Towards Developing Novel Strategy for the Syntheses of Aspidosperma Class of Alkaloids

THESIS SUBMITTED TO SAVITRIBAI PHULE PUNE UNIVERSITY

FOR AWARD OF DEGREE OF DOCTOR OF PHILOSOPHY (PH.D.) IN CHEMISTRY

SUBMITTED BY
SHIVA KUMAR BURUGU

UNDER THE GUIDANCE OF
DR. GANESH PANDEY

DIVISION OF ORGANIC CHEMISTRY CSIR-NATIONAL CHMICAL LABORATORY PUNE - 411008

Dedicated

$\mathcal{T} o$
My Parents

CERTIFICATE

This is to certify that the work incorporated in the thesis entitled "Towards Developing Novel Strategy for the Syntheses of Aspidosperma Class of Alkaloids" which is being submitted to the Savitribai Phule Pune University for the award of Doctor of Philosophy in Chemistry by Mr. Shiva Kumar Burugu was carried out by him under my supervision at the CSIR-National Chemical Laboratory, Pune. A material that has been obtained from other sources has been duly acknowledged in the thesis.

Date:

DECLARATION

I declare that the thesis entitled "Towards Developing Novel Strategy for the Syntheses of Aspidosperma Class of Alkaloids" submitted by me for the degree of Doctor of Philosophy is the record of work carried out by me during the period from 06/11/2010 to 15/07/2016 under the guidance of Dr. Ganesh Pandey and has not formed the basis for the award of any degree, diploma, associateship, fellowship, titles in this or any other University or other institution of Higher learning

I further declare that the material obtained from other sources has been duly acknowledged in the thesis.

Date:
Shiva Kumar Burugu
Division of Organic Chemistry,
CSIR-National Chemical Laboratory
Pune - 411008.

$\mathcal{A C K N O W L E D G E M E N T S}$

I am very much thankful to my research supervisor $\mathcal{D} r$. Ganesh Pandey for introducing me to the fascinating field of organic chemistry and I'd like to express my feeling of immense gratitude for his constant encouragement, guidance, patience and support. \mathcal{H} is efficiency, persistency, enthusiasm towards Cearning new things, optimistic attitude and fighting spirit in all the adverse situations afways inspires me. His erudite and meticulous supervision, innovative ideas, critical comments and keen insight for problem solving has helped me to complete this research work. It is a great pleasure and privilege for being associated with him and I shall afways remain thankful to fim.
$\mathcal{M y}$ special thanks to $\mathcal{D} r$. V.K. Gumaste and $\mathcal{D} r$. (M Mrs.) Smita Gadre for their constant encouragement and creating joyful atmosphere in the Caboratory.

I am grateful to my senior cofleagues $\mathcal{D} r$. Balakrishanan, $\mathcal{D} r$. Kishor Bharadwaj, Dr. Keshri Tíwari, Dr. Swaroop, Dr. Debasis G, $\mathcal{D} r$. Nishant Gupta, Dr. Rajendra Reddy, Dr. Dharmendra, $\mathcal{D} r$. Sujit Pal, Dr. Debasis Dey and Dr. Priyaka Adate for their constant encouragement.

I specially acknowledge my senior colfeague $\mathcal{D} r$. Prasanna Kumara Chikkade who helped me to Cearn the chemistry and encouraged me during my initial days in the laboratory. My Special thanks to Kashinath and Raghavedra for their constant encouragement. I am also very much thankful of $\mathcal{D} r$. Ashoк кumar Yadav and $\mathcal{D} r$. Navnath for their constant support, encouragement and fruitful scientific discussion during my research.

My special acknowledgement to Pushpendra singh for nice collaboration we had during the completion of this work. I wish him all the success in his future endeavour.

My special thanks to all my colfeagues Rajesh, Divya, Dr.navnath, Binoy, Animesh, Durgaprasad, Dr. Deepak singh, Dr.asha, Sandeep, Sahani for maintaining a friendly and cheerful research atmosphere. I afso acknowledge my labmets Rushil, Ramakrishna, Pulak, Pradeep, Akash, Jagadish, Prachí, Avinish, $\mathcal{D} r$. Athish and $\mathcal{D r}$. Janakiram. I thank prof. Hajra group members for their maintaining cheerful atmosphere. I specially thank my friend $\mathcal{A} \sigma \hbar$ Һheß \mathcal{M} ishra for his encouragement.

Help from the $\mathcal{N M M}$ faculty gratefully acknowledged. I specially acknowledge $\mathcal{D r}$. Vikas and $\mathcal{A j a y}$ Verma of CBMR for helping for $\mathcal{N} \mathcal{M} \mathcal{R}$ studies. I thank all other $\mathcal{N} \mathcal{M} \mathcal{R}$ group members for their help.

I am also grateful to $\mathcal{D r}$. Yella reddy, $\mathcal{D} r$. Shyamapada Banergy, $\mathcal{D} r$. Ramesh Reddy for inspiring me to take up the research as a career. I also thank $\mathcal{D r}$. Sampath and Brahmaiah sir, Ramanamurthy sir for teaching best skills in practical organic chemistry and for their care and encouragement. I sincerely acknowledge my teachers \mathcal{D} r. Vijay kumar and late $\mathcal{D} r$. Anandam sir for their encouragement.

I am thankful to all my friends (Kashinath, Raghavendra,
 Sunil, Yadagiri, Srinivas, $\mathcal{N a r e n d r a) ~ f o r ~ t h e i r ~ c o n s t a n t ~}$ encouragement, hefp and inspiration. I thank my dearest friends Jaipal, Karna, Ravi and $\mathcal{A s h o k}$ for their encouragement. I thank
my Sapala friends $\mathcal{N a g a r a j u , ~ G a n g a r a m , ~ P r a s h a n t h i , ~ S h a s h i , ~}$ Sríshailam, Srikanth, $\mathcal{N a r e s h , ~ B h a s k e r , ~ S h r a v a n , ~ a n d ~ D r . ~ A n i l ~}$ Valeru for their motivation and joyful company.

I am thankful to my brother (Shravan), sister (Swathi), Bava ($\mathcal{N a v e e n ~ B i j j a l a) , ~ A d ケ v i k , ~ V a m s h i ́ , ~ S w e e t y , ~ V a i s h u , ~ S h i r i s h a , ~ S i n d Ћ u ~}$ Uncles (Raju, Venkanna), babai (Srinivasulu), aunty (Padmavathi, Mani, Padma) and all my family members for their love and encouragement. I deeply acknowledge my parents for their \mathfrak{b} lessing, love, care, continuous encouragement and patience. I thank my grandmothers Sakkubai and Rajyam for their Glessings and love.

I thanks to the Director, CSIR- $\mathcal{N C L}$, Director, CBMR-Lucknow, for providing the research facilities and CSIR, $\mathcal{N e w}$ Dethi for award of research fellowshíp.

Finally I thank God for his blessings.....

CONTENTS

"Towards Developing Novel Strategy for the Syntheses of Aspidosperma Class of Alkaloids"

PageNo.List of abbrivations
Abstract of the Thesis i-vi
CHAPTER 1 Introduction to Aspidosperma class of alkaloids: 1-40
1.1. Introduction
1.2. Biological activity
1.3. Biosynthesis
1.4. Literature reports: Synthetic approachestowards Aspidosperma class of alkaloids
1.5. Summary of literature reports
1.6. Our concept and protocol
1.7. Reference
CHAPTER 2 Studies towards development of novel strategy 41-71 for synthesis of Aspidosperma Class of alkaloids
2.1. Introduction
2.2. Retrosynthetic analysis
2.3. Azomethine ylide
2.4. Our concept and approach: Intramolecular [3+2]cycloaddition for the construction of TricyclicCore of Aspidosperma class of alkaloids.
2.5. Synthesis of (-)-tricyclic core of Aspidospermaclass of alkaloids: Total Synthesis of (+)-Aspidospermine.
2.6. Synthesis of (+)-tricyclic core of Aspidosperma class of alkaloids.

2.7. Summary

2.8. References

CHAPTER 3 Experimental

3.1 Experimental Procedures and spectral data
3.2 Spectra

List of Publications 182
Erratum 183

LIST OF ABBREVIATIONS

aq.	aqueous	NMR	Nuclear magnetic resonance
bp	Boling point	NOE	Nuclear Overhauser Effect
Bn	Benzyl	NOESY	Nuclear Overhauser
COSY	Correlated spectroscopy		Enhancement Spectroscopy
DCM	Dichloromethane	ORTEP	Oak Ridge Thermal-Ellipsoid
DEPT	Distortionless Enhancement		Plot Program
	by Polarization transfer	PDC	Pyridinium dichromate
DMF	N,N-dimethyl formamide	p-TSA	p-Toluenesulfonic acid
DMSO	Dimethylsulfoxide	py	Pyridine
EtOAc	Ethyl Acetate	rt	Room temperature
g	Gram	THF	Tetrahydrofuran
h	hour	TFA	Trifluoroacetic acid
Hz	Hertz	TLC	Thin layer chromatography
mp	Melting point	TMS	Trimethylsily.
mL	Mililiter		
MeOH	Methanol		

General Remarks

- All the solvents were purified according to the literature procedure
- Petroleum ether used in the experiment was of $60-80^{\circ} \mathrm{C}$
- Column chromatographic separations were carried out by gradient elution with suitable combination of two solvents and silica gel (60-120/ 100-200 or 230-400 mesh size).
- Reaction progress was monitored by TLC. TLC was performed on Merk precoated 60 F_{254} plates and the spots were rendered visible by exposing to UV light, iodine, KMnO_{4}, ninhydrin, phosphomolibdic acid solution.
- IR spectra were recorded on FTIR instrument in KBr.
- NMR spectra were recorded on Burker AV $400\left(400 \mathrm{MHz}{ }^{1} \mathrm{H}\right.$ NMR and 100 MHz ${ }^{13} \mathrm{C}$ NMR).
- Mass spectra were recorded on PE SCIEX API QSTAR pulser (LC-MS), Agilent LC-MS/HRMS instrument.
- All melting points were recorded using electrothermal melting point apparatus (Buchi, B540).
- Numbering of compounds, schemes, tables, referencing and figures in abstract and chapters are independent.

1) Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, $4^{\text {th }}$ ed., Butterworth Heinemann, 1999

Research Student Shiva Kumar Burugu

Research Guide Dr. Ganesh Pandey
Title of Thesis "Towards Developing Novel Strategy for the Syntheses of Aspidosperma Class of Alkaloids"
Registration No. PGS/Ph.D./2804 dated 13/08/2012.
Date of Registration 06/11/2010
Place of Work Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune- 411008 INDIA

Thesis Abstract

The present dissertation is divided into three chapters. Chapter one deals with the overview of Aspidosperma alkaloids and literature survey towards the total synthesis of Aspidospermidine alkaloid. Chapter two presents our approach using intramolecular [3+2]-cycloaddition of non-stabilized azomethine ylide generated from a designed bicyclic aminal for synthesis of (-)-and (+)-Tricyclic core of Aspidosperma class of alkaloids. The efficacy of this method was demonstrated by the total synthesis of (+)-aspidospermidine. The experimental section (Chapter-3) describes the detailed reaction procedures used to carry out the reactions along with the spectral data of all the synthesized compounds.

Chapter-1: Introduction to Aspidosperma class of alkaloids.

Structurally complex Aspidosperma alkaloids (1-4) which are present in many natural sources, constitute one structurally unique class having pentacyclic \{[6.5.6.6.5] ABCDE ring system \} frameworks with contiguous cis-stereo centers at C-7, C-21 and C20 (all carbon quaternary) as a common structural feature (Figure 1).

1a: Vincristine $\left[\mathrm{R}_{1}=\mathrm{CHO}\right]$
1b: Vinblastine $\left[\mathrm{R}_{1}=\mathrm{CH}_{3}\right]$

Jerantinine-E

a: (+)-Vincadifformine
2b: (+)-Tabersonine, $\Delta^{14,15}$

4a: (+)-Aspidospermidine $\left(\mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{H}\right)$
4b: (-)-Aspidospermine $\left(\mathrm{R}_{1}=\mathrm{OMe}, \mathrm{R}_{2}=\mathrm{Ac}\right)$

Figure 1. Representative structures of Aspidosperma class of alkaloids.

Some of these classes of alkaloids such as vincristine (1a) and vinblastine (1b), which has the most complex architecture of this family, have been widely used as a drug for cancer chemotherapy. Other important members are vincadifformine (2a, cytotoxic), tabersonine ($\mathbf{2 b}$, pronounced inhibitory effect against SK-BR-3 human cancer cell lines,
better than cisplatin) and jerantinine-E (3, stronger in vitro cytotoxicity against human KB cells, $\mathrm{IC}_{50}<1 \mu \mathrm{~g} / \mathrm{mL}$) known to be pharmacologically important alkaloids. The basic pentacyclic framework of $\mathbf{4}$, common to most of these pharmacologically active alkaloids has, thus, been an attractive target for the showcasing of any new synthetic methodologies.

This section represents various important literature reports towards the total synthesis of racemic and enantioselective $\mathbf{4 a}$ as well as structurally similar $\mathbf{4 b}$. Over the last five decades, number of racemic and few asymmetric syntheses have been reported wherein most of the synthesis towards aspidospermidine (4a) follows one of the following five strategies (Figure-2).

Figure 2. Summary of literature reports

Chapter-2: Studies towards development of novel strategy for synthesis of Aspidosperma Class of alkaloids.

This chapter describes the synthesis of (-)- and (+)-tricyclic core of Aspidosperma class of alkaloids using intramolecular [3+2]-cycloaddition of non-stabilized azomethine ylide. The efficacy of this method was demonstrated by the total synthesis of (+)Aspidospermidine.

Synthesis of (-)-and (+)-Tricyclic core of Aspidosperma class of alkaloids: Total Synthesis of (+)-Aspidospermine:

Interestingly, Aspidosperma class of alkaloids are naturally available in both the enantiomeric forms (i.e., as $\mathrm{C}_{7}, \mathrm{C}_{21}$ and C_{22} centers are converse), but there are only few articulated methods that can access both the enantiomers of this alkaloids. Since 49 represents the basic skeleton of most of these alkaloids, construction of this highly versatile, in either of enantiomeric forms can efficiently lead to the various alkaloids (Figure 2). This imagination of advancing $\mathbf{5}$ to several natural products, prompted us to envisage the synthesis of both enantiomers of 5 .

Although, significant development has taken place since Stork's indolization of tricyclic core $\mathbf{5}$ for constructing aspidosperma class of alkaloids, this methodology still remains the hallmark in this field.

Figure-3
Our continuing research interest in exploring the application of intramolecular 1,3dipole cycloaddition reaction of non-stabilized azomethine ylide in the total synthesis of fused pyrrolidine containing alkaloids with complex architecture, led us to envisage the synthesis of aspidosperma class of alkaloids through intramolecular [3+2] cycloaddition of nonstabilized azomethine ylide (AMY) as shown in the retrosynthetic analysis.

Therefore, from synthetic point of view, how to expeditiously establish such a privileged core 5 with the crucial C-20 all carbon quaternary stereocenter would be an important issue in developing asymmetric synthesis of 4 a and structurally related bisindole alkaloids. Furthermore, if the strategy provides both enantiomers (most of these alkaloids are produced naturally in both enantiomers) it would be an added advantage.

The lack of efficient strategy for the synthesis of tricyclic core, kindled our interest to develop a novel synthetic route for the synthesis of both enantiomers of tricyclic core and Aspidospema class of alkaloids. Thus, we developed the synthesis of tricyclic core from a totally different pathway as shown in Scheme-1 retrosynthetically, by employing intramolecular [3+2]-cycloaddition of non-stabilized azomethine ylide.

Scheme 1. Retrosynthetic Analysis of (-)-Tricyclic core

This chapter also includes our strategy of constructing 3,3-dialkylpiperidinones 12a and 12b in enantiomerically pure ($>99 \% e e$) form by [3,3]-sigmatropic rearrangement of 14 and 13, respectively (as shown in Scheme-2).

Scheme-2: Synthesis of 3,3-Dialkylpiperidinone

As per our planning, 11b on reaction with different Lewis acids did not result any product and only starting material was isolated as such (Scheme-3).

Scheme-3

With this unanticipated hurdles in obtaining 16 through Lewis acid mediated intramolecular [3+2]-cycloaddition, an alternative strategy for azomethine ylide generation from $\mathbf{1 7}$ was evaluated as described in scheme-4. Synthesis of $\mathbf{1 7}$ was achieved from 11 by simple transformations. At this stage, (-)-5 was smoothly achieved from 17 by the reaction of AgF in acetonitrile at room temperature (Scheme-4).

Total synthesis of (+)-aspidospermidine (4a) from (-)-5 using Fisher Indole synthesis was accomplished as shown in Scheme-5.

Scheme-5: Total synthesis of (+)-aspidospermidine

Synthesis of (+)-tricyclic core of Aspidosperma class of alkaloids.

Synthesis of (+)-5 was also accomplished starting from 12a by using same strategy.

Scheme-6: synthesis of (+)-5

Chapter-3: Experimental

This chapter illustrates the detailed experimental procedures and spectral charectarization of the all synthesized compounds.

In summary, we have successfully developed an enantioselective route for the synthesis of both (-)- and (+)-tricyclic core 5 using an efficient and highly stereoselective intramolecular [3+2] cycloaddition of non-stabilized azomethine ylide from a designed precursor. Total synthesis of (+)-aspidospermidine was also accomplished by indolization of 5 .

Alkaloids: General Introduction

Alkaloids are naturally occurring organic compounds that contains mostly one or more nitrogen atoms. These are found primarily in plants, animals and to a lesser degree in microorganisms. Alkaloid containing plants have been used by human since ancient times for therapeutic and recreational purposes. The nitrogen atom in alkaloids originated from amino acids. They are classified based on the nitrogen containing heterocyclic ring system: for example, pyrrolidines, piperidine, pyrrolizidine, indole, quinoline, isoquinolines. Among these, the alkaloids that contain indole nucleus are called indole alkaloids.

The indole alkaloids are mostly derived from the condensation of secologanin $\mathbf{1}$ and tryptamine 2, these are classified into several types based on the structural features of their skeletons. Among these, the main three structural types are Corynanthe (e.g. akuammicine 3), Aspidosperma (e.g. tabersonine 4) and Iboga (e.g. catharanthine 5, Figure 1). ${ }^{1}$ The secologanin is nine / ten membered carbon fragment and it is of terpenoid origin which on combination with tryptamine followed by skeletal rearrangement of the terpenoid residue leads to three main alkaloid frameworks as shown in Figure 1.

Figure 1: The indole alkaloids

1.1. Introduction to Aspidosperma class of alkaloids:

(+)-Aspidospermidine 6
Structurally complex Aspidosperma alkaloids, which are present in many natural sources, ${ }^{2}$ constitutes one structurally unique class having pentacyclic $\{[6.5 .6 .6 .5]$ ABCDE ring system frameworks with contiguous cis-stereo centers at C-7, C-21 and C-20 (all carbon quaternary) as a common structural feature. The construction of the quaternary carbon center and C / E ring junction are particular challenge toward the synthesis of this family of natural products.

The Aspidosperma class is one of the largest group of the indole alkaloids, comprising over 250 compounds, isolated from various biological sources with unique structural complexity shown throughout the family. This class of alkaloids has inspired many research groups to develop new strategies for the construction of this pentacyclic framework, in particular, aspidospermidine. Aspidospermidine (6) was isolated from the bark of the Aspidosperma quebracho-blanco tree by Biemann and co-workers in 1961. 2b,c The basic pentacyclic core of $\mathbf{6}$, which is common in most of these classes of alkaloids, makes it an attractive target for the showcasing of new synthetic methodologies.

The interesting pharmacological activity and unprecedented structural complexity shown within this class of alkaloids have aroused inspiration for the research groups for over 50 years and they remain an interest of extensive research activity in the present days.

Classification based on structural arrangement:

The Aspidosperma class is one of the largest group of indole alkaloids with diverse structural complexities. These alkaloids were classified into seven distinct subgroups based on skeletal architectural features. In each type, the subgroup is diversified by representative parent molecular architectures, namely aspidospermidine (6), vincadifformine (7), quebrachamine (8), aspidofractinine (9), vindolinine (10), meloscine (11) and kopsine (12) (Figure 2). ${ }^{3}$ Interestingly, most of the aspidosperma class of the alkaloids are 6.5.6.6.5 fused complex ring system.

(+) Aspidospermidine 6

(-)-Vincadifformine 7

(-)-Quebrachamine 8

(-)-Aspidofractinine 9

Vindolinine 10

Meloscine 11

Kopsine 12

Figure 2: Aspidosperma alkoloid sub-groups

For all the attempts towards synthesis of these alkaloids, the parent molecule $\mathbf{6}$ was considered as a primary target due to its basic common skeleton. As a result many new synthetic routes were developed for the construction of these alkaloids.

1.2.Biological Activity

1.2.A. Aspidospermidine and structurally related alkaloids:

A number of Aspidosperma species were used as folk medicines to treat general fever, while some others were used specifically against malaria. Many members of this aspidosperma family such as aspidospermine 16, aspidospermidine 6, Tabersonine 4, Vallesine 15, Haplosine 19, Fendlarine 20, Aspidoalbidine 21, Aspidolimidine 22 display interesting biological activity including antiplasmoidal activity (Figure 3). ${ }^{4}$

Antiplasmodial activity ${ }^{4}$ of several Aspidosperma class of alkaloids were also reported in 2002. Several members of this class of alkaloids were tested positive in vitro for their activity against Plasmodium falciparum (responsible parasite for several forms of malaria). ${ }^{4}$

		Biological Activity
	$\mathrm{R}=\mathrm{H}, \mathrm{R}=\mathrm{H}, \mathrm{R}{ }^{\prime \prime}=\mathrm{H}$, Aspidospermidine 6	Antiplasmodial
	$\mathrm{R}=\mathrm{H}, \mathrm{R}=\mathrm{H}, \mathrm{R}=$ =OMe, 10-methoxy-Aspidospermidine 13	Antiplasmodial
R"	$\mathrm{R}=\mathrm{HCO}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}=$ =H, 1N-formyl-Aspidospermidine 14	Antiplasmodial
R	$\mathrm{R}=\mathrm{CHO}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=\mathrm{H}$, Vallesine 15	Antiplasmodial
(+) Aspidospermidine	$\mathrm{R}=\mathrm{CH}_{3} \mathrm{CO}, \mathrm{R}^{\prime}=\mathrm{OCH}_{3}, \mathrm{R}=\mathrm{H}$, Aspidospermine 16	Antiplasmodial \& cytotoxic
	$\mathrm{R}=\mathrm{CH}_{3} \mathrm{CO}, \mathrm{R}^{\prime}=\mathrm{OH}, \mathrm{R}^{\prime \prime}=\mathrm{H}$, demethyl-aspidospermine 17	Antiplasmodial
	$\mathrm{R}=\mathrm{CH}_{3} \mathrm{CO}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}==\mathrm{H}$, demethoxy-aspidospermine 18	Antiplasmodial
	$\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}==\mathrm{H}$, Haplosine 19	Antiplasmodial
	$\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}, \mathrm{R}^{\prime}=\mathrm{OCH}_{3}, \mathrm{R}^{\prime \prime}=\mathrm{H}$, Fendlarine 20	Antiplasmodial
	$\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}, \mathrm{R}=\mathrm{OCH}_{3}, \mathrm{R}=\mathrm{OCCH}_{3}$, Aspidoalbidine 21	Antiplasmodial
	$\mathrm{R}=\mathrm{CH}_{3} \mathrm{CO}, \mathrm{R}^{\prime}=\mathrm{OCH}_{3}, \mathrm{R}==\mathrm{H}$, Aspidolimidine 22	Antiplasmodial \& cytotoxic

Figure-3

These alkaloids were tested against P. falciparum and chloroquine - resistant stain for two different time intervals (24 and 72 hours) of incubation of the parasite culture. The results were summarized in Table 1. ${ }^{4}$ The pentacyclic alkaloids possessing ethyl chain at quaternary center ($\mathbf{6}$ and $\mathbf{1 3 - 1 8}$) showed $\mathrm{IC}_{50}=3.2-15.4 \mu \mathrm{M}$ (after incubation for 72 h), whereas tetrahydrofuran fused hexacyclic alkaloids (19-22) showed a reduced activity $\left(\mathrm{IC}_{50}=22.6-52.6 \mu \mathrm{M}\right)$.

Some of these alkaloids have also shown cytotoxic activity ${ }^{4}$ against NIH 3T3 human cancer cell lines, notably aspidospermine 16 and aspidolimidine 22.

S.No	Alkaloid	$\begin{array}{c}\text { Chloroquine-resistant } \\ (445 \mathrm{nM}) \mathrm{IC}_{50} \mu \mathrm{M} \pm \mathrm{sd} \\ 24 \mathrm{~h}\end{array}$		$\begin{array}{c}\text { Chloroquine-sensitive } \\ (79 \mathrm{hM}) \\ \end{array}$	
		$\mathrm{IC}_{50} \mu \mathrm{M} \pm \mathrm{sd}$			
72 h					

${ }^{\text {a }}$ Not derermined; ${ }^{\text {b }}$ Hemisynthesis
Table-1: Antimalarial activity of some Aspidosperma alkaloids.
Recently, this family of alkaloids have gained interest due to their potent anticancer activity exhibited by some of the members.

1.2.B. Vincristine and Vinblastin:

The dimeric Catharanthus alkaloids vincristine (24) and vinblastin (25) have been utilized for cancer chemotherapy ${ }^{5}$ in various cancer diseases. These two dimeric indole alkaloids are formed by the dimerization of two Aspidosperma class of monoterpenoid indole alkaloids. Although, these two alkaloids are structurally little different, the types of cancer that respond to each of them vary significantly.

24

Vincristine (Oncovin) IC50(nm) 6.0 (L1210)
Breast cancer, Testicular cancer, Hodgkin's disease

25
Vinblastin (velbin) IC50(nm) 5.6 (L1210)
Acute Leukemia, neuroblastoma, Hodgkin's disease

Figure-4

Vinblastine (25) is used to treat Hodgkins disease, neuroblastoma and acute leukemia whereas vincristine (24) can be used against a much wider range of cancers including breast cancer, cervical cancer, small cell lung cancer and lymphomas. They function by inhibiting cell mitosis by binding to the protein tubulin in the mitotic spindle which prevents polymerization into microtubules and stops cell mitosis. ${ }^{5}$

These two bisindole alkaloids (24 and 25) are comprised of two monomeric alkaloids that are analogues of aspidospermidine (6) and quebrachamine (8) which highlights the importance of both monomeric alkaloids as individual targets.

