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Abstract

Coupled-cluster (CC) based methods [1] have emerged as the methods of choice

for electronic structure calculations of highly correlated molecular systems due to the

accuracy and size-extensivity. The molecules with non-degenerate ground state, for ex-

ample, closed-shell molecules and some non-degenerate open-shell systems, can be stud-

ied accurately using single reference (SR) CC methods based on restricted (closed-shell)

Hartree-Fock (RHF) or restricted open-shell Hartree-Fock (ROHF) configuration as start-

ing wave-function, whereas, the degenerate and near-degenerate states of molecules can

be well described by what are known as multi-reference (MR) CC [2] methods, incor-

porating the important non-dynamical electron correlation. The effective Hamiltonian

versions of these have been well studied.

Standard CC methods have been developed using a non-variational approach.

Analytical molecular properties as analytic energy derivatives have been studied thor-

oughly in the SRCC framework [3]. The introduction of Z-vector technique [4] and

constrained-variational approach (CVA) [5] in SRCC framework has made it plausible

to determine the higher order properties with the knowledge of lower order cluster am-

plitudes. Several stationary approaches in SRCC also have been there, which include

expectation value coupled-cluster (XCC) [7], unitary coupled-cluster (UCC) [8] and ex-

tended coupled-cluster (ECC) [8, 9] methods. Of these methods, ECC is found to be a

very efficient approach for evaluating molecular properties. The double-similarity trans-

formed structure of the energy functional in ECC leads to a double-linked functional

after an additional transformation on the right vectors. The double-linking of left vec-

tors and connectedness of the right vectors to the Hamiltonian ensures connectedness

and consequently the size-extensivity in the equations for the cluster amplitudes, which

are obtained by making the energy functional stationary with respect to the left and the
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right vectors respectively. As a consequence of the stationarity conditions, the left and

right vectors obey Hellmann-Feynman theorem due to which there is a (2n+1) rule for

evaluation of response properties.

Like other SRCC approaches, ECC has also been extensively studied for ground

state electric properties [9] of closed-shell molecules. However, there have been much

fewer implementations of these methods in obtaining magnetic properties of molecules.

In the present thesis, we attempt to use ECC functional for calculating ground state mag-

netizabilities of closed-shell molecules using ECC linear response method.

The extension of linear response methods in calculation of magnetic proper-

ties is however, non-trivial. Evaluation of magnetic properties suffers from the serious

drawback, namely, the so-called gauge-dependence. Several approaches have been used

to eliminate this problem. Notable amongst them are use of gauge-including atomic

orbitals (GIAO) [10], individual gauge for localized orbitals (IGLO) [11], polarization

propagator approach [12], local origin method (LORG) [13], random phase approxima-

tion (RPA) [14], use of extended basis sets, etc. We attempt to do first implementation of

ECC for evaluation of magnetizabilities of closed-shell molecules using Gaussian basis

sets. This is a step towards formulation of the GIAO based ECC calculations of these

properties. It is seen that with proper choice of gauge-origin, the magnetizabilities can

be evaluated quite accurately.

The development of analytic energy derivatives in the effective Hamiltonian

based MRCC framework has been a much recent topic of study. The complexity lied

mainly in the multi-root nature of the MRCC methods. The problem of energy derivatives

in the context of effective Hamiltonian versions of MRCC was first addressed by Pal [15]

long back. However, it took a long time since then for a concrete formulation to appear.

Development and implementation of non-variational linear response functional for the

energy derivatives in Fock-space (FS) MRCC was done by Ajitha et. al. [16]. However,
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this was quite unsatisfactory as it involved the use of first derivatives of cluster amplitudes

in the first energy derivatives. A more satisfactory formulation along the lines of SRCC

analytic derivatives could be obtained only by using CVA technique.

Formulation of CVA technique in MRCC framework is non-trivial. Szalay [17]

initiated this work in FSMRCC context and analysed the functional for gradient calcu-

lations. The method was, however, applicable only for complete model spaces (CMS).

The CVA-FSMRCC technique for specific root of effective Hamiltonian was formulated

by Pal and co-workers [18] and is applicable for general incomplete model spaces (IMS)

also. The advantage of this method over the non-variational response method is elim-

ination of perturbation dependent parameters in wave-functions in obtaining first order

properties like dipole moment, magnetic moment, etc. Based on the Lagranges method

of undetermined multipliers, in CVA, Lagrangian is constructed for specific root of effec-

tive Hamiltonian. In addition to cluster amplitudes, one has to solve only one additional

set of linear equations for perturbation-independent amplitudes, i.e. the Lagrange multi-

pliers. The cluster equations are obtained by making Lagrangian stationary with respect

to the Lagrange multipliers, which are obtained by making Lagrangian stationary with

respect to cluster amplitudes. The left and right eigen vectors of effective Hamiltonian

are also obtained variationally. The cluster amplitudes are completely decoupled from

the Lagrange multipliers. There is a partial decoupling amongst the cluster amplitudes,

i.e. the lower valence cluster amplitudes are decoupled from the higher valence. This

is commonly referred to as subsystem embedding condition (SEC). The Lagrange mul-

tipliers are coupled with the cluster amplitudes; and due to stationarity condition, they

are coupled within themselves in a reverse SEC manner. The cluster amplitudes and

eigen vectors follow (2n + 1) rule whereas the Lagrange multipliers follow (2n + 2)

rule for evaluation of response properties. The present research work mainly includes

development of codes for CVA based FSMRCC method and implementation of these for
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evaluation of molecular electric properties of ionized, electron attached and electroni-

cally excited states of molecules. The organization of the thesis is as follows

We review briefly, the early developments in molecular quantum chemistry in

Chapter 1. In particular, we discuss the Hartree-Fock self-consistent field method, need

for introduction of electron-correlation effects. The configuration interaction theory,

many-body perturbation theory will also be discussed along with the merits and de-

merits. The coupled cluster theory and various developments in it will be discussed

in this chapter, followed by linear response method, Hellmann Feynman theorem and

its applicability. Brief overview of degeneracy effects, non-dynamical correlation and

formulation of MRCC methods will also be given in this chapter. At last we discuss the

scope of the work done.

Chapter 2 is dedicated to ground state properties of closed shell molecules. In

this chapter, we discuss the theory for closed shell systems in external magnetic field.

The gauge dependence problem and some solutions to circumvent it will be briefly men-

tioned. We then describe formulation of ECC method for magnetic properties. At the

end, we discuss the results of our implementation of ECC for obtaining ground state

magnetizabilities of some small closed-shell molecules.

Chapter 3 starts with formulation of CVA-FSMRCC for one valence problem.

One valence case is a complete model space problem and includes ionized (IP) and elec-

tron attached (EA) states, which basically spans doublet radicals resulting from ion-

ization of closed-shell anions or electron-attachment to closed-shell cations. The low-

lying excited states of these radicals are generally near degenerate with the ground state,

which offers multi-reference character to the corresponding wave-functions. We dis-

cuss the dipole moments of some doublet radicals as test results for one-valence CVA-

FSMRCCSD at the end of the chapter.

In continuation of the theory discussed in Chapter 3, we present the extension

xii



of our work to obtain second order energy derivatives in one-valence CVA-FSMRCCSD

framework. We discuss the expression for second-order properties and simplification by

applying (2n + 1) and (2n + 2) rules to cluster amplitudes, eigen vectors and Lagrange

multipliers. Results for polarizabilities of the doublet radicals will be discussed at the

end.

In chapter 5, we discuss CVA-FSMRCC formulation for obtaining excited state

properties of molecules. Electronically excited states belong to a special type of incom-

plete model space, commonly referred to as quasi-complete model space. We present

detailed formulation for obtaining energy derivatives in singlet and triplet excited states.

Decoupling of triplet states from corresponding singlet states is also discussed. At

the end, we present preliminary applications of CVA-FSMRCCSD results for obtaining

dipole moment and static polarizabilities of molecules in low-lying triplet states.
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Chapter 1

————————————————————

A brief overview of many-body methods and

Motivation of the thesis

————————————————————

1.1 Introduction

In last few decades, there have been spectacular developments in theoretical

methods [1–9] to describe various chemical phenomena using principles of quantum me-

chanics for molecular problems introducing a branch in chemistry, the quantum chem-

istry. Depending on the aim of study, this can be further subdivided into two branches,

namely, molecular structure [6] and molecular dynamics [10]. Although, these sub-

branches focus on different aspects of chemistry, fate of the latter depends significantly,

on the success of the former. It is therefore, very important to develop efficient method

to accurately study the molecular structure. The failure of mean-field approaches like

Hartree-Fock (HF) [6, 11–13] method in describing the electronic structure of atoms

and molecules even qualitatively, demanded the development of correlated methods,
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commonly known as many-body methods. These include configuration interaction (CI)

[6, 14, 15], many-body perturbation theory (MBPT) [16–19] and coupled-cluster (CC)

[5, 20–24] methods. Since, ground state of closed-shell atoms and molecules as de-

scribed by these methods involves single dominating configuration, they are collectively

termed as single reference (SR) methods. Amongst these methods, the CC methods

have catched special attraction because of size-consistency, size-extensivity and accurate

treatment of electron-correlation effects, and have become a promising tool for molecu-

lar structure studies. Development of analytical response [25, 26] of these methods has

opened up an efficient technique for obtaining energy derivatives, gradients and hessians.

The success of SR methods in explaining ground state of non-degenerate sys-

tems motivated the extension of the methods for treatment of electron-correlation effects

in degenerate and near-degenerate situations, commonly referred to as quasi-degeneracy,

like open-shell molecules, excited states, etc. The non-dynamical correlation effects aris-

ing from the quasi-degeneracy reflect in the dominance of more than one configurations.

This resulted in the development of multi-reference (MR) methods. Analogous to SR

methods, these include MRCI [27], MR-MBPT [28–31] and MRCC [7, 32–38] methods.

In these methods, the dynamical correlation effects are incorporated like in the corre-

sponding SR methods.

The separabilitity and scaling features and accuracy of SRCC methods boosted

the development of MRCC methods. Mainly two approaches in MRCC enunciate effec-

tive Hamiltonian, namely, Hilbert-space (HS) MRCC [34] and Fock-space (FS) MRCC

[32, 33, 37]. The state-specific MRCC [35, 36, 38] is also found to be an efficient way

for treating the non-dynamical correlation effects. The linear response (LR) for effective

Hamiltonian based MRCC methods has been recently formulated [39] and applied for

dipole moments of open-shell radicals and excited states of molecules by Pal and co-

workers [40] Hirao and co-workers [41] and Ajitha et. al. [42]. The Z-vector formalism
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[43] in MRCC framework was also attempted. However, a more satisfactory formulation

was obtained only after the extension of the constrained variational approach (CVA) of

Jørgensen and Helgaker [44] in the MRCC framework. This includes the work was done

in this line by Szalay [45] and independently by Pal and co-workers [46]. While the

former method is applicable only for complete model spaces (CMS), the latter can be

applied to general incomplete model spaces (IMS) and can be simplified for CMS and

quasi-complete model spaces (QMS). Apart from these, some SR based attempts like

equations-of-motion (EOM) CC [47, 48], symmetry-adapted-cluster (SAC) CI [49–54]

etc. have also been there for energies and derivatives of certain quasi-degenerate cases

and have become popular because of their relative simplicity.

While the SR methods are now used as a black-box tool for electronic struc-

ture calculations, due to theoretical and computational difficulties, the MR methods still

continue to be developed from general applicability point of view. The present thesis

aims to present some computational developments in the field of MRCC for obtaining

molecular properties. In particular, we propose to present computational implementation

of constrained-variational approach (CVA) introduced in FSMRCC framework for effi-

cient evaluation of dipole moments and dipole polarizabilities of molecules in ionized,

electron-attached and electronically excited states. We also present our implementation

of an SRCC method for evaluating ground state magnetic properties of some closed-shell

molecules. To start with, we present a brief overview of some earlier developments in

many-body methods. This will help in placing relevance of the proposed work. The

objective and scope of the thesis will be explained at the end.
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1.2 Atoms and Molecules: A quantum mechanical insight

Atoms and molecules are systems containing positively charged nuclei and neg-

atively charged electrons moving around them. Atom consists of only one nucleus.

Molecules by definition will have more than one nuclei as they are formed due to sta-

ble interactions amongst a number of atoms. Except for simple systems like hydrogen

atom and H+
2 molecule, these contain two or more electrons. These are described by

quantum mechanical bound states with various types of attractive and repulsive forces

balanced within the systems. Electronic structure of atoms and molecules can be studied

by solving time-independent Schrödinger wave equation [6, 8]

ĤΨ = EΨ (1.1)

In Eq. (1.1), Ĥ is Hamiltonian operator for the total energy of the system. It

is composed of kinetic energy of constituent particles, potential energy due to attractive

and repulsive interactions amongst the particles and energy due to interaction of the sys-

tem with the surroundings. The interactions with surroundings can be quite complicated

and include the effect of external electric and/or magnetic fields, etc. In absence of ex-

ternal field, only the kinetic and potential energies contribute to the Hamiltonian. The

kinetic energy has two parts, namely, nuclear and electronic kinetic energies respectively.

The potential energy has three parts, namely, nuclear-electron attraction energy, nuclear-

nuclear repulsion energy and electron-electron repulsion energy respectively. The Hamil-

tonian for a system of M nuclei and N electrons can thus be written as [6]

Ĥ = T̂n + T̂e + V̂nn + V̂ne + V̂ee (1.2)
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where,

T̂n = −
M∑

A=1

1

2MA

∇2
A; T̂e = −

N∑

i=1

1

2
∇2

i

V̂nn = +
M∑

A=2

A−1∑

B=1

ZAZB

||~RA − ~RB||
;

V̂ne = −
M∑

A=1

N∑

i=1

ZA

||~ri − ~RA||
and V̂ee = +

N∑

i=2

i−1∑

j=1

1

||~ri − ~rj||
(1.3)

In the above equation, ~RA and ~ri are spatial coordinates of A-th nucleus and i-th

electron respectively and the subscripts n and e indicate the the entities (i.e. nuclei and

electrons respectively) responsible for the corresponding interactions.

The wavefunction for N -electron system is a complicated function of spatial

coordinates of nuclei and spatial and spin coordinates of electrons. We denote the space-

spin coordinate of i-th electron as ~xi = {~ri, ξi(σ)} where ξi(σ) is spin of i-th electron.

The wavefunction Ψ can thus be written as Ψ( ~R1, . . . , ~RM , ~x1, . . . , ~xN). The wavefunc-

tion is anti-symmetric with respect to the interchange of space-spin coordinates of any

two electrons.

Ψ(~x1, . . . , ~xi, . . . , ~xj, . . . , ~xN ) = −Ψ(~x1, . . . , ~xj, . . . , ~xi, . . . , ~xN ) (1.4)

It is a well-known fact that such an N -electron wavefunction can be expanded as

a linear combination of N -electron anti-symmetric functions. Although an N -electron

function can have quite complicated structure, the most convenient way is to write it

as product of N one-electron functions, i.e. orbitals. Anti-symmetry can be brought

in by using determinant rather than simple product of the orbitals. If the orbitals form

complete set, one can obtain a complete set of N -electron determinants and thereby, the

exact wavefunction for the N -electron system. Another feature of the many-electron

wave-function is presence of Coulomb hole and Fermi hole. Coulomb hole springs up

from the coulombic repulsion amongst electrons due to which, probability of finding two

5



electrons at the same point in space is zero. The concept of Fermi hole results from

Fermi-Dirac statistics obeyed by electrons and according to this, probability of finding

two electrons with parallel spin at the same point in space is zero. While an arbitrary anti-

symmetric wavefunction does not ensure Coulomb hole, the anti-symmetry takes care of

the Fermi hole. However, the Fermi hole also includes the corresponding Coulomb hole

to some extent.

Solution of the eigenvalue problem Eq. (1.1) yields stationary state energies

and the corresponding eigenfunctions. In absence of external perturbation, atoms and

molecules are assumed to be in one of these states. It is however, very difficult to solve

Eq. (1.1), even for small systems. Since, nuclei are much heavier than electrons, while

considering electronic motions, they can virtually be assumed to be stationary. This is

known as frozen-nuclei Born-Oppenheimer approximation (BOA). As a consequence of

this approximation, the first term in Eq. (1.2), the kinetic energy of nuclei drops out

and the inter-nuclear repulsion energy (third term in Eq. (1.2)) becomes constant. As a

constant added to an operator does not affect the eigenfunctions and simply adds to the

eigenvalues, effectively, the problem reduces to the solution of electronic Hamiltonian

which can be written as

Ĥele = T̂e + V̂ne + V̂ee

= −
M∑

A=1

1

2MA

∇2
A −

M∑

A=1

N∑

i=1

ZA

||~ri − ~RA||
+

N∑

i=2

i−1∑

j=1

1

||~ri − ~rj||
(1.5)

The quantitative aspects including the corrections to BOA were long back ad-

dressed by Sutcliffe [55]. The eigenvalues of the electronic Hamiltonian are the total

electronic energies of the corresponding stationary states. The corresponding eigenfunc-

tions are parameterically dependent on nuclear coordinates. Addition of the inter-nuclear

repulsion energy to the total electronic energy provides and effective potential energy

surface (PES) Veff(R1, . . . , RM) of nuclear motion. The PES resulting from different
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electronic states are generally well separated and the interaction between two PES is

negligible. Due to this, the nuclear motions are well separated from the electronic mo-

tion. Thus, BOA turns to a very good approximation for electronic structure calculations

as the problem of M + N entities reduces to N -electron problem with fixed nuclei. The

concept of PES serves to bring back chemist’s view of molecules, equilibrium structure,

etc. in terms of energy.

1.3 Theoretical model for molecular structure: Basic criteria

It may be noted that even with BO approximation, it is difficult to solve a many-

electron problem because of the difficult inter-electronic repulsion term V̂ee in the elec-

tronic Hamiltonian as defined in Eq. (1.5). The bottle-neck of quantum chemistry lies in

the fact that the approximation of freezing nuclei can not be extended to the electrons.

The eigenvalue problem Eq. (1.1) using the electronic Hamiltonian in Eq. (1.5) cannot

be solved exactly. One has to, therefore, introduce further approximations, of course,

ensuring qualitative as well as quantitative accuracy in describe the chemical phenom-

ena. Although, the accuracy of the approximate method can be improved systematically,

the method should, at all the stages, satisfy some basic conditions so that it may be con-

sidered as a “theoretical model” for electronic structure calculations. These criteria, as

were proposed by Pople et. al. [56] about forty years ago and quoted after studies and

modifications by Bartlett [5] in one of his reviews, can be briefly discussed as fol1ows.

1. The method should be applicable for wide range of molecular systems. It should

not be dependant on certain choices of configurations and symmetry.

2. The method should be invariant with respect to classes of transformation. In par-

ticular, the unitary transformations should not alter the orbital degeneracy and the

allied effects.
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3. The method should be able to properly treat dissociation of a big molecule into

its fragments. This feature is known as size-consistency. A method is said to be

size-consistent if energy obtained by its implementation on a system of several

molecules at non-interacting limit is same as the sum of the energies obtained by

separate implementations of the method on these molecules.

4. The energy of a strongly interacting many-electron system for a given potential

should be approximately proportional to number of electrons in the system. This

scaling property is known as size-extensivity.

5. Even if theory is accurate in treating the electronic structure, the computational

expenditure may refrain in its implementation to molecular systems of chemist’s

interest. Hence, the method should be cost effective and efficient.

6. The method should be applicable for open-shell systems and excited states.

Out of the above conditions, the applicability to open-shells and excited states

may rather be considered as a desirable condition. For highly accurate and rigorous re-

sults, one might as well have to compromise with cost-effectivity. An ideal theoretical

method must, however, obey the rest of the criteria. Size-consistency and size-extensivity

are utmost important since, the efficiency and accuracy of theoretical methods are gov-

erned by these conditions.

1.4 Hartree-Fock theory

Amongst all the methods for obtaining approximate solutions to the electronic

Schrödinger equation, Hartree-Fock (HF) theory [6, 11, 12] is the most fundamental

one. It is based on the fact that stationary states, in particular, the ground states of atoms

and molecules with even number of electrons can be represented by a single dominant
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configuration.

Φ0(~x1, ~x2, . . . , ~xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(~x1) χ1(~x2) . . . χ1(~xN )

χ2(~x1) χ2(~x2) . . . χ2(~xN )

... ... ...

χN(~x1) χN (~x2) . . . χN(~xN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1.6)

Every electrons are assumed to be independent of each other, i.e. the electrons are

assumed to move in a spherically averaged inter-electronic repulsion potential. Hence,

HF is also known as independent particle model. The variation principle states that the

best wavefunction of form given by Eq. (1.6) is the one, which gives the lowest possible

energy.

E0 =< Φ0|Ĥele|Φ0 > (1.7)

The variational flexibility of the wavefunction is the choice of spin orbitals. This

procedure leads to integro-differential equations referred to as HF equations, which are

solved iteratively so as to make < Φ0|Ĥele|Φ0 > stationary while keeping the orbitals

orthonormal.

f̂(~x)χa(~x) = εaχa(~x) (1.8)

f̂(~x) = T̂e + V̂ne + vHF (~x) (1.9)

vhf (~x) =
N∑

j=1

Jj(~x) +
N∑

j=1

Kj(~x) (1.10)

Jj(~x)χi(~x) =

∫
dx′

χ∗
j(~x

′)χj(~x′)

|~x − ~x′|
χi(~x) (1.11)

Kj(~x)χi(~x) =

∫
dx′

χ∗
j(~x

′)χi(~x′)

|~x − ~x′|
χj(~x) (1.12)

Here, the f̂(~x) is Fock operator [6] and is an effective one-electron operator. The

vhf(~x) is average potential experienced by an electrons due to motions of all other elec-

trons and is called HF potential. It includes the average Coulomb interaction defined
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by local operator Jj(~x) and a non-classical potential represented by a non-local opera-

tor Kj(~x) known as exchange potential. The exchange potential is consequence of the

anti-symmetric nature of the wavefunction. The Fock operator being dependant on its

eigenfunctions, the set of equations (1.8) - (1.12) are solved iteratively until some self-

consistency is achieved between successive equations.

The HF procedure leads to orthonormal set of spin-orbitals, which are eigen-

functions of the Fock operator. The corresponding eigenvalues of the Fock operator are

the orbital energies. The N spin-orbitals with lowest energies are occupied in HF con-

figuration and the corresponding determinant is the Hartree-Fock wavefunction. The

remaining orbitals which are unoccupied in HF configuration are termed as virtual or-

bitals. The physical significance of orbital energies is provided by Koopmans’ theorem

which states that the energy of an occupied orbital in HF ground state is negative of the

energy required for removing an electron from the orbital without relaxation of the rest

of the orbitals. The Koopmans’ theorem very accurately predicts the ionization potential

because of the fact that the relaxation and correlation effects partially cancel each other.

Koopmans’ theorem also predicts the first electron affinity. However, these are found to

be quite absurd since, the correlation and relaxation errors add up in this case.

For atoms, the HF equations can be exactly solved as integro-differential equa-

tions. For molecules, however, the explicit integration of the two-electron interaction

terms is difficult as the orbitals involved are centered at different nuclei. Hence, follow-

ing Roothan [13] a finite set of gaussian functions are introduced to define the spatial

parts of atomic orbitals, which are then transformed to molecular orbital basis to achieve

orthonormalization. For closed-shell systems, the spin-orbitals with opposite (spin-up

and spin-down) spin functions are paired up and the problem can be simplified by us-

ing only spatial orbitals after spin-integration. This leads to Roothan Hall equations and

the method is known as restricted HF (RHF). The open-shell systems also have most of
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the electrons paired up and can be solved by open-shell RHF (ROHF) method. On the

other hand, this simplification of electron pairing may not be considered and one may

explicitly solve the HF equations using spin-orbitals. The method is called unrestricted

HF (UHF) and leads to Pople-Nesbet equations. While an RHF or ROHF determinant is

a pure eigenfunction of total spin operator, UHF determinant, in general, is not.

Brillouin’s theorem [6] is a result of HF theory and states that configurations

obtained by excitation of a single electron from HF configuration do not directly interact

with the HF configuration through Hamiltonian. This feature can be treated as defining

condition of HF approximation.

The important feature of HF theory is the simplification of many-electron prob-

lem to independent particle picture by treating the electron-electron repulsion in an av-

erage way. The HF determinant recovers almost 99% of the total energy. The difference

between exact energy and HF energy is called correlation energy as it arises due to partial

ignorance of the electron-electron interactions. The correlation energy can be recovered

by improving the approximations made in HF theory. This leads to various branches

of theories collectively termed as many-body methods. However, due to the simplicity

of HF theory, HF configuration is generally used as a starting guess for the many-body

theories.

1.5 Configuration interaction method

HF theory deals the best single-determinant form of the exact wavefunction and

predicts the energy of the system very accurately. However, most of the chemical phe-

nomena like binding energy, excitation energy, activation energy, etc. require the energy

differences rather than absolute energy of specific states. Unlike for energy of station-

ary states, the variation principle does not hold for energy differences. These energy
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differences are of the order of the correlation energy. Hence, to describe these phenom-

ena even qualitatively, it is necessary to go beyond the HF approximation and treat the

electron correlation effects correctly. CI [6, 14, 15] is one of the methods to achieve this.

Conceptually, CI is the most simple method to improve the wavefunction. The

fact that HF theory provides with a set of orthonormal orbitals as eigenfunctions of the

Fock operator is exploited in the wavefunction expansion. For an N -electron system,

a complete set of anti-symmetric N -electron functions can be obtained by all possible

combinations of these orbitals. One of these configuration will of course, be the HF con-

figuration. The exact wavefunction of the system will be obtained if all the configurations

are included.

The method looks quite simple, but, in practice, it is not. The most fundamental

problem lies in impossibility of including the complete set of orbitals. Hence, for practi-

cal purpose, a finite set of orbitals is considered in the form of basis set. The number of

basis functions can be chosen according to the accuracy requirements. The use of finite

basis set consequently limits the number of configurations. For example, if X-orbital

basis set is used to describe an N -electron system, there will be XCN possible configu-

rations. If all these configurations are included in the wavefunction, it is called Full CI

(FCI) wavefunction and is exact in the basis set limit. The coefficients of the configu-

rations can be variationally optimized to minimize the total energy of the system. The

coefficients and the respective configurations can be labeled in various ways. The most

convenient and commonly used scheme is to define the configurations as excitations of

electrons with respect to HF occupancies. Thus the configurations can be singly excited,

doubly excited and so on, up to N -tuply excited with respect to HF configuration. The

total wavefunction can thus be represented as

Ψ = Φ0 +
∑

i∈occ

∑

a∈virt

Ca
i Φa

i +
∑

i,j∈occ

∑

a,b∈virt

Cab
ij Φab

ij + . . . (1.13)
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Intermediate normalization has been used in the above expansion, although, some

other normalization schemes can as well be used. The Φa
i indicates a singly excited deter-

minant formed by excitation of electron from i-th orbital (occupied) in HF determinant

to the a-th (virtual) orbital. Similarly, Φab
ij indicates doubly excited determinant obtained

by exciting the electrons from i-th and j-th orbitals to a-th and b-th orbitals respectively.

The corresponding coefficients are obtained using linear variation method. This leads

to eigenvalue problem for the Hamiltonian matrix. The matrix elements are calculated

using Slater-Condon rules [6]. While the lowest eigenvalue and the eigenvectors corre-

sponds to the ground state of the system, the rest of the same correspond to excited states

of the system. Alternately, the CI coefficients can also be obtained by method of projec-

tion. However, since the expression is linear in coefficients, it can be obviously proven

that the method is equivalent to the linear variation method. Recently, far more advanced

approaches are being used for solution of the CI equation. Notable amongst them are

use of configuration state functions (CSF) [14, 15], Davidson iterative diagonalisation

[57], direct CI [58], etc. The CSF is based on use of spin-adapted N electron functions.

Depending on the way, the CSF are obtained there have been two approaches, namely,

unitary group approach (UGA) [59, 60] and symmetric group approach (SGA) [60, 61].

Except for cost-effectiveness, FCI fulfills all the criteria for a theoretical model.

However, the dimensions of the wavefunctions increase rapidly with the number of elec-

trons as well as basis functions and practically, it becomes impossible to use FCI even for

small molecules with moderate size basis sets. Use of smaller basis set also affects the ac-

curacy. Thus, FCI is computationally unattractive and one has to truncate the expansion

of the excited determinants. Due to Brillouin’s theorem, the singly excited configurations

alone cannot improve the ground state of the wavefunction, although, they can lead to

excited states. Also, understanding the fact that the correlation energy originates mainly

due to two-electron interactions, one must include the doubly excited configurations to
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improve the wavefunction. This expansion of the wavefunction formed by excluding all

the configurations except HF and doubly excited configurations is known as CI doubles

(CID) and recovers most of the correlation energy. The molecular properties like dipole

moments, polarizabilities, etc. are defined by one-electron operator. It is therefore, de-

sirable to include the singly excited determinants in addition to the doubly excited ones.

The method is called CI singles and doubles (CISD) and describes the one-electron prop-

erties more accurately. Although singly excited determinants do not directly mix with

Hartree-Fock, they interact through the doubly excited determinants and further improve

the correlation energy. More accuracy can be established by including the higher excited

configurations leading to CISD and triples (CISDT), CISDT and quadrupoles (CISDTQ)

and so on.

While the truncations to CI expansion make it cost-effective, they sabotage the

size-consistency and size-extensivity of the wavefunction. As defined earlier, size-consistency

refers to additive separability of the energy during fragmentation. For example, if a

molecule AB dissociates into its fragments A and B then the method is size-consistant

if the following condition is fulfilled.

EAB = EA + EB

The additive separability of energy demands that ΨAB = ΨAΨB. If the wave-

functions are obtained by CISD method, the ΨAB would include upto two-electron ex-

citations, whereas, the product ΨAΨB would include upto four-electron excitations in-

dicating that the condition ΨAB = ΨAΨB cannot be true and thereby invalidating the

additive separability of the energy. Thus it can be seen that, CISD or more correctly,

any truncated CI will lack the feature of size-consistency. Size-extensivity is related to

scaling of the energy of the system with number of electrons. Due to non-interacting

picture, HF energy properly scales with the number of electrons. Hence, size-extensivity
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is considered as a requirement of correlated methods. If total energy (and hence, the

correlation energy) of a system approximately varies linearly with the number of elec-

trons, the method is said to be size-extensive. The energy obtained from truncated CI is

found to show sub-linear dependence [6] with the number of electrons misinterpreting

zero correlation energy per electron as the number of electrons tends to infinity. Thus,

any truncated form of CI cannot be considered as “theoretical model”.

1.6 Second quantization

As seen earlier, the determinant structure is used to ensure anti-symmetry of the

wavefunction. However, this makes the equations clumsy to look at, particularly, for the

many-body theories. The same algebra, without disturbing the physics of many-electron

systems can be more conveniently described using the concept of second quantization.

The main advantage of second quantization is replacement of the cumbersome determi-

nant structure by ordered action of creation and annihilation operators. The consequent

developments like diagrammatic techniques [62], normal ordering and Wick’s theorem

[18, 62, 63] further helped in simplification of the tedious algebra and also in under-

standing the physics more easily. The second quantization concepts have been long back

described in literature [6, 64]. In this section, we briefly mention, only some important

features of second quantization which will be used in the thesis in appropriate places.

To describe second quantization, consider a complete set of orthonormal spin

orbitals {χi(x)}. For each spin-orbital χi, are associated two operators a†
i and ai known

as creation and annihilation operators respectively. A creation operator a†
i creates an

electron in χi if it is vacant. Similarly, if χi is occupied, the annihilation operator ai will

destroy the electron. The above mentioned effects are observed when the operators act

on the right hand side. On the left hand side, the actions of the creation and annihilation
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operators are interchanged. A creation operator cannot create electron in an already oc-

cupied orbital. Similarly, an annihilation operator cannot destroy electron from a vacant

orbital. A vacuum (| > or < |) is defined as a state with no electrons. These results can

be summarized as follows.

a†
i |χj(~x1), χk(~x2), . . . , χl(~xN) > = |χi(~x1), χj(~x2)χk(~x3), . . . , χl(~xN+1) >

ai|χi(~x1), χj(~x2), χk(~x3), . . . , χl(~xN) > = |χj(~x1)χk(~x2), . . . , χl(~xN−1) >

a†
i | >= |χi(~xi) > ; < |ai =< χi(~xi)|

ai|χi(~xi) >= | > ; < χi(~xi)|a†
i =< |

ai| >= 0 =< |a†
i

a†
i |χi(~xi) >= 0 =< χi(~xi)|ai (1.14)

One can thus obtain N -electron determinant by action of N creation operators on

vacuum (| >). Similarly, the action of N annihilation operators on vacuum on the left (<

|) also creates N -electron determinant. The linear vector space spanned by determinants

with different number of electrons including the vacuum is known as Fock-space [63]. It

can be viewed as direct sum of Hilbert spaces with different number of electrons. The

creation and annihilation operators obey following anti-commutation relations.

{a†
i , a

†
j} = a†

ia
†
j + a†

ja
†
i = 0

{ai, aj} = aiaj + ajai = 0

{a†
i , aj} = a†

iaj + aja
†
i = δij (1.15)

From the above relations, it can be seen that the interchange between any two

creation or annihilation operators will result in change of the sign of the resulting de-

terminant, thereby ensuring the anti-symmetry. The electronic Hamiltonian can thus be
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written in second quantized notation as follows.

Ĥele =
∑

i,j

< i|ĥ|j > a†
iaj +

1

2

∑

i,j,k,l

< ij|ĝ|kl > a†
ia

†
jakal (1.16)

where,

< i|ĥ|j > =

∫
d~xχ∗

i (~x)ĥ(~x)χj(~x)

< ij|ĝ|kl > =

∫
d~x1d~x2χ

∗
i (~x1)χ

∗
j(~x2)ĝ(||~x1 − ~x2||)χk(~x1)χl(~x2) (1.17)

The above form of electronic Hamiltonian is independent of the number of elec-

trons and can be applied to the whole of Fock-space.

1.6.1 Normal-ordered operators and Wick’s theorem

It is clear from Eq. (1.14), that action of annihilation operator on vacuum is zero.

Hence, following Eq. (1.15), one can rearrange the creation and annihilation operators

such that, all the annihilation operators are shifted to the right hand side. This process is

called normal ordering [62, 63]. A sequence of the creation and annihilation operators

said to be normal-ordered if all the annihilation operators precede the creation operators.

The interchange between any two creation or annihilation operators changes only the

sign of the operator. The interchange between a creation and an annihilation operator

generates two terms. The term not containing the pair of creation-annihilation operators

is known as contraction term. The pair of creation-annihilation operators are said to be

contracted in this term.

The normal ordering process simplifies the evaluation of matrix elements of op-

erators. Since vacuum expectation value is zero, the matrix element of an operator will

survive only when all the creation and annihilation operators are fully contracted with

each other. The process is simplified by applying Wick’s theorem [18, 62, 63], which

states that any general operator sequence is equal to the sum of its normal-ordered form
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and normal-ordered forms of its all possible contractions. The generalized form of the

theorem says that product of two normal-ordered operators is equal to sum of the normal-

ordered form of the product and normal-ordered forms of all possible contractions be-

tween the two operators except self-contractions.

The second quantized algebra can be solved graphically. A second quantized op-

erator is represented graphically by a vertex. The creation and annihilation operators are

represented by the outgoing and incoming lines originated at the vertex. A line joining

two vertices (i.e. two operators) is termed as internal line and represents a contraction

between the corresponding operators.

1.6.2 Hole-Particle definition

The second-quantized algebra can be more easily solved, if instead of absolute

occupancy, the occupancy with respect to some reference configuration is considered.

This results in replacement of electrons by new entities, namely, holes and particles. We

define a hole as absence of an electron in an orbital occupied in the reference configu-

ration. Conversely, particle is defined as presence of electron in a orbital not occupied

in reference configuration. In terms of holes and particles, the reference configuration is

empty physically, it contains the electrons. It is therefore termed as hole-particle vacuum.

The normal-ordering concept and Wick’s theorem can be extended to the hole-

particle operators easily. When normal-ordered with respect to the HF vacuum, the elec-

tronic Hamiltonian can be written as

Ĥele = Ĥvac + ĤN (1.18)
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where,

Ĥvac = < Φ0|Ĥele|Φ0 >;

ĤN =
∑

i,j

< i|û|j > a†
iaj +

1

2

∑

i,j,k,l

< ij|ĝ|kl > a†
ia

†
jakal

< i|û|j > = < i|ĥ|j > +
∑

a∈Φ0

{< ia|ĝ|ja > − < ia|ĝ|aj >} (1.19)

The Ĥvac in case of HF vacuum gives the HF energy. Consequently, the normal-

ordered electronic Hamiltonian (ĤN ) will directly give the correlation energy. The hole-

particle algebra can also be solved using graphical representation. A hole is denoted

by a line with a downward arrow. An upward arrow stands for particle. The graphical

representation of a operator in terms of holes and particles can be defined as follows.

The hole creation and annihilation are denoted by incoming and outgoing lines with

downward arrows. Similarly, creation and annihilation of particle can be denoted by

outgoing and incoming lines with upward arrow respectively. Analogous to the fermion-

based second quantized algebra, the contraction between two operators is represented by

a common line joining the two operators, also known as internal line. In hole-particle

context, the internal line can either be hole line or a particle line.

To illustrate the hole-particle concept let us consider example of CI. If we con-

sider HF configuration as hole-particle vacuum, singly excited determinants will contain

a hole and a particle, doubly excited determinants will contain two of each, and so on. In

other words, excitation of an electron from reference determinant by excitation operator

leads to creation of a hole and a particle.
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1.7 Many body perturbation theory

MBPT [16–18] is one amongst the most popular and widely used correlated

method. The method offers a systematic procedure to step by step incorporate the dy-

namical correlation effects.

In MBPT, the electronic Hamiltonian is partitioned into two part. One of them

is the known part and is the dominant one. It is termed as zeroth order Hamiltonian de-

noted by Ĥ0. The eigenfunctions {Ψ0
i } of Ĥ0 form a complete set with the corresponding

eigenvalues denoted by E0
i . The other, weakly interacting part is unknown. In MBPT

context, this is viewed as a perturbation to the zeroth order Hamiltonian and is denoted

by V . The matrix elements < Ψ0
i |V |Ψ0

j > are assumed to be known. Depending on the

way, the partitioning is done, there are two variants, namely Møller-Plessette (MP) and

Epstein Nesbet (EN) perturbation theories. The stationary states {Ψi} and the eigenval-

ues Ei of exact Hamiltonian are determined from these known quantities. This is done by

introduction of a perturbation parameter λ in the definition of exact Hamiltonian, which

is smoothly varied from 0 to 1.

Ĥ = Ĥ0 + λV (1.20)

The λ = 0 corresponds to the unperturbed Hamiltonian Ĥ0. At λ = 1, the system

is said to be completely perturbed corresponding to the stationary states of the exact

Hamiltonian. The exact states are obtained by carrying out Taylor series expansion of

these quantities around λ = 0.

Ψi = Ψ0
i + λΨ1

i +
λ2

2!
Ψ2

i +
λ3

3!
Ψ3

i + . . .

Ei = E0
i + λE1

i +
λ2

2!
E2

i +
λ3

3!
E3

i + . . . (1.21)

In principle, MBPT can be used for any stationary state. However, in prac-

tice, it is mostly used for ground state calculations. Various methods are used to solve
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for the wavefunctions at various orders leading to different explicit expressions for the

wavefunctions and the corresponding eigenvalues. The one developed by Brillouin and

Wigner known as Brillouin-Wigner perturbation theory (BWPT) [18] and the other one

developed by Rayleigh and Schrödinger known as Rayleigh-Schrödinger perturbation

theory (RSPT) [16, 18, 19]. Both these approaches use Taylor series expansion around

the solutions of the zeroth order part.

In BWPT, perturbation order at any order depends on exact ground state energy

E0, which is priori not known. Therefore, one has to solve for total energy up to some

order using an iterative procedure. In RSPT, the quantities in Eq. (1.20) and Eq. (1.21),

are substituted in the Schrödinger equation. The terms with fixed power of V are then

collected together and solved for energies and wavefunctions at various orders. It can be

seen that, RSPT with MP partitioning leads to a size-extensive perturbation series. This

feature was first proven by Brueckner [65] for first few orders in the context of infinite

nuclear matter. However, he couldn’t prove it for higher orders. Goldstone [66] using a

diagrammatic approach showed that terms which have incorrect scaling (size-intensive),

correspond to unlinked set of diagrams. He further showed that, the MP partitioned

RSPT contains such unlinked diagrams which mutually cancel at every perturbation or-

der, thereby leading to size-extensive series. This is the famous linked diagram theorem.

The first application of diagrammatic approach was done by Kelly [67] for atoms.

Now a days, the accuracy of any many-body method can be measured in terms

of the perturbation order. Thus, MBPT offers a very efficient tool for caliberated mea-

surement of accuracy of energy as well as wavefunction. The MP based RSPT is now

commonly used for correlated calculations of atoms and molecules. The acronyms MP2,

MP4, MBPT(n), etc. have become very popular because of accuracy and relative sim-

plicity of the method.
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1.8 Coupled-cluster theory

Amongst the electron-correlation theories known so far, CC methods (CCM)

[5, 20–23] are the most accurate ones. Endowed with meritorious features from a wide

range of theories like CI [6, 14, 15], pair theories [2, 68], MBPT [16–18], etc. CCM have

become methods of choice for electronic structure calculations of atoms and molecules.

The dynamical electron-correlation in CC wavefunction is brought in through an expo-

nential wave-operator operating on the reference function, generally, the HF configura-

tion. Since, the reference function is a single dominant configuration, the resulting CCM

are collectively known as SRCC. If a quantity A associated with an N -particle system

is additively separable, it can be shown that eA is multiplicatively separable. Further,

as has been shown in the context of thermodynamics for free energy [69], A must have

contributions only from linked cluster to establish additive separability. This cumula-

tive expansion of the exponential wave-operator also known as Ursell and Meyer [70]

expansion was first introduced by Coester and Kummel [71] in nuclear physics.

In CC, the ground state wavefunction of an N -electron system is obtained by

action of an exponential wave-operator on a reference wavefunction, usually, the Hartree-

Fock configuration.

|Ψ0 >= eT |Φ0 > (1.22)

Usually, the intermediate normalization scheme < Φ0|Φ0 >= 1 =< Φ0|Ψ0 >

for the wavefunction. The operator T is cluster operator and like CI operators, it is a

sum of one-electron excitation operator, two-electron excitation operator and so on up to

N -electron excitation operators. In the language of second quantization, T is the sum of

hole-particle creation operators.

T = T1 + T2 + . . . + TN (1.23)
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with

T1 =
∑

i∈occ

∑

a∈virt

tai {a†
aai}

T2 =
∑

i,j∈occ

∑

a,b∈virt

tab
ij {a†

aa
†
bajai}

and so on. (1.24)

The lowercase letters t are the amplitudes corresponding to the cluster operators

T . In case of exact wavefunction, the cluster operators can be viewed as exponential

parameterization of CI wavefunction with the following relationship between T and the

C operators of CI wavefunction.

C1 = T1

C2 = T2 +
1

2!
T 2

1

C3 = T3 + T1T2 +
1

3!
T 3

1

C4 = T4 + T1T3 +
1

2!
T 2

1 T2 +
1

2!
T 2

2 +
1

4!
T 4

1

and so on. (1.25)

Above relationship between T and C is however, not valid in case of truncated

CI and CC methods. Using the definition of Ψ given in Eq. (1.22), one can write the

Schrödinger equation with normal-ordered Hamiltonian as

ĤNeT |Φ0 >= Ecorr
0 eT |Φ0 > (1.26)

The above equation can be solved in various ways, which can be broadly classi-

fied into variational and non-variational methods leading to various types of CC anasatz.

A traditional CC anasatz, also known as “normal” CC (NCC), is a non-variational one

and can be obtained by two ways. One of them, the method of projection uses left

projection of Eq. (1.26) by HF configuration and excited configurations to obtain the
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expressions for energy and the cluster amplitudes respectively. Application of general-

ized Wick’s theorem leads to a set of connected set of equations for energy as well as the

cluster amplitudes.

The same set of equations can also be obtained by similarity transformation

method. In this method, we premultiply Eq. (1.26) by e−T to obtain

e−T ĤNeT |Φ0 >= Ecorr
0 |Φ0 > (1.27)

Using the Campbell-Baker-Hausdorff formula for e−ABeA, the similarity trans-

formed Hamiltonian H̃ can be written as

H̃ = ĤN + [ĤN , T ] +
1

2!
[[ĤN , T ], T ] +

1

3!
[[[ĤN , T ], T ], T ] + . . . (1.28)

The Wick’s theorem and fact that the cluster operators commute within them-

selves leads to two types of terms. One set of terms is graphically represented by con-

nected diagrams, i.e. the diagrams with no vertex isolated from the rest and are referred

to as connected terms. The another set of terms, the disconnected terms correspond to the

disconnected diagrams. However, the disconnected terms mutually cancel out leading to

a set of completely connected set of diagrams. It thus follows that

e−T ĤNeT = (ĤNeT )C (1.29)

The subscript C indicates the connectedness of the terms obtained from the con-

tractions between ĤN and T . The connectedness ensures the size-extensivity and size-

consistency. Due to two-body nature of ĤN , the series in Eq. (1.29) can be shown to

terminate after the quartic power of T . The left hand side of Eq. (1.29) may be consid-

ered as a similarity transformed hamiltonian H̃ .

H̃ = e−T ĤN eT = (ĤNeT )C

This transformed Hamiltonian in general, is non-hermitian in nature and can, in principle,

have complex eigenvalues. However, unlike CI, the energy solution in CC framework no
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more remains an eigenvalue problem. The ground state correlation energy can be ob-

tained as Φ0 expectation value of H̃ . However, this procedure is valid only for ground

state calculations. Thus, the non-hermiticity of CC anasatz does not create any inade-

quacies as far as we are interested in the ground state of the system. The equations for

for I-body cluster amplitudes are obtained by equating the H̃ matrix elements of I-tuply

excited configurations ΦI and the HF configuration to zero.

Ecorr
0 =< Φ0|H̃|Φ0 >=< Φ0|(ĤNeT )C |Φ0 > (1.30)

and

0 =< ΦI |H̃|Φ0 >=< ΦI |(ĤNeT )C |Φ0 > (1.31)

The Eq. (1.31) leads to a coupled set of nonlinear simultaneous equations which

are solved iteratively to obtain the cluster amplitudes. Perturbation analysis of the itera-

tive procedure shows that at every iteration, the functional gains corrections from various

orders of perturbations. After the self-consistency and numerical accuracy is attained, the

correlation energy is obtained using Eq. (1.30).

If the T as defined in Eq. (1.23) is used; the method is known as full CC (FCC)

and is equivalent to FCI. Obviously, the number of cluster operators are same as CI oper-

ators. However, the simplicity of CI is lost in case of FCC due to exponential nature of the

wave operator and hence, is never used in practice. The most commonly used CC anasatz

is to define T = T1 + T2 leading to singles and doubles (SD) approximation. Unlike

CISD, CCSD (or in general, any truncated CC) continues to be size-consistent and size-

extensive. This is because of the exponential nature of the wave operator, which includes

higher excitations through the products of T1 and T2. The CCSD anasatz can be fur-

ther improved by perturbative or complete inclusion of triples, (CCSD(T) and CCSDT)

[21, 22], quadrupoles (CCSDT(Q) and CCSDTQ) [23], etc. These anasatz are seen to

further accelerate the convergence the results towards the exactness.
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Non-linearity of CC equation and non-variational nature are the only limitations

of the method. However, the gives highly accurate and systematically improving re-

sults during every iterative steps even when truncated. The exponential nature of the

wave-operator and the connectedness of the terms ensure the size-consistency and size-

extensivity of the anasatz.

1.9 Alternate SRCC approaches

As mentioned in 1.8, the Eq. (1.26) can be solved in various ways. We have

seen that NCC is a non-variational method. Although, the proof of size-extensivity is

transparent in NCC, the non-variational nature makes it computationally unattractive for

energy derivatives, as will be discussed later in this chapter. Alternately, CC wavefunc-

tion (Eq. (1.22)) may be solved variationally. General advantage of stationary CCM is

applicability of Hellmann-Feynman theorem and existence of (2n + 1) rule for energy

derivative calculations. There have been different methods for variational solutions of

CC wavefunction leading to different SRCC anasatz. We briefly discuss them here.

1.9.1 Expectation value and unitary coupled-cluster ansatz

One of the attempts in variational CCM was to write the energy as an expectation

value type hermitian functional < Ψ∗
0|Ĥ|Ψ0 > / < Ψ∗

0|Ψ0 >. It follows

E =
< Φ0|eT †

ĤeT |Φ0 >

< Φ0|eT †eT |Φ0 >
(1.32)

While T operators are hole-particle creation operators like in NCC; the T † being

conjugate of T , indicate hole-particle destruction.

T † = T †
1 + T †

2 + . . . + T †
N (1.33)
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where,

T †
1 =

∑

i∈occ

∑

a∈virt

tia{a†
iaa}

T †
2 =

∑

i,j∈occ

∑

a,b∈virt

tijab{a
†
ia

†
jabaa}

and so on. (1.34)

The functional in Eq. (1.32) was named as expectation value CC (XCC) [72–74].

Although, the series given in Eq. (1.32) contains some disconnected terms, it was shown

by Pal et. al. [72] that the disconnected part of the numerator is exactly cancelled by the

denominator leaving behind a completely connected series.

E =< Φ0|eT †

HeT |Φ0 >C (1.35)

However, the cancellation implicitly implies complete expansion of the power

series of the numerator and denominator of Eq. (1.32) in terms of the cluster ampli-

tudes. The cluster amplitudes are obtained by making the energy functional (Eq. 1.35)

stationary with respect to T (or alternately T †).

It can be seen that the XCC functional is a nonterminating series. For practical

applications, the series needs to be truncated. Pal et. al. [73] proposed a truncation of the

series after some fixed total power of T and T †. This truncation scheme is symmetric.

However, this truncation of the functional did not yield a strict upper bound in energy.

Later, Bartlett and Noga [74] proposed a truncation scheme for XCC based on the pertur-

bation analysis. The terms whose leading contribution is greater than some fixed order

n of perturbation, V (refer to section 1.7) are omitted in this truncation scheme and the

functional is denoted by XCC(n). The disconnected terms in the equations of cluster am-

plitudes mutually cancel leading to a size-extensive functional although this truncation

scheme is unsymmetric. Each XCC(n) has MBPT(n) as a special case.
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Following Van Vleck [75] and Primas [76], Kutzelnigg [77] proposed an alter-

nate approach in variational CCM called unitary CC (UCC). The functional is given by

|Ψ0 >= eσ|Φ0 > (1.36)

where σ is anti-hermitian. The special choice of σ may be σ = T − T †. The cluster

amplitudes may be obtained using variational or non-variational amplitudes. The non-

variational [78] approach is somewhat similar to NCC where, the set of equations can be

obtained by replacing the T in the NCC equations by σ.

Conversely, UCC may be solved variationally as suggested by Kutzelnigg [77].

The expectation value like UCC functional can be written as

E =
< Φ0|e−σĤeσ|Φ0 >

< Φ0|e−σeσ|Φ0 >
(1.37)

The denominator taken to all orders is identically equal to unity. This leads to

a similarity transformed functional like NCC. However, the σ amplitudes are obtained

variationally like in XCC. Bartlett and Noga used UCC(n) anasatz [79] analogous to

XCC(n). However, unlike XCC(n), UCC(n) functional is symmetric.

1.9.2 Extended coupled-cluster method

As seen earlier, similarity transformed form of NCC anasatz given by Eq. (1.27)

turns out to be a compact tool for developing algorithms for ground state energy. Ar-

ponen [80] extended this feature by adding one more similarity transformation on the

Hamiltonian using hole particle destruction operators.

Ecorr
0 =< Φ0|eSe−τĤNeτ -S|Ψ0 > (1.38)

The resulting anasatz was named as extended CC (ECC) [81–86]. In the above

equation, the τ operators are the hole-particle creation operators like the T operators in
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NCC. The S operators on the other hand are hole-particle destruction operators analo-

gous to the T † operators of XCC, although not conjugates of τ . A transformation on τ

deals with new set of hole-particle creation operators T which absorb full contractions

of S operators with singular τ operator. This leads to a double linked energy functional.

Ecorr
0 =< Φ0|eS[ĤNeT ]L|Ψ0 >DL (1.39)

The subscript L indicates direct linking of T with Ĥ . The subscript DL implies

a ‘double’ or ‘defined’ linking [81] resulting from the transformation of τ to T . Double

linking means that the S operators, if not directly connected to the Hamiltonian, shall

contract with at least two distinct T operators. This ensures connectedness of the terms

of the equations for S and T , which are obtained by making the energy stationary with re-

spect to T and S respectively, thereby assuring the size-extensivity. The size-extensivity

of ECC was tested long back by Piecuch and Bartlett [87].

Various features of ECC will be discussed in detail in the next chapter along with

its applications for obtaining magnetizabilities of closed-shell molecules.

1.10 Linear response method for molecular properties

Hamiltonian of a system interacting with a small time-independent uniform ex-

ternal perturbation g is a complicated function of g which can be expressed as a Taylor

series of g. However, for small perturbations, the higher order derivatives of Hamilto-

nian are negligible. Hence, the Hamiltonian can be considered as linear function of g.

The resulting method of obtaining derivative eigenfunctions and eigenvalues is therefore

referred to as LR.

Ĥ(g) = Ĥ(0) + gÔ (1.40)

In the above equation, Ĥ(0) reads total electronic Hamiltonian in absence of

external perturbation. The operator Ô is proportionality constant and resembles to the
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first order property. For example, if g reads the uniform external electric field, Ô will

correspond to electric dipole moment operator. As a result, the quantities Υ = {E, Ψ}

also become perturbation dependent and can be expressed as a Taylor series expansion

of g.

Υ(g) =
∑

k

1

k!
gkΥ(k) (1.41)

In above equation, the Υ(k) reads k-th order derivative of Υ evaluated at zero

field. For example, in case of electric field, it corresponds to permanent electric dipole

moment, dipole polarizability and first hyperpolarizability for k = 1, 2, 3, respectively.

Using the above relations, molecular properties may be obtained in two ways.

A straight forward method is to solve Schrödinger equation for the system of interest

at various field values and obtain the numerical derivatives of energy by finite differ-

ence method. This approach is known as finite field approach and requires very accurate

evaluation of wavefunction and energy, although, no computational developments are re-

quired. Alternately, the molecular properties may be obtained analytically. In analytical

method, explicit expressions for wavefunction derivatives are solved and used to obtain

molecular properties. It is known that an exact wavefunction follows Hellmann-Feynman

theorem.
∂

∂g

∫
Ψ(g)Â(g)Ψ(g)dτ =

∫
Ψ(g)

∂Â

∂g
Ψ(g)dτ (1.42)

The theorem can be generalized for higher order derivatives. The generalized

Hellmann-Feynman theorem says that with the knowledge of wavefunction and its deriva-

tives up to n-th order, one can obtain analytically, the response properties up to (2n+1)-th

order. This is the famous (2n+1)-rule used in the context of analytical response proper-

ties. For a general non-exact wavefunction, the Hellmann-Feynman theorem and its gen-

eralized form are not applicable. However, if the wavefunction is obtained variationally,

it can be easily shown that the wavefunction obeys the generalized Hellmann-Feynmann
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theorem. Hence, in electronic structure theories, emphasis is given on stationarity of the

wavefunctions.

1.10.1 NCC linear response

The NCC-LR was initiated by Monkhorst [25]. In presence of a uniform external

field, the NCC wavefunction can be expanded in Taylor series of g as given in Eq. (1.41).

The expressions for derivatives of energy and wavefunctions are obtained by differentiat-

ing Eq. (1.30) and Eq. (1.31) with respect to the external field g up to desired order. The

equations for the given order are linear in derivative cluster amplitudes of that order. The

expressions for first derivatives of correlation energy and cluster amplitudes respectively,

neglecting the orbital relaxation are given below.

Ecorr
0

(1) = < Φ0|[(ÔeT )C + (ĤNeT T (1))C ]|Φ0 > (1.43)

0 = < ΦI |[(ÔeT )C + (ĤNeT T (1))C ]|Φ0 > (1.44)

The NCC-LR method described above is conceptually very simple and straight-

forward. However, for each mode of perturbation, one has to obtain the wavefunction

derivatives which makes the method practically cumbersome, particularly for higher or-

der properties.

1.10.2 Cost-effective techniques in analytical NCC-LR

NCC-LR can be solved more efficiently by circumventing the solution of wave-

function derivatives to the extent possible. Mainly two techniques have been proposed to

achieve this.
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The Z-vector technique

Based on Dalgarno’s interchange theorem [88], Bartlett and co-workers [26, 89,

90] introduced the Z-vector technique in NCC-LR. The idea was taken from Handy

and Schaefer [91] who used the technique for analytical derivatives for CI method. We

rewrite Eq. (1.43) and Eq. (1.44) in a compact form as

Ecorr
0

(1) = Y T T (1) + Q(Ô) (1.45)

0 = AT (1) + B(Ô) (1.46)

where,

Y T T (1) =< Φ0|(ĤNeT T (1))C |Φ0 > ; Q(Ô) =< Φ0|(ÔeT )C |Φ0 >

AT (1) =< ΦI |(ĤNeT T (1))C |Φ0 > and B(Ô) =< ΦI |(ÔeT )C |Φ0 > (1.47)

We introduce a perturbation independent vector ZT as

ZT A = Y T (1.48)

Following Eq. (1.48) and Eq. (1.46) and substituting them into Eq. (1.45), it

follows,

Ecorr
0

(1) = ZT B(Ô) + Q(Ô) (1.49)

The above equation for first derivative of energy is independent of wavefunction

derivative. Thus, one has to solve only one extra set of perturbation independent am-

plitudes, i.e. the Z-vectors, defined by Eq. (1.48), in addition to the cluster amplitudes,

making the procedure of obtaining first derivatives of energy more efficient.

Constrained Variational Approach

The Z-vector technique adroitly eliminates the cumbersome evaluation of T (1)

for first derivative of energy. Extension of the technique for higher energy derivatives,
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however, is non-trivial. The constrained variational approach (CVA) of Jørgensen and

co-workers [44, 92, 93] extends the benefits of the Z-vector technique for higher order

derivatives of energy. Based on the method of Lagrange’s undetermined multipliers,

CVA involves construction of Lagrangian as follows.

=(Υ) =< Φ0|(ĤeT )C |Φ0 > +
∑

I 6=0

λI < ΦI |(ĤeT )C |Φ0 > (1.50)

It can be seen that the first term on the right hand side of the above equation

gives total electronic energy of the system. The Lagrange multipliers λ are optimized

with the cluster equations as the constraint. The optimization of = leads to equations for

λ-vectors, which are same as Z-vectors. The CVA formulation transparently extends the

cost-effectivity for higher order derivatives. While the cluster operators obey (2n + 1)-

rule for energy derivatives, the λ-vectors follow (2n + 2)-rule [92, 93].

1.10.3 Linear response to stationary CC anasatz

As discussed earlier, the main advantage of the stationary methods is applicability

of the generalized Hellmann-Feynman theorem. The XCC/UCC response approach was

developed by Pal [94] and extensively used for obtaining static properties [95–97] of

molecules. In this method, the energy functional and its response are expressed in terms

of cluster amplitudes and their derivatives. The energy and cluster amplitudes in presence

of external field are expanded in Taylor series of the field. It was shown by Pal and co-

workers [95, 96] that if cluster amplitudes and their derivatives are truncated to uniform

degree, then the stationarity condition ∂E(i)/∂T (j) = 0 leads to identical set of equations

for a fixed value of (i − j). The cluster amplitude derivatives of particular order can

thus be obtained by making the derivative energy functional of that order stationary with

respect to the amplitudes. The stationarity leads to (2n + 1)-rule for derivative energy

calculation. However, due to disconnected terms in the equations of cluster amplitudes
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and derivatives, these methods suffer from loss of size-extensivity. Pal and co-workers

also attempted to extend the stationary response methods for multi-determinantal CC

[98].

While, the XCC and UCC functionals suffer from loss of size-extensivity due

to disconnected terms in cluster equations, the double-linked form of ECC functional

ensures the size-extensivity even for the energy derivatives. ECC has therefore, emerged

as a state-of-the-art method for obtaining molecular properties. Pal and co-workers ex-

tensively used ECCSD response for molecular electric properties [84, 85]. Recently,

we have attempted to use ECC for obtaining magnetic properties [86], which will be

discussed in details in the next chapter.

1.11 Quasi-degeneracy and non-dynamical electron-correlation

The SR methods provide good description of many-electron systems with single

dominant configuration termed as reference configuration. These include ground states

of closed-shell atoms and molecules and some open-shell systems describable by sin-

gle dominant UHF or ROHF configuration. The electron-correlation introduced by SR

methods is due to weak interactions between the reference configuration and the remain-

ing configurations arising due to electron-electron repulsions and is known as dynamical

electron-correlation. However, in chemistry one often comes across quasi-degenerate

situations like bond-dissociation, ionization, electronic excitations, electron-attachment,

etc. where more than one configurations are seen to make dominant configurations to

the wavefunction of the system. These dominant configurations interact more strongly

amongst themselves than with the other configurations. These strong interactions, as a

result of quasi-degeneracy of the corresponding exact states, lead to what is termed as

non-dynamical electron-correlation. Such situations can not simply be described by SR
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methods because the non-dynamical correlation effects are much bigger in magnitude as

compared to the dynamical electron-correlation. One has to therefore look for theories

which introduce the non-dynamical correlation effects in addition to the features offered

by the SR theories.

Important features of some of the methods well-known for dealing with quasi-

degenerate situations are briefly discussed here. Some of these are suitable for “energy-

of-states” calculations whereas, the others are used for “difference energy” calculations.

1.11.1 Multi-reference configuration interaction method

MRCI [27, 99–102] is one of the standard benchmark methods in quantum chem-

istry. It is a straightforward extension of the SRCI method and has been a popular tool

in molecular spectroscopy. In this method, the reference function is taken as linear com-

bination of several strongly interacting dominant configurations, known as model space.

The dynamical correlation is brought in by carrying out excitations on each determinant

in the model space through a linear wave-operator. Like SRCI, the truncated forms of

MRCI also lack size-extensivity. Several attempts to reduce this drawback have lead

to a number of methods commonly known as MR coupled-electron-pair approximation

(CEPA) methods [103–105].

1.11.2 Multi-reference perturbation theories

The multi-reference perturbation theory (MRPT) [28, 29] closely resembles with

the MBPT theory except for the MR character of the model space. A zeroth order wave-

function qualitatively describing the desired state is first constructed by diagonalizing the

Hamiltonian over the model space, usually through a multi-configuration self-consistent

field (MCSCF) calculation. This is then used to construct the zeroth order Hamiltonian,
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which then defines perturbation. The perturbative expansion over zeroth order wavefunc-

tion is used to obtain the corrections to the wavefunction and energies at various order.

This is a state-specific approach (one state at a time), usually referred to as “diagonalize-

then-perturb” approach.

Another approach in MRPT includes “perturb-then-diagonalize” methods popu-

larly known as quasi-degenerate perturbation theories (QDPT) [30, 31]. These methods

involve perturbative construction of an effective Hamiltonian defined over a model space

whose diagonalization yields approximate energies and wavefunctions of one or more

states.

1.11.3 Equations-of-motion methods

The EOM methods provide a compact tool to obtain difference energies directly

rather than evaluating total energies of different states. In these method, Rowe’s [106]

equation is solved for excitation operator Q†(K) given by

Q†(K)|ΨU
0 >= |ΨW

K > (1.51)

The subscript K labels the excited state whereas W tells the total process, i.e.

electron attachment (EA), ionization (IP) or simply, an electronic excitation (EE). Ac-

cordingly, W = U ± 1 or W = U respectively. Structure of the operator Q†(K) depends

on the process, i.e. IP, EA or EE. In case of EE, Q†(K) is formed from a set of equal

number of creation and annihilation operators. In case of EA, there will be one extra cre-

ation operator whereas, IP will require an extra annihilation operator in the set. For ease

of explanation, we consider the example of electronic attachment. Let |ΨN
0 > represent

ground state wavefunction of an N -electron system. We consider addition of an electron

to this system leading to K-th state of the resulting (N + 1)-electron system. This can
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be described by action of Q†(K) operator on |ΨN
0 >.

|ΨN+1
K >= Q†(K)|ΨN

0 > (1.52)

where,

Q†(K) =
∑

l

t(K, l)T †(l) (1.53)

To satisfy the above equation, the operator T †(l) should be composed of union of

sets of operators {a†
a} that add an electron to orbital χa, operators {a†

aa
†
bai} which add an

electron to orbital χa and excite another electron from χi to χb, operators {a†
aa

†
ba

†
cajai}

which, in addition to adding electron in orbital χa excite electrons from orbitals χi and χj

to the orbitals χb and χc respectively, and so on. Both the systems satisfy the Schrödinger

equation.

Ĥ|ΨN
0 > = EN

0 |ΨN
0 > (1.54)

Ĥ|ΨN+1
K > = EN+1

K |ΨN+1
K > (1.55)

The operator Ĥ is as defined by Eq. (1.16). Following Eq. (1.52), Eq. (1.54) and

Eq. (1.55), one can easily show that

[Ĥ, Q†(K)]|ΨN
0 >= (ĤQ†(K) − Q†(K)Ĥ)|ΨN

0 >= (EN+1
K − EN

0 )Q†(K)|ΨN
0 >

(1.56)

The Eq. (1.56) is an eigenvalue like equation. The appearance of the commutator

[Ĥ, Q†(K)] leads to eigenvalue which is a direct energy difference obtained without

rigorously solving for the exact energies EN
0 and EN+1

K of the corresponding states. One

can analogously obtain the equations for IP and EE.

The choice of the function |ΨN
0 > in the EOM method leads to various EOM

functionals. If HF wavefunction is used for describing the ground state and only one

hole-particle creation operator is used, it is known as “Tamm-Dancoff approximation”.

If Q†(K) consists of hole-particle creation as well as destruction operators, it is known
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as “Random phase approximation” [107]. Simons et. al. used Møller-Plessette (MP)

[108] expansion for the wavefunction. The EOM approach using CC anasatz led to the

EOM-CC [47, 109–113] methods and are now, very commonly used for IP, EA and EE

calculations. The more recent similarity transformed (ST) EOM-CC is also an efficient

technique for difference energy calculations.

1.11.4 Multi-reference CC methods

The spectacular success of SRCC in accurate description of electronic structure of

non-degenerate ground states of molecules boosted the extension of the methods for han-

dling quasi-degenerate situations. The attempts in this direction led to a bunch of CCM

collectively known as MRCC [7, 32–37, 39, 114–116]. Out of these, the functionals

which articulate effective Hamiltonian have been extensively studied since last few years.

Depending on the way the MR character is brought in, these furcate into state universal

(SU) or HSMRCC [34] and valence universal (VU) or FSMRCC [32, 33, 37, 39, 114–

116]. While the former uses different vacua for different configurations in the model

space, the latter is based on the concept of common vacuum. Both these methods suffer

from the so called intruder state problem. However, this problem can be eliminated by

use of IMS or QMS. Methods based on use of intermediate Hamiltonian or more recently,

the state-specific MRCC methods [35, 36] are also known to circumvent this problem.

All these method have different territories of applicability due to pros and cons inherent

in their structure. In the present thesis, computational developments in constrained vari-

ational response to FSMRCC are major part of the research. Therefore, we now focus on

the features of FSMRCC from the view point of CVA formulation.
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1.12 Fock-space multi-reference coupled-cluster method

As mentioned earlier, FSMRCC [32, 33, 39, 114–116] is based on the concept

of a common vacuum. We choose an N -electron RHF configuration as vacuum, which

defines the holes and particles. In the Fock-space, the model space determinants contain

h-holes and p-particles distributed within a set of what are termed as active holes and

active particles, usually around the fermi level. We denote the above p-active particle,

h-active hole model space determinant by {Φ(p,h)
i }. Thus, the model space of a (p, h)

valence Fock-space can be written as

|Ψ(p,h)
µ >=

∑

i

C
(p,h)
iµ |Φ(p,h)

i > (1.57)

The projection operator for model space is defined as

P (p,h) =
∑

i

|Φ(p,h)
i >< Φ

(p,h)
i | (1.58)

The orthogonal component of the model space, i.e. the virtual space is defined as

Q = 1 − P (1.59)

The dynamical electron correlation arises due to comparatively weak interactions

of the model-space configurations with the virtual space configurations. This interaction

is brought in through a universal wave operator Ω which is parameterized such that the

states generated by its action on the reference function satisfy Schrödinger equation. To

generate the exact states for the (p, h) valence system, the wave operator must gener-

ate all valid excitations from the model space. Subsequently, Ω should contain cluster

operators {T̃ (p,h)} which are defined as follows

T̃ (p,h) =

p∑

k=0

h∑

l=0

T (k,l) (1.60)

The superscripted bracket in the right hand side of the above expression indicates

that the cluster operator T is capable of destroying exactly k active particles and l active
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holes, in addition to creation of holes and particles. The T̃ (p,h) operator subsumes all

such lower T (k,l) operators. Using these operators, the Ω is defined as follows.

Ω = {eT̃ (p,h)} (1.61)

The brace-bracket in Eq. (1.61) indicates normal ordering of the cluster-operators.

The Schrödinger equation for the manifold of quasi-degenerate states can be written as

H|Ψ(p,h)
i > = Ei|Ψ(p,h)

i >

which leads to

HΩ(
∑

i

C
(p,h)
iµ Φ

(p,h)
i ) = EµΩ(

∑

i

C
(p,h)
iµ Φ

(p,h)
i ) (1.62)

The effective Hamiltonian for (p, h) valence system can be defined such that

∑

j

(H
(p,h)
eff )ijCjµ = EµCiµ (1.63)

(H
(p,h)
eff )ij =< Φ

(k,l)
i |Ω−1HΩ|Φ(k,l)

j >

which can be written as

H
(p,h)
eff = P (p,h)Ω−1HΩP (p,h) (1.64)

The form the inverse of Ω, in general may not be well defined. Hence, above def-

inition is seldom used to obtain the effective Hamiltonian. Instead, the Bloch-Lindgren

approach is commonly used to define the effective Hamiltonian. The Bloch equation is

just a modified form of Schrödinger equation.

HΩP = ΩHeffP (1.65)

The Bloch-Lindgren approach not only eliminates the requirement of Ω−1, but

also provides an important criterion the effective Hamiltonian must fulfill. The effective

Hamiltonian is, in general, non-hermitian. Mainly two approaches are used to obtain
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Ω and the effective Hamiltonian. One of them, known as Bloch projection approach,

involves left projection of above equation by P and Q.

P (k,l)[HΩ − ΩH
(k,l)
eff ]P (k,l) = 0

Q(k,l)[HΩ − ΩH
(k,l)
eff ]P (k,l) = 0

; ∀k = 0, . . . , p; l = 0, . . . , h (1.66)

The normalization condition is specified indirectly through parameterization of

Ω. In case of complete model spaces (CMS), the intermediate normalization is com-

monly employed.

The diagonalization of the effective Hamiltonian within the P space gives the

energies of the corresponding states and the left and the right eigen vectors.

H
(p,h)
eff C(p,h) = C(p,h)E

C̃(p,h)H
(p,h)
eff = EC̃(p,h) (1.67)

C̃(p,h)C(p,h) = C(p,h)C̃(p,h) = 1 (1.68)

Because of normal ordering, the contractions amongst different cluster operators

within the exponential are avoided, leading to partial hierarchical decoupling of cluster

equations. This is commonly referred to as sub-system embedding condition (SEC). The

lower valence cluster equations are completely decoupled from the higher valence cluster

equations because of SEC. Hence, the Bloch equations are solved progressively from the

lowest valence (0, 0) sector upwards up to (p, h) valence sector. The LR in FSMRCC

framework was initiated by Pal [39] and then implemented by Pal and co-workers [40]

for dipole moments of doublet radicals and excited states of closed-shell molecules. The

method is non-variational and involves explicit differentiation of Bloch equation with

respect to uniform external field. In presence of time-independent uniform external field,
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the parameters Υ = {H (p,h)
eff , C(p,h), C̃(p,h), E, Ω} become perturbation dependent and

can be expanded in Taylor series of g.

Υ(g) = Υ(0) + gΥ(1) +
1

2!
g2Υ(2) +

1

3!
g3Υ(3) + . . . (1.69)

The differentiation of the Bloch equations following left projections by model

space and virtual space configurations with respect to g yields wavefunction derivatives

and derivative effective Hamiltonian. The equations are linear in the perturbation depen-

dent quantities. It is interesting to note that the homogeneous parts of the Ω derivative

equations are identical to the linear homogeneous part of the undifferentiated cluster

equations. The SEC transparently holds at every order. The method provides multi-

ple roots of derivative effective-Hamiltonian which can be obtained simultaneously by

solving following equations.

∑

i

{(H (1)
eff )jiC

(0)
iµ + (H

(0)
eff )jiC

(1)
iµ } = E(1)

µ C
(0)
jµ + E(0)

µ C
(1)
jµ (1.70)

However, due to its non-variational nature, the method does not obey the gen-

eralized Hellman-Feynman theorem for energy derivatives. Therefore, the evaluation

of nth order energy derivatives demands the knowledge of cluster amplitudes and their

derivatives up to nth order.

There have been various attempts in MRCC, along the lines of SRCC, to

eliminate the cumbersome solution of wavefunction derivatives for different modes of

perturbation. The Z-vector formalism by Pal and co-workers [43] is one of them. Szalay

[45] formulated the CVA technique in FSMRCC but the method was applicable only for

CMS. Later, Pal and co-workers [46] independently formulated the CVA-FSMRCC for

general IMS and showed that the functional simplifies to the one proposed by Szalay

[45] if applied for CMS and QMS. The CVA-FSMRCC method of Pal an co-workers

provides response of a specific root of the multiple roots of FSMRCC. One has to project
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a single desired state (root of effective Hamiltonian) for doing constrained variation. In

FSMRCC context, the energy of a specific state of the (p, h) FS sector is given by

Eµ =
∑

ij

C̃
(p,h)
µi (Heff)

(p,h)
ij C

(p,h)
jµ (1.71)

We construct the Lagrangian to minimize the energy expression given above, with

the constraint that the MRCC equations [Eq. (1.66)] are satisfied for the state µ.

= =
∑

ij

C̃
(p,h)
µi (Heff)

(p,h)
ij C

(p,h)
jµ

+

p∑

k=0

h∑

l=0

{P (k,l)Λ(k,l)P (k,l)P (k,l)[HΩ − ΩH
(k,l)
eff ]P (k,l)

+P (k,l)Λ(k,l)Q(k,l)Q(k,l)[HΩ − ΩH
(k,l)
eff ]P (k,l)}

+Eµ[
∑

ij

C̃
(p,h)
µi C

(p,h)
jµ − 1] (1.72)

In this thesis, we present the computational development of CVA-FSMRCC with

SD approximation (CVA-FSMRCCSD) for molecules in doublet and triplet states. The

procedure of solution of Eq. (1.72) and the finer details regarding simplifications in

certain cases will be discussed in appropriate places.

1.13 Objectives of the thesis

Due to efficient techniques available for obtaining energy derivatives, SRCC

methods are now very commonly used for evaluation of molecular electric properties

like dipole moment, polarizabilities, hyperpolarizabilities, etc. However, there have been

much fewer implementations of these methods for obtaining magnetic properties. The

extention of CCM for magnetic properties is non-trivial due to the so called gauge-

dependence problem and complex nature of the perturbation. This fact motivated two

lines of research, namely, to introduce techniques for elimination of gauge-dependence
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and indoctrinate them in efficient SRCC methods. Recognizing the advantages of station-

ary nature of ECC, we attempt to use ECCSD method for obtaining ground state magne-

tizabilities of some closed-shell molecules, which are presented in Chapter 2. The effect

of external uniform magnetic field on molecular Hamiltonian, gauge-dependence prob-

lem in magnetic properties and solutions to circumvent the problem are also discussed.

Some pilot applications of obtaining magnetizabilities of molecules using moderate sized

basis sets are presented.

Although, large number of methods are available for ground state properties of

closed-shell molecules, there have been very few developments for efficient evaluation of

particularly, higher order response properties of molecules in quasi-degenerate situations

like ionized, electron-attached and electronically excited states. We present the pilot ap-

plications for these cases using our computational developments of CVA-FSMRCCSD.

In Chapter 3, we present dipole moments of doublet radicals in ground states and low-

lying excited states using CVA-FSMRCCSD. These radicals can be viewed as ionized

states of closed-shell anions or electron-attached states of closed-shell cations resem-

bling to (0, 1) and (1, 0) sectors of Fock-space respectively. We present the analytical

static polarizabilites of these systems in Chapter 4. Chapter 5 is dedicated to excited

state electric properties of molecules. We discuss the CVA formalism for (1, 1) FS sector

problem and decoupling scheme between the singlet and triplet states. At last we present

some pilot applications of CVA-FSMRCCSD and present analytical dipole moments and

polarizabilities of some small molecules in low-lying triplet states. The results presented

in this chapter are preliminary and we would eventually like to extend and apply the

method for more difficult cases like singlet excited states of molecules.
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Chapter 2

————————————————————

Ground state magnetizabilities of some

closed-shell molecules

————————————————————

2.1 Introduction

In past few years, evaluation of magnetic properties has been one of the impor-

tant and challenging areas for theoretical chemists. The developments of spectroscopic

techniques like nuclear magnetic resonance (NMR) spectroscopy, electron paramagnetic

resonance (EPR) spectroscopy, etc. demanded the accuracy in obtaining these proper-

ties. Although, theoretically, magnetic properties are obtained by extension of linear

response methods used for electric properties, practically, the procedure of calculating

these properties is quite complicated. The complex nature of magnetic field is one of

the problems. The problem can, however, be eliminated for analytical methods by work-

ing out the complex algebra to obtain simplified real algebra for evaluating the magnetic

properties. Another problem is the dependence of the magnetic properties on the choice
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of gauge origin [1].

The magnetic response studies thus involve two steps. The first step is to extend

the efficient response techniques in correlated methods [2–5] for magnetic properties.

The other line of research was to design a procedure to eliminate the so called gauge de-

pendence problem. This led to development of tools like use of gauge-including atomic

orbitals (GIAO) [6–15], individual gauge for localized orbitals (IGLO) [1, 16], polariza-

tion propagator approach (PPA) [17], local origin (LORG) methods [18], random phase

approximation (RPA), etc. Depending on the desired accuracy, the suitable technique

may be used for calculations.

All these techniques have now been incorporated well in the methods like HF

[19–21], MBPT [11, 15, 22], etc. The CVA, based on the method of Lagrange undeter-

mined multipliers, has also made it plausible to extend these techniques in sophisticated

method like CCM [23–26]. However, a more sophisticated way is to use ECC [5, 27]

anasatz. The advantages of ECC over NCC method were recently addressed by Piecuch

and co-workers [28]. The double-similarity transformed structure of the ECC energy

functional brings in the higher order perturbative corrections due to exponential nature

of the left vectors in contrast to the CVA-NCC method where, the left vectors are lin-

ear in nature. Thus, ECC is perturbatively much superior than NCC and it is therefore,

desirable to use ECC for analytical response properties. ECC has been extensively used

for energy [29] and electric properties [30, 31]. In this chapter, we present our attempt

of obtaining magnetizabilities of some closed shell molecules using ECCSD method.

Although, we have not incorporated the gauge invariance techniques in our method, this

attempt is a step towards indoctrination of these techniques in ECC. We discuss the effect

of external uniform magnetic field on Hamiltonian of the molecular system in the next

section. This will be followed by description of ECC method. At the end, we present the

ground state magnetizabilities of hydrogen fluoride and carbon monoxide obtained using
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some moderate size basis-sets.

2.2 Molecule in a uniform external magnetic field

In absence of external magnetic field, the electronic Hamiltonian of a molecule

in atomic units is given by

Ĥ0 =
p2

2
+ V (2.1)

The above equation is just a compact form of Eq. (1.2). In presence of an external

magnetic field ~B, the Hamiltonian of the system is not uniquely defined [1], but depends

on the gauge origin ~RG for which, any location can be chosen. If µnuc reads magnetic

moment of nucleus located at ~RN , then in atomic units, the Hamiltonian [16] of the

system can be written as

Ĥ = Ĥ0 +
1

2c
[(~r − ~RG) × ~p] • ~B +

1

c

[(~r − ~RN ) × ~p]

||~r − ~RN ||3
• ~µnuc

+
1

2c2

[(~r − ~RN) × ~µnuc]

||~r − ~RN ||3
• [(~r − ~RG) × ~B]

+
1

8c2
||(~r − ~RG) × ~B||2 (2.2)

If the nuclear contribution is neglected, the above simplifies to the following

form.

Ĥ = Ĥ0 +
1

2c
[(~r − ~RG) × ~p] • ~B +

1

8c2
||(~r − ~RG) × ~B||2 (2.3)

In Eq.(2.3), the first term inside the curly bracket is ~m • ~B, where ~m is the mag-

netic analogue of dipole moment known as magnetic moment [21]. The magnetic mo-

ment of the molecule is given as

m̂ = −1

2

∑

i

[(~ri − ~RG) × ~pi] (2.4)

In the above equation, the term in the square bracket on the right hand side is

the orbital angular momentum operator. ~RG is gauge origin. For open-shell systems,

58



there is an additional term due to spin. For closed-shell systems, the magnetic moment

is zero. The second term in Eq. (2.3) comes from the the diamagnetic contribution to the

magnetizability of the molecule. The diamagnetic magnetizability operator [22] is given

by

χ̂d
αβ = −1

4

∑

i

[(~ri − ~RG)2δαβ − (~ri,α − ~RG,α)(~ri,β − ~RG,β)] (2.5)

There is one more contribution to the magnetizability of the molecule from the

orbital and spin angular momenta, commonly referred to as paramagnetic magnetizabil-

ity. It is the magnetic analogue of dipole polarizability and is obtained as derivative of the

magnetic moment of the molecule with respect to the external magnetic field. For closed

shell molecule, the spin angular momentum being zero, the paramagnetic contribution to

magnetizability comes through orbital angular momentum only.

The total magnetizability is the sum of the diamagnetic and paramagnetic

contribution, and is the second order energy derivative with respect to uniform external

magnetic field. While, the paramagnetic contribution is obtained using linear response

of the energy anasatz, the diamagnetic contribution can simply be obtained as the expec-

tation value of the operator given in Eq. (2.5)

2.3 Extended Coupled Cluster Method

ECC method uses a bi-orthogonal CC functional. The ECC approach was pro-

posed by Arponen and co-workers [5, 27], in which, the energy of the system can be

expressed in terms of double-similarity transformed Hamiltonian as opposed to the NCC

method, where, a single similarity transformation is used. In the ECC method, the ex-

pectation value is constructed using bi-orthogonal right and left wave functions

E0 =< Ψ′|Ĥ|Ψ > (2.6)
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with

< Ψ′|Ψ > = 1

< Φ0|Ψ > = 1 (2.7)

Using |Ψ > as eτ e−S|Φ0 >, where Φ0 is Hartree-Fock determinant, τ is hole-particle

creation (excitation) operator with respect to Φ0 vacuum, S is hole-particle destruction

(de-excitation) operator and < Ψ′| as < Φ0|eSe−τ , one can construct E0 as double-

similarity transformed Hamiltonian.

E0 =< Φ0|eSe−τĤeτ e−S|Φ0 > (2.8)

The hole-particle creation and destruction operators τ and S, respectively can be decom-

posed into different many-body components.

τ = τ1 + τ2 + . . . + τn

τ1 =
∑

i,α

τα
i {a†

αai}

τ2 =
∑

i,j,α,β

ταβ
ij {a†

βa†
αaiaj}and so on. (2.9)

S = S1 + S2 + . . . + Sn

S1 =
∑

i,α

si
α{a†

iaα}

S2 =
∑

i,j,α,β

sij
αβ{a

†
ia

†
jaβaα}and so on. (2.10)

and so on. Eq.(2.8) may be simplified by transforming the set {τ} to another set {T} of

excitation operators as shown by Arponen [27]. The set of T -amplitudes are defined as,

T |Φ0 >= (1 − |Φ0 >< Φ0|)eSτ |Φ0 > (2.11)

In the above transformation, all the S-vertices, which are fully contracted to τ

vertices, are all absorbed leading to a new set of hole-particle creation operators, the
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T -operators. Like τ , the T operators can also be expanded in terms of creation and

annihilation operators analogously. This eliminates any term in the energy functional,

where {S} can be exclusively connected to a single {T}-vertex. This leads to a double-

linked form of energy functional.

E0 =< Φ0|eS[HeT ]L|Φ0 >DL (2.12)

In the Eq. (2.12) the subscript L indicates direct linking of the T -amplitudes

to the Hamiltonian and the subscript DL (double or defined linking) imposes further

restriction on linking of {S}, i.e. the S-amplitudes should either be directly linked to the

Hamiltonian, or to minimum two distinct T -amplitudes. The double-linking in Eq.(2.12)

leads to connectedness in the terms for the energy expression as well as for the cluster

equations assuring size-extensivity as verified by Piecuch and Bartlett [32].

The definition of {T} incorporates in T , the perturbation corrections from the

contractions of S and τ up to infinite order. Thus, the double-linked energy anasatz is

not only size-extensive, but also, perturbatively and more accurate and superior. The

Eq.(2.12) also ensures natural termination of the series. However, the natural truncation

occurs at quite high perturbation order, e.g., for singles and doubles approximation, the

term with maximum number of S and T amplitudes is S6
1V T 4

2 , i.e. total power (S+T ) =

10 and the perturbation order of this term is 17. However, the terms of such a high

perturbation order hardly affect the results. Moreover, the inclusion of terms up to total

power (S + T ) = 10 is computationally quite expensive. The series therefore needs to

be artificially truncated for practical purpose. Head-Gordon et. al. [29] used Bruckner

orbitals to eliminate singles and proposed quadratic truncation for left and right cluster

amplitudes, which was found to give accurate results for energy for various systems.

The amplitudes for S and T can be obtained variationally, i.e., by making the energy
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expression stationary with respect to the cluster amplitudes t and s respectively.

∂E(0)

∂ti
= 0; i = 1....n

∂E(0)

∂si

= 0; i = 1....n (2.13)

The method, being variational both in T as well as in S is also referred to as bi-variational

coupled cluster method. Because of the variational nature, the Hellmann-Feynman theo-

rem holds, due to which, there is a (2n +1) rule for evaluating the energy response prop-

erties. Thus, the first order properties can be obtained by the knowledge the amplitudes

of T and S only.

In order to evaluate the second and the third order response properties, one needs to

know the first derivatives of T and Samplitudes. These are obtained by differentiating

the explicit expression for the first derivative of energy E (1), which can be written as

E(1) = < Φ0|eS[H(1)eT ]L|Φ0 >DL

+ < Φ0|eS{S(1)[HeT ]L + [HeT T (1)]L}|Φ0 >DL (2.14)

where the subscripts L and DL are as defined in the Eq.(2.12). The double-linked struc-

ture of Eq.(2.14) leads to the connectivity of terms for the derivative cluster amplitudes

obtained by imposing stationarity condition on E (1) with respect to amplitudes of T (0)

and S(0) respectively.

∂E(1)

∂ti
= 0; i = 1....n

∂E(1)

∂si

= 0; i = 1....n (2.15)

The Eqs.(2.15) provide us with the first derivative T (1) and S(1) operators and subse-

quently, properties up to third order can be obtained. The ECC response approach with

singles and doubles approximation and with cubic total truncation of the cluster ampli-

tudes in the energy expression (cubic-ECCSD) was used by Pal and co-workers [30, 31]
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and has been found to give fairly accurate results for electric properties. Pal and co-

workers have used this method for evaluation of dipole moments, polarizabilities and

first hyperpolarizabilities of various systems at equilibrium geometry. Behavior of the

properties at single bond stretch has also been studied. However, as mentioned in the

introduction, there have been no studies for magnetic properties of molecules using ECC

response approach. The current chapter discusses about the performance of ECC method

for magnetizabilities of some diatomic molecules.

2.4 Results and Discussion

We now present test results for diamagnetic and paramagnetic magnetizabilities

of hydrogen fluoride and carbon monoxide at the equilibrium bond distance. The compo-

nents of diamagnetic magnetizability in the directions parallel and perpendicular to the

molecular axis have been reported. In case of paramagnetic magnetizability, the parallel

components being identically zero for both these systems, have not been presented in

the tables. We have computed the magnetizabilities of these molecules using moderately

large Gaussian orbital basis sets as some reasonable gauges to study the gauge depen-

dence of the magnetizabilities at ECC level. The required integrals were obtained from

“DALTON, a molecular electronic structure program Release 1.2, (2001)” [33].

For HF, we have studied the magnetizabilities using four basis sets, viz. cc-

pVDZ, cc-pVTZ and augmentation of these with diffuse functions. For CO, we have

used cc-pVDZ and augmented cc-pVDZ basis sets. Due to computation expenses, the

calculations with larger basis sets have not been done for this system. Since the magneti-

zabilities are gauge-dependent, proper gauge should be chosen for accurate results. The

gauge origin at the maximum electron density is expected to give good results for mag-

netizabilities, which can be seen from the expressions for the operators defined earlier in
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this section. With this point of view, we have selected the gauge origins while studying

these systems. For the magnetizabilities of hydrogen fluoride we have chosen the gauge

origins at the F nucleus and centre of mass respectively. In case of carbon monoxide, the

calculations have been done by choosing the gauge origin at centre of mass and at the

mid-point of the C–O bond respectively for the magnetizability calculations, since the

electron density is evenly spread between these nuclei.

Table 2.1: Magnetizabilities of Hydrogen Fluoride
Basis set Gauge origin Method χd

⊥ χd
‖ χp

⊥ χtotal

cc-pVDZ F RHF -2.3094 -2.0036 0.1746 -2.0911
ECC -2.3433 -2.0162 0.1911 -2.1068
NCC -2.3433 -2.0162

c.m. RHF -2.2863 -2.0036 0.1535 -2.0898
ECC -2.2989 -2.0162 0.1705 -2.0910
NCC -2.3182 -2.0162

aug-cc-pVDZ F RHF -2.4114 -2.1275 0.1636 -2.2077
ECC -2.4860 -2.1916 0.1783 -2.2690
NCC -2.4879 -2.1934

c.m. RHF -2.3880 -2.1275 0.1385 -2.2089
ECC -2.4604 -2.1916 0.1542 -2.2680
NCC -2.4623 -2.1934

cc-pVTZ F RHF -2.3561 -2.0616 0.1752 -2.1412
ECC -2.3953 -2.0845 0.1950 -2.1617
NCC -2.3955 -2.0846

c.m. RHF -2.3329 -2.0616 0.1519 -2.1412
ECC -2.3701 -2.0845 0.1743 -2.1587
NCC -2.3703 -2.0846

aug-cc-pVTZ F RHF -2.4016 -2.1177 0.1727 -2.1919
ECC -2.4598 -2.1678 0.1921 -2.2344
NCC -2.4610 -2.1693

c.m. RHF -2.3781 -2.1177 0.1475 -2.1930
ECC -2.4343 -2.1678 0.1700 -2.2322
NCC -2.4355 -2.1693

Experimentala 0.1760
aSee [34].
All results are in atomic units.

Table 2.1 presents the magnetizabilities of Hydrogen Fluoride at equilibrium

geometry. For comparison, the NCCSD [33] results for diamagnetic magnetizability
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have been presented. The experimental results [34] for the perpendicular component of

paramagnetic magnetizability are also presented. We observe that the present ECCSD

results are generally in agreement with the NCCSD results for diamagnetic magnetiz-

ability. For every gauge, the NCCSD values for χd
⊥ and χd

‖ are marginally lower than the

corresponding ECCSD values.

For χp
⊥, our results can only be compared against the experimental values, since

NCCSD values for the same are not available. We also observe the basis set effects on

these values. Generally, the effects of augmenting by diffuse functions lower, the diamag-

netic magnetizability values systematically. Since these are negative, the absolute values

increase. This effect is same for the NCCSD method. The effect of augmentation is

marginally more for χd
⊥. For the χp

‖, however, we find that augmentation from cc-pVDZ

to aug-cc-pVDZ reduces the values, but a similar augmentation of cc-pVTZ reduces the

values only marginally. Similarly, we can observe the change in the basis from cc-pVDZ

to extensive cc-pVDZ basis. We find the decrease in the χd
⊥ and χd

‖ values (increase in

the absolute values) and increase in χp

‖ values at every gauge. With a large change in the

augmentation in cc-pVDZ, for diamagnetic magnetizability values, we observe that the

values increase (absolute values decrease) as we go from aug-cc-pVDZ to aug-cc-pVTZ

basis. With this change, the paramagnetic magnetizability value increases much more

significantly, than due to the change in the basis from cc-pVDZ to cc-pVTZ. Finally, we

observe that the gauge-dependence of these values is only marginal for χd with marginal

increase of χd
⊥ values as the gauge origin is changed from the F nucleus to the centre of

mass. The χp
⊥ values decrease with the change in gauge origin from fluorine atom to the

centre of mass. However, the results clearly show that both these gauges provide results

within acceptable accuracy.

Table 2.2 presents results of magnetizabilities of Carbon monoxide at equilib-

rium distance. The experimental [35] and NCCSD results are also presented.
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Table 2.2: Magnetizabilities of Carbon monoxide
Basis set Gauge origin Method χd

⊥ χd
‖ χp

⊥ χtotal

cc-pVDZ c.m. RHF -8.0149 -3.7286 4.8126 -3.3778
ECC -8.0172 -3.7421 3.0988 -4.5771
NCC -8.0182 -3.7421

c.bond. RHF -8.1031 -3.7286 4.8363 -3.4207
ECC -8.0935 -3.7421 3.2756 -4.4593
NCC -8.0942 -3.7421

aug-cc-pVDZ c.m. RHF -8.1014 -3.8098 4.9862 -3.3468
ECC -8.1401 -3.8616 3.2344 -4.5758
NCC -8.1417 -3.8619

c.bond. RHF -8.1904 -3.8098 5.0738 -3.3477
ECC -8.2187 -3.8616 3.4428 -4.4711
NCC -8.2200 -3.8619

Experimentala 5.8738
aSee [35].
All results are in atomic units.

There is a general agreement of the ECCSD results with NCCSD ones. Both

components of diamagnetic magnetizability increase only marginally in ECCSD com-

pared to NCCSD results. The gauge-dependence of χd is also not very significant. We

also study the effect of augmentation in the basis. The results of χd decrease with addi-

tion of diffuse functions. For χp
⊥ we do not have comparative NCCSD results. The values

of χp
⊥ increase with the addition of diffuse functions. The gauge-dependence is marginal.

The CO, however represents a more difficult case as seen from the experimental value of

χp
⊥.

2.5 Conclusion

From the results presented in this chapter, it can be concluded that the magne-

tizabilities can be efficiently obtained from ECC response method under singles and

doubles approximation. The preliminary implementation of ECC for magnetizabilities

of hydrogen fluoride and carbon monoxide for different choice of gauge origins have
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been presented and compared with uncorrelated as well as correlated methods and some

experimental results. It is seen that with proper choice of gauge origins, the variation

of results with gauge is only marginal. The correlation effects in case of CO are quite

prominent from the fact that the paramagnetic magnetizability is still quite different from

the experimental result. Further accuracy may however, be achieved only after incorpo-

ration of one of the techniques used for gauge-invariance in the ECC framework.
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Chapter 3

————————————————————

Constrained variational response to FSMRCC

one valence problems: First order properties

————————————————————

3.1 Introduction

Recently, MRCC methods [1–8] have emerged as methods of choice for accurate

description of the behavior of quasi-degenerate molecular systems. Various subclasses

of MRCC have come up depending on the way they handle the non-dynamical and dy-

namical electron correlation effects. Amongst them, the methods which formulate effec-

tive Hamiltonian provide multiple roots via diagonalization of the effective Hamiltonian

within the model space and have been well studied. Mainly two approaches belong to

this subclass, namely, FSMRCC [1–3, 7] and HSMRCC [4, 5]. Both these approaches

differ in their windows of applicability due to the merits and demerits, inherent in their

formulations. The potential energy surfaces (PES), for example, can be better studied

using HSMRCC. FSMRCC, on the other hand, describes well, the cases like ionization,
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electron-attachment and electronically excited states of molecules, i.e. the cases, we

are interested in. Alternately, some SR based methods like SAC-CI [9–11], EOM-CC

[12–14] have also been successful in handling certain kinds of quasi-degeneracies.

As discussed in Chapter 1, FSMRCC assumes a common vacuum. Usually,

the ground state RHF of the nearest closed-shell is chosen as vacuum. The model space

configurations are formed by addition and/or removal of electrons to/from a set of orbitals

termed as active orbitals. The model space configurations and the corresponding FS

sector is represented in terms of the particle-occupancy of the configurations with respect

to the vacuum. For, if N -electron RHF is vacuum, the model space of (N − 1)-electron

will be represented by (0, 1) sector of FS, (N + 1)-electron model space by (1, 0) FS

sector and N -electron excited states by (1, 1) sector of FS and so on, the vacuum being

(0, 0) sector of FS. The ionized and electron-attached states belong to one-valence FS

problem, since, they have single occupancy in model space in terms of hole-particles.

Analogously, the excited states belong to two-valence problem in FSMRCC context.

To increase scope of applicability of a method for general electronic structure

calculations, it is important to formulate its linear response. In FSMRCC context, this

development was started by Pal [15] and was similar to Monkhorst’s approach in SRCC

methods [16]. The method was later implemented by Pal and co-workers [17, 18], Hirao

and co-workers [19] and Ajitha et. al. [20] for analytical dipole moments of various

open-shell molecular systems and excited states. However, this was quite unsatisfac-

tory as the energy derivatives required time consuming evaluations of cluster amplitude

derivatives up to that order, separately, for every mode of perturbation. A more concrete

formulation along the lines of SRCC analytical response could be obtained only us-

ing CVA. Szalay [21] formulated CVA-FSRMCC and used for gradients. However, the

method was applicable for CMS only. Formulation of CVA-FSMRCC for general IMS
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was developed by Shamasundar et. al. [22], which simplifies to the Szalay’s formula-

tion in case of CMS. We have done the computational developments of CVA-FSMRCC

formulated by Shamasundar et. al. with SD approximation (CVA-FSMRCCSD) for

ionized, electron-attached and excited states. In our present developments, we have ne-

glected the effect of relaxation of orbitals due to external perturbation. In this chapter,

we present the first part of our development, i.e. implementation of CVA-FSMRCC for

the first order energy derivatives of ionized and electron-attached states. This is a step to-

wards the CVA-FSMRCC formulation for excited states. Ionization or electron-addition

to closed-shell molecules results in open-shell doublet molecules, commonly known as

radicals. Understanding the importance of free radicals [23] in various fields like atmo-

spheric chemistry, biochemistry and plasma chemistry, we present in this chapter, dipole

moments of some small free radicals as test examples.

3.2 CVA-FSMRCC method for the first order properties

The FSMRCC theory has already been described in Chapter 1 for a general (p, h)-

valence sector. Here, we rewrite the algebra specifically for (0, 1)-sector of FS to discuss

the formulation of CVA in FSMRCC context. The configurations of this CMS are given

by

|Ψ(0,1)
µ >=

∑

i

Ciµ|Φ(0,1)
i > (3.1)

The dynamical electron correlation effects are brought in through a universal

wave operator Ω.

Ω = {eT̃ (0,1)} (3.2)

T̃ (0,1) = T (0,1) + T (0,0) (3.3)

The wave operator Ω is parameterized such that the states generated by its ac-

tion on the reference function satisfy Bloch-Lindgren equation for effective Hamiltonian
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given by Eq. (1.65). The lower valence cluster operator equations are decoupled from

the higher valence ones, commonly known as subsystem embedding condition (SEC).

The diagonalization of the effective Hamiltonian within the P space gives the energies

of the corresponding states and the left and the right eigen vectors.

H
(0,1)
eff C(0,1) = C(0,1)E

C̃(0,1)H
(0,1)
eff = EC̃(0,1) (3.4)

Explicit differentiation of the above equations leads to the non-variational LR

of FSMRCC and involves solution of derivatives of Ω and H
(0,1)
eff for every mode of

perturbation separately.

We now briefly discuss the CVA-FSMRCC method for (0, 1) Fock space. The

energy of a specific state of the ionized system is given by

Eµ =
∑

ij

C̃
(0,1)
µi (Heff)

(0,1)
ij C

(0,1)
jµ (3.5)

We construct the Lagrangian to minimize the energy expression given above,

with the constraint that the MRCC equations are satisfied for the state µ.

= =
∑

ij

C̃
(0,1)
µi (Heff)

(0,1)
ij C

(0,1)
jµ

+P (0,1)Λ(0,1)P (0,1)P (0,1)[HΩ − ΩH
(0,1)
eff ]P (0,1)

+P (0,1)Λ(0,1)Q(0,1)Q(0,1)[HΩ − ΩH
(0,1)
eff ]P (0,1)

+P (0,0)Λ(0,0)P (0,0)P (0,0)HΩP (0,0)

+P (0,0)Λ(0,0)Q(0,0)Q(0,0)HΩP (0,0)

−Eµ

(∑

ij

C̃
(0,1)
µi C

(0,1)
jµ − 1

)
(3.6)

The Λ in Eq. (3.6) are the Lagrange multipliers. However, in case of CMS,

the effective Hamiltonian has an explicit expression in terms of cluster operators, as a
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result of which, the closed part in the Lagrange multipliers vanishes. The Eq. (3.6) thus

reduces to

= =
∑

ij

C̃
(0,1)
µi (Heff)

(0,1)
ij C

(0,1)
jµ

+P (0,1)Λ(0,1)Q(0,1)Q(0,1)[HΩ − ΩH
(0,1)
eff ]P (0,1)

+P (0,0)Λ(0,0)Q(0,0)Q(0,0)HΩP (0,0)

−Eµ

(∑

ij

C̃
(0,1)
µi C

(0,1)
jµ − 1

)
(3.7)

Differentiation of Eq. (3.7) with respect to Λ results in expression for cluster

amplitudes, i.e., the Bloch equation. It is obviously seen that the equations for Ω am-

plitudes are decoupled from the Λ amplitudes. The Λ equations are, however, coupled

with the Ω amplitudes. These are obtained by making Eq. (3.7) stationary with respect to

the cluster amplitudes. In presence of external field, the Lagrangian and the parameters

Υ = {Heff, C, C̃, E, Ω, Λ} become perturbation dependent. These can be expanded in

Taylor series.

Υ(g) = Υ(0) + gΥ(1) +
1

2!
g2Υ(2) +

1

3!
g3Υ(3) + . . . (3.8)

The Lagrangian defined in Eq. (3.7) can be differentiated with respect to the

field g to obtain the Lagrangians at every order. The zeroth order and the first order

Lagrangians can therefore, be written as

=(0) =
(
C̃(0,1)(0)H

(0,1)(0)
eff C(0,1)(0)

)
µµ

+P (0,1)Λ(0,1)(0)[H(0)Ω(0) − Ω(0)H
(0,1)(0)
eff ]P (0,1)

+P (0,0)Λ(0,0)(0)[H(0)Ω(0)]P (0,0)

−Eµ

(∑

ij

C̃
(0,1)(0)
µi C

(0,1)(0)
jµ − 1

)
(3.9)
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=(1) =
(
C̃(0,1)(1)H

(0,1)(0)
eff C(0,1)(0)

)
µµ

+
(
C̃(0,1)(0)H

(0,1)(1)
eff C(0,1)(0)

)
µµ

+
(
C̃(0,1)(0)H

(0,1)
eff

(0)
C(0,1)(1)

)
µµ

+P (0,1)Λ(0,1)(1)[H(0)Ω(0) − Ω(0)H
(0,1)(0)
eff ]P (0,1)

+P (0,1)Λ(0,1)(0)[H(1)Ω(0) + H(0)Ω(1) − Ω(1)H
(0,1)(0)
eff − Ω(0)H

(0,1)(1)
eff ]P (0,1)

+P (0,0)Λ(0,0)(1)H(0)Ω(0)P (0,0) + P (0,0)Λ(0,0)(0)H(1)Ω(0) + H(0)Ω(1)P (0,0)

−E(0)
µ

∑

ij

(
C̃

(0,1)(0)
µi C

(0,1)(1)
jµ + C̃

(0,1)(1)
µi C

(0,1)(0)
jµ

)

−E(1)
µ

(∑

ij

C̃
(0,1)(0)
µi C

(0,1)(0)
jµ − 1

)
(3.10)

The Eqs. (3.9) and (3.10) give the energy and the first order energy derivative

for the state µ. Because of stationarity of Lagrangian with respect to Λ and Ω, the above

expressions are further simplified. The energy derivatives follow (2n + 1) rule with

respect to the Ω amplitudes and (2n + 2) rule with respect to Λ amplitudes. There is a

(2n + 1) rule for the eigen-vectors C̃(0,1) and C(0,1) for evaluation of energy derivatives.

With these, the expressions for Lagrangians given in Eqs. (3.9) and (3.10) simplify. We

denote this simplified Lagrangian as =opt.

=(0)
opt =

(
C̃(0,1)(0)H

(0,1)(0)
eff C(0,1)(0)

)
µµ

(3.11)

=(1)
opt =

(
C̃(0,1)(0)H

(0,1)(1)

effΩ(0) C(0,1)(0)
)

µµ

+P (0,1)Λ(0,1)(0)[H(1)Ω(0) − Ω(0)H
(0,1)(1)

effΩ(0) ]P (0,1)

+P (0,0)Λ(0,0)(0)H(1)Ω(0)P (0,0) (3.12)

The subscript Ω(0) indicates that the derivative effective Hamiltonian does not

contain any term formed from derivatives of the cluster amplitudes. The first order prop-

erties can thus be obtained simply with the knowledge of Ω and Λ amplitudes only.

Differentiation of Eq. (3.9) with respect to Λ amplitudes leads the equations for Ω am-

plitudes – the Bloch equations. The Λ are obtained by differentiating Eq. (3.9) with
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respect to Ω amplitudes. It may be noticed that the coupling within the Λ amplitudes

in various valence sectors is exactly opposite of SEC. Thus, one has to solve for the Λ

amplitudes successively from the highest valence sector to the lowest valence sector.

The CVA method is a single-root method. The Λ amplitudes depend on the

desired state of the molecule. Therefore, for every state one has to calculate the Λ am-

plitudes separately. In contrast, the non-variational response of FSMRCC [15] has a

multiple-root structure. However, the expensive evaluation of wave-function derivatives

for each mode of perturbation is avoided in CVA-FSMRCC. Also, the single-root feature

makes CVA more attractive for the cases like curve-crossing studies of excited states,

etc. than the non-variational response method. It can be seen that the Λ equations for

one-valence problem are same as the “zeta equations” in the EOMCC method [14, 24].

3.3 Computational details

The universal wave operator Ω in case of the ionized states is [eT (0,0)
eT (0,1)

],

whereas for the electron attached radicals, it is [eT (0,0)
eT (1,0)

]. In both the cases, the

T (0,0) equations are decoupled from the valence sector T equations due to SEC. Hence,

we first solve for the (0, 0) sector amplitudes. These amplitudes once obtained, remain

unchanged throughout the further calculations. Hence, for computational convenience,

we store the [Ĥe(T (0,0)
]C intermediates, which is called H̄ . The closed part of H̄ , i.e.

(H̄)cl is the ground state energy. If this part is omitted during the solution of the (0, 1) and

(1, 0) sector cluster amplitudes ionization potentials and electron affinities are obtained

directly. The open parts of H̄ can further be divided into one body, two body, three body

parts and so on. Under the SD approximation, only up to three body parts contribute

to the valence sector cluster equations as well as to the Λ equations for these sectors.

Because of the large dimensions, the three body parts of the H̄ can not be stored in the
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hard disk. These are, therefore, evaluated in the code as and when required. The one and

two-body parts of H̄ are calculated in the beginning of valence sector calculation and are

stored in RAM or hard-disk depending on the size.

The equations for Λ amplitudes are inhomogeneous linear simultaneous equa-

tions and as explained earlier, the Λ amplitudes of the valence sector are first obtained;

followed by solution of the Λ amplitudes of the (0, 0) sector. The Jacobi’s iterative pro-

cedure has been used for obtaining the Λ amplitudes.

3.4 Results and Discussion

We, now, present the dipole moment results for OH, OOH and HCOO radicals,

CH and SiH radicals and NO and NO2 using CVA-FSMRCC. We have compared the

results with the available benchmark results. As mentioned earlier, in our analytical

results, the orbital relaxation effects have been neglected. The deviation of the CVA-

FSMRCCSD results from the ones obtained using finite field (FF) methods is indeed due

to this approximation. For the finite field FSMRCCSD results the energy calculations

have been done with external electric field 0.000 and ±0.001 atomic units respectively.

3.4.1 Ionized states

Some radicals can represented by ionized states of corresponding anions. We

discuss the results of some of these radicals here. If the RHF of the closed shell an-

ion is considered as vacuum, the model space configuration of the radicals belongs to

(0, 1)-sector of the FS. In particular, we present the dipole moment results for hydroxy,

hydroperoxy and formyloxyl radicals. The geometries used been used for all the calcula-

tions and are provided in the Appendix. The SCF calculations were done using HONDO.
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Hydroxy radical

Table 3.1 gives the dipole moments for the 2Π states of hydroxy radical. The

cc-pVDZ basis set [25] has been used. The RHF of hydroxide anion is the choice of

vacuum. The HOMO has two-fold degeneracy. Removal of an electron from one of

these HOMOs leads to degenerate doublet (2Π) state of hydroxy radical. We also report

the results obtained using unrelaxed EOMCC [26] and Full Configuration Interaction

(FCI) [27] method. It is seen that results are in good agreement with unrelaxed EOMCC

method.

Table 3.1: Dipole moment of hydroxy radical

CVA-FSMRCCSD EOMCC(Unrelaxed)a FCIb
0.634 0.639 0.663

a See Ref. [26]
b See Kállay et. al. [27].
All results are in atomic units.

Hydroperoxy radical

Dipole moment calculations for hydroperoxy radical were done using the double

zeta basis set of Huzinaga Dunning [28] with a set of uncontracted polarized functions.

We start with the RHF of hydroperoxide anion as vacuum. The electronic configuration

of RHF of hydroperoxide anion is

[core], 3a2
1, 4a

2
1, 5a

2
1, 1a

2
2, 6a

2
1, 7a

2
1, 2a

2
2

Removal of an electron from one of the last two occupied orbitals results in

near-degenerate states (2A2 and 2A1) of hydroperoxy radicals. The dipole moments of

the radical along two orthogonal directions (y and x) have been presented in Table 3.2.
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Table 3.2: Dipole moment of hydroperoxy radical

Direction State CVA-FSMRCCSD FF-FSMRCCSD
Y 2A1 -0.676 -0.700

2A2 -0.669 -0.699
X 2A1 -0.367 -0.418

2A2 -0.557 -0.597
All results are in atomic units.

We also report the FF-FSMRCCSD calculations for the system. The orbital

relaxation is seen to increase the magnitude of dipole moment slightly as seen from the

analytical and FF results. Along both the orthogonal directions, the difference between

the dipole moments of the reported states is, however, underestimated by FF method

when compared with the corresponding results obtained by CVA-FSMRCCSD.

Formyloxyl radical

Table 3.3 gives the dipole moments for the first two low-lying near-degenerate

states of formyloxyl radical.

Table 3.3: Dipole moment of formyloxyl radical

State CVA-FSMRCCSD EOMCCa FF-FSMRCCSD
2B2 0.910 1.004 1.000
2A1 0.786 0.865
a See Stanton and Gauss [24].
All results are in atomic units.

We start with the RHF of formate anion as vacuum. Double zeta basis set

of Huzinaga Dunning [28] with a set of uncontracted polarized functions was used for

the calculations. Removal of an electron from the formate anion results in formyloxyl
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radical, the near-degenerate low-lying states of which, have the electronic configurations

[core], 3a2
1, 2b

2
2, 4a

2
1, 5a

2
1, 3b

2
2, 1b

2
1, 1a

2
2, 6a

2
1, 4b

1
2

and [core], 3a2
1, 2b

2
2, 4a

2
1, 5a

2
1, 3b

2
2, 1b

2
1, 1a

2
2, 6a

1
1, 4b

2
2

The dipole moments along the H-C bond axis for these states, denoted by 2B2

and 2A1 have been reported. The EOMCC result [24] for the ground state has also been

reported. We also present the FF-FSMRCCSD results for both the states. As in case of

hydroperoxy radicals, the orbital relaxation is seen to increase the dipole moment values

for both the states. The difference in the dipole moments of the two states is, however,

almost same in FF as well as analytical methods. radical, orbital relaxation effects are

found to be very important in this case also, which is evident from the difference between

the ground state dipole moment values obtained from CVA-FSMRCCSD and EOMCC

respectively.

3.4.2 Electron-attached states

We now consider some radicals which can be represented as electron attached

states of corresponding cations. The model space configurations of a radical belonging

to this class corresponds to (1, 0)-sector of the FS with the RHF configurations of the

corresponding cation as vacuum. We present the dipole moments for monoradicals of

carbon and silicon (CH and SiH) and some oxides of nitrogen (NO and NO2).

Carbon monohydride and Silicon monohydride radicals

Table 3.4 gives the dipole moments for CH and SiH radicals. Sadlej basis set op-

timized for properties [30] has been used for these molecules with [5S 3P 2D] functions

on carbon, [7S 5P 2D] functions on silicon and [3S 2P] functions on hydrogen.
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Table 3.4: Dipole moments of carbon and silicon monohydrides

Molecule CVA-FSMRCCSD FF-FSMRCC UGA-CCSDa Expt.b
CH 0.543 0.520 0.535 0.574

±0.023
SiH 0.063 0.046 0.037

a See [29].
b Quoted in [31].
All results are in atomic units.

Both these radicals can be represented as electron attached states of the corre-

sponding cations, namely CH+ and SiH+ respectively. The RHF configuration of these

cations are chosen as vacua for the corresponding radicals. The two fold degenerate π

LUMOs are chosen to be active in case of CH+ and SiH+. The equilibrium geometries

have been used for both these systems. For CH radical, the equilibrium bond distance

between carbon and hydrogen is 2.11648a0 whereas, the equilibrium bond distance be-

tween silicon and hydrogen in SiH radical is 2.84a0. The dipole moments along the

directions of internuclear axes have been reported. We compare our results with FF-

FSMRCCSD response and UGA-CCSD [31]. We also present the experimental results

[31] for CH radical. Our method is seen to produce result closer to the experimental re-

sult in case of CH radical. In case of SiH, the orbital relaxation seems to be very crucial

as seen from large deviation of CVA-FSMRCCSD results from the other two methods.

Nitric oxide and nitrogen dioxide

Table 3.5 gives the dipole moments for NO and NO2 radicals. Sadlej basis set

[30] has been used for these molecules with [5S 3P 2D] functions on nitrogen as well as

on oxygen. These oxides of nitrogen can also be represented as electron attached states of

the corresponding cations, namely NO+ and NO+
2 respectively. The RHF configuration

of these cations are chosen as vacua for the corresponding radicals.
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Table 3.5: Dipole moments of oxides of nitrogen

Molecule State CVA-FSMRCCSD FF-FSMRCCSD
NO (2Π) -0.073 -0.041

(2Σ) 0.674 0.698

NO2 (2A1) 0.141 0.176
All results are in atomic units.

For NO+, the σ orbital in the virtual space is also comparable in energy with

the doubly degenerate π LUMOs. We therefore choose these three orbitals of NO+ as

active orbitals. Addition of electron in one of the active orbitals results in the formation

of the corresponding radicals. For both these states, we have reported the dipole moment

along the direction of internuclear axis. We have used the ground state geometry of the

molecule with the internuclear distance between nitrogen and oxygen 2.17464a0. The

dipole moment is seen to change the direction as one goes from the ground state 2Π to

2Σ state. However, the effect of orbital relaxation is unidirectional in both the states

due to which, the dipole moment results from the two methods differ significantly as

compared to the excited state results.

For NO2, we have used the ground state geometry as quoted by Hayes [32]. We

start with the RHF of NO+
2 as vacuum. NO+

2 has LUMO with A1 symmetry. Addition

of a electron in this orbital gives the ground state of nitrogen dioxide radical which is the

doublet A1 state. We compare our analytical result with FF-FSMRCCSD results. In this

case also, orbital relaxation is observed to increase the dipole moment value.

3.5 Conclusion

In this chapter, we have presented an implementation of CVA-FSMRCCSD

method by taking the examples of open-shell radicals, which can be described by (0, 1)
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and (1, 0) Fock-space sectors. The method involves two sets of amplitudes, one nor-

mal Fock-space amplitudes and the other amplitudes of Λ-operator, having a structure

conjugate to the Fock-space cluster operators. We observe that the method provides an

efficient tool to obtain the first order properties without the cumbersome solution of the

derivative cluster amplitudes. The orbital relaxation, however, seems to be important

from the fact, that the analytical dipole moment results for all the systems studied in this

chapter are found to differ significantly from the corresponding FF results.
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Chapter 4

————————————————————

Constrained variational response to FSMRCC

one valence problems: Second order properties

————————————————————

4.1 Introduction

In the previous chapter, we discussed the CVA-FSMRCC formulation for obtain-

ing first order energy derivatives for one-valence problems. The efficiency of the method

is obtaining first order energy derivatives without the cumbersome evaluation of the first

order derivatives of the cluster amplitudes was verified from the dipole moment results

of various doublet radicals presented in the chapter. In continuation with the above men-

tioned work, we present in this chapter, extension of the one-valence CVA-FSMRCC

anasatz for obtaining second order analytical energy derivatives. Recently, there also

have been developments in other CC based formulations [1, 2] for obtaining higher order

properties.

Although, the formulation of CVA-FSMRCC was presented earlier by Pal and
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co-workers [3], it took long time since then, for the computational developments. In

FSMRCC framework, no computational developments in higher order analytical energy

derivatives have been reported. In this chapter, we present the first applications in sec-

ond order analytical properties using constrained variational response of FSMRCCSD

anasatz. We have organized the chapter as follows. We first present the algebra for

obtaining Lagrangian for second order energy derivatives in the next section. The sim-

plifications in the Lagrangian by application of (2n + 1) and (2n + 2) rules [4, 5] will

also be presented. We present analytical results for static polarizabilities of some doublet

radicals as pilot applications of our computational developments.

4.2 CVA-FSMRCC method for the second order properties

In continuation with the theory discussed in Chapter 3, we now proceed for ob-

taining the Lagrangian for the second order energy derivatives. We write the algebra for

(0, 1) sector of FS. The expressions for (1, 0) sector can be trivially obtained by inter-

changing the indices of holes and particles.

We start with the Lagrangian = defined in Eq. (3.7). As mentioned in the pre-

vious chapter, the quantities Υ = {Heff, C, C̃, E, Ω, Λ} become perturbation dependent

along with = and may be expressed as Taylor series of the external field g. Differentiat-

ing Eq. (3.7) twice with respect to g, we obtain the Lagrangian for second order energy
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derivative for specific root of the effective Hamiltonian.

=(2) =
(
C̃(0,1)(2)H

(0,1)(0)
eff C(0,1)(0)

)
µµ

+
(
C̃(0,1)(1)H

(0,1)(1)
eff C(0,1)(0)

)
µµ

+2
(
C̃(0,1)(1)H

(0,1)(0)
eff C(0,1)(1)

)
µµ

+
(
C̃(0,1)(0)H

(0,1)(2)
eff C(0,1)(0)

)
µµ

+
(
C̃(0,1)(0)H

(0,1)(1)
eff C(0,1)(1)

)
µµ

+
(
C̃(0,1)(0)H

(0,1)
eff

(0)
C(0,1)(2)

)
µµ

+P (0,1)Λ(0,1)(2)[H(0)Ω(0) − Ω(0)H
(0,1)(0)
eff ]P (0,1)

+P (0,1)Λ(0,1)(1)[H(1)Ω(0) + H(0)Ω(1) − Ω(0)H
(0,1)(1)
eff − Ω(1)H

(0,1)(0)
eff ]P (0,1)

+P (0,1)Λ(0,1)(0)[H(2)Ω(0) + H(1)Ω(1) + H(0)Ω(2)]P (0,1)

−P (0,1)Λ(0,1)(0)[Ω(0)H
(0,1)(2)
eff + Ω(1)H

(0,1)(1)
eff + Ω(2)H

(0,1)(0)
eff ]P (0,1)

+P (0,0)Λ(0,0)(2)[H(0)Ω(0)]P (0,0) + P (0,0)Λ(0,0)(1)[H(1)Ω(0) + H(0)Ω(1)]P (0,0)

+P (0,0)Λ(0,0)(0)[H(2)Ω(0) + H(1)Ω(1) + H(0)Ω(2)]P (0,0)

−E(0)
µ

∑

ij

(
C̃

(0,1)(2)
µi C

(0,1)(0)
jµ + 2C̃

(0,1)(1)
µi C

(0,1)(1)
jµ + C̃

(0,1)(0)
µi C

(0,1)(2)
jµ

)

−E(1)
µ

∑

ij

(
C̃

(0,1)(1)
µi C

(0,1)(0)
jµ + C̃

(0,1)(0)
µi C

(0,1)(1)
jµ

)

−E(2)
µ

∑

ij

(
C̃

(0,1)(0)
µi C

(0,1)(0)
jµ − 1

)
(4.1)

Following Shamasundar et. al. [3], some terms in Eq. (4.1) mutually cancel

whereas several others vanish because of (2n + 1) and (2n + 2) rules [4]. If there is no

operator form for H2, the Eq. (4.1) simplifies after above cancellations to

=(2)
opt =

(
C̃(0,1)(0)H

(0,1)(2)
eff Ω(1)

C(0,1)(0)
)

µµ

+P (0,1)Λ(0,1)(0)[H(2)Ω(0) + H(1)Ω(1) − (Ω(0)H
(0,1)
eff )

(2)

Ω(1) ]P
(0,1)

+P (0,0)Λ(0,0)(0)[H(1)Ω(1) + H(0)Ω
(2)

Ω(1) ]P
(0,0)

+2

(∑

ij

C̃
(0,1)(1)
µi H

(0,1)(0)
eff C

(0,1)(1)
jµ − E(0)

µ

∑

i

C̃
(0,1)(1)
µi C

(0,1)(1)
iµ

)
(4.2)

‘ The subscripts Ω(0) and Ω(1) indicate that, the the corresponding terms are

formed using up to zeroth and first derivatives of the cluster amplitudes respectively.
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The second order properties can thus be obtained only with the knowledge of cluster

amplitudes, eigen vectors and their first derivatives with respect to field and a additional

set of perturbation independent vectors, i.e. the Λ-vectors.

Due to single-root nature of the CVA method, one has to obtain the Λ amplitudes

separately for every state unlike the non-variational response of FSMRCC [6], which

has has a multiple-root structure. However, the expensive evaluation of wave-function

derivatives for each mode of perturbation is avoided in CVA-FSMRCC. This feature be-

comes more prominent while obtaining higher order properties like polarizability. Also,

the single-root feature makes CVA more attractive for the cases like curve-crossing stud-

ies of excited states, etc. than the non-variational response method. may be noted that

for one-valence problem, FSMRCC method is equivalent to EOM-CC[7, 8]. However,

developments in higher order linear response of EOM-CC have yet not been reported.

The computational strategies used for obtaining first order energy derivatives

are transparently extended in case of second order derivatives. An additional step of

evaluation of T (0,0) derivative amplitudes and storage of the resulting intermediates with

Hamiltonian gets introduced this case.

4.3 Results and Discussion

In this section, we present static polarizabilities OH, OOH and HCOO radi-

cals, obtained analytically using CVA-FSMRCCSD. We also present analytical results

for static polarizabilities of of CH, SiH and NO radicals using CVA-FSMRCCSD. We

compare the results with ones obtained using different theoretical methods and exper-

imental results. Wherever finite field FSMRCC (both energy based and dipole based)

results are reported, we have done the calculations using external electric field 0.000 and

±0.001 atomic units in the direction mentioned.
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4.3.1 Ionized states

The OH, HCOO and OOH radicals can be represented as ionized states of the

corresponding anions. We have used cc-pVDZ basis set [9] for OH radical. For HCOO

and OOH radicals we have used Huzinaga-Dunning double zeta basis set augmented with

a set of polarized functions. The exponents for these uncontracted polarized functions are

0.686 for hydrogen (P), 0.654 for carbon (D) and 1.211 for oxygen (D). The geometries

for these molecules are mentioned in the Appendix. The polarizability components of

OH, HCOO and OOH are given in Table 4.1. For polarizabilities, no results are available

for these systems. Hence, we compare our results with energy based and dipole based

FF results using FSMRCC.

For OH radical, we start with RHF of hydroxide anion as vacuum and choose the

degenerate π HOMOs as active orbitals. Removal of electron from these active orbitals

results in doublet (2Π) state of OH radical. It is seen from the polarizability results that

the orbital relaxation effects in OH radical are also marginal.

Table 4.1: Polarizabilities of OH, HCOO and OOH radicals

Molecule State CVA-FSMRCCSD FF-FSMRCCSD FF-FSMRCCSD
(Analytical) (energy) (dipole)

OH 2Π αzz 6.61 6.0 6.1

HCOO 2B2 αzz 16.53 15.1 15.8
2A2 αzz 16.68 15.2 16.0

OOH 2A2 αxx 15.01 13.9 14.6
αyy 7.34 6.8 7.1

2A1 αxx 12.52 11.9 12.3
αyy 7.77 7.4 7.5

All results are in atomic units.

Removal of electron from RHF configuration of formate anion results in

HCOO radical in its ground state (2B2) which strongly interacts with the closely lying
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excited state (2A1). The polarizability results for these states along the H-C direction are

compared with the finite field method. The orbital relaxation effects are more prominent

in this case. However, the trend in the two states is unaffected by the relaxation effects.

For polarizability calculations of OOH radical, we start with the RHF of hy-

droperoxide anion as vacuum. Removal of an electron from one of the last two occupied

orbitals results in near-degenerate states (2A2 and 2A1) of OOH radical. The polariz-

abilities along orthogonal directions (x and y) for these states are reported in table. The

orbital relaxation effects are important in this case as observed from the deviations of

the analytical results from the corresponding finite field results. However, the difference

between the polarizabilities of ground and excited states in both the directions is only

marginally altered by orbital relaxation.

4.3.2 Electron attached states

We now discuss the analytical results for polarizabilities for CH, SiH and NO

radicals. The geometries, basis sets and the choice of vacuum and active orbitals in all

these radicals are as mentioned in the earlier chapter.

Table 4.2: Polarizabilities of CH and SiH radicals along molecular axis.

Molecule (State) CVA-FSMRCC UGA-CCSDa Finite Field Finite Field
(Analytical) (Finite Field) (energy) (dipole)

CH (2Π) 15.86 16.22 16.2 15.9
SiH(2Π) 37.44 38.81 38.3 38.0

aSee [10]
All results are in atomic units.
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CH and SiH radicals

Table 4.2 gives polarizabilities of CH and SiH radicals along the direction of

molecular axis. We also present the (finite field) UGA-CCSD [10] polarizabilities of

these molecules for comparison. We have also presented energy based and dipole mo-

ment based FF-FSMRCCSD calculations. The orbital relaxation seems to slightly in-

crease the polarizability values as seen from the result. The effect is however, only

marginal.

NO radical

Polarizabilities of NO are given in Table 4.3. We have reported the results for

ground state (2Π) and first excited state (2Σ). The calculations have been done keeping

the molecular axis along z direction. We compare the ground state polarizability com-

ponents with CCSD and CCSD(T) results [11] obtained using finite field method at the

same geometry and basis set. We also present the experimental result [12, 13] for mean

polarizability of the ground state. It may be noted that that application of external elec-

tric field in the direction perpendicular to N-O axis, results in loss of degeneracy of the

2Π LUMO of NO as was also observed by Medved et. al. [11] in their calculations.

This is what one can infer from the theoretical results reported in the table. The orbital

relaxation is only marginal in this case as seen from the CCSD and CCSD(T) results.

No results for excited state (2Σ) of NO are available for comparison. We present

energy based and dipole moment based FF-FSMRCCSD calculations. We see that for

excited state also, the analytical results agree with the trend observed in finite field meth-

ods.

95



Table 4.3: Polarizabilities of NO radical

State Method αzz αxx,αyy < α > ∆α
2Π CVA-FSMRCC 14.72 9.96 11.19 5.29

8.90
CCSDa 15.29 10.08 11.49 5.70

9.10
CCSD(T)a 15.34 10.21 11.59 5.62

9.22
Experimentalb 11.518

±0.013

2Σ CVA-FSMRCC 243.99 260.58 254.05 -16.59
FF(energy) 240.9 258.2 252.4 -17.3
FF(dipole) 242.2 258.4 253.0 -16.2

a Obtained using finite field method. See [11].
b See [12, 13].
All results are in atomic units.

4.4 Conclusion

In this article, we have presented first implementation of CVA-FSMRCC method

for obtaining analytically, polarizability of open-shell doublet radicals, which can be

described by (1, 0) and (0, 1) Fock space sectors. The method involves three sets of

amplitudes, namely, the normal Fock-space amplitudes, their first derivatives and the

amplitudes of the perturbation independent Λ-operator, having a structure conjugate to

the Fock-space cluster operators. We observe that the method provides an efficient tool

to obtain higher order properties with the knowledge of lower order cluster amplitudes,

even after neglecting contribution of the orbital relaxation.
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Chapter 5

————————————————————

Excited states properties: FSMRCC linear

response method with constrained variational

approach

————————————————————

5.1 Introduction

Excited states of molecules are of special interest to theoretical as well as ex-

perimental chemists. The molecular properties like dipole moments, polarizabilities in

electronically excited (EE) states have caught special attention due to their importance

in the field of molecular spectroscopy. However, the calculation of electronically ex-

cited states poses a challenge due to the near-importance of different configurations in

these states. This near degeneracy of configurations in excited states demands the use of

MR description in the wavefunction. Often the low-lying excited states of closed-shell
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system result from pre-dominance of single electron excitation from the occupied or-

bitals of RHF of ground state of the closed-shell system to the virtual orbitals. In terms

of FSMRCC [1–8], this MR description of model space belongs to (1, 1) sector of the

FS. By definition, this is an IMS. The basic difference between IMS and CMS is the

incompatibility of intermediate normalization [2–5] with the valence universality of the

wave-operator Ω in case of IMS. However, the one hole-one particle FS problem belongs

to a special type of IMS. It is complete within the active-hole and active-orbital valence

spaces; and is referred to as QMS [9]. It was shown by Mukherjee [2] and Pal et. al. [5]

that, although the intermediate normalization is not valid in (1, 1) FS problem, there is a

CMS-like simplification.

Apart from this, methods like EOM-CC [10–13], SAC-CI [14–19], MRCI [20–

23], MR-MBPT [24–27] have also been used recently for excited state electronic struc-

ture calculations. It may however, be noted that unlike one-valence cases, the equiva-

lence between EOMCC and FSMRCC is no more valid for two-valence problems like

the cases of one hole-one particle FS problem. Moreover, while size-extensivity is main-

tained in FSMRCC, the same is not true for EOM-CC method as discussed by Bartlett

[28] However, recently the similarity transformed (ST) EOM-CC method of Nooijen and

co-workers [29, 30] is found to be size-extensive.

In this chapter, we present our computational development of CVA-FSMRCCSD

method for excited state properties and present the preliminary implementation of the

method for obtaining low-lying excited states of some closed-shell systems. In partic-

ular, we present our CVA-FSMRCCSD calculations for obtaining dipole moments and

polarizabilities of water and carbon monohydride cation in their low-lying triplet states.

Although the applications are preliminary, we would like to extend the method for more

difficult cases like excited singlet states of molecules. Before presenting our results,

we briefly review the formulation of effective Hamiltonian and partial decoupling of the
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triplet states from the singlet excited states in the next section. This will be followed by

CVA formulation for excited states. At last, we discuss the results of our pilot applica-

tions using CVA-FSMRCCSD.

5.2 Effective Hamiltonian for excited states

The FSMRCC theory is already discussed in Chapter 1. In this section, we rewrite

the algebra in the context of (1, 1) sector of FS and discuss the details from the CVA

formulation point of view. The universal wave operator for EE problem is

Ω = {eT (0,0)

eT (0,1)

eT (1,0)

eT (1,1)} (5.1)

Under SD approximation, the T operator of every sector will contain only one-

body and two-body operators. Following Mukherjee [2, 31], Sinha et. al. [3] and Pal et.

al. [4] the above valence universal cluster operator satisfies Bloch equation.

HΩP k,l = ΩH̃k,l
eff P k,l; ∀k, l = 0, 1 (5.2)

where, H̃
(1,1)
eff includes contributions from the lower sector effective Hamiltonians in ad-

dition to the (1, 1) sector part, i.e. H
(1,1)
eff . For example, if µ and ν are indices for active

holes and α and β are active particle indices, then the matrix elements of H̃
(1,1)
eff can be

written as

(H̃eff)
(1,1)
µα,νβ = (Heff)

(1,1)
µα,νβ + (Heff)

(0,1)
µ,ν δα,β + (Heff)

(1,0)
α,β δµ,ν + H

(0,0)
eff (5.3)

The cluster amplitudes and the effective Hamiltonian for the EE problem are

obtained by solving following projected Bloch equations.

P (k,l)HΩ − ΩH̃effP
(k,l) = 0; ∀k, l = 0, 1 (5.4)

Q(k,l)HΩ − ΩH̃effP
(k,l) = 0; ∀k, l = 0, 1 (5.5)
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The normal ordering in the anasatz leads to SEC resulting in decoupling of lower

valence sector equations from the higher ones. It was shown by Mukherjee [2] that for

the above IMS, the linked nature of effective Hamiltonian and the cluster operators can

be ensured if one abandons the requirement of intermediate normalization, i.e.

P (1,1)ΩP (1,1) 6= P (1,1) (5.6)

Applying of Wick’s theorem [32–34] on Eq. (5.4) and simplifying, one can write

P (k,1)ĤΩP (k,l) = P (k,l)(
̂

Ω(k,l)H̃
(k,l)
eff P (k,l) + P (k,l)[Ω̃(k,l) − ̂Ω(k,l)]HeffP

(k,l) (5.7)

where the cap over two operators indicates contraction. In the above equation, the Ω̃(k,l)

subsumes the lower valence cluster operators. For CMS, there are vanishing P − P

projector for the composites ̂Ω(k,l)H̃eff or ̂Ω(k,l)Heff. For (1, 1) sector problem, the only

non-vanishing terms could appear only through the product of T
(1,1)
1 and T

(0,0)
1 operators.

However, since T
(1,1)
1 contains only hole-particle destruction operators while T

(0,0)
1 con-

tains only hole-particle creation operators, due to which, no connected component is pos-

sible using these operators. Thus, no non-vanishing P − P projector as discussed above

is possible in this case leading to simplification similar to the case, where intermediate

normalization is valid (like in CMS). We can thus, construct the effective Hamiltonian

over the model space as

P (1,1)H̃
(1,1)
eff P (1,1) = P (1,1)HΩP (1,1) (5.8)

The equations of all the cluster amplitudes (T (1,1)
2 and one and two-body cluster

operators of lower valence sectors in the present case) as well as the effective Hamilto-

nian are independent of T
(1,1)
1 . Thus, although the FSMRCCSD wavefunction consists

of T
(1,1)
1 amplitudes, these are not at all required for evaluation of excitation energies and

derivatives. Thus, under SD approximation, we have effectively, only two-body clus-

ter amplitudes of (1, 1) sector. Therefore, we denote the (1, 1) sector cluster operator

101



as T (1,1) rather than T
(1,1)
2 for convenience. Similar strategy will also be used for the

Lagrange multipliers of this sector. The antisymmetrized H
(1,1)
eff and T (1,1) can be explic-

itly expressed in terms of non-antisymmetrised parts. These lead to direct and exchange

type H
(1,1)
eff as well as T (1,1). We indicate them as (Hdir

eff )(1,1), (Hexc
eff )(1,1), T dir(1,1) and

T exc(1,1) respectively. Obviously, the equations for T (1,1); i.e. Q(1,1)HΩ − ΩH̃effP
(1,1)

will also be of direct and exchange types respectively. If {i, j} are hole indices and

{a, b} are particle indices, the matrix element of a general direct type of skeleton has

form < i(1)b(2)|(Z)|a(1)j(2) > whereas the one for the exchange type will have form

< i(1)b(2)|(Z)|j(1)a(2) >, where, (Z) may be H
(1,1)
eff or T (1,1) or skeleton of projected

Bloch equations. The equations for (Hexc
eff )(1,1) and T exc(1,1) are completely decoupled

from the corresponding equations in the direct block. The direct block, however, de-

pends on the effective Hamiltonian and the cluster amplitudes of exchange type. Thus in

addition to SEC, there is further decoupling of exchange block from the direct one. After

spin adaptation, effective Hamiltonians for singlet and triplet excited states are obtained,

the matrix elements of which, can be written as

(Hsinglet
eff )

(1,1)
µα,νβ = (Hexc

eff )
(1,1)
µα,νβ − 2(Hdir

eff )
(1,1)
µα,νβ

+(Heff)
(0,1)
µ,ν δα,β + (Heff)

(1,0)
α,β δµ,ν + H

(0,0)
eff (5.9)

and

(H triplet
eff )

(1,1)
µα,νβ = (Hexc

eff )
(1,1)
µα,νβ

+(Heff)
(0,1)
µ,ν δα,β + (Heff)

(1,0)
α,β δµ,ν + H

(0,0)
eff (5.10)

where, the indices {µ, ν, α, β} are as defined in Eq. (5.3)

The triplet excited states can thus be obtained by simply solving upto the ex-

change type Bloch equations. The singlet states calculation is however, relatively more

complicated as it requires the knowledge of direct as well as exchange parts of the effec-

tive Hamiltonian and cluster amplitudes. If the H
(0,0)
eff contribution is dropped, one can
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directly obtain excitation energies of the corresponding states.

5.3 CVA-FSMRCCSD anasatz for excited states

The construction of Lagrangian for electronic structure calculation of specific

excited state depends on the spin multiplicity of the state. As seen in the previous section,

the triplet excited states are completely independent of direct type of terms. Energy of a

m-th excited singlet state of a system is given by

Esinglet
m =

∑

ij

C̃
singlet(1,1)
mi (Hsinglet

eff )
(1,1)
ij C

singlet(1,1)
jm (5.11)

We construct Lagrangian for this state as

=singlet =
∑

ij

C̃
singlet(1,1)
mi (Hsinglet

eff )
(1,1)
ij C

singlet(1,1)
jm

+P (1,1)Λdir(1,1)[HΩ − ΩH
singlet(1,1)
eff ]dirP (1,1)

+P (1,1)Λexc(1,1)[HΩ − ΩH
singlet(1,1)
eff ]excP (1,1)

+P (0,1)Λ(0,1)[HΩ − ΩH
(0,1)
eff ]P (0,1)

+P (1,0)Λ(1,0)[HΩ − ΩH
(1,0)
eff ]P (1,0)

+P (0,0)Λ(0,0)[HΩ − ΩH
(0,0)
eff ]P (0,0)

−Esinglet
m

(∑

ij

C̃
singlet(1,1)
mi C

singlet(1,1)
jm − 1

)
(5.12)

The Λ vectors and cluster amplitudes are obtained by making the Lagrangian sta-

tionary with respect to cluster amplitudes and Λ vectors respectively. The eigen vectors

are also obtained variationally. The cluster amplitudes are thus completely decoupled

from the Λ vectors. As discussed in the earlier chapters, there is a reverse SEC de-

coupling scheme for the Λ vectors of various sector. Moreover, the decoupling scheme

between direct and exchange type Λ(1,1) vectors is exactly in reverse order of T (1,1) am-

plitudes. Thus after solving for cluster amplitudes up to T dir(1,1), one has to solve for
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Λdir(1,1), then Λexc(1,1) and so on up to vacuum sector, i.e. Λ(0,0). The singlet excited

response properties are obtained as are in the case of doublet radicals, after solving

for derivatives of cluster amplitudes and/or Λ vectors required after the application of

(2n + 1) and (2n + 2) rules in the derivative Lagrangian expression.

For triplet state calculations, one has to construct Lagrangian using triplet state

effective Hamiltonian. Since, the triplet states are independent of direct type of am-

plitudes, the Lagrangian for a specific triplet state is much simpler as it contains no

contribution from the direct type of equations.

Triplet states are obtained by diagonalization of triplet state effective Hamil-

tonian. An m-th triplet excited state is given by

Etriplet
m =

∑

ij

C̃
triplet(1,1)
mi (H triplet

eff )
(1,1)
ij C

triplet(1,1)
jm (5.13)

Like for a specific singlet state, we can construct Lagrangian for the above triplet

state as follows.

=triplet =
∑

ij

C̃
triplet(1,1)
mi (H triplet

eff )
(1,1)
ij C

triplet(1,1)
jm

+P (1,1)Λexc(1,1)[HΩ − ΩH
triplet(1,1)
eff ]excP (1,1)

+P (0,1)Λ(0,1)[HΩ − ΩH
(0,1)
eff ]P (0,1)

+P (1,0)Λ(1,0)[HΩ − ΩH
(1,0)
eff ]P (1,0)

+P (0,0)Λ(0,0)[HΩ − ΩH
(0,0)
eff ]P (0,0)

−Etriplet
m

(∑

ij

C̃
triplet(1,1)
mi C

triplet(1,1)
jm − 1

)
(5.14)

The common parts Eq. (5.12) and Eq. (5.14) apparantly similar. Although, both

these contain the Λexc(1,1) vectors, they are different for singlet and triplet states; firstly,

due to the different spin multiplicities of effective Hamiltonian and secondly, due to cou-

pling of the Λexc(1,1) amplitudes with Λdir(1,1) (and indirectly with T dir(1,1) amplitudes)

in Eq. (5.12), which is unlike (5.14). Analogously, the lower sector Λ amplitudes are
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also different for singlet and triplet states and are also different from the corresponding

amplitudes for ionized or electron-attached states and the ground state. It is however,

interesting to notice that, the homogeneous parts of the linear equations for Λ vectors are

same for a given sector, irrespective of the desired state. The difference comes only in

the inhomogeneous parts of the equations where, the coupling terms from the higher sec-

tors appear. The Λ equations of various sectors for triplet-state calculations are relatively

simpler than the ones for the corresponding singlet states. Hence, taking into account, the

computational considerations, we have developed the code for computing triplet excited

states of molecules with closed-shell ground state. We therefore, write the simplified

expressions for first and second order properties (after application of the (2n + 1) and

(2n + 2) rules) for triplet states only.

=triplet(1)
opt =

(
C̃triplet(1,1)(0)H

triplet(1,1)(1)
eff Ω(0)

Ctriplet(1,1)(0)
)

m,m

+P (1,1)Λexc(1,1)[H(1)Ω − ΩH
triplet(1,1)(1)
eff Ω(0)

]excP (1,1)

+P (0,1)Λ(0,1)[H(1)Ω − ΩH
(0,1)(1)
eff Ω(0)

]P (0,1)

+P (1,0)Λ(1,0)[H(1)Ω − ΩH
(1,0)(1)
eff Ω(0)

]P (1,0)

+P (0,0)Λ(0,0)H(1)ΩP (0,0) (5.15)

=triplet(2)
opt =

(
C̃triplet(1,1)(0)H

triplet(1,1)(2)
eff Ω(1)

Ctriplet(1,1)(0)
)

µµ

+P (1,1)Λexc(1,1)(0)[H(2)Ω(0) + H(1)Ω(1) − (Ω(0)H
triplet(1,1)
eff )

(2)

Ω(1) ]
excP (1,1)

+P (0,1)Λ(0,1)(0)[H(2)Ω(0) + H(1)Ω(1) − (Ω(0)H
(0,1)
eff )

(2)

Ω(1) ]P
(0,1)

+P (1,0)Λ(1,0)(0)[H(2)Ω(0) + H(1)Ω(1) − (Ω(0)H
(1,0)
eff )

(2)

Ω(1) ]P
(1,0)

+P (0,0)Λ(0,0)(0)[H(1)Ω(1) + H(0)Ω
(2)

Ω(1) ]P
(0,0)

+2
∑

ij

C̃
triplet(1,1)(1)
mi H

triplet(1,1)(0)
eff C

triplet(1,1)(1)
jm

−2E(0)
m

∑

i

C̃
triplet(1,1)(1)
mi C

triplet(1,1)(1)
im (5.16)
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The subscripts Ω(0) and Ω(1) indicate that the the corresponding terms are formed

using up to zeroth and first order derivatives of the cluster amplitudes respectively. The

first order properties can thus be obtained without the cumbersome solution of the deriva-

tive cluster amplitudes for different modes of perturbation. Calculation of second order

properties also becomes cost effective as these can be obtained only with the knowledge

of cluster amplitudes, eigen vectors and their first derivatives with respect to field and a

additional set of perturbation independent vectors, i.e. the Λ-vectors.

5.4 Results and Discussion

We now present some preliminary applications of CVA-FSMRCCSD method for

excited state properties. In particular, we present the results for the lowest excited triplet

states of water and CH+. For finite field calculations, (denoted by FF-FSMRCC in the

corresponding tables), we have performed the calculations for ±0.001 a.u. as the val-

ues for external fields. Finite field polarizabilities have been calculated as first order

numerical derivatives of analytical dipole moments evaluated at the above field values.

5.4.1 Excited state properties of water

Low-lying excited states of water exhibit strong MR character. Hence, we have

chosen this system for testing the efficiency of CVA-FSMRCCSD method. To test the

efficacy of the method, we report the dipole moment and polarizability results for low-

lying triplet states of water evaluated at ground state geometry. We also report the results

for 3B1 state obtained using the 3B1 state geometry optimized by Urban and Sadlej [35]

In particular, we report the results for the components along the C2v axis. Calculations

for both the sets have been performed using Sadlej basis set.
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Excited state properties at ground state geometry

Analytical dipole moments and polarizabilities of water along the C2v axis for

the four lowest excited triplet states are reported in Table 5.1. Sadlej basis set was used

for the calculation. The RHF ground state electronic configuration of water is

1a2
12a

2
11b

2
23a

2
11b

2
13sa

0
13pb

0
2 . . .

The orbitals 1b2
1 and 3a2

1 are the highest and second highest occupied MO which are

close-lying in energy. Similarly, the the orbitals 3sa0
1 and 3pb0

2 are the near-degenerate

LUMOs. We choose these orbitals as active. The excitations 3a1 → 3sa1, 3a1 → 3pb2,

1b1 → 3sa1 and 1b1 → 3pb2 result in the lowest triplet states of water, namely, 3A1, 3B2,
3B1 and 3A2 respectively.

Table 5.1: Dipole moments and polarizabilities of water in low-lying excited states

µz µz αzz αzz

State (CVA- (FF- (CVA- (FF-
FSMRCCSD) FSMRCCSD) FSMRCCSD) FSMRCCSD)

3A1 -0.803 -0.855 76.49 81.0
3B2 -0.727 -0.615 38.85 41.1
3B1 -0.665 -0.710 59.34 70.4
3A2 -0.562 -0.444 39.62 42.2

Ground state geometry used.
All results are in atomic units.

The negative sign in the dipole moment values for all the states indicates the

change in the orientation of the dipole moment in each state, with respect to the ground

state. The analytical results for all the states are observed to differ significantly from the

corresponding FF results. This may be due to two reasons; firstly, due to relaxation of

orbitals in presence of external perturbation, which has been neglected in the analytical

calculations and secondly due to poor description of different states at same geometry.
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However, an interesting trend is still seen in the results. For example, with respect ana-

lytical (CVA-FSMRCCSD) results for dipole moment, the dipole moment values (mag-

nitudes) are lowered for A1 and B1 states in case of FF method. On the other hand, for

the A2 and B2 states, the FF method overestimates the dipole moments when compared

with the corresponding analytical results.

The deviation of FF polarizabilities from the corresponding analytical results is,

however, only marginal except for the 3B1 state. The FF method is observed to slightly

overestimate the polarizability as compared to the corresponding analytical (CVA-FSMRCCSD)

values.

The lowest excited triplet state

The dipole moment and polarizability (C2v component) for the lowest triplet

state, i.e. the 3B1 state have been presented in Table 5.2. The optimized geometry for

3B1 state has been for this calculation. The choice of active orbitals is same as in case of

the earlier calculations. We also present the CASSCF results [35] for comparison.

Table 5.2: Excited state dipole moment and polarizability of water

State Property CVA-FSMRCCSD FF-FSMRCCSD CASSCFa

3B1 µz -0.536 -0.484 -0.416
αzz 51.05 48.0 62.4

a See [35].
All results are in atomic units.

Correlation is seen to increase the magnitude of the dipole moment. The de-

viation of FF results from the analytical results shows trend similar as observed in the

earlier calculation. The deviation is, however, less significant in this case. The effect of

geometry change with respect to the ground state can be observed from the comparison
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of the CVA-FSMRCCSD results in Table 5.2 with the corresponding values in the Ta-

ble 5.1. The dramatic reduction in the deviation of FF polarizability from the analytical

value clearly indicates the prominent relaxation in the orbitals due to geometry change.

is only marginal as compared to the correlation effect. However, the relaxation is seen to

decrease the dipole moment slightly.

5.4.2 Excited state properties of carbon monohydride cation

Table 5.3 presents excited state properties of carbon monohydride cation. In

particular, we present the analytical dipole moment and components of polarizabilities

for the triplet state formed by 1σ+ → 1π transition. The analytical as well as finite field

FSMRCC calculations were performed using Sadlej basis set. The geometry as reported

by Olsen et. al. [36] has been used for the calculation. We also present the CCSD and

Full CI results reported by Kállay and Gauss [37] for comparison.

Table 5.3: Dipole moment and polarizabilities of carbon monohydride cation in lowest
excited triplet state

State Property CVA-FSMRCCSD FF-FSMRCCSD CCSDa FCIa
(1σ+ → 1π) triplet µz 0.434 0.399

αzz 9.041 7.77 8.269 8.327
αxx = αyy 5.278 5.84 5.754 5.690

a See [37].
All results are in atomic units.

In order to obtain the desired excited state, we start with the RHF of CH+ as

vacuum and choose the HOMO (1σ+) as active hole. The two-fold degenerate LUMOs

(1π) are chosen as active particles.

The orbital relaxation is seen to decrease the dipole moment as seen from

the finite field and analytical results. The effect of orbital relaxation is, however, only
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marginal.

The polarizability along the CH bond direction is slightly overestimated by

CVA-FSMRCC as compared with the CCSD and Full CI result. The perpendicular

components of polarizability, on the other hand, is underestimated slightly by CVA-

FSMRCC. The orbital relaxation, although same, seems to be crucial in this case since,

they are seen to alter the difference between the polarizability results as compared with

the corresponding benchmark results, i.e. the Full CI.

5.5 Conclusion

In this chapter, we have presented our computational implementation of CVA-

FSMRCC theory for electronically excited states of molecules and presented preliminary

applications to obtain analytical dipole moments and polarizabilities of water and carbon

monohydride cation in their lowest triplet excited states. From comparison of the results

with the available benchmark results, it is clear that CVA-FSMRCC provides an efficient

and cost-effective tool for obtaining the response properties. The scope of the method,

however, will become broader only after further developments like extension to singlet

excited states and incorporation of orbital relaxation corrections.
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Epilogue

“It does not matter how beautiful your theory

is, it does not matter how smart you are. If

it does not agree with experiment, it’s wrong.”

. . . Richard Feynman

In his above words, Richard Feynman has summarized the neccessary criteria, a

theory must fulfil. The aim of a theoretical development should, therefore, be focused

to aquire high degree of accuracy and its general applicability to wide range of chemi-

cal phenomena observed in the universe. The present work discussed development and

applicability of a few highly accurate methods.

We presented our attempt to obtain magnetizabilities of closed shell systems us-

ing a sophisticated method like extended coupled-cluster. The extension of electric field

response to magnetic field response is non-trivial as explained in the thesis. The prelim-

inay applications in this context produced results under acceptable accuracy. However,

the applicability of the extended coupled-cluster method will broaden only after incor-

poration of gauge-invariance technique like use of gauge-including atomic orbitals, indi-

vidual gauge for localized orbitals, etc. which is a challenge in near future for theoretical

chemists, in near future.

We have also presented the computational developments for a cost-effective tech-

nique to study response properties of near-degenerate systems and presented electric

properties of doublet radicals and preliminary applications for electric field response of

closed-shell molecules in their low-lying triplet excited states. The constrained vari-

ational response in Fock-space multi-reference coupled-cluster method has enabled to

achieve the above implementations. This development has opened up a way to solve
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many incredible problems, although, computationally, the method is yet under develop-

ment. The method, however, will become more general when the rigorous computational

developments for more difficult cases like excited singlet states, double ionization, etc.

will be done. In the present form also, the theory has wide range of applicability, since,

it can be used to do magnetic response of open-shells and low-lying triplet states of

molecules. The difficult tasks like geometry optimization of these near-degenerate sys-

tems using a highly correlated method like Fock-space multi-reference coupled-cluster

method will also be possible in near future because of this development.

In short, the journey of the developments in theoretical methods goes on and

on and breaks more and more bottle-necks. One would, therefore agree with Richard

Feynman,

“There’s plenty room at the bottom” . . .
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Appendix A

————————————————————

The Geometries

————————————————————

All the geometries reported here are in atomic units.

Molecule Atom X Y Z
OH H 0.00000 0.00000 1.85104

O 0.00000 0.00000 0.00000

OOH H -1.60075 -1.66668 0.00000
O1 1.27888 -0.01807 0.00000
O2 -1.17802 0.12308 0.00000

HCOO H 0.00000 2.96725 0.00000
C 0.00000 0.88855 0.00000
O1 -1.98007 -0.42700 0.00000
O2 1.98007 -0.42700 0.00000
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