

सीएसआईआर**- राष्ट्रीय रासायनिक प्रयोगशाला** वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद

वार्षिक प्रतिवेदन 2019-20

Published by

Director

CSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pune- 411008

Technical Review

Dr. Sunil Joshi

Head,

Chemical Engineering & Process Development Division CSIR-NCL

Produced by

Mr. Nikhlesh K. Yadav

Head, Publication and Science Communication Unit CSIR-NCL

Compiled and Edited by

Mr. Ganesh S. Mane

Publication and Science Communication Unit CSIR-NCL

We thank all the Divisional and Functional Heads for their assistance to facilitate the collection of inputs.

Cover Page, Layout and Design by

Mrs. Manisha Tayade

mwankhedkar87@gmail.com

Printed by

Typographica Press Services

Pune

सीएसआईआर - राष्ट्रीय रासायनिक प्रयोगशाला CSIR-National Chemical Laboratory

With Best Compliments from...

Prof. Ashwini Kumar Nangia Director

CSIR-National Chemical Laboratory

Dr. Homi Bhabha Road, Pune 411008, (INDIA) Tel: +91-20-2590 2600 Fax: +91-20-2590 2601; www.ncl-india.org; Email: director@ncl.res.in

CONT _____ ENT

1

निदेशक की कलम से	04
From the Director's Desk	06
Vision, Mission, Guiding Principles & Values	8
Organization Chart	09
Research Areas	10
Research Council	11
Management Council	12

2

Performance Indicators

Science Performance Indicators	14
Technology Performance Indicators	15
Human Resource Indicators	16
We Welcome	17
Financial Performance Indicators	21
Outputs & Outcomes	24

3

Research & Development

Advanced Materials	28
Agriculture, Food & Nutrition	43
Energy & Environment	49
Healthcare	56
Sustainable Chemical Industry	64

CONT ENT

Resource Centers

4

78	Catalyst Pilot Plant
78	Central NMR Facility
79	Centre for Materials Characterization
79	Digital Information Resource Center
79 National C	Collection of Industrial Microorganisms
80	Knowledge Resource Center

S&T Support Services

5

82
83
84
85
86
87
87
88
89

Annexures

6

Patents Granted: Foreign & Indian	92
PhD Theses	101
CSIR- NCL Customers	106
Awards / Recognitions	107
Outreach Program	108
Dateline CSIR-NCL	109
રાનમાથા રિપોર્ટ	110

सीएसआईआर-राष्ट्रीय रासायनिक प्रयोगशाला (सीएसआईआर-एनसीएल), पुणे में आपका स्वागत एवं अभिवादन। वर्ष २०१९-२० के लिए प्रयोगशाला की वार्षिक रिपोर्ट प्रस्तुत करना मेरे लिए हर्ष का विषय है। यह रिपोर्ट मौलिक विज्ञान के क्षेत्रों में उपलब्धियों के साथ-साथ वर्ष के दौरान विकसित प्रक्रियाओं और प्रौद्योगिकियों का सारांश है।

सीएसआईआर-एनसीएल द्वारा प्रख्यात वैज्ञानिकों और संकाय सदस्यों के कई महत्वपूर्ण व्याख्यान आयोजित किए गए। पुणे के थर्मेक्स लिमिटेड के प्रबंध निदेशक और सीईओ श्री एम.एस. उन्नीकृष्णन द्वारा "Science and Technology only can save India" विषय पर सीएसआईआर स्थापना दिवस व्याख्यान दिया गया। "Role of Chemical Engineering in Nation Building" विषय पर रासायनिक प्रोद्योगिकी संस्थान के कुलपित प्रो. ए. बी. पंडित द्वारा सीएसआईआर -एनसीएल स्थापना दिवस व्याख्यान प्रस्तुत किया गया। मिशन शक्ति, डीआरडीओ, हैदराबाद के परियोजना निदेशक श्री यू. राजा बाबू ने "Technological Challenges: Missile and Space Defence" नामक विषय पर राष्ट्रीय विज्ञान दिवस व्याख्यान दिया। प्रो. अमिताभ चहोपाध्याय, SERB Distinguished Fellow, सीएसआईआर-कोशिकीय एवं आणविक जीव विज्ञान केंद्र, हैदराबाद द्वारा प्रो. जे. डब्ल्यू, मैकबैन स्मृति व्याख्यान "G Protein & coupled Receptors in the Context of the Membrane Bilayer: An Intimate Association with Cholesterol" विषय पर प्रस्तुत किया गया, जो कि एनसीएल-आरएफ वार्षिक छात्र सम्मेलन के एक हिस्से के रूप में आयोजित किया गया था।

प्रयोगशाला द्वारा विभिन्न कार्यशालाओं, सम्मेलनों और संगोष्ठियों का आयोजन किया गया जिनमें Electron Diffraction: PEDT based structure solutions for small crystals; Emerging Electron Crystallography Based Structure Solutions Using Transmission Electron Microscopy; वार्षिक छात्र सम्मेलन और "विज्ञान में महिला" इस विषय पर अर्धिदवसीय संगोष्ठी इत्यादि का समावेश है। स्मार्ट इंडिया हैकेथॉन हार्डवेयर संस्करण के ग्रैंड फिनाले 2019 का भी आयोजन किया गया।


प्रयोगशाला द्वारा राष्ट्रीय तथा अंतर्राष्ट्रीय स्तर के विशेषज्ञ समीक्षित जर्नल्स में ४५० से ज्यादा शोधपत्र प्रकाशित किए गए, जो कि वैज्ञानिक प्रकाशन के क्षेत्र में एक बडी उपलब्धि है। वर्ष के दौरान प्रयोगशाला ने ६७ भारतीय एवं ६८ विदेशी पेटेंट एकरव दर्ज किए गए। सीएसआईआर-एनसीएल को ७३ भारतीय एवं १३५ विदेशी पेटेंट प्रदान किए गए। सीएसआईआर-एनसीएल के वैज्ञानिकों के मार्गदर्शन में ६८ शोध छात्रों ने पीएच.डी. पूर्ण की। इस प्रयोगशाला ने प्रौद्योगिकियों प्रक्रियाओं को प्रायोजित परियोजनाओं के द्वारा विकसित करने के अपने प्रयास को जारी रखा है। इनमें know & how for delivering actives (semiochemicals) और insecticides to plant surfaces to help spreading and retention; Integrated pest and pathogen management in agriculture using fungi and their metabolites; Miniaturized mixers and reactors devices called as GLFR devices; तथा Continuous Process for Production of Paracetamol का समावेश है।

सीएसआईआर-एनसीएल ने सिल्वर नैनोवायर्स के निरंतर बडे पैमाने पर उत्पादन के लिए सबसे सस्ती तकनीक विकसित की है, जिसका उद्घाटन सीएसआईआर के महानिदेशक डॉ. शेखर मांडे के द्वारा किया गया। मिशन प्रोजेक्ट "सतत विकास के लिए कैटलिसिस" के अंतर्गत डीएमई पायलट प्लांट का उद्घाटन माननीय केंद्रीय मंत्री डॉ. हर्षवर्धन द्वारा किया गया। राष्ट्रपति श्री राम नाथ कोविंद जी के द्वारा देश के पहले स्वदेशी उच्च तापमान प्यूल सेल सिस्टम का अनावरण किया गया, जो सीएसआईआर-एनसीएल पुणे, सीएसआईआर- एनपीएल नई दिल्ली, सीएसआईआर सीईसीआरआई कराईकुडी और दो निजी कंपनियों के प्रयासों से विकसित किया गया।

सीएसआईआर- एनसीएल द्वारा पोहांग विज्ञान और प्रौद्योगिकी संस्थान कोरिया, पूना कॉलेज ऑफ फार्मेसी, पुणे; निरमा विश्वविद्यालय, अहमदाबाद; डेक्कन शुगर टेक्नोलॉजी एसोसिएशन (DSTA), पुणे; स्वामी रामानंद तीर्थ मराठवाडा विश्वविद्यालय (RTMUN), नांदेड; सशस्त्र बल मेडिकल कॉलेज (एएफएमसी), पुणे; भारतीय फार्माकोपिया आयोग; इंद्रशिल विश्वविद्यालय, गुजरात; और बिसलेरी इंटरनेशनल प्रा. लि. मुंबई के साथ समझौता ज्ञापन किया गया।

में सीएसआईआर-एनसीएल के अनुसंधान परिषद और प्रबंधन परिषद के साथ ही महानिदेशक, सीएसआईआर एवं सीएसआईआर मुख्यालय, नई दिल्ली के स्टाफ को उनके निरंतर समर्थन एवं सहयोग के लिए धन्यवाद देना चाहता हूं। में सीएसआईआर-एनसीएल के हितधारकों, वैज्ञानिकों, स्टाफ एवं विद्यार्थियों के प्रति अपनी कृतज्ञता प्रगट करता हूं, जिनकी उत्कृष्ट उपलब्धियों को इस वार्षिक रिपोर्ट में सिम्मिलत किया गया है।

आश्वनी कुमार नांगिया)

Greetings to all and welcome to the CSIR-National Chemical Laboratory (CSIR-NCL), Pune. I take this opportunity to present the Annual Report of the Laboratory for the year 2019-20. The report summarizes the achievements in the areas of fundamental sciences as well as processes and technologies developed during the year.

CSIR-NCL organized several important talks delivered by eminent scientists and faculties. Shri M. S. Unnikrishnan, Managing Director & CEO of Thermax Limited, Pune, delivered the CSIR Foundation Day Lecture on "Science and Technology only can save India." CSIR-NCL Foundation Day Lecture was presented by Prof. A. B. Pandit, Vice-Chancellor, Institute of Chemical Technology, Mumbai, on the topic "Role of Chemical Engineering in Nation Building." Shri U. Raja Babu, Project Director, Mission Shakti, DRDO, Hyderabad, gave away the National Science Day lecture on a topic entitled "Technological Challenges: Missile and Space Defence." Prof. Amitabha Chattopadhyay, SERB Distinguished Fellow, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, gave away Prof. J. W. McBain Memorial Lecture on "G Protein-coupled Receptors in the Context of the Membrane Bilayer: An Intimate Association with Cholesterol" as a part of NCL-RF Annual Students Conference.

The Laboratory hosted different workshops, conferences, and symposia, including a workshop on Electron Diffraction: PEDT based structure solutions for small crystals; workshop on Emerging Electron Crystallography Based Structure Solutions Using Transmission Electron Microscopy; Annual student's conference and a Half-day symposium on "Women in Science" etc. CSIR-NCL with ARAI and IISER Pune organized a Grand Finale of the Hardware Edition of Smart India Hackathon 2019.

The Laboratory has marked major achievements in scientific publications, having published more than 450 Research papers in national and international peer reviewed journals. CSIR-NCL has filed 67 Indian and 68 foreign patents during the year. 73 Indian and 135 foreign patents were granted for CSIR-NCL. 68 Research students have completed Ph.D. under the guidance of CSIR-NCL scientists.

The lab has continued to make efforts to develop the technologies/ processes through the sponsored projects. It included the know-how for delivering actives (semiochemicals) and insecticides to plant surfaces to help spreading and retention; Integrated pest and pathogen management in agriculture using fungi and their metabolites; Miniaturized mixers and reactors devices called as GLFR devices; and a Continuous Process for Production of Paracetamol.

CSIR-NCL has developed the most inexpensive technology for continuous large-scale production of silver nanowires which was inaugurated at the hands of Dr. Shekhar Mande, DG-CSIR. Hon'ble Union Minister Dr. Harsh Vardhan inaugurated the DME Pilot Plant under Mission Project "Catalysis for Sustainable Development." President Shri Ram Nath Kovind unveiled the country's first indigenous High-Temperature Fuel Cell System developed by the efforts of CSIR-NCL, Pune; CSIR-NPL, New Delhi & CSIR-CECRI, Karaikudi, and two private companies.

CSIR-NCL signed memorandum of understanding with the Pohang University of Science and Technology, Korea; Poona College of Pharmacy, Pune; Nirma University, Ahmedabad; Deccan Sugar Technology's Association (DSTA), Pune; Swami Ramanand Teerth Marathwada University, Nanded (SRTMUN), Nanded; Armed Force Medical College (AFMC), Pune; Indian Pharmacopoeia Commission; Indrashil University, Gujarat; and Bisleri International Pvt. Ltd., Mumbai.

I thank the Research Council and Management Council of CSIR-NCL as well as DG-CSIR and staff at CSIR HQ, New Delhi, for their constant support and cooperation. I acknowledge the role of stakeholders, the scientists, staff, and students of CSIR-NCL who made this outstanding achievement possible for inclusion in the Annual Report.

Ashwini Kumar Nangia)

Vision, Mission, Guiding principles & Values

Vision

To be a globally recognized and respected R&D organization in the area of chemical sciences and engineering

To become an organization that will contribute significantly towards assisting the Indian chemical and related industries in transforming themselves into globally competitive organizations

To become an organization that will generate opportunities for wealth creation for the nation and, thereby, enhance the quality of life for its people

Mission

To carry out R&D in chemical and related sciences with a view to eventually deliver a product, process, intellectual property, tacit knowledge or service that can create wealth and provide other benefits to CSIR-NCL's stakeholders

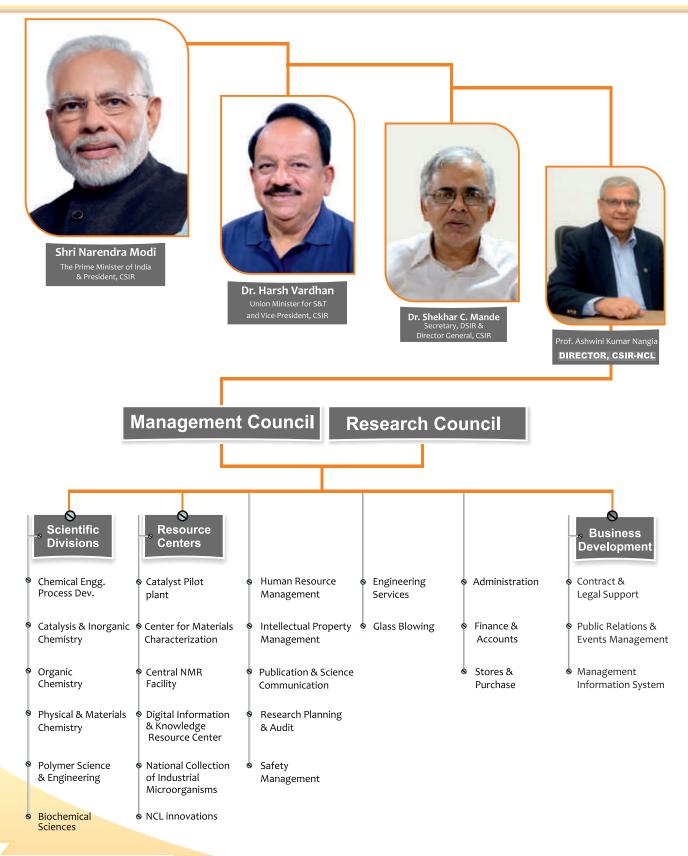
To build and maintain a balance portfolio of scientific activities as well as R&D programs to enable CSIR-NCL to fulfill the demands of its stakeholders, present and future

To create and sustain specialized Knowledge Competencies and Resource Centers within CSIR-NCL which can provide support to all stakeholders of CSIR-NCL

To contribute to the creation of high quality Ph.D. students with competencies in the area of chemical, material, biological and engineering sciences

Values

To be deeply committed to the success of our stakeholders


To create and sustain a self - driven and self - managed learning organization with a high degree of internal and external transparency

To encourage a culture of collective and principle-centred leadership

To value the dignity of the individual and deal with people with a sense of fairness and without bias, prejudice or favour

To nurture the highest standards of integrity and ethical conduct

RESEARCH AREAS

CATALYSIS

- Heterogeneous Catalysis
- Organometallic Chemistry
- Surface Science

Chemical Engineering and Process Development

- Biochemical & Biological Engineering
- Energy and Environmental Engineering
- o Industrial Catalysis and Catalytic Processes
- Industrial Flow Processes
- Mathematical & Computational Modeling
- Process Development and Scale-up
- Process Intensification and Engineering

Physical and Materials Chemistry

- Biomimetic Materials
- Materials for optoelectronics
- Magnetic and Gas storage
- Quantum electronic and structure theory
- Soft Matter: Theory and Simulation
- Synthesis of Materials including Nanomaterials

Polymer Science and Engineering

- Advanced Polymeric Materials for Energy
- Healthcare, Water, Security and Strategic areas
- Biomass Chemistry and Technology
- Polymer Chemistry
- Polymer Engineering
- Polymer Physics
- Membrane Science and Technology
- Colloids, soft solids and metastable materials

Organic Chemistry

- Catalysis and new methods
- Chemical Biology
- Industrial Organic Chemistry
- Natural Product Chemistry
- Medicinal Chemistry
- Total Synthesis

Biochemical Sciences

- Enzymology and Microbiology
- Plant Molecular Biology
- Plant Tissue Culture
- Proteomics and Metabolomics
- Structure Biology

10

RESEARCH Council

Chairperson

Prof. Gautam R. Desiraju

Solid State & Structural Chemistry Unit & Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore

Internal Member

Prof. Ashwini Kumar Nangia

Director, CSIR-National Chemical Laboratory, Pune.

DG Nominee

Dr. Anjan Ray

Director, CSIR-Indian Institute of Petroleum P.O. IIP, Mohkampur Dehradun – 248 005

Member Secretary

Mr. G. Prabhakaran

External Members

Dr. R. K. Khandal

President, R&D and Business Development India Glycols Limited Noida-Greater Noida Expressway, Subarea 2B, Sector 126 Noida – 201 303

Prof. Suresh Bhargava

Distinguished Professor and KIA Laureate RMIT University, GPO Box No. 2476 Melbourne, VIC-3001 Australia

Dr. Prashant Prabhu

Retired President, Michelin Africa-India-Middle East 432, Chamblee Blvd. Greenville SC-29615 USA

Dr. Bipin Alreja

503, Marble Arch 94, Pali Hill, Bandra Mumbai - 400 050

Dr. Bindu Dey

Secretary,
Technology Development Board,
Department of Science & Technology,
A-Wing, Ground Floor, Vishwakarma Bhawan
Shaheed Jeet Singh Marg,
New Delhi – 110 016

Dr. Sanjay Nene

Innovation Biologicals Private Limited, 100, NCL Innovation Park, Dr. Homi Bhabha Road, Pashan Pune - 411 008

Dr. Mukund K. Gurjar

Executive Director and Chief Scientific Officer (R&D), Emcure Pharmaceuticals Limited, Phase-2, ITBT Park, MIDC Hinjewadi, Pune – 411 057

Dr. A. Ajayaghosh

Director, CSIR-National Institute of Interdisciplinary Science & Technology, Industrial Estate, P.O. Pappanamcode Thiruvananthapuram - 695019

Dr. S. Chandrasekhar

Director, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka Hyderabad - 500 007

MANAGEMENT COUNCIL

Chairperson

Prof. Ashwini Kumar NangiaDirector,
CSIR-NCL, Pune

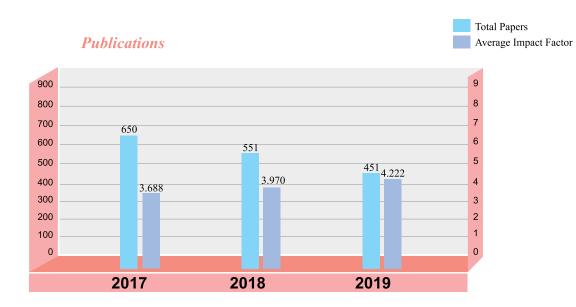
Members: CSIR-NCL

- Dr. V. V. Panchanadikar
- Shri K. D. Deshpande
- Dr. G. J. Sanjayan
- Or. S. Gurunath
- o Dr. (Mrs.) Anuya Nisal
- Shri G. Prabhakaran
- Shri M. Sekar

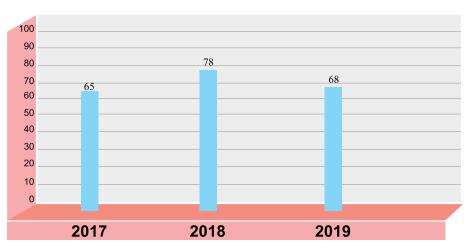
Sister Lab Director

Dr. Anjan RayCSIR-IIP, Dehradun

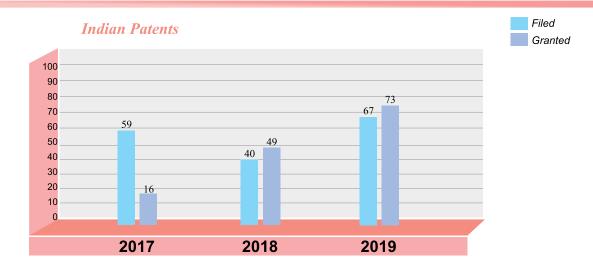
Member Secretary


Mrs. Pooja Kulkarni
 Controller of Administration

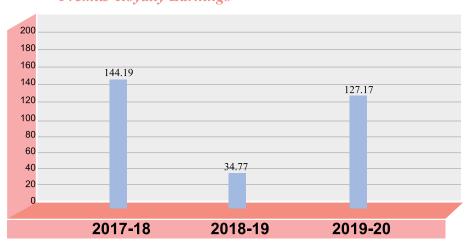
Performance Indicators


Science Performance Indicators	14
Technology Performance Indicators	.15
Human Resource Indicators	.16
We Welcome	17
Financial Performance Indicators	21
Outputs & Outcomes	24

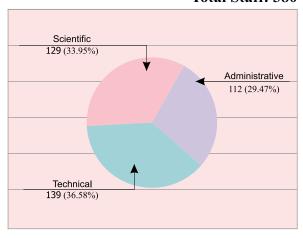
Research Output



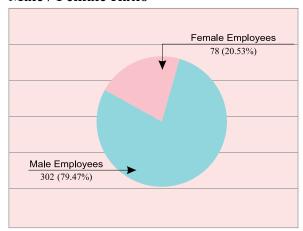
Ph.D. Theses

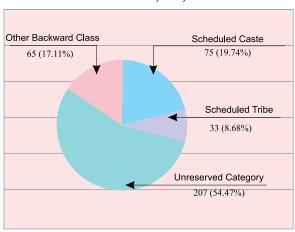

Filed Granted

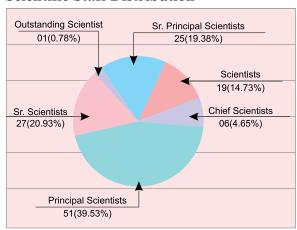
Technology Performance Indicators

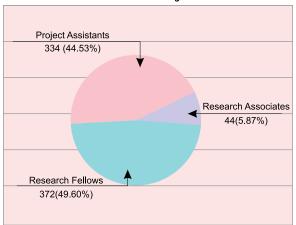


Foreign Patents


Premia/Royalty Earnings


Total Staff: 380


Male / Female Ratio


SC, ST, OBC & Others

Scientific Staff Distribution

Students and Project Staff

16

WE WELCOME

Dr. Rakesh Shyamsundar Joshi (08.05.2019)

Metabolic and Developmental Biochemistry, Agricultural Biotechnology, Structural Bioinformatics

- Assistant Professor, Savitribai Phule Pune University, Pune (2014-2019)
- Ph.D., Savitribai Phule Pune University, Pune (2010-2015)

Dr. Kiran S. (23.05.2019)

Advanced Polymeric Biomaterials, Bio-renewable Polymers, Polymer Synthesis

- Post-Doctoral Fellow, Indian Institute of Space Science and Technology, Kerala (2015-2017)
- Post-Doctoral Research Fellow, University of Texas, USA (2014-2015)
- Ph.D., Sree Chitra Tirunal Institute for Biomedical Science and Technology, Kerala (2008-2013)

Dr. Mangesh Vetal (29-05-2019)

Technology and IP marketing, Technology Assessment and Portfolio Analysis, and Open Innovation Programs

- Product Specialist, Agilent Technologies (2014-2019)
- Ph.D., Bioprocess technology, ICT Mumbai (2010-2014)

Dr. Nayaka G. P. (30-05-2019)

${\bf Energy\,Storage\,and\,Conversion, Li-ion\,Batteries, E-Waste\,Management}$

- Post-Doctoral Research fellow at Kunming University of Science and Technology, Kunming, China (2017-2019).
- Ph.D., Kuvempu University, Karnataka, India (2013-2017)

WE WELCOME

Dr. Vijayakumar Modepalli (17.06.2019)

Technology Assessments, Strategy Recommendations, Technology Marketing

- Post-Doctoral Research Fellow, Ulsan National Institute of Science and Technology, South Korea (2016-2018)
- Ph.D., Ulsan National Institute of Science and Technology, South Korea (2011-2016)

Dr. Kirandeep Singh (17.06.2019)

Functional Nanomaterials, Device Physics, Spintronics, 2D materials

- Post-Doctoral Research Fellow, Institute for Basic Science, Sungkyunkwan University, South Korea (2017-2019)
- Ph.D., Indian Institute of Technology Roorkee, India (2013-2017)

Dr. Vrushali Jadhav (25-06-2019)

Homogenous & Heterogeneous Catalysis, Biomass to Biofuels, Carbohydrate Chemistry, Synthesis of Bioactive Natural Products, Synthetic Methodologies

- INSPIRE Faculty, CSIR-NCL, Pune (2013-2018)
- Post-Doctoral Research Fellow, University of Copenhagen, Denmark (2009-2011)
- Ph.D., University of Pune, Pune (2005-2010)

Dr. Sachin U. Nandanwar (03-07-2019)

Heterogeneous Catalysis, Nanomaterials, Gas Processing

- Post-Doctoral Research Associate, University of Kansas, US (2018-2019)
- Post-Doctoral Research Associate, University of Wyoming, US (2017-2018)
- Post-Doctoral Research Associate, University of Idaho, US (2014-2016)
- Ph.D., S. V. National Institute of Technology, Surat (2010-2013)

WE WELCOME

Dr. Satyam Naidu Vasireddy (04-07-2019)

Process Intensification, Process Development and Scale-up of Chemical Processes, Kinetics of Chemical Reactions

- Post-Doctoral Research Associate, Hindustan Petroleum Corporation Ltd., Bangalore (2017-2019)
- Ph.D., IIT Madras, Chennai (2011-2017)

Dr. Santosh Kumar Meena (30.07.2019)

Nanotechnology and Nanomaterials, Surfaces and interfaces, Metal-organic Frameworks, Bio-minerals, Kinetic modeling and process development

- Post-Doctoral Fellow, University of Sheffield, UK (2018-2019)
- Post-Doctoral Fellow, ENS Lyon, France (2017-2018)
- Post-Doctoral Fellow, University of California, USA (2016-2017)
- Ph.D., Johannes Gutenberg University of Mainz, Germany (2012-2016)

Dr. Niranjan Yeole (08-08-2019)

Protection of IP, Administration of IP Portfolio, Technology and IP Strategy

- Sr. Research Scientist, PI Industries Ltd. (2017-2019)
- IP Analyst, Dolcera ITES, Hyderabad (2014-2017)
- Dr. D. S. Kothari Postdoctoral Fellow, University of Hyderabad, Hyderabad (2012-2014)
- Ph.D., North Maharashtra University, Jalgaon, (2008-2011)

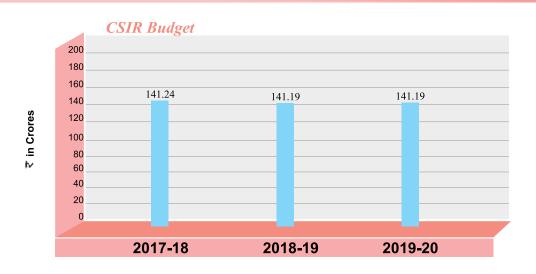
Dr. Dinesh Sawant (26-12-2019)

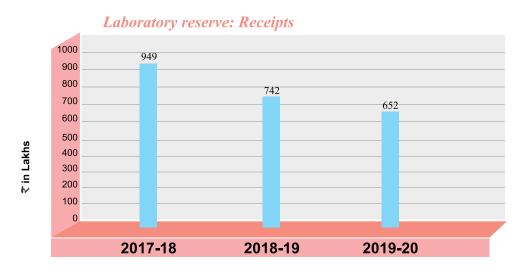
Organic Synthesis, Catalysis and Physical Organic Chemistry

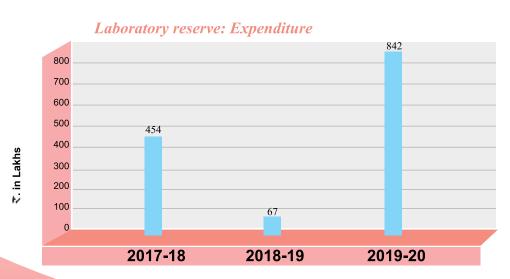
- Assistant Professor (DST INSPIRE Faculty), IIT Dhanbad (2018-2019)
- Post-Doctoral Research Fellow, Leibniz-Institute for Catalysis, Germany (2017-2018)
- Post-Doctoral Research Fellow, Nagoya University, Japan (2016-2017)
- Post-Doctoral Research Fellow, King Abdullah University of Science and Technology, Saudi Arabia (2012-2016)
- Ph.D., ICT Mumbai, (2008-2012)

Advanced Heterogeneous Catalysis, CO₂ Conversion, Biomass Valorization, Active Pharmaceutical Ingredients

