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Abstract 

In this proposed research work, we focus upon the problem of global optimization of 

nonlinear process systems that arise in chemical engineering science. Our primary objective in 

this study is to devise new methods of global optimization (including those which are variants of 

existing optimization methods for global optimization).  

Chapter I is an Introduction to research work being planned and done and tells about how 

the problem selected was identified as one which was solved as the research problem 

satisfactorily. The contents of Chapter I are summarized here, which will also give an idea about 

the topic of research and how identification of problems defines scope of work to be done. 

Optimization of nonlinear chemical process systems has been a topic of interest for many 

years. The problems faced during optimization of such systems can be the presence of multiple 

optimum solutions, stability and convergence of algorithms. If an optimization program has 

highly nonlinear equations as constraints, we may experience slower convergence. 

The problem due to nonlinearity of constraints also implies problems in obtaining 

accuracy of solution after computations. Also in search range of decision variables several 

possible local optimum solutions may exist and it will become difficult to obtain the required 

global optimum solution. Under such circumstances we divide the global optimization method 

into two parts, viz. global search method followed with a local search method.  

Thus the idea is to devise a global search method which converges closer to the true 

optimum solution when a successive linear programming approximation is used. This converged 

solution serves as a guess in that a local search method such as trust region finds an accurate 

enough local optimum solution using nonlinear objective function and constraints. Again the 

global search method can be composed of two parts. First one gives a pattern search control in 

various search segments of total span of decision variables (box constraints); while the other uses 

an approximation as a box constrained linear program to come close to true optimum solution. In 

this work, we are interested in developing the latter part of global search method i.e. fast 

converging cutting plane modification.  

 In Chapter II of the thesis, we present a new variant of Kelley’s cutting plane algorithm, 

which was found to have a higher rate of convergence than its predecessor. The observations 

made during numerical experience of applying the cutting plane algorithm to nonlinear 

optimization programs to standard examples in textbooks resulted in forming a concrete idea and 

identification of new directions for improvement in this existing method. 

Thus, we are motivated to extend the basic result of Kelley's cutting planes to form a new 

cutting plane variant in order to improve convergence of numerical algorithm. The new 

alternative cut uses a strategy to achieve this objective and employs the new cut and we may 

term it here in this work as a variant of Kelley’s cutting plane algorithm.  

One possible approach for deriving cutting planes is to change the right hand sides of 

linear constraints. Our approach is conceptually different from this and results in a superlinear 



rate of convergence vis-a-vis the sublinear convergence rate of the Kelley's cutting plane 

algorithm. We demonstrate the performance of these new cuts using several examples. 

In our work, we have presented a new variant of Kelley’s cutting plane method, which 

we termed as a sharp cut. This new variant is in reality an intersection of three cuts and is an 

outcome of experiments based on certain observations, which helped in forming clear objectives. 

The convergence improved almost becoming superlinear after a couple of iterations. Hence, 

there is a reason to believe that an improvement which is more than satisfactory was seen from 

numerical computations, when the algorithm was applied to a number of toy examples. 

It was observed that in few iterations of the first sharp cut the signs of gradient vector 

reverses and the second sharp cut which is almost parallel to hyper tangent to unique global 

optimum solution in search range gives an extra cut and accelerates the rate of convergence to 

first super linear rate and then to super super linear rate and requires less number of iterations. 

The algorithm now reaches the stationary point as defined in theory and is at least twice as fast as 

than Kelley's algorithm. 

In this chapter III, we discuss an application of a cutting plane variant presented by 

authors termed as a sharp cut algorithm. This cutting plane variant was found to be superior than 

existing methods in literature. When a few standard nonconvex functions were tested, the sharp 

cut algorithm gave out all optimum solutions in monotone order. From the limited literature we 

searched, we found that the sharp cut algorithm has a unique feature of finding all multiple 

optimum solutions in very few iterations, when standard nonconvex functions are most violated 

constraints. In order to illustrate and test its applicability, we have applied this cutting plane 

variant to solve a problem of control and optimization. The example we have chosen is that of a 

nonisothermal CSTR, where no stable nodes were found for a limited parameter search done. In 

addition, we considered the scenario, when a few system parameters shift during operation. 

When we wish to find a new optimum steady state after these shifts occurs, we apply the cut, 

obtain all optimum solutions, find one corresponding to maximum conversion, and, again apply 

the optimal control which is based on Pontryagin's maximum principle. The results of numerical 

computations are presented. 

 

In Chapter IV, the sharp cut algorithm, which was found to be superior than it’s 

predecessors and performed well when applied to the toy examples was used to extend its 

applicability to stochastic optimal control. The local neighborhood is formed by plant system 

parameters and we first consider a case where free system parameters are varied. At every 

iteration of optimal control, we check for a condition that either parameter shifts occur or that the 

system has reached its destination i.e. final state, and that we need to find out which are further 

available states in this neighborhood, and, apply the sharp cut algorithm to a linear naive 

objective function to find a new set point from multiple local optimum solutions obtained. A 

statement of dynamic optimization for a linear (linearized) control system is derived and an 

optimal controller equation is obtained. Now we consider a stochastic variation within plant 

system is considered, and, the efficacy of this new control system is checked to verify its 



applicability. Several results from numerical computations are presented at the end to illustrate 

the theoretical results for control and optimization. 

In the Chapter V, the previous application of stochastic optimal control in Chapter IV is 

re-visited and a problem of nonlinear control is solved. We assume no variation in the feed 

concentration being input to the nonisothermal CSTR and design an optimal controller using an 

external cooling jacket.  The sharp cut algorithm can be executed at every iteration to find next 

final state for optimal control for the operation of external and internal cooling facility. This 

gives rise to a statement of optimal control and optimization problem. This is expected to 

eliminate the disturbance entering the CSTR dynamics. However, if a weak sinusoidal variation 

occurs in the feed concentration with random variation around a bias caused as added 

component, it is preferable that internal cooling coils are inserted into vessel to absorb this extra 

release of heat. Although the problem seems to be acceptable as an academic exercise, for a pilot 

plant facility, such an arrangement can be possible. So we derive the necessary dynamics for 

internal cooling coils, derive necessary transfer function relations after linearization (which is a 

routine textbook exercise) and carry out model block synthesis that will provide temperature 

balance equation for stochastic optimal control. Once the stochastic differential equation is 

obtained, we can apply theoretical results in literature and derive necessary analytical results that 

can be used to apply the stochastic optimal control. The Results and Discussion Section 

discusses how this can be implemented and the advantages we gain from application of the same. 

The Chapter VI concludes the thesis by making a few recommendations as possible 

directions for future research. 
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Chapter 1

Introduction

1.1 Introduction

In this work, we will focus our attention on devising computationally

more efficient optimization algorithm for optimization of nonlinear chemical

processes. The objective is to come closer to possible local optimum solution

that local search method can converge upon the true optimum solution.

1.2 Problem identification

The problem of finding a new alternative method which is more efficient

than the existing computing algorithms remains a frontier topic in research

11
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12 CHAPTER 1. INTRODUCTION

on optimization fundamentals even today and will continue later.

One alternative measure which is one view presented in conventional lit-

erature on optimization, is to devise global search methods which come very

close to true local optimum solutions in very few iterations. This optimum

value obtained can be used as a starting point by any local search method

(e.g. trust region method) to obtain the true optimum again in a very few

iterations. This guarantees a very high rate of convergence and can be a

useful method to solve many practical nonlinear optimization problems, and

more specifically so the nonconvex programming problems.

The focus in this work is upon the cutting plane methods for two reasons.

Firstly, the guess values are not required for the cutting plane algorithms and

its variants published in literature. Secondly, as the cutting plane algorithm

serves as a global search method that a local search method can converge

upon true optimum solution, it offers another advantage. The cutting plane

method uses the box constraints specified as a starting point and finds the

optimum solution; hence it eliminates the possibility of requiring any pattern

search method during this search.

This our aim in this work is to find a new variant of the cutting plane

method, which has a higher rate of convergence and will have an ability to
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1.3. IMPORTANCE OF CUTTING PLANE METHODS 13

solve the nonconvex programming problems. This forms the scope of work

being done in this doctoral thesis and forms a motivation to take up this

research problem.

1.3 Importance of cutting plane methods

The cutting planes are best known alternative to branch and bound and are

very commonly used as a starting routine before a nonlinear programming

(NLP) solver is called. The cutting plane code thus comes very close to the

true numerical solution of a nonlinear optimization program, which is subject

to nonlinear equality and inequality constraints.

These cutting plane methods are applied to a general convex continu-

ous optimization program. The commonly known variants of cutting plane

methods are Kelley’s method, Kelley- Cheney- Goldstein method, and bun-

dle methods. These variants are very popular and used to solve the non-

differentiable convex minimization programs. In these non-differentiable pro-

grams, a convex objective function and its subgradient are evaluated effi-

ciently; however, the usual gradient methods for differentiable optimization

can not be used. In general, the cutting plane methods are used in several
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14 CHAPTER 1. INTRODUCTION

commercial solvers.

The successive linear programming (SLP) method is an extension of the

technique of linear programming, which allows the optimization of nonlinear

programming problems through a series of linear approximations. When we

apply the SLP algorithm, we start with an initial estimate of the optimal

solution and iterate further. This method thus solves successive first order

approximations or linearizations of the nonlinear program.

These linear constraints which get added to the constraint set, as SLP

iterates, are often non-bounded. Also, the optimum solution may lie in some

cases within the interior of the feasible region. The SLP method comes near

to the true optimum solution and next a commonly used local search method

such as the trust region method which has a feature of putting a bound on

step bounding.

1.4 Aim and scope

The primary aim of this research being done is to devise a new cutting

plane algorithm which will overcome the weakness of having a sublinear rate

of convergence, which is observed in case of Kelley’s cutting plane method
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when initial computing was done using toy examples. Later we can apply

the sharp cut algorithm to an example of optimization of performance of a

nonisothermal continuously stirred tank reactor (CSTR).
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Chapter 2

The sharp cut algorithm

17
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18 CHAPTER 2. THE SHARP CUT ALGORITHM

Abstract

In this chapter, we introduce a new cutting plane algorithm which is com-

putationally less expensive and more efficient than Kelley’s algorithm. This

new cutting plane algorithm uses an intersection cut of three types of cut-

ting planes. We find from numerical results that the global search method

formed using successive linear programming and a new intersection set is at

least twice as fast as than Kelley’s cutting planes. The necessary mathemat-

ical analysis and convergence theorem are provided. The key findings are

illustrated via optimization of three CSTRs.
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2.1. INTRODUCTION 19

2.1 Introduction

Optimization of nonlinear process systems (Hoza and Stadtherr, 1993; Ter-

laky, 1996; Harjunkoski, Jain, and Grossman, 2000; Rajesh et. al., 2001;

Bertsekas and Nedic, 2003; Lucia and Yang, 2004; Floudas et. al., 2005;

Georgiorgis et. al., 2006; Miri et. al., 2008; Srinivasan, Biegler and Bonvin,

2008; Varma, 2008) has been of interest for many years. Some problems

that one may face in optimizing highly nonlinear systems are multiple local

optima (Mangaserian, 1969; Ravindran, Ragsdell and Reklaitis, 1983; Boyd

and Vandenberghe, 2004), stability (Higham, 1996; Borkar and Meyn, 2000;

Bertsekas and Nedic, 2003), feasible solution, and algorithmic convergence

(Kelley, 1960; Byrd et. al., 2005). Successive linear programming has been

used to solve many problems of interest in practice, especially those in re-

finery planning and scheduling. The basic idea is to solve a series o linear

program arising from a linear approximation of the feasible region. Kelley

(1960) proposed a cutting plane algorithm to improve the convergence of such

a strategy. Cheney and Goldstein (1959) also arrived at a similar algorithm

to find an optimum solution. Our goal in this work is to extend Kelley’s

cutting planes (Kelley, 1960) to form new cutting planes that improve the

convergence of an SLP algorithm.
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20 CHAPTER 2. THE SHARP CUT ALGORITHM

Various cuts have been used in the literature on optimization theory and

methods. Goffin and Vial (1997) proposed shallow, deep, and very deep

cuts in solving non-differentiable convex programs. The techniques build

an increasingly refined polyhedral approximation of the optimum solution

set. An analytic center cutting plane method was used to solve optimization

problems. Two cuts were used again by Goffin and Vial (1996) when a

new cutting plane and a new upper bound were introduced for the objective

function at the same time. It was observed that the updating directions

depend on the cosine of the metric of Dikin’s ellipsoids of the normals to the

cut, where the acute angle in the cosine formula favors convergence. Balas

(1971) presented another type of cutting planes that employs intersection

cuts to solve problems in integer programming. Letchford (2002) presented

totally tight Chvátal-Gomory cuts for mixed integer programming. Using

a convergent Lagrangian, a contour cut method was presented by Li, Sun

and Wang (2006) to solve nonlinear integer programming problems. Luoy

(1997) provided the analysis of a cutting plane method that uses weighted

analytic center and multiple cuts. Manfred Padberg (Grötschel, 2004) made

fundamental contributions to theoretical as well as computational aspects of

integer programming and combinatorial optimization.
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2.2. PROBLEM STATEMENT 21

One possible approach for deriving cutting planes is to change the right

hand sides of linear constraints. Our approach is conceptually different from

this and results in a superlinear rate of convergence vis-a-vis the sublinear

convergence rate of the Kelley’s cutting plane algorithm. We demonstrate

the performance of these new cuts using several examples.

2.2 Problem statement

We consider a nonlinear program (NLP)

Min ϕ0(x)

s.t. ϕj(x) ≥ 0, j = 1, 2, · · · , p (2.1)

and the values which the decision variables can take are given by a box

constraint set B as

B = {∀i|xi ∈ [ai, bi]}, x = {x1, x2, · · · , xn}t ⊂ ℜn (2.2)

The commonly employed methods to solve a nonlinear program (NLP) are

cutting plane algorithms. These algorithms are good candidates to write a

code for commercial solvers. The reader may kindly refer to the Notation

section to know what each symbol and term means.
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22 CHAPTER 2. THE SHARP CUT ALGORITHM

We first apply Kelley’s cutting plane algorithm to three examples of op-

timization program having strongly nonlinear constraints.

Example 1.

Min ϕ0(x) ≡ −3.0x1 − 12.5x2 − 20.0x3

s.t. g1(x) ≡
√
x1 − 8x22 − 2x3 ≥ 0

g2(x) ≡ −1.2x21 + 6.0x23 − 3.0x2x3 ≥ 0

Here, ϕ0(x) ∈ ℜ1 and g(x) ≡ {g1(x), g2(x)}t ∈ ℜ2. The box constraints

within which the optimum solution must lie are

0.0 ≤ x1 ≤ 2.5 0.0 ≤ x2 ≤ 2.0 0.0 ≤ x3 ≤ 14.0

Example 2.

Min ϕ0(x) ≡ −3.0x1 + 2x2 + 0.8x3

s.t. g1(x) ≡ 1.0− (x1 − 2)2 − (x2 − 5)2 + x23 ≥ 0

g2(x) ≡ x21 + (x2 − 2)− 5.0x23 ≥ 0

The box constraints within which the optimum solution must lie are

0.0 ≤ x1 ≤ 4.5 0.0 ≤ x2 ≤ 6.0 0.0 ≤ x3 ≤ 8.0

Example 3 (Ravindran, Ragsdell and Reklaitis, 1983).

Min ϕ0(x) ≡ −x1 − x2
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2.2. PROBLEM STATEMENT 23

s.t. g1(x) ≡ 2x1 − x22 − 1.0 ≥ 0

g2(x) ≡ 9.0− 0.8x21 − 2.0x2 ≥ 0

The box constraints within which the optimum solution must lie are

0.0 ≤ x1 ≤ 5.0 0.0 ≤ x2 ≤ 4.0

Observations.

The numerical experience reveals some observations which lead to a prob-

lem statement and motivation (see Table 4). These observations (and subse-

quent motivation) are:

1. The convergence of algorithm based on function evaluation of most vio-

lated constraint showed a rate of convergence which is sub-linear.

2. The algorithm seems not to reach a fixed or stationary point of nonlin-

ear program as would be reached by a global search method and this local

optimum solution should have been very close to the true local optimum

solution.

Problem motivation.

1. The sublinear rate of Kelley’s cutting plane method clearly implies that an

improvement is required to come nearer to a super linear rate of convergence.

(The terms to measure rate of convergence of algorithm which are sublinear,
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24 CHAPTER 2. THE SHARP CUT ALGORITHM

superlinear, super superlinear are explained later in Section 5.)

2. Especially in the last few iterations behavior of solution sequence sug-

gesting occurrence akin to the cycling behavior of linear programming (LP)

solvers and needs to be analyzed further to eliminate it.

Thus improving rate of convergence to be almost superlinear and elimi-

nation of SLP behavior which is akin to cycling behavior of LP solver form

a motivation to take up this problem for further study.

2.3 Cutting plane algorithm

In this work, we consider a nonlinear program (NLP)

Min ϕ0(x)

s.t. ϕj(x) ≥ 0, j = 1, 2, · · · , p (2.3)

where x = {x1, x2, · · · , xn}t is the decision vector of optimization program.

Here, we assume that the function ϕ0 : ℜn → ℜ is a continuous mapping

and inequality constraints ϕj : ℜn → ℜ; j = 1, 2, · · · , p are also continuous

mappings. Before proceeding further, we give a brief description of successive
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2.3. CUTTING PLANE ALGORITHM 25

linear programming (SLP).

The basic algorithm for SLP, which is a global search method, is described

below. Later, we will discuss other aspects and convergence theorem for this

algorithm.

1. Initial iteration. The linear programming (LP) approximation begins

with a linearized objective function ϕ̂0(x) = ctx and box constraints.

Here, c = {c1, c2, · · · , cn} is a row vector of constants. In the initial

iteration,

Min ϕ̂0(x)

s.t. Zo ≡ {∀i|ai ≤ xi ≤ bi, i = 1, 2, · · · , n} (2.4)

The call to LP solver gives us an optimum solution point denoted as

x = ᾱ and for lth iteration ᾱl = {α1,l, α2,l, · · · , αn,l}t, where subscript

i denotes ith decision variable and subscript l stands for lth iteration.

The LP solution is obtained by solving linear program in Eq. (2.4);

this produces an optimum solution ᾱ1, as this is used in iteration ’1’ to

identify the most violated constraint as defined later.

2. Cutting plane computation.
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26 CHAPTER 2. THE SHARP CUT ALGORITHM

Definition 1: Most violated constraint. According to Kelley’s algorithm

(1960), the most violated constraint is identified as

−gor,l = {∀j ∈ J;∃r ∈ J;J = {1, 2, · · · , p}|Max r∈J[−ϕj(ᾱl−1), 0]} (2.5)

with r being the integer index, as returned by the Max function in Eq.

(2.5). Here ϕj(ᾱl) is a numerical value of function ϕj(x) evaluated at

x = ᾱl, which is obtained as an optimum solution point by solving LP

approximation for the lth iteration of algorithm. ♢

The rth constraint in Eq. (2.5) is identified as that corresponding to the

maximum value of function ϕj(ᾱl−1), j ∈ J, J = {1, · · · , p}, and r ∈ J.

Using the most violated constraint, the function value gor,l = ϕr(ᾱl−1)

and optimum solution point ᾱl−1 a cutting plane is obtained.

ul(x; ᾱl−1) ≡ gor,l +
n∑

i=1

∇xi
ϕr(ᾱl−1)(xi − αi,l−1) ≥ 0 (2.6)

and is denoted as ul and then added to the constraint set of LP program

being solved every lth iteration.

3. lth iteration. Repeating the procedure above, for lth iteration, we

obtain an updated LP statement as

Min ϕ̂o(x) = ctx
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2.3. CUTTING PLANE ALGORITHM 27

s.t. {∀l ∈ {1, · · · , k, · · · ,∞}|ul ≥ 0}
∩

Zo

Zo ≡ {∀i|ai ≤ xi ≤ bi, i = 1, 2, · · · , n} (2.7)

where index l stands for current lth iteration. From here on, using the

following notation for indices of optimum solution point sets

Pl = {0, 1, 2, · · ·} (2.8)

P∞ = {1, 2, · · · ,∞} (2.9)

4. Termination criteria. The iterative procedure terminates when differ-

ence between successive values of optimum solution becomes negligible,

i.e. when

lim

l → ∞
|gor,l−1 − gor,l| → 0; or gor,l > −ϵ; ϵ > 0 (2.10)

ϵ being arbitrary. Here, l → ∞ implies a large number of iterations.

The algorithm terminates, when we are very close to the constraint

hypersurface. Ideally, gor,l = 0 as l → ∞, unless in Eq. (2.10) we see

that a limit point gor,∞ ̸= 0 is reached and algorithm cannot proceed

further.
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28 CHAPTER 2. THE SHARP CUT ALGORITHM

2.4 Stationary point of program

In this section, we give mathematical analysis leading to definition of a

stationary point of a nonlinear optimization program.

Definition 2. We denote a sequence (Ql) (Rudin, 1976) of numerical values

of optimum solutions as

Ql ≡ {∀l ∈ Pl|ᾱl} (2.11)

The above is a set of solution vectors ᾱl, l = 0, 1, 2, · · ·, put together as a

set of solution points after execution of call to LP solver in lth iteration of

SLP algorithm. There is a sequence Ql such that {∀l ∈ P∞|ᾱl} ⊂ ℜn, which

converges upon a solution point x = ᾱ∗ as l → ∞.

The linear approximation of NLP in Eq. (2.3) provided in Eq. (2.7) has

a feasible region of local solutions LΩ, which is defined as

LΩ ≡ {∀l ∈ Pl|ul ≥ 0} (2.12)

with Kelley’s cutting plane ul being defined in Eq. (2.6). The feasible region

for nonlinear program in Eq. (2.3) is given by nonempty Ω with

Ω = {x|ϕr(x) ≥ 0}. (2.13)

It follows that (Rudin, 1976)

Ω ⊂ LΩ. (2.14)
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2.4. STATIONARY POINT OF PROGRAM 29

In the lth iteration, an arbitrary point µ̂l lying in the domain LΩ − Ω

gives us a cutting plane after obtaining optimum solution ᾱl by calling LP

solver. The update of point set {l ∈ Pl|LΩ} obeys the relation in Eq. (2.14).

It follows that we have to iterate until a fixed or stationary point is reached

and this yields a sequence Ql [Eq. (2.11)]. To demonstrate the convergence

of the algorithm, we need to show that

lim

l → ∞
Ql = ᾱ∗. (2.15)

♢

The theorem in Appendix I establishes that for an optimization program

to which the sequence of optimum solutions converge is a unique stationary

point.

Remark. We have proved that as l → ∞, diam Ql → 0. This implies

that the intersection is of sub-collections κl as sequence Ql is appended with

an optimum solution point ᾱl reduces to a single numerical value ᾱ∗, which

is the stationary point of nonlinear program.

Our aim in this analysis is to devise a sharp cut and provide a new con-

vergence theorem. We wish to prove that the rate of convergence of this

algorithm is significantly higher than that of Kelley’s algorithm.
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30 CHAPTER 2. THE SHARP CUT ALGORITHM

Remark. At this juncture, we will make a sequential modification in algo-

rithm one step at a time as seen later. The idea is to modify the algorithm

based on numerical observations and what we learn from them to seek fur-

ther change in algorithm to improve the rate of convergence. The process of

modification may continue till satisfactory rate of convergence of algorithm

is obtained.

2.5 Rate of convergence

The sequence of optimum solutions converges to a limit point and yields the

stationary point of program upon termination. The measure of the rate of

convergence as given in termination critreria of SLP [Eq. (2.10)] is the value

of g0r,l, which was found to be only sublinear for Kelley’s algorithm. There

is a need to improve the rate of convergence. The terms sub-linear, linear,

super-linear, and super-super-linear are applied to the rate of convergence.

The rate of convergence is defined as

χ = |ϑ(gor,l−1)− ϑ(gor,l)|
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2.5. RATE OF CONVERGENCE 31

The order of magnitude is denoted as ϑ(·) and is an integer exponent of 10.

The rate of convergence is

1. sublinear if χ < 1 ,

2. linear if χ = 1,

3. superlinear if χ = 2,

4. super superlinear if χ > 2 (nearing 4 or more).

Convergence of algorithm.

The SLP algorithm generates following sequences during iterative process

1. an optimum solution sequence

Ql ≡ {ᾱ0, ᾱ1, · · · , ᾱ∞}

2. a sequence of numerical values of linearized objective function ϕ̂0(x) as

Γl ≡ {ϕ̂0(ᾱ0), ϕ̂0(ᾱ1), · · · , ϕ̂0(ᾱ∞)}

3. a sequence of numerical values of constraint function ϕr(x)

Ψl ≡ {gor,0|x=ᾱ0 , g
o
r,1|x=ᾱ1 , · · · , gor,∞|x=ᾱ∞}
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32 CHAPTER 2. THE SHARP CUT ALGORITHM

If the converging algorithm reaches to a stationary point of program during

the iterative process requires that

lim

l → ∞
Ql = ᾱ∗;

lim

l → ∞
ϕ̂0(x = ᾱ∗) = ϕ∗

0;
lim

l → ∞
gor,l|x=ᾱl

= 0

We can verify the following facts by observation.

1. At the termination point of the algorithm, we should have

gor,∞|x=ᾱ∗ = 0; LΩ− Ω = ∅

2. The convexity assumption is expected to hold in the search range given

by box constraints. The function ϕr(x) corresponding to the most

violated constraint is convex. The local optimum solution obtained by

global search method at the termination point is then a unique global

optimum solution.

3. We define distance measure d as

d(αi,l, αi,l+1) = |αi,l − αi,l+1|; l ∈ Pk

and employing the distance measure to all the three sequences above,

the convergence of algorithm can be expressed using condition for a

Cauchy sequence.
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2.6. CONSTRUCTION OF A NEW CUT 33

The sequence Ql is a Cauchy sequence, iff,

lim

l → ∞
diam Ql = 0.

The sequence Γl is a Cauchy sequence, iff,

lim

l → ∞
diam Γl = 0.

The sequence Ψl is a Cauchy sequence, iff,

lim

l → ∞
diam Ψl = 0.

⋄

2.6 Construction of a new cut

We need to generate a new sequence Q̃l, which will converge faster than that

generated using Kelley’s cut, Ql. In order to achieve this, the sequence of

vector points computed must cut steeper to descend upon hypersurface of

identified constraint. In order to keep computational complexity to a mini-

mum, we evaluate constraint function [ϕr(x)] and objective function [ϕ̂0(x)]

(given a set of vector points as numerical data) and attempt to move steeply

toward constraint hypersurface.

Definition 3. A new sequence of vector points.
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34 CHAPTER 2. THE SHARP CUT ALGORITHM

We begin with a vector point ᾱl−1 which gives us gor,l = ϕr(ᾱl−1) for r
th

identified constraint obtained from (l − 1)th iteration. To descend steeply,

we generate a vector data point set forming a set Φ for given search segment,

as

Φ ≡ {∀℘± ∈ {0, 1, 2, · · · ,ℵ±−1} |ν̄℘±}

ν̄℘± = {∀i = 1, · · · , n, ℘± = 1, · · · ,ℵ±|αi,l ± ℘±δ±,i} (2.16)

where

∀i|δi,− = (αi,l − ai)/(ℵ− − 1); i = 1, · · · , n|ai ≤ νi,℘− ≤ bi

∀i|δi,+ = (bi − αi,l)/(ℵ+ − 1); i = 1, · · · , n|ai ≤ νi,℘+ ≤ bi

The vector point data set E0,l ⊂ Φ is generated as

E0,l ≡ {∀℘± ∈ {0, 1, 2, · · · ,ℵ±−1}|ν̄℘± ;

0 < ςr,℘±(ν̄℘±) < gor,l−1} (2.17)

ςr,℘±(ν̄℘±) = ϕr(ν̄℘±) < gor,l−1

Now, the new vector point is generated as

ψo
r,l = {r|σ ∈ {℘±}; ν̄℘± ∈ E0|ςr,σ(ν̄σ)|Min[ϕ̂0(ν̄℘±);℘± = 0, ..ℵ±−1]} (2.18)

The new vector point is denoted as β̄l = ν̄σ. This new vector point is used

to generate a new cut.
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Definition 4: A new cut.

The vector point, β̄l = ν̄σ is used to form a new cut (or cutting plane steeply

descending upon hyper surface of the identified constraint and closer to hy-

persurface than Kelley’s cutting plane) as

vl(x; β̄l) ≡ ψo
r,l +

n∑
i=1

∇xi
ϕr(β̄l)(xi − β̄i,l) ≥ 0 (2.19)

Next, we introduce the first change in new algorithm, an initial ”jump”,

which is expected to considerably reduce the required number of iterations.

2.7 Initial ”jump”.

Let the optimum solution obtained by calling LP solver be ᾱ0. We introduce a

”jump” from gor,0 = ϕr(ᾱ0) to a new value g0 = w0×gor,0, such that g0 << gor,0

(w0 is an arbitrary positive number and a small fraction).

Definition 5. Initial ”jump”.

Let ω0(ᾱ0) be a convex polyhedral set given as

ω0 ≡ {∀i|ai ≤ xi ≤ bi; i = 1, 2, · · · , n}

which is the initial hypercube formed by box constraints. Let there be a set

of vector points [using Eq. (2.17)] given as

gor,1 = {∃h̄ ∈ E0,1|ϕr(ν̄ℓ) ∈ [0, g0)|Min h̄∈E0,1(ϕ̂0(ν̄ℓ))} (2.20)
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36 CHAPTER 2. THE SHARP CUT ALGORITHM

Then the new convex polyhedral set ω1 is generated as

ω1 ≡ {u1(x; ᾱ0) ≥ 0
∩

v1(x; β̄1) ≥ 0} and β̄1 = ν̄h̄; ω1 ⊂ ω0

It is expected that the ”jump” will reduce the number of initial iterations

while approaching the hyper surface of convex function ϕr(x).

Remark. The numerical experience shows that the initial ”jump” is effected

using Eq. (2.20) reduces initial iterations considerably, to see how the algo-

rithm performs during further iterations with addition of new cut forming

intersection set with Kelley’s cutting plane. Next, we define the sharp cut.

2.8 First sharp cut

After defining the new cut vl given in Eq. (2.19), our objective is to find

another convex polyhedral set ωl for l
th iteration to form a new intersection

set, which satisfies a relation ωl ⊂ ωl−1. The intersection of the two cuts or

cutting planes ul and vl forms a convex set ω̂l.

The small reduction in convex region formed by Zl during subsequent it-

eration can be increased by use of weights to alter the cutting plane equation.

The weighted cut is given as

v′
l ≡ w1,l × ψo

r,l +
n∑

i=1

∇xi
ϕr(x)|x=ν̄′σ(xi − ν ′i,σ) ≥ 0 (2.21)
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2.8. FIRST SHARP CUT 37

where,

ν̄ ′σ = w′
1,l × ν̄σ (2.22)

Here, w1,l is a weight, generated as a random number. For toy examples

considered here, the weight w1,l usually lies the interval [0.94, 0.98] and index

’1’ in subscript means weight used for first sharp cut. Similarly, the weight

vector

w′
1,l = {w′

1,1,l, w
′
1,2,l, · · · , w′

1,n,l} ⊂ ℜn

scales down the optimum solution point ν̄σ. We do this with an expectation

that a small added cut-off of remaining hypercube Zl will accelerate the rate

of convergence. The new cutting plane is termed as first sharp cut.

However, we learn from numerical experience and comparing results with

those for Kelley’s cut that successive decrement in vector point and optimum

solution sequence Ql shows that with every iteration the numerical values

indicate a fall in the rate of convergence. This rate of convergence tends to

be sublinear. To improve this rate of convergence (to nearly superlinear),

we construct another cutting hyperplane in vicinity of the selected value of

objective function ϕ̂0(ν̄σ), which is the new vector point. The final algorithm

without weights did not perform well. This implies that randomized weights

are necessary to move down steeply.
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38 CHAPTER 2. THE SHARP CUT ALGORITHM

2.9 Second sharp cut

We find from numerical experience that the intersection set of Kelley’s cutting

plane and first sharp cut, expressed as {l ∈ P∞|{ul ≥ 0 ∩ vl ≥ 0}} does not

have the expected effect. And thus we need an extra cut within the remaining

hypercube Zl.

In order to give an extra cut, we observe an important fact. When we

extract a subset of vector points used in selecting a new vector point β̄l, we

obtain a level set which is controlled by a single parameter δ̂. This set E1,l

is given as

E1,l ≡ {∀ℓ ∈ E0,l|∀ν̄ℓ|ϕr(ν̄ℓ) ≥ δ̂ ×Max [ϕr(ν̄ℓ), 0]}. (2.23)

When we obtain a multivariate linear fit to form a new cutting plane, the

hyperplane formed is almost parallel to hypersurface of the most violated

constraint. When this forms an intersection set with first cut the intersection

point moves a substantial distance from previous Kelley’s cutting plane.

w′
l ≡ δ̂w1,l × ψo

r,l +
n∑

i=1

θ̂i(xi − ν ′i,σ) ≥ 0 (2.24)

Here, ψo
r,l is defined in Eq. (2.18). These random numbers are generated using

a symbolic manipulator (MATHEMATICA software of Wolfram Research)
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2.9. SECOND SHARP CUT 39

for second sharp cut. Upon application of this second cut, which accelerates

convergence, we observe the following.

1. While selecting a new vector point β̄l at some iteration of SLP, this

vector point remains above the current local optimum solution of LP.

This causes a reversal in sign of gradient set for most violated constraint

used to form the cutting hyperplane.

2. The numerical values of gradient set of new cutting plane slowly begin

to reduce to values less than unity.

3. The rate of convergence is initially linear and then becomes superlinear,

until a stationary point of program is reached. The new algorithm is

at least twice as fast as Kelley’s algorithm.

Note that when the second sharp cut is effected with the parameter δ̂

controlling the ”steepness” of descent, this cut intersects with the first sharp

cut and is still intersecting the previous hypercube, but it does not cross

boundary of Zl. The extra cut moves away from previous hypercube mea-

sured in terms of how far away the intersection point of the first and second

sharp cuts has moved from the previous hypercube Zl−1.
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40 CHAPTER 2. THE SHARP CUT ALGORITHM

2.10 The sharp cut algorithm

Here, we define the sharp cut or new intersection set in mathematical

terms and show how cycling problem during successive calls to LP solver for

iterations of SLP algorithm can be eliminated.

Definition 6. A sharp cut.

We define a sharp cut as an intersection set of the three cutting planes, one

in Eq. (2.6), which is a Kelley’s cutting plane (Kelley, 1960), a first sharp

cut in Eq. (2.21), and a second sharp cut in Eq. (2.24). The set of points

forming a sharp cut, lie within the set ω̃, defined as

ω̃(ᾱl, β̄l) ≡ {∀l ∈ P∞|ul ≥ 0
∩

vl ≥ 0
∩

wl ≥ 0}. (2.25)

The set ω̃ is an intersection of three sets of cutting (hyper-)planes and in

turn is convex (Mangaserian, 1969; Boyd and Vandenberghe, 2004). Any

two points in this convex polyhedra obeys a relation

{∀l ∈ Pl|∀x,y ∈ ω̃(ᾱl, β̄l)|λx+ (1− λ)y ∈ ω̃|λ ∈ [0, 1]} (2.26)

The convergence theorem for sharp cut algorithm is given in Appendix II.

The basic SLP algorithm forms an intersection set of Kelley’s cutting plane,

and two sharp cuts. The convergence of Cauchy sequences to a limit point

is explained with the Theorem given in Appendix III.
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2.11 Cycling behavior of LP solver

When the cutting hyperplanes reach near the constraint (ϕr(x)) hypersurface

the gradient terms in Eq. (2.21) tend to become zero and the same holds

true for gor,l, ψ
o
r,l. We find from numerical experience that near termination

of algorithm the cutting hyperplanes generated by algorithm in current and

previous iterations are close and almost parallel to each other. The right

hand sides of these cutting planes (Kelley’s cut and first sharp cut) which

are linear inequalities, can be re-arranged as

ul ≡
n∑

i=1

∇xi
ϕr(ᾱl−1)xi ≥ ξ̂1 v′

l ≡
n∑

i=1

∇xi
ϕr(β̄l)xi ≥ ξ̂2 (2.27)

with the expressions for the two constants ξ̂1, ξ̂2 in Eq. (2.27), (see Eqs.

(2.18), (2.8), where w1,1,l and ψo
r,l are defined respectively), after some re-

arrangement reduce to

ξ̂1 = gor,l +
p∑

j=1

∇xi
ϕr(ᾱl−1)× αi,l−1; ξ̂2 = w1,1,lψ

o
r,l +

p∑
j=1

∇xi
ϕr(β̄l)× βi,l

These constants ξ̂1, ξ̂2 become negligible that the linear system representing a

polyhedra becomes inconsistent. At this point, it is difficult for a computing

machine to maintain precision and since right hand side is nearly the same

for at least two inequalities, during a call to LP solver, we observe cycling of

LP (Gass, 1979).
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When randomized weights are used,

1. The right hand sides in Eq. (2.27) become non-zero and unequal and,

2. In the neighborhood of the unique global optimum solution attainable

by global search method, the Kelley’s cut and first sharp cut become

parallel to those in previous iteration. However, the second sharp cut

keeps changing till it touches the constraint hypersurface within the

limits of machine precision set by the user. This new added cut implies

that it has made previous intersection set inactive at the corner point

and a new optimum solution is formed.

Thus randomized weights and inclusion of third cut i.e. second sharp cut,

prevent the cycling of LP. The converging sequence shows that a limit point

has reached. This is the the required stationary point of program, and re-

mains unaltered in further iterations. This is a significant improvement over

Kelley’s algorithm, which requires far more iterations before coming closer

to local optimum solution and at times finds a degenerate point.

We need to elaborate here more on cycling as a theoretical concept and

as a numerical experience in computing solutions while executing SLP as a

global search method which uses a sharp cut. Beale (1955) has explained the
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cycling in simplex algorithm using geometric meaning of re-appearance of

basis and this issue will be analyzed further in detail in another publication

elsewhere. This becomes a pertinent issue as MATHEMATICA (of Wolfram

Research) flags an error saying that – ”The specified constraints cannot be

satisfied with tolerance 1.0 × 10−6”, (which is explained in Beale’s article).

We believe that any modification to overcome this difficulty will enhance the

efficiency of the sharp cut algorithm and help us in obtaining the stationary

point.

As Gass (1979) has explained, we can encounter two types of cycling, one

is classical cycling, and the other is computer cycling. The classical cycling

arises during call to LP solver in the following manner. If data in decimal

notation, and can be expressed as rational fractions, then as an idealistic view

computations can be performed without loss of accuracy and round-off error.

Here the term loss of accuracy points to the number of decimal points for

the solution can be correct. The term rational fraction denotes the machine

precision limits during computations. If a version of LP as given by Dantzig

or Gass is used, it calls for pricing out all vectors not in the current basis.

Thus for a minimization problem, the ties are broken using a rule (arbitrary

and consistent) that selects the vector with largest index. The vector to leave
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is selected based on minimum-ratio test, and ties here are broken arbitrarily

using largest pivot element (Gass, 1979). It is a well-known fact that if right

hand side of one or few linear inequalities were to be zero, or there are ties

for minimum ratio, then they can cause a zero to appear on right hand side.

This leads to cycling that is after a number of vector changes the former basis

reappears. As we continue calling LP solver, the basis keeps re-appearing,

which means that value of objective function won’t change. The finiteness of

simplex method and its convergence do not apply as these conditions require

non-zero positive right hand side coefficients for all feasible bases (which is

referred to as a non-degeneracy). Gass (1979) refers to this as a case of

classical cycling.

Cycling during computations is often denoted as computer cycling and

refers to numerical solution of LP using a computer code run by a digital com-

puter. These systems do not use rational fraction transformations, and use

binary arithmetic (may be single or double precision), standardized round-

ing procedures or truncation. The developers in the past found that certain

techniques can make LP converge faster and can prevent cycling. They used

different criteria to choose incoming and outgoing variables, special inver-

sion updating procedures, scaling of problem as required, small coefficients
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being put to zero for numerical stability, tolerance being applied to selection

of pivot element, and degenerate problems being automatically perturbed.

When these precautions are taken, a mathematical programming problem

never produces the conditions associated with classical cycling. Thus one

may hope that computer cycling will not occur. Gass (1979) has concluded

that classical cycling is limited to artificially constructed problems.

2.12 Examples

To illustrate the findings for the global search method which employs a sharp

cut, we will solve examples in Section 2.2.

Example 1.

We find that Kelley’s algorithm requires 26 iterations before settling upon

an optimum solution ᾱ∗ = {x∗1 = 1.23606, x∗2 = 0.0101739, x∗3 = 0.555478}t.

This solution point should be a stationary point. The generated sequence

of solutions however oscillates for a large number of iterations. On the con-

trary, the sharp cut algorithm converges to a solution point ᾱ∗ ≡ {x∗1 =

1.14024, x∗2 = 0.0363976, x∗3 = 0.519111}t after five iterations and the next
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two iterations generate the same sequence of solutions implying that algo-

rithm reached a limit point which is a fixed or stationary point of the non-

linear program after six iterations. Thus, the new sharp cut algorithm is

at least twice as fast as Kelley’s algorithm. The minimum function value

reached for Kelley’s algorithm is 14.9499, while that for sharp cut algorithm

is 14.2579. The two values are very close. Since, this stationary solution

is only a guess value to start local search method such as the trust region

method, we find that computational complexity is reduced substantially. The

two constraints become extremely close to each other at the end of algorithm,

i.e. ϕ1(ᾱl), ϕ2(ᾱl) → 0. If the constraints were approximated to be linear in

a short range of decision variables, it would have generated the corner point

solution. The solution obtained using global search method is therefore a

good guess for a local search method in obtaining the true optimum solu-

tion. The index of most violated constraint keeps switching between 1 and

2 for Kelley’s method and later settles on 1, while for sharp cut algorithm

constraint 2 is the most violated constraint.

Following observations are made from the results reported in Tables 1-3.

1. The sequences of α1,l, α2,l, α3,l are monotonic (Table 1).

2. In zeroth iteration, the generated vector point (β̄) is below the one ob-
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tained by calling LP solver. This iteration led to ”initial jump”. After

second iteration, the generated point β̄l lies above the local optimum

solution point ᾱl−1 and the signs of the gradients are reversed.

3. After fourth iteration, as we come very close to the hypersurface of

the most violated constraint, Kelley’s cut and first sharp cut become

almost parallel to those in previous iterations. From Table 3, we see

that cutting planes u4-u7, v4-v7 remain parallel. The second sharp

cut brings the LP solution further closer to the constraint hypersurface

and a stationary point is reached in two iterations.

Example 2.

This is an interesting example. Kelley’s cut yields an optimum solution after

25 iterations, x1 = 1.167951, x2 = 4.445299, x3 = 0. Here the optimum value

of one decision variable x3 is zero with g0r,25 = O(10−12). This is a trivial so-

lution and not acceptable. The intersection set of Kelley’s cutting plane and

two sharp cuts require 10 iterations and attains an optimum solution value,

x1 = 0.705285, x2 = 4.9178, x3 = 0.826465 and which remains constant for

next two iterations. Thereafter the algorithm is terminated after reaching

a value g0r,12 = O(10−16). While Kelley’s method could not find a correct

non-trivial optimum solution, the new intersection cut is able to find the
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same.

A comparison of Kelley’s cut and sharp cut algorithm is shown in Table

4. Since other algorithms in current literature are characteristically different,

we have not compared these with the new sharp cut algorithm.

Since we have relaxed the assumption of convexity for most violated con-

straint, we are trying to solve a non-convex program and test the perfor-

mance of this new algorithm. In Appendix IV, we have reported numerical

experience of solving four more examples of non-convex program using this

algorithm and have commented on the outcome of numerical experiments.

2.13 Optimization of cascade of CSTRs

In this section, we consider a problem of optimization of three continuously

stirred tank reactors (CSTRs) in series. A first order consecutive exothermic

reaction A → B → C occur and each CSTR is maintained at a favorable

temperature by employing a cooling jacket. The reaction rate constant for

step A → B is k0,1 and for the consecutive reaction step B → C the rate

constant is k0,2. The dynamics of the three CSTRs is described by
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Dynamics of CSTR I.

V1
dCA,1

dt
= F (R̂CA,0 + (1− R̂)CA,2 − CA,1)− V1k0,1exp

[−E1

RT1

]
CA,1

V1
dCB,1

dt
= F (R̂CB,0 + (1− R̂)CB,2 − CB,1) + V1k0,1exp

[−E1

RT1

]
CA,1

− V1k0,2exp
[−E2

RT1

]
CB,1

ρcpV1
dT1
dt

= ρcpF (R̂T0 + (1− R̂)T2 − T1)−H1V1k0,1exp
[−E1

RT1

]
CA,1

− H2V1k0,2exp
[−E2

RT1

]
CB,1 − UAH,1(T1 − TJ,1)

Dynamics of CSTR II.

V2
dCA,2

dt
= F (CA,1 − CA,2)− V2k0,1exp

[−E1

RT2

]
CA,2

V2
dCB,2

dt
= F (CB,1 − CB,2) + V2k0,1exp

[−E1

RT2

]
CA,2

− V2k0,2exp
[−E2

RT2

]
CB,2

ρcpV2
dT2
dt

= ρcpF (T1 − T2)−H1V2k0,1exp
[−E1

RT2

]
CA,2

− H2V2k0,2exp
[−E2

RT2

]
CB,2 − UAH,2(T2 − TJ,2)

Dynamics of CSTR III.

V3
dCA,3

dt
= R̂F (CA,2 − CA,3)− V3k0,1exp

[−E1

RT3

]
CA,3

V3
dCB,3

dt
= R̂F (CB,2 − CB,3) + V3k0,1exp

[−E1

RT3

]
CA,3

− V3k0,2exp
[−E2

RT3

]
CB,3
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ρcpV3
dT3
dt

= R̂ρcpF (T2 − T3)−H1V3k0,1exp
[−E1

RT3

]
CA,3

− H2V3k0,2exp
[−E2

RT3

]
CB,3 − UAH,3(T3 − TJ,3)

In terms of the dimensionless variables listed below the mass and energy

balances are re-stated.

x1 =
CA,0−CA,1

CA,0
x4 =

CA,0−CA,2

CA,0
x7 =

CA,0−CA,3

CA,0

x2 =
CA,0−CB,1

CA,0
x5 =

CA,0−CB,2

CA,0
x8 =

CA,0−CB,3

CA,0

x3 =
T1

T0
x6 =

T2

T0
x9 =

T3

T0

τ1 =
V1

F
τ2 =

V2

F
τ3 =

V3

F

α1 =
UAH,1

ρcpFT0
α2 =

UAH,2

ρcpFT0
α3 =

UAH,3

ρcpFT0

µ1 =
H1

ρcp
µ2 =

H2

ρcp

γ1 =
E1

RT0
γ2 =

E2

RT0

R̂1 = 0 R̂ = R̂2 ̸= 0 R̂3 = 0;

ĥ = ln[k0,1] ĝ = ln[k0,2]

The dimensionless groups give rise to following equality constraints.

x1 − x4 + R̂x4 − τ1exp
[
ĥ− γ1

x3

]
(1− x1) = 0 (2.28)

(1− R̂)(1− x5)− (1− x2) + τ1exp
[
ĥ− γ1

x3

]
(1− x1)

−τ1(1− x2)exp
[
ĝ − γ2

x3

]
= 0 (2.29)



“main”

2012/9/25

page 51i
i

i
i

i
i

i
i

2.13. OPTIMIZATION OF CASCADE OF CSTRS 51

(R̂− x3) + (1− R̂)x6 − µ1τ1(1− x1)exp
[
ĥ− γ1

x3

]
−µ2τ1(1− x2)exp

[
ĝ − γ2

x3

]
= 0 (2.30)

−x1 + x4 − τ2(1− x4)exp
[
ĥ− γ1

x6

]
= 0 (2.31)

−x2 + x5 + τ2(1− x4)exp
[
ĥ− γ1

x6

]
−τ2(1− x5)exp

[
ĝ − γ2

x6

]
= 0 (2.32)

x3 − x6 − δ2α2 − µ1τ2(1− x4)exp
[
ĥ− γ1

x6

]
−µ2τ2(1− x5)exp

[
ĝ − γ2

x6

]
= 0 (2.33)

R̂(−x4 + x7)− τ3(1− x7)exp
[
ĥ− γ1

x9

]
= 0 (2.34)

R̂(−x5 + x8) + τ3(1− x7)exp
[
ĥ− γ1

x9

]
−τ3(1− x8)exp

[
ĝ − γ2

x9

]
= 0 (2.35)

R̂(x6 − x9)− δ3α3 − µ1τ3(1− x7)exp
[
ĥ− γ1

x9

]
−µ2τ3(1− x8)exp

[
ĝ − γ2

x9

]
= 0 (2.36)

x2
1− x1

− f1 ≥ 0 (2.37)

x5
1− x4

− f2 ≥ 0 (2.38)

x8
1− x7

− f3 ≥ 0 (2.39)

The lower and upper limits are expressed as box constraints which define
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the initial hypercube Zo as

∆i ≥ xi ≥ νi; i = {2, 3, 5, 6, 8, 9} (2.40)

The objective function ϕ̂0 is expressed as

ϕ̂0 ≡
9∑

i=1

Cixi; i = {2, 3, 5, 6, 8, 9} (2.41)

where the cost coefficients C2, C5, C8 are pumping costs and C3, C6, C9 are

cooling system operation costs. In this example, we set the relative value of

former cost coeffiencts as unity and add 40% extra cost in relative terms for

cooling operation (for this generic example, we have used arbitrary values for

the purpose of demonstrating the working and advantage of the sharp cut

algorithm).

The lower and upper limits in box constraints are,

ν1 = 0.4 ∆1 = 0.99 ν2 = 0.2 ∆2 = 0.99 ν3 = 0.8 ∆3 = 1.2

ν4 = 0.4 ∆4 = 0.99 ν5 = 0.2 ∆5 = 0.99 ν6 = 0.8 ∆6 = 1.2

ν7 = 0.3 ∆7 = 0.99 ν8 = 0.1 ∆8 = 0.99 ν9 = 0.8 ∆9 = 1.2

The cost coefficients are given as

C2 = 1.0 C5 = 1.0 C8 = 1.0

C3 = 1.4 C6 = 1.4 C9 = 1.4
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The physico-chemical properties and parameters are given here.

After the successful run of the sharp cut algorithm, we find that seven

Table 2.1: Table of properties and parameters

R = 8.33(kJ/kmol K) E1 = 56000(kJ/kmol) E2 = 50000(kJ/kmol)

CA,0 = 2.0(kmol / m3) CB,0 = 0(kmol / m3) T0 = 315(K)

ρ = 200.0(kmol/m3) cp = 2.0(kJ/kmol K) F = 0.2(m3/hr)

(−∆H1) = −77400(kJ/kmol) (∆H2) = −62000(kJ/kmol) U = 6000(kJ/m2 hr K)

AH,1 = 0.4(m2) AH,2 = 0.44(m2) AH,3 = 0.46(m2)

V1 = 0.5(m3) V2 = 0.7(m3) V3 = 0.6(m3)

R̂ = 0.4 k0,1 = 1.0× 1012(hr−1) k0,1 = 1.0× 1012(hr−1)

f̂1 = 0.94 f̂2 = 0.96 f̂3 = 0.98

decision variables reach the lower specified limit . Note that the lower limits

were set with some trial and error. Now we substitute this solution obtained

from global search method.

x∗1 = 0.4 x∗2 = 0.2 x∗3 = 0.8

x∗4 = 0.99 x∗5 = 0.245622 x∗6 = 0.8

x∗7 = 0.99 x∗8 = 0.162969 x∗9 = 0.8
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into steady state equations [Equations(2.28)-(2.36)], we find that execution

of the root finding routine of a symbolic manipulator yields negative concen-

tration of species A for first and second reactors; hence we solve the equations

again by keeping dimensionless temperature values fixed and accepting equal-

ity constraint to be satisfied is it numerical value when evaluates coming close

to zero. At the end of these computations, we find the optimum solution as,

x∗1 = 0.00723 x∗2 = 0.999871 x∗3 = 0.738382

x∗4 = 0.0100397 x∗5 = 0.99987 x∗6 = 0.736031

x∗7 = 0.0159364 x∗8 = 0.999867 x∗9 = 0.741178

The numerical values of equality constraints come out as

∀j; g∗j = 0.0; j = {1, 2, · · · , 9}

Note that we started with initial guess given as optimum solution obtained

using global search method and solved the equalities using numerical solver

for algebraic equations. Also for inequalities, we obtain

g∗10 ≡ 0.0671562 > 0; g∗11 ≡ 0.0500097 > 0; g∗12 ≡ 0.0360596 > 0

Lastly, we notice that the sharp cut algorithm required only four iterations

to converge while fifth and sixth repeated the same solution confirming that
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the limit point has been reached. While the solver for algebraic equations

using symbolic manipulator (MATHEMATICA, Wolfram Research) needed

merely nine iterations and converged to a local optimum solution.

Here superscript ∗ implies evaluation of constraint at local optimum solution.

This demonstrates that even for relatively large sized nonlinear program, the

method works well. We applied the Karush-Kuhn-Tucker (KKT) conditions

to the program, which are

∂

∂Xi

L(x, ϑ, ξ) = 0

∂

∂ξ
L(x, ϑ, ξ) = 0

ϑjgj(X) = 0; j = 1, 2, · · · , p

gj(X) ≥ 0

ϑj ≥ 0 (2.42)

Here ϑ is multiplier associated with inequalities and ξ are Lagrangian multi-

pliers associated with equality constraints. We find that the KKT conditions

are satisfied as all equality constraints are close to zero, and, the KKT con-

dition for equalities is satisfied as all partial derivatives w.r.t. Lagragian

multipliers are very close to or are zero. Thus, for the Lagrangian function
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L, we have,

L = ϕ̂0 +
9∑

j=1

ξjgj +
12∑

j=10

ϑjgj;

∂ξlL
∗ ≈ 0.0, l = 1, 2, · · · , 9; ϑj > 0, j = 10, 11, 12.

We accept this solution as an optimum solution. Here, the computational

complexity was kept to a minimum dividing search interval of each decision

variable into three parts. The modification we make is due to lesser num-

ber of divisions of search interval as for nine variables the divisions would

yield NDIV 9 points. This means if we were to consider six divisions of each

interval the number of points generated would be 69 (or 10077696), the sym-

bolic manipulator (MATHEMATICA software of Wolfram Research) finds

too large to handle. The lower limit is set to current LP solution after each

execution of LP solver and re-divide the interval to a new vector point to

generate the two sharp cuts.

2.14 Conclusions

In this chapter we presented the new type of cutting plane algorithm which

has super linear rate of convergence. The new algorithm is an intersection
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set of three cutting planes which are Kelley’s cutting plane and the first and

second sharp cuts. The first sharp cut reverses signs of gradient vector in

few iterations and the second sharp cut, which is almost parallel to the hyper

tangent to unique global optimum solution for convex program and local

optimum solution for non-convex program gives an extra cut and accelerates

the rate of convergence first to super linear rate and then to super super linear

rate and requires less number of iterations. The algorithm now reaches the

stationary point and is at least as fast as Kelley’s algorithm.

Remarks. Here we give a few comments on this new method to be used

in solving highly nonlinear and relatively large sized optimization programs.

Here a large sized program is one having large number of decision variables

and constraints.

To summarize, some more points are made in order to explain why the

sharp cut algorithm is a better option to solve nonlinear (and non-convex)

programs having box constraints for the following reasons.

1. The sharp cut usually requires less number of iterations (usually 2 to

4 times faster than Kelleys algorithm).

2. There can be cases where the sharp cut algorithm reaches a non-trivial

solution, Kelleys algorithm yields a trivial solution due to a few decision
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variables becoming zero when optimum solution is obtained.

3. In the end, the sharp cut algorithm becomes super superlinear and

reduces the large number of iterations required by Kelleys algorithm.

4. The rate of convergence of Kelleys algorithm is usually sublinear for

most problems while sharp cut algorithm is at least linear even at first

iteration.

5. When numbers of constraints accumulate, the Kelleys cut algorithm

experiences cycling of LP solver. The randomly generated weights used

in the sharp cut algorithm eliminate the possibility of cycling.

6. The stationary solution is obtained as defined using the sharp cut al-

gorithm; while Kelleys algorithm keeps cycling for a large number of

iterations, and does not reach a stationary point.

7. When we employ the intersection set of sharp cut algorithm, we observe

the following. It is the second sharp cut of the intersection set which

forms a monotonic sequence of polyhedral set formed by the current set

of linear inequality constraints, which continues its descent towards the

local optimum point even when Kelleys cut and first sharp cut become

parallel to those in previous iterations. and finally touches.
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8. Thus, by relaxing the assumption of convexity for most violated con-

straint, we find that the sharp cut algorithm works well for non-convex

programs. However, more research is required to analyze this in detail

and will be taken up for further study in another publication.
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2.15 Appendices

2.15.1 Appendix-I

We persent and prove a theorem to establish existence of a unique stationary

point to an optimization program, provided sequence of optimum solutions

genertated in successive iterations converge to it.

Theorem 1.

Let Ql be a sequence of local optimum solutions [Eq. (2.11)] generated during

iterations of SLP.

(i) For every sequence Ql, Q̄l is closure of set Ql, l ∈ Pl in metric space

LΩ− Ω and then,

diam Q̄l = diam Ql (2.43)

(ii) The sequence κl is a sequence of compact sets in LΩ− Ω consisting of a

sequence of optimum solutions generated during successive iterations of SLP

such that κl ⊃ κl+1 where l ∈ Pl. If

lim

l → ∞
diam Ql = 0,

then ∩∞
l=0κl consists of exactly one point. ♢
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Proof. When the sequence of local optimum solutions

{∀i ∈ {1, · · · , n}|{αi,0, αi,1, · · · , αi,l}}

until lth (current) iteration is monotonically increasing or decreasing, the

sequence Ql = {l ∈ Pl|ql} is called a subsequence of {l ∈ P∞|ql}. And by

definition, whenever Ql converges after k iterations, the limit point reached

is subsequential limit of {ql|l → ∞}.

By definition, for a metric space LΩ−Ω if Ql ⊂ LΩ−Ω and if Q′
l denotes

all limit points of subsequences of Ql, l ∈ Pl then the closure of Ql is the set

Q̄l = Ql ∪Q′
l.

Further, let Q̂l be a subset of metric space LΩ−Ω and S = {αi,l, αi,l+1 ∈

Q̂l|d(αi,l, αi,l+1)}, d(αi,l, αi,l+1) = |αi,l − αi,l+1|; l ∈ Pl, then the supremum

of S is the diameter (Rudin, 1976) of Q̂l.

The sequence Ql is a Cauchy sequence, iff,

lim

l → ∞
diam Ql = 0

(i) By perturbing the solution points arbitrarily in the sequence Ql, we

obtain another point set {α̂i,l, α̂i,l+1}. Starting with a relation, Ql ⊂ Q̄l, we

observe that

d(αi,l, αi,l+1) ≤ d(αi,l, α̂i,l) + d(α̂i,l, α̂i,l+1) + d(α̂i,l+1, αi,l+1).
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For an arbitrary ϵ > 0, we then have d(αi,l, α̂i,l) < ϵ and d(αi,l+1, α̂i,l+1) < ϵ.

This establishes Eq. (2.43) for ϵ→ 0.

(ii) Let κ̄ = ∩∞
l=0κl. With {κl} a collection of compact subsets that occur

during successive calls to LP solver with an optimum solution generated

every lth iteration. Further, any intersection of this finite subcollection of

{κl; l ∈ Pl} ⊂ LΩ − Ω is non-empty. It then follows that κ̄ = ∩∞
l=0κl is

non-empty (Rudin, 1976).

By induction, if κl contains more than one point, then diam κl > 0.

However, κl ⊃ κ̄, so that diam κl ≥ diam κ̄. This contradicts the argument

that diam κl → 0. ⋄
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2.15.2 Appendix-II

The convergence theorem for sharp cut algorithm is given here. The theorem

states that the intersection set formed by Kelley’s cut and two sharp cuts

generates a converging Cauchy sequence and a data point set of each inter-

section set is contained in a convex polyhedral set for that iteration, which

also forms a converging sequence.

Theorem. Convergence theorem.

The intersection set of sharp cut, whose point data set is contained in the

convex polyhedral set ω̃(ᾱl, β̄l), defined in Eq. (2.25), gives rise to a monotone

sequence

{∀l, l ∈ P∞|{ω̃1, ω̃2, · · · , ω̃l}}

such that a data point set in {l → ∞|ω̃(ᾱl, β̄l)} and ᾱ∞ = ᾱ∗, β̄l ∈ ∅ as

l → ∞ minimizes ϕ̂0(x) = ctx on ω̃(ᾱl, β̄l). Then, this sequence converges

onto a solution ᾱ∗, which is the local optimum solution. ⋄

Proof.

We assume that when we identify a constraint using a vector point in Eq.

(2.18), this function ϕr(x) is convex in the search interval given by box con-

straints for decision variables. Using vector point in Eq. (2.5) and then
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using the new vector point in Eq. (2.18), we generate two cutting hyper-

planes given by ul ≥ 0 [Eq. (2.6)], vl ≥ 0 [Eq. 2.21] and wl ≥ 0 [Eq. (2.24)].

The three cutting hyperplanes form an intersection set whose point set is

contained in the convex polyhedral set ω̃(ᾱl, β̄l) at the end of computation

for lth iteration.

For function ϕr(x), there exists an arbitrary constant ρ1 such that

||
n∑

i=1

∇xi
ϕr(ᾱl)(xi − αi,l)|| ≥ ρ1; ∀x ∈

l=∞∪
l=1

{ul ≥ 0} , (2.44)

another constant ρ2 such that

||
n∑

i=1

∇xi
ϕr(β̄l)(xi − βi,l)|| ≥ ρ2; ∀x ∈

l=∞∪
l=1

{vl ≥ 0} , (2.45)

and, a third constant ρ3 such that

||
n∑

i=1

∇xi
ϕr(ψ̄l)(xi − ψi,l)|| ≥ ρ3; ∀x ∈

l=∞∪
l=1

{wl ≥ 0} . (2.46)

Note that Eqs. (2.44)-(2.46) are the conditions for preventing occurrence

of degeneracy in LP statement. The cutting hyperplanes in Eqs. (2.6) and

(2.19) act as supporting hyperplanes (Boyd and Vandenberghe, 2004) to

the identified constraint and the norms of the corresponding gradient terms

satisfy the relations stated above. We have already defined a point set LΩ

in Eq. (2.12) and Ω in Eq. (2.13) with Ω ⊂ ω̃ ⊂ LΩ.
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The identified constraint ϕr(x) ≥ 0 corresponds to a new vector point

denoted as β̄l = ν̄σ [Eq. (2.18)] and is a row vector. The sequence of convex

functions ω̃l will obey the relation ω̃(ᾱl, β̄l) ⊂ ω̃(ᾱl−1, β̄l−1) for a call to

constrained optimization procedure or LP solver, for every lth iteration. Let

the point sets in ω̃(ᾱl, β̄l) minimize the function ϕ̂0(x) = ctx. Then

ω̃(ᾱl, β̄l) = ω̃(ᾱl−1, β̄l−1) ∩ {x|ul ≥ 0
∩

vl ≥ 0
∩

wl ≥ 0}, (2.47)

Every lth point data set generates an optimum solution ᾱl, and we obtain

a monotone sequence Q̂l that minimizes ϕ̂0(x) = ctx on ω̃k. Thus, we obtain

a Cauchy subsequence {ᾱl} that converges on to ᾱ∗ near termination point,

with {ᾱ∗ ∈ Q̂l|l ∈ P∞}, such that {∀x ∈ Ω|ctᾱ∗ < ctx}. The sequence Q̂l

thus converges onto a solution ᾱ∗ which is the optimum solution. ♢
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2.15.3 Appendix-III

In this section, we establish that the Cauchy sequence of optimum solution

points reaches a numerical limit when the cutting hyperplanes generated by

sharp cut algorithm are in close vicinity of the constraint hypersurface.

Remark The initial ”jump” causes a large or significant reduction in it-

erations of SLP and it is difficult at times to accumulate sufficient number

of optimum solution points that can be used to verify properties of the gen-

erated sequence. However, even for a small number of points generated, we

observe the following.

Definition A.1. Sequence of optimum solution points. Consider a sequence

of points,

Ql = {ᾱ0, ᾱ1, ᾱ2, · · · , ᾱl}, l = 0, 1, · · · , l, · · · , K,

which for lth iteration satisfy the relation

gor,l < gor,(l−1); where ∀l ∈ P∞|ul ≥ 0.

The local minimum for a non-convex program is defined as

ψ = {l ∈ P∞|x ∈ ω̃(ᾱl, β̄l)|Minϕ̂0(x)} (2.48)

which occurs at

x̃l = ᾱ∗ ∈ B = {∀xl|ai ≤ xl,i ≤ bi}
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with B denoting box constraints for decision variables. Let

Q0 ≡ {ᾱl, ᾱl+1, · · · , ᾱl∞ , · · · , ᾱK}

be a Cauchy sequence of optimum solutions generated using sharp cut, where

l∞ ∈ P∞. Let ᾱ0 = {∀j|bj} be the first point in the sequence which lies in

convex polyhedral set ω̃(ᾱ0, β̄0, ψ̄0) corresponding to Eq. (2.25). We call this

sequence a sampled sequence, if a few random points are picked up from Q0;

else any subsequence from l > 0 to l = l∞ < K if K iterations were required

for SLP to reach a limit point ᾱ∞ = ᾱ∗. Note that ᾱl∞ is a solution point

which is in the dense set near local optimum solution ᾱ∗. ⋄

Theorem. Convergence of a sequence to a limit point.

Extending the treatment given by Shubert (1972), we see that for a se-

quence

G ≡ {ᾱl, ᾱl+1, · · · , ᾱl∞ , · · · , ᾱK} (2.49)

of optimum solutions from

∀l ∈ {1, 2, · · · , l∞}|xl ∈ {∀i|ai ≤ xi,l ≤ bi; i = 1, 2, · · · , n}

the applicable recursive relation is

Λl+1(x) = ηl, l = 1, 2, · · · , l∞ (2.50)
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else arbitrary, with

ηl = Min{∀i|ai ≤ xl,i ≤ bi}Λl(x); l ∈ {1, 2, · · · , l∞} (2.51)

and Λl(x) being

Λl(x) = Min l=1,2,···,l∞{ϕ̂0(x− xl) + C∥x− xl∥} (2.52)

In Eq. (2.52), the constant C is defined as

|ϕ̂0(x)− ϕ̂0(xl)| ≤ C|x− xl|. (2.53)

The sampled sequence in Eq. (2.49) converges to a limit point when ϕ̂0(xl) →

ϕ̂∗
0 and ηl ↓ ᾱ∗ as l → ∞. ⋄

Proof.

Let l ∈ G|Ql be a set considering all sampled points as given in Eq. (2.49),

which are different. Hence we say that there is a limit point in {∀i|ai ≤ xi ≤

bi; i = 1, 2, · · · , n}. For arbitrary and positive ϵ+ and a limit point

zl = ᾱl|l → ∞, (2.54)

we say that ϕ̂0(zl) > η − ϵ+ for l ∈ G, where η = lim
l→∞ηl for l ∈ P∞. This

can be proved by induction (Shubert, 1972). Further from Eqs. (2.51) and

(2.52), and {∀i|ai ≤ xi ≤ bi; i = 1, 2, · · · , n}, we have l ∈ G|ϕ̂0(ᾱl) ≤ η and
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l ∈ P∞|ϕ̂0(ᾱl) < ηl. We must then have ϕ̂0(zl) = η for all limit points zl [Eq.

(2.54)] of the sampling sequence. From Eq. (2.53), it follows that the function

ϕ̂0(ᾱl) must be continuous on the interval {∀i|ai < xi < bi; i = 1, 2, · · · , n}

and it is evident that ϕ̂0(x) < ψ < η. The proof is quite similar to that given

by Shubert (1972) and is not provided here for the sake of brevity. ⋄
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2.16 Notation

ai lower limit on range of ith decision variable.

bi upper limit on range of ith decision variable.

B box constraint defining search range and forming initial hypercube.

ci ith coefficient in row vector of constants in linearized

objective function ϕ̂o(x).

c vector of coefficients in linearized objective function ϕ̂o(x).

C a Lipschitz constant given in Eq. (2.53).

E0,l point set generated given by Eq. (2.17) in lth iteration of SLP.

E1,l point set to form a level hypersurface in lth iteration as

a second sharp cut [Eq. (2.23)].

gor,l function value of most violated constraint ϕr(x) evaluated at ᾱl−1.

G a dense set of optimum solution points which is a

subsequence [Eq. (2.49)].

l∞ a limit point nearing termination of sharp cut algorithm.

K number of iterations after which termination of

sharp cut algorithm occurs

LΩ feasible region of local optimum solutions formed by cutting planes.

n integer giving number of decision variables of program in Eq. (2.3).

p integer giving total number of inequality constraints

as given in Eq. (2.3).

Pl index set given in Eq. (2.8).

P∞ index set given in Eq. (2.9).

Ql sequence of optimum solution values formed in lth iteration of SLP.

Q̄l closure of sequence Ql.

Q′
l limit points set of sequence Ql.

Q̂l a subset of metric space LΩ− Ω.
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S a set of distance metrics used in defining diameter of a sequence.

ul Kelley’s cut in lth iteration given by Eq. (2.6).

vl first sharp (weighted) cut in lth iteration given by Eq. (2.21).

wl second sharp cut in lth iteration given by Eq. (2.24).

w0 weight used in causing ”initial jump”.

w1,l weight (random number) used to scale ψo
r,l [Eq. (2.21)].

w′
1,l weight vector (random numbers) used to scale ν̄σ [Eq. (2.21)].

xi ith decision of optimization program

x vector of decision variables in ℜn.

y vector of decision variables in ℜn lying in convex set ω̃ [Eq.(2.26)].

zl limit point as defined in Eq. (2.54).

Zo box constraint denoted as constraint implying a hypercube.

Zl feasible region as cut hypercube remaining in lth iteration.
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Greek symbols.

αi,l optimum solution value of ith decision variable

in lth iteration of SLP.

ᾱl vector of optimum solutions as obtained

in lth iteration of SLP.

ᾱ∗ optimum solution obtained by global search using sharp cut

and stationary point of program as defined by Eq. (1)

βi,l vector point obtained to devise first sharp cut as defined

in Eq. (1)

β̄l vector point used after multiplication with weights

to form first and second sharp cuts.

δ̂ parameter in sharp cut algorithm to control steep descent for

the second sharp cut as given in Eq. (2.23).

δi,−, δi,+ divisions of search interval given by box constraint set B

on either side of optimum solution ᾱl in l
th iteration of SLP.

ϵ an arbitrary positive real number to define convergence limit

as given in Eq. (2.10).

θ̂i ith multi-nomial coefficient fitted for a linear

multi-variate hyperplane.
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ηl deviational value defined in Eq. (2.52) to prove convergence

to a limit point.

ϑ integer exponent of 10 as order of magnitude of gor,l.

κl sequence of compact sets for lth iteration of SLP in LΩ− Ω.

κ̄ limit point of sequence κl.

λ a scalar lying in interval [0, 1] to express convexity relation

(see Eq.(2.26)).

µ arbitrary vector point lying in domain of LΩ− Ω.

ρ1-ρ3 real numbers as constants forming right hand side coefficients

in Eqs. (2.44)-(2.46).

ν̄ vector points lying in box constraint B on either side of ᾱl−1.

ς numerical values of the most violated constraint at generated

vector point set [Eq. (2.17)].

ϕ0(x) objective function of program in Eq. (2.3).

ϕj(x) jth inequality costraint in program statement in Eq. (2.3).

ϕ̂0(x) linearized objective function.

χ variable to measure rate of convergence and equal to |gor,l − gor,l−1|.

ψo
r,l minimum function value of the most violated constraint

corresponding to minimum linearized objective function value

using generated vector points to form a new cut.
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ωl(ᾱl) convex polyhedral set used in proving convergence result.

ω̂l convex polyhedral set formed for intersection of Kelley’s and

first sharp cuts.

ω0(ᾱ0) convex polyhedral set used in iteration ’1’,

generated in ’0’ iteration.

ω1(ᾱ1) convex polyhedral set used in iteration ’2’.

ω̃l(ᾱl, βl) convex polyhedral set formed

in lth iteration of SLP.

Ω constraint set corresponding to the most violated constraint.

Φ set of equally spaced divisions on either side of ᾱl−1

within box constraint.

Φ̃ deviational value used to analyze a limit point of

sequence of optimum solution points [Eq. (2.50)].
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Symbols.

ℵ± number of divisions on either side of ᾱl−1 in box B.

h̄ ith index variable in selecting a point for ”initial jump”

as in Eq. (1).

ℓ index variable for vector point set E0,1 in Eq. (2.20).

℘± number of divisions lying on either side of box constraint

(B) of a vector point

ᾱl in l
th iteration as given in Eq. (2.16).

ℜ set of real numbers.

∅ an empty set (containing no elements).

∇ operator to obtain gradient set of the most violated

constraint ϕr(x).

Superscripts.

o indicates evaluation of ϕr(x) at a vector point.

Subscripts.

i ith decision variable of optimization program

j jth inequality constraint of program as defined in Eq. (1)

l integer index giving lth iteration of SLP algorithm.

r integer index corresponding to rth constraint which is

the most violated constraint.
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2.18 Tables

Table 2.2: Numerical experience to solve Example 1 using sharp cut algo-

rithm.

Iter α1,l α2,l α3,l −gor,l ϕ̂0(ᾱl)

No

1 2.5 0.0 0.738295 4.22952 21.9559

2∗ 1.56756 0.0226037 0.589861 0.907893 -16.6638

3 1.21341 0.0340357 0.531225 0.127868 -14.6902

4 1.14323 0.0363009 0.519607 0.00502017 -14.2756

5 1.14025 0.0363974 0.519112 9.11 × 10−6 -14.2579

6 1.14024 0.0363976 0.519111 3.02 × 10−11 -14.2579

7 1.14024 0.0363976 0.519111 4.44 × 10−16 -14.2579
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Table 2.3: Numerical experience to solve Example 1 using sharp cut algo-

rithm.

Iter β1,l β2,l β3,l −ψo
r,l −gor,l ϕ̂0(ᾱl) ϕ̂0(β̄l)

No

1 2.28 0.0 0.7 0.0142136 4.22952 -22.2659 -20.0

2∗ 2.85 0.9 1.4 0.48 0.907893 -16.6638 -46.75

3 2.85 0.9 1.4 0.48 0.127868 -14.6902 -46.75

4 2.675 0.9 1.456 0.48 0.00502017 -14.2756 -46.75

5 2.675 0.9 1.456 0.48 9.11 × 10−6 -14.2579 -46.75

6 2.625 1.0 1.428 0.06 0 -14.2579 -48.0

7 2.625 1.0 1.428 0.06 0 -14.2579 -48.0
∗Note. After second iteration of SLP algorithm, the gradient vector has

reversed sign.
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Table 2.4: Cutting planes generated for Example 1.

Iter Cutting planes χl Convergence∗

1 u1 ≡ 4.22952− 6.0x1 − 2.21489x2 + 8.85954x3 ≥ 0 –

v1 ≡ 0.660651 + 0.331133x1 + 0.0x2 − 2.0x3 ≥ 0

w1 ≡ 0.66204 + 0.238555x1 − 1.35236x2 − 1.7045x3 ≥ 0

2 u2 ≡ 0.901073− 3.76214x1 − 1.76958x2 + 7.01052x3 ≥ 0 ∼ 1 L

v2 ≡ 4.062− 6.84x1 − 4.2x2 + 14.1x3 ≥ 0

w2 ≡ 0.428758− 0.380649x1 − 0.342705x2 + 0.997519x3 ≥ 0

3 u3 ≡ 0.127868− 2.91218x1 − 1.59368x2 + 6.2726x3 ≥ 0 ∼ 1 L

v3 ≡ 4.062− 6.84x1 − 4.2x2 + 14.1x3 ≥ 0

w3 ≡ 0.380264− 0.308106x1 − 0.267439x2 + 0.836095x3 ≥ 0

4 u4 ≡ 0.00502017− 2.74376x1 − 1.55882x2 + 6.12638x3 ≥ 0 ∼ 2 SL

v4 ≡ 0.124668− 6.42x1 − 4.368x2 + 14.772x3 ≥ 0

w4 ≡ 0.510507− 0.0130997x1 − 0.00559788x2 − 0.0263927x3 ≥ 0

5 u5 ≡ 9.112× 10−6 − 2.73659x1 − 1.55734x2 + 6.12015x3 ≥ 0 ∼ 3 SL

v5 ≡ 0.124668− 6.42x1 − 4.368x2 + 14.772x3 ≥ 0

w5 ≡ 0.3512− 0.0628926x1 − 0.068668x2 + 0.213488x3 ≥ 0

6 u6 ≡ 3.024× 10−11 − 2.73658x1 − 1.55733x2 + 6.12014x3 ≥ 0 ∼ 4 SSL

v6 ≡ 0.701292− 6.3x1 − 4.284x2 + 14.136x3 ≥ 0

w6 ≡ 0.566676− 0.0868851x1 + 0.068824x2 − 0.247498x3 ≥ 0

7 u7 ≡ 4.440× 10−16 − 2.73658x1 − 1.55733x2 + 6.12014x3 ≥ 0 ∼ 5 SSL

v7 ≡ 0.701292− 6.3x1 − 4.284x2 + 14.136x3 ≥ 0

w7 ≡ 0.43678− 0.001253x1 + 0.212109x2 − 0.414286x3 ≥ 0

∗Note. L-linear, SL- super linear, SSL - super super linear.
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Table 2.5: Comparison of Kelley’s (1) and sharp (2) cuts

Example Optimum (1) Iter- (1) Optimum (2) Iter- (2) Factor

No. solution ations solution ations

1 14.9449 25 14.2579 7 3.57

2 12.3944 25 12.6126 9 2.44

3 4.5 9 4.5 7 1.29
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Abstract

Earlier we presented a variant of Kelley’s cutting plane algorithm, termed

as a sharp cut, that was found to be superior than existing methods in the

literature. In this work, we show that the sharp cut when applied to a few

standard nonconvex functions, gives out all optimum solutions in monotone

order. From the limited literature searched, it was found that among cutting

plane algorithms only the sharp cut algorithm finds all multiple optimum so-

lutions in very few iterations, when the standard nonconvex functions were

used as most violated constraints. This feature of collecting multiple op-

timum solutions, which is a unique feature of its kind, has been observed

for the first time. Later, when the sharp cut was applied to control system

design of the nonisothermal CSTR, it could find optimum solutions which

were present over an uneven (or discernible rough) terrain. This is another

interesting feature of the sharp cut as observed when applied to a problem

of the control and optimization of nonisothermal CSTR.
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3.1 Notation

Alphabetic.

A Jacobian matrix of linearized evolution equations of

reactor dynamics.

AH Surface area for heat transfer for cooling jacket, m2.

ai Lower limit in box constraints for sharp cut algorithm.

B Square matrix in state space form for evolution equations for

control of reactor dynamics.

bi Upper limit in box constraints for sharp cut algorithm.

CA Concentration of chemical species A which is a reactant, kg/m3.

CA,0 Concentration of chemical species A in feed stream, kg/m3.

cp Heat capacity of reaction mixture in reactor vessel, kJ/kg · (K).

cJ Heat capacity of coolant fluid in cooling jacket, kJ/kg · (K).

E Activation energy in Arrhenius rate form

for chemical reaction, kJ/kg.

F Generic variable representing the flowrate into

and out of CSTR, m3/hr.

F0 Flowrate of feed stream entering the reactor vessel, m3/hr.

∆F0 Variation in feed flow rate from set point value

as a parameter shift.
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FJ Flowrate of coolant in cooling jacket, m3/hr.

gor,l Numerical value of function in most violated constraint

used by the sharp cut algorithm.

H(l) The convex polyhedra formed by linear constraint set

of cutting planes in the sharp cut algorithm.

(−∆HR) The heat of exothermic reaction, kJ/kg.

k0 The absorption or pre-exponential factor used

in Arrhenius rate form.

n The dimensionality index for number of decision variables

in the sharp cut algorithm.

ℵ± The total number of vector points generated at different

steps in the sharp cut algorithm.

Pl The set of optimum solutions generated by

the sharp cut algorithm.

R The ideal gas law constant.

T Temperature variable associated with

the reactor dynamics, (K).

t Time variable used in CSTR dynamics.
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T0 The inlet temperature of feed entering the CSTR, (K).

TJ Temperature of coolant in cooling jacket, (K).

TJ,0 The feed temperature of coolant entering

the cooling jacket, (K).

U Overall heat transfer coefficient, kJ/m2(K).

u(t) The variable representing action of stochastic optimal

control in HJB equation.

ul The Kelley’s cutting plane computed in sharp cut algorithm

in lth iteration.

vl The first sharp cut, which is computed in sharp cut

algorithm in lth iteration.

V Volume of CSTR, m3.

VMin The minimum head equivalent volume in reactor tank, m3.

VJ The volume used by coolant in the cooling jacket to compute

surface area for heat transfer, m3.

wl The second sharp cut, which is computed in sharp cut

algorithm in lth iteration.

wi, wi,j The random numbers of appropriate magnitude used to scale

the cutting plane r.h.s.and gradient set

in the sharp cut algorithm.
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Xs The steady state vector for reactor dynamics.

Zo The initial hypercube formed by the box constraints.

Z(l) The hypercube formed by active constraints in lth iteration

of the sharp cut algorithm.

Greek.

ᾱl The optimum solution point as a vector of decision variables

appearing in the sharp cut algorithm.

α1(·) The fraction of cost borne for randomly varying variable in

stochastic optimal control.

α2(·) The loss function used in the theory of

stochastic optimal control.

β̄l The vector of selected vector point used to form

the first sharp cut in the sharp cut algorithm.

δ± Increment variable in the sharp cut algorithm.

ν̄ The vector point selected from generated vector point set

in the sharp cut algorithm.

ρR The density of reaction mixture in CSTR, kg/m3.
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ϕ̃(·) A function.

ψo
r,l The function used to generate the second sharp cut

in the optimization algorithm.

Symbols.

℘± A variable to represent index increment in point generation

in the sharp cut algorithm.

Superscripts.

o indicates evaluation of ϕr(x) at a vector point.

Subscripts.

i The integer index for decision variable

in optimization algorithm.

j An integer index.

k The current iteration of the optimization algorithm.

l The iteration index for the sharp cut algorithm.

Min A condition expressing the minimum level head for CSTR.
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3.2 Introduction

Optimization of nonlinear process systems (Bertsekas & Nedic, 2003;

Floudas, Akrotirianakis, Caratzoulas, Meyer, & Kallrath, 2005; Georgiorgis,

Georgiadis, Bowen, Pantelides, & Pistikopoulos, 2006; Harjunkoski, Jain, &

Grossman, 2000; Lucia & Yang, 2004; Srinivasan, Biegler & Bonvin, 2008;

Varma, Pekny, Blau & Reklaitis, 2008) has remained a topic of interest over

past few decades and continues to be so as new methods of obtaining multiple

solutions are being introduced and researched further. The problem of non-

convex programming is at the centerstage that needs to be solved effectively

and faster, and developing new methods having ability to find all multiple

optimum solutions remains the focus of all such efforts. Multiple optimum

solutions can occur due to presence of a number of equality / inequality type

of nonconvex constraints. The presence of multiple local optimum solutions

(Boyd & Vandenberghe, 2004; Edgar & Himmelablau, 1988; Mangaserian,

1969; Ravindran, Ragsdell & Reklaitis, 1983) poses the most significant dif-

ficulties.

The nonconvex functions as equality or inequality constraints, when plot-

ted as a 3D portrait is seen to possess several convex and concave subsets.

The union of all these subdomains form the mappings of the standard non-
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convex functions.

Consider a standard minimization program statement

Min ϕ̂0(x) ≡
n∑

i=1

cixi

s.t.ϕj(x) ≥ 0; j = 1, 2 · · · , p

where ϕ̂0(x) is the linear objective function and {∀j ∈ {1, 2, · · · , p}|ϕj(x) ≥

0} are p inequality constraints. Here the inequality constraints are assumed

be highly nonlinear. Let there be multiple local optimum solutions avail-

able. It is clear that there are several locally existing subdomains, which

correspond to convex and concave forms. Hence, the cutting plane algorithm

upon execution of solver should yield these multiple optimum solutions.Thus,

the task before us is to obtain all existing multiple optimum solutions.

Towards this end, we first present a brief review of the methods of ob-

taining multiple optimum solutions to nonconvex program. The homotopy

search method (Floudas, 1999; Sun, Liu and Wang, 2009; Bonilla, 2010) is

most commonly used to go near to existing local optimum solutions. The

standard nonlinear programming solvers include a variant of Newton method

(Ren and Argyros, 2010; Xu and Li, 2008) and require that the initial guess
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given lies within a radius of convergence. If this condition is met, then the

local search method will converge upon the optimum solution. A number

of cutting plane algorithms apply the method if successive linear program-

ming (SLP) and any other such alternative to solve nonlinear programs. The

cutting plane algorithms have been used to solve especially the optimization

problems in refinery planning and scheduling. In addition to Kelley’s (1960)

cutting plane algorithm various cuts have been used in the literature on op-

timization theory and methods. Goffin and Vial (1997) proposed shallow,

deep, and very deep cuts in solving non-differentiable convex programs. The

techniques build an increasingly refined polyhedral approximation of the op-

timum solution set. An analytic center cutting plane method was used to

solve optimization problems. Two cuts were used by Goffin and Vial (1996)

when a new cutting plane and a new upper bound were introduced for the

objective function at the same time. It was observed that the updating direc-

tions depend on the cosine of the metric of Dikins ellipsoids of the normals to

the cut, where the acute angle in the cosine formula favors convergence. Luoy

(1997) provided the analysis of a cutting plane method that uses weighted

analytic center and multiple cuts. These cutting plane algorithms have not

shown any ability to collect multiple optimum solutions as seen from avail-
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able open literature. We wish to try to see if the sharp cut algorithm will be

able to collect all optimum solutions.

As an alternative, we already know that the sharp cut algorithm can also

come very close to a unique global optimum solution for a single convex con-

straint assuming the convexity condition is obeyed by the constraint. Hence

we need to explore how the sharp cut algorithm can be used to collect all the

optimum solutions after executing the optimization code. In order to find

out if the sharp cut algorithm can solve the nonconvex programming prob-

lem, we selected a few standard nonconvex functions as a single inequality

constraint, and, assumed a linear objective function to prepare toy examples.

When the sharp cut was applied to these nonconvex inequalities it revealed

a new and unique feature of the cutting plane algorithm. This can happen

when the constraints of the program are nonlinear and form a nonconvex

hypersurface.

In what follows we give a sequential computational procedure, and then

apply the sharp cut algorithm to our toy examples having standard non-

convex functions as inequality constraints. Later we show the application

example of the nonisothermal CSTR dynamics to obtain optimum steady

states. Our primary objective is to carry out the numerical computations
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and to show how the sharp cut algorithm has the unique feature of collecting

multiple optimum solutions.

3.3 The sharp cut algorithm

In this section, we give a computational stepwise procedure to use the

sharp cut to obtain local optimum solutions of a nonlinear program.

1. Initialization. Begin with a linear objective function ϕ̂o(x) (this is a

limitation of this algorithm).

2. Write the box constraints as set Zo, which forms the constraint set for

zeroth iteration.

Zo = {∀i|ai < xi < bi; i = 1, 2, · · · , n}

The call to LP solver gives an optimum solution ᾱ0.

3. First iteration. Set SLP iteration index l = 1 and compute the function

value gor,1 (here rth constraint is the most violated constraint).

4. To descend steeply upon hypersurface of most violated constraint, first

generate a number of point data sets forming a set Φ for given search
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segment,

Φ ≡ {∀℘± ∈ {0, 1, 2, · · · ,ℵ±−1} |ν̄℘±}

ν̄℘± = {∀i = 1, · · · , n, ℘± = 1, · · · ,ℵ±|αi,l ± ℘±δ±,i}

where

∀i|δi,− = (αi,l − ai)/(ℵ− − 1);

i = 1, · · · , n|ai < νi,℘− < bi

∀i|δi,+ = (bi − αi,l)/(ℵ+ − 1);

i = 1, · · · , n|ai < νi,℘+ < bi

The point data set E0 is generated as,

E0 ≡ {∀℘± ∈ {0, 1, 2, · · · ,ℵ±−1}|ν̄℘±}

0 < ςr,℘±(ν̄℘±) ≤ gor,l

ςr,℘±(ν̄℘±) = ϕr(ν̄℘±) ≤ gor,l

5. Now, the new vector point can be generated as,

ψo
r,l = {r|σ ∈ {℘±}; ν̄℘± ∈ E0|ςr,σ(ν̄σ)|Min{ϕ̂0(ν̄℘±)}} (3.1)

where,

℘± = {0, · · · ,ℵ±−1}



“main”

2012/9/25

page 100i
i

i
i

i
i

i
i

100 CHAPTER 3. NONCONVEX FUNCTIONS AND SHARP CUT

The new vector point is denoted as β̄l = ν̄σ.

6. Generate the first sharp cut (this is closer to hypersurface than Kelly’s

cutting plane).

v′
l(x; β̄l) ≡ w1,lψ

o
r,l +

n∑
i=1

∇xi
ϕr(β̄l)(xi − βi,l) ≥ 0 (3.2)

The vector point β̄l is scaled using weights.

7. In order to construct the second sharp cut, use a relation

{r|∀σ ∈ {℘±}| ν̄σ|{ςr,σ(ν̄σ) ≤ δ × ψo
r,l} ⊂ E0}

and a symbolic manipulator to obtain a multi-variate fit for these

points. The gradient set from data fitting comes out as

∀i|1 ≤ i ≤ n|ρi

and then the second sharp cut can be formed as

wl(x; β̄l) ≡ w2,lψ
o
r,l +

n∑
i=1

ρi(xi − βi,l) ≥ 0 (3.3)

Here w2,l is a random number between [0.96, 0.98] generated for every

lth iteration.

8. Formation of constraint set. Add this to constraint set using a mathe-

matical expression as,

Z1 = Zo ∩H1
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where H1 is given as, H1 = {l = 1|u1 ≥ 0 ∩ v1 ≥ 0 ∩w1 ≥ 0}. Then,

a call to LP solver will give out an optimum solution, ᾱ1.

9. lth SLP iteration. Now, we present computational step for lth iteration

of SLP. The minimization program can be written as,

Min ϕ̂0(x) = ctx

s.t. x ∈ Zl−1 ∩Hl

where,

Hl = {l ∈ Pl| (ul ≥ 0 ∩ vl ≥ 0 ∩wl ≥ 0)}

The call to LP solver gives an optimum solution, ᾱl.

10. Termination criteria. If gor,l as l → ∞ becomes zero (idealistic condition

that can occur) or remains constant at some infinitesimally small value

closer to machine precision limit, the program will be terminated.

Remarks.

1. For weights used in algorithm, if we generate random numbers in that

interval, there will not remain any possibility of cycling behavior.

2. Setting a numerical value for constant δ needs a little trial and error.

But our numerical experience shows that this is not very sensitive to
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small incremental changes in its value.

3. The constants in first and second sharp cut will have to be chosen

carefully that when other decision variables are put to zero, for ith

decision variable, the value does not cross the limits set by respective

box constraint.

3.4 New revelations

The sharp cut algorithm is applied for the purpose of illustration to two

variable nonconvex functions, so that the results can be seen visually.

Here, we will solve the optimization program P1, which is given as

Min ϕ0(x) ≡ c1x1 + c2x2

s.t. ϕ1(x) ≤ 0 (3.4)

where x = {x1, x2}T ∈ ℜ2, is a two variable nonconvex function. The scalar

nonconvex function is the sole inequality constraint. Since this function is

nonconvex, the basic assumption used in Kelley’s cutting plane algorithm is

violated. Hence Kelley’s algorithm is not applicable and will not give us the

multiple local optimum solutions of the selected nonconvex functions. A few

standard nonconvex functions are listed below.
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Function 1. Ackleys function in 2D. The program statement is

Min ϕ̂0(x) = −2.0 ∗ x1 − x2

s.t. g1 ≡ 0.2− x1 ∗ Sin[2. ∗ π ∗ x1]

− x2 ∗ Cos[2. ∗ π ∗ x2]

The box constraints are given as

0 ≤ x1 ≤ 4.0; 0 ≤ x2 ≤ 4.0

The sharp cut algorithm finds several solutions as function value of most

violated constraint shifts between ±0.0595865 in eighteen iterations, after

which it is terminated. The function is shown in Fig. 3.1 and the computed

solutions are listed in Table 3.1.

Function 2. Rastrigins function in 2D. Consider a nonlinear program

Min ϕ̂0(x) = −x1 − x2

s.t. g1 ≡ 0.3 + 0.1((x21 + 1.2Cos[2.πx1])

− (x22 − 0.2Cos[2πx2]))

The box constraints are given as

0 ≤ x1 ≤ 4.0; 0 ≤ x2 ≤ 1.6
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The output from first sixteen iterations of the sharp cut algorithm is tab-

ulated (see Table 3.2) to reach various stationary points corresponding to the

level hypersurface (see Fig. 3.2) formed after arriving at the accumulation

point gor,l = ±0.211828, l = 1, 2, · · · , 16. Thus the sharp cut algorithm has

succeeded in emitting multiple optimizers. Note that the negative sign of gor,l

implies a local maximum value, while the positive sign refers to the noncon-

vex function, which has a local minimum value.

Function 3. Schwefels function in 2D. Consider a nonlinear program

Minϕ̂0(x) = 2.0x1 − 0.4x2

s.t. g1 ≡ (8.0x1 − 0.5x2 + 1.2x1x2 + 0.6)/90.0

+ 8.0 ∗ Cos[3.0x1 + 0.4
√
x2 + 0.4x1x2]

× Cos[(1.4x2 + 0.4)/
√
2]− 0.2)

The function profile is shown in Fig. 3.3. The box constraints are given as

0 ≤ x1 ≤ 6.0; 0 ≤ x2 ≤ 4.0

Thus, at a level given by gor,l = ±2.37271, we obtain several local optimum

points. The algorithm could not proceed beyond eight iterations. Its output

is again given in Table 3.3.
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Function 4. Griewangks function in 2D. Consider a nonlinear program

Minϕ̂0(x) = 2x1 − 0.4x2

s.t. g1 ≡ ((x21 + x22)/200.0

− 3.7 ∗ Cos[x1]Cos[x2/
√
2]− 0.4)

The function profile is shown in Fig. 3.4. The box constraints are given as

0 ≤ x1 ≤ 8.0; 0 ≤ x2 ≤ 4.0

The sharp cut algorithm immediately reaches to an accumulation point given

by gor,l = ±0.0808988, l = 1, 2, · · · , 21 (see Table 3.4).

Now, we will try to apply this cutting plane variant to an optimal control

and optimization problem.

3.5 Nonlinear dynamics of CSTR

The nonisothermal CSTR considered here carries out a first order exothermic

reaction, A→ R, and has nonlinear dynamics.

T,he CSTR is maintained at a favorable temperature by employing a

cooling jacket. The reaction rate form is of Arrhenius type and the rate
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constant for step A → R is k(T ) = k0exp
[
−E
RT

]
. The governing equations are

given here.

V
dCA

dt
= F0CA,0 − FCA − V k0exp

−E
RT

CA

ρcpV
dT

dt
= ρcp(F0T0 − FT )

+ (−∆H)V k0exp
−E
RT

CA − UAH(T − TJ)

ρJcJVJ
dT

dt
= FJρJcJ(TJ,0 − TJ) + UAH(T − TJ) (3.5)

The output flowrate from CSTR is set to a constant value F such that

F = F0 +Kc(V − Vmin) (3.6)

Now we will see how multiple optimum solutions for nonisothermal CSTR

can be computed, when small shifts in input flowrates to reactor and cooling

jacket (i.e. F0 and FJ) occur. The results of numerical computations done

are discussed in next section.

3.6 Numerical computations

First we derive the steady state equations and compute a steady state to show

how the optimum solution with a little slack added give different reference
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states at that parameter point. We can use these reference states to apply the

optimal control law. This part of control and optimization application will

be presented later elsewhere in detail giving rigorous theory to investigate

strength of the new algorithm.

Table 3.5 shows the numerical values of physical parameters appearing

in system dynamics. In the numerical computations done here, we vary

the reactor input flowrate in the range 0.25 m3/hr to 0.45 m3/hr, while

the coolant flow rate in cooling jacket is varied in the range 2.2 m3/hr to

4.4 m3/hr. The output steady state values are fitted using Ackley’s function

of a form

TJ,s = µ0 + x1Sin(2 ∗ π ∗ x1)− x2Cos(2 ∗ π ∗ x2) (3.7)

where TJ,s is steady state water temperature in cooling jacket.

The symbolic manipulator used in computing the constant in the above

functional form after data fitting was found to be µ0 = −19.1744. We further

scaled the functional form by multiplying it by 104, re-scaled the tempera-

tures of reactor feed and cooling jacket stream (denoted as x̂1 and x̂2) between

0 and 1 and generated the steady state values and this data was used for data

fitting. The values of optimum temperatures can be scaled using relations

x̂1 = 64.53(6.1332 + x1); x̂2 = 4.72816(64.669 + x2);
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This is plotted in Fig. 3.5. Here x1 refers to steady state reactor temperature

and x2 refers to steady state cooling jacket temperature. The output from the

sharp cut algorithm used for nonconvex programming is presented in Table

3.6. The multiple optimum solutions obtained by the sharp cut algorithm

are given in Table 3.7.

3.7 Results and discussion

The application of the algorithm to a select few standard nonconvex functions

shows that the algorithm reaches an accumulation point, and along the way

has generated a sequence of solutions existing across a level hypersurface and

are obtained in a monotone order. The Section 3.4 and accompanying Tables

3.1, 3.2, 3.3 and 3.4 clearly show how g(l)r = Eval[gr] attains a constant value

and that it reaches the accumulation point. It is observed that the 2–tuple

(∀l|(gor,l, ϕ̂0(ᾱl))) selects only a few of apex points seen in Figures 3.1, 3.2,

3.3, 3.4 that form a monotone sequence, when the sharp cut iterates. Thus,

it showed the ability to capture all possible optimum solutions available at

the level hypersurface defined by the accumulation point (gor,∞) of Cauchy se-

quence ({∀l ∈ {0, 1, 2, · · · ,∞}|gor,l = ϕ̂0(ᾱl)}). It is observed that as multiple
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solutions are obtained by algorithm, the first sharp cut and second sharp cut

remain the same. This is the reason that in succeeding iterates for the eval-

uated numerical value of the most violated constraint, the algorithm keeps

finding all possible optimum solutions. Thus as this evaluated value gor,l does

not change an accumulation point is reached. It is also observed that the

number of iterations range from zero to two before this accumulation point

is reached (see Tables 3.1–3.4).

In the application example used for illustration, the nonlinear dynamics

as depicted in the 3D plane (CA,s, Ts, TJ,s) forms a rough terrain with sev-

eral peaks across the 2D plane (TJ,s, Ts) and although CA,s remains a value

indicating higher conversion for all such local optimum point, the reactor

temperature vaies and hence the cooling water temperature varies in propor-

tion. Our objective is to utilize less energy from utility providiong cooling

water and hence it implies opt for lower reaction temperature lower output

jacket temperature. This will ensure minimum exothermicity at that reaction

temperature which in turn implies less amount of heat to be absorbed from

reactor by coolant. Table 3.6 shows that the value of convergence parameter

gor,l moves through a rough terrain to collect all optimum points. In this case

the first and second sharp cuts remain invariant and collect all points which
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are not in monotone order, but the accumulation point of Cauchy sequence

formed as weighted gor,l = 474900.0 gives a point sequence of convergence pa-

rameter {−52595.0,−94623.2,−140247.0,−81477.9} (see Section 3.3 giving

algorithm).

3.8 Conclusions

In this chapter, we have applied the sharp cut to various nonconvex functions

and obtained multiple optimum solutions. This is a unique feature of the

variant of Kelley’s cutting plane algorithm. When it was applied to a highly

nonlinear nonconvex function to obtain successive final states for optimal

control of nonisothermal CSTR. It was found that the sharp cut could move

across the uneven terrain and obtain all local optimum solutions.
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Figures

Figure 3.1: The Ackley’s function.
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Figure 3.2: The Rastrigin’s function.
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Figure 3.3: The Schwefel’s function.
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Figure 3.4: The Griewangk’s function.
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Figure 3.5: Nonconvex function by fitting steady state values for nonisother-

mal CSTR.
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Tables

Table 3.1: Output of sharp cut algorithm for Ackleys function in 2D as a

nonconvex constraint.

Iter Eval[gr] ϕ̂0,l(x) α1,l α2,l

1 -0.669324 -11.6976 3.8488 4.0

2 -0.175273 -11.5966 3.7983 4.0

3 -0.0595865 -11.5399 3.76993 4.0

4 0.0595865 -11.4808 3.78408 4.0

5 -0.0595865 -11.4808 3.78408 4.0

6 0.0595865 -11.4777 3.78482 3.90802

7 -0.0595865 -11.4777 3.78482 3.90802

8 0.0595865 -11.4747 3.78553 3.90363

9 -0.0595865 -11.4747 3.78553 3.90363

10 0.0595865 -11.4718 3.78621 3.8994

11 -0.0595865 -11.4718 3.78621 3.8994



“main”

2012/9/25

page 120i
i

i
i

i
i

i
i

120 CHAPTER 3. NONCONVEX FUNCTIONS AND SHARP CUT

12 0.0595865 -11.4691 3.78687 3.89531

13 0.0595865 -11.4664 3.78752 3.89135

14 -0.0595865 -11.4664 3.78752 3.89135

15 0.0595865 -11.4638 3.78814 3.88749

16 -0.0595865 -11.4638 3.78814 3.88749

17 -0.0595865 -11.4638 3.78814 3.88749

18 0.0595865 -11.4612 3.78875 3.88374

∗After 18th iteration algorithm terminated as LP solution could not be found.
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Table 3.2: Output of sharp cut algorithm for Rastrigin’s function in 2D as a

non-convex constraint.

Iter Eval[gr] ϕ̂0,l(x) α1,l α2,l

1 0.211828 -5.31487 4.0 1.31487

2 -0.211828 -5.31487 4.0 1.31487

3 0.211828 -5.25888 4.0 1.25888

4 -0.211828 -5.25888 4.0 1.25888

5 0.211828 -5.20273 4.0 1.20273

6 -0.211828 -5.20273 4.0 1.20273

7 0.211828 -5.014401 4.0 1.14401

8 -0.211828 -5.014401 4.0 1.14401

9 0.211828 -5.07935 4.0 1.07935

10 -0.211828 -5.07935 4.0 1.07935

11 0.211828 -5.00259 4.0 1.00259

12 -0.211828 -5.00259 4.0 1.00259
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13 0.211828 -4.89801 4.0 0.898015

14 -0.211828 -4.89801 4.0 0.898015

15 0.211828 -4.69257 4.0 0.695265

16 -0.211828 -4.69257 4.0 0.695265

∗After 16th iteration algorithm terminated as LP solution could not be found.
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Table 3.3: Output of sharp cut algorithm for Schwefels function in 2D as a

non-convex constraint.

Iter Eval[gr] ϕ̂0,l(x) α1,l α2,l

1 1.78907 -1.01577 0.292114 4.0

2 -1.78907 -1.01577 0.292114 4.0

3 1.78907 -0.777757 0.348952 3.689154

4 -1.78907 -0.777757 0.348952 3.689154

5 1.78907 -0.609136 0.495432 4.0

6 -1.78907 -0.609136 0.495432 4.0

7 1.78907 -0.586843 0.453901 3.73661

8 -1.78907 -0.586843 0.453901 3.73661

9 1.78907 -0.429321 0.466212 3.40436

10 -1.78907 -0.429321 0.466212 3.40436

11 1.78907 -0.135724 0.565017 3.16439

12 -1.78907 -0.135724 0.565017 3.16439

13 1.78907 0.772647 0.870713 2.42195

14 -1.78907 0.772647 0.870713 2.42195

∗After 14th iteration algorithm terminated as LP solution could not be found.
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Table 3.4: Output of sharp cut algorithm for Griewangks function in 2D as

a non-convex constraint.

Iter Eval[gr] ϕ̂0,l(x) α1,l α2,l

1 -1.51111 7.07726 4.33863 4.0

2 0.0808988 7.98746 4.79373 4.0

3 -0.0808988 7.98746 4.79373 4.0

4 0.0808988 8.03295 4.81648 4.0

5 -0.0808988 8.03295 4.81648 4.0

6 0.0808988 8.07854 4.83927 4.0

7 -0.0808988 8.07854 4.83927 4.0

8 0.0808988 8.12424 4.86212 4.0

9 -0.0808988 8.12424 4.86212 4.0

10 0.0808988 8.17009 4.88504 4.0

11 -0.0808988 8.17009 4.88504 4.0

12 0.0808988 8.2161 4.90805 4.0

13 -0.0808988 8.2161 4.90805 4.0

14 0.0808988 8.2623 4.93115 4.0
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15 -0.0808988 8.2623 4.93115 4.0

16 0.0808988 8.30872 4.95436 4.0

17 -0.0808988 8.30872 4.95436 4.0

18 0.0808988 8.35539 4.97769 4.0

19 -0.0808988 8.35539 4.97769 4.0

20 0.0808988 8.40233 5.00116 4.0

21 -0.0808988 8.40233 5.00116 4.0

∗After 21st iteration algorithm terminated as LP solution could not be found.
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Table 3.5: Parameter values used to compute steady states.

R = 8.33 kJ/kmol(K) F0 = 0.4 m3/hr

E = 13,900.0 kJ/kmol k0 = 7.0× 104 hr−1

(−∆HR) = -25,900.0 kJ/kmol CA,0 = 2.06 kmol/m3

V = 2.0 m3 Vmin = 0.7V , m3

ρR = 600.0 kmol/m3 cp = 2.5 kJ/kmol(K)

T0 = 410 (K) U = 8000.0 kJ/m2 · hr ·K

AH = 0.02 m2 ρJ = 700.0 kmol/m3

VJ = 1.4 m3 VJ,min = 0.7 VJ

cJ = 3.0 kJ/kmol(K) FJ,0 = F0 η

TJ,0 = 300.0 (K)
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Table 3.6: Performance of the cutting plane variant for CSTR example.

Iteration Number of Convergence Weighted max ϕ0(ᾱl)

l data parameter gor,l value of gor,l

1 10 -52595. 474900 -0.981331

2 10 -94623.2 474900 -0.980581

3 10 -140247. 474900. -0.923408

4 10 -81477.9 474900. -0.989544

5 10 -81477.9 474900. -0.989544
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Table 3.7: Multiple optimum solutions obtained by the cutting plane variant

for CSTR example.

Iteration ϕ0(ᾱl) x∗1 x∗2

l

1 -0.981331 0.00133106 0.98

2 -0.980581 0.000580935 0.98

3 -0.923408 0.00383961 0.919569

4 -0.989544 0.0000700541 0.989474
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Abstract

The authors presented a new variant of the Kelley’s cutting plane method,

which they termed as a sharp cut algorithm. This algorithm was found to

be superior than its predecessors. Recent numerical computations revealed

that the algorithm collects all local optimum solutions in a monotone order.

Here, we apply this algorithm to solve a control and optimization problem

for a nonisothermal CSTR.
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4.1 Introduction

The topic of control of a chemical reactor having nonlinear dynamics still

remains open for further research and innovation. In this chapter, we focus

upon the problem of control system design for a nonisothermal continuously

stirred tank reactor (CSTR).

4.1.1 Motivation for this work

To find a control strategy for a nonisothermal CSTR, we observed from

computed results that most of the steady states were unstable for select

parameter set. Hence, we opted to apply an optimal controller to move from

one set point to another in succession in a small local neighborhood. At the

end of iterations of optimal control, we consider a scenario that parameter

shifts occur. To begin next move of optimal controller, we need to identify

admissible steady states in the neighborhood of this final state. As multiple

steady states are possible, we define a linear objective function, fit steady

states as a nonconvex function of two parameters, viz, feed temperature and

feed or coolant flow rate. Now we apply the sharp cut algorithm to find

multiple optimum solutions, select a new set point, re-set the plant transfer

function and controller, and again apply the optimal controller. Further,
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when the plant experiences a stochastic variation in inlet parameters, we

use feedback control for level, add extra internal cooling coils, and, derive a

stochastic optimal control to save costs.

4.1.2 Identification of problem

The idea of designing a neighborhood of local optimum solutions for design

and control of a CSTR stems from a revelation. The authors presented a new

variant of the cutting plane algorithm, a sharp cut algorithm (Inamdar et.

al., 2012), that has a high rate of convergence. The variant of Kelleys cutting

planes, as the best option amongst commonly used cutting plane methods,

and suggested to explore if it works for a well-defined problem of nonconvex

program. The new variant showed a unique ability to capture all possible

optimum solutions at an accumulation point of Cauchy sequence. Next, we

present the sharp cut algorithm and later show how it is applicable to the

control problem.
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4.2 The sharp cut algorithm

In this section, we present the sharp cut algorithm to obtain local optimum

solutions of a nonconvex program. Later it will be applied to an application

example.

4.2.1 The algorithm for nonconvex programming

1. Initialization. We begin with a linear objective function ϕ0(x). This

is a limitation of this algorithm. We write the box constraint

Z0 = {∀i|ai ≤ xi ≤ bi|i = 1, 2, , n}.

The call to LP solver for zeroth iteration gives an optimum solution

ᾱ∗
0.

2. First iteration. Now, we set SLP iteration index l = 1 and compute

the function value g(r, 1)
0. (Here rth constraint is the most violated

constraint (MVC)). To descend steeply upon the hypersurface of MVC,

we first generate a number of vector point for l = 1 and the point set

Φ defined as

Φ = {∀℘ ∈ {0, 1, 2, · · · ,ℵ±−1}|ν̄℘}
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and

ν̄℘± = {∀i = 1, · · · , n|℘± = 1, · · · ,ℵ±|αi,l ± ℘±δ±,i}

where

{∀i|δ(i,−) = (α(i, l)− ai)/(ℵ− − 1), ∀i = 1, · · · , n|ai ≤ ν̄i,℘− ≤ bi},

and

∀i|δi,+ = (bi − αi,l)/(ℵ+ − 1), ∀i = 1, · · · , n|ai ≤ ν̄(i, ℘+ ≤ bi.

Then, the point set E0 is generated as

E0 =
{
∀℘± ∈ {0, 1, 2, · · · ,ℵ± − 1}|ν̄℘±

}

and

0 < ςr,℘±(ν̄℘±) ≤ gor,l, ςr,℘±(ν̄℘±) = ϕr(ν̄℘±) ≤ gor,l.

Now, the new vector point ψ(r, l)
o can be generated as

ψo
r,l = {r|σ ∈ {℘±}; ν̄℘± ∈ E0|ςr,σ(ν̄σ)|Min

{
ϕ̂0(ν̄℘±)}

}

where, ℘± = {0, 1, · · · ,ℵ±−1}. The new vector point obtained is de-

noted as, β̄l = ν̄σ.

3. First sharp cut.

v′l(x; β̄l) = w1,lψ
o
r,l +

n∑
i=1

∇xi
ϕr(β̄l)(xi − βi,l) ≥ 0;
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the vector point β̄l is scaled using weights.

4. Second sharp cut. Using a relation

{r|σ ∈ {℘±}|ν̄σ|{ς(r, σ)(ν̄σ) ≤ δ × ψo
r,l} ⊂ E0},

a linear multi-variate fit gives a gradient set, {∀i|1 ≤ i ≤ n|ρi}, and,

the second sharp cut is obtained as

wl(x; β̄l) = w2,lψ
o
r,l +

n∑
i=1

ρl(xi − βi,l) ≥ 0;

and w2,l is a random number used as the weight.

5. Formation of constraint set. Now to descend steeply upon the MVC

to form the next hypercube as

Z1 = Z0 ∩H1, where, H1 = {l = 1|ul ≥ 0 ∩ v′l ≥ 0 ∩ wl ≥ 0}.

The call to LP solver gives us an optimum solution, ᾱ∗
1.

6. The lth SLP iteration. The statement of optimization program for

SLP iteration becomes,

Minϕ̄0(x) = ctx; s.t. x ∈ Z l−1 ∩H l.

This gives an optimum solution in Cauchy sequence, ᾱl.



“main”

2012/9/25

page 136i
i

i
i

i
i

i
i

136CHAPTER 4. OPTIMAL CONTROL ANDOPTIMIZATIONOF CSTR

7. Termination criteria. If g(r, l)
0 becomes zero, as l → ∞, (an ideal-

istic condition that can occur), or an accumulation point is reached for

the Cauchy sequence, the algorithm terminates.

4.3 Optimal control

Let us continue with an example in chemical reactor theory. A continuously

stirred tank reactor (CSTR) is carrying out a first order exothermic reaction,

A→ R. The reactor temperature is controlled by employing a cooling jacket.

The reaction rate form is of the Arrhenius type with the rate constant k being,

k = k0exp(−E/RT ). The governing model equations are

d(V CA)

dt
= F0CA0 − FCA − V k0exp(−E/RT )CA

ρcp
d(V T )

dt
= ρcp(F0T0 − FT )

+ (−∆HR)V k0exp(−E/RT )CA − UAH(T − TJ)

ρJcJVJ
dTJ
dt

= FJρJcJ(TJ0 − TJ) + UAH(T − TJ)

The controller, F = F0 + KC(V − Vmin) is added to have a zero degree

of freedom. Note that multiple optimum solutions for reactor appear, as

small shifts in input flow rates to reactor and cooling jacket (i.e. F0 and FJ)

occur. This results in an optimization step at end of optimal control move.



“main”

2012/9/25

page 137i
i

i
i

i
i

i
i

4.3. OPTIMAL CONTROL 137

Defining a deviation X = Xs + x, we find that, linearizing around a steady

state Xs, and, neglecting higher order terms, we obtain a state space system,

Mx = Ax + Bu. The operation of control system is devised to move from

initial state to final state by applying an optimal control and repeat control

move as reactor steady states are unstable. This sequential computation of

optimal control step and then a subsequent optimization step by applying

sharp cut to seek available locally optimum states gives rise to a control

and optimization problem. Another reason for optimization step at end of

optimal control move is shifts experienced by flow rates of feed and coolant

from their initial values.

Now, the objective function for optimal control is

J(X(t), u(t), t) =
((1− F (t)T (t))

(F0T0)2
+

(ρJcJFJ)

(ρcpF0T0)
(T (t)− TJ(t))

2

The Hamiltonian function is

H(X(t),u(t), t) =
(1− F (t)T (t))

(F0T0))2
+

(ρJcJFJ)

(ρcpF0T0)
(T (t)− TJ(t))

2

+ λ̄(Mx− (Ax+Bu))

In the next section, we show how in real systems this leads to a derivation

of Hamilton-Jacobi-Bellman (HJB) equation for stochastic optimal control.
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4.4 Stochastic optimal control

In this section, we consider a small amplitude variation in the feed concentra-

tion being pumped into the CSTR. This variation causes equivalent variation

in heat being added to the CSTR contents. Assuming that basic instrumen-

tation is used to measure temperature of reaction mixture, feed flow rate, and

liquid level in the reactor; and the effluent flow rate leaving CSTR, deviations

from set point or steady state satisfy the relations, defining

φ1 ≡
(2exp(−E/(RTs))αH0AR)

(RT 2
s )

φ2 ≡
(2exp(−E/(RTs))α(−∆HR)H0AR)

(RT 2
s )

we can write relations

F0(CAs − CA0) + F0(∆CAs −∆CA0) + φ1(E∆TsCAs +RT 2
s∆CAs) = 0 (A)

F0(−T0 + Ts) + (UAH + F0)∆Ts + φ2(E∆TsCAs +RT 2
s∆CAs) = 0 (B)

Here the cooling jacket heat load reduces to a simple term, UAH∆Ts.

This will be excess heat removed by internal cooling coils. Now, we consider

the variation caused by spikes, and apply the stochastic optimal control to

make additional profits. The modified steady state equation for internal

cooling coils (ICC) is written as, ∆Qc,icc = cpρRF0∆Ticc. The ICC dynamics
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for removal of heat in the presence of fluctuations is

Ẍ = f̂(X(t), ς(t)) + ξ(t); t ≤ t ≤ T ; X(τ) = x0

The control ς(τ) depends upon ? and sampled data X(τ) and ξ(τ) is Gaus-

sian white noise. The fluctuations drive the system to a new final state as

per the relation

dX(t) = (1− α1(t))X(t)rdt+ α1(t)X(t)(Rdt+ σdW )− α2(t)dt

The pay-off functional Px,t|ς() as a probability density function to be

minimized and is given as, P(x, t)|ς(·) = E(
∫ τ
t r(X(τ), ξ(τ))dτ + g(X(τ));

where r is generic running cost function and g is terminal cost function.

Let W = ξ and we set, X(t) = x0 +
∫ τ
0 f̂(X(τ))dτ + σdW (τ); and then

to design a stochastic optimal control, we write, dX(τ) = f̂(X(τ), ς(τ)) +

σdW (τ). Define a value function, v(x, t) = Max
ς(τ)

∈ ΞP(x, t)[ς(·)] , now apply

a stochastic optimal control and obtain the Hamilton–Jacobi–Bellman (HJB)

equation, which solves for the value function (v) as

vt(x, t)+
σ2

2
∆v(x, t)+

(
Max

ς ∈ Ξ

){
f̂(x, a) · ∇xv(x, t) + r(x, a)

}
; v(x, T ) = g(x)

and then stochastic optimal control is designed as

dX∗(τ) = f̂(X∗(τ), ς(X∗(τ), τ), τ)dτ + σdW (τ);X∗(τ) = x,
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and then, ξ∗(τ) = ς(X∗(τ), τ) is an optimal feedback control. The bias

term is calculated using Eqs. (A) and (B). Now, we carry out numerical

computations.

4.5 Numerical computations

We study the application of optimal control and later that of stochastic

optimal control.

4.5.1 Steady state analysis

In this section, we compute the multiple steady states (Inamdar et.al. 2012a).

For F0 = 0.39(m3/hr), and, FJ = 3.5F0(m
3/hr), the steady state conditions

are, CAs = 0.0001655(kg/m3), Ts = 437.151(K), TJs = 307.251(K). There

is near complete conversion in reactor at steady state (xA = 0.999834). To

apply the optimal control, we need to compute next final state to move

to. Therefore, we vary flow rates in the intervals F0 ∈ [0.25, 0.45], FJ ∈

[2.2, 4.4]. The data is fitted into Ackley’s 2D function (see Fig. 1). The

sharp cut is applied to minimization of sum of scaled temperatures of reaction

and coolant. For same values of gor,l and first and second sharp cuts at
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accumulation point, solutions show varied depths (see Ref. Inamdar et. al.

2012a).

4.5.2 Optimal control and optimization.

For a selected unstable reactor state, we begin our moves between initial and

final states (see Ref. Inamdar et. al. 2012b). The results of optimization

steps before selecting next final state and loci of optimal control paths can

be computed using standard theory. Now, we consider stochastic variation

of feed reactant concentration.

4.5.3 Stochastic optimal control

Let the feed concentration CA0 vary as a small amplitude sinusoidal oscilla-

tion to which we add a stochastic or random disturbance. Let the parameter

values be, â=0.2, ωe = 1.92, R=1.2, r = 1.08, ρ̂ = 0.4, γ = 0.06, σ̂ = 0.5,

T = 2.0. We use a relation X(t) = â sin(ωet) + ξ(t), where ξ(t) is a white

Gaussian noise and 0 ≤ ξ(t) ≤ 1. The plot of α2(t) versus t (see Fig.

2) shows a logarithmic trend and the output response (not shown) gradu-

ally approaches the final state. Further details will be given provided in a

manuscript under preparation (Inamdar et. al., 2012b).
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4.6 Conclusions

In this chapter, we presented an optimal control and optimization of a non-

isothermal CSTR. As the feed concentration varies stochastically, a stochastic

optimal control using extra internal coils is applied. Numerical computations

illustrate the findings well.
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Note.

The paper (from which this chapter is written) was accepted as a full

oral presentation for Eleventh International Symposia on Process Systems

Engineering, 2012 being hosted by National University of Singapore. The

author could not attend for some reason.
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Figures

Figure 4.1: Forming perturbed scaled nonconvex function for CSTR opti-

mization
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Figure 4.2: The randomly varying cost component for stochastic optimal

control.



“main”

2012/9/25

page 147i
i

i
i

i
i

i
i

Chapter 5

Stochastic optimal control of a

nonisothermal CSTR

147



“main”

2012/9/25

page 148i
i

i
i

i
i

i
i

148 CHAPTER 5. STOCHASTIC OPTIMAL CONTROL

Abstract

In previous chapter, we have seen that the multiple optimum solutions

can be obtained using the sharp cut algorithm and an optimal controller can

be designed effectively. We assumed in this derivation of results that the feed

concentration is not experiencing any variation and remains constant.

As an extension of previous result, when analysis of such variation leads us

to a stochastic differential equation and finally we can compute qualitatively

expressions in standard literature to illustrate the application of the sharp

cut algorithm for a single iteration. In this chapter, we have applied the

theory of stochastic optimal control to make use of optimum time–continuous

optimum ratio of two process water utilities i.e. cold water and brine water

to mix in proportion in order to solve the problem of reactor control and

operation. Here, the reactor is carrying out a first order exothermic reaction

and the feed concentration is varying sinusoidally with a bias added. The

steady states computed in a search range of reactor dynamics are unstable

and an optimal control is selected to control the reactor. Further, when the

feed concentration varies sinusoidally with time during the downhill phase

the temperature of reaction falls below the optimum which is also the set

point. Hence, the conversion in some range of parameters may fall below
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specified minimum limit. During this interval we cause the reactor output

to be by–passed. This by–passed process stream defines a loss function for

stochastic optimal control as it is further processed in a batch reactor in

lots and added to the main stream later. This step minimizes losses of raw

material, but extra batch processing cost takes away part of profits. As

the feed concentration varies sinusoidally and the bias experiences a random

variation w.r.t. time, we apply the method of stochastic optimal control and

derive necessary analytical results.
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5.1 Introduction

The example of a first order exothermic reaction is very common in chemi-

cal reaction engineering literature. For the theoretical work, the most cited

references are that of Uppal, Poore and Ray (1974, 1976). Another seminal

paper is by Farr and Aris (1986) and discusses the bifurcations that occur

in the dynamics of reacting system. It is then evident that in operating

such a chemical reactor carrying out an exothermic reaction, it is necessary

to apply control to keep the temperature at an optimum point by absorb-

ing heat released. The numerical computations show that the steady states

computed in a search range of reactor dynamics are unstable and an opti-

mal control (Anderson and Moore, 1990; Hull, 2003) is selected to control

the reactor. However, a stochastic disturbance enters along with sinusoidal

variation implying a stochastic optimal controller needs to be designed. The

external cooling jacket assumes no variation in feed concentration and rejects

any weak disturbance entering the reactor. The variation from this design

value can cause excess heat to be released. Here to make stochastic optimal

control more effective we opt for two types of utility resources. For sinusoidal

variation we use process water at ambient temperature as a coolant stream

and for randomly varying disturbance around a bias we use brine solution
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which has higher capacity to absorb heat quickly. Later an eductor can be

used to mix the two streams fully and sent through the internal cooling coils.

The addition of extra internal cooling coils can be an option that may be

considered for design and simulation exercise and a properly designed con-

troller brings the temperature of reaction back to the optimum value in a

short time.

Our primary objective is to contain the movements of this optimal con-

trol within a small neighborhood of limited search range of inlet parameters

(Inamdar et. al., 2011, 2012). However, the sinusoidal variation in feed con-

centration and random variation of the bias implies that a stochastic optimal

control should be applied. After reaching the new initial state after a du-

ration of stochastic optimal control, the new average bias value necessitates

computation of multiple optimum solutions possible. This computation sets

a relation between CAs as a function of Ts and TJs. The numerical computa-

tions show that the conversion within this range indicates it tends to unity.

Clearly, any effort to reduce the temperature of reaction and with a relation

to temperature of cooling jacket means effective utility savings. This moti-

vates us to take up this problem. First we give the model of nonisothermal

CSTR and then see how this leads us to the problem of stochastic optimal
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control.

Now, we derive the equations describing the process dynamics of CSTR.

The reactor carries out a first order exothermic reaction A → R and the reac-

tion is of first order and the CSTR is maintained at a favorable temperature

by employing a cooling jacket. The reaction rate form is of Arrhenius type

and the rate constant for step A → R is k(T ) = k0exp
[
−E
RT

]
. The governing

equations are given here.

V
dCA

dt
= F0CA,0 − FCA − V k0exp

[−E
RT

]
CA (5.1)

ρcpV
dT

dt
= ρcp(F0T0 − FT )

+ (−∆H)V k0exp
[−E
RT

]
CA − UAH(T − TJ) (5.2)

ρJcJVJ
dTJ
dt

= FJρJcJ(TJ,0 − TJ) + UAH(T − TJ) (5.3)

Now we will see how multiple optimum solutions for nonisothermal CSTR

can be computed, when small shifts in input flow rates to reactor and cool-

ing jacket (i.e. F0 and FJ) occur, and result in a control and optimization

solution. Note that the dynamics of cooling jacket is given above and the

temperature rise can be controlled by varying the coolant flow rate.

As is clear the effect of variation in feed concentration can only be re-
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alized when we measure the output feedback (controlled) variable (reaction

temperature in this case). However in order to decompose the output value

into constituents, we need to know the bias and small amplitude variation in

feed concentration. There is a small random disturbance which gets added

to this input term. This stochasticity can be measured by measuring con-

centration as sampled data that can be recorded and this data can be sent

to computer to analyze. In order to achieve this a small cell parallel to input

pipe averages the spiky variation in feed concentration and we can collect

samples. These samples are analyzed to measure the bias and properties of

oscillatory input (amplitude and period of oscillation). This arrangement can

be helpful in constructing models that when subtracted from output value

gives an idea about impulses being added to flow input. Such an arrangement

is necessary to implement the optimal control and later is useful in applying

the stochastic optimal control. To conclude this discussion, we find that the

application of external cooling jacket assumes that feed concentration CA0 is

constant and rejects any weak disturbance entering the dynamics. The extra

cooling capacity added by internal cooling coils subtracts the feedback out-

put response calculated by first model i.e. no sinusoidal variation and bias

caused in feed concentration value. The remaining variation is then assigned
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to internal cooling coils. Assuming there is no significant loss in level control

due to coupling with the main control loop, the stochastic optimal control

then can be applied to a scalar equation. We explain this in next section.

5.2 Stochastic optimal control

Since there is small amplitude sinusoidal variation in feed concentration,

the reaction temperature in the chemical reactor will experience oscillations.

This means the cooling duty will vary with time for the internal cooling

coils. Along the rise of temperature value extra cooling will be required,

while during the downfall the temperature of reaction mixture will fall below

the optimum value which is the set point. We stop the action of the internal

cooling coils during this time interval. The result is that the conversion

level will too fall below expected value and this ”sloppy cut” in this time

interval (until temperature goes up above set point corresponding to optimum

conversion). This sloppy cut is by–passed to a storage tank and processed

using a batch reactor. This less reacted mixture after batch processing is

added later to the the downstream sequence. The batch processing operation

will incur extra cost.
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Let us begin the analysis and design of stochastic optimal control sys-

tem. We note that, there is a bias that gets added and a small amplitude

oscillation as variation in feed concentration. Hence the heat released due to

exothermicity of reaction will eventually cause the temperature of reaction

mixture to oscillate. We will explain this in detail here.

