and dried in an oven at 120 oC for 12 hours to evaporate complete water 

followed by calcination at 500 oC for 3 hours.  

3.4.2 Catalyst characterization 

X-ray diffraction (XRD) patterns of the catalysts were measured by Rigaku Dmax 500 

diffractometer using nickel filtered Cu Ka radiation. The sample was rotated to minimize the 

textural effect. The diffractometer was recorded in a range between 10° to 80° 2q at a scanning 

rate of 0.01°/s at a temperature of 25 °C.  

The surface areas of the catalyst samples were determined by nitrogen adsorption with the 

Thermo-Scientific Surfer instrument at – 196 oC and calculated using the Brunauer-Emmett-

Teller (BET) surface area analysis method. 

Catalyst surface composition was confirmed by Energy dispersive X-ray (EDS) analysis. 

The Infrared (IR) spectra were recorded in 600-4000 cm-1 using Perkin Elmer Spectrum One 

Fourier transform infrared spectrometer. 

3.4.3 Batch reaction procedure and reaction monitoring  

Experiments were carried out in a 50 ml high-pressure reactor supplied by Parr Instrument 

Company. The reactor was equipped with a dip tube, pressure gauge, digital pressure sensor, 

temperature sensor and overhead magnetic drive, as shown in figure 4.4. 
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Figure 4.4: Schematic of high-pressure batch reactor 

The phenol and catalyst were fed to the reactor vessel, and after packing the reactor bomb with 

its head, CO2 was purged through a dip tube 2 – 3 times to remove air present in the reactor. 

After cleansing, CO2 was fed to the reactor with the required amount from the cylinder directly, 

and the reactor was heated to the required temperature. On completion of the reaction, 

unreacted CO2 was removed using a valve and the reaction mass was analyzed for composition. 

The products were quantified using high pressure liquid chromatography (HPLC) supplied by 

Agilent technologies equipped with an C-18 column on UV detector with phosphate buffer as 

a mobile phase by an external calibration method. In this method, the calibration curve of 

known concentrations for compounds to their HPLC areas/responses was recorded first. The 

response factor is used to quantify the exact quantities present in the reaction mass. The detailed 

HPLC method with calibration curves and peak separations are mentioned in supporting 

information table S-1.3 and figures S-1.5 and S-1.6. The reaction parameters were calculated 

using traditional formulae as mentioned below: 

%	#$%&'()*$% = ,-./.01	2314567.-01	23145	37	894-31

,-./.01	23145	37	:94-31
∗ 100     (1) 

%	>'?'@A*&*AB = C3145	37	D45.E4D	8E3DFG/	73E24D

C3145	37	894-31	G3-H4E/4D
∗ 100     (2) 

%	I*'?J = C3145	37	D45.E4D	8E3DFG/	73E24D

,-./.01	23145	37	894-31
∗ 100      (3) 
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3.5 Results and Discussion 

3.5.1 Catalyst characterization 

3.5.1.1 X-ray diffraction (XRD) 

Figure 4.5 shows XRD pattern of NaX and potassium-impregnated NaX zeolite. After 

impregnation of potassium using KOH solution, the main characteristic peaks were still 

observed but with a decrease in the intensities. This represents the intact zeolite structure upon 

impregnation. However, some structure may have collapsed due to hydrolysis of Si-O-Al 

bonds22–24. The decrease in intensities also implies that potassium molecules cover the external 

surface of NaX as suggested by Siriporn et al19. 

 

Figure 4.5: XRD pattern of NaX and K/NaX zeolites. 

3.5.1.2 Fourier transformed infrared spectroscopy (FTIR) 

Figure 4.6 presents the FTIR spectra of plain NaX zeolite and potassium-impregnated zeolite. 

NaX zeolite shows all the characteristic peaks. The intensity of band stretching at 950 cm-1 is 

decreased in potassium-doped zeolite corresponding to Si-O-Al due to the dispersion of 

potassium and thermal hydrolysis during decomposition in the calcination process23. The peak 
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at 1425 cm-1 for K/NaX zeolite corresponds to carbonate ion stretching probably due to 

adsorption of CO2 on potassium sites25,26. All these findings for potassium-doped zeolites are 

in line with Rakmae et al23. and Manadee et al26. 

 
Figure 4.6: FTIR spectra of NaX and K/NaX zeolite 

 

3.5.1.3 Surface area and elemental composition 

The Nitrogen sorption isotherms of NaX and K/NaX zeolite confirmed the occupation of 

impregnated species in the zeolite structure as BET surface area is decreased from 604 m2/gm 

to 332 m2/gm after impregnation of potassium on NaX zeolite. These results also confirm the 

decrease in XRD intensity upon impregnation. Similar trend has been observed by several 

researchers22–24,26,27. The elemental composition measurements analysed on energy dispersive 

X-ray spectroscopy confirmed the presence of 11.2 atomic % of potassium in K/NaX zeolite. 

 3.5.2 Catalyst screening 

Considering the required basic sites in the catalyst for carboxylation of phenol to salicylic acid 

from reaction mechanism understanding, various catalyst were explored, as shown in table 4.1. 

It was observed that the catalyst with potassium precursors or doping is more active towards 
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the reactions, probably due to the tendency to form phenoxide salts with phenol16,28. NaX 

zeolites are known for CO2 adsorption capacities18 and with potassium impregnation (table 4.1, 

entry 8 & 9) its activity towards ortho-salicylic acid is increased. The other isomer, para 

salicylic acid is produced in less quantity as electronic effects are stronger in ortho positions. 

Further reaction optimization was carried out with K/NaX zeolite. 

Table 4.1: Catalyst screening. Reaction conditions: Phenol 2 gms, catalyst 1 gm, temperature 

200 oC, time 5 h, reaction pressure 80 bar. 

Entry Catalyst Phenol 

conversion 

Mole % 

OSA selectivity 

Mole % 

PSA selectivity 

Mole % 

1 K2CO3 9.2 92.3 7.7 

2 MgO 5.0 96.0 4.0 

3 Li/MgO 7.1 97.1 2.9 

4 K/MgO 7.5 98.6 1.4 

5 ZnBr2 2.3 86.9 13.1 

6 LiBr 3.2 93.7 6.3 

7 Mg:Al (4:1) HT 3.5 94.3 5.7 

8 NaX zeolite 7.3 97.3 2.7 

9 K/NaX zeolite 13.5 97.7 2.3 

 

3.5.3 Process optimization  

3.5.3.1 Effect of reaction temperature 

Temperature is one of the main parameter for reaction to carry out. As shown in figure 4.7 a, 

increasing trend of phenol conversion is observed with temperature up to 200 oC and further 

there is a drop in its activity due to decomposition of salicylic acid into phenol and CO2 

again29,30. Figure 4.7 b compares the phenol conversion of K2CO3 and K/NaX zeolite and it is 

observed that K/NaX better activity than plain K2CO3 due to more CO2 adsorption on zeolite 

surface and high surface area and pore volume of zeolites. At 200 oC, K2CO3 showed maximum 

12 % phenol conversion (%X) while K/NaX resulted in maximum 20 % phenol conversion 

with 98 % salicylic acid selectivity within 5 hours of time and 2 gms catalyst loading. 
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Figure 4.7: a) Effect of temperature with K2CO3 catalyst, b) Comparison of K/NaX and 

K2CO3 with temperature. Reaction conditions: Time 5 h, pressure 80 bars, catalyst amount 2 

gms, phenol 2 gms. 
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3.5.3.2 Effect of catalyst loading 

In the carboxylation of aromatics, Olah et al31. stated that the amount of catalyst is directly 

dependent on carboxylic acid formed and similar trend is observed with K/NaX catalyst as 

shown in figure 4.8. The yield of salicylic acid significantly increases with an increase in 

catalyst quantity upto 2 gms while the selectivity remains more than 95 %. With lesser catalyst 

loading, the selectivity of ortho-salicylic acid is 100 % as shown in figure but the conversions 

are very less. The higher loading is slightly promoting para substitution also due to higher 

number of active sites present. 

 

Figure 4.8: Effect of catalyst loading. Reaction conditions: Temperature 200 oC, pressure 80 

bar, time 5 h, phenol 2 gms. %X – conversion, % Y – yield. 

3.5.3.3 Effect of pressure 

The increased pressure of CO2 results to higher density and eventually higher solubility of 

phenol in carbon dioxide. As shown in figure 4.9, the reaction yield drastically changed with 

phase change of CO2 from subcritical to supercritical. Also, it’s been reported that the reactivity 

of CO2 is maximum near its critical pressure32,33. Figure 4.9 also states that there is no change 

with further increase for pressure beyond supercritical point.  
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Figure 4.9: Effect of Phase change (pressure). Reaction conditions: Temperature 200 oC, time 

5 h, phenol 2 gms, catalyst K/NaX zeolite. 

3.5.3.4 Effect of reaction time 

The study of reaction yield with time suggests slow reaction rate as shown in figure 4.10 a & 

b. The reaction were performed at 200 oC in the presence of K/NaX zeolite under 80 bar 

pressure. It was observed that the rate of salicylic acid decreased with time and after 5 hours, 

reaction attains its equilibrium. This could be due to the low solubility of salicylic acid in scCO2 

as studied by Iijima et al13. Figure 4.10 b compares the phenol conversions at 200 oC and 180 
oC with time. 
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Figure 4.10: a) Effect of reaction time. b) Comparison of reaction conversions at different 

temperature with time. Reaction conditions: Temperature 200 oC, phenol 2 gms, catalyst 2 gms, 

pressure 80 bar. 

a) 

b) 
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3.5.3.5 Effect of solvent 

The effect of solvent for carboxylation reaction is studied with variety of solvents as shown in 

figure 4.11. With water as a solvent in reaction, phenol conversion was less probably due to 

chelation of water molecules with loosely impregnated potassium on zeolite or hydrolysis of 

phenoxide intermediate forms during the reaction. A polar aprotic solvent DMF has great CO2 

solubility34 making the reaction mixture homogenous also did not showed the better activity as 

it might be blocking the phenol activation on catalyst surface. The solvents like methanol and 

ethanol with high dielectric constant showed the similar activity towards carboxylation while 

without the use of any additional solvent than only CO2, which acts as reactant as well as 

solvent showed the maximum activity towards carboxylation of phenol as shown in figure 4.11. 

 

Figure 4.11: Effect of solvent. Reaction conditions: Temperature 200 oC, pressure 80 bar, time 

5 h, phenol 2 gms, catalyst 2 gms. 

3.6 Conclusion and the path forward 

The demand for salicylic acid is increasing due to its wide range of applications in 

pharmaceutical, cosmetic, and chemical industries. The industrial synthesis process offers a 

good reaction efficiency but the process is multistep and obtaining the desired purity 

intermediates is the main challenge with the formed salt as a by-product. Additionally the 

recovery of alkali requires further process. 

In the present work, single pot synthesis of salicylic acid is achieved using potassium 

impregnated NaX zeolites. The modified zeolite offers high surface area, greater CO2 

adsorption and higher selectivity for salicylic acid. The detailed catalyst characterization and 

process optimization is carried out and at optimized conditions; more than 98 % selectivity of 
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salicylic acid is obtained with 20 % conversion at 200 oC within 5 hours under supercritical 

conditions of CO2 and without the use of any additional solvent. The CO2 above its critical 

point offers several advantages in terms of higher product solubilities, enhanced diffusion and 

lower mass transfer limitations.  

As the process potentials sustainable method to synthesize salicylic acid, process 

intensification, product separation and catalyst recovery studies are the next aim for 

development of pilot scale. Also, the reaction mechanism needs to understand for development 

of kinetic models.  
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Chapter 5 

Conclusion and future scope 

Conclusions 

As the energy demand is rising daily, CO2 emissions are increasing exponentially, and the total 

emission of CO2 per year has crossed 37 billion tons. CO2 is considered one of the main 

contributors to global warming, and the average temperature rise from the pre-industrial era 

has crossed 1 oC. To address the concern of global warming, renewable energy sources and 

substantial reduction in CO2 emissions should be adopted.  

There may need to be more than just reducing CO2 emissions alone to meet global climate 

crises; there is a significant need to utilise and convert it into value-added chemicals. Currently, 

CO2 is being consumed in industries to prepare certain chemicals, in food industries and for oil 

recovery. The yearly consumption of CO2 is only 250 million tons, which accounts for less 

than 1 % of total emissions. Using CO2 for value-added chemicals can provide a helping hand 

in the battle against global warming, and it has enormous potential for economic growth and 

innovation. 

In the proposed work, processes for three industrially important molecules: dimethyl 

formamide (DMF), styrene carbonate (SC), and ortho-salicylic acid (OSA), have been 

developed using CO2 as a reactant. The current industrial synthesis of these compounds needs 

significant improvement in terms of efficient and green catalysts, restricted use of toxic 

substrates, development of an efficient process, single pot synthesis, and process intensification 

to maximise product viability in the market. The research findings are summarised below: 

Ø Dimethyl formamide is an essential compound with broad applications in chemical 

industries, mainly as a solvent. The reaction mechanism for hydrogenation of CO2 to 

formic acid and dimethyl formamide suggests the need for basic sites in the catalyst for 

CO2 activation and conversion. The heterogeneous, recyclable, and green catalyst is 

developed in the thesis work using metal precursors. The developed mixed metal oxide 

catalyst showed notable activity towards direct hydrogenation of CO2. A detailed 

catalyst characterisation was performed to understand its properties, and the process 

was developed in a batch reactor. At the optimised reaction conditions, more than 92 



Chapter 5: Conclusion and future scope 

CSIR – National Chemical Laboratory, Pune  122 
 

% yield of DMF is obtained. Additionally, the process intensification was done using a 

reaction kinetic study and the development of proof of concept for continuous flow 

synthesis in a fixed-bed reactor. 

Ø Styrene carbonate is a five-membered cyclic carbonate with various applications, 

mainly in polymer industries and as a polar aprotic solvent in chemical industries. For 

the synthesis of styrene carbonate, batch and continuous synthesis processes are 

developed using CO2 and styrene oxide as reactants in the presence of 

tetrabutylammonium bromide as a catalyst. At optimised reaction conditions in a batch 

process, complete conversion of styrene oxide is obtained with more than 85 % product 

selectivity. Additionally, the reaction kinetic study suggested the fast reaction dynamics 

and was used to estimate reaction conversions with a good fit between experimental 

and calculated values.  Process intensification was done by developing a continuous 

flow reactor, and the process was optimised at mild reaction conditions. 

Ø Salicylic acid has a range of applications in the pharmaceutical and chemical industries. 

The work presents a single-pot synthesis of salicylic acid from phenol and CO2 using 

potassium-impregnated NaX zeolites having high CO2 adsorption capacities, larger 

surface areas and volume. The catalyst characterisation was performed to understand 

its properties, and the process was devolved in a batch reactor.  At the optimised 

conditions, more than 98 % salicylic acid selectivity is obtained with 20 % phenol 

conversion under supercritical CO2 conditions. The CO2 above its critical point offers 

several advantages in terms of higher product solubility, enhanced diffusion, and lower 

mass transfer limitations 

Although the thesis work provides a significant fundamental understanding of the process 

and catalyst system, there is a need to expand this study further for sustainable commercial-

scale production of the proposed chemicals. The future work directions are summarised 

below: 

Ø The study on hydrogenation of CO2 suggested a slower reaction rate and proof of 

concept for continuous flow synthesis was developed. For feasible industrial-scale 

production, a pilot plant of the continuous reactor and its process development 

studies are needed to be carried out. 

Ø The continuous flow synthesis process is developed for the synthesis of styrene 

carbonate, while the development of downstream processes for the separation of 
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products and recyclability of solvent is the future scope of study needed for 

industrial plant development. 

Ø The comprehensive reaction kinetics need to be studies considering mass transfer 

limitations for better validation of continuous reaction data.  

Ø To synthesise salicylic acid, a batch process using a zeolite catalyst has been 

developed. Process intensification, product separation and catalyst recovery studies 

are the following goals for developing industrial-scale production and replacing 

existing processes.  

Ø Understanding and reaction mechanism for salicylic acid preparation over 

potassium doped NaX zeolite is a major challenge for future research and 

development. 
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Annexture A 

Supporting information 
 

Chapter 2: Hydrogenation of carbon dioxide to dimethyl formamide 
The reaction products quantification was done using an external calibration method on Gas 

Chromatography (GC) supplied by Agilent technologies. The detailed GC method is 

presented in table S-1.1, while the GC separation chromatograph and calibration curves are 

shown in figures S-1.1 & S-1.2. 

Table S-1.1: Gas chromatography method for detection of DMA, DMF and TMA 

Column Carbowax  

Column Dimensions 30m x 0.25 mm x 0.25 µm  

Mode Split ratio- (50:1) 

Detector Flame Ionization Detector (FID) 

Mobile phase (gases) Nitrogen 

Flow rate 1mL/min 

Total run time  8.3 min 

Oven temperature ramp 

Rate, 0C/min Temperature 0C Hold Time min 

 80 3.0 

40.0 125 1.0 

20.0 150 2.0 

 

 

Figure S-1.1: GC separation of DMA, TMA, and DMF 
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Figure S-1.2: Calibration curve for a) DMA, b) DMF, and c) TMA 
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The LHHW model developed for reaction kinetics was solved in MATLAB and regressed to 

fit the experimental values. The detailed MATLAB code is given below: 

  

// Defining rate equation 

 

function dcdt=model170(T,C,K) 

KZ=K(1); 

KH=K(2); 

KC=K(3); 

KD=K(4); 

 

dcdt=-

((KZ*((KH*C)^(0.5))*(KC*C)))/((1+(KH*C)^(0.5))*(KC*C+KD*(0.112

-C)+1)); 

 

 

// Defining Error function (least mean square) 

 

function lsqe=errfunc170(K) 

C0=0.112; 

Ts=[0 60 120 180 300 360]; 

[T,C]=ode45(@(T,C) model170(T,C,K),Ts,C0); 

Cexpt=[0.112 0.07572 0.05892 0.04814 0.04015 0.03654]; 

Cexpt=Cexpt'; 

R=(C-Cexpt).^2; 

lsqe= sum(R); 

end 
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// Sover using ODE45 

 

KZ=0.5844; 

KH=0.03355; 

KC=0.178; 

KD=2.86; 

 

K0=[KZ;KH;KC;KD]; 

fun=@errfunc170; 

 

[K,fval]= fminsearch(fun,K0); 

 

KZ=K(1); 

KH=K(2); 

KC=K(3); 

KD=K(4); 

 

disp(['KZ: ' num2str(KZ)]); 

disp(['KH: ' num2str(KH)]); 

disp(['KC: ' num2str(KC)]); 

disp(['KD: ' num2str(KD)]); 

 

K=[KZ;KH;KC;KD]; 

Ts=[0 60 120 180 300 360]; 

C0=0.112; 

[T,C]=ode45(@(T,C) model170(T,C,K),Ts,C0); 

Cexpt=[0.112 0.07572 0.05892 0.04814 0.04015 0.03654]; 

plot(Ts,Cexpt,'blue',Ts,C,'red') 
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Chapter 3: Cycloaddition of CO2 in styrene oxide 
The reaction product quantification was done using an external calibration method on Gas 

Chromatography (GC) supplied by Agilent technologies. The detailed GC method is 

presented in table S-1.2, while the GC separation chromatograph and calibration curves are 

shown in figures S-1.3 & S-1.4 

Table S-1.2: Gas chromatography method for detection of SO, SC, and SG 

Column HP 50+ 

Column Dimensions 30m x 0.25 mm x 0.25 µm  

Mode Split ratio- (50:1) 

Detector Flame Ionization Detector (FID) 

Mobile phase (gases) Nitrogen 

Flow rate 1mL/min 

Total run time  25 min 

Oven temperature ramp 

Rate, 0C/min Temperature 0C Hold Time min 

 100 1 

10 200 2 

10 270 5 

 

 

Figure S-1.3: GC separation of SO, SC, SG 
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Figure S-1.4: Calibration curve for a) SO, b) SC, and c) SG 
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Chapter 4: Carboxylation of phenol to salicylic acid 
The reaction product quantification was done using an external calibration method on high-

pressure liquid chromatography (HPLC) supplied by Agilent technologies. The detailed 

HPLC  method is presented in table S-1.3, while the HPLC separation chromatograph and 

calibration curves are shown in figures S-1.5 & S-1.6. 

Table S-1.3: HPLC method for detection of Phenol, OSA, and PSA 

Column C18 

Column Dimensions 150 mm x 4.6 mm x 2.5 µm 

Mode Isocratic  

Detector UV – 210 nm and 236 nm 

Mobile phase  Phosphate buffer (A) : MeOH (B) 50:50 

Solution A 2.5 mmol Na2HPO4 + 10 mmole H3PO4 

Solution B Methanol 

Flow rate 0.5 mL/min 

Total run time  20 min 

 

 

Figure S-1.5: HPLC separation of Phenol, OSA, and PSA at 236 nm UV wavelength. 
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Figure S-1.6: Calibration curve for a) Phenol, b) OSA, and c) PSA 
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The 21st century is experiencing enormous development in every sector and at the same time 
demand for energy is rising. Although renewable energy is promising, the main sources of 
energy are still coal, oil, and natural gas which accounts for 81 % of total energy supply. The 
excessive use of these resources are increasing CO2 concentration in the atmosphere. CO2 is 
considered as one of the main greenhouse gases causing global warming and the average rise 
in Earth’s temperature has exceeded 1 oC mark. Reducing CO2 emissions alone may not be 
sufficient to meet global climate crises, there is a significant need to remove CO2 from the 
atmosphere and convert it into viable and valuable products. Also, CO2 utilization has huge 
potential for economic growth and innovation. The circular economy can be adopted by 
converting CO2, minimizing waste generation, and reducing reliance on finite sources. 

In the proposed thesis, sustainable processes for three industrially important products: 
dimethyl formamide (DMF), styrene carbonate (SC), and ortho-salicylic acid (OSA) were 
developed which has wide range of applications. The current synthesis methods for these 
compounds needs a significant modification in terms of process intensification, sustainable 
and green catalyst, restrict the use of toxic chemicals, development of single pot synthesis, 
process for continuous flow manufacturing, and improvement of process efficiency for 
economic stability. 

The work mainly focuses on development of heterogeneous catalyst, process optimization, 
and reaction kinetics for the synthesis of DMF by CO2 hydrogenation at supercritical 
conditions. The process optimization resulted in complete conversion of reactant with more 
than 90 % selectivity of DMF. Also, for the synthesis of styrene carbonate, a continuous flow 
reactor is developed based on reaction kinetic studies. The continuous reactor promises hassle 
free synthesis with maximum conversions at mild reaction conditions. The salicylic acid 
production is carried out in multiple steps by industries with tedious downstream process for 
catalyst recovery. Single pot synthesis is developed with zeolite catalyst and detailed process 
development is carried out. 

The thesis work, along with intensified processes for valued chemicals, provides significant 
fundamental understanding of process and catalyst system necessary for sustainable 
commercial scale production. 
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A B S T R A C T   

The utilization of carbon dioxide is one of the developing areas due to its significant contribution to global 
warming. Reducing carbon dioxide (CO2) to formic acid and its derivatives has gained importance because of its 
thermodynamic limitations and high industrial demand. In this article, we report the synthesis of dime-
thylformamide (DMF) using ruthenium doped Mg/Al calcined hydrotalcite by CO2 hydrogenation in the presence 
of dimethylamine (DMA). At optimized conditions, complete conversion of dimethylamine was achieved with 
more than 92% product yield at 170 ◦C and 13 MPa pressure with a reaction time of 6 h. Key catalyst properties 
were determined using X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), CO2-temper-
ature programmed desorption (TPD), H2 temperature-programmed reduction (TPR) and Fourier transform 
infrared (FTIR). The determination of surface morphology was carried out using field emission scanning electron 
microscope (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). At the same time, the 
chemical composition was verified by energy-dispersive X-ray (EDS). In addition, kinetic modeling is performed 
using the two site Langmuir-Hinshelwood-Hougen-Watson model. The regressed kinetic parameters gave an 
appropriate fit with experimental concentration values and activation energy is calculated as 413 kJ/mol K−1.   

1. Introduction 

With the advent of global warming, increasing levels of CO2 are the 
primary concern, and at this alarming rate, the pre-industrial CO2 con-
centrations will double by the end of the 21st century [1]. Due to the 
demand for alternative carbon sources and high carbon dioxide con-
centration levels, CO2 to value-added chemicals like methanol, ethers, 
carbonates, formates, etc, is a competent and engaging route [2,3]. 

CO2 hydrogenation to formic acid and its derivatives has been a field 
of interest for researchers and industrialists due to its thermodynamics 
and industrial value. It is a highly reversible endergonic reaction with 
Gibbs free energy of 32.9 kJ/mol [4]. DMF has mainly been used as a 
solvent for many chemical processes and is currently produced by 
carbonylation of DMA at 70 – 100 ◦C and 2–10 MPa [5]. Many routes for 
the production of DMF via hydrogenation of CO2 and DMA have been 
explored by various authors. In this context, substantial evolution has 
been made in recent years, and different transition metal-based ho-
mogenous catalysts have been reported with high turnover numbers 
(TON) and frequencies (TOF) [6–10]. Haynes et al. reported the mech-
anistic information of hydrogenation of carbon dioxide to DMF using 

transition metal phosphine complexes, in which, the moles of DMF 
produced per mole of catalyst was found to be high [11]. Jessop et al. 
reported a very efficient method of synthesizing DMF by hydrogenation 
of CO2 in a supercritical phase (scCO2) using Ruthenium 
chloro-phosphine complex RuCl2[P(CH3)3]4 [9], where scCO2 was used 
as a reactant as well as the reaction medium. In comparison with con-
ventional solvents, scCO2 improved reaction yields due to its high 
complex solubility, hydrogen miscibility, and increased diffusion and 
mass transfer rates [12–15]. Krocher et al. prepared a more active silica 
hybrid gel containing RuCl2(dppe)2 catalyst and obtained TOF up to 
110,800/h [16]. However, the formation of water as a side product 
resulted in a poor interaction between Ru-complexes and amine, which 
affected the conversion of DMA. To overcome the problem of phase 
separation, a series of water-soluble Ru-complexes were reported by 
Kayaki et al. producing TON ranging from 2100 to 9000 [17]. Several 
reports hypothesized the presence of water promotes CO2 hydrogena-
tion as a supplementary ligand on a metal-based transition catalyst. 
Infusion of CO2 into a metal-hydrogen bond can be accelerated due to 
water molecules resulting from hydrogen bonding [18–20]. 

Numerous efforts have been made to prepare heterogeneous 
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catalysts using various supports to conquer the constraint of separation 
and recovery of a homogenous catalyst. Considerable TOF values and 
recyclability of silica and aerogel-supported Ruthenium complexes were 
reported by Baiker et al. [16,21–23]. Hydrophilic and recyclable 
cross-linked graft copolymer resin-supported Ruthenium complex was 
prepared and studied for hydrogenation of CO2 to DMF by Kayaki et al. 
[24]. These catalysts were recycled after drying with a moderate loss of 
activity. Liu et al. reported the synergistic effect of Cu/ZnO catalyst in 
solvent-free conditions, where copper is used for hydrogen activation 
and generation of formate species that migrate on ZnO and form DMF by 
dehydration dimethylamine formate [25]. 

Nearly all of the catalysts investigated for hydrogenation of CO2 to 
DMF contain transition metal complexes with halides or hydrides and 
phosphine ligands. A few heterogeneous catalytic systems without ha-
lides and phosphine have been reported in the literature [2,25]. 
Although these catalysts proved better for higher conversion and yield, 
they are limited by economic considerations and toxicity. Hence, there is 
a need to develop efficient, less toxic, cheap, and green catalysts. Con-
cerning the selective hydrogenation of CO2 and DMA to DMF, many 
catalyst systems have been reported, which involve noble metal com-
plexes and supported metal complexes. Many of these transition metals 
are well known as active in hydrogenation reactions [3,9,20,25–27]. In 
the current work, Ruthenium doped Mg:Al calcined hydrotalcite (CHTls) 
is proposed as a phosphine-free heterogeneous catalytic system for the 
hydrogenation of CO2 to DMF. 

Hydrotalcites are a basic anionic layered clay material. These are the 
types of lamellar ionic compounds used as adsorbents, ion-exchangers, 
stabilizers, and catalyst precursors [28]. Hydrotalcites have a greater 
CO2 adsorption capacity than other basic materials. The structure of 
hydrotalcite resembles the form of brucite Mg(OH)2 with fractional 
change in M(II) ions replaced with M(III). A positive charge is balanced 
by balancing anions in the inter-lamellar space apart from water mole-
cules. The composition of hydrotalcites can be varied by replacing M(II) 
with isomorphs M(III) cations having nearly the same size [29]. The 
dependency of adsorption capacity for CO2 on microporous volume, 
interlayer spacing, and charge density of hydrotalcite has been 
explained by Alirio E. Rodrigues et al. [30,31]. Basicity of hydrotalcite 
can be tuned by changing the nature and ratio of M2+/M3+ metal or by 
replacing a suitable anion between the interlayer. It can also be achieved 
by doping various elements or controlling thermal activation. Mg:Al 
CHTls have intermediate basic sites that form bi-dentate carbonates on 
the adsorption of CO2. High surface area, uniform distribution of cat-
ions, and high thermal stability make hydrotalcite-based metal oxides a 
suitable catalyst. The Hydrotalcite structure can hold significant varia-
tions in the type of interlayer anions and different cations with + 2 and 
+ 3 oxidation states [32]. The present study aims to compare the 
effectiveness of noble metals as promoters of Mg:Al CHTls catalysts for 
CO2 hydrogenation to DMF in the presence of DMA. The effects of these 
promoters on catalyst activity and selectivity have been explored. 

2. Experimental 

2.1. Materials 

Dimethylamine (40% solution) was supplied by Loba chemicals, 
Mumbai, India, the metal precursors (>99% assay), KHCO3 (99.5%), 
methanol HPLC grade (>99.5%), and sodium carbonate(99.5%) were 
procured from Merck India. Vadilal gases supplied the hydrogen gas 
cylinder, and the Liquid CO2 cylinder (99.9%) was procured from 
Deluxe Industrial gases, Pune, India. Deionized water with a conduc-
tivity of 0.055 µs/cm was used to synthesize the catalysts. 

2.2. Catalyst preparation 

The Mg:Al:M CHTls were prepared using the co-precipitation method 
at constant pH [28,33]. For the preparation of CHTls, Magnesium nitrate 

Fig. 1. XRD pattern of Mg:Al and Ruthenium doped Mg:Al hydrotalcites.  

Fig. 2. CO2 – TPD profiles of Mg:Al and Mg:Al:Ru calcined hydrotalcite.  

Fig. 3. H2- TPR for calcined Mg-Al-Ru hydrotalcite.  
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hexahydrate (40 mmol) and Aluminium nitrate nonahydrate (10 mmol) 
supplied by Merck limited and Ruthenium (III) chloride hydrate (0.5 
mmol) supplied by Sigma-Aldrich was dissolved in 100 ml of water. The 
second solution of 0.5 M Na2CO3 was prepared and added dropwise to 
the nitrate mixture at 80 ◦C. The blend was aged for 24 h at 80 ◦C. After 
filtration, the solid cake was washed with water and dried at 100 ◦C for 
12 h. The resulting catalyst was calcined at 550 ◦C in the air for 4 h. 

2.3. Catalyst characterization 

X-ray diffraction (XRD) patterns of the catalysts were measured by 
Rigaku Dmax 500 diffractometer using nickel filtered Cu Kα radiation. 
The sample was rotated to minimize the textural effect. The diffrac-
tometer was recorded in a range between 10◦ to 80◦ 2θ at a scanning rate 

of 0.01◦/s at a temperature of 25 ◦C. The surface areas of the catalyst 
samples were determined by nitrogen adsorption with the Thermo- 
Scientific Surfer instrument at −196 ◦C and calculated using the 
Brunauer-Emmett-Teller (BET) surface area analysis method. Basic sites 
of the catalyst were determined by CO2 – temperature programmed 
desorption (TPD) and reducibility of the catalyst were quantified by H2 – 
temperature programmed reduction (TPR) studies. Surface morphology 
studies were performed using a field emission scanning electron mi-
croscope (FE-SEM) at an accelerating voltage of 10 kV and a high- 

resolution transmission electron microscope (HR-TEM) on the Jeol 
JEM 200 model operated at an accelerating voltage of 200 kV. Catalyst 
surface composition was confirmed by Energy dispersive X-ray (EDS) 
analysis coupled with HR-TEM observations. X-ray photoelectron spec-
troscopy (XPS) measurements were performed on Thermo Fisher Sci-
entific Instrument equipped with Al Kα source and multichannel plate 
(MCP) detector. The Infrared (IR) spectra were recorded in 600–4000 
cm−1 using Perkin Elmer Spectrum One Fourier transform infrared 
spectrometer. 

2.4. Catalytic reaction procedure    

Reduction of CO2 to DMF was carried out in a 300 ml stainless steel 
high-pressure batch reactor supplied by Parr instruments. In a specific 
experiment, 80 mmol of 40% aqueous DMA, 1 wt% of catalyst, 4.5 mmol 
KHCO3, and 100 ml of methanol as solvent were charged into the 
reactor. After purging with hydrogen, the reactor was pressurized to 
5–10 MPa with H2:CO2 (3:1) and heated to the required temperature. 
The reaction mixture was then kept for stirring at a constant temperature 
for a pre-determined time. The products were analyzed using Agilent 

Fig. 4. FE-SEM images of a) Mg-Al and b)Mg-Al-Ru calcined hydrotalcite.  
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7890B gas chromatography installed with a carbowax 30 m capillary 
column connected to a flame ionization detector. 

3. Results and discussion 

3.1. Catalyst characterization 

The hydrotalcite structure was stable below 300 ◦C and transformed 
into a distorted sheet of Mg/Al mixed oxides after calcination to 550 ◦C. 
It is known that the hydrotalcite structure was demolished upon calci-
nation and can be regenerated by the addition of water or being exposed 
to the atmosphere [34,35]. Powder XRD pattern of uncalcined Mg:Al 
hydrotalcite (Fig. 1) depicted all representative peaks of pure 
carbonate-containing hydrotalcites [36]. A comparison of the XRD 
spectra of Mg:Al (4:1) hydrotalcite and after doping with ruthenium is 
shown in Fig. 1. The absence of any additional peak in ruthenium doped 
hydrotalcite confirmed the original crystalline nature. The spent catalyst 
in the reaction was washed with water and re-calcined at 550 ◦C for 4 h, 
and its XRD pattern showed no loss in crystalline nature (Fig. 1). 

The basic sites on ruthenium doped Mg:Al calcined hydrotalcite were 
quantified by CO2-TPD at different desorption peaks at 100 – 190 ◦C and 
200 – 500 ◦C, representing weak and medium sites. As shown in Fig. 2, 
Mg-Al catalyst has a large amount of medium basic sites while, after 
insertion of ruthenium on Mg/Al oxide support, medium basic sites are 
decreased due to the acidic nature of ruthenium. These basic sites on 
Mg/Al oxide layer are responsible for CO2 activation, while ruthenium 
helps in hydrogenation. According to Shen et al. [37], calcined Mg-Al 
hydrotalcite at higher temperatures possess stronger basic sites than 
acidic ones. With the increase in calcination temperature up to 600 ◦C, 
acidic sites are reduced to a minimum while basic sites attain a peak. 

Reduction of Mg:Al:Ru calcined hydrotalcite was studied using H2- 
TPR. Major Peaks at 200 – 400 ◦C and small, broad peak at 450 – 600 ◦C 
shows the reduction of Ru2O with different degree of interaction on Mg- 
Al oxide support [38]. 

BET surface area of calcined Mg:Al HT and Mg:Al:Ru HT is found to 
be 851.3 m2/g and 337.7 m2/g, respectively. The loss of interstitial 
water and carbon dioxide in calcined hydrotalcite leads to amorphous 
oxide with a high surface area [39]. A decrease in surface area after 

Fig. 5. HR-TEM elemental mapping of a)Mg:Al and b)Mg:Al:Ru calcined hydrotalcite, D-spacing values of c)Mg:Al and d)Mg:Al:Ru calcined hydrotalcite, 
respectively. 
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ruthenium doping is due to meal blocking by large size ruthenium 
particles on the catalyst’s external edge surface, which can be seen from 
FE-SEM images (Fig. 4). A similar decrease in surface area and pore size 
after insertion of ruthenium is observed by Maru et al. [40]. 

The surface morphology studies performed using FE-SEM showed 
distorted sheet morphology for calcined Mg:Al hydrotalcite (Fig. 4a-b). 
These conclusions about morphology align with those obtained by 
Venugopal et al. [41]. As shown in Fig. 4a, distorted sheets of Mg/Al 
oxide are observed with a planer surface whereas as shown in Fig. 4b, 
deposition of particles observed on the surface of Mg/Al support which 
features of the ruthenium oxides. 

Evenly dispersed ruthenium particles on the monolayer surface of 
the catalyst can be seen from elemental mapping and HR-TEM (Fig. 5a- 
b). Also, the D-spacing value (Fig. 5c-d) shows no difference in inter 
lattice after insertion of ruthenium which also concurs with the doping 
on the surface of Mg/Al oxide. Energy dispersive X-ray (EDS) analysis 
confirmed the atomic percentage of ruthenium as 1.3% of total metals 
present in the catalyst. 

Electronic states of catalyst were confirmed using XPS analysis of Ru 
doped Mg:Al calcined hydrotalcite. The characteristics binding energy 
values confirms presence of metal oxide in calcined hydrotalcite. Ru 3d 
scan shows the different oxidation states of ruthenium (Fig. 6). Peak(i) at 

B.E 280.3 eV shows the Ru(IV)O2, peak(ii) at 282.5 contributes to Ru 
(VI)O3, peaks(iii and iv) at B.E 284.5 and 286.1 show that the presence 
of homogeneous ruthenium oxide formation along with other metal 
incorporation[42] and Ru(II)O[40] respectively. The marginal shifting 
in binding energies of ruthenium could be due to the stress of metal 
(M2+/M3+) incorporation in the catalyst. These observations can also be 
cross-linked with FE-SEM morphological study and even dispersion of 
ruthenium in elemental mapping, as described in Figs. 4 and 5. 

The FTIR spectrum of the uncalcined Mg:Al:Ru hydrotalcite is shown 
in Fig. 7. The concentrated broadband between 3800 and 3000 cm−1 

represents vibrations of structural OH- groups, physically adsorbed 
water, and vibrations of carbonate-hydroxyl and hydroxyl-hydroxyl 
groups in hydrotalcite. The band at 1360 cm−1 represents the pres-
ence of carbonate ions and some impurities of nitrate ions due to syn-
thesis solution in uncalcined hydrotalcite. Finally, the broadband at 
663 cm−1 was implied in reports as a superposition of the characteristic 
bonds of hydrotalcites [43]. Upon calcination of HT, it is observed that 
carbonate and water peaks have vanished, and the loss of hydrotalcite 
structure is confirmed by the absence of broadband at 663 cm−1. FTIR 
spectrum of spent calcined hydrotalcite showed the intact nature of the 
catalyst. 

3.2. Mechanistic aspect 

The formation mechanism of DMF requires cooperation between 
both the acidic and basic sites. Base catalyzed hydrogenation was 
observed with heterolytic dissociation of hydrogen in H+ and H – spe-
cies, whereas amination involves DMA dissociating into – NR2 and H+. In 
the reaction, basic Mg/Al oxides sites are responsible for CO2 activation, 
whereas Ru2+ and O2- act as hydrogenation sites. 

In the first step, hydrogenation or hydrogen adsorption takes place 
on the ruthenium surface, followed by activation of CO2 by creating 
carbonate species on Mg/Al calcined hydrotalcite (Fig. 8)[44,45]. 
Further, the lone pair on oxygen atom from carbonate species attacks 
hydronium ion of ruthenium surface and meanwhile, hydride ion attacks 
on electrophilic carbon center releasing formic acid and catalyst. 
Further reaction with DMA forms dimethyl formate, which can be easily 
dehydrated to form DMF. 

