Total Synthesis of Proposed Structures of Potent Anti-Inflammatory Agents Solomonamides and Analogs

Thesis Submitted to AcSIR
For the Award of the Degree of
DOCTOR OF PHILOSOPHY
In

CHEMICAL SCIENCES

By
Kashinath K
(Registration Number: 10CC11J26086)

Under the guidance of Dr. D. Srinivasa Reddy

Organic Chemistry Division
CSIR-National Chemical Laboratory
Pune-411008, India.

Dedicated

To My Mother

सीएसआईआर - राष्ट्रीय रासायनिक प्रयोगशाला
(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद)
डॉ. होमी भाभा मार्ग, पुणे - 411 008. भारत
CSIR - NATIONAL CHEMICAL LABORATORY
(Council of Scientific \& Industrial Research)
Dr. Homi Bhabha Road, Pune - 411 008. India

Thesis Certificate

This is to certify that the work incorporated in this Ph.D. thesis entitled "Total Synthesis of Proposed Structures of Potent Anti-Inflammatory Agents Solomonamides and Analogs" submitted by Mr. Kashinath K to Academy of Scientific and Innovative Research (AcSIR) in fulfillment of the requirements for the award of the Degree of Doctor of Philosophy, embodies original research work under my supervision. I further certify that this work has not been submitted to any other University or Institution in part or full for the award of any degree or diploma. Research material obtained from other sources has been duly acknowledged in the thesis. Any text, illustration, table etc., used in the thesis from other sources, have been duly cited and acknowledged.

Kashinath K
(Research Student)

Dr. D. Srinivasa Reddy
(Research Supervisor)

	\%	FAX	E-MAIL	WEBSITE
Communication	+91-20-2590 2380	+91-20-2590 2664	sspo@ncl.res.in	www.ncl-india.org
Channels	$\begin{aligned} & +91-20-25902663 \\ & +91-20-25902690 \text { (Stores) } \end{aligned}$			

Declaration by the Candidate

I hereby declare that the original research work embodied in this thesis entitled, "Total Synthesis of Proposed Structures of Potent Anti-Inflammatory Agents Solomonamides and Analogs" submitted to Academy of Scientific and Innovative Research for the award of degree of Doctor of Philosophy (Ph.D.) is the outcome of experimental investigations carried out by me under the supervision of Dr. D. Srinivasa Reddy, Senior Scientist, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune. I affirm that the work incorporated is original and has not been submitted to any other academy, university or institute for the award of any degree or diploma.

May 2016
CSIR-National Chemical Laboratory

Kashinath. K
(Research Student)

Acknowledgment

Though only my name appears on the cover of this dissertation, a great many people have contributed to its production. I owe my gratitude to all those people who have made this dissertation possible and Gecause of whom my graduate experience has been one that I will cherish forever.

My deepest gratitude is to my mentor Dr. \mathcal{D}. Srinivasa Reddy, \mathcal{H} is scholarly suggestions, patience and constant support hefped me overcome many crisis situations and finish this dissertation. He gave me the freedom to explore on my own and at the same time the guidance to recover when my steps faltered. I have Cearned from him that time is the most valuable resource and we need to respect it as we don't have power to create even a second and we need to be in everyone's pool to get the best and most from the limited resources available. I am inspired by his personal traits like perfectionism, selfdiscipline and diligence. Definitefy, these things and many others that I have learned from fim will benefit my career immensefy.

I express my sincere thanks to my Doctoral Advisory Committee members Dr. Asha Shyama, Dr. C. V. Ramana and Dr. A.T. Biju for their continued support, guidance and suggestions. I am grateful to our Director Dr. Ashwini $\mathcal{N a n g i a}$ and former Directors Dr. Vijayamohanan K. Pillai, and Dr. Sourav Pal for providing me an opportunity to work and avail research amenities at CSIR-SNCL.

I extend my sincere gratitude to the head of the Organic Chemistry Division Dr. Pradeep Kumar and Former $\mathcal{H o D s} \operatorname{Dr}$. R. A. Joshi and Dr. Ganesh Pandey for allowing me to proceed smoothly and institutionalizing my work so as to complete within the time period. I am also thankful to all the scientists, staff and colfeagues of OCD Division for their help and co-operation during this dissertation work. I owe my thanks to \mathcal{N} MRR division of $\mathcal{N C L}$ for providing the spectroscopic data, especially Dr. Rajamohanan, Dr. Uday Kiran, Srikanth, Sanoop, Dinesh, Karya of \mathcal{N} MRR division and $\mathcal{H R}$ IMS division Dr. B. Shantakumari and swamy to whom I am immensely grateful for their necessary help. I express my heartiest gratitude towards Dr. Rajecsh Gonnade, Dr. Rahul Banarjee, Mr. BIshnu and Sridar for their help in X-Ray crystallographic analysis.

My acknowledgment will remain incomplete without recognizing admirable and loving support of my dearest senior colleagues Dr. Swaroop, Dr. Siba, Dr. Santu and Dr. Madhuri as they afways hefped
me in need during the course of my research． \mathcal{A}＂thanks＂doesn＇t seem sufficient for the memorable and invaluable company of my Labmates Gajanan，Remya，vasudevan，Satish，Kishor，Rofini，Rahul， Jachak，Vidya，pranoy，Santhosh kumar，Neeta，Paresh，Ganesh，Pankaj，Akshay for their generous support，fruitful suggestions and for keeping a very cheerful environment in the Ca6．

Words can＇t sufficient in paying my gratefulness for what I achieved and learnt from all my respected teachers，especially Gangadhar sir who befived in me and educated me with great efforts and patience to prepare me for the future．

I am kighly grateful to my roommates Manoj，kaleel，Santu，Dilip，Hari6abu，Ramana，Rajkanth for the joy，companionship and moral support．

I wish to express my warm and sincere thanks to the colleagues of Advinus．Dr．Vidya Ramdas my team โeader，Dr．Sujay，Dr．Suresh and my early mentors Meena，Yogesh，and other collegues in my group Sachin，anil，rajesh，meenakshi and Yogesh waman．

I would also like to thank my friends Ranjeet，Murali，Dinesh，Charan，Sravan，Srikanth，Hari， Jenny，Rasheed，Veershankar，Uma，Sudheer，Gopi，Pavan，Raghu，Shiva，Datta，№okaraju，Vijay， Satish，Suresh，Manasa，Sweta，Madhumala，for their care and support．

One cannot forget the strength，support that one gets from ones famify．With gratitude and reverence， I acknowledge and admire the love，confidence and moral support bestowed on me by my amma．I am grateful to my sisters Ramadevi and Saujanya akka and Brother in laws Prasad and Rajendhar for their incessant support．My gratitude towards my nephews Chik反y，A反反i，venky，A6fi for 6ringing Cots of joy and smiles．I am forever indebted to my family．

The financial assistance in the form of fellowship by CSIR \mathcal{N} ew Delhi is gratefully acknowtedged．

List of Abbreviations

AcOH	acetic acid
AcCl	acetyl chloride
$\mathrm{Ac}_{2} \mathrm{O}$	acetic anhydride
Å	angstrom
Ar	aryl
MeCN	acetonitrile
Bn	benzyl
Boc	tertiary-butyloxycarbonyl
Br	bromo
brs	broad singlet
Bu	butyl
$t-\mathrm{Bu}$	tertiary-butyl
calcd.	Calculated
cm^{-1}	1/centimetre
$\mathrm{C}-\mathrm{C}$	carbon-carbon
C-H	carbon-hydrogen
$\mathrm{C}-\mathrm{N}$	carbon-nitrogen
$\mathrm{C}-\mathrm{O}$	carbon-oxygen
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Dichloromethane
CHCl_{3}	Chloroform
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DMAP	4-dimethyl aminopyridine
DMF	N, N-dimethylformamide
DMSO	dimethylsulphoxide
DMSO-d ${ }_{6}$	deutriated dimethylsulphoxide
dd	doublet of doublet
d	doublet (in NMR) or day(s) (in Scheme)

Et	ethyl
EtOAc	ethyl acetate
EtOH	ethanol
equiv	equivalent
EWG	electron withdrawing group
g	gram(s)
h	hour(s)
HRMS	high resolution mass spectrometry
HSQC	homonuclear single bond correlation
HMBC	Heteronuclear Multiple Bond Correlation
Hz	hertz
IR	infrared
J	coupling constant (in NMR)
mass (ESI+)	electron spray ionization mass spectroscopy
min	minute(s)
m	multiplet
mL	milliliter(s)
mmol	millimole(s)
mp	melting point
m/z	mass to charge ratio
Me	methyl
MHz	megahertz
N	normality
nM	nanomolar(s)
NMR	nuclear magnetic resonance
Ph	phenyl
ppm	parts per million
Pr	propyl
q	quartet
R_{f}	retention factor

rt	room temperature
s	singlet
S_{N}	nucleophilic substitution
sec	secondary
t	triplet
tert	tertiary
TBHP	tert-Butyl hydroperoxide
TEA	triethyl amine
THF	tetrahydrofuran
TFA	trifluroacetic acid
TFAA	trifluroacetic anhydride
TLC	thin layer chromatography
TEA	triethyl amine
Ts	para-toluenesulphonyl
UV	ultraviolet
v / v	volume by volume
wt / v	weight by volume
${ }^{\circ} \mathrm{C}$	degree celsius
$\mu \mathrm{m}$	micromolar

ACS	澊
Name of the Candidate	Synopsis of the Thesis to be submitted to the Academy of Scientific and Innovative Research for Award of the Degree of Doctor of Philosophy in Chemistry
Mr. Kashinath K	

The thesis is divided into three sections. Section 1 describes a brief introduction to the importance of macrocyclic compounds in drug discovery and selected strategies to access macrocyclic frame works. Section 2 describes results and discussion part which includes design and experimental efforts toward total synthesis of target macrocyclic natural products solomonamide A, B and its analogs. Complete experimental details including compounds characterization using various analytical tools are part of Section 3.

Introduction

From many years, natural products have been a rich source of biologically active compounds. Among the natural products, macrocyclic compounds have their own significance because of interesting biological properties and structural features. A macrocycle provides diverse functionality and stereochemical complexity in a conformationally pre-organized ring structure. This can result in high affinity and selectivity for protein targets, while preserving sufficient bioavailability to reach intracellular locations. These valuable characteristics are proven by the success of more than 68 marketed macrocycle drugs. In early 2011, two macrocyclic peptides solomonamide A \& B were isolated by Zampella's group. Solomonamide A showed potent anti-inflammatory activity in carrageenan induced mouse model with 60\% reduction in paw edema at $100 \mu \mathrm{~g} / \mathrm{Kg}$ (ip) in a dose dependent manner, another closely related compound solomonamide B was not tested due to scarcity of the material. ${ }^{1}$

Solomonamide B

Statement of the Problem

Humans suffer from many inflammatory diseases, including arthritis, allergy, atherosclerosis, cancer, and autoimmune diseases. There is always demand for new medicines with novel mechanisms. Macrocyclic structural class has been poorly explored in drug discovery. This is mainly due to inability to access these classes of compounds and they do not follow the classical Lipinski's rules that are commonly applied in traditional drug discovery arena. However, because of new understanding and development of science, macrocycles started gaining the momentum. Solomonamides are one such class of macrocyclic, which showed potent in vivo biological activity and offers a novel chemotype. The scarcity of the material and considering importance of macrocylic compounds in drug discovery, we have taken up task of synthesizing solomonamides and their analogs in sufficient quantities which can be helpful for further biological evaluation and ultimately may deliver optimized compound for treating various inflammatory diseases.
Methodology used
Several strategies were designed and executed for the synthesis of solomonamides. The key disconnections and reactions used for the constructuion of targets are outlined below. ${ }^{2-4}$

- C-H activation
- Photo Fries rearrangement • NHK crotylation reaction
- Intramolecular Heck reaction $\mathrm{NH}_{2}=, \stackrel{?}{ }$ •Brown crotylation rection

Amide coupling

After having the optimized route to access the solomonamide skeleton we have turned our attention toward the synthesis of solomonamides. Initially we have started the synthesis of solomonamide B where intramolecular Heck reaction was used to construct the macrocyclic skeleton. The double bond was transformed into benzylic ketone in a highly regioselective manner by using hydroxy group directed Wacker oxidation. Removal of protecting groups afforded the solomonamide B. After careful analysis of NMR spectral data it was confirmed that there is a discrepancy in original structural assignment of natural product. So, there is a need to revise the stereo chemistry of the natural product, in particular non amino acid partner.

The stereochemistry of solomonamide B was assigned based on solomonamide A, suggesting that the stereochemistry of solomonamide A is also incorrect. However, to check the feasibility of our strategy towards solomonamide A, the styrene double bond was oxidized (dihydroxylation followed benzylic oxidation) to give $7: 3$ diastereomeric mixtures of compounds. Although we do not have proof, major compound is expected to have the desired stereochemistry present in the proposed structure of solomonamide A. Thus, we have completed the total synthesis of proposed structure of solomonamide B and solomonamide A (in protected form).

While working on total synthesis we have developed a simple and practical onepot, two-directional approach to access olefinic esters. The scope of the method was generalized with 14 examples and the end products obtained using developed method can serve as useful building blocks. ${ }^{5}$

Noteworthy Findings

a) Macrocyclizations using different methods were demonstrated to form 15membered solomonamide skeleton.
b) Accomplished the first total synthesis of solomonamide B (proposed structure).
c) Proposed structure of solomonamide A was synthesized in protected form.
d) Our efforts suggest that there is a need for structural revision of solomonamides, particularly in the region of non-peptide portion.
e) Synthesized several analogs of solomonamides, which are currently being evaluated in anti-inflammatory assays.
f) Developed a mild and practical one-pot method to access olefinic esters using ozonolysis in a two-directional approach and demonstrated its utility with the various useful examples.

References

1. C. Festa, S. De Marino, V. Sepe, M. V. D’Auria, G. Bifulco, C. Débitus, M. Bucci, V. Vellecco, A. Zampella, Org. Lett. 2011,13,1532.
2. K. Kashinath, N. Vasudevan, D. S. Reddy, Org. Lett. 2012, 14, 6222
3. D. S. Reddy, K. Kashinath, N. Vasudevan, A process for the preparation of solomonamide analogues. W. O. Patent 2014083578 A1, June 5, 2014
4. N. Vasudevan, K. Kashinath, D.S. Reddy, Org. Lett. 2014, 16, 6148

5 K. Kashinath, S. Dhara, D. S. Reddy, Org. Lett. 2015, 17, 2090.

Table of Contents

Section 1. Introduction to Macrocyclic compounds

1. Introduction
1.1.1. Natural product based macrocycles in drug discovery 1
1.1.2. Properties of macrocyclic compounds 6
1.2. General strategies for the construction of macrocycles
1.2.1. Macrolactonization
1.2.2. Macrolactamization 13
1.2.3. Palladium- catalyzed coupling reactions 15
1.2.4. Ring-Closing metathesis (RCM) 21
1.2.5. Click reaction 24
1.2.6. Wittig reaction 25
1.2.7. Mitsunobu reaction 26
1.2.8. Nucleophilic aromatic substitution SNAr reaction 27
1.2.9. Scalable synthesis of macrocycles 28
1.3. Conclusions 29
1.4. References 30

Section 2. Studies toward Total Synthesis of Solomonamides A and B

2.1. Iintroduction
2.1.1. Isolation and structural elucidation of solomonamides 39
2.1.2. Biological activity of solomonamides 42
2.2. Inflammation 43
2.3. Reported approaches towards synthesis of solomonamide A 44
2.4. Pesent work
2.4.1. Approach 1: Macrolactamization at aniline $-\mathrm{NH}_{2}$
2.4.2. Approach 2: Macrolactamization at Gly- $\mathrm{NH}_{2} \quad 50$
2.4.3. Efforts toward the total synthesis of solomonamide B 55
2.4.4. Approach 3: Macrocyclization using intramolecular Heck reaction 63
2.4.5. Change of protecting group and completion of solomonamide B synthesis 75
2.4.6. Attempts toward total synthesis of proposed structure of solomonamide A 85
2.4.7. Efforts toward structural revision of solomonamide B 87
2.5. Analogs synthesized 90
2.6. Conclusions 92
2.7. References 92
Section 3. Experimental Details
3.1. Experimental procedures 99
3.2. Copies of 1H, 13C and 2D NMR spectra 192
List of Publications 304

Section 1

Introduction to Macrocyclic Compounds

1.1. Introduction

1.1.1. Natural product based macrocycles in drug discovery

Natural products are chemical entities produced by living organism. These compounds may be isolated from plants, animals, microorganism, fermentation broths or marine organisms. In the history of drug discovery, natural products have been a prime source and always played an important role in discovering medicines for human well being. A substantial number of molecules are clinically validated and marketed for numerous indications such as immunosuppressive agents, antibiotics, anti-inflammatory and anti-tumor agents. From an analysis of last 20 year period (1994-2014), it is estimated that $\sim 35 \%$ of available drugs are either natural products or derived from natural products (Figure 1). ${ }^{1}$

Figure 1. Percentage of drugs based on natural products from 1994-2014
Among the natural products, macrocyclic compounds occupy a special space, due to its interesting biological properties and structural features. A macrocycle provides varied functionality and stereochemical complexity in a conformationally preorganized ring structure which results in high binding affinity and selectivity toward protein targets. At the same time, they retain sufficient bioavailability to reach intracellular components. These valuable characteristics were upheld by the success of more than 68 marketed macrocycle drugs and 35 macrocyclic compounds that are in clinical development as per a recent review by Fabrizio Giordanetto and Jan Kihlberg. ${ }^{2}$ Out of 68 marketed drugs, 48
are natural products and 18 are natural product-derived drugs, remaining 2 are synthetic. Out of 35 clinical candidates, 17 are natural products 8 are derived from natural products and 10 are de novo design (Figure 2).
According to a recent document, ${ }^{2}$ out of the 68 identified macrocyclic drugs registered:

- 34 are used for bacterial infections
- 10 are used for the treatment of cancers
- 28 are used in immunological and cardiovascular therapeutic areas.

In the case of 35 drugs which are in clinical development

- 14 are for the treatments of different cancers
- 10 are anti-infective agents and
- 11 are under examination for indications from ophthalmology to endocrinology.

Figure 2. Macrocyclic compounds as drugs
Numerous reviews, articles and book chapters are published describing the importance of macrocycles in drug discovery. ${ }^{3}$ Here, selected macrocyclic drugs and compounds in clinical trials are described with their biological relevance and current status. Cyclosporin A (1) ${ }^{4}$ was isolated from the fungus Tolypocladium inflatum. It is a 11 amino acid containing non-ribosomal cyclic peptide used as an immunosuppressant in organ transplantation.

Cyclosporin A (1) Cyclosporine (Immunosuppressant)

Erythromycin (2) Erythrocin®

(-)- Epothilone B analog (3) |xabepilone ${ }^{\circledR}$ (Anti cancer)

Daptomycin (4) Cubicin® (Antibiotic)

Amphotericin B (5)
(Anti fungal)

Caspofungin (6)
Cancidas® (Antifungal)

 (Antibiotic)

Telithromycin (11) Ketek® (Antibiotic)

Figure 3. Selected marketed macrocyclic compounds

Erythromycin (2) ${ }^{5}$ is a macrolide, isolated from the bacteria Saccharopolysporaerythraea useful for treating various bacterial infections. Ixabepilone ${ }^{\circledR}(\mathbf{3})^{6}$ is an aza analog of natural product epothilone B. It is used as an anticancer drug for treating metastatic or locally advanced breast cancer, where taxanes and anthracyclines failed in treatment. Daptomycin (Cubicin ${ }^{\circledR}$) (4) ${ }^{7}$ isolated from saprotroph Streptomyces roseosporus is an antibiotic drug used for infections caused by gram-positive bacteria. Amphotericin B (5) ${ }^{8}$ is an antifungal drug used for serious fungal infections. Caspofungin (Cancidas ${ }^{\circledR}$) $(\mathbf{6})^{9}$ and Micafungin (Mycamine ${ }^{\circledR}$) (7) ${ }^{10}$ are antifungal drugs used for the infections caused by Aspergillus and Candida species. Pimecrolimus (Elidel $\left.{ }^{\circledR}\right) \quad(\mathbf{8})^{11}$ is an immunomodulating agent used for the treatment of atopic dermatitis. Vancomycin (9) ${ }^{12}$ is an antibiotic used for the treatment of various bacterial infections. Rifampicin (10) ${ }^{13}$ is used for the treatment of tuberculosis, an infectious disease caused by bacteria mycobacterium tuberculosis. Telithromycin $\left(\right.$ Ketek $\left.^{\circledR 8}\right)(\mathbf{1 1})^{14}$ is used for the treatment of community-acquired pneumonia, it is the only ketolide marketed till date (Figure 3). Among these drugs Cyclosporin A (1), Erythromycin (2), Amphotericin B (5), Vancomycin (9) and Rifampicin (10) are the drugs present in " 1 " $^{\text {th }}$ WHO Model List of Essential Medicines -April 2015". ${ }^{15}$
Voclosporin (12) ${ }^{16}$ Anidulafungin (13) ${ }^{17}$ are in phase 3 clinical trials for treating immune disorders (immunosuppressant) and invasive candidiasis, a fungal infection respectively. Pacritinib (14) ${ }^{18}$ is in phase-3 clinical trials for treating primary myelofibrosis. Solithromycin (15), ${ }^{19}$ a erythromycin (2) derivative, is in phase-2 clinical trials for treating chronic obstructive pulmonary diseases (COPD). MK-5172 (16) ${ }^{20}$ which is a close analog of vaniprevir in phase-2 clinical trials for hepatitis C virus infection. TMC647055 (17) ${ }^{21}$ is under phase-2 clinical trials as an HCV inhibitor, which targets the NS5b RNA-dependent RNA-polymerase. SCY-635 (18) ${ }^{22}$ is in phase-2 clinical trials for treating hepatitis C infection. Zotarolimus (19) ${ }^{23}$ and Ridaforolimus (20) ${ }^{24}$ belongs to rapamycin subclass. Zotarolimus (19) is being evaluated in phase-2 clinical trials as an immunosuppressant. Ridaforolimus (20) is in phase-1 clinical trials for treating breast cancer. JNJ-26483327 (21) ${ }^{25}$ is in phase-1 clinical trials for advanced solid tumors. E7389

Voclosporin (12)
Immunology
(Renal transplantation)
Phase-III

Anidulafungin (13)
(LY-303366)
Antifungal
Phase - III

Solithromycin (15)
COPD
Phase-II

SCY-635 (18) Hepatitis C Infection Phase-II

MK-5172 (16
Hepatitis C Infection

$$
\begin{aligned}
& \text { Chronic Hepatitis C Virus } \\
& \text { Infection } \\
& \text { Phase-II }
\end{aligned}
$$

Pacritinib (14) Acute Myeloid Leukemia Phase-III
Phase-II

Zotarolimus (19)
Immunosuppressant
Phase - II

Ridaforolimus (20) Anti-Cancer Phase-I

JNJ-26483327 (21)
Anti-Cancer
Phase - I

E7389 (22)
Anti-Cancer Phase-I

Bryolog (23)
Anti-Cancer

Figure 4. Selected macrocyclic compounds in clinical development
(22), ${ }^{26}$ eastern hemisphere of halichondrin B is fully synthetic and is in phase- 1 clinical development for treating cancer. Bryolog (23) $)^{27}$ is a simpler analog of bryostatin which is
in pre-clinical development for treating various cancers (Figure 4). (Information on the current status of drugs presented here is taken from www.clinicaltrials.gov.in)

1.1.2. Properties of macrocyclic compounds

Ring architecture with 12 or more atoms with molecular weight 500-2000 Da are considered as macrocyclic compounds. Usually, pharmaceutical industries work mostly on small molecules, which are having a molecular weight less than 500 Da (infact, Lipinski rule suggests to keep it below 500 for oral drugs). This is mainly due to the enormous study was done, numerous tools are available for the synthesis, and it is easy for researchers to modify small molecules to attain desired pharmacokinetic/ pharmacodynamic properties. However, during the last 20 years, understanding of disease mechanisms has grown, in particular with the discoveries around the etiology of cancer and inflammatory diseases. These disease targets are components of PPIs (proteinprotein interactions), which have large protein surfaces. Small molecules have a limited affinity to bind to the extended binding targets because these molecules lack the physical reach to enable them to effectively interact.

Biological drugs are also called as biologics or large molecules. The molecular weight of these compounds is around 10000 Da to 50000 Da , and represents a class of molecules based on proteins. Because of extreme affinity and selectivity for their binding to target proteins they have been developed as drugs. For example adalimumab (HUMIRA ${ }^{\circledR}$) an antagonist of TNF (tumor necrosis factor) is prescribed for rheumatoid arthritis and other inflammatory diseases. Although, biologics are so effective they often suffer from poor oral bioavailability.

Macrocyclic compounds can be a potential solution for targets like PPIs, its large surface area enables them to bind to extended binding sites. Macrocycles are close to small molecules and behave like biological compounds, thus, macrocycles are often called as small molecule biologics (Figure 5). For example, cyclosporine is an immunosuppressant drug used in organ transplantation. It inhibits calcineurin by binding to cyclophilin thereby suppressing the activity of T cells. It is a cyclic peptide with
molecular weight of 1,200 daltons, this size is required for binding to the cyclophilin surface. ${ }^{28}$

Figure 5. Target vs. drug complexity

Oral bioavailability of macrocycles

A drug which is administrated orally should have enough bio-availability to reach the required target and show the activity. In general, it is known that the molecules which follow the Lipinski rule of 5 (Molecular weight <500, LogP <5, total hydrogen bond acceptors <10, and total hydrogen bond donors <5) possess good oral bio-availability. Most of the macrocycles do not follow the Lipinski rule but there are few macrocyclic compounds which are orally bioavailable known in the literature. A detailed study was carried out by Fabrizio Giordanetto and Jan Kihlberg ${ }^{2}$ on 68 marketed macrocyclic drugs and 35 clinical candidates. According to their study 19/68 market drugs and 15/35 clinical candidates are administrated orally. This study shows although macrocycles do not follow the Lipinski rule they can demonstrate a good oral bioavailability.

Improving potency through macrocyclization

Cyclization of drug-like compounds helps in conformational restriction, is one of the common strategy practiced in medicinal chemistry to improve the potency of compounds towards a target. For a compound to bind successfully to a protein, the molecule has to adopt a bioactive conformation. Macrocycles although not completely rigid, have restricted internal bond rotations thus, these are considered as conformationally restricted. Macrocycles have enough flexibility to efficiently interact with binding sites in proteins.

Here, we illustrate one example from the literature to explain the effect of macrocyclization to improve the activity of compounds. Tao et al. during the development of urea-based Chk1 inhibitors, studied the effect of macrocyclization effect compared to their corresponding acyclic intermediates. ${ }^{29}$ The Compound 24, which is linear had an IC_{50} value of 22 nM . The authors hypothesized that macrocyclization of the compound 24 may improve the potency of the inhibitor, accordingly they have synthesized macrocyclic compound 25 which showed an IC_{50} of 10 nM (Figure 6). Encouraged by the results, further study was initiated by altering the size of the macrocycle, accordingly, compounds 26, 27, 28 were synthesized. Compound 26 (14 membered macrocycle) and compound 27 (15 membered macrocycle) showed a promising activity of 6 nM and 7 nM respectively. Compound 28 (16-membered

Figure 6. Acyclic and macrocyclic Chk1 inhibitors
macrocycle) showed slightly less activity 28 nM . The decrease in activity can be attributed to increased steric interactions with the target protein as larger alkyl linker has to be accommodated in the binding pocket (Figure 7). Thus, the introduction of constraints through macrocyclization proved to be a good strategy.

$\mathrm{n}=1$; ring size 14, $\mathrm{IC}_{50} 6 \mathrm{nM}$ (26)
$\mathrm{n}=2$; ring size $15, \mathrm{IC}_{50} 7 \mathrm{nM}$ (27)
$\mathrm{n}=3$; ring size $16, \mathrm{IC}_{50} 28 \mathrm{nM}$ (28)
Figure 7. Macrocyclic Chk1 inhibitors

Improving pharmacokinetic properties through macrocyclization

As mentioned above cyclization is the one of the strategies to improve the drug-like properties of a compound. Rigidification of the molecule through macrocyclization can lead to an improvement in PK (pharmacokinetic) parameters. Cummings et. al. utilized this concept to improve the PK properties in a series of indole-based HCV inhibitors which target the NS5B (Nonstructural protein 5B) RNA polymerase. ${ }^{30}$ From the crystal structure of compound 29 and related compounds, it was clear that the carboxylic acid is outside the hydrophobic binding pocket, and forms a salt bridge at the edge of the binding pocket. The carboxylic acid undergoes glucuronidation in vivo and results in toxic metabolites. Several modifications were made to improve the PK parameters of these compounds by different groups, but was not successful. Cummings group designed macrocyclic analogs $\mathbf{3 0}$ and $\mathbf{3 1}$ keeping in mind that the macrocyclization of the exposed acid functionality may lead to an improvement in PK. Accordingly, the sulfonamide macrocycles synthesized preserves all the important interactions observed in the parent open chain inhibitors. The additional binding interactions arising from macrocyclization led to an increase in binding affinity. The macrocycles showed good PK properties which were a concern in non-macrocyclic compounds (Figure 8). ${ }^{30,31}$

$\mathrm{F}=$ oral bioavailability; $\mathrm{EC}_{50}=$ half maximal effective concentration

Figure 8. HCV inhibitors which target the NS5B RNA polymerase

1. 2. General strategies for the construction of macrocycles

In the synthesis of macrocyclic compounds, construction of macrocyclic skeleton is considered to be crucial. There are several methods reported in the literature for the macrocyclization and several reviews are published. ${ }^{32}$ The macrocyclization can be classified based on the mode of cyclization. Some of the selected macrocyclization methods are covered here in this section.

1. Macrolactonization
2. Macrolactamization
3. Palladium-catalyzed coupling reactions

Suzuki-Miyaura, Heck, Stille, Buchwald
4. Ring-Closing Metathesis (RCM)
5. Click reaction
6. Wittig reaction
7. Mitsunobu reaction
8. Nucleophilic Aromatic Substitution SNAr

1.2.1 Macrolactonization

In general, the most commonly used methods for lactonization of acids and alcohols (seco-acids) can be classified into three based on activation. ${ }^{33}$
(1) Activation of acid group
(2) Conversion of alcohol group into an easily leaving group
(3) Activating both acid and alcohol functionality simultaneously using a double activation approach.

Here we have described some examples from the literature. Gilbert Stork and Scott D. Rychnovsky, utilized Boden-Keck macrolactonization condition for the construction of macrocyclic skeleton in the synthesis of (+)-9(S) dihydroerythronilide (Scheme 1). ${ }^{34}$ The seco acid (32) on treating with DCC, DMAP and its trifluoro acetic acid salt underwent macrolactonization to afford macrocyclic lactone (33) in 64% yield. The cyclization depends on the conformation of the 9,11 cyclic ketal. When $\mathrm{R}_{4}=\mathrm{H}$, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{Me}$ and $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{Me}$ cyclization failed to give the desired compound, when R_{3} is methyl a 1,3 diaxial interaction between R_{3} methyl and C 8 made cyclization of the seco acid (32) unfavorable. When $\mathrm{R}_{3}=H, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{4}=\mathrm{Me}$, there is no 1,3 diaxial interaction and cyclization was achieved with 64% yield. Deprotection of acetal group in acidic condition afforded (+)-9(S) dihydroerythronilide A (34).

32

Boden- Keck $\xrightarrow[\text { DCC, DMAP }]{\text { Macrolactonization }}$ DMAP.CF ${ }_{3} \mathrm{COOH}$ CHCl_{3}, slow addition via syringe pump

33

$$
\begin{aligned}
& R_{3}=H, R_{1}=R_{2}=R_{4}=M e 64 \% \\
& R_{4}=H, R_{1}=R_{2}=R_{3}=M e 0 \% \\
& R_{1}=R_{2}=R_{3}=R_{4}=\text { Me } 0 \%
\end{aligned}
$$

(+)- 9(S) -Dihydroerythronolide A
34

Scheme 1. Synthesis of (+)-9(S)-dihydroerythronlide A
One of the most popular methods for the macrolactonization is Yamaguchi macrolactonization. Marco and coworkers utilized the Yamaguchi macrolactonization in
the synthesis of naturally occurring, cytotoxic macrolide FD-891 (37). Hydrolysis of the ethyl ester group in compound $\mathbf{3 5}$ under mild condition using TMSOK followed by macrolactonization of the resulting hydroxyl acid was achieved at high dilution (0.006 M) using 2,4,6-trichlorobenzoyl chloride (TCBC), $\mathrm{Et}_{3} \mathrm{~N}$, DMAP in THF afforded compound 36. Finally, cleavage of all the silyl groups using TASF (tris(dimethylamino)sulfonium difluorotrimethylsilicate) in compound 36 gave cytotoxic macrolide FD-891 (37) (Scheme 2). ${ }^{35}$

Scheme 2. Synthesis of FD-891
Other bioactive macrocyclic compounds like potent immunosuppressive FK506 binding protein (FKBP) ligands $\mathbf{3 8}^{36}$ and microtubule stabilizing agents $\mathbf{3 9},{ }^{37}$ an antifungal agent Sch-725674 (40) ${ }^{38}$ were synthesized by using Yamaguchi conditions for ring closure (Figure 9).

FKBP Ligands, $n=2-4$

Microtuble stabilizers, $\mathrm{R}=\mathrm{H}, \mathrm{Me}$

Anti fungal agent Sch-725674

Figure 9. Representative macrocyclic compounds from macrolactonization

1.2.2. Macrolactamization

In general, most of the macrolactamizations ${ }^{39}$ proceed through formation of an amide bond. This involves activation of acid 41 into activated ester $\mathbf{4 2}$ followed by a nucleophilic attack of amine leads to the formation of macrolactam 43 (Figure 10).

Figure 10. Schematic representation of macrolactamization

For macrolactamization, a wide range of coupling agents is available, which includes carbodiimides (DCC, EDC), phosphoniumsalts (HATU, BOP, PyBOP), boronate salts (TBTU), acylazoles, pyridinium salts (Mukaiyama reagent) and triazines (DEPBT) (Figure 11).

DCC
N, N-Dicyclohexylcarbodiimide

PyBOP
1H-Benzotriazol-1-yloxytri (1-pyrrolidinyl)phosphonium hexafluorophosphate

EDC
1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide

TBTU
O-(1H-Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate

HATU
O-(7-Aza-1H-benzotriazol-1-yl)-
N,N,N', N'-tetramethyluronium hexafluorophosphate

DEPBT
3-Diethoxyphosphoryloxy-1,2,3-benzotriazin-4(3H)-one

BOP
1H-Benzotriazol-1-yloxytris (dimethylamino)phosphonium hexafluorophosphate

Mukaiyama reagent
2-Chloro-1-methylpyridinium iodide

Figure 11. Selected amide coupling reagents

Macrolatamization in versicoloritide $\mathrm{C}(\mathbf{4 5})$ was achieved by using amide coupling reagent BOP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:DMF (5:1) as solvent with 44% yield by Brimble group (Scheme 3). ${ }^{40}$

Scheme 3. Synthesis of versicoloritide C
Macrolactamization is often the method of choice for peptidomimetic macrocycles and has been successfully employed for the synthesis of thrombin inhibitors $\mathbf{4 6}^{41}$ and small ring inhibitors neutral endopeptidase (NEP) inhibitors $\mathbf{4 6}^{41}$ (Figure 12).

Thrombin inhibitors
46

NEP inhibitor $\mathrm{n}=0-2$
47

Figure 12. Representative macrocyclic compounds from macrolactamization
All amide coupling reagents may not help in achieving the desired macrolactamization, it requires a lot of trials to come up with the required amide coupling reagent. To avoid the number of trials, the use of a combination of coupling reagents is proposed and this concept gives moderate to good yields depending upon the substrate. McAlpine and co-workers utilized this concept very well in the synthesis of cytotoxic sansalvamide (49) and its derivatives. ${ }^{43}$ Compound 48 on treating with a combination of peptide coupling reagents (HATU, TBTU, DEPBT) at high dilution gave desired
macrolide sansalvamide (49) in good yield (Scheme 4). Several analogs were synthesized by varying amino acids residues and N -methylated compounds. The macrocyclization was achieved with $5-76 \%$ yields at $0.007-0.0007 \mathrm{M}$ concentration.

Scheme 4. Mc Alpine synthesis of sansalvamide

1.2.3. Palladium- catalyzed coupling reactions

Over the past few decades, Pd-catalyzed cross-coupling reactions gained more importance and became a prominent tool for making new $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{O}$ or $\mathrm{C}-\mathrm{N}$ bonds. The ease of making new $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{N}$ and other carbon-hetero ($\mathrm{C}-\mathrm{X}$) bonds make these reactions remarkable tools in natural product synthesis. ${ }^{44}$ These reactions also played a major role in the synthesis of macrocyclic compounds.

Suzuki-Miyaura coupling reaction

Suzuki couplings of aryl or vinyl boronic esters/acids with aryl or vinyl halides/triflates also have a great impact on the synthesis of macrocyclic compounds. For example, arylomycins ${ }^{45}$ are lipo hexapeptides act as potent signal peptidase I (SPase I) inhibitors. The aromatic rings of 4-hydroxy phenyl glycine and Tyr are in compound $\mathbf{5 0}$ cross-linked by an aryl-aryl bond, which forms a 14 -membered meta, meta-cyclophane. The macrocyclization was achieved by Suzuki-Miyura cross-coupling reaction. $\left(\left[\mathrm{PdCl}_{2}(\mathrm{SPhos})_{2}\right], C=0.02 \mathrm{M}\right.$ in toluene $/ \mathrm{H}_{2} \mathrm{O}$ (30:1) and NaHCO_{3} (7 equiv)). This macrocycle 51 was further transformed to natural product arylomycin B, 52 (Scheme 5). It is noteworthy that the intramolecular Suzuki-Miyaura reaction was the only successful
way to build the cyclophane unit of the arylomycins. Other trials, for macrolactamization were found to be inefficient. ${ }^{46}$

52
Scheme 5. Synthesis of signal peptidase inhibitor arylomycin B_{2}
The cyclization in Mycocyclosin (53) ${ }^{47}$ and Acerogenin E (54) ${ }^{48}$ was achieved by intramolecular Suzuki reaction (Figure 13).

Figure 13: Representative examples for macrocyclization through intramolecular Suzuki reaction

Heck coupling reaction

A coupling reaction between aryl/vinyl halides and alkenes in the presence of Pd catalyst and a base is known as Heck reaction. The Intramolecular Heck reaction is one of the key tools for the construction of macrocyclic frameworks. One such example is the synthesis of mandelalide A aglycone, ${ }^{49}$ by Subhash Ghosh group. The macrocyclization of compound 55 was achieved through an intramolecular Heck reaction using $\mathrm{Pd}(\mathrm{OAc})_{2}$ as catalyst and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ as base in DMF solvent. The macrolide $\mathbf{5 6}$ was obtained in 58\% yield with exclusive E-stereochemistry. The removal of silyl protecting groups (HF.Py) afforded mandelalide A aglycone (57) (Scheme 6).

Scheme 6. Synthesis of mandelalide A aglycone

The intramolecular Heck reaction was successfully applied in the synthesis of an anticancer agent Palmerolide $\mathrm{A}(\mathbf{6 0})^{50}$ by K. R. Prasad et. al. Intramolecular Heck coupling $\left(\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}\right)$ was performed on compound 58 to afford
macrolactone 59 in 60% yields, which was further converted to natural product palmerolide A (60) in a few steps (Scheme 7).

60

Scheme 7. Synthesis of palmerolide A
The intramolecular Heck reaction was also successfully employed in the synthesis of β turn mimics $\mathbf{6 1},{ }^{51} \mathrm{HCV}$ protease inhibitors $\mathbf{6 2}{ }^{52}$ and complex structures like macrocyclic taxoid 63 (Figure 14). ${ }^{53}$

Figure 14. Representative macrocyclic compounds synthesized using intramolecular Heck reaction

Stille Coupling

Stille coupling between organo tin reagent and aryl/vinyl halides is another palladiumcatalysed coupling reaction, used for the construction of macrocycle. ${ }^{54}$ Toshima et al. have described an impressive illustration of the use of the intramolecular Stille reaction in their total synthesis concanolide A (66). ${ }^{55}$ Compound 64 was converted into macrolide 65 using $\mathrm{Pd}_{2}\left(\mathrm{dba}_{3}, \mathrm{AsPh}_{3}\right.$, DIPEA in DMF-THF in a very good yield. This macrolide $\mathbf{6 5}$ was further transformed into natural product concanolide A (66) in a few steps (Scheme 8).

Scheme 8. Synthesis of concanolide A

Buchwald-Hartwig coupling reaction

Buchwald - Hartwig reaction is a C-N bond forming reaction between amine and aryl halides catalyzed by Pd catalyst. Although this reaction is less common in macrocyclization, there are few examples in the literature where macrocycle was constructed through this reaction. For example, Iqbal et al. used Buchwald coupling reaction as the key cyclization step in the synthesis of cyclic peptides constrained with
biarylamine linkers. ${ }^{56}$ The cyclization was achieved by using $\mathrm{Pd}(\mathrm{OAc})_{2}$, rac-BINAP and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ as base under dilute condition. By using this method 8 compounds were synthesized in $29-53 \%$ yields, and obtained products were 16 to 22 -membered macrocycles (Scheme 9).

$$
\begin{aligned}
& \mathrm{R}=\mathrm{H}, \mathrm{R}_{1}=-\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}_{2}=-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}_{3}=-\mathrm{CH}_{3}, \mathrm{n}=0,42 \% \\
& \mathrm{R}=\mathrm{H}, \mathrm{R}_{1}=-\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}_{2}=-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}_{3}=-\mathrm{CH}_{3}, \mathrm{n}=1,50 \% \\
& \mathrm{R}=\mathrm{H}, \mathrm{R}_{1}=-\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}_{2}=-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}_{3}=-\mathrm{CH}_{3}, \mathrm{n}=2,53 \% \\
& \mathrm{R}=\mathrm{H}, \mathrm{R}_{1}=-\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}_{2}=-\mathrm{CH}_{3}, \mathrm{R}_{3}=-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{n}=0,44 \% \\
& \mathrm{R}=\mathrm{H}, \mathrm{R}_{1}=-\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}_{2}=-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}_{3}=-\mathrm{CH}_{3}, \mathrm{n}=0,41 \% \\
& \mathrm{R}=\mathrm{H}, \mathrm{R}_{1}=-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}_{2}=-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{R}_{3}=-\mathrm{CH}_{3}, \mathrm{n}=0,46 \% \\
& \mathrm{R}=\mathrm{H}, \mathrm{R}_{1}=-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}_{2}=-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}_{3}=-\mathrm{CH}_{3}, \mathrm{n}=0,36 \% \\
& \mathrm{R}=\mathrm{CH}_{3}, \mathrm{R}_{1}=-\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}_{2}=-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}_{3}=-\mathrm{CH}_{3}, \mathrm{n}=0,29 \%
\end{aligned}
$$

Scheme 9. Macrocyclization through Buchwald- Hartwig reaction
D. S. Reddy and co-workers utilized the modified Buchwald condition for the synthesis of (+)-palmyrolide A and (-)-cis-palmyrolide. ${ }^{57}$ It is worth noting that, change in the temperature and, reaction time afforded two different end products. Compound 69 on treating with DMEDA, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{CuI}$, at $80{ }^{\circ} \mathrm{C}$ for 30 h afforded cis- macrocycle, 70 which was converted into cis-palmyrolide (71) by N-methylation (NaH, MeI) and cyclization of compound 69 at $50{ }^{\circ} \mathrm{C}$ for 5 h gave trans-macrocycle 72, which on N methylation (NaH, MeI) afforded (+)-palmyrolide A 73 (Scheme 10).

(+) Palmyrolide

Scheme 10. Synthesis of cis- palmyrolide and palmyrolide A by D. S. Reddy and coworkers

1.2.4. Ring-closing metathesis (RCM)

Ring-closing metathesis (RCM) is an intramolecular reaction in which two terminal alkenes react to form cycloalkene with the loss of ethylene. The reaction is mediated

Figure 15. Generally used metathesis catalysts
by an organometallic catalyst. Although Ru, Mo, W catalysts can promote $\mathrm{RCM}, \mathrm{Ru}$ catalysts are used more frequently because of functional group tolerance, air stability, and commercial availability (Figure 15).

The RCM has been extensively used in the construction of macrocycles. ${ }^{58}$ The most substantial impact of RCM has been utilized in the development of the macrocyclic HCV NS3/4A protease inhibitors. Mc Cauley et al. in their synthesis of vaniprevir (76) ${ }^{59}$ the key macrocyclization was achieved by Zhan 1b catalyst with trans-olefin selectivity (Scheme 11).

