A novel organocatalytic asymmetric approach towards prismatomerin type Iridoid class of terpenes

THESIS

Submitted To The
UNIVERSITY OF PUNE
For The Degree Of
DOCTOR OF PHILOSOPHY
In
CHEMISTRY
By
Priyanka A. Adate

Research Supervisor
Dr. GANESH PANDEY

DIVISION OF ORGANIC CHEMISTRY
NATIONAL CHEMICAL LABORATORY

$$
\text { PUNE - } 411008
$$

To my two mothers,

 who molded meAkka (Smt. Anusaya Vankhade)
and
my mother (Smt. Mangala Adate)

CERTIFICATE

This is to certify that the work incorporated in the thesis entitled "A novel organocatalytic asymmetric approach towards prismatomerin type Iridoid class of terpenes" which is being submitted to the University of Pune for the award of Doctor of Philosophy in Chemistry by Ms. Priyanka A. Adate was carried out by her under my supervision at the National Chemical Laboratory, Pune. A material that has been obtained from other sources has been duly acknowledged in the thesis.

Date:

Dr. Ganesh Pandey
(Research Guide)

DECLARATION

I hereby declare that the work presented in the thesis entitled "A novel organocatalytic asymmetric approach towards prismatomerin type Iridoid class of terpenes" submitted for Ph. D. Degree to the University of Pune, has been carried out by me at the National Chemical Laboratory, Pune, under the supervision of Dr. Ganesh Pandey. The work is original and has not been submitted in part or full by me for any degree or diploma to this or any other University/Institute.

Date:
(Priyanka A. Adate)
Division of Organic Chemistry
National Chemical Laboratory
Pune 411008,

India.

Acknowledgement

This work has been completed with the generous help and encouragement of several people. I would like to thank all of them for their support they have rendered for the accomplishment of the work presented in this dissertation.

I would like to express my deep sense of gratitude to my research guide, Dr. Ganesh Pandey, for introducing me to this fascinating field of Organic Chemistry, also for his unconditional support and guidance throughout my association with him. I am specially thankful to him for allowing me a free hand in thinking, planning and executing my research work. His undiminished enthusiasm and 'never say die' attitude motivated me during all the failure times of my Ph.D life.

I am thankful to Dr. (Mrs.) Smita Gadre for her motherly love and care. Apart from fruitful scientific discussion, she has always been there like a friend with me, in whatever situation I was. I am thankful to her for giving me a better insight and guiding me through tough times.

I am very much grateful to my professors Dr. Lakshmy Ravishankar and Dr. Santosh J. Gharpure for their constant support, encouragement, assistance and for inducing the enthusiasm of research in me.

I am grateful to my senior colleagues Dr. Sanjay Raikar, Dr. Shrinivas Dumbre, Dr. Balakrishna, Dr. Kishore Bharadwas, Dr. Kesarinath Tiwari, Dr.Nishant Gupta, Dr. Debasish grahacharya, Dr. Ravindra Kumar, Dr. Prasanna kumara Chikkade, Shrikant, Dr. P. Siva Swaroop, Dr. Rajendar Salla, Dr. Dharmendra Tiwari for their sincere advice and guidance during the course of study. I am thankful and appreciate efforts taken by Debasis Dey and Durgaprasad to for helping me to bring out this dissertation into reality. I also enjoyed the company of to Dr. V. K. Gumaste, Sujit Pal, Deepak, Rajesh, Binoy,

Animesh, Shiva kumar, Janakiram, Jagadish, Ramkrishna, Pradip, Akash and Rushil, Gowripriya, Dr. Bhawna Singh, Dr. Navnath, Ritadi, Manisha, Gowripriya, Manaswini, Lalitha. I will always cherish memories of these days.

Special acknowledgement to Mr. Prakash Pawar for all kind of help he has provided. I would like to thank Mrs. Catrene Rafhel, Mrs. Pooja Kulkarni and Mr. Ayer for all the help rendered.

Help from the Spectroscopy, HPLC and CMC group is gratefully acknowledged. Special thanks to Mrs. Sunita Kunte (HPLC) and Srikant Kunjir (NMR), who went out of their way in helping me out whenever I needed an urgent analysis. I am especially grateful to Dr. Rahul Banerjee and Mr. Tamas Panda for helping me with crystallographic analysis.

There are no words to express my feelings towards Akka (my aunt), my Mother and Father(late) for their blessings, Love, Sacrifice, Care and Continual encouragement throughout all my life. It is a common saying that properity gains friend and adversity tries them: I would like to express earnestly my gratitute to Ms. Prachi S. Datar for being with me in whatever situation I was. I also thank my beloved brother Amod for his (over) mature behavior (considering his age) during hard times and all my relatives for their love and constant support.

I thank CSIR, New Delhi, for the award of Research Fellowship and Director, N. C. L., for the infra-structural facilities.

Contents

Abbreviations
General remarks ii
Thesis abstract iii-xii
Chapter 1 An overview on iridoid class of terpenes 1-10
1.1 Introduction 2
1.2 Classification of iridoid 3
1.3 Biosynthetic approach 6
1.4 Special interest in higher iridoids 7
1.5 Objective of present desertation 8
1.6 Retrosynthetic analysis 9
1.7 References 10
Chapter 2 Organocatalytic dynamic kinetic resolution via conjugate addition: Synthesis of chiral trans-2, 5-dialkylcyclohexanones
2.1 Introduction 12
2.2 Synthetic methodologies for the synthesis of higher iridoids 12
2.3 Synthetic approaches towards the synthesis of 2,5-dialkyl 15
cyclohexanones
2.4 Developing new concept for the synthesis of 2,5-dialkyl 17 cyclohexanones
2.5 Preliminary studies for dynamic kinetic resolution of 6-alkyl 19 cyclohexenones
2.6 Optimization studies with different Solvent-base combinations 22
2.7 Effect of ring size on DKR 24
2.8 Evaluation of the Scope of DKR 25
2.9 Conclusion 28
2.10 Experimental Section 29
2.11 References 46
2.12 Spectra of all new compounds 48
Chapter 3 Synthesis of tertacyclic core of higher iridoid 92-144 from chiral-2,5-dialkyl cyclohexanone
3.1 Introduction 93
3.2 Results and discussion 94
3.2.1 $1^{\text {st }}$ Generation approach for the synthesis of $\mathbf{1 1}$ 95
3.2.2 $2^{\text {nd }}$ Generation approach for synthesis of $\mathbf{1 1}$ 96
3.2.3 3rd Generation approach for the synthesis of $\mathbf{8}$ 98
3.2.4 Synthesis of $\mathbf{3 1}$ 102
3.2.5 Organocatalyzed Intramolecular aldol cyclization of $\mathbf{3 1}$ 102
3.3 Summary 104
3.4 Experimental Section 105
3.5 References 120
3.6 Spectra of all new compounds 122
Chapter 4: Alternative strategy towards the synthesis 145-171 of the tetracyclic core structure of higher iridoid
4.1 Retrosynthetic analysis 146
4.2 Results and discussion 147
4.3 Summary 151
4.4 Experimental section 151
4.5 References 160
4.6 Spectras of all new compounds 161
List of Publications
Erratum

Abbreviations

aq.	aqueous	NMR	Nuclear magnetic resonance
mL	Milliliter	p-TSA	p-Toluenesulfonic acid
mmol	Millimole	TBS	tert-Butyldimethylsilyl
m.p.	melting point	COSY	Correlation Spectroscopy
DBU	1,8- Diazabicyclo [5.4.0]undec-	NOE	Nuclear overhauser
	7-ene		effect/enhancement
DEPT	Distortionless enhancement by	HSQC	Heteronuclear Single Quantum
	polarization transfer		Coherence)
DMAP	N, N-Dimethylaminopyridine	THF	Tetrahydrofuran
DMF	N, N-dimethylformamide	TLC	Thin layer chromatography
DMSO	Dimethylsulfoxide	PMB	p-methoxy benzyl
g	gram	SM	Starting material
GC	Gas chromatography	Ac	Acetyl
h	hour	HMDS	Hexamethyldisilazane
Hz	Hertz	LDA	Lithium diisopropylamide
M	Molarity (molar)	TMEDA	Tetramethylethylenediamine
N	Normality	mCPBA	m-chloroperoxybenzoic acid
min.	Minute(s)	IBX	2-Iodoxybenzoic acid
TMS	Trimethylsilyl	MPO	4-Methoxy pyridine N-oxide
MS	Mass spectrum	HMBC	Heteronuclear Multiple Bond
			Correlation

General Remarks

- All the solvents were purified according to literature procedure. ${ }^{1}$
- Petroleum ether used in the experiments was of $60-80{ }^{\circ} \mathrm{C}$ boiling range.
- Column chromatographic separations were carried out by gradient elution with suitable combination of two solvents and silica gel (60-120 mesh/100-200 mesh/230-400 mesh).
- Reaction progress was monitored by TLC or GC. TLC was performed E-Merck pre-coated 60 F 254 plates and the spots were rendered visible by exposing to UV light, Iodine, phosphomolibdic acid, o-Anisol, KMnO4. GC analysis was performed on Perkin Elmer 8700 and Varian CP 3800 GCs using SGE BP1, BP20 and Varian Chromopack CP-Sil-5CB columns.
- IR spectra were recorded on FTIR instrument, for solid either as nujol mull, neat in case of liquid compounds or their solution in chloroform.
- NMR spectra were recorded on Bruker AV $200\left(200 \mathrm{MHz}{ }^{1} \mathrm{H}\right.$ NMR and 50 $\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR), Bruker AV 400 ($400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR) and Bruker DRX 500 ($500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $126 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR).
- $\quad{ }^{13} \mathrm{C}$ peak multiplicity assignments were made based on DEPT data.
- Mass spectra were recorded on PE SCIEX API QSTAR pulser (LC-MS) and Shimadzu QP 5000 GC/MS coupled to Shimadzu 17A GC using a DBI column.
- High resolution mass (HR-ESI-MS) spectra was recorded on a Thermo scientific make Q-exactive model spectrometer using electrospray ionization
- Optical rotations were measured on a JASCO P-1020 polarimeter.
- HPLC were performed on Shimadzu Class-VP V6.12 SP5 with UV detector.
- All the melting points recorded are uncorrected and were recorded using electrothermal melting point apparatus.
- Starting materials were obtained from commercial sources.
- Numbering of compounds, schemes, tables, referencing and figures for each chapter as well as abstract are independent.

Perrin, D. D., Armarego, W. L. F., Purification of Laboratory Chemicals, 4th ed., Butterworth Heinemann, 1999

Name of candidate	$:$ Priyanka A. Adate		
Research guide	$:$	Dr. Ganesh Pandey	
Title of thesis	$:$	A novel organocatalytic asymmetric approach towards	
		prismatomerin type Iridoid class of terpenes	
Registration no	$:$	SAO/ Ph.D./2008-09 dated March 16, 2009	
Date of Registration	$:$	11.07 .2008	
Place of work	$:$	Division of Organic Chemistry, National Chemical	
	Laboratory, Pune-411 008, INDIA.		

Chapter 1 An overview on iridoid class of terpenes

This chapter portrays an introduction to iridoids class of terpenes, their classification and biosynthetic pathway for synthesis of Plumeria type higher iridoids. For simplicity throughout the thesis, we will be indicating Plumeria type higher iridoids as higher iridoids.

1, R= H Prismatomerin
= 4-bromobenzoyl $=\mathrm{COCH}_{3}$

Plumericin
2

Isoplumericin
3

Figure 1: Plumeria type higher iridoids

Iridoids are a class of secondary metabolites found in a wide variety of plants and animals. They are structurally diverse natural cyclopentanopyran monoterpenes and often involved as intermediates in the biosynthesis of alkaloids. Iridoids are typically found in
plants as glycosides, most often bound to glucose. Isolated and purified Iridoids exhibit a wide range of bioactivities including cardiovascular, antihepatotoxic, choleretic, hypoglycemic, analgesic, anti-inflammatory, antimutagenic, antispasmodic, antitumor, antiviral, immune-modulator, and purgative activities. Members of higher iridoids exhibit potent anti-tumor activity.

We were especially attracted towards the synthesis of higher Iridoids mainly for the structural complexity comprising (Figure 1) of cyclic hemi-acetal ring portion and a spirofused α-ethylidene- β-oxy- γ-butyrolactone ring system. Till date only two racemic syntheses are known for these higher Iridoids and asymmetric total synthesis is still eluding.

7
8

12

$\sqrt{\text { Bamford-Steven }} \begin{aligned} & \text { rection }\end{aligned}$

13

Scheme 1: Retrosynthetic analysis

Close look at the structures of most of the members of higher iridoid (Figure 1) revealed that, they differ only in their alkyl side chain on spiro butanolide which was visualized to be installed by simple aldol condensation with an aldehydic moiety. Having this idea in mind, we planned our retrosynthetic analysis as outline in Scheme 1. We
proposed proline catalyzed tandem sequence for the synthesis of spirobutyrolactone 10. 10 was visualized to be synthesized from 11 through organocatalytic intramolecular aldol reaction followed by in-situ lactonization to obtain γ-butyrolactone. Dicarbonyl 11 was visualized to be realized easily from $\mathbf{1 2}$ by ozonolysis, which in turn could be synthesized from chiral chiral 2,5-dialkyl cyclohexanone 13.

Chapter 2 Organocatalytic dynamic kinetic resolution via conjugate addition: Synthesis of chiral trans-2, 5-dialkylcyclohexanones

In this chapter we have discussed literature reports for synthesis of higher iridoids followed by methodology for accessing chiral-2,5-dialkyl cyclohexanones, required as starting material for our designed synthesis. trans-2,5-dialkylcyclohexanone is also an important structural motifs in several naturally occurring terpenes. We have discussed the development of a conceptually new strategy for synthesis of chiral trans-2,5dialkylcyclohexanones ($d r$ up to 99:1and er up to 94:6.) by organocatalytic dynamic kinetic resolution (DKR) via conjugate addition of dimethylmalonate on racemic 6-alkyl cyclohexenones using proline tetrazole derivative as catalyst along with piperidine as a base.

13

Scheme 2: synthesis of trans-2,5-dialkylcyclohexanones

Study on effect of ring size of enone on DKR, shows best stereoselectivity for 6substituted cyclohexenone as compared to pentenone, heptenone and octenone. Scope of the DKR using various substituted 6-alkyl cyclohexenone was explored using dimethyl or diethyl malonate as Michael donor. Generally better enantioselectivity was observed using diethyl malonate as a nucleophile in comparison to dimethyl malonate. DKR of aliphatic enone gave very low diastereoselectivity and enantioselectivity.

Relative stereochemistry of chiral 2,5-dialkyl cyclohexanones obtained by DKR of 6-alkyl cyclohexenone were confirmed to be trans by extensive NMR studies and X-ray crystallographic analysis of compound 13. DKR of 14 was scaled up to 20.0 g scale producing 13 with almost same stereoselectivity ($d r=70: 30$, er $=94: 6$).

Chapter 3 Synthesis of tertacyclic core of higher iridoid from chiral-2,5dialkyl cyclohexanone

In Chapter 3, synthetic efforts towards the synthesis $\mathbf{7}$ starting with $\mathbf{1 3}$ are described. Tosyl hydrazone derivative of $\mathbf{1 6}$ on subjecting to Bamford-Steven reaction gave desired olefin 12 but in low yield of 10%. Surprisingly, dehydration of $\mathbf{1 7}$ via elimination of mesylate in $\mathbf{1 8}$ also failed to give the desired $\mathbf{1 2}$ (Scheme 3).

Scheme 3

Scheme 4

Even the conversion of $\mathbf{1 3}$ to corresponding vinyl triflate $\mathbf{1 9}$ failed; reductive elimination of $\mathbf{1 9}$ with tetrakistriphenylphosphine palladium could have given desired $\mathbf{1 2}$ (Scheme 4).

Scheme 5

Therefore, α-hydroxy functionalization of $\mathbf{1 3}$ followed by oxidative cleavage was visualized as a viable alternative. Towards this end $\mathbf{1 3}$ was converted to $\mathbf{2 0}$ using TBSOTf in the presence of $\mathrm{Et}_{3} \mathrm{~N}$. Oxidation of TBS enol ether 20 with osmium tetraoxide gave required 21 in 70 \% yield. However, further experiments with 21 utilizing sequential reduction followed by oxidative cleavage failed to give required $\mathbf{1 1}$ (Scheme 5). Reason for this failure may be formation of 5 and 6-membered lactone with the two hydroxy. Thus oxidative cleavage of $\mathbf{2 1}$ was carried out to afford 23. However, further selective reduction of $\mathbf{2 3}$ (Scheme 6) using various condition furnished complex reaction mixture.

Scheme 6

These failures led us to conclude that synthesis of $\mathbf{1 1}$ was difficult and proceeding with 12 was not practical owing to low yield. We thought presence of malonate functionality could be reason for the low yield with Bamford-Steven reaction.

Scheme 7
As a last trial, $\mathbf{1 3}$ was mono-decarboxylated following Krapcho protocol to afford $\mathbf{2 5}$ which was converted to desired olefin 26 via tosyl hydrazone derivative. Olefin 26 on ozonolysis delivered desired 27 in 70 \% yield. Among the catalyst and Solvents screened for aldol cyclization only L-Proline in dry DMSO was found to provide $\mathbf{2 8}$ as a single diastereomer along with enal 29 (Scheme 8). The final confirmation for stereochemistry of stereocentres on $\mathbf{2 9}$ was tentatively assigned from NOESY studies

Scheme 8

Thus we could synthesize an advanced chiral intermediate 28, adorned with all requisite functionalities for further elaboration to tetracyclic core of higher Iridoid, has been synthesized employing organocatalytic intra-molecular aldol cyclization of 27. Further transformation of $\mathbf{2 8}$ to target tetracyclic core $\mathbf{7}$ is in progress.

Chapter 4 Alternative strategy towards the synthesis of the tetracyclic core structure of higher iridoid

In this chapter, a synthetic study towards synthesis of 33 is described.

Scheme 9 Retrosynthetic analysis

Conjugate addition of dimethyl malonate on cis- $\mathbf{3 8}$ using different organocatalyst gave conjugate adduct $\mathbf{3 7}$ either in very low yield or with poor enantioselectivity.

Scheme 10

Since it was known that $\mathbf{4 0}$ can be converted to corresponding open chain $\mathbf{4 2}$ via nitronate anion 41 followed by Nef reaction (Scheme 11), we attempted the synthesis of 45, which could be eventually converted to $\mathbf{5 3}$, as shown in Scheme-12.

Scheme 11

Nitration of $\mathbf{4 3}$ with fuming nitric acid provided $\mathbf{4 4} .44$ when subjected to conjugate addition with ethyl acrylate in alcoholic solvent gave open chain nitroketo-ester or acid 46 instead of desired 45. We thought increased increased nucleophilicity of carbonyl carbon could be reason for this ring opened product, so we planned to reverse the reaction sequence. Reversing the sequence of reaction, such as initial conjugate addition on acrylate followed by nitration of 47 even failed to give 45 .

Scheme 12

With these frustrating and unanticipated hurdles in obtaining 45, we evaluated the synthesis of 53 from 47 as shown in Scheme-13. Towards this end, 47 was mono-ketal protected followed by oxidation to obtain 50. However, further

Scheme 13
attempt to transform $\mathbf{5 0}$ to $\mathbf{5 1}$ via conjugate addition of dimethylmalonatedesired failed, instead produced aromatized 54 (Scheme 13).

In summary, we have developed a conceptually new DKR strategy for synthesis of chiral trans-2,5-dialkylcyclohexanones by organocatalyzed asymmetric conjugate addition of malonate on to 6-substituted cyclohexenones. We have successfully synthesized spiro-butenolide 28, and further trial for its transformation to tetracyclic core 7 is in progress.

Note: Compound numbers in the abstract are different from those in the thesis

Chapter 1

$\mathcal{A} n$ overview on iridoid class of terpenes

Chapter 1

1.1 Introduction

Iridoids are a large class of naturally occurring compounds with over 1200 members in the family which are almost exclusively of plant origin. However, the name 'iridoid' is a generic term derived from the fact that the first iridoid was isolated from the defensive secretion of ants belonging to genus Iridomyrmex ${ }^{1}$. Various plants containing iridoids have been used in a variety of folk medicines for centuries as a bitter tonic, an expectorant, a purgative and as a treatment for certain skin diseases. Chemical interest in the iridoids is stimulated because of their role in the defense mechanism of ants and the key role played by one compound, secologanin ${ }^{2}$, in the biosynthesis of indolomonoterpene alkaloids and certain isoquinoline alkaloids found in the Apocynaceae, Loganiaceae and Rubiaceae.

Figure 1.1: Isomeric form of Iridodial

Iridoids are structurally characterized by the presence of a partially hydrogenated cis fused cyclopenta[c]pyran (2) system which can be derived by the intramolecular acetalization of a 1,5-cyclopentandialdehyde ${ }^{3}$ (1) (Figure 1.1). The unique cis-fused cyclopenta[c]pyran ring (Figure 1.2) system has presented a variety of challenge for chemical synthesis and in analyses of biological activities.

Figure 1.2: Basic structure of iridoid

Chapter 1

General characteristic features ${ }^{4}$ of iridoids are as follows (Figure 1.2):

1. An enol-ether system involving $\mathrm{C} 1, \mathrm{C} 3$ and C 4 , where C 3 is never substituted.
2. S - Configuration at C 1 , commonly substituted by acetalic oxygen which may be linked to a glucosidic moiety.
3. cis-linkage involving C5, sometimes, substituted by an oxygen and C9 always substituted with the hydrogen with β-configuration.
4. Possible presence of an additional double bond between C6 and C7 or more rarely C7-C8.

1.2 Classification of iridoid

Naturally occurring iridoids are classified into different subclasses by several authors based on their structure, biosynthesis and chemical properties. ${ }^{1,5}$ Of all the classifications presented, the one given by Franzyk ${ }^{6}$ seems to be the most recent and fundamental, considering all the members of iridoid family. Iridoids can be fundamentally classified into 4-groups based on their structural frameworks such as iridoid glycosides, non-glycosidic iridoids, iridoid alkaloids (nitrogen containing Iridoids) and special iridoids as shown in Table 1.1.

Each group can be further divided into subgroups as shown in Table 1.1. The nonglycosidic part of an iridoid is called the aglycone or the genin. The glycosidic iridoid can be further subdivided into carbocyclic iridoids and seco-iridoids, having dihydropyran ring system as common moiety. Even though most carbocylic iridoids have cis fused cyclopentane ring with substituent at C 5 and C 9 in β-position, some trans fused compounds are also characterized. Carbocyclic glycosidic iridoids can also be sub-divided into four sub groups based on the number of carbon atoms present. Seco-iridoids are carbocyclic iridoids in which C-C bond between C7 and C8 is cleaved. Another class is iridoid alkaloids or pseudoalkaloids regarded as a genuine type of iridoids, since they have proved to be natural constituents and not mere artifacts formed during isolation (i.e. when ammonia is applied during extraction), ${ }^{7,8}$ as previously assumed. Lastly there are two groups of special iridoids, Valeriana and Plumeria type which can be classified as glycosidic or aglycosidic, but for their unusual substitution patterns they are treated as

Chapter 1

independent structural assembly. For simplicity throughout the thesis, we will be indicating Plumeria type higher iridoids as higher iridoids.

Table 1.1: Classification of iridoids

Group	Sub-group	class	Structural charcteri stic	Representative molecule
Glycosidic iridoids	Carbocyclic	C_{8} iridoids	Glycon has 8 no. of carbon atoms	
		C_{9} iridoids	Glycon has 9 no. of carbon atoms	C9 ${ }^{\text {Iridoid }}$ with $9^{\text {th }}$ carbon on C_{4}
				C9 ${ }^{\text {Iridoid }}$ with $9^{\text {th }}$ carbon on C_{8}
		C_{10} iridoids	Glycon has 10 no. of carbon atoms	

		$b i s$-iridoid	Two iridoid units bonded together	
		Simple	carbon-carbon bond between C-7 and C-8 has been cleaved	
	Secoiridoid	Terpene conjugated	conjugated with a terpene type moiety	
		Phenolic conjugated	carry a phenolic moiety as a substituent	
Non- glycosidic iridoids			Absence of any glycosidic group	
iridoid alkaloids (pseudo- alkaloids)			alkaloids with an iridoid part	
	Valeriana type			lyrelavosi

special iridoids	Plumeria type (higher iridoids)			

1.3 Biosynthetic approach

Biosynthesis of iridoids has attracted attention of many research groups mainly owing to observed biogenetic relationship between carbon framework of iridoids and indoleisoquinoline alkaloid skeleton ${ }^{1}$. It was proposed that Plumieride (20) may be a biosynthetic precursor of Plumericin (21) ${ }^{9}$. This possibility led to consider conjugate addition-elimination approach for the formation of tetrahydrofuran unit in higher iridoids. Biosynthesis of plumeride was investigated by Schmid et al. through the administration

Scheme 1.1: Biosynthetic pathway starting with Mevalonic acid
${ }^{14} \mathrm{C}$ labeled mevalonic acid and reported incorporation of two units each of mevalonic acid and acetic acid into aglycon moiety of plumieride ${ }^{10}$. Based on this observation, it was speculated the biosynthesis of Plumieride (20) as shown in Scheme 1.1. Plumieride (20) is biosynthesized through a Michael-type cyclization of 10-oxocitronellal (17) to iridodial 18 followed by further oxidation to iridiotrial 19 and conversion to Plumieride (20).

Chapter 1

Second possible biosynthetic route for Plumieride was given by Leete et al. from geraniol ${ }^{11}$ as shown in Scheme 1.2 based on the labeling studies.

