"Total Syntheses of (+)-Cylindricine C, D, E and (-)-Lepadiformine A by Development of a Non-Biogenetic Tandem Rearrangement"

A THESIS
SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (IN CHEMISTRY)
TO
\section*{SAVITRIBAI PHULE PUNE UNIVERSITY}

BY
Janakiram V
(Research Guide)
Prof. Ganesh Pandey

ORGANIC CHEMISTRY DIVISION
CSIR-NATIONAL CHEMICAL LABORATORY
PUNE-411008
June - 2015

Dedicated $\mathcal{T o}$

Chemistry Lab

DECLARATION

I hereby declare that the work presented in the thesis entitled "Total Syntheses of (+)-Cylindricine C, D, E and (-)-Lepadiformine A by Development of a Non-Biogenetic Tandem Rearrangement" submitted for Ph. D Degree to the University of Pune, has been carried out at CSIR-National Chemical Laboratory, Pune under the supervision of Prof. Ganesh Pandey. This work is original and has not been submitted in part or full, for any degree or diploma of this or any other university/Institute.

ACKNOWLEDGEMENT

I owe the fulfilment of this endeavour to my esteemed mentor Prof. Ganesh Pandey for his erudite and meticulous supervision. His dedication to Organic Synthesis has inspired me to accept nothing but success during my time at NCL, pune and CBMR, Lucknow. He gave me freedom in laboratory and Saturday group discussions to motivate thinking deeply in the field of Organic Chemistry. I hope to use the skills and knowledge that I have obtained in GP laboratory as a foundation for a successful career in organic chemistry. I gratefully acknowledge Dr. Pradeep Kumar Tripathi, (NCL, Pune) and his group for their support in my up gradations.

My special thanks to Dr. Atish Chandra, Sandip Kumar Tiwari, Dr. Debasis Dey, Animesh Negel for their immeasurable affection.

My cordial thanks to my best friends Dr. Chaithanya Kiran, Dr. Venubabu, Dr. Narsimha (Kanna) and Trinadh for their moral support, motivation during chemistry discussions.

My special thanks to Priyanka Adate (my senior) and pramod kumar sahani (my junior) for their support to pave my research carrier.

I would like to thank my colleagues Durgaprasad, Dr. Bawana, Pushpender, Jagadish, Ramkrishna, Dr. Asha, Prachi, Divya, Dr. Deepak singh, Dr. Manoj gupta, Dr. ashok yadav, Dr. Mantu, Avanish, Shiva kumar, Rajesh, Binoy, Pradip, Akash, Pulak, Rushil, Dr. Navnath, and past lab members Dr. Dharmendra, Dr. Ravi, Dr. Nishant gupta, Dr. Rajender, Dr. Deepak jadhav, Dr. Sujith, Dr. Swaroop, Dr. Prasanna, Dr. Amrut gaikwad.

Support from the NMR Division in CBMR (Dr. Bikash, Dr. Dinesh, Dr. Ratan kumar, Chandan, Raju, Akhila, and Nancy) and other Office staff and research staff in CBMR, Prof. Soumen Hazra, Dr. Boopendra Tiwari, and Dr. Masood and Prof. Hazra group is greatly acknowledged. I would like to thank my NCL friends, Chandrababu, Rambabu, Devadutta, Dr. Vidadala, Yadagiri, Manoj, Suneel, Bala, Rami reddy, Lenin, Arul, Chaithanya Krishna, Nagendra, Narendra, Laxmi Prasad, Bhaskar, Srinivas, Shrikant, Innaiah, shantiverdhan, Seetaram, Kashinath, Satish, Shruthi, Dr. Bhogesh, Venkat, Suresh, Brij bushan, Nookaraju.

I wish to thank the great scientific community whose achievements are constant source of inspiration for $m e$.

Above all, I thank God Almighty for His enormous blessings.

I thank CSIR, New Delhi, for the award of Research Fellowship and

National Chemical Laboratory (NCL), Pune,

And

Centre of Biomedical Research, (CBMR) Lucknow

For initiating my research carrier
..................Janakiram Vaitla

Contents

List of abbreviations
Abstract of the thesis

Chapter 1. Chiral Aza-Quaternary Scaffolds by Selective Bond Cleavage of Bridgehead Substituted 7-azabicyclo[2.2.1]heptane:

Section 1.1: an overview of 1-azaspirocyclanes
Section 1.2: Synthetic approaches for the 1-azaspirocyclane framework

Section 1.3: Developing a new concept of constructing 1-aza quaternary scaffolds.
Section 1.4: Selective bond cleavage of Bridgehead substituted 7-
azabicyclo[2.2.1]heptane.
Section 1.5: summary
Section 1.6: References
Section 1.7: Experimental section
Section 1.8: HPLC data

Section 1.9: Spectral data

Chapter 2. Stereoselective Total Synthesis of Cylindricine Class of Alkaloids:

Section 2.1: Introduction of cylindricine family of alkaloids
Section 2.2: Reported synthetic strategies for the cylindricine C

Section 2.3: Our strategy for Total synthesis of (+)-Cylindricine C - E
Section 2.4: development of tandem rearrangement

Section 2.5: summary

Section 2.6: References
Section 2.7: Experimental Section
Section 2.8: Spectral data

Chapter 3. Stereoselective Total Synthesis of Lepadiformine A:

Section 3.1: Introduction of Lepadiformine family of alkaloids
Section 3.2: Reported synthetic strategies for the Lepadiformine A
Section 3.3: Our strategy for Total synthesis of (-)-Lepadiformine A Section 3.4: summary

Section 3.5: References

Section 3.6: Experimental Section
Section 3.7: Spectral data

Publications

Erratum

List of Abbreviations

aq	Aquoes	NMR	Nuclear magnetic resonance
bp	Boiling point	nOe	Nuclear Overhauser effect/enhancement
Bn	Benzyl	NOESY	Nuclear Overhauser Enhancement Spectroscopy
Boc	t-Butoxycarbonyl	p-TSA	p-Toluenesufonic acid
DCM	Dichloromethane	py	Pyridine
DEPT	Distortionless enhancement by polarization transfer	rt	Room temperature
DMF	N,N-dimethyl formamide	TBS	t-Butyl dimethyl silyl
DMSO	Dimethyl sulfoxide	TBDPS	t-Butyldiphenyl silyl
COSY	Correlated spectroscopy	TEA	Triethyl amine
g	Gram	TFA	Trifluoroacetic acid
HRMS	High Resolution Mass Spectra	THF	Tetrahydrofuran
h	Hour	TLC	Thin layer chromatography
Hz	Hertz	TMS	Trimethyl silyl
M	Molarity (molar)	HSQC	Heteronuclear Single Quantum Coherence
mg	milligram	HMBC	Heteronuclear Multiple-Bond Correlation
min	minute(s)	GC	Gas Chromatography
mL	Millilitre	IBX	o-iodoxybenzoic acid
mmol	millimole	LDA	Lithium diisopropylamide
mp	Melting Point	PPTS	Pyridinium para-toluene sulfonate
DIBAL-H	Diisobutylaluminium hydride	m-CPBA	3-chloro peroxybenzoincacid
ESI	Electron spray ionization	Ac	acetyl
MsCl	Methane sulfonyl chloride	Ar	aryl
TsCl	p-Toluene sulfonyl chloride	n-Buli	n-Butyl lithium

General Remarks

- All the solvents were purified according to the literature procedure. ${ }^{[1]}$
- Column chromatographic separations were carried out by gradient elution with suitable combination of two solvents and silica gel (60-120 mesh / 100-200 mesh / 230-400 mesh) obtained from S. D. Fine Chemical Co. India or SRL India
- Reactions were monitored by thin layer chromatography (TLC, 0.25 mm E. Merck silica gel plates, $60 \mathrm{~F}_{254}$) and visualized by using UV light, ethanolic solution of phosphomolybdic acid (PMA), iodine, ninhydrin and KMnO_{4} solution.
- Dry tetrahydrofuran (THF) and diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) were obtained by passing commercially available pre-dried, oxygen-free formulations through activated alumina columns and dried by distillation over sodium/benzophenone. Toluene and benzene were distilled over calcium hydride and stored over $4 \AA$ molecular sieves. Pyridine and triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ were distilled over potassium hydroxide.
- All commercial reagents were obtained from Sigma-Aldrich Chemical Co. and S. D. Fine Chemical Co., Spectrochem, LOBA, Alfa-aeser, HIMEDIA, acros chemicals, Merck India.
- IR spectra were recorded on a Perkin-Elmer FT-IR Spectrometer.
- ${ }^{1} \mathrm{H}$ NMR spectra were recorded on BRUKER AC-200, BRUKER 400 UltraShield and BRUKER 800 ULTRASHIELD PLUS instruments using Deuterated chloroform as standard. Chemical shifts are reported in ppm. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on BRUKER 400 UltraShield and BRUKER 800 ULTRASHIELD PLUS instruments operating at 101 MHz and 201 MHz respectively. ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported in ppm relative to the central line of $\mathrm{CDCl}_{3}(\delta=77.12)$.
- Electro spray ionization (ESI) mass spectrometry (MS) experiments were performed on Agilent Technologies 6530 Accurate-Mass Q-TOF LC/MS.
- Optical rotations were measured on a Digipol 781 M6U Automatic Polarimeter.
- HPLC were performed on Agilent Technologies 1260 Infinity.
- Numbering of compounds, Schemes, Tables, Referencing and Figures for each chapter and in abstract are independent.

Research Student: Janakiram V

Research Guide: Prof. Ganesh Pandey

Title of Thesis: \quad Total Syntheses of (+)-Cylindricine C, D, E, and (-)- Lepadiformine A by Development of a Non-Biogenetic Tandem Rearrangement

Registration no: PGS/Ph.D/5150 dated 19/11/2012.

Date of Registration: $\quad 19^{\text {th }}$ June 2012

Place of work: Division of Organic Chemistry, National Chemical Laboratory, Pune-411 008, INDIA.

And

Molecular Synthesis and Drug Discovery Laboratory Centre of Biomedical Research, SGPGIMS Campus Lucknow-226014, INDIA.

Thesis Abstract

The present dissertation is divided into three chapters. Chapter one deals with the overview of 1-azaspiro tricyclic marine alkaloids and developing our own strategy for the generation of 1-aza quaternary scaffolds by selective bond cleavage of bridgehead substituted 7-azabicyclo[2.2.1]heptane. Chapter two presents introduction and synthetic reports of cylindricine class of alkaloids and our approach for the construction of (+)-cylindricine C-E. Chapter three illustrates the literature reports for the synthesis of lepadiformine class alkaloids as well as our synthetic approach for the construction of (-)-lepadiformine A.

Chapter 1:- Chiral Aza-Quaternary Scaffolds by Selective Bond Cleavage of Bridgehead Substituted 7-Azabicyclo[2.2.1]heptane

This section describes reported strategies for the synthesis of these structural frameworks in asymmetric fashion and outline of our strategy for constructing these structural frameworks by selective bond cleavages of bridgehead substituted 7azabicyclo[2.2.1]heptanes.

Bicyclic frameworks containing two rings fused by a spiro ring possessing a nitrogen atom adjacent to the ring junction are called as ' 1 -azaspirocyclanes'.

Figure 1: Nomenclature of azaspirocyclanes

1-azaspiro[4.5]decane

1-azaspiro[5.5]undecane

1-azaspiro[4.4]nonane

6-azaspiro[4.5]decane

Azaspirocyclane scaffolds are common core of many alkaloids viz. histrionicotoxin, cephalotaxine, halichlorine,pinnaic acid, TAN1251A, FR901483 and members of the cylindricine family of alkaloids, fasicularin, lepadiformine and erythrina alkaloids.

Figure 2: Alkaloids that contain 1-azaspirocycle motifs

5

Serratine 9

11

Halichlorine

Fasicularine
13

13
processes involving construction of the aza-quaternary carbon and the spiro-cyclic ring system separately and subsequently joining them together. However, the third category utilizes the construction of the aza-quaternary centre followed by spirocyclization to form either a or b-ring (either heterocycle or carbocycle) in one step (path-c) (Fig. 4).

Figure 4: Classification of reported strategies for azaspirocyclane scaffolds in asymmetric fashion

This Chapter also includes our strategy of constructing 1 -azaquaternarycyclanes by selective bond dissociations of the structural framework 1, designed by considering its ring strain as shown in Scheme 1.

Scheme 1: Selective bond dissociation of 1

Synthesis of $\mathbf{1}$ is achieved by the asymmetric desymmetrization of meso-5 using (R, R)-hydroanisoin (Scheme 1).

During the study of desymmetrization, N -Boc group was found to determine the formation of either $\mathbf{7}$ or $\mathbf{6}$ as shown in Scheme 2.

Scheme 2: Asymmetric desymmetrization

Chapter 2:- Stereoselective Total Synthesis of Cylindricine Class of Alkaloids:

This chapter describes an overview of cylindricine family of alkaloids and our approach for the synthesis of cylindricine C, D, E.

Cylindricine C - D ($\mathbf{9 a - c}$) belongs to the family of marine ascidian alkaloids and possesses perhydropyrrolo[2,1-j]quinolone framework. Cylindricines are known to exhibit bioactivity against brine shrimp larvae in a bioassay. Among this class of alkaloids, 9a represents an intriguing target for synthetic chemists due to unusual tricyclic structural framework containing four stereo centers including one azaquaternary center.

Figure 5: Cylindricine class of alkaloids

$\mathrm{R}=\mathrm{OH}$ Cylindricine C 9a
R = OMe Cylindricine D 9b
R = OAc Cylindricine E 9c

Although, there are few elegant approaches are known in the literature, majority of the reports involves chiral pool approaches. The important strategies can be summarized as shown in figure 6 .

Figure 6: Summary of literature reports

However, since the absolute configuration of natural alkaloid is still unknown, it was felt necessary to develop a different route which can deliver both enantiomers of cylindricines. In this context, an innovative cascade rearrangement (Retro-aldol/AzaMichael) approach was devised to synthesize 9 as shown in Scheme 3.

Scheme 3: Retrosynthetic analysis of 9a

As per our design, DMP oxidation of $\mathbf{1 8}$ in the presence of TFA was found to give $\mathbf{1 9}$ with excellent diastereoselectivity (Scheme 4) which was converted to cylindricine CE by following simple functional group transformations.

Scheme 4: Cascade rearrangement of $\mathbf{1 8}$ for syntheses of 9

(9b)
(9c)

The plausible mechanism for the cascade reaction is also presented.

Chapter 3:- Stereoselective Total Synthesis of Lepadiformine A:

This chapter describes an overview of Lepadiformine family of alkaloids along with our approach for the synthesis of (-)-Lepadiformine A (24).

Figure 7: Lepadiformine A (24)

(24)

Lepadformine was isolated from the extracts of the marine tunicate Clavelina lepadiformis which exhibited inhibitory effects on the inward rectifying potassium current which causes bradycardia, an effect seen in antiarrhythmic agents.

The reported strategies for the synthesis of $\mathbf{2 4}$ are summarized in fig $\mathbf{8}$.

Figure 8: Summary of literature reports for 24

We accomplished the total synthesis of 24 in 6 steps from $\mathbf{1 8}$ by interrupting the cascade sequence at $\mathbf{2 5}$ to stop C_{5} epimerization as shown in Scheme 5.

Scheme 5: Total Synthesis of (-)-Lepadiformine A

Chapter 1:-

"Chiral Aza-Quaternary Scaffolds
by Selective Bond Cleavage of Bridgehead Substituted 7-Azabicyclo[2.2.1]heptane"

Section-1.1 : An overview of 1-azaspirocyclanes

Introduction to 1-azaspirocyclanes:

Bicyclic frameworks containing two rings fused by a spiro ring possessing a nitrogen atom adjacent to the ring junction is called as ' 1 -azaspirocyclanes'. ${ }^{[1]}$

Figure 1: 1-azaspirocyclane framework

1-azaspiro[5.5]undecane
1-azaspiro[4.4]nonane
6-azaspiro[4.5]decane
Azaspirocyclane scaffolds are common core of many alkaloids viz. histrionicotoxin, ${ }^{[2]}$ cephalotaxine, ${ }^{[3]}$ halichlorine, ${ }^{[4]}$ pinnaic acid, ${ }^{[5]}$ TAN1251A, ${ }^{[6]}$ FR901483 ${ }^{[7]}$ and members of the cylindricine family of alkaloids, ${ }^{[8]}$ fasicularin, ${ }^{[9]}$ lepadiformine ${ }^{[10]}$ and erythrina ${ }^{[11]}$ alkaloids.

Figure 2: Alkaloids that contain 1-azaspirocycle motifs

12

Section -1.2 : Synthetic approaches for the 1-azaspiro framework:

The common 1-azaspirocyclic ring system present in natural products are characterised by 1-azaspiro[4.5]decane, 1-azaspiro[5.5]undecane, 1azaspiro[4.4]nonane and 6-azaspiro[4.5] decane structural motifs. There are two main challenges for constructing these 1 -azaspirocyclic motifs; a) construction of the azaquaternary center bearing nitrogen atom at the spirocyclic ring junction and b) construction of fused carbocyclic / heterocyclic ring system (Figure 3).

Figure 3: Structural challenges of azaspirocyclane

A number of methods have been described for the construction of these ring systems ${ }^{[1,}$ ${ }^{2]}$ and strategies known for the synthesis of these structural frameworks in asymmetric fashion can be divided into three general categories as shown in Figure. 4. While first category employs construction of the aza-quaternary centre followed by heterocyclization/ a-ring cyclization, second category involves construction of the azaquaternary centre followed by carbocyclization /b-ring cyclization. These two approaches employ two-step processes involving construction of the aza-quaternary carbon and the spiro-cyclic ring system separately and subsequently joining them together. However, the third category utilizes the construction of the aza-quaternary centre followed by spirocyclization to form either a or b-ring (either heterocycle or carbocycle) in one step (Fig. 4).

Figure 4: Classification of reported strategies for azaspirocyclane scaffolds in asymmetric fashion

(Category - I) -Construction of the aza-quaternary centre followed by heterocyclizations (A-ring):-

Danishefsky's approach: - \{Angew. Chem., Int. Ed. 1999, 38, 3542 ${ }^{[12]}$

The key feature of this approach involves addition of allyl trimethyl silane to a masked iminium ion for generating aza-quaternary centre $\mathbf{1 8}$ which on subsequent

Scheme 1:- Danishefsky's approach for 1-azaspirocyclane 20

16

17
$\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{9 2 \%}$
2) $\mathrm{Na}, \mathrm{EtOH}, \mathrm{NH}_{3} / \mathrm{THF}$
3) $\mathrm{BoC}_{2} \mathrm{O}, \mathrm{DMAP}, \mathrm{THF}, 93 \%$
4) LIHMDS, MeI

18

19
20
heterocyclization using intramolecular aza-Michael addition reaction affords azaspirocyclane ring system 20 as shown in Scheme 1.

Heathcock's approach:- $\left\{\right.$ Proc. Natl. Acad. Sci. U.S.A.2004, 101, 12079 ${ }^{[13]}$

This group ${ }^{[13]}$ have utilized similar strategy for generating aza-quaternary centre 22, however, heterocyclization in this case is achieved by intramolecular reductive amination to obtain $\mathbf{2 6}$ as shown in Scheme 2.

Scheme 2:- Heathcock's approach for 1-azaspirocyclane 26

Arimoto's approach: - $\{\text { Tetrahedron Lett. 1999, 40, 3583. }\}^{[14]}$

Scheme 3 :- Arimoto's approach for 1-azaspirocyclane 31

Arimoto et al. ${ }^{[14]}$ utilized Curtius rearrangement from 28 for constructing azaquaternary centre 29 which on heterocyclization by reductive amination affords azaspirocyclane ring system 31 as shown in Scheme 3.

Wright's approach :-\{ Org. Lett. 2000, 2, 1847. $\}^{[15]}$

In this approach, 1-azaquaternary centre is constructed by the addition of allyl magnesium bromide to an imine $\mathbf{3 3}$ followed Grubbs cross metathesis for heterocyclization to obtain $\mathbf{3 5}$ as shown in Scheme 4.

Scheme 4:- Wright's approach for 1-azaspirocyclane 35

33

Zhao's route :-\{ J. Org. Chem. 2005, 70, 4954. $\}^{[15]}$

Zhao's route ${ }^{[16]}$ for synthesizing 6 -azaspiro[4.5]decane ring system involved conjugate addition of the corresponding carbanion of $\mathbf{3 6}$ to methyl acrylate in order to generate 1-azaquaternary centre 37 which by following simple functional group transformations produced 40 as a pure diastereomer (Scheme 5).

Scheme 5:- Zhao's approach for 1-azaspirocyclane 40

(Category - II) Construction of aza-quaternary centre followed by carbocyclization (B-ring):-

Simpkin's route:- $\{\text { Synlett 2004, 2295. }\}^{[17]}$

An alkylative desymmetrization ${ }^{[17 \mathrm{a}]}$, employing a chiral base, was used in this strategy to generate aza-quateranary centre $\mathbf{4 3}$ ($d e=69 \%$) which on carbocyclization employing cross metathesis of $\mathbf{4 4}$ gave $\mathbf{4 5}$, a halichlorine framework (Scheme 6).

Scheme 6:- Simpkin's approach for 1-azaspirocyclane 45

Mori's route:-\{ J. Org. Chem. 1995, 60, 115.\} ${ }^{[18]}$

1-Azaspiro[4,4]nonane skeleton ${ }^{[18]}$ related to cephalotaxine skeleton 49, was synthesized by the allylation of $\mathbf{4 6}$ followed by carbocyclisation as shown in Scheme7.

Scheme 7:- Mori's approach for 1-azaspirocyclane 49

(Category- III) : Construction of the aza-quaernary centre and spirocycle in the same step:-

Vernon's route:- $\left\{\right.$ Tetrahedron Lett. 1994, 35, 7115. ${ }^{[19 \mathrm{a}]}$

Vernon's group ${ }^{[19]}$ utilized intramolecular cyclization of an in situ generated iminium ion with arene nucleophiles to produce 1-azaspirocycle 51 and 52, respectively. The diastereomeric ratio of azaspirocyclization depended on the ring size formed. For example, when aza spirocyclane [5,5] fused bicyclic framework is formed, the major diastereomer would be $\mathbf{5 1}$ whereas it would be $\mathbf{5 2}$ for azaspirocyclane [5, 6] fused bicyclic framework.

Scheme 8:- Vernon's approach for 1-azaspirocyclane 51 and 52

Bonjoch's route:- $\left\{\right.$ Tetrahedron Lett. 2003, 44, 8387.\} ${ }^{[20]}$

Bonjoch'group attempted ${ }^{[20]}$ an iodonium ion spirocyclization of 53 to produce 1azaspirocyclane 54, however, it was formed only as a minor product (Scheme 9). The major product 55 resulted from the interception of the putative halonium ion species with the carbonyl atom of the t-butylcarbamate of 53.

Scheme 9:- Bonjoch's approach for 1-azaspirocyclane 54

Holmes's approach:- $\{\text { J. Am. Chem. Soc. 1999, 121, 4900. }\}^{[21 a]}$

Although, efforts were made to achieve 1-azasprocyclane skeleton by [3+2]-Nitrone-alkene cycloadditions ${ }^{[21 a]}$, it remained unsuccessful due the formation of an undesired regioisomer as the major product. However, Holmes group ${ }^{[21 b]}$ succeeded in carrying out an intramolecular [3+2]-cycloaddition with an in situ generated nitrone 57.

Scheme 10:- Holme's approach for 1-azaspirocyclane 58

The use of an unsaturated nitrile was crucial to ensure the appropriate regiochemical outcome of 58.

