DEDICATED
 DEDICATED

TO MY BELOVED

PARENTS

DECLARATION

I declare that the thesis entitled "Sugar nitrone based approaches for the Total synthesis of biologically active polyhydroxylated pyrrolidine and piperidine alkaloids, studies toward the synthesis of Leustroducsin- B and Some Pd mediated reactions on sugar alkynes" submitted by me for the degree of Doctor of Philosophy is the record of work carried out by me during the period from 04-03-2004 to 28-12-2006 under the guidance of Dr. M. K. Gurjar, Deputy director and Head, OCT and OCS Division, National Chemical Laboratory, Pune-411 008 and has not formed the basis for the award of any degree, diploma, associateship, fellowship, titles in this or any other University or other institution of Higher learning.

I further declare that the material obtained from other sources has been duly acknowledged in the thesis.

Signature of the Candidate
Date:
(BORHADE RAMDAS GANGARAM)

NATIONAL CHEMICAL LABORATORY

Dr. Homi Bhabha Road, PUNE - 411008 INDIA.

Dr. M. K. Gurjar
Division of Organic Chemistry: Technology

Telephone and Fax: + 91-20-25902627
E-mail: mk.gurjar@ncl.res.in
Website: http://www.ncl-india.org

CERTIFICATE

CERTIFIED that the work incorporated in the thesis "Sugar nitrone based approaches for the Total synthesis of biologically active polyhydroxylated pyrrolidine and piperidine alkaloids, studies toward the synthesis of Leustroducsin- B and Some Pd mediated reactions on sugar alkynes" Submitted by Mr. Ramdas Gangaram Borhade was carried out by the candidate under my supervision/ guidance. Such material as has been obtained from other sources has been duly acknowledged in the thesis.

Pune-8
June 2007

(Dr. M. K. Gurjar)
(Research Guide)

Acknowledgements

Firstly, I would like to thank my research guide Dr. M. K. Gurjar, FNASc, Deputy Director and Head of OCT and OCS, National Chemical Laboratory, Pune who provided me with the opportunity and the resources to be as creative as I like, inspiring me to do my best, surroundining me with intelligent \& helpful coworkers and making sure I am progressing along a right path. It is these things that have given me the most confidence in my scientific abilities.

I am grateful to Dr. C. V. Ramana for his guidance and help. I thank you for your patience with me as well as unwavering support.

I take this opportunity to specially thank Mr. I. Shivakumar for his kind help throughout my Ph.D. and his motivation to continue my research path.

I would like to thank all of those who supported me along the way: I wish to thank Dr. R. A. Joshi, Dr. D. K. Mohapatra, Dr. Sawaikar, Dr. Mrs. Bhanu Chanda, Dr. Mrs. R. D. Wakharkar, Dr. S. P. Chavan, Dr. Mrs. R. R. Joshi, Dr. M. N. Deshmukh, Dr. Kalkote, Dr. Borate, Dr. Krishanan, Dr. Gajbhiye, Dr. Vincent and all other scientists of OCT Division for their help.

I must thank all "MKG group" especially I have felt extremely lucky to be a member of the "Hall LAB" and to have such a wonderful seniors like Dr. Hotha Srinivas, Dr. K. K. Reddy, Dr. DPS, Dr. Ekambram, Dr. Joseph, Dr. Nagprasad, shankar, Dr. Smirti, Dr. Arindam, Dr. Siddhartha and Mahesh with whom I worked. I would like to thank all my present and past colleagues Dr. Sridhar, Dr. Sukhen, Dr. Manjusha, Dhananjoy, Tushar, Bhagwat, Bhargav, Sahoo, Kullu, Gorakh, Anuj, Sabita, Seetaram, Hasibur, Rita, Ramesh, Raghupathi, Sumantha, Kiran, Nageshwar, Soumitra, Pradeep, Chinmoy, Bhaskar, Indu, Abhijit, Srinivas, Sharad, Ganesh, Rosy, Debabrata, Alam, and Rambabu for their cooperation and friendly attitude. It has been so much fun as well as a great learning opportunity to be able to work with such a talented group.

I would like to thank all my close friends in NCL. Thanks are due to Ashok, Sulke, Chopde, Dushaynant, Sambhaji, Dr. R. R. Kale, Dr. Vishal, Dr. Bodas, Dr. Thhakkar, Dr. Nagendra, Dr. P. D. Shinde, Vinod, Panchgalle, Abasaheb, Gholap, Shafi, Kondekar, Shriram, Pandu, Amol, Namdev, Giri, Pandey, Borikar and many more for their cheerful company during my Ph.D. life. The special thanks to galaxy of friends from outside the NCL such as Dr. Vinod Jadhav, Sarang, Dr. Ch. Pravin, Dr. Nilesh, Dr. Ram patil, Mahesh (Raju), Prasad (Munna), Bharat, Bhaskar, Bharat (kaluram), Gavhane, Pathade, Satish chavan, Pavan and Deokar who always encouraged me during my good as well as bad times from school to Ph. D. journey.

I thank Dr. P. R. Rajmohan, Mr. Sathe, Mrs. Kavita, Mrs. Phalgune and Ganesh for NMR facility and valuable discussions, Mrs. Shantakumari for mass spectra, Dr. Bhadbhade, Dr. Mrs. Puranik, Mr. Gonnade for X-ray crystallography and the members of
all the Analytical group. Many thanks are due to the Library staff, Administrative staff and the members of Glass Blowing, Engineering Services, Stores and Purchase for their cooperation.

I wish to thank office staff; Mrs. Kulkarni, Mrs. Catherine, Mr. Ranawade, Mr. Tikhe and Mr. Fernandez for their cooperation. I would also like to thank Mr. Dhumal, Mr. Khopade, Mr. Kakade and Sayyed for help whenever required.

I feel a deep sense of gratitude and affection to my beloved parents for their constant support and encouragement that has helped me to bring up my educational career to this stage. Thanks to my sister Shobha, brother Nana and sister-in-law Rekha with whom I can share my delights and worries. Thank you for your enormous support in materializing this work into a reality.

I am grateful to my wife Meenakshi for her patience, understanding and being extremely encouraging during these years. I would like to thank her for taking care of our daughter Prajakta who is the source of inspiration in my endeavors.

Finally I thank Director, National Chemical Laboratory, Pune for providing infrastructural facilities to complete my work successfully. I am also thankful to CSIR, New Delhi for the financial assistance in the form of fellowship.

Ac	-	Acetyl
AcOH	-	Acetic acid
AIBN	-	2,2'-Azobisisobutyronitrile
Bn	-	Benzyl
BnBr	-	Benzyl bromide
$\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$	-	Boron dimethyl sulfide complex
Boc	-	tert-Butoxy carbonyl
$(\mathrm{Boc})_{2} \mathrm{O}$	-	Di-tert-butyl dicarbonate
BuLi	-	Butyl Lithium
CSF	-	Colony-stimulating factor
COSY	-	Correlation spectroscopy
DCM	-	Dichloromethane
DDQ	-	2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
DIBAL	-	Diisobutylaluminiumhydride
DMP	-	Dess-Martin periodinane
DMP	-	2,2-Dimethoxypropane
DMF	-	N, N^{\prime}-Dimethylformamide
DMAP	-	N, N--Dimethylaminopyridine
DMSO	-	Dimethyl sulfoxide
DOS	-	Diversity oriented synthesis
EtOH	-	Ethanol
Et	-	Ethyl
$\mathrm{Et}_{2} \mathrm{O}$	-	Diethyl ether
EtOAc	-	Ethyl acetate
$\mathrm{Et}_{3} \mathrm{~N}$	-	Triethylamine
HETCORE	-	Heteronuclear COrrelated SpectroscopY
HMBC	-	Heteronuclear Multiple Bond Correlation
IBS	-	Iodoxybenzoic Acid

Im	-	Imidazole
LDA	-	Lithium diisopropylamide
MeOH	-	Methanol
MsCl	-	Methanesulfonyl chloride
Ms	-	Methanesulfonyl
Me	-	Methyl
MeI	-	Methyl iodide
MPM	-	p-Methoxyphenylmethyl
NaBH 4	-	Sodiumborohydride
NaH	-	Sodium hydride
NMR	-	Neuclear magnetic resonance Overhauser Effect
nOe	-	Nuclear Overhauser effect spectroscopy
NOESY	-	Phenyl
Ph	-	Pyridine
Py	-	Pyridiniumdichromate
PDC	-	Ring closing metathesis
RCM	-	Triethylamine
TEA	-	Tetra-n-butylammonium iodide
TBAI	-	Tetra-n-butylammonium fluoride
TBAF	-	$t e r t-B u t y l d i m e t h y l ~ c h l o r o s i l a n e ~$

> $\quad{ }^{1} \mathrm{H}$ NMR spectra were recorded on AC-200 MHz, MSL-300 MHz, and DRX-500 MHz spectrometer using tetramethylsilane (TMS) as an internal standard. Chemical shifts have been expressed in ppm units downfield from TMS.
$>\quad{ }^{13} \mathrm{C}$ NMR spectra were recorded on AC-50 MHz, MSL-75 MHz, and DRX-125 MHz spectrometer
$>\quad$ EI Mass spectra were recorded on Finngan MAT-1020 spectrometer at 70 eV using a direct inlet system.
$>$ The X-Ray Crystal data were collected on Bruker SMART APEX CCD diffractometer using Mo K_{α} radiation with fine focus tube with 50 kV and 30 mA .
> Infrared spectra were scanned on Shimadzu IR 470 and Perkin-Elmer 683 or 1310 spectrometers with sodium chloride optics and are measured in cm^{-1}.
Optical rotations were measured with a JASCO DIP 370 digital polarimeter.
Melting points were recorded on Buchi 535 melting point apparatus and are uncorrected.
> All reactions are monitored by Thin Layer chromatography (TLC) carried out on 0.25 mm E-Merck silica gel plates (60F-254) with UV light, I_{2} and anisaldehyde in ethanol as development reagents.
$>\quad$ All solvents and reagents were purified and dried by according to procedures given in Vogel's Text Book of Practical Organic Chemistry. All reactions were carried out under nitrogen or argon atmosphere with dry, freshly distilled solvents under anhydrous conditions unless otherwise specified. Yields refer to chromatographically and spectroscopically homogeneous materials unless otherwise stated.
$>\quad$ All evaporations were carried out under reduced pressure on Buchi rotary evaporator below $40^{\circ} \mathrm{C}$.
Silica gel (60-120) used for column chromatography was purchased from ACME Chemical Company, Mumbai, India.

Page No.

Abstract i
Chapter I: Total synthesis of biologically active Polyhydroxylated PYRROLIDINE AND PIPERIDINE ALKALOIDS
Introduction 1
Present work 24
Section-I
Section-II
Section-III
Experimental 58
References 90
CHAPTER II: Pd MEDIATED CROSS-COUPLING REACTIONS ON SUGAR ALKYNES
Introduction 98
Present Work 126
Section-I
Section-II
Experimental 144
References 169
Appendix: Attempts towards the synthesis of Leustroducsin- B 172
LIST OF PUBLICATIONS 191
ErRATUM 192

ABSTRACT

```
Research Student : Ramdas G. Borhade
Research Guide : Dr. Mukund K.Gurjar
Title of Thesis : "Sugar nitrone based approaches for the Total synthesis of
    biologically active polyhydroxylated pyrrolidine and piperidine
    alkaloids, studies toward the synthesis of Leustroducsin- B and
    Some Pd mediated reactions on sugar alkynes"
Registration no. : EI/05/Ph.D/2004
Date of registration : 4-03-2004
Place of work : Division of Organic Chemistry: Technology, National Chemical
    Laboratory, Pune-411 }00
```


Abstract

The thesis entitled "Sugar nitrone based approaches for the Total synthesis of biologically active polyhydroxylated pyrrolidine and piperidine alkaloids, studies toward the synthesis of Leustroducsin- B and Some Pd mediated reactions on sugar alkynes" has been divided into two chapters along with appendix and each chapter is further sub-divided into the following sections: Introduction, Present work, Experimental, Spectroscopic data and References. The first chapter provides the synthesis of biologically active azasugars based on cyclic sugar nitrone. The second chapter describes the facile Pd catalyzed methodologies for Sonogashira coupling, cycloisomerization of sugar alkynals and one pot Sonigashira-Suzuki-Miyaura cross-coupling reaction on sugar alkynes. The appendix highlights the attempt towards the synthesis of Leustroducsin- B.

CHAPTER I: Total synthesis of biologically active polyhydroxylated pyrrolidine and piperidine alkaloids

After the discovery of nojirimycin, the first azasugar (polyhydroxylated nitrogen heterocycles in which the ring O-atom of a carbohydrate is replaced by nitrogen) alkaloid that mimics a sugar, a myriad of naturally occurring azasugars have been isolated. These compounds, which are frequently inhibitors of carbohydrate-processing enzymes, have the potential for use in wide range potential therapeutic strategies including the treatment of
diabetes, cancer, viral infections, tuberculosis, lysosomal storage diseases and as inhibitors of the growth of parasitic protozoa. As a result, the syntheses of polyhydroxylated pyrrolidines and piperidines have attracted a great deal of attention in recent years. Herein, we describe the synthesis of a D-xylo and L-arabino configured cyclic nitrones and their applications to prepare some naturally occurring polyhydroxylated pyrrolidine and piperidine alkaloids.

Section 1: Total synthesis of (-) Radicamines A \& B

Recently the new pyrrolidine alkaloids radicamines \mathbf{A} (1) and \mathbf{B} (2), were isolated as inhibitors of α-glucosidase from the plant Lobelia chinensis Lour., a herb that is used as a diuretic, an antidote, a hemostat and as a carcinostatic agent for stomach cancer in Chinese folk medicine. The absolute stereochemistries of these compounds were assigned by comparing the sign of the optical rotation with codonopsine (3) and its antipode 4.

radicamine A (1)

radicamine B(2)

(-)-codonopsinine (4)

Figure 1: Naturally occurring polyhydroxy pyrrolidine alkaloids
Due to their remarkable biological properties we have undertaken the synthesis of radicamine A and radicamine B . Considering their identical stereochemistry of the pyrrolidine ring we have devised a strategy, which involve L-arabino configured cyclic nitrone 5, as an advanced intermediate.

Figure 2. Retrosynthetic analysis for radicamines
Following the retrosynthetic analysis (Figure 2), the synthesis of key nitrone 5 was initiated with the preparation of mixture (7:3) of E/Z-oximes 7 from 6 . The compound $\mathbf{6}$ was alternatively prepared from L-arabinose using the reported procedure (Scheme 1). After selective protection and iodination with inversion of the configuration at $C(4)$ led to the isolation of a mixture of E / Z-oxime derivatives $\mathbf{8}$. The major isomer $\mathbf{8 E}$ was subjected to desilylation and concomitant intramolecular nucleophilic displacement afforded nitrone 5 whose absolute stereochemistry was confirmed by X-ray crystallography. The Grignard reaction of 5 was executed at $-78^{\circ} \mathrm{C}$ to afford N-hydroxypyrrolidine derivative $\mathbf{9}$ in 78% yield exclusively. The reduction of N-O bond \& debenzylation gave 2 in 62% yield. The relative stereochemistry of 2 was confirmed by extensive 2D NMR spectroscopy \& the optical rotation of $\mathbf{2}$ was similar in magnitude but opposite in sign with that of the reported. This confirmed the revision in the absolute configuration of radicamine B .

Scheme 1

In the process of completing the total synthesis of radicamine A, we next prepared the requisite aromatic precursor as shown in (Scheme 2). The guiacol 11 was converted to the
compound 13 by using reported procedure. The bromobenzene derivative (15) was prepared through a conventional sequence of reactions from 13.

Scheme 2

Reaction of the Grignard reagent prepared from 15 with nitrone 5 followed by exhaustive hydrogenation completed the total synthesis of radicamine A. However, during the same time Yu et al. reported the synthesis of both the radicamines and revised the absolute stereochemistry, which indeed we too observed.

Section 2: Synthesis of LAB 1 (16) and its epimer (17)

After completing the total synthesis of $\mathbf{1}$ and $\mathbf{2}$ we next carried out the synthesis of LAB
1 (16) and its epimer 17 by simple reduction of the corresponding nitrones 5 and 20 respectively which prompted us to design a shorter and efficient route for the synthesis of the D-xylo configured nitrone, based on our earlier approach for the synthesis of L-arabino configured nitrone 5.

A minor modification of synthetic scheme used in preparing the cyclic nitrone 5, provided the desired epimeric nitrone 20. Silylation of the compound 7 followed by mesylation of resulting 23 with methanesulphonyl chloride gave 24.

16

17

18

19

21
nitrone 5

nitrone 20

22

Figure 3: Bioactive pyrrolidine derivatives and their retrosynthetic schemes
Treatment of 24 with $n-\mathrm{Bu}_{4} \mathrm{NF}$ in THF at room temperature led to the corresponding oxime, which upon treatment with hydroxylamine.hydrochloride, NaHCO_{3} in MeOH gave the mixture of desired cyclic nitrone 20 (48%) as well as an oxazine 25 in 26% yield. However, the formation of the side product can be controlled by conducting the silyl deprotection in refluxing toluene with the help of anhydrous $n-\mathrm{Bu}_{4} \mathrm{NF}$, which afforded nitrone 20 exclusively in quantitative yield.

Scheme 3

The global reduction of nitrones $\mathbf{5}$ and $\mathbf{2 0}$ by using Pearlman s catalyst afforded hydrochloride salts of LAB 1 (21) and 1,4-dideoxy-1, 4-imino-D-xylitol (22) in good yields.

Scheme 4

Section 3: Towards the synthesis of Batzellasides A-C

The C-alkylated piperidine derivatives Batzellasides A (26), B (27), and C (28) were isolated from a Batzella sp. sponge, collected off the west coast of Madagascar. Batzellasides inhibited the growth of Staphylococcusepidermidis with MICs of $6.3 \mu \mathrm{~g} / \mathrm{mL}$. The structure of the cyclic core of these natural products shows identity with fagomine the derivatives (Figure 4).

Batzellaside A (26, $\mathrm{R}=\mathrm{C}_{8} \mathrm{H}_{17}$)
Batzellaside $\mathrm{B}\left(27, \mathrm{R}=\mathrm{C}_{9} \mathrm{H}_{19}\right)$
Batzellaside $\mathrm{C}\left(\mathbf{2 8}, \mathrm{R}=\mathrm{C}_{10} \mathrm{H}_{21}\right)$

Figure 4 : Batzellaside natural products and intended retrosynthetic strategy
We have devised a flexible strategy that should address not only the synthesis of batzellasides $\mathrm{A}-\mathrm{C}$, but also the related unnatural analogues by employing commercially available olefins. The retrosynthetic strategy is funded on nitrone cycloaddition as the key step with appropriate side chain olefins. The nitrone 29 could be obtained from the mesylate 30. This can be made from the lactol $\mathbf{6}$ which we made in our previous synthesis.

Scheme 5

Thus our synthesis started with Wittig reaction of lactol 6 (Scheme 5). The treatment of 6 with methoxymethyltriphenilphosponium chloride in the presence of n-BuLi gave olefin 31 in 55% yield. The mesylation and subsequent treatment of resulting 30 with hydroxylamine hydrochloride afforded a conjugated linear oxime instead of the desired cyclic nitrone. Changing the mesyl to tosyl also provided the same eliminated product. When checked, these substrates 30, 32 and 35 were found to be very sensitive towards the various reaction conditions applied and revealed the fact that this approach for the synthesis of nitrone may not be appropriate. As an alternative strategy we planned the oxidation of piperidine 39 for nitrone 29. We intended to prepare 39 by an intramolecular hydroboration-cycloalkylation reaction of the azidoalkene 40 (Figure 5).

Figure 5: Alternative Strategy for Nitrone 29 and the key borane mediated piperidine ring construction from an azidoalkene

However, compound 41 was prepared by one carbon Wittig homologation of lactol 6, followed by mesylation and subsequent azidation with NaN_{3} in DMF afforded the [3+2] cycloaddition product 42 exclusively.

Scheme 6

To circumvent this problem, we followed an alternative approach for the synthesis of 39. Accordingly hydroboration of olefin 41 gave diol 43, which was subjected for a sequence of reactions: mesylation of diol and selective primary azidation to procure 45. Reduction of azide under Staudinger condition provides the cyclised piperidine derivative 39. As we successfully obtained the piperidine 39, our next concern was the preparation of cyclic nitrone 29 and completing the total synthesis of Batzellasides. However, all the literature conditions for the oxidation of amine to nitrone fails in our hand may be due to the steric effect of the two bulkier cis substituentes in the six membered ring. This result stopped our way to the natural product.

In conclusion, a concise syntheses of (- -radicamine A \& B are described from Larabinose based on cyclic sugar nitrone; the short and efficient synthesis of LAB1 and its epimer were also achieved.

CHAPTER II:

Construction of architecturally complex molecules from simple building blocks has emerged as a powerful tool in synthetic organic chemistry because of the increasing demand for molecules with unprecedented diversity. Designing effective routes to construct complex cyclic structures through organotransition-metal catalyzed reactions provides many attractive
possibilities, which by conventional procedures would need a large number of synthetic transformations. A great deal of focus has been directed towards sugar based molecular diversity as these molecules offer inherent rigidity and molecular asymmetry. In this context we have been interested to use Palladium based reactions on sugar alkenes and alkynes to generate the molecular diversity. This part of the thesis deals with the three different couplings on sugar alkynes.

Section 1: Pd mediated cycloisomerisation of sugar alkynals

Endocyclic enol lactones/lactols are versatile synthetic intermediates for organic synthesis and important structural elements of biologically active natural products. In conventional methods, these compounds were prepared by the cyclization of alkynoic acids under acidic conditions or by employing transition-metal complexes as catalysts. However, the utility of the acid-catalyzed process suffers from limited scope, drastic conditions, and poor selectivity. We were particularly interested in the Pd catalyzed C-C bond formation and cycloisomerization to obtain the corresponding endocyclic enol lactones/lactols from sugar templates. As recently, we have shown that the electronic effects in the alkyne, i.e., the presence of strong electron withdrawing or strong electron-donating groups influence mode of the cycloisomerization of sugar alkynol. Herein, we attempted to extend this methodology with sugar alkynals where one can anticipate the formation of fused bicyclic derivatives with predetermined stereochemistries (Figure 6).

46

47

48

49

Figure 6: Proposed Pd mediated transformations on sugar alkynes
For the preparation of substrate 46 for our intended cycloisomerization, we need to develop C-C bond formation reaction (Sonogashira coupling) on sugar derivatives. Our initial attempts to optimize the reaction conditions were carried out with simple iodobenzene and the alkyne 50. After a careful examination of various reaction conditions, by changing reaction
temperature, reaction time, base, solvent, and amount of iodobenzene, we concluded that the best result for the intended Sonogashira reaction were obtained by using a piperidine as a solvent (acts as a base also) and conducting the reaction at room temperature in the presences of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(7.5 \mathrm{~mol} \%)$. Later, we have generalized this methodology to prepare various disubstituted alkynes (Figure 7).

After completing the $\mathrm{C}-\mathrm{C}$ bond formation, we were unable to complete the formation of 46 due to undesired side reaction during the installation of formyl group in compound 46. So, we turned our attention to substrates 47 which we made by using stereoselective nucleophilic addition of the lithiated salts of the corresponding terminal alkynes on the known 3-ulo derivative of glucose diacetone. The compounds 47a-d were directly subjected to cycloisomerization by treatment with $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \% \mathrm{mmol}), \mathrm{MeOH}$ and maleic anhydride in dry 1,4-dioxan under Argon atmosphere to lead 52b-d. Amongst four alkynals 47a-d, only the terminal alkynal 47a, the reaction led to a complex reactions mixture. In all other case, a diastereomixture of bicyclic derivatives were obtained in moderate to good yields.

47a $\mathrm{R}=\mathrm{H}$
47b $\mathrm{R}=\mathrm{Ph}$
47c $\mathrm{R}=\mathrm{C}_{5} \mathrm{H}_{11}$
47d $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{13}$

$\begin{aligned} \text { 52b } \mathrm{R} & =\mathrm{Ph} \\ \text { 52c } \mathrm{R} & =\mathrm{C}_{5} \mathrm{H}_{11} \\ \text { 52d } \mathrm{R} & =\mathrm{C}_{6} \mathrm{H}_{13}\end{aligned}$

Figure 8: Alkynal cycloisomerization

Section 2: Three component Sonogashira-Suzuki-Miyaura coupling reaction on sugar

alkynes

After being established the feasibility of the Sonogashira reaction on sugar alkynes under mild conditions, we next turned our attention to synthesize the trisubstituted olefins by a combination of Sonogashira and Suzuki-Miyaura reactions. Our strategy is funded upon the recent report by Larock et al. who used this type of one-pot three-component approach on simple alkynes. Following the reported conditions and using alkyne 50 and iodobenzene in common and 7 different boronic acids, we have successfully made various trisubstituted olefins. In general the intermolecular cross-coupling reaction of an aryl halide, an alkyne \& an aryl boronic acid is highly regio- and stereoselective (Figure 9).

Figure 9: Three component coupling reactions with sugar alkyne 50

In conclusion, different Pd catalyzed methodologies for $\mathrm{C}-\mathrm{C}$ bond formation in carbohydrates have been developed. These compounds are not only showing the similarity but also have potential as chiral building blocks for the synthesis of some important natural products. The further elaboration of these compounds in natural product synthesis and screening of some these intermediates for biological activity is under progress.

Appendix

Attempts towards the synthesis of Leustroducsin- B

The novel colony-stimulating factor (CSF) inducer Leustroducsin B (LSN-B, 60), which was isolated from Streptomyces platensis, has been shown to have potent cytokineinducing activities in clonal human bone marrow-derived stromal cell line KM-102 and in primary human bone marrow-derived stromal cells.

Figure 10: Retrosynthetic Approach for Leustroducsin B

Further intensive investigation is necessary to develop LSN-B as a new drug substance for the treatment of various diseases because of its promising biological activity. However, it is restricted due to limited supply of the compound. Therefore chemical synthesis seems to be only way to provide large quantity of the material. Herein, we disclose our synthetic efforts towards C-C fragment (61) of LSN-B. According to our reterosynthetic analysis, we began our synthesis with β-keto lactone 64, readily prepared in three steps from Vitamin-C by modifying literature procedures (Scheme 7). The keto group of $\mathbf{6 4}$ was selectively reduced with NaBH_{4} in MeOH to give diol 65 whose X-ray analysis confirmed the absolute stereochemistry unambiguously. Protection of $\mathbf{6 5}$ afforded dibenzyl derivative $\mathbf{6 6}$ in good to moderate yield, which was subsequently reduced with LiAlH_{4} in THF, to give 67 . The primary alcohol was selectively protected with tert-butyldimethylsilylchloride followed by Barton deoxygenation furnished the cyclised product with the allyl group, instead of the simple deoxygenation. The other reported procedures for deoxygenation were unsuccessful in our hand. Owing to failure in deoxygenation of secondary alcohol in the presence of allylic olefin, we changed our
strategy. The new strategy which involves the deoxygenation at the later stage of the synthesis after ozonolysis of double bond is in progress in our laboratory.

Scheme 7

$67 \mathrm{R}=\mathrm{H}, 68 \mathrm{R}=\mathrm{TBS}$
In conclusion, our efforts towards the synthesis of Leustroducsin-B is fruitful in obtaining synthetically more demanding L-galactono- γ-lactone derivative, a key intermediate precursor of Vitamin-C biosynthesis in plants. In continuation of this work, efforts are going on in our laboratory to accomplish the total synthesis of Leustroducsin-B and related natural products.

Note: Compound numbers in the abstract are different from those in thesis

CHAPTER -I

TOTAL SYNTHESIS OF BIOLOGICALLY ACTIVE
POLYHYDROXYLATED PYRROLIDINE AND PIPERIDINE
ALKALOIDS

INTRODUCTION

The work described in this chapter of the thesis is concerned primarily with the synthetic study related to azasugars. The best-known activity of azasugars is that of inhibition of glycosidases. The introduction is divided into two part; the term glycoside, glycosidase, their mechanisms, glycosidase inhibitors and their medicinal importance are discussed in the first part. The second part deals with an overview of nitrone chemistry with emphasis on sugar nitrone; as we utilized this branch of synthetic chemistry for the preparation of azasugars.

PART I

Glycosides and Glycosidases ${ }^{1}$

Glycosides are compounds containing a carbohydrate and a noncarbohydrate residue in the same molecule. The carbohydrate residue is attached by an acetal linkage at carbon atom 1 to a noncarbohydrate residue or AGLYCONE. The nonsugar component is known as the AGLYCONE. The sugar component is called the GLYCONE. If the carbohydrate portion is glucose (1), the resulting compound is a GLUCOSIDE. An example is the methyl glucoside (2) formation when a solution of glucose in boiling methyl alcohol is treated with $0.5 \% \mathrm{HCl}$ as a catalyst (Figure 1).

Figure 1: Glucoside formation
The aglycone may be alkyl/aryl alcohol, glycerol, a sterol (steroid alcohols), a phenol, etc. An acetal has two ether functions at a single carbon atom. The glycosides can be classified on the basis of the chemical nature of the aglycone part as follows:

Glycosidases (also called glycoside hydrolases) catalyze the hydrolysis of the glycosidic linkage to generate two smaller sugars or (glycone and aglycone). They are extremely common enzymes with roles in nature including degradation of biomass such as cellulose and hemicellulose, in anti-bacterial defense strategies, in pathogenesis mechanisms and in normal cellular function.In particular, glycosidases and glycosyl transferases are ubiquitous macromolecules, which catalyze glycosyl group transfer reactions that assemble, trim and shape bioactive glycoprotein and glycolipid conjugates. Overall, these processes involve cleavage of the glycosidic bond linking to the anomeric carbon of the sugars with an oligo- or polysaccharide or a nucleoside diphosphate group. The liberated glycosyl group is further transferred to water (by glycosidases) or to some other nucleophilic acceptor (by transferases) (Figure 2).

Figure 2: Glycosidase and glycosyl transferase

Glycosidases have been classified according to

* The nature of the glycosidic atom as $\mathrm{O}-, \mathrm{N}$-, and S -glycosidases
* The ring size of the glycosyl donor as pyranosidases or furanosidases
* The anomeric configuration of the glycosyl donor as α-and β-glycosidases
* The relative configuration of the product with respect to the glycosyl donor as retaining and inverting glycosidases
* The "regioselectivity" in the processing of oligosaccharides as exo-glycosidases acting at a terminus of an oligosaccharide, and endo-glycosidases, acting within an oligosaccharide chain
* The trajectory of protonation by the catalytic acid as syn- or anti-protonators
* The amino acid sequence (vide infra).

Uses of Glycosidases

Glycosidases are indispensable in the normal functioning of most organisms. They are involved in the breakdown of food carbohydrates ${ }^{2}$, in malignant transformation and metastasis ${ }^{3}$, viral and bacterial infection ${ }^{4}$, the processing of eukaryotic glycoproteins ${ }^{5}$ and the catabolism of polysaccharides and glycoconjugates ${ }^{4 b}$. The importance of glycosidases in biological processes is reflected by a number of diseases, which result from the lack or dysfunction of a glycosidase. The application of naturally occurring glycosidases in enzyme replacement therapy; in textile, food, and pulp processing; and as catalysts in oligosaccharide synthesis has encouraged the engineering of proteins with improved catalytic properties and stability.

Reaction Mechanism of Glycosidases ${ }^{6}$

Inverting Glycosidases

Inverting glycosidase utilize two enzymic residues, typically carboxylate residues, that act as acid and base respectively, as shown below for a α-glucosidase.

Retaining Glycosidases

Retaining glycosidases operate through a two-step mechanism, with each step resulting in inversion, for a net retention of stereochemistry.

Glycosidase inhibitors ${ }^{7-10}$

Glycosidase inhibitors are molecules that bind to Glycosidase (enzymes) and decrease their activity. The binding of an inhibitor can stop a substrate from entering the enzyme's active site and/or hinder the enzyme from catalyzing its reaction (Figure 3). Since blocking an enzyme's activity can kill a pathogen or correct a metabolic imbalance, many drugs are enzyme inhibitors. They are also used as herbicides and pesticides.

Figure 3: Inhibitor mimicking the enzyme
In theory, the best inhibitors should have features similar to those of the glycosyl cation and match the electronic and steric requirements necessary to bind in the enzyme active site.

Figure 4: Assumed binding of deoxynojirimycin to enzyme
Indeed this situation pertains with nojirimycine analogues in some aspects, which can mimic the charge and the positioning of hydroxyl groups on the glycosyl cation. These inhibitors bind to the enzyme by forming ion pair between a protonated inhibitor and an anionic group present in the active site of the enzyme (see Figure 4)

A wide variety of structural motifs characterize glycosidase inhibitors. Prominent amongst them are:
(a) The nitrogen heterocycles incorporating four to seven membered rings [e.g. 2,5-dideoxy-2,5-imino-D-mannitol i.e. 1,3-dideoxy-1, 3-imino-L-xylitol (8), DMDP (3), nojirimycin (4), (3,4,5,6)-tetrahydroxyazepane (9) derivative respectively] as well as
bicyclic like pyrrolizidines [e.g. Alexine (7)], indolizidines [e.g. Swainosine (6)] and nortropanes [e.g. calystegine (5)] (Figure 5).

DMDP (3)

nojirimycin (4)

Alexine (7)
 calystegine (5)

1,3-dideoxy-1,3-imino-L-xylitol
(8)

Figure 5: Representative examples of 4 to 7 membered azasugars
(b) The aminocyclitols like Acarbose (10), Trehazolin (11), Mannostatins (12) and Allosamidins (13) (Figure 6).

Acarbose (8)

Mannostatin (10)

Trehazoline (9)

allosamidin (11)

Figure 6: Aminocyclitols
(c) Entities incorporating nitrogen in more than one position, including the one in the ring, e.g.; Nagstatins, Siastatins, etc.

After the discovery of nojirimycin, the first azasugars (polyhydroxylated nitrogen heterocycles in which the ring O-atom of a carbohydrate is replaced by nitrogen) alkaloid a myriad of naturally occurring azasugars has been isolated. These "sugar-shaped alkaloids" are widespread in plants and microorganisms and are believed to bind to the active site of the glycosidases by closely mimicking the charge and shape of the transition state of the glycosidic cleavage reaction.

Biological significance of glycosidase inhibitors:

These compounds, which are frequently inhibitors of carbohydrate-processing enzymes, have the potential for use in wide range potential therapeutic strategies including the treatment of diabetes ${ }^{11}$, cancer ${ }^{12}$, viral infections including HIV 13, lysosomal storage diseases like Gaucher's disease ${ }^{14}$ and as inhibitors of the growth of parasitic protozoa ${ }^{15}$. As a
result, the synthesis of polyhydroxylated pyrrolidine and piperidine has attracted a great deal of attention in recent years.

Cancer

Cancer has been one of the serious diseases for many years. This class of disease or disorders characterized by uncontrolled division of cells and the ability to metastasis (spread of cancer from its primary site to other places in the body). Cancer affects people at all ages and it is one of the principal causes of death in developed countries. Though there are many methods are available today to cure the cancer, chemotherapy is the best and can be used at any stage of the disease. It has been observed that the process of the metastasis can be interrupted by the addition of some glycosidase inhibitors.

mannonojirimycin (15)

deoxynojirimycin (16)

Castanospermine (17)

Figure 7: Azasugars as anticancer agents

Although a number of azasugars have been reported to show anticancer activity such as, nojirimycin (4), mannonojirimycin (15), deoxynojirimycin (16) and Swainosine (6), research has concentrated on developing Swainosine as a candidate for the management of human malignancies. Clinical trials in humans with very advanced malignancies showed that lysosomal α-mannosidase and Golgi mannosidase II were inhibited and some improvement in clinical status occurred. It inhibits the growth of tumor cells and prevents the dissemination of malignant cells from primary tumor to secondary sites. There is considerable evidence that Swainosine enhances the natural antitumor defense of the body. Castanospermine (17) has also been reported to suppress the metastasis in the mice but experiments with this alkaloid have not been as extensive as those with Swainosine.

Diabetes

The main component of human food the carbohydrates, composed of more than 80% of starch and sucrose. The organism utilizes carbohydrates after splitting into
intestinal track by using enzymes that regulate and retard carbohydrate digestion. Glycosidases catalyze the hydrolysis of complex saccharides and convert non-absorbable carbohydrates into absorbable sugars. The rapid action of these enzymes leads to acute undesirable elevations in blood glucose in diabetes.

Homonojirimycin (18)

MDL 73945

Figure 8: Azasugars as antdiabetic agents
Acarbose (10), a naturally occurring glycosidase inhibitor, has been used as an anti-diabetic agent. It has been also observed that azasugars are active inhibitors in the treatment of diabetes by suppressing the rise of glucose level in blood. In China, mulberry leaves have been used traditionally as a medicine to cure diabetes. As the mulberry is the natural source of the DNJ able to suppress the rise in blood glucose. The isolation of DNJ prompted to develop new synthetic analogues of DNJ. Though the in vitro activity of deoxynojirimycin (DNJ) is good but its efficacy in vivo is only moderate. Therefore a myriad of DNJ derivatives have been prepared to increase the in vivo activity. Apart from nojirimycin, azasugars like homonojirimycin also prevents the initial formation of glucose in the body. The efforts of preparation of azasugars derivatives lead to many useful antidiabetic agents. The structural modification of deoxynojirimycin, the N-hydroxyethyl derivative, Miglitol (20) commercialized by Bayer, has been clinically evaluated and released as an antidiabetic drug in insulin and non-insulin dependent
diabetes. Miglitol are used as a substitute for Acarbose. Another glycosidase inhibitor, voglibose (19), a synthetic derivative of valiolamine is also being marketed as an antidiabetic. Moreover MDL-25637 (23), emiglitate (21) and MDL 73945 (22) etc. are also found active against diabetis. The compounds (Figure 8) effectively reduce postprandial elevation of blood glucose and plasma insulin in animals in loading tests with starch and sucrose.

AIDS

Acquired immunodeficiency syndrome (AIDS) is one of the most fatal diseases of the today's human life. The efforts from all over the world to develop the good chemotherapy for AIDS is not completely successful so far. As a consequence, a great effort is being made to develop drugs and vaccines to combat AIDS. The naturally occurring azasugars castanospermine (17) is α-glucosidase I inhibitor with marked antiviral activity against a number of viruses.