Scheme 1.2: Hypothetical Biosynthetic Route from Geraniol 22 to Plumieride 20

1.4 Special interest in higher iridoids

In 1951, Little and Johnstone isolated a sesquiterpene named Plumericin (20) from the roots of Plumeria multiflora which exhibited in vitro activity against fungi, bacteria including Mycobacterium tuberculosis-607 and subsequently antitumor activity. ${ }^{12}$ Later in 1961, Schonberg and Schmid proposed present structure for Plumericin. ${ }^{13}$ Closely related to Plumericin is a hydrated analogue Allamandin (31), known to posses high antitumor activity. ${ }^{14}$ Recently in 2007 Krohn and Nahar et al. isolated a new complex iridoid, Prismatomerin (26) from the leaves of Prismatomeria tetranda which exhibited remarkable growth inhibition as well as cell killing effect in solid tumor cell lines (LC > 100 to $0.6 \mu \mathrm{M})$ and was also found to interfere with mitotic spindle formation. ${ }^{15}$

Broad diversity of biological activity showed by different members of iridoid family has specially attracted many organic chemists for its synthesis. ${ }^{1}$ We are especially attracted by synthetic challenge posed by Plumeria and related higher iridoids due to following reasons:

26, R= H Prismatomerin 27 = 4-bromobenzoyl $28=\mathrm{COCH}_{3}$

Plumericin 20

Isoplumericin
29

PE 10
30

Figure 1.3: Plumeria type higher iridoids

1. Their densely functionalized skeleton possesing five contigious stereocentres
2. Interesting cyclic hemi-acetal ring portion, which also makes up part of a cyclic acetal, one 'ether' residue of which constitutes the β-oxygen of a spiro-fused α-ethylidene- β -oxy- γ-butyrolactone ring system.
3. No asymmetric total synthesis of prismatomerin type iridoid is known till date.
4. Members of this class of iridoids exhibit various biological activities ${ }^{9}$ such as cytotoxic, antileukemic, ${ }^{14}$ antimicrobial and antifungal activity.
Only two racemic synthesis of these higher iridoids are known in literature ${ }^{16,17}$ starting with the bicyclo[3.3.0] octenone as starting material.

1.5 Objective of present desertation:

Since most of the members of Plumeria type higher iridoids differ only in alkyl side chain on spiro-butenolide, we would like present in this dissertation design of novel strategy for the synthesis of basic tetracyclic core structure of iridoids which would allow access to the synthesis of all members of higher iridoids.

1.6 Retrosynthetic analysis:

On careful scrutiny of the structures of higher iridoids, we planned our retrosynthesis as shown in Scheme 1.5.

Bamford-Steven
rection

39

Scheme 1.5: Retrosynthetic analysis

We proposed proline catalyzed tandem sequence for the synthesis of spirobutyrolactone 36. Spirobutyrolactone 36 was visualized to be synthesized from 37 through organocatalytic intramolecular aldol reaction followed by in-situ lactonization to obtain γ-butyrolactone. Dicarbonyl 37 was visualized to be realized easily from $\mathbf{3 8}$ by ozonolysis, which in turn could be synthesized from chiral 39.

Proceeding chapter would describe a general strategy for the stereoselective synthesis of chiral 2,5-dialkyl cyclohexanones.

Chapter 1

1.7 References:

1. Nangia A., Prasuna, G., Rao B., Tetrahedron 1997, 53, 14507.
2. Armandodoriano B., Pure and Appl. Chem., 1994, 66, 2335.
3. Ghisalberti E. L., Phytomedicine, 1998, 5, 147.
4. Bakuridze A. D., Dargaeva T. D., Nikolaeva G. G., Patudin A. V., Brutko L. I., Chem. Nat. Comp., 1987, 23, 1.
5. a) Hegnauer R., Pharm. Acta Helv. , 1966, 41, 577; b) Sticher O., Junod -Busch U., Pharm. Acta Helv., 1975, 50, 127; c) El- Naggar L. J., Beal, J. L., J. Nat. Prod., 1980, 43, 649.
6. Franzyk H., Fortschr. Chem. Org. Naturst., 2000, 79, 1.
7. Junior P, Planta Med., 1990, 56: I.
8. Cordell GA, The Monoterpene Alkaloids. In: Manske RHF (ed) The Alkaloids Academic Press, New York San Francisco London, 1977, 432.
9. a) Damtoft S., Franzyk H., Jensen S.R., Phytochemistry, 1993, 34, 1291; b) Chark K. J., Fray G. I., Jaeger R. H., Robinson R ., Tetrahedron, 1959, 6, 217.
10. i) Schmid, H., Bickel, H., Meijer, T. M., Helv. Chim. Acta, 1952, 35, 415; ii) Inoue, K.,Takeda, Y., Nishimura, H., Inouye, H. Chem. Pharm. Bull. 1979, $27,3115$.
11. Leete E., Acc. Chem. Res. 1969, 59.
12. Little J. E., Johnstone D. B., Arch. Biochem.1951, 30, 445.
13. Albers-Schonberg, G., Schmid, G.H., Helv. Chim. Acta 1961, 44, 1447.
14. Kupchan S. M., Dessertine A. L., Blaylock B. T., and Bryan R. F. J. Org. Chem., 1974, 39, 2477.
15. Krohn K., Gehle D., Dey S. K., Nahar N., Mosihuzzaman M., Sultana N., Sohrab M. H., Stephens P. J., Pan J.-J., Sasse F., J. Nat. Prod., 2007, 70, 1339.

Chapter 2

Organocatalytic dynamic kinetic resofution vía conjugate addition: Synthesis of chiral trans-2, 5dialkylcyclohexanones

Chapter 2

2.1 Introduction

The densely functionalized core structure of higher iridoids - comprising a highly substituted cyclopentene ring with three contiguous stereocentres, one of which is oxaquaternary represents a substantial synthetic challenge (Figure 2.1) to the organic chemist. In the previous chapter, we discussed our retrosynthetic route for the synthesis of the tetracyclic core, common for all higher iridoids. However, before presenting our designed strategy for the synthesis of higher iridoids it may be imperative to examine the literature reports in this area.

1, R= H Prismatomerin
2 = 4-bromobenzoyl $3=\mathrm{COCH}_{3}$

Plumericin
4

Isoplumericin
5

Figure 2.1: Higher iridoids

2.2 Synthetic methodologies for the synthesis of higher iridoids

Trost's approach: ${ }^{1}$ First total synthesis of (\pm)-Plumericin was reported by Trost et al. in 1983 (Scheme 2.1). The approach involved the formation of spiro-butenone 13 from bicyclo[3.3.0]octenone (8) using the concept of substitutive spiroannulation followed by γ-butyrolactone elaboration via sulfenylated intermediates 12. Later, selective oxidative cleavage of olefinic moiety of 13 afforded (\pm)-Allamcin (16) which on subsequent hydroxyl elimination and selective carbomethoxylation led to formation of $\mathbf{4}$ in total 16 steps from 8.

Reagents: (a) i) cyclopropyl $\mathrm{S}^{+} \mathrm{Ph}_{2} \mathrm{BF}_{4}^{-}, \mathrm{KOH}, \mathrm{Me}_{2} \mathrm{SO}_{4}, \mathrm{RT}$ ii) $\mathrm{LiN}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$, pentane, RT ; (b) $\mathrm{PhSeBr}(\mathbf{1 . 5}$ equiv), $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$ (2.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}$; (c) m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ to RT then add $\mathrm{CH}_{2}=\mathrm{CHOC}_{2} \mathrm{H}_{5}$, RT; (d) LDA, THF, then $\mathrm{PhSSO}_{2} \mathrm{Ph}, \mathrm{THF},-78^{\circ} \mathrm{C}$ to RT; (e) i) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}$, ether, THF, $0^{\circ} \mathrm{C}$, then $\mathrm{CH}_{3} \mathrm{CHO}$; ii) m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ to RT, then $\mathrm{CCl}_{4}, \mathrm{CaCO}_{3}$, reflux; iii) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, DMAP, $0^{\circ} \mathrm{C}$; (f) cat OsO_{4}, THF, $\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (g) NalO_{4} (3 equiv), ether, $\mathrm{H}_{2} \mathrm{O}$, room temperature, then add NaOAc ; (h) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, (i$\left.\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2} \mathrm{NC}_{2} \mathrm{H}_{5}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, and distill crude through quartz tube at $500{ }^{\circ} \mathbf{C}$; (i) $\mathrm{CCl}_{3} \mathrm{COCl}$ (50 equiv), 2,6-($t-$ $\left.\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}$ (5 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}$; (j) $\mathrm{Mg}\left(\mathrm{OCH}_{3}\right)_{2}, \mathrm{CH}_{3} \mathrm{OH}$, THF, $-45^{\circ} \mathrm{C}$.

Scheme 2.1: Trost synthesis of Plumericin

Pattenden's approach: ${ }^{2}$ Pattenden's group also utilized bicyclo[3.3.0]octenone (8) as a starting material for the synthesis of (\pm)-Allamcin following the sequence as shown in Scheme-2.2. The strategy exploited β-oxy- γ-butyrolactone ring system spiroannulation on

Chapter 2

to the bicyclo[3.3.0]octenone (8) via acetoxy-aldehyde intermediate (20). The synthesis of (\pm)-allamcin 17 involved 7 steps starting from 8.

Reagents: (a) i) 2,4,6-triisopropylbenzenesulphonylhydrazine, MeOH, RT, ii) n - BuLi, TMEDA, $-78{ }^{\circ} \mathrm{C}$ to $0{ }^{\circ} \mathrm{C}$; then DMF (b) isopropenyl acetate, p-TSA, RT; (c) peracetic acid, $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-80^{\circ} \mathrm{C}$; (d) LDA, THF, $0^{\circ} \mathrm{C}$.

Scheme 2.2: Pattenden synthesis of Allamcin 16

From the above literature reports it is evident that:
i) These syntheses utilize cis-ring junction stereochemistry in bicyclo[3.3.0]octenone (8) as a handle for installing the remaining stereocentres on the tetracyclic core of higher iridoids.
ii) No chiral synthesis is yet known for these molecules to establish optical purity and absolute stereochemistry.
iii) No attempt has been made to build a suitably substituted central pentane ring containing three contiguous stereocentres, one of which is oxa-quaternary.

Therefore, we surmised that if a strategy could be developed which would deliver suitably substituted cyclopentane structural framework 25, the rest of the tetracyclic core of iridoids can be built up by simple functional group manipulations (Scheme 2.3).

Scheme 2.3: Simplification of basic tetracyclic core of higher iridoids

We visualized the synthesis of cyclopentane framework $\mathbf{2 5}$, holding three contigious stereocentres with required stereochemistry, utilizing the organocatalyzed intramolecular aldol cyclization of precursor $\mathbf{2 6}$ as a key step. An advantage of using this strategy is that either enantiomeric product may be obtained simply by using (S) - or (R)-proline, whereas the biocatalysis route may be limited to products of a single absolute configuration.

As our retrosynthetic design (discussed in Chapter 1) for the synthesis of 26 requires chiral 2,5-dialkylcyclohexanone as starting material, we initially focused our attention on developing a new methodology for its scalable synthesis. We planned the synthesis of chiral 2,5-dialkylcyclohexanone via catalytic asymmetric conjugate addition reaction, one of the most powerful $\mathrm{C}-\mathrm{C}$ bond-forming reactions. ${ }^{3}$

2.3 Synthetic approaches towards the synthesis of 2,5-dialkyl cyclohexanones

Careful literature survey revealed that only three methods are known for the synthesis of chiral 2,5-dialkyl cyclohexanones. Tomioka et al. have reported the synthesis of 2,5-dialkyl cyclohexanones (Scheme 2.4) by catalytic asymmetric conjugate addition of arylboronic acids on racemic 6 -substituted cyclohexenones (27) catalyzed by chiral amidophosphane- $\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]_{2}{ }^{4}$ They have also demonstrated the kinetic resolution of 6substituted cyclohexenone 27 utilizing asymmetric conjugate addition of dialkylzinc
reagents to 6-substituted cyclohexenones using chiral amidophosphane-copper (I) complexes ${ }^{5}$ (29). In both these cases conjugate addition gave nearly equimolar mixture of the corresponding trans- and cis- disubstituted cyclohexanones $\mathbf{3 0}$ with good enantioselectivity. Epimerization of the cis/trans mixture with DBU or NaOMe led to the formation of thermodynamically more stable trans 31 with good enantioselectivity (up to 98% ee) but moderate trans:cis ratio (max. 5:1).

Scheme 2.4: Tomioka et al. approach for 2,5-dialkyl cyclohexanones

Luo et al. observed kinetic resolution while synthesizing cis-2,5-disubstituted cyclohexanones by α-alkylation of 3 -substituted cyclohexanone (32), catalyzed by functionalized Chiral Ionic Liquid. Although, diasteterselectivity for this reaction was good, reaction suffered from moderate to low enantioselectivity ${ }^{6}$ (59-80\%) (Scheme 2.5).

Scheme 2.5: Luo's approach for 2,5-dialkyl cyclohexanones

Chapter 2

From the above reports it appeared to us that known methods for the preparation of 2,5-dialkyl cyclohexanones have following drawbacks:

Tamioka's approach suffers from the use of a strong base in addition to an organometallic reagent which limits the choice of functional groups on the cyclohexanone. On the other hand, the approach of Luo et al. is based on kinetic resolution resulting the required molecule in only moderate yield (50-80\%) and enantioselectivity ($59-80 \%$). We, therefore, felt that there is a scope for substantial improvement in selectivity and functional group tolerance in the synthesis of these classes of molecules. We planned the synthesis of 2,5-dialkyl cyclohexanones utilizing an organocatalytic conjugate addition reaction owing to its following advantages over organometallics catalysts ${ }^{7}$:
i) Organic molecules are generally insensitive to oxygen and moisture in the atmosphere.
ii) Simple organocatalysts are usually cheap to prepare and readily accessible and, thus, suitable for small-scale reactions to industrial-scale reactions.
iii) Organocatalyst are non-toxic and environmentally friendly, making it attractive for synthesis of pharmaceutical products.

2.4 Developing new concept for the synthesis of 2,5-dialkyl cyclohexanones:

eq. 2

Scheme 2.6: Initial attempts for synthesis of chiral-2,5-dialkylcyclohexanone

Chapter 2

In our preliminary studies, we investigated conjugate addition of dimethyl malonate on rac 6-substituted cyclohexenone $\mathbf{3 6}$ using organocatalyst 45a (Figure 2.2) for the synthesis of $\mathbf{3 7}$ (Scheme 2.6 , eq. 1). However, the attempt failed to produce any result. Further, we attempted conjugate addition of malonate on enantioenriched enone 38 in the presence of organocatalyst 45a and piperidine (or pyrrolidine) as a base, the desired product 39 was not detected instead racemization of starting material occurred (Scheme 2.6, eq. 2).

Scheme 2.7: DKR Hypothesis

This unexpected racemization was tentatively rationalized by implicating iminium/enamine tautomerization as shown in Scheme 2.7. In presence of a base, the enatiomers of 6 -substituted enones (40 and 41) were considered to be in equilibrium with each other and rate for formation of iminium ion with each of these enantiomers ($\mathbf{4 0}$ and 41) may vary ${ }^{8}$. This difference in rate for the formation of iminium ion will lead to the enantioenriched iminium ion diastereomer and conjugate addition on which (mixture of 42 and 43) would produce enantiomerically enriched 2,5-dialkylcyclohexanones stereoselectively. Further, fast equilibration of slower-forming diastereomer $\mathbf{4 2}$ in presence of a base will result in dynamic kinetic resolution (Scheme 2.7). To our knowledge
dynamic kinetic resolution of 6-substituted cyclohexanone via an organocatalytic conjugate addition is still unexplored. ${ }^{9}$

2.5 Preliminary studies for dynamic kinetic resolution of 6-alkyl cyclohexenones

We selected enone $\mathbf{3 6}$ for optimization of reaction conditions as masked ketone functionality at C 4 was visualized as an additional handle in synthesising highly substituted cyclohexanone moiety. Enone $\mathbf{3 6}$ was synthesized from the ketone by IBX.MPO oxidation of the corresponding silylenol ether. ${ }^{10}$ The initial studies for conjugate addition of the malonate to enone $\mathbf{3 6}$ began with scanning a series of optically pure secondary amines as a catalysts. The results obtained are summarized in Table 2.1. Tetrazole derivative of proline 48^{11} (Table 2.1, entry 6), turned out to be a good catalyst, giving 50% conversion and 86% enantioselectivity. Methylated tetrazole derivative of proline 49 could mediate the addition but with disappointing yield and enantioselectivity (Table 2.1, entry 7). Isolated conjugate adduct 37 was analysed by chiral stationary phase HPLC, and was indicated to be an enantiomerically enriched diastereomeric mixture ($d r=85: 15$, $e r=93: 7$) (Table 1, entry 6). Compound 37 was characterised by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR studies. The ${ }^{1} \mathrm{H}$ spectrum showed the disappearance of enone proton at $\delta 5.99(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=10.2,1.9 \mathrm{~Hz}, 1 \mathrm{H})$ and appearance of a doublet at $\delta 3.68(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$ and two sharp singlets at $\delta 3.72$ and 3.73, each integrating for three protons indicating the presence of malonate group in conjugate adduct 37. Similarly ${ }^{13} \mathrm{C}$ NMR spectrum showed disappearance of enone olefinic peaks at $\delta 130.2$ and 145.2, and appearance of peaks at $\delta 52.6,52.4,168.3$ and 168.4 indicating presence of dimethyl malonate group in conjugate adduct.

The stereochemical assignments for major and minor diastereomer of $\mathbf{3 7}$ was done as trans and cis respectively (isolated by preparative HPLC column: Kromasil RP-8, acetinitrile: $\mathrm{H}_{2} \mathrm{O}=35: 65$, wavelength: 220 nm) based on extensive (HSQC, COSY, HMBC and NOESY) NMR spectral studies (Figure 2.3). The relative stereochemistry of 2,5dialkyl substituents of major diastereomer of $\mathbf{3 7}$ was further confirmed to be trans using XRay crystallographic analysis ${ }^{12}$ (Figure 2.4). Origin of trans stereoselectivity in this reaction can be attributed to combined effects of electronic and steric factors ${ }^{13}$ directed by the tetrazole moiety from only one face of the enone moiety. We were delighted to find the

Figure 2.2: Catalyst scanned

Table 2.1 Screening of catalyst for DKR studies ${ }^{\text {a }}$

Sr.no.	Catalyst	Solvent	Convertion $^{\mathrm{b}} \%$	$d r^{\mathrm{c}}$	er $^{\mathrm{d}}$
1	$\mathbf{4 4}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	NR	-	-
2	$\mathbf{4 5 a}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	NR	-	-
3	$\mathbf{4 5 b}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	NR	-	-
4	$\mathbf{4 6}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	NR	-	-
5	$\mathbf{4 7}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	NR	-	-
6	$\mathbf{4 8}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	50	$85: 15$	$93: 7$
7	$\mathbf{4 9}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	5	$65: 35$	$47: 53$
8	$\mathbf{5 0}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	5	$49: 51$	$92: 8$

${ }^{\mathrm{a}}$ Enone (1 mmol), catalyst ($10 \mathrm{~mol} \%$), dimethyl malonate (1.5 mmol), piperidine (1 mmol), solvent $3 \mathrm{~mL}, 5$ days, RT $\left(25^{\circ} \mathrm{C}\right)$. ${ }^{\mathrm{b}}$ Conversion monitored by GC. ${ }^{\mathrm{c}}$ Diastereomeric ratio determined either by HPLC or NMR. ${ }^{\text {d }}$ Enantiomeric excess determined by chiral stationary phase HPLC. NR = no reaction.

Chapter 2

recovered starting material $\mathbf{3 6}$ as a racemic mixture on analysis by chiral stationary phase HPLC. Furthermore, the recovered 36 when reused for the reaction gave identical results, indicating its reusability.

In order to further improve enantioselectivity and diastereoselectivity, we even evaluated primary amine based catalyst 50, ${ }^{14}$ derived from cinchona alkaloid, but the results were not very encouraging as 37 was formed only with 5% conversion and without any diastereoselectivity, however, the enantioselectivity ($e r=92: 8$) obtained was excellent.

trans 37

cis 37

Figure 2.3: Relative stereochemistry of diastereomers of $\mathbf{3 7}$

Fig.2.4 ORTEP diagrams of $\mathbf{3 7}$. Ellipsoids are drawn at 50\% probability. Hydrogen atoms omitted for clarity.

In addition to our requirement of chiral trans-2,5-dialkylcyclohexanones in the proposed total synthesis of iridoids, they are also structural component of several biologically active natural terpenes such as Eudesmalonide ${ }^{15 \mathrm{a}}$ (51), Meristotropic acid ${ }^{15 \mathrm{~b}}$ (52), Wiedemannic acid ${ }^{15 c}$ (53) (Figure 2.5). These structural frameworks have even been used as versatile building blocks for the synthesis of many complex structures with pharmacological importance. ${ }^{16}$ Most of the syntheses of such compounds have either relied on the chiral pool approach ${ }^{16}$ starting with menthone (54), dihydrocarvone (55) and isopulgenone (56) (Figure 2.5) or kinetic resolution of racemic substituted cyclohexanones.

Eudesmalonide $\mathrm{R}=\mathrm{O}$, $=\beta-O A c, H$, $=\beta-\mathrm{OH}, \mathrm{H}$.

$\mathrm{R}=\mathrm{H}$, Meristotropic acid $=\mathrm{OH}$, Hydroxymeristotropic acid 52
51

Menthone
54

trans-dihydrocarvone
55

trans-isopulegone
56

Figure 2.5: Natural products with trans-2,5-dialkyl cyclohexanone framework

In order to further optimise the yield and enantioselectivity of $\mathbf{3 7}$ from our DKR strategy, different solvent-base combinations were tried and the results are discussed in the proceeding sections.

2.6 Optimization studies with different Solvent-base combinations

The effects of various solvents on conjugate addition of malonate on enone $\mathbf{3 6}$ were examined to improve enantioselectivity and diastereoselectivity, and the results are summarized in Table 2.2. Most organic solvents were ineffective except for chlorinated solvents such as dichloromethane and chloroform. In chloroform the reaction could proceed with 70% conversion with $85: 15 \mathrm{dr}$ and 94:6 er (Table 2.2, entry 7). This observation can be correlated with Guttman's acceptor number ${ }^{17}$ (AN) (AN of acetonitrile 18.9, DMSO 19.3, $\mathrm{CH}_{2} \mathrm{Cl}_{2} 20.4, \mathrm{CHCl}_{3} 23.1$), as solvent with a higher AN is known to enhance the reactivity of intermediate iminium cation thus improving the conversion. Among the solvents screened, chloroform was the best and provided conjugate adduct in 70% yield and was therefore chosen for further synthetic studies. It was clear from the recorded results during the optimization of DKR that changing the base, affects diastereoselectivity as well as enantioselectivity. It may be possible that malonate and the base form a contact ion pair
which participates in conjugate addition, thus, affecting diastereoselectivity and enantioselectivity. Among the different solvents and bases screened for DKR, a

Table 2.2: Base and solvent studies ${ }^{\text {a }}$

${ }^{a}$ Enone (1.0 mmol), catalyst $48(10 \mathrm{~mol} \%)$, dimethylmalonate (1.5 mmol), base (1.0 mmol), solvent $(3 \mathrm{~mL}), 5$ days, RT $\left(25^{\circ} \mathrm{C}\right) .{ }^{\mathrm{b}}$ Determined by GC analysis. ${ }^{\mathrm{c}}$ Diastereomeric ratio determined either by HPLC or NMR. ${ }^{\mathrm{d}}$ Enantiomeric excess determined by chiral stationary phase HPLC and mentioned only for major diastereomer. ${ }^{\text {e }}$ No catalyst used. $\mathrm{NR}=$ no reaction, $\mathrm{ND}=$ not determined. THF = tetrahydrofuran, DMF = dimethylformamide, DMSO = dimethylsulfoxide.
combination of chloroform and piperidine was found to be the best, giving better

Chapter 2

conversion and stereoselectivity. The bulk scale (up to 20.0 g of 36) DKR gave 37 with almost same enantioselectivity and diastereoselectivity ($d r=70: 30$, $e r=94: 6$) providing a scalable methodology for the synthesis of chiral trans-2,5-dialkylcyclohexanone. Without any catalyst or base additive, the formation of conjugate adduct was not observed (Table 2.2, entries 8 and 9). Other variations in reaction conditions such as the effect of malonate concentration and temperature were also evaluated systematically in an attempt to improve the yield and selectivity. For example, increasing the malonate concentration (3 equiv.) did not improve reaction conversion rather made purification of $\mathbf{3 7}$ difficult, as the difference in R_{f} between dimethyl malonate, the starting enone and the conjugate adduct (product) was very small. Surprisingly, conducting reaction at a lower temperature ($10{ }^{\circ} \mathrm{C}$) did not improve enantioselectivity $(d r=87: 13$, er $=94: 6)$, instead, merely decreased the rate of reaction.

2.7 Effect of ring size on DKR

Having established the optimal reaction condition, effect of ring sizes of enones on DKR was examined and results are summarized in Table 2.3. For example, 5allylcyclopentenone (57) underwent conjugate addition with good conversion (80\%) but with low stereoselectivity ($d r=82: 18, e r=66: 34$) as compared to its 6-membered congener (59). 6-Allylcyclohexenone (59) gave the required conjugate adduct (60) with excellent diastereoselectivity (Table 2.3, entry 2). Surprisingly, 61 did not undergo DKR under our standard reaction conditions. ${ }^{18}$ In contrast, 63 underwent conjugate addition (60% conversion) with poor diastereoselectivity ($60: 40$) but without any enantioselectivity (52.15:47.85) (Table 2.3, entry 4).

Table 2.3 Studies on effect of ring size of enones on DKR ${ }^{\text {a }}$
Sr.no. Starting enone Donor

A = dimethylmalonate
${ }^{\text {a }}$ Enone (1 mmol), catalyst 48 ($10 \mathrm{~mol} \%$), malonate (1.5 mmol), piperidine (1 mmol), $\mathrm{CHCl}_{3}(3 \mathrm{~mL}), 5$ days, $\mathrm{RT}\left(25^{\circ} \mathrm{C}\right) .{ }^{\mathrm{b}}$ Isolated yields on purification ${ }^{\mathrm{c}}$ Diastereomeric ratio determined either by HPLC or NMR ${ }^{\text {d }}$ Enantiomeric excess determined by chiral stationary phase HPLC.

2.8 Evaluation of the Scope of DKR

In order to widen the scope of the methodology and to study the tolerance of common functional groups, we decided to study different 6-alkyl substituted cyclohexenones under standard reaction conditions. We restricted our study with the use of dimethyl and diethyl malonate only, owing to the utility of the conjugate addition product. ${ }^{19}$

Chapter 2

It was observed that 38, having the sterically bulky TBS group on an alkyl chain at C6 decreased diastereoselectivity ($d r=60: 40$) and enantioselectivity ($e r=90: 10$) as compared to 36. Enones without any substitution at C4 (e.g. 65, 68, 59, 73) gave excellent yields (9295\%) (Table 2.4).

