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Abstract 

         In this thesis, we shall mainly focus on the study of structure and properties of 

radicals and molecular excited states. This work will involve the application of existing 

coupled cluster methods, as well as, development of new approximations having lower 

computational cost. 

 

         The state-of-the-art single-reference coupled cluster (SRCC) [1-2] theory is one of 

the most accurate and widely used electronic structure methods for studying ground state 

structure [3-5], properties [6] and spectroscopy [7-9] of closed-shell molecules around 

equilibrium geometry. Apart from a high-level treatment of dynamic electron-correlation, 

the most attractive feature of SRCC method is that it is size-extensive [2] and separates 

correctly, even at the truncated level, provided the reference state is also size-consistent, 

which is not true for truncated configuration interaction (CI) methods [10].  

 

       The SRCC theory, however, fails to properly describe the electron correlation, when 

multiple determinants become equally important for the zeroth order description of the 

wave function. In general, for quasi-degenerate situations, such as potential energy 

surfaces, bond-breaking or making regions, open shell systems and low-lying excited 

states of molecules, where multiple determinants become equally important, the use of 

multi-reference coupled cluster method becomes necessary.  

 

       The MRCC theories can be divided into two classes. The first is single root MRCC 

methods i.e. state specific MRCC [11-16]. The second class constitutes multi-root 

description through effective Hamiltonian approach. We shall focus on the second class. 

Diagonalizing the effective Hamiltonian within the model space, we get multiple roots 

simultaneously [17]. There are two basic classes of effective Hamiltonian based MRCC 

theories, viz, the state-universal MRCC (SUMRCC) or Hilbert space multi reference 

coupled cluster (HSMRCC) method [18-19] and the valence-universal MRCC 
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(VUMRCC) or Fock space multi reference coupled cluster (FSMRCC) method [20-23]. 

Both the approaches differ in the way the dynamic correlation is introduced and hence are 

suitable for different types of situations. HSMRCC is suitable for studying potential 

energy surface. On the other hand, FSMRCC is suitable for the calculation of difference 

of energies like ionization potential [24], electron affinity and excitation energy 

[21,23,25]. In this thesis, we have used FSMRCC for our study. 

 

       In parallel to the MRCC approaches, the equation of motion coupled cluster (EOM-

CC) method [26-29] is known for incorporating a balanced description of both dynamic 

and non-dynamic correlation within the frame work of single-reference coupled cluster 

method and presents a black box approach for the accurate calculation of energy [29-30], 

structure [31-33] and properties [34] of open shell molecules and molecular excited 

states. For principal peaks in electron affinity and ionization problem, the EOM-CC 

method is equivalent [35] to (1,0) and (0,1) sectors of FSMRCC. However, the 

equivalence breaks down in high sectors. 

 

The EOM-CC or FSMRCC method, even in the singles and doubles approximation, has 

the prohibitively high N6 scaling and large storage requirements, which restrict its 

application beyond ten atoms, in a moderate basis set. Thus, it is highly desirable to 

develop methods, similar in spirit with the standard EOM-CCSD or FSMRCCSD 

method, but with lower computational scaling and smaller storage requirements. The 

thesis is organized as follows: 

 

         First chapter: A general introduction is proposed leading to the subject matter of 

the thesis. Here, a brief overview of some of the basic concepts and developments in 

single-reference coupled cluster theories are presented. The source of the problem in 

single-reference methods for theoretical treatment of high-energy radicals and excited 

states are discussed. The necessity of multi-reference treatments to these problematic 

cases is also highlighted. We introduce the theory of equation of motion coupled cluster 
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method as an alternative single-reference approach to multi-reference situations. We 

conclude the first chapter with the objectives and scope of the thesis. 

         Second chapter: The second chapter deals with the study of NOx catalyzed 

pathway of stratospheric ozone depletion, using highly accurate coupled cluster methods. 

These catalytic reactions represent a great challenge to the state-of-the-art ab initio 

methods, while their mechanisms remain unclear to both experimentalists and 

theoreticians. In this work, we have used the so-called “gold standard of quantum 

chemistry,” the CCSD(T) method, to identify the saddle points on NOx based reaction 

pathways of ozone hole formation. Energies of the saddle points are calculated using the 

multi reference variants of coupled cluster methods. The calculated activation energies 

and rate constants show good agreement with available experimental results. 

Tropospheric precursors to stratospheric NOx radicals have been identified, and their 

potential importance in stratospheric chemistry has been discussed. Our calculations 

resolve previous conflicts between ab initio and experimental results for a trans nitro 

peroxide intermediate, in the NOx catalyzed pathway of ozone depletion. 

 

         Third Chapter: In this chapter, we report a comparative single-reference and multi 

reference coupled-cluster investigation on the structure, potential energy surface, and IR 

spectroscopic properties of the trans peroxo nitrate radical, one of the key intermediates 

in stratospheric NOX chemistry. The previous single-reference ab-initio studies predicted 

an unbound structure for the trans peroxo nitrate radical. However, our Fock space multi 

reference coupled cluster calculation confirms a bound structure for the trans peroxo 

nitrate radical, in accordance with the experimental results reported earlier. Further, the 

analysis of the potential energy surface in FSMRCC method indicates a well-behaved 

minimum, contrary to the shallow minima predicted by the single-reference coupled 

cluster method. The harmonic force field analysis, of various possible isomers of peroxo 

nitrate also reveals that only the trans structure leads to the experimentally observed IR 

peak at 1840 cm–1. The present study highlights the critical importance of non-dynamic 



xxvi 

 

correlation in predicting the structure and properties of high-energy stratospheric NOx 

radicals. 

 

         Fourth Chapter: In this chapter, we present a benchmark study on the performance 

of the EOMIP-CCSD(2) method for computation of structure and properties of doublet 

radicals. The EOMIP-CCSD(2) method is a second-order approximation to the standard 

EOMIP-CCSD method. By retaining the black box nature of the standard EOMIP-CCSD 

method and adding favorable N5 scaling, the EOMIP-CCSD(2) method can become the 

method of choice for predicting the structure and spectroscopic properties of large 

doublet radicals. The EOMIP-CCSD(2) method overcomes the typical problems 

associated with the standard single-reference ab-initio treatment of doublet radicals. We 

compare our results for geometries and harmonic vibrational frequencies with those 

obtained using the standard EOMIP-CCSD method, as well as unrestricted Hartree–Fock 

(UHF)- and restricted open-shell Hartree–Fock (ROHF)-based single-reference coupled 

cluster and second order many-body perturbation theory (MBPT(2)) methods. The effect 

of the basis set on the quality of the results has been studied using a hierarchy of 

Dunning’s correlation-consistent aug-cc-pVXZ (X = D, T, Q) basis sets. Numerical 

results show that the EOMIP-CCSD(2) method, despite its N
5 scaling, gives better 

agreement with experimental results, compared to the UHF- and ROHF-based MBPT(2), 

as well as the single-reference coupled cluster methods. 

 

         Fifth Chapter: In this chapter, we present an N
5 scaling modification to the 

standard EOMEA-CCSD method, based on the matrix partitioning technique and 

perturbative approximations. The method has lower computational scaling and smaller 

storage requirements than the standard EOMEA-CCSD method and, therefore, can be 

used to calculate electron affinities of large molecules and clusters. The performance and 

capabilities of the new method have been benchmarked with the standard EOMEA-

CCSD method, for a test set of 20 small molecules, and the average absolute deviation is 

only 0.03 eV. The method is further used to investigate electron affinities of DNA and 
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RNA nucleobases, and the results are in excellent agreement with the experimental 

values. 

 

        Sixth Chapter: Spin flip equation of motion coupled cluster (EOM-SF-CC) can 

correctly treat situations involving electronic degeneracies or near degeneracies, e.g., 

bond breaking, di- and tri-radicals, etc. However, for large systems EOM-SF-CC (even in 

single and double excitations) is computationally prohibitively expensive. Therefore, 

earlier approximations to EOM-SF-CC methods such as spin flip configuration 

interaction singles with perturbative doubles (SF-CIS(D)) have been proposed. In this 

chapter, we present a new perturbative approximation to EOM-SF-CC, which has been 

found to be more accurate than SF-CIS(D). The capabilities, advantages, and timings of 

the new approach have been demonstrated considering the singlet-triplet gaps in di- and 

tri-radicals as well as bond breaking examples. The method is extended to double spin 

flip EOM-CC, and its capabilities have been tested. We have shown that the second order 

approximation to single and double spin flip EOM-CC can generate very accurate 

potential energy surface and their geometrical derivatives.  

 

Seventh Chapter: In this chapter, we present a benchmark investigation on the 

performance of EOMIP-CCSD(2) method for calculation of ionization potential. The 

calculated ionization potential (IP) values are found to be significantly overestimated 

compared to that obtained in the standard EOMIP-CCSD method. However, the EOMIP-

CCSD(2) method correctly reproduces the basis set convergence behavior of standard 

EOMIP-CCSD method, and a small basis set EOMIP-CCSD calculation, extrapolated 

with large basis set EOMIP-CCSD(2) results can correct the errors of the original 

EOMIP-CCSD(2) approximation to a large extend. However, the method gives inferior 

performance for the cases where relaxation effect plays an important role. 

 

Eighth Chapter: In this chapter, we present a new approximation to the standard 

EOMIP-CCSD method. The new method (EOMIP-CCSD(2)*) scales as non-iterative N6 
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and has significantly low storage requirement. The problem of over estimation of 

ionization potential in EOMIP-CCSD(2) approximation is corrected in this new method 

and the EOMIP-CCSD(2)* method gives excellent agreement with experimental values. 

It also gives very good with the experiment for bond-length and IR frequencies and 

produces value comparable to CCSD(T), in significantly less computational cost. The 

EOMIP-CCSD(2)* approximation works even for core-ionization and satellite IP, where 

the previous EOMIP-CCSD(2) approximation drastically fails. 

 

 

  



xxix 

 

 

References: 

1. Cizek, J., On the Correlation Problem in Atomic and Molecular Systems. 

Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-

Field Theoretical Methods. J. Chem. Phys. 1966, 45, 4256-4266. 

2. Bartlett, R. J., MANY-BODY PERTURBATION-THEORY AND COUPLED 

CLUSTER THEORY FOR ELECTRON CORRELATION IN MOLECULES. Annu. Rev. 

Phys. Chem. 1981, 32, 359-401. 

3. Adamowicz, L.; Laidig, W. D.; Bartlett, R. J., Analytical gradients for the coupled-

cluster method. Int. J. Quant. Chem. 1984, 26, 245-254. 

4. Salter, E. A.; Trucks, G. W.; Bartlett, R. J., Analytic energy derivatives in many-

body methods. I. First derivatives. J. Chem. Phys. 1989, 90, 1752-1766. 

5. Scheiner, A. C.; Scuseria, G. E.; Rice, J. E.; Lee, T. J.; Schaefer III, H. F., Analytic 

evaluation of energy gradients for the single and double excitation coupled cluster 

(CCSD) wave function: Theory and application. J. Chem. Phys. 1987, 87, 5361-5373. 

6. Monkhorst, H. J., Calculation of properties with the coupled-cluster method. Int. J. 

Quant. Chem. 1977, 12, 421-432. 

7. Besler, B. H.; Scuseria, G. E.; Scheiner, A. C.; Schaefer III, H. F., A systematic 

theoretical study of harmonic vibrational frequencies: The single and double excitation 

coupled cluster (CCSD) method. J. Chem. Phys. 1988, 89, 360-366. 

8. Koch, H.; Jensen, H. J. A.; Jorgensen, P.; Helgaker, T.; Scuseria, G. E.; Schaefer 

III, H. F., Coupled cluster energy derivatives. Analytic Hessian for the closed-shell 

coupled cluster singles and doubles wave function: Theory and applications. J. Chem. 

Phys. 1990, 92, 4924-4940. 

9. Salter, E. A.; Bartlett, R. J., Analytic energy derivatives in many-body methods. II. 

Second derivatives. J. Chem. Phys. 1989, 90, 1767-1773. 

10. Shavitt, I., The method of configuration interaction. In Methods of electronic 

structure theory, III, H. F. S., Ed. Springer: New York, 1977; pp 189-275. 



xxx 

 

11. Hanrath, M., Higher excitations for an exponential multireference wavefunction 

Ansatz and single-reference based multireference coupled cluster Ansatz: Application to 

model systems H4, P4, and BeH2. J. Chem. Phys. 2008, 128, 154118-10. 

12. Hanrath, M., An exponential multireference wave-function Ansatz. J. Chem. Phys. 

2005, 123, 084102-12. 

13. Evangelista, F. A.; Simmonett, A. C.; Allen, W. D.; Schaefer, H. F.; Iii; Gauss, J., 

Triple excitations in state-specific multireference coupled cluster theory: Application of 

Mk-MRCCSDT and Mk-MRCCSDT-n methods to model systems. J. Chem. Phys. 2008, 

128, 124104-13. 

14. Evangelista, F. A.; Allen, W. D.; Schaefer, H. F.; Iii, Coupling term derivation and 

general implementation of state-specific multireference coupled cluster theories. J. Chem. 

Phys. 2007, 127, 024102-17. 

15. Chattopadhyay, S.; Sinha Mahapatra, U.; Datta, B.; Mukherjee, D., State-specific 

multi-reference coupled electron-pair approximation like methods: formulation and 

molecular applications. Chem. Phys. Lett. 2002, 357, 426-433. 

16. Masik, J.; Hubac, I., Multireference Brillouin-Wigner Coupled-Cluster Theory. 

Single-root approach. Advances in quantum chemistry 1998, 31, 75-104. 

17. Hurtubise, V.; Freed, K. F., The algebra of effective hamiltonians and operators: 

Exact operators. Advances in chemical physics 1993, 83, 465-465. 

18. Balkova, A.; Kucharski, S. A.; Meissner, L.; Bartlett, R. J., The multireference 

coupled-cluster method in Hilbert space: An incomplete model space application to the 

LiH molecule. J. Chem. Phys. 1991, 95, 4311-4316. 

19. Balkova, A.; Bartlett, R. J., A multireference coupled-cluster study of the ground 

state and lowest excited states of cyclobutadiene. J. Chem. Phys. 1994, 101, 8972-8987. 

20. Mukherjee, D.; Pal, S., Use of Cluster Expansion Methods in the Open-Shell 

Correlation Problem. In Advances in Quantum Chemistry, Per-Olov, L., Ed. Academic 

Press: 1989; Vol. Volume 20, pp 291-373. 



xxxi 

 

21. Pal, S.; Rittby, M.; Bartlett, R. J.; Sinha, D.; Mukherjee, D., Molecular 

applications of multireference coupled-cluster methods using an incomplete model space: 

Direct calculation of excitation energies. J. Chem. Phys. 1988, 88, 4357-4366. 

22. Pal, S., Fock space multi-reference coupled-cluster method for energies and 

energy derivatives. Mol. Phys. 2010, 108, 3033-3042. 

23. Kaldor, U.; Haque, A., Open-shell coupled-cluster method: Direct calculation of 

excitation energies. Chem. Phys. Lett. 1986, 128, 45-48. 

24. Vaval, N.; Ghose, K. B.; Pal, S.; Mukherjee, D., Fock-space multireference 

coupled-cluster theory. fourth-order corrections to the ionization potential. Chem. Phys. 

Lett. 1993, 209, 292-298. 

25. Vaval, N.; Pal, S.; Mukherjee, D., Fock space multireference coupled cluster 

theory: noniterative inclusion of triples for excitation energies. Theor. Chem. Acc. 1998, 

99, 100-105. 

26. Nooijen, M.; Bartlett, R. J., Equation of motion coupled cluster method for 

electron attachment. J. Chem. Phys. 1995, 102, 3629-3647. 

27. Sekino, H.; Bartlett, R. J., A linear response, coupled-cluster theory for excitation 

energy. International Journal of Quantum Chemistry 1984, 26, 255-265. 

28. Krylov, A. I., Size-consistent wave functions for bond-breaking: the equation-of-

motion spin-flip model. Chem. Phys. Lett. 2001, 338, 375-384. 

29. Stanton, J. F.; Bartlett, R. J., The equation of motion coupled-cluster method. A 

systematic biorthogonal approach to molecular excitation energies, transition 

probabilities, and excited state properties. J. Chem. Phys. 1993, 98, 7029-7039. 

30. Kowalski, K.; Piecuch, P., The active-space equation-of-motion coupled-cluster 

methods for excited electronic states: Full EOMCCSDt. J. Chem. Phys. 2001, 115, 643-

651. 

31. Stanton, J. F.; Gauss, J., Analytic energy derivatives for ionized states described by 

the equation-of-motion coupled cluster method. J. Chem. Phys. 1994, 101, 8938-8944. 



xxxii 

 

32. Levchenko, S. V.; Wang, T.; Krylov, A. I., Analytic gradients for the spin-

conserving and spin-flipping equation-of-motion coupled-cluster models with single and 

double substitutions. J. Chem. Phys. 2005, 122, 224106-11. 

33. Stanton, J. F., Many-body methods for excited state potential energy surfaces. I. 

General theory of energy gradients for the equation-of-motion coupled-cluster method. J. 

Chem. Phys. 1993, 99, 8840-8847. 

34. Kállay, M.; Gauss, J., Calculation of excited-state properties using general 

coupled-cluster and configuration-interaction models. J. Chem. Phys. 2004, 121, 9257-

9269. 

35. Musial, M.; Bartlett, R. J., Multireference Fock-space coupled-cluster and 

equation-of-motion coupled-cluster theories: The detailed interconnections. J. Chem. 

Phys. 2008, 129, 134105-12. 

 

 

 



1 

 

Chapter 1 

Introduction 

 

 

 

 

“It is the goal that makes the difference” 

Warner von Braun 

 

 A general introduction is proposed leading to the subject matter of the thesis. Here, a 

brief overview of some of the basic concepts and developments in single-reference 

coupled cluster theories are presented. The source of the problem in single-reference 

methods for theoretical treatment of high-energy radicals and excited states are discussed. 

The necessity of multi-reference treatments to these problematic cases is also highlighted. 

We introduce the theory of equation of motion coupled cluster method as an alternative 

single-reference approach to multi-reference situations. We conclude the first chapter 

with the objectives and scope of the thesis. 
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1.1  Introduction 

Recent years have seen spectacular developments, in the field of many-body methods and 

their role in incorporating electron correlation, both conceptually and computationally. 

The importance of many body methods has been highlighted several times in the 

literature [1-9]. The methods have gained special attention because they satisfy size-

consistency and size-extensivity, which has been realized as an important criteria in  

model theoretical chemistry. There are still several new and emerging challenges in the 

development and application of many body theories to chemical problems. This thesis 

will deal with some these challenges, within the framework of so-called coupled cluster 

methods, to describe the spectroscopic energies, structures and properties of quasi-

degenerate states. The aim of thesis is to present a critical study on the application of 

existing methods to the quasi-degenerate states of atoms and molecules, as well as, 

development of new low cost approximation, which could be the forebearer of 

meaningful application to realistic chemical systems. 

 In this chapter, we will present a brief review of the background material and 

specifically, the current status of developments in coupled cluster method in the area of 

energy, structure, and spectroscopic properties. This will help the presentation of the 

study from second chapter onwards.  

 

1.2 Atomic and Molecular Structure Theory: A Quantum Mechanical 

Approach 

The delicate balance of interactions between positively charged nuclei and negatively 

charged electrons leads to stable the Atomic and molecular systems. The electronic 
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structure of atoms and molecules are described by quantum mechanical bound states and 

can be studied by solving time-independent Schrödinger wave equation8. 

  Ĥ E                                                                                                                        (1.1)                                       

Where, H is the Hamiltonian operator for the total energy of the system. The total energy 

is the sum of, kinetic energy of its constituent particles, the potential energy due to 

attractive and repulsive interactions amongst the particles and the energy due to 

interaction of the system with the surroundings. Now, the interaction of the system with 

surroundings may be quite complicated and can include the effect of external electric 

field, magnetic field, geometrical distortion, etc. In the absence of external perturbations, 

the kinetic energy of the system can be divided into two parts, namely, nuclear and 

electronic kinetic energies. The potential energy has three parts: nuclear-electron 

attraction energy, electron-electron repulsion energy and the nuclear-nuclear repulsion 

energy. For a system consist of M nuclei and N electrons, Hamiltonian operator can be 

written as [8], 

   2 2

1 1 1 1

1 1 1

2 2

M N N M
A

A i

A i i AA i A

Z
H

M r R   

     
  

, ,

1N N
A B

i j A B A Bi j
i j A B

Z Z

R Rr r
 

 
                          (1.2) 

In the above equation, RA and ri are the spatial coordinates of Ath nuclei and ith electron 

respectively. The N-electron wave function is a complicated function of spatial 

coordinates of nuclei and space-spin coordinates of electrons, and can be written as

1 1( ,..., , ,..., )
M N

R R x x . According to Pauli's exclusion principle, the wave function of a 

system must be anti-symmetric with respect to the exchange of space-spin coordinates of 

any two electrons and can be expressed as, 

   1 1( ,... .... ,..., ) ( ,... .... ,..., )
i j N j i N

x x x x x x x x                                                                   (1.3) 

The most convenient way to impose the condition of anti-symmetry on wave function is 

to express it as a determinant of N-spin orbitals or linear combination of determinants. 



4 

 

One can obtain a complete set of N-electron determinants and therefore, the exact wave 

function of N-electron system, provided the chosen orbitals form a complete set. 

 

 

1.3 Born-Oppenheimer Approximation and Electronic Hamiltonian 

It is extremely difficult to solve the eigen value problem of Equation (1.1) using full the 

Hamiltonian, as given by Equation (1.2), even for small systems. Since nuclei are much 

heavier than electrons, during the electronic motion, the nuclear framework remains 

virtually static. Therefore, one can separate the nuclear motion from the electronic motion 

to a good approximation. This is generally known as Born-Oppenheimer approximation 

(BOA). Under the Born-Oppenheimer approximation, kinetic energy of nuclei vanishes 

and the nuclear-nuclear repulsion energy becomes constant. Addition of any constant to 

an operator does not change the Eigen functions but simply adds to the eigen values. 

Hence, as a consequence of BOA, problem of total Hamiltonian eigen value can be 

reduced as a problem of electronic Hamiltonian only, which can be written as, 

 2

1 1 1 ,

1 1
2

N N M N
A

el i

i i A i ji A i j
i j

Z
H

r R r r  


    
                                                                        (1.4) 

 

 

1.4 Hartree-Fock Theory 

The exact solution of the electronic Hamiltonian is not possible for an interacting N 

electronic system. However, the best possible solution within the framework of 

independent particle model can be obtained by spherical averaging of inter-electronic 

interactions. This is known as the Hartree-Fock method [8, 10-12]. It is based on the 
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approximation that the ground state of closed shell atoms and molecules can be described 

by a single determinant configuration. 

     
     

     

2

1 2

2

1 2

1 1 1 1

2 2 2
0 1

  .......

  .......1
( , ,..., )

! .. .. ..

 .....

N

N

N

NN N N

x x x

x x x
x x x

N

x x x

  

  

  

                                                      (1.5) 

Electrons are assumed to be independent of each other, and each electrons move in a 

spherically averaged inter-electronic repulsion potential due to other (N-1) electrons. 

According to the variation principle, the best possible wave function of the form given by 

Equation (1.5) is the one, which provides the minimum energy. 

 0 0 0el
E H                                                                                                            (1.6) 

Variational optimization of wave function is performed with the choice of orthonormal 

spin orbitals, which leads to integro-differential equations known as Hartree-Fock 

equation. Hartree-Fock equation has to be solved in an iterative manner. 

     a a a
f x x x                                                                                                    (1.7)   

   

2

1

1
2

e ne HF

M
A

HF

A A

f x T V V x

Z
V

r R

  

    


                                                                                       (1.8)
             

     
1 1

N N

HF j j

j j

V x J x K x
 

                                                                                             (1.9) 

         
*

' ' '
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j j
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x x
J x x dx x

x x

 
 

                                                                             (1.10) 
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         

* ' '
'

'
j i

j i j

x x
K x x dx x

x x

 
 

                                                                                            (1.11) 

Here, the ( )f x  is the Fock operator which is an effective one electron operator. The 

operator ( )
HF

v x  is average potential experienced by an electron due to all other electrons. 

It includes the average Coulomb interaction ( )
j

J x  and exchange interaction ( )
j

K x . The 

exchange potential is the consequence of the anti-symmetric nature of wave function. 

For atoms, the HF equations can be exactly solved as integro-differential equation. 

However, for molecules, the explicit integration of the two electron interaction term is 

difficult as the orbitals involved are centered at different nuclei. To overcome this 

problem, Roothan [13, 14]  introduced the idea of basis set expansion. For closed shell 

systems, the spin orbitals with opposite spin functions are paired up, and the problem can 

be simplified by using only spatial orbitals after spin integration. This method is known 

as restricted HF (RHF). The open shell systems also have most of the electrons paired up 

and can be solved by a Restricted Open-shell HF (ROHF) method. HF equations can also 

be solved using explicit spin orbital’s, which is called Unrestricted HF (UHF). The RHF 

determinant is a pure eigen function of the total spin square operator ( 2
Ŝ ), while linear 

combination of suitably chosen ROHF determinants can be adapted to be the eigen 

function of the spin square operator. However, UHF determinant is neither an eigen 

function nor it can be spin adapted in general. 

It is well known [1] that the HF wave function takes care of the correlation of electrons 

with parallel spin (Fermi hole), but cannot prevent two electrons of opposite spin to 

occupy the same space (coulomb hole). This can be taken care by higher-level beyond 

HF theories, which includes electron correlation. The correlation energy as defined by 

Löwdin [1] is the difference between the Hartree-Fock limit energy, obtained in a 

complete basis set, and the exact solution of the non-relativistic Schrödinger equation. 

However, one can define the correlation energy analogously in a finite basis. Usually the 

correlation energy is very small compared to the total energy of the system. Nevertheless, 
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in many cases, we deal with the small energy differences like binding energy, ionization 

potentials, electron affinities, etc, which are sensitive to correlation effects. For the 

difference energies,  it is also necessary to treat the correlation in a consistent and 

balanced manner for both the states. Apart from the accuracy and balanced treatment of 

the calculated quantities, another important aspect is that the energies and molecular 

properties must be obtained in a size-extensive way, i.e they must scale correctly with the 

number of particles. This also ensures that the quantities of interest separate correctly. 

Restricted HF approximation becomes progressively worse in the separation limit, where 

the separating fragments are open shell systems, resulting in grossly distorted values at 

this limit. However, this may be corrected in the independent particle model itself using 

the unrestricted HF method.  

Various schemes have emerged to go beyond the independent particle model, starting 

from multi-configurational SCF [5] to sophisticated methods, which includes electron 

correlation effects like configuration interaction [15] , many body perturbation theory 

[16] and coupled cluster method [17-21]. All these methods lead to the lowering of the 

energy of a specific state, in particular the ground state of the system. Before, we proceed 

further, in the following section, we state the basic criteria that all the correlation methods 

must satisfy.  

 

 

1.5 Basic Criteria for An Ideal Electron Correlation Theory 

All the correlation methods should satisfy some basic conditions at all the stages so that it 

might be considered as a theoretical model for electronic calculations. These criteria, as 

proposed by Pople et. al. [22]  and Bartlett [23], can be briefly discussed as follows. 
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1. The method should be independent of certain choices of configurations and 

symmetry and should be applicable on a wide range of molecular systems. 

2. The method should be invariant with respect to. unitary transformations. 

3. The method should be size-consistent i.e. the energy obtained through a method 

for the composite system is equal to the summation of energies obtained through 

the same method for its constituent subsystems, at the non interacting limit. 

4. The method should be size-extensive, which means that the energy of a strongly 

interacting many electron system for a given nuclear framework should 

approximately be proportional to the number of electrons. 

5. The method should be computationally efficient as well as cost-effective, in order 

to extend its applicability to molecular systems of chemist’s interest. 

6. The method should be applicable for open shell systems and excited states. 

Among these, size-consistency and size-extensivity are the most important criteria as, the 

efficiency and accuracy of the method are determined by these two factors. 

 

 

1.6  Size-consistency and Size-extensivity  

As defined by Pople and co-workers [22] and Bartlett [23],  size-consistency of a method 

refers to its behavior when it is applied to a collection of N non-interacting monomers. A 

method is termed size-consistent, if the energy obtained in its application to this 

collection of monomers is N times the energy obtained in its separate application to the 

monomer. In other words, when a size-consistent method is applied to a molecule AB 

dissociating into two fragments A and B, the energy of the molecule calculated at the 

dissociating limit (or infinite separation limit) is equal to the sum of energies of both 

fragments calculated by separately applying the method to individual fragments.  
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     method method method
E AB E A E B                                                                                (1.12) 

In addition, the size-consistency of a method ensures that it also predicts a qualitatively 

correct dissociation curve. Clearly, size-consistency is a desirable feature for any 

approximate method. 

Size-extensivity, a concept related to size-consistency, refers to mathematical scaling of 

the energy with the number of electrons [24, 25]. A method is size-extensive if the energy 

a many-electron system calculated with the method, even in the presence of interactions, 

is approximately proportional to the number of electrons N and becomes exact as N → ∞. 

In other words, the energy and the error in energy should increase in proportion with the 

size of the system. Size-extensivity is especially important for methods of electron 

correlation. If a method is not size-extensive, the error in correlation energy shows either 

sub-linear or super-linear dependence on the number of electrons (or equivalently the size 

of the system). In the former case, fraction of the exact correlation energy recovered per 

electron decreases as the size of the system increases eventually leading to zero 

correlation energy in the limit N → ∞. In the latter case, the same fraction increases with 

the system size, leading to prediction of infinite correlation energy per electron as N → 

∞. Therefore, all non-size-extensive methods show progressively unphysical behavior as 

size of the system increases. Size-extensive methods are considered to be particularly 

appropriate for large systems, as they strive to recover a roughly constant fraction of 

exact correlation energy with increasing system size. 

Another related concept that is useful in discussion on size-consistency and size-

extensivity is separability. As discussed by Primas [26], separability is related to the 

behavior of certain quantities of a system composed of two sub-systems interacting with 

each other in the limit of vanishing interaction strength [25, 26]. An additively separable 

quantity of the system, as the interaction vanishes, should be the sum of the same 

quantity for the individual sub-systems. Similarly, a multiplicatively separable quantity 

should be the product of the same quantity for the individual systems. For example, the 
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total energy of many-electron systems is an additively separable quantity. Similarly, 

wave function is multiplicatively separable. Clearly, separability condition is the 

generalization of the size-consistency condition on energy, with respect to an arbitrary 

division of the system into sub-systems. 

 

 

1.7 Different Correlated Methods 

 A critical and broad survey of several correlated methods points to three popular 

techniques for the proper treatment of correlation effects: a) the linear variation based 

configuration interaction, b) many-body perturbation method and c) coupled cluster 

approach. Approximate versions of these methods such as truncated CI, and the coupled 

electron pair approximation, finite order MBPT and approximate versions coupled cluster 

method have been used in many cases for one reason or the other. Each of these has 

strengths and weakness, relating to problems either implementational or intrinsic 

problems like loss of size-extensivity, as is in the case in truncated CI. We will discuss 

these at appropriate places of this chapter. 

 

 

1.8 Configuration Interaction Method  

CI is conceptually the simplest and the most traditional method, where the wave function 

is expressed as a linear combination of Slater determinants, and the coefficients are 

determined by a linear variation method. CI wave function is given by, 

0
,

.............a a ab ab

i i ij ij

i a i j
a b

C C



                                                                               (1.13) 
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Where, 0  is the Hartree-Fock determinant and a

i
  and ab

ij
  are the singly and doubly 

excited determinants, respectively. Here (i, j, ..) and (a, b, …) denote the occupied and 

unoccupied orbitals, respectively, in the reference (HF) determinant. Furthermore, the 

intermediate normalization convention 0 1     has been used. 

CI, being a variational method, gives variational upper bound. While this is of some 

advantage in the calculation of energy for a particular state, it is not so for the case of 

difference energies. In fact, it is more important to calculate these difference energies in a 

direct manner. Some of the methods like coupled cluster linear response, equation of 

motion coupled cluster method and quasi-degenerate perturbation theory are able to 

calculate these difference energies directly rather than the difference of energy obtained 

in two separate calculations. The common correlation energies of the two states are 

automatically cancelled. The many body methods that are routinely used are mostly non-

variational and it has been shown that the results obtained using these methods usually 

differ from the rigorous variational bounds only in fifth or higher orders perturbation 

[23]. Hence, at least for cases where such higher-order corrections are not important, 

MBPT/CCM methods used may be called as quasi-variational.  

When all possible determinants in a given one particle basis are included in the wave 

function, the method is called as full CI (FCI). This produces exact results in a given 

basis set. Since, FCI is not feasible even for the small and medium-size  molecules in 

some meaningful basis; we require approximations like truncating the expansions in a CI 

wave function. Truncating the CI space only up to singly and doubly excited 

determinants along with the reference HF determinant leads to CISD approximation. Use 

of linear variation method to determine the expansion coefficients leads to eigen value 

problem for the Hamiltonian matrix defined over all the determinants present in 

approximate CI wave function. Matrix elements of the Hamiltonian between any two 

determinants can be evaluated using Slater-Condon rules [8]. Lowest eigen value and 

eigenvector of the CI Hamiltonian matrix corresponds to the ground state and rest of the 
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eigen values, and eigenvectors correspond to different excited states. It is well known that 

any approximate or truncated form of CI is not generally size-extensive and does not 

separate into appropriate fragments.  

 The origin of the lack of size-extensivity of truncated CI is related to its inability to 

account for the dynamic correlation effects in a proper manner. Sinanoglu [27] has 

shown, in the context of pair correlation theory, that simultaneous but independent 

doubly excited processes are also important. This leads to quadruply, hextuply etc. 

configurations with amplitudes as appropriate products of doubly excited amplitudes. 

Similar physical effects take place involving higher excited determinants. Any truncation 

based on a fixed degree of excitations cannot account for such effects and thus truncated 

CI suffers from lack of size-extensivity. 

 

 

1.9 Many body Perturbation Theory 

Many body perturbation theory (MBPT) [28-33] offers an alternative procedure for 

systematic incorporation of dynamic correlation effects and producing energy in a size- 

extensive manner, at each order of the theory. In this approach, the exact Hamiltonian is 

partitioned into two parts, a zeroth order part (Ho) whose solutions are usually known and 

a perturbation part (V), assumed to be very small compared to the zeroth order part. 

There are two different perturbation series one based on Rayleigh Schrödinger (RSPT) 

[28, 29, 31]  and another based on Brillouin Wigner perturbation theory (BWPT) [31]. In 

both the perturbation series, the wave function is expressed as a power series around the 

solution of the zeroth order Hamiltonian. Correction to the wave function at each order is 

written in terms of the eigen-functions of Ho. In Brillouin Wigner theory, the energy 

expression depends on the energy itself and so, an iterative procedure has to be adapted 

for getting the energy. Each successive iteration produces energy at higher order, which 
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is not size-extensive. Hence, BWPT is seldom used to obtain the correlation energy. The 

properties of RSPT, however, depend upon the exact scheme utilized for its solution. 

Depending on the partitioning of the Hamiltonian, there exist two different variants of 

RSPT: Moller-Plesset (MP) and Epstien-Nesbet perturbation theory. The use of Fock 

operator as H0 leads to MP partitioning. It can be shown that MP partitioning in a RSPT 

framework leads to a perturbation series, which scales correctly with the number of 

electrons (N). This size extensive series is known as MBPT series. Brueckner [34] first 

observed this scaling property for infinite nuclear separation. The terms proportional to 

the square or higher power of N, cancel among each other at every order. However, he 

could not prove it for higher orders. Goldstone [35] devised a diagrammatic approach to 

show that the terms, which have incorrect scaling can be represented by unlinked 

diagrams. He proved that such unlinked diagrams cancel among themselves at each 

orders of perturbation. This is the famous linked diagrams theorem. Kelly [36]  applied 

the diagrammatic approach to atoms. Finite order MBPT has been extensively used for 

the correlation energies of atoms and molecules. In MBPT, we construct the zeroth order 

Hamiltonian as the sum of Fock operators and the perturbation (V) is the full electron-

electron repulsion 1/
ij

r  term without the spherical average part, which is included in the 

definition of 0H .  

Now a days, the accuracy of any many-body method can be measured in terms of the 

perturbation order. Thus, MBPT offers a very efficient tool for calibrating the accuracy of 

energy as well as wave function. The MP based RSPT is now commonly used for 

correlated calculations of atoms and molecules. The acronyms MP2, MP4, MBPT (n), 

etc. have become very popular because of the accuracy and relative simplicity of the 

method. 

One the other hand, if the diagonal part of the Hamiltonian [7] is used as H0, it is called 

Epstein-Nesbet (EN) partitioning and leads to a perturbation expansion in which the 

denominator contains the difference of diagonal matrix elements of the full Hamiltonian 
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H00-Hii. In this case, H0 is not a one-electron operator, and perturbation expansions can 

also be obtained as a result of infinite-order summation of certain classes of terms in MP 

series. Although unlike the MP choice, the EN expansion is not invariant under orbital 

rotations. 

Even though the MBPT gives size-extensive results at each order, the slow convergence 

of the perturbation series is well known. To avoid the convergence problem, non-

perturbative methods are more desirable. 

In the subsequent sections, we discuss some methods, which are neither strictly 

perturbative nor strictly variational and they transcend both perturbative and variational 

types. 

 

 

1.10 Independent Pair Approximation    

Interaction between the pair plays the central role in correlation methods. Pauli’s 

exclusion principle and the two-particle nature of the Hamiltonian ensure that the electron 

pair theories serve a good approximation for the N electron atomic and molecular 

problem. The pair theories in its simplest form consider only one electron pair at a time. 

Thus, an N electron problem is conveniently simplifies to ( 1) / 2N N   electron pairs. The 

interactions among the pairs are neglected. The total correlation energy can be 

represented as the sum of the pair contributions, which are obtained independently by 

solving the effective two electron equations. This decoupling of pairs is known as the 

independent electron pair approximation (IEPA). It was developed by Sinanoglu [27, 37], 

and Nesbet [38] independently. Sinanoglu used partial variation method for its derivation 

and called his version coupled pair many electron theory, while, Nesbit called his theory 

as Bethe-Goldstone theory. Freed [39] and Robb [40] have extensively reviewed the 
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relation between the IEPA and perturbation theories. The IEPA wave function for the pair 

ij may be written as, 

0
ab ab

ij ij ij

a b

C


                                                                                                  (1.14) 

Where, i, j are the occupied orbitals and a, b are the unoccupied (virtual) orbitals in the 

Hartree-Fock determinant. Linear variation method can be used to calculate the energy
ij

E

, which is a sum of Hartree-Fock energy and the pair correlation energy corresponding to 

the pair ij.  

0
IEPA

ij ij
E E e                                                                                                                 (1.15) 

The total correlation energy in IEPA approximation is defined as, 

IEPA IEPA

corr ij

i j

E e


                                                                                                              (1.16)  

For an extensive review of the pair theories see references [41] and [42]. However, some 

important features of the pair theories are presented here. Although the correlation energy 

for each pair is obtained through linear variation, the sum is not the upper bound to the 

exact correlation energy. Computationally, IEPA is equivalent to doing DCI for each pair 

separately, and hence it is called “pair-at-a-time” CI. It might look that IEPA is an 

approximation to DCI, but is actually not. Rather, it may be viewed as an approximation 

to FCI. While, DCI is not size-extensive, IEPA gives size-extensive results. The major 

disadvantage IEPA, though, is that it is not invariant to unitary transformation. 

 

1.11 Coupled Electron Pair Approximation 

IEPA is based on two approximations: (a) neglect of pair coupling terms and (b) 

assumption that the nonlinear terms cancel with part of the energy terms. The first 
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approximation is cruder. W. Meyer [43] proposed a series of schemes, which considered 

the coupling between the pairs. These are known as various versions of coupled electron 

pair approximations (CEPA) [41, 42, 44, 45]. Some of them give size-extensive results. 

CEPA takes care of the pair interaction terms which are neglected in  IEPA. However, it 

neglects most of the non-linear terms, which are included in what is known as CCM, to 

be discussed in details below. Thus, CEPA is between IEPA and CCM. While, CEPA has 

some origin in the variational CI type method, these can also be derived in a non-

variational manner. In fact, they are known to have a similarity with not only the 

approximate versions of CI, but also non-perturbative, non-variational CCM. We will 

discuss some of these connections in the course of this chapter. 

 

 

1.12 Coupled Cluster Method 

The coupled cluster method(CCM) of electron correlation has its conceptual origin in the 

pair theories of Sinanoglu [27, 37] and Nesbet [38]. In electronic structure theory, Cizek 

and Paldus [46-48]  introduced  the coupled cluster theory, in its present standard form. 

In CCM, the wave function can be described to be formed by the action of an exponential 

wave operator acting on a suitable reference function, which is generally, but not 

necessarily, a Hartree-Fock determinant.  

  0
T

cc
e                                                                                                               (1.17) 

Generally, the intermediate normalization is employed for the wave function, and T  is 

known as the cluster operator. The cluster operators are expressed as a sum of electron-

excitation operators, viz, one-electron, two-electron, etc.            

1 2 3 .....
N

T T T T T                                                                                                    (1.18) 
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With the form,   

†
1

,

† †
2

.. † † †
..

....
....

................

a

i a i

i a

ab

ij a b j i

i j
a b

abc

N ijk a b c k j i

i j k
a b c

T t a a

T t a a a a

T t a a a a a a




 
 













                                                                                            (1.19)                        

An N-body cluster operator, 
N

T  acting on a vacuum 0  produces N-tuply hole-particle 

excited determinant. The cluster operators commute with each other. 

Since in the Equation (1.17) only one single determinant has been used as a reference 

function, this method is known as single reference coupled cluster method (SRCC). Since 

in the limit of all possible excitations, i.e. N equals to the total no of electrons, CC theory 

must be equal to full CI, we can express the relationship between CI and CC coefficients 

as,                                              

  

1

2
2 2 1

3
3 3 1 2 1

2 4
4 4 1 3 2 1

1

2!
1

3!
1 1

2! 4!

C T

C T T

C T TT T

C T TT T T



 

  

   

                                                                                         (1.20)                          

The coupled cluster equations are generally solved by method of projection. Substituting 

Equation (1.17) into Schrödinger equation with normal ordered Hamiltonian leads to:  

  0 0N

T T

corr
H e e                                                                                                   (1.21)    

Projecting from left of Equation (1.21) by 0 , we get the equation for the correlation 

energy. 
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 0 0 0 0
T T

N corr
H e e                                                                                       (1.22) 

Expanding the right hand side of Equation (1.22), only the term, which does not contain 

T  due to normalization condition, survives. Hence, the Equation (1.22) can be written as 

  0 0
T

N corr
H e                                                                                                      (1.23) 

The cluster amplitudes corresponding to any particular excitation can be obtained by left 

multiplying Equation (1.21) by that particular excited determinant. For example, T2 can 

be obtained from  

  ... ...
... 0 ... 0

ab T ab T

ij N corr ij
H e e                                                                               (1.24)        

Both the left and right side of Equation (1.24) have connected as well as disconnected 

terms. However, the presence of T
e  term ensures the mutual cancellation of unlinked 

terms from both sides of the Equation (1.24). The disconnected terms of the Equation 

(1.24) for double excitations can occur as a product of connected single excitation terms 

0 ,

a T

i N open connected
H e   with singly excited cluster amplitude  b

j
t  disappears from final 

equations. In the same way, only the connected, open terms survive in Equation (1.24), 

leading to completely connected CC equations. Thus, Equation (1.23) and (1.24) can be 

written as, 

 0 0 ,

T

corr N closed connected
H e                                                                                        (1.25) 

 ...
... 0 ,

0ab T

ij N open linked
H e                                                                                             (1.26)                    

Because of commutation relation, there is no contraction between the cluster operators. 

This means that in CC diagrams, each cluster operator in the diagram should be 

connected with Hamiltonian vertex and not with each other. Due to two particle nature of 

the Hamiltonian operator, it can have a maximum four number of contractions with 

cluster operators. Therefore, the CC equations are algebraic non-linear equations in 
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unknown cluster amplitudes and are at most of quartic power. On the other hand from 

Equation (1.25), the correlation energy contains only one-body and two-body cluster 

operators, which are coupled to higher-body cluster operators through Equation (1.26).     

The above CC equations can be derived in an alternative way by pre-multiplying 

Equation (1.21) by T
e
 as, 

   0 0
T T

N corr
e H e                                                                                                  (1.27) 

Thus, Equation (1.27) can be viewed as an eigen value equation for the similarity 

transformed Hamiltonian, T T

N
H e H e


 . As, the similarity transformation of the 

Hamiltonian does not change its eigen values, Eqs. (1.25) and (1.26) can be derived by 

following the same procedure, and we get the following set of equations. 

    0 0

TT

corr N
e H e                                                                                               (1.28)                                 

   ....
.... 0 0

Tab T

ij N
e H e
                                                                                             (1.29) 

 Using Campbell-Baker-Hausdroff (CBH) formula, 
T T

N
e H e
 can be expanded as,                                        

    

1
, , ,

2!

1 1
, , , , , , , ....

3! 4!

N N N

N N

T T

NH e H e H H T H T T

H T T T H T T T T


             

                      

                                                  (1.30)                            

Due to the two-body  nature of 
N

H  and commutative nature of the cluster operators, this 

series can be shown to be terminated after four-fold  commutations. The connected nature 

of correlation energy and cluster amplitudes is explicitly revealed by the presence of 

commutators Equation (1.30). With 
N

H being connected, its commutation with cluster 

operators generates only connected terms. This eventually leads to a completely 

connected series. 
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The Equation (1.26) leads to a set of coupled nonlinear equations, which are generally 

solved iteratively to obtain the cluster amplitudes. Perturbation analysis of the iterative 

procedure shows that at every iteration, the functional gains corrections from various 

orders of perturbations. After the self-consistency and numerical accuracy is attained, the 

correlation energy is obtained using Equation (1.25). If the T contains all possible 

excitation operators, i.e. up to TN for N-electron system, then the method is called full CC 

(FCC), which is equivalent to FCI. Obviously, the numbers of cluster operators are same 

as CI operators. However, for practical applications, one needs to truncate at finite order. 

The most commonly used truncation is to define T = T1 + T2 leading to singles and 

doubles (SD) approximation [49, 50]. Unlike truncated CI, CC method continues to be 

size-consistent, for all orders of truncation. This is because of the exponential nature of 

the wave operator, which includes higher excitations through the products of T1 and T2. 

The CCSD ansatz can be further improved by perturbative or complete inclusion of 

triples (partial and full) [51, 52], quadruple (CCSDT(Q) and CCSDTQ)[53], etc. These 

ansatz improves the results towards the exactness. 

 

 

 

1.13 Alternate Single-Reference CC Approaches 

The standard coupled cluster method just discussed is also known as normal coupled 

cluster method. The normal coupled cluster (NCC) or single-reference coupled cluster 

(SRCC) method is neither variational, nor perturbative. Due to its non-variational nature, 

it seems to be computationally unattractive for energy derivatives. An alternate way is to 

cast the coupled cluster equation in a variational framework. The direct advantage of 

casting the CC equations variationally is that, it fulfills the Hellmann-Feynman theorem 

and (2n+1) rule. This makes the method attractive for higher-order  energy derivatives. 

Expectation value CC (XCC) [54-56], unitary CC (UCC) [41, 57] and extended CC 

(ECC) [58-60] are among the methods used in stationary or variational CC theory. 
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However, in the present thesis, we stick to the use of coupled cluster method, in its 

traditional non-variational form. 

Although single-reference coupled cluster method is extremely successful in theoretical 

treatment of closed shell molecules, its performance deteriorates in case of the open shell 

molecule. In the next section, we will try to investigate the cause behind the failures of 

single-reference coupled cluster methods for the open shell molecules.  

 

 

1.14 Problems Associated With the Quantum Mechanical Treatment of Open-

shell Molecules 

Theoretical treatment of open shell molecules is often difficult. For these systems, the 

single-determinant description often provides an inadequate starting point. Several types 

of problems arise that are infrequent or never encountered in treating closed-shell 

molecules [61]. These include spin contamination [62] and the phenomenon usually 

called ‘‘symmetry breaking’’ in the reference function [63], instability and near-

singularity of the HF-SCF solutions [64, 65], strong (non-dynamical) electron correlation 

effects, and adiabatic potential energy surfaces that exhibit many complicated features 

such as loci of conical intersections and avoided crossings. 

While it is now possible to ‘‘push a button’’ and obtain highly accurate results for a 

closed-shell system, the same is not possible and perhaps never will be possible for open 

shell systems. Each system presents its own unique set of problems and requires careful 

attention. The selection of a technique can involve a nontrivial analysis, and experience, 

as well as, expertise is required for making a judicious choice [61]. 

In spite of the intrinsic challenge posed by theoretical treatment of open-shell systems, 

there exists a considerable amount of motivation for their accurate study. First, the highly 
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reactive nature of radicals often makes their study in the laboratory extraordinarily 

difficult, sometimes impossible, and the presence of several low-lying excited states 

tends to make their electronic spectroscopy complicated. In fact, the assistance of 

quantum chemistry is essential to properly interpret many experimental studies of these 

systems. The open-shell molecules are important in the areas that include atmospheric 

chemistry, interstellar chemistry, and theories of the origin of life. In recent times, there 

has been a lot of interest in the chemistry of radical cations and anions, because of the 

involvement of these species in a wide variety of organic and biological reactions, 

radiation chemistry, and single electron transfer processes [66, 67]. Due to their transient 

nature and other problems associated with the experimental studies, the ab-initio methods 

can play a vital role in unraveling their properties and, therefore, a proper understanding 

of the important issues associated with theoretical study of open shell molecules is 

absolutely necessary. In the next subsection, we are going to take a brief glance at the 

problems associated with the ab-initio treatment of open shell molecules. 

 

1.14.1 Spin Contamination 

Calculation of molecular orbitals for most of the closed shell molecules is often 

straightforward. It provides a solution that obeys some of the symmetry property satisfied 

by the exact wave function. To be precise, the density calculated from the Slater 

determinant comprising the molecular orbitals transforms according to the total 

symmetric representation of the molecular point group, and the wave function is an eigen 

function of the spin-squared ( S2) operator with eigen value zero. The dominant part of 

the correlation energy for the closed shell molecules comes from the so-called 

“dynamical” part. Therefore, the mathematical structure of the exact wave function 

(written in the FCI expansion) is dominated by the reference Slater determinant, along 

with small but important contributions from higher excited determinants.  



23 

 

However, the situation is altogether different in case of Open-shell molecules, where  

most of the problems associated with their theoretical description is connected with the 

choice of the starting point for higher-level calculations. In the HF method, the Fock 

operator is itself a function of its solution, and becomes diagonal at convergence. Hence, 

unlike the eigen functions of the Hamiltonian, the Slater determinants made up of 

molecular orbitals, obtained by a SCF calculation, do not necessarily obey spin and 

symmetry properties of the exact wave function. Multiple solutions can be obtained by 

relaxing constraints on the molecular orbital solutions. Therefore, lower SCF energies 

often can be obtained, at the expense of violating fundamental symmetry properties.  

