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Thesis abstract

Sandalwood oil is one of the oldest, most valuable and highly prized fragrances. The
essential oil of Indian Sandalwood is dominated by a blend of sesquiterpenoids such as:
a, B-Santalenes, a, B-Santalols, a-Bergamotene, a-Bergamotol, Bisabolol and Farnesol, of
which, a- and B-santalols comprise >80 %. This thesis describes the characterization of
genes involved in santalene biosynthetic pathway in Indian Sandalwood Santalum album
L. We cloned and characterized a prenyl transferase (SaFDS) and four terpene synthases
(SaSS, Saf-BS, SaTPS1 and SaTPS2) from the interface of heartwood and sapwood.
Enzymatic incubation of SaSS with (E,E)-FPP resulted in the formation of a complex
mixture of six sesquiterpenes, whereas Saf-BS, SaTPS1 and SaTPS2 gave exclusively -
bisabolene and sesquisabinene B, respectively, on incubation with (E,E)-FPP.
Evolutionary origin of santalene biogenesis and structural basis for the product specificity
of santalene synthase was determined using homology based structural modeling and site
directed mutagenesis. We have also cloned one CYP450 system and one CYP450
reductase, which may be involved in the hydroxylation of the santalene mixture for the

formation of santalols.

Chapter 1: Introduction

Isoprenoid are largest group of secondary metabolites and present in all living systems.
Over 55,000 individual structures, containing a truly incredible array of carbon skeletons

and functional
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Figurel.1: Basic pathway for biosynthesis of various isoprenoids
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isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) and are classified

by the number of five carbon units present in the core structure (Figure 1.1).

Plants continue to be the exemplary source of isoprenoid compounds with a vast
array of chemical structures ranging from universal primary metabolites, such as sterols,
carotenoids, ubiquinones, and hormones, to more unique and species-specific secondary
metabolites which may be involved in plant defence and communication’. India has a
vast and inexhaustible resource of medicinal and aromatic plants. Over 45,000 plant
species are known in India, of which about six thousand are known to possess medicinal
and organoleptic properties and very few plants have been explored for the natural
products which possess medicinal properties®. About 1000 medicinal plant species face a
threat to their existence, such as the most endangered Indian sandalwood (Santalum

album, Linn).

Sandalwood or Chandan (Santalum. album) belongs to the Santalaceae family, a
medium-sized evergreen hemi root parasitic tree, highly valued for its fragrant
heartwood, which contains the essential oil known as sandalwood oil that is used in
perfumes, cosmetics, aromatherapy, incense sticks industries’ and has been reported to

. . . . .. 45 . . . .
have various biological properties such as antiviral’, anticarcinogenic®, and antitumor>’*

9-11

>

effects. Among the reported constituents of sandalwood oil are sesquiterpenoids
triterpenoids'', and phenylpropanoids''. Over 90 % of the world’s sandalwood (S. album)
production is from India. o- and B-santalols (hydroxylated products of a- and B-
santalenes), which are the major components (~80 %) of the essential oil from a well-
matured tree (>80 years old), are responsible for most of the biological activity. The
prime-most enzyme of the terpene biosynthesis in sandalwood, leading to the formation
of santalene derivatives, is santalene synthase. This enzyme catalyzes a complex, multi-
step reaction capable of generating a mixture of six different sesquiterpenes (a-santalene,
a-bergamotene, epi B-santalene, B-santalene, B-bergamotene and (E)-B-farnesene), with
varied carbon skeletons from a single diphosphate substrate, farnesyl diphosphate (E,E-
FPP)"2.
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Chapter 2: RNA isolation and transcriptome sequencing for screening

of genes involved in santalene biosynthesis

Isolation of intact and functional RNA from interface of heartwood and sapwood from
Sandalwood is very challenging because it contains high percentage of phenolics and
secondary metabolites. Moreover, phenolic compounds are found in a wide range of
polymerization states, including lignans, stilbenes, flavonoids and quinones, with the
latter two associated with the colour change occurring during heartwood formation. There

13-15
are several protocols

available for the isolation of RNA from tissues rich in phenolic
and polysaccharide compounds but most of them are tissue specific. The presence of
phenolics and polysaccharides complicate RNA isolation from the interface of heartwood
and sapwood because they co-precipitate with nucleic acids giving the pellet a brownish
colour. Also, the solubility of the pellet decreases immensely. In this study, a protocol is
developed for the isolation of high quality of total RNA from the interface of heartwood

and sapwood from S. album.

