

CERTIFICATE

This is to certify that the work incorporated in the thesis entitled "Stereoselective Synthesis of Thiadiazolidine- and Thiadiazine -1, 1-dioxides and their Conversion to diamines and studies on the catalytic \boldsymbol{O}-Acylation and Nitro-Aldol Reactions" submitted by Mr. Mahesh G. Malusare was carried out by him under my supervision at the National Chemical Laboratory, Pune. Material that has been obtained from other sources is duly acknowledged in the thesis.

Dr. S. V. Pansare
Date:
Research Guide

DECLARATION

I hereby declare that the work incorporated in the thesis entitled "Stereoselective Synthesis of Thiadiazolidine- and Thiadiazine -1, 1-dioxides and their Conversion to Diamines and Studies on the Catalytic \boldsymbol{O}-Acylation and Nitro-Aldol Reactions", submitted for the degree of Doctor of Philosophy to the University of Pune, has been carried out by me at the National Chemical Laboratory, Pune under the supervision of Dr. S. V. Pansare. The work is original and has not been submitted in part or full by me for any other degree or diploma to this or any other University.

Date:

ACKNOWLEDGEMENTS

It is a great pleasure and privilege for me for being associated with Dr. S. V. Pansare, my research guide who taught me to be concise and correct in my approach from the formulation of ideas to the presentation of the result. I thank him for his excellent guidance, teaching and help during my studies.

I thank Dr. R. G. Ravi, Dr. M.G. Malusare, Dr. S. S. surange, Dr. Anbu, Dr. R.. P. Jain my seniors, who helped me a lot during my research work. I also thank Annyt Bidhan, vinod for their extremely good cooperation while working in the lab. I thank Mr. Manmohan, Mr. Murugun for their co-operation during thesis preparation. I also thank my friends Sabde, D. P, Manoj Gote for their help during my research work.

I acknowledge the staff in the NMR facility for their help, especially, Mr. A. G. Samuel, Mr. V. T. Sathe, Mr. S. K. Tiwari, Mrs. U. D. Falgune Ms. R. Bhagwat and Mr. R. P. Jain. I also thank Dr. U. R. Ramdasi from the Microanalysis Group for elemental analyses, Mrs. Santha Kumari from SIL for the mass spectra, and Dr. (Mrs.) N. V. Bhalerao and Mrs. V. K. Kale from OCS for the infrared spectra.

I take this opportunity to thank my past and present teachers for their guidance. Special thanks go to my all friends in and around NCL with whom I shared many delightful moments.

I am grateful to my family members who showed a constant support and encouragement during my studies.

Finally I acknowledge CSIR for a research fellowship and the Director, NCL for providing the necessary facilities.

List of Abbreviations:

Ac	acetyl
aq	aqueous
Bu	butyl
d.e.	diastereomeric excess
DME	1,2 -dimethoxyethane
DMF	N, N-dimethylformamide
DMSO	dimethyl sulfoxide
e.e.	enantiomeric excess
equiv.	equivalent
Et	ethyl
g	gram
h	hour
IR	infrared
LAH	lithium aluminum hydride
M	molar
M $^{+}$	molecular ion
Me	methyl
min	minute
ml	millilitre
mmol	millimole
mp	melting point
MS	mass spectrum
NMR	nuclear magnetic resonance
Ph	phenyl
pTol	p-tolyl
pTSA	p-toluene sulfonic acid
it	room temperature
THF	tetrahydrofuran
TLC	thin layer chromatography
TMS	tetramethylsilane
TMSCl	Chlorotrimethylsilane

ABSTRACT

CHAPTER 1

(A) Stereoselective Synthesis of 1,2,5-Thiadiazolidine 1, 1-dioxides and their conversion to diamines:

Thiadiazolidine 1,1-dioxides are of interest due to their numerous applications in medicinal and synthetic organic chemistry. Despite their versatility, very few methods are available for their preparation from simple precursors. Practically all of the known methods employ condensation of a vicinal diamine or amino alcohol with sulfamide. This approach is limited by the availability of the precursor diamine or amino alcohol. The objective of our study was to develop a stereoselective synthesis of 1,2,5-thiadiazolidine 1,1-dioxides and examine the possibility of their conversion to vicinal diamines.

Initial investigations were conducted on 3,4-diphenyl-1,2,5-thiadiazole 1,1-dioxide 1a and 3,4-dimethyl thiadiazole 1,1 dioxide $\mathbf{1 b}$. Addition of Grignard reagents (one to two equivalents) to a solution of $\mathbf{1}$ in THF or benzene rapidly generated the thiadiazoline 1,1-dioxides 2 ($85-99 \%$) which were pure by ${ }^{1} \mathrm{H}$ NMR (Scheme 1).

Scheme 1.

An interesting feature of the above reaction is the relatively slow addition of the second equivalent of the nucleophile. Addition of excess MeMgBr (5
equivalents, 1.5 h , rt.) to $\mathbf{1 a}$ generates a $2 / 1$ mixture of bis- and mono-addition products whereas addition of excess $i \mathrm{PrMgBr}$ gives only the monoaddition product. This is presumably due to steric factors (quaternary center adjacent to the reaction site).

Reduction of $2\left(\mathrm{NaBH}_{4} / \mathrm{EtOH}, \mathrm{rt} .2 \mathrm{~h}\right)$ produced the unsymmetrical 3,4 substituted thiadiazolidine 1,1-dioxide 3 (57-89\%) as a mixture of cis/trans isomers. The addition of hydride is governed by the size of the substituent on the adjacent carbon. The ratio of cis/trans isomers was in the range of 1.2:1 to 19:1 (Scheme 2).

Scheme 2.

Conversion of $\mathbf{3}$ to unsymmetrical vicinal diamines was studied next. Treatment of $\mathbf{3}$ with 2 N HBr in the presence of phenol generated the diamines $\mathbf{4}$ in modest yield (33-52\%) No cleavage of $\mathbf{3}$ or the N, N-dimethyl derivative of $\mathbf{3}$ is observed with excess $\mathrm{Na} /$ naphthalene or $\mathrm{Na} /$ liq. NH_{3} (Scheme 3).

Scheme 3.

The above sequence provides easy access to a variety of unsymmetrical thiadiazolidine 1,1-dioxides as well as the corresponding vicinal diamines.
(B) Stereoselective synthesis of 1,2,6-Thiadiazine 1, 1-dioxides:

The 1,2.6-thiadiazine-1,1-dioxide moiety is an important pharmacophore and derivatives of the heterocycle are of interest in biology and medicine. Very few syntheses of 1,2,6-thiaidiazine-1,1-dioxides have been reported. Practically all the methods employ the condensation of a substituted 1,3-propanediamine unit with sulfamide as the key step. Our objective was to synthesize chiral thiadiazine 1,1-dioxides and also examine their conversion to chiral 1,3-diamines.

The condensation of sulfamide with an α, β unsaturated ketones has been reported to generate 3,6-dihydro-3,5-alkyl(aryl)-(2H)-1,2,6-thiadiazine 1,1dioxides, 7. However, we have obtained the 3,4 dihydro- 3,5 -alkyl(aryl)-(2 H)-1,2,6-thiadiazine 1,1 -dioxides 8 as the major product from the condensation of sulfamide and 1,3-diphenyl-prop-2-ene-1-one or acetone (Scheme 4).

Scheme 4.

or

7a $R=P h, R^{\prime}=H$
7b $\mathrm{R}=\mathrm{CH}_{3}, \mathrm{R}^{\prime}=\mathrm{CH}_{3}$ reported

Stereoselective additions of organometallic reagents to 8 a at $50{ }^{\circ} \mathrm{C}$ gives 3,4,5,6-tetrahydro-3-alkyl(aryl)-3,5-diphenyl-(2H)-1,2,6-thiadiazine

1,1-dioxides

9a in $43-83 \%$ yield. Similarly, addition of organometallic reagents to 8 b at room temperature furnished 9 b in modest yield (Scheme 5).

Scheme 5.

Addition of Grignard reagents at room temperature generates thiadiazine 1,1-dioxides in poor yields whereas with more reactive alkyl lithium reagents and at elevated temperature, yield of the addition products were improved. The conversion of the thiadiazines to the corresponding diamines was examined under a variety of conditions. Only a small amount of some of the diamines is obtained (<5\%) yield and the conversion is not synthetically useful.

Chapter 2

Section A: Synthesis of chiral guanidines and their application in stereoselective reactions:

Guanidines are of considerable interest in biology and synthetic organic chemistry. Although there are many biological applications of guanidines, relatively few studies have examined their use in organic synthesis. Guanidines can be used as catalysts in carbon-carbon bond forming reactions of malonates, 1,3-diketones and nitroalkanes. The objective of this study was to investigate the
possibility of using enantiomerically pure guanidines as bases in the nitroaldol (Henry) and Michael addition reaction. Chiral guanidines 11 were synthesized as shown in Scheme 6.

The reaction of carbon disulfide with an amine or a diamine in refluxing ethanol furnished thioureas 10 in $74-97 \%$ yield. Alkylation with methyl iodide in methanol at room temperature gave the S-methylisothiouronium iodide, which was reacted with amines to generate guanidines 11. Alternatively, the guanidines could be prepared by conversion of the thiourea to the corresponding carbodiimide and subsequent reaction with amines (Scheme 6)

Scheme 6.

The enantiopure guanidines were used as catalysts in the nitroaldol reaction employing benzaldehyde and nitromethane as substrates (Scheme 7).

Scheme 7.

The reaction of an aldehyde with nitromethane in the presence of a chiral guanidine gave the expected nitroaldol product in 1459% yield, albeit with low enantioselectivity (2-10\% ee).

Section B. The catalytic asymmetric Michael addition reaction.

To the best of our knowledge, there is a sole study on a guanidine catalyzed asymmetric conjugate addition reaction. This study appeared in the literature during the course of our studies. The results suggested ample scope for improvement and we chose to investigate this possibility with malonate esters as the nucleophilic component since their deprotonation with guanidines was expected to be quite facile.

Reaction of 2-cyclohexene-1-one 44 with diethyl malonate 45 in the presence of a catalytic amount of guanidine 39-42 (0.3 eq.) in ethanol generated expected conjugate addition product $\mathbf{1 2}$ in moderate yield (scheme 15).

Scheme 15.

The effect of solvent and temperature on the enantioselectivity of the Michael addition reaction was also examined. The enantioselectivity of the Michael addition process is based on the optical rotation of the cyclohexanone acetic acids 13. In most of the cases, the enantiomeric excess was quite low (1$10 \%$) as judged by the specific rotation and an alternative determination of enantiomeric excess was not carried out.

Chapter III

Magnesium bromide catalyzed acylation of alcohols

The acylation of an alcohol is usually achieved by reaction with an acid anhydride or acid chloride in the presence of a base and several acyl transfer reagents have been employed to facilitate the process. Recent investigations have focused on alternative reaction conditions and tributylphosphine, cobalt chloride and scandium triflate have been successfully employed as acylation catalysts in the absence of a base. The role of MgBr_{2} as a Lewis acid is well known, especially in reactions of Grignard reagents, and other magnesium (II) salts have found application as Lewis acids in several synthetic transformations. We examined the possibility of employing MgBr_{2} as an acylation catalyst under neutral conditions.

Initial investigations were conducted with menthol as the substrate. Treatment of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of menthol with acetic anhydride (6 equiv.) in the presence of MgBr_{2} ($5 \mathrm{~mol} \%$) for 3 h at ambient temperature generated menthyl acetate in 72% isolated yield. Benzoic anhydride was also used as the acylating species to yield the corresponding benzoates. Several primary, secondary, tertiary, and β-substituted alcohols were acylated by using $5-10 \mathrm{~mol} \%$ of magnesium bromide as the catalyst (Scheme 8).

Scheme 8.

Acylation of 1-phenylethane-1,2-diol was unsuccessful, presumably due to irreversible complexation of MgBr_{2} by the substrate, thereby reducing its Lewis acidity. This does not seem to be a difficulty with the other alcohol substrates although they are present in large excess during the initial stages of the reaction.

Magnesium bromide is known to complex with chiral, chelating ligands and chiral magnesium complexes have been used in catalytic asymmetric reactions such as conjugate additions and Diels-Alder reactions. We investigated the possibility of carrying out the kinetic resolution of racemic secondary alcohols using chiral Mg^{2+} complexes. In this connection, chiral ligands $\mathbf{1 4 - 1 7}$ were prepared and examined (Scheme 9).

Scheme 9.

The ligands $\mathbf{1 4 - 1 7}$ were used for complexation with MgBr_{2} in situ and the complexes were examined as catalysts for the acylation of phenethylalcohol. Although the acylation proceed smoothly, the enantiomeric excess of the acylated product was low.

CHAPTER I

STEREOSELECTIVE SYNTHESIS OF 3,4-DISUBSTITUTED 1,2,5THIADIAZOLIDINE 1,1-DIOXIDES AND THEIR CONVERSION TO UNSYMMETRICAL VICINAL DIAMINES.

Part of work described in this chapter has been published in Synlett. 1998, 623.

INTRODUCTION

SECTION 1: Stereoselective synthesis of 3,4-disubstituted 1,2,5-

thiadiazolidine 1,1-dioxides and their conversion to vicinal diamines.
Thiadiazolidine 1,1-dioxides are of interest due to their numerous applications in organic synthesis and medicinal chemistry. Enantiomerically pure 1,2,5-thiadiazolidine 1,1-dioxides have been employed in asymmetric DielsAlder ${ }^{1}$ and aldo ${ }^{2}$ reactions. Cephalosporins and penicillins having the 1,2,5thiadiazolidine 1,1-dioxide ring are potent bactericides. ${ }^{3}$ The 1,2,5-thiadiazolidine 1,1-dioxide moiety has also been utilized in various biologically active tryptamines. ${ }^{4}$ 1,2,5-Thiadiazolidine 1,1 -dioxides are also useful as modifying agents for textiles. ${ }^{5}$

Vicinal diamines are of interest due to their numerous applications in asymmetric synthesis ${ }^{6}$ and medicinal chemistry. ${ }^{7}$ Enantiomerically enriched vicinal diamines are useful as chiral ligands in several reagents and catalysts which are employed in stereoselective Diels-Alder, ${ }^{8}$ Michael, ${ }^{9}$ aldol, ${ }^{10}$ allylation, ${ }^{11}$ osmylation ${ }^{12}$ and epoxidation ${ }^{13}$ reactions, for the asymmetric dihydroxylation of alkenes, ${ }^{14}$ enantioselective reduction of ketones ${ }^{15}$ and addition of organometallic reagents to aldehydes. ${ }^{16}$ Enantiomerically pure diamine derivatives are also used as promoters in asymmetric hydrogenation reactions, ${ }^{17}$ as ligands in Lewis acids for the generation of enolates, ${ }^{18}$ in propargylation reactions, ${ }^{19}$ and as ligands in salen ${ }^{20}$ and other complexes. ${ }^{21}$ In addition, derivatives of chiral diamines are also useful for the determination of enantiomeric excess of chiral alcohols, thiols and amines. ${ }^{22}$ They are effective reagents for the determination of the enantiomeric excess of carboxylic acids by

NMR spectroscopy. ${ }^{23}$ Vicinal diamines and their derivatives are also useful in molecular recognition ${ }^{24}$ and in pharmacology. ${ }^{25}$

Due to the several applications of 1,2,5-thiadiazolidine 1,1-dioxides and vicinal diamines in organic synthesis, their diastereoselective as well as enantioselective synthesis from readily available starting materials has been extensively investigated. Many methods for the synthesis of 1,2,5-thiadiazolidine 1,1-dioxides and vicinal diamines have been described and a summary of these methods, based on key synthetic transformations, follows.

Synthesis of 1,2,5-thiadiazolidine 1,1-dioxides:

A. Condensation of diamines or amino alcohols with sulfamide:

The condensation of vicinal diamines or amino alcohols with sulfamide is the simplest approach to 1,2,5-thiadiazolidine 1,1-dioxides.