N-butyl bdeoxynojirimycin (24)

Figure 9 : Azasugars as anti HIV agents
Unfortunately, the agent also inhibits intestinal sucrases and causes osmotic diarrhea. In contrast, celgosivir the $6-O$-butanoyl derivative of Castanospermine is a relatively inactive inhibitor of intestinal sucrose and appears to be nontoxic to the gastrointestinal tract. It possesses antiviral activity that is 30 -fold greater than the parent compound, its active metabolite. Celgosivir (25) has displayed potent antiviral activity in vitro and in vivo against several viruses, including HIV-1, herpes simplex virus (HSV), bovine viral diarrhea virus (BVDV) and HCV, and the agent was chosen for further development as a treatment for HCV infection. Castanospermine and 1-deoxynojirimycin have been shown to be capable of suppressing the infectivity of a number of retroviruses, including the HIV responsible for AIDS. This effect is a consequence of disruption of
glycoprotein processing enzyme resulting in the changes of the structure of the glycoprotein coat of the virus. Cellular recognition of the host is, thus, prevented and syncytum formation is suppressed. To reduce water-solubility (causative of rapid excretion), 6-O-butyryl Castanospermine and N-butyl-deoxynojirimycin have been synthesized and both these compounds have undergone clinical trials against AIDS in humans, either alone or in combination with AZT a α-glucosidase inhibitors, such as DNJ (16), N-butyl-DNJ (24, n-Bu-DNJ), Castanospermine (17) and celgosivir (25) are potent inhibitors of HIV replication and HIV mediated syncytum formation in vitro.

Lysosomal Storage diseases

Lysosomes are subcellular organelles responsible for the physiologic turnover of cell constituents containing catabolic enzymes requiring a low optimum pH to function. Lysosomal storage diseases describe a heritable group of heterogeneous human disorders characterized by the accumulation of undigested macromolecules intralysosomally, resulting in an increase in the size and number of these organelles and ultimately in cellular dysfunction and clinical abnormalities. Lysosomal storage diseases are generally classified by the accumulated substrate and they include sphingolipidoses, glycoproteinoses, mucolipidoses, mucopolysaccharidoses (MPSs), and others. No effective treatment of this disorder is available at present. Glycosidase inhibitors are also showing tremendous promise as a new therapeutics for lysosomal storage diseases like Gaucher's disease and Fabry disease.

galactostatin (26)

α-homogalactonojirimycin (27)

1-deoxygalactonojirimycin (28)

β - 1-butyl-homogalactonojirimycin (29)

Figure 10 : Inhibitors effective against lysosomal storage diseases

In normal cells, there is balance between the degradation of glycosphingolipids (GLSs) in the lysosomal and their biosynthesis in the ER/Golgi system. In a lysosomal storage disease cell, enzyme activity in the lysosomal cell is so low that GLSs accumulate. Thus, drugs that could
regulate the biosynthesis of GLSs to concentration that fits well in the residual enzymatic activity could prevent storage. Fabry disease is caused by deficiency of human lysosomal α galactosidase $\mathrm{A}(\alpha-\mathrm{Gal} \mathrm{A})$, resulting in a renal failure along with premature myocardial infarction and strokes. Fan et al. demonstrated that DGJ (28) inhibits α-galalctosidase A in a competitive manner, effectively enhanced the mutant enzyme activity in lymphoblasts established from Fabry patients [α-HGJ (27) and $\beta-1-C$-butyl-DGJ (29) also showed potent inhibition of $\alpha-\mathrm{Gal} \mathrm{A}]$. In order to establish the concept of using competitive inhibitors as specific chemical chaperones, a number of naturally occurring and chemically synthesized DGJ derivatives were tested for intracellular enhancement of mutant α-galactosidase. This strategy can be extensively applicable to the lysosomal storage diseases.

PART II

NITRONES

The first nitrone compound was reported by Beckmann in 1890^{16}. The word nitrone (azomethine oxide) is a shortening of the word "Nitrogen-Ketones"was suggested by Pfeiffer ${ }^{17}$. The name and the structure of the nitrones clearly indicate their similarity with the carbonyl compounds. Therefore, they undergo all reactions that carbonyl compounds undergo except spin trapping ${ }^{18}$ and 1,3-dipolar cycloaddition reactions. ${ }^{19}$ The nitrones are reviewed many times ${ }^{20-22}$.

This introduction will be confined to the synthetic methods for sugar nitrones and some of their reactions.

SUGAR NITRONES

The first sugar nitrone was reported in 1972 by Mihaly et al., ${ }^{23}$ then Vasella group ${ }^{24}$ explored the sugar nitrone chemistry followed by many synthetic efforts appeared in the literature in the last decade ${ }^{25-29}$. Carbohydrate derived nitrones can be classified by using different criteria as follows:

For the sake of simplicity in this review, we divided the sugar nitrone into two broad categories like open chain nitrone and cyclic nitrone.

Synthesis of open chain sugar nitrones

Several methods exist for the preparation of sugar nitrones, these include the condensation of sugar aldehydes or ketones with N-substituted hydroxyl amine, N alkylation of oximes, oxidations of N, N-disubstituted hydroxyl amines, imines and amines and the zinc mediated reduction of nitroalkanes and nitroarenes, in the presence of aldehydes, etc. But the first few methods have been found most useful for the formation of sugar nitrone and are therefore discussed here in more detail.
(a) Synthesis of open chain sugar nitrone by condensation of sugar carbonyls with N-substituted hydroxylamine: The treatment of sugar aldehyde or ketones with N substituted hydroxylamine affords the required nitrones. This is the most versatile method to carbohydrate-derived nitrones in which the aldehydes react at ambient temperature whilst ketone sometimes requires heating or longer reaction time. An illustrative example is the formation of glucose derived sugar nitrone 41 reported by Dhavale et al. ${ }^{30}$ and used for the synthesis of azasugars (Scheme 1).

(b) Synthesis of open chain sugar nitrone by condensation of carbonyl compounds
with sugar based oximes : Alternatively nitrones can be formed by using two-step sequences like the formation sugar oxime in the first step followed by treatment with carbonyl compounds. One of the advantages of this approach is that, one can incorporate variety of carbonyl moieties in sugar oxime. e.g. D- ribose derived oxime 42 condensed with aldehyde $\mathrm{R}_{2}-\mathrm{CHO}$ to afford the open chain sugar nitrone $\mathbf{4 3}^{24 b}$ (Scheme 2).

Scheme 2

(c) Synthesis of open chain sugar nitrone by alkylation of sugar based oximes:

The large number of alkylating agents likes alkyl halides, epoxides, suitably placed alkenes, alkyl triflates, alkyl sulphonates, etc. have been used for the preparation of sugar nitrones. The more nucleophilic character of nitrogen in the oxime than oxygen favors the formation of nitrone for aldehyde derived sugar oxime whereas the ketone derived sugar oxime resulted into O-alkylation. e.g. The N -methylation of D-ribose derived oxime 44 by using MeOTf afforded the open chain nitrone $\mathbf{4 5}^{31}$ (Scheme 3).

Scheme 3

 45
(d) Synthesis of open chain sugar nitrone by 1, 3-azaprotiocyclotransfer (1, 3-APT)

Process of sugar oximes: Ochiai et al. ${ }^{32}$ in 1967 reported the isoxazolidine formation from oxime and by using two equivalents of alkenes. The first equivalent acts as a Michael acceptor, alkylating the nitrogen of oxime to afford the nitrone and the second

Figure 11: 1, 3-APT process and mechanism proposed by Grigg equivalent of alkene then undergoes 1,3-dipolar cycloaddition (1,2-DC) to lead oxazolidine. Grigg has proposed common mechanism for the first step ${ }^{33}$, described it as a 1,3azaprotiocyclotransfer (1,3-APT) for reaction of oxime with alkenes (Figure 11). For example, D-ribose derived oxime (44) after 1,3-APT process with

Scheme 4

he first equivalent of methyl acrylate generates nitrone 46. The second mole of methyl acrylate then adds with the nitrone to afford the cycloadduct 47 (Scheme 4).
e) Synthesis of open chain sugar nitrone by 1,2-prototropic shift of sugar oximes:

The sugar oximes can undergoes proton transfer from O to N (1, 2-prprototropy) to afford nitrone. Moutel and Shipman ${ }^{34}$
derived the nitrone 49 from D-glucose by 1, 2-Protropic shift of oxime 48 as the key reaction for the synthesis of aminocyclopentitols (Scheme 5). Scheme 5

Synthesis of cyclic sugar nitrones

(a) Synthesis of cyclic sugar nitrone by condensation with \boldsymbol{N}-substituted hydroxyl amine: There are only few reports so far for the synthesis of carbohydrate-derived ketonitrones e.g. Alonso et al. ${ }^{35}$ have described the formation of the carbohydrate derived ketonitrones (51) via reaction of N-methylhydroxyl amine with 4-oxomannopyranose 50 (scheme 6).

Scheme 6

(b) Synthesis of cyclic sugar nitrone by intramolecular condensation of sugar hydroxyl amine with carbonyl compounds: The synthesis of cyclic sugar nitrone has been reported by the intramolecular condensation of the hydroxylamine with aldehyde or ketone functionality. e.g The hydroxyl amine 52, prepared in sex steps from fructose, has been used for the generation of cyclic sugar nitrone 53 (Scheme 7$)^{36}$.

Scheme 7

(c) Synthesis of cyclic sugar nitrone by 1,3-azaprotiocyclotransfer (1,3-APT) processes of sugar oximes: The reaction of sugar oxime with alkenes, allenes, and alkynes generates cyclic sugar nitrone [by (1,3-APT) intramolecular process] e.g.

Intramolecular cycloaddition reaction of oxime 54 gives nitrone 55 (Scheme 8).

Scheme 8

(d) Synthesis of cyclic sugar nitrone by EPOC process of sugar hydroxylamine:

House et al. ${ }^{37}$ in 1976 reported the addition of hydroxylamine to alkenes and
 alkynes to generate nitrones as shown in the following figure. The reaction proceeds by reteroCope ${ }^{38-40}$ elimination or "EPOC" the name derived from the inverse of "COPE".

Reactions of sugar nitrones and their applications in the total synthesis

With the wealth of sugar-derived nitrone in the literature, we have sought to arrange this survey according to the reaction types (e.g. 1, 3-dipolar cycloaddition reactions, nucleophilic reactions, etc.) Some of the reactions cover a broad range and we have collected some of the most significant reports in which the major aim of the work is to characterize novel sugar nitrone reactions

* 1, 3-dipolar cycloaddition:

The most sugar-derived nitrones undergoes 1, 3-dipolar cycloaddition (DC) ${ }^{19}$

Figure 12: 1,3-DC giving Isoxazolidine
reaction with alkene dipolarophiles to lead isoxazolidenes (Figure 12). The other multiply bonded dipolarophiles systems have been used (Alkynes, allenes, isocynates, nitriles, thiocarbonyls, etc.).The cycloadduct isoxazolidine contains up to three new chiral centres and the highly ordered transition states often allows the regio- and stereochemical preference based on steric and electronic factor as well as frontier molecular orbital (FMO) theory of a given sugar nitrone to be predicted. Isoxazolidines regarded as the synthetic equivalents of 1,3-aminoalcohol, which is the
essential part of many natural products, particularly alkaloids, amino acids and amino sugars. The 1,3 -dipolar cycloaddition is the concerted and $[4 \pi+2 \pi]$ suprafacial process. In this reaction nitrone and alkene approaches each other in either of two possible regiochemical senses and in an endo-or exo-fashion, the four possible transition states giving rise to two pairs of regioisomeric and diastereoisomeric products. There have been many reports regarding regioselectivity and stereoselectivbity ${ }^{41}$, in both intermolecular and intramolecular versions. In 1972 Tronchet reported the first example of intramolecular 1,3-dipolar cycloaddition ${ }^{23}$ by using the sugar nitrone. Since then many researchers investigated the intramolecular 1,3-dipolar reactions of sugar nitrones. ${ }^{42-44}$

* Intramolecular 1,3-dipolar cycloaddition:

The intramolecular nitrone- alkene cycloaddition (INAC) method introduced by Heaney ${ }^{45}$ or Padwa and Norman ${ }^{46}$ used for sugar nitrones and large number of natural products has been synthesized by using this tool. The intramolecular 1,3-dipolar cycloaddition reactions by using sugar derived nitrones have several advantages including its high distereoselectivity than those of intermolecular variant, because the flexibility of the reactant is much more restricted and due to entropy factor, the activation barrier for this reaction is lower, allowing reactions at lower temperature and the use of dipoles \& dipolarophiles of lower reactivity.

The intramolecular 1,3-dipolar cycloaddition reactions of sugar derived nitrone allowed the synthesis of a variety of natural products and related compounds including alkaloides, ${ }^{47}$ oxepanes, ${ }^{48}$ nucleosides, ${ }^{49}$ carbapenems, ${ }^{50}$ enzyme
 inhibitors, ${ }^{51}$ vitamins, ${ }^{52}$ and other related compounds. ${ }^{53}$ Vasella et al. prepared variety of bicyclic isoxazolidenes from simple hexoses, ${ }^{54}$ workers in New Zealand have subsequently used this strategy to prepare optically pure prostaglandins from D-glucose. ${ }^{55}$ Mondal and co-workers prepared five and six membered carbocyclic nucleosides from D-glucose and its enantiomers ${ }^{56}$ by applying INAC process. The important precursor to aromatic metabolites in plants, fungi and micro-organisms, namely (-)-shikimic acid (56), have been synthesized from nitrone derived from D-ribose by using intramolecular 1,3-DC reaction ${ }^{57}$. The aminocyclopentitol is an intermediate in the synthesis of the carbocylic nucleosides (-)-neplanocin A (57)
and (-)-noraristeromycin (58), which was prepared from sugar nitrone by the intramolecular cycloaddition reaction ${ }^{58}$. Similarly the intramolecular oxime-alkene
 cycloaddition (IOAC) reaction which proceeds via $\mathrm{N}-\mathrm{H}$ nitrones have been used by Wildman and co-workers ${ }^{59}$ into the synthesis of 6hydroxybuphanidine (59) and 6-hydroxypowelline (60) and since then many researchers have been utilized this reaction. Moutel and Shipman ${ }^{34}$ used the IOAC reaction for the preparation of aminocyclopentitols, from D-glucose by 1, 2-Protropic shift as the key step. Dhavale et al. ${ }^{60}$ also reported some novel aminocyclopentanol derivatives by using intramolecular cycloaddition as the key reaction from glucose derived nitrones.

* Intermolecular 1,3-Dipolar cycloaddition:

The pioneering work in this field by Belzecki ${ }^{61}$ and Vasella ${ }^{62}$ independently demonstrated in the late 1970's that optically active nitrones undergoes intermolecular 1,3-dipolar cycloaddition reaction to led variety of optically active compounds like nucleoside analogues ${ }^{62 \mathrm{a}}$ amino acids and amino sugars, ${ }^{62 \mathrm{cec}}$ alkaloides and related compounds. ${ }^{63-65}$

Scheme 9

anti-trans

61

The simplest sugar derived nitrone that undergoes intermolecular 1,3-dipolar cycloaddition reaction is the D-glyceraldehyde derived nitrone. Thus reactions of the nitrone $\mathbf{6 1}$ derived from D-

Unnatural amino acid(62)
 glyceraldehyde with acrylate was studied by Merino et al. and applied for the synthesis of 4hydroxy pyroglutamic acid derivatives (Scheme
$9)^{66}$.
Encouraging by the pioneer work by Vasella many sugar nitrones have been synthesized and used for the synthesis of biologically active natural products. Brandi and co-workers reported the synthesis of unusual amino acid 62 from the related hydroxyl amine by using the similar reactions ${ }^{67}$. By using 1,3-dipolar cycloaddition of D-gulose derived nitrone with allylic amine derivative as the key step the synthesis of antibiotic (+)-negamycin (63) has been reported by Kibayashi and co-workeres ${ }^{68}$. On the other hand Chattopadhya and co-workers synthesized spirocyclic nucleosides (64) anti-HIV-1 activity ${ }^{69}$. There are some reports of the intermolecular sugar nitrone-alkene cycloaddition reactions using both the partners were optically active. One of the example of such reaction involves the vasell's sugar derived nitrone and amino acid derived
 allyl amines ${ }^{70}$ and some reports include the partial kinetic resolution of vinylic phosphine oxides with D-glyceraldehyde nitrones. ${ }^{71}$ Whitney and co-workers have described the synthesis of the antimetabolite antibiotic $\operatorname{acivicin}^{72}(65)$ An interesting example of double asymmetric induction was reported by Merino et al., involving the asymmetric dipolar
cycloaddition between Oppolzer's sultam acrylamide and sugar nitrone to give $\mathbf{6 6}^{73}$. The first report which involves ynolates in intermolecular 1,3 dipolar reactions reported by Shindo et al. appeared in 2003^{74}. The N-benzyl-1,3-di- O-isopropylidene-Dglyceraldehyde reacts with ynolate to furnish the isoxazolidineones that could be converted into β-amino acids. The new metal catalyzed version of intramolecular 1,3dipolar cycloaddition has been reported by Fisera et al. in 2005, which gives only two diastereomers of the corresponding chiral products ${ }^{75}$.

Nucleophilic reactions

Nucleophilic addition reactions of nitrone offer one of the most versatile synthetic routes to the synthesis of optically active as well as optically inactive compounds. The first report of the addition of Grignard reagent to nitrones is credited to an Italian group dating from 1911^{76} and 1922^{77}. The interest has been devoted in recent years to widen the scope of reaction of nitrones with the Grignard reagent to different nucleophiles, including allylic organomettalic compounds, sulfur stabilized anions, acetylides, lithiated heteroatomic compounds, silylated nucleophiles etc. The stereochemical outcome of the addition of nucleophiles on nitrones seems to depend on the nitrogen-protecting group and on the substituent on the β-position. Moreover, attention has been also paid to develop the stereocontrolled process using chiral nitrones (sugar \& other chiral pool derived nitrones), chiral nucleophiles and chiral catalysts. But the nucleophilic addition reactions on sugar nitrones have not been much explored. The classical substrate to study the stereochemical outcome of such reaction on sugar nitrone is D-glyceraldehyde. Two general trends rise here: i) syn-adducts are favored in the absence of a nitrone complexing agent and ii) anti-adducts are favored in the presence of $\mathrm{Et}_{2} \mathrm{AlCl}$. The result of stereochemical outcome reflects the conformation of different sugar nitrone in different experimental conditions.

The reactions of variety of nucleophiles in the presence of Lewis acid and in the absence of Lewis acid have been tested for diastereoselectivity for Scheme 10. ${ }^{78-82}$

Scheme 25

In the recent years many groups studied the outcome of the nucleophilic reactions on sugar nitrones including Vasella who studied the addition of phosphorous nucleophile to N-glycosyl nitrones as a route for the synthesis of α-aminophosphonic acid ${ }^{83}$.

Moreover, Merino and co-workers reported the total synthesis of (+)-polyoxin J \& I the antibiotics that are potent inhibitors of the biosynthesis of the chitin, a major structure component of the cell wall of most fungi by using nucleophilic addition to chiral nitrone as a key step (Scheme 11) ${ }^{84}$.

Scheme 27

There are some reports for the addition of nucleophilic reagents on cyclic sugar nitrone by Holfazel ${ }^{85}$ and Tamura et al. ${ }^{86}$, both independently studied the nucleophilic reactions on sugar nitrone and applied for the synthesis of biologically active compound.

PRESENT WORK

Section 1: Total synthesis of (-) Radicamines A \& B

Enzymatic processes controlling the synthesis and break down of oligosaccharides involving glucose residue play an important role in cellular events at different levels. Key enzymes involved in this regard are glucosidases, which can be classified further depending upon the anomeric selectivity, site of cleavage and the direction of protonation. α Glucosidases carry out hydrolytic cleavage of glucose from the nonreducing end of substrates bearing α-glucosidic linkage, such as disaccharides, oligosaccharides. This class of enzyme is involved in several important biological processes including digestion and maturation of glycoproteins. In vitro studies have shown that α-glucosidase inhibitors prevent replication of viruses (e.g., HIV and hepatitis B) by disrupting the proper folding of mature viral glycoproteins that require the aid of the chaperone calnexin. α-Glucosidase is also expressed in the microvilli of the small intestine. Since only monosaccharides can be absorbed and taken up through the small intestine, α-glucosidase is required to catalyze the breakdown of sugars in the final step of carbohydrate digestion. Several naturally occurring aza sugar mimics comprising both polyhydroxy piperidine and pyrrolidine structural units were isolated and shown to be potential inhibitors of this enzyme. Some of these aza sugar analogues were found to be therapeutically relevant for the treatment of type II non-insulin-dependent diabetes mellitus by interfering with the enzymatic action in the bowel, slowing the breakdown of dietary polysaccharides and disaccharides to glucose.

Naturally occurring DAB-1 (76) and LAB-1 (72) isolated ${ }^{87}$ from Angilocalix boutiqueanus and Arachniodes standishii are powerful inhibitors of a range of α-glucosidases. The 1,4-dideoxy-1,4-imino-D-xylitol (73), also showed promising α-glucosidases activity. Very recently, radicamine A \& B new pyrrolidine alkaloids acting as an inhibitors of a α glucosidase are isolated ${ }^{88}$ from the plant Lobelia chinensis Lour., a herb that is used as a diuretic, an antidote, a hemostat and as a carcinostatic agent for stomach cancer in Chinese folk medicine.

LAB1
72

epi LAB1 73

(+)-codonopsinine (74)

radicamine A (77)

(-)-codonopsinine (75)

radicamine B (78)

Figure 13: Naturally occurring polyhydroxy pyrrolidine alkaloids
The structures and relative stereochemistry of both these compounds (Figure 13) were determined on the basis of extensive NMR studies. However, the absolute configuration of these compounds was assigned by comparing the specific rotation with the natural Codonopsinine 74 and with its antipode 75 . The absolute stereochemistry of radicamine A was determined to be $(2 S, 3 S, 4 S, 5 S)$ by the comparison of the positive $[\alpha]_{D}$ value of N methylradicamine $\mathrm{A}\left\{[\alpha]_{\mathrm{D}}=+6.3(c=0.80, \mathrm{MeOH})\right\}$ with that of $(+)$-Codonopsinine (74) $\left\{[\alpha]_{\mathrm{D}}=+12.5(c=2.55, \mathrm{MeOH})\right\}$, and by a similar method, the radicamine B was concluded to be (2S,3S,4S,5S)-2-hydroxymethyl-3,4-dihydroxy-5-(4-hydroxyphenyl)pyrrolidine. A further support for the assigned absolute stereostructres of radicamines A and B were deduced from the CD spectral study of their benzoate derivatives. Due to their remarkable biological properties and the structural relation with the known α-glucosidase inhibitor LAB-1, we have undertaken the synthesis of radicamines A and B. Considering their identical stereochemistry of the pyrrolidine ring with LAB-1, we have devised a strategy which involves an L-arabino configured cyclic nitrone 79, as an advanced intermediate from which one can indeed make both radicamines including the know LAB-1.

The retrosynthetic analysis revealed that the facial selective addition of a suitable aryl Grignard reagent to the L-arabino configured cyclic nitrone 79 provides the key ap-
proach of our intended synthesis of 77 and 78. Synthesis of the key nitrone $\mathbf{7 9}$ was envisaged from L-arabinose as the suitable chiral pool (Figure 14).

Figure 14: Retrosynthetic Analysis
Our synthesis began with the preparation of methyl 2,3,5-tri-O-benzyl-Larabinofuranoside $\mathbf{8 1}$ from commercially available L-arabinose adopting a protocol reported by Fletcher et al ${ }^{89 a}$ (Scheme 12). The anomeric group of sugar was first temporarily protected as its methyl glycoside by using MeOH and conc. HCl to afford methyl furanosides 80, which were directly subjected to the next step without any separation.

Scheme 12

Protection of the rest of the three hydroxyl groups as benzyl ethers was carried out by treating 80 with $\mathrm{NaH} / \mathrm{BnBr}$ in DMF to afford 81 . The structure of compound 81 was confirmed by the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral analysis. The hydrolysis of methyl furanosides 81 in $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{SO}_{4}$ at $60{ }^{\circ} \mathrm{C}$ gave the lactol 82. The overall yield of three steps is 48%. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 2}$ indicates that it is the mixture of α / β anomers. We observed that optical rotation of $\mathbf{8 2}$ changes from $[\alpha]_{D}=+3.5$ to $[\alpha]_{D}=-4.3$ on standing. This implies that the β-furanoside was slowly converted into α-furanoside. The final constant optical rotation was in complete agreement with that of the reported ${ }^{896}$ value for the α-glycoside.

Scheme 13

After having a preparative method for procuring large quantities of 82, we next turned out attention for the synthesis of the key nitrone intermediate 79. Thus, the reaction of 82 with hydroxylamine.hydrochloride, and NaHCO_{3} as a base, in EtOH at reflux temperature afforded an inseparable mixture of E/Z-oximes 83 (7:3) in 95\% yield (Scheme 13). The aldoximes configuration can be easily deduced from the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 83, the olefinic proton resonated as a doublet at 7.48 ppm $(J=7.7 \mathrm{~Hz})$ for E-isomer and singlet at 6.90 ppm for the Z-isomer. In the ${ }^{13} \mathrm{C}$ NMR spectrum, the carbon of the imine functionality $(\mathbf{C H}=\mathrm{N})$ resonated at 152.3 ppm (Z-isomer) while for the E-isomer it was found at 150.0 ppm . This was in accordance with the earlier reports ${ }^{105}$. A comprehensive compilation and analyses of the ${ }^{1} \mathrm{H}$ NMR chemical shift data of large number of anti- and syn-aldoximes by Karabatsos \& Taller ${ }^{90 a}$ concluded that $\mathrm{CH}=\mathrm{N}$ protons of anti-isomer resonate at downfield than its counterpart syn-isomer and the observed deshielding in E-anti-isomers was attributed to the anisotropy of the cis-oxygen, which was absent in case of the syn-isomer. The further proof came from Roberts et al. ${ }^{90 b}$ on the basis of the ${ }^{13} \mathrm{C}$ NMR spectral data, according to which study the imine carbon $(\mathbf{C H}=\mathrm{N})$ of syn-isomer resonated downfield than that of anti-isomer. The elemental analysis and mass spectra of $\mathbf{8 3}$ were compatible with the assigned structure. In the IR spectrum of 83, the peak corresponding to the $\mathrm{C}=\mathrm{N}$ appeared at $2248 \mathrm{~cm}^{-1}$ and a hydroxy peak at $3368 \mathrm{~cm}^{-1}$. The selective protection of oxime hydroxyl with TBDMSCl in dry pyridine gave the corresponding TBS ether $\mathbf{8 4}$, whose ${ }^{1} \mathrm{H}$ NMR spectrum showed singlets due to $\mathrm{Me}_{2} \mathrm{Si}$ group at $(0.16,018) \mathrm{ppm}$ integrating for 6 H and t - BuSi group at $(0.91,0.95) \mathrm{ppm}$ integrating for 9 H . Due to protection the notable shift in the IR spectrum was observed (oxime peak shifted to $2252 \mathrm{~cm}^{-1}$ and hydroxyl is shifted to $3401 \mathrm{~cm}^{-1}$). The compound 84 was then treated with I_{2} and imidazole in toluene at reflux condition to give the mixture of
E / Z-oxime derivatives 85 with inversion of the configuration at C-(4) (Scheme 14). The plausible mechanism for the iodination is shown in Figure 15.

Scheme 14

83

84

$85 E$

The olefin proton of the Z-isomer showed singlet at 6.94 ppm while that of E-isomer was appeared as a doublet at $7.38 \mathrm{ppm}(J=7.8 \mathrm{~Hz})$.

Figure 15: Plausible mechanism for iodination

The major isomer $\boldsymbol{E}-85$ was purified by flash chromatography on silica gel and subjected to the key desilylation and concomitant intramolecular nucleophilic displacement with anhydrous TBAF in refluxing toluene to afford the nitrone 79 as a crystalline solid (Scheme 15). The mechanism for in situ deprotection of TBS group and the formation of nitrone is shown in Figure 16.

Scheme 15

The spectral and analytical data of 79 were in agreement with the reported data of ent-79 ${ }^{91}$. A single crystal X-ray structural analysis of 79 confirmed the structure.

Figure 16 : Inversion of configuration

X-ray analysis revealed the conformation of 79. The molecules form dimmers via C-H...O hydrogen bonding (Figure 17).

No.	Atom1	Atom 2	Symm.op.1	Symm.op.2	Length in \AA
1	O1	H4	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	$1-\mathrm{x}, 1 / 2+\mathrm{y}, 1-\mathrm{z}$	2.319
2	O1	H26	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	$1-\mathrm{x}, 1 / 2+\mathrm{y}, 1-\mathrm{z}$	2.644
3	H 1	O1	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	$1-\mathrm{x}, 1 / 2+\mathrm{y}, 1-\mathrm{z}$	2.412

Figure 18 : Proposed transition state for addition of Grignard reagent

By the literature survey, it was evident that the addition of nucleophiles on chiral cyclic nitrone 79 could be achieved stereoselectively encashing the stereoelectronic control by the neighbouring electronegative substituents. ${ }^{92}$ Thus relying on the prediction that the incoming nucleophile approaches from the opposite face as that of the C_{2}-alkoxy group, we studied initially, the Grignard reaction of easily available p-methoxyphenylmagnesium bromide (a) at reflux condition and at $-78{ }^{\circ} \mathrm{C}$, the best stereoselectivity was observed at lower temperature. The Felkin-Anh TS model ${ }^{93}$ (Figure 18) in which the more electronegative group at C-2 is antiperiplanar to the incoming Grignard nucleophile to minimize the electronic repulsions is operative. These results encouraged us to extend this study on p benzyloxyphenylmagnesium bromide (b), the Grignard reaction of the cyclic nitrone 79 at various reaction conditions was executed and the results have been summarized in Table 1. The lowering of reaction temperature enhances the stereoselectivity of the Grignard reaction. The reaction in $\mathrm{Et}_{2} \mathrm{O}$-THF at $-78^{\circ} \mathrm{C}$ thus afforded the N -hydroxypyrrolidine derivative 87 exclusively in 78% yield (Scheme 16). The stereochemical outcomes of the Grignard reaction were determined by using the analytical HPLC. \{Column: YMC PACK ODS-A 250 x 4.6 mm ; Mobile phase: MeOH: $\mathrm{H}_{2} \mathrm{O}$ 95:05; Wavelength: 254 nm ; Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}\}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of 87 showed the presence of 1,4 -disubstituted
aromatic ring and disappearance of olefin proton. Further, ESI MS analysis of 87 showed the mass at $m / z: 602$ accounting for $[\mathrm{M}+\mathrm{H}]^{+}$.

Scheme 16

Table 1: Stereoselectivity observed for Grignard reagents

Sr. No	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Reagent	a	a	b	b	b	b	b
Condition	reflux	$-78^{\circ} \mathrm{C}$	reflux	rt	$0{ }^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$	$-78{ }^{\circ} \mathrm{C}$
Diastereoselectivity	$70: 30$	$100: 0$	$65: 35$	$70: 30$	$75: 25$	$80: 20$	$100: 0$

Scheme 17

The reduction of $\mathrm{N}-\mathrm{O}$ bond in 87 , using Zn in aq. $\mathrm{NH}_{4} \mathrm{Cl}$ gave the pyrrolidine derivative $\mathbf{8 8}$ in 98% yield (Scheme 17). The structure of $\mathbf{8 8}$ was confirmed by its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and further supported by the mass spectral analysis where the peak corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$was observed at m / z : 586 . The protected pyrrolidine 88 upon exhaustive hydrogenolysis with H_{2} over PdCl_{2} in ethanol gave 78 in 62% yield (Scheme 18).

Scheme 18

The relative stereochemistry of 78 was confirmed from ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling constants, COSY and NOESY spectra. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 78 were in agreement with the assigned structure, while the NOESY spectra showed the strong correlation be-

Figure 19: Key nOe interactions 78
tween $\mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(4) \& \mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(5)$ (Figure 19). Although, the spectral data of synthetic78 had minor deviations (chemical shifts) from the reported data of the natural product, which was expected due to the exceptional chelating ability of these polyhydroxy pyrrolidine compounds with a metal or a proton. ${ }^{94}$ Wormald and co-workers ${ }^{95}$ reported this type of deviations during the synthesis of 1-epiaustraline. They had noted chemical shift differences between different samples of the same compound. However, the coupling constants were similar and are independent of the variations in the chemical shift. The optical rotation however, of 78 was found similar in magnitude but opposite in sign; this confirmed the revision in the absolute configuration of radicamine B .

In the process of completing the total synthesis of radicamine A , we next prepared the requisite aromatic precursor as shown in (Scheme 19).

Scheme 19

Commercially available guiacol $\mathbf{8 9}$ was treated with benzoyl chloride in pyridine at $0^{\circ} \mathrm{C}$ to obtain 90 , which was brominated selectively at para to methoxy group to procure $\mathbf{9 1}$ in 85% yield. The spectral and analytical data of compound $\mathbf{9 1}$ is in agreement with the reported values. ${ }^{96}$

Scheme 20

The benzoyl group of $\mathbf{9 1}$ was selectively deprotected by using sodium methoxide in methanol to furnish 92 in 89% yield. The ${ }^{1} \mathrm{H}$ NMR of the compound 92 showed broad singlet at 5.61 ppm . The compound $\mathbf{9 2}$ then treated with benzyl bromide and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF to afford benzyl ether derivative 93 whose ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR shows the characteristics peaks of benzyl group and further supported by ESI-MS analysis of which showed the mass at $m / z: 315$ accounting for $[\mathrm{M}+\mathrm{Na}]^{+}$(Scheme 20). As the bromo compound $\mathbf{9 3}$ in our hand our next concern was its stereoselective addition of Grignard reagent to the nitrone 79 (Scheme 21).

Scheme 21

However, during the same time Yu et al. ${ }^{97}$ reported the synthesis of both the radicamines and revised the absolute stereochemistry, which indeed was observed by us. Considering the overlapping synthetic strategy we have abandoned the synthesis of radicamine A at this stage and proceeded further for the synthesis of LAB-1 and its C-4 epimer.

In conclusion, we have achieved the total synthesis of radicamine $B(78)$, thus leading to a revision of the structure 78 originally proposed for natural radicamine B. Of particular note, the absolute stereochemistry of radicamine A (77) and radicamine B (78) has now been revised through our synthesis. This method is viable for the synthesis of related polyhydroxylated pyrrolidine natural products starting from different sugars and following the same reaction sequence discussed and established in this section.