IS5 RNA
185 RNA

Figure 2.1: Agarose gel electrophoresis of RNA isolated from modified protocol, Lane
1: 1Kb DNA ladder, Lane 2: Total RNA, A260/280 ratio = 214, A260/230 ratio = 2.35

This high quality RNA was further used for transcriptome sequencing, a quick and
cost effective method to profile complete coding sequence of a genome for the screening

of genes involved in the biosynthesis of santalenes and their derivatives. From
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transcriptome sequencing and annotation, we screened 18 transcripts having the terpene
synthase domain, 72 transcripts having CYP450 domain whereas 3 transcripts for
CYP450 reductase. Some of the selected transcripts were screened for the identification

of genes involved in santalene biosynthesis.

Blast2Go analysis

® Transcripts

s 3

Terpene Cytochorme Cytochorme
synthase P450 P450 reductase

Figure 2.2: BLAST2GO analysis of unigenes assigned with Pfam ID for the screening of
terpenoid biosynthetic pathway genes

Chapter 3: Screening, cloning, expression and characterization of

terpene synthases involved in biosynthesis of santalene derivatives

To understand the molecular and biochemical mechanism controlling terpene diversity in
Indian Sandalwood, we have isolated and characterized five terpene synthases (SaFDS,
SaSS, SaBBS, SaTPS1 and SaTPS2) involved in the biosynthesis of farnesyl
diphosphate (FPP), santalenes, bergamotenes, p-bisabolene and sesquisabinene B,
respectively. There was not much information available on how many enzymes are
involved in the formation of the sesquiterpene mixture in Indian Sandalwood, S album.
Therefore, to characterize the genes involved in santalene biosynthesis, we selected five
transcripts on the basis of sequence comparison to existing sesquiterpene synthase

sequences in NCBI database. A RACE was performed to generate the full-length cDNA
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sequences of all these five genes. ORFs were isolated and cloned in expression vector for
functional characterization. Protein expression was carried out in BL21DE3
(SaFDS)/Rosetta 2 DE3 (SaSS, SaBBS, SaTPS1 and SaTPS2) cells and recombinant
protein was purified to the homogeneity. Purified proteins were incubated with prenyl-

diphosphate substrate for functional characterization.

When santalene synthase (SaSS) was incubated with (E,E)-FPP in presence of
Mg®*, it resulted in the formation of six sesquiterpenes of which three major
sesquiterpenes (a-, B-santalenes and exo-a-bergamotene) and three minor sesquiterpenes
(epi- P-santalene, (E)-B-farnesene and exo-f-bergamotene) indicating that SaSS is
moderately promiscuous in nature. In Sandalwood, these Santalene derivatives will be
further converted into their corresponding alcohols catalyzed by CYP450 mono-

12,16
oxygenase systems .

3

_ JULMWL A

14 15 16 17 18 19

Figure 3.1: GC profile of SaSS assay with (E,E)-FPP, a- santalene (1), exo-o-
bergamotene (2), epi- B-santalene (3), (E)-B-farnesene (4), P-santalene (5) and exo-f-
bergamotene (6)

Incubation of B-bisabolene synthase (SafBS) with (E,E)-FPP in the presence of
Mg*" resulted in the exclusive formation of B-bisabolene (1) and a small proportion of
bisabolol (2) as shown in figure 3.2. In recent years, sesquiterpenes of farnesene and
bisabolene skeletons have been recognized as replacements for petroleum-derived jet-

. 17,18
engine fuel' "',
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Figure 3.2: SafBS assay profile with (E,E)-FPP, B-bisabolene (1), bisabolol (2)

Two isoforms of sesquiterpene synthases (SaTPSI and SaTPS2) involved in the
biosynthesis of sesquisabinene B in Indian Sandalwood, S. a/bum have been isolated and
functionally characterized. Sesquisabinene B and its hydroxyl derivative sesquisabinene
hydrate are reported to be present in several plant species'**’, but till today no report is
available on the isolation and characterization of sesquisabinene B synthase. This is the
first report on the isolation and functional characterization of sesquisabinene B synthase.
Functional characterization of Sa7PSI and SaTPS2 revealed that both the enzymes
catalyze the exclusive formation of sesquisabinene B from (E,E)-FPP as substrate with
varying kinetic parameters (Figure 3.3). We also tested the in vivo production of SaTPS1
and SaTPS2 metabolites by incorporating these genes in pET-Duet vector along with
SaFDS and expressing the same in C41DE3 cells containing pRARE plasmid for rare
codons. We observed that sesquisabinene B could be produced in 1-2 mg/L of non-
optimized bacterial culture and demonstrated the feasibility of metabolic engineering of

SaTPS1 in a heterologous system for the large-scale production of sesquisabinene B.
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Figure 3.3: A) SaTPSI assay profile with (E,E)-FPP, Sesquisabinene B (1), B) SaTPS2
assay profile with (£, E)-FPP, Sesquisabinene B (1)

Chapter 4: Santalene synthase: A comprehensive site directed
mutagenesis study to understand the dynamic nature of the

sesquiterpene synthase active site

In this chapter we describe the homology structural model based engineering of santalene
synthase (SaSS), which was isolated and cloned from the transition zone of the sapwood-
heartwood of the Santalum album Linn (sandalwood tree). Santalene synthase catalyzes
the cyclization of acyclic farnesyl diphosphate (FPP) into a-, B-santalenes, and a-exo-

bergamotene as major products along with a small amount of epi-B-santalene, (E£)-B-
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farnesene and exo-f-bergamotene. In order to engineer SaSS$ for the selective production
of these products or few very different sesquiterpenes, the residues involved in stabilizing
the intermediates in carbocation cascade for the formation of sesquiterepens from FPP
were identified using homology structural model built using the crystal structure of 5-epi-
aristolochene synthase. Homology model based directed mutagenesis was used to modify
the selected amino acids in the active site of the santalene synthase (SaSS) to better
understand sesquiterpene biosynthesis and molecular origins of chemical diversity in S.
album. This study also provides insights into the evolutionary aspects of various terpene
synthases even though there is a very low level of sequence identity among them. In this
chapter, 22 amino acids were selected including all common residues present in 5-epi-
aristolochene synthase and 35 mutants were constructed to understand the biosynthesis of
santalenes and bergamotenes. These surrounding amino acids are thought to be involved
in maintaining electronic density and correct orientation of carbocation for cyclization in
the active site pocket. The aspartate and arginine rich motifs which are highly conserved
in all sesquiterpene synthases, were not considered because studies have already proved
that such alterations would result in significant loss of activity*'**

analyses using (E,E)-FPP as substrate indicated that mutants, S290G, T318A, R474M,
R474L, T467A, W293F, Y37F, Y396F and YS539F produces exclusively a-exo-