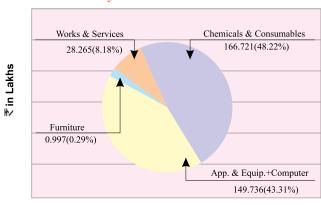
- Marie Curie Post-Doctoral Fellow, Catholic University of Leuven, Belgium (2017–2019)
- Post-Doctoral Fellow, RMIT University, Australia (2014–2016)
- Ph.D., CSIR-IICT, Hyderabad (2009-2014)

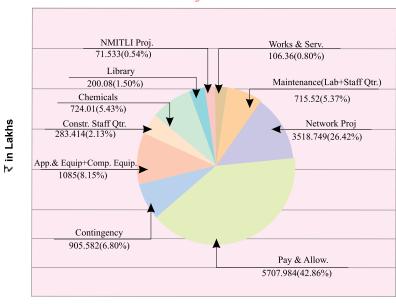

Dr. Chiranjit Chowdhury (21-02-2020)


Bacterial Genetics and Molecular Microbiology, Synthetic Biology, Protein Biochemistry, Antimicrobial Agents and Chemotherapy

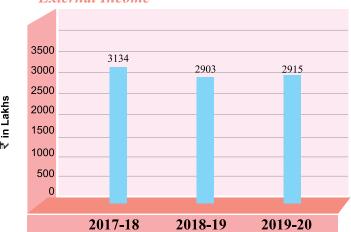

- Associate Professor & Ramanujan Fellow, Amity University, Noida (2018-2020)
- Assistant Scientist III, Iowa State University, USA (2017-2018)
- Post-Doctoral Research Associate, Iowa State University, USA (2012-2017)
- Post-Doctoral Research Associate, University of Notre Dame, USA (2011-2012)
- Research Associate, CSIR-Centre for Cellular and Molecular Biology, Hyderabad (2010-2011)
- Research Associate, IIT Kharagpur (2009-2010)
- Ph.D., Indian Institute of Technology, Kharagpur (2006-2009)

Financial Performance Indicators

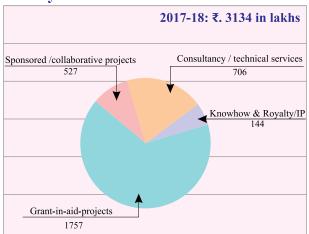


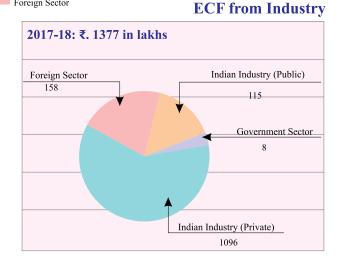


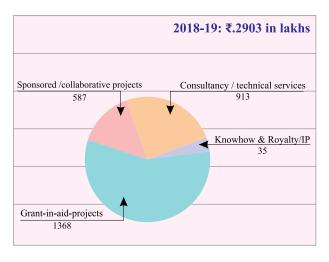
Financial Performance Indications

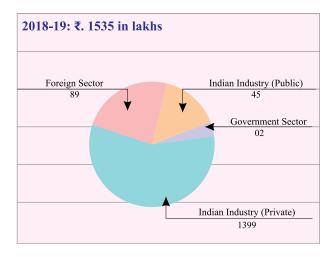

Laboratory reserve

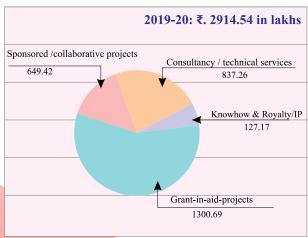
CSIR and Network Projects

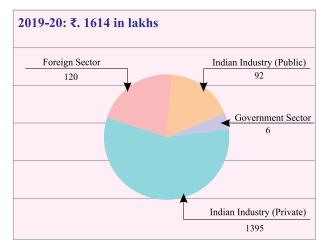

External Income




Financial Performance Indicators


Knowhow & Royalty/IP — Government Sector
Grant-in-aid-projects — Indian Industry (Private)
Consultancy / technical services — Indian Industry (Public)
Sponsored / collaborative projects — Foreign Sector


ECF by Source



Outputs & Outcomes

Category of Benefits	Benefit	Indicators	2017-18	2018-19	2019-20
Public and social goods	and	Number of papers published (Calendar year)	650	551	451
	dissemination of generic knowledge	Number of invention disclosure (Calendar year)	102	93	62
		Number of patents filed in India (Calendar year)	59	40	67
		No of foreign patents filed ** (Calendar year)	96	55	68
	Highly trained man-power	Number of PCT applications filed (Calendar year)	30	30	15
		No of US applications filed	51	51	35
		Number of PhD students as on 31 March, 2019	404	443	372
		Number of PhDs produced (Calendar year)	65	78	68
		Number of NET/GATE qualified students joined (including DBT JRF)	127	90	12
	Science awareness,	Number of popular S&T articles published (in all languages)	1	4	6
	popularization etc.	Number of national and regional workshops, seminars organized	7	4	4
	Pride and stand-	Number of international awards won	-	-	-
	ing amongnations; National image	Memberships of major international academies and learned societies	12	12	12
		Number of foreign patents granted** (Calendar year)	176	170	135
	Representation in global affairs	Official(s) in global/ -trans national organizations like the UN, WHO etc IUPAC (Cumulative years of office held) (Data given in no. of years)	8	8	8

1 Crore = 10 Million

Оитрить & Оитсомея

Category of Benefits	Benefit	Indicators	2017-18	2018-19	2019-20
Private goods	Research, consulting, teaching and analytical services	Total earnings from projects done for Indian & Foreign businesses/ industry (Rs in Crore) (Industrial ECF, excluding Grant-in-Aid)	31.34	15.35	16.14
	Continuing education	Total earnings from continuing education/ training programs (Rs in Crore)	NA	NA	NA
	Licensing and techno- logy transfer	Total earnings in the form of royalty, knowhow fees etc from Indian clients & contexts (Rs in Crore)	1.44	0.35	1.27
	Other tactical and strategic	Total earnings from patent related transaction (Rs in crore)	-	-	-
	developments	No. of patents in new Licensing /assignment/ option arrangements	3	0	7
		No. of unique Licensing / assignment / option cases	2	0	4
		No. of Indian patents granted (Calendar year)	16	49	73
		No of foreign patents granted** (Calendar year)	176	170	135
	Contributions to projects involving valuable	Money inflow from NMITLI projects and other similar strategic projects (Rs in Crore)	-	5.40	5.40
	opportunities in the form of technology options	Money inflow from Technology Mission & GIA projects (other than NMITLI) projects (Rs in Crore)	1	13.38	13.01
Intellectual assets and reputation	Quality, reputation and standing of	No. of Indian patents granted (Calendar year)	16	49	73
	scientific man-power	No. of foreign patents granted** (Calendar year)	176	170	135
		Number of scientists who are members of editorial boards of international peer-reviewed journals, covered by SCI	NA	NA	NA
		Number of PhDs granted where lab scientists were research guides	65	78	68
		Number of staff who are members of National academies (Cumulative)	32	32	33
		Number of Bhatnagar awardees (Cumulative)	16	17	17
		Number of Padma awardees (Cumulative)	6	6	6
	Lab's standing with industry	Total worth of projects with industry (only industry: both Indian & foreign) (excluding Grant-in-Aid) (Rs in Crore)	31.34	15.35	16.14

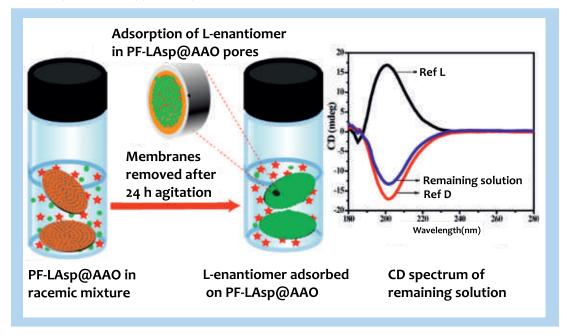
^{* -} Individuals who are members of more than one academy have been counted only once

^{** -} Foreign means all filings other than IN & WO 1 Crore = 10 Million

RESEARCH & DEVELOPMENT

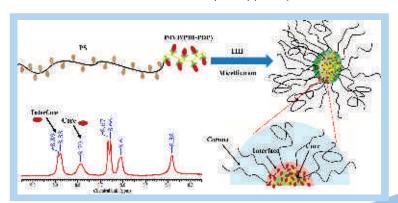
Advanced Materials	28
Agriculture, Food & Nutrition	.43
Energy & Environment	.49
Healthcare	.56
Sustainable Chemical Industry	61

Advanced Matterials


Nanostructured Materials

Asha S. K. sk.asha@ncl.res.in

Polymer and soft material research


Enantio- selective separation using anodic aluminium oxide (AAO) membranes: Chiral anodic aluminium oxide membranes (AAO) prepared by coating protected D/L aspartic acid appended polyfluorene,

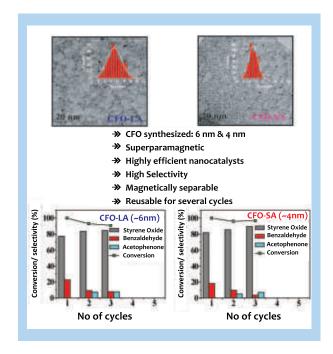
successfully demonstrated enantioselective recognition and separation of a range of amino acids from their aqueous racemic mixture by simple filtration. Enantioselective separation was achieved by selective adsorption of one enantiomer into the chiral pores of the AAO membrane. A very high enantiomeric excess (ee%) of 95% could be achieved for Glutamic acid in 24 h (Anal. Chem. 2020, 92, 6850).

Self-assembly of bispentadecylphenol substituted perylenediimide: A ditopic molecular probe bispentadecylphenol substituted perylenediimide (PBI-PDP) was used to examine the molecular level self-assembly of PS-b-P4VP in THF. NMR experimental parameters measured for the small probe molecule provides detailed insights into the structure of the assemblies in solution as well as the interaction

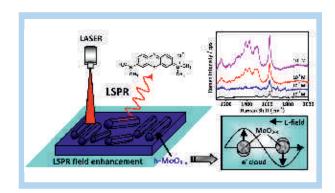
between the small molecule and the block copolymer. The dynamics and distribution of the PBI-PDP molecules within the assemblies in solution shows a dependence on the length of the P4VP block. Transmission electron microscopy was employed to study the evolution of morphologies in films prepared from the self-assembled structures in THF solutions (ACS Appl. Polym. Mater. 2020, 2, 805).

Advanced Materials

Nanostructured Materials


S. P. Mukherjee

sp.mukherjee@ncl.res.in


Size-controlled cobalt ferrite nanocrystals

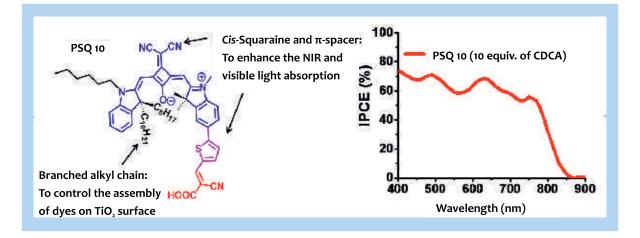
Magnetically separable reusable nanocatalysts for selective oxidation of styrene: Superparamagnetic cobalt ferrite (CFO) nanocrystals (NCs) with sizes ~6 nm and ~4 nm were synthesized using a facile solvothermal method using fatty acids, lauric acid and stearic acid, as the capping agents. The synthesized nanocrystals were well characterized by XRD, FT-IR, XPS, SEM and TEM. The formation mechanism was explored and it was shown that the fatty acid was actually chemisorbed as a carboxylate onto the surface of CFO NCs. The experimental results specify that the size and size distribution of the CFO NCs were highly dependent on the length of fatty acid hydrophobic chain. Corresponding changes of the magnetic properties were investigated by measuring magnetization as a function of field and temperature, which suggest that the CFO NCs were super paramagnetic in nature. The catalytic properties for the oxidation of styrene in organic medium were examined by using the synthesized CFO NCs with sizes ~6 nm and ~4 nm. The synthesized CFO NCs, well dispersible in organic media, were demonstrated to be highly

Phase- and morphology-controlled synthesis of tunable plasmonic MoO_{3-x} nanomaterials: A simple surfactant-free hydrothermal strategy was proposed to fabricate crystalline h- MoO_{3-x} and α - MoO_{3-x} nanomaterials with tunable plasmonic properties. Herein, the crystal phase, morphology, and oxygen vacancy of MoO_{3-x} nanostructures were precisely controlled under suitable synthetic conditions. The plasmonic properties of the as-synthesized h- MoO_{3-x} and α - MoO_{3-x} micro-/nanostructures were controlled by adjusting the residual volume in the autoclaving chamber. In addition, the plasmonic MoO_{3-x} exhibited SERS activity with a detection limit as low as 1.0 × 10–9 M and the maximum enhancement factor (EF) up to 6.99 × 10^5 for h- MoO_{3-x} , while for α - MoO_{3-x} , the

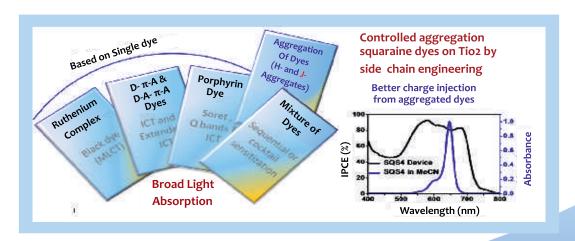
catalytically active, reached 100% conversion of styrene in 12 h with ~77% and ~82% selectivity for styrene oxide respectively. The magnetic CFO nano catalysts were easily separated and recovered from the reaction medium by an external magnet, and reused for several cycles without loosing catalytic selectivity for styrene oxide (ChemistrySelect 2019, 4, 6524).

detection limit was 1.0×10^{-7} M with the corresponding EF up to 8.51×10^{3} , comparable with plasmonic noble metal nano materials without a "hot spot" (*J. Phys. Chem.* C **2020**, 124, 21082)

Advanced Matterials


Materials for Energy

J. Nithyanandhan


j.nithyanandhan@ncl.res.in

Design and synthesis of far-red and NIR active squar-aine dyes for dye-sensitized solar cells π extended cis-configured un symmetrical squaraine dyes for dye-sensitized solar cells: Far-red active π -extended cis-configured unsymmetrical squaraine dyes with carboxylic acid and cycnoacetic acid as anchoring groups with controlled aggregation and panchromatic light absorption by including the steric and electronic factors were engineered, synthesized, and tested as a light absorbing material for dye-

sensitized solar cells. The presence of sp³ -C (out-of-plane) and N-alkyl (in-plane) groups played an important role in modulating the assembly of the dyes on the TiO_2 electrode. The *cis*-squaraine unit helped to extend the conjugation in the NIR region besides enhancing the visible transition and the incident photon-to-current conversion efficiency profile that showed the importance of anchoring groups for the panchromatic response. Dye PSQ10 showed solar-to-electric conversion with an onset of 850 nm with the device performance of 7.0% (V_{oc} = 0.581 V, J_{sc} = 17.06 mA/cm² , FF = 70%) (ACS Appl. Energy Mater. 2019, 2, 8464).

Alkyl group wrapped unsymmetrical squaraine dyes for dye-sensitized solar cells: Squaraines are far-red active zwitterionic dyes, have high molar extinction coefficient along with unique aggregation properties due to the larger dipole moment associated with it. A series of unsymmetrical squaraine dyes with systematic variation of alkyl groups at sp³-C and N-atoms of indoline unit that was away from the

Advanced Materials

Materials for Energy

anchoring group is designed to control the dyedyeinteractions on the TiO₂ surface. The branched alkyl groups help to modulate the self-assembly of sensitizers on the TiO₂ surface besides passivating the surface that helps to avoid the charge recombination processes. Dye SQS4 has achieved highest efficiency of 7.1% (Voc = 715 mV, Jsc = 13.05 mA/cm2) with coadsorbent chenodeoxycholic acid using iodine (I-/I3-) electrolyte compared to its analogs (ACS Appl. Mater. Inter. 2020, 12, 2555).

Arup Kumar Rath

ak.rath@ncl.res.in

Quantum dots

Mutually passivated quantum dot ink: Tunable band gap colloidal quantum dots (QDs) is a potential building block to harvest the wide energy solar spectrum. We reported a joint passivation strategy using thiol and halometallate ligand was developed to prepare the QD ink. The mutually passivated QDs show a 50% reduction in shell thickness, reduced trap density and improved monodispersity in its solid films. These improvements lead to a four-time increase in carrier mobility and doubling of the diffusion length, which enables the carrier extraction from a much thicker absorbing layer. The photovoltaic devices showed a high efficiency of 10.3% and reduced hysteresis effect. The improvement in surface passivation leads to reduced oxygen doping and improved ambient stability of the solar cells (ACS Appl. Mater. Inter. 2019, 11, 26100).

Reduction of trap and polydispersity in quantum dot

films: Control over surface passivation is a key to manage the optoelectronic properties in low dimensional nano materials due to their high surface to volume ratio. Tunable band gap quantum dots (QDs) are a potential building block for the development of optoelectronic devices like solar cells, photodetectors, and light-emitting diodes. Here we introduced a surface passivation strategy where the QDs are mutually passivated by organic ligand 3-methyl mercapto propionate and inorganic halometallate

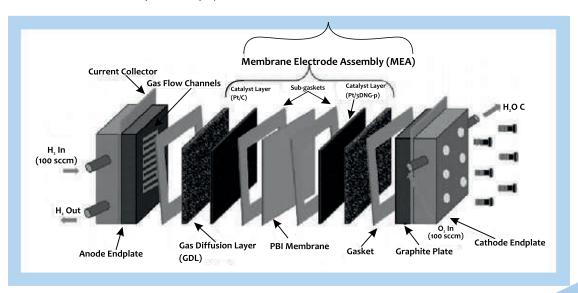
ligands to develop conducting QD ink. The mutually passivated quantum dots (MPQDs) showed significant improvement in optoelectronic properties in maintaining the trap free energy band gap and size monodispersity. The photovoltaic performance of MPQDs showed a 33% average increase in power conversion efficiency over the conventional halometallate passivation, to attain 9.6% PCE in MPQD solar cells. The improvements in photovoltaic parameters are corroborated by the reduction in density of intermediate trap states, increase in depletion width and diffusion length in MPQD based solar cells (ACS Appl. Energy Mater. 2020, 3, 8903).

Inorganic ligands for quantum dot solar cell: We found out a solution phase ligand exchange strategy using alkali metal halides as a substitution for the organic counterpart to facilitate solution phase ligand exchange using all inorganic halometallate ligands. Considering the limited solubility of the alkali halides in organic solvents a two-stage ligand-exchanged process was developed to help remove the excess ligands, preserve the electronic purity and allow the formation of highly passivated QD films from solution phase deposition. A two-fold increase in solar cell performance is shown with the help of the modified ligand exchange approach. The solar cell properties are further analysed through detailed characterizations of the QD solar cells (J. Mater. Sci.-Mater. El. 2019, 522, 16234).

Advanced Matterials

Materials for Energy

K. Sreekumar


k.sreekumar@ncl.res.in

Advanced materials for energy conversion and storage

Development of non-aqueous rechargeable zincmetal polymer battery: We demonstrated the preparation and characterization of non-aqueous zincion conducting gel polymer electrolyte (GPE) using a facile UV-assisted polymerization technique. The assynthesized GPE membrane exhibited good ionic conductivity at room temperature (10⁻³ S cm⁻¹) and high electrochemical stability (>2.4 V vs. Zn|Zn²⁺) along with excellent mechanical strength. The GPE prepared with optimum Zn2+-salt concentration offered stable solid electrolyte interphase (SEI) layer over the Zn electrode, thereby facilitating the plating/stripping of Zn in a Zn|Zn symmetric cell with a low overpotential of 300 mV for more than 200 h. The electrochemical performance of the GPE was further investigated in zinc-metal battery (ZMB) full-cell using VOPO₄ as the cathode and metallic zinc as the anode (VOPO₄||Zn). The resulting ZMB cell delivered a high average voltage of 1.2 V and a specific discharge capacity of 78 mAh g⁻¹ (Small **2020**, 16, 2002528).

Electrocatalyst for polymer electrolyte membrane fuel cells: Effective utilization of platinum (Pt) is one of

the critical parameters for enhancing the performance of the polymer electrolyte membrane fuel cells (PEMFCs). In line with this, we designed nitrogendoped 3D graphene (3DNG) as the supporting material for Pt. The 3DNG support exhibits better accessibility, invariable size distribution, and high electrochemical surface area for Pt nanoparticles compared to the other conventional carbon supports (viz. Vulcan carbon (VC) and nitrogen-doped graphene (NRG)). This was further validated by the mass activity and specific activity comparison, which followed the trend: Pt/3DNG > Pt/VC > Pt/ NRG. We also demonstrated the electrochemical performance of Pt/3DNG as the cathode in a high-temperature PEMFC (HT-PEMFC). For analyzing the performance of Pt/3DNG in HT-PEMFC, we utilized the concept of in-situ generation of the proton conducting-ionomer by UV-light induced freeradical polymerization over the electrodes. The in-situ generated proton conducting ionomer has the potential to replace the conventionally used Nafion ionomer for electrode fabrication. Moreover, the membrane electrode assembly having the in-situ generated ionomer delivers a power density of 982 mW cm², which is higher compared to that of the Nafion ionomer-based counterpart, highlighting the advantage of the proposed strategy (Adv. Sustainable Syst. 2020, 2000125).

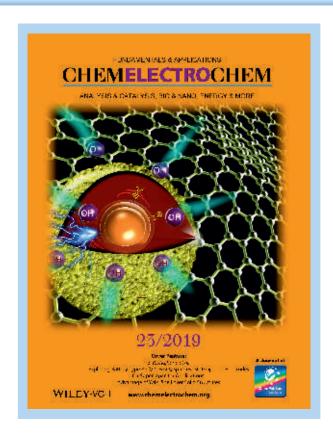
Advanced Materials

Materials for Energy

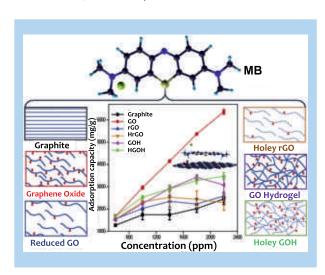
Kaliaperumal Selvaraj

k.selvaraj@ncl.res.in

Rational designing of advanced functional nanostructured materials


Rational design and development of ZnO/ZnFe,O, spheres-3D graphene: In spite of its excellent capacitance making it highly promising for energy storage applications, ZnO/ZnFe,O4 composite suffers with poor capacitance retention due to its strong volumetric variations during operation. We demonstrated a rationale design of a binder-free electrode with a porous yolk-shell ZnO/ZnFe₂O₄ composite matrixed inside a 3D network of graphene, grown on Ni foam. The design exhibited a four-fold increase in its specific capacitance, (1334 F g⁻¹ at 0.5 A g⁻¹, specific capacity of 370.5 mAh g⁻¹) in contrast to solid metal oxide counterpart ZnO/ZnFe,O4 electrodes (309 F g^{-1} (85.8 mAh g^{-1}) at 0.5 A g^{-1}). The availability of free space in yolk-shell design accommodated the volume expansions to retain the capacitance up to 80 % beyond 5000 cycles at a current density of 1 A g^{-1} (ChemElectroChem **2019**, 6, 5819).

modified graphene nanostructures with adsorbents: Nanoscopic modifications leading to multidimensional graphene structures are known to significantly influence their candidature for several applications including catalysis, energy storage, molecular sensing and environmental remediation. Our lab tries to identify the key trajectories that connect the structural qualification with the application. For instance, various physico-chemically Modified Graphene Nanostructures (MGNs) such as 2D Graphite, Graphene Oxide (GO), reduced GO (rGO), holey rGO, and 3D GO hydrogel and Holey GO hydrogel are investigated using an exclusive real time *in-situ* UV

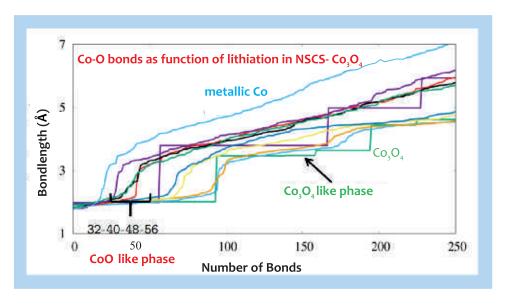

visible spectral setup. Detailed analysis of various experimental and computational data suggested a complex dependency of various factors such as surface

oxygen, morphology, nanoporosity etc. Electrostatics

Unravelling the distinct surface interactions of

and H bonding are the two dominant forces driving the adsorption on the best performing GO (*J. Hazard. Mater.* **2020**, 388, 121755).

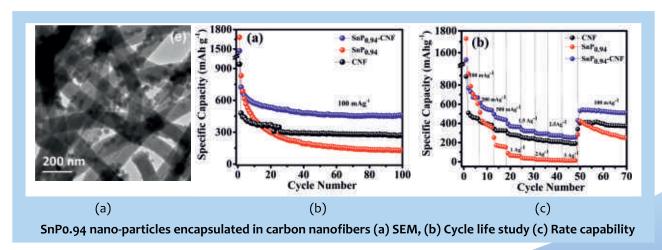
Advanced Matterials


Materials for Energy

Kavita Joshi

k.joshi@ncl.res.in

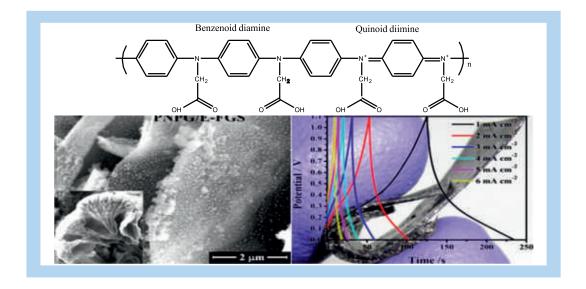
Understanding structural phase transitions in an electrode material upon doping: Conversion type anode materials are being studied for Li-ion batteries (LIBs) for their potentially higher capacities over current graphite based anodes. This work describes


development of high capacity and stable anode from a nanocomposite of N and S co-doped carbon spheres (NSCS) with Co_3O_4 (NSCS- Co_3O_4). Detailed DFT based calculations have revealed role of doped support in controlling the volume expansion upon lithiation as well as how it help in maintaining the functionality of the electrode (*Nanoscale Adv.* **2020**, *2*, 2914).

Manjusha Shelke

mv.shelke@ncl.res.in

Rechargeable batteries and flexible supercapacitors Anode materials for lithium-ion batteries (LIBs): LiBs have occupied a primary position in fulfilling energy storage requirements in the electronic applications. Especially anode materials are more important to increase energy density as well as power density of LIBs. We have synthesized an excellent conversion-


Advanced Materials

Materials for Energy

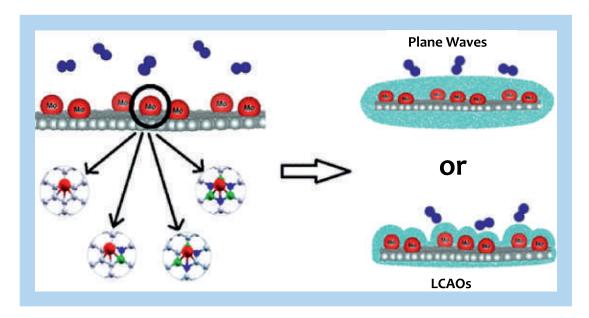
-cum-alloying anode material for LIB with high energy density, longer cycle life and superior rate capability. We have developed high energy anode electrospun nanofibers of tin phosphide (SnPo.94) nanoparticles encapsulated in a carbon matrix. A capacity as high as 750 mAh g-1 has been achieved at a current density of 100 mA g-1 with acceptable cyclic stability, rate performance (Energ. Fuel. 2020, 34, 7648).

High energy flexible supercapacitor: Compact devices such as bendable displays, implantable, wireless medical contrivances require improvements in

replacing conventional capacitors by mechanically flexible electrochemical supercapacitors. We have fabricated flexible FGS substrate by electrochemical exfoliation. It was later used for electropolymerization of Poly(N-phenylglycine) (PNPG), an original pseudocapacitive conjugative conducting polymer on its surface. A flexible solid-state symmetrical supercapacitor was further fabricated using PNPG/E-FGS electrodes, exhibiting an excellent specific energy and power density (ACS Sustain. Chem. Eng. 2020, 8, 6433).

Advanced Matterials

Functional Materials


Sailaja Krishnamurty

k.sailaja@ncl.res.in

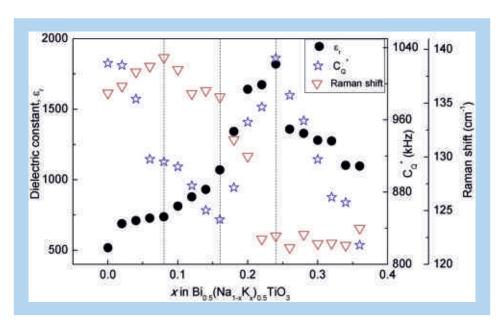
Materials for energy and environment

Dinitrogen activation using single atom catalysts: A case study of dinitrogen (N,) activation on Mo anchored graphene has been made by employing periodic and finite models of graphene to understand the contributing factors of catalysis on such systems. The study has brought out the connotation of regulating atomic composition of graphene substrate for dinitrogen activation, also unveiled the relative insignificance of varying the size and edge effects of the substrate. These features are highlighted through an analysis of red shift in the N–N stretching

frequency, charge transfer to dinitrogen from the catalytic system, and structural and electronic characteristics of the catalytic system. The total and projected density of states plots revealed hybridization between the metal d orbitals and the p orbitals of carbon and nitrogen in the valence band. On the other hand, the frontier molecular orbital analysis also depicted a strong chemisorption of dinitrogen with the metal–graphene supports on account of direct hybridization between the d orbitals of the supported metal atom and the p orbitals of dinitrogen. The Bader and Löwdin charge distribution on the adsorbed dinitrogen in periodic and finite models shows the preeminence of local site over the surface activity (*J. Phys. Chem.* C2019, 123, 27492).

