TRANSITION METAL TEMPLATES FOR STEREOSELECTIVE SYNTHESIS

BIKASH C. MAITY

DECEMBER 2001

TRANSITION METAL TEMPLATES FOR STEREOSELECTIVE SYNTHESIS

A THESIS
SUBMITTED TO THE
UNIVERSITY OF PUNE
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
IN CHEMISTRY

BIKASH C. MAITY

DIVISION OF ORGANIC CHEMISTRY (SYNTHESIS)
NATIONAL CHEMICAL LABORATORY
PUNE - 411008

CERTIFICATE

This is to certify that the work incorporated in the thesis entitled "Transition Metal Templates for Stereoselective synthesis" submitted by Bikash C. Maity was carried out by him under my supervision at the National Chemical Laboratory. Such material as has been obtained from other sources has been duly acknowledged in the thesis.

Date :

National Chemical Laboratory
(Dr. Amitabha Sarkar)
Pune 411008
Research Guide

Acknowledgments

It is a pleasure to take this opportunity expressing a deep sense of gratitude to my research guide for introducing me to the fascinating area of Organometallic Chemistry. Dr. Amitabha Sarkar, for his continuous inspiration and constructive guidance which has helped me profoundly during the course of my work. The work presented in this thesis would not have been accomplished with out his unfailing attention, constant encouragement and wise counsel.

I take this opportunity to thank Dr. B. M. Bhawal, Dr. A. R. A. S. Deshmukh for their genuine criticism and helpful suggestions. I am thankful to Dr. V. M. Swamy for his suggestions during the course of the work.

I will be failing in my duties if I fail to acknowledge the help rendered by Adityada and Subanada. Special thanks are due to my colleagues Dr. Sunil K. Mandal, Jayaprakash, Debasish and Tarun for their assistance and guidance. The warm and friendly attitude of my colleagues Thiagarajan, Samanta, Dilip, Suresh, Anuradha, , Krishnaswamy, Arun, Uday, Dr. Sanjoy, Dr. Surjit, Dr. (Mrs) Joshi, Uday, Dr. S. N. Joshi, Kulbhusan, Patil, helped me to have cheerful atmosphere in the laboratory. I take this oppurtunity to thank all my friends in NCL for the help and cooperation during the course of my work. I also thank D. G. Jadhav for day to day lab maitainance. I would like to thank Subho, Rajaramda, Kshudiram, Subhas, Koushik, Somnath, Sanjukta, Mohuadi, Bindu, Bibhas, Debdut, Ghota, Dinuda, Chitto, Sumanda, Babu, Rajkumar, Anjan, Sumit for their cheerful accompany.

Help from Spectroscopic, Microanalytical and Crystallographic group acknowledged. I thank all the staff members of the division for constant cooperation.

What ever I am and whatever I intend to be in future is because of the goodwill and unstinted support that I have received from my family and relatives, their kind cooperation helped me in pursuing the Ph . D . study and no words are enough to acknowledge them.

I thank Dr. K. N. Ganesh, Head, Division of Organic Chemistry (Synthesis) and the Director, NCL, for providing infrastructural facilities. I am thankful to CSIR, New Delhi for financial assistance.

CONTENTS

General
Remarks
Abbreviations
Synopsis i-vi
Chapter-I Regio and Stereochemistry of Nucleophilic Addition to Conformationally Flexible Acyclic Enones Anchored on Arene Tricarbonyl
Chromium : Effect of Lewis Acid
Introduction 1
Present Work 4
Results and discussion 6
Summary 17
Experimental 18
References 34
Chapter-II ScandiumTriflate Catalyzed Diasteroselective
Addition of Silyl Enol Ethers and Silyl Ketene
Acetals to Imines Anchored on Arene
Tricarbonylchromium
Introduction 36
Present Work 42
Result and discussions 45
Summary 55
Experimental 56
References 69
Chapter-III Assembling Monocyclic, Spirocyclic and Fused Carbocycles by Ring Closing Metathesis on Arene Chromium Template
Introduction 72
Present Work 80
Result and discussions 82
Summary 89
Experimental 90
References 103
Spectra of compounds - Chapter I Appendix-ISpectra of compounds - Chapter IISpectra compounds - Chapter IIIAppendix-IIAppendix-III
X-ray crystallographic data and structure Appendix-IVrefinement

GENERAL REMARKS

1. All melting points (recorded on a Thermonik Campbell melting point apparatus) are uncorrected and are recorded on the Celsius scale.
2. IR spectra were recorded as nujol mull or chloroform, on a Perkin-Elmer Infrared Spectrometer Model 599-B, Model 1600 FT-IR and ATI Mattson, UK, Model-RS-1 FT-IR, using sodium chloride optics. IR bands are expressed in frequency $\left(\mathrm{cm}^{-1}\right)$.
3. Proton NMR spectra were recorded using tetramethylsilane as internal reference on Bruker AC-200. Chemical shifts were recorded in parts per million (δ). Abbreviations, viz., $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{bs}=$ broad singlet, $\mathrm{bs}=$ broad peak, $\mathrm{dt}=$ doublet of triplet and $m=$ multiplet have been used to describe spectral data. CDCl_{3} was used as the solvent unless otherwise mentioned.
4. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker Bruker AC-500 and Bruker AC200 instrument operating at 125.76 MHz and 50.3 MHz respectively.
5. Elemental analyses $(\mathrm{C}, \mathrm{H}, \mathrm{N})$ were obtained on a Carlo-Erba 1100 automatic analyzer by Dr. S. Y. Kulkarni and his group at NCL.
6. Optical rotations were measured on JASCO DIP-118
7. The progress of the reaction was monitored by analytical thin layer chromatography plates precoated with silica gel $60 \mathrm{~F}_{254}$ (Merck). Column chromatography of chromium complexes were carried out with silica gel obtained from Merck (230-400 mesh, 9385 grade) under argon or nitrogen pressure.
8. Known compounds were characterized by IR and proton NMR.
9. Pet-ether refers to the fraction boiling between $60-80^{\circ} \mathrm{C}$.

10 All the reactions were performed under argon atmosphere.

ABBREVIATIONS

BuLi or butyllithium	n - Butyl Lithium in hexane
DMF	Dimethylformamide
$\mathrm{Et}_{2} \mathrm{O}$ or ether	Diethyl ether
o	Ortho
m	Meta
p	Para
THF	Tetrahydrofuran
r.t	Room temperature
LDA	Lithium diisopropyl amide
ee	Enantiomeric excess
de	Diastereomeric excess
RCM	Ring closing Metathesis
TLC	Thin layer chromatography
${ }^{t} \mathrm{BuOK}$	Potassium tert-butoxide
Cr	Represent trcarbonylchromium -complexed arene
BOC-	Tert-butoxycarbonyl

Synopsis of the thesis

Compound numbers in the synopsis are not related to the numbers in the chapters

Chapter 1

Regio and Stereochemistry of Nucleophilic Addition to Conformationally Flexible Acyclic Enones Anchored on Arene Tricarbonyl Chromium : Effect of Lewis Acid

Because of its built-in flexibility, acyclic aryl alkenyl ketones complexed with $\mathrm{Cr}(\mathrm{CO})_{3}$ can adopt several conformations of comparable energy in solution. As a result, the ? faces become randomized and poor stereoselectivity in nucleophilic addition reaction is often observed. However, an ortho-substitution on the aromatic ring provides a definite barrier to rotation around the Ar-CO bond restricting the interconversion of accessible ?faces of these enones. Once thus restricted, nucleophilic additions can be highly - and predictably - diastereoselective, as borne out by the following results.

A set of three substrates (la-c) were allowed to react with organolithium reagents in presence or absence of a Lewis acid like TiCh_{4} or MgBr_{2} (Scheme-1) and compared with cuprate additions. In presence of Lewis acid, endo-selective conjugate addition of RLi or RMgX was observed as the predominant reaction, in contrast with exo-selective cuprate addition. Organolithium reagents afforded 1,2-addition products in absence of Lewis acid.

Scheme-1

Formations of different products from different reactions have been explained in terms of preferred conformation of acyclic enones and mode of coordination of Lewis acid to the carbonyl function.

Chapter 2

ScandiumTriflate Catalyzed Diasteroselective Addition of Silyl Enol Ethers and Silyl Ketene Acetals to Imines Anchored on Arene Tricarbonylchromium

In presence of $\mathrm{Sc}_{\mathrm{C}}(\mathrm{OTf})_{3}(5 \mathrm{~mol} \%)$, silyl enol ethers (5a-d) added to chiral aldehyde complexes (4a-d) to yield β-amino ketones with high diastereselectivity ($>98 \%$) at ambient temperature (Scheme-2). Isolated yields ranged from 83 to 90%.

Scheme-2

Silyl ketene acetal derived from methyl isobutyrate rapidly added to chiral imine complexes at room temperature producing diastereomerically pure β amino esters (Scheme-3) with very high isolated yields ($90-95 \%$).

Scheme-3

$(+) \mathbf{4 a},(-) \mathbf{4 a}, \mathbf{4 b}$, or $\mathbf{4 d}$

Stereochemistry of the product was confirmed by x-ray crystal structure determination of a representative molecule. β-Amino esters were efficiently cyclized to β-lactams on treatment with MeMgI in ether at $0^{\circ} \mathrm{C}$ (Scheme-4). Optically pure products were obtained when the imines were derived from optically pure aldehyde complexes.

Scheme-4

Chapter 3

Assembling Monocyclic, Spirocyclic and Fused Carbocycles by Ring Closing Metathesis on Arene Chromium Template

Over the past few years, Grubbs' ruthenium catalyst (A) has been widely used for synthesis of cyclo-olefines from dienes via 'ring closing metathesis' (RCM). The present work extends the use of RCM to synthesize a variety of diastereomerically pure carbocyclic and heterocyclic products at ambient temperature in good yield from differently substituted diene precursors assembled on arene tricarbonyl template.

(A)

Monocyclic compounds (10a-b) from chiral dienes (9a-b) have been synthesized using $10 \mathrm{~mol} \%$ of Grubbs' catalyst in dichloromethane at ambient temperature with respectable isolated yields (Scheme-5).

Scheme-5

Spirocycles 11b and 12b were obtained in high yield from corresponding substrates, 11a and 12a respectively (Scheme-6).

Scheme-6

Similarly, RCM afforded the fused tricyclic framework of 14, where stereochemical features are defined by appropriate selection of synthetic sequences leading to the precursor 13 (Scheme-7).

All new compounds were characterized by spectral and analytical data, and details of synthesis and characterization have been discussed.

Chapter - I

Regio and Stereochemistry of Nucleophilic Addition to Conformationally Flexible Acyclic Enones Anchored on Arene Tricarbonyl Chromium : Effect of Lewis Acid

Introduction

Complexation of an arene ring to a tricarbonylchromium or $\mathrm{Cr}(\mathrm{CO})_{3}$ group modifies the chemical properties ${ }^{1}$ of an arene ring in a number of ways (Figure-1).
i) aromatic ring is more susceptible to nucleophilic additions,
ii) kinetic acidity of the aromatic hydrogens is increased,
iii) $\mathrm{Cr}(\mathrm{CO})_{3}$ group sterically hinders reagent approach from same face of the ring,
iv) carbanions at benzylic position are stabilized, and,
v) carbocations at benzylic positions are stabilized.

Figure - 1

Of these, the stereodirecting effect of the metarcarbonyl group has been, by far, the most extensively studied aspect of the chemistry of η^{6}-arene tricarbonylchromium complexes. It is possible to carry out exclusive anti addition of reagents with respect to the $\mathrm{Cr}(\mathrm{CO})_{3}$ group and accomplish diastereoselective synthesis of a large number of molecules. Efficient stereocontrol is routinely achie ved at $\mathrm{C}-1$ as well as $\mathrm{C}-2$ centers. ${ }^{2}$

In the preliminary studies conducted in our laboratory, 2-arylidene-tetralone tricarbonylchromium complexes were chosen as the first set of substrates. This system offered many advantages. These could be prepared in high yield in two steps from 1-tetralone. ${ }^{3}$ More over, a stereochemically rigid enone with fixed cisoid geometry would ensure a reliable correlation of product stereochemistry with mode of attack (exo or endo) by nucleophile (Scheme-1).

Scheme -1

The propensity for exo attack by nucleophilic reagents to such substrates is well established. ${ }^{2}$ If a Lewis acid is involved in a reaction, however, this straightforward situation changes.

A Lewis acid catalyzed reaction (e.g. nucleophilic addition or Diels-Alder reaction) is characterized by a dramatically enhanced rate compared to the original, uncatalyzed reaction. ${ }^{4}$ This rate enhancement is rationalized in terms of an increase in the polar character of the carbonyl group. This indicates the structure of the Lewis acid carbonyl complex ${ }^{5}$ probably has longer C-O bonds, an increased dipole moment, and a higher $s p^{3}$ character of the carbonyl oxygen. These features also influence the stereochemical outcome of the reaction.

In principle, the carbonyl group can coordinate to the Lewis acid either through its lone pair to form a σ bond or through the π system to form a η^{2} metallooxirane (Chart-1). However, the η^{2} mode of Lewis acid binding, \mathbf{A}, is rather uncommon and is expected to occur only when the metal is sufficiently electron-rich to allow back-bonding, but a third possibility exists. A Lewis acid can bind to the carbonyl oxygen through initial in-plane coordination with a lone pair, and consequent to such binding, the oxygen may be rehybridized to an $s p^{3}$ atom. A torsion around the $\mathrm{C}-\mathrm{O}$ bond can place the Lewis acid effectively out-of-plane with respect to the carbonyl plane, while the carbonyl carbon develops a positive charge and is now an activated electrophile, as shown in B. In terms of stereochemical consequence, these two situations are almost identical if $\mathrm{C}-\mathrm{O}$ bond rotation in \mathbf{B} is
restricted in this position. Nucleophilic attack is sterically hindered from the face occupied by the Lewis acid in the case of both \mathbf{A} and \mathbf{B}. On the other hand, an inplane bound Lewis acid does not impose a π-facial discrimination, ${ }^{6}$ as seen in \mathbf{C}.

Chart-1

In Lewis acid mediated reactions, therefore, the steric and electronic requirements of the carbonyl ligand and the immediate groups surrounding it in the molecule of which it is a part, determine the mode of coordination and consequently the steric course of the reaction.

In the present context of arene-chromium complexes and an out-of-plane coordination mode of Lewis acid, it is likely that the Lewis acid would occupy the more accessible exo face. Then, an endo attack by the nucleophile would attest to the stereodirecting effect of Lewis acid coordination. Such a switch of stereochemical preference in presence of a Lewis acid is depicted in Chart-2.

Chart-2

We have illustrated Lewis acid induced stereodivergent mode of nucleophilic attack to these substrates in our earlier studies. ${ }^{7}$ Both TiCl_{4} and MgBr_{2} as Lewis acid gave consistent results. Given the well-defined, rigid structure of the tetralone complexes, correlation of product stereochemistry with direction of reagent approach was simple.

Present work

Encouraged by these results, we proceeded to investigate flexible acyclic substrates. In case of conformationally flexible, acyclic, α, β-unsaturated carbonyl compounds, the stereochemical outcome of a conjugate addition would depend on whether the reactive intermediate adopts a cisoid or transoid conformation (Scheme2). Based on previous experiments, a transoid geometry of these enones was ruled out.

Scheme - 2

A cisoid geometry of the enone was augmented further by the ${ }^{1} \mathrm{H}$ NMR signal of the β olefinic proton of the enone substrates at $\sim 7.80 \mathrm{ppm}$. Such
desheilding by the carbonyl group anisotropy is established for rigid molecules like benzylidene camphor, ${ }^{8}$ the deshielded proton appears at 7.40 ppm , while the 'normal' absorption (of the geometric isomer) occurs at 6.45 ppm . For 2-benzylidene-1-tetralone, similar data were obtained. When isomeric products were generated by photolysis, signals of the two olefinic protons were obtained at 6.80 ppm and 7.85 ppm for syn and anti orientations respectively.

In order to ascertain the second structural factor, the syn-anti relationship of the enone carbonyl with the ortho substituent of complexed aromatic ring, the chemical shift of the ortho proton of the complexed aromatic ring was considered diagnostic. This proton is considerably deshielded (ca. 0.5 ppm) by the conformation of the enone as it lies in the deshielding zone of the carbonyl group anisotropy when the orientation of the keto group is anti with respect to the ortho substituent, R. The correhtion between substrate conformation (syn or anti), stereoface-selectivity (exo or endo attack) and product stereochemistry is depicted in Chart-3.

Chart 3

Results and Discussion

A set of four isostructural, acyclic enone $\mathrm{Cr}\left(\mathrm{CO}_{3}\right.$ complexes $\mathbf{1 - 3}$ were prepared from the corresponding substituted acetophenone complexes by conventional Claisen-Schmidt condensation with p-tolualdehyde (Scheme-3). The dark-red crystals were readily characterized by their typical IR bands (1980, 1910, 1680 and $1610 \mathrm{~cm}^{-1}$) and ${ }^{1} \mathrm{H}$ NMR spectral features described earlier. ${ }^{9}$

Scheme - $\mathbf{3}$

The nucleophiles were all organolithium reagents, viz. MeLi, BuLi and PhLi, that were used with or without additives like Lewis acids or copper(I) salt. The reagents were prepared in the laboratory by reported procedures and titrated prior to use. Titanium tetrachloride and magnesium bromide were the two Lewis acids used, while cuprous cyanide was used to generate cuprates. Reactions with Lewis acids were performed in dichloromethane in which the organolithium reagents were added as ether or hexane solution, keeping the amount of such solution $<10 \%$ in dichloromethane. This was done to maximize Lewis acid binding to carbonyl function, and the reactions worked very well at the low temperature employed. Cuprate reagents were prepared in ether to which a toluene solution of the substrate was added, keeping the ratio ether:toluene about 5.1. Addition of organolithium to the complexed substrates was carried out in THF. In all cases, the reaction temperature was around $-78^{\circ} \mathrm{C}$

NMR signal for the proton adjacent to the carbonyl group of complexed aromatic ring in $\mathbf{1}$ appears at 5.93 ppm , suggesting a possibility of randomization of π-face selectivity in addition to the carbonyl group. Indeed the observed stereoselectivity was moderate. Interestingly, addition of MeLi in THF yielded equal amounts of 1,2 - and 1,4 -addition products (Scheme-4). In presence of Lewis acids,
formation of the 1,2 -adducts was completely suppressed and two isomers of conjugate addition products were isolated. Although the stereoselectivity was moderate, the ratio of stereoisomers reversed for cuprate addition.

Scheme - 4

Table -1

	Products (\% yield)			Isomer distribution		
Nucleophile	$\mathbf{4 a}$	$\mathbf{4 b}$	$\mathbf{4 c}$	$\mathbf{4 a}$	$\mathbf{4 b}$	$\mathbf{4 c}$
		8	18	61	9	20
$(\%)$						
MeLi	61	23	0	72	27	0
$\mathrm{MeLi} / \mathrm{TiCl}_{4}$	58	22	0	72	27	0
$\mathrm{MeLi} / \mathrm{MgBr}_{2}$	26	56	0	31	68	0
$\mathrm{MeLi} / \mathrm{CuCN}$						

The two 1,4 -adducts, $\mathbf{4 a}$ and $\mathbf{4 b}$, can be readily identified from the absence of olefinic protons, and methyl doublet between 1.3 and 1.4 ppm . There is a significant difference in the pattern of aromatic protons of the complexed ring. For 4a, these protons appear as two clusters of peaks around 5.05 and 5.65 ppm while for $\mathbf{4 b}$ these protons appear as four distinct, well-spaced signals from 4.98 to 5.88 ppm. The methylene protons adjacent to the carbonyl group are diastereotopic. The chemical shift difference between these two non-equivalent proton signals is larger in case of $\mathbf{4 b}$ than for $\mathbf{4 a}$, such that for $\mathbf{4 b}$ we can derive the two coupling constants $\left(J_{A B}=16.6 \mathrm{~Hz}, J_{A M}=7 \mathrm{~Hz}\right)$ by first-order analysis. In order to understand the steric course of addition, it is vital that the structural assignments (relative stereochemistry) for these isomeric products are unequivocal The stereochemistry depicted in the structures shown in Scheme-4 above, are based on crystal structure
determination for both $\mathbf{4 a}$ and $\mathbf{4 b}$ (only one enantiomer is represented throughout). The ORTEP diagrams are displayed in Figure-2.

Figure - 2

(a) ORTEP diagram for complex 4a

(b) ORTEP diagram for complex 4b

These structures support the initial hypothesis of this work - Lewis acid binding with the carbonyl group favors anti orientation on steric ground while out-of-plane coordination hinders nucleophilic approach from the exo-face of the substrate complex, as observed in previous examples with cyclic structures. In absence of Lewis acid, thus, cuprate addition results in formation of $\mathbf{4 b}$ (exoaddition on anti conformer), while 4a predominates in presence of Lewis acid. Interestingly, addition of MeLi in THF results in the formation of some 1,4 -adduct although the expected allyl carbinol $\mathbf{4 c}$ is indeed the major product. The assignment of stereochemistry for $\mathbf{4 c}$ has been done based on a closely related precedent. ${ }^{10}$

In case of BuLi and related reagents, the situation is similar. Without additive, BuLi addition in THF provides almost 1:1 ratio of 1,2 - and 1,4 -addition products (Scheme-5).

Scheme -5

5a

5b

5c

Table -2

	Products (\% yield)			Isomer distribution		
Nucleophile	5a	$\mathbf{5 b}$	$\mathbf{5 c}$	$\mathbf{5 a}$	$\mathbf{5 b}$	$\mathbf{5 c}$
	13	31	45	15	35	50
BuLi	61	16	0	79	21	0
$\mathrm{BuLi} / \mathrm{TiCl}_{4}$	69	18	0	79	21	0
$\mathrm{BuLi} / \mathrm{MgBr}_{2}$	19	62	0	23	77	0
$\mathrm{BuLi} / \mathrm{CuCN}$						

The NMR pattern of $\mathbf{5 a}$ and $\mathbf{5 b}$ shows similar differences in the region of complexed arene hydrogens - the former has only two two-proton clusters of multiplets, while the four proton signals are clearly separated in the other. Accidental degeneracy reduced the AB quartet of the diastereotopic methylene protons adjacent to the carbonyl group to a broad doublet. The low-field region of the spectrum for $\mathbf{5 c}$ very closely resembled the pattern obtained for $\mathbf{4 c}$ except that the most downfield signal of a complexed aromatic proton was actually a little shielded compared to the corresponding signal for complex $\mathbf{4 c}$.

Addition of phenyllithium reagents led to the formation of similar products, but there were perceptible differences with respect to product NMR patterns as well as isomer distribution under different conditions (Scheme-6). Formation of 1,4 prducts was very much suppressed when PhLi was the sole reagent used. Similarly, no 1,2-product was isolated from reactions wherein Lewis acid or CuCN was used. Despite moderate diastereoselectivity, the ratio of the two isomeric 1,4 -adducts was clearly reversed when Lewis acid was used, compared to the ratio obtained in cuprate reaction.

Scheme - 6

Table - 3

Nucleophile	Products (\% yield)			Isomer distribution		
	$\mathbf{6 a}$	$\mathbf{6 b}$	$\mathbf{6 c}$	$\mathbf{6 a}$	$\mathbf{6 b}$	$\mathbf{6 c}$
	1	4	85	1	4	85
$\mathrm{PhLi} / \mathrm{TiCl}_{4}$	67	17	0	80	20	0
$\mathrm{PhLi} / \mathrm{MgBr}_{2}$	70	18	0	80	20	0
$\mathrm{PhLi} / \mathrm{CuCN}$	17	65	0	21	79	0

The two isomeric conjugate addition products, $\mathbf{6 a}$ and $\mathbf{6 b}$, could not be separated by chromatography. Ratio of the isomers in the mixture was determined using the integration of methyl signals of complex aromatic ring. The singlets were not very well-separated, however, hence the values are not extremely accurate, but they are reliable to the extent of following the trend of selectivity reversal (cuprate vis-à-vis Lewis acid). The 1,2-adduct was obtained as a single isomer as evident from both its proton and carbon NMR spectra. The new stereogenic center has been tentatively assigned a configuration assuming exo-selective addition on the anticonformer of the substrate, based on precedents.

In case of substrate 2, the repulsive interaction between the non-bonding electron pair on oxygen in methoxy and the carbonyl group considerably destabilizes the syn conformation, and the anti-conformation is evidenced by low-field signal of the peri proton (6.2 ppm) on the complexed aromatic ring. The π-face of this substrate is thus more or less invariant, and a greater degree of diastereoselectivity was anticipated for this substrate. Addition of MeLi alone to substrate $\mathbf{2}$ resulted in the formation of a single diastereomer of the 1,2-adduct, no conjugate addition product was isolated in this case (Scheme-7, Table-4). While there was expected reversal of selectivity in going from cuprate to Lewis acid mediated addition, the ratio of diastereomer still remained within the range of 3:1.

Scheme - 7

Table -4

	Products (\% yield)			Isomer distribution (\%)		
Nucleophile	7a	7b	7c	7a	7b	7c
MeLi	0	0	90	0	0	100
$\mathrm{MeLi} / \mathrm{TiCl}_{4}$	65	20	0	76	24	0
$\mathrm{MeLi} / \mathrm{MgBr}_{2}$	63	21	0	75	25	0
$\mathrm{MeLi} / \mathrm{CuCN}$	22	64	0	25	75	0

In the proton NMR spectrum of the 1,2 -adduct, $7 \mathbf{c}$, the olefinic protons are less separated though the mid-point is still around 6.5 ppm as observed for analogues described above. The four aromatic protons of the complexed aromatic ring appear as well-separated signals in the spectral range of 4.5 to 6 ppm . For the isomeric 1,4-adducts, the doublet due to the peri proton of the complexed aromatic ring appears beyond 6.2 ppm , revealing the carbonyl group anisotropy effect in the anti conformation.

Reaction of 2 and BuLi as nucleophile yielded several unexpected results. Isomeric products were not separable under conditions of column chromatography, and isomer ratios were deduced from integration of peaks in the proton NMR spectra. In this case, the 1,2 -adduct resulting from BuLi addition to complex 2 was obtained as a mixture of two isomers in the ratio of about 7:1. The major isomer is believed to have resulted from exo-addition to the anti-conformer of substrate 2 . Even more surprisingly, the selectivity of addition as well as yield suffered when BuLi was used as precursor for cuprate or in presence of Lewis acid, although the trend of stereoselectivity reversal was evident.

Scheme -8

Table -5

Nucleophile	Products (\% yield)			Isomer distribution		
	$\mathbf{8 a}$	$\mathbf{8 b}$	$\mathbf{8 c}$	$\mathbf{8 a}$	$\mathbf{8 b}$	$\mathbf{8 c}$
BuLi	0	0	87	0	0	100
$\mathrm{BuLi} / \mathrm{TiCl}_{4}$	51	26	0	66	34	0
$\mathrm{BuLi} / \mathrm{MgBr}_{2}$	49	24	0	67	33	0
$\mathrm{BuLi} / \mathrm{CuCN}$	17	62	0	21	79	0

Though addition of PhLi alone to substrate 2 afforded the 1,2-addition product with high stereoselectivity, no reaction occurred under standard condition with Lewis acids present in the reaction medium. As observed for BuLi, the cuprate addition provided a moderate stereoselectivity (Scheme-9).

Scheme -9

Table -6

Nucleophile	Products (\% yield)			Isomer distribution		
	9a	$\mathbf{9 b}$	$\mathbf{9 c}$	$\mathbf{9 a}$	9b	9c
	0	0	84	0	0	100
$\mathrm{PhLi} / \mathrm{TiCl}_{4}$	-	-	-	-	-	-
$\mathrm{PhLi} / \mathrm{MgBr}_{2}$	-	-	-	-	-	-
$\mathrm{PhLi} / \mathrm{CuCN}$	16	62	0	20	80	0

The substrate $\mathbf{3}$ has a trimethylsilyl substituent in ortho-position with respect to the ketone function. Owing to favourable SiO interaction, syn conformer is the preferred ${ }^{11}$ ground-state structure in this substrate. The anti conformer becomes dominant when Lewis acid complexes with the carbonyl group (Chart-4). For this substrate, however, the situation is somewhat exceptional. It needs to be appreciated that in absence of additives, syn conformer is likely to undergo exo-selective addition. In presence of Lewis acid, the anti-coformer is preferred, but the addition is likely to be endo-selective, thereby providing the same stereoisomer as before.

Chart-4

The yields of nucleophilic addition under different conditions are vastly improved in this case, and regioselectivity is excellent. For instance, in MeLi additions, no regioisomeric product mixture was obtained, though stereoselectivity was only moderate (Scheme-10, Table-7). The isomeric 1,4 adducts were separated by column chromatography.

Scheme - 10

Table -7

	Products (\% yield)			Isomer distribution		
Nucleophile	10a	$\mathbf{1 0 b}$	$\mathbf{1 0 c}$	$\mathbf{1 0 a}$	$\mathbf{1 0 b}$	$\mathbf{1 0 c}$
		0	0	86	0	0
MeLi	61	25	0	71	29	0
$\mathrm{MeLi} / \mathrm{TiCl}_{4}$	58	25	0	70	30	0
$\mathrm{MeLi} / \mathrm{MgBr}_{2}$	22	67	0	24	76	0
$\mathrm{MeLi} / \mathrm{CuCN}$	22					

The reversal of stereoselectivity for cuprate vis-à-vis Lewis acid mediated addition is rather unexpected in this case for reasons explained above. Only perceptible difference in the proton NMR spectra of the isomeric 1,4 adducts concerns complexed aromatic ring protons. In the spectrum of 10a, the ring proton peaks are almost overlapping around 5.5 ppm , while the peri proton doublet is relatively deshielded compared to others in the spectrum of $\mathbf{1 0 b}$. The 1,2 -addition product, 10c, has similar spectral feature as does $\mathbf{7 c}$ or $\mathbf{4 c}$, and its relative stereochemistry was established by single-crystal structure determination, as depicted in Fig. - 3 .

Figure - 3

The yields of BuLi reaction products are also quite good, though stereoselectivity is marginally improved than the MeLi addition described above. In this case also the reversal of stereoselectivity from cuprate to Lewis acid mediation is not anticipated. The regioselectivity is excellent, however (Scheme-11, Table-8).

Scheme-11

Table - 8

| Nucleophile | Products (\% yield) | | | Isomer distribution | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 11a | 11b | 11c | 11a | 11b | 11c |
| BuLi | 0 | 0 | 88 | 0 | 0 | 100 |
| $\mathrm{BuLi} / \mathrm{TiCl}_{4}$ | 61 | 18 | 0 | 77 | 23 | 0 |
| $\mathrm{BuLi} / \mathrm{MgBr}_{2}$ | 64 | 19 | 0 | 77 | 23 | 0 |
| $\mathrm{BuLi} / \mathrm{CuCN}$ | 18 | 68 | 0 | 21 | 79 | 0 |

The isomeric 1,4 -adducts are not separable by chromatography, but their ratio could be determined from the integration of trimethylsilyl singlets at 0.21 and 0.31 ppm in the proton NMR spectra. The 1,2-adduct, 11c, was obtained as a single diastereomer, and its stereochemistry is tentatively assigned identical to complex 10c based on near identity of their proton NMR spectral pattern.

The 1,2-adduct obtained from PhLi addition to substrate $\mathbf{3}$ was a single diastereomer, whose relative stereochemistry is tentatively assigned by comparison with 10c and 11c. Only one and the same isomer of the 1,4 -adduct was obtained for reaction mediated by Lewis acid or copper (I) in this case, as was originally anticipated.

Scheme-12

Table -9

	Products (\% yield)			Isomer distribution		
Nucleophile	12a	12b	12c	12a	12b	12c
			0	90	0	0
PhLi	0	0	0	100	0	0
$\mathrm{PhLi} / \mathrm{TiCl}_{4}$	84	18	0	100	0	0
$\mathrm{PhLi} / \mathrm{MgBr}_{2}$	90	88	0	0	100	0
$\mathrm{PhLi} / \mathrm{CuCN}$	0					

Crystal structure of the 1,4 -adduct, 12a, could not be determined since it was isolated as a liquid.

Summary

A series of chiral acyclic enone substrates were used to examine the stereoselectivity in addition of organolithium reagents in presence or absence of lewis acid. Except a few instances, diastereoselectivity was moderate. Interestingly, contrast to expectation, conjugate addition was observed with some organolithium reagents, the reason for which are not still understood.

Experimental

All reactions were performed under an inert atmosphere of argon, using freshly distilled, degassed solvents. Diethyl ether and THF were freshly distilled over sodium benzophenone ketyl. Dichloromethane was freshly distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$. Aromatic aldehydes were purchased from Aldrich, USA, and used as received. Organolithium and organomagnesium reagents were prepared following reported procedure. ${ }^{12}$

General procedure for the preparation of enones (1-3) : Following a reported procedure ${ }^{10}$ all three enones were prepared from ortho-substituted acetophenone $\mathrm{Cr}(\mathrm{CO})_{3}$ complex and p-tolualdehyde using Claisen-Schmidt condensation. In a typical procedure ethanolic KOH ($10 \mathrm{mmol}, 0.56 \mathrm{~g}$ in 20 mL ethanol) was added dropwise to a solution of ortho-substituted acetophenone- $\mathrm{Cr}(\mathrm{CO})_{3}$ complex (10 $\mathrm{mmol})$ and p-tolualdehyde $(11 \mathrm{mmol})$ in ethanol $(50 \mathrm{~mL})$ at room temperature. Reaction was complete within 2.5 h (TLC). It was diluted with water, extracted with dichloromethane and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent afforded red crystalline solid in all the cases pure product was obtained by crystallization from dichloromethane-pet ether. Enones 1, 2 and $\mathbf{3}$ have been reported earlier. ${ }^{9}$

Complex 1

Color : Orange
MP : $\quad 129^{\circ} \mathrm{C}$
IR 1980, 1920, $1660 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$) : $\quad 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 5.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.20(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}$
(200 MHz)
$=7 \mathrm{~Hz}), 5.65(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.935(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 7.16-$
7.27 (m, 3H), 7.55 (d, 2H, J = 8Hz), $7.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz})$.

Complex 2

Color : Red
MP : $\quad 127^{\circ} \mathrm{C}$
IR
1980, 1920, $1660 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}^{\mathbf{N}} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right): \quad 2.40(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 4.99(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.07(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$
$(200 \mathrm{MHz}) \quad=8 \mathrm{~Hz}), 5.82(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 6.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.20(\mathrm{~d}$,
$2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}), 7.45(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}), 7.21-7.28(\mathrm{~m}, 3 \mathrm{H})$, 7.49-7.55 (m, 2H), 7.79 (d, 1H, J= 16 Hz)

Complex 3

Color :	Red
MP :	$165{ }^{\circ} \mathrm{C}$
IR	$1989,1925,1663 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H} \mathbf{~ N M R ~}\left(\mathbf{C D C l}_{3}\right):$	$0.37(\mathrm{~s}, 9 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 5.45(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.55-5.62$
$(200 \mathrm{MHz})$	$(\mathrm{m}, 2 \mathrm{H}), 5.765(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 7.16(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz})$,
	$7.25(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.55(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.87(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$
	$=16 \mathrm{~Hz})$.

General procedure for the addition of organolithium reagents to enones (1-3): To a solution of the complexed enone $\mathbf{1 - 3}$ ($n \mathrm{mmol}$) in THF ($20 n \mathrm{~mL}$), organolithium ($1.2 n \mathrm{mmol}$) in diethyl ether or hexane was added dropwise with stirring at $-90{ }^{\circ} \mathrm{C}$. After completion of the reaction (TLC, 30 minutes), the reaction mixture was quenched with degassed methanol at $-90{ }^{\circ} \mathrm{C}$, followed by addition of water at room temperature, and finally extracted with dichloromethane. The crude mixture of products obtained after evaporation of solvent was separated by flash column chromatography (pet ether / EtOAc, 9:1).

Reactions were performed in $0.5-2.0 \mathrm{mmol}$ scale. Isolated yield and product ratio are provided in the tables in the text.

Complex 4c

Color : Yellow
MP : $\quad 92{ }^{\circ} \mathrm{C}$
IR $\left(\mathbf{C H C l}_{3}\right): \quad 3400-3600,1967,1892 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}\right): \quad 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 5-5.08$
(200 MHz)
$(\mathrm{m}, 2 \mathrm{H}), 5.54(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}), 5.83(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz})$,
$6.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}), 6.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}) ,7.18(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}$
$=8 \mathrm{~Hz}), 7.37(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}$) 20.96, 21.36, 29.26, 74.33. 87.89, 93.74, 96.05, 110.43,
$\left(50.3 \mathrm{MH}_{\mathrm{Z}}\right) \quad 116.49,126.89,129.61,129.94,133.55,138.32,233.60$

Analysis
$\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Cr}\right)$
Calcd. C: 64.94, H: 5.15
Found. C: 64.75, H: 5.23

Complex 5c

Color :
MP :
IR ($\left.\mathrm{CHCl}_{3}\right)$:
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}\right): \quad 0.84(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}), 1.30-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.95-2.08(\mathrm{~m}$,
Yellow
Oil
3400-3600(br), 1963, $1880 \mathrm{~cm}^{-1}$, $3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) 2.55(\mathrm{~s}, 3 \mathrm{H}), 4.98-5.06(\mathrm{~m}, 2 \mathrm{H}), 5.52(\mathrm{t}, 1 \mathrm{H}$, $\mathrm{J}=8 \mathrm{~Hz}), 5.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 6.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}), 6.77$ (d, 1H, J = 16 Hz), $7.20(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.41(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ 8 Hz)
${ }^{13} \mathbf{C N M R}\left(\mathbf{C D C l}_{3}\right): \quad 14.19,21.43,23.24,26.91,40.88,76.83,87.75,93.70,96.05$, $96.86,110.72,116.82,126.89,129.65,130.68,132.26$, 133.77,
138.18, 233.45

Analysis
Calcd. C: 66.97, H: 6.04
$\left(\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Cr}\right)$
Found. C: 66.78, H: 5.99

Complex 6 c

Color :
MP :
IR ($\left.\mathrm{CHCl}_{3}\right)$:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}\right)$
(200 MHz)

Yellow
$105{ }^{\circ} \mathrm{C}$
3400-3600,1969, $1898 \mathrm{~cm}^{-1}$
2.07 (s, 3H), 2.37 (s, 4H), 4.97 (d, 1H, J = 6 Hz), 5.09 (t, 1H, $\mathrm{J}=6 \mathrm{~Hz}), 5.61(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 6.41(\mathrm{~d}$, 1H,
$\mathrm{J}=16 \mathrm{~Hz}), 6.63(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}), 7.18(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz})$, 7.29-7.42 (m, 7H)

${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right)$	$20.30,21.40,78.30,86.83,93.48,96.49,98.52,112.37$,		
$:$	$117.89,126.64,127.00127 .55,128.44,128.61,131.30$,		
$\left(50.3 \mathrm{MH}_{\mathrm{Z}}\right)$	$133.36,138.40$,		
	$143.07,232.02$		

Analysis Calcd. C: 69.33, H: 4.88

Found. C: 69.45, H: 4.79
$\left(\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Cr}\right)$

Complex 7c

Color :
MP :
IR ($\mathbf{C H C l}_{3}$) : $\quad 3400-3600,1967,1890 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}\right): \quad 1.17(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{~d}$,
(200 MHz)
Yellow
Oil
$1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}) 5.01(\mathrm{~m}, 1 \mathrm{H}), 6.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 6.53(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 6.63(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 7.17(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz})$, 7.34 (d, 2H, J = 6.5Hz)
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right) \quad 20.95,27.90,55.76,73.04,73.30,83.44,94.85,95.54$, $: \quad 106.60,126.34,127.33,129.10,133.62,134.61,137.33$, ($50.3 \mathrm{MH}_{\mathrm{Z}}$

Analysis 141.26, 233.01
$\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Cr}\right)$
Calcd. C: 62.37, H: 4.72
Found. C: 62.43, H: 4.95

Complex 8c

Color :
MP :
IR ($\mathbf{C H C l}_{3}$): $\quad 3400-3600(\mathrm{br}), 1967,1892 \mathrm{~cm}^{-1}$
(200 MHz
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}\right): \quad 0.91(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6 . \mathrm{Hz}), 1.16-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.83-2.20(\mathrm{~m}, 2 \mathrm{H})$,
Yellow
Oil
$2.36(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 1 \mathrm{H}), .3 .80(\mathrm{~s}, 3 \mathrm{H}), 4.82$
$(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 5.62(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz})$,
$6.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 6.66(\mathrm{bs}, 2 \mathrm{H}$, actually merging of two close doublet), $7.15(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 7.36(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz})$ for minor isomer $2.32(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C} \quad$ NMR $\quad 14.12,21.21,23.02,25.92,29.71,40.00,55.88,73.63,75.25$, $\left(\mathbf{C D C l}_{3}\right)\left(50.3 \mathrm{MH}_{\mathrm{Z}} \quad 83.67,95.4396 .16,106.93,127.63,129.32,134.21,135.09\right.$, 137.30, 141.41, 233.56
for minor isomer 22.72, 84.18, 129.10, 231.36
Analysis Calcd. C: 64.57, H: 5.82
$\left(\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Cr}\right) \quad$ Found. C: 64.45, H: 5.91

Complex 9c

Color :	Yellow
MP :	$155{ }^{\circ} \mathrm{C}$

IR ($\left.\mathbf{C H C l}_{3}\right): \quad 1965,1896 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$) : $2.37(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz})$, (200 MHz) 4.99 (d, 1H, J = 8Hz), $5.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.61(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ $6.5 \mathrm{~Hz}) 6.468(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}), 6.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}), 7.17$ (d, 2H, J = 8 Hz), 7.26-7.62 (m, 5H), 7.66 (d, 2H, J = 8Hz)
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}\right)$ 21.43, 56.39, 73.15, 83.56, 94.95, 97.30, 107.45, 126.93, :
($50.3 \mathrm{MH}_{\mathrm{Z}}$)
Analysis
$\left(\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Cr}\right)$ $127.74,128.33,129.58,133.95,138.03,141.38,142.96$, 234.94

Calcd. C: 66.95, H: 4.72
Found. C: 67.08, H: 4.59

Complex 10c

Color :

MP :
IR ($\mathbf{C H C l}_{3}$): $\quad 3400-3600(\mathrm{br}), 1965,1892 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}\right):$
(200 MHz)
Yellow
$134{ }^{\circ} \mathrm{C}$
$0.46(\mathrm{~s}, 9 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 5.03(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 5.16(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.57(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz})$, $5.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 6.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}), 6.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=16 \mathrm{~Hz}), 7.21(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 7.41(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz})$.
${ }^{13} \mathbf{C N M R}\left(\mathbf{C D C l}_{3}\right) \quad 3.53,21.47,31.32,75.32,89.84,96.20,96.71,102.71$,
$\left(50.3 \mathrm{MH}_{\mathrm{Z}}\right) \quad 127.00,127.26,129.76,131.08,133.11,133.36,138.58$,

Analysis Calcd. C: 61.88, H: 5.82
$\left(\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{SiCr}\right) \quad$ Found. C: 61.91, H: 6.01

Complex 11c

Color : Yellow

MP :
IR ($\mathbf{C H C l}_{3}$) : $\quad 3415-3554(\mathrm{br}), 1965,1892 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$) : $0.42(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 1.20-1.45(\mathrm{~m}, 4 \mathrm{H})$,
Oil

Yellow 1.72-2.02 (m, 2H), 2.18 (s, 1H), 2.37 (s, 3H), 5.05 (d, 1H, J = $6 \mathrm{~Hz}), 5.14(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}), 5.58(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}), 5.71$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}), 6.38(\mathrm{~d}, 1 \mathrm{H} \mathrm{J}=16 \mathrm{~Hz}), 6.67(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $16 \mathrm{~Hz}), 7.19$ (d, 2H, J = 7.8 Hz), $7.38(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz})$
${ }^{13} \mathbf{C N M R} \quad\left(\mathbf{C D C l}_{3}\right) \quad 3.64,14.12,20.95,21.25,21.40,23.05,26.65,44.41,89.95$, $\left(50.3 \mathrm{MH}_{\mathrm{Z}}\right) \quad 95.61,97.05,102.34,127.26129 .72,131.08,131.89,133.80$, 138.36, 233.56

Analysis
($\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiCr}$)

Complex 12c

Color :
MP :
IR ($\left.\mathbf{C H C l}_{3}\right): \quad 3400-3600,1967,1894 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$) : $\quad-0.05(\mathrm{~s}, 9 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{~s}, 1 \mathrm{H}), 5.10-5.16(\mathrm{~m}, 2 \mathrm{H})$, (200 MHz)

Yellow
$145{ }^{\circ} \mathrm{C}$ 5.48
$(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}) 5.61(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}), 5.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $16 \mathrm{~Hz}), 6.5(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}), 6.95-7.22(\mathrm{~m}, 9 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}$) 2.76, 21.47, 80.47, 90.58, 92.71, 95.32, 99.36, 102.82, (50.3 MHz) $125.02,127.08,128.14,129.69,133.14,133.91,138.66$, 144.13, 233.78

Analysis
$\left(\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{SiCr}\right)$

Calcd. C: 66.14, H: 5.51
Found. C: 65.98, H: 5.59

General procedure for the TiCl_{4} mediated organolithium addition to enones (13) : To a solution of the complexed enone ($(2 \mathrm{mmol}$) in dichloromethane (20 nmL), titanium tetrachloride ($2 n \mathrm{mmol}$) was added dropwise with stirring at $-78{ }^{\circ} \mathrm{C}$. After stirring for 15 minutes, organolithium reagent (1.2 nmol) in THF or hexane was added dropwise with stirring at the same temperature. After completion of the reaction (TLC, 30 minutes), the reaction mixture was quenched with degassed methanol at $-78{ }^{\circ} \mathrm{C}$, followed by addition of water at room temperature, and finally extracted with dichloromethane. The crude mixture of products obtained after evaporation of solvent was separated by flash column chromatography (pet ether / EtOAc, 9:1).

All reactions were performed in $0.5-2.0 \mathrm{mmol}$ scale. Isolated yield and ratio of products are provided in the tables.

General procedure for $\mathbf{M g B r}_{2}$ mediated addition of organolithium to enone (13) :

Dichloromethane (10 nmL) was slowly introduced to a mixture of enone ($n \mathrm{mmol}$) and $\mathrm{MgBr}_{2}(3 n \mathrm{mmol})$ with stirring at $-78{ }^{\circ} \mathrm{C}$. Color of the solution became durk purple. It was stirred for 15 min and then organolithium in ether or hexane (1.2 n mmol) was added. After starting material was consumed completely (TLC, 15 minutes), the reaction mixture was quenched with degassed methanol (2 mL), and allowed to attain room temperature. Usual work up followed by removal of solvent afforded the crude product which was purified by flash column chromatography (pet ether / EtOAc, 9:1).

Reactions were performed in $0.5-2.0 \mathrm{mmol}$ scale and isolated yields are indicated in Tables.

Complex 4a

Color : Orange
MP :
$68^{\circ} \mathrm{C}$
IR ($\mathbf{C H C l}_{3}$) : $\quad \mathbf{1 9 7 5}, 1903,1687 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$) : $1.35(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{H} \mathrm{z}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.53$
(200 MHz)
$(\mathrm{m}, 1 \mathrm{H}), 32.96-3.05(\mathrm{~m}, 2 \mathrm{H}), 5.01-5.11(\mathrm{~m}, 2 \mathrm{H}), 5.56-5.70$
(m, 2H), 7.10-7.18 (m, 4H)

Analysis
($\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Cr}$)

Calcd. C: 64.94, H: 5.15
Found. C: 64.73, H: 4.97

Complex 5a

(mixture)
Color : \quad Orange

MP : Oil
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)$: $\quad 1971,19011639 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right): \quad 0.85(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 1.11-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.76(\mathrm{~m}, 2 \mathrm{H}), 2.35$
(200 MHz) (bs, 6H), 3.03-3.10 (m, 2H), 3.18-3.35 (m, 1H), 4.95-5.12 (m, 2H), 7.14 (bs, 4H)
signals separated for minor somer
$2.21(\mathrm{~s}, 3 \mathrm{H}), 5.855(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz})$), $7.11(\mathrm{bs}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}$) 14.12, 21.18, 22.76, 29.85, 35.95, 41.47, 47.90, 87.49, 91.97,
:
($50.3 \mathrm{MH}_{\mathrm{Z}}$) $95.98,100.72,110.39,125.68,127.63,129.25,129.47,131.05$, 131.93, 135.83, 136.12, 141.85, 199.97, 231.62.
signals separated for minor isomer
14.30, 20.96, 36.47, 67.49, 91.61, 101.02, 110.61, 19.71, 231.40.

Analysis
($\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Cr}$)

Calcd. C: 66.97, H: 6.04
Found. C: 66.95, H: 5.94

Complex 5a

(pure)

Color :	Orange
MP :	Oil
IR $\left(\mathbf{C H C l}_{3}\right):$	$1970,1895 \mathrm{~cm}^{-1}$

${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right): \quad 0.85(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 1.11-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.80(\mathrm{~m}, 2 \mathrm{H}), 2.32$ (200 MHz) (bs, 6H), 3.20-3.34 (m, 1H), 4.99-5.08 (m, 2H), 5.5-5.62 (m, 2H), 7.13 (bs, 4H).

Complex 6a

Color : Orange
MP : $\quad 72-76^{\circ} \mathrm{C}$
IR ($\mathbf{C H C l}_{3}$) : \quad 1979, 1909, 1682 (1732for minor isomer) cm^{-1}
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}\right): \quad 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.51(\mathrm{~m}, 2 \mathrm{H}), 4.73(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ (200 MHz) $6.5 \mathrm{~Hz}), 4.98-5.20(\mathrm{~m}, 2 \mathrm{H}), 5.63(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}), 4.9-5.15$ $(\mathrm{m}, 2 \mathrm{H}), 5.63(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}), 5.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}), 7.14$ 7.32 (m, 9H)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right): \quad 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}, 9 \mathrm{~Hz})$, $3.55(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}, 9 \mathrm{~Hz}), 4.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 4.11$ $(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 4.67(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 4.87(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz})$, 5.02 (d, 1H, J = 8 Hz) 6.98-7.42 (m, 9H)
for minor isomer $2.02(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right) \quad 21.03,45.88,46.36,87.08,91.72,96.16,96.27,100.35$,
:
(50.3 MHz)

Analysis
$\left(\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Cr}\right)$

Complex 7a

Color :
MP :
IR (CHCl_{3}) :
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}\right): \quad 1.30(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 3.14-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.43-$
(200 MHz) $3.54(\mathrm{~m}, 1 \mathrm{H}) 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.94(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.01(\mathrm{~d}, 1 \mathrm{H}$,
$\mathrm{J}=8 \mathrm{~Hz}$), 5.80 (t, 1H, J=6Hz) 6.25 (d, 1H, J=6.5Hz) 7.13 (d, $2 \mathrm{H}=8 \mathrm{~Hz}$), 7.19 (d, 2H, J=8Hz)
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right) \quad 21.18,22.50,35.48,51.24,56.13,72.42,84.22,90.72,95.50$, (50.3 MHz) $96.02,126.93,129.39,135.86,143.51,144.28,196.85$, 231.33

Analysis
($\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Cr}$)

Compex 8a

Color :
MP :
IR $\left(\mathrm{CHCl}_{3}\right)$:
${ }^{1} \mathrm{H}$ NMR $\left(\mathbf{C D C l}_{3}\right)$:
(200 MHz)

Yellow
$53{ }^{\circ} \mathrm{C}$
$1979,1909,1670 \mathrm{~cm}^{-1}$
$0.73-1.00(\mathrm{~m}, 3 \mathrm{H}), 1.06-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.80(\mathrm{~m}, 2 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}) 3.05-3.37(\mathrm{~m}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.83-5.95(\mathrm{~m}$, $1 \mathrm{H}), 5.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 5.74-5.86(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=6.4 \mathrm{~Hz}), 7.13(\mathrm{bs}, 4 \mathrm{H})$,
for minor isomers
2.34 (s, 3H), 3.81 (s, 3H), 6.22(d, 1H, J=6.4Hz)
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}\right) \quad 14.16,21.18,22.83,29.85,35.92,36.43,41.14,50.18$,
56.06,72.42 84.14, 90.80, 95.54, 96.02, 127.55, 129.21,
135.71, 141.78, 144.24, 196.73, 231.32
for minor isomer 23.13, 29.52, 40.81, 50.40, 72.56, 84.33, 95.76, 127.74, 142.40, 144.54, 196.38.231.00

Analysis
$\left(\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O} 5 \mathrm{Cr}\right)$

Calcd. C: 64.57, H: 5.82
Found. C: 64.65, H: 5.81

Complex10a

Color :
MP :
IR $\left(\mathrm{CHCl}_{3}\right)$:
(200 MHz)
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}\right): \quad 0.34(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}) 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.94-3.03$
Orange
Oil
1975, 1901, $1673 \mathrm{~cm}^{-1}$ (m, 2H), 3.39-3.53 (m, 1H), 5.32-5.57 (m, 4H), 7.16 (bs, 4H)

Analysis
Calcd. C: 61.88, H: 5.82
$\left(\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{SiCr}\right) \quad$ Found. C: 61.70, H: 6.01

Complex11a

Color : Orange

MP :
IR ($\left.\mathbf{C H C l}_{3}\right): \quad 1975,1901,1673,1675 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$) : $\quad 0.21(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}), 1.07-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.48-$
(200 MHz) 1.78 (m, 2H), 2.31 ($\mathrm{s}, 3 \mathrm{H}$), 2.97-3.04 (m, 2H), 3.15-3.34 (m, 1 H), 5.37-5.52 and 5.72-5.75 (m, 4H), 7.12 (bs, 4H)
signal separated for minor isomer $0.31(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13} \mathbf{C N M R}\left(\mathbf{C D C l}_{3}\right): \quad 0.78,14.12,21.21,22.83,29.83,36.32,41.28,45.70,92.12$, $\left(50.3 \mathrm{MH}_{\mathrm{Z}}\right) \quad 92.93,93.0893 .52,98.66,104.84,127.74,129.47,136.16$, 141.19, 200.15, 231.69
signals separated for minor isomer
35.81, 46.32, 99.18, 105.43, 141.82, 200.67, 232.06

Analysis
Calcd. C: 63.93, H: 6.55
$\left(\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiCr}\right)$
Found. C: 63.91, H: 6.51

Complex12a

Color : Orange
MP :
Oil
IR (CHCl3) : $\quad 1976,1909,1689 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right): \quad 0.22(\mathrm{~s}, 9 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 4.76(\mathrm{t}, 1 \mathrm{H}$, $\mathrm{J}=7.3 \mathrm{~Hz}), 5.43-5.63(\mathrm{~m}, 3 \mathrm{H}), 5.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}) 7.13-7.35$ (m, 9H)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right): \quad 0.30(\mathrm{~s}, 9 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=17.6 \mathrm{~Hz}, 8.3 \mathrm{~Hz}),$,
$3.44(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=17.6 \mathrm{~Hz}, 8.3 \mathrm{~Hz}),, 4.51-4.63(\mathrm{~m}, 2 \mathrm{H}), 4.77-$
$4.84(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}), 6.97-7.37(\mathrm{~m}, 9 \mathrm{H})$
${ }^{13} \mathbf{C N M R}\left(\mathbf{C D C l}_{3}\right): \quad 0.63,21.18,44.78,45.95,91.97,93.59,93.70,98.37,102.41$,
(50.3 MHz) $104.99,126.75,127.92,128.07,128.91,129.58,136.38$, 140.35, 144.46, 199.34, 231.80

Analysis
Calcd. C: 66.14, H: 5.51
$\left(\mathbf{C}_{\mathbf{2 8}} \mathbf{H}_{\mathbf{2 8}} \mathbf{O}_{\mathbf{4}} \mathbf{S i C r}\right) \quad$ Found. C: 66.28, H: 5.69

General procedure for the addition of organocuprate to enone (1-3): To a slurry of CuCN ($n \mathrm{mmol}$) in diethyl ether ($n \mathrm{~mL}$), organolithium reagent ($2 n \mathrm{mmol}$) in hexane or ether was added dropwise with stirring at $-78{ }^{\circ} \mathrm{C}$. It was slowly warmed to $-20{ }^{\circ} \mathrm{C}$, during which time all of CuCN was dissolved. The solution was again cooled to $-78{ }^{\circ} \mathrm{C}$, followed by addition of complexed enone (0.75 mmol) in toluene $(10 n \mathrm{~mL})$. After completion of the reaction (TLC, $0.75-1.0 \mathrm{~h})$ the reaction mixture was allowed to attain room temperature, quenched with 10% ammonia in saturated aqueous ammonium chloride solution, followed by stirring for 0.5 h , and finally extracted with ether. The residue obtained after evaporation of solvent was purified by flash column chromatography (pet ether / EtOAc, 9:1).

Reactions were performed in $0.5-2.0 \mathrm{mmol}$ scale and isolated yields are indicated in Tables

Complex 4b

Color : Yellow
MP : $\quad 118{ }^{\circ} \mathrm{C}$
IR ($\mathbf{C H C l}_{3}$): $\quad 1979,1907,1681 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$) : $\quad 1.33(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{dd}$,
(200 MHz) $\quad 1 \mathrm{H}, \mathrm{J}=16.6 \mathrm{~Hz}, 7.3 \mathrm{~Hz}$), $3.11(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=16.6 \mathrm{~Hz}, 7.3 \mathrm{~Hz}$), $3.41-3.51(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}), 5.07(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ $6.3 \mathrm{~Hz}), 5.61(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}), 5.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 7.15$ (bs, 4H).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}\right) \quad 21.03,22.04,35.66,48.78,87.16,91.90,95.91,101.13$, ($50.3 \mathrm{MH}_{\mathrm{Z}}$)

Analysis
Calcd. C: 64.94, H: 5.15
$\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Cr}\right)$
Found. C: 64.99, H: 5.05

Complex 5b

Color : Orange

MP : Oil
IR ($\left.\mathbf{C H C l}_{3}\right): \quad 1969,1903,1645 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$) : $\quad 0.85(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 1.05-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.74(\mathrm{~m}, 2 \mathrm{H}), 2.19$
(200 MHz)
($\mathrm{s}, 3 \mathrm{H}$), $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.95-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$, 3.17-3.30 (m, 1H), 4.94-5.12 (m, 2H), 5.54-5.61 (m, 1H), $5.83(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}$), 7.13 (bs, 4H).
signals separated for minor isomer 7.14 (bs, 4 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}$) : 14.12, 21.18, 22.79, 29.85, 36.25, 41.25, 47.53, 87.01, 91.64, (50.3 MHz) $96.02,100.76,101.09,110.65,127.59,129.36,141.08,199.71$, 231.40
signal separated for minor isomer
35.95, 41.47, 47.90, 87.53, 92.01, 110.43, 141.67, 199.97, 231.66

Analysis
Calcd. C: 66.97, H: 6.04
$\left(\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Cr}\right)$
Found. C: 66.93, H: 5.92

Complex 5b

(pure)
Color : Orange
MP :
Oil
IR $\left(\mathbf{C H C l}_{3}\right): \quad 1968,1898 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}\right): \quad 0.85(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 1.08-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.75(\mathrm{~m}, 2 \mathrm{H}), 2.19$
(200 MHz)
(s, 3H), 2.32 (9s, 3H), 2.95-3.15 (m, 2H), 3.16-3.34 (m, 1H), 4.95
$(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.05(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.55(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.80$
(d, 1H, J = 6 Hz), $7.14(\mathrm{bs}, 4 \mathrm{H})$.

Complex 6b

Color :
MP :

Yellow
$138-140{ }^{\circ} \mathrm{C}$

IR (CHCl_{3}) :	1979, 1905, 1732 (1682 for minor isomer) cm^{-1}
${ }^{1} \mathrm{H}$ NMR $\left(\mathbf{C D C l}_{3}\right)$: (200 MHz)	$\begin{aligned} & 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) 3.35-3.15(\mathrm{~m}, 2 \mathrm{H}), 4.73(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}= \\ & 6 \mathrm{~Hz}), 4.95-5.15(\mathrm{~m}, 2 \mathrm{H}), 5.62(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=6 \mathrm{~Hz}), 5.78(\mathrm{~d}, 1 \mathrm{H}, \\ & \mathrm{J}=6 \mathrm{~Hz}), 7.05-7.45(\mathrm{~m}, 9 \mathrm{H}) \end{aligned}$
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}\right)$:	$2.02(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}, 6 \mathrm{~Hz})$, $3.55(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}, 8 \mathrm{~Hz}), 4.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}) 4.11(\mathrm{t}$, $1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 4.67(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 4.88(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.00$ (d, 1H, J=8Hz), 6.95-7.43 (m, 9H) for minor isomer $2.01(\mathrm{~s}, 3 \mathrm{H})$
$\begin{aligned} & { }^{13} \mathbf{C} \text { NMR }\left(\mathbf{C D C l}_{3}\right) \\ & : \\ & \left(50.3 \mathrm{MH}_{\mathrm{Z}}\right) \end{aligned}$	$\begin{aligned} & 21.03,46.95,46.43,87.05,91.72,96.09,100.46,110.76 \\ & 126.71,128.00,129.54,136.30,140.27,144.24,146.01 \\ & 198.64,231.47 \end{aligned}$

Analysis
$\left(\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Cr}\right) \quad$ Found. C: 69.51, H: 4.92

Complex 7b

Color :

MP :
IR ($\mathbf{C H C l}_{3}$) : $\quad 1978,1907,1674 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}\right): \quad 1.31(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=16.6 \mathrm{~Hz}$, (200 MHz)

Yellow
$105^{\circ} \mathrm{C}$ $6.8 \mathrm{~Hz}), 3.30(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=16.6 \mathrm{~Hz}, 6.8 \mathrm{~Hz}), 3.38-3.51(\mathrm{~m}$, $1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.89(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}) 5.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6$ $\mathrm{Hz}), 5.78$
(t, 1H J = 6Hz), 6.14 (d, 1H, J = 6 Hz), 7.15 (bs, 4H)
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}\right) \quad 21.21,21.80,35.15,51.43,56.13,72.53,84.40,90.91,95.69$,
($50.3 \mathrm{MHz}_{\mathrm{z}}$) 127.11, 129.43, 135.86, 144.13, 144.68, 196.81, 231.51

Analysis
Calcd. C: 62.37, H: 4.95
$\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Cr}\right) \quad$ Found. C: 62.41, H: 4.83

Compound 8b

Color :
Yellow

MP :	$112{ }^{\circ} \mathrm{C}$
IR (CHCl_{3}) :	1977, 1905, $1674 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR ($\mathbf{C D C l}_{3}$):	$0.84(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}), 1.09-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.74(\mathrm{~m}, 2 \mathrm{H})$,
(200 MHz)	2.34 (s, 3H), 3.05-3.38 (m, 3H), 3.81 (s, 3H), 4.83-5.02 (m, 2H),
	5.79 (t, 1H, J = 6Hz), $6.22(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{HZ}$), 7.14(bs, 4 H$)$
	for minor isomers $2.32(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 6.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz})$
${ }^{13}$ CNMR	$14.16,21.25,22.83,29.89,35.95,40.84,50.51,56.06,72.49,84.29,91.02$,
$\left(\mathrm{CDCl}_{3}\right)\left(50.3 \mathrm{MH}_{\mathrm{Z}}\right.$	95.65, 96.02, 127.81, 129.25, 135.71, 142.48, 144.54, 196.99,231.54
	for minor isomer 36.43, 41.21, 50.29, 127.63, 213.29
Analysis	Calcd. C: 64.57, H: 5.82
$\left(\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O} 5 \mathrm{Cr}\right)$	Found. C: 64.75, H: 5.61

Compound 9b

Color : Orange

MP :
$136-140{ }^{\circ} \mathrm{C}$
IR ($\mathbf{C H C l}_{3}$): \quad 1977, 1902, $1674 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR (CDCl ${ }_{3}$): $\quad 2.32(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{dd}, 1 \mathrm{H} \mathrm{J}=18 \mathrm{~Hz}, 6 \mathrm{~Hz}), 3.82(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$
(200 MHz) $18 \mathrm{~Hz}, 6 \mathrm{~Hz}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.77$ (t, 1H, J = 6Hz, 4.89 (t, 1H, J $=6 \mathrm{~Hz}), 5.01(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.80(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}), 6.17(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 7.09-7.32(\mathrm{~m}, 9 \mathrm{H})$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}\right): \quad 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18 \mathrm{~Hz}, 6 \mathrm{~Hz})$, 3.97-4.09 (m, 2H), 4.45 (dd, 1H, J = $18 \mathrm{~Hz}, 8 \mathrm{~Hz}$), 4.96 (t, $1 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}), 5.20-5.27(\mathrm{~m}, 1 \mathrm{H}), 6.14(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 . \mathrm{Hz})$, 7.17-7.72 (m, 9H)
for minor isomer $2.35(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right) \quad 21.18,45.70,49.15,56.17,72.38,84.22,90.21,95.72,96.02$,
:
($50.3 \mathrm{MH}_{\mathrm{Z}}$)
Analysis
$\left(\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Cr}\right)$ $126.45,127.96,128.66,129.43,135.97,141.82,144.10$, 144.50, 195.63, 231.32

Calcd. C: 66.95, H: 4.72
Found. C: 66.73, H: 4.89

Complex 10b

Color :	Orange
MP :	Oil
IR $\left(\mathbf{C H C l}_{3}\right):$	$1977,1902,1681 \mathrm{~cm}^{-1}$
${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}\left(\mathbf{C D C l}_{3}\right):$	$0.26(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.95-3.03$
$(200 \mathrm{MHz})$	$(\mathrm{m}, 2 \mathrm{H}), 3.40-3.51(\mathrm{~m}, 1 \mathrm{H}), 5.40-5.54(\mathrm{~m}, 3 \mathrm{H}), 5.62(\mathrm{bd}, 1 \mathrm{H})$,
	$7.15(\mathrm{bs}, 4 \mathrm{H})$
${ }^{\mathbf{1 3}} \mathbf{C N M R ~ (\mathbf { C D C l } _ { 3 })}$	$0.78,21.18,22.17,35.44,46.61,92.60,93.26,99.07,101.93$,
$\left(50.3 \mathrm{MH}_{\mathrm{Z}}\right)$	$104.73,126.97,129.50,136.16,142.88,200.23,231.80$
Analysis $^{\left(\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{SiCr}\right)}$	Calcd. C: $61.88, \mathrm{H}: 5.82$
	Found. C: $61.76, \mathrm{H}: 5.97$

Complex 11b

Color :
MP :
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right): \quad 1967,1892,1673,1675 \mathrm{~cm}^{-1}$
(200 MHz)
($50.3 \mathrm{MH}_{\mathrm{z}}$)

Analysis
$\left(\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiCr}\right)$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right): \quad 0.31(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 1.04-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.51-$
$1.79,(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 3.21-3.31$
(m, 1H), 5.37-5.52 (m, 4H), 7.12 (bs, 4H)
signals separated for minor isomer 0.21 ($\mathrm{s}, 9 \mathrm{H}$
), $2.31(\mathrm{~s}, 3 \mathrm{H}), 5.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz})$.
${ }^{13} \mathbf{C N M R}\left(\mathbf{C D C l}_{3}\right) \quad 0.78,14.08,21.21,22.79,29.85,35.81,41.21,26.28,92.12$, $92.89,93.08,93.33,93.84,99.18,101.81,105.43,127.70$, 129.50, 136.16, 141.82, 200.67, 232.02
signals separated for minor isomer
36.29, 45.70, $98.63,102.23,104.84,141.19,200.15,231.69$.

Calcd. C: 63.93, H: 6.55
Orange
Oil

Found. C: 64.15, H: 5.6.49

References

1. (a) Uemura, M Tricarbonyl (η^{6} arene) chromium Complexes in Organic Synthesis. In Advances in Metal-Organic Chemistry, Ed Liebeskind, L. S, JAI Press, London, 1991, vol 2, p 195. (b) Semmelhack, M. F. Transition Metal Arene Complexes: Nucleophilic Additions. In Comp. Organomet. Chem. II Abel, E. W.; Stone, F. G. A.; Wilkinson, G. Eds. Pergamon, Oxford, 1995, Vol 12, 979. (c) Semmelhack, M. F., Clark, G. R., Garcia, J. L., Harrison, J. J., Thebtaranonth, Y., Wulff, W., Yamashita, A. Tetrahedron 1981, 23, 3957.
2. (a) Davies, S. G.; McCarthy, T. D. Transition Metal Arene Complexes: Side Chain Activation and Control of Stereochemistry. In Comp. Organomet. Chem. II Abel, E. W.; Stone, F. G. A.; Wilkinson, G. Eds. Pergamon, Oxford, 1995, Vol 12, 1039.
3. Ph. D. dissertation of Dr. S. Ganesh, 1997, university of Pune
4. (a) Dauben, W. G.; Chollet, A. Tetrahedron Lett., 1981, 22, 1583. (b) Gassman, P. G.; Chavan, S. P. J. Org. Chem., 1988, 53, 2392. (c) Paquette, L. A; Friedrich, D.; Rogers, R. D. J. Org. Chem., 1991, 56, 3841. (d) Phillips, C. M. G.; Vo, N. H.; Paquette, L. A. J. Am. Chem. Soc., 1991, 113, 2762. (e) Haase, C.; Sarko, C. R.; DiMare, M. J. Org. Chem., 1995, 60, 1777. (f) Seebach, D.; Dahinden, R.; Marti, R. E.; Beck, A. K.; Plattner, D. A.; Kuhnle, F. N. M. J. Org. Chem., 1995, 60, 1788 and references cited therein. (g) Bauer, T.; Chapuis, C.; Kucharska, A.; Rzepecki, P.; Jurczak, J. Helv. Chim. Acta., 1998, 81, 324.
5. (a) Fernandez, J. M., Emerson, K., Larsen, R. H., Gladyzs, J. A. J. Am. Chem. Soc., 1986, 108, 8268. (b) Klein, D. P., Gladyzs, J. A. J. Am. Chem. Soc. 1992, 114, 8710. (c) Springer, J. B., Corcoran, R. C. J. Org. Chem. 1996, 61, 1443. (d) Singh, D. K., Springer, J. B., Goodson, P. A., Corcoran, R. C. J. Org. Chem. 1996, 61, 1436.
6. Heathcock, C. H.; Flippin, L. A. J. Am. Chem. Soc. 1983, 105, 1667. This paper invokes a model where, in presence of in-plane coordinated Lewis acid, the approach of the nucleophile is perpendicular to the $\mathrm{CO} \pi$-plane rendering addition to both faces equally likely.
7. (a) Mandal, S. K.; Sarkar, A. J. Org. Chem. 1999, 64, 2454-2458. (b) Swamy, V. M.; Mandal, S. K.; Sarkar, A. Tetrahedron Lett. 1999, 40, 6061-6064. (c) Sarkar, A.; Ganesh, S.; Sur, S.; Mandal, S. K.; Maity, B. C.; Swamy, V. M.; Suresh, T. J. Organomet. Chem. 2001, 624, 18-23
8. Kossanyi, J.; Furth, B.; Morizur, J.P. Tetrahedron 1970, 26, 395
9. Ph. D. dissertation of Dr. S. Sur, 1997, University of Poona, India.
10. Sur, S.; Mandal, S. K. Ganesh, S.; Puranik, V.G.; Sarkar, A. Ind. J. Chem in press.
11. Davies, S. G.; Goodfellow, C. L. J. Chem. Soc., Perkin Trans. I. 1990, 393-408.

12 For the preparation of organolithium and organomagnesium reagents: In Encyclopedia of reagents for organic synthesis, Paquette, L. A. Ed; John Wiley, NewYork, 1995, Vol 1, 2, 5,6.

Chapter - II

ScandiumTriflate Catalyzed Diasteroselective Addition of Silyl Enol Ethers and Silyl Ketene

 Acetals to Imines Anchored on AreneTricarbonylchromium

Introduction

Imines are important intermediates for the synthesis of nitrogen containing compounds, ${ }^{1 \text { a }}$ such as alkaloids, amino acids, β-lactams, amino sugars and terpenes. They are easily prepared from carbonyl compounds like aldehydes or ketones by treatment with primary amine. A dehydrating agent is used to eliminate a water molecule to produce the $\mathrm{C}=\mathrm{N}$ double bond. ${ }^{\text {If }}$ Imines have lower reactivity than corresponding carbonyl compounds; therefore Lewis acid activation usually facilitates addition of nucleophiles. Addition of enolates of carbonyl compounds or carboxylic esters to imines afford a valuable synthon like a β-amino carbonyl compound. ${ }^{2}$ Although ester enolates do add to imines, a more convenient and common practice is to use Lewis acid mediated addtion of silyl ketene acetal to imines ${ }^{3,4}$ (Scheme-1).

Scheme - 1

Largely stimulated by research on β-lactam antibiotics, several investigations focus on stereochemical issues pertaining to imine condensation, especially those concerning diastereoselectivity induced by a chiral auxiliary. It is believed that Lewis acid mediated addition proceeds through an organized transition state, where the Lewis acidic metal center is bound to both the reacting partners through oxygen and nitrogen atoms. The sterics of the substituents and configuration of stereogenic centers present in one or both of these molecules determine the energy of the transition state. Therefore, often a pronounced threo or erythro selectivity is manifested in the product composition. For example, Shimada reported ${ }^{5}$ that N tosylaldimines react with a silyl ketene acetal in presence of TiBr_{4} to produce the trans- β-amino esters exclusively (Scheme-2).

Scheme -2

Annunziata and co-workers ${ }^{6}$ synthesized β-lactams in one-pot procedure by the reaction of 2-pyridyl thioketene acetals with aldimines in presence of Lewis acid like $\mathrm{TiCl}_{4}, \mathrm{BF}_{3} . \mathrm{OEt}_{2}$, $\mathrm{TBDMSOTf}, \mathrm{EtAlCl}_{2}$, or $\mathrm{Yb}(\mathrm{OTf})_{3}$ (Scheme-3). They achieved high trans-selectivity (trans: cis $98: 2$ to 78:12, depending on Lewis acid).

Scheme - 3

Kobayashi has shown ${ }^{7}$ that three-component (or four- component) coupling reactions of silyl thioketene acetal, α, β-unsaturated thioesters and imines (or amines and aldehydes) proceed smoothly in presence of Lewis acid catalyst to produce δ amino ester and δ-lactam with complete diastereoselectivity (Scheme-4).

Scheme - 4

Presence of a stereogenic center in one partner, such as imine in the following example, can influence the dominant configuration of the new stereogenic center, as shown by Higashiyama and co-workers ${ }^{8}$ during diastereoselective addition of silylketene acetals in presence Lewis acid like $\mathrm{TiCl}_{4}, \mathrm{BF}_{3}$. OEt, TMSOTf, or ShCl_{4} (Scheme-5).

Scheme -5

In the following two examples, optically active, Lewis acid catalysts have been used to effect steeoselectivity in the addition reaction. Kobayashi recently reported ${ }^{9}$ the use of a chiral zirconium catalyst for enantioselective addition of silyl ketene acetal to imine where none of the reactants was chiral (Scheme-6).

Scheme -6

Based on the fact that $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ is also an effective Lewis acid for such addition, Yamamoto and others ${ }^{10}$ developed BINOP-based chiral boron reagents for
asymmetric aldol type addition to chiral imine (Scheme-7). The high selectivity could be a result of double stereodiferentiation in this instance.

Scheme - 7

In 1993, Kobayashi introduced ${ }^{11}$ scandium trifluoromethanesulfonate (or triflate) $\left[\mathrm{Sc}(\mathrm{OTf})_{3}\right]$ as a promising Lewis acid catalyst for various types of carboncarbon bond formation reaction under mild condition. The range of reactions includes aldol type addition of silyl ketene acetals or silylenol ethers to imine (Scheme-8). ${ }^{11}$

Scheme-8

Aldol type reactions with imine were initially carried out in presence of stoichiometric amount of classical Lewis acid such as $\mathrm{TiCl}_{4}{ }^{3}, \mathrm{BF}_{3} . \mathrm{OEt}_{2}{ }^{12}$ etc. In order to accommodate acid sensitive functional groups in the substrates milder catalysts were developed later. Among such catalysts are TMSOTf, $\operatorname{Sn}(\mathrm{OTf})_{2}$, $\mathrm{Me}_{3} \mathrm{SiI}$, and $\mathrm{SnCl}_{4} .^{12}$ Although these are milder, yet the difficulties associated with such Lewis acids, viz. moisture-sensitivity, hazardous nature and disposal problems continue to be a cause of concern. Kobayashi's triflate catalysts are free of many of these discouraging attributes. Kobayashi ${ }^{13}$ used either ytterbium triflate or scandium
triflate to catalyze a three-component reaction comprising of an aldehyde, an imine and a silyl ketene acetal to afford of β-amino ester in good yield (Scheme-9).

Scheme-9

Scandium triflate catalyzed addition of silyl ketene acetal and silyl enol ether is believed to proceed through the same catalytic cycle (Figure-1) as suggested in Mukaiyama aldol reaction.

Figure - 1

Of all rare earth triflates, $\mathrm{Sc}(\mathrm{OTf})_{3}$ has drawn special attention because of its reactivity is in between aluminium and lanthanum. It can be prepared very easily from $\mathrm{Sc}_{2} \mathrm{O}_{3}$ and an aqueous solution of triflic acid (eq-1).

Equation $1 \quad \mathrm{Sc}_{2} \mathrm{O}_{3}+6 \mathrm{TfOH} \rightarrow 2 \mathrm{Sc}(\mathrm{OTf})_{3}+3 \mathrm{H}_{2} \mathrm{O}$

A significant advantage of using scandium triflate is that it is not only watertolerant, but also more soluble in water than in organic solvent such as dichloromethane. This property permits this catalyst to be recovered from the aqueous layer after the rection is completed (Scheme-10).

Scheme-10

Chiral scandium triflate has also been used for asymmetric reaction. A recent example is the BINOL based scandium triflate \mathbf{A} (Figure-2). ${ }^{14}$

Figure - 2

Present Work

In nucleophilic addition to chiral arene-chromium complexes such as o substituted aryl aldehydes complexed with tricarbonylchromium shown in Chart-1, it is evident that configuration of the new stereogenic center would depend on the preferred syn or anti orientation of the carbonyl group if diastereoface selectivity remains the same. These substrates have been widely used for the stereoselective synthesis of a number of interesting products. ${ }^{15}$

Chart-1

The anti conformer ${ }^{16}$ is the predominant one when the ortho substituent is an alkyl group, an alkoxy group or a halide. Nucleophiles, as a general rule, add to the bezylic site preferentially from the face opposite to bulky tricarbonylchromium (exo addition). It is also well-established ${ }^{17}$ that nucleophilic addition to correponding imine complexes follows a similar pattern (Figure-3).

Figure - 3

Buttero ${ }^{18}$ has shown that enolate addition to imine derived from a chiral tricrbonylchromium complex is highly diastereoselective (Scheme-11).

Scheme - 11

Recently, Ishimaru and co-workers ${ }^{19}$ have reported $\mathrm{Zn}(\mathrm{OTf})_{2}$ catalyzed diastereoselective Mannich-type reaction on benzaldimine -tricarbonylchromium derivatives (Scheme-12)

Scheme-12

We have earlier reported from this laboratory that triflate-catalyzed addition of silyl enol ethers and silyl ketene acetals to chiral, chromium-complexed aryl aldehydes at ambient temperature is highly diastereoselective (Scheme-13). ${ }^{20}$

Scheme-13

It was of interest, therefore, to examine the utility of imine derived from $o-$ substituted benzaldehyde chromium complexes as starting material for diastereoselective synthesis of β-amino carbonyl compounds. Use of rare earth triflate as the Lewis acid catalyst was also of interest in view of practical advantages. If we could indeed obtain diastereomerically pure β-amino carbonyl compounds, synthesis of optically pure β-amino esters and β-lactams by the reported procedure ${ }^{21}$ would be an obvious next step (Scheme-14).

Scheme-14

Kobayashi have performed ${ }^{11}$ addition of silyl enol ether or silyl ketene acetals on imines in presence of $5 \mathrm{~mol} \%$ of $\mathrm{Sc}(\mathrm{OTf})_{3}$ at $0{ }^{\circ} \mathrm{C}$ in dichloromethane. This precedence was an encouraging starting point.

Results and Discussion

The dimethyl acetal complexes (1-3) were prepared ${ }^{22}$ by thermolysis of $\mathrm{Cr}(\mathrm{CO})_{6}$ in presence of corresponding aromatic acetals (Scheme-15) in a mixture of dibutyl ether and tetrahyrofuran (10:1) at $130{ }^{\circ} \mathrm{C}$ for $16-18 \mathrm{~h}$. The aldehydes (4-6) were obtained by deprotection of the corresponding dimethyl acetal complexes under acidic condition.

Scheme-15

For the preparation of ortho-trimethylsilyl aldehyde ${ }^{23}$ complex, 7, the trimethylsilyl group was introduced by lithiation of benzaldehyde dimethyl acetal complex at $-78{ }^{\circ} \mathrm{C}$ in THF followed by quenching with chlorotrimethylsilane.

Acidic hydrolysis of the ortho trimethylsilyl acetal complex gave the desired aldehyde complex, 9 (Scheme-16).

Scheme-16

Silyl enol ether of acetophenone (10b) or cyclohexanone (10c) was prepared ${ }^{24}$ by refluxing acetophenone or cyclohexanone with chlorotrimethylsilane and triethylamine in DMF (Scheme-17). Silyl enol ether of acetone (10a) was synthesized ${ }^{25}$ by treating acetone with chlorotrimethylsilane in the presence of sodium iodide and triethylamine in acetonitrile. Propiophenone silyl enol ether was prepared 26 by treatment of propiophenone with LDA in THF at $-78{ }^{\circ} \mathrm{C}$ and quenching the enolate with chlorotrimethylsilane at- $78{ }^{\circ} \mathrm{C}$. This afforded only the Z-isomer as indicated by the proton NMR spectrum and comparison with reported ${ }^{25}$ data. Silyl ketene acetal of methyl phenylacetate was prepared by the same method ${ }^{27}$ as for propiophenone. It afforded a mixture of silyl ketene acetals in the ratio of $E: Z$ $=76: 24$ (determined by relative peak are for signals due to $\mathrm{OSiMe}_{3}, \mathrm{OMe}$).

Scheme-17

Enolsilane	R	R^{\prime}	Conditions
$\mathbf{1 0 a}$	CH_{3}	H	$\mathrm{TMSCl}, \mathrm{NaI}, \mathrm{Et}_{3} \mathrm{~N}$, acetone, reflux
$\mathbf{1 0 b}$	Ph	H	$\mathrm{TMSCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}$, reflux
$\mathbf{1 0 c}$	$-\left(-\mathrm{CH}_{2}-\right)_{4^{-}}$	$-\left(-\mathrm{CH}_{2}\right)_{4^{-}}$	$\mathrm{TMSCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}$, reflux
$\mathbf{1 0 d}$	Ph	CH_{3}	$\mathrm{LDA} / \mathrm{THF}, \mathrm{TMSCl},-78{ }^{\circ} \mathrm{C}$

Racemic ortho-methoxy benzaldehyde complex (+)-5 was resolved to enantiopure aldehydes by Solladie'-Cavallo's method ${ }^{28}$ (Scheme-18) using (S)-(-)-5-(α-phenylethyl) semioxazamide. The reagent (S)-(-)-5-($\alpha-$ phenylethyl)semioxazamide was synthesized in two steps from (S)-(-)- $\alpha-$ phenylethyamine. First step is the preparation of (S)-(-)- α-phenylethyloxamide from diethyl oxalate and (S)-(-)- α-phenylethyamine. Second step is the reacton of (S)-(-)- α-phenylethyloxamide with 85% hydrazine hydrate to produce (S)-(-)-5-($\alpha-$ phenylethyl)semioxazamide. Then (S)-(-)-5-(α-phenylethyl)semioxazamide on refluxing with racemic aldehyde $(\pm)-5$ in benzene in presence of catalytic amount of p-toluenesulfonic acid produced diastereomeric pair of semioxazone 14, which were separated by column chromatography. These semioxazones were separately hydrolyzed with $60 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in benzene to produce both the enantiomers of chromium tricarbonyl complex of ortho-methoxy-benzaldehyde, (+)-5 and (-)-5.

Scheme-18

Complexed imines ($\mathbf{1 6 a} \mathbf{- d}$) were prepared according to standard procedure ${ }^{18}$ by overnight stirring of a mixture of complex aldehyde (4-6), amine and anhydrous magnesium sulphate in dichloromethane (Scheme-19). All new imine complexes were isolated and characterized by their spectral and analytic al data.

Scheme-19

The reaction of tricarbonylchromium complex aldimines, 16a-d, with silyle enol ether was performed in dichloromethane using $5 \mathrm{~mol} \% \mathrm{Sc}(\mathrm{OTf})_{3}$ as catalyst following a literature procedure ${ }^{11}$ (Scheme-20).

Scheme-20

A set of representative starting materials (metarcomplexed aryl aldimines, 16a-d, and enolsilanes 10a-d and the product 17a-h obtained are displayed in Chart2. β-Amino carbonyl compounds were obtained in excellent yield with very high diastereoselectivity even at room temperature. In almost all cases, only a single diastereomer was isolated after purification by chromatography.

Chart-2

10a-d

17a-h
16a-d

R ${ }^{1}$	R^{2}	R^{3}	\mathbf{R}^{4}		R ${ }^{1}$	R^{2}	\mathbf{R}^{3}	\mathbf{R}^{4}
16a :Me	$p-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}-$	10a: H	Me	17a:	Me	$p-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}$	H	Me
16b: F	"	10b: H	Ph	17b :	Me	"	H	Ph
16c : OMe	"	10c: Me	Ph	17c :	Me	"	$-(\mathrm{CH})_{4-}$	
16d: Me	$-\mathrm{H}_{2} \mathrm{COCH}=\mathrm{CH}_{2}$	10d:	$-\left(\mathrm{CH}_{2}\right)_{4}{ }^{-}$	17d :	Me	"	Me	Ph
				17e:	F	"	H	Me
				17f :	F	${ }^{\prime}$	H	Ph
				17g :	OMe	"	H	Me
				17h :	OMe	"	H	Ph

An interesting substrate was the unsymmetrically substituted - but stereoisomerically pure - silyl enol ether, 10c, which would result in a product with more than one stereogenic center. We found that at room temperature, the reaction produced a diastereomeric mixture of ketone $\mathbf{1 7 d}$ (80:20). But when the reaction was performed at $\quad-78^{\circ} \mathrm{C}$, a single diastereomer of $\mathbf{1 7 d}$ was obtained. Based on the Z^{-} configuration of the silyl enol ether $\mathbf{2 c}$, exo-selective addition to the anti-conformer of the imine and vicinal coupling constant $(6 \mathrm{~Hz})$ of the benzylic proton with adjacent methine proton in $\mathbf{3 c}$, the erythro stereochemistry of $\mathbf{3 c}$ has been tentatively proposed. The reaction condition and yields are summarized in Table-1.

Table -1

Product	Imine	Enol silane	Temp. ${ }^{\circ} \mathrm{C}$	Time (min)	Yield(\%)
$\mathbf{1 7 a}$	$\mathbf{1 6 a}$	$\mathbf{1 0 a}$	rt	15	90
$\mathbf{1 7 b}$	$\mathbf{1 6 a}$	$\mathbf{1 0 b}$	rt	15	90
$\mathbf{1 7 c}$	$\mathbf{1 6 a}$	$\mathbf{1 0 d}$	rt	15	91
$\mathbf{1 7 d}$	$\mathbf{1 6 a}$	$\mathbf{1 0 c}$	-78	40	87
$\mathbf{1 7 e}$	$\mathbf{1 6 b}$	$\mathbf{1 0 a}$	rt	15	86

$\mathbf{1 7 f}$	$\mathbf{1 6 b}$	$\mathbf{1 0 b}$	rt	15	83
$\mathbf{1 7 g}$	$\mathbf{1 6 c}$	$\mathbf{1 0 a}$	rt	15	86
$\mathbf{1 7 h}$	$\mathbf{1 6 c}$	$\mathbf{1 0 b}$	rt	15	84

Silyl ketene acetals (10e) derived from methyl iso-butyrate by the treatment of LDA and chlorotrimethylsilane, rapidly added to the some of the imine complexes, viz. (+)-16a, (-)-16a, 16b, and 16d, at room temperature to produce corresponding β-amino esters with excellent yield and diastereoselectivity (Scheme21).

Scheme-21

10e
18a, (-)18a, (+) 18a, 18b, or 18c
$(+) \mathbf{1 6 a}:[\alpha]_{D}^{25}=+323,\left(\mathrm{c} 0.40, \mathrm{CHCb}_{3}\right) \quad(-) \mathbf{1 8 a}:[\alpha]_{D}{ }^{25}=-88.00(\mathrm{c} 0.40, \mathrm{CHCl})$
$(-) \mathbf{1 6 a}:[\alpha]_{\mathrm{D}}{ }^{25}=-320,\left(\mathrm{c} 0.40, \mathrm{CHC}_{3}\right) \quad(+) \mathbf{1 8 a}:[\alpha]_{\mathrm{D}}{ }^{25}=+90.00(\mathrm{c} 0.40, \mathrm{CHCl})$

Table - 2

Imine	Product	Temp. ${ }^{\circ} \mathbf{C}$	Time (min)	Yield(\%)
$\mathbf{1 6}$	$\mathbf{1 8 a}$	rt	10	93
$(+) \mathbf{1 6 a}$	$(-)$ 18a	rt	10	95
$(-) \mathbf{1 6 a}$	$(+)$ 18a	rt	10	90
16b	$\mathbf{1 8 b}$	rt	10	92
16d	18c	rt	10	90

We believe the addition of enol silane or silyl ketene acetal to metalcomplexed imines to be exo-selective (takes place from the face opposite to the metal) on the anti-conformer (brtho-substituent and N facing away from each other).

This is consistent with the literature precedent ${ }^{18}$ and also confirmed by the crystal structure of β-amino ester 18a as depicted in Figure-4.

Figure -4. X-ray crystal structure of compound 18a

The next objective was to transform suitable, diastereomerically or enantiomerically pure β-amino esters to biologically significant β-lacatams. Among several available methods for converting β-amino ester to β-lactam by treatment with base like MeMgI, t-BuOK, LDA, ${ }^{3 b}$ we selected MeMgI as our reagent. Treatment of freshly prepared MeMgI in ether to β-amino esters 18b and 18d at 0 ${ }^{\circ} \mathrm{C}$ readily resulted in cyclization to afford corresponding β-lactams, 19b and 19d respectively, in excellent isolated yield (Scheme-22). From optically pure β-amino ester, (+)-18a and (-)-18a, optically pure β-lactam products, $(+)$-19a and (-)-19a were prepared by the same method. The yellow crystalline products were characterized by the typical IR absorption of to β-lactam moiety at $1753 \mathrm{~cm}^{-1}$ and NMR spectral pattern was consistent with their structures.

Scheme - 22

18a, (-) 18a, (+) 18a, 18b, or 18c
19a, (-)19a, (+)19a, 19bor 19c

$$
\begin{aligned}
& (-) \mathbf{1 9} \mathbf{a}:[\alpha]_{\mathrm{D}}{ }^{25}=-100.36\left(c 0.20, \mathrm{CHCl}_{3}\right) \\
& (+) \mathbf{1 9 a}:[\alpha]_{\mathrm{D}}{ }^{25}=+100.76\left(c 0.20, \mathrm{CHCb}_{3}\right)
\end{aligned}
$$

Table -3

β-aminoester	β-lactam	Temp. ${ }^{\circ} \mathbf{C}$	Time (min)	Yield(\%)
$\mathbf{1 8}$	$\mathbf{1 9 a}$	0	10	90
$(+) \mathbf{1 8 a}$	$(-) \mathbf{1 9 a}$	0	10	92
$(-) \mathbf{1 8 a}$	$(+) \mathbf{1 9 a}$	0	10	90
18b	$\mathbf{1 9 b}$	0	10	85
18d	$\mathbf{1 9} \mathbf{c}$	0	10	88

Finally, uncomplexed 20a was obtained almost quantitatively by exposure of 19a to air and sunlight in dichloromethane solution (Scheme-23).

Scheme-23

It was found that ytterbium triflate was also as effective as scandium triflate. Two reactions were carried out on imine 16a - with acetone enol silane and with
methyl trimethylsilyl ketene acetal - using ytterbium triflate as the catalyst in dichloromethane. Under the same set of reaction conditions, comparable yield of products were obtained. In our hands, reaction of ortho-trimethylsilyl-substituted imine complex with methyl trimethylsilyl dimethyl ketene acetal, 10e, under the same set of conditions did not give the desired product (Scheme-24). Increasing the amount of catalyst up to 30%, changing to acetonitrile as the reaction medium, or switching from scandium triflate to ytterbium triflate as catalyst failed to improve the situation.

Scheme-24

$$
\mathrm{M}=\mathrm{Sc}, \mathrm{Yb}
$$

In the light of a reported reaction, ${ }^{23}$ a probable explanation of this failure can be offered. The imine function can adopt two possible conformations with respect to the ortho-substituent (Chart-3). While for conformer B, nucleophilic approach is unhindered, the conformer \mathbf{B} is highly destabilized as the Lewis acid co-ordinates with the nitrogen atom of imine. If conformer \mathbf{A} is considered, the bulky trimethylsilyl group obstructs the trajectory of the nucleophile along the preferred angle of attack $\left(c a .109^{\circ}\right)$ and the required transition state is not attained.

Chart-3

(A)
(B)

With a view to introducing one additional stereogenic center in the β-amino ester and eventually in the target β-lactam, silyl ketene acetal 10 f was prepared from methyl ester of phenylacetic acid using LDA and chlorotrimethylsilane at $-78{ }^{\circ} \mathrm{C}$. The product 10 f was obtained as a mixture of stereoisomers ($E: Z=76: 24$). Upon treatment of 1.5 equivalents of silyl ketene acetal $\mathbf{1 0 f}$ with imine $\mathbf{1 6 a}$ at $-78{ }^{\circ} \mathrm{C}$ in dichloromethane (Scheme-25), the β-amino ester was obtained in 82% yield as a diastereomeric mixture (lr 80:20). However, when the imine 16a was treated with a large excess (5 equivalents) of silyl ketene acetal $\mathbf{1 0 f}$, single diastereomer of the product 21 was obtained. Unfortunately this product did not undergo cyclization on subsequent treatment with MeMgI , LDA or ${ }^{t} \mathrm{BuOK}$ to furnish the desired β-lactam.

Scheme-25

Summary

We have demonstrated that $\mathrm{Sc}(\mathrm{OTf})_{3}$ or $\mathrm{Yb}(\mathrm{OTf})_{3}$ is an efficient yet mild catalyst for diastereoselective addition of silyl enol ethers or silyl ketene acetals to chromium tricarbonyl complex imines. Reaction is very faster than observed for uncomplexed aldimine. The practical advantages of catalyst stability and ambient temperature add to the merit of this reaction.

Experimental

All the reactions were performed under an inert atmosphere of argon. Scandium oxide and Ytterbium oxides were purchased from Strem Chemicals, USA. Scandium and ytterbium triflates were prepared according to the reported procedure. Chlorotrimethylsilane and triflic acid were purchased from Aldrich Chemical Company, and used as received. Dichloromethane and acetonitrile were dried over anhydrous $\mathrm{P}_{2} \mathrm{O}_{5}$. DMF was freshly distilled over calcium hydride.

Silyl enol ether and silylketene acetals were prepared according to the reported ${ }^{24-27}$ procedure. Ortho-substituted benzaldehyde tricarbonylchromium complex and their corresponding imines were prepared by standard literature procedure. ${ }^{22-23}$

General Procedure for the preparation of imines (16a, 16b, 16c, 16d): of complex aldehyde (1 mmol) and amine (1.1 mmol) were stirred overnight in 10 mL of dichloromethane in presence of 1 equivalent of anhydrous MgSO_{4} under inert atmosphere of argon. It was then filtered through celite -pad and crystallized from dichloromethane/pet ether. Yields from reactions performed in 4 mmol scale were in the range of $95-98 \%$. 16a and $\mathbf{1 6 c}$ are reported earlier. ${ }^{18}$

Complex 16a

Yield 95\%

Color : Orange
MP :
$97^{\circ} \mathrm{C}$, lit. $97^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right):$
$2.46(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 5.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.32(\mathrm{t}, 1 \mathrm{H}$,
(200 MHz)
$\mathrm{J}=4 \mathrm{~Hz}), 5.58(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}),, 6.44(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz})$, $6.95(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.25(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 8.35(\mathrm{~s}, 1 \mathrm{H})$.

Complex 16b

Yield $\quad 92 \%$
$\begin{array}{cc}\text { Color : } & \text { Orange } \\ \text { MP : } & 76^{\circ} \mathrm{C}\end{array}$

IR ($\left.\mathbf{C H C l}_{3}\right): \quad 1616,1896,1969 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$) : $\quad 2.37(\mathrm{~s}, 3 \mathrm{H}), 4.23(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=2 \mathrm{~Hz}), 5.09-5.35(\mathrm{~m}, 4 \mathrm{H}), 5.53$
(200 MHz) $(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.92-6.12(\mathrm{~m}, 1 \mathrm{H}), 6.25(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz})$, 8.17 ($\mathrm{s}, 1 \mathrm{H}$)
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right): ~ 18.57,63.34,89.55,92.89,93.11,94.80,98.99,109.87$, $\left(50.3 \mathrm{MH}_{\mathrm{Z}}\right) \quad 116.53,135.53,156.63,232.54$.

Analysis
Calcd. C: 56.95, H: 4.43, H: 4.74
$\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{NCr}\right) \quad$ Found. C: 56.83, H: 4.51, H: 4.72

Complex 16c

Yield 98\%
Color : Orange
MP : $\quad 138^{\circ} \mathrm{C}$, lit. $138^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}\right): \quad 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 5.01-5.07(\mathrm{~m}, 2 \mathrm{H}), 5.72(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ (200 MHz) $6 \mathrm{~Hz}), 6.645(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 6.93(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.23(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}$)

Complex 16d

Yield 95\%
Color : Yellow
MP : $\quad 110^{\circ} \mathrm{C}$
IR ($\left.\mathbf{C H C l}_{3}\right): \quad 1637,1899,1971 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$) : $\quad 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.99-5.08(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.58-$
$(200 \mathrm{MHz}) \quad 5.70(\mathrm{~m}, 1 \mathrm{H}), 6.53-6.58(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 7.26$ (d, 2H,
$\mathrm{J}=10 \mathrm{~Hz}), 8.40(\mathrm{~s}, 1 \mathrm{H})$
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right) 55.69,78.37,78.78,86.50,89.66,90.72,92.97,114.76$,
$:\left(50.3 \mathrm{MH}_{\mathrm{z}}\right) \quad 122.78,143.69,147.55,230.88$

Analysis
Calcd. C: 55.89, H: 3.31, H: 3.83
$\left(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{NCrF}\right)$
Found. C: 55.95, H: 3.51, H: 4.10

Preparatiom of silyl enol ether of propiophenone (10c): To a solution of 1.5 mL (11 mmol) of diisopropylamine in 20 mL THF , at $0^{\circ} \mathrm{C}$ was added dropwise a solution of n -BuLi ($7 \mathrm{~mL}, 1.56 \mathrm{M}, 11 \mathrm{mmol}$) in hexane. After 15 min , the solution was cooled to $-78^{\circ} \mathrm{C}$ and $1.34 \mathrm{~mL}(9.98 \mathrm{mmol})$ propiophenone in 5 mL THF was added dropwise over 5 min . After stirring at $-78^{\circ} \mathrm{C}$ for 1 h chlorotrimethylsilane $(1.52 \mathrm{~mL}, 11 \mathrm{mmol})$ was added and the solution was allowed to warm to room temperature during1 hr . Then reaction mixture was quenched with saturated ammonium chloride solution at $0^{\circ} \mathrm{C}(2 \mathrm{~mL})$. THF and excess diisopropylamine were removed under vacuum, diluted successively with pentane, washed with 1.5 N HCl , saturated NaHCO_{3} solution and finally with brine solution.The pentane extract was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and finally kugelrohr distillation afforded propiophenone silylenol ether (10c) with 90% yield. This compound has been reported earlier. ${ }^{26}$
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}\right): \quad 0.15(\mathrm{~s}, 9 \mathrm{H}), 1.75(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.78(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz})$, (200 MHz) 7.15-7.55 (m, 5H)

Preparation of silylketene acetal from methyl phenyl acetate (10f) : To a solution of diisopropylamine (1.0 mL 7.3 mmol) in 10 mL of anhydrous THF at 0 ${ }^{\circ} \mathrm{C}$ was added dropwise a solution of $\mathrm{BuLi}(4.7 \mathrm{~mL}, 1.56 \mathrm{M}, 7.3 \mathrm{mmol})$ and the solution was stirred for another 30 min . Then it was cooled to $-78{ }^{\circ} \mathrm{C}$ and stirred for another 15 min . A solution of methyl phenyl acetate ($1 \mathrm{~g} 6.6, \mathrm{mmol}$) in 5 mL THF was added dropwise. The solution was stirred for another 30 min at $-78{ }^{\circ} \mathrm{C}$ and chlorotrimethylsilane $1.0 \mathrm{~mL}(8 \mathrm{mmol})$ was added dropwise. After stirring for 1 hr at $-78{ }^{\circ} \mathrm{C}$, reaction mixtures was allowed to come to room temperature for 2 h . Solvent was rapidly evaporated under reduced pressure. The crude residue was distilled under vacuum to afford silyl ketene acetal (10f). ${ }^{1} \mathrm{HNMR}$ of the product showed the mixure of $\mathrm{E} \& \mathrm{Z}$ isomer in the ratio 76: 24. 10f is reported earlier. ${ }^{27}$
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right) 0.4(\mathrm{~s}, 9 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz})$, :
(200 MHz) $7.35(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 7.40-7.55(\mathrm{~m}, 2 \mathrm{H})$.
signals separated for minor isomer $0.35(\mathrm{~s}, 9 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, 4.70 ($\mathrm{s}, 3 \mathrm{H}$).

Resolution of racemic chiral complex aldehyde (\pm)-5 to optically pure

 aldehydes: i) Synthesis of oxamide (- - $\mathbf{- 1 2}$: To a $5.0 \mathrm{~g}(0.04 \mathrm{~mol})$ of distilled (S)- (-)- α-phenyl ethylamine in 50 mL of absolute ethanol at room temperature was added slowly with stirring to distilled diethyl oxalate ($12.6 \mathrm{~mL}, 8.3 \mathrm{~mol}$).The reaction mixture was allowed to stir for 24 hours, and a small amount of diamide was removed by filtration. Ethanol and unreacted diethyl oxalate was removed by vacuum distillation. The residue, which solidified, was recrystallized from absolute ethanol to give $6.8 \mathrm{~g}(80 \%)$ of colorless needles, m.p. $55^{\circ} \mathrm{C}$; lit..$^{29} 54^{\circ} \mathrm{C}$.ii) Synthesis of semioxazamide (-)-13: To a solution of $5 \mathrm{~g}(0.025 \mathrm{~mol})$ of oxazamide $(-)-\mathbf{1 2}$ in 50 mL of absolute ethanol was added with stirring $1.5 \mathrm{~g}(0.025$ mol) of 85% hydrazine hydrate. A precipitate formed immediately and the entire contents of the reaction flask became a semi-solid mass. The crude product was dissolved in 95% of ethanol and the solution was filtered to remove traces of dihydrazide of oxalic acid. The very fine needles, which separated from the filtrate, were recrystallized from ethanol to give $4.90 \mathrm{~g}(90 \%)$ of semioxazamide $(-)-\mathbf{1 3}, \mathrm{m} . \mathrm{p}$. $155{ }^{\circ} \mathrm{C}$, and lit..$^{29} 157^{\circ} \mathrm{C}$.
iii) Preparation of semioxazones 14: A mixture of semioxazamide ($0.770 \mathrm{~g}, 0.004$ $\mathrm{mol})$, tricarbonylchromium-complexed aldehyde $(1.00 \mathrm{~g}, 0.004 \mathrm{~mol})$ and p toluenesulfonic acid $(0.076 \mathrm{~g}, 0.0004 \mathrm{~mol})$ was refluxed in benzene until no more starting aldehyde could be detected by TLC (approximately 3 hours). After being cooled, washed $\left(\mathrm{NaHCO}_{3}\right)$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent was removed under vacuum to give orange-red crystal of diastereomeric semioxazones with 80% yield. The pure diastereomers were separated by flash column chromatography (ether/ pet ether 90:10).
iv)The pure diastereomers were independently hydrolyzed by refluxing with 60% $\mathrm{H}_{2} \mathrm{SO}_{4}$ in benzene until no starting material could be detected by TLC (approximate 3 hours). Reaction mixture was cooled, washed with saturated solution of NaHCO_{3} and water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Flash column chromatography (ether/pet ether 8:2) afforded pure enantiomer of complex 5, optical rotation was recorded and compared with reported ${ }^{28}$ value.
(+)-5 Recorded: $[\alpha]_{\mathrm{D}}{ }^{25}=+660^{\circ}\left(c 0.22, \mathrm{CHCl}_{3}\right) \quad$ Lit. $^{28} \cdot[\alpha]_{\mathrm{D}}{ }^{25}=+665^{\circ}\left(c 0.22, \mathrm{CHCl}_{3}\right)$
$(-)-5 \quad$ Recorded : $[\alpha]_{\mathrm{D}}{ }^{25}=-662^{\circ}\left(c 0.22, \mathrm{CHCl}_{3}\right) \quad \mathrm{Lit}{ }^{28} \cdot[\alpha]_{\mathrm{D}}{ }^{25}=-664^{\circ}\left(c 0.22, \mathrm{CHCl}_{3}\right)$

Typical procedure of the addition of sily enol ethers (10a-10d) to complex imine (16a-16d): To a suspension of $\mathrm{Sc}(\mathrm{OTf})_{3}(0.02 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, a mixture of silyl enol ether or silyl ketene acetals and imine (1 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) was added dropwise under an argon atmosphere at room temperature. After stirring for $10-15 \mathrm{~min}$, water was added and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crude products were purified by flash chromatography (15% acetone-pet ether). Reactions were performed in $0.5-0-2.0 \mathrm{mmol}$ scale and isolated yields are indicated in table -1 .

Complex 17a

Color: Yellow
MP:
$138^{\circ} \mathrm{C}$
IR ($\mathbf{C H C l}_{3}$): $\quad 1712,1905,1978 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$): $\quad 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.83-3.06(\mathrm{~m}, 2 \mathrm{H}$ two close dd (200 MHz) merges), 3.75 ($\mathrm{s}, 4 \mathrm{H}$, actually, $\mathrm{N}-\mathrm{H}$ merges here with OCH_{3}), $4.69(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}) 5.01-5.11(\mathrm{~m}, 2 \mathrm{H}), 5.48(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6$ $\mathrm{Hz}), 5.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 6.70(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 6.81(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}$)
${ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}\right): \quad 19.08,30.77,49.70,50.88,55.88,87.86,91.79,94.22,95.94$
($50.3 \mathrm{MH}_{\mathrm{Z}}$) $109.36,112.36,115.17,116.12,140.20,153.20,206.40$, 233.05

Analysis
$\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{NCr}\right)$

Calcd. C: 60.13, H: 5.05, N: 3.34
Found. C: 59. 96, H: 5.02, N: 3.50

Complex 17b

Color:
MP:
IR (CHCl_{3}):
${ }^{1} \mathrm{H}$ NMR $\left(\mathbf{C D C l}_{3}\right)$: (200 MHz)

Yellow
$150{ }^{\circ} \mathrm{C}$
$1710,1899,1973 \mathrm{~cm}^{-1}$
2.38 (s, 3H), 3.50 (dd, 1H, J = $18 \mathrm{~Hz}, 10 \mathrm{~Hz}$), 3.62 (dd, 1H, J $=18 \mathrm{~Hz}, 10 \mathrm{~Hz}) 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{bs}, 1 \mathrm{H}), 4.88(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6$ Hz),
5.02-5.08 (m, 2H), $5.48(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.78(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8$
$\mathrm{Hz}), 6.73(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 6.82(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.43-7.64$ (m, 2H), 7.90 (d, 2H, J = 8 Hz)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}$): 19.41, 44.59, 51.14, 56.06, 87.64, 91.75, 94.06, 95.98,
(50.3 MH ${ }^{\text {I }}$)
$110.21,113.40,115.42,116.23,128.29,129.06,133.88$, 136.93, 140.42, 198.09, 233.09

Analysis	Calcd. C: 64.85, H: 4.78, N: 2.91
	Found. C: 64.76, H:5.02, N: 2.70

Complex 17c

Color:	Yellow
MP:	$101^{\circ} \mathrm{C}$

IR ($\mathbf{C H C l}_{3}$): $\quad 1712,1903,1975 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$): $1.53-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.95-2.52(\mathrm{~m}, 9 \mathrm{H}$, include aromatic $(200 \mathrm{MHz}) \quad$ methyl), 2.56-2.81(m, 1H), $3.52(\mathrm{bs}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 4.80$ (bs, 1 H), 4.95-4.06 (m, 2H), $5.47(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.66(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}$),
6.71-6.81(m, 4H)
${ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}\right): \quad 19.67,25.22,27.39,29.52,42.46,52.05,55.91,57.09,86.97$, $\left(50.3 \mathrm{MH}_{\mathrm{Z}}\right) \quad 91.09,94.18,96.24,110.24,114.25,115.02,115.46,141.08$, 152.84, 210.59, 233.09.

Analysis
Calcd. C: 62.74, H: 5.48, N: 3.08
($\left.\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{NCr}\right)$
Found. C: 62.56, H: 5.52, N: 2.94

17d

Color:	Yellow
MP:	$125^{\circ} \mathrm{C}$

IR ($\mathbf{C H C l}_{3}$): $\quad 1715,1908,1981 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$): $\quad 1.35(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.91-4.04$
(200 MHz) $(\mathrm{m}, 1 \mathrm{H}), 4.55-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.84-4.91(\mathrm{~m}, 3 \mathrm{H}), 5.35(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}$ $=6 \mathrm{~Hz}), 5.71(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}) 6.75-6.85(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.59$ $(\mathrm{m}, 3 \mathrm{H}), 7.73(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz})$
${ }^{13} \mathbf{C N M R} \quad\left(\mathbf{C D C l}_{3}\right) \quad 16.83,19.35,29.92,45.81,56.01,58.22,87.03,90.54,94.39$,
$\left(50.3 \mathrm{MH}_{\mathrm{Z}}\right) \quad 96.12,107.96,110.43,115.15,115.41,128.33$, 128.98, 133.84, 137.14, 141.72, 152.81, 203.69, 232.98

Analysis
($\left.\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{NCr}\right)$
Calcd. C: 65.45, H: 5.08, N: 2.82
Found. C: 65.37, H: 5.15, N: 2.98

Complex 17e

Color:
MP:
IR ($\left.\mathbf{C H C l}_{3}\right)$:
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$:

Yellow
$101{ }^{\circ} \mathrm{C}$
1710, 1905, $1976 \mathrm{~cm}^{-1}$
$2.17(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.09$
(d, 1H, J = 9 Hz), 4.65-4.95 (m, 2H), $5.24(\mathrm{t}, 1 \mathrm{H}$, $\mathrm{J}=6.4 \mathrm{~Hz}), 5.45(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.75(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz})$, 6.70-6.82 (m, 4H)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C O}_{3}$): $\quad 29.89,49.15,49.96,55.14,75.98,77.05,84.29$, ($50.3 \mathrm{MH}_{\mathrm{Z}}$)
93.48, 93.70, 99.96, 100.04, 114.47, 115.68, 139.17, 152.70, 205.74, 231.03

Analysis
($\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{NCrF}$)

Complex 17f
Color:
MP:
IR (CHCl_{3}):
${ }^{1} \mathrm{H}$ NMR $\left(\mathbf{C D C l}_{3}\right)$:
(200 MHz)
Calcd. C: 56.74, H: 4.28, N: 3.30
Found. C: 56.68, H: 4.15, N: 3.25

Yellow

$141{ }^{\circ} \mathrm{C}$
1708, 1897, $1972 \mathrm{~cm}^{-1}$
3.61-3.67 (m, 2H), 3.75 ($\mathrm{s}, 3 \mathrm{H}$), 4.22-4.35 (bs, 1H), 4.80 (t, 1H, J $=6 \mathrm{~Hz}), 4.97-5.12(\mathrm{bs}, 1 \mathrm{H}), 5.22-5.31(\mathrm{~m}, 2 \mathrm{H}), 5.46(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6$ Hz), $5.92(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 6.79(\mathrm{bs}, 4 \mathrm{H}), 7.44-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.39$
$(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 7.44-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.92(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}$): $\quad 44.78,51.17,55.91,77.56,84.84,93.96,94.44,100.61,100.98$,
($50.3 \mathrm{MH}_{\mathrm{Z}}$)
115.20, 116.56, 128.29, 128.99, 133.9, 136.67,
140.02, 143.07, 153.51, 197.84, 231.69,

Analysis
$\left(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{NCrF}\right)$

Calcd. C: 61.85, H: 4.15, N: 2.88
Found. C: 61.73, H: 4.18, N: 2.79

Complex 17g

Color:
MP:

Yellow
$130^{\circ} \mathrm{C}$

IR (CHCl_{3}):	1712, 1906, $1979 \mathrm{~cm}^{-1}$
$\begin{array}{ll} { }^{1} \mathbf{H} \quad \text { NMR } & \left(\mathbf{C D C l}_{3}\right) \\ :(200 \mathrm{MHz}) \end{array}$	$2.16(\mathrm{~s}, 3 \mathrm{H}), 2.98-3.11(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.03-$ 4.19 (bs, 1H), 4.75-4.91 (m, 2H), 4.96 (d, 1H, J = 6 Hz), $5.50(\mathrm{t}$, $1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.84(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 6.70(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 6.78$ (d, 2H, J = 8 Hz), 6.68-6.80 (m, 4H)
$\begin{aligned} & { }^{13} \mathbf{C} \quad \mathbf{N M R} \quad\left(\mathbf{C D C l}_{3}\right) \\ & :\left(50.3 \mathrm{MH}_{\mathrm{Z}}\right) \end{aligned}$	$30.65,49.95,51.80,56.10,73.00,83.75,95.01,96.81,101.72$, 115.13, 116.39, 140.35, 141.41, 153.29, 207.06, 233.01.
Analysis	Calcd. C: 57.93, H: 4.86, N: 3.21
$\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NCrO}_{6}\right)$	Found. C: 57.67,H: 5.02, N: 3.30
Complex 17h	
Color :	Yellow
MP :	$154-155^{\circ} \mathrm{C}$
IR (CHCl_{3}) :	1718, 1907, $1981 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right):$	$1.23(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.77(\mathrm{t} \text {, }$
$(200 \mathrm{MHz})$	$\begin{aligned} & 1 \mathrm{H}, \mathrm{~J}=6 \mathrm{~Hz}), 4.92-5.03(\mathrm{~m}, 2 \mathrm{H}), 5.47(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=6 \mathrm{~Hz}), 5.93(\mathrm{~d}, \\ & 1 \mathrm{H}, \mathrm{~J}=6 \mathrm{~Hz}), 6.72(\mathrm{bs}, 4 \mathrm{H}), 7.30-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.90(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}= \\ & 8 \mathrm{~Hz}) \end{aligned}$
$\begin{aligned} & { }^{13} \mathbf{C N M R} \quad\left(\mathbf{C D C l}_{3}\right) \\ & :\left(50.3 \mathrm{MH}_{\mathrm{Z}}\right) \end{aligned}$	$\begin{aligned} & 44.88,52.03,55.99,72.96,83.82,94.92,96.76,102.12,115.13, \\ & 116.47,128.38,128.93,133.67,137.01,140.55,141.43,153.25, \\ & 198.45,233.05 \end{aligned}$
Analysis	Calcd. C: 62.77, H: 4.66, N: 2.81
$\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NCrO}_{6}\right)$	Found. C: 62.71, H: 4.59, N: 2.88

General procedure for the addition of the addition of methyl trimethylsilyldimethyl ketene acetal (10e) on the complex imine 16a, 16b, 16d:

To a suspension of $\mathrm{Sc}(\mathrm{OTf})_{3}(0.02 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, a mixture of silyl enol ether or silyl ketene acetals and imine (1 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added dropwise under an argon atmosphere at room temperature. After stirring for $10-15$ min , water was added and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crude product was purified by flash chromatography (15% acetone-pet ether). Reactions were performed in 0.5-0-2.0 mmol scale and isolated yields are indicated in Table -2

Complex 18a

Color : Yellow

MP : $\quad 114^{\circ} \mathrm{C}$
IR $\left(\mathbf{C H C l}_{3}\right): \quad 1728,1890,1969 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}\right): \quad 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, $(200 \mathrm{MHz}) \quad 4.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 4.41(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 4.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8$ Hz), $5.02(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.50(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $6 \mathrm{~Hz}), 6.66$ (d, 2H, J = 8 Hz), 6.80 (d, 2H, J = 8 Hz)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}$) : 20.59, 21.21, 24.74, 49.92, 52.24, 55.95, 59.96, 86.24, 89.77,
(50.3 MH ${ }^{\text {2 }}$)

Analysis

$\left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{6} \mathrm{NCr}\right)$

Complex 18b

Color :
MP :
IR ($\left.\mathrm{CHCl}_{3}\right)$:
${ }^{1} \mathrm{H}$ NMR $\left(\mathbf{C D C l}_{3}\right):$
(200 MHz)

Yellow
$160^{\circ} \mathrm{C}$
1732, 1891, $19671 \mathrm{~cm}^{-1}$
$1.21(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.46(\mathrm{~d}$,

$$
1 \mathrm{H}, \mathrm{~J}=6 \mathrm{~Hz}), 4.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=6 \mathrm{~Hz}), 4.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=6 \mathrm{~Hz}),
$$

$1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 4.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 4.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz})$, $5.20(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.5(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.66(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.3$

$$
5.20(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=6 \mathrm{~Hz}), 5.5(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=6 \mathrm{~Hz}), 5.66(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=6.3
$$

$$
\mathrm{Hz}), \text { 6.68-6.83 (m, 4H) }
$$ $\mathrm{Hz})$, 6.68-6.83 (m, 4H)

${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right)$ $21.25,24.93,49.33,52.38,55.99,57.75,83.63,92.89,94.14$, :(50.3 MHz)

Analysis
$\left(\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{NCrF}\right)$
novent-1040 94.29, 114.87, 115.09, 140.86, 152.81, 176.33, 231.43

Calcd. C: 56.53, H: 4.74, N: 2.99
Found. C: 56.48, H: 4.62, N: 2.89 $94.33,96.53,110.24,110.43,115.20,141.45,152.84,176.33$, 232.76

Calcd. C: 59.60, H: 5.43, N: 3.02
Found. C: 59.58, H: 5.41, N: 3.01

Complex 18c

Color :
MP : $\quad 60^{\circ} \mathrm{C}$
IR ($\left.\mathbf{C H C l}_{3}\right): \quad 1738,1899,19978 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$) : $1.11(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{dd}, 1 \mathrm{H}$,

$$
\begin{aligned}
& \mathrm{J}=14 \mathrm{~Hz}, 6 \mathrm{~Hz},), 3.56(\mathrm{dd}, 1 \mathrm{H}, \mathrm{~J}=14 \mathrm{~Hz}, 6 \mathrm{~Hz}), 3.70(\mathrm{~s}, \\
& 3 \mathrm{H}), 3.80(\mathrm{bs}, 3 \mathrm{H}), 4.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=6 \mathrm{~Hz}), 5.04-5.28 \\
& (\mathrm{~m}, 3 \mathrm{H}), 5.57(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=6 \mathrm{~Hz}), 5.75-5.97(\mathrm{~m}, 2 \mathrm{H})
\end{aligned}
$$

${ }^{13} \mathbf{C N M R}\left(\mathbf{C D C l}_{3}\right): \quad 19.96,20.59,23.97,49.44,51.58,52.16,60.32$,
$\left(50.3 \mathrm{MH}_{\mathrm{Z}}\right) \quad 86.64,90.50,95.35,97.45,109.87,111.23,116.71$,
136.93, 176.77, 233.42

Analysis Calcd. C: 57.42, H: 5.83, N: 3.52
$\left(\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{NCr}\right) \quad$ Found. C: 57.47, H: 5.69, N: 3.50

General procedure for the cyclization of β-amino esters to β-lactams: To a solution of freshly prepared methyl magnesium iodide (1.1 mmol) in 10 mL of dry ether was added dropwise a solution of the β-amino ester (1 mmol) in 10 mL of dry THF under ice cooling. After addition was over, the reaction was stirred for another 15 min . Then reaction mixture was quenched with saturated ammonium chloride solution under ice cooling. Solvent was removed under reduced pressure. Reaction mixture was extracted with chloroform, dried over anhydrous sodium sulphate, concentrated under reduced pressure and purified by flash column chromatography (15% acetone/ pet ether). Yields were in the range ($90-95 \%$).

Complex 19a

Color : Yellow

MP :
$183-184{ }^{\circ} \mathrm{C}$
IR ($\mathbf{C H C l}_{3}$) : $\quad 1753,1899,1971 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$) : $1.00(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.94(\mathrm{~s}$,
(200 MHz)
$1 \mathrm{H}), 5.13-5.18(\mathrm{~m}, 2 \mathrm{H}), 5.295(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.44(\mathrm{t}, 1 \mathrm{H}$, $\mathrm{J}=6 \mathrm{~Hz}), 6.95(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.53(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}$): $\quad 17.94,19.23,21.19,55.77,56.47,63.15,89.51,91.90,92.49$,
$\left(50.3 \mathrm{MH}_{\mathrm{Z}}\right) \quad 94.47,105.68,114.87,120.31,130.02$, (157.11), 170.27, 232.68

Analysis
($\left.\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{NCr}\right)$

Calcd. C: 61.25, H: 4.90, N: 3.24
Found. C: 61.19, H: 4.97, N: 3.21

Complex 19b	
Color :	Yellow
MP :	$160{ }^{\circ} \mathrm{C}$
IR (CHCl_{3})	1755, 1902, $1972 \mathrm{~cm}^{-1}$
$\begin{aligned} & { }^{1} \mathbf{H} \text { NMR }\left(\mathbf{C D C l}_{3}\right): \\ & (200 \mathrm{MHz}) \end{aligned}$	$\begin{aligned} & 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.86(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=6 \mathrm{~Hz}) \\ & 5.03(\mathrm{bs}, 1 \mathrm{H}), 5.31-5.54(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=8 \mathrm{~Hz}), 7.53 \\ & (\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=8 \mathrm{~Hz}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR (CDCl_{3})	18.24, 22.39, 55.88, 57.05, 60.80, 86.02, 90.69, 92.56,
$\left(50.3 \mathrm{MH}_{\mathrm{Z}}\right.$	$\begin{aligned} & 95.54,95.83,115.20,120.17,130.24,157.37,170.67 \text {, } \\ & 230.99 \end{aligned}$
Analysis	Calcd. C: 57.93, H: 4.16, N: 3.21
$\left(\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{NCrF}\right)$	Found. C: 57.73, H: 4.15, N: 3.24
Complex 19c	
Color :	Yellow
MP :	$134{ }^{\circ} \mathrm{C}$
IR (CHCl_{3})	1759, 1905, $1981 \mathrm{~cm}^{-1}$
$\begin{aligned} & \mathbf{1 H} \text { NMR }\left(\mathbf{C D C l}_{3}\right): \\ & (200 \mathrm{MHz}) \end{aligned}$	$\begin{aligned} & 0.93(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.72(\mathrm{~m}, 1 \mathrm{H}), \\ & 4.20-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 5.12-5.44(\mathrm{~m}, 6 \mathrm{H}), 5.75-6.00 \\ & (\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$
$\begin{aligned} & { }^{13} \mathrm{C} \text { NMR }\left(\mathbf{C D C l}_{3}\right): \\ & \left(50.3 \mathrm{MH}_{Z}\right) \end{aligned}$	$\begin{aligned} & 17.12,18.79,22.46,43.60,56.65,62.16,89.91,90.94,93.74 \text {, } \\ & 94.03,104.99,106.93,119.9,131.05,(159.86), 173.72 \text {, } \\ & 232.94 \end{aligned}$
Analysis	Calcd. C: 59.17, H: 5.20, N: 3.83
($\left.\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{NCr}\right)$	Found. C: 58.94, H: 4.97, N: 3.60

Decompexation of β-lactam (19a) to uncomplexed β-lactam (20a): A solution of ($\mathbf{1 9 a}$) in ($100 \mathrm{mg}, 0.21 \mathrm{mmol}$) in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was exposed to air and sunlight for about 2 h (the reaction was monitored by TLC). The solution was filtered over a pad of celite to remove the chromium salt and celite pad was washed 3 times with 10 mL portion of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was evaporated and the residue was crystallized from petroleum ether. The uncomplexed β-lactam (20a) was obtained as white crystalline solid $\mathbf{2 0 a}$ ($68 \mathrm{mg}, 97 \%$). This compound reported in literaure. ${ }^{18}$

Compound 20a

Color : White
MP : $\quad 154{ }^{\circ} \mathrm{C}$ lit. $155^{\circ} \mathrm{C}$
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right): \quad 0.8(\mathrm{~s}, 3 \mathrm{H}), 1.6(\mathrm{~s}, 3 \mathrm{H}), 2.4(\mathrm{~s}, 3 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 6.8-7.3(\mathrm{~m}$, (200 MHz) $8 \mathrm{H})$

Trimethylsilyl methyl phenyl ketene acetal (10f) addition to imime (16a): To a suspension of $\mathrm{Sc}(\mathrm{OTf})_{3}(0.034 \mathrm{~g}, 5 \mathrm{~mol} \%)$ in $10 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$, a mixture of 16a $(0.5 \mathrm{~g}, 1.38 \mathrm{mmol})$ and $10 \mathrm{f}(0.92 \mathrm{~g}, 5.14 \mathrm{mmol})$ was added dropwise . After stirring for 30 min , color of the solution changes from deep violet to pale yellow. The rection mixture was quenched with water, extracted with dichloromethane and chromtographed to furnish β-amino ester 21 in 80% yield $(0.56 \mathrm{~g})$

Complex 21

Color :	Yellow
MP :	$137-138{ }^{\circ} \mathrm{C}$
IR ($\left.\mathrm{CHCl}_{3}\right)$:	1736, 1896, $1972 \mathrm{~cm}^{-1}$
$\begin{aligned} & { }^{\mathbf{1}} \mathbf{H} \text { NMR }\left(\mathbf{C D C l}_{3}\right): \\ & (200 \mathrm{MHz}) \end{aligned}$	$\begin{aligned} & 2.29(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=6 \\ & \mathrm{Hz}), 4.93-5.01(\mathrm{~m}, 3 \mathrm{H}), 5.38-5.50(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=8 \\ & \mathrm{Hz}), 6.75(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=8 \mathrm{~Hz}), 7.18-7.39(\mathrm{~m}, 5 \mathrm{H}) \end{aligned}$
$\begin{aligned} & { }^{13} \mathbf{C ~ N M R ~}\left(\mathbf{C D C l}_{3}\right): \\ & \left(50.3 \mathrm{MH}_{\mathrm{Z}}\right) \end{aligned}$	$\begin{aligned} & 19.38,52.46,55.88,56.69,58.27,86.94,90.69,94.29,95.98 \\ & 109.51,110.01,114.91,116.16,128.24,129.91,133.91 \text {, } \\ & 140.53,153.21,171.81,232.87 . \end{aligned}$
Analysis	Calcd. C: 63.40, H: 4.92, N: 2.73
$\left(\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{O}_{6} \mathrm{NCr}\right)$	Found. C: 63.36, H: 4.90, N: 2.53

References:

1. (a) Ishihara, K.; Haattori, K.; Yamamoto, H. in the Enantioselective Synthesis of β Amino Acids; Juaristi, E.; Ed.; Wiley-VCH, New York, 1997, pp. 159-185. (b) Tamariz, J. in the Enantioselective Synthesis of β-Amino Acids; Juaristi, E.; Ed.; Wiley-VCH, New York, 1997, pp. 45-66. (c) Arend, M.; Westermann, B.; Risch, N. Angew, Chem., Int. Ed. Engl. 1998, 37,1044-1070 (see also reference 13 cited therein). (d) Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Eur. J. Org. Chem. 1999, 3223-3235. (e) Ternasky, R. J.; Morin J. M. Jr. In the Organic Synthesis of β-Lactams; Georg, G. I.; Ed.; Wiley-VCH: New York, 1993, pp. 257293. (f) The chemistry of the carbon-nitrogen double bond; Patai, S.; Ed.; John Wiley \& Sons, New York, 1970.
2. (a) Barluenga, J.; Ferna'ndez-Mari', F.; Viado, A. L.; Aguilar, E.; J. Org. chem. 1996, 61, 5659. (b) Mblander, G. A.; Stengel, P. A.; ibid, 1995, 60, 6660. (c) Davies, S. G.; McCarthy, T. D.; Synlett 1995, 701. (d) Louis, C.; Mill, S.; Mancuso, V.; Hootele', C. Can. J. Chem. 1994, 72, 1347. (e) Dondoni, A.; Perrone, D. Synthesis, 1993, 1162. (f) Palomo, C.; Aizupurua, J. M.; Garc'ia, J. M.; Iturbura, M.; Odriozola, J. M. J. Org. Chem. 1994, 59, 5184. (g) Arend, M.; Westermann, B.; Risch, N. Angew. Chem., Int. Ed. Engl 1998, 37, 1044-1070 and reference 13. Cited therein.
3. (a) Ojima, I.; Inaba, S. Tetrahedron Lett. 1980, 21, 2077-2080. (b) Ojima, I.; Inaba, S.; Yoshida, K. Tetrahedron Lett. 1977, 18, 3643-3646. (c) Ojima, I.; Inaba, S. Tetrahedron Lett. 1980, 21, 2081-2084.
4. (a) Gennari, C.; Schimperna, G.; Venturini, G. Tetrahedron. Lett. 1988, 44, 42214232. (b) Colvin, EW.; McGarry, D. G. J. Chem. Soc., Chem. Commun. 1985, 539-541.
5. Shimada, S.; Saigo, K.; Masanori, A.; Atsushi, S.; Hasegawa, M. Chem. Lett. 1992, 1445-1448
6. Annunziata, R.; Benaglia, M.; Cinquini, M.; Cozzi, F.; Martini, O.; Molteni, V.; Tetrahedron, 1996, 52, 2583-2590.
7. Kobayashi, S.; Akiyama, R.; Moriyaki, M. Tetrahedron Lett. 1997, 38, 4819-4822
8. Higashiyama, K.; Kyo, H.; Takahashi, H. Synlett 1998, 489-490.
9. Kobayashi, S.; Ishitani, H.; Yamashita, Y.; uno, M.; Shimizu, H. Tetrahedron

2001, 57, 861-866.
10. (a) Hattori, K.; Miyata, M.; Yamamoto, H. J. Am. Chem. Soc. 1993, 115, 1151. (b) Hattori, K.; Yamamoto, H. Synlett 1993, 239.
11. (a) Kobayashi, S; Akari, M.; Nagayama, S.; Hachiya, I. Synlett 1994, 233-235.
(b) Kobayashi, S. Eur. J. Org. Chem. 1999, 15-27
12. Kobayashi, S. Eur. J. Org. Chem. 1999, 15-27
13. Kobayashi, S.; Araki, M.; Yasuda, M. Tetrahedron Lett. 1995, 36, 5773-5776.
14. Nakajima, M.; Yamaguchi, Y.; Hashimoto, S. Chem. Commun. 2001, 1596-1597
15. (a) Schamlz, H. G.; Arnold, M.; Holleander, J.; Bats, J. W. Angew. Chem. Int. Ed. Engl. 1994, 33, 109-111. (b) Loft, M. S.; Mowlem, M. S.; Timothy, J.; Widdowson, D. A. J. Chem. Soc. Perkin. Trans. I. 1995, 97-104. (c) Cambie, R. C.; Rutledge, P. S.; Stevenson, R. J.; Woodgate, P. D. J. Orgnomet. Chem, 1994, 471, 133-47.
16. (a) Davies, S.G.; McCarthy, T. D. Transition Metal Arene Complexes: Side Chain Activation and Control of Stereochemistry, Comp. Org. Synthesis, B. M. Trost, and I. Fleming, Ed. Pergamon, Oxford, 1991, 12, 1039 -1070. (b) Uemura, M. Tricarbonyl (η^{6} arene) chromium Complexes in Organic Synthesis, in Advances In Metal-Organic Chemistry, 1991, 2, 195-245. Ed. L. S. Liebeskind, JAI Press, Greenwich, CT. (c) Bolm, C.; Muniz, K. Chem. Soc. Rev. 1999, 28, 51-59. (d) Sarkar, A.; Ganesh, S.; Sur, S.; Mandal, S. K.; Swamy, V. M.; Maity, B. C.; Kumar, T. S. J. Organomet. Chem. 2001, 624, 18-25.
17. (a) Mukai, C.; Cho, W. J.; Kim, I. J.; Hanaoka, M.; Tetrahedron Lett. 1990, 31, 6893. (b) Mukai, C.; Kim, I. J.; Cho, W. J.; Kido, M.; Hanaoka, M. J. Chem. Soc., Perkin Trans. I 1987, I, 1805.
18. Baldoli, C.; Buttero, P. D. J. Chem. Soc., Chem. Commun. 1991, 982-984.
19. Ishimaru, K.; Kojima, T. Tetrahedron Lett. 2001, 42, 5037-5039
20. Swamy, V. M; Bhadbhade, M. M.; Puranik, V. G.; Sarkar, A. Tetrahedron Lett. 2000, 41, 6137-6141
21. Kametani, T.; Hung, S.-P.;Yokahama, S.; Suzuki,Y.; Ihana, M. J. Am. Chem. Soc. 1980, 102, 2060-2065.
22. Top, S and Jaouen, G. J. Organomet. Chem. 1979, 182, 381.
23. Davies, S. G.; Goodfellow, C. L. J. Chem. Soc., Perkin Trans. I. 1990, 393-408.
24. House, H.O.; Czuba, L. J.; Martin, G.; Olmstead, H. D. J. Org. Chem. 1969, 34,

2334
25. Walshe, N. D. A.; Goodwin, G. B. T.; Woodward, F. E.; Org. Synthesis 1987, 65, 1
26. Heathcock, C. H.; Buse, C. T.; Kleschick, W. A.; Pirrung, M. C.; Sohn, J. E.; Lampe, J. J. Org. Chem 1980, 45, 1066-1081.
27. Soladie'-Cavallo, A.; Csaky, A. G. J. Org. Chem. 1994, 59, 2585-2589.
28. Solladie'-Cavallo, A.; Solladie', G.; Tsamo, E. J. Org. Chem. 1979, 44, 41894191.
29. Leonard, N. J.; Boyer, J. H. J. Org. Chem. 1950, 15, 42

Chapter - III

Assembling Monocyclic, Spirocyclic and Fused Carbocycles

by Ring Closing Metathesis on Arene Chromium Template

Introduction

A primary activity of organic synthesis concerns efficient and selective carbon-carbon bond formation reactions. Alkene metathesis brought about a renaissance in synthetic organic chemistry during the last couple of years. Although double bond scrambling reactions were initially reported ${ }^{1}$ in 1950s, the formal scission of a pair of double bonds followed by the interchange of their carbon atoms, i.e. alkene metathesis (Chart-1, is known since 1967 from the report of Calderon and coworkers ${ }^{2}$. The scope of such reaction was limited at that time by harsh reaction conditions and unacceptable catalytic efficiency.

Chart-1

alkene metathesis

From 1950 to early 1980, alkene metathesis was catalyzed by transition metal salts ${ }^{3}$ along with a promoter or support, e.g. $\mathrm{WCl}_{6} / \mathrm{Bu}_{4} \mathrm{Sn}$, $\mathrm{WOCl} / \mathrm{EtAlCl}_{2}$, $\mathrm{MoO}_{3} / \mathrm{SiO}_{2}$ or $\mathrm{Re}_{2} \mathrm{O}_{7} / \mathrm{Al}_{2} \mathrm{O}_{3}$ but application in organic synthesis was limited due to sensitivity of functionalized organic molecules to strong Lewis acid at elevated temperature.

Recently, basic research in organometallic chemistry has successfully met the long-standing challenge to deliver efficient, structurally well-defined, functional group tolerant catalysts. The discovery that metal alkylidene complexes provide the key intermediates in alkene metathesis, combined with the insight into the reaction mechanism of double bond redistribution, resulted in the synthesis of a few very useful catalyst precursors (Chart-2). Tungsten and molybdenum alkylidene complexes (1) developed by Schrock and co-workers ${ }^{4}$ are among the first ones synthesized and used in metathesis under mild conditions with complex substrates
containing diverse, sensitive functional groups. In spite of their wide adaptability in terms of functional group tolerance, their use in routine organic synthesis has been somewhat restricted by their high sensitivity to oxygen and moisture. Ruthenium complexes (2a-b) were later developed by Grubbs ${ }^{5}$ as a new, versatile set of catalysts that performed even in presence of air and moisture. They are relatively easy to prepare and they are now commercially available. A second-generation catalyst (3a-b) evolved a few years later ${ }^{6}$ as a more reactive variation; its design was inspired by the findings of Herrmann ${ }^{7}$ that imidazolylidene ligands enhance catalytic reactivity and efficiency. Compared to these, other catalysts like $\mathbf{4}^{8}$ or $\mathbf{5}^{9}$ found rather limited application in organic synthesis.

Chart-2. Some typical metathesis catalysts.

3b $\quad X=$

4

$+\mathrm{PbEt} 4$
5

While diverse metal centers are known to provide cataytically active complexes, chemoselectivity varies across the periodic table. Results show that tungsten catalysts are more strongly disposed to olefinate ketones and esters. Molybdenum catalysts are more reactive toward olefins, although they also react with aldehyde and the other polar and protic groups. Ruthenium complexes react
preferentially with alkenes in presence of polar functional groups like alcohols, amides, aldehydes and carboxylic acids.

From the perspective of synthetic chemists, a diene substrate is interesting because it offers different possibilities : one is cyclization, where ethykne is a gaseous product and its expulsion favours the equilibrium to the cyclized product (RCM : ring-closing metathesis ${ }^{10 \mathrm{a}}$); the other is an intermolecular reaction that can lead to oligomerization (ADMET: acyclic diene metathesis) - this reaction is a competing reaction of RCM and can be suppressed only by high dilution. The intermolecular version, for simple alkenes, is referred to as cross-metathesis, where the proportion of the desired cross-product depends on the preference of alkene partners towards itself. Since the metathesis reaction is equilibrium controlled, it is conceivable that strained cycloalkenes could undergo an energy-releasing ringopening process to yield polymeric products (ROMP: ring-opening polymerization ${ }^{10 b}$ - the opposite reaction of RCM). Indeed this process has become a major "living" polymerization reaction preferred for its mild condition and excellent functional group compatibility. The reactions are illustrated in Chart-3.

Chart-3

The current understanding about the mechanism of alkene metathesis ${ }^{11}$ is summarized in the Scheme-1.

Scheme -1

$$
[R u]=X_{2} L R u
$$

Kinetic evidence as well as dependence of initiation rate on sterics of halogen, alkylidene or ancillary ligand suggests that dissociation of one tricyclohexylphosphine is a critical and often the rate-determining step.

Since alkene metathesis concerns formation of double bonds, and barring geometrical isomerism which is occasionally of some concern, this reaction does not directly address stereoselectivity that relates to tetrahedral stereogenic centers. However, stereochemically complex, cyclic scaffolds can result from ring-closing metathesis of pre-assembled chiral dienes. Recently, Takemoto and co-workers have synthesized (Scheme-2) Helicholactone using RCM as key step from chiral diene precursors ${ }^{12}$ and catalyst $\mathbf{2 a}$.

Scheme -2

RCM, which perhaps represents the present "state of the art" of natural product synthesis, has been used as the key step, to synthesize a large mumbers of natural products like epothilone A^{13} (Scheme-3), peptide ${ }^{14}$ and catenates. ${ }^{15}$

Scheme - 3

Earlier it was known that free amines are typically incompatible with metathesis reaction catalyzed by 2a-b owing to catalyst inhibition by basic nitrogen. Recently Wright and co-workers ${ }^{16}$ have shown that Grubb's second-generation catalysts bearing an imidazolidine ligand can cyclize dienes containing free amine group (Scheme 4).

Scheme 4

All the examples cited above and numerous related applications pertain to ring-closure of pre-assembled chiral centers. However, optically active products can result from an alkene metathesis in two ways. One concerns kinetic resolution. If the substrate features a stereogenic center and it is in the racemic form, use of a chiral catalyst - chirality imparted by an optically pure chiral ligand - results in a diastereomeric transition state of unequal energies of activation. As a result, one of the enantiomer of the substrate molecule reacts at a higher rate than the other effecting a kinetic resolution (Chart-4).

Chart-4

Such a strategy was first utilized by Grubbs ${ }^{17 a}$ with an optically active molybdenum catalyst designed after Schrock's original version (Scheme-5).

Scheme - 5

10\% (ee 87\%) 90\% (ee>99\%)

Schrock and coworkers ${ }^{17 b}$ provided a similar illustration with a different optically active version of their molybdenum-based catalyst (Scheme-6).

Scheme -6

Reaction time: 10 min, conversion: 81\%, product: 43\%, dimer: 38\%, unreacted substrate: ee> 99\%, cyclized product: ee 93\%

The second option for producing chiral products enantioselectively involves desymmetrization of a symmetrical diene substrate where the product of metathesis
is a cycloalkene that is chiral. Burke ${ }^{18}$ developed a new strategy to synthesis natural products based on enantioselective desymmetrization of a meso-triene via ringclosing metathesis catalyzed by an optically active, chiral molybdenum-based catalyst (Scheme-7).

Scheme - 7

A stereogenic center in the substrate triene can induce stereoselectivity during the ring-formation step in RCM, as shown below (Chart-5). This is clearly a diastereoselective process.

Chart-5

syn
anti
The first illustration of this concept was provided by Blechert ${ }^{19}$ who used a chiral triene (Scheme-8).

Scheme -8

Lautens ${ }^{20}$ developed a diastereoselective RCM approach (Scheme-9) to synthesize a novel class of bicyclic diallylic alcohol and ether, synthons for the tetrahydronaphthalene skeleton present in the HMG CoA reductase inhibitor, (+)mevinolin.

Scheme -9

Schmidt ${ }^{21}$ and others ${ }^{22}$ have reported diastereoselective ring closing metathesis (Scheme-10) using Grubbs' catalys (2a).

Scheme-10

$R=$ 4-methoxyphenyl

Schrock ${ }^{23}$ has recently reported desymmetrization in ring closing metathesis (Scheme-11) using a chiral molybdenum catalyst while Grubbs ${ }^{24}$ has described the
first example of enantioselective catalysis of alkene metathesis by a chiral derivative of new generation ruthenium complex (Scheme-12).

Scheme - 11

$84 \%(99 \% e e)$

Scheme-12

Present Work

The objective of the present work was to develop a widely adaptable approach to assemble chiral dienes of moderately complex structure with very high diastereoselectivity (as single enantiomer in some cases), which can be cyclized by RCM to chemically interesting scaffolds of different dimensions. Similar to some of the examples quoted above, it was not intended that RCM would introduce additional chiral element, hence a chiral catalyst was not necessary for these targets.

Organometallic π-complexes have often been used as stereochemical templates that provide steric protection to one face of the molecule so that reagents
preferentially approach the reacting site from the exo (opposite-to-the-metal) face, and a stereoselective functionalization is achieved.

Although there was no evidence of RCM on dienes tethered on organometallic groups till early 1999, Lovely ${ }^{25}$ recently reported the first example of organometallic derivatives participating in alkene metathesis (Scheme-13).

Scheme - 13

Subsequently, Paley and co-workers ${ }^{26}$ reported that they have used enantiopure $\quad \eta^{4}$-(1-sulfinyldiene)-tricarbonyFiron(0) complexes as template for constructing a carbocycle via RCM. A six-membered carbocycle (with one chiral center) and seven-, eight-, and nine-membered carbocycles (with two chiral centers) were obtained from respective pre-assembled chiral dienes using Grubbs' catalyst (Scheme-14)

Scheme - 14

$$
S^{*}=(R) \text {-p-tolyl sulfoxide }
$$

Two groups independently described ${ }^{27 a b}$ RCM in presence of haxacarbonyldicobalt-alkyne complex (Scheme-15).

Scheme-15

Arene-tricarbonylchromium has been used over last several years as a stereodirecting template for diastereoselective synthesis of diverse targets. In our laboratory, we have earlier synthesized a variety of functional structures with excellent diastereocontrol. It was therefore considered worthwhile to assemble several dienes stereoselectively on arene-chromium template as substrates for subsequent RCM reaction using Grubbs' ruthenium catalyst, 2a.

Results and Discussion

We synthesized Grubbs' ruthenium catalyst (2a) in two steps starting from ruthenium trichloride following the reported procedure. ${ }^{28}$ In the first step ruthenium trichloride was converted to $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ and the complex was converted by a onepot operation to the catalyst 2a by sequential reaction with phenyldiazomethane and tricyclohexylphosphine, as shown in Scheme-16. The preparation was usually carried out in batches of $1-3 \mathrm{~g}$ and purity of the catalyst was established with the help of its proton NMR spectrum. The diagnostic signal at 20.02 ppm corresponds to the proton attached to the carbene carbon. The purple complex 2a was stored in capped vials in a desiccator and usually used within a month.

Scheme-16

Tricarbonylchromium complexes were prepared by usual thermolysis reaction ${ }^{29}$, purified by flash column chromatography and characterized by upfield proton resonances of the complexed aromatic ring protons. The ketone complexes are usually red in colour, while the others are yellow.

Most of the substrate dienes were prepared essentially following the procedures developed earlier in this laboratory and elsewhere. For some of them, specific preparative methods were developed. Advantage was taken of highly stereoselective nucleophilic addition to carbonyl functions adjacent to the Cr complexed aromatic ring.

In all instances the relative stereochemistry of the stereogenic centers involved are either established earlier or closely precedented. Since RCM does not affect these centers, the stereochemistry depicted in the following schemes are acceptable. Terms like 'complete diastereoselectivity' and 'single diastereomer'in the following passages imply that signals due to only one diastereomer of the purified product was observed and identified by proton NMR spectra recorded at 200 MHz .

Reaction of methyllithium with enone complex 6a at low temperature yielded the carbinol 6b as a pure diastereomer. Unfavorable steric interaction between the ortho-Me substituent and carbonyl oxygen keeps them facing away
from each other so that only one face of the carbonyl group is always exposed for nucleophilic attack. ${ }^{30}$ This explains the high degree of diastereoselectivity observed in methyllithium addition. The low-field resonance of the β-olefinic proton (δ 7.49 ppm) in $\mathbf{6 a}$ is absent in the proton NMR spectrum of the product $\mathbf{6} \mathbf{b}$ which features two olefinic protons at 6.69 ppm and 7.18 ppm respectively. The methyl singlet appears at 1.82 ppm confirming the addition. The carbinol $\mathbf{6 b}$ was then converted to its allyl ether $\mathbf{6 c}$ by treatment with sodium hydride and allyl bromide in THF. Room temperature stirring of a solution of $\mathbf{6 c}$ in dichloromethane in presence of $10 \mathrm{~mol} \%$ of the catalyst 2a resulted in clean RCM within 3 h (Scheme-17). The product $\mathbf{6 d}$ was isolated as a yellow solid in 90% yield, characterized by its typical proton signals in the NMR spectrum. A significant change is the disappearance of AB quartet at 3.97 ppm due to diastereotopic $-\mathrm{O}-\mathrm{CH}_{2^{-}}$group present in the spectrum of $\mathbf{6 c}$, along with several typical multiplets due to terminal olefins, and the appearance of a different set of signals due to $-\mathrm{O}-\mathrm{CH}_{2^{-}}$group at 4.78 ppm as well as the olefinic two-proton signal at 6.06 ppm for the five-membered ring.

Scheme-17

Optically pure, six-membered oxa-heterocycle 7d was synthesized from optically pure o-anisaldehyde $-\mathrm{Cr}(\mathrm{CO})_{3}$ complex, 7 a [the resolution of the racemic complex was carried out as described for complex $\mathbf{4 c}$ in Chapter-II]. Addition of allylmagnesium bromide to (+)-7a at low temperature resulted in completely diastereoselective formation of the carbinol $(+) \mathbf{7 b}$ (exo addition to the anti
conformer as above). This alcohol was converted to corresponding allyl ether, (+)7c, on treatment with $\mathrm{NaH} / \mathrm{THF}$ and allyl bromide. Optically active heterocycle (+)7d was obtained on treatment with Grubbs' catalyst 2a in dichloromethane at ambient temperature in excellent yield within 2.5 h (Scheme-18).

Scheme -18

(+) $7 \mathbf{a}$

(+) 7 c

The chiral imine, 8a, was prepared from o-anisaldehyde- $\mathrm{Cr}(\mathrm{CO})_{3}$ complex, 7a, and allylamine in presence of anhydrous MgSO_{4} in dichloromethane by reported ${ }^{31}$ procedure. The exo-selective addition of allylmagnesium bromide to imine 8a resulted in the formation of diastereomerically pure amine, 8b (predominant anti conformation). The free amine was protected ${ }^{32}$ as tert-butyl carbamate $8 \mathbf{8 c}$ by overnight stirring with di-tert-butyl carbonate in dichloromethane at room temperature in presence of triethylamine. The diene 8c underwent RCM with Grubbs' ruthenium catalyst 2a at ambient temperature in dichloromethane for 3 h to afford the corresponding azaheterocycle in good chemical yield (Scheme-19).

Scheme-19

It is well established ${ }^{33}$ that nucleophile adds to the carbonyl function of indanone- $\mathrm{Cr}(\mathrm{CO})_{3}$ complex ${ }^{34}$ 9a exclusively from the exo face with complete diastereoselectivity. Thus, they are useful starting materials for the synthesis of chiral spirocycks. Addition of allylmagnesium bromide in THF at low temperature on complex 9a produced diastereomerically pure allylic alcohol, 9b. The corresponding allyl ether 9c furnished the spirocycle, 9d, by RCM as described above (Scheme-20).

Scheme-20

The higher homologue of $\mathbf{9 d}$ was synthesized following essentially the same reaction sequence from 1-tetralone $-\mathrm{Cr}(\mathrm{CO})_{3}$ complex ${ }^{34}$, 10a (Scheme-21). The allyl carbino $^{\beta 3}$ 10b was protected as an allyl ether, 10c, which was subsequently subjected to RCM under usual condition.

Scheme-21

We proceded further to create structures of higher complexity, and decided to use previous work ${ }^{35}$ done in this laboratory towards that goal. For instance, it was possible to add an allyl group on chromium-anchored enone $\mathbf{1 1}$ in a stereodivergent manner - allylmagnesium bromide addition and followed by anionic oxy-Cope
rearrangement by $\mathrm{KH} / \mathrm{Et}_{2} \mathrm{O}$ afforded exclusively exo-selective, formal 1,4 addition product 12a, while allylithium or allylmagnesium bromide underwent exclusively endo-selective addition in presence of Lewis acid like TiC_{4} producing ketone 12b (Scheme-22). These products were further elaborated to introduce a second allyl group with high exo-selectivity by treatment with allylmagnesium bromide. RCM at ambient temperature in dichloromethane afforded fused tricyclic systems whose stereochemical features were well-defined. Remarkably, the RCM proceeded without loss of efficiency in spite of the presence of an adjacent alcohol function.

Scheme-22

Summary

These reactions established the feasibility of a flexible synthetic design based on stereoselective functionalization attainable via arene- $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes. Ease of operation, reasonable reaction times, ambient temperature and low catalyst requirement are indeed convenient and useful features for this strategy, as exemplified by seven substrates leading to monocyclic products, spirocycles and fused polycyclic rings. These are the first examples of ring closing metathesis on tricarbonylchromium arene complexes.

Experimental

All reactions were performed under an inert atmosphere of argon, using freshly distilled, degassed solvents. Diethyl ether and THF were freshly distilled over sodium benzophenone ketyl. Dichloromethane was dried over anhydrous $\mathrm{P}_{2} \mathrm{O}_{5}$. O-substituted aromatic aldehydes, tricyclohexylphosphine, RuCl_{3}, were purchased from Aldrich, USA and used as received. Allyl amine and allyl bromide were distilled before used. Grubbs' catalyst (2a) was prepared according to reported procedure ${ }^{28}$ described bellow.

Typical procedure for the preparation of allylmagnesium bromide:

A two-necked flask, equipped with a double-surfaced condenser and a septumcapped dropping funnel fitted with a pressure equalizer, was cooled under argon. Allyl bromide ($0.8 \mathrm{~mL}, 10 \mathrm{mmol}$) in 10 mL ether was added dropwise from the dropping funnel to the magnesium turning ($300 \mathrm{mg}, 12.5 \mathrm{mmol}$) activated by iodine in diethyl ether (5 mL). Approximately one third of the allyl bromide solution was added and the contents were allowed to stir until the ether began to reflux slowly. The remaining allyl bromide was added at such a rate that reflux is maintained without external heating. After the addition was complete, the reaction mixture was stirred at room temperature for 1-2 hrs.
General procedure for the preparation of carbinol complex [(+) 7b, 9b, 10b, 12a, 12b] from carbonyl complex [(+)7a, 9a, 10a, 13a, 13b] : To a solution of the complexed aldehyde ($n \mathrm{mmol}$) in dry THF ($20 n \mathrm{~mL}$), freshly prepared allylmagnesium bromide (1.5 n mmol) in diethyl ether was added dropwise with stirring at $-78{ }^{\circ} \mathrm{C}$, after completion of the reaction (TLC, 30 min), the reaction mixture was quenched with degassed methanol at $-78{ }^{\circ} \mathrm{C}$ followed by addition of water at room temperature, and finally extracted with dichloromethane. The crude product obtained was isolated by flash column chromatography. Reactions were performed in 1 mmol scale.
7 b has been reported earlier. ${ }^{36}$
Complex (+)7b
Yield $\quad 90 \%$
IR ($\mathbf{C H C l}_{3}$): $\quad 3600$ (br) 1961, $1870 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}^{2}$ NMR ($\left.\mathbf{C D C l}_{3}\right): \quad 1.95(\mathrm{~s}, 1 \mathrm{H}), 2.30-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.60(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}$, (200 MHz) $3 \mathrm{H}), 4.90-5.15(\mathrm{~m}, 5 \mathrm{H}), 5.55(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.80-5.97(\mathrm{~m}$, $2 \mathrm{H})$

$$
[\alpha]_{\mathrm{D}}^{25} \quad(+) 100\left(\mathrm{C}=0.065 \quad \mathrm{CHCl}_{3}\right)
$$

Complex 9b	
Yield	85\%
Color:	Yellow
MP:	$116{ }^{\circ} \mathrm{C}$
IR ($\mathrm{CHCl3}$)	3600 (br) 1961, $1870 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathbf{C D C l}_{3}\right)$: (200 MHz)	$\begin{aligned} & 1.86-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.49(\mathrm{~m}, 3 \mathrm{H}), 2.62-2.78(\mathrm{~m}, 2 \mathrm{H}) \\ & 4.95-5.30(\mathrm{~m}, 4 \mathrm{H}), 5.47(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=6 \mathrm{~Hz}), 5.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=6 \\ & \mathrm{Hz}), 5.76-5.97(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$
$\begin{aligned} & { }^{13} \mathbf{C} \text { NMR }\left(\mathbf{C D C l}_{3}\right): \\ & \left(50.3 \mathrm{MH}_{Z}\right) \end{aligned}$	28.49, 39.19, 44.96, 81.28, 87.49, 88.92, 90.61, 95.35, 115.06, 119.39, 119.73, 132.66, 233.20
Analysis	Calcd. C: 58.06, H: 4.54
$\left(\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Cr}\right)$	Found. C: 58.18, H: 4.40
10b	
Yield	93\%
Color:	Yellow
MP:	$111{ }^{\circ} \mathrm{C}$
IR (CHCl_{3}):	1956, $1886 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathbf{C D C l}_{3}\right)$: (200 MHz)	$\begin{aligned} & 1.60-1.95(\mathrm{~m}, 5 \mathrm{H}), 2.49-2.95(\mathrm{~m}, 4 \mathrm{H}), 5.00-5.25(\mathrm{~m}, 4 \mathrm{H}) \text {, } \\ & 5.50(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=6 \mathrm{~Hz}), 5.75-6.01(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$
$\begin{aligned} & { }^{13} \mathrm{C} \text { NMR }\left(\mathbf{C D C l}_{3}\right): \\ & \left(50.3 \mathrm{MH}_{\mathrm{z}}\right) \end{aligned}$	$\begin{aligned} & 18.68,27.35,35.48,46.72,70.69,89.18,90.54,92.41,95.39, \\ & 112.26,118.14,119.28,133.14,233.56 \end{aligned}$
Analysis	Calcd. C: 59.26, H: 4.97
$\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Cr}\right)$	Found. C: 59.23, H: 5.13
13a	
Yield	89\%

Color:	yellow
MP:	$110{ }^{\circ} \mathrm{C}$
IR ($\mathbf{C H C l} 3$): ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): (200 MHz)	1964, $1886 \mathrm{~cm}^{-1}$ $1.25-1.50(\mathrm{~m}, 1 \mathrm{H}), 1,75-1.95(\mathrm{~m}, 2 \mathrm{H}$ including -OH$), 2.00-$ $2.10(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.95(\mathrm{~m}$, $1 \mathrm{H}), 3.15-3.25(\mathrm{~m}, 1 \mathrm{H}), 4.85-5.25(\mathrm{~m}, 6 \mathrm{H}), 5.30-5.70(\mathrm{~m}$, $3 \mathrm{H}), 5.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 7.10-7.25(\mathrm{~m}, 4 \mathrm{H})$
$\begin{aligned} & { }^{13} \mathbf{C} \text { NMR }\left(\mathbf{C D C l}_{3}\right): \\ & \left(50.3 \mathrm{MH}_{\mathrm{Z}}\right) \end{aligned}$	$\begin{aligned} & 21.21,22.65,30.04,40.01,44.96,45.40,47.75,73.48,89.58 \text {, } \\ & 90.72,92.05,94.77,113.59,116.53,118.14,120.09,129.28 \text {, } \\ & 132.99,136.12,137.44,139.44,233.09 \end{aligned}$
Analysis $\left(\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Cr}\right)$	Calcd. C: 66.93, H: 5.82 Found. C: 66.83, H: 5.96
13b	
Yield	88\%
Color:	Yellow
MP:	$56^{\circ} \mathrm{C}$
IR ($\mathbf{C H C l} 3$): ${ }^{1} \mathrm{H}$ NMR ($\mathbf{C D C l}_{3}$): (200 MHz)	$\begin{aligned} & 1966,1880 \mathrm{~cm}^{-1} \\ & 1.75-2.10(\mathrm{~m}, 4 \mathrm{H} \text { including }-\mathrm{OH}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.85(\mathrm{~m}, \\ & 6 \mathrm{H}), 3.23-3.36(\mathrm{~m}, 1 \mathrm{H}), 4.75-5.10(\mathrm{~m}, 5 \mathrm{H}), 5.15-5.45(\mathrm{~m}, \\ & 2 \mathrm{H}), \\ & 5.50-5.75(\mathrm{~m}, 2 \mathrm{H}), 5.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=7 \mathrm{~Hz}), 7.16(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$
$\begin{aligned} & { }^{13} \mathbf{C} \text { NMR }\left(\mathbf{C D C l}_{3}\right): \\ & \left(50.3 \mathrm{MH}_{\mathrm{Z}}\right) \end{aligned}$	$\begin{aligned} & 20.63,21.21,29.34,36.21,43.23,46.72,47.39,73.37,88.57 \\ & 89.99,92.86,95.76,114.21,116.27,117.26,119.95,128.18, \\ & 129.43,132.88,135.97,137.41,142.37,233.09 . \end{aligned}$
Analysis	Calcd. C: 66.93, H: 5.82
$\left(\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Cr}\right)$	Found. C: 66.76 H: 5.91

General procedure for the preparation of allyl ether ($6 c, 7 c, 9 c, 10 c$) from carbinol ($\mathbf{6 b}, \mathbf{7 b}, \mathbf{9 b}, \mathbf{1 0 b}$): $\mathrm{NaH}(48 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 1.2 mmol , was washed with dry benzene and then dry ether, dried by removing ether under vacuum. To the stirring suspension of NaH in 5 mL THF at $0{ }^{\circ} \mathrm{C}$, alcohol (1 mmol) in 5 mL THF was added slowly. The reaction mixture was allowed to stir at room
temperature for one hour. Allyl bromide $0.1 \mathrm{~mL}(1.2 \mathrm{mmol})$ was added and stirred for one more hour. Reaction mixture was quenched with saturated ammonium chloride solution. THF was removed under vacuum. Reaction mixture was extracted with ether. Ether layer was washed with water for several times. Ether layer was dried over sodium sulphate and concentrated in vacuo. The crude product was then flash chromatographed using petroleum ether/ acetone as eluent to yield pure allyl ether in good yield.

Complex 6c

Yield	85\%
Color :	Yellow
MP :	$78{ }^{\circ} \mathrm{C}$
IR (CHCl_{3}) :	1966, $1888 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right)$	1.75 (s, 3H), 2.36 (s, 3H), $2.42(\mathrm{~s}, 3 \mathrm{H}), 4.95-5.05(\mathrm{~m}, 2 \mathrm{H})$,
:	$5.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}), 5.37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}), 5.53(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}$
(200 MHz)	$\begin{aligned} & =6 \mathrm{~Hz}), 5.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=6 \mathrm{~Hz}), 6.33(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=18 \mathrm{~Hz}), 6.70 \\ & (\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=18 \mathrm{~Hz}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR	20.21, 20.84, 22.18, 64.00, 78.59, 87.30, 93.22, 95.94, 96.01,
$\left(\mathbf{C D C l}_{3}\right) \quad:(50.3$	111.31, 114.65, 115.90, 126.82, 129.65,
MH_{Z})	131.38,132.59,133.66,
	135.35,138.14, 233.60

Analysis Calcd. C: 67.8; H: 5.56;
$\left(\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Cr}\right) \quad$ Found C: 67.53, H 5.43.

Complex (+) 7c

Yield 84%

Color: Yellow
MP: $\quad 66^{\circ} \mathrm{C}$
IR ($\mathbf{C H C l}_{3}$): $\quad 1964,1886 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$): $\quad 2.25-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.65(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{dd}$,
(200 MHz)
$1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}, 12 \mathrm{~Hz}), 4.40(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}, 12 \mathrm{~Hz}), 4.52-$ $4.58(\mathrm{~m}, 1 \mathrm{H}), 4.89-5.08(\mathrm{~m}, 4 \mathrm{H}), 5.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz})$, $5.39(\mathrm{~d}, 1 \mathrm{H}$ J $=16 \mathrm{~Hz}), 5.53(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.79-6.09(\mathrm{~m}$,

$\begin{aligned} & { }^{13} \mathbf{C N M R}\left(\mathbf{C D C l}_{3}\right): \\ & \left(50.3 \mathrm{MH}_{\mathrm{Z}}\right) \end{aligned}$	$41.65,55.92,71.90,73.70,74.26,85.06,93.41,94.36$, $102.08,117.48,17.74,134.21,134.94,140.57,233.49$
Analysis	Calcd. C: 57.62, H: 5.12
$\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Cr}\right)$	Found. C: 57.42, H: 5.29
$[\alpha]_{D}{ }^{25}$	+ $82.2\left(\mathrm{C}, 0.35 \mathrm{CHCl}_{3}\right)$

Complex 9c

Yield	89%
Color:	Yellow
MP:	$72{ }^{\circ} \mathrm{C}$

IR ($\mathbf{C H C l}_{3}$): $\quad 1952,1867 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$): $\quad 2.00-2.45(\mathrm{~m}, 3 \mathrm{H}), 2.55-2.85(\mathrm{~m}, 3 \mathrm{H}), 4.13(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6$
(200 MHz) $\mathrm{Hz}), 4.85-5.20(\mathrm{~m}, 5 \mathrm{H}), 5.35-5.45(\mathrm{~m}, 2 \mathrm{H}), 5.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 6.3 Hz), 5.76-6.10 (m, 2H)
${ }^{13} \mathbf{C N M R}\left(\mathbf{C D C l}_{3}\right): \quad 29.01,34.92,42.42,64.70,85.50,87.01,88.22,91.38,94.77$, $\left(50.3 \mathrm{MH}_{\mathrm{Z}}\right) \quad 113.62,116.01,116.90,119.21,132.44,135.31,233.38$

Analysis
Calcd. C: 61.71, H: 5.18
$\left(\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Cr}\right)$
Found. C: 61.59, H: 5.27

Complex 10c

Yield	94%
Color:	Yellow
MP:	$55^{\circ} \mathrm{C}$
IR $\left(\mathbf{C H C l}_{3}\right):$	$1958,1866 \mathrm{~cm}^{-1}$
${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}\left(\mathbf{C D C l}_{3}\right):$	$1.72-2.10(\mathrm{~m}, 4 \mathrm{H}), 2.35-2.86(\mathrm{~m}, 4 \mathrm{H}), 4.08(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=12$
$(200 \mathrm{MHz})$	Hz 6 Hz,$), 4.33(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}, 6 \mathrm{~Hz}),, 4.94-5.15(\mathrm{~m}$,
	$5 \mathrm{H}), 5.20-5.50(\mathrm{~m}, 2 \mathrm{H}), 5.69-6.11(\mathrm{~m}, 3 \mathrm{H})$
${ }^{\mathbf{1 3} \mathbf{C}}$	$\mathbf{N M R}$
$\left(\mathbf{C D C l}_{3}\right):$	$95.90,27.02,30.26,45.95,63.34,75.13,88.22,90.21,92.71$,
$\left(50.3 \mathrm{MH}_{\mathrm{z}}\right)$	

Typical procedure for the preparation of cyclic compound ($\mathbf{6 d}$-10d, 14a, 14b) from diene ($\mathbf{6 c - 1 0 c}$, 13a, 13b) : To a solution of diene ($n \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 n$ $\mathrm{mL})$ was added $\mathrm{RuCl}_{2}\left(\mathrm{Pcy}_{3}\right)_{2} \mathrm{CHC}_{6} \mathrm{H}_{5}(10 \mathrm{~mol} \%)$ with stirring under an inert atmosphere of argon at room temperature for 2.5-4.0 hour. The reaction mixture was concentrated in vacuo, and the crude product was purified by flash column chromatography (pet ether/ EtOAc 10:1) to obtained the desired product as yellow solid (78-90\%). All reactions were carried out in 1 mmol scale.

Complex 6d

Yield	90\%
Color:	Yellow
MP:	$118{ }^{\circ} \mathrm{C}$
IR (CHCl_{3}):	1964, $1866 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: (200 MHz)	$\begin{aligned} & 1.64(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 4.69-4.84(\mathrm{~m}, 2 \mathrm{H}), 5.49(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}= \\ & 6 \mathrm{~Hz}), 5.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=6 \mathrm{~Hz}), 5.91-6.05(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$
${ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}\right):$ $(50.3$	20.48, 29.52, 75.06, 87.23, 90.06, 92.89,95.10, 110.10, $95.98,115.24,128.40,131.63,233.53$
MH_{z})	

Analysis
Calcd. C: 58.06, H: 4.54
$\left(\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Cr}\right)$
Found. C: 58.17, H: 4.32

Complex (+)7d

Yield	88%
Color:	Yellow

MP:
$78^{\circ} \mathrm{C}$
IR ($\mathbf{C H C l}_{3}$): $\quad 1956,1866 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$): $\quad 1.95-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.50(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.31-4.44$
(200 MHz)
(m, 2H), $5.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}) 4.56(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2 \mathrm{~Hz}, 10$ $\mathrm{Hz}), 4.96(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.44(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.81-$ 5.88(m, 3H)

```
\mp@subsup{}{}{13}\mathbf{C}\quad\mathrm{ NMR 32.65, 50.06, 66.87, 69.77, 74.66, 86.20, 92.45, 92.93,}
( \(\mathrm{CDCl}_{3}\) ):
(50.3 MH \({ }^{\text {Z }}\) )
```

Analysis	Calcd. C: 55.22, $\mathrm{H}: 4.32$
$\left(\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}{ }_{5} \mathrm{Cr}\right)$	Found. C: $55.20, \mathrm{H}: 4.25$
$[\alpha]_{\mathrm{D}}{ }^{25}$	$+67.2\left(\mathrm{C}, 0.35\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Complex 8d

Yield	78%
Color:	Yellow
MP:	$135{ }^{\circ} \mathrm{C}$

IR ($\mathbf{C H C l}_{3}$): $\quad 1962,1874,1692 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$): $\quad 1.46(\mathrm{~s}, 9 \mathrm{H}), 2.38-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.79(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~d}$,
(200 MHz) $1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 4.80$ $(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}), 5.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}), 5.51-5.60(\mathrm{~m}$, 2 H),
5.75-5.85 (m, 2H), 5.95-6.05 (m, 1H)
${ }^{13} \mathbf{C} \quad$ NMR 28.43, 40.51, 46.14, 55.91, 73.48, 80.03, 83.96, 94.84,
$\left(\mathrm{CDCl}_{3}\right)$:
($50.3 \mathrm{MH}_{\mathrm{z}}$)
Analysis
($\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{6} \mathrm{NCr}$)

Complex 9d

Yield	86%
Color:	Yellow
MP:	$152{ }^{\circ} \mathrm{C}$

IR ($\mathbf{C H C l}_{3}$): $\quad 1968,1896 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}\right): \quad 1.92-2.31(\mathrm{~m}, 4 \mathrm{H}), 2.72-2.78(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{bs}, 2 \mathrm{H}), 5.10-$
(200 MHz)
${ }^{13} \mathbf{C} \quad$ NMR 28.57, 34.34. 34.78, 63.15, 80.50, 87.67, 89.62, 93.74,
$\left(\mathrm{CDCl}_{3}\right):$
95.32,
101.20, 124.58, 124.83, 142.70, 154.58, 233.16

Calcd. C: 56.46, H: 5.45, N: 3.29
Found. C: 56.31, H: 5.41, N: 3.03
5.37 (m, 3H), $5.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.83(\mathrm{bs}, 2 \mathrm{H})$ 113.55,
$\left(50.3 \mathrm{MH}_{\mathrm{Z}}\right) \quad 118.66,122.67,126.82,233.38$
Analysis Calcd. C: 59.63, H: 4.37
$\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O} \mathrm{C} \mathrm{Cr}\right) \quad$ Found. C: 59.71, H: 4.31

Complex 10d

Yield	85%
Color:	Yellow
MP:	$142{ }^{\circ} \mathrm{C}$
IR $\left(\mathbf{C H C l}_{3}\right):$	$1966,1890 \mathrm{~cm}^{-1}$
${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}\left(\mathbf{C D C l}_{3}\right):$	$1.66-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.94-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.45(\mathrm{~m}, 3 \mathrm{H})$,
$(200 \mathrm{MHz})$	$2.53-2.90(\mathrm{~m}, 2 \mathrm{H}), 4.37(\mathrm{bs}, 2 \mathrm{H}), 5.07-5.17(\mathrm{qt}, 2 \mathrm{H}, \mathrm{J}=6$
	$\mathrm{Hz}), 5.38(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}), 5.75-5.95(\mathrm{~m}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$	$\mathbf{N M R}$
$\left(\mathbf{C D C l}_{3}\right):$	$18.90,27.43,28.49,36.51,61.91,70.03,89.62,90.58,92.16$,
$\left(50.3 \mathrm{MH}_{\mathrm{Z}}\right)$	$93.59,111.05,117.15,122.70,126.27,233.78$

Analysis	Calcd. C: 60.71, H: 4.79
$\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Cr}\right)$	Found. C: 60.68, H: 4.91

Complex 14a

Yield	80%
Color:	Yellow
MP:	$170^{\circ} \mathrm{C}$

IR ($\mathbf{C H C l}_{3}$): $\quad 1968,1892 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$): $\quad 1.28-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.92-2.09(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=3 \mathrm{~Hz}, 12 \mathrm{~Hz}) 2.21(\mathrm{~s}$,
(200 MHz) $1 \mathrm{H}), 2.36$ (s, 3H), 2.38-2.61(m, 3H), 2.69-3.04 (m, 3H), 5,02 $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.21(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 5.49(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6$ $\mathrm{Hz}), 5.72-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 6.03-6.16(\mathrm{~m}$, $1 \mathrm{H}), 7.12$ (bs, 4H)
${ }^{13} \mathbf{C} \quad$ NMR 21.21, 24.38, 31.29, 35.88, 45.14, 45.40, 52.61, 69.51, 88.19,
$\left(\mathrm{CDCl}_{3}\right)$:
(50.3 MHz)

Analysis
$\left(\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O} 5 \mathrm{Cr}\right)$
$89.40,93.70,96.24,114.29,120.31,126.86,127.52,129.54$, 132.26, 136.01, 143.95, 233.01

Calcd. C: 65.78, H: 5.30
Found. C: 65.71, H: 5.19

Complex 14b

Yield	80%
Color:	Yellow
MP:	$90^{\circ} \mathrm{C}$

IR ($\mathbf{C H C l}_{3}$): $\quad 1970,1886 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H N M R}\left(\mathbf{C D C l}_{3}\right): \quad 0.81-1.04(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.57(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 1 \mathrm{H}), 2.15-2.30$
(200 MHz) $(\mathrm{m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.72(\mathrm{~m}, 3 \mathrm{H}), 2.74-2.90(\mathrm{~m}, 3 \mathrm{H})$, 3.30-3.41 (m, 1H), 5.15-5.21 (m, 2H), 5.41-5.49 (m, 2H), 5.63-5.72 (m, 1H), 5.79 (d, 1H, J = 8 Hz$), 5.946 .12(\mathrm{~m}, 1 \mathrm{H})$, $7.11(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.27(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz})$
${ }^{13}$ CNMR
$\left(\mathrm{CDCl}_{3}\right)$:
(50.3 MHZ
$\begin{array}{ll}\text { Analysis } & \text { Calcd. C: 65.78, H: } 5.30 \\ \left(\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O} 5 \mathrm{Cr}\right) & \text { Found. C: 65.71, H: } 5.19\end{array}$
21.14, 23.57, 29.96, 31.76, 44.15, 47.50, 48.01, 72.09, 88.52, 90.65, 92.01, 95.13, 112.63, 121.49, 126.42, 126.82, 127.48, 129.06,129.50, 131.01, 136.08, 140.27, 233.05

Synthesis of chiral diene 8c: This compound was synthesized in three steps starting from o-anisaldehyde complex from 7a.
Preparation of allylimine complex 8a: The mixture of $7 \mathbf{7 a}(1.08 \mathrm{~g}, 4.00 \mathrm{mmol})$, allyl amine ($0.36 \mathrm{~mL}, 4.8 \mathrm{mmol}$) and ahydrous $\mathrm{MgSO}_{4}(0.48 \mathrm{~g}, 4 \mathrm{mmol})$ was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for overnight. The mixture was filtered through celite and recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / pet ether afforded crystalline imine $\mathbf{8 a}(1.2 \mathrm{~g}, 97 \%)$.

Complex 8a

Yield	97%
Color:	Yellow
MP:	$71^{\circ} \mathrm{C}$

IR ($\left.\mathbf{C H C l}_{3}\right)$:
1616, 1896, $1969 \mathrm{~cm}^{-1}$

Preparation of complexed amine 8b: Freshly prepared allylmagnesium bromide (4.6 mmol) in ether was added to the solution of imine $\mathbf{8 a}$ ($1.2 \mathrm{~g}, 3.8 \mathrm{mmol}$) in THF at $-78{ }^{\circ} \mathrm{C}$. After completion of the reaction (TLC, 15 minutes), the reaction mixture was quenched with degassed methanol at $-78{ }^{\circ} \mathrm{C}$ followed by addition of water at room temperature and finally was extracted with dichloromethane and washed several times with water. It was then dried dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuum, and crude product was flash chromatographed (pet ether/acetone, $9: 1$) to obtained isolated amine $\mathbf{8 b}$ ($1.25 \mathrm{~g}, 92 \%$).

Complex 8b

Yield	92\%
Color:	Yellow
MP:	$65^{\circ} \mathrm{C}$
IR (CHCl_{3}):	1968, $1859 \mathrm{~cm}^{-1}$
$\begin{aligned} & { }^{\mathbf{1}} \mathbf{H} \text { NMR }\left(\mathbf{C D C l}_{3}\right): \\ & (200 \mathrm{MHz}) \end{aligned}$	$\begin{aligned} & 1.5(\mathrm{bs}, 1 \mathrm{H}), 2.23-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.68(\mathrm{~m}, 1 \mathrm{H}), 3.01- \\ & 3.21(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.81-3.88(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}= \\ & 6 \mathrm{~Hz}), 4.88-5.25(\mathrm{~m}, 5 \mathrm{H}), 5.59(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=6 \mathrm{~Hz}), 5.73-6.02 \\ & (\mathrm{~m}, 3 \mathrm{H}) \end{aligned}$
$\begin{aligned} & { }^{\mathbf{1 3}} \mathbf{C N M R}\left(\mathbf{C D C l}_{3}\right): \\ & \left(50.3 \mathrm{MH}_{\mathrm{Z}}\right) \end{aligned}$	41.28, 50.69, 53.38 55.77, 73.93, 85.28, 94.40, 104.84, 115.94, 118.37, 134.50, 136.96, 141.38, 233.64
Analysis	Calcd. C: 57.78, H: 5.42, N: 3.96
$\left(\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O} 4 \mathrm{NCr}\right)$	Found. C: 57.61, H: 5.49, N: 3.85

Protection of amine 8b as tert-butyl carbamate 8c: A solution of di-tert-butyl carbonate $(0.253 \mathrm{~g}, 2.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added to the stirred solution of complex of amine $\mathbf{8 b}(0.706 \mathrm{~g}, 2.4 \mathrm{mmol})$ and triethylamine $(0.33 \mathrm{~mL}, 2.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at ambient temperature. After 3 hours stirring, solvent was evaporated under vacuum, and the residue was dissolved in EtOAc (20 mL). The solution was washed with water and brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and crude product was flash chromatographed (pet ether/acetone, $10: 1$) to furnish $85 \%(0.770 \mathrm{~g})$ yield of BOC-protected amine complex 8c.

Complex 8c

Yield	85%
Color:	Yellow
MP:	Oil

IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right): \quad 1969,1864,1689 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H} \quad$ NMR $\quad 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 6 \mathrm{H}), 2.42-2.87(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.66(\mathrm{~m}$,
$\left.\left(\mathbf{C D C l}_{3}\right): \quad 1 \mathrm{H}\right), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.88(\mathrm{~m}, 1 \mathrm{H}), 4.91-5.18(\mathrm{~m}, 7 \mathrm{H}), 5.49-$
(200 MHz
5.95 (m, 4H),
${ }^{13} \mathbf{C}$ NMR Was not taken as the complex is very unstable in solution.
Analysis Calcd. C: 58.27, H: 6.00, N: 3.08
$\left(\mathrm{C}_{22} \mathrm{H}_{2} \mathrm{O}_{6} \mathrm{NCr}\right) \quad$ Found. C: 58.10, H: 5.85, N: 3.13

Preparation of 2-benzylidene-1-tetralone complex 11: A solution of p tolualdehyde $(0.65 \mathrm{~mL}, 5.5 \mathrm{mmol})$ and F tetralone tricarbonyl complex $\mathbf{1 0 a}(1.41 \mathrm{~g}$, 5.0 mmol in ethanol (30 mL) was cooled in an ice-salt bath. An ethanolic solution of $\mathrm{KOH}(0.366 \mathrm{~g}, 6.0 \mathrm{mmol})$ in 10 mL ethanol was added dropwise via syringes. The reaction was monitored by TLC. After complete disappearance of starting material (3 hours), the reaction mixture was worked up as usual to provide deep orange solid product.The crude products were washed with petroleum ether ($3 \times 20 \mathrm{~mL}$) and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-petether to afford analytical pure crystalline complex $\mathbf{1 1}$ $(1.82 \mathrm{~g}, 95 \%) .11$ is reported in ref. 36.

Preparation of 12a from complex 11: Freshly prepared allylmagnesium bromide $(4.8 \mathrm{mmol})$ in ether was added to the complex tetralone benzilidine 11 (1.53 g ,

4mmol) in THF at $-78{ }^{\circ} \mathrm{C}$. After 30 minute stirring, reaction mixture was quenched with saturated ammonium chloride solution at room temperature. After usual workup the crude product $(1.56 \mathrm{~g}, 90 \%)$ was obtained. Then to the ethereal suspension of thoroughly washed $\mathrm{KH}(17 \mathrm{mg}, 3.60 \mathrm{mmol})$, a solution of crude product $(1.56 \mathrm{~g}, 3.59 \mathrm{mmol})$ in ether was added slowly at $0{ }^{\circ} \mathrm{C}$. Finally, 18 -C-6 $(0.47$ $\mathrm{mg}, 5 \mathrm{~mol} \%$) was added. Reaction mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$. The reaction was monitored by TLC and upon consumption of starting material (2.5 h) it was quenched with saturated ammonium chloride solution and extracted with ether. Purification of crude product by flash column chromatography afforded ketone 12a $(1.06 \mathrm{~g}, 83 \%)$. The complex $\mathbf{1 2 a}$ has been reported reported earlier. ${ }^{36}$

Complex 12a

Yield	83%
Color:	Yellow
MP:	$131{ }^{\circ} \mathrm{C}$
IR $\left(\mathbf{C H C l}_{3}\right):$	$1980,1910,1680 \mathrm{~cm}^{-1}$
${ }^{\mathbf{1}} \mathbf{H N M R ~ (\mathbf { C D C l } _ { 3 }) :}$	$166-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.90-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.59-2.94$
$(200 \mathrm{MHz})$	$(\mathrm{m}, 5 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 4.95-5.10(\mathrm{~m}, 3 \mathrm{H}), 5.20(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6$
	$\mathrm{Hz}), 5.62-5.80(\mathrm{~m}, 2 \mathrm{H}), 6.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 7.07(\mathrm{bs}$,
	$4 \mathrm{H})$.

1,4 Allyl addition on complex 11 to produce ketone 12b: To a solution of complexed enone $11(1.53 \mathrm{~g}, 4.0 \mathrm{mmol})$ in dichloromethane (30 mL), titanium tetrachloride $(0.90 \mathrm{~mL}, 8.0 \mathrm{mmol})$ was added with stirring at $-78^{\circ} \mathrm{C}$. After stirring for 15 minutes allylmagnesium bromide (4.8 mmol) in dichloromethane was added dropwise with stirring at the same temperature. After completion of the reaction (TLC, 30 minutes), the reaction mixtures was quenched with degassed methanol at $78^{\circ} \mathrm{C}$, followed by addition of water at room temperature, and finally extracted with dichloromethane. The crude mixtures of products obtained by evaporation of solvent, was separated by flash column chromatography. Yield of $\mathbf{1 2 b}(1.36 \mathrm{~g}$, 79%). 12b is also reported earlier. ${ }^{36}$

12b
Color: Orange
MP: $\quad 160-162{ }^{\circ} \mathrm{C}$
IR (CHCl_{3}):
1980, 1910, $1670 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H} \quad$ NMR $\quad 1.90-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.90(\mathrm{~m}, 5 \mathrm{H}), 3.80-3.90$
$\left(\mathrm{CDCl}_{3}\right)$:
$(\mathrm{m}, 1 \mathrm{H}), 4.85-5.15(\mathrm{~m}, 3 \mathrm{H}), 5.30(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 5.55-5.80$
(200 MHz)
(m, 2H), $6.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 7.10-7.20(\mathrm{bs}, 4 \mathrm{H})$

References

1. (a) Eleuterio, H. S. J. Mol. Catal. 1991, 65, 55-61. (b) Banks, R. L. CHEMTECH 1986, 112-117. (c) Anderson, A. W. U.S patent 2,721, 189, 1955; Chem Abstr 1956, 50, 3008i.
2. (a) Calderon, N. Acc. Chem. Res. 1972, 5, 127-132. (b) Calderon, N.; Scott, K. W. Chen, H. Y.; Tetrahedron Lett. 1967, 34, 3327-3329.
3. Ivin, K. J.; Mol, J. C.; Olefin Metathesis and Metathesis Polymerization; Academic press: London, 1997.
4. Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.; Robbins, J.; DiMare, M.; O'Regan, M. J. Am. Chem. Soc. 1990, 112, 3875-3886
5. Schwab, P.; France, M. B.; Ziller, J.W.; Grubbs, R. H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2039-2041
6. (a) Scholl,M.; Trnka, T. M.; Morgan, J. P.; Grubbs, R. H. Tetrahedron Lett. 1999, 40, 2247-2250. (b) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-95
7. Weskamp, T.; Kohl, F. J.; Hieringer, W.; Gleich, D.; Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1999, 38, 2416-24119.
8. Couturier, J.-L.; Paillet, C.; Leconte, M.; Basset, J.-M and Weiss, K. Angew. Chem., Int. Ed. Engl. 1992, 31, 628.
9. Nugent, W. A.; Feldman, J.; Calabrese, J. C.; J. Am. Chem. Soc. 1995, 117, 89928998.
10. (a) Armstrong, S. K. J. Chem. Soc., Perkin Trans. 1 1998, 371-388. (b) Buchmeiser, M. R. Chem. Rev. 2000, 100, 1565-1604
11. Sanford, M. S.; Love, J. A.; Grubbs, R. H. J. Am. Chem. Soc., 2001,123, 65436554.
12. Baba, Y.; Saha, G.; Nakao, S.; Iwata, C.; Tanaka, T.; Ibuka, T.; Ohishi, H.; Takemoto, Y. J. Org. Chem. 2001, 66, 81-88.
13. (a) Meng, D.; Su, D.- S.; Balog, A.; Bertinato, P.; Sorensen, E. J.; Danishefsky, S. J.; Zheng, Y.-Hchou, T.-C.; He, L.; Horwitz, S. B. J. Am. Chem. Soc. 1997, 119 , 2733-2744. (b) Nicolaou, K. C.; He, Y.; Vourloumis, D.; Valberg, H.; Roschangar, F.; Sarabia, F.; Nincovic, S.; Yang, Z.; Truzillo, J. I. J. Am. Chem. Soc. 1997, 119, 7960-7973.
14. Blackwell, H. E.; Grubbs, R. H. Angew. Chem., Int. Ed. Engl. 1998, 37, 3281-
15.
16. Mohr, M.; Weck, M.; Sauvage, J.-P.; Grubbs, R. H. Angew. Chem., Int. Ed. Engl. 1997, 36, 1308-1310
17. Wright, D. L.; Schulte II, J. P.; Page, M. A. Org. Lett. 2000, 2, 1847-1850.
18. (a) Fujimua, O.; Grubbs, H. J. Am. Chem. Soc. 1996, 118, 2499-2500. (b) Alexander, J. B.; La, D. S.; Cefalo, D. R.; Hobeyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. 1998, 120, 4041-4042
19. (a) Burke, S. D.; Sametz, G. M. Org. Lett. 1999, 1, 71-74. (b) Burke, S. D.; Muller, N.; Breaudy, M. C. Org. Lett. 1999, 1, 1827-1829. (c) Burke, S. D.; Voight, E. A. Org. Lett. 2001 3, 237-240.
20. Huwe, C. M.; Velder, J.; Blechert, S. Angew. Chem., Int. Ed. Engl 1996, 35, 2376-2378.
21. Lautens, M.; Hughes, G. Angew. Chem., Int. Ed. Engl 1999, 38, 129-131.
22. Schmidt, B.; Westhus, M. Tetrahedron 2000, 56, 2421-2426.
23. (a) Oguri, H.; Sasaki, S.; Oishi, T.; Hirama, M. Tetrahedron Lett. 1999, 40, 54055408. (b) Wallace, D. J.; Cowden, C. J.; Kennedy, D. J.; Ashwood, M. S.; Cottrell, I. F.; Dolling, U.-H. Tetrahedron Lett. 2000, 4 1, 2027-2029.
24. Weatherhead, G. S.; Ford, J. G.; Alexanian, E. J.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 200, 122, 1828-11829.
25. Seiders, T. J.; Ward, D. W.; Grubbs, R. H. Org. Lett. 2001 23, 3225-3228
26. Lovely, C. J.; Seshadri, H. Org. Lett. 2000, 2, 327-330
27. Paley, R. S.; Estroff, L. A.; Gauguet, J. -M.; Hunt, D. K.; Newlin, C. R. Org. Lett. 2000, 2, 365-368.
28. (a) Green, J. R. Synlett, 2001, 353-356. (b) Burlison, J. A.; Gray, J. M.; Young.D. G.J. Tetrhedron Lett. 2001, 42, 5363-5365.
29. Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100-110.
30. Top, S and Jaouen, G. J. Organomet. Chem. 1979, 182, 381
31. (a) Davies, S.G.; McCarthy, T. D. Transition Metal Arene Complexes: Side Chain Activation and Control of Stereochemistry, Comp. Org. Synthesis, B. M. Trost, and I. Fleming, Ed. Pergamon, Oxford, 1991, 12, 1039 -1070. (b) Uemura, M. Tricarbonyl (η^{6} arene) chromium Complexes in Organic Synthesis, in Advances In Metal-Organic Chemistry, 1991, 2, 195-245. Ed. L. S. Liebeskind, JAI Press, Greenwich, CT.
32. Baldoli, C.; Buttero, P. D. J. Chem. Soc., Chem. Commun. 1991, 982-984.
33. (a) Jaouen, G and Meyer, A. J. Am. Chem. Soc. 1975, 97, 4667. (b) Meyer, A.; Hofer, O. J. Am. Chem. Soc. 1980, 102, 4410. (c) Uemura, M.; Kobayashi, T.; Hayashi, H. Synthesis 1986, 386-388.
34. Top, S.; Jaouen, G.; J. Organomet. Chem, 1979, 182, 381.
35. (a) Sur, S.; Ganesh, S.; Pal, D.; Puranik, V.G.; Chakrabarti, P.; Sarkar, A. J. Org. Chem. 1996, 61, 8362-8363. (b) Mandal, S. K.; Sarkar, A. J. Org. Chem. 1999, 64, 2454-2458.
36. Ph. D. dissertation of Dr. S. Sur, 1997, University of Poona, India.

Appendix-I

Spectra of Compounds - Chapter I

7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0

Appendix-II

Spectra of Compounds - Chapter II

Appendix-III

Spectra of Compounds - Chapter III

Appendix-IV

X-ray crystallographic data and structure refinement

Table 1. Crystal data and structure refinement for $\mathbf{4 a}$.

Theta range for data collection 1.88 to 23.22 deg.
Index ranges $\quad-3<=\mathrm{h}<=6,-26<=\mathrm{k}<=19,-14<=1<=12$
Reflections collected / unique $4365 / 2389[R(i n t)=0.0494]$
Completeness to 2theta $=23.22 \quad 42.6 \%$
Refinement method Full-matrix-block least-squares on F^{2}
Data / restraints / parameters 2389/0/469
Goodness-of-fit on $\mathrm{F}^{\wedge} 2 \quad 1.128$
Final R indices [I>2sigma(I)] R1 $=0.0547, \mathrm{wR} 2=0.1146$
R indices (all data) $\quad \mathrm{R} 1=0.0851, \mathrm{wR} 2=0.1376$

Largest diff. peak and hole 0.319 and $-0.207 \mathrm{e} . \AA^{-3}$

Table 2. Selected atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $4 \mathbf{a}$.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	$x \quad y$	z	$\mathrm{U}(\mathrm{eq})$	
$\mathrm{Cr}(1)$	2316(1)	2527(1)	4717(1)	51(1)
$\mathrm{O}(1)$	3788(7)	1894(3)	6311(6)	89(3)
$\mathrm{O}(2)$	3840(7)	2221(3)	3113(6)	92(3)
$\mathrm{O}(3)$	3704(8)	3518(3)	5218(6)	98(3)
$\mathrm{O}(4)$	813(6)	1228(3)	2969(5)	86(3)
C(1)	3228(9)	2144(5)	5699(7)	63(4)
C(2)	3267(10)	2351(4)	3718(8)	57(4)
C(3)	3164(11)	3138(5)	5028(8)	69(4)
C(4)	980(7)	1953(4)	4188(6)	42(3)
C(5)	939(7)	2086(4)	5275(6)	48(3)
C(6)	851(8)	2619(5)	5613(8)	59(3)
C(7)	843(8)	3036(4)	4878(8)	60(3)
C(8)	855(7)	2915(4)	3795(7)	55(3)
C(9)	908(8)	2389(4)	3440(7)	44(3)
C(10)	933(8)	2295(4)	2268(6)	63(3)
$\mathrm{C}(11)$	1109(8)	1374(4)	3870(7)	55(3)
$\mathrm{C}(12)$	1576(8)	966(4)	4683(6)	60(3)
C(13)	2191(9)	490(4)	4254(7)	59(3)
$\mathrm{C}(14)$	3219(10)	681(5)	3778(9)	101(5)
C(15)	2431(11)	64(4)	5107(8)	54(3)
C(16)	1704(9)	-347(5)	5202(8)	61(3)
C(17)	1864(11)	-731(4)	6013(10)	71(4)
$\mathrm{C}(18)$	2784(13)	-699(5)	6753(9)	70(4)
C(19)	3521(10)	-294(6)	6649(9)	76(4)
C(20)	3345(10)	89(5)	5855(9)	70(4)
$\mathrm{C}(21)$	2979(10)	-1110(4)	7632(8)	103(4)
$\mathrm{Cr}\left(1^{\prime}\right)$	2376(1)	5542(1)	5234(1)	54(1)
$\mathrm{O}\left(1{ }^{\prime}\right)$	923(8)	6206(4)	3699(6)	123(4)
$\mathrm{O}\left(2^{\prime}\right)$	1000(7)	5939(3)	6890(6)	90(3)
$\mathrm{O}\left(3^{\prime}\right)$	892(9)	4574(4)	4808(8)	122(4)
$\mathrm{O}\left(4^{\prime}\right)$	4217(6)	6703(3)	7078(5)	78(2)
C(1)	1506(11)	5943(5)	4279(8)	82(4)
C(2')	1523(10)	5778(4)	6253(7)	64(4)
C(3')	1447(11)	4949(6)	4964(9)	77(5)
$\mathrm{C}\left(4^{\prime}\right)$	3868(7)	6029(4)	5763(6)	43(3)

$\mathrm{C}\left(5^{\prime}\right)$	$3812(7)$	$5931(4)$	$4666(6)$	$51(3)$
$\mathrm{C}\left(6^{\prime}\right)$	$3731(7)$	$5401(4)$	$4239(7)$	$54(3)$
$\mathrm{C}\left(7^{\prime}\right)$	$3677(8)$	$4963(4)$	$4921(8)$	$60(4)$
$\mathrm{C}\left(8^{\prime}\right)$	$3746(7)$	$5049(4)$	$6008(8)$	$58(3)$
$\mathrm{C}\left(9^{\prime}\right)$	$3844(7)$	$5564(4)$	$6449(6)$	$47(3)$
$\mathrm{C}\left(10^{\prime}\right)$	$3920(8)$	$5621(4)$	$7640(6)$	$76(4)$
$\mathrm{C}\left(11^{\prime}\right)$	$3906(8)$	$6601(4)$	$6165(7)$	$49(3)$
$\mathrm{C}\left(12^{\prime}\right)$	$3574(8)$	$7050(4)$	$5378(6)$	$54(3)$
$\mathrm{C}\left(13^{\prime}\right)$	$3172(8)$	$7570(4)$	$5876(6)$	$47(3)$
$\mathrm{C}\left(14^{\prime}\right)$	$2118(9)$	$7450(4)$	$6396(8)$	$78(4)$
$\mathrm{C}\left(15^{\prime}\right)$	$3008(10)$	$7999(4)$	$5023(7)$	$42(3)$
$\mathrm{C}\left(16^{\prime}\right)$	$3797(9)$	$8382(4)$	$4928(7)$	$55(3)$
$\mathrm{C}\left(17^{\prime}\right)$	$3693(11)$	$8763(4)$	$4119(9)$	$70(4)$
$\mathrm{C}\left(18^{\prime}\right)$	$2800(14)$	$8774(5)$	$3383(10)$	$73(4)$
$\mathrm{C}\left(19^{\prime}\right)$	$1980(10)$	$8385(6)$	$3460(8)$	$74(4)$
$\mathrm{C}\left(20^{\prime}\right)$	$2088(8)$	$8002(4)$	$4287(8)$	$59(3)$
$\mathrm{C}\left(21^{\prime}\right)$	$2649(10)$	$9174(4)$	$2467(8)$	$115(5)$

Table 3. Selected bond lengths $[\AA]$ and angles $[\operatorname{deg}]$ for $\mathbf{4 a}$.

$\mathrm{O}(1)-\mathrm{C}(1)$	$1.156(10)$
$\mathrm{O}(2)-\mathrm{C}(2)$	$1.143(10)$
$\mathrm{O}(3)-\mathrm{C}(3)$	$1.156(11)$
$\mathrm{O}(4)-\mathrm{C}(11)$	$1.219(9)$
$\mathrm{C}(4)-\mathrm{C}(9)$	$1.436(11)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.433(10)$
$\mathrm{C}(4)-\mathrm{C}(11)$	$1.501(12)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.394(12)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.394(12)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.415(11)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.381(11)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.517(10)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.511(12)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.530(11)$
$\mathrm{C}(13)-\mathrm{C}(15)$	$1.519(13)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.525(12)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.362(12)$
$\mathrm{C}(15)-\mathrm{C}(20)$	$1.382(12)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.401(13)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.382(14)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.361(14)$
$\mathrm{C}(18)-\mathrm{C}(21)$	$1.512(14)$
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.386(14)$
$\mathrm{Cr}\left(1^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	$2.229(9)$
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	$1.164(11)$
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$1.159(10)$

$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	1.151(11)
$\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	1.210 (9)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	$1.416(10)$
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	$1.448(11)$
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	1.502(12)
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	1.418(11)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	1.395(12)
C(7')-C(8')	$1.396(11)$
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	$1.390(12)$
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	1.519(10)
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	1.522(11)
$\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)$	$1.538(11)$
$\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	$1.516(12)$
$\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	1.539(11)
$\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)$	1.363(11)
$\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(20^{\prime}\right)$	$1.378(11)$
$\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)$	1.392(13)
$\mathrm{C}\left(17^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)$	1.353(14)
$\mathrm{C}\left(18^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)$	1.397(14)
C(18')-C(21')	1.527(15)
$\mathrm{C}\left(19^{\prime}\right)-\mathrm{C}\left(20^{\prime}\right)$	1.413(14)
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	117.3(9)
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	119.7(8)
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	122.9(7)
$\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{Cr}\left(1^{\prime}\right)$	71.4(6)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	119.3(8)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	118.9(8)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	121.8(9)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{Cr}\left(1^{\prime}\right)$	70.8(5)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{Cr}\left(1^{\prime}\right)$	70.6(5)
$\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{Cr}\left(1^{\prime}\right)$	130.6(7)
$\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	121.3(8)
$\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	120.9(9)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	117.8(7)
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}(13 ')$	114.2(7)
$\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	108.0(7)
$\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	113.3(8)
$\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(14^{\prime}\right)$	109.7(8)
$\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(20^{\prime}\right)$	117.5(10)
$\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}(13 ')$	120.8(10)
$\mathrm{C}\left(20^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}(13 ')$	121.7(10)
$\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)$	122.0(11)
$\mathrm{C}\left(18^{\prime}\right)-\mathrm{C}\left(17^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)$	121.8(12)
$\mathrm{C}\left(17{ }^{\prime}\right)-\mathrm{C}\left(18^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)$	117.4(13)
C(17')-C(18')-C(21')	124.2(13)
$\mathrm{C}(19 ')-\mathrm{C}\left(18^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)$	118.3(14)
$\mathrm{C}\left(18^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)-\mathrm{C}\left(20^{\prime}\right)$	120.5(11)
$\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(20^{\prime}\right)-\mathrm{C}\left(19^{\prime}\right)$	120.8(10)

Table 1. Crystal data and structure refinement for $\mathbf{4 b}$

Identification code	bcn
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{Cr} \mathrm{O}_{4}$
Formula weight	388.37
Temperature	293(2) K
Wavelength	0.71073 c
Crystal system, space group Orthorhombic	
Unit cell dimensions	$\begin{aligned} & \mathrm{a}=7.7446(18) \\ & \mathrm{b}=10.094(2) \AA \end{aligned}$
	$\mathrm{c}=24.204(5) \AA$
Volume	$1892.0(7){ }^{\text {A3 }}$
Z, Calculated density	$4,1.363 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficien	t $\quad 0.627 \mathrm{~mm}^{-1}$
$\mathrm{F}(000)$	808

Theta range for data collection 1.68 to 20.81 deg.
Index ranges $\quad-7<=\mathrm{h}<=7,-10<=\mathrm{k}<=9,-23<=1<=24$
Reflections collected / unique 5518 / $1984[\mathrm{R}(\mathrm{int})=0.0892]$
Completeness to 2theta $=20.81 \quad 99.7 \%$
Refinement method Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters 1984/0/238
Goodness-of-fit on $\mathrm{F}^{\wedge} 2 \quad 1.332$
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})] \quad \mathrm{R} 1=0.1041, \mathrm{wR} 2=0.2079$
R indices (all data) $\quad \mathrm{R} 1=0.1217, \mathrm{wR} 2=0.2154$

Absolute structure parameter	$0.58(10)$
Largest diff. peak and hole	0.476 and -0.618 e.A A^{-3}

Table 2. Selected atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\mathrm{A}^{2} \times 10^{3}$) for 4 b .
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	$x \quad y$	z	U(eq)	
$\mathrm{O}(4)$	6577(13)	6150(10)	7533(4)	49(3)
$\mathrm{O}(3)$	12080(2)	2388(14)	9397(6)	120(6)
O (1)	9579(16)	750(12)	8092(6)	89(4)
$\mathrm{O}(2)$	12365(19)	4295(14)	7962(6)	99(5)
C(9)	8358(18)	5509(14)	8588(6)	48(4)
C(8)	8593(19)	5127(16)	9134(6)	45(4)
C(7)	7790(2)	4020(2)	9349(7)	64(5)
C(6)	6770(2)	3166(16)	9040(7)	60(5)
C(5)	6609(17)	3505(16)	8471(5)	45(4)
C(4)	7312(16)	4671(13)	8232(4)	23(3)
$\mathrm{C}(10)$	9180(2)	6743(15)	8374(6)	64(4)
$\mathrm{C}(11)$	6913(16)	5026(16)	7663(5)	33(3)
C(12)	6909(18)	3972(13)	7209(5)	37(4)
C(13)	6260(17)	4409(13)	6655(4)	32(4)
C(14)	4310(2)	4715(18)	6686(7)	86(6)
C (15)	6628(15)	3367 (16)	6193(4)	31(3)
C(16)	6019(19)	2073(15)	6233(6)	52(4)
C(17)	6298(19)	1203(14)	5794(6)	48(4)
C(18)	7230(2)	1607(19)	5326(5)	55(4)
C(19)	7790(2)	2872(19)	5312(6)	58(5)
C(20)	7523(19)	3748(13)	5729(6)	44(4)
C(21)	7490(2)	632(19)	4852(6)	84(6)
C(3)	10990(3)	2812(16)	9096(6)	65(5)
C(1)	9490(2)	1795(17)	8286(7)	63(4)
C(2)	11180(2)	3958(14)	8207(6)	49(4)

Table 3. Selected bond lengths [\AA] and angles [deg] for $\mathbf{4 b}$.

$\mathrm{O}(3)-\mathrm{C}(3)$	1.194(18)
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.156(17)$
$\mathrm{O}(2)-\mathrm{C}(2)$	$1.146(19)$
$\mathrm{C}(9)-\mathrm{C}(8)$	1.390(19)
$\mathrm{C}(9)-\mathrm{C}(4)$	1.453(18)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.49 (2)
$\mathrm{C}(8)-\mathrm{C}(7)$	1.38(2)
$\mathrm{C}(7)-\mathrm{C}(6)$	$1.39(2)$
$\mathrm{C}(6)-\mathrm{C}(5)$	1.425(19)
$\mathrm{C}(5)-\mathrm{C}(4)$	1.419(18)
$\mathrm{C}(4)-\mathrm{C}(11)$	$1.457(16)$
$\mathrm{C}(11)-\mathrm{C}(12)$	1.530 (17)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.498(16)$
$\mathrm{C}(13)-\mathrm{C}(14)$	1.54(2)
$\mathrm{C}(13)-\mathrm{C}(15)$	1.561(17)
$\mathrm{C}(15)-\mathrm{C}(20)$	$1.376(18)$
$\mathrm{C}(15)-\mathrm{C}(16)$	1.392(18)
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.396(18)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.405(19)$
$\mathrm{C}(18)$ - $\mathrm{C}(19)$	1.35 (2)
$\mathrm{C}(18)-\mathrm{C}(21)$	1.52(2)
C(19)-C(20)	1.36 (2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	121.7(14)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	114.8(15)
$\mathrm{O}(4)-\mathrm{C}(11)-\mathrm{C}(4)$	121.6(12)
$\mathrm{O}(4)-\mathrm{C}(11)-\mathrm{C}(12)$	117.9(12)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)$	120.6(13)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	116.0(11)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	110.2(11)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(15)$	112.4(10)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(15)$	110.4(11)
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)$	119.3(12)
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(13)$	119.3(13)
C(16)-C(15)-C(13)	121.4(11)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	119.1(12)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	120.7(13)
C(19)-C(18)-C(17)	117.4(14)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(21)$	123.4(16)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(21)$	119.1(17)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	123.3(14)
C(19)-C(20)-C(15)	120.2(13)

Table 1. Crystal data and structure refinement for 10a.

Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{Cr} \mathrm{O}_{4} \mathrm{Si}$
Formula weight	446.53
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space gro	group Orthorhombic, Pbca
Unit cell dimensions $\begin{aligned} & \\ & \qquad \begin{array}{l}\mathrm{b}\end{array} \mathrm{l} \\ & \mathrm{c}= \\ & \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.328(2) \AA \\ & \mathrm{b}=18.110(3) \AA \\ & \mathrm{c}=20.079(3) \AA \end{aligned}$
Volume	$4482.7(13) \AA^{3}$
Z, Calculated density	$8,1.323 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	t $\quad 0.589 \mathrm{~mm}^{-1}$
$\mathrm{F}(000)$	1872
Crystal size	$0.104 \times 0.344 \times 0.578 \mathrm{~mm}$

Theta range for data collection 2.03 to 28.22 deg.
Index ranges $\quad-14<=\mathrm{h}<=16,-24<=\mathrm{k}<=23,-26<=1<=17$
Reflections collected / unique $25330 / 5271[\mathrm{R}(\mathrm{int})=0.0302]$
Completeness to 2theta $=28.22 \quad 86.5 \%$
Refinement method Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters 5271/0/269
Goodness-of-fit on $\mathrm{F}^{\wedge} 2 \quad 1.042$
Final R indices [I>2sigma(I)] R1 $=0.0487, w R 2=0.1357$
R indices (all data) $\quad \mathrm{R} 1=0.0576, \mathrm{wR} 2=0.1444$
Extinction coefficient $\quad 0.0000(3)$

Table 2. Selected atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $10 a$.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
Cr	$8452(1)$	$1614(1)$	$3560(1)$	$38(1)$
Si	$8906(1)$	$1946(1)$	$5457(1)$	$39(1)$
$\mathrm{O}(1)$	$7362(2)$	$855(1)$	$5343(1)$	$56(1)$
$\mathrm{O}(2)$	$7417(2)$	$3032(1)$	$3986(1)$	$80(1)$
$\mathrm{O}(3)$	$6314(2)$	$1238(2)$	$2942(1)$	$94(1)$
$\mathrm{O}(4)$	$8896(3)$	$2290(2)$	$2232(1)$	$116(1)$
$\mathrm{C}(1)$	$5148(2)$	$-371(2)$	$3783(1)$	$66(1)$
$\mathrm{C}(2)$	$4962(3)$	$-1052(2)$	$3494(2)$	$80(1)$
$\mathrm{C}(3)$	$4088(3)$	$-1165(2)$	$3085(2)$	$83(1)$
$\mathrm{C}(4)$	$3361(2)$	$-628(2)$	$2947(1)$	$68(1)$
$\mathrm{C}(5)$	$3507(2)$	$52(2)$	$3233(2)$	$67(1)$
$\mathrm{C}(6)$	$4391(3)$	$190(2)$	$3650(1)$	$67(1)$
$\mathrm{C}(7)$	$2409(3)$	$-782(3)$	$2490(2)$	$111(2)$
$\mathrm{C}(8)$	$6155(2)$	$-313(2)$	$4184(2)$	$67(1)$
$\mathrm{C}(9)$	$6584(2)$	$272(2)$	$4411(1)$	$65(1)$
$\mathrm{C}(10)$	$7634(2)$	$374(1)$	$4812(1)$	$45(1)$
$\mathrm{C}(11)$	$8501(2)$	$782(1)$	$4400(1)$	$37(1)$
$\mathrm{C}(12)$	$8806(2)$	$449(1)$	$3785(1)$	$45(1)$
$\mathrm{C}(13)$	$9656(2)$	$717(1)$	$3394(1)$	$49(1)$
$\mathrm{C}(14)$	$10204(2)$	$1350(2)$	$3605(1)$	$50(1)$
$\mathrm{C}(15)$	$9906(2)$	$1697(1)$	$4201(1)$	$43(1)$
$\mathrm{C}(16)$	$9045(2)$	$1432(1)$	$4619(1)$	$36(1)$
$\mathrm{C}(17)$	$7576(2)$	$2386(2)$	$5662(1)$	$56(1)$
$\mathrm{C}(18)$	$9856(2)$	$2758(2)$	$5420(1)$	$62(1)$
$\mathrm{C}(19)$	$9456(2)$	$1325(2)$	$6115(1)$	$59(1)$
$\mathrm{C}(20)$	$7130(2)$	$1366(2)$	$3198(1)$	$58(1)$
$\mathrm{C}(21)$	$8730(3)$	$2035(2)$	$2746(1)$	$66(1)$
$\mathrm{C}(22)$	$7817(2)$	$2487(1)$	$3828(1)$	$52(1)$
$\mathrm{C}(23)$	$8137(3)$	$-332(2)$	$5085(2)$	$65(1)$

Table 3. Selected bond lengths [A] and angles [deg] for 10a.

Si-C(19)	$1.863(3)$
Si-C(17)	$1.869(2)$
Si-C(18)	$1.881(3)$
Si-C(16)	$1.931(2)$
$\mathrm{O}(1)-\mathrm{C}(10)$	$1.416(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.351(5)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9300
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.370(5)$
$\mathrm{C}(4)-\mathrm{C}(7)$	$1.515(4)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.397(4)$
$\mathrm{C}(10)-\mathrm{C}(23)$	$1.524(3)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.541(3)$
$\mathrm{C}(11)-\mathrm{C}(16)$	$1.424(3)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.425(3)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.396(3)$
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9600
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9600
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9600
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	0.9600

Table 1. Crystal data and structure refinement for 18a.
Empirical formula $\quad 2\left[\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N} \mathrm{O}_{6} \mathrm{Cr}\right]$

Formula weight 926.88
Temperature 293(2) K
Wavelength 0.70930 A
Crystal system, space group Monoclinic, P21
Unit cell dimensions $\quad a=8.310(1) \AA$
$\mathrm{b}=17.938(3) \AA$
beta $=96.43(1)$ deg.
$\mathrm{c}=15.736(2) \AA$

Volume
Z, Calculated density
2, $1.321 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient $\quad 0.528 \mathrm{~mm}^{-1}$
$\mathrm{F}(000) \quad 968$
Crystal size $\quad 0.3 \times 0.28 \times 0.4 \mathrm{~mm}$
Theta range for data collection 1.30 to 24.91 deg.
Index ranges $\quad 0<=\mathrm{h}<=9,0<=\mathrm{k}<=21,-18<=\mathrm{l}<=18$
Completeness to 2theta $=24.91 \quad 73.3 \%$
Refinement method Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters 3103/1/570
Goodness-of-fit on $\mathrm{F}^{\wedge} 2 \quad 1.057$
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})] \quad \mathrm{R} 1=0.0607, \mathrm{wR} 2=0.1490$
R indices (all data) $\quad \mathrm{R} 1=0.0970, \mathrm{wR} 2=0.1831$
Absolute structure parameter $\quad 0.03(8)$
Extinction coefficient $\quad 0.0004(11)$
Largest diff. peak and hole 0.390 and -0.576 e. A^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\mathrm{A}^{2} \times 10^{3}\right)$ for 18a.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized
Uij tensor.

x	$\mathrm{y} \quad \mathrm{z}$	U(eq)		
$\mathrm{N}(1)$	665(16)	5918(7)	4071(8)	43(4)
C(1)	2200(3)	4424(13)	6132(9)	77(6)
C(2)	4210(3)	4993(10)	5200(12)	56(5)
C(3)	4470(3)	3691(18)	5754(15)	113(9)
C(4)	295(18)	3965(11)	4748(11)	55(5)
C(5)	1030(2)	3312(13)	4771(13)	69(6)
C(6)	2380(3)	3154(14)	4364(13)	96(9)
C (7)	2990(2)	3751(13)	3878(15)	88(8)
C(8)	2130(2)	4456(12)	3781(9)	53(5)
C(9)	700(2)	4587(11)	4225(11)	57(5)
C(10)	-1110(3)	4042(14)	5268(13)	82(7)
C (11)	-270(2)	5260(11)	4070(9)	54(5)
C(12)	-1480(3)	5154(10)	3193(10)	52(5)
C(13)	-2850(2)	4593(8)	3285(11)	57(5)
C(14)	-500(3)	5044(13)	2430 (8)	75(7)
C(15)	-2280(3)	5911(14)	3065(14)	68(7)
C(16)	-3780(2)	6858(9)	3718(11)	60(5)
C(17)	1080(2)	6324(9)	4800(10)	49(4)
C(18)	2280(19)	6908(11)	4721(11)	49(4)
C(19)	2900(2)	7203(12)	5463(12)	61(6)
C(20)	2170(3)	7133(13)	6269(11)	74(6)
C(21)	1050(4)	6688(13)	6255(11)	97(8)
C(22)	630(4)	6256(14)	5589(13)	122(12)
C(23)	2810(5)	7400(2)	7687(13)	198(19)
N(2)	9460(2)	6809(10)	979(9)	78(5)
C(24)	5480(2)	9068(10)	-753(8)	55(5)
C(25)	5830(3)	7787(19)	-213(13)	85(8)
C(26)	7760(2)	8220(14)	-1238(14)	79(7)
C(27)	9830(2)	8789(13)	258(12)	66(6)
C(28)	9329(18)	8258(11)	797(9)	48(5)
C(29)	7960(3)	8341(14)	1180(13)	81(7)
C(30)	7070(3)	8986(15)	1183(10)	71(7)
C(31)	7520(2)	9538(13)	717(13)	70(7)
C(32)	8800(3)	9504(11)	257(14)	88(8)
C(33)	11250(2)	8759(12)	-267(11)	68(6)
C(34)	10320(2)	7537(9)	954(10)	48(5)
C(35)	11490(3)	7538(11)	1789(12)	58(6)

$\mathrm{C}(36)$	$12690(3)$	$8160(15)$	$1722(11)$	$99(9)$
$\mathrm{C}(37)$	$10670(2)$	$7767(10)$	$2567(10)$	$65(5)$
$\mathrm{C}(38)$	$12307(19)$	$6810(10)$	$1891(10)$	$48(4)$
$\mathrm{C}(39)$	$13740(3)$	$5953(17)$	$1222(13)$	$120(11)$
$\mathrm{C}(40)$	$8760(2)$	$6435(11)$	$202(9)$	$54(5)$
$\mathrm{C}(41)$	$7570(3)$	$5952(12)$	$204(13)$	$57(5)$
$\mathrm{C}(42)$	$7040(3)$	$5406(13)$	$-426(14)$	$68(6)$
$\mathrm{C}(43)$	$7510(3)$	$5564(11)$	$-1131(13)$	$74(6)$
$\mathrm{C}(44)$	$8730(5)$	$6137(15)$	$-1284(16)$	$122(12)$
$\mathrm{C}(45)$	$9480(2)$	$6561(13)$	$-560(9)$	$84(8)$
$\mathrm{C}(46)$	$7760(6)$	$5170(2)$	$-2689(18)$	$230(2)$

Table 3. Bond lengths $[\AA]$ and angles [deg] for $18 \mathbf{a}$

$\mathrm{N}(1)-\mathrm{C}(17)$	$1.37(2)$
$\mathrm{N}(1)-\mathrm{C}(11)$	$1.41(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.32(3)$
$\mathrm{C}(4)-\mathrm{C}(9)$	$1.45(3)$
$\mathrm{C}(4)-\mathrm{C}(10)$	$1.50(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.38(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.44(3)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.45(3)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.46(2)$
$\mathrm{C}(9)-\mathrm{C}(11)$	$1.46(3)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.62(2)$
$\mathrm{C}(12)-\mathrm{C}(15)$	$1.52(3)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.54(3)$
$\mathrm{C}(12)-\mathrm{C}(14)$	$1.53(2)$
$\mathrm{C}(17)-\mathrm{C}(22)$	$1.34(3)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.46(2)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.33(2)$
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.47(3)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.23(3)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.32(3)$
$\mathrm{N}(2)-\mathrm{C}(40)$	$1.46(2)$
$\mathrm{N}(2)-\mathrm{C}(34)$	$1.49(2)$
$\mathrm{C}(27)-\mathrm{C}(28)$	$1.37(2)$
$\mathrm{C}(27)-\mathrm{C}(33)$	$1.51(3)$
$\mathrm{C}(27)-\mathrm{C}(32)$	$1.54(3)$
$\mathrm{C}(28)-\mathrm{C}(29)$	$1.35(3)$
$\mathrm{C}(28)-\mathrm{C}(34)$	$1.54(3)$
$\mathrm{C}(29)-\mathrm{C}(30)$	$1.37(3)$
$\mathrm{C}(30)-\mathrm{C}(31)$	$1.31(3)$
$\mathrm{C}(31)-\mathrm{C}(32)$	$1.36(3)$
$\mathrm{C}(34)-\mathrm{C}(35)$	$1.55(3)$
$\mathrm{C}(35)-\mathrm{C}(38)$	$1.47(3)$
$\mathrm{C}(35)-\mathrm{C}(37)$	$1.52(3)$
$\mathrm{C}(35)-\mathrm{C}(36)$	$1.51(3)$

$\mathrm{C}(40)-\mathrm{C}(41)$	1.31(3)
$\mathrm{C}(40)-\mathrm{C}(45)$	1.42(2)
$\mathrm{C}(41)-\mathrm{C}(42)$	1.43(3)
$\mathrm{C}(42)-\mathrm{C}(43)$	1.25(3)
$\mathrm{C}(43)-\mathrm{C}(44)$	1.49(3)
$\mathrm{C}(44)-\mathrm{C}(45)$	$1.45(3)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)$	124.1(15)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(10)$	116.9(16)
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(10)$	118.9(16)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	120.3(18)
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(11)$	124.9(17)
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(8)$	113.8(16)
$\mathrm{C}(11)-\mathrm{C}(9)-\mathrm{C}(8)$	121.1(18)
$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(9)$	113.4(15)
$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	112.7(14)
$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(12)$	108.8(14)
$\mathrm{C}(15)-\mathrm{C}(12)-\mathrm{C}(13)$	106.1(16)
$\mathrm{C}(15)-\mathrm{C}(12)-\mathrm{C}(14)$	105.9(16)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(14)$	116.8(16)
$\mathrm{C}(15)-\mathrm{C}(12)-\mathrm{C}(11)$	103.2(15)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	113.0(14)
$\mathrm{C}(14)-\mathrm{C}(12)-\mathrm{C}(11)$	110.7(17)
$\mathrm{C}(22)-\mathrm{C}(17)-\mathrm{N}(1)$	131.0(17)
$\mathrm{C}(22)-\mathrm{C}(17)-\mathrm{C}(18)$	114.0(18)
$\mathrm{N}(1)-\mathrm{C}(17)-\mathrm{C}(18)$	114.9(13)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	114.3(17)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	124.4(19)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{O}(6)$	132(2)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	115.3(18)
$\mathrm{O}(6)-\mathrm{C}(20)-\mathrm{C}(19)$	113(2)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	122(2)
$\mathrm{C}(17)-\mathrm{C}(22)-\mathrm{C}(21)$	127(2)
$\mathrm{C}(29)-\mathrm{Cr}(2)-\mathrm{C}(30)$	36.2(8)
$\mathrm{C}(31)-\mathrm{Cr}(2)-\mathrm{C}(30)$	34.1(7)
$\mathrm{C}(38)-\mathrm{O}(11)-\mathrm{C}(39)$	117.6(16)
$\mathrm{C}(43)-\mathrm{O}(12)-\mathrm{C}(46)$	121(2)
$\mathrm{C}(40)-\mathrm{N}(2)-\mathrm{C}(34)$	121.9(15)
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	124(2)
$\mathrm{N}(2)-\mathrm{C}(34)-\mathrm{C}(35)$	103.7(14)
$\mathrm{N}(2)-\mathrm{C}(34)-\mathrm{C}(28)$	119.6(14)
$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(28)$	114.3(15)
$\mathrm{C}(38)-\mathrm{C}(35)-\mathrm{C}(37)$	113.2(16)
$\mathrm{C}(38)-\mathrm{C}(35)-\mathrm{C}(36)$	111.4(19)
$\mathrm{C}(37)-\mathrm{C}(35)-\mathrm{C}(36)$	102.4(16)
$\mathrm{C}(38)-\mathrm{C}(35)-\mathrm{C}(34)$	109.3(15)
$\mathrm{C}(37)-\mathrm{C}(35)-\mathrm{C}(34)$	112.6(17)
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(34)$	107.5(15)
$\mathrm{O}(10)-\mathrm{C}(38)-\mathrm{O}(11)$	125.6(16)
$\mathrm{O}(10)-\mathrm{C}(38)-\mathrm{C}(35)$	123.3(15)

```
O(11)-C(38)-C(35) 110.8(16)
C(41)-C(40)-C(45) 119.9(17)
C(41)-C(40)-N(2) 122.1(17)
C(45)-C(40)-N(2) 117.9(17)
(42)-C(43)-C(44) 126(2)
C(42)-C(43)-O(12) 119.7(19)
C(44)-C(43)-O(12) 114.1(18)
C(45)-C(44)-C(43) 118.5(19)
C(40)-C(45)-C(44) 113.2(19)
```