Table 1

Crystal data and structure refinement for compound 79

Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{4}$
Formula weight	417.49
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, P_{21}
Unit cell dimensions	$\begin{aligned} & \mathrm{a}=8.3581(7) \AA \\ & \mathrm{b}=7.5875(6) \AA \quad \beta=99.3^{\circ} \\ & \mathrm{c}=17.7297(15) \AA \end{aligned}$
Volume	1109.56(16) \AA^{3}
Z, Calculated density	$2,1.250 \mathrm{mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.084 \mathrm{~mm}^{-1}$
F (000)	444
Crystal size	$0.15 \times 0.05 \times 0.04 \mathrm{~mm}$
Theta range for data collection	2.33 to 25.50 deg.
Limiting indices	$-9<=\mathrm{h}<=10,-9<=\mathrm{k}<=5,-20<=\mathrm{l}<=21$
Reflections collected / unique	$4567 / 2682[\mathrm{R}(\mathrm{int})=0.0324]$
Completeness to theta $=25.50$	91.4 \%
Max. and min. transmission	0.9965 and 0.9873
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2682 / 1 / 280
Goodness-of-fit on F^{2}	1.138
Final R indices [I^{2} sigma (I] $]$	$\mathrm{R} 1=0.0696, \mathrm{wR} 2=0.1664$
R indices (all data)	$\mathrm{R} 1=0.1047, \mathrm{wR} 2=0.1837$

Absolute structure parameter	$1(2)$
Largest diff. peak and hole	0.314 and $-0.243 \mathrm{e} . \AA^{-3}$

Table 2
Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 79

$\mathrm{O}(1)-\mathrm{N}$	$1.284(4)$	$\mathrm{C}(6)-\mathrm{O}(2)-\mathrm{C}(5)$	$113.0(4)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	$121.8(6)$
$\mathrm{O}(2)-\mathrm{C}(6)$	$1.389(6)$	$\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{C}(20)$	$112.1(3)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	109.5
$\mathrm{O}(2)-\mathrm{C}(5)$	$1.431(6)$	$\mathrm{C}(2)-\mathrm{O}(4)-\mathrm{C}(13)$	$114.6(3)$	$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.5
$\mathrm{O}(3)-\mathrm{C}(3)$	$1.410(5)$	$\mathrm{O}(1)-\mathrm{N}-\mathrm{C}(1)$	$127.7(3)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.5
$\mathrm{O}(3)-\mathrm{C}(20)$	$1.434(5)$	$\mathrm{O}(1)-\mathrm{N}-\mathrm{C}(4)$	$18.2(3)$	$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.1
$\mathrm{O}(4)-\mathrm{C}(2)$	$1.413(6)$	$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(4)$	$114.0(3)$	$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)$	$117.4(5)$
$\mathrm{O}(4)-\mathrm{C}(13)$	$1.424(4)$	$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	$111.7(4)$	$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(6)$	$120.5(5)$
$\mathrm{N}-\mathrm{C}(1)$	$1.292(5)$	$\mathrm{N}-\mathrm{C}(1)-\mathrm{H}(1)$	124.2	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$122.2(5)$
$\mathrm{N}-\mathrm{C}(4)$	$1.489(5)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	124.2	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$120.5(6)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.494(5)$	$\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}(1)$	$106.7(3)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	119.8
$\mathrm{C}(1)-\mathrm{H}(1)$	0.9300	$\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}(3)$	$115.2(4)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	119.8
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.541(6)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$103.7(3)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$120.5(6)$
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9800	$\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{H}(2)$	110.3	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	119.8
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.533(5)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	110.3	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	119.8
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9800	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	110.3	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$120.5(7)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.472(6)$	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	$111.6(3)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	119.7
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9800	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(2)$	$108.0(3)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$119.3(7)$
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9700	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$105.8(3)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	120.3
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9700	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{H}(3)$	110.4	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	120.3
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.484(7)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	110.4	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	119.1
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9700	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	110.4	$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{H}(12)$	119.1
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9700	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{N}$	$111.2(3)$	$\mathrm{O}(4)-\mathrm{C}(13)-\mathrm{C}(14)$	$108.7(4)$
$\mathrm{C}(7)-\mathrm{C}(12)$	$1.382(8)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$117.4(4)$	$\mathrm{O}(4)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	110.0
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.382(7)$	$\mathrm{N}-\mathrm{C}(4)-\mathrm{C}(3)$	$103.2(3)$	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	110.0
C					

$\mathrm{C}(8)-\mathrm{C}(9)$	1.393(9)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	108.3	(13B)	10.0
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9300	$\mathrm{N}-\mathrm{C}(4)-\mathrm{H}(4)$	108.3	(13B)	110.0
$\mathrm{C}(9)-\mathrm{C}(10)$	1.341(10)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	108.3	$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	108.3
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9300	$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	109.5(3)	$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(15)$	118.7(5)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.368(10)	$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.8	$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(13)$	122
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9300	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.8	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	118.5(5)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.377(9)	$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.8	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	11
$\mathrm{C}(11)-\mathrm{H}(11)$	0.9300	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.8	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	120.4
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9300	$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$) 108.2	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15$	120.4
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.506(7$	$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	110.6(4)) $\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	121.1(5)
C	. 97	(109	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	119.5
C(13)	0.9700	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	109.5	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	119.5
$\mathrm{C}(14)-\mathrm{C}(19)$	1.358 ($\mathrm{O}(2)$	10	(16)	19.9(6)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.399(6)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.5	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	120.1
$\mathrm{C}(15)-\mathrm{C}(16)$	1.396(10)	$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108	C(18)	120.1
$\mathrm{C}(15)-\mathrm{H}(15)$	0.9300	$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)$	117.4(5)	$C(17)-C(18)-C(19)$	120.2(7)
$\mathrm{C}(16)-\mathrm{H}(16)$	0.9300	C	120.5(5)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	119.9
$\mathrm{C}(16)-\mathrm{C}(17)$	1.347(11)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	122.2(5)) $\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	119.9
C(17)	1.36	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	120.5(6)	$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	121.0(5)
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.389(9)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	119.8	$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{H}(19)$	119.5
$\mathrm{C}(18)-\mathrm{H}(18)$	0.9300	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	119.8	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$	119.5
$\mathrm{C}(19)-\mathrm{H}(19)$	0.9300	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	120.5(6)	$\mathrm{O}(3)-\mathrm{C}(20)-\mathrm{C}(21)$	109.2(4)
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.487(7)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	119.8	$\mathrm{O}(3)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.8
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9700	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	119.8	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.8
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$) 0.9700	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	20.5(7)	$\mathrm{O}(3)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.8
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.389(6)$	$\mathrm{N}-\mathrm{C}(4)-\mathrm{C}(3) \quad 103$	103.2(3) C	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.8
$\mathrm{C}(21)-\mathrm{C}(26)$	1.390(7)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	108.3	$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	108.3
$\mathrm{C}(22)$ - $\mathrm{C}(23)$	1.416(9)	$\mathrm{N}-\mathrm{C}(4)-\mathrm{H}(4)$	108.3	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)$	118.6(5)
$\mathrm{C}(22)-\mathrm{H}(22)$	0.9300	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	108.3	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	121.1(5)
$\mathrm{C}(23)-\mathrm{C}(24)$	1.333(9)	$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	109.5(3)	$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(20)$	120.3(4)
$\mathrm{C}(23)-\mathrm{H}(23)$	0.9300	$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.8	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	118.7(5)

$\mathrm{C}(24)-\mathrm{C}(25)$	$1.363(9)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.8	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22)$	120.7
$\mathrm{C}(24)-\mathrm{H}(24)$	0.9300	$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.8	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22)$	120.7
$\mathrm{C}(25)-\mathrm{C}(26)$	$1.363(8)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.8	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	$120.2(5)$
$\mathrm{C}(25)-\mathrm{H}(25)$	0.9300	$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	108.2	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23)$	119.9
$\mathrm{C}(26)-\mathrm{H}(26)$	0.9300	$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$110.6(4) \mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23)$	119.9	
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$121.7(6)$	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25)$	120.3		
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24)$	119.1	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{H}(25)$	120.3		
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24)$	119.1	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(21)$	$121.3(5)$		
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$119.4(6)$	$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{H}(26)$	119.3		
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}(26)$	119.3				

Table 3
Torsion angles [${ }^{\circ}$] for 79

$\mathrm{O}(1)-\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	$-177.5(4)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-2.2(10)$
$\mathrm{C}(4)-\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	$4.0(5)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$2.3(12)$
$\mathrm{C}(13)-\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}(1)$	$168.7(4)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$-1.2(12)$
$\mathrm{C}(13)-\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}(3)$	$-76.9(5)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	$0.1(11)$
$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(4)$	$111.4(4)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	$-0.1(9)$
$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-10.7(5)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	$179.2(6)$
$\mathrm{C}(20)-\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	$77.3(4)$	$\mathrm{C}(2)-\mathrm{O}(4)-\mathrm{C}(13)-\mathrm{C}(14)$	$-159.6(4)$
$\mathrm{C}(20)-\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(2)$	$-166.8(3)$	$\mathrm{O}(4)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(19)$	$-18.3(7)$
$\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	$137.0(3)$	$\mathrm{O}(4)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$158.4(5)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	$-106.8(4)$	$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$-1.4(8)$
$\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-103.4(4)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$-178.1(5)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$12.8(5)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$1.2(10)$
$\mathrm{O}(1)-\mathrm{N}-\mathrm{C}(4)-\mathrm{C}(5)$	$59.2(5)$	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$-0.9(11)$
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(4)-\mathrm{C}(5)$	$-122.1(4)$	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$0.7(11)$
$\mathrm{O}(1)-\mathrm{N}-\mathrm{C}(4)-\mathrm{C}(3)$	$-174.1(4)$	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	$1.3(8)$
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(4)-\mathrm{C}(3)$	$4.6(5)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	$177.9(6)$
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-130.8(4)$	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	$-1.0(10)$

$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$111.9(4)$	$\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{C}(20)-\mathrm{C}(21)$	$-168.0(3)$
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}$	$106.6(4)$	$\mathrm{O}(3)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$-118.9(5)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}$	$-10.7(4)$	$\mathrm{O}(3)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(26)$	$63.1(6)$
$\mathrm{C}(6)-\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	$179.7(4)$	$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$-1.1(7)$
$\mathrm{N}-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(2)$	$77.4(4)$	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$-179.2(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(2)$	$-41.0(5)$	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$-0.1(8)$
$\mathrm{C}(5)-\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$-162.9(4)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$1.4(9)$
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(12)$	$169.1(5)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$-1.4(10)$
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$-11.6(7)$	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(21)$	$0.2(10)$
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$1.1(8)$	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$	$1.1(8)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$-178.2(6)$	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$	$179.2(5)$

Section 2: Synthesis of LAB 1 (72) and 1, 4-dideoxy-1, 4-imino-D-xylitol (73)

As the plethora of biological roles played by carbohydrates has become understood, scientists have realized the great potential of carbohydrate mimics to not only elucidate these processes, but also for their potential therapeutic benefits. One class of such carbohydrate analogs that are of particular interest are the polyhydroxylated pyrrolidine derivatives. Many polyhydroxylated pyrrolidine either isolated from the natural sources or synthesized in the laboratory showed their potential as a glycosidase inhibitors. Particularly 1, 4-dideoxy-1, 4-imino-D-arabinitol (DAB-1) (76), isolated from Angilocalix boutiqueanus and Arachniodes standishii found to inhibit α-glucosidase, while the compounds 72 and 73 are powerful inhibitors of a range of α-glycosidases. Nectrisine $\mathbf{9 4}^{98}$, a fungal metabolite isolated from Nectria htckla, is also a potent α-glucosidase and α-mannosidase inhibitor. Moreover the nitrogen congeners of salacinol ${ }^{99} 96$ and 97 showed the powerful inhibitor activity against glucoamylase (Figure 20).

LAB1
72

73

94

epi nectrisine
95

76

96

97

Figure 20: Bioactive pyrrolidine derivatives
The structural simplicity and important biological profile for these compounds led to the culmination of a variety of synthesis from several groups ${ }^{100-105}$. However, considering
the ease of synthesis of nitrone 79, we intended to extend its utility for the synthesis of LAB-1. It can be envisioned that LAB-1 (72) and its epimer 73 could be derived from the cyclic nitrones $\mathbf{7 9}$ and $\mathbf{9 8}$ respectively by exhaustive hydrogenolysis (Figure 21). The synthesis of the C-4 epimeric nitrone could be envisioned from the aldoximes $\mathbf{8 3}$ by a simple mesylation and subsequent one pot desilylation-cyclization.

99

nitrone 98

100

Figure 21: Retrosynthetic scheme for LAB1 and its epimer
As intended a minor modification of synthetic scheme used in preparing the cyclic nitrone 79 , provided the desired epimeric nitrone 98 . Thus the mesylation of the compound 83with methanesulphonyl chloride gave 101 as $\boldsymbol{E} / \mathbf{Z}$ mixture (Scheme 22).

Scheme 22

84

101 E/Z

The two singlets at 2.92 ppm (for minor isomer) and 2.93 ppm (for major isomer) due to mesyl groups were identified in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 1}$ while the rest of the spectrum was in complete agreement with the assigned structure. Our next concern was the deprotection of TBS ether and concomitant cyclisation to get nitrone 101.

The reaction of $\mathbf{1 0 1}$ with $n-\mathrm{Bu}_{4} \mathrm{NF}$ in THF at an ambient temperature led to the corresponding oxime, the separation of which was not possible by silica gel chromatography, therefore the mixture of (E / Z)-isomers was directly used for the cyclisation. Thus, compound $\mathbf{1 0 2}$ upon treatment with hydroxylamine hydrochloride, NaHCO_{3} in MeOH gave the mixture of desired cyclic nitrone 98 (48\%) as well as an oxazine 103 in 26% (Scheme 23).

Depending on the configuration of 102, the oxime group could act either as an oxygen nucleophile or a nitrogen nucleophile and furnished the corresponding cyclic products. The Z isomer produced oxine 103 while E isomer ends up with 98. In the ${ }^{1} \mathrm{H}$ NMR spectrum of the 98, singlets at 2.92 and 2.93 ppm (mix. of both isomers) due to mesyl groups were missing. The peak at 6.80 ppm of olefin appeared while the rest of the spectrum was in complete agreement with the assigned structure. Further confirmation of the structure of 98 came from its ${ }^{13} \mathrm{C}$ NMR and DEPT spectral data. For example, in the ${ }^{13} \mathrm{C}$ NMR spectrum, olefin carbon was identified at 133.9 ppm. In addition, ESI-MS analysis of 98 indicated peaks at $\mathrm{m} / \mathrm{z}: 418[\mathrm{M}+\mathrm{H}]^{+}$and 440 accounting for $[\mathrm{M}+\mathrm{Na}]^{+}$. The elemental analysis of $\mathbf{9 8}$ was satisfactory (Calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{4}$: C, $74.80 ; \mathrm{H}, 6.52$; N, 3.35\% Found: C, 74.35 ; H, 6.81; N, 3.43\%).

Scheme 23

Figure 22 : Key nOe interaction for nitrone 98

The study of relative stereochemistry of cyclic nitrone was carried out by extensive 1D and 2D NMR spectroscopy. Thus by using COSY and NOESY spectra of the nitrone $\mathbf{9 8}$ the cis pattern for (C-3) and (C-4) substituentes was revealed. In the NOESY spectrum the correlation between the $\mathrm{H}-\mathrm{C}(4)$ and $\mathrm{H}-\mathrm{C}(3)$ observed while interactions between $\mathrm{H}-\mathrm{C}(2)$ with either $\mathrm{H}-\mathrm{C}(3)$ or with $\mathrm{H}-\mathrm{C}(4)$ were not found, which clearly confirmed the assigned stereochemistry beyond the doubt (Figure 22). The side product 103 was observed due to competitive intramolecular nucleophilic attack of oxygen. The NMR spectral data of $\mathbf{1 0 3}$ was in full agreement with the assigned structure. Moreover the mass analysis suggested the structure of cyclic hydroxylamine derivative by showing the highest mass peak at $\mathrm{m} / \mathrm{z}: 418[\mathrm{M}+\mathrm{H}]^{+}$

Scheme 24

101 E/Z

98

However, the formation of $\mathbf{1 0 3}$ could be controlled by conducting the silyl deprotection in refluxing toluene with the help of anhydrous $n-\mathrm{Bu}_{4} \mathrm{NF}$, which afforded nitrone 98 exclusively in quantitative yield (Scheme 24). The exclusive nitrone formation was expected due to the known thermal stability of E-isomer in the equilibrium, which enables nitrogen to act as a nucleophile. As both the chiral cyclic nitrones were in our hand, we next attempted the exhaustive hydrogenolysis to make the bioactive pyrrolidine derivatives.

Scheme 25

The direct reduction of nitrone 79 to final products was successfully conducted by using Pd / C in $\mathrm{MeOH}-\mathrm{HCl}$ under hydrogen at NTP to give the hydrochloride salt of LAB1 (99) (Scheme 25). The optical rotation of LAB1 $[\alpha]_{D}-32.5$ is in agreement with reported value ${ }^{106}\left\{[\alpha]_{\mathrm{D}}-34.6\right\} .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR in $\mathrm{D}_{2} \mathrm{O}$ were showed the positions of all the peaks at their respective positions those reported earlier. Similarly the global reduction of nitrone 98 by using Pearlman's catalyst afforded hydrochloride salts of 1,4-dideoxy-1,4-imino-D-xylitol (100) in good yields (95\%)(Scheme 26). Here also the optical rotation of 100 was found to be $[\alpha]_{\mathrm{D}}+7.3$ \{Reported optical rotation ${ }^{107}$ is $\left\{[\alpha]_{\mathrm{D}}+8.8\right\} .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra's of $\mathbf{1 0 0}$ were in full agreement with the reported data ${ }^{107}$.

Scheme 26

In summary, the synthesis of LAB-1 (72) and 1,4-dideoxy-1,4-imino-D-xylitol (73) by ready utilization of the sugar cyclic nitrones, which can be derived from a common advanced intermediate is documented. Considering the potential of cyclic nitrones for addition of a variety of nucleophiles, we believe that the reported epimeric nitrones 79 \& 98 could serve as a potential precursors for glycosidase inhibitors library syntheses, combined with their biochemical evaluations is progressing in our group.

Section 3: Towards the synthesis of Batzellaside A-C
Naturally occurring polyhydroxylated piperidine alkaloids such as deoxymannojirimycin and fagomine derivatives have received much attention in recent years (Figure 23). The C-alkylated derivatives of fagomine, Batzellasides A (104), B (105), and C (106) ${ }^{108}$ isolated from a Batzella sp. sponge, collected off the west coast of Madagascar were attracted the attention because of their intresting activites. Batzellasides inhibited the growth of Staphylococcus epidermidis with MICs of $6.3 \mu \mathrm{~g} / \mathrm{mL}$.

Nojirimycin (107)

1-deoxynojirimycin (108)

Fagomine (109)
)

Figure 23 : Polyhydroxylated piperidine derivatives

Figure 24 : Batzellaside natural products and intended retrosynthetic strategy

We have devised a flexible strategy funded upon our nitrone-based approach that should address not only the synthesis of batzellasides A-C but also the related unnatural analogues by employing commercially available olefins. The retrosynthetic strategy was based on nitrone cycloaddition as a key step with appropriate side chain olefins (Figure 24). The nitrone 110 could be obtained from the mesylate 111, which in turn could be made from the lactol 82, an intermediate used in our previous synthesis of radicamines and related pyrrolidine alkaloids.

Scheme 27

Thus our synthesis started with Wittig reaction of the lactol 82 (Scheme 27). Treatment of $\mathbf{8 2}$ with methoxymethyltriphenylphosponiumchloride ${ }^{109}$ in the presence of n BuLi gave the olefin 112 in 55% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 112, a singlet due to methoxy group at 3.52 ppm , the doublet of a doublet at $4.83 \mathrm{ppm}\left(J_{1,2}=9.5 \mathrm{~Hz}, J_{1,3}=13\right.$ $\mathrm{Hz})$ and a doublet at $6.45 \mathrm{ppm}\left(J_{1,2}=13 \mathrm{~Hz}\right)$ were observed. The ESI-MS showed peak at m / z : 449 accounting for $[\mathrm{M}+\mathrm{H}]^{+}$. The mesylation of $\mathbf{1 1 2}$ by using MsCl and $\mathrm{Et}_{3} \mathrm{~N}$ in DCM afforded 111. This compound was subsequently subjected to hydrolysis and then reacted with hydroxylamine.hydrochloride in presence of NaHCO_{3} (Scheme 28).

Scheme 28

The spectral data of the resulting product were not in agreement with the structure of expected nitrone 110. In the ${ }^{1} \mathrm{H}$ NMR of the product resulted, we noticed the presence of two benzyl groups instead of three and also the mesyl group was intact. In addition to 10 aromatic protons there are four more H , appeared above $6.0 \mathrm{ppm}[5.96(\mathrm{dd}, 1 \mathrm{H}, J=16.1$, $7.3 \mathrm{~Hz}), 6.40(\mathrm{dd}, 1 \mathrm{H}, J=16.1,10.3 \mathrm{~Hz}), 7.80(\mathrm{~d}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}), 9.0(\mathrm{br} . \mathrm{s}, 1 \mathrm{H})]$ which indicated the presence of a conjugated oxime. The downfield broad peak at 8.92 ppm was assigned to hydroxyl proton and the doublet at 7.80 ppm was assigned as $\mathrm{H}-\mathrm{C}=\mathrm{N}-\mathrm{OH}$. The large coupling constant 16.1 clearly indicated the E-configuration of the internal olefin. Coupled with ${ }^{13} \mathrm{C}$ NMR spectra, we concluded that the product obtained was a conjugated oxime 117 resulting from the 1,4 -elimination of a benzyloxy group. The plausible way for the elimination of benzyl alcohol is the 1,4-elimination as shown in Figure 25. Changing the leaving group from mesyl to tosyl also provided the same type of elimination product 118.

Figure 25: Facile 1,4-elimination

Later it was found that the $\mathbf{1 1 2}$ was unstable in solution. When left at room temperature for some hours in $\mathrm{CDCl}_{3}, \mathbf{1 1 2}$ transformed completely to the corresponding conjugated aldehyde 119 (Scheme 29). The assigned structure of 119 was confirmed by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the characteristic doublet at 9.43 $\operatorname{ppm}(J=7.8 \mathrm{~Hz})$ due to aldehydic proton was observed. The olefin protons resonated at $6.19 \mathrm{ppm}(\mathrm{ddd}, J=16,7.8,0.89 \mathrm{~Hz})$ and at $6.72 \mathrm{ppm}(\mathrm{dd}, J=16,5.8 \mathrm{~Hz})$. In addition, the ${ }^{13} \mathrm{C}$ NMR spectrum showed peak at 193 ppm due to α, β-unsaturated aldehyde while the olefin carbons resonated at 133.7 ppm and 153.7 ppm .

After hydrolysis of 119, the crude mixture obtained (115) was subjected to LAH reduction which afforded the allylic alcohol 120 instead of the corresponding saturated 1,5diol derivative. This compound was characterized by spectral as well as by analytical data. The compound 115 was also subjected to linear nitrone formation by using the standard reaction conditions to afford conjugated nitrone 121 whose structure was confirmed by single crystal X-ray structural analysis (Figure 26).

Figure 26: ORTEP digram for conjugated nitrone 121

Scheme 29

Considering the inadvertent sensitivity of the intermediates we prepared, we opted for an alternative strategy, which involves the prior construction of piperidine ring followed by the oxidation of piperidine 122 to derive the key nitrone $\mathbf{1 1 0}$. The synthesis of piperidine 122 was anticipated by an intramolecular hydroboration-cycloalkylation ${ }^{110}$ reaction of the azidoalkene 123 (Figure 27).

Figure 27: Alternative Strategy for Nitrone 110 and the key borane mediated piperidine ring construction from an azidoalkene

The synthesis of key azidoalkene 123 was started with the one carbon Wittig homologation of lactol 82 to afford compound 124. The spectral and analytical data of the compound 124 was in accordance with the assigned structure.

Scheme 30

In order to incorporate azide functionality at C5 carbon, the hydroxyl group was first converted into its mesyl derivative (125) by using MsCl and $\mathrm{Et}_{3} \mathrm{~N}$ in good to moderate yield. The characteristic methyl signal of mesyl group was identified at 2.94 ppm as a singlet in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2 5}$ and at 38.6 ppm in ${ }^{13} \mathrm{C}$ NMR spectrum. The structure of $\mathbf{1 2 5}$ was further confirmed by observing its mass spectrum (the peak located at m / z : 497 due to $[\mathrm{M}+\mathrm{H}]^{+}$) and satisfactory elemental analysis.

The attempted nucleophilic displacement reaction of mesylate 125 was carried out with NaN_{3} in DMF was found to sluggish and even at $95^{\circ} \mathrm{C}$ in presence of the phase transfer catalyst and took nearly 4-5 days for the complete disappearance of the starting compound and discouragingly provided the [3+2] cycloaddition product 126 in moderate yield (Scheme 31). The missing of terminal double bond $\{5.28$ (dd, $1 \mathrm{H}, J=9.1,1.5 \mathrm{~Hz}$), $5.35(\mathrm{~d}$, $1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 5.75-5.96(\mathrm{~m}, 1 \mathrm{H})\}$, and mesyl group $\{2.95(\mathrm{~s}, 3 \mathrm{H})\}$ in ${ }^{1} \mathrm{H}$ NMR indicates that intramolecular [3+2] cycloaddition reaction takes place between azide and terminal olefin. This was also supported by ${ }^{13} \mathrm{C}$ NMR showing all peaks of assigned cycloadduct 126. In DEPT, five negative peaks were observed which compliments our observation. Changing the leaving group from mesyl to a tosyl or a triflate derivatives were found to be no use and their reaction with NaN_{3} resulted in the complex mixtures.

Scheme 31

To circumvent this problem, we followed an alternative approach for the synthesis of 122. Hydroboration followed by oxidation of olefin 124 by using $9-\mathrm{BBN}$ and $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}_{2}$ gave 127. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 127 showed resonances characteristic for diol compound. The compound 127 was then treated with 2.5 equivalents of mesyl chloride in pyridine to afford 128 along with chloromesyl derivative (129) (Scheme 32).

Scheme 32

In the ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 2 8}$, two clear singlets at 2.87 ppm and at 2.97 ppm due to two diferent mesyloxy group were observed while in the ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 2 9}$ only one singlet at 2.96 ppm was observed and rest of the signals were found inconsistent to the assigned structure.

Subsequently, the dimesylate $\mathbf{1 2 8}$ was treated with NaN_{3} in DMF at $95^{\circ} \mathrm{C}$ to afford the mono azide derivative $\mathbf{1 3 0}$ selectively. In the ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 3 0}$, the characteristic singlet of primary mesyloxy group at 2.87 ppm was absent and C1-protons shifted up field. The presence of a moderately strong peak at $2101 \mathrm{~cm}^{-1}$ in the IR spectrum of compound $\mathbf{1 3 0}$ confirmed the presence of an azide group.

Reduction of azido compound 130 under Staudinger conditions ${ }^{111}$ provided the fagomine derivative 122. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Maldi-TOF MS spectral data clearly confirmed the structure of $\mathbf{1 2 2}$. The optical rotation of the protected piperidine $\mathbf{1 2 2}$ was similar in magnitude but opposite in sign with that of reported ent-122 ${ }^{112}$ (Scheme 33).

As we successfully obtained the piperidine derivative (122), our next concern was the preparation of cyclic nitrone $\mathbf{1 1 0}$ and completing the total synthesis of Batzellasides. However, under a variety of conditions ${ }^{113}$ generally used for the oxidation of secondary cyclic amines to nitrones, oxidation of $\mathbf{1 2 2}$ was failed in our hand, which is unexpected and the synthesis of Batzellasides A-C using the nitrone approach was terminated at this stage (Scheme 34).

Scheme 34

Sr.No	Reagents	Results
1	m-CPBA	No reaction
2	$\mathrm{H}_{2} \mathrm{O}_{2} / \mathbf{H g O}$	Decomposed
3	$\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{SeO}_{2}$	No reaction
4	Dimethyldioxirane (DMD)	No reaction

Table 1

Crystal data and structure refinement for 121

Identification code	Compound
Empirical formula	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NO}_{4}$
Formula weight	432.52
Temperature	297(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, P2 ${ }_{1}$
Unit cell dimensions	$\begin{aligned} & \mathrm{a}=13.941(6) \AA, \quad \alpha=90^{\circ} . \\ & \mathrm{b}=4.982(2) \AA, \beta=106.9(7)^{\circ} . \\ & \mathrm{c}=17.996(8) \AA, \quad \gamma=90^{\circ} . \end{aligned}$
Volume	1196.0(9) \AA^{3}
Z, Calculated density	$2,1.201 \mathrm{mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.080 \mathrm{~mm}^{-1}$
$F(000)$	462
Crystal size	$0.45 \times 0.34 \times 0.11 \mathrm{~mm}$
Theta range for data collection	2.37 to 25.00°
Limiting indices	$-16<=\mathrm{h}<=16,-5<=\mathrm{k}<=5,-21<=1<=21$
Reflections collected / unique	$8568 / 3997[\mathrm{R}(\mathrm{int})=0.0180]$
Completeness to theta $=25.00$	99.6 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9914 and 0.9652
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3997 / 7 / 338

Goodness-of-fit on F^{2}
Final R indices [I^{2} sigma(I)]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
1.091
$\mathrm{R} 1=0.0602, \mathrm{wR} 2=0.1523$
$R 1=0.0729, w R 2=0.1616$
$0.9(17)$
0.260 and -0.247 e. \AA^{-3}

Table 2
Bond lengths [\AA] and angles [${ }^{\circ}$] for 121

$\mathrm{O}(1)-\mathrm{C}(6)$	$1.404(4)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$126.3(3)$
$\mathrm{O}(1)-\mathrm{C}(7)$	$1.428(4)$	$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(3)$	$111.4(2)$
$\mathrm{O}(2)-\mathrm{C}(5)$	$1.428(3)$	$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$105.9(2)$
$\mathrm{O}(3)-\mathrm{C}(21)$	$1.414(4)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$111.3(2)$
$\mathrm{O}(3)-\mathrm{C}(4)$	$1.431(3)$	$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	$111.7(2)$
$\mathrm{O}(4)-\mathrm{N}(1)$	$1.281(3)$	$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	$109.5(2)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.300(4)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$114.7(2)$
$\mathrm{N}(1)-\mathrm{C}(14)$	$1.487(4)$	$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$111.0(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.436(4)$	$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(7)-\mathrm{O}(1)$	$121.5(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.319(4)$	$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(7)-\mathrm{C}(8)$	$17.37(6)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.489(4)$	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$110.0(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.522(4)$	$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)$	120.0
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.504(4)$	$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(7)$	$127.9(4)$
$\mathrm{C}(7)-\mathrm{C}\left(8^{\prime}\right)$	$1.418(5)$	$\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(7)$	$112.1(4)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.530(5)$	$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	120.0
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	1.3900	$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	120.0
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)$	1.3900	$\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	120.0
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	1.3900	$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)$	120.0
$\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	1.3900	$\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	120.0
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	1.3900	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	120.0
$\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)$	1.3900	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$119.2(3)$

$\mathrm{C}(8)-\mathrm{C}(9)$	1.3900	$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(7)$	120.7(3)
C(8)-C(13)	1.3901	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	120.0
$\mathrm{C}(9)-\mathrm{C}(10)$	1.3900	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	120.0
$\mathrm{C}(10)-\mathrm{C}(11)$	1.3901	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	120.0
$\mathrm{C}(11)-\mathrm{C}(12)$	1.3899	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	120.0
$\mathrm{C}(12)-\mathrm{C}(13)$	1.3900	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	120.0
$\mathrm{C}(14)-\mathrm{C}(15)$	1.499 (5)	$\mathrm{N}(1)-\mathrm{C}(14)-\mathrm{C}(15)$	110.6(3)
$\mathrm{C}(15)-\mathrm{C}(20)$	1.348(6)	$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)$	117.1(4)
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.375(6)$	$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(14)$	121.5(4)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.354(7)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	121.4(4)
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.339(9)$	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	122.1(5)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.357(11)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	119.9(6)
$\mathrm{C}(19)-\mathrm{C}(20)$	1.398(9)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	120.9(6)
$\mathrm{C}(21)-\mathrm{C}\left(22^{\prime}\right)$	1.470(4)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	118.4(6)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.516(4)	$\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19)$	121.6(6)
$\mathrm{C}(22)$ - $\mathrm{C}(23)$	1.3900	$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{C}\left(22^{\prime}\right)$	109.9(3)
$\mathrm{C}(22)$ - $\mathrm{C}(27)$	1.3900	$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{C}(22)$	109.2(3)
$\mathrm{C}(23)-\mathrm{C}(24)$	1.3900	$\mathrm{C}\left(22^{\prime}\right)-\mathrm{C}(21)-\mathrm{C}(22)$	1.1
$\mathrm{C}(24)$-C(25)	1.3900	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(27)$	120.0
$\mathrm{C}(25)-\mathrm{C}(26)$	1.3900	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	118.1(3)
$\mathrm{C}(26)-\mathrm{C}(27)$	1.3900	$\mathrm{C}(27)-\mathrm{C}(22)-\mathrm{C}(21)$	121.8(3)
$\mathrm{C}\left(22^{\prime}\right)-\mathrm{C}\left(23^{\prime}\right)$	1.3900	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	120.0
$\mathrm{C}\left(22^{\prime}\right)-\mathrm{C}\left(27^{\prime}\right)$	1.3900	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	120.0
$\mathrm{C}\left(23{ }^{\prime}\right)-\mathrm{C}\left(24^{\prime}\right)$	1.3900	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	120.0
$\mathrm{C}\left(24^{\prime}\right)$ - $\mathrm{C}\left(25^{\prime}\right)$	1.3900	$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(25)$	120.0
$\mathrm{C}\left(25^{\prime}\right)$ - $\mathrm{C}\left(26^{\prime}\right)$	1.3900	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(22)$	120.0
$\mathrm{C}\left(26^{\prime}\right)$ - $\mathrm{C}\left(27^{\prime}\right)$	1.3900	$\mathrm{C}\left(23^{\prime}\right)-\mathrm{C}\left(22^{\prime}\right)-\mathrm{C}\left(27^{\prime}\right)$	120.0
$\mathrm{C}(6)-\mathrm{O}(1)-\mathrm{C}(7)$	111.1(3)	$\mathrm{C}\left(23^{\prime}\right)-\mathrm{C}\left(22^{\prime}\right)-\mathrm{C}(21)$	121.7(3)
$\mathrm{C}(21)-\mathrm{O}(3)-\mathrm{C}(4)$	112.6(2)	$\mathrm{C}\left(27^{\prime}\right)-\mathrm{C}\left(22^{\prime}\right)-\mathrm{C}(21)$	118.1(3)
$\mathrm{O}(4)-\mathrm{N}(1)-\mathrm{C}(1)$	124.4(3)	$\mathrm{C}\left(24^{\prime}\right)-\mathrm{C}\left(23^{\prime}\right)-\mathrm{C}\left(22^{\prime}\right)$	120.0
$\mathrm{O}(4)-\mathrm{N}(1)-\mathrm{C}(14)$	115.0(3)	$\mathrm{C}\left(23{ }^{\prime}\right)-\mathrm{C}\left(24^{\prime}\right)-\mathrm{C}\left(25^{\prime}\right)$	120.0

$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(14)$	$120.5(3)$	$\mathrm{C}\left(26^{\prime}\right)-\mathrm{C}\left(25^{\prime}\right)-\mathrm{C}\left(24^{\prime}\right)$	120.0
$\mathrm{~N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$123.0(3)$	$\mathrm{C}\left(25^{\prime}\right)-\mathrm{C}\left(26^{\prime}\right)-\mathrm{C}\left(27^{\prime}\right)$	120.0
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$122.4(3)$	$\mathrm{C}\left(26^{\prime}\right)-\mathrm{C}\left(27^{\prime}\right)-\mathrm{C}\left(22^{\prime}\right)$	120.0

Table 3
Torsion angles [${ }^{\circ}$] for $\mathbf{1 2 1}$

$\mathrm{O}(4)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	-1.1(5)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	0.0
$\mathrm{C}(14)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	179.7(3)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	0.0
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	176.3(3)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	0.0
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	176.4(3)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	0.0
$\mathrm{C}(21)-\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(3)$	-77.1(3)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	0.0
$\mathrm{C}(21)-\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	161.8(3)	$\mathrm{O}(4)-\mathrm{N}(1)-\mathrm{C}(14)-\mathrm{C}(15)$	67.8(4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(3)$	128.8(3)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(14)-\mathrm{C}(15)$	111.5(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-113.3(3)	$\mathrm{N}(1)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(20)$	80.6(5)
$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(2)$	179.7(2)	$\mathrm{N}(1)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	98.8(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(2)$	58.5(3)	$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	-0.4(7)
$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-53.9(3)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	179.8(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-175.0(3)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	0.9(9)
$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	-173.3(2)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	-1.5(10)
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(1)$	69.8(3)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	1.6(11)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(1)$	-55.5(3)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19)$	0.6(8)
$\mathrm{C}(6)-\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}\left(8^{\prime}\right)$	-57.3(5)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19)$	179.9(5)
$\mathrm{C}(6)-\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	-71.8(4)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(15)$	-1.2(10)
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	94.1(5)	$\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{C}\left(22^{\prime}\right)$	-173.6(3)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)$	146.2(3)	$\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{C}(22)$	-174.5(3)
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)$	-83.9(5)	$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	37.6(4)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)$	-31.79(11)	$\mathrm{C}\left(22^{\prime}\right)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	-91.5(4)
$\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	0.0	$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(27)$	-145.4(3)
$\mathrm{C}(7)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$	-177.9(4)	$\mathrm{C}\left(22^{\prime}\right)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(27)$	85.5(5)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	0.0	$\mathrm{C}(27)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	0.0
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	0.0	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	177.0(3)

$\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right) 0.0$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	0.0	
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	0.0	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	0.0
$\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	0.0	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	0.0
$\mathrm{C}(7)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(13^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	$178.2(4)$	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(22)$	0.0
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$-5.4(3)$	$\mathrm{C}(25)-\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(27)-\mathrm{C}(26)$	0.0
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$128.9(4)$	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(27)-\mathrm{C}(26)$	$-176.9(3)$
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(13)$	$177.00(6)$	$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{C}\left(22^{\prime}\right)-\mathrm{C}\left(23^{\prime}\right)$	$-27.4(5)$
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(13)$	$-48.8(5)$	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}\left(22^{\prime}\right)-\mathrm{C}\left(23^{\prime}\right)$	$23.8(3)$
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	0.0	$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{C}\left(22^{\prime}\right)-\mathrm{C}\left(27^{\prime}\right)$	$158.6(3)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-177.7(4)$	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}\left(22^{\prime}\right)-\mathrm{C}\left(27^{\prime}\right)$	$-150.2(6)$
$\mathrm{C}\left(27^{\prime}\right)-\mathrm{C}\left(22^{\prime}\right)-\mathrm{C}\left(23^{\prime}\right)-\mathrm{C}\left(24^{\prime}\right)$	0.0	$\mathrm{C}(21)-\mathrm{C}\left(22^{\prime}\right)-\mathrm{C}\left(23^{\prime}\right)-\mathrm{C}\left(24^{\prime}\right)$	$-173.9(3)$
$\mathrm{C}\left(22^{\prime}\right)-\mathrm{C}\left(23^{\prime}\right)-\mathrm{C}\left(24^{\prime}\right)-\mathrm{C}\left(25^{\prime}\right)$	0.0	$\mathrm{C}\left(23^{\prime}\right)-\mathrm{C}\left(24^{\prime}\right)-\mathrm{C}\left(25^{\prime}\right)-\mathrm{C}\left(26^{\prime}\right)$	0.0
$\mathrm{C}\left(24^{\prime}\right)-\mathrm{C}\left(25^{\prime}\right)-\mathrm{C}\left(26^{\prime}\right)-\mathrm{C}\left(27^{\prime}\right)$	0.0	$\mathrm{C}\left(25^{\prime}\right)-\mathrm{C}\left(26^{\prime}\right)-\mathrm{C}\left(27^{\prime}\right)-\mathrm{C}\left(22^{\prime}\right)$	0.0
$\mathrm{C}\left(23^{\prime}\right)-\mathrm{C}\left(22^{\prime}\right)-\mathrm{C}\left(27^{\prime}\right)-\mathrm{C}\left(26^{\prime}\right)$	0.0	$\mathrm{C}(21)-\mathrm{C}\left(22^{\prime}\right)-\mathrm{C}\left(27^{\prime}\right)-\mathrm{C}\left(26^{\prime}\right)$	$174.1(3)$

Symmetry transformations used to generate equivalent atoms:

EXPERIMENTAL

Methyl 2,3,5-tri-O-benzyl-L-arabinofuranoside (81).

A solution of L-arabinose ($3.2 \mathrm{~g}, 21.3 \mathrm{mmol}$) and con. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.25 \mathrm{~mL})$ in dry methanol (50 mL) was stirred for 24 h at room temperature. The reaction mixture was neutralized with NaHCO_{3}, filtered through Celite, washed with methanol and concentrated. The resulting syrup was used in the next step without further purification. To the above residue ($3.5 \mathrm{~g}, 21.3 \mathrm{mmol}$) in DMF (50 mL), $\mathrm{NaH}(60 \%$ dispersion in mineral oil, 4.3 g , $106.7 \mathrm{mmol})$ and $\mathrm{BnBr}(9.1 \mathrm{~mL}, 76.8 \mathrm{mmol})$ were added slowly at $0{ }^{\circ} \mathrm{C}$. After being stirred at room temperature for $12 \mathrm{~h}, 50 \mathrm{~mL}$ of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The resulting crude syrupy mixture was extracted with EtOAc, washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give methyl furanoside 81 as a syrup.

$$
\left.\begin{array}{ll}
{ }^{1} \mathbf{H} \text { NMR }(200 \mathrm{MHz}) \quad & \delta 3.39-3.41(2 \mathrm{~s}, 3 \mathrm{H}), 3.60-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.93(\mathrm{~m}, \\
& 1 \mathrm{H}), 3.98-4.03(\mathrm{~m}, 1 \mathrm{H}), 4.17-428(\mathrm{~m}, 1 \mathrm{H}), 4.42-4.62(\mathrm{~m}, \\
& 6 \mathrm{H}), 4.97(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}), 7.28-7.41(\mathrm{~m}, 15 \mathrm{H})
\end{array}\right] \begin{aligned}
& \\
& { }^{13} \mathbf{C} \text { NMR }(50 \mathrm{MHz}) \quad: \quad 54.9,69.8,71.8,72.1,73.3,80.9,83.4,88.0,107.2,127.5, \\
& \\
& \\
& \\
&
\end{aligned}
$$

2,3,5-Tri-O-benzyl-L-arabinofuranose (82).

