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Abstract 
 
 This thesis mainly focuses on the development of novel and efficient 

ways to generate transition moments within the class of Fock-space multi-reference 

coupled cluster (FSMRCC) framework. Certain perturbative approximate methods 

within FSMRCC are also formulated and presented with reduced scaling, showcasing 

their effect on difference energies, electric dipole moment, polarizabilities and on 

transition dipole moments.  

 Transition dipole moment (TDM) is an important quantity as it 

provides a basis (along with the rotational-vibrational levels) to calculate Einstein 

transition probabilities [1] and oscillator strengths. However, the calculation of this is 

challenging, mainly because of the explicit occurrence of excited wave function. It 

has been realized that a high level of correlated wave function is necessary for an 

adequate description of the excited states. Multi-reference coupled cluster (MRCC) 

[2-14] theory, in the Fock-space version, has been known to be an accurate method of 

choice in that it includes a combination of dynamic and static correlation arising from 

the multi-configurational nature of reference space. Using restricted Hartree-Fock 

determinant of ground closed shell as vacuum, a suitable one hole – one particle (1,1) 

determinant set, constructed within an active set of holes and particles, serves as a 

suitable reference space for low-lying excited states. 

A Fock-space coupled cluster (FSCC) [2-11] theory using such a reference has been 

well developed for excitation energies and response properties [15-18]. Though, in 

principle, the theory provides the excited state wave function, its use in the calculation 

of transition dipole moment has been scarce, mainly because of the description of the 

conjugate (left) vector of not just the ground state but also the excited state. Once the 

wave functions have been constructed, it is straightforward to generate the one-

electron dipole induced matrix elements.  In this thesis, we have formulated and  

implemented a couple of formalisms to calculate the same, one using a 

straightforward conjugate of the ground and excited state (called FSCC-T) and the 

other involving a bi-orthogonal approach [19-22] for the left or conjugate ground and 

excited states (FSCC-Λ). The first one involves a non-terminating series in the 

context of coupled cluster method, thus requiring a forced truncation. The second 

approach linearizes the conjugate states and hence, is naturally terminating. However 
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this suffers from the fact that additional amplitudes have to be calculated. In the 

context of FSCC, this implies the evaluation of these amplitudes till the Fock-space 

sector in question. The two approaches are the expectation value and bi-orthogonal 

approach and have been used to evaluate TDM of closed shell systems and open shell 

molecules (only doublet species). Apart from the two methods, a third method is 

developed to calculate TDM of closed shell molecules: the semi-bi-orthogonal 

approach. It is a hybrid of the expectation value (FSCC-T) and the bi-orthogonal 

(FSCC-Λ) approaches and differ from the two in a manner the conjugate states are 

defined. We have abbreviated this semi-bi-orthogonal approach as the FSCC-ΛT 

method. 

The above methods are constructed within FSCC singles and doubles (SD) 

methodology. However, the treatment of larger molecular systems become tedious 

under the same approximation. Certain perturbative approximations have  been 

introduced within  FSMRCCSD  scheme to check for their effects on the difference 

energies (e.g. ionization potential (IP), electron affinity (EA) and excitation energies) 

and electric response properties (like, dipole moment and polarizability). These 

perturbative approximations help in reduced scaling and lowers the computational 

cost. Hence, it can be applied to larger systems at a minimal loss of accuracy. Apart 

from dipole moment and polarizability the effect of such lower scaling methods have 

also been studied with respect to TDM.  

The thesis is organized as follows, 

Chapter I : The single reference coupled cluster (SRCC) theory is discussed briefly 

highlighting the need for a genuine multi-reference method. This is followed by a 

detailed discussion of Fock space multi-reference theory under the singles and 

doubles scheme. The discussion includes all the relevant working equations to 

evaluate difference energies like, IP and EA. Excitation energies are described for the 

low lying states only, which are depicted in the Fock-space methodology as (1,1) 

sector. A general introduction to constrained variation approach (CVA) and its use in 

the context of FSCC have also been highlighted. The nature and scope of this thesis 

form the concluding remarks of this chapter.  

Chapter II : The second chapter gives a general introduction to transition dipole 

moment and its connection with other experimental observables. It is then followed 
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by a short account of some of the previous work done within CC theory to evaluate 

TDM. A brief overview of the FSMRCC wave equations are also presented. The 

methods developed by us within FSCC formulation to evaluate dipole strength comes 

next. Dipole strength is the square of the transition dipole moment and is related to the 

experimental observable quantity, oscillator strength. We have formulated two new 

methods to calculate the dipole strength for ground to low lying excited states of 

closed as well as open shell molecules. The first formalism uses a straightforward 

conjugate of the ground and excited state and is abbreviated as FSCC-T. The second 

one involves a bi-orthogonal approach for the left or conjugate ground and excited 

states. This is abbreviated as FSCC-Λ. Both the methods are discussed in details for 

closed as well as open shell systems. 

Chapter III : This chapter brings forth the implementation of dipole strength for 

closed shell molecules from ground to a few low lying excited states. The theory that 

has been developed and detailed in the previous chapter is implemented through 

certain molecular systems. Generally, a large number of optically allowed transitions 

arising from the ground state to electronically excited states are singlet in nature.  We 

have evaluated a few such optically allowed transitions and their oscillator strengths 

for some small molecules. The methods developed by us are compared against other 

available theoretical methods and any other available experimental oscillator strength. 

Apart from the two approaches formulated in the previous chapter, a third hybrid 

method is introduced in this chapter for the calculation of dipole strength. This is a 

semi-bi-orthogonal approach where the left and right transition moments are 

calculated from the bi-orthogonal and expectation value approaches respectively. This 

new method is tested against the other two FSCC methods as well as other theoretical 

methods.  

Chapter IV : This chapter implements the dipole strength for doublet species. In the 

Fock-space methodology the doublet species are represented as either (0,1) or (1,0) 

sectors. The former is equivalent to a IP case, while the latter signifies the EA case. 

These doublet radical systems are open shell systems and hence even the ground state 

of such molecules have to described by multi-reference theory. This chapter 

recapitulates the theory given in chapter II followed by the relevant working equations 

for the (0,1) sector pertaining to transition moments. The tables are represented with a 

comparison made against other theoretical methods, wherever applicable. 
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Chapter V : The previous chapters described and implemented transition moments 

within FSMRCC theory under the singles and doubles (SD) scheme. In this chapter 

we describe various approximate methods within the same and their effect on 

difference energies and first and second order electric response properties. The 

approximations are based on a perturbative analysis of the ground state similarity 

transformed Hamiltonian. The various methods are abbreviated as FSCC(n), where n

 2 4n   depicts that the correlation energy is correct at least up to n
th

 order. At 

higher values of n, the FSCC(n) will converge towards the full FSCCSD energies. 

This truncation scheme is size extensive through all orders. It is important to point 

out, that no truncation scheme has been applied to the higher sectors of FS. The 

effective Hamiltonian of (0,1), (1,0) and (1,1) sectors are complete with respect to the 

truncated effective Hamiltonian of the ground state. This chapter presents the 

hierarchy of FSCC(n) methods, explicitly stating the terms contributing to the 

effective Hamiltonian at each level of truncation and the working equations related to 

it. A general trend is also presented in terms of the root mean squared average values 

for the difference energies and also for the response properties of each sector.  

Chapter VI : This chapter focuses on the general trend of the transition moment 

following the wake of the various truncation schemes as detailed in the previous 

chapter. The dipole strengths are calculated in the two lower scaling methods: FS-

CC2 and FSCC(2). These are compared against the full FSCCSD calculations for 

some closed shell ground to low lying excited states of a few molecules.  

Chapter VII: This thesis aims on method development as well as implementation of 

the same to evaluate various properties within Fock-space multi-reference framework. 

This chapter gives a general conclusion of the work carried out in this thesis and 

paves the way for ongoing research and future research in this area.  
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Chapter 1 

 

Introduction 

_____________________________________________ 

  

 A general overview of the developments in the field of quantum chemistry is 

presented first that leads up to the subject matter of the thesis. A brief summary of 

some of the relevant theories and concepts leading to single reference coupled cluster 

theory is discussed. The need for genuine multi-reference based methods is 

highlighted, followed by the effective Hamiltonian formalism in MRCC methods. 

This finally paves way for the Fock-space based CC method. The constrained 

variation approach within the (1,1) sector of FSMRCC is also stated. The first chapter 

is concluded with the objective and scope of the thesis.   
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1.1 Introduction 

 The last few decades have seen spectacular developments in many body 

theoretical methods (also known as the correlated methods) [1–5] that can accurately 

describe a range of chemical phenomena. Studies pertaining to electron correlation 

effects in the ground state of closed-shell systems resulted in a multitude of methods 

like, the configuration interaction (CI) method, [6-9] the many-body perturbation 

theory (MBPT), [10-14] and the coupled-cluster (CC) method. [15-19] Size-

extensivity and size-consistency criteria have also been an important factor in 

selecting methods for practical applications. These methods are collectively known as 

single-reference (SR) methods because of their ability to treat electron correlation 

effects in systems, with a single dominating configuration. 

 The success of SR methods in explaining structure and properties of ground 

state of closed-shell atomic and molecular systems, inspired the extension of these 

methods for further research in excited states, to treat electron-correlation effects in 

degenerate and near-degenerate situations (commonly referred to as quasi-

degeneracy) e.g. open-shell molecules, curve crossing, etc. The non-dynamical 

correlation effect, arising from the quasi-degeneracy of such systems, results in the 

dominance of more than one configuration. This attributed to the development of 

multi-reference (MR) based methods. Analogous to SR methods, these include MRCI 

[20,21], MR-MBPT [22-26] and MRCC [27, 36] approaches. In these methods, the 

dynamical correlation effects are incorporated in a similar fashion like that of their SR 

counterparts. 

 The separabilitity, scaling features and accuracy of SRCC methods, boosted 

the development of MRCC methods. The MRCC class of methods can be divided into 

two main categories: single root MRCC [32,34-37] i.e. state specific approach and 

multi-root description i.e. effective Hamiltonian based approaches. The second class 

of MRCC methods can be further subdivided into two basic classes, namely, Hilbert-

space (HS) MRCC [31] and Fock-space (FS) or the valence universal (VU) MRCC 

[28, 29, 33]. Both these approaches differ in a manner the dynamic correlation is 

introduced and hence, are applicable for different types of situations. Each of these 

MRCC methods, have its own window of applicability as well as limitations. 

HSMRCC is suitable for studying potential energy surfaces whereas, FSMRCC is 
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suitable for the calculation of ionization potential
 
[38], electron affinity and excitation 

energies
 
[38-41]. Due to many theoretical and computational difficulties associated 

with them, the MRCC methods are not as popular as their SR counterparts. In 

particular, they do not offer an expedient block-box type of solution. They continue to 

be developed even today and an obvious method of choice is yet to be decided.       

Parallel to the MRCC approaches, the equation of motion coupled cluster (EOM-CC) 

method
 
[42-45] is well known to incorporate a balanced description of the dynamic 

and non-dynamic correlation within the SRCC framework. Thus, this method presents 

a black box type of approach for the calculation of energy [45-46], structure [46-49] 

and properties
 
[50] of open shell molecules and molecular excited states.   

In this thesis, we will focus on new developments within the class of FSMRCC for 

excited state properties and compare our results with other available theoretical 

methods e.g. EOM-CC. This chapter will highlight some of the earlier developments 

within SRCC and FSMRCC, including the constrained variation approach (CVA). 

The FSMRCC theory will be discussed in details for the specific case of excited state 

which will pave way for the scope of this thesis. 

1.2 Overview of previous developments 

1.2.1 Hartree-Fock theory 

The, Hartree-Fock (HF) theory is central to all attempts made towards solving 

the Schrodinger equation for many electron system [6, 51-53]. It is based on the fact 

that stationary states, in particular, the ground states of atoms and molecules with 

even number of electrons can be represented by a single Slater determinant. Each 

electron is assumed to be independent of the other, i.e. the electrons are assumed to be 

moving in a spherically averaged inter electronic repulsion potential. Thus, Hartree -

Fock theory is also known as an independent particle model. The HF procedure, 

directs to a orthonormal set of spin-orbitals, which are the Eigen functions of the Fock 

operator and the corresponding Eigen values are the orbital energies. The 'N' spin-

orbitals with lowest energies are occupied in HF configuration and the corresponding 

determinant is known as the Hartree-Fock wave function. The remaining unoccupied 

orbitals in HF configuration are termed as virtual orbitals. The physical significance 
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of orbital energies is provided by Koopmans' theorem, which states that the energy of 

an occupied orbital in HF ground state is negative of the energy required for removing 

an electron from the orbital without relaxing the rest of the orbitals. Koopmans' 

theorem can accurately predict the ionization potential (IP) because of the fact that the 

relaxation and correlation effects partially cancel each other. Koopmans' theorem also 

predicts the first electron affinity. However, these are found to be quite absurd, since, 

the correlation and relaxation errors add up in this case. For atoms, the HF equations 

can be exactly solved as an integro-differential equation. However, for molecules, the 

explicit integration of the two-electron interaction term is difficult, as the orbitals 

involved are centered at different nuclei. So, following Roothan [54] a finite set of 

Gaussian functions are introduced to define the spatial parts of atomic orbitals, which 

are then transformed to molecular orbital basis to achieve ortho-normalization. For 

closed-shell systems, the spin-orbitals with opposite (spin-up and spin-down) spin 

functions are paired up and the problem can be simplified by using only spatial 

orbitals after spin-integration. This leads to a Roothan Hall set of equations and the 

method is known as restricted HF (RHF). The open-shell systems also have most of 

the electrons paired up and can be solved by open-shell RHF (ROHF) method. This 

simplification of electron pairing may not be considered at all and one may explicitly 

solve the HF equations using spin-orbitals. This method of solving the HF equations 

is called unrestricted HF (UHF) and leads to the Pople-Nesbet equations. While an 

RHF or ROHF determinant is a pure Eigen function of total spin operator, UHF 

determinant, in general, is not. Brillouin's theorem is a result of HF theory and states 

that configurations obtained by excitation of a single electron from the HF 

configuration do not directly interact with the HF configuration through the  exact 

Hamiltonian. This feature can be treated as the defining condition of HF 

approximation. 

 The important feature of HF theory is the simplification of many-electron 

problem to an independent particle picture by treating the electron-electron repulsion 

in a spherically averaged manner. The HF determinant recovers almost 95 to 99 

percent of the total energy. The difference between the exact energy and HF energy is 

termed as the  correlation energy as it arises due to partial neglect of the electron-

electron interactions. The correlation energy can be recovered by improving the 

approximations made in HF theory. This leads to various branches of theories 
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collectively termed as many-body methods or electron correlated methods. Due to the 

inherent simplicity and its ability to recover most of the ground state energy, HF 

configuration is generally used as a starting reference for the many-body theories.  

1.2.2 An ideal theory 

To prove its universal use and acceptance as a practical theory, certain conditions 

need to be fulfilled. These criteria, as were proposed by Pople et. al. [55] about half a 

century back and later on quoted and modified by Bartlett [56] can be stated as 

follows. 

1. The method should be independent of certain choices of configurations and 

symmetry and should it be applicable to a wide range of molecular systems 

2. The method should be invariant with respect to a class of transformations. 

Particularly, unitary transformations should not change the orbital degeneracy. 

3. The method should be size-consistent and size-extensive.  

4. The method should be computationally efficient as well cost-effective, in 

order to extend its applicability to various molecular systems.  

5. The method should be applicable for open shell systems and excited states. 

Among the above stated conditions, size-consistency and size-extensivity are the most 

important criteria, as the efficiency and accuracy of the method are primarily 

determined by these factors. 

1.2.2.1 Size consistency and extensivity  

 As defined by Pople and co-workers [55] and Bartlett [56],  size-consistency 

of a method refers to its behaviour when it is applied to a collection of N non-

interacting monomers. A method is termed size-consistent if the energy obtained in its 

application to this collection of monomers, is N times the energy obtained in its 

separate application to the monomer. In other words, when a size-consistent method is 

applied to a molecule AB dissociating into two fragments A and B, the energy of the 

molecule calculated at the dissociating limit (or infinite separation limit) is equal to 

the sum of the energies of both fragments calculated by separately applying the 

method to individual fragments. If a method is size consistent, it usually  means that 
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the method can qualitatively predict a correct dissociation curve. Hence, size-

consistency is a desirable feature for any approximate method. 

 Size-extensivity, is a concept related to size-consistency wherein, it refers to 

the mathematical scaling of energy with the number of electrons [30,57]. A method is 

size-extensive if the energy a many-electron system calculated by the method, even in 

the presence of interactions, is approximately proportional to the number of electrons 

N and becomes exact as N tends to infinity. In other words, the energy and the error in 

energy should increase in proportion with the size of the system. Size-extensivity is 

especially important for methods treating  electron correlation. If a method is not size-

extensive, the error in correlation energy shows either sub-linear or super-linear 

dependence on the number of electrons (or equivalently the size of the system). In the 

former case, fraction of the exact correlation energy recovered per electron decreases 

as the size of the system increases, eventually leading to zero correlation energy in the 

limit of N → ∞ . In the latter case, the same fraction increases with the system size 

leading to a prediction of infinite correlation energy per electron as N → ∞. 

Therefore, all non size-extensive methods show progressively unphysical behaviour 

as the size of the system increases. Size-extensive methods are considered to be 

particularly suitable for large systems, as they strive to recover a roughly constant 

fraction of the exact correlation energy with increasing system size. 

 Another related concept that is useful in discussion on size-consistency and 

size-extensivity is the separability. As discussed by Primas [58], separability is related 

to the behavior of certain quantities of a system composed of two sub-systems 

interacting with each other in the limit of vanishing interaction strength [58,59]. An 

additively separable quantity of the system, as the interaction vanishes, should be the 

sum of the same quantity for individual sub-systems. Similarly, a multiplicatively 

separable quantity should be the product of the same quantity for individual systems. 

For example, the total energy of many-electron systems is an additively separable 

quantity. Similarly, the wave function is multiplicatively separable. Evidently, 

separability condition is a generalization of size-consistency condition on energy, 

with respect to an arbitrary division of the system into sub-systems. 
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1.2.3 Many body methods 

There are three very popular methods for the proper treatment of correlation effects:  

linear variation based configuration interaction, many-body perturbation theory and 

coupled cluster method. We will discuss the first two methods briefly followed by a 

detailed analysis of the coupled cluster theory.  

1.2.3.1 Configuration Interaction method  

 CI is conceptually, perhaps the simplest and the most traditional method, 

where the wave function is expressed as a linear combination of Slater determinants; 

the coefficients are determined by a linear variation method. Since it is a variational 

method, CI gives variational upper bound to the energies. Use of a linear variation 

method to determine expansion coefficients, results in a Eigen value problem for the 

Hamiltonian matrix defined over all the determinants. The matrix elements of 

Hamiltonian between any two Slater determinants are evaluated by using Slater-

Condon rules [6]. Inclusion of all the possible excited determinants within a given 

basis set is referred to as the Full-CI (FCI) method. While, the lowest Eigen value and 

Eigen vector of FCI Hamiltonian matrix correspond to the ground state, rest of the 

Eigen values and Eigen vectors correspond to various excited states. This gives exact 

results in a specified basis set. Since, FCI is not feasible even for the small and 

medium sized molecules in any meaningful basis; we require approximation like 

truncated expansions in a CI wave function. Truncating the CI space only up to singly 

and doubly excited determinants along with the reference HF determinant leads to 

CISD approximation. It is also well known that any approximate or truncated form of 

CI, is generally not size-extensive and does not separate into appropriate fragments.  

  The inability of CI to account for the dynamic correlation effects in a proper 

manner, is responsible for the lack of size-extensivity of truncated CI. It has been 

shown by Sinanoglu [59] in the context of pair correlation theory, that simultaneous 

but independent doubly excited processes are also important. This leads to quadruply, 

hextuply etc configurations with amplitudes as appropriate products of doubly excited 

amplitudes. Similar physical effects take place involving higher excited determinants. 

Any truncation based on a preset degree of excitation cannot account for such effects 

and thus, truncated CI suffers from loss of size-extensivity. 
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1.2.3.2 Many body perturbation theory 

 Many body perturbation theory (MBPT) [10-12,60-62] presents an alternative 

route for systematic incorporation of dynamic correlation effects and produces size-

extensive energy at every order of the theory. In this approach, the exact Hamiltonian 

is partitioned into two parts, a zeroth order part whose  solutions are usually known 

and a perturbation part, which is assumed to be very small when compared to the 

zeroth order part. There are two different kinds of perturbation series, namely, the 

Rayleigh Schrödinger (RSPT) [10,12,60] and the other is Brillouin Wigner 

perturbation theory (BWPT) [12]. Both the perturbation series, have the wave 

function expressed as a power series, in the region of the solutions of the zeroth order 

Hamiltonian. Corrections to the wave function at every order is stated in terms of the 

Eigen functions of the zeroth order Hamiltonian. In the Brillouin Wigner theory, the 

energy expression depends on the energy itself hence, an iterative procedure needs to 

be adapted to generate the energy. Each successive iteration produces energy at a 

higher order, which is not size-extensive. So, BWPT is rarely used to obtain the 

correlation energy. The properties of RSPT, however, depend upon the exact scheme 

exploited for its solution. Depending on the partitioning technique of the Hamiltonian, 

there are two variants of RSPT; Moller-Plessette (MP) PT and Epstien-Nesbet PT. 

The use of Fock operator as the core Hamiltonian leads to MP partitioning. It can also 

be shown that MP partitioning within a RSPT framework, leads to a perturbation 

series, which scales correctly with number of electrons (say N). This size extensive 

series (due to the presence of explicit linked diagrams) is often known as many body 

perturbation theory (MBPT). Goldstone [64] devised a diagrammatic approach to 

show that the terms which have incorrect scaling can be represented by unlinked 

diagrams. He also proved that such unlinked diagrams cancel each order at each order 

of perturbation, thus leading to only linked diagrams. The application of the 

diagrammatic approach to atoms was first done by Kelly [64]. In MBPT, the zeroth 

order Hamiltonian is constructed as the sum of Fock operators and the perturbation 

(V) is the full electron-electron repulsion term without the spherical average part.  