Scheme 11. Synthesis of vaniprevir
A wide range of molecular architectures can be accessed through RCM. This strategy has been successfully applied for the synthesis of macrocyclic anticancer taxoids $77,{ }^{60} \mathrm{Hsp} 90$ inhibitors 78, ${ }^{61}$ SGLT2 inhibitors $\mathbf{7 9},{ }^{62}$ and a series of multi-kinase inhibitors which are in clinical trials. SB1317 (TG02) 80, ${ }^{63}$ an inhibitor of CDK/JAK2/FLT3 for treating cancers, pacritinib (SB1518) 81, ${ }^{64}$ a JAK2, inhibitor for the treatment of myelofibrosis, SB1578, $\mathbf{8 2},{ }^{65}$ an inhibitor of JAK2, for treating rheumatoid arthritis, HIV protease inhibitor (-)-
petrosin, 83, ${ }^{66}$ and antifungal agent Sch-725674 analog 83. ${ }^{38}$ It is worth highlighting that the synthesis of compound $\mathbf{8 3}$, RCM was carried out in gram scale (1.2 g) with 71% yield. (site of cyclization indicated along with the catalyst in Figure 16).

Anticancer taxoids
77

Hsp90 inhibitors
78

SGLT2 inhibitor, $n=0-2$
79

SB1317 Anti cancer (Phase I)

80

SB1518, pacritinib Myelofibrosis (Phase-II)
81

(-)-Petrosin
HIV protease inhibitor
83

Anti fungal agent Sch-725674 analog
84

Figure 16. Representative macrocyclic compounds synthesized by RCM

1.2.5. Click reaction

Huisgen reaction, [3+2]-cycloaddition of azides with alkynes, is commonly referred as "Click''reaction. ${ }^{67}$ The transformation is usually conducted in the presence of copper (I). Since the triazole moiety is considered to be a trans-amide mimic, this chemistry was widely used in the synthesis of macrocyclic peptidomimetic structures. ${ }^{68}$

Sewald and co-workers achieved the macrocyclization of the triazole analog of cryptophcin-52 analog clicktophycin-52 (87) by $\mathrm{Cu}(\mathrm{I})$-mediated "Click"-cyclization (Scheme 12). ${ }^{69}$

Scheme 12. Synthesis of clicktophycin-52

Macrocyclization using Click chemistry was also used in the synthesis of macrocyclic peptidomimetic structures, such as β-strand $\mathbf{8 8},{ }^{70}$ HDAC inhibitor $\mathbf{8 9}{ }^{71}$ and SST receptor ligands $\mathbf{9 0}^{72}$ (Figure 17).

β - Strand mimic
88

HDAC inhibitor
89

90

Figure 17. Representative examples for macrocyclization through Click reaction

1.2.6. Wittig reaction

Wittig-type reactions have only limited application in macrocyclization. One example is synthesis of VCAM-VLA-4 antagonists. ${ }^{73}$ Jefferson Tilley constructed macrocyclic skeleton 92 by the intramolecular Wittig reaction of an aldehyde 91 with a phosphonoglycine moiety. Ester hydrolysis followed by subsequent reduction of the

93

94

Scheme 13. Synthesis of VCAM-VLA-4 antagonists
olefin gave the desired compounds $\mathbf{9 4}$, which showed activity in the nM range. 13membered rings showed better activity than the 14-membered analogs (Scheme 13).

1.2.7. Mitsunobu reactions

Mitsunobu reaction is moderately used for macrocycle ring closure. ${ }^{74}$ The mild reaction conditions, known stereochemical outcome, and ease of execution, led to the popularity of this reaction. Generally used Mitsunobu reagents are shown in Figure 19.

DEAD
Diethyl Azo Dicarboxylate

ADDP
1,1'-(Azodicarbonyl)dipiperidine

Figure 19. Selected Mitsunobu reagents

11-O-methylcorniculatolide A, 96 and 11- O-methylisocorniculatolide A, 98 were synthesized by using Mitsunobu reaction $\left(\mathrm{PPh}_{3}\right.$, DIAD) from corresponding hydroxy acid (95 and 97 respectively) in good yields by D. S. Reddy group (Scheme 14). ${ }^{75}$

Scheme 14. Synthesis of 11-O-methylcorniculatolide A (96) and 11-Omethylisocorniculatolide A (98)

Mitsunobu reaction was also utilized for the synthesis of compounds like TACE inhibitor intermediates $\mathbf{9 9},{ }^{75}$ MMP inhibitor intermediate $\mathbf{1 0 0}^{\mathbf{7 6}}$ and HCV protease inhibitors $\mathbf{1 0 1}{ }^{77}$ (Figure 18). In the first case, the nitrogen of a sulfonamide is a nucleophile, while in the other two cases oxygen of phenol served as a nucleophile.

TACE inhibitor intermediate 99

MMP inhibitor intermediate
100

HCV protease inhibitor 101

Figure 18. Representative examples for macrocyclization through Mitsunobu reaction

1.2.8. Nucleophilic aromatic substitution $S_{N} A r$ reaction

Aromatic substitution reactions have also been applied for the construction of macrocyclic skeletons. Precisely, in the synthesis of biaryl ether moiety in natural products. The first example of $S_{N} A r$ based macrocyclization was the synthesis of model carboxylate-binding pockets of vancomycin reported by Rene Beugelmans. ${ }^{78}$ Treatment of DMF solution of $\mathbf{1 0 2}$ with $\mathrm{K}_{2} \mathrm{CO}_{3}$ at room temperature for 6 h afforded macrocycle 103 as a single compound in 95% yield (Scheme 15).

Scheme 15. Synthesis of model carboxylate-binding pockets of vancomycin
A.V. Rama Rao and co-workers were successful in achieving the synthesis of the right-hand binding pocket of vancomycin $\mathbf{1 0 5}$ from compound $\mathbf{1 0 4}$ by employing $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$
based macrocylization ($\mathrm{NaH}, 0.02 \mathrm{M} \mathrm{py}$, rt) (Scheme 16). ${ }^{79}$ In these reactions a fluoro group (more preferably) adjacent to a nitro group can be displaced by OH compared to a bromo group. This concept was also used by Nicolaou and Evan's groups in their synthesis of vancomycin. ${ }^{80}$

Scheme 16. Synthesis of the right-handed binding pocket of vancomycin by A. V. Ramarao

1.2.9. Scalable synthesis of macrocycles

One of the major issues regarding macrocyclic compounds is the difficulty in accessing these compounds in a necessary scale for advanced preclinical/clinical investigations. However, because of increase in attention on macrocyclic compounds, in recent times more research is going on this area and there are few reports in literature for scalable synthesis, one such example is synthesis of HCV protease inhibitor BILN 2061 (ciluprevir) by Boehringer Ingelheim pharmaceuticals.

The synthesis of ciluprevir, an HCV NS3/4A protease inhibitor was relied on the RCM based macrocyclization. In the first generation synthesis compound 106 was converted into compound 107 using HG-1 catalyst. The synthesis was done in 100 kg scale and yields were also promising. But, the synthesis required 3-5 mol of costly HG1 catalyst, high dilution (requires more solvent), and long reaction times 20 h , some times upto 40 h . To address these problems an additional study was carried out and second generation approach was developed. The compound 108 was synthesized by introducing a Boc protection on one of the amide and RCM was carried out by using modified ruthenium catalyst (Grela) to give compound 109. ${ }^{81}$ By using this second generation approach the reaction efficiency was improved significantly in terms consumption of
solvent (decreased from 0.01 to 0.2 M concentration), catalyst loading (3-5 mol\% to 0.05 $-0.1 \mathrm{~mol} \%$) and time (decreased from 20 h to $<1 \mathrm{~h}$) (Scheme 17). This example clearly demonstrates that macrocyclizations can be done in a large scale.

Scheme 17. Process improvement for ciluprevir intermediate

1.3. Conclusions

Macrocycles have been playing an important role in drug discovery. There are several macrocyclic compounds that are marketed as drugs and many are in clinical trials. Macrcocylization makes a molecule conformationally restricted which helps the molecule to bind to the target with greater affinity, which in turn may help in improving the potency, physicochemical and ADME properties. Despite many benefits of macrocyclic compounds in drug discovery, this class of compounds was underexplored because of the difficulties in developing an efficient synthetic route for the macrocyclization. However,
in recent years, enormous studies in this field led to the development of several synthetic methodologies for the construction of macrocycle, which opened the way for further research in macrocycle based drug discovery. The new advancements in synthetic tools and deeper understanding of chemical biology including informatics encouraged many medicinal chemists/drug discovery scientists to take up macrocyclic structures as valuable scaffolds for their programs. Along these lines, our research group also got attracted to this field of exciting research and we have identified the solomonamide scaffold as a working platform.

1.4. References

1. D. J. Newman and G. M. Cragg, J. Nat. Prod., 2016, 79, 629.
2. F. Giordanetto and J. Kihlberg, J. Med. Chem., 2014, 57, 278.
3. Selected publications related to importance of macrocycles in drug discovery.(a) EM.

Driggers, S. P. Hale, J. Lee, and N. K. Terrett, Nat. Rev. Drug Discov., 2008, 7, 608. (b)
A. K. Oyelere, Curr. Top. Med. Chem. 2010, 10, 1359. (c) E. Marsault, M. L., J. Med. Chem. 2011, 54, 1961. (d) J. Mallinson, and I. Collins, Future Med. Chem., 2012, 4, 1409. (e) X. Yu and D. Sun., Molecules, 2013, 18, 6230. (f) D. J. Newman, and G. M. Cragg, RSC Macrocyclies in drug discovery, Chapter 1, pp 1-34, 2014. (g) V. MartíCentelles, M. D. Pandey, M. I. Burguete, and S. V. Luis, Chem. Rev., 2015, 115, 8736.
4. H. Svarstad, H. C. Bugge and S. S. Dhillion, Biodiversity and Conservation, 2000, 9, 1521.
5. Abbott Laboratories. Erythrocin stearate (erythromycin stearate) tablets prescribing information (dated 2000 Nov). In Physicians’ desk reference. 56th ed. Montvale, NJ: Medical Economics Company Inc; 2002:452-4.
6. S. Goodin, Am. J. HealthSyst. Pharm., 2008, 65, S10.
7. (a) F. P. Tally, and M. F. DeBruin, J Antimicrob Chemother., 2000, 46, 523. (b) PG. Charles, and ML Grayson, Med J Aust. 2004, 181, 549.
8. T. J. Walsh, E. J. Anaissie, and D. W. Denning., Clin Infect Dis., 2008, 46, 327.
9. S. C. Deresinski, and D. A. Stevens, Clin Infect Dis., 2003, 36, 1445.
10. P. G. Pappas, C. M. Rotstein, R. F. Betts, M. Nucci, D. Talwar, J. J. De Waele, J. A. Vazquez, B. F. Dupont, D. L. Horn, L. Ostrosky-Zeichner, A. C. Reboli, B. Suh, R. Digumarti, C. Wu, L. L. Kovanda, L. J. Arnold, and D. N. Buell, Clin Infect Dis., 2007, 45, 883.
11. B. R. Allen, M. Lakhanpaul, A. Morris, S. Lateo, T. Davies, G. Scott, M. Cardno, M. E. Ebelin, P. Burtin, and T. J. Stephenson, Arch Dis Child., 2003, 88, 969.
12. C. Liu, A. Bayer, S. E. Cosgrove, R. S. Daum, S. K. Fridkin, R. J. Gorwitz, S. L. Kaplan, A. W. Karchmer, D. P. Levine, B. E. Murray, M. Rybak, D. A. Talan, H. F. Clin Infect Dis., 2011, 52, 285.
13. (a) Oxford Handbook of Infectious Diseases and Microbiology. OUP Oxford. 2009.
p. 56. ISBN 978-0-19-103962-1. (b) McHugh, Timothy D. (2011). Tuberculosis: diagnosis and treatment. Wallingford, Oxfordshire: CABI. p. 219. ISBN 978-1-84593-807-9.
14. K. D. Clay, J. S. Hanson, S. D. Pope, R. W. Rissmiller, P. P. Purdum, and P. M. Banks, Ann Intern Med., 2006, 144, 415.
15. http://www.who.int/medicines/publications/essentialmedicines/EML2015_8-May15.pdf
16. L. Aspeslet, D. Freitag, D. Trepanier, M. Abel,S. Naicker, N. Kneteman, R.Foster, and R. Yatscoff, Transplant. Proc. 2001, 33, 1048.
17. DS. Krause, J. Reinhardt, JA. Vazquez, A. Reboli, BP. Goldstein, M. Wible, and T. Henkel, Antimicrob Agents Chemother., 2004, 48, 2021.
18. A. D. William, A. C.-H Lee, S.Blanchard, A. Poulsen, E. L. Teo,H. Nagaraj, E.Tan,D. Chen, M. Williams, E. T. Sun, K. C. Goh, W. C. Ong, S. K. Goh, S. Hart, R.Jayaraman, M. K. Pasha, K. Ethirajulu, J. M. Wood and B. W. Dymock, J. Med. Chem., 2011, 54, 4638.
19. J. G. Still, J. Schranz, T. P Degenhardt, D. Scott, P. Fernandes, M. J. Gutierrez and K. Clark,Antimicrob. Agents Chemother., 2011, 55, 1997.
20. V. Summa, S. W. Ludmerer, J. A. McCauley, C. Fandozzi, C. Burlein, G. Claudio, P. J. Coleman, J. M. DiMuzio, M. Ferrara, M. Di Filippo, A. T. Gates, D. J. Graham, S. Harper, D. J.Hazuda, C. McHale, E.Monteagudo, V. Pucci, M. Rowley, M. T. Rudd, A.

Soriano, M. W. Stahlhut, J. P. Vacca, D. B. Olsen, N. J. Liverton, and S. S Carroll, Antimicrob. Agents Chemother., 2012, 56, 4161.
21. S. Vendeville, T. I. Lin, L. Hu, A. Tahri, D. McGowan, M. D. Cummings, K.Amssoms, M. Canard, S. Last, I. Van den Steen, B. Devogelaere, M. C. Rouan, L. Vijgen, J. M Berke, P. Dehertogh, E. Fransen, E. Cleiren, L. Van der Helm, G. Fanning, K. Van Emelen, O. Nyanguile, K. Simmen and P. Raboisson, Bioorg. Med. Chem. Lett., 2012, 22, 4437.
22. S. Hopkins, B. DiMassimo, P. Rusnak, D. Heuman, J. Lalezari, A. Sluder, B.Scorneaux, S. Mosier, P. Kowalczyk, Y. Ribeill, J. Baugh and P. J. Gallay, Hepatol., 2012, 57, 47.
23. S. E. Burke, R. E. Kuntz, and L. B. Schwartz, Adv. Drug Delivery Rev. 2006, 58, 437.
24. (a) M. M Mita, A. C. Mita, Q. S. Chu, E. K. Rowinsky, G. J. Fetterly, M. Goldston, A. Patnaik, L. Mathews, A. D. Ricart, T. Mays, H. Knowles, V. M. Rivera, J. Kreisberg, C. L. Bedrosian, and A. W. Tolcher, J. Clin. Oncol. 2008, 26, 361. (b) G. J. Fetterly, M. M. Mita, C. D. Britten, E. Poplin, W. D. Tap, A. Carmona, L. Yonemoto, C. L. Bedrosian, E. H. Rubin, and A. W. Tolcher, J. Clin. Oncol. 2008, 26, 14555.
25. I. R. H. M. Konings, M. J. A. de Jonge, H. Burger, A. van der Gaast, L. E. C van Beijsterveldt, H. Winkler, J. Verweij, Z. Yuan, P. Hellemans, and F. A. L. M. Eskens, Br. J. Cancer., 2010, 103, 987.
26. Eisai Pharmaceuticals Annual Report 2003, pp 18
27. P. A. Wender, J. L. Baryza, S. E. Brenner, M. O. Clarke, M. L. Craske, J. C. Horan and T. Meyer, Curr. Drug Discovery Technol., 2004, 1, 1.
28. K. Nicholas, Innovations in Pharmaceutical Technology, 2014, 51, 26.
29. Z-F. Tao, L. Wang, K. D. Stewart, Z. Chen, W. Gu, Mai-Ha Bui, P. Merta, H. Zhang, P. Kovar, E. Johnson, C. Park, R. Judge, S. Rosenberg, T. Sowinand and N.-H. Lin, J. Med. Chem., 2007, 50, 1514.
30. M. D. Cummings, T-I Lin, L. Hu, A. Tahri, D. McGowan, K. Amssoms, S. Last, B. Devogelaere, M.-C Rouan, L. Vijgen, J. M. Berke, P. Dehertogh, E. Fransen, E. Cleiren, L. Helm, G. Fanning, K. Van Emelen, O. Nyanguile, K. Simmen, P. Raboisson, and S. Vendeville, Angew. Chem., 2012, 124, 4715 and referances cited therein.
31. S. Harper, S. Avolio, B. Pacini, M. Di Filippo, S. Altamura, L. Tomei, G. Paonessa,
S. Di Marco, A. Carfi, C. Giuliano, J. Padron, F. Bonelli, G. Migliaccio, R. D. Francesco, R. Laufer, M. Rowley, and F. Narjes, J. Med. Chem. 2005, 48, 4547.
32. Selected publication for macrocylization. (a) C. M. Madsen and M. H. Clausen, Eur. J. Org. Chem. 2011, 3107. (b) X. Yu and D. Sun, Molecules 2013, 18, 6230. (C) D. J. Newman, and G. M. Cragg, RSC Macrocyclies in drug discovery, Chapter 11, pp 398486, 2014 and referances cited therein.
33. (a) A. Parenty, X. Moreau, G. Niel and J. M. Campagne, Chem. Rev. 2013, 113, PR1.
(b) E. J.Corey and K. C. Nicolaou, J. Am. Chem. Soc. 1974, 96, 5614. (c) C. Palomo, M.

Oiarbide, J. M García, A. González, R. Pazos, J. M. Odriozola, P. Bañuelos, M. Tello, and A. Linden, J. Org. Chem., 2004, 69, 4126.
34. G. Stork and S. D. Rychnovsky, J. Am. Chem. Soc., 1987, 109, 1565.
35. J. García-Fortanet, J. Murga, M. Carda and J. A. Marco, Org. Lett., 2006, 8, 2695.
36. J. I. Luengo, A. Konialian-Beck, M. A. Levy, M. Brandt, D. S. Eggleston and D. A. Holt, Bioorg. Med. Chem. Lett., 1994, 4, 321.
37. I. Paterson, G. J. Naylor, N. M. Gardner, E. Guzman and A. E. Wright, Chem. - Asian J., 2011, 6, 459.
38. B. Seetharamsingh, P. V. Khairnar, and D. S. Reddy, J. Org. Chem. 2016, 81, 290.
39. A. El-Faham and F. Albericio, Chem. Rev., 2011, 111, 6557.
40. H. Kaur, A.M. Heapy and M. A. Brimble Synlett, 2012, 23, 2284.
41. (a) G. M. Ksander, R. de Jesus, A. Yuan, R. D. Ghai, A. Trapani, C. McMartin and R. Bohacek, J. Med. Chem., 1997, 40, 495. 17. (b) G. M. Ksander, R. de Jesus, A. Yuan, R. D. Ghai, C. Mc Martin and R. Bohacek, J. Med. Chem., 1997, 40, 506.
42. (a) M. N. Greco, E. T. Powell, L. R. Hecker, P. Andrade-Gordon, J. A. Kauffman, J. M. Lewis, V. Ganesh, A. Tulinsky and B. E. Maryanoff, Bioorg. Med. Chem. Lett., 1996, 6, 2947.(b) P. G. Nantermet, J. C. Barrow, C. L. Newton, J. M. Pellicore, M. Young, S. D. Lewis, B. J. Lucas, J. A. Krueger, D. R. McMasters, Y. Yan, L. C. Kuo, J. P. Vacca and H. G. Selnick, Bioorg. Med. Chem. Lett., 2003, 13, 2781.
43. (a) V. Ardi, L. Alexander, V. Johnson and S. R. Mc Alpine, ACS Chem. Bio., 2011, 6, 1357. (b) J. B. Kunicki, M. N. Petersen, L. D. Alexander, V. C. Ardi, J. R. McConnell, S. R. McAlpine, Bioorg. Med. Chem. Lett., 2011, 21, 4716.
44. Selected reviews for Palladium-Catalyzed Cross-Coupling Reactions in natural product synthesis (a) K. C. Nicolaou, P. G. Bulger, and D. Sarlah, Angew. Chem. Int. Ed. 2005, 44, 4442, (b) L. McMurray, F. O’Hara and M. J. Gaunt, Chem. Soc. Rev., 2011, 40, 1885.
45. J. Dufour, L. Neuville and J. Zhu, Chem. - Eur. J., 2010, 16, 10523.
46.T. C. Roberts, P. A. Smith, R. T. Cirz and F. E. Romesberg, J. Am. Chem. Soc., 2007, 129, 15830.
47. J. R. Cochrane, J. M. White, U. Wille, and C. A. Hutton, Org. Lett., 2012, 14, 2402.
48. T. Ogura, and T. Usuki, Tetrahedron, 2013, 69, 2807.
49. K. Mahender Reddy, V. Yamini, K. K. Singarapu, and Subhash Ghosh, Org.

Lett.,2014, 16, 2658.
50. K. R. Prasad and A. B. Pawar, Org. Lett., 2011, 13, 4252.
51. P. Rajamohan Reddy, V. Balraju, G. R. Madhavan, B. Banerji and J. Iqbal, Tetrahedron Lett., 2003, 44, 353.
51. K. X. Chen, F. G. Njoroge, A. Prongay, J. Pichardo, V. Madison and V.

Girijavallabhan, Bioorg. Med. Chem. Lett., 2005, 15, 4475.
53. (a) T. C. Boge, Z. J. Wu, R. H. Himes, D. G. Vander Velde and G. I. Georg, Bioorg. Med. Chem. Lett., 1999, 9, 3047. (b) X. Geng, M. L. Miller, S. Lin and I. Ojima, Org. Lett., 2003, 5, 3733.
54. M. A. J. Duncton and G. Pattenden, J. Chem. Soc., Perkin Trans. 1, 1999, 1235.
55. T. Jyojima, N. Miyamoto, M. Katohno, M. Nakata, S. Matsumura, K. Toshima, Tetrahedron Lett., 1998, 39, 6007.
56. V. Balraju and J. Iqbal, J. Org. Chem., 2006, 71, 8954.
57. S. C. Philkhana,B. Seetharamsingh B, Y. B. Dangat, K.Vanka, and D. S. Reddy, Chem. Commun. 2013, 49, 3342.
58. (a) R. H. Grubbs, S. J. Miller, and G. C. Fu, Acc. Chem. Res., 1995, 28, 446. (b) A. Fürstner, Angew. Chem. Int. Ed. 2000, 39, 3012. (c) R. R. Schrock, A. H. Hoveyda,

Angew. Chem. Int. Ed. 2003, 42, 4592. (c) S. J. Connon, and S. Blechert, Angew. Chem. Int. Ed., 2003, 42, 1900. (d) A. Deiters, and S. F. Martin, Chem. Rev. 2004, 104, 2199.
(e) A. Gradillas, and J. Pérez-Castells, Angew. Chem. Int. Ed. 2006, 45, 6086. (f) B.

Alcaide, P. Almendros, L. A. Grubbs’ Chem. Rev. 2009, 109, 3817. (g) H.M.A. Hassan, Chem. Commun., 2010, 46, 9100.
59. J. A. Mc Cauley , C. J. McIntyre, M. T. Rudd,K. T. Nguyen, J. J. Romano, J. W. Butcher, K. F. Gilbert, K. J. Bush, M. K. Holloway, J. Swestock, B. -L. Wan, S.
S.Carroll, J. M. DiMuzio, D. J. Graham, S. W. Ludmerer, S.-S. Mao, M. W. Stahlhut, C. M. Fandozzi, N. Trainor, D. B. Olsen, J.P. Vacca, and N. J. Liverton, J. Med. Chem., 2010, 53, 2443.
60. I. Ojima and M. Das, J. Nat. Prod., 2009, 72, 554.
61. (a) J. E. Day, S. Y. Sharp, M. G. Rowlands, W. Aherne, P. Workman and C. J.

Moody, Chem. - Eur. J., 2010, 16, 2758. (b) J. E. Day, S. Y. Sharp, M. G. Rowlands, W. Aherne, A. Hayes, F. I. Raynaud, W. Lewis, S. M. Roe, C. Prodromou, L. H. Pearl, P. Workman and C. J. Moody, ACS Chem. Biol., 2011, 6, 1339.
62.. S. Y. Kang, M. J. Kim, J. S. Lee and J. Lee, Bioorg. Med. Chem. Lett., 2011, 21, 3759.
63. (a) A. D. William, A. C. Lee, K. C. Goh, S. Blanchard, A. Poulsen, E. L. Teo, H. Nagaraj, C. P. Lee, H. Wang, M. Williams, E. T. Sun, C. Hu, R. Jayaraman, M. K. Pasha, K. Ethirajulu, J. M. Wood and B. W. Dymock, J. Med. Chem., 2012, 55, 169. (b) A. Poulsen, A. William, S. Blanchard, H. Nagaraj, M. Williams, H. Wang, A. Lee, E. Sun, E. L. Teo, E. Tan, K. C. Goh and B. Dymock, J. Mol. Model., 2013, 19, 119. 64. (a) A. D. William, A. C. Lee, S. Blanchard, A. Poulsen, E. L. Teo, H. Nagaraj,E. Tan, D. Chen, M. Williams, E. T. Sun, K. C. Goh, W. C. Ong,S. K. Goh, S. Hart, R. Jayaraman, M. K. Pasha, K. Ethirajulu, J. M. Wood and B. W. Dymock, J. Med. Chem., 2011, 54, 4638. (b) A. Poulsen, A. William, S. Blanchard, A. Lee, H. Nagaraj, H.

Wang,E. Teo, E. Tan, K. C. Goh and B. Dymock, J. Comput.-Aided Mol. Des.,2012, 26, 437.
65. A. D. William, A. C. Lee, A. Poulsen, K. C. Goh, B. Madan, S. Hart, E. Tan, H.

Wang, H. Nagaraj, D. Chen, C. P. Lee, E. T. Sun, R. Jayaraman, M. K. Pasha, K.

Ethirajulu, J. M. Wood and B. W. Dymock, J. Med. Chem., 2012, 55, 2623.
66. H. Toya, K. Okano, K. Takasu, M. Ihara, A. Takahashi, H. Tanaka, and H.

Tokuyama, Org. Lett., 2010, 12, 5196.
67. (a) G. C. Tron, T. Pirali, R. A. Billington, P. L. Canonico, G. Sorba and A. A.

Genazzani, Med. Res. Rev., 2008, 28, 278. (b) C. Hein, X.-M. Liu and D. Wang, Pharm. Res., 2008, 25, 2216. (c) P. Thirumurugan, D. Matosiuk and K. Jozwiak, Chem. Rev., 2013,113, 4905.
68. (a) Y. L. Angell and K. Burgess, Chem. Soc. Rev., 2007, 36, 1674. (b) J. M. Holub and K. Kirshenbaum, Chem. Soc. Rev., 2010, 39, 1325.
69. M. Nahrwold, T. Bogner, S. Eissler, S. Verma, and N. Sewald, Org. Lett., 2010, 12, 1064.
70. A. D. Pehere and A. D. Abell, Org. Lett., 2012, 14, 1330.
71. W. S. Horne, C. A. Olsen, J. M. Beierle, A. Montero and M. R. Ghadiri, Angew. Chem., Int. Ed., 2009, 48, 4718.
72. J. M. Beierle, W. S. Horne, J. H. van Maarseveen, B. Waser, J. C. Reubi and M. R. Ghadiri, Angew. Chem., Int. Ed., 2009, 48, 4725.
73. J. Tilley, G. Kaplan, N. Fotouhi, B. Wolitzky and K. Rowan, Bioorg. Med.Chem. Lett., 2000, 10, 1163.
74. K. C. K. Swamy, N. N. B. Kumar, E. Balaraman and K. V. P. P. Kumar,Chem. Rev., 2009, 109, 2551.
75. G. N. Raut, K. Chakraborty, P. Verma, R. S. Gokhale, and D. S. Reddy, Tetrahedron Lett., 2012, 53, 6343.
76. A. Arasappan, K. X. Chen, F. G. Njoroge, T. N. Parekh and V. Girijavallabhan, J. Org. Chem., 2002, 67, 3923.
77. A. Arasappan, F. G. Njoroge, K. X. Chen, S. Venkatraman, T. N. Parekh, H. Gu, J. Pichardo, N. Butkiewicz, A. Prongay, V. Madison and V. Girijavallabhan, Bioorg. Med. Chem. Lett., 2006, 16, 3960. (c) K. X. Chen, F. G. Njoroge, J. Pichardo, A. Prongay, N. Butkiewicz, N. Yao, V. Madison and V. Girijavallabhan, J. Med. Chem., 2006, 49, 567. 78. R. Beugelmans, J. Zhu, N. Husson, M. B. Choussy and G. P. Singh J. Chem. Soc., Chem,Commип., 1994, 439.
79. A.V. Rama Rao, Pure and Appl. Chem. 1998, 70, 391.
80. (a) D. A. Evans, M. R. Wood, B. W. Trotter, T. I. Richardson, J. C. Barrow, and J. L.

Katz, Angew. Chem. Int. Ed. 1998, 37, 2700. (b) K. C. Nicolaou, C. N. C. Boddy, S.
Natarajan, T.-Y. Yue, H. Li, S. Bra"se, and J. M. Ramanjulu, J. Am. Chem. Soc. 1997, 119, 3421.
81. V. Farina, C. Shu, X. Zeng, X. Wei, Z. Han, N. K. Yee and C. H. Senanayake, Org. Process Res. Dev., 2009, 13, 250.

Section 2

Studies toward Total Synthesis of Solomonamides A and B

2.1. Introduction

2.1.1. Isolation and structural elucidation of solomonamides

Theonella swinhoei, a marine sponge which belongs to Lithistida order sponges (Figure 1) is a rich source of biologically active compounds for many years, which include potent cytotoxic complex polyketides such as swinholide A and misakinolide $\mathrm{A},{ }^{1}$ antifungal aurantosides, ${ }^{2}$ sterols (swinhosterols, theonellasterols, solomonsterol A \& B). ${ }^{3}$ Peptides are most significant among the bioactive metabolites of Theonella swinhoei. Acyclic peptides such as polytheonamides, ${ }^{4}$ koshikamides A1 and A2, ${ }^{5}$ cyclic peptides, such as cyclotheonamides, ${ }^{6}$ ombamide, ${ }^{7}$ orbiculamide, ${ }^{8}$ keramamides, ${ }^{9}$ cupolamide, ${ }^{10}$ oriamide ${ }^{11}$ large-ring bicyclic peptides, such as theonellamides ${ }^{12}$ depsipeptides headed by theonellapeptolides, ${ }^{13}$ koshikamides A and B, ${ }^{14}$ nagahamide ${ }^{15}$ and glycopeptides, ${ }^{16}$ and perthamides $\mathrm{C}-\mathrm{F}^{17}$ (Figure 2). The extraordinary chemical diversity found in the metabolites of Theonella sponges may be partly due to the biosynthetic capability of bacteria that this sponge host. This hypothesis also has been supported in the case of omnamides, swinholide A, and theopederins.

Taxonomy
Kingdom: Animalia
Phylum : Porifera
Class : Demospongiae
Order : Lithistida
Family : Theonellidae
Genus : Theonella

Image source: http://www.dafni.com/spongia/Theonella_Levin_Large.jpg

Figure 1. Theonella swinhoei

Swinholide A, 3

Perthamide D, 7

Figure 2. Selected compounds isolated from Theonella $s p$.

Solomonamides A and B were isolated from Theonella swinhoei in early 2011 (collected from Solomon Islands), by Zampella's group from Italy (Figure 3). ${ }^{18 \mathrm{a}}$ Both the compounds were obtained by HPLC purification on a C-12 Jupiter proteo column with $20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}+0.1 \%$ of TFA as eluent. Solomonamide A was obtained in 6.2 mg as a white amorphous solid $\left([\alpha]^{25}{ }_{D}+2.3^{\circ}\left(\mathrm{c} 0.17, \mathrm{CH}_{3} \mathrm{OH}\right)\right.$) and solomonamide B was obtained in 3.6 mg as white amorphous solid $\left([\alpha]^{25}{ }_{\mathrm{D}}+4.8^{\circ}\left(\mathrm{c} 0.28, \mathrm{CH}_{3} \mathrm{OH}\right)\right)$.

Figure 3. Structures of solomonamides A and B

The gross structures of solomonamides were established by Marfey's method and advanced NMR spectroscopic methods. By Marfey's method, it was confirmed that both natural products contain amino acids L-Serine, D-Alanine, and Glycine. The non-amino acid fragment of solomonamide A was established by extensive 2D NMR studies and defined as 4-amino (2'-amino-4'-hydroxyphenyl)-3, 5-dihydroxy-2-methyl-6oxohexanoic acid 11 (ADMOA). The most challenging task of stereochemical assignment of the non-peptide unit of these compounds was carried out by QM J based analysis and DFT $J /{ }^{13} \mathrm{C}$ calculations. The HR-ESIMS of solomonamide B was 16 mass units lower than solomonammide A and comparison of 2D NMR data of the both the compounds revealed that in solomonamide B there is a methylene group at the $\mathrm{C}-5$ position of non-amino acid partner. Hence, the residue was named as 4-amino-6-(2'-amino-4'-hydroxyphenyl) -3-hydroxy-2-methyl-6-oxohexanoic acid $\mathbf{1 2}$ (AHMOA) (Figure 4).

ADMOA, 11
4-amino(2' -amino-4' -hydroxyphenyl) $-3,5$
-dihydroxy-2-methyl-6-oxohexanoic acid

AHMOA, 12
4-amino-6-(2' -amino-4' - hydroxyphenyl)
-3-hydroxy-2-methyl-6-oxohexanoic acid

Figure 4. Non-amino acid portions (key fragments) in solomonamide A and solomonamide B .

2.1.2 Biological activity of solomonamides

Solomonamide A showed potent anti-inflammatory activity in carrageenan induced mouse paw edema model. It was administrated immediately before the injection of carrageenan and after 24 h and paw volume was measured immediately before the injection and $2,4,6,24,48,72$ and 96 h thereafter, by using an hydropletismometer. The increase in paw volume was calculated (the difference between the paw volume measured at each time point and the basal paw edema). Solomonamide A was injected in three different doses $30,100,300 \mu \mathrm{~g} / \mathrm{kg}$ or vehicle (PEG) and it was observed that it

Image source: Adapted with permission from (Org. Lett. 2011, 13, 1532; SI). Copy right (2011)

Figure 5. Dose-dependent inhibition of carrageenan-induced paw edema by solomonamide $\mathrm{A}^{18 a}$
significantly reduced carrageenan-induced paw edema both in the $0-6 \mathrm{~h}$ and in $24-96 \mathrm{~h}$ as shown in Figure 5. A 60\% reduction of edema was observed in mice at the dose of 100 $\mu \mathrm{g} / \mathrm{kg}$ (i.p.). However, the closely related solomonamide B could not be tested due to the unavailability of natural product.

2.2. Inflammation

Inflammation is a protective response of our body to any external stimuli. It can be a response of the body to a damage or immune process. When a damage or wound takes place inflammation initiates the healing process, so it is a necessary process for the body. The process of inflammation need to be in control, otherwise, it can lead to severe consequences called inflammatory disorders, which comprises various diseases like asthma, allergies, autoimmune disorders, atherosclerosis, cancers, and rheumatoid arthritis. Inflammation is broadly classified into two types.

1. Acute inflammation: It is the immediate response of tissue to damage or injury. Acute inflammation is usually of short duration and occurs before the immune response is established. The primary aim of acute inflammation is to remove the injurious agent. It is often resolved shortly on its own but sometimes turns into chronic inflammation.
2. Chronic inflammation: Persistent infection for a prolonged time (weeks or months) leads to chronic inflammation. This can be caused by physical injury, infections like bacterial, viral, burns, chemical irritants, and many others. The main signs of inflammation are increased heat, redness, pain, swelling, and loss of function. There are many cells (Leukocytes, Monocytes, etc.) and proteins (bradykinin, plasmin, thrombin, factor XII etc.) involved in inflammation. Factors like Histamines, Nitric oxide (NO), prostaglandins, TNF-alpha, IL-1, IL-8, IFN- γ are also involved in mediating the inflammation. ${ }^{19}$

There are two types of medications available to treat inflammatory diseases.

1. Steroids
2. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs)

As the inflammation is responsible for several diseases listed above, working on antiinflammatory compounds will help to come up with new drug leads which can be further optimized and developed into drug candidates. Considering the potent biological activity and interesting structural features, total synthesis of solomonamides was initiated in our research group to come up with novel anti-inflammatory agents.

2.3. Reported approaches towards synthesis of solomonamide A

Solomonamides A and B were highlighted as part of a "Hot off the press" natural products review published by the Royal Society of Chemistry (RSC) in the month May, 2011 which indicates the importance of these molecules. ${ }^{18 \mathrm{~b}}$ The tremendous potential of solomonamides in treating inflammatory diseases prompted many synthetic groups, including our group to synthesize and evaluate them using appropriate biological assays. Although no total synthesis is reported till date, apart from reports from our lab ${ }^{20 a-d}$ there are only two approaches reported from Chandrasekhar group ${ }^{20 e, f}$ towards total synthesis. Before going to our work on this project, here we describe the efforts of Chandrasekhar group.

S. Chandrasekhar group approach

Immediately after the first publication from our group on the efforts towards total synthesis, Chandrasekhar group at the CSIR-Indian Institute of Chemical Technology, India, reported the synthesis of unusual γ-amino acid part of solomonamide A in the fully protected form. ${ }^{20 e}$ Their synthesis commenced from PMB- protected R-Roche ester 13, which was converted to epoxide 14 using simple functional group transformations. The epoxide $\mathbf{1 4}$ was opened regioselectively with NaN_{3} followed by protection of alcohol as TBS afforded compound 15, with three required stereocentres. Reduction of azide to amine (Staudinger conditions), after a few protection and deprotection steps and oxidation of one of the primary alcohol to aldehyde (DMP) afforded fragment 16. The aldehyde compound $\mathbf{1 6}$ was treated with Wittig salt 17 under basic conditions to afford compound 18 as $7: 3 E / Z$ diastereomeric mixture in 83% yields. The major E -
diastereomer was subjected to Sharpless asymmetric dihydroxylation using AD mix- β to afford dihydroxy compound followed by selective oxidation of benzylic alcohol using DMP, protection of remaining alcohol as TBS and removal of PMB gave compound 19 with all the four requisite stereocenters. Oxidation of primary alcohol in compound $\mathbf{1 9}$ to acid using Epp and Widlanski protocol (BAIB, TEMPO, $\mathrm{CH}_{3} \mathrm{CN}$) under neutral conditions resulted in desired unusual amino acid $\mathbf{2 0}$ in good yields.

Scheme 1. Synthesis of ADMOA
In summary, Chandrasekhar group accomplished the synthesis of ADMOA, an unusual γ amino acid fragment of solomonamide A in protected form. The synthesis was accomplished in 15 steps. The methyl stereocenter at C 2 was obtained from R-Roche ester, amino alcohol at C3 and C4 were introduced by regioselective opening of epoxide with NaN_{3}, and the remaining hydroxy group at C 5 was installed by Sharpless asymmetric dihydroxylation.

Very recently, Chandrasekhar group reported another approach ${ }^{20 f}$ for the synthesis of the same ADMOA fragment starting from D-glucose. In this route, the synthesis commenced from known furanose derivative 22 synthesized from D-Glucose, 21 by using literature
procedures. The alcohol in 22 was oxidized (PCC) to methyl ketone followed by one carbon homologation of the compound and diastereoselective hydroboration of the olefin in the presence of $9-B B N$ furnished furano alcohol 23, with $20: 1$ de in favor of the required isomer. The tosyl group at the 3^{\prime} position in 23 was removed using Na naphthalenide to give the diol followed by selective protection of the primary alcohol as TBDPS ether gave 24 in good yields. The alcohol in compound 24 was converted into azide compound 25 using a double inversion technique. The opening of 1,2-Oisopropylidene furan in 25 with EtSiH using $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ followed by protection of alcohol groups as TBS ether gave compound 26. The Reduction of azide to amine ($\mathrm{Zn} / \mathrm{NH}_{4} \mathrm{Cl}$)

Scheme 2. Second approach for the synthesis of ADMOA fragment
followed by treatment with $\mathrm{Cbz}-\mathrm{Cl}$ gave the compound 27 in good yields. The dithiane compound 27 was treated with $\mathrm{I}_{2} / \mathrm{NaHCO}_{3}$ to release free aldehyde 27 ' which underwent Grignard reaction with nitro aryl iodide 28 in the presence of PhMgCl (metal-halogen exchange) to furnish the diastereomeric alcohol $\mathbf{2 9}$ in 58% yield. Oxidation of $\mathbf{2 5}$ using Dess-Martin periodinane (DMP) followed by selective deprotection of the TBDPS group with $\mathrm{NH}_{4} \mathrm{~F}$ in methanol gave the compound 19 which was reported earlier by the same group. The compound 19 was converted into acid compound 17 in a similar manner to their previous approach (Scheme 1). Thus, the authors completed another synthesis of ADMOA fragment using a different approach. The synthesis was of total 15 steps from known compound and it is scalable.

2.4. Present work

The importance of macrocyclic compounds in drug discovery, potent anti-inflammatory activity of solomonamides and novel chemotype with interesting structural features prompted us to choose this target for the total synthesis and analogs synthesis followed by biological evaluation. Initially, it was planned to synthesize solomonamide B considering that it was not evaluated biologically. Various approaches were followed for the total synthesis, which are depicted below in detail.

2.4.1. Approach 1: Macrolactamization at aniline $-\mathrm{NH}_{2}$

The initial retrosynthetic analysis is compiled in Scheme 3. Solomonamide B, $\mathbf{1 0}$ was envisioned through pendant L-serine (30) ${ }^{21 a}$ coupling on macrocycle 31 in the end game. The macrocyclic compound could be obtained from the macrolactamization of amino acid 32, which can be easily accessed from the coupling of the dipeptide NH_{2}-D-Ala-GlyOMe $(\mathbf{3 3})^{21 \mathrm{~b}}$ to non-amino acid fragment 34 which in turn could be accessed from N acetyl m - anisidine 35 and key aldehyde fragment 36 using C-H activation reaction. The aldehyde $\mathbf{3 6}$ can be obtained from unnatural amino acid D-methionine (37) by functional group transformations.

Scheme 3. Retrosynthesis of solomonamide B

Before embarking on the synthesis of the actual molecule, it was decided to explore the feasibility of the strategy, particularly the macrolactamization at aniline. Accordingly, synthesis commenced with C-H activation reaction on N -acetyl m -anisidine $\mathbf{3 5},{ }^{22}$ with known aldehyde methyl 6-oxohexanoate $\mathbf{3 8}^{23}$ using a method developed by Knowng and co-workers ${ }^{24}$ to give desired keto compound 39 as a single regioisomer in 65% yield. Appearance of signals in the ${ }^{13} \mathrm{C}$ NMR spectrum at $\delta 202.7 \mathrm{ppm}$ corresponding to benzylic $-\mathrm{C}=\mathrm{O}$ and signals in the ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta 3.01-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.34$ $(\mathrm{m}, 2 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 4 \mathrm{H})$ corresponding to aliphatic chain confirmed the formation of desired compound 39. The regiochemistry of the obtained product was confirmed by the
coupling constants of the aromatic protons signals in the ${ }^{1} \mathrm{H}$ NMR spectrum at $8.42(\mathrm{~d}, J$ $=2.7 \mathrm{~Hz}, 1 \mathrm{Ha})$; meta coupling, $7.82(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{Hc})$; ortho coupling and $7.03(\mathrm{dd}, J$ $=2.7,9.0 \mathrm{~Hz}, 1 \mathrm{Hb})$; ortho and meta coupling. The coupling pattern supports the $1,3,5$ substitution on the aromatic ring. In addition to this, the HRMS (ESI) analysis showed a peak at $\mathrm{m} / \mathrm{z} 308.1491$ corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$with molecular formula $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}$ further confirmed the formation of the product 39.

After having the required non-amino acid fragment in hand, both ester and acetyl groups were deprotected using 4 N HCl in methanol under reflux conditions followed by coupling of dipeptide NH_{2}-Gly-D-Ala-OMe, $\mathbf{3 3}$ (synthesized from D-alanine ester, 40 and Boc-glycine $\mathbf{4 1}$ in a 2 step manner through the intermediacy of $\mathbf{4 2}$ by following literature procedures) ${ }^{21}$ afforded compound 43 . The ester $\mathbf{4 3}$ on hydrolysis using LiOH gave macrocyclization precursor 43' which was confirmed by the presence of a peak at $\mathrm{m} / \mathrm{z} 380.1816$ in HRMS (ESI) corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$with molecular formula

Synthesis of dipeptide partner

Scheme 4. Attempts toward the synthesis of macrocyclic skeleton of solomonamides
$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{~N}_{3}$. The crude compound was subjected to macrolactamization under various conditions listed in Table1. But, attempts to synthesize the macrocyclic compound 44 were not successful (Scheme 4). This can be explained by the poor basicity or nucleophilicity of the aryl $-\mathrm{NH}_{2}$, which is in an extended conjugation with the ortho acyl group (such as vinylogous amide) ${ }^{25}$ or intramolecular hydrogen bonding between aniline -NH and O-acyl carbonyl as shown in Figure 6.

Sl.No	Conditions	Observations
1	HATU, DIPEA, DMF,70 ${ }^{\circ} \mathrm{C}$	Complex reaction mixture
2	PyBop, DIPEA, toluene, $100{ }^{\circ} \mathrm{C}$	Complex reaction mixture
3	Mukaiyama reagent, DIPEA, toluene	Complex reaction mixture
4	Isobutyl chloroformate, NMM, THF	Complex reaction mixture

Table 1. Conditions tried for macrolactamization

Vinylogous amide

Figure 6. Possible explanation for the unsuccessful macrocyclization attempts

2.4.2. Approach 2: Macrolactamization at Gly-NH2

When macrolactamization at aniline $-\mathrm{NH}_{2}$ was not successful, attempts were diverted towards macrolactamization at Gly- NH_{2} position and carboxylic acid terminal from a non-amino acid partner. For this purpose compound 39 was treated with 4 N HCl in methanol in reflux condition, where both ester and N-acetyl got deprotected to give an acid, which was converted to methyl ester $\mathbf{4 5}$ using SOCl_{2} in MeOH . The dipeptide acid

46 was synthesized from hydrolysis of corresponding dipeptide ester 42 in 82% yields under basic condition (LiOH) using literature procedures. ${ }^{21}$ Despite several attempts listed in Table 2, no success was achieved in coupling the dipeptide acid $\mathbf{4 6}$ to amine $\mathbf{4 5}$ (Scheme 5).

\qquad

Scheme 5. Coupling of dipeptide 46 to 45

S.No	Conditions	Observations
1	HATU, DIPEA, DMF, rt $-100^{\circ} \mathrm{C}$	No Reaction
2	DCC, DMAP, DMF, rt $-100^{\circ} \mathrm{C}$	No Reaction
3	PyBOP, DIPEA, Toluene, $100^{\circ} \mathrm{C}$	No Reaction
4	Isobutyl chloroformate, NMM, THF, $40^{\circ} \mathrm{C}$	No Reaction
5	$\mathrm{~T}_{3} \mathrm{P}$, DIPEA, THF, rt-reflux	No Reaction

Table 2. Conditions tried for dipeptide (46) coupling
After several attempts, coupling of Fmoc-D-Ala-Cl $\mathbf{4 8}^{26}$ with amine $\mathbf{4 5}$ was successful using saturated NaHCO_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford alanine coupled compound 49 in 75% yield. The appearance of signals in the ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta 1.54(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$ and at δ 19.0 in ${ }^{13} \mathrm{C}$ NMR spectrum corresponding to alanine $-\mathrm{CH}_{3}$ confirmed the formation of
compound 49. In addition, the HRMS (ESI) analysis showed a peak at m/z 559.2439 corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$with a molecular formula $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{O}_{7} \mathrm{~N}_{2}$ further confirmed the formation of desired product 49. Next, deprotection of the Fmoc group in 49 was performed using piperidine. However, the desired compound 51 was not formed, instead, benzodiazepinone 50 was isolated in 93% yield (Scheme 6). The ${ }^{13} \mathrm{C}$ NMR spectrum displayed absence of signal for the carbonyl carbon at $\delta 200$ and HRMS (ESI) analysis showed a peak at 319.1653 corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$with molecular formula $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~N}_{2}$ confirmed the formation of benzodiazepinone $\mathbf{5 0}$. Although it is not the desired outcome, this method can be used for the synthesis of different benzodiazepinone derivatives, as this scaffold is a privileged structure in the field of medicinal chemistry.

50

Scheme 6. Formation of benzodiazepinones

There are several benzodiazepinone scaffold based compounds used as drugs and many are under biological evaluation. ${ }^{27,28}$ For example, Devazepide, 52, is a CCKA (Cholecystokinin A) receptor antagonist, used for the treatment of gastrointestinal problems such as gastroparesis, dyspepsia, and gastric reflux. Lorazepam, 53, used to treat anxiety disorders. It reduces anxiety, agitation, and induces sleep. The benzodiazepinone scaffold is also found as neurokinin-1 antagonists, 54, enzyme inhibitors such as κ-secretase inhibitors, 55, and farnesyl protein transferase inhibitors
like compound 56, and ion channel ligands such as compound 57 (delayed rectifier $\mathrm{K}+$ current modulator) (Figure 8). ${ }^{27}$

Devazepide
CCK-A antagonist

55
κ - Secretase inhibitor

Neurokinin-1 antagonist

Farnesyl-Protein Transferase inhibitor

Delayed rectifier K^{+} current modulator

Figure 8. Representative examples for benzodiazepinone scaffold with biological activities

To avert the problem of benzodiazepinone formation, the ketone present in compound 39 was protected with propanedithiol in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ to give thioketal 58 in 89% yield. At this stage, the coupling of dipeptide Boc-Gly-D-Ala-OH (46) was attempted on compound 58 considering that the protection of ketone removed the vinylogous amide character. Nevertheless, the coupling of dipeptide was not successful. Hence, the compound 58 was transformed to compound 59 in a two-step process (deacetylation followed by coupling of Fmoc-D-Ala-Cl). Deprotection of Fmoc group in piperidine condition gave the desired free amine 60, which was coupled with Boc-Gly$\mathrm{OH}(41)$ to produce 61 . Hydrolysis of compound 61 furnished the acyclic precursor 62 in good yields. The crude acyclic amino acid resulting from Boc deprotection was subjected to the key macrolactamization using HATU followed by thioketal deprotection under standard conditions $\left(\mathrm{HgO}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\right)$ resulted in the formation of the macrocyclic core of
solomonamides, 44 (Scheme 7). Appearance of signals in the ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta 4.54$ $(\mathrm{d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H})$ corresponding to $\mathrm{Gly}-\mathrm{CH}_{2}$ (characteristic peaks for macrocycle, same was observed in natural product) confirms the macrocyclization. The signals in the ${ }^{13} \mathrm{C}$ NMR spectrum at $\delta 203.3$ corresponding to benzylic $-\mathrm{C}=\mathrm{O}$ confirms the thioketal deprotection. HRMS (ESI) analysis showed a peak at $\mathrm{m} / \mathrm{z} 362.1713$ corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$with molecular formula $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N}_{3}$ further confirmed the gross structure of macrocycle 44 as shown in Scheme 7.

89\%

1. 30% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Scheme 7. Synthesis of macrocyclic core of solomonamide B

2.4.3. Efforts toward the total synthesis of solomonamide B

After the successful completion of the synthesis of model macrocyclic core, 44, the next objective was to synthesize the natural product solomonamide B, 10. For this purpose, aldehyde fragment with requisite stereochemistry is needed to perform the key $\mathrm{C}-\mathrm{H}$ activation reaction. The synthesis commenced with the conversion of D-methionine (37) to Boc-protected D-homoserine lactone (63) in two steps by following literature procedures. ${ }^{29 \mathrm{a}}$ The lactone in compound $\mathbf{6 3}$ was opened with N, O-dimethyl hydroxyl amine hydrochloride in the presence of AlCl_{3}, pyridine to provide Weinreb amide with terminal alcohol, which was found to be unstable thus, immediately protected as TBS ether 64. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and optical rotation values were compared with the literature values and found to be identical. ${ }^{29 a}$ It is worth noting that previously, this particular transformation (lactone opening) was carried out by using AlMe_{3} which is a pyrophoric and expensive reagent. ${ }^{29 b}$ Here, it was accomplished using relatively less pyrophoric and cheaply available AlCl_{3}. Later, the Weinreb amide $\mathbf{6 4}$ was reduced to an aldehyde $\mathbf{6 5}{ }^{30}$ by treating with LiAlH_{4} at $0{ }^{\circ} \mathrm{C}$ for 1 h . The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and optical rotation values were compared with the literature values and found to be identical. ${ }^{30}$ The aldehyde $\mathbf{6 5}$ on reaction with crotyl bromide/ CrCl_{2} underwent Nozaki-Hiyama-Kishi type of reaction to afford compounds 66 and 67 in a $2: 1$ diastereomeric ratio. ${ }^{31}$ Appearance of signals in the ${ }^{13} \mathrm{C}$ NMR spectrum at $\delta 115.8,141.0 \mathrm{ppm}$ in compound $\mathbf{6 6}, \delta 115.7,141.0 \mathrm{ppm}$ in compound 67 corresponding to alkene carbons and appearance of signals in the ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta 1.01(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$ corresponding to $-\mathrm{CH}_{3}$ and $\delta 5.84-5.82(\mathrm{~m}, 1 \mathrm{H})$, 5.09-5.05 $(\mathrm{m}, 2 \mathrm{H})$ corresponding to terminal olefin in compound 66 and $\delta 1.03(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H})$ corresponding to $-\mathrm{CH}_{3}$ and $\delta 5.83-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.08(\mathrm{~m}, 2 \mathrm{H})$ corresponding to terminal olefin in compound 67 indicated the gross structures of compounds 66 and 67 as drawn. In addition, the HRMS (ESI) analysis showed a peak at m/z 374.2718 for compound 66 and peak at $\mathrm{m} / \mathrm{z} 374.2717$ for compound 67 corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$with molecular formula $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{NSi}$ which further confirmed the formation of desired products 66 and 67 (Scheme 8).

Scheme 8. Synthesis of key fragment

The next task was to confirm the stereochemistry of the obtained compounds, one of the methods to confirm the relative stereochemistry of the amino alcohol is converting into corresponding oxazolidinones and measuring the corresponding coupling constants. It was documented in the literature that the coupling constant $2-5 \mathrm{~Hz}$ indicates syn and 6-8 Hz indicates anti stereochemistry. ${ }^{31 a}$ Accordingly, both the isomers 66 and 67 were converted into their corresponding oxazolidinones 66' and 67' using NaH, THF reflux condition in very good yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 6}$ ', C5 attached proton was merged with C 7 attached protons and appeared at $\delta 3.70-3.64(\mathrm{~m}, 3 \mathrm{H}), \mathrm{C} 4$ attached proton was observed at $4.15(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$. The coupling constant of C 4 confirmed the stereochemistry of the 66' which in turn confirmed that the major compound 66 is required isomer with $3 R, 4 R, 5 R$ stereochemistry. The stereochemistry was further confirmed by X-ray crystal structure analysis of carbamate 66'. Similarly, In ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 7}{ }^{\prime}$ the appearance of a peak at $\delta 4.32(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H})$ corresponding to C 4 attached proton confirmed the stereochemistry $6{ }^{\prime}$ which in turn confirmed the stereochemistry of compound 67 as $3 R, 4 S, 5 R$ (Scheme 9).

Scheme 9. Confirmation of stereochemistry of compounds 66 and 67

It is also worth noting that the unrequired isomer 67 was converted into required isomer 66 by inverting the - OH stereocenter using Mitsunobu protocol. The compound 67 was treated with p-nitrobenzoic acid (PNBA) in the presence of DIAD, TPP afforded 68 in 69% yield. The appearance of ${ }^{1} \mathrm{H}$ NMR signal in aromatic region $\delta 8.13-8.40(\mathrm{~m}, 4 \mathrm{H})$, and in ${ }^{13} \mathrm{C}$ NMR spectrum, signal at $\delta 164.4$ confirmed the coupling of p-nitrobenzoic acid. The compound 68 on hydrolysis (LiOH) afforded compound $\mathbf{6 6}$ in 86% yield. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and optical rotation values were compared with initially synthesized compound and found to be identical (Scheme 10).

Scheme 10. Conversion of compound 67 to 66

Once the stereochemistry was established, the silyl protection of primary alcohol (TBS) in compound 66, was detached using TBAF to afford alcohol 69. The disappearance of NMR signals $\left({ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}\right)$ related to TBS group and MS value confirmed the structure of 69. The alcohol present in 69 was oxidized to the aldehyde using Dess-Martin periodinane (DMP) to afford an aldehyde 70 in 78% yields, the product was confirmed by the appearance of a signal at $\delta 9.78 \mathrm{ppm}$ in ${ }^{1} \mathrm{H}$ NMR which corresponds to aldehyde moiety. ESI-HRMS showed a peak at 184.0970 corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$with molecular formula $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~N}$ further confirmed the desired product formation. After synthesizing the desired aldehyde, 70, it was subjected to C-H activation reaction with m - anisidine, 35, under similar and optimized conditions (cat Pd (TFA) 2 , TBHP). However, it was observed that the aldehyde got decomposed and the desired product 71 was not observed (Scheme 11).

Scheme 11. C-H activation reaction

To circumvent the stability problem of the aldehyde, a completely different strategy using photochemistry was planned. For that purpose, the alcohol 69 was transformed to acid 72 using Jones oxidation followed by coupling with m-anisidine 73 with the help of DCC, HOBt to afford amide compound 74 in 86% yield. To migrate the acyl group in compound 74, to its ortho position to get desired non-amino acid fragment 75 photo-Fries rearrangement was chosen. The compound $\mathbf{7 4}$ was subjected to photolysis under the Hg vapor lamp (254 nm) 15 w x 2 bulbs, at 0.1 M concentration in ACN afforded
compounds 75 and $\mathbf{7 5}^{\prime}$, as an inseparable regioisomeric mixture in 3:2 ratio and in less yield ${ }^{32}$ (Scheme 12). In ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum two sets of signals were observed which confirms the mixture of two compounds. In ${ }^{13} \mathrm{C}$ NMR spectrum the appearance of a signal at $\delta 201.4,197.3 \mathrm{ppm}$ corresponding to benzylic $-\mathrm{C}=\mathrm{O}$ of two compounds confirmed the migration of acyl group. The product was further confirmed by the observance of ESI- HRMS peak at 305.1493 corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$with molecular formula $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~N}_{2}$. Although migration of the acyl moiety through photo-Fries rearrangement was successful, the reaction suffered from poor regioselectivity and low yields. It was believed that replacement of phenolic methyl with bulky groups like TBS or TIPS may induce steric hindrance which ultimately may avoid the formation of another regioisomer.

Scheme 12. Photo-Fries rearrangement

Accordingly, the acid component 72 was coupled with the known TIPS protected m -amino-phenol $\mathbf{7 6}^{33}$ to afford compound $\mathbf{7 7}$ in 87% yield. The compound $\mathbf{7 7}$ on photoFries rearrangement afforded the desired isomer 78 as major compound. After several trials mentioned in Table 3, the yields were improved up to 36% using a 16 W bulb, 0.0015 M concentration in ACN and stirring for 5 h . The appearance of signals in the ${ }^{13} \mathrm{C}$ NMR spectrum at $\delta 197.3$ corresponding to benzylic $-\mathrm{C}=\mathrm{O}$ confirmed the migration of carbonyl group to give desired compound 78. The regiochemistry of the obtained product
was confirmed by the coupling constants of the aromatic protons signals in the ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta 7.49(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$; ortho coupling, $6.19(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, 1 \mathrm{H})$; ortho and meta coupling and $6.10(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$ meta coupling. The coupling pattern supports the $1,2,5$ substitution on an aromatic ring. In addition to this, the ESIHRMS analysis showed a peak at $\mathrm{m} / \mathrm{z} 447.2673$ corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$with molecular formula $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$ further confirmed the formation of desired product 78. The other regioisomer 79 was obtained as minor product and was easily separated by column chromatography. The regiochemistry of the compound $\mathbf{7 9}$ was confirmed by the coupling constants of the aromatic proton signals in the ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta 7.03(\mathrm{t}, J=7.93$ $\mathrm{Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=7.93 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=7.93 \mathrm{~Hz}, 1 \mathrm{H})$, the coupling pattern supports the $1,2,3$ substitution on the aromatic ring. After having the desired compound 78 in hand, it was subjected to oxidative cleavage $\left(\mathrm{OsO}_{4}, \mathrm{NaIO}_{4}\right)$ to give an aldehyde followed by Pinnick oxidation to afford corresponding acid $\mathbf{8 0}$ in 61% over two steps. Thus, the key fragment AHMOA of solomonamide B in a protected form was prepared (Scheme 13).

Scheme 13. Synthesis of 4-amino-6-(2'-amino-4'-hydroxyphenyl)-3-hydroxy-2-methyl6 -oxohexanoic acid residue (AHMOA).

S. No	Conc. of Reaction mix.	U.V lamp	Time	\% of Yield (Required)	\% of Yield (Unrequired)
1	0.1 M	$15 \mathrm{~W} \times 2$	16 h	Poor conversion	Not observed
2	0.1 M	$8 \mathrm{~W} \times 2$	24 h	10% conversion	Not observed
3	0.0015 M	80 W	8 h	18%	$<5 \%$
4	0.0015 M	80 W	6 h	20%	$<5 \%$
5	0.0015 M	80 W	5 h	30%	$<5 \%$
6	0.0015 M	80 W	4 h	25%	$<5 \%$
7	0.0015 M	80 W	3 h	22%	$<5 \%$
8	0.0015 M	16 W	3 h	25%	$<5 \%$
9	0.0015 M	16 W	4 h	29%	$<5 \%$
10	0.0015 M	16 W	5 h	$36 \%(42 \%$	$<5 \%$
$\mathrm{brsm})$					

Table 3. Optimization study of photo-Fries rearrangement.

Next, the coupling of the dipeptide fragment was initiated. The first step was the protection of the benzylic carbonyl group of $\mathbf{7 8}$ as thioketal $\mathbf{8 1}$ to avoid the benzodiazepinone formation in later steps (as we encountered the problems previously; see Scheme 6). However, the protection of carbonyl moiety through dithiane was not successful under the previously optimized condition $\left(\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\right.$, and 1,3 propane dithiol $)$. This may be because of the steric hindrance of rigid oxazolidinone moiety. (Scheme 14)

Scheme 14. Protection of keto group
Next, the Fmoc-D-Ala-Cl was coupled to 78 in optimized condition to afford compound 82 in 68% yield. To avoid benzodiazepinone formation, the carbonyl group in compound 82 was reduced using NaBH_{4} to give compound $\mathbf{8 3}$ as a diastereomeric mixture, where
the Fmoc protecting group also got deprotected. As we need to convert alcohol to ketone at a later stage, we did not put efforts to understand the stereochemical outcome of the reaction. The crude alcohol mixture was taken forward and coupled with NHBoc-Gly-OH under EDC, HOBt conditions followed by subsequent oxidation (DMP) to afford the compound 84 in 65% yield over 3 steps. The appearance of the signal at $\delta 1.47(\mathrm{~s}, 9 \mathrm{H})$ corresponding to the ${ }^{t} \mathrm{Bu}$ of Boc protecting group in ${ }^{1} \mathrm{H}$ NMR spectrum confirmed the coupling of Boc-Gly-OH and in ${ }^{13} \mathrm{C}$ NMR presence of a signal at $\delta 202.1 \mathrm{ppm}$ corresponding to benzylic carbonyl group indicated the formation of required compound. HRMS (ESI) analysis of compound $\mathbf{8 4}$ showed a peak at $\mathrm{m} / \mathrm{z} 675.3782$ corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$with molecular formula $\mathrm{C}_{34} \mathrm{H}_{55} \mathrm{~N}_{4} \mathrm{O}_{8}$ Si further confirmed the formation of desired compound 84. The Compound 84 on oxidative cleavage followed by Pinnick oxidation gave macrocyclization precursor 85, which was confirmed by mass analysis and Boc deprotection followed by macrolactamization under optimized conditions (HATU, $\mathrm{Et}_{3} \mathrm{~N}$) gave the desired macrocycle 86 in very poor yield (Scheme 15). The ${ }^{1} \mathrm{H}$ NMR data indicated the gross structure as drawn. HRMS (ESI) analysis of compound $\mathbf{8 6}$ showed a peak at $\mathrm{m} / \mathrm{z} 575.2903$ corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$with molecular formula $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Si}$ further confirmed the formation of desired macrocyclic compound 86 (Scheme 14). Although macrocyclic compound was synthesized with all the required stereochemistry, we could not go forward using this route because of following reasons. (1) Lack of sufficient quantities, (2) poor yields in the final step, (3) purification problems, (4) failed attempts to open the carbamate for the further transformations and also (5) a long synthetic sequence made us explore other alternatives. Thus, for the completion of the total synthesis, there was a need to come up with another approach where all these issues can be solved to complete the total synthesis. Accordingly, a new strategy was planned and the details are described in the following sections.

Scheme 15. Synthesis of the macrocyclic skeleton of solomonamide B with desired stereochemistry.

2.4.4. Approach 3: Macrocyclization using intramolecular Heck reaction

In the revised approach, both the natural products were planned from a common macrocyclic intermediate 87. Solomonamide B was planned through Wacker oxidation
from the key macrocycle 87. At the same time, solomonamide A was planned through dihydroxylation followed by chemoselective benzylic oxidation in the key macrocycle. The macrocycle 87 was envisaged from the intramolecular Heck reaction of acyclic precursor 88. The compound 88 could be readily synthesized from appropriate intermediates, dipeptide derivative 89 and acid fragment 90 . The compound 90 can be synthesized from compound 69 which was previously prepared (Scheme 16).

Solomonamide A, 9

Solomonamide B, 10

Scheme 16. Revised retrosynthetic analysis

In this approach, the first target was to synthesize the acid fragment $\mathbf{9 0}$ from previously synthesized compound 69. If the transformation is performed by employing conventional routes it requires multiple steps (first olefin end has to be converted into the corresponding acid, and acid should be protected as an ester or any other, then alcohol at the other end has to be converted into olefin). The general methods to convert terminal olefins to the corresponding acids are 1) oxidative cleavage using $\mathrm{OsO}_{4}, \mathrm{NaIO}_{4}$ followed by Pinnick oxidation 2) Oxidative ozonolysis reaction. The general methods for the conversion of alcohols to an alkene are 1) Chugaev elimination 2) pyrolysis 3) treating with strong acids ${ }^{34}$ and 4) Grieco elimination. ${ }^{35}$ Grieco elimination is a mild method to convert the alcohol to the corresponding olefin. In this method, the alcohol is first converted into corresponding phenyl/ aryl selenide, which on oxidation to selenoxide using $\mathrm{H}_{2} \mathrm{O}_{2}$ or m-CPBA or ozonolysis ${ }^{36,37}$ undergoes syn elimination to afford olefin with the expulsion of selenol. Considering multi-utility of ozonolysis reaction in various functional group transformations, ${ }^{38}$ a method to produce olefinic esters was developed from corresponding alkenols using a two-directional approach which is depicted below.

Breaking and making of olefins simultaneously

A general outline of the developed method is outlined in Scheme 17. First, conversion of alkenol A to the corresponding arylselenide B using $o-\mathrm{NO}_{2} \mathrm{PhSeCN}, \mathrm{Bu}_{3} \mathrm{P}$ followed by

Scheme 17. General synthetic approach for the conversion of alkenol to olefinic ester
ozonolysis in methanolic NaOH solution to produce the desired olefinic ester C , which forms through the intermediate selenoxide B^{\prime}.

As per the plan, the compound, 69 was converted into corresponding alkenyl aryl selenide 91 using $o-\mathrm{NO}_{2} \mathrm{PhSeCN}, \mathrm{Bu}_{3} \mathrm{P}$ in 95% yield. Ozonolysis of compound 91 at -78 ${ }^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 5 equiv of 2.5 M methanolic NaOH followed by stirring the reaction mixture at room temperature for $3-4 \mathrm{~h}$ furnished the desired olefinic ester 92 in 15% yield (scheme 18). The ${ }^{1} \mathrm{H}$ NMR displayed the absence of the signals in $\delta 7-9 \mathrm{ppm}$ corresponding to aromatic protons confirms the elimination of selenium and on the other hand, the appearance of signals at 5.86 (ddd, $J=7.3,10.0,17.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.41-5.25$ (m, $2 \mathrm{H})$ confirms the formation of terminal olefin. The signal at $3.71(\mathrm{~s}, 3 \mathrm{H})$ corresponding to ester $-\mathrm{CH}_{3}$ in ${ }^{1} \mathrm{H}$ NMR and appearance of $\delta 172.7 \mathrm{ppm}$ in ${ }^{13} \mathrm{C}$ NMR corresponding to ester carbonyl further confirms the desired product formation. ESI- HRMS of the compound 92 has shown the peak at 200.0916 corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$with molecular formula $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~N}$ further confirmed the formation of required compound.

Scheme 18. Breaking and making of olefins simultaneously

For the improvement in yield, compound 91 was protected as Boc to give compound $\mathbf{9 3}$, which on ozonolysis afforded desired olefinic ester 94 in 75% yield. Hydrolysis of ester 94 under basic conditions (LiOH) afforded α, β unsaturated ester 95 as a major compound and desired acid 90 in a minor quantities. The compound 95 was confirmed by the shift of ${ }^{1} \mathrm{H}$ NMR signal at $\delta 1.26(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$ to a signal at $\delta 1.92(\mathrm{~s}, 3 \mathrm{H})$ corresponding to $-\mathrm{CH}_{3}$ and appearance of signal at $\delta 6.50(\mathrm{~d}, J=8.80 \mathrm{~Hz}, 1 \mathrm{H})$ corresponding to internal olefinic -CH . HRMS (ESI) has showed the peak at 278.1359 corresponding to $[\mathrm{M}+\mathrm{Na}]^{+}$ with molecular formula $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{NNa}$ further confirmed the formation of compound 95 .

The acid 90 was confirmed by the presence of a signal at $1.25(\mathrm{~d}, J=6.95 \mathrm{~Hz}, 3 \mathrm{H}), 2.56-$ $2.75(\mathrm{~m}, 1 \mathrm{H})$ corresponding to methyl at C 2 and and disappearance of 3.71 (s, 3H) corresponding to ester $-\mathrm{CH}_{3}$ in ${ }^{1} \mathrm{H}$ NMR spectrum (Scheme 19).

Scheme 19. Attempts toward the synthesis of key fragment 90
The compound 95 was obtained form 94 with a loss of $-\mathrm{CO}_{2}$. So, we thought that the removal of carbamate followed by ozonolysis will solve this problem. Accordingly, amino alcohol 96 was synthesized from compound 93 under basic conditions $\left(\mathrm{Cs}_{2} \mathrm{CO}_{3} / \mathrm{MeOH}\right)$ (during deprotection 21% of compound 91 also formed). The compound 96 on ozonolysis in methanolic NaOH afforded ester 97 in moderate yield. The ester upon hydrolysis in basic condition (LiOH) gave the desired acid fragment 90 in quantitative yield without any eliminated product as expected (Scheme 20).

Scheme 20. Synthesis of key fragment 90

Encouraged by the success of this reaction (simultaneous cleavage and formation of double bonds) on three compounds $\mathbf{9 1}, \mathbf{9 3}$, and 96 it was decided to expand the scope of the method. Accordingly, various examples were picked up and all the results are compiled in the Table 4 below. In the first example, β-citronellol 1a was transformed into corresponding olefinic ester 1c, a known intermediate in the synthesis of myxobacterial pheromone, reported by Mori et al. where they have reported the synthesis in six steps (Figure 8). ${ }^{39}$ It is important to note that corresponding carboxylic acid of $\mathbf{1 c}$ was used in natural product synthesis by different groups. ${ }^{40}$

Figure 8. Reported synthetic sequence for the synthesis of 1c by Mori et al.
Undecenol 2a was converted to corresponding selenide $\mathbf{2 b}$ followed by ozonolysis afforded olefinic ester 2c in good yield. Alkenol 3a was synthesized by O-alkylation on ethylene glycol with decenyl bromide and converted to selenide 3b, followed by ozonolysis, afforded O-vinyl ester 3c. It is worth highlighting that vinyl ethers are difficult to prepare under mild conditions. ${ }^{41}$ Triazole compound $\mathbf{4 a}$, obtained by click reaction between 3-butynol and the corresponding azide, was converted to 4-vinyl-1,2,3triazole derivative $\mathbf{4 c}$, an important building block in the new class of polymers. ${ }^{42}$

Figure 9. Polymerization of 1-Octyl-4-vinyl-1,2,3-triazole

For example, a polymer such as II, was synthesized from its corresponding monomer 1-Octyl-4-vinyl-1,2,3-triazole, I by Craig J. Hawker group. This polymeric material was having unique physical properties, with many attractive features. ${ }^{42 \mathrm{a}}$ Similarly, aromatic alkenol $5 \mathbf{a}$ was converted in to $\mathbf{5 c}$. The reaction worked well with the (-)-nopol $\mathbf{6 a}$, which is having an internal olefin to afford cyclobutyl derivative $\mathbf{6 c}$ with fixed stereochemistry in good yields. Alkenols 7a, 8a, and 9a were synthesized by the opening of N-Boc-Lhomoserine lactone ${ }^{29}$ with allylamine, N-methyl allylamine, and diallyl amine, respectively. These compounds on conversion to the corresponding selenides followed by ozonolysis afforded the desired dipeptide vinyl Gly-Gly derivatives (7c, 8c and 9c) which can be used in peptide research. As can be seen from the literature, vinyl glycine derivatives are generally prepared from methionine derivatives using high temperatures and they often suffer from the side products formation due to the migration of the double bond. ${ }^{43}$ The present method is useful for the synthesis of vinyl glycine derivatives without any migration. Further, to increase the scope, compound 10a ${ }^{44}$ having an electron donating group (methyl) and compound 11a having an electron withdrawing group (ester) at the beta position, were synthesized. The compounds 10a and 11a were coverted into corresponding selenium compounds 10b and 11b, which on ozonolysis afforded corresponding olefinic esters 10c and 11c in good yields. It was observed that reaction was faster in the case of 11a which demonstrates that an electron withdrawing group enhances the rate of the reaction.

Towards the completion of total synthesis of solomonamide B, the required dipeptide fragment 89 was synthesized from the coupling of 2-iodo-5-methoxy aniline $\mathbf{9 8}^{45}$ and dipeptide NHBoc-Gly-D-Ala-OH (56) in 63% yield using HATU as amide coupling reagent. The appearance of signals in ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta 3.65(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 2 \mathrm{H})$, corresponding to $\mathrm{Gly}-\mathrm{CH}_{2}$ and $1.38\left(\mathrm{~s}, 12 \mathrm{H}\right.$, alanine $-\mathrm{CH}_{3}$ and $\left.\mathrm{Boc}-{ }^{\mathrm{t}} \mathrm{Bu}\right)$ and the presence of signals at $\delta 171.5,169.9$ in ${ }^{13} \mathrm{C}$ NMR spectrum corresponding to amide carbonyl groups confirmed the dipeptide coupling. HRMS (ESI) has shown the peak at 500.0648 corresponding to $[\mathrm{M}+\mathrm{Na}]^{+}$with molecular formula $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{INa}$ confirmed the desired product formation. After having both the fragments in hand, the Boc

2a

$6 a$

alkenyl aryl selenide, B (yield \%)

3b (88\%)

5b (92\%)

olefinic ester, C (yield \%)

6c (86\%)

Table 4: Scope of the method
protecting group in compound $\mathbf{8 9}$ was removed using 20% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by coupling of acid 90 (synthesized from hydrolysis of 97) in the presence of HATU,

DIPEA afforded macrocyclization precursor $\mathbf{8 8}$ in 76% yield. All the spectral data is in agreement with the assigned structure. Intramolecular Heck reaction was chosen for the cyclization and after several attempts the cyclization was achieved using $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Et}_{3} \mathrm{~N}$ under dilute conditions (0.002 M conc.), to furnish the macrocycle 87 in 42% yield with exclusive trans double bond. The appearance of signals in the ${ }^{1} \mathrm{H}$ NMR spectrum at δ $6.62(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.01-5.90(\mathrm{~m}, 1 \mathrm{H})$ indicated the presence of 1,2 -substituted double bond and confirmed the formation of the macrocycle. In addition to this, the HRMS (ESI) analysis showed a peak at $\mathrm{m} / \mathrm{z} 513.2311$ corresponding to $[\mathrm{M}+\mathrm{Na}]^{+}$with molecular formula $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{~N}_{4} \mathrm{Na}$ further confirmed the formation of desired macrolide 87. It is noteworthy to mention that macrocyclizations using Heck reactions are very rare in the literature, ${ }^{46}$ in particular, on this type of macrocyclic scaffolds. The synthesized compound 87 represents the complete macrocyclic core of the solomonamides with all the requisite stereochemistry pattern. As per the planned strategy, deprotection of Boc group in macrocycle $\mathbf{8 7}$ followed by coupling of the serine derivative $\mathbf{9 9}^{47}$ gave the desired compound $\mathbf{1 0 0}$ in 83% yield. The presence of signals correspond to serine moiety in the product indicates the formation of the desired product. The next task was to introduce oxygen functionality at the benzylic carbon. After a few trials, it was possible. The double bond present in compound $\mathbf{1 0 0}$ was subjected to Wacker-type oxidation ${ }^{48}$ using $\mathrm{Pd}(\mathrm{OAc})_{2}$ as a catalyst and CuCl as co-catalyst in $\mathrm{DMF} /$ water, under O_{2} atmosphere to furnish the macrocyclic ketone 101 in good yield (Scheme 21). The pleasing outcome of the reaction was the observed exclusive regioselectivity. In the same reaction condition, the unwanted TBS also got deprotected which was confirmed by disappearace of the signal in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ at $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H})$ and 26.2, -5.0 respectively corresponding to silyl attached dimethyl and tert-butyl. The signal at $\delta 201.1$ in ${ }^{13} \mathrm{C}$ NMR spectrum confirmed the formation of benzylic - C=O and HRMS (ESI) analysis showed a peak at $\mathrm{m} / \mathrm{z} 616.2589$ corresponding to $[\mathrm{M}+\mathrm{Na}]^{+}$with molecular formula $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{O}_{10} \mathrm{~N}_{5} \mathrm{Na}$ further confirmed the formation of 101. It is worth mentioning that oxidation of substituted double bond in a macrolide ring is the first of this kind. As this transformation is interesting, it was decided to explore further on the scope of the
reaction. Accordingly, the reaction on six different macrocycles was attempted under the same conditions (Scheme 22).

Scheme 21: Efforts toward solomonamide B

Macrocyclic compounds 87,104 , and 106 underwent Wacker oxidation smoothly with complete regioselectivity and afforded the expected keto compounds $\mathbf{1 0 3}, 105$, and 107, respectively. Whereas, macrocyclic compounds $\mathbf{1 0 8}, \mathbf{1 1 0}$ and $\mathbf{1 1 2}^{20 b}$ did not undergo the reaction to produce the oxidized compounds (Scheme 19). These experimental results indicate that the presence of homoallylic alcohol is essential for the desired transformation. Probably, the success of the reaction on selected macrocycles can be explained by the OH group co-ordination with a double bond through a Pd species
(Figure 9). ${ }^{49}$ (Note: The compounds $\mathbf{1 0 4}$ and $\mathbf{1 0 6}$ were synthesized in the later part of the synthesis, for understanding purpose shown here)

$\mathrm{PdCl}_{2}, \mathrm{CuCl}, \mathrm{O}_{2}$
DMF-water $60^{\circ} \mathrm{C}$

Scheme 22: Scope of Wacker oxidation

Figure 9. Plausible mechanism for hydroxyl-directed wacker oxidation

The only task left for the completion of the total synthesis was deprotection of phenolic methyl group. Despite a few trials under various conditions shown in scheme 19, this transformation could not be achieved at final stages on compound $\mathbf{1 0 1}$ or any of the intermediate stages 87 and 100. Finally, exposure of compound 101 to 10% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and evaporation of solvent furnished solomonamide B methyl ether $\mathbf{1 0 2}$ in quantitative yield (Scheme 23). The disappearance of signals related to Boc protecting group in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectrum confirmed the Boc deprotection. HRMS (ESI) analysis showed a peak at $\mathrm{m} / \mathrm{z} 494.2245$ corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$with molecular formula $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{~N}_{5}$ further confirmed the formation of compound $\mathbf{1 0 2}$.

Scheme 23: Synthesis of phenol protected solomonamide B

The synthesized compound $\mathbf{1 0 2}$ represents the complete structure of solomonamides with the requisite stereochemistry pattern and desired functionalities. Thus, the total synthesis of solomonamide B was achieved in protected form.

2.4.5. Change of protecting group and completion of solomonamide B synthesis

An appropriate protecting group was needed to circumvent the problem of deprotection of phenolic methyl group.It was decided to go with benzyl protection because it could be deprotected under mild and neutral conditions such as hydrogenation. Accordingly, aniline derivative 114^{50} was prepared by following literature procedures in which phenolic hydroxy group was protected with a benzyl group. Then it was coupled with the dipeptide, Boc-Gly-D-Ala-OH (56) to obtain compound 115 in 59\% yield (Scheme 24).

Scheme 24: Synthesis of dipeptide fragment with benzyl protection
At the same time, another approach was developed for the synthesis of non- amino acid partner to improve the overall efficiency of our total synthesis. The amino acid Dmethionine was converted to corresponding Weinreb amide 117, through the intermediate 116. Then, it was reduced to aldehyde 118 by following literature procedures. ${ }^{51}$ The aldehyde 118 on Brown crotylation reaction using (+)-(B)-E- crotyldiisopinocamphenyl borane afforded compound $\mathbf{1 1 9}$ with desired stereochemistry in 61% yield as a single isomer. The stereochemistry was assigned based on literature reports. ${ }^{52}$ The amino alcohol in compound $\mathbf{1 1 9}$ was protected as acetonide to give the compound $\mathbf{1 2 0}$ in very good yield. The compound $\mathbf{1 2 0}$ on ozonolysis (in methanolic NaOH) followed by refluxing in 1,2-dichloro benzene ${ }^{53}$ afforded olefinic ester $\mathbf{1 2 1}$ in 46% yield for 2 steps. Deprotection of acetonide in compound $\mathbf{1 2 1}$ using CSA/MeOH afforded compound 97 in 81% yield based on recovered starting material. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and rotation values
are identical with the previously synthesized compound 97 . The compound 97 on hydrolysis afforded acid compound 90 in quantitative yield (Scheme 25).

Scheme 25. Alternate approach for the synthesis of non-amino acid fragment

In previous approach and present approach, ozonolysis reaction and ester hydrolysis reactions were carried out under basic conditions. Although we were confident that there will not be any epimerization in reaction condition based on literature precedence, to avoid ambiguity in final stages the approach was slightly modified. The compound $\mathbf{1 2 0}$ on reductive ozonolysis $\left(\mathrm{O}_{3}, \mathrm{NaBH}_{4}\right){ }^{54}$ followed by refluxing in 1,2 dichlorobenzene afforded alkenol 122 in 52% yield over 2 steps. The appearance of signals in ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta 5.76-5.57(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H})$ and signals at 138.0, 117.2 in ${ }^{13} \mathrm{C}$ NMR spectrum corresponding to olefin confirmed the desired product formation. In addition to this, the HRMS (ESI) analysis showed a peak at $\mathrm{m} / \mathrm{z} 308.1833$ corresponding to $[\mathrm{M}+\mathrm{Na}]^{+}$with molecular formula $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{NNa}$ further confirmed the formation of 122. The alcohol was converted into desired key unnatural amino acid component 123
using Corey- Schmidt condition (PDC/DMF) ${ }^{55}$ (Scheme 26). The appearance of signal at $\delta 178.9$ corresponding to acid carbonyl confirmed the oxidation of alcohol to acid. HRMS (ESI) analysis showed a peak at $\mathrm{m} / \mathrm{z} 322.1622$ corresponding to $[\mathrm{M}+\mathrm{Na}]^{+}$with molecular formula $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{NNa}$ further confirmed the formation of the required nonamino acid fragment 123.

Scheme 26. Improved synthetic approach for the synthesis of non-amino acid fragment

In the first approach, the non-amino acid fragment was achieved in 13 steps with 3.6% overall yield starting from D-methionine. NHK reaction was used to install the stereochemistry and selenium elimination was used to synthesize Olefin. It is worth noting that in the revised approach NHK reaction was replaced with Brown crotylation reaction, where exclusively one isomer was synthesized and sulfoxide elimination was used to synthesize olefin. Thus, in modified approach, the key non-amino acid $\mathbf{1 2 3}$ was synthesized in 8 steps with 16% overall yield starting from commercially available same starting material, i.e D-methionine (Scheme 27).

Initial Approach

Revised Approach

D-Methionine

Scheme 27. Comparison of approaches for the synthesis of unnatural amino acid fragment

The unnatural amino acid component 123 was coupled (HATU-DIPEA) with the free amine prepared from $\mathbf{1 1 5}$ to yield compound $\mathbf{1 2 4}$ in $\mathbf{7 3 \%}$ yield for 2 steps. Acetonide deprotection in compound $\mathbf{1 2 4}$ afforded macrocyclic precursor $\mathbf{1 2 5}$ in good yields based on recovered starting material. Compound $\mathbf{1 2 5}$ was subjected to intramolecular Heck reaction under optimized conditions $\left(\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Et}_{3} \mathrm{~N}\right)$ to furnish the macrocycle 106 in moderate yields (Scheme 28). Compound 106 represents the complete macrocyclic core of the proposed structure of solomonamides with appropriate functionalities and

Scheme 28: Synthesis of macrocyclic skeleton of solomonamide B (benzyl protection)
stereochemistry pattern. The macrocyclization worked well like in the case of -OMe series and the compound wasa obtained with a slight improvement in yield. (43\% for OMe compound to 53% for OBn compound). The appearance of ${ }^{1} \mathrm{H}$ NMR signals at 6.60 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dd}, J=8.9,15.8 \mathrm{~Hz}, 1 \mathrm{H})$ corresponding to substituted double bond and HRMS (ESI) peak at 589.2628 corresponding to $[\mathrm{M}+\mathrm{Na}]^{+}$with molecular formula $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{7} \mathrm{~N}_{4} \mathrm{Na}$ confirmed the desired product formation.

After having the macrocycle core 106, the next task was coupling of the serine moiety. Accordingly, Boc was deprotected in 20% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by coupling with CbzNH-L-ser-OH 126 ${ }^{56}$ afforded compound 127. In previous approach BocNH-OTBS-L-ser-OH was utilized (See: Scheme 19), which was replaced with CbzNH- L-serine-OH 126, considering both OBn and Cbz groups can be deprotected simultaneously under hydrogenation condition. The compound 127 when subjected to Wacker oxidation under optimized condition afforded keto compound 128. As per the plan compound, $\mathbf{1 2 8}$ was treated with Pd / C and stirred under H_{2} atmosphere to afford compound 10'. The disappearance of peaks at $\delta 7.29-7.53(\mathrm{~m}, 10 \mathrm{H})$ in ${ }^{1} \mathrm{H}$ NMR confirms that both OBn and Cbz were getting deprotected. HRMS (ESI) analysis showed a peak at m/z 480.2084 corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$with molecular formula $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{~N}_{5}$ corresponding to solomonamide B. However, to our surprise, the NMR (${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR) values are not identical with the reported values and in ${ }^{1} \mathrm{H}$ NMR the $-\mathrm{CH}_{3}$ peak corresponding C 2 appeared at $\delta 0.92$ as dd with coupling constant $J=6.94,13.87 \mathrm{~Hz}$ which in principle has to be a doublet (d). The actual reason for the typical behavior of $-\mathrm{CH}_{3}$ group could not be figured out, but it was observed that this splitting pattern (dd) was seen only when Pd was used in the final step.

Scheme 29: Efforts toward total synthesis of solomonamide B

Figure 10: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0}^{\prime}$
At this stage, we decided to go with our previous approach, followed for the synthesis of solomonamide B methyl ether (see Scheme 21 and 23). Accordingly, removal of Boc
group in macrocycle 106 followed by coupling of the serine derivative 99 gave the compound $\mathbf{1 0 4}$ in 62% yield. Compound $\mathbf{1 0 4}$ was subjected to Wacker oxidation under the optimized condition to afford solomonamide B in protected form, 105. Deprotection of the benzyl group in $\mathbf{1 0 5}$ furnished the phenolic compound which was filtered through the column and treated with 10% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the target compound solomonamide B. The disappearance of signal at $\delta 1.41(\mathrm{~s}, 9 \mathrm{H})$, in ${ }^{1} \mathrm{H}$ NMR spectrum confirmed the Boc deprotection and disappearance of signals corresponding to benzyl group in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum indicated the gross structure as drawn. The HRMS (ESI) showed a peak at 480.2085 corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$with molecular formula $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{~N}_{5}$ further confirmed desired product formation (Scheme 30).

Scheme 30: Total synthesis of proposed structure of solomonamide B

Table 5: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shift data of $\mathbf{1 0}$ in comparison to the reported values

Residue	Notation	$\delta_{\mathrm{H}}\left(\delta_{\mathrm{H}}\right.$ reported), multiplicity, J_{HH}	$\delta_{\mathrm{C}}\left(\delta_{\mathrm{C}}\right.$ reported $)$
Gly			
	1 (CO)	--	169.84 (169.0)
	2a	4.81(4.19), dd, $J_{\mathrm{H} \alpha-\mathrm{H} \alpha^{\prime}}=15.2, J_{\mathrm{NH}-\mathrm{H} \alpha}=9.0$	$\begin{aligned} & 42.06 \\ & (42.4) \end{aligned}$
	$2 \mathrm{~b}^{\prime}$	3.34(3.78), dd, $J_{\mathrm{H} \alpha-\mathrm{H} \alpha^{\prime}}=15.2$	--
	3 (NH)	7.73 (7.30), dd, $J_{\mathrm{NH}-\mathrm{H} \alpha}=9.0$	--
D-Ala			
	1 (CO)	--	172.15(179.2)
	2a	4.12(4.29), dq, $J_{\mathrm{H} \alpha-\mathrm{H} \beta}=7.4, J_{\mathrm{NH}-\mathrm{H} \alpha}=6.2$	$\begin{gathered} 50.73 \\ (49.7) \end{gathered}$
	3	1.39 (1.36), d, $J_{\mathrm{H} \alpha-\mathrm{H} \beta}=7.4$	16.99(16.0)
	4 (NH)	9.09 (8.79), d, $J_{\text {NH-H } \alpha}=6.2$	--
L-Ser			
	1 (CO)	--	165.66(166.7)
	2	3.95 (3.98), br	53.67(53.6)
	3a	3.71 (3.69), br	60.61 (60.3)
	3b	3.71 (3.69), br	--
	$4(\mathrm{OH})$	5.46(5.46),br, ol	--
	$5\left(\mathrm{NH}_{2}\right)$	8.06(8.08), br	--
Non peptide portion			
	1 (CO)	--	172.61(173.2)
	2	2.76 (2.35), dq, $J_{\mathrm{H} 2-\mathrm{H} 7}=7.1$	45.23(45.4)
	3	3.59 (3.39), br	71.40(72.2)
	4	4.52(4.52), br, m	45.23(48.0)
	5a	3.32 (3.34), dd, $J_{\mathrm{H} \alpha-\mathrm{H} \alpha^{\prime}}=17.6$	42.29(41.2)
	5b	2.91 (2.87), $J_{\mathrm{H} \alpha-\mathrm{H} \alpha^{\prime}}=17.6$	-
	6	--	200.17(201.1)
	7	0.97 (1.08), d, $J_{\mathrm{H} 2-\mathrm{H} 7}=7.1$	9.38 (13.6)
	8 (OH-3)	5.44 (5.53), br, ol	--
	9 (NH-4)	7.87 (7.98), br, ol	--
	1^{\prime}	--	113.96 (115.8)
	2^{\prime}	--	142.41 (141.3)
	3'	8.13 (7.92), d, $J_{\mathrm{H}^{\prime}-\mathrm{H} 5^{\prime}}=2.5$	105.66 (106.1)
	4^{\prime}	--	163.36 (162.9)
	5^{\prime}	6.58 (6.57), dd, $J_{\mathrm{H}^{\prime}-\mathrm{H} 6^{\prime}}=8.9, J_{\mathrm{H} 3^{\prime}-\mathrm{H} 5^{\prime}}=2.5$	110.15 (110.0)
	6^{\prime}	7.86 (7.77), d, $J_{\mathrm{H}^{\prime}-\mathrm{H} 6^{\prime}}=8.9$	133.67 (132.9)
	10 (OH-4')	10.75 (10.70), br, s	--
	11 (NH-2')	12.52 (11.50), br, s	

Multiplicities and J coupling constants are provided only for the resonances that are without any overlaps or wherever the unambiguous measurements were possible.

The NMR spectroscopic data for the compound 10 was obtained in DMSO- d_{6} at 300 K on a 500 MHz spectrometer. The complete ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shift assignment (Table 5) was done by 1D and 2D (DQF-COSY, TOCSY, ROESY, HSQC, and HMBC) homo and heteronuclear experiments. Clearly, the chemical shifts data for the synthesized solomonomide B did not match with the reported values (Table 5), which is more likely due to the misassignment of the stereochemistry in the isolated natural product by Zampella's group.

Despite the relative stereochemistry at 2, 3 and 4 carbons were concretely established from stereoselective synthetic schemes $22,23,24$ and 26 . To ensure the same in the final stages, supporting NMR studies were carried out on a derivative of $\mathbf{1 0 6}$. For this purpose, a pentacyclic carbamate derivative $\mathbf{1 2 9}$ has been synthesized from $\mathbf{1 0 6}$ by Boc deprotection followed by treating with triphosgene. This derivatization was necessary so as to induce some conformational rigidity into the macrolide ring of $\mathbf{1 0 6}$, which otherwise might be flexible.

Scheme 31: Rigidification of macrocycle 106 for NMR studies

The ${ }^{1} \mathrm{H}$ NMR chemical shift data for $\mathbf{1 2 9}$ in DMSO- d_{6} showed near identical values for protons at 3 and 4, so the NMR studies were repeated in Acetone $-d_{6}$ at 300 K . The observed ROE pattern H2-H3 (very strong), H6-H3 (strong), H6-H4 (strong), H5-H3 (strong), H5-H9 (medium), H7-H3 (strong), Gly-NH-H2 (strong), Gly-NH-H3 (strong), Gly-NH-H4 (weak), Gly-NH-H7 (very weak), H4-H7 (very strong) and H9-H7 (very weak) well support the relative stereochemistry (Figure 10).

Figure 10: The key ROE pattern in $\mathbf{1 2 9}$ (shown in curved double-headed arrows - very strong and strong ROEs in blue; medium to weak ROEs in red) observed for 23 in support of the relative stereochemical configuration at positions 2,3 and 4 . The core structure is drawn in chem.3D for an appropriate representation of the ROE pattern.

Along with the NMR studies, crystallization on various macrocyclic compounds was also tried simultaneously. Although the attempts to obtain suitable crystals of the macrocyclic intermediates were not successful, fortunately, compound $\mathbf{1 2 9}$ was crystallized in the NMR tube upon long standing and its crystal structure analysis further confirmed the presence of the required stereochemistry in $\mathbf{1 2 9}$ (Figure 11). Thus, the total synthesis of the proposed structure of solomonamide B was accomplished for the first time. Careful analysis and head-to-head comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of the synthesized compound and natural solomonamide B suggests there is a problem with the original structure assignment, in particular in the stereochemistry of non-peptide portion.

Figure 11: $O R T E P$ diagram of 129

2.4.6. Attempts toward total synthesis of proposed structure of solomonamide A

The solomonamide B structure was assigned based on solomonamide A, which suggests that the structure of solomonamide A also needs to be revised. Although the structure is wrong, the synthesis of the proposed structure was initiated to check the feasibility of designed strategy. Initially, the OMe series was tried, accordingly the macrocycle 100 was dihydroxylated using Upjohn conditions $\left(\mathrm{OsO}_{4}, \mathrm{NMO}\right)^{57}$ to afford $\mathbf{1 3 0}$ as a $6: 1$ inseparable diastereomeric mixture. The appearance of two sets of signals in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR confirmed the mixture of diastereomers. Disappearance of signals in ${ }^{1} \mathrm{H}$ NMR at $6.63(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.08-6.04(\mathrm{~m}, 1 \mathrm{H})$ corresponding to substituted styrene and peak at $\mathrm{m} / \mathrm{z} 748.3558$ in the HRMS (ESI) analysis corresponding to $[\mathrm{M}+\mathrm{Na}]^{+}$with molecular formula $\mathrm{C}_{33} \mathrm{H}_{55} \mathrm{O}_{11} \mathrm{~N}_{5} \mathrm{Na}$ confirmed the formation of dihydroxy compound $\mathbf{1 3 0}$. The compound 130 on benzylic oxidation afforded 131, solomonamide A and its epimer in protected form as 6:1 diastereomeric mixture. The benzylic oxidation was confirmed

Scheme 32. Total synthesis of proposed structure of solomonamide A in protected form (methyl ether)
by the appearance of a signal at $\delta 194.3$ in ${ }^{13} \mathrm{C}$ NMR spectrum corresponding to the benzylic carbonyl. In addition, the HRMS (ESI) analysis showed a peak at m/z 746.3406 corresponding to $[\mathrm{M}+\mathrm{Na}]^{+}$with a molecular formula $\mathrm{C}_{33} \mathrm{H}_{53} \mathrm{O}_{11} \mathrm{~N}_{5} \mathrm{NaSi}$ further confirmed the formation of $\mathbf{1 3 1}$. Although there is no experimental support for the stereochemical outcome, it was expected that major compound may be required isomer considering that the dihydroxylation takes place from the less hindered side. It is purely based on the assumption and we have no support for the same.

Later, same reaction sequence was carried out with OBn series, dihydroxylation on 104 afforded compound $\mathbf{1 3 2}$ as 3:1 diastereomeric mixture which was inseparable like in OMe series. Benzylic oxidation of $\mathbf{1 3 2}$ afforded compounds $\mathbf{1 3 3}$ and $\mathbf{1 3 4}$ which could be separated by column chromatography (Scheme 29). The major compound $\mathbf{1 3 3}$ is expected

3:1 inseparable astereomeric

Scheme 33. Total synthesis of proposed structure of solomonamide A in protected form (benzyl ether)
to be proposed structure of solomonamide A. Thus, we have developed a route for the synthesis of solomonamide A.

2.4.7. Efforts toward structural revision of solomonamide B

After accomplishing the total synthesis of proposed structures of both the natural products, The next task was to establish the stereochemistry of non-amino acid portion and structural revision of natural products. As an initial effort, it was planned to reverse the stereochemistry of the hydroxyl and methyl groups, considering the information from Zampella's group, where both the methyl and hydroxyl group are to be in anti- relation and the major discrepancy in ${ }^{1} \mathrm{HNMR}$ was the appearance of $-\mathrm{CH}_{3}$ attached proton (C 2 carbon) at 2.7 ppm instead of 2.35 ppm . Accordingly, the key non-amino acid fragment was synthesized from methionine aldehyde 118. The aldehyde 118 on brown crotylation using (-)-Ipc ${ }_{2}$ BOMe afforded fragment 135 with desired stereochemistry. X-ray crystal structure of corresponding carbamate $\mathbf{1 3 6}$ further confirmed the stereochemistry.

Scheme 34. Synthesis of non-amino acid fragment with change in C2-C3 stereochemistry

Later, compound $\mathbf{1 3 5}$ was converted to key non-amino acid $\mathbf{1 3 9}$ through the intermediacy of $\mathbf{1 3 7}$ and $\mathbf{1 3 8}$ by following a similar synthetic sequence like in the previous scheme (see scheme 25 and 26). The unnatural amino acid component 139 was coupled (HATUDIPEA conditions) with the free amine prepared from 115 followed by acetonide deprotection afforded macrocyclic precursor 140 in 65% yield for 3 steps. Compound

Scheme 35. Efforts toward synthesis of compound 144

140 was subjected to intramolecular Heck reaction under optimized conditions $\left(\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Et}_{3} \mathrm{~N}\right)$ to furnish the macrocycle 141 in moderate yields (Scheme 35). Like in previous scheme deprotection of Boc group in macrocycle $\mathbf{1 4 1}$ followed by coupling of the serine derivative $39^{21 a}$ (Boc-Serine-OH was used instead of TBS protected serine) gave the desired compound $\mathbf{1 4 2}$ in 85% yield. Compound $\mathbf{1 4 2}$ was subjected to Wacker oxidation under optimized conditions to afford compound 143 in moderate yield. Deprotection of the benzyl group in $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ atmosphere followed by treatment with 10% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded the carbonyl reduced compound 144 as a single diastereomer with unknown stereochemistry in 72% yield for 2 steps. The carbonyl reduction in compound 144 was confirmed by the disappearance of the peak at $\delta 200.3$ and appearance of an additional peak at $\delta 83.3$ in ${ }^{13} \mathrm{C}$ NMR. In addition to this, the HRMS (ESI) analysis showed a peak at $\mathrm{m} / \mathrm{z} 482.2242$ corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$with a molecular formula $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{~N}_{5}$ further confirmed the formation of product 144. Replacement of Pd / C with $\mathrm{Pd}(\mathrm{OH})_{2}$ or use of Pd / C poisoned with CaCO_{3} or barium sulfate or adding external alkene compound like cyclohexene in reaction mixture did not solve the problem.

To circumvent this problem of carbonyl reduction, benzyl protection was removed in penultimate compound 142 . The benzyl deprotection was achieved using Linapthalenide, to afford compound 145 in a very good yield. The compound 145 was subjected to Wacker oxidation and followed by Boc deprotection in $10 \% \mathrm{TFA}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded the target compound 146. The HRMS (ESI) analysis showed a peak at m / z 480.2087 corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$with a molecular formula $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{~N}_{5}$ further confirmed the formation of product 146.

Thus, the putative structure of solomonamide B and analog with $\mathrm{C} 2-\mathrm{C} 3$ inversion was synthesized. Unfortunately, the NMRs of both the compounds did not match with the reported values which necessitate a structural revision. Synthesizing different isomers by changing the stereochemistry of non-amino acid partner may help in revising the structure. The efforts towards the structural revision of solomonamides are currently ongoing in our lab.

Scheme 31. Synthesis of 146

2.5. Analogs synthesized

Several analogs were synthesized by keeping dipeptide portion intact, varying nonamino acid partner and with/without serine moiety. A compound such as $\mathbf{4 4}$ represents simplified macrocyclic skeleton of solomonamide B without any chiral centers in the non- amino acid portion. The biological activity of this compound can explain the importance of stereocenters in non- amino acid portion. Compound $\mathbf{1 2 9}$ is a macrolide with required stereocenters and amino alcohol was protected as a carbamate. The carbamate carbonyl can serve as a serine carbonyl. The compounds 87, 106, 129 can explain the importance of benzylic carbonyl. 103, $\mathbf{1 0 7}$ are the compounds without serine moiety and phenol is protected as methyl/benzyl ether can reveal the importance of serine and phenolic-OH. The compound $\mathbf{1 0 2}$ is a methyl ether of proposed structure of solomonamide B (7). The biological evaluation of 102 and 7 can explain the relevance of phenolic- OH . The difference between 146 and 7 is an inversion of $\mathrm{C} 2, \mathrm{C} 3$ centers. This can help to find out the importance of absolute configuration of C 2 and C 3 centers.

Figure 12. Synthesized analogs
Dihydroxy compounds 130, $\mathbf{1 3 2}$ and alpha hydroxyl carbonyl compounds 131, 133 and 134 which are close to the proposed structure of solomonamide A and can be tested after deprotections. All these modifications will help to understand the SAR better. In addition, more compounds with varying stereochemical pattern are being synthesized in our group. All these compounds will be evaluated in anti-inflammatory assays to come up with better molecules for the generation of anti-inflammatory leads.

2.6. Conclusions

- Macrocyclizations using different methods were demonstrated to form solomonamide skeleton.
- Total synthesis of solomonamide B showed there is a discrepancy in NMR which suggests that there is a need for structural revision.
- The proposed structure of solomonamide A was synthesized in protected form.
- Prepared several analogs of solomonamides, which are to be evaluated in antiinflammatory assays.
- Developed a mild and practical one-pot method to access olefinic esters using ozonolysis in a two-directional approach and demonstrated its utility with various useful examples.

Thus, the experimental research work carried out during the last five years is described in this section clearly lays the foundation for the future work on solomonamides, in particular, who are practicing medicinal chemistry towards the identification of lead molecules based on macrocyclic scaffolds.

2.7. References

1.(a) I. Kitagawa, M. Kobayashi, T. Katori, M. Yamashita, J.Tanaka, M. Doi, and T. J. Ishida, Am Chem Soc, 1990, 112, 3710 (b) M. Kobayashi, S. Tsukamoto, A. Tanabe, T. Sakai, and M. J. Ishibashi, J. Chem. Soc. Perkin transl., 1991, 112, 2379.
2. A. S. Ratnayake, R. A. Davis, M. K. Harper, C. A. Veltri, C. D. Andjelic, L. R. Barrows, and C. M. Ireland, J. Nat. Prod., 2005, 68, 104.
3. (a) E. Kho, D. K. Imagawa, M. Rohmer, Y. Kashman, and C. Djerassi, J. Org.Chem., 1981, 46, 1836. (b) T. Hamada, T. Sugawara, S. Matsunaga, and N. Fusetani, Tetrahedron Let., 1994, 35, 609. (c) C. Festa, S. De Marino, M. V. D’Auria, G. Bifulco, B. Renga, S. Fiorucci, S. Petek, and A. Zampella, J. Med. Chem. 2011, 54, 401.
4. (a) T. Hamada, S. Matsunaga, G. Yano, and N. Fusetani, J. Am. Chem. Soc., 2005, 127, 110 (b) N. Fusetani, K. Warabi, Y. Nogata, Y. Nakao, S. Matsunaga, and R. R. M.. Van Soest, Tetrahedron Lett., 1999, 40, 4687.(c) T. Araki, S. Matsunaga, and N. Fusetani, Biosci. Biotechnol. Biochem., 2005, 69, 1318 (d) N. Fusetani, S. Matsunaga, H.

Matsumoto, and Y. Takebayashi, J. Am. Chem.Soc., 1990, 112, 7053.
5. (a) Y. Nakao, S. Matsunaga, and N. Fusetani, Bioorg. Med. Chem., 1995, 3, 1115. (b)
Y. Nakao, N. Oku, S. Matsunaga, and N. Fusetani, J. Nat. Prod., 1998, 61, 667.
6. (a) J. Kobayashi, M. Sato, T. Murayama, M. Ishibashi, M. R. Walchi, M. Kanai, J. Shoji, and Y. Ohizumi, J. Chem. Soc. Chem. Commun., 1991, 1050.(b) N. Fusetani, T. Sugawara, S. Matsunaga, and H. Hirota, J. Am. Chem. Soc., 1991, 113, 7811.
7. M. C. Roy, I. I. Ohtani, J. Tanaka, T. Higa, and R. Satari, Tetrahedron Lett., 1999, 40, 5373.
8. J. Kobayashi, M. Sato, M. Ishibashi, H. Shigemori,T. Nakamura, and Y. Ohizumi, J. Chem.Soc.PerkinTrans.,1991,1,2609.
9.(a) F. Itagaki, H. Shigemori, M. Ishibashi, T. Nakamura, T. Sasaki, and J. Kobayashi, J. Org. Chem., 1992, 57, 5540. b) J. Kobayashi, F. Itagaki, H. Shigemori, T. Takao, and Y. Shimonishi, Tetrahedron, 1995, 51, 2525. c) H. Uemoto, Y. Yahiro, H. Shigemori,
M.Tsuda, T. Takao, Y. Shimonishi, and J. Kobayashi, Tetrahedron, 1998, 54, 6719. d)
M. Tsuda, H. Ishiyama, K. Masuko, T. Takao, Y. Shimonishi, and J. Kobayashi,

Tetrahedron, 1999, 55, 12543. e) L. S. Bonnington, J. Tanaka, T. Higa, J. Kimura, Y.
Yoshimura, Y. Nakao, W. Y. Yoshida, and P. J. Scheuer, J. Org. Chem., 1997, 62, 7765.
10. L. Chill, Y. Kashman, and M. Schleyer, Tetrahedron, 1997, 53, 16147.
11. S. Matsunaga, N. Fusetani, K. Hashimoto, and M. Walchli, J. Am. Chem. Soc., 1989, 111, 2582.
12. M. Kobayashi, K. Kanzaki, S. Katayama, K. Ohashi, H. Okada, S. Ikegami, and I. Kitagawa, Chem. Pharm. Bull., 1994, 42, 1410.
13. (a) I. Kitagawa, M. Kobayashi, N. K. Lee, H. Shibuya, Y. Kawata, and F. Sakiyama, Chem. Pharm. Bull., 1986, 34, 2664. b) D. P. Clark, J. Carroll, S. Naylor, and P. Crews, J. Org. Chem., 1998, 63, 8757. c) T. Araki, S. Matsunaga, Y. Nakao, K. Furihata, L.

West, D. J. Faulkner, and N. Fusetani, J. Org. Chem., 2008, 73, 7889.
14. (a) P. W. Ford, K. R. Gustafson, T. McKee, N. Shigematsu, L. K. Maurizi, D. E.

Williams, E. Dilip de Silva, P. Lassota, T. M. Allen, R.Van Soest, R. J. Andersen, and M.
R Boyd, J. Am. Chem. Soc., 1999, 121, 5899. b) Y. Okada, S. Matsunaga, R. W. M.Van Soest, and N. Fusetani, Org. Lett., 2002, 4, 3039.
15. A. S. Ratnayake, T. S. Bugni, X. Feng, M. K. Harper, J. J. kalicky, K. A. Mohammed, C. D. Andjelic, L. R. Barrows, and C. M. Ireland, J. NatProd., 2006, 69, 1582.
16. (a) C. A. Bewley, and D. J. Faulkner, J. Org. Chem., 1994, 59, 4849. (b) E. W.

Schmidt, C. A. Bewley, and D. J. Faulkner, J. Org. Chem., 1998, 63, 1254.
17. C. Festa, S. De Marino, V. Sepe, M. V. D’Auria, G. Bifulco, R. Andres, M.
C.Terencio, M. Paya, C. Debitus and A. Zampella, Tetrahedron 2011, 67, 7780.
18. (a) C. Festa, S. De Marino, V. Sepe, M. V. D’Auria, G. Bifulco, R. C. Debitus, M.

Bucci, V. Vellecco, and A. Zampella, Org. Lett. 2011, 13, 1532 (b) R. A. Hill, and A.
Sutherland, Nat. Prod. Rep., 2011, 28, 1031.
19. A. Gosslau1, S. Li1, C.-T. Ho, K. Chen and N. E. Rawson, Mol. Nutr. Food Res. 2011,55,74.
20. a) K. Kashinath, N. Vasudevan, and D. S. Reddy, Org. Lett. 2012, 14, 6222 b) D. S.

Reddy, K. Kashinath, and N. Vasudevan, A process for the preparation of solomonamide analogues. W. O. Patent 2014083578 A1, June 5, 2014; C) N. Vasudevan, K. Kashinath, and D.S. Reddy, Org. Lett. 2014, 16, 6148; d) K. Kashinath, S. Dhara, and D. S. Reddy, Org. Lett. 2015, 17, 2090. e) N. Kavitha, V. P. Kumar, and S. Chandrasekhar, Tetrahedron Lett. 2013, 54, 2128;f) N. Kavitha, and S. Chandrasekhar, Org. Biomol. Chem., 2015, 13, 6242.
21. a) . D. Sellanes, F. Campot, I. Núñez, G. Lin, P. Espósito, S. Dematteis, J. Saldaña, L. Domínguez, E. Manta, and G. Serra Tetrahedron, 2010, 66, 5384. b) K. Asif, M. Himaja, M.V. Ramana, and M. S. Sikarwar, Asian J. Chem. 2012, 24, 2739.
22. V. Belov, M. Bossi, J. Folling, V. Boyarskiy, and S. Hell, Chem. Eur. J., 2009, 15, 10762.
23. L. Rogers, Z. Konstantinou, M. Reddy, and M. Organ, Eur. J. Org. Chem., 2011, 5374.
24. Y. Wu, B. Li, Li, X. Mao, and F. Kwong, Org. Lett. 2011, 12, 3258.
25. (a) A-Z. A. Elassar, and A. A. El-Khai, Tetrahedron, 2003, 59, 8463 (b) The

Chemistry of Enamines Part 1; Z., Ed. Rappoport, John Wiley and Sons: Chichester, New York, Brisbane, Toronto, Singapore, 1994.
26. S. J. Tantry, R. Venkataramanarao, G. Chennakrishnareddy, and V. V. Sureshbabu, .
J. Org. Chem. 2007, 72, 9360.
27. D. A. Horton, G. T. Bourne, and M. L. Smythe, Chem. Rev. 2003, 103, 893.
28. Selected refs related to synthesis of benzodiazepinones (a) S.Ferrini, F. Ponticelli, and M. Taddei, J. Org. Chem. 2006, 71, 9217. (b) I. Im, T. R.Webb, Y.-D. Gong, J.-I. Kim, and Y.-C. Kim, J. Comb. Chem. 2004, 6, 207. (c) P. R. Carlier, H. Zhao, J. DeGuzman, and P. C.-H. Lam, J. Am. Chem. Soc. 2003, 125, 11482.
29. (a) B. T. Kelley and M. M. Joullié, Org. Let., 2010, 12, 4244.
30. B. A. Aleiwi, C. M. Schneider, and M. Kurosu, J. Org. Chem. 2012, 77, 3859.
(b) Commercial availability and safety documentation of trimethyl aluminium can be can be accessed sigma Aldrich through following link http://www.sigmaaldrich.com/catalog/product/aldrich/257222?lang=en\®ion=IN
31. (a) P. Ciapetti, M. Falorni, and T. Maurizo, Tetrahedron, 1996, 52, 7379. (b) P.

Ciapetti, M. Falorni, T. Maurizo, and P. Ulivi, Tetrahedron Lett. 1994, 35, 3183. (c) A. Frustner, and N. Shi, J. Am. Chem. Soc. 1996, 118, 12349. (d) A. Frustner, Chem. Rev., 1999, 99, 991 (e) P. Cintas, Synthesis, 1991, 248.
32. (a) G. Guerrini, F. Ponticelli, and M. Taddei, J. Org. Chem., 2011, 76, 7597. (b) S.

Ferrini, F. Ponticelli, and M. Taddei, Org. Lett. 2007, 9, 69.
33. J. Choy, S. Figueroa, L. Jiang, and P. Wagner, Syn. Commun., 2008, 38, 3840.
34. Selected publications: (a) L. Tschugaeff, Ber. Dtsch. Chem. Ges.1900, 33, 3118. (b)
L. A. Paquette, R. A. Roberts, and G. J. Drtina, J. Am. Chem. Soc. 1984, 106, 6690. (c)
M.-H. Lee, S.-W. Lee, Y.-M. Jeon, D.-Y. Park, and J.-Y. Ryu, 2005, WO2005035468.
(d) J. Magolan, C. A. Carson, and M. A. Kerr, Org. Lett. 2008, 10, 1437.
35. (a) K. B. Sharpless, and M. W. Young, J. Org. Chem. 1975, 40, 947. (b) P. A. Grieco, S. Gilman, and M. Nishizawa, J. Org. Chem. 1976, 41, 1485.
36. A. J. Waring, and J. H. Zaidi, J. Chem. Soc., Perkin Trans. 1 1985, 631.
37. D. L. J. Clive, and M. H. D. Postema, J. Chem. Soc., Chem. Commun. 1994, 235.
38. Selected reviews and publications: (a) J. A. Marshall, and A. W. Garofalo, J. Org. Chem. 1993, 58, 3675. (b) J. A. Marshall, A. W. Garofalo, and R. C. Sedrani, Synlett 1992, 643. (c) D. F. Taber, and K. Nakajima, J. Org. Chem. 2001, 66, 2515. (d) K. M. Miller, W.-S. Huang, and T. F. Jamison, J. Am. Chem. Soc. 2003, 125, 3442. (e) S. G.

Van Ornum, R. M. Champeau, and R. Pariza, Chem.Rev. 2006, 106, 2990. (f) H. Lu, and C. Li, Org. Lett. 2006, 8, 5365. (g) X. Mollat du Jourdin, M. Noshi, and P. L. Fuchs, Org. Lett. 2009, 11, 543. (h) S. Kyasa, T. J. Fisher, and P. H. Dussault, Synthesis 2011, 2011, 3475. (i) R. Willand-Charnley, and P. H. Dussault, J. Org. Chem. 2013, 78, 42. (j) L.

Kersten, K. Harms, and G. Hilt, J. Org. Chem. 2014, 79, 11661. (k) R. Ramesh, and D. S. Reddy, Org. Biomol. Chem. 2014, 12, 4093.
39. K. Mori, and M. Takenaka, Eur. J. Org. Chem. 1998, 1998, 2181.
40. Selected publications: (a) G. Venkateswar Reddy, R. Satish Chandra Kumar, G.

Shankaraiah, K. Suresh Babu, and J. Madhusudana Rao, Helv. Chim. Acta. 2013, 96, 1590. (b) Y. C. Hwang, and F. W. Fowler, J. Org. Chem., 1985, 50, 2719.
41. (a) W. H. Watanabe, and L. E. Conlon, J. Am. Chem. Soc. 1957, 79, 2828. (b) M. Bosch, and M. Schlaf, J. Org. Chem. 2003, 68, 5225.
42. Selected publications: (a) Thibault, R. J.; Takizawa, K.; Lowenheilm, P.; Helms, B.; Mynar, J. L.; Fréchet, J. M. J.; Hawker, C. J. J. Am. Chem. Soc. 2006, 128, 12084. (b) Praud, A.; Bootzeek, O.; Blache, Y. Green Chem. 2013, 15, 1138.
43. Selected publications: (a) A. Afzali-Ardakani, and H. Rapoport, J. Org. Chem.1980, 45, 4817. (b) P. Meffre, L. Voquang, Y. Voquang, F. Le Goffic, Synth. Commun. 1989, 19, 3457. (c) S. J. Miller, H. E. Blackwell, and R. H. Grubbs, J. Am. Chem. Soc. 1996, 118,9606.
44. (a) S. Takano, M. Yamanaka, K. Okamoto, and F. Saito, J. Soc. Cosmet. Chem. 1983, 34, 116. (b) J. S. Yadav, K. U. Gayathri, N. Thrimurtulu, and A. R. Prasad, Tetrahedron 2009, 65, 3536.
45. C. Ma, X. Liu, X. Li, J. Flippen-Anderson, S. Yu, and J. M. Cook, J. Org. Chem. 2001, 66, 4525.
46. Selected reviews and publications for intramolecular Heck reaction: (a) S. E. Gibson, and R. J. Middleton, Contemp. Org. Synth. 1996, 3, 447. (b) P. Rajamohan Reddy, V. Balraju, G. R. Madhavan, B. Banerji, and J. Iqbal, Tetrahedron Lett. 2003, 44, 353. (c) A. V. Kalinin, B. A. Chauder, S. Rakhit, and V. Snieckus, Org. Lett. 2003, 5, 3519. (d) J. Jägel, and M. E. Maier, Synthesis 2009, 2881. (e) K. R. Prasad, and A. B. Pawar, Org. Lett. 2011, 13, 4252. (f) K. M. Reddy, V. Yamini, K. K. Singarapu, and S. Ghosh, Org.

Lett. 2014, 16, 2658.
47. D. Yoo, J.S. Oh, D.-W. Lee, and Y. G. Kim, J. Org. Chem. 2003, 68, 2979.
48. Selected publications on Wacker oxidation a) D. G Miller, and D. D. M Wayner, J. Org. Chem. 1990, 55, 2924; b) S.-K. Kang, K.-Y. Jung, J.-U. Chung, E.-Y. Namkoong, and T.-H. Kim, J. Org. Chem. 1995, 60, 4678; c) P. R. Skaanderup, and R. Madsen, J. Org. Chem. 2003, 68, 2115; d) P. Mukherjee, and T. K. Sarkar, Org. Biomol. Chem. 2012, 10, 3060; e) B. Morandi, Z. K Wickens, and R. H. Grubbs, Angew. Chem., Int. Ed. 2013, 52, 2944.
49. E. Keinan, K. K. Seth, and R. Lamed, J. Am. Chem. Soc. 1986, 108, 3474.
50. K .Hatakeyama, K. Ohmori, and K.Suzuki, Synlett, 2005,1311.
51. G. S. Sheppard, J. Wang, M. Kawai, N. Y. BaMaung, R. A. Craig, S. A. Erickson, L. Lynch, J. Patel, F. Yang, X. B. Searle, P. Lou, C. Park, K. H. Kim, J. Henkin, and R. Lesniewski, Bioorg. Med. Che. Lett. 2004, 14, 865.
52. a) H. C. Brown, and K. S. Bhat, J. Am. Chem. SOC. 1986, 108, 293; b) H. C. Brown, K. S. Bhat, and R. S. Randad, J. Org. Chem. 1989, 54, 1570.
53. G. Wei, J. M. Chalker, and T. Cohen, J. Org. Chem. 2011, 76, 7912.
54. M. Ojika, H. Kigoshi, Y. Yoshida, T. Ishigaki, M. Nisiwaki, I. Tsukada, M. Arakawa, H. Ekimoto, and K. Yamada, Tetrahedron, 2007, 63, 3138.
55. G. Tojo, M. Fernández, in Oxidation of Primary Alcohols to Carboxylic Acids, Springer New York, 2007, pp. 33-41.
56. A. M. King, C. Salomé, J. Dinsmore, E. Salomé-Grosjean, M. De Ryck, R. Kaminski, A. Valade, and H. Kohn, J. Med. Chem., 2011, 54, 4815.
57. V. Rheenen, R. C. Kelly and D. Y. Cha, Tetrahedron Lett. 1976, 1973.

Section C

Experimental Details

3.1. Experimental procedures

Methyl 6-(2-acetamido-4-methoxyphenyl)-6-oxohexanoate (39):

N -(3-Methoxyphenyl)acetamide $35(1.0 \mathrm{~g}, 6 \mathrm{mmol})$ and $\operatorname{Pd}(\mathrm{TFA})_{2}(0.1 \mathrm{~g}, 0.3 \mathrm{mmol})$ were loaded in sealed tube with a stir bar under nitrogen atmosphere. Toluene (12 mL) was added into the tube. The solution was then stirred for about 1-2 min. Methyl 6oxohexanoate $38(1.74 \mathrm{~g}, 12 \mathrm{mmol})$, TBHP (6 M in decane, 2 mL) were introduced into the tube. The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 24 h , concentrated under reduced pressure and purified by column chromatography (silica gel 100-200 mesh, 1:9 ethyl acetate - pet ether) to afford $\mathbf{3 9}(1.18 \mathrm{~g}, 65 \%)$ as a pale yellow solid.
Mp: $88-89^{\circ} \mathrm{C}$
IR $\mathbf{v}_{\text {max }}(f i l m): \mathrm{cm}^{-1} 3446,2925,1738,1698,1526,1435,1246$
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 12.12(\mathrm{bs}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=2.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.01-2.91(\mathrm{~m}, 2 \mathrm{H})$, 2.38-2.34 (m, 2H), 2.23 (s, 3H), 1.76-1.65 (m, 4H)
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 202.7,173.8,169.9,164.7,143.9,132.7,114.7,109.6$, $104.0,55.6,51.6,39.2,33.9,25.7,24.5,24.1$

MS: $330(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 308.1492$, found 308.1491.

Methyl (6-(2-amino-4-methoxyphenyl)-6-oxohexanoyl)glycyl-D-alaninate (43):

To a solution of $\mathbf{3 9}(300 \mathrm{mg}, 1.0 \mathrm{mmol})$ in methanol $(5 \mathrm{~mL}), 4 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ was added and refluxed for 4 h . After the completion of reaction (monitored by TLC), reaction mass was evaporated to dryness. The dipeptide ester compound 42 ($254 \mathrm{mg}, 1.0 \mathrm{mmol}$) was stirred in 20% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford amine as TFA salt 33. Above acid and this salt were taken in $20 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. EDC ($206 \mathrm{mg}, 1.1 \mathrm{mmol}$), $\mathrm{HOBt}(145 \mathrm{mg}, 1.1 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$ followed by $\mathrm{Et}_{3} \mathrm{~N}(0.3 \mathrm{Ml}, 2.0 \mathrm{mmol})$ was added and stirred at room temperature for 14 h . Diluted the reaction mixture with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ washed with 5% citric acid $(10 \mathrm{~mL})$ and saturated NaHCO_{3}. Organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and purified by column chromatography (silica gel 100-200 mesh, 4:96 MeOH- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford compound 43 ($275 \mathrm{mg}, 72 \%$) as off white solid.

Mp : $114-116^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{24}: 8.8\left(c=0.3, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 3334,2920,1731,1640,1611,1597$.
${ }^{1}$ H NMR (400 MHz, CDC1 \mathbf{H}_{3}): $\delta 7.63(\mathrm{~d}, J=9.05 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=6.60 \mathrm{~Hz}, 1 \mathrm{H})$, 6.74 (brs, 1H), $6.20(\mathrm{dd}, J=2.08,8.93 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-6.12(\mathrm{~m}, 1 \mathrm{H}), 4.55$ (quin, $J=7.15$ Hz, 1H), 3.91-4.08(m, 2H), 3.78(s, 3H), 3.72 (s, 3H), 2.79-2.95 (m, 2H), 2.26-2.38 (m, 2H), 1.72 (brs, 4H), $1.40(\mathrm{~d}, J=7.09 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\boldsymbol{\delta}$ 200.7, 173.6, 173.2, 168.8, 164.3, 152.9, 133.2, 112.4,
$104.5,99.3,55.2,52.5,48.1,43.2,38.4,36.1,25.2,24.3,18.1$
HRMS: calculated for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 394.1793$, found 394.1791.

Methyl 6-(2-amino-4-methoxyphenyl)-6-oxohexanoate (45)

To a solution of $\mathbf{3 9}(500 \mathrm{mg}, 1.6 \mathrm{mmol})$ in methanol $(5 \mathrm{~mL}), 4 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ was added and refluxed for 4 h . After the completion of reaction (monitored by TLC), reaction mass was evaporated to dryness, dissolved in dry methanol (20 mL), $\mathrm{SOCl}_{2}(0.13 \mathrm{~mL}, 1.8$ mmol) was added at $0{ }^{\circ} \mathrm{C}$, stirred for 16 h at room temperature. Reaction mass was evaporated to dryness, basified with saturated aq. NaHCO_{3} solution, extracted with ethyl acetate ($25 \mathrm{~mL} x$ 3). The combined organic layer was washed with water (25 mL), brine $(25 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude material obtained after removal of solvent was purified by column chromatography (silica gel 100-200 mesh, 1:9 ethyl acetate - pet ether) to afford $\mathbf{4 5}$ ($400 \mathrm{mg}, 92 \%$) as a pale yellow solid.

Mp: $65-66^{\circ} \mathrm{C}$
IR $\boldsymbol{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 3459,3334,1732,1615,1587,1456$
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.66(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{bs}, 2 \mathrm{H}), 6.22(\mathrm{dd}, J=$ $2.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.91-2.84(\mathrm{~m}, 2 \mathrm{H})$, 2.40-2.33 (m, 2H), 1.75-1.66 (m, 4H)
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): δ 200.6, 174.0, 164.2, 152.8, 133.2, 112.4, 104.4, 99.3, 55.2, 51.5, 38.5, 33.9, 24.7, 24.4

HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 266.1387$, found 266.1387.
(R)-Methyl 6-(2-(2-((()9H-fluoren-9- yl)methoxy)carbonyl)amino) propanamido-4-methoxyphenyl)-6-oxohexanoate (49)

To a solution of $\mathbf{4 5}(75 \mathrm{mg}, 0.28 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, D-Fmoc-Ala-Cl 48(110 $\mathrm{mg}, 0.33 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added dropwise followed by saturated aq. NaHCO_{3} solution (1 mL) was added and the mixture was stirred for 6 h at room temperature. Reaction mass was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, organic layer was separated, washed with brine (10 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude material obtained after removal of solvent was purified by column chromatography (silica gel 230-400 mesh, $1: 19 \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $49(118 \mathrm{mg}, 75 \%)$ as a yellow solid.

Mp: $120-121{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{24}: 8.8\left(c=0.3, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}$ (film): $\mathrm{cm}^{-1} 3335,2926,1730,1645,1611,1576,1523,1456$
${ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 12.6(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.75(\mathrm{~m}$, $5 \mathrm{H}), 7.40(\mathrm{~m}, 4 \mathrm{H}), 6.64(\mathrm{dd}, J=2.5,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{bs}, 1 \mathrm{H}), 4.52-4.27(\mathrm{~m}, 4 \mathrm{H}), 3.89$ $(\mathrm{s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.54(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, 3H)
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\mathbf{C D C l}_{3}$): $\delta 200.6,173.8,172.1,164.6,155.9,144.2,143.7$ (2C), $143.2,141.2,132.6,127.6$ (2C), 127.0 (2C), 125.3, 125.2, 119.9 (2C), 115.2, 110.0, $104.2,67.2,55.6,52.1,51.5,47.2,39.1,33.7,24.4,24.0,19.0 ;$

HRMS calculated for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{O}_{7} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 559.2439$, found 559.2439.
(R)-Methyl 5-(8-methoxy-3-methyl-1-oxo-2,3-dihydro-1H-benzo[e][1,4]diazepin-5yl)pentanoate (50):

To a solution of $49(100 \mathrm{mg}, 0.18 \mathrm{mmol})$ in THF (5 mL), piperidine $(0.3 \mathrm{~mL})$ was added, stirred for 4 h at room temperature. Reaction mass was concentrated under reduced pressure to give crude material which was purified by column chromatography (silica gel $230-400$ mesh, $1: 15 \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford compound $\mathbf{5 0}(53 \mathrm{mg}, 93 \%)$ as a pale yellow solid.

Mp: $87-88^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{25}: 80.0\left(c=0.3, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }}(f i l m): \mathbf{c m}^{\mathbf{- 1}} 3019,2937,1727,1690,1557,1514,1462$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C D}_{3}$): $\delta 9.02(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.9$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.57(\mathrm{~m}, 4 \mathrm{H}), 2.79-2.63(\mathrm{~m}, 2 \mathrm{H})$, 2.26-2.23 (m, 2H), 1.60-1.46 (m, 7H)
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 173.9,172.8,170.7,161.5,138.8,129.5,121.3,111.1$, $104.9,57.7,55.5,51.5,38.5,33.7,27.2,24.5,16.7$

MS: $341(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 319.1652$, found 319.1653.

Methyl 5-(2-(2-acetamido-4-methoxyphenyl)-1,3-dithian-2-yl)pentanoate (58):

To a solution of $\mathbf{3 9}(1.0 \mathrm{~g}, 3.2 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), 1,3$-propanedithiol $(0.81$ $\mathrm{mL}, 8.1 \mathrm{mmol}), \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL}, 8.1 \mathrm{mmol})$ were added and stirred at room temperature for 16 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, saturated aq. NaHCO_{3} solution (10 mL) was added and the organic layer was separated, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude material obtained after removal of solvent was purified by column chromatography (silica gel 100-200, 1:5 ethyl acetate - pet ether) to afford $\mathbf{5 8}$ $(1.16 \mathrm{~g}, 89 \%)$ as a colourless liquid.

IR $\boldsymbol{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 2949,1736,1694,1525,1464,1424$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 9.81(\mathrm{bs}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{bs}, 1 \mathrm{H})$, $6.66(\mathrm{dd}, J=2.7,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.83-2.73(\mathrm{~m}, 4 \mathrm{H}), 2.20-2.17$ $(\mathrm{m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.95(\mathrm{~m}, 2 \mathrm{H}) ; 1.53-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.30-$ 1.17 (m, 2H)
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 173.8,167.8,159.5,137.7,133.2,119.8,110.1,110.0$, 57.4, 55.3, 51.5, 40.5, 33.6, 28.1 (2C), 25.1, 24.9, 24.8, 23.7

MS: $420(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{NS}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 398.1454$ found 398.1453.
(R)-Methyl 5-(2-(2-(2-((($9 \mathrm{H}-$ fluoren-9-yl)methoxy)carbonyl)amino)propanamido)-4-Methoxyphenyl)-1,3-dithian-2-yl)pentanoate (59) :

To a stirred solution of $\mathbf{5 8}(200 \mathrm{mg}, 0.5 \mathrm{mmol})$ in methanol $(5 \mathrm{~mL})$ was added $4 \mathrm{~N} \mathrm{HCl}(3$ mL) and then heated at $40-50{ }^{\circ} \mathrm{C}$ for 4 h . The reaction mass was concentrated under reduced pressure, the residue was basified with saturated aq. $\mathrm{NaHCO}_{3}(\mathrm{pH} \sim 10)$ and extracted with ethyl acetate (15 mL x 2). The combined organics were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure to afford free amine (methyl 5-(2-(2-amino-4-methoxyphenyl)-1,3-dithian-2-yl)pentanoate) (145 mg, 81\%) as a colourless liquid. This compound was used for next reaction without further purification.

To a solution of above free amine ($145 \mathrm{mg}, 0.4 \mathrm{mmol}$) and D-Fmoc-Ala-Cl 48(148 mg, $0.4 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, saturated aq. $\mathrm{NaHCO}_{3}(2.5 \mathrm{~mL})$ was added and stirred for 6 h at room temperature. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the organic layer was separated, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude material obtained after removal of solvent was purified by column chromatography (silica gel $100-200,3: 7$ ethyl acetate - pet ether) to afford $59(175 \mathrm{mg}, 66 \%)$ as a colourless viscous liquid.
$[\alpha]_{\mathbf{D}}{ }^{27}:-25.0\left(c=0.3, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}$ (film): $\mathrm{cm}^{-1} 3273,1732,1682,1610,1575$
${ }^{1} \mathbf{H}$ NMR (200 MHz, CD $\left.\mathbf{3}_{3} \mathrm{OD}\right): \delta 7.87-7.69(\mathrm{~m}, 5 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.75(\mathrm{dd}, J=$ $2.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.15(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 2.72-2.54(\mathrm{~m}, 4 \mathrm{H}), 2.21-$ $1.88(\mathrm{~m}, 6 \mathrm{H}), 1.43(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 4 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 173.9,170.2,159.5,155.8,143.8$ (2C), 141.3 (2C), 137.1, 133.3, 127.7 (2C), 127.1 (2C), 125.1(2C), 120.5, 120.0 (2C), 110.6, 109.8, 67.1, 57.4, 55.4 (2C), 51.9, 51.5, 47.2, 40.4, 33.6, 28.0, 24.7 (2C), 23.7, 19.0;

HRMS: calculated for $\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 649.2401$, found 649.2397.
(R)-Methyl 5-(2-(2-(2-aminopropanamido)-4-methoxyphenyl)-1,3-dithian-2-
l)pentanoate (60)

To a solution of $59(250 \mathrm{mg}, 0.4 \mathrm{mmol})$ in THF (5 mL), piperidine $(0.2 \mathrm{~mL})$ was added and stirred at room temperature for 2 h . Reaction mixture was diluted with ethyl acetate $(10 \mathrm{~mL})$, washed with water $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude material obtained after removal of solvent was purified by column chromatography (silica gel $100-200,1: 24$ methanol $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $\mathbf{6 0}(140 \mathrm{mg}, 85 \%)$ as a colourless viscous liquid.
$[\alpha]_{\mathbf{D}}{ }^{25}:-5.8\left(c=0.6, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }}($ film $): \mathbf{c m}^{\mathbf{- 1}} 3245,2950,1735,1679,1608,1043$;
${ }^{1} \mathbf{H}$ NMR (400 MHz, CD $\left.\mathbf{3}_{\mathbf{3}} \mathbf{O D}\right): \boldsymbol{\delta} 7.84(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ (dd, $J=2.7 \mathrm{~Hz}, 9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.53(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.79(\mathrm{~m}$, $4 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 4 \mathrm{H}), 2.02-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 1.27-1.19 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.5,175.5,160.7,137.9,134.1$, $124.2,113.1,110.9,57.3,55.8,52.6,51.9,40.8,34.4,28.9,25.9,25.8$ (2C), 25.1, 21.3;

MS: $449(\mathrm{M}+\mathrm{Na})^{+}$
HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 427.1720$, found 427.1729.

(R)-Methyl 5-(2-(2-(2-(2-((tert-butoxycarbonyl)amino)acetamido)propanamido)-4-

 methoxyphenyl)-1,3-dithian-2-yl)pentanoate (61) :

To a solution of $60(120 \mathrm{mg}, 0.3 \mathrm{mmol})$ and Boc-Gly-OH (41) ($55 \mathrm{mg}, 0.3 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}) \mathrm{EDC} . \mathrm{HCl}(48 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{HOBt}(42 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL}$, 0.6 mmol) were added and stirred for 14 h at room temperature. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, washed with $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$, saturated aq. NaHCO_{3} solution (10 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude material obtained after removal of solvent was purified by column chromatography (silica gel 100-200, 1:30 methanol $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $\mathbf{6 1}(120 \mathrm{mg}, 75 \%)$ as a colorless viscous liquid.
$[\alpha]_{\mathbf{D}}{ }^{24}: 18.3\left(c=1.0, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 3294,2937,1718,1676,1609,1169,1045$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathbf{O D}\right): \delta 7.90(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{dd}, J=2.3,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.60$ $(\mathrm{s}, 3 \mathrm{H}), 2.81-2.73(\mathrm{~m}, 4 \mathrm{H}), 2.23-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.91(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.45(\mathrm{~m}, 14 \mathrm{H})$,
$1.21-1.14(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 175.7,172.8,172.6,160.8,158.2,137.6,134.7,123.9$, $113.1,111.3,80.7,57.9,55.8,52.0,51.7,44.7,41.2,34.3,29.0(2 \mathrm{C}), 28.7$ (3C), 26.0, $25.7,24.8,17.7$

MS : $606(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{~N}_{3} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 584.2459$, found 584.2456.
(R)-5-(2-(2-(2-(2-((tert-Butoxycarbonyl)amino)acetamido)propanamido)-4-methoxyphenyl)-1,3-dithian-2-yl) pentanoic acid (62) :

To a solution of $\mathbf{6 1}(120 \mathrm{mg}, 0.2 \mathrm{mmol})$ in THF: $\mathrm{MeOH}(3: 2,5 \mathrm{~mL})$, LiOH ($26 \mathrm{mg}, 0.6$ mmol , in 1 mL water) was added and stirred for 3 h at room temperature. Solvent was removed under reduced pressure and the residue was acidified with $1 \mathrm{NHCl}(\mathrm{pH} \sim 3)$ and extracted with ethyl acetate (10 mL X 2). The combined organics were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure to afford $\mathbf{6 2}$ ($110 \mathrm{mg}, 94 \%$) as colourless liquid.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}:-5.0\left(c=0.5, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 3307,2933,1714,1669,1610,1245,1045$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CD $\left.\mathbf{3} \mathbf{O D}\right): \delta 7.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{bs}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=$ $2.5,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.87-2.72(\mathrm{~m}, 4 \mathrm{H})$, 2.19-2.07 (m, 4H), 2.09-1.93(m, 2H), 1.48-1.43(m, 14H), 1.22-1.20(m, 2H);
${ }^{13} \mathbf{C}$ NMR (100 MHz, CD $\left.\mathbf{B}_{3} \mathrm{OD}\right): ~ \delta 177.7,175.6,173.2,173.0,161.1,138.0,135.1,124.3$, $113.5,111.7,81.0,58.3,56.2,52.1,45.1,41.7,35.0,31.2,29.4$ (3C), 26.4, 26.3, 25.3, 21.2, 18.2;

MS: $592(\mathrm{M}+\mathrm{Na})^{+}$
HRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{~N}_{3} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 570.2302$, found 570.2304.
(R)-16-Methoxy-3-methyl-3,4,6,7,9,10,11,12-octahydro-1H- benzo[h] [1,4,7] triazacyclo- pentadecine-2,5,8,13-tetraone (44) :

To a solution of $\mathbf{6 2}(40 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, TFA $(0.9 \mathrm{~mL})$ was added and stirred at room temperature for 3 h . After completion of the reaction (monitored by TLC), the reaction mixture was concentrated under reduced pressure and the residue was taken up in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$, $\mathrm{HATU}(80 \mathrm{mg}, 0.21 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.05 \mathrm{~mL}, 0.35 \mathrm{mmol})$ were added and the resulting reaction solution was stirred at room temperature for 16 h . Reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ and saturated aq. NaHCO_{3} solution (5 mL). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure. The residue ($20 \mathrm{mg}, 0.04 \mathrm{mmol}$) obtained after the evaporation of the solvent was dissolved in THF-water ($85: 15,3 \mathrm{~mL}$) , HgO (22 $\mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}(0.01 \mathrm{~mL}, 0.1 \mathrm{mmol})$ were added and stirred at room temperature for 4 h . The reaction mixture was filtered and the filtrate was diluted with ethyl acetate (5 mL), washed with brine (5 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude material obtained after removal of solvent was purified by column chromatography (silica gel 230-400, 1:19 methanol: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 44 as a white solid ($8 \mathrm{mg}, 32 \%$ over 3 steps).

Mp: $158-160{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{24}: 29.0\left(c=0.2, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }}$ (film): $\mathrm{cm}^{-1} 2924,2854,1632,1540,1040$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CD $\left.\mathbf{3}_{\mathbf{3}} \mathbf{O D}\right): \delta 8.21(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ $(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 3.68(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.58(\mathrm{~m}, 4 \mathrm{H})$, $1.49(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, CD $\mathbf{3}_{\mathbf{3}} \mathbf{O D}$): $\delta 203.3,175.8,173.5,171.3,165.3,142.8,133.6,117.0$, 109.6, 105.4, 55.5, 52.1, 43.4, 38.3, 36.1, 26.9, 21.4, 16.6

MS : $384(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 362.1710$, found 362.1713.
tert-butyl (R)-(3,9,9,10,10-pentamethyl-4-oxo-2,8-dioxa-3-aza-9-silaundecan-5yl)carbamate (64):

To solution of $\mathrm{NHMe}(\mathrm{OMe}) . \mathrm{HCl}(14.5 \mathrm{gm}, 150 \mathrm{mmol})$ and $\mathrm{AlCl}_{3}(19.9 \mathrm{gm}, 150 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$, pyridine ($12 \mathrm{~mL}, 150 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and stirred for 15 min . A solution of homoserine lactone 63 ($10 \mathrm{gm}, 50 \mathrm{mmol}$, dissolved in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added dropwise over 30 min and stirred at room temperature for 16 h . Reaction was quenched with saturated sodium potassium tartarate $(20 \mathrm{~mL})$ and extracted with EtOAc (50 mL X 3). Combined organic layers were washed with water (30 mL) and brine $(30 \mathrm{~mL})$ and concentrated under reduced pressure and the curde was taken in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(13.9 \mathrm{~mL}, 100 \mathrm{mmol}), \mathrm{TBSCl}(8.2 \mathrm{gm}, 54 \mathrm{mmol})$ and DMAP $(0.1 \mathrm{eq})$ were added at $0{ }^{\circ} \mathrm{C}$ and stirred at room temperature for 12 h . The reaction mixture was washed with water (30 mL), brine $(30 \mathrm{~mL})$ and organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude material obtained after removal of solvent was purified by column chromatography (silica gel 230-400, 3:7 ethil acetate : pet ether) to afford $\mathbf{6 4}$ as a white solid ($7.6 \mathrm{gm}, 40 \%$ for 2 steps) and starting material lactone $\mathbf{6 3} 2.5 \mathrm{gm}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 5.45$ (brs, 1H), 4.73 (brs., 1 H), 3.76 ($\mathrm{s}, 3 \mathrm{H}$), $3.64-3.72$ (m, 2H), 3.18 (brs., 3H), 1.94 (brs, 1H), $1.63-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, $0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 173.0,155.6,79.3,61.5,59.7,48.7,34.7,32.1,28.3$, $25.9,18.2,-5.6$

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR and rotation values are identical with the reported values.
tert-Butyl (R)-(4-((tert-butyldimethylsilyl)oxy)-1-oxobutan-2-yl)carbamate (65)

To a solution of Weinrab amide $64(3.8 \mathrm{gm}, 10.1 \mathrm{mmol})$ in dry THF (50 mL), LAH (1.0 gm, 26.2 mmol) was added portion wise at $0{ }^{\circ} \mathrm{C}$ for 15 min . After 1 h reaction was quenched with saturated $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution until effervescences stopped. Filtered the reaction mixture through celite pad, organic layer diluted with EtOAc (80 mL), washed with water (20 mL) brine solution $(20 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude aldehyde $\mathbf{6 5}$ ($2.7 \mathrm{gm}, 84 \%$) obtained after removal of solvent was enough pure by NMR and used further without purification.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=5.19 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{t}, J=5.40$
Hz, 2H), 1.89-2.11 (m, 2H), $1.42(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta 199.9,155.7,79.7,59.2,58.6,31.7,28.2,25.8,25.8$, 25.6, 18.0, -5.7

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR values are compared with reported values and found to be identical.
tert-butyl ((3R,4R,5R)-1-((tert-butyldimethylsilyl)oxy)-4-hydroxy-5-methylhept-6-en-3-yl)carbamate (66) and tert-Butyl ((3R,4S,5R)-1-((tert-butyldimethylsilyl)oxy)-4-hydroxy-5-methylhept-6-en-3-yl)carbamate (67)

Anhydrous chromium (II) chloride ($4.6 \mathrm{~g}, 37.5 \mathrm{mmol}$) was transfered into a round bottomed flask under argon atmosphere and heated upto $200{ }^{\circ} \mathrm{C}$ for 40 min under high vaccum. (R)-tert-butyl (4-((tert-butyldimethylsilyl)oxy)-1-oxobutan-2-yl)carbamate 65 $(4.0 \mathrm{~g}, 12.6 \mathrm{mmol})$ in THF (40 mL) was added at $0^{\circ} \mathrm{C}$ followed by trans- crotyl bromide $(2.6 \mathrm{~mL}, 25 \mathrm{mmol})$ and the reaction mixture was stirred at room temperature for 8 h . Reaction mass was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(4 \times 100 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude material obtained after removal of solvent was purified by column chromatography (silica gel 100-200 mesh, 1:15 to 1:10 ethyl acetate - pet ether) to afford 66 and 67 respectively ($\sim 2: 1$ ratio, 75\%).

66: ($2.3 \mathrm{~g}, 49 \%$) as a colourless oil
$[\alpha]_{\mathbf{D}}{ }^{27}: 7.6\left(c=0.4, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 3443,2957,2859,1716,1473$
${ }^{1}$ H NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 5.83-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.08(\mathrm{~m}, 3 \mathrm{H}), 3.84-3.83(\mathrm{~m}$,
$1 \mathrm{H}), 3.70-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{bs}, 1 \mathrm{H}), 3.06(\mathrm{bs}, 1 \mathrm{H}), 2.24-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.70(\mathrm{~m}$,
2H), $1.41(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 156.2,141.0,115.7,79.0,76.3,60.0,49.6,41.6,35.8$, 28.4 (3C), 25.9 (3C), 18.2, 16.9, -5.5 (2C)

MS: $396(\mathrm{M}+\mathrm{Na})^{+}$
${ }^{1}$ HRMS: calculated for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+}: 374.2727$ found 374.2717

67: (1.2 g, 26\%) as a colourless oil.
$[\alpha]_{\mathbf{D}}{ }^{27}: 5.7\left(c=0.9, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}$ (film): $\mathrm{cm}^{-1} 3441,2958,2885,1701,1500$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 5.84-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.09-5.05(\mathrm{~m}, 3 \mathrm{H}), 3.85(\mathrm{bs}, 1 \mathrm{H})$, 3.70-3.69 (m, 2H), 3.36(bs, 1H), 2.86-2.85 (m, 1H), 2.30-2.24 (m, 1H), 1.82-1.66 (m, $2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 155.7,141.0,115.8,79.1,76.6,59.8,50.3,41.2,31.1$, 28.4 (3C), 25.9 (3C), 18.2, 16.9, -5.5 (2C)

MS: $396(\mathrm{M}+\mathrm{Na})^{+}$
${ }^{1}$ HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]{ }^{+}: 374.2727$ found 374.2718.
(4R,5R)-5-((R)-But-3-en-2-yl)-4-(2-((tert-butyldimethylsilyl)oxy)ethyl)oxazolidin-2one (66 '):

To a stirred solution of $66(0.3 \mathrm{~g}, 0.8 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$, $\mathrm{NaH}(60 \%$ in mineral oil, $0.070 \mathrm{~g}, 1.7 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ then reaction mass was heated at $60^{\circ} \mathrm{C}$ for 2 h . The Reaction mass was cooled to $0^{\circ} \mathrm{C}$ and quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL), extracted with ethyl acetate ($2 \times 20 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude material obtained after removal of solvent was purified by column chromatography (silica gel 100-200 mesh, 3:7 ethyl acetate - pet ether) to afford $\mathbf{6 6}$ ' as a white crystalline solid ($0.22 \mathrm{~g}, 91 \%$).
Mp: $60-61^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{26}: 43.0\left(c=0.5, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}$ (film): $\mathrm{cm}^{-1} 3242,2929,1756,1256,1100$
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 6.25(\mathrm{bs}, 1 \mathrm{H}), 5.78-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J$ $=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.64(\mathrm{~m}, 3 \mathrm{H}), 2.40-2.45(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.64$ (m, 2H), $1.09(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.1,137.0,117.1,85.0,60.2,53.4,41.3,38.3,25.8$ (3C), 18.1, 15.2, -5.4 (2C);

MS: $322(\mathrm{M}+\mathrm{Na})^{+}$;
HRMS: calculated for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+}: 300.1995$, found 300.1986.
(4R,5S)-5-((R)-but-3-en-2-yl)-4-(2-((tert-butyldimethylsilyl)oxy)ethyl)oxazolidin-2one (67'):

Prepared from 67 in 90% yield as a white solid by following the procedure for the synthesis of $\mathbf{6 6}$ '.

Mp : 66-67 ${ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 6}}: 1.1\left(c=0.5, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}$ (film): $\mathrm{cm}^{-1} 3246,2954,2929,1767,1249,1111$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 5.88(\mathrm{~m}, 1 \mathrm{H}), 5.83(\mathrm{bs}, 1 \mathrm{H}), 5.17-5.11(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 159.2,138.5,115.9,82.8,61.2,54.9,37.2,31.2,25.8$ (3C), 18.1, 16.6, -5.4 (2C)

MS : $322(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+}: 300.1995$, found 300.1986 .
(3R,4S,5R)-5-((tert-Butoxycarbonyl)amino)-7-((tert-butyldimethylsilyl)oxy)-3-methylhept-1-en-4-yl 4-nitrobenzoate (68):

${ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, $\mathbf{C D C l}_{3}$): $\delta 8.13-8.40(\mathrm{~m}, \mathbf{4 H}), 5.80(\mathrm{ddd}, J=7.33,10.23,17.31$
$\mathrm{Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=5.75,14.21 \mathrm{~Hz}, 3 \mathrm{H}), 4.77(\mathrm{~d}, J=9.73 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-4.29(\mathrm{~m}$, $1 \mathrm{H}), 3.59-3.79(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{qd}, J=6.49,13.37 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.45$ (br. s., 1H), $1.31(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{~d}, J=6.82 \mathrm{~Hz}, 3 \mathrm{H}), 0.00-0.11(\mathrm{~m}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 164.4,155.3,150.6,139.1,135.4,123.6,116.2,79.6$, 79.2, 59.7, 48.8, 38.9, 35.3, 28.2, 26.0, 18.2, 14.4, 5.5.
$[\alpha]_{\mathbf{D}}{ }^{26}: 10.6\left(c=0.3, \mathrm{CHCl}_{3}\right)$
HRMS: calculated for $\mathrm{C}_{16} \mathrm{H}_{43} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 523.2840$, found 523.2837
(4R,5R)-5-((R)-but-3-en-2-yl)-4-(2-hydroxyethyl)oxazolidin-2-one (69) :

To a solution of $\mathbf{6 6}{ }^{\prime}(1.0 \mathrm{~g}, 3.3 \mathrm{mmol})$ in THF (20 mL), TBAF (1 M in THF, 5 mmol) was added and stirred for 5 h at room temperature. Reaction mass was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL), extracted with ethyl acetate ($2 \times 50 \mathrm{~mL}$). The combined organic layer was washed with water (20 mL), brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude material obtained after removal of solvent was purified by
column chromatography (silica gel 100-200 mesh, $1: 19 \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford (4R,5R)-5-((R)-but-3-en-2-yl)-4-(2-hydroxyethyl)oxazolidin-2-one 69 ($0.57 \mathrm{~g}, ~ 93 \%$) colourless oil.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 7}}: 37.2\left(c=1.3, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 3310,2936,1735,1420,1013$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$) : $\delta 6.93(\mathrm{~s}, 1 \mathrm{H}), 5.75-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.61(\mathrm{~m}, 4 \mathrm{H}), 2.45-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{q}$, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 159.8,136.9,117.2,85.5,59.03,53.3,41.2,38.0,14.9$
HRMS: calculated for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 186.1125$, found 186.1125 .

2-((4R,5R)-5-((R)-but-3-en-2-yl)-2-oxooxazolidin-4-yl)acetaldehyde (70):

To a solution of compound $69(120 \mathrm{mg}, 0.6 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, DMP (302 $\mathrm{mg}, 0.7 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ and stirred for 2 hr at same temperature. Diluted the reaction mixture with 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ washed with sat sodium thiosulfate (5 mL) and brine (5 mL). organic layer was concentrated to afford aldehyde 70 ($92 \mathrm{mg}, 78 \%$) as acolorless sticky liquid. The compound was used further without any purification.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 5.68-5.87(\mathrm{~m}, 2 \mathrm{H})(\mathrm{NH}$ proton merged), 5.04-5.33 (m, 2H), 4.12-4.17 (m, 1H), 3.97 (d, $J=6.02 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=6.53 \mathrm{~Hz}$, 2H), 2.45-2.59 (m, 1H), 1.13 (s, 3H)

HRMS: calculated for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 184.0973$, found 184.0970

2-((4R,5R)-5-((R)-But-3-en-2-yl)-2-oxooxazolidin-4-yl)acetic acid (72) :

To a solution of (4R,5R)-5-((R)-but-3-en-2-yl)-4-(2-hydroxyethyl)oxazolidin-2-one 69 $(0.5 \mathrm{~g}, 2.7 \mathrm{mmol})$ in acetone (20 mL), Jones reagent (0.7 M solution, 15 mL) was added drop wise at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 3.5 h at same temperature. Reaction mass was quenched with isopropanol, the solid thus formed was filtered through a celite bed and the filtrate was evaporated to dryness. The crude material was taken up in ethyl acetate $(50 \mathrm{~mL})$, washed with water $(10 \mathrm{~mL})$ and brine $(15 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford $72(0.49 \mathrm{~g}, 92 \%)$ as a white solid.

Mp: $98-100{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{25}: 56.0\left(c=0.5, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }}$ (film): $\mathrm{cm}^{-1} 3309,2974,1732,1419,1240$
${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl ${ }_{3}$): $\delta 8.84(\mathrm{bs}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 5.83-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{~s}$, $1 \mathrm{H}), 5.15(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.44(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (50 MHz, $\mathbf{C D C l}_{3}$): $\delta 174.0,160.3,136.1,118.0,84.5,51.4,41.0,39.9,14.6$; MS: $222(\mathrm{M}+\mathrm{Na})^{+}$
${ }^{1}$ HRMS: calculated for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}-\mathrm{H}]{ }^{+}$: 198.0761 , found:198.0768.

2-((4R,5R)-5-((R)-but-3-en-2-yl)-2-oxooxazolidin-4-yl)-N-(3- thoxyphenyl)acetamide (74):

To a solution of $72(90 \mathrm{mg}, 0.4 \mathrm{mmol})$ and $\mathrm{HOBt}(83 \mathrm{mg}, 0.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ $\mathrm{mL})$, DCC ($111 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$, stirred for 10 min . Then m - anisidine (73) ($75 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) was introduced and stirring continued for 16 h at room temperature. White solid thus formed was filtered through a celite bed, filtrate was evaporated and purified by column chromatography (silica gel 100-200, 1:19 MeOH $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 74 (119 mg, 86\%) as a white solid.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{2 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.73$ (brs., 1 H), 7.21 (brs., 1 H), 7.16 (t, $J=8.19 \mathrm{~Hz}, 1 \mathrm{H}$), 7.07 (d, $J=8.56 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ (dd, $J=2.20,8.07 \mathrm{~Hz}, 1 \mathrm{H}$), 6.55 (brs., 1H), $5.75-5.89$ $(\mathrm{m}, 1 \mathrm{H}), 5.03-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 4.07-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.58$ (m, 2H), 2.36-2.46(m, 1H), $1.00(\mathrm{~d}, J=6.85 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 168.8,159.9,159.4,139.2,138.4,129.7,116.1,112.4$, $109.9,105.9,82.8,55.3,52.9,36.9,36.8,16.3$.
${ }^{1}$ HRMS: calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 305.1496$, found: 305.1491.
(4R,5R)-4-(2-(2-Amino-4-methoxyphenyl)-2-oxoethyl)-5-((R)-but-3-en-2-
yl)oxazolidin-2-one (75) and (4R,5R)-4-(2-(2-amino-6-methoxyphenyl)-2-oxoethyl)-5((R)-but-3-en-2-yl)oxazolidin-2-one (75'):

Compound 74 ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$) was dissolved in dry acetonitrile $(10 \mathrm{~mL})$ and purged with argon for 15 min . This solution was irradiated with low pressure Hg vapour lamp ($254 \mathrm{~nm}, 15 \mathrm{~W}$ X 2) for 16 h . The residue obtained after the removal of the solvent under reduced pressure was purified by column chromatography (silica gel 230-400, 0.4:99.6 $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 75 and $\mathbf{7 5}^{\prime}$ as inseparable regioisomeric mixture. (11 mg , $11 \%)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): (mixture of isomers) $\delta 7.52(\mathrm{~d}, J=8.85 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}$, $J=8.24 \mathrm{~Hz}, 1 \mathrm{H}), 6.21-6.30(\mathrm{~m}, 2 \mathrm{H}), 6.18(\mathrm{~d}, J=8.24 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=2.44 \mathrm{~Hz}$, $1 \mathrm{H}), 5.95$ (ddd, $J=7.48,10.22,17.40 \mathrm{~Hz}, 2 \mathrm{H}$), 5.60 (br. s., 1H), 5.55 (br. s., 1H), 5.08 $5.25(\mathrm{~m}, 4 \mathrm{H}), 4.43(\mathrm{td}, J=7.55,15.41 \mathrm{~Hz}, 2 \mathrm{H}), 4.19-4.30(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.30(\mathrm{~d}, J=6.71 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{td}, J=7.10,13.89 \mathrm{~Hz}, 2 \mathrm{H})$, $1.10(\mathrm{~d}, J=6.71 \mathrm{~Hz}, 5 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathbf{C D C l}_{3}$): (mixture of isomers) $\delta 201.4,197.3,164.9,161.5$, $158.8,158.6,153.2,151.4,138.6,134.4,132.7,116.2,112.0,110.3,105.3,99.2,98.6$, $82.4,82.3,55.6,55.3,52.4,52.0,44.6,38.0,37.7,17.0,16.9$;
${ }^{1}$ HRMS: calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 305.1496$, found: 305.1493.

2-((4R,5R)-5-((R)-But-3-en-2-yl)-2-oxooxazolidin-4-yl)-N-(3-((triisopropylsilyl)oxy) phenyl)acetamide (77):

To a solution of $72(0.2 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{HOBt}(0.16 \mathrm{~g}, 1.2 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, DCC ($0.25 \mathrm{~g}, 1.2 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$, stirred for 10 min . Then 3((triisopropylsilyl)oxy) aniline $76(0.26 \mathrm{~g}, 1 \mathrm{mmol})$ was introduced and stirring continued for 16 h at room temperature. White solid thus formed was filtered through a celite bed, filtrate was evaporated and purified by column chromatography (silica gel 100-200, 1:19 $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $77(0.4 \mathrm{~g}, 87 \%)$ as a white solid.

Mp: 110-111 ${ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{25}:-5.0\left(c=0.5, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} \mathbf{2 9 4 5}, 2868,1748,1668,1607$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.96(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.00$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~m}, 1 \mathrm{H}), 5.86(\mathrm{~m}, 1 \mathrm{H}), 5.75(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.16(\mathrm{~m}, 2 \mathrm{H}), 4.28$ $(\mathrm{m}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.50(\mathrm{~m}, 3 \mathrm{H}), 1.31-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 18 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 167.7,158.4,156.6,138.5,136.4,129.6,117.8,116.1$, $112.3,111.6,84.3,51.6,42.8,41.3,17.9$ (3C), 14.8, 12.6 (6C)

MS: $469(\mathrm{M}+\mathrm{Na})^{+}$
${ }^{1}$ HRMS: calculated for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 447.2674$, found: 447.2673.
(4R,5R)-4-(2-(2-Amino-4-((triisopropylsilyl)oxy)phenyl)-2-oxoethyl)-5-((R)-but-3-en-2-yl)oxazolidin-2-one (78):

Compound 77 ($100 \mathrm{mg}, 0.2 \mathrm{mmol}$) was dissolved in dry acetonitrile $(150 \mathrm{~mL})$ and purged with argon for 15 min . This solution was irradiated with low pressure Hg vapour lamp ($254 \mathrm{~nm}, 16 \mathrm{~W}$) for 4.5 h . The residue obtained after the removal of the solvent under reduced pressure was purified by column chromatography (silica gel 230-400, 0.4:99.6 $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $78(36 \mathrm{mg}, 36 \%, 5 \mathrm{mg}$ of starting material was recovered) as a white solid and compound $79(4 \mathrm{mg})$ as off white solid.

Mp: $131-132{ }^{\circ} \mathrm{C}$;
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 6}}: 33.8\left(c=0.2, \mathrm{CHCl}_{3}\right)$

IR $\boldsymbol{v}_{\max }($ film $): \mathrm{cm}^{-1} 3437,3327,2945,2869,1744,1636,1619,1589$
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.49(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{bs}, 2 \mathrm{H}), 6.19(\mathrm{dd}, J=8.8$ $\mathrm{Hz}, 2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.62(\mathrm{bs}, 1 \mathrm{H}), 5.20-5.16(\mathrm{~m}$, $2 \mathrm{H}), 4.23(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.23(\mathrm{~m}$, $3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 18 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 197.2,162.0,158.2,153.0,136.7,132.8,117.6,112.3$, $109.8,106.3,84.2,51.1,44.6,41.2,17.8$ (3C), 14.9, 12.7 (6C)

MS: $469(\mathrm{M}+\mathrm{Na})^{+}$
${ }^{1}$ HRMS: calculated for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]{ }^{+}: 447.2674$, found 447.2673 .
(4R,5R)-4-(2-(2-amino-6-((triisopropylsilyl)oxy)phenyl)-2-oxoethyl)-5-((R)-but-3-en-2-yl)oxazolidin-2-one (79):

Mp: $140-141^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 6}}: 25.2\left(c=0.1, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 3431,2942,2865,1744,1630,1618$
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 7.03(\mathrm{t}, J=7.93 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=7.93 \mathrm{~Hz}, 1 \mathrm{H}), 6.12$ (d, $J=7.93 \mathrm{~Hz}, 1 \mathrm{H}), 5.84$ (brs., 1 H), $5.71-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.55$ (brs., 1 H), 4.14 (dd, $J=$ $4.58,5.80 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=3.36 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.31(\mathrm{~m}, 1 \mathrm{H})$, $2.45-2.56(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.39(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=7.02 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=1.22 \mathrm{~Hz}$, 18H)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 201.7,158.2,158.0,136.8,133.9,117.6,113.1,110.0$, $106.9,84.2,51.4,50.7,41.3,18.0,15.1,13.4$

HRMS: calculated for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 447.2674$, found 447.2672.
(S)-2-((4R,5R)-4-(2-(2-Amino-4-((triisopropylsilyl)oxy)phenyl)-2-oxoethyl)-2-oxooxazolidin-5-yl)propanoic acid (80):

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $78(50 \mathrm{mg}, 0.1 \mathrm{mmol})$ in dioxane-water $(3: 1,4 \mathrm{~mL}) \mathrm{OsO}_{4}$ (2.5% in $t-\mathrm{BuOH}, 0.1 \mathrm{~mL}, 0.01 \mathrm{mmol}$), $\mathrm{NaIO}_{4}(96 \mathrm{mg}, 0.4 \mathrm{mmol})$ and 2,6-lutidine (0.03 $\mathrm{mL}, 0.2 \mathrm{mmol}$) were added. The reaction mixture was stirred at room temperature for 3 h , filtered, and concentrated under vacuum. The residue obtained was taken up in ethyl acetate (10 mL), washed with aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \mathrm{~mL})$ followed by brine $(5 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to afford colourless oil.

To this crude material dissolved in t - BuOH -water ($5: 1,3 \mathrm{~mL}$), $\mathrm{NaH}_{2} \mathrm{PO}_{4}(20 \mathrm{mg}, 0.16$ $\mathrm{mmol})$, 2-methyl-2-butene ($0.03 \mathrm{~mL}, 0.3 \mathrm{mmol}$) and $\mathrm{NaClO}_{2}(10 \mathrm{mg}, 0.1 \mathrm{mmol})$ were added. After the reaction mixture was stirred at room temperature for 6 h , the reaction mixture was evaporated to dryness, dissolved in ethyl acetate (10 mL), washed with water (5 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude material obtained after removal of solvent was purified by column chromatography (silica gel 100-200 mesh, 1 : 12 , $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $\mathbf{8 0}(32 \mathrm{mg}, 61 \%)$ as an off white solid.

Mp: $105-106{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}: 80.5\left(c=0.5, \mathrm{CHCl}_{3}\right)$

IR $\boldsymbol{v}_{\text {max }}($ film $): \mathrm{cm}^{-1}: 3338,2925,2854,1738,1614,1519,1015$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CD $\left.\mathbf{D}_{\mathbf{3}} \mathrm{OD}\right): \delta 7.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.15$ (dd, $J=2.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.89-$ $2.83(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.27(\mathrm{~m}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-1.11(\mathrm{~m}, 18 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 198.8,162.9,161.2,134.4,113.6,110.0,107.0,83.8$, $53.0,46.0,45.5,18.4$ (6C), 13.9 (3C), 12.4.

MS: $487(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}-\mathrm{H}]^{+}: 463.2259$, found: 463.2282.
(9H-fluoren-9-yl)methyl ((R)-1-((2-(2-((4R,5R)-5-((R)-but-3-en-2-yl)-2-oxooxazolidin-4-yl)acetyl)-5-((triisopropylsilyl)oxy)phenyl)amino)-1-oxopropan-2yl)carbamate (82):

Compound 82 (170 mg, 68\%) was synthesized by following the similar procedure used for the synthesis of $\mathbf{6 0}$.

Mp: 137-139 ${ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}: 55.5\left(c=0.4, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta 8.41(\mathrm{~d}, J=2.26 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=9.03 \mathrm{~Hz}, 1 \mathrm{H})$, $7.87(\mathrm{~d}, J=7.53 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.53 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=7.28 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J$ $=3.01,7.28 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.37(\mathrm{~m}, 2 \mathrm{H}), 6.63-6.79(\mathrm{~m}, 1 \mathrm{H}), 5.55-5.66(\mathrm{~m}, 1 \mathrm{H}), 4.97$ (d, $J=17.32 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{dd}, J=6.02,9.79 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.22$ (m, 2H), 3.80-3.88(m, 1H), $3.38(\mathrm{~d}, J=8.53 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.32$ $(\mathrm{m}, 1 \mathrm{H}), 1.52(\mathrm{~d}, J=7.28 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.13-1.15(\mathrm{~m}, 18 \mathrm{H}), 0.83(\mathrm{~d}, J=$ $6.78 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta 201.7,175.0,163.5,161.2,158.8,145.8,145.0,143.9$, $142.8,142.7,138.5,135.0,129.0,128.4,127.0,126.5,121.1,117.7,117.5,116.1,112.1$, $85.7,68.5,54.1,52.8,46.7,42.7,18.5,18.0,15.7,14.0$

HRMS: calculated for $\mathrm{C}_{42} \mathrm{H}_{54} \mathrm{O}_{7} \mathrm{~N}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 740.3731$, found: 740.3730 .
tert-Butyl (2-(($(R)-1-((2-(2-((4 R, 5 R)-5-((R)-b u t-3-e n-2-y l)-2-o x o o x a z o l i d i n-4-$ yl)acetyl)-5-((triisopropylsilyl)oxy)phenyl)amino)-1-oxopropan-2-yl)amino)-2oxoethyl)carbamate (84)

To a solution of compound $\mathbf{8 2}(160 \mathrm{mg}, 0.2 \mathrm{mmol})$ was taken in ethanol (5 mL) NaBH_{4} ($32 \mathrm{mg}, 0.8 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ and stirred for 10 h at room temperature. Concentrated the reaction mixture and quenched with ice and extracted with EtOAc (10 mL X 2). Combined organic layers were washed with brine (5 mL) and concentrated . The Ms of the compound showed peak at 542 confirmed that along with carbonyl reduction Fmoc also got deprotected. The crude compound was taken in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL), NHBoc-Gly-OH ($37 \mathrm{mg}, 0.2 \mathrm{mmol}$), EDC($33 \mathrm{mg}, 0.2 \mathrm{mmol}$), HOBt ($29 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ were added followed by $\mathrm{Et}_{3} \mathrm{~N}(60 \mu \mathrm{~L})$ was added and stirred at room temperature for 24 h . diluted the reaction mixture with EtOAc (10 mL) washed with brine 3 mL . organic layer was concentrated to afford glycine coupled compound. Compound was confirmed by appearance of mass peak at $699(\mathrm{M}+\mathrm{Na})$. The crude compound was taken in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cooled to $0{ }^{\circ} \mathrm{C}$, DMP (137 mg) was added and stirred for 1 h at same temperature. Filtered the reaction mixture washed with sat. NaHCO_{3}. Organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ the crude material obtained after removal of solvent was purified by column chromatography (silica gel 100-200 mesh, 4: 96 , $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $\mathbf{8 4}$ ($95 \mathrm{mg}, 65 \%$ for 3 steps) as an off white solid.

Mp: $112-113{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{24}: 81.8\left(c=0.5, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }}($ film $): \mathrm{cm}^{-1}: 3338,2925,2854,1738,1614,1519,1015$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta 8.38(\mathrm{~d}, J=2.45 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.80 \mathrm{~Hz}, 1 \mathrm{H})$, 6.72 (dd, $J=2.45,8.80 \mathrm{~Hz}, 1 \mathrm{H}), 5.84$ (ddd, $J=7.95,10.03,17.48 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.28$ $(\mathrm{m}, 2 \mathrm{H}), 4.51(\mathrm{q}, J=7.09 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{t}, J=4.40 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~d}$, $J=5.62 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=6.11 \mathrm{~Hz}, 2 \mathrm{H}), 2.56-2.67(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~d}, J=7.34 \mathrm{~Hz}$, $3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.33-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=7.34 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=7.58 \mathrm{~Hz}$, $18 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, CD $_{3} \mathbf{O D}$): $\delta 202.1,174.1,173.1,163.6,161.5,158.5,143.9,138.4$, $136.6,135.1,135.0,133.4,132.2,127.8,118.1,117.4,116.1,111.9,85.9,80.9,52.9$, $52.8,52.1,46.5,46.4,44.8,43.1,28.9,18.5,17.6,16.2,14.0$

HRMS: calculated for $\mathrm{C}_{34} \mathrm{H}_{55} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}:$675.3784, found: 675.3782.
(3aR,4S,10R,18aR)-4,10-Dimethyl-14-((triisopropylsilyl)oxy)-3a,4,6,7,9,10,18,18a-octahydro-2H-benzo[h]oxazolo[4,5-I][1,4,7]triazacyclopentadecine$\mathbf{2 , 5 , 8 , 1 1 , 1 7 (1 H , 1 2 H})$-pentaone (86):

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{8 5}(60 \mathrm{mg}, 0.01 \mathrm{mmol})$ in dioxane-water $(3: 1,4 \mathrm{~mL}) \mathrm{OsO}_{4}$ (2.5% in t - $\mathrm{BuOH}, 3 \mu \mathrm{~L}$), $\mathrm{NaIO}_{4}(76 \mathrm{mg}, 0.04 \mathrm{mmol}$) and 2,6-lutidine ($20 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) were added. The reaction mixture was stirred at room temperature for 3 h , filtered, and concentrated under vacuum. The residue obtained was taken up in ethyl acetate (10 mL),
washed with aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \mathrm{~mL})$ followed by brine (5 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to afford colourless oil.

To this crude material dissolved in t - BuOH -water ($5: 1,3 \mathrm{~mL}$), $\mathrm{NaH}_{2} \mathrm{PO}_{4}(16 \mathrm{mg}, 0.015$ mmol), 2-methyl-2-butene ($28 \mu \mathrm{~L}, 0.03 \mathrm{mmol}$) and $\mathrm{NaClO}_{2}(8 \mathrm{mg}, 0.01 \mathrm{mmol})$ were added. After the reaction mixture was stirred at room temperature for 6 h , the reaction mixture was evaporated to dryness dissolved in ethyl acetate (10 mL), washed with water (5 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude material ($\mathbf{8 5}^{\prime}$) obtained after removal of solvent was treated with 20% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred for 2 h . concentrated the reaction mixture and the residue was taken up in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, HATU ($101 \mathrm{mg}, 0.03 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.06 \mathrm{~mL}, 0.05 \mathrm{mmol})$ were added and the resulting reaction solution was stirred at room temperature for 16 h . Reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ and saturated aq. NaHCO_{3} solution (5 mL). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude material obtained after removal of solvent was purified by repititive column chromatography (silica gel 230-400, 4: 96 methanol: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $\mathbf{8 6}$ a white solid ($3 \mathrm{mg}, 5 \%$ over 4 steps).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CD $\left.\mathbf{3}_{\mathbf{3}} \mathbf{O D}\right): \delta 8.31(\mathrm{~d}, J=2.29 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=9.16 \mathrm{~Hz}, 1 \mathrm{H})$, $6.68(\mathrm{dd}, J=2.29,9.16 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=1.83,4.12 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=7.63 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.31-3.33(\mathrm{~m}, 1 \mathrm{H})$, $3.00-3.06(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=7.33 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-1.35(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=6.87 \mathrm{~Hz}$, $3 \mathrm{H}), 1.12(\mathrm{~d}, J=2.29 \mathrm{~Hz}, 9 \mathrm{H}), 1.10(\mathrm{~d}, J=2.29 \mathrm{~Hz}, 9 \mathrm{H})$

HRMS: calculated for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 575.2901$, found: m/z 575.2903
General procedure A : procedure for the synthesis of alkenyl aryl selenides: $\mathrm{Bu}_{3} \mathrm{P}(2$ mmol) was added dropwise to a solution of alkenol (1 mmol) and 2-nitrophenyl selenocyanate (2 mmol) in 5 mL of THF under nitrogen atmosphere. After 2-3 h TLC indicated almost complete disappearance of the starting material, and the mixture was concentrated in vacuo and purified by column chromatography using ethyl acetate and pet ether to afford desired alkenyl aryl selenides.

General procedure B: Procedure for ozonolysis reaction: A solution of alkenyl selenide (1 mmol) in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 2.5 M methanolic NaOH (5 mmol) was stirred at $-78{ }^{\circ} \mathrm{C}$ as ozone was passed through the solution. After $20-30 \mathrm{~min}$, initially reaction mixture color changed to yellow then yellow precipitate was observed. Once blue color observed oxygen was passed to remove excess of ozone until reaction mixture was become colorless. The reaction mixture was allowed to warm up to room temperature, and then stirred for additional 3-4 h . The reaction mixture was diluted with water (10 mL) extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. Purification of the crude material on a silica gel column chromatography ethyl acetate and pet ether afforded desired olefin esters.
(4R,5R)-5-((R)-But-3-en-2-yl)-4-(2-((2-nitrophenyl)selanyl)ethyl)oxazolidin-2-one (91):

The compound 91 ($1.8 \mathrm{gm}, 95 \%$) synthesized from compound 69 by following general procedure A, as yellow color solid.

Mp: $120-121^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{27}+48.30\left(c 1.26, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }}(f i l m): \mathrm{cm}^{-1} 3233,2975,1730,1499$
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 8.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.20$ (m, 2H), 5.83-5.65 (m, 1H), 5.25-5.06 (m, 2H), $4.17(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{q}, J=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{td}, J=7.6,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.41(\mathrm{~m}, 1 \mathrm{H})$, 2.06-1.89 (m, 2H), $1.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.8,146.8,136.5,134.0,132.4,128.9,126.5,125.8$, 117.7, 84.7, 54.9, 41.4, 34.6, 20.9, 14.7

MS: $393(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+}: 371.0505$, found 371.0497.

Methyl (S)-2-((4R,5R)-2-oxo-4-vinyloxazolidin-5-yl)propanoate (92):

The compound 92 ($16 \mathrm{mg}, 15 \%$) was synthesized from compound 91 by following general procedure B , as a pale yellow liquid.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 9}} \mathbf{:}+9.07\left(c 1.33, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}$ (film): $\mathrm{cm}^{-1} 2935,1758,1671,1644,1529$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 5.86$ (ddd, $\left.J=7.3,10.0,17.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.41-5.25$ (m, $3 \mathrm{H}), 4.53(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.28$ (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 172.7,158.1,136.1,118.8,82.0,57.6,52.2,43.0,11.5$ MS: $222(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 200.0917$, found 200.0916.
tert-Butyl (4R,5R)-5-((R)-but-3-en-2-yl)-4-(2-((2-nitrophenyl)selanyl)ethyl)-2-oxooxazolidine-3-carboxylate (93) :

To a solution of $91(500 \mathrm{mg}, 1.3 \mathrm{mmol})$ in THF (10 mL) was added di-tert-butyl dicarbonate ($590 \mathrm{mg}, 2.7 \mathrm{mmol}$) and 4-dimethylaminopyridine (DMAP) ($33 \mathrm{mg}, 0.3$
mmol) and the whole was stirred at room temperature for overnight. The reaction mixture was concentrated in vaccuo and the crude material was purified by column chromatography (silica gel 100-200 mesh 15% ethyl acetate - pet ether) to afford 93 (615 $\mathrm{mg}, 97 \%$) as yellow color solid.

Mp: $103-105{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{27}:+5.65\left(c 0.97, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 3211,2932,1654,1544$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.27$ (dd, $J=1.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54 (ddd, $J=1.4,7.0$,
$8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=1.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (ddd, $J=1.4,7.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.68$ (ddd, $J=8.2,10.3,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.18-4.09(\mathrm{~m}, 2 \mathrm{H}), 2.97-2.86$ $(\mathrm{m}, 1 \mathrm{H}), 2.85-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.11$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 151.9,149.2,146.8,135.7,134.1,132.6,128.7,126.7$, $125.9,118.4,84.4,80.9,57.2,42.1,32.0,28.0,19.8,14.8$

MS: $493(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{SeNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 493.0848, found 493.0839.
tert-Butyl (4R,5R)-5-((S)-1-methoxy-1-oxopropan-2-yl)-2-oxo-4-vinyloxazolidine-3carboxylate (94):

The compound 94 ($120 \mathrm{mg}, 75 \%$) was synthesized from compound $\mathbf{9 3}$ by following general procedure B , as a pale yellow color liquid.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 6}} \boldsymbol{:}+12.00\left(c\right.$ 1.17, $\left.\mathrm{CHCl}_{3}\right)$

IR $\boldsymbol{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 3023,1813,1728,1597$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 5.97-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.40-5.25(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{dd}, J=$ $4.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=4.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.02-2.80(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~s}$, 9H), 1.26 (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 172.4,151.3,148.9,134.9,118.8,84.3,78.6,59.6,52.3$, 43.0, 28.0, 11.6

MS: $322(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{6} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}: 322.1261$, found 467.1255.

Methyl (R,E)-4-((tert-butoxycarbonyl)amino)-2-methylhexa-2,5-dienoate (95):

Compound 94 ($100 \mathrm{mg}, 0.33 \mathrm{mmol}$) was taken in THF-MeOH ($1 \mathrm{~mL}, 3: 2$) cooled to 0 ${ }^{\circ} \mathrm{C}$, $\mathrm{LiOH} . \mathrm{H}_{2} \mathrm{O}(15 \mathrm{mg}, 0.375 \mathrm{mmol})$ dissolved in 0.5 mL water was added and stirred for 3 h . After completion of the reaction (monitored by TLC), concentrated the reaction mixture to remove THF and MeOH. Acidified to $\mathrm{P}^{\mathrm{H}} 3$ with 1 N HCl , extracted with ethylacetate (5 mL X 2). Organic layer was concentrated purified by column chromate graphy (silica gel 100-200 mesh 25% ethyl acetate - pet ether) to afford 95 ($62 \mathrm{mg}, 73 \%$) as colorless liquid and compound $90(12 \mathrm{mg}, 14 \%)$. (Note: acid compound 90 found to unsatable).
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 6.50(\mathrm{~d}, J=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{ddd}, J=5.2,10.5,16.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.13-5.24(\mathrm{~m}, 2 \mathrm{H}), 4.99$ (brs., 1H), 4.68 (brs., 1H), $3.74(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H})$, 1.43 (s, 9H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 168.2,154.9,139.4,135.6,116.1,79.9,52.0,51.0,28.4$, 12.8.

HRMS: calculated for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}: 278.1363$, found 278.1359.
(2S,3R,4R)-4-((tert-Butoxycarbonyl)amino)-3-hydroxy-2-methylhex-5-enoic acid (90)

${ }^{1} \mathbf{H}$ NMR (200 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.22$ (brs., 1H), $5.74-5.99(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.33(\mathrm{~m}, 2 \mathrm{H})$, $4.17-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.75(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.75(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}=$ $6.95 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\mathbf{C D C l}_{3}$): $\delta 179.8,156.1,136.5,116.4,80.0,75.0,53.7,42.3,28.3$, 14.0.

HRMS: calculated for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 260.14979$ found 260.1492 .
tert-Butyl ((3R,4R,5R)-4-hydroxy-5-methyl-1-((2-nitrophenyl)selanyl)hept-6-en-3yl)carbamate (96):

To a solution of compound $93(300 \mathrm{mg}, 0.63 \mathrm{mmol})$ in dry methanol $\mathrm{Cs}_{2} \mathrm{CO}_{3}(104 \mathrm{mg}$, 0.32 mmol) was added and stirred for 8 h . Methanol was removed under reduced pressure diluted with ethyl acetate $(15 \mathrm{~mL})$ washed with water $(5 \mathrm{~mL})$, brine $(5 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the crude material obtained after removal of the solvent was purified by column chromatography (silica gel 100-200 mesh 15% ethyl acetate - pet ether) to afford 96 (202 mg, 71\%) as yellow color solid and compound 91 ($61 \mathrm{mg}, 21 \%$).

Mp: $118-120^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{29}:+4.73\left(c 0.89, \mathrm{CHCl}_{3}\right)$

IR $\mathbf{v}_{\mathbf{m a x}}($ film $): \mathrm{cm}^{-1} 3023,1595,1217$
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 8.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.29$ $(\mathrm{m}, 1 \mathrm{H}), 5.80-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.17(\mathrm{~m}, 2 \mathrm{H}), 4.94(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.88$ $(\mathrm{m}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{td}, J=7.5,15.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.18-2.07(m, 1H), 2.07-1.90(m, 2H), $1.48(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 156.2,146.9,140.6,133.6,129.0,126.4,125.3,117.7$, $79.5,75.6,51.4,42.5,33.0,28.4,22.7,16.4$

MS: $467(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{SeNa}[\mathrm{M}+\mathrm{Na}]^{+}: 467.1056$, found 467.1045 .
Methyl (2S,3R,4R)-4-((tert-butoxycarbonyl)amino)-3-hydroxy-2-methylhex-5-enoate (97):

The compound 97 ($60 \mathrm{mg}, 46 \%$) was synthesized from compound 96 by following general procedure B , as a colorless liquid.
$[\alpha]_{\mathbf{D}}{ }^{30}:+29.10\left(c 2.95, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} \mathbf{3 0 1 6}, 2977,1707,1501$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 5.92-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.19(\mathrm{~m}, 2 \mathrm{H}), 5.03-4.93(\mathrm{~m}$, $1 \mathrm{H}), 4.30(\mathrm{brs}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{brs}, 1 \mathrm{H}), 2.67(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 176.4,155.7,136.9,116.2,79.6,74.9,53.7,52.0,42.5$, 28.3, 14.1

MS: $296(\mathrm{M}+\mathrm{Na})^{+}$

HRMS: calculated for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}: 296.1468$, found 296.1467.
(R)-(3,7-Dimethyloct-6-en-1-yl)(2-nitrophenyl)selane (1b):

The compound 1b ($205 \mathrm{mg}, 93 \%$) synthesized from β-citronellol by following general procedure A , as a yellow color liquid.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}} \boldsymbol{:}+8.16\left(c 1.10, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}(f i l m): \mathrm{cm}^{-1} 3022,2964,2923,1594,1516,1301,1216$
${ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, $\mathbf{C D C l}_{3}$): $\delta 8.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.27$ $(\mathrm{m}, 1 \mathrm{H}), 5.18-5.00(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.53(\mathrm{~m}$, $9 \mathrm{H}), 1.91-1.46(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 146.7,134.0,133.5,131.4,129.0,126.4,125.2,124.4$, $36.6,35.1,33.1,25.7,25.4,24.0,19.2,17.7$
HRMS: calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{NSe}[\mathrm{M}+\mathrm{H}]^{+}: 342.0967$, found 342.0963.

Methyl (R)-4-methylhex-5-enoate (1c):

Compound 1c ($35 \mathrm{mg}, 84 \%$) was synthesized from compound 1b by following general procedure B , as a colorless liquid.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}:-14.65\left(c 0.50, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $)_{3}$): $\delta 5.74-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.92(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H})$, 2.32-2.27(m, 2H), 2.22-2.07(m, 1H), 1.76-1.54(m, 2H), $1.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 174.3,143.4,113.6,51.5,37.5,31.9,31.3,20.1$. Spectral data and rotation were compared with reported values and found to be identical.
(2-Nitrophenyl)(undec-10-en-1-yl)selane (2b)

The compound $\mathbf{2 b}$ ($155 \mathrm{mg}, 73 \%$) was synthesized from undec-10-en-1-ol by following general procedure A , as a yellow color liquid.
IR $\boldsymbol{v}_{\text {max }}$ (film): $\mathrm{cm}^{-1} 3022,2928,2856,1595,1216$
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 8.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.29$ (ddd, $J=3.4,4.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{tdd}, J=6.6,10.3,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.84(\mathrm{~m}, 2 \mathrm{H}), 2.91$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.03(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.77 (quin, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.47 (quin, $J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.25(\mathrm{~m}, 10 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 146.8,139.1,134.0,133.5,129.0,126.4,125.1,114.1$, 33.7, 30.1, 29.4, 29.1, 29.0, 28.8, 28.2, 26.2

HRMS: calculated for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{NSe}[\mathrm{M}+\mathrm{H}]^{+}: 356.1123$, found 356.1116.

Methyl dec-9-enoate (2c)

Compound 2c ($25 \mathrm{mg}, 65 \%$) was synthesized from compound 2b by following general procedure B , as a colorless liquid
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 5.91-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.87(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H})$, $2.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.27(\mathrm{~m}, 8 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 174.3,139.1,114.2,51.4,34.1,33.7,29.1,28.9,28.8$, 24.9.

Spectral data and rotation were compared with reported values and found to be identical.

(2-(Dec-9-en-1-yloxy)ethyl)(2-nitrophenyl)selane (3b):

The compound 3b (186 mg, 88\%) was synthesized from compound 3a by following general procedure A , as a yellow color liquid.

IR $\boldsymbol{v}_{\text {max }}$ (film): $\mathrm{cm}^{-1} 3073,3011,2929,2857,1637,1515,13371218$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl \mathbf{H}_{3}): $\delta 8.29(\mathrm{dd}, J=1.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.57$ - $7.44(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.18(\mathrm{~m}, 1 \mathrm{H}), 5.93-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.07-4.81(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.66$ $(\mathrm{m}, 2 \mathrm{H}), 3.58-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.22-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.47(\mathrm{~m}$, $2 \mathrm{H}), 1.43-1.16(\mathrm{~m}, 10 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (50 MHz, $\mathbf{C D C l}_{3}$): $\delta 139.2,133.5,133.2,129.1,126.4,125.4,114.1,71.3$, 69.1, 33.8, 29.6, 29.4, 29.0, 28.9, 26.1, 25.8

HRMS: calculated for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{NSe}[\mathrm{M}+\mathrm{H}]^{+}: 386.1229$, found 386.1221.

Methyl 9-(vinyloxy)nonanoate (3c)

The compound 3c (27 mg , $65-70 \%$, decomposition was observed in CDCl_{3}) was synthesized from compound $\mathbf{3 b}$ by following general procedure B , as colorless liquid.

IR $\boldsymbol{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 3023,2357,1726,1596,1216,1031$
${ }^{1} \mathbf{H}$ NMR ($200 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 6.39(\mathrm{dd}, J=6.8,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=1.9,14.4$ Hz, 1H), 3.90 (dd, $J=1.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.68-3.50(\mathrm{~m}, 5 \mathrm{H}), 2.29-2.16$ (m, 2H), 1.66 $1.51(\mathrm{~m}, 4 \mathrm{H}), 1.25-1.21(\mathrm{~m}, 8 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 174.3,152.0,86.2,68.1,51.4,34.1,29.1,29.0,25.9$, 24.9

HRMS: calculated for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 215.1642$, found 215.1640.

2-(1-(Undec-10-en-1-yl)-1H-1,2,3-triazol-4-yl)ethan-1-ol (4a):

Mixture of 11-azidoundec-1-ene ($200 \mathrm{mg}, 1.02 \mathrm{mmol}$) and but-3-yn-1-ol ($70 \mathrm{mg}, 1.02$ $\mathrm{mmol})$ in 6 mL of $(1: 1) \mathrm{t}-\mathrm{BuOH}$ and water in presence of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(12.5 \mathrm{mg}, 5$ $\mathrm{mol} \%$) and Na-Ascorbate ($20.2 \mathrm{mg}, 10 \mathrm{~mol} \%$) were heated at $80{ }^{\circ} \mathrm{C}$ for 1 h . After completion of reaction (monitored by TLC), $\mathrm{t}-\mathrm{BuOH}$ was removed under reduced pressure and the reaction mixture was extracted with EtOAc (3 x 10 mL). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure to get the crude product which was purified by silica gel column chromatography (silica gel $100-200$ mesh $2 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford the compound $\mathbf{4 a}(225 \mathrm{mg}, 83 \%$) as colorless solid.

Mp: $70-82{ }^{\circ} \mathrm{C}$
IR $\boldsymbol{v}_{\text {max }}$ (film): $\mathrm{cm}^{-1} 3390,3019,2930,1456,1217$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.38(\mathrm{~s}, 1 \mathrm{H}), 5.91-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.06-4.86(\mathrm{~m}, 2 \mathrm{H})$, $4.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-1.96(\mathrm{~m}$, $2 \mathrm{H}), 1.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.44-1.26$ (m, 12H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 145.4,139.1,121.3,114.1,61.6,50.2,33.7,30.2,29.3$, 29.0, 28.9, 28.8, 28.6, 26.4

HRMS: calculated for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{ON}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 266.2227$, found 266.2227.

4-(2-((2-Nitrophenyl)selanyl)ethyl)-1-(undec-10-en-1-yl)-1H-1,2,3-triazole (4b):

The compound $\mathbf{4 b}$ ($189 \mathrm{mg}, 90 \%$) was synthesized from compound $\mathbf{4 a}$ by following general procedure A , as a yellow color liquid.

IR $\boldsymbol{v}_{\max }($ film $): \mathrm{cm}^{-1} \mathbf{2 9 5 9}, 2865,1639,1678,1459,1499,1220,1146$
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 8.42-8.15(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H})$, 7.34-7.28 (m, 1H), 5.94-5.74 (m, 1H), 5.05-4.86 (m, 2H), $4.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.31-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.39-1.24(\mathrm{~m}, 12 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 146.9,145.9,139.2,133.7,132.9,129.0,126.5,125.5$, $121.1,114.2,50.3,33.8,30.3,29.3,29.3,29.0,29.0,28.9,26.5,25.4,25.1$

HRMS: calculated for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{~N}_{4} \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+}: 451.1607$, found 451.1613.

1-(Undec-10-en-1-yl)-4-vinyl-1H-1,2,3-triazole (4c):

The compound $\mathbf{4 c}$ ($35 \mathrm{mg}, 81 \%$) was synthesized from compound $\mathbf{4 b}$ by following general procedure B , as colorless liquid.

IR $\boldsymbol{v}_{\text {max }}$ (film): $\mathrm{cm}^{-1} 3021,2933,2358,1729,1598,1499,1217$
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.50(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=11.1,17.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dd}$, $J=1.0,17.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=1.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}$, $3 \mathrm{H}), 2.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.35-$ $1.23(\mathrm{~m}, 10 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 174.3,146.3,125.8,120.0,115.9,51.5,50.3,34.1,30.3$, 29.1 (2C), 29.0, 28.9, 26.4, 24.9

HRMS: calculated for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 280.2020$, found 280.2018.
(2-Nitrophenyl)(2-vinylphenethyl)selane (5b):

The compound $\mathbf{5 b} \mathbf{(2 1 0 ~} \mathrm{mg}, \mathbf{9 2 \%}$) was synthesized from compound $\mathbf{5 a}^{\mathbf{5}}$ by following general procedure A , as a yellow color liquid.

IR $\mathbf{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 3021,2939,1584,1516,1301,1216$
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 8.24-8.17(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{ddd}, J=$ $2.1,6.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{dd}, J=11.0,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=$ $1.2,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{dd}, J=1.1,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-3.01(\mathrm{~m}, 4 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 146.9,137.8,136.5,134.0,133.5,133.3,129.4,129.0$, 128.1, 127.2, 126.4, 126.2, 125.4, 116.5, 32.2, 26.5

HRMS: calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{NSe}[\mathrm{M}+\mathrm{H}]^{+}: 334.0341$, found 334.0336.

Methyl 2-vinylbenzoate (5c):

The compound 5c ($30 \mathrm{mg}, 83 \%$) was synthesized from compound $\mathbf{5 b}$ by following general procedure B , as a colorless liquid.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.93-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.42(\mathrm{~m}$, $2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=1.2,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dd}, J=1.2,11.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.90 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 167.9,139.6,135.9,132.1,130.3,128.6,127.4,127.2$, 116.5, 52.1.
(2-(6,6-Dimethylbicyclo[3.1.1]hept-2-en-2-yl)ethyl)(2-nitrophenyl)selane (6b):

The compound 6b (175 mg, 80\%) was synthesized from compound 6a (-) - Nopol by following general procedure A , as a yellow color liquid.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}:-22.8\left(c 0.60, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 3022,2923,1586,1516,1336,1216$
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 8.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39$ $7.22(\mathrm{~m}, 1 \mathrm{H}), 5.36(\mathrm{brs}, 1 \mathrm{H}), 3.05-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.38(\mathrm{~m}, 3 \mathrm{H}), 2.38-2.16(\mathrm{~m}$, $2 \mathrm{H}), 2.16-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 146.5,143.4,133.9,133.5,129.0,126.4,125.2,117.9$, 45.6, 40.7, 38.1, 35.4, 31.7, 31.2, 26.3, 23.9, 21.3

HRMS: calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+}: 352.0810$, found 352.0811.
Methyl 2-((1R,3R)-3-acryloyl-2,2-dimethylcyclobutyl)acetate (6c):

The compound $\mathbf{6 c}(26 \mathrm{mg}, 86 \%)$ was synthesized from compound $\mathbf{6 b}$ by following general procedure B , as a pale yellow color liquid.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}:-41.8\left(c 1.00, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\mathbf{m a x}}($ film $): \mathrm{cm}^{-1} 3022,2928,1730,1676,1266,1217$
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl ${ }_{3}$): $\delta 6.30(\mathrm{dd}, J=10.7,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=17.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.77(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.36(\mathrm{~m}, 1 \mathrm{H})$, 2.36-2.24(m, 2H), $2.09(\mathrm{q}, ~ J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{~s}$, $3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 199.3,173.2,137.0,128.0,51.5,50.8,43.4,38.1,34.9$, 30.1, 22.6, 17.4

HRMS: calculated for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 211.1329, found 211.1326.
tert-Butyl (S)-(1-(allylamino)-4-hydroxy-1-oxobutan-2-yl)carbamate (7a):

Mixture of N-Boc-L-Homoserine lactone ($100 \mathrm{mg}, 0.5 \mathrm{mmol}$) and allyl amine ($37 \mu \mathrm{~L}, 0.5$ mmol) in 2 mL of toluene irradiated under microwave at $130^{\circ} \mathrm{C}$ for 30 min . concentrated the reaction mixture, diluted with ethylacetate (10 ml) washed with $1 \mathrm{~N} \mathrm{HCl}(2 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by
column chromatography (silica gel 100-200 mesh 30% ethyl acetate $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 7 a ($79 \mathrm{mg}, 62 \%, 92 \%$ based on recovered starting material) as colorless solid.

Mp: $80-82{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{25}:-1.41\left(c 0.87, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 3020,2930,1669,1593,1217$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.07$ (brs, 1H), $5.90-5.68(\mathrm{~m}, 2 \mathrm{H}), 5.24-5.01(\mathrm{~m}, 2 \mathrm{H})$, $4.44-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.68$ (brs, 2H), 2.03-1.93(m, 1H), 1.81-1.63 (m, 1H), 1.41 (s, 9H)
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 172.0,156.6,133.8,116.3,80.3,58.5,51.4,41.9,36.4$, 28.3

MS: $281(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 281.1472$, found 281.1466.
tert-Butyl (S)-(1-(allylamino)-4-((2-nitrophenyl)selanyl)-1-oxobutan-2-yl)carbamate (7b):

The compound 7b ($140 \mathrm{mg}, 82 \%$) was synthesized from compound 7 a by following general procedure A , as a yellow color solid.

Mp: $113-114{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{25}:+1.43\left(c 0.64, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}$ (film): $\mathrm{cm}^{-1} \mathbf{2 9 2 9}, 1672,1595,1515,1217$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl \mathbf{H}_{3}): $\delta 8.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-$ $7.27(\mathrm{~m}, 1 \mathrm{H}), 6.56(\mathrm{brs}, 1 \mathrm{H}), 5.90-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.07$ $(\mathrm{m}, 2 \mathrm{H}), 4.32(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.05-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.23$ (m, 1H), 2.13-2.01 (m, 1H), 1.43 (s, 9H)
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 171.0,155.8,146.8,133.8,133.6,132.9,128.9,126.5$, 125.6, 116.6, 80.5, 54.5, 41.9, 31.7, 28.3, 21.6

MS: $466(\mathrm{M}+\mathrm{Na})^{+}$

HRMS: calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{NaSe}[\mathrm{M}+\mathrm{Na}]^{+}: 466.0852$, found 466.0844 .

Methyl (S)-(2-((tert-butoxycarbonyl)amino)but-3-enoyl)glycinate (7c):

The compound 7c ($80 \mathrm{mg}, 78 \%$) was synthesized from compound 7b by following general procedure B , as a colorless liquid.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 9}} \mathbf{:}+10.17\left(c 3.5, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}$ (film): $\mathrm{cm}^{-1} \mathbf{2 9 8 2}, 1749,1678,1499,1217$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 6.85$ (brs, 1 H$), 5.90(\mathrm{ddd}, J=6.4,10.4,17.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.46(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.32-5.23(\mathrm{~m}, 1 \mathrm{H}), 4.75$ (brs, 1H), $4.03(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 170.3,170.1,155.3,133.8,118.2,80.2,56.8,52.4,41.3$, 28.3

MS: $295(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 295.1264$, found 295.1261.
tert-Butyl (S)-(1-(allyl(methyl)amino)-4-hydroxy-1-oxobutan-2-yl)carbamate (8a):

The compound 8a ($106 \mathrm{mg}, 68 \%$) was synthesized from N -Boc-L-homoserine lactone and N -Methyl allylamine by following the similar procedure for the synthesis of 7a, as a colorless liquid.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 9}}:+6.80\left(c 7.8, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }}$ (film): $\mathrm{cm}^{-1} 3021,1601,1587$
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 5.82-5.58(\mathrm{~m}, 2 \mathrm{H}), 5.24-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.76-4.59(\mathrm{~m}$, $1 \mathrm{H}), 4.04-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.98-2.88$ (N-Methyl observed as two singlets, 3 H$), 1.95-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 9 \mathrm{H})$
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right):($ mixture of rotamers) $\delta 172.3,171.8,156.8,156.6,132.1$, $117.8,117.7,80.2,57.9,51.9,50.3,47.4,47.2,36.8,36.2,34.5,33.6,28.2$

MS: $295(\mathrm{M}+\mathrm{Na})^{+}$

HRMS: calculated for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 295.1628$, found 295.1624.
tert-Butyl (S)-(1-(allyl(methyl)amino)-4-((2-nitrophenyl)selanyl)-1-oxobutan-2yl)carbamate (8b):

The compound $\mathbf{8 b}$ ($112 \mathrm{mg}, 83 \%$) was synthesized from compound $\mathbf{8 a}$ by following general procedure A , as a yellow color liquid.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 9}}:+3.52\left(c 3.3, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 2979,1643,1512,1217$
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 8.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.79-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.60-5.50(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.82-4.68(\mathrm{~m}$,
$1 \mathrm{H}), 4.06-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.04-2.89(\mathrm{~m}, 5 \mathrm{H}), 2.20-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 1 \mathrm{H})$, $1.44(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 9 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 171.5,170.9,155.6,155.5,146.9,133.7,133.0,132.1$, $128.9,128.8,126.5,125.6,117.9,117.6,80.0,52.0,50.6,50.5,50.3,34.6,33.8,32.9$, 32.3, 28.3, 21.5, 21.4 (mixture of rotamers)

MS: $480(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{NaSe}[\mathrm{M}+\mathrm{Na}]^{+}: 480.1008$, found 480.1003.

Methyl (S)-N-(2-((tert-butoxycarbonyl)amino)but-3-enoyl)- N -methylglycinate (8c):

The compound $\mathbf{8 c}$ ($46 \mathrm{mg}, 73 \%$) was synthesized from compound $\mathbf{8 b}$ by following general procedure B , as a colorless liquid.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 9}}:+5.79\left(c 3.01, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 3022,1748,1705,1657,1487,1217$
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): (mixture of rotamers) 5.87-5.76(m, 1H), $5.60(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.34(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}$, 9H)
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 170.6,169.3,155.0,132.7,118.6,79.8,53.3,52.2,49.7$, 36.3, 28.3

MS: $309(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 309.1421$, found 309.1418.
tert-Butyl (S)-(1-(diallylamino)-4-hydroxy-1-oxobutan-2-yl)carbamate (9a):

The compound 9a (106 mg, 72\%) was synthesized from N -Boc-L-homoserine lactone with diallylamine by following the similar procedure for the synthesis of 7a, as a pale yellow color liquid.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 9}} \mathbf{:}-0.94\left(c 0.82, \mathrm{CHCl}_{3}\right)$

IR $\mathbf{v}_{\text {max }}$ (film): $\mathrm{cm}^{-1} 3023,1595,1521,1426,1216$
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 5.87-5.61(\mathrm{~m}, 3 \mathrm{H}), 5.30-5.08(\mathrm{~m}, 4 \mathrm{H}), 4.71(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=5.5,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.72-$ $3.57(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 172.2,156.7,132.4,118.0,117.7,80.3,57.9,49.1,47.8$, 47.4, 37.0, 28.3

MS: $321(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 321.1785$, found 321.1782.
tert-Butyl
(S)-(1-(diallylamino)-4-((2-nitrophenyl)selanyl)-1-oxobutan-2yl)carbamate (9b):

The compound 9b (105 mg, 77\%) was synthesized from compound 9a by following general procedure A , as a yellow color liquid.
$[\alpha]_{\mathrm{D}}{ }^{29}+8.35\left(c 1.4, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}$ (film): $\mathrm{cm}^{-1} 3019,1691,1641,1432,1218$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{ddd}$, $J=2.6,5.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.65(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.07(\mathrm{~m}$, $4 \mathrm{H}), 4.78-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.08-3.80(\mathrm{~m}, 4 \mathrm{H}), 2.94(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.07(\mathrm{~m}$, $1 \mathrm{H}), 2.07-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 171.4,155.5,146.9,133.7,133.0,132.5,132.4,128.8$, 126.5, 125.5, 117.8, 117.6, 80.0, 50.5, 49.2, 48.1, 32.9, 28.3, 21.5

MS: $506(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{NaSe}\left[\mathrm{M}+\mathrm{Na}^{+}: 506.1165\right.$, found 506.1164.
Dimethyl 2,2'-((2-((tert-butoxycarbonyl)amino)but-3-enoyl)azanediyl)(S)-diacetate (9c):

The compound $\mathbf{9 c}$ ($45 \mathrm{mg}, 71 \%$) was synthesized from compound $\mathbf{9 b}$ by following general procedure B , as a yellow color liquid.
$[\alpha]_{\mathrm{D}}{ }^{30}:+3.28\left(c 0.82, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}$ (film): $\mathrm{cm}^{-1} 2972,1751,1708,1493,1217$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) : $\delta 5.85-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J$ $=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=17.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.32-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 170.6,169.3,168.8,154.8,132.8,119.0,79.9,53.4$, 52.6, 52.3, 49.5, 48.1, 28.3

MS: $367(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 367.1476$, found 367.1472.
(2-Methylundec-10-en-1-yl)(2-nitrophenyl)selane (10b) :

The compound $\mathbf{1 0 b}$ ($310 \mathrm{mg}, 91 \%$) was synthesized from compound $\mathbf{1 0 a}^{8}$ by following general procedure A , as a yellow color liquid.

IR $\boldsymbol{v}_{\text {max }}(\mathbf{f i l m}): \mathrm{cm}^{-1} \mathbf{2 9 2 2}, 1512,1331,1300$
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400MHz , $\mathbf{C D C l}_{3}$) $\delta 8.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.26$ $(\mathrm{m}, 1 \mathrm{H}), 5.90-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.09-4.89(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{dd}, J=5.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ $(\mathrm{dd}, J=7.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{dd}, J=5.9,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.58$ - $1.48(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.28(\mathrm{~m}, 11 \mathrm{H}), 1.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 147.1,139.2,134.1,133.4,129.2,126.4,125.2,114.2$, 37.3, 34.4, 33.8, 32.6, 29.7, 29.4, 29.1, 28.9, 27.0, 20.5

HRMS: calculated for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{NNaSe}[\mathrm{M}+\mathrm{Na}]^{+}: 392.1099$, found 392.1095.

Methyl 9-methyldec-9-enoate (10c):

The compound $\mathbf{1 0 c}$ ($46 \mathrm{mg}, 78 \%$) was synthesized from compound $\mathbf{1 0 b}$ by following general procedure B , as a pale yellow color liquid.
${ }^{1} \mathbf{H}$ NMR (400MHz , $\mathbf{C D C l}_{3}$) : $\delta 4.66(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.38(\mathrm{~m}, 2 \mathrm{H})$, 1.34-1.25 (m, 6H)
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 174.3,146.2,109.7,51.4,37.8,34.1,29.1$ (3C), 27.5, 24.9, 22.4

HRMS: calculated for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$199.1693, found 199.1694.
Methyl 2-(1-hydroxyethyl)undec-10-enoate (11a):

To a stirred solution of diisopropylamine ($0.42 \mathrm{~mL}, 3.0 \mathrm{mmol}$) in THF (4 mL), $\mathrm{n}-\mathrm{BuLi}$ ($3.0 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane) was slowly added at $-10{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After 30 min , the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and to it, Methyl 10-undecenoate ($0.4 \mathrm{~g}, 2.0 \mathrm{mmol}$) dissolved in THF (5 mL) was slowly added and stirred at the same temperature for 30 min . Acetaldehyde $(0.22 \mathrm{~mL}, 4.0 \mathrm{mmol})$ dissolved in THF $(2 \mathrm{~mL})$ was added and stirring was continued for further 1 h at same temperature. After complete consumption of the starting material (monitored by TLC), the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, diluted with ethyl acetate $(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with ethyl acetate (3 x $10 \mathrm{~mL})$. The combined organic layer was washed with brine $(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was concentrated under reduced pressure to obtain the crude mass which on purified by column chromatography (silica gel 100-200 mesh 5% ethyl acetate - pet ether) afforded the desired compound 11a ($380 \mathrm{mg}, 78 \%$, mixture of diastereomers) as a colorless liquid.

IR $\boldsymbol{v}_{\mathbf{m a x}}($ film $): \mathrm{cm}^{-1} 2925,1729,1439$
${ }^{1} \mathbf{H}$ NMR (400MHz, $\mathbf{C D C l}_{3}$): δ (mixture of diastereomers) 5.93-5.67 (m, 1H), 5.05 $4.81(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.70$ (2 singlets from two diastereomers, $3 \mathrm{H}), 2.56-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.32(\mathrm{~m}$, 2 H), 1.27 (brs, 8H), 1.22-1.17 (two doublets from two diastereomers, 3 H)
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 176.0,175.8,139.2,114.2,68.4,68.3,52.7,52.3,51.6$, $51.6,33.8,29.5,29.5,29.2,29.0,28.9,27.7,27.3,27.3,21.6,20.3$

HRMS: calculated for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 265.1774$, found 265.1773.

Methyl 2-(1-((2-nitrophenyl)selanyl)ethyl)undec-10-enoate (11b):

The compound $\mathbf{1 1 b}$ ($163 \mathrm{mg}, 62 \%$) was synthesized from compound 11a by following general procedure A , as a yellow color liquid.

IR $\mathbf{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 2924,1732,1566,1443$
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400MHz , $\mathbf{C D C l}_{3}$): δ (major isomer) $8.21(\mathrm{dd}, J=1.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 1 \mathrm{H}), 5.93-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.87$ $(\mathrm{m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.76$ (brs, 2 H), $1.52(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.39-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.26$ (brs, 8 H)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 174.3,148.1,139.1,133.4,131.9,130.3,126.3,125.9$, $114.2,51.7,51.1,38.9,33.8,31.6,29.3,29.2,29.0,28.8,27.6,19.6$

HRMS: calculated for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{NNaSe}[\mathrm{M}+\mathrm{Na}]^{+}: 450.1154$, found 450.1150 .

Dimethyl 2-ethylidenedecanedioate (11c):

The compound 11c ($56 \mathrm{mg}, 77 \%$) was obtained as 3: $1(\mathrm{Z}: \mathrm{E})$ mixture from compound 11b by following general procedure B, as a pale yellow color liquid and it was observed that reaction went for completion in 1 h .

IR $\mathbf{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 2933,1737,1716,1438$
${ }^{1} \mathbf{H}$ NMR (400MHz , CDCl $\left.{ }_{3}\right): \delta($ major isomer) $5.96(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $3.65(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.63-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.24(\mathrm{~m}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): (mixture of E, Z isomers) δ 174.3, 168.7, 168.4, 137.3, $136.2,136.1,133.3,132.9,51.6,51.4,51.1,34.5,34.1,29.3,29.1,29.0,28.9,28.8,27.0$, $26.3,24.9,22.0,15.7,14.2$

HRMS: calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 279.1567$, found 279.1568
tert-Butyl (R)-(2-((1-((2-iodo-5-methoxyphenyl)amino)-1-oxopropan-2-yl)amino)-2oxoethyl)carbamate (89):

To a mixture of 2-iodo 5-methoxy aniline $\mathbf{9 8}(1.0 \mathrm{~g}, 4.0 \mathrm{mmol})$, Boc-Gly-D-Ala-OH (56) ($987 \mathrm{mg}, 4.0 \mathrm{mmol}$) in $20 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$. HATU ($2.3 \mathrm{~g}, 6.0 \mathrm{mmol}$), diisopropyl ethylamine $(2.0 \mathrm{~mL})$ were added and stirred for 14 h at $25^{\circ} \mathrm{C}$, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and washed with $1 \mathrm{~N} \mathrm{HCl}(15 \mathrm{~mL})$ and sat. NaHCO_{3} solution $(15 \mathrm{~mL})$ organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure.

Purification by column chromatography (silica gel 100-200 mesh 40% ethyl acetate $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded compound $\mathbf{8 9}(1.2 \mathrm{~g}, 63 \%)$ as a white color solid.

Mp: $87-88^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 6}}:+17.34\left(c 2.22, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 3020,1584,1165$
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d $\mathbf{d}_{\mathbf{6}}$) $\delta 9.26$ (brs, 1 H), 8.19 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.72(\mathrm{~d}, ~ J=$
$8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=2.8,8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.59-4.42 (m, 1H), 3.74 (s, 3H), 3.65 (d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.38 ($\mathrm{s}, 12 \mathrm{H}$)
${ }^{13}$ C NMR (100 MHz, DMSO-d ${ }_{6}$): $\delta 171.5,169.9,160.2,156.3,140.0,139.5,114.0$, $112.0,83.7,78.6,55.9,49.2,43.7,28.6,18.5$
MS: $500(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{INa}[\mathrm{M}+\mathrm{Na}]^{+}$: 500.0653, found 500.0648.
tert-Butyl ((3R,4R,5S)-4-hydroxy-6-((2-(((R)-1-((2-iodo-5-methoxyphenyl)amino)-1-oxopropan-2-yl)amino)-2-oxoethyl)amino)-5-methyl-6-oxohex-1-en-3-yl)carbamate (88):

To a solution of $\mathbf{8 9}(100 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, TFA $(1.0 \mathrm{~mL})$ was added at 0 ${ }^{\circ} \mathrm{C}$ and stirred at $25^{\circ} \mathrm{C}$ for 3 h . After completion of the reaction (monitored by TLC), the reaction mixture was concentrated under reduced pressure to afford the amine as TFA salt.

Compound 97 ($57 \mathrm{mg}, 0.2 \mathrm{mmol}$) was taken in THF-MeOH ($1 \mathrm{~mL}, 3: 2$) cooled to $0{ }^{\circ} \mathrm{C}$, LiOH. $\mathrm{H}_{2} \mathrm{O}(11 \mathrm{mg}, 0.25 \mathrm{mmol})$ dissolved in 0.3 mL water was added and stirred for 3 h . After completion of the reaction (monitored by TLC), concentrated the reaction mixture to remove THF and MeOH . Acidified to $\mathrm{P}^{\mathrm{H}} 3$ with 1 N HCl , extracted with ethylacetate (5
mL X 2). Organic layer was concentrated to afford compound 90, the residue was taken up in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, added to above amine salt, then HATU ($79 \mathrm{mg}, 0.2 \mathrm{mmol}$), DIPEA ($0.1 \mathrm{~mL}, 0.62 \mathrm{mmol}$) were added and the resulting solution was stirred at ambient temperature for 16 h . Reaction mass was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ washed with saturated solution of $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$, brine (3 mL) and then evaporated to dryness. Purification by column chromatography (silica gel 230-400 mesh 4% methanol $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded compound $\mathbf{8 8}(98 \mathrm{mg}, 76 \%)$ as an off white solid.

Mp: $170-172{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 6}}:+7.63\left(c 1.0, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}(\mathbf{f i l m}): \mathrm{cm}^{-1} 3021,2931,1672,1576$
${ }^{1} \mathbf{H}$ NMR (400MHz, CD $\left.\mathbf{3}_{3} \mathbf{O D}\right): \delta 7.73-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-$ $6.58(\mathrm{~m}, 1 \mathrm{H}), 5.88(\mathrm{ddd}, J=5.5,10.4,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.12(\mathrm{~m}, 2 \mathrm{H}), 4.64-4.47(\mathrm{~m}$, $1 \mathrm{H}), 4.24(\mathrm{brs}, 1 \mathrm{H}), 4.12-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.63-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.45-1.41(\mathrm{~m}, 9 \mathrm{H}), 1.13(\mathrm{~d}, J=6.9$ Hz, 3H)
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 179.5,174.5,172.9,163.0,159.1,141.6,139.6,117.1$, $116.3,114.1,84.3,81.5,77.6,57.1,56.5,52.1,46.3,44.7,29.8,19.1,15.5$.

MS: $641(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{O}_{7} \mathrm{~N}_{4} \mathrm{INa}[\mathrm{M}+\mathrm{Na}]^{+}$: 641.1443, found 641.128 .
tert-Butyl ((3R,9S,10R,11R,E)-10-hydroxy-16-methoxy-3,9-dimethyl-2,5,8-trioxo-2,3,4,5,6,7,8,9,10,11-decahydro-1H-benzo[h][1,4,7]triazacyclopentadecin-11yl)carbamate (87) :

To a solution of compound $\mathbf{8 8}(60 \mathrm{mg}, 0.1 \mathrm{mmol})$ in anhydrous acetonitrile (60 mL), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$ and triethylamine $(0.14 \mathrm{~mL}, 1.0 \mathrm{mmol})$ were added and heated at 75 ${ }^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was concentrated in vacuo. Purification by column chromatography (silica gel $230-400$ mesh 4% methanol $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded compound $\mathbf{8 7}$ ($20 \mathrm{mg}, 42 \%$) as an off white solid.

Mp: $140-142{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{26}:-30.43\left(c 0.46, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR (400MHz, CD $\mathbf{3}_{\mathbf{3}} \mathbf{O D}$): $\delta 7.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (brs, 1 H$), 6.80(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.01-5.90(\mathrm{~m}, 1 \mathrm{H}), 4.47-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~d}, J=$ $14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.54$ (brs, $1 \mathrm{H}), 1.54(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 11 \mathrm{H}), 1.30(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta 177.3,171.5,170.8,159.5,156.7,134.9,128.2,127.6$, $127.1,123.4,112.0,110.2,79.0,75.4,58.8,54.4,50.4,43.7,42.2,27.4,15.3,15.0$

MS: $513(\mathrm{M}+\mathrm{Na})^{+}$
HRMS: calculated for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{~N}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 513.2320$, found 513.2311.
tert-Butyl((S)-3-((tert-butyldimethylsilyl)oxy)-1-(((3R,9S,10R,11R,E)-10-hydroxy-16-methoxy-3,9-dimethyl-2,5,8-trioxo-2,3,4,5,6,7,8,9,10,11-decahydro-1H- benzo [h] [1,4,7] triazacyclopentadecin-11-yl)amino)-1-oxopropan-2-yl)carbamate (100):

To a solution of compound $87(45 \mathrm{mg}, 0.091 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ trifluoro acetic acid $(1.0 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$ and the resulting suspension was stirred for 2 h at the same temperature. Reaction was monitored by TLC, and then concentrated. This residue was dissolved in dry DMF (4 mL), then HATU ($38 \mathrm{mg}, 0.10 \mathrm{mmol}$), DIPEA ($40 \mu \mathrm{~L}, 0.22$ mmol) and N-(tert-butoxycarbonyl)- O-(tert-butyldimethylsilyl)-L-serine 99 (29 mg , 0.091 mmol) was added. The resulting solution was stirred at ambient temperature for 16h. Reaction mass was diluted with ethylacetate (15 mL), washed with saturated solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the crude material obtained after removal of the solvent was purified by column chromatography (silica gel 230-400 mesh 4% methanol $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 100 (52 mg , 83\%) as off white solid.

Mp: $146-148{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{26}:+27.10\left(c 0.49, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }}$ (film): $\mathrm{cm}^{-1} 3023,2403,1523,1595,1427$
${ }^{1} \mathbf{H}$ NMR (400MHz, CD $\left.\mathbf{3}_{3} \mathbf{O D}\right): \delta 7.31(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (dd, $J=2.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.08-6.04(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.44(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~d}$,
$J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}$, $9 \mathrm{H}), 0.08$ ($\mathrm{s}, 6 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, DMSO-d $\mathbf{d}_{\mathbf{6}}$: 175.9 , 170.7, 170.0, 169.6, 159.1, 155.5, 135.9, 129.0, $127.8,127.0,122.9,111.3,109.7,78.7,75.2,63.7,56.8,55.7,50.1,43.8,41.5,28.6,26.2$, 18.4, 16.8, -5.0

HRMS: calculated for $\mathrm{C}_{33} \mathrm{H}_{53} \mathrm{O}_{9} \mathrm{~N}_{5} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}: 714.3505$, found 714.3489.
tert-Butyl ((S)-3-hydroxy-1-(((3R,9S,10R,11R)-10-hydroxy-16-methoxy-3,9-dimethyl-2,5,8,13-tetraoxo-2,3,4,5,6,7,8,9,10,11,12,13-dodecahydro-1H-benzo[h] triazacyclopentadecin-11-yl)amino)-1-oxopropan-2-yl)carbamate (101):

To a stirred solution of $\mathrm{PdCl}_{2}(10 \mathrm{~mol} \%), \mathrm{CuCl}(6 \mathrm{mg}, 0.06 \mathrm{mmol})$ in DMF-water (3 mL , 2:1) compound $100(40 \mathrm{mg}, 0.06 \mathrm{mmol})$ was added and heated at $65{ }^{\circ} \mathrm{C}$ under O_{2} atmosphere for 8 h . The reaction mixture was diluted with ethyl acetate (10 mL) and washed water (5 mL) and brine (5 mL) organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure. Purification by column chromatography (silica gel 230-400 mesh 6% methanol $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded compound $101(18 \mathrm{mg}, 53 \%)$ as a white color solid.

Mp: $134-136{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 6}}:+0.85\left(c 0.16, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d $\mathbf{d}_{\mathbf{6}}$): $\delta 12.46(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{t}, J=$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=9.0,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ (quin, $J=6.9$
$\mathrm{Hz}, 1 \mathrm{H}), 3.94-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.52(\mathrm{~m}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 1 \mathrm{H}), 3.16(\mathrm{~d}, \mathrm{~J}=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.64(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO-d $\mathbf{d}_{\mathbf{6}}$: δ 201.1, 172.9, 172.8, 170.4, 169.3, 164.5, 155.9, $142.6,134.0,115.6,109.1,104.7,78.9,71.7,61.7,57.3,56.1,51.2,45.8,45.0,42.8,42.5$, 28.6, 17.4, 9.5

HRMS: calculated for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{O}_{10} \mathrm{~N}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 616.2589$, found 616.2589 .
(S)-2-Amino-3-hydroxy-N-((3R,9S,10R,11R)-10-hydroxy-16-methoxy-3,9-dimethyl-

2,5,8,13-tetraoxo-2,3,4,5,6,7,8,9,10,11,12,13-dodecahydro-1H-benzo[h]
[1,4,7] triazacyclopentadecin-11-yl)propanamide (102):

To a solution of compound $101(12 \mathrm{mg}, 0.02 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ trifluoro acetic acid $(0.3 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$ and the resulting suspension was stirred for 2 h at the same temperature.Reaction was monitored by TLC, and then concentrated and triturated with diethyl ether (3 mL) and dried under vacuum to afford compound $\mathbf{1 0 2}$ in a quantitative yield.

Mp: $194-196^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 6}} \boldsymbol{:}+0.58\left(c 0.1, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1}$ H NMR (500 MHz, DMSO-d \mathbf{d}_{6}): $\delta 12.51(\mathrm{~s}, 1 \mathrm{H}), 9.10(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.09-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (dd, $J=2.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81$ (dd, $J=9.0,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-$ $4.46(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.70(\mathrm{~m}, 3 \mathrm{H})$, $3.58(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.71$ (m, 1H), 1.40 (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO-d $\mathbf{d}_{\mathbf{6}}$: δ 201.1, 173.1, 172.9, 170.4, 166.1, 164.6, 142.7, $134.0,115.5,109.2,104.6,71.9,61.1,56.1,54.2,51.2,45.7,43.0,42.5,17.4,9.8$

HRMS: calculated for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{~N}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 494.2245$, found 494.2245 .
tert-Butyl ($3 R, 9 \mathrm{~S}, 10 \mathrm{R}, 11 R$)-10-hydroxy-16-methoxy-3,9-dimethyl-2,5,8,13-tetraoxo-2,3,4,5,6,7,8,9,10,11,12,13-dodecahydro-1H-benzo $[h][1,4,7]$ triazacyclopentadecin-11yl)carbamate (103) :

The compound $\mathbf{1 0 3}$ ($20 \mathrm{mg}, 82 \%$) as off white solid was synthesized from compound $\mathbf{8 7}$ by following similar procedure for the synthesis 101.

Mp 216-218 ${ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{\mathbf{2 6}} \mathbf{:}+23.31\left(c\right.$ 1.41, $\left.\mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d \mathbf{d}_{6}): $\delta 12.45(\mathrm{~s}, 1 \mathrm{H}), 9.11(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H})$, $8.03(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=2.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.26(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=9.0,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.08-$ $4.03(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{brs}, 1 \mathrm{H}), 3.54-3.46(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.81-2.68(m, 1H), $1.39(\mathrm{~s}, 12 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- $\mathbf{d}_{\mathbf{6}}$): δ 201.3, 172.8, 170.4, 164.5, 154.4, 142.6, 134.2, 115.7, 109.0, 104.7, 78.3, 72.1, 56.1, 51.2, 46.2, 45.1, 43.8, 42.5, 28.7, 17.4, 12.8;

HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{~N}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 529.2269, found 529.2267.
tert-Butyl (R)-(2-((1-((5-(benzyloxy)-2-iodophenyl)amino)-1-oxopropan-2-yl)amino)-2-oxoethyl)carbamate (115):

To a mixture of 5-(benzyloxy)-2-iodoaniline 114 ($1.0 \mathrm{~g}, 3.0 \mathrm{mmol}$), Boc-Gly-D-Ala-OH (46) ($756 \mathrm{mg}, 4.0 \mathrm{mmol}$) in DMF (5 mL). HATU ($1.7 \mathrm{~g}, 4.6 \mathrm{mmol}$), diisopropyl ethylamine ($1.0 \mathrm{~mL}, 6.0 \mathrm{mmol}$) were added at $0{ }^{\circ} \mathrm{C}$ and stirred for 14 h at $25^{\circ} \mathrm{C}$, the reaction mixture was diluted with ethyl acetate $(30 \mathrm{~mL})$ and washed with $1 \mathrm{~N} \mathrm{HCl}(15$ mL) and sat. NaHCO_{3} solution (15 mL) organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure. Purification by column chromatography (silica gel 100-200 mesh 40% ethyl acetate $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded compound $115(1.0 \mathrm{~g}, 59 \%)$ as a white color solid.

Mp: $103-104{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{27}:+29.51\left(c 1.28, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 3362,3020,1695,1584,1514$
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$): $\delta 9.30(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.01(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=2.8,8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.09(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.47-1.27(\mathrm{~m}, 12 \mathrm{H})(\mathrm{Boc}$ 9H and Methyl 3H merged)
${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO-d \mathbf{d}_{6}): $\delta 171.5,169.8,159.2,156.3,140.1,139.5,137.1$, $128.9,128.4,128.1,114.7,113.1,84.3,78.5,69.9,49.2,43.6,28.7,18.5$

HRMS: calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{INa}[\mathrm{M}+\mathrm{Na}]^{+}: 576.0966$, found 576.0963.
tert-Butyl (R)-(4-(methylthio)-1-oxobutan-2-yl)carbamate (118):

Compound 118 ($15 \mathrm{gm}, 84 \%$) was synthesized by following similar procedure for the synthesis of $\mathbf{1 1 7}$
${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl ${ }_{3}$): $\delta 9.64(\mathrm{~s}, 1 \mathrm{H}), 5.06-5.33(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.45(\mathrm{~m}, 1 \mathrm{H})$, 2.49-2.69 (m, 2H), 2.18-2.34 (m, 1H), 2.08 (s, 3H), 1.83-2.01 (m, 1H), 1.45 (s, 9H)
${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 199.1,59.1,29.8,28.8,28.3,15.4$
tert-Butyl ((3R,4R,5R)-4-hydroxy-5-methyl-1-(methylthio)hept-6-en-3-yl)carbamate (119)

(E)-2-butene ($3 \mathrm{~mL}, 17 \mathrm{mmol}, 2$ equiv) was condensed into flask containing KOtBu (2.4 $\mathrm{g}, 21.5 \mathrm{mmol}, 1.25$ equiv) in THF (20 mL) cooled to $-78^{\circ} \mathrm{C}$. After careful addition of n $\mathrm{BuLi}(13.4 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes, 21.5 mmol , 1.25 equiv) over 1 hour (maintaining internal temperature below $-70^{\circ} \mathrm{C}$), the reaction mixture was warmed to $-50^{\circ} \mathrm{C}$ for 15 min. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ once again, and a solution of $(+)$-Bmethoxydiisopinocampheylborane ($25 \mathrm{~mL}, 1 \mathrm{M}$ in THF, $25 \mathrm{mmol}, 1.45$ equiv) was added slowly over 30 min . Next, BF3•Et2O ($4.1 \mathrm{~mL}, 29.1 \mathrm{mmol}, 1.7$ equiv) was added at -78 ${ }^{\circ} \mathrm{C}$ over 30 minutes, then the solution of reagent was treated with a solution of compound $118(4.3 \mathrm{~g}, 17.1 \mathrm{mmol})$ in THF (25 mL). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 12 h , then warmed to $-15{ }^{\circ} \mathrm{C}$. A mixture of $3 \mathrm{~N} \mathrm{NaOH}(8.3 \mathrm{~mL})$ and 30% hydrogen peroxide $(2.9 \mathrm{~mL})$ was added dropwise to the reaction. After being heated to reflux for 1 h , the mixture was cooled to $0{ }^{\circ} \mathrm{C}$. Concentrated the reaction mixture, diethylether (50
mL) was added and washed with water (20 mL) and brine (20 mL). The organic layer was dried over Na2SO4 and the crude material obtained after removal of the solvent was purified by column chromatography (silica gel 230-400 mesh 10% ethylacetate petether) to afford $119(3.25 \mathrm{~g}, 61 \%)$ as colorless liquid as a single diastereomer.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{3 0}} \mathbf{:}+9.38\left(c 4.53, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 3439,3017,2977,1701,1501,1442$
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 5.69(\mathrm{td}, J=9.2,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.83$ (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.93-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.46(\mathrm{~m}, 2 \mathrm{H})$, $2.26-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.13($ brs, 1 H$), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.03$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 156.1,140.8,117.2,79.2,75.7,50.3,42.3,33.4,30.9$, 28.4, 16.5, 15.6

HRMS: calculated for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}: 312.1604$, found 312.1599.
tert-Butyl (4R,5R)-5-((R)-but-3-en-2-yl)-2,2-dimethyl-4-(2-(methylthio) ethyl) oxazolidine-3-carboxylate (120):

To a stirred solution of compound $119(7.0 \mathrm{~g}, 24.2 \mathrm{mmol})$, and 2-methoxypropene (5.82 $\mathrm{mL}, 60.5 \mathrm{mmol})$ in dry DMF (20 mL) PTSA. $\mathrm{H}_{2} \mathrm{O}(93 \mathrm{mg}, 4.8 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. The resulting solution was stirred at room temperature for 4 h . The reaction was then diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with EtOAc (2 x 50 mL). The combined organic layers were washed with cold saturated NaHCO_{3} solution (15 mL), $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, brine (10 mL), and evaporated in vacuo. Purification by column chromatography (silica gel 100-200 mesh 10% ethyl acetate - pet ether) yielded compound $\mathbf{1 2 0}$ ($7.53 \mathrm{~g}, 95 \%$) as a pale yellow color liquid.
$[\alpha]_{\mathbf{D}}{ }^{30} \mathbf{:}-8.9764\left(c 0.97, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 3020,2978,1684,1597$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 5.90-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.11-4.96(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{brs}, 1 \mathrm{H})$, $3.62(\mathrm{dd}, J=3.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.28(\mathrm{~m}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{dd}, J=6.6,7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.55(\mathrm{brs}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 12 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 151.9,139.7,115.5,94.3,83.7,80.0,59.4,41.4,33.1$, $32.3,30.3,28.4,27.9,27.3,17.0,15.5$

HRMS: calculated for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{NNaS}[\mathrm{M}+\mathrm{Na}]^{+}: 352.1917$, found 352.1914.
tert-Butyl (4R,5R)-5-((S)-1-methoxy-1-oxopropan-2-yl)-2,2-dimethyl-4-vinyloxazolidine-3-carboxylate (121)

To a solution of compound $120(400 \mathrm{mg}, 1.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL}) 2.5 \mathrm{M}$ methanolic NaOH 2.4 mL was added than ozone was bubbled at $-78^{\circ} \mathrm{C}$ until the colour becomes blue, once the blue color appears oxygen was bubbled to remove excess ozone, Concentrated the reaction mixture, diluted with ethyl acetate $(20 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, brine (5 mL), and evaporated in vacuo the residue was taken in 1,2 dichloro benzene $(10 \mathrm{~mL}) \mathrm{CaCO}_{3}(486 \mathrm{mg}, 4.8 \mathrm{mmol})$ was added and refluxed for 6 h . The crude reaction mixture was purified by column chromatography (silica gel 230-400 mesh 20% ethylacetate $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $\mathbf{1 2 1}$ ($175 \mathrm{~g}, 46 \%$ for 2 steps) as colorless liquid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 5.71(\mathrm{td}, J=8.59,16.81 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=9.78 \mathrm{~Hz}$, $2 \mathrm{H}), 4.05-4.27(\mathrm{~m}, 1 \mathrm{H}), 3.97-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.75$ (quin, $J=7.09 \mathrm{~Hz}, 1 \mathrm{H}$), 1.56 (brs., 3 H), 1.48 (s, 3H), 1.42 (brs., 9 H), 1.17 (d, $J=7.09 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 174.0,151.9,136.9,117.1,81.1,62.4,51.7,43.2,28.4$, 26.8, 13.4

HRMS: calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}: 336.1781$, found 336.1788.
tert-Butyl (4R,5R)-5-((R)-1-hydroxypropan-2-yl)-2,2-dimethyl-4-vinyloxazolidine-3carboxylate (122):

To a solution of compound $\mathbf{1 2 0}(4.0 \mathrm{~g}, 9.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(1: 1,60 \mathrm{~mL})$ Ozone was bubbled at $-78^{\circ} \mathrm{C}$ until the colour becomes blue, once the blue color appears oxygen was bubbled to remove excess ozone, then $\mathrm{NaBH}_{4}(1.38 \mathrm{~g}, 36.5 \mathrm{mmol})$ was added and reaction mixture was allowed to room temperature and stirred for $8-10 \mathrm{~h}$. Concentrated the reaction mixture, diluted with ethyl acetate $(50 \mathrm{~mL})$ cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$. The organic layer was $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, brine (10 mL), and evaporated in vасиo to afford alcohol compound 9a, here sulfur also got oxidized to sulfoxide. The crude sulfoxide compound was taken in 1,2 dichloro benzene $(30 \mathrm{~mL}) \mathrm{CaCO}_{3}(3.64 \mathrm{~g}$, 36.5 mmol) was added and refluxed for 6 h . The crude reaction mixture was purified by column chromatography (silica gel $230-400$ mesh 20% ethylacetate $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $\mathbf{1 2 2}$ ($1.35 \mathrm{~g}, 52 \%$ for 2 steps) as colorless liquid.
$[\alpha]_{\mathbf{D}}{ }^{30}:+15.83\left(c 0.41, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 5.76-5.57(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.06$ (brs, $1 \mathrm{H}), 3.71(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.57(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{brs}, 1 \mathrm{H}), 1.97-1.83(\mathrm{~m}, 1 \mathrm{H})$, 1.57 (s, 3H), 1.46 (s, 3H), 1.39 (brs, 9H), 0.93 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 151.9,138.0,117.2,94.3,83.6,80.1,65.9,63.7,38.3$, 28.4, 26.8, 25.9, 14.0

HRMS: calculated for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O} 4 \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}: 308.1832$, found 308.1833.
(S)-2-((4R,5R)-3-(tert-Butoxycarbonyl)-2,2-dimethyl-4-vinyloxazolidin-5yl)propanoic acid (123):

To a stirred solution of compound $122(0.5 \mathrm{~g}, 1.7 \mathrm{mmol})$ in DMF (6 mL), Pyridinium dichromate (PDC) ($2.64 \mathrm{~g}, 7.0 \mathrm{mmol}$) was added and stirred at room temperature for 4 h . To the reaction mixture water (5 mL) was added and extracted with diethyl ether (20 mL $x 2$), combined the organic layers and washed with brine (5 mL) concentrated under reduced pressure. Purification by column chromatography (silica gel 100-200 mesh 30\% ethyl acetate $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded compound $\mathbf{1 2 3}(0.34 \mathrm{~g}, 65 \%)$ as a colorless liquid.

$$
[\alpha]_{\mathbf{D}}{ }^{30}:+25.09\left(c \quad 0.80, \mathrm{CHCl}_{3}\right)
$$

${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C D}_{3}$): $\delta 5.82-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.28$ $4.12(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=5.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.70(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}$, $3 \mathrm{H}), 1.45$ (brs, 9H), 1.25 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 178.9,151.9,137.5,117.4,94.2,81.1,80.2,62.7,43.3$, 28.4, 26.7, 26.4, 13.8

HRMS: calculated for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}: 322.1625$, found 322.1622.
tert-Butyl (4R,5R)-5-((S)-1-((2-(((R)-1-((5-(benzyloxy)-2-iodophenyl)amino)-1-oxopropan-2-yl)amino)-2-oxoethyl)amino)-1-oxopropan-2-yl)-2,2-dimethyl-4-vinyloxazolidine-3-carboxylate (124):

To a solution of $\mathbf{1 1 5}(665 \mathrm{mg}, 1.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, TFA $(1.0 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$ and stirred at $25^{\circ} \mathrm{C}$ for 3 h . After completion of the reaction (monitored by TLC), the reaction mixture was concentrated under reduced pressure to afford the amine as TFA salt.

Compound 123 ($300 \mathrm{mg}, 1.0 \mathrm{mmol}$) was taken in dry DMF (5 mL), added above amine salt, then HATU ($457 \mathrm{mg}, 1.2 \mathrm{mmol}$), DIPEA ($0.43 \mathrm{~mL}, 2.5 \mathrm{mmol}$) were added and the resulting solution was stirred at ambient temperature for 16 h . Reaction mass was diluted with ethylacetate (50 mL) washed with saturated solution of aq $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, brine (5 mL) and then evaporated to dryness. Purification by column chromatography (silica gel 230-400 mesh 4% methanol $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded compound 124 ($535 \mathrm{mg}, 73 \%$, for 2 steps) as an off white solid.

Mp: $92-94{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{30} \mathbf{:}+36.0985\left(c 0.81, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 3020,1687,1584,1518,1381,1217$
${ }^{1}$ H NMR (400 MHz, DMSO-d ${ }_{6}$): $\delta 9.33(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.26$ (brs, 1H), 6.80-6.61 (m, $1 \mathrm{H}), 5.85-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 4.60-4.41(\mathrm{~m}, 1 \mathrm{H})$,
4.18-4.00(m, 1H), 3.97-3.91(m, 1H), $3.85(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.62(\mathrm{~m}, 1 \mathrm{H})$, 2.69-2.58(m, 1H), $1.54(\mathrm{~s}, 3 \mathrm{H}), 1.46-1.25(\mathrm{~m}, 15 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\boldsymbol{\delta} 176.9,173.3,171.4,161.1,153.6,140.6,139.4,138.2$, 129.7, 129.2, 128.8, 118.2, 116.0, 113.8, 95.9, 83.0, 81.6, 71.4, 64.5, 51.0, 46.3, 43.8, $28.8,27.3,26.8,18.2,14.8$

HRMS: calculated for $\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{O}_{7} \mathrm{~N}_{4} \mathrm{INa}[\mathrm{M}+\mathrm{Na}]^{+}$: 757.2069, found 757.2056.
tert-Butyl $\quad((3 R, 4 R, 5 S)-6-((2-(((R)-1-((5-(b e n z y l o x y)-2-i o d o p h e n y l) a m i n o)-1-$ oxopropan-2-yl)amino)-2-oxoethyl)amino)-4-hydroxy-5-methyl-6-oxohex-1-en-3yl)carbamate (125) :

To a solution of compound $124(500 \mathrm{mg}, 0.6 \mathrm{mmol})$ in methanol (4 mL), Camphorsulphonic acid ($31 \mathrm{mg}, 0.3 \mathrm{mmol}$) was added and stirred for 18 h . reaction was monitored by TLC showed only 50% conversion. Concentrated the reaction mixture diluted with ethylacetate (30 mL), washed with saturated solution of aq $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, brine (5 mL) and then evaporated to dryness. Purification by column chromatography (silica gel 230-400 mesh $4-6 \%$ methanol $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded compound $\mathbf{1 2 5}$ (190 mg , 77%, brsm) as an off white solid and starting material $124(240 \mathrm{mg})$.

Mp: $85-86^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{27}:+27.67\left(c 0.3, \mathrm{CHCl}_{3}\right)$
IR $\boldsymbol{v}_{\text {max }}(\mathbf{f i l m}): \mathrm{cm}^{-1} 3021,2931,1647,1576$
${ }^{1} \mathbf{H}$ NMR (400MHz, CD $\mathbf{3}^{\mathbf{O D D}}$): $\delta 7.71(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.23(\mathrm{~m}, 6 \mathrm{H}), 6.69(\mathrm{dd}$, $J=2.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.97-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.29-5.15(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 4.62-4.57$
$(\mathrm{m}, 1 \mathrm{H}) 4.28(\mathrm{brs}, 1 \mathrm{H}), 4.14-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.66-2.47(m, 1H), $1.51(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, CD $\left.\mathbf{D}_{3} \mathbf{O D}\right): ~ \delta 177.0,171.9,170.4,159.5,156.6,139.1,137.1,136.7$, 128.2, 127.7, 127.3, 114.7, 114.6, 112.6, 82.2, 79.1, 75.1, 69.9, 54.0, 49.7, 43.9, 42.3, 27.4, 16.6, 13.1

HRMS: calculated for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{O}_{7} \mathrm{~N}_{4} \mathrm{INa}[\mathrm{M}+\mathrm{Na}]^{+}$: 717.1756, found 717.1746.
tert-Butyl ($3 R, 9 \mathrm{~S}, 10 \mathrm{R}, 11 R, E$)-16-(benzyloxy)-10-hydroxy-3,9-dimethyl-2,5,8-trioxo-2,3,4,5,6,7,8,9,10,11-decahydro-1H-benzo[h][1,4,7]triazacyclopentadecin-11yl)carbamate (106):

To a solution of compound $\mathbf{1 2 5}(120 \mathrm{mg}, 0.17 \mathrm{mmol})$ in anhydrous acetonitrile (120 mL), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$ and triethylamine $(0.24 \mathrm{~mL}, 1.7 \mathrm{mmol})$ were added and heated at 75 ${ }^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was concentrated in vacuo. Purification by column chromatography (silica gel 230-400 mesh 4% methanol $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded compound 106 ($52 \mathrm{mg}, 53 \%$) as an off white solid.

Mp: 130-132 ${ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{27}:-20.48\left(c 0.81, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR (400MHz, CD $\left.\mathbf{3}_{3} \mathrm{OD}\right): \delta 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dd}$, $J=8.9,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.03(\mathrm{~m}, 2 \mathrm{H}), 4.46-4.27(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.69 (dd, $J=2.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.45(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, CD $\mathbf{D}_{3} \mathbf{O D}$): $\delta 180.9,175.4,174.7,162.3,160.7,143.0,141.0,138.8$, $132.0,131.5,131.1,116.9,115.3,79.3,73.6,62.6,54.3,47.6,46.1,31.3,19.3,19.0$

HRMS: calculated for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{7} \mathrm{~N}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 589.2633$, found 589.2628.

Benzyl ((S)-1-(((3R,9S,10R,11R,E)-16-(benzyloxy)-10-hydroxy-3,9-dimethyl-2,5,8-trioxo-2,3,4,5,6,7,8,9,10,11-decahydro-1H-benzo $[h][1,4,7]$ triazacyclopentadecin-11-yl)amino)-3-hydroxy-1-oxopropan-2-yl)carbamate (127):

To a solution of compound $106(20 \mathrm{mg}, 0.035 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ trifluoro acetic acid $(1.0 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$ and the resulting suspension was stirred for 2 h at the same temperature. Reaction was monitored by TLC, and then concentrated. This residue was dissolved in dry DMF (3 mL), then HATU ($15 \mathrm{mg}, 0.04 \mathrm{mmol}$), DIPEA ($18 \mu \mathrm{~L}, 0.1$) $\mathrm{mmol})$ and NHCbz-L-Ser-OH $\mathbf{1 2 6}(9 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added. The resulting solution was stirred at ambient temperature for 16 h . Reaction mass was diluted with ethylacetate $(10 \mathrm{~mL})$, washed with saturated solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the crude material obtained after removal of the solvent was purified by column chromatography (silica gel 230-400 mesh 4% methanol $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $\mathbf{1 2 7}$ ($17.5 \mathrm{mg}, 73 \%$) as off white solid.

Mp: 203-205 ${ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 7}}:+13.90\left(c 0.35, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 3022,2403,1659,1522,1426 ;$
${ }^{1} \mathbf{H}$ NMR (400MHz, CD $\mathbf{3}_{\mathbf{3}} \mathbf{O D}$): $\delta 7.40-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.40(\mathrm{~m}, 10 \mathrm{H}), 6.78-6.91$ $(\mathrm{m}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=16.14 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dd}, J=7.21,16.02 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.19(\mathrm{~m}$, $2 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.75-4.83(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{q}, J=7.01 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{brs}, 1 \mathrm{H}), 4.06(\mathrm{~d}$, $J=15.16 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=6.60 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{t}, J=4.77 \mathrm{~Hz}, 3 \mathrm{H}), 3.66(\mathrm{~d}, J=15.16$ $\mathrm{Hz}, 1 \mathrm{H}), 2.44-2.68(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=7.09 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=7.34 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 177.2,171.6,171.4,171.3,158.5,157.2,137.1,136.6$, 135.2, 128.1, 127.7, 127.6, 127.5, 127.2, 126.7, 123.4, 112.5, 110.6, 74.1, 69.7, 66.6, $61.9,57.5,56.7,50.2,42.9,41.7,26.2,14.9,14.8$

HRMS: calculated for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{O}_{9} \mathrm{~N}_{5}[\mathrm{M}+\mathrm{H}]^{+}:$688.2977, found 688.2969.
Benzyl ((S)-1-(((3R,9S,10R,11R)-16-(benzyloxy)-10-hydroxy-3,9-dimethyl-2,5,8,13-tetraoxo-2,3,4,5,6,7,8,9,10,11,12,13-dodecahydro-1H-benzo[h][1,4,7]triazacyclopentadecin -11-yl)amino)-3-hydroxy-1-oxopropan-2-yl)carbamate (128):

Compound 128 ($14 \mathrm{mg}, 58 \%$) was synthesized from 127 by following similar procedure used for the synthesis of compound 101.
${ }^{1} H$ NMR (500 MHz, DMSO-d \mathbf{d}_{6}): $\delta 12.44(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~d}, J=5.80 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=$ $2.44 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.85 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=9.16 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.53(\mathrm{~m}, 10 \mathrm{H})$, 7.26 (brs., 1H), $6.82(\mathrm{~d}, J=8.54 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=4.88 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 5.07(\mathrm{~s}$, 2H), 4.94-5.00 (m, 1H), 4.75-4.83(m, 1H), $4.37(\mathrm{t}, J=8.39 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.16(\mathrm{~m}$, $1 \mathrm{H}), 3.97-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.57$ (brs., 2 H), $3.32-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.26$
(dd, $J=13.12,18.92 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=17.70 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.81(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~d}, J$ $=7.32 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.71 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (125 MHz, DMSO-d \mathbf{d}_{6}): δ 200.8, 172.6, 172.5, 170.1, 168.8, 163.2, 156.3, $142.1,137.0,136.3,133.7,128.6,128.5,128.2,127.9,127.7,115.4,109.3,105.4,85.8$, $71.5,69.7,65.7,61.4,57.4,50.9,45.5,44.7,42.6,42.1,17.0,9.1$

HRMS: calculated for $\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{O}_{10} \mathrm{~N}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 726.2746, found 726.2743.
(S)-2-amino- N-(($3 R, 9 S, 10 R, 11 R)$-10,16-dihydroxy-3,9-dimethyl-2,5,8,13-tetraoxo-2,3,4,5,6,7,8,9,10,11,12,13-dodecahydro-1H-benzo[h][1,4,7]triazacyclopentadecin-11-yl)-3-hydroxypropanamide (10'):

Compound 129 ($10 \mathrm{mg}, 0.014 \mathrm{mmol}$) was taken in ethanol (3 mL) and stirred for 4 h under H_{2} atmosphere. Filtered the reaction mixture through celite pad to afford compound $\mathbf{1 0}^{\prime}(6.5 \mathrm{mg})$ in a quantitative yield.
${ }^{1}$ H NMR (700 MHz, DMSO-d ${ }_{\mathbf{6}}$): $\delta 12.41(\mathrm{~d}, J=19.65 \mathrm{~Hz}, 1 \mathrm{H}), 9.05(\mathrm{~d}, J=4.24 \mathrm{~Hz}$, $1 \mathrm{H}), 8.00-8.14(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=3.28,8.67 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=9.44 \mathrm{~Hz}, 1 \mathrm{H}), 6.55$ (d, $J=8.09 \mathrm{~Hz}, 1 \mathrm{H}), 5.44-5.60(\mathrm{~m}, 1 \mathrm{H}), 4.72-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.46$ (br. s., 1H), 4.08 (t, J $=6.55 \mathrm{~Hz}, 1 \mathrm{H}$), 3.56 (brs., 1H), 3.48 (brs., 1H), 3.35 (d, $J=15.41 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27 (dd, $J=$ $11.37,17.92 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=6.94 \mathrm{~Hz}, 1 \mathrm{H}), 2.70($ brs., 1 H$), 1.36$ (d, $J=7.32 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{dd}, J=6.94,13.87 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (175 MHz, DMSO-d $\mathbf{d}_{\mathbf{6}}$): δ 200.6, 200.5, 173.3, 172.7, 170.4, 166.3, 163.7, 142.7, 134.1, 114.7, 110.8, 106.5, 72.0, 70.2, 60.9, 60.3, 54.4, 51.3, 45.7, 45.6, 42.9, 42.6, 41.6, 40.2, 17.3, 9.5;

HRMS: calculated for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{~N}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 480.2089$, found 480.2086.
tert-Butyl ((S)-1-(((3R,9S,10R,11R,E)-16-(benzyloxy)-10-hydroxy-3,9-dimethyl-2,5,8-trioxo-2,3,4,5,6,7,8,9,10,11-decahydro-1H-benzo[h][1,4,7]triazacyclopentadecin-11-yl)amino)-3-hydroxy-1-oxopropan-2-yl)carbamate (104):

To a solution of compound $106(45 \mathrm{mg}, 0.079 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ trifluoro acetic acid $(1.0 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$ and the resulting suspension was stirred for 2 h at the same temperature. Reaction was monitored by TLC, and then concentrated. This residue was dissolved in dry DMF (3 mL), then HATU ($60 \mathrm{mg}, 0.16 \mathrm{mmol}$), DIPEA ($41 \mu \mathrm{~L}, 0.23$ mmol) and N -(tert-butoxycarbonyl)- O -(tert-butyldimethylsilyl)-L-serine 99 (28 mg , 0.087 mmol) was added. The resulting solution was stirred at ambient temperature for 16h. Reaction mass was diluted with ethylacetate (15 mL), washed with saturated solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the crude material obtained after removal of the solvent was purified by column chromatography (silica gel 230-400 mesh 4% methanol $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $104(38 \mathrm{mg}$, 62%) as off white solid.

Mp: $87-89^{\circ} \mathrm{C}$

$$
[\alpha]_{\mathbf{D}}{ }^{27}:+63.22\left(c 0.12, \mathrm{CHCl}_{3}\right)
$$

IR $\boldsymbol{v}_{\text {max }}$ (film): $\mathrm{cm}^{-1} 3023,2403,1523,1595,1427$
${ }^{1}$ H NMR (500 MHz, DMSO-d \mathbf{d}_{6}): $\delta 8.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.56$ (brs, 1 H$), 8.40(\mathrm{~d}, J=$ $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.35-$ $7.30(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.43(\mathrm{~m}, 2 \mathrm{H}), 5.86$ (dd, $J=8.4,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.63-4.52(\mathrm{~m}, 1 \mathrm{H})$, 4.30 (quin, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.10 (brs, 2H), 3.79 - 3.72 (m, 1H), 3.66 (brs, 2H), 3.52 $3.47(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.53(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}$), 0.83 (s, 9H), 0.02 ($\mathrm{s}, 6 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, DMSO-d \mathbf{d}_{6} : $\delta 175.9,170.7,170.0,169.6,158.1,155.6,137.4$, $135.9,129.1,128.9,128.3,128.1,127.8,127.0,123.2,112.2,110.8,78.8,75.1,69.7$, $63.8,56.8,50.2,43.8,41.5,28.6,26.2,18.4,16.8,-5.0$

HRMS: calculated for $\mathrm{C}_{39} \mathrm{H}_{58} \mathrm{O}_{9} \mathrm{~N}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 768.3998$, found 768.3994.
tert-Butyl ((S)-1-(((3R,9S,10R,11R)-16-(benzyloxy)-10-hydroxy-3,9-dimethyl-2,5,8,13-tetraoxo-2,3,4,5,6,7,8,9,10,11,12,13-dodecahydro-1H-benzo[h] [1,4,7] triaza-cyclopentadecin-11-yl)amino)-3-hydroxy-1-oxopropan-2-yl)carbamate (105):

To a stirred solution of $\mathrm{PdCl}_{2}(10 \mathrm{~mol} \%), \mathrm{CuCl}(6 \mathrm{mg}, 0.06 \mathrm{mmol})$ in DMF-water (3 mL , 2:1) compound $104(50 \mathrm{mg}, 0.06 \mathrm{mmol})$ was added and heated at $65{ }^{\circ} \mathrm{C}$ under O_{2} atmosphere for 8 h . The reaction mixture was diluted with ethyl acetate (10 mL) and washed water (5 mL) and brine (5 mL) organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure. Purification by column chromatography (silica gel

230-400 mesh 6% methanol $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded compound $105(26 \mathrm{mg}, 59 \%)$ as a white color solid.

Mp: $242-244{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d $\mathbf{d}_{\mathbf{6}}$): $\delta 12.46(\mathrm{~s}, 1 \mathrm{H}), 9.10(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.40$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 4.88-4.74(\mathrm{~m}, 2 \mathrm{H})$, $4.36(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.49(\mathrm{~m}, 3 \mathrm{H})$, 3.32-3.21(m, 2H), $2.96(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.62(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~d}$, $J=4.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (125 MHz, DMSO-d $\mathbf{d}_{\mathbf{6}}$): $\delta 201.2,173.0,172.8,170.4,169.3,163.5,155.9$, $142.5,136.6,134.0,129.0,128.9,128.6,128.3,128.1,115.8,109.7,105.7,78.8,71.7$, $70.0,61.6,57.3,51.2,45.8,45.0,42.8,42.5,28.6,17.4,9.6$

HRMS: calculated for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{10} \mathrm{~N}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 670.3083$, found 670.3075.
tert-Butyl ((S)-1-(((3R,9S,10R,11R)-10,16-dihydroxy-3,9-dimethyl-2,5,8,13-tetraoxo$\mathbf{2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 - d o d e c a h y d r o - 1 H - b e n z o}[h][1,4,7]$ triazacyclopentadecin-11-yl)amino)-3-hydroxy-1-oxopropan-2-yl)carbamate (10):

To a solution of compound $131(20 \mathrm{mg}, 0.03 \mathrm{mmol})$ in methanol $(3 \mathrm{~mL}), 10 \% \mathrm{Pd} / \mathrm{C}(\sim 5$ mg) was added and stirred under H_{2} atmosphere for 2 h . The reaction mixture was then filtered through silica gel column, concentrated to afford phenolic compound. The
phenolic compound was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, TFA $(0.3 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$ and the resulting suspension was stirred for 2 h at the same temperature. Concentrated the reaction mixture and azeotroped with toluene ($3 \mathrm{~mL} \times 3$), acetonitrile ($3 \mathrm{~mL} \times 3$) and dried under vacuum to afford compound 10 ($11 \mathrm{mg}, 78 \%$ for 2 steps) as off white solid. $[\alpha]_{\mathbf{D}}{ }^{25}$: - $10.89\left(c 0.34, \mathrm{CH}_{3} \mathrm{OH}\right)$

HRMS: calculated for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{~N}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 480.2089$, found 480.2085 .

Table 1: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shift data of $\mathbf{1 0}$ in comparison to the reported values

Residue	Notation	$\delta_{\mathrm{H}}\left(\delta_{\mathrm{H}}\right.$ reported), multiplicity, J_{HH}	$\delta_{\mathrm{C}}\left(\delta_{\mathrm{C}}\right.$ reported $)$
Gly			
	1 (CO)	--	169.84 (169.0)
	2a	4.81(4.19), dd, $J_{\mathrm{H} \alpha-\mathrm{H} \alpha^{\prime}}=15.2, J_{\mathrm{NH}-\mathrm{H} \alpha}=9.0$	$\begin{aligned} & 42.06 \\ & (42.4) \end{aligned}$
	$2 \mathrm{~b}^{\prime}$	3.34 (3.78), dd, $J_{\mathrm{H} \alpha-\mathrm{H} \alpha^{\prime}}=15.2$	--
	3 (NH)	7.73 (7.30), dd, $J_{\mathrm{NH}-\mathrm{Ha}}=9.0$	--
D-Ala			
	1 (CO)	--	172.15(179.2)
	2a	4.12 (4.29), dq $, J_{\mathrm{H} \alpha-\mathrm{H} \beta}=7.4, J_{\mathrm{NH}-\mathrm{Ha}}=6.2$	$\begin{gathered} 50.73 \\ (49.7) \end{gathered}$
	3	1.39 (1.36), d, $J_{\mathrm{H} \alpha-\mathrm{H} \beta}=7.4$	16.99(16.0)
	4 (NH)	9.09 (8.79), d, $J_{\text {NH-H } \alpha}=6.2$	--
L-Ser			
	1 (CO)	--	165.66(166.7)
	2	3.95 (3.98), br	53.67(53.6)
	3a	3.71 (3.69), br	60.61 (60.3)
	3b	3.71 (3.69), br	--
	4 (OH)	5.46(5.46), br, ol	--
	$5\left(\mathrm{NH}_{2}\right)$	8.06(8.08), br	--
Non peptide portion			
	1 (CO)	--	172.61(173.2)
	2	2.76 (2.35), dq, $J_{\mathrm{H} 2-\mathrm{H} 7}=7.1$	45.23(45.4)
	3	3.59 (3.39), br	71.40(72.2)
	4	4.52(4.52), br, m	45.23(48.0)
	5a	3.32 (3.34), dd, $J_{\mathrm{H} \alpha-\mathrm{H} \alpha^{\prime}}=17.6$	42.29(41.2)
	5b	2.91 (2.87), $J_{\mathrm{H} \alpha-\mathrm{H} \alpha^{\prime}}=17.6$	--
	6	--	200.17(201.1)
	7	0.97 (1.08), d, $J_{\mathrm{H} 2-\mathrm{H} 7}=7.1$	9.38 (13.6)
	8 (OH-3)	5.44 (5.53), br, ol	--
	9 (NH-4)	7.87 (7.98), br, ol	--

	1^{\prime}	--	$113.96(115.8)$
	2^{\prime}	--	$142.41(141.3)$
	3^{\prime}	$8.13(7.92), \mathrm{d}, J_{\mathrm{H}^{\prime}-\mathrm{H} 5^{\prime}}=2.5$	$105.66(106.1)$
	4^{\prime}	--	$163.36(162.9)$
	5^{\prime}	$6.58(6.57), \mathrm{dd}, J_{\mathrm{H}^{\prime}{ }^{\prime}-\mathrm{H} 6^{\prime}}=8.9, J_{\mathrm{H}^{\prime}-\mathrm{H} 5^{\prime}}=2.5$	$110.15(110.0)$
	6^{\prime}	$7.86(7.77), \mathrm{d}, J_{\mathrm{H}^{\prime}-\mathrm{H} 6^{\prime}}=8.9$	$133.67(132.9)$
	$10\left(\mathrm{OH}-4^{\prime}\right)$	$10.75(10.70), \mathrm{br}, \mathrm{s}$	--
	$11\left(\mathrm{NH}-2^{\prime}\right)$	$12.52(11.50), \mathrm{br}, \mathrm{s}$	

Multiplicities and J coupling constants are provided only for the resonances that are without any overlaps or wherever the unambiguous measurements were possible.
(3aR,4S,10R,18aR,E)-14-(Benzyloxy)-4,10-dimethyl-3a,4,6,7,9,10,12,18a-octahydro-2H-benzo[h]oxazolo[4,5-I][1,4,7]triazacyclopentadecine-2,5,8,11(1H)-tetraone (129):

To a solution of compound $\mathbf{1 0 6}(15 \mathrm{mg}, 0.026 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ trifluoro acetic acid $(1.0 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$ and the resulting suspension was stirred for 2 h at the same temperature. Reaction was monitored by TLC, and then concentrated. This residue was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$, DIPEA ($9 \mu \mathrm{~L}, 0.053 \mathrm{mmol}$) followed by triphosgene ($9 \mathrm{mg}, 0.029 \mathrm{mmol}$, in $1 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$) was added at $0{ }^{\circ} \mathrm{C}$ and the resulting suspension was stirred for 2 h . Reaction mixture was diluted with EtOAc (10 mL) and washed with $1 \mathrm{~N} \mathrm{HCl}(3 \mathrm{~mL})$, brine (3 mL). Organic layer was separated, dried under vacuum. Purification by column chromatography (silica gel 230-400 mesh 5% methanol $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded compound $\mathbf{1 2 9}$ ($8.2 \mathrm{mg}, 63 \%$) as white solid.

Mp: 236-238 ${ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{27}:+7.11\left(c 0.25, \mathrm{CH}_{3} \mathrm{OH}\right)$
HRMS: calculated for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 493.2082$, found 493.2080.

Table 2: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shift data of compound 129

Residue	Notation of the proton/carbon	δ_{H}, multiplicity, J_{H}	$\delta_{\text {C }}$
Gly			
	1 (CO)	--	172.23
	2a (Ha)		43.25
	$2 \mathrm{~b}\left(\mathrm{H} \alpha^{\prime}\right)$	$3.63, \mathrm{dd}, J_{\mathrm{Ha}-\mathrm{H} \alpha^{\prime}}=15.8, J_{\mathrm{NH}-\mathrm{H} \alpha^{\prime}}=4.7$	--
	3 (NH)	8.13, dd, $J_{\mathrm{NH}-\mathrm{Ha}}=7.7, J_{\mathrm{NH}-\mathrm{H} \alpha^{\prime}}=4.7$	
D-Ala			
	1 (CO)	--	171.00
	2 (Ha)	4.41, q, $J_{\mathrm{H} \alpha-\mathrm{H} \beta}=7.2, J_{\mathrm{NH}-\mathrm{H} \mathrm{\alpha}}=7.2$	51.56
	3 (H3)	$1.43, \mathrm{~d}, J_{\mathrm{H} \alpha-\mathrm{H} \mathrm{\beta}}=7.2$	15.91
	4 (NH)	8.12, d, $J_{\mathrm{NH}-\mathrm{H} \alpha}=7.2$	--
Non peptide portion			
	1 (CO)	--	173.38
	2	$3.07, \mathrm{dq}, J_{\mathrm{H} 2-\mathrm{H} 7}=6.9, J_{\mathrm{H} 2-\mathrm{H} 3}=3.6$	43.41
	3	$4.69, \mathrm{t}, J_{\mathrm{H} 2-\mathrm{H} 3}=3.6, J_{\mathrm{H} 3-\mathrm{H} 4}=3.7$	82.48
	4	$\begin{aligned} & 4.73, \mathrm{ddd}, J_{\mathrm{H} 4-\mathrm{H} 5}=7.0, J_{\mathrm{H} 3-\mathrm{H} 4}=3.7, J_{\mathrm{H} 4-} \\ & \mathrm{H} 8=1.8 \end{aligned}$	54.03
	5	$6.02, \mathrm{dd}, J_{\mathrm{H} 5-\mathrm{H} 6}=15.8, J_{\mathrm{H} 4-\mathrm{H} 5}=7.0$	134.05
	6	$6.48, \mathrm{~d}, J_{\mathrm{H} 5-\mathrm{H} 6}=15.8$	127.72
	7	$1.18, \mathrm{~d}, J_{\mathrm{H} 2-\mathrm{H} 7}=6.9$	8.71
	8 (NH-4)	7.02, br	--
	1^{\prime}	--	122.86
	2^{\prime}	--	136.92
	3'	$7.66, \mathrm{~d}, J_{\mathrm{H}^{\prime}-\mathrm{H} 5^{\prime}}=2.6$	110.04
	4^{\prime}	--	159.44
	5'	6.77, dd, $J_{\mathrm{H}^{\prime}-\mathrm{H} 6^{\prime}}=8.6, J_{\mathrm{H} 3^{\prime}-\mathrm{H} 5^{\prime}}=2.6$	112.11
	6^{\prime}	$7.28, \mathrm{~d}, J_{\mathrm{H5}^{\prime}-\mathrm{H} 6}=8.6$	128.70
	9 (NH-2')	8.86, s	--
OBn-6'			
	1 '	--	138.05

	$2^{\prime \prime}$	$7.47, \mathrm{dd},, J_{\mathrm{H}^{\prime \prime}-\mathrm{H} 3^{\prime \prime}}=7.2, J_{\mathrm{H} 2^{\prime \prime}-\mathrm{H} 4^{\prime \prime}}=1.7$	128.28
	$3^{\prime \prime}$	$7.38, \mathrm{t}, J_{\mathrm{H} 2^{\prime \prime}-\mathrm{H} 3^{\prime \prime}}=7.2, J_{\mathrm{H} 3^{\prime \prime}-\mathrm{H} 4^{\prime \prime}}=7.2$	129.12
	$4^{\prime \prime}$	$7.31, \mathrm{tt}, J_{\mathrm{H}^{\prime \prime}-\mathrm{H} 4^{\prime \prime}}=7.2, J_{\mathrm{H} 2^{\prime \prime}-\mathrm{H} 4^{\prime \prime}}=1.7$	128.28
	$1\left(\mathrm{CH}_{2}-1^{\prime \prime}\right)$	$5.09, \mathrm{~s}$	70.27

X-ray Crystal Structure Details: Single crystals of compound 129, obtained from Acetone-d6. X-ray intensity data were collected on a Bruker SMART APEX II CCD diffractometer with graphite-monochromatized ($\mathrm{Mo} \mathrm{K} \alpha=0.71073 \AA$) radiation. The X-ray generator was operated at 50 kV and 30 mA . A preliminary set of cell constants and an orientation matrix were calculated from three sets of 36 frames. Data were collected with ω scan width of 0.5° at different settings of φ and 2θ with a frame time of 40 secs keeping the sample-to-detector distance fixed at 5.00 cm . The X-ray data collection was monitored by APEX2 program (Bruker, 2006). ${ }^{1}$ All the data were corrected for Lorentzian, polarization and absorption effects using SAINT and SADABS programs (Bruker, 2006). SHELX-97 was used for structure solution and full matrix least-squares refinement on F^{2}. All the hydrogen atoms were placed in geometrically idealized position and constrained to ride on their parent atoms. An ORTEP III view of both compounds were drawn with 30% probability displacement ellipsoids and H atoms are shown as small spheres of arbitrary radii. In the crystal structure benzyl group showed orientational disorder over two positions having occupancy 0.7 and 0.3 . The anisotropic parameters of the benzyl group atoms were restraints using DELU, SIMU and ISOR commands integrated in SHELXTL package.

Crystallographic data for 129 (KKN-H-46) $\left(\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6}\right): M=492.52$, Crystal dimensions $0.46 \times 0.20 \times 0.11 \mathrm{~mm}^{3}$, monoclinic, space group $C 2, a=21.150(10), b=$ $4.978(3), c=24.550(11) \AA, \beta=104.86(3)^{\circ}, V=2498(2) \AA^{3}, Z=4, \rho_{\text {calcd }}=1.310 \mathrm{gcm}^{-3}, \mu$ $\left(\mathrm{Mo}^{-} \mathrm{K}_{\alpha}\right)=0.094 \mathrm{~mm}^{-1}, F(000)=1040,2 \theta_{\max }=50.00^{\circ}, T=296(2) \mathrm{K}, 14707$ reflections collected, 4389 unique reflections ($R_{\mathrm{int}}=0.1283$), 2757 observed $(I>2 \sigma(I)$) reflections, multi-scan absorption correction, $T_{\min }=0.958, T_{\max }=0.990,379$ refined parameters, No. of restraints 199, $S=1.070, R 1=0.0834, w R 2=0.1716$ (all data $R=0.1345, w R 2=$
0.1956), maximum and minimum residual electron densities; $\Delta \rho_{\max }=0.30, \Delta \rho_{\min }=-0.23$ $\left(\mathrm{e} \AA^{-3}\right)$. Crystallographic data for compound 129 (KKN-H-46) deposited with the Cambridge Crystallographic Data Centre as supplementary publication no.CCDC 1427296.
tert-Butyl ((2S)-3-((tert-butyldimethylsilyl)oxy)-1-oxo-1-(((3R,9S,10R,11S)-10,12,13-trihydroxy-16-methoxy-3,9-dimethyl-2,5,8-trioxo-2,3,4,5,6,7,8,9,10,11,12,13-dodecahydro-1H-benzo[h][1,4,7]triazacyclopentadecin-11-yl)amino)propan-2yl)carbamate (130)

To a solution of compound $100(25 \mathrm{mg}, 0.036 \mathrm{mmol})$ in ${ }^{\mathrm{t}} \mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml}, 1: 1)$, NMO ($8.4 \mathrm{mg}, 0.073 \mathrm{mmol}$) and $\mathrm{OsO}_{4}\left(46 \mu \mathrm{~L}, 0.1 \%\right.$ solution in $\left.{ }^{\mathrm{t}} \mathrm{BuOH}\right)$ was added at $0^{\circ} \mathrm{C}$ and stirred for 6 h. ${ }^{t} \mathrm{BuOH}$ removed under vacuum, reaction mixture was diluted with EtOAc $(5 \mathrm{~mL})$ was hed with hypo solution $(4 \mathrm{~mL})$ and brine (4 ml). Organic layer was separated, dried under vacuum. Purification by column chromatography (silica gel 230-400 mesh 5% methanol $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded compound $\mathbf{1 3 0}(16 \mathrm{mg}, 62 \%)$ as white solid in 6:1 mixture of diastereomers.
${ }^{1} \mathbf{H}$ NMR (400MHz, CD $\mathbf{3}_{\mathbf{3}} \mathbf{O D}$): (major isomer) $\delta 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.56 \mathrm{~Hz}, 1 \mathrm{H})$, 6.71 (dd, $J=2.57,8.68 \mathrm{~Hz}, 1 \mathrm{H}), 4.72$ (brs., 1H), 4.59 (brs., 1H), $4.42-4.49$ (m, 1H), 4.33 (brs, 1H), $4.19(\mathrm{t}, J=5.50 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=5.38 \mathrm{~Hz}, 1 \mathrm{H})$, $3.84-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.70(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.88(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~s}$, $9 \mathrm{H}) ; 1.45(\mathrm{~d}, J=7.05 \mathrm{~Hz}, 3 \mathrm{H}, 1.13$ (d, $J=7.09 \mathrm{~Hz}, 3 \mathrm{H}), 0.92$ (s, 9H), 0.11 (s, 6H)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 174.7,169.9,169.6,169.3,157.7,155.0,136.2,127.2$, $123.2,108.8,107.8,78.1,76.7,76.3,76.1,73.9,70.5,67.5,61.3,55.2,52.9,50.0,43.1$, $41.8,27.8,25.8,23.5,16.3,14.7,9.4,-8.2$

HRMS: calculated for $\mathrm{C}_{33} \mathrm{H}_{55} \mathrm{O}_{11} \mathrm{~N}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 748.3560$, found 748.3558 .
tert-Butyl
((2S)-3-((tert-butyldimethylsilyl)oxy)-1-(((3R,9S,10R,11S)-10,12-
dihydroxy-16-methoxy-3,9-dimethyl-2,5,8,13-tetraoxo-2,3,4,5,6,7,8,9,10,11,12,13-
dodecahydro-1H-benzo[h][1,4,7]triazacyclopentadecin-11-yl)amino)-1-oxopropan-2yl)carbamate (131):

To a sloutuon of compound $\mathbf{1 3 0}(15 \mathrm{mg}, 0.02 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(5 \mathrm{~mL}) \mathrm{MnO}_{2}(18 \mathrm{mg}$, 0.2 mmol) was added and stirred for 4 h . filtered the reaction mixture through celite pad and purification by column chromatography (silica gel 230-400 mesh 4% methanol $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded compound $131(11.7 \mathrm{mg}, 78 \%)$ as white solid in $6: 1$ mixture of diastereomers.
${ }^{1} \mathbf{H}$ NMR (400MHz, CD $\left.\mathbf{D}_{\mathbf{3}} \mathrm{OD}\right): \delta 9.70-9.89(\mathrm{~m}, 1 \mathrm{H}), 8.22-8.32(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=$ $8.31 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=2.20,5.14 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.54(\mathrm{~m}$, $1 \mathrm{H}), 4.36-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.27(\mathrm{~m}, 3 \mathrm{H}), 4.01-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=4.40 \mathrm{~Hz}$, $1 \mathrm{H}), 3.92$ (s, 4H), 3.86 (d, $J=5.38 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{q}, J=7.34 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.58$ (m, $1 \mathrm{H}), 1.43-1.51(\mathrm{~m}, 15 \mathrm{H}), 1.10(\mathrm{~d}, J=6.85 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 14 \mathrm{H}), 0.10(\mathrm{~s}, 7 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, CD $\mathbf{3}_{3} \mathrm{OD}$): $\delta 194.3,176.9,174.8,172.6,171.7,171.1,166.0,141.9$, $138.3,116.7,109.4,104.2,79.2,78.2,77.9,77.5,69.8,63.2,55.0,52.8,50.8,50.6,48.7$, 39.0, 29.4, 29.1, 27.3, 25.0, 17.8, 16.0, 10.9, 7.8, -6.7

HRMS: calculated for $\mathrm{C}_{33} \mathrm{H}_{53} \mathrm{O}_{11} \mathrm{~N}_{5} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}$: 746.3403 , found 746.3406
tert-Butyl ((2S)-1-(((3R,9S,10R,11S)-16-(benzyloxy)-10,12,13-trihydroxy-3,9-dimethyl-2,5,8-triox0-2,3,4,5,6,7,8,9,10,11,12,13-dodecahydro-1H-benzo[h] [1,4,7]triazacyclopentadecin-11-yl)amino)-3-((tert-butyldimethylsilyl)oxy)-1-oxopropan-2-yl)carbamate (132):

Compound 132 ($28 \mathrm{mg}, 68 \%$) was synthesized by following similar procedure used for the synthesis of compound 130. The compound was obtaines as $3: 1$ diastereomeric mixture.
${ }^{1} \mathbf{H}$ NMR (400MHz, $\mathbf{C D}_{\mathbf{3}} \mathbf{O D}$) (mixture of diastereomers): $\delta 7.60$ (brs., 1 H), 7.39 $7.46(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~d}, J=6.85 \mathrm{~Hz}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=6.36 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.80 \mathrm{~Hz}$, 1H), 5.07 (br. s., 3H), 4.72 (br. s., 1H), 4.45 (d, $J=6.85 \mathrm{~Hz}, 1 \mathrm{H}$), 4.34 (br. s., 1H), 4.15 $4.25(\mathrm{~m}, 2 \mathrm{H}), 4.06-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.95(\mathrm{~m}, 3 \mathrm{H}), 3.58-3.72(\mathrm{~m}, 3 \mathrm{H}), 2.72-2.84$ $(\mathrm{m}, 1 \mathrm{H}), 1.40-1.52(\mathrm{~m}, 17 \mathrm{H}), 1.13(\mathrm{~d}, J=6.36 \mathrm{~Hz}, 3 \mathrm{H}), 0.88-0.96(\mathrm{~m}, 13 \mathrm{H}), 0.05-$ 0.19 (m, 9H)
${ }^{13} \mathbf{C}$ NMR (100 MHz, CD $\left.\mathbf{H}_{3} \mathrm{OD}\right): ~ \delta 174.7,170.0,169.6,169.3,156.8,137.6,135.7,127.3$, 126.7, 126.6, 126.1, 126.0, 125.8, 125.7, 123.5, 111.2, 109.7, 108.8, 78.1, 73.8, 70.7,
$69.7,68.4,68.1,67.5,61.9,61.3,55.2,50.1,50.0,48.0,46.8,46.5,46.3,46.1,45.9,45.7$, $45.5,43.1,41.8,27.9,25.8,23.6,16.3,15.3,14.7,11.3,9.4,-8.1,-8.1$

HRMS: calculated for $\mathrm{C}_{39} \mathrm{H}_{59} \mathrm{O}_{11} \mathrm{~N}_{5} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}: 824.3873$, found 824.3868 .
tert-Butyl ((S)-1-(((3R,9S,10R,11S,12R)-16-(benzyloxy)-10,12-dihydroxy-3,9-dimethyl-2,5,8,13-tetraoxo-2,3,4,5,6,7,8,9,10,11,12,13-dodecahydro-1H-benzo[h][1,4,7]triazacyclopentadecin-11-yl)amino)-3-((tert-butyldimethylsilyl)oxy)-1-oxopropan-2-yl)carbamate (133):

To a sloutuon of compound 132 ($25 \mathrm{mg}, 0.03 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(5 \mathrm{~mL}) \mathrm{MnO}_{2}(27 \mathrm{mg}$, 0.3 mmol) was added and stirred for 4 h . filtered the reaction mixture through celite pad and purification by column chromatography (silica gel 230-400 mesh 4% methanol $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded compound $\mathbf{1 3 2}(10 \mathrm{mg}$,) and $134(3 \mathrm{mg})$.
${ }^{1} \mathbf{H}$ NMR (400MHz, CD $\left.\mathbf{D}_{3} \mathrm{OD}\right): \delta 8.38(\mathrm{~d}, J=2.44 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.54 \mathrm{~Hz}, 1 \mathrm{H})$, $7.48(\mathrm{~d}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.48 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=7.32 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.94$ $(\mathrm{m}, 1 \mathrm{H}), 5.41($ brs., 1 H$), 5.23(\mathrm{~s}, 2 \mathrm{H}), 4.45-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=5.19 \mathrm{~Hz}, 1 \mathrm{H}), 4.39$ (s, 1H), 4.19-4.23 (m, 2H), 4.06 (brs., 1H), $3.90(\mathrm{~d}, J=9.16 \mathrm{~Hz}, 2 \mathrm{H}), 2.94-3.01(\mathrm{~m}$, 1H), 1.47 (brs., 3 H), 1.45 ($\mathrm{s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta 194.3,174.8,172.7,171.7,171.1,165.0,156.4,141.9$, 138.3, 136.1, 128.2, 128.2, 127.9, 127.6, 127.4, 127.3, 116.8, 116.8, 110.2, 105.0, 79.6, $79.2,73.2,70.1,69.8,63.2,56.7,52.8,50.8,50.6,48.7,48.4,48.2,48.1,47.9,47.8,47.6$,
$47.4,47.3,47.1,42.3,39.0,31.7,29.4,29.3,27.3,27.2,25.0,24.9,22.3,17.9,17.8,16.0$, 13.1, 12.9, 11.0, -6.7, -6.8;

HRMS: calculated for $\mathrm{C}_{39} \mathrm{H}_{57} \mathrm{O}_{11} \mathrm{~N}_{5} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}: 822.3716$, found 824.3697.
tert-butyl ((S)-1-(((3R,9S,10R,11S,12S)-16-(benzyloxy)-10,12-dihydroxy-3,9-dimethyl-2,5,8,13-tetraoxo-2,3,4,5,6,7,8,9,10,11,12,13-dodecahydro-1H-
benzo[h][1,4,7]triazacyclopentadecin-11-yl)amino)-3-((tert-butyldimethylsilyl)oxy)-1-oxopropan-2-yl)carbamate (134):

The compound was obtained only in 3 mg which was not sufficient to record proper NMR. The compound was confirmed by HRMS.

HRMS: calculated for $\mathrm{C}_{39} \mathrm{H}_{57} \mathrm{O}_{11} \mathrm{~N}_{5} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}: 822.3716$, found 824.3689.
tert-Butyl ((3R,4S,5S)-4-hydroxy-5-methyl-1-(methylthio)hept-6-en-3-yl)carbamate (135):

(E)-2-butene ($3 \mathrm{~mL}, 17 \mathrm{mmol}, 2$ equiv) was condensed into flask containing KOtBu (2.9 $\mathrm{g}, 25.7 \mathrm{mmol}, 1.5$ equiv) in THF (20 mL) chilled to $-78^{\circ} \mathrm{C}$. After careful addition of ${ }^{\mathrm{n}-}$ BuLi ($16.1 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes, 25.7 mmol , 1.5 equiv) over 1 hour (maintaining internal temperature below $-70^{\circ} \mathrm{C}$), the reaction mixture was warmed to $-50^{\circ} \mathrm{C}$ for 15
min. The mixture was chilled to $-78{ }^{\circ} \mathrm{C}$ once more, and a solution of (-)-Bmethoxydiisopinocampheylbora(8.1 gm in 30 mL THF, 25.7 mmol) was added slowly over 30 min . Next, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\left(3.8 \mathrm{~mL}, 30.9 \mathrm{mmol}, 1.8\right.$ equiv) was added at $-78^{\circ} \mathrm{C}$ over 30 minutes, then the solution of reagent was treated with a solution of compound $\mathbf{1 1 8}$ (4.0 $\mathrm{g}, 17.1 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 12 h , then warmed to $-15{ }^{\circ} \mathrm{C}$. A mixture of $3 \mathrm{~N} \mathrm{NaOH}(8.3 \mathrm{~mL})$ and 30% hydrogen peroxide (2.9 mL) was added dropwise to the reaction. After being heated to reflux for 1 h , the mixture was cooled to $0^{\circ} \mathrm{C}$. Concentrated the reaction mixture, diethylether (50 mL) was added and washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the crude material obtained after removal of the solvent was purified by column chromatography (silica gel 230-400 mesh 10% ethylacetate - petether) to afford 135 ($2.4 \mathrm{gm}, 48 \%$) as colorless liquid as a single diastereomer $[\alpha]_{\mathbf{D}}{ }^{30}+31.16\left(c 1.66, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\text {max }}($ film $): \mathrm{cm}^{-1} 3445,3015,2967,1712,1534,1422$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C D}_{3}$): $\delta 5.72(\mathrm{td}, J=8.93,17.85 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-5.20(\mathrm{~m}, 2 \mathrm{H})$, $4.94(\mathrm{~d}, J=9.29 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{t}, J=9.90 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=5.38 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.68$ (m, 1H), 2.44-2.56(m, 1H), 2.16-2.28(m, 1H), $2.09(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.65$ - $1.75(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{~d}, J=6.60 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{H}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 155.9,140.6,117.1,79.4,76.7,51.4,41.8,31.0,28.4$, 16.3, 15.7;

HRMS: calculated for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}: 312.1604$, found 312.1602.
(4R,5S)-5-((S)-but-3-en-2-yl)-4-(2-(methylthio)ethyl)oxazolidin-2-one (136):

Compound 136 ($58 \mathrm{mg}, 88 \%$) was synthesized by following similar procedure used for the synthesis of $\mathbf{6 6}{ }^{\prime}$.

$$
[\alpha]_{\mathbf{D}}{ }^{26}+33.64\left(c 0.74, \mathrm{CHCl}_{3}\right)
$$

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 6.48$ (brs., 1 H), 5.88 (ddd, $J=7.34,10.27,17.36 \mathrm{~Hz}$, $1 \mathrm{H}), 5.08-5.22(\mathrm{~m}, 2 \mathrm{H}), 4.3(\mathrm{t}, J=7.34 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.96(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.70(\mathrm{~m}$, $1 \mathrm{H}), 2.48-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~d}, J=6.85 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 159.4, 138.5, 116.1, 83.2, 54.7, 37.1, 30.8, 28.1, 16.7, 15.6

HRMS calculated for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}: 216.1053$, found 216.1052.
tert-Butyl (4R, 5S)-5-((S)-but-3-en-2-yl)-2,2-dimethyl-4-(2-(methylthio) ethyl) oxaz-olidine-3-carboxylate (137) :

Compound 137 ($3.2 \mathrm{gm}, 85 \%$) was synthesized from 135 by following similar procedure used for the synthesis of $\mathbf{1 2 0}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 5.63-5.93(\mathrm{~m}, 1 \mathrm{H}), 4.85-5.15(\mathrm{~m}, 2 \mathrm{H}), 3.55-3.74(\mathrm{~m}$, $1 \mathrm{H}), 2.43-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.79$ (br. s., 1H), $1.67-1.77$ $(\mathrm{m}, 1 \mathrm{H}), 1.45-1.55(\mathrm{~m}, 6 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{t}, J=6.85 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): (mixture of rotamers) $\delta 152.9,151.9,140.6,139.7,115.4$, $114.3,93.2,92.7,80.7,80.4,80.0,79.8,77.4,77.1,76.8,57.6,41.4,36.4,31.2,31.2$, 30.3, 29.9, 29.6, 28.5, 28.4, 28.1, 27.3, 24.9, 23.5, 17.0, 16.5, 16.4, 15.6

HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{NNaS}[\mathrm{M}+\mathrm{Na}]^{+}: 352.1917$, found 352.1911.
tert-Butyl (4R,5S)-5-((S)-1-hydroxypropan-2-yl)-2,2-dimethyl-4-vinyloxazolidine-3carboxylate (138):

Compound 138 ($900 \mathrm{mg}, 49 \%$ for 2 steps) was synthesized from 137 by following similar procedure used for the synthesis of $\mathbf{1 2 2}$.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{3 0}}:+45.45\left(c 0.34, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 5.57-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.04-5.33(\mathrm{~m}, 2 \mathrm{H}), 3.99-4.22(\mathrm{~m}$, $1 \mathrm{H}), 3.74-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.56(\mathrm{~m}, 1 \mathrm{H}), 2.83$ (brs., 1H), 1.86 (brs., 1H), 1.46-1.60(m, 6H), 1.42-1.37(m, 9H), $0.76(\mathrm{~d}, J=6.36 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 151.6,132.9,132.2,119.0,118.4,93.6,93.2,81.5,81.3$, $80.3,79.6,67.5,62.7,62.4,34.8,34.7,28.4,28.0,27.2,25.1,24.0,12.3 ;$

HRMS: calculated for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O} 4 \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}: 308.1832$, found 308.1830.
(R)-2-((4R,5S)-3-(tert-butoxycarbonyl)-2,2-dimethyl-4-vinyloxazolidin-5-yl) pro panoic acid (139):

Compound 139 ($710 \mathrm{mg}, 80 \%$) was synthesized from 138 by following similar procedure used for the synthesis of $\mathbf{1 2 3}$.

$$
[\alpha]_{\mathbf{D}}{ }^{27}+25.09\left(c 0.80, \mathrm{CHCl}_{3}\right) ;
$$

${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 5.61-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.09-5.38(\mathrm{~m}, 2 \mathrm{H}), 4.03-4.26(\mathrm{~m}$, 2H), 2.57 (brs, 1H), $1.49-1.41$ (m, 15H), 1.12 (d, $J=5.9 \mathrm{~Hz}, 3 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) (mixture of rotamers) $\delta 179.9,151.8,151.6,132.4,131.7$, 119.7, 119.0, 93.7, 93.3, 80.5, 79.8, 77.6, 77.4, 61.9, 61.6, 40.0, 29.7, 28.4, 27.9, 27.1, 24.8, 23.8, 13.3;

HRMS: calculated for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}: 322.1625$, found 322.1623.
tert-Butyl ((3R,4S,5R)-6-((2-(((R)-1-((5-(benzyloxy)-2-iodophenyl)amino)-1-oxopropan-2-yl)amino)-2-oxoethyl)amino)-4-hydroxy-5-methyl-6-oxohex-1-en-3yl)carbamate (140):

Compound 140 (300 mg , 65% for 3 steps) was was synthesized from 115 and 139 by following similar procedure used for the synthesis of $\mathbf{1 2 5}$.

Mp: $84-86^{\circ} \mathrm{C}$;

$$
[\alpha]_{\mathbf{D}}{ }^{27}:+25.51\left(c 0.64, \mathrm{CHCl}_{3}\right)
$$

IR $\mathbf{v}_{\text {max }}(f \mathbf{i l m}): \mathrm{cm}^{-1} 3025,2931,1635,1567$;
${ }^{1} \mathbf{H}$ NMR (400MHz, CD $\left.\mathbf{D}_{3} \mathbf{O D}\right): \delta 7.70(\mathrm{~d}, J=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{t}, J$ $=7.34 \mathrm{~Hz}, 3 \mathrm{H}), 7.31(\mathrm{~d}, J=7.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=2.45,8.56 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{ddd}, J=$ $7.34,10.15,17.24 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.33(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{q}, J=7.09 \mathrm{~Hz}, 1 \mathrm{H})$, 4.16 (brs., 1H), 4.05 (d, $J=16.87 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84 (d, $J=16.87 \mathrm{~Hz}, 1 \mathrm{H}$), 3.62 - 3.76 (m, $1 \mathrm{H}), 2.50-2.60(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=7.34 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.16(\mathrm{~d}, J=6.85 \mathrm{~Hz}$, 3H);
${ }^{13} \mathbf{C}$ NMR (100MHz, CD $\mathbf{3}_{3} \mathbf{O D}$): δ 177.0, 172.0, 170.5, 159.6, 139.1, 136.7, 133.8, 128.2, $127.6,127.3,116.5,114.7,112.6,79.1,75.6,69.8,55.3,49.8,43.2,42.4,27.4,16.4$, 13.0;

HRMS: calculated for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{O}_{7} \mathrm{~N}_{4} \mathrm{INa}[\mathrm{M}+\mathrm{Na}]^{+}: 717.1756$, found 717.1747.
tert-Butyl ((3R,9R,10S,11R,E)-16-(benzyloxy)-10-hydroxy-3,9-dimethyl-2,5,8-trioxo-2,3,4,5,6,7,8,9,10,11-decahydro-1H-benzo[h][1,4,7]triazacyclopentadecin-11yl)carbamate (141) :

Compound 141 ($202 \mathrm{mg}, 53 \%$) was was synthesized from 140 by following similar procedure used for the synthesis of $\mathbf{1 0 6}$.

Mp: 132-134 ${ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{27}:+75.78\left(c 0.48, \mathrm{CHCl}_{3}\right)$
IR $\mathbf{v}_{\max }(\mathbf{f i l m}): \mathrm{cm}^{-1} 3029,2931,1644,1598$
${ }^{1} \mathbf{H}$ NMR (400MHz, CD $\left.\mathbf{3}_{\mathbf{3}} \mathbf{O D}\right): \delta 7.42-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=$ $6.85 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=1.96 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=2.45 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=15.89 \mathrm{~Hz}$, $1 \mathrm{H}), 5.96(\mathrm{dd}, J=5.50,15.77 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{t}, J=5.26 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{q}, J$ $=6.93 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.91(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.53(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~d}, J=$ $7.34 \mathrm{~Hz}, 3 \mathrm{H}), 1.47$ (s, 3H), 1.28 (d, $J=7.09 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100MHz, CD $\left.{ }_{3} \mathrm{OD}\right): ~ \delta 177.4,171.9,171.7,158.4,139.1,137.1,135.1,133.8$, $128.2,128.1,127.5,127.3,127.2,125.2,124.5,112.9,111.5,78.8,73.5,69.7,56.4,50.3$, 43.3, 42.8, 27.4, 15.3, 14.7

HRMS: calculated for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{7} \mathrm{~N}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 589.2633$, found 589.2623.
tert-Butyl ((S)-1-(((3R,9R,10S,11R,E)-16-(benzyloxy)-10-hydroxy-3,9-dimethyl-2,5,8-trioxo-2,3,4,5,6,7,8,9,10,11-decahydro-1H-benzo[h][1,4,7]triazacyclopentadecin-11-yl)amino)-3-hydroxy-1-oxopropan-2-yl)carbamate (142):

Compound 142 ($100 \mathrm{mg}, 83 \%$) was was synthesized Ffrom 141 and 39 by following similar procedure used for the synthesis of $\mathbf{1 2 7}$.

Mp: $145-147{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{27}:+55.64\left(c 0.38, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR (400MHz, CD $\left.\mathbf{D}_{3} \mathbf{O D}\right): \delta 7.43(\mathrm{~d}, J=6.85 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.20$ (brs., 1 H), $6.86(\mathrm{~d}, J=7.83 \mathrm{~Hz}, 1 \mathrm{H}), 6.65$ (brs., 1 H), $5.98(\mathrm{~d}, J=15.65 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ (brs., 2H), $4.47-4.49$ (m, 2H), 4.11 (brs, 1H), $3.97-4.07$ (m, 1H), 3.82 (br s, 2H), 3.74 (d, $J=17.12 \mathrm{~Hz}, 2 \mathrm{H}$), 2.43 (brs., 1 H), $1.42-1.50$ (m, 12 H), 1.23 (d, $J=6.85 \mathrm{~Hz}, 3 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR (100MHz, CD $\left.\mathbf{3}_{3} \mathrm{OD}\right): ~ \delta 179.5,174.6,173.4,160.0,158.0,136.7,129.7,129.0$, 128.7, 128.5, 127.6, 126.3, 114.6, 113.4, 80.8, 74.2, 71.2, 63.4, 58.5, 56.0, 55.1, 52.1, 45. 4, 44.6, 28.9, 16.9, 16.4.

HRMS calculated for $\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{O}_{9} \mathrm{~N}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 676.2953$, found 676.2945.
tert-butyl ((S)-1-(((3R,9R,10S,11R)-16-(benzyloxy)-10-hydroxy-3,9-dimethyl-2,5,8,13-tetraoxo-2,3,4,5,6,7,8,9,10,11,12,13-dodecahydro-1H-benzo[h] [1,4,7] triazacyclopentadecin-11-yl)amino)-3-hydroxy-1-oxopropan-2-yl)carbamate (143):

Compound 143 (18 mg, 58\%) was was synthesized from 142 by following similar procedure used for the synthesis of $\mathbf{1 2 8}$.

Mp: $130-132{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{27}:+2.9(c 0.12, \mathrm{MeOH})$
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d \mathbf{d}_{6}): $\delta 12.47$ ($\mathrm{s}, 1 \mathrm{H}$), 9.28 (d, $\left.J=4.40 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.30$ (s, $1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.83 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.44$ $(\mathrm{m}, 3 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.31 \mathrm{~Hz}, 1 \mathrm{H}), 6.48-6.58(\mathrm{~m}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=$ $6.36 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 5.07(\mathrm{~d}, J=3.91 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{t}, J=5.14 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-$ $4.58(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.34(\mathrm{~m}, 1 \mathrm{H}), 4.04($ brs., 1 H$), 3.89-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.59(\mathrm{~m}$, 4H), $3.38-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=16.14 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (brs., 1H), $1.43(\mathrm{~s}, 9 \mathrm{H}), 1.38$ $(\mathrm{d}, J=6.40 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=7.34 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13}$ C NMR (100 MHz, DMSO-d ${ }_{6}$): δ 200.4, 174.4, 172.8, 170.4, 163.1, 155.5, 142.6, $136.8,133.4,129.0,128.9,128.5,128.2,128.0,116.4,109.3,105.9,78.7,73.1,69.9$, 62.4, 57.0, 55.4, 52.0, 49.9, 49.1, 44.4, 44.1, 42.0, 28.6, 17.3, 17.1;

HRMS: calculated for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{10} \mathrm{~N}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 670.3083$, found 670.3076 .
(2S)-2-amino-3-hydroxy- N -((3R,9R,10S,11R)-10,13,16-trihydroxy-3,9-dimethyl-2,5,8-trioxo-2,3,4,5,6,7,8,9,10,11,12,13-dodecahydro-1H- enzo[h] [1,4,7] triaza cyclopentadecin-11-yl)propanamide (144)

Compound 144 ($8 \mathrm{mg}, 72 \%$ for 2 steps) was was synthesized from 143 by following similar procedure used for the synthesis of $\mathbf{1 0}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d \mathbf{d}_{6}): $\delta 9.64(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~s}, 1 \mathrm{H}), 8.61-8.79(\mathrm{~m}, 1 \mathrm{H}), 8.12$ (brs., 2H), 8.12 (br. s., 3 H), 7.51 (d, $J=2.45 \mathrm{~Hz}, 1 \mathrm{H}$), 7.01 (d, $J=8.56 \mathrm{~Hz}, 1 \mathrm{H}), 6.50$ (dd, $J=2.45,8.31 \mathrm{~Hz}, 1 \mathrm{H}$), 5.58 (br. s., 1 H), 5.17 (t, $J=7.09 \mathrm{~Hz}, 1 \mathrm{H}$), $4.43-4.50(\mathrm{~m}, 1 \mathrm{H})$, 4.35-4.43 (m, 1H), 3.93 (dd, $J=7.95,16.02 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{dd}, J=6.85,10.03 \mathrm{~Hz}, 2 \mathrm{H})$, $2.60(\mathrm{dd}, J=6.60,10.51 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=7.34 \mathrm{~Hz}, 3 \mathrm{H}), 0.98$ (d, $J=6.85 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO-d \mathbf{d}_{6}): $\delta 175.8,174.7,170.9,166.7,157.5,138.3,127.4$, $121.0,110.8,109.9,83.4,75.5,60.6,54.7,53.8,49.3,45.4,43.7,36.4,18.4,13.9$

HRMS: calculated for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{~N}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 482.2245$, found 482.2242 .
tert-Butyl ((S)-1-(((3R,9R,10S,11R,E)-10,16-dihydroxy-3,9-dimethyl-2,5,8-trioxo-2,3,4,5,6,7,8,9,10,11-decahydro-1H-benzo[h][1,4,7]triazacyclopentadecin-11-yl)amino)-3-hydroxy-1-oxopropan-2-yl)carbamate (145):

Li-napthalenide ($6 \mathrm{~mL}, 0.17 \mathrm{M}$ in THF) was added to a stirred solution of compound $\mathbf{1 4 2}$ ($46 \mathrm{mg}, 0.7 \mathrm{mmol}$) at $-40^{\circ} \mathrm{C}$ and stirred for 3 h at same temperature reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and reaction mass was diluted with ethylacetate (10 mL), washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ brine $(5 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the crude material obtained after removal of the solvent was purified by column chromatography (silica gel 230-400 mesh 7% methanol $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $\mathbf{1 4 5}$ (37 mg , 95\%) as off white solid.

Мр: $160-162{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{27}:+22.8(c 0.1, \mathrm{MeOH})$
${ }^{1} \mathbf{H}$ NMR (400MHz, CD $\left.\mathbf{D}_{3} \mathrm{OD}\right): \delta 7.29(\mathrm{~d}, J=8.31 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{brs}, 1 \mathrm{H}), 6.64-6.70$ (m, 1H), 5.95 (dd, $J=3.18,15.89 \mathrm{~Hz}, 1 \mathrm{H}$), 5.17 (brs., 1 H), $4.46-4.54$ (m, 1H), 4.43 (brs, $1 \mathrm{H}), 4.16(\mathrm{~d}, J=13.20 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.83$ (brs., 2H), 3.69-3.80(m, 1H), 2.41-2.49 (m, 1H), $1.54(\mathrm{~d}, J=7.34 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~d}, J=6.85 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100MHz, $\left.\mathbf{C D}_{3} \mathbf{O D}\right): \delta 177.9,172.8,171.8,157.2,156.5,135.2,129.1,127.0$, $125.3,123.3,113.4,79.4,65.5,61.8,57.0,54.5,53.7,50.6,42.9,27.3,15.3,14.8$.

HRMS: calculated for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{O}_{9} \mathrm{~N}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 586.2483$, found 586.2491
(S)-2-amino- N -((3R,9R,10S,11R)-10,16-dihydroxy-3,9-dimethyl-2,5,8,13-tetraoxo-

2,3,4,5,6,7,8,9,10,11,12,13-dodecahydro-1H-benzo[h][1,4,7]triazacyclopentadecin-11-yl)-3-hydroxypropanamide (146) :

To a stirred solution of $\mathrm{PdCl}_{2}(10 \mathrm{~mol} \%), \mathrm{CuCl}(5 \mathrm{mg}, 0.05 \mathrm{mmol})$ in DMF-water (3 mL , 2:1) compound $145(30 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added and heated at $65{ }^{\circ} \mathrm{C}$ under O_{2} atmosphere for 8 h . The reaction mixture was diluted with ethyl acetate (10 mL) and washed water (5 mL) and brine (5 mL) organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure. The reaction mixture was filtered through the silica gel column and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, TFA $(0.3 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$ and the resulting suspension was stirred for 2 h at the same temperature. Concentrated the reaction mixture and azeotroped with toluene ($3 \mathrm{~mL} x$ 3) , acetonitrile (3 $\mathrm{mL} \times 3$) and dried under vacuum to afford compound $\mathbf{1 4 6}$ ($19 \mathrm{mg}, 61 \%$ for 2 steps) as off white solid.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ D M S O - d _ { 6 }) : ~} \delta 12.47$ (s, 1H), 10.60 (br. s., 1H), 9.24 (d, $J=4.89$ $\mathrm{Hz}, 1 \mathrm{H}$), 8.61 ($\mathrm{s}, 1 \mathrm{H}$), 8.37 (d, $J=7.82 \mathrm{~Hz}, 1 \mathrm{H}$), 8.09 (brs., 2H), 7.83 (d, $J=8.80 \mathrm{~Hz}$, 1 H), 7.35 (brs., 1H), $6.48-6.63$ (m, 2H), 5.45 (brs., 1 H), 4.59 (d, $J=9.29 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$ (d, $J=14.67 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.82(\mathrm{~m}, 3 \mathrm{H}), 3.50(\mathrm{~d}, J=13.20 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (brs., 1 H), 1.39 (d, $J=7.34 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.34 \mathrm{~Hz}, 3 \mathrm{H})$

HRMS: calculated for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{~N}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 480.2089$, found 480.2087.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 39
(
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 39

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 43

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 43

${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 45

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 45

${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ of compound 49

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 49

H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ of compound 50

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ of compound 50

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ of compound 58

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 58

${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 59

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 59

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of compound 60

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 60

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 61

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 61

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of compound 62

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 62

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 44

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 44

$$
{ }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \text { of compound } 64
$$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 64

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 65

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of compound 66

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 66

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 67

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 66,

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $67{ }^{\prime}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 67,

${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 68

${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 68

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 69

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 69

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 70

${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 72

${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 72

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of compound 74

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 75 and 75',

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 75 and 75 ,

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 77

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 77

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of compound 78

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 78

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 79

${ }^{13} \mathbf{C ~ N M R ~ (1 2 5 ~ M H z , ~} \mathrm{CDCl}_{3}$) of compound 79

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 80

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 80

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 82

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 82

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 84

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 84

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$ of compound 86

${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of compound 91

${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 91

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 92

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 92

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 93

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 93

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 94

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 94

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 95

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 95

${ }^{1} \mathrm{H}$ NMR ($\mathbf{2 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 90

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 90

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 96

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 96

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 97

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 97

${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 1b

${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 1b

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 1c

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 1 c

${ }^{1} \mathbf{H ~ N M R ~ (4 0 0 ~ M H z , ~} \mathrm{CDCl}_{3}$) of compound 2 b

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2b

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 2c

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2c

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3b
(
${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3b

${ }^{1} \mathrm{H}$ NMR ($\mathbf{2 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 3c

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3c

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4a

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4 a

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 4b

${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 4 b

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4 c

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4 c

${ }^{1} \mathbf{H ~ N M R ~ (4 0 0 ~ M H z , ~} \mathrm{CDCl}_{3}$) of compound 5b

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 5 b

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 5 c

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 5 c

${ }^{1} \mathrm{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{6 b}$

$\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{6 b}$

${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 c}$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 6 c

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 7a

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 7a

H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 7b

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 7b

${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 7c

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 8a

${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 8a

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 8 b

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 8c

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 8c

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 8c

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 9b

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 9b

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 9 c

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 9c

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 10 b

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 10 b

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 10 c

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 10 c

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 11a

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 11 a

${ }^{1} \mathrm{H}$ NMR (400MHz , CDCl_{3}) of compound 11b

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 11 b

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 11 c

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 11c

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d \mathbf{d}_{6}) of compound 89

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) of compound 89

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of compound 88

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 88

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of compound 87

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 87

${ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CD}_{\mathbf{3}} \mathrm{OD}\right)$ of compound 100

${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d \mathbf{d}_{6}) of compound 100

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) of compound 101

${ }^{13}$ C NMR (100 MHz , DMSO-d d_{6}) of compound 101

${ }^{1}$ H NMR (500 MHz, DMSO-d $_{6}$) of compound 102

${ }^{13}$ C NMR (100 MHz, DMSO-d \mathbf{d}_{6}) of compound 102

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) of compound 103
(
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) of compound 103

${ }^{1}{ }^{1}$ HMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO- d_{6}) of compound 115

${ }^{13}$ C NMR (100 MHz , DMSO-d d_{6}) of compound 115

${ }^{1} \mathrm{H}$ NMR ($\mathbf{2 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of compound 117

${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 117

${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 118

${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 118

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 119

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 119

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound xx

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of compound 121

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 121

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 122

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 122

${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of compound 123

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 123

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ D M S O - d ~} \mathbf{d}_{\mathbf{6}}$) of compound 124

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 124

${ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$ of compound 125

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 125

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of compound 106

${ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$ of compound 127

${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, DMSO- d_{6}) of compound 128

${ }^{13} \mathrm{C}$ NMR (1725 MHz , DMSO-d \mathbf{d}_{6}) of compound 128

${ }^{1} \mathrm{H}$ NMR $\left(\mathbf{7 0 0} \mathrm{MHz}\right.$, DMSO- d_{6}) of compound 10,

${ }^{13} \mathrm{C}$ NMR (175 MHz, DMSO-d \mathbf{d}_{6}) of compound 10 ,

${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, DMSO- d_{6}) of compound 104

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, DMSO-d d_{6}) of compound 104

${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, DMSO- d_{6}) of compound 105

${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d d_{6}) of compound 105

${ }^{1}$ H NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, DMSO-d \mathbf{d}_{6} of compound 10

${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) of compound 10

HMBC spectrum (500 MHz, DMSO-d \mathbf{d}_{6}) of compound 10

HSQC spectrum (500 MHz, DMSO-d \mathbf{d}_{6}) of compound 10

ROESY spectrum (500 MHz, DMSO-d $_{6}$) of compound 10

TOCSY spectrum (500 MHz, DMSO-d $_{6}$) of compound 10

DQF-COSY spectrum (500 MHz, DMSO-d 6) of compound 10

${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}$, DMSO- d_{6}) of compound 129

${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone-d d_{6}) of compound 129

HMBC spectrum (500 MHz , Acetone-d ${ }_{6}$) of compound 129

HSQC spectrum ($\mathbf{5 0 0} \mathbf{~ M H z}$, Acetone- d_{6}) of compound 129

ROESY spectrum (500 MHz , Acetone-d \mathbf{d}_{6}) of compound 129

TOCSY spectrum (500 MHz , Acetone- d_{6}) of compound 129

DQF-COSY spectrum ($\mathbf{5 0 0} \mathbf{~ M H z}$, Acetone- d_{6}) of compound 129

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 130

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 130

${ }^{1} \mathrm{H}$ NMR (400MHz, CD $\left.\mathbf{3}_{3} \mathrm{OD}\right)$ of compound 131

${ }^{13} \mathrm{C}$ NMR (100MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$ of compound 131

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of compound 132

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 132

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 133

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 133

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 135

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 135

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 136

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 136

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 137

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 137

[^0]${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 138

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 138

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 139

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 139

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 140

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 140

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 141

${ }^{13} \mathrm{C}$ NMR (100MHz, $\mathrm{CD}_{3} \mathrm{OD}$) of compound 141

${ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$ of compound 142

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 142

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}$, DMSO-d $_{6}$) of compound 143

${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) of compound 143

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$) of compound 144

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 145

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 145

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}$, DMSO- d_{6}) of compound 146

List of Publications

1. A green synthetic route to antimalarial and antibacterial agent CJ-15,801 and its isomer cis-CJ-15,801, K. Kashinath, Pandrangi Siva Swaroop and D. Srinivasa Reddy. RSC Adv., 2012, 2, 3596.
2. Studies toward the Synthesis of Potent Anti-inflammatory Peptides Solomonamides A and B: Synthesis of a Macrocyclic Skeleton and Key Fragment 4-Amino-6-(20 amino-40-hydroxyphenyl)-3- hydroxy-2-methyl-6-oxohexanoic Acid (AHMOA), K. Kashinath, N. Vasudevan, and D. Srinivasa Reddy. Org. Lett., 2012, 14, 6222.
3. Total synthesis of an anticancer norsesquiterpene alkaloid isolated from the fungus Flammulina velutipes, K. Kashinath, P. D. Jadhav, and D. Srinivasa Reddy Org. Biomol. Chem., 2014, 12, 4098.
4. Total Synthesis of Deoxy-solomonamide B by Mimicking Biogenesis, N. Vasudevan, K. Kashinath, and D. Srinivasa Reddy Org. Lett. 2014, 16, 6148.
5. One-pot quadruple/triple reaction sequence: A useful tool for the synthesis of natural products, K. Kashinath and D. Srinivasa Reddy Org. Biomol. Chem., 2015, 13, 970.
6. Breaking and Making of Olefins Simultaneously Using Ozonolysis: Application to the Synthesis of Useful Building Blocks and Macrocyclic Core of Solomonamides, K. Kashinath, S. Dhara, and D. Srinivasa Reddy Org. Lett., 2015, 17, 2090.
7. Enantiospecific Formal Synthesis of Inthomycin C, P. R. Athawale, K. Kashinath, and D. Srinivasa Reddy ChemistrySelect 2016, 3, 495.
8. Molecules with O-acetyl, not N-acetyl group, protect protein glycation by acetylating lysine residues, Garikapati Vannuru swamy, Mashanipalya G. Jagadeeshaprasad, K. Kashinath, Suresh K Kesavan, Shweta Bhat, Arvind M. Korwar, Ashok D. Chougale, Ramanamurthy Boppanna, D.Srinivasa Reddy, and Mahesh J. Kulkarni (manuscript submitted).
9. Total synthesis of the marine natural product solomonamide B necessitates its structural revision, K. Kashinath, Gorakhnath R. Jachak, Paresh R. Athawale,

Udaya Kiran Marelli, Rajesh G. Gonnade and D. Srinivasa Reddy (manuscript under preparation)

Patents:

1. Process for the preparation of aminoacrylic acid derivatives, Dumbala Srinivasa Reddy, Kashinath Komirishetty, Siva Swaroop Pandrangi US20140256976 A1; EP2766340A1; WO2013054366A1
2. A process for the preparation of solomonamide analogues Dumabala Srinivasa Reddy, Kashinath Komirishetty, Vasudevan Natarajan WO2014083578 A1
3. Novel indazole compound: preaparation and uses there of Dumabala Srinivasa Reddy, Chaitanya saxena, Kashinath Komirishetty, WO2015015519A1
4. Novel tricyclic compounds and preparation thereof Dumabala Srinivasa Reddy, Kashinath Komirishetty, Prakash Jadhav, WO 2015121876 A1

[^0]:

