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Abstract 

Molecular response properties can be viewed as derivative of the energy with respect to 

perturbation. These properties are calculated using numerical, analytical or semi 

numerical approach. In this thesis extended coupled cluster (ECC) method is used for the 

calculation of various properties of the molecules. The properties studied in this thesis are 

IR and Raman intensities, vibrational frequency, dipole moment, quadrupole moments 

and dipole-quadrupole polarizability. The non-iterative partial triples within ECC 

approach is used for the calculations of IR, Raman intensities and vibrational frequencies. 

We have also studied potential energy surface using decoupled approach within ECC 

method.  The knowledge of gradient is essential for predicting precise values of various 

molecular properties. In studies of poly-atomic potential-energy surfaces, analytic 

gradient is necessary for locating extreme points. We have done formulation of analytic 

gradient within ECC framework. 

      Single reference coupled cluster method (SRCC) [1] has been established as the most 

accurate and efficient method for the calculation of molecular properties of the systems in 

their ground state. It provides the size-extensive energies and energy derivatives even in 

its approximate form. Due to this remarkable feature of the method, the SRCC is 

popularly used for studying energy as well as energy derivatives [2-5] of various closed 

shell molecular systems near equilibrium geometry. In most of the cases, restricted 

Hartree-Fock (RHF) is used as a reference wave function. The well-known and 

commonly used approach of the CC functional is non-variational CC.   

              The single reference coupled cluster response approach was first developed by 

Monkhorst et. al. [5]. Although energy derivative calculation can be done using SRCC 

method, it becomes complex due to absence of (2n+1) rule [6]. Within non- variational 

(NVCC) framework first derivative of energy requires first derivative of the wave 

function. This makes it very difficult to implement this method for geometric derivatives. 

To avoid the dependency of wave function derivatives, the Z-vector technique was 

introduced Handy and Schaefer [7] in context of analytic gradient within Configuration 

Interaction (CI). Bartlett and co-workers [8]  implemented the Z -vector technique in CC 

approach. This method is simple for calculating first order derivatives, however, 

extending this method to higher order derivatives is cumbersome.   Jorgensen and co-

workers [4]  proposed constrained variational approach (CVA) based on Lagrange‟s 

undetermined multipliers, which  can be extended to higher order properties easily. 
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                  Stationary response or variational approach is another way of evaluating 

molecular properties. These methods follow Hellmann-Feynman theorem, i.e. (2n+1) [6] 

rule, that simplifies the calculation of energy and related properties. Choice of the energy 

functional is important for variational approach. In this approach energy functional is 

made stationary with respect to cluster amplitudes. Expectation value coupled cluster 

(XCC) [9], unitary coupled cluster (UCC) [10] and extended coupled cluster (ECC) [11] 

are the functionals which are normally used within coupled cluster framework.  Among 

these XCC and UCC are studied in detail, but both are non-terminating series and give 

disconnected diagrams in the amplitude equations though energy functional is linked. On 

the other hand, ECC functional, due to double linking provides size extensive properties. 

Both the left and right operators are exponential in nature. The double linking form of the 

functional also ensures that the series is naturally terminating [12]. Though, the series is 

naturally terminating, the termination is at quite high order and needs truncation for 

practical application. Initial truncation was based on the number of cluster amplitudes in 

the energy functional. In the current implementation we have used the right amplitudes 

full exponential within singles and doubles approximation similar to the non-variational 

and all the complex conjugate double linked diagrams are included for left vector.  

Chapter1: This chapter describes briefly various methods used in quantum chemistry for 

various calculations. The many body treatment for the electronic structure is described by 

the Hartree-Fock method. The Hartree-Fock method lacks the instantaneous repulsion i.e. 

dynamic correlation among electrons. To include this dynamic correlation, various 

theories like CI, perturbation are explained with their pros and cons. Coupled cluster 

theory and various developments involved in it are discussed in details. We discuss the 

extended coupled cluster (ECC) method in detail with the scope and objective. 

Chapter2: This chapter explains the implementation of ECC to study the harmonic 

vibrational frequencies, infrared (IR) intensities, Raman intensities and depolarization 

ratio. Raman and IR intensities are mixed derivatives of energy with respect to the 

electric field and geometric perturbation whereas vibrational frequencies are derivatives 

with respect to geometry. We use semi-numerical approach to obtain these derivatives. 

We have studied the effect of electron correlation and basis set for the mentioned 

properties. We compare our results with non-variational coupled cluster and experimental 

results wherever available.  We have studied HF, BH, CH+, CO and H2CO molecules in 

different basis sets. For HF molecule benchmarking is done with full CI values and basis 
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set convergence is studied for this molecule. Effect of triples is studied for all the 

molecules.  

Chapter3:  In this chapter, we have studied quadrupole moments, dipole-quadrupole 

polarizabilities and dipole polarizabilities using analytic extended coupled cluster 

response approach. In the current implementation of the functional we have included all 

the double linked terms within  coupled cluster singles and doubles (CCSD) 

approximation. These terms will be important for the accurate description of properties at 

stretched geometries. We report the properties for carbon monoxide and hydrogen 

fluoride molecules, as a function of bond distance and compare our results for carbon 

monoxide with the full CI results. We have also reported the properties of methane, 

tetrafluoromethane, acetylene, difluoroacetylene, water and ammonia. 

Chapter4:  ECC method has been implemented extensively for the calculation of 

molecular properties. Chapter 4 deals with the potential energy surface (PES) study using 

coupled and decoupled approximation of ECC. Decoupled approach within ECC 

framework shows good convergence for all the systems studied. Coupled ECC and a 

decoupled approximation of ECC.  HF, N2 and C2 are studied as test systems.  N2 and C2 

being doubly and triply bonded, are considered to be interesting systems for PES study. 

We compare our results with Full CI (FCI) results wherever available. Decoupled 

approach within ECC framework shows good convergence for all the molecules. 

Chapter5: In this chapter, we explain the formulation of the analytic gradient using ECC 

approach. The coupled perturbed Hartree-Fock equation is used (CPHF) for the derivative 

calculation of the coefficient matrix and Fock matrix. ECC being variational, we do not 

require derivative cluster amplitudes for calculation of gradients. However, to obtain the 

relaxed density, we need to solve Z vector equation. One and Two particle density 

matrices are calculated and are back transformed to obtain in atomic basis. These 

densities in AO basis are then contracted with derivative Hamiltonian to acquire the 

gradient of energy. The final goal is to perform geometry optimization.   
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Introduction 

 

 

 

1.1 Introduction: 
 

Molecular quantum mechanics has become an important as well as successful tool for 

accurate prediction of various molecular properties [1-6]. Electric properties such as 

dipole moment, polarizability, hyperpolarizability, quadrupole moment,  

dipole-quadrupole polarizability, magnetic properties like magnetizibility, Nuclear 

magnetic resonance (NMR) shifts, geometric properties such as vibrational frequencies 

and mixed properties like infrared intensities, Raman intensities play important role in 

determining the structure as well as interpreting characteristics of molecules. Electric 

properties are useful in designing nonlinear optical properties [7-11] while properties like 

dipole-quadrupole polarizability are important in prediction of Raman scattering spectra 

[12] and interaction induced light scattering spectra [13].  Magnetic properties such as 

NMR [14] are used for detecting the presence of particular nuclei in a compound along 

with prediction of chemical shift and coupling constant. Geometric properties like 

gradient help us in finding global minima, local minima on potential energy surface 

(PES). These properties related to PES are not direct observable but can be involved in 

reaction pathways. Transition states, chemical reaction dynamic and energy barriers are 

complex properties for studying but, the information related to these can be obtained with 

the geometric properties. Vibrational frequencies, i.e. second derivative of energy with 

respect to geometric perturbation predict the structural information. Theory and 

computational studies include several mathematical tools [15-16], which can build a 

model for predicting different properties of system, that are difficult to calculate 

experimentally. Successful prediction of these molecular properties depends on accuracy 

of the method used. Hence for the accurate prediction of electronic structure [17] there is 
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need to go beyond mean- field approximation(HF) [5,18-21] Ab-initio methods, like 

Configuration Interaction (CI) [5,22-23], many body perturbation theory (MBPT)  

[24-26], Coupled Cluster Method (CC) [6,27-32], all consider Hartree-Fock (HF) single 

determinant  as a reference function for the calculation of energy and properties of closed 

shell systems. The accuracy of the method is determined by the size consistency and size 

extensivity [5, 28, 33-34] the accuracy of method is determined.   

               Single reference coupled cluster method (SRCC), due to its success in its ability 

to provide accurate and size extensive values of energy and energy derivatives even in its 

approximate form, has evolved as a state of the art method [6,27-32].  Traditionally 

SRCC has been used in non-variational form. Requirement of wave function derivative 

for the calculation of energy derivative was the biggest impediment in its wider 

applicability. Implementation of Z-vector method makes the problem solving easier  

[35-37]. However, it is complicated to extend this approach for higher order derivatives. 

Constrained variational Approach [38] on the other hand can be easily extended for 

higher derivatives.  

An alternative approach for evaluation of energy and properties is a fully variational or 

stationary approach, in which energy functional is defined, that is made stationary with 

respect to parameters in it. Being variational, the method satisfies Hellmann-Feynman 

theorem, which makes it suitable for the calculation of energy derivatives.  Expectation 

value coupled cluster (XCC) [39], unitary coupled cluster (UCC) [40] and extended 

coupled cluster (ECC) [41] are variational approaches documented in literature.   

The inefficiency of the SRCC method in explaining the bond dissociation of molecule 

motivated the formulation of variational response approaches for PES calculations. Pal 

and co-workers have extensively used ECC method for calculation of electric [42] as well 

as for magnetic properties [43, 44]. The present thesis uses ECC method for calculation of 

molecular properties.  In the second chapter, we have computed Infrared intensities (IR) 

and Raman intensities along with vibrational frequencies deploying semi-numerical 

approach.   Partial triples excitation in non-iterative manner is implemented along with 

singles and doubles excitation (ECCSD) within ECC framework.  The third chapter 

provides the calculation of electric properties such as dipole polarizability, dipole-

quadrupole polarizability using ECC approach wherein comparison of cubic truncation 

and full ECCSD method for hydrogen fluoride as well as carbon monoxide molecule have 



Chapter 1  
  

3 
 

been done. Apart from these, calculation of properties for methane, tetrafluoromethane, 

acetylene, difluoroacetylene, water and ammonia has been evaluated.  Decoupled 

approximation within ECC method has been implemented for the calculation of PES in 

and covered in chapter four. The coupled ECC due to double number of equations gives 

the convergence problem near bond dissociation limit. Both coupled and decoupled 

approaches are reported for the PES calculation for the comparison. There is importance 

of analytic gradients, for determining various properties accurately and precisely, the 

formulation of gradients within ECC framework is described in detail in chapter five. The 

Chapter 6 gives the summary of the thesis. 

1.2 Quantum mechanical view towards atoms and molecules 
 

The base of any substance constitute of atoms and molecules, these consists of positively 

charged nuclei and negatively charged electrons revolving around, which form a strong 

repulsive force among them, while a strong attractive force with the nuclei. Atom can be 

defined as species having one nucleus while molecules consist of two or more than two 

nuclei. 

We can study the electronic structure of atoms and molecules by solving non-relativistic 

time-independent Schrödinger equation [4, 5]. 

                                                      H E                                                                              (1.1)

 

             Here in equation (1.1), Ĥ describes the Hamiltonian operator for the calculation 

of total energy of the system.  defines the wave function on which the Hamiltonian 

operates to give the eigen values. Hamiltonian operator consists of kinetic energy of 

individual particle and potential energy arising because of attraction and repulsion 

between the constituting particles.  Complicated interaction with surroundings may 

contain the effect of external electric as well as magnetic field.  When there is no external 

field, Kinetic and potential energy are the dominant contributors to the Hamiltonian. The 

kinetic energy is composed of electronic and nuclear part, while the potential energy can 

be written as sum of electron nuclear attraction, nuclear-nuclear repulsion and electron-

electron repulsion energy terms respectively. Thus the Hamiltonian containing N electron 

system can be written as [5] 
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In equation (1.3), 
AR represents the spatial coordinate of A

th 
nuclei while ir represents the 

spatial coordinate of i
th 

electron.  

 An orbital can be described as one particle wave function.  

                             1 2 1 2R ,R ,...., , , ,....,m nR x x x                                                        (1.4) 

Any N-electron wave-function can be expanded as a linear combination of N-one electron 

anti-symmetric functions. Though the N-electron function contains complicated structure, 

it can be written as product of N-one electron functions those are basically the orbitals. 

Determinant is used for introducing the anti-symmetry instead of simple product of 

orbitals. 
 

 

Such determinants are known as Slater Determinants [19], they can be written as, 

                   
1/2

1 2 1 2( , ,.., ) ( !) ( ), ( ),.., ( )N i j k Nx x x N x x x             (1.5) 

       Here iχ ‟s represent the spin orbitals. In equation (1.5), the electrons are represented 

by rows while that of spin orbitals are represented by columns. As mentioned earlier 

Slater determinants take care of anti-symmetry and thus Pauli exclusion principle is 

automatically obeyed. Thus no two electrons with the parallel spin can be in one orbital. 

This concept is known as Fermi hole. The origin of Fermi hole is from Fermi-Dirac 

statistics. Other concept namely Coulomb hole, which is the result of coulombic repulsion 



Chapter 1  
  

5 
 

between electrons signifies that, the probability of finding two electrons at the same point 

in space is zero. Although, an arbitrary antisymmetric wavefunction does not ensure 

Coulomb hole, but the anti-symmetry takes care of the Fermi hole. However, there is 

existence of Coulomb hole in the Fermi hole to some extent. 

Equation (1.1) provides the solution of eigen value problem that results into stationary 

state energies and corresponding eigen-functions. Solving equation (1.2) is difficult, since 

it contains complex terms. However, according to the Born- Oppenheimer approximation 

(BOA), which assumes, the nuclei being heavier than electrons, their motion is slow and 

hence their motion can be considered as stationary compared to the motion of electrons. 

Thus BOA simplifies the complex Hamiltonian into simpler one by neglecting the kinetic 

energy and the nuclear-nuclear repulsion term is treated as a constant. As any constant 

added to an operator just adds to eigenvalues and thus it does not affect the eigenfunction 

of the operator. This simplified electronic Hamiltonian thus contains the kinetic part of 

electrons, electron nuclear attraction and electron-electron repulsion. The electronic 

Hamiltonian can now be written as, 

              

1
2

1 1 1 2 1

1 1ˆ
2

N M N N i
A

ele i

i A i i j i ji A

Z
H

r rr R



    

    


                  (1.6) 

Sutckiffe [45] pointed out the quantitative aspects including the corrections to BOA. The 

electronic Hamiltonian gives eigenvalues that result into total electronic energies of the 

corresponding stationary states. The parameters of eigenfunction are dependent on 

nuclear co-ordinates. The nuclear-nuclear repulsion energy added to electronic energy 

results into potential energy surface (PES). Thus the BOA helps in simplifying the 

complex problem that involves several nuclei and electrons to an at least many-electron 

problem at given fixed geometry.   
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1.3 Approximate theories for solving molecular structure problem:  
 

However, solving equation (1.6) is quite difficult even for small systems. BOA for many 

electron systems is still complicated to solve.  The bottleneck lies in the electron-electron 

repulsion term ˆ
eeV  in the electronic Hamiltonian explained in equation (1.3).  Due to 

electron-electron repulsion term equation (1.6) cannot be solved exactly.  One has to 

make further approximations to solve the Hamiltonian equation given by (1.6) ensuring 

accuracy in qualitative as well as in quantitative manner. For the method to be considered 

a theoretical model for calculating electronic energies and properties, there are some basic 

conditions that method must fulfil at all stages initially proposed by Pople et. al. [33]and 

further collectively stated by  Bartlett et.al.[28], though it can be improved in a systematic 

way. Some of requirements for the method can be listed here as 

1. The specific method should be applicable to a wide range of molecular system. It 

should not be confined to certain choices of configuration and symmetry. 

2. The method should be consistent with different class of transformation. 

Specifically, the unitary transformations should not change the orbital energy 

degeneracy and the related effects. 

3. Size-consistency is one of the main necessity of the method. The phenomenon of 

size-consistency can be explained as, when the big molecule is dissociated of into 

its fragments; total energy of the molecule should be equal to the individual 

energies of its fragments separated at an infinite distance. 

4. Size-extensivity is an important criterion that a method should serve. It can be 

described as the energy of a strongly interacting many electron system for a given 

potential should be proportional to number of electrons in the system.  

5. However, may the theory is precise in explaining the treatment to electronic 

structure; the method should be feasible computationally to be applicable to 

molecular systems. As the chemical systems are large in size.   

6. For open-shell systems and excited states the method should be applicable. 
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1.4   Hartree-Fock Theory:    
 

                   Perceiving and explaining the approximate solutions of Schrödinger 

equation has been a very important concern for all quantum chemists. In the absence of 

electron-electron repulsion term, the electronic Hamiltonian can be exactly solved i.e. 

just calculating each term separately and adding them to get final electronic energy. 

However in reality, the ˆ
eeV i.e. electron-electron repulsion term is always present and is 

the most time consuming as well as tricky term. However, Hartree-Fock is the best 

possible single determinant. Spherical averaging of electronic-electronic interaction 

gives the best solution for the class of simple independent particle model 

wavefunction. The gist of Hartree-Fock [5,18-19] approximation is to replace the 

complicated many-electron problem by one-electron problem in which electron-

electron repulsion is treated in an average way. According to the variation principle the 

best wavefunction is one, which gives minimum energy. Thus the form can be written 

as, 

                                           0 0 0
ˆ

eleE H                                                             (1.7) 

       Wavefunction representing the spin orbitals is thus optimized using variational         

theorem. Hence using this, resultant HF equation is obtained, which is further solved 

iteratively.  

      The Fock operator f̂  is defined as, 

                                         
ˆ( ) ( ) ( )HFf i h i v i                                                (1.8) 

Where f̂  [5] is the addition of core-Hamiltonian operator ( )h i and an effective 

one-electron potential operator that is called as Hartree-Fock potential ( )HFv i .   

Thus Hartree-Fock equation becomes,  

                           
ˆ( ) ( ) ( )a i a a if i x x                                 (1.9) 
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The core-Hamiltonian term can be written as, 

                  

2

1

1
( )

2

M
A

i

A iA

Z
h i

r

   
                                              (1.10) 

 

                
1 1

( ) ( ) ( )
N N

HF

b b

b b

v x J x K x
 

                                            (1.11) 

where ( )HFv i  is the average potential experienced by i
th

 electron due to the 

presence of other electrons. This potential depends on the spin orbitals of the other 

electrons, thus Fock operator depends on its eigenfunction.  

 

        

*
' ( ') ( ')

( ) ( ) ( )
'

b b
b a a

x x
J x x dx x

x x

 
 

                 (1.12) 

                         

*
' ( ') ( ')

( ) ( ) ( )
'

b a
b a b

x x
K x x dx x

x x

 
 

                       (1.13) 

         Thus equation (1.12) describes the effective two electron potential, which is sum of 

average Coulomb interaction by local operator ( )bJ x   as well as a non-classical potential 

represented by an non-local exchange operator ( )bK x . By substituting the Coulomb and 

exchange operators the final non- canonical form of the Fock operator can be obtained. 

Thus canonical Hartree-Fock equation can be obtained by using an unitary 

transformation. It signifies that if we start with a set of spin orbitals  a  of orthonormal 

spin orbitals, the new set  '

a  will also be orthonormal.  Thus for an N-electron system 

the Fock operator has a functional dependence on the occupied  spin orbitals, but once the 

occupied spin orbitals are known, the Fock-operator becomes as well defined Hermitian 

operator, which will have an infinite number of eigenfunctions. 

                        1,2,....j j jf j                                    (1.14) 

                              0

1

2

N N N

a a b

E a h a ab ab                                           (1.15) 
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Thus, 

                                            0

N

a

a

E                                           (1.16) 

Total ground state energy is not the sum of orbital energies. The cause for this is, the 

energy  aε  includes coulomb and exchange interactions between electron in  a  and 

electrons in all other occupied spin orbitals in specific b . Similarly  bε  also includes 

coulomb and exchange interactions between an electron in  b and electrons in all other 

occupied orbitals in particular a . Thus addition of a  and b includes the electron-

electron interaction twice. Thus 
1

2
 factor needs to be included in the corrected 

expression. Using Roothan equations [20] we get the Fock operator that can now be 

written in the form of matrix 

                                         FC SC                                                     (1.17) 

Thus Hartree- Fock equation is solved in an iterative manner. The procedure to solve this 

equation is called self-consistent field (SCF) method [46]. To solve the equation, one 

should make an initial guess of spin orbitals; also the average field seen by each electron 

can be calculated. Then the eigen value equation can be solved for a new set of spin 

orbitals. This procedure is repeated until the Self consistency is achieved i.e. until there is 

no longer change in field and the spin orbitals used to construct the Fock operator are 

same as its eigenfunction. Hartree-Fock eigenvalue equation produces a set of 

orthonormal spin orbitals with orbital energies { k }. The N spin orbitals with lowest 

energies are called occupied orbitals and rest of the remaining orbitals  k  are termed 

as unoccupied or virtual orbitals. Koopmans‟ theorem provides the physical significance 

of orbital energies and states that the energy of an occupied orbital in HF ground state is 

negative of energy required for removing an electron from the orbital without relaxation 

of the rest of the orbitals. Ionization potential is therefore better explained by Koopmans‟ 

approximation rather than electron affinities. 

Using this HF approximation for closed shell molecules, where the spin part of the orbital 

is balance with spin-up and spin-down part. Further using Roothan-Hall equation for 
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integrating these spin orbitals to get the spatial orbitals is thus well known as restricted 

HF (RHF). Similarly for open shell systems, those with maximum number of orbitals 

filled can be solved with restricted open shell HF (ROHF). However for some systems the 

occupancy of electron is not considered as an important factor to solve HF equations, 

such equations are termed as unrestricted HF (UHF) and these further lead to Popel-

Nesbet equations. 

The HF single determinant is best approximation to ground state. But in real systems 

there may exist determinants those are singly excited. The Brillouin‟s theorem [5] say‟s 

that, there will be no interaction between the HF determinant and singly excited 

determinant.  

                        0 0a

iH                      (1.18) 

 The HF approximation thus gives the energy which is  

99 % accurate. However, for the real application like reaction mechanics, transition states 

the energy difference is important. This small difference called as electron correlation 

effect is missing in HF due to its consideration as mean field approximation. The electron 

correlation is difference between exact energy and HF energy.  Hence we need to search 

further for other approximate theories which are more accurate in terms of predicting 

electron correlation. Such methods are generally known as many body theories. Although 

HF approximation lacks the instant dynamic correlation i.e. electron correlation, mostly it 

is used as starting guess for the calculations.  

 

1.5 Second Quantization 
 

           Slater determinants [19] fulfil the criteria for anti-symmetry principle. However, 

dealing with the huge determinants for larger systems becomes very tedious for 

calculation since there is dependency on number of electrons. To overcome this problem, 

a method known as second quantization is used. The method takes care of anti-symmetry 

property of wavefunction by transferring it onto algebraic properties of certain operators 

without introducing any new physics. Rather second quantization is an elegant way of 

treating many-electron systems with one- and two-electron integrals instead of N-electron 

wavefunction [5]. These algebraic operators are termed as creation operators and 
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annihilation operators. As the names suggest creation operator creates an electron in a 

spin orbital, while an annihilation operator removes an electron from the spin orbital. 

Creation operator
†

ia  operates on vacuum to create an electron i in a spin orbital i .   

                            
† ... ...i k l i k la              (1.19) 

 

Similarly an annihilation operator ia destroys i
th 

electron from the spin orbital. 

                                      ... ...i i k l k la                                                          (1.20)

However, the Slater determinants obtained either from creation or annihilation operators 

should satisfy the anti-symmetry principle. 

             
† † †... ... ...i j k l i j k l i j k la a a                           (1.21) 

           
† † †... ... ... ...j i k l j i k l j i k l i j k la a a                      (1.22) 

             Creation operator cannot create an electron in a spin orbital, if electron is already 

present. Similarly annihilation operator cannot destroy an electron if it is not present in 

the orbital. Thus a vacuum is a state that can be defined as absence of electrons and is 

represented as ( )or . These operators obey the anti-commutation relation among 

them. 

 

          

 

 

 

† † † † † †

† † †

, 0

, 0

,

i j i j j i

i j i j j i

i j i j j i ij

a a a a a a

a a a a a a

a a a a a a 

  

  

  
                                       (1.23)                               

             From equation (1.22) and (1.23) we can conclude that interchanging between any 

two creation or annihilation operators will result in change in the sign of determinant and 

hence the anti-symmetry principle is satisfied. Electronic Hamiltonian thus can be written 

in second quantised form, 

       
† † †

, , , , 12

1 1ˆˆ
ˆ2

ele i j i j k l

i j i j k l

H i h j a a ij kl a a a a
r

                     (1.24) 
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        Due to annihilation operator acting on vacuum, the result is zero and hence the 

arrangement of creation and annihilation operators has to be made in such way that 

annihilation operators are to the right of creation operator. This terminology is known as 

normal ordering. Using normal ordering along with Wick‟s theorem [24, 47-48], tedious 

algebra can be made simpler also the physics can be easily understandable. 

 
 

 

1.5.1 Concept of hole and particle: 

The algebra obtained using second-quantization can be further simplified i.e. some 

reference configuration is considered for occupancy. This reference configuration is 

generally specified as an occupied orbital for the presence of electrons, while the 

unoccupied orbitals are termed as virtual orbitals. Thus the concept of hole and particle is 

introduced and replaces electrons for solving algebra. The annihilation of electron in an 

occupied orbital result in creation of hole while annihilation of hole in occupied orbital 

results in creation of particle in virtual orbital. This particle and hole formation can be 

represented diagrammatically. This diagrammatic technique was first time introduced by 

Richard Feynman [49] in context with quantum electrodynamics. Goldstone [50] used the 

technique for solving algebraic equations for perturbation theory.  The diagrams are 

drawn using vertex, which represents the Hamiltonian. The downward arrow from one 

vertex to other shows internal hole line while upward arrow represents a particle line.  

Creation and annihilation of hole is represented by an inward and outward line while 

particle creation and annihilation is shown as an outward and inward line. 
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 1.6 Different Correlated Methods Available in the Literature 
 

      For proper introduction of electron correlation different methods are available in 

literature. They are listed in terms of their accuracy in predicting electron correlation. 

1. Configuration Interaction (CI).  

2. Many Body Perturbation Theory (MBPT). 

3. Independent Electron Pair Approximation (IEPA). 

4. Coupled Electron Pair Approximation (CEPA). 

5. Coupled Cluster Approximation (CCA). 

      All these methods contain some or the other level of truncation such as, truncated CI, 

finite order MBPT such as MP2, MP3, etc. and different electron pair approximation 

along with  various truncations incorporated in coupled cluster approach. Each of the 

method has its pros and cons depending on the defined problem. 

  1.6.1 Configuration Interaction Method 

              Hartree-Fock approximation is a phenomenally successful in many of the 

systems since it is a best single determinant form of exact wavefunction, but has some of 

its limitations. Thus, this single determinant does take care of parallel spin but cannot 

treat the instantaneous repulsion i.e. dynamic correlation between two electrons between 

anti parallel spins. Thus HF theory is unable to explain the very small energy differences 

that matter qualitatively and also fails in explaining most of the chemical phenomenon 

like binding energy, excitation energy, activation energy, etc.  that need energy 

differences rather than absolute energy.  

                Among all methods, Configuration Interaction (CI) [5, 22, 23] method is 

conceptually easy to understand i.e.; CI is most simple method to improve the 

wavefunction. Particularly CI represents a wave function as a linear combination of N-

electron trial functions and use linear variational method for determination of coefficients.  

On the whole, it yields an exact solution of many-electron problem for ground as well as 

excited state of systems, provided the bases set are complete. The inclusion of all possible 

configurations of determinants is thus termed as Full CI (FCI) method. The coefficients of 

configurations can be variationally optimized to minimize the total energy of the system.  

However, in real systems there is a restriction for handling complete set of N-electron 
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trial functions. That is if we have set of 2K one-electron spin-orbitals, with which 
2K

N

 
 
 

 

different N-electron Slater determinants can be constructed. Also for small molecules and 

moderate size one-electron basis sets, the number of N-electron determinants is huge.  For 

a finite one-electron basis, there should be a truncation on trial function in some way and 

should use a fraction of all possible N-electron functions.   

 

2

0 0 0

, ,

1
....

2!

a a ab ab

i i ij ij

i occ a virt i j occ a b virt

c c c   
   

 
    

 
   

           (1.25) 

                            In equation (1.25), the factor ensures that each determinant is counted once 

only. The 
a

i  represents the singly excited determinant formed from excitation of 

electron from i
th 

orbital i.e. occupied orbital in HF determinant to a
th

i.e. virtual orbital. In 

similar manner ab

ij  indicates the doubly excited determinant obtained by exciting the 

electrons from i
th

 and j
th

 orbitals to a
th

 and b
th

 orbitals respectively. We can find 

corresponding energies by using linear variation method. This consists of forming matrix 

representation of Hamiltonian in the basis of the N-electron functions of expansion and 

then the eigenvalues of matrix are found out. This matrix is termed as FCI matrix and 

corresponding method is called as FCI. Due to its variational nature the lowest eigenvalue 

will be upper bound to the ground state energy of the system, while the higher 

eigenvalues will be upper bounds to the excited states of the system. The wavefunction of 

CI can be written in intermediate normalized form, where the coefficient 0c  of 

wavefunction
0  is very large than other excitations.

 

                                                           0 0 1  
                              (1.26)                  

Using the property of intermediate normalization we can normalize exact ground state 

wave function 0  for CI. The importance of this intermediate normalization is, it 

couples the coefficients of singles, doubles and triples. The set of all such equations form 

a large matrix, which has to be further diagonalized to obtain the correlation energy. 

                            Although the FCI is theoretically perfect model, it does not satisfy the 

criteria of cost-effectiveness. Hence with the increasing number of electrons i.e. 

dimension of wavefunction and the increasing basis functions FCI becomes unsustainable 
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even for small molecules with moderate size basis set.  For practical application FCI is 

not feasible and has to be truncated. Ground state of wavefunction is not improved by just 

adding singly excited configuration, due to Brillouin‟s theorem [5], however doubly 

excited configuration also known as CI doubles (CID) improves the wavefunction to 

recover most of the correlation energy.  

                        One-electron operator plays dominant role in defining the molecular 

properties like dipole moment, polarizabilities, etc. Therefore addition of singly excited 

determinants to doubly excited one is required.  This method is popularly known as CI 

singles and doubles (CISD) and thus it describes one electron properties more accurately. 

However, the singly excited determinants do not directly interact with HF, they only 

interact through doubly excited determinants and thus the correlation energy is improved. 

To get more accurate correlation energy the higher excitations has to be added and those 

are termed as CISD (T), CISDT, and CISDTQ and so on. 

                       As mentioned earlier the FCI is not possible practically even for moderate 

systems and hence one has to truncate the wavefunction.  The essential requirement from 

a model system is, it should be size-consistent, and however, truncated CI does not satisfy 

the size-consistency as well as size-extensivity of the wave function, where the 

phenomenon of size-consistency is related to proper description of system at dissociation 

limit while size-extensivity defines the proper scaling of energy with number of electrons.   

Thus, truncated CI is not considered as a theoretical model. 

 

1.6.2 Many Body Perturbation theory         

               Many Body Perturbation Theory (MBPT) [25, 26] is a systematic procedure to 

improve correlation energy. The method is not variational in nature; however, it is size 

consistent at each level of perturbation. Perturbation series can be subdivided into 

Rayleigh Schrodinger (RSPT)[24,25,51]  and Brillouin Winger perturbation theory 

(BWPT) [24].  Using BWPT the energy obtained at each perturbation order depends on 

energy itself, thus an iterative procedure is adopted to solve for energy, however, energy 

obtained at higher order at each successive iteration is not size-extensive. Hence BWPT is 

not followed for obtaining correlation energy. In RSPT, depending on partitioning pattern 

of Hamiltonian there are two different perturbation theories namely Møller-Plessette 

(MP) and Epstein Nesbet (EN) namely. Thus the MP perturbation expansion is size 
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consistent irrespective of order of perturbation where it gets terminated.  K.A. Brueckner 

[51] first studied and proved that, for first few orders, some of the ill-behaved terms 

cancel and thus MBPT is size-consistent at each order. However, he could not prove the 

size-consistency for higher order terms. Goldstone [50] tried the diagrammatic technique 

for the algebraic expression in RSPT. Diagrammatically he found that the disconnected 

pieces represent the ill-behaved terms and are not linked. Such terms cancel at each order. 

This concept of linked and unlinked terms is obtained from the linked cluster theorem, 

which states that perturbation expansion of energy of many–body system can be 

represented uniquely by linked diagrams. This diagrammatic technique was first applied 

by Kelly [53] to obtain the correlation energy. Due to this spatial feature of the method it 

is studied in detailed in literature.  

The Hamiltonian of the system can be written in the form of   

                                      0H H v                                                                       (1.27) 

The Hamiltonian in MBPT can be split into a known part and unknown part. The known 

part gives major contribution of energy and is entitled as zeroth order Hamiltonian and is 

denoted as
0Ĥ . Thus the eigenfunctions  0

i  of 
0Ĥ  form a complete set with the 

corresponding eigenvalues denoted by
0

iE . The weakly interacting part is known as 

perturbation and is denoted by and the exact energy can be expressed as an infinite sum 

of contributions of increasing complexity.  

The equation contains eigenvalues of  
0Ĥ  and matrix elements of perturbation between 

the eigenfunctions of
0Ĥ . All the terms that include products of n such matrix elements 

are grouped together and they constitute n
th

 order perturbation theory.  

                       

2 3
0 1 2 3

2 3
0 1 2 3

....
2! 3!

....
2! 3!

i i i i i

i i i i iE E E E E

 


 


        

    
                                      (1.28) 

 Here   is the perturbation parameter, when 0   corresponds to unperturbed 

Hamiltonian
0Ĥ . When 1  , the system is completely perturbed corresponding to 
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stationary states of exact Hamiltonian. Thus the exact states are obtained by carrying out 

Taylor series expansion the quantities around 0  . 

                                              
(1)

i i iE V                                                                              (1.29) 
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i n

i

n i i n

V
E

E E

 



                                                        (1.30) 

Equation (1.29) and (1.30) represent the first and second order correction to energy. 

Though first order correction does not improve the correlation energy, second order 

energy shows improvement in the correlation energy. Second order correction is also 

known as MP2. 

Generally, MBPT can be used for any stationary state. Although most of the time it is 

used for ground state calculations. The accuracy of many body methods can be measured 

in terms of perturbation order. Especially MP2, MP3, etc, are very popular methods for 

their accuracy and relative simplicity. 

1.6.3  Independent Electron Pair Approximation  

If each pair of electrons is treated independent of other pairs then N-electron problem is 

reduced to N*(N-1)/2 electron pairs. Study of Pair theories [54] is important in 

calculating correlation energies.  Due to Pauli‟s exclusion principle and two particle 

nature of Hamiltonian, electron pair theories give good sight of approximation for N 

electron atomic and molecular orbital. This approximation considers only one pair of 

electron at a time i.e. the approximation neglects pair coupling terms also IEPA consider 

cancellation of nonlinear terms with the terms present in energy.  Hence interaction 

among the pairs is neglected. The total correlation energy can be represented as sum of 

pair contribution; those are obtained independently by solving effective two electron 

equations. The separation of pairs is termed as independent electron pair approximation 

(IEPA). The approximation was developed by Sinanoğlu [3] and Nesbet [54] 

independently. Different formulations were used by both the authors. Sinanoğlu termed 

the theory as Many-Electron Theory (MET) while Bethe-Goldstone Theory name was 

used by Nesbet. Freed and Robb [55] studied in detail about the relation between IEPA 

and perturbation method. The IEPA wave function for ij
th

 pair may be written as  
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                                0

ab ab

ij ij ij

a b

C                                          (1.31) 

Here i, j are occupied orbitals while a, b are virtual orbitals in the HF determinant.    

Linear variation is done to calculate the energy Eij which is a sum of HF energy and pair 

correlation energy corresponding to pair ij. 

The total correlation energy in IEPA approximation is defined as  

                                     
IEPA IEPA

corr ij

i j

E e


                                       (1.32) 

Despite of the fact that, the correlation energy for each pair is obtained through linear 

variation method; the sum of all is not upper bound to the exact correlation energy. 

Computationally, calculating IEPA is very similar to DCI for each pair separately and 

hence it is also termed as “pair-at-a-time” CI.  However, the individual pair CI matrices 

are much smaller in size than DCI. The advantage of IEPA over DCI is, it is size-

consistent. However, IEPA has a disadvantage that, it is not invariant to unitary 

transformations of occupied spin orbitals in  HF determinant.   

1.6.4  Coupled electron pair approximation  

               If the interaction between two pairs of electrons is assumed, then such interactions are 

known as coupled pair approximations. W. Meyer [56] proposed a series of schemes that 

assuming the coupling between the pairs. Among these schemes, some schemes perform 

in better way to give size-extensive results. Although Coupled electron pair 

approximation (CEPA) considers interaction among the pairs that is conceptually 

neglected in IEPA, it neglects most of the nonlinear terms that are included in more 

advanced approximation known as coupled-cluster approximation. Various versions of 

CEPA are known in literature.[17, 56, 57]. This approximation show very similar nature 

to some approximate versions of CI along with non-variational and non-perturbative 

coupled cluster approximation. 
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1.6.5  Coupled Cluster Approximation  

Coupled cluster (CC) theories are most popular once due to their accuracy in predicting 

electron correlation. Sinanoğlu  [3] and Nesbet [54] proposed and studied pair theories 

and these pair theories are considered as pioneer‟s for the formulation of CC.  The form 

of wave function can be described as an exponential operator operating on suitable 

reference space, generally Hartree-Fock wave function. Cöester and Kümmel [58] used 

the cumulant expansion in nuclear physics to solve the atomic problems. This concept of 

cluster expansion was originated in statistical mechanics and are well known as Ursell 

and Mayer [59] expansion.Čižek  and Paldus[60] first introduced the concept of CC in 

quantum chemistry, i.e. they derived the equations related to atomic problems. We can 

relate between coupled cluster approximation (CCA) and MBPT as, CCA can be written 

as infinite order of systematic summation selected class of MBPT diagrams.  If a quantity 

A associated with a N-particle system is additively separable, then exp(A) can be shown 

as multiplicatively separable. Also it is mandatory for A to have contributions only from 

linked cluster to be additively separable. 

Coupled cluster approximation (CCA) in the ground state wave function of N-electron 

systems is obtained by action of exponential wave-operator acting on HF as a reference 

function  

                                    0 0

Te                                                   (1.33) 

Here T defines basic linked excitation operator and if it includes all basic excitations of T, 

then exp (T) will define the exact wave function. Inclusion of doubly excited linked 

clusters to the wave function is termed as coupled cluster doubles wave function. Further 

wave function can be improved by adding the triples, quadruples and up to N-tuply 

excitations. The advantage is, these higher order excitations can be written as product of 

doubly excited configurations. For calculating amplitude using normal CC method, 

projection techniques are used. In terms of second quantization, T is the sum of  

hole-particle creation operators. 
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                                 1 2 .... NT T T T                                                         (1.34) 

Where, 
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                                         (1.35) 

and is continued 

     The lower case letters t represents the amplitudes corresponding to the cluster 

operators T.  The cluster amplitudes can be related to CI, provided the full expansion is 

considered in both the methods, however, in case of truncated CI and CC this relations 

does not hold true. 
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                     (1.36) 

and the series continues. 

 Schrödinger equation with normal-ordered Hamiltonian can be written in the following 

form 

                               0 0 0
ˆ T corr T

NH e E e                                                    (1.37) 

   There are various ways of solving above equation and further can be classified mainly 

into variational and non-variational methods that lead to various types of CC anasatz.  A 

traditional form of CC anasatz, also known as non-variational coupled cluster (NVCC) 

and using this, the Schrödinger equation can be solved by applying projection technique 

or similarity transform method. Projection technique is implemented by projecting HF or 

excited configuration from left side on equation (1.37) to obtain energy or amplitude. The 
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other method used for solving equation is similarity transform. By using similarity 

transformation method we obtain identical set of equations, which are obtained from 

projection method. 

                          0 0 0
ˆT T corr

Ne H e E                                        (1.38) 

 The expansion of Hamiltonian can be done using Campbell-Baker-Hausedorff formula 

for 
A Ae Be

 , the Hamiltonian can be written as, 

                      
1ˆ ˆ ˆ[H ,T] [[H , ], ] ....
2!

N N NH H T T                               (1.39) 

Applying Wick‟s theorem and the condition that the cluster operators commute within 

themselves result into two different terms. One set among them is represented by 

connected diagrams i.e. diagrams with no vertex detached from the rest and hence are 

termed as connected diagrams. Another set of diagrams those are termed as disconnected 

diagrams correspond to disconnected terms. Although the disconnected terms get cancel 

mutually with the terms in denominator and thus we get, 

                     
ˆ ˆe ( )T T T

N N CH e H e                                          (1.40) 

            In equation (1.40) subscript C denotes the connectedness of the terms obtained 

from ˆ
NH andT .  This connectedness confirms the size-consistency and size-extensivity. 

The normal order Hamiltonian ˆ
NH , has two-body nature and hence it can be proved that 

equation (1.40) can be terminated after the quadratic power of T.  The left hand side of 

equation (1.40) may be considered as similarity transformed Hamiltonian H . 

                    ˆ ˆ( )T T T

N N CH e H e H e                                                             (1.41) 

              The resultant normal order Hamiltonian obtained after the transformation is non-

Hermitian in nature and thus the resultant eigenvalues can be complex.  The ground state 

correlation energy can be obtained as 0  expectation value of H . Although the  non-

hermicity of CC anasatz  is only valid for ground state calculations. The correlation 

energy can be written as, 
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                0 0 0 0 0
ˆ( )corr T

N CE H H e                                 (1.42) 

 And the equation for obtaining the cluster amplitudes can be written as, 

                 
* *

0 0
ˆ0 ( )T

i i N CH H e                                               (1.43) 

A coupled set of nonlinear simultaneous equations are obtained by using equation (1.43), 

these equation are solved iteratively to get the cluster amplitudes [42,43-44]. At each 

order of iteration the a small amount of correction is added to correlation energy. On 

attaining self-consistency and numerical accuracy, the correlation energy using equation 

(1.42) can be obtained. 

T amplitudes expanded up to N
th

 order result in to full CC form. However, the structure 

of CC is exponential and inclusion of non-linear terms makes the calculation complex. 

Hence for practical purpose one has to truncate the CC approximation. Commonly used 

approximation is 1 2T T T  , that is well known as coupled cluster singles and doubles 

(CCSD) . CC approximation, truncated at any order gives size-consistent and size-

extensive results. The reason behind this is the exponential nature of wave operator, 

includes higher excitations through the products of 1T and 2T . There can be further 

improvements in CC anasatz i.e. partial or full inclusion of triples CCSD(T), CCSDT 

[61], quadruples CCSDT(Q) and CCSDTQ,  [62] etc. Thus CC theory is most accurate 

among all other theories.    

Although NVCC method gives quite accurate results, it has its own limitation. Due to 

non-variational nature the energy obtained is not necessarily upper bound to ground state 

energy. Thus in applications like potential energy surfaces (PES), NVCC fails to 

converge to a right state.  Also for open shell systems the NVCC does not give accurate 

results. 

            To find an alternative to the NVCC approach there are various variational 

methods studied in literature. The detailed discussion on them will be followed. 
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1.7   Stationary / Variational Coupled Cluster Approaches:  

1.7.1 Expectation Value Coupled Cluster 

Among the variational methods, expectation value coupled cluster (XCC) method has 

been studied in literature [63-67]. The series in XCC is not explicitly size-extensive or 

linked but can be shown that it leads to a linked functional. This was proved by Pal et. al. 

[64].  Factorizing the numerator into completely linked part and unlinked part and 

cancelling the unlinked part with the denominator, leads to linked term. However, this 

cancellation of unlinked part can be only made if the numerator as well as denominator 

are not truncated. We obtain a linked series as, 

                              

†

0 0
ˆT T

N L
E e H e                                          (1.44) 

   Here in equation (1.44) the T operator is same as in NVCC i.e. hole particle creation 

operator while  †T  is hole particle destruction operator. And thus †T  can be expanded as  

                               
† † † †

1 2 .... NT T T T                                 (1.45) 

                             

 

 

† †

1

† † †

2

, ,

i

a i a

i occ a virt

ij

ab i j b a

i j occ a b virt

T t a a

T t a a a a

 

 





 

                              (1.46) 

and so on.  

   Thus the cluster amplitudes are obtained by making the energy functional stationary 

with respect to T  (or †T ). The XCC series is non-terminating series. However, it has to 

be truncated for practical application. Various truncation schemes are available. Based on 

fixed powers of †/T T  truncation scheme is defined. This is symmetric truncation 

scheme. Pal et. al. [64] used this scheme in stationary determination of cluster 

amplitudes. However, one limitation of method was observed that fix power truncation of  

the functional would not give necessary  upper bound results . Based on perturbation 

analysis, a new truncation scheme was suggested for XCC by Bartlett et. al [66].  In this 

approximation, all the terms that contribute at least at fixed order (n) in V perturbation are 
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included. However, the method is not symmetric.   The major disadvantage of XCC is, 

the series is non-terminating and when truncated and tested for stationarality, it leads to 

disconnected terms in the equation for T amplitudes as well as for derivatives. Thus the 

result of this is loss of size-extensivity in evaluation of properties. 

1.7.2   Unitary Coupled Cluster Approach  

A little different approach within variational framework called as unitary CC was 

proposed by Van Vleck [67] ,Primas [68]  and Kutzelnigg [69]. A more symmetric 

truncation scheme using UCC ansatz was suggested by Bartlett [66]. UCC wavefunction 

makes use of anti-Hermitian cluster operator σ, which can also be written as 
†T T .  

The cluster amplitudes can be obtained either by using variational or non-variational 

method.  While Westhausand Mukherjeeet.al. proposed a non-variational method for 

calculating cluster amplitudes [70]. Thus the energy and amplitudes can be found using 

UCC functional as, 

                                

0 0 0

*

00

E e He

e He

 

 

 

 








                                                       (1.47) 

Using similarity transformation, it can be written in the form of  e He 
. Thus the series 

can be  written as, 

                             
† † †1

[ ,( )] [[ , ( )]( )] ...
2!

e He H H T T H T T T T              (1.48) 

As proposed by Kutzelnigg, the UCC can  be  solved variationally and the expectation 

value can be  written as,  

                                       
0 0

0 0

e He
E

e e

 

 





 


 
                                                       (1.49) 

        If the denominator in equation (1.49) is taken to all orders is identically equal to 

unity, that results into  

                                                  0 0E e He                                                (1.50) 
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Thus the equation (1.50) obtained has a close relation to expectation value functional 

obtained by using normal CC wave operator i.e. T amplitudes.  

 However, there are only few studies done using UCC functional and has never been used 

for calculating molecular properties. 

1.7.3   Extended Coupled Cluster Approach  

Arponen and Bishop [71-73] suggested the bi-orthogonal functional for calculation of 

ground state energy using the stationary approach. The functional can be written in 

double-similarity transformed Hamiltonian form.  An additional destruction operator is 

added on left hand side to the non-variational coupled cluster functional. Using double 

similarity transformation, the extended coupled cluster (ECC) functional can be written in 

the following form 

                                    0 0( )T

L DL
E e He                                                 (1.51) 

In equation (1.51),T indicates the hole-particle excitation operator while  indicate hole-

particle destruction operator. The subscript L signifies linking of T with the Hamiltonian

Ĥ . This linking specifies that, it is mandatory for hole-particle operator T to be connected 

to the Hamiltonian Ĥ . The DL (double linking) indicates the left operator  should either 

be connected to Hamiltonian Ĥ  or to two different T operators. Thus the DL ensures 

connectedness between the terms present in equations containing   and T respectively. 

Functional being variational in nature, the correlation energy obtained is size-extensive. 

Thus the series gets naturally terminated due to the double linking of the functional. 

Several alternative forms of ECC have been pursued by Van Voorhis and Head-Gordon 

[74] and Piecuch and co-workers [75, 76] 

                    The advantage of ECC over Non-variational CC, for calculating various 

molecular properties will be discussed in linear response section. 

1.8  Evaluation of molecular properties through response methods 

                

 Energy derivatives have their own importance in various fields in predicting various 

properties like spectroscopic properties, electric, magnetic and geometric properties. 

There are several approaches for calculating these energy derivatives. Among them we 
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can list the main approaches as numerical, expectation value and analytic approach. CC 

method, due to its ability of predicting accurate energy is also popular for calculating 

energy derivatives. Since the analytic approach provides most accurate results, the 

development of these methods has acquired a great importance in quantum mechanical 

methods. In this thesis we have studied electric properties as well as spectroscopic 

properties. Formulation and implementation of gradient i.e. first derivative of energy with 

respect to nuclear geometry is done. 

1.8.1  Numerical Approach: 

 Finite field method is the very well-known and most easy approach to calculate energy 

derivatives. For calculation of n
th

 order derivative we require the finite difference between 

the derivatives with respect to the field strength or external perturbation. There are 

numerous studies done using finite field approach in CC method. For instance multipole 

moments[7-10], dipole[7-10,77], quadrupole and higher order polarizabilities and 

hyperpolarizabilities[78,79] are studied in CC framework. The level of precision of the 

method depends on the field strength selected. Although, the method is simple most, loses 

its accuracy for higher order derivatives calculation. Hence one has to find an alternative 

for accurate property/derivative calculation. 

1.8.2 Expectation Value Approach: 

The analytic approach for the calculation of properties is most precise and accurate one. 

Expectation value approach is mostly used for calculating first order properties. The 

expectation value for property calculation is expressed in the following form. Ô  is the 

first order property i.e. dipole operator 

                                     

ˆ
ˆ O

O
 


 

                                                                 (1.52) 

For property calculation using CC ansatz the expectation value can be written as, 

                       

†

†

0 0

0 0

ˆ
ˆ

T T

T T

e Oe
O

e e

 


 
                            (1.53) 
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In equation (1.52),    is the ground state wavefunction. Numerator as well as 

denominator has to be expanded in order to get the expectation value of property. 

However, the series is non-terminating in nature and has to be truncated for practical 

applications. Noga and Urban [51] studied the effect of truncation on expectation value 

.The disadvantage with this approach is, only first order properties are accurately 

calculated and the higher order property calculation is tedious as well as the property 

calculated is not accurate. Expectation value of first order property is generally expressed 

as, when the Hamiltonian of the system is perturbed by an external perturbation such as 

electric field, the total  Hamiltonian is written as sum of unperturbed Hamiltonian i.e. 

Hamiltonian in absence of external perturbation and perturbed Hamiltonian. 

                                              0
ˆˆ ˆH H O                                                      (1.54) 

here  represents the perturbation parameter,. Then the total energy is obtained by 

                                          
( ) ( ) ( )

( )
( ) ( )

H
E

  


 

 


 
                                        (1.55) 

 To get the expectation value of energy, where  =0, 

                                   
'

0 0

( ) ˆˆ| ( ) ( )
E

E H O


  

 


 
    

 
                        (1.56) 

Thus partially differentiating the equation (1.55) we get, 

                               
   '

0 0 0 0 0 0
ˆ ˆ| |E H O H 

 

 
 

 
      

 
   (1.57) 

0 and   in equation (1.57) represent the unperturbed as well as perturbed wave 

function.   
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 1.8.3  Analytic response Approach 

Many of the properties in CC framework are calculated using analytic response approach 

due to the high accuracy of the method. Non-variational or fully variational methods are 

implemented for calculating molecular properties. Calculation of energy derivatives i.e. 

property, of certain order requires the amplitude derivatives along with the wave function 

derivatives. Thus to evaluate property using non-variational CC (NVCC) method, the 

derivatives of t amplitudes have to be calculated.  

 

1.8.3.1  Analytic non-variational CC method for property calculation 
 

The property calculation involves derivative of cluster amplitudes as well as energy 

derivatives and the projection technique is used for calculation of these derivatives. This 

projection is done from left hand side of the analytical NVCC functional. Monkhorst [80] 

first time applied the response approach within NVCC for evaluating properties.  The 

NVCC wave function in presence of an external field can be expanded and ( )E  and

( )T  written form of Taylor series as. 

                                    ( )

0 0

T

C
E He                                                     (1.58) 

                                     

(0) (1) (2) (2) ( ) ( )

(0) (1) (2) (2) ( ) ( )

( ) ........

( ) ........

n n

n n

E E E E E

T T T T T

   

   

    

    
                               (1.59) 

 The n
th  

order derivative of energy with respect to field   calculated at  =0. 

                                              
( )

0

1 ( )
|

!

n
n E

E
n



 


                                                                     (1.60) 

 Thus the derivatives of energy and amplitude derivatives in wave function derivatives 

can be obtained by differentiating energy as well as amplitude equation within NVCC 

framework. Thus using equation of NVCC energy (1.42) and amplitude equation (1.43) 

and taking their respective derivatives with respect to the field will provide us with the 

solution of derivatives of required order. It has to be underlined that the equation required 

for particular order contain linear derivative cluster amplitudes of the particular order and 

without considering the relaxation of  the orbitals we can write the specific equations as, 



Chapter 1  
  

29 
 

                                 
(1) '

0 0 0
ˆ ˆ[( ) ( ) ]T T

C N CE Oe H e T                        (1.61) 

                                    
* '

0
ˆ ˆ0 [( ) ( ) ]T T

C N COe H e T                              (1.62) 

        With using equations (1.58) and (1.59) we obtain the first order derivatives of energy 

and amplitudes. Although, the method seems very simple and trivial for solving, for each 

mode of perturbation we need the amplitude derivatives. Thus requirement of amplitude 

derivatives increases the complications in the NVCC method for obtaining higher order 

properties. 

 

1.8.3.2  Z-Vector Technique 
 

         This is an alternate approach to calculate the energy derivative through elimination 

of  (1)t i.e. amplitude derivatives. The initial concept of Z-vector technique was proposed 

by Handy and Schaefer [37] who used the method for evaluating analytical derivatives for 

CI method. Later Bartlett and co-workers [36] introduced Z-vector technique in NVCC 

context based on Dalgarno‟s [81] interchange theorem. Thus the equations can be written 

in the following form 

 

                                      
(1) (1)

0
ˆ( )corr TE Y T Q O                               (1.63) 

                                      
(1) ˆ0 AT ( )B O                                (1.64) 

                                         
T TZ A Y                                                           (1.65) 

                                     
(1)

0
ˆ ˆ( ) Q(O)corr TE Z B O                               (1.66) 

  Equation (1.63) introduces a perturbation independent vector TZ . The (1)TY T  represents 

the amplitude derivative while ˆ( )Q O implies the Hamiltonian derivative. In equation 

(1.66) it is seen that the first derivative of energy is independent of wavefunction 

derivative. Hence there is only one set of perturbation independent amplitudes to be 

solved i.e. Z-vector represented in equation (1.66). However, solving the properties 
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beyond second derivative becomes tedious and hence one has to find some other method 

for simplification of evaluation of property. 

 

1.8.3.3  Constrained Variational Approach 
 

As the name suggest and in context of the CC approach, NVCC method is made 

variational with the application of some constrain over it. Jørgensen and co-workers [38, 

82, 83] introduced constrained variational approach (CVA), which extends the advantages 

of Z-vector technique for higher order  energy derivatives. This CVA technique has been 

basically originated from Lagrange‟s undetermined multipliers method. Thus CVA 

approach in terms of Lagrangian can be written as follows 

                              0 0 0

0

ˆ ˆ( ) ( )T T

C I I C

I

L He He


                         (1.67) 

from equation (1.67), we can make a remark that first term in right hand side gives the 

total electronic energy of the system. 
's  are the Lagrange multipliers and are optimized 

with the cluster equations as the constraint. The optimization of L leads to equation for λ-

vectors that are same as Z-vectors. Thus, in comparison with Z-vector technique CVA is 

computationally more feasible for higher order derivatives. 

1.8.4  Property calculation using stationary approach 

     Stationary or variational methods have a definite advantage over NVCC method due to 

their nature to follow generalised Hellmann-Feynman (GHF) theorem. With (GHF) 

theorem we can calculate (2n+1) energy derivative with the help of n
th

 derivative of 

cluster amplitudes. Bartlett and co-workers used variational i.e. stationary response 

approach in context of energy derivatives. Different methods were used by Jorgensen et. 

al. as well  as Pal  and co-workers for calculating energy derivatives using stationary 

response approach. Helgaker and Jorgensen proposed Lagrange multiplier technique for 

calculation of response functions for static perturbation. The stationary method is used 

and the construction of the Lagrangian is such that it will give non-variational CC 

equations when differentiated to LM . Thus using this stationary technique Hellmann-

Feynman Theorem can be derived. Helgaker and Jorgensen derived the time-independent 

Lagrange multiplier approach for evaluation of higher derivatives of energy. While 
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Kochet.al. [83] presented a general formalism for determining amplitudes using  time-

dependant method.  

                 Pal et. al.  developed XCC as well as UCC response approach extensively for 

evaluation of static properties [84] i.e. energy derivatives for molecules [85-88]. In this 

stationary approach the energy functional and the derivatives of the energy are 

represented in terms of cluster amplitudes and their derivatives. In the presence of 

external field the energy as well as the cluster amplitudes depend on the external 

perturbation. Energy and cluster amplitudes are expanded in Taylor series. Collecting 

powers of perturbation we get equations for various orders. To solve these equations 

energy functional is made stationary with respect to ground state cluster amplitudes. Pal 

and co-workers showed that if cluster amplitudes along with their derivatives are 

truncated to uniform degree, then the stationary condition 

( )

( )
0

i

i

E

T





 gives identical set of 

equations for a fixed value of (i-j) [85].  For obtaining the cluster derivative of specific 

order, the derivative of energy functional of that order is made stationary with respect to 

cluster amplitudes. Thus using this Stationarity condition we can obtain the (2n+1) rule 

for energy derivative calculation. The major advantage of using XCC and UCC for 

evaluating property is, the nature of the series is non-terminating and requires truncation 

for practical applications. Thus the truncation of these series results in the presence of 

disconnected terms in calculating amplitudes as well as derivative amplitudes. This leads 

to loss in size-extensivity.  

                Thus to correct the problems present in XCC as well as UCC functional, Pal 

and co-workers studied another functional for property evaluation [42, 85]. It recovers all 

the discrepancy present in the previous two methods.  Arponen and Bishop proposed the 

bi-orthogonal functional to calculate energy [41,71-73]. The functional contains two 

different set of parameters represented by bra and ket. Thus the functional can be written 

as 

                                
 

'

0 0

ˆ ˆ

ˆ 1 T T

H H

H e He

  

   
                                       (1.68) 



Chapter 1  
  

32 
 

In equation (1.68)  '  and    are the two set of parameters, those are parameterized 

differently. T is a hole-particle excitation operator while   is a linear operator and 

includes hole-particle de-excitation operator, the operator resembles with the T    

operator. 0 is the Hartree-Fock determinant i.e. the reference function. Thus we can 

write the equations as 

                                            

'

0

1

1

  

  
                                                                        (1.69) 

                    Differentiating equation (1.68) with respect to   we get the NVCC equation. 

To obtain the fully connected theory Arponen proposed extended coupled cluster theory 

(ECC). After the double similarity transform, the functional can be written as, 

                                        
0 0

0 0( )

T T

DL

T

L DL

E e e He e

E e He

  



  

  
                                             (1.70) 

               We can correlate between the equation (1.69) and (1.70) as ' =
0

Te e  and 

 = 0

Te e  . The subscript L represents the direct linking of T-amplitudes with the 

Hamiltonian H. The subscript DL indicates the double linking of the functional i.e. the 

left operator   either has to be connected to Hamiltonian H or should be connected to at 

least two different T amplitudes. The double linking ensures the connectedness in the 

energy as well as amplitude terms. Also the energy derivatives along with the cluster 

amplitude derivatives are connected at any order of truncation. 

   The hole-particle creation T and destruction   amplitudes can be written in e second 

quantised form as 

                                         

1 2 3

†

1
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† †
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                                        (1.71) 
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                  (1.72) 

                      Advantage with the ECC anasatz is the series expanded gets naturally 

terminated. Though the series is naturally terminating, the truncation happens at higher 

order. Thus for practical applications we need to use some truncation scheme. For 

example, for singles and doubles approximation, the term with maximum number of   

and T amplitude terms is 
6 4

1 2VT  , it means the total power  T is 10 while that with 

the perturbative order is 17 for this term. However, such higher order terms do not 

improve the correlation energy to any noticeable order. The calculation of such higher 

order terms is computationally very expensive and hence the series is truncated at low 

order for practical applications. Quadratic truncation of left as well as right cluster 

amplitudes using Bruckner orbitals and elimination of singles terms was proposed by 

Head-Gordon et. al. [74]. This truncation scheme was found accurate for calculation of 

energy of different systems. 

To calculate the ground state cluster amplitudes for T and   variationally, energy is 

made stationary with respect to t and  .  

                                               

( )
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                                               (1.73) 
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                                                (1.74) 

solving equations (1.73) and (1.74), we obtain equations for t  and   respectively.    

Thus being variational method, the Hellman-Feynman theorem i.e. (2n+1) holds good, for 

evaluating the energy derivatives.  

                               

(1) (1)

0 0

(1) (1)

0 0 0 0
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         (1.75)     
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                    For calculating higher order derivatives of energy i.e. higher order response 

properties, we require the derivatives of t and  amplitudes. For instance if we have to 

calculate the second order derivative of energy then we require first order derivative of t 

and  amplitudes. 

                     Similarly higher order derivatives using Hellman-Feynman theorem can be 

obtained with these derivatives. The L (linked) and DL (Double linked) have the same 

meaning as signified in equation (1.70). Therefore, the ECC functional not only gives the 

connected diagrams and terms for energy, but also gives connectedness in energy 

derivative terms as well. General equation to obtain the amplitudes (1) and (1)t  are given 

by equation (1.76) and (1.77), 

                                               

(1)

(0)
0

E







                                                                      (1.76) 
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                                                                     (1.77) 
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               (1.78) 
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                       (1.79) 

          Equations (1.78) and (1.79) give us the derivatives of cluster amplitudes  
(1)

2t  and 

(1)

1t and in similar way equations for 
(0)

2 and 
(0)

1  amplitudes are given as  
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          (1.80) 
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                                   (1.81) 

Thus stationary equation for (1)E  can be given as, 

(1) (0) (0) (0) (0) (0)

0 1 1 1 2 2

(0) (0) (0) (0) (0) (0)

1 1 1 2 1 2 0

ˆ ˆ ˆ

1 ˆ ˆ
2!

StatE Ot Ot Ot

Ot t Ot t

   

                                                   (1.82) 

With these cluster amplitudes derivatives and application of Hellman-Feynman theorem 

we can find the derivative up to third order i.e.  till first hyperpolarizability. 

         Solving the algebraic equation for calculating energy as well as energy derivatives 

becomes tedious and hence the diagrammatic techniques are used to simplify the 

equations.   
 

                                                    

 

 

Digram 1:  Closed connected diagrams to calculate correlation energy.         
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The property calculations using ECC functional within coupled cluster singles and 

doubles (CCSD) approach has been studied by Pal and co-workers [42-44]. For this study 

they have truncated the ECC functional up to cubic order i.e. total number of amplitudes 

is of cubic order.  This ECCSD method has been extensively used to study electric 

properties such as dipole moment, polarizability, first hyperpolarizability of different 

systems and these are studied at equilibrium geometry [42, 88].  The single bond 

stretching has also been studied [90]. Along with these property studies, a fairly difficult 

magnetic property calculation has also been perceived by Pal and co-workers [43-44]. 

Diamagnetic and Paramagnetic magnetizabilities of small molecules have been calculated 

using ECCSD approximation. Nuclear magnetic shielding, which is responsible for 

prediction of presence of nuclei is also calculated using ECC approach and is reported by 

Vaval and co-workers [91]. 

 

 

 

 

 

 

S2V 

Diagram: 2 Open connected diagrams for amplitude 

calculation. 
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1.9   Electric Properties: 
 

                   Dipole moment, Dipole Polarizability, Quadrupole moment, Dipole-

Quadrupole polarizability and various electric properties are basically energy derivatives 

with respect to electric field.  These properties are useful in determining structure and 

different characteristics of molecular system. Analytical evaluation of these properties 

becomes important because of limitations to experimental techniques. Electric field acts 

as a perturbation and interacts with the charged particles i.e. electrons and thus adds 

scalar potential to the Hamiltonian. Thus the dipole moment and dipole polarizability are 

first and second derivative of energy with respect to electric field, while quadrupole 

moment is first derivative of energy with respect to field gradient while dipole-quadruple 

polarizability is second derivative of energy with respect to field and field gradient. Thus 

the energy in presence of electric field is written as, 

                                         

2 2

0 2
....

2!

E E
E E




 

 
   

 
                               (1.83) 

                                        
2

0 . . ...E E                                    (1.84) 

 is the perturbation parameter. In this equation the energy is expanded in terms of 

perturbation i.e. with respect to electric field. The 0E  is unperturbed energy while 
E






is 

the first order change in energy i.e. dipole moment  . Second order change is presented 

by polarizability α that is 

2

2

E






  in equation (1.83).  All the calculations are done at field 

equal to 0. 
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                                                       (1.86) 

                  The dipole moment and polarizability calculation are presented by equation 

(1.85) and (1.86). The electric property calculation is important for designing of non-

linear optical materials. The quadrupole moment is experimentally difficult to observe 
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while this property can be calculated by ab-initio methods. Calculation of quadrupole 

moments is essential for predicting higher order properties like dipole-quadrupole 

polarizability. Dipole-quadrupole polarizability is important for Raman scattering studies 

as well as for light scattering induced spectra [12, 13]. 
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                                                    (1.88) 

 Equations (1.87) and (1.88) give the expression for quadrupole moment and dipole-

quadrupole polarizability. Gradients of dipole-quadrupole polarizability are important for 

the prediction of Vibrational Raman Optical Activity (VROA) intensities [12, 13]. 

 

1.10  Spectroscopic Properties 
 

              Infrared intensities (IR) [92-95], Raman intensities and Vibrational 

frequencies are important spectroscopic properties to predict the molecular structure and 

physical properties related to the molecule. IR intensity is mixed derivative i.e. derivative 

of dipole moment with respect to nuclear co-ordinate i.e. with respect to geometry and  

Raman intensity is the mixed derivative i.e. derivative of polarizability with respect to 

geometry.  Vibrational frequency is second derivative of energy with respect to nuclear 

geometry. The theoretical prediction of the IR spectroscopic constants is well 

documented. Studies on IR spectra calculation are available in the literature for a wide 

variety of methods, starting from semi-emphirical, Hartree–Fock (HF) [95 -98], Moller–

Plesset perturbation theory (MP2) [99] to highly accurate SRCC methods[100]. Basis set 

dependence and effect of electron correlation on IR spectroscopic property are also 

studied [92, 95]. Recently, Helgaker and co-workers [101] have studied harmonic 

vibrational frequencies using coupled cluster connected quadruples and quintuples. Ab 

initio study of Raman spectroscopic properties is less abundant because of obvious 
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difficulties in the evaluation of mixed third order derivative of energy. There are only a 

few studies at the Hartree–Fock  [102, 103] and MP2 level  [104]. At the CC level of 

theory, Raman scattering cross section has been studied[105,106] . Raman intensities for 

small molecules using analytic CCSD method have been reported by Neill et al.[107].  

Analytically IR and Raman intensities can be calculated using gradient of dipole moment 

and polarizability while vibrational frequency is calculated using the Hessian.  

                                                     

2

3

i

K K i

ij

K K i j

d d E

dR dR dF

d d E

dR dR dFdF





 

 
                                        (1.89) 

                Thus equation (1.89) gives the IR and Raman intensity. 

 

  1.10.1   Details of the theory used for the calculation of IR and Raman 

spectroscopic properties: 

                    The theory for obtaining the spectroscopic properties is given in detail. In the 

harmonic approximation, the vibrational eigen modes of a given system can be found by 

solving the eigenvalue problem  

 

             

3

1

( ) 0, 1...3 , (2 )
N

jk jk i i

k

H M j N  


                             (1.90) 
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                                             (1.91) 

 

                                                         kl kl nM m
                                                      

(1.92) 

In Eq. (1.90), N is the number of atoms, H is the hessian matrix of the system, Xki are the 

elements of the i
th 

eigenvector, mn is the mass of the n
th 

atom and νi is the frequency of the 
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i
th

mode. A displacement Uki  in the direction of the i
th

eigenvector can then be written as  

 

                                                              ki i kiU Q X
                                                       (1.93)

 

Where Qi is referred as a normal-mode co-ordinate. Often, the derivatives of some 

physical property A with respect to Qi are required. If the derivatives of A are already 

known with respect to the external (Cartesian) atomic coordinates Rk, the required 

expression can easily be obtained from the following equation 
 

                                                               

3

1

N
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dA A
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                                                (1.94)

 

 

The first-order infrared intensity of the i
th   

mode is given by 

 

                                                           

2

3

IR

i

i

N d
I

c dQ

 


                                                          (1.95)

 

Where N is the particle density, c is the velocity of light and µ is the electric dipole 

moment of the system. 

 

Evaluation of Raman-scattering intensity is slightly more complicated. The static Raman 

intensity for ith eigen mode is given by 
 

                                    

2 2
2 2' '

45 7 45 7Raman

i

i i

d d
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dQ dQ

 
 

   
      

                           (1.96)

 

 

Where  
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And is given by 
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                                                          (1.99) 

A depolarization ratio describes the ratio of the intensities perpendicular and parallel to 

the incident polarization. In the above equations, α‟ is the mean polarizability derivative, 

β‟ is the anisotropy of polarizability tensor derivative and I
i

Raman 

is the Raman scattering 

activity of i
th

 mode. Prime denotes derivative with respect to the normal co-ordinate Q. 

These formulas are derived within the double harmonic approximation, which means that 

higher-order changes of the energy, dipole moment, and polarizability with respect to the 

normal-mode co-ordinate are neglected. Calculation of IR and Raman intensities along 

with vibrational frequencies for small molecules has been carried out using ECC 

approach. The details of calculations are discussed in chapter 2. 

 

1.11 Geometric Derivatives 

 

The calculations of reaction pathways as well as many properties depend upon the 

geometry of molecule. Many of the spectroscopic properties like IR, Raman intensities, 

vibrational frequencies can be predicted more precisely with the geometric derivatives. 

The first order derivative of energy with respect to nuclear co-ordinate or geometry is 

called as gradient whereas the second derivative of energy with respect to nuclear co-

ordinates is called as hessian. Thus the wave function response is required for these 

derivatives and wave function changes at each order of geometric perturbation. To 

calculate the wave function response the Coupled Perturbed Hartree-Fock equations are 

solved and therein the derivative coefficients are obtained. Thus the standard HF equation 

in unperturbed form can be written as, 
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(0) (0) (0) (0) (0)F C S C                                                        (1.100) 

 The superscript (0) refers to unperturbed system. In presence of perturbation the equation 

becomes, 

 

(1) (0) (0) (1) (1) (0) (0) (0) (1) (0) (0) (0) (1)F C F C S C S C S C                    (1.101) 

 

 Where Fock matrix (F), overlap matrix (S), coefficient matrix (C) and orbital energy 

matrix (ε) are expanded in terms of perturbation parameters. Thus we obtain first order 

CPHF equations by collecting the perturbed terms together. 

 

                          
(0) (0) (0) (1) (1) (1) (0) (0) (1) (0)( ) ( )F S C F S S C             (1.102) 

Thus equations (1.101) and (1.102) give the perturbed MO coefficients in terms of 

unperturbed quantities. 

 

Using orthonormality condition of molecular orbitals 
(0)† (0) (0) 1C S C  , the equation 

becomes, 

 

                                
(1) (0) (0)† (0) (0) † (1) (0) † (0) (1) 0C S C C S C C S C                    (1.103) 

 

Thus (1)F term is given as, 

 

                                             
(1) (1) (1) (0) (0) (1)F h G D G D                                (1.104) 

 

Here in equation (1.104) (1)h  represents the one-electron (core) matrix, D is the density 

matrix, G  is the tensor containing two electron integrals. The density matrix can be 

written as a product of MO coefficients 

 

                                              
(0) †(0) (0)

(1) †(1) (0) †(0) (1)

D C C

D C C C C



 
                                              (1.105) 

 

The quantities (1)S , (1)h  and 
(1)g  are first derivatives of overlap matrix, one and two 
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electron integrals.  

       When the perturbation is introduced, the stationary condition means that there is 

change in the molecular orbitals i.e. mixing of unperturbed MOs. Thus unitary 

transformation can show the change in MO.  

                                                          
(1) (1) (0)C U C                                                 (1.106) 

    Simplifying equation (1.102) by substituting 
(0)† (0) (0) 1C S C   and 

(0)† (0) (0)C F C E  we 

get the CPHF equation in matrix form. 

 

                               
(0) (0)(1) (1) † (1) (0) † (1) (0) (1)EU U E C S C E C F C E                  (1.107) 

 

      The CPHF equations are generally linear and can be solved with standard matrix 

operations. These equations are solved in iterative manner. The size of U matrix is 

number of occupied orbitals times number of virtual orbitals. The formulation of CPHF 

equations can be done either in molecular orbital (MO) basis or atomic orbital (AO) basis. 

Computationally MO basis is advantageous to use but the integrals are available in AO 

basis. Hence AO‟s are used in most of the cases. For each perturbation one CPHF 

equation is solved. There are 3components ( , ,x y zF F F ) for electric as well as for magnetic 

field. For geometry perturbation there will be 3N-6 co-ordinates where N is number of 

atoms.  

                 For calculation of higher order derivatives CPHF procedure can be generalized. 

If we extend the expansion to second-order, it allows derivation of an equation for the 

second-order change in the MO coefficients, by solving a second-order CPHF equation 

etc. First time the calculation of analytic gradient was done by Pulay in context of HF 

energy [108,109].  
 

1.12  Static Correlation and Multi-reference Methods. 
 

Single reference methods treat closed shell systems with single dominating determinant in 

proper way. This single reference determinant is also called as reference configuration. 

The closed shell systems as well as some open shell systems are described by the single 

dominant determinant. The electron correlation arising in due to weak interactions 

between different reference configurations is known as dynamical correlation. Apart from 

the dynamic correlation, there exists static correlation which dominates when many of the 
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determinants along with reference configuration become equally important. This is 

popularly known as multi reference (MR) state. Many of the chemical systems have 

degenerate or quasi-degenerate states for e.g. open shell systems, potential energy 

surfaces, and excited states of molecules. SRCC or NVCC cannot describe such systems 

and hence one has to look for more advanced theories like MR. Alike single reference 

methods, there are various MR methods available in the literature. Some of them can be 

articulated depending upon their accuracy to predict the electron correlation. Multi-

reference Self consistent field (MCSCF) [110], Multi-reference configuration interaction 

(MRCI)[111-114], Multi-reference Perturbation Theory (MRPT) [115,116] ,Multi-

reference coupled cluster methods (MRCC)[117-122]. Among all these methods MRCC 

methods are the most precise and accurate once for predicting properties. In MRCC 

approach Fock-Space multi-reference coupled cluster (FSMRCC) methods are the 

popular once for property calculations. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1  
  

45 
 

 

Objective and Scope of the thesis: 

 

The focus of the thesis is on molecular property evaluation using ECC method. Apart 

from electric properties, properties which are mixed derivatives like IR, Raman intensities 

are calculated. Vibrational frequencies, which are derivatives of energy with respect to 

geometry, are calculated for small molecules. We have implemented non-iterative triples 

correction in ECC method for calculation of IR, Raman intensities as well as for 

vibrational frequencies. We have used semi-numerical approach in our calculations 

except for vibrational frequencies, which are calculated using numerical approach. These 

results are reported in chapter 2. Implementation of ECCSD method for calculation of 

quadrupole moments, dipole quadrupole polarizability of small molecules is done. Here 

we have compared the cubic-ECCSD with ECCSD in which the T amplitudes are taken 

up to all orders of T i.e.
4

1t , while the left amplitude are truncated at quadratic order. The 

current approximation gives better results than previous one and for tetrafluoromethane 

the results are in good agreement with the experimental results. The potential energy 

surface using decoupled approach within ECC method has been studied and compared 

with coupled ECC, NVCC methods. The comparative study shows that the decoupled 

approach shows better convergence compared to all other methods with reference to FCI 

method where ever available. Formulation and implementation of analytical gradient 

within ECC method has done in chapter 4. With the analytical gradient i.e. first order 

derivative of energy with respect to geometry we can accurately calculate IR, Raman 

intensities, chemical reaction pathways and many more molecular properties. Chapter 6 

gives the insights of future scope and summary of thesis work. 
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Chapter 2  
 

 

Extended coupled cluster for Raman and infrared 

spectra of small molecules 
 

 

 

 

                           In this chapter we study the harmonic vibrational frequencies, infrared 

(IR) intensities, Raman intensities and depolarization ratio using extended coupled cluster 

method. Raman and IR intensities are mixed derivatives of energy with respect to the 

electric field and geometric perturbation whereas vibrational frequencies are derivatives 

of energy with respect to geometry. We use semi-numerical approach to obtain these 

derivatives. We have studied the effect of electron correlation and basis set for the above 

properties. We compare our results with non-variational coupled cluster and experimental 

values, wherever available. We have studied HF, BH, CH
+
, CO and H2CO molecules in 

different basis sets. For HF molecule, benchmarking is done with full CI values and basis 

set convergence is studied for this molecule. Effect of triples is studied for all the 

molecules. 
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   2.1      Introduction 
 

                   There is interest in the accurate calculation of vibrational non-linear optical 

properties due to their importance in the prediction of molecular structure. There are 

several studies on the incorporation of electron correlation for the prediction of IR  [1–3] 

and Raman spectroscopic properties. IR and Raman intensities are derivatives of dipole 

moment/ polarizability with respect to the geometry respectively. Molecular properties 

are sensitive to electron correlation and basis set. Single reference coupled cluster 

(SRCC) method  [4–7], even in its approximate form, has emerged as a state of the art 

method due to its infinite partial summation of the important terms and size-extensivity, 

for the calculation of energy and energy derivatives of closed shell molecules. SRCC 

method has also been extensively used for the accurate calculation of molecular proper-

ties  [8,9], gradients  [10,11], geometry optimization and potential energy surfaces  

[12,13] at equilibrium or near-equilibrium geometry. First order properties are obtained 

using the expectation value method. However, for higher order properties it is desirable to 

have a closed analytic method for evaluation of energy derivatives. 

                             Coupled cluster (CC) response formulation in the single reference 

context has been extensively studied. Conventionally, the Z-vector technique was first 

used by Handy and Schaefer  [14] in the context of configuration interaction (CI). This 

was later ex-tended by Bartlett and co-workers  [15] for the SRCC response approach. 

This made the SRCC method practicable for gradient calculations.  However, the 

extension of such a procedure to higher order properties is quite complex. On the other 

hand, Lagrange multiplier based approach, introduced by Jørgensen and coworkers  [16], 

which is identical to the Z-vector method for first order properties can easily be extended 

to higher order properties due to the explicit stationary nature. While Lagrange multiplier 

method is based on constrained variation method, the explicit variation of an appropriate 

functional without any constraint has also been used. The more popular of such 

functionals is expectation value approach (XCC). This functional was used by Pal and co-

workers,  [17–  19] perturbatively correct (XCC-n) was used by Bartlett and co-workers  

[20]. Unitary CC (UCC)  [21] and extended coupled cluster (ECC)  [22, 23] are some of 

the functionals in the literature. Among these functionals, XCC and ECC have been 

seriously studied for energy and properties. XCC, even in the finite many body truncation 

of the cluster operator, is non-terminating. ECC functional, however, has two sets of 
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parameters one for the left and the other for right vectors and can be reformulated to have 

a double linked structure. Double linking ensures natural termination of the series as well 

as the connectedness of the cluster amplitudes and amplitude derivatives. The resultant 

energy and energy derivatives, thus, remain size-extensive. For the above reasons,  ECC 

has turned out to be an attractive choice for the calculation of response properties. 

Though the ECC functional is naturally terminating, the exact termination occurs at quite 

a high order. Hence, for all practical purposes one needs to device a physically motivated 

truncation scheme. Pal and co-workers have used ECC functional extensively for the 

electric properties  [24, 17, 25] as well as for magnetic properties  [26, 27] using a scheme 

which includes total power in cubic T and Σ amplitudes within the singles and doubles 

approximation (ECCSD). Several alternative forms of ECC have been pursued by Van 

Voorhis and Head-Gordon  [28] and Piecuch and co-workers  [29, 30].  In this chapter we 

have used ECCSD functional with full (He
T
 ) approximation and quadratic approximation 

of left exponential. Further, inclusion of partial triples in a non-iterative manner is 

implemented for all the molecules. 

               The theoretical prediction of the IR spectroscopic constants is well 

documented. Studies on IR spectra calculation are available in the literature for a wide 

variety of methods, starting from semi-emphirical, Hartree–Fock (HF)  [31–34], Moller–

Plesset perturbation theory (MP2)  [35] to highly accurate SRCC methods  [10]. Basis set 

dependence and effect of electron correlation on IR spectroscopic property are also 

studied  [3,1]. Recently, Helgaker and co-workers  [36] have studied harmonic vibrational 

frequencies using coupled cluster connected quadruples and quintuples. It is documented  

[36] that the inclusion of full triples i.e. CCSDT offers no improvement to the harmonic 

frequencies compared to the inclusion of partial triples CCSD (T).  Ab initio study of 

Raman spectroscopic properties is less abundant because of obvious difficulties in the 

evaluation of mixed third order derivative of energy. There are only a few studies at the 

Hartree–Fock  [37,38] and MP2 level  [39]. At the CC level of theory, Raman scattering 

cross section has been studied  [40, 41]. Raman intensities for small molecules using 

analytic CCSD method have been reported by Neill et al.  [42]. 

 

Up to now, all the studies on IR and Raman spectroscopic properties have been carried 

out using traditional non-variational SRCC.   ECC, being variational, is appropriate for 

the higher order properties. The objective of the present chapter is to implement and test 
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the semi-numerical approach for the calculation of IR and Q branch Raman spectroscopic 

properties using ECCSD functional and to study the effect of partial triples for carbon 

monoxide and formaldehyde where effect of correlation might be crucial. The chapter is 

organized as follows. Section  2.2 gives a brief theory of the ECC method and 

computational details of calculation of spectroscopic constants. Results and discussion on 

them are described in Section  2.3. Section  2.4 contains conclusions. 
 

2. 2  Theory 

 

              The bi-orthogonal coupled cluster functional was proposed by Arponen and 

Bishop  [22, 23]. The functional is also known as ECC functional and contains a 

significant extension of the standard SRCC functional. It uses a bi-orthogonal set of 

parameters for the left and right vectors. The functional is given by  

 

                              0 0( )T

L DL
E H e He                                          (2.1) 

 

Here subscript L denotes that the T operator to the right of the Hamiltonian H is linked to 

H, subscript DL (double linking) implies that the left operator Σ  is either connected to 

the Hamiltonian H or to two different T operators. The double linking ensures that the 

series is naturally terminating. The cluster amplitudes are obtained using following 

equations. 

 

                                                          (0) (0)
0; 0

E E

t

 

 
                               (2.2)                                                                                              

where  
(0)t  and  

(0)   are amplitudes for T and Σ operators respectively. The double 

linking also ensures that the stationary equations resulting from the variation of the ECC 

functional with respect to the cluster amplitude are connected. Hence energy and 

properties are size-extensive. Since the formulation is stationary, the dipole moment can 

be obtained by Hellmann–Feynman theorem using only the stationary values of cluster 

amplitudes. An explicit derivative of energy functional with respect to electric field, (1)E   

is obtained by replacing either the Hamiltonian by derivative Hamiltonian i.e. dipole 

operator in this case or one of the cluster operators by the derivative of the cluster 
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operators 

(1) (1) (1)

0 0 0 0( ) [ ( ) ( ) ]T T T

L L LDL DL
E e He e He He T                          (2.3) 

 

In Eq.  (2.3) the T and its derivative T
 (1)

, are connected to the Hamiltonian derivative 

or to the Hamiltonian (as the case may be) and similarly the Σ or its derivative (1)  , will 

either be connected to the Hamiltonian derivative or to the Hamiltonian (as the case may 

be) or to two different T operators. Stationarity of this explicit derivative functional E
 (1)

 

with respect to the amplitudes of Σ and T operators provides us with the first order 

response amplitudes. Thus, the first derivative amplitudes of Σ and T operators are 

obtained as solutions of the following set of equations.  

                                              

(1) (1)

(0) (0)
0; 0

E E

t

 

 
                                                  (2.4) 

 

              Eq.  (2.4) provides us with the equation for 
(1)  and 

(1)t amplitudes. The double-

linked structure of the (1)E
 
leads to the connectivity of the derivative cluster amplitudes. 

Thus, the resulting higher order properties (up to first hyper-polarizability) are size-

extensive  [25]. It is easy to observe that the linearized approximation of the left 

exponential leads to the T amplitudes, which are same as the SRCC amplitudes. In such a 

case, the left amplitudes are the standard K vector or Z-vector amplitudes of the SRCC 

response  [15, 16]. However, ECC is significantly different from the SRCC. In ECC, the 

left exponential introduces several higher order terms. In this chapter, we have retained 

the full form of  T

C
He  in singles and doubles approximations and truncated the left 

exponential up to quadratic. Thus this introduces additional set of terms 

 2

0 0

T

DLL
He    compared to the SRCC. These terms are capable of introducing 

higher order corrections necessary, in particular, for bond stretch  [9, 28]. With the above 

approximation, Equations. (2.2) and (2.4) are solved initially in singles and doubles 

approximation for T and Σ. 

 

              

 To study the effect of triples, we have implemented partial triples (ECCSD (T)) in a non-
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iterative manner. The scheme of inclusion of triples is as follows. First with the CCSD 

amplitudes, we construct the left and right triples amplitudes i.e. 3 and t3 amplitudes by 

including VT2 and Σ2V respectively in the triples equation, where V denotes the two 

particle operator. Then we take the effect of triples amplitudes in the doubles equation 

through VT3 terms in σ2 amplitude equation and Σ3V terms in the t2 amplitude equation. 

3 3T  enters in the energy derivative/dipole moment. Since 3 and t3 amplitudes are of 

minimum second order in perturbation, the dipole moment is correct at least up to the 

fourth order due to triples. A similar procedure is followed for derivative amplitude 

equations. 

         Based on the definition of dipole moment and polarizability, we have calculated 

the derivatives of these properties with respect to the atomic co-ordinates using a semi-

numerical scheme. 

                                                      

2

3

i

K K i

ij

K K i j

d d E

dR dR dF

d d E

dR dR dFdF





 

 
                                     (2.5) 

    

         Here mixed second and third order derivative of energy with respect to 

homogeneous electric field and geometry are obtained by numerical differentiation of 

analytically calculated dipole moment and polarizability with respect to the co-ordinates. 
 

 

                 In particular, we perform for each atom and each co-ordinate x, y and z two 

different displacements by the small distance (x = 0.001 a.u.) in the positive and negative 

direction of current axis. Though because of this semi-numerical approach the number of 

calculations increases, this scheme gives scope of coarse grain parallelization. Further, 

use of molecular symmetry brings down the number of calculations to a manageable one. 

Numerical differentiation demands a high precision in convergence to obtain accurate 

intensity. We put 10
-10 

a.u. cut off on energy to minimize numerical error. 

        The SCF, MP2 and non-variational CCSD (SRCCSD) calculations are done using 

Gaussian09  [43]. FCI values are obtained using GAMESS  [44]. 
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2.3 Results and discussion 

                  In this chapter we present IR and Q branch Raman spectroscopic properties 

for hydrogen fluoride, boron hydride, carbon monoxide, formaldehyde and carbon 

monohydride cation as test molecules using ECC functional. IR and Raman intensities are 

derivatives of the dipole moment and polarizability with respect to the nuclear co-

ordinates and are obtained using semi-numerical approach. Dipole moment and 

polarizabilities are calculated analytically using static approximation without freezing any 

core orbitals. The double linking of the ECC functional ensures that the properties 

obtained are always size extensive at each truncation. We have used singles and doubles 

approximation and a quadratic truncation of the left exponential in our study. For all the 

molecules we have studied the effect of triples through inclusion of partial triples, as 

explained before. Hydrogen fluoride has been studied extensively in ten different basis 

sets starting from a DZ basis to the aug-cc-pVQZ basis. We benchmark IR and Raman 

intensities along with the vibrational frequency and depolarization ratio for HF molecules 

in DZ basis  [45] with the available full CI (FCI) results. We have used cc-pVTZ basis set  

[46,47] for all the molecules except hydrogen fluoride and formaldehyde. To have the 

proper understanding of the basis set effects we have studied HF, BH and CH
+
 in aug-cc-

pVQZ basis. 
 

 

              We compare our results of IR and Raman properties with analytic CCSD results 

available for HF molecule  [42] in Sadlej basis set  [48,49]. In the case of formaldehyde, 

calculations are performed using Sadlej basis set  [48,49]. All studies are done at the 

experimental geometry, with the exception of hydrogen fluoride in Sadlej basis, where 

calculations are done at the geometry (re = 1.7480 a.u.) are reported  [42] for the purpose 

of comparison. We also report the CCSD (T) basis set limit results for comparison  [36] 

for hydrogen fluoride and carbon monoxide. 
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 2.3.1 Hydrogen fluoride 

 

             We have studied the basis set convergence of IR and Raman spectroscopic 

properties for HF. We have chosen DZ basis set and then gradually added Pople‟s 

polarization functions  [50] up to 2p + 1d for the hydrogen and 2d + 1f for the fluorine 

atom to reach the expansion limit. A similar exercise was done with the triple zeta basis 

set to study the effect of valence orbitals along with the polarization. Results are 

presented in  Table 2.1.  It can be seen that, the vibrational frequency is reduced by 62 

cm
-1

 with the addition of polarization function.  Further with the addition of p and d 

functions of more diffuse character, frequency is reduced by 91 cm
-1

.  In this basis i.e. DZ 

+ 2p we get vibrational frequency of 4137 cm
-1

 which is very close the experimental 

value of 4138.32 cm
-1

.  Further addition of polarized function overestimates the 

frequency.  IR intensity as well as depolarization ratio increases from DZ to DZ + p basis, 

but the trend is just the opposite for Raman intensity. The IR intensity in DZ basis is 33 

(km-mol
-1

) and increases to 108 (km -mol
-1

), with further addition of p and d functions it 

keeps on decreasing. Except for the IR frequency we do not have experimental results 

available for any other property for comparison. To study the effect of valence basis set, 

we carried out a similar study for the triple zeta (TZ) basis set. IR frequency reduces by 

72 cm
-1

, as we go from DZ to TZ basis. This change is comparable to the addition of a 

polarization function. With the addition of successive polarization functions, IR 

frequency approaches the experimental value. The effect of addition of polarization 

function in TZ basis is less compared to the DZ basis. It can be seen that as we go from 

DZ to TZ basis IR intensity is enhanced by 98 (km- mol
-1

). However, with the addition of 

successive polarization functions, it approaches the value of 108 (km- mol
-1

), which is 

slightly higher than the DZ + 3P basis. Raman intensity is not affected much with the 

valence basis set. Thus, from the basis set convergence study it can be seen that for the 

accurate description of IR frequency we need a proper combination of valence as well as 

polarization functions. 
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Table 2.1  HF Properties basis set convergence study (re=1.7328 a.u.)  

  

 

Property 
 

ω (cm
-1

) 

 

I
IR

  (km- 

mol
-1

) 

 

I
Raman

 (Å
4
/ 

AMU) 

ϱ 

DZ 4291 33 44 0.41 

DZ+P(H-1p/F-1d)
a
 4228 108 37 0.37 

DZ+2P (H-2p/F-2d)
b
 4137 103 35 0.27 

DZ+3P(H-2p,1d/F-2d,1f)
c
 4148 100 33 0.24 

TZ 4219 131 41 0.38 

TZ+P(H1p/F1d)
a
 4162 104 34 0.35 

TZ+2p(H-2p/F-2d)
b
 4144 108 32 0.30 

TZ+3p(H-2p,1d/F-2d,1f)
c
 4132 108 31 0.27 

Expt c 4138.32 - - - 

a H αp=1.0; Fαd=1.75.; b H αp=0.1875; Fαd=0.8.; c  αd=1.0; Fαf =1.65; d: see ref [51] 

 
  

 

              We benchmark our results with the FCI only in DZ basis set.  Table 2.2 reports 

spectroscopic properties in DZ basis. We can see that our IR frequency value 4291 cm
-1

 is 

just 4 cm
-1

 higher com-pared to a FCI value of 4287 cm
-1

. Similarly, IR and Raman 

intensities are in good agreement with the FCI value. The depolarization ratio in ECCSD 

is 0.41 whereas FCI value is 0.39 which is also in good agreement. Thus, it can be seen 

that our results are in good agreement with the FCI values. 
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Table 2.2 Properties of HF in DZ basis (re=1.7328 a.u.) 

 

Property ECCSD FCI 

E (a.u.) -100.1583 -100.3474 

μ (D) 2.285 2.282 

αzz (a.u.) 4.22 4.14 

αxx(a.u.) 0.80 0.80 

ω (cm
-1

) 4291 4287 

I
IR

  (km- mol
-1

) 33 34 

I
Raman

 (Å
4
/ AMU) 43 44 

ϱ 0.41 0.39 

 

 Table 2.3 reports Raman spectroscopic properties of hydrogen fluoride molecule in 

Sadlej basis set. We compare our results with the available SRCCSD results. Here 

geometry is taken from Ref.  [42] which is slightly different from the experimental 

geometry. Comparing our results in DZ and Sadlej basis set, we observe that with 

improvement in the basis, frequency goes towards the experimental limit. SRCCSD and 

ECCSD vibrational frequencies are 4113 cm
-1

 and 4117 cm
-1

, compared to the 

experimental frequency  [51] value of 4138.32 cm
-1

. The Raman intensity is not affected 

by the basis set. However, depolarization ratio, which is the ratio of the peak intensity of 

the parallel and perpendicular component of Raman scattered light, is affected by the 

basis set. In DZ basis depolarization ratio is 0.41 whereas, in Sadlej basis it is 0.13. From  

Table 2.3, it can be seen that IR frequency, Raman intensity and the depolarization ratio 

are in good agreement with each other in ECCSD and SRCCSD approach. It should be 

mentioned here that ours is semi-numerical approach whereas, results obtained using 

SRCCSD in Ref.  [42] are fully analytic. Thus, it can be seen that for small diatomic 

molecules semi-numerical approach gives good agreement with the full analytic 

approach.  
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Table 2.3 HF properties in Sadlej basis (re=1.7485 a.u.) 

       Property          ECCSD        SRCCSD
a
        Experiment

b
 

ω (cm
-1

) 4117 4113 4138.32 

I
Raman

 (Å
4
/ AMU) 44.09 43.67 - 

ϱ 0.13 0.12 - 

a
  see Ref. [42];  

b
  see Ref  [51]  

  

 Table 2.4 reports spectroscopic properties of hydrogen fluoride molecule in aug-cc-

pVQZ basis set. We compare our IR frequencies with the experimental as well as 

available basis set limit value for CCSD (T) in parenthesis. It can be seen from the  Table 

2.4 that our results for dipole moment  [52],  polarizability  [53], IR frequency and 

intensity are in good agreement with the CCSD values. Vibrational frequency using 

CCSD is 4157 cm
-1

, ECCSD gives 4153 cm
-1

 which is just 4 cm
-1

 lower. With the 

inclusion of partial triples we get 4147 cm
-1

 which is in good agreement with the basis set 

limit value of 4146.6 cm
-1

 for CCSD (T) method. Though, our vibrational frequency 

value is 9 cm
-1

 higher compared to experimental value of 4138.32 cm
-1

, it is more 

appropriate to compare it with the basis set limit value. Similarly, IR intensity value using 

ECCSD is 114 (km -mol
-1

) and using SRCCSD it is 112 (km- mol
-1

). Inclusion of partial 

triples reduces IR intensity to 105 (km- mol
-1

). However, for Raman intensity and 

depolarization ratio we do not have any experimental or theoretical results available for 

comparison. So we have compared our calculated value of geometrical derivative of 

isotropic polarizability with the numbers reported by Pecul and Rizzo  [40] and 

corresponding experimental value  [54]. It can be seen that our value of 2.9 a.u. is in good 

agreement with that of Pecul and Rizzo (3.0 a.u). But both values deviate a little from the 

experimental value of 3.6 a.u. Here it should be kept in mind that both the values are 

calculated within in the double harmonic approximations and anharmonic corrections are 

probably necessary for getting the experimental accuracy. 
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Table 2.4 HF aug-cc-pVQZ Results (re=1.7328 a.u.) 
 

 

Property    SCF    MP2 SRCCSD ECCSD ECCSD(T) Expt. 

E (a.u.) 
-

100.0685 
-100.3697 -100.3691 -100.4093 -100.4094 - 

μ (D) 1.922 1.805 1.814 1.818 1.798 1.826
a
 

αzz (a.u.) 5.74 6.34 6.20 6.13 6.26 6.40
b
 

αxx(a.u.) 4.42 5.17 4.96 4.98 5.07 5.08
b
 

 ω (cm
-1

) 4162 4163 4157 4153 4147(4146.6)
c
 4138.32

d
 

I
IR

 (km- mol
-1

) 168 113 112 114 105 - 

I
Raman

(Å
4
/ 

AMU) 
34 39 - 31 32 - 

0

. .
R

d
a u

dr

 
 
 

 - - - 2.8 2.9(3.0
e
) 3.6

f
 

ϱ 0.26 0.20 - 0.61 0.43 - 

a
 See Ref. [52]; 

b
 See  Ref. [53]; 

c 
 Complete basis set limit value for CCSD(T). See Ref. [36]; 

d 
 See Ref. 

[51].; 
e
   Value calculated by Pecul et. al. at the CC3(frozen core)/aug-ccpVTZ level. See Ref. [41].; 

f   
See 

Ref. [54] 

 
 

2.3.2  Boron hydride 

              Boron hydride is studied for IR and Raman properties in cc-pVTZ and aug-cc-

pVQZ basis.  Tables 2.5 and 2.6 report all the property values in cc-pVTZ and aug-cc-

pVQZ basis respectively. We also report all the properties using SCF and MP2 along with 

ECCSD method. For BH molecule, only experimental results available are for IR 

frequency. Hence, we have used Gaussian 09 software to benchmark our ECCSD results 

with CCSD calculations. We can see that the energy, dipole moment  [55], parallel and 

perpendicular component of the polarizability are in good agreement with the CCSD 

results. With the inclusion of electron correlation IRfrequency is reduced from SCF to 

MP2 to CCSD. In both the basis sets we have studied the effect of partial triples for IR as 

well as Raman properties. It can be seen that the effect of partial triples on IR intensities 

as well frequencies is very little in both the basis sets. However, the effect of basis set is 
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quite large. For frequencies it is 12 cm
-1

 and for the case of intensity it is 18 (km -mol
-1

). 

The vibrational frequency in cc-pVTZ basis set in ECCSD is 2346 cm
-1

, where as in aug-

cc-pVQZ basis we get 2358 cm
-1

. Thus, with the basis set improvement we approach the 

experimental value 2366 cm
-1

. In aug-cc-pVQZ basis ECCSD (2358 cm
-1

) and SRCCSD 

(2359 cm
-1

) IR frequencies agree well with each other. Though, we are still away from 

the experimental  [51] (2366 cm
-1

) value by 8 cm
-1

. This may be due to harmonic 

approximation. With the inclusion of triples frequencies are reduced and correction is 

away from the experimental value. Raman intensities are not affected by the basis set. In 

cc-pVTZ the value of Raman intensity is (226 Å
4
/AMU) where as in aug-cc-pVQZ   basis 

it is (223 Å
4
/AMU), with the inclusion of triples it is increased to 241 Å

4
/AMU. 

Depolarization ratio is reduced to 0.53 in QZ basis from 0.69 in TZ basis.  Triples have 

marginal effect on the depolarization ratio giving the value of 0.54 in QZ basis and 0.60 

in TZ basis. Thus, except for Raman intensity triples has marginal effect on the rest of the 

properties in aug-cc-pVQZ basis. 
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Table 2.5 BH cc-pVTZ Results (re=2.3289 a.u.)  

 

Property SCF MP2 SRCCSD ECCSD ECCSD(T) Exp. 

E (a.u.) -25.1299 -25.2034 -25.2285 -25.2390 -25.2391 - 

μ (D) 1.725 1.571 1.368 1.392 1.365 1.2708
a
 

αzz (a.u.) 21.09 21.23 21.50 22.10 22.03 - 

αxx(a.u.) 19.97 19.37 18.10 18.81 18.05 - 

ω (cm
-1

) 2420 2397 2373 2346 2343 2366
b
 

I
IR

(km- mol-1) 406 385 378 375 370 - 

I
Raman

(Å
4
/AMU) 238 229 - 226 234 - 

ϱ 0.76 0.75 - 0.69 0.60 - 

a
See Ref. [55]; 

bSee Ref. [51] 
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Table 2.6 BH aug-cc-pVQZ Results (re=2.3289 a.u.) 

 

Property SCF MP2 SRCCSD ECCSD ECCSD(T) Exp. 

E (a.u.) -25.1313 -25.2097 -25.2331 -25.2674 -25.2675 - 

μ (D) 1.740 1.614 1.411 1.368 1.345 1.270
a
 

αzz (a.u.) 22.89 22.94 23.02 22.98 23.08 - 

αxx(a.u.) 22.54 22.42 20.80 20.85 20.87 - 

ω (cm
-1

) 2411 2388 2359 2358 2354 2366
b
 

I
IR

(km-mol
-1

) 422 402 409 393 390 - 

I
Raman

(Å
4
/AMU) 243 240 - 223 241 - 

ϱ 0.74 0.73 - 0.53 0.54 - 

a
 See Ref. [55].; 

b
 See Ref. [51]. 

 

2.3.3 Carbon mono-hydridecation 

 

Carbon mono-hydride cation is studied for spectroscopic properties using cc-pVTZ 

and aug-cc-pVQZ basis set.  Tables 2.7 and 2.8 reports SCF, MP2 along with CC results 

in cc-pVTZ and aug-cc-pVQZ basis set respectively. Since, there are no experimental or 

theoretical results available for comparison , we have compared our IR frequencies, 

intensities along with energy, dipole moment and polarizability with the SRCCSD 

results. It is seen that with the inclusion of correlation, IR intensity and frequency are 

reduced. ECCSD and SRCCSD agree well with each other for dipole moment, 

polarizability and IR properties. We also report all the property values with the partial 

inclusion of triples in both the basis sets. It can be seen that the effect of triples on IR 

frequency is less in cc-pVTZ basis, whereas in aug-cc-pVQZ basis IR frequency is 

changed by 16 cm
-1

. IR intensities are unaffected by the inclusion of triples in both the 

basis sets. As we go from TZ to QZ basis the frequency changes by 42 cm
-1

 in CCSD 
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approximation and 32 cm
-1

 with triples correction, which is a large change. Raman 

intensity is margin-ally affected by the inclusion of triples in both the basis sets. 

However, as we go from cc-pVTZ basis (58 (km-mol
-1

)) to aug-cc-pVQZ basis (44 (km-

mol
-1

)) in CCSD approximation Raman intensity value is increased by 8 (km-mol
-1

). The 

depolarization is increased from 0.40 to 0.65 as we go from TZ to QZ basis set. Inclusion 

of triples reduces it to 0.41 in aug-cc-pVQZ basis. 

 

Table 2.7  CH+ cc-pVTZ Results (re=2.137 a.u.) 

 

Property SCF MP2 SRCCSD ECCSD ECCSD(T) 

E (a.u.) -37.9074 -37.9921 -38.0214 -38.0337 -38.0338 

μ (D) 1.576 1.598 1.235 1.696 1.675 

αzz (a.u.) 8.05 8.21 8.17 8.43 8.44 

αxx(a.u.) 7.25 7.04 6.86 6.71 6.73 

ω (cm
-1

) 2921 2890 2862 2814 2808 

I
IR

(km-mol
-1

) 7 3.2 1.6 1.7 1.8 

I
Raman

(Å
4
/AMU) 61 62 - 58 59 

ϱ 0.52 0.51 - 0.40 0.34 
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Table 2.8 CH+ aug-cc-pVQZ Results (re=2.137 a.u.) 

 

Property SCF MP2 SRCCSD ECCSD ECCSD(T) 

E (a.u.) -37.9094 -38.0005 -38.0279 -38.0635 -38.0683 

μ (D) 1.5637 1.475 1.332 1.702 1.168 

αzz (a.u.) 8.00 8.15 8.35 8.35 8.36 

αxx(a.u.) 7.63 7.44 7.01 7.13 7.15 

ω (cm
-1

) 2909 2879 2850 2856 2840 

I
IR

(km-mol
-1

) 7 4 2 2 2 

I
Raman

(Å
4
/AMU) 61 62 - 66 61 

ϱ 0.46 0.46 - 0.65 0.41 

 
 

 

2.3.4.  Carbon monoxide 

 

We report the IR and Raman intensity along with IR frequency and depolarization ratio 

for carbon monoxide. We have used cc-pVTZ and aug-cc-pVTZ basis set  [56] for our 

study. We compare our results with the experimental values for the frequency  [57] and 

IR intensity  [58]. We also report the basis set limit value for the IR frequency within 

CCSD (T) approximation.  Table 2.9 reports different properties of CO using ECCSD as 

well as ECCSD (T) method. The IR frequency value in cc-pVTZ basis using ECCSD 

method is 2224 cm
-1

. With the inclusion of partial triples it is reduced to 2208 cm
-1

. Thus, 

inclusion of partial triples reduces frequency by 16 cm
-1

. However, compared to the 

experimental value of 2170 cm
-1

, it is still overestimated by 38 cm
-1

. With the 

augmentation of the basis, IR frequency is reduced at the ECCSD as well as ECCSD (T) 

level by 8 cm
-1

. Compared to the basis set limit values within CCSD (T) approximation 

2176.9 cm
-1

 our ECCSD (T) value is 23 cm
-1

 higher. Using aug-cc-pVQZ basis we may 
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be able to reach the basis set limit value. The IR intensity at the ECCSD level in cc-pVTZ 

basis is 74 (km- mol
-1

) and with the inclusion of triples it is reduced to 58 (km-mol
-1

). In 

aug-cc-pVTZ basis intensity is 77 (km -mol
-1

) using ECCSD (T) method it is reduced to 

64 (km- mol
-1

). It can be seen that effect of augmentation is negligible compared to effect 

of inclusion of partial triples for IR intensity. In both basis sets, addition of partial triples 

brings the value within experimental range. The percentage error in the IR frequency 

compared to the experimental values is less than 2 percent which is within experimental 

error bar. To get the experimental accuracy of the frequency, we need to include 

anharmonic corrections along with triples inclusion. We also report Raman intensities and 

depolarization ratio in cc-pVTZ basis at CCSD as well as CCSD(T) level.  However, 

there are no theoretical or experimental results available for comparison. But our 

calculated value of geometrical derivative of isotropic polarizability is in good agreement 

with the experimental value  [59].  
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Table 2.9 IR and Raman properties of CO (re=2.131a.u.) 

 

Basis Property ECCSD ECCSD(T) Expt. 

cc-pVTZ ω (cm
-1

) 2224 2208 2170
a
 

- I
IR

(km-mol
-1

) 74 58 51-64
b
 

- I
Raman

(Å
4
/AMU) 18 10 - 

- 
0

. .
R

d
a u

dr

 
 
 

 4.54 3.99 5.34 

- ϱ 0.22 0.30 - 

aug-cc-pVTZ ω (cm
-1

) 2215 2200(2176.9
c
) 2170 

- I
IR

(km-mol
-1

) 77 64 51-64 

- I
Raman

(Å
4
/AMU) 21 17 - 

- 
0

. .
R

d
a u

dr

 
 
 

 5.84 5.16(6.02
d
) 5.34

e
 

- ϱ 0.24 0.34 - 

a
 See Ref. [57].

b
 See Ref. [58].

c
 Complete basis set limit value for CCSD(T). See Ref. 

[36].
d
 Values calculated by Pecul et. al. at the CC3(frozen core)/aug-cc-pVTZ level. See 

Ref. [41].
e
 See Ref. [59]. 

 

2.3.5. Formaldehyde 

 

IR intensities and frequencies of formaldehyde are studied using Sadlej basis set. Z axis 

is molecular axis with both the hydrogens being placed symmetrically on the XZ plane. 

For formaldehyde we have also studied effect of triples on IR frequency and intensities. 

We compare our results with the SRCCSD as well as experimental values. Table 2.10 

reports energy, dipole moment  [60], parallel and perpendicular components of 

polarizabilities along with IR frequencies  [61], intensities for all the six normal modes. In 

parenthesis are the values with inclusion of partial triples. Experimentally  [62] the most 

intense mode for formaldehyde molecule in the gas phase is the CH2 asymmetric 

stretching mode which appears at 3033 cm
-1

. The C=O stretching mode is the second 

most intense mode appearing at 1761 cm
-1

. The CH2 symmetric stretching mode is also of 
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significant intensity. As compared to these three modes, the remaining three modes are of 

negligible intensity. To study the effect of correlation, we report SCF, MP2 results along 

with the coupled cluster. For all the six modes of vibration, correlation decreases IR 

frequencies and most of the intensities, except for the CH2 stretching modes. For the CH2 

out of plane bending mode (x1), coupled cluster method underestimates the frequency by 

11 cm
-1

 however, IR intensity is in good agreement with the experimental values. For the 

CO stretching mode, IR frequency as well as intensity decreases with the electron 

correlation. However, intensity as well as frequency are overestimated compared to 

experimental values. We observe that the CO symmetric stretching intensity improves 

with the inclusion of triples. By using ECCSD IR intensity for this mode is 93 (km -mol
-

1
). With the inclusion of triples, it is reduced to 70 (km-mol

-1
), which is closer to the 

experimental value of 74.0 ± 5.3 (km- mol
-1

). All the intensities are decreased with the 

inclusion of triples, except for CH2 symmetric and asymmetric stretch. After inclusion of 

triples we get IR intensities closer to the experimental values. In general, it is seen that 

effect of triples is more prominent on IR intensities compared to the frequencies. All the 

vibrational frequencies are reduced with the inclusion of triples. However, to achieve 

experimental accuracy use of proper basis set and anharmonic corrections along with the 

triples might be crucial. 

 

                           Table 2.11 reports Raman intensities for all six modes of vibrations. Out of 

six modes of vibrations, CH2 symmetric and asymmetric stretching modes are Raman 

active. With the inclusion of correlation, CH2 symmetric stretching mode intensity 

increases, whereas asymmetric stretching mode intensity decreases. We do not have any 

theoretical or experimental values to compare our results.  Table 2.9 reports relative 

Raman intensities of formaldehyde using MP2, ECCSD and experimental values. To The 

best of our knowledge only experimental data available, comes from the chapter by 

Wiegeler and Bleckmann  [63]. Unfortunately, no details about experimental accuracy are 

given in Ref.  [63]. Hence, in  Table 2.12 we compare the experimental values of relative 

Raman intensities with those obtained at ECCSD method. Our results are in good 

agreement with the experimental relative Raman intensities except for the CH2 

asymmetric stretching. In case of CH2 asymmetric stretching also, results are better than 

the MP2 values calculated in same basis set.
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Table 2.10 H2CO Results (rco=2.274 a.u., rch=2.079 a.u.,∠ HCO=121.62) 
 

Property SCF MP2 ECCSD SRCCSD Expt 

E (a.u.) -113.9010 -114.2270 -114.2755 -114.2419 - 

μ (D) 2.832 2.332 2.382 2.378 2.331
a
 

αzz (a.u.) 21.186 22.149 18.308 17.497 - 

αxx (a.u) 12.234 12.741 13.394 12.547 - 

   Harmonic  Vibrational Frequencies (cm
-1

)   

ω1 (CH2 oop bending) 1334 1178 1176(1150) 1172 1187
b
 

ω2 (CH2 rock) 1340 1237 1238(1224) 1235 1282
b
 

ω3 (CH2  symm   bending) 1608 1517 1512(1499) 1510 1517
b
 

ω4 (C=O symm stretch) 1884 1847 1863(1851) 1864 1761
b
 

ω5 (CH2 symm stretch) 3096 3061 3057(3048) 3060 2944
b
 

ω6 (CH2 asymm stretch) 3190 3153 3146(3135) 3148 3033
b
 

Infrared  Intensities (km-mol
-1

)    

1

IRI  4 5 5(6) 5 6.5±0.6
c
 

2

IRI  20 11 14(10) 13 9.9±0.6
c
 

3

IRI  30 4 6(6) 5 11.2±1.0
c
 

4

IRI  141 81 93(70) 92 74.0±5.3
c
 

5

IRI  51 74 60(66) 62 75.5±7.1
c
 

6

IRI  71 98 90(101) 92 87.6±8.0
c
 

 

a
.SeeRef.[60];

b
See.Ref.[61];

c
SeeRef.[62]
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Figure 2.1 Vibrational modes of formaldehyde (H2CO) 
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Table 2.11 H2CO Raman Intensities in Sadlej Basis (Å
4
/AMU) 

Property SCF MP2 ECCSD 

    
      0.05 0.30 0.06 

          
      0.88 0.94 1.52 

       
      9.56 8.96 8.66 

         
      15.01 8.48 10.98 

         
      148.01 184.95 178.51 

         
      65.45 97.81 61.52 

 

Table 2.12 H2CO comparison of experimental and theoretical relative Raman 

intensities  

 

(Expressed as percentage) 
 

Method                   

MP2(Sadlej) <1 <1 5 5 100 53 

ECCSD (Sadlej) <1 <1 5 6 100 34 

Experimental
a
 1 3 10 8 100 2 

a See Ref. [63]. 
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2.4. Conclusion 
 

In this chapter we focus on the calculation of IR and Q branch of Raman intensity as 

well as depolarization ratios of small molecules using ECC method. We have used 

ECCSD approximation in which left exponential is truncated up to quadratic terms. We 

have implemented partial triples in non -iterative manner. The double linked nature of the 

functional ensures that the properties are always size extensive up to all the orders. 