 In modern times, the accuracy of any many-body method can be measured in 

terms of the such a perturbative order. So, MBPT can be used as an efficient tool to 

calibrate the accuracy of measurement, of not only the energy but also the wave 
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functions. MP based RSPT is commonly used for correlated calculations of atoms and 

molecules. The acronyms MP2, MP4, MBPT (n), etc. have become very popular 

because of the accuracy and relative simplicity of the method. 

 In Epstein-Nesbet (EN) partitioning the diagonal part of the Hamiltonian [4]  

is used as the zeroth order Hamiltonian (H0) and this leads to a perturbation 

expansion, in which the denominator contains the difference of the diagonal matrix 

element of the full Hamiltonian. In this case, the perturbation expansion can also be 

obtained as a result of infinite-order summation of certain classes of terms within the 

MP series. Unlike the case of MP, Epstein-Nesbet expansion is not invariant under 

orbital rotations. So, even though MBPT gives size-extensive results at each order, the 

slow convergence of the perturbation series is its drawback. In conclusion, to avoid 

the convergence problems, non-perturbative methods are more desirable. In the next 

subsections we will discuss some methods, which are neither strictly perturbative nor 

variational but they transcend both the perturbative and variational type of 

approaches. 

1.3 Coupled cluster method 

 Coupled cluster method (CCM) is perhaps the most popular method among 

the present class of many body theories. First introduced in the area of nuclear physics 

by Coester and Kummel, CCM has its conceptual origin in the pair theories of 

Sinanoglo [54,65] and Nesbet [66]. Cizek and Paldus [67-69] were the pioneers who 

introduced it into the circle of quantum chemistry practitioners in its present standard 

form. In CCM, the wave function is described by the action of an exponential wave 

operator acting on a suitable reference function, which is generally, but not 

necessarily, a Hartree-Fock determinant. The wave function is denoted as, 

0

T

cc e                                                                                                            (1.1) 

where, 
0  is the reference state and 'T' is known as the excitation or cluster 

operator. The cluster operators are expressed as a sum of electron excitation operators, 

viz, one-electron, two-electron, etc.  (hence, the alternate nomenclature of excitation 

operator)         

1 2 3 ..... NT T T T T                                                                                                (1.2) 



10 
 

The cluster operators can be expressed in terms of second quantized notation as given 

below,   

†

1

,

† †

2

.. † † †

..

....
....

................

a

i a i

i a

ab

ij a b j i

i j
a b

abc

N ijk a b c k j i

i j k
a b c

T t a a

T t a a a a

T t a a a a a a




 
 













                                                                                     (1.3)                        

where, the ...

...

ab

ijt  coefficients are also known as the cluster amplitudes. An N-body 

cluster operator, NT  acting on the reference/vacuum state, 
0  generates N-tuply 

excited hole-particle determinant. The use of a single reference determinant to 

generate the CC wave function is the reason for its nomenclature as single reference 

coupled cluster (SRCC) method. In the limit of all possible excitations i.e. when N 

equals the total no of electrons, CC theory must be equal to full CI. There is a 

straightforward connection of the cluster operators with the CI operators. The 

relationship between CI and CC coefficients are given below.                                             

1

2

2 2 1

3

3 3 1 2 1

2 4

4 4 1 3 2 1

1

2!

1

3!

1 1

2! 4!

C T

C T T

C T TT T

C T TT T T



 

  

   

                                                                                     (1.4)                           

The coupled cluster equations are generally solved by the method of projection. 

Substituting Equation (1.1) into the Schrödinger equation with normal ordered 

Hamiltonian leads to:  

0 0

T T

NH e Ee                                                                                                 (1.5)    

On left projection of equation (1.5) by 
0  we obtain an equation for the correlation 

energy. 

0 0 0 0

T T

NH e E e E                                                                             (1.6) 

where, the concept of intermediate normalization holds true and the overlap between 

the reference function and the CC wave function is set to unity.  

0 1CC                                                                                                              (1.7) 
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 Using Wick‟s theorem along with the fact that exp(T) is normal-ordered, the 

above equations (1.6) can be diagrammatically represented by a set of closed 

connected diagrams in which each cluster operator is connected to the Hamiltonian 

vertex. In order to determine the cluster amplitudes, equation (1.5) is left projected by 

the excited state determinants, which are generated by the action of the T-operator on 

the reference function. Projection by a particular excited determinant generates the 

cluster operator of that excitation level. e.g. T2 can be obtained from the following 

equation. 

0 0

ab T ab T

ij N ijH e E e                                                                                 (1.8)        

The left and right hand side of the above equation have connected as well as 

disconnected terms. Nonetheless, presence of the exponential T term guarantees 

mutual cancellation of unlinked terms from both sides of equation (1.8). Thus only the 

connected, open terms survive in the above equation, leading to completely connected 

CC equations. Thus, Eqs. (1.6) and (1.8) can be rewritten as, 

0 0 ,

*

0 ,
0

T

N closed connected

T

N open linked

H e E

H e

  

  
                                                                               (1.9)                  

where, *  are the set of excited determinants. Mutual contraction among the cluster 

operators do not occur due to commutation relation. Since the Hamiltonian operator 

includes one and two particle operators, it can connect to a maximum of four cluster 

operators thus naturally truncating the exponential series. This renders the CC 

equations to be algebraic, non-linear equations in the unknown cluster amplitudes and 

are at most of quatric power. The above discussed CC equations can also be derived 

by left projection of equation (1.5) with Te . Thus equation (1.5) can be rewritten as, 

0 0

T T

Ne H e E                                                                                               (1.10) 

Equation (1.10) can also be viewed as an Eigen value equation for the similarity 

transformed Hamiltonian, H given as 

T T

NH e H e                                                                                                           (1.11) 

Since, similarity transformation of any operator does not change the Eigen values of 

the operator, equation set (1.9) can be derived in a similar manner as shown above, 

giving rise to the following set of equations.                              
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0 0

*

0 0

TT

N

TT

N

e H e E

e H e





  

  
                                                                                          (1.12) 

 It is to be noticed that the introduction of the exp(-T) opertaor, cancels out its exp(T) 

counterpart in the amplitude equation. This guarantees that the right hand side of the 

energy expression in equation (1.12) vanishes, taking with it any dependence of the 

amplitudes on the energy. The similarity transformed Hamiltonian (as stated above) is 

not Hermitian, therefore, the energy equation does not satisfy any variational 

condition. Using the Baker-Campbell-Hausdroff (BCH) expansion formula, T T

Ne H e

can be expanded [27,61] as,   

   

   

1
, , ,

2!

1 1
, , , , , , , ....

3! 4!

T T

N N N N

N N

H e H e H H T H T T

H T T T H T T T T

       

               

                                            (1.13)                                                                           

Due to the two body nature of 
NH  and commutative nature of cluster operator, this 

series can be shown to be terminated after four fold commutations. The connected 

nature of the correlation energy and cluster amplitudes are explicitly revealed by the 

presence of these commutators.  

 The amplitude expression (see equation 1.9) leads to a set of coupled 

nonlinear equations, which are generally solved iteratively to obtain the cluster 

amplitudes. Perturbation analysis of the iterative procedure show that, at every 

iteration, the functional gains correction from various orders of perturbation. After the 

self-consistency and numerical accuracy is attained, the correlation energy is obtained 

using the energy expression of equation (1.9). If T contains all possible excitation 

operators i.e. up to TN for a N-electron system, then the method is called full CC 

(FCC), which is equivalent to FCI. Obviously, the number of cluster operators will be 

the same as CI operators. However, for practical application one needs to truncate at a 

finite order. The most commonly used truncation is the singles and doubles 

truncation, where T = T1 + T2 [71,72]. Unlike truncated CI, CC method continues to 

be size-consistent, for at any order of truncation. This is because of the exponential 

nature of the wave operator, which includes higher excitations through the products of 

cluster amplitudes. The CCSD anasatz can be further improved by perturbative or 

complete inclusion of triples (partial and full) [17,73], quadrupoles (CCSDT(Q) and 
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CCSDTQ) [74], etc. These anasatz are seen to further accelerate the convergence 

towards exactness. 

1.4 EOM-CC Method 

The equation of motion coupled cluster (EOM-CC) method [75-78] is a single-

reference approach, where the excited state wave functions are generated by the 

action of a linear CI like operator on the correlated reference wave function. The 

Schrödinger equation for the reference state and the excited state (be it an electron 

attached or ionized state) can be described by the following equations, 

0 0 0Ĥ E                                                                                                             (1.14) 

ˆ
k k kH E                                                                                                             (1.15) 

where, the subscript '0' and 'k' refer to the reference state and any excited state 

respectively. The excited state wave function k   is related to the reference state 

wave function by the following relation, 

0
ˆ

k k                                                                                                               (1.16) 

Left multiplying equation (1.14) with ˆ
k  and subtracting it from equation 1.15, we 

can arrive at the following expression after some manipulation 

0 0
ˆ ˆ, k kH      

                                                                                               (1.17) 

where 0k kE E   . The form of k  describes the particular EOM method 

corresponding to the target state. 

For the specific case of ionization, 

†

,

ˆˆˆ( ) ( ) .........IP a

k i ij

a a b j

R k i R k a ji


                                                                     (1.18) 

For the specific case of electron attachment 

† † †

,

ˆ ˆˆ ˆ( ) ( ) .........EA a ba

k j

a a b j

R k a R k b ja


                                                              (1.19) 
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and for the excitation energy problem 

  † † †

0

,

ˆˆ ˆ( ) ( ) .........EE a ab

k i ij

a a b i j

R k R k a i R k a b ij
 

                                              (1.20)   

The expressions given above are for any general EOM approach. Coupled cluster 

theory is introduced through generation of the correlated wave function by the action 

of an exponential operator on a Slater determinant, which is generally, but not 

necessarily the Hartree-Fock determinant, i.e. 

ˆ

0 0

Te                                                                                                             (1.21) 

where,      1 2
ˆ ˆ ˆ .......T T T      and  †

1
ˆ a

i a i

ia

T t a a   ,  † †

2

1ˆ
4

ab

ij a b j i

ijab

T t a a a a    … 

Since, ̂  and T̂ commutes with each other, we can rewrite equation (1.17) as, 

 0 0
ˆ ˆ ˆ, k k

c
H H        
 

                                                                              (1.22) 

Where, 
ˆ ˆT TH e He  , and c denotes the connectedness of H  and ̂   

Since H  is non Hermitian in nature, there exist different right (R) and left (L) Eigen 

vectors which are bi-orthogonal and can be normalized to satisfy the following 

condition, 

k l klL R                                                                                                                  (1.23) 

H is diagonalized in the 1h and 2h1p sub space to generate the IP, whereas EA values 

are obtained through diagonalization of the same in the 1p and 2p1h sub space. 

EOMCC have been studied for calculation of molecular energies, structure and 

properties. 

1.5 Multi-reference coupled cluster methods 

 In contrast to the SRCC theory, which mainly evolved from its 

correspondence with the single reference MBPT, the evolution of multi-reference 

coupled-cluster (MRCC) theories has been more or less independent of the underlying 
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perturbative structure. An MRCC theory is obtained by finding an exponentially 

parameterized ansatz for the wave-operator Ω, and formulating a scheme for 

unambiguous determination of these parameters. The motivation for exponential 

parameterization comes from the possibility of obtaining size-extensive results, along 

with the usual high accuracy stemming from partial infinite-order summation nature 

of CC theory. 

 Contrasting with SRCC where, there is only one way to parameterize the wave 

function, several possibilities open up for the multi-reference case. However, they can 

be classified into two broad categories: the first one describes a specific root, known 

as the state specific MRCC and other is the multi root description by effective 

Hamiltonian approach. Effective Hamiltonian based theories are further subdivided 

into two main subclasses:  Hilbert space (HS)  method and Fock Space (FS) method. 

In both the approaches, the energies are obtained by diagonalization of the effective 

Hamiltonian defined within a pre-chosen model space, and both approaches are fully 

size extensive. The HS-MRCC approach [79,80]  uses a state universal operator with 

different cluster operators for each determinant in the model space. The FS-MRCC 

approach, on the other hand, uses a common vacuum and a valence universal wave 

operator, which correlates the model space with the virtual space. The HSMRCC 

method is more suitable for the calculation of potential energy surface. On the other 

hand, FSMRCC [81-84] method is more suited for direct difference of energy 

calculations such as ionization potential, electron affinity, and excitation energies. 

Since, we are essentially interested in treatment of excited state properties, FSMRCC 

is our method of choice. The next section discusses the theory of FSMRCC within the 

(1,1) valence rank with explicit equations for solving the Lagrange equations in the 

same sector. 

1.6 General description of FSMRCC theory 

 Generally, a closed shell HF single determinant is selected as the vacuum or 

reference state with respect to which we define our holes and particles. A further 

subdivision (of the particle-hole orbitals) into active and inactive holes and particles 

are made, which will introduce the multi-reference flavour of the theory. By, taking 

an appropriate linear combination of the various determinants generated by different 

occupation of the active orbitals constitutes the model space. If we choose to have 'p' 
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active particles and 'h' active holes, then with the help of the ( , )p hP  projection 

operator, which projects onto the model space and ( , )p hQ which projects onto the 

model space, a model space with (p,h) particle-hole rank will be generated. Each such 

model space actually describes a particular type of state within the Fock-space where, 

(0,0) is the ground state, (0,1) model space describes the single ionized states, (1,0) 

singly electron attached states and finally the (1,1) model space denotes the singly 

excited states. The choice of active and inactive group of orbitals is governed by the 

various energy spectrum of interest. Among the different model spaces mentioned 

above, (0,0), (0,1) and (1,0) are complete model space as they include all possible 

occupancies of electrons in the chosen active orbitals. The (1,1) model space is 

incomplete in the same respect, as it excludes all the doubly, triply etc. excited 

determinants. However, a simplification to this incompleteness can be achieved by 

assuming that it is complete with respect to a single occupancy in the active particles 

and single vacancy in the active holes. Hence, the (1,1) model space is termed as a 

quasi-complete model space. The zero
th

 order wave function of (p,h) sector in Fock-

space comprises a linear combinations of the model space functions   

( , )( , ) ( , )
(0)

p hp h p h
i i

i

C                                                                                           (1.24) 

The main idea of effective Hamiltonian theory is to extract some selective eigen 

values of Hamiltonian from the whole eigen value spectrum. To fulfill this purpose, 

the configuration space is partitioned into a model space and an orthogonal space. The 

projection operator for the model space is defined as, 

     , , .p h p h p h

i i

i

P                                                                                           (1.25) 

The projection operator in the complimentary space is given by, 

( , ) ( , )1p h p hQ P                                                                                                       (1.26) 

The diagonalization of the effective Hamiltonian takes care of the non-dynamic 

correlation arising due to the interactions of the model space configurations. The 

dynamic correlation occurs due to the interactions of the model space configurations 

with the virtual space. This interaction is introduced through a universal wave 

operator Ω, which is parameterized such that it generates the exact wave function by 

acting on the model space. To generate the exact states for the (p,h) valence system, 
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the wave operator must be able to generate all the valid excitations from the model 

space. The valence universal wave operator Ω has the form  

 ( , )p hSe                                                                                                              (1.27) 

where, the curly braces denote normal ordering of the cluster operators with respect to 

the reference function. 
 ,p h

S  is defined as following 

   , ,

0 0

p h
p h k l

k l

S T
 

                                                                                             (1.28) 

The cluster operator 
 ,k l

T  is capable of destroying exactly k active particles and l 

active holes, in addition to creation of holes and particles. The 
 ,p h

S  subsumes all 

lower valence Fock space 
 ,k l

T  operators, where the 
 0,0

T  cluster amplitude 

corresponds to standard single-reference coupled cluster amplitudes. 

The Schrödinger equation for the manifold of quasi-degenerate states can be written 

as 

   , ,p h p h
H E                                                                                                (1.29) 

where, the correlated μ
th

 wave function in can be written as  

 
( , ) ( , )

0

p h p h

 
                                                                                                          

(1.30) 

Substitution of equation (1.24) and (1.30) into equation (1.29) gives, 

       , , , ,p h p h p h p h

i i i i

i i

H C E C   
   

     
   
                                                            (1.31) 

The effective Hamiltonian for the (p,h) valence rank system can be defined as  

  ,ˆ p h

eff j i
ij

j

H C E C                                                                                            (1.32) 

where the effective Hamiltonian can be defined as, 
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 ( , ) ( , ) 1 ( , )ˆ ˆp h p h p h

eff i j
ij

H H                                                                              (1.33) 

The above equation can be rewritten in terms of the model space as,  

   , ,1ˆ ˆp h p h

effH P H P                                                                                           (1.34) 

Equation (1.34) requires an explicit description of Ω
-1

. But there can arise situations 

where Ω
-1

 may not exist [82]. In order to avoid the usage of Ω
-1

 while defining the 

effective Hamiltonian, Bloch and Lindgren formulated another set of equation 

commonly known as the Bloch equation, which is given as, 

effH P H P                                                                                                        (1.35) 

The above equation is solved by left projection with P and Q opertaors respectively, 

giving rise to the following set of equations : 

   

   

, ,

, ,

0

0

k l k l

eff

k l k l

eff

P H H P

Q H H P

   

   

        0,..... ; 0,.....k p l h                                       (1.36)                                                                                                              

To solve the above equation set, an additional normalization is imposed through 

parameterization of Ω. In case of CMS, this is generally performed by imposing the 

intermediate normalization condition P P P  . However, the situation is a little bit 

different in case of incomplete model space. Mukherjee [85] has shown that in case of 

incomplete model space, the valence universality of the wave operator is sufficient to 

guarantee linked-cluster theorem; but one needs to relax the intermediate 

normalization. Pal et. al [84] have shown that for the special case of quasi-complete 

model space in (1,1) sector, the intermediate normalization can be used without any 

loss of generality. 

In general, the equations for Ω and Heff are coupled to each other through the equation 

set (1.36). Hence, Heff cannot be explicitly expressed in terms of Ω. However, when 

intermediate normalization is imposed, Heff can be directly written as a function of Ω. 

       , , , ,( , )p h p h p h p hp h

effP H P P H P                                                                            (1.37) 
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After solving for Ω and Heff, diagonalization of the effective Hamiltonian within the P 

space gives the energies of the corresponding states and the left and the right eigen 

vectors. 

     

   

   

, , ,

, ,( , )

, ,( , ) ( , ) 1

p h p h p h

eff

p h p hp h

eff

p h p hp h p h

H C C E

C H EC

C C C C





 

 

 

                                                                                    (1.38) 

The contractions amongst different cluster operators within the exponential are 

avoided due to the normal ordering, leading to partial hierarchical decoupling of the 

cluster equations, i.e. after solving the lower valence amplitude equations of a 

particular sector in Fock space, it appears as a known parameter in the equations for 

the higher valence rank.  This is commonly referred to as sub-system embedding 

condition (SEC) [84]. The lower valence cluster equations are decoupled from the 

higher valence cluster equations, because of the SEC. Hence, the Bloch equations are 

solved progressively from the lowest valence (0,0) sector upwards up to (p, h) valence 

sector. 

1.6.1 FSMRCC for excited states 

 The general theory for Fock-space MRCC is already stated in the previous 

section. In this section we will detail out the relevant working equations for the (1,1) 

sector and formulate CVA from this viewpoint. The valence universal wave operator 

for the specific problem of excitation energy is given by, 

 
(0,0) (0,1) (1,0) (1,1)T T T Te e e e                                                                                 (1.39)                    

Under the singles and doubles scheme, the cluster operator for each sector contains, 

only one and two body parts. Matrix elements of the effective Hamiltonian for this 

sector can be written as,  

       
(1,1) (1,1) (1,0) (0,1)

(0,0)

, ,( , ) ( , ) ( , )( , )
eff eff eff eff effH H H H H         

                           (1.40) 

where, ,   and ,   corresponds to indices for active holes and active particles 

respectively.  The Bloch equations for this sector is given by, 
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   

   

, ,

, ,

0

0

k l k l

eff

k l k l

eff

P H H P

Q H H P

   

   

      0,.....1; 0,.....1k l                                          (1.41) 

Normal ordering of the cluster amplitudes leads to SEC that results in the decoupling 

of the lower valence sector equations from the higher valence ones.  It  has been 

shown by Mukherjee that if one abandons the requirement of intermediate 

normalization then the linked nature of the effective Hamiltonian and cluster 

operators can be ensured. The effective Hamiltonian in the model space for the (1,1) 

sector can be written as: 

(1,1) (1,1) (1,1) (1,1) (1,1)

effP H P P H P                                                                                  (1.42) 

The equations of all the cluster amplitudes (i.e. (1,1)

2T  and the one and two body cluster 

operators of the lower valence sectors) as well as the effective Hamiltonian are 

independent of (1,1)

1T amplitudes. Although the excited state wave function in 

FSMRCCSD consists of the (1,1)

1T  amplitudes, these are not explicitly required for 

evaluation of excitation energies. Thus, under singles and doubles approximation, we 

effectively have only two-body cluster amplitudes of the (1,1) sector. Due to spin 

adaptation two different types of 
(1,1)

effH  and (1,1)

2T  exist. We indicate them as   
(1,1)

A

effH

and  
(1,1)

B

effH , (1,1)

2

AT  and (1,1)

2

BT  respectively. The equations for the effective 

Hamiltonian and excited state amplitudes, as depicted by the superscript 'A' are 

completely decoupled from the equations of the type-B quantities. However, the 

equations for type-B depends on the quantities of type-A. Thus, in addition to SEC, 

there is a further decoupling among the two types of blocks.  The final expressions of 

the effective Hamiltonian (in matrix equation form) after spin adaptation can be 

written as,                

          
(1,1) (1,1) (1,1) (1,0) (0,1)

(0,0)

, ,( , ) ( , )( , ) ( , ) ( , )
2S A B

eff eff eff eff eff effH H H H H H           
       

(1.43) 

and 

       
(1,1) (1,1) (1,0) (0,1)

(0,0)

, ,( , ) ( , )( , ) ( , )

T A

eff eff eff eff effH H H H H         
                           (1.44) 

where, the superscript 'S' and 'T' denote the singlet and triplet effective Hamiltonian 

respectively. The indices  , , ,     means the same as given in equation (1.40). As 
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can be seen from the above expression, that the triplet excitation energies are 

completely decoupled from the singlet energy. Hence, they can be obtained by solving 

for the type-A Bloch equations of the (1,1) sector. Calculation of singlet excitation 

energy is more complicated, as this requires the knowledge of both types of Bloch 

equations. If the closed connected part of the ground state effective Hamiltonian is 

dropped off from the calculation, we end up with the direct difference of energy of the 

corresponding state. 

1.6.2 CVA for (1,1) sector in FSMRCC 

 The constrained variation approach [86] in the FSMRCC was pursued by Pal 

and co-workers [87-92] Similar simplifications of the  (1,1)  amplitudes holds true as 

that of the excitation amplitudes in the same sector, i.e. (1,1)

1  amplitudes do not occur 

in the expression for energy even though they are contained in the wave function 

equations. Also, the construction of the Lagrangian for a specific state depends on the 

spin multiplicity of that state. Hence, the triplet excitation energies are completely 

decoupled from the singlet ones. Singlet energy of a particular, µ
th

 state in is given by, 

 
(1,1)

(1,1) (1,1)S S S S

i eff jij
ij

E C H C                                                                                     (1.45) 

The Lagrangian for the above mentioned state is constructed as given below, 

£  =  

 
(1,1)

(1,1) (1,1)

(1,1) (1,1) (1,1) (1,1)

(1,1) (1,1) (1,1) (1,1)

(0,1) (0,1) (0,1) (0,1)

(1,0) (1,0) (1,0) (1,0)

(0,0) (0,0)

S S S

i eff jij
ij

B
B S

eff

A
A S

eff

eff

eff

C H C

P H H P

P H H P

P H H P

P H H P

P H

 

    

    

    

    

  

 

(0,0) (0,0)

(1,1) (1,1) 1

eff

S S S

i j

ij

H P

E C C  

  

 
  

 
 

                                                               (1.46) 

The Λ vectors and the cluster amplitudes are obtained by making the Lagrangian 

stationary with respect to the cluster amplitudes and Λ amplitudes respectively. The 

Eigen vectors are also obtained variationally. Thus, the cluster amplitudes are 

completely decoupled from the  de-excitation amplitudes. As stated in section 1.7, the 



22 
 

cluster amplitudes follow the SEC. For the Λ vectors, there is a reverse decoupling. 

That is the higher valence de-excitation operators are solved first followed by the 

lower valence ones. Also, the decoupling in terms of the type-A and B amplitudes are 

also reversed. In case of (1,1)

2T  amplitudes, the B-type amplitudes are solved after the 

type-A ones. In case of Λ vectors, we start solving from the (1,1)

2

B  amplitudes and 

then move down towards the lower valence amplitudes till the vacuum sector. In case 

of evaluating the de-excitation amplitudes for the triplet sector, a different Lagrangian 

needs to be constructed. The triplet states are obtained by diagonalizing the triplet 

effective Hamiltonian. The triplet energy for a particular µ
th

 state is given by,

 
(1,1)

(1,1) (1,1)T T T T

i eff jij
ij

E C H C                                                                                     (1.47) 

The Lagrangian for the triplet state is constructed as shown below, 

 

£  =  

 
(1,1)

(1,1) (1,1)

(1,1) (1,1) (1,1) (1,1)

(0,1) (0,1) (0,1) (0,1)

(1,0) (1,0) (1,0) (1,0)

(0,0) (0,0) (0,0) (0,0)

(1,1) (

T T T

i eff jij
ij

A
A S

eff

eff

eff

eff

T T T

i j

C H C

P H H P

P H H P

P H H P

P H H P

E C C

 

  

    

    

    

    



 

 1,1) 1
ij

 
 

 


                                                               (1.48) 

It is important to note that the type-A amplitudes as stated in equation (1.48) is 

different from the type-A amplitudes of equation (1.46) due to the coupling of the 

type-A and type-B amplitudes in the singlet sector and also due to the difference of 

the effective Hamiltonian of the type-A and type-B respectively. 

In this thesis we will be using only the singlet Λ vectors for construction of the 

excited state wave function to evaluate transition dipole moments. 

1.7 Objective of this thesis 

 The main objective is to develop methods within FSMRCC formulation to 

calculate transition dipole moments. We will be using the exponential ansatz of the 

FSCC and the Λ-vectors, as described in this chapter to construct the different wave 
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functions and calculate the relevant off diagonal matrix elements of the dipole 

operator to finally evaluate the transition moments. All method developments will be 

presented under the singles and doubles scheme within FSMRCC. New approximate 

approaches will also be developed that can facilitate calculation of larger molecular 

systems for difference energies as well as properties arising from the difference 

energy calculations. The thesis is concluded with the future scope and certain ongoing 

projects associated with the work presented in this thesis.  
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Chapter 2  

 

Formulation of transition dipole moment within Fock-space 

multi-reference coupled cluster theory 

___________________________________________________ 

 

This chapter introduces the formulation of transition moment within FSMRCC 

methodology. We present two different ways, to calculate these transition moments. 

In the first method, we construct the ground and excited state wave functions with the 

normal exponential ansatz of Fock-space coupled cluster method and then calculate 

the relevant off-diagonal matrix elements. This is called the expectation value 

method. In the second approach, we linearize the exponential form of the wave 

operator which will generate the left vector, by use of Lagrangian formulation. The 

right vector is still obtained from the exponential ansatz. This is identified as the bi-

orthogonal approach. The given formulation is general in nature and can be extended 

to evaluate transition moments for ground/excited to excited states of closed, as well 

as open shell systems.  

In order to relate transition moments to oscillator strengths, excitation energies 

have to be evaluated. The excitation energies are obtained from the Fock-space multi-

reference coupled cluster theory as discussed in the previous chapter. A brief review 

of the FSMRCC wave equations is also presented in this chapter. 
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2.1 Introduction to transition dipole moment 

Transition dipole moments (TDM) are of great general interest as they 

determine the transition rates (along with the rotational-vibrational levels to calculate 

Einstein transition probabilities) [1] and the probability of photon or electric field 

induced atomic and molecular state changes. It is a good test for assessing the validity 

and accuracy of ab-initio calculations. A calculation of transition dipole moment can 

be helpful in understanding the energy transfer rates; provides a basis for calculating 

extinction coefficients and fluorescence lifetimes etc. [2,3] The electronic transition 

dipole moment (ETDM) is an important prerequisite for understanding optical 

spectra. The probabilities per unit time for absorption induced emissions and 

spontaneous emissions (as derived from the first order, time-dependent perturbation 

theory in the dipole length approximation) are proportional to the square of the TDM 

between the two chosen states of interest. [4] For any transition from a state „p‟ to 

state „q‟, the TDM in the dipole length form is expressed as – 

pq p qd                                                                                                           (2.1)
                                                                                                                      

In order to understand and characterize radiative processes, we have to relate it to 

experimental observables (such as oscillator strength). The oscillator strength in the 

dipole length approximation is given by, [5]  

22

3
pq pqf E d 

     
where 

q pE E E                                                                    (2.2) 

Given the importance of transition moments, computing them and relating them to 

experimental observables is not very straightforward. This is due to the sensitivity of 

pqd  towards the quality of the wave function. [6]
 
As stated previously, the calculation 

of TDM represents a different test altogether for any ab-initio method as there can be 

considerable redistribution of charge in a molecular situation without substantial 

change in the energy. Hence, calculation of TDM demands an accurate description of 

the wave function.  

 Single reference coupled cluster theory [7-10] is known to accurately describe 

the ground state wavefunction. However, it has been realized that a high level of 

correlated wave function is necessary for an adequate description of the excited states. 
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Multi-reference coupled cluster (MRCC)
 
[11-23] theory, in the Fock-space version, 

has been known to be an accurate method of choice in that, it includes a combination 

of dynamic and static correlation arising from the multi-configurational nature of 

reference space. Using restricted Hartree Fock determinant of ground closed shell as 

vacuum, a suitable one particle–one hole (1,1 sector) determinant set, constructed 

within an active set of holes and particles, serves as a suitable reference space for low-

lying excited states.  

 A Fock-space coupled cluster (FSCC)
 
[11-20] theory using such a reference 

has been well developed for excitation energies. Though in principle, the theory 

provides the excited state wave function, its use in the calculation of transition dipole 

moment has been scarce, mainly because of the description of the conjugate (left) 

vector of not just the ground state but also the excited state. Once the wave functions 

have been constructed, it is straightforward to generate the one-electron dipole 

induced matrix elements.   

2.2. Previous and present developmental highlights 

Calculation of excitation energies and electronic transition moments in multi-

configuration linear response (MCLR) was done by Olsen et al. [24] Within the 

EOMCC formalism, Stanton and Bartlett
 
[25] presented an idea to calculate the 

transition probabilities via a systematic bi-orthogonal approach. Size intensive 

transition moments from the coupled cluster singles and doubles linear response 

(CCSDLR) function was formulated by Jørgensen and co-workers. [26] A detailed 

description to calculate expectation values and transition elements by coupled cluster 

theory in general, was presented by Prasad. [27] Integral-direct frequency dependent 

polarizabilities and transition probabilities in the CC framework were implemented by 

Christiansen et al. [28] In the CC2 model, transition moments were computed using 

the resolution-of-the-identity approximation by Hättig and Köhn. [29] Later on Köhn 

and Pabst [30] implemented transition moments between excited states using the RI-

CC2 approximation. In an early work by Stolarczyk and Monkhorst, [31] derivation 

of expectation value and transition moment was formulated within the generalized CC 

framework.  The main idea was to define a new operator Ŵ and calculate the matrix 

elements of that operator. For an arbitrary n-particle operator- V̂ , the transition 
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moment was expressed as ˆY X Y

XV V    for X Y . In order to calculate the 

transition moment, one had to know the operator- 
1ˆ ˆ ˆ ˆW V  . Barysz et al

 
[32,33] 

implemented the above mentioned scheme of Stolarczyk and Monkhorst in the FSCC 

framework to obtain the electronic transition moments and oscillator strength of 

certain molecules. They used the CCSD approximation and truncated the Ŵ operator 

at the quadratic level. 

  In this chapter, we formulate the electronic transition moment of the dipole 

operator between the ground or low lying excited states to a few other low lying 

excited states of some molecules in two different ways. We start by the initial formula 

of transition moment where the n-particle operator- V̂ , is chosen as the one-particle 

dipole moment operator. Instead of redefining another operator- Ŵ , we calculate the 

expectation value of the dipole moment operator between the ground and the excited 

state wave functions. Hence, only T
(0,0)

 amplitudes are sufficient to describe the 

ground state. The excited state is generated by the Fock-space exponential ansatz. In 

case of calculating TDM from excited to excited states, both the left and right Eigen 

states are described by the exponential ansatz. Thus, this method uses a 

straightforward conjugate of the ground and excited states and is called FSCC-T. In 

the other method, we take recourse to the constrained variation approach, where the 

matrix element is computed using a biorthogonal methodology. This involves solving 

an extra set of de-excitation  -amplitudes to describe the ground state and all other 

higher sector  -amplitudes to describe the excited state. This is abbreviated as 

FSCC- .  

2.3 Theory 

2.3.1 Brief review of FSMRCC 

The Fock-space method in the CC framework is well described and accounted 

for evaluation of ionization potential, electron affinity and excitation energies. [15,16] 

A brief review is presented here followed by the description of the transition moments 

within the same. 
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The basic assumption in the FSCC method is that of a common vacuum. The 

vacuum is commonly chosen to be the restricted Hartree-Fock solution of the N-

electron state. Particles and holes are defined with respect to this vacuum. There is a 

further sub-division of the particles and holes into active and inactive particles and 

holes. The various sectors in Fock space are a representation of this active space. In 

general the number of active holes and particles are represented by the superscript of 

the wave function. A general model space consisting of „p‟ active particles and „h‟ 

active holes is given by –  

( , )( , ) ( , )
(0)

p hp h p h
i i

i

C                                                                                             (2.3) 

where, ( , )p h
iC are the combination or model space coefficients of i . The correlated 

wave function for a particular th state is given by, 

( , ) ( , )
(0)

p h p h
                                                                                                     (2.4) 

In the above equation -   is the universal wave operator. The universal wave 

operator will be generating states by its action on the reference wave function.   has 

the specific form 

 ( , )p hSe                                                                                                                (2.5)
 

where,  ( , ) ( , )

0 0

p h
p h k l

k l

S T
 

     and  ( , ) ( , ) ( , )( , )
1 2 3 ...k l k l k lk lT T T T                                 (2.6)                                                                                                                      

The superscript (k,l) denotes the exact number of „k‟ active particles and „l‟ active 

holes that can be annihilated in addition to creation of holes and particles. The curly 

braces in equation (2.5), denotes normal ordering of the wave operator with respect to 

the vacuum or reference state and 'T' represents the cluster amplitude. The 

Schrödinger equation for quasi-degenerate states in the Fock-space formalism is given 

by, 

( , ) ( , )p h p hH E                                                                                                  (2.7) 

On substituting the above equation with equations 2.3 and 2.4 gives, 
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( , ) ( , ) ( , )( , ) p h p h p hp h
i i i i

i i

H E CC  

   
       
   
                                                     (2.8) 

The states generated by the action of the universal wave operator on the reference 

space are such that they satisfy the Bloch equations. With the help of the projection 

operator ( , )k lP  and ( , )k lQ  

 ( , ) ( , )( , ) k l k lk l
i i

i

P    ,         
( , ) ( , )1k l k lQ P      0,k p   and 0,l h                 (2.9) 

which projects onto the model space of p-active particles, h-active holes and its 

orthogonal complement respectively, an effective Hamiltonian is defined through the 

Bloch equations [34] as, 

( , )( , ) ( , )

( , )( , ) ( , )

( ) 0

( ) 0

k lk l k l
eff

k lk l k l
eff

P H H P

Q H H P

 

 
     for all k=0,p and l=0,q                                        (2.10) 

Solving the above mentioned Bloch equations leads to a connected set of equations 

for each sector. The normal ordered wave operator ensures that contraction between 

different cluster operators in the exponential ansatz is avoided which leads to a partial 

decoupling of the various sector cluster equations. Higher sector amplitudes do not 

enter in the equations of lower sectors, due to the lack of contraction between the T-

operators. Thus the equations 2.10 are solved starting from the lowest sector 

progressively upwards. This is known as subsystem embedding condition. [14] 

Diagonalizing the effective Hamiltonian within the P-space gives the energies of the 

corresponding states and the corresponding left and right eigenvectors ,C C  

respectively. 

,effH C CE  effCH EC   and 1CC CC                                                             (2.11) 

2.3.2 Electronic Transition Moment and Dipole Strength 

 Generally, for any arbitrary Hermitian operator Ô , the term 

 
1

2ˆ ˆN

M M N M M N NO O                                                              (2.12) 

is the expectation value of the operator Ô  in the state M , when M N  and the 
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transition moment for the states 
M  and 

N ,when M N . In FSCC methodology, 

the states 
M  and 

N  are the ortho-normal Eigen states of the effective Hamiltonian 

 effH  which are defined through the Bloch equations (refer equation 2.10). Due to 

the non-Hermitian nature of effH , the transition moments are defined as the geometric 

mean of ˆ N

MO
 
and ˆ M

NO
 
as, 

ˆ ˆN M

MN M Nd O O
          

                                                                                             (2.13) 

where, ˆ N
MO and ˆ M

NO  are referred to as „left‟ and „right‟ transition moments 

respectively. Replacing the arbitrary operator Ô , with the one-electron dipole 

operator ̂  in equation (2.12), the square of the transition dipole moment is defined 

as,   

 
2 ˆ ˆ

M N N M

MN

M M N N

d
    


   

                                                                       (2.14) 

The dipole length oscillator strength is calculated from the following expression [5] - 

22

3
MN MNf E d        where, N ME E E                                                            (2.15)  

Since, it is the square of the transition dipole moment absolute value that is related to 

the experimental observable, we will formulate and tabulate 
2

MNd , which is 

commonly known as the dipole strength. 

2.4 Dipole strength for ground to excited states of closed shell systems  

 Since we are now specifically defining our initial and final states to be a 

closed shell ground state and its corresponding low lying excited state respectively, 

the M  and N  states (as mentioned in the previous section) are defined as  

(1,1)

(0)

M gr gr HF

N ex ex N

    

    
                                                                                     (2.16)                                                
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 where,  (0,0)expgr T   ,  (0,0) (0,1) (1,0) (1,1)expex T T T T                            (2.17) 

The curly braces in the above equation denote normal ordering of the wave operator 

with respect to the reference state. The reference state mentioned in equation (2.16) is 

the restricted Hartree-Fock determinant and the model space wave function is given 

by 

(1,1) (1,1) (1,1)
(0) iNiN

i

C                                                                                               (2.18) 

The next subsection will depict the relevant working equations for evaluation of 

dipole strength in the previously mentioned FSCC-T and FSCC-  methods. The 

formulation and representation of the conjugate (left) ground and excited states 

differentiate the FSCC-T and FSCC-Λ methods from each other. The right Eigen 

states in both the methods are constructed according to equation (2.16).  

2.4.1. The expectation value method (FSCC-T) 

In the expectation value approach the left conjugate states are constructed as 

the simple Hermitian conjugate of the right Eigen states. The linked cluster theorem 

holds true in this case and hence size consistency prevails
 
[27]. This implies that the 

denominator, as shown in equation (2.14), cancels out the disconnected part of the 

numerator leaving behind only the connected part of the numerator. Thus, the 

expression for evaluating the square of transition dipole moment becomes, 

2
ˆ ˆ

MN M N N MC C
d                                                                            (2.19) 

where the symbol 'C' denotes a linked structure. 

The conjugate ground state wave function in this FSCC-T formulation is expressed as, 

 
†

M HF gr                                                                                                      (2.20) 

where the wave operator † †(0,0)exp( )gr T   acts on the Hartree Fock wave function to 

generate the left or conjugate ground state.    

In a similar manner, the conjugate excited state wave function is given by, 
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(1,1) †(1,1) †
N i exNi

i

C      (1,1) †
(0) exN                                                                    (2.21) 

where,   † †(0,0) †(0,1) †(1,0) †(1,1)expex T T T T      is the Hermitian conjugate of the 

normal wave operator 
ex  and †(1,1)

NiC
 

is the conjugate left Eigen vector of the 

effective Hamiltonian of the (1,1) sector. The conjugate wave operator †

ex  follows 

the same normal ordering as the normal cluster wave operator. The right ground and 

excited state wave functions are expressed in the normal exponential ansatz of FSCC 

theory as described in the previous subsection. Both the left and right transition 

moments are generated through connected diagrams arising from the contraction of 

†̂   terms giving rise to an overall linked structure. However, solving for the 

dipole strengths in this expectation value FSCC methodology, generates a non-

terminating series, thus requiring a forced truncation. The final expression for dipole 

strength in the expectation value approach is, 

   2 (1,1) (1,1)† †
(0) (0)

ˆ ˆMN HF gr ex ex gr HFN N
c c

d                                             (2.22)

 

where  † ˆgr ex
c

  and  † ˆex gr
c

  signifies that only connected terms arising from the 

contraction of the †T and T-amplitudes through the one electron dipole operator is 

taken into consideration. Details of the actual implementation are given in the 

following chapter. 

2.4.2 The bi-orthogonal formulation (FSCC-Λ)  

This bi-orthogonal approach of evaluating dipole strength is based on the 

concept of  linearizing the left vector through a linear superposition of the hole-

particle states [27,35]. In this formalism, the ground state wave function for the 

quantity ˆ N
MO  is defined as follows, 

 (0,0) 11M HF gr
      ,        1 (0,0)exp( )gr T                                              (2.23) 

and the conjugate excited state for ˆ M

NO expressed as 
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 (1,1) (1,1) 11N i Ni ex

i

C                                                                                  (2.24)                

  (1,1) 1

(0) 1N ex

     

where, (0,0) (0,1) (1,0) (1,1)       and    1 (1,1) (1,0) (0,1) (0,0)T T T T

ex e e e e     
 

A knowledge of Λ
(0,0)

 amplitudes along with the T
(0,0)

 amplitudes can describe the 

conjugate ground state completely. The (0,0) amplitudes are obtained from the 

constrained variation approach (CVA) by solving the Lagrangian for the ground state. 

The CVA was first pursued by Jorgensen and co-workers [36] wherein, the advantage 

of z-vector technique [37] was automatically incorporated. The basic concept of CVA 

involves, construction of a new functional with Lagrange undetermined multipliers. In 

single reference coupled cluster framework, the functional can be written as, 

0 0 0
0

ˆ ˆT T T T
j j

j

e He e He      



                                                                 (2.25) 

The first term on the right hand side of the above equation is the expression for 

energy. The second term is the constraint for single reference CC. The Lagrange 

multipliers are optimized with the cluster equations as the constraint. Once the 

Lagrange equation is solved, the λ-amplitudes are obtained. Similarly, a constrained 

variation approach (CVA) within the FSCC methodology [38,39] is used to evaluate 

the various higher sector de-excitation Λ-amplitudes. After the generation of T-

amplitudes up to the one hole-one particle sector, the Λ-amplitude equations are 

solved. These Λ-equations are also partially decoupled.  However, the decoupling is 

reverse to that of the cluster amplitudes - T. The higher sector de-excitation operators 

are solved first. Once these are generated, they appear as constant entities while 

solving the Λ-amplitudes of the lower sectors [39]. Thus, the entire process of 

generating the excitation and de-excitation amplitudes is a time consuming one. 