The most well-known problem associated with HF-SCF solutions for the radicals is 

known as ‘‘spin contamination’’ [62] and occurs when one uses the unrestricted Hartree–

Fock (UHF) approximation [68]. It utilizes distinct sets of molecular orbitals for electrons 

of different spin. Unlike the case of ROHF, where a radical is described by a set of 

doubly occupied orbitals and then one half-filled orbital for each unpaired electron, all of 

the orbitals in the UHF calculation are singly occupied. The result is that the wave 

function is no longer an eigen function of the S
2
 operator with eigen value S(S+1). If 

resolved into eigen functions of particular spin states, the UHF wave function contains 

components of the appropriate spin multiplicity (2S+1) plus ‘‘contamination’’ from those 

with higher levels of spin multiplicity. For example, the UHF description of a doublet 

contains doublet, quartet, sextet, and so on, components, while that of a triplet is 

contaminated by pentet, septet, and so on, contributions. 

To avoid spin contamination, another type of reference function can be used, specifically 

that of the restricted open-shell Hartree–Fock (ROHF) type [69, 70]. In ROHF, maximum 

double occupancy of spatial orbitals is enforced, and the resulting Slater determinant 

solution is an eigen function of the S2
 operator.   

However, it has been shown by Stanton and Gauss [61] that at the coupled cluster level, 

the spin contamination is negligible, even if the reference UHF wave-function is heavily 
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spin contaminated, and the results are comparable to the corresponding ROHF based CC 

results. Moreover, most implementations of open-shell MP and CC theories based on an 

ROHF determinant do not give results that are free from spin contamination [71]. The 

most common realizations of ROHF-based MP and CC theories are carried out in a spin 

orbital basis, and the correlation treatment introduces a small amount of spin 

contamination.  

While the discussion in the above paragraph is intended to convey that the spin 

contamination does not represent a major problem in CC calculations [72], it is not 

always possible to carry out CC treatments for larger molecules. In that cases, the issue of 

reference function will become important if the treatment of correlation is omitted or 

simply restricted to the MBPT(2) model. At first glance, one might think that ROHF 

would be the preferred choice, since it is ‘‘closer’’ (in the sense of spin properties) to the 

exact wave function. However,, ROHF methods suffer from another problem (usually 

termed symmetry breaking but in a way represents a more general and notorious 

phenomenon than the name indicates) that involves the way SCF orbitals respond to 

various perturbations. This issue is dealt in the next section. 

 

1.14.2 Response of Molecular Orbitals And The Issue of  " Symmetry Breaking ’’ 

The second order change in total SCF energy with respect to any external perturbation χ 

can be written as 

2 2

2
k k

k k

H H

E H

E E

   
  

   

 
    
                                                             (1.31) 

The contribution from the first term depends upon the second-order behavior of the 

Hamiltonian operator and the unperturbed reference state wave function, while the 
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second term (which will be referred to as the ‘‘relaxation contribution’’ or ‘‘relaxation 

term’’ in the rest of the discussions ) depends on the derivative of the wave function.  

At the HF level of theory, the wave function is a single Slater determinant consists of 

molecular orbitals. Generally, these are obtained by linear combinations of atom-centered 

basis functions, and these ‘‘MO coefficients’’ are obtained by the self-consistent field 

procedure. The first-order change to the wave function is, therefore, governed by the 

first-order change in the MO coefficients. The derivatives of the MO coefficients are 

p

pq q

q

c
U c

 





                                                                                                              (1.32) 

where CPHF coefficients 
ai

U
 , ij

U
 and 

ab
U

 can be written as  
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,ai bjai bj
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U A b
                                                                                                          (1.33) 
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                                                                                                                      (1.34) 

1
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U S

                                                                                                                     (1.35) 

Where the perturbation-dependent b
  represents the changes in the Hamiltonian and 

orthogonality constraint with the perturbation, S
  is the derivative of the atomic orbital 

overlap matrix transformed into the molecular orbital representation, and the elements of 

the matrix A is given by  

 ,ai bj i a ij ab
A ai bj ab ij                                                                                (1.36) 

Where, the SCF eigen values are denoted by a
  and 

pq
  is the usual Kronecker delta. 

Obviously, the difference between occupied and virtual SCF eigen values offers only a 

crude approximation to the excitation energies found in the denominator of Equation 

(1.31), and these can never become degenerate in practice. However, since A is not a 
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diagonal matrix, the conditions under which it becomes singular are not associated with 

degeneracy in SCF eigen values. Rather, the quantities that play the role of excitation 

energies in determining the response of the molecular wave function are the eigen values 

of A. There remains an ambiguity about the sign of the third term in Equation (1.36). If 

the perturbation under consideration is real, the appropriate sign is plus. If, however, the 

perturbation is a formally imaginary quantity (such as a magnetic field), the sign changes 

to be negative. Now, for any arbitrary perturbation  , which is simply a rotation that 

mixes occupied and virtual orbitals, and If the molecular orbitals satisfy the SCF 

equations, the first-order change in energy vanishes. In second order, the change is 

2

2
2
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E E
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 
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                                                                                   (1.37) 

Where, the sum is taken for convenience over the diagonal representation of orbital 

rotations described by A, and the denominators are the corresponding eigen values. Now, 

the presence of a single negative eigen value means that it is possible to obtain a lower-

energy solution by an appropriate rotation of the molecular orbitals. Now, when these 

negative eigen values occur, it is assumed that one has a so-called Hartree-Fock 

instability. If the associated orbital rotation is not totally symmetric, there exists a lower-

lying solution to the SCF equations in which the symmetry properties of the overall wave 

function are corrupted. However, there are cases where the orbital rotation is totally 

symmetric; although very rare, when present, there is a lower-energy solution that 

maintains the same spatial symmetry properties as 0 .  

The force constants and other second-order properties calculated for molecules at the 

SCF level contain terms that are roughly correspond to the two contributions in Eq (1.31), 

except the fact that it is the eigen values of A, rather than true excitation energies,  which 

determine the magnitude of the relaxation term. If none of the eigen values of A are too 

small in magnitude, then the presence of an SCF instability does not have disastrous 
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consequences for the results. Therefore, it is not the presence of wave-function 

instabilities that poses problems for the calculation of molecular properties, but rather the 

presence of near-instabilities [61]. It is entirely possible to obtain quite satisfactory 

results with a highly unstable SCF solution, and also at the same time to obtain 

completely absurd results with a stable solution. The important issue is the magnitude of 

the smallest eigen value of the A matrix, irrespective of the sign  [73].  

Surprising things can occur when electron correlation is included [74]. In any correlation 

method, short of a FCI treatment, the total energy is dependent upon the choice of 

orbitals. Therefore, the properties calculated as second derivatives also involve 

contributions from the relaxation of the molecular orbitals. For methods like CC theory, 

which show relatively strong invariance of the total energy to the orbital changes, the 

effects are rather minimal and tend to be conspicuous if and only if the orbital relaxation 

is very strong. Specifically, the problems happen in regions of the potential energy 

surface where eigen values of A are very small in magnitude. 

 Another problem is that the sign of anomalous property values calculated at correlated 

levels does not give any information about the sign of the corresponding small A matrix 

eigen value. As the total energy is not stationary with respect to orbital rotations, it is 

possible to show [74]  that the properties blow up quadratically with the reciprocal eigen 

value rather, than linearly. Therefore, if the magnitude of a second-order property is 

plotted as a function of a geometrical coordinate, it will blow up to plus or minus infinity 

on both sides of the point, where A is precisely singular. For methods that are highly 

sensitive to orbital choice (perturbation theory, especially the popular MBPT(2) variant), 

the presence of the singularity can cause serious problems for the calculation of second-

order properties even far from where they actually diverge. As mentioned by Stanton and 

Gauss [71] in their excellent review article, that the total energy that corresponds to a 

symmetry-broken reference function is generally higher than that calculated from the 

symmetry-constrained function, exactly the opposite of the relative SCF energy ordering, 
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and therefore, properties typically diverge to large positive values on both sides of the 

singularity. 

There can be ‘symmetry-breaking’’ effects in molecules, even, where there is no 

symmetry and the same fundamental problem that causes the instability does not lead to a 

wave function having lower symmetry. Essentially, the reason behind the fact that the 

SCF calculations often give symmetry-broken solutions at lower energies than 

constrained solutions is that in many symmetric open-shell molecules (NO2, LiO2, and 

others) the broken symmetry solution allows the unpaired electron spin to be almost 

entirely located on a single atomic center [63]. This increases the exchange contribution 

to the energy and, therefore, decreases the total energy. However, the similar unphysical 

localization phenomenon can also occur in molecules where the localization does not 

break the framework molecular symmetry. This is a major problem in calculations on 

open-shell molecules. If one has appropriate elements of symmetry, then unphysical 

solutions can be avoided by enforcing the symmetry constraints on the wave function. 

Even when the constraints are not enforced, problems with the reference function are 

easily identifiable from the markers like nonzero dipole moments along directions where 

the exact value must vanish by symmetry, unsymmetrical spin densities, and so on. 

However, the issue is more treacherous in lower-symmetry species where localization 

does not break the framework’s molecular symmetry. In that cases, UHF and ROHF 

solutions can be quite unphysical. However, it is considerably more difficult to diagnosis 

the problem, especially with ROHF, since it is necessarily an eigen function of the S
2 

operator and might be impossible to prevent. Therefore, the term ‘‘symmetry-breaking’’ 

applies to a larger class of problems than just those to which the name literally applies 

[61].  
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1.14.3 The Pseudo-Jahn-Teller Effect 

In the previous section, strongly changing wave functions and abnormally large 

relaxation contributions to molecular second-order properties were discussed. However, 

these effects can also occur in other circumstances, namely where the spectrum of the 

exact electronic Hamiltonian has a quasi-degeneracy. The so called “artificial’’ and 

‘‘real’’ effects should be distinguished in the sense that the former are those arising from 

problems associated with the reference function, while the ‘‘real’’ effects are those due to 

true nearby states. When there is a strong coupling with a nearby state, force constants 

can be profoundly affected, and otherwise symmetric molecules assume non-rigid 

behavior and might even adopt equilibrium geometries with lower symmetry [75, 76]. 

This is known as a second-order or pseudo-Jahn-Teller (PJT) effect [77]. It is an 

important topic in the study of open-shell molecules, electron transfer, and a number of 

other issues in physical chemistry.  

The SCF calculations cannot account for these effects unless by sheer chance eigen 

values of the A matrix are close to the exact excitation energies, that they vanish where 

there is a true degeneracy of states. It is interesting to note the behavior of the 

perturbation theories. The MBPT(2) and its higher-order derivatives are intrinsically 

unable to describe this behavior irrespective of order the perturbation used [78, 79]. The 

reason lies in the fact that the only additional parameters that come into play in the 

MBPT wave-function expansion are those associated with denominators formed from 

differences of orbital energies. In practice, these never vanish, and the only poles that 

occur in property calculations are those that are already found at the SCF level of theory. 

The exact poles, which reflect the true spectrum of the  Hamiltonian, can never be 

observed in calculations based on perturbation theory, and one can formulate a rather 

persuasive argument that the SCF may be superior to MBPT for studying PJT effects. At 

the very least, poles that occur at the SCF level are of the proper first-order behavior, 

even though the energy differences on which the properties depend on are clearly only 

crude approximations to the excitation energies. However, the high sensitivity of the 
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MBPT(2) energy to orbital rotations and the second-order nature of instability poles at 

correlated methods generally mean that the domain of nuclear configuration space 

affected by the singularity will be much larger than at the SCF level. Accordingly, the 

chance of obtaining an anomalous result is greater 

Coupled cluster calculations represent a qualitative improvement over perturbation theory 

in treating PJT effects. The principal difference between CC and MBPT in this context is 

that the CC wave function involves an additional nontrivial set of parameters, specifically 

the T amplitudes. It can be shown [78] that force constants in CC theory can be written as 
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In the equation above, the symbol q designates determinants that lie outside the principal 

projection space used in the CC equations (Equation 1.29) —that is, triples, quadruples, 

and so on, for CCSD. It should be noted that the first two terms strongly resemble those 

in the exact expression (Equation 1.31). In fact, to the extent that the right and left CC 

wave functions approximate the exact wave function, and its Hermitian conjugate and 

that the excited states of the system are represented by the EOM approximation, these 

terms correspond precisely to the exact quantum-mechanical result. However, there is an 

additional term, which spoils the fundamental description of PJT effects within coupled-

cluster theory and needs special attention. 

This last term in equation, which vanishes in the FCI limit, depends quadratically on the 

derivative of the T amplitudes, which in turn diverge when another state in the EOM-CC 

spectrum becomes degenerate with the state of interest. Hence, the force constant blows 
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up quadratically in the immediate vicinity of the state crossing, which sometimes may 

lead to disastrous results. Moreover, as the direction of the second-order contribution is 

given by 0 LH q  and it may go in both directions. Fortunately, the residue of the 

second-order contribution can be shown to vanish in the limit of a pure single excitation 

process [78]. Since most excited states of interest are dominated largely by single 

excitation character, the region of the potential surface strongly affected by the second 

term is small. The relaxation term that depends on the EOM excited states, however, has 

an appropriate magnitude and sign. So, standard CC methods represent a qualitative 

improvement over MBPT. Therefore, at distances relatively far from the crossing, the 

sign and magnitude of the relaxation effect on the force constant (or other second-order 

properties) is generally fairly accurate. In this context, it should be emphasized [61] that 

the equilibrium geometry of most open-shell molecules is generally not close to adiabatic 

surface crossings, even though they might experience a PJT effect that is not negligible. 

In these cases, SRCC methods can provide reliable results, as seen in a number of 

examples in the literature [80, 81]. However, in the vicinity of qausi-degenerate surfaces 

SRCC methods show drastic failure, which becomes difficult to rectify within the 

framework of single-reference CC. 

 

 

1.15 Need for A Multi-reference Description  

The most obvious way to avoid the above-mentioned problems associated with the 

single-reference treatment of open shell molecules, is to go for a multi-reference 

description of the wave function. The starting wave function for a multi-reference method 

is given by the  determinantal expansion 

i i

i

C                                                                                                                 (1.39) 
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where, the coefficients 
i

C   and the orbitals in 
i
  are simultaneously optimized [82]. If the 

sum is carried over the full space of n electron determinants, the method is  equivalent to 

FCI, but for practical applications, one need to truncate at finite order. In general, the 

‘‘most important’’ configurations must be included in the expansion, the identification of 

which is usually not obvious a priori and is the source of ambiguity in all multi-reference 

ab-initio methods. The orbitals are generally partitioned into active and inactive spaces, 

the former including either the entire valence region or some appropriately chosen subset 

and the corresponding virtual levels. Determinants representing all possible occupation 

schemes within this active space are then included in the equation. (1.39). Such 

calculations go by various names, including fully optimized reaction space and complete 

active space self-consistent field (FORS-SCF [83]  and CASSCF [84] ) method. These 

are special cases of the multi-configurational SCF (MCSCF), a label that can be applied 

to any calculation that uses a fully optimized wave function of the form given by 

equation. (1.39). The  plus point of MCSCF calculations is that they are well-suited to 

handle cases in which more than one configuration makes a substantial contribution to 

the wave function. The nature of the wave-function parameterization guarantees a 

balanced treatment of these determinants, unlike single-determinant CI, PT, and CC 

methods in which an inherent bias exists toward a specific determinant. Despite an 

effective treatment of non-dynamical electron correlation, MCSCF calculations carried 

out in feasible active spaces do not produce quantitatively reliable results. The reason for 

this is the neglect of dynamical electron correlation involving the inactive occupied and 

virtual orbitals. Qualitatively, the effects of anti-bonding orbitals are typically 

exaggerated in MCSCF calculations, with the result that force constants are usually too 

small and bond lengths too long. A variety of methods has been described in the literature 

as a tool for including the residual correlation effects. Most straightforward of these is CI, 

in which these effects are treated by matrix diagonalization. If used in conjunction with 

large active spaces, these ‘‘MRCI’’ calculations are extremely accurate [85] and are even 

used to generate benchmark values for calibrating the performance of other methods. 

However, a sufficiently large basis set and active space needed for reasonable results hike 
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the computational cost to an unmanageable value. The cost of MRCI calculations (like 

MCSCF itself) increases exponentially with the size of the system, which limits its 

applicability beyond small molecules. Another serious limitation to all MRCI 

calculations is that they suffer from a size-consistency error. However, this can be treated 

by ad hoc corrections or, preferably, in a self-consistent fashion by methods such as 

‘‘averaged coupled pair functional’’ (MR-ACPF) [86] or ‘‘approximate quadratic 

coupled cluster ’’ (MR-AQCC) [87]. While the domain of applicability is limited due to 

their expensive nature, highly accurate results can be achieved in these calculations. 

Another way of including the residual correlation effects beyond the MCSCF level is by 

means of perturbation theory. Indeed, if the size of the active space is large, it follows 

that the amount of correlation not already treated in zeroth order is small, and it is 

sensible to appeal to perturbation theory. Several variants of second-order perturbation 

theory have been reported in the literature [88], however, the most popular is the 

CASPT2 method [89]. Many of the applications of CASPT2 have focused on excited 

states of closed-shell molecules and bi-radical systems that are of considerable interest in 

organic chemistry. Although, CASPT2 is not a size-consistent method [90], but the 

practical importance of this shortcoming is not very clear at this time. However, in 

applications to large molecules that necessarily involve small active spaces, the suitability 

of using second-order perturbation theory to treat residual correlation effects is called into 

question. Hence, the advantages of CASPT2 relative to a more elaborate treatment based 

on MRCI are vastly reduced in these cases. 

The most systematic way to include a balanced description of dynamic and non-dynamic 

correlation is through multi-reference coupled cluster methods. The next subsection gives 

a brief overview of it. 
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1.16  Multi-reference Coupled Cluster Method  

In contrast to the SRCC theory, which mainly evolved from its correspondence with the 

single-reference MBPT, the evolution of multi-reference coupled-cluster (MRCC) 

theories has been more or less independent of the underlying perturbative structure. An 

MRCC theory is obtained by finding an exponentially parameterized ansatz for the wave-

operator Ω , and formulating a scheme for unambiguous determination of these 

parameters. The motivation for an exponential parameterization comes from the 

possibility of obtaining size-extensive results, along with the usual high accuracy 

stemming from partial infinite-order summation nature of CC theory. 

Unlike in SRCC methods, where there is only one way to parameterize, several 

possibilities open up for the multi-reference case. However, they can be classified into 

two broad categories: the first one describes a specific root, known as the state-specific  

MRCC and other is the multi root description by effective Hamiltonian approach.  

Various approaches are available for describing the state-specific  MRCC ansatz, such as 

Brillouin-Wigner (BW) MRCC ansatz [91, 92],  the state-specific  ansatz suggested by 

Mukherjee and co-workers (MK-MRCC) [93-95], exponential multi-reference wave 

function ansatz (MRexpT) [94-97] and internally contracted multi-reference coupled 

cluster ansatz (ic-MRCC) [64,98]. 

 On the other hand, effective Hamiltonian based theories are subdivided into two basic 

subclasses:  Hilbert space (HS) approach and Fock Space (FS) approach. In both the 

approaches, energies are obtained by diagonalization of the effective Hamiltonian defined 

within a pre-chosen model space, and both approaches are fully size extensive. The HS-

MRCC approach [99, 100] uses a state universal operator with different cluster operators 

for each determinants in the model space. The FS-MRCC approach, on the other hand, 

uses common vacuum and a valence universal wave operator, which correlates model 

space with the virtual space. The HSMRCC method is more suitable for the calculation of 

potential energy surface. On the other hand, the FSMRCC method is more suitable for 
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direct difference of energy calculation such as ionization potential, electron affinity, and 

excitation energies. In this thesis, we are mainly going to focus on FSMRCC. 

 

 

 

1.17 Effective Hamiltonian Formulation of FSMRCC Theory  

The FSMRCC is based on the concept [101,102] of a common vacuum, which is 

generally, but not necessarily, an N electron closed shell Hartree-Fock determinant. The 

holes and the particles are defined with respect to this common vacuum. These holes and 

particles are further classified into active and inactive ones. The model space is then 

constructed by a linear combination of suitably chosen (based on energetic criteria) active 

configurations. Thus, a model space for a (p,h) valence Fock space, which includes h 

active  hole and p active particle, can be written as  

 

     , , ,
(0)

p h p h p h

i i
i

C                                                                                   (1.40) 

The principal idea of effective Hamiltonian theory is to extract some selective eigen 

values of Hamiltonian from the whole eigen value spectrum. To fulfill the purpose, the 

configuration space is partitioned into model space and orthogonal space. When all 

possible resulting configurations, generated by distributing the valance electrons among 

all the valance orbitals in all possible ways are included in the model space, it is referred 

to as complete model space (CMS). An incomplete model space (IMS) results when only 

a subset of these configurations is included. The projection operator for model space is 

defined as 

     , , .p h p h p h

M i i

i

P                                                                            (1.41)  
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The projection operator in the orthogonal space, i.e. the virtual space, is defined as 

1
M M

Q P                                                                                                                     (1.42) 

The diagonalization of the effective Hamiltonian takes care of the non-dynamic 

correlation coming from the interactions of the model space configurations. Whereas, the 

dynamic correlation arises due to the interactions of the model-space configurations with 

the virtual space configurations. This interaction is introduced through valence universal 

wave operator Ω, which is parameterized such that it generates the exact wave function 

by acting on the model space. To generate the exact states for the (p,h) valence system, 

the wave operator must be able to generate all the valid excitations from the model space. 

The valence universal wave operator Ω has the form  

 ( , )p h
S

e  %                                                                                                                     (1.43) 

Where, the curly braces indicate normal ordering of the cluster operators, and  ,p h
S%  is 

defined as following 

   , ,
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The cluster operator  ,k l
S%  is capable of destroying exactly k active particles and l active 

holes, in addition to creation of holes and particles. The  ,p h
S%  subsumes all lower sector 

Fock space  ,k l
S%  operators. The  0,0

S%  is equivalent to standard single-reference coupled 

cluster amplitudes. 

The Schrödinger equation for the manifold of quasi-degenerate states can be written as 

   , ,ˆ p h p h

i i i
H E                                                                                                 (1.45) 

The correlated μth wave function in MRCC formalism can be written as  



37 

 

 
( , ) ( , )

0
p h p h

                                                                                                           (1.46) 

From the equation (1.40) we get 
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The effective Hamiltonian for (p,h) valence system can be defined as  

  ,ˆ p h

eff j i
ij

j
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where 
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Equation (1.49) can be written as  

   , ,1ˆ ˆp h p h

eff M M
H P H P

                                                                                                    (1.50) 

However, the Ω-1 may not be well defined in all the cases [102]. Therefore, the above 

definition of effective Hamiltonian is seldom used. Instead, the Bloch-Lindgren approach 

is generally used for solving the equations. The Bloch equation is just a modified form of 

Schrödinger equation. 

ˆ ˆ
M eff M

H P H P                                                                                                            (1.51) 

The Bloch-Lindgren approach eliminates the requirement of Ω-1 for the solution of 

effective Hamiltonian. 

The Bloch projection approach to solve the equation involves left projection of equation 

(1.51) with P and Q, leading to 

   , ,ˆ ˆ 0k l k l

M eff M
P H H P                                                                                               (1.52) 
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Q H H P                                                                                             (1.53)      

                                                                                                              

; 0,..... ; 0,.....k p l h     

To solve the equations, an additional normalization is imposed through parameterization 

of Ω. In case of CMS, this is generally performed by imposing the intermediate 

normalization condition
M M M

P P P  . However, the situation is  little bit different in case 

of incomplete model space. Mukherjee103 has shown that in case of incomplete model 

space, the valence universality of the wave operator is sufficient to guarantee linked-

cluster theorem; however, one need to relax the intermediate normalization. Pal et. al 

[104] have shown that for the special case of quasi-complete model space in (1,1) sector, 

the intermediate normalization can be used without any loss of generality. 

In general, the equations for Ω and Heff are coupled to each other through Equation. 

(1.52) and (1.53) and Heff cannot be expressed explicitly in terms of Ω. However, when 

intermediate normalization is imposed, Heff can directly be written as a function of Ω. In 

this case, the equation (1.52) can be written as 

       , , , ,( , )ˆ ˆp h p h p h p hp h

M M M eff M
P H P P H P                                                                                     (1.54) 

After solving the equations for Ω and Heff, The diagonalization of the effective 

Hamiltonian within the P space gives the energies of the corresponding states and the left 

and the right eigen vectors. 

     , , ,ˆ p h p h p h

eff
H C C E                                                                                                       (1.55) 

   , ,( , )ˆp h p hp h

eff
C H EC% %                                                                                                       (1.56) 

   , ,( , ) ( , ) 1p h p hp h p h
C C C C % %                                                                                             (1.57) 
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The contractions amongst different cluster operators within the exponential are avoided 

due to the normal ordering, leading to partial hierarchical decoupling of cluster equations, 

i.e. ones the amplitude equations of a particular sector of Fock space is solved, it appears 

as a known parameter in the equations for the higher sectors of Fock space. This is 

commonly referred to as sub-system embedding condition (SEC). The lower valence 

cluster equations are decoupled from the higher valence cluster equations, because of the 

SEC. Hence, the Bloch equations are solved progressively from the lowest valence (0, 0) 

sector upwards up to (p, h) valence sector. 

 

 

1.18 Intermediate Hamiltonian Formulation of FSMRCC Theory 

In this thesis, we follow the approach used by Meissener [105] to describe the 

intermediate Hamiltonian formulation of FSMRCC. The Heff is defined in the P space, 

with a dimension much smaller (say m) than the actual Hamiltonian. The diagonalization 

of the effective Hamiltonian produces m eigenvalues, which are equal to a subset of the 

eigen values of the exact Hamiltonian Ĥ . When the model space configurations (P) are 

not energetically well separated from those of complementary space (Q) that results in a 

very small or negative energy denominator in the iterative solution procedure leading to 

divergence or severe convergence problem. It is known as intruder state problem and is a 

common difficulty associated with all multi-root theories. They are particularly common 

in complete model space treatments because such spaces include high-energy multiple 

excitation model spaces, which contribute very little to the wave functions, but required 

for the completeness of the model space. 

The intermediate Hamiltonian (IH) approach overcomes the intruder state problem by 

introducing a buffer space between the model space and rest of the Q space. Basically, in 

the IH formulation, the configuration space is divided into three subspaces, namely, main, 
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intermediate, and outer space (see Figure 1.1) with the projection operators PM, PI, and 

Q0, respectively [7, 106]. The main space of IH formulation is the same as the model 

space of effective Hamiltonian theory, while the intermediate space (PI) has been 

obtained from a subpart of the complementary space (QM) of the effective Hamiltonian 

theory, by further dividing it into two parts: the intermediate space and the outer space. 

The diagonalization of the intermediate Hamiltonian provides the eigen values, a subset 

of which corresponds to those obtained through effective Hamiltonian theory. The 

remaining eigen values are essentially arbitrary.  

Because of the arbitrariness of the extra solution by IH approach, the intermediate 

Hamiltonian and its determining equations are not unique. 

 

Figure 1.1 : Model space of effective and intermediate Hamiltonian 
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Different variants of intermediate Hamiltonian approach, employing different auxiliary 

condition for the definition of intermediate Hamiltonian [105, 107, 108]  have been 

proposed and applied in the context of FSMRCC. The similarity transformation 

approach105 by Meissner is particularly convenient among them. In this formulation, the 

final working equation of FSMRCC can be rewritten a 

    ( , ) ( , ) ( , )p h S S p h p h

I eff M
P H e e H P

                                                                                    (1.58)                                     

 ( , ) ( , ) ( , )ˆ p h p h S p h

eff M M
H P H e P                                                                                               (1.59) 

Let us define a new operator 

 ˆ 1S

M
X e P                                                                                                                 (1.60)  

For, which  

ˆ ˆ
M M

X Q XP                                                                                                                   (1.61) 

and  

2ˆ 0X                                                                                                                             (1.62) 

Now, equation (1.58) and (1.59) can be written in terms of X̂  as 

       , ,ˆ1 1 0p h p h

I M
P X H X P                                                                                        (1.63) 

   ( , ) ( , ) ( , )ˆ ˆ ˆ1 1p h p h p h

M M eff
P X H X P H                                                                                 (1.64) 

 Equation (1.63) is a quadratic equation in X̂ , therefore, has multiple solutions. 

This procedure also suffers from the convergence difficulties caused by the intruder state 

problem. In the IH formulation, these difficulties can be averted, by splitting the 

similarity transformation described in equation (1.63), as follows  
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         ˆ ˆ ˆ ˆ ˆ ˆ1 1 1 1 1 1X H X Z Y H Z Y                                                                   (1.65) 

Where 

ˆ ˆ ˆX Y Z                                                                                                                                                          (1.66) 

0
ˆ ˆ ,

ˆ ˆ
M

I M

Y Q XP

Z P XP




                                                                                                                   (1.67) 

and  

0 M I
P P P                                                                                                                     (1.68) 

0M I
Q P Q                                                                                                                    (1.69) 

From the definition of X̂  , Ŷ  and Ẑ   

   
   

   

1

1

1

ˆ ˆ1 1 ,

ˆ ˆ1 1

ˆ ˆ1 1

X X

Y Y

and

Z Z







  

  

  

                                                                                                            (1.70) 

From the above relation, it is clear that if the equation (1.63) is satisfied, then the m 

number of roots can be extracted equivalently both from diagonalization of 

   ˆ ˆ1 1X H X   or    ˆ ˆ1 1Y H Y   operator within the 0P   to 0P   space, as both operators 

are related to each other by a similarity transformation with respect to a third operator 

(1+Z). 

Now the intermediate Hamiltonian is defined as,  

         , , ,
0 0

ˆ 1 1p h p h p h

I
H P Y H Y P                                                                                   (1.71) 
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As, 
M

P  , 
I

P  and 0Q   are projection operators of mutually orthogonal spaces, the 

intermediate Hamiltonian in equation (1.71) can be expressed as  

               , , , , , , ,
0 0 0 0 0

ˆ ˆ ˆ1p h p h p h p h p h p h p h

I M
H P H Y P P HP P HYP                                                  (1.72) 

Now, for solving the above equation, we assume that equations for (0,0) sector,  which is 

essentially the standard closed shell single-reference cluster equations, have already been 

solved. 

Now, for (1,0) and (0,1) sectors of Fock space   

     

(0,1) (1,0)

(1,0) (1,0)

1,0 1,0 1,0

0

0

Y Y

Y Y

X Z S

 

 

 

                                                                                                        (1.73)  

For, (1,1) sector of Fock space 

     1,1 1,1 1,1
X Y Z                                                                                                             (1.74) 

                      1,1 1,1 0,1 1,0 0,1 1,0 1,0 0,1 0,1 1,0 1,1
0 2 2 1 2 1 2 2 2 M

Y Q S S S S S S S S P                                           (1.75) 

and  

                1,1 1,1 0,1 1,0 0,1 1,0 1,1 1,1
1 1 1 1 2I M

Z P S S S S S P                                                                 (1.76) 

The intermediate Hamiltonian for (0,1) and (1,0) sector can be written as 

     0,1 0,1 0,1
0 0I

H P HP                                                                                                          (1.77)                        

and  

     1,0 1,0 1,0
0 0I

H P HP                                                                                                          (1.78) 
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Now the eigen value problem for (0,1) and (1,0) sector can be solved by diagonalization 

of H  within the space spanned by 1h, 2h1p and 1p, 2p1h determinants, respectively. 

Hence, the IHFSCC approach for one valence problem is independent of choice of active 

space and becomes identical with IP/EA-EOMCC approach [109, 110] However, for the 

solution of higher sectors, the cluster amplitudes for (0,1) and (1,0) are explicitly 

required. Therefore, it becomes essential to define the model space by choosing a subset 

of total no of holes and particles as active, which is generally, but not necessarily near the 

Fermi level. 

The cluster amplitudes for the one valence sector can be obtained [105, 107] by imposing 

the intermediate normalization condition on the selectively chosen eigen vectors 

corresponding to active holes and particles.  

Now the intermediate Hamiltonian for (1,1) sector is defined as  

         1,1 1,1 1,1 1,1 1,1(1,1)
0 0 0I M

H P HP P HY P                                                                                 (1.79) 

From the equation (1.79), it can be seen that the intermediate Hamiltonian for the (1,1) 

sector of Fock space can be constructed by the matrix representation of 
I

H  within 1h1p 

space. As the expression for  1,1
Y  does not contain  1,1

S , the solution of the eigen value 

problem for (1,1) sector in IH  framework, only requires the knowledge of lower sector 

amplitudes. However,  1,1
S  can be determined by putting the intermediate normalization 

on the selectively chosen eigen vectors, analogous to that in one valence problem. Very 

recently Pal and coworkers [109] have extended the idea for calculation of properties in 

(1,1) sector, within the IH framework. 

In this IH formulation of FSMRCC, the equations are not solved in a coupled iterative 

manner. Rather, the eigenvalue problem is solved through diagonalization procedure. 

This leads to easier convergence, even with a large active space, which not only helps 

one to obtain more no of states, but also systematically improves the correlation effects in 

case of (1,1) sector. 
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However, the active space dependency of results beyond one valence problem keeps IH-

FSMCC short of a complete “black box” method. Although, some markers like 

“percentage active component” is available as a diagnosis for the quality of the chosen 

active space, it still requires substantial involvement from the part of the user. On the 

other hand, the equation of motion coupled cluster provides a “black box” way to 

approach different sectors of Fock within the frame work of single-reference coupled 

cluster method.  

 

 

1.19 Equation of Motion Coupled Cluster Method  

The equation of motion coupled cluster (EOM-CC) method [110] is a single-reference 

approach, where the excited state wave function is generated by the action of a linear CI 

like operator on the correlated reference state wave function. 

The Schrödinger equation for the reference state and the exited state (can be electron 

attached or ionized state also) can be described by 

0 0 0Ĥ E                                                                                                                    (1.80) 

ˆ
k k k

H E                                                                                                                    (1.81) 

The excited state wave function 
k

   is related to the reference state wave function by  

0
ˆ

k k
                                                                                                                       (1.82) 

Left multiplying equation 1.80 with ˆ
k

   and subtracting from equation 1.81, we get 

0 0
ˆ ˆ,

k k
H                                                                                                             (1.83) 

Where 0k k
E E     
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The form of 
k

  defines the particular EOM method corresponding to the target state. 

For Ionization problem 

†

,

ˆˆˆ( ) ( ) .........IP a

k i ij

i i j a

R k i R k a ji


                                                                               (1.84) 

For electron affinity problem 

† † †

,

ˆ ˆˆ ˆ( ) ( ) .........EA a ba

k j

a a b j

R k a R k b ja


                                                                        (1.85) 

For excitation energy problem 

  † † †
0

, ,

ˆˆ ˆ( ) ( ) .........EE a ab

k i ij

i a a b i j

R k R k a i R k a b ij
 

                                                         (1.86)   

Now, this is a general EOM framework. The coupled cluster theory is introduced by 

generating the correlated wave function by action of an exponential operator on a Slater 

determinant, which is generally, but not necessarily a Hartree-Fock determinant. 

ˆ
0 0

T
e                                                                                                                   (1.87) 

Where, 1 2
ˆ ˆ ˆ .......T T T      and  †

1̂
a

i a i

ia

T t a a   ,  † †
2

1ˆ
4

ab

ij a b j i

ijab

T t a a a a    ……… 

Since, ̂  and T̂   commute among themselves, we can write equation 1.83 as 

 0 0
ˆ ˆ ˆ,

k k
c

H H                                                                                               (1.88) 

Where, ˆ ˆT T
H e He

  , and c denotes the connectedness of H  and ̂   

Since H  is non Hermitian, there exist different right (R) and left (L) eigenvectors which 

are biorthogonal and can be normalized to satisfy  

k l kl
L R                                                                                                                        (1.89) 
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The EOMCC approach has been extensively used to calculate energy [110, 111], 
structure [80, 112, 113] and properties [114] of radicals and excited states. 

 

1.20 The Equivalence of Fock Space Multi-reference Coupled Cluster Method 

and Equation of Motions Coupled Cluster Method for One Valence Problem 

It is possible to show that for IP and EA problem, the EOM-CC method is equivalent to 

(0,1) and (1,0) sector of Fock space [7]. Let consider an ionized state dominated by 

removal of an electron from hole state. The EOM-IP-CC ansatz for this state  

ˆ
0

T

k k
e                                                                                                                (1.90) 

and 
k

  has the form as given by equation (1.84) . The equation (1.90) takes advantage of 

the commutation of T̂   and 
k

 . 

In case of FSMRCC, the ansatz is  

     0,1ˆ 0,1ˆ1S

k k ke S                                                                                            (1.91) 

Where, 0
ˆ

k
k   is one-vacant-hole-state model determinant and the effective 

Hamiltonian matrix is  

            0,1 0,1 0,1 0,1 0,1 0,1ˆˆ ˆ 1
eff eff

H H H S                                                            (1.92) 

Now, because     2
0,1 0,1ˆ ˆ 0S P  ,  0,1  a row vector of the one-vacant-active-hole 

determinant and  0,1  is its adjoint column vector. The main difference between the 

matrix (1.92) and the IP-EOM-CCSD matrix implicit in (1.88) is that the latter has a 

dimension of one-hole single and double excitations while the former has the smaller 

dimension nh of just the one-vacant-active-hole determinants. Thus we expect to have a 

matrix partitioning relating the two matrices. 
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 Now 

0
ˆ

i i i
Ri R                                                                                                                 (1.93) 

 †
0

ˆˆˆa a a

ij ij ij
R a ji R                                                                                                      (1.94) 

 Now, using Lowdin’s partitioning technique, the EOMIP-CCSD for kth hole state can 

be written as  

       

       

 

 

 

 

0,1 0,1 0,1 1,2
0,1 0,1

1,2 1,21,2 0,1 1,2 1,2 k

C

H H R R

R RH H

   


   

                    

                                                  (1.95)   

Where, 
k

   is the ionization energy of hole state k. Normally, if we use sector designators 

such as (0, 1) and (1, 2) in EOM-CC, then they would refer to all orbitals since there is no 

separation between active and inactive orbitals in this model. Specifically,  0,1  and 

 1,2  are row vectors consisting of all determinants of types 
i
  and a

ij
 , respectively; to 

bring out the analogy between EOM-CC and FSMRCC, we may designate a subset of 

orbitals as active and restrict the sector definitions to this subset. Also,  1,0
R   and  1,2

R   

are column vectors consisting of elements of types 
i

R   and a

ij
R   , respectively. 

Separating, the equation for 
k

R  gives 

i

a a

k i i k ij ij k k

ija

H R H R R                                                                  (1.96) 

Multiplying on the right by 1
k

R


,  we have 

1 1

k k

a a

k k i i k k ij ij k

i k ija

H H R R H R R       



   
   

                                              (1.97) 
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For the remaining equations, we define the vectors 

   0,1 1,2  %                                                                                                             (1.98)                               

 

 

0,1

1,2

R
R

R

 
 
 
 

%                                                                                                                    (1.99) 

and the adjoint column vector % .  

The prime on (0, 1) indicates the omission of  
k
   and 

k
R  . These equations now take the 

form  

1 1
k k k k

H H RR R R      % % % % %                                                                                 (2.00) 

From equation (1.92) , however, 

  0,1ˆ1
k eff k k k

H H S                                                                                       (2.01) 

Identifying ˆ
k eff k

H   with k
  (which it equals when 

eff
H  is diagonalized) and  0,1

Ŝ  

with    0,1 0,1 1ˆ
k

S RR  % %  , we regain the FSMRCC 
eff

H . Further, the FSMRCC equation 

becomes  

      0,1 0,1 0,1ˆ ˆ 0
eff

H S S H    %                                                                                 (2.02) 

With minor medications we can identify any number of orbitals as active, treating active 

hole states similarly to state m. It does not matter which orbitals are actually active. Each 

principal ionization potential for any orbital in IP-EOM-CC can be obtained and, unlike a 

true multi-reference theory, expanding the number of active orbitals does not provide any 

better an approximation [7]. 
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Similarly, it can be shown that for principal peak EOMEA-CC is equivalent to (1,0) 

sector of Fock space.  

In an alternative viewpoint, it can be said that EOMCC for IP and EA problem is the 

FSMRCC in the intermediate Hamiltonian formulation. For the rest of the thesis, we are 

going to use EOMCC and FSMRCC interchangeably for one valence problem of Fock 

space. 

 

 

1.21 Scope and Objective of The Thesis 

As mentioned earlier, the standard SRCC method shows drastic failures for high-energy 

open shell molecules, whereas, MRCC and EOMCC methods provide an efficient way to 

overcome the problem. In this thesis, we have studied the high-energy radical reactions 

prevailing in the stratosphere using FSMRCC and EOMCC methods. However, the 

standard EOMCC, as well as FSMRCC methods, in singles and doubles approximation 

scales as N6 and has a very high storage requirement that prohibits its use beyond small 

molecules. Therefore, as a part of this thesis, we have also tried to develop 

approximations to EOMCC with smaller storage requirement and lower scaling. These 

methods can be applied to larger systems, without sacrificing much on its accuracy.  

 The present thesis is organized as follows. In chapter 2, we have investigated the NOx 

catalyzed pathway of stratospheric ozone depletion, using the coupled cluster method. In 

chapter 3, we have discussed the potential stability of peroxo nitrate radical. In chapter 4, 

the suitability of EOMIP-CCSD(2) approximation for studying geometry and IR 

frequencies of problematic doublet radicals has been investigated. In chapter 5, we have 

presented a new N5 scaling and low storage requiring method for studying electron 

affinity, within the framework of EOMCC method. The chapter 6 is devoted to the 

implementation of a lower scaling approximation to single and double spin flip EOMCC 
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method. In chapter 7, we have discussed the shortcomings of EOMIP-CCSD(2) 

approximation for calculation of ionization potential. The chapter 8 presents a new 

method which overcomes the limitations of EOM-IP-CCSD(2) approximation. 
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Chapter 2 

 NOx Catalyzed Pathway of Stratospheric Ozone 

Depletion: A Coupled Cluster Investigation  

 

 

“This earth is his, to him belong those vast and boundless 

 Skies: Both seas within him rest, and  yet that in  small pool He lies ” 

ATHARVA VEDA 

Block 4, Hymn 16 

 

In this chapter, we report a theoretical investigation on the NOx catalyzed 

pathways of stratospheric ozone depletion using highly accurate coupled cluster 

methods. These catalytic reactions present a great challenge to state-of-the-art ab 

initio methods, while their mechanisms remain unclear to both experimentalists 

and theoreticians. In this work, we have used the so-called “gold standard of 

quantum chemistry,” the CCSD(T) method, to identify the saddle points on NOx-

based reaction pathways of ozone hole formation. Energies of the saddle points are 

calculated using the multi-reference variants of coupled cluster methods. The 

calculated activation energies and rate constants show good agreement with 

available experimental results. Tropospheric precursors to stratospheric NOx 

radicals have been identified, and their potential importance in stratospheric 

chemistry has been discussed. Our calculations resolve previous conflicts between 

ab initio and experimental results for a trans nitro peroxide intermediate, in the 

NOx catalyzed pathway of ozone depletion 
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2.1 Introduction: 

The stratospheric ozone layer constitutes an important part of earth’s atmosphere. 

It absorbs light of wavelengths below 240 nm and saves the planet earth and life 

on it from the lethal solar ultraviolet (UV) radiation. The past 50 years have seen a 

remarkable decrease in the concentration of the ozone layer. Thus, understanding 

the pathways of ozone depletion and its chemistry is of great importance for the 

prevention of it's decline (Figure 2.1). 

 

 

Figure2.1 : Atmospheric window for solar radiation 

 

It is well established that the “ozone hole” forms over the Antarctic due to 

reactions of ClO with ozone in the Antarctic spring [1-4]. This occurs because the 

vortex is strong over the Antarctic (due to fewer land masses relative to the 

northern hemisphere) and thus long-lived, and also because all of the nitrogen 

compounds are frozen out on polar stratospheric clouds (PSC) in the winter, and 

these “fall” out of the stratosphere into the troposphere, thereby depleting the air in 

the vortex of nitrogen. This is important, because the main reservoir compound for 

Cl is ClONO2. Hence, in the springtime, the existing Cl compounds in the 

Antarctic vortex (ClOOCl, ClOOH, HOCl, etc.) are photolyzed and begin to react 

catalytically to destroy ozone, which continues to occur until the vortex breaks up. 

http://pubs.acs.org/doi/full/10.1021/ct300209s#fig1
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The possibility of stratospheric ozone depletion via the NOx catalyzed pathway 

was first postulated by Johnston[5] and supported by several model calculations 

[6-9]. 

  NO + O3  →   NO2 + O2                                                                                    (2.1) 

  NO2 + O  →   NO  + O2                                                                                     (2.2) 

 

Knowledge of the mechanism and kinetic parameters of reactions 2.1 and 2.2 is 

therefore of crucial importance in order to calculate ozone profiles in the 

stratosphere and to make reliable models of atmospheric ozone phenomena. Not 

surprisingly, the NOx catalyzed reactions became much studied experimentally 

over the years so as to determine the associated rate constants and unravel the 

mechanistic details [10-14]. In spite of the relative abundance of experimental 

work, theoretical studies of NOx based reactions of ozone depletion are rather 

scarce in the literature. The reported theoretical works are mostly done at the DFT 

and MP2 levels [15-16], which is inadequate to account for the correlation effects 

in a systematic manner. Some of the papers report single point calculations at the 

CCSD [17] level, which takes care of the dynamic correlation in a satisfactory 

way. However, T1 diagnosis [18] indicates large multi-reference character of the 

species involved. Thus, it becomes necessary to handle non-dynamic correlation in 

a proper way, which single reference coupled cluster fails to do. A multi-reference 

coupled cluster (MRCC) [24,25] method can account for both dynamic and non-

dynamic correlation in a systematic way. However, so far, no multi-reference 

coupled cluster study has been done on NOx catalyzed reactions. The objective of 

the present study is to carry out ab-initio calculations of a sufficiently high level 

and to get accurate results for the study of the reaction of NOx molecules with 

ozone in the context of stratospheric ozone depletion. We have used Fock space 

multi reference (FSMRCC) theory for our study. FSMRCC is an effective 

Hamiltonian based theory and is known to give accurate direct difference energies 

[19-21]. It treats both N and N ± 1 states on an equal footing. This method has 
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been used extensively for difference energies and response properties of open-shell 

molecules and molecular excited states [27]. 

This chapter is organized as follows. The next section presents computational 

details. Results and discussion are followed in section 2.3. The last section 

presents the conclusions and a brief discussion about the scope of future work. 

 

 

 

2.2 Methodology and Computational Details 

We have optimized all of the structures using the ROHF-CCSD(T) method. There 

exist several variants of ROHF-CCSD(T). Specifically, we have used the variant 

developed by Bartlett and co-workers [26]. The aug-cc-pVTZ basis set[33] has 

been used for geometry optimization. For all subsequent calculations presented in 

the chapter, the same basis set has been used. Following the geometry 

optimization, the frequency calculations have been done to determine the nature of 

the saddle point. Table 2.1.1 and 2.1.2 present results of IR spectra and 

equilibrium geometry using different methods. It is clear from both the table that 

only CCSD(T) results can give experimental accuracy. So, it is justified to use the 

CCSD(T) level of methods for the investigation of reactions involving NOx and 

ozone, rather than MP2 and DFT. 

 

Further, Table 2.2 presents the T1 diagnosis[18] values of reactants, products, and 

saddle points. It shows values higher than the permissible range of 0.02 (see Table 

2.2), indicating the multi-reference nature of the wave function. To include the 

multi-reference effects, the FSMRCC method has been used to carry out the single 

point energy calculations on the optimized saddle points. FSMRCC is a valence-

universal variant of multi-reference coupled cluster theory, and it is size-extensive 

for both ground and excited states.  

 

http://pubs.acs.org/doi/full/10.1021/ct300209s#tblII
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Table 2.1.1  : Comparison of Theoretical Calculated Frequency in the aug-cc-pVTZ 

Basis Set with Experimental Values for Ozone 

Method re (Å) θ (deg) ω1 (cm-1) ω2 (cm-1) ω3 (cm-1) 

  DFT 

(B3LYP) 

1.255 118.2 745 1188 1248 

MP2 1.283 116.6 741 1157 2244 

CCSD(T) 1.269 117.1 720 1062 1160 

EXP 1.272a 116.82a 716b 1089b 1135b 

 

 

a :see ref 36a 

b :see ref 36b 

 

Table 2.1.2  : Comparison of Theoretical Calculated Frequency in the aug-cc-pVTZ 

Basis Set with Experimental Values for Nitric Oxide 

Method re (Å) ω (cm-1) 

  DFT 

(B3LYP) 

1.255 745 

MP2 1.283 741 

CCSD(T) 1.269 720 

EXP 1.272a 716b 

 

a :see ref 36a 

b :see ref 36b 

 

Photo dissociation energies are calculated using the Equation Of Motion Coupled 

Cluster (EOMCC)[28] method. EOMCC is similar to FSMRCC and was 

successfully used by Bartlett and co-workers for the simulation of UV/vis 

http://pubs.acs.org/doi/full/10.1021/ct300209s#tIfn1
http://pubs.acs.org/doi/full/10.1021/ct300209s#tIfn1
http://pubs.acs.org/doi/full/10.1021/ct300209s#tIfn2
http://pubs.acs.org/doi/full/10.1021/ct300209s#tIfn2
http://pubs.acs.org/doi/full/10.1021/ct300209s#tIfn2
javascript:void\(0\);
javascript:void\(0\);
http://pubs.acs.org/doi/full/10.1021/ct300209s#tIfn1
http://pubs.acs.org/doi/full/10.1021/ct300209s#tIfn2
javascript:void\(0\);
javascript:void\(0\);
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absorption spectra for atmospheric modeling [29]. 

 

Table 2.2  : T1 diagnosis values in aug-cc-pVTZ Basis Set  

species T1 value 

O3 0.029 

NO2 0.026 

NO 0.040 

N2O 0.028 

N2O2 TS1 0.022 

N2O2 min 0.021 

N2O2 TS2 0.022 

ONOOO 0.039 

ONOO 0.035 

 

All of the rate constants presented in this chapter have been estimated from 

theoretically calculated barrier heights, using the Arrhenius equation. Pre-

exponential factors are obtained from experimental data [43]. 

 

All of the ROHF-CCSD(T) calculations on NOx catalyzed reactions have been 

performed using CFOUR [30]. Gaussian09[31] has been used for some 

exploratory MP2, DFT-B3LYP, T1 diagnosis, and EOMCC calculations. FSMRCC 

single point calculations have been done using codes developed by Pal and co-

workers [32]. 

 

 

2.3 Results and Discussion  

 First, it is necessary to find out among all of the NOx radicals generated in the 

troposphere, which are probable candidates for stratospheric ozone depletion. 
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2.3.1 Tropospheric Precursors  

  To become a potential threat to the stratospheric ozone layer, NOx radicals 

produced in the troposphere must satisfy certain conditions. First, it must be 

transparent to radiation of λ > 290 nm, so that it is not destroyed by visible solar 

radiation in the troposphere. Moreover, the radicals must be sufficiently inert to 

reach the stratosphere in intact condition. 

 

      Excitation of NOx radicals to higher electronic states by visible (400–700 nm) 

and UV (10–400 nm) light actually causes photo dissociation. We have used the 

EOMCC method on previously reported potential energy surface s[39] to calculate 

the corresponding excitation energies. Calculated wavelengths for all three species 

correspond to the highest absorption cross-section in experimental UV–visible 

absorption spectra of the species [34]. So, light of this particular wavelength’s can 

be taken as the major responsible radiation for the photo dissociation of the 

species. Table 2.3 represents photo dissociation wavelengths and oscillator 

strengths of the precursor species. From Table 2.3, it can be seen that NO2 will be 

destroyed within the troposphere by visible solar radiation. Now, both NO and 

N2O are transparent to visible light. But, nitric oxide, being an odd-electron 

molecule, is highly reactive toward hydroperoxide and organic radicals [40-41]. 

Thus, finally, a negligible amount of nitric oxide enters the stratosphere. Our 

calculated values of photo dissociation energy are in good agreement with the 

experimental values.             

 

Now, N2O does not have a significant sink in the troposphere. Therefore, nitrous 

oxide is the major source of odd nitrogen (NOx) in the stratosphere and plays a 

fundamental role in regulating the ozone layer [9,42]. 
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    Table 2.3 : EOMCCSD Calculated Photo dissociation Energy of the NOx Radicals  

radical excited 

state 

photodiss. 

energy (nm) 

oscillator 

strength 

Expt. 

photodiss. 

energy (nm)
a
 

NO2 
2
B2 376 0.0099 372–402b 

NO 2
B2 198 0.0014 190–202c 

N2O 2
A1 176 0.0000 176–187b 

 

a : in units of 1020σ (cm2). 

b : see ref 34. 

c:  see ref 35. 

 

 

2.3.2 Generation of NO 

Nitric oxide is the main active species in the NOx catalytic cycle of stratospheric 

ozone depletion. Tropospheric N2O, after reaching the stratosphere, reacts with the 

present odd oxygen atom (1D) to form NO. This nitric oxide enters into the 

catalytic ozone depletion cycle. 

  N2O + O  →   NO + NO                                                                                    (2.3) 

 

Figure 2.2 gives a schematic description of the reaction. The first step of the 

reaction is the formation of a saddle point of order 1 (TS1). It has CS symmetry 

and has an imaginary frequency of 431 cm–1 at the ROHF-CCSD(T) level of 

theory. The imaginary frequency corresponds to the vibration of normal modes 

along the reaction coordinate. The evolution of the saddle point is thus toward an 

ONNO intermediate with C2 symmetry. This point has been characterized as a 

minimum (MINIMA), and it is the intermediate compound in the reaction, 

responsible for the generation of nitric oxide in the stratosphere. 

http://pubs.acs.org/doi/full/10.1021/ct300209s#tIIIfn1
http://pubs.acs.org/doi/full/10.1021/ct300209s#tIIIfn2
http://pubs.acs.org/doi/full/10.1021/ct300209s#tIIIfn3
http://pubs.acs.org/doi/full/10.1021/ct300209s#tIIIfn2
javascript:void\(0\);
javascript:void\(0\);
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From the MINIMA, nitric oxides are finally reached through a second transition 

state (TS2). This saddle point shows an imaginary frequency of 157 cm–1. It shows 

very small perturbations of the geometrical parameter, compared to those of 

MINIMA, as expected from their small energy difference. Figure 2.2 shows the 

evolution from MINIMA to TS2 and from TS2 to products accompanies gradual 

shortening of the terminal N–O bonds and the consequent stretching of the N–N 

bond. 

 

 

Figure 2.2 : Formation of NO from N2O 

  

We have plotted the energies of the reactants, products, and saddle points, 

calculated using the FSMRCC method, in an energy profile diagram (Figure 2.3). 

It shows a barrierless formation of the first transition state (TS1). It is 4.6 kcal/mol 

more stable than the reactants. There exists a minimum which is of 6.9 kcal/mol 

more stable than the TS1. The evolution from MINIMA to TS2 is the rate 

determining step in the reaction. The step shows a very low barrier height of 0.18 

kcal/mol. This is expected from the very small perturbation of the geometrical 

parameter of TS2, compared to that of MINIMA. Table 2.4 shows that the 

calculated rate constant for the reaction is 4.9 × 10–11 cm3 molecule–1 S–1 at 298 K, 

which is very close to the experimental value of 6.7 × 10–11 cm3 molecule–1 S–1) 

[43]. The value of the used prefactor is 6.7 × 10–11 cm3 molecule–1 S–1.   
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 Table 2.4 : Kinetic Parameter of the Reaction between N2O and O  

Parameter Calculated Experimental(43) 

Ea(kcal/mol) 0.18   

k (cm3 molecule–1 S–1) at 298 K 4.9 × 10–11 6.7 × 10–11 

 

All of the saddle points considered above are of trans configuration. There may be 

a possibility of a cis pathway. But all cis conformers have been found to be of 

equal energy to the corresponding trans isomer. 

 

Figure 2.3  Energy profile diagram of the reaction between N2O and O. 

 

2.3.3 Beginning of the Catalytic Cycle 

The nitric oxide generated from N2O comes in contact with stratospheric ozone. 

javascript:void\(0\);
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According to the previous theoretical work of Dupuis et. al.[44] for the H + O3 

reaction, the approach of the NO radical to the ozone molecule is determined by π 

orbitals of the terminal oxygen atom of ozone, as depicted in Figure 2.4. 

 

 

Figure 2.4 : MO diagram representation of the reaction between O3 and NO 

 

The first step of the reaction mechanism is the formation of a trans TS of C1 

symmetry. The imaginary frequency corresponding to the reaction coordinates is 

292 cm–1. Figure 2.5 shows that the formation of the TS involves stretching of one 

O–O bond of ozone, with subsequent formation of an O–N bond with nitric oxide. 

The TS then breaks down to nitric oxide and molecular oxygen. Table 2.5 reports 

the calculated value of activation energy and rate constants at the FSMRCC level 

of theory for the trans ONOOO transition state along with the experimental values. 

The activation energy for the reaction, calculated at the FSMRCC level, is 3.14 

kcal/mol. With ZPE correction, the value comes down to 3.11 kcal/mol, which is 

well within the range of experimentally determined values between 1.44 and 3.18 

kcal/mol (Figure 2.6) [45]. 
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Figure 2.5: Trans pathway of the reaction between ozone and NO 

 

Taking the standard prefactor (A) of 2 × 10–12, the rate constant becomes 1.0 × 10–

14 cm3 molecule–1 S–1, at 298 K, which shows excellent agreement with the 

experimental value[43] of 1.8 × 10–14 cm3 molecule–1 S–1 (Table 2.5).  

 

Figure 2.6 :Energy profile diagram of reaction between ozone and NO 
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It can be attributed to the high level of the method and the proper basis set being 

employed for the estimation of the barrier heights. However, there can always be a 

possibility of a fortuitous error cancellation leading to a better agreement. 

Table 2.5  :  Kinetic Parameter of the Reaction between NO and O3 at 298 K 

Parameter Calculated Experimental 

Ea(kcal/mol) 3.11 1.4–3.18 

k (cm3 molecule–1 S–1) 1.0 × 10–14 1.8 × 10–14 

 

 

2.3.4  Regeneration of Nitric Oxide                                                         

The nitrogen dioxide molecule, thus formed, reacts with odd oxygen (O) to 

regenerate NO (Figure 2.7). The reaction involves the formation of a trans nitro-

peroxide radical intermediate, which then undergoes photo dissociation to form 

two molecules of nitric oxide. Table 2.6 reports the EOMCC calculated photo 

dissociation energy and the corresponding experimental values. It can be seen that 

the wavelength of photo dissociation is 586 nm. This is well within the 

experimental range of 587 ± 4 nm [46]. The NO radical, thus regenerated, again 

reacts with another ozone molecule, and the catalytic depletion cycle continues. 

Table 2.6 :  EOMCCSD Calculated Photo dissociation Energy of the trans ONOO 

Radicals 

Basis set Photo 

dissociation 

energy (nm) 

Experimental 

(nm)[46] 

aug-cc-pVTZ 586 587 ± 4 

 

However, there are controversies about the existence of the doublet trans peroxo 

nitrate intermediate in reality [47-48]. The only reliable experimental data come 

from an IR frequency study of a probable trans ONOO intermediate, by Hall and 
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Bhatia [14]. Their conclusion was based on the 50 cm–1 isotopic shift of an IR 

band at 1840 cm–1. They have tried to further support their hypothesis using some 

limited ab-initio calculations [49] of structures and vibrational frequencies. 

However, their theoretically calculated results clearly deviate from experimental 

values. 

 

 

Figure 2.7 : Regeneration of nitric oxide from  NO2

  

 

When we revisited the problem with the highly correlated CCSD(T) method and 

the aug-cc-pVTZ basis set, we obtained a good agreement with experimental 

results. Table 2.7 reports the values of IR frequency, intensity, and isotropic shift 

calculated at the ROHF-CCSD(T) level of theory in the aug-cc-pVTZ basis set, 

along with the experimental results. Table 2.7 also presents the value of IR 

frequency and intensity calculated at the UHF level with a 6-31G* basis set. A 

close inspection of Table 2.7 shows that, with the UHF method, the IR peak 

nearest to the experimental value deviates by 181 wave number. Moreover, the 

mode is of very low intensity (6.5 km·mol–1). The only intense peak (100 km·mol–

1) in the spectrum is at 975.5 cm–1, which is nearly half of the experimental 

frequency. Therefore, these theoretical results are not at all consistent with 

experiments. The reason is the inadequacy of the theoretical method and small 

basis set. In the ROHF-CCSD(T) method with the aug-cc-pVTZ basis set, the 
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highest peak is at 1880 cm–1, very close to the experimental value of 1840 cm–1. 

Moreover this peak is of very high intensity (408 km·mol–1). This result is 

consistent with the experimental report of only one peak at 1840 cm–1. Moreover, 

CCSD(T) calculation of the isotropic shift gives a value of −49 cm–1 for the 

highest peak, which is nearly identical to an experimental shift of −50 cm–1. Thus, 

from the previous experimental data and our calculated results, it would be safe to 

conclude that a trans peroxo nitrate intermediate does get formed in the reaction 

between NO2 and atomic oxygen. 

 

Table 2.7 : Trans ONOO aug-cc-pVTZ IR Spectroscopy Results  

Frequencies 

(ω), cm–1
 

I
IR

, 

km·mol
–1

 

ω,
a
  

cm
–1

 

I
IR

,
a
 

km·mol
–1

 

exptl 

freq 

 cm
–1

 

Calc. iso 

shift, 

km·mol
–1

 

Exp   

cm
–1

 

123 1 207 1   –3   

198 1 469 1   –5   

271 3 671 13   –8   

719 3 976 100   –16   

1223 133 1287 14   –33   

1880 408 1659 7 1840 –49 –50 

 

a :  Values calculated by Hall et al. J. Phys. Chem. 1994, 90, 7414 at the UHF level 

with the 6-31G* basis set. 

 

 

 

2.4 Conclusions: 

In this chapter, the NOx catalyzed pathway of stratospheric ozone depletion has 

been computationally investigated with the coupled cluster method. The 

http://pubs.acs.org/doi/full/10.1021/ct300209s#tVIIfn1
http://pubs.acs.org/doi/full/10.1021/ct300209s#tVIIfn1
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optimizations are performed at the ROHF-CCSD(T) level of theory in aug-cc-

pVTZ basis set, while energetic of the reactions are investigated with the 

FSMRCC method in the same basis set  

 

Our EOMCC calculations show that among several probable tropospheric 

precursor compounds, only nitrous oxide is photochemically inert enough to move 

through the troposphere to reach the stratosphere. In the stratosphere, it reacts with 

an odd oxygen atom (1D) to form the active catalytic species nitric oxide. The 

reaction evolves through the formation of a four-membered reaction intermediate. 

Our calculations suggest that the breaking of the N–N bond of the intermediate is 

the rate-determining step of the reaction, which is consistent with the experimental 

value of the rate constant for the reaction. 

 

The first step of the NOx catalytic cycle is the reaction of NO with an ozone 

molecule to form NO2 and O2. The reaction proceeds through a five-membered 

transition state of trans configuration and shows a barrier height of 3.11 kcal/mol. 

This agrees perfectly with the experimental range of activation energy. 

 

The regeneration of nitric oxide from NO2 involves the formation of a trans 

peroxo nitrate intermediate. Our calculation resolves the previous conflict between 

theoretical calculations and experimental results. It has been shown that the 

compound gives an intense IR peak at 1880 cm–1, which is consistent with the 

experimental results. Thus, theoretical calculations can not only predict but also 

supplement experimental findings. 

 

Hence, high level theoretical studies can give a better understanding of the NOx 

based pathways of stratospheric ozone depletion for both theoreticians and 

experimentalists. It would be interesting to extend by including the effect of non-

dynamic correlation by doing a more extensive mapping of the PES in a MRCC 
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method. Furthermore, it would be interesting to study the other pathways of ozone 

depletion along with their inter-reactions. Such developments will be part of a 

planned systematic study of stratospheric ozone chemistry using a high level 

theoretical method. 
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Chapter 3 

 On potential stability of peroxo nitrate radical 

 

“All beings are born to delusion . . . overcome by the  

dualities which arises from wish and hate . . . . But those 

men of virtuous deed in whom sin has come to an end, 

freed from the delusion of dualities, worship Me 

steadfast in their vows ” 

Bhagawat Gita 

 

In this chapter, we report a comparative single-reference and multi-reference 

coupled cluster investigation on the structure, potential energy surface, and IR 

spectroscopic properties of the trans peroxo nitrate radical, one of the key 

intermediates in stratospheric NOX chemistry. The previous single-reference ab-

initio studies predicted an unbound structure for the trans peroxo nitrate radical. 

However, our Fock space multi reference coupled cluster calculation confirms a 

bound structure for the trans peroxo nitrate radical, in accordance with the 

experimental results reported earlier. Further, the analysis of the potential energy 

surface in FSMRCC method indicates a well-behaved minima, contrary to the 

shallow minima predicted by the single-reference coupled cluster method. The 

harmonic force field analysis, of various possible isomers of peroxo nitrate also 

reveals that only the trans structure leads to the experimentally observed IR peak 

at 1840 cm–1. The present study highlights the critical importance of non-dynamic 

correlation in predicting the structure and properties of high-energy stratospheric 

NOx radicals. 
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3.1 Introduction: 

The NOx radicals play a crucial role in stratospheric ozone chemistry and are 

involved in one of the major pathways of stratospheric ozone depletion [1-5]. 

Considerable efforts have been devoted to the study of these radicals, both 

theoretically[6-8] and experimentally [9-13]. 

 

  NO + O3  →   NO2 + O2                                                                                    (3.1) 

  NO2 + O  →   NO  + O2                                                                                     (3.2) 

 

The above reactions represent the key steps in NOx catalyzed pathway of 

stratospheric ozone depletion [2,14]. An analysis of the excitation energy spectra 

of NO3 reveals that the radical undergoes a nonadiabatic transition and a 

rearrangement prior to dissociation [15], leading to the formation of ONOO 

intermediate. The ONOO intermediate further dissociates in the subsequent step to 

form NO and O2. 

 

  NO3   →   ONOO   →   NO  + O2                                                                       (3.3) 

 

The existence of the ONOO intermediate was proposed by Ogg [16] for the first 

time, and since then, its presence has been debated considerably. Guillory and 

Johnston confirmed its presence, using infrared absorption spectroscopic analysis 

for a mixture of NOx and oxygen, and proposed a trans planar structure for the 

molecule [17]. However, Morris and Johnston latter revised this interpretation due 

to the systematic errors in the experiments [18]. Finally, Hall and co-workers gave 

positive evidence [9,19] in favor of the stable trans ONOO radical from the 

isotopic labeling study of the reaction between NO and O2, trapped in an argon 

matrix. Their conclusions were based on a 50 cm–1 isotopic shift of IR band at 

1840 cm–1, which was attributed to the presence of trans peroxo nitrate radical, 
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formed in the gas phase reaction between labeled O2 and NO trapped in an argon 

matrix. The authors also used some limited ab-initio calculations [20] to support 

their results. However, the experimental and theoretical results were not consistent 

and showed considerable discrepancy. The first high-level ab-initio study 

(CCSD(T)) on this system was performed by Lee and Wright [21], who reported a 

weakly bound quartet complex of ONOO. The authors did not investigate the 

doublet spin coupled form of ONOO formed during the photodissociation of NO3. 

Olson and co-workers [22] discarded the possibility of a bound structure for the 

doublet trans ONOO on energetic grounds. Their inference was partly based on the 

DFT and MP2 based results of Iwata and co-workers [23]. However, both DFT 

and MP2 methods are inadequate[24] for a proper description of the structure and 

properties of NOx radicals. On the contrary, Eisfeld and Morokuma [25] located a 

bound structure for trans ONOO using CCSD(T)/aug-cc-pVTZ level of theory. 

The radical wave function was found to be dominated by more than one 

configuration and they concluded that the optimized geometry is an artifact of the 

single-reference nature of method, rather than a true minimum. Their conclusion is 

consistent with the fact that the single-reference description of wave function [26, 

27] is inadequate in describing structure and properties of NO3, which is a 

structural isomer of trans peroxo nitrate. In case of nitrogen trioxide, even the state 

of the art single-reference coupled cluster method predicts a C2v geometry [28] 

contrary to the experimental geometry [29-32] of D3h. However, the Fock space 

multi-reference coupled cluster calculations by Kaldor [33] and MRCI 

calculations by Morkuma and Eisfeld [34], both lead to a D3h geometry of NO3. 

Thus, a high-level multi-reference study on trans ONOO, is also necessary to draw 

firm conclusions about the structure and potential stability of this compound. 

 

The objective of the present study is to investigate the structure, stability, and IR 

spectroscopic constants of doublet peroxo nitrate radical using multi-reference 

coupled cluster method, which incorporates dynamic and nondynamic correlation 

in a balanced way. The chapter is organized as follows: section 3.2 presents the 
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methodology; computational details, results, and discussion are presented in 

section 3.3; and section 3.4 contains the concluding remarks. 

 

 

 

3.2 Methodology and Computational Details 

The initial geometry optimization of the molecule has been done using single-

reference coupled cluster method, with ROHF reference, in singles and doubles 

(CCSD) approximation [35]. The potential energy surfaces and IR spectroscopic 

constants are calculated for a proper characterization of the molecule. The effect of 

inclusion of partial triples [36,37] (CCSD(T)), which gives the so-called “chemical 

accuracy”, is considered for the geometry, potential energy surface and 

spectroscopic properties. However, the trans peroxo nitrate radical shows high T1 

diagnosis [38] value. T1 diagnosis is actually the Euclidian norm of the coupled 

cluster singles amplitudes. Lee and Taylor [38] have shown that a T1 diagnosis 

value above 0.02 indicates that the reference wave function (Hartree–Fock in this 

case) does not provide a correct zeroth-order description of the exact wave 

function. This is generally, but not necessarily, caused by the presence of quasi-

degenerate configurations, each of which makes significant contribution to the 

reference wave function. The high T1 diagnosis value of trans ONOO radical 

shows that a proper description of its electronic structure requires a method 

capable of incorporating multi-configurational description of the wave function, 

where as accurate energetic requires calculation that include dynamic correlation. 

A multi-reference coupled cluster (MRCC) method uses an exponential operator 

on the reference space, which is a linear combination of more than one 

configuration, in contrast with the single-reference based theory with one single 

determinant as the reference space. Thus, MRCC incorporates both dynamic and 

non-dynamic correlation in a systematic way. There are two basic variants of 

multi-reference coupled cluster theory in the literature: The first one describes a 
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specific root, known as state specific MRCC [39] and other is the multiroot 

description by effective Hamiltonian approach [40-42]. Various approaches are 

available for describing state specific MRCC wave function ansatz, such as the 

Brillouin–Wigner (BW) MRCC ansatz [43, 44], the state specific ansatz suggested 

by Mukherjee and co-workers (MK-MRCC) [45-48], exponential multi-reference 

wave function ansatz (MRexpT) [49, 50), and internally contracted multi-

reference coupled cluster ansatz (ic-MRCC) [51, 52]. On the other hand, methods 

based on the effective Hamiltonian approach are divided into two subclasses: the 

Hilbert space (HS) [53-56] approach and Fock space (FS) [57-64] approach. In 

both approaches, energies are obtained by diagonalization of the effective 

Hamiltonian, defined within a pre-chosen model space and both approaches are 

fully size extensive. The HS-MRCC approach uses a state universal operator with 

different cluster operators for each determinant in the model space. The FS-MRCC 

approach, on the other hand, uses a valence universal wave operator, which 

correlates the model space with the reference space. However, both these 

approaches suffer from the convergence problem due to the presence of intruder 

states. The use of intermediate Hamiltonian [65, 66] (IH) or state specific (SS) 

MRCC approaches can circumvent this problem. Parallel to these approaches, the 

equation of motion coupled cluster (EOMCC) [67, 68] has been successfully used 

for the theoretical treatment of quasi-degenerate states [69, 70] and molecular-

excited states [68, 71-74]. For the principal peaks in one-valence problems, the 

EOMCC method is equivalent[75] to the FSMRCC method. Although HS-MRCC 

is more frequently used for studying potential energy surfaces, Bernholdt and 

Bartlett [76], as well as Ghose and Pal [77], have used the FSMRCC method to 

study potential energy surfaces with great success. 

We have used the FSMRCC method for our study. FSMRCC is known for 

accurate description of quasi-degenerate low lying states and has been successfully 

used for the calculation of energy [78-82] and properties [83-87] of ionized, 

electron-attached, and excited states. 
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The FSMRCC single-point calculations are performed using codes developed by 

Pal and co-workers [81-83]. The most time-consuming step in FS-MRCCSD 

calculation is the reference state closed-shell CCSD calculation, which scales as an 

iterative N6 power of the basis set. The construction of H̅ intermediates also scales 

as N6. However, it has to be constructed only once in a single-point calculation. 

The FSMRCCSD calculation for (1,0) and (0,1) sectors of Fock space scales as an 

iterative N5 power of the basis set. So, overall, the FSMRCCSD calculation scales 

as an iterative N6 power of the basis set. However, it has a slightly higher prefactor 

and a slightly enhanced storage requirement than single-reference closed-shell 

CCSD calculations. 

All the single-reference and multi-reference geometry optimization [88] and 

frequency calculations for the doublet radical were performed using CFOUR [89]. 

For optimizing the triplet state of oxygen, a numerical gradient based FSMRCC 

code has been used, with a model space of (4,3) [90]. The T1 diagnosis was 

performed using Gaussian09 [91]. The basis set convergence of the results was 

studied using a hierarchy of Dunning’s [92] correlation-consistent aug-cc-pVXZ 

basis sets (X = D, T and Q) and all the electrons are used in correlation treatment. 

Total energies of the different isomers have been extrapolated to obtain the energy 

at the complete basis set (CBS) limit [93-95], using following formula [96] used 

by Kamiya and Hirata [97] in their benchmark study. 

       21 1
1 2

n n
E n E e e       

                                       ( 3.4)                  

  

where E(∞) is the energy at the CBS limit, and n = 2, 3, 4 corresponds to the aug-

cc-pVDZ, aug- cc-pVTZ, and aug-cc-pVQZ basis sets, respectively. E(n) are the 

corresponding energies, and η1 and η2 are parameters that are used to fit the 

energies. 
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3.3 Results and Discussion  

The peroxo nitrate radical is made up of two open-shell fragments NO2 and O2 

with the ground states of 2Π and 3Σg, respectively, which could give rise to a single 

bond among them with one unpaired electron. 

 

 

3.3.1 Single-Reference Coupled Cluster Calculations 

The single-reference coupled cluster method, in CCSD approximation, is not 

suitable for a proper description of doublet radicals, with quasi-degenerate ground 

state. However, it can be a good starting point for a correlated ab-initio treatment 

of energy, structure, and properties of peroxo nitrate radical. 

 

Table 3.1 presents the optimized geometries of trans peroxo nitrate. Optimization 

of the trans peroxo nitrate at the CCSD/aug-cc-pVDZ level of theory gives a 

bound complex with an ON–OO bond length of 1.664 Å, and it is similar to the 

earlier reported geometry by Eisfeld and Morokuma [25]. The optimized N–O and 

O–O bond lengths are 1.146 and 1.281 Å, respectively. Improving the basis set 

from aug-cc-pVDZ to aug-cc-pVTZ leads to shrinking of the ON–OO bond length 

to 1.558 Å. The N–O bond also shrinks to 1.130 Å in aug-cc-pVTZ basis set. On 

the other hand, the O–O bond gets stretched to 1.338 in CCSD/aug-cc-pVTZ level 

of theory. The O–O bond length (1.338 Å) in trans peroxo nitrate shows elongation 

from that of the free triplet oxygen (1.195 Å), whereas the N–O bond (1.130 Å) 

undergoes shrinking from the free nitric oxide bond length of 1.142 Å. This 

elongation of the O–O bond and shortening of the N–O bond indicate transfer of 

electron density from the antibonding orbital (2π*g) of nitric oxide to the 

antibonding orbital (2π*g) of oxygen. The harmonic frequencies computed for the 

optimized geometry are all real, confirming it to be a true minimum. The 

geometrical parameters in the aug-cc-pVQZ basis show very small deviation from 

that in the aug-cc-pVTZ basis set, and the results seem to approach the basis set 

convergence limit. 
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We have further refined the optimized geometry by including partial triples in the 

single-reference coupled cluster method (CCSD(T)), which takes care of the 

correlation in an improved manner. In the CCSD(T)/aug-cc-pVDZ level of theory,  

 

Table 3.1 : Optimized Geometrical Parameters of Trans Peroxo Nitrate 

method basis 

set 

RO–O (Å) R(ON)–(OO) 

(Å) 

RN–O (Å) α(ONO) 

(deg) 

α(NOO) 

(deg) 

CCSD aug-cc-

pVDZ 

1.281 1.664 1.146 108.0 108.4 

  aug-cc-

pVTZ 

1.338 1.558 1.130 108.6 110.9 

  aug-cc-

pVQZ 

1.333 1.556 1.129 108.6 111.2 

CCSD(T) aug-cc-

pVDZ 

does not converge 

 aug-cc-

pVTZ 

1.258 1.789 1.137 108.0 109.4 

  aug-cc-

pVQZ 

1.255 1.789 1.136 107.9 109.7 

FSMRCCSD aug-cc-

pVDZ 

1.298 1.598 1.150 108.2 106.7 

  aug-cc-

pVTZ 

1.287 1.556 1.135 108.3 107.4 

  aug-cc-

pVQZ 

1.285 1.550 1.135 108.3 107.6 

 

we have failed to obtain a bound structure for the trans peroxo nitrate. However, as 
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we go to the aug-cc-pVTZ basis set, the CCSD(T) method gives a bound structure 

for the trans peroxo nitrate. Inclusion of partial triples increases the ON–OO bond 

length from 1.558 to 1.789 Å (Table 3.1). 

 

It also shrinks the O–O bond and subsequently stretches the N–O bond. Thus, it 

can be concluded that the inclusion of partial triples leads to less interaction 

between the constituting fragments and thereby weakening the ON–OO complex, 

which is also indicated by the very shallow minima present in the potential energy 

surface of trans ONOO, obtained using CCSD(T) method (Figure 3.1a). 

Interestingly, the bond angles in trans peroxo nitrate remain unaffected by 

inclusion of partial triples. Geometrical parameters show a very negligible change 

as we go from the aug-cc-pVTZ to the aug-cc-pVQZ basis, in both CCSD and 

CCSD(T) methods, and results seem to approach complete basis set limit. 

 

 

Figure 3.1 : Potential energy surface along the ON–OO bond. 

 

A planar peroxo nitrate has an alternative possibility of existing as a cis isomer. 

Table 3.2 presents the optimized geometries of cis peroxo nitrate in single-

reference and multi-reference coupled cluster methods.  

 

The calculation at the CCSD/aug-cc-pVDZ level of theory reveals that the bond 

lengths of the cis isomer are considerably different from that of the corresponding 
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trans one. The ON–OO bond in case of the cis isomer is stretched to 1.846 Å, 

whereas O–O and N–O bonds shrink to 1.254 and 1.137 Å, respectively. The ONO 

and NOO bond angles are also slightly smaller than that in the trans isomer. On 

going from aug-cc-pVDZ to aug-cc-pVTZ, the ON–OO bond shrinks to 1.761 Å. 

The O–O and N–O bonds also shrink to 1.249 and 1.121 Å, respectively. On the 

other hand, ONO and NOO bond angles increase to 104.9° and 104.4°, 

respectively.  

 

Table 3.2 : Optimized Geometrical Parameters of Cis Peroxo Nitrate 

method basis 

set 

RO–O (Å) R(ON)–(OO) 

(Å) 

RN–O (Å) α(ONO) 

(deg) 

α(NOO) 

(deg) 

CCSD aug-cc-
pVDZ 

1.254 1.846 1.137 102.4 102.1 

  aug-cc-
pVTZ 

1.249 1.761 1.121 104.9 104.4 

  aug-cc-
pVQZ 

1.248 1.749 1.120 105.4 104.9 

CCSD(T) aug-cc-
pVDZ 

1.239 2.140 1.158 93.9 96.1 

  aug-cc-
pVTZ 

1.228 2.084 1.134 95.1 96.1 

  aug-cc-
pVQZ 

1.226 2.086 1.133 95.2 97.2 

FSMRCCSD aug-cc-
pVDZ 

1.306 1.660 1.137 113.2 111.6 

  aug-cc-
pVTZ 

1.295 1.622 1.122 113.5 112.8 

  aug-cc-
pVQZ 

1.292 1.620 1.121 113.5 112.8 

 

However, the changes in both bond lengths and bond angles are small from the 

aug-cc-pVTZ to the aug-cc-pVQZ basis set, and the value approaches the 
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complete basis set limit. 

 

The inclusion of partial triples in coupled cluster calculations shows considerable 

change in bond lengths, as well as in bond angles. The ON–OO bond stretches to 

2.140 Å at the CCSD(T)/aug-cc-pVDZ level of theory. The O–O bond length 

shrinks to 1.239 Å, and the N–O bond stretches to 1.158 Å in the CCSD(T) 

method. However, the most striking change is observed in the case of bond angles. 

Unlike, in the case of the trans isomer, where the inclusion of triples keeps the 

bond angles almost unchanged, the ONO bond angle shrinks to 93.9° and the 

NOO bond angle shrinks to 96.1° in the cis isomer at the CCSD(T)/aug-cc-pVDZ 

level of theory. The bond angles close to 90° give cis peroxo nitrate a near 

rectangular structure. The ON–OO bond length shrinks to 2.084 Å, as we go from 

the aug-cc-pVDZ to the aug-cc-pVTZ basis. The O–O and N–O bonds also shrink 

to 1.228 and 1.134 Å, respectively, in the CCSD(T)/aug-cc-pVTZ level of theory. 

However, the bond angles are less affected by the improvement in the basis set. All 

the geometrical parameters show very small change from aug-cc-pVTZ to aug-cc-

pVQZ basis set, and the values approach the complete basis set limit. 

 

The huge change in the O–O and ON–OO bond lengths for the trans isomer and 

the ON–OO bond length and bond angles for cis with inclusion of partial triples at 

first glance may look puzzling. However, the potential energy surface scan (Figure 

3.1a,b) along the ON–OO bond shows the two fragments constituting the molecule 

are very weakly bound. At the same time, the very high T1 diagnosis value (Figure 

3.2 a,b) indicates that the ROHF reference orbitals do not provide a correct zeroth-

order description of the exact wave function. Therefore, the inclusion of partial 

triples can induce a very large relaxation of the orbitals. Consequently, it can 

change the energy, as well as geometry and vibrational property, by a considerable 

amount. The change is more prominent at the intermonomer ON–OO bond and 

also the bond angles involving the ON–OO bond, rather than the strongly bound 

intramonomer O–O and O–N bonds. 
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The cis complex is energetically 24.03 kcal/mol more stable than the 

corresponding trans isomer at the CCSD/aug-cc-pVQZ level of theory (with ZPE 

correction of −0.72 kcal/mol). The relative stability of the cis isomer decreases to a 

value of 7.70 kcal/mol (with ZPE correction of −0.63 kcal/mol) at the CCSD(T) 

level. However, T1 diagnosis values indicate that the ROHF reference wave 

function is inadequate for a correct zeroth-order description of the exact wave 

function of both cis and trans peroxo nitrate. Plot a and b of Figure 3.2 show that 

the CCSD equilibrium geometry gives a T1 diagnosis value of 0.03, and it 

increases to 0.05 in the CCSD(T) equilibrium geometry, for both isomers. 

 

 

Figure 3.2 : ON–OO bond length vs T1 diagnosis value. 

 

3.3.2 Multi-reference Coupled Cluster Calculations 

The high T1 diagnosis value shown by the peroxo nitrate radical calls for a multi-

reference description of the wave function. In FSMRCCSD/aug-cc-pVDZ level of 

theory trans peroxide shows an ON–OO bond length of 1.598 Å. The O–O and O–

N bond lengths at the corresponding level of theory are 1.298 and 1.150 Å, 

respectively. All the bond lengths decrease from aug-cc-pVDZ to aug-cc-pVTZ 

basis. The comparison of O–O and N–O bond lengths in peroxo nitrate radical 

with their corresponding values in the free species can lead to some insight into 

the bonding of trans peroxo nitrate. In the FSMRCCSD/aug-cc-pVTZ level of 
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theory, the O–O bond stretches to 1.287 Å from the free oxygen bond length of 

1.193 Å and the N–O bond shrinks to 1.135 Å compared to the free nitric oxide 

bond length of 1.150 Å. This change in the bond lengths indicates transfer of 

electron density from the antibonding (2π*g) of nitric oxide to the antibonding 

(2π*g) of oxygen, resulting in shrinking of the former and stretching of the latter. 

The Mulliken population analysis of species (Table 3.3) confirms the transfer of 

electron density from nitric oxide to oxygen. The O–O bond length shrinks and N–

O bond length stretches, as compared to that in the CCSD method. In both cases, 

the trend in FSMRCCSD is comparable with that of the CCSD(T) method.  

 

Table 3.3 : Mulliken Population Analysis of Trans ONOO at the FSMRCCSD/aug-cc-

pVTZ Level of Theory 

Atom center Mulliken population 

O 8.172 

O 8.048 

N 6.629 

O 8.150 

 

 

However, the ON–OO bond length (1.556 Å) in the FSMRCCSD method is much 

shorter than the CCSD(T) bond length and nearly identical to that with the CCSD 

method, which indicates higher bonding character in the complex as we go from 

single-reference to multi-reference coupled cluster, i.e., from CCSD to 

FSMRCCSD, method. To get a clearer picture about the stability of the trans 

peroxo nitrate, we have scanned the potential energy surface along the ON–OO 

coordinate from 1.30 to 2.30 Å with single-reference and multi-reference coupled 

cluster methods. The aug-cc-pVTZ basis set was used for the calculations, and the 

other geometrical parameters were kept fixed at their optimized equilibrium values 
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of the corresponding level of theory. The CCSD curve shows a minimum around 

1.55 Å (Figure 3.1a). However, after 2.10 Å the curve rapidly starts falling off, 

which is consistent with the typical failures of the standard single-reference 

coupled cluster method in bond stretching [98] On the other hand, the CCSD(T) 

method shows a shallow minima around 1.79 Å and it does not fall off up to 2.30 

Å, i.e., the entire width of the scan. However, the plot of bond length vs T1 

diagnosis value (Figure 3.2a) indicates a progressive increase of the multi-

reference character with the stretching of the bond. Therefore, the single-reference 

coupled cluster method can hardly be trusted for an accurate depiction of the 

potential energy curve at stretched bond lengths. The curve plotted with the 

FSMRCCSD method shows the trend similar to that of the CCSD curve, with the 

exception that the former does not fall off even at stretched bond lengths and 

behaves smoothly for the entire range of the scan. The above results, thus, lead us 

to the conclusion that the trans ONOO has a bound structure at the 

FSMRCCSD/aug-cc-pVTZ level of theory. The geometrical parameters show a 

very small change from the aug-cc-pVTZ to the aug-cc-pVQZ basis set, and 

results seem to converge with respect to the basis set. Figure 3.3a presents the 

optimized structure of trans peroxo nitrate at the FSMRCCSD/aug-cc-pVQZ level 

of theory. 

 

 

Figure 3.3 :. Different isomers of peroxo nitrate. 

 

We have also optimized the cis structure of ONOO with the FSMRCCSD method. 
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At the FSMRCCSD/aug-cc-pVDZ level of theory, the cis isomer shows an ON–

OO bond length of 1.660 Å, which is much smaller than the one predicted by 

CCSD and CCSD(T) methods. The O–O and O–N bond lengths at the 

FSMRCCSD/aug-cc-pVDZ level of theory are 1.306 and 1.137 Å, respectively. 

However, the bond angles in the FSMRCCSD method are much larger than those 

in the single-reference coupled cluster method. All the bond lengths in the 

FSMRCCSD method decrease with the larger aug-cc-pVTZ basis set. However, 

the bond angles are less affected by the basis set. The FSMRCCSD/aug-cc-pVTZ 

level of theory shows a slightly longer ON–OO bond length (1.622 Å) compared 

to that of the corresponding trans isomer (1.558 Å). The Mulliken population 

analysis of the species (Table 3.4) indicates transfer of electron density from 

antibonding orbital (2π*g) of nitric oxide to the antibonding orbital (2π*g) of 

oxygen, which results in shrinking of the N–O and stretching of the O–O bond 

lengths, as compared to their free molecular bond lengths. 

 

Table 3.4 : Mulliken Population Analysis of Cis  ONOO at the FSMRCCSD/aug-cc-

pVTZ Level of Theory 

Atom center Mulliken population 

O 8.050 

O 8.199 

N 6.671 

O 8.079 

 

A scan of the potential energy surface of the cis isomer along the ON–OO 

coordinate has also been performed using the same procedure as applied for the 

trans isomer (Figure 3.1b). The CCSD curve of the cis isomers shows a behavior 

similar to that of the trans isomer with a minima around 1.76 Å and starts to fall 
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off after 2.11 Å. The CCSD(T) curve shows a minima around 2.08 Å, which is 

slightly deeper than the corresponding trans isomer and, consequently, indicates a 

more bound structure. However, the plot of T1 value vs bond length (Figure 3.2b) 

shows heavy multi-reference character of the wave function, even at equilibrium 

distance, in the single-reference coupled cluster method. The FSMRCC 

calculation, on the other hand, gives a smooth curve. The geometrical parameters 

show very little change on moving from the aug-cc-pVTZ to the aug-cc-pVQZ 

basis, and the results seem to the approach basis set convergence limit. Figure 3.3b 

presents the optimized structure of cis peroxo nitrate at the FSMRCCSD/aug-cc-

pVQZ level of theory. 

 

The stability of the cis isomer relative to the trans isomer decreases with inclusion 

of non-dynamic correlation. Table 3.5 presents the effect of the basis set on the 

relative stability of the cis and trans isomer in the FSMRCCSSD method. In the 

aug-cc-pVDZ basis set, the cis isomer is only 2.12 kcal/mol (with inclusion of 

ZPE) lower in energy than the corresponding trans isomer. The relative stability of 

the cis isomer decreases to 1.47 kcal/mol (with inclusion of ZPE) at the 

FSMRCCSD/aug-cc-pVTZ level of theory; i.e., the cis isomer is now 1.47 

kcal/mol lower in energy than the trans one. However, the change in the relative 

stability is small from aug-cc-pVTZ to aug-cc-pVQZ, and results seem to 

converged with respect to the basis set. In the complete basis set limit, the stability 

of the cis isomer decreases to 1.48 kcal/mol (without the ZPE correction). The 

inclusion of ZPE correction slightly changes the value, and the cis isomer is 1.58 

kcal/mol lower in energy than the trans one, in the CBS limit with ZPE correction. 

 

Lee and Wright [21] have described T-shaped and linear structures of quartet 

peroxo nitrate. We have also investigated these structures for the doublet peroxo 

nitrate in the FSMRCC method using a hierarchy of Dunning’s [92] correlation-

consistent aug-cc-pVXZ basis sets (X = D, T, and Q). All the isomers show similar 
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basis set behaviors. The bond lengths show a large change on going from the aug-

cc-pVDZ to aug-cc-pVTZ basis. However, the change is negligible on moving 

from aug-cc-pVTZ to aug-cc-pVQZ, and the values seem to be converged with 

respect to the basis set. On the other hand, the bond angles are less affected by 

basis set and remain almost unchanged with a change in basis set.  

 

Table 3.5 : Relative Stability of the Cis Perxo Nitrate Radical Compared to the Trans 

Isomer in the FSMRCCSD Method (kcal/mol) 

basis set trans isomer cis isomer (without 

the ZPE 

correction) 

cis isomer (with the 

ZPE correction) 

aug-cc-pVDZ 0.00 1.92 2.12 

aug-cc-pVTZ 0.00 1.37 1.47 

aug-cc-pVQZ 0.00 1.43 1.53 

CBS 0.00 1.48 1.58 

 

The T-shaped structure (Figure 3.3d) of peroxo nitrate shows a long interfragment 

distance and is 29.21 kcal/mol higher in energy at the FSMRCCSD/CBS level of 

theory with inclusion of ZPE correction than the trans structure. In the T-shaped 

structure, the oxygen atom of the nitric oxide unit is pointed toward the middle of 

the O═O double bond. The Mulliken population analysis (Table 3.6) of atoms 

shows transfer of electron density from 2π*g of oxygen to 2π*g of NO, which is 

also reflected in the shrinking of the O═O bond to 1.173 Å and stretching of the 

NO bond to 1.167 Å in FSMRCCSD/aug-cc-pVQZ level of theory. Interestingly, 

this is opposite to the trend shown by cis and trans ONOO isomers, where the 

O═O bond stretches and NO bond shrinks, in their free species. The structure 

shows an imaginary frequency of 27 cm–1, which indicates it to be a first-order 



97 

 

saddle point on the potential energy surface. 

 

Among the various possible linear structures of peroxo nitrate, we have found only 

three bound structures. The first one is a linear ONOO structure with an elongated 

ON–OO bond length of 4.468 Å at the FSMRCCSD/aug-cc-pVQZ level of theory 

(Figure 3.3e). The O═O bond length is 1.201 Å, which is slightly longer than the 

corresponding free O═O bond length of 1.193 Å, where the N═O bond length is 

1.138 Å, which is shorter than the corresponding free N═O bond of 1.150 Å. The 

linear ONOO structure is 9.93 kcal/mol higher in energy than the trans one at the 

FSMRCCSD/CBS level of theory (with ZPE correction). The structure shows an 

imaginary frequency of 7 cm–1 at the FSMRCCSD/aug-cc-pVQZ level of theory, 

indicating the structure to be a first-order saddle point. 

 

Table 3.6 : Mulliken Population Analysis of T shaped  ONOO at the FSMRCCSD/aug-

cc-pVTZ Level of Theory 

Atom center Mulliken population 

O 7.895 

O 7.893 

N 7.120 

O 8.090 

 

There also exist two alternative shapes of linear nitro peroxide (Figure 3.3f and g). 

At the aug-cc-pVQZ level of theory, both have similar O═O and N═O bond 

lengths, i.e., slightly elongated O═O bond and slightly shorter N═O bond than 

those in their free analogs. However, the isomers considerably differ among 

themselves in the ON–OO bond lengths. The first one (NOOO I in Figure 3.3f) 



98 

 

has an ON–OO bond length of 3.219 Å whereas the second one (NOOO II in 

Figure 3.3g) has an elongated ON–OO bond length of 3.645 Å. They have almost 

identical energies and are 9.12 and 9.00 kcal/mol higher in energy than the trans 

structure at the FSMRCCSD/CBS level of theory (with ZPE correction). An 

interesting observation for all the three linear isomer is that, though the 

intramonomer OO and ON distance, as well as their energies are virtually 

identical, the intermonomer distances are rather different, i.e., 4.468, 3.219, and 

3.645 Å. All the three linear isomers of peroxo nitrate are made up of very weakly 

bound O═N and N═O monomer fragments. The potential energy surfaces along 

the intermonomer distance for all the three linear isomers are very flat, which 

indicate the linear isomers are very weakly bound. Consequently, all of them have 

nearly identical energies, in spite of having different intermonomer distances. 

 

The NOOO II shows an imaginary frequency of 5 cm–1 at the FSMRCCSD/aug-

cc-pVQZ level of theory, indicating the structure to be a first-order saddle point, 

whereas the NOOO I shows all real frequencies, indicating the structure to be a 

local minima. 

 

 

3.3.3 Harmonic Frequency Calculation 

The above-reported results demonstrate that the proposed ONOO complex can 

only have cis or trans geometry, on energetic grounds, which are stable and 

observable. The distinction between cis and trans structure can be made by 

comparing the computed IR frequencies with that of the experimentally 

determined values. The experimental evidence on the positive existence of trans 

peroxo nitrate is based on an IR band at 1840 cm–1, observed due to a reaction 

product of NO and O2 trapped in an argon matrix.  

 

Table 3.7 reports the computed IR frequencies and intensities using single-
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reference, FSMRCC, and UHF/6-311G* methods. We compare our results with 

the available experimental numbers. The lowest a″ torsion vibration is not of 

interest and was thus omitted. We also report results by Hall and co-workers[20] 

calculated using UHF/6-311G* for comparison. 

 

Table 3.7 : Comparison of Frequencies of Trans ONOO Computed in Single-Reference 

and Multireference Coupled Cluster Method aug-cc pVTZ Basis Set with Experimental 

Values and Previous Theoretical Results 

 CCSD CCSD(T) FSMRCCSDa UHF/6-31G*b expc 

Modes 
of 

vibrat
ion 

IR 
freque

ncy 
(cm–1) 

IR 
intensi
ty (km 
mol–1) 

IR 
frequ
ency 

(cm–1) 

IR 
intensi

ty 
(km m

ol–1) 

IR 
freque

ncy 
(cm–1) 

IR 
intensi

ty 
(km m

ol–1) 

IR 
freque

ncy 
(cm–1) 

IR 
intens

ity 
(km 

mol–1) 

 

O–O–
N 

defor
m 

273 112 110 1 368 

(182) 

5 469 1  

O–N 
stretch 

395 185 244 2 450 

(367) 

69 671 13  

O–N–
O 

defor
m 

733 171 680 1 870 

(713) 

89 976 100  

O–O 
stretch 

989 24 1245 187 1251 

(1365) 

17 1287 14  

N–O 
stretch 

1914 497 1880 420 1925 

(1875) 

273 1659 7 1840 

a : The numbers in parentheses are frequencies with addition of partial triples to 

FSMRCCSD. 

b :  Values calculated by Hall and co-workers. See ref 20.               c : See ref 19. 

http://pubs.acs.org/doi/full/10.1021/jp409218c#t7fn1
http://pubs.acs.org/doi/full/10.1021/jp409218c#t7fn2
http://pubs.acs.org/doi/full/10.1021/jp409218c#t7fn3
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It can be seen that the most intense peak at the UHF/6-311G* level of theory is at 

976 cm–1, which is nearly half of the experimental peak at 1840 cm–1. On the other 

hand, the peak at 1659 cm–1, which is closest to the experimental value, is of very 

low intensity. Therefore, at the UHF/6-311G* level of theory, the computed 

spectrum of trans ONOO does not match with the experimental value. 

 

The most intense peak using the CCSD/aug-cc-pVTZ spectrum is at 1914 cm–1, 

which among the computed IR peaks, is closest to the experimental value. 

Inclusion of perturbative triples shifts the peak toward a lower value of 1880 cm–1; 

i.e., it moves closer to the experimental value. The FSMRCCSD method also 

shows the same trend as that of the single-reference method. The most intense 

peak in the FSMRCCSD calculated spectrum is at 1925 cm–1. The inclusion of 

partial triples [99, 100] lowers the frequency to 1875 cm–1 (reported in parentheses 

in Table 3.7), which is very close to the experimental value. 

 

Table 3.8 presents the basis set convergence of IR frequencies of the trans peroxo 

nitrate radical computed with the single-reference and multi-reference coupled 

cluster methods. At the CCSD/aug-cc-pVDZ level of theory, the most intense peak 

is at 1915 cm–1. It remains almost unchanged at 1914 cm–1 on moving to the aug-

cc-pVTZ basis set. However, the intensity of the mode shows a large change from 

418 to 497 km mol–1, as we go from the aug-cc-pVDZ to the aug-cc-pVTZ basis 

set. Both the IR frequency and IR intensity show negligible change from aug-cc-

pVTZ to aug-cc-pVQZ, and the results seem to approach the basis set convergence 

limit. In the case of the CCSD(T) method, we failed to obtain a bound structure for 

trans peroxo nitrate in the aug-cc-pVDZ basis. However, the intensity of the mode 

shows a large change from 418 to 497 km mol–1, as we go from the aug-cc-pVDZ 

to the aug-cc-pVTZ basis set. 
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Table 3.8 : Basis Set Convergence of Frequencies of Trans ONOO at Various Levels of 

Theory 

  CCSD CCSD(T) FSMRCCSD 

Basis Mode of 

 vibration 

IR 
freque

ncy 
(cm–1) 

IR 
intensi
ty (km 
mol–1) 

IR 
freque

ncy 
(cm–1) 

IR 
intensi
ty (km 
mol–1) 

IR 
freque

ncy 
(cm–1) 

IR 
intensit
y (km 
mol–1) 

aug-
cc-
pVDZ 

O–O–N deform 301 15 Optimization 
does not 
converge 

  

  

  

351 3 

  O–N stretch 333 24 421 57 

  O–N–O deform 779 33 848 74 

  O–O stretch 1200 65 1207 29 

  N–O stretch 1915 418 1902 315 

aug-
cc-
pVTZ 

O–O–N deform 273 112 110 1 368 5 

  O–N stretch 395 185 244 2 450 69 

  O–N–O deform 733 171 680 1 870 89 

  O–O stretch 989 24 1245 187 1251 17 

  N–O stretch 1914 497 1880 420 1925 273 

aug-
cc-
pVQZ 

O–O–N deform 276 116 98 1 373 6 

  O–N stretch 397 185 247 2 457 70 

  O–N–O deform 737 171 679 1 875 91 

  O–O stretch 1001 26 1254 194 1262 16 

  N–O stretch 1920 496 1894 422 1929 260 
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Both the IR frequency and IR intensity show negligible change from aug-cc-pVTZ 

to aug-cc-pVQZ, and the results seem to approach the basis set convergence limit. 

In the case of the CCSD(T) method, we failed to obtain a bound structure for trans 

peroxo nitrate in the aug-cc-pVDZ basis. 

However, at the CCSD(T)/aug-cc-pVTZ level of theory, trans peroxo nitrate shows 

the most intense peak at 1880 cm–1 with an IR intensity of 420 km mol–1. On 

moving to the aug-cc-pVQZ basis set, both the IR frequency and intensity seem to 

converge with respect to the basis set. The FSMRCCSD method with the aug-cc-

pVDZ basis set shows the most intense peak at 1902 cm–1, with an IR intensity of 

315 km mol–1. The peak shifts to 1925 cm–1 with an intensity of 273 km mol–1 in 

aug-cc-pVTZ. However, the change is very small from the aug-cc-pVTZ to the 

aug-cc-pVQZ basis set, and both the IR frequency and intensity in the 

FSMRCCSD method seem to converge with the basis set. 

There is an even more sensitive test of the correlation between theory and 

experiment. The major argument in favor of a stable ONOO complex was based 

on the 50 cm–1 shift observed by Bhatia and Hall [9] when they performed the 

experiment with the 18O2 isotopomer in place of a 16O2 isotopomer. Their study 

reports an isotopic shift due to the 16O14N18O18O species, the only possible 

isotopomer that can form in an association reaction between 14N16O and 18O2. 

Therefore, we have calculated the isotopic shift, at the FSMRCCSD/aug-cc-pVTZ 

level of theory, for all the possible isotopic combinations of 14N16O with 16O2 or 
18O2, and the results are presented in Table 3.9. 

The 16O14N18O18O isotopomer does not show any isotopic shift of peak at 1925 

cm–1, which at first glance contradicts the existence of a stable trans ONOO 

species. However, a careful look at Table 3.9 reveals that ONOO indeed shows an 

isotopic shift of nearly 50 cm–1, only when the NO fragment contains an 18O atom. 

Eisfeld and Morokuma [25] have indicated a possibility of formation of a 
18O14N16O18O isotopomer, which may account for the 50 cm–1 isotopic shift. We 

have tried to find out a mechanism of formation of 18O14N16O18O isotopomer 
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from16O14N18O18O isotopomer. 

The isotope exchange reaction is found to proceed through a transition state 

(Figure 3.3c), which shows an imaginary frequency of 177 cm–1 at the 

FSMRCCSD/aug-cc-pVTTZ level of theory. The formation of the transition state 

is accompanied by stretching of the 18O18O and 14N16O, and shrinking of the 
18O14N bond (Figure 3.4). The transition state finally evolves to 18O14N16O18O, and 

the reaction shows a barrier height of 32.45 kcal/mol at the FSMRCCSD/CBS 

level of theory (with inclusion of ZPE correction). Formation of 18O14N16O18O 

leads to an isotopic shift of 49 cm–1 of the peak at 1925 cm–1, which is in excellent 

agreement with the experimental shift of 50 cm–1. 

 

Table 3.9 : Harmonic Frequencies (cm
–1

) and Isotopic Shifts (cm
–1

) of Trans ONOO 

Calculated at the FSMRCCSD/aug-cc-pVTZ Level of Theory 

Isotopomer O–O–N 

deform 

O–N 

stretch 

O–N–O 

deform 

O–O 

stretch 

N–O 

stretch 

16O14N16O16O 368 450 870 1251 1925 

18O14N16O16O -3 –7 –10 0 –49 

16O14N16O18O -7 –2 –9 –30 0 

16O14N18O16O -5 –10 –11 –36 0 

16O14N18O18O –13 –13 –19 –68 0 

18O14N18O16O –8 –17 –20 –37 –50 

18O14N16O18O –10 –10 –18 –31 –49 

18O14N18O18O –16 –20 –29 –69 –50 

 

In the previous section, we found the possibility of a cis isomer that is almost 
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degenerate with the trans isomer. However, the computed IR spectrum of cis 

ONOO shows very little resemblance with the experimental spectrum (Table 

3.10). At the CCSD/aug-cc-pVDZ level of theory, the computed spectrum shows 

the most intense peak at 1973 cm–1. On moving from aug-cc-pVDZ to aug-cc-

pVTZ, the IR frequency corresponding to the most intense peak shifts to 1988 cm–

1, which is 148 cm–1 higher than that in the experimental spectrum. With inclusion 

of perturbative triples (CCSD(T)) the peak undergoes a red shift to 1927 cm–1. 

However, the spectrum contains another peak at 1436 cm–1, which is of 

comparable intensity to the peak at 1927 cm–1. The experimental spectrum, on the 

other hand, contains only one intense peak. Therefore, the experimental peak in 

the spectrum of 1840 cm–1 cannot be due to cis ONOO. On going from the aug-cc-

pVTZ to the aug-cc-pVQZ basis set, the IR frequency and intensity, in both CCSD 

and CCSD(T) methods, seem to converge with respect to the basis set. The 

FSMRCCSD computed spectrum shows the same behavior as that of the CCSD 

method and exhibits the most intense peak at 1970 cm–1. 

 

 

Figure 3.4 : Mechanism of the isotope exchange reaction of trans ONOO 

 

The T-shaped structure apparently gives a single very low intensity peak at 1825 

cm–1 in FSMRCCSD/aug-cc-pVDZ (Table 3.11). All the other peaks in the 

spectrum are of zero intensity. Both the IR frequency and IR intensity undergo a 

large change on going from aug-cc-pVDZ to aug-cc-pVTZ. However, the change 

is small from aug-cc-pVTZ to aug-cc-pVQZ, and the results seem to be 

approaching the complete basis set limit. At the FSMRCC/aug-cc-pVQZ level of 

theory, the most intense peak is at 1854 cm–1, which is in very good agreement 

with the experimental peak at 1840 cm–1.  
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Table 3.10 : Basis Set Convergence of Frequencies of Cis ONOO at Various Levels 

of Theory 

  CCSD CCSD(T) FSMRCCSD 

Basis Mode of 

 vibration 

IR 
freque

ncy 
(cm–1) 

IR 
intens

ity 
(km 

mol–1) 

IR 
frequ
ency 

(cm–1) 

IR 
intens

ity 
(km 

mol–1) 

IR 
frequ
ency 

(cm–1) 

IR 
intensit
y (km 
mol–1) 

aug-
cc-
pVDZ 

O–O–N deform 281 1 274 2 270 3 

  O–N stretch 364 1 326 6 441 97 

  O–N–O deform 708 0 551 0 681 39 

  O–O stretch 1287 242 1420 186 1077 47 

  N–O stretch 1973 410 1892 204 1938 602 

aug-
cc-
pVTZ 

O–O–N deform 303 2 253 8 342 2 

  O–N stretch 394 17 280 4 474 55 

  O–N–O deform 758 2 582 0 809 9 

  O–O stretch 1304 157 1436 217 1263 74 

  N–O stretch 1988 378 1927 224 1989 336 

aug-
cc-
pVQZ 

O–O–N deform 308 3 240 9 371. 0 

  O–N stretch 394 20 287 4 398 22 

  O–N–O deform 766 2 583 0 683 10 

  O–O stretch 1310 148 1432 220 1234 128 

  N–O stretch 1992 377 1920 224 1970 574 
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Table 3.11 : Frequencies T-Shaped Structure at the FSMRCCSD Method 

 aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ 

Mode of 

 vibration 

IR 

frequency 

(cm–1) 

IR 

intensity 

(km 

mol–1) 

IR 

frequency 

(cm–1) 

IR 

intensity 

(km 

mol–1) 

IR 

frequency 

(cm–1) 

IR 

intensity 

(km 

mol–1) 

ip bending 

of O–O 

260i 0 20 0 28i 0 

N–O and 

O–O bond 

deform 

126 0 41 1 52 1 

ip bending 

of NO 

225 0 110 63 104 62 

oop 

bending of 

NO 

244 0 118 0 119 0 

O–O 

stretch 

1764 0 1790 21 1801 13 

N–O 

stretch 

1825 1 1854 107 1854 99 

 

However, a closer look across the spectrum reveals that there is another peak at 

104 cm–1, which is of comparable intensity. The experimental spectrum, on the 

other hand, shows a single intense peak. Therefore, the experimental peak at 1840 

cm–1 cannot be due to the T-shaped structure of the peroxo nitrate radical. 
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The three linear isomers show similar behaviors for IR frequencies. The IR 

frequencies show a considerable change from aug-cc-pVDZ to aug-cc-pVTZ. 

However, the change is very small from aug-cc-pVTZ to aug-cc-pVQZ and the 

values seem to approach the basis set convergence limit. 

Table 3.12 : Frequencies of Linear Isomers of Nitro Peroxide at the FSMRCCSD/aug-

cc-pVQZ Level of Theory  

 aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ 

Mode of 

 vibration 

IR 

frequency 

(cm–1) 

IR 

intensity 

(km 

mol–1) 

IR 

frequency 

(cm–1) 

IR 

intensity 

(km 

mol–1) 

IR 

frequency 

(cm–1) 

IR 

intensity 

(km 

mol–1) 

O–N bond 
stretching 

7i 0 15 0 5i 0 

Symm 
bending 

16 0 31 0 24 0 

Antisymm 
bending 

16 0 32 0 26 0 

O–O bond 
stretching 

1626 0 1628 0 1627 0 

N–O bond 
stretching 

2034 46 2036 49 2035 45 

 

Each of the three linear structures shows only one intense peak at 2034, 2036, and 

2035 cm–1, respectively (Table 3.12), at the FSMRCCSD/aug-cc-pVQZ level of 

theory. All the other peaks in the spectrum are of zero intensity. Visualizations of 

the vibrational peaks show that the single intense peak in the spectrum is due to an 

isolated stretching vibration of N═O, which is decoupled from the vibrations of 

other bonds. It shows that the N═O and O═O fragments in the linear isomers of 
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peroxo nitrate are very weakly attached and cannot lead to a bound structure of 

peroxo nitrate. 

 

3.4 Conclusion 

We have presented a benchmark investigation on the stability, structure, and 

properties of trans peroxo nitrate using the multireference coupled cluster method. 

Initial investigation on the structure and IR frequency using the CCSD method 

indicates a bound structure for the complex. Inclusion of perturbative triples in 

coupled cluster calculations (CCSD(T)) indicates weakening of the complex. 

However, high T1 diagnosis values indicate a quasi-degenerate nature of the 

ground state, which indicates the unreliability of the single-reference coupled 

cluster results. Our FSMRCC calculations indicate a bound structure for the 

complex, which is evident from the potential energy surface scan of the trans 

peroxo nitrate along the ON–OO bond. We have also investigated the cis, T-

shaped, and linear structures of peroxo nitrate. However, except for the cis 

structure, all other structures are higher in energy than the trans structure. The cis 

structure is nearly degenerate with the trans structure at the FSMRCCSD/CBS 

level of theory (with ZPE correction). A scan of the potential energy surface of the 

cis isomer shows a shallow minimum in the FSMRCC method, which indicates 

weakly bound nature of the complex. To differentiate between the trans isomer and 

cis isomer, we have further investigated the correspondence of computed IR 

frequencies of both isomers with the experimentally determined frequency. It is 

found that the trans isomer gives only one intense peak at 1875 cm–1 at the 

FSMRCC/aug-cc-pVTZ level of theory, which is consistent with the experimental 

peak at 1840 cm–1. The IR frequency of the cis isomer deviates considerably from 

the experimental value. We have studied the effect of basis set on the results 

obtained in both single-reference and multi-reference coupled cluster methods 

using a hierarchy of Dunning’s [92] correlation-consistent aug-cc-pVXZ basis sets 

(X = D, T, and Q). The basis set has a significant effect on the computed results in 
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both single-reference and multi-reference coupled cluster. In all the methods, both 

bond lengths and IR frequencies show considerable change from the aug-cc-pVDZ 

to the aug-cc-pVTZ basis set. However, the change is very small from aug-cc-

pVTZ to aug-cc-pVQZ and the values seem to be approaching the complete basis 

set limit. On the other hand, bond angles seem to be less affected by basis sets. 

A more sensitive test of the correspondence between the computed and 

experimental IR frequency will be the reproduction of the 50 cm–1 isotopic shift 

reported by Hall and co-workers [9]. The most probable isotopomer obtained in 

the reaction between 14N16O and 18O2 is 16O14N18O18O, which does not show any 

isotopic shift. However, the species can undergo an isotope exchange reaction to 

form the 18O14N16O18O isotopomer and the reaction shows a barrier height of 

32.45 kcal/mol at the FSMRCCSD/CBS level of theory, with inclusion of ZPE 

correction. The resulting 18O14N16O18O isotopomer shows an isotopic shift of 49 

cm–1, which is nearly identical to the experimental isotopic shift of 50 cm–1. The 

FSMRCCSD computed peaks for T-shaped and linear isomers of peroxo nitrate 

differ considerably from the experimental spectrum. Thus, from the FSMRCC 

calculations, we can conclude that the trans peroxo nitrate has a stable bound 

structure and trans ONOO is the most probable structure of nitro peroxide, which 

can correspond to the experimental frequency of 1840 cm–1. It resolves the 

previous contradiction between experiment and theory and can explain the 

observed NO3 scavenging process described in the literature. The present study 

highlights the need for balanced description of dynamic and non-dynamic 

correlation in the ab initio study of stratospheric NOx radicals. 

In addition to the radical, the positively and negatively charged analogues of 

peroxo nitrate play an important role in ionospheric chemistry and the biological 

oxidation process. A comparative study of the stability, structure, and properties of 

the cationic, anionic, and radical system will be of considerable interest. Work is 

currently under way for the same 
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Chapter 4 

 EOMIP-CCSD(2): an efficient N5 scaling method 

for structure and properties of doublet radicals 
 

“When we build, let us think that we build for ever” 

John Ruskin 

The Seven Lamps of Architecture 

 

In this chapter, we present a benchmark study on the performance of the EOMIP-

CCSD(2) method for computation of structure and properties of doublet radicals. 

The EOMIP-CCSD(2) method is a second-order approximation to the standard 

EOMIP-CCSD method. By retaining the black box nature of the standard EOMIP-

CCSD method and adding favorable N5 scaling, the EOMIP-CCSD(2) method can 

become the method of choice for predicting the structure and spectroscopic 

properties of large doublet radicals. The EOMIP-CCSD(2) method overcomes the 

typical problems associated with the standard single-reference ab-initio treatment 

of doublet radicals. We compare our results for geometries and harmonic 

vibrational frequencies with those obtained using the standard EOMIP-CCSD 

method, as well as unrestricted Hartree–Fock (UHF)- and restricted open-shell 

Hartree–Fock (ROHF)-based single-reference coupled cluster and second order 

many-body perturbation theory (MBPT(2)) methods. The effect of the basis set on 

the quality of the results has been studied using a hierarchy of Dunning’s 

correlation-consistent aug-cc-pVXZ (X = D, T, Q) basis sets. Numerical results 

show that the EOMIP-CCSD(2) method, despite its N
5 scaling, gives better 

agreement with experimental results, compared to the UHF- and ROHF-based 

MBPT(2), as well as the single-reference coupled cluster methods. 
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4.1 Introduction: 

In recent times, ab-initio quantum chemistry has become the trusted companion of 

researchers for the elucidation of structures and properties of complicated 

molecules. Among the plethora of methods available, the single-reference coupled 

cluster method [1, 2], because of its systematic treatment of electron correlation, 

has emerged as the method of choice for accurate prediction of structure [3-5], 

properties [6], and vibrational spectra [7-9] of closed-shell molecules. The 

extension of the single-reference coupled cluster method to open-shell systems, 

based on unrestricted Hartree–Fock (UHF) [10] or restricted open-shell Hartree–

Fock (ROHF) [11, 12] references, has also been achieved. However, the single-

reference coupled cluster method, even in the singles and doubles approximation, 

scales as N6 power with the basis set, whereas the inclusion of partial triples [13-

15] (CCSD(T)) increases the scaling to N7. The development of parallel codes and 

a rapid increase in computational power, in recent times, may have made coupled 

cluster calculations for small- and medium-sized molecules possible (at least in 

small basis sets). However, the structure and property calculations of medium-

sized molecules, in moderately sized or big basis sets, are still not routine. 

Moreover, N6 scaling is computationally demanding to use in quantum molecular 

dynamics calculations, which involves multiple force constant calculations and is 

essential for predicting the time evolution and temperature effect on the molecules. 

Thus, a theoretical method with scaling lower than N6, that is still able to predict 

the properties of the molecule accurately, is the need of the day. 

 

The standard second order many-body perturbation theory (MBPT(2)) method 

offers the first correlation correction to the energy over the Hartree–Fock method 

and scales as N
5 power with the basis set. Over the years, the method has been 

extensively used as an accurate tool for the ab-initio investigation on a large 

variety of closed-shell molecules. But, standard UHF-based [16] or ROHF-based 

[17, 18] MBPT(2) methods perform poorly in the case of open-shell doublet 

radicals, because of multiple problems [19-21] associated with the open-shell 
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single reference wave function, such as spin contamination [22, 23], symmetry 

breaking [24], near-singularities of the HF solution [25, 26], pseudo-Jahn–Teller 

effects [27], and the presence of multi-reference character. 

 

However, ab initio investigation of doublet radicals is extremely important, 

because of the key role of the radicals in biology and chemistry. The high energy 

and short lifetime of a doublet radical makes experimental characterization often 

tedious, and sometimes impossible. Theoretical calculations [28-34] can be helpful 

to understand the doublet radicals and their mechanism in chemistry and biology. 

However, this is more difficult for open-shell molecules, mainly because of two 

reasons:(1) The radical wave function has a more-complicated spin structure than 

that in the closed-shell molecules, in which all electrons are paired. (2) Two or 

more configurations make dominant contributions to the reference wave function 

in the radicals. 

 

The multi-reference perturbation theory (MRPT) method [35-38], the multi 

reference configuration interaction (MRCI) method [39, 40], and the multi-

reference coupled cluster (MRCC) method [41-51] can avoid the above-mentioned 

problems. However, the results are strongly dependent on the choice of active 

space, which requires experience and expertise. Subsequently, these calculations 

cannot be performed with a mere “push of a button”. 

 

On the other hand, the equation of motion coupled cluster (EOM-CC) method [52-

55] incorporates a balanced description of the dynamic and nondynamic 

correlation and presents a black box approach for the accurate calculation of 

energy [53-58], structure [59-61], and properties [62], of open-shell molecules and 

molecular excited states. The EOMIP-CCSD method has been successfully 

used[63-67] to investigate the structure and properties of problematic doublet 

radicals. However, despite having otherwise favorable characteristics, the 

EOMIP–CCSD method still has the problem of N6 scaling. Stanton and Gauss [68] 
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proposed an N5-scaled size-extensive modification of the standard EOMIP-CCSD 

method, by approximating the effective Hamiltonian based on perturbative orders. 

They have coined the term EOMIP-CCSD(2) for this black box method, and they 

have shown favorable numerical results for the formyl radical in the DZP basis set. 

One molecule is too inadequate to make a benchmark and the basis set used was 

too small to make a definitive conclusion. However, their results were very 

promising and if the trend generally holds, the EOMIP-CCSD(2) method can 

become the method of choice for the theoretical treatment of doublet radicals. The 

objective of this chapter is to perform a benchmark EOMIP-CCSD(2) study on the 

geometry and infrared (IR) spectroscopic properties for a variety of doublet 

radicals and compare the performance relative to experiment, with those obtained 

by standard EOM-IP-CCSD, single-reference MBPT(2), and CCSD methods. 

 

The Chapter is organized as follows. Section 4.2 gives a brief discussion on the 

theory of the EOMIP-CCSD(2) method and computational details of the 

calculations. The trends in the numerical results for the geometry and IR frequency 

of a set doublet radicals are discussed in section 4.3. Section 4.4 contains the 

conclusions. 

 

 

 

4.2 Theory and Computational Details 

The non variational coupled cluster method generates the correlated wave function 

from a single Slater determinant reference state by the action of an exponential 

operator. 

0
T

e                                                                                                           (4.1)        

0  is generally, but not necessarily, the Hartree-Fock determinant and 

T=T1+T2+T3+…… Tn , where 
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 †
1̂

a

i a i

ia

T t a a ,  

  † †
2

1ˆ
4

ab

ij a b j i

ijab

T t a a a a   ,                                                                                                                                       (4.2) 

 † † †
3

1ˆ
6

abc

ijk a b c k j i

ijkabc

T t a a a a a a 
 

These amplitudes are generally obtained by the iterative solution of a system of 

coupled nonlinear equations. Extending T up to the nth order, where n equals the 

total number of electrons in the system, leads to the full CI solution. However, for 

practical applications, T is truncated to finite order. The exponential structure of 

the correlation operator ensures the size extensivity, even at the truncated level of 

T. The truncation of T amplitudes at T1 and T2 leads to the popular coupled cluster 

singles and doubles (CCSD) approximation, which scales as N6 with the basis set 

(where N is the number of basis functions). The inclusion of higher excitations 

leads to a systematic improvement in accuracy, but at the expense of a substantial 

increase in computational cost. The CCSDT method[69, 70] scales as N8 and the 

inclusion of quadruples excitation (CCSDTQ)[71] advances the computational 

scaling to N10. 

The coupled cluster method shares an intimate relationship with the many-body 

perturbation theory (MBPT) [72]. Suitable lower-order iterations of coupled 

cluster equations recover the various orders of MBPT. For example, the lowest-

order approximation to the coupled cluster T2 amplitudes leads to the standard 

MBPT(2) method. 

The single-reference coupled cluster method includes dynamic correlations in a 

systematic way. However, it fails to account for the non-dynamic correlation, 

which arises due to the quasi-degenerate states that prevail in radicals, bond 

stretching, and molecular excited states. Consequently, the single-reference 

coupled cluster methods, especially in the CCSD approximation, perform poorly 

in the above-mentioned cases. A multi-reference coupled cluster (MRCC) 
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method[41-51] addresses both dynamic and non-dynamic correlations in a 

systematic way. However, it has the active space dependency problem, as 

discussed previously. 

Along with the MRCC methods, the EOM-CC method is known for its balanced 

treatment of both dynamic and non-dynamic correlations. In the EOM-CC method, 

the final states are obtained by diagonalizing the similarity transformed 

Hamiltonian 

 T T T

c
H e He He

                                                                                              (4.3) 

The subscript c in the above equation represents the connectedness of T with the 

H. Since e
T is not unitary, �̅ is not Hermitian. Therefore, the final states are 

represented by a biorthogonal set of bra and ket vectors, which are parameterized 

by left and right eigen vectors of �̅, denoted by L and R respectively. 

0
T

Le  %
                                                                                                      (4.4) 

0
T

e R                                                                                                          (4.5)             

For ionization problem,  % and    do not correspond to particle conserving 

operators, but rather involve net creation (L) and annihilation (R) of one electron. 

L and R can be expressed in second quantized notation as follows. 

† † †1

2
i ij

a

i ija

L l i l i aj  
                                                                                        (4.6)               

†1

2
a

i ij

i ija

R ri r a ij                                                                                              (4.7) 

                                                                                  

Diagonalization of H  in the (N-1) electron space, gives the singly ionized states 

of a N electron state and the theory is called EOMIP-CC. It is equivalent to the 
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(0,1) sector of the Fock space multi reference coupled cluster (FSMRCC)  method 

for the principal  ionizations.[73] FSMRCC has been successfully implemented 

for spectra, [47,49,51,74-76] properties[77] and transition moments [78,79]. 

The energy in EOMIP-CC can be written in the illustrative functional form. 

0 0 0 0
T T

E LHR Le He R                                                                         (4.8) 

The EOMIP-CC method is commonly used in singles and doubles approximation 

(EOMIP-CCSD). It has the same N6 scaling as that of the single reference CCSD 

method and similar storage requirements, which prohibit its applications beyond 

the first row atoms, in a moderate basis set. Thus, it is highly desirable to develop 

methods, similar in spirit with the standard EOMIP-CCSD but with lower 

computational scaling and smaller storage requirements. Nooijen and Snijders[80] 

were the first to propose a simplification[81,82] to the standard EOM-IP-CCSD 

method, by approximating the full CCSD similarity transformed Hamiltonian as 

[1] [1]
T T

NS
H H e He

                                                                                              (4.9) 

NS
H is complete up to the first order in correlation and contains selective 

contributions from higher order terms. Diagonalization of 
NS

H in the (N-1) 

electron space leads to the loss of size- extensivity in energy. Nooijen and Snijders 

had eliminated the problem by diagonalizing matrix elements of a modified 

operator A, in place of the
NS

H  , where 

†
0 , 0NS

A H                                                                                          (4.10) 

 † †;
i i a j

a a a a     and  it  represents the elements of the set of  creation  operator 

string that maps the 0  into the determinants  spanning the diagonalization space. 

The commutator in the equation accounts for all the missing second order 

contributions to
NS

H , whereas, third or higher order terms in A do not contribute to 

the truncated diagonalization problem. This ensures the size-extensivity in energy. 
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However, the method does not provide a clear definition for the total energy, thus, 

becomes unsuitable for studying properties of the final state. 

Stanton and Gauss provided an alternative approach[11] for approximating the 

conventional EOM-CCSD method. They have expanded the effective Hamiltonian 

in a perturbation series 

         1 2 3 .......... nT

c
H He H H H H                                                            (4.11) 

The bracketed superscript in the above equation represents the order in 

perturbation and subscript c represents the connectedness of T with H. This leads 

to a set of hierarchical approximations to the full H and the diagonal 

representation of the modified effective Hamiltonian offers a set of hierarchical 

approximations to the corresponding EOM-CC final states, known as 

EOMCCSD(n). At a large value of n, the  n
H converges to the full H  and 

consequently EOMCCSD(n) converges to the standard EOM-CCSD. The 

approximate similarity transformed Hamiltonian, truncated at the nth order, 

includes only the terms up to the order n in perturbation, which ensures the size-

extensivety of the final energy for all values of n. Truncation at n=2, leads to 

EOMCCSD(2), with a MBPT(1) ground state reference wave function and 

MBPT(2) ground state energy. The EOMCCSD(2) method provides energy 

difference value identical to that of the Nooijen and Snijders’s method and has the 

additional advantage  of  a clearly defined final energy. 

The diagonalization of H[2] in a space spanned by a subset of (N – 1) determinants 

leads to the final ionized states of N-electron molecular problem, which can be 

performed by slight modification of any standard EOMIP-CCSD code. The 

explicit derivation of the expressions has been presented in ref [68]. The EOMIP-

CCSD(2) method is naturally spin-adapted and equipped to deal with multi-

reference situations, and, therefore, it is free from the problems that are associated 

with the standard single-reference treatment for doublet radicals. 
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The truncation of the effective Hamiltonian, based on perturbation order, leads to 

an obvious loss in accuracy. However, it gains significant computational 

simplifications, which lead to advantages in terms of both CPU timing and 

storage. The computational requirements of the standard EOMIP-CCSD method 

are dominated by the N-electron reference state CCSD calculation. Approximating 

the reference state using the MBPT(1) wave function reduces the computational 

scaling of the reference state calculation to N
5, as opposed to the iterative N

6 

scaling of the CCSD reference-state calculation. Now, in IP calculation, the 

diagonalization (using Davidson’s iterative method) of the H  scales as N5 and the 

superficially N
6 scaling intermediates can also be computed in an iterative N

5 

scaling algorithm, by calculating them on the fly.[83] Thus, overall, the EOMIP–

CCSD(2) method scales as N5, which is vastly more economical[84, 85] than the 

standard EOMIP-CCSD method. 

The terms containing the (ab|cd)-type integral present the most computationally 

demanding part of the coupled cluster iterations. The large file size of the four 

particle integrals often becomes the limiting factor for storage and memory. It also 

slows the overall speed of the calculation, by creating input/output (I/O) 

bottlenecks, even for small molecules. Now, (ab|cd) integrals only contribute to 

the reference-state CCSD calculation and, consequently, remain totally absent in 

the EOM part for the ionization problem. Thus, approximating the reference-state 

wave function at MBPT(1) leads to a significant savings in terms of disk space, 

since it does not require the (ab|cd) integrals. The favorable N
5 scaling and 

reduced storage requirements[86] make the EOMIP-CCSD(2) method applicable 

to the systems of considerably large dimension, where the use of the normal 

EOMIP-CCSD method is not possible. 

T1 diagnosis values presented in the chapter are calculated using Gaussian 09.[87] 

All the other results presented in the chapter are calculated using CFOUR.[88] All 

of the electrons are used in the correlation calculations. Dunning’s correlation-

consistent aug-cc-pVXZ (X = D, T, Q) basis sets[89] are used in the calculations. 
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Equilibrium geometries (re) without any vibrational averaging and harmonic 

vibrational frequencies are used for comparison with the experiments. 

 

 

4.3 Results and Discussion  

   To compare the timing of EOMIP-CCSD(2) with standard EOMIP-CCSD, we 

have calculated the ionization potential of water clusters((H2O)n, where n = 1–8) 

in cc-pVDZ basis set. The wall timings are presented in Table 4.1. The EOMIP-

CCSD(2) method is found to be computationally significantly less expensive than 

the EOMIP-CCSD method. 

Table 4.1 : Wall Timings for the EOMIP-CCSD(2) and EOMIP-CCSD Method
a,b

 in the 

cc-pVDZ Basis Set 

 Wall Timing (s) 

Number of H2O units EOMIP-CCSD EOMIP-CCSD(2) 

1 1.42 1.40 

2 5.30 2.30 

3 20.22 4.77 

4 83.64 14.63 

5 236.00 39.86 

6 550.86 81.69 

7 1385.21 223.21 

8 3964.00 700.91 

a : All the calculations were performed using an i7 desktop with 3.40 GHz CPU speed 

and 16 GB of RAM. Calculations were performed using single core. 

b : Calculations were performed assuming C1 symmetry. 

 

To benchmark the reliability of the EOMIP-CCSD(2) method, we have calculated 

the geometry and vibrational frequencies of NO2, NO3, trans ONOO, NO, CN, F2
+, 
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CO+, O2
+, and N2

+ in aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ basis. The 

above-mentioned radicals present a significant challenge for conventional ab initio 

methods. In all of the cases, the results are compared with those obtained by 

standard EOMIP-CCSD, UMP2, ROMP2, UCCSD, and ROCCSD methods, as 

well as with available experimental data.  

 

 

4.3.1 Nitrogen Dioxide (NO2) 

Nitrogen dioxide (NO2) is a very important molecule in atmospheric chemistry; 

consequently, it is subjected to many computational investigations [63, 90-92]. 

The triplet instabilities and second-order Jahn–Teller (SOJT) effect in NO2, lead to 

the mixing of 2A1 and 2B2 states, which makes the description of vibrational 

modes—especially the asymmetric stretching problematic. The T1 diagnosis value 

of 0.026 (Table 4.2) indicates significant multi-reference character of the 

molecule. Table 4.3  presents the geometry and the vibrational frequencies for 

NO2. 

 

In the aug-cc-pVDZ basis set, the EOMIP-CCSD(2) method shows excellent 

agreement with the experiment for both bond lengths (|Δre| = 0.006 Å) and bond 

angles (|Δangle| = 0.3°). The method also provides very good agreement with the 

experiment[93, 94] for the bending mode of vibration (|Δωe| = 6 cm–1). However, it 

overestimates both symmetric stretching modes ((|Δωe| = 45 cm–1) and asymmetric 

stretching modes (|Δωe| = 120 cm–1), which are consistent with the previous 

theoretical reports.[61, 88] The performance of the EOMIP-CCSD method is 

similar to that of the EOMIP-CCSD(2) method, for both bond lengths (|Δre| = 

0.007 Å) and bond angles (|Δangle| = 0.6°). The asymmetric stretching (|Δωe| = 85 

cm–1) mode is comparatively well described in the EOMIP-CCSD method. 

However, it shows more error than the EOMIP-CCSD(2) method for the bending 

mode (|Δωe| = 22 cm–1), as well as symmetric stretching mode (|Δωe| = 88 cm–1). 
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Table 4.2 : T1 Diagnosis Value of the Doublet Radicals 

Molecule T1 diagnosis 

NO 0.023 

CN 0.050 

F2
+ 0.013 

CO+ 0.046 

O2
+ 0.014 

N2
+ 0.022 

NO2 0.026 

NO3 0.035 

ONOO 0.034 

 

The UCCSD method performs very poorly for both geometry and vibrational 

frequencies; it especially underestimates the asymmetric stretching mode by a 

large value of 726 cm–1. This is due to instabilities associated with the unrestricted 

reference wave function, which is indicated by a negative eigen value of the 

orbital rotation Hessian. The same reason leads to the disastrous performance of 

the UMP2 method. The performance of the ROCCSD method is similar to that of 

the EOMIP-CCSD method, with regard to geometry and harmonic vibrational 

frequencies. The ROMP2 method, on the other hand, shows more error than the 

EOM and ROCCSD methods for bond length (|Δre| = 0.022 Å) and bond angle 

(|Δangle| = 1.3°), but performs significantly better than both the UCCSD and UMP2 

methods. The ROMP2 method performs surprisingly well for bending and 

symmetric stretching modes of vibration. However, it significantly overestimates 

the asymmetric stretching mode (|Δωe| = 210 cm–1). 
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Table 4.3 : Geometry and Harmonic Vibrational Frequency of Nitrogen Dioxide (NO2) 

method bond 
length (Å) 

bond angle (θ) ω1 (cm–1) ω2 (cm–1) ω3 (cm–1) 

aug-cc-pVDZ Basis Set 

EOMIP-CCSD(2) 1.200 134.2 756 1370 1754 

EOMIP-CCSD 1.201 133.3 772 1413 1719 

UCCSD 1.299 124.51 577 955 908i 

ROCCSD 1.197 134.7 767 1412 1721 

UMP2 1.284 125.0 671 1138 1629 

ROMP2 1.216 132.6 753 1317 1844 

aug-cc-pVTZ Basis Set 

EOMIP-CCSD(2) 1.186 134.9 769 1384 1784 

EOMIP-CCSD 1.186 133.7 795 1425 1745 

UCCSD 1.283 124.9 139i 596 1190 

ROCCSD 1.181 135.2 785 1438 1762 

UMP2 1.270 125.4 609 1273 1071i 

ROMP2 1.201 133.2 763 1329 1844 

aug-cc-pVQZ Basis Set 

EOMIP-CCSD(2) 1.185 135.7 773 1391 1782 

EOMIP-CCSD 1.185 133.4 802 1450 1744 

UCCSD 1.282 124.8 169i 603 1199 

ROCCSD 1.180 135.0 790 1443 1762 

UMP2 1.269 125.23 614 1279 1073i 

ROMP2 1.200 133.0 767 1331 1840 

Experimental Results 

  1.194a 133.9a 750b 1325b 

 
a : Values taken from ref 93.                                                    b:Values taken from ref 94. 

javascript:void\(0\);
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Upon moving from the aug-cc-pVDZ basis set to the aug-cc-pVTZ basis set, the 

bond length shrinks and the bond angles are stretched for all of the theoretical 

methods. The EOMIP-CCSD(2) method continues to give a similar performance 

to that of the EOMIP-CCSD method, with regard to geometry, but gives better 

agreement with the experiment in the case of harmonic vibration frequencies. 

However, both methods overestimate the experimental asymmetric stretching 

frequency. The UCCSD method continues to give poor performance, with regard 

to geometry and harmonic vibrational frequencies. The imaginary value of the 

bending mode indicates that the optimized geometry in the UCCSD method is not 

actually the minimum on the potential energy surface, but rather is a first-order 

saddle point. The ROCCSD method avoids the disastrous failure of the UCCSD 

method, but gives inferior performance, compared to the EOM methods. The 

UMP2 method suffers from the spin contamination problem, similar to that of the 

UCCSD method; consequently, the results show a large deviation from the 

experimental bond length and bond angle. The asymmetric stretching mode in the 

UMP2 method shows an imaginary value, indicating that the geometry is a first-

order saddle point. The ROMP2 method gives remarkable agreement with the 

experimental values with regard to geometry, as well as bending and stretching 

modes of vibration, but it overestimates the asymmetric stretching mode of 

vibration, and shows greater error (|Δωe| = 204 cm–1) than the EOM-based 

methods. 

 

The same trend persists in the aug-cc-pVQZ method, where the geometries and IR 

frequencies for all of the methods show very little deviation from their 

corresponding values in the aug-cc-pVTZ basis set. 

 

 

3.3.2 Nitrogen Trioxide (NO3) 

The ground-state geometry of the nitrogen trioxide (NO3) radical has been an issue 

of long-standing debate. Experimental studies [95-99] have provided evidence in 
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favor of D3h geometry, whereas various theoretical studies have predicted different 

minimum energy structures for the molecule. Three structures have been found to 

be energetically most favorable: (a) a highly symmetric D3h structure, (b) a C2v 

structure with two long bonds and one short bond (2L1S), and (c) C2v structure 

with one long bond and two short bonds (1L2S). Initial MCSCF studies [100] have 

predicted a Y-shaped structure for the NO3 radical. In 1992, Bartlett and co-

workers [101] have reported the C2v structure to be 2.5 kcal/mol lower in energy 

than the more-symmetric D3h structure in the B-CCD level of theory. Crawford 

and Stanton [102] latter revised this ordering, by placing the D3h structure 0.5 

kcal/mol below the C2v structure in the B-CCD(T) method. The T1 diagnosis value 

of 0.035 (Table 4.2) indicates significant multi reference character for the species. 

Fock space multi reference coupled cluster (FSMRCC) calculations by Kaldor 

[103)], and MRCI calculations by Morkuma and Eisfield [104], both resulted in a 

D3h ground-state geometry for the NO3 radical. 

 

The EOMIP-CCSD(2) and EOMIP-CCSD methods predict a D3h ground-state 

geometry. In the aug-cc-pVDZ basis set, the EOMIP-CCSD(2) method shows 

better agreement with the experimental bond length than the EOMIP-CCSD 

method. Both methods slightly underestimate the bond length in the aug-cc-pVTZ 

and aug-cc-pVQZ basis sets. However, the EOMIP-CCSD(2) method continues to 

give better agreement with the experiment than the EOMIP-CCSD method. The 

UCCSD and ROCCSD methods predict a C2v minimum energy structure (2L1S) 

for the ground state and both the methods predict identical geometries. In the aug-

cc-pVDZ basis set, both methods overestimate the experimental bond length, in 

the case of the long bonds (2L) and underestimate the experimental bond length in 

the case of the short bond (1S). The two long bonds shrink in the aug-cc-pVTZ 

and aug-cc-pVQZ basis sets, bringing them closer to the experimental value. 

However, the use of a large basis set also shrinks the shorter bond, taking it further 

away from the experimental value. The UMP2 and ROMP2 methods follow the 

trend of their coupled cluster analogues, only with a larger error bar. 
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Table 4.4 : Geometry and Harmonic Vibrational Frequency of Nitrogen Trioxide (NO3) 

 Bond Length (Å) Vibrational Frequency (cm–1) 

method L1 L2 ω1 
(asym 
bend) 

ω2 
(asym 
bend) 

ω3 
(umbr-

ella) 

ω4 (sym 
strech) 

ω5 (asym 
stretch) 

ω6 (asym 

stretch) 

aug-cc-pVDZ Basis Set 

EOMIP-CCSD(2) 1.240 1.240 163 163 783 1130 1198 1198 

EOMIP-CCSD 1.235 1.235 310 310 813 1149 1183 1183 

UCCSD 1.261 1.197 528 630 810 1129 1102 1667 

ROCCSD 1.261 1.198 7792i 520 785 1116 1647 277833 

UMP2 1.284 1.204 682 702 667 1058 791i 1650 

ROMP2 1.267 1.220 521 655 833 1087 1642 2097 

aug-cc-pVTZ Basis Set 

EOMIP-CCSD(2) 1.228 1.228 66 66 800 1140 1176 1176 

EOMIP-CCSD 1.221 1.221 305 305 836 1170 1191 1191 

UCCSD 1.247 1.182 552i 857 826 1174 581 1700 

ROCCSD 1.247 1.183 538 619 807 1139 998 1778 

UMP2 1.270 1.191 701 908i 615 1081 716 1648 

ROMP2 1.255 1.206 526 663 842 1097 1643 2123 

aug-cc-pVQZ Basis Set 

EOMIP-CCSD(2) 1.227 1.227 95 95 801 1142 1175 1175 

EOMIP-CCSD 1.219 1.219 314 314 838 1174 1192 1192 

UCCSD 1.246 1.182 547 7917 779 1152 1693 27249i 

ROCCSD 1.246 1.182 442 623 809 1143 1005 1682 

UMP2 1.269 1.190 703 910i 612 1085 718 1650 

ROMP2 1.254 1.205 526 664 843 1099 1644 2126 

Experimental Results 

 1.240a 1.240a 250b 250b 762c 1060c 1480c 1480c 

a : Values taken from ref 98. b :  Values taken from ref 95. c :  Values taken from ref 96. 
 

The EOMIP-CCSD(2) method performs reasonably well for the IR frequencies of 

NO3. It predicts the umbrella (ω3) and the symmetric stretching (ω4) mode of 
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vibrations with high accuracy. However, it underestimates the low-frequency 

asymmetric bending (ω1 and ω2) and high-frequency asymmetric stretching (ω5 

and ω6) modes (see Table 4.4). The umbrella and symmetric stretching modes shift 

to higher values, when using larger basis sets; whereas, all of the other modes of 

vibration shrink to lower values. While the EOMIP-CCSD method shows 

significant improvement over the EOMIP-CCSD(2) method, for the asymmetric 

bending mode, it reduces the accuracy of the umbrella and symmetric stretching 

modes. Both EOMIP-CCSD(2) and EOMIP-CCSD methods, however, 

significantly underestimate the asymmetric stretching mode. Here, it should be 

noted that the experimental assignments of the asymmetric stretching at 1492 cm–1 

is not unambiguous [64]. Detailed studies are required to make a concluding 

statement about these problematic modes, which are beyond the scope of the 

present study. The single-reference coupled cluster methods show large errors for 

the harmonic vibrational frequencies. The UCCSD method, in aug-cc-pVDZ basis, 

overestimates the two asymmetric bending modes and one of the asymmetric 

stretching modes, while it underestimates the other asymmetric stretching mode. 

These trends continue in the aug-cc-pVTZ basis, where the ω1 shows an imaginary 

frequency, indicating that the geometry is a first-order saddle point. The UCCSD 

method in the aug-cc-pVQZ basis set shows a unphysical value for one of the 

asymmetric stretching modes (ω2) and one of the asymmetric bending modes (ω6) 

of vibration. The instability in the UHF reference wave function, indicated by the 

negative eigen value of the orbital rotation Hessian, leads to the catastrophic 

failure of the UCCSD method in the present case. The UMP2 method follows the 

same trend as that of its coupled cluster analogue and shows one imaginary 

frequency in all of the basis sets. The ROCCSD method shows an imaginary 

frequency for the asymmetric bending mode (ω1) in the aug-cc-pVDZ basis set, 

indicating that the geometry is a first-order saddle point. It also gives an 

unphysical value for the asymmetric stretching mode (ω6). Although these 

spurious results vanish at higher aug-cc-pVTZ and aug-cc-pVQZ basis sets, the 

calculated IR frequencies still show large deviations from the experimental results. 
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The ROMP2 method closely follows the trend of ROCCSD method, with the 

difference being that the former does not show any unphysical or imaginary 

frequencies in any of the basis sets used. 

 

4.3.3 Trans Nitro Peroxide (ONOO) 

The correlation of experiments and theory for the trans nitro peroxide has been a 

matter of long-standing debate [105, 106]. Bhatia and Hall [109)] have suggested a 

planar trans structure from IR spectroscopic investigation. However, later ab-initio 

studies [105, 108, 109], using different levels of theories, have shown 

contradictory results. The radical shows considerable multi-reference character 

(T1 diagnosis value = 0.034), making it a challenging case for standard ab initio 

methods. Geometry and IR frequencies of trans ONOO, computed at different 

levels of theory, are presented in Table 4.5. The EOMIP-CCSD(2) method shows 

an O–N bond length of 1.157 Å in the aug-cc-pVDZ basis set. The O–O bond 

length (1.285 Å) shows considerable elongation from the bare molecular oxygen 

bond length of 1.207 Å and, consequently, the N–O bond length (1.157 Å) 

decreases from the free nitric oxide bond length value of 1.160 Å. It indicates an 

electron transfer from the antibonding orbital of nitric oxide to the antibonding 

orbital of oxygen, leading to shrinkage of the former and stretching of the latter. In 

the EOMIP-CCSD(2) method, the IR frequency corresponding to the N–O bond 

stretching mode (ω6) is underestimated by 40 cm–1. The EOMIP-CCSD method 

predicts longer O–O and O–N bond lengths, compared to the EOMIP-CCSD(2) 

method. On the other hand, the N–O bond shrinks, from 1.157 Å to 1.149 Å, upon 

moving from the EOMIP-CCSD(2) method to the EOMIP-CCSD method, which 

leads to overestimation of experimental frequency (62 cm–1) in the latter. The 

ROCCSD and ROMP2 methods follow the same trend as that of the EOMIP-

CCSD method. 
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Table 4.5 : Geometry and Harmonic Vibrational Frequency of Trans Nitro Peroxide (ONOO) 

 Bond Length (Å) Bond Angle 
(deg) 

Vibrational Frequency (cm–1) 

method O–O N–O O–N N–O–
O 

O–N–
O 

ω1  ω2  ω3  ω4  ω5  ω6  

aug-cc-pVDZ Basis Set 

EOMIP-
CCSD(2) 

1.285 1.557 1.157 109.5 108.1 193 361 452 881 1287 1800 

EOMIP-CCSD 1.298 1.598 1.149 106.6 108.2 150 351 421 848 1207 1902 

UCCSD 1.216 3.316 1.159 88.3 166.1 61i 33 36 36 1581 1946 

ROCCSD 1.352 1.605 1.143 110.1 108.3 192 260 368 701 929 1900 

UMP2 1.259 3.146 1.141 73.4 171.0 8 58 65 170 1219 3658 

ROMP2 1.328 1.762 1.137 110.9 108.7 170 226 310 675 913 1980 

aug-cc-pVTZ Basis Set 

EOMIP-
CCSD(2) 

1.275 1.537 1.144 110.1 108.2 199 366 468 901 1307 1815 

EOMIP-CCSD 1.287 1.556 1.136 107.4 108.3 158 368 450 870 1251 1925 

UCCSD 1.196 3.224 1.142 79.3 169.2 102i 79 181 277 1646 1957 

ROCCSD 1.281 1.582 1.136 107.8 108.2 181 280 338 723 1170 1867 

UMP2 1.243 3.034 1.135 78.2 186.1 50 40 79 441 1329 3139 

ROMP2 1.229 1.183 1.136 107.8 110.2 1916i 113 105 522 1055 1805 

aug-cc-pVQZ Basis Set 

EOMIP-
CCSD(2) 

1.274 1.540 1.143 110.2 108.3 198 364 465 897 1307 1811 

EOMIP-CCSD 1.287 1.557 1.135 107.5 108.3 157 368 451 870 1250 1919 

UCCSD 1.196 3.332 1.141 79.6 169.6 17 34 43 53 1673 2000 

ROCCSD 1.337 1.564 1.129 111.1 108.6 200 272 393 731 989 1912 

UMP2 1.226 3.229 1.135 79.1 169.1 9i 41 50 63 1428 3169 

ROMP2 1.227 1.849 1.136 108.2 110.2 117 197 202 700 1336 1924 

Experimental Results 

           1840
a
 

a : Value taken from ref 107. b : Diffused g functions were excluded from the basis  
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However, the UCCSD method predicts a weakly bound T-shaped geometry 

(Figure 4.1) with an elongated O–N bond length of 3.316 Å. The O–O and the N–

O bond lengths are almost same as that of their free molecular form. The structure 

shows an imaginary frequency, which indicates that the geometry is a saddle point 

of order one. The IR frequency corresponding to the ω6 mode shows a value of 

1946 cm–1, which is 106 cm–1 higher than the experimental value. The UMP2 

method also shows a T-shaped structure, but with a larger O–O bond, and a shorter 

O–N bond, as well as a shorter N–O bond. The UMP2 method predicts an N–O 

bond stretching frequency of 3658 cm–1, which is almost double the experimental 

frequency of 1840 cm–1. The UHF instability, which is indicated by the negative 

value of the orbital rotation Hessian, is responsible for the unphysical behavior of 

the N–O stretching in the UMP2 method.  

 

 

Figure 4.1 : EOMIP-CCSD(2) and UCCSD optimized structure of trans nitro peroxide 

(ONOO) in the aug-cc-pVQZ basis set. 

 

The EOM methods, as well as the UCCSD method, lead to shrinkage of all of the 

bonds and an upward shifting of the IR frequencies in the aug-cc-pVTZ basis set. 

The ROCCSD and ROMP2 methods show similar trends for the bond length, but 

the IR frequency corresponding to the ω6 mode undergoes a downward shift in 

both methods. The UMP2 method also shows a large downward shift of the ω6 

mode, but still overestimates the experimental frequency by more than a thousand 

wave numbers. 

 

The results in the EOMIP-CCSD(2) and EOMCCSD methods in the aug-cc-pVQZ 



136 

 

basis set show very small deviations from those in the aug-cc-pVTZ basis set. The 

EOMIP-CCSD(2) method gives the best agreement (|Δωe| = 29 cm–1) with the 

experimental frequency, among all the methods used. However, the UCCSD and 

UMP2 methods result in a longer O–N bond in the aug-cc-pVQZ basis set. It is 

interesting to note that both the N–O bond length and the N–O stretching 

frequency in the UCCSD and UMP2 methods are very similar to that in the free 

nitric oxide. It indicates that trans ONOO is a very weakly bound complex, 

contrary to the stable structure predicted by the EOM methods. In the aug-cc-

pVQZ basis set, the ROCCSD method shows shrinkage of the N–O bond, which is 

reflected in the upward shift of the ω6 mode. The ROMP2 method also results in 

an upward shift of the N–O stretching frequencies in the aug-cc-pVQZ basis set, 

but the N–O bond length remains unchanged from that in the aug-cc-pVTZ basis 

set. 

 

 

4.3.4 The Diatomics 

We have tested the performance of EOMIP-CCSD(2) method for diatomic 

molecules such as NO, CO+, CN, F2
+, O2

+, and N2
+. These diatomic molecules 

suffer from the notorious symmetry breaking problem and often represent a classic 

challenge for standard single-reference theories. 

Nitric oxide acts as a catalyst for the ozone depletion reactions and plays a key 

role in stratospheric ozone chemistry. Table 4.6 contains the computed bond length 

and IR frequency of nitric oxide. In the aug-cc-pVDZ basis set, all the methods 

overestimate the N–O bond length, compared to the experimental value. The IR 

frequency in all of the methods shows reasonable agreement with the experiment, 

except in the UMP2 method, where the experimental frequency is overestimated 

by 1742 cm–1. The bond length shrinks and, consequently, the IR frequency shifts 

to a higher value in both the aug-cc-pVTZ and aug-cc-pVQZ basis sets.  
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Table 4.6 : Geometry and Harmonic Vibrational Frequency of Nitric Oxide 

method bond length (Å) frequency, ω (cm–1) 

aug-cc-pVDZ Basis Set 

EOMIP-CCSD(2) 1.160 1981 

EOMIP-CCSD 1.164 1957 

UCCSD 1.160 1941 

ROCCSD 1.159 1958 

UMP2 1.142 3646 

ROMP2 1.170 1897 

aug-cc-pVTZ Basis Set 

EOMIP-CCSD(2) 1.146 2014 

EOMIP-CCSD 1.150 1996 

UCCSD 1.142 2000 

ROCCSD 1.142 2000 

UMP2 1.135 3179 

ROMP2 1.154 1920 

aug-cc-pVQZ Basis Set 

EOMIP-CCSD(2) 1.145 2022 

EOMIP-CCSD 1.150 2005 

UCCSD 1.141 2012 

ROCCSD 1.141 2005 

UMP2 1.341 3166 

ROMP2 1.154 1922 

Experimental Results 

 1.150a 1904a 

a : Values taken from Huber and Herzberg.[110] 
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The EOMIP-CCSD(2) method underestimates the experimental bond length, but 

gives better agreement compared to the ROCCSD and UCCSD methods. For IR 

frequencies also, it gives a value (|Δωe| = 118 cm–1) comparable to the EOMIP-

CCSD (|Δωe| = 101 cm–1), UCCSD (|Δωe| = 112 cm–1), and ROCCSD (|Δωe| = 101 

cm–1) values, in the aug-cc-pVQZ basis set. The UMP2 method performs very 

poorly, with regard to bond length (|Δre| = 0.019 Å) and IR frequency (|Δωe| = 

1262 cm–1). The ROMP2 method, on the other hand, shows surprisingly close 

agreement with the experiment,[110] with regard to bond length and IR frequency. 

N2
+ shows a T1 diagnostic value of 0.022 (Table 4.2); therefore, single-reference 

methods can treat it with reasonable accuracy. Table 4.7 shows that, in the aug-cc-

pVDZ basis set, the EOMIP-CCSD method shows the best agreement with the 

experiment, with regard to bond length, but overestimates the experimental IR 

frequency by more than a hundred wave numbers. The EOMIP-CCSD(2) method, 

on the other hand, overestimates the bond length but reproduces the 

experimental[110] IR frequency (|Δωe| = 5 cm–1) with high accuracy. The UHF- 

and ROHF-based single-reference coupled cluster methods give similar accuracy 

as that of the EOMIP-CCSD(2) method for bond length, but lead to greater error 

in IR frequency. Calculations in the aug-cc-pVTZ basis set result in shrinkage of 

the bond length and an upward shift of vibrational frequency. The results in the 

aug-cc-pVQZ basis set show negligible deviation from that in the aug-cc-pVTZ 

basis. The EOMIP-CCSD(2) method shows the best agreement with experiment 

for both bond length (|Δre| = 0.004 Å) and IR frequency (|Δωe| = 42 cm–1). The 

UCCSD and ROCCSD methods underestimate the bond length and consequently 

overestimate the IR frequency, by 94 and 101 cm–1, respectively. The MBPT(2) 

methods overestimate the bond length and significantly underestimate the IR 

frequency. N2
+ shows two significant exceptions to the trend shown by the 

previously discussed molecules. First, the UMP2 method performs better than the 

ROMP2 method; second, the EOMIP-CCSD method performs poorly for both 

bond length (|Δre| = 0.010 Å) and IR frequency (|Δωe| = 152 cm–1). 
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Table 4.7 : Geometry and Harmonic Vibrational Frequency of N2
+ 

method bond length (Å) frequency, ω (cm–1) 

aug-cc-pVDZ Basis Set 

EOMIP-CCSD(2) 1.132 2212 

EOMIP-CCSD 1.125 2316 

UCCSD 1.130 2245 

ROCCSD 1.129 2253 

UMP2 1.148 2078 

ROMP2 1.155 2008 

aug-cc-pVTZ Basis Set 

EOMIP-CCSD(2) 1.113 2250 

EOMIP-CCSD 1.106 2359 

UCCSD 1.110 2299 

ROCCSD 1.109 2306 

UMP2 1.127 2124 

ROMP2 1.135 2055 

aug-cc-pVQZ Basis Set 

EOMIP-CCSD(2) 1.112 2249 

EOMIP-CCSD 1.104 2359 

UCCSD 1.108 2301 

ROCCSD 1.107 2308 

UMP2 1.126 2123 

ROMP2 1.134 2054 

Experimental Results 

 1.116a 2207a 

a : Values taken from Huber and Herzberg.[110] 
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O2
+ shows a very small T1 diagnosis value of 0.014, which indicates that a single 

determinant reference will be sufficient for the accurate description of the wave 

function. Table 4.8 shows that, in the aug-cc-pVDZ basis set, the EOMIP-

CCSD(2) method exhibits greater error for the bond length (|Δre| = 0.011 Å), 

compared to the EOMIP-CCSD and single-reference coupled cluster methods, but 

performs significantly better than both the UMP2 method (|Δre| = 0.049 Å) and the 

ROMP2 method (|Δre| = 0.062 Å). However, the EOMIP-CCSD(2) method gives 

excellent agreement with the experimental value for IR frequency. The aug-cc-

pVDZ basis set, however, is inadequate to rely upon. Calculations in the aug-cc-

pVTZ and aug-cc-pVQZ basis sets lead to the contraction of the bond length and 

increment of the IR frequency, in all of the methods used. In the aug-cc-pVQZ 

basis set, the EOMIP-CCSD(2) method shows the best agreement with the 

experiment[110] for both bond length (|Δre| = 0.004 Å) and harmonic vibrational 

frequency (|Δωe| = 37 cm–1). The EOMIP-CCSD method gives comparable 

performance for bond length (|Δre| = 0.009 Å), but performs poorly for IR 

frequency (|Δωe| = 117 cm–1). The single-reference coupled cluster methods also 

show inferior results for both bond length (|Δre| = 0.013 and 0.012 Å for the 

UCCSD and ROCCSD methods, respectively) and harmonic vibrational frequency 

(|Δωe| = 157 and 162 cm–1 for the UCCSD and ROCCSD methods, respectively). 

The UMP2 method performs very poorly with regard to bond length (|Δre| = 0.030 

Å) and IR frequency (|Δωe| = 362 cm–1). However, the predicted values are better 

than those in the ROMP2 method (|Δre| = 0.041 Å and |Δωe| = 476 cm–1). O2
+ 

follows the unique trend shown by MBPT(2) and the EOMIP-CCSD method in 

N2
+, as discussed in the previous paragraph 

The T1 diagnosis value (0.050) indicates significant multi reference character of 

the CN radical. Table 4.9 lists the computed bond lengths and IR frequencies of 

the CN radical. In the aug-cc-pVDZ basis set, however, both EOM methods give 

disastrous performance for bond length and IR frequency. The EOMIP-CCSD(2) 

method overestimates the bond length by 0.076 Å and underestimates the 

frequency by 264 cm–1  
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Table 4.8 : Geometry and Harmonic Vibrational Frequency of O2
+ 

method bond length (Å) frequency, ω (cm–1) 

aug-cc-pVDZ Basis Set 

EOMIP-CCSD(2) 1.127 1908 

EOMIP-CCSD 1.123 1981 

UCCSD 1.120 2016 

ROCCSD 1.119 2022 

UMP2 1.166 1457 

ROMP2 1.179 1326 

aug-cc-pVTZ Basis Set 

EOMIP-CCSD(2) 1.114 1931 

EOMIP-CCSD 1.109 2009 

UCCSD 1.105 2049 

ROCCSD 1.105 2054 

UMP2 1.149 1526 

ROMP2 1.160 1410 

aug-cc-pVQZ Basis Set 

EOMIP-CCSD(2) 1.112 1942 

EOMIP-CC 1.107 2022 

UCCSD 1.103 2062 

ROCCSD 1.102 2067 

UMP2 1.146 1543 

ROMP2 1.157 1429 

Experimental Results 

 1.116a 1905a 

a : Values taken from Huber and Herzberg.[110] 
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Table 4.9 : Geometry and Harmonic Vibrational Frequency of CN
 

method bond length (Å) frequency, ω (cm–1) 

aug-cc-pVDZ Basis Set 

EOMIP-CCSD(2) 1.248 1805 

EOMIP-CCSD 1.241 1877 

UCCSD 1.183 2117 

ROCCSD 1.185 2104 

UMP2 1.138 2843 

ROMP2 1.211 1753 

aug-cc-pVTZ Basis Set 

EOMIP-CCSD(2) 1.165 2137 

EOMIP-CCSD 1.163 2178 

UCCSD 1.162 2187 

ROCCSD 1.163 2167 

UMP2 1.123 2916 

ROMP2 1.186 1849 

aug-cc-pVQZ Basis Set 

EOM-IP-CCSD(2) 1.164 2133 

EOMIP-CCSD 1.161 2174 

UCCSD 1.160 2188 

ROCCSD 1.161 2164 

UMP2 1.121 2923 

ROMP2 1.185 1847 

Experimental Results 

 1.171a 2069a 

a : Values taken from Huber and Herzberg.[110] 
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The EOMIP-CCSD method improves the results, but still shows large error (|Δre| = 

0.069 Å and (|Δωe| = 192 cm–1), compared to the experiment. This trend gets 

reversed in larger basis sets: the EOMIP-CCSD(2) method gives the best 

agreement with the experiment for both bond length (|Δre| = 0.007 Å) and 

vibrational frequency (|Δωe| = 64 cm–1) in the aug-cc-pVQZ basis set. The 

EOMIP-CCSD method slightly underestimates the bond length (|Δre| = 0.010 Å) 

and overestimates the frequency (|Δωe| = 105 cm–1). The performance of the 

single-reference coupled cluster methods is similar to that of the EOMIP-CCSD 

method, with regard to both bond length and IR frequency. The spin contamination 

of the UMP2 wave function introduces very large errors in bond length (|Δre| = 

0.050 Å) and IR frequency (|Δωe| = 854 cm–1) . The ROMP2 method shows 

significant improvement over the UMP2 method, but the bond length (|Δre| = 

0.014 Å) and IR frequency (|Δωe| = 222 cm–1) still deviate significantly from the 

experiment.[110] 

The F2
+ shows a T1 diagnosis value of 0.013, which makes it a suitable candidate 

for single-reference treatment. Table 4.10 shows that, in the aug-cc-pVDZ basis 

set, the EOMIP-CCSD(2) method reproduces the experimental[110] bond length 

and frequency with absolute accuracy. The EOMIP-CCSD method also gives 

comparable performance for bond length and IR frequency. However, the single-

reference coupled cluster methods underestimate the bond length and overestimate 

the IR frequency. The UMP2 and ROMP2 methods also overestimate the bond 

length by a large value (0.073 and 0.115 Å, respectively), but give IR frequencies 

with accuracy comparable to that of their coupled cluster analogues. The UMP2 

method overestimates the experimental frequency by 51 cm–1, whereas the 

ROMP2 method underestimates the frequency by 68 cm–1. In the aug-cc-pVTZ 

and aug-cc-pVQZ basis sets, both the EOM and single-reference coupled cluster 

methods underestimate the bond length and overestimate the frequency. The 

UCCSD and ROCCSD methods, in the aug-cc-pVQZ basis set, give significant 

error in bond length (|Δre| = 0.041 and 0.040 Å, respectively), as well as in 

frequency (|Δωe| = 166 and 170 cm–1, respectively).  
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Table 4.10 : Geometry and Harmonic Vibrational Frequency of F2
+ 

method bond length (Å) frequency, ω (cm–1) 

aug-cc-pVDZ Basis Set 

EOMIP-CCSD(2) 1.322 1081 

EOMIP-CCSD 1.326 1065 

UCCSD 1.312 1128 

ROCCSD 1.310 1133 

UMP2 1.395 1124 

ROMP2 1.437 1005 

aug-cc-pVTZ Basis Set 

EOMIP-CCSD(2) 1.299 1174 

EOMIP-CCSD 1.299 1168 

UCCSD 1.286 1230 

ROCCSD 1.285 1234 

UMP2 1.347 890 

ROMP2 1.374 781 

aug-cc-pVQZ Basis Set 

EOMIP-CCSD(2) 1.295 1178 

EOMIP-CCSD 1.295 1176 

UCCSD 1.281 1239 

ROCCSD 1.280 1243 

UMP2 1.343 897 

ROMP2 1.369 788 

Experimental Results 

 1.322a 1073a 

a : Values taken from Huber and Herzberg.[110] 
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The EOMIP-CCSD(2) method gives better performance than the single-reference 

coupled cluster method, although it continues to underestimate the bond length 

(|Δre| = 0.027 Å), and overestimates the harmonic vibrational frequency (|Δωe| = 

105 cm–1). The EOM-CCSD method gives a performance similar to that of the 

EOMIP-CCSD(2) method, in both the aug-cc-pVTZ and aug-cc-pVQZ basis sets. 

The UHF- and ROHF-based MBPT(2) methods overestimate the bond length and 

underestimate the IR frequency. The UMP2 shows a surprisingly accurate bond 

length of 1.341 Å and leads to an IR frequency that has accuracy comparable to 

that of the single-reference coupled cluster method. However, the ROMP2 method 

performs very poorly for both bond length (|Δre| = 0.047 Å) and IR frequency 

(|Δωe| = 285 cm–1) . 

CO+ is isoelectronic with N2
+, but shows significant multi reference character (T1 

value = 0.046). Table 4.11 shows that, in the aug-cc-pVDZ basis set, the EOM and 

the single-reference coupled cluster methods overestimate the bond length. For IR 

frequency, the EOMIP-CCSD(2) method gives the best agreement with the 

experiment[110] (|Δωe| = 7 cm–1), whereas the EOMIP-CCSD and single-reference 

coupled cluster methods result in overestimation of the frequency. The UMP2 

method underestimates the bond length (|Δre| = 0.016 Å) and overestimates the 

frequency (|Δωe| = 636 cm–1) by a considerable margin. The ROMP2 method 

shows greater error than the UMP2 method, with regard to bond length (|Δre| = 

0.023 Å), but gives a better result for harmonic vibrational frequency (|Δωe| = 149 

cm–1). In the aug-cc-pVTZ basis set, the bond length decreases and the IR 

frequency increases for all of the methods. The EOMIP-CCSD(2) method gives 

the best agreement with experiment for bond length (|Δre| = 0.006 Å), as well as IR 

frequency (|Δωe| = 66 cm–1). The EOMIP-CCSD method, as well as the single-

reference coupled cluster method, show inferior performance than the EOMIP-

CCSD(2) method in the aug-cc-pVTZ basis set. The UMP2 method severely 

underestimates the bond length (|Δre| = 0.027 Å) and overestimates the frequency 

(|Δωe| = 666 cm–1).  
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Table 4.11 : Geometry and Harmonic Vibrational Frequency of CO
+ 

method bond length (Å) frequency, ω (cm–1) 

aug-cc-pVDZ Basis Set 

EOMIP-CCSD(2) 1.123 2221 

EOMIP-CCSD 1.122 2257 

UCCSD 1.124 2248 

ROCCSD 1.123 2259 

UMP2 1.100 2850 

ROMP2 1.139 2065 

aug-cc-pVTZ Basis Set 

EOMIP-CCSD(2) 1.109 2282 

EOMIP-CCSD 1.106 2324 

UCCSD 1.108 2322 

ROCCSD 1.108 2327 

UMP2 1.089 2881 

ROMP2 1.124 2129 

aug-cc-pVQZ Basis Set 

EOMIP-CCSD(2) 1.108 2288 

EOMIP-CCSD 1.104 2331 

UCCSD 1.106 2330 

ROCCSD 1.106 2333 

UMP2 1.088 2888 

ROMP2 1.122 2132 

Experimental Results 

 1.115a 2214a 

a : Values taken from Huber and Herzberg.[110] 
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However, the ROMP2 method gives surprisingly good performance for the bond 

length (|Δre| = 0.009 Å) as well as the vibrational frequency (|Δωe| = 79 cm–1). The 

same trend holds in the aug-cc-pVQZ basis set, and the bond length and IR 

frequency show very small deviations from that determined in the aug-cc-pVTZ 

basis set. 

 

 

4.3.5 Error Analysis 

Tables 4.12 and 4.13 present the minimum, maximum, and average absolute 

deviations (AAD) of the computed (in the aug-cc-pVQZ basis set) bond lengths 

and harmonic vibrational frequencies from the experiment, for all of the molecules 

investigated in this chapter. 

Table 4.12 : Comparison of the Maximum, Minimum, and Average Absolute Deviation 

Values of the Computed (aug-cc-pVQZ Basis Set) Equilibrium Bond Lengths from the 

Experiment 

Method Deviation in Bond Length, |Δre| (Å) 

 Min Max AAD 

IP-EOM-

CCSD(2) 

0.004 0.027 0.010 

EOM-IP-

CCSD 

0.000 0.027 0.013 

UCCSD 0.006 0.088 0.030 

ROCCSD 0.006 0.058 0.016 

UMP2 0.012 0.075 0.038 

ROMP2 0.004 0.047 0.019 

. 
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 Among all the methods used in this work, the EOMIP-CCSD(2) method shows 

the lowest average absolute deviation for bond length (|Δre| = 0.010 Å) as well as 

harmonic vibrational frequency (|Δωe| = 111 cm–1); whereas the UCCSD and 

UMP2 methods show the highest maximum absolute deviations for bond length 

and harmonic vibrational frequency, respectively. 

Table 4.13 : Comparison of the Maximum, Minimum, and Average Absolute Deviation 

Values of the Computed (aug-cc-pVQZ Basis Set) Harmonic Vibrational Frequencies 

from the Experiment 

Method Deviation in Harmonic Vibrational Frequencies, |Δωe| (cm–1) 

 Min Max AAD 

IP-EOM-

CCSD(2) 

23 317 111 

EOM-IP-

CCSD 

52 300 124 

UCCSD 17 722 233 

ROCCSD 40 487 155 

UMP2 25 1337 482 

ROMP2 6 634 197 

 

Figure 4.2 and 4.3 reveal that the EOMIP-CCSD(2) method gives the best 

performance for both bond length and IR frequency; these values are very close to 

(and even better than, in some cases) the EOMIP-CCSD method, despite the latter 

being computationally more demanding. It is followed, in order of decreasing 

accuracy, by the ROCCSD method, the ROMP2 method, the UCCSD method, 

and, lastly, the UMP2 method. 
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Figure 4.2 : Comparison of the maximum, minimum, and average absolute deviations 

of the computed (aug-cc-pVQZ basis set) bond length from the experiment. 

 

 

Figure 4.3 : Comparison of the maximum, minimum, and average absolute deviation 

of the computed (aug-cc-pVQZ basis set) harmonic vibrational frequency from the 

experiment. 
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4.4 Conclusion 

We have presented a benchmark study on the performance of the EOMIP-

CCSD(2) method for geometry and vibrational frequencies of doublet radicals. 

The method, being naturally spin-adapted and equipped to address multi reference 

situations, can avoid the problems associated with the standard single-reference 

ab-initio treatment of open-shell radicals. In addition to that, the method is 

computationally less expensive than the standard EOMIP-CCSD and single-

reference coupled cluster methods, in terms of both computational scaling as well 

as storage requirements. The performance of the method is benchmarked, in a 

hierarchy of Dunning’s correlation-consistent aug-cc-pVXZ (X = D, T, Q) basis 

sets, on a variety of doublet radicals, which are previously reported to be 

challenging cases for standard ab-initio methods. We have compared our results 

with the EOMIP-CCSD method, the UHF- and ROHF-based coupled cluster 

methods, and MBPT(2) method. The computed results demonstrate that the 

EOMIP-CCSD(2) method provides reasonable agreement with the experimental 

geometry and IR frequency. The calculated bond lengths and frequencies are 

strongly dependent on the basis sets used. The bond lengths decrease and IR 

frequencies shift to higher values upon changing the basis set from the aug-cc-

pVDZ basis set to the aug-cc-pVTZ basis set. The change in the results is 

negligible upon moving from the aug-cc-pVTZ basis set to the aug-cc-pVQZ basis 

set; hence, the results in the aug-cc-pVQZ basis set can be taken as the complete 

basis set limit results. We have calculated the minimum, maximum, and average 

absolute deviations from the experiment for all of the methods, in the aug-cc-

pVQZ basis set. The EOMIP-CCSD(2) method shows the smallest average 

absolute deviation in bond length (|Δre| = 0.010 Å), as well as in IR frequency 

(|Δωe| = 111 cm–1). The method performs similar to that of the standard EOMIP-

CCSD method, even better in some particular cases, despite the latter being more 

computationally expensive. The UHF reference-based MBPT(2) and CCSD 
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methods fail to reproduce even the qualitative trends for most of the cases, which 

is indicated by the high value of the maximum and average absolute deviations in 

bond length and IR frequency. However, the ROHF-based CCSD and MBPT(2) 

method shows comparatively better results than the UHF-based CCSD and 

MBPT(2) method, but performs poorly compared to the EOMIP-CCSD(2) 

method. Inclusion of partial triples will obviously improve the results for the 

single-reference coupled cluster methods. However, it will also increase the 

scaling to N
7, which will make the method computationally unfeasible, even for 

the moderately sized molecules. 

The EOMIP-CCSD(2) method offers an efficient black box approach for the 

theoretical treatment of doublet radicals and gives accuracy comparable to the 

robust EOMIP-CCSD method, at significantly lower computational cost. 

Therefore, the present approach should be extended to the other variants of EOM-

CC and FSMRCC to obtain efficient lower scaling methods for calculation of 

direct difference of energy. 
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Chapter 5 

 Partitioned EOMEA-CCSD(2): an efficient N5 

scaling method for calculation of electron affinity 

 

“It is likely that out of ten possible heads  

I have seen only one true tail, or vice versa.  

In fact it’s possible, and there are no excuses, 

 for these lips can only describe what these eyes actually see” 

Ernesto ‘CHE’ Guevara 

The Motorcycle Diaries 

 

In this chapter, we present an N
5 scaling modification to the standard EOMEA-

CCSD method, based on the matrix partitioning technique and perturbative 

approximations. The method has lower computational scaling and smaller storage 

requirements than the standard EOMEA-CCSD method and, therefore, can be 

used to calculate electron affinities of large molecules and clusters. The 

performance and capabilities of the new method have been benchmarked with the 

standard EOMEA-CCSD method, for a test set of 20 small molecules, and the 

average absolute deviation is only 0.03 eV. The method is further used to 

investigate electron affinities of DNA and RNA nucleobases, and the results are in 

excellent agreement with the experimental values. 

 

  



160 

 

 

5.1 Introduction: 

Electron affinities are one of the intrinsic properties of atoms and molecules and 

are of interest to both theoreticians and experimentalists. In spite of its immense 

importance in chemistry and biology, experimental determination of electron 

affinities is rather complicated. The main reason behind the experimental 

uncertainty is the ambiguous nature of the anion formed after electron attachment. 

There are two alternative possibilities: valence bound (VB), which involves 

attachment of an additional electron to the antibonding molecular orbital, leading 

to significant structural change of the molecule. On the other hand, there exists an 

alternative possibility in polar molecules (dipole moment equal to or higher than 

2.5 D), where the additional electron remains weakly bound to the molecule by 

charge-dipole interaction (DB)[1, 2], and the structure remains almost unchanged 

from that of the neutral precursor. Now, energetically VB and DB can be near 

degenerate, and depending on the experimental condition, either of them can be 

formed, which makes experimental determination of electron affinity complicated. 

Theoretical calculations can be helpful for the reliable determination of electron 

affinities. The ab-initio computation of electron affinity is also challenging, 

however, due to different reasons. The Hartree–Fock approximation often does not 

bind the excess electron or bind it very weakly [3, 4]. Therefore, calculations of 

electron affinities require systematic inclusion of both dynamic and non-dynamic 

correlation [5).] At the same time, a highly diffused basis set, with maximum 

possible radical and angular flexibility [6], is required to model the weakly bound 

electron, and it often makes the correlated calculations very time-consuming, 

sometimes impossible. 

 

Among the various approaches available, the equation of motion coupled cluster 

(EOM-CC) [7, 8] approach has been proved to be an accurate and systematic 

method for the calculation of electron affinities [9-12], as a direct difference of 

energies. The EOM-CC approach for electron affinity (EOMEA-CC) is size-
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consistent, naturally spin adapted, and equivalent [13] to the (1, 0) sector of the 

Fock space multi-reference coupled cluster (FSMRCC) [14-17] method for the 

principal peaks. The EOMEA-CC method is generally used in singles and doubles 

approximations (EOMEA-CCSD). It scales as iterative N6, and has similar storage 

requirements as that of the single-reference coupled cluster, which restrict its 

application beyond small molecules in moderate basis sets. 

 

The single-reference coupled cluster theory has an intriguing relationship with 

many-body perturbation theory (MBPT) [18]. Therefore, a natural way of 

approximating the coupled cluster effective Hamiltonian would be based on 

perturbation orders. Nooijen and Snijders [19] were the first to propose an 

approximation of the CCSD effective Hamiltonian by replacing the CCSD 

amplitudes with MBPT(2) amplitudes. Stanton and Gauss [20] generalized the 

approach by proposing a hierarchy of perturbative approximations to full EOM-

CCSD, termed EOM-CCSD(n), where the effective Hamiltonian contains terms up 

to order n in perturbation. At a large value of n, EOM-CCSD(n) leads to full 

EOM-CCSD. The lowest order approximation to the EOM-CCSD(n) leads to 

EOM-CCSD(2) with MBPT(2) as ground state energy. The extension of this 

method to the ionization problem (EOMIP-CCSD(2)) leads to an N
5 scaling 

method with significantly less storage requirements than that of the standard 

EOMIP-CCSD method. Pal and co-workers [21] have recently shown that the 

EOMIP-CCSD(2) method can be used to study the geometry and vibrational 

frequencies of large doublet radicals with accuracy comparable to that of the 

standard EOM-CCSD method. Ghosh and co-workers [22] have extended a 

similar idea in spin flip EOMCC and shown that the approximate effective 

Hamiltonian based EOMCC can be used for accurate description of potential 

energy surfaces. 

 

The original implementation of EOM-CCSD(2) by Stanton and Gauss [20] was for 

the ionization problem (EOMIP-CCSD(2)) and excitation energy (EOMEE-
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CCSD(2)). The obvious extension of the EOM-CCSD(2) approach will be to the 

electron affinity problem. Recently, Jordan and co-workers [23, 24] have used the 

EOMEA-CCSD(2) method to study electron attachment to water clusters and C60. 

The EOMEA-CCSD(2) method scales as N
5. However, unlike in the case of 

EOMIP-CCSD(2), the EOMEA-CCSD(2) has the same storage requirement as 

that of EOMEA-CCSD, which prohibits its usages beyond moderate size 

molecules. Bartlett and co-workers [25] have used a partitioned EOM matrix along 

with a MBPT(2) ground state, to reduce the scaling and storage requirement of the 

EOM-CCSD method for excitation energy. Taking inspiration from their work [25-

27], we have implemented a partitioning technique to the EOM based approach to 

the electron affinity problem, which leads to significant reduction in the storage 

requirements.  

 

The aim of this chapter is to benchmark the comparative accuracy (relative to 

standard EOMEA-CCSD) of this new method (P-EOMEA-CCSD(2)) against the 

former EOMEA-CCSD(2) method and investigate its suitability to calculate 

electron affinities of large molecule and clusters. The Chapter is organized as 

follows. The next section contains the theory and implementation details of P-

EOMEA-CCSD(2). Numerical results are discussed in section 5.3. Section 5.4 

gives the concluding remarks. 

 

 

5.2 Theory and Computational Details 

 

5.2.1 EOMEA-CC 

The equation of motion coupled cluster (EOM-CC) method [7] is a single-

reference approach, where the excited state wave functions are generated by the 

action of a linear CI like operator on the correlated reference state wave function. 
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The Schrödinger equation for the reference state and the exited state (can be 

electron attached or ionized state also) can be described by 

0 0 0Ĥ E                                                                                                           (5.1) 

ˆ
k k k

H E                                                                                                           (5.2) 

The excited state wave function 
k

   is related to the reference state wave function 

by    

0
ˆ

k k
                                                                                                             (5.3) 

Left multiplying equation 5.1 with ˆ
k

   and subtracting from equation 5.2, we get 

0 0
ˆ ˆ,

k k
H                                                                                                    (5.4) 

Where 0k k
E E     

The form of 
k

  defines the particular EOM method corresponding to the target 

state. For the electron affinity problem [9] 

† † †

,

ˆˆˆ ˆ( ) ( ) .........EA a ab

k j

a a b j

R k a R k a jb


                                                          (5.5) 

Coupled cluster theory is introduced by generating the correlated wave function by 

action of an exponential operator on a Slater determinant, which is generally, but 

not necessarily, a Hartree–Fock determinant. 

ˆ
0 0

T
e                                                                                                                    (5.6)   

Where, 1 2
ˆ ˆ ˆ .......T T T      and  †

1̂
a

i a i

ia

T t a a  ,  † †
2

1ˆ
4

ab

ij a b j i

ijab

T t a a a a    ……… 

Since, ̂  and T̂   commutes among themselves, we can write equation 4 as 

 0 0
ˆ ˆ,

k kc
H H                                                                                        (5.7) 
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Where, ˆ ˆT T
H e He

  , and c denotes the connectedness of H   and   .  

Since H  is non Hermitian, there exist different right(R) and left(L) eigenvectors 

which are biorthogonal and can be normalized to satisfy                    

k l kl
L R                                                                                                               (5.8)                            

The method is equivalent to (1,0) sector of Fock space multi-reference coupled 

cluster(FSMRCC) method for the principal peaks [13]. 

In a typical EOMEA-CCSD calculation, the electron affinities are obtained by 

diagonalization of the non-symmetric effective Hamiltonian matrix in the (N+1) 

electron space 

  SS SD

DS DD

H H
H

H H

 
  
 

                                                                                             (5.9)                         

Where 
SS

H  stands for the singles-singles block of the matrix and so on. The 

diagonalization is generally performed by Davidson iterative technique. 

The major step in the Davidson method is the multiplication of the matrix by trial 

vector R. In the case of EA, the equations for the multiplications are as follows (as 

described in ref 9) 

 a c

SS ac

c

H R F R                                                                                              (5.10) 

   2 (2 )
a ad da cd

SD id i i i aicd aidc

id cdi

H R F R R R W W                                                (5.11) 

 ab c

DS abcjj
c

H R W R                                                                                          (5.12) 
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 

 

 

2

2

ab cb ad ab

DD ac j bd j ij jj
c d i

ad cb

ibdj bidj i aicj i

id ci

ca cd cd ab

bicj i abcd j kicd kidc i kj

ci cd k icd

H F R F R F R

W W R W R

W R W R V V R t

  

  

 
    

 

  

 

   

                                      (5.13)               

In the above equation, V denotes the normal mo integrals and expression for F and 

W intermediates are given in Appendix I. 

 

5.2.2 EOMEA-CCSD(2) 

Approximating the coupled cluster amplitudes in eq 5.7 by MBPT(2) amplitudes 

leads to the EOMEA-CCSD(2) method. It is an obvious extension of EOMIP-

CCSD(2) and EOMEE-CCSD(2), by Stanton and Gauss,[20] to the electron 

affinity problem. The method can be trivially implemented by modifying the F and 

W intermediates in any standard EOMEA-CCSD code. The expressions for the 

modified F and W intermediates are given in Appendix I. 

The EOMEA-CCSD(2) scales as N
5 power of the basis set, but it has the same 

storage requirement as the normal EOMEA-CCSD. Especially, the computation of 

the Wabcd intermediate is the most time-consuming step in an EOMEA-CCSD(2) 

calculation and also the bottleneck of the method, which prohibits its applicability 

to large molecules. 

Following Bartlett and co-worker’s suggestion,[25] we propose a further 

approximation to the EOMEA-CCSD(2) method based on the partitioning of the 

EOM matrix. 

5.2.3 P-EOMEA-CCSD(2) 

Following Löwdin’s partitioning technique28, equation 5.7 can be partitioned into 

P and Q space, where P represents the principal configuration space, and Q 

represents its orthogonal complement. 
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p ppp pq

q qqp qq

R RH H

R RH H


     
     

      
                                                                                 (5.14)                                      

and 

pp pq

p q p q

qp qq

H H
L L L L

H H


 
         

                                                                   (5.15)                          

Where,  Rp (Lp) and Rq(Lq) represent the projection of the right (left) eigenvector 

on P and Q spaces. 

Expanding equation 5.14 we get  

pp p pq q p
H R H R R                                                                                           (5.16)                              

qp p qq q q
H R H R R                                                                                            (5.17)                        

Rearranging equation 5.17  

1

q qq qp pR H H R


                                                                                           (5.18) 

Inserting  Rq back into equation 5.16 we get 

 1

eff p pp pq qq qp p pH R H H H H R R 


                                                         (5.19)                         

Projecting equation 5.19 with Lp 

1

p eff p p pp pq qq qp p p pL H R L H H H H R L R 
        

                       (5.20) 

The eigenvalues of Heff  are solely defined in the P space,  for first several 

eigenvalues. 

Now if the exact eigenvalue ω is written as the sum of zeroth order energy ω0 , as 

of yet undetermined, and an energy correction Δω, we can write the operator 

inverse in equation 5.20 as 
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     

         
     

11 0 1 2
0

1
10 0 1 2

0 0

1
10 0

0 0

......

1 ........

1

qq qq qq qq

qq qq qq qq

qq qq qq

H H H H

H H H H

H H V

  

  

  







           

               

             

                                   (5.21) 

Where    1 2 .........
qq qq qq

V H H     

Now equation 5.21 can be expanded in an inverse series 

 

     

         

11 0
0

1 10 0
0 0

1 1 10 0 0
0 0 0

.......

qq qq

qq qq qq

qq qq qq qq qq

H H

H V H

H V H V H

 

  

    



 

  

       

          

                 


                            (5.22) 

The lowest order approximation to equation 5.22 will be 

  11 0
0qq qq

H H 
                                                                                          (5.23)                                      

Where  0
qq

H   is the usual MØller-Plesset unperturbed Hamiltonian in Q space.  

In other words, the unfolded matrix in equation 5.9 is approximated as 

    0

SS SD

DS DD

H H
H

H H

 
  
  

                                                                                        (5.24)                              

and equation 5.13 becomes  

 0 ab
cb ad ab

DD ac j bd j ij j
j

c d i

H f R f R f R                                                                   (5.25)                        

Here, f  is the Fock operator. In the case of RHF or UHF reference  0
DD

H   becomes 

diagonal with the difference of orbital energy in the diagonal. 
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An examination of equation 5.10-5.12 and equation 5.25 reveals that there is no 

four particle intermediate in partition–EOMEA-CC(P-EOMEA) method. The four 

particle ab cd   integrals can indeed contract with 1T   amplitudes to contribute 

into the 
abci

W   intermediate. However, an MBPT(2) ground state reference for RHF 

or UHF case will lead to zero 1T   amplitudes. So P-EOMEA-CCSD(2) does not 

contain any four particle terms, which leads to significant decrease in the storage 

requirements compared to the standard EOMEA-CCSD and EOMEA-CCSD(2). 

The P-EOMEA-CCSD(2) method is effectively N5 scaling. A few N6 scaling terms 

remain in H  , but these terms needed to be calculated only once. Alternatively, 

these terms can be calculated in iterative N5 scaling algorithm, following the 

approach presented in ref 5.7 and 5.20. However, the results presented in this 

chapter were calculated using the former approach. 

Here, it should be noted that the 
DD

H  block in EOMEA matrix accounts for the  

electron attached states dominated by double-excitation character, i.e. states, 

which are formed by addition of an extra electron to the virtual orbitals of the 

reference state accompanied by excitation of electron from occupied to virtual 

orbital. In the EOMEA-CCSD method, these doubly excited states are treated only 

in an approximate manner. As it is well known that the doubly excited determinant 

gives the major contribution in any correlation method. However, the R2 operator 

in EOMEA method can account for the only one electron excitations. On the other 

hand, the two electron excited determinants are accurately taken care in the 

reference state by the T2 amplitudes in the CCSD method. This leads to an 

imbalance in the description of the reference and the target state in EOMEA-

CCSD method and requires inclusion of triples, in both reference and target state 

calculation, for an accurate description of the electron attached state dominated by 

double excitations. In Partitioned EOMEA method, this 
DD

H  block is further 

approximated to include only the diagonal terms. Therefore, the P-EOM based 

method is expected to give inferior performance for the states dominated by 
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double excitations compared to the standard EOM method with untruncated 
DD

H   

doubles-doubles block. 

 

5.2.4 Size Consistency of P-EOMEA-CCSD(2) 

Size consistency is defined in the literature29, 30 as the additive separability of 

energy in the limit of non-interacting fragments.  

AB A B
E E E                                                                                                       (5.26)         

Where 
AB

E  is the energy of the system AB consists of two non-interacting 

fragments. 
A

E  and 
B

E    are individual energies of fragment A and B, respectively. 

Now the P-EOMEA-CCSD(2) to be size-consistent,  the sum of the reference 

energy and the transition energy (electron attachment in this case)  has to be size-

consistent. Stanton and Gauss have shown that truncation of effective Hamiltonian 

based on the perturbation orders will ensure size-consistency of the ground state 

energy for each order of perturbation. The detailed derivation is presented in ref 

[20]. 

Now for investigating the separability of the electron attachment energies, one 

needs to put attention to the CI like linear operator  .  

Let us consider that the electron attachment is taking place on fragment A. 

The Hamiltonian of the system AB is the sum of the fragment A and B in the non-

interacting limit  

ˆ ˆ ˆ
AB A B

H H H                                                                                                     (5.27)                                

To ensure the additive separability of the energy, the Hamiltonian should be 

expressible in the block diagonal form. 
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0,0 0, 0, 0,

,0 , , ,

,0 , , ,

,0 , , ,

ˆ

A B AB

A A A A B A AB

AB

B B A B B B AB

AB AB A AB B AB AB

H H H H

H H H H
H

H H H H

H H H H

 
 
 
 
  
 

                                                              (5.28 ) 

where, ,AB AB A B A B A B
H H H       , ,0 0 0AB A B A B

H H H       and so 

on. 0A, 0B, 
A

  and 
B

    represent reference and electron attached states on A and 

B respectively. Following reference 28 and 29, most of the terms in Hamiltonian 

ˆ
AB

H   can be shown to be zero. The reference state and the target state cannot be 

connected through the Hamiltonian, as they differ in spin multiplicity (singlet and 

doublet respectively). Therefore, the terms  ,0X
H   and 0, X

H  are zero, where X=A, 

B, AB. It should be noted that these terms are not necessarily be zero for the 

excitation energy case.  

Thus, ˆ
AB

H  simplifies to   

0,0

, , ,

, , ,

, , ,

0 0 0

0ˆ
0

0

A A A B A AB

AB

B A B B B AB

AB A AB B AB AB

H

H H H
H

H H H

H H H

 
 
 
 
  
 

                                                                 (5.29) 

In the non-interacting limit, the ˆ
A

H   acts only on states of A and ˆ
B

H   acts only on 

states of B. Consequently the terms 
AB

H    and 
BA

H   are zero.  

,
ˆ ˆ0 0

ˆ ˆ0 0 0 0

ˆ ˆ0 0 0 0

ˆ ˆ0. 0 0. 0 0

A B A B A B A B

A B A A B A B B A B

B B A A A A B B B B

A A A B B B

H H H

H H

H H

H H

   

     

     

    

                                                    (5.30)                
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Now little attention has to be paid towards the term ,A AB
H  

,
ˆ ˆ0

ˆ ˆ0 0

ˆ0 0

A AB A B A B A B

B B A A A A A B B B

A A B B B

H H H

H H

H

    

       

    

                                                 (5.31)                          

The first term of equation 5.31 is trivially zero. Let us take the electron attachment 

takes place on fragment A. As the determinant 
A

  includes at least one electron 

attachment, the excitation level in the determinant 
B

  will be restricted to a 

maximum of single substitution. Thus, ˆ0
B B B

H   becomes zero due to the 

Brillouin’s theorem. Following the similar analogy,  ,B AB
H  , ,AB A

H  and ,AB B
H    can 

also be shown to be zero. The proof is same if the electron attachment takes place 

in fragment B. 

All the above condition holds true, even for a partitioned form of the Hamiltonian 

The target states are obtained by the diagonalization of ˆ
AB

H   and are, thus, defined 

by the following secular equation. 

0,0

,

,

,

0 0 0

0 0 0
0

0 0 0

0 0 0

A A

B B

AB AB

H I

H I

H I

H I







 
   
 
   

                                         (5.32)       

Where I   stands for the unity matrix and    is the corresponding eigen value. 

The equation 5.32 is satisfied when  

0,0 , , , 0
A A B B AB AB

H I H I H I H I                                                   (5.33)        

which means the eigen values of the individual fragment are also the eigen value 

of the combined system.  

Therefore, the transition energies in P-EOMEA-CCSD(2) method are  size-

intensive. 
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 Hence, the total energy, which is sum of the reference state energy and transition 

energies, is also size-consistent.  

 

5.2.5 Computational Details 

Vertical electron affinities are calculated for small molecules like N2, H2O, NO+, 

O3, and H2CO using the P-EOMEA-CCSD(2) method, in a hierarchy of Dunning’s 

correlation consistent aug-cc-pVXZ (X = D, T, Q) basis sets [31]. Experimental 

geometries are used in all of the cases. The results are compared with the standard 

EOMEA-CCSD, P-EOMEA-CCSD, and EOMEA-CCSD(2) methods. 

After estimating the accuracy of the P-EOMEA-CCSD(2) method, we have used it 

to calculate the electron affinities of DNA and RNA nucleobases (NAB). We have 

calculated the electron affinities of adenine, guanine, thymine, cytosine, and uracil 

in the aug-cc-pVDZ and aug-cc-pVTZ basis sets, and the results are compared 

with the available experimental and theoretical values. Diffused f functions are 

removed from the aug-cc-pVTZ basis set, in the calculations for DNA nucleic acid 

bases, to keep it computationally viable. All the calculations are performed using 

our in-house coupled cluster and EOMCC codes. Converged Hartree–Fock 

coefficients, eigenvectors, and one and two electron atomic integrals are taken 

from the GAMESS-US package [32]. All the calculations are performed assuming 

C1 symmetry, and all the electron are used in correlation treatment. 

 

 

 

5.3 Results and Discussion  

 

5.3.1 Benchmarking 

   The performance of the newly implemented P-EOMEA-CCSD(2) method is 

benchmarked for small molecules like N2, H2O, NO+, O3, and H2CO in a hierarchy 
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of Dunning’s correlation consistent aug-cc-pVXZ (X = D, T, Q) basis set (Tables 

5.1–5.5). For the sake of comparison, we also quote the corresponding P-EOMEA-

CCSD and EOMEA-CCSD(2) results. 

 

Table 5.1 presents the electron affinity values for first five states of N2. It is well 

know that N2
– is a temporary bound anion, which is evident from its negative 

electron affinity. It can be seen that all four methods give electron affinity values 

which are in good agreement with each other in all three basis sets, except for the 
2Πg state, where both the P-EOM-CCSD and P-EOM-CCSD(2) underestimate the 

electron affinity value as compared to the EOM-CCSD and EOM-CCSD(2) 

methods, which are in good agreement with each other. Here it should be noted 

that the 2Πg state has significant double-excitation character, which is not properly 

taken care of by the partitioned EOM methods, due to a truncated doubles–doubles 

block of the EOM matrix. This leads to inferior performance of both the P-EOM-

CCSD and P-EOM-CCSD(2) methods for the 2Πg state. The 2Σu
–, 2Σg

+, and 2Πu 

states, which are dominated by single excitation, are accurately reproduced by the 

partitioned methods. The increment of basis set from aug-cc-pVDZ to aug-cc-

pVTZ leads to an increase in electron affinity for all the states. It also accompanies 

change in relative ordering of states. The 2Σg
+ state, which has been the fourth 

highest electron attached state, changes to the second highest electron attached 

state, on changing the basis from aug-cc-pVDZ to aug-cc-pVTZ. The discrepancy 

between the P-EOM vs EOM results, for the 2Πg states, slightly decreases in the 

aug-cc-pVTZ basis set. The electron affinity values of N2 further increase from 

aug-cc-pVTZ to the aug-cc-pVQZ basis; however, the state ordering remains 

unchanged from that in the aug-cc-pVTZ basis set. 

 

In Table 5.2, we report the electron affinity values for the first five states of water. 

Water also gives rise to a temporarily bound anion on electron attachment. The 

Hartree–Fock wave function provides a very good zeroth order description of the 

wave function of the ground state of water, as indicated by the small T1 diagnosis 
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value. 

 

Table 5.1 : Electron Affinities of N2 (in eV) 

state EOMEA-

CCSD 

P-EOMEA-

CCSD 

EOMEA-

CCSD(2) 

P-EOMEA-

CCSD(2) 

aug-cc-pVDZ Basis Set 

2Σu
– –2.64 –2.66 –2.64 –2.65 

2Πg –2.69 –2.86 –2.68 –2.85 

2Σg
+ –3.15 –3.18 –3.15 –3.18 

2Πu –3.78 –3.80 –3.79 –3.80 

aug-cc-pVTZ Basis Set 

2Σu
– –2.08 –2.07 –2.06 –2.07 

2Σg
+ –2.26 –2.28 –2.26 –2.27 

2Πg –2.46 –2.58 –2.43 –2.54 

2Πu –2.94 –2.95 –2.94 –2.95 

aug-cc-pVQZ Basis Set 

2Σu
– –1.70 –1.70 –1.69 –1.70 

2Σg
+ –1.70 –1.71 –1.70 –1.71 

2Πg –2.33 –2.41 –2.29 –2.37 

2Πu –2.41 –2.41 –2.41 –2.41 

 
 

At the same time, the first five electron attached states are predominantly single-

reference in nature. This leads to very good agreement of electron affinity values 

in all four methods, with each other, in all three basis sets. Incrementing in the 

basis set leads to an increase in electron affinity values for all five states in water. 
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Table 5.2 : Electron Affinities of H2O (in eV) 

state EOMEA-

CCSD 

P-EOMEA-

CCSD 

EOMEA-

CCSD(2) 

P-EOMEA-

CCSD(2) 

aug-cc-pVDZ Basis Set 

1 2A1 -0.78 -0.80 -0.77 -0.80 

2B2 -1.50 -1.51 -1.50 -1.52 

2 2A1 -4.36 -4.40 -4.38 -4.43 

3 2A1 -5.17 -5.20 -5.20 -5.24 

2B1 -5.54 -5.61 -5.57 -5.64 

aug-cc-pVTZ Basis Set 

1 2A1 -0.62 -0.64 -0.63 -0.64 

2B2 -1.23 -1.24 -1.24 -1.24 

2 2A1 -3.26 -3.28 -3.27 -3.30 

3 2A1 -4.04 -4.06 -4.06 -4.08 

2B1 -4.20 -4.24 -4.22 -4.26 

aug-cc-pVQZ Basis Set 

1 2A1 -0.54 -0.56 -0.55 -0.56 

2B2 -1.10 -1.11 -1.11 -1.11 

2 2A1 -2.70 -2.71 -2.71 -2.72 

3 2A1 -3.29 -3.30 -3.30 -3.32 

2B1 -3.45 -3.48 -3.45 -3.49 
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Table 5.3 reports the electron affinity value for the five states of NO+. The electron 

attachment to NO+ is energetically favorable and, therefore, leads to positive 

values of electron affinities. We observe that the electron affinity values for the 

two 2Π states is slightly underestimated in both P-EOM-CCSD and P-EOM-

CCSD(2) methods. The slightly higher double excitation character for the 2Π state 

is responsible for the discrepancy. The other three states, which are dominated by 

single excitation, are well described by the partitioned EOM methods. The 

electron affinity values for all five states increase with larger basis sets. The 

discrepancy between the P-EOM and EOM method for the 2Π state also decreases 

in the aug-cc-pVTZ basis set. The electron affinity values for all five states further 

increase from aug-cc-pVTZ to the aug-cc-pVQZ basis, and in the aug-cc-pVQZ 

basis set, all the methods are in good agreement with each other.  

 

The first five electron attached states of ozone are reported in Table 5.4. We 

observe that the electron affinity of the 1 2B1 state is positive, while the rest of the 

four states have negative electron affinity, which indicates that only the first state 

is stable upon electron attachment. The electron affinity values in all four methods 

increase with a better basis set. It can be seen that both the EOMEA-CCSD(2) as 

well as P-EOMEA-CCSD(2) methods significantly underestimate the electron 

affinity value for the 1 2B1 state, compared to the EOMEA-CCSD method. On the 

other hand, the electron affinity value for the 1 2B1 state in the P-EOMEA-CCSD 

method is in good agreement with the EOMEA-CCSD value for all three basis 

sets. Here, it should be noted that the presence of multi-reference character makes 

the restricted Hartree–Fock method wave function a poor choice for the correct 

zeroth order description for the ground state of ozone, which is indicated by the 

large T1 diagnosis values (see Table 5.6). In the case of both EOMEA-CCSD and 

P-EOMEA-CCSD methods, the T1 amplitudes take care of the orbital relaxation. 

This is missing in both EOMEA-CCSD(2) and P-EOMEA-CCSD(2) methods and 
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leads to the failure of both the methods for the 1 2B1 state. The picture in higher 

electron attached states is dominated by the large structural relaxation caused by 

the addition of an extra electron, which is properly taken care of by the EOM 

method.  

Table 5.3 : Electron Affinities of NO
+
 (in eV) 

state EOMEA-

CCSD 

P-EOMEA-

CCSD 

EOMEA-

CCSD(2) 

P-EOMEA-

CCSD(2) 

aug-cc-pVDZ Basis Set 

X  2Π 9.38 9.25 9.39 9.25 

X  2Π 9.38 9.25 9.39 9.25 

A 2Σ+ 3.33 3.31 3.31 3.29 

D 2Σ+ 2.10 2.10 2.14 2.12 

C 2Π 1.91 1.91 1.92 1.92 

aug-cc-pVTZ Basis Set 

X  2Π 9.65 9.59 9.66 9.60 

X  2Π 9.65 9.59 9.66 9.60 

A 2Σ+ 3.52 3.51 3.51 3.50 

D 2Σ+ 2.39 2.39 2.41 2.40 

C 2Π 2.24 2.25 2.25 2.26 

aug-cc-pVQZ Basis Set 

X  2Π 9.74 9.72 9.77 9.74 

X  2Π 9.74 9.72 9.77 9.74 

A 2Σ+ 3.65 3.65 3.65 3.65 

D 2Σ+ 2.54 2.54 2.55 2.55 

C 2Π 2.43 2.44 2.43 2.44 
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Therefore, both EOMEA-CCSD(2) and P-EOMEA-CCSD(2) give satisfactory 

performance for all of the higher electron attached states.  