Wardrop's approach:- $\left\{\right.$ Org. Lett. 2001, 3, 1053.\} ${ }^{[22 a]}$

Wardrop's group ${ }^{[22]}$ studied oxidative azaspirocyclization of $\mathbf{5 9}$ using hypervalent iodine reagent PIFA for the formation of azaspirocyclane 60 (Scheme 11). This approach has been used to generate key intermediates in the synthesis of FR901483 and (K)-TAN 1251A.

Scheme 11:- Wardrop's approach for 1-azaspirocyclane

Section -1.3: Developing a new concept of constructing 1-aza quaternary scaffolds by Selective bond cleavage of Bridgehead substituted 7azabicyclo[2.2.1]heptane.

Considering the importance of 1-azaspirocyclanes in natural product synthesis ${ }^{[1,2]}$ and drug developments ${ }^{[28]}$ we were interested in synthesizing these spirocyclic frameworks by a conceptually different approach.

Scheme 12:- Possible diversification of bridged bicyclic precursor into various 1azaspirocyclane scaffolds

Although, above mentioned strategies for the construction of 1azaspirocyclanes in chiral fashion are interesting, efficiency and enatioselectivity still remains a challenge. Moreover, these strategies are also restricted for the construction of a particular type of framework only. ${ }^{[12-21 a]}$

To address the synthetic challenges in the context of synthesizing structurally diverse 1 -azaspirocyclane frameworks belonging to different classes of bioactive alkaloids (12, 13, 15, 1ab, 1ac), we sought to design a precursor which can expeditiously establish these privileged functionalized structural scaffolds embedded with challenging 1 -aza quaternary stereo centers. To find a solution to this challenging problem, we hypothesized a structural framework 70 which is endowed with privileged functionality required to meet the challenge of synthesizing various chiral 1- azaquaternary scaffolds. This structural framework was selected considering its ring strain for carrying out selective bond dissociations which upon simple chemical transformation would provide rapid access to various 1-azaspirocyclane scaffolds. For example, 1-azaspiro[3.5]nonane 74 and 1-azaspiro[5.5]undecane $\mathbf{7 5}$ could be obtained via ' a ' bond (C-N bond) fragmentation whereas cleavage of ' b ' bond can lead to 1 azaspiro[4.4]nonane 77 and 1-azaspiro[4.5]decane 78 frameworks, respectively.

Similarly, by cleaving ' c ' bond would lead to 1 -azaspiro[4.5]decane framework containing 2,2,5,5-tetrasubstituted pyrrolidine 76 as a central motif.

It may be emphasized that there is no synthetic strategy which offers densely functionalized chiral pyrrolidine moiety, a key structural component of NK1 tachikynin receptor antagonist 1ac. ${ }^{[28]}$ During the selection of 70, care was taken in the beginning itself that for ' a ' bond fragmentation, ${ }^{[29]} \mathrm{N}$-Boc group would be required to act as a nucleofugal moiety whereas for ' c ' bond scission, ${ }^{[30]}$ phenylsulfonyl group would assist as a nucleofugal group. However, for ' b ' bond fragmentation a nucleofugal group adjacent to the keto functionality would be required and another bridgehead substituent can be used for cyclization to produce corresponding 1azaspirocyclanes.

The key precursor $\mathbf{7 0}$ can be obtained by asymmetric desymmetrization ${ }^{[23]}$ of meso-80 using (R, R)-hydroanisoin ${ }^{[24]}$ (Scheme-14). Importantly, this asymmetric desymmetrization protocol produces two chiral 1-azaquaternary centres in a single operation which cannot be possible using traditional approaches. ${ }^{[25]}$

Scheme 14:- Retrosynthesis of 70

Results and discussion:-

Our initial study focused on the synthesis of $\mathbf{8 1}$ by following the general strategy of [4+2]-cycloaddition reaction between N -protected pyrroles and dienophiles for the synthesis of the 7-azabicyclo[2.2.1]heptane scaffolds. ${ }^{[33,41]}$

Scheme 15:- Diels-Alder reaction of pyrroles with dimethyl acetylenedicarboxylate

However, reaction of 2,5-symmetrically disubstituted pyrrole $\mathbf{8 5}$ with dimethyl acetylenedicarboxylate at $150{ }^{\circ} \mathrm{C}$ produced only 87 which was explained to have
formed by subsequent retro Diels-Alder reaction of the corresponding cycloadduct 86 with the loss of acetylene ${ }^{[42]}$.

Scheme 15:- Diels-Alder reaction of 88 with dimethyl acetylenedicarboxylate

Similar observation was also made ${ }^{[43]}$ during attempted cycloaddition of the 1 (alkylamino) pyrrole $\mathbf{8 8}$ with dimethyl acetylenedicarboxylate producing $\mathbf{9 0}$ in 68% yield. The reaction was proposed to involve $\mathbf{8 9}$ followed by facile aminonitrenes extrusion.

Generally, the failure to isolate the Diels-Alder cycloadducts with substituted pyrrole derivatives ${ }^{[42 b]}$ has been attributed to their thermal instability and their susceptibility to rearrange in basic or acidic media and even when exposed to light. Furthermore, stability of pyrrole Diels-Alder cycloadducts are also known to depend on the dienophiles. With this concept in mind, we planned to obtain 98 by the cycloaddition of $\mathbf{9 7}$ with the phenyl sulfonyl acetylene as the dienophile. It may be appropriate to mention here our own success ${ }^{[24]}$ in this regard by successful DielsAlder cycloaddition between 95 with phenylsulfonyl acetylene to obtain 96 (Scheme16).

Scheme 16:- Diels-Alder reaction of pyrroles with phenyl sulfonyl acetylenes

Thus, substituted pyrroles (101a-101c) were obtained by following the sequence as outlined in Scheme-17.

Scheme 17:- Preparation of 2,5-disubstituted pyrrole for cycloaddition

However, when cycloaddition of these pyrroles (101a-c) were carried out with phenyl sulfonyl acetylene under identical experimental condition as reported earlier ${ }^{[24]}$, surprisingly, not even a trace amount of corresponding cycloadducts 98a-c was not detected. This reaction was further attempted using different Lewis acid but without any success. This failure led us to assume that cycloaddition probably requires significant activation of dienophile to overcome this cycloaddition problem. Therefore, cycloaddition was attempted with bromosubstituted dienophiles (entry No. 5 and 6) but this reaction was also unsuccessful.

Scheme 18:- Attempted cycloaddition with symmetrically substituted pyrroles with phenyl sulfonyl acetylene

Table 1:- Screening of conditions for cycloadduct 97

Sl.No	Electrophile	Conditions		Temp	Inference
1	$=-\mathrm{SO}_{2} \mathrm{Ph}$	neat		$80^{\circ} \mathrm{C}$	Decompostion of $\mathbf{1 0 1}$
2	$-\mathrm{SO}_{2} \mathrm{Ph}$	$\mathrm{AlCl}_{3}, \mathrm{DCM}$		$0^{\circ} \mathrm{C}$	Decompostion of $\mathbf{1 0 1}$
3	$-\mathrm{SO}_{2} \mathrm{Ph}$	$\mathrm{BF}_{3} . \mathrm{OEt}_{2}$		$0^{\circ} \mathrm{C}$	Decompostion of $\mathbf{1 0 1}$
4	$-\mathrm{SO}_{2} \mathrm{Ph}$	Nitromethane solvent	as	$80^{\circ} \mathrm{C}$	no reaction
5	$\mathrm{Br}=-\mathrm{SO}_{2} \mathrm{Ph}$	Toulene		$70^{\circ} \mathrm{C}$	Decompostion of $\mathbf{1 0 1}$
6	$-\mathrm{SO}_{2} \mathrm{Ph}$	CS_{2} as solvent		$80^{\circ} \mathrm{C}$	No reaction

Figure 5:- Factors affecting at Diels-Alder reaction

R = Hetero atom LA = Lewis Acid

poor orbital overlapping

> Steric Factors

At this stage, we surmised that the reason for $\mathbf{1 0 1}$ not undergoing Diels-Alder reaction is possibly due to the combined effect of both steric as well as electronic factors ${ }^{[42]}$ as shown in Fig. 5

To support this argument, a cycloaddition reaction of 2,5-dimethyl N-Boc pyrrole (109) was carried out with phenylsulfonyl acetylene which gave 98c in 67% yield. The preparation and cycloaddition of $\mathbf{1 0 9}$ is shown in Scheme 20.

Scheme 20:- Model study of Diels-Alder reaction of 2,5- dimethyl pyrrole

This result encouraged us to utilize suitably substituted $\mathbf{1 1 3}$ for Diels-Alder cycloaddition reaction with 114a to prepare 70 in optically pure form through a desymmetrization protocol.

The synthesis commenced from $\mathbf{1 1 3}$ which can be prepared via Paal-Knorr reacton of $\mathbf{1 1 1}{ }^{[37,38]}$. Cycloaddition of $\mathbf{1 1 3}$ with 114a was carried out by heating both together in toluene at $55^{\circ} \mathrm{C}$ which afforded 116 in $\mathbf{7 5 \%}$ yield (Scheme 21).

Scheme 21:- Preparation of meso-119

Cycloadduct 116 was characterised by observing olefinic protons at $\{6.94(\mathrm{~d}, J=$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, respectively.
in ${ }^{1} \mathrm{H}$ NMR and corresponding bridgehead carbons in the ${ }^{13} \mathrm{C}$ NMR at $60.79,60.61$ ppm.Hydrogenation of $\mathbf{1 1 6}(\mathrm{Pd} / \mathrm{C}, 10 \%, 1 \mathrm{~atm}$.), gave 117 in quantitative yield (99%). Nucleophilic substitution of bromo moiety in 117 with 4-methyl thiophenol sodium salt afforded $\mathbf{1 1 8}$ in 85% yield which on oxidation using m-CPBA produced meso- $\mathbf{1 1 9}$ in 80% yield. The structure of $\mathbf{1 1 8}$ was confirmed by detailed ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopy.

Desymmetrization of meso-119:-

As per our planned strategy of obtaining 70 in optically pure form, we proceeded further with the desymmetrization of $\mathbf{1 1 9}$ by reacting it with the sodium salt of chiral benzoin [sodium hydride (2.1 mmol), hydrobenzoin (2.1 mmol), toluene (0.1 M)] which gave compound ' \mathbf{a} ' in 45% yield.

Scheme 22:- Desymmetrization of meso - 119

Highly complex NMR data (both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) made it difficult to completely characterise ${ }^{[39]}$ this product. HPLC analyses (column: Atlantis C18, mobile phase: $\{\mathrm{MeOH}:$ Water $\}=(90: 10)$), however, indicated it to be a single compound. The complexity observed in the NMR spectra was, thus, implicated to the presence of the rotamers linked to N -Boc group. Our attempted N -Boc deprotection (TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t.) also deprotected chiral acetal moiety. Therefore, to solve this problem 'a' was first subjected to desulfonylation by reacting with sodium amalgam under boric acid buffer medium ${ }^{[44]}$ which yielded compound ' \mathbf{b} ' in 55% (Scheme 22).
${ }^{1} \mathrm{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$) indicated two sets of protons for each indicating it to be a mixture of rotamers. The aromatic protons appeared in four bunches at $\delta=$ $7.31(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.90-6.78(\mathrm{~m}, 5 \mathrm{H})$ corresponding to two phenyl groups of hydrobenzoin. Proton appearing at $5.86-5.67$ $(\mathrm{m}, 1 \mathrm{H})$ may be characterised to an olefinic proton. Proton appearing at $5.10(\mathrm{br}, 1 \mathrm{H})$, which was $\mathrm{D}_{2} \mathrm{O}$ exchangeable, corresponds to -NH proton. Two protons appearing between $4.91-4.66(\mathrm{~m}, 2 \mathrm{H})$ corresponds to benzylic protons of hydrobenzoin moiety. Protons at $4.27-3.99(\mathrm{~m}, 4 \mathrm{H})$ corresponds to esters $\left(-\mathrm{OCH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR of compound ' \mathbf{b} ' shows one signal of quaternary carbons in aliphatic region ($\delta 60.31 \mathrm{ppm}$) and another quaternary carbon signal in the olefinic region ($\delta 137.6$ ppm). HSQC cross peak ($\delta 5.86$ and $\delta 130.2$) gave characteristic peak corresponding to olefinic C_{1} to H_{1} correlation. In HMBC spectra cross peak appearing at $\delta 5.86$ and δ 137.2 shows correlation of C_{2} to H_{1} and another cross peak appearing at $\delta 5.86$ and δ 55.28 shows correlation of H_{1} to C_{3}. HRMS indicated molecular ion peak $[\mathrm{M}+\mathrm{Na}]^{+}$ peak at 602.2718 corresponding to $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{NNaO}_{8}{ }^{+}$. Optical rotation of "b" was recorded as $[\alpha]_{\mathrm{D}}{ }^{22}=+22.3^{\circ}\left(c=1.2, \mathrm{CHCl}_{3}\right)$. Therefore, based on detailed NMR and HRMS data 'b' was assigned structure $\mathbf{1 2 1}$ as shown in figure 6.

Figure 6:- 2D NMR analysis of 121

The postulated mechanism for the formation of ' $\mathbf{a}=\mathbf{1 2 0}$ ' is shown in Scheme 23.

Scheme 23:- Plausible mechanism of desymmetrization/ ring opening cascade

Since our objective was to obtain desymmetrized product $\mathbf{1 2 0 a}$ in order to study the selective bond cleavage reaction, we attempted various reaction conditions to obtain $120 \mathbf{a}$ and results are shown in Table 2.

Table -2: Screening the conditions in desymmetrization reaction.

After exhaustive experimentation, we realized that N -Boc group in meso- $\mathbf{1 1 9}$ may be responsible for ring opening reaction during desymmetrization. Therefore, we carried out desymmetrization of N -Boc deprotected $\mathbf{1 2 6}$ under the identical reaction condition as described above for the reaction depicted in Scheme 21 which produced 127 in 82 \% yield.

Scheme 24:- Modified desymmetrization

HPLC analysis [(coloumn: Atlantis C18, mobile phase: $\{\mathrm{MeOH}:$ Water $\}=(90: 10)]$ indicated this to be a pure single compound.

Figure 7:- Spectral analysis of 127

In ${ }^{1} \mathrm{H}$ NMR spectrum, protons appearing at $\delta 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$ were assigned to H_{19} and H_{15}. Protons appearing at ($\delta 7.45(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$) were assigned to H_{16} and H_{18}. The aromatic protons of hydrobenzoin part appeared in two bunches at (δ $7.34, \mathrm{~m}, 5 \mathrm{H})$ and $(\delta 7.28, \mathrm{~m}, 5 \mathrm{H})$, respectively. Protons appearing at $\delta 5.15(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H})$ and $\delta 4.92(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$ corresponds to two benzylic protons $\left(\mathrm{H}_{11}\right.$ and H_{12}). Proton appearing at $\delta 4.38(\mathrm{~s}, 1 \mathrm{H})$ corresponded to H_{3} confirming the formation
of 127. Four bunches of multiplets at $\delta 4.16(\mathrm{~m}, 1 \mathrm{H}), \delta 4.11(\mathrm{~m}, 1 \mathrm{H}), \delta 3.99(\mathrm{~m}, 1 \mathrm{H})$ and $\delta 3.94(\mathrm{~m}, 1 \mathrm{H})$ corresponds to $\left(-\mathrm{OCH}_{2}\right)$ protons of two esters. A broad singlet at δ $3.60(\mathrm{br}, 1 \mathrm{H})$ corresponded to -NH proton. Two doublets appearing at $\delta 3.08(\mathrm{~d}, J=$ $14.5 \mathrm{~Hz}, 2 \mathrm{H})$ and $\delta 2.87(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H})$ corresponded to $\mathrm{H}_{8}-(2 \mathrm{H})$ and $\mathrm{H}_{9}-(2 \mathrm{H})$. Another two triplets appearing at $\delta 1.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$ and $\delta 1.15(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H})$ were assigned to $\mathrm{H}_{32}-(3 \mathrm{H})$ and $\mathrm{H}_{27}-(3 \mathrm{H})$, respectively.

In ${ }^{13} \mathrm{C}$ NMR and DEPT spectra, characteristic bridgehead quaternary carbons C_{2} and C_{6} appeared at $\delta 69.06$ and $\delta 65.10$, respectively. Further support to the structural assignments of $\mathbf{1 2 7}$ came from HSQC cross peak correlation between $\mathrm{H}_{3}(\delta 4.38$ and C_{3} (at δ 75.2). Similarly, in HMBC, showed correlation between H_{3} ($\delta 4.38$) with C6 (δ 65.10) and $\mathrm{C}_{4}(\delta 114.88)$. HRMS gave molecular ion peak $[\mathrm{M}+\mathrm{Na}]^{+}$at 656.2290 corresponding to $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{NNaO}_{8} \mathrm{~S}^{+}$. Optical rotation of $\mathbf{1 2 7}$ was recorded as $[\alpha]_{D^{22}}=$ $+24.3^{\circ}\left(c=1.2, \mathrm{CHCl}_{3}\right)$.

With this success in hand, we turned our attention towards preparing desired compound 70 (Scheme 24) by N-Boc protection followed by removal of the acetal moiety. However, our various attempts to affect N-Boc protection from 127 remained ineffective. This unexpected observation led us to reason out that ester groups of $\mathbf{1 2 7}$ may be forming intramolecular H -bonding with -NH group making it difficult for Boc anhydride to approach for reaction.

Therefore, we selected (R, R)-hydroanisoin for desymmetrization considering its easy removal. Usual reaction of meso- $\mathbf{1 2 6}$ with (R, R) - hydroanisoin under identical reaction conditions $\{$ sodium hydride (2.1 mmol), hydrobenzoin (2.1 mmol), toluene $(0.1 \mathrm{M})\}$ as mentioned above provided 133 (76%) as a single diastereomers. Reaction with (S, S)-hydroanisoin gave expected opposite diastereomer 134 (Scheme 25).

Scheme 25:- Modified desymmetrization of meso - 126

The plausible mechanism for desymmetrization is depicted in Scheme 26.

Scheme 26: Plausible mechanism of desymmetrization

Figure 7: Transition state for diastereoselectivity at desymmetrization

From the results, it is obvious that desymmetrization of $\mathbf{1 1 9}$ follows path- 1 to yield $\mathbf{1 2 0}$ whereas $\mathbf{1 2 6}$ follow path-2 to produce 127. It may be worthy of mention that conformational geometry of 7-azabicyclic framework and stearic hindrance between phenyl groups of hydroanisoin and phenylsulfonyl group probably governs the diastereoselectivity as depicted above implicating transition state (TS-1, figure 7). ${ }^{[24 \mathrm{~b}]}$ It would also be appropriate here to refer to our previous study where temperature was used as a switch for diastereoselctivity whereas present result suggests that N-Boc group could be used to tune the structural isomerism.

Scheme 27:- Preparation of 70 and 70a from desymmetrized 134

Removal of the chiral ketal moiety from $\mathbf{1 3 3}$ (1 mmol) by stirring with DDQ (3 $\mathrm{mmol})$ in DCM: $\mathrm{H}_{2} \mathrm{O}$ (9:1) for 3 h afforded $\mathbf{1 3 5}$ in 95% yield.
${ }^{13} \mathrm{C}$ NMR of crude 135 showed a signal at $\delta 202.92$ corresponding to a keto functionality confirming the success of the ketal deprotection. N-Boc protection (Boc anhydride, $\mathrm{NEt}_{3}, \mathrm{MeCN}$) of $\mathbf{1 3 5}$ furnished $\mathbf{7 0}$ in 83% yield in 9:1 diastereomeric ratio.

Figure - 8:- Spectral analysis of 70

NOESY

After separation of major diastereomer by column chromatography (72\%), its chiral purity (>99 \%) was ascertained by chiral HPLC (chromasil-ODH, mobile phase (n -hexane: iso- propyl alcohol= 70:30) analysis.

Aromatic protons of p-tosyl group in ${ }^{1} \mathrm{H}$ NMR spectrum appeared in a AB pattern at $\delta 7.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$ and $\delta 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, respectively. The doublet appearing at $\delta 5.56(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$ corresponded to H 3 while two distinct $-\mathrm{OCH}_{2}$ protons of the ester groups appeared at $\delta 4.17$ (qd, $J=7.1,2.8 \mathrm{~Hz}, 2 \mathrm{H}), \delta 4.01(\mathrm{qd}, J=$ $7.1,2.8 \mathrm{~Hz}, 2 \mathrm{H}$), respectively. Two methylene protons belonging to H_{8} and H_{9} appeared at $\delta 3.63(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 2 \mathrm{H})$ and at $\delta 3.44(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 2 \mathrm{H})$, respectively. Methyl protons of N - Boc group appeared as a singlet at $\delta 1.33(\mathrm{~s}, 9 \mathrm{H})$. Other remaining protons corresponding to $\mathrm{C}_{30}-3 \mathrm{H}$ and $\mathrm{C}_{25}-3 \mathrm{H}$ appeared at $\delta 1.27(\mathrm{t}, \mathrm{J}$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), \delta 1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, respectively.

In ${ }^{13} \mathrm{C}$ NMR spectrum, two bridgehead carbons $\left(\mathrm{C}_{5}\right.$ and $\left.\mathrm{C}_{2}\right)$ appeared at $\delta 60.62, \delta$ 60.49, respectively. The endo-orientation of p-tosyl group is suggested based on the observed correlation between $\mathrm{H}_{3}(\delta 5.56)$ and methyls ($\delta 1.33$) of Boc group in the NOESY spectrum. HRMS indicated molecular ion peak $[\mathrm{M}+\mathrm{Na}]^{+}$peak 560.1924 corresponding to $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NNaO}_{9} \mathrm{~S}^{+}$. Optical rotation of 70 was found to be $[\alpha]_{D^{22}}=-$ $27.6^{\circ}\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right)$. Identical reactions with 134 also gave 70a $\left(e e=>99 \%,[\alpha] \mathrm{D}^{22}\right.$ $=+27.1^{\circ} \quad\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Section -1.4: $\underline{\text { Selective Bond fragmentation of } 70}$

" c " bond cleavage of 70 :

Having secured scalable route to 70, we turned our attention towards establishing its selective bond dissociation chemistry. As planned in Scheme 9, selective bond dissociation of $\mathbf{7 0}$ can give corresponding aza-quaternary scaffolds which can produce chiral azaspirocyclanes belonging to various family of alkaloids.

Scheme 28:- ' \boldsymbol{c} ' bond dissociation of bicyclic precursor 70

To realize our proposed transformation, at first, ' c ' bond fragmentation was carried out by treating $\mathbf{7 0}$ with sodium ethoxide ($10 \mathrm{~mol} \%$) in ethanol which afforded 137 in 88% yield. Cleavage mechanism for this reaction is shown to involve two steps as shown in Scheme 29. Product 137 was characterized by detailed spectroscopic analyses. In the ${ }^{1} \mathrm{H}$ NMR spectrum, protons related to p-tosyl group appeared in AB pattern at $\delta 7.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$ and $\delta 7.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, respectively. Six protons appearing at $\delta 4.16-4.09(\mathrm{~m}, 6 \mathrm{H})$ corresponds to three $\left(-\mathrm{OCH}_{2}\right)$ groups. Four bunches of methylene protons, belonging to ester methylenes, appeared doublet each at $\delta 3.64(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), \delta 3.37(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), \delta 3.33(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H})$, $\delta 3.23(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H})$ and at $3.10(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H})$, and $\delta 2.71(\mathrm{~d}, J=17.7$ Hz, 1H).

70
Nucleophilic addition

Scheme 29:- Plausible mechanism for ' c ' bond cleavage.
Two other methylene protons, belonging to pyrrolidine moiety appeared at $\delta 1.66$ (d, $J=13.1 \mathrm{~Hz}, 4 \mathrm{H})$. Protons related to N -Boc methyls appeared at $\delta 0.88-1.05(\mathrm{~m}, 9 \mathrm{H})$. In ${ }^{13} \mathrm{C}$ NMR, carbon appearing at $\delta 70.91$ corresponding to C_{9}, providing crucial information for ' c ' bond cleavage.
" a " bond cleavage of 70 :

Scheme 30:- ' a ' bond dissociation of bicyclic precursor 70

After successful cleavage of ' c ' bond in 70, we carried out ' a ' bond cleavage by reacting it with potassium hydride $(2 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ in THF which furnished $\mathbf{1 4 0}$ in 58% yield.

It may be noted that cyclohexylamine derivatives related to $\mathbf{1 4 0}$ structural frameworks forms core scaffold of many natural products as well as drug derivatives (Scheme 30).

The structural assignment of $\mathbf{1 4 0}$ was made by detailed spectroscopic analysis. For example, in ${ }^{1} \mathrm{H}$ NMR spectrum, protons related to p-tosyl group appeared at $\delta 7.89$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$ and at $\delta 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, respectively. Methylene protons belonging to $\left(-\mathrm{OCH}_{2}\right)$ groups were characterized at $\delta 4.24-4.08(\mathrm{~m}, 4 \mathrm{H})$. Ester methylene protons adjacent to aza-quaternary centre, appeared at $\delta 3.85-3.62(\mathrm{~m}, 1 \mathrm{H})$, $\delta 3.48(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H})$ and protons appearing at $\delta 3.11(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 2 \mathrm{H})$ were assigned to two protons corresponding to methylene protons of other ester part. Methyl groups of N-Boc group as well as ester methyls merged together and appeared at $\delta 0.88-1.31(\mathrm{~m}, 14 \mathrm{H})$.

In ${ }^{13} \mathrm{C}$ NMR spectrum, carbon signal at $\delta 145.67$ was assigned to C_{6} which gave crucial information of ' a ' bond cleavage whereas other aza-quaternary carbon signal appeared at $\delta 60.97$.

Conclusion:-

In summary, We have developed conceptually different approach for the synthesis of bridgehead quaternary 7-azabicycloheptane[2.2.1]template in chiral fashion using asymmetric desymmetrization protocol. Conceptual exploitation of ring strain of this aza-bicyclic ring system is utilized for selective bond dissociation reaction to obtain various aza-quaternary scaffolds which presents core structures of many biologically active natural products and drugs. An unprecedented protecting group effect for tuning the structural isomerism during the desymmetrization is also observed.

Section 1.5: References

[1] Dake, G. Tetrahedron 2006, 62, 3467.
[2] (a) Kotera, M. Bull. Soc. Chim. Fr.1989, 370. (b) Carey, S. C; Aratani, M.; Kishi, Y. Tetrahedron Lett. 1985, 26, 5887. (c) Stork, G.; Zhao, K. J. Am. Chem. Soc. 1990, 112, 5875.
[3] Jilal Miah, M. A.; Hudlicky, T.; Reed, J. W. In Cordell, G. A., Ed.; The Alkaloids; Academic: San Diego, CA, 1998; Vol. 51, pp 199.
[4] (a) Kuramoto, M.; Tong, C.; Yamada, K.; Chiba, T.; Hayashi, Y.; Uemura, D. Tetrahedron Lett. 1996, 37, 3867. (b) Arimoto, H.; Hayakawa, I.; Kuramoto, M.; Uemura, D. Tetrahedron Lett. 1998, 39, 861.
[5] Chou, T.; Kuramoto, M.; Otani, Y.; Shikano, M.; Yazawa, K.; Uemura, D. Tetrahedron Lett. 1996, 37, 3871.
[6] Shirafuji, H.; Tsubotani, S.; Ishimaru, T.; Harada, S. PCT Int. Appl WO 91 13,887, 1991; Chem. Abstr. 1992, 116, 39780t.
[7] Sakamoto, K.; Tsujii, E.; Abe, F.; Nakanishi, T.; Yamashita M.; Shigematsu, N.; Izumi, S.; Okuhara, M. J. Antibiot. 1996, 49, 37.
[8] Blackman, A. J.; Li, C.; Hockless, D. C. R.; Skelton, B. W.; White, A. H. Tetrahedron 1993, 49, 8645.
[9] Patil, A. D.; Freyer, A. J.; Reichwein, R.; Carte, B.; Killmer L. B.; Faucette, L.; Johnson, R. K.; Faulkner, D. J. Tetrahedron Lett. 1997, 38, 363.
[10] (a) Biard, J. F.; Guyot, S.; Roussakis, C.; Verbist, J. F. Vercauteren, J.; Weber, J. F.; Boukef, K. Tetrahedron Lett. 1994, 35, 2691. (b) Weinreb, S. M. Acc. Chem. Res. 2003, 36, 59.
[11] For a review of erythrina class of alkaloids, see: Tsuda, Y.; Sano, T. In Cordell, G. A., Ed.; The Alkaloids; Academic: San Diego, 1996; Vol. 48, pp 249.
[12] For Halichlorine, see: (a) Trauner, D.; Schwarz, J. B.; Danishefsky, S. J. Angew. Chem., Int. Ed. 1999, 38, 3542. For Pinnaic acid, see: (b) Carson, M. W.; Kim, G.; Hentemann, M. F.; Trauner, D.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2001, 40, 4450. (c) Carson, M. W.; Kim, G. ; Danishefsky, S. J. Angew. Chem., Int. Ed. 2001, 40, 4453.
[13] Christie, H. S.; Heathcock, C. H. Proc. Natl. Acad. Sci. U.S.A.2004, 101, 12079.
[14] Arimoto, H.; Asano, S.; Uemura, D. Tetrahedron Lett. 1999, 40, 3583.
[15] Wright, D. L.; Schulte, J. P., II; Page, M. A. Org. Lett. 2000, 2, 1847.
[16] Zhang, H.-L.; Zhao, G.; Ding, Y.; Wu, B. J. Org. Chem. 2005, 70, 4954.
[17] Huxford, T.; Simpkins, N. S. Synlett 2004, 2295.
[18] Isono, N.; Mori, M. J. Org. Chem. 1995, 60, 115.
[19] (a) Bailey, P. D.; Morgan, K. M.; Smith, D. I.; Vernon, J. M. Tetrahedron Lett. 1994, 35, 7115. (b) Bahajaj, A. A.; Bailey, P. D.; Moore, M. H.; Morgan, K. M.; Vernon, J. M. J. Chem. Soc., Chem. Commun. 1994, 2511-2512. (c) Bailey, P. D.; Morgan, K. M.; Smith, D. I.; Vernon, J. M. Tetrahedron 2003, 59, 3369.
[20] Bonjoch, J.; Diaba, F.; Puigbo', G.; Peidró, E.; Sole', D. Tetrahedron Lett. 2003, 44, 8387.
[21] (a) Williams, G. M.; Roughley, S. D.; Davies, J. E.; Holmes, A. B.; Adams, J. P. J. Am. Chem. Soc. 1999, 121, 4900. For related work: (b) Horsley, H. T.; Holmes, A. B.; Davies, J. E.; Goodman, J. M.; Silva, M. A.; Pascu, S. I.; Collins, I. Org. Biomol. Chem. 2004, 2, 1258. (c) Davison, E. C.; Fox, M. E.; Holmes, A. B.; Roughley, S. D.; Smith, C. J.; Williams, G. M.; Davies, J. E.; Raithby, P. R.; Adams, J. P.; Forbes, I. T.; Press, N. J.; Thompson, M. J. J. Chem. Soc., Perkin Trans. 1, 2002, 1494. (d) Smith, C. J.; Holmes, A. B.; Press, N. J. Chem. Commun. 2002, 1214.
[22] (a) Wardrop, D. J.; Basak, A. Org. Lett. 2001, 3, 1053. (b) Wardrop, D. J.; Burge, M. S.; Zhang, W.; Ortı'z, J. A. Tetrahedron Lett. 2003, 44, 2587. (c) Wardrop, D. J.; Zhang, W. M. Org. Lett. 2001, 3, 2353. (d) Wardrop, D. J.; Zhang, W. M.; Landrie, C. L. Tetrahedron Lett. 2004, 45, 4229.
[23] Recent advances of desymmetrization protocol applied in natural product synthesis see: Wang, M.; Feng, M.; Tang, B.; Jiang, X. Tetrahedron Lett. 2014, 55, 7147.
[24] (a) Pandey, G.; Rajender, S. Chem. Eur. J. 2011, 17, 6304. (b) Pandey, G.; Tiwari, S. K.; Singh, R. S.; Mali, R. S. Tetrahedron Lett. 2001, 42, 3947.
[25] For reviews on asymmetric synthesis of tetra substituted carbon see: (a) Denissova, I.; Barriault, L. Tetrahedron 2003, 59, 10105. (b) Riant, O.; Hannedouche, J. Org. Biomol. Chem. 2007, 5, 873. (c) Cozzi, P. G.; Hilgraf, R.; Zimmermann, N. Eur. J. Org. Chem. 2007, 5969. (d) Shibasaki, M.; Kanai, M. Chem. Rev. 2008, 108, 2853.
[26] For reviews on fugality and fragmentation reactions, see: (a) Grob, C. A.; Schiess, P. W. Angew. Chem. Int. Ed. Engl. 1967, 6, 1. (b) Grob, C. A. Angew. Chem. Int. Ed. Engl. 1976, 15, 569.
[27] (a) McLeod, M. C.; Singh, G.; Plampin Iii, J. N.; Rane, D.; Wang, J. L.; Day, V. W.; Aube, J.' Nat. Chem. 2014, 6, 133. (b) MacCoss, M.; Baillie, T. A.

Science 2004, 303, 1810. (c) Jones, S. B.; Simmons, B.; Mastracchio, A.; MacMillan, D. W. C. Nature 2011, 475, 183. (d) Rosen, J.; Gottfries, J.; Muresan, S.; Backlund, A.; Oprea, T. I. J. Med. Chem. 2009, 52, 1953.
[28] Alvaro, G.; Castiglioni, E.; Marasco, A. Spiro(piperidine-4,2'-pyrrolidine)-1-(3,5-bis(trifluoromethyl)phenyl)methylcarboxamides as NK1 tachikynin receptor antagonists and their preparation, pharmaceutical compositions and use in the treatment of diseases. Patent PCT/ WO 2009133135/ A1 20091105.
[29] (a) Kozikowski, A. P.; Kuniak, M. P. J. Org. Chem. 1978, 43, 2083. (b) Pandey, G.; Tiwari, K. N.; Puranik, V. G. Org. Lett. 2008, 10, 3611.
[30] (a) Moreno-Clavijo, E.; Moreno-Vargas, A. J.; Kieffer, R.; Sigstam, T.; Carmona, A. T.; Robina, I. Org. Lett. 2011, 13, 6244. (b) Pandey, G.; Varkhedkar, R.; Tiwari, D. Org. Biomol. Chem. 2015, 13, 4438.
[31] Taniguchi, S.; Hasegawa, H.; Yanagiya, S.; Tabeta, Y.; Nakano, Y.; Takahashi, M. Tetrahedron 2001, 57, 2103.
[32] Chen, Z.; Trudell, M. L. Tetrahedron Lett. 1994, 35, 9649.
[33] Chen, Z.; Trudell, M. L. Chemistry of 7-Azabicyclo [2.2.1]hepta- 2,5-dienes, 7-Azabicyclo[2.2.1]heptenes, and 7-Azabicyclo[2.2.1]- heptanes. Chem. Rev. 1996, 96, 1179.
[34] Zhang, C.; Ballay, C. J., II; Trudell, M. L. J. Chem. Soc., Perkin Trans. 1 1999, 675.
[35] Silverstein , R. M. ; Ryskiewicz , E. E. ; Willard , C. Org. Synth.1956, 36, 74.
[36] H. Firouzabadi, N. Iranpoor, H. Hazarkhani, J. Org. Chem., 2001, 66, 7527.
[37] (a) F. Johnson, K. G. Paul, D. Favara, R. Ciabatti and U. Guzzi, J. Am. Chem. Soc., 1982, 104, 2190 (b) W. Flitsch and F.-J. Lu"ttig, Liebigs Ann. Chem., 1987, 893.
[38] Li, R.; Larsen, D. S.; Brooker, S. New J. Chem. 2003, 27, 1353.
[39] Due to the problem of rotamers, $\mathbf{1 4}$ was characterized after desulfonylation.
[40] M. Z. Chen, O. Gutierrez, A. B. Smith III, Angew. Chem. Int. Ed. 2014, 53, 1279.
[41] Kitzing, R.; Fuchs, R.; Joyeux, M.; Prinzbach, H. Helv. Chim. Acta 1968, 51, 888.
[42] (a) Acheson, R. M.; Vernon, J. M. J. Chem. Soc. 1961, 457. (b) Gabel, N. W. J. Org. Chem. 1962, 27, 301.
[43] (a) Schultz, A. G.; Shen, M. Tetrahedron Lett. 1981, 22, 3347. (b) Schultz, A. G.; Shen, M. Tetrahedron Lett. 1979, 20, 2969. (c) Schultz, A. G.; Shen, M. Tetrahedron Lett. 1981, 22, 1767.
[44] Trost, B. M.; Calkins, T. L.; Bochet, C. G. Angew. Chem. Int. Ed. 1997, 36, 2632.

Section 1.6 : Experimental section

Methyl 2-[2-(MethoxycarbonyI)-3-oxocyclopent-l-enyl]acetate (111):

A three necked 5 L round bottom flask was charged with magnesium ($25 \mathrm{~g}, 1.05$ $\mathrm{mol})$ in dry tetrahydrofuran (400 mL) and stirred. To this suspension, slow addition of isopropyl bromide ($123 \mathrm{~g}, 1 \mathrm{~mol}$) in dry tetrahydrofuran (400 mL) at $-10^{\circ} \mathrm{C}$ generated isopropyl magnesium bromide. After 2 h , the reaction mixture was diluted with THF (2 L) and potassium ethyl malonate ($178 \mathrm{~g}, 1 \mathrm{~mol}$) was added over a period of 30 min . The slurry was heated until gas evolution ceased and allowed to warm up to room temperature. Succinyl chloride ($38.3 \mathrm{~g}, 0.25 \mathrm{~mol}$) was added drop wise over a period of 20 min and stirring was continued for 18 h . The reaction mixture was quenched with a solution of sulfuric acid (70 mL) in ice water $(700 \mathrm{~mL})$. The organic layer was separated and the residual aqueous phase was extracted with ethyl acetate (3 X 200 mL). These extracts and the organic layer were combined, washed with saturated sodium bicarbonate solution and brine and dried over sodium sulphate. Evaporation of the solvents afforded $\mathbf{1 1 1}$ as an oil ($49 \mathrm{~g}, \mathbf{7 6 . 5 \%}$ yield)

TLC: $-\mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc:Hexane $=1: 3$, UV, ninhydrin, KMnO_{4})

IR (film): $v_{\max }=1740,1701 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.19(\mathrm{q}, J=7.09,4 \mathrm{H}), 3.48(\mathrm{~s}, 4 \mathrm{H}), 2.85(\mathrm{~s}$, $4 \mathrm{H}), 1.26(\mathrm{t}, J=7.09,6 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (201 MHz, CDCl_{3}): $\delta=201.2,167.1,61.6,49.4,36.5,14.2$

HRMS:- $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{Na}^{+}$281.0996, found 281.1002.

Diethyl 2, 2'-(1H-pyrrole-2,5-diyl)diacetate (112):-

In a 1 L round bottom flask diethyl 3,6-dioxooctanedioate (111) ($25.8 \mathrm{~g}, 100.0$ $\mathrm{mmol})$ and ammonium acetate ($30.8 \mathrm{~g}, 400.0 \mathrm{mmol}$) were mixed together by stirring. The mixture was heated at $85^{\circ} \mathrm{C}$ for 1 h while stirring and acetic acid (100 mL) was added to the stirring suspension. After 3 h of stirring, a brown colour thick solution appeared which was diluted by adding dichloromethane (1000 mL) and distilled water (1000 mL) and organic layer was separated. The residual aqueous phase was extracted with dichloromethane ($500 \mathrm{~mL} \times 2$) and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the filtrate evaporated in vacuo to yield 112 as a brown solid ($21.9 \mathrm{~g}, 91 \%$).

TLC: $-\mathrm{R}_{\mathrm{f}}=0.4$ (EtOAc:Hexane $=1: 3$, UV, ninhydrin, KMnO_{4})

IR (film): $v_{\max }=3373,3180,3107,2982,2937,1733,1591,1506,1445,1404$, 1369, 1030, 768.cm ${ }^{-1}$
${ }^{1} \mathbf{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.04(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=2.72,2 \mathrm{H}), 4.18(\mathrm{q}$, $J=7.154 \mathrm{H}), 3.62(\mathrm{~s}, 4 \mathrm{H}), 1.28(\mathrm{t}, J=7.10,6 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (201 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=171.2,123.5,107.4,61.1,33.5,14.2$.

HRMS:- $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NNaO}_{4}{ }^{+}$262.1050, found 262.1052.

Diethyl 2,2'-(1-(tert-Butoxycarbonyl)-1H-pyrrole-2,5-diyl)diacetate (113):-

To a stirred solution of $\mathbf{1 1 2}(23.9 \mathrm{~g}, 0.1 \mathrm{~mol})$ in dry acetonitrile (100 mL) was added DMAP ($1.2 \mathrm{~g}, 0.01 \mathrm{~mol}$) and $\mathrm{Boc}_{2} \mathrm{O}(26 \mathrm{~g}, 0.12 \mathrm{~mol})$ at room temperature. Evolution of gas commenced and after 0.5 h , the colour of the reaction mixture turned dark red. The stirring at room temperature for 48 h , the solvent was evaporated under vacuum and the residue was subjected to flash column chromatography using EtOAc/hexane (1:4) under reduced pressure to obtain 113 as an yellow oil ($20.0 \mathrm{~g}, 79 \%$).

TLC: $-\mathrm{R}_{\mathrm{f}}=0.4$ (EtOAc:Hexane $=1: 4$, UV, ninhydrin, KMnO_{4})

IR (film): $v_{\max }=3373,3180,3107,2982,2937,1721,1732,1591,1506,1445$, 1404, 1369, 1030, $768 . \mathrm{cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.97(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{q}, J=7.154 \mathrm{H}), 3.83(\mathrm{~s}$, $4 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{t}, J=7.10,6 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (201 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=171.01,171.0,149.91,128.31,112.59,84.4$, 60.75, 35.91, 27.83, 27.74.

HRMS:- $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NNaO}_{6}{ }^{+} 362.1574$, found 362.1572.

Diethyl 2,2'-((1R,4R)-2-bromo-7-(tert-Butoxycarbonyl)-3-tosyl-7-azabicyclo

 [2.2.1] hepta -2,5-diene-1,4-diyl)diacetate (116):-

To a stirred suspension of $\mathbf{1 1 3}(25.9 \mathrm{~g}, 0.1 \mathrm{~mol})$ in toluene (60 mL) was added 114a, ($33.9 \mathrm{~g}, 0.1 \mathrm{~mol}$) at $55^{\circ} \mathrm{C}$. The resultant mixture was stirred at that temperature for 12 h . The solvent was evaporated under vacuum and the residue was subjected to flash column chromatography using EtOAc/hexane (1:4) as an eluent to give resultant cycloadduct ($46 \mathrm{~g}, 77 \%$) as a yellow oil.

TLC: $-\mathrm{R}_{\mathrm{f}}=0.3$ (EtOAc: Hexane $=1: 3$, UV, ninhydrin, KMnO_{4})

IR (film): $v_{\max }=2982,2256,1735,1324,1155,909,734 \mathrm{~cm}^{-1}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.94(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.06(\mathrm{~m}, 4 \mathrm{H}), 3.61$ (d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.54 (d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J$ $=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{td}, J=7.1,3.5 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (201 MHz, CDCl_{3}): $\delta=169.38,169.23,154.29,153.66,152.10,145.52$, $145.21,141.26,136.81,129.97,127.69,82.82,79.68,60.79,60.61,35.23,35.12$, 27.92, 21.73, 14.16, 14.13. HRMS (m / z):

HRMS:- $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{BrNNaO}_{8} \mathrm{~S}^{+}$620.0924, found 620.0913.

Diethyl 2,2'-(2-bromo-7-(tert-Butoxycarbonyl)-3-tosyl-7-azabicyclo[2.2.1]hepta-2,5-diene-1,4-diyl)diacetate (117):-

The resultant 116 ($5 \mathrm{~g}, 8.36 \mathrm{mmol}$) was dissolved in methanol (50 mL) and was evacuated. The flask was refilled with argon (two cycles), $\mathrm{Pd} / \mathrm{C}(10 \mathrm{wt} \%, 0.515 \mathrm{~g}$, 0.484 g atom) was added to the flask, flushed with hydrogen gas (2 cycles) and stirred. Reaction progress was monitored by TLC. After complete conversion (3 h), reaction mixture was passed through celite pad, and pad was washed with ethyl acetate (3x50 mL). The solvent was evaporated under vacuum and the residue was subjected to flash column chromatography using EtOAc/hexane (1:4) as eluent to give $\mathbf{1 1 7}$ ($4.9 \mathrm{~g}, \mathbf{9 8 \%}$).

TLC:- $\mathrm{R}_{\mathrm{f}}=0.33$ (EtOAc:Hexane $=1: 4$, Ninhydrin).

IR (film): $v_{\max }=2982,2255,1736,1699,1371,910,732 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$,
$4.14-\quad 4.06(\mathrm{~m}, 2 \mathrm{H}), 4.05-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=$
$17.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, 2.25-2.21 (ddd, 1H), 2.13-2.08 (ddd, 2H), 1.48 (ddd, $J=11.9,8.9,3.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.34 (ddd, $J=12.4,8.9,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{td}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=169.52,169.06,152.90,145.09,144.07,140.47$, 138.16, 129.95, 129.93, 127.82, 81.89, 73.80, 72.92, 60.67, 60.42, 36.57, 35.85, 33.05, 30.37, 28.01, 21.82, 14.21, 14.17.

HRMS $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{BrNNaO}_{8} \mathrm{~S}^{+} 622.1081$, found 622.1076.

Diethyl2,2'-((1S,4S)-7-(tert-butoxycarbonyl)-2-(p-tolylthio)-3-tosyl-7-

 azabicyclo [2.2.1]hept- 2-ene-1,4-diyl)diacetate (118):-

To an ice cooled suspension of $\mathrm{NaH}(2.34 \mathrm{~g}, 58.4 \mathrm{mmol}, 60 \%$ suspension in mineral oil) in anhydrous THF (60 mL) was added drop wise a solution of 4-methyl thiophenol ($6.0 \mathrm{~g}, 48.66 \mathrm{mmol}$) dissolved in anhydrous THF (120 mL). After complete addition, the reaction mixture was stirred at room temperature for additional 15 min . A solution of 117 ($29.1 \mathrm{~g}, 48.66 \mathrm{mmol}$) dissolved in anhydrous THF (120 mL) was added drop wise into the flask while stirring at $0^{\circ} \mathrm{C}$. The reaction mixture was further allowed to stir at room temperature for additional 1 h . Completion of the reaction was monitored by TLC and after complete disappearance of 117, the reaction mixture was quenched with brine (100 mL). The mixture was extracted with EtOAc ($2 \times 200 \mathrm{~mL}$) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. The residue was purified by flash chromatography (hexane:EtOAc $=4: 1$) affording 118 ($25.89 \mathrm{~g}, 89 \%$).

TLC:- $\mathrm{R}_{\mathrm{f}}=0.3$ (EtOAc: Hexane $=1: 4$, Ninhydrin $)$.

IR (film): $v_{\max }=2980,2254,1741,1704,1323,1152,1033,732 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H} \operatorname{NMR}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.04 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.11(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.94$ (m, 1H), 3.65 (d, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=17.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.74$ (d, $J=17.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.45 (s, 0H), 2.41 (s, 2H), 2.31 (s, 2H), 1.62 (ddd, $1 \mathrm{H}), 1.37(\mathrm{ddd}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (201 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=170.12,169.67,154.00,150.20,144.75,139.09$, $138.57,131.67,130.25,129.71,128.56,128.21,81.56,75.53,72.86,60.47,60.40$, 36.38, 36.31, 32.84, 30.74, 28.00, 27.10, 21.83, 21.36, 14.37, 14.21 .

HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{NNaO}_{8} \mathrm{~S}_{2}{ }^{+}$666.2166, found 666.2150 .

Diethyl 2,2'-(7-(tert-butoxycarbonyl)-2,3-ditosyl-7-azabicyclo[2.2.1]hept-2-ene-

1,4-diyl)diacetate (119):-

To an ice-cooled solution of 118 ($25 \mathrm{~g}, 40.27 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ was added a solution of m-CPBA ($29.634 \mathrm{~g}, 120.81 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ drop wise. After complete addition, the reaction mixture was allowed to stir at the same temperature for 3 h and finally at room temperature for another 1 h . Silica gel was added to the reaction mixture to absorb the crude product and purified by silica gel column chromatography using ethyl acetate: hexane (1:3-1:2) which gave 119 (24.1 g, 92%) as a white foam.

TLC:- $\mathrm{R}_{\mathrm{f}}=0.4$ (EtOAc:Hexane $=1: 2$, Ninhydrin $)$.

IR (film): $v_{\max }=2982,2256,1738,1596,1339,1323,1157,910,733 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H})$, 4.11-4.04 (m, 4H), $3.54(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 6 \mathrm{H}), 1.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.19$ ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (201 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=169.72,154.63,153.71,145.39,138.32,129.86$, $128.43,82.31,73.78,60.57,36.42,31.22,27.79,27.03,21.88,14.25$.

HRMS $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{NNaO}_{10} \mathrm{~S}_{2}{ }^{+} 698.2064$, found 698.2059.

Diethyl 2,2'-((2R,3R,6S)-6-((tert-butoxycarbonyl)amino)-2,3-diphenyl-1,4dioxaspiro [4.5]dec-9-ene-6,9-diyl)diacetate (121) :-

To an ice-cooled anhydrous toluene (3 mL) solution containing suspension of NaH $(0.17 \mathrm{~g}, 4.33 \mathrm{mmol}, 60 \%$ suspension in mineral oil) was added drop wise a solution of $(+)$-hydrobenzoin ${ }^{[4]}(0.451 \mathrm{~g}, 2.11 \mathrm{mmol})$ dissolved in anhydrous toluene (6 mL). After complete addition, the reaction mixture was allowed to stir at room temperature for 0.5 h and cooled to $0^{\circ} \mathrm{C}$. A solution of $119(1.36 \mathrm{~g}, 2.11 \mathrm{mmol})$ dissolved in anhydrous toluene (8 mL) was added drop wise into the flask while stirring at $-10^{\circ} \mathrm{C}$. The reaction mixture was further allowed to stir at the same temperature for an additional 3.5 h . After complete disappearance of $\mathbf{1 1 9}$, the reaction was quenched at the same temperature by drop wise addition of methanol (2 mL). The mixture was extracted with EtOAc (2 x 20 mL) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash chromatography (hexanes: $\mathrm{EtOAc}=3: 1)$ affording $\mathbf{1 2 0}(0.540 \mathrm{~g}, 55 \%)^{[5]}$

To a stirring solution of boric acid ($0.463 \mathrm{~g}, 7.5 \mathrm{mmol}$) in anhydrous methanol (2 $\mathrm{mL}), \mathbf{1 2 0}(0.54 \mathrm{~g}, 0.75 \mathrm{mmol})$ dissolved in methanol $(7 \mathrm{~mL})$ was added. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and sodium amalgam ($2.0 \mathrm{~g}, 7 \%$) was added portion wise
(30 min) while stirring at the same temperature. The reaction mixture was allowed to stir for an additional 3 h at $0^{\circ} \mathrm{C}$. The progress of reaction was monitored by TLC and after the completion of the reaction; water (1 mL) was added drop wise. The solution was warmed to room temperature and extracted with ethyl acetate. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated under reduced pressure and purified by column chromatography affording desulfonylated cyclohexylamine $\mathbf{1 2 1}$ ($0.286 \mathrm{~g}, 53 \%$).

TLC:- $\mathrm{R}_{\mathrm{f}}=0.6$ (EtOAc:Hexane $\left.=1: 4, \mathrm{PMA}\right)$.

IR (film): $v_{\max }=2981,2254,1739,1704,1321,1052,1021,921,732 \mathrm{~cm}^{-1}$

1H NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of rotamers) 1 H NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.31(\mathrm{~d}, J=8.2,1 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.78(\mathrm{~m}$, 4H), 5.86 - 5.67 (m, 1H), 5.10 (d, $J=18.1,1 \mathrm{H}$), 4.91 - 4.66 (m, 2H), $4.27-3.99$ $(\mathrm{m}, 4 \mathrm{H}), 3.86-3.71(\mathrm{~m}, 6 \mathrm{H}), 3.18-2.68(\mathrm{~m}, 5 \mathrm{H}), 2.34-2.07(\mathrm{~m}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=$ $7.8,9 \mathrm{H}), 1.32-1.17(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=171.28,170.61,170.57,160.00,159.90,159.64$, $159.62,155.19,137.63,128.86,128.78$, 128.00, 127.84, 113.98, 113.95, 113.93, $113.89,106.86,106.74,85.33,84.84,84.55,60.84,60.82,60.43,60.31,55.28$, 55.26, 55.23, 42.64, 42.60, 34.69, 31.62, 28.51, 28.48, 28.41, 26.34, 22.68, 14.29, 14.25, 14.16.

HRMS $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{NNaO}_{8}{ }^{+} 602.2724$, found 602.2718.
$[\alpha]_{\mathrm{D}}{ }^{22}=+22.3^{\circ}\left(c=1.2, \mathrm{CHCl}_{3}\right)$.

Diethyl 2,2'-(2,3-ditosyl-7-azabicyclo[2.2.1]hept-2-ene-1,4-diyl)diacetate (126):-

To a solution of trifluoroacetic acid (25 mL) in dichloromethane (100 mL) was added slowly at $0{ }^{\circ} \mathrm{C}$ to a solution of $\mathbf{1 1 9}(15 \mathrm{~g}, 22.22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and the reaction was allowed to warm to room temperature and stirred for 2.5 h . The reaction mixture was quenched with saturated sodium carbonate solution (100 mL) and extracted with dichloromethane $(2 \times 200 \mathrm{~mL})$. The organic layers were combined, dried over sodium sulphate and concentrated in vacuo to afford corresponding 126 ($12.1 \mathrm{~g}, 95 \%$).

TLC:- $\mathrm{R}_{\mathrm{f}}=0.4$ (EtOAc: Hexane $=1: 1$, Ninhydrin).

IR (film): $v_{\max }=3441,3055,2986,2305,1776,1730,1265,1155,1033,740,705$ cm^{-1}
${ }^{1} \mathbf{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H})$, $4.70(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.60(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{~d}, J=17.9 \mathrm{~Hz}$, $2 \mathrm{H}), 2.41(\mathrm{~s}, 6 \mathrm{H}), 1.75(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (201 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=170.71,155.33,145.03,137.79,129.55,128.37$, 72.49, 60.68, 37.46, 32.63, 21.63, 13.95.

HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NNaO}_{8} \mathrm{~S}_{2}{ }^{+} 598.1540$, found 598.1527.

Diethyl 2,2'-((1S,3R,4S,4'R,5'R)-4',5'-bis(4-methoxyphenyl)-3-tosyl-7-azaspiro [bicycle [2.2.1]heptane-2,2'-[1,3]dioxolane]-1,4-diyl)diacetate (133):-

To an ice-cooled anhydrous toluene (30 mL) solution containing suspension of $\mathrm{NaH}(3.21 \mathrm{~g}, 80.86 \mathrm{mmol}, 60 \%$ suspension in mineral oil) was added drop wise a solution of (R, R)-hydroanisoin ($8.871 \mathrm{~g}, 32.34 \mathrm{mmol}$) dissolved in anhydrous toluene
$(60 \mathrm{~mL})$. After complete addition, the reaction mixture was allowed to stir at room temperature for 0.5 h and then cooled to $-10^{\circ} \mathrm{C}$. A solution of $\mathbf{1 2 6}(15.5 \mathrm{~g}, 26.95$ mmol) dissolved in anhydrous toluene (80 mL) was added drop wise into the flask while stirring at $-10^{\circ} \mathrm{C}$. The reaction mixture was further allowed to stir at the same temperature for an additional 3.5 h . After complete disappearance of amine, the reaction was quenched at the same temperature with drop wise addition of methanol $(10 \mathrm{~mL})$. The mixture was extracted with EtOAc (2x 200 mL) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash chromatography (hexane:EtOAc $=3: 1-2: 1$) affording 133 ($14.17 \mathrm{~g}, 76 \%$).

TLC:- $\mathrm{R}_{\mathrm{f}}=0.4$ (EtOAc:Hexane = 1:2, Ninhydrin).

IR (film): $v_{\max }=3440,3019,2400,1727,1614,1516,1422,1215,928,771 \mathrm{~cm}^{-1}$
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.31 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.84$ (dd, $J=8.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.13$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36$ (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.04-4.00$ $(\mathrm{m}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.78(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $3 \mathrm{H}), 3.09(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.47 ($\mathrm{s}, 3 \mathrm{H}$), $2.43(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~d}, \mathrm{~J}=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{bs}$, $1 \mathrm{H}), 1.40(\mathrm{q}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=171.05,170.88,160.02,159.65,144.93,138.08$, 130.10, 129.22, 129.13, 128.81, 126.76, 126.63, 115.31, 114.01, 113.69, 86.26, $83.51,76.51,69.18,65.18,60.89,60.62,55.43,55.36,37.43,35.64,30.69,27.94$, 21.85, 14.38, 14.23.

HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{NNaO}_{10} \mathrm{~S}^{+} 716.2500$, found 716.2502.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{22}=+29.9^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

Diethyl 2,2'-((1S,4S)-2-oxo-3-tosyl-7-azabicyclo[2.2.1]heptane-1,4-diyl) diacetate (135) :-

To a stirring solution of $\mathbf{1 3 3}(5 \mathrm{~g}, 7.215 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL}, 20: 1)$ was added DDQ ($4.54 \mathrm{~g}, 21.645 \mathrm{mmol}, 3$ equiv). The resulting mixture was stirred for 3 h at rt. The mixture was poured into saturated aqueous NaHCO_{3} solution and was further diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure. The residue was filtered through a Celite pad. The plug was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. The solvents were removed under reduced pressure to give the crude product $\mathbf{1 3 5}$ mixture as a brown oil. This crude product was taken directly to the next step without further purification ($2.58 \mathrm{~g}, 82 \%$). For analytical purpose small amount of $\mathbf{1 3 5}$ was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=15: 1\right)$.

TLC:- $\mathrm{R}_{\mathrm{f}}=0.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=15: 1\right.$, Ninhydrin $)$.

IR (film): $v_{\max }=3438,3021,2067,1640,1379,1215,1043,752,668 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.63(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{qd}, J=7.1,1.1 \mathrm{~Hz}, 2 \mathrm{H})$, 3.56 (d, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65$ - $2.58(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{tdd}, J=12.2,5.5,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (201 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=202.92,171.58,170.69,145.17,137.12,129.83$, $128.78,73.45,70.20,65.41,61.10,61.05,38.01,33.99,31.04,29.18,21.75,14.25$, 14.08

HRMS $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NNaO}_{7} \mathrm{~S}^{+} 460.1400$, found 460.1406 .
$[\alpha]_{\mathrm{D}}{ }^{22}=-12.6^{\circ}\left(c=1.1, \mathrm{CHCl}_{3}\right)$.

Diethyl 2,2'-((1S,4S)-7-(tert-Butoxycarbonyl)-2-oxo-3-tosyl-7-azabicyclo[2.2.1] heptane -1,4-diyl)diacetate (70):-

To a stirring solution of $\mathbf{1 3 5}(2.58 \mathrm{~g}, 5.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}$ $(2.5 \mathrm{~mL}, 17.7 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. To this cooled solution, Boc anhydride $(1.5 \mathrm{~mL}, 7.08$ $\mathrm{mmol})$ in $10 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added drop wise. The mixture was allowed to stir at rt overnight. The solvent was removed under reduced pressure to give crude product as a yellow oil which was purified by flash chromatography (hexanes:EtOAc $=5: 1-4: 1$) affording 70 (0.252 g , exo isomer 76%) and (2.49 g , endo isomer 8%).

TLC:- $\mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc:Hexane $=1: 4$, Ninhydrin).

IR (film): $v_{\max }=2982,2934,2256,1771,1733,1701,1463,1394,1318,1149,909$, $732 \mathrm{~cm}^{-1}$
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.56(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{qd}, J=7.1,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.09-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.63$ (d, $J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{q}, J=17.6,2 \mathrm{H}), 2.66(\mathrm{ddd}, J$ $=12.9,9.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{td}, J=12.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{tdd}, J=$ $12.4,5.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.82$ (ddd, $J=13.1,9.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.33$ (s, 9H), 1.27 (t, J $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (201 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=198.81,170.76,169.14,152.71,145.32,137.23$, 129.84, 128.88, 82.13, 71.87, 71.82, 68.26, 60.62, 60.49, 36.46, 34.31, 32.08, 29.56, 28.04, 21.77, 14.16, 14.02.

HRMS $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NNaO}_{9} \mathrm{~S}^{+} 560.1925$, found 560.1924.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{22}=-27.6^{\circ}\left(c=0.9, \mathrm{CHCl}_{3}\right)$.
(2S,5R)-1-tert-Butyl 2-ethyl 2,5-bis(2-ethoxy-2-oxoethyl)-5-(tosylmethyl)pyrrolidine-1,2dicarboxylate (137):-

To a stirring solution of $\mathbf{7 0}(100 \mathrm{mg}, 0.18 \mathrm{mmol})$ in ethanol $(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, was added sodium ethoxide ($50 \mathrm{mg}, 0.74 \mathrm{mmol}$). The resultant dark colored solution was stirred for 20 min at 0 ${ }^{\circ} \mathrm{C}$ and $1 \mathrm{M} \mathrm{HCl}(\sim 2 \mathrm{~mL})$ was added carefully to quench excess of sodium ethoxide. The reaction mixture solidified after approx. 5 min and was diluted with $\mathrm{EtOAc}(5 \mathrm{~mL})$ and water (5 mL). The resulting layers were separated and the aq. layer extracted with EtOAc (5 mL). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and conc. in vacuo to give viscous oil. Purification by flash chromatography (hexane:EtOAc = gradient $1: 1-1: 2-0: 1)$ afforded $137(96 \mathrm{mg}, 88 \%)$ as a stable white foam.

TLC:- $\mathrm{R}_{\mathrm{f}}=0.4$ (EtOAc: Hexane $=1: 4$, Ninhydrin $)$.

IR (film): $v_{\max }=2985,2932,2256,1782,1733,1702,1463,1394,1318,1149,900,732 \mathrm{~cm}^{-1}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J$ $=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{qd}, J=7.1,2.8 \mathrm{~Hz}, 6 \mathrm{H}), 3.64(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=17.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.33(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}) 3.10,2.71(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}) 1.66$ $(\mathrm{d}, J=13.1 \mathrm{~Hz}, 4 \mathrm{H}), 0.88-1.05(\mathrm{~m}, 11 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=170.53,170.47,170.25,152.04,145.10,130.40,130.29$, $128.85,128.03,127.82,82.32,74.58,70.91,63.18,62.37,60.83,60.76,60.68,41.44,41.37$, 28.64, 28.56, 28.49, 21.94, 14.53, 14.47, 14.24.

HRMS $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{NNaO}_{10} \mathrm{~S}^{+}$606.2343, found 606.2340. $[\alpha]_{\mathrm{D}}{ }^{22}=-$ $32.6^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$.
(S)-diethyl 2,2'-(4-((tert-Butoxycarbonyl)amino)-3-oxo-2-tosylcyclohex-1-ene-1, 4diyl)diacetate (140):-

To a stirring solution of $70(100 \mathrm{mg}, 0.18 \mathrm{mmol})$ in THF (5 mL) at $-10^{\circ} \mathrm{C}$, was added potassium hydride ($25 \mathrm{mg}, 0.62 \mathrm{mmol}$). The dark brown colored solution was stirred for 2 h at $-10^{\circ} \mathrm{C}$ and ice flakes were added carefully to quench excess of potassium hydride. The flask was removed from the cooling bath and diluted with EtOAc (10 mL) and water (10 mL). The, layers were separated and the aq. layer extracted with $\operatorname{EtOAc}(5 \times 3 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and conc. in vacuo to give viscous oil. Purification by flash chromatography (hexane:EtOAc $=$ gradient 1:1-1:2-0:1) afforded 140 ($58 \mathrm{mg}, 58 \%$) as a stable yellow color foam.

TLC:- $\mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc:Hexane $=1: 4$, Ninhydrin).
IR (film): $v_{\max }=2982,2936,2257,1780,1743,1702,1465,1394,1319,1119,918,733 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.89(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.24-$ $4.08(\mathrm{~m}, 4 \mathrm{H}), 3.85-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}$, $3 \mathrm{H}), 2.23(\mathrm{t}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}) 1.53(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.88-1.31(\mathrm{~m}, 14 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 199.16, 171.12, 169.51, 145.67, 137.58, 130.19, 129.23, 82.50, $60.97,60.84,36.81,34.65,32.42,29.89,28.39,22.11,14.59,14.53,14.39$.

HRMS $(\boldsymbol{m} / z):\left[\mathrm{M}+\mathrm{Na}^{+}{ }^{+}\right.$calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NNaO}_{9} \mathrm{~S}^{+} 560.1925$, found 560.1920. $[\alpha]_{D^{22}}=+19.6^{\circ}$ ($c=1.0, \mathrm{CHCl}_{3}$).

HPLC data:-

Racemic compound (70)

(+)-70

(-)-70

DAD: Signal D,
$230 \mathrm{~nm} / \mathrm{Bw}: 4 \mathrm{~nm}$
Results

coloumn: Chromasil-ODH($4.6 \times 250 \mathrm{~mm}$)
flowrate: $1 \mathrm{ml} / \mathrm{min}$
pressure: 60.37 bar
mobile phase: n -Hexane:IPA (70:30)
inj vol: 10 uL
sample conc: $2 \mathrm{mg} / 5 \mathrm{ml}$
wavelength: 230 nm

DAD: Signal D,
$230 \mathrm{~nm} / \mathrm{Bw}: 4 \mathrm{~nm}$

coloumn: Chromasil-ODH($4.6 \times 250 \mathrm{~mm}$)
flowrate: $1 \mathrm{ml} / \mathrm{min}$
mobile phase: n-Hexane:IPA (99:1)
inj vol: 10uL
sample conc: $2 \mathrm{mg} / 5 \mathrm{~m}$

DAD: Signal D,
Results

(DEPT 135)
($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Chapter 2:-

"Stereoselective Total Synthesis of
Cylindricine Class of Alkaloids"

Section -2.1: Introduction to cylindricine family of alkaloids

Marine ascidians, known as Clavelina is made up of a wide variety of colored sea squirts that have produced a plethora of natural products including the cylindricine and lepadiformine family of alkaloids. Clavelina cylindrica is the source of the cylindricine family of alkaloids consisting of 11 tricyclic alkaloids (Figure 1), isolated off the coast of Tasmania, in yields ranging between 0.0002-0.009 \%. Biosynthetic pathways and natural function of these alkaloids are still unknown. A modest cytotoxity ${ }^{[4-6]}$ is reported from a mixture of cylindricines A and B (equilibrium mixture 3:2) on a brine shrimp assay. Cytotoxicity observed from these alkaloids is believed to arise from DNA cleavage at guanine site due to alkylation involving strained aziridinium intermediate $(\mathbf{1 1})^{[1-3]}$ as shown in Scheme 1.

Figure 1:- Classification of Cylindricine family of alkaloids

R = OH Cylindricine C (1a)
$R=O M e$ Cylindricine $D(1 b)$
$R=O A C$ Cylindricine $E(1 c)$
R = SCN Cylindricine F (1d)
$\mathrm{R}=\mathrm{Cl}$ Cylindricine $\mathrm{A} \quad$ (1e)

Cylindricine G (1f)

Cylindricine B(1i)

Cylindricine H (1g)
R = SCN Cylindricine H (1g)
R = NCS Cylindricine H (1h)
Cylindricine J (1 k)

The absolute configuration of the natural enantiomer still remains unknown as no optical rotation was taken at the time of isolation of these molecules, perhaps due to insufficient amount of isolated compounds. In spite of moderate biological activity exhibited by this class of alkaloids, synthesis of Cylindricines have become intriguing
targets for organic chemists ${ }^{[7]}$ due to complex tricyclic 1-azaspirocyclane structures which poses a formidable synthetic challenge.

Scheme 1: Inter conversion of Cylindricine A and B

(11)

Section -2.2: Reported synthetic strategies for the Cylindricine C

Several synthetic approaches have been developed to synthesize Cyclindricine C both in racemic as well as in optically active form. However, only synthesis of $\mathbf{1}$ in optically active form will be discussed to keep the discussion to a finite perspective.

Molander's Approach: (J. Org. Chem. 1999, 64, 5183) ${ }^{[35]}$

First asymmetric synthesis of $\mathbf{1}$ was accomplished in 1999 in 11 steps and 12% yield (Scheme 2) utilizing an intramolecular double conjugate addition of an in situ generated amine functionality from $\mathbf{4}$ as a key step shown in Scheme 2.

Scheme 2:- Molander's Synthesis of (-)-Cylindricine C

(-)-Cylindricine C

Trost's synthesis of (+)- cylindricine C: (Org. Lett. 2003, 5, 4599.) ${ }^{[28]}$

Trost and coworkers also used an intramolecular double conjugate addition strategy, similar to Molander, from 12 to obtain 1a (Scheme 3). Precursor 12 was obtained by hydrative diyne cylization of $\mathbf{1 0}$ followed by subsequent steps as shown in Scheme 3 (9 steps and 12% yield).

Scheme 3: Trost's Synthesis of (+)-Cylindricine C

$$
\xrightarrow[\substack{\text {) } \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{PhMe} \\ 90 \%}]{\text { 1) TFA, DCM }}
$$

3) TBAF, 99%

(+)-Cylindricine C (1a)

Kibayashi's synthesis of (+)-cylindricine C: (Tetrahedron Lett. 2004, 45, 5921) ${ }^{[10]}(\mathrm{J}$. Am. Chem. Soc. 2005, 127, 1473.) ${ }^{[11]}$

Kibayashi and coworkers accomplished the synthesis of 1a in 14 steps and 9% yield (Scheme 4) utilizing intramolecular cyclization of an in situ generated enamine moiety from 16 to construct spirobicyclic skeleton 17 which by following simple steps as shown in Scheme 4 delivered 1a. The key precursor 14 was obtained by the allyl Grignard addition on 13.

Scheme 4: Kibayashi's Synthesis of (+)-Cylindricine C

Scheme 5: Kibayashi’s Second Synthesis of (+)-Cylindricine C

Subsequently, the same group also reported another strategy to obtain 1a in 12 steps and 12% overall yield utilizing an intramolecular conjugate azaspirocyclization of $\mathbf{2 2}$ as the key step to obtain bicyclic framework 23. Further functional group transformations followed by intramolecular SN^{2} substitution of mesylate group in 26 gave tricyclic framework 27 as shown in Scheme-5.

Hsung's [3+3] Annulation Approach to (-)-Cylindricine C: (Org. Lett. 2006, 8, 777.) ${ }^{[13]}$

This group has utilized ${ }^{[13]}$ an intramolecualr aza-[3+3]-cycloaddition of $\mathbf{3 3}$ to obtain core azaspirocyclane framework $\mathbf{3 4}$ and further transformations (9 steps) gave 1a (total 22 steps, 5\% overall yield) (Scheme 6).

Scheme 6: Hsung's [3+3] Annulation Approach to (-)-Cylindricine C

Shibasaki's Approach: - (Angew. Chem. Intl. Ed. 2006, 45, 4635.) ${ }^{[14]}$

A short synthesis (6 steps) of $\mathbf{1 a}$ is reported by Shibasaki's group by employing a cascade sequence of Michael/Mannich-reaction to obtain a key azaspirocyclane skeleton efficiently (Scheme 7). This group used chiral ammonium salt 39 as a phase transfer catalyst for chiral induction during Michael reaction.

Scheme 7: Shibasaki's Organocatalysis approach to (-)-Cylindricine C and (-)-2-epi-Cylindricine C

Ciufolini's Approach: (Angew. Chem., Intl. Ed. 2005, 43, 4336) ${ }^{[15]}$
A conceptually different approach for the synthesis of $\mathbf{1 a}$ and its unnatural analogue 49 is reported by Ciufolini and co-workers. Starting with an oxidative spirocyclization of 45 in the presence of iodosobenzene diacetate afforded 46 which on further reactions (6 steps) provided 47, a common precursor for both 1a and 49 (18 steps and 15% overall yield) as shown in Scheme 9.

Scheme 9: Ciufolini’s Oxidative Spirocyclization Approach to (-)-Cylindricine C and (-)-2-epicylindricine \mathbf{C}

(-)- Cylindricine C (1a)
50

Section -2.3: Total synthesis of (+)-Cylindricine C, D, E.

Objective of the present study:-

From above introductory remarks, it is clear that known strategies in the context of synthesizing cylindricines can either give (+)-1 or (-)-1 as all of them are based on chiral pool approach. However, since the absolute configuration of natural alkaloid is still unknown, it was felt necessary to develop a conceptually different route which can deliver both enantiomers of cylindricines. In this context, we have devised an innovative cascade rearrangement approach to synthesize $\mathbf{1}$ which is described as follows:

For the synthesis of the key perhydropyrrole[2,1-j] quinolone framework 53, we envisaged a novel cascade transformation ${ }^{[16]}$ from a bridged tricyclic precursor $\mathbf{5 1}^{[17]}$ via an acid mediated retro-aldol fragmentation / aza-Michael addition reaction as shown
in Scheme 10. This framework was proposed to be diversified into $\mathbf{1 a} \mathbf{- 1} \mathbf{c}$ by selective reduction of aldehydic functionality followed by epimerization.

Scheme 10: Proposed cascade rearrangement for 1a, 1b, 1c

Retro Synthetic analysis:

Scheme 11: Retrosynthesis of 51

Compound 54 for the construction of key cascade precursor 51, was envisaged to be synthesized by an intramolecular Tsuji-Trost reaction of compound $\mathbf{5 5}$ which can in turn be prepared via a vinyl grignard addition on $\mathbf{5 6}$ followed by esterification. A simple functional group transformation could be utilized for obtaining 56 from compound 57.

Having designed above schematic route, we commenced our synthesis by synthesizing 58 by reduction ${ }^{[12]}$ of 57 (9.34 mmol) with DIBAL-H (45.0 mmol , [DIBAL-H: 1M concentration in hexane] in THF (60 ml)) at $-20^{\circ} \mathrm{C}$. Molecular ion peak $[\mathrm{M}+\mathrm{Na}]^{+}$in HRMS at 478.1864 supported the formation of $\mathbf{5 8}$. Further confirmation to the structure of $\mathbf{5 8}$ came by observing -OH group ($3340 \mathrm{~cm}^{-1}$) in the IR spectrum. Although, we proceeded with the next step with crude $\mathbf{5 8}$ a small amount was purified for spectral details.

1,4-Diol moiety of crude 58 (8.67 mmol) was protected by stirring with 2,2dimethoxypropane (10.4 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in presence of catalytic amount of p-TSA (0.86 mmol) to obtain $\mathbf{5 9}$ (80% yield over two steps).

Scheme 12: Synthesis towards pivotal precursor of Tsuji-Trost reaction

Structural support for the formation of $\mathbf{5 9}$ came by observing two methyl protons at δ $0.34,(\mathrm{~s}, 3 \mathrm{H})$ and $\delta 1.21,(\mathrm{~s}, 3 \mathrm{H})$ as well as a quaternary carbon at $(\delta 101.93)$ in the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum, respectively. Further support to the structure came from a molecular ion peak $[\mathrm{M}+\mathrm{Na}]^{+}$at 518.2181 in HRMS. Optical rotation of $\mathbf{5 9}$ was found as $[\alpha]_{\mathrm{D}}^{22}=-29.1^{\circ}\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.

IBX oxidation (23.0 mmol, DMSO, $60 \mathrm{~mL}, 2 \mathrm{~h}, \mathrm{rt}$) of the primary alcohol moiety of $\mathbf{5 9}$ (23.0 mmol) gave $\mathbf{6 0}$ quantitatively which on reacting with vinyl magnesium bromide
(1 M concentration in THF, 14.2 mmol , THF, $0^{\circ} \mathrm{C}$), however, gave a complex reaction mixture, possibly, due to 7 -azabicyclo[2.2.1]heptane ring opening. ${ }^{[19]}$ After surveying various conditions for vinyl Grignard addition, it was found that slow addition of the Grignard reagent ($10 \mathrm{~mL} / \mathrm{h}$) in a mixture of toluene: THF (1:5) at $-78{ }^{\circ} \mathrm{C}$ gave 61 (76 \% yield, $d . r=1: 1.5$) (Scheme 12). We proceeded to the next step without separating the diastereomers. Methyl carbamate protection of 61 (3.36 mmol) using methyl chloroformate (7.72 mmol ,) in the presence of pyridine (7.72 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ afforded $\mathbf{6 3}$ in 84% yield. Crude $\mathbf{6 3}(2.88 \mathrm{mmol})$ on reacting with ceric chloride (3.36 $\mathrm{mmol})^{[20]}$ in presence of catalytic amount of oxalic acid $(0.68 \mathrm{mmol})$ in acetonitrile at rt yielded $\mathbf{6 4}$ in 72% yield.

Structural assignment of $\mathbf{6 4}$ was made by detailed spectral analyses. For example, three alkenes protons appeared at $\delta 5.82$ (ddd, $J=16.9,10.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), \delta 5.30-5.20(\mathrm{~m}$, $1 \mathrm{H}), \delta 5.13(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H})$, respectively in ${ }^{1} \mathrm{H}$ NMR spectrum. A doublet of a triplet appearing at $4.95(\operatorname{td}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$ was assigned to the proton attached with the ether moiety. Proton attached to tosyl functionality appeared at $\delta 3.93$ (dd, $J=10.2$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}$). In ${ }^{13} \mathrm{C}$ NMR spectrum, two carbony carbons appeared at $\delta 156.30$ (Boc group) and at $\delta 155.20$ (allyl carbonate), respectively. Carbon bearing tosyl functionality appeared at δ 67.27. Molecular ion peak $[\mathrm{M}+\mathrm{Na}]^{+}$in HRMS was observed at 562.2077 confirming the structure of $\mathbf{6 4}$. Optical rotation for $\mathbf{6 4}$ was estimated to be $[\alpha]_{\mathrm{D}} 22=-6.1^{\circ}\left(c=0.8, \mathrm{CHCl}_{3}\right)$.

In order to transform 64 to 65 , a two-step protocol was utilized as shown in Scheme-13. First, - OH groups of $\mathbf{6 4}$ were oxidized by stirring with IBX (2.5 mmol)/DMSO, 10 mL , $6 \mathrm{~h})$ at $50{ }^{\circ} \mathrm{C}$ to afford $\mathbf{6 5}$ in 80% yield which upon Tsuji-Trost cyclization ${ }^{[21]}$ using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.018 \mathrm{mmol})$ as a catalyst, benzyltriethyl ammonium chloride as a phase transfer catalyst (0.037 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ as a base $(1.11 \mathrm{mmol})$ in water : ethyl acetate (1:1) mixture gave 66 quantitatively.

Scheme 13: Synthesis of 66 by Tsuji-Trost reaction

Formation of $\mathbf{6 6}$ was confirmed by observing two protons in the olefinic region in the ${ }^{1} \mathrm{HNMR}$ spectrum at $\delta 5.92$ (ddd, $J=10.4,4.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $\delta 5.51$ (ddd, $J=10.0,4.9$, $2.2 \mathrm{~Hz}, 1 \mathrm{H})$) respectively. A carbon signal in ${ }^{13} \mathrm{C}$ NMR at $\delta 81.76$ also confirmed the formation of a newly generated quaternary carbon C-5. Molecular ion peak $[\mathrm{M}+\mathrm{Na}]^{+}$ at 482.1608 confirmed the structure of $\mathbf{6 6}$. Optical rotation for $\mathbf{6 6}$ was found to be $[\alpha]_{\mathrm{D}^{22}}$ $=-31.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

Scheme 14: Selectivity at C-5 position of in Tsuji-Trost reaction of 65

Emerging stereoselectivity at C-5, during Tsuji-Trost 6-endo-trig cyclization ${ }^{[22]}$ is explained by considering exo-face attack of π-allyl complex to avoid steric repulsion with endo-oriented protons of bicyclic framework 65 (Scheme 14).

Scheme-15: Synthesis of 72

Having efficiently assembled 66, our next target was to prepare 72, the designed precursor for cascade rearrangement. Towards this end, 66 (1.09 mmol) was hydrogenated $\left(\mathrm{H}_{2}-\mathrm{Pd} / \mathrm{C}(0.048 \mathrm{mmol}, \mathrm{MeOH})\right.$ at 1 atm to afford $\mathbf{6 7}$ in 90% yield. Although, disappearance of corresponding olefinic protons in ${ }^{1} \mathrm{HNMR}$ spectra, were expected from this reaction, appearance of two sets of protons as multiplets, integrating three each at $\delta 3.31-3.27(\mathrm{~m}, 3 \mathrm{H})$ and $\delta 3.19-3.16(\mathrm{~m}, 3 \mathrm{H})$ were surprising. Furthermore, carbon signal related to the aldehydic moiety at $\delta 202$ was also found missing. HRMS provided molecular ion peak $[\mathrm{M}+\mathrm{Na}]^{+}$at 530.2180 . Thus, based on these results it was inferred that during hydrogenation reaction, aldehydic moiety got protected as an acetal. ${ }^{[23]}$ Although, this result was unexpected, it turned out to be fortuitous outcome which safeguarded the aldehyde moiety during subsequent desulfonylaton step. ${ }^{[24]}$ Stirring of crude 67 (1 mmol) with $\mathrm{Na}-\mathrm{Hg}(7 \%, 5 \mathrm{mmol})$, $\mathrm{B}(\mathrm{OH})_{3}(1.5 \mathrm{mmol})$ in MeOH at $0{ }^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 3-5 \mathrm{~h}^{[25]}$ afforded $\mathbf{6 8} \mathrm{in}(60 \%$ yield in two steps). Formation of $\mathbf{6 8}$ is suggested by the absence of aromatic protons in ${ }^{1} \mathrm{H}$ NMR spectrum which was further confirmed by HRMS (molecular ion peak $[\mathrm{M}+\mathrm{Na}]^{+}$at 376.2092). Optical rotation was found to be $[\alpha]_{\mathrm{D}}{ }^{22}=+14.6^{\circ}\left(c=1.1, \mathrm{CHCl}_{3}\right)$.

Moving towards our target, $\mathbf{6 8}(0.66 \mathrm{mmol})$ was treated with trimethyl silyl triflate $(0.73 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ in the presence of Huing's base (DIPEA) $(0.8 \mathrm{mmol})^{[26]}$ to obtain 69 which was used without purification in the next step. One carbon truncation of crude 69 by ozonolysis $\left(\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, \mathrm{PPh}_{3}\right){ }^{[30]}$ afforded 70 which on immediate acetal protection (trimethyl orthoformate (1.2 mmol), MeOH, p TSA (0.05 mmol), $0^{\circ} \mathrm{C}$) furnished 71 (71% over two steps). Reaction of 71 with (E)-1-octenyl lithium furnished $\mathbf{7 2}$ in 80% yield (Scheme 13). Formation of 72 was suggested by observing olefinic protons at $\delta 5.52(\mathrm{dt}, J=15.6,6.5 \mathrm{~Hz}, 1 \mathrm{H})$ and $\delta 5.46(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H})$, respectively, in the ${ }^{1} \mathrm{H}$ NMR spectrum.

Section -2.4: Development of a Tandem rearrangement:

Having assembled trigger $\mathbf{7 2}$ for cascade rearrangement, it was envisaged that under an acidic condition acetal moiety of $\mathbf{7 2}$ would undergo deprotection producing a free aldehydic moiety which on rearrangement would give perhydropyrrolo[2,1-j]quinolone framework 53 . However, unfortunately, stirring of 72 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}(20: 1)$ containing TFA (3 mmol) produced unexpectedly 73 (50% yield) (Scheme 10).

Scheme 16: Cascade reaction of 72

Formation of $\mathbf{5 3}$ was ruled out as in ${ }^{1} \mathrm{H}$ NMR spectrum of the product, two olefinic protons still appeared at $\delta 5.86$, $(\mathrm{d}, J=15.5,1 \mathrm{H})$ and $\delta 6.12$, (d, $J=15.5,1 \mathrm{H})$, respectively

Scheme 17: Plausible cascade pathway for the formation of 73

53
\uparrow

78

72

76

. Moreover, protons corresponding to an aldehyde moiety were also found absent, instead, a appearance of a methylene proton at $\delta 3.54,\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{O}-\right)$ and -OMe at $(\delta 3.14, \mathrm{~s}, 3 \mathrm{H})$ indicated the formation of 73.

This observation led us to speculate that 77 possibly underwent enamine tautomerization ${ }^{[28,29]}$ much faster than enol ether hydrolysis (Scheme 17). Therefore, to overcome this inherent enamine tautomerization problem at the intermediate stage, we sought to prepare an alternative precursor $\mathbf{8 1}$ (Scheme 18).

Scheme 18: Preparation of a modified cascade precursor 81

In this context, selective reduction of $70(0.563 \mathrm{mmol})$ by $\mathrm{NaBH}(\mathrm{OAc})_{3}(2.26 \mathrm{mmol})$ in AcOH:THF (1:10), rt, 16 h) was carried out to obtain $\mathbf{8 0}$ in 72% yield which on reacting with (E)-1-octenyl lithium at $-78{ }^{\circ} \mathrm{C}$ afforded $\mathbf{8 1}$. Formation of $\mathbf{8 1}$ was supported by observing characteristic olefinic protons in the ${ }^{1} \mathrm{HNMR}$ spectrum at $\delta 5.52$ ($\mathrm{d}, J=15.6$, $1 \mathrm{H}), \delta 5.46(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, respectively.

Scheme 19: Cascade reaction of 81

Believed to have right precursor in hand, we proceeded with its oxidation (DMP (0.14 mmol) in TFA: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 3)$) at $0^{\circ} \mathrm{C}$ to obtain 47 in 58% yield ($d r=10: 1$). The structure of $\mathbf{8 2}$ was fully established by detailed NMR spectral analyses and stereochemistry was established by NOESY analyses.

In ${ }^{1} \mathrm{H}$ NMR spectrum, aldehydic proton appeared as a singlet at $\delta 9.26(\mathrm{~d}, J=4.7 \mathrm{~Hz}$, 1 H) whereas protons of $\mathrm{H}_{13}, \mathrm{H}_{2}$ and H_{5} appeared at $\delta 3.70-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.45$ (ddd, J $=11.2,6.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), \delta 2.73-2.70(\mathrm{~m}, 1 \mathrm{H})$, respectively. In ${ }^{13} \mathrm{C}$ NMR, carbon signal appearing at $\delta 212.21$ corresponded to aldehyde carbon and another signal at $\delta 204.61$ corresponded to keto carbon. Further support to the structural assignment of $\mathbf{8 2}$ was obtained by analysing HSQC cross peaks where correlation was found between H_{13} (δ $3.70)-\mathrm{C}_{13}(\delta 67.43), \mathrm{H}_{2}(\delta 3.45)-\mathrm{C}_{2}(\delta 68.89)$ and $\mathrm{H}_{5}(\delta 2.74)$ - $\mathrm{C} 5(\delta 53.94)$ respectively.

Figure 2: NOESY correlation of product 82

NOESY (Figure 2) spectrum also indicated coupling between $\mathrm{H}_{13}(\delta 3.70)-\mathrm{H}_{15}(\delta 2.74)$ and no coupling between $\mathrm{H}_{5}(\delta 2.74)-\mathrm{H}_{2}(\delta 3.45)$ suggesting ' c ' ring to be in chair conformation. The plausible mechanism for this transformation is depicted in Scheme 20.

Based on these observations, it appears that oxidation of $\mathbf{8 1}$ produces $\mathbf{8 3}$ which being highly unstable undergoes concomitant retro-aldol fragmentation under acidic condition furnishing 84. Strong acidic condition of the medium (TFA) further affected the N -Boc deprotection which on intramolecular aza-Michael addition reaction produced 53. Facial protonation of $\mathbf{8 6}$ produced required C_{13} selectivity. ${ }^{[33]}$ Origin of C_{13} selectivity in $\mathbf{8 2}$ is further proved by the ${ }^{1} \mathrm{H}$ NMR analysis by comparing the C_{13} selectivity of $\mathbf{8 4}$. Due to the lack of facial protonation selectivity at C_{13} was obtained in 6:1 ratio. However, in 82, there is a possibility of facial protonation (Scheme 20) in $\mathbf{8 6}$ during the tandem rearrangement leads to excellent diastreoselectivity (10:1). Selectivity at C_{2} position is possibly governed by the C_{10} aza-quaternary centre and equatorial substitution at on cyclohexane ring at C_{5} in $\mathbf{8 5}$.

Scheme 20: Plausible mechanism of cascade rearrangement of 81

Initially, we expected tandem process could be stopped ${ }^{[27,31]}$ at $\mathbf{5 3}$. However, it seems from the NOESY of $\mathbf{8 2}$ (Figure 2) that it underwent epimerization to produce thermodynamically more stable intermediate $\mathbf{8 2}$. With this result in hand, forwarded this intermediate $\mathbf{8 2}$ to complete the synthesis of cylindricine class of alkaloids. Overall, this tandem transformation involved six sequential reactions generating three new chiral centres with required configuration in one pot.

Total synthesis of Cylindricine C (1a):

Scheme 21: Synthesis of (+)-(1a)

(1a)

Compound $82(0.081 \mathrm{mmol})$ on selective reduction with $\mathrm{NaBH}(\mathrm{OAc})_{3}$, $[(0.324$ mmol) AcOH:THF, (1:3), rt, 16 h$)$] furnished 1a in 75% yield. Structure of $\mathbf{1 a}$ was confirmed by detailed NMR analysis ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and comparing the optical rotation $[\alpha]_{D^{22}}=+60.2^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$ with the reported values. ${ }^{[27,34]}$

Total synthesis of Cylindricine D (1b):

Scheme 22: Synthesis of (+)-(1b)

O-Methylation of $\mathbf{1 a}(0.054 \mathrm{mmol})$ with methyl iodide $(1.8 \mathrm{mmol})$ in presence of silver oxide (0.072 mmol) in acetonitrile (stirring for 2 days) gave $\mathbf{1 b}$ in 82% yield. Optical rotation of the cylindricine D was found $\left.[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{22}=+21.3^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)\right)^{[27]}$

Total synthesis of Cylindricine E (1c):

Scheme 23: Synthesis of (+)-(1c)

Treating 1a $(0.04 \mathrm{mmol})$ with acetic anhydride $(0.588 \mathrm{mmol})$ in triethyl amine $(0.6$ mmol) DMAP (0.014 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave (+)-1c in 95% yield. Optical rotation was found $[\alpha]_{\mathrm{D}}{ }^{22}=+28.3\left(c=0.15, \mathrm{CHCl}_{3}\right)$. HRMS gave molecular ion peak $[\mathrm{M}+$ $\mathrm{H}]^{+}$at 350.2695 .

Section -2.4: Summary

In summary, we have developed a strategy for the synthesis of cylindricne C, D, E alkaloids. Suitable precursor 81 was designed from 57 to initiate a cascade sequence to accomplish the planned targets. Since the absolute configuration of natural cylindricine is unknown till date, availability of both (-)-57 and (+)-58 provides an opportunity to obtain both enantiomers of $\mathbf{1 a}, \mathbf{1 b}, \mathbf{1}$. Additional features of the study includes late stage oxidation/retro-aldol/aza-Michael cascade sequence generating three new chiral centres in required configuration, Biphasic intramolecular Tsuji-Trost reaction is applied for ' b ' ring cyclization.

Refecences:

1) Dutta, S.; Abe, H.; Aoyagi, S.; Kibayashi, C.; Gates, K. S. J. Am. Chem. Soc. 2005, 127, 15004.
2) For the biological effect of DNA alkylation, see: (a) Gates, K. S. Covalent Modification of DNA by Natural Products. In Comprehensive Natural Products Chemistry; Kool, E. T., Ed.; Pergamon: New York, 1999; Vol. 7, 491. (b) Gates, K. S. Chem. Res. Toxicol. 2000, 13, 953.
3) For other related examples of DNA alkylation by guanidine residues with a Different type of electrophilic species, including aziridinium ions, see (a) Povirk, L. F.; Shuker, D. E. Mutation Res. 1994, 318, 205. (b) Gates, K. S.; Nooner, T.; Dutta, S. Chem. Res. Toxicol. 2004, 17, 839. (c) Pullman, A.; Pullman, B. Q. Rev. Biophys. 1981, 14, 289. (d) Beranek, D. T. Mutation Res. 1990, 231, 11. (e) Lawley, P. D.; Phillips, D. H. Mutation Res. 1996, 355, 13. (f) Zang, H.; Gates, K. S. Chem. Res. Toxicol. 2003, 16, 1539. (g) Mattes, W. B.; Hartley, J. A.; Kohn, K. W. Nucleic Acids Res. 1986, 14, 2971. (h) Balcone, S.; Park, S.; Quirk Dorr, D. R.; Hafner, L.; Phillips, L.; Tretyakova, N. Chem. Res. Toxicol. 2004, 17, 950. (i) Liao, P.-C.; Li, C.- M.; Hung, C.-W.; Chen, S.-H. J. Mass. Spectrom. 2001, 36, 336.
4) Li, C.; Blackman, A. J. Aust. J. Chem. 1995, 48, 955-65.
5) Li, C.; Blackman, A. J. Aust. J. Chem. 1994, 47, 1355-61.
6) Blackman, A. J.; Li, C.; Hockless, D. C. R.; Skelton, B. W.; White, A. H. Tetrahedron 1993, 49, 8645.
7) For selected reviews see: (a) Weinreb, S. M. Acc. Chem. Res. 2003, 36, 59. (b) Kibayashi, C.; Aoyagi, S.; Abe, H. Bull. Chem. Soc. Jpn. 2003, 76, 2059. (c) Schär, P.; Cren, S.; Renaud, P. Chimia 2006, 60, 131. (d) Weinreb, S. M. Chem. Rev. 2006, 106, 2531 (e) Liu, J.; Hsung, R. P. Chemtracts: Org. Chem. 2005, 18, 321.
8) Lapointe, G.; Schenk, K.; Renaud, P. Org. Lett. 2011, 13, 4774-4777.
9) Caldwell, J. J.; Craig, D. Angew. Chem., Int. Ed. 2007, 46, 2631-2634.
10) Arai, T.; Abe, H.; Aoyagi, S.; Kibayashi, C. Tetrahedron Lett. 2004, 45, 5921.
11) Abe, H.; Aoyagi, S.; Kibayashi, C. J. Am. Chem. Soc. 2005, 127, 1473.
12) (a) Werner, K. M.; de los Santos, J. M.; Weinreb, S. M.; Shang, M. J. Org. Chem. 1999, 64, 4865. (b) Werner, K. M.; de los Santos, J. M.; Weinreb, S. M.; Shang, M. J. Org. Chem. 1999, 64, 686.
13) (a) Wang, J.; Swidorski, J. J.; Sydorenko, N.; Hsung, R. P.; Coverdale, H. A.; Kuyava, J. M.; Liu, J. Heterocycles 2006, 70, 423. (b) Swidorski, J. J.; Wang, J.; Hsung, R. P. Org. Lett. 2006, 8, 777.
14) (a) Shibuguchi, T.; Mihara, H.; Kuramochi, A.; Sakuraba, S.; Ohshima, T.; Shibasaki, M. Angew. Chem. Intl. Ed. 2006, 45, 4635. (b) Mihara, H. Shibuguchi, T.; Kuramochi, A.; Ohshima, T.; Shibasaki, M. Heterocycles 2007, 72, 421.
15) Canesi, S.; Bouchu, D.; Ciufolini, M. A. Angew. Chem., Intl. Ed. 2005, 43, 4336.
16) For reviews on the application of cascade reactions in total synthesis, see: (a) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem. Int. Ed. 2006, 45, 134. (b) Nicolaou, K. C.; Chen, J. S. Chem. Soc. Rev. 2009, 38, 2993. (c) Anderson, E. A. Org. Biomol. Chem. 2011, 9, 3997.
17) Hoffmann, R.W; Elements of Synthesis Planning, Springer, Berlin, 2009, pp. 106 - 117, and references therein.
18) Weiss, M. E.; Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50, 11501.
19) Pandey, G.; Tiwari, K. N.; Puranik, V. G. Org. Lett. 2008, 10, 3611.
20) Xiao, X.; Bai, D. Synlett, 2001, 535.
21) H. Kinoshita, H. Shinokubo, K. Oshima, Angew. Chem. Int. Ed. 2005, 44, 2397.
22) a) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734. b) Johnson, C. D. Acc. Chem. Res. 1993, 26, 476. c) Baldwin, J. E.; Kruse, L. I. J. Chem. Soc., Chem. Commun 1977, 233. d) Baldwin, J. E.; Lusch, M. J. Tetrahedron 1982, 38, 2939.
23) Trace amount of acidic source in the Pd / C catalyst allows acetal protection of aldehyde in presence of MeOH as solvent.
24) Under radical mediated desulfonylation conditions, aldehyde can reduce to alcohol.
25) Trost, B. M.; Calkins, T. L.; Bochet, C. G. Angew. Chem. Int. Ed. 1997, 36, 2632.
26) Gasman, P. G.; Burns, S. J.; Pfister, K. B. J. Org. Chem. 1993, 58, 1449.
27) Trost, B. M.; Rudd, M. T. Org. Lett. 2003, 5, 4599.
28) see the literature of nucleophilicity comparison of enol, enamine and enol ether: http://www.chem.ucla.edu/harding/notes/notes_14D_enolates.pdf
29) Bruckner, R. "The Chemistry of Enols and Enamines." Organic Mechanisms: Reactions, Stereochemistry and Synthesis (2010): 487-517.
30) a) Schank, K.; Beck, H.; Pistorius, S. Helv. Chim. Acta 2004, 87, 2025. b) Hillers, S.; Niklaus, A.; Reiser, O. J. Org. Chem. 1993, 58, 3169. c) Griesbaum, K.; Kim, W. S. J. Org. Chem. 1992, 57, 5574. d) Bunnelle, W. H. Chem. Rev. 1991, 91, 335. f) Griesbaum, K.; Kim, W. S.; Nakamura, N.; Mori, M.; Nojima, M.; Kusabayashi, S. J. Org. Chem. 1990, 55, 6153. g) Wojciechowski, B. J.; Pearson, W. H.; Kuczkowski, R. L. J. Org. Chem. 1989, 54, 115. h) Keul, H.; Kuczkowski, R. L.; Choi, H.-S. J. Org. Chem. 1985, 50, 3365. i) Keul, H.; Kuczkowski, R. L. J. Am. Chem. Soc. 1984, 106, 5370. j) Clark, R. D.; Heathcock, C. H. J. Org. Chem. 1976, 41, 1396.
31) Liu, J.; Hsung, R. P.; Peters, S. D. Org. Lett. 2004, 6, 3989.
32) Abe, H.; Aoyagi, S.; Kibayashi, C. J. Am. Chem. Soc. 2005, 127, 1473.
33) Schar, P.; Renaud, P. Org. Lett. 2006, 8, 1569.
34) Molander, G. A.; Ronn, M. J. Org. Chem. 1999, 64, 5183.

Experimental Section:

(1S,2S,3R,4S)-tert-butyl 2-hydroxy-1,4-bis(2-hydroxyethyl)-3-tosyl-7-azabicyclo[2.2.1]heptane-7-carboxylate (58):-

To a stirring solution of $57(5 \mathrm{~g}, 9.34 \mathrm{mmol})$ in THF $(60 \mathrm{~mL})$, cooled to $-78^{\circ} \mathrm{C}$, was added DIBAL-H ($8 \mathrm{~mL}, 45 \mathrm{mmol}$) drop wise over 5 min . The colourless solution was stirred for 2 h at $0^{\circ} \mathrm{C}$ and $\mathrm{MeOH}(\sim 2 \mathrm{~mL})$ was added carefully to quench excess DIBALH . The flask was removed from the cooling bath and a solution of Na, K-tartrate (sat., 50 mL) was added slowly. The reaction mixture solidified after approx. 5 min and was diluted with EtOAc (100 mL) and water $(20 \mathrm{~mL})$. The resulting mixture was vigorously stirred for 90 min at rt , the layers were separated and the aq. layer extracted with EtOAc/ether (1:1, 40 mL). The combined org. layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and conc. in vacuo to give a viscous oil. Purification by flash chromatography (hexane:EtOAc $=$ gradient 1:1-1:2-0:1) afforded 58 ($3.6 \mathrm{~g}, 72 \%$) as a stable white foam.

TLC:- $\mathrm{R}_{\mathrm{f}}=0.3$ (ethyl acetate $=100 \%$, Ninhydrin).
IR (film): $v_{\max }=3340,2980,2254,1687,1369,1314,1142,1079,907,647 \mathrm{~cm}^{-1}$.

1H NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.90(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=11.6 \mathrm{~Hz}, 0 \mathrm{H}), 3.80$ (dq, $J=15.8,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{dt}, J=10.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{ddd}, J=11.5,8.7$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 1 \mathrm{H}), 2.87(\mathrm{~s}, 1 \mathrm{H}), 2.45-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.19$ (m, 4H), $1.80(\mathrm{tdd}, J=12.9,5.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{tdd}, J=12.8,4.1,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 1.40 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=155.75,145.07,137.94,129.87,128.35,81.92$, $73.19,72.50,72.32,66.40,59.40,59.17,36.47,35.99,30.16,28.30,25.42,21.74$.

HRMS $(\boldsymbol{m} / \boldsymbol{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NNaO}_{7} \mathrm{~S}^{+} 478.1870$, found 478.1864. $[\boldsymbol{\alpha}] \mathrm{D}^{22}=-12.8^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.

(5aS,8S,9R,9aS)-tert-Butyl

8-(2-hydroxybut-3-en-1-yl)-2,2-dimethyl-9-tosyl hexahydro -4H-5a,8-epiminobenzo[d][1,3]dioxepine-10-carboxylate (59):-

To a solution of $\mathbf{5 8}(7.9 \mathrm{~g}, 17.34 \mathrm{mmol})$ in acetone $(150 \mathrm{~mL})$ was added $\mathrm{Na}_{2} \mathrm{SO}_{4}(5.0$ $\mathrm{g})$ and $p-\mathrm{TsOH}-\mathrm{H}_{2} \mathrm{O}(0.14 \mathrm{~g}, 0.86 \mathrm{mmol}, 0.05$ equiv. $)$ at rt. The flask was immersed in a preheated oil bath $\left(50^{\circ} \mathrm{C}\right)$ and stirred at this temperature until TLC indicated complete consumption of the starting material and cleavage of the dioxane functionality (approx. 1 h). The mixture was allowed to cool to rt and concentrated in vacuo. Ether (100 mL) and NaHCO_{3} (sat., 60 mL) were added to the residue, the layers were separated and aq. layer extracted with ether $(50 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to produce a milky emulsion. The remaining water was removed by azeotropic distillation with toluene (20 mL) to furnish $\mathbf{5 9}$ as yellow oil ($8.1 \mathrm{~g}, 98 \%$). This material was pure enough to be used without further purification for the next step. However, a small amount was purified by flash chromatography (hexanes: $\mathrm{EtOAc}=3: 1-2: 1$) to get an analytically pure sample.

TLC:- $\mathrm{R}_{\mathrm{f}}=0.3$ (EtOAc: Hexane $=1: 2$, Ninhydrin).

IR (film): $v_{\text {max }}=3454,2985,2936,2881,1706,1695,1596,1365,1293,1144,824$, $664 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 4.52 (dd, $J=10.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{dd}, J=7.1,3.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.04(\mathrm{~s}, 1 \mathrm{H}), 2.93-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.08(\mathrm{~m}$,
$2 \mathrm{H}), 1.69$ (dddd, $J=12.6,8.8,6.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 0.34(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=155.10,144.39,139.11,129.51,128.57,101.99$, 81.49, 73.83, 71.64, 69.91, 62.56, 60.32, 58.47, 53.57, 37.55, 35.20, 34.86, 28.46, 28.39, 26.64, 24.48, 22.90, 21.70.

HRMS $(\boldsymbol{m} / \boldsymbol{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{NNaO}_{7} \mathrm{~S}^{+} 518.2183$, found 518.2181.
$[\alpha] \mathrm{D}^{22}=-29.1^{\circ}\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.
(5aS,8S,9R,9aS)-tert-Butyl2,2-dimethyl-8-(2-oxoethyl)-9-tosylhexahydro-4H-5a,8-epiminobenzo[d][1,3]dioxepine-10-carboxylate (60):-

$59(8.1 \mathrm{~g})$ was dissolved in DMSO (60 mL). To this solution was added IBX (6.42 $\mathrm{g}, 23.0 \mathrm{mmol}$) at $22^{\circ} \mathrm{C}$. The reaction mixture was stirred at that temperature for 2 h , and quenched with saturated aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. The resultant mixture was extracted with EtOAc (300 mL), washed with water followed by brine solution (200 mL). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under vacuum, to obtain a colourless foam $\mathbf{6 0}(7.6 \mathrm{~g}, 89 \%)$.

TLC:- $\mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc: Hexane $=1: 3$, Ninhydrin).

IR (film): $v_{\max }=2961,2941,2881,2732,1701,1728,1596,1458,1210,1139,819$ cm^{-1}.
${ }^{1} \mathbf{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.83(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.31 (d, J = 7.9 Hz, 2H), $4.70(\mathrm{dd}, J=10.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=10.6,1.9 \mathrm{~Hz}$, 1 H), 3.64-3.49 (m, 4H), 2.90 (ddd, $J=12.3,9.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (ddd, $J=12.3$, $9.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{ddd}, J=14.4,11.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{dd}, J=$
$14.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{tdd}, J=12.4,6.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{ddt}, J=12.4,10.2,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 0.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=199.94,154.03,144.51,138.78,129.52,128.58$, 102.01, 81.29, 71.61, 69.78, 69.56, 63.24, 58.49, 45.95, 37.12, 33.82, 28.41, 27.07, 24.50, 23.11, 21.71.

HRMS $(\boldsymbol{m} / \boldsymbol{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NNaO}_{7} \mathrm{~S}^{+} 516.2026$, found 516.2018.
$[\alpha] \mathbf{D}^{22}=-31.4^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
(5aS,8S,9R,9aS)-tert-Butyl 8-(2-hydroxybut-3-en-1-yl)-2,2-dimethyl-9tosylhexahydro -4H-5a,8-epiminobenzo[d][1,3]dioxepine-10-carboxylate (61):-

A commercial 1M solution of vinyl magnesium bromide in THF ($14.2 \mathrm{~mL}, 14.2$ $\mathrm{mmol})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ to which a solution of $\mathbf{6 0}(6.0 \mathrm{~g}, 12.1 \mathrm{mmol})$ in dry THF was added dropwise. Stirring was continued at room temperature for 2 h . The resulting mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous mixture was extracted several times with ethyl acetate. The collected organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness under reduced pressure, and purified by column chromatography affording two diastereomers of $\mathbf{6 1}$ as $1.5: 1$ ratio ($5.6 \mathrm{~g}, 84 \%$). This material was used as such for the next step. A small sample major diastereomer was further purified by flash chromatography (hexanes:EtOAc $=3: 1-2: 1$) to get an analytically pure sample.

TLC:- $\mathrm{R}_{\mathrm{f}}=0.4$ (EtOAc: Hexane $=1: 2$, Ninhydrin $)$.

IR (film): $v_{\max }=3366,2980,2946,2250,1658,1390,1369,1314,1146,907,731$ cm^{-1}.
${ }^{1} \mathbf{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 6.00 (ddd, $J=17.2,10.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.37$ (dt, $J=17.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (dd, $J=$
$10.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 0 \mathrm{H}), 4.63-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=10.6$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=10.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (dt, $J=7.9,2.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.94 (ddd, $J=12.3,9.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=15.8,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{ddd}, J=12.2,9.0$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=15.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.71$ $(\mathrm{s}, 1 \mathrm{H}), 1.67(\mathrm{tdd}, J=12.6,6.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=155.35,144.48,142.19,138.94,129.48$, 128.70, $113.46,102.01,82.16,73.22,71.73,69.56,69.25,61.81,58.33,38.59,37.63,36.11$, 28.48, 25.94, 24.47, 22.91, 21.71

HRMS $(\boldsymbol{m} / \boldsymbol{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{NNaO}_{7} \mathrm{~S}^{+} 544.2339$, found 544.2331.
$[\alpha] \mathbf{D}^{22}=-26.3^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.

(1S,2S,3R,4S)-tert-Butyl2-hydroxy-1-(2-hydroxyethyl)-4-(2-

To a stirred solution of methyl chloroformate ($0.92 \mathrm{~mL}, 12.0 \mathrm{mmol}$) was added a solution of $\mathbf{6 1}(1.7 \mathrm{~g}, 3.36 \mathrm{mmol})$ and pyridine $(0.96 \mathrm{~mL}, 12.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ mL) at $0^{\circ} \mathrm{C}$. The cooling bath was removed and the mixture was stirred for additional 2 h at room temperature. The solution was diluted with saturated aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$ and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$ and the combined organic fractions were washed with saturated aqueous $\mathrm{NaHCO}_{3}(10$ $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to provide the desired allylic carbonate as colorless oil $63(1.71 \mathrm{~g})$. This product was used for the next step without purification.

To a stirred suspension of $\mathrm{CeCl}_{3}-7 \mathrm{H}_{2} \mathrm{O}(1.25 \mathrm{~g}, 3.36 \mathrm{mmol})$ and oxalic acid $(0.06 \mathrm{~g}$, $0.68 \mathrm{mmol})$ was added a solution of $\mathbf{6 3}(1.667 \mathrm{~g}, 2.88 \mathrm{mmol})$ in $\mathrm{MeCN}(50 \mathrm{~mL})$ at rt and the resulting milky mixture was stirred for 2 h open to air. The reaction was
quenched with aq. NaHCO_{3} (sat., 20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash chromatography through silica (hexanes:EtOAc $=1: 1$ $-1: 2-0: 1)$ affording $64(1.0 \mathrm{~g}, 88 \%)$ as a white foam.

TLC:- $\mathrm{R}_{\mathrm{f}}=0.3$ (EtOAc:Hexane $=2: 1$, Ninhydrin .

IR (film): $v_{\max }=3454,2972,2930,2254,1742,1679,1650,1276,1142,907 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, 5.82 (ddd, $J=16.9,10.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.20(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.95(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=10.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H}), 3.73-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 1 \mathrm{H}), 2.65-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.49$ (ddd, $J=13.5,9.5$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$ (s, 4H), 2.25 (ddd, $J=14.4,9.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.19 (tdt, $J=14.4$, $8.6,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{tdd}, J=13.1,5.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{ddd}, J=14.7,8.5,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=156.30,155.20,145.19,137.92,136.53,129.97$, $128.37,116.41,81.80,76.32,74.41,73.00,71.65,67.27,59.28,54.78,38.07,37.01$, 32.02, 29.76, 29.71, 28.62, 28.37, 28.27, 25.05, 21.76.

HRMS ($\boldsymbol{m} / \boldsymbol{z}$): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{NNaO}_{9} \mathrm{~S}^{+} 562.2081$, found 562.2077.
$[\boldsymbol{\alpha}] \mathbf{D}^{22}=-6.1^{\circ}\left(c=0.8, \mathrm{CHCl}_{3}\right)$.
(1S,2R,4S)-tert-Butyl 1-(2-((methoxycarbonyl)oxy)but-3-en-1-yl)-3-oxo-4-(2oxoethyl) -2-tosyl-7-azabicyclo[2.2.1]heptane-7-carboxylate (65):-

To a solution of $64(1.0 \mathrm{~g}, 1.85 \mathrm{mmol})$ in DMSO $(20 \mathrm{~mL})$ was added IBX $(0.84 \mathrm{~g}$, 3.00 mmol) and resulting suspension was immersed in an oil bath set to $50^{\circ} \mathrm{C}$ and stirred vigorously open to the atmosphere. After 6 h (TLC monitoring), the reaction was cooled to room temperature and filtered through a celite pad. The filter cake was washed with $3 \times 10 \mathrm{~mL}$ of ethyl acetate and the combined filtrates were concentrated and the residue was purified by flash chromatography through silica gel (hexane:EtOAc $=4: 1$) affording $65(0.8 \mathrm{~g}, 81 \%)$ as a gummy solid.

TLC:- $\mathrm{R}_{\mathrm{f}}=0.6$ (EtOAc: Hexane $=1: 3$, Ninhydrin $)$.
IR (film): $v_{\max }=2972,2929,2253,1742,1701,1679,1649,1276,1142,913 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.63(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, \mathrm{J}=8.3,2.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.97$ (ddd, $J=15.1,10.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.53-5.49(\mathrm{~m}$, $1 \mathrm{H}), 5.38$ (dd, $J=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=10.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.16(\mathrm{dd}, J=15.5,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-2.99(\mathrm{~m}$, $2 \mathrm{H}), 2.93$ (dd, $J=15.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{ddd}, J=13.0,9.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}$, $3 \mathrm{H}), 2.09(\mathrm{tdd}, J=12.8,5.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{td}, J=12.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.90$ $(\mathrm{m}, 1 \mathrm{H}), 1.40(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (201 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=198.39,197.40,155.45,154.82,145.80,137.02$, $136.16,130.03,129.17,117.44,83.42,75.93,73.51,72.72,71.33,54.96,53.60$, 42.70, 36.99, 30.11, 29.89, 28.19, 21.91, 1.16.

HRMS $(\boldsymbol{m} / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NNaO}_{9} \mathrm{~S}^{+} 558.1768$, found 558.1774.
$[\boldsymbol{\alpha}] \mathrm{D}^{22}=-11.4\left(c=1.3, \mathrm{CHCl}_{3}\right)$.
(2S,8aS)-tert-Butyl 1-oxo-2-(2-oxoethyl)-8a-tosyl-2,3,4,5,8,8a-hexahydro-1H-2,4a-epiminonaphthalene-9-carboxylate (66):-

To a stirred solution of $\mathbf{6 5}(0.2 \mathrm{~g}, 0.372 \mathrm{mmol})$, benzyl triethyl ammonium chloride $(9 \mathrm{mg}, 0.037 \mathrm{mmol})$ and tetrakis(triphenylphosphine)palladium(0) ($0.021 \mathrm{~g}, 0.018$ $\mathrm{mmol})$ in ethyl acetate $(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(0.15 \mathrm{~g}, 1.12$ mmol) dissolved in distilled water (3 mL). Biphasic reaction mixture was stirred at rt for 2 h . Two layers were separated and aqueous layer was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$) and the combined organic fractions were washed with brine solution (10 $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by flash chromatography (hexanes:EtOAc $=4: 1$) to give 66 as a white foam $(0.17 \mathrm{~g}$, 99\%).

TLC:- $\mathrm{R}_{\mathrm{f}}=0.6$ (EtOAc: Hexane $=1: 3$, Ninhydrin).

IR (film): $v_{\text {max }}=2979,2932,2255,1765,1726,1689,1596,1458,1392,1147,909$ cm^{-1}.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.63(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36$ (dd, $J=8.3,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.92 (ddd, $J=10.4,4.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.51$ (ddt, $J=10.0$, $4.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{ddd}, J=18.9,4.8,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.16(\mathrm{dd}, J=18.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dt}, J=19.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{tdd}, J=9.0$, $7.2,6.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=19.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.13$ - $2.07(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (201 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=203.00,196.97,196.95,152.61,145.55,141.73$, $134.49,130.03,129.61,127.94,118.62,81.76,74.17,70.71,69.36,42.53,33.11$, 30.08, 29.05, 28.52, 28.06, 21.73.

HRMS $(\boldsymbol{m} / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NNaO}_{6} \mathrm{~S}^{+} 482.1608$, found 482.1609.
$[\alpha]_{\mathrm{D}}{ }^{22}=-31.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$.
(2S,4aR)-tert-Butyl2-(2,2-dimethoxyethyl)-1-oxooctahydro-1H-2,4a-epiminonaphthalene-9-carboxylate (68):-

Solution of $66(0.5 \mathrm{~g}, 1.09 \mathrm{mmol})$ in methanol $(15 \mathrm{~mL})$ was placed in a two neck round bottom flask was first evacuated and refilled with argon. After following two cycles of this sequence, $\mathrm{Pd} / \mathrm{C} 10 \mathrm{wt} \% ~(0.05 \mathrm{~g}, 0.048 \mathrm{mmol})$ was added and flushed with hydrogen gas (2 cycles) and stirred. Reaction progress was monitored by TLC. After complete conversion (3 h), reaction mixture was passed through celite pad. The celite plug was washed with ethyl acetate ($3 \times 20 \mathrm{~mL}$). Solvent was evaporated under vaccum and crude product $\mathbf{6 7}$ as such was advanced for the next step.

To a stirring solution of boric acid ($0.46 \mathrm{~g}, 7.5 \mathrm{mmol}$) in anhydrous methanol (2 $\mathrm{mL}), 67(0.5 \mathrm{~g}, 1.0 \mathrm{mmol})$ dissolved in methanol $(10 \mathrm{~mL})$ was added. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and sodium amalgam ($2.0 \mathrm{~g}, 7 \%$) was added portion wise (30 min) while stirring at the same temperature. The reaction mixture was allowed to stir for an additional 3 h at $0^{\circ} \mathrm{C}$. The progress of reaction was monitored by TLC and after the completion of the reaction; water (1 mL) was added drop wise. The solution was warmed to room temperature and was extracted with ethyl acetate. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated under reduced pressure and purified by column chromatography to afford $\mathbf{6 8}(0.27 \mathrm{~g}$, $71 \%)$.

TLC:- $\mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc: Hexane $=1: 3$, Ninhydrin).

IR (film): $v_{\max }=3055,2980,2934,2309,1755,1700,1448,1264,1159,1113,739$ cm^{-1}.
${ }^{1} \mathbf{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=4.66(\mathrm{dt}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.27(\mathrm{~m}, 3 \mathrm{H})$, 3.19-3.16 (m, 3H), 2.54-2.45 (m, 2H), $2.29(\mathrm{dt}, J=13.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.14$ (m, 1H), 2.08 (tdd, $J=13.3,4.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{tdd}, J=$ $12.4,5.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{tq}, J=11.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}$, 9H), 1.42-1.39 (m, 1H), 1.31-1.05 (m, 3H).
${ }^{13}$ C NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=212.80,156.34,102.62,80.83,74.78,68.92$, $57.40,52.86,52.66,34.11,32.72,31.87,28.38,27.88,25.02,23.04,21.87$.

HRMS $(\boldsymbol{m} / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NNaO}_{5}{ }^{+}$376.2094, found 376.2092.

$$
[\alpha] \mathbf{D}^{22}=+14.6^{\circ}\left(c=1.1, \mathrm{CHCl}_{3}\right) .
$$

(2S,4aR)-tert-Butyl 2-(hydroxymethyl)-1-oxooctahydro-1H-2,4a-epimino naphthalene-9-carboxylate (80):-

To an ice cooled solution of $\mathbf{6 8}(0.23 \mathrm{~g}, 0.66 \mathrm{mmol})$, DIPEA ($0.14 \mathrm{~mL}, 0.8 \mathrm{mmol}$, in $\mathrm{CH}_{2} \mathrm{C1}_{2}(4 \mathrm{~mL})$, was added a solution of TMSOTf ($0.13 \mathrm{~mL}, 0.73 \mathrm{mmol}, 1.1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ drop wise via a syringe. The pale yellow solution was allowed to warm to ambient temperature for 2 h . The reaction was quenched by the addition of aqueous NaOH solution (2.1 mL of a 1.0 N solution). The resulting mixture was vigorously stirred for 1 min , the layers were separated and the aq. layer was extracted with ether (40 mL). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and conc. in vacuo to give a viscous oil $\mathbf{6 9}$ which was forwarded to the next step without further purification.

A solution of $\mathbf{6 9}(0.2 \mathrm{~g}, 0.62 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{C1}_{2}(80 \mathrm{~mL})$ was treated with NaHCO_{3} $(0.01 \mathrm{~g})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. Ozone was bubbled through the solution at $-78^{\circ} \mathrm{C}$ until a deep blue colour persisted. The ozone-generator was turned off and excess ozone was removed by bubbling the solution with O_{2} for 5 min followed by argon for 15 min . To the resulting colourless solution was added $\mathrm{PPh}_{3}(0.45 \mathrm{~g}, 1.72 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL) and the reaction was allowed to warm to rt over 1 h . The solution was washed with phosphate buffer ($\mathrm{pH} 7,0.1 \mathrm{M}, 10 \mathrm{~mL}$) and the aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo to afford 70 as colourless foam.
$\mathrm{NaBH}(\mathrm{OAc})_{3}(0.48 \mathrm{~g}, 2.26 \mathrm{mmol})$ and acetic acid $(0.3 \mathrm{~mL})$ were added to the 70 $(0.16 \mathrm{~g}, 0.56 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The cooling bath was removed and the resulting mixture was stirred for 90 min at rt . Excess reducing agent was quenched with water (10 mL) and the resulting mixture was diluted with aq. NaHCO_{3} (sat., 50 mL). The emulsion was extracted with $\mathrm{CH}_{2} \mathrm{C1}_{2}(2 \times 50 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. The residue was purified by flash chromatography (hexanes:EtOAc $=3: 1-2: 1$) to afford $80(0.141 \mathrm{~g}, 51 \%)$ over three steps), as a colourless oil.

TLC:- $\mathrm{R}_{\mathrm{f}}=0.3$ (EtOAc: Hexane $=1: 2$, Ninhydrin $)$.

IR (film): $v_{\max }=3439,2869,2979,2941,2253,1757,1671,1393,1252,1150,908$ cm^{-1}.
${ }^{1} \mathbf{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=4.24(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{dt}, J=13.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-$ $4.01(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{dt}, J=13.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{tt}, J=12.3$, $4.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.06 (ddd, $J=12.9,9.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.04-2.00 (m, 1H), 1.83-1.75 (m, 3H), 1.56 (dtdd, $J=20.5,10.0,8.6,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{ddd}, J=$ $12.9,9.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{tt}, J=10.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.26-1.21(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=211.79,155.29,81.61,77.76,68.28,59.02,58.81$, 58.17, 55.01, 35.81, 33.82, 30.11, 28.51, 28.40, 28.03, 27.82, 26.06, 25.17, 24.47, 24.07, 23.08, 22.76, 22.33.

HRMS $(\boldsymbol{m} / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NNaO}_{4}{ }^{+} 318.1676$, found 318.1670.
$[\alpha] \mathbf{D}^{22}=+18.7^{\circ}\left(c=1.5, \mathrm{CHCl}_{3}\right)$.
(2S,4aR)-tert-Butyl
1-hydroxy-2-(hydroxymethyl)-1-((E)-oct-1-en-1-yl) octahydro-1H-2,4a-epiminonaphthalene-9-carboxylate (81):-

To a solution of t-BuLi $(0.35 \mathrm{~mL}, 1.9 \mathrm{M})$ in ether (0.2 mL) was introduced through cannula drop wise solution of (E) - 1-iodooct-1-ene ($0.09 \mathrm{~g}, 0.37 \mathrm{mmol}$) in 0.5 mL ether and cooled to $-78{ }^{\circ} \mathrm{C}$. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and the solution of $\mathbf{8 1}$ $(0.100 \mathrm{~g}, 0.338 \mathrm{mmol})$ in ether $(1 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added and stirred for 2 h . The reaction was quenched with sat aq. NaHCO_{3} at $-78^{\circ} \mathrm{C}$ and slowly warmed up to rt. The aqueous portion was extracted with ether ($3 \times 5 \mathrm{~mL}$) and organic phases were combined, washed with sat aq NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (10% ethyl acetate : 90% z hexane) to provide $82(0.1 \mathrm{~g}, 73 \%)$.

TLC:- $\mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc: Hexane $=1: 4$, Ninhydrin $)$.
IR (film): $v_{\max }=3392,2927,2856,1661,1366,1252,1153,1086,979 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.52(\mathrm{dt}, J=15.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, \mathrm{~J}=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=11.9,8.4 \mathrm{~Hz}, 0 \mathrm{H}), 4.05(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, \mathrm{J}=$ $13.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dt}, J=12.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{ddd}, J=12.5,9.2,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.93(\mathrm{td}, J=13.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{td}, J=12.5,5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.78$ (dt, $J=13.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{ddd}, J=12.8,3.9,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.42(\mathrm{~s}, 2 \mathrm{H}), 1.36-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.31-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.29-$ $1.24(\mathrm{~m}, 5 \mathrm{H}), 1.20(\mathrm{tt}, J=13.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=156.11,134.68,127.11,80.46,77.84,76.33,69.44$, $61.19,55.35,51.22,40.19,35.09,32.20,31.80,29.83,29.52,28.97,28.72,28.62$, $27.09,25.69,23.26,22.75,21.04,14.22$.

HRMS $(\boldsymbol{m} / \boldsymbol{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{NNaO}_{4}{ }^{+} 430.2928$, found 430.2917 .
$[\alpha]{ }^{22}=+12.1^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
(2S,5S,6R)-tert-Butyl carboxylate (83):-

2-formyl-6-((E)-non-2-enoyl)-1-azaspiro[4.5]decane-1-

To an ice cold solution of $\mathbf{8 1}(0.05 \mathrm{~g}, 0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added acetic acid $(7 \mu \mathrm{l}, 0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. To this was added Dess-Martin periodinane $(0.07 \mathrm{~g}, 0.15 \mathrm{mmol})$ and the resultant turbid mixture was stirred for 0.5 h at the same temperature. The solution was diluted with saturated aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$ and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL}$) and the combined organic fractions were washed with saturated aqueous $\mathrm{NaHCO}_{3}(10$ $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The crude residue was purified by flash chromatography eluting with ethyl acetate:hexane (1:4) to provide $\mathbf{8 3}$ $(0.04 \mathrm{~g}, 87 \%)$ as an inseparable mixture of diastereomers.

TLC:- $\mathrm{R}_{\mathrm{f}}=0.5\left(\mathrm{EtOAc}:\right.$ Hexane $=1: 5$, Ninhydrin, $\left.\mathrm{KMnO}_{4}\right)$.

IR (film): $v_{\max }=2932,2857,1751,1705,1391,1448,1040,762 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.46(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 0.11 \mathrm{H}), 9.38(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, 0.78 H), $6.86(\mathrm{dt}, J=15.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{ddt}, J=15.1,12.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ $-3.95(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{td}, J=12.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{ddd}, J=13.2,8.0,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.19-2.11 (m, 3H), 1.79 (dq, $J=13.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.66$ $(\mathrm{m}, 3 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.32-1.23(\mathrm{~m}, 12 \mathrm{H}), 0.87$ $(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=203.61,200.18,152.96,147.34,130.39,80.72$, $68.31,67.49,50.45,36.87,32.64,31.73,30.83,29.12,28.72,28.45,26.99,24.62$, 23.94, 23.92, 22.67, 14.18.

HRMS $(\boldsymbol{m} / \boldsymbol{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{NNaO}_{4}{ }^{+}$428.2771, found 428.2767.
$[\alpha] \mathrm{D}^{22}=-98.9^{\circ}\left(c=0.7, \mathrm{CHCl}_{3}\right)$.

(3S,5R,7aS,11aS)-5-hexyl-7-oxodecahydro-1H-pyrrolo[2,1-j]quinoline-3carbaldehyde (82) :-

To an ice cold solution of $\mathbf{8 1}(0.05 \mathrm{~g}, 0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added DessMartin periodinane ($0.07 \mathrm{~g}, 0.15 \mathrm{mmol}$). This turbid mixture was stirred for 0.5 h at the same temperature. To this suspension was added trifluoro acetic acid (0.5 mL) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. Reaction mixture was stirred at the same temperature for another 2 h . The solution was diluted with saturated aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$ and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and the combined organic fractions were washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The crude residue was purified by flash chromatography eluting with ethyl acetate:hexane (1:3) to provide $82(0.02 \mathrm{~g}$, 58%) as an inseparable mixture of diastereomers.

TLC:- $\mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc: Hexane $=1: 4$, Ninhydrin, KMnO_{4}).

IR (film): $v_{\max }=2930,2857,1761,1705,1390,1448,1040,762 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.49(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 0 \mathrm{H}), 9.26(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.45$ (ddd, $J=11.2,6.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.27$ $(\mathrm{d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{dq}, \mathrm{J}=10.4,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.83(\mathrm{dt}, J=13.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.60$ $(\mathrm{m}, 3 \mathrm{H}), 1.59-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{ddt}, J=16.1,9.9,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.29-1.21(\mathrm{~m}$, $19 \mathrm{H}), 1.11$ (tdd, J = 12.9, 6.9, 1.7 Hz, 1H), 0.87 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=212.21,204.61,68.89,67.43,55.24,53.94,41.91$, $39.62,33.82,31.82,31.44,29.84,29.20,26.90,24.90,24.51,24.46,24.31,22.69$, 22.64, 14.18, 1.16.

HRMS $(\boldsymbol{m} / \boldsymbol{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{2}{ }^{+} 306.2428$, found 306.2420.
$[\alpha] \mathbf{D}^{22}=-47.3^{\circ}\left(c=0.30, \mathrm{CHCl}_{3}\right)$.

Synthesis of Cylindricine C (1a):-

To a stirred solution of $\mathbf{8 2}(0.025 \mathrm{~g}, 0.08 \mathrm{mmol})$ in THF (1 mL) was added $\mathrm{NaBH}(\mathrm{OAc})_{3}(0.07 \mathrm{~g}, 0.33 \mathrm{mmol})$ and acetic acid $(0.1 \mathrm{~mL})$ in THF $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The cooling bath was removed and the resulting mixture was stirred for 90 min at rt . Excess reducing agent was quenched with water $(1 \mathrm{~mL})$ and the resulting mixture was diluted with aq. NaHCO_{3} (sat., 5 mL). The emulsion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. The residue was purified by flash chromatography (silica, hexanes:EtOAc $=3: 1$ $-2: 1)$ to give $\mathbf{1 a}(0.02 \mathrm{~g}, 75 \%)$ as a pale yellow oil.

TLC:- $\mathrm{R}_{\mathrm{f}}=0.3$ (EtOAc:Hexane $=1: 3$, Ninhydrin, PMA).

IR (film): $v_{\max }=3436,2932,2857,1705,1448,1040 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.52(\mathrm{q}, J=8.4,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{~d}, J=9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.30-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 1 \mathrm{H}), 2.32-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.16(\mathrm{~m}, 3 \mathrm{H}), 2.10$ (dd, $J=12.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{dd}, J=13.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.47$ $(\mathrm{dd}, J=12.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{td}, \mathrm{J}=12.3,11.1,6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.30-1.21(\mathrm{~m}, 7 \mathrm{H})$, $0.86(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (201 MHz, CDCl_{3}) $\delta=210.56,70.70,66.39,56.54,55.34,50.26,42.53$, 36.42, 35.91, 35.21, 31.71, 29.30, 28.71, 27.12, 24.28, 22.74, 22.58, 21.87, 14.05.

HRMS $(\boldsymbol{m} / \boldsymbol{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{NO}_{2}{ }^{+}$308.2584, found 308.2583.
$[\alpha]_{D^{22}}=+60.2^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.

Synthesis of Cylindricine D (1b):-

To a solution of $\mathbf{1 a}(0.016 \mathrm{~g}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added $\mathrm{Ag}_{2} \mathrm{O}(0.17$ $\mathrm{g}, 0.72 \mathrm{mmol})$ and $\mathrm{MeI}(0.11 \mathrm{~mL}, 1.8 \mathrm{mmol})$ at rt . The solution was stirred at rt for 48 h and filtered through celite to remove the excess $\mathrm{Ag}_{2} \mathrm{O}$. The filtrate was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (6% EtOAc: 93% n-hexane) to provide $\mathbf{1 b}$ as a pale yellow oil in 61% yield ($0.01 \mathrm{~g}, 61 \%$).

TLC:- $\mathrm{R}_{\mathrm{f}}=0.4$ (EtOAc: Hexane $=1: 4$, Ninhydrin, PMA).

IR (film): $v_{\max }=2930,2863,1709,1451,1331,1195,1116,910,773 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.41(\mathrm{dt}, J=12.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 4 \mathrm{H}), 3.23-$
$3.17(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.17(\mathrm{~m}, 5 \mathrm{H}), 2.11-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.06$ - $2.02(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=13.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{tt}, J=9.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-$ $1.64(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{dt}, J=12.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.44(\mathrm{~m}$, $1 \mathrm{H}), 1.41(\mathrm{dtd}, J=13.6,9.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.35-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.27(\mathrm{ddt}, J=18.0$, $12.4,5.8 \mathrm{~Hz}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (201 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=211.46,78.32,59.23,55.64,55.58,51.06,43.00$, $36.04,35.34,35.08,31.91,29.44,27.22,26.83,24.57,23.06,22.05,14.19$.

HRMS $(\boldsymbol{m} / \boldsymbol{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{NO}_{2}{ }^{+}$322.2741, found 322.2738.
$[\boldsymbol{\alpha}] \mathbf{D}^{22}=+21.3^{\circ}\left(c=0.1, \mathrm{CHCl}_{3}\right)$.

Synthesis of Cylindricine E (1c):-

To a solution of $\mathbf{1 a}(0.013 \mathrm{~g}, 0.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL}$, 0.6 mmol), DMAP ($12 \mathrm{~g}, 14.4 \mathrm{~mol} \%$) and acetic anhydride ($55 \mu \mathrm{~L}, 0.588 \mathrm{mmol}$) at $10{ }^{\circ} \mathrm{C}$. The solution was stirred at rt for 2 h and quenched with $\mathrm{H}_{2} \mathrm{O}$ at $-10^{\circ} \mathrm{C}$. The aqueous fraction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$ and the organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (5\% EtOAc: 95% hexane) to provide 1c in 59% yield ($0.012 \mathrm{~g}, 59 \%$).

TLC:- $\mathrm{R}_{\mathrm{f}}=0.6$ (EtOAc: Hexane $=1: 6$, Ninhydrin, PMA $)$.

IR (film): $v_{\max }=2934,2861,1743,1707,1448,1381,1227,1023,910,781 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=4.10(\mathrm{dd}, J=10.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=10.7$, $8.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49 (td, $J=9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.20(\mathrm{tt}, J=9.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.18$ $(\mathrm{m}, 4 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 5 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{dt}, J=16.9,7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.57(\mathrm{td}, J=12.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{dddd}, J=17.8,13.2,9.4,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.35-$ $1.21(\mathrm{~m}, 12 \mathrm{H}), 0.86(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=211.18,171.20,70.11,68.70,55.36,54.63,51.16$, $43.03,36.10,35.07,35.05,31.90,29.38,27.22,26.56,24.53,23.06,22.68,22.01$, 21.15, 14.17.

HRMS $(\boldsymbol{m} / \boldsymbol{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NO}_{3}{ }^{+} 350.2690$, found 350.2695 .

$$
[\alpha]_{\mathbf{D}^{22}}=+28.3\left(c=0.15, \mathrm{CHCl}_{3}\right) .
$$

(DEPT 135)
($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Ph.D. Thesis, University of Pune, 2015

(DEPT 135)
(201 MHz, CDCl_{3})

Chapter 3:-

"Stereoselective Total Synthesis of Lepadiformine A."

Section -3.1: Introduction of Lepadiformine family of alkaloids.

Lepadiformine, isolated from the extracts of the marine tunicate Clavelina lepadiformis by Biard et al., ${ }^{[1-3]}$ was originally proposed to possess an unusual zwitterionic amino alcohol structure 1 (Figure 1) based on extensive NMR experiments. However, later Kibayashi's group corrected its structure as 2 by a racemic total synthesis. ${ }^{[4]}$ Since, absolute stereochemistry of $\mathbf{2}$ was not established, Weinreb's et al. assigned its absolute configuration as $2 R, 5 S, 10 S$, and $13 S^{[5 b]}$ (Figure 1) by synthesis. Subsequently two other alkaloids belonging to same class $\mathbf{2 b} \mathbf{- 2 c}$ were also isolated from Clavelina lepadiformis off the coast of Tunisia and Clavelina moluccensis off the coast of Djibouti, ${ }^{[2]}$ respectively.

Figure 1: Classification of Lepadiformine family of alkaloids

(1)

Lepadiformine B(2b)

Revised Lepadiformine A structure
(2)

Lepadiformine C(2c)

Alkaloids $\mathbf{2}$ and $\mathbf{2 b}$ have shown inhibitory effects on the inward rectifying potassium current which causes bradycardia, an effect seen in antiarrhythmic agents. ${ }^{[2,3]}$ It was also shown that $\mathbf{2}$ exhibits moderate in vitro activity against $\mathrm{HT} 29\left(\mathrm{IC}_{50}=0.75 \mu \mathrm{~g} / \mathrm{mL}\right)$, $\mathrm{KB}\left(\mathrm{IC}_{50}=9.20 \mu \mathrm{~g} / \mathrm{mL}\right), \mathrm{P} 388\left(\mathrm{IC}_{50}=3.10 \mu \mathrm{~g} / m L\right)$, and NSCLC-N6 $\left(\mathrm{IC}_{50}=6.10\right.$ $\mu \mathrm{g} / \mathrm{mL})$ cells. Recent studies show that $\mathbf{2}$ is also very active in the cardiovascular system in vivo and indicates that it may have antiarrhythmic properties. ${ }^{[3]}$

Section -3.2: Synthetic reports of Lepadiformine (2).

Several synthetic approaches have been developed to synthesize cyclindricine C both in racemic as well as in optically active form. However, only synthesis of $\mathbf{2}$ in optically active form will be discussed to keep the discussion to a finite perspective.

Weinreb 's total synthesis of (-)-Lepadiformine (2): [(a) J. Org. Chem. 2002, 67, 4337. (b) Org. Lett. 2001, 3, 3507.] $]^{[5]}$

First asymmetric total synthesis of $\mathbf{2}$ was reported by an intramolecular cyclization of in situ generated N -acyliminium ion $\mathbf{5}$ with allyl silane to generate aza-spirocycle $\mathbf{6}$ as a key step ${ }^{[5 b]}$ (Scheme 1).

Scheme 1: Weinreb's total synthesis of (-)- Lepadiformine

Subsequent steps as shown in Scheme 1 produced 2 in total 15 steps and 13% yield.

Kibayashi approach: (Angew. Chem. Int. Ed. 2002, 41, 3017.) ${ }^{[6,7 a]}$

Scheme 2: Kibayashi's total synthesis of (-)- Lepadiformine

The key step in this synthesis employed formic acid-induced intramolecular conjugate azaspirocyclization of $\mathbf{1 1}$ to obtain 1-azaspirocyclane framework $\mathbf{1 2}$ which was diversified to cylindricine, lapdiformine and fasicularine alkaloids ${ }^{[7 \mathrm{a}]}$ as shown in Scheme 2.

Hsung's approach to (-)-Lepadiformine :- (Org. Lett. 2004, 6, 3989. $)^{[88, ~ b]}$

Scheme 3: Hsung's total synthesis of (-)- Lepadiformine

Identical strategy, as shown in Scheme 2, has been utilized for azaspirocyclization reaction ${ }^{[8, ~ b] ~}$ by these authors to construct 17 . Further transformation of $\mathbf{1 7} \boldsymbol{\rightarrow} \mathbf{1 9}$ via Wharton rearrangement ${ }^{[8 c, ~ d]}$ of epoxide 18 was used as a key step in the synthesis. Oxidation of $\mathbf{1 8}$ followed by intramolecular Mannich reaction to build intricate tricyclic framework $\mathbf{2 0}$ to complete the total synthesis of $\mathbf{2}$ (Scheme 3).

Kim's formal synthesis of (-)-Lepadiformine: (Org. Lett. 2006, 8, 745.) ${ }^{[9]}$
A formal synthesis ${ }^{[9]}$ of (-)-2 (Scheme 4) was achieved (15 steps) by synthesizing Weinreb's nitrile ${ }^{[5]}$ intermediate 9 by the Claisen- rearrangement of 22 to furnish 23 which was forwarded for further transformations as shown in Scheme 4.

Scheme 4: Kim's formal synthesis of (-)- Lepadiformine

Zhao's synthesis of (-)-Lepadiformine: (Eur. J. Org. Chem. 2010, 1660. ${ }^{[10]}$

This group accomplished the synthesis of $\mathbf{2}$ in 20 steps involving Zn -mediated allylation of chiral aliphatic N-tertbutyl sulfinyl ketimine (26) to construct the key precursor 28 which by following a series of reactions as shown in Scheme 5 delivered 2 in 5% overall yield. By using intermediate 32, this group has also accomplished the synthesis of fasicularin.

Scheme 5: Zhao's total synthesis of (-)- Lepadiformine

Rychnovsky's approach: (J. Org. Chem. 2012, 77, 3390.) ${ }^{[11 \mathrm{a}]}$

Rychnovsky and co-workers used reductive cyclization of $\mathbf{3 8}$ to obtain 1azaspirocyclane framework $\mathbf{3 9}$ which was transformed further to 41 , as an advanced precursor, to carry out Polonovski-Potier ${ }^{[11 \mathrm{~b}]}$ reaction to obtain $\mathbf{4 2}$ for synthesizing 2b2c as shown in Scheme 6.

Scheme 6: Rychnovsky 's total synthesis of (-)- Lepadiformine

2

1) $\mathrm{H}_{2} \mathrm{SO}_{4}, 110{ }^{\circ} \mathrm{C}$,

42

Section -3.3: Total synthesis of (-)-Lepadiformine A (2):

It was planned at the design stage of the synthesis (Scheme 7) that cascade rearrangement of 43 would stop at $\mathbf{4 5}$ which will be diversified in to both 47 by epimerization at C_{5} as well as to $\mathbf{2}$ by selective reduction followed by decarbonylation, respectively. However, present reaction indicated that cascade did not terminate at $\mathbf{4 5}$ instead led to C_{5} epimerization producing 46. This observation suggested that rearrangement of 46 is governed by energetically more favorable chair-chair conformation of $\mathbf{4 6}$ rather than the chair-boat conformation of $\mathbf{4 5}$.

Scheme 7: Modified design plan for the synthesis of Lepadiformine A

After successfully accomplishing the total synthesis of 47a-c, as described in the preceding chapter, we proceeded to complete the total synthesis of $\mathbf{2}$ by interrupting the cascade sequence at $\mathbf{4 4}$ to stop C_{5} epimerization. To interrupt cascade sequence in order to stop C5 epimerization, we envisaged to carry out reaction in acetic acid, instead of TFA, which may not deprotect N-Boc functionality at the rearrangement step. To test this proposition, $43(0.12 \mathrm{mmol})$ was subjected to Dess-Martin periodinane oxidation (DMP (0.14 mmol) in $\mathrm{AcOH}(0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ which furnished 48 (d.r. $6: 1$) in 87% yield) (Scheme 7). Success of the rearrangement to form 48 was confirmed by observing α, β-unsaturated carbonyl moiety at $1751 \mathrm{~cm}^{-1}$ in the IR spectrum. In order to proceed further towards completing the synthesis of the target, 48 (Scheme 8) was reduced by $\mathrm{NaBH}_{4}(0.65 \mathrm{mmol})$ in the presence of $\mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}(0.216 \mathrm{mmol})$ to afford 49 in 75\% yield.

Scheme 8: Total synthesis of Lepadiformine A (2)

d) TFA
f) $\mathrm{H}_{2}-\mathrm{Pd} / \mathrm{C}, 1 \mathrm{~atm}$
EtOAc

Absence of both aldehydic as well as α, β-unsaturated carbonyl moiety band in the IR spectrum confirmed the reduction. Hydroxyl groups of $49(0.13 \mathrm{mmol})$ were acetylated by stirring with acetic anhydride (0.59 mmol) in presence of $\mathrm{Et}_{3} \mathrm{~N}(0.6 \mathrm{mmol})$ and DMAP (0.013 mmol) to obtain 50 in 95% yield. N-Boc deprotection of $\mathbf{5 0}$ (trifluoroacetic acid, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, at $0{ }^{\circ} \mathrm{C}$) gave free amine 51 (95%) which without purification was subjected to Tsuji-Trost cyclization using $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right) 4,(0.005 \mathrm{mmol})$ benzyltriethyl ammonium chloiride (0.01 mmol), potassium carbonate $(0.3 \mathrm{mmol})$ in water:ethyl acetate (1:1) which gave 52 in 71% yield. Structural confirmation to the formation of 52 was made by observing olefinic protons at $\delta 5.98(\mathrm{dt}, J=7.9,3.5,1 \mathrm{H})$
and 5.83-5.73 (m, 1H), respectively in the ${ }^{1} \mathrm{H}$ NMR spectrum which was further supported by the molecular ion peak $[\mathrm{M}+\mathrm{H}]^{+}$at 334.2737 . Stereochemistry between H2-H5 was established by observing NOESY correlation which also confirmed boat conformation for ' c ' ring.

Figure 2: NOESY correlation of product 52.

52

Scheme 9: Selectivity at C2-position in Tsuji-Trost cyclization

Biphasic Intramolecular Tsuji-Trost reaction

de $>99 \%$

TS-2

Formation of $\mathbf{5 2}$ as a pure diastereomer with required stereochemistry at $\mathbf{C} 2$ position is supported through a more favourable TS-1 as shown in Scheme 9. The synthesis of $(-)-\mathbf{2}$ was completed by the hydrogenation of $\mathbf{5 2}\left(\left(\mathrm{Pd} / \mathrm{C}(10 \mathrm{wt} \%)-\mathrm{H}_{2}, 1 \mathrm{~atm}\right)\right.$ in EtOAc
(Scheme 8) followed by deacetylation (stirring with $\mathrm{K}_{2} \mathrm{CO}_{3},(1.5 \mathrm{mmol}) \mathrm{MeOH}, 67 \%$ yield). The spectral data of $\mathbf{2}\left\{[\alpha]_{D^{22}}=-15.1^{\circ}\left(c=0.4, \mathrm{CHCl}_{3}\right)\right\}$ completely matched with the values reported earlier. ${ }^{[12]}$

Section -3.4: Conclusion

In summary, we have developed a strategy for the synthesis of (-)-Lepadiformine A by utilizing oxidation/retro-aldol fragmentation cascade. Additional feature of this strategy includes mild reaction conditions and selective intramolecular Tsuji-Trost reaction for ' c ' ring cyclization.

References:-

1) Biard, J. F.; Guyot, S.; Roussakis, C.; Verbist, J. F.; Vercauteren, J.; Weber, J. F.; Boukef, K. Tetrahedron Lett. 1994, 35, 2691.
2) Sauviat, M.-P.; Vercauteren, J.; Grimaud, N.; Juge, M.; Nabil, M.; Petit, J.-Y.; Biard, J.-F. J. Nat. Prod. 2006, 69, 558.
3) (a) Juge, M.; Grimaud, N.; Biard, J.-F.; Sauviat, M.-P.; Nabil, M.; Verbist, J.F.; Petit, J.-Y. Toxicon 2001, 39, 1231-1237. (b) Szekeres, L. Pharmacology of Antiarrhythmic Agents, Pergamon Press, New York, 1991. (c) Garfein, O. B. Clinical Pharmacology of Cardiac Antiarrhythmic Agents, New York Academy of Sciences, New York, NY, 1984.
4) Abe, H.; Aoyagi, S.; Kibayashi, C. Tetrahedron Lett. 2000, 41, 1205.
5) (a) Sun, P.; Sun, C.; Weinreb, S. M. J. Org. Chem. 2002, 67, 4337. (b) Sun, P.; Sun, C.; Weinreb, S. M. Org. Lett. 2001, 3, 3507.
6) Dutta, S.; Abe, H.; Aoyagi, S.; Kibayashi, C.; Gates, K. S. J. Am. Chem. Soc. 2005, 127, 15004.
7) (a) Abe, H.; Aoyagi, S.; Kibayashi, C. Angew. Chem. Int. Ed. 2002, 41, 3017. (b) Kibayashi, C. Chem. Pharm. Bull. 2005, 53, 1375. (c) Abe, H.; Aoyagi, S.; Kibayashi, C. J. Am. Chem. Soc. 2005, 127, 1473. (d) Abe, H.; Aoyagi, S.; Kibayashi, C. Bull. Chem. Soc. Jpn. 2003, 76, 2059.
8) (a) Liu, J.; Hsung, R. P.; Peters, S. D. Org. Lett. 2004, 6, 3989. (b) Liu, J.; Swidorski, J. J.; Peters, S. D.; Hsung, R. P. J. Org. Chem. 2005, 70, 3898. (c) Wharton, P. S.; Bohlen, D. H. J. Org. Chem. 1961, 26, 3615. (b) Wharton, P. S.; Dunny, S.; Krebs, L. S. J. Org. Chem. 1964, 29, 958.
9) Lee, M.; Lee, T.; Kim, E.-Y.; Ko, H.; Kim, D.; Kim, S. Org. Lett. 2006, 8, 745.
10) Mei, S.-L.; Zhao, G. Eur. J. Org. Chem. 2010, 1660.
11) (a) Perry, M. A.; Morin, M. D.; Slafer, B. W.; Rychnovsky, S. D. J. Org. Chem. 2012, 77, 3390. (b) Cave, A.; Kan-Fan, C.; Potier, P.; Le Men, J. Tetrahedron 1967, 23, 4681.
12) Abe, H.; Aoyagi, S.; Kibayashi, C. Angew. Chem. Int. Ed. 2002, 41, 3017.
(2S,5S,6R)-tert-Butyl
2-formyl-6-((E)-non-2-enoyl)-1-azaspiro[4.5]decane-1carboxylate (48):-

To an ice cold solution of $43(0.050 \mathrm{~g}, 0.123 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added acetic acid ($7 \mu \mathrm{l}, 0.123 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. To this reaction mixture was added Dess-Martin periodinane ($0.063 \mathrm{~g}, 0.147$) and resultant turbid mixture was stirred for 0.5 h at the same temperature. The mixture was diluted with saturated aqueous NaCl $(20 \mathrm{~mL})$ and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 5 \mathrm{~mL}$) and the combined organic fractions were washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The crude residue was purified by flash chromatography eluting with ethyl acetate:hexane (1:4) to provide $48(0.043 \mathrm{~g}, 87 \%)$ as an inseparable mixture of diastereomers.

TLC:- $\mathrm{R}_{\mathrm{f}}=0.5\left(\right.$ EtOAc: Hexane $=1: 5$, Ninhydrin, $\left.\mathrm{KMnO}_{4}\right)$.
IR (film): $v \max =2932,2857,1751,1705,1391,1448,1040,762 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.46(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 0.11 \mathrm{H}), 9.38(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, 0.78 H), 6.86 (dt, $J=15.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.14 (ddt, $J=15.1,12.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.03 -3.95 (m, 2H), 2.64 (td, $J=12.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (ddd, $J=13.2,8.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.19-2.11 (m, 3H), $1.79(\mathrm{dq}, J=13.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.66$ $(\mathrm{m}, 3 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.32-1.23(\mathrm{~m}, 12 \mathrm{H}), 0.87$ (t, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=203.61,200.18,152.96,147.34,130.39,80.72$, $68.31,67.49,50.45,36.87,32.64,31.73,30.83,29.12,28.72,28.45,26.99,24.62$, 23.94, 23.92, 22.67, 14.18.

HRMS $(\boldsymbol{m} / \boldsymbol{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{NNaO}_{4}{ }^{+}$428.2771, found 428.2767.
$[\boldsymbol{\alpha}] \mathrm{D}^{22}=-98.9^{\circ}\left(c=0.7, \mathrm{CHCl}_{3}\right)$.
(2S, 5S, 6R)-tert-Butyl 2-(hydroxymethyl)-6-((E)-1-hydroxynon-2-en-1-yl)-1azaspiro [4.5]decane-1-carboxylate (49):-

To a cold solution of $48(0.067 \mathrm{~g}, 0.166 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(0.080 \mathrm{~g}, 0.216$ $\mathrm{mmol})$ in $\mathrm{MeOH}(1.5 \mathrm{~mL}), \mathrm{NaBH}_{4}(0.0246 \mathrm{~g}, 0.65 \mathrm{mmol})$ was added and the solution was stirred at room temperature for 1 h . A saturated aqueous solution of $\mathrm{NaCl}(1 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic phases were dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo. The crude residue was purified by flash chromatography eluting with ethyl acetate:hexane (1:11:0) to provide $49(0.051 \mathrm{~g}, 75 \%)$ as a colourless oil,

TLC:- $\mathrm{R}_{\mathrm{f}}=0.4$ (EtOAc 100\%, Ninhydrin, PMA).

IR (film): $v \max =2961,2941,2881,2732,1701,1728,1596,1458,1210,1139$, $819 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (mixture of rotamers) $\delta=5.44$ (ddt, $J=37.9,18.1,9.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.25(\mathrm{t}, J=10.0 \mathrm{~Hz}, 0.39 \mathrm{H}), 4.08-3.94(\mathrm{~m}, 1.56 \mathrm{H}), 3.89(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $0.36 \mathrm{H}), 3.58(\mathrm{q}, J=13.4,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 0.52 \mathrm{H}), 3.45(\mathrm{t}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.34(\mathrm{t}, J=9.3 \mathrm{~Hz}, 0.36 \mathrm{H}), 3.09-3.02(\mathrm{~m}, 0.55 \mathrm{H}), 2.55(\mathrm{tt}, J=13.7,6.1$ $\mathrm{Hz}, 0.4 \mathrm{H}$), 2.28 (dt, $J=13.2,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{qd}, J=12.3$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}), 1.45(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.26(\mathrm{dq}, J$ $=18.8,11.5,9.0 \mathrm{~Hz}, 11 \mathrm{H}), 0.86(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$,
${ }^{13} \mathbf{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of rotamers) $\delta=156.51,156.39,153.08$, $152.97,134.14,133.98,133.86,133.39,132.26,132.14,131.84,96.17,80.81,80.70$, $79.39,79.34,73.60,73.18,72.90,72.70,68.74,68.62,68.55,68.12,67.92,65.23$,
62.65, 62.59, 61.32, 61.19, 43.87, 43.62, 42.19, 41.89, 38.58, 38.49, 38.21, 37.57, $37.49,37.44,31.92,31.90,31.85,31.47,30.28,30.02$, 29.77, 29.36, 29.31, 29.29, 28.70, 28.67, 28.62, 28.43, 26.37, 26.26, 25.53, 25.43, 25.39, 25.14, 25.08, 24.22, 24.12, 22.72, 22.68.

HRMS $(\boldsymbol{m} / \boldsymbol{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{NNaO}_{4}{ }^{+}$432.3084, found 432.3081.

$$
[\alpha] \mathbf{D}^{22}=-61.7^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right) .
$$

(2S,5S,6R)-tert-Butyl 2-(acetoxymethyl)-6-((E)-1-acetoxynon-2-en-1-yl)-1azaspiro [4.5]decane-1-carboxylate (50) :

To a solution of $49(0.051 \mathrm{~g}, 0.124 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, kept at $-10{ }^{\circ} \mathrm{C}$, was added $E t_{3} \mathrm{~N}(0.1 \mathrm{~mL}, 0.6 \mathrm{mmol})$, DMAP ($\left.0.0012 \mathrm{~g}, 14.4 \mathrm{~mol} \%\right)$ and acetic anhydride ($55 \mu \mathrm{~L}, 0.588 \mathrm{mmol}$). The solution was stirred at rt for 2 h and quenched with $\mathrm{H}_{2} \mathrm{O}$ at $10{ }^{\circ} \mathrm{C}$. The aqueous fraction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$ and the organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel provide a pale yellow oil 50, ($0.06 \mathrm{~g}, 90 \%$).

TLC:- $\mathrm{R}_{\mathrm{f}}=0.6$ (EtOAc:Hexane $=1: 6$, Ninhydrin, PMA $)$.

IR (film): $v \max =2933,2861,1756,1743,1709,1447,1381,1227,1021,910,776$ cm^{-1}
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (mixture of rotamers) $\delta=5.44(\mathrm{td}, J=15.7,15.2,8.8$
$\mathrm{Hz}, 1 \mathrm{H}), 5.34-5.26(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{p}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04$ (ddd, $J=13.4,10.7,3.1$
$\mathrm{Hz}, 0.68 \mathrm{H}), 4.00-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{dtd}, J=19.6,10.7,9.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{q}$,
$J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 0.18 \mathrm{H}), 2.52(\mathrm{dddd}, J=13.0,10.1,6.5,3.3 \mathrm{~Hz}$,
$0.8 \mathrm{H}), 2.27(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 0.19 \mathrm{H}), 2.09(\mathrm{dd}, J=20.4,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{dt}, J=7.1,4.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.73-1.53(\mathrm{~m}, 7 \mathrm{H}), 1.47(\mathrm{~s}, 2 \mathrm{H}), 1.43$ (d, $J=2.5 \mathrm{~Hz}, 7 \mathrm{H}), 1.28-1.19(\mathrm{~m}, 12 \mathrm{H}), 0.84(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of rotamers) $\delta=170.91,170.85,170.40$, $170.36,153.63,152.91,152.79,135.57,135.45,134.82,129.66,129.52,129.27$, 129.22, 79.94, 79.88, 79.27, 79.11, 75.26, 75.22, 75.06, 74.66, 68.64, 68.33, 67.71, 67.56, 65.30, 65.08, 64.77, 64.66, 58.35, 58.28, 58.22, 58.07, 44.01, 43.86, 42.37, $42.23,39.03,38.04,38.01,34.63,34.53,34.50,32.62,32.55,31.84,31.77,31.75$, 31.46, 31.35, 30.11, 30.09, 29.87, 29.85, 29.16, 29.06, 28.67, 28.65, 28.62, 28.57, 28.52, 26.25, 26.10, 25.62, 25.53, 25.47, 25.22, 25.15, 25.10, 25.01, 24.17, 24.08, 24.06, 22.66, 22.63, 22.61, 21.45, 21.41, 21.35, 21.08, 21.04, 14.11 .

HRMS $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{NNaO}_{6}{ }^{+} 516.3296$, found 516.3299.

$$
[\alpha] \mathrm{D}^{22}=-76.8^{\circ}\left(c=1.5, \mathrm{CHCl}_{3}\right) .
$$

((3S,5R,7aS,11aS)-5-hexyl-2,3,5,7a,8,9,10,11-octahydro-1H-pyrrolo[2,1-j]quinolin-3-yl)methyl acetate (52):

A solution of trifluoroacetic acid $(0.04 \mathrm{~mL}, 0.537)$ in dichloromethane $(0.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added slowly a solution of $\mathbf{5 0}(0.053 \mathrm{~g}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and the reaction was allowed to warm to room temperature and stirred for 2 h . The reaction mixture was quenched with saturated sodium carbonate solution (5 mL) and extracted with dichloromethane $(2 \times 5 \mathrm{~mL})$. The organic solvents were combined, dried over sodium sulphate and concentrated in vacuo to afford $\mathbf{5 1}(0.040 \mathrm{~g}, 95 \%)$ which was forwarded further without purification.

To a stirred solution of $51(0.040 \mathrm{~g}, 0.1 \mathrm{mmol})$, benzyltriethyl ammonium chloride $(0.003 \mathrm{~g}, 0.01 \mathrm{mmol})$ and tetrakis(triphenylphosphine)palladium(0) ($0.006 \mathrm{~g}, 0.005$ $\mathrm{mmol})$ in ethyl acetate $(0.8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(0.042 \mathrm{~g}, 0.3$
$\mathrm{mmol})$ dissolved in distilled water $(0.8 \mathrm{~mL})$. Biphasic reaction mixture was stirred at rt for 2 h . Two layers were separated and aqueous layer was extracted with ethyl acetate ($3 \times 2 \mathrm{~mL}$) and combined organic fractions were washed with brine solution (2 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, hexanes:EtOAc $=3: 1$) to obtain $52(0.024 \mathrm{~g}, 71 \%)$ as an yellow oil.

TLC:- $\mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc:Hexane $=1: 2$, Ninhydrin, $\mathrm{PMA}, \mathrm{KMnO}_{4}$).

IR (film): $v \max =2933,2861,1704,1696,1438,1371,1227,1023,910,796 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.98(\mathrm{dt}, J=7.9,3.5,1 \mathrm{H}), 5.83-5.73(\mathrm{~m}, 1 \mathrm{H}), 4.25$ (dd, $J=10.7,3.8,1 \mathrm{H}), 3.71$ (dd, $J=10.6,7.9,1 \mathrm{H}$), 3.15 (dq, $J=14.0,6.6,4.9,2 \mathrm{H}$), $2.03(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{dd}, J=12.7,3.5,1 \mathrm{H}), 1.83-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{dt}, J=12.9,7.3$, $2 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.58(\mathrm{ddd}, J=28.1,13.8,7.8,3 \mathrm{H}), 1.40(\mathrm{qd}, J=12.6,10.4$, 4.1, 4H), 1.32 (dd, $J=10.4,4.8,2 \mathrm{H}$), $1.29-1.23$ (m, 12H), 0.87 (t, $J=6.9,3 H)$.
${ }^{13} \mathbf{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=171.18,136.07,134.82,70.95,70.42,60.21,56.47$, $44.44,39.10,32.51,31.94,29.78,29.59,29.35,28.33,28.26,27.89,26.10,24.65$, 22.68, 21.11, 14.16.

HRMS $(\boldsymbol{m} / \boldsymbol{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NO}_{2}{ }^{+} 334.2741$, found 334.2737.
$[\alpha] \mathrm{D}^{22}=-15.5^{\circ}\left(c=1.5, \mathrm{CHCl}_{3}\right)$.

Synthesis of (-)-Lepadiformine (2):-

Compound $52(0.022 \mathrm{~g}, 0.06 \mathrm{mmol})$ was dissolved in ethyl acetate (1.5 mL) and the flask was evacuated vacuum, argon gas was introduced to the flask and the process was repeated for two cycles. $\mathrm{Pd} / \mathrm{C} 10 \mathrm{wt} \%(0.005 \mathrm{~g})$ was added to the flask and flushed with
hydrogen gas (2 cycles) and stirred. Reaction progress was monitored by TLC. After complete conversion (3 h) reaction mixture was passed through a celite pad. Solvent was evaporated under vacuum to provide $53(0.018 \mathrm{~g}, 95 \%)$ as pale yellow oil which was used as such for the next step.

To a solution of $\mathbf{5 3}(0.018 \mathrm{~g}, 0.05 \mathrm{mmol})$ in a mixture of $\mathrm{MeOH}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1$ drop) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.032 \mathrm{~g}, 1.5 \mathrm{mmol})$ and stirred for 1 h .2 mL of water was added and reaction mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}\right.$: aq. $\mathrm{NH}_{3}(97: 2: 1)$ to provide $2(0.010 \mathrm{~g}$, $67 \%)$.

TLC:- $\mathrm{R}_{\mathrm{f}}=0.3\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}:\right.$ aq $\mathrm{NH}_{3}=97: 2: 1$, Ninhydrin $)$.

IR (film): $v \max =3401,2919,2853,1463,1081,786 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.40(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=9.5,9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.17(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.46(\mathrm{~m}, 13 \mathrm{H}), 1.37-1.14(\mathrm{~m}, 14 \mathrm{H}), 1.06-0.98(\mathrm{~m}, 1 \mathrm{H}), 0.88$ (t, J=7.0 Hz, 3H)
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 77.00,67.22,62.27,58.29,53.19,40.20,38.29$, 29.61, 27.66, 27.59, 26.33, 24.29, 23.26, 22.63, 14.11

HRMS $(\boldsymbol{m} / z):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{NO}^{+}$294.2791, found 294.2790.

$$
[\alpha] \mathbf{D}^{22}=-15.1\left(c=0.41, \mathrm{CHCl}_{3}\right) .
$$

1) "Aza-Quaternary Scaffolds from Selective Bond Cleavage of Bridgehead

Substituted 7-azabicyclo[2.2.1]heptane: Total Synthesis of (+)-Cylindricine C-
E and (-)-Lepadiformine A"
Ganesh Pandey and Vaitla Janakiram (Accepted in Chem. Eur. J)
2) "Simmons smith/Julia type fragmentation of β-ketosulfones to α, β-unsaturated ketones."

Ganesh Pandey and Vaitla Janakiram (to be communicated)

