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Abstract

Abstract

In this thesis, an explicitly complex absorbing potential (CAP) based equation-of-

motion coupled cluster with singles and doubles (EOM-CCSD)formalism is developed.

The method is termed as CAP/EOM-CCSD method. The method is designed to compute

the position and lifetime of the shape resonance. [1] It has also been applied to explore

the different spectroscopic phenomena such as Interatomicor Intermolecular coulombic

decay (ICD),[2–11] Auger decay,[12, 13] etc. The decay rateof ICD and Auger decay is

computed using the CAP/EOM-CCSD method. The calculated decay rate is found to be

very fast for the ICD as well as auger decay.

Resonance states are quasi bound or metastable states with finite lifetime. Generally,

resonance states appear in electron molecule scattering and it provides deep insight about

the physical system. Resonances play a significant role in various energy exchange pro-

cess like, vibrational excitations of the molecules, dissociative attachment, etc. It also

play an important role in high precession single molecular engineering and quantum dot

fabrication. However, resonance phenomena becomes one of the most amazing phenom-

ena in chemical physics after it has been proved that resonance states are responsible for

the radiation damage[14, 15] in biological system.Thus, the resonance phenomena can

be used as powerful tool to measure the genotoxic effects in living tissues.

Structural and spectroscopic properties of resonance states are quite similar to the

bound state. The accurate calculation of position and lifetime of the resonance states are

required to describe the several non-radiative decay processes in chemical physics such

as Auger decay, ICD, [16] decay of double core hole states.[17] However, main diffi-

culty in the calculation of resonance state is the treatmentof the non square integrable

resonance wavefunction. Thus, the usual bound state methods are not applicable. Reso-

nance state can also be described as compound state between bound and continuum state.

Thus, the calculation of resonance state requires simultaneous treatment of correlation

and continuum effects.
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Abstract

Analytic continuation of the Hamiltonian in the complex energy plane is used to de-

scribe the resonance states. Two approaches are well known in literature through which

analytic continuation of the Hamiltonian can be achieved, one is complex scaling ap-

proach [18] and another is complex absorbing potential (CAP) approach.[19–24] The

complex scaling approach is suitable for the atomic systems. However, it is difficult to

implement for the molecular systems. The main advantage of the CAP approach is that

it is easy to implement with anyab initio electronic structure methods.

For the accurate description of auto ionizing resonance states electron correlation and

relaxation plays significant role. The EOM-CC method[25–33] treats relaxation effect

and electron correlation in an effective manner. The EOM-CCmethod includes dynamic

correlation through coupled clusterT operator and it includes non-dynamic correlation

throughR operator. The main advantage of method is that it gives direct intensive energy

difference. This makes the EOM-CC method suitable for the accurate description of

auto-ionizing resonance state.

The thesis is organized as follows:

CHAPTER I: This chapter deals with the brief overview of resonance phenomena.

Eventually, in this chapter evaluation of position and lifetime of the resonance state using

variousL2 approaches such as complex scaling, complex absorbing potential (CAP),

complex basis function method are presented in detail. We discuss the variousab initio

methods used in the literature for resonance energy evaluation such as Fock-space multi-

reference coupled cluster (FSMRCC) method, Multi-reference configuration interaction

(MRCI), Algebraic diagrammatic construction approach (ADC) and EOM-CC approach.

In this chapter, We also include brief discussion about the Interatomic or Intermolecular

coulombic decay (ICD) and Auger decay.

CHAPTER II: In this chapter, the equation-of-motion coupled-clustermethod (EOM-

CC) is applied for the first time to calculate the energy and width of a shape resonance

in an electron-molecule scattering. The procedure is basedon inclusion of complex ab-

sorbing potential with EOM-CC theory. We have applied this method to investigate the
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shape resonance ine−N2 , e−CO, ande−C2H2. We have also applied this method to

study the potential energy curve (PEC) of2Πg e−N2 and2Π e− CO resonance states.

CHAPTER III :In this chapter, the equation-of-motion coupled cluster (EOM-CC)

method employing the complex absorbing potential (CAP) hasbeen used to investigate

the low energy electron scattering byCO2. We have studied the potential energy curve

(PEC) for the2Πu resonance states ofCO−
2 upon bending as well as symmetric and

asymmetric stretching of the molecule. Specifically, we have stretched theC − O bond

length from 1.1Å to 1.6 Å and the bending angles are changed between180◦ to 132◦.

Upon bending, the low energy2Πu resonance state is split into two components, i.e.2A1,

2B1 due to the Renner-Teller effect (RT), which behave differently as the molecule is

bent.

CHAPTER IV: In this chapter, we have explored about the Interatomic or Inter-

molecular coulombic decay (ICD) process. ICD is an efficientand ultrafast radiation

less decay mechanism which can be initiated by removal of an electron from the inner-

valence shell of an atom or molecule. Generally, the ICD mechanism is prevailed in

weakly bound clusters. A very promising approach, known as CAP/EOM-CC, consists

of the combination of complex absorbing potential (CAP) with the equation-of-motion

coupled-cluster (EOM-CC) method, is applied for the first time to study the nature of

the ICD mechanism. We have applied this technique to determine the lifetime of an

auto-ionized, inner-valence excited state of theNe(H2O), Ne(H2O)2 andNe(H2O)3

systems. The lifetime is found to be very short and decreasessignificantly with the num-

ber of neighboring water molecules.

We have also applied this method to study the interatomic coulombic decay (ICD)

mechanism in small hydrogen bonded clusters. The lifetime of F 2s inner-valence ionized

state of(HF)n, (n=2-3) clusters were calculated using this method. The lifetime is found

to be very short and decreases substantially with increasing the number ofHF monomer.

CHAPTER V:In this chapter, we have explored about the Auger decay. Therecent

development of Linac coherent light source high intense x-ray laser makes it possible
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to create double core ionization in the molecule. The generation of double core hole

state and its decay is identified by Auger spectroscopy. The decay of this double core

hole (DCH) states can be used as a powerful spectroscopic tool in chemical analysis. In

this present work, we have implemented a promising approach, known as CAP/EOM-

CC method, for the first time to calculate the decay rate of double core hole (kk) state.

We have applied this method to calculate the lifetime of auto-ionized double core hole

excited state in various systems. The calculated lifetime is found to be very short and the

decay rate is faster compare to the single core hole (k) Augerdecay.

CHAPTER VI:In this chapter, we have applied the CAP/EOM-CCSD method to

compute how the interatomic or intermolecular coulombic decay (ICD) rate of molecule

changes with changing the internuclear distance of the molecule. The calculation of ICD

decay rate in different internuclear distances is a step towards understanding the dynam-

ics in challenging systems involving inner valence excitedstates. In this chapter, the

summary of the thesis is presented. We have also discuss the future perspective in this

field.
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Th. Weber, H. Schmidt-Böcking, and R. Dörner,Nature Phys., 6, 139 (2010);

[10] M. Mucke, M. Braune, S. Barth, M. Förstel, T. Lischke, V. Ulrich, T. Arion, U.

Becker, A. Bradshaw, and U. Hergenhahn,Nature Phys.6, 143 (2010); T. Jahnke, A.
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Chapter 1

————————————————————

A brief Overview: shape resonance,

Interatomic or Intermolecular coulombic decay

(ICD), Auger decay and various ab initio

methods

————————————————————

1.1 Introduction

Resonance phenomena,[1–14] which occur in electron molecule collision, are con-

sidered as the most useful phenomena in atomic or molecular physics due to its role in

various energy exchange processes like vibrational excitation, dissociative attachment,

etc. It provides deep insight about the molecular system. One of the most amazing

feature of resonance phenomena is that it plays a significantrole in long lasting DNA

damage [15–17] of the biomolecular system. Thus the resonance phenomena can be

used as a powerful tool in the measurement of genotoxic effects in biological system.
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Resonance phenomena are associated with quasi bound statesor metastable states

which has sufficient energy and finite lifetime and finally it breaks into two fragments.

Resonance state can also described as discrete state which is strongly interconnected with

the continuum state. Generally, resonance phenomena are sub-dvided into two classes,

one is shape resonance and another is Feshbach resonance. Shape resonances are those

where electron capture occurs through the shape of the potential barrier. The shape

resonances can also be characterized by intermediate negetive anionic complexes, which

have very short lifetime and finally, it decay into the neutral target molecule and and a

scattered electron. Generally, it occurs in femto-second(fs) (10−13- 10−15) time domain.

The metastable resonance states are described by complex eigenvalues, which are

known as Siegert energies,[18, 19]

Eres = ER − iΓ/2. (1.1)

whereER represents the resonance position andΓ is the decay width. The decay

width Γ is inversely related with the lifetimeτ = ~/Γ .

From the structural and spectroscopic point of view resonance states have strong sim-

ilarities with the bound states. The accurate description of resonance states is extremely

important to explore the various spectroscopic phenomena.It also plays a crucial role in

describing various non-radiative decay processes like Auger decay,[20–22] Interatomic

or Intermolecular decay (ICD),[23–38] double core hole Auger decay, etc. However, the

main difficulty in the calculation of resonance states is that the Siegert wave function is

not square integrable in nature. Thus, the usual bound statemethods are not applicable.

The electron correlation and relaxation effects also play an important role in the calcu-

lation of resonance state. Thus, the calculation of resonance state required simultaneous

treatment of both electron correlation and relaxation effects.

The complex resonance energy can be calculated directly within the hilbert space us-

ing the analytic continuation of the Hamiltonian technique. [39, 40] The main advantage
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of this technique is that it can be applicable to the all existing ab initio quantum chem-

istry methods and resonance energies come out simple as eigenvalues. Two approaches

are very much well known in literature through which analytic continuation of Hamilto-

nian can be achieved, one is complex absorbing potential approach (CAP) and another is

complex scaling approach. The other approach is complex basis function method. The

complex scaling approach has been implemented successfully for the atomic systems.

However, it is difficult to implement for the molecular systems. The CAP approach is

very easy to implement in anyab initio electronic structure methods.

The aim of the present chapter is to give a brief over-view of resonance phenomena

and variousab initiomethods which have been used to calculate the position and lifetime

of the resonance state. In particular, the literature towards complex absorbing potential

(CAP), complex scaling approaches are discussed. A brief discussion on Interatomic or

Intermolecular coulombic decay (ICD) and Auger decay are also presented.

1.2 Resonances in Scattering

The resonaces appear through two kinds of collision channels, one is elastic collision

channels and another is inelastic channels. The formalism of resonances through elstic

channels is much simpler compared to the inelastic channel.In this thesis, we have

discussed briefly about the resonances through elastic collision channels.

Consider the elastic scattering of an incident particle in the z direction by a central

field potential V(r). The incident particle behaves as a freeparticle in a large negetive

values of time t. For a large negetive values of t the incidentparticle is not influenced

by the potential V(r). Its state can be represented by a planewaveeikz. However, the

incident particle behaves differently in the field of V(r). it is now split into two wave

packets, one is transmitted wave packet which continues to propagate in the positive z

direction and another is scattered wave. The eigenstates satisfying these conditions is

called stationary scattering stateγdiffk (r) and is obtained by the superposition of a plane
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wave and a scatterd wave. The asymptotic behavior of the stationary scattering state is

of the form:

γdiffk (r) ∼ eikz + fk(θφ)e
ikz/r (1.2)

wherefk(θ, φ) is called the scattering amplitudes.

The scattering wave function is defined by the asymtotic formof the wave function,

Ψ(r, t) ∼

∫ ∞

0

g(k)eikze( − iEkt/~)dk+

∫ ∞

0

g(k)fk(θ, φ)e
ikr/re(− iEkt/~)dk, (1.3)

which is a sum of plane wave packet and scattered wave packet.

In a particular value of V(r), the orbital angular momentum is constant in motion.

Thus, there exist stationary state with well defined angularmomentum. We can call

these states as partial waves. For the large r value corresponding wave function behaves

like a free spherical wave function. The expression for the partial wave and spherical

wave can be determined from the superposition of incoming wave and outgoing wave.

However, there is a phase shift in presence of V(r) in the partial waves. Generally, phase

shift changes slowly with the energy change. The resonance occurs when the phase shift

changes rapidly over a small energy change. The phase shift can be split into back ground

phase shift and the resonance phase shift. Neglecting the background phase shift Breit-

Winger formulla can describe an isolated scattering resonance. The mathamatical form

of the Breit-Winger formulla is

σl = 4π/k2(2l + 1)(Γ/2)2/(E0 − E)2 + (Γ/2)2 (1.4)

The negative ion resonances in electron-molecule collision appear as sharp changes

in scattering cross section at low incident electron energies. At some incident energies,

the electron wavefunction has large amplitude within the target. This happens only when

the incident energy falls in one of the discrete bands, wherethe incident electron finds
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a comfortable quasistationary orbit in the field of target molecule. The quasi stationary

nature of the compound state is usually follw two mechanism.The first possibility and

the most common situation that causes the appearance of resonance is an effective po-

tential made up of attractive potential [attractive polarization force at small distances]

combined with a repulsive potential [repulsive centrifugal force at long distances] pro-

duces a barrier in the potential. For energies below the maximum in the barrier, there

would be bound states inside the attractive part of the potential if tunneling could be ig-

nored. However, the quantum mechanical tunneling permits particle trapped inside the

attractive part of the potential to escape to infinity, and the tunneling rate depends on

the height and thickness of the barrier. Conversely, particles incident on the potential at

energy close to the virtual states are able to penetrate inside the attractive barrier. This

behavior explains why resonance generally becomes narrower as l increases. Largerl

values causes bigger centrifugal barriers, thus suppressing tunneling. Once the electron

has entered the region inside the barrier, it will take some time before the electron leaks

out to the outer region again by a tunnel effect. This type of resonance is called shape

resonance or potential resonance since the resonance stateis produced by an appropriate

shape of the effective interaction potential between the electron and the molecule.

The second possibility arises when the inelastic channels are introduced. By exciting

the target molecule, the electron loses its energy. Supposethat the incident electron

energy is not large that after the excitation the electron energy becomes negative, and

furthermore, its value coincides with one of the bound-state energies allowed in the field

produced by the excited target molecule. Then it will take some time before the electron

gets its energy back from the target and escape to outside. Thus one has a new type

of resonance process which is called core-excited type I resonance or the resonance of

Feshbach resonance. There exists also shape resonances associated with the effective

potential in the inelastic channel. They are called core-excited type II resonance or core

excited shape resonances.
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1.3 complex scaling

Complex scaling approach has capability to solve the resonance eigenvalue problems

directly. This approach is based on the fundamental work of Balslev, Combes and Si-

mon. [41–43] This method is based with a unbound similarity transformation.[44–46]

The resonanace state can be identified by square integrable functions associated with

the eigenfunctions of a transformed HamiltonianUHU−1, which is obtained from the

original Hamiltonian H by an unbound similarity transformation. That is,

(UHU−1)(UΨR) = (Eres − iΓ/2)(UΨR) (1.5)

such that

UΨR → 0 and r→ ∞

andUΨR is in Hilbert space althoughΨR are not.

The complex scaling operator can be defined as

U = eiθr∂/∂r (1.6)

such that

Uf(r) = f(reiθ) (1.7)

for any analytical function f(r).

By scaling the reaction coordinate, the resonance wave function becomes square in-

tegrable and, consequently, the number of particles in the coordinate space is conserved.

Therefore, complex scaling [47–52] has the advantage of associating the resonance phe-

nomenon with the discrete part of the spectrum of the complexscaled Hamiltonian.

Moreover, the resonance state is associated with a single square integrable function,

rather than with a collection of continuum eigenstates of the unscaled Hermitian Hamilto-

nian. Complex scaling may be viewed as a procedure which compresses the information

about the evolution of a resonance state at infinity into a small well defined part of the

space.
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1.4 Complex absorbing potential

Complex absorbing potential approach is very promising in the description of the energy

position and lifetime of atomic, molecular and nuclear collision processes. [53–58] The

molecular Hamiltonian is perturbed by an appropriate complex potential, which creates

an absorbing boundary condition. This complex potential absorbs the outgoing particle

and consequently convert the resonance wave function into abound state one.

In the CAP approach [59, 60] CAP potential -iηW is added to the Hamiltonian H to

describe the electronic resonance state,

H(η) = H − iηW (1.8)

whereη is a real positive number representing the CAP strength and Wis a local positive-

semidenite one-particle operator. The new HamiltonianH(η) satises the Schródinger

equation

H(η)Ψ(η) = E(η)Ψ(η). (1.9)

The presence of CAP makes the Hamiltonian operator non-Hermitian. If one chooses the

appropriate CAP form, the addition of complex potential causes an asymptotic damping

of the Siegert eigenfunction which makes the wave function square integrable. The spec-

trum becomes discrete. However, the artificial introduction of the CAP potential perturbs

the Hamiltonian, one can obtain the exact resonance eigenvalues in the limitη → 0 for

a complete basis set. In practical computation, one cannot solve the Siegert energy spec-

trum exactly since incomplete basis sets are used and one is forced to use finiteη values.

The resonance energies are obtained through the diagonalization ofH(η) for a number of

η values. The combination of resulting eigenvalues give anη trajectory. Theη trajectory

is examined by using the logarithmic velocityυ(η). The resonance energy is explored

through the minimization of logarithmic velocity

υ(η) = η∂E/∂η. (1.10)
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The existence of a distinct minimum,

|υ(ηopt)| = min, (1.11)

gives the optimalη value.

Historically, CAP has been used for the first time to calculate the resonance parame-

ters by Jolicard and Austin. [61, 62] They have illustrated the stability of the resonance

eigenvalue could be achieved by varying the strength or the location of the absorbing

potential. Riss and Meyer addressed the question under whatcondition the resonances

obtained by the CAP are the poles of the scattering matrix.[59] Nimrod Moiseyev has

developed a universal energy independent complex absorbing potential (CAP) [53] on

the basis of the Moiseyev -Hirschfelder generalization of complex coordinate method.

This CAP consists of flux and diffusion type operator. When a smooth exterior scaling is

used, the CAP gets non zero values in the region where the interaction potential vanishes.

Riss and Meyer also developed another method called transformative CAP (TCAP). [63]

There is a connection between the smooth exterior scaling [SES] with the transformative

CAP [TCAP]. The TCAP and SES in fact become identical for cut-off potentials. For

the TCAP method, Riss and Meyer started from the Hamiltonianperturbed by a CAP

and ended up with a complex-scaled operator. Instead, For the SES method, Moiseyev

started with the complex coordinate method and ended up witha non-scaled Hamiltonian

perturbed by a perfectly absorbing [universal] potential which is energy and problem in-

dependent. Moiseyev and co-workers [64] have also developed a continuum remover

complex absorbing potential (CR-CAP) [65] where a real-valued potential is added to

the conventionally used negative imaginary potential in the peripheral of the molecule.

This new approach has excellent capability to separate out the non-physical resonance

states form the physical states.
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1.5 Analytic continuation of various ab initio methods

The analytically continuedab initio methods are well known in the calculation of direct

resonance energy. [66] The various analytically continuedab initio methods are avail-

able in literature. The self consistent field (SCF) is the starting point of anyab initio

correlated method. McCurdy et al. [67] have developed complex scaled SCF method

for the calculation of resonance energies. In their approach, a real Hamiltonian is used

together with the complex wave functions. However, anothercomplex SCF method has

been developed bÿOhrn and co-workers. [68, 69] In their approach, complex Hamilto-

nian is used. Recently, Yeager and co-workers have proposedthe quadratically conver-

gent complex-scaled multi-configurational self-consistent field method (CMCSCF), [70]

the complex-scaled multi-configurational time-dependentHartree-Fock method (CMCT-

DHF) [71] and complex-scaled multi-reference configuration interaction method (CMR-

CI). [72] Buenker and co-workers [73, 74] have used self-consistent field and multi-

reference single- and double-excitation configuration interaction (MR-CISD) calcula-

tions employing the complex basis function approach for thecalculation of anionic res-

onances. The complex basis function method has also been developed by Moiseyev and

McCurdy. [49]

The CAP [75–80] is an one-electron potential and its use inab initiomethods is rather

easy compared to the complex scaling. The CAP approach has already been successfully

implemented in variousab initio methods. The first implementation of CAP method

within the configuration interaction (CI) approach has beendone by Sommerfeld et al.

[78]for metastable anions. Santra et al. [76] have also implemented CAP within the CI

framework for metastable cations. Later on, Santra et al. have applied CAP to the the

propagator theories and used CAP/ADC approach [79] to describe the resonanaces of

metastable anions. Mishra and coworkers [81] have introduces bivariational self consis-

tent field (SCF) based second order propagator method to describe the Auger and shape

resonances. Ehara et al. have introduced CAP within the SAC/CI framework. [82]

10



The CAP [83] has also been implemented within the Rayleigh-Schrödinger perturbation

theory.[84]

Recently, Sajeev et al. [85] have introduced CAP within the Fock-space multiref-

erence coupled cluster (FSMRCC) framework to study the resonances of anions. Very

recently, CAP has also been implemented successfully within the density functional the-

ory (DFT).[86].