 

Table 5.4 : Electron Affinities of O3 (in eV) 

state EOMEA-

CCSD 

P-EOMEA-

CCSD 

EOMEA-

CCSD(2) 

P-EOMEA-

CCSD(2) 

aug-cc-pVDZ Basis Set 

1 2B1 1.62 1.58 1.18 1.16 

    2B2 -3.05 -3.03 -3.09 -3.08 

1 2A1 -3.07 -3.03 -3.10 -3.09 

2 2A1 -3.43 -3.41 -3.46 -3.46 

2 2B1 -4.47 -4.48 -4.53 -4.54 

aug-cc-pVTZ Basis Set 

1 2B1 1.84 1.88 1.42 1.49 

    2B2 -2.47 -2.45 -2.50 -2.49 

1 2A1 -2.55            -2.53 -2.55 -2.54 

2 2A1 -2.59 -2.55 -2.63 -2.60 

1 2B1 1.84 1.88 1.42 1.49 

aug-cc-pVQZ Basis Set 

1 2B1 1.94 2.03 1.53 1.65 

    2B2 -1.91 -1.89 -1.92 -1.90 

1 2A1 -2.01 -1.99 -2.03 -2.01 

2 2A1 -2.14 -2.12 -2.14 -2.13 

2 2B1 -2.85 -2.85 -2.88 -2.87 

The detailed analysis on the origin and the trends of the errors are presented in the 

next section. 
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Table 5.5 : Electron Affinities of H2CO (in eV) 

state EOMEA-

CCSD 

P-EOMEA-

CCSD 

EOMEA-

CCSD(2) 

P-EOMEA-

CCSD(2) 

aug-cc-pVDZ Basis Set 

1 2A1 -0.75 -0.77 -0.73 -0.75 

   2B2 -1.25 -1.32 -1.24 -1.31 

1 2B1 -1.31 -1.36 -1.29 -1.35 

2 2A1 -2.19 -2.22 -2.21 -2.24 

2 2B1 -3.10 -3.19 -3.08 -3.17 

aug-cc-pVTZ Basis Set 

1 2A1 -0.59 -0.60 -0.56 -0.58 

   2B2 -1.07 -1.08 -1.05 -1.06 

1 2B1 -1.08 -1.14 -1.05 -1.12 

2 2A1 -1.85 -1.87 -1.86 -1.88 

2 2B1 -2.48 -2.53 -2.44 -2.50 

aug-cc-pVQZ Basis Set 

1 2A1 1 2A1 -0.50 -0.50 -0.48 

   2B2    2B2 -0.96 -0.97 -0.95 

1 2B1 1 2B1 -0.99 -1.03 -0.96 

2 2A1 2 2A1 -1.58 -1.59 -1.59 

2 2B1 2 2B1 -2.11 -2.14 -2.07 
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Electron affinity values for the five states of formaldehyde are presented in Table 

5.5. The electron affinity values for all five states are negative, which indicates 

that the electron attachment to formaldehyde leads to temporary bound anions. 

The electron affinity values for all five states increase with incrementation in the 

basis set. All four methods show very good agreement with each other in all three 

basis sets. 

As a passing remark, it should be mentioned that the calculated electron affinity 

values in all four methods have not converged with respect to basis set even in the 

aug-cc-pVQZ basis set. Therefore, it may be necessary to go for explicit 

correlation technique based [33] EOM methods to get the basis set convergence in 

the electron affinity values. 

Table 5.6 : T1 Diagnosis Values in aug-cc-pVTZ Basis Set 

molecule T1 value 

N2 0.013 

H2O 0.010 

NO+ 0.022 

ozone 0.028 

H2CO 0.016 

 

 

5.3.2 Error Analysis 

To understand the trends and source of the errors in different approximations to the 

EOMEA-CCSD method, we have calculated the vertical electron affinities of 20 

small molecules like N2, H2O, CH+, F2, C2, CO, NH, NO+, O2, BH, O3, C2H2, 

C2H4, CO2, LIF, NaH, Cl2, BeO, H2S, and H2CO, in a hierarchy of Dunning’s 

correlation consistent aug-cc-pVXZ (X = D, T, Q) basis sets.[31] The statistical 
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analysis shows that the P-EOMEA-CCSD(2) method has an average absolute 

deviation (AAD) and root-mean-square deviation (RMSD) of 0.03 and 0.07 eV 

from the standard EOMEA-CCSD values (Table 5.7). The error bars are smaller 

than that in both P-EOMEA-CCSD and EOMEA-CCSD(2) methods. From Figure 

5.1, it can be seen that the P-EOMEA-CCSD(2) method shows the least error in 

the electron affinity values among the three approximations to the standard 

EOMEA-CCSD method. 

 

Table 5.7 : Maximum Absolute, Average Absolute, and Root Mean Square Deviation of 

Calculated Electron Affinity (in eV) from EOMEA-CCSD Values in the aug-cc-PVQZ 

Basis Set 

method P-EOMEA-CCSD EOMEA-CCSD(2) P-EOMEA-

CCSD(2) 

max abs dev 0.63 0.50 0.49 

avr abs dev 0.04 0.05 0.03 

RMS dev 0.10 0.11 0.07 

 

 

Ghosh and co-workers [22] have shown that the use of EOM-CCSD(2) 

approximation leads to systematic underestimation of excitation energy in the 

spin-flip EOM method and proposed a linear relationship between the errors in 

reference and target state. However, in the case of the electron affinity problem, 

the correlation between error in the reference state and that in the target state will 

be less straightforward, as the reference and target states differ in the total number 

of electrons, unlike in the case of the excitation energy problem. 

 

In general, the P-EOMEA-CCSD method overestimates and the EOMEA-

CCSD(2) method underestimates the electron affinity values as compared to the 

standard EOMEA-CCSD method. However, the trends are less systematic. The 
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truncated H̅DD block of the partition EOMEA matrix leads to a rise in energy of the 

target state which in turn increases the energy difference between the reference 

and target states (if the target state is higher in energy than the reference state, see 

Figure 5.2), i.e., electron affinity value. This leads to systematic overestimation of 

electron affinity by the P-EOMEA-CCSD method. 

 

 

 

Figure 5.1: Maximum abs deviation, average abs deviation, and RMS deviation of 

different approximate EOMEA-CC methods from the full EOMEA-CCSD method (in 

eV). 

 

 

In the case of the EOMEA-CCSD(2) method, the difference between 

Etarget(EOMEA-CCSD) and Etarget(EOMEA-CCSD(2)) is smaller than that in 

Eref(CCSD) and Eref(CCSD(2)), since the EOM operators R1 and R2 partly correct 

the error introduced due to the truncated T amplitudes. Thus, the electron affinity 

value (Etarget – Eref) calculated by the EOMEA-CCSD(2) method is lower than that 

calculated in the standard EOMEA-CCSD method. This leads to persistent 
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underestimation of electron affinity values in the EOMEA-CCSD(2) method. In 

the P-EOMEA-CCSD(2) method, the truncated H̅DD block reduces the power of 

the R1 and R2 operators to correct for the error in the target state, due to the 

truncated T amplitudes.  

 

 

Figure 5.2 .The error cancellation in the difference of energies between reference and 

target states. 

 

 

This leads to a better balance in the errors in the Eref and Etarget states of the P-

EOMEA-CCSD(2) method, resulting in systematic error cancelation to give a 

more accurate value of electron affinity (Etarget – Eref) values than that in the P-
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EOMEA-CCSD and EOMEA-CCSD(2) methods. However, the EOM vs P-EOM 

and the CCSD vs CCSD(2) errors are not exactly additive. The slightly higher 

error introduced by the P-EOM method in the target state compared to that caused 

by the CCSD(2) method in the reference state leads to underestimation of the 

electron affinity values in the P-EOMEA-CCSD(2) method. However, the 

magnitude of the errors in both the reference state and target state is small in most 

of the cases. 

After gaining some confidence about the sufficient accuracy of the P-EOMEA-

CCSD(2) method, we proceed to investigate the vertical electron affinities of DNA 

and RNA nucleic acid bases (NAB). The electron affinities of NAB are difficult to 

treat accurately with conventional ab-initio methods, and NABs are too big to be 

investigated in the standard EOMEA-CCSD method, especially with modest 

computational resources. 

 

 

5.3.3 Vertical Electron Affinities of DNA and RNA Nucleic Acid Bases 

Accurate determination of electron affinities (EA) of DNA and RNA bases (Figure 

3) plays a crucial role in understanding the electron donor and acceptor properties 

of NAB, such as charge transfer and charge transport along the DNA strand [34], 

radiation damage and repair of the genetic material [35] DNA protein interaction 

[36], DNA phototherapy [37] and DNA based molecular technologies [38].  A 

large number of experimental studies [39-46] has been performed for accurate 

determination of electron affinities. At the same time, numerous theoretical studies 

[47] with a wide range of theoretical methods, starting from DFT [48-51] to highly 

correlated CCSD(T) [52, 53] and CASPT2 methods, [52] have also been used for 

the elucidation of vertical and adiabatic electron affinities of NAB. Theoretical 

determination of EA of NAB is rather difficult, due to multiple reasons. The 

density functional theory (DFT) calculations show high dependence [47] on the 

exchange correlation functional. On the other hand, the state-of-the-art ab-initio 

quantum mechanical calculations, although being more accurate, are difficult to 
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perform due to the use of a highly diffused basis set, having the maximum radial 

and angular flexibility [54] required to model the weakly bound electrons. The 

standard EOMEA-CCSD method, because of its systematic inclusion of dynamic 

and nondynamic correlation, is the ideal method for accurate theoretical 

estimations of EA of NAB. However, the prohibitively large computational cost 

has restricted the application of the EOMEA-CCSD method to NAB. To the best 

of our knowledge, no EOMCC study has been performed on electron affinities of 

NAB. The P-EOMEA-CCSD(2) method, because of its N
5 scaling and lesser 

storage requirements, can easily be applied to calculate the EA of NAB. Table 8 

compiles the earlier reported theoretical results and present P-EOMEA-CCSD(2) 

values for the vertical EA of NAB, together with the available experimental data. 

 

 

 

Figure 5.3 : DNA and RNA Nucleic Acid Bases. 

  

http://pubs.acs.org/doi/full/10.1021/ct4009409#tbl8
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Table 5.8 : Low-Lying Vertical Electron Affinities (eV) of DNA and RNA Nucleobases 

Obtained by Different Experimental, P-EOMEA-CCSD(2), and Other Theoretical 

Methods 

Method Uracil Thymine  Cytosin  Adenine Guanine 

Experimental rangea −0.30 to 

−0.22 

−0.53 to 

−0.29 

−0.55 to 

−0.32 

−0.56 to 

−0.45 
⋯ 

Expt. (ETS)b −0.22 −0.29 −0.32 −0.54 ⋯ 

Scaled Koopman/D95Vc −0.11 −0.32 −0.40 −0.74 −1.23 

B3LYP ranged −1.09 to 

−0.11 

−1.05 to 

−0.28 

−1.42 to 

−0.31 

−1.57 to 

−0.34 

−2.07 to 

−0.08 

MP2/6-31G(d)e −1.77 −1.85 −1.97 −2.54 −2.82 

PMP2//MP2/6-31G(d)e −1.63 −1.69 −1.76 −2.07 −2.48 

MP2/aug-cc-pVDZ −0.69 −0.73 −0.91 −1.42 −1.57 

PMP2//MP2/aug-cc-pVDZ e −0.56 −0.58 −0.73 −0.99 −1.30 

CCSD//CCSD/aug-cc-pVDZ 

e 
−0.63 −0.65 −0.77 ⋯ ⋯ 

CCSD(T)//CCSD/aug-cc-

pVD e 
−0.64 −0.65 −0.79 ⋯ ⋯ 

CASPT2//CASSCF/cc-

pVDZ e 
−1.42 −1.44 −1.49 −1.65 −2.14 

CASPT2//CASSCF/ANO-L 

431/21 e 
−0.68 −0.69 −0.76 −1.06 −1.30 

CASPT2/ANO-L 

4321/321//CASSCF/ANO-L 

431/21 e 

−0.49 −0.45 −0.59 −0.74 −0.94 

P-EOMEA-CCSD(2)/aug-

cc-pVDZ/B3LYP/aug-cc-

pVTZ f 

-0.17 -0.28 -0.46 -0.46 -0.34 

P-EOMEA-CCSD(2)/aug-

cc-pVTZ/B3LYP/aug-cc-

pVTZ f,g 

-0.14 -0.24 -0.41 -0.41 -0.30 

a : Values taken from refs 41−43. b: Values taken from ref 41. c : Values taken from ref 55. 

d : Values taken from ref 47. e : Values taken from ref 52. f : Present work. 

g :aug-cc-pVDZ basis used for hydrogen. 
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It can be seen that the experimental and theoretical methods provide negative 

vertical EA values for all the levels, which indicates that the NAB anions are 

temporary bound states or resonance states, existing in a short period of time and 

prone to autodetachment. 

 

An analysis of the theoretical methodologies employed for the calculation of 

vertical EA of NAB reveals that the DFT method gives the most scattered values, 

ranging from highly negative to nearly equal to zero, strongly dependent upon the 

functional and the quality of the basis set used. The simplest approach, i.e., via 

Koopman’s approach [55] with some scale factor, gives values more or less similar 

to experimental values. The MP2 methods[52] lead to very high negative values in 

the 6-31G(d) basis set. However, the values become less negative with the use of 

diffused aug-cc-pVDZ. Spin contamination also has a significant effect on electron 

affinities calculated in the MP2 method. The use of the projected MP2 method 

makes the predicted electron affinity value less negative, i.e., closer to the 

experimental values. The CCSD(T)[52] and CASPT(2)[52] give similar values, 

and both underestimate (i.e., gives more negative value) compared to the 

experimental results. 

 

The P-EOMEA-CCSD(2) method gives the best agreement with the experimental 

values. There exists a striking difference in the trends of electron affinity values 

calculated in the P-EOMEA-CCSD(2) method with the earlier reported values. 

The electron affinities calculated using the P-EOMEA-CCSD(2) method are much 

less negative compared to that obtained in the MP2 and CCSD(T) method by 

Serrano-Andres and co-workers.[52] Especially the vertical EA for uracil is very 

small in the P-EOMEA-CCSD(2)/aug-cc-pVTZ level of theory, unlike that 

reported in the earlier theoretical investigation. It should be noted that the above 

CCSD(T) calculations by Serrano-Andres and co-workers[52] were performed in 

the small aug-cc-pVDZ basis set. The OVOS-CCSD(T) calculation in aug-cc-
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pVTZ by Urban and co-workers[53] has resulted in a vertical EA value of −0.15 

eV for urcail, which is nearly identical with our P-EOMEA-CCSD(2) value of 

−0.14 eV. It is also interesting to note that the purine NAB, adenine and guanine, 

show significantly less negative values in P-EOMEA-CCSD(2) method than that 

in the CCSD(T) method. 

 

 The loosely bound electron in NAB anions may lead to multiple near-degenerate 

configurations requiring systematic inclusion of non-dynamic correlation, which 

CCSD(T) fails to include in a balanced way. The electron affinity values 

calculated in the CASPT(2) method shows that with inclusion of non-dynamic 

correlation, electron affinities become less negative. However, the CASPT(2) 

values strongly depend on the choice of active space. The EOM based methods, on 

the other hand, provide a balanced description of both dynamic and non-dynamic 

correlation and is “black box” to use. Therefore, detailed studies of electron 

attachment and the electron attachment induced structural changes of NAB using 

EOMCC methods are required to get a better analysis of the experimental values. 

However, it is outside the scope of the present study and will be followed in a 

subsequent study. 

 

 

 

5.4 Conclusion 

Electron attachment variant of EOM-CC offers a versatile approach to model 

electron attachment to atoms and molecules. In this work, we present an N
5 

scaling, size-consistent modification to the standard EOMEA-CCSD method 

based on perturbation order analysis and the matrix partitioning technique. The 

proposed approximation (P-EOMEA-CCSD(2)) has significantly less storage than 

the earlier proposed EOMEA-CCSD(2) method. We have benchmarked the new 

method with standard EOMEA-CCSD methods. Statistical analysis of the results 
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shows that P-EOMEA-CCSD(2) provides an inexpensive way for accurate 

determination of the electron affinities, when the ground state of the system is well 

described by the MBPT(1) wave function. For systems where the MBPT(1) wave 

function fails to properly describe the ground-state reference, no EOM-CCSD(2) 

method can give quantitatively accurate values and can only be used to get a mere 

qualitative picture. The P-EOMEA-CCSD(2) approximation gives similar 

accuracy to that of the previous EOMEA-CCSD(2) method, even better in most of 

the cases, in spite of the former having significantly lesser storage requirements. 

We have used the P-EOMEA-CCSD(2) method to calculate the electron affinities 

of DNA and RNA nucleic acid bases. The results have shown excellent agreement 

with experimental values. 

The newly developed P-EOMEA-CCSD(2) method has immense potential to be 

used in the study of electron attachment to biological molecules and large clusters. 

The implementation of analytic derivatives is required for the purpose. Work is 

currently under way toward that direction. 
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Chapter 6 

 Perturbative approximations to single and double 

spin flip equation of motion coupled cluster 

methods 

 

“If  the red slayer think he slays,  

      Or if the slain think he is slain,  

They know not well the subtle ways  

      I keep, and pass, and turn again” 

                                                                                Ralph Waldo Emerson                       

Brahma 

 

Spin flip equation of motion coupled cluster (EOM-SF-CC) can correctly treat 

situations involving electronic degeneracies or near-degeneracies, e.g., bond 

breaking, di- and tri-radicals, etc. However, for large systems EOM-SF-CC (even 

in single and double excitations) is computationally prohibitively expensive. 

Therefore, earlier approximations to EOM-SF-CC methods such as spin flip 

configuration interaction singles with perturbative doubles (SF-CIS(D)) have been 

proposed. In this chapter, we present a new perturbative approximation to EOM-

SF-CC, which has been found to be more accurate than SF-CIS(D). The 

capabilities, advantages, and timings of the new approach have been demonstrated 

considering the singlet-triplet gaps in di- and tri-radicals as well as bond breaking 

examples. The method is extended to double spin flip EOM-CC, and its 

capabilities have been tested. We have shown that the second order approximation 

to single and double spin flip EOM-CC can generate very accurate potential 

energy surface and their geometrical derivatives. 

http://www.poetryfoundation.org/bio/ralph-waldo-emerson
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6.1 Introduction: 

Prediction and explanation of gas phase molecular spectra have been one of the 

major focus of theoretical chemistry in the last few decades. The single reference 

coupled cluster (SRCC) approach[1–8] has proved incredibly successful for closed 

shell molecules. SRCC considers dynamic correlation in a very systematic way, 

but leaves out the non-dynamic component of the correlation and therefore, fails 

for open shell molecules and bond breaking.  

 

In order to treat both dynamic and non-dynamic correlations, coupled cluster (CC) 

ansatz starting from a multi-determinantal reference (multi-reference coupled 

cluster (MRCC)) has been developed over the years [9–21]. Within the SRCC 

formalism, renormalized coupled cluster methods (renormalized coupled cluster 

singles doubles (RCCSD)) [22–24], have been developed, which are more 

successful in tolerating situations with limited non-dynamic correlation. However, 

there are difficulties associated with all the MRCC methods, such as active space 

selection, need of state averaging, etc., that prohibit its routine application [25]. To 

circumvent these problems, alternative approaches such as equation-of-motion 

(EOM) [26–28] and linear response (LR) coupled cluster [29–33] have been 

developed. Equation-of-motion-coupled-cluster (EOM-CC) [26,28,34–39] has 

emerged as one of the most reliable methods for the calculation of ionization 

energy [38,40–42], excitation energy, and electron affinity [27,39,43]. 

 

However, traditional EOM-CC has been limited in its application by the initial 

“single determinantal” coupled cluster reference. Therefore, it is difficult to treat 

truly multi-reference problems such as di- or tri-radicals and bond breaking where 

the consideration of non-dynamic correlation is crucial [41,44–48]. Krylov and co-

workers have used single or double spin flip (SF or DSF) [49–56] operators to 

introduce multi-configurational character to the traditional EOM-CC calculations. 

The main advantage of the SF or DSF approach lies in its simplicity and the ease 
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of implementation. Additionally, by construction SF or DSF does not have the 

problems associated with genuine MRCC.  

 

Despite the success of EOM-SF-CC method and the CC methods in general, it 

remains limited to small systems due to the rather steep computational scaling (N6) 

for coupled cluster singles doubles (CCSD) and ( N7) for the non-iterative triples 

corrected CCSD(T). There have been various attempts at reducing the 

computational cost of EOM-CC, such as the use of frozen natural orbitals (FNO) 

[57,58] and restricted active spaces in the EOM part [59]. However, these methods 

can only reduce the pre-factor and not the intrinsic computational scaling [60]. An 

alternative approach taken by Nooijen et al. [61,62] and Stanton and Gauss [63], 

and later generalized by Hirata et al. [64], has been to approximate the coupled 

cluster effective Hamiltonian based on many body perturbed Hamiltonians. The 

benefit of this approach, especially when considering the second order perturbed 

Hamiltonian is the reduction in scaling in the form of EOM-CCSD(2) or EOM-

MBPT(2) (iterative ( N6) for CCSD vs iterative ( N5) for CCSD(2) or MBPT(2)). 

EOM-CCSD(2) has been implemented and tested for excitation energies and 

ionization energies [63]. Recently, Pal and co-workers have shown that EOMIP-

CCSD(2) can be used to predict bond length and IR frequencies of large doublet 

radicals, with accuracy comparable to that of conventional EOMIP-CCSD method 

[65]. On the other hand, there have been approximations to SF and ionization 

potential (IP) versions of the EOM-CCSD method, where the effective 

Hamiltonian has been defined as the Hartree Fock (HF) Hamiltonian. This is the 

so-called equation-of-motion-configuration interaction singles with perturbative 

doubles (EOM-CISD) or the EOM-CIS(D) depending on the different levels of 

approximation in the EOM excitation operator. Here, it should be mentioned that 

SF-CISD has the same computational scaling as EOM-SF-CCSD while the scaling 

of IP-CISD is lower than EOM-IP-CCSD. Taking our motivation from the 

previous works [63,65] we have implemented EOM-SF-CCSD(2) and EOM-DSF-

CCSD(2)[2,3] variants where the effective Hamiltonian (similar to EOM-IP-
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CCSD(2)) is the second order perturbed (MP2) Hamiltonian and EOM-SF or 

EOM-DSF is carried out on top of that. In this work, we will show that this 

approximation is capable of breaking single and double bonds. It can reproduce 

singlet triplet gaps within an accuracy of 0.1 eV for small molecules, with respect 

to full EOM-SF-CCSD. We compare the performance of this new method with the 

existing EOM-SF-CCSD and EOM-DSF-CCSD[2,3], SF-CIS(D), double spin flip 

configuration interaction doubles triples as well as complete active space methods 

such as complete active space second order perturbation theory (CASPT2).  

 

The organization of the chapter is as follows. The theory of the new approximation 

and computational details of the calculations are provides in the next section. The 

section 6.3 consists of the results and discussions of the various test cases. We 

summarize our conclusions in section 6.4 .  

 

 

6.2 Theory and Computational Details 

6.2.1 EOM-SF-CCSD(2) and EOM-DSF-CCSD(2)[2,3] 

The central premise of the CC theory starts with the uncorrelated Hartree-Fock 

(HF) wave-function 0  and the exponential ansatz that assumes the correlated 

wave-function can be calculated from 

  0
ˆexp

CC
T                                                                                                 (6.1) 

where CC
 is the coupled cluster correlated wave-function. The operator T̂  can 

be written as 

1 2

† † †

, , , ,

......

1
......

4
a ab

i ij

i a i j a b

T T T

t a i t a b ij

  

                                                                                (6.2) 
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in the traditional CCSD form. The i, j indices refer to the occupied orbitals and a, 

b refer to the virtual orbitals in the HF reference orbitals. The EOM-CC method is 

a conceptually single reference approach for the description of excited states 

starting from this CC reference. The kth excited state eigen functions are written as 

linear excitations from the ground state CC reference, 

, ,0
ˆ

CC k k CC
R                                                                                                  (6.3) 

where 0 and k refers to the ground state and kth excited states, respectively. The 

operator ˆ
k

R   for the different flavors of EOM-CC can be expanded as

 

 

†

,

† † †

,

† † †
0

, ,

†
0

, ,

ˆ ˆˆˆ( ) ( ) .........

ˆˆ ˆˆ ˆ( ) ( ) .........

ˆˆ ˆ ˆ( ) ( ) .........

ˆ ˆ( ) ( )

IP a

k i ij

i i j a

EA a ba

k j

a a b j

EE a ab

k i ij

i a a b i j

SF a a b

k i i j
i a a b i j

R R k i R k a ji

R R k a R k b ja

R R k R k a i R k a b ij

R R k R k a i R k





 

  
    

 

  

  

   

  

 

 

 

 † †ˆˆ .........a b i j    

                                             (6.4) 

where EE, IE, EA, and SF refer to excitation energy, ionization energy, electron 

affinity, and spin flip, respectively. In case of the SF operator, α and β spins are 

denoted by Ĺ and Ļ respectively, the equation shows the case where one starts with 

an excess α electrons (this can be easily generalized to the reference with excess β 

electrons). The operator  R̂  is an excitation operator truncated at a certain order of 

excitation. Reference [66] gives a detailed description of the method. For a system 

with significant non-dynamic correlation, one needs to consider multiple possible 

configurations. This can be achieved through the SF operator which changes the 

spin of the system (Δ Ms = ±1) but not the number of particles (Δ N = 0), thus 

generating the configurations shown in Figure 6.1. One starts with a high spin 

triplet state (with excess α/β electrons) which is predominantly single reference in 

nature. From that reference, the  ˆ SF
R  operator moves one electron with α/β spin to 

β/α spin, which changes the state from high spin ( Ms = 1) to low spin (singlet and 

M s = 0 triplet), and in the process considers various configurations. Analogously 
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extending to DSF-CCSD one can consider double bond breaking, i.e., the operator 

 ˆ DSF
R   causes Δ Ms = ±2. The operator  

2
ˆ DSF
R   can be written as 

  † †
0

,

ˆˆ ˆ( ) .........DSF a b

k i j
a b i j

R R k R k a b i j
 
     

 

                                                           (6.5) 

assuming one starts with a quintet reference with an excess α or Ĺ electrons. 

 

Figure 6.1 : Starting with 3B1 reference state, spin flip operator creates target open 
shell 1B1 state and closed shell singlet states 1 1A1 and 2 1A1. 

 

The CC theory and many body perturbation theory (MBPT) are closely related 

techniques for the calculation of many body effects. [2,67] Therefore, a natural 

way of analyzing and reducing the computational cost of CC based methods is to 

look at the possible perturbative approximations. One can express the effective 

Hamiltonian H   as the connected terms in  ˆexpH T 
  . This effective Hamiltonian 

can also be expanded as a Baker-Campbell-Hausdorff (BCH) expansion, 

     1 1
, , , , , , .....

2 6
H H H T H T T H T T T                                                     (6.6) 

and alternatively as a perturbative expansion, 

       1 2 30 ....H HH HH                                                                                (6.7) 

Two slightly different perturbative approaches have been reported in the literature 

[61,63]. Nooijen and Snijders[61] first proposed a truncation of the CCSD 

effective Hamiltonian based on the above perturbative scheme and Stanton and 

Gauss [63] generalized it within the EOM approach. Truncations at the nth level of 

http://scitation.aip.org/content/aip/journal/jcp/139/12/10.1063/1.4821936#c63
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the effective Hamiltonian give rise to nth order of MBPT ground state, e.g., 

CCSD(2) for MBPT[(2), CCSD(3) for MBPT(3), etc. The detailed working 

expressions for the approximations are given in Ref. [63] . According to the nth  

truncation in the perturbative series, approximate EOM-CCSD(n) can be 

formulated. The lowest order expansion is the EOM-CCSD(2), where the H  is 

truncated at the second order perturbative level (MBPT(2)). 

In case of truncated effective Hamiltonians (at the level of H[2]), the CC 

amplitudes can be expressed as the MBPT(2) amplitudes [62], 

 
 

e

e

T

c

T

c

H H

H





                                                                                                          (6.8) 

where the perturbative approximation to the T amplitudes can be written as 

1

2

ia

i a

i j a b

f
T

ab ij
T

 

   

 


 
  

                                                                                             (6.9) 

T1 is zero for restricted closed shell and unrestricted MBPT(2) reference. Using 

these T′ amplitudes one can calculate a modified effective H  , which can be used 

as the reference for subsequent EOM calculation. Thus, this is necessarily an EOM 

calculation on a MBPT(2)reference state. In our implementation of EOM-SF-

CCSD(2), we use the later approach of perturbatively approximating the 

amplitudes T′, which is slightly different from the original Nooijen and Snijders’ 

approach. Reference 63 gives a good discussion on the differences of these two 

methods as well as the fact that both the methods give exactly the same ionization 

energies within the EOM-IP framework.  

Of course, in our approach the CC ground state energy reduces to the MBPT(2) 

ground state energy, with the reduction of computational scaling from iterative N6 

to non-iterative N5. There are still some elements of H  that need to be calculated 
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that scale as N6, but the scaling of the ground state is dominated by the iterative 

part. Therefore, our approach gives significant saving in terms of reference state 

calculation. However, the total scaling of the method is still determined by the 

EOM part and the total computational scaling of EOM-SF-CCSD and EOM-SF-

CCSD(2) are O( N6), but the total timings of the EOM-SF-CCSD(2) is much lower 

than the EOM-SF-CCSD. Table 6.1 compares the approaches in the existing SF 

methods with the new EOM-SF-CCSD(2) method. The corresponding method for 

DSF has been named EOM-DSF-CCSD(2)[2,3], where [2,3] denotes that we use 

amplitudes up to 2nd order to calculate the effective Hamiltonian and in the EOM 

part we use up to 3 hole, 3 particle (3h,3p) operators. In the original DSF 

formalism it has been noticed that significantly better results are obtained when 

3h,3p operators are used than 2h,2p in the EOM part [55]. 

Table 6.1 : Hierarchy of spin flip methods. For explicit forms see Eqs. (6.10)–(6.12) . 

Reference Method Wave-function 

SCF SF-CIS 
1 0R   

SCF(MP2) SF-CIS(D) 
1 0 2 0R R   by PT 

SCF SF-CISD  1 2 0R R    

CCSD(2) SF-CCSD(2)  1 2 1 2 0exp( )R R T T      

CCSD SF-CCSD  1 2 1 2 0exp( )R R T T     

 

 

6.2.2 Comparison of EOM-SF-CCSD(2) with other SF methods 

SF-CIS, SF-CIS(D), and SF-CISD form the class of methods that start from a HF 

reference as the effective Hamiltonian. EOM-SF-CCSD on the other hand contains 

the full CCSD effective Hamiltonian and therefore, a CCSD reference state. EOM-

SF-CCSD(2) lies in between these two approximations, where we start from a 

MBPT(2) reference state, i.e., truncated CCSD effective Hamiltonian.  
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It is especially important to compare SF-CIS(D) and EOM-SF-CCSD(2) because 

both of these have a perturbative correction. However, their difference can be 

explained by “excite then perturb” (CIS(D)) vs “perturb then excite” technique 

(CCSD(2)). SF-CIS and SF-CIS(D) have single excitation ( 1R̂  ) while SF-CISD 

and EOM-SF-CCSD(2) also include double excitations ( 1 2
ˆ ˆR R ).  

The energy expressions for the various related methods can be written as  

0 0 0 0EOM CCSD T T
E Le He R LHR

                                                              (6.10) 

(2) 0 0 0 0EOM CCSD T T
E Le He R LH R

                                                           (6.11) 

       
 

 1 2 1 1
20 0 0 0CIS D

E L HR L HT R                                                            (6.12) 

where T2 creates the first order MBPT wave-function when it acts on |0⟩. For the 

CIS(D) energy, the first term takes care of the direct electron correlation and the 

second term takes care of correlation between pairs of electrons that are not 

connected by singles. We should also mention a related method, CIS-MP2, which 

fares worse than the CIS(D) due to the presence of disconnected terms [68]. From 

the energy expressions and the wave-functions listed in the hierarchy of methods 

(Table 6.1 ), we expect the accuracy as well as computational timings of the newly 

developed EOM-SF-CCSD(2) to be in between that of EOM-SF-CCSD and SF-

CIS(D). 

 

6.2.3 Size Consistency  

We start by defining size-consistency as the capacity to partition the energy of two 

non-interacting fragments correctly. As explained in the literature [52,69], this 

means that the reference energy (ground state) needs to be size-consistent as well 

as the transition/excitation energy. Stanton and Gauss [63] have proved that 

approximating the effective Hamiltonians based on perturbative orders lead to size 
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extensivity of the ground state for every order of perturbation, which fulfils the 

first condition. Reference 63 shows the detailed derivation.  

The second condition requires consideration of the linear excitation operators Rˆn 

(similar to CI). One starts with the Hamiltonian which is the sum of the 

Hamiltonians of the fragments in the non-interacting limit,  

ˆ ˆ ˆ
A B

H H H                                                                                                        (6.13)            

In order to show that the energies are separable, one needs to show that this 

Hamiltonian of both the fragments can be represented in a block diagonal form                                       

0,0 0, 0, 0,

,0 , , ,

,0 , , ,

,0 , , ,

ˆ

A B AB

A A A A B A AB

B B A B B B AB

AB AB A AB B AB AB

H H H H

H H H H
H

H H H H

H H H H

 
 
 
 
  
 

                                                                 (6.14 ) 

where, ,AB AB A B A B A B
H H H       ,  ,0 0 0AB A B A B

H H H        and so 

on. 0A, 0B, 
A

  and 
B

   refer to the ground and excited states on A and B, 

respectively.  

References 52 and 70 show that most of the terms of this Hamiltonian can be 

easily shown to be zero. The terms H0, P and HP, 0 , where P = A, B, AB, are zero 

since the initial and final states differ in their spin (triplet to singlet) and therefore, 

cannot be connected through the Hamiltonian. Note that these terms are not 

necessarily zero for non-SF CI expansions. Thus, Ĥ   can be expressed as 

0,0

, , ,

, , ,

, , ,

0 0 0

0ˆ
0

0

A A A B A AB

B A B B B AB

AB A AB B AB AB

H

H H H
H

H H H

H H H

 
 
 
 
  
 

                                                                   (6.15) 

The terms HA,B and HB,A are zero since ˆ
A

H  acts only on states in A and 
ˆ

B
H

  on 

states in B, in the non-interacting limit. These terms would be zero even for non-
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SF CI. The only intriguing term arises as HA,AB , assuming one starts with a triplet 

state on A. Now, expanding the term HA,AB , 

,
ˆ ˆ0

ˆ ˆ0 0

ˆ0 0

A AB A B A B A B

B B A A A A A B B B

A A B B B

H H H

H H

H

    

        

    

                                                 (6.16)                           

Where, the first part of the equation is trivially zero since 0
B B
   is zero. The 

second part of the equation is non-zero for general CISD expansion. One can show 

that for SF case this reduces to zero due to Brillouin condition. It can be generally 

proved that such terms will be zero for nSF if excitations up to (n + 1) are 

considered in the CI expansion. Following this condition, both EOM-SF-CCSD(2) 

and EOM-DSF-CCSD(2)[2,3], the later containing up to triple excitation in the 

EOM part, are size consistent. 

 

6.2.4 Computational Details 

We have implemented the methods (EOM-SF-CCSD(2) and EOM-DSF-

CCSD(2)[2,3] energies) in a developers version of the quantum chemistry package 

Q-CHEM [71]. The truncation of the effective Hamiltonian in perturbative order 

will only need modification of H  intermediates, which can easily be achieved by 

modifying an existing EOM-CC code. The Appendix II gives the expressions for 

the modified H . The effect of basis set on the EOM-CCSD(2) singlet triplet gap is 

studied for small diradicals for the basis sets cc-pVDZ, cc-pVTZ, and cc-pVQZ. 

The method is benchmarked with EOM-CCSD method for singlet triplet (ST) 

energy gaps of diradicals. Complete active space self-consistent field (CASSCF) 

and CASPT2 calculations (with no frozen core, without state averaging) for 

benchmarking are carried out with GAUSSIAN 09 [72] and full configuration 

interaction (FCI) calculations are carried out with PSI4 [73]. The potential energy 

surfaces (PES) are calculated with cc-pVDZ basis set, unless otherwise mentioned. 

In order to study the oxirane ring opening with EOM-SF-CCSD(2), we have 



204 

 

optimized the geometries along the reaction coordinate, in this case ∠COC. The 

geometries at each angle has been constrained optimized with B3LYP/cc-pVDZ. 

 

 

6.3 Results and Discussion  

The wall timings for the spin flip computations of singlet triplet gap in carbenes 

with long aliphatic chains (R C̈  H) are shown in Table 6.2 . EOM-SF-CCSD(2) is 

found to be considerably cheaper computationally than EOM-SF-CCSD. The 

timings reported are with CCMAN module with cc memory set to 25 000. Our 

method has also been implemented in the newer module, which is parallel and 

therefore, the EOM-SF-CCSD(2) method can trivially utilize this parallelization. 

In this work, we have not dealt with the parallelization in details. 

 

Table 6.2 : Wall timings (in s) for SF-CIS(D), EOM-SF-CCSD, and EOM-SF-

CCSD(2) calculations of long chain carbenes. The computations were performed with 

single core on an i7 workstation (3.50 GHz) with 32 GB RAM.  

Number of C SF-CIS(D) 
EOM-SF-

CCSD 
EOM-SF-CCSD(2) 

1 0.21 1.74 1.18 

2 1.22 6.37 3.57 

3 5.27 30.95 14.94 

4 23.31 148.06 70.58 

5 61.61 514.87 229.0 

6 158.77 1507.95 538.51 

7 355.60 7476.40 1353.97 

 

 

 
6.3.1 CH2, NH2

+, O3 
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The calculation of singlet-triplet gaps in hypovalent compounds such as methylene 

(or other substituted carbenes) and nitrenium ion is complicated due to the 

presence of both dynamic and non-dynamic correlations. The singlet states are 

multi-configurational in nature, while the triplet states are single reference and the 

inclusion of dynamic correlation is important. Thus, for estimating the energy 

difference one needs to have a balanced description of both. These compounds 

have been used as test cases for many multi-reference theories. Moreover, 

understanding the nature of ground states (singlet or triplet) of the substituted 

carbenes and nitrenium ions are important due to their implications in reactivity 

[74]. 

 

The triplet state of both the isoelectronic compounds, methylene and nitrenium 

ion, is given by the single determinant – (1a1)
2 (2a1)

2 (1b2)
2 (3a1)

1 (1b1)
1. The 

symmetry of this state is 3 B1. The 3 low-lying singlet states are 1 1A1, 1 1B1, and 2 
1 A1. Due to spin flip operations, we can describe these states as shown in Figure 

6.1 .  

 

Table 6.3 shows the ST gaps for the diradicals calculated by various methods. The 

numbers inside and outside the bracket denote the vertical and adiabatic excitation 

energies, respectively. Excellent agreement is noticed between EOM-SF-CCSD 

and EOM-SF-CCSD(2) (errors not exceeding 0.08 e↑ in adiabatic excitation 

energies and 0.05 eV in vertical excitation energies). The absence of singles 

amplitude T1 in the reference state is corrected to a large extent by the presence of 

R1 amplitude in the EOM part. Therefore, the excitation energies are 

systematically underestimated. The detailed error analysis is shown in section 

6.3.4 . 

 

The reference triplet state for ozone is 3B2, i.e., (1a1)
2 (1b2)

2 (2a1)2 (3a1)
2 (2b2)

2 

(4a1)
2 (1b1)

2 (3b2)
2 (5a1)

2 (4b2)
2 (6a1)

2 (1a2)
1 (2b1)

1, and the ground state is closed 

shell singlet 1A1. 
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Table 6.3 : ST energy gaps (in eV) in CH2 and NH2
+ calculated by various methods. The 

reference energy for the triplet state is in a.u. The values in bracket refer to the vertical 

excitation energies and outside bracket are the adiabatic excitation energies. The geometries 

are taken from EOM-SF-CCSD/cc-pVDZ optimization. 

Methylene (CH2) 

State 3B1 11A1 11B1 21A1 

EOM-SF-CCSD(2) −39.075287 0.466 (0.931) 1.487 (1.523) 2.603 (3.270) 

EOM-SF-CCSD −39.087983 0.486 (0.950) 1.497 (1.523) 2.678 (3.283) 

SF-CIS(D) −39.051184 0.227 1.229 2.553 

SF-TDDFT(50-50) a  −39.10937 −0.249 0.858 1.711 

CASSCF SOCI b  −39.064939 0.482 1.558 2.697 

FCI c  −39.066738 0.483 1.542 2.674 

Expt. d  - 0.390 1.425 - 

Nitrenium ion ( NH2
+ ) 

State 3B1 11A1 11B1 21A1 

EOM-SF-CCSD(2) −55.385950 1.273 (1.785) 1.891 (1.909) 3.313 (3.504) 

EOM-SF-CCSD −55.398751 1.307 (1.823) 1.932 (1.943) 3.399 (3.568) 

SF-CIS(D) −55.371817 1.337 1.947 3.620 

SF-TDDFT(50-50) a  −55.405373 0.255 1.016 2.045 

CASSCF SOCI e  −55.388368 1.281 1.935 3.380 

Expt. f  - 1.306 - - 

a : Reference 75.  b : Reference 76 , TZ2P basis set.  c : Reference 77, TZ2P basis set. 

d : Reference 78  e : Reference 79  f : Reference 80 

 

http://scitation.aip.org/content/aip/journal/jcp/139/12/10.1063/1.4821936#t3n1
http://scitation.aip.org/content/aip/journal/jcp/139/12/10.1063/1.4821936#t3n2
http://scitation.aip.org/content/aip/journal/jcp/139/12/10.1063/1.4821936#t3n3
http://scitation.aip.org/content/aip/journal/jcp/139/12/10.1063/1.4821936#t3n4
http://scitation.aip.org/content/aip/journal/jcp/139/12/10.1063/1.4821936#t3n1
http://scitation.aip.org/content/aip/journal/jcp/139/12/10.1063/1.4821936#t3n5
http://scitation.aip.org/content/aip/journal/jcp/139/12/10.1063/1.4821936#t3n6
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The 1 1A1 state of ozone has stronger diradical character than methylene and 

nitrenium ion. EOM-SF-CCSD(2) vertical excitation energies are shown in Table 

6.4 . EOM-SF-CCSD(2) is in excellent agreement with EOM-SF-CCSD, and 

reasonable agreement with Fock space multi-reference coupled cluster (FS-

MRCC) and large active space CASPT2 methods. 

 

 

Table 6.4 : Vertical excitation energies (in eV) with respect to the ground state of 

ozone. The energy of ground state is given in a.u. 

State 1A1 3B2 1A2 1B1 

EOM-SF-CCSD(2) −225.124407 1.457 2.001 1.952 

EOM-SF-CCSD −225.145111 1.579 2.036 1.990 

SF-CIS(D) −225.113399 1.206 2.139 2.123 

CASPT2(4,3) a - 1.61 4.33 4.51 

CASPT2(6,3) a - 1.66 2.27 2.51 

CASPT2(9,3) a - 1.72 2.26 2.37 

FS-MRCC b - 1.82 2.54 2.45 

Expt. c - 1.43 1.92 2.10 

a : Reference 81       b : Reference 82, aug-cc-pVTZ. c : Reference 83 

 

. 

Basis set has a prominent effect on the excitation energy calculated in EOM-SF-

CC methods energy. Table 6.5 shows the effect of basis set on the excitation 

energies of methylene, nitrenium ion, and ozone. We notice that the excitation 

energies for all the states decrease with increasing basis set. The change is small 

from cc-pVTZ to cc-pVQZ and the results seems to approach complete basis set 

limit.  
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Table 6.5 : Effect of basis set on the excitation energies calculated with EOM-SF-

CCSD(2). 

Methylene (CH2) 

State 3B1 11A1 11B1 21A1 

cc-pVDZ −39.027275 0.498 1.719 2.839 

cc-pVTZ −39.075287 0.466 1.487 2.603 

cc-pVQZ −39.098732 0.440 1.442 2.542 

Expt. a - 0.390 1.425 - 

Nitrenium ion ( NH2
+ ) 

State 3B1 11A1 11B1 21A1 

cc-pVDZ −55.329713 1.305 2.029 3.433 

cc-pVTZ −55.385950 1.272 1.891 3.314 

cc-pVQZ −55.414647 1.250 1.848 3.276 

Expt. b - 1.306 - - 

Ozone 

State 1A1 
3B2 

1A2 
1B1 

cc-pVDZ −224.880223 1.481 2.034 1.960 

cc-pVTZ −225.124407 1.457 2.001 1.952 

cc-pVQZ −225.244718 1.443 1.991 1.949 

Expt. c - 1.43 1.92 2.10 

a : Reference 78.  b: Reference 80. c : Reference 83 

 

6.3.2  Potential energy curves 

6.3.2.1 Bond breaking with EOM-SF-CCSD(2) 

6.3.2.1.1  F2 

 

Potential energy curve for the bond breaking in F2 molecule is a complicated and 

interesting test case. From the molecular orbital (MO) picture of F2, it is clear that 
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as we elongate the F–F bond, the configurations that need to be considered deal 

with the σ and σ* orbitals. Therefore, we start the SF calculations from a 3Σ 

reference state. Figure 6.2 shows the potential energy curves calculated with 

EOM-SF-CCSD(2) compared to EOM-SF-CCSD, SF-CIS(D), and CASPT2. 

Single reference calculations with UCCSD(T) and UMP2 are known to fail at 

large bond lengths due to absence of non-dynamic correlation.[51] EOM-SF-

CCSD(2) shows excellent agreement with EOM-SF-CCSD. 

 

 

Figure 6.2: Dissociation curves for F2 molecule calculated using CASPT2, EOM-SF-
CCSD, SF-CIS(D), and EOM-SF-CCSD(2). The energies are given in kcal/mol. 

 

 

The dissociation energies calculated by EOM-SF-CCSD(2) is 1.25 eV as 

compared to 1.24 eV with EOM-SF-CCSD and 1.12 eV with SF-CIS(D). The 

position of the minima in the dissociation curve is accurately reproduced by EOM-
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SF-CCSD(2) when compared to EOM-SF-CCSD. However, none of the 

dissociation energies are comparable to the experimental dissociation energies 

(1.5–1.6 eV) due to inadequate size of basis set. 

 

6.3.2.1.2  Cyclobutadiene rectangular to square geometry. 

The anti-aromatic cyclobutadiene ring is formed by two double bonds and two 

single bonds in a strained rectangular geometry (D2h ). It can automerize between 

the two different rectangular geometries (geometry 1 with C1-C2 and C3-C4 as 

double bonds vs geometry 2 with C1-C3 and C2-C4 as double bonds), through a 

square transition state (D4h
 ). The ground state in the D2h geometry is a closed shell 

singlet Ag state which becomes B1g in the square geometry. This transition state is 

open shell in nature and therefore, multi-reference calculations are required for the 

correct estimation of the barrier for the transition (automerization). The multi-

reference character can be understood from the two equivalent double bonds on 

opposite ends of the square butadiene. Thus, theoretical description of this 

automerization is challenging. Single reference methods have been known to 

severely overestimate the barrier heights.  

 

In order to calculate the transition energy for the automerization as well as various 

low-lying excited states, we start with the optimized geometries in the square and 

rectangular geometries calculated using CCSD(T)/cc-pVTZ level of theory. The 

geometrical parameters are listed in Table 6.6. To create intermediate structural 

parameters, we interpolate between the rectangular and square geometrical 

parameters with a scaling parameter λ, such that,  

 

       01
i

R i R i R i                                                                                    (6.17) 

where R(i) is the value of the ith parameter interpolated from R0(i) in the 

rectangular geometry to R1(i) in the square geometry, i goes over all the 

parameters (bond lengths, angles, etc.).  



211 

 

 

 

Table 6.6 : Geometrical parameters of cyclobutadiene in its rectangular and square 

geometries. The bond lengths are given in Å, and bond angles in degrees. The value in 

the bracket for the ∠HCC is the complementary angle. 

Bonds C–C C=C C–H ∠HCC 

Rectangular 1.566 1.343 1.074 134.91 (135.09) 

Square 1.439 1.439 1.073 135.0 

 

Figure 6.3 shows the PESs of 1 1A g , 2 1A g , 
1B1g , and 3B1g states calculated with 

EOM-SF-CCSD, EOM-SF-CCSD(2), and SF-CIS(D) using cc-pVDZ basis set. It 

should be noted that as one goes from rectangular to square geometry (i.e., D2h to 

D4h symmetry), the term symbols for the states change. The term symbols of the 

states change as 1 1Ag ĺ 1B1g , 2 1Ag ĺ 1 1A1g , 
1 B1g ĺ 1B2g , and 3B1g ĺ 3A2g , 

when the cyclobutadiene changes from D2h rectangular geometry to D4h square 

geometry. We notice good agreement between all the methods especially in the 

two lowest states. 

Table 6.7 : Energy barriers (in kcal/mol) for automerization reaction of cyclobutadiene 

obtained with different methods. We have denoted EOM-SF-CCSD by SF-CCSD and 

EOM-SF-CCSD(2) by SF-CCSD(2) for brevity. 

CCSD 
MR-

CISD+Q 
MR-

AQCC 
MR-

CCSD 

MR-
BW-

CCSD 
SF-CCSD SF-CCSD(2) 

19.8–20.4 a  7.6 b  7.7 b  6.5 c  6.4 d  6.33 a  7.36 

a : References 84 and 85.              b : Reference 86.              c : Reference 84.  

d : Reference .85 
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Table 6.7 compares energy barriers for the automerization reaction of 

cyclobutadiene computed with EOM-SF-CCSD(2) and selected methods. We 

notice that the EOM-SF-CCSD(2) method reproduces the activation energy barrier 

comparable to multi-reference configuration interaction (MRCI) and multi-

reference averaged quadratic coupled cluster (MRAQCC) methods and slightly 

over-estimates it with respect to the MRCC as well as EOM-SF-CCSD methods. 

 

 

Figure 6.3 : The low-lying excited states (singlet and triplet) of cyclobutadiene along 
the reaction coordinate for automerization reaction. The figure shows the excitation 
energies calculated with EOM-SF-CCSD (bold lines), EOM-SF-CCSD(2) (dotted 
lines), and SF-CIS(dashed lines). 
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Table 6.8 compares the vertical excitation energies of the excited states at the 

rectangular and square geometries calculated with EOM-SF-CCSD and EOM-SF-

CCSD(2). We notice reasonable agreement between the two methods with error 

<0.3 eV. The difficulty in comparing these results with experimental barrier 

heights is the extreme sensitivity of the barrier heights to the geometry of the 

molecule as well as size of basis set. 

Table 6.8 : Vertical excitation energies (in eV) of 3B1g , 2 1Ag , and 1B1g states of 

cyclobutadiene in the rectangular D2h geometry and 3A2g , 
1B2g , and 1Ag states in the 

square D4h geometry. 

 Rectangular D2h  Square D4h  

Method 3B1g  
1 B1g  2 1Ag  

3A2g  
1B2g  

1Ag  

EOM-SF-CCSD(2)/cc-pVDZ 1.533 3.381 4.281 0.240 2.080 1.690 

EOM-SF-CCSD/cc-pVDZ 1.678 3.586 4.416 0.404 2.317 1.904 

EOM-SF-CCSD/cc-pVTZ   1.659 3.420 4.369 0.369 2.143 1.824 

EOM-CCSD/cc-pVTZ  1.351 3.319 … −0.590 1.534 … 

EOM-SF-CCSD(fT)/cc-pVTZ  1.515 3.256 4.200 −0.590 1.534 … 

EOM-SF-CCSD(dT)/cc-pVTZ   1.468 3.205 4.170 −0.590 1.534 … 

SCF-CI/[5s5p/5s]  1.622 5.984 4.767 0.590 4.914 2.754 

 

 6.3.2.1.3  Oxirane ring opening 

Stereo-specific ring opening of oxirane is another complicated test case due to the 

change in nature of the low lying excited states, when the ∠COC changes around 

120°. Cordova et al. give a good description of the various singlet and triplet states 

that can explain the spectra of this molecule as well as the challenges they offer to 
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the various theoretical approaches [88]. They use CASSCF and diffusion Monte 

Carlo (DMC) to adequately account for both dynamic and non-dynamic 

correlation. Parkhill et. al. show the failure of UCCSD(T) to describe the ground 

state of oxirane as its ring opening occurs [89]. 

 

 

Figure 6.4 : Optimized geometries of oxirane along ring opening, at angles 60°, 120°, 
and 165° of the COC angle. (a) 60° (RCO = 1.447 Å). (b) 120° (RCO = 1.382 Å). (c) 
165° (RCO = 1.290 Å). 

The optimized structures along the ring opening coordinate is given in Fig. 6.4 

(see Sec. 6.2.4 for details). Figure 6.5 compares the ground and low lying excited 

states of EOM-SF-CCSD and EOM-SF-CCSD(2) with change in ∠COC, as well 

as EOM-CCSD(T) method for the 2 1A1 and 3A1 states. We have plotted only the 

singlet and triplet A1 and B2 states (1 1A1, 2 1A1, 1 1B2, 
3B2, and 3A1) for clarity. 

EOM-SF-CCSD(2) gives excellent results when compared with EOM-SF-CCSD 

for all the states.  

 

One notices that the EOM-SF-CCSD(2) excitation energies are systematically 

underestimated (≈0.2 e↑) with respect to EOM-SF-CCSD and the reason for this 

is analyzed in Sec. 6.3.4 . One distinguishing feature of the curves is the 3 B 2 and 
1 A 1 state crossing at 120°. This feature is seen in both EOM-SF-CCSD and 

EOM-SF-CCSD(2) methods.  

 

The corresponding states for oxirane calculated with CASSCF and DMC are 
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presented in Ref [88]. The 2 1A1 state is an open shell singlet (( a1)
1( a1)

1 or  ( b2)
1( 

b2)
1) and, therefore, needs a balanced description of both dynamic and non-

dynamic correlation. The nature of 2 1A1 state changes as we go along the ring 

opening co-ordinate (single Rydberg excitation below 100° and dominated by two 

electron excitations between 100° and 150°). Therefore, the most problematic part 

is getting the correct 2 1A1 state energies between 105 and 150, which in turn 

shows up as the singlet triplet gap between this singlet and the 3A1 state. 

 

 

 

Figure 6.5 : The low-lying excited states (singlet and triplet) of oxirane along the COC 
angle (ring opening). The figure shows the excitation energies calculated with EOM-
SF-CCSD (solid line) and EOM-SF-CCSD(2) (dotted line) and EOM-CCSD(T) 
(dashed line). 

 

Since traditional EOM-CCSD(T) starts with a single reference singlet state, the 

target state obtained through subsequent EOM operators does not sufficiently 

capture the non-dynamic correlation. Thus, EOM-CCSD(T) fails qualitatively to 
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capture the shape of the 2 1A1 state between 105° and 150°. On the other hand, 

methods such as CASSCF which include the non-dynamic correlation but not the 

dynamic correlation, capture the shape of the curve qualitatively but fail to achieve 

quantitative accuracy and therefore, the singlet triplet gap (≈ 1 e↑). [88] However, 

EOM-SF-CCSD, EOM-SF-CCSD(2), as well as DMC, which consider both 

dynamic and non-dynamic correlation in a balanced way, calculate the singlet 

triplet gap as 2.34 eV, 2.28 eV, and 1.92 eV, respectively [88]. 

 

6.3.2.2 Double bond breaking with EOM-DSF-CCSD(2)[2,3] 

6.3.2.2.1  H2O 

  

 

 

Figure 6.6 : Simultaneous OH bond stretching curves for H2O molecule calculated 
using FCI, CASPT2, EOM-DSF-CCSD[2,3], DSF-CISDT, and EOM-DSF-
CCSD(2)[2,3]. The energies are given in kcal/mol. 
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Simultaneous OH bond stretching potential energy curves for water dissociation 

have been used as a benchmark for DSF methods. We test our EOM-DSF-

CCSD(2)[2,3] against existing EOM-DSF-CCSD[2,3] as well as DSF-CISDT, 

CASPT2, and FCI methods. We start from a quintet reference and use double spin 

flip operators to target the open shell singlet states along the bond breaking 

coordinate. The quintet reference is formed by singly populating the σ, σ*, and 2 

lone pair on O atom.  

 

Figure 6.6 shows the dissociation curves for the various methods and we clearly 

see the excellent agreement of EOM-DSF-CCSD(2)[2,3] with EOM-DSF-

CCSD[2,3], CASPT2, and FCI methods. The DSF-CISDT is shifted vertically, i.e., 

in the absolute energy values. The nature of agreement can be better understood 

from the non-parallelity errors (NPE) in the attractive part of the curve which is 

0.0137 a.u. for EOM-DSF-CCSD[2,3] and 0.0204 a.u. for EOM-DSF-

CCSD(2)[2,3] with respect to FCI. 

 

 

6.3.3 Geometrical Derivatives 

Table 6.9 presents the geometry and IR frequencies of Ozone in aug-cc-pVTZ 

basis set. The ground state of ozone contains significant multi-reference character, 

and acts as a challenging test case for the EOM-CCSD(2) method. The SF-

CCSD(2) method gives a bond length of 1.258 Å and bond angle of 116.4º in aug-

cc-pVTZ basis set. Both of them are in reasonable agreement with experimental 

value and the agreement is better than the single-reference CCSD method. The 

improved agreement is also seen for the IR frequencies also. It also gratifying to 

note that SF-CCSD(2) method gives almost identical performance to that of the 

SF-CCSD(2) method for both geometry and IR frequency. 

 

So, it can be seen that the SF-CCSD(2) method not only works well for the 
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potential energy surfaces, it also successful in simulating its geometrical 

derivatives. Detailed benchmarking is necessary to reach into any firm 

conclusions. However, it is outside the scope of this chapter. 

 

Table 6.9 : Geometry and Harmonic Vibrational Frequency of Ozone (O3)  in aug-cc-

pVTZ basis set 

Method Bond 
length(Å) 

Bond 
Angle(θ) 

ω1 ω2 ω3 

SF-CCSD(2) 1.258 116.4 744 1188 1208 

SF-CCSD 1.261 116.7 741 1185 1240 

CCSD 1.244 117.8 767 1270 1285 

Experiment 

[90,91] 

1.278 116.8 705 1042 1142 

 

6.3.4  Error analysis 

 

We notice that the EOM-SF-CCSD(2) method systematically underestimates the 

energy difference between reference and target states, with respect to EOM-SF-

CCSD, as reflected by the excitation energies in Tables 6.3 and 6.4. In the 

dissociation curves (for F2 and H2O), we further notice that the EOM-SF-CCSD(2) 

curve is almost parallel and shifted higher in energy than the EOM-SF-CCSD 

curve. In order to explain these observations as well as understand the limitations 

of our method, we have plotted the errors in the reference energy (CCSD(2)-

CCSD) versus the orbital energy spacing (see Fig. 6.7(a) ). As expected, when the 

frontier orbitals are degenerate or quasi-degenerate the errors in the reference 

energies (triplet state) are higher, since the (εi − εa ) in the denominators of the 

perturbed amplitudes are small.  

 

We further notice there is a linear relationship between the error in the reference 

state (Eref) and the error in the target state (Etarget). Figures 6.7(b) and 6.7(c) show 
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that there is significant error cancellation between the target and reference states. 

The difference between Etarget(EOM-SF-CCSD) and Etarget(EOM-SF-CCSD(2)) is smaller than 

that in Eref(CCSD) and Eref(CCSD(2)), since the EOM operators ( R1 and R2) corrects for 

the errors in T1 and T2 amplitudes in the EOM-SF-CCSD(2) method. Thus, the 

magnitude of the excitation energies (Etarget − Eref) calculated by EOM-SF-

CCSD(2) is lower than that calculated by EOM-SF-CCSD (if target state is higher 

in energy than reference state; see Fig. 6.7(c) ). This unbalanced error cancellation 

is responsible for the persistent trend of the underestimated excitation energy 

values calculated by EOM-SF-CCSD(2) method.  

 

Figure 6.7:(a) The correlation between the energy differences (singly occupied MO – 
highest doubly occupied MO) and the error in the reference state. The errors refer to 
difference between EOM-SF-CCSD(2) and EOM-SF-CCSD energies for the F2 
dissociation curve. (b) The correlation between the errors in target state energies and 
reference state energies is shown for the F2 dissociation curve. (c) The error 
cancellation in the difference of energies between reference and target states is shown. 
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6.4 CONCLUSION 

Spin flip variant of EOM-CC has been found to be a versatile tool for modeling 

open shell singlet states in diradicals as well as bond breaking problems. This 

work presents a cheaper EOM-SF-CCSD(2) approach, which uses perturbative 

approximations to truncate the effective Hamiltonian. We have shown the 

improved timing data for our method with respect to the full EOM-SF-CCSD, as 

well as good agreement in the ST gaps in small molecules. Several complicated 

bond breaking examples were also studied to prove the accuracy of EOM-SF-

CCSD(2). The method is successful even for calculating first and second 

geometrical derivatives of the potential energy surface. 

The reference state as well as each of the target state energies calculated with 

EOM-SF-CCSD(2) method, are individually overestimated with respect to EOM-

SF-CCSD energies. This is because perturbation captures less correlation than CC 

method (overestimation of reference state) and the subsequent EOM-SF operators 

does not completely correct for this effect (target state). This partial correction of 

target state energy by the EOM-SF operator leads to partial error cancellation in 

the excitation energy. This unbalanced error cancellation systematically 

underestimates the excitation energies (energy differences). However, as detailed 

error analysis shows, this underestimation occurs as long as the reference state is 

below the target state.  

This approach can be used for large molecules with significant non-dynamic 

correlations and work is underway towards that direction.  
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Chapter 7 

 How good is the EOMIP-CCSD(2) approximation for 

calculation of ionization potential? 

 

“Between the conception and the creation 

                                               Between the emotion and the response 

                                                                      Falls the Shadow” 

                                                                 

                                                                            T. S. Eliot 

                                                                                   The Hollow Men 

 

In this chapter, we present a benchmark investigation on the performance of EOMIP-

CCSD(2) method for calculation of ionization potential. The calculated ionization 

potential (IP) values are found to be significantly overestimated compared to that 

obtained in the standard EOMIP-CCSD method. However, the EOMIP-CCSD(2) method 

correctly reproduces the basis set convergence behavior of standard EOMIP-CCSD 

method, and a small basis set EOMIP-CCSD calculation, extrapolated with large basis set 

EOMIP-CCSD(2) results can correct the errors of the original EOMIP-CCSD(2) 

approximation to a large extend. However, the method gives inferior performance for the 

cases where relaxation effect plays an important role. 
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7.1 Introduction: 

Ionization energies are one the intrinsic properties of atoms and molecules, which has 

continued to fascinate generations of experimentalists and theoreticians. The accurate 

determinations of ionization energies are of extreme importance in biology and 

chemistry
1
. In spite of the tremendous advancement of spectroscopic techniques in recent 

times, experimental determination of ionization energies are often troublesome. 

Therefore, theoretical calculations are generally utilized as the supportive, some time the 

sole, mean of understanding of electron detachment induced phenomenon.  

 

The various available theoretical methods for calculations of ionization potential (IP) are 

broadly classified into two categories. The first one is the so-called Δ techniques, where 

two separate calculations are required for the ion and the neutral species and the IP is 

obtained as the difference of energies obtained in two separate calculations
2
. The second 

strategy consists of the so-called ‘direct difference of energy’ scheme, which describes 

ionization as a transition process between the neutral molecule and the ion. The coupled 

cluster linear response theory
3, 4

, quasi-degenerate perturbation theories
5, 6

, and Green 

function based method
7, 8

 fall into this second category and can be unified under the 

general framework of equation of motion (EOM) approach. The direct difference of 

energy has significant advantage over the Δ technique. Firstly, the direct difference of 

energy approach generates the IP in a single calculation, not as the difference of two big 

numbers as in Δ technique. Secondly, it gives information about the transition process and 

transition probability, which allows the simulation of experimental spectroscopic 

signatures.  

 

 Among the various EOM approaches available, equation of motion coupled cluster 

(EOM-CC) method
4, 9, 10

 provides the most systematic way of balanced inclusion of 

dynamic and non-dynamic correlations. The EOM-CC approach for the ionization 



230 

 

problem (EOMIP-CC) is generally used in singles and doubles approximation (EOMIP-

CCSD)
9
 and provides a easy way to (0,1) sector of Fock space

11
 without going into the 

conceptual difficulties of the corresponding multi-reference coupled cluster theory 

(FSMRCC). The EOMIP-CCSD method scales as N
6
 power of the basis set and has 

similar storage requirement as that of the single-reference coupled cluster method, which 

prohibit its use beyond systems containing ten atoms in a reasonable basis set.  

 

The coupled cluster theory has an intrigue relationship with many body perturbation 

theory
12

. So, the most obvious way of approximating the coupled cluster theory would be 

based on perturbation orders. Nooijen and Sniders
13

 were the first, to propose an 

MBPT(2) amplitudes in place of coupled cluster ansatz in the context of IP calculations. 

Stanton and Gauss
14

 latter generalized this idea to define a hierarchy of approximation to 

standard EOM-CCSD method called EOM-CCSD(n), where the reference state energy is 

complete up to n
th

 order in perturbation. The method is size-extensive for each values of n 

and the lowest order of approximation to it leads to EOM-CCSD(2) method with 

MBPT(2) ground state. Similar ideas were persuaded by Bartlett and co-workers in the 

context of excitation energy
15

, and Dutta et. al. for  electron affinity
16

 and spin-flip 

variants
17

 of EOM-CC. 

 

For ionization problem, the EOM-CCSD(2) approximation offers significant cost cutting 

in computational requirements. The EOMIP-CCSD(2) method is  N
5
 scaling and does not 

involve (ab|cd) integral, leading to drastic decrease in storage requirements. Therefore, it 

can be applied to very large molecules. Pal and coworkers
18

 have recently shown that the 

EOMIP-CCSD(2) method can be used to predict geometry and IR frequency of doublet 

radicals with accuracy comparable to that of standard EOMIP-CCSD method. However, 

no such benchmark studies are available for IP itself. An initial study
19

 has shown that the 

EOMIP-CCSD(2) tends to overestimates the IP values a little bit, as compared to the 

EOMIP-CCSD method. However, the low computational cost of the method makes it too 

attractive to be discarded on the above ground, especially if the errors happen to be 
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systematic and within a reasonable limit. Therefore, a systematic study to investigate the 

source and estimate the magnitude of the error is absolutely necessary for proceeding 

with the further application of this method. The aim of this chapter is perform a 

benchmark study IP in EOMIP-CCSD(2) method against the standard EOMIP-CCSD 

method and other approximate variants of it, and to rationalize the source of error in the 

former. 

 

The chapter is organized as follows. Section 7.2 gives a brief discussion on the theory of 

the EOMIP-CCSD(2) method and computational details of the calculations. The trends in 

the numerical results and sources of errors are discussed in section 7.3. Section 7.4 gives 

the concluding remarks. 

 

7.2 Theory and Computational Details 

7.2.1 EOM-IP-CCSD(2)  

In the EOM frame work the k
th

 excited state is generated from a reference state by action 

of a linear operator ˆ
k

R   

0
ˆ

k k
R                                                                                                                                          (7.1) 

The explicit form of  ˆ
k

R  depends upon the nature of the excited state. For ionized state, 

†

,

ˆ ˆˆˆ( ) ( ) .........IP a

k i ij

i i j a

R R k i R k a ji


                                                                               (7.2) 

This is general EOM framework. The coupled cluster enters  into the picture with the fact 

that in EOM-CC the correlated wave function is generated from a single Slater 

determinant reference state by the action of an exponential operator as following 

0 0

T
e 

                                                                                                       (7.3)        
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0  is generally, but not necessarily, the Hartree-Fock determinant and 

T=T1+T2+T3+…… Tn , where 

 †
1̂

a

i a i

ia

T t a a ,  

  † †
2

1ˆ
4

ab

ij a b j i

ijab

T t a a a a   ,                                                                                                                                                (7.4) 

 † † †
3

1ˆ
6

abc

ijk a b c k j i

ijkabc

T t a a a a a a 
 

These amplitudes are generally obtained by the iterative solution of a system of coupled 

nonlinear equations.  

In the EOMCC framework, the final states are obtained by diagonalizing the similarity 

transformed Hamiltonian within (N-1) electron space. 

 T T T

c
H e He He

                                                                                                         (7.5) 

The resulting method is equivalent to the (0,1) sector of the Fock space multi reference 

coupled cluster (FSMRCC)  method for the principal  ionization.  

The energy in EOMIP-CC can be written in the illustrative functional form. 

0 0 0 0

T T
E LHR Le He R                                                                                  (7.6) 

The EOMIP-CC method is generally used in singles and doubles approximation 

(EOMIP-CCSD). It has the N
6
 scaling and similar storage requirements as that of the 

single reference CCSD method, which makes it unsuitable for large applications. Now, 

the coupled cluster method has an intrigue relationship with many body perturbation 

theory (MBPT). Various orders of MBPT can be recovered from the suitable lower order 

iteration of coupled cluster equations
12

. For example, the lowest order approximation to 

CCSD leads to the MBPT(2) method. Therefore, the natural choice of truncating the 
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CCSD similarity transformed Hamiltonian should be based on perturbational orders. Two 

slightly different perturbative approaches have been reported in the literature
13, 14

. 

Nooijen and Snijders
13

 first proposed a truncation of the CCSD effective Hamiltonian 

based on the perturbative scheme. Stanton and Gauss [14] latter generalized it within the 

EOM framework. They have expanded the effective Hamiltonian in a perturbation series 

         1 2 3
..........

nT

c
H He H H H H                                                                             (7.7) 

The bracketed superscript in the above equation represents the order in perturbation and 

subscript c represents the connectedness of T with H. Equation (7.7) leads to a set of 

hierarchical approximation to the full H and the diagonal representation of the modified 

effective Hamiltonian offers a set of hierarchical approximation to the corresponding 

EOM-CC final states, known as EOMCCSD(n). The similarity transformed Hamiltonian 

truncated at n
th

 order, contains terms only up to n
th

 order in perturbation, which ensures 

the size extensivity of the method for all values of n. At large value of n, the  n
H

converges to the full H  and consequently EOM-CCSD(n) converges to the standard 

EOM-CCSD method. Truncation at n=2, leads to EOM-CCSD(2), with a MBPT(1) 

ground state reference wave function and MBPT(2) ground state energy.  

In case of second order truncated effective Hamiltonian (H 
[2]

), the CC amplitudes can be 

approximated by the MBPT(2) amplitudes 

 
 

e

e

T

c

T

c

H H

H





                                                                                                                     (7.8) 

Where the second order perturbative approximation to the T amplitudes can be written as 
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T1 is zero for restricted closed shell and unrestricted MBPT(2) reference. Using these T′ 

amplitudes one can generate a modified similarity transformed Hamiltonian H  , which 

can be used as the reference for subsequent EOMIP calculations. Thus, this is necessarily 

an EOM calculation on a MBPT(2)reference state. This approach is slightly different 

from that originally proposed by Nooijen and Snijders [13]. Reference [14] should be 

consulted for an elaborate discussion on the differences of these two approaches.  

In this approach the reference state energy reduces to the MBPT(2) ground state energy, 

with the accompanied reduction in the computational scaling from iterative N
6
 to non-

iterative N
5
 for the reference state. There are still some terms of H  that scale as N

6
, 

however, scaling of those steps can be reduced to iterative N
5
 by calculating them on the 

fly. Moreover, the truncation at MBPT(2) ensures the absence of 4 particle intermediates, 

which anyways remain absent from the EOM part in IP calculations. Therefore, the 

EOMIP-CCSD(2) gives significant saving in terms of scaling, as well as storage 

requirement.  

The IP-CISD approach of Krylov and co-workers
20

 provides another N
5
 scaling  

approximation to standard EOMIP-CCSD method, where uncorrelated HF wave-function 

is used as a reference.  

Table 7.1 : Hierarchy of EOMIP-CCSD methods. 

Reference Method Wave-function 

SCF EOMIP-CISD  1 2 0R R   

CCSD(2) EOMIP-CCSD(2)  1 2 2 0exp( )R R T    

CCSD(2) P-EOMIP-CCSD(2)  1 2 2 0exp( )R R T  
 

CCSD EOMIP-CCSD  1 2 1 2 0exp( )R R T T     

 



235 

 

Another related development is the generalization of Partition EOM-MBPT(2) 

approach
15, 16

 to the ionization problem. It essentially means that the doubles-doubles 

block of EOM matrix is approximated as its diagonal terms. The exact programmable 

expressions are provided in Appendix III. It is observed that partitioned version of EOM-

CCSD(2) method provides improvement in results compared to the standard EOM-

CCSD(2) for both EA
16

 and EE
15

. Therefore, it would be interesting to extend the idea to 

IP problem. Here, it should be noted that partitioning approach does not provide any 

significant decrease in storage requirement in EOMIP-CCSD(2) method, unlike in the 

case of electron affinity problem, where it reduces the storage requirements drastically
16

. 

Table 7.1 compares the various approximations to EOMIP-CCSD method. 

 

7.2.2 Computational Details 

The reliability of the EOMIP-CCSD(2) method has been benchmarked by calculating the 

vertical ionization potential of few small molecules in a hierarchy of  Dunning’s 

correlation consistent cc-pVXZ (X= D, T, Q) basis sets [21]. The values are compared 

with the standard EOMIP-CCSD method. To improve the EOMIP-CCSD(2) ionization 

potential values, the following extrapolation scheme  has been defined [22]. 

IP Extrapolated EOMIP-CCSD(2)  = IPsmall basis + (IP big basis EOMIP-CCSD(2)  - IP small basis   EOMIP-CCSD(2)  ) 

 

Where IPsmall basis = IPsmall basis EOMIP-CCSD ,    when IPsmall basis EOMIP-CCSD < IPsmall basis EOMIP-

CCSD(2) 

Otherwise, IPsmall basis = IPsmall basis EOMIP-CCSD(2) 

All the EOMIP-CCSD and EOMIP-CCSD(2) calculations are performed using CFOUR 

[23]. EOMIP-CISD and P-EOMIP-CCSD(2) calculations are performed by our in-house 

coupled cluster codes. All the T1 diagnosis calculations are performed using Gaussian09 

[24].  
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7.3 Results and Discussion  

 

7.3.1 Valence Ionization Spectra 

The performance of the EOMIP-CCSD(2) method for valence ionization energies is 

benchmarked for small molecules like N2, H2O, H2CO, C2H4, and CO in a hierarchy of 

Dunning’s correlation consistent cc-pVXZ (X = D, T, Q) basis set [21] (Tables 7.2–7.6). 

For the sake of comparison, we also quote the corresponding P-EOMIP-CCSD and 

EOMIP-CISD results. 

 

The Table 7.2 presents the valence ionization energies of first five states of N2. The 

EOMIP-CISD method fails to reproduce the corresponding EOMIP-CCSD results, even 

qualitatively. The lack of correlation effect in the reference state can be held responsible 

for these drastic failures. The EOMIP-CCSD(2) method gives qualitatively correct 

values, but the IP values are slightly overestimated compared to the corresponding 

EOMIP-CCSD method. The P-EOMIP-CCSD(2) also overestimates the IP values except 

the 2σg state, where the IP is underestimated in P-EOMIP-CCSD(2) method and the 

resulting errors for all the states are more than that in  EOMIP-CCSD(2) method. It 

should be noted that the ionization from the 2σg state involves significant double 

excitation character, which cannot be properly taken care by the truncated doubles-

doubles block of the P-EOMIP-CCSD(2) method. On increasing the basis set from cc-

pVDZ to cc-pVTZ, the IP values in all the methods increase, except the double excitation 

dominated 2σg state in P-EOMIP-CCSD(2) method, where the value is slightly decreased. 

Although, the EOMIP-CCSD(2) method continue to overestimate compared to the 

EOMIP-CCSD method, the extrapolated EOMIP-CCSD(2) method gives very good 

agreement. The IP values further increase from cc-pVTZ to cc-pVQZ, although, the 

deviation is much smaller compared to that from cc-pVDZ to cc-pVTZ, and the trend 

remains the same. 
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Table 7.2 : Ionization Energies of N2 (in eV) 

state EOMIP-

CCSD 

EOMIP-

CISD 

EOMIP-

CCSD(2) 

P-EOMIP-

CCSD(2) 

Extrapolated 

EOMIP-

CCSD(2) 

cc-pVDZ Basis Set 

3σg 15.19 13.27 15.39 15.48 - 

1πu 16.96 14.61 17.14 17.18 - 

1πu 16.96 14.61 17.14 17.18 - 

2σu 18.45 16.38 18.56 18.84 - 

2σg 38.61 28.68 38.78 35.93 - 

cc-pVTZ Basis Set 

3σg 15.59 13.26 15.85 15.85 15.65 

1πu 17.22 14.49 17.48 17.46 17.30 

1πu 17.22 14.49 17.48 17.46 17.30 

2σu 18.81 16.35 18.98 19.15 18.87 

2σg 38.65 28.60 38.90 35.86 38.73 

cc-pVQZ Basis Set 

3σg 15.72 13.25 16.02 15.99 15.82 

1πu 17.34 14.47 17.64 17.59 17.46 

1πu 17.34 14.47 17.64 17.59 17.46 

2σu 18.93 16.34 19.15 19.27 19.04 

2σg 38.74 28.57 39.04 35.93 38.87 

 

 

Table 7.3 presents the vertical ionization energies corresponding to the valence orbitals of 

water.  
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Table 7.3 : Ionization Energies of H2O (in eV) 

state EOMIP-

CCSD 

EOMIP-

CISD 

EOMIP-

CCSD(2) 

P-EOMIP-

CCSD(2) 

Extrapolated 

EOMIP-

CCSD(2) 

cc-pVDZ Basis Set 

1b2 11.80 9.76 11.74 11.60 - 

3a1 14.11 12.06 14.04 13.91 - 

1b1 18.47 16.43 18.37 18.27 - 

2a1 32.17 31.68 32.07 33.31 - 

cc-pVTZ Basis Set 

1b2 12.40 9.88 12.43 12.17 12.43 

3a1 14.63 12.12 14.63 14.39 14.63 

1b1 18.83 16.40 18.81 18.62 18.81 

2a1 32.61 29.78 32.57 33.28 32.57 

cc-pVQZ Basis Set 

1b2 12.62 9.92 12.69 12.36 12.69 

3a1 14.82 12.16 14.87 14.57 14.87 

1b1 19.00 16.42 19.01 18.77 19.01 

2a1 32.81 29.83 32.81 33.31 32.81 

 

 

It can be seen that in cc-pVDZ basis set,  the EOMIP-CCSD(2) method gives very good 

agreement with the standard EOMIP-CCSD method. On the other hand, the EOMIP-

CISD method leads to results, which are not even qualitatively correct. The P-EOMIP-

CCSD(2) method significantly underestimates the IP values compared to standard 



239 

 

EOMIP-CCSD method, except the 2a1 state, where it is significantly overestimated. The 

trend in P-EOMIP-CCSD(2) results are just opposite to that in N2, where it is significantly 

overestimated compared to the EOMIP-CCSD method. On increasing the basis set, from 

cc-pVDZ to cc-pVTZ the ionization potential in all the coupled cluster methods 

increases, except the  2a1 state in P-EOMIP-CCSD(2) method, where the value remains 

almost unchanged. The 2a1 state contains significant double excitation character, which 

explains the discrepancies. The change in EOMIP-CISD values are very small and lacks 

even qualitative trend. The formula (7.10) used for performing basis set extrapolation 

leads to the fact that the extrapolated EOMIP-CCSD(2) method gives identical results as 

that of  original EOMIP-CCSD(2) method, in case of water  and they are in excellent 

agreement with the standard EOMIP-CCSD method. The Ionization energies show a 

small increase from cc-pVTZ to cc-pVQZ method and the relative trend in different 

methods remain unchanged from that in the cc-pVTZ basis set. 

 

 

The first five ionized states of formaldehyde are reported in Table 7.4. The EOMIP-CISD 

method gives significantly underestimated values compared to the standard EOMIP-

CCSD method. The EOMIP-CCSD(2) method also leads to underestimated IP values. 

However, the extent of underestimation is very small and the values are in excellent 

agreement with the EOMIP-CCSD method. The trends in P-EOMIP-CCSD(2) method is 

not very systematic. The IP values for first three states are underestimated and the last 

two states are overestimated. In cc-pVTZ basis, the IP values in all the coupled cluster 

methods increases, whereas the IP in EOMIP-CISD method mostly remains unchanged. 

The EOMIP-CCSD(2) values are overestimated compared to the standard EOMIP-CCSD 

method and the trend is opposite to that in cc-pVDZ basis set. The P-EOMIP-CCSD(2) 

method, however, follows the same trend as that in the cc-pVDZ basis set, i.e. the first 

three states in P-EOMIP-CCSD(2) method are underestimated and the rest two states are 

overestimated compared to EOMIP-CCSD method.  
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Table 7.4 : Ionization Energies of H2CO (in eV) 

state EOMIP-

CCSD 

EOMIP-

CISD 

EOMIP-

CCSD(2) 

P-EOMIP-

CCSD(2) 

Extrapolated 

EOMIP-

CCSD(2) 

cc-pVDZ Basis Set 

2b2 10.34 8.03 10.25 10.09 - 

1b1 14.29 11.57 14.18 14.12 - 

5a1 15.71 13.19 15.63 15.44 - 

1b2 17.08 15.21 17.03 17.15 - 

4a1 21.35 19.61 21.33 21.74 - 

cc-pVTZ Basis Set 

2b2 10.75 8.04 10.77 10.51 10.77 

1b1 14.57 11.50 14.58 14.43 14.58 

5a1 16.05 13.11 16.07 15.78 16.07 

1b2 17.37 15.19 17.39 17.43 17.39 

4a1 21.62 19.57 21.66 21.99 21.66 

cc-pVQZ Basis Set 

2b2 10.90 8.05 10.97 10.68 10.97 

1b1 14.69 11.49 14.77 14.57 14.77 

5a1 16.19 13.11 16.28 15.95 16.28 

1b2 17.48 15.20 17.54 17.55 17.54 

4a1 21.72 19.57 21.80 22.10 21.80 

 

The extrapolated EOMIP-CCSD(2) values are identical with that of the original EOMIP-

CCSD(2) method. The IP values in all the coupled cluster methods show relatively small 
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change from cc-pVTZ to cc-pVQZ basis and follow the same trend as that in cc-pVTZ 

basis set. The IP-CISD values remain almost unchanged from that in cc-pVTZ basis set.  

 

Table 7.5 : Ionization Energies of C2H4 (in eV) 

state EOMIP-

CCSD 

EOMIP-

CISD 

EOMIP-

CCSD(2) 

P-EOMIP-

CCSD(2) 

Extrapolated 

EOMIP-

CCSD(2) 

cc-pVDZ Basis Set 

B1u 10.42 8.24 10.30 10.32 - 

B1g 12.92 11.18 12.79 12.90 - 

Ag 14.61 12.69 14.59 14.65 - 

B2u 16.06 14.13 15.94 16.12 - 

B3u 19.37 17.45 19.24 19.68 - 

cc-pVTZ Basis Set 

B1u 10.63 8.21 10.63 10.61 10.63 

B1g 13.11 11.14 13.07 13.15 13.07 

Ag 14.84 12.60 14.91 14.93 14.91 

B2u 16.26 14.07 16.22 16.36 16.22 

B3u 19.54 17.36 19.50 19.86 19.50 

cc-pVQZ Basis Set 

B1u 10.71 8.21 10.77 10.74 10.77 

B1g 13.18 11.13 13.18 13.24 13.18 

Ag 14.93 12.59 15.06 15.05 15.06 

B2u 16.34 14.06 16.34 16.45 16.34 

B3u 19.61 17.35 19.62 19.95 19.62 
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The first five vertical ionization potentials of ethylene are presented in table 7.5. The 

EOMIP-CISD method significantly underestimates the values compared to the standard 

EOMIP-CCSD method. The EOMIP-CCSD(2) method also underestimates the IP values, 

but the results are generally in good agreement with the EOMIP-CCSD values. The P-

EOMIP-CCSD(2) method shows a mixed trend, it underestimates for the B1u and B1g 

states and overestimates for the rest three states. In cc-pVTZ basis, the IP values in all the 

three coupled cluster methods increase. However, the EOMIP-CISD method shows slight 

decrease in the IP values. The IP values in EOMIP-CCSD(2) method give very good 

agreement with its EOMIP-CCSD counterpart. The extrapolated EOMIP-CCSD(2) 

method give rise to IP values, which are identical to that of the original EOMIP-CCSD(2) 

method. The P-EOMIP-CCSD(2) method also give very good agreement with the 

EOMIP-CCSD method, except the  B3u state, where it is significantly overestimated. The 

IP values in all the coupled cluster methods slightly increase from cc-pVTZ to cc-pVQZ 

method, but the trend in the results remain same as that in cc-pVTZ basis set. The IP-

CISD values, on the other hand, remain practically unchanged with increase in the basis 

set. 

 

Table 7.6 presents the ionization potential corresponding to first five states of ozone. The 

ozone ground state is known to have significant multi-reference character and hence 

possess considerable challenge for all the approximate EOMCC methods based on a 

MBPT(2) reference. In cc-pVDZ basis set, the EOMIP-CISD method significantly 

underestimates the IP values, as compared to the standard EOMIP-CCSD method. The 

EOMIP-CCSD(2) method, on the other hand, significantly overestimates the IP values 

for all the states. The P-EOMIP-CCSD(2) gives relatively better agreement with the 

EOMIP-CCSD results, except for the b2 state, which has significant double excitation 

character. As we go from cc-pVDZ to cc-pVTZ basis set, the IP values in all the EOM 

method increase, except the CISD one, where the IP values decrease with the increment 

in basis set. The EOMIP-CCSD(2) method significantly overestimates the IP values 

compared to EOMIP-CCSD method with error as high as 0.77 eV (for 1b2 state ). 
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Table 7.6 : Ionization Energies of O3 (in eV) 

state EOMIP-

CCSD 

EOMIP-

CISD 

EOMIP-

CCSD(2) 

P-EOMIP-

CCSD(2) 

Extrapolated 

EOMIP-

CCSD(2) 

cc-pVDZ Basis Set 

1a2 12.35 9.48 12.76 12.28 - 

6a1 12.45 9.58 12.84 12.33 - 

3b1 13.11 9.66 13.52 13.36 - 

1b2 18.20 16.11 18.91 18.96 - 

2b1 19.21 19.06 19.76 19.20 - 

cc-pVTZ Basis Set 

1a2 12.77 9.39 13.24 12.66 12.83 

6a1 12.85 9.45 13.30 12.68 12.91 

3b1 13.41 9.52 13.93 13.68 13.52 

1b2 18.68 15.97 19.45 19.23 18.74 

2b1 19.56 18.92 20.18 19.49 19.63 

cc-pVQZ Basis Set 

1a2 12.97 9.39 13.49 12.85 13.08 

6a1 13.05 9.45 13.54 12.86 13.15 

3b1 13.58 9.51 14.15 13.84 13.74 

1b2 18.90 15.97 19.71 19.38 19.00 

2b1 19.75 18.91 20.41 19.66 19.86 

 

The P-EOMIP-CCSD(2) method gives relatively better agreement but the trends are not 

quite systematic. The values are overestimated for 3b1 and 1b2 state, whereas, they are 
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underestimated for rest of the three states. The extrapolated EOMIP-CCSD(2) method 

shows significant improvement over the standard EOMIP-CCSD(2) method, specially the 

high error of 0.77 eV in 1b2 state is reduced to 0.06 eV in extrapolated EOMIP-CCSD(2) 

method. With further increase in the basis set from cc-pVTZ to cc-pVQZ, the IP values in 

all the CC method increase, however, the trends remain same. The IP values in EOMIP-

CISD method, on the other hand, remain unchanged from cc-pVTZ to cc-pVQZ basis. 

 

 

7.3.2 Core Ionization Spectra 

 

The large relaxation effect, associated with the core orbitals, makes the computation of 

the core-ionization spectra, in standard ab-initio methods, a challenging task. The 

EOMIP-CC method, even in the CCSD approximation, often does not lead to satisfactory 

results
25

. Therefore, it will be interesting to test the performance of EOMIP-CCSD(2) 

method, where a significant amount of the relaxation effect is missing due to lack of T1 

amplitude in the reference state.  

 

We have calculated the core-ionization energies of H2O, CH4, CO(C(1s)), HF and NH3 in 

a hierarchy of Dunning’s core-valence correlation consistent cc-pCVXZ basis sets 

(X=D,T and Q)
26

. The EOMIP-CISD method significant underestimates the IP values 

compared to the EOMIP-CCSD method for core-ionization energy. On the other hand, 

EOMIP-CCSD(2) method in cc-pCVDZ basis overestimates the core-ionization energy, 

except in the case of HF, where it gives very good agreement with standard EOMIP-

CCSD method. The P-EOMIP-CCSD(2) method gives inferior performance for the core-

ionization energies and overestimates the IP values compared to the standard EOMIP-

CCSD method, except in the case of HF, where it underestimates. The error bars in P-

EOM-CCSD(2) method are much higher than that in the EOMIP-CCSD(2) method, as 

the ionization from the core orbitals involves significant double excitation character, 

which the truncated doubles-doubles block of P-EOMIP-CCSD(2) method fails to take 
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care of. 

 Table 7.7 : Core-ionized energies in EOMCC methods. (in eV) 

Molecule EOMIP-

CCSD 

EOMIP-

CISD 

EOMIP-

CCSD(2) 

P-

EOMIP-

CCSD(2) 

Extrapolated 

EOMIP-

CCSD(2) 

Experimental 

cc-pCVDZ Basis Set  

H2O 542.69 538.96 542.81 542.78 - 539.75 

CH
4
 293.18 290.68 293.31 294.62 - 290.86 

CO 298.87 297.06 299.50 300.75 - 296.20 

HF 697.24 693.16 697.19 696.36 - 693.80 

NH3 408.17 405.02 408.36 409.11 - 405.52 

cc-pCVTZ Basis Set  

H2O 541.13 537.20 541.65 542.20 541.53 539.75 

CH
4
 291.99 289.36 292.40 294.07 292.27 290.86 

CO 297.63 295.52 298.39 300.17 297.76 296.20 

HF 695.41 691.10 695.81 695.62 695.81 693.80 

NH3 406.84 403.53 407.36 408.56 407.17 405.52 

cc-pCVQZ Basis Set  

H2O 541.35 537.27 541.92 542.41 541.80 539.75 

CH
4
 291.99 289.33 292.49 294.14 292.36 290.86 

CO 297.64 295.30 298.51 300.16 297.86 296.20 

HF 695.74 691.27 696.19 695.96 696.19 693.80 

NH3 406.99 403.59 407.59 408.72 407.40 405.52 

a : Values taken from ref [27] .                                                   b:Values taken from ref
 
 [28] . 

 

With increase in the basis set from cc-pCVDZ to cc-pCVTZ basis, the core IP values in 
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all the methods undergo red shift. The IP values in EOMIP-CCSD(2) method continue to 

be overestimated as compared to EOMIP-CCSD method, even in the case of HF. The 

extrapolated EOMIP-CCSD(2) method shows slight improvement over the normal  

EOMIP-CCSD(2) method, however, the values continue to be grossly overestimated. The 

EOMIP-CISD and P-EOMIP-CCSD(2) method both give inferior performance but in a 

different way. The P-EOMIP-CCSD(2) method overestimate and EOMIP-CISD method 

underestimate the core IP values compared to the standard EOMIP-CCSD method by a 

large extent.  

 Further increasing the basis set from cc-pCVTZ to cc-pCVQZ, the IP values in all the 

method increase slightly, however, the trends remain the same. The comparison with the 

experimental results is out of the question as the EOMIP-CCSD method itself overshoots 

the experimental numbers by values as high as 2.0 eV in some of the cases, not to speak 

of the approximate EOM methods. 

 

7.3.3 Error analysis 

One of the main aim of this study is to estimate the error introduced in the EOMIP-

CCSD(2) approximation due to truncated T amplitudes and rationalize the reasons behind 

it, so that this knowledge can be used to rectify the problem. The five test molecules (N2, 

H2O, H2CO, C2H4, and CO), which we have studied in the previous subsection for 

valence IP, fetch out some clear trends. 

 

The EOMIP-CISD method grossly underestimates the IP values and results are not even 

qualitatively correct. The EOMIP-CCSD(2) method overestimates the values compared 

to the standard EOMIP-CCSD method and this trend is more clear in large basis sets. The 

previous studies on the electron affinity and excitation energies have shown that the 

EOM-CCSD(2) approximation gives inferior performance only for molecules, where the 

Hartree-Fock orbitals do not provide a correct zeroth order description of the reference 

state. It was suggested by Dutta et. al
16

  that the T1 diagnosis values can be used as an 
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marker of the suitability of the EOM-CCSD(2) approximation i.e. a T1 diagnosis value 

more than 0.02 indicates that the transition properties of the system will not be well 

reproduced by the EOM-CCSD(2) approximation. However, the situation is quite 

different for the IP case. The EOMIP-CCSD(2) method grossly over estimates the IP 

value for N2, which has T1 diagnosis value of 0.13 (see Table 7.8), which is well within 

the acceptable range. On the other hand, C2H4 that has almost similar T1 diagnosis value 

(0.14), shows very good agreement with the corresponding EOMIP-CCSD results. So T1 

diagnosis values in this case cannot be used as a marker for the reliability of the results. 

The P-EOMIP-CCSD(2) method gives an inconsistent performance depending upon the 

double excitation character associated with the concerned ionized state and in general 

gives inferior performance compared to the original EOMIP-CCSD(2) method. The P-

EOMIP-CCSD(2) approximation fails drastically for states dominated by double 

excitation, which is to be expected from its truncated doubles-doubles block.  

 

Table 7.8 : T1 Diagnosis Values in cc-pVTZ Basis Set 

molecule T1 value 

N2 0.013 

H2O 0.007 

H2CO 0.015 

C2H4 0.014 

ozone 0.028 

 

 

The error in the different approximations to EOMIP-CCSD method can be rationalized in 

terms of the error introduced in the reference and the target state. The total energy in both 

reference and target state has three main components, namely: Hartree-Fock energy, 

correlation energy coming from the interaction of various excited determinants, and the 
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relaxation effects coming from the orbital rotations. In all the approximate schemes to the 

standard EOMIP-CCSD method, any  truncation of the T and R operators leads to inferior 

description of the correlation and relaxation effect in both reference and target state, as 

compared to its full description and thereby increasing its energy w.r.t. the standard 

EOMIP-CCSD method. The delicate balance between the errors in the reference and the 

target state determines the over-all accuracy of the method. 

 

Figure 7.1 provides a qualitative picture of the relative ordering of the reference and the 

target state in different variants of EOM approach to IP problem. In EOMIP-CISD 

approximation, the reference state is only bare Hartree-Fock wave function from which 

both relaxation and correlation effect are missing. On the other hand, the R1 and R2 

operators introduce a significant amount of correlation and relaxation in the target state, 

which causes more rise in the reference state energy compared to the target state energy, 

resulting in underestimation of IP values. The situation is more complicated in case of 

EOMIP-CCSD(2) approximation. It is well known that generally the T2 amplitudes 

introduce the correlation effect and T1 amplitudes bring the relaxation effect. Now, the 

MBPT(2) amplitudes account for the dominant part of the correlation effect in CCSD 

method and relaxation effect is generally  negligible for a closed shell reference state, 

unless  dominated by more than one configuration. Therefore, the truncated T amplitudes 

in EOMIP-CCSD(2) method recover most part of the correlation energy in full CCSD 

model. However, the relaxation effect is significant in case of the ionized target state and 

large error is introduced in the target state due to the missing relaxation effect caused by 

the absence of T1 amplitudes. Consequently, this leads to greater rise in the target state 

energy as compared to the reference state energy and IP values get overestimated in 

EOMIP-CCSD(2) method. The missing relaxation effect also leads to the fact that the 

truncated doubles-doubles block in P-EOM-CCSD(2) method, which has yielded great 

dividends in case of EA
16

 and EE problem
15

, only results in worsening of results in case 

of IP. This is due to the fact that already partly missing relaxation effect is further 

diminished by the truncated R operators in P-EOMIP-CCSD(2) methods. However, it 
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should be kept in mind that all the above-mentioned arguments are qualitative in nature 

and it may not be very straightforward to draw any quantitative relationship. 

 

 

Figure 7.1: The relative ordering of reference and target state in different variants of EOM 

approach to IP problem 

 

Another interesting point to be noted in the results presented in Table 7.2-7.6 is that the 

EOMIP-CCSD(2) method reproduces the basis set dependence of the EOMIP-CCSD 

method quite well and the extrapolated EOMIP-CCSD(2) method, as given by equation 

7.10, corrects for the errors observed in the original EOMIP-CCSD(2) method to a large 

extent. However, five molecules are too small to construct a benchmark data set. 

Therefore, we have calculated the IP values corresponding to first five states of a test set 

of twenty molecules consisting of N2, H2O, ClF, H2CO, CO, NO
-
, C2H2, C2H4, O3, NH3, 
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F2, CO2, SO2, CN
-
 , N2O, BN, HF, S2, P2 and O2 in EOMIP-CCSD(2)/cc-pVQZ level of 

theory and compared the values with the standard EOMIP-CCSD results. Table 7.9 

contains the statistical analysis of the errors.  

Table 7.9 : Maximum absolute, average absolute and root mean square deviation of calculated 

valence  ionization potentials(e.V) from EOMIP-CCSD values in aug-cc-PVQZ basis set 

Method EOMIP-CCSD(2) Extrapolated EOMIP-

CCSD(2) 

Max abs dev 0.81 0.28 

Avr Abs dev 0.17 0.09 

RMS dev 0.24 0.11 

 

 

Figure 7.2 : Maximum abs deviation, average abs deviation, and RMS deviation of  EOMIP-

CCSD(2) method and its extrapolated version from the full EOMIP-CCSD method (in eV). 

 

The average absolute deviation in extrapolated EOMIP-CCSD(2) method is less than 0.1 

eV and maximum error is 0.28 eV, which is significantly less than the high value of 
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0.81eV seen in the original EOMIP-CCSD(2) method. The RMSD value in extrapolated 

EOMIP-CCSD(2) method is 0.11 eV, which is nearly half of the original EOMIP-

CCSD(2) approximation. Figure 7.2 shows that the extrapolated EOMIP-CCSD(2) 

method gives significant improvement for valence IP,  over its original implementation 

and  at least it saves in the cases where the original EOMIP-CCSD(2) method drastically 

fails. 

 

In the case of core ionization spectra the EOMIP-CCSD(2) fails terribly and the 

extrapolated version hardly provides any respite. This also emphasizes the importance of 

missing relaxation effect as the determining factor in the errors obtained in the EOMIP-

CCSD(2) calculated IP values.  

 

 

 

7.4 CONCLUSION 

In this chapter, we have analyzed the performance of the EOMIP-CCSD(2) method for 

valence and core-ionization energies. It is found that among various proposed 

approximations to standard EOMIP-CCSD method, the EOMIP-CCSD(2) method gives 

the best performance. The EOMIP-CISD method heavily underestimates the IP values 

and the results are not even qualitatively correct. The partitioned version of EOMIP-

CCSD(2) gives inconsistent performance and in general shows more error than the 

standard EOMIP-CCSD(2) method. Therefore, approximating the doubles-doubles block 

of the EOM matrix by its diagonal terms, which has been extremely successful in 

reducing the errors in EA and EE EOM-CC method, does not work in the case of IP. The 

EOMIP-CCSD(2) method, although, overestimates the IP values but it correctly 

reproduces the basis set dependence of standard EOMIP-CCSD method. The extrapolated 

EOMIP-CCSD(2) method gives reasonable agreement with the standard EOMIP-CCSD 

method and shows an average absolute deviation of only 0.09 eV for the valence IP. 
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However, the EOMIP-CCSD(2) approximation fails drastically for ionization of core 

electrons and even the extrapolated version does not provide any reasonable 

improvement. 

 

Therefore, the EOMIP-CCSD(2) approximation, which has been extremely successful for 

geometries and properties of doublet radicals, does not provide good results for the 

ionization potential itself. Although, the extrapolation techniques give some respite for 

valence IP, it hardly saves in the case of core-ionization. The analysis of the results has 

shown that the missing relaxation effect due to the truncated T amplitudes in EOM-

CCSD(2) is responsible for the overestimation of the IP values. Therefore, new 

theoretical developments introducing more relaxation effect within the framework of 

EOMIP-CCSD(2) approximation is necessary to rectify the problem. 
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Chapter 8 

 EOMIP-CCSD(2)* : an efficient method for 

calculation of ionization potential 

 

 

                                          “ Life had already given him sufficient reasons  

 for knowing that no defeat was the final one ” 

 
                             Gabriel García Márquez                          

                                                                             The General in His Labyrinth 

 

In this chapter, we present a new approximation to the standard EOMIP-CCSD method. 

The new method (EOMIP-CCSD(2)*)  scales as non-iterative N6 and has significantly 

low storage requirement. The problem of over estimation of ionization potential in 

EOMIP-CCSD(2) approximation is corrected in this new method and the EOMIP-

CCSD(2)* method gives excellent agreement with experimental the values. It also gives 

very good with experiments for bond-length and IR frequencies and produces value 

comparable to CCSD(T) method, in significantly less computational cost. The EOMIP-

CCSD(2)* approximation works even for the core-ionization and satellite IP, where the 

previous EOMIP-CCSD(2) approximation drastically fails. 

 

 

  

http://www.goodreads.com/author/show/13450.Gabriel_Garc_a_M_rquez
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8.1 Introduction: 

The equation of motion coupled cluster approach has emerged as one of the most robust 

method for the calculation of direct difference of energies like excitation energies (EE) 

[1], ionization potential (IP) [2], and electron affinities (EA) [3]. It includes a balanced 

description of dynamic and non-dynamic correlation and provides a “black box” way to 

different sectors of Fock space without going into the complicacies of so-called multi-

reference coupled cluster methods [4].  

 

The equation of motion coupled cluster (EOM-CC) is generally used in singles and 

doubles approximation (EOM-CCSD) [1]. It has iterative N6 scaling and similar storage 

requirement as that of the standard single-reference CCSD method, which prohibits its 

use beyond ten second-row atoms in any reasonable basis set. This calls for the 

development of lower scaling and smaller storage requiring approximation to the 

standard EOM-CCSD, which can be applied to large systems. There exists an intrigue 

relationship between coupled cluster method and many body perturbation theory (MBPT) 

[5]. So, a natural way of approximating any coupled cluster method would be based on 

perturbational orders. Nooijen and Sniders [6] were the first to develop the idea of 

replacing coupled cluster T amplitudes with their MBPT(2) analogues in the context of 

ionization problem. This leads to a method, which is N5 scaling and has lower storage 

requirement, as it is free from the four particle intermediates. Although, the method has 

been successful in calculating the ionization potential, it does not provide a 

straightforward definition of total energy and therefore not suitable for final state 

calculations. Stanton and Gauss [7] latter generalized this approach to provide a 

hierarchical approximation to the standard EOM-CCSD method. They have coined the 

term EOM-CCSD(n), where n denoted the order in perturbation and at large values of n, 

the EOM-CCSD(n) method converges to standard EOM-CCSD method. The new method 

can calculate difference of energy, at the same time has the added advantage of clearly 
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defined total energy, which makes them suitable for final state property calculations. The 

lowest order approximation to EOM-CCSD(n) is EOM-CCSD(2), where the reference 

state is truncated at MBPT(2). The EOM-CCSD(2) approximation was originally 

implemented by Stanton and Gauss [7] for ionization problem(EOMIP-CCSD(2)) and 

excitation energies(EOMEE-CCSD(2)). Similar developments were latter persuaded by 

Dutta .et. al. [8] in the context of electron affinity and spin flip variants of EOMCC. 

Recently, Pal and co-workers [9] have shown that the EOMIP-CCSD(2) method can be 

used for the calculation of geometry and IR frequency of large doublet radicals with 

accuracy comparable to that of the standard EOMIP-CCSD method. In the previous 

chapter, we have shown that although the EOMIP-CCSD(2) method is very good for the 

study of final state properties, it is not particularly suitable for calculation of IP itself. The 

missing relaxation effect due to the truncated T amplitudes leads to systematic 

overestimation of IP in EOMIP-CCSD(2) method. The aim of this chapter is to suggest a 

modification of the standard EOMIP-CCSD(2) method, which can account for the 

missing relaxation effect. 

The chapter is organized as follows. The next section gives the theory and computational 

details of the new method. The numerical performance of the new method are discussed 

in the section 8.3. The section 8.4 gives the concluding remarks. 

 

8.2 Theory and Computational Details 

The main source of error in the EOMIP-CCSD(2) approximation, as pointed  out in the 

previous chapter, is the missing relaxation effect due to truncated T amplitudes, which 

cannot be compensated by the R1 and R2 operators. A straightforward way to account for 

the missing relaxation effect is to include higher order terms in the EOM matrix. The full 

inclusion of R3 operator will shoot up the scaling to iterative N7, which is not feasible to 

use except for very small molecules. However, it is possible to perform a selective 

inclusion of R3 in a non-iterative way with a N6 scaling. Among the various possible 
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schemes available for non-iterative inclusion of R3 operator, we have followed the 

scheme described by Stanton and co-workers [10]. 

 

8.2.1 EOM-IP-CCSD* 

In the EOMIP-CC frame work, the final states are obtained by diagonalizing the 

similarity transformed Hamiltonian in (N-1) electron space. 

 T T T

c
H e He He

                                                                                                          (8.1) 

In the eigen value equation form it can be written as  

 0 0
ˆ ˆ,

k kc
H H                                                                                                   (8.2) 

where ωk is the IP value corresponding to kth state and ˆ
k

  is the corresponding EOM 

operator and for the IP problem it has the following form. 

†

,

ˆˆˆ( ) ( ) .........IP a

k i ij

i i j a

R k i R k a ji


                                                                                 (8.3) 

Since H  is non Hermitian, there exist different right(R) and left(L) eigenvectors which 

are biorthogonal and can be normalized to satisfy                    

k l kl
L R                                                                                                                          (8.4)                                      

The resulting method is equivalent to the (0,1) sector of the Fock space multi-reference 

coupled cluster (FSMRCC)  method for the principal  ionizations [11]. 

In deriving the R3 correction to EOMIP-CCSD, Löwdin’s matrix partitioning technique 

[12] is used.  

Following Löwdin’s partitioning technique [12], equation 8.2 can be partitioned into P 

and Q space, where P represents the principal configuration space, and Q represents its 

orthogonal complement. 
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p ppp pq

q qqp qq

R RH H

R RH H


     
     

      
                                                                                              (8.5)                           

and 

pp pq

p q p q

qp qq

H H
L L L L

H H


 
         

                                                                                (8.6)                           

Where,  Rp (Lp) and Rq(Lq) represent the projection of the right (left) eigenvector on P and 

Q spaces. 

Expanding equation 8.5 we get  

pp p pq q p
H R H R R                                                                                                      (8.7)                                 

qp p qq q q
H R H R R                                                                                                       (8.8)                        

Rearranging equation 8.8 

1

q qq qp pR H H R


                                                                                                      (8.9) 

Inserting  Rq back into equation 8.7 we get 

 1

eff p pp pq qq qp p pH R H H H H R R 


                                                                    (8.10)                         

Projecting equation 8.10 with Lp 

1

p eff p p pp pq qq qp p p pL H R L H H H H R L R 
        

                                   (8.11) 

The eigen values of Heff  are solely defined in the P space,  for first several eigen values. 

Now the exact eigen value ω can be expressed as the sum of zeroth order energy ω0 , as 

of yet undetermined, and an energy correction Δω.  

The operator inverse in equation (8.11) can be expressed as  
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     

         
     

11 0 1 2
0

1
10 0 1 2

0 0

1
10 0

0 0

......

1 ........

1

qq qq qq qq

qq qq qq qq

qq qq qq

H H H H

H H H H

H H V

  

  

  







           

               

             

                                              (8.12) 

Where    1 2 .........
qq qq qq

V H H     

Now equation 8.12 can be expanded in an inverse series 

 

     

         

11 0
0

1 10 0
0 0

1 1 10 0 0
0 0 0

.......

qq qq

qq qq qq

qq qq qq qq qq

H H

H V H

H V H V H

 

  

    



 

  

       

          

                 


                                        (8.13) 

Now, the energy correction to EOMIP-CCSD can be derived by defining p as 2p h hp U  

, pp
H  is taken as zeroth order and 0  can be taken as the EOMIP-CCSD energy. Equation 

(8.11) can be written as  

p eff p EOMIP EOMIP
L H R E E L D R                                                                 (8.14) 

and 

  10
0pq qq

L L H H 


                                                                                                (8.15) 

  10
0 qq qp

R H H R 


                                                                                                (8.16) 

Now, the similarity transformed Hamiltonian can be expressed in perturbational orders  

       1 2 4[3] .......T

c
H He H H H H                                                                         (8.17) 
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In the above expression hole-hole and  particle-particle block of Fock matrix is treated as 

zeroth order and rest of the H  is treated as first order. The T1 and T2 amplitudes for the 

reference state are taken as second and first order in correlation, respectively. The 

projection of L and R on 1h determinants (Lh and Rh) are taken as zeroth order and the 

projection on 2h1p determinants (L2h1p and R2h1p) are taken as first order in correlation. 

With this definition equation (8.11) can be written as 

1 10 0
0 0 0 0p eff p p pq qq qq qq qp PL H R L H E H H E H H R 

 
                                     (8.18)   

The equation (8.18) contains only terms which are fourth order and higher in correlation. 

Because of their negligible contribution and high computational cost associated with their 

evaluation, equation (8.18) has not been considered. Instead, equation (8.14), which 

contains terms only up to third order in perturbation, has been used for the energy 

correction. The elements of pq
H  and qp

H  are divided according to hole-particle 

contribution and only the terms having lowest non-vanishing contributions has been 

considered.  

Following the above guide line, Stanton and co-workers [10] have shown that only 

surviving contributions are those which connect the reference determinant( 0  ) to 

determinant generated by 3h2p operators(i.e those are obtained by excitation of two 

electrons and removal of the third). 

The spin-orbital notation of the equation (8.15) and (8.16) as described in reference [10], 

are as bellow 

       ijk ijk k ij mk

ab ab e a

e m

D l P ijk l ab ij P ijk l ek ab P ab P ijk l ij mb                       (8.19) 

     

     

ab ab e a

ijk ijk ij mk

e m

ae ab

m ij m in

me mn

D r P ijk r ab ek P ab P ijk r mb ij

P ab P ijk r t mb ke P kji r t mn kj

  

 

 

                                              (8.20) 
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0 0
ijk ab

ab ijk ii jj kk aa bb
D D E f f f f f                                                                         (8.21) 

 

The fT and dT correction by Manohar et. al. [13] for including non-iterative triples in 

EOMIP-CCSD were derived following a similar strategy. 

 

8.2.2 EOM-IP-CCSD(2)* 

Following the Stanton and Gauss’s [7] original EOMIP-CCSD(2) scheme, the CC 

amplitudes can be approximated by the MBPT(2) amplitudes for a second order truncated 

effective Hamiltonians (H [2]) 

 
 

e

e

T

c

T

c

H H

H





                                                                                                                   (8.23) 

where the perturbative approximation to the T amplitudes can be written as 

1

2

ia

i a

i j a b

f
T

ab ij
T

 

   

 


 
  

                                                                                                      (8.24) 

T1 is zero for restricted closed shell and unrestricted MBPT(2) reference. Using these T′ 

amplitudes one can generate a modified similarity transformed Hamiltonian H  , which 

can be used as the reference for subsequent EOMIP calculations. After solving for the 

right vector, one need to solve for the left vector and the correction to right and left vector  

is constructed in a non-iterative fashion using the equation (8.19-21). Finally, the energy 

correction is calculated using equation 8.14. We call this new approximation as EOMIP-

CCSD(2)* 

The original EOMIP-CCSD(2) method scales as iterative N5. Now, the energy correction 

as described in the equation (8.20) and (8.21) scales as non-iterative N6. So, overall the 

EOMIP-CCSD(2)* method is non-iterative N6 scaling, as compared to iterative N6 
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scaling of standard EOMIP-CCSD method. However, the situation is more favorable than 

the above statement indicates. The most expensive terms occurring due to the 3h2p 

corrections in our EOMIP-CCSD(2)* method  scale with nh
3np

3 and nh
4np

2, where np and 

nh represent the number of orbitals unoccupied and occupied in the reference Hartree-

Fock reference state, respectively. The reference state CCSD calculation involves an 

iterative step that scales with nh
2np

4. Now for typical applications in a reasonable basis 

set, np is much greater than nh. Therefore, the cost of a single EOMIP-CCSD*(2) 

calculation  might be substantially less than a single iteration of the reference state CCSD 

equations.  

Now, let us consider the storage requirements. In the EOMIP-CCSD(2)* method ,there is 

no four particle intermediates in the energy correction part. So, EOM-IP-CCSD(2) 

method has significantly less storage requirements than the standard EOMIP-CCSD 

method. Although, the storage requirement has increased from that in the EOMIP-

CCSD(2) approximation, due to the presence of 3particle-1hole intermediates in the 

energy correction part, which were absent in the EOMIP-CCSD(2) approximation. So, 

both in terms of CPU scaling and storage requirements, the EOMIP-CCSD(2)* method 

lies in between EOMIP-CCSD(2) and standard EOMIP-CCSD method. 

 

8.2.3 Computational Details: 

 

All the EOMIP-CCSD(2)* calculations were performed using a modified public version 

of the quantum chemistry package Cfour [14]. The valence IP values for test molecules 

were calculated using a hierarchy of Dunning’s correlation consistent cc-pVXZ(X=D,T 

and Q) basis set [15] using experimental geometry. The core-valence correlation cc-

pCVXZ(X=D,T and Q) basis set [16] was used for the calculation of core IP. The 

structure optimization and frequency calculations of doublet radicals were performed 

using the numerical gradient technique. All the other EOM and single-reference coupled 

cluster calculations are performed using Cfour [14].  
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8.3 Results and Discussion  

Table 8.1 presents the wall timing of EOMIP-CCSD method along with its two 

approximate variants for a series of water clusters ((H2O)n, n=1-8). It can be seen that 

EOMIP-CCSD(2)* method lies in between the EOMIP-CCSD and EOMIP-CCSD(2), as 

expected from the  theoretical foundation of the method described in the previous section. 

It can be seen that as the system size increases, the EOMIP-CCSD(2)* continues to 

become considerably cheaper compared to the standard EOMIP-CCSD method. 

Table8.1 : Wall Timings for the EOMIP-CCSD(2) and EOMIP-CCSD Methoda,b in the cc-
pVDZ Basis Set 

 Wall Timing (s) 

number of 
H2O units 

EOMIP-CCSD EOMIP-CCSD(2) EOMIP-CCSD(2)* 

1 1.16 1.13 1.33 

2 11.54 2.89 4.84 

3 108.88 9.88 29.42 

4 490.52 30.67 70.61 

5 1516.96 119.20 255.79 

6 3795.23 289.19 1620.46 

7 15129.76 673.03 4030.58 

8 42946.41 1682.45 9436.54 

a : All the calculations were performed using an i7 desktop with 3.40 GHz CPU speed and 16 

GB of RAM. Calculations were performed using single core. 

b : Calculations were performed assuming C1 symmetry. 

 

 

8.3.1 Valence Ionization Spectra 

The performance of the EOMIP-CCSD(2)* method for valence ionization energies is 
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benchmarked for small molecules like N2, H2O, H2CO, C2H2, and CO in a hierarchy of 

Dunning’s correlation consistent cc-pVXZ (X = D, T, Q) basis set (Tables 8.2–8.6) and 

the results are compared with experimental numbers, wherever available. For the sake of 

comparison, we also quote the corresponding EOMIP-CCSD(2) and extrapolated 

EOMIP-CCSD(2) results. 

 

Table 8.2 : Ionization Energies of N2 (in eV) 

state EOMIP-
CCSD 

EOMIP-
CCSD(2) 

Extrapolated 
EOMIP-
CCSD(2) 

EOMIP-
CCSD(2)* 

EOMIP-
CCSD* 

Exp [17] 

cc-pVDZ Basis Set 

3σg 15.19 15.39 - 15.19 15.02 15.60 

1πu 16.96 17.14 - 16.59 16.45 16.98 

2σu 18.45 18.56 - 18.44 18.35 18.78 

cc-pVTZ Basis Set 

3σg 15.59 15.85 15.65 15.54 15.33 15.60 

1πu 17.22 17.48 17.30 16.87 16.66 16.98 

2σu 18.81 18.98 18.87 18.75 18.61 18.78 

cc-pVQZ Basis Set 

3σg 15.72 16.02 15.82 15.68 15.43 15.60 

1πu 17.34 17.64 17.46 17.00 16.75 16.98 

2σu 18.93 19.15 19.04 18.88 18.69 18.78 

 

 

The Table 8.2 presents the valence ionization energies of first three states of N2. It can be 

seen that the EOMIP-CCSD(2) method overestimates the IP values compared to the 
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standard EOMIP-CCSD method in cc-pVDZ basis. The EOMIP-CCSD(2)* method 

corrects for this overestimation and gives IP values which are in superior agreement with 

the highly accurate EOMIP-CCSD* method. The agreement is even better than the 

standard EOMIP-CCSD method. The IP values in all the methods increase from cc-

pVDZ to cc-pVTZ basis. The extrapolated EOMIP-CCSD(2) shows considerable 

improvement over the original EOMIP-CCSD(2) approximation. However, the values are 

inferior as compared to the EOMIP-CCSD(2)* method, which are in very good 

agreement with the EOMIP-CCSD* method. The IP values in all the methods increase 

slightly, as we go from cc-pVTZ to cc-pVQZ basis set. The EOMIP-CCSD(2)* method 

gives IP value which are within 0.1 eV of the experimental value [17] and the results are 

in even better  agreement than the standard EOMIP-CCSD method. 

 

 

Table 8.3 presents the vertical ionization energies corresponding to the valence orbitals of 

water. It can be seen that in cc-pVDZ basis set, all the EOMIP methods lead to very 

similar results. The IP values for all the three states increase from cc-pVDZ to cc-pVTZ 

basis. Here it should be noted that inclusion triples has a negligible effect on the valence 

ionization potentials of water. The IP values further increase as we go from cc-pVTZ to 

cc-pVQZ basis set. The experimental IP values corresponding to 1b2 and 3a1 are well 

reproduced in EOMIP-CCSD*(2)/cc-pVQZ level of theory. However, the IP value 

corresponding to 3a1 state in EOMIP-CCSD(2) method is overestimated by 0.46 eV, 

compared to the experiments. However, the highly accurate EOMIP-CCSD* method 

gives almost identical value as that of the EOMIP-CCSD(2)* method for the 3a1 state. It 

should be noted that the EOMIP-CCSD(2)* method gives slightly better agreement with 

experiment [17] than the EOMIP-CCSD method for all the three states, although,  the 

values in both the methods are very close to each other. 
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Table 8.3 : Ionization Energies of H2O (in eV) 

state EOMIP-
CCSD 

EOMIP-
CCSD(2) 

Extrapolated 
EOMIP-
CCSD(2) 

EOMIP-
CCSD(2)* 

EOMIP-
CCSD* 

Exp [17] 

cc-pVDZ Basis Set 

1b2 11.80 11.74 - 11.85 11.91 12.62 

3a1 14.11 14.04 - 14.11 14.23 14.73 

1b1 18.47 18.37 - 18.40 18.50 18.55 

cc-pVTZ Basis Set 

1b2 12.40 12.43 12.43 12.39 12.39 12.62 

3a1 14.63 14.63 14.63 14.60 14.62 14.73 

1b1 18.83 18.81 18.81 18.75 18.79 18.55 

cc-pVQZ Basis Set 

1b2 12.62 12.69 12.69 12.60 12.55 12.62 

3a1 14.82 14.87 14.87 14.79 14.76 14.73 

3a1 19.00 19.01 19.01 18.91 18.92 18.55 

 

 

The first four valence ionized states of formaldehyde are reported in Table 8.4. The 

EOMIP-CCSD(2) method  gives good agreement with the EOMIP-CCSD values in cc-

pVDZ basis set. The EOMIP-CCSD*(2) and EOMIP-CCSD* method give slightly lower 

IP values for the 1b1 and 1b2 state; however, the values are similar to the EOMIP-CCSD 

method for the other two states. On increasing the basis set from cc-pVDZ to cc-pVTZ, 

the IP values in all the methods increase by considerable amount. The EOMIP-CCSD(2)* 

method gives almost identical values with the EOMIP-CCSD* method, and the results 

are slightly lower than that in EOMIP-CCSD method in cc-pVTZ basis set. The IP values 
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further increase from cc-pVTZ to cc-pVQZ basis and are within 0.1 eV of experimental 

result in EOMIP-CCSD(2)*/cc-pVQZ level of theory, except the 1b2 state, which is 

overestimated by  0.58 eV. However, the EOMIP-CCSD* method also shows similar 

overestimation for the 1b2 state. The EOMIP-CCSD(2)* result is in much better 

agreement with the experimental result [17] than the EOMIP-CCSD method and EOMIP-

CCSD(2) method for 1b2 state. 

 

Table 8.4 : Ionization Energies of H2CO (in eV) 

state EOMIP-
CCSD 

EOMIP-
CCSD(2) 

Extrapolated 
EOMIP-
CCSD(2) 

EOMIP-
CCSD(2)* 

EOMIP-
CCSD* 

Exp [17] 

cc-pVDZ Basis Set 

2b2 10.34 10.25  10.34 10.34 10.88 

1b1 14.29 14.18  14.15 14.15 14.5 

5a1 15.71 15.63  15.66 15.66 16.0 

1b2 17.08 17.03  16.78 16.78 16.5 

cc-pVTZ Basis Set 

2b2 10.75 10.77 10.77 10.63 10.64 10.88 

1b1 14.57 14.58 14.58 14.32 14.33 14.5 

5a1 16.05 16.07 16.07 15.87 15.87 16.0 

1b2 17.37 17.39 17.39 17.00 17.00 16.5 

cc-pVQZ Basis Set 

2b2 10.90 10.97 10.97 10.79 10.75 10.88 

1b1 14.69 14.77 14.77 14.47 14.42 14.5 

5a1 16.19 16.28 16.28 16.03 15.97 16.0 

1b2 17.48 17.54 17.54 17.13 17.08 16.5 
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Table 8.5 : Ionization Energies of C2H2 (in eV) 

state EOMIP-
CCSD 

EOMIP-
CCSD(2) 

Extrapolated 
EOMIP-
CCSD(2) 

EOMIP-
CCSD(2)* 

EOMIP-
CCSD* 

Exp [18] 

cc-pVDZ Basis Set 

2Πu 11.33 11.35 - 11.07 11.08 11.49 

2Σ+
g 16.98 17.01 - 16.84 16.81 16.7 

2Σ+
u 18.88 18.86 - 18.72 18.75 18.7 

cc-pVTZ Basis Set 

2Πu 11.55 11.66 11.64 11.31 11.22 11.49 

2Σ+
g 17.21 17.32 17.29 17.07 16.98 16.7 

2Σ+
u 19.09 19.15 19.15 18.93 18.89 18.7 

cc-pVQZ Basis Set 

2Πu 11.63 11.80 11.78 11.41 11.27 11.49 

2Σ+
g 17.30 17.46 17.43 17.18 17.04 16.7 

2Σ+
u 19.17 19.27 19.27 19.03 18.94 18.7 

 

Table 8.5 presents the IP values corresponding to 2Πu, 
2Σ+

g and 2Σ+
u states of acetylene in 

different EOM methods. In cc-pVDZ basis, the IP values in EOMIP-CCSD(2)* method 

give very good agreement with the EOMIP-CCSD* method and the values are 

considerably lower than the corresponding EOMIP-CCSD and  EOMIP-CCSD(2) results. 

The IP values in all the methods undergo blue shift as we go from cc-pVDZ to cc-pVTZ 

basis. The EOMIP-CCSD(2)* method continue to give lower values than the EOMIP-

CCSD method, however, the former gives better agreement with the highly accurate 

EOMIP-CCSD* method. The IP values undergo further blue shift from cc-pVTZ to cc-

pVQZ basis. The EOMIP-CCSD(2)* method in cc-pVQZ basis set gives very good 
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agreement with the experimental value[17] for the 2Πu state, but it overestimates the IP 

values for the other two states. However, the IP values are in superior agreement with 

experiment, as compared to the EOMIP-CCSD method, which overestimates them by 

more than 0.6 eV in cc-pVQZ basis set. The EOMIP-CCSD(2) method leads to further 

overestimation and its extrapolated version does not provide any significant change. 

 

Table 8.6 : Ionization Energies of O3 (in eV) 

state EOMIP-
CCSD 

EOMIP-
CCSD(2) 

Extrapolated 
EOMIP-
CCSD(2) 

EOMIP-
CCSD(2)* 

EOMIP-
CCSD* 

EOMIP-
CCSDT 

Exp[17] 

cc-pVDZ Basis Set   

1a2 12.35 12.76  12.26 11.93 12.20 12.73 

6a1 12.45 12.84  12.39 12.07 12.33 13.00 

3b1 13.11 13.52  12.88 12.61 13.12 13.54 

cc-pVTZ Basis Set  

1a2 12.77 13.24 12.83 12.61 12.24 12.56 12.73 

6a1 12.85 13.30 12.91 12.72 12.36 12.67 13.00 

3b1 13.41 13.93 13.52 13.21 12.75 13.44 13.54 

cc-pVQZ Basis Set  

1a2 12.97 13.49 13.08 12.81 12.40 12.74 12.73 

6a1 13.05 13.54 13.15 12.91 12.51 12.84 13.00 

3b1 13.58 14.15 13.74 13.39 12.88 13.60 13.54 

 

Table 8.6 presents the ionization potential corresponding to first three states of ozone. 

The ozone ground state has significant multi-reference character and known to possess a 

significant challenge for all the EOMCC methods based on a MBPT(2) reference. In cc-
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pVDZ basis set, the EOMIP-CCSD(2) values are significantly overestimated compared to 

the benchmark EOMIP-CCSDT values. The EOMIP-CCSD(2)* and the EOMIP-CCSD 

method give reasonable agreement with the EOMIP-CCSDT results. All the IP values 

undergo blue shift from cc-pVDZ to cc-pVTZ basis. However, the qualitative trend 

remains same. The IP values further increase from cc-pVTZ to cc-pVQZ basis set. The 

EOMIP-CCSD(2) method significantly overestimates the IP values compared to the 

EOMIP-CCSDT and experimental values. The extrapolated version shows improvement 

over the original EOMIP-CCSD(2) approximation. The EOMIP-CCSD(2)* and EOMIP-

CCSD method in cc-pVQZ basis show reasonable agreement with the EOMIP-CCSDT 

and experimental value [17]. 

 

 

8.3.2 Core Ionization Spectra 

The knocking of electrons from the core orbitals by ionizing radiation leads to a variety 

of interesting physical and chemical phenomenon and often posses a significant challenge 

for the conventional ab-initio methods. In the previous chapter, we have shown that the 

EOMIP-CCSD(2) method and its extrapolated version fails to model the core-excited 

states. Table 8.7 presents core ionization energies of H2O, CH4, N2, HF and NH3 in a 

hierarchy of Dunning’s core valence correlation consistent cc-pCVXZ (X=D,T and Q ) 

basis sets. The EOMIP-CCSD(2) method, in cc-pCVDZ basis set, significantly 

overestimates the IP values compared to the standard EOMIP-CCSD method. The 

EOMIP-CCSD(2)* method on the other hand gives much lower values, even compared to 

the EOMIP-CCSD method. The core ionization energies for all the molecules undergo 

blue shift from cc-pCVDZ to cc-pCVTZ basis. However, the qualitative trend remains 

same. The core ionization energies in all the EOM methods further increase as we go to 

cc-pCVQZ basis. The EOMIP-CCSD* method gives the best agreement with 

experiments in cc-pCVQZ basis set and the results are within 0.2 eV of experiments. The 

EOMIP-CCSD(2)* method gives slightly overestimated values, specially for the N2, 

where the core ionization energies are over estimated by around 1 eV.  
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Table 8.7 : Core-ionized energies in EOMCC methods. (in eV) 

Molecule EOMIP-
CCSD 

EOMIP-
CCSD(2) 

Extrapolated 
EOMIP-
CCSD(2) 

EOMIP-
CCSD(2)* 

EOMIP-
CCSD* 

Exp 

cc-pCVDZ Basis Set 

H2O 542.69 542.81 - 541.17 541.06 539.75a 

CH
4
 293.18 293.31 - 292.22 292.22 290.86b 

N2 412.61 413.27 - 412.19 411.59 409.9b 

HF 697.24 697.19 - 696.36 695.38 693.80b 

NH3 408.17 408.36 - 407.06 406.89 405.52b 

cc-pCVTZ Basis Set 

H2O 541.13 541.65 541.53 540.03 539.54 539.75 

CH
4
 291.99 292.40 292.27 291.33 290.96 290.86 

N2 411.13 412.05 411.39 410.91 410.06 409.9 

HF 695.41 695.81 695.81 694.04 693.66 693.80 

NH3 406.84 407.36 407.17 406.00 405.51 405.52 

cc-pCVQZ Basis Set 

H2O 541.35 541.92 541.80 540.13 539.62 539.75 

CH
4
 291.99 292.49 292.36 290.84 290.78 290.86 

N2 411.33 412.28 411.62 410.84 409.70 409.9 

HF 695.74 696.19 696.19 694.27 693.83 693.80 

NH3 406.99 407.59 407.40 406.13 405.55 405.52 

a : Values taken from ref [19] .                                                   b:Values taken from ref  [20] . 
 
 

However, the EOMIP-CCSD method itself shows higher error bar(around 1.5 eV) in cc-
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pCVQZ basis set for the core ionized state of N2. In general the EOMIP-CCSD(2)* 

method  gives better agreement with experiment than the EOMIP-CCSD method for all 

the five molecules studied. The EOMIP-CCSD(2) method, on the other hand, heavily 

overestimates the IP values and its extrapolated version does not show any significant 

improvement. 

 

8.3.3 Satellite peaks 

The satellite IP peaks are characterized by ionization of one electron along with 

simultaneous excitation of one electron from occupied to virtual orbital. The satellite 

peaks are generally associated with large relaxation effects and even the standard 

EOMIP-CCSD method fails to provide a reasonable description. Table 8.8 provides 

satellite IP values for CO and N2. It can be seen that the EOMIP-CCSD(2)* method gives 

much lower values compared to EOMIP-CCSD method, and the former predicts IP 

values, which are in very good agreement with the highly accurate EOMIP-CCSD* 

method for both CO and N2.  

 

The IP values in all the methods undergo blue shift from cc-pVDZ to cc-pVTZ. However, 

the qualitative trend remains the same. Except the fact that the EOMIP-CCSD(2) method 

grossly overestimates for the  2Σu
+ state of N2 and the extrapolated version does not 

provide any improvement. The IP values further increase in cc-pVQZ basis set. The 

EOMIP-CCSD(2)* method gives very good agreement with the experimental results[17]  

for the satellite IP values of CO and N2 and the agreement is even better than that in the 

standard EOMIP-CCSD method. 

 

 Here it should be mentioned that it is not justified to come into any conclusion about the 

relative accuracy of the different EOMCC methods, for satellite IP values, from the study 

of only two states. However, a detailed study of the satellite IP values using different 

truncations of EOMIP-CC method is outside the scope of this present chapter and will be 

followed in some future study. 
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Table 8.8 : Satellite IP values  in EOMCC methods. (in eV) 

Molecule EOMIP-
CCSD 

EOMIP-
CCSD(2) 

Extrapolated 
EOMIP-
CCSD(2) 

EOMIP-
CCSD(2)* 

EOMIP-
CCSD* 

Exp[17] 

cc-pVDZ Basis Set 

N2(
2Σu

+) 28.80 28.45 - 25.10 25.11 25.51 

CO(2Π) 26.24 26.18 - 23.07 23.16 23.4 

cc-pVTZ Basis Set 

N2(
2Σu

+) 29.57 30.17 30.17 25.76 25.26 25.51 

CO(2Π) 26.76 26.80 26.80 23.26 23.25 23.4 

cc-pVQZ Basis Set 

N2(
2Σu

+) 29.83 30.43 30.43 25.87 25.31 25.51 

CO(2Π) 26.96 27.06 27.06 23.36 23.28 23.4 

 

 

8.3.4  Error analysis 

The EOMIP-CCSD(2)* method shows significant improvement over the original 

EOMIP-CCSD(2) approximation for valence, core and satellite IP values. In the 

benchmark cc-pVQZ basis set (cc-pCVQZ for the core IP ) the IP values are in very good 

agreement with the experimental values, and the results are even better than  the standard 

EOMIP-CCSD method. The R3 operator in the EOMIP-CCSD(2)* method accounts for 

the missing relaxation of effect caused by the  absence of the T1 operator in the reference 

state of EOM-CCSD(2) approximation.  

 

Therefore, the EOMIP-CCSD(2)* method performs well even for the cases where 

relaxation effect is significant, like in the case of core IP or the satellite peaks. It also 
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works for  molecules such as ozone(see Table 8.9 for the T1 diagnosis values ), where 

 

Table 8.9 : T1 Diagnosis Values in cc-pVTZ Basis Set 

molecule T1 value 

N2 0.013 

H2O 0.007 

H2CO 0.015 

C2H4 0.011 

ozone 0.028 

 

 

Figure 8.1: The relative ordering of reference and target state in different variants of EOM 
approach to IP problem 
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the reference state has significant multi-reference character and the original EOMIP-

CCSD(2) approximation fails drastically. 

 

Figure 8.1 provides a pictorial depiction of the relative change in the position of the target 

state caused by the included R3 operator in the EOMIP-CCSD(2)* method. It can be seen 

that the rise in the target state energy, caused by the truncated T amplitudes in EOMIP-

CCSD(2) approximation, is corrected by the R3 operator in the EOMIP-CCSD(2)* 

method. This leads to a better balance between the errors in the reference state and the 

target state and the systematic error cancelation results in improved IP values. 

 

8.3.5  Vertical Ionization Potential of Thymine 

To show the robustness of the new method, we have calculated the valence IP values of 

thymine. The EOMCC investigation of IP values of thymine were extensively persuaded 

by Krylov and co-workers [21, 22]. Table 8.10 presents the computed and experimental 

vertical IP  values for the first five ionized states of thymine. 

 

It can be seen that the EOMIP-CCSD(2) method overestimates the IP values for all the 

five states, as compared to the standard EOMIP-CCSD method, in both cc-pVDZ and cc-

pVTZ basis set. The extrapolated version shows some improvement over the original 

EOMIP-CCSD(2) method, but the values are still over estimated compared to the 

EOMIP-CCSD approximation. In cc-pVTZ basis set, the EOMIP-CCSD method 

overestimates the IP values compared to experiment. The EOMIP-CCSD(2)* method, on 

the other hand, gives a very good agreement and slightly underestimates the IP values as 

compared to the experimental number, except the (3 2A˝) state, where the experimental 

value is overestimated by 0.27 eV. In general, the EOMIP-CCSD(2)* method gives better 

agreement with the experimental results in cc-pVTZ basis set, than the standard EOMIP-



277 

 

CCSD method. 

 

Table 8.10 : Vertical ionization energies of thymine (in eV) 

Molecule 1 2A˝ 1 2A´ 2 2A˝ 2  2A´ 3 2A˝ 

cc-pVDZ Basis Set 

EOMIP-
CCSD(2) 

8.98 9.77 10.26 10.67 12.47 

EOMIP-CCSD 8.79 9.72 10.10 10.63 12.33 

EOMIP-
CCSD(2*) 

8.60 9.46 9.90 10.34 12.03 

cc-pVTZ Basis Set 

EOMIP-
CCSD(2) 

9.44 10.31 10.78 11.20 12.88 

Extrapolated 
EOMIP-
CCSD(2) 

9.25 10.26 10.62 11.16 12.74 

EOMIP-CCSD 9.14 10.16 10.52 11.06 12.66 

EOMIP-
CCSD(2*) 

8.98 9.88 10.33 10.74 12.37 

Exp[23] 9.02 9.95 10.40 10.88 12.10 

 

 

8.3.5  Geometry and IR frequency 

The relaxation effect introduced by the R3 operator improves the description of the total 

energy in EOMIP-CCSD(2)* method, over the original EOMIP-CCSD(2) approximation. 

Therefore, the EOMIP-CCSD(2) method can provide an improved description of the final 

state properties. We have investigated the geometry and IR frequencies of NO2, NO3 and 

a test set of six diatomic doublet radicals, some of them have been used for the 

benchmarking of the original EOMIP-CCSD(2) approximation. 
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8.3.5.1 NO2 

NO2 provides significant challenges for the standard single-reference ab-initio methods. 

The UHF and ROHF based MP2 and even the CCSD method fail to provide reasonable 

agreement with the experiment [9] for the geometry as well as IR frequency of NO2.   

 

Table 8.11 provides the geometry and IR frequencies of NO2 computed in different 

variants of single-reference and equation of motion coupled cluster methods in aug-cc-

pVTZ basis set. The EOMIP-CCSD(2)* method shows a deviation of 0.002 Å from the 

experiment for the bond lengths. The results are better than the original EOMIP-CCSD(2) 

approximation, as well as, the standard EOMIP-CCSD method. The bond angle is 

however, slightly overestimated in the EOMIP-CCSD(2)* method. 

Table 8.11 : Geometry and Harmonic Vibrational Frequency of Nitrogen Dioxide (NO2)  in 

aug-cc-pVTZ basis set 

Method Bond length(Å) Bond Angle(θ) ω1 ω2 ω3 
UCCSD(T) 1.294 123.9 344 577 1134 

ROCCSD(T) 1.194 134.8 761 1359 1694 

EOM-IP-CCSD 1.186 133.7 795 1443 1745 

EOMIP-

CCSD(2) 

1.186 134.9 769 1388 1784 

EOM-IP-

CCSD(2)* 

1.192 134.7 760 1347 1560 

EOM-IP-

CCSD* 

1.191 133.7 784 1404 1717 

Experiment 1.194a 133.9a 750b 1325b 1634b 

a : Values taken from ref 24.                                                   b:Values taken from ref25 . 
 
 
The UCCSD(T) method fails drastically for both bond length and bond angle. The 

ROCCSD(T) method, on the other hand, exactly reproduces the bond length. However, 
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the bond angle is slightly overestimated similar to that in the case of EOMIP-CCSD(2)* 

method. In case of IR frequencies, the ROCCSD(T) method gives the best agreement 

with experiments, and the maximum deviation is observed for the asymmetric stretching 

mode(ω3) which is overestimated compared to the experimental value by 64 cm-1. The 

EOMIP-CCSD(2)* method gives a similar performance, with the difference that the 

asymmetric stretching mode(ω3) gets underestimated  by 74 cm-1. The performance is 

much better than the original EOMIP-CCSD(2) approximation and even the standard 

EOMIP-CCSD method. The UCCSD(T) method fails for all the three modes. The 

EOMIP-CCSD* method gives slightly inferior performance as compared to the EOMIP-

CCSD(2)* approximation. 

 

 

8.3.5.2 NO3 

The equilibrium geometry of NO3 has been a matter of long standing debate. The 

experimental geometry [26] of NO3 is D3h and most of the single-reference methods, even 

the coupled cluster method [27-29], predict a C2V geometry. Multi-reference methods [9, 

30, 31] like FSMRCCSD, MRCI and the EOMIP-CCSD(2) method, on the other hand, 

predicts a D3h geometry. 

 

Table 8.12 provides the geometry and IR frequencies of NO3 computed in aug-cc-pVTZ 

basis set. Both, the UCCSD(T) and ROCCSD(T) method  leads to a C2V geometry with 

two long(L1) and one short(L2) bond. In ROCCSD(T) method, the long bond is in 

reasonable agreement with the experimental value. However, the short bond is 

underestimated by 0.039 Å. The UCCSD(T) method gives inferior performance for both 

long and short bonds. All the EOM methods lead to a D3h geometry. The EOMIP-

CCSD(2)* method gives the best agreement with the experimental results(|Δre| = 0.008 

Å) among all the methods used in this study.   
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The UCCSD(T) and ROCCSD(T) method gives very poor agreement for all modes of 

vibrations  of NO3, except the umbrella and symmetric stretching mode. The EOMIP-

CCSD(2)* method, on the other hand, gives very good agreement with the experimental 

values, except for the two asymmetric stretching modes. Specially, the asymmetric 

bending modes in EOMIP-CCSD(2)* method show significant improvement over the 

original EOMIP-CCSD(2) approximation. The two asymmetric stretching modes, 

however, show considerable deviation from the experimental values in all the EOM 

methods. Now, Stanton [34] has shown that the assignment of experimental peak at 1480 

cm-1 is not unambiguous and detailed investigations are required for the assignment of 

these modes, which is outside the scope this present study. 

Table 8.12 : Geometry and Harmonic Vibrational Frequency of Nitrogen Trioxide (NO3 ) in 
aug-cc-pVTZ basis 

Method Bond 
length 

(Å) 
(L1) 

Bond 
length 

(Å) 
(L2) 

ω1 

(asym 
bend) 

ω2  

(asym 
bend) 

ω3  

(umbr-
ella) 

ω4 

(sym 
strech) 

ω5  

(asym 
stretch) 

ω6  

(asym 

stretch) 

UCCSD(T) 1.291 1.198 664 683 732 1031 1063 1615 

ROCCSD(T) 1.252 1.201 414 506 779 896 1082 1499 

EOM-IP-

CCSD(2) 

1.228 1.228 66 66 800 1140 1176 1176 

EOMIP-CCSD 1.221 1.221 305 305 836 1170 1191 1191 

EOM-IP-

CCSD(2)* 

1.232 1.232 172 172 785 1114 1179 1179 

EOM-IP-

CCSD* 

1.226 122.6 349 349 822 1146 1188 1188 

Experiment 1.240a 1.240a 250b 250b 762c 1060c 1480c 1480c 

a : Values taken from ref [26].        b:Values taken from ref [32] .   c:Values taken from ref [33] . 
 

8.3.5.3 Diatomics 

The diatomic doublet radical  suffers from high degree of symmetry breaking and other 

typical problems associated with the theoretical treatment of open-shell molecules and 
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they are often used as the test cases for benchmarking the accuracy of multi-reference 

methods [9]. 

Table 8.13  : Geometry(Å) of doublet diatomic molecules  in aug-cc-pVQZ basis set 

Molecule UCCSD(T) 
 

ROCCSD(T) EOM-
IP-

CCSD 

EOMIP-
CCSD(2) 

EOM-IP-
CCSD(2)* 

EOM-
IP-

CCSD* 

Exp35 

OH 0.970 0.969 0.966 0.966 0.968 0.968 0.969 

O2
+ 1.115 1.115 1.107 1.112 1.117 1.109 1.116 

CN 1.167 1.173 1.161 1.164 1.173 1.167 1.172 

F2
+ 1.306 1.305 1.295 1.295 1.303 1.302 1.322 

CO+ 1.112 1.116 1.104 1.108 1.117 1.112 1.115 

NO 1.148 1.151 1.150 1.145 1.147 1.151 1.151 

The bond length and IR frequencies of six doublet radicals OH, O2
+, CN, F2

+, CO+ and 

NO are given in Table 8.13 and 8.14, respectively. The ROCCSD(T) method gives the 

best agreement with the experimental bond length [35]. The EOMIP-CCSD(2)* method 

gives a comparable performance and it shows significant improvement over the original 

EOMIP-CCSD(2) approximation. Except the case of NO, the EOMIP-CCSD(2)* results 

are generally in better agreement with experiment than that in standard EOMIP-CCSD 

method. The UCCSD(T) and EOMIP-CCSD* method gives a mixed performance, while 

they give very good agreement in some cases, they also leads to inferior performance for 

others. 

Table 8.14 : IR frequency(cm-1) of doublet diatomic molecules  in aug-cc-pVQZ basis set 

Molecule UCCSD(T) 
 

ROCCSD(T) EOM-
IP-

CCSD 

EOMIP-
CCSD(2) 

EOM-IP-
CCSD(2)* 

EOM-
IP-

CCSD* 

Exp35 

OH 3746 3749 3802 3892 3841 3751 3738 

O2
+ 1940 1942 2022 1942 1897 2002 1905 

CN 2137 2068 2174 2134 2055 2119 2069 

F2
+ 1126 1128 1175 1178 1137 1138 1073 

CO+ 2303 2223 2331 2288 2200 2247 2212 

NO 2104 1918 2004 2022 1967 1952 1904 
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In case of IR frequencies also, the ROCCSD(T) method gives the best agreement with 

experimental results [35]. The EOMIP-CCSD(2)* method gives slightly inferior 

performance compared to the ROCCSD(T) method. However, it shows improvement 

over the original EOMIP-CCSD(2) approximation for all the diatomic radicals studied, 

and the results are even better than the standard EOMIP-CCSD method, except for the 

case of OH radical, where the EOMIP-CCSD(2)* method overestimates the experimental 

frequency by more than hundred wave number. The UCCSD(T) and EOMIP-CCSD* 

method give a mixed performance with accuracy range varying from case to case. 

 

 

8.4 CONCLUSION 

In this chapter, we present a new method for calculation of ionization potential. Our 

EOMIP-CCSD(2)* method corrects for the missing relaxation effect caused by the 

truncated T amplitudes in the original EOMIP-CCSD(2) approximation by partial 

inclusion of R3 operator in the EOM part. The EOMIP-CCSD(2)* method scales as non-

iterative N6 and has much smaller storage requirement than the standard EOMIP-CCSD 

method and can be applied to large systems. 

 

The resulting EOMIP-CCSD(2)* method  is free from the problem of overestimation of 

IP values shown by original EOMIP-CCSD(2) method and its extrapolated versions. The 

superiority of method is especially prominent for the ionization of core electrons and 

satellite peaks, where the relaxation effect plays an important role and the new method 

even performs better that the standard EOMIP-CCSD method for the above-mentioned 

cases.   

 

The EOMIP-CCSD(2)* method also predicts geometry and IR frequencies of problematic 

doublet radicals and gives excellent agreement with experimental  results. The results in 
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EOMIP-CCSD(2)* method are comparable to single-reference CCSD(T) approximation, 

and   even better than the standard EOMIP-CCSD method for most of the cases. 

 

However, the routine application of the EOMIP-CCSD(2)* method will require the 

implementation of analytic derivatives. Work is currently underway toward that direction.  
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Epilogue  

 

 

                                          “Let craft, ambition, spite,  

Be quenched in reason's night, 

Till weakness turns into might, 

Till what is darkness is light, 

Till what is wrong be right” 

 
                                                                              Lewis Carroll  

                                                                            Sylvie and Bruno 

 

This thesis tries to deal with the theoretical treatment of problematic doublet 

radicals within the framework of coupled cluster method. The efforts were mainly 

directed towards the two aspects. First, the application of highly accurate 

FSMRCC method towards the study of the high-energy stratospheric radicals. 

Secondly, we went to develop low cost approximation to standard FSMRCC and 

EOMCC methods, which can used to study geometry and properties of large 

radicals in very small computational time.    

 

In the present thesis, we have contained ourselves only in the investigation of NOx 

based pathway of stratospheric ozone depiction. However, there is considerable 

interest in the mixed pathways where two or more species are present and reacting 

together. Proper understanding of the reaction pathways would require the study of 

dynamics, which is difficult to perform in convention multi-reference coupled 

cluster methods, because of the associated computational cost. Therefore, it is 

essential to generate low scaling approximations for them. 

http://www.goodreads.com/author/show/13450.Gabriel_Garc_a_M_rquez
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In this thesis, we have dealt with low cost approximation to IP, EA and spin-flip 

variants of EOMCC. The similar extension can be achieved in case of FSMRCC. 

Specially, our work on IP and EA has open the way to a new method with N
5
 

scaling and low storage requiring method for (1,1)  sector of Fock space. The use 

of density fitting and Cholesky decomposition can be used to further speed the 

calculations. The routine use of the method would require the implementation of 

analytic derivatives and significant coding effort needs to be devoted towards that 

direction. The new developments will enable us to go beyond the small test 

molecules and allow the treatment of big molecules and clusters in multi-reference 

coupled cluster methods, which will lead to new insights into their chemistry and 

biology. Recent times has seen a plethora of effort towards increasing the accuracy 

of single- and multi-reference coupled cluster methods at the expense of 

substantial enhancement in the computational cost. However, there is a lot of 

empty space lies in the devolvement of method, which has lower computational 

cost than the standard coupled cluster method, without significantly compromising 

on its accuracy. So in Richard Feynman’s word 

“There’s plenty of room at the bottom ”… 
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Appendix I 

Expressions for F and W  intermediates for EOMEA-CCSD   

 (2 2 ) 2ab ab a b a b a

ij i kj jk k j j k k

i abk ak

F F t t t t t t ki ab t ik ja ki ja           

 2b

ia j

jb

F t ij ab ij ba    

 2 2 (2 )ca ca c a c a c

ab a ji ij j i i j i

a ijc ic

F f t t t t t t ji bc t ai bc ai cb            

   ba b a a c

aibj ik i k k i

kc k c

W ai bj t t t jk bc t jk ib ij bk t aj bc          

 2ac ac ac c a a c

aijb ik ki ik i k k i

kc ck c k kc

W ai jb t ik bc t jk cb t aj cb t kj ib t t kj cb             

   

   

 

2bc b c dc dc d c

acbi kl k l ki ik i k

lk dk

b d c dc b

k i k ki l

k b k kld

cb b bd c cb d

kl i li k il k

kld kld

db d b cd

ik i k ik

kd kd

W ac bi t t t lk ia t t t t da bk

t ck ia t bc ad t kb ia t t kl ad

t t t t kl da t t kl da lk da

t t t ck da t bk da

     

   

   

  

 

   

 

 

  

b

aibc j

j

W ai bc t ji ca    

   ac a c a c

acbd kl k l k k

kl k

W ac bd t t t kl bd t ck db t ak bd        

Expressions for F and W  intermediates for P-EOMEA-MBPT(2)   

(2 )ab ab

ij i kj jk

i abk

F F t t ki ab      

0
ia

F    
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 2 ca ca

ab a ji ij

a ijc

F f t t ji bc       

 2bc dc dc

acbi kl ki ik

lk dk

db cd

ik ik

kd kd

W ac bi t lk ia t t da bk

t ck da t bk da

   

 

 

 
  

aibc
W ai bc
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Appendix II 

Expressions for modified H   intermediates for RHH and UHF bases SF-CCSD(2) 

and DSF-CCSD(2)[2,3] 

0
ia

F     

1

2

bc

ij ij ik

kbc

F f t jk bc     

1

2

ac

ab ab jk

jkc

F f t jk bc      

1 bc

iajb ik

kc

l ia jb t jk ac    

 2 1

2

cd bc bc

ijka ik il jl

cd lc

l ij ka t kb cd t jc kl t ic kl        

 3 1

2

ab ad bd

icab kl ik ik

kl kd

l ic ab t ic kl t kb cd t ka cd        

4 1

4

cd

ijkl ij

cd

l ij kl t kl cd     

5 1

4

ab

abcd kl

kl

l ab cd t kl cd     

6

ijka
l ij ka   

For ROHF reference the expression for the H  intermediates will be same as that given in 

Ref. 49 of Chapter 6.  
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Appendix III 

Expressions for the R vectors in P-EOMIP-CCSD method 

 SS ij ji
j

H R F R   

     2 2b b b

SD jb ij ji kjib kjbi jki
jb jkb

H R F R R W W R       

 aDS ijka kij
k

H R W R   

 0
a

a a b

DD ik jk jk ik ab ij
ij

k k b

H f R f R f R           
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Erratum 
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