Some of the important pharmacologically important monomeric alkaloids of Aspidosperma class are:

1.2.C. Vincadifformine:

(-)-Vincadifformine (7)
Vincadifformine (7) has been isolated from Vinca difformis in 1962 by Djerassi and Janot and co-workers. ${ }^{2 \mathrm{~d}}$ It exhibits cytotoxic activity against KB and Jurkat cells cancer cell lines. ${ }^{6}$ In particular, 7 serves as a valuable precursor for the preparation of pharmaceutically important cerebral vasodilator vincamine 26, vincamone 27 and carvinton 28. ${ }^{7}$ In addition, it is also suggested to be a possible biogenetic and synthetic precursor for the cytotoxic leucophyllidine $\mathbf{2 9}$ and rhazinilam $\mathbf{3 0}$ alkaloids respectively. ${ }^{8}$

(+)- Vincamine (26)

(-)- Eburnamonine (27) (Vincamone)

Ethyl apovincaminate (28) (vinpocetine, Cavinton)

Figure-5

1.2.D. Tabersonine:

Tabersonine (4) shows pronounced inhibitory effect against SK-BR-3, SMMC-7721, HL-60, PANC-1, A-549 ($\left.\mathrm{IC}_{50}=5.4-25.9 \mu \mathrm{~g} / \mathrm{mL}\right)$ human cancer cell lines. ${ }^{9}$

1.2.E. Jerantinine A-E:

In 2007, Toh-Seok Kam and coworkers had isolated seven aspidosperma class of alkaloids (jerantinine A-E, Figure 6) from Malayan Tabernaemontana corymbosa. These alkaloids exhibit stronger in vitro cytotoxicity against human KB cells (IC $50<1 \mu \mathrm{~g} / \mathrm{mL}$). ${ }^{10}$ The pharmacological activities of these alkaloids and its derivatives against human KB cells are summarized in Table-2. ${ }^{10}$ Among these, jerantinine-E (35) is structurally less complex alkaloid with pronounced cytotoxic activity ($\mathrm{IC}_{50}<1 \mu \mathrm{~g} / \mathrm{mL}$).

$31 \mathrm{R}^{1}=\mathrm{H}_{2}, \mathrm{R}^{2}=\mathrm{H}, \Delta^{14,15}$
$33 \mathrm{R}^{1}=\mathrm{O}, \mathrm{R}^{2}=\mathrm{H}, \Delta^{14,15}$
$35 \mathrm{R}^{1}=\mathrm{H}_{2}, \mathrm{R}^{2}=\mathrm{H}$
$38 R^{1}=H_{2}, R^{2}=O A c, \Delta^{14,15}$
$40 \mathrm{R}^{1}=\mathrm{H}_{2}, \mathrm{R}^{2}=\mathrm{OMe}, \Delta^{14,15}$

36

$32 \mathrm{R}^{1}=\mathrm{H}_{2}, \mathrm{R}^{2}=\mathrm{H}$
$34 \mathrm{R}^{1}=\mathrm{O}, \mathrm{R}^{2}=\mathrm{H}$
$39 \mathrm{R}^{1}=\mathrm{H}_{2}, \mathrm{R}^{2}=\mathrm{OAc}$
$41 \mathrm{R}^{1}=\mathrm{H}_{2}, \mathrm{R}^{2}=\mathrm{OMe}$

Figure-6

Table 2: ${ }^{10}$ Cytotoxic Effects of Compounds 27-32 and 34-37

Compound name	$\mathrm{IC} 50, \mu \mathrm{~g} / \mathrm{mL},(\mu \mathrm{M})$	
	$\mathrm{KB} / \mathrm{S}^{\mathrm{a}}$	$\mathrm{KB} / \mathrm{VJ} 300^{\mathrm{a}}$
Jerantinine A (31)	$0.76(1.99)$	$0.66(1.73)$
Jerantinine B (32)	$0.44(1.11)$	$0.38(0.95)$
Jerantinine C (33)	$0.32(0.81)$	$0.61(1.54)$
Jerantinine D (34)	$0.28(0.68)$	$0.39(0.95)$
Jerantinine E (35)	$0.98(2.55)$	$0.78(2.03)$
Jerantinine F (36)	$5.1(12.8)$	$4.9(12.3)$
Jerantinine A acetate (38)	$0.44(1.04)$	$0.35(0.83)$
Jerantinine B acetate (39)	$0.30(0.70)$	$0.33(0.75)$
10- O-methyljerantinine A (40)	$4.77(12.0)$	$5.40(13.6)$
10- O-methyljerantinine B (41)	$2.93(7.36)$	$4.25(10.7)$
Vincristine (24)	$0.0044(0.0054)$	$1.0(1.2)$

${ }^{\mathrm{a}} \mathrm{KB} / \mathrm{S}$ and $\mathrm{KB} / \mathrm{VJ} 300$ are vincristine-sensitive and resistant human oral epidermoid carcinoma cell lines, respectively.

1.3. Biosynthesis:

During 1960-1970, studies carried out by a number of research groups have resulted many biosynthetic pathways ${ }^{11-12}$ for the several classes of indole alkaloids. Most of the indole alkaloids are derived from the condensation of tryptamine 2 with an aliphatic aldehyde (the iridoid secologanin 1) having nine or ten carbons. The biosynthesis of the major three classes of alkaloids (Corynanthe, Aspidosperma, iboga class) begins with the enzymatic conversion of tryptophan 31 to tryptamine 2 in the presence of tryptophan decarboxylase (Scheme 1). ${ }^{11-12}$ Tryptamine undergoes Pictet-Spengler condensation with secologanin $\mathbf{1}$ in the presence of strictosidine synthase to produce strictosidine $\mathbf{4 3}$ which is considered a general intermediate for all the three aforementioned indole alkaloids. ${ }^{12}$ Furthermore, on deglycosylation by strictosidine deglucosidase it forms a hemiacetal that isomerizes to give a reactive dialdehyde intermediate. This dialdehyde intermediate further undergoes condensation with free amine followed by an allylic rearrangement to afford 44. The mechanism for transformation of intermediate 44 to preakuammicine $\mathbf{4 6}$ is still unknown, despite several proposed pathways. Reduction of 46 gives stemmadenine 47 which on further rearrangement followed by intramolecular cycloaddition presumably forms the Aspidosperma skeleton.

Scheme 1: Proposed biosynthetic pathway for synthesis of Aspidosperma-type alkaloids

1.4. Literature reports:

This section represents various important literature reports towards the total synthesis of racemic and optically active 6 and structurally similar 16. Over last five decades, number of racemic and few asymmetric syntheses have been reported wherein most of the synthesis towards aspidospermidine follows one of the following six strategies (Figure-7).
I. Storks Fisher indole cyclization approach.
II. Harley-Mason's Cyclization-Rearrangement approach.
III. E-ring closure approach.
IV. D-ring closure approach.
V. Diels-Alder approach
VI. Miscellaneous approaches

Figure-7

I. Stork's Fischer-Indole cyclization approach

I.a. Stork's approach: (J. Am. Chem. Soc. 1963, 85, 2872) ${ }^{13}$ (Racemic synthesis)

Stork et al. reported first total synthesis of this pentacyclic alkaloid through Fisher indolisation of a tricyclic core intermediate 49. The late stage installation of indole ring on 49 in a stereoselective manner was utilized to fix the required spiroindoline quaternary center. Stork's approach paved the way to many research groups to plan their synthesis through 49. As a result, many new methods were developed and successfully implemented to obtain 49.

The synthetic route for the synthesis of $\mathbf{4 9}$ was described as shown in Scheme-2. Sequential dialkylation of butyraldehyde enamine with ethylacrylate and methylvinyl ketone respectively, followed by aldol reaction in hot acetic acid produced 4,4-dialkyl cyclohexenone 56. Ketalization of cyclohexenone followed by functional group transformation of ester moiety to amide gave 57 which on reduction with LiAlH_{4} followed by deprotection of ketal group underwent intramolecuclar Michael addition to produce
bicyclic ketone 58. N-Acetylation of 58 with chloroacetyl chloride followed by cyclisation produced tricyclic keto-amide core 59. Further, ketalization of $\mathbf{6 0}$ followed by reduction of amide with LiAlH_{4} and deprotection of ketone gave desired tricyclic core 49 (Scheme2).

Scheme 2: Stork's approach

Reagents and conditions: (a) (i) pyrrolidine, methyl acrylate, aq. AcOH (b) pyrrolidine, methyl vinyl ketone, aq.AcOH (c) aq.AcOH, reflux (d) (i) H^{+},ethelene glycol (ii) aq. NH_{3} (e) (i) LiAlH_{4} (ii) aq. acid. (ii) base (f) chloro acetyl chloride, TEA, Benzene (g) $\mathrm{K}^{t} \mathrm{OBu}$, benzene (h) (i) H^{+},ethelene glycol (ii) LiAlH_{4} (iii) Acid (i)o-methoxy phenyl hydrazine, acetic acid, reflux (j) (i) LiAlH_{4} (ii) (Ac) $)_{2} \mathrm{O}$.

I.b. Meyer's approach: (J. Org. Chem. 1989, 54, 4673) ${ }^{14}$

(Enantioselective synthesis)
Meyer et al. reported first enantioselective synthesis of 49 from enantiomerically enriched 4,4-dialkyl cyclohexanone intermediate 64. The key quaternary center was generated by the dialkylation of the chiral lactam 62. Further, functional group transformations followed by sequential annulation using aza Michael and N alkylation/cyclization sequence gave (+)-49 (Scheme-3).

Scheme 3: Meyer's approach

Reagents and conditions: (a) (i) LDA, EtI (ii) LDA, Ally bromide (b) (i) Red-Al (ii) H^{+}(c) 9-BBN (d) (i) Jones Oxidation (ii) Oxalyl chloride (iii) NH_{3} (e) p-TSA, Benzene (f) PTSA, Benzene, Ethylene glycol, Reflux (g) (i) LiAlH4 Reduction (ii) 1 N HCl, reflux (h) Chloroacetyl chloride, TEA, Benzene (i) K ${ }^{t} O B u$, Benzene (j)(i) keto protection.(ii) BH_{3}.THF, reflux (iii) 1 NHCl (k)(i) o-methoxy phenyl hydrazine, acetic acid, reflux (ii) LAH reduction. (iii) $\mathrm{Ac}_{2} \mathrm{O}$, Pyridine.
I.c. Aube's approach: (Org. Lett. 2000, 2, 1625) ${ }^{15}$ (Enantioselective synthesis)

Aube used an intramolecular Schmidt reaction from 75 for the construction of fused pyrrolidine ring of $\mathbf{6 0}$ from which $\mathbf{4 9}$ was prepared. The synthesis of $\mathbf{7 5}$ from $\mathbf{7 1}$ with a quaternary center is shown in Scheme-4.

Scheme 4: Aube's approach

Reagents and conditions: (a) (s)- α - methylbenzylamine; (b) 6-(benzyloxy)hex-1en-3-one, $\mathrm{ZnCl}_{2}, \mathrm{Et}_{2} \mathrm{O}$, reflux; (c) $10 \% \mathrm{Aq} . \mathrm{AcOH}$ (d) $\mathrm{NaOMe}, \mathrm{MeOH}$, reflux; (e) isopropenyl acetate; (f) Oxone, Acetone; (g) bis (trimethylsilyl)neopentyl glycol, TMSOTf, DCM, , $0^{\circ} \mathrm{C}$ - rt; (h) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$ (i) $\mathrm{HN}_{3}, \mathrm{PPh}_{3}, \mathrm{DEAD}, \mathrm{PhH}, 0^{\circ} \mathrm{C}-r t$; (j) LiBF4; (k) TiCl4; (l) bis (trimethylsilyl)neopentyl glycol, TMSOTf, DCM, $0^{\circ} C$-rt; (m) LAH, THF, reflux; (n) LiBF_{4}, aq. $\mathrm{CH}_{3} \mathrm{CN}$, reflux; (o) PhNHNH_{2}; (p) AcOH, reflux.
I.d. Shishido's approach: (Org. Lett. 2003, 5, 749) ${ }^{16}$ (Enantioselective synthesis)

Shishido et al. have utilized diastereoselective Ring Closing Metathesis (RCM) from optically pure $\mathbf{7 9}$ for the construction of cyclohexenol $\mathbf{8 0}$ with a quaternary stereocenter ($d e=84 \%$) which was converted into corresponding 81 using simple protocol. Further transformation of $\mathbf{8 1}$ to $\mathbf{4 9}$ is shown in Scheme-5.

Scheme 5: Shishido's approach

Reagents and conditions: (a) (i) $\mathrm{TBSO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Br}, \mathrm{t}$-BuLi; (ii)(EtO) ${ }_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, NaH , DME; (iii) DIBAL-H, $0{ }^{\circ} \mathrm{C}$; (iv) $\mathrm{EtOCH}=\mathrm{CH}_{2}, \mathrm{Hg}(\mathrm{OAc})_{2}$, reflux; (b) ${ }^{i} \mathrm{Bu}{ }_{3} A l, ~ D C M, ~ r t$; (c) (i) o-Nitrophenyl selenocyanate, $\mathrm{Bu}{ }_{3} \mathrm{P}, \mathrm{THF}$, rt; (ii) $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{THF}$, rt; (iii) $1 \% \mathrm{HCl}, \mathrm{MeOH}$, reflux; (d)(i) $(\mathrm{COCl})_{2}, ~ D M S O, ~ E t_{3} N, \mathrm{CH}_{2} \mathrm{Cl}_{2}, r t$; (ii) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2}$ Et, benzene, reflux; (iii) DIBAL-H, $0{ }^{\circ} \mathrm{C}$; (e) L-(+)-DIPT, Ti($\left.O^{i} P r\right)_{4}, T B H P, D C M$; (f) (i) I_{2}, PPh3, Imidazole, benzene, rt; (ii) Zn, AcOH, $\quad 50^{\circ} \mathrm{C}$; (g) Grubbs $I^{\text {st }}$ Generation Catalyst; (h) (i) TBAF; (ii) Jones oxidation; (iii) $\mathrm{NH}_{3}, \mathrm{THF}$; (iv) keto protection; (v) $\mathrm{H}_{2}, \mathrm{PtO}_{2}, \mathrm{EtOH}$; (i) (i) LiAlH_{4}; (ii) $\mathrm{ClCOCH}_{2} \mathrm{Cl}, \mathrm{TEA}, \mathrm{DCM}$; (j) (i) 1 NHCl , THF, reflux; (ii) $\mathrm{KO}^{t} \mathrm{Bu}$, Benzene , reflux; (iii) keto protection; (iv) BH3.THF, reflux; (v) $1 N \mathrm{HCl}$; (k) (i) Fisher indole synthesis; (ii) $\mathrm{ACOH}, 95^{\circ} \mathrm{C}$; (iii) LiAlH_{4}; (iv) $\mathrm{Ac}_{2} \mathrm{O}$, Pyridine.
I.e. Coldham's approach: (J. Org. Chem. 2009, 74, 2290) ${ }^{17}$ (Racemic synthesis)

Reaction of $\mathbf{8 6}$ with $\mathbf{8 7}$ produces corresponding imine which on in situ N-alkylation followed by decarboxylation generated an azomethine ylide. An intramolecular [3+2] cycloaddition of azomethane ylide (AMY) with tethered unactivated olefin produced $\mathbf{8 8}$ which on hydrolysis gave 49 (Scheme-6).

Scheme 6: Coldham's approach

Reagents and conditions: (a) $\mathrm{LDA}, \mathrm{EtCH}_{2} \mathrm{CN}, \mathrm{THF},-78^{\circ} \mathrm{C}, 88 \%$; (b) LDA, 1-bromo-3-chloro-propane, THF, $-78{ }^{\circ} \mathrm{C}$; (c) DIBAL-H, DCM, $-78{ }^{\circ} \mathrm{C}$ then oxalic acid $(0.5 \mathrm{M})$, 82%; (d) CSA (10 mol \%), Toluene, reflux, $18 \mathrm{~h}, 79 \%$; (e) 5% aq. $\mathrm{HCl}, \mathrm{THF}, 80^{\circ} \mathrm{C}, 1 \mathrm{~h}$, 89%.
I.f. Canesi's approach: (Chem. Commun. 2009, 2941) ${ }^{18}$ (Racemic synthesis)

Hosomi-Sakurai allylation reaction of phenolic compound 90 was exploited to produce 92, having all carbon quaternary stereocentre, which was further used to construct another two rings to accomplish $(\pm)-49$ (Scheme-7).

Scheme 7: Canesi's approach

(\pm)Aspidospermidine 6
Reagents and conditions: (a) PhI (OAc) $)_{2}$, HFIP, Allylsilane; (b) 9-BBN, $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}$; (c) MsCl, Lutidine; (d) NaH, DMF, $65^{\circ} \mathrm{C}$; (e) PhSH, $\mathrm{K}_{2} \mathrm{CO}_{3}$; (f) TBAF, THF; (g) MsCl, TEA; (h) t-BuOK; (i) Raney-Ni, EtOH; (j) (i) Fisher-indole synthesis; (ii) LiAlH_{4} reduction.
I.g. Pearson approach: (Org. Lett. 2006, 8, 1661) ${ }^{19}$ (Racemic synthesis)

The reactive 2-azapentadienenyl aninons, generated by the reaction of n - BuLi reaction of 97, followed by intramolecular cycloaddition reaction was used to install C and E rings 98 (Scheme-8). Furthermore, a simple allylation followed by an intramolecular Heck cyclisation of 99 was employed for the construction of D-ring 100 which was transformed to $(\pm)-49$.

Scheme 8: Pearson approach

(\pm) Aspidospermidine 6

Reagents and conditions: (a) n-BuLi (2 eq), THF, $-78^{\circ} \mathrm{C}$; (b) $\mathrm{K}_{2} \mathrm{CO}_{3}$, (Z)-3-bromo-1-iodoprop-1-ene, THF, 59\% (over two steps); (c) Pd(OAc) $)_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Bu} 4 \mathrm{NCl}, \mathrm{DMF}, 43 \%$; (d) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{TFA}, 98 \%$; (ii) $\mathrm{Li}, \mathrm{THF}, \mathrm{NH}_{3}, \mathrm{NH}_{4} \mathrm{Cl}$ then $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} / \mathrm{THF}$; (iii) Dessmatin periodinane oxidation, then $\mathrm{HCl}, \mathrm{Et} 2 \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$ (54% over 2 steps).
I.h. Zard radical cyclisation approach: (Org. Lett. 2006, 8, 831) ${ }^{20}$ (Racemic synthesis) In this approach 49 was synthesized by using a cascade reaction of amidyl radical (Scheme 8) $\mathbf{1 0 2}$ to produce the tricyclic system 103 which on simple functional group transformations gave 49 as shown in Scheme-9.

Scheme 9: Zard's radical cyclisation approach

Reagents and conditions: (a) Bu 3 SnH, $A C C N, \alpha, \alpha, \alpha$-trifluorotoluene, 53%; (b) 9-BBN, THF, reflux, 93%; (c) $\mathrm{LiCl}, \mathrm{DMF}, 140^{\circ} \mathrm{C}, 88 \%$.

II. Harley-Mason's rearrangement/cyclisation Strategy

II.a. Harley-Mason's approach: (Chem. Commun. 1967, 915) ${ }^{21}$ (Racemic synthesis)

Dimethyl acetal 105 on treatment with tryptamine in acetic acid produced tetracyclic skeleton 50 which on reflux with aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$ underwent C-2 alkylation of indole followed by a skeletal rearrangement to give indolinine 108 (Aspidosperma skeleton). Reduction of 108 with LiAlH_{4} produced 6 (Scheme-10).

Scheme 10: Harley-Mason's approach

Reagents and conditions: (a) Tryptamine, AcOH , reflux; (b) $40 \% \mathrm{H}_{2} \mathrm{SO}_{4}$, reflux; (c) LiAlH_{4}, THF, reflux.
II.b. Fuji's asymmetric approach: (J. Am. Chem. Soc. 1987, 109, 7901) ${ }^{22}$

In this strategy, an efficient preparation of the key tetracyclic hydroxyl lactam 50 was prepared from 111 in 48% overall yield, which on Harley-Mason cyclisation and rearrangement under acidic condition followed by LiAlH_{4} reduction produced (-)-6 (Scheme-11).

Scheme 11: Fuji's asymmetric approach

Reagents and conditions: (a) n-BuLi, $E t_{2} O / D M E,-78{ }^{\circ} \mathrm{C}$, 99%; (b) $\mathrm{TiCl}_{3}, D M E$; (c) NaBH_{4}; (d) $\mathrm{HCl}, \mathrm{MeOH}$, reflux, 75%; (e) $\mathrm{CrO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$, acetone; (f) DIBAL-H, Et2O; (g) TsOH, MeOH, reflux, 76\%; (h) tryptamine, AcOH, reflux; (i) NaOH , MeOH, 84%, (over 2 steps).
II.c. Schultz's strategy: (J. Org. Chem. 1997, 62, 6855) ${ }^{23}$ (Enantioselective synthesis)

This route involved a diastereoselective Birch reduction alkylation of proline derived benzamide for the asymmetric construction of lactone $\mathbf{1 1 8}$ with a quaternary center. The condensation of $\mathbf{1 1 8}$ with tryptamine $\mathbf{2}$ produced 119 (Scheme-12). The intermediate 119 was reduced with DIBAL-H to obtain lactol 120. Further, cyclisation of $\mathbf{1 2 0}$ in acetic acid produced tetracyclic isoquinazolidine 50 as $1: 1$ mixture of diasteromeric mixture. Finally, cyclisation-rearrangement sequence from 50 in acidic medium followed by LiAlH_{4} reduction produced (-)-6 (Scheme-12).

Scheme 12: Schultz's strategy

Reagents and conditions: (a) MeHN(CH2 $)_{2}$ NMe2, n - $\mathrm{BuLi}, \mathrm{TMSCl},-20^{\circ} \mathrm{C}, 24 \mathrm{~h}$, then $\mathrm{H}_{3} \mathrm{O}^{+}, 87 \%$; (b) (i) KMnO_{4}, acetone, $\mathrm{H}_{2} \mathrm{O}, 94 \%$; (ii) (COCl) $)_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{DMF}, \mathrm{rt}, 5 \mathrm{~h}, \mathrm{~S}$ prolinol, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-40{ }^{\circ} \mathrm{C}$ then Et 3 N ; (iii) NaH, THF, $0{ }^{\circ} \mathrm{C}$, MeI, $5 h, 88 \%$ (2 steps); (c) K , $\mathrm{NH}_{3}, \mathrm{t}$-BuOH, THF, $-78{ }^{\circ} \mathrm{C}$, LiBr, piperylene, EtI, $-78{ }^{\circ} \mathrm{C}, 97 \%$; (d)(i) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$, EtOAc (63 psi); (ii) $\mathrm{CuCl}_{2}, \mathrm{DMF}, 6{ }^{\circ} \mathrm{C}$; (iii) TFAA, UHP, $\mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iv) $\mathrm{H}_{2}, 5 \%$

Rh/C, THF (v) Ts $\mathrm{OH}, \mathrm{PhH} / \mathrm{H}_{2} \mathrm{O}$, reflux; (e) tryptamine, $(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{N}_{3}, E t_{3} \mathrm{~N}, \mathrm{THF}, 84 \%$; (f) $\mathrm{DIBAL}-\mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-7{ }^{\circ} \mathrm{C}$, 93%; (g) AcOH, reflux, $20 \% \mathrm{NaOH} / \mathrm{MeOH}, 65 \%$.
II.d. Okada's Strategy: (Tetrahedron 2004, 60, 3273) ${ }^{24}$ (Enantioselective synthesis)

The sequential alkylation of $\mathbf{1 2 1}$ followed by removal of the hydroxyl bearing side chain produced enantiomerically pure lactone $\mathbf{1 2 3}$ which on reduction with DIBAL-H followed by lactol protection gave 124 (Scheme-13). Further, condensation of 124 with tryptamine 2 produced tetracyclic hydroxyl-lactam 5 as mixture of diastereomers which on HarleyMason cyclisation-rearrangement produced (+)-6.

Scheme 13: Okada's Strategy

Reagents and conditions: (a) LDA, HMPA, EtI then, LDA, HMPA, allyl bromide, THF, $-78{ }^{\circ} \mathrm{C}, 93 \%$; (b) $80 \% \mathrm{AcOH}, 80{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 98 \%$; (c) 4 Maq . NaOH, dioxane, $100{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, CO_{2}, aq. $\mathrm{NaIO}_{4}, \mathrm{rt}, 3 \mathrm{~h}, 1 \mathrm{M} \mathrm{HCl}, 95 \%$; (d) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, \mathrm{rt}, 1 \mathrm{~h}$ then, $4 \mathrm{M} \mathrm{HCl}-\mathrm{MeOH}$, $70{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 92 \%$; (e) DIBAL-H, Et $2 \mathrm{O},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then, $\mathrm{CH}(\mathrm{OMe})_{3}, \mathrm{p}-\mathrm{Ts} \mathrm{OH}, \mathrm{MeOH}, 80$ ${ }^{\circ} \mathrm{C}$, $40 \mathrm{~min}, 84 \%$; (f) 9-BBN, THF, rt, 16 h then, $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 3 \mathrm{Maq}$. NaOH, THF, rt, 1 h , 87\%; (g) SO 3 -Py, DMSO, $\mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 0.5 h; (h) NaClO_{2}, t-BuOH, aq. $\mathrm{NaH}_{2} \mathrm{PO}_{4}$, $\mathrm{Me}_{2} \mathrm{C}=$ CHMe, rt, $1 \mathrm{~h}, 95 \%$ (2 steps); (i) tryptamine, $\mathrm{AcOH}, 125^{\circ} \mathrm{C}$, 6 days, 87%; (j) 20\% aq. $\mathrm{NaOH}, \mathrm{MeOH}, r t, 1$ h, 72%.

III. E-ring closure strategy

In 1982, Magnus et al. reported a new synthetic approach based on late stage construction of pyrrolidine ring (E-ring) by C-3 alkylation of the indole. This approach is called as E-ring closure approach and in this strategy first ABCD tetracyclic core is constructed. Further, E-ring closure of ABCD core 51 gives pentacyclic skeleton 6 (ABCDE ring system).
III.a. Magnus Stategy: (J. Am. Chem. Soc. 1982, 104, 1140) ${ }^{25}$ (Racemic synthesis)

Magnus and coworkers prepared the ABCD tetracyclic core 130 by cyclisation of imine 126 by reacting with 127, which by intramolecular Pummerer reaction (E-ring closure) gave pentacyclic core 131 (Scheme-14). Desulfurisation with Raney Ni followed by LiAlH_{4} reduction produced (\pm)-6.

Scheme 14: Magnus Stategy

Reagents and conditions: (a) chlorobenzene, $140{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 33 \%$; (b) (i) $\mathrm{MCPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{NaHCO}_{3}, 0{ }^{\circ} \mathrm{C}, 97 \%$; (ii) Trifluoroacetic anhydride, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}$; (c) chlorobenzene, $130{ }^{\circ} \mathrm{C}, 2.5 \mathrm{~h}, 81 \%$ (over 2 steps); (d) Raney Ni, EtOH, rt, 1 h, 81\%; (e) $\mathrm{LiAlH}_{4}, \mathrm{THF}, r t, 48$ h, 54%.
III.b. Wenkert's approach: (J. Org. Chem., 1988, 53, 1953) ${ }^{26}$ (Racemic synthesis)

The hexahydrofuro[2,3-b]pyridin-2(3H)-one 135, prepared by the alkaline hydrolysis of cyclopropane carboxylate 134, on nucleophilic ring by indole in acetic acid produced indolyl amino acid 136. Freidel-crafts cyclisation followed by reduction produced tetracyclic core 137 which on E-ring closure with 1,2-dibromoethane followed by LiAlH_{4} reduction produced (\pm)-6 (Scheme-15).

