Abstract:
The use of liquid electrolytes in energy storage devices are associated with several constraints pertaining to safety. Polymer electrolytes are suitable candidates to overcome several problems associated with free-flowing liquid electrolytes. The current thesis deals with the development of proton, lithium, and zinc conducting gel polymer electrolytes for electrochemical energy storage devices such as supercapacitors, lithium-metal batteries, and zinc-metal batteries. Special emphasis is given to the improvement of electrode|electrolyte interface in polymer electrolyte-based energy storage devices by the ultraviolet-light-induced in situ processing strategy. Ultimately, the prospects of employing polymer electrolytes as an alternative to liquid electrolytes in energy storage devices is revisited in this dissertation through four dedicated working chapters.