. The product ratio

bergamotene where as mutant Y539W produces endo-bergamotene and exo-B-
bergamotene in significant amounts. Mutant L427A increases the active site volume
which inhibits the cyclization of highly unstable carbocation which leads to the formation
of (E)-B-farnesene in a significant amount. Mutants 1422A produced a very different
sesquiterpene B-curcumene as a major product by stabilizing the bisabolyl carbocation.
We successfully constructed the sesquiterpene synthases such as: a-santalene and exo-a-
bergamotene synthase (N463D), exo-a-bergamotene synthase (S290G, W293F, T318A,
Y539F, R474M/L, and Y539S), endo- a-bergamotene synthase (Y539W), B-curcumene
synthase (I422A), (E)-B-farnesene synthase (L427A) producing a single or multiple
product derived from the predominant reaction pathway of SaSS by maintaining the

kinetic parameters (Figure 4.4).
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Figure 4.4: GC profile of novel sesquiterpene synthases with (£, E)-FPP derived from S.
album santalene synthase by directed mutagenesis, A) Santalene synthase assay profile
with (E,E)-FPP, B) Mutant N463D (a-santalene and exo- a-bergamotene synthase), C)
Mutant Y539W (endo- a- bergamotene synthase), D) Mutant S290G (exo-a-bergamotene
synthase), E) Mutant R474M (exo-a-bergamotene and exo-B-bergamotene synthase), F)
Mutant L427A (E)-B-farnesene synthase), G) Mutant 1422A (B-curcumene synthase), o-
santalene (1), exo-o-bergamotene (2), epi-f-santalene (3), (E)-B-farnesene (4), B-
santalene (5), exo-B-bergamotene (6), endo-a-bergamotene (7), y-curcumene (8), B-
curcumene (10)
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Chapter 5: Screening, isolation and cloning of Cytochrome P450

systems from Indian Sandalwood S. album

a- and [-santalols (hydroxy derivative of a- and B-santalenes), which are the major
components (~80 %) of sandalwood oil, are responsible for most of the biological activity
related to sandalwood oil. Sandalwood oil is commercially produced by steam distillation
of heartwood chip with varying yield from 4-7 % from a well-matured tree. Since the
demand for this essential oil is increasing, overharvesting and several diseases have led to
a serious decline in the population of Sandalwood tree. Alternate approach for the
production of these essential components of sandalwood oil is engineering a microbial
system by incorporating the genes involved in the biosynthesis of santalols. From the 10
transcripts showing similarity to the CYP domains, we selected one transcript matching
with Premnaspirodiene oxygenase
(>Locus_41531 Transcript 1/1 Confidence 1.000 Length 749 bp), which may be
involved in the hydroxylation of santalenes. Transcript matching with Premnaspirodiene
oxygenase was used for extending the partial transcript sequence to generate full-length
cDNA sequence by 5’ RACE. Full length ORF sequence of SaCYP450 mono-oxygenase
was generated and cloned in pESC yeast duet vector MCS2 (containing CYP450
reductase from Azadirachta indica). Yeast expression and microsome preparation was
carried out and this microsome was used in in vitro assay with santalenes’ mixture, but

could not result in hydroxylation of the substrate.
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Chapter 1

1.1 Plant secondary metabolites and their biosynthesis

Plants have evolved specialized secondary biosynthetic pathways for the synthesis of
structurally and functionally complex small molecules, which aid in the growth and
development of the plants but are not required for the survival of the plants. In plants,
the pattern of secondary metabolites is complex as it changes in a tissue- and/or
organ-specific manner. Secondary metabolites can be present in an active state or as a
prodrug which are activated by wounding and infection. Secondary metabolites play a
key role in the protection of plants against microbial infections (fungal, bacterial),
viral infections, herbivory, UV radiation, attraction of pollinators and frugivores,
allelopathy, and signalling'. The abundance of secondary metabolites in plants is
often less than 1 % of the total storage in a dedicated tissue. The ability to synthesize
secondary metabolites has been selected throughout the course of evolution in
different plant lineages. Plant genomes are estimated to contain 20,000-60,000 genes
out of which 15-25 % of genes encode for the enzymes involved in secondary
metabolism®”. Since ancient times, secondary metabolites have been used for several
purposes, such as flavours, fragrances, dyes, stimulants, insecticides, hallucinogens as

well as therapeutic agents.

Secondary metabolites encompass three major classes of products including
flavonoids, isoprenoids, and alkaloids derived from primary metabolic pathway (fig
1.1). These metabolites are unique to plants and are essential for adaptation to diverse
and inconstant surroundings. Flavonoids are derived from phenylalanine and acetyl-
CoA and play important roles in defence, signalling, pathogenesis and symbiosis’.
They are also known for providing pigments to flowers, fruits, leaves and seeds.
Alkaloids are nitrogen containing compounds found in about 20 % of plant species
and play an important role in the defence of plants against herbivores and pathogens’.
Isoprenoids represent the largest class of secondary metabolites and play diverse
functional roles in plants as hormones, photosynthetic pigments, electron carriers,
structural components of membrane, as well as an important role in communication
and defence. The inter-relationship of biosynthetic pathway of secondary metabolites

derived from primary pathway is shown in figure 1.1.

Prabhakar Lal Srivastava, Ph. D. Thesis, University of Pune, 2014 2
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Figure 1.1: Inter-relationship of biosynthetic pathway leading to secondary
metabolites in plants

The genes responsible for generating great diversity of secondary metabolites arise
from gene duplication, origin of new genes for secondary metabolism, gain and loss
of function for specific compounds, etc. The biosynthesis of plant secondary
metabolites is usually restricted to a particular tissue and starts at specific

developmental stages.
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Chapter 1

1.2 Isoprenoids

Isoprenoids are a large and diverse class of naturally occurring organic compounds
present in all forms of living systems. All isoprenoid compounds are constructed from
two simple five-carbon building blocks, isopentenyl diphosphate (IPP) and
dimethylallyl diphosphate (DMAPP). Over 70,000 individual structures, containing a
truly incredible array of carbon skeletons and functional groups have been reported®’.
Plants continue to be the exemplary source of isoprenoid compounds with a vast array
of chemical structures ranging from universal primary metabolites such as sterols (as

essential component of bio-membrane)®’, carotenoids and chlorophyll (as

10,11 12,13

photosynthetic pigments) ', ubiquinones (acting in electron transport chain) =,

14,15 . . .
°, and to more unique and species-specific secondary

vitamins and hormones
metabolites which may be involved in plant defence and communication'®. Terpene
derivatives are also used for the production of numerous pharmaceuticals including
taxol (anti-cancer drug)'’, artemisinin (anti-malerial drug)'®, etc. Biosynthesis of
isoprenoids can be divided into four basic steps'”: (i) production of the C5 monomers
isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), (ii) the head
to tail condensation of Cs-unit isopentyl diphosphate with its isomer, dimethylallyl
diphosphate into geranyl diphosphate (GDP), farnesyl diphosphate (FDP) and
geranylgeranyl diphosphate (GGDP), (iii) cyclization and/or rearrangement to form
the diverse class of terpene carbon backbone and (iv) tailoring and downstream

functional group modifications of the terpene skeleton. Biosynthesis of isoprenoids

and its compartmentalisation in plant cells is represented in figures 1.2A and 1.2B.
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1.3 Biogenesis of IPP and DMAPP
1.3.1 Mevalonate (MVA) pathway

Mevalonate pathway (MVA) or HMG-CoA reductase pathway was first discovered in
yeasts and animals in 1950, and it was thought to be responsible for the biosynthesis
of IPP and DMAPP in all the organisms in six enzymatic steps starting from Acetyl-
CoA*™*! followed by IPP isomerase (IDI) which maintains the balance between IPP
and DMAPP. This pathway occurs in cytosol and is present in animals, plants, fungi,

archaea and some bacteria.

The first step of MVA pathway is the synthesis of acetoacetyl-CoA which occurs by
condensation of two molecules of acetyl-Co-A, the reaction being catalyzed by
acetoacetyl-CoA transferase. In the second step, acetoacetyl-CoA is converted into 3-
hydroxy-3-methylglutaryl-CoA (HMG-CoA) catalyzed by HMG synthase. The
subsequent step involves conversion of HMG-CoA to mevalonic acid (MVA)
catalyzed by 3-hydroxy-3-methylglutaryl-CoA reductase in the presence of NADPH.
Further, mevalonic acid (MVA) undergoes phosphorylation in two successive steps,
catalyzed by MVA kinase and phospho-MVA kinase to synthesize MVA 5-
diphosphate. In the last step of IPP biosynthesis MVA 5-diphosphate undergoes ATP-
dependent decarboxylation catalyzed by diphospho-MVA decarboxylase. IPP
undergoes isomerisation to form DMAPP in a reaction catalyzed by IPP isomerase
(IDI). Two types of isopentenyl diphosphate isomerase (IDI) have been characterized
based on their requirement of the cofactor. Type 1 IDI belongs to zinc metallo-
proteins, catalyzing the inter-conversion of IPP and DMAPP, and is widely
distributed in fungi, mammals and plants®*. Type 2 IDI is restricted to archaca and
bacteria which requires flavin mononucleotide (FMN) and NADH for its activity*=>*.
Recently an enzyme from Methanocaldococcus jannaschii was shown to catalyze
phosphorylation of isopentenyl phosphate to isopentenyl pyrophosphate®=’. Based on
this observation, a modified MVA pathway was proposed in which mevalonate-5-
phosphate is decarboxylated into isopentenyl phosphate which further undergoes
phosphorylation to form isopentenyl diphosphate®®.
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1.3.2 Methyl Erythritol Pathway (MEP) / 1-deoxy-D-xylulose 5-phosphate (DXP)
pathway

Earlier it was believed that MVA pathway is the sole pathway for the biosynthesis of
IPP and DMAPP. In the early 1990s, Rohmer and co-workers proved the existence of

29-31

an alternative pathway (the MEP or DXP pathway) which is present in many

eubacteria and plant plastids, but absent in humans'®. Therefore MEP pathway could

32:34
, as many human

be an excellent target for developing broad spectrum antibiotics
pathogenic bacteria rely on MEP pathway for the biosynthesis of their essential
isoprenoids. In plants, carotenoids, chlorophylls and prenylquinones are synthesized
through the MEP pathway operated in plastids. MEP pathway consists of seven
enzymatic steps starting from glyceraldehyde-3-phosphate and pyruvic acid via 1-

deoxy-D-xylulose-5-phosphate for the synthesis of IPP and DMAPP in a ratio of 5:1.

The first step of MEP pathway is the synthesis of DOXP (1-deoxy-D-xylulose-5-
phosphate), which is catalyzed by DOXP synthase (DXS) in a transketolase-type
decarboxylation from glyceraldehyde-3-phosphate and pyruvate. In the second step,
DOXP is transformed into 2-C-methyl-D-erythritol-4-phosphate (MEP) catalyzed by
the NADPH-dependent DOXP reductoisomerase. In the next step, MEP is converted
into 4-(diphosphocytidyl)-2-C-methyl-D-erythritol (CDP-ME) in a CTP (cytidine
triphosphate) dependent reaction catalyzed by 2-C-methyl-D-erythritol 4-phosphate
cytidylyltransferase. The hydroxyl group in C2 position of CDP-ME in the next step
undergoes phosphorylation and gets converted into 4-(diphosphocitidyl)-2-C-methyl-
D-erythritol-2-phosphate (CDP-ME2P), which is catalyzed by CDP-ME kinase. CDP-
ME2P is subsequently converted into a cyclic 2-C-methyl-D-erythritol 2.4
cyclodiphosphate (MEcPP) catalyzed by MECP synthase. In the last step of this
pathway, MEcPP is converted into IPP and DMAPP via an intermediate step 1-
hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate (HMBPP) catalyzed by HMBPP
synthase and HMBPP reductase, both of these steps require NADPH as a reducing
agent. Unlike MVA pathway, IPP isomerase (IDI) is present in only minority of

bacteria and seems to be non-essential in E.coli.
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1.3.3 Terpene synthase chemistry

Terpene synthases catalyze biosynthesis of terpenoids with high regio- and stereo-
chemical precision in a cascade of complex reactions involving highly reactive
carbocationic intermediates that undergo a sequence of reactions such as cyclizations,

342 The hydrocarbon

alkylations, rearrangements, deprotonations and hydride shifts.
skeletons thus obtained are further added with functional groups, such as hydroxy
group, by the action of upstream enzymes belonging to monooxygenase class.* The
installed functional groups may subsequently undergo a series of functional group
transformations to ultimately result in final terpenoid molecules. The carbon skeletons
of isoprenoid compounds are constructed from 3-methyl-1-butyl units (isoprene),

which are joined in one of the nine different patterns (Scheme 1.3.3).

- ;
i T "
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g |
\)\ g e S
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Scheme 1.3.3 A) Patterns found in nature for connecting isoprene units, Colours
indicate isoprene units (red and black) and bonds joining the isoprene units (green),
B) Four basic coupling reactions in terpene biosynthesis**.
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Of the only four biosynthetic reactions comprising of chain elongation,
cyclopropanation, branching and cyclobutanation are involved in joining of simpler
units, whereas others involve rearrangements of 1°-2-3 structures (Scheme 1.3.3). Of
these, chain elongation is the most common reaction, which involves head to tail
condensation of IPP with allylic diphosphates such as DMAPP, GPP or FPP to form
acyclic diphosphates® and are catalyzed by prenyl transferases such as geranyl
diphosphate synthase (GDS), farnesyl diphosphate synthase (FDS) or geranylgeranyl
diphoshate synthase (GGDS) respectively. Early structural investigations made by
Wallach (1914) led to formulate a principle that, most terpenoids could be
hypothetically constructed by a repetitive joining of isoprene units. This was the first
integrated concept for a common structural relationship among the terpenoid natural
products. Subsequently, Ruzicka refined the original concept to establish the

‘biogenetic isoprene rule*>*¢

which proposed that all terpenoids arose from an
“active” or biogenic isoprene. This hypothesis ignores the specific character of the
biological precursor and considers only that their structure is “isoprenoid” in nature.
Active isoprene, which was identified as isopentenyl pyrophosphate (IPP), and its
allylic ester isomer, dimethylallyl pyrophosphate (DMAPP) are now known to form

the central intermediates in all isoprenoid biosynthetic pathways.
1.3.4 Major branch points and downstream products

In plants, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP)
synthesized from MVA pathway are used for the synthesis of isoprenoids in cytosol
and mitochondria, whereas IPP and DMAPP synthesized from MEP/DOXP pathway
are used in the synthesis of isoprenoids in the plastid. DMAPP acts as the primary
active substrate for the synthesis of prenyl diphosphates: geranyl diphosphate (GPP),
farnesyl diphosphate (FPP), and geranylgeranyl diphosphate (GGPP) by head to tail
condensation with its isomer IPP. DMAPP also acts as a direct source for synthesis of
cytokines and hemiterpenes whereas GPP, FPP and GGPP are the branch points for
synthesis of all isoprenoids. GPP synthase, localized in plastids, produces GPP as a
precursor of monoterpenes biosynthesis and functions as homomeric and heteromeric
enzymes'' | FPP is synthesized mainly in cytosol and mitochondria by homodimeric
enzyme (FPP synthase) and act as a main branching point for the biosynthesis of
sterols, brassinosteroids, dolichols, polyprenols and for protein prenylation®. GGPP

produced by GGPP synthase act as a precursor for the synthesis of diterpenoids,
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gibberellins, chlorophylls, phylloquinone, plastoquinone, tocopherols, carotenoids,
abscisic acid and oligoprenols. GGPP synthase functions as homodimeric enzyme
localized in plastids, mitochondria, and endoplasmic reticulum and utilizes all three
allylic prenyl diphosphates (DMAPP, GPP, and FPP)’'. The ability of terpene
synthases to convert single prenyl diphosphate substrate to diverse products of

varying carbon skeleton is one of the most unique features of this class of enzymes.
1.3.5 Cross talk between cytosolic and plastidial pathway

In higher plants, both the pathways operate simultanecously with a compartmental
segregation. Various feeding experiments with stable isotopes indicate that
compartmentalisation of two biosynthetic pathways in plants which are leading to the
formation of DMAPP/IPP is not absolute, because in several cases one metabolite can

exchange between these two pathways*~2.

Biosynthetic studies of diterpene
ginkgolide using "*C glucose indicated that three C5 units (IPP) are formed through
MVA pathway and one C5 unit (IPP) from DXP pathway is being utilized to form
ginkgolide. Similar studies in liverwort (H. planus) and hornwort (4. punctatus)
shows FPP portion (end C15 unit) of phytol is derived from MVA pathway whereas,
terminal IPP portion (C5 unit) is derived from the DXP pathway’>>>. These results
clearly indicate the potential exchange of isoprenoids between both MVA and DXP
pathways which may play a crucial role in regulation of isoprenoid biosynthesis>*>*.
The presence of MVA and MEP pathway enzymes in different compartments of
plants suggest a mixed biosynthetic origin. In Arabidopsis thaliana, GGPP synthase
which synthesizes GGPP as a precursor for diterpenoid, carotenoids and chlorophylls
was found to be present in endoplasmic reticulum and mitochondria in addition to
plastids’'. Sesquiterpenoid biosynthesis usually takes place in cytosol of higher plants,
however, (Z,Z2)-FDS and sesquiterpene synthases have been found in plastids of the

tomato trichome””.
1.3.6 Regulation of MVA and MEP pathway

Isoprenoid biosynthesis in all organisms is regulated at multiple steps. In yeast and
mammalian cells, regulation occurs at the levels of transcription, translation,
posttranslational and protein degradation®, whereas in bacteria, regulation occurs
mainly at transcriptional level®'. The regulation of both the pathways (MVA and MEP

pathway) in plants is more complex as compared to other organisms. In plants,
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presence of both the pathways in different compartments of one cell, existence of
isozymes for several enzymatic steps and wide range of environmental stimuli add to

the complexity of regulation of isoprenoid biosynthesis.

Regulation of MVA and MEP pathways in plants occurs mainly at
transcriptional level; transcription of genes encoding enzymes of MVA and MEP
pathway are not tightly co-ordinated. Transcription of individual enzymes or
isozymes can vary significantly in different tissues and developmental stages. MVA
pathway genes are mainly expressed in roots, flowers and seeds, whereas MEP
pathway genes are predominantly expressed in photosynthetic tissues®. Light plays a
very crucial role in regulation of isoprenoid biosynthesis from MEP pathway. Most of
the pigment protein complexes responsible for photosynthesis (chlorophylls,
carotenoids, xanthophylls, side chains of phylloquinone and plastoquinone) are
derived from the MEP pathway. Exposure of dark-grown Arabidopsis seedlings to
low frequency red light (which is known to induce photomorphogenesis) resulted in
photomorphogenesis and etioplast development in chloroplast because of
accumulation of chlorophylls, xanthophyll, B-carotene and phylloquinone. On the
other hand, plants exposed to far red light (which does not induce
photomorphogenesis) do not synthesize chlorophylls, B-carotene, and phylloquinone,
but in turn accumulate lutein and a-tocopherol without changes in transcript
abundance. These results suggests that MEP pathway is regulated at transcriptional

and post transcriptional levels during photomorphogenesis®.

The main rate determining enzyme of MVA pathway in fungi, mammals,
insects and