The variation in feed concentration occurs as

CA,0(t) = C̄A,0 +∆CA,0 + ã sin(ωet) (5.4)

Let us write the expression for feed concentration varying with time.

CA,0(t) = CA,0,1(t) + CA,0,2(t)

= (∆CA,0 + ξ(t)) + (ã sin(ωet)) (5.5)

Here C̄A,0 is the feed concentration as a design value. We assume that the

external cooling jacket is designed to absorb all excess heat due to exothermic

reaction with CA,0(t) = C̄A,0. Any weak disturbance entering the dynamics

will be rejected by a feedback control loop. Also, an optimal control can be

designed as we know that all steady state in search parameter are unstable

as explained before.

Let us now consider the parametric disturbance term as CA,0,1(t)+CA,0,2(t)
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as in Eq. (5.5). Clearly, we need to a priori determine, for this experimental

apparatus set up, the unknowns, ∆C̄A,0 (a bias), ξ(t) (a random disturbance

occurring around this mean value), and variables in oscillatory disturbance

term i.e. ã (amplitude) and ωe (frequency of external periodic forcing term).

For this purpose, the sampling done via a cell, parallel to the feed pipeline

is devised. The sampled data collected over a short interval of time can be

used to estimate the unknowns (∆C̄A,0, ã, ωe). These constants can be used

to design a stochastic optimal controller.

Now, we will analyze the control problem. The parametric disturbance in

Eq. (5.5) is releasing extra heat and will cause further variation in reaction

temperature. Here we have estimated the parameters i.e. C̄A,0, ã, ωe. Hence,

we can decompose the parametric disturbance into known and randomly

varying components. This is clearly depicted as a block diagram in Fig.

2. Thus as a known disturbance C̄A,0 is experiencing a small amplitude

variation. And as a randomly varying component C̄A,0 is experiencing a

bias and stochastic variation. The linearization of process dynamics has

the state variables CA(t), T (t) and TJ(t) i.e. concentration of species A in

reaction mixture, the temperature of reaction mixture, and the temperature

of coolant in internal cooling coils, respectively.



“main”

2012/9/25

page 157i
i

i
i

i
i

i
i

5.2. STOCHASTIC OPTIMAL CONTROL 157

Therefore, the temperature rise in steady state (Ts) is given as

T ′(t) = T ′
1(t) + T ′

2(t) (5.6)

where T ′
1(t) and T

′
2(t) are deviations caused by parametric disturbance cor-

responding to variations given as CA,0,1(t) + CA,0,2(t). The controller pair is

used for this single–input single–output (SISO) control loop is reaction tem-

perature (T (t)) as a controlled (measurable) variable and qc(t) i.e. coolant

flow rate for internal cooling coils (ICC) as a manipulated variable. Hence,

corresponding to the temperature deviations, T ′
1(t) and T ′

2(t), we need to

calculate coolant actions, which are q̃c(t) and q̄c(t), respectively.

In order to obtain analytical results, we take Laplace transform of the

three linearized equations, and, derive expressions for control ratios relating

CA,0,1(t) and T ′
1(t), CA,0,2(t) and T ′

2(t). Later, we can find control ratio

expressions for T ′
1(t) and q̃c(t), T

′
2(t) and q̄c(t). For multiple inputs, the

transfer function relations can be derived and we write derived control ratios

as

q̃c(ȷω) = G11(ȷω)T
′
1(ȷω); q̄c(ȷω) = G21(ȷω)T

′
2(ȷω) (5.7)

The problem of obtaining the transfer function relations remains only a text-

book exercise, once the linearized deviational equations formed around a
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steady state (CAs, Ts, TJs). This part of analysis is excluded from discussion

to keep the manuscript short.

The net change in coolant flow rate, qtotc (s) is obtained as a product of

transfer function blocks (see Fig. 2)

qtotc (ȷω) = q̃c(ȷω) + q̄c(ȷω)

= (G11(ȷω)G12(ȷω))CA,0,1(ȷω) +G21(ȷω)G22(ȷω)CA,0,2(ȷω)(5.8)

Using this important equation (Eq. (5.8), we can derive the required

stochastic differential equation (SDE). This will be used to derive an expres-

sion for stochastic optimal control action.

5.3 Controller design

The variation in feed concentration occurs as

CA,0(t) = C̄A,0 +∆CA,0 + ã sin(ωet) (5.9)

The cyclic implementation of cooling utility is expressed as a heavy–side

function. The general rules that give rise to a heavy–side function are

When T (t) ≥ T set
R , the cooling action of icc is required. qtotc > 0

When T (t) < T set
R , the cooling action of icc is stopped. qtotc = q̄c,0
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Now, we form the stochastic differential balance for optimal control.

dX̃(t) = (1− κ(t))X̃rdt+ κ(t)X̃(Rdt+ σdW )− ϑ(t)dt (5.10)

where ϑ(t) is the loss function.

Let the minimum occur as

Q = {(x, t)|t ∈ [0, T ; x > 0]} (5.11)

Hence, we write that

{∃τ |τ ̸∈ [0, T ]; τ > T} (5.12)

Thus, when τ occurs, when final state is reached after computing and imple-

menting the action suggested by optimal control sequence, we say that for

next move for optimal control, we have another control set to be computed

that

{Â = α(X∗(s′), s′)|{κ(t);ϑ(t)}} (5.13)

and then the pay–off functional (a Gaussian distribution) to be minimized is

given as

Px,t[Â(·)] = E
(
e−ρ̂sF (ϑ(t))

)
(5.14)

Now, we will derive the Hamilton–Jacobi–Bellman (HJB) equation. Let us

begin with the equation for controlled stochastic process.

dX̃(s) = f(X̃(s), Â(s))ds+ σdW (s); X̃(t) = x(t) (5.15)
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The expected value of pay–off functional in Eq. (5.14) becomes

Px,t[Â(·)] = E

{∫ T

t
κ(X̃(s), Â(s))ds+ Γ(X̃(T )

}
(5.16)

where κ(·) is running cost and Γ(·) is terminal cost. Now, the value function

is given as

v(x, t) =
sup

Â ∈ Ã
Px,t[Â(·)] (5.17)

with a boundary condition, v(x, T ) = Γ(x). Applying method of dynamic

programming, we obtain

v(x, t) > E

{∫ t+h

t
κ(X̃(s), Â(s))ds+ v(X̃(t+ h), t+ h)

}
(5.18)

Further simplification gives

vt(x, t) +
σ2

2
∆v(x, t) +Mina∈Â + f(x, a) · ∇xv(x, t) + r(x, a) (5.19)

This stochastic HJB equation can be applied to our problem as it occurs

for various time intervals and the solution as stochastic optimal control se-

quence can be obtained. Referring to (Evans, 1981) we can easily derive the

stochastic HJB equation as

X̃t +Min

{
(â1σx)

2

2
X̃xx + (1− â1)rx+ â1xR− â2)X̃x + exp(ρt)F (a2)

}
= 0

(5.20)
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the optimum occurs for the constraints, 0 ≤ â1 ≤ 1, â2 > 0. This Eq. (5.20)

is subject boundary conditions as

X̃(0, t) = 0; X̃(x, T ) = 0 (5.21)

The local maximum occurs when

κ∗ = −2
(r −R)

σ2
; (5.22)

F ′(ϑ∗) = eρtX̃x(t) =
eρtγΓ(t)

2
√
x

Setting the value function of a form

X̃(t) = Γ(t)(γ
√
x) (5.23)

and putting â1 = κ∗, â2 = ϑ∗, we find that

â2 = eρtg(t) (5.24)

This gives us an expression

ϑ∗ = x(exp(ρt)Γ(t))−2 (5.25)

Now, we define, h(t)
.
= eρtg(t), we obtain

B̂h′(t)h(t) + ψh(t)2 + ϕ̃h(t) = 0 (5.26)
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The integration constant with one of the boundary conditions in Eq. (5.21)

gives us

Ĉ =
ϕ̃

ψ
exp

(
Tψ

B̂

)
(5.27)

Using the integration constant in Eq. (5.27), we obtain an analytical expres-

sion for g(t) as

Γ(t) =
ϕ̃

ψ

(
−1 + exp

(
(T − t)ψ

B̂

))
(5.28)

The various constant expressions used in above analysis are

ϕ̃ = 2γσ2 (5.29)

ψ = γ(r2 +R2 − (1 + 2ρ)σ2 + r(−2R + σ2)) (5.30)

B̂ = 2γσ2 (5.31)

Thus, we see that we have derived all necessary expressions to implement

the stochastic optimal control and we are ready now to apply the same to an

illustrative example.

5.4 Results and Discussion

The analytical expressions are obtained for applying the stochastic opti-

mal control to a continuously stirred tank reactor carrying out a first order
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exothermic reaction. We see that defining a value function v(x, t) as in Eq.

(5.23), we obtain the local optimum values of κ∗(t) and ϑ∗(t) as given by

expressions in Eqs. (5.22) and (5.25) respectively. These can be used to find

out an optimum usage of utility resources. The cost coefficients of utility

resources are r and R for process cold water for sinusoidal motion and brine

water for bias with random noise (where excess variation can be expected).

The two selected quantities of two utility resources can be mixed well using

an eductor and sent into the internal cooling coils. This arrangement then

achieves the economic benefits. The terminal cost g(t) is given by Eq. (5.28).

Now, we will see how to implement the analytical results of stochastic op-

timal control obtained in above section. In order to simulate the controlled

process, we find that the sampling arrangement as discussed before gives us

estimated values of ∆CA,0, ã and ωe as noted before. Then by arrangement

as a step in computational procedure that can be implemented using a com-

puter process control system, we can measure the output feedback control

deviation T ′(t) and subtract from it the sum (T ′
1(t) + T ′

2(t)). These devia-

tions in temperature i.e. T ′
1(t), T

′
2(t) are calculated using model components

as derived and given by Eqs.(5.7) and (5.8). Therefore subtracting deviations

due to sinusoidal forcing function and that due to bias added from measure
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temperature deviation we obtain deviation in temperature caused by random

variation in feed concentration. Since, this is clearly based on instrumenta-

tion used in this apparatus setup, the control system is properly defined.

Hence as an implementation of the formulas derived as transfer function re-

lations is clear to us, we can set up a computational procedure to simulate

the action of stochastic optimal control sequence.

First we can select a parameter set C̄A,0, ∆CA,0, ã, ωe and initial design

values of utility flow rates which are q̃c,0 and q̄c,0. These two coolant flow

rates refer to process cold water and brine water respectively. The economic

addition of two sources based on cost of utility resource r and R is used to find

out how to compute the value of manipulated variable (cooling flow rate) in

order to implement the stochastic optimal control. The computations reduce

to a standard MATLAB and SIMULINK simulation and are not done here

to keep the manuscript short.

5.5 Conclusions

In this chapter, we derived the analytical results which can be used to form

a stochastic optimal controller. The simulations carried out clearly explain
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the action and how two utility resources for cooling action can be economi-

cally mixed together to produce an effective control action in presence of a

randomly varying inlet parameter.
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Notation

ã The amplitude of sinusoidal variation in feed concentration.

â1 The fractional value of coolant resource used

for sinusoidal variation.

â2 The extent of loss due to stochastic variation in

inlet feed concentration.

Â The control set that appears in Eq. (5.13).

Ã The set of all possible control action values in Eq. (5.17).

AH The heat transfer area of internal cooling coils.

B̂ The constant appearing in the partial differential equation

in Eq. (5.26) and given by Eq. (5.31).

CA The concentration of reactant A in the reaction mixture.

CAs The steady state value of concentration of A in reactor dynamics.

CA,0 The feed concentration value of species A entering the reactor.

C̄A,0 The steady state concentration of A when feed concentration

is not experiencing any variation.

∆CA,0 The bias term added to initial parameter value of C̄A,0.
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CA,0,1(t) The variation in feed concentration.

CA,0,2(t) The variation in feed concentration.

cJ The heat capacity of coolant (brine and cold water)

in internal cooling coils.

cp The heat capacity of reaction mixture in reactor vessel.

E The activation energy in Arrhenius rate form in Eq. (5.1).

F The volumetric flow rate of feed entering the reactor vessel.

FJ The volumetric flow rate of coolant mix in

internal cooling coils.

G11(ȷω) The transfer function (control ratio) relating the

q̃c(ȷω)and the temperature deviation T ′
1(ȷω).

G12(ȷω) The transfer function (control ratio) relating the

T ′
1(ȷω) and CA,0,1(ȷω).

G21(ȷω) The transfer function (control ratio) relating the

q̄c(ȷω)and the temperature deviation T ′
2(ȷω).

G22(ȷω) The transfer function (control ratio) relating the

T ′
2(ȷω) and CA,0,2(ȷω).
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(−∆H) The reaction exothermicity as heat released during reaction.

k0 The pre–exponential factor appearing in Arrhenius rate form.

q̃c(ȷω) The value of manipulated variable for coolant i.e. brine.

q̄s(ȷω) The value of manipulated variable for coolant

i.e. cold process water.

q̄c,0 The value of deviation in coolant mix flow rate when T ′ → 0.

qtotc (ȷω) The deviation in total coolant mix flow rate

as a control action.

Q A variable defined in Eq. (5.11).

R Ideal gas law constant.

r Cost of process cold water available per unit volume and time.

R̂ Cost of process cold water available per unit time.

s A dummy variable in time domain.

T (t) Temperature of reaction mixture in CSTR.

Ts Steady state value of reaction temperature.

TJ(t) Temperature of coolant water in internal cooling coils.
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TJs Steady state value of coolant (water) in internal cooling coils.

TJ0 Inlet temperature of coolant (brine and cold process water

mixed through an eductor).

t Time variable.

T ′(t) The deviation in temperature (measured and controlled

variable) from set point value.

T set
R Steady state value specified as a set point for control.

T ′
1(t) The temperature deviation caused by sinusoidal variation.

T ′
2(t) The temperature deviation caused by bias and

random variation.

T̂ Time interval as free time evolution to move from initial

to final state when stochastic optimal control is applied.

U The overall heat transfer coefficient.

V The volume of the stirred tank reactor.

VJ The volume swept by coolant within the internal cooling coils.

v(t) Value function for stochastic optimal control (Eq. (5.18)).
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v(x, t) The state variable appearing in the stochastic

Hamilton–Jacobi–Bellman (HJB) equation (Eq.(5.19)).

X̃(t) The temperature variable that appears in

stochastic differential equation.

x The deviation from reference state as the system moves from

initial to final state as dictated by stochastic optimal control.

Greek alphabets.
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α(X(t′), t′) Stochastic optimal control value in Eq. (5.13).

γ A constant that appears in Eq. (5.22) for

stochastic optimal control.

ϑ(t) The loss function term in the stochastic

HJB equation in Eq. (5.14).

κ(t) The time–continuous ratio to mix

process cold water and brine.

ξ(t) The random variation around mean value of bias

in feed concentration.

ρ The density of reaction mixture in the reactor vessel.

ρJ The density of mixture (brine and cold water)

in internal cooling coils.
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ρ̂ A constant that appears in the Gaussian probability

density function in Eq. (5.16).

σ The standard deviation that appears in the probability

density function in Eq. (5.13).

τ The time variable that appears in Eq. (5.12).

ϕ̃ A constant expression appearing in Eq. (5.28)

and given by Eq. (5.29).

ψ A constant expression appearing in Eq. (5.28) and

given by Eq. (5.30).

ωe The period of oscillation of sinusoidal disturbance

term appearing in Eq. (5.9).

Γ(t) Terminal pay–off value appearing in the

stochastic optimal control law in Eq. (5.28).
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6.1 Conclusions

In this doctoral thesis, we were successful in finding an alternative to existing

cutting plane methods, which we termed as a sharp cut method. This was

found to be at least twice faster than the existing cutting plane variants.

Since it has a higher rate of convergence, an application in control and opti-

mization of a nonisothermal CSTR was solved using the sharp cut. Here, the

analysis was extended to a case of considering sinusoidal variation (added

with a bias due to parameter shift) and random noise entering the CSTR

dynamics. using sufficient instrumentation, we found how we could use cold

process water for elimination of sinusoidal variation and fractional addition

of brine water to take care of risky spikes appearing in the output response

of plant dynamics; this design of stochastic optimal control is presented in

detail.

6.2 Recommendations

The principle disadvantage of the optimization method is that the objective

function considered is linear. We may use methods known to form piecewise

linear approximations of nonlinear objective function within search range of
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decision variables. However, it is still a better idea to devise another variant

of cutting plane method having higher rate of convergence which can consider

the nonlinear objective functions and also will be able to find all (multiple)

local optimum solutions. Our initial analysis has identified the weaknesses

in the sharp cut algorithm, and, a new approach to overcome this difficulty

are underway.

Lastly, we would like to recommend that the flexibility provided by any

new algorithm should be embed the same within GAMS software and in its

module for global optimization BARON so that the constraint of extending

the algorithm to large scale computing to solve real life problems can be

overcome!



“main”

2012/9/25

page 178i
i

i
i

i
i

i
i

178 CHAPTER 6. CONCLUDING REMARKS

6.3 Publications from the work done in this

thesis

1. Inamdar, S.R., Karimi, I.A., Parulekar, S.J. and Kulkarni, B.D., (2011),

Optimal control and optimization of a nonisothermal CSTR. Appli-

cation of sharp cut algorithm, Eleventh International Symposium on

Process Systems Engineering, 15–19 July 2012, Singapore.

2. Inamdar, S.R., Karimi, I.A., Parulekar, S.J. and Kulkarni, B.D., (2011),

A sharp cut algorithm for optimization, Computers and Chemical En-

gineering 35 pp. 2716- 2728.

3. Inamdar, S.R., Karimi, I.A., Parulekar, S.J. and Kulkarni, B.D., (2012),

Nonconvex functions and applications of the sharp cut algorithm, Com-

puters & Chemical Engineering, (Revised and under review).

4. Inamdar, S.R., Karimi, I.A., Parulekar, S.J. and Kulkarni, B.D., (2012),

Stochastic optimal control of a nonisothermal CSTR, automatica IFAC,

(communicated).