Scheme 15: Wenkert's approach

Reagents and conditions: (a) Methyl chlorocarbonate, NEt $3, \mathrm{THF}, 0^{\circ} \mathrm{C}, 4 \mathrm{~h}$, then HCl , 91\%; (b) $\mathrm{HBr}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 10 \mathrm{~min}, 1,3-$ propanedithiol, rt, $4 \mathrm{~h}, 48 \%$; (c) W-2 Raney nickel, EtOH, reflux, $12 \mathrm{~h}, 93 \%$; (d) Ethyl diazoacetate, copper bronze, $135^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 95 \%$; (e) $\mathrm{KOH}, \mathrm{H}_{2} \mathrm{O}$, diethylene glycol, $110{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$, then HCl to $\mathrm{pH} 7,88 \%$; (f) indole, dioxane, $\mathrm{HCl}, 10 \% \mathrm{aq} . \mathrm{AcOH}, 80^{\circ} \mathrm{C}, 18 \mathrm{~h}, 89 \%$; (g) PPA, $90^{\circ} \mathrm{C}$, $45 \mathrm{~min}, 61 \%$; (h) LiAlH4, dioxane, reflux, 18 h, 97\%; (i) $\mathrm{K}_{2} \mathrm{CO}_{3}$, 1,2-dibromoethane, $140{ }^{\circ} \mathrm{C}$, 20 min, 32%; (j) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$, $r t, 2 h, 70 \%$.
III.c. Rubiralta's approach: (J. Org. Chem. 1996, 61, 7882) ${ }^{27}$ (Racemic synthesis)

Rubiralta et al. reported a new synthetic method to synthesize $\mathbf{6}$ by E-ring closure of ABCD core 143 which was prepared in several steps (Scheme-16). Tandem Michael addition-alkylation of $\mathbf{1 3 9}$ with $\mathbf{1 3 8}$ and ethyl iodide produces $\mathbf{1 4 0}$, which on treatment with DIBAL-H produced 141. Skeletal isomerization of 141 in the presence of an acid produces $\mathbf{1 4 2}$ which on E-ring closure followed by dithiane reduction produced $(\pm)-6$.

Scheme 16: Rubiralta's approach

Reagents and conditions: (a) n-BuLi, THF, HMPA, EtI, $-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 52 \%$; (b) DIBAL-H, THF, $\quad 0^{\circ} \mathrm{C}, 73 \%$; (c) 50% aq. AcOH, reflux, $2 \mathrm{~h}, 90 \%$; (d) $\mathrm{Me}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$, $35{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 86 \%$; (e) t-BuOK, TsCl, THF, $1 \mathrm{~h}, \mathrm{rt}, 77 \%$; (f) W-2 Raney nickel, dioxane, reflux, $30 \mathrm{~min}, 65 \%$.
III.d. Heathcock's total synthesis of (\pm)-6: (J. Org. Chem. 2000, 65, 2642) ${ }^{28}$

Heathcock and coworkers reported a short and efficient synthesis of (\pm)-6 in 13 steps with 5.9% overall yield. The key reactions of this strategy are: (i) An acid mediated cascade reaction to construct $\mathrm{B}, \mathrm{C}, \mathrm{D}$ rings in a single transformation. (ii) Indole ring construction during cascade reaction. (iii) E-ring closure approach as end game to accomplish target molecule. The functionalised cyclopentene derivative 146 was prepared from commercially available 145, in 8 steps. The intermediate 146 upon ozonolysis produced 147 which on treatment with triflouro acetic acid sets in a cascade cyclisation
reaction to form $\mathrm{B}, \mathrm{C}, \mathrm{D}$ rings in a single transformation. E-ring closure and functional group transformations gave (\pm)-6.

Scheme 17: Heathcock's approach

Reagents and conditions: (a) $\mathrm{O}_{3},-7{ }^{\circ} \mathrm{C}, \mathrm{Me}_{2} \mathrm{~S}$; (b) TFA : $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1), 37% (2 steps); (c) (i) NaI, acetone; (ii) $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{Ag}, 86 \%$; (iii) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 82 \%$.

III.e. Rawal's total synthesis of (+)-aspidospermidine using organo catalytic

 approach:(J. Am. Chem. Soc. 2002, 124, 4628) ${ }^{29}$ (Enantioselective synthesis)

A concise and stereo controlled strategy for the synthesis of Aspidosperma class of alkaloids in enantiomerically enriched form was reported by E-ring construction on ABCD core 156. The core structure 156 was obtained by a catalytic enantioselective Diels-Alder reaction of 1-amino-3-siloxydiene 149 with ethylacrolein 150 using Jacobsen's chiral $\mathrm{Cr}(\mathrm{III})$-salen complex 151 to construct cyclohexene 152 (C-ring) with C-21 quaternary sterocenter in high yields and enantioselectivity ($97 \% e e$). Ring closing metathesis reaction of $\mathbf{1 5 3}$ for the construction of D-ring followed by o-nitrophenyl group introduction by the reaction of 154 with (o-Nitrophenyl)phenyliodonium fluoride (NPIF)and reduction of nitro group produced key tetracyclic core 156 which on E-ring closure furnished (+)-6.

Scheme 18: Rawal's organo catalytic approach

Reagents and conditions: (a) $5 \mathrm{~mol} \%$ of 151, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}, 2 \mathrm{~d}, 91 \%$; (b) $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}$, n-BuLi, THF, $-78{ }^{\circ} \mathrm{C}$, 85%; (c) Schrock's molybdenum catalyst ($5 \mathrm{~mol} \%$), $\mathrm{PhH}, 60{ }^{\circ} \mathrm{C}, 1$ h, 88\%; (d) NPIF, DMSO,THF, 94\%; (e) TiCl3, $\mathrm{NH}_{4} \mathrm{OAc}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}, 89 \%$; (f) TMSI (2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, MeOH, reflux, 90\%; (g) $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ (10 equiv), $\mathrm{Na}_{2} \mathrm{CO}_{3}$, EtOH, reflux, 18 h, 100\%; (h) MsCl, NEt $3, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 90 \%$; (i) t-BuOK, THF, 87%; (j) NaBH $4, \mathrm{EtOH}$; (k) $\mathrm{H}_{2}, \mathrm{PtO}_{2}, \mathrm{EtOH}, 73 \%$ (2 steps).
III.f. D'Angelo's approach: (J. Org. Chem. 1994, 59, 2292) ${ }^{30}$ (Enantioselective synthesis)

The chiral quaternary center containing cyclohexane-1,3-dione 159 was prepared by enanine Michel addition which on condensation with 2-Iodoanilne followed by indolization gave carbazole 161 intermediate. Further transformation of azide group to an amide followed by cyclization produced tetracyclic 163, which by E-ring closure followed by desulfurization produced (+)-6.

Scheme 19: D'Angelo's approach

Reagents and conditions: (a) (R)-(+)-phenylethylamine, toluene, p-TsOH, Dean-Stark, reflux, 12 h ; (b) methyl acrylate, hydroquinone, $65^{\circ} \mathrm{C}, 3 \mathrm{~d}$, then $\mathrm{AcOH}, \mathrm{THF}, r t, 3 \mathrm{~h}, 83 \%$; (c) 2-iodoaniline, p-TsOH, toluene, Dean-Stark, reflux, 5 h, 94\%; (d) NaH, HMPA, CuI, $120{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 84 \%$; (e) LiEt $3 \mathrm{BH}, \mathrm{THF},-40{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then EtOH, $6 \mathrm{~N} \mathrm{NaOH}, 0{ }^{\circ} \mathrm{C}$, then 30% $\mathrm{H}_{2} \mathrm{O}_{2}$, rt, $15 \mathrm{~h}, 88 \%$; (f) (i) NEt3, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{THF}, \mathrm{MsCl}, 2 \mathrm{~h}$, (ii) DMF, $\mathrm{NaN}_{3}, 80^{\circ} \mathrm{C}$, 2 h, (iii) tetrabutylammonium hydrogensulfate, (4-methoxyphenyl) sulfonyl chloride, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50 \%$ aq. $\mathrm{NaOH}, 2 \mathrm{~h}, \mathrm{rt}, 74 \%$; (g) $\mathrm{NaBH}_{4}, \mathrm{EtOH}$, reflux, 30 min, 92%; (h) PPh_{3}, THF, $18 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 12 \mathrm{~h}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, (phenylthio)acetyl chloride, $\mathrm{NaOH}, 30 \mathrm{~min}, 62 \%$; (i) $\mathrm{TFA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 15 \mathrm{~min}, 94 \%$; (j) NaIO4, THF, $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 72 \mathrm{~h}, 88 \%$; (k) trifluoroacetic anhydride, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 15 \mathrm{~min}$, chlorobenzene, $135{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 89 \%$; (l) W 2, Raney nickel, EtOH, DMF, 20 min, rt, 56%; (m) LiAlH4, THF, $0{ }^{\circ} \mathrm{C}, r t, 48 \mathrm{~h}, 68 \%$.

IV. D-ring closure approach

A new synthetic approach based on late stage construction of D-ring by intramolecular Heck-coupling of the vinyl iodide. In this strategy, first ABCE tetracyclic core is constructed on which D-ring is built to give pentacyclic skeleton (ABCDE ring system).

IV.a. Murphy approach: (Org. Lett. 2000, 2, 3599) ${ }^{31}$ (Racemic synthesis)

Murphy and co-workers reported a radical cascade reaction of an iodoazide 166 for the construction of tetracycle core (ABCE) of aspidospermidine. This method is used to construct B and E rings of the tetracycle 167 in a single transformation (Scheme-20). The N-alkylation 167 with (Z)-3-bromo-1-iodopropane followed by intramolecular Heck coupling produces known pentacycle 169.

Scheme 20: Murphy approach

Reagents and conditions: (a) TTMSS, AIBN, benzene, reflux, 40\%; (b) $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{ICH}=\mathrm{CH}-$ $\mathrm{CH}_{2} \mathrm{Br}, \mathrm{THF}, 63 \%$; (c) $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{NEt} 3, \mathrm{PPh}_{3}, \mathrm{CH}_{3} \mathrm{CN}, 32 \%$.
IV.b MacMillan's approach: (Nature. 2011, 475, 183) ${ }^{32}$ (Enantioselective synthesis) In 2011, Macmillan and coworkers reported an organo catalytic asymmetric total synthesis several alkaloids employing a cascade Diels-Alder/cyclization sequence. For example, 2-(vinyl-1-selenomethyl) tryptamine 171 on reacting with propynal 172 in presence of imidazolidinone catalyst $\mathbf{1 7 3}$ undergoes an endo-selective asymmetric Diels-Alder cycloaddition which on further an elimination/conjugate addition sequence produced 174 (ABCE ring system). The tetracyclic core $\mathbf{1 7 4}$ was converted into 175 in three steps which on D-ring closure by Heck cyclization followed by reduction produced (+)-6.

Scheme 21: MacMillan's approach

Reagents and conditions: (a) $\mathrm{NaH}, \mathrm{DMF}, \mathrm{BnBr}, \mathrm{rt}$; (b) SeO_{2}, dioxane, $\mathrm{H}_{2} \mathrm{O}, 100{ }^{\circ} \mathrm{C}$; (c) (EtO) ${ }_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{SeMe}, 18$-crown-6, KHMDS, THF, $-78{ }^{\circ} \mathrm{C}$ to rt; (d) $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{I}, \mathrm{n}-$ butyllithium, THF, $0{ }^{\circ} \mathrm{C}$, then $\mathrm{AcOH}, \mathrm{NaCNBH} \mathrm{H}_{3}, 0{ }^{\circ} \mathrm{C}$; (e) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; (f) $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, rt; (g) $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}$, Et3N, toluene, $80^{\circ} \mathrm{C}$; (h) $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{H}_{2}, 200$ p.s.i., MeOH, EtOAc, $r t$; (i) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{DMSO},(\mathrm{COCl})_{2}$; (j) n-butyllithium, $\mathrm{NCCO}_{2} \mathrm{Me}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$ to rt.

V. Diels-Alder approach

V.a. Wenkert and Kunesh approaches: (Racemic synthesis)
(Tetrahedron 1983, 39, 3719-3724; J. Org. Chem., 1991, 56, 2915) ${ }^{33}$

Ernest Wenkert et al. reported ${ }^{33 a}$ a formal [4+2] cycloaddition reaction for the construction of pentacyclic core of aspidospermidine. For example, the vinylogous imide 180 on treatment with BF_{3}.OEt2 underwent a formal [4+2] cycloaddition reaction and produced pentacycle 181 which on Oppenauer oxidation gave 182 (Scheme-20).

Scheme 22: Wenkert's approach

Reagents and conditions: (a) $\mathrm{BF}_{3} \mathrm{O}(E t)_{2}, 62 \%$; (b) Oppenauer oxidation.

Subsequently, Kunesch et al. synthesized 184 using Wenkert protocol and generated quaternary center by alkylation with ethyl iodide to obtain 185. Further functional group transformation gave (\pm)-6 (Scheme-21). ${ }^{33 \mathrm{~b}}$

Scheme 23: Kunesh’s approach

Reagents and conditions: (a) n-BuLi, p-MeC ${ }_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{Cl}$, THF; (b) KH, LiI, EtI, THF;
(c)LiAlH4, THF, reflux; (d) $\mathrm{H}_{2}, \mathrm{Pt} / \mathrm{C}, \mathrm{THF}, 40 \mathrm{psi}$.
V.b. Matsuo Approach: (Angew. Chem., Int. Ed. 2013, 52, 906) ${ }^{34}$ (Racemic synthesis)

Pentacyclic skeleton of aspidospermidine (Scheme-22) 193 was obtained by Lewis acid promoted formal intramolecular [4+2] cycloaddition of cyclobutanones with tethered N-benzyl indole 191 for the construction of the 193 by following Wolf-Kishner reduction, LiAlH_{4} reduction and debenzylation sequence gave $(\pm)-6$.

Scheme 24: Matsuo’s approach

Reagents and conditions: (a) $\mathrm{CbzCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, r t, 15 \mathrm{~h}, 99 \%$; (b) $\mathrm{Zn} / \mathrm{Cu}, \mathrm{Cl}_{3} \mathrm{C}(\mathrm{C}=\mathrm{O}) \mathrm{Cl}$, Et 2 O , sonication, $0^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$, then $\mathrm{rt}, 14 \mathrm{~h}$; (c) $\mathrm{Zn} / \mathrm{Cu}, \mathrm{NH} 4 \mathrm{Cl}, \mathrm{MeOH}, \mathrm{rt}, 2 \mathrm{~h}, 85 \%$ (for two steps); (d) ethylene glycol, TsOH/H2O, benzene, reflux, 12 h, 95\%; (e) $H_{2}, ~ P d / C, E t O H$, $r t, 3$ h, quantitative; (f) 3-indoleacetic acid, EDC, $0{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}, 89 \%$; (g) BnBr, $\mathrm{NaH}, \mathrm{DMF}$, rt, 2.5 h, 95\%; (h) 1N HCl, EtOH, reflux, 3 h, 93\%; (i) Me3SiOTf, toluene, reflux, 10 min, 46%; (j) $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{Na},\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}, 160-210{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (k) $\mathrm{LiAlH}_{4}, \mathrm{THF}, r t, 1 \mathrm{~h}, 71 \%$ (for 2 steps); (l) $H_{2}, \mathrm{Pd}(\mathrm{OH})_{2}, ~ E t O H, ~ r t, 46$ h, 93%.

VI. Miscellaneous approaches

VI.a. Matthew J. Gaunt's approach: (Angew. Chem., Int. Ed. 2012, 51, 9288) ${ }^{35}$
(Enantioselective synthesis)
The conversion of one class of alkaloids into structurally different other class of alkaloids is a natural process through biosynthetic pathways. ${ }^{36}$ Gaunt et al. designed a chemical process for the conversion of rhazinilam (30) to Aspidospermidine (6) (Scheme25) ${ }^{35}$ by carrying out the reverse of a proposed biosynthesis of conversion of aspidosperma alkaloid to rhazinilam. ${ }^{36}$ In this process two new stereocenters, one new sigma bond and two new rings were formed.

Scheme 25: Matthew J. Gaunt's Strategy

Reagents and conditions: (a) (Boc) ${ }_{2} \mathrm{O}$, DMAP, THF, 75%; (b) LiBHEt3, THF, then $\mathrm{Ac}_{2} \mathrm{O}$;
(c) $\mathrm{TFA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (d) $\mathrm{NaCNBH}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt; (e) $\mathrm{TFA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 90 \%$.

VI.b. Boger's approach: intramolecular [4+2] / [3+2] cycloaddition cascade strategy

(Enantioselective synthesis) (Org. Lett., 2012, 14, 2078-2081) ${ }^{37}$

Boger and co-workers have reported an efficient intramolecular [4+2]/[3+2] cycloaddition cascade of 1,3,4-oxadiazole 204 for the construction of aspidosperma skeleton. ${ }^{37}$ The key intermediate 204 was prepared as described in Scheme-23, which on heating in o-dichloro benzene (o-DCB) at $180^{\circ} \mathrm{C}$ produced the hexacyclic Aspidosperma core 207 in 71% yield. In this cascade reaction, first an intramolecular [4+2] cycloaddition reaction of 1,3,4-oxadiazole 204 with tethered dienophile takes place where loss of N_{2} molecule produces 1,3-dipole 206, which on an endocyclic [3+2]-cycloaddition produces six membered ring skeleton 207 as single diastereomer (Scheme-24). In this reaction, four C - C bonds, three rings and five stereo centres are generated in a single transformation with the complete requisite stereochemistry of aspidosperma skeleton. This cascade reaction is one of the powerful method for the construction of aspidosperma skeleton.

Scheme 26: Boger's approach

Reagents and conditions: (a) CDI, 77\%; (b) AcOH, THF, $40{ }^{\circ} \mathrm{C}$; (c) TEA, TsCl, 70% (for 2 steps); (d) DMAP, EDCI, 87%; (d) o-DCB, $180^{\circ} \mathrm{C}, 71 \%$.
VI.c. Jieping Zhu's approach: an Integrated Oxidation/ Reduction / Cyclization Cascade Sequence
(Racemic synthesis) (J. Am. Chem. Soc. 2014, 136, 15102)38

Zhu and coworkers reported an integrated oxidation/reduction/cyclization sequence (i ORC) for the construction of $(\pm)-6$ (scheme-27). ${ }^{38}$ The key intermediate 210 was accessed by a palladium catalyzed decarboxylative vinylation. The i ORC process is described in Scheme-1. The intermediate 210 on ozonolysis gives 213, which upon deprotection of nosyl group followed by reduction of the nitro group produced 215. The transannular cyclisation of $\mathbf{2 1 5}$ through iminium ion produces (\pm)-6.

Scheme 27: Jieping Zhu's approach

Reagents and conditions: (a) [Pd(allyl)Cl]2 (5.0 mol\%), X-Phos (15.0 mol\%), diglyme, $100{ }^{\circ} \mathrm{C}$, then TBAF, $0^{\circ} \mathrm{C}, 57 \%$; (b) PPh3, DEAD, NsNH2, neopentyl alcohol (40 \%), toluene, rt, then TBAF, rt, 75\%; (c) PPh 3 , DEAD, neopentyl alcohol (40 mol\%), toluene,
rt, 81%; (d) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Me}_{2} \mathrm{~S}$, then $\mathrm{PhSH}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$; (e) $\mathrm{TiCl}_{3}, \mathrm{NH}_{4} \mathrm{OAc}$, $\mathrm{MeOH}, 51 \%$; (f) aq. $\mathrm{NaHCO}_{3}, \mathrm{NaBH}_{4}, 50 \%$.

1.5. Summary of literature reports:

From the above review, it is evident that there are mainly six major routes known for the construction of pentacyclic skeleton of Aspidosperma class of alkaloids: (1) Storks Fisher indolisation of a tricyclic ketone (2) Harley-Mason's cyclization-rearrangement (3) E-ring closure as an end game (4) D-ring closure as an end game (5) Diels-Alder approach (6) miscellaneous approaches.

From the above detailed survey, it can be emphasized that there are only few enantioselective approaches known for the synthesis of aspidospermidine and related alkaloids among the six routes already known in literature, Storks approach through tricyclic core still remains hallmark in this area. Most of the enantioselective approaches for tricyclic core are designed through Stork's 4,4-dialkyl cyclohexenone intermediates. Most of these methods are limited to only one enantiomer of natural product.

1.6. Our concept and protocol:

The lack of efficient strategy for the synthesis of tricyclic core, kindled our interest to develop a novel synthetic route for the synthesis of both enantiomers of tricyclic core and Aspidospema class of alkaloids. Thus, we visualized the synthesis of tricyclic core from a totally different pathway as shown in Figure-8 by employing intramolecular [3+2]cycloaddition of non-stabilized azomethine ylide.

Figure-8

Our approach for the synthesis of $(+)$ and (-)-tricyclic core and total synthesis of $(+)$-Aspidospermidine is described in the next chapter in detail.

1.7.References:

1. Dewick, P. M., Medicinal Natural Products, John Wiley \& Sons, Chichester, 2002, 291-403.
2. (a) Saxton, J. E. In The Alkaloids; Cordell, G. A., Ed.; Academic Press: New York, 1998; Vol. 51, Chapter 1; (b) Biemann, K.; Friedmann-Spiteller, M.; Spiteller, G. Tetrahedron Lett. 1961, 2, 485; (c) Biemann, K.; SpitellerFriedmann, M.; Spiteller, G. J. Am. Chem. Soc. 1963, 85, 631; (d) Djerassi, C.; Budzikiewicz, H.; Wilson, J. M.; Gosset, J.; Le Men, J.; Janot, M.-M. Tetrahedron Lett. 1962, 3, 235.
3. Saxton, J. E., In Indoles: The Monoterpenoid Alkaloids, John Wiley \& Sons, Chichester, 1983, vol. 25, pt 4, 331-438.
4. Mitaine-Offer, A.-C.; Sauvain, M.; Valentin, A.; Callapa, J.; Mallié, M.; ZèchesHanrot, M., Phytomedicine, 2002, 9, 142-145.
5. a) Malawista, S. E.; Sato, H.; Bensch, K. G. Science 1968, 160, 770-772; (b) Gigant, B.; Wang, C.; Ravelli, R. B. G.; Roussi, F.; Steinmetz, M. O.; Curmi, P. a.; Sobel, A.; Knossow, M. Nature 2005, 435, 519-522; (c) Jordan, M. A.; Wilson, L. Nat. Rev. Cancer 2004, 4, 253-265.
6. Lim, K.-H.; Hiraku, O.; Komiyama, K.; Koyano, T.; Hayashi, M.; Kam, T. J. Nat. Prod. 2007, 70, 1302-1307.
7. a) Szantay, C. Pure. Appl. Chem. 1990, 62, 1299; b) Danieli, B.; Lesma, G.; Palmisano, G. J. Chem. Soc., Chem. Commun. 1981, 908-909; c) Sapi, J.; Szabo, L.; Baitz-Gacs, E.; Kalaus, G.; Szantay, C.Tetrahedron 1988, 44, 4619-4629; d) Calbi, L.; Danieli, B.; Lesma, G.; Palmisano, G. J. Chem. Soc., Perkin Trans. 1 1982, 1371.
8. a) Gan, C. Y.; Robinson, W. T.; Etoh, T.; Hayashi, M.; Komiyama, K.; Kam, T. S. Org. Lett. 2009, 11, 3962; (b) Szabo, L. F. ARKIVOC (Gainesville, FL, U.S.) 2008, No. iii, 167; c) David, B.;Sevenet, T.; Thoison, O.; Awang, k.; Pais, M.; Wright, M.; Guenard, D. Biorganic. Med. Chem. Lett. 1997, 7, 2155;
9. Feng, T.; Li, Y.; Liu, Y.; Cai, X.; Wang, Y.; Luo, X. Org. Lett. 2010, 12, 968-971.
10. Lim, K. -H.; Hiraku, O.; Komiyama, K.; Kam, T. -S. J. Nat. Prod. 2008, 71, $1591-$ 1594.
11. a) Qureshi, A. A.; Scott, A. I. Chem. Commu., 1968, 947; b) Scott, A. I.; Qureshi, A. A. J. Am. Chem. Soc. 1969, 91, 5874; c) Qureshi, A. A.; Scott, A. I. Chem. Coтти., 1968, 947; d) Kutney, J. P.; Ehret, C.; Nelson, V. R.; Wigfield, D. C. J. Am. Chem. Soc. 1968, 90, 5929.
12. O’Conor, S. E.; Maresh, J. J. Nat. Prod. Rep., 2006, 23, 532-547.
13. Stork, G.; Dolfini, J. E. J. Am. Chem. Soc. 1963, 85, 2872-2873.
14. Meyers, A. I.; Berney, D. J. Org. Chem. 1989, 54, 4673-4676.
15. Iyengar, R.; Schildknegt, K.; Aubé, J. Org. Lett. 2000, 2, 1625-1627.
16. Fukuda, Y.; Shindo, M.; Shishido, K. Org. Lett. 2003, 5, 749-751.
17. Burrell, A. J. M.; Coldham, I.; Watson, L.; Oram, N.; Pilgram, C. D.; Martin, N. G. J. Org. Chem. 2009, 74, 2290-2300.
18. Sabot, C.; Guérard, K. C.; Canesi, S. Chem. Commun. 2009, 2941-2943.
19. Pearson, W. H.; Aponick, A. Org. Lett. 2006, 8, 1661-1664.
20. Sharp, L. A.; Zard, S. Z. Org. Lett. 2006, 8, 831-834.
21. Harley-Mason, J.; Kaplan, M. Chem. Commun. 1967, 915-916.
22. Node, M.; Nagasawa, H.; Fuji, K. J. Am. Chem. Soc. 1987, 109, 7901-7903.
23. Schultz, A. G.; Pettus, L. J. Org. Chem. 1997, 62, 6855-6861.
24. Tanino, H.; Fukuishi, K.; Ushiyama, M.; Okada, K. Tetrahedron 2004, 60, 32733282.
25. Gallagher, T.; Magnus, P.; Huffman, J. C. J. Am. Chem. Soc. 1982, 104, 11401141.
26. Wenkert, E.; Hudlický, T. J. Org. Chem., 1988, 53, 1953-1957.
27. Forns, P.; Diez, A.; Rubiralta, M. J. Org. Chem. 1996, 61, 7882-7888.
28. Toczko, M. A.; Heathcock, C. H. J. Org. Chem. 2000, 65, 2642-2645.
29. Kozmin, S. A.; Iwama, T.; Huang, Y.; Rawal, V. H. J. Am. Chem. Soc. 2002, 124, 4628-4641.
30. Desmaele, D.; D'Angelo, J. J. Org. Chem. 1994, 59, 2292-2303.
31. Patro, B.; Murphy, J. A. Org. Lett. 2000, 2, 3599-3601.
32. Jones, S. B.; Simmons, B.; Mastracchio, A.; MacMillan, D. W. C. Nature 2011, 475, 183-188.
33. (a) Wenkert, E.; Orito,K.; Simmons, D.P. Tetrahedron 1983, 39, 3719-3724; (b)Le Menez, P.; Kunesch, N.; Liu, S.; Wenkert, E. J. Org. Chem., 1991, 56, 2915-2918.
34. Kawano, M.; Kiuchi, T.; Negishi, S.; Tanaka, H.; Hoshikawa, T.; Matsuo, J.; Ishibashi, H. Angew. Chem. Int. Ed. 2013, 52, 906-910.
35. McMurray, L.; Beck, E. M.; Gaunt, M. J. Angew. Chem. Int. Ed. 2012, 51, 92889291.
36. Szab, L. F. Arkivoc 2008, 167 - 181.
37. Lanjiness, J. P.; Jiang, W.; Boger, D. L. Org. Lett. 2012, 14, 2078-2081.
38. Wagnieres, O.; xu, Z.; Wang, Q.; Zhu, J. J. Am. Chem. Soc. 2014, 136, 1510215108.