3.3. Catalytic CO2 hydrogenation 

In initial studies, a series of calcined hydrotalcites were tested with 
the general formula M(II): M(III), where M(II) = Mg, Cu, and Zn, and M 
(III) = Al and Cr with atomic ratio 4:1. Among the catalyst studied, Mg: 
Al and Cu:Al HT showed a considerable yield of DMF (Table 1). This 
suggests that appropriate basic sites in Mg and Cu systems contribute to 
mediating the reaction. The basicity of HT can be adjusted by varying 
Mg/Al molar ratio or activation at a suitable temperature [46]. The 
basicity of the HT is mainly due to their O2- (Lewis basicity) and hy-
droxyl groups (Bronsted basicity) present in it. The increased Mg content 
in HT resulted in higher DMF selectivity due to the increased basic 
character of HT. A trace amount of trimethylamine (TMA) was formed in 
the reaction as a side product by methylation of dimethylamine [47], 
and in the case of a lesser extent of CO2 hydrogenation, DMF yield is low, 
and DMA conversion is higher due to formation of dimethylammonium 
dimethylcarbamate (DIMCARB) with excess CO2 in the reaction [48]. 

Further, different transition and noble metal (1 mol%) doped Mg/Al 
HT were studied. According to Basile et al., Al3+ ions may partially 
replace by Rh3+, Ru3+, and Ir3+, having in octahedral coordination ionic 
radius values in the range required for the synthesis of HT phases, 
whereas Mg2+ ions may be substituted by Pd2+, Ni2+, Co2+and Cu2+

[49]. Comparing the results obtained with Ru, Ir, Pd, and Rh-containing 
catalysts (Table 1, entry 12–15) with other transition metal catalysts 
(Table 1, entry 7–11) makes it perceptible that preferential coordination 
is possible to play a more critical role than the ion size. Ruthenium forms 
a strong coordinated covalent bond in the form of Lewis acid-base 

Fig. 6. XPS scan for Ru 3d in Mg:Al:Ru calcined hydrotalcite.  

Fig. 7. FTIR spectrum of Mg:Al and Ruthenium doped Mg:Al hydrotalcites.  
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interaction, which promotes the hydrogenation step in the reaction 
mechanism. Higher selectivity and conversion with Ru-HT show that 
ruthenium has major active sites for the reaction (Table 1, entry 15). 

The reaction temperature and time greatly influence catalyst activity 
and product yield. Fig. 9a shows the reaction yield at different tem-
peratures with ruthenium doped Mg:Al HT. DMF yield increases with 
temperature up to 170 ◦C, and a further increase in temperature results 
in increased TMA due to methylation of DMA, which is a temperature- 
driven reaction as reported [50,51]. Gradual increase in conversion 

and yield is observed at 170 ◦C with time, and within 6 h, complete 
conversion with 92.5% yield of DMF is achieved (Fig. 9b). 

The total pressure in the reaction plays a significant role in the 
diffusion of reactants on solid catalyst surfaces. Bertucco et al. reported 
the benefits of hydrogenation of CO2 in the supercritical phase indi-
cating higher reaction yields due to lower mass transfer limitations [52]. 
The same trend of DMF yield is observed in the proposed study. With 
increased pressure up to 13 MPa, complete conversion of DMA is 
observed with 92.5% DMF yield. As shown in Fig. 9c, reaction yield and 
conversion is comparatively low in the subcritical phase than in the 
supercritical phase of CO2. 

The catalyst amount reliability on reaction conversion and yield is 
shown in Fig. 9d. DMF yield is gradually increased with catalyst amount 
up to 1 wt% of DMA at 170 ◦C for 6 h. Further increase in catalyst 
loading does not have any effect on product yield. In addition, the 
experimental studies show that the reaction does not proceed in the 
absence of the catalyst. 

The addition of a small amount of solid base potassium bicarbonate 
(KHCO3) as an additive showed a radical effect on the reaction yield. 
This is due to basic ions preventing the decomposition of formic acid 
produced during the reaction back to hydrogen and carbon dioxide [53]. 
The yield of 92.5% was obtained with the addition of 4.5 mmol of 
KHCO3 while 74% yield of DMF was observed without the addition of 
base at 170 ◦C in 6 h as shown in Fig. 10. 

4. Kinetic model 

The experiments were performed to understand the kinetics of the 
process at temperatures of 150 ◦C and 170 ◦C, and the kinetic model was 
developed according to the Langmuir-Hinshelwood-Hougen-Watson. 

Fig. 8. Proposed reaction mechanism over Ru doped Mg:Al calcined hydrotalcite.  

Table 1 
Catalyst Screening. Reaction conditions: DMA 80 mmol, solvent MeOH 100 ml, 
temperature 170 ◦C, H2:CO2 3:1, reaction pressure 10 MPa, time 3 h, catalyst 
amount 1 wt%, additive KHCO3 4.5 mmol.  

Entry Catalyst 
(HT) 

DMA conversion (%) DMF 
yield (%) 

1 Cu:Al(4:1) 33.0 7.6 
2 Zn:Al(4:1) 6.7 0.3 
3 Mg:Cr(4:1) 1.2 0.2 
4 Mg:Al(4:1) 24.2 7.0 
5 Mg:Al(2:1) 23.3 4.2 
6 Mg:Al(6:1) 22.7 2.4 
7 Mg:Al:Cu(4:1:0.05) 11.1 6.8 
8 Mg:Al:Ni(4:1:0.05) 5.2 2.2 
9 Mg:Al:Zn(4:1:0.05) 5.7 0.4 
10 Mg:Al:Co(4:1:0.05) 2.1 1.5 
11 Mg:Al:Cr(4:1:0.05) 4.5 0.3 
12 Mg:Al:Pd(4:1:0.05) 7.9 3.5 
13 Mg:Al:Rh(4:1:0.05) 20.3 8.6 
14 Mg:Al:Ir(4:1:0.05) 57.3 46.1 
15 Mg:Al:Ru(4:1:0.05) 88.4 78.8  
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The following surface mechanism considers the non-competitive 
adsorption of CO2 and H2 on two types of active sites. 

Steps (i) and (ii) are the H2 and CO2 adsorption steps, while step (v) is 

the formic acid desorption step from the surface of the catalyst. The 
irreversible surface reaction considered rate-limiting is step (iii). Under 
this assumption, the rate equation can be generated for hydrogenation 
as follows: 

rR = KRS′

HSCO2 .C (1)  

Where, 
Occupied Hydrogen Sites: S′

H = H.SH 

Unoccupied Hydrogen Sites: SH. 
Occupied CO2 sites: Si.C. 
Unoccupied CO2 sites: SC. 
The concentration of Components’ i′:Ci 
The equilibrium constants for the surface reaction mentioned in 

Table 2 are stated as follows: 

Fig. 9. ■ DMA conversion; ▴ DMF yield. (a) Effect of temperature for 6 h, 13 MPa pressure, and 1 wt% catalyst loading (b) Effect of time at 170 ◦C at 13 MPa 
pressure and 1 wt% catalyst loading (c) Effect of pressure at 170 ◦C for 6 h at 1 wt% catalyst loading (d) Effect of catalyst loading at 170 ◦C for 6 h and 13 MPa 
pressure. Other reaction conditions: DMA 80 mmol, solvent MeOH 100 ml, H2:CO2 3:1, additive KHCO3 4.5 mmol. 

Fig. 10. Effect of Base addition. Reaction conditions: DMA 80 mmol, H2:CO2 
3:1, time 6 h, temperature 170 ◦C, reaction pressure 13 MPa, catalyst Mg:Al:Ru 
HT (1 wt%),. 

Table 2 
Surface reactions over Mg:Al:Ru hydrotalcite.  

1)H2 + 2SH ⇌ 2H.SH 

2)CO2 + SC ⇌ CO2 .SC 

3)H.SH + CO2.SC → COOH.SC + SH 

4)COOH.SC + H.SH ⇌ HCOOH.SC + SH 

5)HCOOH.SC ⇌ HCOOH.SC + SC  
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Ki : H2 adsorption constant = S′2
H

CHSH
(2)  

Kii : CO2 adsorption constant = SCO2 .C

CCO2 SC
(3)  

Kiv : Reaction rate constant of step iv = SHCOOH.CSH

SCOOH.CS′
H

(4)  

KV : Formic acid desorption constant = SHCOOH.CSH

SCOOH.CS′
H

(5) 

The fractional coverages of active sites S′

H and Si.C are derived from 
the mass balances as given by Eqs. (6) and (7). 

SH +S′

H = 1 (6)  

SCO2 .C + SHCOOH.C + SCOOH.C + SC = 1 (7) 

The Eqs. (2) and (6) are combined to yield, 

S′

H =
̅̅̅̅̅̅̅̅̅̅̅
K1CH

√
̅̅̅̅̅̅̅̅̅̅̅
K1CH

√
+ 1 (8)  

SH = 1̅̅̅̅̅̅̅̅̅̅̅
K1CH

√
+ 1 (9) 

Similarly, Eqs. (3)−(5) are combined with Eq. (7) to yield, 

SCO2 .C = K2CCO2

(K2CCO2 + K5CHCOOH + 1) (10) 

Finally, Eqs. (8) and (10) are substituted in Eq. (1) to deduce the final 
rate equation as, 

rR = KR ×
̅̅̅̅̅̅̅̅̅̅̅
K1CH

√
̅̅̅̅̅̅̅̅̅̅̅
K1CH

√
+ 1 × K2CCO2

(K2CCO2 + K5CHCOOH + 1) (11) 

The above kinetic model is solved according to appropriate initial 
conditions by the ODE45 solver of MATLAB. Regression is performed 
using the fminsearch to minimize the error between the experimental and 
calculated concentration values. The coefficient of determination (R2) 
between the calculated and experimental concentration values for 
150◦C and 170 ◦C experimental runs is 0.9997 and 0.9967, respectively. 
The model accurately describes the observed trends with changes in 
operating temperature, as shown in Fig. 11. The kinetic parameters were 
optimized with good precision after multiple iterations. The general 
procedure for solving the LHHW model is performed as described by 
Vernuccio et al. [54]. 

The estimated kinetic parameters are known to follow the Arrhenius 
temperature dependence (Eq. (12)) and are depicted in Table 3. 

KR = k0exp (−Ea
RT ) (12) 

k0: Pre-Exponential Factor (L. mol−1.min−1). 
Ea: Activation Energy (kJ.mol−1. K−1). 
R: Universal Gas Constant (J.mol−1. K−1). 

5. Conclusions 

Different hydrotalcite-like compounds with a molar ratio 4:1 were 
prepared and have been tested for hydrogenation of CO2 to DMF under 
supercritical conditions of CO2. Results show that the basic sites in the 
catalyst have a considerable influence on the reaction yield. The opti-
mum yield can be obtained from balancing the number of basic and 
metallic sites on, and the hydrogenation was favored by a topology of 
metallic sites. Mg/Al HT with molar ratio 4 was found to be most active 
within other bimetallic hydrotalcite. The activity of the catalyst 
increased by impregnating various noble metals on hydrotalcite. The 
selectivity of DMF increases with the increase in the basicity of catalysts, 
suggesting that formic acid is the primary product. This might be 
because catalyst particles have a large surface area and had sufficient 
basic sites to carry out hydrogenation. Among the four noble metal 
promoters, the Ruthenium effect is more noticeable than the other 
promoters. This could be due to the different effects of these promoters 
on CO2 adsorption, hydrogenation, or product formation. Thus it is 
concluded that Mg:Al:Ru CHTls with higher thermal stability and a 
molar ratio of 4:1:0.05 is a promising candidate for hydrogenation of 
CO2 to DMF with 92.5% yield and would be able to replace traditional 
homogeneous catalysts. The kinetic model developed is in-line with the 
experimental trends, and the regression performed resulted in kinetic 
parameters with desirable accuracy. 
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[23] O. Kröcher, R.A. Köppel, A. Baiker, Silica hybrid gel catalysts containing ruthenium 
complexes: Influence of reaction parameters on the catalytic behaviour in the 

synthesis of N,N- dimethylformamide from carbon dioxide, J. Mol. Catal. A Chem. 
(1999), https://doi.org/10.1016/S1381-1169(98)00224-6. 

[24] Y. Kayaki, Y. Shimokawatoko, T. Ikariya, Amphiphilic resin-supported ruthenium 
(II) complexes as recyclable catalysts for the hydrogenation of supercritical carbon 
dioxide, Adv. Synth. Catal. 345 (2003) 175–179, https://doi.org/10.1002/ 
adsc.200390007. 

[25] J. Liu, C. Guo, Z. Zhang, T. Jiang, H. Liu, J. Song, H. Fan, B. Han, Synthesis of 
dimethylformamide from CO2, H2 and dimethylamine over Cu/ZnO, Chem. 
Commun. 46 (2010) 5770–5772, https://doi.org/10.1039/c0cc00751j. 

[26] C. Tai, J. Pitts, J. Linehan, A. Main, P. Munshi, P. Jessop, In situ formation of 
ruthenium catalysts for the homogeneous hydrogenation of carbon dioxide, Inorg. 
Chem. 41 (2002) 1606–1614, https://doi.org/10.1021/ic010866l. 

[27] P. Munshi, A. Main, J. Linehan, C. Tai, P. Jessop, Hydrogenation of carbon dioxide 
catalyzed by ruthenium trimethylphosphine complexes: The accelerating effect of 
certain alcohols and amines, J. Am. Chem. Soc. 124 (2002) 7963–7971, https:// 
doi.org/10.1021/ja0167856. 
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