Table 2.4 Generalization of substrate scope for $D K R^{a}$

Sr.no.	Starting enone	Michael donor	Conjugate adduct	$\begin{gathered} \text { yield }{ }^{\text {b }} \\ \% \end{gathered}$	$d r^{\text {c }}$	$\begin{gathered} e r^{\mathrm{d}} \\ \text { Major } \\ \text { (Minor) } \end{gathered}$
1		A		80	60:40	$\begin{gathered} 90: 10 \\ (81: 19) \end{gathered}$
2 3		A B		95 95	$85: 15$ 96:4	$\begin{gathered} 84: 16 \\ (86: 14) \\ 90: 10 \end{gathered}$
4		A		95	99:1	79:21
5		B		95	42:58	$\begin{gathered} 88: 12 \\ (87: 13) \end{gathered}$
6		C		75	94:6	88:12

Generally, better enantiomeric ratios were observed using diethyl malonate as nucleophile in comparison to dimethyl malonate (Table 2.4, entries 2 and 3; 4 and 5; table 2.3, entry 2 and Table 2.4, entry 7). 6-Methyl cyclohexenone (68), gave considerable lower

Chapter 2

diastereoselectivity on conjugate addition with diethyl malonate in comparison to dimethyl malonate (Table 2.4, entries 4, 5). Since compound $\mathbf{6 0}$ and $\mathbf{6 9}$ were diastereomerically pure, we carried out extensive NMR studies to generalise the trans-relative stereochemical outcome of DKR (Figure 2.6).

Next we planned quaternary centre generation by conjugate addition on piperitone (76), however, no conjugate addition product was isolated. Aliphatic enone 78, when used as a substrate for DKR, gave very low diastereoselectivity and enantioselectivity (Table 2.4 , entry 11,12).

Figure 2.6 Relative stereochemistry confirmation using NMR

To further broaden the scope of the reaction, we carried out the conjugate addition of 2-nitropropane on $\mathbf{6 8}$ which gave corresponding conjugate adduct 71 in excellent diastereoselectivity $(d r=94: 6)$ and enantioselectivity $(e r=88: 12)($ Table 2.4 , entry 6$)$.

2.9 Conclusion

In summary, we have reported for the first time a conceptually new strategy for the synthesis of chiral trans-2,5-dialkylcyclohexanones by organocatalyzed DKR via asymmetric conjugate addition of dialkylmalonate on 6-substituted cyclohexenones. Reaction conditions show high functional group tolerance. As required, we could scale up this reaction up to 20.0 g starting from enone without significant change in stereochemical outcome. In the proceeding chapter, we shall comprehensively describe our efforts towards the synthesis of tetracyclic core of higher iridoids starting with compound $\mathbf{3 7}$.

2.10 Experimental Section

General procedure for synthesis of enone: ${ }^{9}$

To a cold $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of ketone ($2.0 \mathrm{mmol}, 1.0$ equiv.) in THF (20 mL) was added LiHMDS (5.0 mmol , 2.5equiv. 1.0 M in hexanes) dropwise over period of 10 min . After stirring for 30 min . at same temperature, $\mathrm{TMSCl}(5.0 \mathrm{mmol}, 2.5$ equiv.) was added drop wise over period of 5 min and reaction mixture was stirred for another 30 min , and then warmed to room temperature. Upon disappearance of the starting material (monitored by TLC), the reaction mixture was poured in water (10 mL) and the biphasic reaction mixture was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine $(1 \times 20 \mathrm{~mL})$ and concentrated. The crude TMS enol ether was dried under reduced pressure to minimize the amount of $(\mathrm{TMS})_{2} \mathrm{O}$ present, as this was known to be detrimental for the desired reaction. The IBX.MPO solution (prepared by dissolving IBX and MPO (4.0 equiv.) in DMSO (0.4 M) in an equimolar ratio at room temperature) was added in one portion at ambient temperature to the crude TMS enol ether dissolved in a minimum of DMSO. Reaction mixture was stirred vigorously and progress was monitored by means of thin-layer chromatography. Upon completion, the reaction mixture was diluted with aqueous $\mathrm{NaHCO}_{3}(5 \%)$ and extracted with EtOAc (3 times). The combined organic phase was filtered through a pad of celite, washed with saturated aqueous NaHCO_{3}, water, and brine. After drying over anhy. NaSO_{4}, the solvent was removed under reduced pressure to yield the crude product, which was purified further by means of column chromatography.

Ethyl 3-(8-oxo-1,4-dioxaspiro[4.5]dec-9-en-7-yl)propanoate (36):

Chapter 2

Yield:	95 \%
M.P.	$55^{\circ} \mathrm{C}$
IR $v_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	$\begin{aligned} & \text { 2981, 3892, 1731, 1683, 1421, 1447, 1380, 1252, } \\ & 1195,1096,1031,949 \end{aligned}$
${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 400	1.26 (t, J = $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.75$ (d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.00$
MHz) $\mathrm{\delta}^{\text {d }}$	$\begin{aligned} & -2.08(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.46(\mathrm{~m}, 2 \\ & \mathrm{H}), 2.68-2.78(\mathrm{~m}, 1 \mathrm{H}), 3.94-4.18(\mathrm{~m}, 6 \mathrm{H}), 5.99(\mathrm{~d}, \mathrm{~J} \\ & =10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=10.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50\right.$ MHz) ठ	$\begin{aligned} & 14.2,24.7,31.6,38.6,43.6,60.4,64.9,65.2,104.2 \text {, } \\ & 130.2,145.2,173.3,200.2 \end{aligned}$
Mass: m/z (\%)	409.14 (M + Na, 100), 387.2 (M+H, 25), 341 (45), 249 (16), 241 (22)

5-allylcyclopent-2-enone (57):

Yield:	75 \%
IR $\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	3019, 2983, 1701, 1588, 1429, 1215, 1046, 755, 669
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500$	2.10-2.18 (m, 1 H), 2.37-2.45 (m, 2 H), 2.50-2.58
MHz) ${ }^{\text {d }}$	(m, 1 H), 2.79-2.87 (m, 1 H), 4.98-5.14 (m, 2 H),
	5.74 (ddt, $J=17.0,10.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.10-6.24$ (m, 1
	H), 7.63-7.76 (m, 1 H)
${ }^{13} \mathrm{C}$ NMR (CDCl_{3},	: 34.8, 35.2, 43.9, 116.9, 133.7, 135.1, 163.8, 211.6
126 MHz) $\mathrm{\delta}$	
Mass: m/z (\%)	: 145.46 ($\mathrm{M}+\mathrm{Na}, 100$), 123.16 ($\mathrm{M}+\mathrm{H}, 25$)

6-allylcyclohex-2-enone (59):

Yield:	90 \%
IR $v_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	2930, 2862, 1677, 1639, 1388, 1222, 912
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500$	$1.68-1.82(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.17$ (m, 2 H), 2.31-2.41
MHz) $\boldsymbol{\delta}$	(m, 3 H), 2.59-2.66 (m, 1 H), 5.02-5.09 (m, 2 H),
	$5.73-5.83$ (m, 1 H), 6.00 (dt, J = 9.99, 1.72 Hz, 1 H),
	6.91-6.98 (m, 1 H)
${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 126	25.2, 27.3, 33.6, 46.1, 116.7, 129.5, 136.1, 149.8,
MHz) $\mathbf{\delta}$	200.9
Mass: m/z (\%)	159.15 (M + Na, 100), 137.45 (M+H, 25)

7-allylcyclohept-2-enone (61):

$$
\begin{array}{ll}
\text { Yield: } & : 87 \% \\
\text { IR } v_{\text {max }} \mathbf{c m}^{-1}\left(\mathrm{CHCl}_{3}\right) & : \\
{ }^{1} \mathrm{H} \text { NMR }\left(\mathrm{CDCl}_{3}, 400\right. & : \\
\mathrm{MHz}) \delta & 1.43-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.98 \\
& (\mathrm{~m}, 2 \mathrm{H}), 2.05-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.50(\mathrm{~m}, 2 \mathrm{H}), \\
& 2.52-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.74(\mathrm{~m}, 1 \mathrm{H}), 4.97-5.09 \\
& (\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{ddt}, J=17.0,10.1,6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), \\
& 5.99-6.07(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{ddd}, J=11.7,6.6,4.5 \mathrm{~Hz}, \\
& 1 \mathrm{H})
\end{array}
$$

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 101$	$:$	$25.2,28.7,29.8,35.7,51.6,116.6,132.7,136.4$,
MHz) δ	$146.0,205.2$	
Mass: $\mathrm{m} / \mathrm{z}(\%)$	$:$	$183.16(\mathrm{M}+\mathrm{Na}, 100), 151.49(\mathrm{M}+\mathrm{H}, 51)$

9-(((tert-butyldimethylsilyl)oxy)methyl)-1,4-dioxaspiro[4.5]dec-6-en-8-one (38):

Yield:	95 \%
IR $\nu_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	3583, 3444, 2957, 2930, 1683, 1216, 1141, 758
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$: 0.05 (d, J = 2.0 Hz, 6 H), 0.87 (s, 9 H), $2.21-2.31$
MHz) $\boldsymbol{\delta}$	$\begin{aligned} & (\mathrm{m}, 2 \mathrm{H}), 2.73-2.82(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.88(\mathrm{~m}, 1 \mathrm{H}), \\ & 3.91-4.00(\mathrm{~m}, 2 \mathrm{H}), 4.01-4.15(\mathrm{~m}, 3 \mathrm{H}), 5.99(\mathrm{~d}, J= \\ & 10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=10.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50$	5.5, 18.2, 25.8, 35.5, 46.6, 61.4, 64.8, 65.1, 104.5,
MHz) $\overline{\text { d }}$	130.5, 145.9, 198.8
Mass: m/z (\%)	321.1 (M + Na, 100), 310.3 (4), 283.1 (1)

Ethyl 3-(2-oxocyclohex-3-en-1-yl)propanoate (65):

$$
\begin{array}{ll}
\text { Yield: } & : 90 \% \\
\text { IR } v_{\max } \mathbf{c m}^{-1}\left(\mathrm{CHCl}_{3}\right) & : 2934,1732,1676,1425,1388,1177,1032 \\
{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500\right. & : 1.25(\mathrm{~J}=7.2,3 \mathrm{H}), 1.67-1.81(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.18 \\
\mathrm{MHz}) \delta & (\mathrm{m}, 2 \mathrm{H}), 2.31-2.44(\mathrm{~m}, 5 \mathrm{H}), 4.12(\mathrm{q}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2
\end{array}
$$

H), 5.98 (dt, $J=10.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.96(\mathrm{~m}, 1$
 H)

$\begin{array}{lll}{ }^{13} \mathrm{C} \text { NMR }\left(\mathrm{CDCl}_{3}, 126:\right. & 14.1,24.7,25.2,28.1,31.8,45.7,60.3,129.4,149.5, \\ \text { MHz) } \delta & 173.5,201.1 \\ \text { Mass: } \mathrm{m} / \mathrm{z}(\%) & : & 219.15(\mathrm{M}+\mathrm{Na}, 100), 197.56(\mathrm{M}+\mathrm{H})\end{array}$

General procedure for DKR reaction:

To a stirred suspension of 6-substituted enones (0.2 mmol) and catalyst ($10 \mathrm{~mol} \%$) in $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$ was added dialkylmalonate $(0.3 \mathrm{mmol})$ and piperidine $(0.2 \mathrm{mmol})$ at room temperature. The progress of the reaction was monitored by thin layer chromatography and gas chromatography. After 5 days of stirring when no further conversion was noticed, reaction was quenched with water. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 X 10 mL). The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and purified by flash column chromatography to obtain conjugate addition product.

Dimethyl-2-(9-(3-ethoxy-3-oxopropyl)-8-oxo-1,4-dioxaspiro[4.5]decan-6-yl)malonate (37):

Yield: : 68%

M.P.	$81.9{ }^{\circ} \mathrm{C}$
$[\alpha]^{25}$	+19.12 (c 1.9, $\mathrm{CHCl}_{3}, 70$ \% de, 88 \% ee)
$\mathrm{IR} \mathrm{v}_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	2982, 2955, 2903, 1732, 1435, 1155
${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 500	1.23 (t, J = 5.0 Hz, 3 H), 1.47-1.60 (m, 2 H), 2.03
MHz) δ	(dd, $J=14.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (dd, $J=13.4,5.8$
	Hz, 1 H), 2.25-2.43 (m, 2 H), 2.50 (dd, $J=13.9,4.7$
	$\mathrm{Hz}, 1 \mathrm{H}), 2.63$ (dd, $J=12.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.78$
	(m, 1 H), 2.99 (ddd, $J=13.9,7.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68
	(d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70$ (s, 3 H), 3.72 (s, 3 H), 3.9
	-4.1 (m, 4 H), 4.1-4.1 (m, 2 H)
${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 126	14.2, 23.9, 31.7, 39.0, 41.4, 44.4, 45.4, 50.6,
MHz) $\overline{\text { (}}$ (only for major	52.4, 52.6, 60.3, 64.7, 65.0, 107.8, 168.3, 168.4,
diastereomer)	173.3, 208.5
Mass: m/z (\%)	425.28 ($\mathrm{M}+\mathrm{K}, 41$), 409.29 ($\mathrm{M}+\mathrm{Na}, 100), 237$ (50),
	$221 \text { (47) }$
HRMS ESI (m / z):	$\left[\mathrm{M}+\mathrm{H}^{+}\right.$calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{9}, 387.1650$; found, 387.1654
HPLC(Kromasil OJ-H, i -propanol: petroleum	: major diastereomer: $\tau_{\mathrm{R}}=70.01 \mathrm{~min}$. (major
	enantiomer), $\tau_{\mathrm{R}}=64.2 \mathrm{~min}$. (minor enantiomer);
ether 20:80, 0.5	minor diastereomer: $\tau_{\mathrm{R}}=53.15 \mathrm{~min}$. (major
$\mathrm{mL} / \mathrm{min}, 220 \mathrm{~nm}$)	enantiomer), $\tau_{\mathrm{R}}=44.03 \mathrm{~min}$. (minor enantiomer)

Data for trans 37:

${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500: 1.24(\mathrm{t}, \mathrm{J}=7.02 \mathrm{~Hz}, 3 \mathrm{H}), 1.49-1.60(\mathrm{~m}, 2 \mathrm{H}), 2.04$
MHz) $\overline{\text { © }}$ (dq, $J=14.27,7.25 \mathrm{~Hz}, 1 \mathrm{H}$), 2.12 (dd, $J=13.43$, $5.80 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dt}, J=15.87,7.63 \mathrm{~Hz}, 1 \mathrm{H}), 2.35$ - 2.44 (m, 1 H), 2.51 (dd, $J=14.04,4.58 \mathrm{~Hz}, 1 \mathrm{H}$), 2.64 (dd, $J=13.12,6.71 \mathrm{~Hz}, 1 \mathrm{H}$), 2.75 ($\mathrm{t}, \mathrm{J}=13.89$ Hz, 1 H), 2.96-3.03 (m, 1 H), 3.69 (d, J= $7.02 \mathrm{~Hz}, 1$ H), 3.73 (s, 3 H), 3.71 (s, 3 H), $3.98-4.07$ (m, 4 H),

$$
4.11(\mathrm{q}, J=7.22 \mathrm{~Hz}, 2 \mathrm{H})
$$

${ }^{13} \mathrm{C}^{\mathrm{CNMR}}\left(\mathrm{CDCl}_{3}, 126\right.$: 14.2, 23.9, 31.9, 39.0, 41.4, 44.4, 45.1, 50.8, 52.4, MHz) $\bar{\delta}$ 52.8, 60.3, 64.6, 65.0, 107.9, 166.3, 166.4, 173.3, 206.5

Data for cis 37:

${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500$: $1.24-1.27(\mathrm{t}, 3 \mathrm{H}), 1.61(\mathrm{~d}, \mathrm{~J}=6.71 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-$ MHz) б 1.98 (m, 1 H), 2.01-2.16 (m, 2 H), 2.30-2.37 (m, 2 H), 2.42 (dd, $J=15.26,5.80 \mathrm{~Hz}, 1 \mathrm{H}$), 2.67 (dd, $J=$ $10.83,6.26 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.98-3.10$ $(\mathrm{m}, 1 \mathrm{H}), 3.43(\mathrm{~d}, \mathrm{~J}=9.46 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, 3.72 (s, 3 H), 3.92-4.09 (m, 4 H), 4.10-4.17 (m, 2 H)
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 126\right.$: 14.2, 24.7, 31.7, 37.7, 40.7, 43.2, 45.9, 51.9, 52.7, MHz) δ $60.4,64.7,64.8,107.9,168.1,168.5,173.2,209.6$

Dimethyl-2-(4-allyl-3-oxocyclopentyl)malonate (58):

Yield	80 \%
$[\alpha]^{25}{ }_{\text {D }}$	+29.01 (c 1.2, $\mathrm{CHCl}_{3}, 64$ \% de, 32 \% ee)
IR $v_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	2956, 1735, 1437, 1223, 1156
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$	$1.27-1.38$ (m, 1 H), 1.96 (dd, $J=18.70,11.67 \mathrm{~Hz}, 1$
MHz) $\boldsymbol{\delta}$	$\begin{aligned} & \mathrm{H}), 2.03-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.44- \\ & 2.63(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.84(\mathrm{~m}, 0.77 \mathrm{H}), 2.9-2.96(\mathrm{~m}, \\ & 0.19 \mathrm{H}), 3.30-3.39(\mathrm{~d}, \mathrm{~J}=10.04,1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), \\ & 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.93-5.12(\mathrm{~m}, 2 \mathrm{H}), 5.63-5.78(\mathrm{~m}, 1 \end{aligned}$

H)
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 101\right.$: $33.4,33.6,34.1,42.8,49.3,52.6,56.2,116.81,135.3$,

MHz) $\overline{ }$
Mass: \mathbf{m} / \mathbf{z} (\%) : 277 (M+Na, 100), 240 (12), 195 (8)
HRMS ESI (m / z): 168.4, 168.5, 216.8
: [M + Na] ${ }^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na}$, 277.1046; found, 277.1054

HPLC(Chiralpak AS-H, : major diastereomer: $\tau_{\mathrm{R}}=57.392 \mathrm{~min}$. (major i-propanol : petroleum ether 2.0:98.0, 0.5 $\mathrm{mL} / \mathrm{min}, 230 \mathrm{~nm}$)
enantiomer), $\tau_{\mathrm{R}}=69.808 \mathrm{~min}$. (minor enantiomer); minor diastereomer: $\tau_{\mathrm{R}}=87.192 \mathrm{~min}$. (major enantiomer), $\tau_{\mathrm{R}}=65.525 \mathrm{~min}$. (minor enantiomer)

Dimethyl 2-(4-allyl-3-oxocyclohexyl)malonate (60):

> Yield $[\alpha]^{25} \mathrm{D}$ $\mathrm{IR} \mathrm{v}_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$ ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta$
$\mathbf{I R} v_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) \quad: \quad 2953,1752,1735,1710,1435,1252,1157$
: 92 \%
: +6.12 (c 1.03, $\mathrm{CHCl}_{3}, 98$ \% de, 74 \% ee)
: 1.27-1.40(m, 1 H), 1.49-1.62 (m, 1 H), 1.93-2.02 (m, 2 H), 2.12-2.20 (m, 1 H$), 2.24-2.34(\mathrm{~m}, 2 \mathrm{H})$, $2.40-2.60(\mathrm{~m}, 3 \mathrm{H}), 3.34(\mathrm{~d}, J=7.53 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ (s, 3 H), 3.75(s, 3 H), 4.97-5.06 (m, 2 H), 5.70-5.83 (m, 1 H)
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 101 \quad: \quad 29.29,31.1,33.2,39.1,45.4,49.46,52.6,56.8\right.$,

Mass: m/z (\%)
HRMS ESI (m / z):

HPLC (Chiralcel OJ-H, : major diastereomer: $\tau_{\mathrm{R}}=19.308 \mathrm{~min}$. (major i-propanol : petroleum enantiomer), $\tau_{\mathrm{R}}=70.667 \mathrm{~min}$. (minor enantiomer);
ether 05:95, 0.5 minor diastereomer: $\tau_{\mathrm{R}}=62.317 \mathrm{~min}$. (major $\mathrm{mL} / \mathrm{min}, 230 \mathrm{~nm}$) enantiomer), $\tau_{\mathrm{R}}=58.517 \mathrm{~min}$. (minor enantiomer)

Diethyl 2-(4-allyl-3-oxocyclohexyl)malonate (72):

Yield: : 90%
$[\alpha]^{25}{ }_{\mathrm{D}} \quad: 7.38$ (c 1.45, $\mathrm{CHCl}_{3}, 82 \% \mathrm{de}, 82 \%$ ee $)$
IR $v_{\text {max }}$ cm $^{-1}\left(\mathrm{CHCl}_{3}\right) \quad: \quad 2981,2937,1750,1732,1713,1155$
${ }^{1} \mathrm{H}$ NMR (CDCl $_{3}, 400$: 1.27 (td, $\left.J=7.15,1.00 \mathrm{~Hz}, 6 \mathrm{H}\right), 1.30-1.40(\mathrm{~m}, 1 \mathrm{H})$,
MHz) б 1.57 (qd, $J=12.72,3.26 \mathrm{~Hz}, 1 \mathrm{H}$), $1.91-2.03$ (m, 2 H), 2.09-2.21 (m, 1 H), 2.24-2.35 (m, 2 H), 2.422.59 (m, 3 H), 3.29 (d, J = $7.53 \mathrm{~Hz}, 1 \mathrm{H}$), 4.16-4.25 (m, 4 H), 4.96-5.08 (m, 2 H), 5.70-5.83 (m, 1 H)
${ }^{13}{ }^{2}$ NMR (CDCI 3,101 : 14.0, 29.3, 31.2, 33.2, 39.02, 45.4, 49.5, 57.0, 61.5, MHz) ठ
Mass: m/z (\%)

HRMS ESI (m / z): 116.4, 136.2, 167.7, 167.8, 209.7
: 319.93 (M + Na, 25), 318.99 (100), 296.99(M + H, 32), 161.83 (33), 160.5 (100), 136.56 (100), 132.82(31)
: $\left[\mathrm{M}+\mathrm{Na}^{+}\right.$calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}$, 319.1516; found, 319.1523

HPLC (Chiralcel OJ-H, : major diastereomer: $\tau_{\mathrm{R}}=38.183 \mathrm{~min}$. (major i-propanol : petroleum ether 0.5:99.5, 0.5
$\mathrm{mL} / \mathrm{min}, 230 \mathrm{~nm}$) enantiomer), $\tau_{\mathrm{R}}=42.85 \mathrm{~min}$. (minor enantiomer); minor diastereomer: $\tau_{\mathrm{R}}=51.342 \mathrm{~min}$. (major enantiomer), $\tau_{\mathrm{R}}=47.617 \mathrm{~min}$. (minor enantiomer)

Dimethyl 2-(4-allyl-3-oxocyclooctyl) malonate (64):

Yield:
$\mathbf{I R} v_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) \quad: \quad 2932,1751,1735,1701,1437,1195,1157$
${ }^{1} \mathrm{H}$ NMR (CDCl ${ }_{3}, 400 \quad: 1.34-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.64-1.83$
MHz) б
: 70 \% (m, 4 H), 2.05-2.14 (m, 1 H), 2.24-2.48(m, 3 H), 2.75-2.85 (m, 1 H), 2.90-3.02 (m, 1 H), 3.35 (d, J = $7.53 \mathrm{~Hz}, 0.62 \mathrm{H}$), 3.46 (d, J=7.53 Hz, 0.27 H), 3.72 $3.78(\mathrm{~m}, 6 \mathrm{H}), 4.91-5.09(\mathrm{~m}, 2 \mathrm{H}), 5.59-5.82(\mathrm{~m}, 1$ H)
${ }^{13}{ }^{2}$ NMR ($\mathrm{CDCl}_{3}, 101$: 23.6, 25.4, 31.9, 33.2, 35.1, 37.2, 45.9, 50.0, 52.5, MHz) $\mathbf{\delta}$ (only for major diastereomer)

HRMS ESI (m / z): Amycoat, EtOH:n-
Hexane 2.0:98.0, 0.5
$\mathrm{mL} / \mathrm{min}, 230 \mathrm{~nm}$)

Mass: m/z (\%) : 319.66 ($\mathrm{M}+23,100$), 297.72 ($\mathrm{M}+1,100$), 265.92 (55), 264.58 (100), 246 (12), 232.91 (100)
: $\left[\mathrm{M}+\mathrm{Na}^{+}\right.$calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}, 319.1516$; found, 319.1524

HPLC (Kromasil 5- : major diastereomer: $\tau_{\mathrm{R}}=22.517 \mathrm{~min}$. (major 52.5, 57.1, 116.7, 135.5, 168.7, 168.8, 216.8
enantiomer), $\tau_{\mathrm{R}}=28.058 \mathrm{~min}$. (minor enantiomer); minor diastereomer: $\tau_{\mathrm{R}}=46.867 \mathrm{~min}$. (major enantiomer), $\tau_{\mathrm{R}}=83.650 \mathrm{~min}$. (minor enantiomer)

Dimethyl 2- (9-((tert-butyldimethylsilyloxy)methyl)-8-oxo-1,4-dioxaspiro[4.5] decan-6-yl)malonate (39):

$$
\text { Yield: } \quad: 80 \%
$$

${ }^{13} \mathbf{C N M R}^{(} \mathrm{CDCl}_{3}, 101 \quad: \quad-5.5,18.2,25.8,35.7,41.6,43.9,48.7,50.8$,

MHz) δ

Mass: m/z (\%)

HRMS ESI (m / z): Amycoat, i-propanol :
petroleum ether
1.5:98.5, $0.5 \mathrm{~mL} / \mathrm{min}$, 220 nm)

HPLC (Kromasil 5- : major diastereomer: $\tau_{\mathrm{R}}=20.14 \mathrm{~min}$. (major 52.5, 52.6, 61.13, 64.6, 64.7, 64.9, 108.1, 168.4, 168.5, 207.9
: 469.15 ($\mathrm{M}+\mathrm{K}, 70$), 453.21 ($\mathrm{M}+\mathrm{Na}, 100$), 150.25 (10)
: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{NaSi}$, 453.1915; found, 453.1930 enantiomer), $\tau_{\mathrm{R}}=21.78 \mathrm{~min}$. (minor enantiomer); minor diastereomer: $\tau_{\mathrm{R}}=18.91 \mathrm{~min}$. (major enantiomer), $\tau_{\mathrm{R}}=18.11 \mathrm{~min}$. (minor enantiomer)