T. G. Ajithkumar

tg.ajithkumar@ncl.res.in


Raman and ³³Na solid-state NMR studies on the lead-free ferroelectrics: The local structural changes, due to the substitution of the smaller Na⁺ by the larger K⁺ ion, in the lead-free piezoelectric ceramic compositions were studied using Raman and ²³Na solid-state NMR spectroscopy. Different close compositions in the solid solution series $Bi_{0.5}(Na_{1.x}K_x)_{0.5}TiO_3$ ($0 \le x \le 0.36$, $\Delta x = 0.02$)

were studied in the morphotropic phase boundary (MPB) region arising from the different crystal structures of the end members $Bi_{0.5}Na_{0.5}TiO_3$ and $Bi_{0.5}K_{0.5}TiO_3$. The close correlations between the Raman and NMR parameters with the performance parameters of the system were observed as shown in the figure, suggesting the role of the local structural changes in determining these parameters. Raman and ^{23}Na NMR studies showed that the onset of the MPB region is at x=0.16 and the MPB region corresponds to

Advanced Materials

Functional Materials

0.16 ≤x ≤0.24 where better performance parameters were observed (Mater. Res. Bull. 2019, 118, 110506).

Materials for Environmental and Healthcare Applications

Rajesh G. Gonnade

rg.gonnade@ncl.res.in

Pharmaceutical materials

Polymorphs and multicomponent crystals Novel crystalline polymorphs of entresto: Entresto is the supramolecular complex of trisodium sacubitril valsartan hemi pentahydrate in crystalline form. It is the combination drug which contains 1:1 molar ratio of two APIs valsartan and sacubitril. Although various pharmaceutical companies have reported many solid forms of Entresto, the significant concerns lie with the cocrystal drug are hygroscopicity and stability. These twin issues were affecting the physicochemical properties of the drug to a great extent. We have developed five novel polymorphs, two of which showed greater stability and less hygroscopicity

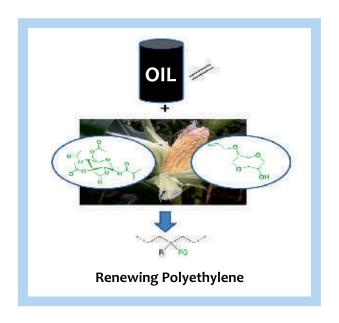
compared to the innovator solid form of the Entresto (Indian patent filed: 201911001837).

Novel crystalline polymorphs of GBT440: GBT-440 (Voxelotor) is the first hemoglobin oxygen-affinity modulator developed by Global Blood Therapeutics Inc. It is the first drug approved by the US FDA and European Medicines Agency for the treatment of sickle cell anaemia disease and hence research on screening of its novel solid forms having enhanced physicochemical properties conveys a lot of significance. Polymorph screening of Voxelotor yielded six conformational polymorphs and one hydrate. The developed novel polymorphs may have improved physicochemical properties (Indian patent filed: 202011009038).

Advanced Matterials

Polymers

Mahesh Dharne


ms.dharne@ncl.res.in

Microbial production of poly-gamma-glutamic acid (γ -PGA): The poly-gamma-glutamic acid is a high valued polymer for high-end applications. Glucose, L-glutamic acid and citric acid are required for its production.

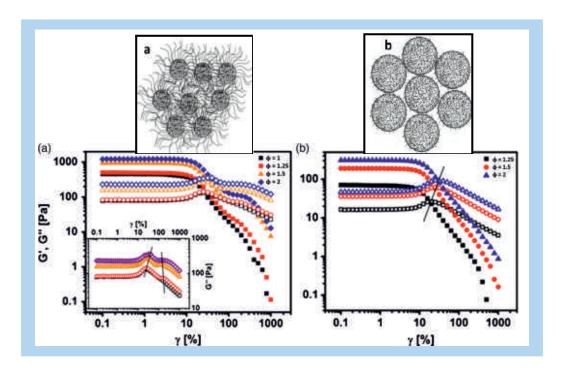
Since, the shelf life of tomatoes is short; a large number of wastes are generated. Thus, tomato waste has the potential to serve as a complete medium thereby substituting conventional production medium for PGA. A novel γ - PGA producing strain was reported that can valorize the tomato waste to γ - PGA (Indian patent filed: 202011024273).

Samir H. Chikkali s.chikkali@ncl.res.in

Olefin polymerization: We have designed the catalysts for ethylene polymerization to ultrahigh molecular weight polyethylene. In addition, we have prepared functional group tolerant catalyst and have demonstrated insertion copolymerization of various functional olefins. The scope of this reaction has been broadened to the insertion copolymerization of ethylene with sugar derived monomers. Our investigations establish the convergence of petroleum feed-stocks with renewable feed-stocks to produce functional polyethylene (Prog. Polym. Sci. 2020, 109, 101290; Chem-Asian J. 2020, 15, 398; ChemPlusChem 2020, 85, 1200; Eur. Polym. J. 2020, 134, 109775).

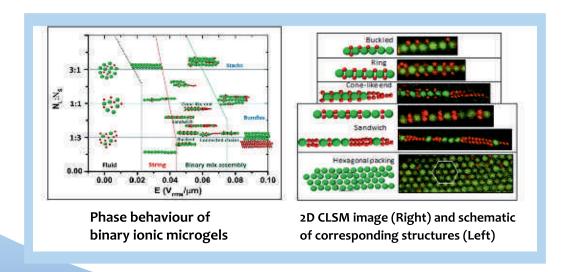
Suresh Bhat

sk.bhat@ncl.res.in


Thermosensitive microgels

Role of particle morphology in the yielding behavior of densethermosensitive microgel suspensions: Yielding in dense thermosensitive microgel suspensions of poly(N-isopropylacrylamide) with two different particle morphologies core—shell (CS) and homogeneous (HS) particles were studied. The

particles with uniform crosslinking density showed hard sphere like behavior with the loss modulus (G") exhibiting a single peak due to cage breaking while CS type particles showed double yielding at different strains similar to that seen in attractive colloidal glasses. Current study suggests that interpenetration of polymer chains at high concentrations in CS particles sets in an attractive like potential leading to double yielding phenomena in an otherwise purely repulsive system (J. Appl. Polym. Sci. 2020, 137, 48625).


Advanced Materials

Polymers

Alternating electric-field-induced assembly of binary mixtures of soft repulsive ionic microgel colloids: An external alternating electric field was used to study the assembly of a binary mixture of poly(N-isopropylacrylamide-co-acrylic acid) microgels in their swollen form at hydrodynamic size ratio 2:1 under deprotonated state. Strings with different types of co-assembly structures such as buckled, ring, flame and sandwich were observed at low and intermediate field strengths at ratio 1:3, 1:1. At high field strength,

aggregation of strings and a phase separation into individual aggregates of strings from both big and small microgels have been observed. At higher ratio 3:1, the string formation is mostly dominated by big particles. Our current study also confirms that in a binary co-assembly, not only big microgels interpenetrate but also big and small microgels interpenetrate to some extent due to soft repulsive nature of the microgel particles (*J. Colloid Interf. Sci.* 2019, 544, 88).

Advanced Materials

Biomaterials

GVN Rathna

rv.gundloori@ncl.res.in

Blends of polyesteramide of neem oil as an active nanomaterial for tissue regeneration: We have synthesized neem oil based polyesteramide and blended with biocompatible polymers. Nanofiber mat of the blend immobilized with bioactive agent (chlorohexidine (CH)) for tissue regeneration was also fabricated. The developed nanomaterial was non-toxic with good mechanical strength with sustainable drug release capacity. The *in vivo* wound healing studies

recorded high tissue regeneration efficiency i.e. up to 95 % without any inflammatory actions as compared to the commercial wound healing cream (povidoneiodine) (77%). We considered that this new nanomaterial is more efficient for tissue regeneration. Because of its nanoform it is more bioactive due to larger surface area. Further it is non-toxic, biodegradable with controlled release of bioactive agent thereby limiting the frequency to change the dressing material and thus reducing the cost, which is one of the important aspects for the commercial application (ACS Appl. Bio Mater. 2019, 2, 3341).

In vivo wound healing studies

Sapna Ravindranathan s.ravindranathan@ncl.res.in

Applications of NMR spectroscopy

NMR investi- gation of silk fibroin-sodium dodecyl sulphate gelation mechanism: Silk Fibroin (SF) gels find applications in controlled drug release, repair and regeneration of damaged tissues etc. In presence of surfactants SF gelation is accelerated and occurs within hours instead of several days. NMR investigations of the underlying mechanism revealed the presence of hot spots on the SF chain where surfactant molecules bind preferentially. This brings SF chain motifs which have a propensity to form beta-sheet structures closer thereby accelerating the sol-gel phase transition (*Langmuir* 2019, 35, 14870).

NMR investigation of donor-acceptor interactions in a charge-transfer liquid: A solvent free charge transfer liquid involving dialkoxynaphthalene donor and a

naphthalene diimide acceptor shows unprecedented stability retaining characteristic features even at elevated temperatures. NMR techniques were employed to understand the underlying intermolecular interactions leading to efficient charge transfer. Donor-acceptor stacking arrangement, thermal stability and interaction constant were determined by NMR thus giving significant insights into factors enhancing charge transfer efficiency in the neat liquid (Chem. Commun. 2019, 55, 9371).

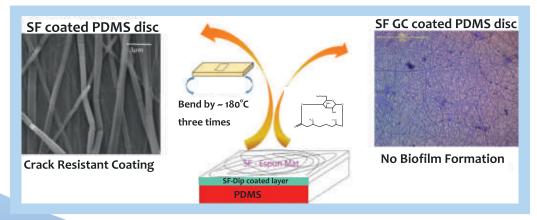
NMR investigation of self-assembly of substituted perylenediimide and PS-b-P4VP copolymer: Complexes between PS-b-P4VP copolymer with varying fractions of P4VP and 3-pentadecylphenol substituted perylenediimide (PBI-PDP) were examined by NMR. Interestingly, self-assembled structures in the solid phase are not fully disrupted when the complexes are dissolved. Structure and dynamics of the micelles were investigated by employing the ligand as a probe

41

Advanced Materials

Biomaterials

to understand the correlation between P4VP block size and micelle properties. These insights are useful in developing strategies for manipulating the self-assembly behavior so as to tailor copolymer morphologies to suit various applications ranging from drug delivery to soft lithography and more (ACS Appl. Polym. Mater. 2020, 2, 805).


Anuya Nisal aa.nisal@ncl.res.in

Silk—based materials for biomedical applications **Silk** fibroin-surfactant hydrogels: Silk Fibroin hydrogels have promising applications in tissue regeneration. We have prepared novel silk fibroin hydrogels by blending them with a biosurfactant sophorolipid. Sophorolipids have interesting properties such as antibacterial, antifungal and anticancer activity, that they impart to these hydrogels. We have used a model surfactant sodium dodecyl sulphate to provide a mechanistic understanding of gelation of silk fibroin using surfactants (*Langmuir* **2019**, 35, 14870).

Silk fibroin coatings for breast implants: Silicone breast implants exhibit a failure rate of 15-20% in patients. We have developed a novel patent-protected processing protocol to prepare silk fibroin coatings on silicones. These coatings have excellent adhesion to

silicones and are crack-resistant. The coatings were also functionalized with anti-quorum sensing inhibitory molecule glycomonoterpene (ACS Appl. Bio Mater. 2019, 2, 675).

Advanced Matterials

Composite Materials

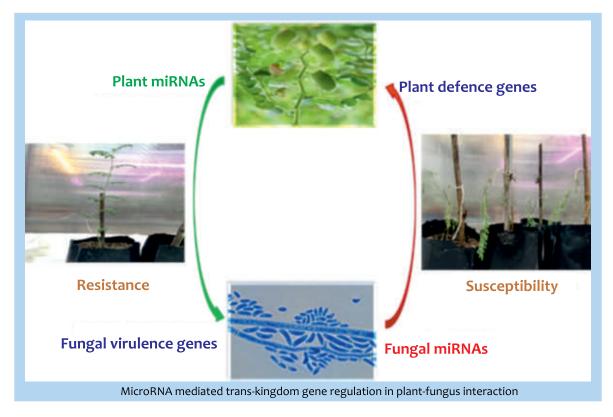
Kadhiravan Shanmuganathan k.shanmuganathan@ncl.res.in

Nanocellulose reinforced advanced composite mate-rials for energy applications

Nanocellulose reinforced flexible composite nanogenerators with enhanced sensing properties: Surface fluorinated nanocellulose crystals (FNC) were incorporated into polyvinylidene fluoride and electrospun into composite nanofibers. Incorporation of only 2 wt% surface fluorinated FNC in PVDF resulted in a significant enhancement in pressure sensitivity with very low detectable pressure limit of 10 Pa and sensitivity up to 18 mV/ kPa. When PENGs were mounted on a vacuum pump for transduction of mechanical vibrations into electrical energy, 2FNC/PVDF composite devices manifested ~3.8

times enhanced voltage output over neat PVDF (ACS Appl. Polym. Mater. 2020, 2, 2550).

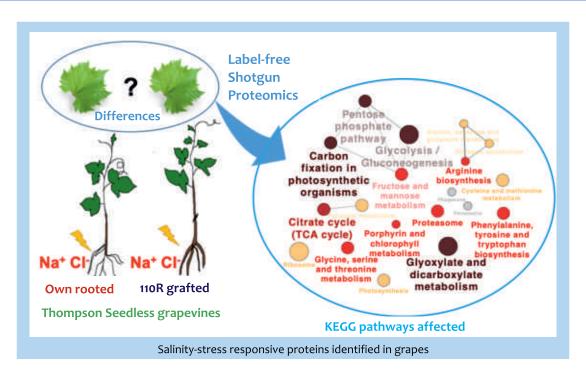
Enhancing thermomechanical and chemical stability of polymer electrolyte membranes using polydopamine coated nanocellulose: Polydopamine coated nanocellulose (PNC) led to 200% improvement in storage modulus of Nafion at 90°C. The proton conductivity of the 3 wt% PNC composite membrane at 90°C and 100% RH (~125 mS/cm) was slightly higher than Nafion membrane (~94 mS/cm) at similar conditions. Free radical scavenging properties of polydopamine also helped to significantly enhance the chemical stability of Nafion, which was ascertained by accelerated degradation tests conducted in Fenton's reagent at 70°C over 40 days (ACS Appl. Energy Mater. 2020, 3, 1988).


Crop Protection

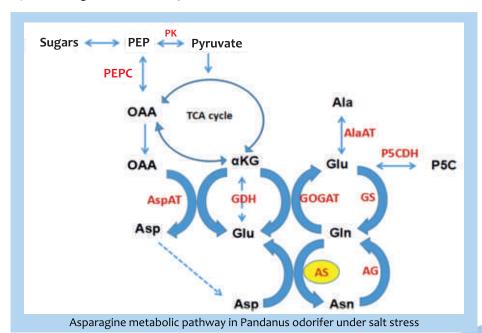
Narendra Kadoo

ny.kadoo@ncl.res.in

MicroRNA-mediated trans-kingdom gene regulation in fungi and their host plants: MicroRNAs (miRNAs) regulate gene expression by repressing or degrading target gene transcripts. To elucidate their roles in plant-pathogen interaction, we predicted 262 fungal miRNAs from 13 fungi, and identified their 649 target genes in


their host plants. Plant miRNAs were found to target fungal virulence genes, while fungal miRNAs targeted plant resistance genes, corroborating miRNA-mediated trans-kingdom gene regulation in plant-pathogen interactions. Transgenic plants expressing miRNAs that target fungal virulence genes could be highly resistant to fungal pathogens (*Genomics* **2020**, 112, 3021).

New putative fungicide targets to control the wheat-spot blotch pathogen: The fungus *Bipolaris sorokiniana* causes severe diseases in wheat, barley, and other cereals. The fungicide propiconazole is widely used to control the pathogen in fields. However, the fungus can become resistant to the fungicide due to its indiscriminate use. We treated the pathogen with sublethal doses of propiconazole and analyzed its gene expression to predict how the pathogen can possibly develop resistance to the fungicide. This revealed novel fungicide targets, which could be explored to develop new fungicides and plant protection strategies (Funct. Integr. Genomics 19, 3, 453).


Identification of salinity-stress responsive proteins in grapes: Thompson Seedless, a popular table grape variety, is sensitive to soil salinity. Therefore, it is frequently grafted onto salinity tolerant wild rootstocks. Rising soil salinity is a growing concern, which causes heavy yield losses in grapes. We identified 2793 proteins using label-free shotgun proteomics, of which 246 were involved in photosynthesis, amino acid metabolism, chlorophyll biosynthesis, etc. The genes encoding these proteins could be used to develop new salt-tolerant grape varieties to secure income for farmers (*J. Proteome*. Res. 19, 2, 583).

Crop Protection

The role of Asparagine synthetase in salinity tolerance: Pandanus odorifer, commonly called Kewda, is a highly salt-tolerant plant growing naturally along the sea coasts. We performed integrative omics and enzyme activity analyses to better understand the mechanistic basis of salinity tolerance in the species. The Asparagine synthetase gene was overexpressed,

accumulating extremely high levels of Asparagine, which is a known as osmolyte. The Na⁺/H⁺ antiporter were also overexpressed, facilitating compart mentalization of Na⁺ into vacuoles. These genes could be transferred to salt-susceptible species to facilitate their cultivation on saline soils (*Sci. Rep.* **2019**, **9**, **932**).

44

45

Agriculture, Food and Nutrition

Crop Protection

Rakesh S. Joshi/ Ashok Giri

rs.joshi/ap.giri@ncl.res.in

Molecular investigation of Coleopteran specific α -Amylase inhibitors from Amaranthaceae members: We have characterized three previously unidentified knottin-type α -Amylase inhibitors (α -Als) from various Amaranthaceae plants. Recombinant α -Als showed

selective inhibition of coleopteran recombinant insect α -amylases. Interaction analysis of these inhibitors illustrated that the reactive site of inhibitors makes several non-covalent interactions with the substrate-binding pocket of coleopteran α -amylases. The selectivity of these inhibitors against coleopteran α -amylases highlights their potential in storage grain pest control (Int. J. Biol. Macromol. 2020, 163, 1444).

Functional Food and Nutrition

Kirtikumar R. Kondhare

kr.kondhare@ncl.res.in

Molecular understanding of tuber development pathway in potato

Epigenetic regulation of tuber development in potato: Polycomb repressive complex (PRC) proteins regulate developmental transitions in plants. In this project, we investigated the role of two PRC proteins, StMSI1 and StBMI1 in potato development. StMSI1-overexpression and StBMI1-1-antisense (RNAi) lines produced enhanced levels of miR156 accompanied by the formation of aerial stolons and tubers from aboveground axillary nodes in potato. We demonstrated that MSI1and BMI1regulate aerial tuber formation in potato under short-day photoperiodic conditions (*Plant Physiol.* 2020, 182, 185; *J. Exp. Bot.* 2020, DOI: 10.1093/jxb/eraa468).

Molecular factors governing tuberization process in potato: Tuber formation in potato is a dynamic process, which involves the integration of multiple molecular and biochemical signals with environmental cues. StBEL5 (BEL1-LIKE transcription factor), StSP6A (Flowering Locus T ortholog) and StCDF1 (CYCLING DOF FACTOR1) factors function as crucial molecular signals of potato development. The BEL-KNOX heterodimer regulates key tuberization genes through tandem TGAC core motifs in their promoter sequences. Although StCDF1 functions as a positive regulator of tuber development, the upstream regulators of its gene expression were unknown. Using promoter reporter transgenic potato lines and yeast1-hybrid (Y1H) assays, we showed that StBEL5 regulates StCDF1 through tandem TGAC core motifs in potato (J. Plant Physiol. 2020, 241, 153014; Int. J. Dev. Biol. 2020, 64, 133).

Mahesh Dharne

ms.dharne@ncl.res.in

Dephytinizing Sacchromyces cerevisiae probiotics: Cell-bound phytase producing Sacchromyces Cerevisiae evaluated using statistical media optimization with MGYP media and got the enhanced activity up to four fold. The process has been scaled-up to 10-L fermenter with increased productivity of 6.4 IU/DCG/h. S.

cerevisiae has also exhibited the probiotic properties like tolerance to artificial gastric juice conditions, hydrophobicity, autoaggregation, coaggregation, and BSH activity. *S. cerevisiae* phytase enzyme has totally dephytinized the phytate content in functional foods and feed ragi, soya, chickpea, and animal feed. Therefore, *S. cerevisiae* can be exploited to use as aprobiotic for non-ruminant animals and humans (*Probiotics Antimicrob. Proteins* 2019, 11, 2).

Plant Diversity and Bio-prospecting

Ashok P. Giri ap.giri@ncl.res.in

Conservation of an endangered medicinal plant from the Western Ghats in India: An efficient in vitro propagation protocol along with phytochemical profiling was developed for C. media to provide a sustainable solution. Callus cultures were induced from seedling and wild leaf tissues using the most effective Murashige and Skoog's (MS) medium with 2,4dichlorophenoxyacetic acid (2,4-D; 2 μM) and sucrose (3%). Somatic embryos were acquired on MS medium with 1 μ M 6-Benzylaminopurine (BAP) and 1 μ M 2,4-D. Conversion into plantlets was attained only from tissue culture-derived seedling leaf (TCDSL) explant. We suggested enhanced production of selected metabolites with in vitro propagation and AgNO₃, alleviating the problem of unavailability of planting materials. Thus, the current study might offer potential ways for the conservation of such RED enlisted species as C. media (J. Plant Growth Regul. **2020**, doi.org/10.1007/s00344-020-10173-6).

Generation of novelties in the genus Ocimum as a result of natural hybridization: An interspecific natural cross led to the development of two hybrids in Ocimum. GC-MS of hybrids indicated phenylpro panoid and terpene-rich novel chemotypes. Enriched metabolite diversity may have potential application in the various fields. The present study explored the two interspecific Ocimum hybrids originating through a serendipitous natural cross between O. kilimandscharicum and O. basilicum. These two novel Ocimum hybrids exhibited intermediate morphological features of two parental species. Inter simple sequence repeats analysis and DNA barcoding with the plastid noncoding trnH-psbA intergenic spacer region reaffirmed unambiguous parental identification and differentiation of these natural hybrids from other available Ocimum species (Ind. Crops Prod. 2020, 15, 112859).

Microbial diversity and bioprospecting

Mahesh Dharne

ms.dharne@ncl.res.in

Metagenome guided discovery of potent microbes for mitigation of polluted environments

Metagenomics based resistome in Soda lake: Metagenome sequencing showed diverse proteobacteria, firmicutes and bacteriodetes from years 2013, 2016 and 2018 data. Phylum euryarchaeota was stable and known to play key role in biogeochemical cycles of the lake. Results also revealed the abundance of genes related to antibiotic resistance and toxic compounds indicating polluted lake. Multidrug resistant efflux pumps, betalactamase, and fluoroquinolones, conferring resistance to cadmium, zinc, cobalt, and arsenic were also detected. The findings of the study could be a baseline for implementing strategies for conservation of the precious Lonar Lake ecosystem (Ecol. Indic. 2020, 110, 105827).

Metagenomics of Ganges river: It is the first metagenomic study of microbial communities in confluence stretch of Ganges and Yamuna Rivers (India). Yamuna River had transient effect on taxonomic and functional diversity at immediate downstream of Ganges. Variations in functional profiles (and not the taxonomic diversity) at the confluence were driven by Yamuna River. Preconfluence (Ganges) and farther downstream of confluence profiles were similar. Archaeal diversity is reported for the first time using MinION sequencing (Sci. Total Environ. 2019, 674, 288).

Thermophiles for hydrocarbon degradation: Mixed PAHs were degraded by pure and mixed culture of thermophilic and thermo-tolerant bacteria. Higher degradation was achieved at 50°C by Aeribacillus and mixed culture. Crude oil was used as a substrate to study the degradation of PAHs. The PAHs degrading strains produce surfactin, a lipopeptide type of biosurfactant (*Sci. Total Environ.* 2019, 679, 52).

Syed G. Dastager

sg.dastager@ncl.res.in

Microbial technologies

A thermo stable biosurfactant and its applications: A novel thermo stable biosurfactants, 1-Pentanonacontene (CosH100) a fatty alkene and 3-Hydroxy-16methylheptadecanoic acid (C₁₈H₃₆O₃) were isolated from a marine isolate Bacillus SGD-AC-13. Biosurfactants were produced using 1% yeast extract in tap water as production medium at 24 h in flask and 12 h in the bioreactor. Crude biosurfactant reduced the surface tension of distilled water to 31.32 ± 0.93 mN/m with CMC value of 0.3 mg/ml. Cell-free supernatant showed excellent emulsification and oil displacement activity with stability up to 160 °C, pH 6-12 and 50 g/L NaCl conc. Biosurfactants were characterized using FTIR, TLC, HPLC LC-MS and NMR spectroscopy. Cellfree supernatant reduced the contact angle of a distilled water droplet from 117° to 52.28° and of 2% pesticide from 78.77° to 73.42° while 750 μg/ml of crude biosurfactant reduced from 66.06° to 56.33° for 2% pesticide and recovered 35% ULO and 12% HWCO from the contaminated sand. It is the first report of thermostable fatty alkene as a biosurfactant and is structurally different from previously reported, having potential application in agriculture, oil recovery and bioremediation (*J. Hazard. Mater.* 2019, 380, 120868).

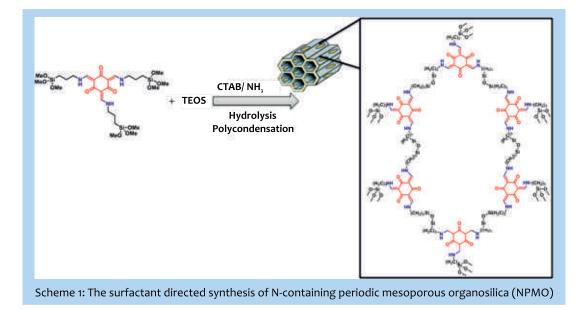
Molecular networking and whole-genome analysis:

Molecular networking coupled with genome analysis led to ease in identification of urdamycin E and a novel natural derivative urdamycin V, purified from Streptomyces sp. OA293. Urdamycin E (Urd E) induced apoptosis and autophagy in cancer cell lines. Urd E exerted anticancer action through inactivation of the mTOR complex by preventing phosphorylation at Ser 2448 and Ser 2481 of mTORC1 and mTORC2, respectively. Significant reduction in phosphorylation of the major downstream regulators of both mTORC1 (p70s6k and 4e-bp1) and mTORC2 (Akt) were observed, thus further confirming complete inhibition of the mTOR pathway. Urd E presents itself as a novel mTOR inhibitor that employs a novel mechanism in mTOR

Microbial diversity and bioprospecting

pathway inhibition (ACS Chem. Biol. 2020, 15, 780).

Bioactivities and molecular networking-based elucidation of metabolites: This study highlights the cultivable diversity and bioactivities of Actinobacteria associate with the Unkeshwar hot springs, India. Potent strains were evaluated for their biosynthetic potentials and metabolite analysis was performed using effective replication molecular networking tools. A total of 86 acti no bacterial strains were isolated and grouped into 21 distinct genera, based on 16S rRNA gene sequence analysis. The extracts were subjected


to MS/MS-guided molecular networking analysis to effectively delineate the secondary metabolites. Structurally diverse compounds including the polyketides 22-dehydroxymethyl-kijanolideand Abyssomicin-I were detected in the extracts. Brevianamide F was detected in the extract of Micromonospora, which has mostly found in fungal species. Other compounds such as cyclic tripeptides, Cyclo(L-Pro-D-Ile) and Cyclo (D-Pro-L-Phe), were also identified in this strain. We explored the diversity of Actinobacteria and evaluated their bioactive potential from the Unkeshwar hot springs (RSCAdv. 2019, 9, 9850).

Conventional energy coupled with CO₂ capture, storage and utilization

C. P. Vinod cp.vinod@ncl.res.in

Co₂ utilization to value added products
Co₂ hydrogenation to formate on Pd supported on Nincorporated periodic mesoporous organosilica
(PMO): N-incorporated hybrid PMO was synthesized
and utilized as a platform for stabilizing well dispersed
and easily accessible Pd nanoparticles (Pd-NPMO)
without using any stabilizing agents or expensive
dendrimers (Scheme 1 and Fig. 1). Further, this

bifunctional hybrid catalyst has been demonstrated to heterogeneously catalyze aqueous phase CO₂ hydrogenation (CO₂/H₂ ratio 1:3) for the direct synthesis of formate under 4 MPa pressure and at 100°C. To validate the superior performance of Pd-NPMO catalyst, we compared the activity with Pd-SBA-15 catalysts and the results showed a ten-fold increase in turnover frequency of 108 h⁻¹ using Pd on NPMO which envisaged the crucial role of nitrogen sites in this catalyst to boost the CO₂ valorization to formate (Fig. 2) (ACS Sustain. Chem. Eng. 2020, 8, 14765).