1. Condensation of diamines with sulfamide:

Nara et. al. reported the condensation of ethylenediamine with sulfamide to generate 1,2,5-thiadiazolidine 1,1 -dioxides. ${ }^{5}$ Similarly, Ahn and co-workers reported the synthesis of ($3 S, 4 S$)-3,4-diphenyl-1,2,5-thiadiazolidine 1,1-dioxide by the condensation of 1,2-diphenyl-ethane-1,2-diamine with sulfamide in DMSO (Scheme 1). ${ }^{2}$

Scheme 1.

Recently, Castro et. al. have reported the synthesis of 3,3-dialkyl-1,2,5thiadiazolidine 1,1 -dioxides by the condensation of 1,1-dialkyl-ethane-1,2diamines with sulfamide in pyridine (Scheme 2). ${ }^{4}$

Scheme 2.

$$
\mathrm{R}=\mathrm{Me}, \mathrm{Bu}, i-\mathrm{Pr}, \mathrm{H} \quad \mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{Me}
$$

2. Condensation of Amino alcohols with sulfamide:

Kreiz has reported a convenient synthesis of a chiral thiadiazolidine by the condensation of sulfamide with ephedrine (Scheme 3). ${ }^{26}$ The reaction involves heating ephedrine with sulfamide to generate the thiadiazolidine This thiadiazolidine has been employed as a chiral modifier in asymmetric Diels-Elder reactions.

Scheme 3.

B. Condensation of sulfuryl chloride with diamine:

Priess et. al reported the synthesis of 2,5-di-tert-butyl-1,2,5thiadiazolidine dioxide by the reaction of sulfuryl chloride with N, N '-di-tert-butyl-ethane-1,2-diamine, which after cleavage with triflic acid gave 1,2,5thiadiazolidine (Scheme 4). ${ }^{27}$

Scheme 4.

Rosenberg et. al. ${ }^{28}$ have reported the synthesis of potent renin inhibitors (effective at nanomolar concentrations) containing the substituted 1,2,5thiadiazolidine 1,1 -dioxide moiety. The key step involves the condensation of an appropriately substituted diamine with sulfuryl chloride (Scheme 5).

Scheme 5.

MEM $=$ 2-methoxyethoxymethyl
Anikin et. al ${ }^{29}$ have reported the synthesis of N-nitro 1,2,5-thiadiazolidine 1,1-dioxide by condensation of N, N '-dinitrosulfamide and sulfuryl chloride (Scheme 6).

Scheme 6.

C. Reductive cyclization of alkenyl sulfamides:

Baker et. al. reported the synthesis of substituted thiadiazolidine 1,1dioxide by reductive cyclization of N, N '-bis (1,1-dimethyl-2-propynyl)sulfamide (Scheme 7). ${ }^{30}$

Scheme 7.

D. Reaction of chlorosulfonylisocyanate with amino acids:

In a recent study, Rega?nia et. al. ${ }^{31}$ reported that the reaction of chlorosulfonylisocyanate and amino acid esters generates an N -sulfonamido amino acid. Ring closure in this intermediate is achieved by conversion of the ester to an alcohol followed by activation and subsequent treatment with a base. Variously substituted 1,2,5-thiadiazolidine 1,1-dioxides were prepared by this method (Scheme 8).

Scheme 8.

Syntheses of Vicinal Diamines:

A. Intermolecular Reductive Coupling of Imines:

The reductive coupling of imines is the simplest approach to vicinal diamines and the intermolecular version of this reaction has been studied extensively (Figure 1).

Figure 1. Intermolecular reductive coupling of imines

$M=$ low valent metal

1) Reductive coupling with amalgams.

The use of a low valent metal for the reductive coupling reaction is known since 1908. Anselmino reported the reductive coupling of benzylidine anilines with aluminum amalgam to generate vicinal diamines (Scheme 9). ${ }^{32}$

Scheme 9.

A related study by Thies describes the reductive coupling of imines with aluminum amalgum in ethanol to give a diamine/monoamine mixture $(2-5 / 1) .{ }^{33}$ The monoamine arises from reduction of the imine which competes with the reductive coupling (Scheme 10).

Scheme 10.

$R=\mathrm{Me}, \mathrm{Et}, \mathrm{iPr}$
dl $/$ meso $=2-5 / 1$

A reductive coupling of imines in the presence of zinc amalgam to give diamines and amines in the ratio of $\sim 2 / 3$ has also been reported. ${ }^{34}$

2) Reductive coupling with elements from Group 1, 2, 13, 14 and 15.

Reductive coupling can also be achieved by using alkali metals in a variety of solvents. Diamines are obtained by the coupling of imines in the presence of alkali metals such as Li or Na in solvents such as ether, THF, benzene or toluene. ${ }^{35}$ The use of a $\mathrm{Mg} / \mathrm{MgI}_{2}$ system has also been reported. ${ }^{36}$

Sandhu has reported the coupling of imines with aluminum or bismuth in $\mathrm{KOH} / \mathrm{MeOH}{ }^{37}$ The ratio of reductive coupling to reduction was better with Al (4-9/1) than with Bi (1.5-3/1). Similarly, the $\mathrm{dl} /$ meso ratio for the diamine was better with $\mathrm{Al}(\sim 3 / 1)$ than with $\mathrm{Bi}(\sim 1 / 1)$.

The reductive dimerization of N-alkyl imines to vicinal diamines by the action of catalytic PbBr_{2} in the presence of Al as a reducing agent has been studied by Tanaka. ${ }^{38}$ The reaction proceeds in THF containing trifluoroacetic acid. Yields of the diamines are in the range of $60-90 \%$ (Scheme 11).

Scheme 11.

Newmann has demonstrated that a mechanism involving radicals as intermediates may be operating in these coupling reactions. ${ }^{39}$ Schiff bases of the type $\mathrm{ArRC}=\mathrm{NR}$ ' react with $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{Hg}$ to give carbon centered radicals $\operatorname{ArRC} \cdot\left(\mathrm{NR}^{\prime} \mathrm{SiMe}_{3}\right)$ upon heating or irradiation. The later are in equilibrium with the corresponding dimers, the 1,2-diaminoethanes. The equilibria strongly depend on steric strain in the dimers. With $\mathrm{R}=\mathrm{R}$ ' $=\mathrm{Me}$, disproportionation products are isolated quantitatively.

3) Reductive coupling using transition metals.

Seebach has reported ${ }^{40}$ a McMurray-type one pot reaction in which a lithium dialkylamide is added to aryl aldehydes to give an adduct, which is then treated with one equivalent of TiCl_{4}, to yield the iminium salt. After treatment with a low valent titanium reagent (generated by reduction of TiC_{4} with Mg or K), the coupling products are isolated as ca. $1 / 1$ mixtures of $\mathrm{dl} /$ meso isomers (Scheme 12).

Scheme 12.

In a related study, Mangeney examined the use of a low valent titanium reagent (generated by reaction of magnesium amalgam with TiCl_{4}) to induce coupling. ${ }^{41}$ Vicinal diamines and amines (ratio ca. 1-9/1) were obtained. The $\mathrm{dl} /$ meso ratio in the diamine varied from $2 / 1$ to $9 / 1$.

Other transition metals can also be employed to bring about the reductive coupling. Pederson has reported the preparation of free vicinal diamines with moderate to good anti selectivity by coupling N-(trimethylsilyl)imines with the d^{1} niobium regent $\mathrm{NbCl}_{4}\left(\mathrm{THF}_{2}\right.$ (dl/meso ratio=1-19/1, Scheme 13). ${ }^{42}$ Alternatively, the imine is generated in situ by reaction of a nitrile with tributyltin hydride. The resultant N-(tributyltin)imines react with $\mathrm{NbCl}_{4}(\mathrm{THF})_{2}$ to generate vicinal diamines with a $1-8 / 1 \mathrm{dl} /$ meso selectivity.

Scheme 13.

Kalyanam has employed indium for reductive coupling of aldimines under aqueous conditions to obtain N-substituted diamines in more than 90% yield. ${ }^{43}$ Reductive coupling of imines with ytterbium to give diamines in $46-81 \%$ yields was reported by Takaki. ${ }^{44}$ Imamato ${ }^{45}$ and Enholm ${ }^{46}$ have reported the reductive coupling of imines with samarium diiodide to give diamines in $60-90 \%$ yield. All of these methods employ N-alkyl imines as substrates.

Recently, Shimizu has described an enantioselective reductive coupling of benzaldimines with $\mathrm{Zn}-\mathrm{Cu}$ couple in the presence of (+)-camphorsulphonic acid. Diamines are obtained with $34-97 \%$ e.e. and $60-80 \%$ yield (Scheme 14). ${ }^{47}$

Scheme 14.

$$
\mathrm{R}=\mathrm{Ph}, \mathrm{PhCH}_{2}, 4 \mathrm{MeOPh} \quad \text { e.e. } 34-97 \%
$$

Organometallic reagents can also be used for imine coupling ${ }^{48}$ (Scheme 15). Treatment of zirconocene (methyl) chloride with lithium dibenzylamide produces an adduct which loses methane upon heating at $110^{\circ} \mathrm{C}$.

Scheme 15.

cis $/$ trans $=8 / 92$

The resulting zirconium(trimethylsilyl)benzaldimine complex undergoes a diasteroeselective coupling reaction with N -(trimethylsilyl)benzaldimine to generate a zirconium chelate with good stereoselectivity (cis/trans $=8 / 92$).

B. Intramolecular Reductive Coupling of Imines:

The intramolecular reductive coupling of imines was first described by Jaunin. ${ }^{49}$ Salicylaldehyde bisimines which are linked through the phenolic oxygen with a carbon tether were employed in this study.

Scheme 16.

Reductive coupling with sodium in ether led to the formation of macrocyclic ethers in modest yields (Scheme 16). The stereoselectivity of ring formation was not reported.

Electrochemical reduction of dimeric imines derived from o-amino benzophenones proceeds with concomitant transannular cyclization to generate dimeric indoloindoles incorporating the vicinal diamino functionality (Scheme 17). ${ }^{50}$

Scheme 17.

Recently, Shono and coworkers have described a stereoselective synthesis of (R, R)-1,2-diarylethanediamines by the reductive, intramolecular coupling of chiral aromatic bisimines, derived from (S)-valine. ${ }^{51}$ A three carbon linkage between the two valine moieties afforded the best seectivity. The selectivity also improved for substrates having a para-electron donating substituent on the aryl group. Other macrocycles, starting from analogous bisimines ($\mathrm{Ar}=4 \mathrm{MeOPh}$, $4 \mathrm{CIPh}, 4 \mathrm{CNPh}$, Scheme 10), have been prepared accordingly. The intramolecular coupling can be achieved by either electroreduction or with zinc (Scheme 18).

Scheme 18.

Studies in our research group have examined the synthesis of unsymmetrical 1,2-diarylethanediamines by the reductive, intramolecular crosscoupling of aromatic bisimines that are prepared from sulfamide (Scheme 19). ${ }^{52}$

Scheme 19.

Most of the substrates exhibit preference for the cis coupling mode and an introduction of ortho substituents into one of the aryl groups causes an increases in the amount of trans product. Substrate having bulky substituent $\left(\operatorname{Ar}^{1}=\operatorname{Ar}^{2}=2-\right.$ naphthyl) could not give the coupling product, presumably due to steric crowding in the transition state.

C. Synthesis of diamines by addition reactions of alkenes:

Amines can be made to undergo 1,2 addition type reactions with olefins to give vicinal diamines (Figure 2). In general, these reactions involve activation of the olefin by an electrophile and subsequent addition of the amine. Metal mediated reactions have also been investigated.

Figure 2. Addition of amines to olefins.

Metal mediated aminations.

Barluenga has reported a convenient preparation of aromatic vicinal diamines from olefins in the presence of thallium salts (Scheme 20). ${ }^{53}$ Aromatic
amines add to olefins giving vicinal diamines probably via the intermediacy of an unstable organothallium (III) derivative. Primary aliphatic amines do not add to alkenes under identical conditions. The procedure is thus limited to N-aryl amines.

Scheme 20.

Bäckvall has demonstrated that the aminopalladation of E-alkenes, followed by oxidation with Br_{2}, m-chloroperbenzoic acid or N -bromosuccinimide and subsequent treatment with an excess of amine affords the corresponding vicinal diamines (Scheme 21). ${ }^{54}$ The diamination proceeds with syn selectivity and terminal olefins were diaminated in good yields (35-87\%). Z-alkenes were not examined as substrates and only dimethylamine was used for the amination.

Scheme 21.

An elegant, osmium based amination protocol has been described by Sharpless. ${ }^{55}$ A triimidoosmium complex, derived from osmium tetraoxide and N -tert-butyl tri-n-butylphosphinimine, reacts with mono- and disubstituted E alkenes through a stereospecific cis addition to give vicinal diamines (Scheme 22). The complex is used in stoichiometric amounts and is unreactive towards
disubstituted Z-olefins. Thus, the method only allows the preparation of secondary N -tert-butyl-substituted 1,2-diamines.

Scheme 22.

The 1,2-diamination of alkenes with nitric oxide and a cobalt complex has been described by Bergman. ${ }^{56}$ Primary vicinal diamines are obtained in $50-90 \%$ yield with this procedure (Scheme 23). Despite the completely stereospecific cis addition in the first step, the diamines are obtained as a mixture of diastereomers due to epimerization during the LiAlH_{4} reduction.

Scheme 23.

Barluenga has reported a one-pot procedure for the synthesis of aromatic vicinal diamines from olefins and aromatic amines in the presence of mercuric (II) oxide/tetrafluoboric acid (Scheme 24). ${ }^{57}$ The reaction presumably proceeds via the formation of an intermediate β-aminomercury (II) tetrafluoborate.

Scheme 24.

D. Other Methods for Preparation of 1,2-Diamines:

1) Synthesis of diamines from aziridines.

Unsymmetrical 1,2-diamines can be prepared from aziridines and amine oxides using lithium iodide and iron pentacarbonyl in THF. The yields for the process range from $40-60 \%$ (Scheme 25). ${ }^{58}$ The first step of the transformation is ring opening of the aziridine by lithium iodide. The intermediate obtained then reacts with a carbonyl group in the $\mathrm{Fe}(\mathrm{CO})_{5}$ with concomitant formation of a carbon-iron bond to generate a metallocle, which is finally converted to the diamine by trimethylamine N-oxide. The mechanism of this conversion is not known.

Scheme 25.

2) Synthesis of diamines by reduction of hydroxylamino oximes.

The reaction of olefins with dinitrogen trioxide or with a mixture of nitrogen oxides to form 1:1 adducts is a classical method of introducing two vicinal carbon-nitrogen bonds into an olefinic system. The dimeric adducts can be thermally rearranged to more stable α-nitrooximes which are subsequently reduced to vicinal diamines (Scheme 26). ${ }^{59}$

Scheme 26.

3) A benzotriazole based approach to vicinal diamines.

Katrizky has described the use of glyoxal as the starting material in a route to symmetrical secondary and tertiary vicinal diamines. ${ }^{60}$ Condensation of glyoxal, benzotriazole and either aromatic or secodary aliphatic amines affords stable adducts. The benzotriazolyl group was removed reductively by treatment with NaBH_{4} or by nucleophilic displacement with Grignard reagents to give a variety of diamines as syn/anti mixtures (Scheme 27).

Scheme 27.

4) Vicinal diamines from allylic amines.

A synthesis of enantiomerically enriched 1,2-diamines starting from 3-(1-phenethyl)-5-iodomethylimidazolines is reported by Bruni. ${ }^{61}$ The imidazolines are prepared from (S)-1-phenylethylamine. The amine is converted into the corresponding cyanamide, which is then allylated ($\mathrm{NaH} /$ allyl bromide) and converted to the isourea by treatment with HCl in dry EtOH . Subsequent cyclization is effected by treatment with N-iodosuccinimide. A $1 / 1$ diastereomeric mixture of imiazolines is obtained which can be separated by chromatography. The imidazolines on hydrolysis gave 1,2-diamines in enantiomerically pure form (Scheme 28).

Scheme 28.

5) Stereoselective synthesis of $\mathbf{1 , 2}$ diamines from aminoaldehydes.

Reetz has described a synthesis of N-substituted diamines from N, N dibenzyl aminoaldehydes which are readily prepared from amino acids. ${ }^{62}$ The aminoaldehydes were converted into corresponding N, N^{\prime}-dibenzyl aldimines and addition reactions with organometallic reagents were studied. The addition takes place through the intermediacy of chelates such as \mathbf{A} (Scheme 29), which are attacked preferentially from the sterically less hindered side. Replacement of the N-benzyl group with the electron withdrawing tosyl group inhibits chelation and results in non-chelation controlled addition to the imine.

Scheme 29.

6) Synthesis of vicinal diamines from cyclic sulfates.

Sharpless has reported stereoselective synthesis of vicinal diamines using cyclic sulfates. ${ }^{63}$ Nucleophilic opening of cyclic sulfates with secondary amines followed by treatment with base results in the formation of an aziridinium ion which undergoes ring opening by a second equivalent of the amine to give diamines in 41-82\% yield (Scheme 30).

Scheme 30.

7) Synthesis of C_{2} symmetric vicinal diamines from benzils.

Corey has described the synthesis of racemic C_{2} symmetric vicinal diamines starting from substituted benzils (Scheme 31). ${ }^{64}$ The conversion of benzils to the corresponding 2,2-spirocyclohaxane-4,5-diphenyl2H-imidazole was accomplished by heating in acetic acid with cyclohexanone and excess $\mathrm{NH}_{4} \mathrm{OAc}$. Dissolving metal reduction of the imidazole generates the trans
imidazolidine which after acid hydrolysis gives C_{2} symmetric diamines in 45$64 \%$ yield.

Scheme 31.

During the course of our studies, an exhaustive review ${ }^{65}$ on the synthesis and applications of vicinal diamines appeared in the literature.

2. OBJECTIVE

The objective of our study was to develop a stereoselective synthesis of 3,4-disubstituted 1,2,5-thiadiazolidine 1,1-dioxides and their conversion to unsymmetrical vicinal diamines.

Although the condensation of a diamine or an amino alcohol with sulfamide is the simplest approach to thiadiazolidines, the approach is limited by the availability of the precursor diamine or amino alcohol. An alternative approach involving reductive cyclization of alkenyl sulfamides ako has similar restriction. ${ }^{30}$ Our approach to the substituted thiadiazolidine nucleus is based on α-diketone precursors that are readily converted to thiadiazole 1,1 -dioxides by reaction with sulfamide. We hypothesized that it should be possible to add nucleophiles to the thiadiazoles by utilizing the electrophilicity of the $C-N$ double bonds in the ring. If successful, the approach should generate thiadiazolidines which would then be converted to vicinal diamines (Fig 3).

Figure 3. Addition of organometalic reagents followed by conversion to diamines

3. RESULTS AND DISCUSSION

For initial investigation 3,4 diphenyl-1,2,5-thiadiazole 1,1-dioxide 1 and 3,4-dimethyl 1,2,5-thiadiazole 1,1-dioxide 2 were chosen as substrates for the addition of carbon nucleophiles since a) to the best of our knowledge, nucleophilic addition to the $C-N$ double bond in these substrate has not been studied ${ }^{66}$ and b) the addition of second nucleophile should be subject to some stereocontrol due to the adjacent stereogenic center formed in the first step.

Thiadiazole 1,1dioxides $\mathbf{1}$ and 2 were prepared according to the literature procedures. Condensation of benzil with sulfamide in the presence triethylamine generated $1(36 \%) .{ }^{67}$ Diacetyl was condensed with sulfamide under acidic conditions to give $2(48 \%$, Scheme 32$){ }^{68}$.

Scheme 32.

Addition of alkyl Grignard reagents (one to two equivalents) to a solution of $\mathbf{1}$ in THF/benzene generates the thiadiazoline 1,1-dioxides 3-6 in good yield (85-99\%) These are pure by ${ }^{1} \mathrm{H}$ NMR and can be used further as such. Similarly, addition of addition of aryl and alkyl Grignard reagents to $\mathbf{2}$ cleanly generates $\mathbf{7}$ and $\mathbf{8}$ (quantitative yield of crude product, Scheme 33, Table 1).

Scheme 33.

Table 1. Addition of Grignard reagent to thaidiadiazole 1,1-dioxides.

Compound	\mathbf{R}	\mathbf{R}^{1}	\% Yield
$\mathbf{3}$	Ph	Me	$95^{\text {c }}$
$\mathbf{4}$	Ph	Et	99^{c}
$\mathbf{5}$	Ph	Bu	98^{c}
$\mathbf{6}$	Ph	$i-\mathrm{Pr}$	85^{c}
$\mathbf{7}$	Me	Ph	83
$\mathbf{8}$	Me	Et	74
c: yield of crude product			

An interesting feature of the Grignard addition is the relatively slow addition of second equivalent of the reagent. Thus, reaction of $\mathbf{1}$ with excess MeMgBr (5 equivalents, $1.5 \mathrm{~h}, \mathrm{rt}$.) generates a $2 / 1$ mixture of bis- and monoaddition products, whereas with excess $i-\mathrm{PrMgBr}$ (3 equivalents) $\mathbf{6}$ is the only product isolated. This is presumably due to the steric hindrance by the isopropyl group. In general, it was observed that the addition of a second carbon nucleophile (other than methyl) was difficult in these substrates. For example,
treatment of $\mathbf{2}$ with a large excess of PhMgBr or PhLi in a variety of solvents at different temperatures resulted either in mono-addition or decomposition of the mono-adduct under the reaction conditions. Conducting the addition on pure mono-adduct derived from 2 had no beneficial effect (Scheme 34)

Scheme 34.

We therefore investigated the possibility of reducing the thiadiazolines 38 to the corresponding thiadiazolidines.

Reduction of thiadiazoline 1,1-dioxides to thiadiazolidine 1,1-dioxides.

Initial studies were conducted on 3. Surprisingly, 3 was resistant to hydrogenation ($\mathrm{H}_{2}(60 \mathrm{psi}), \mathrm{Pd} / \mathrm{C}$, EtoAc, 3h.). However, reduction with NaBH_{4} could be effected in several solvents of which the $\mathrm{NaBH}_{4} / \mathrm{EtOH}$ system was optimal. Thus, reduction of $\mathbf{3}\left(\mathrm{NaBH}_{4} / \mathrm{EtOH}, \mathrm{rt} .2 \mathrm{~h}\right)$ produced the unsymmetrical 3,4 substituted thiadiazolidine 1,1 -dioxide 9 (89\%) as a $6 / 1$ mixture of cis $/$ trans isomers (Scheme 35, Table 2). This reduction protocol was also applicable to the thiadiazolines 4-8 (57-89\% yield of thiadiazolidine $\mathbf{1 0 - 1 3}$, reaction time 2-5 h), the only exception being 6 which could not be reduced with NaBH_{4}, presumably due to the increased steric demands in the system arising from the isopropyl group. The use of THF as solvent in the borohydride reduction has no beneficial effect on the stereoselectivity. All crude reduction products were examined for isomer composition by $200 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR. Although, in some cases, separation of the cis and trans isomers in $\mathbf{9 - 1 3}$ was possible, no attempt was made to
optimize the separation and in most cases the diastereomeric mixture was used further.

Scheme 35.

Table 2. Reduction of thiadiazolidine 1,1-dioxides to thiadiazolidine 1,1-dioxide.

Compound	\mathbf{R}	$\mathbf{R}^{\mathbf{1}}$	\% Yield	Diastereomer ratio $^{\mathbf{b}}$
$\mathbf{9}$	Ph	Me	89	$6 / 1$
$\mathbf{1 0}$	Ph	Et	84	$7 / 1$
$\mathbf{1 1}$	Ph	Bu	77	$6 / 1$
$\mathbf{1 2}$	Me	Ph	69	$1.5 / 1\left(6.5 / 1^{\mathrm{d}}\right)$
$\mathbf{1 3}$	Me	Et	57	$1.4 / 1\left(3.7 / 1^{\mathrm{d}}\right)$

b: ratio based on the ${ }^{1}$ H NMR of the crude reaction mixture, d: reduction with LAH

The formation of the cis ($3 R^{*}, 4 S^{*}$ for 9 -11 and $3 S^{*}, 4 R^{*}$ for 12 and 13) isomer as the major product may be explained by a sterically controlled reduction of the thiadiazoline 1,1-dioxide in which the phenyl group dictates the diastereofacial selectivity in most cases. Figure 4 summarizes the reduction stereocontrol in the conversion of 3-8.

The stereochemical assignments are based on the upfield shift of the methyl hydrogens in trans 9 (1.4 ppm), as compared to cis 9 (1.9 ppm) and an
upfield shift of the ortho hydrogens in one of the phenyl rings in cis $\mathbf{9 - 1 1}$ (shielding by the adjacent phenyl ring; reduction from the face opposite to the phenyl group (Fig 4).

Figure 4. Stereocontrolled reduction of 1,2,5-thiadiazolidine 1,1-dioxides.

addition of hydride ion

9
cis major
$\mathrm{CH}_{3} \delta 1.9 \mathrm{ppm}$

9
trans minor
$\mathrm{CH}_{3} \delta 1.4 \mathrm{ppm}$

Although the low selectivity for $\mathbf{1 3}$ (cistrans $=1.4 / 1$) may be attributed to marginal steric differentiation between the ethyl and methyl groups, it is unclear why the reduction of $\mathbf{3}$ is more selective than that of $\mathbf{7}$ (cis/trans $=6 / 1$ for 9 and 1.5/1 for 12). Use of LiAlH_{4} in THF increases the stereoselectivity of reduction in 7 and 8 and generates 12 (33\%) and $\mathbf{1 3 (5 2 \%) ~ a s ~ a ~ 6 . 5 / 1 ~ a n d ~ 3 . 7 / 1 ~ c i s / t r a n s ~}$ mixture respectively. The above procedure involving sequential functionalization at C3 and C4 of thiadiazole 1,1-dioxides constitutes a new, stereoselective approach to unsymmetrical thiadiazolidine 1,1-dioxides.

Conversion of thiadiazolidine 1,1-dioxides to diamines

The conversion of the cyclic sulfamides (1,2,5-thiadiazolidine-1,1dioxides) 9-13 to vicinal diamines proved to be challenging. The cyclic sulfamides are inert towords most reagents that reductively cleave sulfoxides ${ }^{69}$ for example $\mathrm{Mg}(\mathrm{Hg}), \mathrm{Na} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and SmI_{2} at ambient temperature. Pyridine$\mathrm{H}_{2} \mathrm{O}, \mathrm{Na} / \mathrm{Naphthalene}{ }^{70}$ were used to cleave sulfoxide but could not cleave the cyclic sulfamides. However, heating 3-methyl-3,4-diphenyl-1,2,5-thiadiazolidine 1,1-dioxide 9 1,1-dioxide in 2 N HBr in the presence of phenol (a modification of our previously described procedure $)^{52}$ generated the free diamine 14 in 37% yield. The procedure was applicable to cyclic sulfamides $\mathbf{1 0 - 1 3}$ which yielded diamines 15-18 in 33-52\% yield (Scheme 36).

Scheme 36

Table 3. Conversion of thiadiazolidine 1,1-dioxides $\mathbf{9 - 1 3}$ to 1,2 -vicinal diamine.

Compound	\mathbf{R}	\mathbf{R}^{1}	\% Yield	diastereomer ratio
$\mathbf{1 4}$	Ph	Me	37	$6.5 / 1$
$\mathbf{1 5}$	Ph	Et	33	$19 / 1$
$\mathbf{1 6}$	Ph	Bu	44	$19 / 1$
$\mathbf{1 7}$	Me	Ph	52	$1.2 / 1$
$\mathbf{1 8}$	Me	Et	48	$1.8 / 1$

The yields in the $\mathrm{HBr} /$ Phenol cleavage of thiadiazolidine 1,1-dioxides 9 13 to diamine 14-18 may be low due to competing side reactions such as
oxidation ${ }^{71}$. This method is an adaptation of a known method for the cleavage of sulfonamides ${ }^{72}$ and is a redox process, the mechanism of which is unclear at present.

4. CONCLUSION

A new stereoselective synthesis of unsymmetrical thaidiazolidine 1,1dioxides has been developed from readily available thiadiazoles. The stereoselctivity in the reduction of thiadiazolines to thiadiazolidines is moderate and favors the cis product over the trans. Conversion of the thiadiazolidine 1,1dioxide to unsymmetrical vicinal diamines is an added advantage. The overall sequence represents a novel funtio nalization of α-diketones.

1. INTRODUCTION

Guanidines are of considerable chemical and biological interest. Hydrogen-bond mediated interactions between guanidinium ions and phosphatecontaining biomolecules ${ }^{1}$ have lead to molecular recognition studies in chemical systems involving oxoanions capable of forming similar hydrogen bonded complexes with guanidines. ${ }^{2}$ Several naturally occuring guanidines are of interest as neuroactive agents. ${ }^{3}$ However, synthetic applications of enantiomerically pure guanidines have been relatively less expbred.

A. The catalytic asymmetric nitroaldol (Henry) reaction.

The nitroaldol reaction, one of the oldest carbon-carbon bond forming reactions, has found extensive use in organic synthesis. ${ }^{4}$ The catalytic asymmetric version of the nitroaldol reaction has also been the focus of several recent investigations.

Shibasaki has developed a number of complexes derived from a rare earth metal chloride and (R)-binaphtho \bar{F}^{6} as catalysts for the asymmetric nitroaldol reaction. The nitroaldol adducts were obtained with $79-91 \%$ e.e. Bimetallic complexes such as the $\mathrm{La}-\mathrm{Li}-(R)-\mathrm{BINOL}$ complex ${ }^{6}$ were examined for their effect on diastereoselectivity as well as enantioselectivity (Scheme 1).

Scheme 1.

The reactions proceeded with good diastereoselectivity (3-9/1) as well as enantioselectivity ($65-97 \%$ e.e. of the syn adduct).

During the course of our investigations on the guanidine catalyzed asymmetric nitroaldol reaction, the use of enantiomerically pure guanidines as catalysts in the condensation of nitromethane with aldehydes was reported by Najera. ${ }^{7}$ The nitroaldol adducts were obtained in $31-85 \%$ yield but the enantioselectivity was low (5-34\%) and in one case 54% e.e was obtained at $-78^{\circ} \mathrm{C}$ (Scheme 2).

Scheme 2.

B. The catalytic asymmetric Michael addition reaction.

The asymmetric Michael addition reaction has also been the subject of several recent investigations and the topic has been reviewed recently. ${ }^{8}$ Mukaiyama and co-workers have described the asymmetric synthesis of δ oxocarboxylic acids by the Michael addition reaction involving a chiral malonic acid derivative. ${ }^{9}$ The reaction of $(2 R, 3 S)$-dimethyl-5,7-dioxo-2-phenylperhydro1,4 -oxazepine (synthesized from methyl hydrogen malonate and ($1 R, 2 S$)ephedrine hydrochloride) and 2-cyclopenten-1-one in the presence of DBU, followed by hydrolysis and decarboxylation of the resulting adduct generates 3-
oxocyclopentane acetic acid with 96% e.e. (Scheme 3). Lower enantioselectivity (55\%) was observed with 1-phenyl-2-buten-1-one as the Michael acceptor.

Scheme 3.

A catalytic enantioselective Michael addition reaction of a malonate ester to α, β unsaturated ketones and aldehydes has also been reported (Scheme 4). ${ }^{10}$

Scheme 4.

The catalyst in these reactions is the rubidium salt of L-proline. Adducts were obtained in $62-98 \%$ yield and $41-76 \%$ e.e.. L-proline salts have also been employed as catalysts for the addition of nitroalkanes to enones and enals. ${ }^{11}$ In these studies, Michael adducts were obtained in $40-84 \%$ yield and with $45-84 \%$ e.e.

Taguchi and co-workers studied the enantioselective Michael addition reaction of malonates \mathfrak{b} enones. ${ }^{12}$ A proline derived catalyst ((2-pyrrolidyl)alkyl ammonium hydroxide) was employed. The Michael adducts were obtained in 52$96 \%$ yield and with $21-69 \%$ e.e.

Crown ethers anellated to sugar units (Scheme 5) have been used as chiral complexing agents in the $\mathrm{NaO}_{t} \mathrm{Bu}$ catalyzed enantioselective Michael addition reactions of methyl phenylacetate to methyl acrylate ${ }^{13}$ (up to 80% e.e.). Moderate asymmetric induction is observed in the Michael addition reaction of 2nitropropane to chalcone (Scheme 5). ${ }^{14}$

Sche me 5.

Recently, Ahn and coworkers studied the enantioselective Michael addition reaction catalyzed by chiral tripodal oxazoline-t BuOK complexes. The benzene-based tripodal oxazoline system has significant affinity for the potassium cation. This property was used in asymmetric reactions involving potassium enolates. Michael adducts were obtained in 17-86\% e.e. (Scheme 6) ${ }^{15}$.

Scheme 6.

Excellent asymmetric induction (99% e.e.) has been achieved in the Michael addition of the 2-methoxycarbonyl-1-indanone to methyl vinyl ketone in the presence of the BINOL derived crown ether \mathbf{A} and KOtBu at $-78{ }^{\circ} \mathrm{C}$ (Scheme 7). ${ }^{16}$

Scheme 7.

Rhodium (I) ${ }^{17}$ and copper (II) ${ }^{18}$ catalysts containing chiral ligands have also been employed as catalysts in Michael addition reactions with moderate to good enantioselectivity.

Shibasaki has examined the rare earth metal-BINOL complex catalyzed asymmetric Michael addition reaction. The La-BINOL complex catalyzes the addition of malonates to enones (62-92\% e.e.). ${ }^{19}$ A heterobimetallic catalyst (La-

Na-BINOL complex) is more effecient and provides adducts with up to 92% e.e.
(Scheme 8). ${ }^{20}$

Scheme 8.

2. OBJECTIVE

The objective of our work was to synthesize and study the utility of enantiomerically pure guanidines as chiral bases in stereoselective carbon-carbon bond forming reactions such as the asymmetric nitroaldol and Michael addition reactions (Figure 1).

Figure 1. Guanidine catalyzed carbon-carbon bond forming reactions.

3. RESULTS AND DISCUSSION

> Various methods are available for the synthesis of guanidines through intermediates such as thioureas, ${ }^{21}$ aminoiminomethanesulfonic ${ }^{\text {acids, }}{ }^{22}$ chloroformamidines, ${ }^{23}$ dichloroisocyanides, ${ }^{24}$ carbodiimides ${ }^{25}$ or cyanamides. ${ }^{26}$

In the present study, several enantiomerically pure guanidines were synthesized from a $(S)-(-)-\alpha-$ methylbenzylamine derived carbodiimide and various amine. Reaction of (S)- α-methylbenzylamine with carbon disulfide in refluxing ethanol furnished the required thiourea $\mathbf{3 2}$ in 77% yield. ${ }^{7}$ Thiourea $\mathbf{3 2}$ was converted to carbodiimde $\mathbf{3 3}$ using mercury oxide. ${ }^{27}$ (Scheme 9).

Scheme 9.

The prolinotderived amine ${ }^{28} 33$ was synthesized from $(S)-(-)$-prolinol. Protection of prolinol with tert-dibutyldicarbonate generated Boc-prolinol $\mathbf{3 2}$ in 90% yield. ${ }^{29} O$-methylation of $\mathbf{3 2}$ by deprotonation with potassium hydride followed by treatment with methyl iodide generated (S)- N -Boc-2-methoxymethyl pyrrolidine in 80% yield which on treatment with Conc. HCl in EtOAc followed by basification with NaOH generated $\mathbf{3 3}$ in 71% yield (Scheme 10).

Scheme 10.

Thiourea ${ }^{30} \mathbf{3 7}$ was prepared in 81% yield from the reaction of ($1 S, 2 S$)-(-)-1,2-diphenyl ethanediamine ${ }^{31} 36$ and carbon disulfide (Scheme 11).

Scheme 11.

The thiourea 37 was S-methylated by with methyl iodide to give 2-methylthio-4,5-dihydro-iimdazole hydroiodide (38) which was converted to the corresponding guanidine 39 by reaction with dimethylamine.

Carbodiimde $\mathbf{3 3}$ on treatment with different various amines generated guanidines (scheme 12).

Scheme 12.

40

41

42

Table 1 summarizes the results for the synthesis of guanidines used in this study.
Table 1. Synthesis of chiral guanidines 39-42.

Thiourea	Yield \%	Salt/ carbodiimide	Yield $\boldsymbol{\%}$	Guanidine	Yield $\boldsymbol{\%}$
$\mathbf{3 7}$	69	$\mathbf{3 8}$	95	$\mathbf{3 9}$	22
$\mathbf{3 2}$	70	$\mathbf{3 3}$	76	$\mathbf{4 0}$	50
$\mathbf{3 2}$	70	$\mathbf{3 3}$	76	$\mathbf{4 1}$	93
$\mathbf{3 2}$	70	$\mathbf{3 3}$	76	$\mathbf{4 2}$	70

Guanidines as catalysts in the enan tioselective Nitroaldol reaction.

Initial investigations were conducted with benzaldehyde and nitromethane. The guanidines $\mathbf{3 9 - 4 2}$ were employed as bases in substoichiometric
amounts (typically 0.1 molar equivalents) and the nitroaldol reaction was studied as a function of solvent and temperature. The results are summarized in Table 2. The yield of the nitroalcohol 43 obtained varied from 22-70\% (Scheme 13).

Scheme 13.

Table 2. Guanidine catalyzed enantioselective nitroaldol reaction.

No.	guanidine	equiv. of guanidine	Solvent	$\begin{gathered} \text { Time } \\ \mathrm{h} \end{gathered}$	$\begin{aligned} & \text { Temp. } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	Adduct \% yield	Adduct \% e.e. (config.)
1.	39	0.1	THF	40	25	50	3 (R)
2.	39	0.1	hexane	42	25	37	5 (R)
3.	40	0.1	DME	48	25	56	-
4.	40	0.1	Hexane	48	25	49	-
5.	40	0.1	neat	48	25	56	-
6.	41	0.1	ether	40	25	37	5 (R)
7.	41	0.1	hexane	12	25	35	1
8.	41	0.1	THF	40	25	32	6 (R)
9.	41	0.1	chloroform	8	-40	19	1
10.	41	0.1	ethanol	8	-78	16	1
11.	41	0.1	ethanol	40	25	59	1
12.	41	0.1	toluene	24	25	74	1
13.	42	0.1	DME	48	25	67	3 (R)
14.	42	0.1	DME	48	25	43	(R)
15	42	0.1	neat	48	25	58	-
16	42	0.1	THF	48	25	43	-
17	42	0.1	DCM	48	25	72	-

a: based on optical rotation.
The results indicate that the guanidines 39-42 are not effective asymmetric catalysts as evidenced by the low enantioselectivity of the process. Lowering the reaction temperature also does not affect the selectivity. The best result (6% e.e.) was obtained with guanidine 41 at ambient temperature with THF as the solvent.

In all of the nitroaldol reactions studied, the enantiomeric excess was very low ($1-6 \%$) as determined by the specific rotation of the product and hence an alternative verification of enantiomeric excess was not carried out.

One reason for the low selectivity may be an erosion of enantiomeric excess during the reaction due to the retro-nitroaldol process. However, this is probably not the case, since the observed enantiomeric excess is not dependent on the reaction time and yield as can be seen from entries 10 and 11 in Table 2. This suggests that the lack of enantioselectivity is probably due to the absence of any direct influence of the stereogenic centers in the guanidine, which in turn is an outcome of the distance between these centers and the reaction site. If the reactive species is the nitronate ion which is hydrogen bonded to the guanidine, ${ }^{32}$ the chiral center in the guanidine is separated from the nitronate carbon by four atoms and may be too distant for effective asymmetric induction.

Figure 2. Hydrogen bonding of the nitronate ion with a C_{2} symmetric guanidine.

Guanidines as enantioselective catalysts in Michael addition reaction.

To the best of our knowledge, there is a sole study on a guanidine catalyzed asymmetric conjugate addition reaction (Scheme 14). ${ }^{33}$

This study appeared in the literature during the course of our studies. The results suggested ample scope for improvement and we chose to investigate this possibility with malonate esters as the nucleophilic component since their deprotonation with guanidines was expected to be quite facile.

Reaction of 2-cyclohexene-1-one 44 with diethyl malonate 45 in the presence of a catalytic amount of guanidine $\mathbf{3 9 - 4 2}$ (0.3 eq .) in ethanol generated expected conjugate addition product in moderate yield (scheme 15).

Scheme 15.

The effect of solvent and temperature on the enantioselectivity of the Michael addition reaction was also examined. Table 3 summarizes the results for the enantioselective Michael addition reaction.

Table 3. Michael addition reaction catalyzed by guanidines 39-42.

No	enone	malonate	guanidine $^{\text {a }}$	solvent	temp. ${ }^{\mathbf{0}} \mathbf{C}$	time \mathbf{h}	Adduct (\%yield)
1.	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{3 9}$	ethanol	-20	60	$\mathbf{4 6}(40)$
2.	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{3 9}$	ethanol	0	60	$\mathbf{4 6}(46)$
3.	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{3 9}$	ethanol	10	28	$\mathbf{4 6}(55)$
4.	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{4 0}$	ethanol	10	32	$\mathbf{4 6}(65)$
5.	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{4 0}$	ethanol	0	48	$\mathbf{4 6}(52)$
6.	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{4 1}$	benzene	10	48	$\mathbf{4 6}(48)$
7.	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{4 1}$	ethanol	-20	72	$\mathbf{4 6}(31)$
8.	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{4 1}$	ethanol	0	72	$\mathbf{4 6}(39)$

a: 0.3 equivalents of guanidine were employed.

The yield of the conjugate addition reaction varied from 31 to 65% and lowering the reaction temperature slowed down the reaction considerably. Thus, while a 65% yield of adduct 46 was obtained after 32 h at ambient temperature, the reaction at $10^{\circ} \mathrm{C}$ had to be conducted for 48 h to obtain a yield of 48%.

The Michael adducts were hydrolyzed with concomitant decarboxylation to furnish the cyclohexanone 3-acetic acids 47 by heating in 6 M $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{CH}_{3} \mathrm{COOH} .{ }^{9}$ The acids were obtained in 11-60\% yield.

Scheme 16.

The enantioselectivity of the Michael addition process is based on the optical rotation of the cyclohexanone acetic acids. In most of the cases, the enantiomeric excess was quite low (1-10\%) as judged by the specific rotation and an alternative determination of enantiomeric excess was not carried out. The results are summarized in Table 4.

Table 4. Hydrolysis of Michael adducts.

No.	guanidine	Adduct (\% yield)	Acid	Acid $\%$ yield	Acid $[\alpha]_{\mathrm{D}}{ }^{0}$	Acid 34 $\%$ e.e. $^{\text {a }}$
1.	$\mathbf{4 2}$	$\mathbf{4 6}(40)$	$\mathbf{4 7}$	38	-.37	10
2.	$\mathbf{4 2}$	$\mathbf{4 6}(46)$	$\mathbf{4 7}$	19	-0.94	7
3.	$\mathbf{4 2}$	$\mathbf{4 6}(55)$	$\mathbf{4 7}$	11	-0.28	2
4.	$\mathbf{4 2}$	$\mathbf{4 6}(65)$	$\mathbf{4 7}$	22	-0.06	1
5.	$\mathbf{4 2}$	$\mathbf{4 6}(52)$	$\mathbf{4 7}$	46	-0.10	1
6.	$\mathbf{4 2}$	$\mathbf{4 6}(48)$	$\mathbf{4 7}$	60	-0.24	2
7.	$\mathbf{4 2}$	$\mathbf{4 6}(31)$	$\mathbf{4 7}$	41	-0.71	5
8.	$\mathbf{3 8}$	$\mathbf{4 6}(39)$	$\mathbf{4 7}$	39	-0.08	1

a: based on specific rotation.

The low enantioselectivity may be due to a retro-Michael reaction. However, even if operative, this process must be quite slow since the Michael adducts are obtained in good yield.

4. CONCLUSION

Enantiomerically pure guanidines were synthesized and were used as catalysts in the asymmetric nitroaldol and Michael addition reactions. Enantioselection was low for both these reactions which suggests that the stereogenic centers in the guanidine are far away from the reaction site. The study provides useful information regarding the structural features that will have to be incorporated into enantiomerically pure guanidines to achieve good levels of asymmetric induction.

5. EXPERIMENTAL

General experimental techniques have been described in the experimental section of Chapter 1.

(S,S)-N,N'-Bis(1-phenylethyl)thiourea (32): ${ }^{7}$

A solution of carbon disulfide $(1.2 \mathrm{ml}, 20 \mathrm{mmol})$ and the $(S)-(-)-1-$ phenylethylamine ($5.14 \mathrm{ml}, 40 \mathrm{mmol}$) in ethanol (35 ml) was heated to reflux for 20 h . The solution was cooled to ambient temperature and the crystals obtained were filtered off, washed with hexane and ether, and air-dried to give 4.20 g (74\%) of 32.
mp: $200-202{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta 7.02-7.21(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar} H), 6.24(\mathrm{bs}, 2 \mathrm{H}, 2 \times \mathrm{NH}), 5.04(\mathrm{bs}, 2 \mathrm{H}, 2 \times \mathrm{CH})$,
$1.45\left(\mathrm{~d}, J=6.8,6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right)$.

IR $\left(\mathrm{CHCl}_{3}\right)$:

$3200,1525,1320,1065,740,680 \mathrm{~cm}^{-1}$.
$[\alpha]_{\mathrm{D}}{ }^{25}=+102.2\left(\mathrm{c} 1.3, \mathrm{CHCl}_{3}\right)$

(S,S)-bis(1-Phenylethyl)carbodiimde (33): ${ }^{7}$

A mixture of thiourea $32(5 \mathrm{~g}, 17.6 \mathrm{mmol})$ and $\mathrm{HgO}(7.62 \mathrm{~g}, 35.2 \mathrm{mmol})$ in acetone was heated to reflux for 1 h . Reaction mixture was filtered through celite and the filtrate was concentrated. The residue was redissolved in pentane and cooled to $-30{ }^{\circ} \mathrm{C}$ to precipitate the urea by-product which was then filtered off. The filtrate was concentrated to give $3.34 \mathrm{~g}(76 \%)$ of $\mathbf{3 3}$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$\delta 7.35-7.19(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar} H), 4.59-4.49(\mathrm{q}, J=6.8,2 \mathrm{H}, 2 \times \mathrm{CH}), 1.47-1.43(\mathrm{~d}, 6 \mathrm{H}$, $2 \mathrm{xCH}_{3}$).

IR (neat):
3083, 3062, 3028, 2974, 2953, 2925, 2869, 2119, 1492, 1452, 1373, 1299, 1276, 1203, 1070, 1027, 757, $698 \mathrm{~cm}^{-1}$.
(S)-(-)-1-(tert-Butoxycarbonyl)-2-pyrrolidinemethanol (34): ${ }^{29}$

To a cooled solution of prolinol ($202 \mathrm{mg}, 2 \mathrm{mmol}$) in ethyl acetate $(5 \mathrm{ml})$ was added $(\mathrm{BoC})_{2} \mathrm{O}(457 \mathrm{mg}, 2.1 \mathrm{mmol})$. The reaction mixture was stirred for 2 h . After the reaction was complete ethyl acetate (5 ml) was added and the solution was washed with 1 N HCl , brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of solvent under reduced pressure gave $365 \mathrm{mg}(90 \%)$ of $\mathbf{3 4}$ as oil that solidified on cooling.
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta 3.65$ (bs, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), 3.61-3.25 (m, $5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{~N}, \mathrm{CHN}$), 2.06$1.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.47\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{xCH}_{3}\right)$.

(S)-(+)-2-Methoxymethylpyrrolidine (35): ${ }^{28}$

To a cooled suspension of sodium hydride ($25 \mathrm{mg}, 1.05 \mathrm{mmol}$) and MeI ($0.3 \mathrm{ml}, 4.75 \mathrm{mmol}$) in THF (2 ml) was added $34(192 \mathrm{mg}, 0.96 \mathrm{mmol}$, in 2 ml THF) dropwise. And the mixture was stirred for 2 h at $10{ }^{\circ} \mathrm{C}$. After the reaction was complete sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was extracted with EtOAc ($3 \times 5 \mathrm{ml}$). Evaporation of solvent under reduced pressure gave 165 mg
(77%) of the O-methylated product. Deprotection ($165 \mathrm{mg}, 0.76 \mathrm{mmol}$) with conc. HCl in EtOAc gave 57 mg (65\%) of $\mathbf{3 5 .}$
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta 3.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NC} H), 3.6-3.28\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 3.37(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 1.95-1.77(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH})$.
$[\alpha]_{\mathrm{D}}{ }^{25}=+2.78$ (c 5.8, ethanol) (Lit. ${ }^{28}[\alpha]_{D}=+2.81$ (c 5.8, ethanol)

(4S, 5S)-(-)-trans-4,5-Dihydro-4,5-diphenylimidazole -2-thione (37): ${ }^{30}$

To a cooled $\left(5-10 \quad{ }^{0} \mathrm{C}\right)$ solution of the ($1 S, 2 S$)-(-)-1,2-diphenyl ethanediamine 36 ($0.64 \mathrm{~g}, 3 \mathrm{mmol}$) in ethanol (20 ml) was added carbon disulfide. Initial addition was done slowly to avoid a vigorous initiation of the reaction. As the reaction initiated, the cooling bath was removed and the mixture was heated at $60{ }^{\circ} \mathrm{C}$. The remaining carbon disulfide was added over a period of 30-40 min. After the addition was complete, the reaction mixture was heated to reflux for 19 h (monitored by TLC). After the reaction was complete, the mixture was concentrated and the residue was purified by crystallization with ethyl acetate/ pet. ether to give $739 \mathrm{mg}(97 \%)$ of 37.
mp: $198-199{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$

$\delta 7.45-7.3(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar} H), 7.3-7.2(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 6.7(\mathrm{bs}, 2 \mathrm{H}, \mathrm{N} H), 4.8(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{NCH})$.

IR (Nujol):
$3166,2854,1524,1277,1200,765,701 \mathrm{~cm}^{-1}$.

MS (EI, 70 eV):
m/z 57 (38), 69 (19), 79 (28), 89 (19), 97 (6), 106 (100), 121 (12), 148 (14), 165 (8), $183(5), 254\left(\mathrm{M}^{+}, 33\right)$.

Analysis for $\mathrm{C}_{15} \mathrm{H}_{14} \mathbf{N N}_{2} \mathrm{~S}$:

Calcd. C, $70.83 \mathrm{H}, 5.55 \mathrm{~N}, 11.01 \mathrm{~S}, 12.61$
Found C, 70.74 H, 5.86 N, 11.16 S, 12.84
$[\alpha] \mathbf{D}=-58.7^{0}\left(c 0.2, \mathrm{CHCl}_{3}\right)$.

(4S, 5S)-(-)-trans-2-Methylthio -4,5-dihydro-4,5-diphenylimidazole

hydroiodide (38):

To a solution of ($4 S, 5 S$)-(-)-trans-4,5-dihydro-4,5-diphenylimidazole -2-
thione 37 ($0.25 \mathrm{~g}, 1 \mathrm{mmol}$) in THF (5 ml) was added methyl iodide ($0.15 \mathrm{ml}, 2$ $\mathrm{mmol})$. The reaction mixture was heated to reflux for 1 h , concentrated and dried thoroughly to give 0.4 g (quantitative) of $\mathbf{3 8}$, which was pure by NMR.
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta 7.45-7.3(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 7.3-7.15(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar} H), 5.1(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}), 2.85$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SCH}_{3}$)
${ }^{13} \mathbf{C}$ NMR ($50.3 \mathrm{MHz}, \mathrm{CDCb}$):
$\delta 170.3(\mathrm{~N}-C=\mathrm{N}), 136.7$ (ArCipso), 128.7, $126.0(\operatorname{ArC}), 68.9(\mathrm{NCH}), 15.6$ $\left(\mathrm{SCH}_{3}\right)$.

IR $\left(\mathrm{CHCl}_{3}\right)$:
$3030,2880,1532,1164,760,698 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV):
m/z 55 (28), 69 (18), 79 (22), 89 (22), 106 (100), 121 (21), 127 (34), 142 (42), 148 (56), 163 (15), 254 (45), $396\left(\mathrm{M}^{+},<1\right)$.

(4S, 5S)-(-)- 2,2 -Dimethylamino -4,5-dihydro-4,5-diphenylimidazole (39):

To a solution of the 2-methylthio-4,5-dihydro-iimdazole hydroiodide $\mathbf{3 8}$ in ethanol was added 40% aqueous solution of dimethylamine in excess. The reaction mixture was heated at $50{ }^{\circ} \mathrm{C}$. The reaction was monitored by TLC, aqueous dimethylamine was added to the reaction mixture periodically and heating was continued for 48 h After completion of the reaction, the mixture was concentrated and dried thoroughly. The residue was suspended in water and the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and excess 4 N NaOH solution was added. The resulting mixture was extracted with ethyl acetate or dichloromethane. The combined organic extracts were washed with water, brine, dried and concentrated to give the required guanidine $\mathbf{3 9}$ which was pure by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta 7.30(b r s, 10 \mathrm{H}, \mathrm{Ar} H), 4.70(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}), 3.05\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{NCH}_{3}\right)$.
${ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$162.2(C=\mathrm{N}), 144.2$ (ArCipso), 128.3, 127.1, 126.4 (ArC), $74.2(C-H)$, $38.1\left(2 \times \mathrm{CH}_{3}\right)$.

IR (Neat):
2923, 2854, 1610, 1463, 1377, 1348, 1263, 1191, 1035, $771,700 \mathrm{~cm}^{-1}$.

Anal. for $\mathbf{C}_{17} \mathbf{H}_{19} \mathbf{N}_{3}$:

Calcd. C, 76.94 H, 7.22 N, 15.84.
Found C, 76.74, H, 7.43 N, 15.45.
$[\alpha]_{\mathbf{D}}=+40\left(c 0.5, \mathrm{CHCl}_{3}\right)$.

General procedure for the prepartion of Guanidines 40-42 from the carbodiimide 33:

A mixture of the carbodiimde (1 eq .) and amine (1 eq .) was stirred at room temperature for 8 h . 2 N HCl (3 ml) was added, the mixture was stirred for 5 minutes and then washed with ethyl acetate ($3 \times 5 \mathrm{ml}$). The aqueous layer was cooled and was basified with 12 N NaOH . The resulting mixture was extracted with dichloromethane (4 x 5 ml). Drying and concentration of the combined dichloromethane extracts gave the guanidine that was pure by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

(2S)-2-Methoxymethyl)-N,N'-bis[(1S)-1 -phenylethyl]pyrrolidine-1-

 carboximidamide (40):Reaction of S-(+)-2-methoxymethylpyrrolidine $35(115 \mathrm{mg}, 1 \mathrm{mmol})$ and the carbodiimide 33 ($250 \mathrm{mg}, 1 \mathrm{mmol}$) for 8 h gave $182 \mathrm{mg} 49 \%$) of $\mathbf{4 0}$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$\delta 7.17(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar} H), 4.34-4.18\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OMe}, \mathrm{CHN}\right.$ (ring), 3.37-
3.31 (m, 2H, CH2N), 3.14 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.01-1.29 (m and d, $J=6.8,10 \mathrm{H}$, $2 \times \mathrm{CH}_{2}, \mathrm{CH}_{3}$).
${ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$
$152.3(C=\mathrm{N}), 128.3,128.0,126.3,126.0,(\mathrm{Ar} C), 74.8\left(\mathrm{CH}_{2} \mathrm{OMe}\right), 58.5$
$(\mathrm{HC}-\mathrm{N}) 56.3\left(\mathrm{OCH}_{3}\right), 49.8\left(\mathrm{CH}_{2} \mathrm{~N}\right), 29.1\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right)$.
IR (Neat):
3334, 3082, 3060, 3026, 2968, 2925, 2869, 1612, 1581, 1492, 1450, 1390, $1384,1352,1301,1278,1217,1203,1107,910,756,732,700 \mathrm{~cm}^{1}$.

MS (EI, 70 eV):
m/z 84 (100), 105 (16), 120 (7), 141 (1), 190 (1), 216 (1), 245 (1), 334 (1), 365
$\left(\mathrm{M}^{+}, 1\right)$.
$[\alpha] \mathbf{D}=+72(c 0.6$, ethanol $)$.

(S, S)- N-Methyl- $N^{\prime}, N^{\prime \prime}$-bis(1-phenylethyl)guanidine (41):

Reaction of methylamine (2 M soln. in THF, $7.5 \mathrm{ml}, 15 \mathrm{mmol}$) and carbodiimde 33 ($250 \mathrm{mg}, 1 \mathrm{mmol}$) for 12h gave 790 mg (93%) of 41 .
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$\delta 7.25-7.05(\mathrm{~m}, 10 \mathrm{H}, \operatorname{Ar} H), 4.85-4.70(\mathrm{q}, J=6.7,2 \mathrm{H}, \mathrm{CH}), 2.85(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right), 1.50-1.45\left(\mathrm{~d}, \mathrm{~J}=6.7,6 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$\delta 153.8(C=\mathrm{N}), 143.8(\operatorname{Ar}$ Cipso $), 129.1,127.7,126.1(\operatorname{ArC}), 77.8(\mathrm{CH})$, $52.8\left(\mathrm{~N} \mathrm{CH}_{3}\right), 24.7\left(\mathrm{CH}_{3}\right)$.

IR (Neat):
$2972,3279,3440,1631,1529,1452,1210,1086,1023,912,759 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV):
m/z 57 (8), 77 (50), 91 (12), 105 (100), 176 (8), 266 (5.1), $281\left(\mathrm{M}^{+}, 24\right)$.
$[\alpha]_{\mathbf{D}}=61(c$ 1.1, ethanol $)$.
$N, N^{\prime}, N^{\prime}$ 'tris(1-Phenylethyl)guanidine (42):
Reaction of 1-phenethylamine ($363 \mathrm{mg}, 3 \mathrm{mmol}$) and cabodiimde (250 $\mathrm{mg}, 1 \mathrm{mmol})$ for 8 h gave 790 mg (71%) of $\mathbf{4 2}$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
δ 7.16-7.11 (m, 10H, 2xArH), 6.75-6.74 (m, 5H, ArH), 4.51 (brs, 3 H , $3 \mathrm{xCH}), 1.32-1.29\left(\mathrm{~d}, J=6.8,9 \mathrm{H}, 3 \mathrm{xC} H_{3}\right)$.
${ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$148.9(C=\mathrm{N}), 128.5,127.8,127.4,126.8,126.0,125.6(\operatorname{Ar} C), 52.0(C-\mathrm{H})$, $24.7\left(\mathrm{CH}_{3}\right)$.

IR (Neat):

3429, 3058, 3026, 2996, 2923, 2867, 1637, 1492, 1450, 1365, 1269,1143, $1085,1068,1026,761,700 \mathrm{~cm}^{1}$.

MS (EI, 70 eV):
m/z 65 (32), 77 (48), 91 (65), 105 (100), 120 (51), 155 (32), 184 (23), $371\left(\mathrm{M}^{+}, 14\right)$.
$[\alpha] \mathbf{D}=+265$ (c 1.2, ethanol).

2-Nitro-1-phenylethan-1-ol (43): ${ }^{7}$

The reaction of benzaldehyde ($0.1 \mathrm{ml}, 1 \mathrm{mmol}$) and nitromethane $(0.1 \mathrm{ml}$, $1.5 \mathrm{mmol})$ in the presence of guanidine $41(31 \mathrm{mg}, 0.1 \mathrm{mmol})$ in toluene for 40 h gave after purification $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate, $\left.9 / 1\right), 53 \mathrm{mg}$ (32%) of 43.
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta 7.4(\mathrm{bs}, 5 \mathrm{H}, \mathrm{Ar} H), 5.55-5.4(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 4.7-4.5\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NO}_{2}\right)$, 3.0 (bd, 1H, OH).

IR (Neat):
$3754,3446,2921,1553,1454,1418,1380,1066,896,763,700 \mathrm{~cm}^{-1}$.

$$
\begin{aligned}
& {[\alpha]_{\mathrm{D}}=2.0^{0}(c 1.0, \mathrm{EtOH}) \text {, e.e. }=6 \%\left(\mathrm{Lit.}^{7}[\alpha]_{\mathrm{D}}=-34.0^{0}(\mathrm{EtOH}) \text { for ' } S\right. \text { ' }} \\
& \text { enantiomer }) .
\end{aligned}
$$

(3-Oxocyclohexyl)-propanedioic acid, diethyl ester (46):

To a cooled $\left(-20{ }^{0} \mathrm{C}\right)$ solution of the cyclohexenone (44) $(0.29 \mathrm{ml}, 3$ $\mathrm{mmol})$ in ethanol was added the guanidine followed by diethyl malonate (45) (0.3 $\mathrm{ml}, 2 \mathrm{mmol}$). The homogeneous reaction mixture was kept at $-20{ }^{0} \mathrm{C}$ for 60 h , after which the solution was concentrated. The residue obtained was dissolved in dichloromethane and the solution was successively washed with 0.5 N HCl , water, brine, dried and concentrated to give, after purification $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate, 7/3), $0.26 \mathrm{~g}(50 \%)$ of 46.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$\delta 4.2-4.1\left(2 \mathrm{x} \mathrm{q}, J=6,4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.25\left(\mathrm{~d}, J=11,1 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CO}\right), 2.55-$
$2.4\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 2.4-2.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}\right), 2.25-2.15(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}, \mathrm{COCH}_{2}$), 2.05-1.95 (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 1.95-1.85 (m, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 1.7-1.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.55-1.45(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.25-1.15\left(2 \mathrm{xt}, \mathrm{J}=6,6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

IR (Neat):
$3000,1760,1460,1420,1390,1340,1320,1260,1220,1180,1110,1040$, $870 \mathrm{~cm}^{-1}$.

3-Oxocyclohexaneacetic acid (47): ${ }^{34}$

To a suspension of the $\mathbf{4 6}(0.12 \mathrm{~g}, 0.47 \mathrm{mmol})$ in acetic acid was added $6 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ (exotherm). The reaction mixture was heated at $130-140{ }^{\circ} \mathrm{C}$ for for 4 h .

It was then concentrated and thoroughly dried. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, dichloromethane/methanol, 95/5) to yield 40 mg (55\%) of 47 .
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
δ 8.4-7.9 (bs, $1 \mathrm{H}, \mathrm{COOH}), 2.6-2.2\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOH}, \mathrm{COCH}_{2} \mathrm{CH}\right.$, $\mathrm{COCH}_{2} \mathrm{CH}_{2}$), 2.2-1.9 (m, 3H, $\left.\mathrm{COCH}_{2} \mathrm{CH}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 1.8-1.55(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.55-1.2 (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$).

IR (Neat):
$2936,1713,1448,1418,1346,1312,1271,1227,1159,1097,868 \mathrm{~cm}^{-1}$.
$[\alpha]_{\mathbf{D}}=-1.37\left(c 1.0, \mathrm{CHCl}_{3}\right)$, e.e. $=10 \%\left(\mathrm{Lit}^{32}[\alpha]_{\mathrm{D}}=-13.2^{0}\left(c=1.0, \mathrm{CHCl}_{3}\right)\right.$ for ' S ' enantiomer with 98% e.e.).

5. REFERENCES:

1. Cotton, F. A.; Day, V. W.; Hazen, E. E.; Larsen, S. J. Am. Chem. Soc. 1973, 95, 4834.
2. Echavarren, E.; Galan, A.; Lehn, J.-M.; de Mendoza, J. J. J. Am. Chem. Soc. 1989, 111 , 4994.
3. a) Snider, B. B.; Faith, W. C. J. Am. Chem. Soc. 1984, 106, 1443. b) Kishi, K. Y.; Tanino, H.; Nakato, T.; Kaneko, T. J. Am. Chem. Soc. 1977, 99, 2818. c) Kishi, K. Y.; Fukuyama, T.; Aratani, M.; Nakatsubo, F.; Goto, T.; Inoue, S.; Tanino, H.; Sugiura, S.; Kakoi, S. J. Am. Chem. Soc. 1972, 94, 9219.
4. Rosini, G. Comprehensive Organic Synthesis, Pergamon Press, Oxford 1991, Vol.2, 321-340.
5. a) Sasai, H.; Suzuki, T.; Arai, S.; Arai, T.; Shibasaki, M. J. Am. Chem. Soc. 1992, 114, 4418. b) Sasai, H.; Suzuki, T.; Itoh, N.; Shibasaki, M. Tetrahedron Lett. 1993, 34, 851.
6. Sasai, H.; Tokunaga, T.; Watanabe, S.; Suzuki, T.; Itoh, N.; Shibasaki, M. J. Org. Chem. 1995, 60, 7385.
7. Chinchilla, R.; Najera, C.; Sanchez- Agullo P. Tetrahedron: Asymmetry 1994, 5, 1393.
8. Leonard, J.; Diez-Barra, E.; Merino, S. Eur. J. Org. Chem. 1998, 2051.
9. Mukaiyama, T.; Hirako, Y.; Takeda, T. Chem. Lett. 1978, 461.
10. Yamaguchi, M.; Shiraishi, T.; Hirama, M. Angew. Chem. Int. Ed. Engl. 1993, 32, 1176.
11. Yamaguchi, M.; Shiriashi, T.; Igarashi, Y.; Hirama, M. Tetrahedron Lett. 1994, $35,8233$.
12. Taguchi, T.; Kawara, A. Tetrahedron Lett. 1994, 35, 8805.
13. Toke, L.; Fenichel, M. Tetrahedron Lett. 1995, 36, 5951.
14. Bako, P.; Szollosy, A.; Bombicz, P.; Toke, L. Synlett. 1997, 291.
15. Kim, Sung-Gon and Ahn, K. A. Tetrahedron Lett. 2001, 4175-4177.
16. Cram, D. J.; Sogah, G. D. Y. J. Chem. Soc. Chem.Commun. 1981, 625.
17. a) Inagaki, K.; Nozaki, K.; Takaya, H. Synlett. 1997, 119. b) Kitajima, H.; Katsuki, T. Synlett. 1997, 568.
18. a) Desimoni, G.; Dusi, G.; Faita, G.; Quadrelli, P.; Righetti, P. Tetrahedron 1995, 51 , 4131. b) Bernardi, A.; Colombo, G.; Scolastico, C. Tetrahedron Lett. 1996, 37, 8921.
19. Sasai, H.; Arai, T.; Shibasaki, M. J. Am. Chem. Soc. 1994, 116, 1571.
20. Sasai, H.; Arai, T.; Sataw, Y.; Houk. K. N.; Shibasaki, M. J. Am. Chem. Soc. 1995, 117, 6194.
21. a) Rasmussen, C. R.; U. S. Patent No. 4414 211, 1980. b) Iwanowicz, E.; Reid, J. A.; Lin, J.; Gu, Z. Tetrahedron Lett. 1992, 33, 5933.
22. Kim, K.; Lin, Y.-T.; Mosher, H. S. Tetrahedron Lett. 1988, 29, 3183.
23. Bredereck, H.; Bredereck, K. Chem. Ber. 1961, 94, 2278.
24. Rasmussen, C. R. U. S. Patent No. 4211 867, 1983.
25. a) Yamamoto, N.; Isobe, M. Chem. Lett. 1994, 2299, b) Kurzer, F.; Sanderson, P. M. J. Chem. Soc. 1960, 3240.
26. Davis, T. L. Org. Synth. 1927, 7, 46.
27. Zbigniew, K; Czeslaw, B. Pol. J. Chem. 1979, 53, 1979.
28. Enders, D; Peter, F; Helmut, K. Org. Synth 1984, 65,
29. Spatola, A. F. et al. J. Am. Chem. Soc. 1986, 108, 825.
30. Davies, S. G.; Mortlock, A. A. Tetrahedron 1993, 49, 4419.
31. Corey, E. J.; Link, J. O. Tetrahedron Lett. 1992, 24, 3431.
32. Boyle, P. H.; Convery, M. A.; Davis, A. P.; Hosken, G. D.; Murray, B. A. J. Chem. Soc. Chem. Commun. 1992, 239.
33. Dawei, M; Kejun, C. Tetrahedron: Asymmetry 1999, 10, 713.
34. a) Hill, R. K.; Edwards, A. G. Tetrahedron 1965, 21 ,1501. b) Magnus, P.; Sear, N. L.; Kim, C. S.; Vicker, N. J. Org. Chem. 1992, 57, 70.
35. Hammouda, H. A.; Abd-Allah, S. O.; Hussain, S. M.; Yousef, N. M. Gazz. Chim. Ital. 1984, 114, 201.

SECTION 1: Magnesium bromide catalyzed acylation of alcohols.

1. INTRODUCTION

The acylation of an alcohol is usually achieved by the reaction of an acid anhydride or acid chloride in the presence of amine bases such as triethylamine, pyridine or 4-($\mathrm{N}, \mathrm{N}^{\prime}$-dimethylamino)pyridine (DMAP) ${ }^{1}$. In these reactions, the base is considered to provide activation to acylating reagent (as nucleophilic catalyst, e.g DMAP) whereas in some cases the base is used to trap the generated acid (Scheme 1).

Scheme1.

Recently Vedejs et al. reported tributyl phosphine as a similar catalyst for acylation of alcohols. ${ }^{2}$ Although the mechanism of tributyl phosphine catalysis is not yet clear.

Besides the above catalysts, various lewis acids such as $\mathrm{InI}_{3},{ }^{3} \mathrm{Bi}(\mathrm{OTf})_{3},{ }^{4}$ $\mathrm{FeCl}_{3},{ }^{5} \quad \operatorname{In}(\mathrm{OTf})_{3},{ }^{6} \quad \mathrm{Sc}(\mathrm{OTf})_{3} / \mathrm{DMAP},{ }^{7} \quad \mathrm{TaCl}_{5},{ }^{8} \quad \mathrm{Sc}\left(\right.$ perfluoroalkanesulfonyl)imide, ${ }^{9}$ $\mathrm{Sc}(\mathrm{OTf})_{3},{ }^{10} \mathrm{Sc}(\mathrm{OAc})_{3},{ }^{11}$ and $\mathrm{COCl}_{2}{ }^{12}$ are known to catalyze the acylation of alcohols (Scheme 2).

Scheme 2.

Lewis acids:

$$
\mathrm{M}(\mathrm{X}) \mathrm{n}=\text { Lewis acid }
$$

$\mathrm{InI}_{3}, \mathrm{Bi}(\mathrm{OTf})_{3}, \mathrm{FeCl}_{3}, \mathrm{In}(\mathrm{OTf})_{3}, \mathrm{Sc}(\mathrm{OTf})_{3}, \mathrm{TaCl}_{5}, \mathrm{Sc}$ (perfluorosulfonyl)imide, $\mathrm{Sc}(\mathrm{OTf})_{3}, \mathrm{Sc}(\mathrm{OAc})_{3}, \mathrm{CoCl}_{2}$.

The role of magnesium bromide as a lewis acid is well known, especially in the reactions of Grignard reagents, and other magnesium (II) salts have found application as lewis acids in several synthetic transformations. ${ }^{13}$ To the best of our knowledge, MgBr_{2} has not been used as a catalyst for the acylation of alcohols. ${ }^{14}$

2. OBJECTIVE:

The objective of our work was to study the utility of magnesium bromide as a catalyst for acylation of alcohol and possibility of carrying out kinetic resolution of secondary alcohols using chiral Mg^{2+} complexes (Scheme 3).

Scheme 3.

3. RESULTS AND DISCUSSION:

For initial investigation, menthol 48 was chosen as the substrate. Treatment of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of menthol with acetic anhydride in the presence of MgBr_{2} for 3 h at ambient temperature generated menthyl acetate $\mathbf{6 0}$ in 72% isolated yield. Acylation was very slow in the absence of MgBr_{2} (ca. 10\% conversion after 3h at ambient temperature).

Various solvents were examined for the solvent study using menthol 48 as a substrate (Table 1). Rate of acylation is comparable in benzene and toluene but is considerably reduced in ether (60% isolated yield after 16 h at ambient temperature) and acetonitrile ($60 \%, 48 \mathrm{~h}$).

Table 1: Effect of solvents.

Compound	Solvent	Time (h)	Yield (\%)
$\mathbf{4 8}$	Benzene	2.45	69
$\mathbf{4 8}$	Ether	16	60
$\mathbf{4 8}$	Acetonitrile	48	60
$\mathbf{4 8}$	dichloromethane	3	71
$\mathbf{4 8}$	Toluene	5	65

Use of dichloromethane as solvent generated acylated product in optimum yield.

The acylation (acetylation and benzoylation) is applicable to variety of substrate (Table 2, Scheme 4).

Scheme 4.

Table 2. MgBr_{2} catalysed acylation of alcohols

Substrate	No.	Anhydride	$\begin{aligned} & \hline \mathbf{m o l} \% \\ & \mathbf{M g B r}_{2} \end{aligned}$	Reacn. Time	ester	Yield \% ester
$\mathrm{Me} \mathrm{LOH}^{i \mathrm{Pr}}$	48	$\mathrm{Ac}_{2} \mathrm{O}$	5	3 h	60	72
$\mathrm{PhCH}(\mathrm{OH}) \mathrm{CH}_{3}$	49	$\mathrm{Ac}_{2} \mathrm{O}$	5	5 h	61	83
$\square^{\circ \mathrm{OH}}$	50	$\mathrm{Ac}_{2} \mathrm{O}$	5	3 h	62	65
		$\mathrm{Bz}_{2} \mathrm{O}$	5	5 h	63	67
	51	$\mathrm{Bz}_{2} \mathrm{O}$	5	16 h		62
\bigcirc		$\mathrm{Bz}_{2} \mathrm{O}$	25	45 min	64	80
	52	$\mathrm{Bz}_{2} \mathrm{O}$	10	30 min	65	63
2,6-ditertbutyl-4methylphenol	53	$\mathrm{Ac}_{2} \mathrm{O}$	5	12 h	66	65
	54	$\mathrm{Ac}_{2} \mathrm{O}$	10	48 h	67	$95^{\text {a }}$
	55	$\mathrm{Ac}_{2} \mathrm{O}$	5	45 min	68	$93^{\text {a }}$
	56	$\mathrm{Ac}_{2} \mathrm{O}$	5	$24 \mathrm{~h}^{\text {b }}$	69	- $\left(30^{\text {d }}\right.$)
				12 h	70	- $\left(90^{\text {d }}\right.$)
	57	$\mathrm{Ac}_{2} \mathrm{O}$	5	$\begin{gathered} 24 \mathrm{hb}^{\mathrm{h}} \\ 5 \mathrm{~h} \end{gathered}$	71	$\begin{aligned} & 60^{c} \\ & -\quad\left(83^{d}\right) \end{aligned}$
$\mathrm{PhCH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}$	58	$\mathrm{Ac}_{2} \mathrm{O}$	5	24 h		-
Benzoin	59	$\mathrm{Ac}_{2} \mathrm{O}$	5	72 h	73	30

a: yield of crude product (pure by ${ }^{\mathrm{I}} \mathrm{H}$ NMR). b: reaction at $0^{\circ} \mathrm{C}$. c: GC yield. d: yield of olefin.

The rate of acylation increases with increase in amount of the MgBr_{2} employed (Entry 4, Table 2). Nitroalcohol 54 undergoes dehydration during acetylation in basic condition. ${ }^{15}$ Treatment of 54 with $\mathrm{MgBr}_{2} / \mathrm{Ac}_{2} \mathrm{O}$ affords the acylated product in excellent yield (95%, pure by ${ }^{1} \mathrm{H}$ NMR) thereby emphasizing the advantage of nonbasic reaction conditions. Attempted acylation of the tertiary alcohols 56 and 57 with the $\mathrm{MgBr}_{2} / \mathrm{Ac}_{2} \mathrm{O}$ system resulted in elimination at
ambient temperature. Conducting the acylation of 56 at $\mathrm{O}{ }^{\circ} \mathrm{C}$ reduced the rate of elimination process, but no acetate was obtained (30% olefin plus unreacted 56 after 24 h by 1 H NMR analysis of the crude product). However acetylation of $\mathbf{5 7}$ was success at lower temperature ($<5 \%$ olefin from 10 at $0{ }^{\circ} \mathrm{C}$ and 60% conversion to the acetate).

Acylation of 1-phenylethane-1,2-diol (58) was unsuccessful, presumably due to irreversible complexation of MgBr_{2} by the substrate, thereby reducing its Lewis acidity. Interestingly, this does not seem to be a difficulty with the other alcohol substrates although they are present in large excess during the initial stages of the reaction. Similarly, nitroalcohols $\mathbf{5 4}$ and $\mathbf{5 5}$ are acetylated quite efficiently, although they are potential chelators of MgBr_{2}. In comparison, the acetylation of benzoin (59) proceeds at a much slower rate, presumably due to steric reasons and/or complexation with MgBr_{2}.

Section 2. Application of $\mathbf{M g B r}_{2}$ in the kinetic resolution of secondary alcohols.

1. Introduction:

The enzymatic resolution of chiral alcohols has been extensively investigated and the topic has been reviewed recently. ${ }^{16}$ Among the nonenzymatic methods, the use of stoichiometric amounts of chiral acylating agents has been examined and highly enantioselective procedures have been developed. ${ }^{17}$ In contrast, very few studies ${ }^{18-20}$ have addressed the catalytic enantioselective acylation of racemic alcohols with synthetic organic or organometallic catalysts as an alternative to enzymatic resolution.

Recently, Vedejs has examined the use of chiral phosphine catalyst to catalyze the acylation of secondary alcohols with moderate to good (29-98\%) enantioselectivity (Scheme 5). ${ }^{21}$

Scheme 5.

Other catalysts incorporating a pyridinyl ring $/ \eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$ or a $\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{5}$ group were also examined with the objective of creating a more asymmetric environment in the vicinity of the nucleophilic nitrogen atom. These catalysts exhibited better enantioselectivity for the acylation of several unsaturated secondary alcohols. ${ }^{19}$ The effect of solvent on the rate of acylation was also examined. ${ }^{20}$ Chandrasekhar et. al. reported TaCl_{5}-chiral ligands for the kinetic resolution of secondary alcohols albeit in low e.e. ${ }^{8}$

2. OBJECTIVE:

Magnesium bromide is known to complex with chiral ligands and chiral magnesium complexes have been employed in catalytic assymetric reactions such as conjugate additions ${ }^{22}$, Diels-Alder reactions. ${ }^{23}$ Our objective was to explore the possibility of carrying out kinetic resolution of secondary alcohols using chiral MgBr_{2}-ligands.

3. RESULTS AND DISCUSSION

For initial investigation bisoxazolidine 79 was chosen. Bisoxazolidine 79 was prepared from condensation of dimethylmalonylchloride 76 and phenylalaninol followed by cyclization. ${ }^{24}$

Scheme 6.

Deprotonation of diethylmalonate with KH (2.5 equiv.) in THF followed by treatment with MeI (2 eq.) generate $\mathbf{7 4}$ in 89% yield. Hydrolysis of $\mathbf{7 4}$ with KOH in alcohol water mixture gave 75 in 64% yield. Reaction of $\mathbf{7 5}$ with SOCl_{2} generated dimethylmalonylchloride $\mathbf{7 8}$ in quantitative yield. Condensation of 76 and phenylalalinol at $0{ }^{\circ} \mathrm{C}$ generated 77 in 61% yield. Chlorination of 77 generated 78 which after treatment with NaOH in 1:1 mixture of MeOH -water generated bisoxazolidine 79 in 61% yield (Scheme 6).
O-methylation of camphordiol $\mathbf{8 0}$ with $\mathrm{KH} /$ MeI gave $\mathbf{8 1}$ in 41% yield. ${ }^{25}$ Simmilarly (R)-1,2-dimethoxy-1-phenylethane ${ }^{25} \mathbf{8 3}$ and (R, R) 1,2-dimethoxy-1,2-diphenylethane ${ }^{25} 85$ was prepared by the O-methylation of 1,2-dihydroxy-1-
phenylethane 82 and 1,2-dimethoxy-1,2-diphenylethane 84 respectively (Scheme 7).

Scheme 7.

82

84

81

83

85

The ligands $\mathbf{7 9}, \mathbf{8 1}, \mathbf{8 3}, \mathbf{8 5}$ were used for complexation with MgBr_{2} in situ and the complexes were examined as catalysts for the acylation of phenethylalcohol (Scheme 8).

Scheme 8.

Table 3 summarizes the result of acylation of secondary alcohol using chiral complexes.

Table 3. Acylation of 1-phenylethyl alcohol using chiral complexes 79, 81, 83, 85.

Ligands	Anhydride	Time (h)	Temp $\left({ }^{\circ} \mathbf{C}\right)$	Yield $(\%)$	\% e.e. ${ }^{\text {c }}$
$\mathbf{7 9}$	$\mathrm{Ac}_{2} \mathrm{O}$	3	r.t.	34	-
$\mathbf{7 9}$	$\mathrm{Ac}_{2} \mathrm{O}$	4	10	28	-
$\mathbf{7 9}$	$\mathrm{Ac}_{2} \mathrm{O}$	48	-18	10	1
$\mathbf{8 1}$	$\mathrm{Bz}_{2} \mathrm{O}$	5	r.t	24	-
$\mathbf{8 3}$	$\mathrm{Bz}_{2} \mathrm{O}$	8	r.t	33	3
$\mathbf{8 3}$	$\mathrm{Ac}_{2} \mathrm{O}$	8	-16	11	-
$\mathbf{8 5}$	$\mathrm{Ac}_{2} \mathrm{O}$	12	r.t	38	-
$\mathbf{8 5}$	$\mathrm{Ac}_{2} \mathrm{O}$	12	10	12	-

c: based on specific rotation.
The selectivity is very low which reveals that the complexes are ineffective for the kinetic resolution of secondary alcohol.

4. CONCLUSION:

Magnesium bromide has been demonstrated to be a useful catalyst for the acylation of a variety of alcohols. The mildness of the procedure is exemplified by the successful acetylation of nitroalcohol substrates which are prone to dehydration.

Selectivity in kinetic resolution was quite low may be because MgBr_{2} was unable to complex with the ligands or the complexation was very weak.

5. EXPERIMENTAL

General experimental techniques have been described in the experimental section of Chapter 1.

General procedure for the acylation of alcohols:

To a solution of acetic anhydride and magnesium bromide in dichloromethane at ambient temperature was added alcohol. The mixture was stirred at ambient temperature. After the reaction was complete, the reaction mixture was diluted with dichloromethane. The solution was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the acetate.

Menthyl acetate (60):

The reaction of menthol 48 ($156 \mathrm{mg}, 1 \mathrm{mmol}$) with acetic anhydride (0.57 $\mathrm{ml}, 6 \mathrm{mmol}$) in the presence of magnesium bromide ($10 \mathrm{mg}, 0.05 \mathrm{mmol}$) in dichloromethane gave $140 \mathrm{mg}(70 \%)$ of $\mathbf{6 0}$, which was pure by ${ }^{1} \mathrm{H}$ NMR.
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta 4.74-4.61\left(\mathrm{dt}, J=4.4,10.7,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHOCOCH}_{3}\right), 2.04(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{COOCH}_{3}\right) 1.94-0.75\left(\mathrm{~m}, 19 \mathrm{H}, 3 \mathrm{CH}_{3}, 3 \mathrm{CH}_{2}, 4 \mathrm{CH}\right)$.

IR (Neat):
2955, 2896, 1736, 1455, 1370, 1244, 1182, 1155, 1096, 1024, 982, 904, $841,651,609,503,476 \mathrm{~cm}^{-1}$.

MS (EI, 70 eV): m/z 55 (17), 67 (27), 81 (94), 95 (100), 109 (17), 123 (36), 138 (44).

1-Phenylethyl acetate (61):

The reaction of phenethylalcohol $49(1.012 \mathrm{ml}, 1 \mathrm{mmol})$ with acetic anhydride ($0.48 \mathrm{ml}, 25 \mathrm{mmol}$) in the presence of magnesium bromide (46 mg , $0.25 \mathrm{mmol})$ in dichloromethane $(3 \mathrm{ml})$ for 5 hr . gave after purification $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate, $85 / 15$), $680 \mathrm{mg}(83 \%)$ of $\mathbf{6 1}$.
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta 7.34(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H), 5.88(\mathrm{q}, J=7,1 \mathrm{H}, \mathrm{C} H \mathrm{OAc}), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right)$, $1.53\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

IR (neat):
$3020,1850,1750,1510,1470,1390,1250,1220,1140,1070,1040,960$, $910,880 \mathrm{~cm}^{-1}$.

MS (EI, 70 eV): $\mathrm{m} / \mathrm{z} 77$ (35), 104 (100), 122 (60), $164\left(\mathrm{M}^{+}, 28\right)$.

Cyclohexyl Acetate (62):

The reaction of cyclohexanol $50(0.53 \mathrm{ml}, 5 \mathrm{mmol})$ with acetic anhydride ($0.71 \mathrm{ml}, 7.5 \mathrm{mmol}$) in the presence of magnesium bromide ($46 \mathrm{mg}, 0.25 \mathrm{mmol}$) in dichloromethane (5 ml) for 3hr. gave 0.46 mg (65%) of $\mathbf{6 2}$, which was pure by ${ }^{1} \mathrm{H}$ NMR.
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
δ 4.79-4.67 (m, 1H, CH), $2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 1.92-1.20(\mathrm{~m}, 10 \mathrm{H}$, $5 \mathrm{xCH}_{2}$).

IR (neat):
2937, 2860, 1827, 1763, 1451, 1378, 1364, 1240, 1124, 1045, 1022, 967, $904,840,824,653,607 \mathrm{~cm}^{-1}$.

Cyclohexyl benzoate (63):

The reaction of cyclohexanol $50(0.106 \mathrm{ml}, 1 \mathrm{mmol})$ with benzoic anhydride ($1.130 \mathrm{~g}, 5 \mathrm{mmol}$) in dichloromethane (3 ml) in the presence of magnesium bromide $(9.2 \mathrm{mg}, 0.05 \mathrm{mmol})$ for 5 h gave after flash column chromatography 132 mg (65\%) of $\mathbf{6 3}$.
${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl3):
δ 8.07-8.04 (m, $2 \mathrm{H}, \operatorname{Ar} H), 7.59-7.40(\mathrm{~m}, 3 \mathrm{H}, \operatorname{Ar} H), 5.09-4.99(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}), 1.98-1.42\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{CH}_{2}\right)$,

IR (neat):
2937, 2860, 1716, 1450, 1338, 1315, 1278, 1176, 1112, 1070, 1037, 1026, $1016,943,711 \mathrm{~cm}^{-1}$.

MS (EI, 70 eV):
m/z 55 (25), 77 (71), 67 (42), $82(33), 105(100), 123(94), 204\left(\mathrm{M}^{+}, 1\right)$.

Phenyl 2 -methyl-2-propen-1-oate (64):

The reaction of 2-methyl-2-propen-1-ol $51(0.084 \mathrm{ml}, 1 \mathrm{mmol})$ with benzoic anhydride $(1.130 \mathrm{~g}, 5 \mathrm{mmol})$ in the presence of magnesium bromide (46 $\mathrm{mg}, 0.25 \mathrm{mmol})$ in dichloromethane $(5 \mathrm{ml})$ for 5 hr . gave after purification $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate, 85/15), 140 mg (80%) of $\mathbf{6 4}$.

${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

$\delta 8.10-8.06(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.61-7.44(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 5.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.99$
$(\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}), 4.75\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right)$.
IR (neat):
1722, 1658, 1601, 1451, 1363, 1314, 1270, 1176, 1113, 1069, 1026, 986,
$949,905,710 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV):
$\mathrm{m} / \mathrm{z} 55(14), 77(51), 105(100), 176\left(\mathrm{M}^{+}, 1\right)$.

Phenyl 3-methyl-2-butene-1-oate (65):

The reaction of $52(0.2 \mathrm{ml} 2 \mathrm{mmol})$ with benzoic anhydride (1.130, 10 mmol) in the presence of magnesium bromide ($36.8 \mathrm{mg}, 0.20 \mathrm{mmol}$) in dichloromethane $(4 \mathrm{ml})$ for 30 min . gave after purification $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate, 85/15), 240 mg (63%) of $\mathbf{6 5}$.
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$\delta 8.07-8.03(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar} H), 7.58-7.24(\mathrm{~m}, 3 \mathrm{H}, \operatorname{Ar} H), 5.51-5.48(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C} H), 4.84-4.80(\mathrm{~d}, J=192 \mathrm{H}, \mathrm{C} H), 1.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} H_{3}\right)$.

IR $\left(\mathrm{CHCl}_{3}\right)$:

3062, 2927, 1718, 1601, 1584, 1450, 1378, 1332, 1314, 1270, 1175, 1105, $1069,1025,936,822,772,711,687 \mathrm{~cm}^{-1}$.

MS (EI, 70 eV):
$\mathrm{m} / \mathrm{z} 55(19), 68(55), 77(32), 105(100), 125(30), 190\left(\mathrm{M}^{+}, 1\right)$.

2,6-di-tert-butyl-4-methyl phenyl acetate (66):

The reaction of di-tert-butyf4-methyl phenol 53 ($220 \mathrm{mg}, 1 \mathrm{mmol}$) with acetic anhydride ($0.56 \mathrm{ml}, 6 \mathrm{mmol}$) in the presence of magnesium bromide (19.2 $\mathrm{mg}, 0.05 \mathrm{mmol})$ in dichloromethane (2 ml) for 12 h gave $171 \mathrm{mg}(65 \%)$ of $\mathbf{6 6}$, which was pure by ${ }^{1} \mathrm{H}$ NMR.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta 6.98(\mathrm{~s}, 2 \mathrm{H}, \operatorname{Ar} H), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 1.43\left(\mathrm{~s}, 21 \mathrm{H}, \mathrm{CH}_{3}\right)$.
IR $\left(\mathrm{CHCl}_{3}\right)$:
3463, 2956, 2871, 1750, 1602, 1431, 1394, 1362, 1312, 1230, 1154, 1119, $1025,886,863,762,667,618,577 \mathrm{~cm}^{-1}$.

MS (EI, 70 eV): m/z 57 (79), 77 (14), 91 (16), 105 (16), 145 (13),

2-phenyl-1-nitro ethyl acetate (67):

The reaction of 2-phenyl-1-nitroethanol 54 (84 mg 0.5 mmol) with acetic anhydride $(0.05 \mathrm{ml}, 0.5 \mathrm{mmol})$ in the presence of magnesium bromide $(9 \mathrm{mg}$, 0.05 mmol) in dichloromethane (1 ml) for 48 h gave $99 \mathrm{mg}(95 \%)$ of $\mathbf{6 7}$, which was pure by ${ }^{1} \mathrm{H}$ NMR.

${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

$\delta 7.38(\mathrm{~s}, 5 \mathrm{H}, \operatorname{Ar} H), 6.47-6.40(\mathrm{dd}, 1 \mathrm{H}, J=3.4,10, \mathrm{PhCH}), 4.87-4.75(\mathrm{dd}$, $\left.1 \mathrm{H}, J=10,13, \mathrm{CH}_{2}\right) 4.60-4.51\left(1 \mathrm{H}, \mathrm{dd}, 3.4,13, \mathrm{CH}_{2}\right), 2.08(\mathrm{~s}, 3 \mathrm{H}$, COOCH_{3}).

IR $\left(\mathrm{CHCl}_{3}\right)$:

3034, 2924, 2853, 1750, 1634, 1557, 1520, 1495, 1453, 1420, 1377, 1344, $1226,1078,1946,948,839,765,699,660,620,593,524,482 \mathrm{~cm}^{-1}$.

MS (EI, 70 eV):
m/z 66 (26), 77 (100), 91 (49), 102 (49), 120 (9), 133 (7), 149 (36), $209\left(\mathrm{M}^{+}, 1\right)$.

3-Methyl-1-nitro butyl acetate (68):

The reaction of nitroalcohol $55(660 \mathrm{mg}, 4.96 \mathrm{mmol})$ and acetic anhydride
$(2.35 \mathrm{ml}, 6 \mathrm{mmol})$ in the presence of magnesium bromide $(46 \mathrm{mg}, 0.25$ $\mathrm{mmol})$ in dichloromethane (5 ml) for 5 h gave $810 \mathrm{mg}(93 \%)$ of $\mathbf{6 8}$, which was pure by ${ }^{1} \mathrm{H}$ NMR.
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta 5.41-5.32(\mathrm{q}, J=5.8,1 \mathrm{H}, \mathrm{C} H), 4.55-4.52\left(\mathrm{~d}, J=5.8,2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.19-$ 1.93 (s, m, 4H, $\left.\mathrm{COOCH}_{3}, \mathrm{CH}\right), 1.07-1.00(\mathrm{~d}, J=6.8,6 \mathrm{H}, \mathrm{CH})$.

IR (neat):
2970, 1748, 1559, 1469, 1425, 1376, 1232, 1116, 1046, 938, 838,723, $662,606 \mathrm{~cm}^{-1}$.

MS (EI, 70 eV):
m/z 55 (29), 69 (100), 86 (77), 100 (8), 115 (11), 132 (36), 176 (M+1, 1).

Benzoin acetate (73):

The reaction of benzoin $59(1.06 \mathrm{~g}, 5 \mathrm{mmol})$ with acetic anhydride $(0.95$ $\mathrm{ml}, 0.5 \mathrm{mmol}$) in the presence of magnesium bromide ($46 \mathrm{mg}, 0.25 \mathrm{mmol}$) in dichloromethane $(5 \mathrm{ml})$ for 72 h gave after purification $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate, 85/15), 381 mg (30%) of 73 .
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
δ 7.95- $7.92(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar} H), 7.48-7.34(\mathrm{~m}, 8 \mathrm{H}, \operatorname{Ar} H), 2.21(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{COOCH}_{3}\right)$.

IR $\left(\mathrm{CHCl}_{3}\right)$:

2954, 2923, 2854, 1741, 1728, 1693, 1595, 1456, 1448, 1373, 1267, 1242,
$1228,1180,1054,702,584,520,459,441,426 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV):
m/z 77 (64), 105 (100), 149 (15), 165 (7), $254\left(\mathrm{M}^{+}, 1\right)$.

2-phenylbutene-2 (72):

The reaction of 2-phenyl-2-butanol $1 \mathbf{5 7}(0.30 \mathrm{ml}, 2 \mathrm{mmol})$ with acetic anhydride ($2 \mathrm{ml}, \mathrm{mmol}$) in the presence of magnesium bromide $(18.4 \mathrm{mg}, 0.1$ mmol) in dichloromethane (3 ml) for 5 hr . gave $264 \mathrm{mg}(83 \%)$ of 70 as a mixture of isomer.

For major isomer:
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta 7.39-7.18(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H), 5.91-5.81\left(\mathrm{q}, J=6.35,1 \mathrm{H},=\mathrm{CH}\left(\mathrm{CH}_{3}\right), 2.03(\mathrm{~s}\right.$, $\left.3 \mathrm{H},=\mathrm{C}(\mathrm{Ph}) \mathrm{CH}_{3}\right), 1.81-1.78\left(\mathrm{~d}, J=6.35,3 \mathrm{H}, \mathrm{CHC} \mathrm{H}_{3}\right)$.
visible minor isomer peak:
$\delta 5.28(\mathrm{~s}, 1 \mathrm{H},=\mathrm{C} H), 2.57\left(\mathrm{q}, J=7.32,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.14-1.07(\mathrm{t}, J=$ $\left.7.32,3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

IR $\left(\mathrm{CHCl}_{3}\right)$:

2954, 2923, 2854, 1741, 1728, 1693, 1595, 1456, 1448, 1373, 1267, 1242,
$1228,1180,1054,702,584,520,459,441,426 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV):
m/z 77 (64), 105 (100), 149 (15), 165 (7), 132 ($\mathrm{M}^{+}, 1$).

Diethyldimethylmalonate (74): ${ }^{24}$

To a suspension of $\mathrm{KH}(2 \mathrm{~g}, 50 \mathrm{mmol})$ in THF (40 ml) was added diethyl malonate $(3.03 \mathrm{ml}, 20 \mathrm{mmol})$ dropwise. The reaction mixture was stirred for 2 h . To this reaction mixture was added MeI ($3.12 \mathrm{ml}, 50 \mathrm{mmol}$) with stirring. Reaction mixture was further stirred for 8h. Reaction mixture was quenched with $\mathrm{MeOH}(5 \mathrm{ml})$ and to that sat. $\mathrm{NH}_{4} \mathrm{Cl}$ was added. Reaction mixture was extracted
with ether ($3 \times 20 \mathrm{ml}$). Ether layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give 3.36 g (89%) of 74.
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta 4.24-4.13\left(\mathrm{q}, J=7.3,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.43\left(\mathrm{~s}, 3 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.24-1.21$
(t, $J=7.3,3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{3}$).

Dimethylmalonic acid (75): ${ }^{24}$

To a solution of $74(3.361 \mathrm{~g}, 17.88 \mathrm{mmol})$ in ethanol $(15 \mathrm{ml})$ was added aqueous solution of KOH (2.50 g in 3 ml water). Reaction mixture was refluxed for 3 h . Ethanol was completely removed on rotavapor and small amount of water $(5 \mathrm{ml})$ was added. To this reaction mixture conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added till the solution become slightly acidic ($\mathrm{pH} \sim 3$). Reaction mixture was extracted with ether ($3 \times 15 \mathrm{ml}$) to yield crude product which after crystallizatrion gave 1.520 g (64\%) of 75 .
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta 1.1\left(\mathrm{~s}, 3 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right)$.

Dimethylmalonylchloride (76): ${ }^{24}$

Dimethylmalonic acid ($1.4 \mathrm{~g}, 10.6 \mathrm{mmol}) \mathbf{7 5}$ was refluxed with $\mathrm{SOCl}_{2}(3.7$ $\mathrm{ml}, 53 \mathrm{mmol}) 24 \mathrm{~h}$. Excess SOCl was removed on vaccuo to give $1.35 \mathrm{~g}(98 \%)$ of 76 which was used for futher reaction without any further purification.

(R,R)-N,N'-bis(1-benzyl-2-hydroxyethyl)-2,2-dimethylpropane-1,3-diamide

 (77): ${ }^{24}$To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of phenyl alaninol $(8.30 \mathrm{~g}, 55 \mathrm{mml})$ and $\mathrm{Et}_{3} \mathrm{~N}$
$(19.1 \mathrm{ml}, \quad 137.5 \mathrm{mmol})$ in dichloromethane $(40 \mathrm{ml})$ was added dimethylmalonyldichloride 76 ($4.6 \mathrm{~g}, 27.2 \mathrm{mmol}$) dropwise. Reaction mixture was stirred for 12 h at $25{ }^{\circ} \mathrm{C}$. Reaction mixture was diluted with dichloromethane and washed with water, $\mathrm{NaHCO}_{3}, 0.1 \mathrm{~N} \mathrm{HCl}$ and brine. Dichloromethane layer was concentrated and crude compound was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{MeOH} / \mathrm{EtOAc} 1 / 99\right)$ to generate $5.6 \mathrm{~g}(51 \%)$ of 77.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$\delta 7.32-7.14(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar} H), 6.50-6.46(\mathrm{bd}, 2 \mathrm{H}, \mathrm{N} H), 4.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} H)$, 3.74-3.67 (dd, $\left.J=3.4,11.2,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.48-3.39(\mathrm{dd}, J=6.3,11.2$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.88-2.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 1.21\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.

(R,R)-N,N'-bis(1-benzyl-2-chloroethyl)-2,2-dimethylpropane -1,3-diamide (78) $\mathbf{: ~}^{24}$

A mixture of $77(398 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathrm{SOCl}_{2}(0.19 \mathrm{ml}, 5 \mathrm{mmol})$ in benzene (4 ml) was refluxed for 7 h . Reaction was quenched by adding saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc (3 x 5 ml). Ethyl acetate layer was concentrated to give crude compound, which after purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, pet.ether/ $\left.\mathrm{EtOAc}, 4 / 1\right)$ gave $300 \mathrm{mg}(68 \%)$ of 78.
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
δ 7.35-7.20 (m, 10H, ArH), 6.25-6.20 (bd, 2H, NH), 4.45-4.35 (m, 2H, $\mathrm{C} H), 3.70-3.60\left(\mathrm{dd}, J=4.4,11.2,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.55-3.45(\mathrm{dd}, J=3.4$, 11.2, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 2.9-2.85\left(\mathrm{~d}, J=7.3,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 1.35\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.

(R,R)-2,2'-(methylethylidene)bis(5-benzyl-4,5-dihydrooxazole) (79) : ${ }^{24}$

A mixture of $78(4.35 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathrm{NaOH}(1 \mathrm{~g}, 25 \mathrm{mmol})$ in EtOH-

THF (1:10) refluxed for 3 h . Solvents were evaporated and the residue was taken in water. Resulting mixture was extracted with dichloromethane (3 x 15 ml) to give crude product, which was recrystallized (pet. ether-ethyl acetate, 0 $\left.{ }^{\circ} \mathrm{C}\right)$ to give $1.5 \mathrm{~g}(41 \%)$ of 79 as a crystalline solid. ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
δ 7.34-7.18 (m, 10H, ArH), 4.46-4.36 (m, 2H, CH), 4.22-3.97 (dd, $J=$ 8.3, 9.0, 1H, CH2O), 3.55-3.45 (dd, $J=7.3,9.0,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.14-3.04 (dd, $J=4.8,13.6,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 2.72-2.61 (dd, $J=8.3,13.6,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), $1.46\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.
$[\alpha]{ }^{25}:+42.8(c=0.83$, ethanol $)$.

General procdure for the \boldsymbol{O}-methylation of diols $81,83,85$.

To a cooled $\left(0{ }^{0} \mathrm{C}\right)$ suspension of KH in anhydrous THF/DME was added a solution of diol in THF/DME drop wise. The mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 1h. Methyl iodide was added and stirring was continued for 12 h . Cold water was added to the reaction mixture which was then concentrated followed by partitioning of the residue in water and dichloromethane. The organic phase was dried, concentrated and the residue was purified by flash chromatography on silica gel to give O-methylated. diol .

(R)-(1l, 2l, 3u,4u)-2,3-dimethoxy-4,7,7-trimethylbicyclo[2.2.1]heptane (81): ${ }^{25}$

The deprotonation of $78(40 \mathrm{mg}, 0.23 \mathrm{mmol})$ in anhydrous DME (1 ml) with potassium hydride ($27 \mathrm{mg}, 0.69 \mathrm{mmol}$) in anhydrous THF (2 ml) followed by reaction with methyl iodide $(0.04 \mathrm{ml}, 0.69 \mathrm{mmol})$ for 10 h , gave after purification $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate, 20/1), $19 \mathrm{mg}(41 \%)$ of $\mathbf{8 1}$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$\delta 3.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.39-3.33(\mathrm{~d}, 1 \mathrm{H}, J=6.97, \mathrm{CH}), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} H_{3}\right)$, 3.15-3.13 (d, 1H, $J=6.97, \mathrm{C} H), 1.84-1.82(\mathrm{~d}, J=4.76,1 \mathrm{H}, \mathrm{CH}), 1.71-1.60(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.50-1.41 (dt, $\left.J=3.67,11.73,1 \mathrm{H}, \mathrm{C} H\right), 1.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.03-0.91$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{C} H), 0.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} H_{3}\right), 0.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
$[\alpha]]^{25}:-95^{0}(c=2.87$, ethanol $)$.

(R)-1,2 -dimethoxy-1 -phenylethane (83): ${ }^{25}$

The deprotonation of styrene diol $\mathbf{8 2}$ ($550 \mathrm{mg}, 3.98 \mathrm{mmol}$) in anhydrous THF (15 ml) with potassium hydride ($398 \mathrm{mg}, 9.95 \mathrm{mmol}$) followed by reaction with methyl iodide ($0.62 \mathrm{ml}, 9.95 \mathrm{mmol})$ for 12 h , gave after purification $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate, 9/1) $660 \mathrm{mg}(64 \%)$ of $\mathbf{8 3}$.
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta 7.38-7.29(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H), 4.31\left(\mathrm{dd}, J=8,4.2,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 3.31(\mathrm{~s}$, $6 \mathrm{H}, 2 \mathrm{xCH}_{3}$), $2.33(\mathrm{dd}, 1, J=8.7,4.1)$.
$[\alpha]_{\mathrm{D}}{ }^{25}:-163.5(\mathrm{c}=2.2$, ethanol $)$.

(R,R)-1,2 -dimethoxy-1,2-diphenylethane (85): ${ }^{25}$

The deprotonation of 1,2-dihydroxy-1,2-diphenyl 84 (100 mg, 0.46 mmol) in anhydrous THF (3 ml) with potassium hydride ($28 \mathrm{mg}, 0.7 \mathrm{mmol}$) in anhydrous THF (3 ml) followed by reaction with methyl iodide $(0.04 \mathrm{ml}, 0.7$ mmol) for 2 h gave $105 \mathrm{mg}(94 \%)$ of $\mathbf{8 5}$ which was pure by ${ }^{1} \mathrm{H}$ NMR.

${ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$

$\delta 7.15-6.95(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar} H), 4.30(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHOMe}), 3.25\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
$[\alpha]_{\mathrm{D}}{ }^{25}:-14.1 \quad\left(\mathrm{c}=1.39, \mathrm{CHCl}_{3}\right)$.

6. REFERENCES

1. Reviews: a) Scriven, E. F. V. Chem. Soc. Rev. 1983, 12, 129. b) Höfle, G.; Steglich, V.; Vorbrüggen, H. Angew. Chem., Int. Ed. Engl. 1978, 17, 569.
2. Vedejs, E. and Diver, S. T. J. Am. Chem. Soc. 1993, 115, 3358.
3. Ranu, B. C.; Dutta, P, Sarkar, A. J.Chem..Soc. Perkin-1 2000, 14, 2223.
4. Orita, A.; Tanashi, C.; Kakuda, A.; Otera, J. Angew. Chem. Int. Ed. 2000, 39, 2877
5. Sharma, G. V. M.; Mahalingam, A. K.; Nagarajan, M; Hangovan, A.; Radhakrishna, P. Synlett .1999, 8, 1200.
6. Chauhan, K. K.; Frost, C. G.; Love, I.; Waite, D. Synlett, 1999, 1 1, 1743.
7. Zhao, H.; Pendri, A; Greenwald, R. B. J. Org. Chem. 1998, 63, 7559.
8. Chandrasekharan, S; Ramachander, T; Takhi, M. Tetrahedron lett. 1998 39, 3263.
9. Yamamoto, H; Ishihara, K.; Chem. Abstr. 1997, 127: 214147.
10. Ishihara, K.; Kubota, M.; Kurihara, H. and Yamamoto, H. J. Am. Chem. Soc. 1995, 117, 4414.
11. Ishihara, K.; Kubota, M.; Yamamoto, H. Synlett 1996, 3, 265.
12. Sarvanan, P.; Singh, V. K. Tetrahedron Lett. 1999, 40, 2611.
13. Diels-Alder reactions: a) Corey, E. J. and Ishihara, K. Tetrahedron Lett. 1992, 32, 6807. b) Desimoni, G.; Farita, G.; Righetti, P.; Sardone, N. Tetrahedron 1996, 52, 12019. 1,3-Dipolar cycloadditions: Gothelf, K. V.; Hazell, R. G.; Jorgensen, K. A. J. Org. Chem. 1996, 61, 346. Conjugate radical additions: Sibi, M. P.; Ji, J.; Wu, J. H.; Gürtler, S.; Porter, N. A. J. Am. Chem. Soc. 1996, 118, 9200 and references therein.
14. For a report on competing arene C-acylation during cleavage of $1,3-$ benzodioxoles with $\mathrm{MgBr}_{2} / \mathrm{Ac}_{2} \mathrm{O}$, see: Bonsignore, L.; Fadda, A. M. Loy, G.; Maccioni, A.; Podda, G. J. Het. Chem. 1983, 20, 703.
15. Chinchilla, R.; Nájera, C. and Sanchez-Agulló P. Tetrahedron: Asymmetry 1994, 5, 1393.
16. Drauz, K.; Waldmann, H. Enzyme Catalysis in Organic Synthesis: A Comprehensive Handbook, VCH. 1995. b) Klibanov, A. M. Acc. Chem. Res. 1990, 23, 114.
17. a) Evans, D. A.; Anderson, J. C.; Taylor, M. K. Tetrahedron Lett. 1993, 5563. b) Vedejs, E.; Chen, X. J. Am. Chem. Soc. 1996, 118, 1809.
18. Ruble, J. C.; Fu, G. C. J. Org. Chem. 1996, 61, 7230.
19. Ruble, J. C.; Latham, H. A.; Fu, G. C. J. Am. Chem. Soc. 1997, 119, 1492.
20. Ruble, J. C.; Tweddel, J.; Fu, G. C. J. Org. Chem. 1998, 63, 2794.
21. Vedejs, E.; Daugulis, O. J. Am. Chem. Soc. 1999, 121, 5813.
22. Sibi, M. P.; Ji, J J. Org. Chem. 1997, 62, 3800.
23.. Keck, G. E. J. Am. Chem. Soc. 1986, 108, 3847.
23. Pfaltz, A.; Zehnder, M.; Pregosin, Paul S. Helv. Chim. Acta 1995, 78, 265.
24. Denmark, Scott E.; Edwards, James P.; Wilson, Scott R. J. Am. Chem. Soc. 1992, 114, 2592.

$2-1-1+0$

69

 H:IDATAAANRDATAIANR-I~ $43 . W$ WIN