Dimethyl-2-(4-(3-ethoxy-3-oxopropyl)-3-oxocyclohexyl) malonate (66):

$$
\begin{array}{ll}
\text { Yield: } & : 95 \% \\
{[\alpha]_{\mathrm{D}}^{25}} & : \\
\mathbf{I R} v_{\max } \mathbf{c m}^{-1}\left(\mathrm{CHCl}_{3}\right) & : \begin{array}{l}
\text { (c } \\
\\
\end{array} \\
& 1155
\end{array}
$$

Diethyl-2-(4-(3-ethoxy-3-oxopropyl)-3-oxocyclohexyl) malonate (67):

Yield: : 95%
$[\alpha]^{25}{ }_{\mathrm{D}}$
IR $v_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$
: +7.91 (c 1.92, $\mathrm{CHCl}_{3}, 92$ \% de, 80 \% ee)
$\mathrm{R} v_{\max } \mathbf{c m}^{-1}\left(\mathrm{CHCl}_{3}\right) \quad: \quad 2982,2937,1751,1735,1725,1719,1710,1369$, 1247, 1222, 1178, 1154
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$
MHz) $\overline{\text { © }}$
: 1.21-1.30(m, 9H), 1.31-1.44(m, 1 H$), 1.48-1.63$ (m, 2 H$), 1.94-2.17(\mathrm{~m}, 3 \mathrm{H}), 2.25-2.55(\mathrm{~m}, 6 \mathrm{H})$, $3.27-3.31(\mathrm{~d}, J=7.53 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=7.28 \mathrm{~Hz}$, 2 H), 4.20 (qd, $J=7.19,3.26 \mathrm{~Hz}, 4 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 101 \quad: \quad 14.0,14.2,24.3,29.3,31.7,31.9,39.1,45.5$,
MHz) $\boldsymbol{\delta}$ $48.9,57.0,60.3,61.5,167.7,167.8,173.5,209.8$
Mass: m/z (\%) : $379.14(\mathrm{M}+\mathrm{Na}, 100), 368.5(2), 151.44$ (1)

HRMS ESI (m / z): $\quad:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{Na}, 379.1727$; found, 379.1738

HPLC (Chiralcel OD-H, : major diastereomer: $\tau_{\mathrm{R}}=48.5 \mathrm{~min}$. (major

EtOH: n-hexane $1.5: 98.5,0.5 \mathrm{~mL} / \mathrm{min}$, 230 nm) enantiomer), $\tau_{\mathrm{R}}=57.14 \mathrm{~min}$. (minor enantiomer); minor diastereomer: $\tau_{\mathrm{R}}=40.5 \mathrm{~min}$. (major enantiomer), $\tau_{\mathrm{R}}=37.5 \mathrm{~min}$. (minor enantiomer)
dimethyl 2-(4-methyl-3-oxocyclohexyl)malonate (69):

Yield:	95 \%
$[\alpha]^{25}$	+3.98 (c 1.08, $\mathrm{CHCl}_{3}, 98$ \% de, 58 \% ee)
$\mathrm{IR} \mathrm{v}_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	2935, 2956, 1735, 1713, 1436, 1251, 1157
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$	1.02 (d, $J=6.53 \mathrm{~Hz}, 3 \mathrm{H}), 1.38$ (qd, $J=13.09,3.39$
MHz) $\mathrm{J}^{\text {d }}$	$\mathrm{Hz}, 1 \mathrm{H}), 1.58(\mathrm{qd}, \mathrm{J}=12.72,3.51 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-$ 1.98 (m, 1 H), 2.09 (ddd, $J=13.24,6.09,3.26 \mathrm{~Hz}, 1$ H), 2.25-2.54 (m, 4 H), 3.34 (d, J = $7.78 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 (s, 3 H), 3.75 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101\right.$ MHz) ठ	$\begin{aligned} & : 14.2,29.4,33.9, \quad 39.1, \quad 44.7,45.1, \quad 52.5,56.8 \text {, } \\ & \text { 168.1, 168.2, 210.6 } \end{aligned}$
Mass: m/z (\%)	$\begin{aligned} : & 281.15(M+K, 100), 265.49(M+N a, 42), \\ & 257.14(10) \end{aligned}$
HRMS ESI (m / z):	: $\left[\mathrm{M}+\mathrm{Na}^{+}\right.$calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na}, 265.1046$; found, 265.1054

HPLC (Chiralcel OD-H, : major diastereomer: $\tau_{\mathrm{R}}=74.26 \mathrm{~min}$. (major EtOH :n-hexane
0.4:99.6, $0.5 \mathrm{~mL} / \mathrm{min}$, 230 nm) enantiomer), $\tau_{\mathrm{R}}=67.33 \mathrm{~min}$. (minor enantiomer); minor diastereomer: $\tau_{\mathrm{R}}=58.33 \mathrm{~min}$. (major enantiomer), $\tau_{\mathrm{R}}=54.95 \mathrm{~min}$. (minor enantiomer)

Diethyl 2-(4-methyl-3-oxocyclohexyl)malonate (70):

Yield:

$$
\text { : } 95 \%
$$

$[\alpha]^{25}{ }_{D}$
$:+5.26\left(c 5.25, \mathrm{CHCl}_{3}, 16 \%\right.$ de, 76% ee $)$
IR $v_{\text {max }} \mathbf{c m}^{-1}\left(\mathbf{C H C l}_{3}\right) \quad: \quad 2964,2937,1715,1733,1713,1243,1156,1032$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \quad: 1.03(\mathrm{~d}, J=6.53 \mathrm{~Hz}, 2.26 \mathrm{H}), 1.10(\mathrm{~d}, J=7.03 \mathrm{~Hz}\right.$,
MHz) $\boldsymbol{\delta}$ $0.75 \mathrm{H}), 1.27$ (td, $J=7.09,1.63 \mathrm{~Hz}, 6 \mathrm{H}$), 1.38 (qd, J $=13.13,3.26 \mathrm{~Hz}, 0.8 \mathrm{H}), 1.53-1.71(\mathrm{~m}, 1.3 \mathrm{H}), 1.89-$ $2.00(\mathrm{~m}, 1.27 \mathrm{H}), 2.05-2.14(\mathrm{~m}, 0.75 \mathrm{H}), 2.27-2.54$ (m, 4 H), $3.24-3.32(m, 1 H), 4.20(q d, J=7.11,3.51$ Hz, 4 H)
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 101 \quad: 11.6,11.7,14.1,21.8,23.5,25.0,28.6,29.4\right.$, MHz) $\mathbf{\delta}$ $31.3,37.8,39.1,42.8,45.5,51.2,51.5,56.0$, 57.1, 61.5, 61.6, 61.7, 77.3, 167.8, 167.9, 167.9, 210.5, 212.5

Mass: m/z (\%)
: 309.18 (M + K, 100), 293.43 (M + Na, 45), 154.46 (5)
HRMS ESI $(\mathrm{m} / \mathrm{z})$:
: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}, 293.1359$; found 293.1369

HPLC (Chiralcel OJ-H, : major diastereomer: $\tau_{\mathrm{R}}=30.267 \mathrm{~min}$. (major EtOH:n-hexane 0.6:99.4, $0.7 \mathrm{~mL} / \mathrm{min}$, 230 nm) enantiomer), $\tau_{\mathrm{R}}=26.45 \mathrm{~min}$. (minor enantiomer); minor diastereomer: $\tau_{\mathrm{R}}=25.008 \mathrm{~min}$. (major enantiomer), $\tau_{\mathrm{R}}=28.5 \mathrm{~min}$. (minor enantiomer)

2-methyl-5-(2-nitropropan-2-yl)cyclohexanone (71):

Yield:	75 \%
M.P.	Compound decomposes above $189{ }^{\circ} \mathrm{C}$
$[\alpha]^{25}$	9.67 (c 0.34, $\mathrm{CHCl}_{3}, 88$ \% de, 76 \% ee)
IR $\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	3019, 2400, 1540, 1475, 1215, 758, 66
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500$	0.97 (td, $J=7.32,2.44 \mathrm{~Hz}, 0.6 \mathrm{H}), 1.04$ (d, $J=6.41$
MHz) δ	$\mathrm{Hz}, 3 \mathrm{H}), 1.12-1.17$ (m, 0.4 H), 1.30-1.39 (m, 1 H),
	$1.49-1.55$ (m, 1 H$)$, 1.58 (s, 3 H$), 1.57$ (s, 2 H$), 1.76-$
	1.82 (m, 1 H), 2.11-2.19 (m, 2 H), 2.30-2.44 (m, 3
	H)

${ }^{13}{ }^{3}$ NMR ($\mathrm{CDCl}_{3}, 126$: 14.1, 22.5, 23.8, 26. 6, 33.7, 42.8, 44.7, 47.6, 90.6, MHz) δ 210.1

Mass: m/z (\%) : 254.06 (20), 222.05 (M+Na, 100), 102.31 (5)
HPLC (Chiralcel OD-H, : major diastereomer: $\tau_{\mathrm{R}}=19.008 \mathrm{~min}$. (major i-propanol: petroleum
ether 05:95, 0.5
mL/min, 230 nm)
minor diastereomer: $\tau_{\mathrm{R}}=20.417 \mathrm{~min}$. (major enantiomer), $\tau_{\mathrm{R}}=21.283 \mathrm{~min}$. (minor enantiomer)

Diethyl 2-(4-ethyl-3-oxocyclohexyl)malonate (73) :

Yield:	95 \%
$[\alpha]^{25}$	+5.04 (c 1.2, $\mathrm{CHCl}_{3}, 50 \%$ de, 76%)
$\mathrm{IR} \mathrm{v}_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	2937, 2872, 1750, 1732, 1716, 1224, 1174
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$	0.89 (td, $J=7.34,1.63 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.03 \mathrm{~Hz}$,
MHz) $\boldsymbol{\delta}$ (diastereomeric	$6 \mathrm{H}), 1.34-1.48$ (m, 1 H), 1.56-1.6(m, 0.4 H), $1.65-$
mixture 3:1)	$1.94(\mathrm{~m}, 4 \mathrm{H}), 2.08-2.20$ (m, 1 H), 2.22-2.33 (m, 1
	H), $2.36-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.72(\mathrm{~m}, 0.51 \mathrm{H})$, 3.26-3.32 (m, 0.88 H), 3.45-3.49 (m, 0.11 H), 4.17-

4.26 (m, 4 H)
${ }^{13} \mathrm{C}^{2}$ NMR ($\mathrm{CDCl}_{3}, 101 \quad: \quad 14.0,14.2,29.4,33.9,39.0,44.7,45.2,57.1,61.5$,

MHz) δ
Mass: m/z (\%) : $323.3(M+K, 15), 307.15(M+N a, 100), 284.27$ ($\mathrm{M}+1,10$)
HPLC (Kromasil 5Amycoat, EtOH: n-
hexane 02:98.0, 0.7 mL/min, 230 nm)
: major diastereomer: $\tau_{\mathrm{R}}=35.717 \mathrm{~min}$. (major enantiomer), $\tau_{\mathrm{R}}=41.6 \mathrm{~min}$. (minor enantiomer); minor diastereomer: $\tau_{\mathrm{R}}=26.892 \mathrm{~min}$. (major enantiomer), $\tau_{\mathrm{R}}=33.792 \mathrm{~min}$. (minor enantiomer)

Dimethyl 2-(4-methyl-3-oxo-1-phenylhexyl) malonate (79):

Yield:	40 \%
IR $\nu_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	2963, 1752, 1735, 1710, 1434, 1253, 1157
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$	$0.61-0.70$ (m, 1 H), 0.74 (t, $J=7.40 \mathrm{~Hz}, 2 \mathrm{H}), 0.87$
$\mathbf{M H z}$) $\boldsymbol{\delta}$ (diastereomeric	(d, J = 7.03 Hz, 1 H), 0.94 (d, $J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 1.17-$
mixture 1:1)	1.33 (m, 1 H), 1.53 (ddt, $J=18.51,14.05,6.93,6.93$
	Hz, 1 H), 2.31 (dq, $J=15.65,6.83 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-$
	3.07 (m, 2 H), 3.51 (s, 2 H), 3.56 (s, 1 H), 3.71-3.84
	(m, 4 H), 4.01 (ddt, $J=11.67,9.10,2.42,2.42 \mathrm{~Hz}, 1$
	H), 7.14-7.35 (m, 5 H)
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 101$	11.2, 11.5, 15.2, 15.4, 25.5, 25.5, 40.3, 44.6,
$\mathbf{M H z}$) $\boldsymbol{\delta}$ (diastereomeric	44.7, 47.9, 48.1, 52.3, 52.6, 57.0, 127.1, 128.1
mixture 1:1)	128.4, 140.6, 168.1, 168.6, 211.7
Mass: m/z (\%)	359 (M + K, 10), 343(M + Na, 100), 321 (M + H, 30),
	274 (37), 239 (34)
HRMS ESI (m / z):	$[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}, 343.1516$; found,

343.1522

HPLC (Kromasil 5- : major diastereomer: $\tau_{\mathrm{R}}=20.500 \mathrm{~min}$. (major Amycoat, EtOH:n-

Hexane 7.0:93.0, 0.5
mL/min, 230 nm) enantiomer), $\tau_{\mathrm{R}}=24.033 \mathrm{~min}$. (minor enantiomer); minor diastereomer: $\tau_{\mathrm{R}}=32.325 \mathrm{~min}$. (major enantiomer) $\tau_{\mathrm{R}}=42.231 \mathrm{~min}$. (minor enantiomer)

Diethyl 2-(4-methyl-3-oxo-1-phenylhexyl) malonate (80):

Yield:
: 35%

IR $v_{\text {max }} \mathbf{c m}^{-1}\left(\mathrm{CHCl}_{3}\right) \quad: \quad 2966,1788,1734,1722,1369,1299,1250$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \quad: \quad 0.64(\mathrm{t}, J=7.48 \mathrm{~Hz}, 1.5 \mathrm{H}), 0.73(\mathrm{t}, J=7.48 \mathrm{~Hz}, 1.5\right.$
$\mathrm{MHz}) \boldsymbol{\delta}$ (diastereomeric H), $0.86(\mathrm{~d}, J=7.02 \mathrm{~Hz}, 1.5 \mathrm{H}), 0.93(\mathrm{~d}, J=7.02 \mathrm{~Hz}$,
mixture 4:1) $1.5 \mathrm{H}), 1.01(\mathrm{t}, \mathrm{J}=7.17 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.31(\mathrm{~m}, 4 \mathrm{H})$, $1.45-1.58(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{dq}, J=18.92,6.82 \mathrm{~Hz}, 1$ H), 2.85-3.04 (m, 2 H), 3.73 (dd, $J=9.92,1.68 \mathrm{~Hz}, 1$ H), $3.95(q, J=7,2 H), 3.98-4.03(m, 1 H), 4.20$ (qdd, $J=7.12,7.12,7.12,2.29,1.07 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-$ 7.20 (m, 1 H), 7.23-7.26 (m, 4 H)
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 126 \quad: \quad 11.2,11.5,13.7,14.0,15.2,15.4,40.3,44.9\right.$,
$\mathbf{M H z}$) $\boldsymbol{\delta}$ (diastereomeric
mixture 4:1)
Mass: m/z (\%) $44.9,47.9,48.1,57.3,61.3,61.5,127.0,128.3$, 167.7, 168.3 211.7, 211.8
: 256.92 (100), 387.01 ($\mathrm{M}+\mathrm{K}, 8$), 371.94 ($\mathrm{M}+\mathrm{Na}, 31$), 370.94 (98), 349.07 ($\mathrm{M}+1,95$), 302.92 (81)

HRMS ESI $(\mathrm{m} / \mathrm{z})$:
: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}, 371.1829$; found, 371.1841

HPLC (Kromasil 5- : major diastereomer: $\tau_{\mathrm{R}}=35.342 \mathrm{~min}$. (major

Amycoat, i-PrOH:n- enantiomer), $\tau_{\mathrm{R}}=39.825 \mathrm{~min}$. (minor enantiomer);
Hexane 2.5:97.5, 0.5 minor diastereomer: $\tau_{R}=68.767 \mathrm{~min}$. (major mL/min, 230 nm)

2.11 References

1. a) Trost B. M., Balkovec J. M., Mao M. K.-T., J. Am. Chem. Soc. 1983, 105, 6755; b) Trost B. M., Balkovec J. M., Tet. Lett. 1985, 26, 1807; c) Trost B. M., Mao M. K.-T., Balkovec J. M., Buhlmayer P., J. Am. Chem. Soc. 1996, 108, 4974; d) Trost B. M., Mao M. K.-T., Balkovec J. M., Buhlmayer P., J. Am. Chem. Soc. 1996, 108, 496.
2. Parkes K. E. B., Pattender G., Tet. Lett. 1986, 27, 1305.
3. a) Rossiter B. E., Swingle N. M., Chem. Rev., 1992, 92, 771; b) Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis, 1992.
4. Chen Q., Soeta T., Kuriyama M., Yamada K., Tomioka K., Adv. Synth. Catal. 2006, 348, 2604.
5. Selim K., Saeta T., Yamada K., Tomioka K., Chem. Asian J. 2008, 3, 342.
6. Zhang L., Ciu L., Li X., Li J., Luo S., Cheng J-P, Eur. J. Org. Chem. 2010, 4876.
7. a) Dalpozzo R., Bartoli G., Bencivenni G., Symmetry, 2011, 3, 84; b) Almaşi D., Alonso D. A., Nájera C., Tetrahedron: Asymmetry, 2007, 18, 299; c) Tsogoeva S. B., Eur. J. Org. Chem., 2007, 1701; d) Dalpozzo R., Bartoli G., Bencivenni G., Eur. J. Org. Chem., 2002, 1877; (e) Berner O. M., Tedeschi L., Ender D., Eur. J. Org. Chem., 2002, 10, 1877.
8. a) Yang J., Wang T., Ding Z., Shen Z., Zhang Y., Org. Biomol. Chem., 2009, 7, 2208; b) Wang Y., Shen Z., Li B., Zhang Y., Zhang Y., Chem. Commun., 2007, 1284.
9. Pellissier H., Adv. Synth. Catal., 2011, 353, 659.
10. Nicolaou K. C., Gray D. L. F., Montagnon T., Harrison S. T., Angew. Chem. Int. Ed., 2002, 41, 996.
11. Knudsen K. R., Mitchell C. E. T., Ley S. V., Chem. Commun., 2006, 66.
12. CCDC-861580 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.
13. a) Cobb A. J. A., Shaw D. M., Ley S. V., Synlett 2004, 558; b) Cobb A. J. A., Longbottom D. A., Shaw D. M., Ley S. V., Chem. Commun. 2004, 1808.
14. Li P., Wen S., Yu F., Liu Q., Li W., Wang Y., Liang X., Ye J., Org. lett., 2009, 11, 753.
15. (a) Rustaiyan, A., Bamonieri, A., Raffatrad, M., Jakupovtct, J., Bohlmann, F., Photochemistry 1987, 26, 2307; (b) Zorina, A. D., Saltykova, I. A., Martynov, V. F., Matyukhina, L. G., Zhurnal Obshchei Khimii 1990, 60, 1395. (c) Ulubelen, A., Topcu, G., Phytochemistry 1990, 29, 2346.
16. Selected references for the total synthesis using dihydrocarvone, menthone, isopulegone a) Cheng H. M., Tian W., Peixoto P. A., Dhudshia B., Chen D. Y.-K., Angew. Chem. Int. Ed., 2011, 50, 4165; b) Hodgson D. M., Salik S., Fox D. J., J. Org. Chem., 2010, 75, 2157; c) Flanagan M. E., Blumenkopf T. A., Brissette W. H., Brown M. F., Casavant J. M., Shang-Poa C., Doty J. L., Elliott E. A., Fisher M. B., Hines M., Kent C., Kudlacz E. M., Lillie B. M., Magnuson K. S., McCurdy S. P., Munchhof M. J., Perry B. D., Sawyer P. S., Strelevitz T. J., Subramanyam C., Sun J., Whipple D. A., Changelian P. S., J. Med. Chem., 2010, 53, 8468; d) Friedel M., Golz G., Mayer P., Lindel T., Tetrahedron Lett., 2005, 46, 1623; e) Hartikka, P. I. Arvidsson, Tetrahedron: Asymmetry, 2004, 15, 1831. f) Sÿolaja B. A., Terzic N., Pocsfalvi G., Gerena L., Tinant B., Opsenica D., Milhous W. K., J. Med. Chem., 2002, 45, 3331.
17. Gutmann V., Coord. Chem. Rev., 1976, 18, 225.
18. It might be due to the conformation of 7 -substituted cycloheptenone but at present we are unable to reason this observation.
19. a) Krapcho A. P., Synthesis, 1982, 805; b) Krapcho A. P., Synthesis, 1982, 893.

2.12 Spectra of all new compounds

Mon2av2\#073 dec 09.001.001.1r.esp

CHLOROFORM-d

HSQC-1

HSQC

Thu2av400\#005.003.001.1r.esp

CHLOROFORM-d

Ph. D. Thesis, University of Pune 2013

2.11 HPLC spectras:

Shimadzu CLASS-VP V6.12 SP5
Method Name: C:ICLASS-VPLMethod eh 2.met
Data Name: C:ICLASS-VP\DatalDr.Ganesh Pandeylgp-1473
User:
System
Aequired: \quad 6/28/11 8:17:10 AM
Printed: \quad 6/29/11 5:37:39 PM
Sample Name PAA- pentane chiral

Detector A-1 (230nm)

| Retention Time | C Area | Area \% | |
| ---: | ---: | ---: | ---: | ---: |
| 57.392 | 5475348 | 51.559 | |
| 65.525 | 917351 | 8.638 | |
| 69.808 | 2865756 | 26.985 | |
| 87.192 | 1361180 | 12.818 | |
| Totals | | 10619635 | 100.000 |

[^0]

| Detector A - 1 (230nm) | | | |
| ---: | ---: | ---: | ---: | ---: |
| Retention Time | C Area | Area \% | |
| 52.183 | 1223415 | 16.603 | |
| 57.438 | 2479043 | 33.643 | |
| 60.242 | 2481126 | 33.671 | |
| 68.767 | 1185132 | 16.083 | |
| Totals | | 7368718 | 100.000 |

Shimadzu CLASS-VP V6.12 SP5

Method Name: C:ICLASS-VPMMethod ch 2,met
Data Name: C:ICLASS-VP\Data\Dr.Ganesh Pandey'gp-1426
User: System
Acquired: \quad 6/10/11 2:09:18 PM
Printed: \quad 6/10/11 3:31:32 PM
Sample Name PAA- ALLYLCYCLOHEXAINONE CHIRAL

| Detector A - 1 (230nm) | C Area | Area \% | |
| ---: | ---: | ---: | ---: | ---: |
| Retention Time | 4738840 | 85.350 | |
| 51.792 | 10641 | 0.192 | |
| 58.517 | 76365 | 1.375 | |
| 62.317 | 726393 | 13.083 | |
| 70.667 | | | 100.000 |

[^1]Shimadzu CLASS-VP V6.12 SP5
Methoul Name: C:ICLASS-VP\Method ch 2.met
Data Name: C:\CLASS-VP\DatalDr.Ganesh Pandeylgp-1566
User:
Acquired: \quad 8/8/11 12:07:22 PM
Printed: 8/10/11 10:53:11 AM
Sample Name PAA- ETHYL-ALLYL HEX RAC

Detector A - $1(230 \mathrm{~nm}$)		
Retention Time	C Area	Area \%
38.467	1973417	21.016
41.142	1870465	19.920
44.667	2732438	29.100
48.717	2813570	29.964
Totals		
	9389890	100.000

Shimadzu CLASS-VP V6.12 SP5
Method Name: C:ICLASS-VP\Method ch 2.met
Data Name: C:ICLASS-VPlDatalDr.Ganesh Pandeyigp-1568
User: System
Acquircd: \quad 8/8/11 2:32:43 PM
Printed: $\quad 8 / 10 / 11$ 11:00:58 AM
Sample Name PAA- ETHYL-ALLYL HEX chiral

| Detector A-1 (230nm) | | |
| ---: | ---: | ---: | ---: |
| Retention Time | C Area | Area \% |
| 38.183 | 5013488 | 84.724 |
| 4.817 | | |
| 42.850 | 462574 | 0.877 |
| 47.617 | 51877 | 6.583 |
| 51.342 | 389518 | 100.000 |

[^2]| Shimadzu CLASS-VP V6.12 SP5 | |
| :--- | :--- |
| Method Name: | C:ICLASS-VP\Method ch 2.met |
| Data Name: | C:\CLASS-VPIDatalDr.Ganesh Pandeylgp-1525 |
| User: | System |
| Acquircd: | $7 / 14 / 11$ 3:13:26 PM |
| Printed: | $7 / 14 / 115: 27: 44$ PM |
| Sample Name | PAA-OCTANE Rac |

Detector A-1 (230nm)		
Retention Time	C Arca	Area \%
22.433	3700	0.207
28.183	3500	0.196
46.608	895689	50.118
83.592	884283	49.479
Totals		
	1787172	100.000

Shimadzu CLASS-VP V6.12 SP5

Method Name: CilCLASS-VPMMethod ch 2.met
Data Name: C:\CLASS-VPUDatalDr.Ganesh Pandeylgp-1524
Ilser: System
Acquired: \quad 7/14/11 1:27:55 PM
Printed: \quad 7/14/11 3:11:25 PM
Sample Name PAA- OCTANE CHIRAL

Detector A-1 (230nm)

Retention Time	C Area	Area \%	
22.517	887523	31.971	
28.058	873897	31.480	
46.867	529112	19.060	
83.650	485489	17.489	
Totals			100.000

[^3]| Shimadzu CLASS-VP V6.12 SP5 | |
| :--- | :--- |
| Method Name: | C:ICLASS-VPMethod ch 2.met |
| Data Name: | C:lCLASS-VPDDataVDr.Ganesh Pandeyigp-1718 |
| User: | System |
| Acequired: | $11 / 22 / 11$ 3:06:23 PM |
| Printed: | $11 / 22 / 115: 50: 18$ PM |
| Sample Name | PAA-TBS rac |

Retention Time		
	C Area	Area \%
18.008	125498	16.848
18.908	125456	16.843
20.150	248433	33.353
21.633	245477	32.956
Totals		
	744864	100.000

Shimadzu CLASS-VP V6.12 SP5

Method Name: C:ICLASS-VPUMethod ch 2.met
$\begin{array}{ll}\text { Data Name: } & \text { C:ICLASS-VPWataWr.Ganesh Pandey\\&p-1719 } \\ \text { User: } & \text { System } \\ \text { Aequired: } & \text { 11/22/11 3:42:30 PM } \\ \text { Printed: } & \text { 11/22/11 5:56:36 PM } \\ \text { Sample Name } & \text { PAA-TBS chiral }\end{array}$

Detector A-1 (230nm)

| | C Arca | Area \% |
| ---: | ---: | ---: | ---: | ---: |
| Retention Time | 64915 | 7.923 |
| 18.117 | 265932 | 32.457 |
| 18.917 | 400777 | 48.916 |
| 20.142 | 87700 | 10.704 |
| 21.783 | 819324 | 100.000 |

Project Leader: Dr. Ganesh Pandey
Column \quad :Chiralcel OJ-H(250x4.6 mm)
Mobile Phase :IPA:Pet Ether (1.5:98.5)
Wavelength : 230 nm
Flow Rate $\quad: 0.5 \mathrm{ml} / \mathrm{min}(19 \mathrm{~kg})$
conc. $\quad: 1 \mathrm{mg} / \mathrm{mL}$
Inj vol- $: 5 \mathrm{ul}$

Shimadzu CLASS-VP V6.12 SP5
 Method Name: C:\CLASS-VP\Method ch 2.met
 Data Name: C:\CLASS-VP\Data\Dr.Ganesh Pandey\gp-1395
 User:
 System
 Acquired: \quad 6/4/11 8:00:43 PM
 Printed: \quad 6/6/11 5:11:16 PM
 Sample Name paa-274 I RAC

Detector A-1 (230nm)

| Retention Time | C Area | Area \% |
| ---: | ---: | ---: | ---: | ---: |
| 66.083 | 1556456 | 16.097 |
| 15.956 | | |
| 69.683 | 1542824 | 33.466 |
| 89.800 | 3235931 | 34.481 |
| 96.033 | 3334098 | |

Shimadzu CLASS-VP V6.12 SP5	Area \% Report
Page 1 of 1 paa-274 I B	
Method Name:	C:\CLASS-VP 4 Methods\Date6june.met
Data Name:	C:\CLASS-VP\Data\Dr.Ganesh Pandey $\backslash g p-1396$
User:	System
Acquired:	6/4/11 10:16:02 PM
Printed:	6/6/11 11:56:15 AM

Detector A - 1 (230nm) Pk \# Retention Time
1

[^4]

Detector A - $1(230 \mathrm{~nm}$)		
Retention Time	C Area	Area \%
36.225	484977	7.674
38.750	502208	7.946
47.783	2710434	42.887
54.242	2622304	41.493
Totals		
	6319923	100.000

Shimadzu CLASS-VP V6.12 SP5

Method Name:	C:ICLASS-VP\Method ch 2.met
Data Name:	C:lCLARs-VP\DatalDr.Ganesh Pandeylgi-1479
User:	System
Acquired:	6/28/11 5:39:16 PM
Printed:	6/29/11 5:28:02 PM
Sample Name	PAA-286-10 CHIRAL

Detector A-1 (230nm)		
Retention Timc	C Arca	Arca \%
48.508	8296120	90.082
57.142	913427	9.918
Totals		
	9209547	100.000

Project Leader : Dr. Ganesh Pandey	
Column	$:$ Chiralcel OD-H $(4,6 \times 250 \mathrm{~mm})$
Mobile Phase	$:$:tOH $: \mathrm{n}$-Hexane $(1.5: 98.5)$
Flow Rate	$: 0.5 \mathrm{ml} / \mathrm{min}$ (Pressure 235 kgf$)$
Wavelength	$: 230 \mathrm{~nm}$
Con.	$: 2 \mathrm{mg} / 0.5 \mathrm{ml}$
Inject vol. $\quad: 20 \mathrm{uL}$	

Detector A-1 (230nm)

Retention Time	C Area	Area \%
56.567	1185498	18.630
60.367	1233708	19.388
70.317	1974666	31.032
79.433	1969409	30.930
Totals		
	6363281	100.000

Shimadzu CLASS-VP V6.12 SP5

Method Name: C:ICLASS-VP Method ch 2.met
Data Name: C:ICLASS-VPIDatalDr.Ganesh Pandeylgp-1485
User: System
Acquired: $\quad 6 / 30 / 1110: 51: 34$ AM
Printed: $\quad 6 / 30 / 112: 49: 57$ PM
Sample Name PAA-287 iii Chiral

Detector A - 1 (230 nm)

Retention Time	C Area	Area\% \%	
54.950	27708	0.465	
58.325	115886	1.946	
67.325	1227209	20.613	
74.258	4582908	76.976	
Totals			

[^5]| Shimadzu CLASS-VP V6.12 SP5 | |
| :--- | :--- |
| Method Name: | C:lCLASS-VP\Method ch 2.met |
| Data Name: | C:\|CLASS-VP\DatalDr.Ganesh Pandeyigp-1630 |
| User: | System |
| Acquired: | $8 / 29 / 11$ 3:11:22 PM |
| Printed: | 8/29/11 4:29:07 PM |
| Sample Name | PAA-ETHYL-METHYL racemic |

Detector A-1 $\mathbf{(2 3 0 n m})$

| Retention Time | C Area | Area \% |
| ---: | ---: | ---: | ---: |
| 24.442 | 375714 | 16.750 |
| 25.692 | 715707 | 31.908 |
| 27.833 | 356823 | 15.908 |
| 29.550 | 794763 | 35.433 |
| Totals | | |
| 2243007 100.000 | | |

Shimadzu CLASS-VP V6.12 SP5
Method Name: C:\CLASS-VP\Method ch 2.met
Data Name: C:\CLASS-VP\DatalDr.Ganesh Pandeylgp-1631
User: System
Acquired: \quad 8/29/11 3:52:15 PM
Printed: \quad 8/29/11 5:36:47 PM
Sample Name PAA-ETHYL-METHYL Chiral

| Detector A-1 (230nm) | C Area | Area \% |
| ---: | ---: | ---: | ---: | ---: |
| Retention Time | 69472 | 11.409 |
| 26.450 | 539459 | 88.591 |
| 30.267 | | |
| Totals | 608931 | 100.000 |

[^6]Shimadzu CLASS-VP V6.12 SP5
Method Name; C:ICLASS-VPUMethod ch 2,met
Data Name:
C:ICLASS-VP\DatalDr.Ganesh Pandeylgp-1578
User: System
Acquired: $\quad 8 / 10 / 11$ 12:17:58 PM
Printed: \quad 8/10/11 1:03:36 PM
Sample Name PAA- NITRO-METHYL-RACEMIC

Detector A-1 ($\mathbf{2 3 0} \mathrm{nm}$)

Retention Time	C Area	Area \%	
19.183	1994552	48.729	
20.758	81851	2.000	
21.700	20552	0.502	
22.850	1996232	48.770	
Totals			

Shimadzu CLASS-VP V6.12 SP5

Method Name:	C:ICLASS-VPLMethod ch 2.met
Data Name:	C:ICLASS-VPIDatalDr.Ganesh Pandeylgp-1576
User:	System
Acquired:	$8 / 10 / 11$ 11:08:07 AM
Printed:	8/10/11 1:08:35 PM
Sample Name	PAA- NITRO-METHYL-CHIRAL

Detector A-1 (230nm)

Retention Time	C Area	Area \%	
19.008	1035975	82.852	
20.417	76093	6.086	
21.283	2147	0172	
22.358	136170	10.890	
Totals			
		1250385	100.000

```
Project Leader:Dr Ganesh Pandey
Column :Chiralcel-OD-H (4.6\times250 mm)
Mobile Phase :IPA:PE (5:95)
Flow Rate : :0.5ml/min (Pressure24Kgf)
Wavelength :230nm
Con. : :1mg/0.2ml
Inject vol. : 10 uL.
```


Detector A-1 $\mathbf{(2 3 0 n m})$

Detector A $-1(230 \mathrm{~nm})$	Cetention Time	Area	Area \%
28.250	1785509	33.076	
34.442	1757288	32.553	
38.967	927855	17.188	
42.617	927540	17.182	
Totals			
		5398192	100.000

Shimadzu CLASS-VP V6.12 SP5

Method Name: C:ICLASS-VPLMethod ch 2.met
Data Name: C:\CLASS-VPIData\Dr.Ganesh Pandeyigp-1606
User: System
Acquired: \quad 8/24/11 3:12:11 PM
Printed: \quad 8/24/11 4:31:51 PM
Sample Name PAA-ETHYL-ETHYL Chiral

Detector A = 1 (230nm)	C Area	Area \%	
Retention Time	26.892	314032	21.747
33.792	6312377	3.296	
35.717	830067	66.246	
41.600		8.711	
Totals		9528636	100.000

[^7]

Detector A-1 (230nm)

Retention Time	C Area	Area \%
20.500	4952682	25.245
24.033	4816357	74.550
32325	3103221	26.013
42.233	4745929	24.191
Totals		
	19618189	100.000

Shimadzu CLASS-VP V6.12 SP5

Method Name: C:ICLASS-VP\Method ch 2.met
Data Name: C:\CLASS-VPUData\Dr.Ganesh Pandeyigp-1595
User: System
Asquired: \quad 8/19/11 11:40:15 AM
Printed: \quad 8/19/11 6:05:23 PM
Sample Name PAA- methyl acyelic

Detector A-1 ($\mathbf{2 3 0 \mathrm { nm } \text {) }) ~}$

Retention Time	C Area	Area \%
21.733	505982	25.065
25.858	505493	25.041
34.433	497050	24.623
43.542	510137	25.271
Totals		
	2018662	100.000

[^8]Shimadzu CLASS-VP V6.12 SP5
Method Name: C:ICLASS-VP \backslash Method ch 2.met
Data Name: C:ICLASS-VP\DatalDr.Ganesh Pandeyigp-1597
User: System
Acquired: \quad 8/19/11 2:27:24 PM
Printed: \quad 9/12/11 11:14:00 AM
Sample Name PAA- ethyl acyclic-rac

Detector A-1 (230 nm)

	C Area	Area \%	
Retention Time	644851	25.093	
42.683	685344	26.668	
47.567	624421	24.298	
71.642	615276	23.942	
88.017			
Totals		2569892	100.000

Shimadzu CLASS-VP V6.12 SP5
Method Name: C:\CLASS-VP\Method ch 2.met
Data Name: C:\CLASS-VP\DatalDr.Ganesh Pandeylgp-1598
User: System
Acquired: $\quad 8 / 19 / 11$ 4:11:18 PM
Printed: \quad 9/12/11 11:20:03 AM
Sample Name PAA- ethyl acyclic- chiral

Detector A-1 (230nm) Retention Time		
	C Area	Area \%
68.767	234071	7.871
78.158	2739599	92.129
Totals		
	2973670	100.000

Project Leader:	Dr. Ganesh Pandey
Column	$:$ Kromasil 5-Amycoat (250x4.6mm)
Mobile Phase	$:$ IPA:n-Hexane (2.5:97.5)
Wavelength	$: 230 \mathrm{~nm}$
Flow Rate	$: 0.5 \mathrm{ml} / \mathrm{min} 22 \mathrm{kgf}$
conc.	$: 0.5 \mathrm{mg} / 1.0 \mathrm{ml}$
Inj vol-	$: 20 \mathrm{ul}$

Chapter 3

Synthesis of tertacyclic core of higher iridoid from chiral-2,5-dialkyf cyclohexanone

Chapter 3

3.1 Introduction

The higher iridoids featuring an interesting cyclic acetal and α-ethylidene- β-oxy- γ butyrolactone ring system with six chiral centres have made synthesis of these molecules an intriguing and challenging target for organic chemists. Although, β-oxy- γ-butyrolactone ring system is found rarely in a natural product, Prismatomerin (1) recently isolated higher iridoid from the leaves of Prismatomeris tetrandra possessess this structural feature and have shown remarkable antitumor activity by interfering with the spindle formation without affecting microtubules directly. ${ }^{1}$

1, $\mathrm{R}=\mathrm{H}$ Prismatomerin

Scheme 3.1: Organocatalyzed asymmetric intra-molecular aldol reactions

Closely related to Prismatomerin (1) is Allamandin (5) and Plumericin (4) which are also known to exhibit high antileukemic ${ }^{2}$ and antitumor ${ }^{3}$ activity respectively. Allamandin (5) and Plumericin (4) has been subject of two elegant syntheses exploiting cis-ring junction stereochemistry of bicyclo[3.3.0]octenone as a handle for the installation of remaining stereocentres. ${ }^{4}$ We visualized the synthesis of the tetracyclic core of higher iridoids differently, utilizing cyclopentane ring $\mathbf{6}$ with requisite three contiguous stereocentres. We

Chapter 3

proposed synthesis of the cyclopentane 7 by organocatalytic intramolecular aldol cyclization of $\mathbf{8}$ considering the advantage of synthesizing both enantiomeric products simply by using (S)- or (R)-proline. Although, List et al. have reported proline-catalyzed asymmetric intramolecular aldol reaction ${ }^{5}$ (Scheme 3.2) from 9 for the synthesis of β -hydroxy-cyclohexyl formaldehyde $\mathbf{1 0}$ with anti-diastereoselectivity, construction of corresponding cyclopentane ring system employing this strategy is still unexplored. With this background information, we set out our exploration of synthesizing 7 utilizing organocatalyzed intramolecular aldol cyclization as a key step starting with $\mathbf{8}$. The proceeding Chapter will discuss our progress in this endeavor.

Scheme 3.2: List's protocoel for proline-catalyzed asymmetric intramolecular aldol reactions

3.2 Results and discussion

In Chapter 2, we have extensively discussed development of a synthetic methodology for the synthesis of chiral 2,5-dialkyl cyclohexanones $\mathbf{1 2}$, required as a starting material for designed synthesis of tetracyclic core $\mathbf{6}$ common for all higher iridoids. Having achieved scalable synthesis of 12, we focused our attention towards synthesizing 7 by organocatalytic intramolecular aldol cyclization of $\mathbf{8}$, accessible from 11 by ozonolysis as shown in Scheme 3.3.

Scheme 3.3

Chapter 3

3.2.1 $1^{\text {st }}$ Generation approach for the synthesis of 11

Initially, we planned the synthesis of $\mathbf{1 1}$ from $\mathbf{1 2}$ utilizing Bamford-Steven reaction on hydrazone 13. As already known, in a Bamford- Steven reaction, ${ }^{6}$ a tosylhydrazone on treatment with a strong base such as $\mathrm{NaH}, \mathrm{NaOMe}$ in an aprotic solvent gives a more substituted alkene.

Scheme 3.4: Synthesis of olefin 11 utilizing Bamford-Steven reaction

Table 3.1: Various synthetic attempts for synthesis of $\mathbf{1 1}$ via Bamford-Steven reaction

Sr. no.	Reaction condition for Bamford-Steven reaction on $\mathbf{1 3}$	Yield of $\mathbf{1 1}$ $(\%)$
1^{7}	NaOMe, diglyme, $160^{\circ} \mathrm{C}$	10
2	NaH, diglyme, $160^{\circ} \mathrm{C}$	10
3^{8}	LiH, toluene, reflux	5
4^{9}	$\mathrm{KH}, 18-$ crown- 6, diglyme $100^{\circ} \mathrm{C}$	No reaction
5^{10}	$\mathrm{NaO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{ONa}, \mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}, 160^{\circ} \mathrm{C}$	5
6^{11}	$\mathrm{t}-\mathrm{BuOK}, \mathrm{N}$-methyl pyrrolidone, $150^{\circ} \mathrm{C}$	7

We treated $\mathbf{1 3}$, synthesized in quantitative yield by treating $\mathbf{1 2}$ with tosylhydrazine in dry ethanol, with NaOMe (2.5 equiv.) in diglyme at $160^{\circ} \mathrm{C}$ which produced desired 11, only in 10% yield. The structural assignment of 11 was based on observing a broad singlet, integrating for one proton, at $\delta 5.38$ for vinylic proton $(\mathrm{C}=\mathrm{C}-\underline{\mathrm{H}})$ in ${ }^{1} \mathrm{H}$ NMR spectra. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 1}$ also showed one tertiary olefinic carbon at $\delta 119.4$ along with a quaternary carbon at δ 133.7. Since 11 was obtained in only 10% yield, we screened various other reaction conditions as mentioned in Table 3.1, however, all possible

Chapter 3

attempts to further improve yield failed. Therefore, we designed another strategy of obtaining $\mathbf{1 1}$ from $\mathbf{1 2}$ as described in section 3.2.2.

3.2.2 $2^{\text {nd }}$ Generation approach for synthesis of $\mathbf{1 1}$

Next we planned the synthesis of 11 by dehydration of $\mathbf{1 4}$ via corresponding mesylate derivative 15. Compound 15 was obtained (60% yield) by selective reduction of 12 with sodium borohydride in pH 7 buffer- MeOH conditions $(1: 1),{ }^{12}$ followed by mesylation with mesityl chloride at $0{ }^{\circ} \mathrm{C}$. Subjecting 15 under various reaction conditions as shown in Table 3.2 did not give desired 11.

Table 3.2: Attempts for mesylate elimination

Sr.no.	Conditions tried for mesylate elimination	Result
1	$\mathrm{NEt}_{3}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 12 \mathrm{~h}$, reflux	SM recovered
2	Pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Reflux	SM recovered
3	$\mathrm{NaOMe}, \mathrm{THF}, \mathrm{RT}$	SM recovered
4	$\mathrm{NaOMe}, \mathrm{THF}$, reflux	Complex mixture
5^{13}	DBU, toluene, reflux, 4 h	$\mathbf{1 6 : 1 1}(5: 1)$
6^{14}	$\mathrm{DMAP}, \mathrm{DMSO}, 170{ }^{\circ} \mathrm{C}$	Monodecarboxylation
		of malonate group
7^{15}	$\mathrm{NaOAc}, \mathrm{AcOH}, 110{ }^{\circ} \mathrm{C}$	Complex mixture
8^{16}	$\mathrm{KH}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}$ to RT	SM recovered

Surprisingly, refluxing 15 with DBU in dry toluene gave an inseparable mixture of 16 along with required 11 in a ratio of 5:1. Tentative structural assignment of $\mathbf{1 6}$ was based on observing two protons in olefinic region between $\delta 5.48-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{~d}$, $J=10.29 \mathrm{~Hz}, 1 \mathrm{H})$ in the ${ }^{1} \mathrm{H}$ NMR spectra. ${ }^{13} \mathrm{C}$ NMR also confirmed the presence of two olefinic carbons at $\delta 124.9,133.1(\underline{\mathrm{H}}-\mathrm{C}=\mathrm{C}-\underline{\mathrm{H}})$. Mass spectrum gave molecular ion peaks at $m / z 393.2(\mathrm{M}+\mathrm{Na}, 100), 371.1(\mathrm{M}+1,10)$.

Chapter 3

Scheme 3.5: Synthesis of olefin 11 via mesylate elimination

Having failed to obtain desired 11 again using the reaction conditions as mentioned in Table 3.2, we proposed to proceed via palladium catalyzed reductive elimination ${ }^{17}$ of corresponding vinyl triflate $\mathbf{1 7}$ (Scheme 3.6). Towards this end, we attempted the transformation of $\mathbf{1 2}$ to $\mathbf{1 7}$ by screening various reaction conditions as shown in Table 3.3. However, unfortunately all our attempts to obtain 17 from ketone $\mathbf{1 2}$ failed.

Scheme 3.6

Table 3.3: Attempts for synthesis of vinyl triflate 17

Sr. no.	Condition	Reaction outcome
1^{18}	2,6-ditert-butyl-4-methylpyridine, (Tf) ${ }_{2} \mathrm{O}, \mathrm{RT}$	SM decomposes
2^{18}	$(\mathrm{Tf})_{2} \mathrm{O}, \mathrm{NEt}_{3}, \mathrm{DMF}, 110{ }^{\circ} \mathrm{C}$	SM recovered
3	$(\mathrm{Tf})_{2} \mathrm{O}$, Pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, Reflux	SM recovered
4^{19}	$\mathrm{NEt}_{3}, \mathrm{ClPhN}(\mathrm{Tf})_{2}, \mathrm{CH}_{3} \mathrm{CN}$, reflux	SM recovered

5^{20}	NaHMDS, THF, $0^{\circ} \mathrm{C}$ TO RT then $\mathrm{PhN}(\mathrm{Tf})_{2}$	SM recovered
6^{21}	TMSOTf, $\mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ TO RT then MeLi	Complex mixture
	$(1.5 \mathrm{~h})$ then $\mathrm{ClPhN}(\mathrm{Tf})_{2}$	
7^{22}	$(\mathrm{i}-\mathrm{Pr})_{2} \mathrm{NMgBr}, \mathrm{HMPA}, 6 \mathrm{~h}, \mathrm{RT}$ then $\mathrm{PhN}(\mathrm{Tf})_{2}$,	SM recovered
reflux		

This frustrating observation led us to evaluate the dehydration of $\mathbf{1 4}$ itself using Overman's protocol. ${ }^{23}$ Accordingly, $\mathbf{1 4}$ was stirred with SOCl_{2} in CHCl_{3} at room temperature for 12 h , however, we obtained $\mathbf{1 8}$ instead of $\mathbf{1 1}$. Structure of $\mathbf{1 8}$ was assigned based on disappearance of signal corresponding to carboethoxy protons at $\delta 3.85-4.10$ and 1.25 in ${ }^{1} \mathrm{H}$ NMR.

Scheme 3.7

3.2.3 3rd Generation approach for the synthesis of 8

Faced with unforeseen problems of synthesizing 11 through the protocols as described above, we envisaged preparing 8 altogether in a different manner via oxidative cleavage of C1-C2 bond of 19 (Scheme 3.8).

Chapter 3

Scheme 3.8: $3^{\text {rd }}$ Generation retrosynthetic analysis via hydroxyl ketone

In order to prepare $\mathbf{1 9}$, compound $\mathbf{1 2}$ was treated with $\mathrm{TBSOTf} / \mathrm{Et}_{3} \mathrm{~N}$ in the presence of catalytic amount of DMAP in dichloromethane at $0{ }^{\circ} \mathrm{C}$ which produced inseparable mixture $\mathbf{2 0}$ and $\mathbf{2 1}$ in 9:1 mixture. Treating the mixtures of $\mathbf{2 0}$ and $\mathbf{2 1}$ as such with $\mathrm{OsO}_{4}{ }^{24}$ followed by acidic workup gave required 19 in 70% yield $(d r=4: 1)$ along with $22(10 \%, d r=4: 1)$ and 23 (20 \%).

Scheme 3.9

The IR spectra of 19 showed characteristic absorption band of a hydroxyl moiety at $3480 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR of 19 showed disappearance of peaks at $\delta 0.11(\mathrm{~d}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H})$

Chapter 3

corresponding to TBS ether. The assigned structure of 19 was further supported by carbon signal at $\delta 73.56$ corresponding to oxa-quaternary carbon in ${ }^{13} \mathrm{C}$ NMR. Mass spectrum showed $\mathrm{M}+$ Na peak at 425.3 .
${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 2}$ displayed a doublet at $\delta 4.80(\mathrm{~d}, J=12.30 \mathrm{~Hz}, 1 \mathrm{H})$, assigned to methine proton (- $\mathrm{C} \underline{\mathrm{H}}-\mathrm{OH}$), and a carbon signal at $\delta 73.6$ in ${ }^{13} \mathrm{C}$ NMR respectively, indicating the presence of a tertiary hydroxyl functionality in the product. Peaks at 425 (M $+\mathrm{Na}, 100), 403(\mathrm{M}+1,10)$ in mass spectrum confirmed the structure of $\mathbf{2 2}$.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 23 did not show characteristic signals corresponding to carboethoxy moiety, instead displayed C2 (oxa-quaternary) at δ 85.9. The assigned structure for $\mathbf{2 3}$ was confirmed undoubtedly by mass spectrum by observing $\mathrm{M}+$ Na at 388.5.

Reduction of 19 with NaBH_{4} produced 24 (confirmed by mass) which on oxidative cleavage using sodium metaperiodate in acetone/water (9:1) gave complex reaction mixture. Since $\mathbf{2 3}$ is likely to be in equilibrium with $\mathbf{2 5}$ in a protic solvent (Scheme 3.10), we even tried one pot reduction followed by oxidative cleavage in $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ but still we could not obtain 8 (Scheme 3.10).

Scheme 3.10

This failure led us to revise our strategy once again for the synthesis of $\mathbf{8}$, thus we proceeded towards synthesis of $\mathbf{8}$ as shown in Scheme-3.11. We surmised selective reduction of $\mathbf{2 6}$ to obtain 27 which could be eventually converted to 8 . As per our planned strategy, we subjected 19 directly to oxidative cleaved by stirring with silica gel-supported $\mathrm{NaIO}_{4}{ }^{25}$ in toluene which produced 26 quantitatively (Scheme 3.11). Disappearance of oxaquaternary carbon signal at $\delta 76.65$ present in starting 19 and other carbon signals at δ 168.6, 168.7, 172.8, 176.8, 205.1 confirmed the presence of three ester functionality along

Chapter 3

with carboxylic acid group in the product. Further confirmation for the formation of $\mathbf{2 6}$ was obtained from mass spectrum (441.45, M+ Na, 100).

Scheme 3.11

With acid 26 in hand, stage was set for selective reduction of acid functionality. Towards this end, we tried various reaction conditions (Table 3.3), however all our attempts led to the formation of complex reaction mixture. Reduction using BH_{3}. DMS in dry $\mathrm{Et}_{2} \mathrm{O}$ produced $\mathbf{2 8}$ instead of $\mathbf{2 7}$.

Table 3.3: Attempts for selective reduction of acid 26

Sr.no.	Condition A	Result
1^{26}	$\mathrm{BH}_{3} . \mathrm{THF}, \mathrm{THF},-15^{\circ} \mathrm{C}, 1 \mathrm{hr}$ quenched with	Complex reaction mixture
2	NaHCO_{3}	
3^{27}	$\mathrm{BH}_{3} . \mathrm{THF}, \mathrm{THF},-50^{\circ} \mathrm{C}$ to RT, 8 hr	Complex reaction mixture
4^{28}	$\mathrm{BH}_{3} . \mathrm{SMe}_{2}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{RT}, 0.5$ hr reflux quenched	
	with MeOH	Complex reaction mixture

These failures led us to conclude that synthesis of $\mathbf{8}$ was difficult and proceeding with 11 was not practical owing to low yield. We thought presence of malonate

Chapter 3

functionality could be reason for the low yield. Therefore, we revised our strategy again utilizing 29 as starting material for synthesis of dicarbonyl 31.