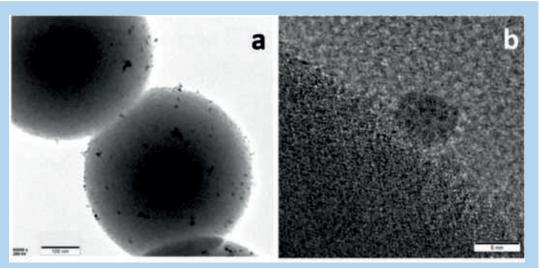


Fig. 1: (a) High Resolution TEM image (scale 100 nm) (b) Magnified HR-TEM image (scale 5 nm)

Renewable & alternative energy technologies

Chinnakonda S. Gopinath cs.gopinath@ncl.res.in

Solar energy to chemical energy conversion Enhanced solar hydrogen production by electronic integration of material components: Renewable and clean energy sources are and will be the norm of the planet earth to minimize disasters. Our work on material integration with thin film approach demonstrates an enhanced solar hydrogen generation in direct sunlight, compared to the conventional powder based suspension method. Au-Pd/rGO/TiO₂ exhibits 43 times higher hydrogen yield in thin film form (21.50 mmol/h.g) compared to powder form (0.50 mmol/h.g) (Fig. 1). Electronic integration has been demonstrated for improved hydrogen production (ACS Appl. Mater. Inter. 2019, 11, 32869).

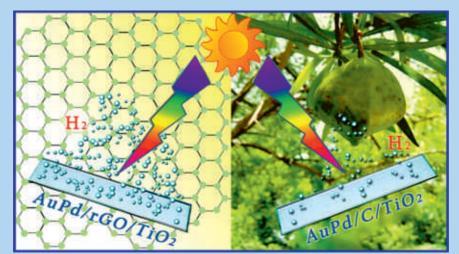
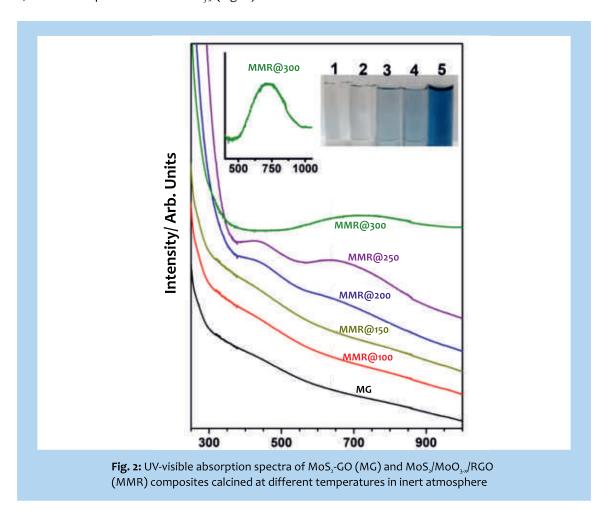



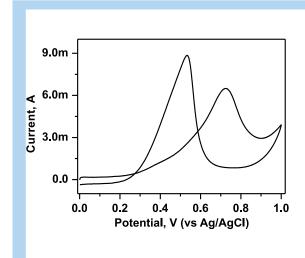
Fig. 1: Layered reduced graphene oxide material is shown to integrate efficiently

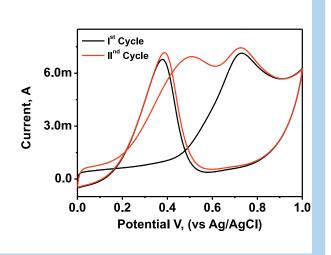
Renewable & alternative energy technologies

New plasmonic 2D-multifunctional MoS₂/MoO₃, /RGO for solar hydrogen generation: Solar hydrogen generation was demonstrated with visible and near IR photons available in the sunlight has been demonstrated with MoS₂/MoO₃, /RGO. A combination of new, exotic and plasmonic 2D MoO₃, (Fig. 2) with

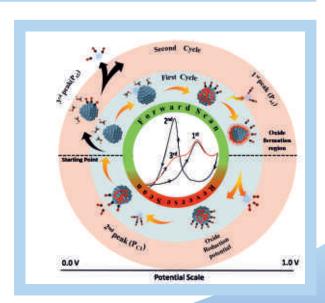
another 2D graphene oxide and integrated with MoS_2 was prepared by a simple oxidative disproportionation of MoS_2 +RGO. Oxygen from RGO was utilized in-situ to form plasmonic 2D MoO_{3x} , which absorbs light in visible and NIR regions (*J. Phys. Chem.* C **2019**, 123, 21685).

Renewable & alternative energy technologies


BLV Prasad


pl.bhagavatula@ncl.res.in

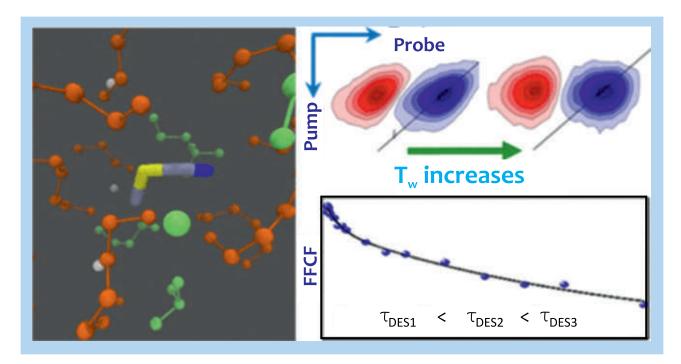
Mechanistic aspects of methanol electrooxidation reaction (MOR) through cyclic voltammetry


Re-investigation of CV response of MOR in acidic medium: The identification of an electro-catalyst material which is commercially viable with consistent performance continues to be a great challenge mainly due to our limited understanding of the exact MOR mechanism. We have embarked upon a program to gain deeper insights into this process through a series

of systematic CV experiments. Our analysis clearly suggested that the peak during the cathodic scan ($P_{\rm cr}$) in CV for MOR belongs mainly to electro-oxidation of carbon monoxide (CO) species which is not truly adsorbed on electrode surface and hence has a less possibility to poison the electrode surface. An additional peak was observed in the anodic scan at higher scan rates and our results suggest that this peak is associated with surface confined electrochemical processes related to the oxidative desorption of left over CO. The frequently used $I_{\rm e}/I_{\rm b}$ criteria are not appropriate to evaluate the electro-catalyst performance in MOR (*Energy Technol.* 2020, 8, 1900955).

Proposed mechanism for MOR: Based on all experimental data we had proposed a mechanism for MOR. As we start the CV from 0 V, during the first anodic scan methanol oxidizes to CO at P_{ai} , part of which gets oxidised to CO_2 at P_{ai} . Majority of the remnant un-oxidised CO stays in solution phase while a small part resides adsorbed on the electrode surface. This adsorbed CO along with the CO present in the solution oxidizes at P_{c1} during cathodic scan. This left over CO gets reductively adsorbed on the electrode surface which ultimately oxidatively desorbs at P_{a2} . Though the presence of this left over CO was not discussed clearly in the literature, our results explain its presence successfully (*Energy Technol.* **2020**, 8, 1900955).

Renewable & alternative energy technologies

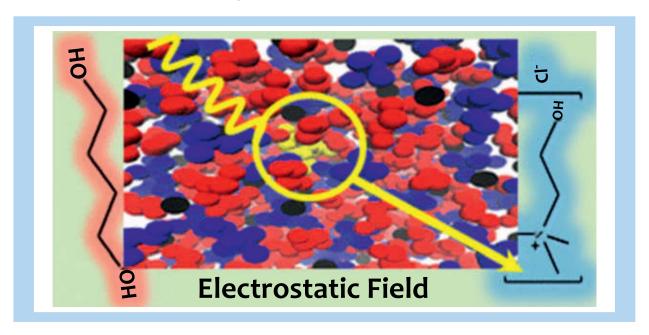

Sayan Bagchi

s.bagchi@ncl.res.in

Deep eutectic solvents

Hydrocarbon chain-length dependence of alcohol based eutectic solvents: Deep eutectic solvents (DESs) have gained popularity in recent years as an environmentally benign, inexpensive alternative to organic solvents for diverse applications in chemistry and biology. Among them, alcohol-based DESs serve as useful media in various applications due to their significantly low viscosity as compared to other DESs. Despite their importance as media, little is known how their solvation dynamics change as a function of the hydrocarbon chain length of the alcohol constituent. In order to obtain insights into the chain-length

dependence of the solvation dynamics, we have performed two-dimensional infrared spectroscopy on three alcohol-based DESs by systematically varying the hydrocarbon chain length. The results reveal that the solvent dynamics slows down monotonically with an increase in the chain length. This increase in the dynamic timescales also shows a strong correlation with the concomitant increase in the viscosity of DESs. In addition, we have performed molecular dynamics simulations to compare with the experimental results, thereby testing the capacity of simulations to determine the amplitudes and timescales of the structural fluctuations on fast timescales under thermalequilibrium conditions (*J. Phys. Chem. B* **2019**, 123, 9355).

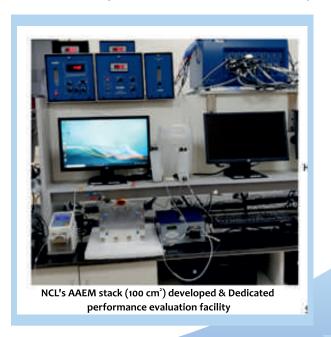

Electrostatic manifestation of micro-heterogeneous solvation structures in deep-eutectic solvents: We have showed that the electrostatic field, which can be estimated both from infrared experiments and theory, can act as a unified concept to report on the microscopic heterogeneous solvation of deep eutectic solvents. We reported the residue-specific distribution, orientation, and hydrogen bonding in deep eutectic

solvents constituting of choline chloride and alcohols of varying chain-lengths using a fluorophore containing the carbonyl moiety as the solute and the electrostatic field as a descriptor of the solvation structure of the deep eutectic solvents. We observed that an increase in alcohol chain-length not only affects the alcohol's propensity to form hydrogen bond to the solute but also alters the spatial

Renewable & alternative energy technologies

arrangement of choline cations around the solute, thereby leading to microheterogeneity in the solvation structure. Moreover, to extend our electrostatic field based strategy to other deep eutectic solvents, we report an emission spectroscopy based method. We showed that this method can be applied, in general, to

all deep eutectic solvents, irrespective of their constituents. Overall, this work integrates experiments with molecular dynamics simulations to provide insights into the heterogeneous DES solvation (*J. Phys. Chem. B* **2020**, 124, 3709).



Kaliaperumal Selvaraj

k.selvaraj@ncl.res.in

Design and development of scalable high performing catalytic material and technology for clean hydrogen production: Hydrogen is produced via reforming the fossil fuels which is highly carbon emitting, energy inefficient, and unclean process. Solar driven water electrolysis is a zero-emission alternate that is currently hindered by its strong reliance on noble metalbasedcatalysis. We have developed the advanced catalysts (HER/OER) and a prototype to demonstrate the technology with cutting edge features such as inexpensive non-noble metal catalysts, state-of-the-art AEM technology, lower operational potentials (<3V), 'in-toto' green process with solar source, high H, output with high scalability, and on-site large scale production for better safety. H₂ production of up to 240 litres (with 100 cm² cell) is sustainable for several

hundred hours (Indian Patent Filed: 202011001811).

Renewable & alternative energy technologies

Vincent Paul Swamy vp.swamy@ncl.res.in

Synthesis of new dyes and their application for dye sensitised solar cells

Synthesis of the dyes as a photocatalyst for water splitting using DFT: We have reported two descriptors, namely, charge injection efficiency and electron hole separation using a combination of density functional theory based calculations and experiments that can be used for in silico design of new and efficient dyesensitized-semiconductor composites as catalysts for hydrogen evolution reaction. Three azo-based dyes were synthesised, namely 4-(2-Hydroxy-naphthalen-1ylazo)-benzoic acid (4ABBN), (E)-4-((8-hydroxyquinolin-5-yl)diazenyl)benzoic acid (4AB8HQ) and ((E)-3-((8-hydroxyquinolin-5-yl)diazenyl) benzoic acid (3AB8HQ). Amongst them, the interactions of 3AB8HQ and 4ABBN have already been studied. Here we summarize the main results. For both these two dyes we found that they bind strongly with ZnO through the COOH anchoring group. The H+/H, reduction potential lies below the conduction band, thereby suggesting that these are good candidates as DSS catalyst for H, production. Similarly, many composites of oligothiophenes with ZnO were synthesised and showed that they can produce hydrogen (ChemCatChem2019, 11, 6460).

Synthesis of N-alkyl-3-methylpyridinium halides as ionic liquid crystals: The thermotropic phase behaviour of ionic liquids and ionic liquid crystals based on novel N-alkyl-3-methylpyridinium halides, trihalides and dichloroiodates was experimentally studied by polarized optical spectroscopy (POM) and differential scanning calorimetry (DSC) as well as by molecular dynamics simulation. We have synthesized a series of 1alkyl-3-methylpyridinium halides, trihalides and dichloroiodate compounds [CnMP][X] with n = 12, 14,and 16 and the anion X being Cl, Br, I, Br, ICl, and I, in order to have a set of systems with a varying ratio between the cationic volume and the anionic volume. The thermotropic phase behaviour was then studied by DSC and POM, where the phase and transition temperatures of the ILs are determined. Finally, it is worth mentioning that there was quantitative agreement between simulations and experiments (Soft Matter 2020, 16, 411).

Natural Products and Methodology

Pradip Maity

p.maity@ncl.res.in

Phosphite catalyzed enantioselective [2,3]-aza-Wittig rearrangement: A phosphite-mediated [2,3]-aza-Wittig rearrangement has been developed for the regio- and enantioselective allylic alkylation of six-membered heteroaromatic compounds (azaarenes). The nucleophilic phosphite adducts of N-allyl salts undergo a stereoselective base-mediated aza-Wittig

rearrangement and dissociation of the chiral phosphite for overall C–H functionalization of azaarenes. This method provides efficient access to tertiary and quaternary chiral centers in isoquinoline, quinoline, and pyridine systems, tolerating a broad variety of substituents on both the allyl part and azaarenes. Catalysis with chiral phosphites is also demonstrated with synthetically useful yields and enantioselectivities (Angew. Chem. Int Edit. 2019, 58, 14104).

Gurunath Suryavanshi

gm.suryavanshi@ncl.res.in

Methods on metal and metal free organic transformation and synthesis of bioactive molecules

Oxidative olefination of benzylamine with an active methylene compound mediated by hypervalent iodine (III): Hypervalent iodine-mediated oxidative

olefination of amines with an active methylene compound provides a rapid gateway towards the formation of electrophilic alkenes under mild reaction conditions in good to excellent yields. This is an efficient protocol for the preparation of substituted electrophilic alkenes (Eur. J. Org. Chem. 2019, 6232; J. Org. Chem. 2019, 84, 4, 2039).

$$R_{1}/R_{2} = H, Bn \qquad R_{3} = CONH_{2}, CN, CO_{2}Et,$$

$$PhI(OAc)_{2}$$

$$rt,45 min. \qquad R_{3} = CONH_{2}, CN, CO_{2}Et, CO_{2}Et,$$

Healthcare

Natural Products and Methodology

AgNO₃ catalysed intramolecular cyclization: An efficient AgNO₃-catalysed method has been developed for the synthesis of functionalized cyclopentanones and spiro-cyclopentanones through intramolecular cyclization between ynones and cyanoacrylate /aryl/alkylidene malononitrile using DBU as a base. Easy

availability of starting materials and mild reaction conditions make this protocol more feasible over previously reported methods. The functionalized cyclopentanones and spiro-cyclopentanones were synthesized in good to excellent yields with a broad substrate scope (Asian J. Org. Chem. 2019, 8, 1907).

lodine-mediated oxidative rearrangement of α, β-unsaturated diaryl ketones: A metal-free oxidative rearrangement was explored for the synthesis of 1,2-diaryl diketones by utilizing α , β -unsaturated diaryl ketones and I,/TBHP in good to high yields. The reaction proceeds via oxidative aryl migration, followed by C–C

bond cleavage. A simple and high-yielding protocol was developed for the synthesis of a wide range of 1, 2-diaryl diketones, which are the backbone for a variety of medicinally important molecules (ACS Omega 2019, 4, 9636).

R₁
$$R_2$$
 R_2 R_3 R_4 R_4 R_5 R_5 R_6 R_7 R_8 R_9 R_9

Metal-free regioselective cross dehydrogenative coupling of cyclic ethers and aryl carbonyls: A highly regioselective, efficient, and metal-free oxidative cross dehydrogenative coupling (CDC) of aryl carbonyls with cyclic ethers has been developed. This method offers

easy access to substituted α -arylated cyclic ethers with a high functional group tolerance in good to excellent yields. The regioselectivity of this CDC reaction was confirmed by density functional theory (DFT)-based calculations (*J. Org. Chem.* **2019**, 84, 2039).

Natural Products and Methodology

$$R_1 = H, CH_2, CH_3, Ph$$

$$R_1 = H, CH_2, CH_3, Ph$$

$$R_2 = H, CH_2, CH_3, Ph$$

$$R_2 = H, CH_2, CH_3, Ph$$

$$R_2 = H, CH_2, CH_3, Ph$$

$$R_3 = H, CH_2, CH_3, Ph$$

$$R_4 = H, CH_2, CH_2, CH_3, Ph$$

$$R_5 = H, CH_2, CH_3, Ph$$

$$R_7 = H, CH_2, CH_3, Ph$$

$$R_1 = H, CH_2, CH_3, Ph$$

$$R_2 = H, CH_2, CH_3, Ph$$

$$R_1 = H, CH_2, CH_3, Ph$$

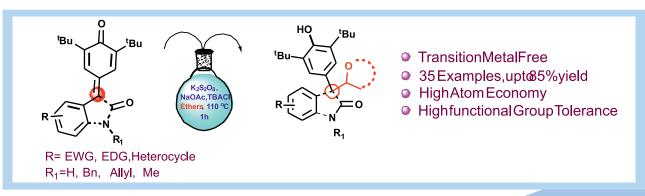
$$R_2 = H, CH_2, CH_3, Ph$$

$$R_3 = H, CH_2, CH_3, Ph$$

$$R_4 = H, CH_2, CH_3, Ph$$

$$R_5 = H, CH_2, CH_3, Ph$$

$$R_7 = H, CH_3, Ph$$


$$R_$$

An efficient heterogeneous copper fluorapatite (CuFAP)-catalysed oxidative synthesis of diaryl sulfone under mild ligand-and base-free conditions: A simple, eco-friendly and efficient method for the synthesis of unsymmetrical diaryl sulfones using heterogeneous copper fluorapatite (CuFAP)-catalysed coupling of aryl

sulfonic acid and phenyl boronic acid has been developed with good to excellent yields without use of any ligand, base or co-catalyst. Broad substrate scope and gram scale operations are the important features of this method (*New J. Chem.* **2019**, 43, 1632).

Metal-free, radical 1, 6-conjugated addition of cyclic ethers with para-quinone methides (p-QMs): An efficient method for metal-free C–C bond formation between p-quinone methides (p-QMs) and cyclic ethers via a radical pathway to afford substituted diarylmethanes and triarylmethanes or to effect the α

-alkylation of the cyclic ethers has been developed. Also, the synthesis of 3,3'-disubstituted oxindoles with stereogenic quaternary carbon centers was successfully achieved under mild reaction conditions (Org. Biomol. Chem. 2019, 17, 3239).

Healthcare

Natural Products and Methodology

Highly efficient cross dehydrogenative coupling reaction between quinoxalin-2 (1 H)-ones and ethers: The efficient and metal free, white light mediated 3C alkylation of quinoxalin-2(1H)-ones via a cross dehydrogenative coupling reaction with cyclic ethers

using eosin Y as a photocatalyst is described. This reaction has broad substrate scope and strong functional group tolerance with good to excellent yields (New J. Chem. 2019, 43, 7403).

Ti-superoxide catalyzed oxidative amidation of aldehydes with saccharin as nitrogen source: synthesis of primary amides: Heterogeneous catalytic system using Ti-superoxide and saccharin with TBHP has been developed which catalyzes oxidative amidation of aldehyde to produce primary amides. It tolerates a wide range of substrates with different functional groups (RSC Adv. 2020, 10, 724).

Natural Products and Methodology

Narshinha P. Argade np.argade@ncl.res.in

Total synthesis of bioactive natural products Chemoselective ring closure of 4-(3-Methyl-2-oxo-2,5-dihydro-1H-pyrrol-1-yl)butanal: An alkaloid has been completed via regioselective reduction of methylmaleimide and acid catalyzed enolization of 4-(3-methyl-2-oxo-2,5-dihydro-1H-pyrrol-1-yl)butanal followed by chemoselective intramolecular dehydrative cyclization as the key steps. It is noteworthy that the analogues model system with an additional β -methyl group followed alternate chemoselective intermolecular aldol condensation pathway (ACS Omega 2020, 5, 859).

Indole-based subincanadine alkaloids and their biogenetic congeners: The tryptamine-derived polycyclic bridged bioactive indole alkaloids subincanadines A-G were isolated by Ohsaki and coworkers from the bark of the Brazilian medicinal plant Aspidospermasubincanum. Kobayashi proposed that subincanadines D-F could be biosynthetically resulting from stemmadenine via two different pathways and, furthermore, that the subincanadines A-C could be biogenetically resulting from subincanadines D and E. Kam and coworkers, in their focussed efforts, isolated five indole alkaloids from Malaysian Kopsiaarborea species, namely valparicine, apparicine, arboridinine, arborisidine, and arbornamine in combination with subincanadine E. On the basis of structural features, it has been proposed and proved in some examples that subincanadine E is a

biogenetic precursor of these five different bioactive indole alkaloids bearing complex structural architectures. All important information on isolation, characterization, bioactivity, probable biogenetic pathways, and more specifically racemic and enantios elective total synthesis of subincanadine alkaloids and their biogenetic congeners are summarized in the present chapter (*Alkaloids* **2020**, 83, 187).

Regioselective oxidation of indoles to 2-oxindoles: Facile regioselective oxidation of indoles to 2-oxindoles promoted by sulfuric acid adsorbed on silica gel was reported. The present oxidation strategy is also employed to accomplish total synthesis of natural products donaxaridine and donaxarine. On the basis of analytical and spectral data it is evidenced that the donaxarine stays in equilibrium with its hydrated ring opened form. The structural features essential for such

type of oxidation and plausible mechanism are

discussed in brief (Org. Biomol. Chem. 2019, 17, 6671).

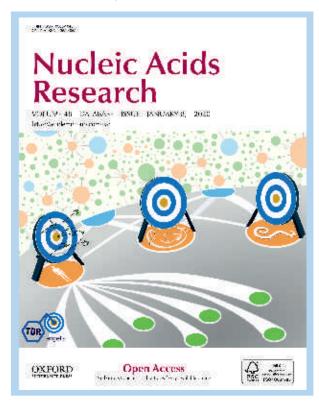
Stereoselective synthesis of subincanadine alkaloids framework: Starting from N-tosyl tryptamine and (S)-acetoxysuccinic anhydride, facile synthesis of (–)-indolizinoindolone was demonstrated as a basic structural outline of bioactive subincanadine alkaloids. Regioselective Grignard reaction with (S)-acetoxysuccinimide, stereoselective intramolecular cyclization to form (–)-indolizinoindolone skeleton and ${\rm TiCl}_4$ induced condensation with acetaldehyde for stereo-selective generation of exocyclic carboncarbon double bond were the key features (Indian J. Chem. 2019, 58B, 669).

HEALTHCARE

Chemical Biology

Dhanasekaran Shanmugam

d.shanmugam@ncl.res.in


Molecular parasitology and drug discovery for infectious diseases

Demystifying role of hexuronic acid in Toxoplasma gondii invasion into host cells: Toxoplasma gondii is a ubiquitous eukaryotic pathogen responsible for toxoplasmosis in humans and animals. This parasite actively invades susceptible host cells, a process which is mediated by specific receptor–ligand interactions. Here, we have reported an unnatural 2,4-disulfated D-glucuronic acid (Di-S-GlcA), a hexuronic acid composed of heparin/heparan sulfate, as a potential carbohydrate ligand that can selectively bind to *T. gondii* parasites and strongly inhibits parasite entry into host cells (*Org. Biomol. Chem.* 2019, 17, 4535).

Developing mitochondrial cox3 gene based diagnosis of *Babesia gibsoni* infection in dogs: A PCR assay using mitochondrial cytochrome oxidase subunit III (cox3) gene for molecular detection of *Babesia gibsoni* infection in dogs has been developed in this study. Samples were analyzed from three geographical locations of Satara, Wai and Pune in Maharashtra state of India. The analytical sensitivity of cox3 PCR was evaluated as 0.000003% parasitaemia or 09 parasites in 100 μl of blood and was also very specific, with no cross activity with other haemoprotozoa and rickettsia (*Exp. Parasitol.* **2019**, 206, 107771).

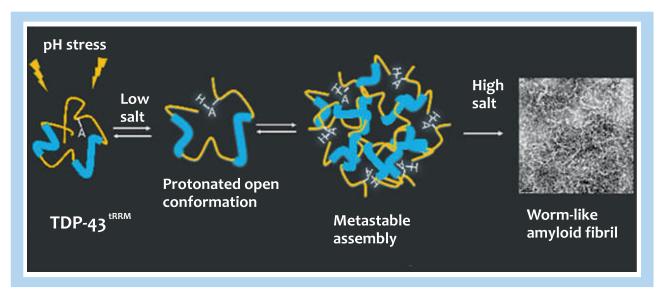
Driving drug discovery for human pathogens through intensive chemogenomic data integration: A chemogenomics approach for neglected tropical diseases

drug discovery has been developed which helps in identifying drug targets and advancing drug repositioning. The TDR targets database (http://tdrtargets.org) has been designed and developed as an online resource to facilitate the rapid identification and prioritization of molecular targets for drug development. This resource facilitates connections between genes and small molecules, yielding insight into whether particular proteins may be druggable, effectively allowing the navigation of chemical space in a genomics context (*Nucleic Acids* Res. 2020, 48, D992).

Rakesh S. Joshi/ Ashok P. Giri/ Mahesh Kulkarni rs.joshi/ap.giri/mj.kulkarni@ncl.res.in

Structural bioinformatics approach to screen anti-SARS-CoV-2 molecules

Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease: SARS-CoV-2 infection has resulted in the current COVID-19 pandemic. The main protease (M^{Pro}) plays a critical role in viral replication and maturation, thus can serve as the primary drug target. Upon virtual screening, we identified several natural molecules strongly binding to M^{Pro}, human angiotensin-converting enzyme 2 (hACE-2), and RNA dependent RNA polymerase (RdRp). We anticipate that our approach for identification of multi-target-directed ligand will provide new avenues for drug discovery against SARS-CoV-2 infection (*J. Biomol. Struct. Dyn.* 2020,1).


Rationale based selection and prioritization of antiviral drugs for COVID-19 management: To select and prioritize approved antiviral drugs and drug combinations for COVID-19, 61 antiviral drugs having proven safety profile in humans were subjected to virtual screening for binding to hACE-2, RdRp and M^{Pro}.

Ledipasvir and Daclatasvir and their approved marketed combination with Sofosbuvir emerged as leading candidate drugs/drug combinations for SARS-CoV-2. The present work brings back attention to the potential usefulness of approved antiviral drugs/drug combinations (*ChemRxiv*, 2020).

Santosh Kumar Jha sk.jha@ncl.res.in

Stress sensing during neurodegenerative diseases: TDP-43 is a vital protein which forms abnormal aggregates in the cytosol of neurons when exposed to various environmental stresses, in many neurodegenerative diseases including ALS. However, the nature

of early structural changes upon stress-sensing and the consequent steps during the course of aggregation are not well understood. In this study, we showed that stress-sensing by TDP-43 during neurodegeneration occurs by coupling of protonation-deprotonation equilibria with assembly of proteins into metastable assemblies that lead to the formation of amyloid-like aggregates (Biochemistry-US 2020, 59, 315).

62

Healthcare

Synthesis of API

Samir H. Chikkali s.chikkali@ncl.res.in

Synthesis of sitagliptin: The number of diabetic patients in India is increasing and requires immediate attention. We have developed a highly enantios-elective and atom economic synthesis of sitagliptin, a potent DPP-4 inhibitor. Chiral FerroLANE ligands in presence of rhodium, catalyze asymmetric hydrogenation of enamine to yield sitagliptin with an unprecedented enantioselectivity of 98%. The asymmetric hydrogenation has been scaled to 5g batch and the final product is isolated as a phosphate salt with >99% ee (Asian J. Org. Chem. 2020, 9, 189; Patent No: WO 2020/121321A1).

Mathematical modeling and Big data analytics

Durba Sengupta

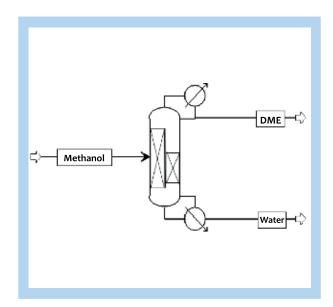
d.sengupta@ncl.res.in

Modeling long-range lipid effects in cell signaling pathways

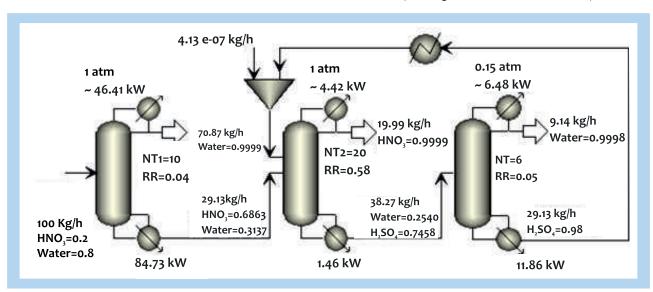
Cholesterol and sphingomyelin effects in caveolin-1 mediated membrane curvature: The caveolin-1 (cav-1) protein is an integral component of caveolae and is essential for cell trafficking and mechano-sensing. We have modeled in molecular detail the interactions between cav-1 and complex bilayers using a series of coarse-grain simulations, focusing on lipid clustering and membrane curvature. Our results suggest that cav-1 binding induces concentration-dependent curvature effects and clustering in complex membranes. Overall, our work is an important step in understanding themolecular basis of curvature and lipid clustering in

complex cellular membranes (*J. Phys. Chem. B* **2020**, 124, 5177).

