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ABSTRACT 

 

This thesis is concerned with electrospinning of biocompatible polymers, studies on 

microstructure of the electrospun mats and viability of the mats for cell culture 

application. Electrospinning process offers a simple and scalable approach for 

fabrication of non-woven mats comprising fibers of diameters ranging from 

nanometer to micrometer. A wide variety of polymers ceramics and metal oxides can 

be electrospun. We have used Nylon11 for electrospinning nonwoven mats in this 

work. We had varied the Nylon11 electrospinning processing parameters such as 

concentration, viscosity and conductivity of the solution, applied voltage, flow rate 

and distance between the two electrodes to study their effects on fiber diameter and 

morphology. The physical properties of electrospun mats were measured and 

compared with the properties of melt pressed films and solvent cast films. The rapid 

evaporation of solvent and stretching of fibers during electrospinning gives rise to 

measurable differences in the properties of electrospun fibers. The Nylon11 melt 

pressed film and electrospun mats were used as scaffolds for growing cells.  

Nylon11 electrospun mat exhibits hydrophobic nature with the water contact 

angle values of 135o. To use the mats in cell culture studies, we need to make them 

hydrophilic and suitable for growing cells. We have used two surface modification 

techniques to convert hydrophobic Nylon11 electrospun mats to hydrophilic mat and 

facilitate the cell growth. The first surface modification was plasma treatment. Plasma 

treatment is a process by which we can incorporate desired functional groups on the 

surfaces. Followed by the plasma treatment, gold nanoparticles were attached to the 

electrospun mat. Contact angle measurements were performed to compare the 

longevity of the surface modification by plasma treatment and plasma treatment 

followed with attachment of gold nanoparticles. 

One of the methods to increase the biocompatibility of polymer is to blend 

with biocompatible or biodegradable polymers and or by using biocompatible fillers. 

Nylon11/PHB biocompatible blends were prepared using different processing 

techniques such as melt blending, solution blending and electrospinning process. The 

effects of the processing conditions on the structure and morphology of the blends 

were studied. Finally, the electrospun mats of Nylon11, PHB and Nylon11/PHB 

(50:50) electrospun blends were tested in preliminary cell culture studies for their use 



as scaffolding matrices in tissue engineering application. Nylon11/ZnO 

nanocomposites were prepared using electrospinning process. Nylon11/ZnO 

electrospun mats show better piezoelectric response when compared to the Nylon11 

electrospun mats. 

 

This thesis is organized into six chapters.  

 

Chapter 1 provides introduction to of tissue engineering and scaffold fabrication 

methods. The basic concept of electrospinning process is described in detail. Different 

morphologies of electrospun fibers are also presented. Finally, the properties of 

Nylon11 and previous literature on electrospinning of Nylon11 and Nylon11 blends 

are given. 

 

Chapter 2 presents the objectives of the thesis. 

 

Chapter 3 describes electrospinning of Nylon11 by varying processing parameters 

such as concentration, applied voltage and distance between the electrodes. Structural 

analysis of the Nylon11 electrospun mats is compared with Nylon11 melt and solution 

cast films. Nylon11 melt pressed film and electrospun mats were used as scaffolds for 

cell culture applications. 

 

Chapter 4 presents surface modification of Nylon11 electrospun mat, by virtue of 

which the hydrophobic Nylon11 electrospun mats are converted to hydrophilic mats 

that can support cells to grow. 

 

Chapter 5 discusses Nylon11/PHB biocompatible blends prepared from melt, 

solution and electrospinning processes. The effects of the processing conditions on the 

structure and morphology of the blends were studied. The piezoelectric response of 

the Nylon11 electrospun mats was compared with that of Nylon11/ZnO 

biocompatible electrospun mats. 

 

Chapter 6 gives specific recommendations for future work. 

 

   



Chapter 1 

 

 
Introduction  

 

 

 

 

 

 

This chapter gives a brief introduction to electrospinning and tissue engineering. The 

electrospinning process is described in detail. The processing parameters of 

electrospinning and the different morphologies of electrospun fibers and mats are 

described. Next, a brief description of tissue engineering and different scaffold 

fabrication methods are provided with particular emphasis on the application of 

electrospun mats for tissue engineering. Finally, this chapter provides information 

about Nylon11, which has been used extensively in this work. 
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1.1 Introduction to Tissue Engineering 

Scaffold based tissue engineering is an interesting and emerging field. The main role 

of a scaffold in tissue engineering is to provide support for cells to adhere and grow1. 

Ideally as cells start growing, the scaffold should degrade gradually and should not 

inhibit cell growth. The scaffold should have appropriate physical, chemical and 

mechanical properties to promote cell adhesion and tissue formation2.  

Polymers have been widely used as biomaterials for the fabrication of 

scaffolds. Biocompatible and biodegradable natural polymers such as silk, 

polyhydroxybutyrate, chitosan, gelatin and collagen has been successfully used to 

make scaffolds for tissue engineering applications3–5. A few synthetic polymers have 

also been utilized for fabricating scaffolds such as polyethylene oxide and polyvinyl 

alcohol6.  

The main requirements of a scaffold material are that it should be 

biocompatible and biodegradable.  

The other basic requirements of a scaffold are that it should have 

• Three dimensional structure. 

• High surface area.  

• High porosity and interconnected pores to allow cell migration and transfer of 

nutrition and metabolic waste. 

• Adequate mechanical strength.  

• Non-toxicity to the cells.  

• Appropriate degradation rate to match the rate of new tissue formation.  

• Positive interaction with cells to promote enhanced cell adhesion, growth, 

migration and differentiation. 

 
1.2 Scaffolds Fabrication Methods 

Many fabrication methods are available to make polymer scaffolds. The fabrication 

process should produce a scaffold with 3-D architecture because cells and tissue are 

organized into three-dimensional architecture. The choice of manufacturing method 

can influence different characteristics of the scaffolds such as structural architecture, 

porosity and mechanical properties. Figure 1.1 shows different fabrication methods of 

scaffold namely, solvent casting, particulate – leaching, drawing, template synthesis, 

phase separation, self-assembly, freeze drying and electrostatic spinning 

(electrospinning). 

Savitribai Phule Pune University                                                                               2                             



Ph.D. Thes

Savitribai P

Figure 1.1
biomaterial

 
Solv

this process

evaporate t

and involv

such as film

Part

scaffolds fo

are used to

salt filled m

After solve

pore size ca

this process

is little con

Mic

be used to 

only suitab

support the

Nan

The most 

membrane.

is   Chemic

Phule Pune 

1 Different
ls/3dtissues

vent casting

s, a mold is

he solvent7

es potentia

ms or fibres 

ticulate lea

or tissue en

 create pore

mold. Altern

ent evapora

an be contro

s is that it i

ntrol on inter

crofibrous s

produce ve

ble for visc

e stresses tha

nowires and

commonly

  

cal Engineer

University  

t scaffold f
caffolds.cfm

g is a simpl

 dipped into

. The main 

lly toxic so

can be mad

aching is o

ngineering a

es or chann

natively, the

ation, the sa

olled by the

is easy to im

r-connected

caffolds can

ery long fib

coelastic ma

at develop d

d nanorods c

y used tem

ring             

                 

fabrication 
m). 

le process a

o the polym

drawback o

olvents. Als

de by this pr

one of the 

applications

nels. In this 

e porogens 

alt crystals 

e amount an

mplement. T

d porosity. 

n be made b

bers9. The d

aterials. Th

during pulli

can be fabr

mplates ar

                  

                 

methods (

and does no

mer solution 

of this proce

so, scaffold

rocess. 

most pop

s. Porogens 

process, a p

can be mix

are leached

nd size of th

The drawba

by drawing.

disadvantage

he material 

ng.  

icated using

e aluminum

                 

                  

(http://www

ot require la

and allowe

ess is that it

ds of only 

pular techni

(such as sa

polymer so

xed with the

d away to p

he porogens

ack of this p

. Drawing i

e of this tec

must be c

g template s

m oxide a

              Ch

                  

w.nist.gov/m

arge equipm

ed sufficient

t is time con

simple arch

ique for pr

alt, sugar an

lution is ca

e polymer so

produce por

s. The adva

process is th

s a process 

chnique is t

cohesive en

synthesis m

and polyca

hapter 1 

      3          

 

mml/bbd/ 

ments. In 

t time to 

nsuming 

hitecture 

reparing 

nd wax) 

ast into a 

olution8. 

res. The 

antage of 

hat there 

that can 

that it is 

nough to 

method10. 

arbonate 

                   

http://www.nist.gov/mml/bbd/


Ph.D. Thesis   Chemical Engineering                                                              Chapter 1 

Phase inversion is also a popular technique to prepare scaffolds. The phase 

separation mechanism depends on the physical incompatibility of the constituents of 

the mixture. When a homogenous polymer solution undergoes a decrease in 

temperature at least two phases form, the first phase is a polymer rich phase and the 

second one is a polymer lean-phase. By extracting the solvent from the polymer rich 

phase, gelation occurs and results in formation of a network structure with the 

polymer lean phase occupying the pores11. Various porous structures can be achieved 

by this method by varying the thermodynamic and kinetic parameters. The 

disadvantage of this technique is that it is difficult to control the morphology of the 

scaffold. 

Self-assembly process for making scaffolds involves the use of smaller 

molecules as basic building blocks12. The main mechanism for self-assembly is the 

intermolecular forces that organize the smaller units together and determine the shape 

of the macromolecular nanostructures such as nanofibers. The advantage of this 

process is that there is good control on the pore size and fiber diameter. The 

disadvantage is that it is a complicated process and expensive. 

In the last two decades, freeze-drying method has been widely investigated for 

the fabrication of three-dimensional porous scaffolds for tissue engineering13. In 

freeze-drying, the solution is frozen at a low temperature (−70°C to −80°C). The 

solvent is removed by lyophilization under vacuum to produce interconnected porous 

structure. The pore size can be controlled by the freezing rate and pH of the solution. 

The advantage of this technique is that high temperatures are not required. The 

drawback is that the processing time is large. 

Electrospinning process provides a simple route to fabricate non-woven 

fibrous scaffolds containing fibres of diameters ranging from nanometers to 

micrometers. It is a straight forward, inexpensive and scalable process that produces 

continuous nanofibers. Electrospun nonwoven mats have advantages such as high 

surface area, porosity and 3-D environment that allows cells to adhere and grow. 

Disadvantages of electrospinning process are that the mats have limited mechanical 

properties and the pore size is typically submicron. 

Electrospinning is increasingly gaining popularity as the process of choice to 

fabricate biocompatible and biodegradable polymeric scaffolds. A wide variety of 

polymers, ceramics and metal oxides can be electrospun14,15. The usage of electrospun 

nanofibrous scaffolds for biomedical applications has attracted a great deal of 
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conventional head, coaxial heads, air assisted model and a spinneret featuring rotating 

distributor. He also proposed the recovery of a solvent and the use of dielectric liquid 

instead of a gas as a medium. In his work, Morton employed suitable sources of high 

tension of static electricity, such as a Holtz’ static machine, induction coils of large 

size, or Tesla and Thomson machines to create fibrous masses by electrospinning . 

In 1914 John Zeleny, published work on the behavior of fluid droplets at the 

end of metal capillaries. His effort began the attempt to mathematically model the 

behaviour of fluids under electrostatic forces. The principle of modern needle 

electrospinning originated through Zeleny’s work, who designed a needle/capillary 

apparatus for studying electrical discharges from liquid points. His apparatus is, with 

some changes, employed by most research workers to date. The first U.S patent in 

electrospinning was granted to Anton Formhals in 1934 for a process that produced 

fine fibers from a cellulose acetate solution. Formhals had 22 patents on 

electrospinning process.    

In 1969, Taylor published his work on the shape of the polymer droplet 

produced at the tip of the needle when an electric field was applied24. Taylor found 

that the pendant droplet developed into a cone when the surface tension was balanced 

by electrostatic force and that jets were ejected from the vertices of the cone with 

diameters significantly smaller than the diameter of the needle when the electrostatic 

force exceeded its surface tension.  In a detailed report, Taylor determined that an 

angle of 49.3 ° is required to balance the surface tension of the polymer with the 

electrostatic forces. This conical shape of the jet was later referred as the “Taylor 

Cone” in subsequent works.  

A large number of innovations in electrospinning happened around the year 

2000, which includes oriented fibers, multilayer electrospinning, mixed 

electrospinning, fabrication of mats of dual porosity and fabrication of core shell 

nanofibers. More recently, researchers have focused attention on the modification and 

functionalization of electrospun fibers for specific applications. The usage of 

electrospun nanofibrous scaffolds for biomedical applications has attracted a great 

deal of attention over the past ten years.  

 

1.4 Electrospinning Process 

Electrospinning is a process by which sub-micron polymer fibers are produced using 

an electro statically driven jet of polymer solution or polymer melt25. Figure 1.3 
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researchers have studied the effect of proceeding variables on fiber diameter28,29. The 

electrospinning processing variables are listed in the Table 1.1. 

 

Table 1.1 Electrospinning processing parameters. 
 

Solution properties Processing parameters Ambient properties 

Viscosity 

Surface tension 

Conductivity 

Dielectric constant 

Solvent volatility 

Applied voltage 

Distance 

Flow rate 

Needle diameter 

Temperature 

Humidity 

Pressure 
 

 

In the following paragraphs we summarize the effects of the various parameters listed 

in Table 1.1 on the morphology of electrospun mats. 

 

1.4.1 Viscosity  

The viscosity of the solution is directly affected by the concentration of polymer 

present. Higher polymer concentration results in increased inter- polymer interactions 

which ultimately raise the solution viscosity. In the electrospinning process, for fiber 

to be formed a minimum viscosity is required. It is generally observed that increasing 

the viscosity of the solution increases the fiber diameter30. On the other hand, if the 

viscosity is too high, pumping the solution through the syringe pump will be difficult 

or the solution may dry on the tip of the needle before the electrospinning is initiated. 

 

1.4.2 Conductivity  

When the electrical conductivity of the solution is increased, a significant reduction in 

the fiber diameter occurs because the jet carries more charges. The repulsion of the 

charges at the surface of the electrospinning jet causes the solution to stretch and form 

the nanofibers. Polymer solutions of poor conductivity tend to form electro-sprays 

(i.e, droplets). The formation of beaded fibers due to electro-spraying can be avoided 

if a small amount of salt or polyelectrolyte is added to the polymer solution because 

electrical forces of the increased charge carried by the electrospinning jet causes the 

jet to elongate thereby producing uniform fibers31. It is generally observed that fiber 
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diameter decreases with increasing solution conductivity. Additionally, higher 

solution conductivity results in greater bending instability and creates a larger 

deposition area of collected fibers. 

 

1.4.3 Flow Rate 

The flow rate or feed rate of the polymer solution from the syringe is an important 

parameter that affects the jet velocity, Taylor cone formation and material transfer 

rate. It is important to have a balance between the applied voltage and the flow rate. A 

lower flow rate is more desirable as the solvent will get enough time for evaporation, 

and result in a smaller and more consistent fiber diameter. Increasing the flow rate of 

the solution increases the fiber diameter32. 

 

1.4.4 Surface Tension 

Surface tension is caused by the attraction between the molecules in a liquid, which is 

created by a number of intermolecular forces. In the bulk of the liquid, each molecule 

is pulled equally in all directions by neighboring liquid molecules, resulting in a net 

force of zero. At the surface of the liquid, the molecules are subjected to an inward 

force that is balanced only by the resistance of the liquid to compression. The net 

effect causes the surface area to diminish until it possesses the lowest ratio possible of 

surface area to volume i.e, spherical. In electrospinning, the charges on the polymer 

solution and consequently the electrostatic repulsive force on the solution must be 

high enough to overcome the surface tension of the solution. As the liquid accelerates 

from the tip of the needle to the target, the polymer jet is stretched, and if the surface 

tension of the solution is high it may cause the jet to break up into droplets, resulting 

in electro-spraying. 

 

1.4.5 Applied Voltage Gradient 

The electrospinning process produces fibers only if the applied voltage between the 

electrodes is above a given limiting value required to overcome the surface tension of 

the solution. The electrical field is defined as the applied voltage divided by the 

distance between electrodes i.e, between the tip and the collector. Higher electric field 

values are obtained either through the decrease in the distance between the tip and 

collector or by increasing the applied voltage. In electrospinning experiments the 

droplets or fibers transport charges across the gap between the charged needle and the 
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electrically grounded target. As the field strength is increased the fibers experience 

greater stretching which results in decreased fiber diameter33. 

 

1.4.6 Collector Material and Tip-collector Distance  

The type of material chosen for the grounded collector determines the degree of 

surface charge build up during the electrospinning process. It has been demonstrated 

that polymer fiber deposition during electrospinning is inversely proportional to the 

surface charge accumulation on the collector. Therefore a highly conducting collector 

plate is chosen to increase the density of the deposited electrospun fibers.  

Tip-collector distance has a direct influence on jet flight time and electric field 

strength. Shortening the distance between the two electrodes causes an increase in the 

electrical strength between the needle and the collector, and accelerates the 

electrospinning process, thus reducing the time available for evaporation. Therefore, 

the resultant fibers may fuse due to presence of excess solvent to become an 

interconnected fiber mesh. Generally in the electrospinning process, increasing the 

collector distance decreases the fiber diameter. It has also been reported that 

increasing distance between the electrodes increases the average fiber diameter due to 

the reduced strength of the electric field34. 

 

1.4.7 Temperature and Humidity 

Very few studies have been reported on the effect of temperature on electrospinning 

process and on fiber morphology. Increase in temperature causes the evaporation rate 

to increase35. Also increasing temperature lowers the viscosity of the solution thus 

producing higher stretching rate and thinner fibers.  

The humidity of the electrospinning environment may have an influence on 

the polymer jet during electrospinning. Moisture may condense on the surface of the 

fiber when the process is carried out in a very humid environment. Condensation may 

significantly influence the fiber morphology; for example, circular pores can form on 

the fiber surfaces especially when polymers dissolved in volatile solvents are used. 

Researchers have reported that the size and depth of the circular pores increase with 

increasing humidity. 
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strength at room and low temperatures and has the ability to accept high filler 

loadings47. It forms a crystalline phase in which the aliphatic chains are aligned in 

parallel, while the amide group dipoles are oriented perpendicular to the chain 

direction. Nylon11 is used in high-performance applications such as automotive fuel 

lines, pneumatic airbrake tubing, electrical anti-termite cable sheathing, oil and gas 

flexible pipes, sports shoes, electronic device components and catheters. In the present 

work we have extensively investigated the electrospinning of Nylon11. 

 

1.7.1 Previous Work Done on Electrospinning of Nylon11 

The electrospinning of Nylon11 was first demonstrated by Kris Beher etal in 2007. 

They used mixed solvent of formic acid and dichloro methane (DCM) in 1:1 ratio48. 

The electrospinning processing conditions were 20 kV applied voltage and distance of 

10 cm between the electrodes. The concentrations were varied from 2-10 %. For 2 % 

concentration fibers, cylinder shaped fibers with 130 nm diameter were formed. 

Solutions of concentration less than 2 % could not form fibers. By increasing the 

polymer concentration to 5 %, ribbons were formed. The width of the ribbons was 

approximately 1 µm. Further increasing the concentration to 10 % resulted in 

formation of larger size ribbons of 2-20 µm width. The crystallinity of Nylon11 

electrospun mats was found to be higher than the Nylon11 pellets. Raman spectra 

showed no significant difference in bulk and electrospun fibers. 

M. Dhanalakshmi and Jog in 2008 reported electrospinning of Nylon1149. 

Formic acid was used as a solvent for Nylon11 electrospinning. Solution of 10 and 

20wt/vol% concentrations were used for electrospinning and corresponding solution 

cast films also prepared for comparative study. SEM images showed that the solution 

of 10wt/vol% concentration formed circular fibers with diameter of around 200 nm. 

At higher concentration (20wt/vol%) ribbons were formed having width of 800 nm. 

XRD study showed that Nylon11 pellets and solution cast films have α crystalline 

structure, whereas Nylon11 electrospun mat exhibited γ crystalline structure. Thus the 

electrospinning process changed the crystalline structure of Nylon11. The electrospun 

mats were found to have lower crystallinity than the corresponding solution cast 

films. 

 Recently, structure-induced enhancement of thermal conductivities in Nylon11 

electrospun mats was studied by Zhenxin etal50. 1,1,1,3,3,3-hexafluoro-2-propanol 

(HFIP) was used as a solvent for Nylon11 electrospinning. Concentration was varied 
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from 2- 12.5 %. A novel high – sensitivity micro-device platform was employed to 

determine the axial thermal conductivity of individual Nylon11 nanofibers fabricated 

by electrospinning and post stretching. Their thermal conductivity showed a 

correlation with the crystalline morphology measured by high resolution wide angle 

X-ray scattering.  

 

1.7.2 Previous Work Done on Nylon11 Blends 

Nylon11/Polypropylene melt blends51 were studied by K.K Seth and C.J.E Kempster 

in 1977. They showed that addition of small amounts of Nylon11 produces bimodal 

crystal texture in polypropylene with most crystallites having either their c-axis or a-

axis oriented parallel to the fiber axis. Maleic anhydride (MA) modified PP 

copolymer with Nylon11 blends were investigated by Bing Lu and T.C. Chung in 

1999. They found that higher MA concentration results in poor blend morphologies52. 

Mechanical properties and morphologies of Nylon11/Ethylene-Octene copolymer 

blends were investigated by Qi Fang Li etal in 2003. The Ethylene-Octene copolymer 

(POE) was grafted with maleic anhydride (MAH) to increase the compatibility with 

Nylon1153. The mechanical properties and morphology of Nylon11 blended with POE 

depended on the MAH ratio. The tensile strength of the blends was lower than the 

pure Nylon11. 

Crystallization of Nylon11/ Poly (vinylidene fluoride) blends was studied by 

Qiong and Scheinbeim in 2003. The existence of separate melting and crystallization 

temperature over the whole composition range showed that these two polymers did 

not co-crystallize54. However blending affected the crystallization behavior of each 

component. In 2003 another report on Nylon11/ Poly (vinylidene fluoride) blends was 

published by Yongjin Li and Akira Kaito. Blends were prepared by uniaxially 

stretching the melt blends55. 

Guosheng etal in 2004 investigated effect of the maleated ethylene –

propylene-diene copolymer (EPDM-MAH) as a compatibilizer on 

Nylon11/Polyethylene blends56. They studied the morphology and mechanical 

properties of the blends. Ping-Chung Kuo etal in 2006 studied properties and 

biodegradability of Chitosan/Nylon11 blends57. Different ratios of Nylon11/chitosan 

blending films were prepared by solution casting method. The strength of the 

hydrogen bonds in the blended film weakened after addition of chitosan, and 
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spherulite growth was restricted as the ratio of chitosan increased. Biodegradability of 

Nylon11/Chitosan blended films was strongly affected by the addition of Chitosan.  

Nylon11/Ethylene-vinyl alcohol (EVOH)/Dicumyl peroxide (DCP) melt blends 

were reported by Biaobing etal in 200858. The melting behavior and crystallization 

kinetics were investigated using DSC. In 2012 Guo Yunxia et al reported 

Nylon11/Polyethylene-octene melt blends. Maleic anhydride was grafted with 

polyethylene-octene to increase the compatibility of blends59. In 2013 Wenyong etal 

studied melt compounded Poly(L-lactide) (PLLA)/ Nylon11 blends  with small 

amount of rubber, ethylene glycidyl methacrylate-graft- styrene- co- acrylonitrile60. 

Brittle–to tough transition was observed on increasing the rubber sub–inclusion 

concentration in the PLLA phase. 
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2 Objectives 

As mentioned in chapter 1, Nylon11 is a commercially available biocompatible 

polymer; but it has not been explored much for making scaffolds for cell culture and 

tissue engineering. In this work we have investigated the electrospinning of Nylon11 

into non-woven mats which could be used for cell culture. Literature review 

summarized in chapter 1 has revealed that electrospinning of Nylon11 has not been 

studied in detail. Further, no research has been conducted for modifying the 

electrospun Nylon11 mats so as to make them suitable for cell culture application. 

Based on these facts, there are three main research objectives of the present work 

listed below.  

1. The first objective was to prepare nonwoven electrospun mats of Nylon11 and 

study the effect of processing variables on the fiber diameter and morphology 

of mats. 

2. The second objective was surface modification of Nylon11 electrospun mat, 

so as to make the mat hydrophilic and suitable for cell culture.  

3. The third objective was to explore the electrospinning of Nylon11/PHB blends 

and nanocomposites.  

 

2.1 Study of Electrospinning of Nylon11  

The purpose of this part of the work is to study the effect of electrospinning process 

variables on the size of the nanofibers, their properties and the morphology of the mat. 

A potential utility of such a study would be to optimize process parameters to make 

mats of desired morphology and porosity. 

 

2.2. Surface modification of Nylon11 electrospun mat 

Nylon11 is a hydrophobic polymer. In order to use the Nylon11 electrospun mats in 

cell culture studies, it is required to make them hydrophilic and suitable for growing 

cells. In this work, two surface modification techniques have been used to convert 

hydrophobic Nylon11 electrospun mats to hydrophilic mats. The first surface 

modification was plasma treatment, which is a conventional surface treatment method 

that also creates surface roughness. In the second method, the plasma treatment 

method was followed by attachment of gold nanoparticles on the electrospun mat. A 

further objective of this study was to measure the longevity of the surface treatment 

methods by measuring contact angle as a function of aging time. 

Savitribai Phule Pune University                                                                               25                           



Ph.D. Thesis   Chemical Engineering                                                              Chapter 2 

Savitribai Phule Pune University                                                                               26                           

2.3. Nylon11 blends and nanocomposites 

The third objective of this study was to explore the electrospinning of Nylon11 blends 

and nanocomposites, especially using biodegradable and /or biocompatible polymers 

and nanoparticles. A potential utility of such mats would be control on 

biodegradability time and mechanical properties, both of which are useful properties 

of scaffolds. Accordingly, electrospun mats of Nylon11/polyhydroxybutyrate and 

Nylon11/Zinc Oxide nanoparticles were prepared and their structure and properties 

were studied using a variety of characterization techniques. 
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In this chapter we have described the processing, characterization and cell culture 

application of electrospun non-woven nanofibers mats of Nylon11. Among the 

electrospinning process parameters, we have investigated the effects of solution 

concentration, applied voltage and distance between the electrodes on the diameter 

and shape of the nanofibers. The Nylon11 electrospun mats were further characterized 

using Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Dynamic 

Mechanical Analysis (DMTA), Dielectric Relaxation Spectroscopy (DERS), 

Differential Scanning Calorimetry (DSC) and Contact Angle Measurement (CA). The 

properties of these mats were compared with those of melt pressed and solution cast 

films of Nylon11. We have also carried out comparative cell culture studies using the 

HEK293 cells on these films and electrospun mats. 
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3.1 Introduction 

In chapter 1 the electrospinning process was described in detail. We provide below a 

brief summary of the process before describing in detail the work done on 

electrospinning of Nylon11. 

Electrospinning is a cost effective approach for fabrication of polymer fiber 

mats. It provides a simple route to fabricate fibers with diameters ranging from 

nanometer to micrometers. The advantage of these fibers is the huge increase in the 

surface area to volume ratio. A wide variety of polymers, ceramics and metal oxides 

have been electrospun. Electrospinning results in sub-micron polymer fibers that are 

produced using an electro-statically driven jet of polymer solution or polymer melt. 

Processing parameters affect the fiber formation and consequently the fiber diameter. 

Several researchers have studied the effect of electrospinning process variables for 

different polymers dissolved in different solvents1–3. Parameters such as 

concentration, viscosity and conductivity of the solution, applied voltage, flow rate 

and distance between the two electrodes affect the fiber morphology. In general, an 

increase in the concentration of the solution increases the fiber size4,5, an increase in 

the applied voltage decreases the size of the fiber6 and an increase in the distance 

between the electrodes reduces the fiber size7. Temperature, humidity and surface 

tension of the solution also play an important role in the electrospinning process. 

Electrospun fibrous mats find wide applications in water filters8, textiles, sound 

absorbing materials9, sensing of gas and other chemicals10 and more recently as 

scaffolds in tissue engineering applications11,12. 

Tissue engineering is an interesting and emerging field. The main 

requirements of scaffold used for tissue engineering applications are biocompatibility, 

biodegradability, 3-dimensional structure, mechanical strength and interconnected 

porosity. Several different fabrication methods such as solution casting13, freeze 

drying14 and template synthesis15 can be used to fabricate polymer scaffolds. Scaffolds 

made from electrospun non-woven mats have many advantages compared to scaffolds 

made from these fabrication methods. Some of the important advantages are high 

surface area, porosity and 3-D environment16. These characteristics are important for 

cells to adhere and grow. Process parameters of electrospinning can be easily tuned to 

make nonwoven mats with structural features similar to that of the native tissue.  

Natural polymers such as collagen, chitosan, gelatin and silk fibroin have been 

used as scaffolds for tissue engineering application due to their biocompatibility and 
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biodegradability. The main drawbacks of natural polymeric scaffolds are poor 

mechanical strength and batch-to-batch variation. To overcome this problem, 

biocompatible and biodegradable synthetic polymers like polylactic acid (PLA), 

polyhydroxybutyrate (PHB), polycaprolactone (PCL), polyvinyl alcohol (PVA) and 

polyurethane (PU) have been used17–21. 

As mentioned in chapter 1, Nylon11 is a bioderived and biocompatible high 

performance semicrystalline polymer. The crystalline structure and polymorphism of 

Nylon11 have been studied by several researchers22-25. Nylon11 has low water 

absorption compared to other Nylons.  

Inspite of these advantages, there is limited evidence for use of Nylon11 

electrospun mats for biomedical applications. Thus, it is an objective of this work to 

fabricate electrospun mats using a solution of Nylon11 in formic acid and correlate 

the morphology of these electrospun mats with the parameters used in the 

electrospinning process. A second objective of this work is to compare the physical 

properties of Nylon11 electrospun mats with melt pressed and solution cast Nylon11 

films. Finally the electrospun mats have been evaluated for cell culture studies. 

 

3.2 Materials and Methods 

 

3.2.1 Materials 

Nylon11 pellets were purchased from Sigma Aldrich Chemicals. Formic acid was 

procured from Merck, India. MTT assay kit, Dulbecco's Modified Eagle Medium 

(DMEM), Fetal Bovine Serum (FBS) and Trypsin were purchased from Sigma 

Aldrich Chemicals. All chemicals were used as received without any further 

purification. 

 

3.2.2 Preparation of Nylon11 Solution Cast and Melt Pressed Films 

Solution cast films were prepared by slow evaporation of the solvent at room 

temperature for 24 hrs. For comparative study, melt pressed film were also prepared 

from Nylon11 pellets. A laboratory compression press was used for making Nylon11 

melt pressed film. The temperature was set at 220 °C and the applied pressure was 

150 psi (holding time 5 min). After hot pressing, the film was cooled slowly. The 

approximate thickness of the Nylon11 solution cast and melt pressed films were 0.5 

mm. These Nylon11 films were used for the further characterization. 
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3.2.6 Measurement of Viscosity and Conductivity 

Viscosity measurements were performed with MCR 301 Rheometer (Anton Paar, 

Austria) using a cup and bob fixture inserted in a Peltier environmental system 

maintained at 25 °C. A shear rate ramp experiment was carried out over the shear rate 

range of 1 to 1000 s-1. Conductivities of formic acid and Nylon11 solutions were 

measured using Mettler Toledo conductivity meter at room temperature. 

 

3.2.7 X-Ray Diffraction Analysis (XRD) 

Crystalline structures of the Nylon11 samples were characterized using a Rigaku 

Model Dmax 2500 X-ray diffractometer with Cu/Kα radiation, operating at 40 kV and 

100 mA. The samples were scanned over the 2θ range of 10-40 °. Nylon11 melt 

pressed films, solution cast films made from 5-20wt/vol% solutions and electrospun 

mats prepared from 5-20wt/vol% solution at applied voltage of 20 kV and 10 cm 

distance between the electrodes were used for XRD. 

 

3.2.8 Differential Scanning Calorimetry (DSC) 

DSC studies of Nylon11 melt pressed film, solution cast film and electrospun fibers 

(20 kV, 10 cm, 0.1 ml/min) were performed on Differential Scanning Calorimeter 

(DSC-Q100, TA Instrument) with temperature ranging from 0-230 °C and at heating 

and cooling rates of 10 °C/min. The tests were carried out in Nitrogen atmosphere. 

The melting point of polymer (Tm), crystallization temperature (Tc) and % 

crystallinity of electrospun polymer were determined from the first heating and 

cooling respectively. 

 

3.2.9 Dynamic Mechanical Thermal Analysis (DMTA) 

The viscoelastic properties of Nylon11 samples were measured using Dynamic 

Mechanical Thermal Analysis (Rheometric Scientific Inc. model IIIE). Rectangular 

tension-compression geometry was used. The test was carried out in linear 

viscoelastic region over the temperature range of -100 °C to 120 °C at a constant 

frequency of 10 rad/s with 0.02 % strain. Nylon11 melt pressed film, solution cast 

films (20wt/vol%) and electrospun mats (prepared from 20wt/vol% solution, applied 

voltage 20 kV, distance 10 cm and flow rate 0.1 ml/min) were used for DMTA 

studies. 
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3.2.10 Dielectric Relaxation Spectroscopy Analysis (DERS) 

Dielectric frequency response measurement of Nylon11 samples were done using 

Nova control broad band dielectric spectrometer with the ZGS active sample cell 

equipped with a temperature controller. The tan delta response of the material in the 

frequency range of 10-4 Hz to 104 Hz and temperature range of 30 to165 °C was 

measured by placing a 20 mm disk sample between two 20 mm gold plated 

electrodes. Quick drying silver paste was applied to ensure good electrical contact. In 

case of Nylon11 electrospun mats and solution cast films, an aluminum foil was used 

for ensuring good electrical contact. Nylon11 20wt/vol% electrospun mats for DERS 

measurement were prepared using a voltage of 20 kV, distance of 10 cm between the 

electrode and flow rate of 0.1 ml/min. 

 

3.2.11 Contact Angle Measurement (CA) 

Water contact angle measurement was performed by using contact angle instrument 

(Digidrop Instrument- Rame-Hart 100 Goniometer GBX). Deionized water was used 

to measure the contact angle of the Nylon11 scaffolds. Water contact angle 

measurement results reported here are the averages of 6 independent measurements. 

Nylon11 melt pressed film and electrospun fibrous mats were used for contact angle 

measurement analysis. 

 

3.2.12 Cell Culture Study 

 

A) Morphological Study  

Nylon11 melt pressed film and Nylon11 20wt/vol% electrospun mats were sterilized 

by autoclaving for 2 hrs at 120 °C at a pressure of 15 psi. After sterilization, Nylon11 

scaffolds were placed in a 24 well plate in 1 ml DMEM media with 10 % FBS. 

Approximately 3x104 HEK293 cells were inoculated on each Nylon11 scaffold and 

the cell culture plate was used as control. Cells were incubated at 37 °C at 5% CO2 for 

5 days. HEK293 cells on the Nylon11 scaffolds were observed under a Leica-440 

Scanning Electron Microscope after fixation with 2 % formaldehyde and 0.2 % 

gluteraldehyde in phosphate buffered saline (PBS). The microscope was operated at 

20 kV and the micrographs were recorded at different magnifications. 
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B) Cell Proliferation Assay (MTT assay) 

An MTT assay was performed on the Nylon11 cultured scaffolds at regular intervals 

to monitor cell proliferation. After 2 days of cell inoculation on Nylon11 scaffolds, 

the substrates were removed and shifted to a new well and washed with PBS to 

remove non adherent cells and spent media. 600 µl of fresh medium without phenol 

red and 60 µl of MTT [3-(4,5-dimethylthiazoyl-2-yl)-2,5-diphenyltetrazolium 

bromide were added to the Nylon11 scaffolds and incubated for 4 hrs at 37 °C under 

5% CO2. The mitochondrial succinate dehydrogenase converts MTT into a deep 

purple colored formazan compound, and the amount of formazone produced directly 

correlates with the number of viable cells present. Formazone was dissolved in 600 µl 

DMSO (dimethyl sulfoxide). The absorbance at 550 nm was measured. The same 

procedure was repeated on 3rd, 5th, 8th and 10thday after inoculation of cells on the 

Nylon11 scaffolds. All experiments were carried out in triplicate. 

 

3.3 Results and Discussion 

 

3.3.1 Viscosity of the Nylon11 Solution 

Nylon11 solutions in formic acid were prepared at varying concentrations for the 

electrospinning experiments. These solutions were characterized for their viscosity 

and conductivity. Figure 3.3 A depicts the change in viscosity for change in 

concentration of Nylon11 formic acid solutions. Viscosity increases from 0.009 Pa.s 

at 5wt/vo% to 0.29 Pa.s at 20wt/vol%. The data show a scaling of η∝c 2.4 as shown in 

Figure 3.3 B. This exponent suggests that the polymer solution is in the semi-dilute 

regime26.  
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Table 3.1 Average fiber diameter of Nylon11 electrospun fibers with varying 
concentration, applied voltage and distance between the two electrodes. 

 
Concentration 
(wt/vol%) 

Electrode 
distance (cm) 

Fiber diameter (nm) with standard deviation 

5 kV 10 kV 15 kV 20 kV 

5 10 - 69±9 73±11 113±20 

 

 

10 

5 132±20 211±40 251±40 312±60 

10 148±10 209±30 255±40 258±41 

15 - 177±43 222±60 241±41 

 

 

15 

5 246±46 369±56 468±102 308±57 

10 237±52 338±73 353±76 375±75 

15 - 363±96 262±86 392±86 

 

 

20 

5 468±54 741±136 736±145 822±209 

10 
615±152 730±175 770±156 742±136 

15 
686±233 750±174 897±212 905±197 

 

A) Effect of Concentration 

As observed in the earlier section, a change in concentration of Nylon11 in formic 

acid results in significant changes in the viscosity and conductivity of the solution. In 

order to obtain a stable jet, solutions of appropriate concentration were required. If the 

concentration of the solution is too low, a continuous stream of the charged liquid 

(charged jet) cannot be formed. For such solutions, the charged jet undergoes a flow 

instability leading to the formation of droplets (electro spraying). A critical solution 

concentration needs to be exceeded to form a stable continuous charged jet. Similarly, 

conductivity of the solution also affects spinnability. Repulsion of charges at the 

surface of the electrospinning jet causes the solution to stretch and form nanofibers. A 

significant reduction in the diameter of the electrospun nanofibers can therefore be 

observed when the electrical conductivity of the solution is increased because the jet 

carries more charges. Formation of beaded fibers can be avoided if a small amount of 
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voltage. An increase in voltage at constant distance between electrodes can be 

expected to increase the voltage gradient for spinning, which would tend to decrease 

fiber diameter30. However, if the applied voltage is higher, the fibers travel to the 

collector plate at higher velocity and hence in a shorter residence time. Upon reaching 

the collector plate, there is no more elongation of the fiber. The total stretch 

experienced by the fiber is the product of stretch rate and flight time.  Since these two 

parameters vary in opposing manner with increase in voltage, therefore effectively the 

fibers may not end up stretching very much. As a result, our experiments show that 

the fiber diameter is not strongly dependent on the applied voltage. 

 

C) Effect of Varying Distance  

Figure 3.9 shows the morphology of Nylon11 10wt/vol% electrospun mats with 

varying collector distances ranging from 5-15 cm. Both fibers and bead formation 

were observed for Nylon11 10wt/vol% solution spun at an applied voltage of 5 kV 

and at collector distance of 5 cm. Upon increasing the distance to 10 cm and 15 cm, 

uniform fiber formation was observed and the fiber diameters slightly decreased. As 

shown in Figure 3.10 A for Nylon11 10wt/vol%, it was observed that the average 

fiber diameter decreased with increasing distance. This may be because with 

increasing distance the flying time is higher, and this allows enough time for jet to 

elongate and thin down. However for Nylon11 fibers electrospun from 15 and 

20wt/vol% solutions, the fiber diameter increased with increasing the collector 

distance (Figure 3.10 B and C). This is likely due to decreased strength of electric 

field gradient. For these solutions of higher concentrations, the increased viscosity 

does not assist in thinning during the larger flight times. 
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Table 3.2 Different crystalline forms of Nylon11. 

 
Nylon11 

crystalline 

forms 

Methods XRD 2 theta values 

(°) 

α Stretching, or melting 

Solution casting m-cresol 

7.54, 20.39, 23.06 

α′ Melt crystallization 6.93, 20.17, 23.13 

γ Solution casting from trifluoro acetic 

acid 

21.60 

δ′ Melt quenching  7.11, 21.40 

 
Figure 3.11 shows the diffraction patterns of Nylon11 melt pressed film, 

solution cast film and electrospun non-woven mat. The melt pressed film exhibited 

two strong reflections (100) and (110, 010) at the diffraction angles of 2θ=20.32 ° and 

23.17 ο, which correspond to the α and α’ crystalline phase of Nylon11. Solution cast 

films of 5 to 20wt/vol% showed characteristic reflections of 21.6 ° and 23.03 ° 

indicating the coexistence of gamma and alpha crystalline form respectively37. The 

electrospun mats show a broad reflection at 21.6 °, which indicates weakly ordered 

hexagonal gamma crystalline form of Nylon1138. This may be because in 

electrospinning process the structure of the fiber is formed under the influence of two 

simultaneous processes namely the evaporation of the solvent and the elongation of 

the fibers. 

  
 

Savitribai Phule Pune University                                                                               45                           



Savitribai P

Ph.D. Thes

Figure 3.1
film and 20

 

3.3.5 Differ

Differential

microstruct

obtained us

mats were 

parameters 

 

 

 
 
 
 
 

is   Chemic

Phule Pune 

11 XRD an
0wt/vol% el

rential Sca

l Scanning 

ture of Nyl

sing WAXD

subjected t

are present

cal Engineer

University  

alysis of N
lectrospun m

anning Calo

Calorimetry

lon1139. Th

D. Nylon11 

to thermal a

ted in Table

ring             

                 

Nylon11 me
mats. 

orimetry (D

y (DSC) is 

e technique

melt presse

analysis usi

e 3.3. 

                  

                 

elt pressed f

DSC) 

an importa

e can be us

ed film, solu

ing DSC. T

                 

                  

film, 20wt/

nt techniqu

sed to comp

ution cast fi

The melting 

              Ch

                  

 

/vol% solut

ue to unders

plement the

ilm and elec

and crysta

hapter 3 

      46        

tion cast 

stand the 

e results 

ctrospun 

allization 

                   



Ph.D. Thesis   Chemical Engineering                                                              Chapter 3 

Table 3.3 Heat of fusion (ΔHf), melting temperature, crystallization temperature and 
% crystallinity of melt pressed, solution cast and electrospun mats of Nylon11. 

 
Sample coding First heating % 

CrystallinityHeat of 

fusion (ΔHf) 

J/g 

Crystallization 

temperature 

Tc (oC) 

Melting 

temperature  

(oC) 

N11 melt pressed 

film 

55.4 163.5 189.8 26.9 

N11 solution cast 

film 5wt/vol% 

96.7 165.2 189.5 47.4 

N11 solution cast 

film10wt/vol% 

95.9 164.4 190.1 46.5 

N11 solution  film 

15wt/vol% 

86.7 166.1 188.3 41.7 

N11 solution cast 

film 20wt/vol% 

94.3 163.5 189.5 45.7 

N11 ES 10wt/vol% 68.1 166.4 186.7 33.1 

N11 ES 15wt/vol% 62.8 164.4 186.3 30.4 

N11 ES 20wt/vol% 61.0 165.5 186.7 29.6 

 

Figure 3.12 shows first heating and cooling scans of Nylon11 melt pressed 

film, solution cast film and electrospun mats. The crystallinity of samples was 

calculated by dividing the heat of fusion of polymer samples by the heat of fusion of 

100 % crystalline Nylon11. The heat of fusion for 100 % crystalline Nylon11 is 206 

J/g. 
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The electrospun fibers showed higher crystallinity than melt pressed film, 

whereas the solution cast film showed the highest crystallinity. The melting 

temperature for the electrospun fibers is lower, while the crystallization temperature is 

higher as compared to melt pressed film. Interestingly, the electrospun mats has a 

broad crystallization peak. This could be because of residual orientation of nanofibers 

left after first heating. The lower crystallinity of the electrospun mats agreed with the 

weak crystalline order observed in wide angle diffraction results. 

Structure formation during electrospinning is governed by the simultaneous 

processes of rapid evaporation of the solvent and elongation of the solidifying fiber. 

In crystalline polymers, solidification is accompanied with formation of crystals. The 

shorter time for crystallization is expected to result in small crystallites with defects 

and thus lower melting point and lower degree of crystallinity compare to the slow 

solvent evaporation process. The stretching of the fibers during electrospinning can 

offset the rapid solvent evaporation leading to rapid crystallization. However the 

results shown in Table 3.3 show that the effect of rapid solvent evaporation dominates 

crystallization during electrospinning. In contrast, during the preparation of solution 

cast film by slow evaporation of the solvent, the macromolecular chains have 

sufficient time to crystallize thereby forming relative high crystalline order. Similar  

results were reported by Behler et al40. 

 

3.3.6 Dynamic Mechanical Analysis 

In the present investigation, the differences in viscoelasticity as measured in terms of 

storage modulus (E′), loss modulus (E″) and damping factor (tan δ) between Nylon11 

melt pressed film, solution cast film and electrospun mat were studied. The absolute 

values of E’ should not be compared since the dimensions of the sample are not 

identical. Rather, it is only important to note the alpha transition in the samples, which 

is seen as the decrease in E’ over a range of 50-100 °C (Figure 3.13 A), or a peak in 

tanδ (Figure 3.13 B) over the same temperature range. 
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Viscosity and conductivity of the solutions increased with Nylon11 

concentration in solution. Increasing Nylon11 solution concentration increased the 

fiber diameter. Other process variables did not have much effect on fiber diameter.  

XRD results showed that Nylon11 melt pressed film exhibits alpha crystalline 

structure, whereas solution cast film results in coexistence of alpha and gamma 

crystalline structure. However Nylon11 electrospun mats show gamma crystalline 

structure. The formation of gamma crystals is attributed to the possible high rate of 

elongation experienced by the polymer during electrospinning. 

The thermal properties of nanofibers show increase in crystallinity as 

compared to the melt crystallized film but lower crystallinity than solution 

crystallized samples. DMA study shows that Tg of Nylon11 electrospun mat is shifted 

to higher temperature when compared to melt pressed film.  Nylon11 electrospun mat 

exhibits higher activation energy for chain mobility than melt pressed and solution 

cast films. Nylon11 melt pressed film exhibit hydrophilic nature, whereas electrospun 

mats were hydrophobic. 

SEM images of cultured Nylon11 scaffolds show that HEK293 cells adhere 

well on both the melt pressed film and fibrous surfaces. MTT assay showed that the 

cell proliferation rate on the Nylon11 electrospun mat was higher than for melt 

pressed films. 
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4.1 Introduction 

As mentioned in chapter 3, Nylon11 electrospun mats exhibit hydrophobic 

nature with the water contact angle value of 135 °. In order to use Nylon11 

electrospun mats for growing cells, it is necessary to make them hydrophilic and 

thereby facilitate cell growth. D’brotto etal1 have proposed a novel method for 

converting hydrophobic polymeric surfaces to hydrophilic surfaces using gold 

nanoparticles (GNPs). In the present work we have used D’brotto’s surface 

modification method to convert the Nylon11 hydrophobic electrospun mats to 

hydrophilic mats.  

Polymer surfaces are usually modified to increase or decrease the surface 

hydrophilicity (wettability), roughness, ionic charge or pH, and impurities2-4. Several 

methods are available to modify polymer surfaces. Some examples are acid etching 

and plasma treatment. Among these, plasma treatment is more widely used because it 

is a solvent free process and allows facile modification of the physical and chemical 

properties without affecting their bulk properties5. Plasma treatment can be used for 

incorporating desired functional groups on the surfaces. This is done by introducing 

various gases during plasma treatment such as O2
6, H2, N2, NH3

7, Argon8 etc. The 

wetting behavior of a solid surface depends not only on surface chemistry but also on 

the surface roughness. Plasma treatment also induces surface roughness naturally. 

D’brotto etal had demonstrated the surface modification of poly (etherimide) 

(PEI) film with plasma treatment followed by GNP and Lysin attachments. The initial 

water contact angle of the PEI film was 90 °. After the surface modification the water 

contact angle of the PEI film reduced to 25 °. They showed that PEI film treated with 

plasma and attached with GNPs and Lysin enhanced the cell proliferation rate.  

In this work, two surface modification techniques are deployed to modify the 

surface of Nylon11 electrospun mats: Plasma treatment and plasma treatment 

followed by GNP attachment. Plasma treatment was done in presence of N2 and H2 so 

that primary amine groups are created on the mat surfaces. It is well known that GNPs 

have strong affinity to amine groups9. Thus it is anticipated that the GNPs will strong 

adsorb on the plasma treated mats because of the amine groups.  The surface modified 

Nylon11 electrospun mats were characterized by using SEM, TEM and TGA. 

Furthermore, contact angle measurements were performed over an extended period of 

time to compare the longevity of the surface modification of just plasma treated mats 

and plasma treated mats with gold nanoparticles. 
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4.2 Materials and Methods 

 

4.2.1 Materials and Electrospinning Process 

Chloroloauric acid was procured from Sisco Research Laboratory. Electrospun mats 

were prepared from 20wt/vol% solution of Nylon11 in formic acid at an operating 

voltage of 20 kV, flow rate of 0.2 ml/min and distance between the electrodes 10 cm. 

These mats were further used for surface modification studies. 

 

4.2.2 Plasma Treatment Process 

The Nylon11 electrospun mats were exposed to plasma by using K1050 X Plasma 

Asher (power output 0-100 W, Radio frequency (RF) 13.56 MHz). Hydrogen and 

Nitrogen gases were introduced in the plasma chamber. Their presence is expected to 

result in the formation of amine (NH2) groups on the Nylon11 electrospun mats. The 

Nylon11 electrospun mats were placed on the metal plate holder located inside the 

Plasma reactor. After the samples were loaded, the plasma reactor was first pumped to 

a base pressure of 6x10-1 mbar. Then the gas mixture N2 and H2 was introduced into 

the plasma reactor and the pressure was maintained at 5 bar. RF power of 70 W was 

applied to initiate and sustain plasma. The plasma ashing time was set to 15 min. 

 

4.2.3 Synthesis of Gold Nanoparticles 

Gold nanoparticles were synthesized by using chloroauric acid (HAucl4) of 0.1 mM 

solution. 100 µl of chloroauric acid and 100 ml of deionized (DI) water were kept in a 

constant temperature bath at 70 °C for 10 min. 1 g of citric acid was added to the hot 

solution. Within 1-2 min the color of the solution changed to purple, which indicated 

that the gold nanoparticles were formed.  
UV- Spectroscopic measurements of gold solution was carried out using a 

Perkin Elmer Lambda 950 UV-Vis spectrophotometer operated at a resolution of 2 

nm. Figure 4.1 shows the UV–visible data for the aqueous gold solution. The 

spectrum exhibits an absorption band at 530 nm, indicating that gold nano particles 

10-20 nm10 size was formed.  
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Figure 4.1 
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modified Nylon11 electrospun mats were also characterized using Transmission 

Electron Microscopy (JEOL–JEM-2010 UHR) at accelerating voltage of 200 kV and 

80 kV. TEM sample of as-synthesized GNPs were prepared by placing drops of 

dispersion containing GNPs on the carbon coated copper grids. Surface modified 

electrospun mats were cut into small pieces and allowed to float on water. Fibers were 

collected on copper grids.  

Crystalline structures of the samples were characterized using a Rigaku Model 

Dmax 2500 X-ray diffractometer with Cu/Kα radiation, operating at 40 kV and 100 

mA. The samples were scanned over the 2 θ range of 10-50 °. FTIR studies were 

carried out using Perkin Elmer Spectrophotometer in ATR mode. Spectra were 

recorded over the frequency range of 3500-500 cm-1 and resolution of 4 cm-1. Thermal 

stability of Nylon11 and surface modified Nylon11 electrospun mats was studied 

using Perkin Elmer Simultaneous Thermal Analyzer 6000 (STA 6000) over the 

temperature range of 30 to 550 °C at a heating rate of 20 °C/min. The test was carried 

out in Nitrogen atmosphere. The percent weight loss of sample was measured as a 

function of temperature.  

 

4.2.5 Water Contact Angle Study  

The hydrophilicity of the Nylon11 electrospun mats was measured in terms of contact 

angle of water drops. Electrospun mats were placed on the sample holder stage of 

contact angle instrument (Digidrop Instrument- Rame-Hart 100 Goniometer GBX). A 

drop of deionized water (1-3 µl) was placed on the sample surfaces. Images of the 

water droplet were recorded using a video camera. It was observed that for 

hydrophilic surfaces the water droplet spread immediately, whereas with gradual 

decrease in hydrophilic nature of the substrate the water droplet took a finite 

measurable time to spread. The time required for the droplet to spread on the surface 

was measured and was considered as a measure of the hydrophilicity of the surface. 

The water droplet spreads quickly on hydrophilic surfaces, whereas it takes a longer 

time to spread on partially hydrophobic surfaces. Electrospun mats modified with 

plasma and plasma plus GNPs were preserved in a closed container at ambient 

conditions for upto 100 days and contact angle measurements were done every 10 

days. Electrospun mats were dried in a vacuum oven at 70 °C for 4 hrs before 

performing the water contact angle measurement. 
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 Nylon11 can be blended with other polymers and inorganic fillers to enhance its 

properties. In this chapter we describe our work on Nylon11/PHB biocompatible 

blends prepared from different processing techniques such as melt blending, solution 

blending and electrospinning. We also describe the preparation and characterization 

of Nylon11/ZnO nano composites prepared by electrospinning.  
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5.1 Nylon11/PHB Blends 

 

5.1.1 Introduction 

A polymer blend is a mixture of two or more polymers blended together to create a 

new material with different physical properties. An effective blending methodology 

can be utilized to tailor-make morphology and performance of the material for a 

specific purpose1. Polymer blending is important because it allows facile preparation 

of polymers with desired properties, low cost and improved processability. 

A miscible polymer system shows unlimited solubility and zero interfacial 

tension. Therefore a mixture of miscible components is expected to result in a 

homogenous blend with a single Tg2,3. Miscibility can be influenced by various 

factors such as crystallization, intermolecular interaction and surface tension. An 

immiscible system shows limited mutual solubility and a finite interfacial tension, 

resulting in a multi phase structure4,5. For low molecular weight materials, increasing 

temperature generally leads to increase miscibility. For high molecular weight 

polymers, miscibility is usually driven by specific attractive intermolecular 

interactions between the compounds. For such polymers, increasing temperature can 

decrease miscibility. Thus liquid-liquid and polymer-solvent mixtures (that have 

borderline miscibility) usually exhibit upper critical solution temperature (UCST), 

whereas polymer mixtures often exhibit lower critical solution temperature (LCST). 

The most common specific intermolecular interaction occurring between two different 

polymer chains are hydrogen bonding6, ionic bonds7, dipole–dipole interaction and 

donor-acceptor. Polymer blends can be prepared using various techniques such as 

melt blending, solution casting and powder mixing. Recently electrospinning has also 

been  used as an efficient method to produce polymer blends8–10.  

Nylon11 is thermoplastic polyamide prepared from the renewable monomer 

ω-amino undecanoic acid, which is obtained from castor bean oil. It has excellent 

properties such as high mechanical strength, good ductility, excellent resistance to 

solvent, improved fatigue and abrasion resistance. Nylon11 has also been blended 

with other polymers to obtain materials with reduced moisture sensitivity, improved 

toughness and dimensional stability11. The amide group (C=ON-H) in Nylon results 

in strong hydrogen bonding and crystallinity. At the same time because of the polar 

nature and hydrogen bonded structure, polyamides are generally immiscible with 
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The primary objective of this work was to study Nylon11 and PHB blends 

prepared using melt blending, solution blending and electrospinning. The effect of the 

processing conditions on the structure and morphology of the blends were studied. 

The blend compositions investigated here were Nylon11/PHB (30:70), Nylon11/PHB 

(50:50) and Nylon11/PHB (70:30). These blends were characterized using various 

techniques such as SEM, XRD, DSC, FTIR, DMA, TGA and water contact angle 

measurement. The electrospun mats were also characterized for their morphology and 

microstructure. Finally, the Nylon11, PHB and Nylon11/PHB (50:50) electrospun 

mats were tested in preliminary cell culture studies.  

 

5.1.2 Materials and Methods 

 

5.1.2.1 Materials 

Nylon11 and PHB were purchased from Sigma Aldrich Chemicals and were used as 

is. Formic acid was procured from Merck. 

 

5.1.2.2 Blend Preparation 

Nylon11/PHB blends having composition of 30:70, 50:50 and 70:30 weight/fractions 

were prepared by using melt and solution blending. Melt blending was carried out 

using DSM co-rotating twin screw micro compounder. The polymer were blended at 

200 °C using 60 rpm screw speed for 5 min. Films were prepared from the blends 

using a laboratory compression press at 220 °C at an applied pressure of 150 psi for 5 

min. The thickness of the film was approximately 0.5 mm. 

 Solution blends were prepared at a fixed polymer concentration of 15 wt/vol% 

in formic acid which serves as the common solvent. Polymers were dissolved at 

constant temperature of 70 °C for 3 hrs. Solution-blended polymer films were 

prepared by slow evaporation of the solvent at room temperature for 48 hrs.  

Blends of Nylon11 and PHB were also prepared by electrospinning from 

formic acid solution under the following conditions: 

Solution concentration: 15 wt/vol% 

 Voltage: 20 kV 

Flow rate: 0.2 ml/min 

 Distance between the electrodes: 10 cm 
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5.1.2.3 Characterization 

Steady shear experiments were performed to measure the viscosity of Nylon11, PHB 

and their blend solutions. The experiments were performed on MCR 301 Rheometer 

(Anton Paar, Austria) using a cup and bob fixture inserted in a Peltier environmental 

system that was maintained at 25 oC. Conductivity of Nylon11, PHB and their blend 

solutions were measured using Mettler Toledo conductivity meter at room 

temperature. The viscosity of the melt blends were measured by using Rheometer 

(ARES G2). Parallel plate of 10 mm diameter was used at 200 °C and at a shear rate 

of 0.3 s-1. The morphologies of electrospun Nylon11, PHB and their electrospun 

blends were studied by using Scanning Electron Microscope (SEM Leica-440) 

operated at 20 kV. Electrospun mats were directly mounted on the SEM sample 

holder and the micrographs of representative areas were recorded at different 

magnifications. The sample surfaces were coated with gold to avoid specimen 

charging. Crystalline structure of the samples was characterized using a Rigaku 

Model Dmax 2500 X-ray diffractometer with Cu/Kα radiation, operating at 40 kV and 

100 mA. The samples were scanned over the 2 θ range of 10-50 °. DSC studies of 

Nylon11/PHB melt, solution and electrospun blends were performed on Differential 

Scanning Calorimeter (DSC-Q100, TA Instrument) over a temperature range of 0-220 

°C and at heating and cooling rates of 10 °C/min. The tests were carried out in 

Nitrogen atmosphere. The melting point (Tm), crystallization temperature (Tc) and % 

crystallinity were determined from the first heating and cooling respectively. FTIR 

studies were carried out using Perkin Elmer Spectrophotometer in ATR mode. The 

spectra were recorded over the frequency range of 3500-500 cm-1 at resolution of 4 

cm-1. Thermal stability of Nylon11, PHB and their blends was studied using Perkin 

Elmer Simultaneous Thermal Analyzer 6000 (STA6000) over the temperature range 

of 30 to 550 °C at a heating rate of 20 ° C/min. The test was carried out in a Nitrogen 

atmosphere. The percent weight loss of sample was measured as a function of 

temperature. The viscoelastic properties of Nylon11, PHB and their melt blends were 

measured using Dynamic Mechanical Thermal Analyzer (RSA-3, TA Instruments). A 

rectangular tension-compression geometry was used. The test was carried out in linear 

viscoelastic region over the temperature range of -100 °C to 150 °C at a constant 

frequency of 10 rad/s with 0.02% strain. Water contact angle measurement was 

performed by using water contact angle meter (Digidrop instrument). Deionized water 

was used to measure the contact angle of the Nylon11 scaffolds. Water contact angle 
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measurement results reported here are the averages of 6 independent measurements. 

Nylon11 melt, solution and electrospun blends were used for contact angle 

measurement analysis. The cell culture procedure was same as described in the 

chapter 3. 

 

5.1.3 Results and Discussion      

 

5.1.3.1 Measurement of Viscosity and Conductivity of the Solution 

15 wt/vol% solutions of Nylon11, PHB and their blends in formic acid were used for 

viscosity and conductivity measurements and this data is summarized in Table 5.1. 

The viscosity and conductivity of the Nylon11 solutions was higher than the PHB 

solution.  

 

Table 5.1 Viscosity and conductivity values of Nylon11, PHB and their solution 
blends. 
 

Composition Viscosity Pa.s Conductivity μS/cm 

Formic Acid 0.0016 307 

PHB 0.11 318 

Nylon11/PHB (30-70) 0.08 1689 

Nylon11/PHB (50-50) 0.09 2470 

Nylon11/PHB (70-30) 0.10 3090 

Nylon11 0.14 4310 
 

The Figure 5.1 A and B shows viscosity and conductivity of Nylon11 solution, 

PHB solution and their solution mixtures. The viscosities of the blends were lower 

than the base polymers, which suggested an attractive interaction between the 

polymers. The conductivity increases as the concentration of the Nylon11 in solution 

is increased, as a result of which the spinnability improved with increasing Nylon11 

content.  

 

Savitribai Phule Pune University                                                                               80                           



Savitribai P

Ph.D. Thes

Figure 5.1
conductivit
Experiment
blends at 20

is   Chemic

Phule Pune 

 

1 Experim
ty of Nylon
tal and pre
00 °C and 0

cal Engineer

University  

mentally det
n11 solution
edicted visc
0.3 shear rat

ring             

                 

 
termined a

n, PHB solu
cosity of N
te (C). 

                  

                 

and predict
ution and th
Nylon11 me

                 

                  

ted values 
heir solution
elt, PHB m

              Ch

                  

 

 

 

of viscos
n blends (A 
melt and th

hapter 5 

      81        

sity and 
and B). 

eir melt 

                   



Ph.D. Thesis   Chemical Engineering                                                              Chapter 5 

The viscosity and conductivity of solutions containing Nylon11 and PHB can 

be estimated using the measured viscosities and conductivities of individual polymer 

solutions by using following equations. 

  

ࢊࢋ࢚ࢉ࢏ࢊࢋ࢘࢖ࣁ ൌ ቆ
࡮ࡴࡼࣘ

ࢊ࢔ࢋ࢒࡮

࢔࢕࢏࢚࢛࢒࢕࢙ ࡮ࡴࡼࣘ
ቇ כ ࢔࢕࢏࢚࢛࢒࢕࢙ ࡮ࡴࡼࣁ ൅ ቆ

૚૚ࡺࣘ
ࢊ࢔ࢋ࢒࡮

࢔࢕࢏࢚࢛࢒࢕࢙ ૚૚ࡺࣘ
ቇ כ  ࢔࢕࢏࢚࢛࢒࢕࢙ ૚૚ࡺࣁ

 

ࢊࢋ࢚ࢉ࢏ࢊࢋ࢘࢖࣌ ൌ ቆ
࡮ࡴࡼࣘ

ࢊ࢔ࢋ࢒࡮

࢔࢕࢏࢚࢛࢒࢕࢙ ࡮ࡴࡼࣘ
ቇ כ ࢔࢕࢏࢚࢛࢒࢕࢙ ࡮ࡴࡼ࣌ ൅ ቆ

૚૚ࡺࣘ
ࢊ࢔ࢋ࢒࡮

࢔࢕࢏࢚࢛࢒࢕࢙ ૚૚ࡺࣘ
ቇ כ  ࢔࢕࢏࢚࢛࢒࢕࢙ ૚૚ࡺ࣌

 

Where η is the viscosity, σ is the conductivity and φ is the volume fraction.  

 

The above equation assumes validity of the law of additivity of mixtures. The 

predicted conductivity values of solution blends are in good agreement with 

experimental data. On the other hand, Nylon11/PHB solution blends exhibit negative 

deviation from the additive rule. It is likely because of small attractive interaction 

between Nylon11 and PHB. 

 In the case of melt blends the viscosity values increased with increasing 

concentration of the Nylon11 in blends. Assuming the validity of the rule of 

additivity, 

஻௟௘௡ௗߟ݈݊ ൌ ௉ܹு஻ כ ௉ு஻ߟ݈݊ ൅ ேܹଵଵ כ  ேଵଵߟ݈݊

 

Where η is the viscosity and ܹ are the weight fractions of the two polymers. Here 

again the experimental values shows a negative deviation from the additivity rule (See 

Figure 5.1.C). 

 

5.1.3.2 Morphological Studies of Electrospun Fibers of Nylon11, PHB and their 

Blends 

Figure 5.2 shows SEM micrographs of PHB, Nylon11 and their electrospun blends. 

The SEM images show that PHB forms branched fibers along with some beads. Also, 

it was observed that the PHB solution could not form continuous fibers. This may be 

attributed to the low conductivity of PHB solutions, which results in restricted fiber 
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Figure 5.3 C shows crystalline structures of electrospun fibers of Nylon11, 

PHB and their blends. Nylon11 electrospun mats exhibited weakly ordered gamma 

crystalline phase22, which shows a reflection at 21.6 °. In the electrospinning process, 

the structure of the fibers is formed under the influence of two simultaneous processes 

namely the evaporation of the solvent and the elongation of the fibers. A coexistence 

of alpha and beta phase of PHB was observed in the electrospun blends and thus it can 

be concluded that PHB crystallizes to give the same microstructure irrespective of the 

processing techniques used here. However the long-range order of Nylon11 and PHB 

were found to be lower in electrospun mats. 

 

5.1.3.4 Differential Scanning Calorimeter (DSC) 

The DSC first heating and cooling curves for pure Nylon11, PHB and their 

electrospun blends are shown in Figure 5.4. The heating run shows endothermic 

temperature peaks at 189 °C and 164 °C corresponding to the melting transitions of 

pure Nylon11 and PHB. Nylon11/PHB blends exhibited two melting peaks in all the 

three blends shown in Figure 6.4 A-C. Similarly two melting peaks were observed in 

Nylon6/PHB blends23. This indicates Nylon11/PHB blends do not co-crystallize. 

Cold crystallization peak of PHB was observed at 58 °C by Zhaobin Qiu 

etal24. In neat PHB we did not observe any cold crystallization peak. However, the 

Nylon11/PHB (70:30) melt blend, solution blends N11/PHB (50:50) and N11/PHB 

(70:30) exhibited cold crystallization peak at around 43°C. However Nylon11/PHB 

electrospun blends were observed to show cold crystallization for all compositions. 
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Table 5.2 DSC first heating results of Nylon11, PHB and their melt, solution and 
electrospun blends. 
 
 

Composition Melt blend  (First heating) Tc (°C) 

Tm (°C) (ΔHf) J/g % 

Crystallinity 

N11 PHB N11 PHB N11 PHB N11 PHB

PHB - 167.6 - 87.7 - 60.0 - 81.4 

N11/PHB (30:70) 189.2 168.4 45.4 74.7 22.0 51.1 166.2 74.0 

N11/PHB (50:50) 190.7 169.6 44.5 78.4 21.6 53.6 165.5 69.4 

N11/PHB (70:30) 193.4 169.9 32.6 16.9 17.5 11.5 164.9 67.2 

Nylon 190.3 - 55.3 - 24.4 - 163.5 - 

Solution blend  (First heating) 

 N11 PHB N11 PHB N11 PHB N11 PHB

PHB - 162.8  104.6  71.6 - 74.3 

N11/PHB (30:70) 189.7 172.1 14.3 49.7 6.9 34.0 165.9 81.6 

N11/PHB (50:50) 188.3 168.3 55.7 22.8 27.1 15.6 165.9 76.1 

N11/PHB (70:30) 188.9 168.7 49.3 18.5 23.9 12.7 162.2 76.1 

Nylon 189.0 - 47.1 - 44.8 - 164.5 - 

Electrospun mats (First heating) 

 N11 PHB N11 PHB N11 PHB N11 PHB

PHB - 171.7 - 101.3 - 69.0 - 84.0 

N11/PHB (30:70) 187.4 168.9 16.6 50.5 8.0 34.5 137.0 91.0 

N11/PHB (50:50) 189.7 169.0 30.6 37.6 14.8 25.7 160.0 71.0 

N11/PHB (70:30) 189.6 168.4 38.3 17.3 18.5 11.8 165.0 69.9 

Nylon11 189.2 - 75.2 - 36.5 - 165.0 - 
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Table 5.2 shows the melting temperature and crystallinity values for both 

polymers in all three types of Nylon11/PHB blends. The ΔHf values for both polymers 

in the blends have been calculated after accounting for the compositions. Thus, ΔHf 

given in Table 5.2 is calculated as ᇞ ௙,   ௫ܪ
௠௘௔௦௨௥௘ௗ/ݓ௫, where ݓ௫ is the weight fraction 

of the component ݔ   ( ݔ  = PHB or Nylon11). Non-isothermal DSC data on 

Nylon11/PHB blends indicate reduced order and reduced degree of crystallinity of 

Nylon11 in all the three blends. The degree of crystallinity of PHB is aslo 

significantly reduced. For electrospun mats the rate of evaporation is high, which 

hinders crystal formation. However it is also accompanied by high stretching of the 

fiber, leading to some crystallinity in the fiber. The lower crystallinity of electrospun 

mat agrees with the weak order observed in the wide-angle data. The melting points 

of Nylon11 and PHB in blends did not show any depression relative to pure 

component value.  

 

5.1.3.5 Fourier Transform Infrared Spectroscopy (FTIR) 

The FTIR spectrum of Nylon11 melt pressed film is expected to show α crystalline 

form, whereas Nylon11 electrospun mats show spectrum corresponding to the γ 

crystalline form. Ramesh etal25 have reported the FTIR bands for these two crystalline 

forms of Nylon11. These are documented in Table 5.3 26-27. The amide I band appears 

at 1634 cm-1 for α phase; for the γ phase it shifted to 1639 cm-1. The amide II band 

appears at 1537 cm-1 for the α phase. It shifts to 1549 cm-1 for the γ phase. The amide 

II band arises mainly from the in-plane N-H bending and has contribution from 

ordered, disordered and free N-H groups. The amide band at about 3300 cm-1 is 

assigned to N-H vibration. In the Nylon11 α crystalline form this peak appears at 

3302 cm-1 and for the γ crystalline form it is seen at 3298 cm-1.  

In Nylon11/PHB blends there is a likelihood of the formation of hydrogen 

bonding between the amide group of Nylon11 and the ester and hydroxyl groups of 

PHB leading some amount of miscibility. A shift in the NH and C=O stretching bands 

would reflect hydrogen bonding of amides groups. ATR spectra of Nylon11, PHB and 

their melt, solution and electrospun blends are shown in Figure 5.5. We observed that 

the FTIR spectra of the blends were the sum of the two individual components. This 

suggests that the Nylon11 and PHB do not show significant hydrogen bonding. 
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Table 5.3 FTIR assignments of Nylon11 and PHB. 

 

Nylon11 PHB 

Peak 

Position (cm-1) 

Assignment Peak 

position 
(cm-1) 

Assignment 

3309 

3297 

NH Stretching (α)

NH Stretching (γ)

1725 C=O Stretching, C=O 
amorphous carbonyly group 

2924 Asymmetric CH2 1453 C-H bending 

2852 Symmetric CH2 1379 Symmetric CH3 

1640 

1639 

Amide I (α) 

Amide I (γ) 

1279 Asymmetric C-O-C Stretching 

1537 

1555 

Amide II (α) 

Amide II (γ ) 

1227 CH3 Vibration 

1371  1180 Asymmetric C-O-C Stretching 

1279  1100 Symmetric stretching of C-O 
bond 

1223 C-C Stretch 1056 C-O Stretching, CH2 rocking 

1192 CH
2
  Wagging 1044 C-O Stretching and C-H bending 

1160 CH
2 
Twisting    

1123 C-C Stretch   

936 C=O Stretch   

721 

709 

CH
2
 Rocking (α) 

CH
2
 Rocking (γ ) 
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Table 5.4 The thermal decomposition temperature of Nylon11, PHB and their melt, 
solution and electrospun blends. 
 
 

Blend 

compositions 

Melt blends Solution blends Electrospun blends 

First derivative peak 

temperature (°C) 

First derivative peak 

temperature (°C) 

First derivative peak 

temperature (°C) 

 N11 PHB N11 PHB N11 PHB 

N11 440 - 459 - 475 - 

N11/PHB(70:30) 454 300 431 303 479 301 

N11/PHB(50:50) 455 304 444 306 485 326 

N11/PHB(30:70) 459 280 461 299 476 324 

PHB - 280 - 289 - 304 

 

Figure 5.6 shows that TGA weight loss curve of PHB, Nylon11 and their melt, 

solution and electrospun blends. The weight loss of pure PHB and pure Nylon11 

occurred in one step. The thermal stability of the Nylon11 was better than that of the 

pure PHB. The thermal decomposition temperature (first derivative peak temperature) 

of Nylon11 was approximately 440 °C28, while that  of pure PHB was 280 °C. All 

blends showed two step degradation, the first step corresponding to PHB and the 

second to Nylon11. The blending of PHB with the Nylon11 significantly improved 

the thermal stability of the PHB29. The enhanced thermal stability in the blending 

system improved the processing ability of the PHB. The decomposition temperatures 

of Nylon11, PHB and their electrospun blends were slightly higher than the 

corresponding solution blends and melt blends.  
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5.2 Nylon11/ZnO Electrospun Mats 

 

5.2.1 Introduction 

Of late there is growing interest in developing flexible biocompatible energy 

conversion devices that can convert easily available mechanical energy into electrical 

energy for powering electronic devices. Simultaneously, the combination of 

nanotechnology and piezoelectricity has resulted in the development of a new class of 

piezoelectric nano structured materials. Such materials are known to exhibit enhanced 

piezoelectric effect, which makes them useful for developing a wide range of 

applications in nano electromechanical systems, nano sensors33, transducer34, nano 

generator, nano resonators, diodes35 and piezoelectric field effect transistors. 

Piezoelectric nanostructure can be in the form of nanowires, nano films, nano plates, 

nano ribbons and nano rings36. Nanostructure can be achieved by thin film coating, 

spin coating, solution cast film and electrospinning process. Recently electrospinning 

has been widely explored and demonstrated as a suitable method for preparation of 

nanocomposites37. The composite nanofibers have potential applications in filtration, 

protective clothing, electronics, energy storage devices, sensors and tissue 

engineering. 

Zinc Oxide (ZnO) is a semi-conducting material which exhibits piezoelectric 

and pyroelecric properties. It has high thermal conductivity, heat capacity and higher 

melting temperature. Among numerous semiconducting materials, ZnO with a wide 

band gap of 3.4 eV and high electron mobility, has many promising applications in 

optoelectronics38, solar cells39, chemical sensor40 and photo detector41. Due to its band 

gap in the UV range, ZnO acts as a good UV blocking agent and also has anti-

microbial activity42. In cosmetics industry, ZnO nanoparticles are used in sunscreen 

creams and anti-microbial agents. 

We have used Nylon11 electrospun nanofibers embedded with ZnO 

nanoparticles to create a biocompatible nano-scaled piezoelectric material. The 

Nylon11/ZnO electrospun mats were prepared by using electrospinning process. 

These mats were further characterized by using SEM, TEM, XRD, DSC and TGA. 

The piezo-electric response of Nylon11/ZnO electrospun mats was compared with 

Nylon11 electrospun mats. 
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5.2.2 Materials and Methods 

 

5.2.2.1 Materials 

Nylon11 pellets and ZnO nanoparticles were purchased from Sigma Aldrich 

Chemicals. Formic acid was procured from Merck, India. 

 

5.2.2.2 Solution and Nanocomposites Preparation 

Nylon11 solutions were prepared at a fixed concentration of 20wt/vol% in formic 

acid. 5wt% of ZnO was directly added to the solvent along with Nylon11 pellets. 

Sonication was done for 5 min to disperse ZnO. In the next step, solutions were 

prepared in a constant temperature bath at 70 °C for 3 hr in formic acid. 

Electrospinning of Nylon11 and Nylon11/ZnO nanofibers were done at the following 

conditions: 

Solution concentration: 20 wt/vol% 

ZnO: 5 wt% 

Voltage: 20 kV 

Flow rate: 0.2 ml/min 

Distance between the electrodes: 10 cm 

 

5.2.2.3 Characterization 

The morphologies of Nylon11 and Nylon11/ZnO electrospun mats were studied by 

using Leica-440 Scanning Electron Microscope (SEM) operated at 20 kV. 

Electrospun mats were directly mounted on the SEM sample holder and the 

micrographs of representative areas were recorded at different magnifications. The 

sample surfaces were coated with gold to avoid specimen charging. Particle size of 

ZnO was characterized using Transmission Electron Microscopy (JEOL–JEM-2010 

UHR) at accelerating voltage of 200 kV and 80 kV. Crystalline structures of the 

samples were characterized using a Rigaku Model Dmax 2500 X-ray diffractometer 

with Cu/Kα radiation, operating at 40 kV and 100 mA. The samples were scanned 

over the 2 θ range of 10 to 80 °. DSC studies of Nylon11 and Nylon11/ZnO 

electrospun mats were performed using Differential Scanning Calorimeter (DSC-

Q100, TA Instrument) over a temperature range of 0-220 °C and at heating and 

cooling rates of 10 °C/min. The tests were carried out in Nitrogen atmosphere. The 

melting point (Tm), crystallization temperature (Tc) and % crystallinity were 
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Figure 5.12 X-ray powder diffraction patterns of ZnO and Nylon11/ZnO nanofibers. 
Inset shows magnified XRD peak for Nylon11 corresponding to the γ crystalline 
structure. 
 

5.2.3.4. Differential Scanning Calorimetry (DSC) 

The melting point of Nylon11 electrospun fibers was 186.7 °C. The melting point of 

Nylon11/ZnO nanofibers were 187.4 °C. Table 5.6 shows melting temperature, 

crystallization temperature and % crystallinity of Nylon11 and Nylon11/ZnO 

electrospun mat. DSC results revealed that melting temperature and crystalline 

temperature of Nylon11 did not change with incorporation of ZnO nanoparticles.  
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peak voltage was 1.2 V. Nylon11/ZnO nanocomposites showed better piezoelectric 

response compared to Nylon11 electrospun mat45.  

 

5.4. Conclusions 

Nylon11/PHB blends were successfully prepared by melt, solution and 

electrospinning process. Solution viscosity of blends was lower than the base 

polymer. Conductivity of the blend solutions increased with increasing concentration 

of the Nylon11. Melt viscosity of Nylon11 film exhibited higher values compared to 

PHB melt. However, in blends viscosity values increased with increasing the 

concentration of the Nylon11. SEM images revealed that PHB exhibited branched and 

beaded fiber morphology, whereas Nylon11 electrospun mats show ribbon like fibers. 

However Nylon11/PHB (50:50) blends show uniform circular fiber.   

Wide angle X-ray diffraction results show that PHB crystallized in alpha and 

beta form that coexisted in all the three blends. Nylon11 crystallized in α form in melt 

blends, while coexistence of α and γ form was seen in solution blends. The 

electrospun mats showed predominantly γ form. In DSC, Nylon11 and PHB exhibited 

separate melting and crystallization temperatures. From the DSC results it was 

confirmed that Nylon/PHB blends are immiscible. Solution blends exhibited higher 

crystallinity when compared to the melt blend and electrospun mats. DMA study 

shows that Tg of Nylon11/PHB melt blends were intermediate between the Tg of 

Nylon11 and PHB. TGA studies showed that thermal stability of PHB was increased 

in blends. Hydrophilicity measurement shows that Nylon11/PHB melt and solution 

blends were relatively more hydrophilic in nature than PHB, Nylon11 and 

Nylon11/PHB electrospun mats. SEM images show that cells are able to adhere and 

spread over on all the three mat surfaces. MTT assay revealed that PHB electrospun 

mat show improved proliferation rate followed by Nylon11/PHB (50:50) blends and 

Nylon11. 

EDAX and TEM images show that ZnO nanoparticles were uniformly 

dispersed on the Nylon11 electrospun mat. ZnO nanoparticles did not induce any 

changes in the thermal properties of Nylon11. DMA study showed that Nylon11/ZnO 

electrospun mat exhibited higher Tg than Nylon11. The decomposition temperature of 

Nylon11/ZnO electrospun mats was decreased when compared to Nylon11 

electrospun mats. The Nylon11/ZnO electrospun mats show better piezoelectric 

response compared to the Nylon11 electrospun mat.  
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Recommendations for further work 

 

 

 

 

Based on the results presented in the previous three chapters and the inferences drawn 

therefrom, three specific recommendations are proposed to take the work forward. 

These are presented in this chapter. 
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In chapter 3 the main results of electrospinning of Nylon11 were presented. Specially, 

the effects of electrospinning process parameters on the morphology of the mats and 

the size of the nanofibers were discussed. In chapter 4, surface modification of 

Nylon11 electrospun mats was described. Two surface modification techniques 

namely, plasma treatment and attachment of gold nanoparticles were demonstrated. 

Based on the work presented in chapter 3 and 4 the following recommendations for 

future work are suggested. 

It would be useful to design multi-layered scaffold in which the base layer 

could be a high strength, macroporous Nylon11 substrate such as a woven fabric on 

which layers of electrospun Nylon11 non-woven fabric of varying fiber porosity can 

be deposited using the knowledge of the effect of electrospinning process variables on 

mat morphology and fiber size obtained from the present work. Such multi-layered 

structures will be able to provide optimal combination of strength, porosity and 3D 

structure that is favorable for cell culture or other biomedical applications such as 

wound dressing. Further, these multi-layered mats can be surface treated using the 

techniques presented in this work. Specifically, the gold nanoparticles can be used as 

a substrate to attach various functional groups such as growth factors and cleavable 

drugs so as to make cell culture scaffolds or dressing pads. These ideas can be taken 

up as future work. 

The second recommendation for future work originates in the interesting 

observation described in chapter 4 namely, the longevity of hydrophilicity of surface 

modified mats. It was shown in chapter 4 that a water droplet spreads gradually with 

increasing time on plasma treated mats. This is an unusual observation because it 

suggests that in the presence of a water drop, the polar functional groups created by 

plasma treatment such which get buried in the surface layer with aging, are reoriented 

back to the surface. Such reorientation driven possibly by the presence of a water 

droplet has never been observed before, and therefore should be investigated in detail. 

 The third recommendation is based on the work presented in chapter 5 on 

Nylon11/PHB blends and Nylon11/ZnO nanocomposites. While Nylon11 takes a long 

time for biodegradation, PHB degrades more rapidly. Thus electrospun blends of 

Nylon11 and PHB might show good control on the time required for biodegradation. 

Also, etching/biodegradation of PHB could result in porous nanofibers. Thus the 

degradation studies of Nylon11/PHB blends are recommended. Also, the ability of 

Nylon11 to incorporate fillers during electrospinning was demonstrated on 
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