3.2.4 Synthesis of 31

Scheme 3.12: Synthesis of $\mathbf{3 1}$

To synthesize 31, we again started with $\mathbf{1 2}$ which on carbonyl protection as a dimethylketal followed by decarboxylation with LiCl in DMSO^{29} at $140^{\circ} \mathrm{C}$ furnished 29 in excellent yield of 80%. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 29 indicated it to be a mixture of diastereomers ($d r=4: 1$). Converting 29 to its Tosyl hydrazone derivative followed by subjecting it to Bamford-Steven reaction (NaH, Toluene, reflux) gave desired 30 in 60% yield and 95\% optical purity (Chiralcel OD-H, i-PrOH:petroleum ether 20:80, $0.7 \mathrm{~mL} / \mathrm{min}$, 230 nm). Ozonolysis of $\mathbf{3 0}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ gave $\mathbf{3 1}$ in 70% yield. Compound $\mathbf{3 1}$ was characterized based on the observation of an aldehyde proton $\delta 9.63(\mathrm{dd}, J=3.01,1.25 \mathrm{~Hz})$ in ${ }^{1} \mathrm{H}$ NMR and presence of signal at $\delta 200.3$ and 205.3 in ${ }^{13} \mathrm{C}$ corresponding to aldehyde and ketone carbonyl.

3.2.5 Organocatalyzed Intramolecular aldol cyclization of 31

Having desired $\mathbf{3 1}$ in hand, stage was set to attempt organocatalytic intramolecular aldol cyclization. Different catalyst and solvent conditions as given in Table 3.4 were

Chapter 3

examined for organocatalytic intramolecular aldol reaction. Complete consumption of starting 31 in aldol reaction was monitored by GC and after completion; reaction mixture was subjected to NaBH_{4} reduction followed by TBS protection. Among the catalyst (Figure 3.1) and Solvents (Table 3.4) screened only L-Proline in dry DMSO was found to provide 32 as a single diastereomer along with enal 33 (Scheme 3.13). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 2}$ displayed signal at $\delta 0.05$ and 0.88 characteristic for TBS ether and at 3.88 as multiplet

Scheme 3.13: Organocatalyzed Intramolecular aldol cyclization of $\mathbf{3 7}$

Figure 3.1: Catalyst screened

Table 3.4: Condition for organocatalytic intramolecular aldol reaction of 37

Sr.no.	Condition for aldol cyclization of $\mathbf{3 7}$	Result
1^{5}	$\mathbf{3 4}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}$	Complex reaction mixture
2	$\mathbf{3 4}$, dist $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}$	Enal $\mathbf{3 3}$
2	$\mathbf{3 4}$, dry $\mathrm{CHCl}_{3}, \mathrm{RT}$	No reaction
3	$\mathbf{3 5 a}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}$	No reaction
4	$\mathbf{3 5 b}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}$	No reaction
5^{30}	$\mathbf{3 6}, \mathrm{DMF}, \mathrm{RT}$	Complex reaction mixture
6^{30}	$\mathbf{3 7}, \mathrm{DMF}, \mathrm{RT}$	Complex reaction mixture
7	$\mathbf{3 4}$, dry DMSO, RT, $12 \mathbf{h}$	$\mathbf{3 2}+\mathbf{3 3}$

Chapter 3

integrating for six protons was assigned to $\left(\mathrm{C}_{\underline{2}}^{2}-\mathrm{OTBS}\right)$ and $\left(\left(\mathrm{CH}_{2} \mathrm{O}\right)_{2}\right)$. The assigned structure was ascertained by signal at $\delta 89.5$ corresponding to oxaquaternary carbon in ${ }^{13} \mathrm{C}$ NMR. Further mass peak at $437.07(\mathrm{M}+\mathrm{Na})$ confirmed the proposed structure of 32. The final confirmation for stereochemistry of stereocentres on $\mathbf{3 2}$ was tentatively assigned from NOESY studies (Figure 3.2).

32
Figure 3.2 relative stereochemistry confirmations for $\mathbf{3 2}$ using NMR

3.3 Summary

An advanced chiral intermediate 32, adorned with all requisite functionalities for further elaboration to tetracyclic core of higher Iridoid, has been synthesized employing organocatalytic intra-molecular aldol cyclization of 31. Further transformation of $\mathbf{3 2}$ to target tetracyclic core 6 is in progress. Completion of chiral synthesis of iridoids will help to establish its optical purity and absolute stereochemistry.

Chapter 3

3.4 Experimental section

Dimethyl-2-(9-(3-ethoxy-3-oxopropyl)-1,4-dioxaspiro[4.5]dec-8-en-6-yl)malonate (11):

$12(0.1 \mathrm{~g}, 0.26 \mathrm{mmol})$ dissolved in 2 mL EtOH was added to a solution of tosyl hydrazine ($0.058 \mathrm{~g}, 0.31 \mathrm{mmol}$) in 2 mL dry EtOH under argon. Reaction mixture was stirred at room temperature. After complete disappearance of starting material, monitored by TLC, reaction mixture was concentrated and dried under reduced pressure to obtain $\mathbf{1 3}$ which was used as such without further purification. To crude 13, NaOMe ($0.042 \mathrm{~g}, 0.78 \mathrm{mmol}$) and 4 mL of dry diglyme was added. The reaction mixture was stirred for 4 h at $160^{\circ} \mathrm{C}$ and then cooled to RT. On complete consumption of $\mathbf{1 3}$, monitored by TLC, reaction mixture was quenched with water, and extracted with EtOAc (3x10 mL). Combine organic layer was washed 5 times with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ to remove diglyme, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue obtained was purified by column chromatography to obtain 11 in 10 \% yield as pale yellow liquid, eluting with EtOAc/petroleum ether (25:75).

Yield:	10 \%
$\alpha_{\text {D }}^{32.1}$	+29.73 (${ }^{\text {c 1.12, }} \mathrm{CHCl}_{3}$)
$\mathrm{IR} v_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	$\begin{aligned} & \text { 3019, 1976, 2894, 2400, 1732, 1435, 1372, 1215, } \\ & \text { 1045, } 760 \end{aligned}$
${ }^{1} \mathrm{H} \text { NMR }\left(\mathrm{CDCl}_{3}, 500\right.$	$1.25(\mathrm{t}, \mathrm{~J}=7.2,3 \mathrm{H}), 2.5-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.37$
MHz) ס	$\begin{aligned} & (\mathrm{m}, 5 \mathrm{H}), 2.37-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{~d}, J=5.80 \mathrm{~Hz}, 1 \\ & \mathrm{H}), 3.50(\mathrm{~d}, J=9.77 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.74(\mathrm{~m}, 6 \mathrm{H}) \text {, } \\ & 3.89-4.00(\mathrm{~m}, 4 \mathrm{H}), 4.12(\mathrm{q}, J=7.22 \mathrm{~Hz}, 2 \mathrm{H}), 5.38 \\ & \text { (br s., } 1 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 126	14.2, 27.7, 31.9, 32.5, 37.8, 40.5, 51.6, 52.4, 52.4,
MHz) $\boldsymbol{\delta}$	60.3, 64.2, 64.8, 108.6, 119.4, 133.7, 168.9, 169.2,

$$
\text { : } 393.2 \text { (M + Na, 100), } 371.1 \text { (M + H, 15) }
$$

Dimethyl-2-(9-(3-ethoxy-3-oxopropyl)-8-hydroxy-1,4-dioxaspiro[4.5]decan-6-yl)

 malonate (14):

To a solution of $\mathbf{1 2}(0.5 \mathrm{~g}, 1.95 \mathrm{mmol})$ in 6.0 mL MeOH and 6.0 mL pH 7 buffer at $0{ }^{\circ} \mathrm{C}$ was added solid sodium borohydride ($0.037 \mathrm{~g}, 0.975 \mathrm{mmol}$) in one portions. After complete disappearance of the starting material, monitored by TLC, the reaction mixture was quenched by careful addition of saturated aqueous solution of ammonium chloride (10 mL) with vigorous stirring. Ethanol was removed under reduced pressure and the resulting aqueous solution was extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). Combined organic layers were washed with brine ($1 \times 30 \mathrm{~mL}$), dried over anhy. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford $\mathbf{1 4}$ which was directly used for next step without any purification.

Note: 14 was not very stable, forms a very polar spot at room temperature, which could not be analyzed, so was immediately forwarded for next step.

$\alpha_{\text {D }}^{31.5}$	+43.44 (c 3.23, CHCl_{3})
IR $v_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	3451, 2954, 2396, 1731, 1436, 1315, 1217, 1153, 755
${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 200	1.25 (t, J = $7.01 \mathrm{~Hz}, 3 \mathrm{H}), 1.46-1.64$ (m, 2 H$)$, $1.78-$
MHz) ${ }^{\text {J }}$	2.00 (m, 4 H), 2.03-2.25 (m, 2 H), 2.35 (s, 1 H), 2.46
	- 2.60 (m, 1 H), 2.62-2.78 (m, 1 H), 3.62-3.78 (m, 8
	H), 3.85-4.10 (m, 6 H).
Mass: m/z (\%)	411.03 (M + Na, 100), 365 (5).

Chapter 3

Dimethyl-2-((6S,9S)-9-(3-ethoxy-3-oxopropyl)-8-((methylsulfonyl)oxy)-1,4-dioxaspiro [4.5] decan-6-yl)malonate (15):

To a magnetically stirred solution of the $\mathbf{1 4}(0.379 \mathrm{~g}, 1.47 \mathrm{mmol})$ in $5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NEt}_{3}(0.3 \mathrm{~mL}, 2.2 \mathrm{mmol})$ followed by methanesulfonyl chloride $(0.14 \mathrm{~mL}, 1.76$ mmol) and the reaction mixture was stirred for 4 h . Reaction mixture was then diluted with 5 ml of water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{ml})$. The organic layer was washed with saturated aq. NaHCO_{3}, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and purification of the residue on a silica gel column using EtOAc:petroleum ether (35:65) as eluent furnished the mesylate $\mathbf{1 5}$ in 60% yield $(0.274 \mathrm{~g})$.

Yield:	60 \%
$\alpha_{\text {D }}{ }^{25}$	-6.8 (c 2.3, $\left.\mathrm{CHCl}_{3}, d r=2: 1\right)$
IR $v_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	$\begin{aligned} & 2945,2396,2255,1731,1445,1315,1213,1155, \\ & 1025,715 \end{aligned}$
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$	1.25 (t, J = $7.03 \mathrm{~Hz}, 3 \mathrm{H}), 1.46-1.57$ (m, 1 H$) 1.79-$
MHz) $\mathbf{\delta}$	1.98 (m, 2 H), 1.99-2.11 (m, 2 H), 2.22-2.43 (m, 3
(diastereomeric ratio	H), 2.64-2.79 (m, 1 H), 3.08 (s, 1 H$)$, 3.14 (s, 2 H$)$,
2:1)	$3.13-3.21$ (m, 1 H), 3.63 (d, J = $7.03 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-$
	3.76 (m, 6 H), 3.82-4.00 (m, 4 H), 4.12 (q, J = 7.03
	Hz, 2 H), 4.44 (td, J = 10.79, 4.52 Hz, 1 H)
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 101$	14.2, 26.6, 31.1, 37.0, 38.8, 38.8, 42.6, 50.3, 52.9,
MHz) $\boldsymbol{\delta}$	$52.6,60.5,64.5,64.8,77.2,82.5,107.7,168.5$
(diastereomeric ratio	168.72, 173.0
2:1)	
Mass: m/z (\%)	489.2 (M + Na, 15), 393.1 (M-Ms + Na, 100), 371.1

Chapter 3

$$
\text { (15), } 365 \text { (10), } 349.1 \text { (2) }
$$

Dimethyl-2-(9-(3-ethoxy-3-oxopropyl)-1,4-dioxaspiro[4.5]dec-7-en-6-yl)malonate

 (16):
$15(0.04 \mathrm{~g}, 0.058 \mathrm{mmol})$ was heated at reflux with freshly distilled DBU $(0.032 \mathrm{~mL}, 0.22)$ in dry toluene $(4 \mathrm{~mL})$ at $110{ }^{\circ} \mathrm{C}$ for 4 h . After completion of the reaction, monitored by TLC, the volatile material was evaporated and the residue was purified by flash chromatography using EtOAc:petroleum ether $(25: 75)$ as eluent to furnish the inseperable mixture of $\mathbf{1 6}$ and $\mathbf{1 1}$ in 5:1 ratio.

Yield:	: $90 \%(16: 11 ; 5: 1)$
$\alpha_{\text {D }}{ }^{25}$: +30.48 (c 0.87, CHCl_{3}, regio-isomer ratio 5:1)
IR $\nu_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	$\begin{aligned} : & 3019,2976,2400,1731,1520,1435,1216,1046, \\ & 928,877,757,669 \end{aligned}$
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$: 1.26 (t, $J=7.03,3 \mathrm{H}), 1.49-1.63$ (m, 2 H$), 1.63-$
MHz) $\overline{\text { \% }}$	1.86 (m, 3 H), 2.26-2.50 (m, 3 H), 3.10-3.19 (m, 1
	H), 3.39 (d, $J=10.04 \mathrm{~Hz}, 1 \mathrm{H})$, 3.65-3.78 (m, 6 H),
	3.80-3.89 (m, 1 H), 3.89-4.04 (m, 3 H), 4.13 (q, J =
	$7.03 \mathrm{~Hz}, 2 \mathrm{H}), 5.48-5.60$ (m, 1 H), 5.71 (d, J = 10.29
	Hz, 1 H)
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 101$: 14.2, 30.2, 31.5, 34.6, 35.1, 43.1, 52.5, 52.6, 55.1,
MHz) $\overline{\text { J }}$	60.4, 64.5, 64.9, 108.8, 124.9, 133.1, 168.2, 168.80,
	173.4
Mass: m/z (\%)	: $393.2(\mathrm{M}+\mathrm{Na}, 100), 371.1(\mathrm{M}+1,10), 304.5$ (25)

Chapter 3

Dimethyl 2-(2-oxooctahydrospiro [chromene-6,2'-[1,3]dioxolan]-7-yl)malonate (18):

Compound $14(0.108 \mathrm{~g}, 0.28 \mathrm{mmol})$ dissolved in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ was added dropwise to cold freshly distilled $\mathrm{SOCl}_{2}(0.1 \mathrm{~mL}, 1.4 \mathrm{mmol})$ at $-30{ }^{\circ} \mathrm{C}$. The resulting solution was allowed to warm to RT and allowed to stir for 20 h before volatile materials were removed under reduced pressure. The residue was partitioned between saturated $\mathrm{NaHCO}_{3}(1 \times 10 \mathrm{~mL})$ and CHCl_{3}. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to viscous liquid, which was further purified by flash chromatography using EtOAc:petroleum ether (40:60) as eluent to obtain 18 in 70% yield $(0.067 \mathrm{~g})$.

Chapter 3

(S)-Dimethyl-2-(8-((tert-butyldimethylsilyl)oxy)-9-(3-ethoxy-3-oxopropyl)-1,4-dioxaspiro[4.5]dec-8-en-6-yl)malonate (20):

To $12(1.54 \mathrm{~g}, 3.6 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(2.8 \mathrm{~mL}, 19.89 \mathrm{mmol})$ and catalytic DMAP $(0.243 \mathrm{~g}, 1.99$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added TBSOTf ($4.6 \mathrm{~mL}, 19.89 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After stirring at same temperature for 1 h , the reaction mixture was poured into a saturated aqueous NaHCO_{3} and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layer was washed with saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was then concentrated under reduced pressure and the crude silyl enol ether was further purified by column chromatography using EtOAc: petroleum ether ($15: 85$) as eluent to furnish $\mathbf{2 0}$ as colourless liquid $(95 \%, 1.83 \mathrm{~g})$.

Yield:	95 \%
$\alpha_{\text {D }}{ }^{25}$	+27.4 (c 1.85, CHCl_{3})
IR $v_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	$\begin{aligned} & 3019,2976,2896,2400,1713,1435,1254,1215, \\ & 1046,840,759,669 \end{aligned}$
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200$	0.11 (s, 3 H), 0.11 (s, 3 H$), 0.92$ (s, 9 H$), 1.24$ (t, J =
MHz) $\overline{\text { ¢ }}$	$\begin{aligned} & 7.14 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 1 \mathrm{H}), 2.14-2.46(\mathrm{~m}, 7 \mathrm{H}), 3.52 \\ & (\mathrm{~d}, \mathrm{~J}=9.60 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.74(\mathrm{~m}, 6 \mathrm{H}), 3.87-4.05 \\ & (\mathrm{~m}, 4 \mathrm{H}), 4.11(\mathrm{q}, ~ J=7.07 \mathrm{~Hz}, 2 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C} \text { NMR } \quad\left(\mathrm{CDCl}_{3}, \quad 50\right.$	-3.9, -3.8, 14.17, 18.1, 25.6, 25.7, 32.2, 32.6, 36.5,
$\text { MHz) } \delta$	$\begin{aligned} & 41.1,51.4,52.4,60.2,64.17,64.86,108.2,110.2 \\ & 142.1,168.8,169.0,173.5 \end{aligned}$
Mass: m/z (\%)	523.2 (M + Na, 100)

Chapter 3

Procedure for oxidation of vinyl TBS ether to hydroxyl ketone:

A solution containing the $\mathbf{2 0}(1.2 \mathrm{~g}, 2.39 \mathrm{mmol})$ in 7 mL of t-butyl alcohol was added at 0 ${ }^{\circ} \mathrm{C}$ to a mixture containing 0.24 mmol of OsO_{4} (added as a solution in 0.7 mL of t-butyl alcohol), NMO. $\mathrm{H}_{2} 0(2.3 \mathrm{~mL}, 9.6 \mathrm{mmol})$, and 7.0 mL of $\mathrm{H}_{2} \mathrm{O}$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h , then allowed to warm to room temperature and stirred for additional 10 h . Sodium hydrogen sulfite (0.3 g) were added, the suspension was stirred and filtered through a pad of celite to remove osmium-containing material. The filtrate was made acidic with 1 N HCl (checked by litmus), and saturation with NaCl , the mixture was extracted with ethyl acetate ($4 \times 15 \mathrm{~mL}$). Combined organic layer was dried over NaSO_{4} and concentrated to afford viscous liquid which was further purified by column chromatography using EtOAc:petroleum ether (40:60) as eluent to obtain pure 19, 22, 23.

Dimethyl 2-((6S)-9-(3-ethoxy-3-oxopropyl)-9-hydroxy-8-oxo-1,4-dioxaspiro[4.5]decan-6-yl)malonate 19:

Yield:	$: 70 \%$		
$\boldsymbol{\alpha}_{\mathrm{D}}^{31.3}$	$:$	$+35.60\left(c 3.27, \mathrm{CHCl}_{3}, 50 \%\right.$ de $)$	
$\mathrm{IR} v_{\text {max }} \mathbf{c m}^{-1}\left(\mathrm{CHCl}_{3}\right)$	$:$	$3480.1,3020.2,2899.9,2400, \quad 1732.7, \quad 1436.5$,	
	$1215.9,1150.5,759.9,669.05$		

Chapter 3

MHz) $\overline{\text { © }}$

(diastereomeric ratio
3:1)

- 2.05 (m, 1 H), 2.14-2.23 (m, 1 H), 2.26-2.45 (m, 3 H), 2.69 (dd, J=13.43, $3.66 \mathrm{~Hz}, 1 \mathrm{H}$), 2.94-3.01 (m, 1 H), 3.03-3.13 (m, 1 H), 3.72 (s, 3 H), 3.73-3.74 (m, 1H), 3.75 ($\mathrm{s}, 3 \mathrm{H}$), $3.95-4.13$ (m, 6 H)
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125: 14.12,28.0,33.0,36.9,45.1,45.5,50.0,52.5,52.7$, MHz) $\boldsymbol{\delta}$ (only more major diastereomer)
Mass: m/z (\%) : $827.7(2 \mathrm{M}+\mathrm{Na}, 50), 425.3(\mathrm{M}+\mathrm{Na}, 100)$.

Dimethyl-2-((6R)-9-(3-ethoxy-3-oxopropyl)-7-hydroxy-8-oxo-1,4-dioxaspiro[4.5] decan-6-yl)malonate 22:

Yield:	10 \%
$\alpha_{\text {D }}{ }^{31.8}$	-22.9 (c 0.99, $\mathrm{CHCl}_{3}, 60$ \% de)
$\mathrm{IR} v_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	$\begin{aligned} & 3485,3021,2899,2410,1732,1436,1215,1150, \\ & 759,669 \end{aligned}$
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$	1.24 (t, J = $7.03 \mathrm{~Hz}, 3 \mathrm{H}$), 1.53-1.66 (m, 2 H), $2.06-$
MHz) \quad ¢	2.20 (m, 2 H), 2.28-2.46 (m, 3 H), 2.71-2.81 (m, 1
(diastereomeric ratio	$\mathrm{H}), 2.91$ (dd, $J=12.17,4.39 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (s, 3 H$)$,
1:4)	3.72 (s, 3 H), 3.80-3.83 (m, 1 H), 3.98-4.07 (m, 4
	H), 4.11 (q, $J=7.28 \mathrm{~Hz}, 2 \mathrm{H}), 4.80$ (d, $J=12.30 \mathrm{~Hz}, 1$
	H)

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 101$: 14.1, 23.4, 31.5, 39.8, 42.6, 48.1, 52.3, 52.6, 53.4, MHz) $\boldsymbol{\delta} \quad$ (only for $60.4,64.9,73.5,107.1,168.7,169.3,173.0,209.60$ major diastereomers)

Chapter 3

Mass: m/z (\%) : $425(M+N a, 100), 420(45), 403(M+1,10)$

Compound 23:

Yield:
α_{D}^{25} MHz) $\boldsymbol{\delta}$ MHz) $\boldsymbol{\delta}$
Mass: m/z (\%)
$\mathbf{I R} v_{\text {max }} \mathbf{c m}^{-1}\left(\mathrm{CHCl}_{3}\right) \quad: \quad 3019,2898,2400,1785,1751,1437,1216,1148$, 1047, 756
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200$: 2.03-2.27(m,2 H), $2.34(\mathrm{~d}, \mathrm{~J}=4.80 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-$ 2.58 (m, 3H), 2.67-2.99 (m, 2H), 3.03-3.18 (m, 1 H), 3.68-3.80 (m, 7 H), 4.01-4.13 (m, 4 H)
${ }^{13} \mathbf{C}^{\text {NMR }}\left(\mathrm{CDCl}_{3}, 50\right.$: 27.3, 33.2, 37.3, 43.1, 43.3, 49.9, 52.6, 52.8, 64.9,
: 20 \%
: -4.49 (c 1.77, $\mathrm{CHCl}_{3}, 50$ \% de) $65.3,85.9,107.5,168.1,175.2,203.2$
: $411.03(\mathrm{M}+\mathrm{MeOH}+\mathrm{Na}, 100), 388.5(\mathrm{M}+\mathrm{Na})$, 349.28(56)

3-(2-(5-ethoxy-2,5-dioxopentyl)-1,3-dioxolan-2-yl)-5-methoxy-4-(methoxycarbonyl)-
5-oxopentanoic acid (26):

Preparation of silica gel-supported sodium metaperiodate: $\mathrm{NaIO}_{4}(2.57 \mathrm{~g}, 12.0 \mathrm{mmol})$ was dissolved in 5 mL of hot water $\left(70^{\circ} \mathrm{C}\right)$ in a 25 mL round-bottomed flask. To the hot

Chapter 3

solution silica gel (230-400 mesh, 10 g) was added with vigorous swirling and shaking. The resultant silica gel coated with NaIO_{4} was in a powder form and was free-flowing, with a concentration of approximately 15% in NaIO_{4}.

Procedure for oxidative cleavage: $19(0.753 \mathrm{~g}, 1.87 \mathrm{mmol})$ was dissolved in 10 mL toluene and silica-supported sodium metaperiodate ($8.0 \mathrm{~g}, 3.0$ equivalents in NaIO_{4}) was added to it. Reaction mixture was stirred at RT for 24 h . After complete consumption of starting material, checked by TLC, reaction mixture was filtered and silica was washed with EtOAc. Combine filtrate was concentrated under reduced pressure and crude reaction mixture is purified by column chromatography using EtOAc:petroleum ether $(90: 10)$ as eluent to obtain pure 26 in 95\% yield.