However, the linearization of the conjugate left vector achieves a natural termination 

of the series. The right ground and excited states are constructed as shown in equation 

(2.16). It has been shown independently by Barysz et al [32,33] and Prasad [27]
 
that 

the expression of ˆ N

MO (as given in equation 2.12) contains only the connected part of 

the numerator and hence, the dipole strength expression can be written as,
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   

 

2 (0,0) 1 (1,1) (1,1) 1

(0) (0)

(1,1) (1,1)

(0) (0)

ˆ ˆ1 1

(1 ) 1

MN HF gr ex N N ex gr HF
C C

S S

HF N N HF
C C

d

e e

 

 

 



            
   

        
   

 




  (2.26) 

Where,  (0,1) (1,0) (1,1)expSe T T T  


 and  (0,1) (1,0) (1,1)expSe T T T    


  

Due to valence universality, all the cluster operators (T-operators) of Ω are linearly 

independent. Hence, 
Se 

exists [13]. ' ', which is 
(0,0) (0,0)

ˆT Te e , is connected due to 

Baker-Campbell-Hausdorff (BCH) expansion. The various possible   terms are 

stored separately and later contracted with the de-excitation Λ-amplitudes, to yield all 

possible linked diagrams. 

2.5 Dipole strength for doublet radical systems 

 This section will highlight the working formulae for the specific case of 

doublet radical. In the Fock-space methodology the doublet radicals are expressed in 

either two ways, as a case of electron attachment i.e. (1,0) sector or a case of electron 

detachment i.e. (0,1) sector. Under these conditions of electron attachment or 

detachment even the ground state of the radical system under study has to be 

expressed in terms of a multi-determinantal reference as opposed to a single reference 

function of closed shell ground state.  For a particular case of electron detachment the 

M  and N  states (as mentioned in sub-section 2.3.2) are defined as  

(0,1)

(0)

(0,1)

(0)

M M

N N

  

  
                                                                                                   (2.27) 

where, the wave operator Ω is given by,  

 (0,0) (0,1)exp T T                                                                                              (2.28)  

and 

(0,1) (0,1) (0,1)
(0)

(0,1) (0,1) (0,1)
(0)

iMiM
i

jNjN
j

C

C





  

 
                                                                                   (2.29) 

The curly braces in equation (2.28) denote normal ordering of the wave operator with 

respect to the reference function. Depending on the choice of 'M' and 'N' the ground 
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or excited states can be conveniently defined. Equation (2.29) shows that the basic 

defining structure for both the ground and excited states of such radical systems are 

the same. Similar to the previously discussed case of transition moments from ground 

to excited states of closed shell molecules, the next subsection will describe the 

relevant working equations for evaluation of dipole strength in FSCC-T and FSCC-  

methods. The formulation and representation of the conjugate (left) ground and 

excited states differentiate the FSCC-T and FSCC-Λ methods from each other. The 

right Eigen states in both the methods are constructed according to equation (2.27).  

2.5.1. The expectation value method (FSCC-T) 

The basic concept of this approach is the same as that described in sub-section 

2.4.1. The left Eigen states are defined and constructed as the conjugate of the right 

Eigen states. The linked cluster theorem holds true in this case also and we get a 

completely connected set of equations for evaluating transition moments. 

The conjugate left Eigen states are expressed as, 

(0,1) †(0,1) (0,1)† †
(0)

(0,1) †(0,1) (0,1)† †
(0)

N j Nj N
j

M i Mi M
i

C

C





     

     




                                                                    (2.30) 

where, the wave operator is the conjugate of the normal wave operator given in 

equation (2.28) and can be represented as  

 † †(0,0) †(0,1)exp T T                                                                                            (2.31) 

It is interesting to note that depending on the particular choice of state, one might end 

up calculating transition moment from the ground state to excited state as well as 

excited to excited state with the same code. This is an attractive aspect of Fock-space 

wherein, solutions of multiple roots are possible in one attempt. The final expression 

for evaluating dipole strength is given by, 

   2 (0,1) † (0,1) (0,1) † (0,1)

(0) (0) (0) (0)
ˆ ˆ

MN M N N Mc c
d           

 
                                (2.32) 
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where  † ˆ
c

  and  † ˆ
c

  signifies that only connected terms arising from the 

contraction of the †T and T-amplitudes through the one electron dipole operator is 

taken into consideration.  

2.5.2 The bi-orthogonal formulation (FSCC-Λ)  

 Similar to the FSCC-Λ method described in sub-section 2.4.2, the bi-

orthogonal approach uses an extra set of de-excitation amplitudes to generate the 

energy functional given by, 

    0

0 0

0

, 1 T T

o

T T T T

o q q

q

F t e He

e He e He







 



   

     
                                                          (2.33) 

where, 
'

q s
 
are the de-excitation amplitude parameters of the conjugate ground state. 

To calculate the first order property, we replace the Hamiltonian in the above 

expression with its explicit first derivative and solve the above set of equations. It is 

worthwhile to point out, that we can arrive at the above set of equations by linearizing 

the left vector of the extended coupled cluster (ECC) [35,36] functional also. For the 

particular case of doublet radicals, the lambda amplitudes have to be solved for the 

ground state and any one of the (0,1) or (1,0) sector as per the choice of reference 

state. Reverse decoupling signifies that the higher sector amplitude equations will be 

solved first, followed by the ground state lambda amplitudes. The left Eigen states are 

now given by, 

   

   

(0,1) (0,1)(0,1) 1 1
(0)

(0,1) (0,1)(0,1) 1 1
(0)

1 1

1 1

M Mi M
i

N Nj N
j

C

C





 

 

       

       

  

  
                                             (2.34) 

where, (0,0) (0,1)    and  1 (0,1) (0,0)T Te e                                                   (2.35) 

1  also follows the same normal ordering with respect to the reference states. The 

dipole strength can now be evaluated from the following expression- 

   

   

2 (0,1) 1 (0,1) (0,1) 1 (0,1)

(0) (0) (0) (0)

(0,1) (0,1) (0,1) (0,1)

(0) (0) (0) (0)

ˆ ˆ1 1

1 1

MN M N N M
C C

M N N M
C C

d  

 

              
   

         
   

 

  
        (2.36) 
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where, the subscript 'c' depicts the connectedness of the above equations. The term   

also represents a completely connected part which is shown below. 

(0,0) (0,0)S S S T T Se e e e e e                                                                                    (2.37) 

The 'S' amplitude in the above equation is the cluster amplitude of the (0,1) sector. By 

making use of the Baker-Campbell-Hausdorff (BCH) formula for B Be Ae , the dipole 

moment operator can be represented as,  
(0,0)T

C
e   and hence,   is also 

connected. In terms of practical coding, all possible   terms are constructed first and 

stored separately. They are then connected to the S amplitudes to finally give the 

connected form of  . 

The structure of the above equation sets in section 2.5 will remain the same even for 

the case of electron attachment. The superscript (0,1) will just be replaced by (1,0) 

denoting the EA sector of FSMRCC. Once the amplitudes till the Fock-space sector in 

question are generated, the relevant off-diagonal matrix elements can be calculated 

from the final equations as given in the above sections to tabulate dipole strength. 
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Chapter 3  

 

Transition dipole moment and oscillator strength for ground to 

excited states of closed shell molecules 

___________________________________________________ 

 

Within the Fock-space multi-reference coupled cluster framework, we have 

evaluated the electronic transition dipole moments, which determine absorption 

intensities. These depend on matrix elements between two different wave functions 

(e.g. ground state to the excited state). The transition dipole moments from the closed 

shell ground state to a few excited states, together with the oscillator strengths of a 

few molecules, are presented. A new hybrid semi-bi-orthogonal method is formulated, 

compared and tested against the previously developed expectation value and bi-

orthogonal approach for various molecular transitions. A check for size intensivity of 

transition dipole moments in the two methods are also performed and tabulated. 
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3.1 A semi-bi-orthogonal approach : FSCC-ΛT 

The second chapter emphasized the basic concepts and relevant working 

equations involved in the expectation value and bi-orthogonal approaches for 

calculation of dipole strength. This chapter will tabulate the transition moment and 

oscillator strength of a few test molecules for the two methods described previously, 

i.e. singlet ground state to a few low lying singlet excited states. The first method 

mentioned above, involves a non-terminating series in the context of coupled cluster 

method, thus requiring a forced truncation. The second approach linearizes the 

conjugate states and hence is naturally terminating. However, this suffers from the 

fact that additional amplitudes have to be calculated. In the context of FSCC, this 

implies the evaluation of these amplitudes till the Fock-space sector in question, in 

this case, one particle-one hole sector. Thus, both the approaches have their merits 

and demerits. 

 In this present chapter, we also formulate a new semi-bi-orthogonal approach. 

This is a hybrid of the expectation value (FSCC-T) and the bi-orthogonal (FSCC-Λ) 

approaches and differ from the two in a manner the conjugate states are defined. The 

ground state left vector is defined in a bi-orthogonal approach while the conjugate 

excited wave function is described in the straightforward exponential ansatz. This 

makes the left transition moment a naturally terminating series while the right 

transition moment is not so. However, unlike FSCC-Λ, now the de-excitation 

amplitudes have to be evaluated only for the ground state wave function, which in 

FSCC nomenclature is the (0,0) sector. We abbreviate this semi-bi-orthogonal 

approach as the FSCC-ΛT method.  

The term ˆ N

MO  (refer equation 2.13) is calculated from the FSCC-Λ formulation (left 

transition moment of equation 2.26), while the ˆ M

NO  term is calculated from the FSCC-

T formulation (right transition moment of equation 2.22). Thus, the final expression 

of dipole strength is given by  

   2 (1,1) (1,1)(0,0) †
(0) (0)

ˆ1 s
MN HF ex gr HFN N

cC
d e         

 


                         (3.1) 

This makes the left transition moment a naturally terminating series. Unlike the bi-

orthogonal approach, this FSCC-ΛT method does not require solving the higher sector 
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Λ-amplitudes. Once the Λ
(0,0) 

- amplitudes are generated, the dipole strengths can be 

easily calculated as the matrix elements of the dipole operator (as given in equation 

3.1).   

3.2 Computational Attributes 

 Generally, a large number of optically allowed transitions arising from the 

ground state to electronically excited states are singlet in nature.  We have evaluated a 

few such optically allowed transitions and their oscillator strengths for a number of 

molecules. The Hartree-Fock determinant for the ground state is assumed to be the 

reference function, which is treated as a vacuum for the Fock-space calculations. The 

model space is formed by subsequent addition and/or removal of electrons to/from 

certain orbitals known as active orbitals. The various Fock-space sectors and model 

space is represented in the particle-hole formalism. An effective Hamiltonian is 

constructed whose diagonalization imparts the energies of the corresponding states. 

The excitation energies are obtained directly as the energy difference of the two states 

of choice. In the solution of Bloch equations, H  is constructed as  T

C
He . This H is 

then contracted with Fock-space cluster amplitudes. Within CCSD approximation, H

is truncated up to three body terms. For the excited state wave function, we have 

chosen a set of single active particle-hole (1,1) determinant as the model space. We 

have used GAMESS-US [1] to obtain the two-electron integrals. During the entire set 

of calculations, we have not frozen any of the occupied or virtual core orbitals. 

 As stated in the previous chapter, there is a drawback of the expectation value 

formulation (FSCC-T). Equation (2.22) leads to a non-terminating series. For the 

practical application of evaluating transition dipole moments, we have truncated it at 

an overall cubic level with respect to the †T and T amplitudes. Under the CCSD 

approximation, † † †

1 2T T T  where, †

1T and †

2T represent the conjugate of singles and 

doubles excitation operator  respectively. The same approximation holds true for the 

normal Fock-space T-amplitudes. Once the amplitudes are generated, we calculate the 

transition dipole moments from the matrix elements as mentioned in (2.22). Similar 

truncation scheme is followed for the right transition moment of FSCC-ΛT method 

under singles and doubles approximation. 
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Excited states of all the molecules were treated at the equilibrium geometry. 

Hence, the transition moments are calculated under the Frank Condon principle of 

fixed nuclear co-ordinates. The calculated excitation energies (EE) are the vertical 

EE. These calculations scale as N
6
. We have tested our method against various 

molecules/molecular ion like: methylidyne cation, water, formaldehyde, ammonia, 

and acetone. To test the accuracy of electronic transition dipole moments obtained 

from the FSCC-T approach mentioned earlier (see section 2.4.1), we chose the CH
+
 

molecular ion. A comparison between expectation value approach and bi-orthogonal 

approach is presented for the formaldehyde molecule. Assessment of the newly 

formulated FSCC-ΛT is made against FSCC-T and FSCC-Λ for the water molecule in 

cc-pVTZ and cc-pVQZ basis sets. Other calculations of transition moments and 

oscillator strengths in FSCC-T and FSCC-ΛT are presented for ammonia and acetone 

for a few optically allowed transitions. 

A comparison of all the FSCC methods against EOMCC method is tabulated 

for some of the transitions. The EOMCC results were obtained from ACES-II
 
[2] 

software package. Experimental results have been presented wherever available. In 

order to test the size-intensivity, we have studied the variation of transition moments 

from the FSCC-T and FSCC-  approaches for the water monomer, water dimer and 

water trimer at non-interacting distance. This is presented in a separate table in the 

following section. 

3.3 Results and discussions 

3.3.1 CH
+
 Molecule 

The CH
+
 molecule was chosen as a test molecule because extensive results 

were available from other ab-initio calculations. The ground state electronic 

configuration of CH
+
 is 1σ

2
2σ

2
3σ

2
 which is chosen as vacuum. There is a large non-

dynamical correlation in the ground electronic state itself, arising from the interaction 

of 1σ
2
2σ

2
3σ

2 
and 1σ

2
2σ

2
1π

2
 electronic configurations. Due to this configuration 

mixing, some of the low lying states will have appreciable double excitation 

character. Reference [3] lists the approximate excitation levels (AEL) for some of the 

low-lying states of CH
+
. It was shown, that the state with the excitation energy close 

to 3.2 eV is dominated by single hole-particle excited determinants within a set of 
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active orbitals- 3σ and 1п. We report transition moment for this particular transition 

and some other excited states dominated by the single hole-particle excitation. 

In the present calculation, the inter-nuclear distance was taken to be 

2.13713a.u. The calculations were performed with the basis set as given in the 

reference [3]. We chose this particular basis because full configurational-interaction 

(FCI) and other theoretical results were available for this basis. A split valence basis, 

augmented with two diffuse s and p functions and one d polarization function was 

used for the carbon atom. The hydrogen atom was augmented with one diffuse „s‟ 

function and one „p‟ polarization function. Table 3.1 presents the transition energies, 

electronic transition dipole moment, dipole strength and the oscillator strength of CH
+
 

molecule in the basis mentioned above.  

On comparing the reported values in Table 3.1, we find that the transition 

moment, transition energy and hence the oscillator strength values (within the given 

basis) as obtained from FSCC-T method are close to the FCI results. The Fock-space 

active space that we have chosen is 4σ 2π. We have also reported FSMRCC results- 

as calculated and tabulated by Barysz, [4] following the formulation of Stolarczyk and 

Monkhorst [5] for the 3σ to 1п transition.  

A comparison with the EOMCC method has been made for the transitions 

arising from 3σ to 4σ and 3σ to 5σ. FSCC-T transition moment agrees well with the 

EOMCC transition moment for the higher excitations as well. The EOMCC result 

reported for these transitions has been obtained from ACES-II [2] package. Transition 

dipole moments have also been reported for transitions arising from the 3σ to 6σ state.  
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Table 3.1: Transition energies, transition moments, dipole strengths and oscillator 

strengths of CH
+
 molecule from its ground state to a few excited states are tabulated. 

EE stands for excitation energy. TDM is transition dipole moments, DS is dipole 

strength and OS is the oscillator strength. All reported values are in atomic units. The 

basis set and geometry is given in text. 

CH
+
 

State-1 State-2 State-3 State-4 

FSCC-T
a
 EOMCC

b
 FCI

c
 FSCC

d
 FSCC-T

a
 EOMCC

b
 FSCC-T

a
 EOMCC

b
 FSCC-T

a
 

EE 0.1196 0.1198 0.1187 0.1191 0.5067 0.4990 0.6571 0.6544 0.6835 

TDM 0.296 0.306 0.299 0.243 0.971 1.036 0.198 0.176 1.293 

DS 0.088 0.095 0.089 0.059 0.943 1.073 0.039 0.031 1.672 

OS 0.0069 0.0076 0.0070 0.0046 0.3187 0.3571 0.0173 0.0135 0.7618 

a
 Our Method (refer equation 2.22), 

b
 Obtained from ACES-II package, see reference [2], 

c
 see 

reference [3] ,
   d 

see reference [4] 

State 1: 3 1  ,   State 2:  3 4  ,  State 3: 3 5  ,   State 4: 3 6   

 

3.3.2 H2CO Molecule  

As a check for the developed FSCC-T and FSCC-  methods, we chose the 

formaldehyde molecule. Table 3.2 present the excitation energies, transition moments, 

dipole strengths and oscillator strengths for nine transitions in cc-pVDZ basis. 

Together with the results obtained from both the FSCC approaches, we also report 

values obtained from EOMCC method, for comparison. The C-O and C-H bond 

distance was taken to be 1.20838Å and 1.116351Å. The H-C=O bond angle is 121.75 

degrees. 

For formaldehyde, the ground state restricted Hartree-Fock determinant is chosen as 

the vacuum which is given by, 

1 1 1 1 2 1 1 21 2 3 4 1 5 1 2HF a a a a b a b b   

 We chose four active holes and four active particles as the model space. Hence, 1b2, 

5a1, 1b1 and 2b2 are chosen as active holes. 2b1, 6a1, 3b2 and 7a1 are chosen as the 

active particles. The FSCC-T method of evaluating transition dipole moments, 

generate higher values as compared to the transition moment obtained from FSCC-  
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method in almost all the reported transitions. In certain transitions, the EOMCC 

method evaluate transition dipoles that agree very well with FSCC- , while in some 

transitions it agrees better with FSCC-T formulation. Both FSCC-T and FSCC-  

generate transition moments that are comparable with each other.  

 

Table 3.2: Excitation energies, transition moments, dipole strengths and oscillator 

strengths in cc-pVDZ basis for the formaldehyde molecule is tabulated. EE is the 

excitation energy, TDM is transition dipole moment, DS is dipole strength and OS is 

oscillator strength. All the reported values are in atomic units. The C-O and C-H 

bond distances are 1.20838Å and 1.116351Å. The H-C=O bond angle is 121.75 

degrees. 

cc-pVDZ basis State1 State2 State3 State4 State5 State6 State7 State8 State9 

EE 
FSCC 0.3106 0.4115 0.4194 0.5689 0.3415 0.5149 0.6252 0.5409 0.6743 

EOMCC
a
 0.3145 0.4180 0.4235 - 0.3494 0.5197 0.6268 0.5476 - 

TDM 

FSCC-T 0.849 1.482 0.299 0.528 0.125 0.567 0.886 1.100 0.580 

FSCC-Λ 0.782 1.399 0.256 0.541 0.119 0.512 0.873 1.008 0.609 

EOMCC
a
 0.813 1.338 0.295 - 0.091 0.505 0.876 0.997 - 

DS 

FSCC-T 0.722 2.197 0.089 0.278 0.016 0.321 0.785 1.210 0.337 

FSCC-Λ 0.612 1.958 0.065 0.292 0.014 0.262 0.762 1.016 0.371 

EOMCC
a
 0.661 1.791 0.086 - 0.008 0.255 0.768 0.994 - 

OS 

FSCC-T 0.1494 0.6029 0.0250 0.1056 0.0036 0.1102 0.3274 0.4363 0.1517 

FSCC-Λ 0.1267 0.5372 0.0183 0.1108 0.0032 0.0900 0.3176 0.3664 0.1670 

EOMCC
a
 0.1385 0.4993 0.0245 - 0.0019 0.0885 0.3210 0.3632 - 

State 1: 2 12 6b a , State 2: 2 22 3b b , State 3: 2 12 7b a ,  State 4: 1 11 7b a ,  

State 5: 1 15 2a b ,  State 6: 1 15 6a a ,  State 7: 1 15 7a a ,   State 8: 2 11 6b a ,   

State 9: 2 11 7b a    
a
 Obtained from ACES-II package, see reference [2].  

 
 

 

3.3.3 H2O Molecule  

The water molecule in cc-pVTZ and cc-pVQZ basis sets is used as a test 

molecule to check the newly developed FSCC-ΛT method against the previously 

developed FSCC-T and FSCC-Λ methods. The ground state electronic configuration 
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of water, 2 2 2 2 2

1 1 1 1 21 2 1 3 1a a b a b  is chosen as the vacuum. 1b1, 3a1 and 1b2 states are the 

chosen model space active holes, while 4a1 and 2b1 are chosen to be the active 

particles from the virtual space. The calculations were performed at the ground state 

equilibrium geometry of water, at a bond length of 0.957 atomic units and bond angle 

of 104.5o . All possible optically active transitions arising from any of the model space 

states are tabulated in table 3.3.  

The dipole strength in state 1, as calculated from the FSCC-ΛT formulation 

agrees with that of the other FSCC methods. In fact, its value lies approximately in 

between that obtained from the FSCC-T and FSCC-Λ methods, thus bringing it closer 

to the EOMCC dipole strengths. The experimental oscillator strength is also reported 

for this particular transition. The oscillator strength calculated from the FSCC-ΛT, 

converges towards the experimental value on going from cc-pVTZ to cc-pVQZ basis.  

A general trend that can be observed on moving from state 1 to state 5 is that, 

the dipole strengths obtained from FSCC-ΛT, always lie in between those of FSCC-T 

and FSCC-Λ methods. The FSCC-T dipole strengths are always higher in value than 

the FSCC-ΛT dipole strengths. On inspecting the general trend of oscillator strengths, 

we find that it is similar to that of the dipole strengths. Oscillator strengths obtained 

from FSCC-ΛT is closer to the EOMCC values and lie between the two FSCC 

methods. Results obtained in the cc-pVTZ basis, show a slight aberration in the dipole 

strengths of states 2 and 3. In state 3, the FSCC-Λ method produces the same value of 

dipole strength as the EOMCC method, as opposed to all other states. While in state 2, 

the dipole strength is nearly constant when we compare it against the same in state 1. 

Although EOMCC shows some variation in these two transitions, dipole strength 

evaluated from both the FSCC methods, do not change significantly to reflect in the 

result. If we look at the symmetry of these states, then these transitions are taking 

place between orbitals of the same symmetry. The other three transitions, that is, state 

1, 4 and 5 have different initial and final symmetries. But no concrete conclusion can 

be inferred from these behavioural patterns connected with their symmetry. The 

aberrations obtained in the triple zeta basis, is no longer found in the cc-pVQZ basis. 