Determination of IR and Raman intensities by ab initio methods requires the calculation 

of the di-pole moment and polarizability derivative with respect to the geometry. We have 

implemented semi-numerical approach for obtaining IR and Raman intensities. Reliable 

calculations of the geometric derivatives of the molecular polarizability require a good 

description of electron correlation. These derivatives are useful for the calculation of 

Raman scattering cross section. The depolarization ratio provides information about the 

symmetry of the vibrations. We have also studied the effect of partial triples on IR 

properties of all the molecules. Raman intensities and depolarization ratios are studied 

with the inclusion of partial triples for all molecules except formaldehyde. In particular 

HF, BH and CH
+
 are studied in aug-cc-pVQZ basis to know how the inclusion of partial 

triples affects IR and Raman properties. We observe that vibrational frequencies are 

marginally changed by the inclusion of partial triples for HF and BH. However, for CH
+
 

inclusion of partial triples reduces IR frequencies by 16 cm
-1

. For hydrogen fluoride we 

obtained the IR frequency value 4147 cm
-1

 in aug-cc-pVQZ ba-sis which is close the 

basis set limit value 4146.6 cm
-1

 for CCSD (T). IR intensities are unaffected for BH and 

CH
+
, whereas for HF molecules the change is about 9 (km-mol

-1
) after the inclusion of 

triples. Raman intensity for BH is increased by 18 (Å
4
/AMU), whereas HF and CH

+
 are 

Raman intensities are unaffected. Depolarization ratio is very sensitive to the inclusion of 

triples for HF and CH
+
, however, for BH there is no change. For CO and H2CO effect of 

partial triples is more prominent. In case of CO, we have also studied the effect of 

augmentation of basis set by using cc-pVTZ and aug-cc-pVTZ basis. We observe that 

augmentation has little effect on intensity. However, frequencies are changed by about 8 

cm
-1

. Inclusion of partial triples changes the frequency by about 15 cm
_1

. Thus, effect of 

partial triples is more than the augmentation of basis set for CO. In case of IR intensity, 

triples reduce CCSD intensities by almost 17 percent, making it closer to the experimental 

value. Similarly, for formaldehyde, we observe that for the CO symmetric stretch mode, 
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IR intensity is reduced by 23 percentage, with the inclusion of partial triples. The other 

two stretching modes of CH2 are marginally affected by the inclusion of partial tri-ples. 

Within harmonic approximation, our results are quite accurate for the IR frequencies. 

From our results, it can be seen that inclusion of partial triples along with aug-cc-pVQZ 

basis gives accurate spectroscopic properties. It is difficult to discuss the quality of 

calculated Raman activities due to lack of experimental data, but our results are consistent 

with available theoretical values. 
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Chapter 3 
 

 

 

Multipole moments using extended coupled cluster method 

 

    Using analytic extended coupled cluster (ECC) response approach 

quadrupole moments, dipole–quadrupole polarizabilities and dipole polarizabilities are 

studied. In the current implementation of the functional we have included all the double 

linked terms within (CCSD) approximation. These terms will be important for the 

accurate description of properties at the stretched geometries. We report the properties for 

carbon monoxide and hydrogen fluoride molecules, as a function of bond distance and 

compare our results for carbon monoxide with the full CI results. We have also reported 

the properties of methane, tetrafluoromethane, acetylene, difluoroacetylene, water and 

ammonia. 
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3.1      Introduction 

                    Among various ab initio methods single reference coupled cluster method 

(SRCC) [1] is best suited for the accurate calculation of energy [2] and energy derivatives 

[3–5] of the molecules in their ground state. The success of the theory lies in its ability to 

introduce electron correlation accurately even in its approximate form. Various forms of 

the SRCC method have enabled the accurate calculation of molecular properties, 

gradients, geometry optimization and potential energy surfaces at equilibrium or near 

equilibrium geometry. 

               First order properties, i.e. dipole moment, quadrupole moment can be obtained 

using expectation value method. A more general approach is the response approach [3] 

which is used for the calculation of higher order properties. With the help of Z vector 

technique [6,7], SRCC method can be used for the calculation of properties. However, 

this approach is difficult to extend for higher order properties. Constrained variation 

approach of Jørgensen and co-workers [8] is based on Lagrange multipliers and can be 

easily extended for higher order properties. The resulting equations using constrained 

variational approach are same as the one obtained by non-variational Z-vector technique 

for the first order properties. 

          Pal et al. [9] developed a stationary response approach. In a variational/stationary 

approach a suitable energy functional is chosen, which is made stationary with respect to 

the cluster amplitudes. This method is most suitable for the calculation of energy 

derivatives, in particular higher order derivatives because of the inbuilt (2n + 1) rule. In 

this approach, the choice of the energy functional is very crucial. Pal and co-workers [10, 

11] used different energy functionals namely, expectation value coupled cluster (XCC), 

unitary coupled cluster (UCC) and extended coupled cluster (ECC) for the calculation of 

properties. Among the various functionals, ECC [12, 13] was found to be most suitable 

for the calculation of molecular properties due to its double linked nature resulting in a 

naturally terminating series. This functional was used for the calculation of electric [11, 

14] as well as magnetic properties [15, 16] of small molecules. The initial implementation 

was based on the cubic truncation scheme. In the current implementation we have used 

the right as well as left vector all the terms within singles and doubles approximation 

which are double linked. We denote them as cubic-ECCSD and ECCSD throughout the 
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chapter. The terms included are expected to be important for the property calculations at 

the stretched geometry. 

                Electric properties in particular have been studied very extensively due to their 

role in the design of non-linear optical materials [17–21]. On the other hand dipole–

quadrupole polarizabilities [22] and dipole–octupole polarizabilities [23, 24] have 

recently received attention. They are important for the Raman scattering studies as well as 

interaction induced light scattering spectra. The gradient of the dipole–quadrupole 

polarizability are important for the determination of vibrational Raman optical activity 

(VROA) intensities. 

                Study of multipole moments [23, 24] is important due to their applicability in 

predicting long range interactions [25] in atoms and molecules. Unlike the dipole 

moments which can be experimentally measured, experimental measurement of 

quadrupole moments depends on various parameters. High quality ab initio calculations, 

is the best way to obtain accurate values of quadrupole moments. In this chapter we report 

the study of basis set and electron correlation on quadrupole moment, dipole–quadrupole 

polarizability and dipole polarizability, of small molecules. We report the properties of 

carbon monoxide and hydrogen fluoride as a function of bond length to emphasize the 

importance of the terms newly added in the functional. We have also studied methane, 

tetrafluoromethane, acetylene, difluoroacetylene, water, and ammonia as a case study. 

The chapter is organized as follows. Section 3.2 gives brief theory of the ECC response 

properties. Results and discussion on them will be presented in Section 3.3. Section 3.4 

contains conclusions. 
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3.2 Theory 

             To obtain the properties of our interest, we have used the ECC functional. The 

ECC functional uses different ket and conjugate vectors. 

                                    
'H H                                                                     (3.1)                             

          where   and  '  are parameterized differently and are bi-orthogonal to each 

other. This functional also known as the ECC functional, was first proposed by Arponen 

and Bishop [12, 13]. After double similarity transformation the form of the functional is 

given as follows 

                                  
  0 0( )T L DL

H e He                                             (3.2)  

Here subscript L denotes the T operator to the right of Hamiltonian, which is linked 

/connected to H, subscript DL (double linked) means the left operator Σ is either connected 

to the Hamiltonian H or to two different T operators. Double linking ensures that the series 

is naturally terminating and hence gives size-extensive properties [11]. ECC method 

differs from the standard SRCC due to presence of left exponential, which includes several 

higher order terms. In this chapter, the contribution of right vector is taken full within 

CCSD approximation i.e. (He
T
) and all the higher order terms within CCSD 

approximation are included in the left vector. The extra terms that are included in the energy 

functional are     2 3 4 3
2 2 1 2 1 2 1 1 2, , , .VT T VT VT VT  

The cluster amplitudes are obtained using following equations 

                                                       
 

 
 

(0) (0)
0; 0

E E

t
                                                         (3.3) 

Similarly, the derivative energy functional E
(1)

 is obtained by replacing either the 

Hamiltonian by derivative Hamiltonian, i.e. dipole operator/ quadrupole operator or one of 

the cluster operator by its derivative  

(1) (1) (1)

0 0 0 0( ) [ ( ) ( )T T T

L L LDL DL
E e He e He He T                (3.4) 
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where, the T and its derivative T
(1), 

are explicitly connected to the Hamiltonian derivative 

or to the Hamiltonian.
 
Similarly, the Σ or its derivative Σ

(1)

, will either be connected to 

the Hamiltonian
  

derivative or to the Hamiltonian or to two different T operators. To 

obtain the  derivative amplitudes, the derivative functional is made  stationary with 

respect to the amplitudes of Σ and T operators. For example, the first derivative amplitudes 

of Σ and T operators are obtained by the solution of the following set of equations. 

                                                           
 

 
 

(1) (1)

(0) (0)
0; 0

E E

t
                                                            (3.5) 

Equations (3.3) and (3.5) define the amplitude and derivative amplitude equations. With 

the help of them we can obtain the properties up to third order using Hellmann–Feynman 

theorem. The dipole and quadrupole moments are obtained as the expectation values of 

the dipole and quadrupole moment operator. However, second order properties like the 

dipole polarizability, dipole–quadrupole polarizability are obtained using analytic response 

approach. 

 

     3.3 Results and discussion 
 

            We report the quadrupole moment, dipole–quadrupole polarizability and dipole 

polarizability  using ECCSD method. Dipole–quadrupole polarizability is evaluated for 

methane, tetrafluoromethane, water, ammonia, carbon monoxide, hydrogen fluoride while 

quadrupole moments of acetylene, difluoroacetylene, water, ammonia and carbon 

monoxide are calculated. Dipole polarizability is calculated and reported for all the 

molecules. We have used cc-pVDZ and aug-cc-pVDZ basis [26] for all the molecules 

except for carbon monoxide we have used DZ (dunning) basis set. Water molecule has 

also been studied using Sadlej basis set [27] to compare our analytical values with the 

other correlated methods. All the calculations are done at the equilibrium geometry 

except for carbon monoxide and hydrogen fluoride molecule. We compare our results 

with the available experimental values and/ or with time dependent Hartree–Fock 

(TDHF) results wherever available. We also report analytic CCSD values for dipole 

polarizability obtained using DALTON software [28] and quadrupole moment using 
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GAMESS [29]. For dipole–quadrupole polarizability we compare our results with finite 

field CCSD values obtained using GAMESS [29]. 

 

3.3.1 Comparison between cubic-ECCSD and ECCSD 

 

As mentioned in the previous section, the initial implementation of the functional was 

based on the cubic approximation, i.e. total of three cluster amplitudes in the functional. 

In the current chapter we have considered all the terms that appear within CCSD 

approximation. At the equilibrium geometry, these terms are not expected to 

contr ibute  much in  the property calculations . However, at the stretched 

geometry we expect them to improve the results. In particular, higher order properties 

should show improvement. To confirm our point we have calculated the properties for 

carbon monoxide and hydrogen fluoride at different geometries. Carbon monoxide 

molecule was studied using double zeta basis at Re, 1.25Re and 1.4Re. We compare our 

results with finite field FCI and CCSD values using GAMESS. We also compare 

quadrupole value for carbon monoxide with the experimental value [30]. For hydrogen 

fluoride molecule we have used cc-pVDZ basis set. We report the values for Re, 1.25 Re, 

1.5 Re, 1.75Re and 2.00 Re. For hydrogen fluoride molecule, we compare our results 

with the finite field CCSD values obtained using GAMESS [29]. In Table 3.1 we report 

the properties of carbon monoxide at different geometries using cubic truncation and 

CCSD approximation. We have frozen two core orbitals in our calculations. At the 

equilibrium as well as at 1.25 Re , the difference between cubic-ECCSD and ECCSD is 

marginal. However, effect can be seen that at 1.4Re for dipole polarizability and dipole-

quadrupole polarizability. The quadrupole moment has marginal effect of the ECCSD 

terms. Dipole polarizability values along the molecular axis approaches the CCSD value 

with ECCSD approximation. Full CI is slightly low compared to ECCSD as well as 

CCSD value. Dipole–quadrupole polarizability along the molecular axis approaches the 

Full CI as well as CCSD value with ECCSD values.  The effect is prominent for 

polarizability αzz at 1.4 Re. Similar trend is observed for dipole-quadrupole polarizability 

of CO along the molecular axis. Carbon monoxide is also studied by Maroulis et. al. [31] 

and the results obtained for the properties show similar trend using different basis sets. 
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         We have also carried out similar study of comparison between cubic-ECCSD and 

ECCSD for hydrogen fluoride molecule at Re, 1.25Re, 1.5Re, 1.75Re and 2.0Re. We 

compare our results with the finite field CCSD results using GAMESS [29]. We 

compare our results at the equilibrium geometry with the experimental values [32–34]. 

In Table 3.2 we report the dipole polarizability and dipole–quadrupole polarizability 

along the molecular axis. It can be seen that till 1.5Re the difference between the cubic-

ECCSD and ECCSD is marginal. At 1.75Re and 2.0Re the dipole polarizability values 

along the molecular axis differ.   Similarly   cubic-ECCSD   and   ECCSD dipole–

quadrupole polarizability show a large change and ECCSD approaches FF-CCSD 

values. The difference between the ECCSD and FF-CCSD is due to relaxation. 
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Table 3.1 Properties of carbon monoxide in a.u. using DZ (Dunning) basis. 

R Property SCF 
Cubic-

ECCSD 
ECCSD SRCCSD 

Full 

CI 
Expt. 

Re ZZ  12.88 13.72 13.77 13.91
a
 13.79 - 

 ZZZA
 -9.12 -11.57 -11.57 -11.79

b
 -11.90 - 

 ZZ  -2.283 -2.255 -2.256 -2.256
c
 -2.257 1.44±0.3

d
 

1.25 Re ZZ  18.95 21.08 21.22 21.94
a
 20.51 - 

 ZZZA
 

-10.92 -15.29 -15.31 -15.66
b
 -16.02 - 

 ZZ  -1.745 -1.625 -1.625 -1.620
c
 -1.615 - 

1.4 Re ZZ  
22.92 28.01 27.53 27.34

a
 25.04 - 

 
ZZZA

 
-13.561 -18.88 -19.16 -19.18

b
 -19.85 - 

 ZZ  
-1.345 -1.091 -1.107 -1.088

c
 -1.147 - 

a
 Dalton CCSD results; 

b
 Finite field results.; 

c
 See Ref. [29]; 

d
 See Ref. [30]. 
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Table 3.2 Properties of hydrogen fluoride in a.u. using cc-pVDZ basis. 

R Property SCF 
Cubic-

ECCSD 
ECCSD SRCCSD 

Expt. Or 

Correlated 

Re ZZ  
4.04 4.171 4.172 4.03

a
 6.428

c
 6.438

e
 

 ZZZA
 

4.525 4.758 4.766 4.504
b
 4.508

d
 

1.25 Re ZZ  
7.11 7.274 7.267 7.12

a
 - 

 ZZZA
 

10.968 11.535 11.515 10.990
b
 - 

1.5 Re ZZ  
11.91 12.21 12.13 12.03

a
 - 

 ZZZA
 

23.688 25.35 25.00 23.945
b
 - 

1.75 Re ZZ  
18.43 19.31 18.79 18.68

a
 - 

 ZZZA
 

44.78 50.08 47.28 45.47
b
 - 

2.00 Re ZZ  
26.34 27.66 25.74 17.22

a
 - 

 ZZZA
 

75.32 86.29 72.91 76.05
b
 - 

a 
Dalton CCSD results; 

b 
Finite field results; 

c 
CCSD+T(4) see Ref. [32]; 

d
 MCSCF see 

Ref. [33]; 
e 
 CCSD(T)  see Ref. [34]. 

 

3.3.2  Methane and Tetrafluoromethane  

Table 3.3 reports the average polarizability and the Axyz component of the dipole–

quadrupole polarizability of methane and tetrafluoromethane molecule. The bond length 

of CH is taken as 1.085 Å [35]. For tetrafluoromethane the bond length is taken as 1.32 Å 

[36,37]. We compare our results with SRCCSD and TDHF [38] values. Maroulis et al. 

[39] recommended the best theoretical value for the dipole–quadrupole polarizability for 

both molecules. Experimental results are available for the Axyz component of 

tetrafluoromethane. It can be seen that dipole polarizability as well as dipole–quadrupole 

polarizability values in all the three methods are in good agreement with each other for 
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methane in both the basis sets. With the augmentation of the basis dipole polarizability is 

enhanced whereas dipole–quadrupole polarizability is reduced for methane. Our results 

for Axyz in aug-cc-pVDZ basis for methane is in good agreement with the best theoretical 

results available. Dipole polarizability as well as dipole–quadrupole polarizability values 

of tetrafluoromethane using ECCSD method are in agreement with SRCCSD. However, 

TDHF predicts slightly lower values compared to both the CC results. Here too we 

observe the same trend that with the augmentation of the basis set dipole polarizability is 

enhanced whereas dipole-quadrupole polarizability is reduced.  

Table 3.3 Properties of methane and tetrafluoromethane in a.u. 

Molecule Basis Property ECCSD SRCCSD TDHF 
Best 

(Theory) 
Expt. 

Methane cc-pVDZ ᾶ 12.73 12.83
a
 13.01

c
 - - 

 
aug-cc-

pVDZ 
ᾶ 16.14 16.39

a
 16.00

c
 - - 

 cc-pVDZ Axyz 13.95 14.06
b
 14.40

c
 - - 

 
aug-cc-

pVDZ 
Axyz 9.10 9.14

b
 9.48

c
 9.01

d
 - 

Tetrafluoro

methane 
cc-pVDZ ᾶ 12.00 12.39

a
 10.98

c
 - - 

 
aug-cc-

pVDZ 
ᾶ 18.06 18.85

a
 16.16

c
 - - 

 cc-pVDZ Axyz 15.08 15.37
b
 12.83

c
 - - 

 
aug-cc-

pVDZ 
Axyz 12.79 13.19

b
 10.94

c
 12.4

d
 12.75

e
 

a
 Dalton CCSD results ;

b
  Finite field results; 

c
 See Ref. [38]; 

d
 See Ref. [39]; 

e 
See 

Ref.[36]. 
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3.3.3 Acetylene and difluoroacetylene  

         The experimental geometry of the acetylene is RCC = 1.0605 Å and RCH = 1.203 Å  

[40] chosen for the calculations. Geometry of the difluoroacetylene is taken as RCC=1.186 

Å and RCF =1.2835 Å [41]. Table 3.4 gives the quadrupole moment and dipole 

polarizability of both the molecules. It can be seen that the effect of basis set on the 

quadrupole moment of acetylene is very little. However, electron correlation has 

relatively larger effect. Our value for quadrupole moment  zz  in aug-cc-pVDZ basis is in 

good agreement with the theoretical value [42,43] as well as approaching the 

experimental value [44]. In case of difluoroacetylene with the augmentation of the basis 

set zz value becomes almost double using ECCSD as well as SRCCSD. However, SCF 

value is marginally changed with the basis set. It can also be seen that replacing H by F 

atom sign of the zz is reversed as well as the value is also reduced. ECCSD values are in 

good agreement with the SRCCSD values. Dipole polarizability values are enhanced with 

the augmentation of the basis set. In particular the perpendicular component shows large 

basis set effect. Effect of electron correlation is relatively more for the component of the 

polarizability along the molecular axis. 
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< 

Table 3.4 Properties of acetylene and difluoroacetylene in a.u. 

Molecule Basis 
Prope

rty 
SCF ECCSD SRCCSD 

Best 

(Theory) 
Expt. 

Acetylene cc-pVDZ αzz 29.29 27.30 27.81
a
 - - 

  αxx 9.75 9.37 9.50
a
 - - 

  ZZ  5.20 4.55 4.55
b
 - - 

 
aug-cc-

pVDZ 
αzz 31.35 29.77 30.42

a
 - - 

  αxx 18.55 17.74 17.97
a
 - - 

  ZZ  5.48 4.81 4.81
b
 4.86

c
 

4.55±0.2 

(4.57±0.1)
d
 

Difluoroacetylene cc-pVDZ αzz 28.33 28.95 30.13
a
 - - 

  αxx 10.16 9.88 10.03
a
 - - 

  ZZ  -0.92 -0.47 -0.50
b
 -0.40

c
 - 

 
aug-cc-

pVDZ 
αzz 31.67 32.49 33.83

a
 - - 

  αxx 17.43 17.11 17.52
a
 - - 

  ZZ  -1.02 -0.96 -0.80
b
 - -0.78

e
 

a  Dalton CCSD results.; b See Ref. [39].; c See Ref. [42].; d See Ref. [44].; e See Ref. [35] 

 

3.3.4 Water 

We have performed our calculations for water in Sadlej basis set with the geometry of 

Bishop and Pipin [45]. The two other basis sets considered are cc-pVDZ and aug-cc-pVDZ 

basis. Table 3.5 reports the property values in Sadlej basis. Here molecule is in XZ plane 

with Z  as a molecular axis. We report the SCF as well as MCSCF values from the Bishop 

and Pipin‟s paper [45]. We compare our results with experimental and other theoretical 

values [46–50]. It can be seen that our results for quadrupole moment, dipole polarizability 

and dipole–quadrupole polarizability are in good agreement with SRCCSD and other 

theoretical and experimental values. In Table 3.6 we report the properties using cc-pVDZ 

and aug-cc-pVDZ basis sets. In cc-pVDZ basis there is not much change in either of the 

property values as we go from SCF to CC. As we go from cc-pVDZ basis to aug- cc-pVDZ 
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basis dipole polarizability values are enhanced showing the importance of the basis set. 

Quadrupole moments are enhanced by about 14%. The Axxy component of the dipole–

quadrupole polarizability has marginal change, however, Ayyy and Azyz components are 

almost doubled with augmentation of the basis set. For all the values ECCSD is in good 

agreement with the SRCCSD values. 

Table 3.5  Properties of water in a.u. using Sadlej basis. 

Property SCF ECCSD SRCCSD Expt or correlation 

 zz  8.52 9.15 9.66
a
 9.64

b
 9.59

c 
9.91±0.02

e
 

 xx  9.19 9.84 10.04
a
 9.81

b
 9.93

c
 10.31±0.08

e
 

yy
 7.85 9.14 9.46

a
 9.59

b
 9.34

c 
9.5±0.08

e
 

xzxA  6.27(6.71) 6.66 6.80
a
 6.722

d
 

yzyA  1.40(1.69) 1.48 1.62
a
 1.786

d
 

zxxA  1.62(2.08) 1.77 1.74
a
 2.54

f
 4.07

d
 

zzzA  1.68(1.90) 1.81 1.91
a
 2.194

d
 2.44

f
 

xx  1.89 1.90 1.90
a
 1.912

c
 1.96±0.2

g
 

yy
 -1.79 -1.80 -1.81

a
 -1.804

c
 -1.86±0.2

g
 

zz  -0.097 -0.093 -0.092
a
 -0.108

c
 -0.10±0.2

g
 

a Dalton CCSD results; b See Ref. [19]; c See Ref. [48]; d CISD see Ref. [47] 

e See Ref. [49]; f MCSCF see Ref. [45]; g See Ref. [50]. 
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Table 3.6  Properties of water in a.u. using Sadlej basis. 

Basis Property SCF ECCSD SRCCSD 

cc-pVDZ  zz  3.06 3.14 3.20
a
 

  xx  6.93 7.00 7.07
a
 

 yy  5.11 5.23 5.28
a
 

 xxyA  -7.53 -7.63 -7.73
b
 

 yxxA  -2.69 -3.06 -3.09
b
 

 yyyA  -0.963 -0.944 -0.963
b
 

 zyzA  -1.07 -1.10 -1.12
b
 

 xx  1.65 1.54 1..57
b
 

 yy  -1.58 -1.59 -1.50
a
 

 zz  -0.075 -0.073 -0.073
a
 

aug-cc-pVDZ  zz  7.33 8.34 8.73
a
 

  xx  9.04 9.58 9.89
a
 

 yy  8.09 8.79 9.00
a
 

 xxyA  -6.85 -7.35 -7.54
b
 

 yxxA  -2.30 -2.42 -2.54
b
 

 yyyA  -1.72 -2.08 -2.22
b
 

 zyzA  -1.56 -2.24 -2.42
b
 

 xx  1.88 1.72 1.89
a
 

 yy  -1.80 -1.96 -1.806
a
 

 zz  -0.090 -0.088 -0.087
a
 

a
 Dalton CCSD results;  

b
 Finite field results 

 

3.3.5 Ammonia  

        Ammonia is studied in cc-pVDZ as well as aug-cc-pVDZ basis set with the 

geometry of the molecule as 1.012 Å as N–H bond lengths and H–N–H bond angle 106.7. 

We report the three components of the dipole–quadrupole polarizability. It can be seen 

from the results in Table 3.7, that with augmentation of the basis dipole polarizabilities are 
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enhanced whereas dipole–quadrupole polarizability values are reduced except for the 

component. ECCSD and SRCCSD are in good agreement with each other for most of the 

properties except for the Azzz component of the dipole–quadrupole polarizability. The 

SRCCSD value of Azzz component is obtained using finite difference method whereas our 

value is obtained from analytic response approach. Due to the lone pair on the nitrogen, 

relaxation is large when field is applied along the z-direction. In fact relaxation cancels the 

correlation and we get close to SCF value in both the basis sets. To confirm our point we 

also carried out finite field calculation using ECCSD functional. These values are re- 

ported in parenthesis. It can be seen that out finite field value agrees well with the 

SRCCSD confirming that the difference is due to the relaxation. 

Table 3.7 Properties of ammonia in a.u. 

Basis Property SCF ECCSD SRCCSD 

cc-pVDZ  zz  7.57 7.61 7.73
a
 

  xx  8.20 8.21 8.31
a
 

 yy  
9.36 9.31 9.40

a
 

 xyyA
 

-6.67 -6.03 -6.67
b
 

 yxyA
 

-9.61 -10.80 -9.59
b
 

 zzzA
 4.01 6.77(4.01) 4.01

b
 

 zz  -0.72 -0.74 -0.82
a
 

  zz  12.81 13.89 14.39
a
 

  xx  12.71 13.59 14.13
a
 

 yy  
12.51 13.02 13.36

a
 

 xyyA
 

-4.82 -3.54 -4.87
b
 

 yxyA
 

-7.45 -9.08 -7.40
b
 

 zzzA
 4.11 7.10(4.56) 4.00

b
 

 zz  -0.876 -0.884 -0.828
a
 

a
 Dalton CCSD results;  

b
 Finite field results 
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3.4. Conclusion 
 

In this chapter we report dipole–quadrupole polarizability of methane, 

tetrafluoromethane, water, ammonia, carbon monoxide and hydrogen fluoride. Quadrupole 

moment of acetylene, difluoroacetylene, water and ammonia are calculated. Dipole 

polarizabilities for all the molecules are reported. We have used ECCSD method in the 

chapter. In the present chapter we have included all the double linked terms that appear in 

the functional within CCSD approximation. To compare the difference between the 

previous cubic truncation and current approximation we have studied the carbon monoxide 

and hydrogen fluoride molecule at different bond distances. Our results indicates the 

importance of the current approximation at the stretched geometries. 

We observe that with augmentation of the basis set dipole polarizabilities are enhanced, 

whereas dipole–quadrupole polarizabilities are reduced in general. For methane the Axyz 

component is reduced by 35%whereas for tetrafluoromethane Axyz component is reduced 

by 15%with the augmentation of the basis set. In case of water the Ayyy and Azyz 

components are almost doubled. The two other components, i.e. Axxy and Ayxx are 

marginally reduced. In case of ammonia the Azzz component is enhanced marginally. 

However, two other components are reduced with augmentation of the basis set. In case of 

the Azzz component of ammonia our analytic ECCSD value differs largely with the finite 

field SRCCSD value in both the basis sets. The difference is due to relaxation. To make 

sure that the difference is indeed due to relaxation we also report finite field ECCSD value 

for Azzz component. We found that our finite field ECCSD value is in good agreement with 

SRCCSD. It is interesting to note that, due to presence of lone pair on nitrogen, when field 

is applied along z direction the relaxation effect cancels correlation effect. 

The quadrupole moment values for acetylene and difluoroacetylene are in good 

agreement with the other theoretical values in the literature. The sign of the quadrupole 

moment is reversed when H atom is replaced by F atom. In general our values are in good 

agreement with other theoretical and SRCCSD values. 
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Chapter 4 

 

 

 

Extended Coupled Cluster Method for Potential Energy 

Surface:  a Decoupled Approach 

 

 

 Extended Coupled Cluster (ECC) method has been implemented extensively for the 

calculation of molecular properties.  In this paper we report the potential energy surface 

(PES) study using coupled ECC and a decoupled approximation of ECC.  HF, N2 and C2 

are studied as test systems.  N2 and C2 being
 
doubly and triply bonded, are considered to 

be interesting systems for PES study. We compare our results with Full CI (FCI) results 

wherever available. Decoupled approach within ECC framework shows good 

convergence for all the molecules. 
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4.1 Introduction 

 

Study of potential energy surface (PES) provides a key to understand various chemical 

reactions [1], kinetics, dynamics [2-4] and spectroscopic properties.  In recent years, there 

have been a lot of studies on PES [2-5].  Hartree Fock [6-7] is used as a zero
th   

order 

approximation for the correlated calculations.  Among the correlated methods, single 

reference coupled cluster (SRCC) method [8-12] has been accepted as the most accurate 

method even in its approximate form.  SRCC has been extensively used for the 

calculation of energy [13-15] and energy derivatives [16-21] as well as for potential 

energy surface calculations.  Application of SRCC for the PES calculations at the bond 

breaking region is one of the most challenging problems.  Though SRCC is suitable at the 

ground state geometry, it fails completely at the dissociation limit in particular when RHF 

does not dissociate correctly, where the non-dynamical correlation dominates [22-24]. To 

overcome this problem higher order terms like triples and quadruples are included [25] or 

multi reference methods are used [26,27].  Various studies have been performed for the 

calculation of PES using variational coupled cluster method [28-31].  Being variational it 

has upper bound in energy and does not collapse like standard SRCC method.  

Expectation values coupled cluster (XCC) [32], unitary coupled cluster (UCC) [33], 

Extended coupled cluster (ECC) [34-37], improved coupled cluster (ICC) [30] and 

quadratic coupled cluster (QCC) [31] are some of the variants of the variational coupled 

cluster approach. However, all the variational methods suffer from the problem of non- 

terminating series and needs to be truncated for practical application. Various truncation 

schemes are available in the literature.  Energy functional in variational CC theory 

includes connected diagrams, however, when differentiated leads to disconnected 

diagrams giving loss of size extensivity. ECC functional due to the double linked nature 

always maintains linked diagrams even after differentiation and therefore the size 

extensivity is maintained [37]. However, this has double the number of amplitudes and 

hence twice the no. of equations to be solved. Decoupled approximation has been 

proposed to solve this problem. Decoupled approximation was implemented for electric 

properties at the equilibrium geometry and is successfully tested for closed shell systems 

[38].
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               Last decade has witnessed a wide variety of study on potential energy surfaces.  

The incorrect convergence of RHF based studies makes it challenging for any SRCC 

method to study PESs. Musial et. al. [25] has shown that the ΛCCSD(TQf) 

approximation, based on  Λ
2
CCSD(TQf) method, gives improvement in the PESs  due to 

the inclusion of the connected  factorized quadruples.  Knowles and co-workers [30,31] 

used different approximations of the variational coupled cluster method for the study of 

potential energy surfaces. Piecuch et. al. [26] used renormalized non-iterative coupled 

cluster method for the study of PESs.   Current letter emphasizes on the study of extended 

coupled cluster (ECC) method along with promising decoupled approximation for the 

potential energy surface.  We have studied close shell molecules like HF, N2 and C2 in 

bond breaking region. All the three systems are very well studied in the literature before, 

due to the challenges they possess. 

      Paper is organized in the following manner.  In section II we briefly discuss the 

Extended coupled cluster (ECC) method along with the decoupled approximation. Results 

and discussion on them is done in section III. Conclusions on the results are presented in 

Section IV. 

4.2 Theory 

 

              We briefly discuss the Extended Coupled Cluster (ECC) functional, that we have 

used for PES study. The ECC functional uses different ket and bra vectors.      

                                                                
'E H                                                 (4.1) 

                                                          
Te                                                       (4.2)                                                                       

                                                           

' Te e  
                                                   (4.3)                                               

Here   is a hole particle de-excitation operator while T is hole particle excitation 

operator.  

   

   





Chapter 4  
 

102 

 

    They can be defined as, 

                                                                   
†

i i

i

T t C                                            (4.4) 

                                                                 i i

i

C                                              (4.5) 

       Here   and   are bi-orthogonal to each other and they are differently 

parameterized.  Arponen [34] and Bishop [35] first time proposed the functional for 

calculating energy and is popularly known as ECC. 

              After performing double similarity transformation the functional is written in the 

following form 

                                                                                    (4.6) 

    

                    DL implies that the right operator must be connected to the Hamiltonian H. 

The subscript DL (double linked) signifies the left vector Σ is either connected to the 

Hamiltonian H or to two different T operators. Thus, DL conforms that the series is 

naturally terminating and thus gives size extensive energy and properties [33].  Double 

linking also ensures that we have only connected diagrams. 

 The form of the functional used in this letter is as follows, 

 

2 2 1 1 2 2 1 2 2 1

1 1 2 2 1 1 1 1 1 1 1 2 1 1

1 1 1 1 2 2 1 2 1 2 2 1 2 2 2

2 3 4 3

2 2 1 2 1 2 1 1 2 2 1 1

1 1 1 1

2 2 2 2

1 1

2 2

1 1 1 1 1

2! 3! 4! 3! 2!

E vt v vt vt vt vt

ft ft v vt t vt t vt t

vt vt vt t vt t vt t

vt t vt vt vt vt t

    

     

      

    





      

    

    

   

     (4.7)      

 '


E  o e
(HeT )L o DL
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          It can be seen that, the contribution of the right operator is taken full within CCSD 

approximation, also the terms we use are double linked within CCSD model. They 

include
4

1vt ,
3

1vt ,
2

2 1vt t   etc. in doubles amplitude equation and 
3

1vt  in singles amplitude 

equation. While left operator includes all the conjugate double linked terms i.e. 
2

2 1vt , 

3

1 v  in 2  equation and  2 1 2vt t , 
2

2 1vt , 
3

2 1vt  in 1  amplitude equation, within CCSD 

approximation. The initial implementation was based on the cubic truncation of the left 

and right vector. Thus, the extra terms compared to the cubic approximation 

are         
 ,      

 ,      
 ,   

    .  However, we have not included terms like 

2 2

2 2vt  and some other terms like this. 

            The amplitude equations are obtained by differentiating energy expression with 

respect to cluster amplitudes i.e. 

                                                         0
E

t





                                                             (4.8a)                                                         

                                               
0

E







                                                (4.8b)                        

              Differentiation with respect to t amplitudes gives equation for    amplitudes, 

while differentiation with respect to   amplitudes gives equation for t amplitudes. 

Equations for 
(0)

2  and 
(0)

1  amplitudes are given below 

 

   

(0) (0) (0) (0)

1 2 1 1(0)

2

2
(0) (0) (0) (0) (0) (0) (0) (0)

1 2 2 2 1 2 2 1

3 4
(0) (0)

1 1 0

1ˆ ˆ ˆ ˆ ˆ(F )
2!

1 1ˆ ˆ ˆ ˆ
2! 2!

1 1ˆ ˆ 0
3! 4!

pq

ab

E
V V V V

V V V V

V V

   


       

 






    



   

  

      (4.9a) 
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(0) (0) (0) (0) (0)

1 1 2 1 1(0)

1

(2)
(0) (0) (0) (0) (0) (0) (0) (0)

1 2 1 1 2 2 1 2 0

1ˆ ˆ ˆ ˆ ˆ(F )
2!

1ˆ ˆ ˆ ˆ 0
2!

p

a

E
V V V V

V V V V

    


       






    



    
    (4.9b) 

 

In similar way, equations for 
(0)

2  and 
(0)

1  are given as    

   

(0) (0) (0) (0)

0 1 2 1 1(0)

2

(0) (0) (0) (0) (0) (0) (0) (0)

1 2 1 1 2 1 2 2

2 3
(0) (0) (0)

2 1 1

1ˆ ˆ ˆ ˆ ˆ(F )
2!

ˆ ˆ ˆ ˆ

1 1ˆ ˆ 0
2! 3!

pq

ab

E
V V V V

V V V V

V V

   


       

  






    



   

  

                  (4.10a) 

 

 

   

(0) (0) (0) (0) (0)

0 1 1 2 1 1(0)

1

(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

1 2 1 1 2 2 2 1 1 2

(2) (3)
(0) (0) (0) (0) (0) (0) (0)

2 2 1 2 1 2 1

1ˆ ˆ ˆ ˆ ˆ(F )
2!

ˆ ˆ ˆ ˆ ˆ

1 1ˆ ˆ ˆ 0
2! 3!

p

a

E
V V V V

V V V V V

V V V

    


         

      






    



    

  

            (4.10b) 

 

                            For cluster amplitudes (4.9a) and (4.9b) along with (4.10a), (4.10b), we 

solve them iteratively to get the accurate energy. It can be seen that ECC method contains 

double the number of terms and hence amplitude equations compared to the SRCC 

approximation. This at times gives problem in convergence.  Decoupled approximation is 

used as an alternative to eliminate this problem.  The discussion on it is done in next 

section. 
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 4.2.1   Decoupled Scheme:     

        The ECC functional behaves very well at equilibrium and stretched geometries 

around equilibrium. However, near bond breaking region ECCSD possess problem of 

convergence. To overcome this problem we have used a decoupled scheme for the study 

of PES. 

     Current decoupled scheme separates the left and right cluster operators. Equation 

(4.8b) gives the amplitudes within singles and doubles approximations and they are very 

similar to non- variational coupled cluster (NVCC) equation. Thus, initially we determine 

the t amplitudes eliminating amplitudes.  Once t amplitudes are known, we treat them 

as constant.  We then solve the equation for amplitudes i.e. equation (4.8a). Then we 

come back to the t amplitude equation.  This time we consider all the terms including  

amplitudes, however,  amplitudes are treated as constant. Again, we go back to the  

amplitude equation. Thus, in the decoupled approximation we have both the amplitudes 

but we treat the other amplitude as a constant and hence every time only half the numbers 

of cluster amplitudes are included. Using these left and right cluster amplitudes we 

evaluate the potential energy surface (PES) for singly and multiply bonded systems. The 

number of cluster amplitudes are reduced, in the decoupled scheme as compared to ECC, 

though the numbers of equations are same.  At the equilibrium geometry, coupled and 

decoupled scheme take almost same time. However, at stretched geometries decoupled 

scheme takes more computer time compared to coupled scheme.  Despite this the 

decoupled scheme is preferred due to convergence problem that we face for the coupled 

scheme. 

 

4.3 Results and Discussion 

 

      We present the study of potential energy surfaces for HF, C2 and N2 molecules using 

ECC functional.  Here we report the results obtained for these systems with ECCSD 

method where equations are solved in a coupled as well as in a decoupled manner.  All 

the three systems are very well studied for the PES. We have chosen the basis sets such 

that we can compare our results with the existing literature results. We compare our 

results with FCI method wherever possible.   Hydrogen Fluoride molecule has been 
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studied in DZ (Dunning) [39] basis set. C2 molecule has gained a vital importance due to 

its role in combustion reaction and also due to its multi-reference character at equilibrium 

geometry. Hence the system becomes an interesting candidate for the study. We study the 

PES for C2 in 6-31 G* [40, 41] bases set and compare our results with FCI results 

reported in the literature. N2 being strongly correlated system proves to be a good 

example to study PES. We have studied N2 in DZP [42] basis set and for comparison the 

CCSD (T) method has been used. To start with the calculations we have considered RHF 

determinant.  CCSD (T) as well as FCI results are obtained using GAMESS [43] package.  

Results for PES are shown in figures from 1-3.  

4.3.1       Hydrogen Fluoride: 

              PES for Hydrogen Fluoride molecule has been studied very well with various 

methods and is documented in literature [25, 30, 31, and 44].  All electrons are correlated 

in our calculations and we compare our results with FCI values. Energies are calculated 

for bond lengths ranging from 1.2996 (0.75 Re) to 6.238 (3.6Re) Bohr. The equilibrium 

(Re) bond length is 1.7328 Bohr. Figure 1 represents the potential energy curve for HF. 

The potential energy curve for HF can be divided into two parts. Part one consists from 

0.75Re to 1.5 Re where the RHF configuration is a good approximation for the exact wave 

function. The electronic configuration at the equilibrium geometry is 

 

Around equilibrium only dynamic correlation is dominant. As we go towards stretched 

geometry static correlation becomes crucial. At 1.5Re onwards the RHF electronic 

configuration changes to  

 

The configuration which involves bi-excitation   becomes equally 

important as the ground state configuration. This makes it difficult for the convergence of 

the ECC equation in particular when solved in a coupled manner. As a result we are not 

able to converge the ECC equation beyond 2.75 Re.  At 3.6 Re FCI expansion coefficient 

(1 )2(2 )2(1 )2(2 )2(3 )2 | (4 )0

(3 )2 (4 )2

( 1  ) 
2 
( 2  ) 

2 
( 3  ) 

2 
( 1  ) 

2 
( 2  ) 

2 
| ( 4  ) 

0 
. . . . . 
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for the above bi-excitation is 0.6163 compared to the ground state coefficient of 0.6474.  

This indicates the importance of static correlation at 3.6 Re.           

                           From the curves in figure 1 we can see that with the decoupled approach 

curve performs very well and shows the same trend like FCI i.e. reference curve.  The 

difference between FCI and ECCSD decoupled approach is very small i.e. 0.005 a.u. 

From 3 Bohr onwards coupled ECCSD starts to differ with the FCI.  Our results obtained 

using decoupled approach represents the curve is very close to the FCI and thus this 

scheme is significantly better than coupled ECCSD in terms of faster the convergence.  
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HF molecule DZ (Dunning) basis set  

Figure 4.1: Potential Energy Curve for HF molecule  
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4.3.2 Nitrogen   

 

                     The electronic configuration of N2 molecule is given as, 

 

( σ)     ( σ)  ( σ)  ( σ)  ( σ)  (  )  (  )    ( σ)  

 

 We have studied N2 molecule in DZP (Dunning) basis.  However, there are no FCI 

results are available in this basis, in the literature.   

                     Since the system is strongly correlated, the static correlation plays dominant 

role starting from equilibrium geometry itself. Also N2 being triply bonded is an 

interesting system for the PES study.  N2 is studied by Piecuch and co-workers in STO-3G 

basis using ECCSD method. Although, in their study functional is not double linked and 

also many higher order terms like 
2 2

2 2vt ,
2

1 2 2vt  , etc. are included, which are missing in 

our study.  All electrons are correlated in our study.    PES is calculated for bond lengths 

ranging from 1.8 to 4.25 Bohr. The equilibrium bond length is taken as 2.07 Bohr. It is 

known that for N2 higher excited amplitudes i.e. T3 and T4 play an important role [25, 29].   

                           Figure 2 gives the PES calculated with coupled and decoupled ECC 

method along with coupled cluster singles and doubles (CCSD) and coupled cluster 

singles and doubles using partial triples CCSD (T). There has been a wide study over N2 

molecule using CC approximations. We have reported the curve using CCSD (T) for 

comparison accompanied by CCSD. From figure 2 we can see that the difference between 

the CCSD and CCSD (T) is about 0.05 a.u. The difference increases rapidly after 3 Bohr 

showing the importance of higher excitation amplitudes i.e. T3.  Inclusion of T4 and 

higher excitations furthermore with a variational approach may help in improving the 

results towards FCI.   However, CCSD as well as CCSD (T) fall off after 3.5 Bohr.    The 

strong triple bond breaking might be complicated due to effect of static correlation. 

Decoupled scheme makes the evaluation of static correlation feasible. 
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N2 molecule DZP basis set  

Figure 4.2: Potential Energy Curve for N2 molecule  
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         4.3.3 Carbon Dimer 

                   The electronic configuration of C2 is given as, 

              

( σ)     ( σ)  ( σ)  ( σ)  ( σ)  (  )    ( σ)  

                   C2 is an interesting system to study because of the near degeneracy of  3 u  

state with the ground state, along with a strong multireference character. C2 has been 

tested by various correlated methods due to its quasi degenerate nature [25, 27, 30, 31, 45, 

46].  We have chosen 6-31 G* basis set for our study due to the availability of results in 

the literature for comparison [45, 46]. The equilibrium bond length is 2.377 Bohr (1.243 

Å), taken from experimental geometry. The bond is stretched until 5.67 Bohr (3 Å). We 

compare our results with FCI [45] and completely renormalized [CR-CCSD (TQ)] 

coupled cluster method with triple and quadruples excitation studied by Sherrill and co-

workers [46].  CR-CCSD (TQ) method also overestimates energy compared to full CI, 

however, it is lower compared to ECCSD.  

Figure 3 gives all the details of curves using different methods.  It can be seen that 

full ECCSD and decoupled ECCSD both the methods perform similar for C2 molecule. 

Compared to FCI, both ECCSD and decoupled ECCSD are on the higher side as 

expected. However, qualitative trend is obtained correctly. Thus, inclusion of the non-

iterative triples and quadruples should improve the results for ECC method too. However, 

they are computationally very expensive. Within CCSD approximation ECC being 

variational does not fall off and gives qualitatively correct behaviour.  
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C2 molecule  in 6-31G* basis set                                     

Figure 4.3: Potential Energy Curve for C2 molecule  
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4.4   Conclusion:  
 

            For efficient and accurate calculation of potential energy surfaces of HF, N2 and 

C2 molecules we have used ECC method.  ECC equations were solved in a coupled as well 

as   decoupled manner.  We present results using both the methods. We have compared 

the results with FCI wherever available. Though both coupled and decoupled ECC  

method contain same number of terms, the decoupled scheme proves a better option near 

bond breaking region. Since coupled ECC contains 2n number of equations to be solved 

at stretched geometries it is difficult to converge. However the decoupled scheme takes 

advantage of considering half the number of equation at a time, thereby reducing the 

complications in computational calculations.  For all the molecules the decoupled scheme 

behaves very well.  

                    For N2 molecule we have compared our results with CCSD(T) method. 

Decoupled scheme provides better results for all the systems at the dissociation limit.   

The decoupled ECC method takes care of static correlation to some extent. However, in 

cases where static correlation dominates even in the ground state it may fail to take care 

of it i.e. Cr2. In such cases quadratic terms along with the higher body excitation term like 

triples, quadruples may help.  However, use of multi-reference based methods will be 

more effective.  
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Chapter 5 

 

Formulation of analytic gradients using extended 

coupled cluster method 

 

 

                          We explain the formulation of the analytic gradient using ECC approach. 

The coupled perturbed Hartree-Fock equation is used (CPHF) for the derivative 

calculation of the coefficient matrix and Fock matrix. ECC being fully variational, we do 

not require derivative cluster amplitudes for calculation of gradients. However, to obtain 

the relaxed density, we need to solve Z-vector equation. One and Two particle density 

matrices are calculated and are back transformed to obtain in atomic basis. These 

densities in AO basis are then contracted with derivative Hamiltonian to acquire the 

gradient of energy. The final goal is geometry optimization using the gradient obtained by 

ECC.   
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5.1 Introduction 

 

                         Obtaining molecular structures by quantum chemical methods is 

becoming more and more widespread phenomena[1-2] . The knowledge of analytic 

gradients is useful in the determination and characterization of equilibrium geometries, 

transition states, and reaction paths of molecular potential energy surfaces. Perturbations 

like electric or magnetic along with the geometric perturbation are important. These 

derivatives can be linked to quantities which can be measured experimentally. Structures 

obtained using ab initio techniques for small molecular systems rival in accuracy with 

those obtained from experiment. Implementation of analytic calculation of energy 

derivatives with respect to nuclear coordinates has revolutionized the use of quantum 

chemistry techniques for routine calculations of molecular structures and properties [3-5]. 

In most cases cost of calculation of first derivatives is comparable to the calculation of 

energy and has helped in increasing popularity of quantum chemistry methods. It is 

possible to calculate energy derivatives using finite field [6-7]. However, the accuracy of 

the derivative is lost. Secondly,  for derivative with respect to nuclear coordinates, which 

has 3N-6 degrees of freedom which complicates the calculation and as size of the system 

increases number of parameters increase and it becomes difficult/expensive to use 

numerical methods. Use of analytical methods is more useful or a wise choice in case 

where perturbation parameters are many.  

The analytical gradient method was first implemented by Pulay et. al. [6,8]  He calculated 

analytic gradient for Hartree-Fock (HF) method [8,9] to calculate the equilibrium 

geometries. However, calculation of derivatives of one-electron and two-electron 

integrals over AO basis was the main hurdle. Later Pople and co-workers  implemented 

analytic hessian for Hartree Fock method [10]. The success of their method involved the 

efficient implementation to solve coupled perturbed HF (CPHF) equations.  Initial 

implementation of analytic gradient in the context of Møller- Plessete (MP2) perturbation 

theory, which gives electron correlation, is done by Almlöf  [11] and  Pople and co-

workers [12]. Here too efficient solution of CPHF equations [13-15]was important for the 

success of the method . Hatree Fock [16,17] is variationally optimized with respect to the 

coefficient, however, correlated methods are not. Hence, we need method called Z-

vector[18]  to eliminate this problem.  
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The analytic calculation of energy derivative methods beyond Hartree Fock were 

important due to the fact that they introduce  electron correlation which plays important 

role. Among the methods beyond HF are Configuration Interaction (CI) [19,20], 

perturbation theory (MBPT) [21-23] and coupled cluster method (CC) [24-29]. The main 

advantage of the perturbation theory is it gives size-extensive  properties at each level of 

truncation. However, MP theory has its disadvantage, since it is not variational in nature 

does not promise that the energy obtained is always upper bound to the ground state 

energy. Configuration Interaction method (CI) loses its size-extensivity when truncated 

i.e. CID, CISD, etc. Hence, one has to correct the CI description using some empirical 

correction terms. Pople, Head-Gorden and Raghavachari invented [30] a new modified 

method based on HF wave function for calculating correlation energies in reference with 

CI method. They suggested to add new terms to CI equations, those are quadratic in CI 

coefficients. This leads to the correction of size-extensivity error present in truncated CI. 

This was termed as QCI and it was established as  the promising way of calculating 

electron correlation.  Jørgensen and Simons [31] formulated analytical MP3 and CCD  

gradient of energy. First implementation of analytic MP3 gradients was done by Bartlett 

and co-workers[32].  However the computer program was not efficient and required full 

transformation of two electron integrals from AO to MO basis and was the most costliest  

and unnecessary step in the calculations. Proper implementation of MP3 analytic 

gradients was represented by Gauss and Cramer in 1987[33]. Similar type of  work was 

carried out by Bartlett and co-workers. Handy et. al. [34] formulated and implemented 

analytic gradient technique in the context of unrestricted HF (UHF) method.  The 

analytical MP4 gradient theory was formulated by Bartlett et. al. [35-36] while the 

implementation of the method was done by Gauss. 

                Single reference coupled cluster (SRCC) [24-29] methods are widely applied to 

different systems for accurate prediction of electron correlation. The major advantage of 

the method over other methods like CI is, it gives size-extensive results even in its 

approximate form for energy calculation. Handy and Scheafer showed that the Z-vector 

[18] technique can be used for elimination of amplitude derivatives, thus the equation can 

become independent of perturbation dependent terms. Adamowicz, Laiding and Bartlett  

[36] formulated analytical  coupled cluster singles and doubles (CCSD) gradient using Z-
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vector method. The introduction of Z vector within CC gradient has made method very 

powerful and successful. 

 The variational or stationary methods play important role in determining the molecular 

properties accurately since they follow generalized Hellmann-Feynman theorem (2n+1). 

Expectation value CC (XCC) [37-40], unitary CC  (UCC) [41-44] and extended CC  

(ECC) [45-47] are the functional used in the variational approach. Expectation value 

(XCC) is used for the calculation of analytic gradient by Bartlett and co-workers [48] . 

They studied the first and higher order properties through truncation of XCC at the order 

of n i.e. XCC(n) to evaluate potential energy surface as well as to predict vibrational 

spectra. However, XCC when truncated has disconnected diagrams. This leads to loss of 

size extensivity   in the property calculations. UCC functional was mostly tried for the 

energy calculations.  Arponen and Bishop suggested a bi-orthogonal functional named as 

extended coupled cluster (ECC). Pal and co-workers have studied this functional 

extensively to obtain electric as well as magnetic properties of molecules [49- 52]. The 

functional is double linked in nature which makes it naturally terminating series.   

However, termination is at high order and for practical application need to be truncated. 

Double linking also ensures that energy and energy derivatives are always linked. Being 

variational it also satisfies Hellmann Feynmann  theorem. Which makes this functional 

ideal candidate for the energy derivatives, in particular higher order derivatives. 

In the present chapter, we have done the formulation of  gradient using ECC approach. 

We outline the procedure for the gradient calculation using ECC functional. Our final aim 

is to perform geometry optimization using calculated gradient. The chapter consists of 

section 5.2 that will give the formulation of gradient using ECC density. The geometry 

optimization is represented by a flowchart, that will give the detail idea about the 

geometry optimization procedure.  The  gradient calculation with ECCSD density is in 

progress. The codes are under testing condintion. 
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 5.2 Theory 

     

 5.2.1   Extended Coupled Cluster Approach 

                         The bi-orthogonal functional was developed by Arponen and Bishop to 

calculate energy [45,46]. This is termed as Extended coupled cluster approach (ECC) and 

contains two different set of parameters represented by bra and ket. 

                                  
 

'

0 0

ˆ ˆ

ˆ 1 T T

H H

H e He

  

   
                                       (5.1) 

In equation (5.1)  
'  and    are the two set of parameters, which are parameterized 

differently. T is a hole-particle excitation operator while   is a linear operator and 

includes hole-particle de-excitation operator, the operator resembles with the T    

operator. 0 is the Hartree-Fock determinant i.e. the reference function. Thus we can 

write the equations as 

                                                   

'

0

1

1

  

  
                                          (5.2) 

      Performing double similarity transformation on the functional we obtain  

                                     
0 0

0 0( )

T T

DL

T

L DL

E e e He e

E e He

  



  

  
                                               (5.3) 

                 In equation (5.3), the subscript L represents the direct linking of T-amplitudes 

with Hamiltonian H. The subscript DL indicates the double linking of the functional i.e. 

the left operator   either has to be connected to Hamiltonian H or should be connected to 

minimum two different T amplitudes. The double linking ensures the connectedness in 

the energy as well as amplitude terms. Also the energy derivatives along with the cluster 

amplitude derivatives are connected at any order of truncation. The advantage with the 

ECC anasatz is the series is naturally terminated.  However, for practical systems the 
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truncation of the series occurs at quite higher order and hence for practical application we 

need to truncate the series.  

      To calculate the ground state cluster amplitudes for T and   variationally, energy is 

made stationary with respect to t and  .  

                                                     

( )
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0; 0,1,

iE
i




 


                                               

(5.4)
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(5.5) 

Thus, we always differentiate with respect to the unperturbed cluster amplitudes. Solving 

equations (5.4) and (5.5), we get equations for t and  respectively. Usually we truncate 

cluster amplitudes to singles and doubles amplitudes, Thus, we can see here we have 

twice the number of amplitudes and cluster equations. Equations for left and right 

amplitudes are coupled.   

                      The first derivative of energy can be written as      

                                           

(1) (1)

0 0

(1) (1)

0 0 0 0

( )

( ) ( )

T

L DL

T T

L LDL DL

E e H e

e He e He T



 

   

     
              

(5.6)

              

 

Differentiation of the energy derivative with respect to t and   gives us equations for the 

derivative cluster amplitudes. 

                                                     

(1)

(0)
0

E







                                                              (5.7) 

                                                         

(1)

(0)
0

E

t




                                                                       (5.8) 

General equation to obtain the amplitudes 
(1)t and 

(1)  are given by equation (5.7) and 

(5.8), At the stationary point derivative energy expression has form 

                                               

(1) (1)

0 0( )T

stat L DL
E e H e  

                                                 (5.9) 
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Thus being variational method, the Hellman-Feynman theorem holds good, (2n+1) rule is 

applicable for evaluating the energy derivatives. Thus to evaluate first order derivative of 

energy we only require knowledge of 
(0)  and

(0)t respectively. 

Stationary condition applied on 
(1)E  with respect to 

(0)t  and 
(0)  gives the connectivity in 

the amplitude equation. Similarly, for higher order derivatives using Hellman-Feynman 

theorem we eliminate the derivative amplitudes of the same order to get the (2n+1) rule. 

Therefore, the ECC functional not only gives the connected diagrams and terms for 

energy, but also gives connectedness in energy derivative terms as well. For calculating 

higher order derivatives of energy i.e. higher order response properties, we require the 

derivatives of t and  amplitudes. For instance if we have to calculate the second order 

derivative of energy then we require only first order derivative of  t and  amplitudes. 

 

       5.2.2    Coupled Perturbed Hartree Fock equations (CPHF)       

                         The Coupled Perturbed Hartree Fock equations (CPHF)  can  be used for 

solving the equation for each geometry.   

                                                  
(0) (0) (0) (0) (0)F C S C                                          (5.10)     

  

             
(1) (0) (0) (1) (1) (0) (0) (0) (1) (0) (0) (0) (1)F C F C S C S C S C                    (5.11)        

 

                          
(0) (0) (0) (1) (1) (1) (0) (0) (1) (0)( ) ( )F S C F S S C                     (5.12)       

             Equations (5.10) and (5.11) provide give the unperturbed and perturbed SCF 

equations. C
(1)

  can be obtained from solving these equations and hence F
(1)

 can be 

calculated.  

            Fock matrix (F), overlap matrix (S) , coefficient matrix (C) and orbital energy 

matrix (ε)are expanded in terms of perturbation parameters. Thus we obtain first order 

CPHF equations by collecting the perturbed terms together. Using orthonormality 

condition of molecular orbitals 
(0)† (0) (0) 1C S C  ,  
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(1) (0) (0)† (0) (0) † (1) (0) † (0) (1) 0C S C C S C C S C                           (5.13) 

             

Thus (1)F term is given as, 

 

                                                    
(1) (1) (1) (0) (0) (1)F h G D G D                                        (5.14) 

 

Here in equation (5.14) 
(1)h  represents the one-electron (core) matrix, D is the density 

matrix, G  is the tensor containing two electron integrals. The density matrix can be 

written as a product of MO coefficients 

 

                                                   
(0) †(0) (0)

(1) †(1) (0) †(0) (1)

D C C

D C C C C



 
                                          (5.15)        

 

  The quantities 
(1)S , 

(1)h  and 
(1)g  are first derivatives of overlap matrix, one and two 

electron integrals. Simplifying equation (5.12) by substituting 
(0)† (0) (0) 1C S C   and 

(0)† (0) (0)C F C E  we get the CPHF equation in matrix form. 

 

                                
(0) (0)(1) (1) † (1) (0) † (1) (0) (1)EU U E C S C E C F C E                   (5.16) 

 

      The CPHF equations are generally linear and can be solved with standard matrix 

operations. These equations are solved in iterative manner. The size of U matrix is 

number of occupied orbitals times number of virtual orbitals. The formulation of CPHF 

equations can be done either in molecular orbital (MO) basis or atomic orbital (AO) basis.  

 

  5.2.3   Gradient calculation using ECC approach 

         Though ECC is variational with respect to the cluster amplitudes it is not variational 

with respect to the AO to MO coefficients. To eliminate the coefficient derivatives we 

need to solve a liner equation similar to Z-vector. The gradient of ECC can be written as, 
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(1)(1) (1)

(1) (1)

( )ECCSD ECCSD ECCSD

ECCSD

nuc

E P H

W S V

  
 

 


   

 

 


                     (5.17) 

 

                 
(1)H  and (1)S  are the derivative Hamiltonian and overlap matrix in AO basis, 

(1)

nucV is the derivative nuclear repulsion term.  P is the effective ECCD density and W is the 

energy-weighted density matrices.  

 

                                                      

ECCSD S NS

     
                                             (5.18) 

 

     The total density can be split into separable and non-separable densities. 

 

( )(4 4

4

)

S SCF SCF SCF ECC

SCF ECC SCF ECC SCF ECC

SCF ECC SCF SCF SCF SCF

P P P P

P P P P P P

P P P P P P

    

     

     

       

     

    
                      (5.19) 

 

The non- separable two particle density has various blocks. They are as below 

 

         

NS HHHH PPPP HPHP HHPP HHHP

PHPH PPHP PPPH

      

 
            (5.20)                    

 

.  While using  ECCSD

 , is symmetrized  as , ,         interchange. These 

are permutational symmetries of electron repulsion integrals (ERIs), with these the ECCSD

  

is contracted.  The MO basis expression one particle density is given as, 

  

                     ,

total ECCSD ECCSD ECCSD ECCSD

p q ij ab ia aiP P P P P    
                         (5.21) 
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All combined densities will together give the total ECCSD density.  

 

 [( ) ( )]
bj

ECC ECC

ai a b ai

bj

L ij ab ib ja P P                                                 (5.22) 

 

          
*[ ] ( )em im ae aa i em ai

m e

D ei ma f f D mi ea                                         (5.23) 

          

* *1 1

2 2

ef ae

im mn mn

m ef mn e mn

ef ai

ef

ef am ie mn D im an

D ie af 

   

 

  


                              (5.24) 

 

  The relax densities are obtained through equations (5.23) and (5.24).  Energy-weighted density 

matrix is given as, 

     

 

                   ( ) ( ) ( )ECCSD ab ECCSD ECCSD

ij jk i ij pq

kab pq

W ki ab P P ip jq                           (5.25) 

  

 

                    

 ( ) ( )ECCSD bc ECCSD

ab ij a ab

ijc

W ij ca P  
                                                               (5.26) 

 

                    

 ( ) ( )ECCSD ba ECCSD

ai jk i ai

jkb

W jk ib P  
                                                              (5.27) 

                                                                                                                  

Thus we can write a systematic procedure to calculate gradient. Thus the algorithm can be 

written as, 

1)  Do the SCF calculation; calculate AO-ERIs (electron repulsion integrals in AO 

basis). Store the AO integrals.  

2) Transform the AO integrals  ij ab ,  ia jb ,  ia bc ,  ij ka ,  ab cd  into MO 

integrals. Store the MO integrals. Calculate the ECCSD energy. 

3) Calculate density matrix, relaxed one particle density and two particle density and 

weighted density matrices. 

4) Perform the back transformation of  density from MO to AO basis. 
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5) Evaluate the gradient using equation (5.16) where the gradient composes of 

derivatives of kinetic energy, Hellmann-Feynman, Lagrangian, AO integral and 

total gradient is calculated as sum of these terms. 

6) Thus obtaining the gradient calculated through ECCSD density, use this gradient 

for calculating geometry optimization. 

7) We obtain the hessian matrix numerically. 

8) The geometry optimization is done using Newton-Rapson Method. The tolerance 

of gradient is 10
-6

. The geometry obtained at this gradient value  is the optimized 

geometry.
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Chapter 6 

 

 

Summary and Future Scope 

 

 

 

 

                                This chapter gives a summary of the work carried out in the thesis as 

well as the future scope of the thesis. It gives the brief idea about the importance of 

(Extended coupled cluster) ECC in predicting the molecular properties using different 

approximations. The detail discussion about the formulation of gradient by ECC methods 

is given. 
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  6.1    Summary 
 

                  The focus of this thesis is to emphasize the role extended coupled cluster 

method [1-4] in predicting molecular properties of various systems. The accuracy and 

precision of ECC method at any level of truncation has made it superior than other 

correlated methods [5-12] for property calculation. The variational nature of the method, 

which fulfils the (2n+1) rule simplifies the property calculations [13-18]. In particular 

higher order properties. Thus, with the knowledge of n
th

 order amplitude derivatives, we 

can calculate (2n+1)
th

 order energy derivatives.   The double linked form of the functional 

ensures the size-extensivity for energy as well as energy derivatives at each truncation. 

The ECC functional has the inbuilt characteristic property to get naturally terminated. 

However, natural truncation is at quite high order and hence needs truncation for practical 

application.    

                We have used the ECC functional for calculation of IR and Raman intensities 

along with vibrational frequencies and depolarization ratio[19] . IR and Raman intensities 

are mixed derivatives of energy with respect to the electric field and geometry. For these 

calculations, we have used the left exponential truncated up to quadratic terms. The 

partial triples are implemented in a non-iterative manner. The semi-numerical approach is 

used for the calculations. The dipole moment and polarizability are calculated using 

analytic approach while their derivatives with respect to geometry are calculated using 

numerical approach. The geometric derivatives of polarizability are important for 

calculating Raman Scattering cross-section. The information of the depolarization ratio 

gives the idea about the symmetry of vibrations. We have studied the effect of partial 

triples on IR and Raman intensities for all the test systems except formaldehyde. For 

Formaldehyde, partial triples are included only for calculation of IR intensities. In 

particular HF, BH and CH
+ 

are studied in aug-cc-pVQZ basis to know how the inclusion 

of partial triples affects the IR and Raman intensities. The vibrational frequencies change 

marginally due to the inclusion of triples in case of HF and BH molecule. However, for 

CH
+ 

 IR
 
 intensity  reduces due to inclusion of partial triples. For HF molecule in aug-cc-

pVQZ basis, the IR intensity value calculated is close to basis set limit, calculated using 

partial triples. Raman intensity for BH increases while for HF and CH
+
, Raman intensities 

are unaffected due to inclusion of partial triples.  Depolarization ratio is very sensitive to 



Chapter 6  
 

132 

 

inclusion of partial triples for HF and CH
+ 

,  however, for BH molecule it does not show 

any change. For strongly correlated systems like CO and H2CO effect of partial triples is 

more prominent. For CO molecule we also observed effect of augmentation of the basis 

set. We observe that there is little change of augmentation on intensity; however the 

frequencies change with the augmentation. It is observed that the effect of partial triples is 

more than augmentation for CO molecule. For formaldehyde molecule, for CO symmetric 

stretch mode, IR intensity is reduced while other two stretching modes of CH2 are 

marginally affected with the inclusion of partial triples. We have used harmonic 

approximation for our calculation of IR and Raman intensities. Thus with the ECC 

approach, calculated spectroscopic properties match with the experimental values as well 

as highly accurate theoretical methods wherever available. 

               The dipole-quadrupole polarizability of methane, tetrafluoromethane, water, 

ammonia, carbon monoxide and hydrogen fluoride are calculated [20]. Quadrupole 

moment of acetylene, difluoroacetylene, water and ammonia are also calculated. We have 

also reported the dipole polarizabilities for all the molecules.  The ECCSD approach is 

used for all the calculations. To compare the difference between previously calculated 

cubic truncation and inclusion of all double linked terms within ECCSD approximation, 

we have studied carbon monoxide and hydrogen fluoride molecule at different bond 

distances. Our results point out the importance of current approximation. We observe, 

with augmentation of basis set dipole polarizabilities are enhanced while dipole-

quadrupole polarizabilities are reduced in general.  

               The general ECCSD approach has double the number of amplitudes and hence 

the number of equations compared to the normal coupled cluster methods. This creates 

problem for the convergence of the equation away from equilibrium. Thus, we implement the 

decoupled approach within the ECCSD method for calculation of potential energy surface. 

ECC equations were solved in a coupled as well as decoupled manner. We present results 

using both the methods[21]. We have compared the results with FCI wherever available. 

Though both coupled and decoupled ECC approaches contain same number of terms, the 

decoupled scheme proves a better option away from equilibrium. Since coupled ECC 

contains 2n number of equations to be solved at stretched geometries it is difficult to 

converge. However the decoupled scheme takes advantage of considering half the number of 

equations at a time, thereby reducing the complications in computational calculations.  For all 
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the molecules the decoupled scheme behaves well.  For N2 molecule, we have compared our 

results with CCSD(T) method. Decoupled scheme provides better results for all the systems 

away from equilibrium.   The decoupled ECC method takes care of static correlation to some 

extent. 

          The analytic derivatives of energy are important in precise calculation of molecular 

properties, which is lost in numerical calculations. The first order derivative of energy 

with respect to molecular geometry is called as gradient while the second order derivative 

is termed as Hessian. The knowledge of gradient is required for geometry optimization, 

calculating transition states in chemical reaction pathways and finding maxima, minima 

on the potential energy surface. We present the formulation of analytic gradient using 

ECC approach. ECC method being variational in nature, follows (2n+1) rule, that makes 

the higher order property calculation feasible. We have done the formulation of analytic 

gradients and used them for geometry optimization. 

              The future scope of the thesis is, use of analytic gradient in calculating various 

molecular properties. These properties include spectroscopic properties, calculation of 

hessian. The gradient of dipole-quadrupole polarizability gives the Vibrational Raman 

Optical Activity. The hessian is used for calculating vibrational frequencies of the 

molecule. The maxima and minima on the potential energy surfaces can be identified with 

the gradient calculation. Thus the analytical derivatives open the gateway for evaluation 

of wide range of properties.   
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