Yield:	95 \%
$\mathrm{IR} v_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	3500, 2988, 2937, 1724, 1435, 1383, 1219
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$	1.25 (t, $J=7.2,3 \mathrm{H}), 2.52-2.60$ (m, 2 H), 2.62-2.65
MHz) $\overline{\text { ¢ }}$	(m, 2 H), 2.66 (s, 1 H$), 2.82$ (t, J = 6.53 Hz, 2 H), 2.86
	(d, J = 2.26 Hz, 1 H), 3.25-3.31 (m, 1 H), 3.72 (s, 3
	H), 3.74 (s, 3 H), 3.80-3.87 (m, 1 H), 3.94-4.04 (m,
	$4 \mathrm{H}), 4.12$ (q, J = 7.19 Hz, 2 H)
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 101$	14.1, 27.9, 32.5, 38.9, 42.3, 46.9, 51.0, 52.5, 52.8,
MHz) $\mathbf{\delta}$	60.6, 65.0, 65.5, 109.9, 168.6, 168.7, 172.8, 176.8,
	205.1
Mass: m/z (\%)	441.45 (M + Na, 100), 419.03 (M + 1, 20)

Methyl-5-(2-(5-ethoxy-2,5-dioxopentyl)-1,3-dioxolan-2-yl)-2-oxotetrahydro-2H-pyran-3-carboxylate (28):

Chapter 3

$20(0.058 \mathrm{~g}, 418.3 \mathrm{mmol})$ was dissolved in 16 mL of dry diethyl ether and the reaction flask was briefly flushed with nitrogen. $\mathrm{BH}_{3} . \mathrm{SMe}_{2}(0.15 \mathrm{~mL}, 1.54 \mathrm{mmol})$ was added dropwise to the reaction mixture at RT , the hydrogen evolution can be observed while addition. The resulting mixture is heated to a gentle reflux in an oil bath. After refluxing for 1 hr , methanol was added to reaction mixture. Solvent was removed under reduced pressure to obtain 28 as viscous liquid.

| Yield: | $: 60 \%$ | | |
| :--- | :--- | :--- | :--- | :--- |
| $\boldsymbol{\alpha}_{\mathrm{D}}^{24.6}$ | $:$ | $+6.22\left(\mathrm{c} 1.21, \mathrm{CHCl}_{3}\right)$ | |
| $\mathbf{I R} v_{\text {max }} \mathbf{~ c m}^{-1}\left(\mathrm{CHCl}_{3}\right)$ | $:$ | $3021.2,2955.4,1772.3,1437.3,1217.2,1035.3$, | |
| | | 757.3 | |

${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$: $1.25(\mathrm{t}, J=7.15 \mathrm{~Hz}, 3 \mathrm{H}), 1.89(\mathrm{dd}, J=9.29,4.77 \mathrm{~Hz}$, MHz) $\delta \quad 1 \mathrm{H}), 2.11(\mathrm{~s}, 1 \mathrm{H}), 2.49-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{~d}, \mathrm{~J}=$ $13.80 \mathrm{~Hz}, 1 \mathrm{H}$), $2.77-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~d}, \mathrm{~J}=$ $14.05 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{q}, J=7.03 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=$ $8.03 \mathrm{~Hz}, 1 \mathrm{H}$), 3.77 (s, 3H), 4.04 (s, 4 H), 4.13 (q, J = $7.28 \mathrm{~Hz}, 2 \mathrm{H}$), 4.23-4.32 (m, 1 H), 4.34-4.42 (m, 1 H)
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 101$: 14.0, 23.7, 27.8, 38.8, 40.8, 47.3, 47.7, 52.71, 60.57, MHz) δ $65.2,65.3,67.5,109.6,167.9,169.15,172.55,205.2$

Ethyl-3-(10-(2-methoxy-2-oxoethyl)-8-oxo-1,4-dioxaspiro[4.5]decan-7-yl)propanoate (29):

To a solution of $\mathbf{1 2}(2.0 \mathrm{~g}, 5.18 \mathrm{mmol})$ and trimethyl orthoformate $(1.7 \mathrm{~mL}, 15.53 \mathrm{mmol})$ in $50 \mathrm{~mL} \mathrm{MeOH}, \mathrm{NH}_{4} \mathrm{Cl}(0.05 \mathrm{~g})$ was added Reaction mixture was then refluxed for 4 h , and was quenched by addition of saturated aqueous NaHCO_{3} and extracted with EtOAc (3x20

Chapter 3

mL). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford crude ketal, which was used for the next step without further purification. The residue was dissolved in DMSO $(30 \mathrm{~mL})$ then $\mathrm{LiCl}(0.263 \mathrm{~g}, 6.20 \mathrm{~mol})$ was added. The reaction mixture was stirred for 5 h at $140^{\circ} \mathrm{C}$, cooled to RT, quenched by $\mathrm{H}_{2} \mathrm{O}$, and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were stirred vigorously with 2 N HCl aqueous solution $\left(50 \mathrm{~mL}\right.$) and washed with saturated NaHCO_{3} aqueous solution $(1 \times 20 \mathrm{~mL})$ and brine ($1 \times 20 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash column chromatography (EtOAc:petroleum ether 1:3) to afford 29 as a yellow oil $(1.831 \mathrm{~g})$.

Yield:	80 \%
$\alpha_{\text {D }}^{24.8}$	+44.22 (c 1.01, $\mathrm{CHCl}_{3}, 60$ \% de)
IR $\nu_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	2954, 2897, 1735, 1718, 1438, 1175
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500$	1.24 (t, J = $7.17 \mathrm{~Hz}, 3 \mathrm{H}), 1.48-1.60$ (m, 2 H), 2.01
MHz) \quad ठ	- 2.16 (m, 3 H), 2.29-2.41 (m, 2 H), 2.43-2.53 (m,
(diastereomeric ratio	$2 \mathrm{H}), 2.55-2.71$ (m, 3 H), 3.68 (s, 3 H), 3.96-4.07
4:1)	(m, 4 H), 4.09-4.14 (q, J = 7.13 Hz, 2 H)
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126$	14.2, 24.0, 31.7, 34.1, 39.7, 41.9, 44.2, 45.6, 51.7,
MHz) $\boldsymbol{\delta}$ (only for major	60.3, 64.8, 64.9, 65.2, 108.1, 172.5, 173.3, 209.1
diastereomer)	

Ethyl 3-(10-(2-methoxy-2-oxoethyl)-1,4-dioxaspiro[4.5]dec-7-en-7-yl)propanoate (30):

Procedure is same as for preparation of compound $\mathbf{1 1}$ except that base used was NaH along with toluene as solvent.

Yield: : 60 \%
$\boldsymbol{\alpha}_{\mathrm{D}}^{24.5} \quad: \quad+27.8\left(c 0.540, \mathrm{CHCl}_{3}, 95 \%\right.$ ee $)$
$I R v_{\max }$ cm $^{-1}\left(\mathrm{CHCl}_{3}\right) \quad: \quad 3020,2983,2907,1731,1438,1216,1038.8,755$

Chapter 3

${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400: 1.25(\mathrm{t}, \mathrm{J}=7.09 \mathrm{~Hz}, 3 \mathrm{H}), 2.04-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.12$ MHz) ठ (dd, $J=15.28,7.70 \mathrm{~Hz}, 1 \mathrm{H}$), 2.16 (bs, 2 H), 2.26 2.31 (m, 2 H), 2.34 (s, 1 H), $2.37-2.45$ (m, 4 H), 2.51-2.58(m, 1 H), 3.67 (s, 3 H) 3.94-4.00 (m, 4 H), 4.12 ($\mathrm{q}, \mathrm{J}=7.09 \mathrm{~Hz}, 2 \mathrm{H}$), $5.39(\mathrm{~s}, 1 \mathrm{H})$
${ }^{13} \mathrm{C}_{\text {NMR }}\left(\mathrm{CDCl}_{3}, 101: 14.2,30.0,32.1,32.5,34.0,37.2,37.7,51.5,60.3\right.$, MHz) $\bar{\delta}$ 64.5, 65.0, 109.1, 119.6, 133.8, 173.2, 173.6

Mass: m/z (\%) : 335.52 ($\mathrm{M}+\mathrm{Na}, 100$)
HPLC (Chiralcel OD-H, : $\tau_{\mathrm{R}}=8.65 \mathrm{~min}$. (major enantiomer), $\tau_{\mathrm{R}}=5.858 \mathrm{~min}$. i-PrOH:petroleum ether .(minor enantiomer) 20:80, $0.7 \mathrm{~mL} / \mathrm{min}, 230$ nm)

Ethyl 5-(2-(1-methoxy-1,5-dioxopentan-3-yl)-1,3-dioxolan-2-yl)-4-oxopentanoate 31:

Ozone gas was bubbled through solution of $\mathbf{3 0}(0.5 \mathrm{~g}, 1.6 \mathrm{mmol})$ in dichloromethane (30 mL) at $-78{ }^{\circ} \mathrm{C}$ till solution turns purple. Marking appearance of purple color as end point, argon was bubbled through the reaction mixture till it becomes colourless. Dimethyl sulphite (2.0 mL) was added to reaction mixture and solution was allowed to warm to room temperature over period of 2 h . Reaction mixture was concentrated under reduced pressure and residue was purified by flash column chromatography (EtOAc:petroleum ether 3:7) to afford $\mathbf{3 1}$ as a colorless liquid $(0.386 \mathrm{~g})$.
Yield: : 70 \%
$\alpha_{\mathrm{D}}^{28.4} \quad:-28.7\left(\mathrm{c} 2.31, \mathrm{CHCl}_{3}\right)$
IR $v_{\text {max }} \mathbf{c m}^{-1}\left(\mathrm{CHCl}_{3}\right) \quad: \quad 3020,2400,1730,1438,1215,1024,756$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$: $1.24(\mathrm{t}, \mathrm{J}=7.15 \mathrm{~Hz}, 3 \mathrm{H}), 2.28(\mathrm{dd}, \mathrm{J}=15.94,8.91$
MHz) $\mathbf{\delta}$
$\mathrm{Hz}, 1 \mathrm{H}), 2.33-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.51(\mathrm{~m}, 1 \mathrm{H})$,
$2.54(\mathrm{t}, \mathrm{J}=6.40 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{dd}, \mathrm{J}=15.94,4.89$
$\mathrm{Hz}, 1 \mathrm{H}$), 2.77 (s, 2 H), 2.81 (td, $J=6.46,2.64 \mathrm{~Hz}, 2$
H), 2.99-3.08 (m, 1 H), 3.67 (s, 3 H), 3.87-4.01
($\mathrm{m}, 4 \mathrm{H}$), $4.08-4.15$ ($\mathrm{q}, \mathrm{J}=7.15 \mathrm{~Hz}, 2 \mathrm{H}$), 9.63 (dd, $J=3.01,1.25 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}^{\mathrm{N}}$ NMR $\left(\mathrm{CDCl}_{3}, 101\right.$: 14.1, 27.8, 34.6, 37.9, 39.0, 43.9, 47.0, 51.8, 60.6, MHz) $\mathbf{~}$
$64.8,65.4,110.2,172.4,172.6,200.3,205.3$
Mass: m/z (\%) : 367 (M+Na, 100)

Procedure for intranolecular aldol cyclization of (31):

To solution of $31(0.15 \mathrm{~g}, 0.436 \mathrm{mmol})$ in dry DMSO (10 mL) L-proline ($0.005 \mathrm{~g}, 0.044$ mmol) was added. Reaction mixture was stirred at room temperature till complete disappearance of starting material (12 h), monitored by GC. After complete disappearance of starting material reaction was quenched with water and extracted with EtOAc (3x15 mL). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford aldol product, which was used for the next step without further purification. The residue obtained was dissolved in 10.0 mL EtOH at $0{ }^{\circ} \mathrm{C}$ and solid sodium borohydride $(0.009 \mathrm{~g}, 0.2325 \mathrm{mmol})$ was added in one portions. After 20 min . the reaction mixture was quenched by careful addition of saturated aqueous solution of ammonium chloride (10 mL) with vigorous stirring. Ethanol was removed under reduced pressure and the resulting aqueous solution was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). Combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}(0.009 \mathrm{~g}, 0.232 \mathrm{mmol})$ and concentrated under reduced pressure to afford alcohol which was directly subjected for alcohol protection. To a solution of crude alcohol, DMAP (. $011 \mathrm{~g}, 0.093 \mathrm{mmol})$ and imidazole $(0.035 \mathrm{~g}, 0.512 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added solid TBSCl

Chapter 3

$(15.27 \mathrm{~g}, 101.31 \mathrm{mmol})$ in one portion. The resulting yellow solution was stirred at $0^{\circ} \mathrm{C}$ for 2 h and then gradually warmed to room temperature over period of 2 h . Reaction mixture was quenched with water (7 mL) and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in rotary evaporator to afford a yellow liquid. Purification by flash column chromatography (EtOAc:petroleum ether 1:4) to afford 32 as a yellow oil along with $33(0.15 \mathrm{~g})$.

Compound 32

Compound 33

$\alpha_{\text {D }}^{28.4}$	-1.81 (c = 1.46, $\left.\mathrm{CHCl}_{3}\right)$
IR $v_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	3019, 2400, 1734, 1474, 1421, 1215, 1020, 757
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$	1.24 (t, $J=7.02 \mathrm{~Hz}, 3 \mathrm{H}$), 2.33 (dd, $J=16.31,10.29 \mathrm{~Hz}, 1$
MHz) $\mathbf{\delta}$	H), 2.49-2.60 (m, 3 H), 2.64 (d, $J=19.07 \mathrm{~Hz}, 1 \mathrm{H}), 2.79$
	- 2.91 (m, 1 H), 2.95-3.02 (m, 1 H), 3.37-3.45 (m, 1 H),
	3.67 (s, 3 H), 3.73-3.88 (m, 2 H), 3.93-4.04 (m, 2 H),
	4.13 (q, $J=7.03 \mathrm{~Hz}, 2 \mathrm{H}), 9.98$ (s, 1 H)
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 101$	14.1, 23.5, 32.2, 33.3, 46.4, 47.6, 51.5, 60.8, 64.2, 65.5,
MHz) $\boldsymbol{\delta}$	114.6, 139.0, 159.3, 171.7, 172.6, 186.79

3.5 References:

1. Krohn K., Gehle D., Dey S. K., Nahar N., Mosihuzzaman M., Sultana N., Sohrab M. H., Stephens P. J., Pan J.-J., Sasse F., J. Nat. Prod., 2007, 70, 1339.
2. Kupchan S. M., Dessertine A. L., Blaylock B. T., Bryan R. F., J. Org. Chem. 1974, 39, 2477.
3. Little J. E., Johnstone D. B. Arch. Biochem. 1951, 30, 445.
4. i) Trost B. M., Balkovec J. M., Mao M. K.-T., J. Am. Chem. Soc. 1983, 105, 6755; ii) Parkes K. E. B., Pattender G., Tet. Lett. 1986, 27, 1305.
5. Pidathala C., Hoang L., Vignola N., List B., Angew. Chem. Int. Ed. 2003, 42, 2785.
6. i) Bamford W. R., Stevens T. S., J. Chem. Soc., 1952, 4735; ii) Shapiro R. H., Org. React., 1976, 23, 405; iii) R. M., Barrett A. G. M., Acc. Chem. Res., 1983,16, 55.
7. i) Adlington R. M., Barrett A. G. M., Acc. Chem. Res. 1983, 16, 55; ii) Lipton M. F., Shapiro R. H., J. Org. Chem., 1978, 43, 1409.
8. Yablonskaya E. V., Segal M. G., Chemistry of Natural Products 1973, 9, 708.
9. Gurjar M. K., Kumar P., Rao B. V., Tetrahedron Lett. 1996, $37,8617$.
10. Humber D. C., Pinder A. R., Williams R. A., J. Org. Chem. 1967, 32, 2335.
11. Wilt J. W., Wagner W.J., J. Org. Chem., 1964, 29, 2788.
12. Brown R. T., Jones M. F., J. Chem. Soc., Chem. Commum., 1986, 1818.
13. Pandey G., Kumar R., Banerjee P., Puranik V. G., Eur. J. Org. Chem., 2011, 4571.
14. Holden K. G., Tidgewell K., Marquam A., Rothman R. B., Navarrod H., Prisinzano T.E., Bioorg. Med. Chem. Lett., 2007, 17, 6111.
15. Y. Xia, Kozikowski A. P., J. Am. Chem. Soc., 1989, 111, 4116-4117.
16. Kende A. S., Toder B. H., J. Org. Chem, 1982, 47, 163.
17. Scott W. J., Stille J. K., J. Am. Chem. Soc., 1986, 108, 3033.
18. Stang P. J., Treptow W., Synthesis, 1979, 283.
19. Scott W. J., McMurry J. E., Acc. Chem. Res., 1988, 21, 47.
20. Yasuda M., Ide M., Matsumoto Y., Nakata M., Bull. Chem. Soc. Jpn., 1998, 71, 1417.

Chapter 3

21. Mc Murry J. E., Scott W. J., Tetrahedron Lett., 1983, 24, 979.
22. Crisp G. T., Scott W. J., Stille J. K., J. Am. Chem. Soc., 1984, 106, 7500.
23. Overman L. E., Shim J., J. Org. Chem., 1993, 58, 4662.
24. Mccormick J. P., Tomasik W., Johnson M. W., Tetrahedron Lett., 1981, 22, 607.
25. Carrera I., Brovetto M. C., Ramos J. C., Seoane G. A., Tetrahedron Lett., 2009, 50, 5399-5402.
26. Brown H. C., Krishnamurthy S., Stocky T. P., J. Org. Chem., 1973, 38, 2786.
27. Kanth J. V. B., Periasamy M., J. Org. Chem., 1991, 56, 5964.
28. Krishnamurthy S., Thompson K. L., J. Chem. Educ., 1977, 54, 778.
29. Ohshima T., Xu Y., Takita R., Shimizu S., Zhong D., Shibasaki M., J. Am. Chem. Soc. 2002, 124, 14546.
30. Hayashi Y., Sekizawa H., Yamaguchi J., Gotoh H., J. Org. Chem., 2007, 72, 6493.

Chapter 3

3.6 Spectra of all new compounds

Chapter 3

Chapter 3

MARCH 12 Tue5av400\#016.003.001.1r.esp

CHLOROFORM-d

Chapter 3

Thu2av400\#008 April 12.003.001.1r.esp

CHLOROFORM-d

Chapter 3

Chapter 3

Chapter 3

MAY10Fri3av2\#083.002.001.1r.esp

Chapter 3

Chapter 3

Chapter 3

Chapter 3

Chapter 3

Chapter 3

Chapter 3

aug 10 Sat3av400\#003.002.001.1r.esp

sept 12 Wed3av500\#005.001.001.1r.esp

Chapter 3

Chapter 3

| Retention Time | C Area | Area \% | |
| ---: | ---: | ---: | ---: | ---: |
| 5.858 | 57648 | 2.124 | |
| 8.675 | 2655860 | 97.876 | |
| Totals | | | |

Project Leader : Dr. GANESH PANḊEY
Column : Chiralcel OD-H ($250 \times 4.6 \mathrm{~mm}$)
Mobile Phase :IPA: Pet ether (20:80)
Wavelength $: 230 \mathrm{~nm}$
Flow Rate $\quad: 0.7 \mathrm{ml} / \mathrm{min}(50 \mathrm{kgf})$
conc. $\quad: 4.0 \mathrm{mg} / 1.0 \mathrm{~mL}$
Inj vol- \quad :20ul

Chapter 3

Chapter 3

Chapter 3

Chapter 3

Chapter 3

Chapter 4:

\mathcal{A} (ternative strategy towards the synthesis of the tetracyclic core structure of higher iridoid

Chapter 4

Owing to significant stereochemical complexity, we took the challenge of synthesizing tetracyclic core of higher Iridoid using organocatalytic intramolecular aldol cyclization as the key strategy. In this context, in addition to synthetic efforts shown in Chapter 3, we designed different route to synthesize this tetracyclic core of higher iridoid as shown retrosynthetically in Scheme- 4.1.

4.1 Retrosynthetic analysis

 $\int \begin{aligned} & \text { (S)-Proline } \\ & \text { Aldol condensation }\end{aligned}$

6

Scheme 4.1 First generation retrosynthetic analysis

We envisaged a new synthetic strategy for 1 through the retro-synthetic route as outlined in Scheme-4.1. The key step in this approach was again visualized through organocatalysed intramolecular aldol cyclization of 4 to 3 . The requisite 4 for this crucial transformation was proposed to be synthesized by alkynylation-partial reductionepoxidation sequence starting from 7. Aldehyde 8 can be derived from enal 9 by organocatalytic asymmetric conjugate addition.

Chapter 4

4.2 Results and discussion

Synthesis of 4, as perceived through the $1^{\text {st }}$ generation retrosynthetic strategy (Scheme 4.1), started with the preparation of aldehyde $\mathbf{8}$ as shown in Scheme-4.2.

Scheme 4.2

In order to prepare $\mathbf{9}$, compound $\mathbf{1 0}$ was monoprotected as PMB ether $\mathbf{1 1}$ employing NaH and PMBCl in DMF at $0{ }^{\circ} \mathrm{C}$. Swern oxidation $\left[(\mathrm{COCl})_{2}, \mathrm{Me}_{2} \mathrm{SO}, \mathrm{Et}_{3} \mathrm{~N}\right]$ of 11 at -78 ${ }^{\circ} \mathrm{C}$ gave 9 in quantitative yield. The IR spectrum of 9 showed aldehyde peak at $1691 \mathrm{~cm}^{-1}$. Presence of α, β-unsaturated aldehyde functionality in $\mathbf{9}$ was also confirmed by observing a proton signal at $\delta 9.60(\mathrm{~d}, J=8.03 \mathrm{~Hz}, 1 \mathrm{H})$ and two other protons appearing at $\delta 6.41$ and 6.8 , integrating for one proton each, in ${ }^{1} \mathrm{H}$ NMR spectrum.

In order to obtain $\mathbf{8}$ by conjugate addition of dimethyl malonate on $\mathbf{9}$, we evaluated several catalyst as shown in Table 4.1. For determining enantioselectivity of $\mathbf{8}$ by chiral stationary phase HPLC, it was converted to corresponding -OTBS derivative 7. Using 12a as a catalyst, $\mathbf{8}$ was obtained in 90% yield and 46% ee. Use of catalyst 13b gave $\mathbf{8}$ in very low yield (5\%), however, with excellent ee (91 \%). Unfortunately various other attempts to improve yield as well as enantioselectivity remained a dream.

Table 4.1 Attempts for conjugate addition of malonate on 9

Sr.no. Condition for conjugate addition on 9

Yield of 8 (\%) (ee of corresponding 7)

1^{1}	$\mathbf{1 2 a}$, dry $\mathrm{MeOH}, \mathrm{RT}$	$90(46 \%)$
2^{2}	$\mathbf{1 2 b}$, dist $\mathrm{MeOH}, \mathrm{RT}$	Decomposition of SM
3	$\mathbf{1 2 c}$, dry $\mathrm{MeOH}, \mathrm{RT}$	Decomposition of SM
4^{3}	$\mathbf{1 3 a}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT	No reaction
5^{4}	$\mathbf{1 3 b}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT	$5(91 \%)$

Therefore, we revised our retrosynthetic plan for the synthesis of $\mathbf{1 6}$ as shown in Scheme-4.3. The crucial step for construction of $\mathbf{1 6}$ is based on C1-C2 cleavage of $\mathbf{1 7}$ followed by in situ Nef reaction. The requisite $\mathbf{1 7}$ for this crucial transformation was proposed to be synthesized from 20 as shown in Scheme-4.3. Idea of C1-C2 cleavage in 21 emerged from Balini's approach ${ }^{5}$ for the synthesis of $\mathbf{2 3}$ as shown in Scheme-4.4.

Scheme 4.3 Retrosynthetic analysis

In order to synthesize 19, compound 20 was nitrated using fuming nitric acid ${ }^{6}$ in dry diethyl ether at $0{ }^{\circ} \mathrm{C}$ which provided 24 in quantitative yield. When 24 was subjected to conjugate addition on ethyl acrylate in methanol, an open chain compound $\mathbf{2 5}$ was isolated instead of expected 19. We explained this observation by considering the increased

Chapter 4

Scheme 4.4 Balini's approach for the synthesis of ω-oxoalkenoate
electrophilicity at carbonyl carbon in 24. In order to avoid this problem, we first synthesized $\mathbf{2 6}^{7}(60 \%)$ by conjugate addition of $\mathbf{2 0}$ on to acrylate which on nitration using fuming nitric acid as well as via its enol acetate ${ }^{8,9}$ derivative 27 gave complex reaction mixture. With these frustrating and unanticipated hurdles in obtaining 19, we evaluated the synthesis of $\mathbf{1 6}$ from 26 as shown in Scheme-4.6.

Scheme 4.5

Chapter 4

Scheme 4.6

Towards this endeavor, the carbonyl moiety of $\mathbf{2 6}$ was first monoprotected as a ketal 28, which on enolization followed by oxidation $\left[\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{O}_{2}, \mathrm{RT}\right],{ }^{10}$ gave 29 in 40% yield. Subjecting 29 to conjugate addition under various reaction conditions, as shown in Table 4.2, gave aromatized $\mathbf{3 2}$ instead of $\mathbf{3 1}$. It was observed that simply stirring $\mathbf{2 9}$ with a

Table 4.2: Attempted conjugate addition of malonate on 30

Sr.no.	Reaction Conditions	Results
1^{11}	$\mathbf{3 5}$, piperidine, CHCl_{3}	$\mathbf{3 2}$
2	$\mathbf{1 3 a}, \mathrm{CHCl}_{3}, \mathrm{NEt}_{3}, \mathrm{RT}$	$\mathbf{3 2}$
2	$\mathbf{1 2 a}, \mathrm{CHCl}_{3}, \mathrm{RT}$	$\mathbf{3 2}$
3^{1}	$\mathrm{LiClO}_{4}, \mathrm{NEt}_{3}, \mathrm{dry} \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}$	$\mathbf{3 2}$
4	$\mathrm{NaOMe}, \mathrm{dry} \mathrm{MeOH}^{5}$	$\mathrm{KOtBu}, \mathrm{THF}, \mathrm{RT}^{32}$
5	NEt_{3}, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}$	$\mathbf{3 2}$
6		$\mathbf{3 2}$

Chapter 4

base leads to its aromatization (Table 4.2, entry 6). Structure of $\mathbf{3 2}$ was assigned based on the presence of aromatic peaks at $\delta 6.45(\mathrm{~d}, J=8.08 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.96 \mathrm{~Hz}, 1 \mathrm{H})$, 6.99-7.14 (m, 1 H) in ${ }^{1} \mathrm{H}$ NMR and signals at δ 103.6, 110.6, 116.05, 127.7, 155.5, 157.4 in ${ }^{13} \mathrm{C}$ NMR, respectively.

The outcome of our above discussed studies further reduced our confidence in exploring other routes for the synthesis of $\mathbf{1 6}$ and therefore, we suspended our synthetic trials at this stage.

4.3 Summary

In conclusion, we have demonstrated different bond disconnections for synthesis of desired precursor 4/16 for aldol cyclization which posed several unforeseen difficulties. However, this failure has helped us in understanding complexity involved in its synthesis.