On inspecting the results obtained from cc-pVQZ basis set, we find that the dipole 

strengths as well as oscillator strengths obtained from FSCC-ΛT method agree very 

well with FSCC-T, FSCC-Λ and EOMCC methods.  
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Table 3.3: Excitation energies, dipole strengths and oscillator strengths of a few 

allowed transitions for the water molecule in cc-pVTZ and cc-pVQZ basis are 

presented. All results are in atomic units. The geometry of the molecule is given in the 

text. 

H2O in cc-pVTZ basis Excitation energy Dipole Strength Oscillator Strength 

 

1
 b
 

FSCC-ΛT  0.181 0.0355 

FSCC-T 0.2952 0.197 0.0389 

2 11 4b a  FSCC-Λ  0.157 0.0309 

EOMCC
a
 0.2964 0.177 0.0351 

 

2 

FSCC-ΛT  0.181 0.0761 

FSCC-T 0.6321 0.199 0.0841 

1 11 2b b  FSCC-Λ  0.156 0.0657 

EOMCC
a
 0.6302 0.189 0.0795 

 

3 

FSCC-ΛT  0.431 0.1110 

FSCC-T 0.3864 0.468 0.1206 

1 13 4a a  FSCC-Λ  0.406 0.1047 

EOMCC
a
 0.3879 0.406 0.1050 

 

4 

FSCC-ΛT  0.210 0.0650 

FSCC-T 0.4649 0.219 0.0678 

1 13 2a b  FSCC-Λ  0.146 0.0453 

EOMCC
a
 0.4652 0.192 0.0597 

 

5 

FSCC-ΛT  0.646 0.2291 

FSCC-T 0.5310 0.683 0.2417 

1 13 4b a  FSCC-Λ  0.604 0.2138 

EOMCC
a
 0.5317 0.650 0.2304 

 

H2O in cc-pVQZ basis Excitation energy Dipole Strength Oscillator Strength 

 

1
b
 

FSCC-ΛT  0.228 0.0446 

FSCC-T 0.2938 0.252 0.0493 

2 11 4b a  FSCC-Λ  0.182 0.0356 

EOMCC
a
 0.2934 0.216 0.0424 

 

2 

FSCC-ΛT  0.125 0.0517 

FSCC-T 0.6181 0.146 0.0604 

1 11 2b b  FSCC-Λ  0.102 0.0423 

EOMCC
a
 0.6070 0.104 0.0419 

 

3 

FSCC-ΛT  0.461 0.1175 

FSCC-T 0.3826 0.510 0.1301 

1 13 4a a  FSCC-Λ  0.450 0.1147 

EOMCC
a
 0.3827 0.422 0.1077 

 

4 

FSCC-ΛT  0.169 0.0518 

FSCC-T 0.4593 0.178 0.0546 

1 13 2a b  FSCC-Λ  0.139 0.0427 

EOMCC
a
 0.4574 0.157 0.0480 

 

5 

FSCC-ΛT  0.578 0.2031 

FSCC-T 0.5271 0.617 0.2169 

1 13 4b a  FSCC-Λ  0.484 0.1701 

EOMCC
a
 0.5260 0.561 0.1966 

a 
Obtained from ACES-II package, see reference [2]  

b 
Experimental oscillator strength [6] for the transition presented by State 1: 0.041 a.u. 
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3.3.4. NH3 molecule 

 The ground state of ammonia molecule that is chosen as the vacuum is 

1a1
2
2a1

2
1e

4
1a2

2
.  We have chosen 1e

4
1a2

2
 as our active hole states and 3a14a12e as the 

active particles. Hence, the model space comprises six active holes and six active 

particles, in spin orbital notation. All the optically allowed transitions arising from the 

above states have been presented in table 3.4. A comparison with EOMCC method 

have also been shown with respect to some of these transitions. The results are 

tabulated against the correlation consistent basis sets of Dunning [7] cc-pVDZ and cc-

pVTZ. Table 3.4 presents the excitation energies, dipole strength and oscillator 

strengths of the allowed transitions. The calculations are performed on the ground 

state equilibrium geometry of the molecule with the N-H bond distance being 1.008 

A


and the H-N-H bond angle as 107 degrees. 

  On comparing the dipole strengths between the FSCC-T and FSCC-ΛT 

methods we find, that the new bi-orthogonal approach gives comparable results to that 

of the expectation value approach. For some of the transitions we have also compared 

the two approaches against EOMCC approach. Both FSCC-T and FSCC-ΛT methods 

perform well in this comparison too. On moving from cc-pVDZ to cc-pVTZ basis, the 

excitation energies of the respective states are seen to converge, as is expected. States 

2 and 8 have similar dipole strength values for the FSCC-T and FSCC-ΛT methods. 

As opposed to the dipole strength values calculated for the water molecule, FSCC-ΛT 

dipole strengths for ammonia do not necessarily have lower value than the 

corresponding FSCC-T dipole strengths. 

 

Table - 3.4: The excitation energies, dipole strengths and oscillator strengths of a few 

optically allowed transitions for the ammonia molecule in cc-pVDZ and cc-pVTZ 

basis are tabulated. The molecule is treated at the ground state equilibrium geometry 

of r = 1.008 Å and 107o  . All the values presented are in atomic units.  
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1 
FSCC-ΛT 

0.5393 
1.057 0.3797 

FSCC-T 1.106 0.3983 

2 

EOMCC
a
 0.6507 0.012 0.0055 

FSCC-ΛT 
0.6476 

0.014 0.0061 

FSCC-T 0.014 0.0059 

3 
FSCC-ΛT 

0.6221 
0.269 0.1117 

FSCC-T 0.280 0.1165 

4 
FSCC-ΛT 

0.4742 
0.578 0.1825 

FSCC-T 0.607 0.1918 

5 
FSCC-ΛT 

0.5612 
0.022 0.0081 

FSCC-T 0.023 0.0086 

6 

EOMCC
a
 0.5793 0.531 0.2053 

FSCC-ΛT 
0.5782 

0.453 0.1748 

FSCC-T 0.474 0.1828 

7 

EOMCC
a
 0.2400 0.120 0.0193 

FSCC-ΛT 
0.2379 

0.115 0.0182 

FSCC-T 0.125 0.0198 

8 

EOMCC
a
 0.3157 0.007 0.0015 

FSCC-ΛT 
0.3137 

0.007 0.0014 

FSCC-T 0.007 0.0014 

State 1: 11 3e a   State 2: 11 4e a    State 3: 1 2e e     State 4: 11 3e a    State 5: 

11 4e a   

State 6: 1 2e e    State 7: 2 11 3a a  State 8: 21 2a e   

1 
FSCC-ΛT 

0.5205 
0.880 0.3054 

FSCC-T 0.923 0.3204 

2 

EOMCC
a
 0.6025 0.041 0.0166 

FSCC-ΛT 
0.6091 

0.031 0.0126 

FSCC-T 0.030 0.0124 

3 
FSCC-ΛT 

0.6058 
0.185 0.0746 

FSCC-T 0.194 0.0785 

4 
FSCC-ΛT 

0.4573 
0.536 0.1635 

FSCC-T 0.562 0.1715 

5 
FSCC-ΛT 

0.5409 
0.009 0.0031 

FSCC-T 0.010 0.0035 

6 

EOMCC
a
 0.5519 0.316 0.1163 

FSCC-ΛT 
0.5546 

0.294 0.1085 

FSCC-T 0.319 0.1182 

7 

EOMCC
a
 0.2318 0.194 0.0299 

FSCC-ΛT 
0.2307 

0.188 0.0290 

FSCC-T 0.203 0.0313 

8 

EOMCC
a
 0.3078 0.006 0.0012 

FSCC-ΛT 
0.3093 

0.004 0.0008 

FSCC-T 0.004 0.0008 

 
a 
Obtained from ACES-II package, see reference [2] 

 

NH3 in cc-pVDZ basis Excitation energy Dipole strength Oscillator Strength 

NH3 in cc-pVTZ basis Excitation energy Dipole strength Oscillator Strength 
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3.3.5 C3H6O Molecule  

                We have chosen the acetone molecule in order to test the performance of 

the semi-bi-orthogonal approach for a larger electron system. Acetone is a 32 electron 

system and we have chosen the active holes having 
1 1 2 1 22 ,3 ,4 ,3 ,6a b b a a  symmetry, 

while the active particles have 
14a and 

14b symmetry. Table 3.5 tabulates four such 

optically allowed transitions in cc-pVDZ basis. We have also compared the results 

obtained from FSCC-Λ and FSCC-T for one particular transition, against EOMCC 

method. The acetone molecule is treated at the ground state geometry of C=O bond 

distance of 1.235Å and C-C bond length of 1.495Å. 

                As seen from the table, the dipole strength obtained from FSCC-ΛT 

approach for the transition described in state 1, agrees well with FSCC-T as well as 

EOMCC dipole strength values. Due to comparable excitation energy of the same 

state, oscillator strength is also in good agreement. The other transitions described by 

the states 2, 3 and 4 show similar comparable results between the FSCC-ΛT and 

FSCC-T. This is also reflected in the oscillator strength values. 

 

Table - 3.5: Excitation energies, dipole strengths and oscillator strengths of a few 

optically active transitions are presented for the acetone molecule in cc-pVDZ basis. 

The ground state geometry is 1.235Å for C=C and C-C bond length is 1.495Å 

1 

FSCC-ΛT 
0.2894 

0.164 0.0317 

FSCC-T 0.109 0.0402 

EOMCC
a
 0.2968 0.146 0.0288 

2 
FSCC-ΛT 

0.3926 
0.233 0.0567 

FSCC-T 0.252 0.0659 

3 
FSCC-ΛT 

0.4187 
0.203 0.0598 

FSCC-T 0.194 0.0541 

4 
FSCC-ΛT 

0.4401 
0.183 0.0462 

FSCC-T 0.212 0.0624 
 

a 
Obtained from ACES-II package, see reference [2] 

 

C2H6O in cc-pVDZ 

basis 

Excitation 

energy 
Dipole Strength Oscillator Strength 
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3.4 Size Intensivity  

Both FSCC-T and FSCC-  formulations were tested for size-intensivity of 

the transition dipole moments. We have calculated the transition dipoles for water 

monomer, dimer and trimer at non-interacting distances in FSCC-T and FSCC-  

formulations. The water molecules are treated at the equilibrium ground state 

geometry in cc-pVZD basis. The results are presented in Table 3.6. We find that the 

transition moments are size-intensive in both the FSCC methods as the transition 

dipole remains constant with increase in water monomer unit. Since, the formulation 

of FSCC-ɅT also involves a connected form (equation 3.1), the dipole strengths 

evaluated in this method will also be size-intensive.   

 

Table 3.6: Water monomer, dimer and trimer in cc-pVDZ basis. Experimental ground 

state geometry is, r = 0.957 and θ = 104.5˚. The monomer units were placed at non-

interacting distance to check the size-intensivity of the FSCC-T and FSCC-Λ methods. 

TDM stands for transition dipole moments. 

cc-pVDZ basis H2O monomer H2O Dimer H2O Trimer 

TDM 

FSCC-T 0.339 0.339 0.339 

FSCC-  0.297 0.297 0.297 

 

3.5 Inference 

In this chapter, we have evaluated and tabulated electronic transition dipole 

moments within the Fock-space multi-reference coupled cluster framework. We 

report transition energies, transition moments and oscillator strengths for methylidyne 

cation (in FSCC-T method) and formaldehyde (FSCC-T and FSCC-Λ methods) 

molecules. We observe that both FSCC-T and FSCC-  provide transition dipole 

moments that are in close proximity of each other. Also, both these methods agree 

well with EOMCC transition moments. The newly developed FSCC-ΛT approach 

evaluates dipole strengths that agree well with those obtained from other FSCC-T and 
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FSCC-Λ methods, as tested for the water molecule.  For the ammonia and acetone 

molecules, the dipole strengths obtained from FSCC-ΛT, are also in close proximity 

to EOMCC dipole strengths. EOMCC dipole strengths, as implemented in ACES-II
 

[2] software package also use a similar linearized conjugate left vector for the left 

transition moment. This similarity in the theory is the main cause for the FSCC-ΛT 

and EOMCC dipole strengths to be similar in nature, although the treatment of the 

right transition moment is completely different. We have also mentioned in the 

previous section that FSCC-T and FSCC-Λ gives size-intensive transition dipole 

moments. Since, the formulation of FSCC-ɅT also involves a connected form 

(equation 3.1), the transition moments evaluated by this method will also be size-

intensive.  This is in contrast to EOMCC, where the left transition moment is not size-

intensive, while the right transition moment is size-intensive.   

 As seen from table 3.3 for the water molecule, the results show that FSCC-ΛT 

method produces dipole strengths that lie in between the other two FSCC methods, 

namely FSCC-T and FSCC-Λ. This is expected, considering that FSCC-ΛT is a 

hybrid of the two other FSCC methods. The comparison with experimental oscillator 

strength for state-1 of the water molecule shows that the FSCC-ΛT method performs 

better than the FSCC-T and FSCC-Λ methods. Though in case of water, the FSCC-

ΛT dipole strengths were always lower in magnitude than the FSCC-T dipole 

strengths, which was not the case for the other molecules. We have compared our 

results (obtained from FSCC-ΛT) against the FSCC-T method, as it is a 

straightforward way to generate dipole strengths without the use of any extra set of 

amplitudes. Though the FSCC-Λ formulation is a naturally terminating series, solving 

the higher sector Λ-amplitudes is a time consuming step. Hence, we have omitted 

testing FSCC-Λ method against FSCC-ΛT formulation barring the test water 

molecule. As seen from the results, FSCC-ΛT produces similar values and is 

computationally cheaper. It can thus be concluded that, FSCC-T and FSCC-ΛT 

formulations are the suitable methods to calculate singlet electronic dipole strengths 

and oscillator strengths in FSCC formalism. 
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Chapter 4  

 

Transition dipole moment and oscillator strength of doublet 

radicals 

___________________________________________________ 

 

 Electronic dipole strengths (square of transition moments) are evaluated for 

various transitions, arising from the ground/excited states to a few valence excited 

states for some doublet species. A brief review of the Fock-space multi-reference 

coupled cluster theory specifically, for the (0,1) valence rank is presented first. This is 

followed by the relevant equations for the solution of the de-excitation lambda 

operators through a constrained variation approach. A few pilot applications are 

presented for the expectation value and bi-orthogonal approaches for dipole strength 

and oscillator strength. 
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4.1 Fock-space theory for (0,1) valence sector 

 The general theory of FSMRCC [1-5] is already presented in the first chapter. 

We will briefly describe the working equations and energy expressions for the 

specific case of (0,1) valence sector which corresponds to the ionization potential 

problem and discuss the formulation of CVA [6-10] in this context. As mentioned 

previously, FSMRCC is based on the concept of a common vacuum. In the present 

scenario, the N-electron RHF configuration is chosen as the vacuum and holes and 

particles are defined with respect to this reference. A subset of active holes and 

particles are usually delineated around the fermi level whose varying occupancy gives 

rise to the model space. The model space determinant is denoted by  (0,1)

i  and 

hence, the configurations of this CMS are given by, 

(0,1) (0,1) (0,1)
(0) i i

i

C                                                                                                (4.1) 

where, 'C's are the model space coefficients. The comparatively weak interactions of 

the model space configurations with the virtual space configurations give rise to the 

dynamic electron correlation. This is brought in to effect through a universal wave 

operator Ω, which generates the correlated wave function by its action on the model 

space determinants. 

(0,1)(0,1)
(0)                                                                                                        (4.2) 

Specific form of this wave operator is given below, 

 
(0,1)Te 


 , where (0,1) (0,1) (0,0)T T T                                                                    (4.3) 

Curly brackets in equation (4.3) denotes normal ordering of the cluster amplitudes 

with respect to the reference function. The higher valence cluster operator subsumes 

the lower valence ones. Due to normal ordering the lower valence amplitude 

equations are decoupled from the higher valence ones. This means that we first solve 

for the (0,0)T  amplitude equations and then these appear as constant entities while 

solving for the higher valence (0,1)T  amplitudes. This is known as subsystem 

embedding condition. [3] As the (0,1) sector is a complete model space (CMS), 

intermediate normalization holds true, that is, 
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(0,1) (0,1) (0,1)P P P                                                                                                      (4.4) 

The wave operator is parameterized such that the states generated by its action on the 

reference function satisfies the Bloch-Lindgren equation for effective Hamiltonian, 

which is the modified form of the Schrödinger equation. The Bloch equations for the 

(0,1) sector is given by, 

(0,1)(0,1) (0,1)

(0,1)(0,1) (0,1)

( ) 0

( ) 0

eff

eff

P H H P

Q H H P

 

 
                                                                                    (4.5) 

Diagonalizing the effective Hamiltonian within the model space (as defined through 

the Bloch equation) will generate the energies of the corresponding states and the left 

and right Eigen vectors. 

(0,1) (0,1) (0,1)

(0,1) (0,1) (0,1)

eff

eff

H C C E

C H EC



 
                                                                                                  (4.6) 

4.2 CVA in the (0,1) sector 

The energy of a specific 'µ' 
th

 state in the (0,1) sector can be rewritten from equation 

(4.5) as, 

 
(0,1)

(0,1) (0,1)

i eff jij
ij

E C H C                                                                                          (4.7) 

The basic assumption of the CVA [6,7] is to construct a Lagrangian that will 

minimise the energy expression given above with the constraint that the equation set 

(4.4) are satisfied for a specific µ
th

 state. The Lagrangian for the (0,1) sector is given 

by, 

£  =   

 
(0,1)

(0,1) (0,1)

(0,1) (0,1) (0,1) (0,1) (0,1) (0,1)

(0,1) (0,1) (0,1) (0,1) (0,1) (0,1)

(0,0) (0,0) (0,0) (0,0) (0,0)

(0,0) (0,0) (0,0) (0,0) (0,0)

i eff jij
ij

eff

eff

i

C H C

P P P H H P

P Q Q H H P

P P P H P

P Q Q H P

E C

 

 

    

    

  

  



 

 (0,1) (0,1) 1j

ij

C 

 
 

 


                                                     (4.8) 
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The Λ in equation (4.7) are the de-excitation amplitudes in terms of Fock-space 

formalism and are known as the Lagrange multipliers. The above equation can lead to 

a more simplified form, courtesy the CMS. The effective Hamiltonian of CMS can be 

represented explicitly through the cluster operators, as a result of which, the closed 

part of the Lagrange multiplier vanishes. [7,8] Thus equation (4.8) simplifies to 

£  =   

 
(0,1)

(0,1) (0,1)

(0,1) (0,1) (0,1) (0,1) (0,1) (0,1)

(0,0) (0,0) (0,0) (0,0) (0,0)

(0,1) (0,1) 1

i eff jij
ij

eff

i j

ij

C H C

P Q Q H H P

P Q Q H P

E C C

 

  

    

  

 
  

 









                                                     (4.9) 

Differentiating equation (4.9) with respect to the Λ-amplitudes, results in an 

expression for the cluster amplitudes. The cluster amplitudes (Ω) are decoupled from 

those of the de-excitation amplitudes. However, the reverse is not true. The Λ 

equations are coupled with the Ω amplitudes. After solving for Ω till the (0,1) sector, 

the Λ equations are solved by making them stationary with respect to the cluster 

amplitudes. There is a reverse de-coupling in these Λ equations. The higher valence 

(0,1)  amplitudes are solved first, followed by the lower valence de-excitation 

amplitudes. While solving for the higher valence amplitudes the lower valence Λ 

amplitudes do not occur. Once the higher valence Λ amplitudes are generated, they 

appear as constant entities in the lower valence sector.  

4.3 Computational  Details 

 The open shell molecules are treated in the Fock-space sector as a case of 

electron detachment (or attachment in case of 1,0 sector). We have started our 

calculations with the closed shell HF determinant as the reference and have removed 

an electron from a specific orbital of choice, to generate the doublet radical. We have 

used FSCC-T and FSCC-Λ methods for calculating the dipole strength and oscillator 

strength of a few test molecules. The dipole strengths were evaluated as the relevant 

off-diagonal matrix elements as stated in the equations, given in section 2.5 (refer 

equations 2.32 and 2.36). The FSCC-T method is an exponentially non-terminating 

series. Hence, for practical application we have included all terms up to cubic order in 
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cluster amplitudes. The FSCC-Λ method is a naturally terminating series and no 

approximation have been used for evaluation of dipole strength within this 

formulation. 

 In the FSCC-Λ formulation, the connected form of   terms were constructed 

first and stored separately to further connect with the higher valence cluster 

amplitudes. The connected form of   (refer section 2.5.2) was then contracted with 

the de-excitation amplitudes which finally gave rise to a completely linked form of 

diagrams. We have used GAMESS [11] for generating the starting AO integrals and 

have not applied frozen core approximation anywhere. The codes used to generate the 

Fock-space ionization energies and dipole strengths are all in-house codes. 

Comparison with EOMCC data, wherever applicable have been obtained from Q-

CHEM [12] software package. Our calculations were performed under the coupled 

cluster singles and doubles (CCSD) approximation and hence, scaled as N
6
. The 

tables, given below, contain the difference in ionization potentials, dipole strengths 

and oscillator strengths in two methods: expectation value method, denoted by FSCC-

T and the bi-orthogonal approach, denoted by FSCC-Λ. We have tested our method 

against radicals/radical ion like: OH, H2O
+
 and NO. 

4.4 Pilot applications 

4.4.1 H2O
+
 radical ion 

 The water molecule in cc-pVTZ basis is used as a test molecule to check the 

newly developed codes for FSCC-T and FSCC-Λ method against the EOM-IP as 

obtained from Q-CHEM [12] software package. The ground state electronic 

configuration of water, 2 2 2 2 2

1 1 1 1 21 2 1 3 1a a b a b  is chosen as the vacuum. All the occupied 

orbitals were chosen as active holes. The transitions arising from removing an 

electron from either of the chosen active orbitals are presented in the table given 

below. The calculations were performed at the ground state equilibrium geometry of 

water, at a bond length of 0.957 atomic units and bond angle of 104.5o . Table 4.1 as 

given later, lists the dipole strengths of a few transitions among the chosen active 

orbitals. A comparison with EOM-IP is also tabulated for the first transition depicted 

in the table. It can be clearly seen that dipole strengths obtained from both the 
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methods are in close proximity to each other. The EOM-IP oscillator strength also 

matches well with our value. The ΔE values are obtained by taking the absolute 

energy difference (difference in IP values) between the two states of transition under 

consideration. 