Role of cholesterol-mediated effects in GPCR heterodimers: The organization of GPCRs into dimers and oligomers allows a larger repertoire of downstream signaling events. We have explored the effect of membrane cholesterol on the adenosine, and dopamine D₃ receptors using coarse-grain molecular dynamics simulations. We showed that cholesterol modulates the relative population of co-existing heterodimer conformations. These results constitute one of the first examples of modulation of GPCR hetero-dimerization by cholesterol, and could prove to be useful in designing better therapeutic strategies (Chem. Phys. Lipids 2020, 227, 104852).


Process intensification and engineering, Process separations, and Process modeling

Nilesh A. Mali na.mali@ncl.res.in


Advanced distillation technologies

Intensified reactive distillation configurations for production of dimethyl ether: The combustion properties of dimethyl ether (DME) are similar to the conventional fuels; hence it is being used as a promising green energy source. The conventional method of DME production by methanol dehydration is highly energy consuming due to the use of a series of distillation columns. In this study, an energy efficient reactive distillation configuration is proposed for DME production which leads to higher methanol conversion with less energy requirement as compared to reported configurations (Chem. Eng. Process. 2020, 149, 107824).

Extractive distillation configuration for nitric acid dehydration using sulfuric acid: Processes utilizing concentrated nitric acid usually lead to an effluent of dilute nitric acid, typically in the range of 15–20 mass% nitric acid, which needs to be concentrated and recycled back to the process. But the concentration of nitric acid by a conventional distillation process is

difficult due to the formation of a maximum boiling azeotrope with water. This work reports an optimized extractive distillation configuration for dehydration of nitric acid using sulfuric acid as a solvent. Detailed parametric analysis of an extractive distillation configuration for the dehydration of nitric acid using sulfuric acid as a solvent is not available in the open literature (Ind. Eng. Chem. Res. 2020, 59, 6183).

Experimental vapor-liquid phase equilibrium analysis of the binary systems of aniline: Experimental phase equilibrium data, specifically for vapor and liquid phases, i.e., VLE data, is must to understand

equilibrium compositions under different operating conditions. For separation equipment such as distillation, this data is very critical, and it is very important to know the presence of any non-ideal

Process intensification and engineering, Process separations, and Process modeling

behavior such as azeotrope formation or a close-boiling nature, which poses a challenge in purification using a conventional distillation column. For mixtures of aniline with xylene isomers, no such VLE data is reported in the literature except for aniline+p-xylene and aniline+m-xylene. This work reports the vapor-liquid phase equilibrium study for four binary systems of aniline with xylene isomers as the T-x,y data at atmospheric pressure (*J. Chem. Eng. Data* **2020**, 65, 2619).

Experimental analysis of vapour-liquid phase equilibria for binary systems of diethyl carbonate: We reported an experimental isobaric VLE analysis for binary systems, DEC + methyl acetate, DEC+ethyl acetate, DEC+ isopropyl acetate, DEC + n-butyl acetate, DEC + isoamyl acetate at local atmospheric pressure of 95 kPa. Interaction parameters were determined for various activity coefficient models which can be used for mathematical modelling and designing various unit operations and processes involving mixtures of DEC and esters (*J. Chem. Thermodyn.* **2020**, 150, 106189).

Catalysis

Benudhar Punji b.punji@ncl.res.in

Organometallic chemistry and homogeneous catalysis

Iron-catalyzed C(sp²)H alkylation with unactivated alkyl chlorides through chelation-assistance: Regioselective CH bond alkylation of indolines and benzo[h] quinoline with a wide range of unactivated and high-demand primary and secondary alkyl chlorides is accomplished using a low-cost iron catalyst. This reaction tolerates diverse functionalities, such as C(sp²)Cl, fluoro, alkenyl, silyl, ether, thioether, pyrrolyl and carbazolyl groups including cyclic, acyclic alkyls as well as alkyl bearing fatty-alcohol and polycyclicsteroid moieties. The demonstrated iron-catalyzed protocol

proceeded either *via* a five-membered or a six-membered metallacycles. Intriguingly, the C-7 alkylated indolines can be readily functionalized into free-*NH* indolines/indoles, and Tryptamine derivatives. Detailed mechanistic investigation highlights the participation of an active Fe(I) catalyst, and involvement of a halogen-atom transfer process *via* single-electron-based mechanism. Deuterium labeling and kinetics analysis indicate that the CH metalation of indoline as the probable turnover-limiting step. Overall, the experimental and theoretical studies supported Fe(I)/Fe(III) pathway for the alkylation reaction comprising the two-step one-electron oxidative addition of alkyl chloride (ACS Catal.2020, 10, 7312).

$$R^{1} \stackrel{\longleftarrow}{ \downarrow} \stackrel{\longleftarrow}{ \longleftarrow} \stackrel{\longleftarrow}{ \longrightarrow} \stackrel{\longleftarrow}{ \longleftarrow} \stackrel{\longleftarrow}{ \longrightarrow} \stackrel{\longleftarrow}{ \longrightarrow} \stackrel{\longleftarrow}{ \longrightarrow} \stackrel{\longleftarrow}{ \longrightarrow} \stackrel{\longleftarrow}{ \longrightarrow} \stackrel{\longleftarrow}{ \longrightarrow} \stackrel{\longrightarrow}{ \longrightarrow} \stackrel{\longleftarrow}{ \longrightarrow} \stackrel{\longrightarrow}{ \longrightarrow} \stackrel{\longrightarrow}$$

Catalysis

MnBr,-catalyzed direct and site-selective alkylation of indoles and benzo[h]quinoline: Manganese-catalyzed regioselective CH alkylation of indoles and benzo[h]quinoline with a variety of unactivated alkyl iodides was demonstrated. Unlike other Mn-catalyzed CH functionalization, this protocol does not require a Grignard reagent base, and employs a simple and

inexpensive MnBr₂ as catalyst. This method tolerates diverse functionalities, including fluoro, chloro, bromo, iodo, alkenyl, alkynyl, pyrrolyl and carbazolyl groups. The alkylation proceeds through a single-electron transfer pathway comprising reversible CH manganesation, and involving an alkyl-radical intermediate (*Org.Lett.***2020**, 22, 4643).

$$R^{1} \xrightarrow{H} H$$

$$LiN(SiMe_3)_2$$

$$R^{2} \xrightarrow{Grignard reagent-free}$$

$$R^{1} \xrightarrow{H} H$$

$$R^{2} \xrightarrow{LiN(SiMe_3)_2}$$

$$R^{2} \xrightarrow{Lin(Sime_3)_2}$$

Chinnakonda S. Gopinath cs.gopinath@ncl.res.in

Surface science and heterogeneous catalysis Reverse water-gas shift reaction (RWGS) for Co₂ activation: Mo₂C was demonstrated to be an attractive catalyst for CO₂ reduction to CO with H₂ via RWGS reaction. 1:3 = CO₂:H₂ was found to be the optimum for highly active and selective towards CO at 723 K at ambient pressure with Mo₂C. Basicity, redox property and high catalytic activity observed with Mo₂C around 700 K correlates well and indicate a strong synergy among them towards CO₂ activation (Dalton T. 2019, 48, 12199).

Styrene to styrene oxide with molecular oxygen: We attempted to exploit the nanoscience to make a catalytic process sustainable. Catalytic styrene epoxidation with O_2 was attempted on spinel Co_3O_4 with two different morphologies, namely, nanorods made by solvothermal and hydrothermal methods, and nanocubes. Although all three surfaces were found to be active for selective epoxidation of styrene with O_2 in liquid phase, the correlation between catalytic activity and morphology reveals the nanocube exhibiting the highest activity and demonstrates the structure sensitive nature (*Dalton T.2019*, 48, 4574).

67

Sustainable Chemical Processes/ Technologies

Catalysis

C. P. Vinod

cp.vinod@ncl.res.in

Modified deposition precipitation method for Pd supported SBA-15 nanomaterials and its improved catalysis: Modified deposition precipitation (DP) method is used for supporting small Pd nanoparticles on SBA-15 silica system (Scheme). A comprehensive size dependent CO oxidation activity has been demonstrated for Pd-SBA-15 catalysts with Pd NPs of varying sizes such as 1-2, 4-6 and 7-10 nm (Fig. 1). Pd-S-N catalyst prepared by modified DP method (reduced at 400 °C) demonstrated CO oxidation activity with lower light off temperature (50 °C), clearly one of the best reported for a Pd-silica system (Fig. 2) (App. Catal. B. 2020,272,118934).

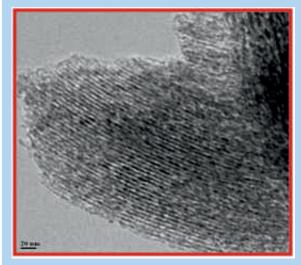
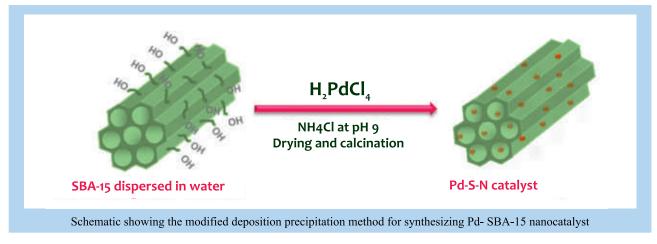



Fig.1: HRTEM image of Pd-S-N nanocatalyst

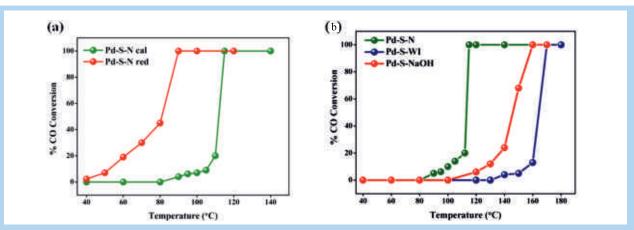


Fig.2: (a) Catalytic activity comparison of Pd-S-N (modified DP method) with Pd-S-WI (wet impregnation) and Pd-S-NaOH (normal DP method) (b) Catalytic activity of Pd-S-N calcined and

Catalysis

Vijay V. Bokade vv.bokade@ncl.res.in

Catalytic transformation of renewable feedstock's

Xylose to levulinicacid: Sulfonated H-β zeolite was successfully prepared and used for the synthesis of furanic compounds especially furfural and furfuryl alcohol from D-xylose in one step using isopropanol as alcohol media. It was found that the total acid amount was increased with increase in sulfur loading which confirmed that sulfonic acid group (SO_3-H) was successfully grafted onto zeolite structure. 3 wt% H-β-SO₃-H catalyst with optimized reaction parameters of 150°C, 7 h, and 25wt% catalyst loading was tuned to get the highest furanic compound yield of 88.5% that include furfural-76.8% and furfuryl alcohol-11.7% (*Biomass Bioenerg.* **2020**, 139,105646).

Wheat straw to ethyl levulinate: Ethyl levulinate, biofuel additive can blend up to 20% with biodiesel to improve its fuel properties. There are reports on use of homogeneous catalysts (H₂SO₄, ionic liquid) for synthesis of ethyl levulinate from raw biomass like wheat straw. This work is a successful attempt to use heterogeneous micro-meso acidic H-USY for direct one step conversion of wheat straw to ethyl levulinate with higher yield of 24.5 wt%, which is probably the highest so far (*Micropor.Mesopor.Mat.*2020, 306, 110474).

Epoxidation of karanjaoil methyl ester: The synthesis, characterization and catalytic performance of a

conceptually simple, novel NbOx-SiO₂ catalyst are reported. The niobium(V)-silica catalyst was prepared starting from cheap and viable reactants, by alkaline deposition of $NH_4Nb(C_2O_4)_2\cdot H_2O$ in the presence of fructose as a stabilizer and subsequent calcination. The NbOx-SiO₂ solid (0.95 Nb wt.%) was tested in the liquid-phase epoxidation with aqueous hydrogen peroxide of methyl oleate, as a model substrate. It was then tested in the epoxidation of a mixture of methyl esters obtained by transesterification with methanol and purification of karanja oil, extracted from the autochthonous Indian variety of Millettiapinnata tree. The catalyst showed a promising performance in terms of methyl oleate conversion up to 75% and selectivity to epoxide up to 82% (Catalysts 2019, 9, 344).

Glucose to ethyl levulinate: The study highlighted the catalytic synthesis of ethyl levulinate from glucose over synergetic combination of zeolite H-USY and Lewis acidic catalysts such as Sn-beta, TiO,, ZrO,, and SnO₂. The synergetic combination of H-USY with SnO₂ showed higher ethyl levulinate yield than the combination with other Lewis acidic catalysts. Highest ethyl levulinate yield of 81% from glucose (50 g/L) at 180 °C in 3 h was achieved over the optimal combination of 95% H-USY and 5% SnO₂ having strong/weak acidity and B/L ratios of 1.30 and 0.75, respectively. The study was further extended for establishing the proposed reaction mechanism without the formation of 5hydroxymethyl furfural, levulinic acid, and formic acid which makes the overall process clean and green (Energ.Fuel.**2019**, 33, 2319).

Mahesh Dharne/ Shubhangi Umbarkar ms.dharne/sb.umbarkar@ncl.res.in

Valorization of plaster of paris (POP) in biomedical waste: The eco-friendly and rapid disintegration of biomedical POP waste was done by treating with ammonium bicarbonate solution (20% w/v ABC) to form non-hazardous products like ammonium sulphate and calcium carbonate in the form of sludge. The ammonium sulphate (NH₄)₂SO₄ is generally used in

agriculture as a chemical fertilizer and calcium carbonate (CaCO₃) as an additive in the construction sector making this process cost-effective and value-addition. Interestingly, 20% ABC solution also had significant antibiofilm, antimicrobial activity against fungi, yeast and bacterial strains probably due to its high pH-driven osmotic effect. Therefore, 20% ABC solution finds dual eco-friendly application in disinfection of used POP, especially arising from biomedical waste from patients (*Int. J. Environ. Sci. TE.* 2019, 16, 2475).

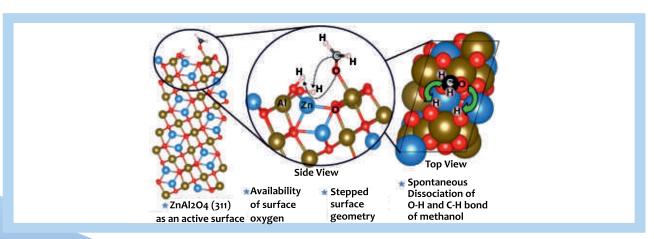
Catalysis

Shubhangi B. Umbarkar

sb.umbarkar@ncl.res.in

Catalyst development for fine/bulk chemicals Pd based solid acid catalysts for hydrogenation of various functionalities: Palladium supported on various solid acid supports were prepared and used for hydrogenation of various industrially important substrates. Hydrogenation of nitro aromatics, different C=N groups, aromatics, acetophenones and many industrially important substrates. The catalysts have shown very high efficiency for hydrogenation under ambient conditions for nitroaromatics, acetophenones as well as several important substrates and under milder conditions for aromatics, imines. With only 1% Pd loading catalysts have shown very high efficiency for recycle without Pd leaching (Patent: US2015239821A1).

Process for the manufacture of nitrobenzene using solid acid catalyst: A solid acid catalyst was developed for the liquid phase nitration of benzene using commercial nitric acid (65-70%) as nitrating agent

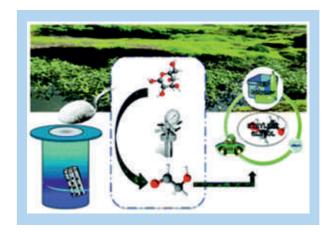

without using any sulfuric acid in the process. The catalyst showed excellent catalytic activity for mono nitration (100% selectivity) of benzene at ~90-95 °C. The water formed during the reaction is removed azeotro pically with benzene. Hence no additional solvent is needed for removal of water from the reaction system. Preliminary results showed almost 65-70% HNO₃ conversion with recovery of unreacted HNO₃(Appl. Catal. A 2019,574, 105; Patent: WO2019111280A1).

Oxidative dehydrogenation of ethyl lactate to ethyl pyruvate: Pyruvates are important intermediates for various bioactive and pharmaceutical molecules. A simple liquid phase route for oxidative dehydrogenation of ethyl lactate to synthesis ethyl pyruvate using aq. tert-butyl hydroperoxideas oxidant was developed using very simple, cheap and recyclable heterogeneous catalyst with 98% yield of ethyl pyruvate (98% conversion, 100% selectivity). Catalyst was recyclable with no deactivation as well as no polymerisation of pyruvates leading to high yield of ethyl pyruvate (Appl. Catal. A 2019, 587, 117246, Patent: US2018141892A1).

Kavita Joshi k.joshi@ncl.res.in

Understanding how a catalyst works: Density Functional theory based computation is employed to unravel the potential of a mix metal oxide as a catalyst for MeOH adsorption and activation. DFT based

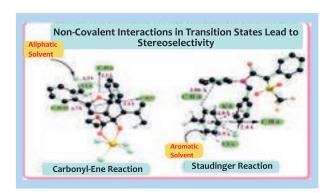
computation is employed to understand the atomistic level details and the electronic structure of a catalyst which indeed explains why the performance of this catalyst is far better than the existing once. The results reported here opens up a new class of catalyst for research (Appl.Surf.Sci.2020, 534, 147449).


Catalysis

M.Banu

m.banu@ncl.res.in

Fabrication of mesoporous carbon supported Ni-Mo catalyst for the enhanced conversion of glucose to ethylene glycol: Ethylene glycol is an interesting polymer precursor to prepare polyethylene terephthalate (PET) and it is manufactured from petroleum-derived ethylene and propylene oxides. It is vital to find an alternative and sustainable route for their manufacture. The spherical shaped mesoporous-carbon was prepared and relatively low cost metals were impregnated. The direct conversion of concentrated aqueous glucose to ethylene glycol was studied in a batch reactor. The high hydrogenation activity of Ni and the medium to strong acidity of molybdenum oxide helped in obtaining a significantly


high yield of ethylene glycol (63.2%) with complete glucose conversion under moderate reaction conditions. The catalyst was found to be reusable (*New J. Chem.* **2020**, 44, 15965).

Kumar Vanka k.vanka@ncl.res.in

Computational studies on substrate-solvent interactions: Non-covalent interactions have been identified as important contributing factors in determining selectivity in organic transformations. The current computational study with density functional theory (DFT) identifies two important transformations where this is the case: the intramolecular carbonyl-ene reaction and the Staudinger [2+2] cycloaddition reaction. Calculations indicate that the diastereomeric ratio (dr) would be 95.0:5.0 for the formation of tricyclic tetrahydrofuran diastereomers via the intramolecular carbonylene reaction, and 94.0:6.0 for the formation of the triflonesdiastereomers via the Staudinger [2+2] cycloaddition reaction, which corroborates with experiment. In both the cases, the

calculations indicate that non-inclusion of explicit solvent molecules would lead to only a small difference between the competing transition states, which leads to the conclusion that solvent-substrate non-covalent interactions are the major cause for diastereo-selectivity in both the cases considered (*Phys. Chem. A* **2020**, 124, 8019).

70

Catalysis

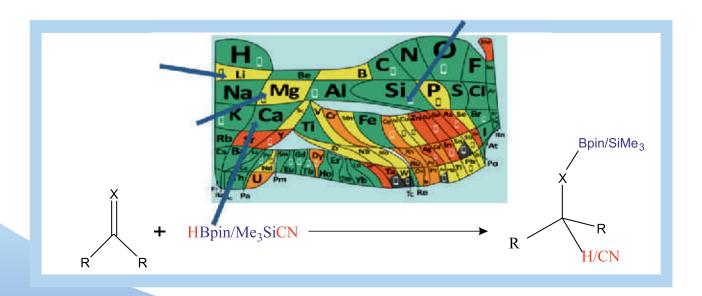
Paresh L. Dhepe

pl.dhepe@ncl.res.in

Valorization of agri (crop) and plastic waste into valuable chemicals

Dehydration and oxidation of sugars and their derivatives: India specific glucose dehydration into 5-hdyroxymethyl furfural (HMF) and fructose into furfural was carried out with proprietary catalyst. Reactions with higher substrate concentration (>10wt%), milder reaction conditions and use of variety of substrates along with recyclability of catalyst are some of the important aspects of the methodology developed. Further, furans obtained were oxidized again with the proprietary and commercially available catalysts to obtain acids. For e.g. HMF was oxidized in presence of air or oxygen below 15 bar pressure to obtain 2,5-furan dicarboxylic acid (FDCA) with >90%

yield. It is important to note that crude HMF with a purity of 50% can also be effectively oxidized to FDCA, which finds use in PET analogous PEF manufacture. The economics of the methodology has been done and it is observed that the system is very much comparable or better than reported by several industries (Patent filed: India/202011034406).


Depolymerization of plastic into chemicals: A unique catalytic system was developed to recycle and reuse the plastic waste generated, by which recyclable catalyst can be used to obtain monomers back from the polymer. This way, monomers obtained in quantitative yield, can be reused for the polymerization to food grade polymer. Possibility of recycle of colored plastic and mixture of plastics is one of the key aspects of this work (Indian Patent filed: 202011007863).

Sakya Singha Sen

ss.sen@ncl.res.in

Main group compounds as surrogates for precious metals: We prepared several main group compounds based on lithium, magnesium and calcium. We utilized them as catalysts for important organic transformation like hydroboration of alkenes and alkynes. Such

transformation was known only with precious transition metals and we were able to replace them with cheap and green main-group elements. We have also prepared a novel silicon compound known as silylene for activating small molecules, which is considered as the first step of any catalytic cycle (Chem.Commun.2019, 55, 11711; Chem.-Asian J.2020, 15, 820).

Catalysis

Sudarsanam Putla

s.putla@ncl.res.in

Advances in heterogeneous catalysis for biomass conversion and fuel cell applications

Towards lignin-derived chemicals using atomefficient catalytic routes: This review provides a concise account of the recent advances in lignocellulose fractionation/lignin depolymerization processes towards lignin-derived monomers. Subsequently, numerous potential atom-efficient catalytic routes for upgrading lignin monomers into drop-in chemicals and new polymer building blocks were discussed (*Trends Chem.* 2020, 2, 898).

TiO₂-based water-tolerant acid catalysis for bioderived fuels and chemicals: Recent progress toward TiO₂-based water-tolerant acid catalysis for biomass conversion, with a focus on hydrothermal stability of TiO₂, its acidity, and catalysts' synthesis methods were discussed. Various biomass conversions over TiO₂-based catalysts, where water-tolerant acid sites or acid-redox dual sites show a significant catalytic effect were highlighted. Structure–activity relationships based on water-tolerant Lewis acidity of TiO₂ were studied. It provides valuable information for

developing efficient water-tolerant solid acid catalysts not only for biomass valorization but also for other challenging reactions in the aqueous medium (ACS *Catal.***2020**,10,9555).

Supported bimetallic catalysts for oxygen reduction and formic acid oxidation reactions: We reported the synthesis of highly efficient carbon-supported palladium-nickel electrocatalysts for both oxygen reduction reaction and formic acid oxidation reactions. The homogeneous dispersion of smaller palladium-nickel alloy nanoparticles over the carbon support, downshift of Pd d-band center, as well as the synergistic metal-support effect were the key for efficient electrocatalysis (ACS Appl. Energy Mater.2020,3,9285).

Functionalized magnetic nanosized catalysts for biodiesel synthesis: The preparation methods, structural and performance control, and protection and functionalization of magnetic nanoparticles as well as the consequent catalytic effects in the synthesis of biodiesel (mainly long-chain fatty acid methyl esters) were reported. In addition, various representative reaction mechanisms are discussed, emphasizing the existing challenges and prospects of industrialization (*Green Chem.* 2020, 22, 2977).

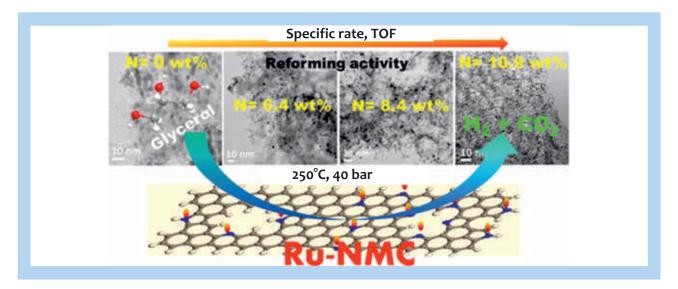
Vrushali Jadhav

vh.jadhav@ncl.res.in

Efficient synthesis of γ **-valerolactone:** The synthesis of γ -valerolactone was reported using biomass derived levulinic acid by catalytic transfer hydrogenation in isopropanol solvent as a hydrogen donor. A new

hafnium based carbonaceous catalyst was prepared, well characterized and the catalytic activity was evaluated for synthesis of γ -valerolactone. 100 % conversion of levulinic acid afforded γ -valerolactone in an excellent yield of 96% with more than 99% selectivity. The catalytic method developed is simple, efficient and economical (CatalLett. 2020, 150, 2038).

Catalysis


T. Raja

t.raja@ncl.res.in

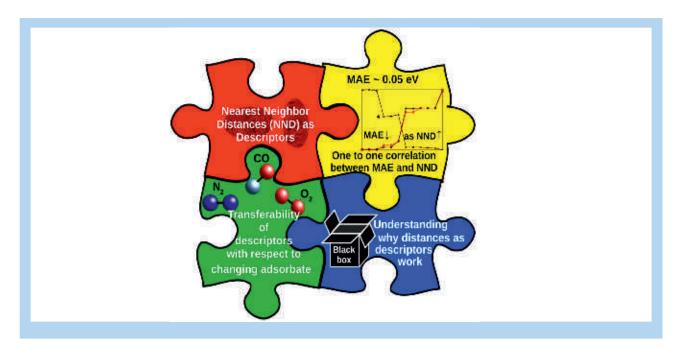
Heterogeneous catalysts

Aqueous phase reforming of glycerol over Ru-NMC catalysts: A series of highly stable Ru-supported catalysts with controlled metal nanoparticle sizes have been prepared via incipient wetness impregnation

method. These catalysts were used for aqueous phase reforming of glycerol to produce hydrogen. Nitrogen doped mesoporous carbon (NMC) were utilized as supports and found to have strong influence on catalytic performance of the catalysts. Incorporation of nitrogen in the carbon framework significantly enhanced the catalytic activity compared to Ru on nitrogen free supports (ACS Catal. 2020, 10, 2489).

Phase transfer ceria-supported nanocatalyst for nitrile hydration reaction: The present study elaborates the catalytic effect of rare-earth metal oxides (Sm₂O₃ and La₂O₃) over ceria as a support phase transfer catalyst. The synthesized catalysts were subjected to different characterization techniques, such as field-emission scanning electron microscopy, high-resolution transmission electron microscopy,

powder X-ray diffraction, N₂ adsorption–desorption (BET surface analysis), temperature-programmed desorption study (NH₃/CO₂-TPD), Fourier transform infrared, Raman analysis, and X-ray photoelectron spectroscopy to get better insights into the catalytic activity of the catalysts for hydration of nitrile (ACS Omega 2019, 4, 16037).


Mathematical & computational modeling

Kavita Joshi

k.joshi@ncl.res.in

ML black box with simple DFT based descriptors to predict cluster-adsorbate interaction energy: We have applied a machine learning based model to predict DFT energies. The most crucial part of any

model is to understand why it works. This work explains why these descriptors work. Further, the simplicity of the descriptors allow us to generalize it to more complex systems, thus predicting DFT energies for systems with ML based model (New J. Chem. 2020, 44, 8545).

NayanaVaval

np.vaval@ncl.res.in

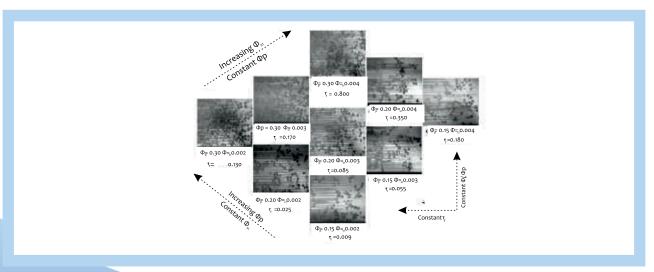
Relativistic coupled cluster: Z-vector relativistic four component coupled cluster method was used to compute to nuclear magnetic quadrupole moment (MQM) of HgH²⁰¹ scalar-pseudoscalar nucleus-electron interaction constant (Ws), the effective electric field (Eeff) experienced by the unpaired electron, and the nuclear magnetic quadrupole moment-electron interaction constant (WM) in the open-shell ground electronic state of HgF, the role of electron correlation

in the hyperfine structure of alkali metals and alkaline earth metal mono positive ions in their ground electronic configuration was studied. Our studies revealed that for the precise calculation of the wave function near nuclear region corecorrelating function plays a significant role. We have studied the effect of electroncorrelation in the computed properties of CdH and that of the P, T-odd parameters for monohydrides i.e. ZnH, CdH, and HgH. The study revealed that HgF can be a possible candidate for the search of new physics beyond standard model (Phys. Rev. A2019, 99,032503; 2020,101, 032505; J. Chem. Phys. 2019, 150, 084304).

Chemical Engineering Science

Ashish V. Orpe av.orpe@ncl.res.in

Structure and flow of suspensions


Friction mediated flow and jamming in a multi-orifice silo: The inherent tendency of particulate materials to clog while flowing through a narrow orifice of a silo can be reversed by including a second orifice in the same silo. The mean duration of clogging (<ti> and flowing (<t_r>), respectively, decrease and increase with increasing inter-particle friction coefficient (µ) while the frequency (n_u) of unclogging instances of the first orifice exhibits a nonmonotonic behavior comprising an increase followed by a decrease with increasing inter-particle friction coefficient. On either side of the maximum the system moving progressively towards a permanently clogged or a permanently flowing state. The results are of significance in optimal designing of silos for industries handling particulate materials (Phys. Rev. E 2019, 100, 012901).

Micro structure and yielding of capillary force induced

gel: The suspension of particles in a liquid undergoes gelation upon the addition of a small content of second, wetting liquid which forms liquid bridges between particles leading to a sample spanning network. The rheology of this gel primarily exhibits a yield stress (T_v) at low shear rates followed by a linear variation of shear stress at high shear rates. The yield stress increases rapidly with secondary liquid content

 (ϕ_s) followed by saturation while a monotonic increase is observed with increasing particle concentration (φ_n) . X-ray tomogr- aphy images showed increased local compactness with increased liquid content and increased spatial homogeneity with increased particle fractions. The outcome of the work is of significance in designing novel, porous materials (Rheol.Acta.2020, 59, 291).

RESOURCE CENTERS

Catalyst Pilot Plant	.78
Central NMR Facility	78
Centre for Materials Characterization	.79
Digital Information Resource Center	.79
National Collection of Industrial Microorganisms	.79
Knowledge Resource Center	ΩΛ

RESOURCE CENTIERS

CATALYST PILOT PLANT

Catalyst Pilot Plant (CPP) is well equipped with all the catalyst scale-up facilities such as wide range of batch reactors from 250mL to 50L capacity to perform step wise scale up from gm level to 4kg/batch level. CPP is also well equipped with downstream processing units such as filtration; centrifugation; drying; calcinations and extrusion of the heterogeneous catalyst up to 1kg level. These wide ranges of reactors are also suitable for translating batch process from laboratory scale to pilot plant scale. CPP also houses micro-fixed bed reactors for the performance

evaluation of the catalysts in various chemical reactions of academic and industrial importance.

Some of the recent projects include development of zeolites, mixed oxides, micro-meso composites etc for its exploitation in Industrial relevance application as well as in the area of conversion of renewable feedstocks such as raw biomass, C6/C5 sugars to value added chemicals, methanol to olefin, etherification of ethylene glycol/2-ethoxymethanol etc.

CENTRAL NMR Facility

This Resource Center provides NMR support to all the scientific activities of the laboratory. The scientists associated with this Resource Center also carry out research activities on application of solution state and solid state NMR spectroscopy in diverse areas of chemical, biological and materials sciences. The facility maintains and operates eight NMR spectrometers operating at 200, 300, three at 400, two at 500 and 700 MHz. Bruker AV300 is a wide bore spectrometer dedicated to solid state NMR while the standard bore Bruker AV500 and JEOL ECX 400 spectrometers are equipped with solid state accessories. The new 500 MHz wide bore spectrometer is a dedicated solid-state NMR spectrometer with high power diffusion for liquid

state. The 700 MHz spectrometer is equipped with accessories for solution state and solid state NMR. The recently procured 400 MHz standard bore spectrometer is equipped with a reaction monitoring system. Although, the primary users of this facility are from the research community within the laboratory, the facility is open to researchers in other educational institutions and industries. Apart from technical support, the facility also plays an integral part in the basic and applied research activities of the Laboratory.

During the current year, the NMR facility analyzed samples in solution state and solid state including from industries, other R&D and academic institutes generating an ECF of about ₹51lakhs.

RESOURCE CENTIERS

CENTRE FOR MATERIALS CHARACTERIZATION

Centre for Materials Characterization (CMC) is a central facility for routine and advanced characterization of materials. The centre caters to the requirements of entire research community at CSIR-NCL as well as the industrial and academic clients including our sister concerns on payment basis. The centre is equipped with various instruments, such as Single Crystal and powder X-ray diffracto- meters (SCXRD/XRD), Scanning electron microscopes (SEM/e-SEM), Transmission electron microscope (TEM), X-ray photo-

electron spectroscope (XPS), High Resolution Mass Spectrometer (HRMS), Maldi-TOF MS, Triple TOF LC-MS, SQUID magnetometer, Raman Spectrometer, Vibrating Sample Magnetometer, etc that are used for R & D projects of the institute.

During the year, 13217 samples were analysed of which about 10% percent comprised of industrial samples. This generated some amount of ECF for the laboratory. The activity has generated an ECF of about ₹.90 Lakh for year.

Digital Information Resource Center

Digital Information Resource Center (DIRC) is continuously in the process of visualizing, anticipating and defining ICT needs of the lab and setting up its efficient and reliable infrastructure to improve the operational efficiency, convenience, speed & security. While managing IT infrastructure, center takes care of planning, installation, operation as well as maintenance of necessary hardware, software as well as human ware of all the IT assets.

DIRC has maintained two data centers consisting of more than two hundred server/storage and network devices as well as essential non-IT infrastructure consisting of high end UPS, PAC, VESDA,

surveillance, fire detection, access control systems, etc. located at DIRC. It maintained DATA CENTER, located at the newly constructed 'Convergence' building, while ensuring its 24x7 availability for the computational scientists in the lab and four 'Visitor management system (VMS) kiosk' machines and two Barcode visitor's slip readers, installed at the reception. DIRC maintained latest version of server grade 'Trend Micro' antivirus software, in order to provide virus-free network environment in the lab. It has maintained more than 40 Aadhar enabled biometric attendance system readers in the lab for marking of central attendance of all the regular NCL staff members.

National Collection of Industrial Microorganisms

NCIM Resource Centre (established in 1951) is a one of the oldest microbial collection of India. Activities are dedicated to the isolation, identification, collection, preservation, and distribution of authentic strains to industries and academia for R&D purpose. It also caters allied services in microbial technology sector. NCIM

external cash flow mainly comes from private sector. NCIM is pivotal in cataloguing and preserving Indian microbial diversity.

It has generated the cash flow of ₹ 470 lakhs through supply of 9700 microbial strains. Around 150 microbial

RESOURCE CENTIERS

strains were lyophilized for their long-term preservation. Nearly 25 new microbial strains were received for deposition. Around 400 cultures have been identified through identification service. Certificate of analysis (COA) microbial cultures is also sent along with cultures. Latest catalogue of microbial strains is

available in the form of friendly and online version. Updated deposit forms, and sequencing and miscellaneous forms as per global standards are available in online portal of NCIM and also listed on Analyti CSIR portal.

Knowledge Resource Centre

Knowledge Resource Center (Library) has subscribed to many resources in electronic format so that users get wider access to online contents. Through CSIR-NKRC consortia users are provided access to wide range of ejournals from different publishers. During the year users were provided access to more than 700 ejournals from major publishers such as ACS, AIP, APS, Elsevier, IEEE, Royal Society of Chemistry, Springer/Springer-Nature and Wiley. Users were also provided access to various databases such as ithenticate plagiarism software, Grammarly software, Web of Science database, Sci-Finder database, Orbit Intelligence database and Derwent Innovations database.

During the year more than 50 books, 71 thesis and 65 hindi books were added in the library collection. Library holds 54590 books, 80373 bound volumes, 3000 ebooks, 4400 reports, 2400 thesis and 1733 standards. It has spent more than 2 Crores and 40 lakhs for the renewal of print and electronic journals during 2019-2020. Library catalogue of all these resources can be accessed from https://opac.ncl.res.in.

CSIR-NCL Digital repository (https://dspace.ncl.res.in) is mainly used for uploading thesis submitted by students of CSIR-NCL. The repository contains all the theses available in CSIR-NCL library from the year 1936 which is one of the good online resources. The repository also contains other collection such as old reports which are available in digital format and are available to only registered users of CSIR-NCL.

Library provides Inter Library Loan facilities to users for the documents which are not available in CSIR-NCL library. During the year 438 journal articles, 27 Indian/ International standards, 18 theses, 77 ebooks, 23 reports and 41 patents were provided to users on ILL requests. Library has also provided Document Delivery Services to other libraries such as other CSIR libraries, DRDO labs, DAE labs, IITs. IISERs, DST labs and other universities. Library has implemented Koha; an open source library automation system 100% with RFID support.

Several events were organized by Library for the benefits of users from CSIR-NCL during the year.

Session	Date
Orbit/ Questel Database Training Session	May 3, 2019
Web of Science and Endnote Training Session	May 23, 2019
iThenticate Plagiarism Software Training Session	May 28, 2019
Grammarly Software Training Session	June 17, 2019
Derwent Innovations Training Session	July 29, 2019
Understanding research integrity, ethics & plagiarism; Wiley Author Workshop	October 15, 2019

S & T Support Services

Engineering Services	82
Publication & Science Communication	83
Skill Development Program	84
वित्त एवं लेखा	85
Finance & Accounts	86
भण्डार एवं क्रय	87
Stores & Purchase	87
CSIR Jigyasa	88
Human Resource Management	80

Engineering Services Unit

'Engineering Services Unit' plays major role in the laboratory functioning, while providing basic engineering facilities as well as new erections, installations and maintenance related to Civil, Electrical, Mechanical Engineering, Communication system as well as Glass blowing.

The Civil Engineering section is responsible for buildings and plants erections, roads revamping, colony maintenance, drainage cleaning system etc. The section also runs and maintains water treatment plant for providing drinking water to the laboratory. It also runs garbage management plant for proper disposal of waste while producing good amount of manure.

The Electrical Engineering section is responsible for providing electrical power supply received to lab from MSEDCL. The section also takes care of the entire laboratory and colony lighting as well as all the roadside lights. It also maintains electrical substations, distribution systems, solar power systems, diesel generators, etc.

The Mechanical Engineering section takes care of distribution systems related to water, air, gas, vacuum, including water pumps, compressors, vacuum pumps, gas piping systems, fume hoods etc., related to their procurement, installation as well as routine maintenance. The central workshop facility is used for various machinery work related to turning, fitting, welding, fabrication, etc. The carpentry dept. takes care of laboratory furniture repairs. This section also manages outsourcing of liquid nitrogen for the laboratory requirements. The 'Refrigeration and air conditioning' section takes care of procurement, installation as well as repairs of all sorts of comfort as well as precision ACs.

Publication and Science Communication Unit

Publication and Science Communication (PSC) Unit is a channel that communicates between the laboratory and its stakeholders. It uses the facilities like web, print, electronic and social media. It takes care of the video conference facility, external and internal websites; prepares annual reports and brochures. It communicates the impact making work from laboratory in the form of R&D features, prepares and issues press releases and also coordinates the videos for its stakeholders. It supports to organize conferences and various events at the lab. The unit participates in the exhibitions and organizes the interviews with scientists with scientists on request of the reporters.

PSC coordinated/ participated in following exhibitions during the year:

- 5th edition of India International Science Festival (IISF) 2019, Kolkata (5-8 November, 2019)
- 107thsession of Indian Science Congress, Banglore (January 3-7, 2020)
- Kutuhal- An exhibition on Healthcare Systems, Pune (February 7-10, 2020)
- 4th Innovation Festival at National Science Centre, Mumbai (March 5-7, 2020)

Skill Development Program

CSIR- NCL has embarked on implementing CSIR's Skill Integrative initiative and started its skill development courses. One of the goals of the program is to expose students to career options available and to enhance their chances of employability. It aims to create opportunities, space and scope for the development of the talents of the youth and to expand more of those sectors which have already been put under skill development for the last so many years and also to identify new areas for skill development.

During the last year, CSIR-NCL has conducted 22 skill development programs and trained 156 candidates and generated the ECF of \ref{Cond} Lakh. Additionally, CSIR-NCL also provides accommodations to the course participants on a nominal charge basis at its premises to make their training comfortable and affordable.

Following Skill Development programs were conducted at CSIR-NCL during the year

Course Name & Duration

- Certificate course in Patents (6 10 May 2019)
- Embedded systems (3 21 June 2019)
- Advanced training in ARM controllers (3 21 June 2019)
- Lab VIEW basics and applications (3 21 June 2019)
- Microbial Identification by biochemical, genetic and genomic techniques (18 28 June 2019)
- Xray Crystalography (10 June 5 July 2019)
- Raman spectroscopic measurements (17 21 June 2019)
- Training on HPLC and LCMS (22 26 July 2019)
- Training on GC and GC-MS (8 12 July 2019)
- Polymer Characterization by DSC, TGA, FTIR and UV-VIS spectroscopy (22 26 July 2019)
- Advanced techniques in organic synthesis (19 August 28 September 2019)
- Embedded Systems (26 June 16 July 2019)
- Advance Training on ARM Controllers (26 June 16 July 2019)
- Basic training in Electron Microscopy and Techniques (19 30 August 2019)
- Polymer Characterisation by DSC, TGA, FTIR and UV-Vis pectrophotometer (20 24 January 2020)
- Embedded Systems (12 December 2019 1 January 2020)
- Lab VIEW basics and applications (12 December 2019 1 January 2020)
- Training on GC and GC-MS (10 14 February 2020)
- Controlled Release of Active Molecules (3 7 February 2020)
- Training on HPLC and LCMS (3 7 February 2020)
- Advanced training in mass spectrometry-based quantitative proteomics (9 13 December 2019)
- Synthetic Organic Chemistry (3 February 27 March 2020)

वित्ता एवं लेखा

1.	निधि की उपयोगिता	
	सीएसआईआर अनुदान राशि	
	परियोजनाएँ	(₹ लाख में)
	नेटवर्क (सी/एफ सहित)	3518.749
	गैर-नेटवर्क	17162.843
	NMITLI परियोजनाएँ	71.533
	ईएमआर एवं वैज्ञानिक पूल	45.131
	प्रयोगर् ^ग ला आरक्षित निधि	841.506
	बाहरी वित्तपोषित परियोजनाएँ	1703.092
	विविध जमा राशि	500.414
	बाहरी निकार्यों की ओर से भुगतान	0.000
	प्रायोजित सम्मेलनों/संगोष्टियों हेतु अमानत	15.171
	कुल	23858.439
2.	प्रयोगशाला आरक्षित निधि	(₹ लाख में)
	वर्ष के दौरान अतिरिक्त निधि (सीएसआईआर के अलावा) के निवेश पर अर्जित ब्याज के माध्यम से प्रयोगशाला आरक्षित निधि का अर्जन	212.925
	अन्य लेखाशीर्षों से	439.235
	कुल	652.160
3.	31.3.2020 को अतिरिक्त निधि का निवेश (₹ लाख में)	3999.000
4.	आपत्ति-पुस्तिका मदों का निपटारा	
	वर्ष के दौरान किए गए समायोजन	(₹ लाख में)
	निजी	2449.112
	यात्रा भत्ता /छुट्टी यात्रा रियायत	33.075
	स्थानीय	23.187
	कुल	2505.374
	कुल मर्दे	427
5.	निम्न लिखित प्रकार के वाउचर तैयार किए गए	
	भुगतान	14980
	प्राप्त राशि	4403
	टी.ई.	296
	कुल	19679

Finance & Accounts

1.	Funds Utilization	
	CSIR Grant	
	Projects	(₹ in lakh)
	Network (including C/F)	3518.749
	Non – network	17162.843
	NMITLI Projects	71.533
	EMR & Scientist Pool	45.131
	Laboratory Reserve	841.506
	Externally Funded Projects	1703.092
	Misc. Deposits	500.414
	Payment on behalf of outside bodies	0.000
	Deposits for Sponsored conf. / seminars	15.171
	Total	23858.439
2.	Generation of Lab Reserve	(₹ in lakh)
	Through earning of interest on investment of surplus funds (other than CSIR) during the year	212.925
	From other heads	439.235
	Total	652.160
3.	Investment of surplus funds as on 31.3.2020 (₹ in lakh)	3999.000
4.	Clearance of OB items	
	Adj. made during the year	(₹ in lakh)
	Private	2449.112
	TA/LTC	33.075
	Local	23.187
	Total	2505.374
	No. of items	427
5.	Following types of vouchers were generated	
	Payment	14980
	Payment Receipt	14980 4403

Stores & Purchase

भंडार एवं क्रय

उपलब्धियां

मद	संख्या		मूल्य (₹. करोड में)	
नप	2018-19	2019-20	2018-19	2019-20
कुल प्राप्त एवं निष्पादित मांगपत्र	5983	1721	70.17	92.22
कुल दिए गए ऑर्डर (आयातित)	205	53	35.99	12.15
कुल दिए गए ऑर्डर (खदेशी: ऑनलाइन आरसी ऑर्डर सहित)	1212	1356	7.81	23.00
स्थानीय और जेम खरीद (ऑनलाइन आरसी ऑर्डर सहित)	3761	2541 और 631	14.94	2.82 और 1.97
वित्तीय वर्ष 2019-20 के दौरान समायोजित बकाया शेष	294	157	15.51	37.55
वित्तीय वर्ष 2019-20 के दौरान सीमा शुल्क से छूट प्राप्त राशि का उपयोग	-	52	1.57	0.85

Stores & Purchase

Accomplishments

Item	Numbers		Value (Rs. In Crores)	
recin	2018-19	2019-20	2018-19	2019-20
Total indents received and Processed	5983	1721	70.17	92.22
Total order placed (imported)	205	53	35.99	12.15
Total orders placed (indigenous including on line RC orders)	1212	1356	7.81	23.00
Local purchases & Gem purchases	3761	2541 & 631	14.94	2.82 & 1.97
O.Bs adjusted during the financial year	294	157	15.51	37-55
Utilization of Custom Duty Exemption	-	52	1.57	0.85

The CSIR-Jigyasa is a Student Scientist Connect program initiated by CSIR with Kendriya Vidyalaya Sangathan. The scope of the program is to extend the classroom learning by focusing on well-planned research laboratory based learning. The program was inspired by Prime Minister Narendra Modi's vision of a new India and "Scientific Social Responsibility (SSR)" of scientific community and institutions. As part of the program, science outreach activities for school students are conducted in the laboratory. The program has now extended its reach to Jawahar Navodaya Vidyalaya, and other State Board and CBSE board schools.

Different programs were organized benefitting 2,901 students and 259 teachers as follow:

- Popular Talks: 11 popular talks were conducted, attended by more than 1100 students and 72 teachers from Kendriya Vidyalayas, Navoday Vidyalayas, State government schools and other schools from across India.
- Teachers Training Workshop: A Teachers Training Workshop for high school science teachers was conducted during August 29-30, 2019. This workshop was attended by 36 teachers from Kendriya Vidyalayas, State Government schools as well as other schools.
- Workshop for High School Students: Two day's training workshop was organized for science students from grade IX to XII during September 16-17, 2019, in which a total of 900 students and 90 teachers attended from several Kendriya Vidyalaya school.
- IYPT event: To mark the International Year of Periodic Table as declared by UNESCO, Jigyasa had organized a one day program on December 21st, 2019. This event was attended by over 455 students and 45 teachers.
- Nano Jatha Event: One day program on Nanotechnology organized for the students of Kendriya Vidyalaya School on 12th December 2019 by Jigyasa was well received. The program included an interactive talk followed by exhibition and live demonstrations on different topics of Nanotechnology. This event was attended by a total of 160 students along with 9 teachers from the KVS.
- Women's Day Celebration: Jigyasa celebrated International Women's Day on March 9, 2020 by organizing a half day symposium on the topic 'Women in Science' at the Hutatma Balveer Shirishkumar High School, which was attended by over 200 students and 7 teachers from the same school.

Human Resource Management

The Human Resource Management (HRM) department coordinates the process of a short term Training Program for postgraduate students. These students are inducted throughout the year for a period of 6 months.

Short Term Project Training: In the year, 151 students pursuing the courses like M.Sc., M.Pharm, B.E., M.E., B.Tech., M.Tech, at various colleges, universities and Indian institutes including IITs, IISERs, and NITs completed their Summer/Winter Projects at CSIR-NCL as part of their dissertation / project training.

IAS Officers visit: The department also organized training program to IAS officers from the *Lal Bahadur Shastri National Academy of Administration* (LBSNAA), Uttarakhand. The full day training was attended by 15 officers.

Institutional visits: 18 institutional visits were coordinated mainly of students pursuing professional courses in chemical sciences, medical sciences, agricultural sciences, engineering sciences, besides basic and applied sciences from postgraduate colleges located across India. A total of 918 students and teachers visited CSIR-NCL this year for institutional visits. Out of which 841 were students and 62 teachers.

Human Resource

Annexures

Patents Granted: Foreign & Indian	92
PhD Theses	101
CSIR- NCL Customers	106
Awards / Recognitions	107
Outreach Program	108
Dateline CSIR-NCL	109
अनुभाषा विमोर्ट	110

Title	Inventor(s)	Country: Patent No.
A Generic Method For The Preparation Of Ultra Small Size (2-3 nm) Transition Metal Nanoparticles	Bhagavatula L V Prasad; Jhumur Seth	GB: 2882550 DE: 2882550 EP: 2882550
A Method For The Synthesis Of Norepinephrine Alkaloids And Its Analogs As Antimalarial Agents	Asish K Bhattacharya; Eswarkumar Aratikatla; Kumkum Srivastava; AshanManhas	US: 10519098
A New Catalytic Approach To Quinoline Derivatives	EkambaramBalaraman; Siba Prasad Midya; GarimaJaiswal	US: 10227355
A Novel Nano-Heterojunction Synthesis Of Catalyst Free Vertically Aligned CNTs On SiNW Arrays	Manjusha Vilas Shelke	KR: 101954381
A Process For Fractionating Sugarcane Bagasse Into High Alpha-Cellulose Pulp, Xylan And Lignin	Anjanikumar Jyoti prasad Varma	BR: P10817084-3
A Remote Computing Environment Method, System And Apparatus For Molecular Investigation By Email Platform	M Karthikeyan; Deepak Pandit; Renu Vyas; SanketBapat	US: 10467068
A Short Route To Enantioselective Syntheses Of Antideppressant 1- Aminotetralins Such As (+)-Sertraline And Tametraline Employing ProlineCatalyzedMannich Reaction Of Acetaldehyde	V Venkatarama Subramanian; RupaliKalshetti; ArumugamSudalaiq	US: 10266481
ABPBI Copolymer Membranes For HT- PEMFC Application / ABPBI Copolymers	U K Kharul; KurungotSreekumar; HarshalDilipChaudhari; VinayaBhagwatGhodake	JP: 6463760
An Improved Process For Liquid Phase Nitration Of Aromatics Using Solid Acid Catalyst	Shubhangi B Umbarkar; Mohan K Dongare; Ankush V Biradar; Atul B Kulal; Trupti V Kotbagi; Ashvini R Bhosale; Macchindra G Chandgude	GB: 3003553 DE: 3003553 EP: 3003553
Bioactive Oil Based PolyesteramideNanofibers For Wounds Healing	G V N Rathna	US: 10195158
Blend Membranes Based On PBI And Polyionic Liquids	U K Kharul; SreekumarKurungot; Anita SanwarmalRewar; HarshalDilipChaudhari	JP: 6523306
Catalytic Hydrogenation Of Co₂ To Methanolby Single-Siteru(Ii)- Pincer- Typecatalysts	EkambaramBalaraman; Vinod GokulkrishnaLandge; Siba Prasad Midya; Manoj Kumar Sahoo; GarimaJaiswal	US: 10449529

Title	Inventor(s)	Country: Patent No.
Design Synthesis And Pharmacological Evaluation Of EGFR Inhibitors (Flavone)	Pradeep Kumar Tripathi; JigneshKantilal Parikh; EeshwaraiahBegari	FR: 3253750 EP: 3253750 DE: 3253750 US: 10221165
Design, Synthesis And Pharmacological Evaluation Of EGFR Inhibitors (Benzimidazole)	Pradeep Kumar Tripathi; JigneshKantilal Parikh; EeshwaraiahBegari	FR: 3221309 GB: 3221309 DE: 3221309 CH: 3221309 EP: 3221309
Detection Of Explosive Materials By Para- Aminobenzoic Acid Sensitized LaF ₃ :Tb ³⁺ Nanoparticles	MeitramNirajLuwang; Debasish Ghosh	FR: 3194936 EP: 3194936 DE: 3194936 GB: 3194936
Development Of NMR Chemical Shift Fingerprints And Applications	M Karthikeyan; Renu Vyas; Pattuparambil R Rajamohanan	US: 10216910
Elastic Macroporous Scaffolds With Tunable Pore Size From Covalent Self- Assembly Of Nano And Microparticles	GuruswamyKumaraswamy; Raja Rajamanickam; SayamSengupta	EP: 2945656 FR: 2945656 GB: 2945656 DE: 2945656
Enantiospecific Synthesis Of Pheromones	D Srinivasa Reddy	US: 10221122
Engineering Of Organic Molecules For Terahertz (<10THZ) Tagging Applications	Ashootosh V Ambade; Nitin BapuraoBasutkar; BalaPesala; Kavita Joshi; KawareVaibhavVilasrao; Shaumik Ray; Jyotirmayee Dash	US: 10464929 EP: 3094621 DE: 3094621 GB: 3094621 FR: 3094621 IT: 3094621 ES: 3094621
High Aspect Ratio Nanoscale Multifunctional Material	SreekumarKurungot; BeenaBalan; UlhasKharul; Vijayamohanan Pillai	US: 10501317
Insertion Copolymerization Of Functional Olefins CatalyzedPd-Phosphinesulfonate Acetonitrile Complex	Samir H Chikkali; SahajiRajaramGaikwad	US: 10266621
Magnetically Separable Fe-Catalyst On Nitrogen Doped Graphene For Efficient Conversion Of Alcohols To Carbonyl Compounds With Liberation Of Molecular Hydrogen	EkambaramBalaraman; Dinesh Jagadeesan; EkambaramBalaraman; Dinesh Jagadeesan	US: 10335775
Method For Producing Oxazoline From Glycerol Using Solid Acid Catalyst	C V Rode; Rajan Pandya; Sharda E Kondawar	US: 10385029 EP: 3191456 CH: 3191456 DE: 3191456
Method For The Preparation Of Biofuels From Glycerol	DharbhaSrinivas; Lakshmi Saikia; Paul Ratnasamy	PH: 1/2010/502068
Method For Treating Vitiligo	D Srinivasa Reddy; Rajesh S Gokhale	DE: 3394054 CH: 3394054 FR: 3394054

Title	Inventor(s)	Country: Patent No.
		BE: 3394054
		EP: 3394054
		GB: 3394054
		JP: 6586528
		US: 10246449
Modified Cyclodextrin Coated Magnetite	P A Joy;	US: 10456363
Nanoparticles For Targeted Delivery Of	JayaprabhaKunnothNaduvilidam	
Hydrophobic Anticancer Agents		
N C-Chelate Four-Coordinate	Nitin T Patil	US: 10301330
Organoborons With Full Colour Tunability		
N-Doped Porous Carbon Derived From	SreekumarKurungot	US: 10170770
Graphitic C₃N₄-MOF Composite As An		
Efficient Non-Platinum Electrocatalyst		
New Bisphenols Containing Pendant	Prakash P Wadgaonkar; Sachin	US: 10239865
Clickable Maleimide Group And Polymers	Suresh Kuhire; Samadhan	
Therefrom	Suresh Nagane	
New Difunctional Monomers Containing	Prakash P Wadgaonkar;	US: 10294209
Clickable Pendant Furyl Group And	KavitaGarg; Deepshikha	EP: 3233816
Polymers Therefrom	Chatterjee	FR: 3233816
	,	DE: 3233816
New Fully Bio-Based Bisphenol	Prakash P Wadgaonkar; Sachin	DE: 3119750
Containing Furyl As A Clickable Pendent	Suresh Kuhire; Samadhan	FR: 3119750
Functional Group And Polymers	Suresh Nagane	EP: 3119750
Therefrom		3 3.3
New Reagent For Selective Detection Of	Amitava Das;	EP: 3160971
Cysteine And Histidine In Pure Aqueous	SamitChattopadhyay; Upendar	NL: 3160971
Environment And In Human Blood	Reddy Gandra;	GB: 3160971
Plasma	HrideshAgarwalla	DE: 3160971
New Reagent For Specific Detection Of	Amitava Das	NL: 3328869
Cysteine In Physiological Condition As		GB: 3328869
Well As By Using Modified Silica Coated		DE: 3328869
Test Strip		EP: 3328869
New Strategy To Synthesize High Surface	SreekumarKurungot;	US: 10218006
Area Nitrogen Doped Single Walled	SreekuttanMaraveeduUnni;	
Carbon Nanohorns For Enhanced Oxygen	SarathRamadas	
Reduction Electrocatalyst		
Nitrite Reductase (NIRBD) As Novel Anti-	Dhiman Sarkar	FR: 2961847
Tubercular Drug Target		EP: 2961847
		GB: 2961847
Novel Analogues Of	DumbalaSrinivasa Reddy; Satish	US: 10239836
Benzenecarbothioccyclopenta [C]	Chandra Philkhana;	
Pyrrole-1,3-Dione and Synthesis Thereof	GorakhnathRajaramJachak;	
	VidyaBhausahebGunjal	
Novel Angiotensin II Type 2 Receptor	G J Sanjayan	US: 10385096
(AT_2) Agonists For Improvement Of	, , ,	
Neurological Disorders		
Omniphilic Sponge	GuruswamyKumaraswamy	US: 10487190

Title	Inventor(s)	Country: Patent No.
	SavitaKiranShingote; LalitaSanjib Roy	
Synthesis Of Dimethyl Carbonate (DMC) From Methanol And Methyl Carbamate/Urea Using Mixed Metal Oxides Of Rare Earth Metals Calcined At High Temperature As Catalysts	Vivek V Ranade; AshutoshAnantKelkar; Vilas HariRane; Anil KisanKinage; SavitaKiranShingote; LalitaSanjib Roy	US: 10336681
Synthesis Of Dimethyl Carbonate (DMC) From Methanol And Urea In Presence Of Stripping With Inert Gas	VivekVinayakRanade; AshutoshAnantKelkar; Vilas HariRane; Anil KisanKinage; SavitaKiranShingote; LalitaSanjib Roy	JP: 6559067 IT: 2917172 DE: 2917172 NL: 2917172 ES: 2917172 EP: 2917172
Synthesis Of Functionalized Carbon Microspheres And Their Catalyst Activity In C-C And C-N Bond Formation Reactions	Shubhangi B Umbarkar; Ankush V Biradar; Mohan K Dongare	US: 10195599
Synthesis Of Furfuryl Ethyl Ether Using MesoporousZr-Incorporated SBA-15 Catalyst	Chandrashekhar V Rode	US: 10428038
Synthesis Of Indazole Derivatives And Uses Thereof	D Srinivasa Reddy; ChaitanyaSaxena; KashinathKomirishetty	CN: ZL201480048261.9 JP: 6474808
Synthesis Of Tamiflu Employing Stereospecific Amidoalkylation Protocol And Ramberg-Backlund Reaction	SubhashPratapraoChavan; Prakash NarsingChavan	JP: 6474392
Synthesis, Gas Separation And Fluorescence Properties In A Polybenzimidazole Based Poly(Ionic Liquid)s With Pyrene And AnthraceneFluorophore	UlhasKharul; SayaliVinayakShaligram; Prakash PurushottamWadgaonkar	US: 10266654
Transformed WithaniaSomnifera Plants With Improved Secondary Metabolite Content	B M Khan; Neha Gupta; ParthSanjaykumar Patel; Poonam Sharma; Shuchishweta Vinay Kendurkar	EP: 3049431 GB: 3049431 DE: 3049431
Use Of Proton Conducting FNPA Metallogel As Solid Electrolyte For Realizable Dry And Intermediate Temperature H ₂ -O ₂ Fuel Cell Operation	SreekumarKurungot; Rahul Banerjee; HarshithaBarikeAiyappa; SubhadeepSaha; PritishWadge	DE: 3180814 DK: 3180814 EP: 3180814
Vortex Diodes As Reactors And Effluent Treatment Devices	Vivek V Ranade; Amol A Kulkarni; Vinay M Bhandari	BE: 2766314 PL: 2766314 NL: 2766314 FR: 2766314 DE: 2766314 EP: 2766314
Water Splitting Activity Of Layered Oxides In Mo₃(ZnO)M	R Nandini Devi; Soumya B Narendranath	US: 10307734
Yarn Supercapacitors	K Krishnamoorthy	US: 10395853

Title	Inventor(s)	Patent No.
Long-Chain Amines: Synthesis And Uses Thereof	D Srinivasa Reddy	328261
One Step Cost-Effective Facile Microwave Synthesis	Pankaj Poddar; Subha Sadhu	328156
Of Green Luminescent Graphene Quantum Dots -		
Silica Composite From Paper Precursor		
New Fully Bio-Based Bisphenol Containing Furyl As	Prakash P Wadgaonkar; Sachin Suresh	327841
A Clickable Pendent Functional Group And Polymers	Kuhire; Samadhan Suresh Nagane	
Therefrom		
Process For C₂-Substituted Acryl Aldehydes	Venkata Ramana Chepuri; Chandrababu Naidu Kona	327755
New Method For The Preparation Of R-Enantiomer		2275 90
Of Calcium Channel Blocker Bepridil	M Muthukrishnan; Mujahid Mohammad	327580
Novel Uracil And 5-Fluorouracil Conjugated	Amitava Das; Samit Chattopadhyay; Vadde	327590
Ruthenium(II) Polypyridyl Complexes As Cellular	Ramu; Nandaraj Taye	
DNA Imaging Agents		
Synthesis Of Dimethyl Carbonate (DMC) From	Vivek V Ranade; Ashutosh Anant Kelkar;	327539
Methanol And Urea Using Hydrotalcites As A	Vilas Hari Rane; Anil Kisan Kinage; Savita	
Catalyst	Kiran Shingote; Lalita Sanjib Roy	
Methodology For Continuous Flow Manufacturing	Venkata Ravi Kumar Darbha; Lakhsmi Vara	326811
Of Nanocrystalline Materials	Prasad Bhagavatula; Amol Arvind Kulkarni	
Transition-Metal-Free Regioselective C–H Bond	Benudhar Punji; Vineeta Soni	326584
Acetoxylation Of Indoles		
Iso-DNA For G-Rich Functional Oligomers	Vaijayanti Anil Kumar; Anita D Gunjal;	324959
	Moneesha Fernandes	
Process For The Preparation Of Pseudo Indoxyl	Chepuri V Ramana; Yogesh Mansukhabhai	323949
Derivatives And Studied Their Optical Properties	Goriya	
Solomonamides Analogues And Synthesis Thereof	Dumabala Srinivasa Reddy; Kashinath	323962
	Kormirishetty; Vasudevan Natrajan	
Acidic Ionic Liquids Catalyzed Depolymerization Of	Paresh Laxmikant Dhepe; Ashutosh Anant	323865
Lignin	Kelkar; Babasaheb Mansub Matsagar;	
	Sandip Kumar Singh	
Method For Producing The Catalyst And Solvent	C V Rode; Sharda Eknath Kondawar	323589
Free Synthesis Of Glycerol Carbonate Using The		
Catalyst		
Synthesis Of Novel Antihistaminic Drug	S P Chavan; Pradeep Bhaskarrao Lasonkar	323155
Copper Catalyzed Carbonylation Of Halides With	Arumugam Sudalai; Pragati Kishore Prasad	322407
Cyanide: New Process For The Production Of		
Carboxylic Acid Derivatives		
Sila Amino Acids	Srinivasa Reddy; Remya Ramesh	321781
Ambient Oxidation Of Benzene To Phenol By	Chinnakonda Subramanian Gopinath;	320954
Photocatalysis On Au/Ti _{0.98} V _{0.02} O ₂	Perumal Devaraji	

Title	Inventor(s)	Patent No.
Synthesis Of Tamiflu Employing Stereospecific Amidoalkylation Protocol And Ramberg-Backlund Reaction		
Use Of Proton Conducting Fnpa Metallogel As Solid Electrolyte For Realizable Dry And Intermediate Temperature H ₂ -O ₂ Fuel Cell Operation	Sreekumar Kurungot; Rahul Banerjee; Harshitha Barike Aiyappa; Subhadeep Saha; Pritish Wadge	320046
A Mild And General Process For The Synthesis Of Aryl Sulfones	Santosh B Mhaske; Virat Pandya	319717
Asymmetric Membranes Based On BUPBI	U K Kharul; Deepti Gangaram; Harshal Dilip Chaudhari	319643
A Nucleotide Sequence Encoding Two Geranyl Pyrophosphate Synthases From 'Alphonso' Mango	Vidya S Gupta	319361
New Method For The Synthesis Of (R)- Phenoxybenzamine Hydrochloride Employing Aziridine Ring Opening As A Key Step	M Muthukrishnan; Muthukumarasamy Karthikeyan; Velayudham Ramadoss; Viswanadh Nalla	318887
Synthesis Of New C-11 Substituted 12- Oxo Bile Acid Derivatives	Pore Vandana Sudhir; Jaisingh Manohar Divse; Chaitanya Rajendra Charolkar	318742
Single Step Process For Conversion Of Furfural To Tetrahydrofuran	Chandrashekhar Vasant Rode; Narayan Shamrao Biradar; Amol Mahalingappa Hengne	318101
Synthesis Of Glycidol From Glycerol And Dimethyl Carbonate Using Ionic Liquid As A Catalyst	A A Kelkar; Vilas Hari Rane; Swapna Mugutrao Gade; Mudassir Khursheed Munshi	318126
Utilization Of Long-Chain Branched (LCB) Polypropylene In Extrusion Film Casting Or Extrusion Coating Processes	Kalyani Suresh Chikhalikar; Ashish Kishore Lele; Harshwardhan Vinayak Pol; Kishor Shankar Jadhav; Sunil Janardan Mahajan; Zubair Ahmad	318020
A New Process For The Synthesis Of (R)-Selegiline And (S)-Benzphetamine	Arumugam Sudalai; Soumen Dey	317208
Resorcinol For Anchoring Sensitizer Dyes Onto Oxide Semiconductors For Dye Sensitized Solar Applications	Amitava Das; Hirendra Nath Ghosh; Tanmay Banerjee	317116
New Strategy To Synthesize High Surface Area Nitrogen Doped Single Walled Carbon Nanohorns For Enhanced Oxygen Reduction Electrocatalyst	Sreekumar Kurungot; Sreekuttan Maraveedu Unni; Sarath Ramadas	316990
Sila Analogs Of Oxazolidine Derivatives	D Srinivasa Reddy; Seetharam Singh Balamkundu; Remya Ramesh	316587
Superparamagnetic Iron Oxide Nanoparticles Encapsulated With Antifungal Drug Amphotericin	Pattayil Alias Joy; Jayaprabha Kunnoth Naduvilidam	316105
Novel And Green Protocol For The Allylic Oxidation	S P Chavan; Pradeep Bhaskarrao Lasonkar	315830

Title	Inventor(s)	Patent No.
Corrugated Silica Nanospheres For Metal Free	Ankush V Biradar; Shubhangi B Umbarkar;	315709
Epoxidation Of Olefins And Process Thereof	Prakash Chandra; Mohan K Dongare	
Library Of Spiroannulated Nucleosides	Ramana Venkata Chepuri ; Mangesh	315432
	Pandurang Dushing	
Synthesis Of Tricyclic Compounds And Uses Thereof	Dumbala Srinivasa Reddy; Kashinath	315343
	Komirishetty; Prakash Daulat Jadhav	
Metal Catalysed Synthesis Of Novel Benzofuran	Chepuri V Ramana; Yadagiri Kommagalla;	315096
Derivatives Useful As Anti-Inflammatories	Kolluru Srinivas	
A New Organocatalytic Process For The Total	Soumen Dey; Varun Rawat; Arumugam	314811
Synthesis Of Stagonolide E And (-)-(6R,11R,14R)-	Sudalai	
Colletallol		
Peribysin E Analogues Synthesis And Uses Thereof	Srinivasa Reddy; Kishor Laxman Handore	314711
Method For Producing Oxazoline From Glycerol	C V Rode; Rajan Pandya; Sharda E	314473
Using Solid Acid Catalyst	Kondawar	
New Process For The Synthesis Of Methyl 3-EPI-	Argumugam Sudalai; Varun Rawat; Soumen	314403
Shikimate And Oseltamivir	Dey	
An Improved Process For The Preparation Of	Vijayamohanan Kunju Krishna; Ulhas	314348
Membrane Electrode Assemblies (MEAS)	Kanhaiyalal Kharul; Sreekumar Kurungot;	
	Harshal Dilip Chaudhari; Sreekuttan	
	Maraveedu Unni; Bipinlal Unni; Husain	
	Noman Kagalwala	
Porous Co ₃ O ₄ Nanorods For Photoelectrochemical	P A Joy; Vijayamohanan K Pillai;	313822
Water Splitting	Ramasundar Rani Mohan; Debgupta	
	Joyashish	
Synthesis Of Disuphonic Acids Starting From	Prakash P Wadgaonkar; Bhimrao D	313504
Cashew Nut Shell Liquid: Crosslinking Catalysts For	Sarwade; Bhausaheb Vilas Tawade	
Silane Functionalized Polyolefins		
Comb-Coil Supramolecular Crosslinked Polymer	Asha Syamakumari; Rekha Narayan	313228
Silicon-Based Fungicides And/ Or Herbicides	D Srinivasa Reddy; Gorakhnath Rajaram	312955
•	Jachak; Remya Ramesh; Santosh Genba	
	Tupe; Mukund Vinayak Deshpande	
Catalyst For Asymmetric Transfer Hydrogenation Of	A A Kelkar; Sudhindra Hanamant	312705
Ketones And Imines	Deshpande; Savita Kiran Shingote; Vaishali	
	Sarjerao Shende	
ABPBI Copolymer Membranes For HT-PEMFC	U K Kharul; Kurungot Sreekumar; Harshal	312562
Application / ABPBI Copolymers	Dilip Chaudhari; Vinaya Bhagwat Ghodake	
New Reagent For Specific Detection Of Cr(III) In	Amitava Das; Firoj Ali; Sukdeb Saha	310998
Pure Aqueous Medium	·	
Sila Analogs Of DEET Towards Potential Insect	Srinivasa Reddy; Remya Ramesh;	310730
Repellents	Seetharam Singh Balamkundu	

Title	Inventor(s)	Patent No.
A New Process For The Production For The	Santosh Rekula Reddy; Chaitahanya Kiran	310532
Production Of 3-Substituted Phthalides	Indukuru Naga; A Sudalai	
A Process For The Transition- Metal-Free N-	Akkattu T Biju; Sachin Suresh Bhojgude;	310297
Arylation Of Tertiary Amines	Trinadh Kaicharla	
Surfactant-Copolymer Complexes As Delivery	Guruswamy Kumaraswamy; Edakkal	310155
Devices For Targeted Delivery Of Hydrophobic	Venugopal	
Compounds		
Perylenebisimidepolyester Blend Films For	Asha Syama Kumari; Nisha Simon Kumari	309706
Photovoltaic Applications		
One Step Preparation Of Indinavir Intermediate 2,2-	Chepuri V Ramana; Ravindra Suresh	309510
Dimethyl-3a,8a-Dihydro-8h-Indeno[1,2-	Phatake	
D][1,3]Dioxole And Its Related Derivatives		
Development Of Tricycle Structure Of Substituted	Pradeep Kumar; Anand Harbindu; Brijesh	309724
Sugar Drived 1, 2, 3 Triazol Derivativesa (Small-	Sharma	, , ,
Molecule Library) For Screening Against Various		
Cancer Cell Lines And Other Related Targets		
Nanoporous Graphene Through Chemically Assisted	Sreekumar Kurungot; Thangavelu	308588
Chipping Of Graphene Quantum Dots And Its	Palaniselvam	
Conversion To Efficient Oxygen Reduction		
Electrocatalyst Through Nitrogen Doping		
In Situ PH Control Using Hydrogel	Mugdha Gadgil	307912
Blend Membranes Based On PBI And Polyionic	U K Kharul; Sreekumar Kurungot; Anita	307714
Liquids	Sanwarmal Rewar; Harshal Dilip Chaudhari	
N-Doped Porous Carbon Derived From Graphitic	Sreekumar Kurungot	307037
C ₃ N ₄ -MOF Composite As An Efficient Non-Platinum] , ,,
Electrocatalyst		
New Process For The Preparation Of An	Murugan Muthukrishnan; Mohammad	306977
Antiepileptic Drug Levetiracetam In High Optical	Mujahid; Prashant Pramod Mujumdar	33//
Purity		
An Efficient Catalytic Process For A-Acyloxy Ketones	A Sudalai; Rambabu Reddi; Pushpa Malekar	306994
And Esters From Alkenes		
Ready Access To Both Enantiomers Of An Highly	D Srinivasa Reddy	306201
Attractive Sex Pheromone Of The Long-Tailed		, , , , , , , , , , , , , , , , , , , ,
Mealybug		
Cu-Mediated One Pot Production Of O-	Brijbhushan Ahuja; Reddy Santosh Rekula ;	306210
Cyanocinnamonitrile Derivatives	Arumugam Sudalai	
Process For Producing Furan	Darbha Srinivas; Bhogeswararao Seemala	306101
A Generic Method For The Preparation Of Ultra	Bhagavatula L V Prasad; Jhumur Seth	306007
Small Size (2-3 Nm) Transition Metal Nanoparticles		

Indian

Title	Inventor(s)	Patent No.
Synthesis, Gas Separation And Fluorescence	Ulhas Kharul; Sayali Vinayak Shaligram;	305862
Properties In A Polybenzimidazole Based Poly(Ionic	Prakash Purushottam Wadgaonkar	
Liquid)s With Pyrene And Anthracene Fluorophore		
A Novel Nano-Heterojunction Synthesis Of Catalyst	Manjusha Vilas Shelke	305836
Free Vertically Aligned CNTS On Sinw Arrays		
Metal Assisted Alignment Of Electron Transport	Kothandam Krishnamoorthy; Arulraj	305722
Units That Exhibits High Electron Carrier Mobility	Arulkashmir; Bhan Prakash Jain	
N-Heterocyclic Carbene-Mediated Oxidative	Arumugam Sudalai; Chaithanya Kiran	305690
Esterification Of Aldehydes With Alcohols Under	Indukuru Naga; Santhosh Reddy Rekula;	
Aerobic Condition	Komal Lalwani	
A Facile, Chromatography-Free And Multi-Gram-	Kilingaru I Shivakumar; Gangadhar J	305704
Scale Synthesis Of Pillar[5]Quinone By The	Sanjayan	
Hypervalent Iodine Oxidation Of 1,4-		
Dimethoxypillar[5] Arene		
Surface Induced Disassembly Of Nano Containers	K Krishnamoorthy	305579

100

PliD. Theses

Author	Title	Guide(s)
Bahadur, Vir	Acyl Transfer Reactions in Molecular Crystals, Cocrystals and Associated Studies	Shashidhar, M. S. & Gonnade, Rajesh G.
Kamble, Rohit	Asymmetric Synthesis of Bioactive Molecules <i>via</i> Two Stereocentred Hydrolytic Kinetic Resolution and Synthetic Methodologies Involving Formation of C-O, C-S Bonds	Kumaraswamy, Guruswamy
Ghotekar, Ganesh S.	Asymmetric synthesis of biologically important compounds and devlopment of synthetically useful C-C and C-O bond forming reactions via transition metal free conditions	Muthukrishnan, M.
Oak, Pranjali	Biochemical and molecular analysis of spongy tissue disorder in Mango (Mangifera indicacv. Alphonso)	Gupta, Vidya S. & Giri, Ashok P.
Sanghi, Smrati	Biochemical and molecular characterization of polyunsaturated fatty acids producing microbes	Kadoo, Narendra
Chaudhuri, Krishnaroop	Blends of Ultra-High olecular Weight Polyethylene and High-Density Polyethylene: Dissolution, Rheology, and Modeling	Lele, Ashish K. & Pol, Harshawardhan V.
Indrapal Kharbal	Boron Carbon Nitride (BCN): Synthesis and Study as an Electrode Material for Energy Storage Devices	Shelke, Manjusha V.
Burate, Pralhad	Carbon-Carbon Bond Forming Reactions Using Organocatalysts	Kinage, Anil K.
Mote, Nilesh	Classical Bidentate Versus Supramolecular Ligands in Ethylene Polymerization	Chikkali, Samir H.
Rajput, Vijay Bhagchand	Comparative structural and functional studies of acid ceramidase-like proteins using biophysical and computational techniques	• •
Sinha, Noopur	Computational Approaches and Drug Discovery in Target Based Therapy	Sarkar, Ram Rup
Kadam, A. L.	Design & tactics for total synthesis of D2 receptor agonist quinagolide & development and application of on-water oxidation of furan in collection synthesis of bioactive natural products	
More, Namita.	Design synthesis and biological evaluation of novel heterocycles and their encapsulation in drug delivery system	Gajbhiye, J. M.

Author	Title	Guide(s)
Marathe, Yogesh	Design, Synthesis and Crystallization Behaviour of New Borassus incorporated Poly(lactic acid) Composites and Nanocomposites	Badiger, Monohar V.
Yeware, Amar	Development of new dormancy model in the Mycobactteriium sp. for the novel drug screening program	Sarkar, Dhiman
Dwivedi, Pravin kumar	Development of nanostructured metal oxide-carbon composites for rechargeable li-ion battery	Shelke, Manjusha V.
Acharya, Sayantan	Diffusion through crowded environment: An MD simulation study	Bhattacharyya, Sarika M.
Rana, Jagannath	Earth-Abundant Metal Catalyzed C-N Bond Activation of Amides and Alkylation Reactions using Alcohols	Balaraman, E.
Deb, Pranab	Electrostatics and dynamics in molecular functions: A spectroscopic approach	Bagchi, Sayan
Mondal, Sourik	Encapsulated Nanocatalysts and Single Atom Alloy Catalysts: A Synthesis, Characterization and Catalytic Study	Nandini Devi, R.
Gupta, Sharad	Exploring Metal Oxide Nanostructures for CO ₂ Hydrogenation	Prabhakaran, Vinod C. & Jagadeesan, D
Gogoi, Pranjal	Hydrogen production through the aqueous phase and steam reforming of bio-based oxygenated hydrocarbons	Raja T. & Satyanarayana, C.V.V.
Kokane, Reshma	Hydrogenation of Various Functional Groups Using Pd/ MgF ₂ as Catalyst Under Ambient Conditions	Umbarkar, Shubhangi B.
Navale, G. R.	Improved production of epi-cedrol and santalene by fusion protein expression: Stability study and cyclization mechanism of epi-cendrol biosynthesis	Dharne, Mahesh S.
Reddy, Srikanth T.	Improving Device Performance of PbS Quantum Dot Solar Cells Using Inorganic Hole Transport Layers	Rath, Arup K. & Late, Dattatray J.
Kashid, Somnath	Investigation of hydrogen bonding interactions and dynamics of carbonyls using ultrafast infrared spectroscopy and molecular dynamics simulation	Bagchi, Sayan
Shaikh, Samir	Investigation of Molecular Conformation of Aromatic Sulfonamide and Sulfoester Derivatives and Effect of Substituents on π -Stacking Interactions	Gonnade, Rajesh G.
Patil, Sucheta	Investigation of the molecular response of grapevine to salt stress through transcriptomics and proteomics approaches	Gupta, Vidya S.

PliD. Theses

Author	Title	Guide(s)
Jain, Preeti	Investigations on Cobalt based catalysts for Energy Applications	Prabhakaran, Vinod C.
Rajput, Bhausaheb S.	Isohexide and plant oil based renewable and degradable polymers	Chikkali, Samir H.
Patil, Harshal	Isolation, biotransformation, chemical modification and bioactivity studies of terpenoids from plant sources	Thulasiram, H. V.
Ayasha, Nadeema	Layered double hydroxides and their derived functional nanomaterials for sustainable energy applications	Kurungot, Sreekumar
Khayum, Abdul M.	Macroscopic architecture of covalent organic frameworks for storage and purification	Kharul, Ulhas K.
Mohan S	Magnetic, Magnetostrictive and Magnetodielectric Properties of CoFe ₂ O ₄ - BaTiO ₃ Multiferroic Composites	Joy, P.A.
Goudappagouda	Modulation of Ground and Excited State Properties of Donor Acceptor Organic Small Molecules Towards Lighting, Light-harvesting and Electronic Applications	Sukumaran, Santhosh Babu
Vrushali Ravindra Hande	Molecular Dynamics Study of Context Dependent Structural and Dynamical Properties of Water in Heterogenous Environments and Water Mediated Self- Assembly Processes	Bhattacharyya, Sarika, & Chakrabarty, Suman
Kumawat, Amit.	Molecular thermodynamic view of bimolecular signaling: Allostery and protein-protein interaction	Vanka, Kumar
Ram, Farsa	Nanocellulose Reinforced Polymer Composites for Energy Applications	Shanmuganatha N, Kadhiravan
Jadhav, Rupali	New π -conjugated materials for optoelectronic applications	Wadgaonkar, Prakash P.
Mukherjee, Subrata	N-Heterocyclic Carbene-Catalyzed Selective Synthesis of Functionalized Lactones and Related Chemistry	Marelli, Udaya K. & Biju, A.T.
Das, Tamal Kanti	N-Heterocyclic Carbene-Catalyzed Umpolung of Aldimines for the Synthesis of Nitrogen Heterocycles and Related Chemistry	Marelli, Udaya K. & Biju, A.T.
Thosar, Aniket	PEM fuel cells: Analytical modelling and experimental validation	Gadgil, Chetan
Gadgil, Bhagyashri Thorat	PHBV Blends: Preparation, Fabrication and Characterization of Bulk and Nanomaterials for Biomedical Application	Rathna, GVN

Author	Title	Guide(s)
Mawlankar, Rahul	Polyphasic systematics of marine bacteria and their alphaglucosidase inhibitor activity	Dastager, Syed
Biswas, Bipul	Preparation of colloidal chains and studies of their structure and dynamics	Kumaraswamy, Guruswamy
Vishwanathgouda	Probing CHO cell metabolism using adaptation to nutrient	Gadgil, Mugdha
Maralingannavar	limitation: Insights on metabolic trade-offs	
Shukla, Chinmay	Process Intensification of Multistep Synthesis Involving Diazonium Salts	Kulkarni, Amol & Ranade, Vivek
Jadhav, P.M.	Reactor Design and Process Intensification of Energetic materials	Kulkarni, Amol & Pandey, Raj K.
Sharma, Aakash	Relating the properties of cellulose fibers to structure	Kumaraswamy, Guruswamy
Ghosh, Deepanjan	Structural and Biochemical Investigation of Tat components	Rao, Koteswar V. & Ramasamy, Suresh K.
Shibin T.	Structural and lectrochemical characterisation of transition metal doped perovskite related structure ABO3- (A =Ca/Sr/Ba; B=Fe/Si/In)	Devi, Nandini
Sandholu, Anandsukeerthi	Structural and functional studies on novel oxidoreductases specific to steroids and isoprenoids reduction	Kulkarni, Kiran
Agrawal S. B.	Studies of conformational and functional transitions of N- acetyl galactosamine binding lectins from Bauhinia purpurea and Wisteria floribunda	Kulkarni, Mahes h
Pandey, Ramendra	Studies on humidification of PEM fuel cells	Kharul, Ulhas
Dadwal, Arun	Studies on the Effect of Surfactant, Base fluid and Particle Size on the Thermal Conductivity of Magnetite Nanofluids	Joy, P.A.
Gunjal, Vidya	Studies toward bioactive macrocyclic peptides: Teixobactin, pseudoxylallemycin B, arthroamide and fusaristatin C	Reddy, Srinivas a
Deshmukh, Satej	Synthesis of imine, phosphinite ligands and applications in catalysis	Chikkali, Samir H.
Giram, Prabhanjan	Synthesis of PLGA polymers to combat cancer and fabrication of nanofibres for transdermal drug discovery	Garnaik, Baijayantimala
Mohite, Kavita	Synthesis of Poly (L-Lactide) using Zinc-Aleuritic acid Complex and Chitosan as Nanocarriers for Drug Delivery in Burn wound and Cancer	Garnaik, Baijayantimala

PlD. Theses

Academy of Scientific & Innovative Research: 66

Author	Title	Guide(s)
Rathod, Jayant B.	Synthetic explorations into carbon-carbon and carbon- nitrogen bond forming reactions	Kumar, Pradeep
Dhaware, Vinita	Synthetic Polypeptides and Biopolymers: Synthesis, Selfassembly and Cellular Interactions	Nisal, Anuya & Sen Gupta, Sayam
Kawale, Sanket	Synthetic Studies Towards Quinagolide, Tamiflu, Vinyl Glycine and Brivaracetam	Chavan, Subhash P.
Mullapui Venkannababu	Total Synthesis of (+)-Petromyroxol, (-)-iso- etromyroxol, Xylarinol B and Studies Toward the Total Synthesis of Diocollettines A	Ramana, C.V.
Pandya, Virat	Transition-metal-free access to biologically important scaffolds via novel C–C and C–X bond formations using aryne chemistry	Mhaske, Santos h B.
Menon, Sneha	Triggers for protein conformational changes and self- assembly probed with fully atomistic computer simulations	Vaval, Nayana
Pal, Sayan	Understanding flow of solids in continuous flow reactors	Kulkarni, Amol

Savitribai Phule Pune University: 2

Author	Title	Guide(s)
L. Suresha, P. R.	Polymeric flocculants: Synthesis, characterization and applications	Badiger, Manohar
I Torris, Arun A.T.	Hydrogels from biomimetic resources: Synthesis, characterization and applications	Badiger, Manohar

Customers

Indian Customers

- K K Nag Pvt. Ltd.
- Centaur Pharmaceuticals Pvt. Ltd.
- Biocon Ltd.
- BASF India Ltd.
- Atul Limited
- Amar Equipments Pvt. Ltd.
- Alps Chemical Pvt. Ltd.
- Ahammune BioSciences Pvt. Ltd.
- Pidilite Industries Ltd.
- Pheromones Biotech LLP
- Module Innovations Pvt. Ltd.
- Greenvention Biotech Pvt. Ltd.

- KPIT Technologies Limited
- Shantani Proteome Analytics Pvt. Ltd.
- Jemby Chem Ltd.
- Vivira Process Technologies Pvt. Ltd.
- Ventri Biologicals
- Unilever Industries Pvt. Ltd.
- Thermax Ltd
- Tatva Chintan Pharmachem P. Ltd.
- Colourtex Industries Pvt. Ltd.
- Clearsynth Labs Ltd.
- Aarti Industries Ltd.
- Shell Technology Centre
- Mallak Specialties Pvt. Ltd.

Foreign Customers

Solvay Speciality Polymers, Italy

Publicly Funded

- Indian Oil Corporation Ltd.
- Mangalore Refinery and Petrochemicals Ltd. (MRPL)

107

Awards/ Recognitions

Name	Award	
Prof. Ashwini Kumar Nangia	J. C. Bose Fellowship	
Dr. Bhushan Chaudhari	A Fellow of the Maharashtra Academy of Sciences	
Dr. Sakya Singha Sen	Merck Young Scientist Award 2019	
	An Early Career Advisory Board Member (EACB) of the journal ACS Catalysis	
Dr. B. L. V. Prasad	MRSI-ICSC Materials Science Annual Prize' 2020	
	Prof. C. N. R. Rao National Prize for Chemical Research	
Dr. Guruswamy Kumaraswamy	A Fellow of the Indian National Academy of Engineering (INAE), New Delhi	
Dr. Syed Dastager	A member of Board of the Editors of a Journal 'Microbiological Research'	

Awards

Outreach Programme

This is the science outreach activity of CSIR- NCL and faculty from Indian Institute of Science, Education and research, Pune. The objective is to boost the excitement of science and technology among school children. Following talks were organized during the year.

Topic	Speaker
The story of how life originated on Earth	Dr. Sudha Rajamani , IISER-Pune
Evolutionary Biology: Then and Now	Dr. Sutirth Dey, IISER-Pune
Matrix of Multicellular Life: How cell adhesion regulates cell	Dr. Nagaraj Balasubramanian , IISER-
function	Pune
Himalaya weathering and global CO₂ cycle	Dr. Gyana Ranjan Tripathy,
Smashing protons- Big Bang, Higgs & dark matter!	Dr. Seema Sharma, IISER-Pune
Our unseen neighbours: A look at the microbial world	Dr. Nishad Matange, IISER-Pune
Foundations of Animal Developmente Little Pulsar	Dr. Girish Ratnaparkhi, IISER-Pune
"Twinkle Twinkle Little Pulsar	Dr. Raman Athreya, IISER-Pune
International Year of Periodic Table: From Democritus to	Dr. Sakya Sen, CSIR-NCL
Mendeleev's World	
The story of Hawaii's ecosystems and why we should learn it	Dr. Anand Krishnan, IISER-Pune

CSIR-NCL DATELINE

Date	Event	
July 8 – 12, 2019	Smart India Hackathon- Hardware Edition by CSIR-NCL, IISER & ARAI	
July 29 – August 1, 2019	Symposium on Indo – German collaboration in Research and Innovation	
September 9, 2019	Inauguration of the DME Pilot Plant under Mission Project "Catalysis for	
	Sustainable Development" at the hands of Union Minister, Dr. Harsh Vardhan	
September 19, 2019	Visit of a team of 15 European Journalists to CSIR-NCL as a part of a familiarization	
	program	
September 24, 2019	CSIR foundation day Lecture by Shri M. S. Unnikrishnan, Thermax Limited, Pune	
	on "Science and Technology only can save India".	
October 10, 2019	Distinguished public lecture by Dr. Jagannath V. Dixit on "Simple Diet plan to	
	manage Obesity"	
October 30, 2019	Curtain Raiser Outreach Program of IISF 2019: A special talk by Dr. Yogesh	
	Shouche, NCCS, Pune on "Search for life in Space: Microbiological perspective"	
November 28-29, 2019	Annual Students Conference 2019	
Januray 6, 2020	CSIR-NCL Foundation Day Lecture by Prof. A. B. Pandit, Institute of Chemical	
	Technology, Mumbai on "Role of Chemical Engineering in Nation Building"	
Januray 31, 2020	Inauguration of the pilot plant for continuous flow manufacture of Silver	
	Nanowires at the hands of Dr. Shekhar Mande, Director General, CSIR	
February 12, 2020	A workshop on " Emerging Electron Crystallography Based Structure Solutions	
	Using Transmission Electron Microscopy	
February 28, 2020	National Science Day Lecture by Shri U. Raja Babu, DRDO, Hyderabad on	
	"Technological Challenges: Missile and Space Defence"	
March 9, 2020	A half-day symposium on "Women in Science" on the occasion of International	
	Women's Day	

राष्ट्रीय रासायनिक प्रयोगशाला (सीएसआईआर-एनसीएल) में हिन्दी पखवाड़ा समारोह का आयोजन

राष्ट्रीय रासायनिक प्रयोगशाला (सीएसआईआर-एनसीएल) में दिनांक १६ से ३० सितंबर, २०१९ के दौरान हिन्दी पखवाड़ा समारोह आयोजित किया गया। हिन्दी-पखवाड़े के अंतर्गत राजभाषा हिन्दी के प्रयोग को बढावा देने की दृष्टि से विभिन्न हिन्दी प्रतियोगिताएं, हिन्दी संबंधी गतिविधियों का आयोजन किया गया, जिनमें स्टाफ एवं शोध छात्रों ने बडी संख्या में उत्साहपूर्वक प्रतिभाग लिया।

हिन्दी पखवाड़े के दौरान १६ सितंबर, २०१९ को नगरस्तर पर हिंदी परिचर्चा प्रतियोगिता, १७ सितंबर, २०१९ को हिन्दी शुद्धलेखन प्रतियोगिता, १९ सितंबर, २०१९ को हिन्दी काव्यपाठ प्रतियोगिता, २० सितंबर, २०१९ को लेखक एवं घोषवाक्य पहचान प्रतियोगिता, २४ सितंबर, २०१९ को लेखक एवं घोषवाक्य पहचान प्रतियोगिता, २४ सितंबर, २०१९ को हिंदी वैज्ञानिक संगोष्ठी का आयोजन किया गया जिसमें कुल १७ शोधपत्र प्रस्तुत किये गए।

दिनांक २५/९/२०१९ को आयोजित एक दिवसीय वैज्ञानिक हिन्दी संगोष्ठी में प्रमुख अतिथि के रूप में डॉ. एस. के. सिंह, प्रमुख वैज्ञानिक (आघारकर अनुसंधान संस्थान, पुणे); कार्यकारी निदेशक डॉ. एस. पी. चव्हाण, संगोष्ठी के संयोजक डॉ. राजेश गोन्नाडे (विरष्ठ प्रधान वैज्ञानिक), तथा सचिव तथा हिंदी अधिकारी डॉ. रवाति चढ्ढा उपस्थित थे। रवागत भाषण डॉ. रवाति चढ्ढा ने एवं संगोष्ठी की प्रस्तावना डॉ. राजेश गोन्नाडे ने प्रस्तुत की। डॉ. एस. के. सिंह ने इस अवसर पर प्रसन्नता व्यक्त करते हुए कहा कि एक राष्ट्र, एक ध्वज के साथ-साथ एक भाषा का

हिन्दी पखवाड़ा

विधान होना भी आज की सबसे महत्वपूर्ण आवश्यकता है। अपने देश में सभी भाषाएं फले-फूले, किंतु अपनी राजभाषा हिन्दी को सही अर्थो में अपनाना अत्यंत जरूरी है। कार्यकारी निदेशक डॉ. एस. पी. चव्हाण ने इस आयोजन पर प्रसन्नता व्यक्त करते हुए कहा कि वैज्ञानिकों के कार्य को जन-जन तक पहुँचाना अत्यंत जरूरी है और यह जनभाषा हिन्दी के माध्यम से ही संभव हो सकता है। संगोष्ठी का आयोजन तीन तकनीकी सत्रों में किया गया, जिसमें कुल १७ शोध पत्र प्रस्तुत किए गए, तकनीकी सत्रों की अध्यक्षता डॉ. सी. वी. रमना, (विरष्ठ प्रधान वैज्ञानिक), डॉ. डी. एस. रेड्डी (विरिष्ठ प्रधान वैज्ञानिक) तथा डॉ. आशीष भट्टाचार्य (प्रधान वैज्ञानिक) ने की। आभार प्रदर्शन डॉ. स्वाित चढ़ढ़ा ने किया।

दिनांक ३० सितंबर, २०१९ को 'एनसीएल आलोक' पत्रिका का लोकार्पण तथा हिन्दी पखवाड़ा पुरस्कार वितरण समारोह आयोजित किया गया। इस अवसर पर मुख्य अतिथि के रूप में डीआरडीओ के आयुध एवं समाघात अभियांत्रिकी महानिदेशालय के निदेशक-प्रशासन डॉ. हिमांशु शेखर, तथा अध्यक्ष के रूप में डॉ. एस. पी. चव्हाण (प्रभारी निदेशक), हिन्दी पखवाड़ा आयोजन समिति के अध्यक्ष डॉ. राजेश गोन्नाडे (विरष्ठ प्रधान वैज्ञानिक), प्रशासन अधिकारी श्रीमती पूजा कुलकर्णी तथा हिन्दी अधिकारी डॉ. (श्रीमती) स्वाति चढ्ढा उपस्थित थे।

इस अवसर पर मुख्य अतिथि डॉ. हिमांशु शेखर ने अपने संबोधन में कहा कि ''हम सभी भारतीयों को इस भाषा के प्रचार-प्रसार में अपना योगदान देने की आवश्यकता है तािक शिक्षा, रोजगार और प्रशासन के क्षेत्र में इस भाषा को अच्छी तरह से लागू किया जा सकें। वैज्ञानिक जानकारियों को हम सभी को न केवल हिन्दी बल्कि सभी भारतीय भाषाओं में लाने की आवश्यकता है।'' उन्होंने एनसीएल द्वारा राजभाषा पत्रिका ''एनसीएल आलोक'' के प्रकाशन पर प्रसन्नता व्यक्त करते हुए कहा कि 'विभिन्न प्रकार के वैज्ञानिक एवं तकनीकी लेखों को जन मानस की सरल भाषा में प्रस्तुत किया जाना एक बहुत बड़ी उपलब्धि है, इससे निश्चय ही हिन्दी भाषा का प्रचार-प्रसार होगा एवं विज्ञान के क्षेत्र में भी इस भाषा का उपयोग बढ़ेगा।'

तत्पश्चात डॉ. राजेश गोन्नाडे ने हिन्दी पखवाड़े के दौरान आयोजित कार्यक्रमों की जानकारी दी। कार्यक्रम के अध्यक्ष तथा प्रभारी निदेशक डॉ. एस. पी. चव्हाण ने अपने संबोधन में कहा कि 'हिन्दी हमारे राष्ट्र की भाषा है, हमारे देश की पहचान है। हमारे एनसीएल में हिन्दी भाषा का प्रशासन तथा अन्य सभी क्षेत्रों में संतोषजनक प्रयोग हो रहा है। हिन्दी पित्रका का प्रकाशन, वेबसाईट का द्विभाषीकरण तथा हिन्दी माध्यम से संगोष्ठियों का आयोजन हमारी हिन्दी भाषा के प्रति निष्ठा का प्रमाण है।'

तत्पश्चात विभिन्न प्रतियोगिताओं के विजेताओं तथा सरकारी कामकाज में राजभाषा हिन्दी का उल्लेखनीय प्रयोग करने वाले अधिकारियों/ कर्मचारियों को अध्यक्ष एवं मुख्य अतिथि के द्वारा पुरस्कृत किया गया। साथ ही विभिन्न प्रतियोगिताओं में आंतरिक निर्णायक की भूमिका निभाने वाले पदाधिकारियों को भी स्मृति चिन्ह देकर सम्मानित किया गया।

कार्यक्रम के अंत में विरष्ठ तकनीकी अधिकारी डॉ. रिमता मुले ने सभी के प्रति आभार व्यक्त किया। समारोह की कार्यवाही का संचालन हिन्दी अधिकारी डॉ. श्रीमती खाति चढ्ढा ने किया। इस संपूर्ण आयोजन में हिन्दी पखवाड़ा सिमिति के अध्यक्ष डॉ. राजेश गोन्नाडे तथा सदस्य डॉ. रिमता मुले, डॉ. सिचन अगवने, श्री नवीन पवित्रन, श्री पुरुषोत्तमन ने महत्वपूर्ण भूमिका निभाई।

संयुक्त राजभाषा वैज्ञानिक संगोष्ठी

दिनांक ४ मार्च, २०२० को पुणे स्थित तीन वैज्ञानिक संस्थान राष्ट्रीय कोशिका विज्ञान केंद्र (एनसीसीएस), सीएसआईआर-राष्ट्रीय रासायनिक प्रयोगशाला (एनसीएल) तथा आघारकर अनुसंधान संस्थान (एआरआई) द्वारा सिम्मिलित रूप से संयुक्त राजभाषा वैज्ञानिक संगोष्ठी का आयोजन राष्ट्रीय कोशिका विज्ञान केंद्र (एनसीसीएस) में किया गया।

राजभाषा हिन्दी को विज्ञान के क्षेत्र में प्रचार-प्रसार करने एवं उपयोग बढाने की दृष्टि से तीनों संस्थानों ने अपने सिम्मिलत प्रयासों से इसे आयोजित किया। इस संगोष्ठी के उद्घाटन समारोह के मुख्य अतिथि के रूप में जानेमाने शिक्षाविद, मनोवैज्ञानिक, समाजशास्त्री, लेखक एवं संपादक तथा महात्मा गांधी अंतर्राष्ट्रीय हिंदी विश्वविद्यालय के पूर्व-कुलपित प्रो. गिरीश्वर मिश्र उपस्थित थे। उन्होंने अपने संबोधन में कहा कि 'हमें सतत विकास की संकल्पना को अपनाने की आवश्यकता है और विज्ञान से जुडे कार्य जनता के साथ-साथ नीति निर्धारकों तक पहुंचना भी अत्यंत जरूरी है, जो जनभाषा के माध्यम से ही संपन्न हो सकता है। इसके साथ-साथ ही हमारे प्राचीन ज्ञान-विज्ञान का महत्व समझ कर इन पर भी गहन अनुसंधान होना चाहिए और उसे आज के आधुनिक विज्ञान से जोडा जाना चाहिए।' मंच पर एनसीसीएस के निदेशक डॉ. मनोज भट, सीएसआईआर-एनसीएल के निदेशक प्रो. अश्विनी कुमार नांगिया, अघारकर अनुसंधान संस्थान के निदेशक डॉ. प्रशांत ढाकफलकर तथा एनसीसीएस के पूर्व निदेशक पदमश्री डॉ. जी. सी. निश्र मौजूद थे। इस मौके पर संगोष्ठीं की सारांश पुरितका का तथा सीएसआईआर-राष्ट्रीय रासायनिक प्रयोगशाला की हिन्दी पत्रिका 'एनसीएल आलोक' का भी विमोचन किया गया। इस सम्मेलन में सम्पूर्ण भारत के केन्द्रीय संस्थानों से वैज्ञानिक,शोधछात्र तथा प्रशासनिक प्रमुख/ हिन्दी अधिकारी उपरिथत थे। उद्घाटन कार्यक्रम का संचालन एवं आभार प्रदर्शन एनसीएल की हिन्दी अधिकारी डॉ. (श्रीमती) स्वाित चढ्ढा द्वारा किया गया।

इस संगोष्ठी के दौरान तीन तकनीकी सत्रों में वैज्ञानिकों / शोधछात्रों द्वारा २० शोधपत्र हिन्दी भाषा में प्रस्तुत किए गए तथा संपूर्ण भारत तथा पुणे से कुल १२५ प्रतिभागियों ने हिस्सा लिया। सारांश पुरितका में कुल ४३ शोधपत्र प्रकाशित की गई। इस सम्मेलन में निम्नांकित विषयों पर चर्चा की गई।

- समग्र स्वास्थ्य
- नैवऊर्जा और जल संरक्षण
- जैव प्रौद्योगिकी
- जैव विविधता और पर्यावरण
- कोशल विकास और रोजगार निर्माण
- डिजिटल इंडिया
- मेक इन इंडिया
- 🏮 औद्योगिक अनुसंधान

राजभाषा कार्यान्वयन रिपोर्ट

सीएसआईआर-एनसीएल की राजभाषा कार्यान्वयन संबंधी रिपोर्ट

भारत सरकार की राजभाषा नीति तथा राजभाषा संबंधी नियमों का अनुसरण करने की दृष्टि से सीएसआईआर-राष्ट्रीय रासायनिक प्रयोगशाला (एनसीएल), पुणे में प्रत्येक स्तर पर गहन प्रयास किए जाते हैं। सीएसआईआर-एनसीएल एक वैज्ञानिक प्रयोगशाला है, जहां अधिकांश कार्य वैज्ञानिक तथा तकनीकी स्वरूप का होता है तथा शेष प्रशासनिक कार्य अधिकांशत: हिन्दी भाषा में किया जाता है। इस प्रयोगशाला में किए जा रहे राजभाषा कार्यान्वयन संबंधी उल्लेखनीय प्रयास निम्नानुसार हैं।

- प्रत्येक तिमाही में एनसीएल की राजभाषा कार्यान्वयन सिमित की तिमाही बैठक नियमित रूप से निदेशक महोदय की अध्यक्षता में आयोजित की जाती है एवं इन बैठकों में प्रयोगशाला में राजभाषा हिन्दी के प्रगामी प्रयोग तथा राजभाषा कार्यान्वयन संबंधी प्रयासों की समीक्षा की जाती है। इन बैठकों में प्रयोगशाला के प्रत्येक प्रभाग/ अनुभाग प्रमुख सदस्य के रूप में उपिस्थित रहते हैं।
- प्रत्येक छह महीने में हिन्दी गृहपत्रिका "एनसीएल-आलोक" का प्रकाशन नियमित रूप से किया जाता है।
 गृहपत्रिका प्रकाशन का मूल उद्देश्य हिन्दी भाषा में लिखे गए वैज्ञानिक लेखों का प्रचार-प्रसार तथा कर्मचारियों की हिन्दी में लेखन और अभिव्यक्ति क्षमता को प्रोत्साहित करना है।

संयुक्त राजभाषा वैज्ञानिक संगोष्टी

तकनीकी सत्रों का संचालन श्री. रामेश्वर नेमा और श्रीमती मंजुषा तिवारी ने किया। तकनीकी सत्रों की अध्यक्षता तीनों संस्थाओं के वरिष्ठ वैज्ञानिकों डॉ. शुभांगी उबंरकर, डॉ. लिलता लिमये, डॉ. सुरेश गोखले, डॉ. संजय सिंह, डॉ. शैलजा सिंह, डॉ. ज्युडितका राजवाडे द्वारा की गई।

समापन समारोह के मुख्य अतिथि के रूप में राष्ट्रीय कोशिका विज्ञान केन्द्र, पुणे के पूर्व-निदेशक पद्मश्री डॉ. ज्ञानचन्द्र मिश्र जी एवं अध्यक्ष के रूपमें डॉ. मनोज भट (निदेशक, एनसीसीएस) उपस्थित थे। इस अवसर पर मुख्य अतिथि डॉ. ज्ञानचन्द्र मिश्र ने कहा कि राजभाषा हिन्दी की सम्पदा विज्ञान के क्षेत्र में बढाए जाने और अंग्रेजी भाषा के सामने हिन्दी तथा अन्य क्षेत्रीय भाषाओंको कम महत्व देने की हम भारतीयों की गलत मानसिकता को बदलने की अत्यंत आवश्यकता है। इस अवसर पर डॉ. संजय सिंह, प्रमुख वैज्ञानिक, आघारकर अनुसंधान संस्थान ने एक दिवसीय संगोष्टी की समीक्षा प्रस्तुत की। इस समापन कार्यक्रम का संचालन एवं आभार प्रदर्शन एनसीसीएस की वैज्ञानिक डॉ. शैलजा सिंह ने किया।

इस संगोष्टी के आयोजन में डॉ. गिरधारी लाल, डॉ. शैलजा सिंह, डॉ एस. के.सिंह, डॉ. राजेश गोन्नाडे, डॉ. ज्योति राव, डॉ. गुरुदत्त वाघ, श्री विजय जिनराळकर, श्रीमती कीर्ति भोसले ने महत्वपूर्ण भूमिका निभाई। संगोष्टी के समन्वयक के रूप में श्रीमती रिमता खडकीकर, डॉ. स्वाति चढ़ढा तथा श्रीमती मंजूषा तिवारी ने कार्य किया।

राजभाषा कार्यान्वयन रिपोर्ट

सीएसआईआर-एनसीएल की राजभाषा कार्यान्वयन संबंधी रिपोर्ट

- एनसीएल में प्रतिवर्ष हिन्दी पखवाड़ा समारोह का भव्य आयोजन किया जाता है। इस अवसर पर स्टाफ के लिए विभिन्न हिन्दी प्रतियोगिताओं तथा कार्यक्रमों का आयोजन किया जाता है। हिन्दी पखवाड़ा के आरंभ में हिन्दी दिवस के अवसर पर प्रतिवर्ष प्रयोगशाला की अर्धवार्षिक गृहपत्रिका "एनसीएल-आलोक" का विमोचन भी किया जाता है।
- एनसीएल के स्टाफ को हिन्दी कार्य करने में आ रही समस्याओं का निदान करने तथा हिन्दी में कार्य करने हेतु प्रोत्साहित करने की दृष्टि से प्रत्येक तिमाही में नियमित रूप से हिन्दी कार्यशाला का आयोजन किया जाता है। इन कार्यशालाओं में स्टाफ को भारत सरकार की राजभाषा नीति की जानकारी देने के साथ-साथ अपना दैनंदिन सरकारी कार्य हिन्दी में करने तथा कंप्यूटर पर यूनिकोड प्रणाली के माध्यम से हिन्दी में काम करने का प्रशिक्षण दिया जाता है।
- एनसीएल में प्रतिवर्ष हिन्दी वैज्ञानिक संगोष्ठी का आयोजन किया जाता है, तािक विज्ञान के क्षेत्र में राजभाषा हिन्दी की संपदा बढ सकें। संगोष्ठी के अवसर पर स्मारिका भी प्रकाशित की जाती है।
- हिन्दी कक्ष द्वारा प्रतिदिन हिन्दी सुविचार तथा अँग्रेजी शब्द के अर्थ का प्रेषण मेल द्वारा सभी कर्मचारियों को किया जाता है, ताकि कर्मचारियों में हिन्दी भाषा के प्रति रुचि उत्पन्न हो सकें।
- 📍 राजभाषा अधिनियम की धारा ३(३) के अंतर्गत जारी होने वाले सभी दस्तावेज द्विभाषी जारी किए जाते हैं।
- इस प्रयोगशाला में राजभाषा विभाग द्वारा जारी वार्षिक कार्यक्रम में निर्धारित किए गए लक्ष्यों की प्राप्ति की ओर विशेष ध्यान दिया जाता है।
- केंद्र सरकार, राजभाषा नियम १९७६ (संघ के सरकारी प्रयोजनों के लिए प्रयोग) के नियम १० (४) के अंतर्गत इस प्रयोगशाला को ऐसे कार्यालयों के रूप में, जिसके ८० से अधिक कर्मचारी वृंद ने हिन्दी का कार्यसाधक ज्ञान प्राप्त कर लिया है, राजपत्र में अधिसूचित किया गया है।
- प्रयोगशाला के ९८ प्रतिशत कर्मचारियों को हिन्दी, हिन्दी टंकण एवं आशुलिपि का प्रशिक्षण दिया जा चुका है।
- प्रशासन अनुभाग के कुछ अधिकारियों / कर्मचारियों तथा वैज्ञानिक स्टाफ को कंप्यूटर पर हिन्दी में कार्य करने हेतु
 प्रशिक्षित किया गया है तथा शेष स्टाफ को प्रशिक्षित करने की प्रक्रिया जारी है।
- सभी मानक प्रपत्र, फार्म तथा आवेदन पत्र इत्यादि द्विभाषी रूप में तैयार किए गए हैं।
- 🍳 वैबसाइट को द्विभाषी रूप में प्रदर्शित किया गया है।
- 🔍 सभी कम्प्यूटरों में द्विभाषी रूप से कार्य करने की सुविधा उपलब्ध है।
- 💌 सभी साइनबोर्ड, नाम-पट्टों तथा रबर की मोहरों को द्विभाषी बनाया गया है।

राजभाषा कार्यान्वयन रिपोर्ट

सीएसआईआर-एनसीएल की राजभाषा कार्यान्वयन संबंधी रिपोर्ट

- 🔍 प्रशिक्षण कार्यक्रमों में मिली-जुली भाषा का उपयोग किया जाता है।
- एनसीएल के निदेशक एवं हिन्दी अधिकारी नगर राजभाषा कार्यान्वयन समिति की बैठकों में नियमित रूप से भाग लेते हैं।
- एनसीएल की शीर्ष स्तर की प्रबंध परिषद की बैठकों की कार्यसूची द्विभाषी रूप में तैयार की जाती है और इन बैठकों में हिन्दी में भी चर्चा की जाती है।
- पुस्तकालय हेतु प्रतिवर्ष हिन्दी पुस्तकें खरीदी जाती हैं।
- एनसीएल में आयोजित होने वाले समारोहों, व्याख्यानों एवं संगोष्ठियों की रिपोर्ट हिन्दी एवं अँग्रेजी दोनों भाषाओं में सीएसआईआर-समाचार में प्रकाशनार्थ राष्ट्रीय विज्ञान संचार एवं सूचना स्त्रोत संस्थान (निसकेयर), नई दिल्ली को नियमित रूप से भेजी जाती हैं।
- सीएसआईआर मुख्यालय की मौलिक (विज्ञान) पुस्तक लेखन योजना, वैज्ञानिक कार्यों में हिन्दी पुरस्कार योजना तथा विज्ञान चिंतन लेखमाला आदि योजनाएँ इस प्रयोगशाला में लागू हैं।
- इसके अतिरिक्त प्रयोगशाला में आयोजित होने वाले विभिन्न वैज्ञानिक कार्यक्रमों तथा अन्य समारोहों का संचालन भी हिन्दी माध्यम से किया जाता है।
- इस प्रयोगशाला के वैज्ञानिक देश के विभिन्न संस्थानों में राजभाषा के माध्यम से आयोजित होने वाली संगोष्ठियों
 तथा विज्ञान सम्मेलनों में भाग लेकर हिन्दी भाषा में अपना शोध पत्र प्रस्तुत करते हैं।

117

राजभाषा कार्यान्वयन रिपोर्ट

सीएसआईआर-एनसीएल की राजभाषा कार्यान्वयन संबंधी रिपोर्ट

- प्रयोगशाला से जारी होने वाली सभी निविदा सूचनाएँ तथा विज्ञापन इत्यादि द्विभाषी रूप में प्रकाशित किए जाते हैं।
- विज्ञान शिक्षा के प्रति रुचि उत्पन्न करने तथा राजभाषा के माध्यम से विज्ञान के प्रचार-प्रसार के उद्देश्य से एनसीएल के वैज्ञानिकों द्वारा विभिन्न विद्यालयों तथा महाविद्यालयों के विद्यार्थियों के लिए विज्ञान संबंध व्याख्यान हिन्दी में देते है।
- एनसीएल के स्टाफ को हिन्दी में कार्य करने हेतु प्रोत्साहित करने की दृष्टिसे यहाँ विभिन्न राजभाषा प्रोत्साहन योजनाएँ लागू हैं।
- प्राप्त हिन्दी पत्रों के उत्तर अनिवार्य रूप से हिन्दी में ही दिये जाते हैं।
- क तथा ख क्षेत्रों को जाने वाले अधिकांश पत्रों के लिफाफों पर पते हिन्दी भाषा में लिखे जाते हैं।
- > राजभाषा विभाग के वार्षिक कार्यक्रम तथा राजभाषा संबंधी निर्देशों से सभी विभाग/ प्रभाग प्रमुखों को अवगत कराया जाता है।
- हिन्दी काम-काज को बढावा देने तथा राजभाषा नीति के अनुपालन हेतु ९ अनुभागों को हिन्दी में कार्य करने के लिए निर्दिष्ट किया गया है।

ion process using hydrodyamic cavitation' at CSIR-NCL nder the guidance of Vinay handari.

This was at Chemical Engieering and Process Developent Division.

A graduate in Petrochemical igineering from the Dr Babaseb Ambedkar Technological iversity in Lonere, her docal work is quite mainly used on "Studies in sulfur noval processes for transporon fuels"

reviously, she received the B-IGCW 2017 award at the ustrial Green Chemistry ld 2017' conference.

has established three national awards with BIRAC (Biotechnology Industry Research Assistance Council) for innovative student projects in engineering, biotechnology. agriculture. pharmacy, material science and other applied technological domains

The awards were given to 21 young researchers for innovations related to 42 categories this

SRISTI-GYTI awards celebrate the spirit of student innovation in all the fields of engineering, science, technology and design through extremely affordable/frugal solution or the

Nalinee Suryawanshi receives the award from Vice-President M Venkajah Na

Notes

CSIR- NCL Annual Report 2019-20 _

Notes	

_सीएसआईआर- एनसीएल वार्षिक प्रतिवेदन 2019-20

Council of Scientific and Industrial Research

National Chemical Laboratory

Horne

About NO.

Research

Auademic Programme Partnership with Industry Join Us Resource Contact Us NCL Quick Links

ABOUT CSIR- NCL

development and renealting arganisation with a finansian CSIR-National Chemical Laboratory, Pune is a research, chemistry and chemical engineering,

The purpose of this laboratory is to advance knowledge and to apply chemical science for the good of the people

Academic Programme

Partnership with Industry

Join Us

Director

CSIR-National Chemical Laboratory

(Council of Scientific & Industrial Research)

Dr. Homi Bhabha Road, Pune 411008 (INDIA)

Tel: +91-20-2590 2600 Fax: +91-20-2590 2601

Email: director@ncl.res.in www.ncl-india.org