Section A

2.1. Introduction:

Aspidosperma alkaloids (Figure-8), isolated from various biological sources, comprises of more than 250 structurally complex compounds. ${ }^{1}$ The unique pentacyclic framework with contiguous cis-stereo centers at C-7, C-21 and C-20 (all carbon quaternary) is a common structural feature found among all the alkaloids of this family. The basic pentacyclic framework of aspidospermidine (6) is common to the most of these pharmacologically active alkaloids (Figure-9) which has been an attractive target for the showcasing of any new synthetic methodologies. ${ }^{2}$ Therefore, development of an efficient strategy for the construction of $\mathbf{6}$ still invites great interest. ${ }^{3}$

One of the most utilized approach for the construction of this pentacyclic alkaloid 6 in racemic ${ }^{4-6}$ as well as enatioselective ${ }^{7,8}$ form have been the late stage installation of indole moiety on to the $6 a$-ethyloctahydro- $1 H$-pyrrolo[3,2,1-ij]quinolin- $9(2 H)$-one (tricyclic core 49, Figure-9) initially prepared by Stork and Dolfini. ${ }^{4}$

Figure 9. Some of the representative structures of Aspidosperma class of alkaloids and

tricyclic cores.

Although remarkable development has taken place since Stork's Fischer indolization ${ }^{4}$ of tricyclic core 49 approach for constructing aspidosperma class of alkaloids, this
methodology still remains the hallmark in this field. The lack of efficient and novel strategies to the enantioselective construction of 49, dragged our attention to develop an efficient strategy. Therefore, from synthetic point of view, how to expeditiously establish such a privileged core 49 with the crucial C-20 all carbon quaternary stereocenter would be an important issue in developing asymmetric synthesis of 6 and structurally related bisindole alkaloids. Furthermore, if the strategy provides both enantiomers ${ }^{9}$ (most of these alkaloids are produced naturally in both enantiomers) ${ }^{1}$ it would be an added advantage.

Interestingly, Aspidosperma class of alkaloids are naturally available in both the enantiomeric forms ${ }^{1}$ (i.e., as $\mathrm{C}_{7}, \mathrm{C}_{21}$ and C_{22} centers are converse), but there are only few articulated methods that can access both ${ }^{9}$ the enantiomers of this alkaloids. Since 49 represents the basic skeleton of most of these alkaloids, construction of this highly versatile ${ }^{6,8}$ in either of enantiomeric forms can efficiently lead to the various alkaloids (Figure 9). This imagination of advancing 49 to several natural products, prompted us to envisage the synthesis of both enantiomers of 49 .

Our continuing research interest in exploring the application of intramolecular 1,3-dipole cycloaddition reaction of non-stabilized azomethine ylide in the total synthesis of fused pyrrolidine containing alkaloids ${ }^{10-21}$ with complex architecture, led us to envisage the synthesis of aspidosperma class of alkaloids through intramolecular [3+2] cycloaddition of nonstabilized azomethine ylide (AMY) as shown in the retrosynthetic analysis.

2.2. Retrosynthetic plan and design:

The synthesis of (+)-6 was planned through the indolization ${ }^{4}$ of $\mathbf{4 9}$ which itself was envisioned via intramolecular [3+2] cycloaddition 217. The synthesis of 217 was visualized from 219 by simple functional group transformations. The synthesis of $\mathbf{2 1 9}$ in enantiomerically pure form was planned to be accessed by [3,3]-sigmatropic rearrangement of $\mathbf{2 2 0}$. Herein, we disclose our successful effort of accomplishing the construction of both $(+)-49$ as well as $(-)-49$ and utilization of $(-)-49$ for the total synthesis of (+)-aspidospermidine 6 (Scheme-28).

Scheme 28. Retrosynthetic Analysis of (-)-Tricyclic core

Since the present synthetic route involves intramolecular 1,3-dipolar cycloaddition of non-stabilized azomethine ylide as a key step, it would be important to highlight the salient features of azomethine ylide ${ }^{22-23}$ as 1,3-dipole and the protocol developed in our laboratory ${ }^{10-21}$ or its generation and application.

2.3. Azomethine Ylide:

An ylide is a hetero atom containing (usually N, S or P) neutral dipolar intermediate. Ylide is a reactive species which on cycloaddition ${ }^{24-31}$ with a variety of unsaturated substrates (dipolarophiles) give a five membered hetrocyclic ring systems (Figure-10).

Figure-10

Azomethine ylides are nitrogen based diplolar intermediates, containing an iminium ion next to the carbanion. These azomethine ylides $\mathbf{2 2 1}$ are used in cycloaddition reactions with olefin or alkyne $\mathbf{2 2 2}$ to form five membered pyrrolidine ring systems $\mathbf{2 2 3}$ (Figure-11).

Figure-11

2.3.a. Intramolecular [3+2] cycloaddition of azomethine ylide:

1,3-Dipolar cycloaddition of azomethine ylide to a dipolarophile (unsaturated olefin or alkyne) is the most fundamental and reliable process to synthesize five-membered heterocyclic compounds in regio and stereocontrolled fashion. Intermolecular cycloadditions result in the formation of only one new pyrrolidine ring, whereas intramolecular 1,3-dipole cycloaddition reaction can lead to formation of bicyclic or polycyclic ring systems with fused pyrrolidine ring. The intramolecular 1,3-dipole cycloaddition reactions are employed as a powerful tool to construct polycyclic complex natural products in a simple way.

2.3.b. Generation of nonstabilized AMY:

Since last six decades, impressive development has been done for the generation of azomethine ylide. However, most of these methods are known for the generation of stabilized ylide. The generation of non-stabilized AMY is still challenging, requires a strong base or heating conditions and most importantly their generation lacks versatility. Some of the important methods to generate nonstabilized AMY are given below:

1. George P. Rizzi et al. approach: ${ }^{32}$ (J. Org. Chem., 1970, 56, 2069-2072)
N-Alkyl amino acid $\mathbf{2 2 5}$ on reaction with carbonyl compounds at high temperature underwent dehydration and decarboxylation reactions to produce azomethine ylide intermediate 227. The formation of 227 was evidenced by trapping with dipolarophile. This report is the first evidence of nonazomethine ylide intermediate (Scheme-29) generation.

Scheme-29

2. E. Vedejs et al. approach: ${ }^{33}$ (J. Am. Chem. Soc. 1979, 101, 6452)

Vedejs and coworkers reported a CsF induced desilylation of trimethylsilyl ammonium salts $\mathbf{2 2 8}$ for the generation of $\mathbf{2 2 9}$ which reacted with dipolarophiles to form five memberd heterocyclic ring system (Scheme-28).

Scheme-28

3. Albert Padwa et al. approach: ${ }^{34}$ (Tetrahedron Lett. 1983, 24, 3447)

Padwa et al. reported α-cyanoaminosilane $\mathbf{2 3 0}$ as a potential precursor for the generation of nonstabilized azomethine ylide by reacting with AgF which was trapped by olefins to give pyrrolidine derivatives in high yields (Scheme-29).

Scheme-29

4. Albert padwa et al. approach: ${ }^{35}$ (J. Org. Chem. 1987, 52, 235)

In 1987, padwa and coworkers have found that the N - [(Trimethylsilyl)methyl]amino ethers $\mathbf{2 3 2}$ are azomethine ylide equivalents. These compounds on treatment with LiF in the presence of reactive unsaturated olefins gave pyrrolidine derivatives as cycloadducts in high yields (Scheme-30).

Scheme-30

5. Roussi et al. approach: ${ }^{36}$ (J. Chem. Soc., Chem. Commun. 1983, 31).

Roussi and co-workers reported non-stabilized azomethine ylide generation from triethylamine- N -oxide 234 by the reaction of lithium di-isopropyl amide (LDA) which on cycloaddition with different olefins produced five membered pyrrolidine derivatives in high yields (Scheme-31).

Scheme-31

From above discussion, it is clearly understood that these methods have certain drawbacks:
(i) require high temperatures or strong base for the generation
(ii) generally suitable for intermolecular cycloaddition reactions.
(iii) generate acyclic azomethine ylide, however, scope for cyclic azomethine ylides are not well demonstrated.

To overcome these pitfalls, in 1992 our group developed mild conditions for generation of cyclic and acyclic AMY for intra and intermolecular cycloaddition reactions.

6. Pandey et al. approach: ${ }^{37,38}$ (J. Chem. Soc., Chem. Commun. 1992, 1313)

N, N '-bis(trimethylsilyl)benzyl amine $\mathbf{2 3 6}$ on treatment with $\mathrm{Ag}(\mathrm{I}) \mathrm{F}, \mathbf{2 3 3}$ is generated which on trapping with olefins produced N -benzyl pyrrolidine derivatives.

Scheme-32

The basic concept of azomethine ylide generation from N, N '-bis(trimethylsilyl methyl)alkyl amine 238 involved sequential one electron oxidation of the lone pair of electrons of nitrogen followed by desilylation due to β-silicon effect ${ }^{13}$ (Scheme-33).

Scheme-33

A variety of alkaloids ${ }^{7,8}$ and various azabicyclo alkanes [X-azabicyclo (m.2.1) alkane] have been synthesized using this methodology.

2.3.c. Intramolecular [3+2] cycloaddition of nonstabilized AMY for synthesis of

 Alkaloids:Our group have explored intramolecular [3+2]-cycloaddition strategy of nonstabilized AMY for the total syntheses ${ }^{18-21}$ of bioactive Amaryllidaceae alkaloids (Scheme-34).

Scheme-34

Pandey et al. Org. Lett. 2005, 7, 3713-3716.
Pandey et al. Eur. J. Org. Chem. 2011, 45714587.

Pandey et al. Org. Lett. 2009, 11, 2547-2550.

Encouraged by these successes, we have planned to develop an intramolecular [3+2]cycloaddition strategy for the construction of key precursor 49 in a single step for the synthesis of aspidosperma class of alkaloids.

2.4. Our concept: Intramolecular [3+2] cycloaddition for the construction of Tricyclic core Aspidosperma class of alkaloids.

The expeditious construction of $\mathbf{4 9}$ was visualized by the [3+2] cycloaddition of an AMY generated from 217b which is shown in Scheme-36. It was planned that 217b on treatment with a Lewis acid will lead to the generation of iminium ion $\mathbf{2 5 2}$ by the opening of the corresponding aminal ring and subsequent desilylation will give azomethine yilde intermediate 253 which on cycloaddition may give $\mathbf{2 5 4}$. Oxidation of alcohol will give required tricyclic core 49 (Scheme-35).

Scheme 35

The details of synthesis along with experimental results are discussed below.
2.5. Synthesis of (-)-tricyclic core of Aspidosperma class of alkaloids: Total Synthesis of (+)-Aspidospermine Results and discussion:

Results and discussion:

2.5.a. Synthesis of both enantiomers of ethyl 2-(3-(3-((tert-butyldimethylsilyl)oxy)prop-1-en-1-yl)-1-(4-methoxybenzyl)-2-oxopiperidin-3yl)acetate (219a and 219b):

The phosphonate $\mathbf{2 5 6}$ was prepared in 68% yield from commercially available $\mathbf{2 5 5}$ by the reaction of corresponding enolate (LIHMDS, $-78^{\circ} \mathrm{C}$) with chlorodiethylphosphate. Wittig-Horner olefination of $\mathbf{2 5 6}$ with $(R)-(+)$-glyceraldehyde acetonide in the presence of NaH at $0^{\circ} \mathrm{C}$ gave a mixture of $\mathbf{2 5 7}$ and $\mathbf{2 5 8}$ ($2: 3$ ratio, 97% yield) which was purified by flash column chromotography. Both the diastereomers were separately subjected for acetonide deprotection in acidic condition $\left(\mathrm{CH}_{3} \mathrm{COOH}: \mathrm{THF}: \mathrm{H}_{2} \mathrm{O}=1: 1: 1,60^{\circ} \mathrm{C}\right)$ to obtain 259 and 261 in 95% and 92% yields, respectively (Scheme-36).

Scheme 36

The two diastereomers 259 and 261 were characterized by detailed ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, DEPT, HSQC spectral analysis.

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 5 9}$ showed a doublet at $\delta 5.96(J=6 \mathrm{~Hz})$, integrating for one proton, which was assigned to olefinic proton $(\mathrm{C}=\mathrm{C}-\underline{\mathrm{H}})$. The multiplet at $\delta 4.7$, integrating for one proton was assigned to ($\mathrm{C}=\mathrm{CH}-\mathrm{CHOH}-)$ proton. The $\left(-\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH}\right)$ proton appeared as multiplet at $\delta 3.65$. The triplet appeared at $\delta 2.45(J=6 \mathrm{~Hz})$ integrating for two protons. The PMB group characteristic protons appeared at $\delta 7.18(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.85(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$.

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 5 9}$ displayed a total of fourteen signals at $\delta 165.3$, $159.0,139.8,132.3,129.4,128.7,114.0,68.8,66.0,55.2,49.9,47.3,32.2$ and 23.0. The most downfield signal $\delta 165.3$ was assigned to lactam carbonyl carbon. The signals present at $\delta 139.8(-\underline{\mathrm{C}}=\mathrm{CH}), 132.3(-\mathrm{C}=\underline{\mathrm{C}} \mathrm{H})$ were assigned to olefinic carbons. The other downfield signals at $\delta 159.0,129.4,128.7,114.0$ were assigned to aromatic carbons of PMB group.

After identifying the respective protons by combined ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ analysis, the NOESY spectra of $\mathbf{2 5 9}$ was interpreted to confirm the geometry of the double bond. Based on the correlation of olefinic proton at $\delta 5.9$ with allylic proton of lactam ring at $\delta 2.4$ as shown in Figure-12 geometry of $\mathbf{2 5 9}$ was assigned as Z.

Figure-12

Expectedly, $\mathbf{2 6 1}$ did not show any correlation of proton appearing at 6.84 and 2.6 (Figure-13), therefore, in this molecule the olefin geometry is E.

Figure-13

261

After successfully determining the olefin geometry, the primary free-OH group of these diastereoisomers $\mathbf{2 5 9}$ and 261 were protectected as -O-TBS ethers ($\mathbf{2 6 0}$ and 220) in quantitative yields (Scheme-36).

2.5.b. 3,3-Sigmatropic Rearrangement of 260: Creation of All Carbon Quaternary Centre

Johnson- Claisen rearrangement reaction (triethyl orthoacetate, cat. propionic acid, $130{ }^{\circ} \mathrm{C}$) of $\mathbf{2 6 0}$ was successfully carried out in multi gram scale (10 gram scale, 95% yield)) to obtain 219a (Scheme-37) in high enantiomeric excess ($>99 \%$ ee). The enantiomeric excess was determined by chiral stationary phase HPLC using Chiralcel OD-

H column, and IPA: n-Hexane ($10: 90$) as eluent ($1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 25{ }^{\circ} \mathrm{C}$). Similarly, $\mathbf{2 2 0}$ was also subjected to rearrangement to afford 219b in 97% yield (ee $>99 \%$ Scheme-38). The optical rotation of 219a was measured as $[\alpha] D^{24}=+12.19(c=0.31$, $\left.\mathrm{CHCl}_{3}\right)$ whereas 219b shows $[\alpha]_{\mathrm{D}}{ }^{24}=-15.38\left(c=0.84, \mathrm{CHCl}_{3}\right)$, indicating that 219a and 219b are enantiomers.

Scheme-37

To explain this stereoselective rearrangement, a plausible transition state (TS, 262263) is depicted as shown in Figure-13. It shows that the 219a is formed by involving 262TS where due to the Z-geometry of the olefinic bond, the $\mathrm{C}_{3}-\mathrm{C}_{4}$ bond is formed from below the plane whereas, in 263-TS it is clearly visualized that suprafacial attack of the incoming group forces the $\mathrm{C}_{3}-\mathrm{C}_{2}$ bond below the plane for the formation of 219b (Figure14). The detailed study of the role of alcohol stereochemistry and its transition states are described in our group earlier report. ${ }^{39}$

Figure-14

In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 1 9 b}$, a broad singlet at $\delta 5.66$, integrating for two protons, was attributed to olefinic protons. The signals appeared at $\delta 4.1$ and $\delta 1.24$ represents ethyl group of ester. The ${ }^{13} \mathrm{C}$ NMR spectrum of 219b displayed signals at δ 171.7 and 171.4 representing ester and lactam carbonyl carbon, respectively. IR spectrum of 219b showed a strong absorption band at $1734 \mathrm{~cm}^{-1}$, suggesting the presence of ester moiety. The mass spectrum displayed a peak at $498.2656[\mathrm{M}+\mathrm{Na}]^{+}$.

After successful synthesis of both enantiomers of chiral lactam (219a and 219b), we turned our attention for the use of these compounds for the construction of 49.

2.5.c. Synthesis of (R)-3-(3-((tert-butyldimethylsilyl)oxy)propyl)-3-ethylpiperidin-2one (267b):

The chiral lactam 219b in hand, we have proceeded for the formation of 267b by simple functional group transformation as shown in Scheme-38.

219b was first reduced to its corresponding aldehyde (80% yield) by DIBAL-H at $-78{ }^{\circ} \mathrm{C}$ (Scheme-38). Dithioacetalization of the aldehyde moiety followed by reductive desulfurization (Raney Nickel, H_{2}, EtOH, and reflux) afforded 265b in 69% yield.

In the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 6 5 b}$, a triplet at $\delta 0.87(J=7.4 \mathrm{~Hz})$, integrating for three proton represents methyl group which was also confirmed by the DEPT NMR showing methyl peak at $\delta 9.08$. The mass spectrum displayed a peak at $306.2066[\mathrm{M}+\mathrm{H}]^{+}$.

The protection of 265b as -OTBS followed by PMB deprotection ${ }^{40}$ using ($\mathrm{Na} /$ liq. NH_{3}) produced 267b in 85% yield over 2 steps (Scheme-38).

Scheme-38

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 6 7 b}$ showed a characteristic peak at $\delta 6.04$ for $\left(\mathrm{CH}_{2}-\right.$ $\mathrm{NH}-\mathrm{C}=\mathrm{O}$) proton as broad singlet. The mass spectrum of 267b displayed $\mathrm{m} / \mathrm{z} 300.2349$ $\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Having 267b in hand, we have proceeded for the synthesis of key cycloaddition precursor 217b by following the steps as described below.

2.5.d. Synthesis of Bicyclic aminal 217b:

First generation approach for synthesis of Bicyclic aminal:
N -alkylation of $\mathbf{2 6 7 b}$ with $\mathrm{TMSCH}_{2} \mathrm{Cl}$ in presence of NaH and TBAB produced $\mathbf{2 6 8}$ in 80% yield which on stirring in methanol under acidic conditions (PTSA, $\mathrm{MeOH}, 0^{\circ} \mathrm{C}$) gave the corresponding alcohol. Dess-Martin Periodinane oxidation of this alcohol in dichloromethane gave 269 in 77\% overall yield (Scheme-39). Vinylation of 269 using vinyl magnesium bromide in diethylether at $-78{ }^{\circ} \mathrm{C}$ afforded $\mathbf{2 7 0}$ as a mixture of two diastereomers (1:1) in 85% yield.

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 7 0}$ showed three newly generated olefinic protons at δ 5.82, 5.2 and 5.06 as multiplets which were assigned to $\left(\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}\right),\left(\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}\right)$ and $\left(\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}\right)$, respectively. The signal at $\delta 4.0$, integrating for one proton, was assigned to allylic proton $\left(\mathrm{HO}-\mathrm{C} \underline{\mathrm{H}}-\mathrm{CH}=\mathrm{CH}_{2}\right)$. The methyl protons of TMS group shifted up field and appeared as a sharp singlet at $\delta 0.05$.

The signals at $\delta 173.6,173.5$ in ${ }^{13} \mathrm{C}$ NMR spectrum of the $\mathbf{2 7 0}$ (diastereomeric mixture) were attributed to the lactam carbonyl. In this spectrum the characteristic olefinic carbons were observed as set of two signals at ($\delta 141.3, \delta 141.1$) and ($\delta 114.3, \delta 114.2$).

The mass spectrum of $\mathbf{2 7 0}$ displayed $\mathrm{m} / \mathrm{z} 270.1884\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

It was presumed beforehand that partial reduction of the lactam carbonyl group of $\mathbf{2 7 0}$ to iminium ion followed by subsequent cyclisation with tethered alcohol will produce bicyclic aminal intermediate. However, to our dismay it underwent over reduction to form 271. Evaluation of different reaction conditions with DIBAL-H remained unfruitful. Even reduction using LiAlH_{4} in ether at $-40-0{ }^{\circ} \mathrm{C}$ also gave the same unexpected product 271 (Scheme-39).

Scheme-39

The undesired product 271 was characterized by ${ }^{13} \mathrm{C}$ NMR studies which showed disappearance of lactam carbonyl peaks at δ 173.6, 173.5 (diasteromeric peaks) and appearance of peaks at $\delta 67.34,67.14$ and $\delta 59.23$ indicating the presence of $\left(-\mathrm{CH}_{2}-\mathrm{N}-\right.$ $\mathrm{CH}_{2}-$) and ($-\mathrm{NCH}_{2}-\mathrm{TMS}$).

The mass spectrum $\left(\mathrm{m} / \mathrm{z} 298.2201\left(\mathrm{M}+\mathrm{H}^{+}\right)\right)$confirmed complete reduction of amide group.

These unexpected results, led us to investigate new synthetic route to access 217b which is described as follows.

Second Generation approach for synthesis of Bicyclic aminal:

An alternative strategy for the transformation of $\mathbf{2 6 7 b}$ to $\mathbf{2 1 7 b}$ was worked out as shown in Scheme-41. N-Boc protection of $\mathbf{2 6 7 b}$ with (Boc) $)_{2} \mathrm{O}$ using LiHMDS afforded 272b from which -OTBS ether group was deprotected using catalytic amount of p-TSA in MeOH at $-10{ }^{\circ} \mathrm{C}$ (90% yield). Oxidation of $\mathbf{2 7 3 b}$ using Dess-Martin periodinane in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ for 30 min produced 274b (96% yield) Scheme-41.

Vinylation 274b by treating it with vinyl magnesium bromide afforded 275b in 72% yield (Scheme-40) which on reduction with DIBAL-H at $-78{ }^{\circ} \mathrm{C}$ resulted into corresponding hemiaminal. Treatment of 275b with PPTS in dichloromethane at room temperature furnished 276b as a mixture of diastereomers (1:1). Careful N -Bocdeprotection of 276b, using TMSOTf and trimethylamine, gave bicyclic amine 277b (Scheme-40).

Scheme-40

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 7 7 b}$ (diastereomeric mixture) showed three multiplets at $\delta 5.9,5.25$ and 5.1, integrating for one proton each, were assigned to the olefinic protons. A set of singlet protons at $\delta 4.11,3.95$, each with 0.5 proton integration value in 1:1 ratio, were attributed to the (-HN-CH-O-) proton. Another set of multiplets at $\delta 4.56,3.82$, each with 0.5 proton integrating value in 1:1 ratio, were assigned to $\left(-\mathrm{O}-\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}\right)$ proton. The signal as a multiplet at $\delta 0.8$ integrating for three protons was assigned to $\left(-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 7 7 b}$ (diastereomeric mixture) displayed a set of two carbon signals at $(\delta 139.4,139.3)$ and $(\delta 115.2,114.5)$ which were attributed to olefinic carbons ($\mathrm{O}-\underline{\mathrm{C}} \mathrm{H}=\mathrm{CH}_{2}, \mathrm{O}-\mathrm{CH}-\mathrm{CH}_{2}$), respectively. The two downfield signals at $\delta 90.03$ and $\delta 70.72$ were assigned to (-HN- $\underline{C H}-\mathrm{O}-$) and ($-\mathrm{O}-\underline{\mathrm{C}} \mathrm{H}-\mathrm{CH}=\mathrm{CH}_{2}$) carbons, respectively.

The mass spectrum of 277b displayed the peak at $\mathrm{m} / \mathrm{z} 196.1708[\mathrm{M}+\mathrm{H}]^{+}$.
The stereochemical assignments of $\mathbf{2 7 7 b}$ (diastereomeric mixture), as shown in Figure-14, are based on NOESY NMR spectral studies. The NOSEY cross peaks were observed between $(\delta 4.11,0.8)$ and $(\delta 3.95,0.8)$ which are corresponding to the interaction of ($-\mathrm{HN}-\mathrm{CH}-\mathrm{O}-$) proton with $\left(-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$. These observations revealed the stereochemistry of 277b as shown in Figure-15. (See page no. 164 for NOESY spectrum of 277b).

Figure-15

N-Alkylation of 277b with $\mathrm{TMSCH}_{2} \mathrm{OTf}$ in the presence of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ resulted in the formation of N-(trimethylsilyl methyl) aminal 217b (Scheme-41) which was characterized by mass spectrum ($\mathrm{m} / \mathrm{z} 282.2246[\mathrm{M}+\mathrm{H}]^{+}$).

2.5.e. Synthesis of Tricyclic core (-)-49:

First generation approach for [3+2] cycloaddition:

Once 217b in hand, it was presumed that if this bicyclic aminal is treated with a Lewis acid, the aminal ring would open to give iminium ion that subsequently would undergo desilylation to give an azomethane yilde 253. Subsequent, intramolecular cycloaddition of this with tethered dipolarophile may give tricyclic core 254 (Scheme-41).

Excited with this planning, we carried out an initial study of intramolecular [3+2] cycloaddition 217b which began in the presence of different Lewis acids (Scheme-41). Initial reaction with the treatment of TMSOTf at various temperatures $\left(-78{ }^{\circ} \mathrm{C}\right.$ to rt$)$ in DCM (entries 1-2, Table-3) unfortunately, did not result any product albeit only starting material remained as such. The addition of CsF to accelerate desilylation process for azomethine ylide generation also did not succeed. Surprisingly, the reaction in the presence of TFA as well as TfOH led to the decomposition of reaction mixture. Furthermore, even in the presence of $\mathrm{BF}_{3} \mathrm{OEt}_{2}$ at different reaction conditions did not lead to any product formation. Unfortunately, all our attempts to generate azomethine ylide from aminal 217b failed (Table-3).

Scheme-41

Table-3

S.No	Reaction Conditions	Inference
1.	TMSOTf, $\mathrm{DCM},-78{ }^{\circ} \mathrm{C}$	SM recovered
2.	TMSOTf, DCM, $-78{ }^{\circ} \mathrm{C}$ to rt	SM recovered
3.	TMSOTf, $\mathrm{CsF},-78{ }^{\circ} \mathrm{C}$ to rt	SM recovered
4.	TFA, DCM, $-20^{\circ} \mathrm{C}$	Decomposed
5.	$\mathrm{TfOH}^{\circ}, \mathrm{DCM},-78{ }^{\circ} \mathrm{C}$ to rt	Decomposed
6.	$\mathrm{BF}_{3} \cdot \mathrm{OEt} 2, \mathrm{DCM},-78{ }^{\circ} \mathrm{C}$	SM recovered
7.	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{DCM},-78{ }^{\circ} \mathrm{C}$ to rt	SM recovered

Second generation approach for [3+2] cycloaddition:

This unanticipated setback led us to explore an alternative strategy for generating non stabilized azomethane ylide from 280b as shown in Scheme-42. The transformation of 275b to 280b was carried out without any purification and obtained overall 73% yield over seven steps. ${ }^{41}$ (Scheme-42).

Scheme-42

Treatment of $\mathbf{2 1 7} \mathbf{b}$ with TMSCN at $0{ }^{\circ} \mathrm{C}$ in dichloromethane followed by subsequent -OTMS ether deprotection and oxidation produced 280b (Scheme-42).

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 8 0 b}$ (diastereomeric mixture) displayed three olefinic protons of enone $\left(\mathrm{O}=\mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}\right)$ moiety as multiplets at $\delta 6.4,6.3$ and 5.8 , respectively. The singlets appearing at $\delta 3.41,3.38$, each integrating for 0.5 proton in 1:1 ratio, were attributed to the $(-\mathrm{HN}-\mathrm{C} \underline{\mathrm{H}}-\mathrm{CN})$ proton.

The most downfield signals in the ${ }^{13} \mathrm{C}$ NMR spectrum at $\delta 200.0$, 199.8 were assigned to the carbonyl carbon of enone $\left(\mathrm{O}=\underline{\mathrm{C}}-\mathrm{CH}=\mathrm{CH}_{2}\right)$. The signals at $(\delta 136.2,136.1)$ and $(\delta 128.4,128.1)$ were assigned to the olefin carbons $\left(\mathrm{O}=\mathrm{C}-\underline{\mathrm{CH}}=\underline{\mathrm{C}} \mathrm{H}_{2}\right)$, respectively. The nitrile carbon signals ($-\mathrm{HN}-\mathrm{CH}-\underline{\mathrm{CN}}$) appeared at $\delta 115.5,115.3$.

The IR spectrum displayed a strong absorption peak at $1682 \mathrm{~cm}^{-1}$, indicating the presence of α, β-unsaturated carbonyl functional group.

The mass spectrum showed m / z at $307.2199\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Stirring of this compound with AgF in acetonitrile at room temperature (3 h) which, to our delight, produced (-)-49 as a single diastereomer in 92% isolated yield (Scheme 42). The formation of (-)-49 obviously involved the [3+2] cycloaddition ${ }^{42-43}$ of non-stabilized azomethine ylide $\mathbf{2 1 8 b}$ with tethered enone.

This product was characterized by detailed spectral analyses. For example, in proton NMR, methyl protons $\left(-\mathrm{CH}_{2}-\mathrm{CH}_{3}, \mathrm{H}_{10}\right)$ appeared as a triplet at $\delta 0.94(J=7.6 \mathrm{~Hz})$. The proton signal appeared at $\delta 1.32\left(J=7.4\right.$, app sextet) was assigned to $\left(-\mathrm{CH}_{2}-\mathrm{CH}_{3}, \mathrm{H} 9\right)$ proton. The protons signal appeared at $2.67(\mathrm{ddd}, J=7.4,5.5 \mathrm{~Hz}, 1 \mathrm{H})$ was attributed to ($\mathrm{C} \underline{\mathrm{H}}-\mathrm{C}=\mathrm{O}, \mathrm{H}_{8}$) proton.

The ${ }^{13} \mathrm{C}$ NMR displayed a total of thirteen signals at $\delta 211.5,73.5,53.2,52.9,48.1$, $36.8,34.7,32.8,30.1,26.0,21.3,21.2$ and 7.1 . The signal at $\delta 211.5$ was assigned to the carbonyl moiety $\left(-\underline{C}=O, C_{7}\right)$, and the most up field signal at $\delta 7.1$ was assigned to the methyl carbon ($-\mathrm{CH}_{2}-\mathrm{CH}_{3}, \mathrm{C}_{10}$).

From the combined ${ }^{13} \mathrm{C}$ NMR and DEPT analysis it was revealed that the two methine (- $-\underline{\mathrm{CH}}-)$ carbon signals appeared at $\delta 73.5$ and $\delta 48.1$ which were attributed to the $\left(-\mathrm{N}-\underline{\mathrm{C}} \mathrm{H}-, \mathrm{C}_{8 \mathrm{a}}\right)$ and $(-\underline{\mathrm{C}} \mathrm{H}-\mathrm{C}=\mathrm{O}, \mathrm{C} 8)$, respectively. The absence of signal at $\delta 32.8$ in DEPT NMR indicates this signal belonging to the quaternary carbon (C_{4}) whereas, the remaining eight methylenic peaks were observed at $\delta 53.2,52.9,36.8,34.7,30.1,26.0,21.3$ and 21.2.

Figure-16

Assignment of carbon δ
values based on combined
${ }^{13} \mathrm{C}$ and DEPT NMR
analysis

The HSQC spectrum reveals that (i) the carbon signal $\delta 73.5$ (-N-CH-, C8a) having correlation with the proton appearing at $\delta 1.92$. (ii) another carbon signal at $\delta 48.1$ $\left(-\mathrm{CH}-\mathrm{C}=\mathrm{O}, \mathrm{C}_{8}\right)$ correlates with the proton appearing at $\delta 2.6$. From these two HSQC correlations, protons appearing at $\delta 1.92$ was assigned to $\left(-\mathrm{N}-\mathrm{C} \underline{\mathrm{H}}-, \mathrm{H}_{8 \mathrm{a}}\right)$ and proton at $\delta 2.6$ to $\left(-\mathrm{CH}-\mathrm{C}=\mathrm{O}, \mathrm{H}_{8}\right)$ (Figure-17).

Figure-17

- HSQC correlations

After assigning key protons chemical shifts, the NOESY spectrum correlations were also analysed which are as follows:
(i) the proton signal at $\delta 1.9\left(\mathrm{H}_{8 \mathrm{a}}\right)$ having strong correlation with $\delta 2.66\left(\mathrm{H}_{8}\right)$
(ii) the proton signal at $\delta 1.9\left(\mathrm{H}_{8 \mathrm{a}}\right)$ also displayed strong correlation with $\delta 0.93$ (H_{10})
(iii) proton at $\delta 2.66\left(\mathrm{H}_{8}\right)$ showed a weak correlation with $\delta 1.32(\mathrm{H} 9)$

Based on these correlations, it can be suggested that $\mathrm{H}_{8}, \mathrm{H}_{8 \mathrm{a}}, \mathrm{H}_{9}$ and H_{10} protons are in cis- relation and the stereochemistry of (-)-49 is as per the structure shown in Figure-18 \{see page no 174-175 for NOESY spectrum of (-)-49\}.

Figure-18

The IR spectrum displayed a strong absorption peak at $1709 \mathrm{~cm}^{-1}$, indicating the presence of ketone carbonyl functional group. The assigned structure was confirmed by the mass spectrum molecular ion peak at $\left[\mathrm{m} / \mathrm{z} 208.1693\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$. The optical rotation was found to be: $[\alpha] \mathrm{D}^{24}=-23.81\left(c 0.5, \mathrm{CHCl}_{3}\right)$ which is in agreement with the reported values $\left[\mathrm{Lit}^{8 \mathrm{~b}}\right.$ value $\left.[\alpha]_{\mathrm{D}}{ }^{29}=-24.4\left(c 0.88, \mathrm{CHCl}_{3}\right)\right]$.

2.5.f. Synthesis of (+)-Aspidospermidine through Fischer indole synthesis:

The successful construction of (-)-49 by the steps as discussed above led us to confirm its structure beyond doubt by converting to (+)-6 by following the known procedure. ${ }^{7 \mathrm{a}}$ In this context, (-)-49 ($\left.0.035 \mathrm{~g}, 0.168 \mathrm{mmol}\right)$ was heated to reflux with phenylhydrazine ($0.022 \mathrm{~g}, 0.202 \mathrm{mmol}$) in benzene for 3 h form corresponding phenyl hydrazine. Crude hydrazone was dissolved in 5 mL glacial acetic acid and refluxed for 4 h, concentrated to dryness to obtain crude 219 as a brown color liquid. Reduction of 219 by with $\mathrm{LiAlH}_{4}(0.059 \mathrm{~g}, 1.68 \mathrm{mmol})$ in THF (5 mL) produced $(+)-6$ (Scheme 44$)$.

Scheme-44

The structure of (+)-6 was fully characterized by detailed NMR analysis (800 MHz , $\left.\mathrm{CDCl}_{3}\right)$ and also by comparing its optical rotation $[\alpha] \mathrm{D}^{24}=+20.14(c=0.5, \mathrm{EtOH})$ with the reported value. ${ }^{7 c}$ \{see page no. 175-182 for all spectral data of $\left.(+)-6\right\}$.

In the ${ }^{1} \mathrm{H}$ NMR spectrum, the four aromatic protons appeared at $\delta 7.09(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), \delta 7.02(\mathrm{td}, J=7.5,0.95 \mathrm{~Hz}, 1 \mathrm{H}), \delta 6.74(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), \delta 6.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H})$, respectively. The key characteristic H_{21} proton appeared as singlet at $2.23(\mathrm{~s}, 1 \mathrm{H})$, whereas the other characteristic H_{2} proton appeared as doublet of a doublet at $\delta 3.52(\mathrm{dd}$, $J=11.3,6.3 \mathrm{~Hz}, 1 \mathrm{H})$. The most up field methyl protons $\left(-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ appeared as a triplet at $0.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.

In ${ }^{13} \mathrm{C}$ NMR, the carbon signals appearing at $\delta 149.8,136.1,127.5,123.3,119.4$ and 110.7 corresponds to the aromatic carbons. The combined ${ }^{13} \mathrm{C}$ and DEPT NMR analysis revealed that the two methylinic carbon signals appeared at $\delta 71.3,65.7$ which
were corresponding to the C_{21} and C_{2} carbons, respectively. The carbon signal $\delta 6.8$ was assigned to methyl carbon $\left(-\mathrm{CH}_{2} \underline{\mathrm{CH}}_{3}\right)$.

The spectral data of $(+)-6$ was found to be in excellent agreement with the values in literature. ${ }^{7 \mathrm{a}, 7 \mathrm{c}}$ The comparative spectral data for $(+)-6$ with reported values ${ }^{7 \mathrm{a}, 7 \mathrm{c}}$ are given in Table-4.

Table 4: Comparative data for compound (+)-6

Compound (+)-6 (Observed)	Literature data ${ }^{7 \mathrm{7a}, 7 \mathrm{c}}$ for Compound (+)-6
${ }^{1} \mathbf{H}$ NMR ($800 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.09(\mathrm{~d}, \mathrm{~J}$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{td}, J=7.5,0.95 \mathrm{~Hz}$, $1 \mathrm{H}), 6.74(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=11.3,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.15-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.04(\mathrm{~m}$, $1 \mathrm{H}), 2.33-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.24(\mathrm{~m}$, $1 \mathrm{H}), 2.23(\mathrm{~s}, 1 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.74$ (qt, $J=13.04,4.06 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.62(\mathrm{~m}$, $2 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.36(\mathrm{~m}$, $1 \mathrm{H}), 1.12(\mathrm{td}, J=13.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.06$ (dt, $J=13.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.90-0.85(\mathrm{~m}$, $1 \mathrm{H}), 0.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.	${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) : $\delta 7.10(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{td}, J=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.75(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.53(\mathrm{dd}, J=11.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.14$ $(\mathrm{m}, 1 \mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.22(\mathrm{~m}, 2 \mathrm{H})$, $2.24(\mathrm{~s}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{qt}, J=$ $12.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.36$ (m, 4H), 1.13 (td, $J=13.5,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.07(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~m}, 1 \mathrm{H}), 0.66(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H})$.
$\begin{aligned} & \left.{ }^{13} \mathbf{C} \text { NMR (201 MHz, } \mathbf{C D C l}_{3}\right): \delta 149.4, \\ & 135.7,127.0,122.8,119.0,110.3,71.3, \\ & 65.7,53.9,53.3,53.0,38.8,35.6,34.4, \\ & 30.0,28.1,23.0,21.7,6.8 . \end{aligned}$	$\begin{aligned} & { }^{13} \mathbf{C} \text { NMR }\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 149.8, \\ & 136.1,127.5,123.3,119.4,110.7,71.7, \\ & 66.1,54.3,53.8,53.5,39.2,36.0,34.9, \\ & 30.4,28.5,23.4,22.2,7.2 \end{aligned}$
HRMS (ESI): m / z found: 283.2167 [M + $\mathrm{H}]^{+}$	HRMS (ESI): Calculated for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{19} \mathrm{H}_{2} \mathrm{~N}_{2}$: 283.2174,
Melting Point: $118-120{ }^{\circ} \mathrm{C}$. (observed)	Melting Point ${ }^{7}$ c $: 117-119{ }^{\circ} \mathrm{C}$. (Literature)
Optical Rotation: $[\boldsymbol{\alpha}]^{\mathbf{D}_{24}}=+20.14(c=$ $0.5, \mathrm{EtOH})$.	$\mathrm{Lit}^{7 \mathrm{a}}[\alpha]{ }^{\text {D }} 29=+20.6(c=0.64, \mathrm{EtOH})$.

2.6. Synthesis of (+)-tricyclic core of Aspidosperma class of alkaloids.

Introduction:

Aspidosperma class of alkaloids are naturally available in the both enantiomeric forms ${ }^{1}$ (i.e., as $\mathrm{C}_{7}, \mathrm{C}_{21}$ and C_{22} centers are converse). However, there are only few articulated methods that can access both ${ }^{44}$ the enantiomers of these alkaloids. Since tricyclic ketone 49 represents the basic skeleton from which either of its enantiomers can be synthesized (Figure 19). Therefore, constructing another optical isomer of (+)-49 was considered from 219a. This was envisioned that such types of exercise would also serve as paramount importance for the synthesis of a large number of aspidosperma class of alkaloids as shown in Figure. 19 and 20.

Figure-19

16: (+)-Aspidospermine $\left(\mathrm{R}_{1}=\mathrm{OMe}, \mathrm{R}_{2}=\mathrm{Ac}\right)$

24: Vincristine $\left[\mathrm{R}_{1}=\mathrm{CHO}\right]$
25: Vinblastine $\left[\mathrm{R}_{1}=\mathrm{CH}_{3}\right]$

35: Jerantinine-E

7: (-)-Vincadifformine
4: (-)-Tabersonine, $\Delta^{14,15}$

Figure-20

Versatility of tricyclic ketone

Identical reaction was carried out, as described in Section-A, starting from 219a to accomplish the synthesis of (+)-49 (Figure-21). The optical rotation of $(+)-49$ was found to be $\left\{[\alpha]_{\mathrm{D}}{ }^{24}=+21.62\left(c \quad 0.5, \mathrm{CHCl}_{3}\right)\right\}$. The NMR spectral data and analytical data of $(+)-$ 49 are in good agreement with the reported values.

Figure-21

2.7. Summary:

In conclusion, we have successfully developed an efficient and conceptually new synthetic route for the construction of (-)-49 utilizing intramolecular [3+2]-cycloaddition of non-stabilized azomethine ylide. The azomethine ylide was generated from a designed bicyclic aminal 271b. Synthesis of (+)-49 was also accomplished by using same strategy. The success of this strategy was demonstrated by carrying out the total synthesis of (+)aspidospermidine using Fischer indole synthesis.

2.8. REFERENCES

1. Saxton, J. E. In The Alkaloids; Cordell, G. A., Ed.; Academic Press: New York, 1998; Vol. 51, Chapter 1.
2. Pandey, G; Burugu, SK; Singh, P. Org. Lett. 2016, 18, 1558-1561. And references cited there in.
3. (a) McMurray, L.; Beck, E. M.; Gaunt, M. J. Angew. Chem. Int. Ed. 2012, 51, 9288-9291; (b) Kawano, M.; Kiuchi, T.; Negishi, S.; Tanaka, H.; Hoshikawa, T.; Matsuo, J.; Ishibashi, H. Angew. Chem. Int. Ed. 2013, 52, 906-910; (c) Wagnieres, O.; xu, Z.; Wang, Q.; Zhu, J. J. Am. Chem. Soc. 2014, 136, 15102-15108.
4. Stork, G.; Dolfini, J. E. J. Am. Chem. Soc. 1963, 85, 2872-2873
5. For racemic synthesis of Aspidospermidine: (a) Sharp, L. A.; Zard, S. Z. Org. Lett. 2006, 8, 831-834. (b) Callier-Dublanchet, A. -C.; Cassayre, J.; Gagosz, F.; Quiclet-Sire, B.; Sharp, L. A.; Zard, S. Z. Tetrahedron 2008, 64, 4803-4816. (c) Burrell, A. J. M.; Coldham, I.; Watson, L.; Oram, N.; Pilgram, C. D.; Martin, N. G. J. Org. Chem. 2009, 74, 2290-2300. (d) Coldham, I.; Burrell, A. J. M.; White, L. E.; Adams, H.; Oram, N. Angew. Chem., Int. Ed. 2007, 46, 6159-6162. (e) Camerman, A.; Camerman, N.; Kutney, J. P.; Piers, E.; Trotter, J. Tetrahedron Lett. 1965, 6, 637-642. (f) Kutney, J. P.; Abdurahman, N.; Quesne, P. Le.; Piers, E.; Vlattas, I. J. Am. Chem. Soc. 1966, 88, 3656-3657. (g) Harley-Mason, J.; Kaplan, M. Chem. Commun. 1967, 915-916. (h) Kutney, J. P.; Piers, E.; Brown, R. T. J. Am. Chem. Soc. 1970, 92, 1700-1704. (i) Kutney, J. P.; Abdurahman, N.; Gletsos, C.; Quesne, P. Le; Piers, E.; Vlattas, I. J. Am. Chem. Soc. 1970, 92, 17271735. (j) Laronze, P. J. -Y.; Laronze-Fontaine, J.; Lévy, J.; Men, J. Le. Tetrahedron Lett. 1974, 15, 491-494. (k) Ban, Y.; Yoshida, K.; Goto, J.; Oishi, T. J. Am. Chem. Soc. 1981, 103, 6990-6992. (1) Gallagher, T.; Magnus, P.; Huffman,
J. C. J. Am. Chem. Soc. 1982, 104, 1140-1141. (m) Mandal, S. B.; Giri, V. S.; Sabeena, M. S.; Pakrashi, S. C. J. Org. Chem. 1988, 53, 4236-4241. (n) Menez, P. Le.; Kunesch, N.; Liu, S.; Wenkert, E. J. Org. Chem. 1991, 56, 2915-2918. (o) Wenkert, E.; Liu, S. J. Org. Chem. 1994, 59, 7677-7682. (p) Forns, P.; Diez, A.; Rubiralta, M. J. Org. Chem. 1996, 61, 7882-7888. (q) Callaghan, O.; Lampard, C.; Kennedy, A. R.; Murphy, J. A. J. Chem. Soc. Perkin Trans. 1 1999, 995-1001. (r) Toczko, M. A.; Heathcock, C. H. J. Org. Chem. 2000, 65, 2642-2645. (s) Patro, B.; Murphy, J. A. Org. Lett. 2000, 2, 3599-3601. (t) Banwell, M. G.; Smith, J. A. J. Chem. Soc. Perkin Trans. 1 2002, 2613-2618. (u) Banwell, M. G.; Lupton, D. W.; Willis, A. C. Aust. J. Chem. 2005, 58, 722-737. (v) Sabot, C.; Guérard, K. C.; Canesi, S. Chem. Commun. 2009, 2941-2943. (w) Simone, F. De.; Gertsch, J.; Waser, J. Angew. Chem. Int. Ed. 2010, 49, 5767-5770. (x) Cho, H. -K.; Tam, N. T.; Cho, C.-G. Bull. Korean Chem. Soc. 2010, 31, 3382-3384. (y) Guérard, K. C.; Sabot, C.; Beaulieu, M. -A.; Giroux, M. -A.; Canesi, S. Tetrahedron 2010, 66, 5893-5901. (z) Jiao, L.; Herdtweck, E.; Bach, T. J. Am. Chem. Soc. 2012, 134, 14563-14572. Also see ref 3.
6. For racemic synthesis of tricylic core: (a) Kuehne, M. E.; Bayha, C. Tetrahedron Lett. 1966, 7, 1311-1315. (b) Pearson, W. H.; Aponick, A. Org. Lett. 2006, 8, 1661-1664. (c) Huang, J. -Z.; Jie, X. -K.; Wei, K.; Zhang, H.; Wang, M. -C.; Yang, Y.-R. Synlett. 2013, 24, 1303-1306. See ref 7a-d.
7. Enantioselective synthesis of Aspidospermidine: (a) Iyengar, R.; Schildknegt, K.; Aubé, J. Org. Lett. 2000, 2, 1625-1627. (b) Gnecco, D.; Vázquez, E.; Galindo, A.; Terán, J. L.; Orea, L.; Bernes, S.; Enríquez R. G. Arkivoc 2003, 185-192. (c) Iyengar, R.; Schildknegt, K.; Morton, M. J. Aubé, J. Org. Chem. 2005, 70, 1064510652. (d) Ishikawa, T.; Kudo, K.; Kuroyabu, K.; Uchida, S.; Kudoh, T.; Saito, S. J. Org. Chem. 2008, 73, 7498-7508. (e) Node, M.; Nagasawa, H.; Fuji, K. J. Am. Chem. Soc. 1987, 109, 7901-7903. (f) Node, M.; Nagasawa, H.; Fuji, K. J. Org. Chem. 1990, 55, 517-521. (g) Desmaele, D.; D'Angelo, J. J. Org. Chem. 1994, 59, 2292-2303. (h) Schultz, A. G.; Pettus, L. J. Org. Chem. 1997, 62, 68556861. (i) Kozmin, S. A.; Iwama, T.; Huang, Y.; Rawal, V. H. J. Am. Chem. Soc. 2002, 124, 4628-4641. (j) Marino, J. P.; Rubio, M. B.; Cao, G.; de Dios, A. J. Am. Chem. Soc. 2002, 124, 13398-13399. (k) Suzuki, M.; Kawamoto, Y.; Sakai, T.; Yamamoto, Y.; Tomioka, K. Org. Lett. 2009, 11, 653-655. (1) Jones, S. B.;

Simmons, B.; Mastracchio, A.; MacMillan, D. W. C. Nature 2011, 475, 183-188. (m) Li, Z.; Zhang, S.; Wu, S.; Shen, X.; Zou, L.; Wang, F.; Li, X.; Peng, F.; Zhang, H.; Shao, Z. Angew. Chem. Int. Ed. 2013, 52, 4117-4121. (n) Nidhiry, J. E.; Prasad, K. R. Tetrahedron 2013, 69, 5525-5536. (o) Zhao, S.; Andrade, R. B. J. Am. Chem. Soc. 2013, 135, 13334-13337. (p) Lanjiness, J. P.; Jiang, W.; Boger, D. L. Org. Lett. 2012, 14, 2078-2081.
8. For enantioselective synthesis of Tricyclic core: (a) Mey-ers, A. I.; Berney, D. J. Org. Chem. 1989, 54, 4673-4676. (b) Fukuda, Y.; Shindo, M.; Shishido, K. Org. Lett. 2003, 5, 749-751. See ref 8a-d.
9. (a) Kuehne, M. E.; Podhorez, D. E. J. Org. Chem. 1985, 50, 924-929. (b) Ishikawa, H.; Elliott, G. I.; Velcicky, J.; Choi, Y.; Boger, D. L. J. Am. Chem. Soc. 2006, 128, 10596-10612.
10. Pandey, G.; Lakshmaiah, G.; Kumaraswamy, G. J. Chem. Soc., Chem. Commun. 1992, 1313.
11. Pandey, G.; Lakshmaiah, G. Tetrahedron Lett. 1993, 34, 4861.
12. Pandey, G.; Laha, J. K.; Lakshmaiah, G. Tetrahedron 2002, 58, 3525.
13. Pandey, G.; Sahoo, A. K.; Bagul, T. D. Org. Lett. 2000, 2, 2299.
14. Pandey, G.; Laha, J. K.; Mohankrishnan, A. K. Tetrahedron Lett. 1999, 40, 6065.
15. Pandey, G.; Sahoo, A. K.; Gadre, S. R.; Bagul, T. D.; Phalgune, U. D. J. Org. Chem. 1999, 64, 4990.
16. Pandey, G.; Bagul, T. D.; Sahoo, A. K. J. Org. Chem. 1998, 63, 760.
17. Pandey, G.; Lakshmaiah, G.; Ghatak, A. Tetrahedron Lett. 1993, 34, 7301.
18. Pandey, G.; Banerjee, P.; Kumar, R.; Puranik, V. G. Org. Lett. 2005, 7, 3713.
19. Pandey, G.; Kumar, R.; Banerjee, P.; Puranik, V. G. Eur. J. Org. Chem. 2011, 4571-4587.
20. Pandey, G.; Gupta, N. R.; Pimpalpalle, T. M. Org. Lett. 2009, 11, 2547-2550.
21. Pandey, G.; Gupta, N. R.; Gadre, S. R. Eur. J. Org. Chem. 2011, 740-750.
22. Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484-4517.
23. Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765-2810.
24. Martin, S. F.; Campbell, C. L. Tetrahedron Lett. 1987, 28, 503;
25. Martin, S. F.; Campbell, C. L. J. Org. Chem. 1988, 53, 3184.
26. Pearson, W. H.; Lovering, H. E. Tet. Lett. 1994, 35, 9173.
27. Tam, N. T.; Chang, J.; Jung, E.-J.; Cho, C.-G. J. Org. Chem. 2008, 73, 6258
28. Tam, N. T.; Cho, C.-G. Org. Lett. 2008, 10, 601.
29. Bohno M.; Imase, H.; Chida, N. Chem. Commun. 2004, 1086.
30. Bohno M.; Sugie, K.; Imase, H.; Yusof, Y. B.; Oishi, T.; Chida, N. Tetrahedron 2007, 63, 6977.
31. (a) Bru, C.; Thal, C.; Guillou, C. Org. Lett. 2003, 5, 1845. (b) Bru, C.; Thal, C.; Guillou, C. Tetrahedron 2006, 62, 9043.
32. Rizzi, G. P. J. Org. Chem. 1970, 35, 2069.
33. Vedejs, E.; Martinez, G. R. J. Am. Chem. Soc. 1979, 101, 6452.
34. Padwa, A.; Chen, Y.-Y. Tetrahedron Lett. 1983, 24, 3447.
35. Padwa, A.; Dent, W. J. Org. Chem. 1987, 52, 235.
36. Beugelmans, R.; Negron, G.; Roussi, G. J. Chem. Soc., Chem.Commun. 1983, 31.
37. Pandey, G.; Lakshmaiah, G.; Kumaraswamy, G. J. Chem. Soc., Chem.Commun. 1992, 1313.
38. Pandey, G.; Lakshmaiah, G. Tetrahedron Lett. 1993, 34, 4861.
39. Pandey, G.; Khamrai, J.; Mishra, A. Org. Lett. 2015, 17, 952-955.
40. (a) Birch, A. J. Pure Appl. Chem. 1996, 68, 553. (b) Fan, G. -J.; Wang, Z.; Wee, A. G. H. Chem. Commun. 2006, 3732-3734.
41. For each step, small quantity was purified for taking NMR and other analytical data.
42. Padwa, A.; Chen, Y.-Y. Tetrahedron Lett. 1983, 24, 3447-3450.
43. Padwa, A.; Chen, Y. -Y.; Dent, W.; Nimmesgern, H. J. Org. Chem. 1985, 50, 4006-4014.
44. (a) Kuehne, M. E.; Podhorez, D. E. J. Org. Chem. 1985, 50, 924-929. (b) Ishikawa, H.; Elliott, G. I.; Velcicky, J.; Choi, Y.; Boger, D. L. J. Am. Chem. Soc. 2006, 128, 10596-10612.

CHAPTER-3

EXPERIMENTAL

General Experimental Methods:

All anhydrous reactions were performed under argon atmosphere and hot air oven dried glassware ($110^{\circ} \mathrm{C}$) were used. Dry tetrahydrofuran (THF) and diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) were obtained by passing commercially available pre-dried, oxygen-free formulations through activated alumina columns and was dried by distillation over sodium / benzophenone. Benzene, toluene, acetonitrile and dichloromethane (DCM) were distilled over calcium hydride and stored over $4 \AA$ molecular sieves. Triethylamine (TEA) was distilled over potassium hydroxide. All the solvents used for chromatography were distilled at respective boiling points using known procedures.

All commercial reagents were obtained from Sigma-Aldrich and Spectrochem, India. Progress of the reactions was monitored by thin layer chromatography (0.25 mm Merck 60F254 silica gel plates) and visualized by using UV light, ethanolic solution of phosphomolybdic acid, iodine and KMnO_{4} solution. Column chromatography was performed on silica gel 60-120/100-200/ 230-400 mesh obtained from Spectrochem Fine Chemical Co. India or LOBA India. Typical syringe and cannula techniques were used to transfer air and moisture sensitive reagents.

All melting points were recorded on a BUCHI melting point M-560 apparatus and were uncorrected in degree Celsius. IR spectra were recorded on a Perkin-Elmer FT-Infrared Spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on BRUKER 800 UltraShield PLUS and BRUKER 400 ULTRA SHIELD instruments operating at $800 \mathrm{MHz}, 400 \mathrm{MHz}$ and $201 \mathrm{MHz}, 101 \mathrm{MHz}$ respectively using deuteriated solvent. Chemical shifts are reported in $\delta \mathrm{ppm}$. Proton coupling constants (J) are reported as absolute values in Hz and multiplicity (br, broadened; s, singlet; d, doublet; t, triplet; dd, doublet of doublet; dt, doublet of triplet; td, triplet of doublet; m, multiplet). ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported in ppm relative to the central line of $\mathrm{CDCl}_{3}(\delta 77.00)$. Electro spray ionization (ESI) mass spectrometry (MS) experiments were performed on Agilent Technologies 6530 AccurateMass Q-TOF LC/MS. Optical rotations were measured on a Digipol 781 M6U Automatic Polarimeter. HPLC were performed on Agilent Technologies 1260 Infinity.

3.1 Experimental Procedures and Spectral Data

1. Synthesis of Diethyl (1-(4-methoxybenzyl)-2-oxopiperidin-3-yl)phosphonate (256)

 :

256
To a cooled (-78 $\left.{ }^{\circ} \mathrm{C}\right)$ stirring solution of 1-(4-methoxybenzyl) piperidin-2-one (255) (15.0 $\mathrm{g}, 0.068 \mathrm{~mol})$ in THF $(200 \mathrm{~mL})$, LiHMDS $(75 \mathrm{~mL}, 1 \mathrm{M})$ solution was added. After 1 h of stirring, diethyl chlorophosphate $(10.9 \mathrm{~mL}, 0.075 \mathrm{~mol})$ was added drop wise to the reaction mixture. The reaction mixture was slowly allowed to warm to room temperature and was continued for overnight. The reaction mixture was quenched with saturated aqueous solution of ammonium chloride, extracted with EtOAc ($3 \times 200 \mathrm{~mL}$). The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude compound was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, ethylacetate - hexane, $3: 7 \rightarrow 10: 0)$ to obtain $256(16.6 \mathrm{~g}, 68 \%)$ as a light yellow oil.
Yield
IR $v_{\text {max }} \mathrm{cm}^{-1}(\mathrm{KBr})$

${ }^{\mathbf{1}} \mathrm{H} \mathrm{NMR}^{2}$
$\left(\mathrm{CDCl}_{3}, \mathbf{8 0 0} \mathrm{MHz}\right) \boldsymbol{\delta}$

${ }^{13} \mathbf{C ~ N M R ~}$	$: \quad 164.9,158.9,129.3,129.0,114.0,63.0,62.0,55.2$,	
$\left(\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{~ M H z}\right) \boldsymbol{\delta}$		$49.8,46.9,42.5,41.1,23.2,21.4,16.4,16.3$.

HRMS (m/z) : $\quad 378.1457\left[(\mathrm{M}+\mathrm{Na})^{+} ;\right.$calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{PNa}\right)^{+}$ 378.1446]

2. Synthesis of (S,Z)-3-((2,2-dimethyl-1,3-dioxolan-4-yl)methylene)-1-(4methoxybenzyl) piperidin-2-one (257):

To a stirred solution of $\mathrm{NaH}(2.48 \mathrm{~g}, 61.91 \mathrm{mmol}, 60 \%$ dispersion in oil) in THF (75 mL) at $0{ }^{\circ} \mathrm{C}$, was added diethyl (1-(4-methoxybenzyl)-2-oxopiperidin-3-yl)phosphonate (256) $(20.0 \mathrm{~g}, 56.28 \mathrm{mmol})$ in THF $(75 \mathrm{~mL})$. After 15 min , a solution of $(R)-(+)$-glyceraldehyde acetonide ($7.69 \mathrm{~g}, 59.09 \mathrm{mmol}$) in THF (50 mL) was added drop wise into the flask. The reaction mixture was allowed to warm to room temperature and further stirred for 3 hours and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted with ethylacetate $(150 \mathrm{~mL} \times 3)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude on purification by column chromatography (using ethylacetate - hexane $1: 9 \rightarrow 3: 7$ gradient) afforded pure 257 and 258 in 4:6 ratio with combined yield of $97 \%(18.1 \mathrm{~g})$.

Yield	$:$	39%
TLC	$:$	$\mathrm{R}_{f}=0.6$ (ethylacetate $:$ hexane $\left.=3: 7\right)$
Optical rotation	$:$	$[\alpha] \mathrm{D}^{26}=+104.94\left(\mathrm{CHCl}_{3}, c=0.79\right)$
IR $\mathbf{v}_{\text {max }} \mathbf{c m}^{-\mathbf{1}}$	$:$	$3439,3008,2936,1733,1662,1613,1512,1247$

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$	$:$	$7.17(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$,
$\left(\mathbf{C D C l}_{3}, \mathbf{8 0 0 ~ M H z) ~ \boldsymbol { \delta }}\right.$	$5.93(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.59-5.56(\mathrm{~m}, 1 \mathrm{H}), 4.67$	
	$(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.42$	
	$(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.63(\mathrm{~m}$,	
	$1 \mathrm{H}), 3.23(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.43(\mathrm{~m}, 2 \mathrm{H})$,	

		$\begin{aligned} & 1.90-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s} \text {, } \\ & 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) \end{aligned}$
$\begin{aligned} & { }^{13} \mathrm{C} \text { NMR } \\ & \left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta \end{aligned}$:	$\begin{aligned} & 164.0,158.9,140.4,130.3,129.2,129.1,113.9 \\ & 109.0,74.4,70.2,55.2,49.4,47.1,31.6,26.7,25.3 \end{aligned}$
		23.2
HRMS (m/z)	:	$354.1675\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$calcd for $\left(\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Na}\right)^{+}$:
		354.1681]

3. Synthesis of (S,E)-3-((2,2-dimethyl-1,3-dioxolan-4-yl)methylene)-1-(4-methoxy benzyl) piperidin-2-one (258):

Above mentioned procedure used for the synthesis of $\mathbf{2 5 8}$.

Yield	:	58\%
TLC	:	$\mathrm{R}_{f}=0.4$ (ethylacetate : hexane $=3: 7$)
Optical rotation	:	$[\alpha]^{26}=-9.58\left(\mathrm{CHCl}_{3}, c=1\right)$
IR $v_{\text {max }} \mathbf{c m}^{-1}$:	3440, 2986, 2935, 1665, 1613, 1512, 1246
${ }^{1} \mathrm{H}$ NMR	:	$\delta 7.20$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 3 \mathrm{H}), 4.85$
$\left(\mathrm{CDCl}_{3}, 800 \mathrm{MHz}\right) \delta$		- 4.78 (m, 1H), 4.63 (d, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.56$ (d,
		$J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s},$
		$3 \mathrm{H}), 3.69$ (t, J = 7.9 Hz, 1H), 3.29-3.23 (m, 2H),
		2.73-2.65 (m, 1H), 2.46-2.37 (m, 1H), 1.81-1.78
		$(\mathrm{m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR	:	$163.8,158.9,134.3,132.6,129.4,129.2,113.9$,
$\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta}$		109.6, 72.2, 68.7, 55.2, 50.4, 46.7, 26.5, 25.9, 25.0,
		22.5
HRMS (m/z)	:	$354.1676\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$calcd for $\left(\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Na}\right)^{+}$:
		354.1681]

4. Synthesis of (S, Z)-3-(2,3-dihydroxypropylidene)-1-(4-methoxybenzyl)piperidin-2one (259):

259

To a stirred solution of acetonide protected compounds ($15 \mathrm{~g}, 45.26 \mathrm{mmol}$) in THF (75 $\mathrm{mL})$ was added glacial acetic acid (75 mL) followed by water $(75 \mathrm{~mL})$ at room temperature. The resulting mixture was heated at $60^{\circ} \mathrm{C}$ for overnight. The reaction mixture was allowed to cool to room temperature, concentrated to dryness and crude was neutralized with minimum amount of saturated aqueous NaHCO_{3} solution. The reaction mixture was extracted with ethyl acetate ($3 \times 200 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification by column chromatography (using ethyl acetate - hexane $2: 8 \rightarrow 10: 0$ gradient) resulted corresponding diol in excellent Yield.

Yield	:	95%
TLC	:	$\mathrm{R}_{f}=0.4$ (ethyl acetate : hexane $=8: 2$)
Optical rotation	:	$[\alpha]^{23}=-61.38\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.03\right)$
Melting point	:	$95-96{ }^{\circ} \mathrm{C}$
IR $v_{\text {max }} \mathrm{cm}^{-1}$:	3380, 2932, 1610, 1511, 1490, 1246
${ }^{1} \mathrm{H}$ NMR	:	$\delta 7.18(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}),$
$\left(\mathrm{CDCl}_{3}, 800 \mathrm{MHz}\right) \boldsymbol{\delta}$		5.96 (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.78-4.70$
		$(\mathrm{m}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.61(\mathrm{~m}$,
		$2 \mathrm{H}), 3.30-3.22(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.25$ (br s, 1H),
		2.52-2.48 (t, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.77$ (m, 2H)
${ }^{13} \mathrm{C}$ NMR	:	165.3, 159.0, 139.8, 132.3, 129.4, 128.7, 114.0,
$\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta}$		$68.8,66.0,55.2,49.9,47.3,32.2,23.0$
HRMS (m/z)	:	$314.1361\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$calcd for $\left(\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NNaO}_{4}\right)^{+}$:
		314.1368]

5. Synthesis of (S, E)-3-(2,3-dihydroxypropylidene)-1-(4-methoxybenzyl)piperidin-2-one (261):

Above mentioned procedure used for the synthesis of 261.

261

6. Synthesis of (S,Z)-3-(3-((tert-butyldimethylsilyl)oxy)-2-hydroxypropylidene)-1-(4-methoxybenzyl)piperidin-2-one (260):

To a stirred solution of above mentioned diol ($10 \mathrm{~g}, 34.32 \mathrm{mmol}$) and imidazole (2.80 g , $41.19 \mathrm{mmol})$ in dichloromethane (200 mL), a solution of $\operatorname{TBSCl}(5.43 \mathrm{~g}, 36.04 \mathrm{mmol})$ in dichloromethane was added over 15 min at $-15^{\circ} \mathrm{C}$ and stirring was continued for 2 h . Progress of the reaction was monitored by TLC. On consumption of starting material, the reaction mixture was quenched with water, extracted with dichloromethane. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resultant residue was purified by column chromatography using ethylacetate in hexane which resulted respective silylether in excellent yield.

Yield	:	98\%
TLC	:	$\mathrm{R}_{f}=0.4$ (ethyl acetate: hexane $=3: 7$)
Optical rotation	:	$[\alpha]_{\mathrm{D}}{ }^{25}=-10.59\left(\mathrm{CHCl}_{3}, c=1.02\right)$
IR $v_{\text {max }} \mathbf{c m}^{-1}$:	3369, 3016, 2954, 1610, 1512, 1459, 1246
Melting point	:	$102-104{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR	:	7.19 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.85$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$,
$\left(\mathrm{CDCl}_{3}, 800 \mathrm{MHz}\right) \delta$		6.00 (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.05$ (br s, 1H), 4.84-4.75
		$(\mathrm{m}, 1 \mathrm{H}), 4.62(\mathrm{~d}, ~ J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=14.4$
		Hz, 1H), 3.79 (s, 3H), 3.77-3.67 (m, 2H), 3.25 (t,
		$J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.52-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.76$ (m,
		$2 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR	:	$165.0,159.0,141.2,131.2,129.4,129.0,114.0$,
$\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta}$		$68.8,66.3,55.2,49.7,47.3,32.3,25.9,23.1,18.3,$
		-5.3, -5.2
HRMS (m/z)	:	$428.2236\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$calcd for $\left(\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{SiNa}\right)^{+}$
		: 428.2233]

7. Synthesis of (S,E)-3-(3-((tert-butyldimethylsilyl)oxy)-2-hydroxypropylidene)-1-(4-methoxybenzyl)piperidin-2-one (220):

Above mentioned procedure used for the synthesis of $\mathbf{2 2 0}$.

220

Yield	:	97\%
TLC	:	$\mathrm{R}_{f}=0.4$ (ethyl acetate: hexane $\left.=1: 1\right)$
Optical rotation	:	$[\alpha]^{25}=-4.97\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.17\right)$
IR $\mathbf{v}_{\text {max }} \mathrm{cm}^{-1}$:	3416, 2928, 2856, 1601, 1494, 1253
Melting point	:	$105-106^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 800 \mathrm{MHz}\right) \delta$:	$\begin{aligned} & 7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), \\ & 6.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=14.5 \mathrm{~Hz} 1 \mathrm{H}), \\ & 4.56(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.52(\mathrm{~m}, 1 \mathrm{H}), 3.79 \\ & (\mathrm{~s}, 3 \mathrm{H}), 3.65-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{t}, J=5.4 \mathrm{~Hz}, \\ & 2 \mathrm{H}), 2.76-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{br} \mathrm{~s}, 1 \mathrm{H}), 2.52-2.38 \\ & (\mathrm{~m}, 1 \mathrm{H}), 1.76-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~s}, \\ & 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta}$:	$\begin{aligned} & 164.1,158.9,134.9,132.4,129.4,129.3,113.9 \\ & 69.0,66.0,55.2,50.4,46.8,25.9,25.3,22.6,18.3 \\ & -5.4 \end{aligned}$

8. Synthesis of S, E)-ethyl 2-(3-(3-((tert-butyldimethylsilyl)oxy)prop-1-en-1-yl)-1-(4-methoxybenzyl)-2-oxopiperidin-3-yl)acetate (219b):

To a solution of $220(10 \mathrm{~g}, 24.65 \mathrm{mmol})$ in triethyl orthoacetate $(150 \mathrm{~mL})$, was added catalytic amount of propionic acid ($0.2 \mathrm{~mL}, 2.71 \mathrm{mmol}$) under argon atmosphere. The resulting mixture was heated at $130^{\circ} \mathrm{C}$ for 8 h . The reaction was monitored by TLC. After complete consumption of starting material, the reaction mixture was concentrated under reduced pressure. The resulting residue was purified by column chromatography using ethyl acetate and hexane $(1: 9 \rightarrow 2: 8$ gradient) to obtain 219b as a colorless liquid.

Yield	:	97\%
TLC	:	$\mathrm{R}_{f}=0.55$ (ethyl acetate: hexane $=3: 7$)
Optical rotation	:	$[\alpha]^{24}=-15.38\left(c=0.84, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }} \mathrm{cm}^{-1}$:	2953, 2931, 2856, 1734, 1640, 1512, 1462, 1249
${ }^{1} \mathrm{H}$ NMR	:	7.22 (m, J=7.8 Hz, 2H), 6.85 ($\mathrm{m}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}$),
$\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \boldsymbol{\delta}$		5.66 (br s, 2H), 4.72 (d, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39$ (d,
		$J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.06$
		$(\mathrm{m}, 2 \mathrm{H}), 3.80$ ($\mathrm{s}, 3 \mathrm{H}), 3.29$ (td, $J=11.2,3.9 \mathrm{~Hz}$,
		$1 \mathrm{H}), 3.20$ (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.09(\mathrm{~m}, 1 \mathrm{H})$,
		$2.38(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{t}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$,
		$1.97-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.3$
		$\mathrm{Hz}, 3 \mathrm{H}), 0.91$ (s, 9H), 0.06 (s, 6H)

${ }^{13} \mathbf{C ~ N M R ~}^{2}$	$:$	$171.7,171.4,158.8,133.2,130.0,129.6,129.4$,
$\left(\mathbf{C D C l}_{3}, \mathbf{1 0 1 ~ M H z) ~ \boldsymbol { \delta }}\right.$		$113.8,63.5,60.2,55.2,49.9,47.3,46.2,43.2,31.1$,
	$25.9,19.4,18.3,14.2,-5.2$	

HPLC data
Chiralcel OD-H Column; $1 \mathrm{~mL} / \mathrm{min}$ flow rate; IPA: n-Hexane 10:90; $\lambda=210 \mathrm{~nm},>99 \%$ ee; retention time 7.2 min .

HRMS (m/z) : $\quad 498.2656\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$calcd for $\left(\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{NNaO}_{5} \mathrm{Si}^{+}\right)^{+}$: 498.2652]
9. Synthesis of (R, E)-ethyl 2-(3-(3-((tert-butyldimethylsilyl)oxy)prop-1-en-1-yl)-1-(4-methoxybenzyl)-2-oxopiperidin-3-yl)acetate (219a):

Yield	$:$	95%
TLC	$:$	$\mathrm{R}_{f}=0.55($ ethyl acetate: hexane $=3: 7)$
Optical rotation	$:$	$[\alpha] D^{24}=+12.19\left(c=0.31, \mathrm{CHCl}_{3}\right)$

HPLC data

Chiralcel OD-H Column; $1 \mathrm{~mL} / \mathrm{min}$ flow rate; IPA: n -Hexane 10:90; $\lambda=210 \mathrm{~nm},>99 \%$ ee; retention time 6.0 min .

HRMS (m/z) : $498.2655\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$calcd for $\left(\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{NNaO} 5 \mathrm{Si}^{+}\right.$: 498.2652]

10. Synthesis of (S,E)-2-(3-(3-((tert-butyldimethylsilyl)oxy)prop-1-en-1-yl)-1-(4-

 methoxybenzyl)-2-oxopiperidin-3-yl)acetaldehyde: (264b):To a solution of $\mathbf{2 1 9 b}(1.0 \mathrm{~g}, 2.1 \mathrm{mmol})$ in anhydrous dichloromethane (15 mL), DIBAL$\mathrm{H}\left(3.1 \mathrm{~mL}, 3.1 \mathrm{mmol}, 1 \mathrm{M}\right.$ solution in hexane) was added at $-78^{\circ} \mathrm{C}$. After 2 h , the reaction was quenched by the addition of a saturated aqueous solution of potassium sodium tartrate $(15 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 1 h . The aqueous layer was extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by column chromatography which afforded corresponding aldehyde.

264b

Yield : $\quad(0.72 \mathrm{~g}, 80 \%)$

TLC	$\mathrm{R}_{f}=0.5\left(\mathrm{SiO}_{2}\right.$, ethylacetate : hexane $\left.=3: 7\right)$
Optical rotation	$[\alpha] \mathrm{D}^{24}=+3.78\left(c=1, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }} \mathbf{c m}^{-1}$	$\begin{aligned} & 2952,2931,2856,2897,1718,1633,1512,1462, \\ & 1442,1357,1249 \end{aligned}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$	$\begin{aligned} & 9.75(\mathrm{~s} ., 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J= \\ & 7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{br} \mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=14.4 \mathrm{~Hz}, \\ & 1 \mathrm{H}), 4.40(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 3.78 \\ & (\mathrm{~s}, 3 \mathrm{H}), 3.28-3.12(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{~d}, J=16.9 \mathrm{~Hz}, \\ & 1 \mathrm{H}), 2.52(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.75(\mathrm{~m}, 3 \mathrm{H}), \\ & 1.73-1.64(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) \end{aligned}$
$\begin{aligned} & { }^{13} \mathrm{C} \text { NMR } \\ & \left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta \end{aligned}$	$\begin{aligned} & 200.7,171.3,158.9,132.3,131.1,129.4,129.2, \\ & 113.9,63.1,55.1,52.3,49.8,47.2,46.3,32.3,25.8, \\ & 18.8,18.3,-5.3 \end{aligned}$
HRMS (m/z)	$454.2389\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NO}_{4} \mathrm{SiNa}\right)^{+}$: 454.2390]

11. Synthesis of (R,E)-2-(3-(3-((tert-butyldimethylsilyl)oxy)prop-1-en-1-yl)-1-(4methoxy benzyl)-2-oxopiperidin-3-yl)acetaldehyde (264a):

Yield
TLC
$: \quad(0.7 \mathrm{~g}, 77 \%)$

Optical rotation
: $\quad \mathrm{R}_{f}=0.5\left(\mathrm{SiO}_{2}\right.$, ethylacetate : hexane $\left.=3: 7\right)$
$: \quad[\alpha] \mathrm{D}^{24}=-3.31\left(c=0.8, \mathrm{CHCl}_{3}\right)$

12. Synthesis of (S,E)-3-((1,3-dithian-2-yl)methyl)-3-(3-hydroxyprop-1-en-1-yl)-1-(4-methoxybenzyl)piperidin-2-one:

To a solution of above mentioned aldehyde $\mathbf{2 6 4 b}(1 \mathrm{~g}, 2.32 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL}), 1,3$-propanedithiol $(0.3 \mathrm{~mL}, 0.3 \mathrm{mmol})$ and boron trifluoride etherate $(1.14 \mathrm{~mL}$, 9.27 mmol) were added and the reaction mixture was stirred at room temperature for 12 h . The reaction mixture was quenched with saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and the aqueous layer was extracted with dichloromethane. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude reaction mixture was purified on neutral silica gel using ethyl acetate: hexane $(1: 1 \rightarrow 1: 0$ gradient) to afford dithiane as viscous liquid.

Yield	:	($0.77 \mathrm{~g}, 82 \%$)
TLC	:	$\mathrm{R}_{f}=0.5\left(\mathrm{SiO}_{2}\right.$, ethylacetate : hexane $\left.=3: 7\right)$
Optical rotation	:	$[\alpha]^{24}=-1.69\left(c=0.64, \mathrm{CHCl}_{3}\right)$.
IR $\mathbf{v}_{\text {max }} \mathrm{cm}^{-1}$:	3410, 2932, 2860, 1614, 1511, 1245.
${ }^{1} \mathrm{H}$ NMR	:	$\delta 7.20$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.84$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$,
$\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \boldsymbol{\delta}$		5.92-5.68 (m, 2H), 4.50 (s, 2H), 4.15 (br s., 2 H),
		4.12-3.98(m, 1H), 3.79 (s, 3H), 3.37-3.07 (m,
		2H), 2.95-2.66 (m, 4H), 2.43 (dd, $=$ = $7.3,14.6 \mathrm{~Hz}$,
		$1 \mathrm{H}), 2.20-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.95-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.70$ (br s, 1H).
${ }^{13} \mathrm{C}$ NMR	:	$\delta 171.5,158.8,135.6,129.6,129.5,129.4,113.8$,
$\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta}$		63.4, 55.2, 50.1, 47.9, 47.3, 44.3, 42.9, 30.3, 30.2,
		30.1, 25.3, 19.2.
HRMS (m/z)	:	$430.1478\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NNaO}_{3} \mathrm{~S}_{2}\right)^{+}$
		: 430.1487]

13. Synthesis of (R,E)-3-((1,3-dithian-2-yl)methyl)-3-(3-hydroxyprop-1-en-1-yl)-1-

 (4-methoxybenzyl)piperidin-2-one:

Yield	$:$	$(0.79 \mathrm{~g}, 84 \%)$
TLC	$:$	$\mathrm{R}_{f}=0.5\left(\mathrm{SiO}_{2}\right.$, ethylacetate $:$ hexane $\left.=3: 7\right)$
Optical rotation	$:$	$[\alpha] \mathrm{D}^{24}=+1.92\left(\mathrm{c}=0.79, \mathrm{CHCl}_{3}\right)$
HRMS $(\mathbf{m} / \mathbf{z})$	$:$	$408.1658\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}_{2}\right)^{+}:$
		$408.1667]$

14. Synthesis of (R)-3-ethyl-3-(3-hydroxypropyl)-1-(4-methoxybenzyl)piperidin-2one (265b):

Raney $\mathrm{Ni}(3 \mathrm{~g}, \mathrm{~W}-2)$ was added to a solution of dithiane $(0.77 \mathrm{~g}, 1.89 \mathrm{mmol})$ in absolute ethanol (15 mL). The reaction mixture was refluxed for 16 h under hydrogen atmosphere (1 atm). The reaction mixture was filtered through celite, washed with ethyl acetate. The combined filtrate was concentrated and purified by column chromatography using ethyl acetate and hexane (4:6) mixture to obtain alcohol 265b as colorless liquid.

Yield	:	(490 mg, 85\%)
TLC	:	$\mathrm{R}_{f}=0.4\left(\mathrm{SiO}_{2}\right.$, ethyl acetate: hexane $\left.=7: 3\right)$.
Optical rotation	:	$[\alpha]^{24}=-9.319\left(c=0.91, \mathrm{CHCl}_{3}\right)$.
IR $v_{\text {max }} \mathrm{cm}^{-1}$:	3403, 2942, 2873, 1612, 1512, 1460, $1246 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	:	$\delta 7.18$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, ~ J=8.6 \mathrm{~Hz}, 2$
$\left(\mathrm{CDCl}_{3}, 800 \mathrm{MHz}\right) \boldsymbol{\delta}$		H), 4.58 (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43$ (d, $J=14.5 \mathrm{~Hz}$,

$1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{t}, \mathrm{J}$
$=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.88-1.84(\mathrm{~m}, 1$
H), 1.79-1.69 (m, 5 H), 1.66-1.62(m, 1 H$), 1.59$

- $1.54(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.47(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR
: $\quad 175.1,158.7,129.6,129.3,113.8,62.7,55.1,49.8$,
$\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta}$
47.4, 44.7, 34.2, 31.7, 28.9, 27.7, 19.6, 8.6.

HRMS (m/z) : $306.2066\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{3}\right)^{+}$: $306.2069]$
15. Synthesis of (S)-3-ethyl-3-(3-hydroxypropyl)-1-(4 methoxybenzyl)piperidin-2one (265a):

Above mentioned procedure used for the synthesis of 265a.

Yield : ($325 \mathrm{mg}, 85 \%$)
TLC $\quad: \quad \mathrm{R}_{f}=0.4\left(\mathrm{SiO}_{2}\right.$, ethyl acetate: hexane= 7:3)
Optical rotation : $[\alpha]_{D}{ }^{24}=+10.216\left(c=0.8, \mathrm{CHCl}_{3}\right)$
HRMS (m/z) : $\quad 306.2060\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{3}\right)^{+}$: $306.2069]$
16. Sythesis of (R)-3-(3-((tert-butyldimethylsilyl)oxy)propyl)-3-ethyl-1-(4methoxybenzyl) piperidin-2-one (266b):

To a solution of compound $\mathbf{2 6 5 b}(1 \mathrm{~g}, 3.27 \mathrm{mmol})$ in dichloromethane (25 mL), imidazole $(0.165 \mathrm{~g}, 7.15 \mathrm{mmol})$ and $\mathrm{TBSCl}(0.543 \mathrm{~g}, 3.6 \mathrm{mmol})$ were added at $0^{\circ} \mathrm{C}$. After stirring for 1 h , the reaction mixture was quenched with water. The aqueous layer was extracted with DCM $(3 \times 20 \mathrm{~mL})$ and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by column chromatography to afford corresponding silyl ether.

Yield	1.37 g , quantitative.
TLC	$\mathrm{R}_{f}=0.55\left(\mathrm{SiO}_{2}\right.$, ethyl acetate: hexane $\left.=1.5: 8.5\right)$
Optical rotation	$[\alpha] \mathrm{D}^{24}=+6.62\left(c=1.58, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }} \mathbf{c m}^{-1}$	2952, 2932, 2857, 1633, 1512, 1463, 1352, 1248
${ }^{1} \mathrm{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & \delta 7.17(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), \\ & 4.53(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{t}, J=5.9 \\ & \mathrm{Hz}, 2 \mathrm{H}), 1.83-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 5 \mathrm{H}), \\ & 1.59-1.44(\mathrm{~m}, 4 \mathrm{H}), 0.91-0.88(\mathrm{~m}, 9 \mathrm{H}), 0.87(\mathrm{t}, J \\ & =7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) . \end{aligned}$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta}$	$\begin{aligned} & \text { 174.7, 158.7, 129.9, 129.3, 113.8, 63.6, 55.1, 49.8, } \\ & \text { 47.4, 44.7, 34.7, 31.5, 29.1, 27.8, 25.9, 19.8, 18.3, } \\ & \text { 8.7, -5.3. } \end{aligned}$
HRMS (m/z)	$: \quad 420.2931\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{NO}_{3} \mathrm{Si}\right)^{+}$ 420.2934]

17. Synthesis of (S)-3-(3-((tert-butyldimethylsilyl)oxy)propyl)-3-ethyl-1-(4methoxybenzyl) piperidin-2-one (266a):

Above mentioned procedure used for the synthesis of 266a.

Yield	$:$	1.37 g, quantitative.
TLC	$:$	$\mathrm{R}_{f}=0.55\left(\mathrm{SiO}_{2}\right.$, ethyl acetate: hexane $\left.=1.5: 8.5\right)$
Optical rotation	$:$	$[\alpha]_{\mathrm{D}}^{23}=-5.7\left(c=0.8, \mathrm{CHCl}_{3}\right)$
HRMS $(\mathbf{m} / \mathbf{z})$	$:$	$420.2929\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{NO}_{3} \mathrm{Si}\right)^{+}:$
		$420.2934]$

18. Synthesis of (R)-3-(3-((tert-butyldimethylsilyl)oxy)propyl)-3-ethylpiperidin-2-one

 (267b):

A solution of N-PMB lactam 266b ($1 \mathrm{~g}, 2.38 \mathrm{mmol}$) in anhydrous THF (15 mL) was charged into 100 mL two neck round bottom flask equipped with a magnetic stirring bar, cold finger condenser and argon balloon was cooled to $-78{ }^{\circ} \mathrm{C}$. Ammonia gas was condensed (through KOH column) to the reaction flask at $-78^{\circ} \mathrm{C}$ from ammonia cylinder, and a small sodium piece was added to the stirred mixture till blue coloration persisted. The resulting blue color solution was warmed to $-33^{\circ} \mathrm{C}$ and stirring was continued for 1 h (temperature in the cold finger condenser was maintained $-78^{\circ} \mathrm{C}$ till reaction completed). The reaction mixture was quenched by adding solid ammonium chloride in small portions till blue coloration disappeared, ammonia in the reaction mixture was evaporated at room temperature for overnight. The reaction mixture was filtered and the solid residues were washed with ethyl acetate. The filtrate was concentrated and purified by column chromatography to obtained desired compound.

Yield	$:$	$(0.61 \mathrm{~g}, 85 \%)$
TLC	$:$	$\mathrm{R}_{f}=0.4\left(\mathrm{SiO}_{2}\right.$, ethyl acetate: hexane= $\left.6: 4\right)$

Optical rotation	$[\alpha] \mathrm{D}^{24}=+19.67\left(c=0.36, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }} \mathbf{c m}^{-1}$ ${ }^{1} \mathrm{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$3289,3212,2951,2858,1658,1469,1254 \mathrm{~cm}^{-1}$. $\delta 6.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.63-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{t}, \mathrm{J}=$ $5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.62(\mathrm{~m}$, $4 \mathrm{H}), 1.57-1.44(\mathrm{~m}, 4 \mathrm{H}), 0.89-0.86(\mathrm{~m}, 12 \mathrm{H}), 0.03$ ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13}$ C NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta}$	$\begin{aligned} & 177.2,63.6,44.5,42.6,34.3,31.0,29.0,27.7,25.9 \text {, } \\ & 19.8,18.3,8.6,-5.3 \end{aligned}$
HRMS (m/z)	$\begin{aligned} & 300.2349\left[(\mathrm{M}+\mathrm{H})^{+} \text {calcd for }\left(\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{NO}_{2} \mathrm{Si}\right)^{+}\right. \text {: } \\ & 300.2359] \end{aligned}$

19. Synthesis of (S)-3-(3-((tert-butyldimethylsilyl)oxy)propyl)-3-ethylpiperidin-2-one (267a):

Above mentioned procedure used for the synthesis of 267a.

267a

Yield	$:$	$(0.62 \mathrm{~g}, 87 \%)$
TLC	$:$	$\mathrm{R}_{f}=0.4\left(\mathrm{SiO}_{2}\right.$, ethyl acetate: hexane $\left.=6: 4\right)$
Optical rotation	$:$	$[\alpha]_{\mathrm{D}} 24=-20.442\left(c=0.80, \mathrm{CHCl}_{3}\right)$.
HRMS $(\mathbf{m} / \mathbf{z})$	$:$	$300.2350\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{NO}_{2} \mathrm{Si}^{2}\right)^{+}:$
		$300.2359]$

20. Synthesis of (R)-3-(3-((tert-butyldimethylsilyl)oxy)propyl)-3-ethyl-1-((trimethyl silyl)methyl) piperidin-2-one (268):

To a stirred solution of $\mathrm{NaH}(0.08 \mathrm{~g}, 2 \mathrm{mmol}, 60 \%$ dispersion in oil) in THF (5 mL) at 0 ${ }^{\circ} \mathrm{C}$, was added (R)-3-(3-((tert-butyldimethylsilyl)oxy)propyl)-3-ethylpiperidin-2-one (267b) ($0.5 \mathrm{~g}, 1.67 \mathrm{mmol}$) in THF (5 mL). After 20 min , tetrabutyl ammonium bromide ($53 \mathrm{mg}, 0.166 \mathrm{mmol}$) and a solution of chloromethyl(trimethylsilane) ($0.25 \mathrm{~mL}, 1.84$ mmol) in THF (3 mL) were added drop wise into the flask. The reaction mixture was allowed to warm to room temperature and further stirred for 1 hours, and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted with ethylacetate $(30 \mathrm{~mL} \times 3)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude was purification by column chromatography (using ethylacetate - hexane 1:9 $\rightarrow 2: 8$ gradient) afforded pure 268 with yield of 81% (0.52 g).

Yield	:	($0.52 \mathrm{~g}, 81$ \%)
TLC	:	$\mathrm{R}_{f}=0.5\left(\mathrm{SiO}_{2}\right.$, ethyl acetate: hexane $\left.=2: 8\right)$
IR $\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$:	2954, 2895, 2858, 1617, 1251, 1099
${ }^{1} \mathrm{H}$ NMR		$3.73-3.49$ (m, 2H), 3.22 (t, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.92$
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		$\begin{aligned} & -2.80(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.62(\mathrm{~m}, 6 \mathrm{H}), 1.59-1.33 \\ & (\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.85-0.80(\mathrm{~m}, 3 \mathrm{H}), 0.05(\mathrm{~s}, \\ & 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) . \end{aligned}$
${ }^{13}$ C NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta}$:	$\begin{aligned} & 173.3,63.7,50.9,44.5,39.8,34.5,31.2,29.2, \\ & 27.8,25.9,19.9,18.3,8.7,-1.3,-5.3 \end{aligned}$
HRMS (m/z)	:	$\begin{aligned} & 386.2905\left[(\mathrm{M}+\mathrm{H})^{+} \text {calcd for }\left(\mathrm{C}_{20} \mathrm{H}_{44} \mathrm{NO}_{2} \mathrm{Si}_{2}\right)^{+}\right. \text {: } \\ & 386.2911] \end{aligned}$

21. Synthesis of (R)-3-ethyl-3-(3-hydroxypropyl)-1-((trimethylsilyl)methyl)piperidin-2-one (269):

To a solution of (R)-3-(3-((tert-butyldimethylsilyl)oxy)propyl)-3-ethyl-1((trimethylsilyl)methyl) piperidin-2-one (268) $(0.5 \mathrm{~g}, 1.3 \mathrm{mmol})$ in methanol, p-toluene sulfonic acid ($0.022 \mathrm{~g}, 0.13 \mathrm{mmol}$) was added at $-10^{\circ} \mathrm{C}$. The solution was stirred for 30 $m i n$ and quenched with saturated aqueous NaHCO_{3} solution at $-10^{\circ} \mathrm{C}$. The solution was evaporated to dryness under reduced pressure. The residue was dissolved in ethyl acetate and washed with saturated NaCl solution, separated the layers and concentrated, quick purification using Flash chromatography using ethyl acetate and hexane (2:8) mixture to provided corresponding alcohol.

Yield	:	($0.31 \mathrm{~g}, 88$ \%)
TLC	:	$\mathrm{R}_{f}=0.45\left(\mathrm{SiO}_{2}\right.$, ethyl acetate: hexane $\left.=3: 7\right)$
IR $v_{\text {max }} \mathrm{cm}^{-1}$:	3402, 2949, 2873, 1608, 1492, 1247, 1060
${ }^{1} \mathrm{H}$ NMR		$3.57-3.52(\mathrm{~m}, ~ J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{t}, J=5.7 \mathrm{~Hz}$,
(400MHz , CDCl_{3})		$2 \mathrm{H}), 3.02$ (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70$ (d, $J=14.7 \mathrm{~Hz}$,
		$1 \mathrm{H}), 1.87-1.35(\mathrm{~m}, 10 \mathrm{H}), 0.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$,
		0.08-0.02 (m, 9H)
${ }^{13} \mathrm{C}$ NMR	:	173.7, 62.7, 50.9, 44.5, 39.9, 33.9, 31.6, 29.0,
$\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta}$		27.7, 19.8, 8.5, -1.3.
HRMS (m/z)	:	$272.2036\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{Si}\right)^{+}$:
		$272.2046]$

22. Synthesis of (R)-3-(3-ethyl-2-oxo-1-((trimethylsilyl)methyl)piperidin-3yl)propanal (269):

To a solution of above crude $(0.3 \mathrm{~g}, 1.11 \mathrm{mmol})$ in anhydrous dichloromethane (10 mL), Dess-Martin periodinane $(0.56 \mathrm{~g}, 1.3 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. The reaction temperature was slowly raised to room temperature by removing ice tub and stirring was continued for 30 min . The reaction was quenched successively with a saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (5 ml) and saturated aqueous NaHCO_{3} solution (5 ml), stirred for 30 min . The aqueous layer was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The combined
dichloromethane layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated and residue was purified by column chromatography using ethyl acetate and hexane ($1: 9 \rightarrow 1.5: 8.5$ gradient) to afford corresponding aldehyde 269.

23. Synthesis of (3R)-3-ethyl-3-(3-hydroxypent-4-en-1-yl)-1-((trimethylsilyl) methyl)piperidin-2-one (270):

To a stirred solution of aldehyde $269(0.25 \mathrm{~g}, 0.927 \mathrm{mmol})$ in anhydrous ether, vinyl magnisium bromide ($1.1 \mathrm{~mL}, 1.1 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$. After 2 h stirring at $-78^{\circ} \mathrm{C}$, it was quenched with saturated aqueous ammonium chloride solution and warmed to room temperature. The solution was extracted with ethyl acetate and concentrated. The crude residue was purified by flash column chromatography using ethyl acetate and hexane (1:9) mixture to obtain allyl alcohol $\mathbf{2 7 0}$ as pale yellow color liquid.

Yield
: $\quad(0.22 \mathrm{~g}, 80 \%)$
TLC $\quad: \quad \mathrm{R}_{f}=0.50\left(\mathrm{SiO}_{2}\right.$, ethyl acetate: hexane $\left.=3: 7\right)$

IR $\mathbf{v}_{\text {max }} \mathrm{cm}^{-1}$		3400, 2949, 2872, 1608, 1491, 1248, 917, 849
${ }^{1} \mathrm{H}$ NMR (400MHz , CDCl_{3})		$\begin{aligned} & 5.91-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.15(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{dd} \\ & J=1.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.20 \\ & (\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.66(\mathrm{~m}, \\ & 1 \mathrm{H}), 2.59(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 1.81-1.42(\mathrm{~m}, 10 \mathrm{H}), 0.83 \\ & (\mathrm{~m}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}) \end{aligned}$
$\begin{aligned} & { }^{13} \mathrm{C} \text { NMR } \\ & \left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta \end{aligned}$:	$\begin{aligned} & 173.6,173.5,141.3,141.1,114.3,114.2,73.3,72.6 \\ & 50.9,44.7,44.4,39.8,39.8,33.6,33.2,32.1,32.0 \\ & 31.7,31.2,29.1,29.0,19.8,19.7,8.6,8.5,-1.3 \end{aligned}$
HRMS (m/z)	:	$\begin{aligned} & 298.2201\left[(\mathrm{M}+\mathrm{H})^{+} \text {calcd for }\left(\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{Si}\right)^{+}\right. \text {: } \\ & \text { 298.2202] } \end{aligned}$

24. Synthesis of 5-((R)-3-ethyl-1-((trimethylsilyl)methyl)piperidin-3-yl)pent-1-en-3ol (271):

DIBAL-H ($0.66 \mathrm{mmol}, 0.66 \mathrm{~mL}, 1 \mathrm{M}$ solution in hexane) was added to a solution of $\mathbf{2 7 0}$ $(0.1 \mathrm{~g}, 0.33 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction was quenched with saturated aqueous sodium potassium tartrate solution $(10 \mathrm{~mL})$ and warmed to room temperature. The reaction mixture was extracted with ethyl acetate ($3 \times 15 \mathrm{~mL}$), dried and purified by column chromatography to obtain crude tertiary amine 271 as colourless liquid.

Yield	$:$	$(0.22 \mathrm{~g}, 80 \%)$
TLC	$:$	$\mathrm{R}_{f}=0.50\left(\mathrm{SiO}_{2}\right.$, ethyl acetate: hexane $\left.=3: 7\right)$
$\mathbf{I R} \mathbf{v}_{\text {max }} \mathbf{~ c m}^{\mathbf{- 1}}$	$:$	$3400,2949,2872,1608,1491,1248,917,849$
$\mathbf{}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$		$5.92-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.27-5.19(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.08$
$\left.\mathbf{(4 0 0 M H z}, \mathbf{C D C l}_{\mathbf{3}}\right)$		$(\mathrm{m}, 1 \mathrm{H}), 4.18-3.95(\mathrm{~m}, 1 \mathrm{H}), 2.22-1.98(\mathrm{~m}, 6 \mathrm{H})$,
		$1.82-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.23(\mathrm{~m}, 9 \mathrm{H}), 0.78-0.74$
		$(\mathrm{~m}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H})$

${ }^{13} \mathbf{C ~ N M R ~}$	$:$	$141.4,114.6,114.5,74.0,73.7,66.9,66.7,58.8$,
$\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{1 0 1} \mathbf{~ M H z}\right) \boldsymbol{\delta}$		$51.4,35.6,33.2,33.1,30.5,30.3,29.7,22.1,7.3,-$
		$1.1,-1.0$
	$:$	$284.2398\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{NOSi}\right)^{+}:$
HRMS $(\mathbf{m} / \mathbf{z})$	$284.2410]$	

25. Synthesis of (R)-tert-butyl 3-(3-((tert-butyldimethylsilyl)oxy)propyl)-3-ethyl-2-oxopiperidine-1-carboxylate (272b):

To a solution of $\mathbf{2 6 7 b}(1 \mathrm{~g}, 3.34 \mathrm{mmol})$ in dry THF, LiHMDS solution (1 M in THF, 3.67 $\mathrm{mL}, 3.67 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$. After stirring for 30 min , di-tert-butyl dicarbonate ($0.85 \mathrm{~mL}, 3.67 \mathrm{mmol}$) was added. The reaction temperature was brought to room temperature and stirring continued for additional 2 h before being quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ Solution (15 mL). The aqueous layer was separated and extracted with ethyl acetate $(3 \times 15 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure and purified by column chromatography using ethyl acetate and hexane (0.5:9.5) mixture to afforded N-Boc-Lactam 272b.


```
\mp@subsup{}{}{13}\mathbf{C NMR : 177.0,153.8, 82.2, 63.4, 47.8, 47.1, 33.9, 30.8,}
(CDCl 3, 101 MHz) \delta 30.6,28.0, 27.4,25.9,20.1, 18.3, 8.4, -5.3.
HRMS (m/z) : 422.2693[(M+H)+ calcd for (C21H41NO4SiNa) :
    422.2703]
```

26. Synthesis of (S)-tert-butyl 3-(3-((tert-butyldimethylsilyl)oxy)propyl)-3-ethyl-2-oxopiperidine-1-carboxylate (272a):

Yield : $\quad(1.26 \mathrm{~g}, 95 \%)$
TLC $\quad: \quad \mathrm{R}_{f}=0.5\left(\mathrm{SiO}_{2}\right.$, ethyl acetate: hexane= 1:9)
Optical rotation : $[\alpha] \mathrm{D}^{24}=+3.12\left(c=1, \mathrm{CHCl}_{3}\right)$
HRMS (m/z) : $422.2689\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{NO}_{4} \mathrm{SiNa}\right)^{+}$: 422.2703]
27. Synthesis of (R)-tert-butyl 3-ethyl-3-(3-hydroxypropyl)-2-oxopiperidine-1carboxylate (273b):

273b

To a solution of $\mathbf{2 7 2 b}(0.3 \mathrm{~g}, 0.75 \mathrm{mmol})$ in methanol, p-toluene sulfonic acid $(0.006 \mathrm{~g}$, 0.04 mmol) was added at $-10^{\circ} \mathrm{C}$. The solution was stirred for 30 min and quenched with saturated aqueous NaHCO_{3} solution at $-10{ }^{\circ} \mathrm{C}$. The solution was evaporated to dryness under reduced pressure. The residue was dissolved in ethyl acetate and washed with saturated NaCl solution, separated the layers and concentrated, quick purification using flash chromatography using ethyl acetate and hexane (3:7) mixture provided 273b.

Yield	:	(0.2 g, 92\%)
TLC	:	$\mathrm{R}_{f}=0.5\left(\mathrm{SiO}_{2}\right.$, ethylacetate : hexane $\left.=4: 6\right)$.
Optical rotation	:	$[\alpha] \mathrm{D}^{24}=+3.76\left(c=0.5, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }} \mathrm{cm}^{\mathbf{- 1}}$:	$\begin{aligned} & 2935,2877,1760,1714,1458,1391,1368,1297, \\ & 1277,1254 \end{aligned}$
${ }^{1} \mathrm{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$)		$\begin{aligned} & \delta 3.68-3.55(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.77- \\ & 1.69(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 0.88 \\ & (\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta}$:	$\begin{aligned} & 177.1,153.8,82.5,63.0,47.8,47.2,33.7,31.1 \\ & 30.6,28.0,27.5,20.1,8.4 \end{aligned}$
HRMS (m/z)	:	$\begin{aligned} & 308.1832\left[(\mathrm{M}+\mathrm{H})^{+} \text {calcd for }\left(\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Na}\right)^{+}\right. \text {: } \\ & 308.1838] \end{aligned}$

28. Synthesis of (S)-tert-butyl 3-ethyl-3-(3-hydroxypropyl)-2-oxopiperidine-1carboxylate (273a):

Yield	$:$	$(0.2 \mathrm{~g}, 92 \%)$
TLC	$:$	$\mathrm{R}_{f}=0.5\left(\mathrm{SiO}_{2}\right.$, ethylacetate $:$ hexane $\left.=4: 6\right)$.
Optical rotation	$:$	$[\alpha] \mathrm{D}^{24}=-3.25\left(\mathrm{CHCl}_{3}, c=0.35\right)$
HRMS $(\mathbf{m} / \mathbf{z})$	$:$	$308.1834\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Na}\right)^{+}:$
		$308.1838]$

29. Synthesis of (R)-tert-butyl 3-ethyl-2-oxo-3-(3-oxopropyl)piperidine-1-carboxylate (274b):

To a solution of 273b ($1 \mathrm{~g}, 3.5 \mathrm{mmol}$) in anhydrous dichloromethane (30 mL), Dess-Martin periodinane ($1.78 \mathrm{~g}, 4.2 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$. The reaction temperature was slowly raised to room temperature by removing ice tub and stirring was continued for 30 min . The
reaction was quenched successively with a saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution $(5 \mathrm{ml})$ and saturated aqueous NaHCO_{3} solution $(10 \mathrm{ml})$ and stirred for additional 30 min . The aqueous layer was extracted with dichloromethane $(3 \times 30 \mathrm{~mL})$. The combined dichloromethane layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated and residue was purified by column chromatography using ethyl acetate and hexane $(1: 9 \rightarrow 2: 8$ gradient) to afford corresponding aldehyde 274b.

Yield	:	(0.95 g, 96\%)
TLC	:	$\mathrm{R}_{f}=0.6\left(\mathrm{SiO}_{2}\right.$, ethyl acetate: hexane $=3: 7$
Optical rotation	:	$[\alpha] \mathrm{D}^{24}=+2.13\left(c=0.5, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }} \mathbf{c m}^{-1}$:	$\begin{aligned} & 3206,2974,2940,1759,1712,1456,1392,1280 \text {, } \\ & 1297 \end{aligned}$
$\begin{aligned} & { }^{1} \mathrm{H} \text { NMR } \\ & \left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \end{aligned}$		$\begin{aligned} & \delta 9.77(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{t}, \mathrm{~J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{t}, J= \\ & 7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.62(\mathrm{~m}, 8 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 0.89 \\ & (\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta}$:	$\begin{aligned} & \delta 201.9,176.3,153.6,82.6,47.2,39.3,30.9,30.4, \\ & 29.2,27.9,19.8,8.2 \end{aligned}$
HRMS (m/z)	:	$\begin{aligned} & 306.1676\left[(\mathrm{M}+\mathrm{H})^{+} \text {calcd for }\left(\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO} 4 \mathrm{Na}\right)^{+}\right. \text {: } \\ & 306.1681] \end{aligned}$

30. Synthesis of (S)-tert-butyl 3-ethyl-2-oxo-3-(3-oxopropyl)piperidine-1carboxylate (274a):

Above mentioned procedure used for the synthesis of 274a.

Yield	$:$	$(0.95 \mathrm{~g}, 96 \%)$
TLC	$:$	$\mathrm{R}_{f}=0.6\left(\mathrm{SiO}_{2}\right.$, ethyl acetate: hexane $=3: 7$
Optical rotation	$:$	$[\alpha] \mathrm{D}^{24}=-2.72\left(\mathrm{CHCl}_{3}, c=0.8\right)$
	$:$	$306.1674\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Na}\right)^{+}:$
HRMS $(\mathbf{m} / \mathbf{z})$		$306.1681]$

31. Synthesis of (3R)-tert-butyl 3-ethyl-3-(3-hydroxypent-4-en-1-yl)-2-oxopiperidine-

 1-carboxylate (275b):To a stirred solution of $\mathbf{2 7 4 b}(0.5 \mathrm{~g}, 1.76 \mathrm{mmol})$ in anhydrous ether, vinyl magnisium bromide ($2.12 \mathrm{~mL}, 2.12 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$. After 6 h of stirring at $-78^{\circ} \mathrm{C}$, it was quenched with saturated aqueous ammonium chloride solution and warmed to room temperature. The solution was extracted with ethyl acetate and concentrated. The crude residue was purified by flash column chromatography using ethyl acetate and hexane (1.5:8.5) mixture to obtain allyl alcohol $\mathbf{2 7 5 b}$ as pale yellow color liquid.

275b

Yield	:	(0.42 g, 75\%)
TLC	:	$\mathrm{R}_{f}=0.5\left(\mathrm{SiO}_{2}\right.$, ethyl acetate: hexane $\left.=3: 7\right)$
IR $v_{\text {max }} \mathbf{c m}^{-1}$:	$\begin{aligned} & 3379,2971,2939,2879,1761,1712,1522,1459, \\ & 1367,1275,1252 \end{aligned}$
${ }^{1} \mathrm{H}$ NMR		mixture of two diasteromers $\delta 5.92-5.77(\mathrm{~m}, 1 \mathrm{H})$,
(400MHz , CDCl_{3})		5.38-5.06 (m, 2H), 4.84-4.72 (m, 0.5H), 4.60 (br
		$\mathrm{s}, 1 \mathrm{H}), 4.09-4.01(\mathrm{~m}, 0.5 \mathrm{H}), 3.65-3.53(\mathrm{~m}, 1 \mathrm{H}),$
		3.08 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.90$ (m, 1H), 1.84
		-1.54 (m, 9H), 1.49 (s, 4.5H), 1.42 (s, 4.5H), 0.93
		- 0.84 (m, 3H)
${ }^{13} \mathrm{C}$ NMR	:	mixture of two diasteromers $\delta 177.0,175.6,156.0$,
$\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta}$		153.7, 140.9, 136.4, 116.7, 114.6, 82.4, 80.5, 73.1,

32. Synthesis of (3S)-tert-butyl 3-ethyl-3-(3-hydroxypent-4-en-1-yl)-2-oxopiperidine-

1-carboxylate (275a):

Above mentioned procedure used for the synthesis of 275a.

Yield	$:$	$(0.34 \mathrm{~g}, 77 \%)$
TLC	$:$	$\mathrm{R}_{f}=0.5\left(\mathrm{SiO}_{2}\right.$, ethyl acetate: hexane $\left.=3: 7\right)$
HRMS $(\mathbf{m} / \mathbf{z})$	$:$	$334.1987\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{Na}\right)^{+}:$
		$334.1994]$

33. Synthesis of (4aR, 8aS)-tert-butyl 4a-ethyl-2-vinylhexahydro-2H-pyrano[2,3-

 blpyridine-8(8aH)-carboxylate (276b):

DIBAL-H ($2.89 \mathrm{mmol}, 2.89 \mathrm{~mL}, 1 \mathrm{M}$ solution in hexane) was added to a solution of 275b $(0.3 \mathrm{~g}, 0.96 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction was quenched with saturated aqueous sodium potassium tartrate solution $(20 \mathrm{~mL})$ and warmed
to room temperature. The reaction mixture was extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$), dried and concentrated to obtain crude hemiaminal as a white foam.

The crude hemiaminal was dried under high vacuum pump and dissolved in dry dichloromethane, charged with pyridinium p-toluene sulphonate ($0.045 \mathrm{~g}, 0.192 \mathrm{mmol}$) at room temperature under Ar atmosphere and stirred for 2 h . The reaction mixture was quenched with a saturated aqueous NaHCO_{3} solution $(10 \mathrm{~mL})$. The aqueous layer was extracted with dichloromethane ($3 \times 25 \mathrm{ml}$). The combined organic layer was concentrated under reduced pressure and the crude was dissolved in hexane, filtered and concentrated. The crude product was dried under high vacuum which resulted pure $\mathbf{2 7 6 b}$ as a pale yellow color liquid $(0.27 \mathrm{~g})$. This crude was obtained as a mixture of two diasteromers, and the same was used for further reaction without any column chromatography purification (small quantity was purified for taking NMR and other analytical data).

Yield	:	0.27 g
TLC	:	$\mathrm{R}_{f}=0.45\left(\mathrm{SiO}_{2}\right.$, ethyl acetate: hexane $\left.=0.5: 9.5\right)$.
IR $v_{\text {max }} \mathrm{cm}^{-1}$:	3377, 2967, 2941, 2871, 1700, 1417, 1367, 1157
${ }^{1} \mathrm{H}$ NMR		$6.01-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.20(\mathrm{~m}, 2 \mathrm{H}), 5.14-5.00$
(400MHz , CDCl_{3})		$(\mathrm{m}, 1 \mathrm{H}), 4.58$ (m, 0.5H), 4.07-3.83 (m, 1.5H), 3.15
		- $2.88(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.47$ (m,
		$6 \mathrm{H}), 1.47-1.41(\mathrm{~m}, 9 \mathrm{H}), 1.23-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.86$
		- 0.69 (m, 3H)
${ }^{13} \mathrm{C}$ NMR	:	$\delta 155.1,138.7,137.4,116.7,114.8,114.5,86.8$,
$\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta}$		85.6, 79.9, 79.6, 77.8, 77.7, , 73.3, 39.3, 38.3, 38.2,
		$34.5,34.2,33.1,33.0,28.5,28.3,27.8,27.6,27.5$,
		$27.0,26.9,24.0,23.6,23.5,23.0,20.3,20.0,19.9$,
		6.7, 6.6, 6.4
HRMS (m/z)	:	$318.2039\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Na}\right)^{+}$:
		318.2045]

34. Synthesis of (4aS,8aR)-tert-butyl4a-ethyl-2-vinylhexahydro-2H-pyrano[2,3-blpyridine-8(8aH)-carboxylate (276a):

Above mentioned procedure used for the synthesis of 276a.

Yield	$:$	0.21 g
TLC	$:$	$\mathrm{R}_{f}=0.45\left(\mathrm{SiO}_{2}\right.$, ethyl acetate: hexane $\left.=0.5: 9.5\right)$.
HRMS $(\mathbf{m} / \mathbf{z})$	$:$	$318.2036\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NNaO}_{3}\right)^{+}:$
		$318.2045]$

35. Synthesis of (4aR, 8aS)-4a-ethyl-2-vinyloctahydro-2H-pyrano[2,3-b]pyridine (277b):

277b

Triethylamine ($0.26 \mathrm{~mL}, 1.83 \mathrm{mmol}$) and TMSOTf ($0.25 \mathrm{~mL}, 1.37 \mathrm{mmol}$) were added to a stirred solution of $\mathbf{2 7 6 b}(0.27 \mathrm{~g}, 0.914 \mathrm{mmol})$ in dry dichloromethane $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 1 h of stirring at room temperature, the reaction was quenched with saturated NaHCO_{3} solution. The mixture was extracted with dichloromethane ($3 \times 25 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude compound was dissolved in hexane and filtered. The filtrate was concentrated by rotavapour and dried under moderate vacuum for 15 min which resulted pure bicyclic amine 277b (small quantity was purified for taking NMR and other analytical data).

Yield $\quad: \quad 0.17 \mathrm{~g}$
TLC : $0.5\left(\mathrm{SiO}_{2}\right.$, ethylacetate : hexane $\left.=3: 7\right)$

IR $\mathbf{v}_{\text {max }} \mathrm{cm}^{-1}$:	3341, 2937, 2861, 1466, 1445, $1310 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	:	$5.97-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}, 0.5 \mathrm{H})$,
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		$5.21(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.13-5.08(\mathrm{~m}, 1 \mathrm{H})$
		$4.54-4.49$ (m, 0.5H), $4.11(\mathrm{~s}, 0.5 \mathrm{H}), 3.95$ (s,
		$0.5 \mathrm{H}), 3.85-3.79(\mathrm{~m}, 0.5 \mathrm{H}), 3.12-3.06(\mathrm{~m}, 1 \mathrm{H})$,
		2.67-2.61 (m, 1H), 2.07 (br s, 1H), 1.93-1.84 (m,
		$1 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.47-$
		$1.22(\mathrm{~m}, 4 \mathrm{H}), 1.18-1.12(\mathrm{~m}, 1 \mathrm{H}), 0.82-0.77$ (m,
		$3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR	:	139.4, 139.3, 115.2, 114.5, 90.0, 70.7, 39.3, 34.1,
$\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta}$		$33.8,33.4,28.9,28.8,27.4,26.1,24.5,21.1,20.9$,
		6.9, 6.8
HRMS (m/z)	:	$196.1708\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}\right)^{+}$:
		196.1701]

36. Synthesis of (4aS,8aR)-4a-ethyl-2-vinyloctahydro-2H-pyrano[2,3-b]pyridine (277a):

Above mentioned procedure used for the synthesis of 277a.

Yield : 0.136 g
TLC : $0.5\left(\mathrm{SiO}_{2}\right.$, ethylacetate $:$ hexane $\left.=3: 7\right)$
HRMS $(\mathbf{m} / \mathbf{z}) \quad: \quad 196.1694\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}\right)^{+}$: 196.1701]
37. Synthesis of (4aR, 8aS)-4a-ethyl-8-((trimethylsilyl)methyl)-2-vinyloctahydro-2H-pyrano[2,3-b]pyridine (217b) :

To a stirred solution of bicyclic amine $\mathbf{2 7 7 b}(0.17 \mathrm{~g}, 0.87 \mathrm{mmol})$ in dry acetonitrile (10 $\mathrm{mL})$, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(0.36 \mathrm{~g}, 2.61 \mathrm{mmol})$ and $\mathrm{TMSCH}_{2} \mathrm{OTf}(0.18 \mathrm{~mL}, 0.914 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$. The resulting solution was slowly warmed to room temperature and stirred for 1 h at room temperature. The resulting slurry was filtered and the residue was washed with EtOAc and concentrated the filtrate under reduced pressure. The crude compound was dissolved in hexane, filtered and dried under high vacuum which gave pure (by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR) 217b (mixture of two diastereomers) as a pale yellow color liquid, (small quantity was purified for taking NMR and other analytical data).

Yield $\quad: \quad 0.24 \mathrm{~g}$
TLC : $\quad 0.5\left(\mathrm{SiO}_{2}\right.$, ethyl acetate $:$ hexane $\left.=0.5: 9.5\right)$
$\mathbf{I R} \mathbf{v}_{\text {max }} \mathbf{c m}^{-1} \quad: \quad 3434,2940,2861,1645,1445,1298,1247$
(400MHz , CDCl_{3})
${ }^{1}$ H NMR : $\quad 5.94-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.28-5.16(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.05$ $(\mathrm{m}, 1 \mathrm{H}), 4.37-4.27(\mathrm{~m}, 0.5 \mathrm{H}), 3.70(\mathrm{~s}, 0.5 \mathrm{H}), 3.68$ - 3.64 (m, 0.5H), 3.28 (m, 0.5H), 2.89-2.82 (m, $0.5 \mathrm{H}), 2.76-2.68(\mathrm{~m}, 0.5 \mathrm{H}), 2.56-2.42(\mathrm{~m}, 0.5 \mathrm{H})$, 2.39-2.34 (m, 0.5H), 2.33 (d, $J=14.6 \mathrm{~Hz}, 0.5 \mathrm{H}$), 2.02-1.87 (m, 2.5 H), 1.75-1.69 (m, 2 H), 1.64 $1.56(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.36(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.27(\mathrm{~m}$, 1 H), 1.11-1.05 (m, 1 H$), 0.77(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, 0.04 (m, 9 H)

${ }^{13} \mathbf{C ~ N M R ~}^{\prime}$	$:$	$139.7,139.6,114.9,113.8,95.9,76.5,69.7,49.2$,
$\left(\mathbf{C D C l}_{3}, \mathbf{1 0 1 ~ M H z) ~} \boldsymbol{\delta}\right.$		$46.1,43.3,35.1,34.9,33.9,29.3,28.7,27.4,26.1$,
		$25.7,23.1,21.4,21.1,7.0,6.9,-1.1,-1.5$
HRMS (m/z)	$:$	$282.2246\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{NOSi}\right)^{+}:$
		$282.2253]$

38. Synthesis of (4aS,8aR)-4a-ethyl-8-((trimethylsilyl)methyl)-2-vinyloctahydro-2H-pyrano[2,3-b]pyridine (217a):

Above mentioned procedure used for the synthesis of 217a.

Yield : $\quad 0.19 \mathrm{~g}$
TLC : $\quad 0.5\left(\mathrm{SiO}_{2}\right.$, ethyl acetate $:$ hexane $\left.=0.5: 9.5\right)$
HRMS (m/z) : $282.2249\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{NOSi}\right)^{+}:$ 282.2253]
39. Synthesis of (3R)-3-ethyl-3-(3-hydroxypent-4-en-1-yl)-1-((trimethylsilyl)methyl) piperidine -2-carbonitrile (279 b):

TMSCN $(0.22 \mathrm{~mL}, 1.71 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{2 1 7 b}(0.24 \mathrm{~g}, 0.852$ mmol) in anhydrous dichloromethane at $0^{\circ} \mathrm{C}$ and stirred for 15 min . The reaction mixture was quenched with a saturated NaHCO_{3} solution, both the layers were separated and the organic layer was extracted with dichloromethane. The combined organic layer was
concentrated, dried under high vacuum. The crude was dissolved in hexane and filtered. The filtrate was concentrated to obtain pure TMS-ether compound 278b (0.32 g).

This compound was dissolved in methanol (20 mL), PPTS ($0.02 \mathrm{~g}, 0.082 \mathrm{mmol}$) was added to this solution and stirred at room temperature for 12 h . On consumption of starting material, the reaction mixture was concentrated and quenched with saturated NaHCO_{3} solution (5 mL), extracted with dichloromethane. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. This crude compound was dissolved in hexane and filtered. The filtrate was concentrated and dried under vacuum to obtain pure compound 279b (0.24 g) (small quantity was purified for taking NMR and other analytical data).

Yield	:	0.24 g
TLC	:	$0.5\left(\mathrm{SiO}_{2}\right.$, ethyl acetate : hexane $\left.=1: 9\right)$
IR $\mathbf{v}_{\text {max }} \mathrm{cm}^{-1}$:	3435, 3019, 2944, 2863, 2399, 1422, 1216
${ }^{1} \mathrm{H}$ NMR	:	$\delta 6.00-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.32-4.98(\mathrm{~m}, 1 \mathrm{H}), 4.14-$
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		$3.93(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.54(\mathrm{~m}$,
		1H), 2.33-2.16 (m, 1H), 2.09-1.99 (m, 1H), 1.94
		$-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.36(\mathrm{~m},$
		$6 \mathrm{H}), 1.32-1.14(\mathrm{~m}, 2 \mathrm{H}), 0.85-0.73$ (m, 3H), 0.06
		(s, 9H)
${ }^{13} \mathrm{C}$ NMR	:	140.9, 140.7, 140.6, 115.5, 115.3, 115.1, 73.7, 73.6,
$\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta}$		$73.4,65.8,65.7,65.6,52.0,51.9,51.8,48.5,38.3$,
		$38.2,32.2,32.0,30.2,30.1,29.5,29.3,29.3,25.5$,
		23.0, 20.9, 7.2, 6.6, -1.6, -1.5
HRMS (m/z)	:	$309.2357\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{OSi}\right)^{+}$:
		309.2362]

40. Synthesis of (3S)-3-ethyl-3-(3-hydroxypent-4-en-1-yl)-1-((trimethylsilyl)methyl) piperidine-2-carbonitrile (279a):

Above mentioned procedure used for the synthesis of 279a.

Yield : 0.19 g
TLC : $0.5\left(\mathrm{SiO}_{2}\right.$, ethyl acetate : hexane $\left.=1: 9\right)$

HRMS (m/z) : $\quad 309.2356\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{OSi}\right)^{+}$: 309.2362]
41. Synthesis of (3R)-3-ethyl-3-(3-oxopent-4-en-1-yl)-1-((trimethylsilyl)methyl) piperidine-2-carbonitrile (280b) :

To a solution of $\mathbf{2 7 9 b}(0.24 \mathrm{~g}, 0.78 \mathrm{mmol})$ in dry DCM (5 mL), Dess-Martin periodinane $(0.4 \mathrm{~g}, 0.94 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature and stirred for 30 min . The reaction was quenched successively with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ solution which was stirred additionally for 15 min . The mixture was extracted with dichloromethane (3×15 mL) and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. This crude compound was dissolved in hexane and filtered. The filtrate was concentrated and dried under vacuum to obtain pure compound 280b (small quantity was purified for taking NMR and other analytical data).

Yield	$:$	0.22 g
TLC	$:$	$0.4\left(\mathrm{SiO}_{2}\right.$, ethylacetate $:$ hexane $\left.=1: 9\right)$

42. Synthesis of (3S)-3-ethyl-3-(3-oxopent-4-en-1-yl)-1-((trimethylsilyl)methyl) piperidine-2-carbonitrile (280a) :

Above mentioned procedure used for the synthesis of 280a.

$\begin{array}{lll}\text { Yield } & : & 0.17 \mathrm{~g} \\ \text { TLC } & : & 0.4\left(\mathrm{SiO}_{2}, \text { ethylacetate }: \text { hexane }=1: 9\right) \\ & & \\ \text { HRMS }(\mathbf{m} / \mathbf{z}) & : & 307.2200\left[(\mathrm{M}+\mathrm{H})^{+} \text {calcd for }\left(\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{OSi}\right)^{+}:\right. \\ & & 307.2206]\end{array}$
43. Synthesis of ($\left.3^{1} S, 6 a R, 9 a R\right)$-6a-ethyloctahydro-1H-pyrrolo[3,2,1-ij]quinolin-9(2H)-one:

To a stirred solution of $\mathbf{2 8 0 b}(0.12 \mathrm{~g}, 0.391 \mathrm{mmol})$ in anhydrous acetonitrile, $\mathrm{Ag}(\mathrm{I}) \mathrm{F}(0.06$ $\mathrm{g}, 0.47 \mathrm{mmol}$) was added at room temperature and stirred for 3 h (protect reaction mixture from light). On completion of reaction (TLC analysis), the reaction mixture was filtered through celite and washed with EtOAc. The combined organic layer was concentrated and purification by column chromatography resulted 49 as colorless liquid.

Yield	$:$	$0.075 \mathrm{~g}, 92 \%$
TLC	$:$	$0.4\left(\mathrm{SiO}_{2}\right.$, ethylacetate $:$ hexane $\left.=6: 4\right)$
Optical rotation	$:$	$[\alpha]^{24}{ }_{\mathrm{D}}=-23.81\left(c=0.5, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }} \mathbf{c m}^{-1}$	$:$	$3438,2934,2786,2725,1709,1448,1345$

${ }^{13} \mathbf{C}$ NMR $\quad: \quad \delta 211.5,73.5,53.2,52.9,48.1,36.8,34.7,32.8$, 30.1, 26.0, 21.3, 21.2, 7.1

HRMS $(\mathbf{m} / \mathbf{z}) \quad: \quad 208.1693\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}\right)^{+}$: 208.1701]
44. Synthesis of ($\left.3^{1} R, 6 a S, 9 a S\right)$-6a-ethyloctahydro-1H-pyrrolo[3,2,1-ij]quinolin-9(2H)-one:

Above mentioned procedure used for the synthesis of (+)-49.

	 (+)-49
Yield	$0.045 \mathrm{~g}, 91 \%$
TLC	$0.4\left(\mathrm{SiO}_{2}\right.$, ethylacetate : hexane $\left.=6: 4\right)$
Optical rotation	$[\alpha]^{24} \mathrm{D}=+21.62\left(c=0.5, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }} \mathbf{c m}^{-1}$	3438, 2934, 2786, 2725, 1709, 1448, 1345
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}$	$\begin{aligned} & : \quad 3.07-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{ddd}, J=7.3,5.3 \mathrm{~Hz}, \\ & 1 \mathrm{H}), 2.47-2.19(\mathrm{~m}, 4 \mathrm{H}), 1.98-1.62(\mathrm{~m}, 7 \mathrm{H}), 1.54 \\ & -1.44(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.28(\text { app sextet, } 7.4 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 1.10(\mathrm{td}, J=13.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.6 \mathrm{~Hz}, \\ & 3 \mathrm{H}) \end{aligned}$
${ }^{13}$ C NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta}$	$\begin{array}{ll} : \quad & \delta 211.5,73.6,53.2,52.9,48.2,36.8,34.7,32.9 \\ & 30.1,26.1,21.3,21.2,7.1 \end{array}$
HRMS (m/z)	: $\quad 208.1694\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}\right)^{+}$: 208.1701]

45. Synthesis of (+)-Aspidospermidine (6):

(+) Aspidospermidine (6)
Phenyl hydrazine $(0.022 \mathrm{~g}, 0.202 \mathrm{mmol})$ was added to a stirred solution of $49(0.035 \mathrm{~g}$, 0.168 mmol) in benzene (5 mL) and refluxed for 3 h . The reaction mixture was cooled to room temperature and concentrated to obtain crude phenyl hydrazone, which was dissolved in 5 mL glacial acetic acid and refluxed for 4 h , concentrated to dryness to obtain crude indolene (dehydroaspidospermidine) as a brown color liquid.

This crude indolene was dissolved in anhydrous THF (5 mL), added $\mathrm{LiAlH}_{4}(0.059 \mathrm{~g}, 1.68$ mmol) and refluxed for 12 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and quenched with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and stirred for 15 min . The suspension was filtered through a plug of celite and the filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting residue was purified by column chromatography using ethylacetate to give aspidospermidine $\mathbf{6}(0.024 \mathrm{~g}, 50 \%)$ as a pale yellow oil. This compound $\mathbf{6}$ on standing long time gave pale yellow color solid.

Yield	$:$	50%
TLC	$:$	$0.4\left(\mathrm{SiO}_{2}, \mathrm{DCM}: \mathrm{MeOH}=9: 1\right)$

$\left.\begin{array}{lll}\text { Optical rotation } & : \quad[\alpha] D^{29}+20.14(c=0.5, \mathrm{EtOH}) ; \mathrm{Lit}^{[8]}[\alpha] \mathrm{D}^{29}= \\ & \\ & +20.6(c=0.64, \mathrm{EtOH}) .\end{array}\right]$
($\mathrm{td}, J=13.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.06 (dt, $J=13.6,3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 0.90-0.85(\mathrm{~m}, 1 \mathrm{H}), 0.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13}$ C NMR
$\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta}$

HRMS (m/z)
$: \quad \delta 149.4,135.7,127.0,122.8,119.0,110.3,71.3$, 65.7, 53.9, 53.3, 53.0, 38.8, 35.6, 34.4, 30.0, 28.1, 23.0, 21.7, 6.8
: $283.2167\left[(\mathrm{M}+\mathrm{H})^{+}\right.$calcd for $\left(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2}\right)^{+}$: 283.2174]

3.2 SPECTRAS

skb_02_123A.004.001.1r.esp

pw2-2015.029.001.1r.esp

Figure ${ }^{13} \mathrm{C}$ NMR Spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

From Noesy spectrum, it is clear that the olefinic proton ($\delta 5.9 \mathrm{ppm}$) is in close proximate with allylic protons (2.4 ppm)

skb_02_156-D2.005.001.1r.esp

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

NOESY spectrum

NO correlation between protons
appearing at $\delta \mathbf{6 . 8 4}$ and $\delta \mathbf{2} .6$.

1H_153T1.002.001.1R.ESP

13C_153T1.004.001.1R.ESP

${ }^{13} \mathrm{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$-NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

13C_152_T2.003.001.1R.ESP

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

CHLOROFORM-d

i

skb_02_152_T2.004.001.1r.esp

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

skb_02_159_c2.007.001.1r.esp

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

SKB_02_158_C1.001.001.1R.ESP
CHLOROFORM-d
影

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

skb_02_158_c1.005.001.1r.esp

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HPLC reports:

DAD: Signal C,
$210 \mathrm{~nm} / \mathrm{Bw}: 4 \mathrm{~nm}$
Results

Resuits Retention Time	Area	Area \%	Height	Height \%
6.107	18526906	46.47	988626	48.45
7.300	21338234	53.53	1052056	51.55
Totals	39865140	100.00	2040682	100.00

Column: CHIRALCELOD-H
Solvent: Hexane:Isopropanol ($90: 10$)
Wavelength-210nm
Flow Rate-1ML/min
Pressure: 43 bar
Operator:SHIVA

DAD: Signal C,
$210 \mathrm{~nm} / \mathrm{Bw}: 4 \mathrm{~nm}$
Results

Retention Time	Area	Area $\%$	Height	Height $\%$
6.053	55266628	99.80	3236296	99.54
7.340	110081	0.20	14921	0.46
Totals				

Column: CHIRALCELOD-H
Solvent: Hexane:Isopropanol ($90: 10$)
Wavelength-210nm
Flow Rate-1ML/min
Pressure:43 bar
Operator:SHIVA

DAD: Signal C,
$210 \mathrm{~nm} / B w: 4 \mathrm{~nm}$
Results

Retention Time	Area	Area \%	Height	Height \%
6.027	72404	0.18	8120	0.39
7.180	39846816	99.82	2074459	99.61
Totals	39919220	100.00	2082579	100.00

Column: CHIRALCELOD-H
Solvent: Hexane:Isopropanol (90:10)
Wavelength-210nm
Flow Rate-1ML/min
Pressure:43 bar
Operator:SHIVA

skb_pmb_ald_1.004.001.1r.esp

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

13C_dithiane_2.005.001.1r.esp

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

skb_pmb_dithiane_1.003.001.1r.esp

${ }^{13} \mathrm{C}$ NMR, $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR, $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

SKB_PMB_ETOH_1.005.001.1R.ESP

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

skb_pmb_etoh_1.007.001.1r.esp
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

skb_pmb_etoh_1.006.001.1r.esp

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

CHLOROFORM-d

CHLOROFORM-d

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

SKB_PMB_ETOTBS.009.001.1R.ESP

$\begin{aligned} & N \\ & \underset{\infty}{\infty} \\ & \stackrel{\omega}{\top} \end{aligned}$	$\begin{gathered} \infty \sim \sim \\ \\ \stackrel{\sim}{\sim} \end{gathered}$

${ }^{13} \mathrm{C}$-NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

skb_Lactam_EtOTBS.005.001.1r.esp
${ }^{13} \mathrm{C}$-NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

skb_Lactam_EtOTBS.006.001.1r.esp

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

skb_tmsotbs.001.001.1r.esp

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

skb_tmsotbs.005.001.1r.esp

skb_tmsotbs.004.001.1r.esp

DEPT-NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

skb_tms_etoh.003.001.1r.esp

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

skb_tms_etoh.007.001.1r.esp

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
skb_tms_etoh.005.001.1r.esp

DEPT-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

skb_tmsald.005.001.1r.esp

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

skb_tmsald.004.001.1r.esp
CHLOROFORM-d

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

skb_tms_vin.005.001.1r.esp

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]
skb_tms_vin_red2.002.001.1r.esp

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

CHLOROFORM-d

${ }^{13} \mathrm{C}-$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

DEPT-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

skb_boc_otbs 1.004.001.1r.esp

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

skb_bocoon_Pure2.003.001.1r.esp
${ }^{13} \mathrm{C}$-NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\circ
$\stackrel{n}{n}$
$\stackrel{n}{n}$

SKB-NMR-31122015.082.001.1r.esp

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

skb_boc_ald_1.002.001.1r.esp

${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3)$

CHLOROFORM-d

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

skb_BCY_M_1.001.001.1r.esp

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(

skb_BCY_M_1.002.001.1r.esp

${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

skb_Bcya-m-056.001.1r.esp
CHLOROFORM-d

277b
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

NOESY

skb_bcyam_A.006.001.2rr.esp

skb_casm_m_1.004.001.1r.esp

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

CHLOROFORM-d

 Mo

13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$)

${ }^{1} \mathrm{H}$-NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


```
skb_CNOH_1.002.001.1r.esp
```

CHLOROFORM-d

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

CHLOROFORM-d

"
skb_enoneCN_2202.001.001.1r.esp

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
skb_enoneCN_2202.003.001.1r.esp

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

skb_Enone_A.002.001.1r.esp

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

skb_Enone_A.004.001.1r.esp

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

CHLOROFORM-d

maw whemw

Shiva-tcc-062.001.1r.esp

${ }^{1} \mathrm{H}-\mathrm{NMR}, 800 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^1]
${ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

CHLOROFORM-d

NOESY:

HSQC:

1H-asp-2015.020.001.1R.esp

${ }^{13} \mathrm{C}$-NMR, $201 \mathrm{MHz}, \mathrm{CDCl}_{3}$

COSY of (+)- Aspidospermidine (6)

NOESY of (+)- Aspidospermidine(6)

NOESY of (+)- Aspidospermidine (Zoomed spectra)

(+) Aspidospermidine (6)

HSQC of (+)- Aspidospermidine(6) (800 MHz):

HMBC of (+)-Aspidospermidine (6) (800 MHz):

List of Publications

1. Efficient Strategy for the Construction of Both Enantiomers of the Octahydropyrroloquinolinone Ring System: Total Synthesis of (+)-

Aspidospermidine
Org.Lett., 2016, 18, 1558-1561.
Ganesh Pandey*, Shiva Kumar Burugu and Pushpendra Singh.
2. Enantioselective Total Syntheses of (-)-Isonitramine, (-)-Sibirine, and (+)-

Nitramine by Ring-Closing Metathesis.
Eur. J. Org. Chem. 2011, 7372-7377
Ganesh Pandey*, C. Prasanna Kumara, Shiva Kumar Burugu and Vedavati G. Puranik

Erratum

[^0]:

[^1]:

