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Synthesisand Characterization of Functional Polymers

by
Living Polymerization Methods

Abstract

Living/controlled polymerization techniques are expected to proceed in the absence of
irreversible chain transfer and chain termination reactions. Therefore, they are powerful
tools for the synthesis of diverse macromolecular architectures exhibiting different
properties and functions. Controlled polymerization of meth (acrylate) s can be
conveniently carried out at or above room temperature using group transfer polymerization
(GTP) isauseful technique to synthesize well-defined random, block copolymers including
amphiphilic block copolymers containing poly methyacrylic acid segments by using
protected monomers, graft, star-branched polymers, networks, functional polymers,
macromonomers, telechelics and hyper-branched methacrylates. However, relatively lesser
attention has been paid to the possibility of using GTP method to synthesize end functional
poly (alkyl methacrylate) s by ‘termination method'. Also, the issue of reactivity of GTP
‘living’ chain ends towards electrophilic termination agents has not been adequately
addressed. Hydroxyl, bromine, amine end-functional and a styryl ended macromonomer of
poly (methyl methacrylate) s are reported by terminating the living GTP chain-ends of
PMMA with benzaldehyde, bromine, methyl E-3-(2-dimethylaminophenyl)-2-
phenylacrylate, and with 4-(bromomethyl) styrene respectively. However, all these
functionalization reactions have not been adequately characterized for general utility. The
objective of the present study is to examine the efficiency of functionalization reaction of
silylketeneacetal ended poly (methyl methacrylate) s with various electrophiles. Each
functionali zation/end-capping reaction is unique and required specific reaction conditions to

obtain the best functionalization efficiency.
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Hydroxyl terminated poly (methyl  methacrylate) s was synthesized via GTP by
terminating silylketeneacetal ended PMMA with benzaldehyde using tetra-n-butyl
ammonium bibenzoate (TBABB) catalyst. It was found that 0.1mol% TBABB catalyst
concentration is sufficient to obtain high number average degree of functionality (F) in
the range of 0.70-0.80. MALDI-ToF-MS studies show that the termination of chain
ends competes with chain end cyclization, a well-known chain termination reaction in
GTP.

Lactone-end capped poly (methyl methacrylate) s has been prepared via GTP by
terminating silylketeneacetal ended PMMA with 5, 6-dihydro-2H-pyran-2-one using 0.1
mol% TBABB catalyst at room temperature. Polymers with F, in the range of 0.70-0.85
could be obtained. Heterogeneity of end functional group is observed in formed

polymers as a result of competing chain end cyclization.

Amine-terminated poly (methyl methacrylate) s was prepared via GTP by the
functionalization reaction of the silylketeneacetal ended PMMA with N-trimethylsilyl
benzadehyde using 1 equivalent of Znl, as catalyst at room temperature. F, values in
the range of 0.80-0.85 were obtained.

Model reactions between [1-methoxy-2 methyl-1-propenyl)-oxy] trimethylsilane (MTS)
with various unsaturated anhydrides namely, itaconic anhydride, citraconic anhydride,
maleic anhydride, and 2,3-dimetylmaleic anhydride were carried out under different
conditions with a view to establish the feasibility of preparing anhydride-terminated
poly (methyl methacrylate) s. Yb(OTf)s/CH,Cl, catalyst gave 1,4 adduct of MTS with

itaconic anhydride. However, CH.ClI, is a poor solvent for GTP.

Xii
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CHAPTER 2: GENERAL EXPERIMENTAL PROCEDURE

The experimental and characterization methods used in the course of this work are
described below.
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2.1 Methods of purification

Manipulations like transfer of catalyst, and other moisture/air
sensitive reagents was carried out in mBRAUN lab master 100

inert atmospher e glove box.

2.1.1. Nitrogen or argon gas

Nitrogen generator (Dominick Hunter, England, NITROX lab nitrogen generator) model NG
450-1, 230 V, (50 Hz generator) or nitrogen gas cylinder (purity 99.999%, INOX, Mumbai)
was used for the bench top inert atmosphere techniques. Following purification methods were

employed to remove moisture and oxygen from nitrogen.

The pressurized nitrogen was passed through activated 4 A° molecular sieves to remove
moisture. Oxygen was removed by passing the gas through a copper catalyst at 200 °C. The
set up for this purification contains five towers (Im = 3") (Fig. 2.1). The first and third towers
contain 4 A° molecular sieves and the second and fourth contain copper catalyst with the fifth
tower containing 5 A° molecular sieves. After passing nitrogen gas through these towers it
was passed through successive beds of anhydrous phosphorous pentoxide and cacium
hydride. Finally the gas was passed through a trap of eight cylinders containing toluene
solution of oligo-styryl lithium, which removes the last traces of moisture and oxygen besides

acting as an indicator for the nitrogen purity.

The copper catalyst and molecular sieves were activated at regular intervals. For
reactivating the copper catalyst, hydrogen gas was passed through the towers at 200 °C for 8-

10 hours and then the water formed was removed by applying vacuum.

The molecular sieves were reactivated by heating the column (at 200 °C) under reduced

pressure for approximately 10 hours. The activated copper catayst is dark brown in color
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while the catalyst before activation is pale green in color. This acts as the visual indicator for
determining the appropriate time for reactivation.

) . v
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Fig 2.1 Laboratory-scale setup for polymerization under inert atmosphere

A double stage rotary pump was used to evacuate the vacuum line. An oil filter and a cold trap
(liquid N2) prevent oil vapor from entering the manifold as well as organic and water vapors
from entering the vacuum pump. The pressure was measured using digital high-pressure Pirani
gauge model-DHPG 101 S in the range from atmospheric pressure to 0.001 m. bar. The
working pressure of the system is approximately 0.03 m. bar.

The outlets of the vacuum and the dry nitrogen part of the manifold were closed by stopcocks
and are connected as shown in Fig 2.1. Different parts of the glassware (reactors, flasks and
others) were connected to the outlets by butyl rubber tubing.

2.1.2. Solvents

Solvents used in the present work (THF and toluene) were first subjected to fractional
digtillation using a 1.5 m column. The fractionated solvents were then distilled over calcium
hydride after refluxing over night using a Dean-Stark type distillation unit. This was followed
by distillation over sodium-benzophenone complex before distilling them over toluene solution
of polystyryllithium in inert atmosphere prior to the polymerization by freeze-thaw method
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using the apparatus shown in Fig 2.2. Dichloromethane was stirred over CaH, for eight hours
and digtilled under reduced pressure prior to reaction. The solvents used for precipitation of
polymers (methanol and hexane) used after smple distillation. All the solvents were transferred
into the reactor using stainless steel capillary (canula) through a rubber septum under a positive

pressure of nitrogen.
2.1.3. Monomer

Methyl methacrylate (MMA) was purchased from Aldrich, USA and was stirred over CaH; for
5 h, fractionally digtilled and finally distilled under reduced pressure. The distilled monomer
was stored at 5-10 °C under positive pressure of nitrogen. The required amount of pre-distilled
monomer was again purified by distillation, over tri-isobutyl aluminum (TIBAL), using freeze-

thaw technique using the apparatus shown in Fig 2.2.

", ”%‘
b
-

Fig 2.2 Flash distillation apparatus for solvent and monomer distillation

MMA was taken into the distillation unit and a 1.0 M solution of TIBAL in toluene (Schering
AG, Germany) was added drop-wise until persistent greenish yellow color complex appears.
The bright greenish-yellow color represents the formation of a complex of TIBAL with
carbonyl group of MMA and acts as an indicator for monomer purity’. The pure monomer was
then condensed into the side arm of the monomer purification assembly using liquid nitrogen
by freeze-thaw method. Finally MMA was transferred into the dropping funnel by a cannula or

syringe.
2.1.4. Initiator

GTPinitiator (1-Methoxy-2-methyl-1-propenoxy) trimethyl silane (MTS) (95%, Aldrich, USA)
was freshly distilled (bp 35°C/15 mmHg) prior to use.
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215, Catalyst

Tetra-n-butylammonium bibenzoate (TBABB)

Tetra-n-butylammonium bibenzoate (TBABB) was prepared according to reported procedure®.
To a separatory funnel was added 10.0 g (0.082 mol) of benzoic acid and 80 mL of 40%
agueous tetra-n-butylammonium hydroxide (TBAOH). The mixture was shaken until
homogeneous reaction mixture is obtained and then extracted with 3 x 50 mL of CH.Cl,. To
the combined extracts was added 10.0 g of benzoic acid and the solution was dried over
MgSOs, filter and stripped. The residua solid was dissolved in 250 mL of warm THF and the
volume was reduced to 125 mL under aspirator pressure. To the partly crystallizing mixture
was added 250 mL ether (in parts) and the mixture was allowed to stand overnight. The product
was filtered, washed with ether and dried under vacuum; mp 101-103°C (lit* mp 102°C). The

dried catalyst powder was stored in a round bottom flask under vacuum until use.

2.1.6. Glassware
Cannula and glassware including polymerization reactor were dried in an oven at 130°C
overnight prior to use. The glassware was assembled while hot and flame dried under dynamic

vacuum and cooled under nitrogen.

2.2. General procedurefor end functional poly (methyl methacrylate) via group transfer
polymerization (M, (theory) = 2000 g/mol)

Group-transfer polymerization of methyl methacrylate (MMA) (M, (theory) = 2000 g/mol)
was carried out on a bench top two-neck reactor equipped with a three-way septum adapter and

adropping funnel fitted with a rubber septum (Fig. 2.3).

Septum

Three-way septum adapter ™

Rubher tubing for vacuum or
HIITOZENH gas

For water circulation— Magnetic stirring har
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Fig 2.3 Bench-top reactor for group-transfer polymerization

TBABB in THF (1 mL), (0.1mole% based on initistor MTS, 2.35x10°® mol) was
transferred to the reactor, which was immediately purged with dry nitrogen. Dry solvent THF
(30 mL) was transferred via cannula. The desired amount of MTS (2.35x10°° mol) was added
to the flask using a microsyringe and the reaction mixture was stirred well, alowing
sufficient time (5 minutes) for initiator and catalyst to form a complex. MMA (5 mL, 0.047
mol) was added drop wise via dropping funnel while stirring was continued. Polymerization
was continued for 30 minutes and pick out was taken using a syringe and immediately
terminated with methanol. To the remaining polymerization solution, a suitable electrophile
or Michael acceptor (1 equivalent to MTS) was added and reacted for 12 h a room
temperature. Desilylation was accomplished by adding TBAF (1.0 M in THF, 1 equivalent to
MTS) at room temperature for 2-3 h.

Finally the polymer solution was poured drop-wise with stirring into
n-hexane. The precipitate was filtered and dried under vacuum for 5 - 8 hours a 25 °C to give

end-functional PMMA. The yields were generally quantitative.

2.3. General methods of characterization

(a) Nuclear magnetic resonance spectroscopy (NMR)

NMR spectra of functional polymersin CDCls, acetone-ds or CD3CN (Aldrich) were recorded
using a Bruker DRX 500 MHz NMR spectrometer and 5 mm diameter tubes a room
temperature. For quantification of functionalization, the functional polymer concentration of 30
mg/mL was used and relaxation delay time of 15 sec with 2000 scans. Functionalization
efficiency of end-functional polymers were measured by calculating area of peak corresponds
to —OCHs of PMMA and end-group protons.

(b) Fourier transform infrared spectroscopy (FTIR)
FT-IR spectra of organic compounds and functional polymers were recorded on Perkin Elmer

16PC FT-IR spectrophotometer.

(c) Gas chromatography (GC)
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The conversion of an electrophile was determined by using gas chromatography (Perkin EImer
auto-system nelson 1022 XL) by calculating the disappearance of an elctrophile with respect to
an internal standard (biphenyl). BP 1 capillary column (SGE, Austraia) (dimethyl
Polysiloxanes stationary phase), (25m length, film thickness 0.1micron, 1.D: 0.22mm) was used
with Split 1:60, Sample size: 0.5uL and using FID Detector. Oven temp: 50-200-300°C, ramp
rate 10 and 20° C/min; Injector temp: 320°C, Detector temp: 340°C. Response factor Ry of
benzadehyde was calculated as Ry = 1.9015 using biphenyl asinternal standard.

(d) Gél permeation chromatography (GPC)

Molecular weight and molecular weight distribution of the end-functional PMMA were
determined from SEC (Thermo separation products) equipped with spectra series UV 100 and
spectra system RI 150 detectors and Spectra Series P100 pump was used with auto sampler:
Spectra Series AS 300. Linear PMMA standards (Polymer Laboratories, M, = 402 g/mol to
833000 g/mol., Mw/Mp = 1.01 — 1.20) were used for cdibration of the column. Two 60 cm PSS
SDV-gel columns 1~ linear (10° — 10° A°) and: 1~ 100 A° with 10 mat 25°C. The sample
concentration was ¢ = 2 mg /mL and the injection volume was 50 nL.. HPLC grade THF was

used as eluent at room temperature with aflow rate of 1 mL / min.

(e) Vapor pressure osmametry (VPO)

The molecular weights of end-functional polymers were determined by vapor pressure
osmametry (VPO) (Knauer, K-7000) using HPL C grade CHClI; at 35 + 3 °C with a gain of 032.
Kca Was found as 22,900 by using benzyl as standard.

(f) High Performance liquid chromatography (HPLC)

Purity of model compounds wer e determined by HPLC (Waters) at ambient
temperatureusing Zorbax C8 column (USL 0028089) 4.6 mm ID x 25 cm
with 2410 Rl and 996 UV detector. Mobile phase ismethanol. Injection
volumeis60 uL and 717 plus auto sampler was used. A 515 HPL C pump was
used with aflow rate of 1 mL/minute.
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For hydroxyl end functional PMMA, Waters HPLC was used under “Liquid Adsorption
Chromatography under Critical Conditions” (LACCC). The conditions were: TSP P4000 pump
a 0.5 ml/min, 10 microliter injection volume, TSP UV3000 UV detector, PL EMD 960
Evaporative Light Scattering detector. Eluent THF: hexane 81:19 by weight; at a temperature
of 35 °C; Column set: 25 cm x 4 mm, Si 5 pm, Nucleosil 100 A° and 300 A°. For calibration
linear PMMA standards from Polymer Laboratory were used.

(g) Matrix asssted laser desorption ionization time of flight mass spectr oscopy (MALDI-—
ToF-MYS)

MALDI ToF-spectra were recorded with an Applied Biosystems Voyager-DE STR MALDI
ToF spectrometer equipped with 2 m linear and 3 m reflector flight tubes and a 337 nm
nitrogen laser (3 ns pulse). Mass spectra were recorded at an accel erating potential of 20 kV in
positive ion linear or reflectron mode. Dithranol or 2, 5-Dihydroxybenzoic acid (10 mg/mL
THF) was used as a matrix and a small amount of LiCl was used to promote the ionization.
Polymer was dissolved in THF (3 mg/mL THF). A PMMA standard with a molecular weight of
4910 g/mol (3 mg/mL THF) was used for cdibration, with 2, 5-dihydroxybenzoic acid as
matrix (10 mg/mL THF) and with Li cation.

2.4. References

1. Allen, R. D.; McGrath, J. E. Polym. Bull. 1986, 15, 127.

2. Dicker, I. B.; Cohen, G. M.; Farnham, W. B.; Hertler, W. R.; LagnisE. D.; Sogah, D. Y.
Macromolecules, 1990, 23, 4034.
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Chapter 3: Synthess and Characterization of Hydroxyl-
Terminated Poly (methyl methacrylate) s via Group-Transfer

Polymerization

3.1 Introduction

Group transfer polymerization (GTP) is an attractive method to synthesize a variety of homo,
co-polymers, star-branched poly (alkyl methacrylate) s, and functional polymers at room
temperature. Living anionic polymerization works better at very low temperature (-78°C)
where as GTP works at ambient or elevated temperatures. The ‘living nature’ of GTP depends
on the nature and concentration of catalyst possibly because of the participation of enolate
anions in the propagation. Several kinetic and mechanistic studies convincingly suggest that the
nucleophile catalyzed GTP of akyl (meth) acrylate is merely a hypervalent silicon mediated
anionic polymerization?.

End functionalized poly (methyl methacrylate) s (PMMA’Ss) can be synthesized either
by atom transfer polymerization (ATRP),® by living anionic polymerization (LAP)* or via
GTP. In general, two approaches are possible, viz, use of functional initiators or termination of
the “living” chain by a suitable electrophile (or radical precursors) bearing the functional
groups. Either of the methods have both merits and demerits. For example, functional initiators
having active hydrogen groups (-OH, -NH2) cannot be directly used in LAP and GTP and will
require a  protection-deprotection  sequence. For  example,  [(2-methyl-1-[2-
(trimethylsiloxy)ethoxy]-1-propenyl)oxy] trimethylsilane was used as initiator for MMA
polymerization via GTP which gives quantitatively a-OH functional PMMA upon deprotection
of the end group®. Hydroxyl end-functional polymers have been prepared via LAP by Andrews
and coworkers via a complex functional initiator formed from a hydroxyl protected alkyl

lithium and diphenylethylene’.
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In another approach, direct reaction of polymeric organolithium compound with ethylene oxide
produces the corresponding hydroxyethylated polymer in quantitative yield without any
significant formation of oligomeric ethylene oxide block®. Smith’ reported the use of
benzaldehyde as an electrophilic terminating agent for the synthesis of w-hydroxyl-terminated
PMMA (1) by LAP. The low reactivity of the methacrylate anion could be circumvented with
an appropriate reaction design. Termination of the growing methacrylate anion (derived from
diphenylhexyllthium) with benzaldehyde in THF at -78°C results, after hydrolysis, in
benzhydryl acohol end-functional PMMA (Scheme 3.1).

OHC

(st (st i @ ?H3 ?H
nMMA o .
- Lt Bu-CH »- CHo— CH>rC Li —— =  u N " CH

COxMe  COzMe i), MeOH CO2Me

Living PMM A anion 1

Scheme 3.1. Benzhydryl alcohol terminated PMMA by LAP

Use of functional initiator without protection is possible in ATRP. Haddleton reported® the
ATRP of MMA with a pyridinecarbaldehyde imine copper (1) catalyst and hydroxyl functional
alkyl bromide initiator (2-hydroxyethyl 2’-methyl-2’-bromopropionate), which leads to a-
hydroxyl functional PMMA with controlled My, in the range 2500 to 20 000 g/mol and Mw/M
<12

The Mukaiyama aldol reaction between silyl ketene acetals (or silyl enol ethers) and aldehyde
provides a synthetic route for b-hydroxyl carbonyl compounds via carbon-carbon bond
formation. Since its discovery promoted by Lewis acid catalyst, namely, TiCls*, a variety of
catalysts such as trityl salts™@, transition metal salts*®, silver (1) carboxylate-bis (phosphine)
20 rhodium (I)-diphosphine complexes®™®, Et,O: Mgl.**®, AlMeCI™ Ru
(salen)(NO)(H20)] SbFe™®@  BF3.0Et,, LiClOs, YbB(OTf)s, Sn(OTf), Zn(OTf), ™ 18-
diazabicyclo [5.4.0] undec-7-ene (DBU)™", smi*?, and iodine ™ have been used as
catalysts for this reaction. None of the above catalysts, however, are effective in a strongly
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coordinating solvent, such as, THF. Typical solvent for Mukaiyama aldol reaction is methylene
chloride.

Mukaiyama aldol reaction using MTS with benzaldehyde is also reported in ionic liquids'®®,
high pressure™™, elevated temperature™™ (150°C) (in the absence of solvent), in solvent
assisted™® (in DMSO) process and lanthanide fluorous catalyst (lanthanide bis
(perfluorooctanesulfonyl) amide)**®. However, none of these conditions are suitable for the
functionalization reaction of silyl ketene acetal ended PMMA with benzaldehyde.

A highly nucleophilic phosphine, namely, tris (2, 4, 6-trimethoxyphenyl) phosphine (TTMPP)
catalyzes the aldol reaction between MTS and benzaldehyde to give the corresponding aldol
product in good yields (89%) in THF a room temperature. This reaction is considered to
proceed through naked enolates produced by nucleophilic O-Si and C-Si bond cleavage™.

Sogah reported™ the use of nucleophilic catalyst tris (dimehtylamino) sulfonium
bifluoride (TASHF;) (5 mol% based on MTYS) for the reaction of MTS and benzaldehyde
to yield the aldol adduct in > 95% at ambient temperature in THF. Webster and
coworkers™ then extended this reaction to the termination of silyl ketene acetal-ended
PMMA with benzaldehyde using TASHF, catalyst to give, after deslylation using
TBAF/MeOH, a PMMA with a terminal benzhydryl alcohol group.

In this chapter we describe a detailed examination of the electrophilic termination reaction of
silyl ketene acetal ended PMMA (prepared with TBABB catalyst in THF at 25°C using MTS as
initiator) with benzaldehyde using a weakly nucleophilic TBABB as catalyst in THF at 25°C.
The efficiency of polymer functionalization was examined using *H NMR, SEC and MALDI-
ToF methods. Weakly nucleophilic TBABB is reported to be a superior catalyst for GTP
conferring on the reaction enhanced livingness and reduced chain termination.

3.2 Experimental M ethods
3.2.1 Materials
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Benzaldehyde (Merck, India) was washed with NaHCOs solution, and dried over NaSOsa,
finally fractional distilled under vacuum (62°C/10mm Hg) and stored under nitrogen. Cp,TiClo,
Cp2ZrCly, Yb(OTf)s (97%, Aldrich, USA) were dried at 30°C and LiClIO4 at 150°C under
dynamic vacuum for 18 hours before use.

3.2.2 Moddl reaction of MTSwith benzaldehyde

A flame dried two neck flask, equipped with a nitrogen inlet, athree way septum adapter, and a
dropping funnel (fig 2.3, chapter-2) was charged with 0.150 grams of biphenyl (internal
standard) (9.73x10*mol), TBABB (0.1mol% of MTS), 30 mL of THF using a canula under
positive pressure of nitrogen and 1.0 mL (0.005 mol) of MTS using a syringe at 30°C. After 5
minutes, 0.5 mL of benzaldehyde (0.005 mol) was added at once. Every five minutes pick outs
were taken and analyzed by gas chromatography. Percentage of benzaldehyde conversion was
calculated using response factor R; value of benzaldehyde (R; value of benzaldehyde was found
as 1.9015 using biphenyl as internal standard using BP-1 column), conditions, BP-1 column,
25m length, film thickness 0.1micron, I.D 0.22mm, carrier gas. N2, split 1:60, sample size:
0.5pL; detector: FID; oven temperature program:

Temp(°C) Time(min) Rate
Stepl: 100 5.00 30.0
Step 2: 200 0.00 20.0
Step 3: 300 2.00 0.0

Injector temp :  320°C
Detector temp :  350°C

N, pressure : 0.4921 kg/cm?
Attenuation : 16

Desilylation reaction was carried out using THF: 1 N HCI (20:1) at 0°C. After 0.5 h sat. ag
NaHCO3; was added. THF was removed under reduced pressure and product was extracted with
CHxCl,. The organic extract was washed with brine and dried (Na&SO.). Later, CH2Cl> was
removed under reduced pressure and crude product was chromatographed on silica gel to afford
methyl 3-hydroxy 2,2 dimethyl-3- phenylpropionate (4) in > 95% yield.

'H NMR (CDCls): 0.97(s, 3H), 1.05 (s, 3H), 3.25 (brs, 1H), 3.52 (s, 3H), 4.72 (s, 1H), 7.06-
7.26 (m, 5H)
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FT-IR (neat): n = 3495, 1730 cm™

M elting Point: 68.5-69.5 (lit'® mp: 69.5-70.5)

3.2.3 Hydroxyl-end functional poly (methyl methacrylate) s

To aflamedried two neck 250 mL flask, equipped with a nitrogen inlet, and a dropping funnel
(fig 2.3, chapter-2) was charged with 1.2 mg of TBABB in THF (1 mL) (0.1mol% of MTYS),
followed by 30 mL dry THF using a canula under positive pressure of nitrogen and 0.5 mL of
MTS (2.35x10" mol) using a syringe at 25°C. After 5 minutes, 5 mL of MMA (0.047 mol) was
added from a dropping funnel at arate of ImL/min. The solution was stirred for 30 minutes. An
aliquot of 5 mL was withdrawn using a hypodermic syringe under a positive pressure of
nitrogen, terminated with methanol and precipitated in n-hexane. The polymer was filtered and
dried at 60°C/400 mm Hg. To the remaining reaction mixture, additional amount of TBABB
catalyst (0.1mol% of MTS) in 5 mL THF was added, followed by 0.3 mL of benzaldehyde
(2.35x10°® mol) and the reaction was allowed to continue for 12 h at 25°C. Subsequently, 3 mL
of 2.35x10® mol of NBusF/methanol was added to the reaction mixture and the reaction was
continued for 2 h at 25°C. The desilylated product was precipitated in n-hexane. The polymer
was further purified by reprecipitating it from THF solution using excess hexane and dried at

60°C/400 mm Hg. The polymer yield was quantitative (4.9 g).

3.2.4 Characterization
The methods of characterization are described in chapter-2.

3.3 Reaults and discussion

3.3.1 Reaction between M TS and benzaldehyde

The reaction between benzaldehyde and M TS (Scheme 3.2) using various catalysts in different
solvents was carried out at 30°C. The progress of reaction was monitored by determining
benzaldehyde conversion using gas chromatography. A minimum of three injections were made
to confirm the reproducibility of analysis. Number of moles of benzaldehyde present at a given
time was determined using the equation, mole ratio = arearatio X Ry ; moles of benzaldehyde =
moles of internal standard (biphenyl) x arearatio x Ry
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Catalysis of the Mukaiyama Aldol reaction using various Lewis acids and a nucleophilic
catalyst TBABB are shown in table 3.1. Dried Yb(OTf)3 is reported to induce cationic ring-
opening polymerization of THF (entry 1, table 3.1).

. SiMe: OH
SiMes Catayst (P , THF:IN HCI (20:1) |
@cm r H— > m@ > CH@
Me  Solvent, 20 min., ¢O,Me 0C cooMe
MTS (2 300C
(2) Methyl 2,2-dimethyl-3-phenyl-3- Methyl 3-hydroxy 2,2 dimethyl-

trimethylsiloxypropionate ( 3) 3-phenyl propionate ( 4)
Scheme 3.2. Reaction of MTS with benzaldehyde

However, Sawamoto and coworkers found that in the presence of 2,6-di-tert-butyl-4-
methylpyridine, ring-opening polymerization of THF could be suppressed'’. The high
activity of Yb(OTf)3; even in the presence of a nitrogen baseisdueto its high Lewis acidity
aswell asdueto thelarge radius'® and high co-ordination number of Yb(I11).

Table 3.1. Modd reactions between M TS and benzaldehyde in the presence
of different catalysts and solvent at room temperature

Entry Catalyst® Solvent % Conversion of
bezaldehydein 20
min. at 30°C
1 Yb(OTf)3 THF 80
2 Yb(OTf)3 THF: H0O Nil
4:1

3 Yb(OTf)s3 Toluene 91
4 Yb(OTf)3 CHxCI; 97
5 TBABB THF 98

0.1 mol%
6 CP.ZrCl, THF Nil

Or

CP;TiCl,
7 LiClOq4 CHxCl, 85
8 LiClOq4 THF 25
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a Yb(OTf)3,CpZrCl, ,Cp,TiCl, and LiClOs were used in 10 mol% [based on benzaldehyde]
b: Dried Y b(OTf)s induces cationic ring-opening polymerization of THF

No aldol adduct was obtained when THF:H,0 (4:1) was employed. In aqueous media,
hydrolysis of MTS precedes the desired aldol reaction (entry 2, table 3.1). Yb(OTf)s is
stable without hydrolysis or decomposition even in water and it can be reused several
times without loss of its activity™®®. Kobayashi reported®® that Yb(OTf); effectively
catalyzed the aldol reaction of silyl enol etherswith aldehydesin aqueous media. In other
organic solvents such as toluene and dichloromethane (entry 3, 4, table 3.1) Yb(OTf);3
worked well (91, and 97% conversion respectively). Yb salts with less-nucleophilic
counter anions (like OTf ~ or ClO,) are more cationic and the high Lewis acidity

promotesthe desired reaction.

Cp2ZrCl, or Cp,TiCl,were not effective Lewis acid catalysts for the model reaction (entry
6, table 3.1). It was reported® that 5 mol% of cationic zirconocene complexes
[Cp2Zr (O'Bu)THF][BPh4] gives 90-95% yield of aldol adduct in dichloromethane at 25°C.
High conversion of benzaldehyde was observed with 10-mol% LiCIO, in dichloromethane
in spite of the heterogeneous nature of the reaction mixture. On the contrary 10 mol%
LiClO4 in THF is homogeneous. Yet only low conversion was observed (entry 7, 8, table
3.1). Thisis presumably due to the fact that benzaldehyde is in competition with the
solvent (THF) for corordination to the lithium cation. Reetz et al. have reported® the
reaction of MTS with benzaldehyde using 10 mol% LiClO4/diethyl ether resulted in 56%
yield of the expected aldol product.

When the product methyl 3-hydroxy 2,2 dimethyl-3- phenylpropionate (4) was injected into
GC a an injector temperature of 320°C, benzaldehyde and methylisobutyrate were detected.
This implies that the secondary benzhydryl alcohol was thermally labile on a basic column
(BP-1, polyamide coated). Thermogravimetry analysis (TGA) of methyl 3-hydroxy 2, 2
dimethyl-3- phenylpropionate (4) showed an initial degradation at 82.5°C (0.672% wt loss),
50% weight loss at around 173°C and 99.2 %wt loss at 240-245°C. Therefore, the product was
analyzed as methyl 2, 2-dimethyl-3-phenyl-3- trimethylsiloxypropionate(3).

75


http://www.pdfcomplete.com/1002/2001/upgrade.htm

&
¥
C

PDF
omplete

Click Here & Upgrade
Expanded Features
Unlimited Pages

Model studies establish that reaction between MTS and benzaldehyde is rapid and quantitative using Yb(OTf)s in
CH,Cl, and TBABB in THF. TBABB is easy to prepare, less hygroscopic than other catalysts such as TASHF,
and is soluble in THF. Consequently, TBABB was employed as catalyst for electrophilic termination of GTP chain
end by benzaldehyde.

3.3.2 Hydroxyl-terminated PMMA via GTP

MMA polymerization in presence of TBABB catalyst (0.1 mol% based on MTS 2) in THF
(MMA concentration 3.13-1.88 mol/L) was carried out at 25°C. It is reported® that less
nucleophilic TBABB catalyst gives low cyclic fraction due to backbiting reaction compared to
more nucleophilic TASHF, catalyst. Benzaldehyde was reacted with silyl ketene acetal ended
PMMA for 12 h at 25°C (Scheme 3.3). The hydroxyl terminated PMMA (7) was purified by
reprecipitation of the dilute solution of polymer (5% wi/v) into n-hexane. TLC detected no
benzaldehyde in the final polymer.

The number average molecular weight (M) and molecular weight distribution (Mw/My,) of the
polymers were determined by SEC and are given in table 3.2. The terminal functional group of
the obtained polymers was then analyzed by H NMR spectroscopy. Besides the large
absorptions of the repeat units of MMA, there are characteristic signals originating from the
end group i.e. OSIMe; and aromatic protons. The DP, of functional polymer was calculated by
using arearatio of OMe vs. aromatic protons (Figure 3.1).
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Scheme 3.3. Synthesis of hydroxyl terminal PMMA viaGTP
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Fig 3.1 *H NMR spectrum of hydroxyl end-functional PMMA (Entry 9, table 3.2) in
acetone-ds (500 MHz)
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Table 3.2. Synthesis and characterization of hydroxyl terminal PMMA prepared viaGTP

Entry. MMA, MTS, THF, TBABB TBABB? Benzal M, M, M, Mn Ieefﬁdency an
No. mol | molx10° | mL | molx10° | mol x10° | dehyde, | Theory | (GPC) | My/M, | (VPO) (NMR)
mol x 10° | (g/mol) (RI)

1 1009| 328 | 30| 3.28 3.28 | 328 | 3200 | %80 | 119 ) 2700 | 3800 | 110 ) 076
4 (1 mol%) | (1 mol%)

2 1009 328 | 30| 0328 | 0.328 | 3.28 | 3200 | 4080 | 114 | 3900 | 5120 | 078 | 080
4 (0.1 mol%) | (0.1 mol%)

3 0. 09 3. 28 40 0. 328 0. 328 3. 28 3200 3360 1.12 3500 4253 0.95 0.79
4 (0.1 mol%) | (0.1 mol%)

4 1004| 164 | 15| 0164 | 0164 | 1.64 | 3200 | 20 | 119 | 3200 | 4000 | 106 | 075
7 (0.1 mol%) (O_]_

mol %)
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5 0.04 3.2 15 1.64 1.64 3.2 1700 1690 119 2000 2750 1.00 0.62
7 (©05mo%) | (0.5
mol %)
6 0.04 3.28 25 0.328 0.328 3.28 1700 2000 1.06 2300 2663 0.85 0.75
7 (©Imo%) | (0.1
mol %)
7 0.04 1.64 15 1.64 No 1.64 3200 3230 1.18 3500 4500 0.99 0.72
7 (Lmol%) | catalyst
g 0.04 235 20 1.15 No 235 2200 2330 1.07 2000 3100 0.94 0.75
7 (0.5 | catalyst
mol %)
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% [004] 1.64 | 15 [1.64x10]1.64x10| 1.64 | 3200 | 2015 | 117 | 3200 | 4360 | 109 | 067
7 -5 -5
(1 mol%) (]_
mol %)

All experiments were carried out at 30°C; For functionalization reaction: [Benzaldehyde]/[[MTS] =1
a: Additional TBABB catalyst added prior to addition of benzaldehyde.
b, c: No additional catalyst was added for functionalization
d: Functionalization reaction was performed at 0°C; € lefficiency = M (theory)/ Min (sec) -, f: Fn = DP, (SEC) / DPy(*H NMR)

80



http://www.pdfcomplete.com/1002/2001/upgrade.htm

&
¥
C

PDF
omplete

Click Here & Upgrade
Expanded Features
Unlimited Pages

Initiator efficiency (I efficiency) Was found to vary between 0.78 to 1.11 depending on MMA and
TBABB concentration (table 3.2). The obtained polydispersities were narrow (My / My, 1.06-
1.19). The ultraviolet and the refractive index traces in size exclusion chromatography (SEC)

were almost identical over the entire molecular weight range (Figure 3.2).

Qa0 . 0080 -0010 . . 0,050
M = 2891 g/mol
Qas {oos 0015+ — M:/M,,: 1.% 100
@ 3 0020
2 0@ 1000 C c 0040 C
o < =3 <
@ = 2 &
o 0w o o 00254 005 T
= 1005 3 5 =1
o =3 = o
= 1] 3] 2
3] = @ -0030- =
O 0w = 2
g {000 B 3 0,080 g
— B = o
X qos S o -00ss- 7
@ 0025 @
. T 00 © R
- -0.040
200y M=2/ 40,020
MMeLL? |0 o8
05 ; : 2 50
® ® Elution volume(mL]
Huionvdume(rt) fon volume(mL)
(Entry 9, table 3.2) (Entry 1, table 3.2)

Figure 3.2. SEC trace of benzhydryl alcohol terminated PMMA, using Rl and UV detector

As shown in table 3.2, DPy's are in agreement with the values obtained from size exclusion
chromatography. The number average functionality (F,) of the functional polymer was
determined from DP, (SEC)/DP, (*H NMR). The values are less than unity, indicating that

competing back-biting reaction occurred along with functionalization reaction.

Reaction conditions such as catalyst concentration and reaction temperature could have an influence on the
efficiency of functionalization reaction. Functionalization reaction performed at 0°C did not show any significant
improvement over that performed a 25°C (entry 1 and 9, table 3.2). There was no loss of efficiency even when no
additional catalyst was added prior to the addition of benzaldehyde. Similarly, increasng MMA concentration had
no effect on the efficiency of the reaction.

Webster and coworkers reported™ MMA polymerization in THF using 1-(2-(trimethylsiloxy)
ethoxy)-1-(trimethylsiloxy)-2-methyl-1-propene as initiator and TASHF; as a catalyst at room
temperature and after 2 h, the polymer was terminated with benzaldehyde using additional
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TASHF, catalyst and reacted overnight to get protected hydroxyl PMMA with M,, = 2800,
Mw/Mp = 1.04). Comparison of OSiMe; peak areas with the methacrylate OMe at d 3.6 gave a
OMe: OSiMe;s (incorporated monomer: end group) value of 18.4; theoretica dp of the polymer
is 29.4 and monomer/end group is expected to be 14.7. The desilylation with TBAF/MeOH at
reflux temperature for 1.5 h, yielded hydroxyl-PMMA with M, = 3200 g/mol (Mw/Mn = 1.18).

The OH-functionalized GTP polymers were analyzed by liquid adsorption chromatography
under critical conditions (LACCC). The silyl ether end functiona PMMA (6, scheme 3.3)
elution volume is shifted by ca -0.2 mL and the hydrolyzed one i.e. hydroxyl end functional
PMMA (7, scheme 3.3) back to the original placei.e., aa PMMA position (Figure 3.3). The UV
signas at 254 nm are bimodal possibly due to inadvertent conversion of PMMA-OSiMe; to
PMMA-OH up on storage.

0.25 —- Entry-2
s B Entry-2 ’ e D . C: PMMA-OSiMe3
12+ e C B:PMMA D: PMMA-OH
D C: PMMA-OSiMe3 0204 oo

1.0 & D: PMMA-OH

L]

o o °
08 o £ 0.15 ®

() [ ]
M ¥

4
=)
1

0.10 °

Y Axis Title

RI response
N
=
1

T T T
T T T T T T

44 46 48 50 52 54 56 58 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8

X Axis Title

Elution volume(mL)

0.05

I
N}
1

0.00

o
o
1

Fig 3.3 HPLC (LACCC) anaysis of PMMA, PMMA-OSiMes, and PMMA-OH using Rl and
UV detector (entry 2, table 3.2)

The hydroxyl end functional PMMA’s prepared by GTP were found to be predominantly
syndiotactic (58-60% ) (table 3.3) as expected.

Table 3.3. Stereochemistry of hydroxyl end-functional PMMA prepared by GTP

Entry Temp °C Mn Mw/Mn Triads, %
No. RI RI mm mr rr
1 25 2891 1.19 60 | 3 | 58
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2 25 4077 1.14 4.0 36 60
9? 0 2915 1.17 4.0 37 59
a Functionalization reaction at 0°C

MALDI-ToF-MS of hydroxyl terminated PMMA were performed by dissolving the polymer in
THF (3 mg/mL) and mixed 1:1 with the matrix 2,5-dihydroxybenzoic acid (10 mg/mL solution
in THF). For enhancement of ion formation, a small amount of LiCl was added to the solution.
After depositing 0.5 uL of the solution on the sample holder the solvent was evaporated in hot
air. The mass peaks corresponding to the [M+Li]" molecular ions for hydroxyl end-functional
PMMA {[M+Li]"= 100.12(DP)+H (1.0079)+107.1324(C;H;0)+Li*(6.941)} were (expected
series), 4104.92, 4205.04, etc. MALDI ToF exhibited major series is 4106.04, 4207.11,.....€etc.
(with D= 2) (fig 3.4, entry 2, table 3.2). No cyclic fraction was observed.

Voyager Spec #1=>BC=>NR(2.00)[BP = 4514.7, 875]

100+ 4514.69 (‘:H3 ‘OH (‘:Hg COMe _875.2
4207.11] H—éHszC%—CH—{i ) + H—QHZC—C%CHAQ t ?]
‘m+n+l J: m n
904 4010|132 J;OZME oMe
4612.83 CoMe
39i12.24 4807.90
80
41p6104
47p9.88
70+ )|
St 4910.35
60
> pep1 5007.60
@ B7polig
g2 507 4597]51
s 35011[6
5209.08
5309.18
5408.61

5508.45
5606.56

6006.50

0
1878.0 3130.8 4383.6 5636.4 6889.2 8142.0
Mass (m/z)

Fig 3.4. MALDI-ToF spectrum of hydroxyl end-functional PMMA prepared by GTP
(using 0.1 mol% TBABB catalyst; entry 2, table 3.2). Muj=100.12(20)+H
(1.0079)+107.1324(C,H,0)+K *(39.098).(Matrix: ~ Dithranol and CFsCOOK for
enhancement of ion formation) (D=6 Da)
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Thisisin accordance with the observation that the living nature of GTP depends on the
nature and concentration of catalyst?® and also on molar mass of the polymer. Here we
used 0.1 mol% of a poorly nucleophilic TBABB catalyst to keep the cyclic fraction low.

Figure 3.5 shows MALDI-ToF spectrum of hydroxyl end-functional PMMA (entry 9,
table 3.2) in which functionalization reaction carried out at 0°C using 1 mol% TBABB
catalyst. M,=100.12(20)+H (1.0079)+107.1324(C,H;O)+Li"(6.941) i.e. for e.g. n= 30 gives
M= 3118.6813 g/moal i.e., expected series of major fraction will be 3118.6813, 3218.8013,
3318.9213........ etc. MALDI ToF exhibited a major series (figure 3.5) as 3104.56, 3204.62,
3304.26....... etc with D= 14 Da. Additionally, low intensity peaks attributed to an
oligomer series with cyclic end groups [M+Li] " = 100.12 (MMA) * n (DP) + H (1.0079) -
OCH3 (31) + 6.9(Li) for e.g. n= 30 give M, =2980.5147 g/mal i.e., series of lower fraction

will be 2980.5147, 3080.6347.......... etc. were also observed at mass numbers 2977.98,
3077.06.............. etc. with D= 3 Da.
Voyager Spec #1=>BC=>NR(2.00)[BP = 662.6, 15069]
100~ 3004.91 CH3 CoMe 24026
2703.92 H—QHZC C%—CH—@ H—QHZC*C%C
90+ 3104.56 OZMe one one
2604.19 3204.62
80
704 2504.17
3304.26
60 2404.76
2709.40 3503.98

% Intensity

507 2(77.74

2500.48 3077.0§

do  2578.37

3604.03
3703.58

78.99
37593 3803.29

3676.2 3903.34

4411.75

. . . . . 0
1766.0 2330.6 2895.2 3459.8 4024.4 4589.0
Mass (m/z)

Fig 3.5. MALDI-ToF spectrum of hydroxyl end-functional PMMA prepared by GTP
(using 1 mol% TBABB catalyst entry 9, table 3.2).
M ,=100.12(20)+H(1.0079)+107.1324(C;H,0)+Li"(6.941) (Matrix: Dihydroxybenzoic acid
and LiCl for enhancement of ion formation) (D= 14 Da)

Table 3.4.Different observed seriesin MALDI ToF of hydroxyl end-functional PMMA?
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prepared by GTP.

Polymer lon End group Observed series’

Li* | Cyclohexanone end group | 1978.32, 2077.62, 2177.74,¢tc.
O,Me withn =1i.e. loss of -OCHj3 with D= 2 Da
H—éHzC—C% :I from linear fraction

OzM e coMe

Li* 107.1324 2010.88, 2110.80, 2210.60 etc.
CH3 T (C7H;0O)-hydroxyl end with D=7 Da
E HyC— G } group
m +n+1
O Me

a Matrix is 2,5-dihydroxybenzoic acid (F.W: 154.13) with Li* (LiCl salt)

b: [M+Li]*= 100.12 (DP)+H (1.0079)+107.1324(C;H;0)+Li"(6.941)

Similarly, figure 3.6 shows MALDI-ToF spectrum of hydroxyl end-functional PMMA (entry 8,
table 3.2) in which 0.5 mol% TBABB was used for both MMA polymerization and for end-
capping reaction with benzaldehyde. Here also the major series is observed as 2010.88,
2110.80, 2210.60............ etc. with D= 7 Da. Expected major series will be 2017.36, 2117.48,
2217.60... ..... etc. The second oligomer series observed due to cyclic fraction is 1978.32,
2077.62, 2177.74,....... etc. with D= 2 Da. So, from MALDI ToF analysis, it is observed that
0.1-mol% TBABB catalyst keeps low cyclic fraction. Different observed seriesin MALDI ToF
of hydroxyl end-functional PMMA prepared by GTP is shown in table 3.4.
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Voyager Spec #1=>BC=>NR(2.00)[BP = 2609.6, 18480]
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S 501
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Fig 3.6. MALDI-ToF spectrum of hydroxyl end-functional PMMA prepared by GTP (0.5
mol%, entry 8, table 3.2). My=100.12(20)+H (1.0079)+107.1324(C;H;0)+Li*(6.941)(Matrix:
Dihydroxybenzoic acid and LiCl for enhancement of ion formation) (D=7 Da)

3.4 Conclusions

Hydroxyl-terminated poly (methyl methacrylate) was prepared via group-transfer
polymerization with narrow molecular weight distribution (Mw/Mp = 1.06-1.19) with initiator
efficiencies in the range of 0.78-1.10. The number average functionalization efficiency was
between 0.70-0.80.

From MALDI ToF sudies of hydroxyl-terminated PMMA, it is observed that
cyclized chains are formed along with chain growth particularly during or just before
functionalization reaction. Thisalso strongly supports dissociative mechanism for GTP in
which ester enolates acts as initiator as well as catalyst. It was also found that use of 0.1
mol % TBABB catalyst (based on initiator) and drop wise addition rate of MMA while
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keeping monomer concentrations high led to high end-functionality and low cyclic
fraction in the polymer.
3.5 References

1. (). Webster, O.W, Hertler, W.R, Sogah, D.Y, Farnham, W.B, Rajan Babu, T.V. JAm
Chem Soc 1983, 105, 5706.

2. Webster, O. W. Adv. Polym. Sci. 2004, 167, 1.
3. Coessens, V.; Pintauer, T.; Matyjaszewski, K Prog. Polym. Sci. 2001, 26, 337.

4. (a). Patil, A.O.; Schulz, D.N.; Novak, B. M. Functional Polymers, ACS Symposium series,
1998, 704. (b). Mahua, G. Ph.D. thesis, 2002, Pune University, India. (c). Hirao, A.;
Hayashi, M.; Loykulnant, S.; Sugiyama, K.; Ryu, S. W.; Haraguchi, N.; Matsuo, A .;
Higashihara, T. Prog. Polym. Sci. 2005, 30, 111.

5. (a). Hertler, W. R. Group transfer polymerization. In: Kricheldorf, H. R. (ed) Sliconin
polymer synthesis. 1996 Springer, Berlin Heidelberg New Y ork, p 69.(b). Asami, R.; Kondo,
Y.; Takaki, M. ACS Polymer Preprints 1986, 27, 186. (c) Spinelli, H. J. Adv. Org. Coat. Sci.
Technol. Ser 1990, 12, 34. (d). Cohen, G. M. ACSPolymer Preprints 1988, 29, 46.
(e). Sogah, D. Y.; Webster, O. W. J. Polym. Soc. Lett. Ed. 1983, 21, 927. (f). Quirk, R. P,;
Ren, J. Polymer International 1993, 32, 205. (g) Farnham, W. B.; Sogah, D. Y. US Patent, 4,
524,196, 1985. (h) Farnham, W. B.; Sogah, D. Y. USPatent, 4, 414, 372, 1983. (i) Cohen,
G. Mreich, H. J. USPatent, 4, 983, 679, 1991

6. Hertler, W. R.; Sogah, D. Y.; Webster, O. W.; Trost, B. M. Macromolecules 1984, 17,

1415.

7. Anderson, B.; Andrews, G.; Arthur, P.; Jacobson, H.; Melby, L.; Playtis, A.; Sharkey,
W.
Macromolecules, 1981, 14, 1599.

8. Ma, J.-J.; Quirk, R. P. J. Polym. Sci., Part A: Polym. Chem. 1988, 26, 2031.
9. Smith, S. D. Polym. Prepr. 1988, 29, 2, 48.

10.Shooter, A. J.; Jasieczek, C. B.; Derrick, P. J.; Waterson, C.; Haddleton, D. M.
Chem. Commun. 1997, 683.

11.(a).Banno, K.; Narasaka, K.; Mukailyama, T. Chem. Lett. 1973,1011. (b). Banno, K.;
Narasaka, K.; Mukaiyama, T. J. Am. Chem. Soc. 1974, 96, 7503.

12. (a). Kobayashi, S.; Murakami, M.; Mukaiyama, T. Chem. Lett. 1985,1535. (b). Sato, S;
Matsuda, |.; I1zumi, Y. Tetrahedron Lett. 1986, 27, 5517. (¢). Ohkouchi, M.; Masui, D.;
Yamaguchi, M.; Yamagishi, T. Nippon Kagaku Kaishi, 2002, 2, 223. (d). Vougioukas,

A.

E.; Reetz, M. T. Tetrahedron Lett. 1987, 7, 793. (e). Zhang, X-X.; Li, W-D. Z.; Org.

Lett.

74


http://www.pdfcomplete.com/1002/2001/upgrade.htm

4
= PDF
Complete

Click Here & Upgrade
Expanded Features
Unlimited Pages

2002, 4, 3485. (f). Naruse, Y.; Ukai, J.; lkeda, N.; Yamamoto, H. Chem. Lett. 1985,
1451.

(9). Keith Hallis, T.; Odenkirk, W.; Robinson, N. P.; Whelan, J.; Bosnich, B.
Tetrahedron,

1993, 25, 5415. (h). Singer, R. A.; Carreira, E. M. Tetrahedron Lett. 1994, 25, 4323. (i).

Shen, Z. L.; Ji, SJ.; Loh, T-P. Tetrahedron Lett. 2005, 3, 507. (j). Weghe, P, V.; Coallin,
J.

Tetrahedron Lett. 1993, 24, 3881. (k). Phukan, P. Synth. Commun. 2004, 6, 1071. (I).
L oh,

T.P.; Ji, SJ.; Chen, SL. Tetrahedron Lett. 2004, 45, 375. (m). Yamamoto, Y.
Maruyama,

K.; Matsumoto, K.; Tetrahedron Lett. 1984, 10, 1075. (n). Creger, P. L. Tetrahedron
Lett.

1972, 1, 79. (0). Gorrichon, L.; Genisson, Y. Tetrahedron Lett. 2000, 41, 4881. (p).

Mikami, K.; Yamamka, M.; Isam, N.; Kudo, K.; Seino, N.; Shinoda, M. Tetrahedron
L ett.

2003, 44, 7545.

13. Matsukawa, S.; Okano, N.; Imamoto, T. Tetrahedron Lett. 2000, 41, 103.

14. Sogah, D. Y. US Patent, 4, 448, 980, 1984.

15. Hertler, W. R.; Webster, O. W.; Cohen, G. M.; Sogah, D.Y. Macromolecules 1987, 20,
1473

16. Scheeren, H. W.; Aben, R. W. M.; Ooms, P. H. L.; Nivard, R. J. F. J. Org. Chem. 1977,
42,
3128.

17. Satoh, K.; Kamigaito, M.; Sawamoto, M. Macromolecules, 1999, 12, 3827.

18. Forsberg, J. H.; Spaziano, V. T.; Baasubramanian, G. K.; Liu, G. K.; Kindey, S. A.;
Duckworth, C. A.; Poteruca, J. J.; Brown, P. S.; Miller, J. L. J. Org. Chem. 1987, 52, 1017.

19. (a).Takahori, T.; Hachiya, |.; Kobayashi, S. Synthesis, 1993, 371. (b). Busujima, T .;
Nagayama, S.; Kobayashi, S. J. Am. Chem. Soc. 1998, 120, 8287.
20. Hong, Y.; Norris, D. J.; Collins, S. J. Org. Chem. 1993, 58, 3591.

21. Reetz, M. T.; Raguse, B.; Marth, C. F.; Hugel, H. M.; Bach, T.; Fox, D. N. A.
Tetrahedron,
1992, 27, 5731.

22. Brittain, W.J. Makromol. Chem. Macromol. Symp. 1993, 67, 373.
23. Baskaran, D. Prog. Polym. Sci. 2003, 28, 521.

75


http://www.pdfcomplete.com/1002/2001/upgrade.htm

4
= PDF
Complete

Click Here & Upgrade
Expanded Features
Unlimited Pages

Chapter 4: Synthesisand Characterization of Lactone-End Capped

Poly (methyl methacrylate) svia Group Transfer Polymerization

4.1 Introduction

End functionalization of polymer chains confers useful properties to materials'.
Functional polymers have been explored for a wide range of applications, such as,
supported catalysis, biomedical applications, paints and varnishes as well lube and fuel
additives’. End-functionalized polymers are also useful precursors for preparing block,
graft, star-branched copolymersand network structures®.

End-functional polymers can be prepared*® using techniques of living polymerization, such as
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“® " iving anionic polymerization (LAP)*® @ and

group transfer polymerization (GTP)
controlled radical polymerization (CRP) such as atom-transfer polymerization (ATRP)*, stable
free radical polymerization (SFRP)*, and reversible addition fragmentation transfer (RAFT)*™"
which are expected to proceed in the absence of irreversible chain transfer and chan
termination reactions. However, the nature of the polymer and the functional group to be
introduced will determine the specific choice of synthetic methods as well as the reaction

conditions needed to accomplish the functionalization successfully.

End functionalized poly (methyl methacrylate) s (PMMA) can be synthesized either by
living anionic polymerization or controlled radical or group transfer polymerization. In
general, two approaches are possible via, use of functional initiators or termination of the
“living” chain by a

suitable electrophile (or radical precursors) bearing the functional groups. Either of the
methods have both merits and demerits.

Use of functional initiators in GTP and anionic polymerization ensures that each polymer chain
contains one functional group. However, initiators of thistype are not easily accessible. Further
more, such initiators generally require protection of the functional group since groups, such as,
hydroxyl, amino, and carbonyl, are not compatible with the chain ends of living polymers. To
overcome this problem, protection of reactive functional groups is resorted to anionic
polymerization® and GTP**°. Hydroxyl, carboxylic acid’ and phenol end functional PMMA?®
has been prepared by GTP using appropriately protected initiators.

Use of electrophiles as terminating agents is not aways efficient since in most cases, the
active chain ends are in equilibrium with an inactive dormant species, which is incapable of
reacting with the electrophile. Furthermore, need for low temperatures for controlled ionic
polymerization or chain end aggregation, makes the reaction of the nucleophilic chain end
with an electrophile less favorable. An additional complication arises due to competing

termination reactions, leading to loss of active chain ends.
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Relatively little attention has been paid to the study of GTP technique for the synthesis of end-
functional poly (alkyl methacrylate) s by ‘electrophilic termination’ of the living ketene silyl
acetal chain ends. Hydroxy’, bromine®’, amine'® end-functional and a styryl ended
macromonomer™ of poly (methyl methacrylate) is reported by terminating the living GTP
chain-ends of PMMA with benzaldehyde, bromine, methyl E-3- (2-dimethylaminophenyl)-2-
phenylacrylate and with 4-(bromomethyl) styrene respectively with varying efficiencies.

Recently Jerome reported™ novel lactone end-capped poly (ethylene oxide) (PEO) as a new
building block for biomaterials. PEO chains end-capped by an e-caprolactone unit (gPEO.CL)
with My, sec 800 and 1250 g/mol (Mw/M = 1.09-1.12) have been synthesized by living anionic
ring-opening polymerization of ethylene oxide initiated by the potassum akoxide of 1,4-
dioxaspiro [4.5] decan-8-ol followed by derivatization of the acetal into a ketone and Baeyer-

Villiger oxidation of the ketone (100% conversion) into a lactone (Scheme 4.1).

0 1.KOH,110C, CHal, O, O agHa, mCPBA
L|AIH4 toluene 55°C 50 C CH2Cl2
2 EO, 80 C,
OH toluene

[R ok [RTrome [RFrome [X T ome

Scheme 4.1. Synthesis of macromonomer (gPEO.CL)

The end-capping of PEO by e-CL was assessed by FTIR, MALDI-ToF MS, and *H NMR
spectroscopy. This type of macromonomer is a precursor of amphiphilic comb like copolymers
consisting of a biodegradable hydrophobic backbone of poly (e-caprolactone) and hydrophilic
PEO grafts. Copolymerization of g°PEO.CL with e-CL was successfully initiated by aluminum
alkoxide. A bimodal molecular weight distribution is observed as a result of contamination of
unreacted macromonomer (gPEO.CL) The yield of copolymer free of nonreacted g°PEO.CL
(with My, nmr 39000 g/mol) after purification was 50%.

The Michael addition reaction, namely, the conjugate addition of O-slylated ketene acetals to
a,b-unsaturated ketones (Mukaiyama-Michael reaction) is a well documented and important
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method for carbon-carbon bond formation.”* Rgan Babu reported™ the first successful
Mukaiyama-Michael reaction of trimethyl silyl ketene acetals with a,b-unsaturated ketones
catalyzed by tris (dimethylamino) sulfonium difluorotrimethyl siliconate (TASF). Under these
conditions silylated 1,4-adducts could be isolated.

As a part of our studies aimed at exploring the scope of eletrophilic termination approach of
GTP chain ends for the synthesis of end functional PMMA'’s, we herein report the preparation
of lactone-end capped PMMA using two approaches, namely, by the reaction of GTP chain
ends with 2-cyclohexene-1-one followed by Baeyer-Villiger oxidation of the cyclohexanone
end functionalized PMMA and, second, by the reaction of silyl ketene acetal chain ends of
PMMA with 5, 6-dihydro-2H-pyran-2-one using tetra-n-butyl ammonium bibenzoate (TBABB)
as catalyst. The efficiency of polymer functionalization was studied using *H NMR, SEC and
MALDI-ToF MS methods. To the best of our knowledge this is the first reported attempt to
synthesize lactone-end capped PMMA's.

4.2 Experimental Methods

4.2.1 Materials
2-Cyclopentene-1-one, 2-cyclohexene-1-one, methyl vinyl ketone, 3-methyl-2-cyclohexene-1-

one, isophorone, mesityloxide, 2(5H)-furanone, and 5, 6-dihydro-2H-pyran-2-one al are
procured from Aldrich, USA were distilled under reduced pressure and stored under nitrogen at
10°C. NaHCOs (99%, Thomas Baker), m-CPBA (77% max., Aldrich, USA) and CFsSOsH (
99%, Aldrich, USA) used asreceived.

4.2.2 Model reactions

Mukaiyama-Michael addition reaction of MTS to a,b-unsaturated ketones using tetra-n-
butyl ammonium bibenzoate as a nucleophilic catalyst

A flame dried 50 mL round bottom flask was charged with 2.46x10° mmols of TBABB
catalyst (0.1 mol% based on slyl ketene acetal 2). Dry THF (10 mL) was transferred using a
canula and stirred at room temperature. MTS 2 (1.1 equivalents) was added and stirred for 5
minutes. Subsequently 2.46 mmols of the desired a,b-unsaturated ketone was added in one lot

under nitrogen gas and the reaction continued either at room temperature or under reflux
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conditions. No attempt was made to isolate the silyl enol ether intermediates. Reaction mixture
was quenched with 1N HCI and gtirred at 0°C for 0.5 h, water separated, product extracted into
ethyl acetate and dried over NaSO..

After concentration of the organic layer, thin layer chromatography (60-120-mesh silica gedl,
EtOAc+ n-hexane as eluent) afforded d-ketoester 3(a-d) and 5(a-b) (Scheme 4.2) in high yields
(Table 4.1).

3a: light yellow liquid, FT-IR (neat); nmsx 1732, 1699 cm™; *H NMR (200 MHz, CDCls); d
1.11 (s, 6H); 1.49-2.55 (m, 7H); 3.59 (s, 3H); *C NMR (50 MHz, CDCls); d 22.49, 24.29,
38.63, 40.28, 43.70, 44.95, 51.56, 177.02, 217.71; DEPT: -CH, (24.06, 38.47, 40.05); Anal.
Calcd. for CioH1603 (184.23); C, 65.19; H, 8.75. Found: C, 65.76; H, 9.0.

3b: light yellow liquid, FT-IR (neat); Nmex 1734, 1716 cm™; *"H NMR (200 MHz, CDCls);d 1.19
(s, 6H); 1.40-2.95 (m, 9H); 3.60 (s, 3H); *C NMR (50 MHz, CDCls); d 20.83, 24.10, 25.35,
40.13, 42.26, 44.91, 50.72, 176.21, 209.80; DEPT: -CH, (24.65, 25.86, 40.67, 42.80); Anal.
Calcd. for Ci1H1803 (198.26); C, 66.64; H, 9.15. Found C, 66.76; H, 9.27.

3c: light yellow liquid, FT-IR (neat) nmx 1734, 1712 cm™; *H NMR (500 MHz, CDCls); d
0.85 (s, 3H); 1.14 (s, 6H); 1.64 (m, 2H); 1.73 (m, 1H); 1.92 (m, 1H); 2.14 (d, J = 13.51 Hz,
1H); 2.17 (dd, J = 7.16, 13.12 Hz, 1H); 2.28 (m, 1H); 2.48 (d, J = 13.51 Hz, 1H); 3.60 (s, 3H);
BCNMR (50 MHz, CDCls); d 19.11, 20.80, 21.50, 30.83, 36.86, 40.57, 42.45, 48.81, 51.34,
176.69, 211.90; DEPT: -CH, (48.65, 40.45, 30.56, 21.34); Ana. Cacd for Ci2H2003
(212.287); C, 67.89; H, 9.49. Found C, 67.98; H, 9.60.

3d: light yellow liquid, FT-IR (neat) nmax 1736, 1670 cm™; Anal. Calcd for CisH2405 (240.34);
C, 69.96; H, 10.06. Found C, 70.0; H, 10.14.

5a: light yellow liquid, FT-IR (neat) Nm 1738, 1726 cm™; *H NMR (200 MHz, CDCl3); d
1.07 (s, 6H); 1.69 (t, J=8.06, 2H); 2.04 (s, 3H); 2.31 (t, J = 7.95, 2H); 3.56 (s, 3H); * CNMR
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(200 MHz, CDCl3); d 24.84, 29.55, 33.70, 39.14, 41.31, 51.45, 177.50, 207.64; DEPT: - CH>
(33.39, 38.91); Andl. Calcd for CoH1603 (172.22); C, 62.76; H, 9.36. Found C, 62.36; H, 9.34.

5b: light yellow liquid, FT-IR (neat) nmex 1734, 1723 cm™; *H NMR (200 MHz, CDCl3); d
0.98 (s, 6H); 1.08 (s, 6H); 2.08 (s, 3H); 2.42 (s, 2H); 3.59 (s, 3H); *CNMR (50 MHz, CDCls);
d 21.02, 22.05, 32.85, 38.04, 48.88, 49.32, 51.34, 177.13, 208.92; DEPT: -CH, (48.98); Anal.
Caled for Ci1H2003 (200.27); C, 65.96; H, 10.06. Found C, 65.69; H, 9.97.

Baeyer-Villiger oxidation of cyclohexanone adduct (3b): To a mixture of cyclohexanone
adduct (2 mmol) and Y b(OTf)3 (10 mol%) or TTOH (20 mol%) in 20 mL of anhydrous CH,Cl,
at 0°C was added commercial grade m-CPBA (80% activity, 1.726 g, 8 mmol) and the mixture
was stirred at room temperature while monitoring reaction with TLC. After completion of the
reaction, the excess of the reagent was decomposed by addition of an ag. NaS,0Os solution.
After concentration of the organic layer, thin layer chromatography (60-120-mesh silica gedl,
EtOAc+ n-hexane as eluent) afforded lactone adduct in high yields. FT-IR spectrum shows
ester >C=0 at 1728 cm™

Model reaction of MTS with 5, 6-dihydro-2H-pyran-2-one

A flame dried 50 mL round bottom flask was charged with 1.2 mg of TBABB catalyst
(2.46x10° mmol, 0.1 mol% based on MTS 2). Dry THF (10 mL) was transferred at room
temperature using a canula MTS 2 (1.1 equivalent) was added and stirred for 5 minutes.
Subsequently 0.2 mL of 5, 6-dihydro-2H-pyran-2-one (2.46 mmol) was added under nitrogen
and the reaction continued at 30°C. In case of Lewis acid catalyst, 10-mol% of Yb(OTf)s or I,

was taken in dichloromethane along with cyclic a,b-unsaturated ester.

No attempt was made to isolate the cyclic silyl ketene acetal intermediates. Yb(OTf); was
recovered by filtration. lodine was removed after washing the homogeneous reaction mixture
with saturated sodium thiosulphate. The desilylation reaction was carried out using 2.46 mmol
of TBAF/MeOH for 1 h at room temperature. The product was extracted into ethyl acetate and
washed well with water and dried over NaxSO4. The concentrated organic layer was subjected
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to column chromatography (60-120-mesh silica gel, EtOAc / n-hexane as eluent) affording the
lactone adduct (11b) in high yields.

FT-IR (neat): 11a N 1728, 1778 cm’™;
Elemental Analysis. Anal. Calcd. for CoH1404 (186.20): C, 58.05; H, 7.57. Found: C, 58.10;
H, 7.60.

FT- IR (neat): 11b npmax 1734, 1730 cm™;
Elemental Analysis. Anal. Calcd. for CioH1604 (200.23): C, 59.98; H, 8.05. Found C, 60.00;
H, 8.10.

4.2.3 Polymerization

Cyclohexanone-end capped PMMA

A flame dried two-neck 250 mL flask, equipped with a nitrogen inlet, and a dropping funnel
was charged with 1.2 mg of TBABB catalyst (2.35x10° mol, 0.1mol% of MTS) in THF (1
mL), followed by dry THF (30 mL) was transferred using a canula under a positive pressure of
dry nitrogen. 0.5 mL of MTS (2.35x10° mol) was added using syringe at 30°C. After 5
minutes, 5.0 mL of MMA (0.047 mol) was added using a dropping funnel at approx. ImL/min.
Polymerization was continued for 30 minutes. An additiona amount of TBABB catalyst (1.2
mg, 2.35x10° mol, 0.1 mol% MTS) in THF was added to the polymer solution. After 5
minutes, 0.25 mL of 2-Cyclohexene-1-one (2.35x10° mol) was added. The reaction was
allowed to continue for 12 h 30°C. Subsequently, 2.35x10™ mol of NBusF/methanol was added
to the reaction mixture and stirred at 30°C for 2 h. The polymer was isolated by precipitation
from hexane. The polymer was further purified by reprecipitating it from THF solution using
an excess of n-hexane. The obtained polymer was dried at 60°C in vacuum. Yield: 4.9 g (100
%).

SYNTHESIS OF LACTONE-END CAPPED PMMA VIA GTP

A flame dried two-neck 250 mL flask, equipped with a nitrogen inlet, and a dropping funnel
was charged with 1.2 mg of TBABB catalyst (2.35x10° mol, 0.1mol% of MTS) in THF (1
mL), followed by dry THF (30 mL) was transferred using a canula under a positive pressure of
nitrogen. MTS (0.5 mL, 2.35x10° mol) was added using syringe at 30°C. After 5 minutes, 5.0
mL of MMA (0.047 mol) was added using a dropping funnel at approx. 1mL/min.
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Polymerization was continued for 30 minutes. An additiona amount of TBABB catalyst (1.2
mg, 2.35x10° mol, 0.1 mol% MTS) in THF was added to the polymer solution. After 5
minutes, 0.2 mL of 5,6-dihydro-2H-pyran-2-one (2.35x10° mol) was added. The reaction was
allowed to continue for 12 h 30°C. Subsequently, 2.35x10™ mol of NBusF/methanol was added
to the reaction mixture and stirred at 30°C for 2 h. The polymer was isolated by precipitation
from hexane. The polymer was further purified by reprecipitating it from THF solution using
an excess of n-hexane. The obtained polymer was dried at 60°C in vacuum. Yield: 4.9 g (100
%).

4.2.4 Characterization

The methods of characterization have been described in chapter 2.

4.3 Reaults and Discussions

4.3.1 Reaction between MTS and a,b-unsaturated ketones

Use of TBABB as a mild catalyst for the Mukalyama-Michael reaction of (1-Methoxy-2-
methyl-1-propenoxy) trimethylsilane (MTS) 2 [MeC=C(OMe)OSiMe;] with various a,b-
unsaturated ketones was explored™. No reaction occurs in the absence of TBABB catalyst
between the enones and MTS 2 in THF at room temperature. MTS 2, which is a hindered
ketene acetal, in the presence of bioxyanion (TBABB catalyst, 0.1 mol%) generates a very
potent carbon nucleophile, equivalent to ester enolates. The addition to a,b-unsaturated ketone

occurs efficiently in an exclusive 1,4 fashion giving d-ketoesters in excellent yields (table 4.1).
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Scheme 1
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Reagents and Conditions: (a) Catalyst, TBABB (0.1 mol% of 2), 10 mL THF. (b) THF: 1N HCI
=20:1,0°C,0.5h

Scheme 4.2. Reaction between MTS and a,b-unsaturated ketones using TBABB catal yst

Simple Michael acceptors, such as, 2-cyclopentene-1-one (1a), 2-cyclohexene-1-one (1b),
methyl vinyl ketone (4a) reacts with greater ease, even at room temperature (Scheme 4.2).
Methyl vinyl ketone, the simplest a-enone which is an acid sensitive substrate, gave a Michael
adduct (5a) in >95% yield without undergoing polymerization (entry 5 of table 4.1) using
TBABB catalyst in THF. The reaction is exothermic and is completed in 10 minutes at 30°C.
More hindered a,b-unsaturated ketones (3-methyl-2-cyclohexene-1-one (1c), Isophorone (1d)
and mesityloxide (4b)) require refluxing conditions for reaction to proceed to completion.
Figure 4.1 and 4.2 shows *H and *3C spectrum of cyclohexanone adduct (3b). Also, Figure 4.3
and 4.4 shows *H and **C NMR spectrum of isophorone adduct (3d, table 4.1) in CDCl.
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Fig 4.2. **C NMR spectrum of cyclohexanone adduct (3b, table 4.1) in CDCl3 (50 MHz)
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Fig 4.3. *H NMR spectrum of isophorone adduct (3d, table 4.1) in CDCl3 (200 MHz)
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Table 4.1 Reaction of a, b -unsaturated ketone® with MTS 2 using TBABB catal yst

Entry | a, b - unsaturated ketone Reaction Reaction d-K etoester
Temperature time 3or5
°C (minutes) | Isolated Yield®, %
1 Cyclopentene-1-one, 1a 25 10 94 (3a)
2 2-Cyclohexene-1-one, 1b 25 10 95 (3b)
3 3-Methyl, 2-Cyclohexene-1- 65 300 88 (3¢)
ong, 1c

4 Isophorone, 1d 65 900 85 (3d)
5 Methyl vinyl ketone, 4a 25 10 96 (5a)
6 Mesityloxide, 4b 65 180 87 (5b)

2a,b-unsaturated ketone: 2.46 mmol, 2: 2.46 mmol, TBABB: 2.46x10° mmol, THF; 10 mL.
®The purity of the d-ketoester (23 98%) was checked by G.L.C and T.L.C

4.31

68

91
47.40
44.11
28.95
22.95

°=Z
D
~-51.20

L 1202
L 17667
| 12528

7.00
| ——
ﬁ_u.w
[«

Fig 4.4. **C NMR spectrum of isophorone adduct (3d, table4.1) in CDCls (50 MHz)

Michael additions of a,b-unsaturated ketones (entry 1-6, table 4.2) resulted in high yields in the
presence of catalytic amounts of Yb(OTf)s (10 mol%) as a reusable and water tolerant Lewis
acid. Similar to nucleophilic TBABB catalyst, more hindered a,b-unsaturated ketones (3-
methyl-2-cyclohexene-1-one (1c), Isophorone (1d) and mesityloxide (4b)) require refluxing
conditions for reaction to proceed to completion. These reactions are effectively carried out in
dichloromethane. THF cannot be used since anhydrous Y b(OTf)s induces cationic ring-opening

polymerization of THF"".
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Table 4.2 Reaction of a, b - unsaturated ketone® with MTS 2 using 10-mol% Y b(OTf)3

catalyst
Entry |a, b - unsaturated| Reaction | Reactiontime d-K etoester
ketone Temperature (minutes) 3or5
°C Isolated Yield®, %

1 Cyclopentene-1-one, 1a 25 20 90 (3a)

2 2-Cyclohexene-1-one, 1b 25 20 91 (3b)

3 3-Methyl, 2- 40 400 80 (3¢)

Cyclohexene-1-one, 1c
4 Isophorone, 1d 40 1000 75 (3d)
5 Methyl vinyl ketone, 25 20 89 (5a)
4a
6 Mesityloxide, 4b 40 240 80 (5b)

%a,b-unsaturated ketone: 2.46 mmol, 2: 2.46 mmol, Y b(OTf)s. 0.246 mmol, CH.Cl2: 10 mL.

®The purity of the d-ketoester (3 98%) was checked by G.L.C and T.L.C
4.3.2 Cyclohexanone end-functionalized PMMA via group-transfer polymerization
The GTP of MMA was carried out using MTS (2) as initiator in THF at 30°C using a TBABB
(0.1 mol% of MTS). Living trimethylsilylketeneacetal-ended PMMA (4) was terminated with
an electrophile, 2-cyclohexene-1-one, using 0.1-mol% TBABB catalyst (Scheme 4.3).

S|Me3 O Me CH3 /OME
>—{ TBABB (0.1moal % of MTS) H,C C CH C —c
THF/t., 30 min, C/ < 2 .

fo) H OSiMes
MTS(2) 309C ()
TBABB inTHF,
0
é (1b)
co Ve e OSMes
< c—c } () TBAF/MeOH \ { c—c ; %j
co Me COzMe

Cyclohexanone terminated
Poly (methyl methacrylate) ( 8)
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SCHEME 4.3. CYCLOHEXANONE-END FUNCTIONALIZED PMMA’S BY

GTP

Cyclohexanone end functionalized PMMA (5) was obtained on desilylation using TBAF/
MeOH in quantitative yield. Figure 4.5 shows *H NMR spectrum of cyclohexanone-end capped
PMMA (entry 1, table 4.3) in which protons of the cyclohexanone moiety appearsin 1.0-1.70
range.

.58

b O
3

a
TH Hb
c H
H—EHZC_C%H
1 H H
i

O

ChlorPform-d

-
r‘ﬁ

7.0 6.5 6.0 55 5.0 4.5 4.0 3.5 3.0 25 2.0 15 1.0 0.5 0.0

Fig 4.5. 'H NMR spectrum of cyclohexanone-end capped PMMA (entry 1, table 4.3) in
CDCl5 (500 MHz)

Figure 4.6 shows *C NMR spectrum of cyclohexanone-end capped PMMA (entry 1, table 4.3)
in which carbonyl carbon (C=0) due to ester of PMMA, cyclohexanone moiety end-group and
cyclohexanone (of cyclized) comesat 177, 210 and at 176 ppm.
a(st i I i
b ¢
H—QHZC—C g
é n+l f
JC=0
J)Me
d
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Fig 4.6. *C NMR spectrum of cyclohexanone-end capped PMMA (entry 1, table 4.3) in
CDCl3 (125 MHz)
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Table 4.3. Characterization of cyclohexanone-end capped PMMA
MMA? | MTS, | THF, | TBABB, 2- Mn Mn(SEC), | Mu/ My | 1” aticency
Entr moles | moles | mL moles | Cyclohexene- | (theory), g/mal (SEC)
x 10° x 10° 1-one, moles | g/mol
y x 10°
1 0.047 | 235 30 2.35 2.35 2097 2442 112 0.85
2 0.047 | 156 30 1.56 1.56 3097 2879 1.14 1.07

a [MMA]o= 1.56 mol/L

b: lefficiency = M (theory)/Mn, (SEC)

MALDI ToF spectrum of cyclohexanone-end functionalized PMMA was performed by
dissolving the polymer in THF (3 mg/mL) and mixed with the matrix 2,5-dihydroxybenzoic
acid (10 mg/mL solution in THF) in a 1:1 proportion. For enhancement of ion formation, a
small amount of LiCl was added to the solution. After depositing 0.5 pL of the solution on the
sample holder the solvent was evaporated in hot air. MALDI -ToF spectrum of cyclohexanone-
end capped PMMA is shown in Figure 4.7 in which the mass peaks correspond to the [M+Li]"
molecular ions. [M+Li] * = 100.12 (MMA)* n(DP) + H(1.0079) + EG* (CsHsO) (97.1371) +
6.9(Li) for e.g. n= 20 gives M= 2107.486 g/mol i.e., expected series of major fraction will be
2107.486, 2207.606, ........ etc. MALDI ToF exhibited a maor series as 2101.17, 2201.29,
....... etc with D= 6 Da (table 4.4). Additionally, low intensity peaks attributed to an oligomer
series with cyclic end groups [M+Li] ¥ = 100.12 (MMA) * n (DP) + H (1.0079) - OCH3
(31.0342) + 6.9(Li) for e.g. n= 20 gives M, =1979.3147 g/moal i.e., expected series of |ower
fraction will be 1979.3147, 2079.4347, 2179.5547......... were also observed at mass numbers
1872.70,1972.92,.............. etc. with D=6 Da (Figure 4.7).

In conclusion, cyclohexanone-end functionalized PMMA could be prepared using 0.1-mol%
TBABB catalyst in THF at 25°C using 2-cyclohexene-1-one as an electrophile with initiator
efficiency (0.85-1.07) and with narrow molecular weight distribution (MW/M, =1.12-1.14).
Number average degree of functionality (Fn) could not be determined since NMR could not be
used for calculation of M,. MALDI-ToF characterization of cyclohexanone-end functionalized
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PMMA showed the expected end groups along with a small fraction of the cyclic end group

obtained by chain end functionalization.

Table4.4. D|fferent observed seriesin MALDI-ToF- MS of cyclohexanone end-functional

PMMA® prepared via GTP

Polymer lon End group Observed series*
I oMe | LI loh d
’ < _ > Cyclohexanoneend | 172 70, 1972.92,...etc.
FC C ii group with n=11i.e. with D= 6 Da
OzMe oMe loss of -OCHj3 from
linear fraction
Li*
oHs I 97.1371 (CeHs0)- | 2101.17, 2201.29, ...etc
H{Hzc—é cyclohexanone end with D= 6 Da.
é:gl group
Me

@ Matrix is 2, 5-dihydroxybenzoic acid (F.W: 154.13) with Li" (6.941) (LiCl sa)

* [M+Li]

*=100.12 (MMA)* n(DP) + H(1.0079) + EG* (CsHe0) (97.1371) + 6.9(Li)

100, 66841

907

80

704

1901.57

607 1602.37 2101.17

1402.61
1303.90

507 540)a3

% Intensity

1203.43

Voyager Spec #1=>BC=>NR(2.00)[BP = 668.4, 22126]

(0]
T;Hs |
oo DD e e
| il
C=0

Me

2400.34
2499.94

2599.63
2799.11

2998.65

3297.78

3397.48

3597.25

3796.66

4095.80

i

%iﬁ 97:@ 37| .su

4396.09 4693 70

_2.2E+4

O,M¢

1,

OMe OMe

5094.31  5486.30

1599.4

0+
499.0

Mass (m/z)

0
4900.6 6001.0

Fig 4.7. MALDI-ToF spectrum of cyclohexanone-end functionalized PMMA prepared by GTP
using TBABB catalyst for silyl ketene acetal ended PMMA and TBABB for functionalization
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reaction at room temperature (entry 1, table 4.3). [M+Li] © = 100.12 (MMA)* n(DP) +
H(1.0079) + EG* (CeHoO) (97.1371) + 6.9(Li) (Matrix: Dihydroxybenzoic acid and LiCl for

enhancement of ion formation) (D= 6 Da)

4.3.3BAEYER-VILLIGER OXIDATION OF 3B

Baeyer-Villiger oxidation of 3b was examined using m-chloroperbenzoic acid (m-CPBA) in
presence of Yb(OTf)s, trifluoromethane sulfonic acid (CFsSO3H) and NaHCO;3 as catalysts
(Scheme 4.4). The results are shown in table 4.4. Yb(OTf); and CFsSOsH were found to be

very effective in promoting the reaction.

0O 0]
o I o o
m-CPBA
COoMe > +
CH,Cl>, 250C H
3b MeO2 OoMe
9a 1:1 9b

Scheme 4.4. Baeyer-Villiger oxidation of cyclohexanone adduct using m-CPBA

In the case of CF3SOsH (entry 4, table 4.5) anhydrous conditions were necessary to obtain good
results.

Table4.5. Baeyer-Villiger oxidation of 3b using m-CPBA

Entry | Cyclohexanone | m-CPBA, Catalyst Solvent, | Temp | Time | 9a+ 9b®
adduct, mmol mL °C h %
mmol

1 2.0 8.0 None CHClIo, 25 24 80
20

2 2.0 8.0 Yb(OTf)3 CH.Cl>, 25 10 83
10 mol% 20

3 2.0 8.0 NaHCO3” | CH.Cl,, | 25 20 72
20

4° 2.0 8.0 CF3SOsH CH.Cl>, 25 4 0
20 mol% 20

a isolated yields. b: 1.5 mol% excess of m-CPBA
c: water in m-CPBA was removed by drying over sodium sulphate
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The structure of the reaction product was confirmed by *H and **C NMR (Figure 4.8 and 4.9).

Chloroforlm-d

Yol - O O ™ o N n 0N « ~
R NS 6 oS @~ o 405
N~ I T T ™ o N - L B B |
S1A | Vo (. [

1

1 o ;Ju

2.13 3.00
— 4J

75 7.0 6.5 6.0 55 5.0 45 4.0 35 3.0 25 20 15 1.0 0.5 0.0

The product was found to be a1:1 mixture of isomers (9a + 9b) by HPLC analysis.

Chlomfor -d

53 -3

H 1l 1l

T T
200 150 100

Figure 4.9. *C NMR spectrum of Iactone adduct (9a and 9b) in CDCI3 (125 M Hz)
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Thus, Baeyer-Villiger oxidation of model compound 3b using m-CPBA in conjunction with
Lewis acids like Yb(OTf)s (10 mol%) or Bronsted acid like CF3SOsH (20 mol%) in

dichloromethane gives the corresponding lactone in high yields.

However, the extension of these reaction conditions to the Baeyer-Villiger oxidation of the
cyclohexanone end-functionalized PMMA (8, entry 1, table 4.3) failed to give any evidence of
the formation for lactone end functionalized PMMA. Therefore, this approach to the
preparation of lactone end functionalized PMMA was not further pursued.

4.3.4. Reaction between MTS 2 and a,b-unsaturated cyclic esters

Michael addition reaction of MTS to a,b-unsaturated lactones, namely, 2(5H)-furanone, and 5,
6-dihydro-2H-pyran-2-one can be efficiently carried out using TBABB as catalyst in THF as
solvent™. The 1,4-adducts of 2(5H)-furanone (10a) and 5,6-dihydro-2H-pyran-2-one (10b)
were obtained using either a Lewis acid ((Yb(OTf)s; and I) catalyst or a nucleophilic catalyst
(TBABB) with MTS 2 (Scheme 4.5). No reaction occurred between the cyclic a,b-unsaturated
ester and MTS 2 in the absence of a catalyst in THF at room temperature. MTS 2, which is a
hindered ketene acetal in presence of the catalyst, generates a very potent carbon nucleophile,
which in reactivity is equivalent to ester enolates.

0 OTMS 0O
_ a
|+ >—% .
n Me b n
1 2 COoMe

n=0, 10a 11(a-b)
n=1, 10b

Reagents and conditions: (a) catalyst, solvent (b) TBAF/ MeOH, 30°C, 1 h

Scheme 4.5. Reaction between MTS and a,b-unsaturated cyclic esters

The addition to cyclic a,b-unsaturated esters was clean and occurs efficiently in an exclusive
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1,4-fashion without any complication from 1,2-addition or undesired condensation reaction etc.

The representative results are summarized in table 4.6. Compared to Lewis acids, TBABB is

easy to prepare from readily available starting materials, is crystalline, non-hygroscopic,

soluble in THF and can be stored and handled with much greater ease.

Table 4.6. Reaction of a,b-unsaturated lactones® with MTS 2

Entry | a,b-unsaturated | Catalyst, | Solvent, Cataysis Reactiontime | Isolated
lactones (mol%) (mL) (h) yield
(%)
1 5,6-Dihydro-2H- No THF, - 12 nil
pyran-2-one catalyst 10
2 2(5H)-Furanone | TBABB, THF, Homogeneous 1 92 (11a)
0.1 10
3 2(5H)-Furanone | Yb(OTf)s, | CH2Cl,, | Heterogeneous 1 90 (11a)
10 10
4 5,6-Dihydro-2H | TBABB, THF, Homogeneous 1 94 (11b)
-pyran-2-one 0.1 10
5 5,6-Dihydro-2H | Yb(OTf)s, | CH2Cl,, | Heterogeneous 1 90 (11b)
-pyran-2-one 10 10
6 2(5H)-Furanone 2, CH2Clz, | Homogeneous 4 90 (11a)
10 10
7 5,6-Dihydro-2H l2, CH.CI,, | Homogeneous 4 92 (11b)
-pyran-2-one 10 10

%a,b-unsaturated lactone: 2.46 mmol, 2: 2.46 mmol, Solvent: 10 mL. Reaction temperature: 25°C
®The purity of the adduct 3(a-b) (2 97%) was checked by G.L.C and T.L.C

Fig 4.10 shows '"H NMR spectrum of lactone adduct in CDCls in which the diastereotopic
CH3’s could not be distinguished.

-OC}—I|2

-OC}—I|3

--------- 5H

31

-2CH3
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Fig 4.10. 'H NMR spectrum of lactone adduct (11b) (entry 4, table 4.6) in CDCl3 (200 MHz)

Fig 4.11 shows > C NMR spectrum of lactone adduct in CDCls in which the diastereotopic

methyl’ s could not be distinguished.

Chloroform-d
'

51.56

>C=0
1

67.81

>C=0

171.17 -

176.24
77.00

am——

—44.36

24.10

31.42

21.35

38.22

T
150 100 50

Fig 4.11. 3 C NMR spectrum of lactone adduct (11b) (entry 4, table 4.6) in CDCl3 (50 MHz)

T T
0

Fig 4.12 shows 'H NMR spectrum of lactone adduct (entry 2, table 4.5) in CDCl3 and Fig 4.13
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shows ** C NMR spectrum of lactone adduct in CDCls.

0 -2CH3
H : g
T THen
d / 3 a
CHs
C=0 -OCH3
Me i
C
_1IH
1H an 2H

Chlorofolrm—d ﬂ S é R

—————

1.06 3.00 1.00 2.01 6.01
[y Iy | [

7.5 7.0 6.5 6.0 55 5.0 4.5 4.0 35 3.0 25 2.0 15 1.0 0.5 0.0

Fig4.12. 'H NMR spectrum of lactone adduct (11a) (entry 2, table 4.6) in CDCls (200 MHz)

29.91

2.41
21.75

—42.12

Chloroforrp-d

69.43

A3.07

in

) 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

o)
Fig 4.13. > C NMR gjéBtrum of lactone adduct (11a) (entry 2, table 4.6) in CDCls (50 MH2)

@)
.| cHs
4.3.5. End functionalization r¢ast 3of GTP chain ends with 5, 6-dihydro-2H-pyran-2-
one (1b) bé=0
Me
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The GTP of MMA was carried out using MTS (2) as initiator in THF at room temperature
using a nucleophilic oxyanion catalyst, namely, TBABB (0.1 mol% of MTS). Living
trimethylsilylketeneacetal-ended PMMA (4) was terminated with an electrophile 5, 6-dihydro-
2H-pyran-2-one (1b) using 0.1 mol% TBABB catalyst (Scheme 4.6).

: OM
SiMeg QM€ CH, CHs /OMe
= + TBABB (0.1mol % of MTS) \ J:
Me c—{-Hie— }CHz— —c
Y C/

THF/ 300C., 30 min,, _
o,Me OZM e OSl Me;

MTS (2) MMA
Silyl ketene acetal ended PMMA (12)

0.1 mol% TBABB/ THF
O

@ , 300C

(10b)

-NuSiMes

-TBA OCH3
(ii) TBAF/MeOH

300C, 2 h

CHs Oo,Me
H—é L— %CH
Hzc—c§—[ J
n+1 OZ'V' e OZM e
OZM e

L actone-end capped PMMA (13) Cyclic fraction due to back-bitting (14)

Scheme 4.6. Synthesis of lactone-end capped PMMA’svia GTP

Lactone-end capped PMMA (5) was obtained on dedlylation using TBAF/ MeOH in
quantitative yield. Figure 4.14 shows *H NMR spectrum of lactone-end capped PMMA (entry
1, table 4.7). Functiondization efficiency of end-functiona polymers was measured by
calculating the area of peak corresponding to —OCH3; of PMMA and —OCH> derived from the
lactone protons (table 4.7). Fig 4.15 shows **C NMR spectrum of lactone-end capped PMMA
(entry 1, table 4.7) in which there are three C=0 peaks between 176 ppm and 178 ppm due to
ester carbonyl of PMMA, cyclohexanone C=0 (due to back bitting) and lactone C=0 (lactone
end group).
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HH
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Fig 4.14. 'H NMR spectrum of lactone-end capped PMMA (entry 1, table 4.7) in CDCl3
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Table 4.7. Characterization of lactone-end functionalized PMMA

MMA? | MTS, | THF, | TBABB, | TBABB, | 5,6-Dihydro-2H Mn Mn Mn | Mu/ M, Mn 1° eiticiency F
Entr mol mol \ mL moI6 moI6 -pyran-2-oge, (theory), | (VPO), | (SEC), | (SEC) | (NMR)
x 10 x 10 x 10 mol x 10 g/mol g/mol | g/mol g/mol
y
1 0.047 2.35 30 2.35 2.35 2.35 2100 2400 2550 1.11 3300 0.83 0.77
2 0.047 2.35 30 2.35 2.35 2.35 2100 2700 2550 1.11 3200 0.82 0.80
3 0.047 1.56 30 1.56 1.56 1.56 3100 2800 2900 1.10 3560 1.05 0.82
4 0.047 2.35 30 2.35 2.35 2.35 2100 2400 2200 1.10 2800 0.96 0.78
5 0.047 2.35 30 2.35 2.35 2.35 2100 2700 2350 1.08 3200 0.89 0.73
6" 0.047 2.35 30 2.35 2.35 2.35 2100 2500 2600 1.20 3464 0.80 0.75

a [MMA]o= 1.56 mol/L
b: leficiency = Mn (theory)/M, (SEC)
c. Fh= M, (SEC)/ M, (NMR)
d: reaction was conducted at reflux temperature of THF
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Fig 4.15. *3C NMR spectrum of lactone-end capped PMMA (entry 1, table 4.7) in CDCl;
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MALDI ToF MS spectrum of lactone-end functionalized PMMA was performed by dissolving
the polymer in THF (3 mg/mL) and mixed with the matrix 2,5-dihydroxybenzoic acid (10
mg/mL solution in THF) in a 1:1 proportion. For enhancement of ion formation, a small
amount of LiCl was added to the solution. After depositing 0.5 uL of the solution on the sample
holder the solvent was evaporated in hot air. A typical MALDI-ToF spectrum of lactone-end
capped PMMA is shown in figure 4.16 (also figure 4.17), (entry 1, table 4.7). The expected
mass peaks corresponds to the [M+Li]" = 100.12 (MMA)* n(DP) + H(1.0079) + EG* (CsH:05)
(99.1096) + 6.9(Li) for e.g. n = 20 gives M= 2109.4585 g/moal i.e., expected series of mgjor
fraction will be 2109.4585, 2209.5785,........ etc. MALDI ToF exhibited a major series (figure
4.16) as 2103.75, 2203.60, ....... etc with D= 6 Da. Additionally, low intensity peaks attributed
to an oligomer series with cyclic end groups [M+Li] * = 100.12 (MMA) * n (DP) + H (1.0079)
- OCHzs (31.0342) + 6.9(Li) for e.g. n= 20 gives M, =1979.3147 g/mol i.e., expected series of
lower fraction will be 1979.3147, 2079.4347, 2179.5547......... were also observed at mass
numbers 1873.70, 1973.82,.............. etc. with D=6 Da.

As strong evidence is now present for a dissociative anionic process for GTP, the second
smaller homologous series (with mass difference between both homologous series is about 31
g/mol due to loss of —OCHj3 group as a result of backbiting reaction) must be attributed to the
formation of cyclic structures (14, scheme 4.6) in addition to linear fractions. As the mass
increment of both homologous series is the same (i.e. about 100 g/mol of MMA), the change in
the chemical structure must be attributed to variations in the end-group.

The fact that both homologous series have their maximum abundance at about 2000 g/mol
indicates that they are formed simultaneoudly in the reaction. This is in accordance with the
observation that the living nature of GTP depends on the nature and concentration of catalyst'’
and also on molar mass of the polymer. Here we used 0.1 mol% of less nucleophilic TBABB
catalyst to keep the cyclic fraction as low as possible. Different observed series in MALDI-
ToF- MS of lactone end-functional PMMA prepared by GTP is shown in table 4.8.
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Fig 4.16. MALDI-ToF spectrum of lactone-end capped PMMA prepared by GTP using 0.1-
mol% TBABB catalyst at 30°C (entry 1, table 4.7). [M+Li]" = 100.12 (MMA)* n(DP) +
H(1.0079) + EG* (CsH;0O2) (99.1096) + 6.9(Li) (Matrix: Dihydroxybenzoic acid and LiCl for
enhancement of ion formation) (D= 6 Da)

Table4.8. Different observed seriesin MALDI-ToF- M S of lactone end-functional PMMA?

prepared viaGTP
Polymer lon End group Observed series’
&Y oMe | LY loh d
’ < _ > Cyclohexanone en 1873.70, 973.82,...€lc.
C i L C 1. group with n=11.e. loss with D= 6 Da
OMe Me of —OCHs; from linear
0,
fraction
Li*
cry OO 99.1096 (CsH7O2)- | 2103,75, 2203.60, ... etc.
H—GHZC—C%—l—iL/ L actone end group with D=6 Da.
éOZMe

a Matrix is 2, 5-dihydroxybenzoic acid (F.W: 154.13) with Li* (6.941) (LiCl salt)
b: [M+Li]" = 100.12 (MMA)* n(DP) + H(1.0079) + EG* (CsH-O5) (99.1096) + 6.9(Li)
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Fig 4.17. MALDI-ToF spectrum of lactone-end capped PMMA prepared by GTP using
TBABB catalyst for silyl ketene aceta ended PMMA and TBABB for functionalization
reaction at room temperature (entry 2, table 4.7). [M+Li] * = 100.12 (MMA)* n(DP)+
H(1.0079)+EG* (CsH702) (99.1096)+6.9(Li) (Matrix: Dihydroxybenzoic acid and LiCl for
enhancement of ion formation) (D= 6 Da).

4.4 Conclusons

Lactone-end functionalized PMMA was prepared via GTP using 0.1-mol% TBABB as a
catalyst in THF at 30°C with satisfactory initiator efficiency (0.82-1.05) and narrow molecular
weight distributions (Mw/M, = 1.08-1.11). The number average degree of functionalization as
determined by NMR/SEC was in the range of 0.70-0.85. MALDI-ToF-M S analysis of lactone-
end functionalized PMMA provide evidence for competing chain end cyclization.
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Chapter 5. Synthesisand Characterization of Amine-Ter minated

Poly (methyl methacrylate) svia Group Transfer Polymerization

—_—

5.1 Introduction
Controlled synthesis of polymers with reactive functionality at the terminal end continues to
be a synthetic challenge in polymer chemistry. End functional polymers are useful in a
variety of applications, such as, compatibilizing agent for polymers via reactive processng,
macromolecular surfactants, modification of surfaces etc. Severa techniques of controlled
polymerizations, namely, living anionic polymerization (LAP)l, group transfer
polymerization (GTP)? and controlled radical polymerization (CRP) such as atom-transfer
polymerization (ATRP)** stable free radical polymerization (SFRP)®, and reversible
addition fragmentation transfer (RAFT)*“ can be used for the synthesis of end-
functionalized polymers. However, the nature of the polymer and the functional group to be

introduced will determine the specific choice of synthetic methods.

End functionalized poly (methyl methacrylate) s can be synthesized either by living anionic
polymerization or controlled radical or group transfer polymerization. In general, two
approaches are possible via, use of functional initiators or termination of the “living” chain
by a suitable electrophile (or radical precursors) bearing the functiona groups. Either of the
methods have both merits and demerits. For example, functional initiators having active
hydrogen groups (-OH, -NH>) cannot be directly used in LAP and will require a protection-

deprotection sequence.

Use of electrophiles as terminating agents is not aways efficient since in most cases, the

active chain ends are in equilibrium with an inactive dormant species, which is incapable of
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reacting with the electrophile. An additional complication arises due to competing
termination reactions, leading to loss of active chain ends.

In spite of these limitations, several attempts are reported in the literature for the synthesis of
end-functionalized polymers by LAP*, ATRP* ° and GTF®. To obtain high efficiencies of
functionalization, each method has to be carefully optimized in terms of the choice of the
initiator and the polymerization conditions.

There are only few reports of amine end functional poly (methyl methacrylate) s (PMMA’S) in
the literature. Amine end-functional polymers are of interest in several applications7a’e. They

can be used as an initiator for the synthesis of polypeptide block copolymers™ ™.

Preparation of amine-terminated polymers by LAP invariably involve a post polymerization
procedure to convert the end group into an amine group®. 1-[4-[N, N-bis (trimethylsilyl) amino]
phenyl]-1-phenylethylene and 1-(dimethylaminophenyl)-1-phenylethylene were used to prepare
amine-terminated polymerssf'g by living anionic polymerization. Nakahama et al reported high
yields (96-100%) of primary amine functionalized polystyrene by reacting polystyryllithium
with 1.5-2 equivalents of the protected amine, namely, N-(benzylidene)-trimrthylsilyl amine in
benzene at 25°C ®. In similar fashion primary amine terminated polystyrene have been
prepared by the reaction of polystyryllithium with the product of reaction of methoxyamine and
methyllithium at low temperature®.

More recently, Mays and coworkers reported® the synthesis of amine-terminated PMMA
(Scheme 5.1) with M, = 3.5x10% g/mol and M/M, = 1.08 by reacting the living anionic chain
end with an eletrophile, namely, 1-(3-bromopropyl)-N, N-(trimethylsilyl) amine in THF at -
78°C, in high yields. MALDI-ToF-MS of the amine-terminated PMMA and polystyrene

confirmed efficient chain termination reaction.

\s/_
BI’CHZCHZCHZ—I\/
N/
o N MeoH
M-Bu-CH2:G{ CH2—C - CHp—(C Li > ~n-Bu-CHz-c—QCHz—ﬁgchchchz—NHg
(o]
COoMe COpMe THF/-78°C @ COMe

LivingPMMA anion 101
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Scheme5.1. Amine-terminated PMMA via LAP

‘Amineterminated PMMA with M, sc = 7750-66000 g/mol were prepared by atom-transter radical
polymerization (ATRP) using CuBr/N, N, N’, N’’, N’’-pentamethyldiethylenetriamine (PMDETA) and with
protected amine functional group bearing initiator'®. However, under these conditions polymerization proceedsin
an uncontrolled fashion. PMMA’s with M/M,, = 1.53-2.86, initiator efficiency in the range of 1.06 to 0.17 and
conversions in the range of 22-98% were obtained. In another approach, halogen end functional poly (acrylate) s
prepared by ATRP was converted to the corresponding azide by nucleophilic displacement using NaNs/DMF. The
azide terminated acrylate polymer was further converted to phosphoranimines, which upon hydrolysis gave

amine-terminated poly (acrylate) s'®.

Dimethylamino-functionalized PMMA with My, szc = 2200-2500, Mw/Mp = 1.06-1.07 and F, in
the range of 0.93-0.90 was prepared using GTP™ by the reaction of the living trimethylsilyl
ketene acetal-ended PMMA with methyl E-3-(2-dimethylaminophenyl)-2-phenylacrylate
(AMPA) using tris (dimethyl amino) sulfonium bifluoride (TASHF,) at room temperature.

As a part of our studies aimed at exploring the scope of eletrophilic termination approach of
GTP chain ends for the synthesis of end functional PMMA'’s, we herein report the preparation
of amine terminated PMMA via GTP by the reaction of the silyl ketene acetal chain end of
PMMA with N-trimethylsilyl benzaldimine. Silyl ketene acetals are reported to undergo facile
reaction with aldimines to generate the desired amino functionality in good yields'?. The
efficiency of polymer functionalization was examined using *H NMR, SEC and MALDI-TOF
methods.

5.2 Experimental M ethods
5.2.1 Materials
Diethyl ether (S.D. Fine Chemicals, Mumbai) was distilled over Na-benzophenone. Znl, (99%,
Aldrich, USA, 100-mesh) and tetra-n-butyl ammonium bibenzoate TBAF (1.0 M in THF,
Aldrich, USA) were used as received. N-trimethylsilyl banzaldimine prepared according to

2a

reported procedurel Tetra-n-butyl ammonium bibenzoate (TBABB) prepared according to
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procedure reported elsware™. MeOH and t-BuOH (S.D. Fine Chemicals, Mumbai) dried and
degassed before use.

Preparation of N-trimethylsilyl benzaldimine (3)

A flame dried 50 mL round bottom flask was charged with lithium hexamethyldisilazide (14.5
g, 0.0866 mols) inside a glove box. The flask was cooled to 0°C and dry THF (80 mL) was
added. To this was added benzaldehyde (8.8 mL, 0.0866 mols) drop-wise. The resulting
solution was stirred for 30 minutes at 0°C. Thereafter, trimethylsilylchloride (11 mL, 0.0866
mols) was added in one portion and stirring continued for 30 minutes at 0°C. The reaction
mixture was warmed to room temperature and subjected to fractional digtillation (55-60°C/0.05
mm Hg) yielding 13.8 g (90%) N-trimethylsilyl benzaldimine as pale green oil. The product
was highly sensitive to oxygen and moisture and was therefore stored under nitrogen at 10°C.
'H NMR (CDCI3/200 MHZ): § 0.25 (s, 9H, SiMes), 7.4 (m, 3H, ArH), 7.7 (m, 2H, ArH), 8.93
(s, 1H, CH=N)

5.2.2 Mode reaction between MTS (2) and N-trimethylsilyl banzaldimine (3) using Znl,
in THF.

A flame dried 50 mL round bottom flask was charged with dry Znl, (0.35 g, 1.15x10°° mol)
inside a glove box. THF (20 mL) was added to the flask. N-trimethylsilyl benzaldimine (0.2 g,
1.15x10"® mol) was added and stirred for 5 minutes. MTS (0.3 mL, 1.15x10° mol) and Bu'OH
(0.1 mL, 1.15x10° mol) were added under nitrogen atmosphere in rapid succession and stirred
at room temperature for 3 h. The crude product was washed with water and dried over N&SOa.
Purification using column chromatography yielded the amino-ester asa light yellow liquid in 3
93% isolated yield

5.2.3 Synthesis of amine-terminated PMMA by GTP

A clean and flame dried two neck 250 mL reactor, equipped with a nitrogen inlet by means of
three way septum adapter, a dropping funnel and a magnetic stir bar was charged with 1.2 mg
of TBABB catalyst (2.35x10'6 mol, 0.1mol% of MTS) in THF (1 mL), followed by dry THF
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(30 mL) was transferred using a canula under positive pressure of dry nitrogen. MTS (0.5 mL,
2.35x10® mol) was added using syringe at room temperature. After 5 minutes, 5.0 mL of MMA
(0.047 mol) was added using dropping funnel at approx. 1mL/min. The polymer solution was
then added to 0.42 g of N-trimethylsilyl benzaldimine (2.35x10°° mol) activated by 2.35x107
mol of Znl (0.7508 g) in THF followed by immediate addition of 0.23 g of t-BuOH (2.35x10°
mol). The reaction was allowed to continue for 12 h at room temperature. Later, subsequently,
2.35x10° mol of NBusF/methanol was added to the reaction mixture and reaction was

continued for overnight at 25°C and the resulting reaction mixture was precipitated in hexane.

The polymer solution was passed through neutral alumina and precipitated in hexane to obtain
pure colorless polymer free of Znlz. The polymer was further purified by reprecipitating it from
THF solution using excess hexane. The obtained polymer was dried at 60°C in vacuum. Yield:
5.2 g (100 %).

5.2.4 Characterization

The methods of characterization are described in chapter 2.

5.3 Reaults and Discussion

5.3.1 M odd reaction between MTS and N-trimethylsilyl

benzaldimine

To arrive at the most suitable conditions, initially model reactions were carried out between
MTS (2) and N-trimethylsilyl benzaldimine (3) using 1.0 equivalent of Znl, based on MTS.
Immediate addition of t-BuOH was necessary to avoid the formation of imino-ester (5)
(Scheme 5.2).
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Scheme 5.2. Reaction between MTS and N-trimethylsilyl banzaldimine

In the absence of t-BuOH,

(CH3)2 <— ©;T

?(CH 3)3
N-Zn-3

(CH3)2
éOzCH 3

N=CHPh

H C(CH3)2
O2CH3

Imino-ester (5)

imino-ester is reported to form as the sole product due to

competitive trans-amination between unreacted imine and a metallo-amide intermediate®®. The

results are shown in table 5.1. The reaction is equaly efficient in THF and diethyl ether as

solvents.

Table5.1. Reaction between MTS and N-TM Sbenzaldimine at 25°C

Entry N-TMS Znly, | 'BUOH, | MTS, | Solvent, | Time, |solated Yield
benzaldimine, | mmol | mmol | mmol mL h (B-amino ester) %
mmol
1 1.15 1.15 1.15 1.15 | Diethyl 3 98
ether,
10
2 1.15 1.15 1.15 1.15 THF, 3 93
10
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“ FIG 5.1 SHOWSTHE 'H NMR SPECTRUM OF B-AMINO ESTER (7), “

a NH2
ArH H3C\ | e acs
< H3(3—C—CCH—© 8§ 5
N~ H|\| |
Lo
é)M e
b

5.02 0.81 3.00 1.76 6.05
| — — | — [—

75 7.0 6.5 6.0 55 5.0 45 4.0 35 3.0 25 20 15 1.0 0.5 0.0

WHICH SHOWED A BROAD PEAK AT A 1.95 CORRESPONDING TO
TWO PROTONSOF THE AMINO GROUP.

Fig 5.1. *H NMR spectrum of b-aminoester (7) in CDCls (200 MHz)

Fig 5.2 shows the **C NMR spectrum of b-amino ester (7) exhibiting peaks at § 19.29 (2CHs)
at 5 51.67 (-OCHs), a & 61.71 (CH), a & 127.65 (Ar-C), and a & 17757 (>C=0). The
diastereotopic methyl groups could not be distinguished. FT-IR of b-aminoester (7) shows
peaks at 1728 cm™ for the ester group and at 3388 cm™ for NH group.
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Fig 5.2. **C NMR spectrum of b-amino ester (7) in CDCl3 (50 MHz)

5.3.2 AMINE-TERMINATED POLY (METHYL METHACRYLATE) SVIA
GTP

THE GTP OF MMA WAS CARRIED OUT USING MTS (2) AS
INITIATOR IN THF AT 30°C USING A NUCLEOPHILIC OXYANION
CATALYST, TBABB (01 MOL% BASED ON MTS). LIVING
TRIMETHYLSILYL KETENE ACETAL-ENDED PMMA (8) WAS
TERMINATED USING N-TRIMETHYLSILYL BENZALDIMINE (3) AND
1 EQUIVALENT OF ZNI, ASLEWISACID CATALYST IN THF
RESULTING IN THE AMINE-TERMINATED PMMA (10) (SCHEME
5.3).
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Scheme 5.3. Amine-terminated PMMA’'svia GTP

Narrow molecular weight amine-terminated PMMA'’s oligomers were prepared with initiator
efficiencies in the range of 0.84-1.06. The number average degree of functionality (F,) was
found to be between 0.80-0.85 (table 5.2). A typical 'H NMR of amine-terminated PMMA in
acetone-ds is shown in figure 5.3 (entry 1, table 5.2). M, was calculated from the NMR spectra
by comparing the ratio of aromatic protons (at 6 7.4 ppm) with that of -OCHjs protons (at 6 3.6

ppm) of PMMA.
cH, M2
:Hz —Ein
Ls
Me

C
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| |

5.00 77.72 83.83
Fig 5.3. *H NMR spectrum of amine-terminated PMMA (entry 1, table 5.2) in acetone-ds
(200 MHz)

Figure 5.4 shows *C NMR spectrum of amine-terminated PMMA'’s (entry 1, table 5.2) in

acetone-ds.
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Table 5.2. Synthesis of amine end-functional poly (methyl methacrylate) by GTP
Entry | MMA? | MTS, | THF, | TBABB, N-TMS Znl,, | 'BUOH, M, M, M/ My M, M, I° ticency | Fn
mol mol mL mol Benzaldimine, | mol mol (theory), | (SEC), | (SEC) | (VPO), | (NMR)
x 10° x 10° mol x 10° | x10*° | x10° | g/mol | g/mol g/mol | g/mol
1 0.047 | 235 30 2.35 2.35 235 | 235 2100 2205 1.07 2400 2600 0.95 0.85
2 0.047 | 156 30 1.56 1.56 156 | 156 3100 3200 1.11 2800 4000 0.97 0.80
3 0.047 | 2.35 30 2.35 2.35 235 | 235 2100 2525 1.09 2800 3155 0.84 0.80
4 0.047 | 156 30 1.56 1.56 156 | 156 3100 2905 1.09 3200 3418 1.06 0.85

a [MMA]o= 1.56 mol/L

¢: Fn= Mp (SEC)/ M, (NMR)

tone-d6 (C=0)

206.18

177.79

 ——
k| 176.81

-Aromatic carbons

129.03 _

o—=2

b
6M e

. |

T
200

T
150

T
100

T T T
50 0

Figure 5.4. °C NMR spectrum of amine-terminated PMMA (entry 1, table 5.2) in acetone-ds (50 MH2z)
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The SEC trace of amine-terminated PMMA (Figure 5.5) (entry 1, Table 5.2) shows a less
intense UV -response (due to low concentration of aromatic end-group) at the same elution

volume/time of that of RI response indicating the presence of aromatic group at the chain-

0005 0000080
0001 0000025
M=2206gimd -
00025 M/M =107
/ 0000020
000204 i
] c
% - 0000015 <
: .
00010 0000008
00005
0000005
000w+ /\
T T T T T T T 0.000000
% BB W R U B B/ L

Em)

Fig 5.5. SEC trace of amine-terminated PMMA (entry 1, table 5.2)

MALDI-ToF-MS spectrum of amine-terminated PMMA was performed by dissolving the polymer in THF (3
mg/mL) and mixed with the matrix 2 5-dihydroxybenzoic acid (10 mg/mL solution in THF) in a 1:1
proportion. For enhancement of ion formation, a small amount of LiCl was added to the solution. After
depositing 0.5 uL of the solution on the sample holder the solvent was evaporated in hot air. MALDI-ToF
spectrum of amine-terminated PMMA is shown in figure 5.6 (entry 1, table 5.2) in which the mass peaks
correspond to the [M+Li]* = 100.12 (MMA) * n (DP) + H (1.0079) + Ar-CH-NH, (106.1476) + Li *(6.941)
for eg. n= 20 gives M= 2116.4965 g/mol i.e., expected series of major fraction will be 2116.4965,
2216.6165, 2316.7365........ etc. MALDI ToF exhibited a major series (figure 5.6) as 2109.28, 2209.22,
.......etc with D= 7 Da. Additionally, low intensity peaks attributed to an oligomer series with cyclic end
groups [M+Li] ¥ = 100.12 (MMA) * n (DP) + H (1.0079) - OCH; (31) + 6.9(Li) for eg. n= 20 gives M,
=1979.3147 g/mal i.e., series of lower fraction will be 1979.3147, 2079.4347, 2179.5547 ... .......etc. were also
observed at mass numbers 1979.21, 2078.86..............€tcC.

Since strong evidence is now present for a dissociative anionic process for GTP?, the second smaller
homologous series (with mass difference between both homol ogous series is about 31 g/mol due to loss of -
OCH3; group as a result of backbiting reaction) must be attributed to the formation of cyclic structure in
addition to linear fractions (Scheme 5.4). As the mass increment of both homologous series is the same (i.e.
about 100 g/mal of MMA), the change in the chemical structure must be attributed to variations in the end-

group.
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Scheme 5.4. Formation of cyclic fraction along with amine-terminated PMMA

The fact that both homologous series have their maximum abundance at about 2200 g/mol

indicates that they are formed simultaneoudy in the reaction.

Table 5.3. Different observed seriesin MALDI ToF MSof amine end-functional PMMA?

prepared by GTP
Polymer End group Observed series’
CH3 o,Me Cyclohexanone end group with n
( HZC—C ) :| =1i.e. loss of -OCH; from linear 1979.21, 2078.86,....
n fraction
02M e CoMe

106.1476 (Ar-CH-NH,)-amineend | 2109.28, 2209.22,...etc with

NH2
H—QHZC— % group D= 7Da
m+n+l

OMe

a: Matrix is 2,5-dihydroxybenzoic acid (F.W 154.13) with Li+ (LiCl salt)
b: [M+Li]* = 100.12 (MMA) * n (DP) + H (1.0079) + Ar-CH-NH, (106.1476) + Li *(6.941)

This is in accordance with the observation that the living nature of GTP depends on the
nature and concentration of catalyst2 and also on molar mass of the polymer. Here we used
0.1 mol% of less nucleophilic TBABB catalyst to keep low cyclic fraction. Different
observed series in MALDI ToF of amine end-functional PMMA prepared by GTP is shown
intable 5.3.
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Fig 5.6. MALDI-ToF spectrum of amine-terminated PMMA prepared by GTP using
TBABB catalyst for silyl ketene acetal ended PMMA and Lewis acid Znl, for
functionalization reaction at room temperature (entry 1, table 5.2). [M+Li]* = 100.12
(MMA) * n (DP) + H (1.0079) + Ar-CH-NH, (106.1476) + Li *(6.941). (Matrix:
Dihydroxybenzoic acid and LiCl for enhancement of ion formation) (D= 7 Da)

5.4 Conclusions

Narrow molecular weight amine-terminated poly (methyl methacrylate) s were prepared by
group-transfer polymerization with initiator efficiencies in the range of 0.84-1.06 and
narrow molecular weight distributions (Mw/M, = 1.07-1.11). The number average degree of
functionalization as determined by NMR/SEC was in the range of 0.80-0.85. MALDI-ToF-
MS analysis of amine functionalized PMMA provide evidence for competing chain end
cyclization.

High concentration of Lewis acid catalyst (Znl,) and long reaction time may result in

increased occurrence of cyclization reaction.
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Chapter 6: Attempted Synthesis of Anhydride End-functional Poly
(methyl methacrylate) s via Group Transfer Polymerization

————— 1

6.1 Introduction

Anhydride end-functional polymers are a class of useful functional polymers that find
applications in reactive polymer blending which is a widely used compatibilization
method used for immiscible polymer blends and for promoting adhesion between
immiscible polymers'. Living anionic polymerization (LAP) has been the method of
choice for the synthess of polymers with terminal anhydride functionality. Takenaka
et al synthesized® anhydride terminal polystyrenes and polyisoprene involving a Diels-

Alder addition of maleic anhydride to a diene-terminated polymer (scheme 6.1).

/DHZ o o
MMNM( 9_ _CH 4 800C/Benzene ¢ O—\{o
CH2 + ‘ CH29J
3 C\\CHz <O 10h N 3 No
O
Mn = 2400 to 5200 g/mo
s = PS, Pl Mw/Mp=1.04to 1.07

Scheme 6.1. Anhydride terminal polystyrene and polyisopreneusing LAP

Macosko et al synthesized® anhydride-terminal poly (methyl methacrylate) (PMMA),
polystyrene (PS), polyisoprene (PI), and poly (vinyl pyridine) (PVP) in

the molecular weight

o
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Scheme 6.2. Synthesis of polymerswith a terminal anhydride group using LAP

range M, = 15,800 g/mol to 51,300 g/mol (PDI = 1.03 to 1.22) with a high functionality
(F>0.95) by reacting the chain end with di-tert-butyl maleate followed
by hydrolysis and condensation to the corresponding anhydride (scheme
6.2).

When a polystyryllithium (PSLi) (Mn=17,500) was allowed to react with di-tert-butyl
maleate the GPC trace of the resulting polymer exhibited bimodal
distribution with the high molecular weight peak having twice the
intensity that of the low. Macosko ascribed thisto a competition between
14-and 1,2-addition (scheme 6.3). If PSLi first reacts with the ester
group in a 1,2-fashion, the resulting adduct still possesses a very reactive
dte towards 1,4-addition by another PSLi resulting in a bimodal
distribution of molecular weights®. Chain coupling reaction did not
occur® when polymerization was performed in THF at —-80°C. The
polymers obtained had a high degree of functionality (F, 2 0.94) and

narrow molecular weight distributions.

e
QtBu 12-add|t|on Tﬁ/b_\
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Scheme 6.3. Polystyryllithium reaction with di-tert-butyl maleate

Presence of polar additive tetramethylethylenediamine (TMEDA) reduced the amount of
1,2-reaction. Organozinc compounds also promoted exclusively 1,4-conjugate addition’.
TMEDA and solid zinc iodide were added to the PSLi. The color of the cyclohexane
solution slowly changed from the characteristic deep red of PSLI/TMEDA to afaint orange,
consistent with a transmetalation process. Upon addition of maleate a polymer having high
anhydride end functionality (F > 0.8) and a unimodal molecular weight distribution was

observed.

The functionality of the PSand PMMA polymers (F, > 0.95) was determined following
derivatization reactions with various amines. NMR spectroscopy and
GPC of the resulting amides permits quantification of the extent of
functionalization. Upon melt blending at 200°C, an anhydride terminal
PMMA (M, = 29,000) with an amino terminal PS (M,= 18,500) all of the
monofunctional homopolymers were converted to PSSPMMA diblock

within 20 minutes (scheme 6.4).

o + s . NH2 _ a06c N \S(
—_—
ps” % melt blend % PS

PMMA O PMMA O
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Scheme 6.4. M elt blending of anhydride terminated PMMA with amino terminated PS

Macosko also described® the synthesis of anthracene-labeled PS and PMMA (scheme

6.5) with a terminal anhydride group using sec-butyllithium/1-(2-
anthryl)-1-phenylethylene (APE) as an initiator via LAP and
demonstrated the ability to detect these polymers by fluorescence

detector at a concentration of ~ 100 times lower than with RI detection in

SEC.

1) sec-BuL, -780C CopMe (ﬁoﬁ
CCo M«\:
2) X MMA -780C to 00C
APE

then MeOH

Anth QO2Me Anth QO2Me
ZlOOC 1h

="

Scheme 6.5. Synthesis of anthracene-labled poly (methyl methacrylate) with ter minal

anhydride.

These polymers could be reacted with amine-functional polymers by melt blending,

and the reaction progress could be monitored by gel permeation
chromatography coupled with fluorescence detection. This highly
sensitive and selective detection methodology was also used to monitor
the coupling reaction of Fluorescent PMMA anhydride with PS-NH,, at a
thin-film interface, which was otherwise difficult to detect by

conventional methods.

Pionteck et al.® reported the preparation of anhydride-terminated polystyrene via

ATRP. 4-(Bromomethyl) phthalic anhydride was used as a functional initiator.

However the reaction led to a polymer (M, = 7100 — 12000 g/mol) with high
polydispersity (M /M, = 1.31-1.42).
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Reactions of cyclic anhydrides and their derivatives with nucleophiles such as
carbanions, Grignard reagents, Wittig reagents, nitrogen nucleophiles, and oxygen
nucleophiles are known in the literature’. It was therefore of interest to see whether a
silyl ketene acetal, under suitable condition, could undergo nucleophilic addition to a
cyclic anhydride. Such a reaction, if successful, could offer a convenient way of
introducing an anhydride group at the terminal end of a PMMA chain.
Unsymmetrical a,b-unsaturated cyclic anhydrides, namely, itaconic anhydride and
citraconic anhydride as well as symmetrical anhydrides, namely, maleic anhydride
and 2,3-dimethylmaleic anhydride were explored as eectron acceptors. There is no
prior literatureon thereaction of silyl protected ester enolateswith cyclic anhydrides.

Thischapter describesthe result of this exploration.

6.2 Experimental methods

6.2.1 Materials

Cdcium hydride (Aldrich), 1,2-Dimethoxy ethane (95%, Aldrich, USA) distilled over
LiAIH4. TiCls (95%, Aldrich, USA) used as received. Itaconic anhydride (95%, Aldrich,
USA) was recrystallised from dry diethylethter. Maeic anhydride (S.D. Fine Chemicals,
Mumbai) was recrystallised from dry benzene. Citraconic anhydride (98%, Aldrich, USA)
was distilled under vacuum (bp 93-94°C/10 mmHg). 2, 3-Dimethylmaleic anhydride (97%
Fluka, Switzerland) was recrystal lised from dry chloroform.

6.2.2 Model reactions

6.2.2.1 Reaction between itaconic anhydrideand MTS

A flame dried 50 mL round bottom flask was charged with 0.1525 g (0.246 mmol, 10
mol%) of Yb(OTf); catalyst and 0.275 g (2.46 mmol) of itaconic anhydride. Dry CH,Cl,
or toluene (10 mL) was transferred using a canula under nitrogen and stirred for 5 minutes.
Subsequently, 0.5 mL (2.46 mmol) of MTS was added and the reaction continued at 30°C.

The progress of reaction was monitoring by TLC.

The desilylation reaction was carried out using IN HCI: THF (1:9) for 1 h at
30°C. The formed diacid was (scheme 6.6) extracted into ethyl acetate and washed well
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with water and dried over Na,SO,. After concentration of the organic layer, column
chromatography (60-120-mesh silica gel, EtOAc / n-hexane as eluent) afforded diacid
in high yields (Table6.1).

Acid value of diacid: 511 mg KOH/gm of sample (theory = 538 mg KOH/gm of sample)
(95% of theory) (Acid value = 56.1X Vi, kon X Nkon / Wy
=56.1x 7.4 x 0.06756 / 0.0549 g
=511 mg KOH/ gm of sample)

FT-IR of diacid: 1730 cm™ (Carboxylic acids: 1750-1690, C=0 stretching)
3196 cm™ (O-H stretching, 3400-2400)

6.2.2.2 Reaction between citraconic anhydride and MTS

A flame dried 50 mL round bottom flask was charged with 0.3101 g (0.5 mmol, 10 mol%)
of Yb(OTf); catalyst and 0.5 mL (5.0 mmol) of citraconic anhydride. Dry CH,Cl, (20 mL)
was transferred using a canula under nitrogen and stirred for 5 minutes. Subsequently, 1.0
mL (5.0 mmol) of MTS was added and the reaction continued at 30°C. The progress of

reaction was monitoring by TLC.

Yb(OTf); was filtered and dicholoromethane was removed under reduced pressure and
product was dissolved in 20 mL THF. Water (2 mL) was added and THF solution was
stirred for 1 h at 30°C. The 1,2-adduct formed (scheme 6.7) was dried over NapSO,. After
concentration of the organic layer, column chromatography (60-120-mesh silica gel, EtOAcC
/ n-hexane as eluent) afforded 1,2-adduct in 80% yield (0.856 g) (Table 6.2).

6.2.2.3 Reaction between maleic anhydrideand MTS

A flame dried 50 mL round bottom flask was charged with 0.0505 g (8.15x10™ mol, 10
mol%) of Yb(OTf)s catalyst and 0.0799 g (8.15x10™ mol) of maleic anhydride. Dry CH.Cl
(10 mL) was transferred using a canula under nitrogen and stirred for 5 minutes.
Subsequently, 0.2 mL (8.15x10™* mol) of MTS was added and the reaction continued at
30°C. The progress of reaction was monitoring by TLC.

6.2.2.4 Reaction between 2,3-dimethylmaleic anhydrideand M TS

A flame dried 50 mL round bottom flask was charged with 0.0119 g (2.46x10°2 mmol, 1
mol% based on MTS) of TBABB catalyst. Dry THF (10 mL) was transferred using a canula
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under nitrogen followed by 0.5 mL (2.46 mmol) of MTS was added and stirred for 5
minutes.  Subsequently, 0.3102 g (2.46 mmol) of 2,3-dimethylmaleic anhydride in 5 mL
of THF was added and the reaction continued at 30°C. The progress of reaction was
monitoring by TLC. The 1,2-adduct was formed in quantitative yield (0.7390 g, 100%y).

6.2.3 Characterization

The methods of characterization have been described in chapter 2.

6.3 Results and discussion
6.3.1 Reaction between itaconic anhydrideand MTS

Itaconic anhydride was found to undergo isomerization to citraconic anhydride upon
addition of MTS. The isomerization is completein about an hour. Figure 6.1 shows *H
NMR spectrum of the isomerized product citraconic anhydride formed (crude) upon

isomerization of itaconic anhydride (entry 1, table 6.1).

citraconic anhydride

/d >_<05|Me3 ﬂ
o o7 N T UTHE rt 0

THF., r.t

Itaconic anhydride Citraconic anhydride

f—ﬁ 06
[ is

1.00 0.30 0.57
[ —

75 7.0 6.5 6.0 55 5.0 45 4.0 35 3.0 25 20 15 1.0 0.5 0.0

Fig 6.1 '"H NMR spectrum of crude product (entry 1, table 6.1) in CDCl; (200 MHz)

FT-IR spectrum of crude product (entry 1, table 6.1) shows absorbance at 2958 cm* (due to
methyl group); and at 3114 cm™ (due to CH=), which is characteristic of citraconic
anhydride. Itaconic anhydride is known to isomerize to citraconic anhydride by thermal (3

100 °C) ® or in the presence of a base”. The extent of isomerization of itaconic anhydride to
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citraconic anhydride was less in dichloromethane than in THF (entry 2, table 6.1). No

isomerization is observed at —78°C in THF (entry 3, table 6.1). The precise mechanism of

isomerization is not clear. It can be speculated that the small concentration of ester enolate

present in equilibrium with the silyl ketene acetal, in a polar solvent, abstracts a proton a to

the carbonyl, resulting in the more stable isomer.

Michael type reaction of MTS with itaconic anhydride (scheme 6.6) was sudied with
Yb(OTf); as catalyst. It has been reported that strong Lewis acidity of dry Yb(OTf);

induces cationic ring-opening polymerization of THF'. Use of a hindered base such as

2,6 di-tert-butyl pyridine

mitigates this problem.™ Hence the reaction was studied in the presence and absence
of 2,6-di-tert-butyl pyridine (entry 5, table 6.1).

/° ’—f/
OSiMe3 Catalyst \
+ >:§) CH > —
N\ Solvent
7 0 Me cooMe
(©)
Itaconic anhydride ( 1) MTS( 2)

H +

OSiMe,

CO,H

CO2Me

Z

Diacid (4)

Scheme 6.6. Reaction between itaconic anhydrideand MTS

CO,H

TABLE 6.1 REACTIONS BETWEEN ITACONIC ANHYDRIDE AND MTS

Entry Itaconic Catalyst Solvent T(°C) | Time, Yield,
anhydride 10mol% minutes %
mmol,

1 2.46 No catalyst THF 30 40 33
(0.59) dark brown

2 2.46 No catalyst CHCl; 30 120 33
light brown
3 2.46 No catalyst THF -78 60 No reaction
4 2.46 Yb(OTf)3 THF 30 30 90(3), 80(4)
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2.46 Y b(OTf)3 THF + 30 20 85(3), 75(4)
5 2,6 di-tert-butyl
pyridine

6 2.46 THF 10 30 95(3), 76(4)
Yb(OTf)3

7 2.46 CH:Cl2 30 20 95(3), 90(4)
Yb(OTf)s3

8 2.46 Toluene 30 20 92(3), 89(4)
Yb(OTf)3

9 2.46 DME 30 60 40(3)
Yb(OTf)3

10 2.46 Yb(OTf)3 DME 50 60 60(3)

Order of addition: Itaconic anhydride + Lewis acid + solvent + MTS (1.1 equivalents)

The reaction between MTS and itaconic anhydride is exothermic (27°C to 36°C) at

room temperature (entry 8, and 9, table 6.1). Figure 6.2 shows 'H NMR spectrum of

moisture sensitive slylether adduct of itaconic anhydride adduct (3). However, relative

integration of number of protonsin —OCH3z;and -OSiMe; wasnot in order.

0.05

H
8y CH—A/&
o\
HaC CHy—1=¢" a
)
CH3

0.00 A

0.06

] |

0.16

]

0.11 |

0.11
=

Fig 6.2. 'H NMR spectraof silylether adduct of itaconic anhydride adduct 3 in acetone-
ds+CDCl; (200 MH2) (entry 8, table 6.1)
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70 COH

08 3 COoMe COH
07 3
06 3
05 3
04 3
03 3

00 3

3.00 6.39 5.97

Fig. 6.3.101H NMQR spec’irum of7diacid64 in CISCI3 + ;cetones-da (206 M Hz)l(entry[;s,
table6.1)
Upon column chromatography (ethyl acetate + petether) deslylation of 3 occurred and
the dicarboxylic acid 4 is formed in ~90% yield. Figure 6.3 shows *H NMR spectrum
of diacid 2 (entry 8, table 6.1), which isin accordance with the proposed structure.

The coordination of the Yb*™ ion to the lone pair of oxygen in 1, 2-dimethoxy ethane
(DME) moderates the Lewis acidity of Yb(OTf)s. Also, Yb(OTf)s/DME is a heterogeneous
system. Using DME as a solvent diacid 4 was isolated in relatively low yields (entry 9, and
10, table 6.1).

6.3.2 Reaction between citraconic anhydride and MTS

No reaction was observed between MTS and citraconic anhydride in THF at room
temperature without a catalyst (entry 1, table 6.2). However, citraconic anhydride
addsto MTS in a 1,2-fashion (scheme 6.7) using Lewis acid Yb(OTf)3 (10 mol%) in

dichloromethane at room temperature (entry 2, table 6.2).
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Scheme 6.7 Reaction between citraconic anhydride and MTS

TABLE 6.2 REACTION BETWEEN MTSAND CITRACONIC ANHYDRIDE AT

ROOM TEMPERATURE

Entry MTS, Citraconic Catalyst | Solvent, Time, Yield
mmol anhydride, mL h
mmol
1 2.46 2.46 - THF, 2 No reaction
10
2 5.0 5.0 Yb (OTf)3 | CH.CI,, 2 80%
10 mol% 20

Upon column chromatography deslylation occurred and gave 1, 2-adduct (7) as the
major product (80%). Fig 6.4 shows *H NMR spectrum of 7, which confirms the
structureof 7.

-OCIH3

T_ H ,0

_i -Ci:|3
o0 ' | o -CH3
08 3 H . e
__3 3 = 37
o é OH | O =-CH3

75 OMe :

0.5
0.4

0.3

2.08

-I
3 N [T}
7 3 Chloroform-d OH ®
E Q N ' (
0.0 3
0.95 1.00 2.99 2.98 3.09
e [— ld (] [N
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Fig 6.4. "H NMR spectrum of 7 in CDCl3 (200 MHz) (entry 2, table 6.2)

The peak at 6.26 ppm corresponding to the hydroxyl proton disappears upon DO exchange
(Fig 6.5).

-OClI-|3

1.37
1.16

o

®
n
o]
T
@

2.08 -:

02 : Chloroforlm-d

L
%

75 7.0 6.5 6.0 55 5.0 4.5 4.0 3.5 3.0 25 2.0 15 1.0 0.5 0.0

Fig 6.5. "H NMR spectrum of 7 in CDCl; (D0 exchange) (200 MHz) (entry 2, table 6.2)

6.3.3 Reaction between maleic anhydride and MTS

When maleic anhydride is reacted with MTS in THF at 30°C, an immediate exotherm is
observed. The reaction temperature increases to 40 °C and stays at 40 °C for about 10
minutes. A brown color liquid is obtained which appears to be a complex mixture of

products as evidenced by TLC.

Figure 6.6 shows *H NMR spectrum of the crude product of the reaction. The NMR
spectrum is quite complex. Unreacted maleic anhydride is also seen (peak at 7.02

ppm). In spite of several attempts to examine differing reaction conditions, no single,

\oor

Chlorof?rm—d

<

.22 0.41 3.00 0.81 0.28 0.15 6.30 834 1.65
[] L ! |
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clean product could be isolated from this reaction. Hence, further study on this
reaction was abandoned.
Fig 6.6 'H NMR spectrum of crude product in CDCl5 (200 MHZ)

W e suspect that maleic anhydride, being a strong electron acceptor, under goes

oligomerization even in presence of a weak nucleophilelike ester enolate.

6.3.4 Reaction between 2,3-dimethylmaleic anhydride and MTS

As expected, in absence of a catalyst no reaction of 2,3-dimethylmaleic anhydride with
MTS was observed (entry 1, table 6.4). In the presence of a nucleophilic catalyst
TBABB or Lewis acid catalyst Yb(OTf)s, 2,3-dimethylmaleic anhydride reacts with
MTS (scheme 6.8) resulting in a 1,2-adduct (entry 2-5, table 6.4). The reaction was

found to be clean and quantitative as evidenced by TLC.

H
HsC 0 _ K
< _ OSMe3  1pappTHF | 0
R >—<O ——
HaS Q Me HaC \
o MesSo (o me
) MTS(2) (C)

Scheme 6.8 Reaction between 2,3-dimethylmaleic anhydride and MTS using TBABB
catalyst

TBABB (0.1 mol%) was sufficient to catalyze the 1,2 addition reaction between 2,3-
dimethylmaleic anhydride and MTS (entry 5, table 6.4). In view of the difficulties
experienced with maleic anhydride, we explored the reaction of 2,3-dimethyl maleic
anhydride with MTS. We reasoned that the methyl substitution would prevent

oligomerization of the anhydride.

The results are summarized in table 6.4. The *H and **C NMR spectrum of the
product 9 isolated asthesilyloxy derivativeis shown in Fig 6.7 and Fig 6.8 respectively
(entry 4, table 6.3). The spectra confirm the proposed structure. The DEPT spectrum
of 9 isshown in Fig 6.9.

Table 6.3 Reaction between 2, 3-dimethylmaleic anhydride and MTS at 30°C
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Entry MTS, 2,3 Catalyst Solvent, | Time, 1,2-silyl adduct (9)
mmol Dimehtyl mL h (Isolated yield)
maleic %
anhydride,
mmol
1 1.58x10° | 1.58x10° nil THF, 12 No reaction
10
2 1.387x10° | 1.387x107 | Yb(OTf); | CH.Cl; 2 96
10 mol% 10
3 7.13x10" | 7.13x10" | TBABB THF, 1 95
0.5 mol% 10
4 2.46 2.46 TBABB, THF, 2 98
1 mol% 20
5 2.46 2.46 TBABB, THF, 2 96
0.1 mol% 20
-OSiMIES(a)
E -OCH3(d)
05 3 @
_E 3 ---2CII-|3(b)
0.4 3
= 2CH3(c) §
FéChlloroform-d § I
o 8 |
3T
01
E I
0.0 7
3.00 3.06 6.06 9.03
(=] = H (]
7.0 6.5 6.0 55 5.0 4.5 4.0 35 3.0 25 2.0 1.5 1.0 0.5 0.0
Fig 6.7 '"H NMR spectrum of 1,2-adduct of 2,3-dimethylmaleic anhydride (9) in CDCl5
(500
MH2) (entry 4, table 6.3)
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Fig 6.8 ®*C NMR spectrum of 1,2-adduct of 2,3-dimethylmaleic anhydride (9) in
CDCl3

(125 MHZ)(entry 4, table 6.3)
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Fig 6.9 DEPT of 1,2-adduct of 2,3-dimethylmaleic anhydride (9) in CDClI3 (500
MHZ2) (entry 4, table 6.3)

The silyloxy derivative, 9, was desilylated using TBAF/MeOH at 30°C for 1h. Thesilyl
peaks disappeared completely. However, the resulting products exhibited three spots.
Column chromatography of the mixture, gave a viscous yellow liquid in 80% vyield.
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__3 (d) S =-2CH3(d)
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753 CH3 3
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HaC on | Che
E @ ©0 g
Wg gCH3
o (b)
_% |
11 I 1kl
Fig 6.10 '"H NMR spectrum of hydroxyl compound of 1,2-adduct of 2,3-

dimethylmaleic
Anhydride (10) in CDCl3 (500 MHz) (entry 4, table 6.3)

Based on *H / *C NMR and DEPT (Fig 6.10-6.12), the structureof

confirmed as 10. HCS o
| EO /
C\
Lo

the product was

HsC on
J)CHg
10
k
H(j)C 53
T_ 3(d (a) ,0 (Ch})_| , X
- © | O (g():/ 0 h
3 HaC@ [ T, | §
0.8; (bx::o 2
RE CH3 1 :
o 0 3
Fé @ (;) [C)] Chloroform-d g
=Hie | T ' T
E A L
0.0 F
"""" 15‘0 ) ) ) ) ) ) ) ) ) 10‘0 ) ) ) ) ) ) ) ) ) 5‘0 ) ) ) ) ) ) ) ) ) [I)
Fig 6.11 C NMR spectrum of hydroxyl compound of 1,2-adduct of 2,3-
dimethylmaleic
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anhydride (10) in CDCl; (125 MHZ2) (entry 4, table 6.3)

J

179 %

o HC o 0 1 o
o | o
o F9;) 0

OH | CHa

05 c=0

s é)CH 3

Cra 0]

Fig 6.12 DEPT of hydroxyl compound of 1,2-adduct of 2,3-dimethylmaleic anhydride
(10)
in CDCl3 (500 MHZz) (entry 4, table 6.3)

6.4 Conclusions

Based on theforegoing study, thereactionsof MTS with various cyclic anhydrides can
be summarized as shown in scheme 6.9. 1,2-addition is the preferred pathway with
both 2,3-dimethyl maleic anhydride and citraconic anhydride. Where as itaconic
anhydrideisomerizesto citraconic anhydridein presenceof MTSin THF, in less polar
solvents (CH2Cl;) and in presence of Lewis acid catalysts (Yb(OTf)s), MTS adds to
itaconic anhydride in a 1,4-fashion, resulting in the dicarboxylic acid functionality.

However, in none of the cases, we could obtain an anhydride functionality.

131



http://www.pdfcomplete.com/1002/2001/upgrade.htm

’ Click Here & Upgrade

b g Expanded Features

> PDF Unlimited Pages
Complete

CO2H

7

CH5
KOZMe 1,4-adduct (4) CO,Me

™

o) 0 .
o+ Y 7 OSiMe:
COo2Me
: E_: o ; 7 (1)\0 Citraconic anhydride 1.2-adduct (6)
O2Me SiMe, Itaconic anhydride ©) 4 (70-80%)
©)
10 mol% 10 mol%
Yb(OTf) 3/CH2Cl 2 _ Yb(OTf) 3/CH2Cl 2
>:<os| Mes
O
7 OMe
MTS (2) THF o
| /\b J
No |
Maleic anhydride Ve \
THF 1 0
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Scheme 6.9. Summary of reactions between MTS and various anhydrides
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CHAPTER 7: SUMMARY AND CONCLUSIONS

7.1. SUMMARY AND CONCLUSIONS

End-functional polymers provide an easy access to block, graft, and star polymers,
which have many potential applications as compatibilizers, emulsion stabilizers, moisture
retention agents, adhesives, coatings etc. Functional polymers can be synthesized by the use
of, either, functiona initiators or post polymerization functionalization reactions. The use of
functional initiators in living polymerization ensures that each polymer chain contains one
functional group. However, initiators of this type are of limited availability and generally
require protection of the functional group prior to use. Some functional initiators of GTP
gave poly (methyl methacrylate) s with broad molecular weight distribution and less than
quantitative conversion of monomer i.e. in anon-living process. Each functionalization/end-
capping reaction is unique and requires optimization of the reaction conditions to ensure
quantitative functionalization. In GTP, cyclotermination is considered to be major
termination process. The disadvantage of termination approach to chain end
functionalization is that any polymer chains that are not living will not result in

functionalization.

Secondary hydroxyl-terminated poly (methyl methacrylate) s was prepared by group-
transfer polymerization with narrow molecular weight distribution (M/M,, = 1.06-1.19),
initiator efficiencies (leficiency) 1N the range of 0.78-1.10 and functionalization efficienciesin
the range of 0.70-0.80. From MALDI ToF studies of hydroxyl-terminated PMMA, it is
observed that cyclized chains are formed along with chain growth, particularly, during or
just before functionalization reaction. This strongly supports a dissociaive mechanism for
GTP in which ester enolates acts as initiator as well as catalyst. It was found that use low
TBABB catalyst concentration and slow addition of MMA is desrable from the point of

view of keeping the chain end cyclization aslow as possible.
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Lactone-end capped PMMA was prepared using 0.1-mol% TBABB catalyst in THF at room
temperature using 5,6-Dihydro-2H-pyran-2-one, as an electrophile with good initiator
efficiency (0.8-1.05) and narrow molecular weight distribution (M/M, = 1.08-1.11).
Efficiency of functionalization was in the range of 0.70-0.85. MALDI ToF MS spectra of
lactone-end capped PMMA reveals that cyclic fraction can be kept to the minimum using
low concentration of TBABB catal yst.

Narrow molecular weight amine-terminated poly (methyl methacrylate) s was prepared by
group-transfer polymerization with good initiator efficiency (lesficieney) (0.84-1.06), narrow
molecular weight distributions (Mw/Mn = 1.07-1.11) and with F, in the range 0.80-0.85.
MALDI ToF mass spectra of amine terminated PMMA shows the presence of competing
chain end cyclization reactions along with functionalization. High concentration of Lewis
acid catalyst (Znl,) and long reaction time may result in increased occurrence of cyclization

reaction.

When Lewis acid like Yb(OTf); is used in CH,Cl, solvent, a Michael type adduct is
formed between itaconic anhydride and MTS at room temperature. However, a
strong Lewis acid Yb(OTf); cannot be used for functionalization of silyl ketene acetal
ended poly (methyl methacrylate) sin THF. Anhydrous Yb(OTf); causesring opening
polymerization of THF. Additionally, Yb(OTf); can also co-ordinate to C=0O group of
poly (methyl methacrylate) s. 2,3-Dimethylmaleic anhydride gave 1,2-addition
product with MTS using both nucleophilic TBABB/THF as wel as Lewis acid
Yb(OTf)s/CH,CI; catalytic system in quantitative yield. Citraconic anhydride gave 1,2-
addition as a major product with MTS using Lewis acid Yb(OTf)s/CH,CI, catalytic
system at room temperature. However, no suitable conditions could be found under
which a silyl ketene acetal could be added to an anhydride in a 1,4-fashion, which
could be compatible with GTP reaction conditions. Hence, attempts to prepare an
anhydride end functional PMMA could not succeed.

7.2. Perspectives for future
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Work reported in this thesis on the synthesis of end-functional poly (methyl
methacrylate) s has opened up many new perspectives for future research. These are as

follows:

Hydroxyl terminated PMMA prepared by GTP can be used in ring-opening
polymerization of e-caprolactone (e-CL) using AIMe(BHT), by coordination insertion

mechanism to obtain PMMA-b-poly (e-CL).

Hydroxyl terminated PMMA can be used for the synthesis of methacryloyloxy

terminated PMMA, which is a useful macromonomer.

Ring opening polymerization of lactone group in lactone end functionalized PMMA can
lead to the synthesis of PMMA-b-poly (lactone) s.

Amine-terminated PMMA can be used in reactive blending with anhydride-terminated

polymers.
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