 

Table 4.1: Difference energy, dipole strength and oscillator strength of H2O
+
 radical 

is given in cc-pVTZ basis for a few transitions. ΔE, DS and OS are the difference in 

energies, dipole strength and oscillator strength respectively. All results are in a.u. 

States ΔE 
FSCC-T FSCC-Λ EOM-IP

a
 

DS OS DS OS DS OS 

1 23 1a b  0.0818 0.023 0.001 0.023 0.001 0.017 0.001 

1 22 1a b  0.7428 0.344 0.170 0.323 0.160   

1 12 3a a  0.6609 0.302 0.133 0.290 0.128   

1 21 1a b  19.4124 0.005 0.065 0.005 0.064   

a
 EOM-IP result was obtained from Q-CHEM software package [12] 

4.4.2 NO radical  

 The closed shell ground state HF configuration for the NO
-
 anion is chosen as 

the vacuum. The removal of an electron from such an anionic state results in the 

generation of the radical species. The vacuum thus constitutes 

2 2 2 2 2 2 2 21 2 3 4 5 6 7 8         orbitals. Among the given orbitals, the 

2 2 2 25 6 7 8    orbitals were chosen as the active orbitals. Different excited states 

were obtained by removing an electron from any of the chosen active orbitals. The 

removal of an electron from the 8 state results in the so called ground state of NO 

radical. Removal of an electron from any orbital other than 8  will result in creation 

of various excited states for the NO radical. Different transitions were obtained by 

checking for the energy difference and dipole strengths between any two such states. 

Table 4.2 tabulates the difference energies, dipole strengths and oscillators strengths 

of a few such allowed transitions in cc-pVTZ basis. The N-O bond distance was taken 

to be 1.150Å. As can be seen from the table, the dipole strengths and oscillator 
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strengths from the FSCC-T and FSCC-Λ methods agree well with each other. The 

oscillator strength was calculated in the dipole length formulation as given by the 

equation (2.15). The transition occurring from the 5σ symmetry state and the 

6 7   transition, is being underestimated by the FSCC-Λ method as compared to 

the FSCC-T method. On the other hand, the dipole strength obtained from the 

transition 6 8   shows good agreement between both the methods. 

 

Table 4.2: Difference energy, dipole strength and oscillator strength of NO radical is 

given in cc-pVTZ basis for a few transitions. ΔE, DS and OS are the difference in 

energies, dipole strength and oscillator strength respectively. All results are in a.u. 

States 
ΔE 

FSCC-T FSCC-Λ 

DS OS DS OS 

5 6   0.0005 0.338 0.001 0.306 0.001 

6 7   0.0295 0.299 0.006 0.267 0.005 

6 8   0.1461 0.297 0.029 0.298 0.029 

 

4.4.3 OH radical 

 The OH radical was also treated in the same balance as that of the NO radical. 

The OH anion was chosen as the vacuum with respect to which holes and particles 

were defined. Since, we are interested in calculating transition moments of the (0,1) 

sector we will concentrate on transitions within the active hole space. The 

configuration for the vacuum is given by, 2 2 2 2 21 2 3 1 2HF       out of which the 

3 1 2    states were chosen as the active orbitals. Various transitions occurring 

within this active space have been tabulated for the aug-cc-pVTZ basis in table 4.3. 

The O-H bond distance was chosen to be 0.9697 Å. As can be seen from the table, 

FSCC-T and FSCC-Λ methods give dipole strengths which agree with each other. 

Since the transition energy is also the same for the FSCC methods, the oscillator 

strength also agrees well.  
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Table 4.3: Difference energy, dipole strength and oscillator strength of OH radical is 

given in aug-cc-pVTZ basis for a few transitions. ΔE, DS and OS are the difference in 

energies, dipole strength and oscillator strength respectively. All results are in a.u.  

States 
ΔE 

FSCC-T FSCC-Λ 

DS OS DS OS 

1 1   0.6605 0.450 0.198 0.424 0.187 

2 1   0.1519 0.024 0.002 0.035 0.003 

 

4.5 Conclusions 

 The square of transition moments, i.e. dipole strengths were tabulated for a 

few molecules together with the respective oscillator strengths. As can be seen from 

the tables, both FSCC-T and FSCC-Λ methods gave dipole strengths that agreed well 

with each other. We have depicted transitions only for the (0,1) sector and hence 

studied the case of electron detachment. These transitions occur within the space of 

occupied orbitals and we were able to treat a few excited state doublet transitions for 

the presented molecules. The methods were also compared with EOM-IP result 

wherever available. A more rigorous investigation remains to be performed for a 

larger test set following the initial success of these methods for the doublet species. It 

was seen from the test set that FSCC-Λ method generated transition moments that 

were mostly lower in magnitude than those obtained from FSCC-T method. But due 

to the limited test set depicted above, no concrete conclusion can be reached.  
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Chapter 5  

 

Perturbative order analysis of the similarity transformed 

Hamiltonian in Fock-space coupled cluster theory: Difference 

energy and electric response properties 

___________________________________________________               

 In this chapter, a perturbative analysis of the ground state similarity 

transformed Hamiltonian and its effect on the various Fock-space coupled cluster 

(FSCC) sectors is presented through calculation of ionization potential, electron 

affinity, excitation energies and response properties. Various truncation schemes of 

the effective Hamiltonian are presented with explicit form of the defining equations. 

Based on such a truncation, the approximate methods are labelled as FSCC(n), where 

n represents the correlation energy of the ionized, electron attached or excited states 

corrected at least up to n
th

 order within coupled cluster singles and doubles scheme 

(CCSD). A lower scaling CC2 type of approach (abbreviated as FS-CC2) is compared 

against the group of FSCC(n) methods for energies. Electric response properties have 

been compared and contrasted for the two lower scaling methods: FSCC(2) and FS-

CC2. The various truncated methods are tested for a number of small molecules. The 

results obtained from a range of truncated methods are compared against full 

FSCCSD calculations. 
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5.1 Introduction 

Chemistry is governed by energy differences, e.g. thermodynamic properties 

of activation energy, free energy change, enthalpy change or spectroscopic properties 

like excitation energy (EE), ionization potential (IP) and electron affinity (EA) as 

direct difference of energies. In both cases, ab-initio calculation has emerged as a 

versatile tool for understanding and interpreting experimentally determined energy 

differences. Among the various methods available, the Fock space multi-reference 

coupled cluster (FSMRCC) [1-9] and the closely related equation of motion coupled 

cluster (EOM-CC) [10-17] analogue have emerged as the most accurate and 

systematic methods for determination of EE [10], IP [11,12] and EA [14]. Significant 

development has occurred in the context of both methods for generating codes 

capable of calculating energy differences, with accuracy within the fraction of eV 

with respect to experimental values. Both FSMRCC [3,6,9] and EOMCC [11,14,16] 

methods are generally used in singles and doubles approximations. However, 

inclusion of triples in the calculation gives enhanced accuracy at the expense of added 

computational cost [18-26]. The inclusion of partial as well as full triples has been 

tried within the framework of both EOMCC [27-33] and FSMRCC [34-39]. 

Significant development has also taken place in the context of analytic derivative 

calculation within the framework of EOMCC [40-44]. Similar realization is yet to be 

achieved in the context of FSMRCC. However, some breakthrough has been obtained 

in the context of property calculation within the FSMRCC framework, mainly by Pal 

and co-workers [45-48]. 

 Inspite of having all other favourable characteristics, both FSMRCC and 

EOMCC, even in CCSD approximation, have the prohibitively high scaling of N
6 

[12,17,49] (where N is the number of basis functions) and large storage requirements 

which restrict their use beyond molecules containing more than ten second row atoms 

in any reasonable basis set. So a lot of effort has been devoted to the development of 

lower scaling approximations for calculation of direct difference of energies like EE, 

IP and EA, mainly in the framework of EOMCC [49-57]. The coupled cluster method 

has an intriguing relationship with many body perturbation theory (MBPT) [58]. 

Various orders of MBPT can be recovered from the suitable lower order iteration of 

coupled cluster amplitude equations. For example, in the lowest order approximation 

to CCSD, T2 amplitudes give rise to MBPT(2) method. So, most of the efforts towards 
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generation of lower scaling approximation to FSMRCCSD and EOM-CCSD are 

evolved around the perturbational truncation of the coupled cluster effective 

Hamiltonian [51,55,57].  

 Nooijen and Snijders [55] were the first to give the proposal to approximate 

the CCSD   amplitudes by their MBPT(2) analogues. Later, Stanton and Gauss [57] 

generalized the idea and proposed a hierarchical approximation to EOMCCSD 

similarity transformed Hamiltonian. They have coined the term EOM-CCSD(n), 

where n denotes that the effective Hamiltonian contain terms up to n
th

  order in 

perturbation. At large values of n, the truncated similarity transformed Hamiltonian 

converges to full CCSD effective Hamiltonian and the corresponding EOM-CCSD(n) 

energy converges to standard EOM-CCSD energy. However, a second order 

approximation (n=2) leads to EOM-CCSD(2) method and provides significant 

advantage in terms of reducing the scaling as well as storage requirements [59]. 

Therefore, the EOMCCSD(2) approximation, in its original form as well as with 

further modifications,  has been extensively used to generate  lower computational 

scaling methods [49-52]  for the calculation of ionization potential, electron affinity 

and excitation energy [55,57,60]. It has been shown to give excellent performance for 

potential energy surfaces, as well as other complex multi-reference situations, despite 

of its lower computational cost. Another elegant way to calculate difference energies 

and properties within the class of CC is the similarity transformed EOM-CCSD 

(STEOM-CCSD) as developed and advocated by Nooijen [61-66]. STEOM-CC is 

similar to the Fock-space formalism [63] and an extensive benchmark for valence 

excited states are available [66]. A perturbative analogue to STEOM (STEOM-PT) 

offers significant computational savings, as compared to the original method and is 

very well benchmarked [66]. The authors have shown significant improvement of 

results over EOM-CCSD and CASPT2 for singlet energies. However, triplet excited 

states were not described that accurately. In terms of property calculations, Pal and 

co-workers [67] have shown that the EOMIP-CCSD(2)  method can be used to 

calculate geometry and IR frequency of large doublet radicals, with accuracy 

comparable to the standard EOMIP-CCSD  method. However, no such benchmark 

studies are available for electric response properties. The same group later showed 

that although the method is very accurate for geometric properties, it is not so precise 

for calculation of ionization potential itself. To be specific, the EOMIP-CCSD(2) 

method significantly overestimates the ionization potentials, especially for the cases 
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where Hartree-Fock orbitals do not provide a correct zeroth order description of the 

ground state wave-function. Similar problems were reported by Dutta. et. al. [68] for 

spin-flip (SF) and electron attachment (EA) variants of EOM-CCSD(2). 

 It is obvious that the source of the error lies in the truncated form of the 

similarity transformed Hamiltonian. However, an in-depth understanding of the cause 

and possible remedy will require a detailed perturbational analysis of the similarity 

transformed Hamiltonian. Although Bartlett and co-workers [69] have performed 

some initial investigation along this line, they have restricted their study only to 

excitation energy case and benchmark values were reported only for two molecules in 

a single basis set. However, similar studies are required in the context of ionization 

potential and electron affinity problems also, where the reference and target states 

differ in the number of electrons, making the error analysis less straightforward than 

the excitation energy case. An in-depth analysis of the effect of perturbation 

truncation of similarity transformed Hamiltonian on various direct difference of 

energies like IP, EA and EE in the context of FSMRCC is presented in this chapter. 

This chapter also explores the behaviour of those methods for electric response 

properties like, dipole moment and polarizabilities. The Bloch equation framework of 

FSMRCC makes the perturbational analysis more straightforward than the CI like 

framework in EOMCC.  

 As the details of the FSMRCC theory is already discussed in chapter 1, the 

next section depicts an order analysis and truncation scheme for the ground state 

effective Hamiltonian. Computational attributes are stated in section 5.3. Numerical 

results and discussions on them follow in section 5.4. Section 5.5 comprises the 

concluding remarks. 

5.2 Perturbational truncation of the ground state effective 

Hamiltonian 

The effective Hamiltonian (also identified as similarity transformed Hamiltonian) for 

the ground state is defined as 

(0,0) 1 T T

effH H H e He                                                                                     (5.1) 

Following the Campbell-Baker-Hausdorff expansion, the above equation is recasted 

as, 
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   
2

,
1 ...

2!

T

c open

T
H He f v T

 
      

 
                                                               (5.2) 

Subscripts c and open refer to the open connected part of the above equation. The 

closed part of H is dropped off to facilitate direct calculation of correlation energy. 

The use of H anywhere else in this chapter will imply only the connected open parts. 

'f' and 'v' denote the one and two body parts of the Hamiltonian. Expanding equation 

(5.2) and collecting terms in various perturbational order gives rise to a series of 

truncation schemes of H  under the CCSD approximation. Contraction of H  with 

higher valence cluster operators will generate the effective Hamiltonian of those 

sectors.  

 ( ) ( ) ( ) ( , )n n n k l
eff

c
H H H S          , 0,1k l                                                                   (5.3) 

The various methods are abbreviated as FSCC(n), where n  2 4n   depicts that the 

correlation energy is correct at least up to n
th

 order. At higher values of n, the 

FSCC(n) will converge towards the full FSCCSD energies. This truncation scheme is 

similar to the one proposed by Stanton and Gauss [57] with respect to EOM-CCSD 

and it is size extensive through all orders. It is important to point out, no truncation 

scheme has been applied to the higher sectors of FS. The effective Hamiltonian of 

(0,1), (1,0) and (1,1) sectors are complete with respect to the truncated effective 

Hamiltonian of the ground state. The next subsection presents the hierarchy of 

FSCC(n) methods, explicitly stating the terms contributing to the effective 

Hamiltonian at each level of truncation and the working equations related to it. 

 5.2.1 FSCC(2) 

Taking the canonical HF as the reference determinant, f  is zeroth order, v and T2 

appear at first order and T1 appears at second order in correlation. Expanding equation 

(5.2) and collecting all terms up to second order in perturbation we get 

   (2)
2 2c c

H v fT vT                                                                                              (5.4) 

where, normal ordering of the operators have been assumed. The T2 amplitude 

equation is defined by the following expression. 
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 2 0 0ab
ij c

v fT                                                                                                  (5.5) 

Hence, the correlation energy is now given by,  

(2)
0 2 0E vT                                                                                                        (5.6) 

Thus FSCC(2) is similar to the MBPT(2) approximation and leads to identical results. 

This method scales as N
5
 and is an attractive choice for study of difference energies 

for larger systems and also response properties. 

5.2.2 FSCC(3) 

Similar to the previous method, expanding equation (5.2) and collecting all terms that 

contribute up to third order in perturbation we have, 

   (3) (2)
2 2 1

1

2 c c
H H vT T vT                                                                                   (5.7) 

T1 and T2 amplitude equations are now given by, 

   

   

2 2 0

1 2 0

0

0

ab
ij c c

a
i c c

v fT vT

fT vT

 

 

  

 
                                                                                  (5.8) 

which is solved in an iterative manner. The final correlation energy is still given by 

equation (5.6). 

5.2.3 FSCC(4) 

The various terms contributing to the effective Hamiltonian up to the fourth order are

 (4) (3)
1 2 c

H H vT T                                                                                                  (5.9) 

Where the amplitude equations will be solved by the following sets of equations,

       

     

2 2 1 2 2 0

1 2 1 0

1
0

2

0

ab
ij c c c c

a
i c c c

v fT vT vT vT T

fT vT vT

 

 

    

  

                                                (5.10) 

The correlation energy is obtained from equation (5.6) 
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5.2.4 FS-CC2 

The FSCC(3) and FSCC(4) methods scale as N
6
 and hence does not provide any 

computational simplicity in terms of scaling as compared to the standard FSCCSD 

calculations. Another lower scaling method that has been extensively used for 

benchmarking energies and properties of molecules, is the CC2 approach. In the CC2 

type of approach, T2 amplitudes are kept at a minimum but solved for the entire set of 

T1 equations. We have implemented a similar strategy for the ground state amplitudes 

and labelled the new method as FS-CC2. Contrary to the FSCC(2) method, FS-CC2 

method solves for the singles amplitude equation completely at the cheaper doubles 

amplitude value. The ground state energy obtained from this method should be similar 

in nature to that obtained from the FSCC(2) method, as the energy is dominated by 

the doubles amplitude. However, it remains to be seen how this method will perform 

for the direct difference energies (IP, EA and EE) and electric response properties as 

compared to FSCC(2) method. The inclusion of T1 amplitudes bring in a relaxation 

factor that was missing in the FSCC(2) method. Although it is not strictly under any 

perturbative truncation scheme, this method also reduces the computational cost due 

to its iterative N
5
 scaling. In our present study we have incorporated this idea of 

solving for the T1 amplitudes at a cheaper T2 amplitude and used it as an extended 

approximation to the FSCC(2) method.  

5.3 Computational details 

In order to achieve computational simplicity we have started with the 

restricted HF determinant as our reference space, though in principle we can start with 

any other appropriate single determinant as has been shown by Stanton et al [70].  

The one and two electron integrals, converged Hartree-Fock coefficients and Eigen 

values are taken from GAMESS-US [71] package. Calculations were performed at the 

ground state equilibrium geometry. Hence, all reported values are the vertical energies 

under the Frank-Condon principle. No frozen core approximation was used in any of 

the calculations. All the coupled cluster calculations were done using our in-house 

coupled cluster codes. The ground state cluster amplitudes were generated first, 

followed by the (0,1), (1,0) and (1,1) amplitudes. After the generation of T 

amplitudes, they were contracted with the normal ordered Hamiltonian and stored in 

the form of H . All possible terms, up to three body is included in H . Calculation of 
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difference energy is performed using the aug-cc-pVTZ basis which includes diffuse 

functions. The dipole moment and polarizabilities are calculated as energy derivatives 

and the sadlej-pVTZ basis set is used which has been optimised for evaluation of 

response properties.  

The energies have been reported for FSCC(n) methods (n=2,3,4) and for the 

FS-CC2 type of approach. The FS-CC2 approach generates the singles amplitude (i.e. 

T1 amplitudes) solving for a cheaper T2 amplitude. Once the T-amplitudes have been 

generated for the ground state, we use these for the construction of higher valence 

excitation amplitudes in the various Fock-space sectors. The molecular set used for 

the energy comparison with full CCSD results are: ammonia, boron monohydride, 

hydrogen fluoride, carbon monoxide, hydrogen sulphide, water, methane and 

methylidyne cation. 

Dipole moments and polarizabilities have been calculated using the finite 

difference method. Since, we have used the difference of energies for generating first 

and second order properties, our convergence criteria for energy values at all sectors 

of Fock-space was tightened to an order of 10
-10

. An electric field value of 10
-3

 atomic 

units has been applied in the molecular axis direction and the orbitals were allowed to 

relax before starting off the CC calculations. Hence, all the reported dipole moments 

and polarizabilities are relaxed response properties. The properties are calculated and 

compared in FS-CC2 and FSCC(2) formulations. The other two FSCC(n) methods 

have been dropped off from these test calculations in order to achieve computational 

simplicity. The test set used for the response calculations include, ammonia, hydrogen 

fluoride, hydrogen sulphide, carbon monoxide, water, ozone, formaldehyde and 

methylidyne cation. As Sadlej basis set is not available for Boron atom, we were 

unable to check for the response properties for boron monohydride molecule.   

It is pertinent to mention here that we have not studied the effect of active 

space dependence of the various approximated methods on the difference energies. 

Our comparison is only against full FSCCSD calculations within the same active 

space. Calculation of excitation energies in Fock-space methodology is active space 

dependent. An efficient way to remove this dependency would be to use Intermediate 

Hamiltonian technique (IH-FSMRCC) as extensively studied and implemented in the 

valence universal formalism by Meissner [72-74]. Since, we are comparing the 
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methods in the same active space, we believe that the general trends will still hold true 

even on changing the active space.     

5.4 Illustrative calculations 

The objective of this section is to highlight the changes of difference energy 

calculations and response properties obtained from the various approximate FSCC(n) 

and FS-CC2 methods against full FSCCSD. As previously mentioned, the order 

analysis is only with respect to the ground state similarity transformed Hamiltonian. 

In the first part of analysis we will discuss the effect of the truncation schemes on the 

difference energies like IP, EA and EE. The second part of the discussion focuses on 

the behaviour of the response properties for the various Fock-space sectors in the two 

lower scaling methods, FS-CC2 and FSCC(2). 

5.4.1 Difference energy : IP           

Table 5.1 presents the comparison of ionization potentials of the various approximate 

methods against the full FSCCSD calculation. The active space for the (0,1) sector of 

each molecule is given below.  

 

 

 

 

 

 

 

 

 

 

 

Molecules Active Space 

Ammonia 1e, 2e, 3a1 

Boron hydride 2σg , 3σg 

Hydrogen fluoride 3σg , 1π, 2π 

Hydrogen sulphide 2b2, 5a1, 2b1 

Carbon monoxide 4σg , 1π, 2π, 5σg 

Water  1b2, 3a1, 1b1 

Methylidyne cation  2σg , 3σg 

Methane  1T2, 2T2, 3T2 
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Table 5.1: Ionization potential tabulated in eV for all the molecules, computed at aug-

cc-pVTZ basis 

IP States FS-CC2 FSCC(2) FSCC(3) FSCC(4) FSCCSD 

NH3 

3a1 9.891 9.931 9.994 9.922 9.908 

2e 16.039 16.052 16.165 16.125 16.107 

1e 17.766 17.781 17.889 17.847 17.830 

BH 
3σ 9.385 9.426 9.987 9.804 9.806 

2σ 17.056 17.116 17.446 17.295 17.308 

HF 
1π 16.120 16.004 15.953 16.073 16.052 

3σg 20.016 19.902 19.886 19.997 19.976 

H2S 

2b1 10.301 10.356 10.577 10.432 10.433 

5a1 13.308 13.362 13.607 13.466 13.465 

2b2 15.606 15.668 15.889 15.753 15.752 

CO 

5σg 14.047 14.301 14.512 14.181 14.200 

1π 17.237 17.197 17.111 17.148 17.103 

4σg 19.891 19.825 19.803 19.857 19.817 

H2O 

1b1 12.662 12.631 12.615 12.639 12.619 

3a1 14.855 14.816 14.824 14.855 14.834 

1b2 19.005 18.959 19.000 19.031 19.009 

CH
+
 

3σ 23.704 23.741 24.346 24.172 24.173 

2σ 33.661 33.710 34.092 33.970 33.975 

CH4 1T2 14.259 14.333 14.531 14.409 14.405 

 

 

 The ionization potential energies calculated at the various approximated 

methods are seen to converge towards the FSCCSD values on increasing the level of 

perturbation. A close look at the table will show that although FSCC(4) method gives 
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the energy difference nearly as good as that obtained from the FSCCSD calculations, 

this is not so for FSCC(3) over FSCC(2). One would expect that the FSCC(3) would 

have improved the results over FSCC(2) method, but this is clearly not the case. In 

case of ammonia molecule, the FSCC(2) method outperforms the FSCC(3) method 

for all the three states under consideration. Similar trend is followed by hydrogen 

fluoride, hydrogen sulphide, methane and the sigma state symmetries of carbon 

monoxide. Only the remaining three molecules i.e. water, methylidyne cation and 

boron hydride show the IP to be generated more accurately by the FSCC(3) method 

rather than FSCC(2). Although for the majority of states under consideration the 

FSCC(2) method does provide superior IP values over its immediate higher 

counterpart, no fixed trend can be predicted directly from the table without any error 

analysis. On comparing the FS-CC2 with the FSCC(2) method we find that although 

the latter does provide better IPs, the difference between them is small.  

 A general comparison of the plot of root mean squared deviation (rmsd) is 

shown in figure 5.1. It is evident from the chart that FSCC(4) outperforms all the 

other approximate methods when compared to the FSCCSD.  This error analysis also 

shows that FSCC(3) does perform better than FSCC(2). In order to understand this 

point in detail, we have plotted the maximum deviation in eV in figure 5.2. This plot 

shows that even though in some cases the FSCC(2) method does perform better than 

FSCC(3), the maximum deviation is substantially higher for the FSCC(2) method for 

one particular state. Although, on an average the FSCC(3) method might perform 

better than FSCC(2), it cannot be safely concluded that for any particular IP it will 

provide better agreement than its perturbative lower counterpart. The two lower 

scaling methods, FSCC(2) and FS-CC2, follow similar trends in terms of rmsd values 

and maximum deviation.  
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Figure 5.1: Root mean squared deviation (rmsd) plot in eV for the ionization potential 

values as tabulated in table 5.1 for all the molecules 

 

 

Figure 5.2: The maximum deviation from FSCCSD IP value in eV 
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5.4.2 Difference energy : EA 

Table 5.2 presents the comparison of electron affinity of the various approximate 

methods against the full FSCCSD calculation. The active space for the (1,0) sector of 

each molecule is given below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Molecules Active Space 

Ammonia 4a1, 5a1, 3e 

Boron hydride 1π, 2π, 4σg, 5σg, 3π, 4π, 6σg 

Hydrogen fluoride 4σg, 5σg, 6σg, 3π, 4π 

Hydrogen sulphide 6a1, 3b2 

Carbon monoxide 3π, 4π, 6σg, 7σg 

Water 4a1, 2b2 

Methylidyne cation 1π, 2π 

Methane 3a1, 4T2, 5T2, 6T2 
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Table 5.2: Electron affinity tabulated in eV for all the molecules, computed at aug-cc-

pVTZ basis 

EA States FS-CC2 FSCC(2) FSCC(3) FSCC(4) FSCCSD 

NH3 

4a1 0.642 0.649 0.657 0.648 0.649 

5a1 1.179 1.181 1.182 1.179 1.180 

3e 1.289 1.291 1.292 1.289 1.289 

BH 

1π -0.233 -0.272 -0.038 -0.024 -0.032 

4σg 0.794 0.789 0.803 0.811 0.809 

5σg 1.343 1.346 1.353 1.344 1.346 

3π 1.625 1.613 1.687 1.696 1.693 

6σg 2.202 2.199 2.214 2.217 2.216 

HF 

4σg 0.671 0.678 0.682 0.675 0.675 

5σg 3.495 3.511 3.512 3.498 3.495 

6σg 4.688 4.716 4.728 4.699 4.696 

3π 5.142 5.164 5.152 5.140 5.137 

H2S 
6a1 0.516 0.513 0.529 0.528 0.528 

3b2 1.223 1.221 1.228 1.229 1.229 

CO 

3π 1.574 1.554 1.574 1.594 1.583 

6σg 1.613 1.618 1.621 1.616 1.616 

7σg 1.919 1.910 1.913 1.923 1.920 

H2O 
4a1 0.618 0.627 0.632 0.622 0.623 

2b2 1.234 1.235 1.235 1.233 1.234 

CH
+
 1π -10.865 -10.906 -10.555 -10.558 -10.560 

CH4 

3a1 0.644 0.645 0.653 0.651 0.651 

4T2 1.285 1.286 1.288 1.287 1.287 

 

Similar to the IP case, electron affinity energies calculated at the various 

approximated methods are seen to converge towards the FSCCSD values on 

increasing the level of perturbation. As can be inferred from the table itself for the 

majority of states under consideration, FSCC(3) method performs better than 

FSCC(2), while FSCC(4) scores over FSCC(3). There are some states where the 

FSCC(2) method does perform better than FSCC(3) but the difference in EA value 

between the two methods in those particular states is very small. A comparison 
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between the two lower scaling methods, FS-CC2 and FSCC(2) show the CC2 type of 

approach (FS-CC2 method) to perform better for most of the states. In order to get a 

clear picture of the general trend, a plot of rmsd error bars are provided in figure 5.3.  

Figure 5.3: Root mean squared deviation (rmsd) plot in eV for the electron affinity 

values as tabulated in table 5.2 for all the molecules 

 

Figure 5.4: Maximum deviation from FSCCSD EA value in eV 

 

It is evident from the chart that FSCC(4) again outperforms its lower ordered 

perturbative counterparts by a large margin. The FSCC(3) method is also seen to 
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does also perform marginally better than the other lower scaling method. A plot of the 

maximum deviation also highlights the same trend as found in the rmsd plot. The 

FSCC(2) method is seen to deviate the most, while the deviation is negligible in case 

of FSCC(4) 

 In contrast with the previously tabulated IP values, it is seen that FS-CC2 

method performs better for EA case, as compared with the FSCC(2) method. 

However, no far reaching conclusion can be drawn from the analysis of such a limited 

data set. Both the difference energy calculations show that the higher order 

perturbative approximate methods, FSCC(3) and FSCC(4) are superior to their lower 

order counterparts. The FSCC(4) method is already in close proximity to the full 

FSCCSD value for both IP and EA problems.   

5.4.3 Difference energy : EE 

The singlet excitation energies of all the molecules for a few low lying states are 

given below.  

Table 5.3: Singlet excitation energies tabulated in eV for all the molecules, computed 

at aug-cc-pVTZ basis 

Singlet Energies States FS-CC2 FSCC(2) FSCC(3) FSCC(4) FSCCSD 

NH3 

1e to 4a1 13.932 13.953 14.078 14.025 14.011 

1e to 5a1 15.256 15.271 15.381 15.337 15.321 

1e to 3e 15.383 15.402 15.513 15.466 15.450 

2e to 4a1 12.138 12.155 12.285 12.236 12.220 

2e to 5a1 13.491 13.505 13.620 13.578 13.561 

2e to 3e 13.686 13.699 13.815 13.772 13.755 

3a1 to 4a1 6.054 6.097 6.180 6.100 6.088 

3a1 to 5a1 7.386 7.427 7.495 7.420 7.407 

3a1 to 3e 7.504 7.546 7.615 7.538 7.526 

BH 

2σg to 1π 10.672 10.701 11.186 11.042 11.047 

2σg  to 4σg 13.822 13.868 14.215 14.078 14.086 

2σg  to 5σg 15.036 15.093 15.451 15.297 15.309 

2σg to 3π 15.107 15.154 15.568 15.413 15.419 

2σg  to 6σg 15.736 15.794 16.147 15.995 16.007 



86 
 

3σg to 1π 2.438 2.438 3.053 2.935 2.932 

3σg  to 4σg 6.308 6.345 6.909 6.733 6.735 

3σg  to 5σg 7.358 7.403 7.965 7.773 7.777 

3σg to 3π 7.302 7.336 7.922 7.746 7.747    

3σg  to 6σg 8.291 8.330 8.896 8.716 8.718    

HF 

3σg  to 4σg 14.484 14.385 14.372 14.471 14.446    

3σg  to 5σg 18.266 18.138 18.136 18.256 18.234    

3σg  to 6σg 18.972 18.867 18.862 18.962 18.938    

3σg  to 3π 18.575 18.485 18.467 18.560 18.539    

1π to 4σg 10.541 10.444 10.418 10.517 10.495    

1π to 5σg 13.961 13.861 13.817 13.921 13.900    

1π to 6σg 15.020 14.915 14.874 14.983 14.960    

1π to 3π 14.635 14.539 14.484 14.590 14.570 

1π to 4π 14.650 14.558 14.504 14.606 14.586 

H2S 

2b2 to 6a1 11.740 11.791 12.045 11.914 11.912 

2b2 to 3b2 13.080 13.140 13.374 13.390 13.390 

5a1 to 6a1 9.583 9.629 9.898 9.760 9.758 

5a1 to 3b2 10.886 10.933 11.200 11.061 11.059 

2b1 to 6a1 6.571 6.620 6.870 6.725 6.726 

2b1 to 3b2 7.757 7.804 8.082 7.932 7.932 

CO 

4σg  to 6σg 16.629 16.632 16.492 16.617 16.590 

4σg  to 3π 15.619 15.538 15.604 15.669 15.614 

4σg  to 7σg 17.863 17.787 17.777 17.838 17.795 

1π to 3π 13.970 13.961 13.749 13.902 13.868 

1π to 4π 14.439 14.319 14.323 14.430 14.375 

1π to 6σg 12.137 12.040 12.084 12.163 12.096 

1π to 7σg 15.142 15.090 15.010 15.060 15.013 

5σg  to 6σg 11.170 11.395 11.603 11.308 11.318 

5σg  to 3π 9.737 9.895 10.104 9.896 9.879 

5σg  to 7σg 11.696 11.947 12.159 11.833 11.850 

H2O 

1b2 to 4a1 14.429 14.393 14.449 14.466 14.447 

1b2 to 2b2 16.076 16.027 16.073 16.110 16.087 

3a1 to 4a1 10.469 10.436 10.464 10.484 10.464 

3a1 to 2b2 12.132 12.097 12.110 12.136 12.115 

1b1 to 4a1 8.167 8.147 8.150 8.161 8.143 

1b1 to 2b2 9.895 9.869 9.860 9.878 9.858 
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CH
+
 

2σg  to 1π 14.167 14.169 14.755 14.654 14.656 

3σg  to 1π 2.539 2.533 3.248 3.132 3.129 

CH4 

1T2 to 3a1 10.887 10.887 11.095 10.977 10.973 

1T2 to 4T2 12.067 12.067 12.269 12.148 12.144 

1T2 to 5T2 12.189 12.189 12.392 12.270 12.266 

1T2 to 6T2 12.187 12.187 12.391 12.268 12.264 

2T2 to 3a1 10.887 10.887 11.095 10.977 10.973 

2T2 to 4T2 12.188 12.188 12.391 12.269 12.264 

2T2 to 5T2 12.194 12.194 12.396 12.275 12.271 

2T2 to 6T2 12.196 12.196 12.396 12.277 12.273 

3T2 to 4T2 12.188 12.188 12.391 12.269 12.265 

3T2 to 5T2 12.194 12.194 12.395 12.275 12.271 

3T2 to 6T2 12.195 12.195 12.396 12.276 12.271 

 

 Table 5.3 gives the excitation energies for the singlet case. The detailed data 

set for triplet excitation energies can be found in the appendix A. As is seen from 

table 5.3, the singlet excitation energies also follow the same trend as the IP and EA 

case. The perturbative higher ordered methods outperform the lower ordered ones. 

This is also the case for triplet excitation energies. A comparison between the two 

lower order methods show that FSCC(2) performs better for both the singlet and 

triplet energy than the FS-CC2. A plot of rmsd error analysis for both singlet and 

triplet states clearly show the superiority of FSCC(4) and FSCC(3) over either of the 

two lower scaling ones. A close look at the rmsd plots between the singlet energies 

will show that the rmsd for singlet EE for all the methods are comparable to the triplet 

EE. In both the case the rmsd is around 0.2 eV, which is consistent with  that reported 

by Nooijen in closely related STEOM-PT method [66]. Figures 5.7(a) and 5.7(b) 

depicts the maximum deviation of the singlet and triplet excitation energies for all the 

methods respectively. As seen in case of singlet and triplet EE, although the 

maximum deviation is slightly greater for the FSCC(2) method as compared with FS-

CC2, on an average the FSCC(2) method outperforms the FS-CC2 method. The 

maximum deviation in case of FSCC(2) is greater for a particular transition in CH
+
 

ion. As can be seen in table 5.3, the 3σg  to 1π transition of CH
+
 molecule, accounts 

for the larger error in both the lower scaling methods. This is also seen in case of 

triplet excitation energy.  
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Figure 5.5: Root mean squared deviation (rmsd) plot in eV for the singlet excitation 

energies  for all the molecules 

 

 

 

Figure 5.6: Root mean squared deviation (rmsd) plot in eV for the triplet excitation 

energies  for all the molecules 
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Figure 5.7(a): The maximum deviation from FSCCSD singlet EE values in eV 

 

 

 

 

Figure 5.7(b): The maximum deviation from FSCCSD triplet EE values in eV 
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5.4.4. Response properties : Dipole moment and polarizability 

5.4.4.1  (0,1) Sector  

 The response properties for the (0,1) sector is tabulated in table 5.4. All the 

calculated values are in atomic units. While reporting the dipole moments and 

polarizabilities, we have not included the SCF moments. So, the table below, reports 

the response properties for the correlated part only. Addition of the SCF moments will 

occur as a constant for each molecule and hence, the trend will still remain the same. 

Since, we have applied finite difference technique to calculate response properties, the 

direction of applied electric field is primarily the molecular direction for all the 

systems under study.  The external field was applied in only one direction and the first 

and second order properties are calculated using the five point central difference 

method. The direction of applied field for ammonia is x-direction, for water it is the y-

direction and z-direction for all other molecules. Only the two low scaling methods 

are checked against the full FSCCSD calculations. Even though FSCC(3) and 

FSCC(4) performed extremely well in case of difference energies, they have the same 

scaling as FSCCSD, thus providing no computational simplicity. The prime 

motivation of the study is to check for the behaviour of the FS-CC2 and FSCC(2) 

methods compared to full FSCCSD. 

 A mere look at the dipole values obtained from the low scaling methods is not 

sufficient to draw any meaningful comparison between the two. In some of the states, 

the FSCC(2) method performs slightly better than its fellow counterpart, while in 

some others FS-CC2 gives better results. In case of polarizability, the difference is 

quite clear. The FS-CC2 method outperforms the FSCC(2) method by a large extent. 

The same is clear from a rmsd plot as shown in figure 5.8. No conclusive evidence is 

obtained from the dipole moment viewpoint. Both FS-CC2 and FSCC(2) give 

comparable first order properties with respect to the FSCCSD calculations as is seen 

from the error bars, which is consistent with that reported by Dutta. et. al. for 

geometries of doublet radical [67]. 

Note: All the figures pertaining to response properties are given at the end of this section to 

facilitate comparison between them.  
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Table 5.4: Dipole moments and polarizabilities of the (0,1) sector, tabulated in atomic 

units for all the molecules, computed at Sadlej-pVTZ basis 

Properties 

for (0,1) 

sector 

States 

Full CCSD FS-CC2 FSCC(2) 

Dipole Polarizability Dipole Polarizability Dipole Polarizability 

HF 

1π 0.227 2.54 0.230 2.51 0.226 2.28 

3σg 0.248 2.64 0.247 2.60 0.248 2.41 

CH
+
 

3σ 0.177 2.66 0.189 2.75 0.190 2.77 

2σ 0.420 2.19 0.493 2.14 0.498 2.18 

H2S 

2b1 0.275 8.22 0.289 8.03 0.283 7.77 

5a1 0.169 8.59 0.170 8.36 0.165 8.18 

2b2 0.598 7.72 0.610 7.42 0.605 7.21 

H2CO 

2b2 0.907 5.48 0.912 5.31 0.900 5.75 

1b1 0.946 7.64 0.977 7.60 0.941 7.57 

5a1 1.271 4.03 1.282 3.65 1.277 4.29 

1b2 0.507 7.10 0.538 7.04 0.520 6.17 

NH3 

3a1 0.073 5.72 0.075 5.60 0.075 5.29 

2e 0.243 4.66 0.242 4.50 0.242 4.17 

1e 0.074 5.21 0.071 5.00 0.071 11.92 

H2O 

1b1 0.146 4.10 0.149 3.97 0.145 3.53 

3a1 0.002 4.37 0.002 4.25 0.005 3.92 

1b2 0.304 3.69 0.305 3.56 0.303 3.14 

CO 5σg 0.304 2.53 0.323 2.47 0.323 1.81 



92 
 

1π 1.171 4.97 1.237 4.88 1.232 4.86 

4σg 1.583 5.85 1.659 5.55 1.650 5.89 

O3 

1a2 1.049 2.63 1.090 2.54 1.093 2.18 

6a1 1.149 2.36 1.181 2.24 1.171 1.89 

4b2 1.066 2.45 1.103 2.35 1.094 1.93 

 

5.4.4.2  (1,0) Sector  

 The dipole moments and polarizabilities of the (1,0) sector is presented below 

in table 5.5. Similar to the previous sector (section 5.4.4.1), the SCF moments have 

not been added to the final correlation calculations and hence, tabulated values are the 

correlated dipole moments and polarizabilities. The calculations are performed under 

similar conditions as done for the (0,1) sector, i.e. an external electric field was 

applied to all the molecules along their molecular axis as stated in the previous 

subsection. 

A look at the behaviour of the dipole moments of each molecule show that both the 

approximate methods, give nearly exact dipole moments as that given by full 

FSCCSD method. The first order properties in this sector is thus well described by the 

two low scaling methods. In case of  polarizability, the FS-CC2 method performs 

better than FSCC(2). This trend is similar to the one seen in (0,1) sector and we 

believe that the T1 amplitudes included in the FS-CC2 calculations are responsible for 

its better performance over FSCC(2). Although the FS-CC2 method performs better, 

the maximum deviation is larger in this sector, as compared to the (0,1) sector. The 

FS-CC2 and FSCC(2) methods show a maximum deviation of 15 and 31 a.u. with 

respect to polarizability calculations. This affects the root mean squared deviation too 

and is seen in figure 5.9.  
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Table 5.5: Dipole moments and polarizabilities of the (1,0) sector, tabulated in atomic 

units for all the molecules, computed at Sadlej-pVTZ basis 

Properties 

for EA 
States 

Full CCSD FS-CC2 FSCC(2) 

Dipole Polarizability Dipole Polarizability Dipole Polarizability 

HF 
4σg 0.034 96.77 0.034 96.72 0.034 95.98 

5σg 0.017 21.76 0.017 21.62 0.017 20.25 

CH
+
 1𝜋 0.003 8.33 0.002 8.34 0.002 8.30 

H2S 

6a1 0.013 492.98 0.013 486.30 0.013 487.56 

3b2 0.040 175.51 0.040 168.18 0.040 169.38 

4b2 0.012 360.08 0.013 350.76 0.013 352.82 

7a1 0.013 73.37 0.013 58.77 0.013 62.45 

3b1 0.003 58.15 0.003 58.69 0.003 58.49 

H2CO 

2b1 0.044 369.05 0.044 364.39 0.045 345.09 

6a1 0.007 33.10 0.007 46.40 0.007 10.10 

3b2 0.028 285.89 0.028 270.42 0.029 302.11 

7a1 0.017 119.43 0.016 126.81 0.016 150.66 

NH3 

4a1 0.004 918.47 0.004 906.06 0.004 920.79 

5a1 0.014 107.96 0.014 108.99 0.014 107.54 

3e 0.022 834.60 0.022 820.09 0.022 835.84 

H2O 
4a1 0.019 122.41 0.019 122.10 0.019 122.48 

2b2 0.021 25.22 0.021 25.43 0.021 25.29 

CO 

3π 0.002 636.14 0.003 634.89 0.005 622.05 

6σg 0.006 58.45 0.007 56.53 0.007 56.33 

7σg 0.001 342.99 0.002 341.17 0.001 321.94 

O3 2b1 0.012 8.89 0.012 8.99 0.012 8.09 

 

5.4.4.3  (1,1) Sector  

The singlet and triplet response properties are given as rmsd plots in figures 5.10 and 

5.11.  Due to the large number of data points for the excitation energy calculations, 

the details of the dipole moments and polarizabilities of the excited states are not 

included in this thesis. As can be seen from the rmsd plots, the FS-CC2 method, 

outperforms the FSCC(2) method for both dipole moment and polarizability in the 

singlet and triplet excited states. Although the FS-CC2 method does perform better 

for polarizability, the deviation from FSCCSD calculation for the same is quite large.  
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Figure 5.8: Root mean squared deviation (rmsd) plot in atomic units for the response 

properties of the (0,1) sector 

 

 

 

Figure 5.9: Root mean squared deviation (rmsd) plot in atomic units for the response 

properties of the (1,0) sector 
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Figure 5.10: Root mean squared deviation (rmsd) plot in atomic units for the 

response properties of the (1,1) sector (both singlet and triplet dipole moments) 

 

 

 

Figure 5.11: Root mean squared deviation (rmsd) plot in atomic units for the 

response properties of the (1,1) sector (both singlet and triplet polarizabilities) 
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5.5 Concluding Remarks             

Behaviour of the direct difference energies in all three approximate FSCC(n) 

methods show a gradual convergence towards the FSCCSD values. This is as 

expected from a theoretical viewpoint due to the perturbational nature of truncation. 