4.4 Experimental section

4-((4-methoxybenzyl)oxy)but-2-enal (9):

To a dichloromethane (19 mL) suspension of dimethyl sulfoxide ($0.81 \mathrm{~mL}, 11.5 \mathrm{mmol}$), oxalyl chloride ($0.45 \mathrm{~mL}, 5.26 \mathrm{mmol}$) was added dropwise at $-78{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 15 min . A solution of $\mathbf{1 1}(1.0 \mathrm{~g}, 4.8 \mathrm{mmol})$ in 5 mL dichloromethane was added dropwise to the reaction flask at $-78^{\circ} \mathrm{C}$. Resulting mixture was stirred for an hour, $\mathrm{NEt}_{3}(3.3 \mathrm{~mL}, 101.2 \mathrm{mmol})$ was added dropwise and reaction mixture was gradually warmed to room temperature over period of 1 h by removing the cooling bath. The reaction mixture was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine ($1 \times 25 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification of the residue by silica gel column

Chapter 4

chromatography using EtOAc: Petroleum ether (20:80) as eluant afforded 9 as yellow liquid (0.978 g)

Yield:	98 \%
$\mathrm{IR} \mathrm{v}_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	2935, 2837, 1691 ,1249, 1107, 1033, 820
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$	$3.80-3.86$ (m, 3 H), 4.28 (dd, $J=4.02,2.01 \mathrm{~Hz}, 2 \mathrm{H})$,
MHz) $\mathrm{\delta}^{\text {d }}$	$\begin{aligned} & 4.54(\mathrm{~s}, 2 \mathrm{H}), 6.41(\mathrm{ddt}, J=15.87,8.0,1.91,1 \mathrm{H}) \text {, } \\ & 6.92(\mathrm{~d}, J=8.53 \mathrm{~Hz}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=8.53 \mathrm{~Hz}, 2 \mathrm{H}) \text {, } \\ & 9.60(\mathrm{~d}, J=8.03 \mathrm{~Hz}, 1 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 101	55.2, 68.2, 72.6, 113.8, 129.3, 131.7, 153.3, 159.3,
MHz) $\mathrm{J}^{\text {d }}$	193.3
Mass: m/z (\%)	$\begin{aligned} & 207 \text { (M + H, 14), } 137 \text { (100), } 121 \text { (100), } 109 \text { (35), } 91 \\ & (33), 77(100) \end{aligned}$

Dimethyl 2-(1-((4-methoxybenzyl)oxy)-4-oxobutan-2-yl)malonate (8):

Under a nitrogen atmosphere, a mixture of dimethyl malonate ($0.23 \mathrm{~mL}, 2.18 \mathrm{mmol}), 9(0.3$ $\mathrm{g}, 1.45 \mathrm{mmol})$, and proline salt $(0.21 \mathrm{mmol})$ in $\mathrm{MeOH}(7 \mathrm{ml})$ was stirred for 1 h . The reaction was quenched by adding 2 NHCI , and organic materials were extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The Michael adduct was obtained as colourless liquid by a standard work-up, concentration and silica gel column chromatography using EtOAc: Petroleum ether $(25: 75)$ as an elutant.

Yield:	$: 90 \%$
$\boldsymbol{\alpha}_{\mathbf{D}}^{25}$	$:-1.0585\left(c 0.65, \mathrm{CHCl}_{3}\right.$, ee $\left.=50 \%\right)$
$\mathrm{IR} v_{\text {max }} \mathbf{c m}^{-1}\left(\mathrm{CHCl}_{3}\right)$	$: 2837,2125,1435,1598,1249,1168,1036,889$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$	$: 2.54-2.74(\mathrm{~m}, 2 \mathrm{H}), 3.00-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{t}, \mathrm{J}=$

Chapter 4

MHz) ${ }^{\text {¢ }}$	$5.36 \mathrm{~Hz}, 2 \mathrm{H}$), 3.69 (s, 3H), 3.7 (s, 3 H), 3.7-3.71 (m,
	$1 \mathrm{H}) 3.80$ (s, 3 H$) 4.38(\mathrm{~s}, 2 \mathrm{H}) 6.87(\mathrm{~m}, ~ J=8.53 \mathrm{~Hz}$,
	$2 \mathrm{H}) 7.21$ (m, J = 8.53 Hz, 2 H) 9.71 (s, 1 H)
1	32.16, 35.18, 52.37, 52.41, 52.48, 52.50, 52.82,
MHz) ${ }^{\text {¢ }}$	53.22, 55.22, 57.54, 71.53, 72.94, 78.66, 113.68,
	129.21, 130.33, 159.11,168.91, 168.9, 204.12
Mass: m/z (\%)	393.3 ($\mathrm{M}+\mathrm{MeOH}, 100$), 361.3 ($\mathrm{M}+\mathrm{H}, 93$), 254 (8),
	203 (9)

Dimethyl-2-(4-((tert-butyldimethylsilyl)oxy)-1-((4-methoxybenzyl)oxy)butan-2-

 yl)malonate (7):
$8(0.1 \mathrm{mg}, 0.3 \mathrm{mmol})$ was solved in 4 mL THF and the solution was cooled to $0^{\circ} \mathrm{C} .0 .5 \mathrm{~mL}$ concentrated AcOH and $\mathrm{Na}(\mathrm{CN}) \mathrm{BH}_{3}(0.031 \mathrm{mg}, 0.44 \mathrm{mmol})(95 \%)$ were subsequently added to reaction mixture. The reaction mixture was warmed up to room temperature over period of 12 h .5 mL brine was added and the pH was adjusted to 7.0 with saturated NaHCO_{3} solution. The aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evapouration of the solvents under reduced pressure the crude product obtained was subjected for TBS protection without further purification. Crude alcohol obtained, DMAP $(0.004 \mathrm{~g}, 0.03 \mathrm{mmol})$ and imidazole $(0.04 \mathrm{~g}, 0.58 \mathrm{mmol})$ were dissolved in 4.0 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by addition of TBSCl $(0.053 \mathrm{~g}, 0.35 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h , quenched with water and extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with brine ($1 \times 10 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue obtained was purified over flash silica gel using ethyl acetate:pet ether (20:80) which gave 7 as colorless oil.

Yield:	95 \%
$\alpha_{\text {D }}^{25}$	-4.26 (c 2.93, $\left.\mathrm{CHCl}_{3}, \mathrm{ee}=50 \%\right)$
IR $\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	$\begin{aligned} & : ~ 3019,2954,1734,1611,1513,1436,1215,1161, \\ & 1092,756 \end{aligned}$
${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 400	0.03 (s, 6 H$), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.59-1.70$ (m, 2 H$)$, $2.52-$
MHz) δ	2.65 (m, 1 H), 3.46-3.57 (m, 2 H), 3.61-3.73 (m, 9
	$\begin{aligned} & \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}) 6.83-6.90(\mathrm{~m}, 2 \mathrm{H}) \text {, } \\ & 7.21-7.25(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 101	: -5.4, 18.2, 25.9, 31.9, 36.4, 52.23, 53.03, 55.2, 61.2,
MHz) $\overline{\text { \% }}$	$\begin{aligned} & \text { 70.0, 72.7, 76.7, 77.3, 113.6, 129.3, 130.3, 159.1, } \\ & 169.4 \end{aligned}$
Mass: m/z (\%)	$\text { : } 517.2(25), 491.1(50), 477.2(\mathrm{M}+23,100), 385.1$ (10)

HPLC (Chiracel OJ-H, : $\tau_{\mathrm{R}}=19.93$ min. (major enantiomer), $\tau_{\mathrm{R}}=17.35 \mathrm{~min}$. EtOH: petroleum ether (minor enantiomer) 2:98, $0.5 \mathrm{~mL} / \mathrm{min}, 220$
nm)

3-hydroxy-2-nitrocyclohex-2-enone (24):

Fuming $\mathrm{HNO}_{3}(2.2 \mathrm{~mL}, 53.5 \mathrm{mmol})$ was added dropwise to a stirred suspension of 20 (5.0 $\mathrm{g}, 44.6 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}$ under argon at $0{ }^{\circ} \mathrm{C}$. After stirring for further 15 min . at same temperature the reaction mixture was filtered under argon and washed well with dry $\mathrm{Et}_{2} \mathrm{O}$ to obtain 24 as orange solid.

Yield: : 95%
IR $v_{\max } \mathbf{c m}^{\mathbf{- 1}}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \quad: \quad 3020,2964,2400,1707,1686,1560,1534,1420,1347$, 1216, 770

Chapter 4

Ethyl 6-nitro-5-oxohexanoate (25):

To a solution of compound $24(0.3 \mathrm{~g}, 1.9 \mathrm{mmol})$ in ethanol $(4.0 \mathrm{ml})$ was added the ethyl acrylate $(0.22 \mathrm{~mL}, 2.1 \mathrm{mmol})$ and a catalytic amount of $\mathrm{Ph}_{3} \mathrm{P}(0.05 \mathrm{~g}, 0.2 \mathrm{mmol})$. After stirring at room temperature for 4 h , water was added to reaction mixture and extraction with $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{x} 10 \mathrm{~mL})$. The combined organic phase was dried, evaporated and the crude 25 obtained was purified by silica gel column chromatography using EtOAc: Petroleum ether (30:70) as elutant.

Yield: MHz) $\boldsymbol{\delta}$

Mass: m/z (\%)
$\mathrm{IR} v_{\max } \mathbf{c m}^{-1}\left(\mathrm{CHCl}_{3}\right) \quad: \quad 3026,2892,2658,1786,1922,1523,1516,1510$, 1333
${ }^{1} \mathrm{H}^{2}$ NMR ($\mathrm{CDCl}_{3}, 200$: $1.22-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.97(\mathrm{t}, \mathrm{J}=6.95 \mathrm{~Hz}, 2 \mathrm{H}), 2.32$ -
: 98 \% 2.44 (m, 2 H), $2.66(\mathrm{t}, J=7.07 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=$ $7.07 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H})$
: $204.23(\mathrm{M}+\mathrm{H}, 100)$

Ethyl 3-(2,6-dioxocyclohexyl)propanoate (26):

Chapter 4

An alcohol KOH solution (0.2 g of KOH and 10 mL of dry ethanol) was added to compound $20(1.0 \mathrm{~g}, 8.9 \mathrm{mmol})$ and reaction mixture was heated to $110{ }^{\circ} \mathrm{C}$ with stirring. Then the ethyl acrylate $(1.2 \mathrm{~mL}, 10.7 \mathrm{mmol})$ was added dropwise to the reaction mixture. The reaction mixture was further stirred for additional 4 h , and cooled. The cooled reaction mixture was neutralized with diluted AcOH and extracted with toluene (1 x 20 mL); the extract was washed with cold water $(2 \times 10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure the obtained pasty material was purified by column chromatography over silica gel using EtOAc: Petroleum ether (20:80) as eluent.

```
Yield: : 60 \%
\(\operatorname{IR} v_{\max } \mathbf{c m}^{-1}\left(\mathrm{CHCl}_{3}\right) \quad: \quad 2976,3020,2401,1689,1567,1537,1416,1348\),
    1286, 1216, 1044, 767
```



```
MHz ) \(\boldsymbol{\delta}\)
    \(=6.36 \mathrm{~Hz}, 2 \mathrm{H}), 2.33-2.44(\mathrm{~m}, 4 \mathrm{H}), 2.45-2.59(\mathrm{~m}, 4\)
    \(\mathrm{H}), 4.15(\mathrm{qd}, \mathrm{J}=7.13,1.35 \mathrm{~Hz}, 2 \mathrm{H})\)
\({ }^{13} \mathrm{C}^{2}\) NMR ( \(\mathrm{CDCl}_{3}, 126 \quad: \quad 14.0,16.6,20.4,33.1,61.6,114.5,178.0\)
MHz) \(\bar{\delta}\)
Mass: m/z (\%) : 250.96 ( \(\mathrm{M}+\mathrm{K}, 100\) ), \(235.0(\mathrm{M}+\mathrm{Na}, 90), 217.0\) (70),
    213 (M + H, 20), 139 (100)
```


Ethyl 3-(2-acetoxy-6-oxocyclohex-1-en-1-yl)propanoate (27):

The acetyl chloride ($0.11 \mathrm{~mL}, 1.55 \mathrm{mmol}$) was added to stirred solution of the $\mathbf{2 6}$ and pyridine ($0.11 \mathrm{~mL}, 1.4 \mathrm{mmol}$) in dry 1,2-dichloroethane (7 mL). Reaction mixture was later stirred at room temperature for 1 h , and then washed with water (1 x 10 mL), $2 \mathrm{~N} \mathrm{HCl}(1 \times 20$ mL), saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$ and brine $(1 \times 10 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain 27.

Chapter 4

Yield:	98%
IR $\mathrm{vmax}_{\text {m }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	$\begin{aligned} & 2943,1767,1734,1674,1655,1431,1361,1196, \\ & 1150,1066,1042,931 \end{aligned}$
${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 400	1.23 (t, $J=7.15 \mathrm{~Hz}, 3 \mathrm{H}$), 2.01 (quin, $J=6.46 \mathrm{~Hz}, 2$
MHz) ${ }^{\text {¢ }}$	H), $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.46$ (m, 2 H), $2.46-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=6.15 \mathrm{~Hz}, 2$ H), 4.09 (q, J = $7.03 \mathrm{~Hz}, 2 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 101	14.2, 18.8, 20.8, 20.9, 28.7, 32.7, 37.1, 60.3, 127.2,
MHz) $\overline{\text { d }}$	165.4, 167.7, 173.0, 198.7
Mass: m/z (\%)	255 (M + H, 100), 232 (90), 219 (80), 191(35), 139
	(70)

Ethyl 3-(7-oxo-1,4-dioxaspiro[4.5]decan-6-yl)propanoate (28):

A mixture of $26(2.5 \mathrm{~g}, 202.2 \mathrm{mmol})$ and ethylene glycol $(0.73 \mathrm{~mL}, 12.9 \mathrm{mmol})$ and p TSA ($0.23 \mathrm{~g}, 0.178 \mathrm{mmol}$) was refluxed in 70 mL benzene for 10 h under Dean-Stark condition. The reaction mixture was cooled, solvent was evaporated under reduced pressure and whole residue was dissolved in ethyl acetate. The organic layer was washed with water ($1 \times 50 \mathrm{~mL}$), brine ($1 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Column purification of the crude reaction mixture using EtOAc: Petroleum ether (15:85) as elutant afforded $\mathbf{2 8}$ as yellow liquid.

Yield:	$: 40 \%$
IR $v_{\text {max }} \mathbf{c m}^{-1}\left(\mathrm{CHCl}_{3}\right)$	$: \quad 2890,2980,1732,1682,1420,1377,1266,1215$,
	1059,949
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$	$: 1.20-1.27(\mathrm{~m}, 3 \mathrm{H}) 1.67-1.90(\mathrm{~m}, 5 \mathrm{H}) 1.94-2.02$
$\mathrm{MHz}) \boldsymbol{\delta}$	$(\mathrm{m}, 2 \mathrm{H}) 2.22-2.32(\mathrm{~m}, 2 \mathrm{H}) 2.39-2.48(\mathrm{~m}, 2 \mathrm{H}) 2.64$

(dd, J=9.41, 3.30 Hz, 1 H) 3.89-4.00(m, 4 H) $4.06-$ 4.14 (m, 2 H)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126\right.$	$: 14.2,18.7,20.0,32.5,33.5,39.9,58.9,60.2,65.0$,
$\mathrm{MHz}) \boldsymbol{\delta}$	$65.2,111.9,173.5,208.4$
Mass: $\mathrm{m} / \mathrm{z}(\%)$	$:$
	$295.4(\mathrm{M}+\mathrm{K}, 9), 279.2(\mathrm{M}+\mathrm{Na}, 100), 257.5(\mathrm{M}+\mathrm{H}$,
	$10)$

Ethyl 3-(7-oxo-1,4-dioxaspiro[4.5]dec-8-en-6-yl)propanoate (29):

To a solution of ketone $28(0.83 \mathrm{~g}, 32.2 \mathrm{mmol})$ in dry THF $(32 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added LiHMDS ($9.7 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 9.7 mmol) dropwise over 10 min ., followed by TMSCl $(1.3 \mathrm{~mL}, 9.7 \mathrm{mmol})$ dropwise addition over the period of 5 min . The reaction mixture was stirred for 20 min . at $-78^{\circ} \mathrm{C}$, and then warmed to $25^{\circ} \mathrm{C}$. Upon disappearance of the starting material (checked by TLC), the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(1 \times 50 \mathrm{~mL})$ and the biphasic reaction mixture was extracted with EtOAc (1 x 40 mL), and the combined organic layers were washed with brine and concentrated. The residual oil obtained was dissolved in DMSO $(140 \mathrm{~mL}), \operatorname{Pd}(\mathrm{OAc})_{2}(0.15 \mathrm{~g}, 0.64 \mathrm{mmol})$ was added in one portion. Reaction mixture was further stirred under an oxygen atmosphere (balloon pressure) at 25 ${ }^{\circ} \mathrm{C}$ for 12 h and quenched with $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$. It was then extracted with EtOAc (3x50 mL), the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Silica gel column chromatography of crude oil mixture using EtOAc: Petroleum ether (20:80) as elutant gave 0.52 g of $\mathbf{2 9}$.

Yield:	64 \%
IR $v_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	3019, 2928, 2856, 1713, 1595, 1470, 1455, 1353, 1377, 1216, 1098, 1047, 768, 668
${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 500	1.24 (t, J = $7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.77-1.90 (m, 2 H$), 2.04$

Chapter 4

MHz) ס
(dddd, $J=13.89,9.31,7.02,4.27 \mathrm{~Hz}, 1 \mathrm{H}$), 2.39-2.56
(m, 3 H), 2.59 (dd, J = 9.61, $4.12 \mathrm{~Hz}, 1 \mathrm{H}$) $2.67-2.73$
(m, 1 H), 3.89-4.03 (m, 4 H), 4.11 ($\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2$
H), $6.04(\mathrm{dt}, J=10.15,2.10 \mathrm{~Hz}, 1 \mathrm{H}) 6.85(\mathrm{dt}, J$
$=10.30,4.01 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 126 \quad: \quad 14.1,20.9,32.1,35.3,55.9,60.3,64.8,64.9,110.4\right.$,
MHz) δ
Mass: m/z (\%) : $293.1(M+39,5), 277.1(M+23,100), 255.1(M+1$, 4), 209.2 (10), 181.1 (5)

Ethyl 3-(2-hydroxy-6-(2-hydroxyethoxy)phenyl)propanoate (32):

Compound $29(0.1 \mathrm{~g}, 0.394 \mathrm{mmol})$ was dissolved in dichloromethane and $\mathrm{NEt}_{3}(0.055 \mathrm{~mL}$, 0.394 mmol) was added to it at room temperature. After 1 h reaction was concentrated and was purified by column chromatography using EtOAc: Petroleum ether (25:75) as elutant gave 0.095 g of $\mathbf{3 2}$.

Yield:	95 \%
IR $v_{\text {max }} \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$	3351, 3020, 1711, 1469, 1216, 1100, 757
${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 200	1.18-1.27 (m, 3 H), 2.63-2.82 (m, 2 H), 2.82-3.00
MHz) $\boldsymbol{\delta}$	(m, 2 H), 3.76 (s, 1 H), 3.93-4.02 (m, 2 H), $4.03-$
	4.20 (m, 5H), 6.45 (d, $J=8.08 \mathrm{~Hz}, 1 \mathrm{H}), 6.59$ (d, $J=$
	$7.96 \mathrm{~Hz}, 1 \mathrm{H})$, 6.99-7.14 (m, 1 H$), 7.64$ (s, 1 H)
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50$: 14.0, 18.2, 33.7, 61.3, 61.6, 69.4, 103.6, 110.6,
MHz) $\boldsymbol{\delta}$	1
Mass: m/z (\%)	: 279.1 (100), 277 (M + 23, 20), 263.1 (18), 225.1 (35)

4.5 References:

1. Yamaguchi M., Yokota N., Minami T., J. Chem. Soc. Chem. Commun., 1991, 1088.
2. Yamaguchi M., Shiraishi T., Hirama M., J. Org. Chem., 1996, 61, 3530.
3. Ma A., Zhu S., Ma D., Tetrahedron Lett., 2008, 49, 3075.
4. Brandau S., Landa A., Franzén J., Marigo M., Jørgensen K. A., Angew. Chem. Int. Ed., 2006, 45, 4305.
5. i) Ballini R., Bosica G., Gigli F., Tetrahedron, 1998, 54, 7573; ii) Ballini R., Petrini M., Polzonetti. V., Synthesis, 1992, 355.
6. Buckle D. R., Morgan N. J., Smith H., J. Med. Chem., 1975, 18, 203.
7. Sakalov I. E., Russian Chem. Bull., 1996, 45, 137.
8. Theilacker W., Schmid W., Justus Liebigs Ann. Chem., 1950, 16, 670.
9. Dampawan P., Zajac W. W., Synthetic commun., 1983, 545.
10. Nicolaou K. C., Li H., Nold A. L., Pappo D., Lenzen A., J. Am. Chem. Soc., 2007, 129, 10356.
11. Wascholowski V., Knudsen K. R., Mitchell C. E. T., Ley S. V., Chem. Eur. J., 2008, 6155.

Chapter 4

4.6 Spectras of all new compounds

$\stackrel{\cong}{\infty}$

Mon5av400\#009 jan 2012

 ${ }^{13} \mathrm{C}$ NMR of 9 $\mathrm{CDCI}_{3}, 101 \mathrm{MHz}$

Chapter 4

Chapter 4

Tue4av400\#017 feb 2012.003.001.1r.esp

Analyzed: 12/29/08 12:05 PM
Data Path: CAWIN32APPUHSMNHPLCDATAS609
Processing Method: SANTOSHH
System(acquisition): Sys 1
Reported: 12/29108 02:37 PM
Prosessed: 12/29/08 02:37 PM

Application: HPLC
Sample Name: Rec-PAA-70A
Injection from this vial: 1 of 1
Sample Description: Ethanol:PE(02-98)

Peak rejection level: 0

Chapter 4

Wed4av400\#013 march12.003.001.1r.esp

Chapter 4

Chapter 4

Chapter 4

aug 09 Thu3av500\#001.001.001.1r.esp

Chapter 4

Chapter 4

sept 09 Thu2av2\#076.001.001.1r.esp

Chapter 4

List of Publication

1. Organocatalytic dynamic kinetic resolution via conjugate addition: Synthesis of chiral trans-2,5-dialkylcyclohexanones

Ganesh Pandey, Priyanka A. Adate, Vedavati G. Puranik
Org. Biomol. Chem., 2012, 10, 8260-8267
DOI: 10.1039/C2OB26597D
2. Formal synthesis of tetracyclic core of higher Iridoids

Ganesh Pandey, Priyanka A. Adate (to be communicated)

Erratum

[^0]: Project Leader : Dr. Ganesh Pandey
 Column :Chiralpalpak AS-H ($4.6 \times 250 \mathrm{~mm}$)
 Mobile Phase :IPA : PE (2.0:98.0)
 Flow Rate $\quad ; 0.5 \mathrm{ml} / \mathrm{min}$ (Pressure 235 kg)
 Wavelength : 230nm
 Con. $\quad: 2 \mathrm{mg} / 0.5 \mathrm{ml}$

 Inject vol. :20uL

[^1]: Project Leader :Dr.Ganesh Pandey
 Column \quad Chiralcel OJ-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$)
 Mobile Phase :IPA:PE (2:98)
 Flow Rate $\quad: 0.5 \mathrm{ml} / \mathrm{min} 2.46 \mathrm{psi}$
 Wavelength $\cdot \mathbf{2 3 0 \mathrm { nm }}$
 Con. $\quad: 3 \mathrm{mg} / 0.5 \mathrm{ml}$
 Inject vol. :20uL

[^2]: Project Leader :Dr. Ganesh Pandey
 Column \quad Chiralcel-OJ-H ($4.6 \times 250 \mathrm{~mm}$)
 Mobilc Phasc :IPA:PE (0.5:99.5)
 Flow Rate $\quad: 0.5 \mathrm{ml} / \mathrm{min}$ (Pressure25Kgf)
 Wavelength : 230 nm
 Con. $: 1 \mathrm{mg} / 0.2 \mathrm{ml}$
 Inject vol. : 20 uL

[^3]: Project Leader :Dr. Ganesh Pandey
 Column \quad Kromasil 5-AmyCoat ($4.6 \times 250 \mathrm{~mm}$)
 Mobile Phase : ElOH : n -Hexane $(02.98$)
 Flow Rate $\quad: 0.5 \mathrm{ml} / \mathrm{min}$ (Pressure 26kgf)
 Wavelength $: 230 \mathrm{~nm}$
 Con. : $1 \mathrm{mg} / 0.2 \mathrm{ml}$
 inject vol. :20uL

[^4]: Project Leader : Dr. Ganesh Pandey
 Column \quad :Chiralcel OD-H0 $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$
 Mobile Phase :Ethanol: n-Hexane (1.5:98.5)
 Flow Rate $\quad: 0.5 \mathrm{ml} / \mathrm{min}$
 Wavelength $: 230 \mathrm{~nm}$
 Con. $\quad: 4 \mathrm{mg} 0.5 \mathrm{ml}$
 Inject vol. : 15 uL

[^5]: Project Leader :Dr. Ganesh Pandey
 Column \quad Chiralpalpak OD-H ($4.6 \times 250 \mathrm{~mm}$)
 Mobilc Phase : $\mathrm{EtOII}: \mathrm{n}$-Ilexane ($0.4: 99.6$)
 Flow Rate $\quad: 0.5 \mathrm{ml} / \mathrm{min}$ (Pressure 235kgf)
 Wavelength $: 230 \mathrm{~nm}$
 Con. $\quad: 2 \mathrm{mg} / 0.5 \mathrm{ml}$

[^6]: Project Leader: Dr. Ganesh Pandey
 Column \quad Chiralcel OJ-H ($4.6 \times 250 \mathrm{~mm}$)
 Mobile Phase :Ethanol:n-Hexane: ($0.6: 99.4$)
 Flow Rate $\quad: 0.7 \mathrm{ml} / \mathrm{min}$ (Pressure 351 psi)
 Wavelength : 230 nm
 Con. $\quad: 0.5 \mathrm{mg} / 1 \mathrm{ml}$
 Inject vol. :5uL

[^7]: Project Leader :Dr. Ganesh Pandey
 Column :Kromasil 5-AmyCoat ($4.6 \times 250 \mathrm{~mm}$)
 Mobile Phase :EtOH:n-Hexane ($02: 98.0$)
 Flow Rate $\quad: 0.7 \mathrm{ml} / \mathrm{min}$ (Pressure 445psi)
 Wavelength : 230 nm
 Con. $\quad: 1 \mathrm{mg} / 0.2 \mathrm{ml}$
 Inject vol. :20uL

[^8]: Project Leader: Dr. Ganesh Pandey
 Column :Kromasil 5-Amycoat ($4.6 \times 250 \mathrm{~mm}$)
 Mobile Phase :EtOH:n-Hexane (07:93)
 Flow Rate $\quad: 0.5 \mathrm{ml} / \mathrm{min}$ (Pressure 30 kg)
 Wavelength $: 230 \mathrm{~nm}$
 Con. $: 2 \mathrm{mg} / 0.5 \mathrm{ml}$
 Inject vol. :20uL