1.6 Coupled cluster

The coupled cluster (CC) methods form another popular approach to the problem of

constructing correlated wave functions. The CC theory has been employed for decades

in the physics community, particularly in the area of nuclear physics by Cöester and

Kümmel [87] to deal with double magic atomic nuclei. It was originally introduced

into the quantum chemistry community by̌Cížek and Paldus [88, 89] in the late 1960’s.

These early formulations used Feynman-like diagrams and the notation of second quan-

tization to aid in the derivation of programmable CC equations. Both Feynman diagrams

and second quantization concepts were alien to quantum chemists, it was Hurley [90] to

present derivation of CC theory in terms accessible to chemists. Despite Huley’s deriva-

tion, the use of second quantization and diagrammatic theory is still beneficial in the

efficient derivation of CC equations. The use of these efficient derivation tools is so im-

portant to CC theory[91, 92] because, unlike CI theory in which the core problem is the

diagonalization of the Hamiltonian matrix with elements given by Slater’s rules and in

which individual methods only differ in the basis functionsused to construct this matrix,

standard CC theory requires the iterative solution of algebraic equations which must be

re-derived with each change in method.

The CC method employs an excitation operatorT̂ ,

T̂ = T̂1 + T̂2 + ... =

N∑
n

T̂n. (1.12)
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with

T̂n = (
1

n!
)2

n∑
ij...ab...

tab...ij... a
†
aa

†
b...ajai (1.13)

TheT̂ operator of CC theory acts exponentially:

ΨCC = eT̂ |Φ0〉. (1.14)

The tab···ij··· coefficients in theT̂n operators are known as cluster amplitudes. An trun-

cated CC method may be constructed by including only the desired excitation operators

within T̂ . For example, the popular CCSD method is realized when only the T̂1 andT̂2

operators are included within̂T . The interesting thing is that the exponential approach

produces a method which is both size consistent and size extensive, provided the refer-

ence function possesses these qualities, even whenT̂ is truncated at a chosen excitation

level.

Beginning from the universal starting point, the Schrödinger equation, one substitutes

in the form of the CC wave function given by eq 1.14 and finds

ĤeT̂ |Φ0〉 = EeT̂ |Φ0〉. (1.15)

Projecting through on the left by the reference,|Φ0〉, one can obtain an expression

for the energy

〈Φ0|Ĥe
T̂ |Φ0〉 = E〈Φ0|e

T̂ |Φ0〉 = E, (1.16)

provided one employs the technique of intermediate normalization and sets the overlap

between the reference and the CC wave function i.e.,〈Φ0|ΨCC〉 equal to unity. Obtain-

ing an energy expression is only the first step, however one must also determine all of

the cluster amplitudes which define the wave function with this energy. In order to ac-

complish this, one must left-project eq 1.16 by the excited determinants produced by the

action of theT̂ operator:

〈Φab···
ij··· |Ĥe

T̂ |φ0〉 = E〈Φab···
ij··· |e

T̂ |Φ0〉. (1.17)
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For example, one can produce an equation for the specific amplitudetabij by left-projecting

by the|Φab
ij 〉 excited determinant. The resulting equation is non-liner and depends upon

other cluster amplitudes. However, these equations are exact, and if one were able to

solve them with the full̂T operator, one would indeed obtain the full CI energy and wave

function.

The CC method depends upon the action of the exponential excitation operatoreT̂ on

the reference. The excitation operator is expanded as the power series

eT̂ = 1 + T̂ +
T̂ 2

2!
+
T̂ 3

3!
+ · · · . (1.18)

As a matter of fact, the equivalence ofeT̂ and this power series is commonly used in the

various arguments employed to justify the exponential ansatz. From eq.1.16 one get

E = 〈Φ0|Ĥ|Φ0〉+ 〈Φ0|ĤT |Φ0〉+ 〈Φ0|Ĥ
T̂ 2

2!
|Φ0〉+ 〈Φ0|Ĥ

T̂ 3

3!
|Φ0〉+ · · · (1.19)

from which one can find another benefit of the exponential formalism. The Hamiltonian

operator only includes one- and two- particle operators, and thus, according to Slater’s

rules, matrix elements of the Hamiltonian between determinants which differ by more

than two spin orbitals must vanish. Therefore, the fourth and subsequent terms in the

above expansion, in which thêT operator is raised to the third or higher power and

can thus produce only triply or higher excited determinantswhen operated upon the

reference, must also vanish and the energy expression is truncated to

E = 〈Φ0|Ĥ|Φ0〉+ 〈Φ0|ĤT |Φ0〉+ 〈Φ0|Ĥ
T̂ 2

2!
|Φ0〉. (1.20)

This is a natural truncation of the CC equations due to the nature of the Hamiltonian and

also applies to the amplitude equations, although the exactrange of allowed powers of̂T

will vary from that seen for the energy expression. Therefore, in practical CC derivations,

theorists exploit a bit of mathematical experience and multiply eq 1.16 through on the left

by e−T̂ . Subsequent left-projection by the reference and excited determinants produces

the following new set of energy and amplitude equations:

E = 〈Φ0|e
−T̂ ĤeT̂ |Φ0〉 (1.21)
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〈Φab···
ij··· |e

−T̂ Ĥ T̂ |Φ0〉 = E〈Φab···
ij··· |e

−T̂ eT̂ |Φ0〉 = E〈Φab···
ij··· |Φ0〉 = 0 (1.22)

respectively. Notice that the introduction of thee−T̂ operator cancels out itseT̂ counter-

part in the amplitude equations and guarantees that the right hand side vanishes, taking

any dependence of the amplitudes on the energy with it. The similarity transformed

Hamiltonian,e−T̂ ĤeT̂ , employed in the above energy and amplitude equations is not

a Hermitian operator; therefore, the energy equation does not satisfy any variational

conditions where the energy is derived from the Average Value Theorem. Despite this

disadvantage, which is considered to be small by a number of theorists, the use of this

similarity transformed Hamiltonian has as a second benefit which makes this formula-

tion of the CC equations both practical and desirable. Thee−T̂ ĤeT̂ operator may be

expanded as a linear combination of nested commutators

e−T̂ ĤeT̂ = Ĥ+[Ĥ, T̂ ]+
1

2!
[[Ĥ, T̂ ], T̂ ]+

1

3!
[[[Ĥ, T̂ ], T̂ ], T̂ ]+

1

4!
[[[[Ĥ, T̂ ], T̂ ], T̂ ], T̂ ]+ · · ·

(1.23)

according to the Campbell-Baker-Hausdorff formula.

While the expansion of the similarity transformed Hamiltonian given above in equa-

tion 1.23 may not, at first glance, appear to be simple but the sequence of nested commu-

tators naturally truncates due to the structure of the electronic Hamiltionian. The second

quantized form of the Hamiltonian includes strings containing at most a total of four

general-index creation and annihilation operators. When one evaluates the commutator

between the Hamiltonian and thêT operator, one replaces one of these operators by a

Kronecker delta function. This reduces the number of available general-index opera-

tors in the Hamiltonian by one. Thus, the sequence of nested commutators in eq.1.23

must truncate after the five terms explicitly written. Usingthis truncated Hausdorff ex-

pansion, it is possible to obtain analytic expressions for the commutators which may be

inserted into both the energy and amplitude equations. Finally, these equations may then

be reduced into expressions that depend only on the amplitudes and the known one- and

two-electron integrals.
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1.7 Equation-of-motion coupled cluster

The starting point for the EOM-CC method [93–97] is a coupledcluster (CC) ground

state wave function. In CC method, the ground state wave function can be defined as

|ψ0〉 = eT |φ0〉, (1.24)

whereφ0 is the N-electron close shell reference determinant .e.g.,the restricted

Hartree-Fock determinant (RHF) andT is the cluster operator. In the coupled cluster

singles and doubles (CCSD) approximation,T operator can be defined as follows

T =
∑
ia

tai a
+
a ai + 1/4

∑
ab

∑
ij

tabij a
+
a a

+
b aiaj + ......, . (1.25)

where the standard convention for the indices is used, i.e.,indices a,b,..., refer to the

virtual spin orbitals and indices i,j,.., refer to the occupied spin orbitals.

Within the EOM-CCSD formalism [98–106], the wave function for the ionized, elec-

tron attached, double ionized states,ψµ, can be expressed as

|ψµ〉 = R(µ)|ψ0〉, (1.26)

whereR(µ) is ionization, electron attachment, double ionization, etc, operator

R(µ) = r0(µ) +R1(µ) +R2(µ) +R3(µ) + .................. (1.27)

TheR(µ) can be defined via creation -annihilation operator depending on the con-

sidered process as follows

R(µ)IP =
∑
i

ri(µ)ai + 1/2
∑
a

∑
ij

raij(µ)a
+
a ajai + ..................... (1.28)

R(µ)EA =
∑
a

ra(µ)a+a + 1/2
∑
ab

∑
i

rabi (µ)a+a a
+
b ai + ...................... (1.29)

R(µ)DIP = 1/2
∑
ij

rij(µ)aiaj + 1/6
∑
a

∑
ijk

raijk(µ)a
+
a akajai + ................... (1.30)
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TheR1(µ) operator does not contribute to the expansion ofR(µ)DIP operator. The

r0 operator is zero for IP, EA, DIP, etc.

The Schrödinger equation for IP, EA, DIP states can be expressed as

HNR(µ)|ψ0〉 = ∆EµR(µ)|ψ0〉 (1.31)

whereHN is the normal ordered Hamiltonian and it can be expressed as

HN = H − 〈φ0|H|φ0〉 (1.32)

The final form of EOM-CC equation is

H̄NR(µ)|φ0〉 = wµR(µ)|φ0〉 (1.33)

wherewµ is the energy change connected with the considered process.The H̄N is

the similarity transformed Hamiltonian, in terms of connected diagrams and it can be

defined as

H̄N = e−THeT − 〈φ0|e
−THeT |φ0〉 (1.34)

In a matrix form eq 6.10 is

H̄NR(µ) = wµR(µ) (1.35)

The H̄N matrix is diagonalized in the sub space of 1h and 2h1p space toget the

required ionization potential (IP) values and EA values areobtained through the diago-

nalization ofH̄N matrix in the sub space of 1p and 2p1h space.

The double ionization potential (DIP) values are obtained through non-symmetric

diagonalization ofH̄N matrix in the subspace of 2h and 3h1p space.

1.8 CAP/EOMCC

In the CAP/EOM-CCSD method, CAP is applied to the EOM-CCSD method to calculate

the resonance energy and lifetime of the resonance state. Here, CAP has been applied to
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the CC method to generate the complexT (η) amplitudes, which has been used latter to

generate theH̄N matrix. After addition of CAP to the CC method, the modified ground

state wave function of CC method can be written as

|ψ0(η)〉 = eT (η)|φ0〉 (1.36)

Then, the CAP is added to the one-body particle-particle part ( ¯fpp) of theH̄N matrix.

The new form of the modifiedH̄N modified matrix is

H̄N(η) = e−T (η)HN(η)e
T (η) − 〈φ0|e

−T (η)HN(η)e
T (η)|φ0〉 (1.37)

H̄N(η)Rη(µ) = wµRη(µ) (1.38)

Finally, theH̄N matrix is diagonalized for differentη values . Diagonalization of

H̄N matrix gives the complex eigenvalues. However, the resonance energy is obtained

by using the following equation since the ground state energies are supposed to be CAP

free.

Eres(η) = wµ(η) + Esrcc(η)− Esrcc(η = 0). (1.39)

However, in this procedure the entire steps need to be done for few 100 times for differ-

entη values starting fromη = 0. The calculation of SRCC for eachη value is compu-

tationally expensive since it scales asN6. we also loose the advantage of direct energy

difference. To overcome all these difficulties a new approximation has been introduced

for the inclusion of CAP at the EOM-CC level by keeping the ground stateψ0 CAP free.

Thus the ground state wave function can be defined as

ψµ(η)〉 = Rµ(η)|ψ0〉. (1.40)

The SRCC has been solved first without any CAP potential. The cluster amplitudes

T (η = 0) are scaled with the CAP potential by using the following equations

D1 = faa − fii (1.41)

tai = [tai (η = 0) ∗D1]/[D1 +Waa(η)] (1.42)
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D2 = faa + fbb − fii − fjj (1.43)

tabij (η) = [tabij (η = 0) ∗D2]/[D2 +Waa(η) +Wbb(η)] (1.44)

With these new amplitudes̄HN matrix is constructed. Then, the CAP is added to the

one-body particle particle (̄fpp) of theH̄N matrix. So, the modifiedH̄N(η) can be defined

as

H̄N(η) = e−T (η)HN(η)e
T (η) − 〈φ0|e

−THNe
T |φ0〉 (1.45)

H̄N(η)Rµ(η) = wµ(η)Rµ(η). (1.46)

Thus the SRCC part is independent of CAP perturbation. The advantage of this approxi-

mation is that it enormously reduces the computational timesince in this approximation

the SRCC calculation needs to be done only once to generate the η trajectory. The res-

onance energy comes out to be the direct energy difference obtained as eigenvalues of

H̄N(η) matrix for differentη values.

The Davidson Algorithm is used to diagonalize thēHN matrix. In the EOM-CCSD

method, the matrix dimension becomes sufficiently large. The dimension becomes more

than 10,000 even if the small molecules and moderate size basis sets are used. A full

diagonalization of such matrices are not possible. The Davidson Algorithm [107, 108]

helps to use the EOM-CC method for the study of resonance problem of the moderate

size systems. The main idea of Davidson Algorithm is that theeigenvalues are obtained

through an iterative technique which avoids the computational storage of complete matrix

and stops when certain convergence criteria is fulfilled. Inthe Davidson Algorithm, the

dimension of the matrix is equal to the number of iterations.

The complex eigenvalueswµ(η) are obtained after solving the eq. 1.38 and eq. 1.46

for the differentη values. By plotting the complex solutions in the complex energy plane

with the real part and imaginary part of the energy axes. We get the η trajectory. A

resonance energy is identified with the appearance of stabilization cusps

υµ(η) = η∂wµ(η)/∂η. (1.47)
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1.9 Interatomic or Intermolecular coulombic decay (ICD)

When an atom or molecule is electronically excited, it can relax via radiative decay or

non-radiative decay . If the atom or molecule is excited by creating a vacancy in the outer

valence level then the atom or molecule preferably follow the radiative decay pathway

like photon emission for relaxation. If the excitation occurs by creating a vacancy in

the core level then the electronically excited atom or molecule decay via non-radiative

electron emission. However, another alternative ultrafast non-radiative decay mode is op-

erative, called Interatomic or Intermolecular coulombic decay (ICD), if the excited atom

or molecule is embedded into the chemical environment. The ICD [23–28] occurs only

in the presence of neighbors. It is highly sensitive to the chemical environment. Thus,

the ICD can be used as a powerful spectroscopic tool to probe the chmical environment.

The ICD [29–31] can be initiated by emitting an electron fromthe inner valence level

of an atom or molecule. In ICD, after creating a vacancy in theinner valence level of

a particular monomer, an outer valence electron from the same monomer comes out to

fill up the vacancy in the inner valence level and the releasedenergy is transferred to the

neighboring monomer from which a secondary electron is ejected. The ejected secondary

electron is called ICD electron. The ICD electron contains very low energy of the order

of few electron volts. In ICD, the initial state is an inner valence hole and final state

is identified by two outer valence hole which are placed on twodifferent monomers.

Thus, the two positive charged ions are formed in the ICD process. Being presence

of two positive charges, they repel each other and their occurs a coulomb explosion in

the system. After coulomb explosion the two positively charged ions fly apart from

each other and finally, the system breaks down into two separate fragments. Thus, the

ICD process produces free radicals. Being highly reactive,these free radicals can give

additional damage to the biological system when these free radicals interact with the

biomolecular system. The ICD process also produces low energy electrons from the

molecular neighbor of initially excited molecular ion of the order of 3-5 electron volts
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(eV). Recently, it has been proved that the low energy electron can efficiently break up

the DNA stand break.[16, 17] Thus, the ICD process can act as asource of electrons

which can produce radiation damage to the biomolecular system.

The ICD is a very fast relaxation process in environment. Generally, it occurs in

femto second (fs) time domain. No other process such as photon emission, the process

involving nuclear dynamics can not compete with the ICD process. These are very very

slow process compare to the ICD. They occus in nano second (ns) time domain.[109]

Another non-radiative relaxation process which can compete with ICD is called Auger

decay. It also occurs in femto second time domain or even atto-second time domain.

In principle, ICD can be suppressed by Intramolecular Augerdecay if it is energeti-

cally favorable. However, if the intramolecular auto-ionization is energetically favorable

for the inner valence ionized atom or molecule and the molecule has neighbors then the

molecule prefers to follow the ICD pathway for relaxation. The ICD relaxation process is

very much general in nature. It prevails in weakly bound clusters. The weakly bound hy-

drogen bonded clusters, [110] Van der Waals clusters [111–113] are the suitable systems

for ICD.

The spatial separation of two positively charged holes on two different monomers

makes the ICD process energetically viable because the presence of two positive holes

on two different monomers reduces the coulomb repulsion between them which lowers

the double ionization potential (DIP) value.[111–113] Finally, the DIP value becomes

lower than the one inner valence IP value. This makes the system energetically favorable

[114] because when it goes from one inner valence ionized state to two outer valence

double ionized state the system gains energy.

The ICD has been studied quite throughly for both theoretically and experimentally.

The ICD is a phenomena which has been predicted theoretically first and later on it

has been proved experimentally. The existence of ICD phenomena has been predicted

theoretically for the first time by Cederbaum et al. in 1997.[23] In their work, they

have shown the existence of ICD for the first time on hydrogen bonded(HF)3 (H2O)3

20



clusters. The study of ICD of hydrogen fluoride and water clusters [115] is extended later

using various theoretical approaches. Santra et al. [76] have implemented the CAP/CI

approach for the first time to study the ICD decay rate of an inner valence excited state

of small hydrogen bonded cluster. In their work, they have applied the CAP/CI method

to study the lifetime of 2s inner valence excited state ofF atom om inHF2. The results

obtained in this method suggested that the ICD decay rate is very fast in nature and it

occurs in femto second time scale inHF clusters. The existence of ICD has also been

proved in mixed hydrogen bondedHF(H2O)2 cluster.[116]

The existence of ICD has also been proved for the noble gas clusters. Among the no-

ble gas clusters, the neon dimerNe2 is the system which has been investigated in a more

elaborate manner. The various theoretical approaches havebeen applied to calculate the

lifetime of 2s inner valence excited state ofNe2. Santra et al. have applied the CAP/CI

method to calculate the ICD decay rate of 2s inner valence excited state ofNe2. In their

work, they have found that in equilibrium bond distance (3.2Å) the lifetime of 2s inner

valence excited state ofNe2 is 64 fs. [77] Cederbaum and co-workers have developed

the CAP/ADC approach [38] and successfully implemented this approach to calculate

the lifetime of inner valence excited state ofNen clusters. Another alternative approach

which has been applied successfully to investigate the ICD decay width is Wigner- Weis-

skopf theory. [27] It has been used to investigate how the ICDdecay width changes in

increasing the cluster size. It has been observed that the lifetime for the ICD decay rate

decrases rapidly from 100 fs inNe2 to less than 10 fs inNe13. Santra et al. [24] have

also investigated how the lifetime of the ICD decay rate depends on the internuclear dis-

tance between two atoms in a diatomic molecule. The ICD decaywidth of 2Σ+
g and2Σ+

u

states ofNe2 are computed as a function of internuclear distance. It has been observed

that ICD decay rate is strongly depends on internuclear distance. The dynamics behind

the ICD has also been investigated using the wave packet propagation technique. The

existence of ICD in mixed van der Waals clusters such as NeAr,[113] NeHe [117] is also

established.
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Recently, Cederbaum and co-workers [36] have investigatedthe ICD in weakly bound

He2. In their work, they have investigated how far two helium atom can exchange energy

in He2. It is reported that the two helium atoms inHe2 can exchange energy by ICD over

distance of more than 45 times of their atomic radious. It hasalso been established thet

ICD spectroscopy can be used for imaging vibrational wave function of the ionized ex-

cited helium dimers. Generally, electronically excited molecule relaxes via ICD through

virtual photon exchange mechanism. However,He2 does not have any inner valence in-

ner valence electron. Thus, it goes through a new kind of ICD mechanism. The ICD

mechanism inHe2 can be expressed as follows : After simultaneous ionizationand exci-

tation of one helium atom within the dimer, the energy storedby this excited ion suffices

to ionize the neighboring neutral helium atom.

The ICD has also been observed in endohedral fullerene complexes. The ICD mech-

anism is possible after ionization of an atom X in an endohedral fullerene complexes

X@C60. Cederbaum and co-workers have calculated the decay rates of ICD in Ne@C60

complex. [118] It is shown that the ICD mechanism is forbidden in the isolated X atom.

The correlation between the endohedral atom electrons and fullerene electrons is respon-

sible for ICD mechanism. It is also shown that the ICD rate in endohedral fullerene

complexes is ultrafast in nature. It is reported that the ICDlifetime in Ne@C60 is 2

fs. Moreover, it is suggested that interatomic decay in an endohedral fullerene does not

necessarily lead to the destruction of the complex.

The ICD has also been observed in hydrated ions. [119] It is also established that a

new Coster-kronig (CK) type of core level ICD process operating in the microsolvated

ions which involves dipole allowed transition in the atomicions. Therefore this process

is much more efficient compares to the normal core hole ICD process.

The ICD process has been observed experimentally for the first time in clusters. How-

ever, Jahnke et al. [26] have performed a remarkable experiment onNe2. Very recently,

the lifetime of ICD in is investigated via an extreme ultraviolet pump-probe experiment

at the free electron laser. The lifetime is found to be of the order of (150±50) fs.[32]
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The experimental measurement of ICD in is performed by Jahnke et al. [35] In their ex-

periment, the ultrafast energy transfer between two water molecules is observed directly.

In a similar kind of experiment, Mucke et al. [120] have observed the production of

low energy electrons in amorphous medium size water clusters. The ICD has also been

confirmed exprimentally for the mixed NeAr clusters.

The ICD has also been investigated theoretically for small hydrogen bonded sys-

tems by Cederbaum and co-workers.[110] The ICD has been studied forH2O...HCHO,

H2O...H2CNH2, H2O..NH3, NH3...H2O, H2O...H2S, H2S....H2O andH2O..H2O (p-

donor ......p-acceptor). Dreuw and co-workers [121] have observed ICD for the first time

in real biological system. They observed ICD in the DNA repair enzymes photolyases.

Photolyase function involves light-induced electron detachment from a reduced avin ade-

nine dinucleotide (FADH−), followed by its transfer to the DNA-lesion triggering repair

of covalently bound nucleobase dimers.

Recently, It is shown that the energy of ICD electron and emission site can be con-

trolled in an efficient manner by resonant Auger decay. This process is named as resonant

Auger ICD (RA-ICD) decay.[37] In this process, an electron from the k-shell of a spe-

cific target atom excites resonantly to a bound unoccupied orbital. Then the core excited

state follows the Auger decay for relaxation. In this Auger process, a valence electron

comes to fill up the initial vacancy and another valence electron is emitted to the con-

tinuum while the initially excited electron remains as a spectator. This Auger decay is

called spectator resonant Auger decay. This resonant spectator Auger decay generates a

highly excited valence ionized state which then undergoes to ICD. The main advantage

of resonant Auger driven ICD (RA-ICD) process is the energy of emitted ICD electron

can be tune in a very efficient manner. The energy of the emitted ICD electron particu-

larly depends on the energies and populations of the resonant Auger final states. They

also depend on the parent core excited state. This offers a great opportunity to tune the

energy of the emitted ICD electron in a controlled manner by adjusting the energy of

the parent core excited state. Another advantage is the emission site of ICD electron
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Figure 1.1: Schematic representation of ICD after inner valence ionization

can be chosen specifically by using this process. The initialparent core excitation can

be placed specifically on a particular target atom. The resonant Auger decay is local in

nature. Therefore, the resonant Auger decay produces two outer valence holes which are

localized particularly on the initially excited target atom. The ICD electron is ejected

specifically from the neighboring atom of initially excitedtarget atom. Therefore, the

site where the ICD electrons are generated can be selectively chosen.

1.10 Electron transfer mediated decay(ETMD)

Electron transfer mediated decay (ETMD)[122, 123] is highly efficient ultrafast non-

radiative neutralization pathway of excited ions or molecules in environment. In this

decay process, electron transfer between two subunits actsas a mediator. In ETMD, a

neighbor donates an electron to an initially excited ion, while released energy transfer

to the donor (ETMD2) or another neighbors (ETMD3) which emitsecondary electron

to the continuum. Therefore, in the ETMD process complete system acquires an extra

positive charge. Being an electron transfer process ETMD isslow process compare to
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the energy driven ICD process. The schematic representation of ETMD presented in Fig

1.2.

ETMD is a much faster decay process compared to the charge transfer (CT) de-

cay. Generally, it is assumed that the neutralization of less highly excited ions proceed

through charge transfer. In this process, excited ion neutralizes via electron transfer

from the neighboring species. If the potential curves of ionic state and charge transfer

state cross to each other then charge transfer is possible. If there is no prominent curve

crossing exists then the neutralization proceeds through radiative charge transfer (RCT).

Generally, it transpires in a nano-second time domain. In ETMD process, no nuclear

motion is necessary for neutralization. The final state of ETMD process automatically

fulfills the resonant condition for all the nuclear configurations at which the decay pro-

cess is energetically favorable. The electron electron interaction is the main responsible

factor for the ETMD mode. Therefore, the energy involved in this process is much higher

than the CT decay which involves coupling with the electromagnetic field. These are the

dominating factors which make the ETMD process much faster compared to the charge

transfer decay.

Since electron transfer occurs in ETMD process, the orbitaloverlap between charge

donor and acceptor unit plays a decisive role in the rate of the decay mechanism. The

dependence of the decay rate on the orbital overlap leads to an increase of the decay

rate non-linearly with decreasing the distance between theelectron donor and acceptor.

Therefore, nuclear dynamics has high impact on the ETMD dacay rate. The ETMD is

intermolecular in nature and its decay rate strongly depends on the number of neighbors

present in the system.

Theoretically, ETMD process is reported by Zobeley et al. [122] The lifetime of the

inner valence excited state of is calculated. The calculated lifetime is found to be in

the order of 10 femto-second (fs). It is also shown that decayrate strongly depends on

the inter nuclear distance between to monomer units. At the equilibrium bond distance

ICD is the main decay mode. However, ETMD becomes an operative with decreasing
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Figure 1.2: Schematic representation of ETMD after inner valence ionization

the bond distance between and atoms. Müller et al. [123] have shown that the ETMD

becomes an operative in aqueous micro solvated clusters. The calculated lifetime is in

the order of 20 to 100 fs for clusters with one to more water monomers. Recently, it is

shown that the multiply charged Auger final states can relax very efficiently via ETMD

mechanism in presence of neighbors. Cederbaum and co-workers have investigated the

ETMD lifetime of excited Auger final states of atom in clusters.

1.11 Exchange ICD

The decay rate of exchange ICD [124] process is governed by the electron transfer. In

exchange ICD process, inner valence vacacy of an initially excited monomer unit is

filled up by an outer valence electron of the neighboring monomer. Then the excess

energy is transfered to the initially excited monomer unit which emits an another outer

valence electron from initially ionized unit. The two positively charged units then un-

dergo coulomb explosion. The final state of exchange ICD process is identical to the
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Figure 1.3: Schematic representation of Exchange ICD

virtual photon exchange ICD process. However, being an electron transfer driven pro-

cess the decay rate of exchange ICD process is slow compare tothe ICD process. The

decay rate of exchange ICD process is quite similar to the ETMD process. Generally,

exchange ICD process occurs in pico-second time domain. Theschematic representation

of exchange ICD process is presented in Fig 1.3.

1.12 Resonant ICD(RICD)

The resonant ICD is initiated from the ionized but from the excited state of an atom or

molecule. This process is divided into two categorize, one is spectator resonant ICD and

another is participator resonant ICD. The division of the resonant ICD process specifi-

cally depends on the involvement of the excited electrons inthe ICD process. In a partic-

ipator RICD the excited electron fills the created vacancy itself. Then the excess energy

is transferred to a neighboring unit, which subsequently gets ionized . The final state is

characterized by the initially excited unit to be in its ground state and the neighboring

atom being ionized. In a spectator RICD the vacancy is filled by another, non-excited
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Figure 1.4: schematic representation of Spectator resonant ICD

electron of the same unit. The excess energy is transferred to the neighboring unit, which

ejects an another outer valence electron. Therefore, the final state of spectator RICD is

characterized by two outer valence hole placed on two different monomer units. The

excited electrons act as a spectator in the entire process. The schematic representation of

spectator resonant ICD process is presented in Fig 1.4. The schematic representation of

participator resonant ICD process is presented in Fig 1.5.
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Figure 1.5: Schematic representation of Participator resonant ICD

1.13 Auger decay

The Auger decay is discovered independently by Lise Meitnerand Pierre Auger. This

process is initiated by creating a vacancy in the core level of an atom or molecule. In

Auger decay, an electron from the outer valence level fills the vacancy in the core level

and the released energy is transferred to another outer valence electron which is then

emitted from the system. The emitted secondary electron (Auger electron) contains very

low energy, in the order of few electron volts. Therefore, the final state of Auger decay is

identified by two outer valence hole placed on the initially core excited atom. Two special

kind of Auger processes are well known, one is Coster-Kronig(CK) and another is Super-

Coster- Kronig (SCK) decays. In a CK decay, the vacancy llingelectron originates from

a higher subshell of the same shell characterized by the principal quantum number n. In

a SCK decay the emitted electron also stems from the same shell.

Energetically, Auger decay is favorable when the binding energy of the single core

hole excited state is higher than the double ionization threshold. The Auger process is

29



Figure 1.6: Schematic representation of Auger decay

intramolecular in nature. Therefore, the environment has very less effect on the Auger

process. The decay rate of Auger process is not alter in presence of neighboring atoms

or molecules. The Schematic representation of Auger decay is presented in Fig 1.6.

1.14 Objective and Scope of the thesis

The equation-of-motion coupled cluster (EOMCC) method is very well known for the

accurate description of energies and properties of the bound states. It provides balanced

treatment between electron correlation and relaxation effects. In this thesis our motiva-

tion is to apply this highly correlated EOMCC method for the calculation of energies

and properties of the resonance states. The accurate description of resonance states us-

ing EOMCC method requires the inclusion of continuum effect. The complex absorbing

potential (CAP) approach treat the continuum effect accurately. Therefore, a method

which is a combination of CAP approach and EOMCC approach is very promising in the

description of resonance states.

In this thesis, We have applied the CAP/EOMCC approach for the calculation of
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resonance position and decay widths of shape resonances. The calculation has been

done in various small systems. The results for shape resonances are compiled in the

chapter II. The method has also been used in the calculation of potential energy curve

for the resonance states, Which is also included in the chapter II. In chapter III the detail

investigation of2Πu resonance states ofCO−
2 is given. The potential energy curve (PEC)

for the 2Πu resonance states ofCO−
2 is studied upon bending as well as symmetric and

asymmetric stretching of the molecule.

In chapter IV we have implemented the CAP/EOMCC method for the first time to

study lifetime of interatomic coulombic decay (ICD) mechanism. The lifetime has been

studied for the inner valence excited state of Neon atom in neon-water clusters. It has

also been applied to study the lifetime of inner valence excited state of F atom in small

hydrogen bonded(HF )n clusters. To validate our method the calculated lifetime ofICD

process is compared with the other theoretical methods. In chapter V we have also imple-

mented the CAP/EOMCC method for the calculation of the decayrate of Auger process.

The decay rate of Auger process is calculated using the CAP/EOMCC method for the

core hole (K) and double core hole state (KK) states in various small systems. In the

last chapter the same approach is used to compute how the interatomic or intermolecular

coulombic decay (ICD) rate of molecule changes with changing the internuclear distance

of the molecule. In the last chapter we also give the future perspective in the field of ICD

using this highly correlated method.
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Chapter 2

————————————————————

Equation-of-motion coupled cluster method for

the study of shape resonace

————————————————————

In this chapter, the equation-of-motion coupled-cluster method (EOM-CC) is applied

for the first time to calculate the energy and width of a shape resonance in an electron-

molecule scattering. The procedure is based on inclusion ofcomplex absorbing potential

with EOM-CC theory. We have applied this method to investigate the shape resonance in

e−N2 , e−CO, ande−C2H2. We have also applied this method to study the potential

energy curve (PEC) of2Πg e−N2 and2Π e− CO resonance states.
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2.1 Introduction

Resonances are useful phenomena in electron-molecule scattering [1]. They play

an important role in various energy exchange processes between electronic and nuclear

motion. Vibrational excitations of the molecules or molecular ions, dissociative attach-

ment are some important processes. The resonances [2–5] of composite particles can be

divided into two categories, one is shape (single-particle) and another is Feshbach (core-

excited) resonances. The shape resonances are those in which electron capture process is

not accompanied by electronic excitation of the target. These can be described as inter-

mediate negative complexes [6], which decay by ejection of an electron into the neutral

target molecule and a scattered electron. In general, theirlife time can be found in a

range of10−13 − 10−15 s. The structural and spectroscopic properties of such states are

similar to those of bound states and that is the reason why these systems are of particular

interest to the physical chemist.

Computationally, the metastable resonance states can be identified as eigenfunctions

associated with complex eigenvalues. The complex energyEres is called as Siegert en-

ergy. Where,

Eres = ER − iΓ/2. (2.1)

ER is the real part of the resonance energy andΓ is the decay width. TheΓ is related to

the lifetime of the temporary state via,τ = ~/Γ .

The main characteristic of these states is their exponential growth in the asymptotic

region. Thus they are not square-integrable and Hilbert space techniques cannot be ap-

plied. They do not belong to the hermitian domain of the Hamiltonian. But, apart from

their asymptotic behavior, Siegert wave functions are quite regular. They behave like

a bound state in the inner molecular region. A wave function in this region is affected

by physical interactions, while the asymptotic exponentially growing part describes the

decay. Resonance states can also be seen as discrete states coupled with continuum.
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Thus, the calculation of resonance energy requires simultaneous treatment of electron

correlation and continuum effect. Thus, the calculation ofthese states within quantum

mechanical bound states framework is beset with difficulties.

Analytic continuation of the Hamiltonian into the complex energy plane is used to

absorb an outgoing electron. The analytical continuation of the Hamiltonian can be

achieved through complex scaling or using complex absorbing potential. [7, 8] The com-

plex scaling method has been successfully implemented for the atomic systems. How-

ever, it is difficult to implement for the molecular problems. The CAP [9] method is

very simple to implement in any ab initio electronic structure methods. However, the

complex basis function method of Moiseyev and McCurdy [10] has better mathematical

foundation than the CAP method because of the partially ad hoc character of the CAP

method.

The method of using a CAP is very much similar to the complex scaling theory. [11]

The main advantage of this method is that it can be easily adapted with any electronic

structure method. In the CAP [12–14] approach the outgoing electron is absorbed by

an artificially introduced complex absorbing potential which is located in the peripheral

molecular region. In this way the inner region of the wave function remains unperturbed

and the ’asymptotic part’ is forced into a square-integrable form. This method offers a

great promise for the determination of accurate Siegert energy. [15, 16]

The CAP method has already been implemented within various electronic structure

methods for the calculation of shape resonances [17]. It canbe used at static-exchange

level, but it becomes very much powerful and interesting when the electron-correlation

effects are considered. The energy difference between (N+1) electron metastable state

and the N-electron target ground state gives the kinetic energy of the projectile at which

the resonance occurs. The first implementation of the CAP method has been done by

Sommerfield et al. [6] for metastable anions [18] and Santra et al. [19] for resonance

of cations, both in combination with the configuration interaction (CI) method. Later

on, Santra and co-workers [20] have applied the CAP approachto the propagators theory
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and used CAP/ADC method to compute the resonances of metastable anions. Mishra and

co-workers [21] have used bivariational self consistent field (SCF) based second order

propagator method for Auger and shape resonances. Recently, Sajeev et al.[16] have

used CAP with the Fock space multireference coupled-cluster (FSMRCC) [16] method

to study resonances of anions.

In this chapter, we have implemented CAP method within the equation-of-motion

coupled-cluster theory (CAP/EOM-CC) using singles and doubles (SD) to calculate the

position and width of a shape resonance. We have studied the resonance energies [22–29]

and widths for the2Πg state ofN−
2 ,C2H2

− and2Π state ofCO−. The CAP/EOM-CCSD

method allows us to treat the electron correlation accurately. we have also calculated

the potential energy curves (PEC) for the low energy2Πg resonance state ofN−
2 and2Π

resonance state ofCO−.

2.2 Theory

In the CAP approach CAP potential−iηW is added to the HamiltonianH to describe

the electronic resonance state,

H(η) = H − iηW (2.2)

whereη is a real positive number representing the CAP strength andW is a local positive-

semidefinite one-particle operator. The new HamiltonianH(η) satisfies the schrödinger

equation

H(η)ψ(η) = E(η)ψ(η). (2.3)

The presence of complex absorbing potential makes the Hamiltonian operator non her-

mitian but it remains complex symmetric.

If one chooses the appropriate CAP form, the addition of complex potential causes an

asymptotic damping of the Siegert eigenfunction which makes the wave function square

integrable. The spectrum becomes discrete. However, the artificial introduction of the
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CAP potential perturbs the Hamiltonian, one can obtain the exact resonance eigenvalues

and eigenfunctions in the limitη → 0 for a complete basis set. In practical computation,

one cannot solve the Siegert energy spectrum exactly since incomplete basis sets are

used and one is forced to use finiteη values. The complex Hamiltonian matrixH(η) is

diagonalized for a number ofη values to obtain the resonance energy. Theη trajectories

are examined by using logarithmic velocity

υi(η) = η∂Ei/∂η (2.4)

The quantityυi can be used in two respects. Firstly, it is used to identify the metastable

states which are characterized by a pronounced minimum|υi|. Secondly, it is used to

determine the optimal CAP strengthsηopt. In this case we have employed the condition

|υi(ηopt)| = min. (2.5)

The resonance energy is not sensitive to a particular basis set unless too small basis sets

are used. The complex energy at the optimal point is associated with position of the

resonance (real part) and decay width (the imaginary part).

In our calculations we have used box-shaped CAP of the form

W (x; c) =

3∑
i=1

Wi(xi; ci), (2.6)

where

Wi(xi; ci) = {
0,|xi|≤ci,

(|xi|−ci)2,|xi|>ci
(2.7)

This CAP can be easily represented in a Gaussian basis set.[13, 14] It has been ap-

plied to the peripheral region of the target molecule to absorb the scattered electron while

keeping the target unperturbed.

The exact ground state wave function of a coupled-cluster method (CC)[30–32] is

|ψgr〉 = exp(T )|φref〉, (2.8)
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where |φref〉 is the reference wave function. Here, we have chosen closed-shell N-

electron ground state Hartree-Fock determinant as a reference wave function. The clus-

ter operatorT consists of connected singles, doubles, up to n-truple excitation operators.

The cluster matrix elements are determined using the equation

〈φe|e
−THeT |φref〉 = 0 (2.9)

where|φe〉 are the excited state determinants. The ground state energyis given by

〈φref |e
−THeT |φref〉 = Egr. (2.10)

There are two advantages in the coupled-cluster method. First, the method is size-

extensive by virtue of the exponential ansatz. Second, due to exponential nature of the

wave operator, this method gives highly accurate energy andwave function even in its

approximate form, within singles and doubles approximation.

The basic idea of the EOM-CC method is very simple. The groundstate wave func-

tion of the single-reference coupled-cluster method is used as a starting point for the

EOM-CC approach. In the EOM-CC approach, electron attached( N +1 electron) states

|ψk〉, different from ground state|ψgr〉, are parametrized as

|ψk〉 = R(k)|ψgr〉. (2.11)

R(k) is a linear excitation operator is given by

R(k) =
∑
a

ra(k)a+ +
∑
ab

∑
i

rabi (k)a+b+i+ ............... (2.12)

where standard convention for indices is used, i.e., indices a,b,.., refer to the unoccupied

orbitals and indices i,j,..., refer to the occupied orbitals. In equation-of-motion coupled-

cluster method for singles and doubles (EOM-CCSD), the energies for electron attached

states are obtained as the eigenvalues of the similarity transformed effective Hamiltonian

Heff .

Heff = e−THeT − 〈φref |e
−THeT |φref〉 (2.13)
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HeffR(k) = wkR(k). (2.14)

wherewk is the energy change connected with the electron attachmentprocess. The

effective Hamiltonian matrix is constructed in a 1p and 2p1hspace and diagonalized to

obtain the energies of electron attached states. We have applied CAP to the EOM-CCSD

[33–41] method for the calculation of shape resonance. In CAP/EOM-CCSD method,

the contribution of CAP term comes through the modification of Heff matrix. The CAP

term is added with the one-body particle-particle part of theHeff matrix. The other terms

of theHeff matrix are modified through the appearance of complexT (η). The new form

the complexHeff(η) matrix is

Heff(η) = e−T (η)H(η)eT (η) − 〈φref |e
−T (η)H(η)eT (η)|φref〉 (2.15)

Heff(η)Rη(k) = wk(η)Rη(k). (2.16)

Initially the CAP is applied to the coupled-cluster (CC) method to generate the complex

T (η) amplitudes, which are later used to generate the complexHeff(η) matrix elements.

The CAP has very little effect on the ground state energyEgr. After addition of CAP to

the CC method the ground state energyEgr remains same. Finally, the resulting complex

Heff matrix is diagonalized for differentη values.