Methyl 2,3,5-tri-O-benzyl-L-arabinofuranoside (81) thus obtained was dissolved in 40 mL of glacial acetic acid, treated with $6 \mathrm{~N} \mathrm{HCl}(6 \mathrm{~mL})$ and heated at $65^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was cooled, diluted with water and extracted by using EtOAc. The combined organic extract was washed with aqueous NaHCO_{3}, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give crude lactol, which was purified on silica gel using ethyl acetate-light petroleum ether (1:6) to afford $\mathbf{8 2}$ as a white solid.

Yield

Mol. Formula

M.P.
$[\alpha]_{D}{ }^{25}$

Elemental Analysis

: $5.1 \mathrm{~g}, 57 \%$ after 3 steps.
: $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{5}$
$: \quad 79^{\circ} \mathrm{C} \quad$ Lit. ${ }^{36 \mathrm{a}} 79-81^{\circ} \mathrm{C}$

$$
:-4.3\left(c=4.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left\{\text { Lit. }^{36 \mathrm{~b}}-4.4\left(c=5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}
$$

found: C, 73.99; H, 6.70\%

1E/1Z-2,3,5-Tri-O-benzyl-L-arabinose oxime (83).

To a solution of $82(5.0 \mathrm{~g}, 11.9 \mathrm{mmol})$ in ethanol $(30 \mathrm{~mL})$ was added hydroxylamine.hydrochloride ($6.6 \mathrm{~g}, 95.2 \mathrm{mmol}$), $\mathrm{NaHCO}_{3}(8.0 \mathrm{~g}, 95.2 \mathrm{mmol})$ and the mixture was heated to reflux for 2 h . The reaction mixture was filtered through Celite and the Celite pad was washed several times with ethanol. After concentration, the residue was extracted with EtOAc, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude
product was purified on silica gel using ethyl acetate-light petroleum ether (1:4) to afford an inseparable mixture of $E-83$ and $Z-83$ as thick oil.

$$
\text { Yield } \quad: 4.9 \mathrm{~g}, 95 \%
$$

Mol. Formula $\quad: \quad \mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{5}$
$[\alpha]_{\mathrm{D}}{ }^{25} \quad: \quad 9.4\left(c=1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
$\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \widetilde{v} \quad: \quad \begin{gathered}\quad 3368,3064,3031,2867,2248,1496,1365,1092,910,698 \\ \mathrm{~cm}^{-1}\end{gathered}$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}) \quad: \quad \delta 3.57-3.66(\mathrm{~m}, 2.7 \mathrm{H}), 3.69(\mathrm{~d}, 0.3 \mathrm{H}, J=3.5 \mathrm{~Hz}), 3.85(\mathrm{dd}$, $0.3 \mathrm{H}, J=7.6,2.8 \mathrm{~Hz}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{dd}, 0.7 \mathrm{H}, J=$ $7.9,3.7 \mathrm{~Hz}$), 4.35-4.66 (m, 6H), $6.90(\mathrm{~s}, 0.3 \mathrm{H}), 7.25-7.31$ (m, 15H), 7.48 (d, $0.7 \mathrm{H}, J=7.7 \mathrm{~Hz}$), 8.13 (br. s, 1 H)
${ }^{13} \mathbf{C}$ NMR (50 MHz) : $\quad 69.8,69.9,70.95,70.99,71.4,71.9,72.6,73.4,73.6,74.2$, $74.3,76.7,79.2,80.2,127.8-128.5,137.4,137.6,137.7-$ $137.8,150.0,152.3 \mathrm{ppm}$

ESI MS m / z
: $436[\mathrm{M}+\mathrm{H}]^{+}, 458[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis
Calcd: C, 71.72 ; H, 6.67; N, 3.22\%
Found: C, 71.65 ; H, 6.83; N, 3.41\%

1E /1Z-2,3,5-Tri-O-benzyl-L-arabinose-O-[tert-butyldimethylsilyl]oximes (84).

The oximes $83(4.5 \mathrm{~g}, 10.3 \mathrm{mmol})$ were dissolved in dry pyridine $(30 \mathrm{~mL})$ and treated with $\mathrm{TBDMSCl}(1.9 \mathrm{~g}, 12.4 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was allowed to stir at room temperature for 36 h . To this, water $(30 \mathrm{~mL})$ was added and extracted with EtOAc. The combined organic layer was successively washed with aqueous CuSO_{4}, brine,
dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Purification of the residue on silica gel using ethyl acetate-light petroleum ether (1:4) gave a mixture of E-84/Z-84 as colorless oil.

Yield
Mol. Formula
$[\alpha]_{D}{ }^{25}$
$\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \widetilde{v} \quad: \quad 3401,2926,2869,2252,1496,1454,1364,1098,909,698$ cm^{-1}
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}) \quad: \quad \delta 0.16,0.18(2 \mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 6 \mathrm{H}), 3.55-3.59$ (m, 2H), 3.67 (dd, $0.7 \mathrm{H}, J=6.6,3.7 \mathrm{~Hz}$), 3.84 (dd, $0.3 \mathrm{H}, J$ $=6.6,3.5 \mathrm{~Hz}), 4.0(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.27(\mathrm{dd}, 0.7 \mathrm{H}, J=7.7,3.6$ $\mathrm{Hz}), 5.06(\mathrm{~m}, 0.3 \mathrm{H}), 4.34-4.67(\mathrm{~m}, 7 \mathrm{H}), 7.12(\mathrm{~d}, 0.3 \mathrm{H}, \mathrm{J}=$ $6.0 \mathrm{~Hz}), 7.25-7.30(\mathrm{~m}, 15 \mathrm{H}), 7.56(\mathrm{~m}, 0.7 \mathrm{H})$
$\begin{aligned}{ }^{13} \mathrm{C} \text { NMR }(50 \mathrm{MHz}) \quad: & -5.34,-5.26,18.0,18.2,25.9,26.1,69.8,70.0,70.7,70.8, \\ & 71.1,72.1,72.5,73.3,73.4,74.0,74.1,76.3,79.0,80.0, \\ & 127.7,127.9,128.0,128.1,128.2,128.3,128.4,137.3, \\ & 137.8,137.9 .153 .1,156.1 \mathrm{ppm}\end{aligned}$

ESI MS $m / z \quad: \quad 550[\mathrm{M}+\mathrm{H}]^{+}, 572[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis Calcd: C, 69.94; H, 7.83; N, 2.55\%
Found: C, 69.58; H, 7.30; N, 2.44\%

1E/1Z-2,3,5-Tri-O-benzyl-4-deoxy-4-iodo-D-xylose-O-[tert-butyldimethylsilyl]oximes (E-85/Z-85).

A mixture of $84(3.5 \mathrm{~g}, 6.4 \mathrm{mmol})$, imidazole ($1.3 \mathrm{~g}, 19.2 \mathrm{mmol}), \mathrm{Ph}_{3} \mathrm{P}(5.1 \mathrm{~g}, 19.2$ $\mathrm{mmol})$ and $\mathrm{I}_{2}(3.2 \mathrm{~g}, 12.8 \mathrm{mmol})$ in toluene $(50 \mathrm{~mL})$ was stirred under reflux for 3 h . The reaction mixture was cooled, an equal volume of sat. NaHCO_{3} solution was added and stirred for 10 min . I_{2} was added in portion until the organic phase remained violet and stirring continued for an additional 15 min . To this $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution was added to quench
excess iodine and diluted with toluene. The phases were separated and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Purification of the residue on flash silica gel using ethyl acetate-light petroleum ether (1:4) afforded E-85/Z-85 as colorless oils.

E-85
Yield $\quad: \quad 2.5 \mathrm{~g}, 59 \%$
Mol. Formula $\quad: \quad \mathrm{C}_{32} \mathrm{H}_{42} \mathrm{INO}_{4} \mathrm{Si}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:-4.38\left(c=1.1, \mathrm{CHCl}_{3}\right)$
$\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \widetilde{v} \quad: \quad 3683,3619,2930,2859,1731,1047,930,840 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}) \quad: \quad \delta 0.2(\mathrm{~s}, 6 \mathrm{H}, J=3.0 \mathrm{~Hz}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 3.52(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $7.3,3.0 \mathrm{~Hz}$), $3.66(\mathrm{dd}, 1 \mathrm{H}, J=9.8,5.3 \mathrm{~Hz}), 3.76(\mathrm{t}, 1 \mathrm{H}, J=$ $9.8 \mathrm{~Hz}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.38(\mathrm{~s}$, 2H), 4.43, 4.57, 4.69, 4.92 ($4 \mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=11.5 \mathrm{~Hz}$), 7.25-7.32 (m, 15H), $7.38(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz})$
${ }^{13} \mathbf{C}$ NMR $(50 \mathrm{MHz}) \quad: \quad-5.2,18.2,26.1,31.4,71.5,72.6,72.8,74.8,77.5,81.4$, 127.5, 127.7, 127.8, 128.0, 128.2, 128.3, 128.4, 137.6, 138.4, 151.7 ppm

ESI MS $m / z \quad: \quad 660[\mathrm{M}+\mathrm{H}]^{+}$
Elemental Analysis
Calcd: C, 58.27; H, 6.37; N, 2.12\%
Found: C, 58.79; H, 6.36; N, 2.10\%

Z-85
Yield : $0.4 \mathrm{~g}, 9 \%$
Mol. Formula $\quad: \quad \mathrm{C}_{32} \mathrm{H}_{42} \mathrm{INO}_{4} \mathrm{Si}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad: \quad 11.6\left(c=3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
$\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \widetilde{v} \quad: \quad \begin{gathered}3442,2955,2930,2859,2253,1454,1253,1092,785,690 \\ \mathrm{~cm}^{-1}\end{gathered}$
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}) \quad: \quad \delta 0.18(\mathrm{~s}, 6 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 3.59(\mathrm{dd}, 1 \mathrm{H}, J=10.5,5.8$ $\mathrm{Hz}), 3.70(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H}), 4.35,4.40(2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $11.8 \mathrm{~Hz}), 4.39,4.54(2 \mathrm{~d}, 2 \mathrm{H}, J=11.5 \mathrm{~Hz}), 4.67,4.75(2 \mathrm{~d}$, $2 \mathrm{H}, J=11.3 \mathrm{~Hz}), 5.14(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz}), 6.94(\mathrm{~d}, 1 \mathrm{H}, J=$ $6.5 \mathrm{~Hz}), 7.25-7.32(\mathrm{~m}, 15 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (125 MHz) : $\quad-5.2,-5.1,18.0,26.0,31.3,72.2,72.7,72.8,73.9,74.6$, $78.6,127.7,127.8,127.9,128.0,128.3,128.4,137.4$, 137.8, 138.0, 154.0 ppm

ESI MS $m / z \quad: \quad 660[\mathrm{M}+\mathrm{H}]^{+}$
Elemental Analysis
Calcd: C, 58.27; H, 6.37; N, 2.12\%
Found: C, 58.14; H, 6.13; N, 2.67\%

1,4-Anhydro-2,3,5-tri-O-benzyl-1-deoxy-1-imino-L-arabinitol- N -oxide (79).

To a solution of $\boldsymbol{E - 8 5}(2.3 \mathrm{~g}, 3.5 \mathrm{mmol})$ in toluene (30 mL) was added anhyd n $\mathrm{Bu}_{4} \mathrm{NF}(1.3 \mathrm{~g}, 4.2 \mathrm{mmol})$ and the mixture was heated to reflux for 3 h . The reaction mixture was concentrated under reduced pressure and the resulting crude product was purified on silica gel using methanol-diethyl ether (1:9) to afford 79 as a white crystalline solid.

Yield	: $1.3 \mathrm{~g}, 89 \%$
Mol. Formula	: $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{4}$
M.P.	: $82-84{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{25}$: $42.0\left(c=2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
$\mathbf{I R}\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$: $2927,2855,1584,1454,1111,699 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR (200 MHz)	$\begin{aligned} : & \delta 3.74-3.78(\mathrm{~m}, 1 \mathrm{H}), 4.02-4.09(\mathrm{~m}, 2 \mathrm{H}), 4.37(\mathrm{dd}, 1 \mathrm{H}, \mathrm{~J}= \\ & 3.4,2.2 \mathrm{~Hz}), 4.47-4.49(\mathrm{~m}, 6 \mathrm{H}), 4.66(\mathrm{t}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), \\ & 6.90(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 7.24-7.36(\mathrm{~m}, 15 \mathrm{H}) \end{aligned}$
${ }^{13} \mathbf{C}$ NMR (125 MHz)	$\begin{aligned} & : \quad 66.1,71.7,72.0,73.3,77.5,80.3,82.8,127.7,128.1, \\ & 128.2,128.4,128.5,128.6,130.0,133.0,137.1,137.2, \\ & 137.7 \mathrm{ppm} \end{aligned}$
ESI MS m/z	: $418[\mathrm{M}+\mathrm{H}]^{+}, 440[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis	Calcd: C, 74.82; H, 6.47; N, 3.36\%
	Found: C, 75.00 ; H, 6.88; N, 3.71\%.

(2S,3S,4S,5S)-2-Benzyloxymethyl-3,4-dibenzyloxy-5-(4-methoxyphenyl)- N hydroxypyrrolidine (86).

To a stirred solution of 4-methoxyphenyl magnesium bromide, prepared from Mg ($26 \mathrm{mg}, 1.1 \mathrm{mmol}$) and 1-bromo-4-methoxybenzene ($200 \mathrm{mg}, 1.1 \mathrm{mmol}$) in THF (5 mL), was added 79 ($150 \mathrm{mg}, 0.36 \mathrm{mmol}$) in THF at $-78^{\circ} \mathrm{C}$. After being stirred for 2 h at the same temperature, the reaction mixture was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$. The organic layer was separated, the aqueous layer was extracted with CHCl_{3}, and the combined organic extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified on flash silica gel using ethyl acetate-light petroleum ether (1:5) to yield $\mathbf{8 6}$ as thick syrup.

Yield : $154 \mathrm{mg}, 81 \%$

Mol. Formula $\quad: \quad \mathrm{C}_{33} \mathrm{H}_{35} \mathrm{NO}_{5}$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}) \quad: \quad \delta 3.57-3.74(\mathrm{~m}, 3 \mathrm{H}), 3.76-3.85(\mathrm{~m}, 4 \mathrm{H}), 4.04-4.18(\mathrm{~m}, 3 \mathrm{H})$, 4.29, 4.36 ($2 \mathrm{~d}, 2 \mathrm{H}, J=11.9 \mathrm{~Hz}$), 4.46, 4.49, 4.56, 4.58 (4 d , $4 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}), 6.84(\mathrm{dd}, 2 \mathrm{H}, J=6.7,2.0 \mathrm{~Hz}), 7.08(\mathrm{dd}$, $2 \mathrm{H}, J=7.3,3.7 \mathrm{~Hz}), 7.21-7.33(\mathrm{~m}, 15 \mathrm{H})$

ESI MS $m / z \quad: \quad 525[\mathrm{M}]^{+}$
Elemental Analysis
Calcd: C, 77.40; H, 6.71; N, 2.66\%
Found: C, 77.49; H, 6.68; N, 2.47\%

(2S,3S,4S,5S)-2-Benzyloxymethyl-3,4-dibenzyloxy-5-(4-benzyloxyphenyl)- N -

 hydroxypyrrolidine (87).

Grignard reaction of 4-benzyloxyphenyl magnesium bromide with the nitrone 79 was performed as described earlier for the preparation of compound $\mathbf{8 6}$ and by using 4benzyloxyphenyl magnesium bromide, prepared from $\mathrm{Mg}(17 \mathrm{mg}, 0.72 \mathrm{mmol})$ and 1-[(4bromophenoxy)methyl] benzene ($200 \mathrm{mg}, 0.72 \mathrm{mmol}$) in THF (5 mL), was added 79 (100
$\mathrm{mg}, 0.24 \mathrm{mmol}$) in THF at $-78{ }^{\circ} \mathrm{C}$ to provide compound 87 as a white solid after purification on flash silica gel using ethyl acetate-light petroleum ether (1:5).

Yield	: $112 \mathrm{mg}, 78 \%$
Mol. Formula	$\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{NO}_{5}$
M.P.	: $127-128{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{25}$: $15\left(c=4.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
$\mathbf{I R}\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$	$\begin{aligned} & : \quad 3685,3444,2929,1732,1611,1514,1424,1251,1102, \\ & 1045,925 \mathrm{~cm}^{-1} \end{aligned}$
${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz})$	$\begin{aligned} & : \quad \delta 3.73(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{dd}, 1 \mathrm{H}, J=9.3,7.1 \mathrm{~Hz}), 3.88(\mathrm{dd}, \\ & 1 \mathrm{H}, J=9.3,3.8 \mathrm{~Hz}), 4.05(\mathrm{dd}, 1 \mathrm{H}, J=7.1,3.3 \mathrm{~Hz}), 4.11(\mathrm{t}, \\ & 1 \mathrm{H}, J=3.3 \mathrm{~Hz}), 4.21(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 4.33,4.37(2 \mathrm{~d}, \\ & 2 \mathrm{H}, J=11.5 \mathrm{~Hz}), 4.50,4.59,4.55,4.58(4 \mathrm{~d}, 4 \mathrm{H}, J=12.1 \\ & \mathrm{Hz}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 6.95(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.10(\mathrm{dd}, 2 \mathrm{H}, J \\ & =6.6,3.8 \mathrm{~Hz}), 7.23-7.43(\mathrm{~m}, 20 \mathrm{H}) \end{aligned}$

${ }^{13}$ C NMR (125 MHz) : $\quad 67.0,68.9,70.0,71.6,72.0,73.3,73.4,83.6,87.2,114.6$, $127.5-127.7,127.9-128.5,129.9,137.0,137.9,138.1$, 138.2, 158.6 ppm

ESI MS $m / z \quad: \quad 602[\mathrm{M}+\mathrm{H}]^{+}$
Elemental Analysis
Calcd: C, 77.87; H, 6.49; N, 2.33\%
Found: C, 77.23; H, 6.38; N, 2.74\%
(2S,3S,4S,5S)-2-Benzyloxymethyl-3,4-dibenzyloxy-5-(4-benzyloxyphenyl)pyrrolidine (88).

To a solution of $87(75 \mathrm{mg}, 0.12 \mathrm{mmol})$ in ethanol (5 mL) were added sat. $\mathrm{NH}_{4} \mathrm{Cl}$ $(5 \mathrm{~mL})$ and Zn dust ($80 \mathrm{mg}, 1.2 \mathrm{mmol}$). The resulting mixture was refluxed until all the starting was reacted (3 h , TLC showing brownish spot by ninhydrin reaction). After removal of solvent under reduced pressure, the residue was treated with a saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (10 mL), extracted with EtOAc, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The purification of the crude residue on silica gel using ethyl acetate-light petroleum ether (1:5) afforded the pyrrolidine $\mathbf{8 8}$ as colorless oil.

```
Yield : 72 mg, 98%
```



```
[\alpha\mp@subsup{]}{\mathbf{D}}{}\mp@subsup{}{}{25}
'1}\mp@subsup{}{}{1}H\mathrm{ NMR (200 MHz) : }\delta3.53-3.61(m,3H), 3.95(t,1H,J=4 Hz), 4.03(dd, 1H, J
    = 6.6, 4.3 Hz), 4.15 (d, 1H,J=6.6 Hz), 4.39(s, 2H), 4.54
    (s, 2H), 4.57 (s, 2H), 5.07 (s, 2H), 6.93 (d, 2H, J = 8.7 Hz),
    7.15 (d, 2H, J=7.5, 3.5 Hz), 7.26-7.42 (m, 20H)
\mp@subsup{}{}{13}\mathbf{C NMR (100 MHz) : 61.4, 64.9, 70.1, 70.8, 71.9, 72.3, 73.3, 85.7, 91.1, 114.9,}
    127.5-128.0, 128.3-128.6, 134.6, 137.1, 138.1, 138.2,
    158.2 ppm
ESI MS m/z : 586 [M+H]+
Elemental Analysis
    Calcd: C, 79.97; H, 6.71; N, 2.39%
    Found: C, 80.10; H, 6.43; N, 2.40%
```

(2S,3S,4S,5S)-2-hydroxymethyl-3,4-dihydroxy-5-(4-hydroxyphenyl)pyrrolidine (78).

To a solution of $\mathbf{8 8}(50 \mathrm{mg}, 0.1 \mathrm{mmol})$ in ethanol $(3 \mathrm{~mL})$ was added $\mathrm{PdCl}_{2}(10 \mathrm{~mol}$ $\%$) and the resulting mixture was stirred under H_{2} atmosphere (balloon pressure) at room temperature for 20 h . The reaction mixture was filtered through Celite and the Celite pad was washed several times with ethanol. The combined filtrate was evaporated under reduced pressure to afford compound 78 as colorless oil.

Yield	: $12 \mathrm{mg}, 62 \%$
Mol. Formula	: $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{4}$
$[\alpha]_{\mathrm{D}}{ }^{25}$: $-69\left(c=0.2, \mathrm{H}_{2} \mathrm{O}\right),\left\{\mathrm{Lit.}^{35}-72.7\left(c=0.1, \mathrm{H}_{2} \mathrm{O}\right)\right\}$
$\begin{aligned} & { }^{1} \mathbf{H} \quad \text { NMR } \quad\left(\mathrm{D}_{2} \mathrm{O}, \quad 500\right. \\ & \mathbf{M H z}) \end{aligned}$	$\delta 3.68-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=12.5,5.8 \mathrm{~Hz}), 4.01$ $(\mathrm{dd}, 1 \mathrm{H}, ~ J=12.5,3.9 \mathrm{~Hz}), 4.23(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.43$ $(\mathrm{d}, 1 \mathrm{H}, J=10.1 \mathrm{~Hz}), 4.51(\mathrm{dd}, 1 \mathrm{H}, J=10.1,7.8 \mathrm{~Hz}), 7.05$ (d, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}$), $7.49(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz})$
$\begin{aligned} & { }^{13} \mathbf{C} \text { NMR }\left(\mathrm{D}_{2} \mathrm{O}, 125\right. \\ & \mathrm{MHz}) \end{aligned}$	$\begin{aligned} & 58.5,61.4,62.7,73.9,77.6,115.9,123.8,129.8,156.7 \\ & \operatorname{ppm} \end{aligned}$
ESI MS m/z	: $226[\mathrm{M}+\mathrm{H}]^{+}$
Elemental Analysis	Calcd: C, 58.66; H, 6.71; N, 6.22\%
	Found: C, 58.78; H, 6.53; N, 6.12\%

5-Bromo-2-methoxyphenyl benzoate (91).

To a stirred solution of $\mathbf{8 9}(1.3 \mathrm{~g}, 10.5 \mathrm{mmol})$ in dry pyridine $(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added benzoyl chloride ($3 \mathrm{~mL}, 26.4 \mathrm{mmol}$) and the reaction mixture was stirred at room temperature for 2 h . Water (30 mL) was added and the mixture was extracted with EtOAc. The combined organic layer was successively washed with 2 N HCl , brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Purification of the residue on silica gel using ethyl acetate-light petroleum ether (1:5) gave $90(4.8 \mathrm{~g}, 96 \%)$. A solution of bromine ($4.4 \mathrm{~g}, 27.7 \mathrm{mmol}$) in $\mathrm{AcOH}(5 \mathrm{~mL})$ was slowly added to a solution of $90(4.8 \mathrm{~g}, 21.0 \mathrm{mmol})$ in $\mathrm{AcOH}(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 24 h and then additional bromine ($2.4 \mathrm{~g}, 13.8 \mathrm{mmol}$) in $\mathrm{AcOH}(5 \mathrm{~mL})$ was added and the stirring was continued for another 24 h . The acetic acid was removed on rotavapour at room temperature and the residue obtained was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with sat. NaHCO_{3}. The combined organic extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was solidified by the addition of petroleum ether yielded 5-bromo-2-methoxyphenol 91 as a colorless liquid.

Yield	: $5.3 \mathrm{~g}, 82 \%$
Mol. Formula	: $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{3}$
${ }^{1} \mathbf{H} \mathbf{N M R}(200 \mathrm{MHz})$	$\begin{aligned} : & \delta 3.77(\mathrm{~s}, 3 \mathrm{H}), 6.86(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.30-7.37(\mathrm{~m}, 2 \mathrm{H}), \\ & 7.45-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.67(\mathrm{~m}, 1 \mathrm{H}), 8.16-8.22(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$
${ }^{13} \mathbf{C}$ NMR (50 MHz)	$\begin{aligned} : & 56.0,111.9,113.7,126.1,128.5,128.8,129.5,130.2 \\ & 133.6,140.5,150.7,164.2 \mathrm{ppm} \end{aligned}$
+TOF MS m/z	$330[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental analysis	Calcd: C, 54.75; H, 3.61 \%
	Found: C, 54.49; H, 3.85\%

5-Bromo-2-methoxyphenol (92).

The benzoylated compound $91(1.0 \mathrm{~g}, 3.3 \mathrm{mmol})$ was dissolved in dry MeOH (5 mL) and a few drops of a 1 M methanolic NaOMe solution were added. The mixture was kept at room temperature and monitored by TLC (1:9 Ethyl acetate-Hexanes). When the starting material and the partially debenzoylated products disappeared ($1 / 2 \mathrm{~h}$), the reaction mixture was neutralized with Amberlyst- 15 resin (H^{+}form). After removal of the solvent the residue obtained which was pure enough to use in the next reaction.

$$
\begin{array}{lll}
\text { Yield } & : 0.6 \mathrm{~g}, 89 \% \\
\text { Mol. Formula } & : & \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{BrO}_{2} \\
& & \\
& \\
{ }^{1} \mathrm{H} \text { NMR }(200 \mathrm{MHz}) & : & \delta 3.89(\mathrm{~s}, 3 \mathrm{H}), 5.63(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=8.5 \mathrm{~Hz}), \\
& 6.96(\mathrm{dd}, 1 \mathrm{H}, \mathrm{~J}=8.5,2.4 \mathrm{~Hz}), 7.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=2.4 \mathrm{~Hz})
\end{array}
$$

Elemental Analysis
Calcd: C, 41.41; H, 3.48\%
Found: C, 40.81; H, 3.65\%

2-Benzyloxy-4-bromo-1-methoxybenzene (93).

To a solution of 5-bromo-2-methoxyphenol $92(0.5 \mathrm{~g}, 2.5 \mathrm{mmol})$ in DMF (10 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.9 \mathrm{~g}, 6.3 \mathrm{mmol})$ followed by addition of benzyl bromide $(0.3 \mathrm{~mL}, 2.8$ mmol) the reaction mixture was stirred at room temperature for 2 h . When TLC indicated the disappearance of the starting material, the reaction mixture was poured into the ice water (25 mL). The white solid precipitated from the solution was filtered and recrystallized from EtOAc/light petroleum ether (1:1) to give $\mathbf{9 3}$ as colorless needles.

Yield	: $0.6 \mathrm{~g}, 92 \%$
Mol. Formula	: $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO}_{2}$
M.P.	: 108-109 ${ }^{\circ} \mathrm{C}$ Lit. $.^{44} 106-107{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR (200 MHz)	$\begin{aligned} & \delta 3.85(\mathrm{~s}, 3 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 7.01- \\ & 7.05(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.45(\mathrm{~m}, 5 \mathrm{H}) \end{aligned}$
${ }^{13} \mathbf{C}$ NMR (50 MHz)	56.0, 71.1, 112.5, 113.1, 117.1, 123.9, 127.3, 128.0, $128.5,136.4,149.0 \mathrm{ppm}$
ESI MS m/z	: $315[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis	Calcd: C, 57.36; H, 4.47\%
	Found: C, 57.54; H, 4.76\%

1E/1Z-2,3,5-tri-O-benzyl-4-O-methanesulfonyl-L-arabinose-O-[tert-butyldimethylsilyl] oximes (101).

Methanesulphonyl chloride ($0.24 \mathrm{~mL}, 3.1 \mathrm{mmol}$) was added to a solution of oximes $84(1.4 \mathrm{~g}, 2.6 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 2 h stirring at the same temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and washed successively with water (30 mL), aqueous CuSO_{4} and saturated aqueous sodium bicarbonate solution (30 mL). The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated under reduced pressure and the residue purified on silica gel using ethyl acetate-light petroleum ether (1:19) to afford $1 E / 1 Z-2,3,5-t r i-O-b e n z y l-4-O-m e t h a n e s u l f o n y l-L-a r a b i n o s e-O-[(t e r t-~$ butyldimethylsilyl] oximes 101 as an oil, The ${ }^{1} \mathrm{H}$ NMR indicates the presence of E / Z mixture ($E / Z \sim 7: 3$).

Yield : $1.5 \mathrm{~g}, 93 \%$

Mol. Formula	$\mathrm{C}_{33} \mathrm{H}_{45} \mathrm{NO}_{7} \mathrm{SSi}$
$\boldsymbol{I R}\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$	1713, 1497, 1455, 1358, 1176, 1075, 1028, 927, $699 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H} \mathbf{N M R}(200 \mathrm{MHz})$	$: \quad \delta 0.16,0.18(\mathrm{~s}, 6 \mathrm{H}), 0.93,0.96(2 \mathrm{~s}, 9 \mathrm{H}), 2.92,2.93(2 \mathrm{~s}$, $3 \mathrm{H}), 3.71-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.84-4.01(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.22(\mathrm{~m}$, $1 \mathrm{H}), 4.38-4.74(\mathrm{~m}, 6 \mathrm{H}), 4.92-5.01(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=5.8$ $\mathrm{Hz}, 0.3 \mathrm{H}), 7.23-7.36(\mathrm{~m}, 15 \mathrm{H}), 7.50(\mathrm{~d}, 0.7 \mathrm{H}, J=7.8 \mathrm{~Hz})$
${ }^{13} \mathbf{C}$ NMR (100 MHz)	$\begin{aligned} : & -5.4,-5.3,18.0,18.1,25.9,26.0,38.4,38.5,68.6,69.1, \\ & 71.3,72.0,72.5,73.3,73.4,74.9,75.0,76.6,79.0,80.2, \\ & 81.3,81.5,127.7-128.4,137.2-137.6,152.5,155.0 \mathrm{ppm} \end{aligned}$
Elemental Analysis	Calcd: C, 63.13; H, 7.22; N, 2.23; S, 5.11\% Found: C, 63.74; H, 7.10; N, 2.15; S, 4.80\%

Found: C, 63.74; H, 7.10; N, 2.15; S, 4.80\%

2,3,5-Tri-O-benzyl-1,4-dideoxy-1,4-imino-d-xylitol- N -oxide (98).

Method A:
Compounds $101(1.0 \mathrm{~g}, 1.6 \mathrm{mmol})$ in dry THF (30 mL) was treated with 1 M solution of anhydrous TBAF ($0.6 \mathrm{~g}, 1.9 \mathrm{mmol}$) and the contents were stirred at room temperature for 30 min . Water (30 mL) was added and the mixture was extracted with EtOAc. The combined organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give free oxime derivative. The resulting oximes $(0.8 \mathrm{~g}, 1.5 \mathrm{mmol})$ were taken in a $3: 1$ mixture of methanol-water $(20 \mathrm{~mL})$ and treated with $\mathrm{NaHCO}_{3}(1.0 \mathrm{~g}, 12.2 \mathrm{mmol})$, hydroxylamine. hydrochloride ($0.9 \mathrm{~g}, 12.2 \mathrm{mmol}$). The reaction mixture was heated to reflux for 5 h . After concentration under vacuum, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water was added. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude
reaction mixture was purified on silica gel using ethyl acetate-light petroleum ether (1:5) afforded the nitrone 98 and (4S,5R,6R)-4,5-bis(benzyloxy)-6-benzyloxymethyl-5,6-dihydro- 4 H -1,2-oxazine (103).

Data for 98:

Yield $\quad: \quad 0.3 \mathrm{~g}, 48 \%$

Mol. Formula $\quad: \quad \mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{4}$

$[\alpha]_{\text {D }}{ }^{25}$: $70\left(c=1.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
$\mathbf{I R}\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$	2927, 2976, 1585, 1522, 1454, 1100, 699, $629 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR (400 MHz)	: $\delta 3.80(\mathrm{dd}, 1 \mathrm{H}, J=10.0,1.8 \mathrm{~Hz}), 3.96(\mathrm{dd}, 1 \mathrm{H}, J=10.0$, $4.3 \mathrm{~Hz}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.8,4.5 \mathrm{~Hz}), 4.48-$ $4.66(\mathrm{~m}, 6 \mathrm{H}), 4.74(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.35(\mathrm{~m}$, 15H)
${ }^{13} \mathbf{C}$ NMR (100 MHz)	: 64.3, 72.2, 73.0, 73.4, 74.0, 80.4, 83.0, 127.4-128.4, 133.9,

ESI MS m / z
Elemental Analysis
: $418[\mathrm{M}+\mathrm{H}]^{+}, 440[\mathrm{M}+\mathrm{Na}]^{+}$
Calcd: C, 74.80; H, 6.52; N, 3.35\%
Found: C, 74.35; H, 6.81; N, 3.43\%

103

Data for 103:

Yield
Mol. Formula
$[\alpha]_{D}{ }^{25}$
: $0.18 \mathrm{~g}, 26 \%$
: $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{4}$
: $132.8\left(c=3.1, \mathrm{CHCl}_{3}\right)$

$$
\begin{aligned}
& \operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \widetilde{v} \quad: \quad 2923,2868,2252,1735,1496,1454,1373,1244,1096, \\
& \text { 945, } 698 \mathrm{~cm}^{-1} \\
& { }^{1} \mathbf{H} \text { NMR }(200 \mathrm{MHz}) \quad: \quad \delta 3.51(\mathrm{t}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}), 3.64-3.82(\mathrm{~m}, 3 \mathrm{H}), 4.07(\mathrm{ddd} \text {, } \\
& 1 \mathrm{H}, J=6.0,1.8,1.4 \mathrm{~Hz} \text {), 4.43-4.65 (m, 6H), 7.21-7.41 (m, } \\
& 16 \mathrm{H}) \\
& { }^{13} \text { C NMR (} 100 \mathrm{MHz} \text {) : } \quad 65.0,67.3,70.5,71.6,72.4,73.5,74.3,127.2-128.6,137.2, \\
& \text { 137.4, 137.8, } 145.8 \mathrm{ppm} \\
& \text { ESI MS } m / z \quad: \quad 418[\mathrm{M}+\mathrm{H}]^{+}, 440[\mathrm{M}+\mathrm{Na}]^{+} \\
& \text {Elemental Analysis } \\
& \text { Calcd.: C, 74.80; H, 6.52; N, 3.35\% } \\
& \text { Found: C, 74.60; H, 6.66; N, 3.55\% }
\end{aligned}
$$

Method B:

To a solution of $\mathbf{1 0 1}(1.2 \mathrm{~g}, 1.9 \mathrm{mmol})$ in toluene $(30 \mathrm{~mL})$ was added anhydrous n $\mathrm{Bu}_{4} \mathrm{NF}(0.8 \mathrm{~g}, 2.4 \mathrm{mmol})$ and mixture was refluxed for 1 h . After evaporation, the residue was purified on silica gel using methanol-diethyl ether (1:9) to afford compound 98 (0.8 g , 97\%) as a colorless oil.

1,4-Dideoxy-1,4-imino-L-arabinitol.hydrochloride (99).

A suspension nitrone $79(100 \mathrm{mg}, 0.24 \mathrm{mmol}), 20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(10 \mathrm{mg})$ in MeOH (5 mL) and conc. $\mathrm{HCl}(10 \mu \mathrm{~L})$ was stirred under hydrogen atmosphere (balloon pressure) at room temperature for overnight. The catalyst was removed by filtration and the reaction mixture was concentrated to give hydrochloride salt of LAB-1 (99).

Yield
Mol. Formula
$[\alpha]_{\mathrm{D}}{ }^{25}$
: $-32.5\left(c=1, \mathrm{H}_{2} \mathrm{O}\right) ; \mathrm{Lit}^{48}\left\{-34.6\left(c=0.1, \mathrm{H}_{2} \mathrm{O}\right)\right\}$
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 200: \delta 3.39(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=12.5,2.2 \mathrm{~Hz}), 3.52-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.83\right.$
MHz)
: $40 \mathrm{mg}, 97 \%$
: $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{ClNO}_{3}$ (dd, $1 \mathrm{H}, J=12.2,8.2 \mathrm{~Hz}$), 3.99 (dd, $1 \mathrm{H}, J=12.2,4.6 \mathrm{~Hz}$), $4.13(\mathrm{t}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 4.36(\mathrm{ddd}, 1 \mathrm{H}, J=5.2,2.7,2.4$ Hz)
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 125: 50.0,58.9,66.6,74.3,75.7 \mathrm{ppm}\right.$ MHz)

ESI MS $m / z \quad: \quad 134[\mathrm{M}+\mathrm{H}]^{+}$
Elemental Analysis
Calcd: C, 35.41; H, 7.13, N, 8.26\%
Found: C, 35.38; H, 7.29, N, 8.43\%

1,4-Dideoxy-1,4-imino-d-xylitol.hydrochloride(100).

The nitrone 98 ($100 \mathrm{mg}, 0.24 \mathrm{mmol}$) dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ and stirred under hydrogen atmosphere (balloon pressure) in the presence of $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(10 \mathrm{mg})$ and conc. $\mathrm{HCl}(10 \mu \mathrm{~L})$ for 10 h at room temperature. The catalyst was removed by filtration and the reaction mixture was concentrated to give hydrochloride salt of $\mathbf{1 0 0}$.
Yield
: $\quad 39 \mathrm{mg}, 95 \%$

Mol. Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathbf{H}$ NMR (200 MHz)
: $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{ClNO}_{3}$
: $7.3\left(c=1, \mathrm{H}_{2} \mathrm{O}\right) ;$ Lit. $^{49}\left\{8.8\left(c=0.7, \mathrm{H}_{2} \mathrm{O}\right)\right\}$
: $\delta 3.31(\mathrm{~d}, 1 \mathrm{H}, J=13.0 \mathrm{~Hz}), 3.67(\mathrm{dd}, 1 \mathrm{H}, J=13.0,4.0$ $\mathrm{Hz}), 3.89-4.05(\mathrm{~m}, 3 \mathrm{H}), 4.33(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}), 4.40(\mathrm{dt}$, $1 \mathrm{H}, \mathrm{J}=4.2,1.3 \mathrm{~Hz})$
${ }^{13} \mathbf{C}$ NMR (125 MHz) : $\quad 50.8,57.5,63.3,74.6,74.6 \mathrm{ppm}$
ESI MS $m / z \quad: \quad 169[\mathrm{M}+\mathrm{H}]^{+}$

5E-(2S,3S,4S)-1,3,4-Tri-O-benzyloxy-6-methoxyhex-5-en-2-ol (112).

To a stirred suspension of (methoxymethyl)triphenylphosphonium chloride (20.4 g , $59.5 \mathrm{mmol})$ in dry THF (100 mL) was added $n-\mathrm{BuLi}(29.8 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, 47.6 mmol) over 30 minutes at $0{ }^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 10 minutes, to the reaction mixture was added a solution of $\mathbf{8 2}(5.0 \mathrm{~g}, 11.9 \mathrm{mmol})$ in dry THF $(25 \mathrm{~mL})$ over 1 hour at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and stirred for 4 hours. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and the solvent was evaporated under reduced pressure. The residue was diluted with $\mathrm{Et}_{2} \mathrm{O}$, and the organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product was purified on silica gel using ethyl acetate-light petroleum ether (1:8) to give methyl ether $\mathbf{1 1 2}$ as thick oil.
Yield
: $4.3 \mathrm{~g}, 81 \%$
Mol. Formula
$[\alpha]_{D}{ }^{25}$
: $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{4}$
: $5.0\left(c=1.1, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}) \quad: \quad \delta 2.98(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~m}$, 1 H), 3.92-4.11 (m, 2H), 4.28-4.67 (m, 6H), 4.83 (dd, 1H, J $=13.0,9.5 \mathrm{~Hz}), 6.45(\mathrm{~d}, 1 \mathrm{H}, J=13.0 \mathrm{~Hz}), 7.28-7.31(\mathrm{~m}$, $15 \mathrm{H})$

${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \quad: \quad$	$55.9,69.4,70.5,71.1,74.0,77.4,81.4,99.0,127.6-128.3$,
	$129.8,138.1,138.3,151.4 \mathrm{ppm}$

ESI MS m/z : $449[\mathrm{M}+\mathrm{H}]^{+}$
Elemental Analysis Calcd: C, 74.97; H, 7.19\%
Found: C, 74.94; H, 6.94\%

(1E/Z, 2E)-4,6-Bis(benzyloxy)-5-mesyloxy-hex-2-enal oxime (117).

To a solution of $112(2.0 \mathrm{~g}, 4.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, methanesulphonyl chloride ($3.5 \mathrm{~mL}, 44.6 \mathrm{mmol}$) and triethylamine ($6.2 \mathrm{~mL}, 44.6 \mathrm{mmol}$) were added and the reaction mixture was stirred at the same temperature for 1 h . After completion, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and extracted with water. The combined organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The resulting residue was directly subjected to the next reaction.

To the solution of above mesylate $\mathbf{1 1 1}(100 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $2 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ and the reaction mixture was allowed to stir at room temperature for 1 h . After completion, the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with aqueous NaHCO_{3} solution till neutralization of organic layer and then washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. To the above residue of $114(60 \mathrm{mg}, 0.1 \mathrm{mmol})$ in ethanol (5 mL) was added hydroxylamine.hydrochloride (56 $\mathrm{mg}, 0.8 \mathrm{mmol}), \mathrm{NaHCO}_{3}(0.7 \mathrm{~g}, 0.8 \mathrm{mmol})$ and the mixture was heated to reflux for 2 h . The reaction mixture was filtered through Celite and the Celite pad was washed several times with ethanol. After removal of solvent under reduced pressure, the residue obtained
was extracted with EtOAc, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product was purified on silica gel using ethyl acetate-light petroleum ether (1:2) to afford $\mathbf{1 1 7}$ as yellow color oil.

Yield : $40 \mathrm{mg}, 80 \%$

Mol. Formula $\quad: \quad \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{~S}$
${ }^{1} \mathbf{H}$ NMR $(300 \mathrm{MHz}) \quad: \quad \delta 2.98(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.74(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.7$, $3.7 \mathrm{~Hz}), 4.43,4.59(2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}), 4.51(\mathrm{~s}, 2 \mathrm{H})$, 4.87-4.92 (m, 1H), $5.96(\mathrm{dd}, 1 \mathrm{H}, J=16.1,7.3 \mathrm{~Hz}), 6.40$ (dd, $1 \mathrm{H}, J=16.1,10.3 \mathrm{~Hz}), 7.24-7.35(\mathrm{~m}, 10 \mathrm{H}), 7.80(\mathrm{~d}$, $1 \mathrm{H}, J=10.3 \mathrm{~Hz}$), $9.0($ br. s, 1 H$)$
${ }^{13} \mathbf{C}$ NMR (50 MHz) $\quad: \quad 38.4,68.2,71.2,73.3,77.9,81.8,127.7-128.4,128.8$, 134.3, 137.1, 150.0 ppm

ESI MS $m / z \quad: \quad 418[M]^{+}$
Elemental Analysis
Calcd: C, 60.13; H, 6.01; N, 3.34; S, 7.64\%
Found: C, 60.54; H, 6.28; N, 3.12; S, 8.02\%

(1E/Z, 2E)-4,6-Bis(benzyloxy)-5-tosyloxy-hex-2-enal oxime (118).

To a solution of $112(2.0 \mathrm{~g}, 4.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C} p$ toluenesulphonyl chloride $(2.6 \mathrm{~g}, 13.5 \mathrm{mmol})$ and triethylamine $(2.5 \mathrm{~mL}, 18.0 \mathrm{mmol})$ were added. The reaction mixture was stirred at the same temperature for 3 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and extracted with water, the combined organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a residue which was used in the next reaction immediately. The tosylate compound (113) ($100 \mathrm{mg}, 0.2 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and treated with $2 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ at room temperature. After the completion of
reaction, the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layer was successively washed with aqueous NaHCO_{3} solution (till neutralization of organic layer), with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and the residue obtained was used in the next step without purification. To the above residue $116(73 \mathrm{mg}, 0.13 \mathrm{mmol})$ in ethanol $(5 \mathrm{~mL})$ was added hydroxylamine.hydrochloride ($76 \mathrm{mg}, 1.1 \mathrm{mmol}$), $\mathrm{NaHCO}_{3}(92 \mathrm{mg}, 1.1 \mathrm{mmol})$ and the mixture was heated to reflux for 2 h . The reaction mixture was filtered through Celite and the Celite pad was washed several times with ethanol. After concentration the residue obtained was extracted by using EtOAc, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product was purified on silica gel using ethyl acetate-light petroleum ether (1:2) to afford 118 as yellow color oil.

Yield
Mol. Formula
IR $\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$
${ }^{1}$ H NMR (200 MHz)
: $30 \mathrm{mg}, 49 \%$
: $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{~S}$
$3342,2249,1765,1681,1598,1496,1454,1366,910 \mathrm{~cm}^{-1}$
: $\delta 2.34(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=11.0,4.2 \mathrm{~Hz}), 3.75(\mathrm{dd}$,
$1 \mathrm{H}, J=11.0,4.8 \mathrm{~Hz}), 3.96-4.14(\mathrm{~m}, 1 \mathrm{H}), 4.32$, 4.48 (2 d , $2 \mathrm{H}, J=11.5 \mathrm{~Hz}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.5,4.7$ Hz), 5.69 (dd, $1 \mathrm{H}, J=15.8,7.3 \mathrm{~Hz}$), 6.24 (dd, $1 \mathrm{H}, J=$ $15.8,9.9 \mathrm{~Hz}), 7.13-7.28(\mathrm{~m}, 12 \mathrm{H}), 7.56(\mathrm{~d}, 1 \mathrm{H}, J=9.9$ $\mathrm{Hz}), 7.68$ (d, 2H, J=8.1 Hz), 8.29 (br. s, 1H)

Elemental Analysis
Calcd: C, 65.44; H, 5.90; N, 2.83; S, 6.47\%
Found: C, 65.23; H, 6.34; N, 2.56; S, 6.11\%

(1E)-N-[(4R,5S)-4,6-Bis(benzyloxy)-5-hydroxyhex-2-enylidiene)]

(phenyl)methanamine oxide (121).

The compound $112(1.0 \mathrm{~g}, 2.2 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and treated with 2 N $\mathrm{HCl}(5 \mathrm{~mL})$ at room temperature. After completion, the reaction mixture was extracted
with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layer was washed successively with aqueous NaHCO_{3} solution (till neutralization of organic layer), brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and the residue obtained is used in the next step without purification. To the above residue (0.6 g , $1.4 \mathrm{mmol})$ in ethanol: $\mathrm{H}_{2} \mathrm{O}(3: 2)(10 \mathrm{~mL})$ was added N-benzylhydroxylamine.hydrochloride $(0.3 \mathrm{~g}, 1.7 \mathrm{mmol})$, sodium acetate $(0.15 \mathrm{~g}, 1.7 \mathrm{mmol})$ and the mixture was stirred at room temperature for 1 h . The reaction mixture was filtered through Celite and the Celite pad was washed several times with ethanol. After removal of solvent under reduced pressure the residue obtained was extracted with EtOAc, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product was purified on silica gel using methanol-diethyl ether (1:9) to afford $\mathbf{1 2 1}$ as yellow color oil.

Yield	: $0.5 \mathrm{~g}, 83 \%$
Mol. Formula	: $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{4}$
$[\alpha]_{\text {D }}{ }^{25}$: $15\left(c=4.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz)	$\begin{aligned} : & \delta 3.51-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.86-4.04(\mathrm{~m}, 2 \mathrm{H}), 4.33,4.59(2 \mathrm{~d}, 2 \mathrm{H}, \\ & J=11.7 \mathrm{~Hz}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 6.20(\mathrm{dd}, 1 \mathrm{H}, J= \\ & 14.5,7.7 \mathrm{~Hz}), 6.93-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.42(\mathrm{~m}, 15 \mathrm{H}) \end{aligned}$
${ }^{13} \mathbf{C}$ NMR (50 MHz)	$\begin{aligned} : & 69.3,70.4,70.9,72.3,73.3,79.9,124.0,127.6,128.3 \\ & 128.9,129.4,132.5,135.1,137.7 \mathrm{ppm} \end{aligned}$
ESI MS m/z	: $454[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis	Calcd: C, 75.15 ; H, 6.77, N, 3.25\%
	Found: C, 74.99; H, 6.85, N, 3.30\%

(1E,4R,5S)-4,6-Bis(benzyloxy)hex-2-ene-1,5-diol (120).

The compound $112(1.0 \mathrm{~g}, 2.2 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and treated with $2 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ at room temperature. After completion, the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layer was washed successively with aqueous NaHCO_{3} solution (till neutralization of organic layer), brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent removed and the resulting residue was subjected to the next reaction without purification. To the above residue ($0.6 \mathrm{~g}, 1.4 \mathrm{mmol}$) in THF (10 mL) was added LAH ($11 \mathrm{mg}, 2.8$ mmol) at $0{ }^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 0.5 h . The reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and 15% aqueous $\mathrm{NaOH}(20 \mathrm{~mL})$ and the solution was filtered through a short column of silica gel. Concentration afforded 120 as a pure diol.

Yield	: $0.4 \mathrm{~g}, 80 \%$
Mol. Formula	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4}$
$[\alpha]_{\mathrm{D}}{ }^{25}$	-20.6 ($c=0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}$)
$\mathbf{I R}\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$	$\begin{aligned} & : 3416,3015,2923,2868,1606,1454,1216,1089,909,757 \\ & \mathrm{~cm}^{-1} \end{aligned}$
${ }^{1} \mathbf{H}$ NMR (200 MHz)	$\begin{aligned} & \delta 2.47(\mathrm{br} . \mathrm{s}, 2 \mathrm{H}), 3.49-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~d}, 2 \mathrm{H}, J=4.7 \\ & \mathrm{Hz}), 4.16(\mathrm{~d}, 2 \mathrm{H}, J=4.7 \mathrm{~Hz}), 4.35,4.59(2 \mathrm{~d}, 2 \mathrm{H}, J=11.7 \\ & \mathrm{Hz}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 5.70(\mathrm{dd}, 1 \mathrm{H}, J=15.6,6.0 \mathrm{~Hz}), 5.92(\mathrm{dt}, \\ & 1 \mathrm{H}, J=15.6,4.8 \mathrm{~Hz}), 7.25-7.36(\mathrm{~m}, 10 \mathrm{H}) \end{aligned}$
${ }^{13} \mathbf{C}$ NMR (50 MHz)	: 62.3, 70.1, 70.8, 72.2, 73.1, 79.5, 127.4, 127.5, 127.7, 127.9, 128.1, 128.2, 135.5, 137.7, 138.0 ppm
ESI MS m/z	: $351[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis	Calcd: C, 73.15; H, 7.37\%
	Found: C, 73.19; H, 7.29\%

(4R,5S,E)-4,6-Bis(benzyloxy)-5-hydroxyhex-2-enal (119).

The compound 112 decomposes when left at room temperature for longer period and the same thing was observed by the treatment of CDCl_{3}, even at low temperature also (kept in fridge).

Mol. Formula	: $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz)	$\begin{aligned} : & \delta 2.85(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.38-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{dd}, 1 \mathrm{H}, J= \\ & 11.0,4.8 \mathrm{~Hz}), 4.05(\mathrm{ddd}, 1 \mathrm{H}, J=6.8,5.8,0.9 \mathrm{~Hz}), 4.27, \\ & 4.46(2 \mathrm{~d}, 2 \mathrm{H}, J=11.5 \mathrm{~Hz}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 6.19(\mathrm{ddd}, 1 \mathrm{H}, J= \\ & 16.0,7.9,0.9 \mathrm{~Hz}), 6.72(\mathrm{dd}, 1 \mathrm{H}, J=16.0,5.8 \mathrm{~Hz}), 7.12- \\ & 7.23(\mathrm{~m}, 10 \mathrm{H}), 9.43(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}) \end{aligned}$
${ }^{13} \mathbf{C}$ NMR (50 MHz)	: 70.2, 71.8, 72.1, 73.3, 78.5, 127.5-128.4, 133.7, 137.2, 137.5, 153.7, 193.0 ppm
Elemental Analysis	Calcd: C, 73.61; H, 6.75\%
	Found: C, 74.13; H, 6.86\%

(2S,3S,4S)-1,3,4-Tris(benzyloxy)hex-5-en-2-ol (124).

To a suspension of methyltriphenylphosphonium bromide ($8.1 \mathrm{~g}, 20 \mathrm{mmol}$) in THF $(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Argon was added $n-\operatorname{BuLi}(11.1 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, 17.9 mmol$)$ and stirred at room temperature for 6 h . To this a solution of $\mathbf{8 2}(3.0 \mathrm{~g}, 7.1 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was allowed to warm to room temperature for 2 h . The reaction was quenched by adding a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$
$(25 \mathrm{~mL})$ and combined organic extract was washed with brine (15 mL), dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified on silica gel using ethyl acetate-light petroleum ether (1:8) to afford compound $\mathbf{1 2 4}$ as colorless oil.

Yield	: $2.8 \mathrm{~g}, 93 \%$
Mol. Formula	: $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{4}$
${ }^{1} \mathbf{H}$ NMR (200 MHz)	$\begin{gathered} : \quad \delta 3.58-3.65(\mathrm{~m}, 3 \mathrm{H}), 3.97-4.11(\mathrm{~m}, 2 \mathrm{H}), 4.35,4.64(2 \mathrm{~d}, 2 \mathrm{H}, \\ \\ J=11.9 \mathrm{~Hz}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.51-4.73(\mathrm{~m}, 2 \mathrm{H}, \text { Overlapped }) \\ \\ 5.26-5.36(\mathrm{~m}, 2 \mathrm{H}), 5.87-6.05(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.35(\mathrm{~m}, 15 \mathrm{H}) \end{gathered}$
${ }^{13} \mathbf{C}$ NMR (75 MHz)	$\begin{aligned} : & 70.3,70.6,70.9,73.2,74.0,80.2,80.7,118.6,127.5-128.2, \\ & 135.1,137.8,138.0 \mathrm{ppm} \end{aligned}$
ESI MS m/z	: $441[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis	Calcd: C, 77.48; H, 7.22\%
	Found: C, 77.41; H, 7.26\%

(2S,3S,4S)-1,3,4-Tris(benzyloxy)hex-5-en-2-yl-methanesulfonate (125).

To a solution of alcohol $124(0.5 \mathrm{~g}, 1.2 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, were added methanesulphonyl chloride ($1 \mathrm{~mL}, 12.0 \mathrm{mmol}$) and triethylamine ($1.7 \mathrm{~mL}, 12.0$ mmol) and the reaction mixture was stirred at the same temperature for 2 h . After the completion of reaction, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and the residue was purified on silica gel using ethyl acetate-light petroleum ether (1:16) to afford $\mathbf{1 2 5}$ as a colorless oil.

(4S,5S,6R)-4,5-Bisbenzyloxy-6-benzyloxymethyl-3a,4,5,6-tetrahydro-3H-pyrrolo[1,2-e][1,2,3]-triazole (126).

A suspension of compound $125(0.5 \mathrm{~g}, 1.0 \mathrm{mmol})$ and sodium azide $(0.1 \mathrm{~g}, 1.5$ $\mathrm{mmol})$ in dry DMF (10 mL) was heated at $95^{\circ} \mathrm{C}$ for 24 h . The solvent was removed in vacuo and the residue partitioned between water and CHCl_{3}. The CHCl_{3} layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Purification of the crude residue on silica gel using ethyl acetate-light petroleum ether (1:4) afforded the compound 126 as colorless oil.

Yield

$$
: \quad 0.3 \mathrm{~g}, 66 \%
$$

Mol. Formula
: $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3}$
$\mathbf{I R}\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$
: $3343,2099,1496,1453,1364,1268,1096,910 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz})$
$: \quad \delta 3.34-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.65(\mathrm{~m}, 4 \mathrm{H}), 3.93-4.04(\mathrm{~m}, 2 \mathrm{H})$, 4.46-4.58 (m, 6H), 7.27-7.39 (m, 15H)
${ }^{13} \mathbf{C}$ NMR (75 MHz) : $\quad 51.6,58.3,58.6,69.1,72.1,72.2,73.3,82.1,82.2,127.5-$ $127.6,128.0,128.3,137.8,138.0,138.2 \mathrm{ppm}$
+TOF MS m/z : $482[\mathrm{M}+\mathrm{K}]^{+}$
Elemental Analysis
Calcd: C, 73.11, H, 6.59, N, 9.47\%
Found: C, 73.23, H, 6.58, N, 9.58\%
(3S,4S,5S)-3,4,6-Tris(benzyloxy)hexane-1,5-diol (127).

To the neat compound $124(1.4 \mathrm{~g}, 3.3 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under nitrogen was added 9 BBN ($6.6 \mathrm{~mL}, 0.5 \mathrm{M}$ in THF, 3.3 mmol). The reaction mixture was warmed to room temperature and stirred for 8 h . To the reaction mixture, were added $3 \mathrm{~N} \mathrm{NaOH}(5 \mathrm{~mL})$ $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(5 \mathrm{~mL})$ and the mixture was stirred vigorously at room temperature for 8 h . The reaction mixture was partitioned between with EtOAc and water. The combined organic extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product was purified on silica gel using ethyl acetate-light petroleum ether (1:2) to obtain the diol 127 as colorless oil.

Yield $: \quad 3.0 \mathrm{~g}, 87 \%$

Mol. Formula $\quad: \quad \mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}) \quad: \quad \delta 1.75-1.84(\mathrm{~m}, 2 \mathrm{H}), 2.57($ br. s, 2 H$), 3.508-3.64(\mathrm{~m}, 5 \mathrm{H})$, 3.74-3.82 (m, 1H), 3.89-3.97 (m, 1H), 4.40-4.58 (m, 6H),

```
\({ }^{13} \mathbf{C}\) NMR (50 MHz) : \(\quad 32.8,59.8,70.7,71.8,72.7,73.4,73.6,77.2,77.7,127.7-\)
    \(128.4,137.6,137.8,138.0 \mathrm{ppm}\)
+TOF MS m/z : \(482[\mathrm{M}+\mathrm{K}]^{+}\)
Elemental Analysis Calcd: C, 74.29, H, 7.39\%
    Found: C, 74.37, H, 7.32\%
```


(3S,4S,5S)-3,4,6-Tris(benzyloxy)hexane-1,5-dimethanesulphonate (128).

Methanesulphonyl chloride ($0.6 \mathrm{~mL}, 7.5 \mathrm{mmol}$) was added to a solution of diol 127 $(1.4 \mathrm{~g}, 3.32 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 3 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and washed successively $2 \mathrm{~N} \mathrm{HCl}(25 \mathrm{~mL})$, water $(25 \mathrm{~mL})$ and saturated aqueous sodium bicarbonate solution (25 mL). The combined organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and the residue purified on silica gel using ethyl acetate-light petroleum ether (1:5) to afford dimesylate 128 and chloromesylate 129 both as a colorless oils.

128

Data for 128:

Yield
: $0.9 \mathrm{~g}, 50 \%$
Mol. Formula
: $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{9} \mathrm{~S}_{2}$
$\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \widetilde{v} \quad: \quad 1496,1454,1358,1174,1086,918 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H} \mathbf{N M R}(200 \mathrm{MHz}) \quad: \quad \delta 1.26(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.87(\mathrm{~m}, 3 \mathrm{H}), 2.97(\mathrm{~m}, 3 \mathrm{H})$, $3.82-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{dd}, 1 \mathrm{H}, J=5.0,3.0 \mathrm{~Hz}), 4.06-$ $4.20(\mathrm{~m}, 3 \mathrm{H}), 4.43-4.79(\mathrm{~m}, 6 \mathrm{H}), 4.96(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.32$
(m, 15H)
+TOF MS $m / z \quad: \quad 615[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis
Calcd: C, 58.76, H, 6.12; S, 10.82\%
Found: C, 58.53, H, 6.35; S, 9.81\%

129

Data for 129:

Yield
Mol. Formula
+TOF MS m/z
Elemental Analysis
$\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \widetilde{v} \quad: \quad 2927,1500,1454,1361,1176,1084,699,668 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}) \quad: \quad \delta 1.95(\mathrm{q}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{t}, 2 \mathrm{H}, J=6.3$ Hz), 3.53-3.77 (m, 1H), 3.80-3.85 (m, 2H), 3.92 (dd, 1H, J $=5.0,2.5 \mathrm{~Hz}), 4.44-4.78(\mathrm{~m}, 6 \mathrm{H}), 4.93-4.99(\mathrm{~m}, 1 \mathrm{H}), 7.23-$ 7.31 (m, 15H)
${ }^{13} \mathbf{C}$ NMR (50 MHz) : $\quad 33.7,38.4,41.2,69.0,73.3,73.4,74.2,75.7,79.8,82.6$, 127.5-128.4, 137.3, 137.7 ppm
$0.6 \mathrm{~g}, 36 \%$
: $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{ClO}_{6} \mathrm{~S}$
: $555[\mathrm{M}+\mathrm{Na}]^{+}$
Calcd: C, 63.09 H, 6.24; S, 6.02\%
Found: C, 63.43 H, 6.28; S, 6.10 \%

1-Azido-2,3,5-tri-O-benzyl-1-deoxy-4-O-methanesulfonyl-L-arabinitol (130).

Compound 128 ($0.5 \mathrm{~g}, 0.84 \mathrm{mmol}$) was dissolved in dry DMF (10 mL) and stirred at $95{ }^{\circ} \mathrm{C}$ with sodium azide ($82 \mathrm{mg}, 1.26 \mathrm{mmol}$) for 12 h . The solvent was removed in vacuo and the residue partitioned between water and chloroform. The CHCl_{3} layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified on flash silica gel using ethyl acetate-light petroleum ether (1:7) to yield the azide $\mathbf{1 3 0}$ as colorless liquid.

Yield
Mol. Formula
IR $\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz})$
+TOF MS m/z
Elemental Analysis
$: \quad 0.3 \mathrm{~g}, 65 \%$
: $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}$
: $2101,1732,1620,1454,1358,1085,699 \mathrm{~cm}^{-1}$
$: \quad \delta 1.69-1.82(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 3.09-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.45-$ $3.68(\mathrm{~m}, 2 \mathrm{H}), 3.81-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.0,2.8$ $\mathrm{Hz}), 4.39-4.78(\mathrm{~m}, 6 \mathrm{H}), 4.92-4.99(\mathrm{~m}, 1 \mathrm{H}), ~ 7.23-7.39(\mathrm{~m}$, 15H)
: $562[\mathrm{M}+\mathrm{Na}]^{+}$
Calcd: C, 62.32; H, 6.16; N, 7.79, S, 5.94\%
Found: C, 62.38; H, 6.00; N, 7.92, S, 5.74\%
(2R,3S,4S)-3,4-Bis(benzyloxy)-2-(benzyloxymethyl)piperidine (122).

To a solution of $131(0.3 \mathrm{~g}, 0.72 \mathrm{mmol})$ in dry THF $(5 \mathrm{~mL})$ was added $\mathrm{PPh}_{3}(0.6 \mathrm{~g}$, $2.2 \mathrm{mmol})$ and refluxed for 1 h . To this water $(1 \mathrm{~mL})$ was added and continued to reflux for another 1 h . The reaction mixture was cooled to room temperature and diluted with ethyl acetate. The solution was washed with $5 \% \mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to afford 122 as a thick liquid.

Yield	: $0.15 \mathrm{~g}, 65 \%$
Mol. Formula	: $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{3}$
$[\alpha]_{\mathrm{D}}{ }^{25}$: $4.9\left(c=1.1, \mathrm{CHCl}_{3}\right)$; ent-59 lit. ${ }^{55}\left\{-4.9\left(c=1.1, \mathrm{CHCl}_{3}\right)\right\}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz)	$\begin{aligned} : & \delta 1.66-1.83(\mathrm{~m}, 2 \mathrm{H}), 2.76-3.04(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.57(\mathrm{~m}, 4 \mathrm{H}), \\ & 3.68-3.73(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.62(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.38(\mathrm{~m}, 15 \mathrm{H}) \end{aligned}$
${ }^{13} \mathbf{C}$ NMR (50 MHz)	: 24.7, 49.4, 59.3, 66.4, 70.5, 71.1, 71.7, 73.2, 73.4, 127.5, $127.7-128.0,128.3,128.4,137.5,137.8,137.9 \mathrm{ppm}$
+TOF MS m/z	: $418[\mathrm{M}+\mathrm{H}]^{+}$
Elemental Analysis	Calcd: C, 77.67; H, 7.48; N, 3.35\%
	Found: C, 77.71; H, 7.45; N, 3.21\%

SPECTRA

${ }^{13} \mathrm{C}$ NMR spectrum of compound 81 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 83 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 84 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound $85 E$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 79 in $\mathbf{C D C l}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound 87 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 88 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 78 in $\mathrm{D}_{2} \mathrm{O}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound 98 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 103 in CDCl_{3}

${ }^{1} H$ NMR spectrum of compound 99 in $\mathrm{D}_{2} \mathrm{O}$

$90 \quad 80$
${ }^{13} \mathrm{C}$ NMR spectrum of compound 100 in $\mathrm{D}_{2} \mathrm{O}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 117 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 117 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 118 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 121 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 119 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 126 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 127 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 128 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 129 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 130 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 122 in CDCl_{3}

REFERENCES

1. (a) Sinnott, M. L. Chem. Rev. 1990, 90, 1171. (b) Vocadlo, D. J.; Davies, G. J.; Laine, R.; Withers, S. G. Nature 2001, 412, 835. (c) Henrissat, B. Biochem. J. 1991, 280, 309. (d) Henrissat, B.; Bairoch, A. Biochem. J. 1996, 316, 695. (e) Davies, G.; Henrissat, B. Structure 1995, 3, 853. (f) Barnett, J. E.; G. Biochem. J. 1971, 123, 607. (g) Heightman, T. D.; Vasella, A. Angew. Chem., Int. Ed. Engl. 1999, 38, 750. (h) Henrissat, B.; Bairoch, A. Biochem. J. 1993, 293, 781.
2. Lehmann, J. Kohlenhydrate, Chemie und Biologie., Georg Thieme Verlag: Stuttgart, 1996.
3. (a) Dennis, J. W.; Laferte, S.; Waghorne, C.; Breitmann, M. L.; Kerbel, R. S. Science 1987, 236, 582. (b) Gross, P. E.; Baker, M. A.; Carver, J. P.; Dennis, J. W. Clin. Cancer Res. 1995, 1, 935.
4. (a) Dwek, R. A. Chem. Rev. 1996, 96, 683. (b) Nagai, Y. Pure Appl. Chem. 1997, 69, 1893. (c) Asano, N. Glycobiology 2003, 13, 93R.
5. (a) Herscovics, A. Biochim. Biophys. Acta. 1999, 1473, 96. (b). Spiro, R. G. J. Biol. Chem. 2000, 275, 35657.
6. (a) Vliegenthart, J. F. G. Pure Appl. Chem. 1997, 69, 1875. (b) Koshland, D. E. J. Biol. Rev. 1953, 28, 416. (c) White, A.; Rose, D. R. Curr. Opin. Struct. Biol. 1997, 7, 645. (d) Davies, G.; Sinnott, M. L.; Withers, S. G. 'Comprehensive Biological Catalysis', Ed. M. L. Sinnott, Academic Press, 1998, 1, p. 119. (e). Withers, S. G. Can. J. Chem. 1999, 77, 1. (f) Zechel, D. L.; Withers, S. G. Acc. Chem. Res. 2000, 33, 11. (g) Vasella, A.; Davies, G. J.; Böhm, M. Curr. Opin. Chem. Biol. 2002, 6, 619. (h) Weaver, L. H.; Grütter, M. G.; Matthews, B. W. J. Mol. Biol. 1995, 245, 54.
7. (a) Asano, N.; Nash, R. J.; Molyneux, R. J.; Fleet, G. W. J. Tetrahedron: Asymm. 2000, 11, 1645. (b) Winchester, B.; Fleet, G. W. J. Glycobiology 1992, 2, 199. (c). Legler, G. Pure Appl. Chem. 1987, 59, 1457. (d) Legler, G. Adv. Carbohydr. Chem. Biochem. 1990, 48, 319.
8. (a) Legler, G. Naturwissenschaften 1993, 80, 397. (b) Dale, M. P.; Ensley, H. E.; Kern, K.; Sastry, K. A. R.; Byers, L. D. Biochemistry 1985, 24, 3530. (c) Tatsuta, K. Pure Appl. Chem. 1996, 68, 1341. (d) Tatsuta, K. 'Carbohydrate Mimics', Ed. Y. Chapleur, Wiley-VCH Verlag GmbH, Weinheim, 1998, p. 283. (e) Ogawa, S. ‘Carbohydrate Mimics’, Ed. Y. Chapleur, Wiley-VCH Verlag GmbH, Weinheim, 1998, p. 87.
9. (a) Bols, M. Acc. Chem. Res. 1998, 31, 1. (b) Sears, P.; Wong, C.-H. J. Chem. Soc., Chem. Commun. 1998, 1161. (c) Berecibar, A.; Grandjean, C.; Siriwardena, A. Chem. Rev. 1999, 99, 779. (d) Yuasa, H.; Saotome, C.; Kanie, O. Trends in Glycoscience and Glycotechnology 2002, 14, 231.
10. (a) Stütz, A. E. Iminosugars as glycosidase inhibitors: nojirimycin and beyond; Wiley-VCH: Weinheim, Germany, 1999. (b) Elbein, A. D.; Molyneux, R. J. Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Wiley-VCH: New York, 1987, Vol. 5, Chapter 1. (c) Legler, G. Adv. Carbohydr. Chem. Biochem. 1990, 48, 319.
11. Mitrakou, A.; Tountas, N.; Raptis, A. E.; Bauer, R. J.; Schulz, H.; Raptis, S. A. Diabetic Med. 1998, 15, 657.
12. (a) Goss, P. E.; Reid, C. L.; Bailey, D.; Dennis, J. W. Clin. Cancer Res. 1997, 3, 1077. (b) Zitzmann, N.; Mehta, A. S.; Carroue'e, S.; Butters, T. D.; Platt, F. M.; McCauley, J.; Blumberg, B. S.; Dwek, R. A.; Block, T. M. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 11878. (c) Fiaux, H.; Popowycz, F.; Favre, S.; Schu"tz, C.; Vogel, P.; Gerber-Lemaire, S.; Juillerat-Jeanneret, L. J. Med. Chem. 2005, 48, 4237.
13. (a) Laver, W. G.; Bischofberger, N.; Webster, R. G. Sci. Am. 1999, 280, 78. (b) Greimel, P.; Spreitz, J.; Stütz, A. E.; Wrodnigg, T. M. Curr. Top. Med. Chem. 2003, 3, 513. (c) Nash, R. Chem. World 2004, 42. (d) Groopman, J. E. Rev. Infect. Dis. 1990, 12, 908. (e) Varki, A. Glycobiology 1993, 3, 97. (f) Robina, I.; Moreno-Vargas, A. J.; Carmona, A. T.; Vogel, P. Curr. Drug Metab. 2004, 5, 329.
14. (a) Butters, T. D.; Dwek, R. A.; Platt, F. M. Curr. Top. Med. Chem. 2003, 3, 561. (b) Schueler, U. H.; Kolter, T.; Kaneski, C. R.; Zirzow, G. C.; Sandhoff, K.; Brady, R. O. J. Inherited Metab. Dis. 2004, 27, 649. (c) Lysek, R.; Schütz, C.; Vogel, P. Bioorg. Med. Chem. Lett. 2005, 15, 3071.
15. Kreier, J. P.; Baker, J. R.; Grillner, S. E.; Hokfelt, G. M. T.; Greengard, P. Parasitic Protozoa; Academic Pr. 1995.
16. (a) Beckmann, E.; Ber. Dtsch. Chem. Ges. 1890, 23, 3331. (b) Beckmann, E.; Ber. Dtsch. Chem. Ges. 1894, 27, 1957.
17. Pfeiffer, Ann. 1916, 411, 72.
18. Janzen, E. G.; Blackburn, B. J. J. Am. Chem. Soc. 1968, 90, 5909.
19. (a) Huisgen, R. Angew. Chem. Int. Ed. 1963, 2, 565. (b) Huisgen, R. Angew. Chem. Int. Ed. 1963, 2, 633. (c) Tufaieello, J. J. 1, 3-Dipolar cycloaddition chemistry, Ed. Padwa, A, Wileyinterscience, New York, 1984, 2, 83. (d) Ali, S. A.; Wazeer, M. I. M.; J. Chem. Soc. Perkin Trans 2 1986, 1789. (e) Ali, S. A.; Wazeer, M. I. M.; J. Chem. Soc. Perkin Trans 1 1988, 597. (f) Ali, S. A.; Khan, H. J.; Wazeer, M. I. M.; Tetrahedron 1988, 44, 5911.(g) Al-Jaroudi, S. S.; Perzanowski, H. P.; Wazeer, M. I. M.; Ali, S. A. Tetrahedron 1997, 53, 5581.
20. (a) Smith, L. I. Chem. Rev. 1938, 23, 193. (b) Hamer, J.; Macaluso, A. Chem. Rev. 1964, 64, 473. (c) Delpierre, G. R.; Lamchen, M. Quart. Rev. 1965, 19, 329. (d) Smith , P. A. S. Openchain nitrogen compounds, Vol. 2, Benjamine, W. A., New York, 1966, pp.29-63.
21. (a) Lamchen, M. Mechanisms of molecular migrations, Vol. 1, Wiley-Interscience, New York, 1968, pp. 1-60. (b) Blak, D. St. S.; Crozier, R. I.; Davis, V. C. Synthesis 1975, 205. (c) Rundel, W. Houben-weyl: Methoden der organischen chemie, Vol. 10/4, George Thieme Verlag, Stuttgart, 1968, pp. 311-348. (d) Stamm, H. Methodicum Chimicum, Vol. 6, George Thieme Verlag, Stuttgart, 1975, pp. 333-350.
22. (a) Sandler, S.R.; Karo, W. Organic functional group preparations, Vol-III, Academic Pess, New York, 1972, pp. 301-317.) (b) Keligel, W. Pharmazie 1977, 32, 643; 1978, 33, 331.
23. Tronchet, J. M. J., Mihaly, E. Helv. Chim. Acta. 1972, 55, 1266.
24. (a) Vasella, A. Helv. Chim. Acta. 1977, 60, 426. (b) Vasella, A. Helv. Chim. Acta. 1977, 60, 1273.
25. (a) Tamura, O.; Mita, N; Kusaka, N.; Suzuki, H.; Sakamoto, M. Tetrahedron Lett. 1997, 38, 429. (b) Zosimo-Landolfo, G; Tronchet, J. M. J.; Bizzozero, N., Habashi, F.; Kamatari, A. Il Farmaco 1998, 53, 623.
26. (a) Pulz, R.; Al-Harrasi, A.; Reissig, H.-U. Org. Lett. 2002, 4, 2353. (b) Cardona, F.; Goti, A.; Brandi, A. Org. Lett. 2003, 5, 1475. (c) Cardona, F.; Faggi, E.; Liguori, F.; Cacciarini, M.; Goti, A. Tetrahedron Lett. 2003, 44, 2315. (d) Ishikawa, T.; Shimizu, Y.; Kudoh, T.; Saito, S. Org. Lett. 2003, 5, 3879.
27. (a) Kaliappan, K. P.; Das, P.; Kumar, N. Tetrahedron Lett. 2005, 46, 3037. (b) Desvergnes, S.; Py, S.; Vallee, Y. J. Org. Chem. 2005, 70, 1459. (c) Gallos, J. K.; Stathakis, C. I.; Kotoulas, S. S.; Koumbis, A. E. J. Org. Chem. 2005, 70, 6884.
28. (a) Socha, D.; Paśniczek, K.; Jurczak, M.; Solecka, J.; Chmielewski, M. Carbohydrate Res. 2006, 341, 2005. (b) Yu, C.-Y.; Huang, M.-H. Org. Lett. 2006, 8, 3021.
29. (a) Shing, T. K. M.; Wong, W. F.; Cheng, H. M.; Kwok, W. S.; So, K. H. Org. Lett. 2007, 9, 753
30. Dhavale, D. D.; Desai, V. N.; Sindkhedkar, M.; Mali, R. S.; Castellari, C.; Trombini, C. Tetrahedron: Asymm. 1997, 8, 1475
31. Yokoyama, M.; Sujino, K.; Irie, M.; Yamazaki, N.; Hiyama, T.; Yamada, N.; Togo, H. J. Chem. Soc. Perkin Trans 1 1991, 2801.
32. Ochiai, M.; Obayashi, M.; Morita, K. Tetrahedron 1967, 23, 2641.
33. Dunn, P. J.; Graham, A. B.; Grigg, R.; Higginson, P.; Saba, I. Chem. Commun., 2000, 2033.
34. Moutel, S.; Shipman, M. Synlett 1998, 1333.
35. Torrente, S.; Noya, B.; Paredes, M. D.; Alonso, A. J. Org. Chem. 1997, 62, 6710.
36. Golik, J.; Wong, H; Krishnan, B.; Vyas, D. M.; Doyle, T. M. Tetrahedron Lett. 1991, 32, 1851.
37. (a) House, H. O.; Manning, D. T.; Melillo, D. G.; Lee, L. F.; Haynes, O. R.; Wilkes, B. E. J. Org. Chem. 1976, 41, 855. (b) House, H. O.; Lee, L. F. J. Org. Chem. 1976, 41, 863.
38. (a) Ciganek, E. J. Org. Chem. 1990, 55, 3007. (b) Ciganek, E. J. Org. Chem. 1995, 60, 5803. (c) Ciganek, E.; Read, J. M.; Calabrese, J. C.; J. Org. Chem. 1995, 60, 5795.
39. (a) Gravestock, M. B.; Knight, D. W.; Malik, K. M. A.; Thornton, S. R. J. Chem. Soc., Perkin Trans 1 2000, 3292. (b) Hanrahan, J. R.; Knight, D. W. Chem. Commun. 1998, 2231.
40. Cope, A. C.; Trumbull, E. R. Organic Reactions 1960, 11, 317.
41. (a) Confalone, P.N.; Huie, E.M. Org. React. 1988, 36, 1-173. (b) Annunziata, R.; Cinquini, M.; Cozzi, F.; Raimondi, L. Gazz. Chim. ital. 1989, 119, 253. (c) Padwa, A. in Comprehensive

Organic Synthesis, Trost, B.M.; Fleming, I. Eds., Pergamon Press: Oxford, 1991; Vol. 4, p. 1069-1109. (d) Wade, P.A. in Comprehensive Organic Synthesis, Trost. B.M.; Fleming, I. Eds., Pergamon Press: Oxford, 1991; Vol. 4, p. 1111-1168.
42. (a) Torrente, S.; Noya, B.; Paredes, M. D.; Alonso, R. J. Org. Chem. 1997, 62, 6710. (b) Shing,
T. K. M.; Zhong, Y.-L.; Mak, T. C. W.; Wang, R.-j.; Xue, F. J. Org. Chem. 1998, 63, 414.
43. (a) Jachak, S. M.; Karche, N. P.; Dhavale, D. D. Tetrahedron Lett. 2001, 42, 4925. (b) Torrente, S.; Noya, B.; Branchadell, V.; Alonso, R. J. Org. Chem. 2003, 68, 4772. (c) Singha, K.; Roy, A.; Dutta, P. K.; Tripathi, S.; Sahabuddin, S.; Achari, B.; Mandal, S. B. J. Org. Chem. 2004, 69, 6507.
44. (a) Chatterjee, A.; Bhattacharya, P. K. J. Org. Chem. 2006, 71, 345. (b) Padar, P.; Bokros, A.; Paragi, G.; Forgo, P.; Kele, Z.; Howarth, N. M.; Kovacs, L. J. Org. Chem. 2006, 71, 8669. (b) Shing, T. K. M.; Wong, W. F.; Cheng, H. M.; Kwok, W. S.; So, K. H. Org. Lett. 2007, 9, 753.
45. (a) Heaney, F.; Bourke, S. J. Chem. Soc., Perkin Trans 11998, 955. (b) Heaney, F.; Bourke, S.; Cunningham, D.; McArdle, P.; J. Chem. Soc. Perkin Trans 2 1998, 547. (c) Heaney, F.; OMahony,C. J. Chem. Soc. Perkin Trans 2 1998, 341.
46. Padwa, A.; Norman, B.H.; Tetrahedron Lett. 1988, 29, 2417.
47. (a) Hassner, A.; Singh, S.; Shatma, R.; Maurya, R. Tetrahedron, 1993, 49, 2317. (b) Roush, W. R.; Walts, A. E. J. Am. Chem. Soc. 1984, 106, 721. (c) Smith, A. L.; Williams, S. F.; Holmes, A. B.; Hughes, L. R.; Lidert, Z.; Swithenbank, C. J. Am. Chem. Soc. 1988, 110, 8696. (d) Holmes, A. B.; Smith, A. L.; Williams, S. F.; Hughes, L. R.; Lidert, Z.; Swithenbank, C. J. Org. Chem. 1991, 56, 1393.(e) Gribble, G. W.; Barden, T. C. J. Org. Chem. 1985, 50, 5900. (f) Wovkulich, P. M.; Uskokovic, M. R. J. Am. Chem. Soc. 1981, 103, 3956. (g) Wovkulich, P.M.; Uskokovic, M. R. Tetrahedron 1985, 41, 3455.
48. (a) Chatterjee, A.; Bhattacharya, P. K. J. Org. Chem. 2006, 71, 345. (b) Shing, T. K. M.; Zhong, Y.-L.; Mak, T. C. W.; Wang, R.-j.; Xue, F. J. Org. Chem. 1998, 63, 414.
49. (a) Rong, J.; Roselt, P.; Plavec, J.; Chattopadhyaya, J. Tetrahedron, 1994, 50, 4921.(b) Papchikhin, A.; Chattopadhyaya, J. Tetrahedron 1994, 50, 5279.
50. (a) Ihara, M.; Takahashi, M.; Fukumoto, K.; Kametani, J. Chem. Soc. Chem. Commun. 1988, 9.
(b) Kang, S. H.; Lee, H. S. Tetrahedron Lett. 1995, 36, 6713.
51. (a) Farr, R. A.; Peet, N.P.; Kang, M. S. Tetrahedron Lett. 1990, 31, 7109. (b) Peet, N. P.; Huber, E. W.; Farr, R. A. Tetrahedron 1991, 47, 7537. (c) Hassner, A.; Falb, E.; Nudelman, A.; Albeck, A.; Gottlieb, H. E. Tetrahedron Lett. 1994, 35, 2397. (d) Rudge, A. J.; Collins, I.; Holmes, A.B.; Baker, R. Angew. Chem. Intl. Ed. Engl. 1994, 33, 2320.
52. Baggiolini, E. G.; Lee, H. L.; Pizzolato, G.; Uskokovic, M. R. J. Am. Chem. Soc. 1982, 104, 6460.
53. (a) Shing, T. K. M.; Zhong, Y.-L. Tetrahedron 2001, 57, 1573. (b) Shing, T. K. M.; Zhong, Y.L. Synlett 2006, 8, 1205. (c) Gebarowski, P.; Sas, W. Chem. Commun. 2001, 915. (d) Bhattacharjee, A.; Datta, S.; Chattopadhyay, P.; Ghoshal, N.; Kundu, A. P.; Pal, A.; Mukhopadhyay, R.; Chowdhury, S.; Bhattacharjya, A.; Patra, A. Tetrahedron 2003, 59, 4623.(e) Sharma, G. V. M.; Begum, A.; Ravinder Reddy, K.; Ravi Sankar, A.; Kunwar, A. C. Tetrahedron: Asymm. 2003, 14, 3899.
54. Bernet, B.; Vasella, A. Helv. Chim. Act. 1979, 62, 1990. (b) Bernet, B.; Vasella, A. Helv. Chim. Acta. 1979, 62, 2400. (c) Bernet, B.; Vasella, A. Helv. Chim. Acta. 1979, 62, 2411.
55. Ferrier, R. J.; Prasit, P. J. Chem. Soc. Chem. Commun. 1981, 983.
56. Bar, N. C.; Roy, A.; Achari, B.; Mondal, S. B. J. Org. Chem. 1997, 62, 8948.
57. Jiang, S.; Mekki, B.; Singh, G.; Wightman, R. H. Tetrahedron Lett. 1994, 35, 5505.
58. Gallos, J. K.; Stathakis, C. I.; Kotoulas, S. S.; Koumbis, A. E. J. Org. Chem. 2005, 70, 6884.
59. Slabaugh, M. R.; Wildman, W. C.; J. Org. Chem. 1971, 36, 3202.
60. Jachak, S. M.; Karche, N. P.; Dhavale, D. Tetrahedron Lett. 2001, 42, 4925.
61. (a) Belzecki, C.; Panfil, I. J. Org. Chem. 1979, 44, 1212. (b) Panfil, I.; Belzecki, C. Pol. J. Chem. 1981, 55, 977.
62. (c) Vasella, A.; Voeffray R. J. Chem. Soc., Chem. Commun. 1981, 97. (d) Vasella, A.; Voeffray, Helv. Chim. Acta. 1982, 65, 1134. (e) Vasella, A.; Voeffray, R.; Pless, J.; Huguenin, R. Helv. Chim. Acta. 1983, 66, 1241. (f) Bernet, B.; Krawczyk, E.; Vasella, A. Helv. Chim. Acta. 1985, 68, 2299. (g) Huber, R.; Vasella, A. Tetrahedron 1990, 46, 33.
63. (a) Cordero, F. M.; Cicchi, S.; Goti, A.; Brandi, A. Tetrahedron Lett. 1994, 35, 949. (b) Goti, A.; Cardona, F.; Brandi, A.; Picasso, S.; Vogel, P. Tetrahedron: Asymm. 1996, 7, 1659. (c) Cicchi, S.; Goti, A.; Brandi, A. J. Org. Chem. 1995, 60, 4143. (d) McCaig, A. E.; Wightman, R. H. Tetrahedron Lett. 1993, 34, 3939. (e) Oppolzer, W.; Deerberg, J.; Tamura, O. Helv. Chim Acta, 1994, 77, 554.
64. (a) Iida, H.; Kasahara, K.; Kibayashi, C. J. Am. Chem. Soc. 1986, 108, 4647. (b) Schiehser, G. A.; White, J. D.; Matsumoto, G.; Pezzanite, J. O.; Clardy, J. Tetrahedron Lett. 1986, 27, 5587.
(c) White, J. D.; Badger, R. A.; Kezar, H. S.; Pallenberg, A. J.; Schiehser, G. A. Tetrahedron 1989, 45, 6631. (d) Kametani, T.; Nagahara, T.; Honda, T.; J. Org. Chem. 1985, 50, 2327. (e)
Kametani, T.; Chu, S.-D.; Honda, T. Heterocycles 1987, 25, 241. (f) Kametani, T.; Chu, S.-D.; Honda, T. J. Chem. Soc. Perkin Trans. 1 1988, 1593.
65. (a) Ihara, M.; Takahashi, M.; Fukumoto, K.; Kametani, T. Heterocycles, 1988, 27, 327. (b) Martin, H.; Herrmann, R.; Ugi, I. Z Naturforsch. Teil B 1987, 42, 1588. (c) Wovkulich, P. M.; Barcelos, F.; Batcho, A. D.; Sereno, J. F.; Baggiolini, E. G.; Hennessy, B. M.; Uskokovic, M.R.

Tetrahedron 1984, 40, 2283. (d) Baggiolini, E. G.; Iacobelli, J. A.; Hennessy, B. M.; Batcho, A. D.; Sereno, J. F.; Uskokovic, M. R. J. Org. Chem. 1986, 51, 3098.
66. Merino, P.; Mates, J. A.; Revuelta, J.; Tejero, T.; Chiacchio, U.; Romeo, G.; Iannazzo, D.; Romeo, R. Tetrahedron: Asymm. 2002, 13, 173.
67. Machetti, F.; Cordero, F.M.; De Sarlo, F.; Guarna, A.; Brandi, A. Tetrahedron Lett. 1996, 37, 4205.
68. Kasahara, K.; Iida, H.; Kibayashi, C. J. Org. Chem. 1989, 54, 2225.
69. Roselt, J. R. P.; Plavec, J.; Chattopadhyaya, J.; Rong, J. Tetrahedron 1994, 50, 4921.
70. (a) Mzengeza, S.; Yang, C. M.; Whitney, R. A. J. Am. Chem. Sot. 1987, 109, 276. (b) Mzengeza, S.; Whitney, R. A. J. Org. Chem. 1988, 53, 4074.
71. (a) Brandi, A.; Cicchi, S.; Goti, A.; Pietrusiewicz, K. M. Tetrahedron: Asymm. 1991, 2, 1063.
(b) Goti, A.; Cicchi, S.: Brandi, A.; Pietrusiewicz, Tetrahedron: Asymm. 1991, 2, 1371. (c) Brandi, A.; Cicchi, S.; Goti, A.; Pietrusciewicz, K. M. Phosphorus Sulphur 1993, 75, 155.
72. (a) Mzengeza, S.; Yang, C. M.; Whitney, R. A. J. Am. Chem. Soc. 1987, 109, 276. (b) Mzengeza, S.; Whitney, R. A. J. Org. Chem. 1988, 53, 4074.
73. Merino, P.; Revuelta, J.; Tejero, T.; Chiacchio, U.; Rescifina, A.; Piperno, A.; Romeo, G. Tetrahedron: Asymm. 2002, 13, 167.
74. Shindo, M.; Itoh, K.; Ohtsuki, K.; Tsuchiya, C.; Shishido, K. Synthesis 2003, 9, 1441.
75. Dugovic, B.; Wiesenganger, T.; Fisera, L.; Hametner, C.; Pronayova, N. Heterocycles 2005, 65, 591.
76. (a) Angeli, A.; Alessandri, L.; Aiazzi-Mancini, M. Atti Reale Accad. Lincei (Rome) 1911, 20, 546; Chem. Abstr. 1911, 5, 3403.
77. (a) Alessandri, L. Gazz. Chim. Ital. 1922, 52, 193. (b) Amt, H.; Kliegel, W.; Rettig, S. J.; Trotter, J. Can. J. Chem. 1990, 68, 1797.
78. Merino, P.; Castillo, E.; Merchan, F. L.; Tejero, T. Tetrahedron: Asymm. 1997, 8, 1725. (b) Merino, P.; Castillo, E.; Franco, S.; Merchan, F. L.; Tejero, T. J. Org. Chem. 1998, 63, 2371.
79. Dondoni, A.; Franco, S.; Merchan F. L.; Merino, P.; Tejero, T. Tetrahedron Lett. 1993, 34, 5479.
80. Dondoni, A.; Franco, S.; Merchan, F. L.; Merino, P.; Tejero, T. Tetrahedron Lett. 1993, 34, 5475.
81. Merino, P.; Anoro, S.; Castillo, E.; Merchan, F. L.; Tejero, T. Tetrahedron: Asymm. 1996, 7, 1887.
82. Merchan, F. L.; Merino, P.; Tejero, T. Tetrahedron Lett. 1995, 36, 6949.
83. Huber, R.; Knierzinger, A.; Obrecht, J.-P.; Vasella, A. Helv. Chim. Acta 1985, 68, 1730.
84. Dondoni, A.; Franco, S.; Junquera, F.; Merchan, F. L.; Merino, P.; Tejero, T. J. Org. Chem. 1997, 62, 5497.
85. Holzapfel, C. W.; Crous, R. Heterocycles 1998, 48, 1337.
86. Tamura, O.; Toyao, A.; Ishibashi, H. Synlett 2002, 1344.
87. (a) Nash, R. J.; Bell, E. A.; Williams, J. M. Phytochemistry 1985, 24, 1620. (b) Furukawa, J.; Okuda, S.; Saito, K.; Hatatanaka, S.-I. Phytochemistry 1985, 24, 593.
88. Shibano, M.; Tsukamoto, D.; Masuda, A.; Tanaka, Y.; Kusano, G. Chem. Pharm. Bull. 2001, 49, 1362.
89. (a) Tejima, S.; Fletcher Jr., G. F. J. Org. Chem. 1963, 28, 2999. (b) Barker, R.; Fletcher Jr., G. F. J. Org. Chem. 1961, 26, 4605.
90. (a) Karabatsos, G. J.; Taller, R. A. Tetrahedron 1968, 24, 3347. (b) Hawkes, G. E.; Herwig, K.; Roberts, J. D. J. Org. Chem. 1974; 39, 1017.
91. Desvergnes, S.; Py, S.; Vallee, Y. J. Org. Chem. 2005, 70, 1459.
92. (a) Merino, P. Targets in Heterocyclic Chemistry, 2003, and references cited therein. (b) Merino, P.; Tejero, T.; Revuelta, J.; Romero, P.; Cicchi, S.; Mannucci, V.; Brandi, A.; Goti, A. Tetrahedron: Asymm., 2003, 14, 367.
93. (a).Che'rest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 9, 2199. (b) Anh, N. T.; Eisenstein, O. Nouv. J. Chimie. 1977, 1, 61. (c) Lodge, E. P.; Heathcock, C. H. J. Am. Chem. Soc. 1987, 109, 2819.
94. Donohoe, T. J.; Sintim, H. O.; Hollinshead, J. J. Org. Chem. 2005, 70, 7297.
95. Wormald, M. R.; Nash, R. J.; Hrnciar, P.; White, J. D.; Molyneux, R. J.; Fleet, G. W. J. Tetrahedron: Asymm. 1988, 9, 2549.
96. Diaz, A.; Siro, J. G.; García-Navío, J. L.; Vaquero, J. J.; Alvarez-Builla, J.; synthesis 1997, 559.
97. Yu, C.-Y.; Huang, M.-H., Org. Lett. 2006, 8, 3021.
98. (a) Shibata, T.; Nakayama, O.; Tsurnmi, Y.; Okuhara, M.; Terano, H.; Kohsaka, M. J. Antibiot. 1988, 41, 296. (b) Chen, S. H.; Danishefsky, S. J. Tetrahedron Lett. 1990, 31, 2229. (c) Kayakiri, H.; Nakamura, K.; Takase, S.; Setoi, H.; Uchida, I.; Terano, H.; Hashimoto, M.; Tada, T.; Koda, S. Chem. Pharm. Bull. 1991, 39, 2807.
99. (a) Ghavami, A.; Johnston, B. D.; Jensen, M. T.; Svensson, B.; Pinto, B. M. J. Am. Chem. Soc. 2001, 123, 6268. (b) Yoshikawa, M.; Murakami, T.; Shimada, H.; Matsuda, H.; Yamahara, J.; Tanabe, G.; Muraoka, O. Tetrahedron Lett. 1997, 38, 8367.
100. (a) Jones, D. W. C.; Nash, R. J.; Bell, E. A.; Williams, J. M. Tetrahedron Lett. 1985, 26, 3125. (b) Fleet, G. W. J.; Smith, P. W. Tetrahedron 1986, 42, 5685. (c) Ikota, N.; Hanaki, A. Chem. Pharm. Bull. 1987, 35, 2140. (d) Fleet, G. W. J.; Witty, D. R. Tetrahedron: Asymm. 1990, 1, 87. (e) Fleet, G. W. J.; Witty, D. R. Tetrahedron: Asymm. 1990, 1, 119.
101. (a) Kajimoto, T.; Chen, L.; Liu, K. K.-C.; Wong, C. H. J. Am. Chem. Soc. 1991, 113, 6678. (b) Hung, R. R.; Straub, J. A.; Whitesides, J. M. J. Org. Chem. 1991, 56, 3849. (c) Yoda, H.; Kitayama, H.; Katagiri, T.; Takabe, K. Tetrahedron: Asymm. 1993, 4, 1455. (d) Gurjar, M. K.; Ghosh, L.; Syamala, M.; Jayasree, V.

Tetrahedron Lett. 1994, 35, 8871. (e) Nukui, S.; Sodeoka, M.; Sasai, H.; Shibasaki, M. J. Org. Chem. 1995, 60, 398. (f) Giovannini, R.; Marcantoni, E.; Petrini, M. J. Org. Chem. 1995, 60, 5706.
102. (a) Ha, D.-C.; Yun, C.-S.; Lee, Y.-J. J. Org. Chem. 2000, 65, 621. (b) Hulme, A. N.; Montgomery, C. H.; Henderson, D. K. J. Chem. Soc., Perkin Trans. 1 2000, 1837. (c) Ghavami, A.; Johnston, B. D.; Jensen, M. T.; Svensson, B.; Pinto, B. M. J. Am. Chem. Soc. 2001, 123, 6268. (d) Muraoka, O.; Ying, S.; Yoshikai, K.; Matsuura, Y.; Yamada, E.: Minematsu, T.; Tanabe, G.; Matsuda, H.; Yosikawa, M. Chem. Pharm. Bull. 2001, 49, 1503. (e) Lombardo, M.; Fabbroni, S.; Trombini, C. J. Org. Chem. 2001, 66, 1264.
103. (a) El-Nezhawy, A. O. H.; El-Diwani, H. I.; Schmidt, R. R. Eur. J. Org. Chem. 2002, 4137.
(b) Rabiczko, J.; Urbanczyk-Lipkowska, Z.; Chmielewski, M. Tetrahedron 2002, 58, 1433.
(c) Chandra, K. L.; Chandrasekhar, M.; Singh, V. K. J. Org. Chem. 2002, 67, 4630.
104. (a) Feng, Z.-X.; Zhou, W.-S. Tetrahedron Lett. 2003, 44, 497. (b) Espelt, L.; Parella, T.; Bujons, J.; Solans, C.; Joglar, J.; Delgado, A.; Clapés, P. Chem. Eur. J. 2003, 9, N 20, 4887.
(c) Ichikawa, Y.; Ito, T.; Nishiyama, T.; Isobe, M. Synlett 2003, 1034. (d) Ayad, T.; Génisson, Y.; Baltas, M.; Gorrichon, L. Chem. Commun. 2003, 582.
105. (a) Raghavan, S.; Sreekanth, T. Tetrahedron: Asymm. 2004, 15, 565. (b) Cardona, F.; Moreno, G.; Guarna, F.; Vogel, P.; Schuetz, C.; Merino, P.; Goti, A. J. Org. Chem. 2005, 70, 6552. (c) Kim, I. S.; Zee, O. P.; Jung, Y. H. Org. Lett. 2006, 8, 4101. (d) Lauritsen, A.; Madsen, R. Org. Biomol. Chem., 2006, 4, 2898.
106. Fleet, G. W. J.; Nicholas, S. J.; Smith, P. W.; Evans, S. V.; Fellows, L. E.; Nash, R. J. Tetrahedron Lett. 1985, 26, 3127.
107. Ryu, Y.; Kim, G. J. Org. Chem. 1995, 60, 103.
108. Segraves, N. L.; Crews. P. J. Nat. Prod. 2005, 68, 118.
109. Earnshaw, C.; Wallis, C.J.; Warren, W. Chem. Soc. Perkin Trans. 1 1979, 3099.
110. (a) Carboni, B.; Vaultier, M.; Bull. Soc. Chim. Fr. 1995, 132, 1003. (b) Salmon, A.; Carboni, B. J. Organomet. Chem. 1998, 567, 6614. (c) Waid, P. P.; Flynn, G. A.; Huber, E. W.; Sabol, J. S. Tetrahedron Lett. 1996, 37, 4091.
111. Staudinger, H.; Meyer, J. Helv. Chim. Acta. 1919, 2, 635.
112. Désiré, J.; Dransfield, P. J.; Gore, P. M.; Shipmana, M. Synlett 2001, 1329.
113. (a) Goti, A.; Nanneili, L. Tetrahedron Lett. 1996, 37, 6025. (b) Frejaville, C.; Karoui, H.; Tuccio, B.; Moigne, F. L.; Culcasi, M.; Pietri, S.; Lauricella, R.; Tordo, P. J. Med. Chem. 1995, 38, 258. (c) Closa, M.; March, P. D.; Figueredo, M; Font, J. Tetrahedron: Asymm. 1997, 8, 1031.

CHAPTER II

Pd MEDIATED CROSS-COUPLING REACTIONS ON SUGAR ALKYNES

INTRODUCTION

Construction of architecturally complex molecules from simple building blocks has emerged as a powerful tool in synthetic organic chemistry because of the increasing demand for molecules with unprecedented diversity. Designing effective routes to construct complex cyclic structures through organotransition-metal catalyzed reactions provides many attractive possibilities, which by conventional procedures would need a large number of synthetic transformations. The formation of carbon-carbon and carbonheteroatom bonds are extremely important for the synthesis of biologically active natural products. ${ }^{1}$ The use of transition metals, especially Pd, for the formation of C-C and Cheteroatom bonds have been extensively documented as demonstrated by numerous reviews and books. ${ }^{2-6}$ The great interest in palladium catalysis stems from the fact that they often provide greater chemo, regio, and enantioselectivity and relatively inexpensive in comparison to the traditional organic synthetic routes. Moreover the ability of palladium to tolerate a wide range of functional groups including carbonyl, hydroxyl, amide, and ester makes the Palladium as one of the most versatile reagent available to organic chemists. The synthesis of "Acetic Acid" is the first known compound synthesized by C-C bond formation reaction by Kolbe in 1845 and the Wurtz reaction (1855) is the oldest reaction for C-C bond formation. The C-C bond formation reaction is now became the greatest tool for synthetic chemist. The metal catalyzed C-C bond formation reaction particularly attracted much attention including the palladium catalyzed cross coupling reactions. Pd catalyzed reactions were studied and explored in the last 40 years. One of the earliest cross coupling reactions using Pd was reported in 1965 by Tsuji and co-workers ${ }^{7}$ for the synthesis of C-C bond formation on allylic system and using ethyl malonate/acetoacetate as shown below:

Figure 1: Pd catalyzed C-C \& C-heteroatom bond formation reaction

Palladium is the soft metal and hence according to HSAB (Hard Soft Acid Base) theory it reacts preferably with soft bases like aryls, alkenes and alkynes. Herein, we are going to discuss only the most useful C-C and C-O bond formation reactions, for the mechanistic point of view with emphasis on more explored $\mathrm{C}-\mathrm{C}$ bond formation reactions like Heck $^{1,}{ }^{8}$, Suzuki ${ }^{9}$, Stille, ${ }^{10,11}$ Tsuji-Trost ${ }^{12}$, Sonogashira ${ }^{13,}{ }^{14}$ Negeshi, ${ }^{15}$ Hiyama, ${ }^{16}$ Kumada ${ }^{17}$ and C-O bond formation reaction. ${ }^{18}$

Heck coupling:

The Heck reaction is the carbon-carbon bond forming reaction, which couples the two sp^{2}-hybridised species by using Palladium catalyst.

Mizoroki and co-workers ${ }^{19}$ showed that Pd metal can assist the coupling of olefin with aryl halides in 1971 and latter the scope of this reaction was increased when Heck improved the generality of this reaction. The inter- and intramolecular versions of the Heck reaction have been widely applied for the total synthesis of myriad of bioactive organic compounds. By applying Heck reaction it is possible to form polyene, to couple fragments and to form cyclic frameworks. The numerous reviews ${ }^{20}$ covering the utility of the Heck reaction attest to it being one of the most widely utilized methodologies for the formation of $\mathrm{C}-\mathrm{C}$ bonds. In view of large number of excellent reviews we want to discuss the mechanistic pathway, which impart the regio- and enantio control necessary for Heck reaction. The regioselectivity of the Heck reaction depends upon the following major factors;
> The regioselectivity in case of unsymmetrical alkenes depends on the electronic and steric environment.
$>$ In case of availability of both the β and β^{\prime} hydrogen, there is possibility of competition for the hydrogen elimination.

Substrates

A traditional Heck reaction requires one electrophilic partner and one nucleophilic partner. Aryl/benzyl/vinyl halides as well as aryl/benzyl/vinyl triflates can acts as the electrophilic partner and alkenes as the nucleophilic partner. However, the rate of reaction is high for olefins containing electron-withdrawing groups.

The most widely used halide partners (electrophilic) for the coupling reactions are

Figure 2: The bond dissociation energy for C-X bond aryl halides. Reactivity of aryl halides toward the coupling reaction depends on the bond dissociation energy of the $\mathrm{C}-\mathrm{X}$ bond. In the Halogen family of the periodic table, the bond dissociation energy decreases from top to bottom and hence the reactivity order of these aryl halides increases in the same order accordingly (Figure 2).

Reaction temperature

Reaction temperature ranges from $50-160{ }^{\circ} \mathrm{C}$ can be used which generally depends on the organic halide to be activated and the stability limit of the catalyst.

Catalytic system

Various catalytic systems have been developed for Pd catalyzed Heck reactions including homogenous as well as heterogeneous catalysts, ligands as well as ligand free system, stable colloids, nanoparticles and polymer supported catalyst. For the Heck reactions catalyzed by Pd the turnover number (TON) is good. The TON is a value calculated by the ratio of the amount of product formed and the amount of catalyst present in the reaction and is used to evaluate the efficiency of the catalyst in a given reaction. The number of ligands are being developed in order to enhance the reactivity of the catalytic system and to increase the TON. Nitrogen and phosphorous compounds are commonly used ligands in transition metal chemistry. Palladium complexes with various phosphines as ligands have been most commonly used as catalysts for the Mizoroki-Heck
reaction. The ligand free catalytic system have been also reported including an automated reactor performing ligand-free Heck reactions in continuous flow mode utilizing a monolithic reactor cartridge with $\operatorname{Pd}(0)$ nanoparticles. A ligand free Heck reaction proceeds in the presence of an ionic liquid.

Solvents

Polar solvents (DMF, DMSO, DMA and acetonitrile) are often used. Aqueous methanol also has been successfully used.

Bases and additives

Generally bases like $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{NaHCO}_{3}, \mathrm{KOAc}$ and NaOAc are most common.

Mechanism

The first step for the catalytic cycle in Heck reaction involves the oxidative addition of $\operatorname{Pd}(0)$.The adduct formed due to the insertion of Pd is then coordinates with an unsaturated substrate in the second step. In the next step, reductive elimination releases the product along with palladium-hydride complex that can be converted to the starting $\operatorname{Pd}(0)$ with the help of suitable base (Figure 3).

Figure 3: The mechanism for the Heck cross-coupling reaction (Ligands are not shown)

In case of unsymmetrical substrate, the addition of the alkyl group can either take place at α or the β position. The syn addition of the aryl complex to such an unsymmetrical olefin prefers the aryl group addition to the less hindered β position due to the steric reseason. However, this pathway requires the dissociation of one of the ligands coordinated to the Pd as shown in Figure 4.

Figure 4: Neutral pathway
The neutral pathway is favored when $\mathrm{X}=\mathrm{I}, \mathrm{Br}$ or Cl . By contrast when $\mathrm{X}=\mathrm{OTf}$, the weakly coordinating anion will dissociate readily instead of ligand, L. As a result a positive charge generate on the Pd atom placing a negative charge on the R^{1} group simultaneously. Accordingly insertion occurs with R^{2} group adding to the more substituted carbon.

Figure 5: Cationic pathway
The cationic pathway is shown in Figure 5. The electronic nature of the olefin determines the regioselectivity. The electron rich alkenes favor the neutral pathway while the electron poor alkenes prefer the cationic pathway. Furthermore, the cationic pathway is dominant when halide-sequestering agents such as Ag (I) salts are added. In contrast, the addition of exogenous halide ions will favors the neutral pathway. In case of the asymmetric version of the Heck reaction, the enantioselectivity depends on the pathway of the reaction. The cationic pathway gives the higher \% ee than the neutral pathway.

Advantages and disadvantages

The advantages of Heck reaction are
a) Outstanding trans -selectivity;
b) High functional group tolerance;
c) Inexpensive and readily available olefins as precursors and
d) Inexpensive and readily available aryl bromides and aryl chlorides as substrates.

The disadvantages (drawbacks) includes
a) With common ligands low reactivity;
b) Difficulty in handling of the ligands;
c) Harmfulness of ligands;
d) Difficulty in removing the unwanted organic and inorganic impurities contaminated with the desired product;
e) High sensitivity of ligands to air and moisture and
f) Need for use of additives such as tetra butyl ammonium chloride $\left(\mathrm{Bu} \mathrm{u}_{4} \mathrm{NCl}\right)$ and tetra butyl ammonium bromide ($\left.\mathrm{Bu}_{4} \mathrm{NBr}\right)$.

Stille coupling:

The Stille reaction emerged as one of the very important tool especially for the synthesis of five and six-membered rings. The utility of this process for the creation of variety of ring sizes and macrocycles was demonstrated ${ }^{21}$ in the recent years. Eaborn and co-
workers reported the first use of a Pd based catalyst for the coupling of an aryl halide with an organotin reagent for the synthesis of diaryls in 1976^{22}.

Later in 1978, Stille widen the scope of reaction to include the synthesis of ketones from acid chlorides and organotin compounds.

Substrates

The electrophilic partners typically used for the Stille coupling reactions are aryl, benzyl, acetyl halides, allylic halides, aromatic halides and vinyl halides or pseudohalides such as a triflate, while the nucleophilic partners are organostannens.

Catalytic system

The organometals like Pd , Ni along with variety of ligands, mostly the phosphorous ligands such as $\mathrm{P}(t-\mathrm{Bu})_{2} \mathrm{Me}, \mathrm{PCy}(\text { pyrrodinyl })_{2}$ etc. gives the best result .

Mechanism

The mechanism for the Stille coupling involves three steps as shown in Figure 6. As usual like other catalytic cycles, the first step is the oxidative addition of sp^{2} hybridized halide compound to the Palladium catalyst to form the $\mathrm{Pd}(\mathrm{II})$ halide intermediate. The second step involves the transmetallation of the organotin reagent with the above $\operatorname{Pd}(\mathrm{II})$ complex to lead bis(alkyl)Pd(II) complex. Finally, the reductive elimination of the $\mathrm{R}^{2}-\mathrm{Pd}-\mathrm{R}^{1}$ releases the coupled product and regenerates the $\mathrm{Pd}(0)$. The halide-leaving group attached to the vinylic or aromatic substrate impacts the rate of reaction. The oxidative addition to the $\operatorname{Pd}(0)$ catalyst depends upon the reactivity of the leaving group with $\mathrm{I}>\mathrm{OTf}>\mathrm{Br}$.

Reaction temperature

The reaction temperature varies from room temperature to $140^{\circ} \mathrm{C}$ depending upon the reactivity and stability of the substrates.

Solvents

Strongly polar solvents such as HMTP, DMF or dioxane are the best for the low reactive alkyl stannanes also. The other solvents like $t-\mathrm{BuOH}: i-\mathrm{BuOH}, \mathrm{THF}$, toluene have been also proved to be fertile for the coupling reaction.

Bases and additives

The bases used for Stille reactions are t-BuOMe, KOt-Bu, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CsCO}_{3}, \mathrm{NaOH}$ depending upon the reactivity of the substrate. To improve the yield of the reaction, the additives like lithium chloride, $3 \AA$ molecular sieves, $\mathrm{Me}_{4} \mathrm{NF}, 2,2$ '-bipyridine, KF, CsF etc are often added to the reaction mixture. Reactivity and specificity of the Stille reaction can also be improved by the addition of stoichiometric amounts of $\mathrm{Cu}(\mathrm{I})$ or $\mathrm{Mn}(\mathrm{II})$ salts.

Catalytic system:

The cross-coupling reaction can be inhibited by ligands of a high donor number. Rate of ligand transfer (transmetallation) from tin is in the order; alkynyl > alkenyl > aryl $>$ allyl $=$ benzyl $>\alpha$-alkoxyalkyl $>$ alkyl. Commercially available catalysts like
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Pd}_{2}(\mathrm{dba})_{3}+\mathrm{PR}_{3}$ or AsR_{3} are generally useful for this reaction. Large rate enhancements occur with ligands which are poor σ-donors in the order $\mathrm{AsPh}_{3}>\mathrm{P}(2-$ furyl) $)_{3}>\mathrm{PPh}_{3}$. The Stille cross-coupling reactions can be inhibited by ligands of a high donor number.

Advantages and disadvantages

The advantages of the Stille reactions are
a) Stannanes are readily synthesized and are air and moisture stable (often distillable) and
b) High functional group tolerance;

The disadvantages of Stille reactions are
a) The reactivity of alkyl stannanes are low;
b) Toxicity of the tin compounds used ;
c) Side reaction gives homo coupled product;
d) Their low polarity, which makes them poorly soluble in water and
e) The yields are low for the conventional Stille coupling of aryl chlorides.

Suzuki coupling:

The Palladium catalyzed coupling reaction between an aryl halide (electrophile) and aryl boronic acid (nucleophile) is known as Suzuki coupling. This reaction is useful especially for the synthesis of the biaryl systems, which are the important part of many bioactive compounds.

The two research groups namely Buchwald ${ }^{23}$ and Fu^{24} independently explored this reaction for the coupling of aryl chlorides under non-harsh conditions. Like the Heck reaction it also tolerates the many functional groups.

Substrates

The suitable substrates for the Suzuki coupling reaction are the aryl/alkyl/alkyl/benzyl/vinyl halides (chlorides, bromides, and iodides) and aryl/alkyl/alkyl/vinyl triflates substituted with electron-withdrawing groups. The triflates and sulphonates of these compounds are regarded as the synthetic equivalents of their corresponding halides. But it has been observed that triflates decomposes normally due to their thermal labiality. Moreover triflates are expensive and undergoes hydrolysis easily, which makes them difficult to use in the Suzuki reaction. The sulphonates are an attractive option because they are easily prepared, more stable and cheap staring material.

The other coupling partner can be used are boronic acids $\left[\mathrm{RB}(\mathrm{OH})_{2}\right]$, boronic esters [$\mathrm{RB}\left(\mathrm{OR}^{\prime}\right)_{2}$] and borinates [$\left.\mathrm{R}_{2} \mathrm{BOR}^{\prime}\right]$.

Solvents

The nature and the polarity of the solvent play the crucial role in the cross-coupling reactions. It has been observed that the same reaction with different solvents affords different results. The Suzuki cross-coupling reactions generally employ organic solvents such as THF, DME, toluene, benzene, dioxane, diethyl ether, and 1-butanol. They also employed organic solvent with water. Appropriate solvent system is also a solution to favor cross-coupling reaction.

Reaction temperature

The temperature normally around the room temperature is most suitable but may vary depending upon the solvent system and the category of the substrates used.

Catalytic system

Pd catalyst along with different ligands has proven to be very effective. Ni on charcoal, Rh catalyst and $\mathrm{Ag}_{2} \mathrm{O}$ mediated palladium catalyst also has been used. The phosphine ligands like $\mathrm{PPh}_{3}, \mathrm{PCy}_{3}, \mathrm{P}(i-\mathrm{Pr})_{3}, \mathrm{P}(t-\mathrm{Bu})_{3}, \mathrm{P}(n-\mathrm{Bu})_{3}$, dcpe, BINAP etc. The variety of nucleophilic N-heterocyclic carbenes (imidazol-2-ylidenes) i.e. NHC; also called "phosphine mimics" have been developed ${ }^{25}$.

Bases and additives

In contrast to the Heck and Stille reaction, the Suzuki reaction does not work under neutral conditions. The choice of the suitable base has played an important role in Suzuki
coupling reaction. Various bases accelerate the rate of reaction in Suzuki coupling reactions are $\mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CsCO}_{3}$, KOMe etc.

Mechanisms

In the initial step, the halides or triflates oxidatively adds to the Pd catalyst to give R^{2}-Pd-X complex. This complex then reacts with the base to form more reactive complex R^{2} -Pd-OR". The next step is the transmetallation of R^{2}-Pd-OR" with boron derivatives led to R^{2} -$\operatorname{Pd}-R^{2}$. In the final step the reductive elimination produced $R^{1}-R^{2}$ and recycling the $\operatorname{Pd}(0)$ catalyst (Figure 7).

Figure 7: Mechanism of Suzuki coupling
(Ligands are omitted for the simplicity)
The low reactivity of the organoborane compounds makes the use of a base necessary because of its low reactivity with R^{2}-Pd-X complex. However, the quarternization of the boron atom to form the 'ate'-complex renders the use of a base unnecessary. The enhanced nucleophilicity of the organic substituent attached to the boron enables direct alkylation of the R^{2}-Pd-X complex. Several reactive 'ate'-complexes are known like $\mathrm{Bu}_{4} \mathrm{BLi}$, $\left[\mathrm{ArB}(\mathrm{Bu})_{3}\right] \mathrm{Li}, \mathrm{Ph}_{4} \mathrm{BNa},\left[\mathrm{R}_{3} \mathrm{BOMe}\right] \mathrm{Na},\left[\mathrm{ArB}(\mathrm{R})(\mathrm{OR})_{2}\right] \mathrm{Li},\left[\mathrm{ArBF}_{3}\right] \mathrm{K}$.

Advantages and disadvantages

The advantages of the Stille reactions are
a) Stability;
b) Ease of preparation and
c) Low toxicity of the boronic acid compounds

The disadvantages of Stille reactions are
a) Homocoupling of the starting material;
b) Dehalogenation of the organic halide;
c) Protodeboronation with water and
d) Some highly sensitive compounds do not tolerate the basic conditions required for Suzuki coupling.

Negishi coupling:

The Negishi coupling reaction reported in 1977^{26} for the C-C bond formation and was the first reaction for the synthesis of unsymmetrical biaryls in good yields. It is the versatile Palladium or Nickel-catalyzed coupling reactions of organozinc compounds with various halides. This reaction has broad scope and is not restricted to the biaryls.

$$
\begin{aligned}
& R^{1}-Z n R^{2}+ R^{2}-P \xrightarrow{\text { Pd Catalyst }} \\
& R^{1}=\text { alkyl, alkynyl, aryl, vinyl } \\
& R^{2}=\text { benzyl, aryl, acyl, vinyl } \\
& X=\text { Br, I, OTs, OTf, }
\end{aligned}
$$

Substrates

Alkyl, alkenyl and alkynyl zinc halides as nucleophilic partner while variety of substrates like aryl-, alkyl- and alkenyl halides and -tosylates as an electrophilic partner can be used for Negishi coupling. Also heterocycles like halogen furans and halogenated thiazoles have been utilized successfully.

Reaction temperature

The reaction temperature ranging from $-35{ }^{\circ} \mathrm{C}$ to $40{ }^{\circ} \mathrm{C}$ is most suitable for many combinations of substrate and solvents.

Solvents

THF, NMP, DMA (N,N-dimethylacetamide), DMI (1,3-dimethyl-2imidazolidinone), diethyl ether, DMF etc. have been used as a reaction media for this transformation.

Bases and additives

LiI, I- $\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{CO}_{2} \mathrm{R}(\mathrm{R}=\mathrm{Me}$, Et, THP etc. $)$, PhCOCH 3 , styrene $\left(m-\mathrm{CF}_{3}\right)$

Catalytic system

The variety of metals like Ni, Rh, and Zn can be effectively used for Negishi
 coupling. Different ligands enhances the power of catalyst such as triphenylphosphine, dppe, dppf, BINAP or CHIRAPHOS etc. Negishi reaction capable of coupling $\mathrm{sp}^{3}-\mathrm{sp}^{3}$ centers in high yield of unactivated, primary bromides and alkyl organozinc reagents have been developed by using Pd-N-heterocyclic carbene (NHC) catalyst(1 \& 2). ${ }^{27}$

Advantages and disadvantages

The advantages of Negishi coupling reactions are
a) Due to the mildness, (stereo- and chemo) selectivity is good and
b) High yields

The disadvantages are
a) The incapability of organozinc reagents with many common functional groups and
b) Relative sensitivity towards oxygen and water.

Mechanisms

The first step is the oxidative addition of halides to the Pd catalyst to give $\mathrm{R}^{2}-\mathrm{Pd}-\mathrm{X}$ complex. The transmetallation of $\mathrm{R}^{2}-\mathrm{Pd}-\mathrm{X}$ with $\mathrm{R}^{1}-\mathrm{Zn}-\mathrm{X}$ led to $\mathrm{R}^{2}-\mathrm{Pd}-\mathrm{R}^{1}$ in the next step. The cis-trans isomerisation of $\mathrm{R}^{2}-\mathrm{Pd}-\mathrm{R}^{1}$ followed by reductive elimination produced $\mathrm{R}^{1}-\mathrm{R}^{2}$ and recycling the $\operatorname{Pd}(0)$ catalyst (Figure 8).

Figure 8: Mechanism for Negishi coupling

Sonogashira coupling:

The Sonogashira reaction (can be viewed as an alkyne version of the Heck reaction) provides a valuable method for the synthesis of substituted alkynes; which are the important part of many natural products and pharmaceuticals. Both the biotechnology and nanotechnology utilized this tool of reaction for the construction of complex and designed molecules. The C-C bond forming reaction of terminal alkynes with organohalogen compounds in the presence of palladium (II)/ Copper (II) catalyst, is known as Sonogashira coupling reaction

$$
\begin{gathered}
R^{1}=+R^{2}-x \xrightarrow{\text { Pd Catalyst, Cux }} \text { Solvent, Base } R^{2}=R^{1} \\
R^{1}=\text { alkyl, aryl, vinyl } \\
R^{2}=\text { benzyl, aryl, vinyl } \\
x=B r, I, C l, \text { oTf. }
\end{gathered}
$$

The reaction medium must be basic to neutralize the hydrogen halide produced as the byproduct and also to assist the transmetallation by abstracting the proton from the substrate. In addition the aerobic conditions are formally needed because of the sensitivity of $\operatorname{Pd}(0)$ to air, but the relevant development of air-stable palladium-catalysts enable this reaction to be conducted in the open atmosphere. The plausible mechanism for the Cu involved Sonogashira reaction is given here for example, in (Figure 6).

Substrates

The terminal alkynes are the suitable nucleophilic partners while aryl, vinyl or benzyl halides/triflate are the electrophilic partner for the Sonogashira reaction.

Catalytic system

Homogeneous Pd complexes often catalyze the traditional Sonogashira reaction, but recently Cai et al. reported heterogeneous Pd catalyzed

Carbene ligand (3) Sonogashira also ${ }^{28}$.

Typically, co-catalysts such as $\mathrm{Zn}, \mathrm{Sn}, \mathrm{B}, \mathrm{Al}, \mathrm{Ag}_{2} \mathrm{O}$ and $\mathrm{Ag}_{2} \mathrm{OTf}$ have also proven to be efficient. The first application of carbene ligand (3) for cross- coupling reaction of alkyl electrophiles has been recently reported
by Fu et al. ${ }^{29}$

Reaction temperature

Reaction temperature varies from room temperature to $150^{\circ} \mathrm{C}$. (Depending upon the electrophilic partner)

Solvents

The polar solvents like THF, DMF, $\mathrm{Et}_{2} \mathrm{O}$, DMSO, dioxane, NMP etc. have been used for Sonogashira reaction. The aqueous and mixed aqueous organic solvents are also effective.

Bases and additives

Reaction medium must be basic to neutralize, so alkyl amine compounds such as Et3N, $\mathrm{iPr}_{2} \mathrm{NH}$, diethyl amine, pyrrolidine, piperidine etc. and other bases such as TBAF, $\mathrm{CS}_{2} \mathrm{CO}_{3}$ are used.

The additives such as CuI can be often added.

Mechanism

The catalytic cycle involves number of steps, but the stationary regime more easily reached if the intrinsic reaction rates of all steps are close as possible to each other. In other words to increase the efficiency of the catalytic cycle one must either accelerate the rate determining step (i.e., destabilize the stable intermediate complexes) or decelerate the fast reactions (by stabilizing the high energy species). Though the number of metal acetylides $(\mathrm{Mg}, \mathrm{B}, \mathrm{Al}, \mathrm{Zn}, \& \mathrm{Sn})$ and the reagents like $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{Ag}_{2} \mathrm{Otf}$, tetra butyl ammonium fluoride (TBAF), tetra butyl ammonium hydroxide provides as a useful nucleophiles in the oxidative addition step of catalytic cycle, the Cu acetylides has emerged as the most widely used for the synthesis of C-C bond formation Sonogashira coupling. The Sonogashira reactions have been modified, and the newer procedures including Cu free, amine free, solvent free reactions and reactions in aqueous media have been developed.

Figure 10: Mechanism Cu free Sonogashira coupling

Advantages and disadvantages

The advantage of Sonogashira reaction is that one can form different alkyne derivatives easily under very mild reaction conditions.

The main drawbacks of Sonogashira coupling are
a) Under the standard conditions, electron deficient alkyne gives low yields and
b) Homocoupled side product.

Tsuji-Trost coupling:

The nucleophilic substitution of allylic compounds by using Pd catalyst is known as the Tsuji-Trost reaction.

The asymmetric allylic alkylation is now provides a powerful method for the ring formation, 1,3-chirality transfer, desymmetrization of meso substrates, the resolution of racemic compounds, and a variety of other applications.

Substrates

Activated allyl alcohol derivatives, in particular, allylic halides, acetates, and carbonates acts as electrophilic partner while the nucleophiles such as soft anions like active methylenes, enolates, amines and phenols are generally used.

Reaction temperature

The range of temperatures generally used for this type of transformations is from room temperature to around $100^{\circ} \mathrm{C}$ and depends on the substrates, solvent system and stability of the catalyst used.

Solvents

Water, EtOAc, THF, MeCN etc. have been used as reaction media for these transformation.

Bases and additives

The bases like $\mathrm{Na}_{2} \mathrm{CO}_{3}$, benzyl amine, LDA often used for effective coupling. Activators such as acids, Lewis acids, $\mathrm{Et}_{3} \mathrm{~B}$, and CO_{2}, due to inherent low leaving aptitude of the hydroxy group are needed.

Catalytic system

A wide variety of catalytic systems have been developed for Tsuji-Trost reaction. The Pd catalyst along with plethora of ligands has been utilized successfully in the recent years for the nucleophilic displacements.

Mechanism

Figure 11: Proposed mechanism for Tsuji-Trost reaction (Ligands are not shown for simplicity)

The $\operatorname{Pd}(0)$ forms $\eta^{2} \pi$-allyl complex with substrate in the initial step which helps the oxidative addition and expelling the leaving group to form $\eta^{3} \pi$-allyl complex. This step is also called as ionization. The second step is the addition of nucleophile to $\eta^{3} \pi$-allyl complex (electrophilic) to form the allyl-Pd(II)-Nu complex. Depending on the strength of the nucleophile, the reaction can take two different pathways. Soft nucleophiles, such as those derived from conjugate acids with a $\mathrm{pKa}<25$, normally add directly to the allyl moiety, whereas hard nucleophiles first attack the Pd (II) centre. The final step is the reductive elimination (or may be referred as dissociation), which gives the allylic substituted product, and association recycled the catalyst.

Soft nucleophile

Hard nucleophile

These two mechanistic paths provide the different results of asymmetric induction at allylic position.

Advantages and disadvantages

The advantages are
a) The main advantage of this reaction is that the net reaction at sp^{3}-hybridized carbon centers which enables to develop asymmetric allylic alkylation.
b) Under mild conditions, heigh chemo-, regio- \& stereoselectivity and
c) Range of hetreoatom nucleophiles (e.g. N, O \& S) also make excellent coupling partner.

There are no major disadvantages for this transformation.

Hiyama Coupling:

The Hiyama coupling is the palladium catalyzed C - C bond formation reaction between organohalides and organosilanes.

Substrates

Activated silicates (aryl, benzyl, acyl and vinyl) are the nucleophilic partner and aryl/vinyl halides, tosylates and triflates may be the electrophilic partner.

Reaction temperature

Like other Pd catalyzed C-C bond forming reactions the reaction temperature for Hiyama coupling varies for substrate to substrates and the most acceptable range is again 20 ${ }^{\circ} \mathrm{C}-120{ }^{\circ} \mathrm{C}$.

Solvents

The polar solvents like DMF, MeCN and MeOH gives the best results

Bases and additives

The activating agent like base or fluoride ion (KF, TBAF, TASF etc.) is essential for this reaction. Generally CuI gives the best result as an activator and different inorganic bases like $\mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}$ enhances the rate of reaction efficiently.

Catalytic system

The Pd catalyst along with phosphine ligands such as $\mathrm{PPh}_{3}, \mathrm{Pcy}_{3}, \mathrm{PtBu}_{3}$ etc. has proven to be good giving the cross-coupled product in high yield.

Mechanism

The polarization of C-Si bond is the crucial step in this reaction. The activation of the organosilanes by using fluoride ion/base leading to a pentavalent silicon compound, which was used in the transmetallation step with $\mathrm{R}^{2}-\mathrm{Pd}-\mathrm{X}$ to give $\mathrm{R}^{1}-\mathrm{Pd}-\mathrm{R}^{2}$. This palladium complex was then undergoes the cis-trans isomerisation followed by reductive elimination affords the coupling product $R^{1}-R^{2}$.

Figure 12: Himaya Coupling reaction

Advantages and disadvantages

The advantages of Hiyama coupling reaction are
a) Low environmental impact (low toxicity),
b) The organosilicone compounds are stable and easily prepared compounds
c) High atom efficiency, and
d) Easy handling compared with the coupling reactions of organoboron, organozinc, or organotin compounds.

The disadvantages are
a) Silanes are considerably less reactive toward transmetallation;
b) Stoichiometric amounts of a fluoride salt is needed as the activating agent

Kumada coupling:

This reaction involves the coupling of Grignard reagents with different halides under metal catalyst. This reaction was developed by two groups independently in 1972, Kumada group prepared the styrene derivative by using Ni catalyst and in the same year Corriu group also reported Kumada cross-coupling for the preparation of stilbene derivatives with Ni catalyst. Later in 1975, Murahashi reported Pd catalyzed crosscoupling reaction. ${ }^{30}$ Fürstner et al. ${ }^{17 d, e}$ developed an iron catalyzed Kumada coupling of aryl chlorides and activated aryl and heteroaryl tosylates with alkylmagnesium chlorides.

$$
\begin{gathered}
R^{1}-M g x+R^{2}-x \xrightarrow[\text { Solvent, Base }]{ } \begin{aligned}
& \text { Pd Catalyst/Ni catalyst } \\
& R^{1}=\text { alkyl, aryl, vinyl } \\
& R^{2}=\text { aryl, vinyl } \\
& X=\mathrm{Rl}, \mathrm{Br}, \mathrm{l} .
\end{aligned} \\
\hline
\end{gathered}
$$

Substrates

The aryl/vinyl or alkyl Grignard reagents have been generally used as nucleophilic partner, while aryl/ vinyl halides are found to be effective electrophilic partners for this type of transformation.

Reaction temperature

The most applicable range for Kumada coupling is $-78^{\circ} \mathrm{C}$ to room temperature.

Solvents

THF, dioxane, toluene, DMF, DMAc (N, N-Dimethylacetamide), NMP($N-$ methylpyrrolidinone)

Bases and additives

$\mathrm{Et}_{3} \mathrm{~N}$, NMP, DABCO, TMEDA ($N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine)
Additives such as 1,3-butadiene, $\mathrm{BnN}\left(\mathrm{C}_{5} \mathrm{H}_{7}\right)_{2}$ usually increase activity of the substrates.

Catalytic system

Apart from different Pd catalyst the $\mathrm{Ni}, \mathrm{Fe}, \mathrm{Co}$ and Cu catalyzed Kumada coupling reactions are also well known. Various ligands like PCy_{3}, TPP, $\mathrm{P}(o-\mathrm{tol})_{3}, \mathrm{P}(t-\mathrm{Bu})_{3}$, dppp $\{1,3-$ bis(diphenyphosphino)propane, dmpe, dppe can assist the coupling reaction. Pd-catalyzed Kumada coupling at low temperatures for Knochel-type Grignard Reagents have been developed recently using ligands L1-L5 provided the best results ${ }^{31}$.

$$
\begin{aligned}
& \mathrm{R}^{1}=\mathrm{Cy} ; \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{i} \mathrm{Pr}, \mathbf{L 1} \\
& \mathrm{R}^{1}=\mathrm{Cy} ; \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{OMe} ; \mathrm{R}^{4}=\mathrm{H}, \mathbf{\mathrm { L } 2} \\
& \mathrm{R}^{1}=\mathrm{Cy} ; \mathrm{R}^{2}=\mathrm{NMe}_{2} ; \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}, \mathbf{L} 3 \\
& \mathrm{R}^{1}=\mathrm{t} \mathbf{B u} ; \mathrm{R}^{2}=\mathrm{NMe}_{2} ; \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}, \mathbf{L} 4
\end{aligned}
$$

L5

Mechanism

Like all other Pd catalyzed coupling reaction the first step of Kumada coupling reaction involves the oxidative addition of $R^{2}-X$ over the $P d$ catalyst to give $R^{2}-\mathrm{Pd}-\mathrm{X}$ complex. This complex then undergoes the transmetallation with $\mathrm{R}^{1}-\mathrm{Mg}-\mathrm{X}$ led to $\mathrm{R}^{2}-\mathrm{Pd}-\mathrm{R}^{1}$ in the second step of the catalytic cycle. The third step is the cis-trans isomerisation of the complex $R^{2}-P d-R^{1}$. In the final step the reductive elimination produced $R^{1}-R^{2}$ and recycling the $\operatorname{Pd}(0)$ catalyst (Figure 11).

Figure 13: Mechanism for Kumada Coupling reaction

Advantages and disadvantages

The advantages of Kumada coupling are
a) The one of the advantage of this reaction over Negishi-coupling reaction is that, it is direct coupling of Grignard reagent, which avoids additional reaction step such as the conversion of Grignards regent to the organozinc compounds;
b) Low-cost synthesis of unsymmetrical sterically hindered biaryls The main disadvantage of Kumada coupling is incompatibility of Grignard-reagents with certain functional groups

Pd catalyzed C-O bond formation reaction:

The first C-O bond formation reaction reported by using transition metal is the Ullmann reaction. ${ }^{32}$ However the Ullmann reaction is neither catalytic nor reliable at the crucial C-O bond formation step. In an effort to improve the existing method the Palladium chemistry attracted the attention of the organic community.

In addition to the $\mathrm{C}-\mathrm{C}$ bond formation, palladium-catalyzed chemistry has been explored further for the formation of $\mathrm{C}-\mathrm{O}$ bonds. Buchwald and co-workers lead the way and then Hartwig and other groups from all over the world have been engaged in developing the plethora of palladium catalysts successfully for the formation of intra- and intermolecular CO bond. This method is efficient and reliable alternative for the traditional way of the lengthy organic schemes for the diaryl ethers (Pharmaceutical intermediates).

Substrates

Organic halides (aryl/vinyl) and allylic acetates are the most reactive class of electrophiles used for this reaction. On the other hand, alkyl/aryl/vinyl alcohol derivatives are good nucleophiles.

Reaction temperature

The reaction temperature varies for substrate to substrate but most of the reactions the temperature in the vicinity of ambient proved to be fruitful.

Solvents

Like other coupling reactions the solvents such as toluene, dioxane, THF etc. can be used for C-O bond formation.

Bases and additives

Weak bases such as $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{CS}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}$ and stroner base like $\mathrm{NaO}^{t} \mathrm{Bu}$ have been also applied. Some reports by using $\mathrm{Et}_{2} \mathrm{Zn}$ as activator.

Catalytic system

Amongst the metal used for $\mathrm{C}-\mathrm{O}$ bond formation reactions are $\mathrm{Cu}, \mathrm{Ir}, \mathrm{Pt}$ and Ni .

Mechanism

The alcohol arylation reaction by using the Palladium catalyzed reaction follows the same mechanistic path as that for the amination of aryl halide suggested by BuchwaldHartwig. ${ }^{34}$ Thus the proposed mechanism cycle for the ether formation is shown in Figure 12.

In the initial step, the aryl halides react with the Pd catalyst to give Ar-Pd-X complex. This complex is then reacts with the base to form more reactive complex Ar-Pd-OR". The next step is the addition of the alcohol ROH to the Ar-Pd-OR" to form Ar-Pd-R. In the final step the reductive elimination produced Ar-O-R and recycling the $\mathrm{Pd}(0)$ catalyst.

Advantages and disadvantages

The advantages are
a) It linkage aryl-oxygen under mild condition;
b) Many bioactive compounds can be synthesized by using intramolecular C-O bond formation effectively.

The disadvantages are
In case of secondary alcohol, dehalogenation of the aryl halides and sometimes the oxidation of the alcohol to the ketone are the competitive reactions.

PRESENT WORK

The field of discovery and synthesis of biologically active natural products represents a dynamic and largely growing research area. By the use of new strategies to discover natural products of interest, many molecules with novel structural features have been isolated and their structures have been elucidated. The development of flexible strategies for total synthesis combined with the synthesis of related analogues provided an ideal platform for new drug discovery. However, considering the length and synthetic manipulations involved in synthesizing natural product or analogues, a conceptually new approach has been disclosed recently which does take the inspiration from the skeletal diversity of natural products, however does mainly aim in producing natural product like molecules with a minimum effort. Diversity oriented synthesis (DOS) ${ }^{34}$, conceptualized by Schriber has been regarded as promising tool to make many new connections to biology and medicine in the future. Development of new chemical platforms for constructing useful molecular diversity taken together with the design and development of effective routes for the construction of cyclic compounds have been considered as controlling elements in the DOS. The inherent rich chiral diversity and skeletal rigidity of carbohydrates has been recognized and explored in the context of synthesis of combinatorial libraries involving selective functionalization and synthetic manipulations.

Carbohydrates constitute an abundant and relatively inexpensive source of chiral carbon compounds. Through simple chemical manipulation, these readily available sugars can be transformed into a variety of intermediates bearing functional groups such as alkene and alkyne with predetermined chiral centers and with defined structural framework. In this regard, studies in this laboratory have been engaged in exploring the synthesis and utility of functionalized Chirons in the total synthesis of a wider variety of natural products. Funded upon the DOS, combined with the palladium mediated inter- and intramolecular functionalization of alkynes that has been well explored in organic synthesis for the construction of carba/heterocyclic derivatives, we have devised an approach to construct the architecturally complex skeletons through sugar alkynes either by using intra- or intermolecular nucleophilic addition reactions. A general description of our intended strategies is described in Figure 15.

4

5

6

Figure 15: Proposed Pd mediated transformations on sugar alkynes

Palladium mediated addition of C-and heteroatom nucleophiles across the carboncarbon triple bond, is one of the most interesting and intriguing reaction in organic chemistry. Cycloisomerization of alkynals and alkynols is projected as a tool to synthesize the oxygen containing heterocycles encompassing functionalized furan, pyran, and benzopyran skeletons. However, majority of the metal mediated cycloisomerization reactions of carbohydrate precursors have been less explored and mainly confined to glycals, exo-glycals and related derivatives. Almost all the cycloisomerization reactions followed the Baldwin rules ${ }^{35}$.

Short account of Baldwin rules for ring closure

Baldwin suggested a set of empirical rules for the predication of ring closure outcome of the intramolecular addition of nucleophiles or radicals to electrophilic centre. The nomenclature of these rules is written as e.g. 4-Exo-Trig.

4- indicate the ring size being formed
Exo-indicate where displaced electron end up (if it ends up out side the ring being formed; then Exo and if it ends up within the ring being formed; then Endo) Trig- indicates the geometry of electrophilic atom on which attack takes place \{if it is $s p^{3}$; then Tet (tetrahedral), if it is $s p^{2}$; then Trig (trigonal) and if it is $s p$; then Dig (diagonal)\}.

The Baldwin rules are listed in the tabulated form below. These rules suggest whether the ring closure is favored $(\sqrt{ })$ or disfavored (\times).

Ring size being formed	Exo			Endo		
	Dig	Trig	Tet	Dig	Trig	Tet
3	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$
4	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$
5	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	\times
6	$\sqrt{ }$	\times				
7	$\sqrt{ }$					

Recently, we have shown that the electronic effects in the alkyne ${ }^{36}$, i.e., the presence of strong electron withdrawing or strong electron-donating groups influence mode of the

cyclizations

(Figure
$16)^{42}$.

Figure 16: Competitive 5-exo vs 6-endo-dig cyclizations and role of electronic factors

In order to extend this methodology and to understand such an electronic control over the cycloisomerization of sugar alkynals, we have designed two types of alkynals (Figure 3) where one can anticipate the formation of fused bicyclic derivatives with predetermined stereochemistries, which can be further elaborated as starting chiral intermediates for the synthesis of related natural products. Two modes of cyclisation i.e. 5-exo-dig and 6-endo-dig are possible as shown in Figure 17.

Figure 17: Modes of cycloisomerization

A retrosynthetic strategy for alkynals 4 and 5 is given in Scheme 1. As shown in scheme 1 , the key cyano intermediate can be obtained from the alkynol $\mathbf{1 0}$ by a double inversion consisting conversion of $\mathrm{C}(3)-\mathrm{OH}$ to corresponding iodo derivative followed by nucleophilic displacement with cyano group. The synthesis of differently substituted alkynols $\mathbf{1 0}$ is a direct proposition from known alkynol 11 by means of Sonogashira reaction. On the other hand synthesis of the alkynal 5 is straight forward from known alkynol 13^{37} which can be subjected for Sonogashira coupling (or direct C-3 alkylation on 14) followed by selective insitu 5,6 -acetonide deprotection and periodate mediated cleavage of the resulting diol.

Scheme 1: Retrosynthetic strategy for substrates 4 and 5.

Our initial target was the synthesis of C-4 alkyne 11. Synthesis of the alkyne 11 started with conversion of the D-glucose into 1,2:5,6-di-O-isopropylidene- α-Dglucofuranose (15) by following the known procedure by treating glucose in acetone with anhydrous CuSO_{4} in the presence of catalytic $\mathrm{H}_{2} \mathrm{SO}_{4}$. Subsequent treatment of 15 with methanesulphonyl chloride in DMF at $90^{\circ} \mathrm{C}$ for 6 h afforded 6-chloro-6-deoxy-1,2:3,5-di-O-isopropylidene- α-D-glucofuranose (16). Finally by using the base induced double elimination of the β-alkoxy chloride protocol, the compound $\mathbf{1 6}$ was converted into alkyne 11^{38} (Scheme 2).

Scheme 2

In the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 1}$, the characteristic alkyne proton was observed as a doublet at $2.65 \mathrm{ppm}(J=2.5 \mathrm{~Hz})$ and the peaks due to isopropylidene moiety were absent. The quaternary carbon located at 77.5 ppm in ${ }^{13} \mathrm{C}$ NMR spectrum and mass spectral analysis further supported the structure of 11. Our next concern was to introduce the alkyl group on the terminal alkyne by using Sonogashira reaction. The initial optimization of Sonogashira coupling was carried out by using phenyl iodide as the coupling partner, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ as the catalyst and after a careful examination of various reaction conditions, by changing reaction temperature, reaction time, base, solvent, and amount of iodobenzene, we concluded that the best result for the intended Sonogashira reaction were obtained by
using a piperidine as a solvent (also acts as a base) and conducting the reaction at room temperature in the presences of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$.

Scheme 3

8

6 h

7a

Thus the Sonogashira reaction of compound 11 afforded the coupled product 10a in 85% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 10a, the absence of signal due to the terminal alkyne proton resonated as a doublet $(J=2.5 \mathrm{~Hz})$ at 2.65 ppm and the presence of characteristic signals for phenyl group in aromatic region (two multiplates, one at 7.297.57 resonating for 3 H and another at $7.46-7.51$ resonating for 2 H) were noted. In addition the structure of compound 10a was further supported by its mass spectral analysis (Scheme
$3)$.

Figure 18: Two component Sonogashira coupling on Sugar alkynes

Later, in order to show the generality of the Sonogashira reaction on sugar templates, various aryl iodides were employed and the results are summarized in Table 1. As shown in Table 1, the optimized catalyst system is quite general and tolerant of a range of functionalities and the substrates. We have generalized this methodology ${ }^{39}$ to prepare
various disubstituted alkynes with different aromatic halides, in excellent yields (Figure 18).

Table 1

Entry	Substrate	Halide	Product	Time (h)	Yeild (\%)
1	11		10a	6	85
2	11		10b	6	81
3	11		10c	18	65
4	11		10d	16	80
5	11		10e	18	60

After being executed the synthesis of various alkyne partners for the cycloisomerization, our next aim was to introduce the formyl group at C-3 on these alkyne derivatives. According to our plan double inversion (first iodination and then cyanation i.e. net retention) at C-3 could give 3-C-formyl derivative of glucose. For this purpose, the compound 10a was treated with TPP, iodine and imidazole in refluxing toluene, which afforded the eliminated product 18 instead of iodo derivative 17 . The motive behind this insitu facile elimination is highly acidic nature of $\mathrm{H}-\mathrm{C}(4)$. In the ${ }^{1} \mathrm{H}$ NMR of the compound 18, the olefin signal (downfield) was appeared as a doublet $(J=5.4 \mathrm{~Hz})$ at 6.03 ppm .

Scheme 4

Due to the elimination problem encountered during iodination (double Walden inversion at C-3 on 10a, as envisioned), we changed our strategy. The new strategy, which involves the single Walden inversion (tosylation and then cyanation) at C-3 of compound 19, was adopted as shown in (Scheme 5). The compound 15 was subjected to the series of wellreported reactions ${ }^{40}$ to afford 223. Accordingly the oxidation of free OH group at $\mathrm{C}-3$ of 15 using PDC in the presence of $4 \AA$ molecular sieves powder and $\mathrm{Ac}_{2} \mathrm{O}$ (cat.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded 1,2:5,6-di-O-isopropylidene- α-D-ribo-hexofuranos-3-ulose (14) which was after reduction with NaBH_{4} in MeOH at room temperature gave compound 19. The compound 19 was then converted into its 4-C formyl derivative 20 by the treatment of $\mathrm{H}_{5} \mathrm{IO}_{6}$ in dry ethyl acetate at $0{ }^{\circ} \mathrm{C}$ which was directly treated with CBr_{4} and TPP to give dibromo derivative (21). Finally the elimination of $\mathbf{2 1}$ by using n - BuLi as a base in THF at $0^{\circ} \mathrm{C}$ afforded alkyne 22. On TLC, the spot of the alkyne 22 matched with the authentic sample of the alkyne 11. In the proton NMR spectrum of the compound 22, the alkyne proton was resonated as a doublet ($J=$ $2.5 \mathrm{~Hz})$ at 2.54 ppm , and the rest of the peaks were in complete agreement with the structure of alkyne 22 (Scheme 5).

Scheme 5

The alkyne 22 was then subjected to the Sonogashira coupling reaction by following the same procedure as described for alkyne 11. The resulting coupled product 23 was characterized by using ${ }^{1} \mathrm{H}$ NMR spectroscopy, mass spectroscopy and elemental analysis. All these data were in accord with the assigned structure for the compound 23 (Scheme 6).

Scheme 6

The compound 23 was then treated with tosyl chloride in pyridine at $0{ }^{\circ} \mathrm{C}$ to afford an undesired elimination product 18 again. By replacing the tosyl with mesyl or triflate also afforded an undesired elimination product 18 (Scheme 7).

Scheme 7

After being met with elimination problem in both the strategies adopted we next focused on the second system, which contains the alkyne at C-3 and aldehyde at C-4. The 3-ulo derivative of glucose diacetone (14) was subjected to the stereoselective nucleophilic addition with the lithiated salts of the corresponding terminal alkynes to afford the requisite C-3 alkynyl derivatives 12a-12d (Scheme 8). The compounds 12a-12d were fully characterized by using ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, mass spectroscopy and elemental analysis.

Scheme 8

The reaction of $\mathbf{1 2 a} \mathbf{- 1 2 d}$ with periodic acid in dry EtOAc at room temperature gave the corresponding aldehyde derivatives $\mathbf{5 a} \mathbf{- 5 d}$. The compound $\mathbf{5 b}$ was directly subjected to cycloisomerization by treatment with $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \% \mathrm{mmol}), \mathrm{MeOH}$ and maleic anhydride in dry 1,4-dioxan under Argon atmosphere at $10{ }^{\circ} \mathrm{C}$ for 6 h to lead $\mathbf{7 b}$. The compound $\mathbf{7 b}$ was characterized by using ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra. The same
procedure was followed for the cycloisomerization of $\mathbf{5 a}, \mathbf{5 c}$ and $\mathbf{5 d}$ to give the different derivatives of cyclic sugar alkenyl ethers 7c and 7d (Scheme 9).

Scheme 9

Amongst four alkynals as shown in (Scheme 9), only with the terminal alkynal (compound 5a), the reaction led to a complex reactions mixture. In all other cases, a diastereomixture of bicyclic derivatives were obtained in moderate to good yields. The exclusive formation of six membered cyclic alkenyl ethers (6-endo-dig mode) in each case was confirmed by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopic data. For example, in the ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{7 b}$ the characteristic signals of the enolic protons were observed as doublets at 5.73 and 5.79 ppm for major and minor isomers respectively. No traces of the five membered compounds (5-exo-dig mode) were observed because of the expected $-I$ effect of the furanose ring over the alkyl side chain.

Section 2: Pd catalyzed tandem approach for the formation of trisubstituted sugar olefins (Three-component Sonogashira type coupling)

Di, tri-and tetrasubstituted olefins especially aryl substituted are an important class of natural products with promising biological activities. A huge number of documented methods available indicate their synthetic and biological importance. Amongst them the series of cis- and trans-stilbene derivatives (25) found importance as an anticancer drugs such as combretastatin A-4 $(\mathbf{2 6})^{41}$, resveratrol $(27)^{42}$ and septicine $(28)^{43}$. The molecular simplicity of this class of compounds have attracted the attention of synthetic chemist to design the new routes and such efforts in recent years have been devoted to detailed studies of the structure-activity relationships (SAR) of variously substituted stilbenes.

Considering the success we had with Sonogashira reaction on sugar alkynes under mild conditions; we next turned our attention to synthesize the trisubstituted combretastatin analogues (29) by a combination of Sonogashira and Suzuki-Miyaura reactions wherein one of the substituent will be sugar furanose.

combretastatin A-4, 26

resveratrol, 27

C-Glycosylated Combretastatin analogues, 29

Though a variety of methods are available for the synthesis of stilbenes however, the regio-and stereoselectivity is the main obstacle in getting the cis-olefinated products. Normal Wittig reaction results in the formation of mixture of olefins. Only modified Wittig reagents have been successes in obtaining Z olefins with excellent selectivities. The uses of phosphines (Horner reagents) and phosphonates (Wadsworth-Emmons reagents) have proved less successful. Availability of reliable methods to reduce the alkynes selectively resulted in identifying alkyne functionality as a surrogate for olefin.

Coming to the Wittig based approaches for tri- and tetra-substituted olefins the out come of regioselectivity is very poor and often suffer with the difficulties in isolating the E / Z mixtures. In this regard, once again alkynes were served as valuable surrogates. Recently, Larock et al. reported a one-pot three-component approach on simple alkynes to afford tri- and tetrasubstituted alkenes in highly regioselective process ${ }^{44}$. He reported efficient, palladium-catalyzed synthesis of tetrasubstituted olefins involving the intermolecular cross coupling of an aryl iodide, an internal alkyne, and an aryl boronic acid (Equation 3).

...Eq 3.

The general mechanism for palladium catalyzed cross-coupling reactions involves three principle steps: 1) oxidative addition, 2) transmetallation, and 3) reductive elimination (Figure 19).

Figure 19: Catalytic cycle for Pd catalysed cross coupling reactions

This approach is highly stereoselective but the regioselectivity is not very good. The two-regio isomers have usually been obtained as shown in above equation. The steric as well as electronic effects are responsible for the regioselectivity in case of the simple alkynes. Thus, the aryl group from the aryl iodide generally favors the less hindered end of the alkyne, while the aryl group from the aryl-boronic acid favors the more hindered end of the alkyne. Due to electronic effects aryl group from the aryl boronic acid is more likely to add to the more electron poor end of the alkyne.

Based upon our earlier study of the palladium catalyzed cycloisomerization of sugar alkynols, we anticipated that the regioselectivity on the sugar alkynes due to electron pulling nature of the sugar ring would be better. Initially the alkyne $\mathbf{1 1}$ treated with iodobenzene and 4-acetylphenyl boronic acid by using $\operatorname{Pd}(\mathrm{CN})_{2} \mathrm{Cl}_{2}$ in DMF/ $\mathrm{H}_{2} \mathrm{O}$ (4:1) at
$100{ }^{\circ} \mathrm{C}$, to gave the trisubstituted olefin derivative (30) in 45% Yield.

Scheme 10

The biphenyl side product was also formed during the reaction. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra, mass spectral data coupled with elemental analysis of the compound 30 were in conformity with the assigned structure. For example, in the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 0}$, the aromatic peaks due to monosubstituted phenyl ring containing one extra peak due to

Figure 20: The key HMBC correlations the olefin proton, which was observed as a doublet at 6.99 ppm ($J=1.8 \mathrm{~Hz}$). However the regioselectivity of the two different phenyl rings were not known from the above data, but the extensive study of the 2-D spectroscopy solved this problem. The combined study of COSY, NOESY, HSQC and HMBC confirmed the connectivity pattern unambiousely. The HMBC spectra showed the three bond coupling between olefinic proton $\mathrm{H}-\mathrm{C}(6)$ resonating at $\delta 6.99$ with $\mathrm{C}-4(\delta 83.4)$, $\mathrm{C}-8$ (δ 129.1) and C-13 (δ 143.2). The position of olefinic carbon established by the observed correlations of the C-6 at $\delta 129.8$ with the $\mathrm{H}-\mathrm{C}(8)(\delta 6.95)$ and $\mathrm{H}-\mathrm{C}(4)(\delta 5.0)$. Other key correlations shown in Figure 20 were in perfect agreement with the assigned structure. The
cis pattern of both phenyl rings was also confirmed by using NOESY and COSY spectra. The NOESY spectra showed the strong correlation of $\mathrm{H}-\mathrm{C}(4)$ with $\mathrm{H}-\mathrm{C}(6), \mathrm{H}-\mathrm{C}(20)$ or $\mathrm{H}-$ $\mathrm{C}(14)$ and at the same time the absence of correlation between $\mathrm{H}-\mathrm{C}(4)$ with $\mathrm{H}-\mathrm{C}(8)$ or $\mathrm{H}-$ $\mathrm{C}(12)$ reinforced our observation.