Although the IP, EA and EE values, converge smoothly towards FSCCSD on 

increasing the perturbational order, there is no guarantee that in each FSCC(n) 

method the value would converge from one end. As is seen in MBPT, FSCC(n) 

methods do not have a fixed upper or lower bound to the FSCCSD values. The 

FSCC(n) methods give fluctuating difference energies but the error deviation will 

keep on decreasing on increase in perturbational order, finally converging 

completely to FSCCSD values at a higher order. Among the various direct difference 

energies computed earlier, the singlet and triplet energies as well as the ionization 

energies show similar trend. Although the trend is a bit different for the electron 

affinity case, where FS-CC2 outperforms the FSCC(2). However, they always give 

comparable values. Therefore, it may be interesting to pursue FS-CC(2) for large 

scale excitation energy calculation as an alternative to more popular CC2 method.   

The two low scaling methods, FS-CC2 and FSCC(2) were compared against 

standard FSCCSD  to test their performance for electric response properties. It can be 

seen that FS-CC2 shows better performance than the FS-CC(2) method for dipole 

moment and polarizability. The betterment in result is more prominent in case of 

polarizability. It is well known that singles amplitudes contributes at least second 

order in perturbation. Therefore, inclusion on T1 has a pronounced effect on 

polarizability (which is a second order property) than that in the first order property 

of dipole moment. The part of the missing second order perturbation effect, arising 

from second order T2 terms in case of FS-CC2 and from second order T1 and T2 terms 

in case FS-CC(2), also explains the huge error in polarizability as compared to the 

full FSCCSD. The first order property dipole moment, however, is reproduced with 

reasonable accuracy in both the approximate versions.  

In conclusion one can state that, as a further approximation to the FSCC(2) 

method, a CC2 type of approach gives reasonable energy differences as well as 

electric response properties, and this can be an attractive alternate method to study 

large molecular systems, where a N
6
 scaling prohibits standard FSCCSD calculations.  
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Chapter 6  

 

Lower scaling methods and their effect on transition moments  

___________________________________________________ 

 

 In the previous chapter, we evaluated the difference energies and electric 

response properties in a couple of lower scaling methods within the FSCCSD 

formulation. In this chapter, we compare the dipole strengths of a few molecules from 

their ground to low lying excited states. The comparison is performed with the two 

low scaling methods that has been formulated in the previous chapter, i.e. FSCC(2) 

and FS-CC2. The dipole strength obtained from these methods are compared against 

the dipole strength calculated from FSCCSD method.  
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6.1 Introduction  

 This chapter checks for the behaviour of the square of transition dipole 

moments from ground state to a few other singlet excited states for a number of small 

molecular systems. Driven by the success of treating electric response properties, 

especially dipole moments (where the root mean squared deviation was around 0.05 

a.u. for the singlet transitions) as obtained from the two lower scaling methods, we 

have calculated and compared the dipole strengths in those two methods against the 

FSCCSD method. The theory pertaining to the two lower scaling methods are 

recapitulated first followed by the computational details. Results and discussions 

come later.  

6.2 Theory  

6.2.1 FSCC(2) method 

 Starting with the canonical HF as the reference determinant, the f occurs at 

zeroth order, v and T2 emerge at first order and T1 materializes at second order in 

correlation. Expanding H  and assembling all those terms which contribute to second 

order in perturbation gives us, 

   (2)
2 2c c

H v fT vT                                                                                              (6.1) 

where, normal ordering of the operators have been assumed. The T2 amplitude 

equation is given by the following expression. 

 2 0 0ab
ij c

v fT                                                                                                  (6.2) 

Thus, correlation energy is now given by,  

(2)
0 2 0E vT                                                                                                        (6.3) 

This renders FSCC(2) similar to the MBPT(2) approximation and leads to identical 

results. This method scales as N
5
 as the T1 amplitudes have been completely neglected 

from the calculations. Solving for the lowest order of T2 in the (0,0) sector, we use 

these generated amplitudes for further contraction with the higher valence cluster 
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amplitudes. No such approximation have been introduced in the higher valence cluster 

operators.  

6.2.2 FS-CC2 

 Another lower scaling method that has been extensively used for 

benchmarking energies and properties of molecules, is the CC2 [1-5] approach. In the 

CC2 type of approach, T2 amplitudes are kept at a minimum but solved for the entire 

set of T1 equations. We have implemented a similar strategy for the ground state 

amplitudes and labelled the new method as FS-CC2. Contrary to the FSCC(2) 

method, FS-CC2 method solves for the singles amplitude equation completely at the 

cheaper doubles amplitude value. The ground state energy obtained from this method 

should be similar in nature to that obtained from the FSCC(2) method, as the energy is 

dominated by the doubles amplitude. The inclusion of T1 amplitudes bring in a 

relaxation factor that was missing in the FSCC(2) method. Although it is not strictly 

under any perturbative truncation scheme, this method also reduces the computational 

cost due to its iterative N
5
 scaling. In our present study we have incorporated this idea 

of solving for the T1 amplitudes at a cheaper T2 amplitude and used it as an extended 

approximation to the FSCC(2) method and tested them for calculation of electronic 

transition dipole moments. 

6.3 Computational Details 

 In order to evaluate transition moments, we have described three different 

approaches within the FSCC formalism. Since, the main objective is to check for the 

variation of TDM in FSCC(2) and FS-CC2 methods, we have evaluated TDM from 

the expectation value approach (FSCC-T method). The other two methods namely, 

FSCC-Λ and FSCC-ΛT requires the use of de-excitation amplitudes. We have not 

truncated any of the Λ-amplitudes in the same manner as that of the similarity 

transformed Hamiltonian as shown in the previous chapter. Thus, any method that 

uses these de-excitation operators cannot be presently used to check for the variation 

of TDM in the two low scaling methods. We have tabulated the dipole strength for the 

following set of molecules: CO, HCN, HF, LiH, CH
+
, NO

+
 and H2O. All the 

molecules were treated at the ground state equilibrium geometry. 
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6.4 Results and discussions 

Table 6.1 presents the comparison of dipole strengths calculated from the expectation 

value method within the two approximate methods against the full FSCCSD 

calculation. The active space for the (1,1) sector of each molecule is given below. The 

active holes and particles are separated by a divider. 

Molecules Active space 

CO 5 / 6 3 4 7      

HCN 1 2 / 6 7 3 4       

HF 2 3 1 2 / 4 5       

LiH 1 2 / 3    

CH
+
 2 3 /1 2     

NO
+
 4 1 2 5 / 3 4 6 7 5 6 8            

H2O 1 1 2 1 11 3 1 / 4 2b a b a b  

 

 Calculations pertaining to the set of molecules as mentioned in the previous 

section, is done on the ground state equilibrium geometry. The test set calculations 

was performed on Sadlej-pVTZ basis which has been optimised for property 

calculations. As can be clearly seen from the table, the FS-CC2 method gives better 

performance than the FSCC(2) method. This trend is similar to the one previously 

observed for the dipole moments in singlet sector. A plot of the root mean squared 

deviation also validates our observation. For most of the molecules, the FS-CC2 

method actually gives comparable dipole strengths as that of FSCCSD. The inclusion 

of T1 amplitudes in the FS-CC2 calculations introduces some relaxation effect in this 

approximate method rendering it suitable for such transition moment property 

calculations. 
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Table 6.1: Dipole strengths from the closed shell ground state to singlet excited states 

tabulated in atomic units for all the molecules, computed at Sadlej-pVTZ basis 

Molecules States 
Full CCSD FS-CC2 FSCC(2) 

Dipole Strength Dipole Strength Dipole Strength 

HF 

2σ to 4σ 0.042 0.044 0.054 

2σ to 5σ 0.003 0.004 0.003 

3σ to 4σ 0.431 0.451 0.414 

3σ to 5σ 0.003 0.003 0.002 

1π to 4σ 0.180 0.182 0.139 

1π to 5σ 0.070 0.071 0.061 

NO
+
 

 

4σ to 3π 0.460 0.476 0.435 

4σ to 6σ 0.089 0.085 0.088 

4σ to 7σ 1.660 1.666 1.810 

5σ to 4π 0.227 0.211 0.197 

5σ to 6σ 0.142 0.155 0.162 

5σ to 8σ 0.394 0.402 0.361 

LiH 

 

1σ to 3σ 0.025 0.022 0.021 

2σ to 3σ 1.192 0.987 0.853 

HCN 

1π to 6σ 0.200 0.197 0.218 

1π to 7σ 0.212 0.222 0.264 

1π to3π 0.860 0.927 0.900 

CH
+
 

2σ to 1π 0.334 0.395 0.392 

3σ to 1π 0.037 0.066 0.066 

CO 

5σ to 3π 0.712 0.764 0.967 

5σ to 6σ 0.014 0.012 0.032 

5σ to 7σ 0.575 0.572 0.469 

H2O 

1b1 to 4a1 0.427 0.455 0.440 

1b1 to 2b1 0.040 0.042 0.047 

3a1 to 4a1 0.448 0.462 0.380 

1b2 to 4a1 0.054 0.058 0.049 

1b2 to 2b1 0.369 0.372 0.285 
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Figure 6.1: Root mean squared deviation from FSCCSD dipole strength values in a.u. 

 

 

Figure 6.2: Maximum deviation from FSCCSD dipole strength value in a.u. 

 

 

6.5 Concluding remarks 

 This chapter presented the behaviour of the electronic transition moments in a 

couple of low scaling methods. The behavioural pattern is similar to the other 

response properties as calculated and tabulated in the previous chapter. The general 

trend is very clear from the above test set calculations. Introduction of the T1 
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amplitudes generates transition dipoles that are in close agreement with the full 

FSCCSD calculations. The root mean squared average value as plotted in figure 6.1 

shows the mean deviation to be around 0.04 a.u. for the FS-CC2 method. The 

FSCC(2) approximation deviates more as compared to this. The plot of maximum 

deviation showcases a deviation of 0.2 a.u and 0.35 a.u. for FS-CC2 and FSCC(2) 

respectively. This large deviation corresponds to the single transition from the 2σ to 

3σ for the LiH molecule. If we treat this particular transition as a 'bad apple' case and 

neglect it from our relative error calculations, then the rmsd values drop down to 

0.025 a.u. and 0.04 a.u. for the FS-CC2 and FSCC(2) calculations. Thus, it can be 

concluded that FS-CC2 gives nearly comparable transition dipole moments as that of 

FSCCSD and this method can be further probed to be used for calculations pertaining 

to larger molecular systems. The FSCC(2) method may also be used for the same 

purpose but will provide a larger error bar. 
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Chapter 7  

 

Concluding remarks and future scope  

___________________________________________________ 

 

 This is the concluding chapter wherein the relevant applicability of the thesis 

is discussed followed by the future scope and  discussion on some of the ongoing 

projects. 
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7.1 Summary 

 This thesis presented new developments toward calculation of transition 

dipole moments within the Fock-space multi-reference coupled cluster (FSMRCC) 

framework. A couple of lower scaling methods within the FSMRCC singles and 

doubles scheme was also developed and tested for certain molecular systems.  

 The first chapter gave a brief introduction to the single reference based many 

body methods, highlighting the relevant working equations for the single reference 

coupled cluster (SRCC) method. This was followed by the theory of equation of 

motion coupled cluster. The need to move beyond single reference based methods 

came next, followed by the effective Hamiltonian based multi-reference CC methods. 

The Fock-space MRCC theory was discussed in details together with the theory of  

constrained variation approach within the (1,1) valence sector.  

 The second chapter comprised the entire formulation and developmental work 

pertaining to the calculation of transition dipole moments within FSMRCC 

methodology. The actual implementation of the codes (as given in chapter 3 and 4) 

were tested through calculating and evaluating the TDM and oscillator strength of a 

few selected molecules, that were compared with other available theoretical models. 

Oscillator strengths were also reported for a number of molecules in three different 

approaches for ground to excited states of closed shell molecules. Among the three 

methods developed to evaluate TDM (and eventually relate it to oscillator strength) 

FSCC-T method is the cheapest in terms of computational time. Although this suffers 

from an infinite series, inclusion of sufficient number of terms (refer equation 2.22 

and section 2.4.1) in the dipole strength calculation, will reduce the error that arises 

due to the non-terminating nature of the equation. The left and right transition 

moments in FSCC-Λ method have a natural termination (as opposed to FSCC-T 

method) due to linearized left vectors that can contract with only a handful of T-

amplitudes giving rise to an overall connected form. Though the bi-orthogonal 

method is conceptually perhaps the best method within FSCC to evaluate transition 

moments, it is computationally very expensive. Even for a small system under study, 

the solution of the lambda equations is the rate determining step in calculating TDM. 

Another drawback of this method is that, only one root can be solved at a time. In 

order to calculate TDM for a particular state, the entire set of lambda equations have 

to solved starting from the (1,1) sector till the (0,0) sector. This is in contrast with the 
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expectation value method, where the entire set of transition moments can be obtained 

in one go. The semi-bi-orthogonal method, strikes a balance between the two 

approaches. The left transition moment is solved in a similar manner to that of FSCC-

Λ, while the right transition moment is solved like the expectation value method. 

Thus, the left transition moment is now a naturally terminating series and we no 

longer have to solve for the entire lambda equations. Solving for an extra set of (0,0)  

will be sufficient. Thus, FSCC-ΛT can be an attractive choice to evaluate TDM and 

oscillator strength within FSCC framework. This method can also evaluate TDM for 

all target states in one shot, i.e. it is not state dependent. In case of evaluating 

transition moments for the doublet radicals, the FSCC-T and FSCC-Λ methods 

provide transition moments that are in close proximity to each other and to any other 

available theoretical methods. Thus, both these methods are equally suitable for 

calculation of the same specifically for open shell systems.  

 The fifth chapter developed new approximate methods within the FSCC 

singles and doubles (SD) scheme to calculate direct difference of energies and electric 

response properties. The various perturbative truncation schemes within FSCCSD 

were presented in this chapter. The series of approximate methods were labeled as 

FSCC(n), where n denotes the leading order of corrected correlation energy within the 

FSCCSD scheme. An error analysis of the various difference energies like, ionization 

potential (IP), electron affinity (EA) and excitation energies (EE) showed that 

FSCC(4) method had nearly converged  energy values as that of FSCCSD. The 

FSCC(3) method had a higher error bar as compared to FSCC(4). But both these 

methods scale as N
6
 which is the same as FSCCSD. The FSCC(2) and FS-CC2 

methods have reduced scaling of N
5
. The error analysis shows an average error bar of 

0.15eV to 0.2 eV for both the lower scaling methods for difference energies. Thus, 

these two methods were further tested for electric response properties like, dipole 

moment, polarizabilities and transition moments. The electric response properties 

were calculated by finite difference method (finite difference of energies) while the 

dipole strength was reported for the FSCC-T method. The averaged error analysis 

showed that the FS-CC2 method performed better than FSCC(2) method for 

polarizabilities of all the sectors and the dipole strengths. In case of dipole moments, 

the averaged error was similar for the (0,1) and (1,0) sectors, but for the higher 

valence (1,1) sector, FS-CC2 outperformed it. Thus, it can be concluded that among 
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FS-CC2 and FSCC(2) methods, the FS-CC2 method can be the method of choice 

when calculating electric response properties or transition moments for excited states. 

 

7.2 Future directions 

 The work presented in this thesis was fundamental development within 

FSMRCCSD framework. The developed theories has been tested on a number of 

small molecular systems. As a first step, a larger test system can be chosen and a 

benchmark study can be initiated for the lower scaling methods to exploit their 

versatility. Such a study would serve as a reference for future developments in this 

area.  

 Another interesting case study would be to further exploit the FSCC(2) and 

FS-CC2 methods for the specific problem of electron attachment. In studying EA/EE, 

there is a large storage requirement for four particle type of integrals. It would be 

worthwhile to make further approximations within the lower scaling methods, that 

would not only reduce computational time but also storage area in hard drives. Such a 

method would find suitability for treating molecules with much larger number of 

atoms.  

 The transition moments were developed within the class of FSCC singles and 

doubles scheme. Inclusion of full/partial triples can be implemented for all the 

different methods developed in this thesis.  

 

7.3 Ongoing projects 

 One of the ongoing project that is connected to the work presented in this 

thesis is, calculation of transition moment for the doublet radical pertaining to the case 

of electron attachment  i.e. (1,0) sector. Another work is a benchmark study of 

transition moments from the ground to a few low lying excited states for a larger set 

of test molecules. A number of CC based methods have claimed to reproduce 

transition moments of closed shell molecules. We aim to reproduce results from all 

these methods and compare them with the methods developed by us for a systematic 

case study.  

 We have compared results for TDM in FSCC-T technique for the lower 

scaling methods. The same reduced scaling can also be extended to FSCC-ΛT and 

FSCC-Λ methods. We are also involved in truncating the de-excitation amplitudes in 
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a similar footing, as is done for the similarity transformed Hamiltonian of the ground 

state sector. This is an ongoing work where we are also looking into the perturbative 

truncation of the higher valence effective Hamiltonian, in order to reduce scaling for 

all other higher valence rank sectors with respect to the cluster operators. 
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Appendix A 

Triplet excitation energies for all systems as referred to in chapter 5 

Triplet Energies States FS-CC2 FSCC(2) FSCC(3) FSCC(4) FSCCSD 

NH3 

1e to 4a1 13.233 13.670 13.793 13.316 13.302 

1e to 5a1 14.867 14.886 14.983 14.937 14.922 

1e to 3e 15.326 15.345 15.456 15.409 15.393 

2e to 4a1 11.694 11.713 11.844 11.793 11.778 

2e to 5a1 13.650 13.670 13.793 13.742 13.726 

2e to 3e 13.302 13.321 13.426 13.378 13.363 

3a1 to 4a1 5.785 5.831 5.918 5.834 5.823 

3a1 to 5a1 7.336 7.378 7.445 7.370 7.357 

3a1 to 3e 7.447 7.489 7.557 7.481 7.468 

BH 

2σg to 1π 14.863 14.917 15.260 15.117 15.128 

2σg  to 4σg 13.285 13.327 13.590 13.459 13.462 

2σg  to 5σg 15.495 15.543 15.327 15.177 15.189 

2σg to 3π 14.916 14.970 15.327 15.177 15.189 

2σg  to 6σg 0.890 0.893 1.510 1.376 1.374 

3σg to 1π 6.156 6.188 6.746 6.580 6.580 

3σg  to 4σg 6.991 7.025 7.586 7.416 7.417 

3σg  to 5σg 0.889 0.893 1.510 1.376 1.374 

3σg to 3π 0.889 0.893 1.510 1.376 1.374 

3σg  to 6σg 7.843 7.883 8.437 8.256 8.259 

HF 

3σg  to 4σg 13.592 13.518 13.499 13.568 13.547 

3σg  to 5σg 17.472 17.378 17.361 17.451 17.429 

3σg  to 6σg 18.570 18.468 18.459 18.557 18.535 

3σg  to 3π 18.450 18.368 18.346 18.431 18.410 

1π to 4σg 10.191 10.100 10.077 10.168 10.146 

1π to 5σg 13.842 13.744 13.699 13.801 13.779 

1π to 6σg 14.883 14.780 14.739 14.845 14.824 

1π to 3π 14.396 14.317 14.260 14.349 14.330 

1π to 4π 14.397 14.318 14.261 14.629 14.609 

H2S 

2b2 to 6a1 11.313 11.357 11.614 11.492 11.489 

2b2 to 3b2 13.044 13.094 13.341 13.209 13.207 

5a1 to 6a1 9.203 9.247 9.515 9.380 9.379 

5a1 to 3b2 11.216 11.269 11.503 11.363 11.363 



115 
 

2b1 to 6a1 6.318 6.363 6.615 6.474 6.475 

2b1 to 3b2 8.253 8.302 8.537 8.398 8.398 

CO 

4σg  to 6σg 0.60284 0.60390 0.60750 0.60301 0.60226 

4σg  to 3π 0.53216 0.52850 0.53134 0.53430 0.53211 

4σg  to 7σg 0.66093 0.65488 0.64585 0.66279 0.66305 

1π to 3π 0.50829 0.50767 0.50531 0.50554 0.50408 

1π to 6σg 0.43476 0.43212 0.43299 0.43513 0.43286 

5σg  to 7σg 0.38925 0.39755 0.40563 0.39447 0.39509 

1b2 to 4a1 0.50686 0.50567 0.50769 0.50818 0.50749 

H2O 

1b2 to 2b2 0.58179 0.58036 0.58180 0.58277 0.58200 

3a1 to 4a1 0.37182 0.37094 0.37191 0.37231 0.37162 

3a1 to 2b2 0.44043 0.43923 0.43969 0.44054 0.43978 

1b1 to 4a1 0.28990 0.28929 0.28955 0.28976 0.28911 

1b1 to 2b2 0.36054 0.35964 0.35925 0.35989 0.35917 

2σg  to 1π 0.35477 0.35564 0.37714 0.37217 0.37236 

CH
+
 

3σg  to 1π 0.02292 0.02279 0.04886 0.04426 0.04418 

1T2 to 3a1 0.38547 0.38788 0.39546 0.39130 0.39116 

CH4 

1T2 to 4T2 0.43755 0.44020 0.44762 0.44320 0.44305 

1T2 to 5T2 0.44574 0.44845 0.45588 0.45139 0.45124 

1T2 to 6T2 0.44572 0.44843 0.45587 0.45138 0.45123 

2T2 to 3a1 0.38547 0.38788 0.39546 0.39130 0.39116 

2T2 to 4T2 0.44573 0.44844 0.45588 0.45139 0.45124 

2T2 to 5T2 0.43751 0.44017 0.44759 0.44317 0.44302 

2T2 to 6T2 0.43751 0.44017 0.44759 0.44316 0.44301 
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