However to obtain the resonance energies we need to use following equation since

the ground state energies are suppose to be CAP free.

Eres(η) = wk(η) + Ecc(η)− Ecc(η = 0) (2.17)

Thus we loose the advantage of direct difference energy in this approach. We call

this approach as CAP/EOM-CCSD. Also, in this procedure thisentire step needs to be

done for few hundred values ofη starting fromη = 0. The calculation of CC for each

η value is time consuming and computationally demanding since it scales asN6. The

CAP is defined only over the particle-particle block (virtual block) since it does not

affect the target system. The effect of CAP is very small on the correlation energy of the
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system. Hence, in the present chapter , we have also implemented an approximation for

the inclusion of CAP at the (N+1) electron wave function by keeping the ground state

|ψgr〉 CAP independent. We call this approach asCAP/EOM − CCSD
′

method. Thus,

we have

|ψk(η)〉 = Rη(k)|ψgr〉. (2.18)

We first solve the CC without any CAP potential. These clusteramplitudesT (η = 0)

are scaled with the CAP potential in using the following equations

D1 = faa − fii, (2.19)

tai (η) = [tai (η = 0) ∗D1]/[D1 +Waa(η)], (2.20)

D2 = faa + fbb − fii − fjj, (2.21)

tabij (η) = [tabij (η = 0) ∗D2]/[D2 +Waa(η) +Wbb(η)], (2.22)

with these new amplitudesT (η) we construct theH̄N matrix. We have added CAP to

the one-body particle-particle (̄fpp) part of theHeff matrix. So, theHeff matrix can be

written as

Heff(η) = e−T (η)H(η)eT (η) − 〈φref |e
−THeT |φref〉 (2.23)

Heff (η)Rη(k) = wk(η)Rη(k) (2.24)

Thus the CC part is independent of the CAP perturbation, which means the N elec-

tron ground state is not affected by the CAP potential. The artificial nature of the CAP

potential and its application only to the particle-particle interaction part justify the ap-

proximation of CAP/EOM-CCSD. The main advantage of this approximation is that it

drastically reduces theη trajectory generation time since CC calculation needs to bedone

only once. Since, the ground state isη independent, resonance energy comes out to be

the direct difference energy obtained as eigenvalues ofHeff (η) for differentη values.
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For diagonalization purpose, we have used Davidson algorithm. In EOM-CCSD

method, for the calculation of energies of the electron attached states, the dimension

of theHeff matrix becomes very large. The dimension becomes more than10000 even

if the 2p1h block for small molecules and usual basis sets is considered. A full diago-

nalization of such matrices by direct method is computationally expensive. This is the

bottleneck of using EOM-CCSD. The Davidson algorithm helpsus to use EOM-CCSD

for the study of resonance problem to the systems of reasonable size. The basic concept

of Davidson algorithm is that the eigenvalues are obtained through an iterative proce-

dure which avoids the computation, storage and diagonalization of the complete matrix

and stops when certain convergence criteria are satisfied. In Davidson algorithm, the

dimension of the matrix is equal to the number of iterations.

We have obtained the complex energieswk(η) by solving eq. 2.16 for different values

of η starting from0 to0.01 with the increment of10−6. By plotting the complex solutions

in the complex energy plane with the real part and imaginary part of the energy as axes,

we get theη trajectory. A resonance is obtained when the velocity

υk = |η∂wk(η)/∂η| (2.25)

becomes minimum, indicating the stabilization point of thetrajectory.

2.3 Results and Discussion

In this chapter we present the energies and widths of shape resonances using CAP/EOM-

CCSD method. We have studied the resonance energies for the2Πg state ofN−
2 , 2Π state

of CO− and2Πg state ofC2H
−
2 . We have also investigated the effect of basis set on the

position and width of resonance. We compare the resonance parameters betweenN−
2

andCO−. We have also investigated the potential energy curves for the2Πg state ofN−
2

and2Π state ofCO− using theCAP/EOM − CCSD
′

method.
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2.3.1 2Πg shape resonance in N−
2

The low energy electron scattering for theN2 molecule is a well studied problem, both

experimentally as well as theoretically. The2Πg shape resonance in particular is very

much interesting. In this section we have investigated the2Πg state ofN−
2 using EOM-

CCSD method. This state originates from addition of one electron to theπg LUMO of

the1Σ+
g ground state of neutralN2 molecule and the associated electronic configurations

are

1Σ+
g : (core)4(1σg)

2(1σu)
2(2σg)

2(1πu)
4 (2.26)

2Πg : (core)
4(1σg)

2(1σu)
2(2σg)

2(1πu)
4(nπg)

1. (2.27)

For resonance energy calculation, we have used equilibriumbond length (2.069 a.u.).

The two nitrogen atoms are placed in a cartesian coordinate system at (0.0, 0.0,± 1.035

a.u.) and CAP box side lengths are chosen to becx = cy = δc andcz = 1.035 + δc. The

optimal value ofδc is 2.5 a.u.

we have studied the2Πg state ofN−
2 in two different Gaussian basis sets-denoted as

basis A and basis B. We benchmark our results with the other theoretical methods like

Static exchange, Second order ADC, 2p-h TDA, ADC(3) and the experimental result.

The basis A contains58 contracted functions and basis B88 functions.[29] The basis

B is an extension of basis A. Basis A consists of[5s, 4p, 2d] Gaussians contracted from

(11s, 7p, 2d) primitives. Similarly, basis B consists of[5s, 7p, 3d] Gaussians contracted

from (11s, 8p, 3d) primitives. [29] Using these two basis sets we have computedreso-

nance energy and width within EOM-CCSD approximation for theN−
2 . Before we dis-

cuss these results we want to mention that the results can notbe compared directly with

the experimental value because there is no fixed-nuclei molecule in the reality. However,

the resonance energies and widths have been well reproducedwithin a parametrized

model which describes the non local nature of the vibrational excitation mechanism.

In the fixed-nuclei limit at the equilibrium geometry this model yields the parameters

ER = 2.32 eV andΓ = 0.41 eV. We have considered these ’experimental’ values as the
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most standard values for the comparison of our results.

In Table 2.1 , first row reports the results obtained with the basis A. It can be seen from

Table 2.1 that static exchange method overestimates resonance position as well as width

compare to the experimental and other theoretical methods.The EOM-CCSD method

gives resonance position at2.99 eV which is overestimated compared to the experimental

value (2.32 eV) as well as other theoretical methods like second order ADC (2.74 eV),

2p-h TDA (2.41 eV) and ADC(3) (2.65 eV) approach. However, the EOM-CCSD method

underestimates width of the resonance (0.24 eV) compared to the experimental (0.41 eV)

as well as other theoretical methods. As we go from basis A to basis B resonance position

is decreased where as width of the resonance is increased forall the theoretical methods

except static exchange method. In basis B, the EOM-CCSD method gives resonance

energyER = 2.44 eV and widthΓ = 0.39 eV which is very close to the experimental

value. It is interesting to note that in basis B 2p-h TDA approximation gives surprisingly

good agreement with the experimental value.

Table 2.2 reports basis set convergence study for theN−
2 resonance energy. To study

how the resonance energy is affected by basis set we have started with basis B and add

one p function on both the nitrogen atoms.The exponent of thenew p function is gen-

erated by scaling the exponent of last p function by a factor of 0.75. To reach the basis

set convergence limit we have added three p functions on eachnitrogen atom. Addition

of first p function reduces the resonance position to2.12 eV from 2.44 eV. However,

width is increased to0.44 eV compared to0.39 eV. With the addition of subsequent p

functions width as well as position are reduced and basis setconvergence is reached. The

resonance position in basis B+3P is2.07 eV and width is0.42 eV. It can be seen that the

width is closer to the experimental value where as position is underestimated compare to

the experimental value.

We have also reported the results for the complex version of multireference single-

and double-excitation configuration interaction (MRD-CI)method in5s13p1d CGTO

[42] basis. The calculations are carried out using this method for different internuclear
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Table 2.1: Energy(upper number) and width(lower number) ofthe 2Πg N
−
2 shape reso-

nance

Basis set Static exchangea second order ADCa 2p-h TDAa ADC(3) a EOM-CCSD Experimenta

Basis A 3.80 2.74 2.41 2.65 2.99 2.32
1.23 0.50 0.36 0.48 0.24 0.41
3.80 2.61 2.26 2.54 2.44

Basis B 1.23 0.58 0.41 0.54 0.39

a See Reference 29

Table 2.2: Basis set convergence study for the2Πg N
−
2 shape resonance

Basis set Energy(eV) Width (eV)
Basis B 2.44 0.39

Basis B +1P (N 1p/ N 1p) 2.12 0.44
Basis B +2P (N 2p/ N 2p) 2.09 0.42
Basis B +3P (N 3p/ N 3p) 2.07 0.42

distances ofN2. The results are presented in Table 2.3 . Honigmann et al. [42, 43]

have reported the resonance position at1.38 eV and width of0.414 eV at the equilibrium

bond length. The position of the resonance is quite different from our result as well as

the experimental value. However, width of the resonance is in good agreement with our

results.

Table 2.3: Energy and width of the2Πg N
−
2 shape resonance

Method Energy(eV) Width (eV)
MRD-CIa 1.38 0.414

SCFa 1.34 0.553
EOM-CCSD 2.07 0.420
Experiment 2.32 0.410

a See Reference 42
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2.3.2 2Π shape resonance in CO−

The ground state electronic configuration ofCO is

1Σ+ : 1σ22σ23σ24σ25σ21π4. (2.28)

The2Π state is generated by adding one electron to the2π LUMO of the 1Σ+ ground

state of neutral CO molecule. The resonance energies and widths for the2Π electronic

state ofCO− are presented in Table 2.4. We have used equilibrium bond length ( 2.136

a.u.). The calculation for the2Π state ofCO− has been done with a 4s5p CGTO basis

centered on C and another 4s5p1d CGTO basis [44] centered on O. The CO molecule

is placed in a cartesian coordinate system at ( 0.0, 0.0,± 1.068 a.u.). This basis set is

chosen here because we can compare our results with the available theoretical results. For

CAP/EOM-CC computations the CAP box side lengths chosen were cx = cy = δc and

cz = 1.068 + δc, wherecx, cy, cz are the distances from center of the coordinate system

along the x,y and z axis, respectively andδc is a non negative number, all in a.u. The

value ofδc is 2.5 a.u. In CAP/EOM-CC method, the resonance energy obtained is 1.32

eV and width is 0.12 eV. The Second order dilated propagator method which uses exactly

same basis givesER = 1.71 eV and widthΓ = 0.08 eV. We report the resonance energies

and widths obtained in bi-orthogonal dilated electron propagator method with different

approximations. The second order gives resonance energyER = 1.68 eV and width0.09

eV. Third order gives resonance energyER = 1.65 eV and width0.14 eV. Thus, we can

see that the second to third order improves the width remarkably. This is very close to

our results obtained using EOM-CCSD method. However, we have obtained narrower

width compared to the experimental value0.40 eV. The lack of agreement between the

calculated and experimental width for the2Π CO− resonance leads us to infer that this

may perhaps be due to lack of adequate basis set in our calculation. Although our result

for the width does not agree with the experimental value, it is in good agreement with

the other theoretical methods in a similar quality basis set.

We have also studied the basis set convergence for the2Π shape resonance ofCO−.

53



Table 2.4: Energy and width of the2Π CO− shape resonance

Method Energy (eV) Width (eV)
Experimenta 1.50 0.40

Theoretical approaches:
Boomerang modelb 1.52 0.80

Close coupling methodc 1.75 0.28
Second order dilated electron propagator (real SCF)d 1.71 0.08

Results from bi-orthogonal dilated Electron propagator:e

Second order (Σ2) 1.68 0.09
Diagonal 2ph-TDA (Σ2ph−TDA) 1.69 0.08
Quasi-particle third order (Σ3

q) 1.65 0.14
Third order (Σ3) 1.65 0.14

EOM-CCSD 1.32 0.12

a See Reference 45b See Reference 46c See Reference 47d See Reference 44e See
Reference 48

We have chosen maug-cc-pV(D+d)Z basis set and then gradually added p function with

an exponent which is scaled by a0.75 factor with the exponent of last p function. We

have added up to three p-types polarization functions on both the carbon and oxygen

atoms to reach the expansion limit. The results are presented in Table 2.5. In maug-cc-

pV(D+d)Z basis, the EOM-CCSD method gives resonance energyER = 2.01 eV and

width Γ = 0.38 eV. When we add first p function on both the Carbon and oxygen atoms

the resonance position is decreased by0.54 eV. In this basis i.e maug-cc-pV(D+d)Z+1P

we get resonance energyER = 1.47 eV and widthΓ = 0.44 eV which is very close

to the experimental value. Further addition of p functions lowers the resonance energy

insignificantly. This indicates that the basis set limit is reached.

2.3.3 Comparison between the 2Πg N
−
2 and 2Π CO− shape resonances

In this section we briefly compare the resonance parameters betweenCO− andN−
2 .

The results are presented in Table 2.6. We have studied resonance energies and widths

for both theCO− andN−
2 in maug-cc-pV(T+d)Z basis using the EOM-CCSD method.
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Table 2.5: Basis set convergence study for the2Π CO− shape resonance

Basis set Energy(eV) Width (eV)
maug-cc-pV(D+d)Z 2.01 0.38

maug-cc-pV(D+d)Z+1P(C 1p/ O 1p) 1.47 0.44
maug-cc-pV(D+d)Z+2P(C 2p/ O 2p) 1.44 0.44
maug-cc-pV(D+d)Z+3P(C 3p/ O 3p) 1.42 0.44

Table 2.6: Energy and width of the2Πg N
−
2 and2Π CO− shape resonances

Molecular ions Energy (eV) Width (eV)
N−

2 2.63 0.42
CO− 1.90 0.46

For both cases we have used equilibrium bond lengths. ForN−
2 we have obtained the

resonance energyER = 2.63 eV and widthΓ = 0.42 eV. It can be seen from Table 2.6

that the resonance energyER = 1.90 eV obtained forCO− is lower thanN−
2 and width

Γ = 0.46 eV has higher value. Our results for theN−
2 andCO− follow the correct trend.

Physically, these results are expected because theCO resonance contains p-wave as well

as d-wave character, however, these are not present inN2 resonance. The polarization

effects are similar in bothCO andN2. The potential energy barrier which plays an

important role for the shape resonance is weaker inCO than inN2. The behavior of the

CO molecule is qualitatively similar to theN2 molecule, however the coupling between

the partial waves is much stronger inCO.

2.3.4 2Πg shape resonance in C2H
−
2

In this section we have studied the2Πg shape resonance ofC2H
−
2 . TheC2H

−
2

2Πg state

is analogous with the2Π state ofCO− and2Πg state ofN−
2 , and consequently expected

to be a short-lived shape resonance. The2Πg state originates from adding an electron

to theπ∗
g LUMO of the 1Σ+

g ground state of neutral acetylene molecule. The electronic
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configuration for the2Πg state ofC2H
−
2 is

2Πg : (core)
4(2σg)

2(2σu)
2(3σg)

2(1πu)
4(nπg)

1. (2.29)

The resonance energies and widths for the2Πg state ofC2H
−
2 are presented in Table 2.7.

We have used C-C bond distance 2.2828 a.u. and C-H bond distance 1.9994 a.u. In the

CAP/EOM-CCSD method, CAP box side lengths are chosen to becx = cy = δc andcz =

1.141+δc. The value ofδc is 2.85 a.u. The basis set consists of the Dunning primitive set

(9s5p) contracted to give[5s3p] functions (Dunning 1970). For each carbon atom, one

d-polarization function (exponent 0.75) and one p-type function ( exponent 0.040) have

been added. The hydrogen atoms are described by two s groups in a [4,1] contraction.

For each hydrogen atom, one p-type function with exponent 0.048 has been added. Then

the basis set contains total56 contracted functions. We have denoted this basis as basis C.

We have used this basis to calculate the2Πg shape resonance ofC2H
−
2 . The CAP/EOM-

CCSD method gives resonance energyER = 2.61 eV and widthΓ = 0.76 eV. Our result

is in good agreement with the experimental values. It can be seen from Table 2.7 that

the trapped electron method underestimates the resonance energy compared to the other

experimental and theoretical values. The CI method [54] gives resonance position at

2.92 eV which is slightly higher than our results and other theoretical values. However

it predicts width of1.10 eV which is in good agreement with other experimental results.

Using the Vibrational Excitation technique, the vertical electron affinity of acetylene was

determined as 2.60 eV. Electron impact method confirm the location of the resonance

between 2.50 eV to 2.70 eV. The theoretical investigations on the2Πg resonance ofC2H
−
2

are rare. The Multiple-Scattering Xα method gives resonance position at 2.60 eV and

width of 1.0 eV.

We have also studied the basis set convergence for the2Πg state ofC2H2
−. We start

with basis C and then gradually add p function on both the carbon atoms to reach the

expansion limit. We have added up to three p-type polarization functions on both the

carbon atoms ofC2H2
−. The exponent value for the new p-type function is scaled by a
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Table 2.7: Energy and width of the2Πg C2H
−
2 shape resonance

Method Energy (eV) Width (eV)
Experiment

Trapped Electrona 1.80/1.85 -
Vibrational Excitationb 2.60 > 1.00

Electron impactc 2.50
Theoretical approaches:
Multiple-Scattering Xα d 2.60 1.00

CI e 3.29/2.92 1.10/1.10
EOM-CCSD 2.61 0.76

a See Reference 49 and 50b See Reference 51c See Reference 52d See Reference 53e

See Reference 54

factor half with the exponent of last p function. The resultsfor the basis set convergence

study are presented in Table 2.8. The addition of first p function lowers the resonance

energy value by0.74 eV. In this basis i.e C+1P we get resonance energyER = 1.87 eV

and widthΓ = 0.81 eV which is very close to the result obtained in the trapped electron

method. Further addition of p function lowers the resonanceenergy by0.05 eV. After

addition of three p-types functions we get the converged result.
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Table 2.8: Basis set convergence study for the2Πg C2H
−
2 shape resonance

Basis Energy (eV) Width (eV)
Basis C +1P(C 1p/ C 1p) 1.87 0.81
Basis C + 2P(C 2p / C 2p) 1.82 0.79
Basis C + 3P(C 3p/ C 3p) 1.79 0.80

2.3.5 Potential energy curve for the 2Πg resonance state of N−
2

In this section, we have calculated the potential energy curve (PEC) for the lower energy

2Πg state ofN−
2 . In Fig 2.1 we provide the PEC for the2Πg resonance state ofN−

2 . The

calculated resonance energies (ER) and widths (Γ ) for the2Πg state ofN−
2 are presented

in Table 2.9 for different internuclear distances. The calculations have been carried out

in four different basis sets. The first one consists of [5s7p]contracted Gaussian type

orbitals (CGTO)[29]. For each nitrogen atom, one p type (exponent=0.03) function has

been added. So, the basis set contains total [5s8p] functions on each nitrogen atom. We

have denoted this basis as basis A. The second one denoted as basis B, the third one

denoted as basis C and the fourth one is denoted as basis D. Thebasis B contains [5s10p]

functions [6] and the basis C contains [5s10p2d] functions [6].The basis D consists of

d-aug-cc-pVDZ basis and two extra p type functions have beenadded. The exponent

of the new p function is generated by scaling the exponent of the last p function of the

d-aug-cc-pVDZ basis by a ratio 1.5. Here, we have chosen the four different basis sets

to show the basis set dependence on the PEC of the2Πg resonance state ofN−
2 .

TheCAP/EOM− CCSD
′

computations are performed atN − N internuclear dis-

tance between1.80 a.u.-2.80 a.u. InCAP/EOM − CCSD
′

calculations, the two nitro-

gen atoms are placed in a cartesian coordinate system at (0.0,0.0,± R/2). where R is

the internuclear distance between two nitrogen atoms in theZ axis. The CAP box side

lengths are chosen to becx = cy = δc andcz = δc + R/2. In order to obtain the the

optimum box size for which the absorbing potential is best fitted to the basis set and the
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size of the target system, theCAP/EOM − CCSD
′

calculations are performed for the

various CAP box sizes. The velocity of the trajectory at the stabilization point is smallest

for a box sizeδc = 2.50 a.u. compared to the other box size.

In Table 2.9 we report the position and width of resonance fordifferent bond lengths

in four different basis sets using theCAP/EOM − CCSD
′

method. It can be seen that in

all four basis sets width of resonance is maximum at 1.80 a.u.and decreases uniformly

with increasing the bond length and becomes zero at 2.80 a.u.Similar trend is also

observed for position of the resonance. As we go from basis A to basis B, we get the

higher resonance position for bond length upto 2.60 a.u. However, we get the higher

width value for bond length upto 2.07 a.u. Beyond equilibrium bond length the width of

the resonance is smaller in basis B compared to basis A. This shows the importance of

addition of 2p functions. In basis C, which is similar to basis B with just additional 2d

functions, there is not much change in position or width of resonance. This shows that

addition of d function does not have much effect on the resonance position or width. In

basis D we get results which are similar to basis B. It can be seen that in all the four basis

sets qualitative trends are same.
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Table 2.9: Calculated resonance energies (ER) and decay widths (Γ ) for the2Πg state of
N−

2

Internuclear distance (a.u.) Basis A Basis B Basis C Basis D
ER(eV) Γ (eV) ER(eV) Γ (eV) ER (eV) Γ (eV) ER (eV) Γ (eV)

1.80 1.98 0.78 2.36 0.84 2.36 0.87 2.43 0.81
1.90 1.93 0.65 2.25 0.68 2.34 0.71 2.45 0.65
2.00 1.98 0.60 2.28 0.57 2.26 0.59 2.36 0.39
2.07 1.98 0.44 2.36 0.48 2.28 0.48 2.36 0.35
2.20 1.92 0.39 2.06 0.29 2.01 0.32 1.98 0.29
2.30 1.74 0.30 1.82 0.27 1.74 0.21 1.60 0.18
2.40 1.33 0.17 1.46 0.16 1.41 0.08 1.33 0.11
2.50 1.27 0.04 1.38 0.11 1.36 0.05 1.05 0.09
2.60 1.25 0.02 1.27 0.08 1.30 0.05 0.97 0.05
2.70 1.25 0.01 0.97 0.02 1.30 0.02 0.95 0.04
2.80 1.25 0.00 0.95 0.00 1.30 0.00 0.93 0.00
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Figure 2.1: Potential energy curve (PEC) for the2Πg state ofN−
2 , Diamond symbol

indicates the PEC in basis B, triangle symbol indicates the PEC in basis A, square symbol
indicates the PEC in basis D, circle symbol indicates the PECin basis C

2.3.6 Potential energy curve for the 2Π state of CO−

In this section, we have calculated the potential energy curve (PEC) for the2Π state of

CO−. The PEC for the2Π state ofCO− are presented in Fig 2.2. Two basis sets are

used to study the PEC’s ofCO− . The first one consists of d-aug-cc-pVDZ basis and

the second one consists of d-aug-cc-pVDZ+1P basis. The d-aug-cc-pVDZ+1P basis is

constructed by adding one p function on carbon and oxygen atom each. The exponent of

new p function is generated by scaling the exponent of last p function in d-aug-cc-pVDZ

basis by a factor 0.66. In the PEC calculation, theCO molecule is placed in a cartesian

coordinate system at (0.0,0.0,± R/2 a.u.) and the CAP box side lengths are chosen to
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Table 2.10: Calculated resonance energies (ER) and decay widths (Γ ) for the2Π state of
CO−

Internuclear distance(a.u.) d-aug-cc-pVDZ d-aug-cc-pVDZ+1P
ER(eV) Γ (eV) ER (eV) Γ (eV)

1.80 1.41 1.09 1.38 0.68
1.90 1.36 0.97 1.32 0.60
2.00 1.46 0.92 1.33 0.56
2.13 1.49 0.78 1.30 0.52
2.20 1.49 0.54 1.36 0.48
2.30 1.38 0.48 0.98 0.36
2.40 1.25 0.24 0.89 0.30
2.50 0.87 0.21 0.72 0.12
2.60 0.70 0.08 0.57 0.10
2.70 0.68 0.05 0.35 0.05
2.80 0.70 0.00 0.35 0.00

be cx = cy = δc andcz = δc + R/2. WhereR is the internuclear distance between

carbon and oxygen atom. The optimum value ofδc is 3.5 a.u. The calculated resonance

energies (ER) and decay widths (Γ ) for the2Π resonance state ofCO− as a function of

internuclear separation are presented in Table 2.10.

From Table 2.10 it can be seen that in both the basis sets position and widthΓ of

resonance is reduced with the bond length. The width of resonance approaches to zero at

2.80 a.u. As we go from basis d-aug-cc-pVDZ to basis d-aug-cc-pVDZ+1P, in which we

have extra p function, position and width of resonance is reduced. From Fig 2.2 it can be

seen that PEC in both the basis sets have similar trend.
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Figure 2.2: Potential energy curve (PEC) for the2Π state ofCO−, square symbol in-
dicates the PEC in d-aug-cc-pVDZ+1P basis and circle symbolindicates the PEC in
d-aug-cc-pVDZ basis

2.3.7 Conclusion

In this chapter we have shown how the highly correlated method like EOM-CCSD, which

is already known to be suitable for accurate calculation of properties of electronically

excited, bound states, can be extended for the treatment of resonance states in electron

molecule collision. we have implemented complex absorbingpotential within the EOM-

CCSD method for the calculation of resonance energies. We have applied our method

to study the2Πg N
−
2 ,C2H

−
2 and 2Π CO− shape resonances. We compare our results

with different theoretical as well as experimental results. Our results for the resonance

energy are in good agreement with the experimental and othertheoretical methods. The

present results clearly indicate the utility of the CAP/EOM-CCSD approach for the study

of metastable electronic states. Since resonance energy isrelated to the electron affinity,

the electron correlation play an important role for the accurate calculation of resonance
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energy. From our study of the effect of basis set it can be seenthat basis set, in partic-

ular, diffuse basis functions are very important for the accurate calculation of resonance

energy.
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Chapter 3

————————————————————

CAP/EOM-CCSD method for the potential

energy curve of CO−
2 anion

————————————————————

In this chapter, the equation-of-motion coupled cluster (EOM-CC) method employing the

complex absorbing potential (CAP) has been used to investigate the low energy electron

scattering byCO2. We have studied the potential energy curve (PEC) for the2Πu res-

onance states ofCO−
2 upon bending as well as symmetric and asymmetric stretchingof

the molecule. Specifically, we have stretched theC −O bond length from 1.1̊A to 1.5Å

and the bending angles are changed between180◦ to132◦. Upon bending, the low energy

2Πu resonance state is split into two components, i.e.2A1, 2B1 due to the Renner-Teller

effect (RT), which behave differently as the molecule is bent.
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3.1 Introduction

Since its discovery, the low energy electron scattering ofCO2 has continued to fasci-

nate the imagination of chemists and physicists because of its role in atmospheric chem-

istry, gas lasers and low temperature plasma. It is well known thatCO2 can not per-

manently bind an electron and that allCO−
2 states are metastable in nature. Despite the

long standing interest in electron scattering inCO2, there are a number of questions un-

resolved. One of the open intriguing questions is the connection between the short-lived

scattering states with the long-livedCO−
2 anions in the mass spectroscopy region.

The electron scattering inCO−
2 is mainly governed by two low lying anionic states,

one is2Σ+
g symmetry [1, 2] virtual state and another is2Πu resonance state.[3–7] Both

the 2Πu resonance states and2Σ+
g virtual states have very short lifetime. Generally, the

2Πu resonance states have lifetime in the femto-second (fs) region. In compare to the

short lived2Πu resonance state, the existence of long-livedCO−
2 anion [8, 9] has also

been proved. The double electron transfer to theCO+
2 ion, [10, 11] electron collisions

with cyclic anhydrides [12] are the some techniques where long livedCO−
2 is produced.

The resonance states are identified by complex eigenvalues within the formalism of

Siegert and Gamow, [13, 14]

Eres = ER − iΓ/2, (3.1)

whereER is the resonance position andΓ is the decay width. TheΓ is related to the

lifetime of the temporary anionic state via,τ = ~/Γ .

The resonance states are metastable [15, 16] in nature and can be described as the

coupling of a discrete state with a continuum. The resonancestates are part of the con-

tinuum and are represented by a non-square integrable wave function (non-L2). Thus the

calculation of resonance states requires a method which is able to address the continuum

nature as well its many body nature. Two principal classes ofapproaches are well known

for computing the resonance energyEr and the decay widthΓ . First, scattering methods

70



which precisely address the continuum nature of the wave function and second, so-called

L2 methods that transform the continuum problem to a bound state problem. There are

two L2 methods which are very well known in literature, one is the complex absorbing

potential approach (CAP) [17–25] the other is the complex scaling approach. [26, 27]

Here, our focus is on the complex absorbing potential approach. The main advantage of

the CAP method is that it is easy to implement within any boundstateab initio electronic

structure method.

The CAP method has been applied in the context of various theoretical methods.

Historically, Jolicard and Austin [28] implemented the CAPmethod for the first time

to calculate the resonance parameters subject to a model potential. The CAP method

has been established on firm ground by Riss and Meyer.[20] Thefirst implementation of

CAP in the context of bound state electronic structure theory was done by Sommerfeld

et al. [18] for metastable anions and Santra et al. [23] for metastable cations, both

in combination with the configuration interaction method (CI). Later, Santra and co-

workers [24] introduced the CAP method within the Green’s function approach. Sajeev

et al. [29] introduced a CAP potential within the Fock space multireference coupled

cluster (FSMRCC) framework to study anion resonances. Ehara et al. [30] implemented

the CAP potential within the symmetry-adapted cluster-configuration interaction (SAC-

CI) method for metastable anions. Recently, Ghosh et al. [31–34] have introduced CAP

within the EOM-CC framework for both anionic and cationic resonance states. Kyrlov

and co-workers [35] have also applied CAP within the EOM-CC framework for the study

of shape resonance.

Both electron correlation and relaxation effects play a substantial role in the accurate

description of resonance states. The equation-of-motion coupled-cluster method treats

the dynamic and non-dynamic electron correlation in a very efficient manner while ful-

fuling the size-extensivity criteria in the ground state. Another advantage is that the

EOM-CCSD method [36–42] gives the direct, intensive energydifference. This makes

the EOM-CC method appropriate for the description of resonance states.
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Electron scattering onCO2 has been studied quite elaborately both experimentally

and theoretically. Detailed studies of resonant vibrational excitation ofCO2 have been

performed experimentally by Allan.[43, 44]Ab initio calculations onCO−
2 have been

studied by Morgan et al.[45] using the R matrix method. In their calculations, they have

focused on the angular dependence of the virtual state pole.Rescigno et al. [3, 6] have

studied scattering onCO2 focusing on the2Πu shape resonance state pole. Recently,

McCurdy et al. [7] have performed an extensive study on the vibrational excitation cross

section [46, 47] ofCO2 by electron impact in the vicinity of2Πu resonance.

In this chapter, we have implemented the CAP method within the equation-of-motion

coupled cluster theory (CAP/EOM-CC) using singles and doubles (SD) to calculate the

position and width of the2Πu shape resonance inCO−
2 . We have studied the potential

curve for the2Πu resonance state ofCO−
2 as a function of the symmetric and asymmetric

stretches of theC − O bond and the bending angle.

3.2 Theory

In this section, we briefly discuss the CAP/EOM-CCSD method for computing the res-

onance energyER and decay widthΓ . In the CAP approach, the idea is to add an

absorbing potential,−iηW , to the physical Hamiltonian, H, yielding a non-hermitian

Hamiltonian

H(η) = H − iηW, (3.2)

whereη is a strength parameter and W is a real, soft box like potential. The addition

of CAP makes the wave function square integrable. The complex Hamiltonian matrix

is diagonalized for a number ofη values to obtain the resonance energy. The complex

resonance energy(Er) is identified from theη trajectories of the eigenvalues ofH(η).

The distinct minimum of the velocity
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υi(η) = η∂Ei/∂η. (3.3)

gives the resonance energy. The best approximation for theEr is obtained from the

optimalηopt value. The optimalηopt value is obtained by employing the condition,

|υi(ηopt)| = min. (3.4)

In the EA-EOM-CCSD approach,[34] the wave function for theµ th electron attached

(N + 1 electron) states can be written as

Ψ(µ) = RN+1(µ)|Ψ0〉 (3.5)

where

|Ψ0〉 = eT |φ0〉 (3.6)

is theN electronic ground state wave function for the Coupled cluster (CC) method.

[48–51] TheRN+1(µ) is a linear excitation operator for the stateµ defined as

RN+1(µ) =
∑
a

ra(µ)a+a + 1/2
∑
i

∑
ab

rabi (µ)a+a a
+
b ai. (3.7)

In eq. 3.6,|φ0〉 is the N-electron closed-shell Hartree-Fock determinant and T repre-

sents the cluster operator. The cluster operator T consistsof singles, doubles,..., excita-

tion operators. The cluster operator T can be defined as following manner

T =
∑
ia

tai a
+
a ai + 1/4

∑
ab

∑
ij

tabij a
+
a a

+
b aiaj + ......, . (3.8)

where the standard convention for the indices is used, i.e.,indices a,b,..., refer to the

unoccupied orbitals and indices i,j,.., refer to the occupied orbitals. The cluster matrix

elementst are generated by using the equation

〈φe|(HNe
T )c|φ0〉 = 0, (3.9)
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where|φe〉 are the excited determinants andc in eq. 3.9 indicates only the connected

diagrams are considered.

In the equation-of-motion coupled cluster method for singles and doubles (EOM-

CCSD), the difference between the energies ofµ th electron attached states and ground

state (wµ = Eµ − Eg) are calculated

[H̄N , R
N+1(µ)]|φ0〉 = wµR

N+1(µ)|φ0〉∀µ, (3.10)

on projecting onto the basis of excited determinants|φa〉 and |φab
i 〉 with respect to

|φ0〉, gives the matrix form,

H̄NR
N+1(µ) = wµR

N+1(µ). (3.11)

Where

H̄N = e−THNe
T − 〈φ0|e

−THNe
T |φ0〉 (3.12)

is the similarity transformed Hamiltonian of the coupled-cluster (CC) method andwµ

is the energy change connected with the electron attachmentprocess. In the EA-EOM-

CCSD approach,H̄N is constructed in a1p and2p1h space and diagonalized to obtain

the electron attachment energies.

Once the CAP is added into the CAP/EOM-CCSD method, it becomes part of the

one body particle-particle (̄fpp) part ofH̄N . The other terms of thēHN matrix are altered

via the appearance of the complexT (η). Thus, the new form of thēHN matrix is

H̄N(η) = e−T (η)HN(η)e
T (η) − 〈φ0|e

−T (η)HN(η)e
T (η)|φ0〉 (3.13)

Here, initially, we have applied the CAP to the coupled cluster (CC) method to evolve

the complexT (η) amplitudes, which are used latter to construct theH̄N(η) matrix. After

addition of CAP, the ground state wave function for the CC method can be expressed as

|Ψ0(η)〉 = eT (η)|φ0〉 (3.14)
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Finally, we have diagonalized the resulting complex̄HN(η) matrix for the differentη

values. However to obtain the resonance energies we need to use following equation

since the ground state energies are suppose to be CAP free.

Eres(η) = wµ(η) + ECC(η)− ECC(η = 0) (3.15)

The resonance states can be identified from theη trajectories that shows stabilization

cusps.

Recently, Kyrlov and co-workers[35] have applied the CAP within the EOM-CC

framework. However, their approach is different from our approach. They useEres(η)

as [EN+1(η)−EN (η)]. Further to calculate bothEN+1(η) andEN (η) they add CAP at the

SCF level. The SCF orbitals, T amplitudes, R operator are complex in nature. Therefore,

the SCF ground state is perturbed in their approach. However, we have applied the CAP

into the CC level or a perturvative in calculatingEN+1(η). Therefore, in our approach

SCF ground state is unperturbed.

3.3 Computational details

The one-particle basis set used in the CAP/EOM-CCSD [31–33]calculation is a combi-

nation of valence basis sets with some number of diffuse functions. The diffuse functions

are required to describe the outgoing electron. Here, we start with the aug-cc-pVTZ [52]

basis. We have removed the f functions form the aug-cc-pVTZ basis set and then add

one extra s function and one diffuse p function on each carbonand oxygen atom inCO2.

The exponent of the new p function is generated by scaling theexponent of the last p

function of the aug-cc-pVTZ basis by a ratio 3.165. The exponent of the new s function

is generated by scaling the exponent of the last s function ofthe aug-cc-pVTZ basis by a

ratio 3.165.

The first step in the CAP/EOM-CCSD computations is an SCF calculation for the

neutralCO2. The SCF calculation has been performed by using the GAMESS-US suite
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of programs.[53] The required matrix elements of the EOM-CCSD and CAP matrices

have been computed using our own codes. For diagonalizationpurpose, we have imple-

mented the non hermitian version of Davidson algorithm[54,55] in our EOM-CC code.

The potentialW is the soft-box potential and it can be defined as

W (x; c) =
3∑

i=1

Wi(xi; ci), (3.16)

where

Wi(xi; ci) = {
0,|xi|≤ci,

(|xi|−ci)2,|xi|>ci
(3.17)

Here, ci, i = 1, 3 are the real, non-negative parameters which define the size of a

rectangular box. The target molecule is placed in the centerof the box. The matrix

elements ofW (x; c) are calculated within a Gaussian basis set.

In order to keep the neutral N electron ground scattering target system unperturbed,

we eliminate the effect of CAP on the SCF ground state,

Ŵ → Q̂Ŵ Q̂, (3.18)

where

Q̂ =
∑
i

|φi〉〈φi|. (3.19)

The redefinition is easily achieved by employing the condition

〈φp|Ŵ |φq〉 = 0, (3.20)

where|φp〉 or |φq〉 is an occupied orbital.

3.4 Results and Discussions

Here, we investigate the potential energy curve (PEC) of themetastable low energy2Πu

resonance state ofCO−
2 using the CAP/EOM-CCSD method. We have studied the PEC

for the 2Πu resonance state ofCO−
2 as a function of the symmetric and asymmetric
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stretch ofC −O and theO −C −O bond angle. In the CAP/EOM-CCSD calculations,

theCO2 molecule is placed in a cartesian system at(0.0, 0.0,±Ra.u.), whereR is the

bond distance between the carbon and oxygen atom. In the CAP/EOM-CC computations,

for the symmetric and asymmetric stretch the CAP box side lengths are chosen to be

cx = cy = δc and cz = δc + R, wherecx,cy,cz are the distances from the center of

the coordinate system along thex,y, andz axis, respectively, andδc is a non-negative

number, all in a.u. However, in case of bending, the CAP box side lengths are chosen to

becx = δc + rx, cy = δc andcz = δc + rz, whererx andrz are the C-O bond lengths

along thex andz axis, respectively.

We have performed CAP/EOM-CCSD calculations for the symmetric and asymmet-

ric stretch in two differentδc values. Theδc values are 2.5 a.u. and 3.5 a.u. respectively.

However, We have performed CAP/EOM-CCSD calculations for the bending in three

differentδc values. Theδc values are 2.0 a.u., 2.5 a.u. and 3.5 a.u. respectively. We have

shown for all the box sizes the resonance energies and decay widths follow the similar

trend for the symmetric stretch, asymmetric stretch and bending of theCO2 molecule.

3.4.1 Potential energy curve of the 2Πu resonance state of the CO−
2

In this subsection, we discuss the PEC for the low energy2Πu resonance state ofCO−
2

using the CAP/EOM-CCSD method. The electron scattering inCO−
2 is dominated by

the2Πu resonance state. The2Πu state is generated by adding an electron to the emptyπ∗

orbital of the neutralCO2. The equilibrium bond distance between carbon and oxygen

(C −O) in CO2 molecule is 1.161̊A. The ground state electronic configuration ofCO2

is

1Σ+
g : (core)6σ2

gσ
2
uσ

2
gσ

2
uπ

4
uπ

4
g . (3.21)

The orbital symmetry of theCO2 molecule changes upon bending. The orbital symmetry

changes in the following manner:σg → a1, σu → b2, πg → a2 + b2, πu → a1 + b1.
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Since, the linearCO2 molecule contains two low lying empty valence orbitals ofσg and

πu symmetry, one can expect two low lying anionic states. One isthe 2Πu resonance

state and another is the2Σ+
g virtual state. InC2v symmetry, the2Πu resonance state

of CO2 further corresponds to the2A1 (lower energy) and2B1 (higher energy) states

and the virtual2Σ+
g state corresponds to the2A1 state. Here, we concentrate on the2A1

component of the2Πu resonance state.

In PEC calculation, theC − O bonds are symmetrically stretched from 1.1Å to 1.5

Å and the bond angle is changed between180◦ to 132◦ in steps of3◦. The calculated

resonance energiesER and decay widthsΓ for the 2Πu resonance state ofCO−
2 are

collected in Table 3.1 for the differentC − O bond lengths. The results for the2A1

component of2Πu state are collected in Table 3.2 for the different∠O − C − O bond

angles.

In linear geometry, the PEC curve for the2Πu state is shown in Fig 3.1 at different

C − O bond lengths. Starting from the equilibriumC − O bond length the resonance

positionER decreases substantially with increasing theC − O bond length. The decay

widthΓ also decreases with increasing theC−O bond length. Finally, the2Πu resonance

state becomes a bound state at a distance〉 1.45Å. At this distance the PEC of2Πu CO
−
2

crosses the PEC of ground state and the decay width vanishes.

Among the two2A1 states, the lowest2A1 state which is originated from the virtual

2Σ+
g state quickly turn into a bound state on bending the molecule. The lowest2A1

state becomes bound at an angle147◦. In contrast, the second2A1 state does not become

bound on bending the molecule. The second2A1 state becomes stable only on stretching.

The PEC for2A1 resonance states as a function ofO − C − O bond angle are presented

in Fig 3.2.

Starting from the linear geometry, the bending of theCO2 molecule causes the width

of the 2A1 component of the2Πu resonance state to increase rapidly while decreasing

the resonance energy. It is worth discussing why the width ofthe 2A1 resonance state

increases upon bending of the molecule. The symmetric stretching of theCO2 molecule
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in a linear geometry does not change the symmetry of the molecule. Thus, it does not

significantly change the angular momentum character of the resonance state. In linear

geometry, the lowestl component of the resonance state is a p-wave in nature but notthe

dominant-one which is f-wave in nature. The degeneracy of the 2Πu resonance state is

lost when we bend theCO2 molecule and as an s-wave component is mixed into the2A1

resonance state. There is no angular momentum barrier associated with an s-wave. So,

the mixing of the s-wave into the2A1 resonance state plays a significant role in increasing

the resonance width upon bending the molecule.

Another important point is that in a linear geometry theCO2 molecule has zero dipole

moment. As we bend theCO2 molecule, it acquires a dipole moment. This is another

aspect of symmetry breaking and mixing of the s-wave into theresonance state which

contributes to an increase in width with increasing bendingangle. At small bending

angles, the dipole moment is less and its consequences are not great. However, the

dipole moment increases with increasing the bending angle and it plays a crucial role in

changing the behavior of the resonance state.

We also investigate how the2Πu resonance state behaves subject to the asymmetric

stretch of the C-O bond. In our calculations, we have stretched the one C-O bond from

1.2 Å to 1.5Å and the other is shrunk from 1.1̊A to 0.80Å simultaneously. The results

are reported in Table 3.3. From Table 3.3 it can be seen that inasymmetric stretching the

resonance energy for the2Πu resonance state and its decay width increases rapidly. The

important aspect concerning the behavior of the2Πu resonance state is that the dipole

moment becomes non-zero when we stretch theCO2 molecule asymmetrically. The

dipole moment increases rapidly with the asymmetric stretch of the molecule. The long

range dipole potential progressively weakens the short-range attractive potential created

by the angular momentum barrier. Thus, the dipole moment plays the crucial role in

increasing the width for asymmetric stretch.

We compare our results with the experimental method and the other theoretical meth-

ods available in the literature at the equilibrium bond length. The results are collected
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in Table 3.4. The experimental method [43] gives resonance energy around 3.60 eV,

which shows close agreement with the EOM-CCSD results. The Static exchange method

[56] gives resonance position atER=5.26 eV and decay widthΓ=0.70 eV, theADC(2)

method gives resonance positionER= 4.21 eV and decay widthΓ= 0.21 eV at the equi-

librium bond length. Thus, we can see that the Static exchange toADC(2) [56] the

resonance position is reduced by 1.05 eV and decay width is also reduced by 0.49 eV.

The result obtained with theADC(2) method [56] is very close to our results obtained

using the EOM-CCSD method.
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Table 3.1: Calculated resonance energiesER and decay widths (Γ ) for the2Πu resonance
state ofCO−

2 at differentC − O bond length

Bond distance(Angstrom)δc = 2.5a.u δc = 3.5a.u
ER(eV) Γ (eV) ER(eV) Γ (eV)

1.10 5.56 0.32 5.55 0.19
1.13 4.90 0.28 4.91 0.18
1.16 4.18 0.19 4.17 0.15
1.19 3.70 0.16 3.67 0.12
1.23 2.97 0.14 2.97 0.09
1.27 2.31 0.12 2.32 0.08
1.30 1.86 0.11 1.86 0.08

Table 3.2: Calculated resonance energiesER and decay widths (Γ ) for the 2A1 compo-
nent (lower energy) of2Πu resonance state ofCO−

2 at differentO − C −O bond angles

Bond angle (deg) δc=2.0 a.u δc=2.5 a.u δc=3.5 a.u
ER(eV) Γ (eV) ER(eV) Γ (eV) ER(eV) Γ (eV)

180 4.19 0.23 4.18 0.19 4.17 0.15
177 4.18 0.23 4.18 0.20 4.17 0.15
174 4.18 0.24 4.17 0.20 4.16 0.15
171 4.16 0.25 4.16 0.21 4.15 0.16
168 4.14 0.25 4.14 0.22 4.13 0.16
165 4.11 0.26 4.11 0.23 4.10 0.17
162 4.09 0.28 4.09 0.24 4.07 0.17
159 4.07 0.30 4.06 0.25 4.03 0.19
156 4.02 0.32 4.02 0.27 4.01 0.20
153 3.99 0.33 3.98 0.28 3.95 0.21
150 3.96 0.34 3.95 0.29 3.92 0.22
147 3.90 0.36 3.90 0.30 3.88 0.22
144 3.87 0.38 3.86 0.32 3.83 0.22
141 3.82 0.39 3.80 0.33 3.79 0.23
138 3.80 0.41 3.79 0.35 3.79 0.23
135 3.76 0.42 3.75 0.35 3.74 0.23
132 3.70 0.43 3.70 0.36 3.69 0.24
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Table 3.3: Calculated resonance energiesER and decay widths (Γ ) for the2Πu resonance
state ofCO−

2 in asymmetric stretching ofC −O bond length

Bond distance(Angstrom)δc=2.5 a.u δc=3.5 a.u
ER(eV) Γ (eV) ER(eV) Γ (eV)

1.10,1.20 4.45 0.23 4.42 0.19
0.95,1.35 5.18 0.32 5.15 0.21
0.90, 1.40 5.54 0.36 5.52 0.23
0.80, 1.50 6.49 0.54 6.44 0.36

Table 3.4: Calculated resonance energiesER and decay widths (Γ ) for the2Πu resonance
state ofCO−

2 at equilibrium bond length

Method ER(eV) Γ (eV)
Experimenta 3.60 ....

Static exchangeb 5.26 0.70
ADC(2) b 4.21 0.21

EOM-CCSD 4.18 0.19

a See reference 43.b see reference 56.
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Figure 3.1: Potential energy curve (PEC) for2Πu resonance state and ground state of
CO2. Circles indicate the PES for the2Πu resonance state
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Figure 3.2: Potential energy curve for the2A1 resonance state and ground state ofCO2.
Circles indicate the PEC for the2A1 resonance state and squres indicate the PEC for
ground stateCO2

3.5 Conclusion

In this chapter we have implemented the CAP/EOM-CCSD methodto investigate the

potential energy curve (PEC) of2Πu resonance state ofCO−
2 . We have studied the PEC

of the resonance state as a function of theC −O bond length and∠O−C −O bond an-

gle. In linear geometry both the short-lived states,2Σ+
g and2Πu resonance states become

bound when theCO2 molecule is stretched. The2Πu resonance state becomes bound

at C − O bond length〉 1.45 Å. When theCO2 molecule departs from linearity, the

2Πu resonance state splits into two components, i.e.,2A1, 2B1, due to the Renner-Teller

(RT) [57] effect. Upon bending the molecule, the2A1 component of the2Πu resonance

state is mixed with the2A1 component of2Σ+
g virtual state. Thus, the2A1 component

of the2Σ+
g virtual state acquire someΠ character. The2A1 component of the2Σ+

g state

becomes bound at a bending angle〈 147◦. So, the PEC ofCO−
2 can be viewed as three

effective vibronically coupled electronic states problem.
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Chapter 4

————————————————————

Study of Interatomic coulombic decay using

Equation-of-motion coupled cluster (EOMCC)

method

————————————————————

In this chapter, we have explored about the Interatomic or Intermolecular coulombic

decay (ICD) process. ICD is an efficient and ultrafast radiation less decay mechanism

which can be initiated by removal of an electron from the inner-valence shell of an atom

or molecule. Generally, the ICD mechanism is prevailed in weakly bound clusters. A

very promising approach, known as CAP/EOM-CC, consists of the combination of com-

plex absorbing potential (CAP) with the equation-of-motion coupled-cluster (EOM-CC)

method, is applied for the first time to study the nature of theICD mechanism. We have

applied this technique to determine the lifetime of an auto-ionized, inner-valence excited

state of theNe(H2O), Ne(H2O)2 andNe(H2O)3 systems. The lifetime is found to be

very short and decreases significantly with the number of neighboring water molecules.
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We have also applied this method to study the interatomic coulombic decay (ICD) mech-

anism in small hydrogen bonded clusters. The lifetime of F 2sinner-valence ionized state

of (HF )n, (n=2-3) clusters were calculated using this method. The lifetime is found to

be very short and decreases substantially with increasing the number of HF monomer.
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4.1 Introduction

Electronically excited molecules and atoms can relax by emitting a photon or an

electron. These particles carry essential information on the electronic structure of their

emitter. In general, energetically low lying states (outer-valence) decay radiatively and

high lying excited or ionized states decay by electron emission. When the excitation

occurs due to the ionization of electron from the core orbital, then the excited molecule

follows the radiative decay or Auger decay [1, 2] for the relaxation. In Auger decay, an

electron from the higher energy level fills the vacancy in thecore level and the released

energy can be transfered to another electron, which is then ejected from the system. The

ejected electron is called the Auger electron. The Auger electron has specific energy

depending on the element from which the electron is ejected.The Auger decay process

is intraatomic in nature. So, it is expected that the environment has weak influence on

this process. Interaction with environment does not changethe decay width of the Auger

decay.

The situation is changed dramatically when the excited molecule or atom is em-

bedded in a chemical environment. In this case, another ultrafast non-radiative decay

mechanism is possible. After removing an electron from the inner valence orbital of

a particular monomer, the inner-valence hole is filled up by an outer valence electron

of the same monomer and the excess energy gained by this process is transferred to a

neighboring monomer, where a secondary electron is emittedfrom the outer valence

orbital. So, the final state is characterized by two outer valence holes, placed on two

different monomers. This decay process is called interatomic coulombic decay (ICD)

[3–13] mechanism. The ICD is a very fast and efficient relaxation mechanism occuring

in a weakly bound cluster initiated by an inner valence hole.In ICD mechanism [14–16]

efficient energy transfer takes place between neighboring monomers. This decay differs

from the Auger decay as the electron is not coming out from theexcited or ionized atom
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but from its neighbor. It transpires typically on a femto-second(fs) time scale. Without

the neighbor the excited or ionized monomer will decay by slow photon emission.

Energetically, ICD is possible because the localization oftwo positive holes on two

different monomers diminishes the coulomb repulsion and accordingly lower the double

ionization potential (DIP) value. The lowering of the DIP isso prominent that it becomes

lower than the inner valence IP. So, the system gains energy in going from an inner

valence hole to a double ionized outer valence state. That makes the ICD mechanism a

spontaneous decay process and it becomes faster than any other decay mechanism. The

intermolecular nature of the ICD mechanism is manifested bythe associated decay width

which strongly depends on the internuclear distance between the monomers and also on

the number of neighboring monomers.[17]

ICD can be viewed as a long-range correlation effect. Consequently, electron cor-

relation and relaxation effect play a crucial role in the accurate description of all these

states. The equation-of-motion coupled-cluster (EOM-CC)method provides the uni-

form treatment of electron correlation and relaxation effect for the initial and final states.

The EOM-CC method includes dynamic and non-dynamic electron correlation very effi-

ciently in a size extensive manner. That makes the EOM-CC method as a suitable method

for the study of ICD mechanism.

The ionization of water clusters is of supreme interest in different areas spanning

biology, chemistry and astrophysics. Understanding the changes in electronic structure

that occur in these ionic clusters is important in fields as diverse as cloud nucleation in

the earth’s atmosphere, radiation biology and interstellar chemistry. The ICD emits a

low energy electron from the molecular neighbor of the initially excited molecular ion.

Recently, it has been established that the low energy electron can efficiently breakup the

DNA-constituents.[11] So, the ICD process might act as a source of an electron that can

cause radiation damage in biological system.

In this chapter we have devoted our work to study the ICD process in neon-water

clusters using the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD)
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augmented by a complex absorbing potential (CAP). This method is termed as CAP/EOM-

CCSD.[18] Using this method we have calculated the lifetimeof an inner valence 2s hole

of theNe atom inNeH2O, Ne(H2O)2, Ne(H2O)3 clusters. We have also applied this

method to study the lifetime of an inner-valence 2s hole of the F atom in small hydrogen

bonded(HF)2, (HF)3 clusters.

4.2 THEORY

In this section, we briefly discuss the CAP/EOM-CCSD method for computing the po-

sition and lifetime of the decaying states (resonance states). The resonance states are

recognized by complex eigenvalues within the formalism of Siegert[19] and Gamow,[20]

Er = ER − iΓ/2, (4.1)

whereER represents the resonance position andΓ is the decay width.Γ is inversely

related to the lifetime of the resonance state via,τ = ~/Γ .

Resonance states are electronically metastable states andare represented by non-

square integrable (non-L2) wave function. They can also be defined as discrete states

embedded in and coupled to the continuum. So, the calculation of resonance states re-

quire a method which can treat the continuum as well as electron correlation simultane-

ously. Regarding the continuum, there are twoL2-methods which are very popular for

computing the resonance energyER and widthΓ . One is the complex absorbing poten-

tial (CAP)[21–29] approach and other is the complex scalingmethod.[30] The latter is

related to the complex basis function method. [31, 32] Here,our focus is on the com-

plex absorbing potential approach. CAP/EOM-CC approach has been used recently to

calculate the position and width of a shape resonance. [18] Related Fock space coupled-

cluster method based on both CAP and complex scaling has alsobeen used to calculate

the shape resonance energies and widths. [33]

In the CAP approach, a CAP potential−iηW is added to the physical Hamiltonian
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to describe the electronic resonance state,

H(η) = H − iηW, (4.2)

whereη is the CAP strength andW is a real soft box like potential. After addition of

CAP [34–37] the wave function becomes square integrable. The resonance energyEr

is obtained from theη -trajectories of the eigenvalues ofH(η). The pronounced local

minimum of velocityυi as a function ofη

υi(η) = η∂Ei/∂η. (4.3)

gives the resonance energy. The best approximation for theEr is obtained from the

optimalη value. The optimalη value is obtained by satisfying the condition

|υi(ηopt)| = min. (4.4)

In IP-EOM-CCSD [38, 39]approach, the wave function for theµth ionized state can

be written as

|ψµ〉 = RN−1(µ)|ψ0〉 (4.5)

where

|ψ0〉 = eT |φ0〉 (4.6)

is theN electron ground state wave function for the coupled-cluster (CC) method. [40–

42] TheRN−1(µ) is the ionization operator and it can be defined as

RN−1(µ) =
∑
i

ri(µ)ai + 1/2
∑
ij

∑
a

raij(µ)a
+
a aiaj (4.7)

In eq. 4.6,|φ0〉 is theN electron closed-shell Hartree-Fock determinant and T repre-

sents the cluster operator

T =
∑
ia

tai a
+
a ai + 1/4

∑
ab

∑
ij

tabij a
+
a a

+
b aiaj. (4.8)
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where i,j,...denote the occupied spin orbitals and a,b...are the unoccupied orbitals in

the reference determinant|φ0〉.

In the equation-of-motion coupled-cluster method,[43–48] the energies of the ground

state and excited states of(N − 1) electron system are calculated by solving

H̄NR
N−1(µ)|φ0〉 = wµR

N−1(µ)|φ0〉. (4.9)

In matrix form eq.4.9 can be written as

H̄NR
N−1(µ) = wµR

N−1(µ). (4.10)

Where

H̄N = e−THNe
T − 〈φ0|e

−THNe
T |φ0〉 (4.11)

is the similarity transformed Hamiltonian of the coupled-cluster (CC) theory andwµ

is the energy change connected with the ionization process.In IP-EOM-CCSD approach,

H̄N is constructed in a1h and 2h1p space and diagonalized to obtain the ionization

energies. The Davidson algorithm [49, 50] is used to diagonalize theH̄N matrix.

Once the CAP is added,i.e., in the CAP/EOM-CCSD method, firstthe CAP is applied

with the CC method to generate the complexT (η) amplitudes. The wave function for

the CC method can be written as

ψ0(η) = eT (η)|φ0〉. (4.12)

Then, the CAP is added with the one body particle-particle part of the H̄N matrix.

Now, the complexH̄N matrix can be defined as

H̄N(η) = e−T (η)HN(η)e
T (η). (4.13)

Finally, the resulting complex̄HN matrix is diagonalized for the differentη values.

The complex eigenvalues are obtained by diagonalization oftheH̄N matrix. We have

varied theη values starting from 0 to 0.01 with an increment of10−6. we have plotted
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the complex eigenvalues in the complex energy plane. The resonance energy is identified

with the appearance of minimum velocity

υµ(η) = η∂wµ/∂η. (4.14)

for each resonance state.

4.3 RESULTS AND DISCUSSION

In this chapter, we have calculated the lifetime of theNe 2s inner valence 2s hole in neon-

water clusters using the CAP/EOM-CCSD method described in the preceding section.

Our main objective of this chapter to study how the lifetime of the Neon 2s state changes

in the presence of neighboring atoms or molecules. To study the dependence of the

ICD lifetime on the environment we have chosen the three neon-water systemsNeH2O,

Ne(H2O)2,Ne(H2O)3. The ICD process in neon-water clusters can be seen as follows:

TheNe2s vacancy is localized on theNe atom. ANe2p electron falls into theNe2s

vacancy and the released energy is used to eject anO 2p electron from a neighboring

H2O monomer. In our calculation, we have used the aug-cc-pVTZ basis set [51] for the

Ne atom. The aug-cc-pVDZ and cc-pVDZ basis sets [52] are used for theO andH atom

respectively. We have computed and used the optimized geometry obtained at CCSD(T)

level for NeH2O andNe(H2O)2. The cc-pVDZ basis set is used for the geometry

optimization. Because of its size, the calculation of the geometry ofNe(H2O)3 has been

done on the MP2 level. The results for the resonance energyER and decay widthΓ of the

neon 2s states in the clusters are collected in Table 4.1. In our calculation, we have used

GAMESS [53] software package to evaluate the two electron integrals. The required

matrix elements for the EOM-CCSD and CAP matrices have been computed using our

own codes. The geometry optimization for all these molecules has been performed using

ACS-II [54]software package.

we have also calculated the lifetime of the F 2s inner-valence hole of F atom in
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the small hydrogen bondedHF clusters using the CAP/EOM-CCSD mehod. We have

studied the twoHF clusters(HF)2, (HF)3. In an isolatedHF molecule, the cationic

state which is produced by emitting an electron from the 2s inner-valence level of F atom

can decay radiatively. The decay channel corresponding to the electron emission is not

energetically allowed. However, the analogous cationic state inHF clusters can decay

via electron emission. The decay process can be view as follows: the F 2s vacancy is

localized on one of theHF monomer. An electron from the 2p level of F atom of the

same monomer comes to fill up the F 2s vacancy and the excess energy is used to eject

an electron of F 2p level from the neighboringHF monomer. In our calculation, we have

used aug-cc-pVTZ basis set for both the F and H atoms in(HF)2 cluster. However, in

case of(HF)3, aug-cc-pVDZ basis set has been used for both the F and H atoms. We have

computed and used the optimized geometry at MP2 level for(HF)2, (HF)3 clusters. The

geometry optimization has been performed using Gaussian 09software package.[55]

4.3.1 NeH2O SYSTEM

In this subsection, we discuss the lifetime of an inner valence 2s resonance state of the

Ne atom inNeH2O . The optimized geometry for theNeH2O system is presented in

Fig 4.1. The bond distance between theNe andO atom is 2.91Å. For the CAP/EOM-

CCSD computation the CAP box side lengths are chosen to becx = 2.0+δc, cy = δc and

cz = 6.0 + δc, all in a.u. The computed optimal value of theδc is 4.0 a.u. The complex

resonance energy for theNeH2O system isEr = 1.755− i(1.4× 10−4) a.u. The decay

width Γ for theNeH2O system is 7.6 meV, which corresponds to a lifetime of 86 fs.
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Figure 4.1:NeH2O system, optimized at CCSD(T)/cc-pVDZ level

4.3.2 Ne(H2O)2 SYSTEM

The optimized geometry for theNe(H2O)2 system is presented in Fig 4.2. The bond

distance between the Ne and O atom is 2.93Å. In the CAP/EOM-CCSD computation,

the CAP box side lengths chosen for theNe(H2O)2 system werecx = 2.0 + δc, cy = δc

andcz = 8.0+ δc, all in a.u. The optimal value ofδc is 4.0 a.u. The calculated resonance

energy for theNe(H2O)2 system isEr = 1.753− i(4.6× 10−4) a.u. The decay widthΓ

for theNe(H2O)2 is 25.0 meV corresponding to a lifetime of 26 fs. It is seen that adding

a second neighbor by going fromNeH2O toNe(H2O)2 the lifetime decreases by about

factor 3.
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Figure 4.2:Ne(H2O)2 system, optimized at CCSD(T)/cc-pVDZ level

Table 4.1: Calculated resonance energies (ER) and decay widths (Γ ) for the 2s inner
valence hole ofNe atom in neon-water clusters

system ER(a.u.) Γ (a.u.) Γ (meV) lifetime(fs)
NeH2O 1.755 2.8× 10−4 7.6 86
Ne(H2O)2 1.753 9.2× 10−4 25.0 26
Ne(H2O)3 1.752 15.2× 10−4 41.3 16

4.3.3 Ne(H2O)3 SYSTEM

The optimized geometry for theNe(H2O)3 system is presented in Fig 4.3. For this larger

system, the geometry is optimized at the MP2 level in cc-pVTZbasis set. The bond

distance between the Ne and O atom is 3.27Å. For the CAP/EOM-CCSD computations

the CAP box side lengths are chosen to becx = 6.0+δc, cy = 2.0+δc andcz = 8.0+δc,

all in a.u. The optimal value ofδc is 3.0 a.u. To be consistent with the other calculations

we have used same basis set for the calculation of the lifetime ofNe(H2O)3 as for other

clusters. The result for theNe(H2O)3 system is presented in Table 4.1. We have obtained

the complex resonance energyEr = 1.752 − i(7.6 × 10−4) a.u. The decay widthΓ for

theNe(H2O)3 is 41.3 meV, and the lifetime has dropped to 16 fs. We stress that as we

go fromNeH2O with a single neighbor toNe(H2O)3 with three neighbors, the lifetime
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Figure 4.3:Ne(H2O)3 system, optimized at MP2/cc-pVTZ level

is reduced by factor as large as 5.

4.3.4 (HF)2 system

In this subsection, we have discussed about the lifetime of 2s inner-valence hole of F

atom in(HF)2 cluster. Since, the twoHF monomer subunits in(HF)2 are not equivalent,

two energetically different inner-valence states are expected in the independent-particle

model. Thus, the two resonance states ’main line’ arise fromF 2s ionization of(HF)2

system. The optimized geometry for the(HF)2 is presented in Fig 4.4. The hydrogen

bond distance in(HF)2 system is 1.81̊A. In the CAP/EOM-CCSD calculations, the CAP

box side lengths are chosen to becx = 2.5 + δc, cy = 0.5 + δc andcz = δc, wherecx,

cy, cz are the distances from the center of the coordinate system along the x,y,z axis,

respectively, all in a.u. The optimal value ofδc is 4.5 a.u. The results for the resonance

energiesER and decay widthsΓ of the F 2s inner-valence state in(HF)2 cluster are

collected in Table 4.2. We compare our results with CAP/CI results available in literature.

The resonance energyER for theσ orbital localized at the hydrogen donating F atom is
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Table 4.2: Calculated resonance energies (ER) and decay widths (Γ ) for the 2s inner
valence hole ofF atom in(HF)2 using aug-cc-pVTZ basis set

Method ER(eV) Γ (meV) lifetime(fs)
CAP/EOM-CCSD 39.1 20.7 31

40.8 33.0 20
CAP/CIa 38.6 18.0 37

40.5 30.0 22

a See reference 27.

39.1 eV with the decay width of 20.7 meV. The CAP/CI method gives resonance energy

ER = 38.6 eV and widthΓ = 0.41 eV. For the2σ orbital associated with the hydrogen

accepting F atom the resonance position is at 40.8 eV with width of 33.0 meV. For the

same state CAP/CI [27] gives position at 40.5 eV with width of30.0 meV. It can be seen

that the lifetime associated with the inner-valence hole athydrogen accepting F atom

is less compared to the F atom at the hydrogen donating end. Our results are in good

agreement with the CAP/CI results.[27]
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Figure 4.4:(HF)2 system, optimized at MP2/cc-pVTZ level

4.3.5 (HF)3 system

The(HF)3 cluster has a cyclic structure withC3h symmetry. The optimized geometry for

the(HF)3 system is presented in Fig 4.5. The hydrogen bond distance in(HF)3 cluster

is 1.72Å. In this subsection, we have discussed about the lifetime of2s inner-valence

hole of F atom in(HF)3 cluster. Three inner-valence resonane states appear from F2s

ionization of (HF)3 system. In the CAP/EOM-CCSD calculations, the CAP box side

lengths chosen for the(HF)3 system werecx = 14.0 + δc, cy = 2.8 + δc and cz =

21.0+δc, all in a.u. The optimal value ofδc is 2.0 a.u. The computed resonance energies

ER and decay widhsΓ of the F 2s inner-valence states in(HF)3 cluster are collected

in Table 4.3. The lifetime obtained for the(HF)3 is the order of 140-180 meV, which

corresponding to the lifetime of 3.6-4.6 fs. Our results show excellent agreement with

the previous theoretical results. Cederbaum and co-workers have predicted the lifetime

of the F 2s inner valence state in(HF)3 cluster is about 0.1-0.15 eV, which corresponding

to the lifetime of 4.5-6.5 fs.
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Table 4.3: Calculated resonance energies (ER) and decay widths (Γ ) for the 2s inner
valence hole ofF atom in(HF)3 using aug-cc-pVDZ basis set

ER(eV) Γ (meV) lifetime(fs)
40.5 140 4.60
40.7 160 4.06
41.6 180 3.60

Figure 4.5:(HF)3 system, optimized at MP2/cc-pVTZ level

4.4 CONCLUSION

In this chapter, we have implemented the equation-of-motion coupled-cluster (EOM-

CC) method along with complex absorbing potential (CAP) approach to study the ICD

in weakly bound neon-water clusters. One can view these clusters asNe microsolvated

in water.[56] Specifically, we have applied this method to study the lifetime of an inner

valence 2s hole ofNe atom inNeH2O, Ne(H2O)2, Ne(H2O)3 clusters. We expect

to have different O-H bond lengths for inner valence ionizedspecies compared to the

neutral cluster. However, our study is for the vertical ionization and not for the adiabatic

calculation. The computed lifetime for theNeH2O system is 86 fs. The lifetime obtained

for theNe(H2O)2 system is 26 fs and drops further to 16 fs if an additional neighbor is

added to obtainNe(H2O)3. As a characteristic feature of ICD,[17] the lifetimes decrease
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strongly with an increasing number of neighbors. The reasonfor the over proportional

change of lifetime is the changes of electronic structure aswe go fromNeH2O system

to Ne(H2O)3 system. Another possible reason is with increasing the number of water

molecules the basis set becomes large. This provides the better treatment of electron

correlation for the large neon-water cluster. Since the bond distances between the Ne and

O atoms in different neon-water clusters are large enough wefeel that energy transfer in

ICD process is governed by virtual photon exchange [57] pathway. It is illuminating to

compare these lifetimes to the respective lifetime of 2s ionized isolatedNe. The isolated

Ne can only decay by photon emission and its lifetime is .2 ns,[58] i.e., due to presence of

3 neighbors, the ionizedNe atom decays by105 order of magnitude faster than without

neighbors. We have also applied the CAP/EOM-CCSD approach to study the ICD in

small hydrogen bondedHF cluster. Specifically, we have applied this method to study

the lifetime of an inner-valence 2s hole of F atom in(HF)2, (HF)3 clusters. In(HF)2

cluster, the estimated lifetime to be the order of 20.7-33.0meV, which corresponding

to the lifetime of 31-20 fs. The lifetime decreases stronglywhen we go from(HF)2 to

(HF)3. The computed lifetime for the(HF)3 cluster drops to be the order of 140-180

meV, which corresponding to the lifetime of 3.6-4.6 fs. We stress that as we go from

(HF)2 with one neighbor to(HF)3 with two neighbors, the lifetime reduced by factor as

large as 6. The reason behind the changes of lifetime is the number of decay channels

increase as we go from(HF)2 to (HF)3. Another possible reason is the hydrogen bond

distance shrink by about 0.10̊A when we go from(HF)2 to (HF)3. This makes the

ICD mechanism more faster for the(HF)3 system. This documents nicely the enormous

impact of ICD.
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Björneholm, and U. Hergenhahn,J. Chem. Phys.122, 241102 (2005).

105



[11] T. Jahnke, H. Sann, T. Havermeier, K. Kreidi, C. Stuck, M. Meckel, M.

Schffler, N. Neumann, R. Wallauer, S. Voss, A. Czasch, O. Jagutzki, A.

Malakzadeh, F. Afaneh, Th. Weber, H. Schmidt-Böcking, andR. Dörner,
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Chapter 5

————————————————————

Equation-of-motion coupled cluster method for

the core hole and double core hole Auger decay

————————————————————

In this chapter, we have explored about the Auger decay. The recent development

of Linac coherent light source high intense x-ray laser makes it possible to create double

core ionization in the molecule. The generation of double core hole state and its decay

is identified by Auger spectroscopy. The decay of this doublecore hole (DCH) states can

be used as a powerful spectroscopic tool in chemical analysis. In this present work, we

have implemented a promising approach, known as CAP/EOM-CCmethod, for the first

time to calculate the decay rate of core hole (k) and double core hole (kk) state. We have

applied this method to calculate the lifetime of auto-ionized core hole and double core

hole excited states in various systems. The calculated lifetime is found to be very short

for the double core hole (kk) state and the decay rate is faster compare to the single core

hole (k) Auger decay.
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The recent development of short pulse, intense, x-ray free electron laser (XEFL) [1, 2]

allow to create multiple vacancies in the core level of molecules through the sequential

absorption of multiple photon. However, at the same time it is possible to generate multi-

ple vacancies in the core level using synchroton radiation (SR). In contrast to the XEFL,

SR creates vacancies through the single photon absorption.The creation of double va-

cancies in the core level produce a high lying excited cationic state which lie above the

double ionization threshold as a result it can relax via Auger decay. In Auger decay,[3, 4]

an electron from the outer valence level fills the vacancy in the core level and the released

energy is transferred to another outer valence electron which is then emitted from the sys-

tem. The emitted secondary electron (Auger electron) contains very low energy, in the

order of few electron volts. The presence of different atomic sites in the molecule open

up two different possibilities for the double core hole (DCH) states,[5, 6] one is with

two core hole states placed on one single atom and another with two core hole states

placed on two different atoms. The decay of double core hole state of molecule through

Auger decay can be rationalized as follows: In the first Augertransition, DCH (KK) state

decay to the core valence valence (KLL) state with the emission of one Auger electron

and then the (KLL) state again decay to the quadrupole valence valence (LLLL) state

in the second Auger transition with the emission of another Auger electron. The other

possibilities are direct Auger decay or double Auger decay.In the direct Auger decay,

two outer valence electrons simultaneously fill the core level vacancy with the emission

of an Auger electron. In double Auger decay, an outer valenceelectron fills the core hole

vacancy with the emission of two Auger electrons.

The Auger decay for the core hole state of molecule has been studied quite elab-

orately in both theoretically and experimentally. However, theoretical works on DCH

Auger decay are limited. Inhester et al. [7] have studied thedecay rate of DCH Auger

decay of first row hydrides using the configuration interaction (CI) method. Averbukh
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and co-workers [8] have calculated the lifetime of DCH Augerdecay using the Fano-

ADC approach. Very recently, Ehara and co-workers [9] have studied the DCH state

of molecules. In their work, complete active space self-consistent field (CASSCF) and

configuration interaction (CASCI) have been employed to calculate the energies of DCH

state. Wentzel’s formulla has been used to calculate the Auger intensity. The Auger

decay of DCH state has also been confirmed experimentally. [10]

Auger decay plays a significant role in the detection of chemical environment. The

energy required to removal of an electron from the core leveldepends specifically on the

atomic species. Thus, the chemical environment is identified by the Auger spectroscopy

through the shifts of line or position. This is the way for thechemical analysis using

electronic spectroscopy. The energy shift or position shift is more pronounced in case

of double core hole Auger decay and it is expected to be a more powerful spectroscopic

tool compare to the traditional single core hole Auger spectroscopy for the analysis of

local chemical environment. [11, 12] The improvement of energy shift or position shift

may helpful for the future spectroscopic studies of electronic structure in a better way.

Further, in biological medium the neutralization of excited ions occurs through Auger

decay plays an important role in cellular DNA damage. [13, 14] Therefore, the accurate

description of Auger decay might be helpful in the development of new radiooncology

scheme. It is well known that both electron correlation and relaxation effects play an

important role in the description of core hole and double core hole states. The EOM-CC

method [15] includes both electron correlation [16] (dynamic as well as non-dynamic)

and relaxation effect effectively and also fulfill the size extensivity criteria in the ground

state. It also gives direct intensive energy difference. Therefore, the EOMCC approach

is very promising to describe the Auger decay for core hole and double core hole states.

The starting point for the EOM-CC method [15] is a coupled cluster (CC) ground

state wave function. In CC method, the ground state wave function can be defined as

|ψ0〉 = eT |φ0〉 ,

where |φ0〉 is the N-electron close shell reference determinant .e.g.,the restricted
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Hartree-Fock determinant (RHF) andT is the cluster operator. In the coupled cluster

singles and doubles (CCSD) approximation,T operator can be defined as follows

T =
∑
ia

tai a
+
a ai + 1/4

∑
ab

∑
ij

tabij a
+
a a

+
b aiaj + ......, . (5.1)

where the standard convention for the indices is used, i.e.,indices a,b,..., refer to the

virtual spin orbitals and indices i,j,.., refer to the occupied spin orbitals.

Within the EOM-CCSD formalism, [17–19] the wave function for the ionized, double

ionized states,|ψµ〉, can be expressed as

|ψµ〉 = R(µ)|ψ0〉, (5.2)

whereR(µ) is ionization, double ionization, etc, operator

R(µ) = r0(µ) +R1(µ) +R2(µ) +R3(µ) + .................. (5.3)

TheR(µ) can be defined via creation -annihilation operator depending on the con-

sidered process as follows

R(µ)IP =
∑
i

ri(µ)ai + 1/2
∑
a

∑
ij

raij(µ)a
+
a ajai + ..................... (5.4)

R(µ)DIP = 1/2
∑
ij

rij(µ)aiaj + 1/6
∑
a

∑
ijk

raijk(µ)a
+
a akajai + ................... (5.5)

TheR1(µ) operator does not contribute to the expansion ofR(µ)DIP operator. The

r0 operator is zero for IP, DIP, etc.

The Schrödinger equation for IP, DIP states can be expressed as

HNR(µ)|ψ0〉 = ∆EµR(µ)|ψ0〉 (5.6)

whereHN is the normal ordered Hamiltonian and it can be expressed as

HN = H − 〈φ0|H|φ0〉 (5.7)
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The final form of EOM-CC equation is

H̄NR(µ)|φ0〉 = wµR(µ)|φ0〉 (5.8)

wherewµ is the energy change connected with the considered process.The H̄N is

the similarity transformed Hamiltonian, in terms of connected diagrams and it can be

defined as

H̄N = e−THeT − 〈φ0|e
−THeT |φ0〉 (5.9)

In a matrix form eq 6.10 is

H̄NR(µ) = wµR(µ) (5.10)

The H̄N matrix is diagonalized in the sub space of 1h and 2h1p space toget the

required ionization potential (IP) values.

The double ionization potential (DIP) values are obtained through non-symmetric

diagonalization ofH̄N matrix in the subspace of 2h and 3h1p space.

In this work, we take the CCSD model for both the GS as well as IPpart ( solveR1

andR2 equation). However, in case of DIP-EOMCC, GS we take the CCSDmodel (n6)

and DIP part is as in the full CCSDT one ( so we solveR2 andR3 equations).

In the CAP/ EOMCC method,[20, 21] the CAP term (-iη W) [22–24] should be added

to the coupled cluster (CC) method whereη represents the CAP strength and W is a real

soft box like potential. After addition of CAP to the CC method, the ground state wave

function|ψ0〉 for the CC method can be defined as|Ψ0(η)〉 = eT (η)|φ0〉.

Then, the CAP term is added to the one body particle-particle(f̄pp) part ofH̄N . The

other terms of theH̄N matrix are altered via the appearance of the complexT (η). Thus,

the new form of theH̄N matrix is

H̄N(η) = e−T (η)HN(η)e
T (η) − 〈φ0|e

−T (η)HN(η)e
T (η)|φ0〉 (5.11)

H̄N(η)Rη(µ) = wµ(η)Rη(µ) (5.12)
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Finally, the resulting complex̄HN(η)matrix is diagonalized for the differentη values.

The resonance energies are obtained using the following equation

Eres(η) = wµ(η) + ECC(η)− ECC(η = 0) (5.13)

In this chapter, we approximateT (η) asT (η = 0). The CAP is added directly to the

one body particle-particle (̄fpp) part ofH̄N . Thus, the new form of thēHN matrix is

H̄N(η) = e−T (η=0)HN(η)e
T (η=0) − 〈φ0|e

−THNe
T |φ0〉 (5.14)

H̄N(η)Rη(µ) = wµ(η)Rη(µ) (5.15)

Finally, the resulting complex̄HN(η) matrix is diagonalized in 1h and 2h1p space for

the calculation of core hole Auger decay. The double core hole Auger decay is calculated

diagonalizing the complex̄HN(η) matrix in 2h and 3h1p space. The resonance states can

be identified from theη trajectories that shows stabilization cusps. The justification of

our approximation is discussed elaborately in ref 25.[25]

The Auger decay rate for the single core hole state (K) state of Ne, H2O, HF systems

are calculated using our CAP/ EOMCC method. All the calculated values are compared

with the available theoretical and experimental values in literature. The SCF calculations

are done with the help of GAMESS-US software package.[26] Inthe calculation ofNe,

H2O, HF molecules aug-cc-pVQZ basis set [27] is chosen for the Ne, O and F atoms.

The cc-pVTZ basis set is chosen for the H atom. The cartesian coordinate used for the

H2O, HF molecules are compiled in Table 5.1 and Table 5.2. The decay rate (Γ) for the

Auger decay of core hole states have been calculated in various CAP box sizes for all the

systems. The results are presented in Table 5.3. The resultsfor the decay rate of single

core hole state is compared with the various theoretical approaches such as configuration

interaction (CI),[7] Fano-ADC approach, [8] etc. Our results show excellent agreement

with the various theoretical methods as well as experimental results. The decay rate for
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Table 5.1: Cartesian coordinate used forH2O molecule inÅ

atom X Y Z
O 0.0000 0.0000 0.0000
H 0.0000 0.0000 0.9584
H 0.9280 0.0000 -0.2391

Table 5.2: Cartesian coordinate used forHF molecule inÅ

atom X Y Z
F 0.0000 0.0000 0.4584
H 0.0000 0.0000 -0.4584

the double core hole (KK) states are calculated inNe, HF systems. The calculated decay

rate for the double core hole (KK) states in various CAP box sizes are presented in Table

5.4. The lifetime for the double core hole state(kk) is also compare with the available

theoretical methods. From Table 5.4 we can see decay for the double core hole (DCH)

state is much faster compare to the single core hole state. The possible reason behind

the enhanced rate of DCH is that it deforms the valence electron density more heavily

compare to the single core hole state.
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Table 5.3: Calculated decay widths (Γ) for the single core (k) ionized states in10−3 a.u

Theory Experiment
CAP-EOMCC Other methods

CAP Box
Ne 11.8 2.60/2.60/2.60 8.8a , 10.3b

9.7 2.70/2.70/2.70
8.2 2.80/2.80/2.80

HF 7.9 3.00/3.00/3.87 7.3c, 8.3d

6.2 3.20/3.20/4.06
4.2 3.50/3.50/4.37

H2O 7.6 4.75 /3.00/4.81 5.6c, 6.8d, 5.4e 5.8± 0.2f

6.5 4.95/3.20/5.01
5.4 5.25/3.50/ 5.31

a see ref 28.b see ref 29.c see ref 7.d see ref 30e see ref 8.f see ref 31.
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Table 5.4: Calculated decay widths (Γ) for the double ionized states in10−3 a.u

Theory
States CAP-EOMCC Other methods

CAP Box
Ne2+ 1s−21S 24.0 2.6/2.6/2.6 25.8a, 26.0b, 29.5c

1s−12s−11S 19.3
1s−12p−11P 18.5

1s−21S 20.4 2.7/2.7/2.7
1s−12s−11S 15.8
1s−12p−11P 15.3

1s−21S 17.4 2.8/2.8/2.8
1s−12s−11S 13.1
1s−12p−11P 12.6

HF2+ 1σ−2 17.4 3.00/3.00/3.87 21.8a

1σ−12σ−1 13.5
1σ−13σ−1 13.4
1σ−11π−1 12.1

1σ−2 15.0 3.20/3.20/4.06
1σ−12σ−1 10.0
1σ−13σ−1 10.1
1σ−11π−1 9.2

a see ref 7.b see ref 28.c see ref 29.

In summary, we have successfully implemented the CAP/EOMCCmethod for the

first time to calculate the Auger decay of core hole and doublecore hole states of

molecules. We have shown the decay rate of DCH states are∼ 2 to 3 times faster com-

pare to the single core hole Auger decay. Our results show excellent agreement with the

available literature values. This is the first time Auger decay for the multiple ionized

states has been studied using such a highly correlated method like CAP-EOMCC. To ap-

ply our approach for the large biomolecules will be the direction of our future work. We

hope our approach will help to develop efficient descriptionand models how radiation

damage occurs after multiple core ionization in large system.
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Chapter 6

————————————————————

The potential curve for the lifetime of

Interatomic coulombic decay(ICD) mechanism

using equation-of-moton coupled cluster

(EOMCC) method

————————————————————

In this chapter, we have applied the CAP/EOMCCSD method to compute how the inter-

atomic or intermolecular coulombic decay (ICD) rate of molecule changes with changing

the internuclear distance of the molecule. The calculationof ICD decay rate in different

internuclear distances is a step towards understanding thedynamics in challenging sys-

tems involving inner valence excited states. In this chapter, the summary of the thesis is

presented. We have also discuss the future perspective in this field.
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6.1 Introduction

The Interatomic coulombic decay (ICD) is a highly efficient relaxation pathway of

electronically excited atoms or molecules in environment.The ICD has been predicted

theoretically by Cederbaum et al. [1] in 1997. The electronically excited states which

can relax via ICD mechanism can be generated in various ways e.g. following the Auger

decay [2] of core excited state or through creating a vacancyin the inner valence state or

outer valence state. The important characteristic of ICD [3–6] is its fast decay. Generally,

it occurs in femto-second time scale. The ICD is a completelyenvironmental phenom-

ena. The efficient energy exchange with the neighboring atoms or molecules plays the

key role in this decay process. Thus, the ICD decay [7–12] rate strongly depends on the

number of environmental species as well as internuclear distances between them. En-

ergetically, ICD is possible when the binding energy of the excited state lies above the

double ionization threshold of the corresponding cluster.

Electronically excited states of atoms or molecules can also relax in various radiative

decay mechanism, such as photon emission, radiative chargetransfer (RCT), etc. How-

ever, these are slow processes. Generally, they occur in nano-second (ns) time scale.

Another non-radiative decay mechanism is operative for thecore excited states of atoms

or molecules is called Auger decay. In Auger decay, a core level vacancy of a partic-

ular atom or molecule is replaced by two outer valence vacancy of the same atom or

molecule. Auger decay is also a very fast decay process. It occurs in femto-second or

even atto-second time domain. The electronically excited states preferably undergoes

ICD mechanism when the intramolecular auto-ionization is not energetically favorable.

Historically, ICD has been studied in various weakly bound systems, such as hydro-

gen bonded clusters,[13] van der Waals clusters,[4] etc. The existence of ICD has also

been proved in most weakly boundHe2 cluster in nature.[14] Recently, Cederbaum and

co-workers [15] have shown that the site and energy of the ICDelectron can efficiently
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controlled by spectator resonance Auger decay. It has also been proved that complex

absorbing potential approach is highly efficient to calculate the lifetime of inner valence

excited states. Santra et al.[16, 17] have applied the CAP/CI approach to calculate the

lifetime of ICD decay mode. The CAP/ADC method [18] has also been developed to

measure the ICD decay rate. Recently, a highly efficient CAP/EOMCC method [19] has

been developed by Vaval and co-workers and it has been applied successfully to cal-

culate the lifetime of 2s inner valence excited states ofNe atom inNe(H2O)n (n=1,3)

clusters. Very recently, the ICD mechanism has been observed experimentally for the

NeNe [20, 21] and(H2O)2 systems.[22, 23]

Recently, it has been proved that the low energy electrons ofthe order of 2-3 electron

volts (eV) are highly efficient to break the single DNA stand and the electrons of the order

of 5-6 eV are extremely useful to break the double DNA stand.[24, 25] One of the most

amazing feature of ICD is it automatically produces low energy electrons of the order of

4-5 eV. Thus, the ICD might be act as an important source of lowenergy electrons which

can cause severe damage to the single and double DNA stand. Therefore, the accurate

description of ICD mechanism is highly important to convertthis decay mode to a useful

radiotherapy scheme.

The ICD process mainly depends on the initial ionized excited state and the double

ionized final state. Therefore, to describe the ICD process effectively, the accurate de-

scription of both the ionized states are extremely important. The accurate measurement

of initial ionized excited state is possible using the EOMCCmethod. One of the most

amazing feature of EOMCC method is the capability of including electron correlation

and relaxation effects in an effective manner. The electroncorrelation and relaxation

effects play the substantial role in the accurate description of ionized excited state . An-

other advantage is that it gives direct intensive energy difference. Therefore, the EOMCC

approach is very promising to calculate the lifetime of ICD process in an accurate man-

ner.

In this chapter, we have applied the well known CAP/EOMCCSD approach for the
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first time to study the potential curve for the lifetime of 2s inner valence excited state of

Ne atom inNeNe, NeMg, NeAr systems. The results have been compared with the other

theoretical results available in literature.

6.2 Theory

In this section, we briefly discuss about the CAP/EOMCCSD method. The CAP ap-

proach [26–30] is known to be a very powerful approach to describe the resonance states

effectively. The main idea of CAP approach is to absorb the outgoing electron without

disturbing the target system. In this way, the wave functionof the outgoing electron be-

comes square integrable. In the CAP approach, the modified Hamiltonian can be defined

as

H(η) = H − iηW, (6.1)

whereη represents the CAP strength and W is the real soft box like potential. The addi-

tion of CAP makes the Hamiltonian operator non-Hermitian. The resonance energies are

obtained through solving the complex eigenvalue problem corresponding to the matrix

representation ofH(η).

The resonance energy is obtained when

|η∂E/∂η| (6.2)

becomes minimum.

According to Siegert and Gamow, the resonance energy can be expressed as

Er = ER − iΓ/2, (6.3)

whereER represents the resonance position andΓ is the decay width.Γ is inversely

related to the lifetime of the resonance state via,τ = ~/Γ .
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The starting point for the EOMCC method is a coupled cluster (CC) ground state

wave function. In CC method, the ground state wave function can be defined as

|ψ0〉 = eT |φ0〉, (6.4)

whereφ0 is the N-electron close shell reference determinant .e.g.,the restricted

Hartree-Fock determinant (RHF) andT is the cluster operator. In the coupled cluster

singles and doubles (CCSD) approximation,T operator can be defined as follows

T =
∑
ia

tai a
+
a ai + 1/4

∑
ab

∑
ij

tabij a
+
a a

+
b aiaj + ......, . (6.5)

where the standard convention for the indices is used, i.e.,indices a,b,..., refer to the

virtual spin orbitals and indices i,j,.., refer to the occupied spin orbitals.

In the EOMCCSD approach, [31–33] the wave function for theµ th ionized statesψµ

can be expressed as

|ψµ〉 = R(µ)|ψ0〉, (6.6)

whereR(µ) is the ionization operator.

TheR(µ) operator can be defined via creation -annihilation operatoras follows

R(µ)IP =
∑
i

ri(µ)ai + 1/2
∑
a

∑
ij

raij(µ)a
+
a ajai + ..................... (6.7)

The Schrödinger equation for the ionized states can be expressed as

HNR(µ)|ψ0〉 = ∆EµR(µ)|ψ0〉 (6.8)

whereHN is the normal ordered Hamiltonian and it can be written as

HN = H − 〈φ0|H|φ0〉 (6.9)

The final form of EOMCC equation is

H̄NR(µ)|φ0〉 = wµR(µ)|φ0〉 (6.10)
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wherewµ is the energy change connected with the ionization process.TheH̄N is the

similarity transformed Hamiltonian, in terms of connecteddiagrams and it can be defined

as

H̄N = e−THeT − 〈φ0|e
−THeT |φ0〉 (6.11)

In a matrix form eq 6.10 is

H̄NR(µ) = wµR(µ) (6.12)

The H̄N matrix is diagonalized in the sub space of 1h and 2h1p space toget the

required ionization potential (IP) values.

In the CAP/ EOMCC method, the CAP term should be added to the coupled cluster

(CC) method. After addition of CAP to the CC method, the ground state wave function

|ψ0〉 for the CC method can be written as

|Ψ0(η)〉 = eT (η)|φ0〉 (6.13)

TheT (η) amplitudes become complex. These complexT (η) amplitudes have been

used latter to construct thēHN(η) matrix.

Then, the CAP term is added to the one body particle-particle(f̄pp) part ofH̄N . The

other terms of theH̄N matrix are altered via the appearance of the complexT (η). Thus,

the new form of theH̄N matrix is

H̄N(η) = e−T (η)HN(η)e
T (η) − 〈φ0|e

−T (η)HN(η)e
T (η)|φ0〉 (6.14)

H̄N(η)Rη(µ) = wµ(η)Rη(µ) (6.15)

Finally, the resulting complex̄HN(η)matrix is diagonalized for the differentη values.

However to obtain the resonance energies we need to use following equation since the

ground state energies are suppose to be CAP free.

Eres(η) = wµ(η) + ECC(η)− ECC(η = 0) (6.16)
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In this chapter, we have made an approximationT (η) ≈ T (η = 0). Thus, the CAP

is not added at the CC level. The CAP is added directly to the one body particle-particle

(f̄pp) part ofH̄N . Therefore, the new form of thēHN matrix is

H̄N(η) = e−T (η=0)HN(η)e
T (η=0) − 〈φ0|e

−THNe
T |φ0〉 (6.17)

Finally, the resulting complexH̄N(η) matrix is diagonalized for the differentη val-

ues to get the resonance energies. The resonance states can be identified from theη

trajectories that shows stabilization cusps.

The artificial nature of the CAP potential and its application only to the particle-

particle part justify our approximation. The CAP has very less effect on the ground

state energy.The main advantage of this approximation is that it reduces theη trajectory

generation time. In this approach CC calculation needs to bedone only once. Since, the

ground state isη independent, resonance energy we get as the direct difference energy

obtained as eigenvalues of̄HN(η) for differentη values

H̄N(η)Rη(µ) = wµ(η)Rη(µ). (6.18)

6.3 Computational details

The aug-cc-pCVTZ basis [34] set has been used to calculate the lifetime of ICD process

in NeNe, NeMg, NeAr systems. The first step in the CAP/EOMCCSD computations is

an SCF calculation for the neutralNeNe, NeMg, NeAr systems. The SCF calculation

has been performed by using the GAMESS-US suite of programs.[35] The required

matrix elements of the EOMCCSD and CAP matrices have been computed using our

own codes. For diagonalization purpose, we have implemented the non hermitian version

of Davidson algorithm in our EOMCC code.
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The potentialW is the soft-box potential and it can be defined as

W (x; c) =
3∑

i=1

Wi(xi; ci), (6.19)

where

Wi(xi; ci) = {
0,|xi|≤ci,

(|xi|−ci)2,|xi|>ci
(6.20)

Here, ci, i = 1, 3 are the real, non-negative parameters which define the size of a

rectangular box. The target molecule is placed in the centerof the box. The matrix

elements ofW (x; c) are calculated within a Gaussian basis set.

6.4 Results and discussion

In this chapter, we have implemented the CAP/EOMCCSD methodto study the potential

curves for the lifetime of 2s inner valence excited state ofNe atom inNeNe, NeMg,

NeAr systems. The lifetime has been studied in various internuclear distances. In the

CAP/EOMCCSD calculations, the all the molecules are placedin a cartesian coordinate

system at(0.0, 0.0,±R/2a.u.), whereR is the bond distance between the two atoms. In

the CAP/EOMCC computations, the CAP box side lengths are chosen to becx = cy = δc

andcz = δc + R/2, wherecx,cy,cz are the distances from the center of the coordinate

system along thex,y, andz axis, respectively, andδc is a non-negative number, all in a.u.

Theδc value we have chosen for theNeNe is 3.0 a.u and for theNeMg system value is

5.0 a.u. Theδc value for theNeAr system is 4.0 a.u.

The ICD decay process inNeNe can be explained as follows : the Ne 2s vacancy is lo-

calized on one of the Ne atom. An electron from the 2p level of the same Ne atom comes

to fill up the Ne 2s vacancy and the excess energy is used to eject an electron of Ne 2p

level from the neighboring Ne atom. Therefore, the final state of ICD process inNeNe is

characterized byNe+(2p−1)Ne+(2p−1) state. The ICD channel is open inNeNe system

because the energy ofNe+(2s−1)Ne state lies above the energy ofNe+(2p−1)Ne+(2p−1)

state. At equilibrium bond length of neutralNeNe molecule, the energy ofNe+(2s−1)Ne
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Table 6.1: Calculated decay widths (Γ ) for the 2Σ+
u inner valence hole ofNe atom in

NeNe

Bond distance(̊A) Γ (meV) lifetime(fs)
2.8 9.52 69
2.9 8.27 79
3.0 7.21 91
3.1 6.72 98
3.2 6.53 100
3.3 6.35 103
3.4 6.20 106

state is 48.38 electron volts(eV). Here, we have calculatedthe lifetime of2Σ+
u inner va-

lence excited state of neon dimer in various inter nuclear distances. Starting from 2.8̊A

we have symmetrically stretch the Ne-Ne bond distance up to 3.5 Å. The lifetimes for the

2Σ+
u inner valence excited state in various internuclear distances are presented in Table

6.1. Starting from the Ne-Ne bond distance 2.8Å the lifetime increases rapidly when we

stretch the Ne-Ne bond distance. Another important aspect is the ICD decay channel is

open for the2Σ+
u inner valence excited state at bond distance〉 2.70Å. When the Ne-Ne

bond distance is〈 2.70Å the ICD decay channel for the2Σ+
u state is energetically for-

bidden. The schematic representation of lifetimes for the2Σ+
u inner valence excited state

of neon dimer in various internuclear distances are presented in Fig 6.1.

The lifetime for the2Σ+
u state is compared with the other theoretical approaches avail-

able in literature. The computed lifetime for the2Σ+
u state at equilibrium bond distance

(3.2Å) is 100 femto-second (fs). The calculated lifetime using the CAP/ADC method is

92 fs.[18] The d-aug-cc-pV5Z basis set has been used in the CAP/ADC calculation. The

CAP/CI method gives lifetime for the2Σ+
u state is 64 fs. The basis set used in the CAP/CI

calculation [17] is d-aug-cc-pVDZ augmented by three diffuse s, p, and d functions each.

In a recent experiment it has been found that the 2s inner valence excited state of Ne atom

in neon dimer can have lifetime in the order of (150± 50) fs.[21] Therefore, the result

obtained in CAP/EOMCCSD method show excellent agreement with the experimental
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result.

The 2s inner valence excited state ofNe atom inNeMg can relax through ICD mech-

anism to aNe+(2p−1)Mg+(3s−1) final state. In this process, one 2p electron fills up the

2s vacancy of Ne atom and released energy ejected another 3s outer valence electron

from the Mg atom. At equilibrium bond length (4.4̊A) the energy of theNe+(2s−1)Mg

state is 48.3 eV. The energy of theNe+(2p−1)Mg+(3s−1) state is 32.29 eV. The energy

of Ne+(2p−1)Mg+(3s−1) state is 16 eV lower in comparison withNe+(2s−1)Mg state.

Therefore, the ICD decay channel is energetically open for theNe+(2s−1)Mg state. The

Ne+(2s−1)Mg state can also relax to a final stateNeMg2+(3s−2) through Electron trans-

fer mediated decay mechanism(ETMD). The energy of theNeMg2+(3s−2) state is 22.5

eV. The two decay channel is open for theNe+(2s−1)Mg state due to very low energy of

3s orbital of Mg atom. However, the only decay channel is openfor NeNe is ICD. The

calculation of lifetime separately for ICD and ETMD processis not possible using the

CAP/EOMCCSD method. Here, We have calculated the total lifetime ofNe+(2s−1)Mg

state in various internuclear distances. Starting from Ne-Mg bond distance 4.0̊A, the

lifetime of Ne+(2s−1)Mg state is calculated up to the bond distance 5.0Å. The calcu-

lated lifetime for various internuclear distances are presented in Table 6.2. Starting from

equilibrium bond distance, the lifetime ofNe+(2s−1)Mg state increases strongly with

increasing the Ne-Mg bond distance. The schematic representation of lifetimes for the

2s inner valence excited state of NeMg in various internuclear distances are presented in

Fig 6.2.

We have also calculated the lifetime of 2s inner valence excited state ofNe atom in

NeAr cluster in various internuclear distances between Ne and Aratom. The calculated

lifetime in various internuclear distances are presented in Table 6.3. The schematic repre-

sentation of lifetimes for the 2s inner valence excited state of NeAr in various internuclear

distances are presented in Fig 6.3. The two decay channel is open for theNe+(2s−1)Ar

state. It can decay to the finalNe+(2p−1)Ar+(3p−1) state through ICD process. The ICD

decay channel is open becauseNe+(2p−1)Ar+(3p−1) state (at equilibrium bond length
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Table 6.2: Calculated decay widths (Γ ) for the 2s inner valence hole ofNe atom in
NeMg

Bond distance(̊A) Γ (meV) lifetime(fs)
4.0 30.24 22
4.2 24.25 27
4.4 17.25 38
4.6 9.87 66
4.8 3.83 171

Table 6.3: Calculated decay widths (Γ ) for the 2s inner valence hole ofNe atom inNeAr

Bond distance(̊A) Γ (meV) lifetime(fs)
2.8 124.15 5
3.0 114.12 6
3.2 84.90 8
3.4 47.63 14
3.5 37.40 17
3.6 33.89 19
3.8 26.22 25

3.5Å) has energy 5 eV lower compare to theNe+(2s−1)Ar state. Further,Ne+(2s−1)Ar

state can relax toNeAr2+(3p−2) state via ETMD pathway. Here, we have calculated

the total lifetime ofNe+(2s−1)Ar state using the CAP/EOMCCSD method. However,

at equilibrium bond length of NeAr system ETMD process is suppressed by ICD decay

mode.
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Figure 6.1: Potential curve of calculated decay widths (Γ ) for the2Σ+
u inner valence state

of Ne atom inNeNe
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Figure 6.2: Potential curve of calculated decay widths (Γ ) for the 2s inner valence hole
of Ne atom inNeMg
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Figure 6.3: Potential curve of calculated decay widths (Γ ) for the 2s inner valence hole
of Ne atom inNeAr

6.5 Conclusion

In this chapter we have implemented the highly correlated CAP/EOMCCSD approach

for the first time to describe the ICD process in weakly bound van der Waals clusters.

The method has been implemented to study the lifetime of 2s inner valence excited state

of Ne atom inNeNe, NeMg, NeAr systems in various internuclear distances. The ICD

decay rate decreases rapidly when we stretch theNeNe, NeMg, NeAr systems from

their equilibrium bond length. The reason behind decreasing the decay rate is that with

increasing the bond distance between two atoms energy transfer process becomes slow

down which decreases the ICD decay rate. Another important aspect is at equilibrium

bond length when we go fromNeNe to NeMg the decay rate increases. Further, the

decay rate increases when we go fromNeMg to NeAr. The reason for increasing the

decay rate when we go fromNeMg to NeAr is that the equilibrium bond length for

theNeMg system is 4.4Å. However, the equilibrium bond length forNeAr system is

3.5 Å. Therefore, the bond distance between two atoms play an important role to make

difference in ICD decay rate. The reason for the change of lifetime is the changes of

electronic structure as we go fromNeNe toNeMg. In case ofNeMg the double ionization

threshold is much less compare to theNeNe.
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In this thesis, the CAP/EOMCC method has been developed and successfully imple-

mented for the description of shape resonance as well as various non-radiative decay phe-

nomena such as ICD, Auger decay, etc. However, the highly correlated CAP/EOMCC

approach has been implemented for the smaller systems to describe these various phe-

nomena. To apply our approach for the large bio-molecules will be the direction of our

future work. We hope our approach might be helpful in furtherdevelopment of effi-

cient radiooncology scheme to understand the radiation damage in biological systems in

a more accurate manner.

137



References

References

[1] L.S. Cederbaum, J. Zobeley, and F. TarantelliPhys. Rev. Lett.79 4778

(1997).

[2] L. S. Cederbaum, Y. C. Chiang, P. V. Demekhin, and N. Moiseyev,

Phys.Rev. Lett.106, 123001 (2011).

[3] N. Moiseyev, R. Santra, J. Zobeley, and L. S. Cederbaum,J. Chem. Phys.

114, 7351 (2001).

[4] R. Santra, J. Zobeley, L. S. Cederbaum and N. Moiseyev,Phys. Rev. Lett.

85, 4490 (2000)

[5] S. Scheit, V. Averbukh, H. D. Meyer, N. Moiseyev, R. Santra, T. Sommer-

feld, J. Zobeley, and L. S. Cederbaum,J. Chem. Phys.121, 8393 (2004).

[6] S. Scheit, V. Averbukh, H. D. Meyer, J. Zobeley, and L. S. Cederbaum,J.

Chem. Phys.124, 154305 (2004).

[7] S. Barth, S. Joshi, S. Marburger, V. Ulrich, A. Lindblas,G. Öhrwall, O.
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