Following the procedure for compound 30, using alkyne 11, iodobenzene in common and 6 different boronic acids, we have successfully made various trisubstituted olefins. In general the intermolecular cross-coupling reaction of an aryl halide, an alkyne \& an aryl boronic acid is highly regio- and stereoselective aryl group from the aryl halide adds to the terminal alkyne carbon and the aryl group from the boronic acid to the internal alkyne carbon in cis fashion.

Figure 21 : Three component coupling reactions with sugar alkyne 8

Table 2:
Entry

In conclusion, we have executed novel Pd-catalyzed reaction on sugar substrates namely: cycloisomerization of sugar alkynals, Sonogashira and a three component Sonigashira-Suzuki-Miyaura reaction to address the synthesis of novel chiral building blocks which resemble structural units of some important natural products. The further elaboration of these compounds in natural product synthesis and screening of some these intermediates for biological activity is under progress.

EXPERIMENTAL

\qquad

Experimental

6-Chloro-6-deoxy-1,2:3,5-di-O-isopropylidene- α-D-glucofuranose (16).

Methanesulphonyl chloride ($3.9 \mathrm{~mL}, 50.0 \mathrm{mmol}$) was added, with stirring to a solution of $\mathbf{1 5}(10.0 \mathrm{~g}, 38.5 \mathrm{mmol})$ in DMF $(50 \mathrm{~mL})$ at room temperature. The reaction mixture was then heated at $90^{\circ} \mathrm{C}$ for 6 h . After completion of the reaction, the dark reddish solution was obtained which was poured in ice-cold water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and the resulting residue was purified on silica gel using ethyl acetate-light petroleum ether (1:9) to afford chloro derivative $\mathbf{1 6}$ as oil.

Yield $\quad: \quad 9.1 \mathrm{~g}, 85 \%$

Mol. Formula : $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{ClO}_{5}$
${ }^{1} \mathbf{H} \mathbf{N M R}(200 \mathrm{MHz}) \quad: \quad \delta 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$, $3.51(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=12.2,7.8 \mathrm{~Hz}), 3.61-3.70(\mathrm{~m}, 2 \mathrm{H}), 4.14$ $(\mathrm{d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}), 4.25(\mathrm{dd}, 1 \mathrm{H}, J=6.8,3.9 \mathrm{~Hz}), 4.49(\mathrm{~d}$, $1 \mathrm{H}, J=3.9 \mathrm{~Hz}), 5.90(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz})$
${ }^{13} \mathbf{C}$ NMR (50 MHz) : $\quad 23.7,23.8,26.5,27.1,44.7,72.1,74.9,80.3,83.8,101.0$, $106.2,112.1 \mathrm{ppm}$

ESI MS m/z : $263[\mathrm{M}-15]^{+}$

5,6-Dideoxy-1,2-O-isopropylidene- α-D-xylo-hex-5-ynofuranose (11) ${ }^{38}$.

To a solution of chloro-derivative $16(1.0 \mathrm{~g}, 3.1 \mathrm{mmol})$ in dry THF at $-78{ }^{\circ} \mathrm{C}, n-$ $\mathrm{BuLi}(5.6 \mathrm{~mL}, 1.6 \mathrm{M}$ solution in hexane, 9.3 mmol$)$ was added dropwise and stirred at the same temperature for 3 h . After completion, saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added, extracted with EtOAc, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The column chromatography of the crude product on silica gel using ethyl acetate-light petroleum ether (1:5) afforded 11 as a white solid.

Yield : $0.15 \mathrm{~g}, 27 \%$

Mol. Formula $\quad: \quad \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{4}$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}) \quad: \quad \delta 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 2.89$
(br. s, 1H), $4.14(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 4.53(\mathrm{~d}, 1 \mathrm{H}, J=3.4$
$\mathrm{Hz}), 4.77(\mathrm{t}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 5.90(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz})$
${ }^{13} \mathbf{C}$ NMR (75 MHz) : $\quad 25.9,26.6,71.9,75.8,77.0,77.5,84.0,104.7,111.9 \mathrm{ppm}$
ESI MS $m / z \quad: \quad 169[\mathrm{M}-15]^{+}$
Elemental Analysis : Calcd: C, 58.70; H, 6.52\%
Found: C, 58.50; H, 6.54\%

5,6-Dideoxy-1,2-O-isopropylidene- α-d-ribo-hex-5-ynofuranose (22) ${ }^{40}$.

To a stirred solution of 1,2:5,6-di-O-isopropylidene-a-D-allofuranose (19) (5.0 g, 19.2 mmol) in dry EtOAc (100 mL), $\mathrm{H}_{5} \mathrm{IO}_{6}(5.24 \mathrm{~g}, 23 \mathrm{mmol})$, was added at $0{ }^{\circ} \mathrm{C}$ and stirring was continued for 1 h . The reaction mixture was filtered through Celite, the Celite pad was washed (EtOAc) and the combined filtrate was concentrated. The residue obtained was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. $\mathrm{The}^{\mathrm{CBr}} \mathrm{r}_{4}(12.8$ $\mathrm{g}, 38.4 \mathrm{mmol}$) and TPP ($20.0 \mathrm{~g}, 76.8 \mathrm{mmol}$) were added and the brown solution was allowed to stir overnight. After completion of the reaction, water was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was successively washed with NaHCO_{3}, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified on silica gel using ethyl acetate-light petroleum ether (1:9) to give 6,6-Dibromo-5,6-dideoxy-1,2-O-isopropylidene- α-D-ribo-hex-5-enofuranose (21) (3.2 g, 49\%) as thick oil. To the above residue ($3.0 \mathrm{~g}, 8.72 \mathrm{mmol}$) in dry THF $(50 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, was added $n-\mathrm{BuLi}$ ($43.6 \mathrm{~mL}, 1.6 \mathrm{M}$ solution in hexane, and 69.8 mmol) dropwise and stirred at the same temperature for 2 h . The reaction mixture was neutralized by using AcOH , concentrated, and extracted by using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue obtained was purified on silica gel using ethyl acetate-light petroleum ether (1:8) to give $\mathbf{2 2}(1.2 \mathrm{~g}, \mathbf{7 5 \%}$) as a viscous liquid.

Yield $: \quad 1.2 \mathrm{~g}, 75 \%$

Mol. Formula

ESI MS $m / z \quad: \quad 169[\mathrm{M}-15]^{+}$
Elemental Analysis
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}) \quad: \quad \delta 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz})$, 3.98-4.10 (m, 1H), $4.34(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.8,2.0 \mathrm{~Hz}), 4.59(\mathrm{t}$, $1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 5.85(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz})$
: $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{4}$

Calcd: C, 58.70; H, 6.52\%
Found: C, 58.89; H, 6.45\%

General procedure for the palladium-catalyzed Sonogashira reaction:

A mixture of $11(0.3 \mathrm{~g}, 1.6 \mathrm{mmol})$, iodobenzene $(0.2 \mathrm{~mL}, 1.6 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(100 \mathrm{mg}, 0.08 \mathrm{mmol})$ in piperidine $(5 \mathrm{~mL})$ was stirred at room temperature for 6 h (all reagents were added under aerobic condition). The mixture was cooled, and evaporation of piperidine under reduced pressure on rota vapor gave the crude mixture, which was purified on silica gel using ethyl acetate-light petroleum ether (1:2) to afford $\mathbf{1 0 a}(0.36 \mathrm{~g}$, 85%) as a colorless oil.

5,6-Dideoxy-1,2-O-isopropylidene-6-C-phenyl- α-D-xylo-hex-5-ynofuranose (10a).

Yield

: 85\%
Mol. Formula
$[\alpha]_{D}{ }^{25}$
: $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}) \quad: \quad \delta 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.25(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$

$$
:-31.6\left(c=0.5, \mathrm{CHCl}_{3}\right)
$$ $=4.0 \mathrm{~Hz}), 4.64(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 5.11(\mathrm{~d}, 1 \mathrm{H}, J=4.0$

$\mathrm{Hz}), 6.01(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 7.29-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.46-$ 7.51 (m, 2H)

[^0]Found: C, 68.80; H, 6.80\%

5,6-Dideoxy-1,2-O-isopropylidene-6-C-(4-methoxyphenyl)- α-D-xylo-hex-5ynofuranose (10b).

Yield
Mol. Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz})$

ESI MS m/z
Elemental Analysis
: $-18.2\left(c=1.1, \mathrm{CHCl}_{3}\right)$
${ }^{13} \mathbf{C}$ NMR (50 MHz) : $\quad 25.9,26.6,55.1,72.8,75.9,80.2,84.0,89.1,104.6,111.7$, $113.4,113.8,113.8,133.3,133.3,159.9 \mathrm{ppm}$.
: 81\%
: $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{5}$
$: \delta 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 2.78($ br. s, 1 H$), 3.78(\mathrm{~s}, 3 \mathrm{H})$,
$4.20(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 4.59(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}), 5.04(\mathrm{~d}$, $1 \mathrm{H}, J=3.0 \mathrm{~Hz}), 5.96(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}), 6.80(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.7 \mathrm{~Hz}), 7.38(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz})$
: $290[\mathrm{M}]^{+}$
Calcd: C, 66.21; H, 6.21\%
Found: C, 66.57; H, 6.74\%

6-C-(2-Carboxymethylphenyl)-5,6-dideoxy-1,2-O-isopropylidene-a-d-xylo-hex-5ynofuranose (10c) .

Yield : 65\%

Mol. Formula $\quad: \quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6}$
${ }^{1} \mathbf{H}$ NMR (200 MHz) : $\delta 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 4.36$ $(\mathrm{d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 4.64(\mathrm{~d}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}), 5.06(\mathrm{~d}, 1 \mathrm{H}, J$ $=2.5 \mathrm{~Hz}), 6.04(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}), 7.38-7.64(\mathrm{~m}, 3 \mathrm{H})$, $8.00-8.05(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (50 MHz) : 27.1, 52.5, 73.6, 77.1, 84.4, 87.3, 88.2, 105.6, 111.9, 123.2, 128.7, 130.7, 132.2, 134.5, 166.2 ppm

ESI MS $m / z \quad: \quad 318[\mathrm{M}]^{+}$
Elemental Analysis
Calcd: C, 64.15; H, 5.66\%
Found: C, 63.98; H, 5.52\%

6-C-(3-Acetamido-4-methoxyphenyl)-5,6-dideoxy-1,2-O-isopropylidene- α-D-xylo-hex-5-ynofuranose (10d).

Yield

Mol. Formula
$[\alpha]_{D}{ }^{25}$
IR $\left(\mathrm{CHCl}_{3}\right) \tilde{v}$

ESI MS m / z
Elemental Analysis
${ }^{1}$ H NMR (200 MHz) : $\delta 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{br} . \mathrm{s}, 1 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 4.23(\mathrm{~d}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}), 4.61(\mathrm{~d}, 1 \mathrm{H}, J=3.4$ Hz), $5.04(\mathrm{t}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}), 5.97(\mathrm{~d}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}), 6.74$ (d, 1H, $J=8.3 \mathrm{~Hz}), 7.13(\mathrm{dd}, 1 \mathrm{H}, J=8.3,1.5 \mathrm{~Hz}), 7.77(\mathrm{~s}$, $1 \mathrm{H}), 8.38(\mathrm{~d}, 1 \mathrm{H}, J=1.5)$
${ }^{13}$ C NMR (50 MHz) : 24.5, 26.0, 26.7, $55.5,72.9,75.9,80.6,84.2,88.6,104.6$, $111.5,128.3,128.5,131.8,131.8,132.0,148.2,168.1 \mathrm{ppm}$
: 80\%
: $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{6}$
: $-15.0\left(c=2.2, \mathrm{CHCl}_{3}\right)$
: $\quad 3425,2233,1731,1688,1585,1530,1481,1076,910,758$ cm^{-1}
: $370[\mathrm{M}+\mathrm{Na}]^{+}$
Calcd: C, 62.25; H, 6.05; N, 4.03\%
Found: C, 62.59; H, 5.85; N, 3.63\%

5,6-Dideoxy-6-C-(3-hydroxy-4-methoxyphenyl)-1,2-O-isopropylidene- α-D-xylo-hex-5ynofuranose(10e).

Yield : 60\%
Mol. Formula $\quad: \quad \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{6}$
$[\alpha]_{\mathrm{D}}{ }^{25}$
: $\quad-9.6\left(c=2.0, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}) \quad: \quad \delta 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $2.5 \mathrm{~Hz}), 4.64(\mathrm{~d}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}), 5.08(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz})$, $6.01(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}), 6.76(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 6.98(\mathrm{~d}$, $1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 8.0(\mathrm{~s}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (50 MHz) $\quad: \quad 26.1,26.8,55.9,73.1,76.1,79.9,84.1,89.4,104.9,111.9$, $114.2,118.0,124.7,128.6,132.0,148.5 \mathrm{ppm}$

ESI MS m / z
Elemental Analysis
: $306[\mathrm{M}]^{+}$
Calcd: C, 62.75; H, 5.88\%
Found: , 62.52; H, 5.97\%

5,6-Dideoxy-1,2-O-isopropylidene-6-C-phenyl- α-D-ribo-hex-5-ynofuranose (23).

Yield
: 71\%
Mol. Formula
: $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}$
${ }^{1}$ H NMR (200 MHz) : $\quad \delta 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H})$, 4.60-4.67 (m, 2H), $5.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.9 \mathrm{~Hz}), 7.30-7.36(\mathrm{~m}$, $3 \mathrm{H}), 7.46-7.50(\mathrm{~m}, 2 \mathrm{H})$

Elemental Analysis
Calcd: C, 69.23; H, 6.15\%
Found: C, 68.73; H, 6.34\%

2,2-Dimethyl-5-phenylethynyl-6aH-furo[2,3-d][1,3]dioxole (18).

A mixture of compound $\mathbf{1 0 a}(0.1 \mathrm{~g}, 0.4 \mathrm{mmol})$, imidazole ($0.08 \mathrm{~g}, 1.2 \mathrm{mmol}), \mathrm{Ph}_{3} \mathrm{P}$ $(0.3 \mathrm{~g}, 1.2 \mathrm{mmol})$ and $\mathrm{I}_{2}(0.2 \mathrm{~g}, 0.8 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was stirred initially at room temperature and then refluxed for 3 h . The reaction mixture was cooled, an equal volume of saturated NaHCO_{3} solution was added, and stirred for $10 \mathrm{~min} . \mathrm{I}_{2}$ was added in portion until the organic phase remained violet. It was then again stirred for an additional 15 min ., and the excess I_{2} was destroyed by the addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was diluted with toluene and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The purification of the crude residue on silica gel using ethyl acetate-light petroleum ether (1:9) affords $\mathbf{1 8}$ as colorless oil.

Yield

$$
: \quad 0.08 \mathrm{~g}, 86 \%
$$

Mol. Formula $: \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}) \quad: \quad \delta 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 5.37(\mathrm{dd}, 1 \mathrm{H}, J=5.4,2.5 \mathrm{~Hz})$, $5.56(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 6.10(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 7.31-$ $7.39(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.53(\mathrm{~m}, 2 \mathrm{H})$

Elemental Analysis : Calcd: C, $74.38 ; \mathrm{H}, 5.79 \%$
Found: C, 75.10; H, 6.19\%

1,2:5,6-Di-O-isopropylidene-3-C-(phenyl acetylene)- α-D-allofuranose (12b).

To a solution of phenylacetylene ($1.27 \mathrm{~mL}, 11.63 \mathrm{mmol}$) in dry THF at $-78^{\circ} \mathrm{C}, n-$ $\mathrm{BuLi}(14.55 \mathrm{~mL}, 1.6 \mathrm{M}$ solution in hexane, 23.26 mmol$)$ was added dropwise and stirred at the same temperature for 1 h . Then the solution $19(3.0 \mathrm{~g}, 11.63 \mathrm{mmol})$ in THF was added and stirring was continued for 10 min . Saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was then added, diluted with EtOAc, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product was purified on silica gel using ethyl acetate-light petroleum ether (1:8) afforded $\mathbf{1 2 b}$ as a white solid.

$$
\text { Yield } \quad: \quad 3.2 \mathrm{~g}, 76 \%
$$

Mol. Formula
: $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}$
M. P.
: $\quad 131{ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
& {[\alpha]_{\mathrm{D}}{ }^{25} \quad: \quad-8.43\left(c=0.4, \mathrm{CHCl}_{3}\right)} \\
& { }^{1} \mathbf{H} \text { NMR }(400 \mathrm{MHz}) \quad: \quad \delta 1.40(\mathrm{~s}, 6 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~m}, 1 \mathrm{H}), \\
& 3.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=7.3 \mathrm{~Hz}), 4.05-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.45-4.54(\mathrm{~m}, \\
& 1 \mathrm{H}), 4.70(\mathrm{~d}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}), 5.87(\mathrm{~d}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}) \text {, } \\
& \text { 7.29-7.41 (m, 3H), 7.43-7.48 (m, 2H) } \\
& { }^{13} \mathbf{C} \text { NMR }(50 \mathrm{MHz}) \quad: \quad 25.2,26.7,66.8,74.9,76.2,81.4,84.1,85.6,88.5,104.1, \\
& 109.5,113.6,121.6,128.3,128.3,129.0,131.8,131.8 \mathrm{ppm} \\
& \text { +TOF MS m/z : } 361[\mathrm{M}+\mathrm{H}]^{+}, 383[\mathrm{M}+\mathrm{Na}]^{+} \\
& \text {Elemental Analysis Calcd: C, 66.67; H, 6.67\% } \\
& \text { Found: C, 67.19; H, 6.26\% }
\end{aligned}
$$

(3aS)-2,3-O-Isopropylidene-7-methoxy-5-phenyl-3,3a,7,7a-tetrahydro-2H-furo[2,3-c]pyran-3a-ol (7b).

$\mathrm{H}_{5} \mathrm{IO}_{6}(2.27 \mathrm{~g}, 9.99 \mathrm{mmol})$ was added to a solution of $\mathbf{1 2 b}(3.0 \mathrm{~g}, 8.33 \mathrm{mmol})$ in dry EtOAc (100 mL) at ambient temperature and stirring was continued for 2 h . The reaction mixture was filtered, the filter cake was washed (EtOAc) and the combined filtrate was evaporated. The aldehyde thus obtained was directly used in the next step without further purification. To the compound $\mathbf{5 b}(2.1 \mathrm{~g}, 7.29 \mathrm{mmol})$ in dry 1,4-dioxan was added $\mathrm{Pd}(\mathrm{OAc})_{2}(0.16 \mathrm{~g}, 10 \% \mathrm{mmol}), \mathrm{MeOH}(0.6 \mathrm{~mL}, 14.6 \mathrm{mmol})$ and maleic anhydride $(0.74 \mathrm{~g}$, 7.29 mmol) under Argon atmosphere. The resulting reaction mixture was allowed to stir at $10{ }^{0} \mathrm{C}$ for 2 h and then at room temperature for further 4 h . The solvent was evaporated the
residue thus obtained was purified on silica gel using ethyl acetate-light petroleum ether (1:7) to give 7b as a diastereomeric mixture (3:2).

$$
\text { Yield } \quad: \quad 0.63 \mathrm{~g}, 27 \%
$$

Mol. Formula : $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{6}$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}) \quad: \quad \delta 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 1.2 \mathrm{H}), 1.64(\mathrm{~s}, 1.8 \mathrm{H}), 2.05(\mathrm{~s}$, 0.4 H), 2.18 ($\mathrm{s}, 0.6 \mathrm{H}$), $3.56(\mathrm{~s}, 1.6 \mathrm{H}), 3.78(\mathrm{~s}, 1.4 \mathrm{H}), 4.11$ $(\mathrm{t}, 0.6 \mathrm{H}, J=1.5 \mathrm{~Hz}), 4.28(\mathrm{t}, 0.4 \mathrm{H}, J=2.0 \mathrm{~Hz}), 4.36(\mathrm{dd}$, $1 \mathrm{H}, J=5.4,3.4 \mathrm{~Hz}), 4.94(\mathrm{~s}, 0.4 \mathrm{H}), 5.24(\mathrm{~d}, 0.6 \mathrm{H}, J=1.5$ $\mathrm{Hz}), 5.36(\mathrm{~d}, 0.4 \mathrm{H}, J=2.0 \mathrm{~Hz}), 5.40(\mathrm{~d}, 0.6 \mathrm{H}, J=2.0 \mathrm{~Hz})$, $5.73(\mathrm{~d}, 0.6 \mathrm{H}, J=3.4 \mathrm{~Hz}), 5.79(\mathrm{~d}, 0.4 \mathrm{H}, J=4.0 \mathrm{~Hz})$, 7.34-7.39 (m, 3H), 7.62-7.68 (m, 2H)
${ }^{13} \mathbf{C}$ NMR (50 MHz) : $\quad 26.8,26.9,27.1,27.2,57.1,57.7,72.1,75.7,77.6,78.8$, 83.0, 84.2, 95.5, 96.1, 97.6, 99.0, 104.3, 104.9, 113.3, $113.5,125.1,125.1,125.2,125.2,128.2,128.2,129.2$, $129.3,133.7,134.1,150.1,153.0 \mathrm{ppm}$

Elemental Analysis
Calcd: C, 63.75; H, 6.25\%
Found: C, 63.46; H, 6.33\%

1,2:5,6-Di-O-isopropylidene-3-C-(oct-1-ynyl)-a-D-allofuranose (12c).

To a solution of diisopropylamine ($0.6 \mathrm{~mL}, 4.26 \mathrm{mmol}$) in dry THF (5 mL) at -78 ${ }^{\circ} \mathrm{C}$, n-BuLi ($2.42 \mathrm{~mL}, 1.6 \mathrm{M}$ solution in hexane, 3.88 mmol) was added dropwise and stirred for 30 min . Then the solution of 1-octyne ($0.6 \mathrm{~mL}, 3.88 \mathrm{mmol}$) in THF was added to the reaction mixture and stirred for 1 h followed by the addition of $19(1.0 \mathrm{~g}, 3.88$ mmol) in THF and stirring was continued at $-78^{\circ} \mathrm{C}$ for 15 min . The reaction mixture was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. It was allowed to reach room temperature and diluted with EtOAc, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product was purified on silica gel using ethyl acetate-light petroleum ether (1:8) afforded $\mathbf{1 2} \mathbf{c}$ as light yellow syrup.

Yield $: \quad 1.2 \mathrm{~g}, 83 \%$

Mol. Formula $: \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{6}$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}) \quad: \quad \delta 0.89(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.26-1.63(\mathrm{~m}, 8 \mathrm{H}$, overlapped $)$, $1.36(\mathrm{~s}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{t}, 2 \mathrm{H}, J=6.8$ Hz), 2.92 (br. s, 1H), 3.83 (d, 1H, $J=7.3 \mathrm{~Hz}$), 3.98-4.15 (m, 2H), 4.33-4.42 (m, 1H), $4.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.4 \mathrm{~Hz}), 5.76$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=3.4 \mathrm{~Hz})$
${ }^{13} \mathbf{C}$ NMR (50 MHz) : $13.3,18.0,21.8,24.6,26.0,27.8,30.6,65.9,74.2,74.9$, $76.8,80.9,83.8,88.7,103.4,108.5,112.6 \mathrm{ppm}$

ESI MS $m / z \quad: \quad 353[\mathrm{M}-15]^{+}$
Elemental Analysis Calcd: C, 65.22; H, 8.82\%
Found: C, 65.31; H, 8.66\%
(3aS)-5-Hexyl-2,3-O-isopropylidene-7-methoxy-3,3a,7,7a-tetrahydro-2H-furo[2,3-c]pyran-3a-ol (7c).

$\mathrm{H}_{5} \mathrm{IO}_{6}(0.9 \mathrm{~g}, 3.91 \mathrm{mmol})$ was added to a solution of $\mathbf{1 2 c}(1.2 \mathrm{~g}, 3.26 \mathrm{mmol})$ in dry EtOAc (20 mL) at ambient temperature, and stirring was continued for 2 h . The mixture was filtered, the filter cake was washed (EtOAc), and the combined filtrate was evaporated. The aldehyde thus obtained was used as such for the next step without further purification. To a stirred solution of $\mathbf{5 c}(0.82 \mathrm{~g}, 2.77 \mathrm{mmol}), \mathrm{MeOH}(0.24 \mathrm{~mL}, 5.54 \mathrm{mmol})$ and maleic anhydride ($0.27 \mathrm{~g}, 2.77 \mathrm{mmol}$) in dry 1,4-dioxan, under Argon atmosphere, was added $\mathrm{Pd}(\mathrm{OAc})_{2}(0.06 \mathrm{~g}, 10 \mathrm{~mol} \%)$ and stirring was continued at $10^{\circ} \mathrm{C}$ for 2 h and then for another 6 h at room temperature. The reaction mixture was concentrated and the residue thus obtained was purified on silica gel using ethyl acetate-light petroleum ether (1:6) to give $7 \mathbf{c}$ as a diastereomeric mixture (4:1).

Yield $: \quad 0.17 \mathrm{~g}, 19 \%$

Mol. Formula $: \mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{6}$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}) \quad: \quad \delta 0.9(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.25-1.35(\mathrm{~m}, 8 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$, $1.61(\mathrm{~s}, 3 \mathrm{H}), 2.01-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{~s}, 0.8 \mathrm{H}), 2.91(\mathrm{~s}, 0.2$ H), $3.50(\mathrm{~s}, 2.4 \mathrm{H}), 3.65(\mathrm{~s}, 0.6 \mathrm{H}), 3.97(\mathrm{~m}, 0.2 \mathrm{H}), 4.14(\mathrm{t}$, $0.8 \mathrm{H}, J=2.4 \mathrm{~Hz}), 4.21(\mathrm{~m}, 0.2 \mathrm{H}), 4.22(\mathrm{~d}, 0.8 \mathrm{H}, J=3.7$ $\mathrm{Hz}), 4.44(\mathrm{~m}, 0.2 \mathrm{H}), 4.59(\mathrm{~d}, 0.8 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}), 4.71(\mathrm{~m}$, 0.2 H), 5.11 (d, $0.8 \mathrm{H}, J=2.2 \mathrm{~Hz}), 5.67(\mathrm{~d}, 0.8 \mathrm{H}, J=3.0$ $\mathrm{Hz}), 5.74(\mathrm{~d}, 0.2 \mathrm{H}, J=3.7 \mathrm{~Hz})$
${ }^{13} \mathbf{C}$ NMR $(50 \mathrm{MHz}) \quad: \quad 14.1,22.6,26.6,26.7,26.9,27.0,27.2,27.3,28.7,28.8$, $29.8,31.7,33.8,34.2,55.8,57.4,71.8,75.4,76.9,78.7$,
83.3, 84.6, 95.2, 97.1, 97.5, 98.6, 104.4, 105.0, 113.3, $113.4,154.5,157.5 \mathrm{ppm}$

Elemental Analysis
Calcd: C, 62.20; H, 8.54\%
Found: C, 62.43; H, 8.26\%

1,2:5,6-Di-O-isopropylidene-3-C-(hept-1-ynyl)- α-D-allofuranose (12d).

To a solution 1-heptyne ($0.60 \mathrm{~mL}, 4.65 \mathrm{mmol}$) in dry THF was added $n-\mathrm{BuLi}(1.6$ M in hexane, $2.42 \mathrm{~mL}, 3.88 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at the same temperature. Then a solution of $19(1.0 \mathrm{~g}, 3.88 \mathrm{mmol})$ in THF was added and stirring was continued for another 10 min . A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was then added, diluted with EtOAc, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product was purified on silica gel using ethyl acetate-light petroleum ether (1:7) to give 12d as a colorless liquid.

Yield $: \quad 1.2 \mathrm{~g}, 83 \%$

Mol. Formula $: \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{6}$
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad: \quad 5.72\left(c=2.2, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}) \quad \delta 0.90(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.24-1.36(\mathrm{~m}, 12 \mathrm{H}), 1.45(\mathrm{~s}$, $3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 2.96(\mathrm{~s}, 1 \mathrm{H})$, $3.83(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 3.97-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.33-4.42(\mathrm{~m}$, $1 \mathrm{H}), 4.52(\mathrm{~d}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}), 5.77(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz})$
${ }^{13} \mathbf{C}$ NMR (125 MHz)
+TOF MS m/z
Elemental Analysis
13.6, 18.4, 21.8, 25.0, 26.4, 26.4, 26.4, 26.5, 27.8, 30.7, $66.5,74.6,75.5,81.2,84.2,89.3,103.8,108.9,113.1 \mathrm{ppm}$
$355[\mathrm{M}+\mathrm{H}]^{+}, 377[\mathrm{M}+\mathrm{Na}]^{+}$
Calcd: C, 64.41; H, 8.47\%
Found: C, 64.72; H, 8.80\%

(3aS)-2,3-O-isopropylidene-7-methoxy-5-pentyl-3,3a,7,7a-tetrahydro-2H-furo[2,3-

 clpyran-3a-ol (7d).
$\mathrm{H}_{5} \mathrm{IO}_{6}(0.85 \mathrm{~g}, 3.70 \mathrm{mmol})$ was added to a solution of $\mathbf{1 2 d}(1.0 \mathrm{~g}, 3.09 \mathrm{mmol})$ in dry EtOAc (20 mL) at ambient temperature, and stirring was continued for 2 h . The mixture was filtered, the filter cake was washed (EtOAc), and the combined filtrate was evaporated. The aldehyde thus obtained was directly used in the next step without further purification. To a stirred solution of $\mathbf{5 d}(0.64 \mathrm{~g}, 2.27 \mathrm{mmol}), \mathrm{MeOH}(0.2 \mathrm{~mL}, 4.54 \mathrm{mmol})$ and maleic anhydride ($0.22 \mathrm{~g}, 2.27 \mathrm{mmol}$) in dry 1,4-dioxan, under Argon atmosphere, was added $\mathrm{Pd}(\mathrm{OAc})_{2}(0.05 \mathrm{~g}, 10 \mathrm{~mol} \%)$ and stirring was continued at $10^{\circ} \mathrm{C}$ for 2 h and then for another 6 h at room temperature. The reaction mixture was concentrated the residue thus obtained was purified on silica gel using ethyl acetate-light petroleum ether (1:6) to give 7d as a diastereomeric mixture (3:1).

Yield
: $0.27 \mathrm{~g}, 31 \%$

Mol. Formula $: \quad \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{6}$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}) \quad: \quad \delta 0.86-0.92(\mathrm{~m}, 3 \mathrm{H}), 1.27-1.63(\mathrm{~m}, 6 \mathrm{H}$, Overlapped), 1.36
$(\mathrm{s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 1 \mathrm{H}), 2.04-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.79$ $(\mathrm{s}, 0.35 \mathrm{H}), 2.93(\mathrm{~s}, 0.65 \mathrm{H}), 3.49(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 2 \mathrm{H})$, $3.97(\mathrm{t}, 0.65 \mathrm{H}, J=1.4 \mathrm{~Hz}), 4.14(\mathrm{t}, 0.35 \mathrm{H}, J=2.0 \mathrm{~Hz})$, 4.20-4.24(m, 1H), $4.43(\mathrm{~d}, 0.65 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}), 4.59(\mathrm{~d}$, $0.35 \mathrm{H}, J=1.5 \mathrm{~Hz}), 4.71(\mathrm{~m}, 0.65 \mathrm{H}), 5.10(\mathrm{~d}, 0.35 \mathrm{H}, J=$ $1.5 \mathrm{~Hz}), 5.67(\mathrm{~d}, 0.35 \mathrm{H}, J=4.0 \mathrm{~Hz}), 5.74(\mathrm{~d}, 0.65 \mathrm{H}, J=$ $3.5 \mathrm{~Hz})$

$$
\begin{aligned}
{ }^{13} \mathbf{C} \text { NMR }(125 \mathrm{MHz}): & 13.8,21.2,26.0,26.1,26.6,26.7,26.9,27.0,30.9,31.0, \\
& 33.4,33.9,56.5,57.1,71.5,75.1,76.6,78.4,83.0,84.3, \\
& 95.0,96.8,97.2,98.3,104.1,104.6,113.0,113.1,154.1, \\
& 157.0 \mathrm{ppm} .
\end{aligned}
$$

Elemental Analysis
Calcd: C, 61.15; H, 8.28\%
Found: C, 61.75; H, 7.87\%

3-C-Acytelene-1,2:5,6-di-O-isopropylidene- α-d-allofuranose (12a) .

A 50 mL three necked R.B flask was charged with magnesium turnings $(0.40 \mathrm{~g}$, 16.30 mmol) and dry THF (10 mL). The mixture was heated to reflux temperature under N_{2} atmosphere, and a crystal of iodine was added. The 1-chlorobutane ($1.3 \mathrm{~g}, 13.58 \mathrm{mmol}$) was added to the boiling THF mixture and heated the mixture until all the magnesium has been consumed ($0.5-1 \mathrm{~h}$). The purified acetylene gas was slowly introduced to the reaction
mixture for 1 h . A solution $19(1.0 \mathrm{~g}, 3.88 \mathrm{mmol})$ in THF was added dropwise and stirring was continued for another 1 h . A saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added, extracted with EtOAc, washed with 1 N HCl , brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue obtained was purified on silica gel using ethyl acetate-light petroleum ether (1:5) to afford 12a as a colorless solid.

Yield
Mol. Formula
M. P.
${ }^{1} \mathbf{H}$ NMR $(300 \mathrm{MHz})$
: $0.89 \mathrm{~g}, 73 \%$
: $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6}$
: $\quad 72-75^{\circ} \mathrm{C}$
$: \delta 1.37(\mathrm{~s}, 6 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 1 \mathrm{H}), 3.06$ $(\mathrm{s}, 1 \mathrm{H}), 3.83(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 4.02(\mathrm{dd}, 1 \mathrm{H}, J=8.8,4.4$ $\mathrm{Hz}), 4.13(\mathrm{dd}, 1 \mathrm{H}, J=8.8,6.6 \mathrm{~Hz}), 4.38-4.44(\mathrm{~m}, 1 \mathrm{H})$, $4.60(\mathrm{~d}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}), 5.79(\mathrm{~d}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz})$

General procedure for the palladium-catalyzed formation of trisubstituted olefins:

DMF (8 mL), $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL}), \mathrm{KHCO}_{3}(0.75 \mathrm{mmol})$, the $\mathrm{ArI}(0.50 \mathrm{mmol})$, the boronic acid $(0.75 \mathrm{mmol})$, and the alkyne $(0.25 \mathrm{mmol})$ were stirred and heated at $100^{\circ} \mathrm{C}$ for 10 min. The $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}$ catalyst ($2.5 \mu \mathrm{~mol}$, in 0.1 mL of DMF) was added. The reaction mixture was then heated at $100^{\circ} \mathrm{C}$ until palladium black appeared (usually in 3-24 h). After completion, the reaction mixture was cooled, quenched with brine (30 mL) and the aqueous layer was extracted with diethyl ether. The combined organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The product was isolated by silica gel column chromatography.

5-C-(4-Acetylphenyl)-5,6-dideoxy-6-C-phenyl-1,2-O-isopropylidene- α-D-xylo-5-en-

 hexofuranoside (30).

Yield

Mol. Formula
M. P.
$[\alpha]_{D}{ }^{25}$
$\mathbf{I R}\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}) \quad: \quad \delta 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 2.60$ $(\mathrm{s}, 3 \mathrm{H}), 3.95(\mathrm{dd}, 1 \mathrm{H}, J=4.3,2.8 \mathrm{~Hz}), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=3.5$ $\mathrm{Hz}), 5.03(\mathrm{t}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}), 6.06(\mathrm{~d}, 1 \mathrm{H}, J=3.8 \mathrm{~Hz}), 6.95$
(dd, 2H, $J=7.5,2.3 \mathrm{~Hz}), 6.99(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 7.09-$ $7.33(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.93(\mathrm{~d}, 2 \mathrm{H}, J=8.3$ $\mathrm{Hz})$
${ }^{13} \mathbf{C}$ NMR $(100 \mathrm{MHz}) \quad: \quad 26.2,26.6,26.8,74.0,77.2,83.4,84.7,104.6,112.0,127.4$, 128.1, 129.1, 129.2, 129.3, 129.8, 134.2, 135.4, 136.6, 143.2, 197.6 ppm .
+TOF MS $m / z \quad: \quad 403[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis
Calcd: C, 72.61; H, 6.36\%
Found: C, 72.80; H, 7.03\%

5-C-(4-Flurophenyl)-5,6-dideoxy-6-C-phenyl-1,2-O-isopropylidene- α-D-xylo-5-en-

 hexofuranoside (31).

$$
\text { Yield } \quad: \quad 42 \%
$$

Mol. Formula $\quad: \quad \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{FO}_{4}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad: \quad-35.9\left(c=0.6, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}) \quad: \quad \delta 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.98-2.34(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{dd}$, $1 \mathrm{H}, J=3.9,2.7 \mathrm{~Hz}), 4.45(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}), 5.42(\mathrm{~d}, 1 \mathrm{H}$, $J=2.5 \mathrm{~Hz}), 5.94(\mathrm{~d}, 1 \mathrm{H}, J=3.8 \mathrm{~Hz}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 7.30-$
$7.38(\mathrm{~m}, 7 \mathrm{H}), 7.56-7.61(\mathrm{~m}, 2 \mathrm{H})$

```
\mp@subsup{}{}{13}\mathbf{C NMR (100 MHz) : 26.3, 26.6, 78.2, 78.6, 84.9, 104.3, 111.6, 127.5, 127.8,}
                                    128.3, 128.3, 128.9, 135.7, 136.4, 136.6 ppm
+TOF MS m/z : 379[M+Na]}\mp@subsup{}{}{+
Elemental Analysis
Calcd: C, 70.79; H, 5.90\%
Found: C, 70.83; H, 6.17\%
```


5-C-(3-Nitrophenyl)-5,6-dideoxy-6-C-phenyl-1,2-O-isopropylidene- α-d-xylo-5-en-

 hexofuranoside (32).

Yield : 40\%
Mol. Formula $\quad: \quad \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{6}$
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad: \quad-61.4\left(c=1.3, \mathrm{CHCl}_{3}\right)$.
$\mathbf{I R}\left(\mathrm{CHCl}_{3}\right) \tilde{v} \quad: \quad 3414,1720,1531,1472,1351,1075,1018,668 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H} \mathbf{N M R}(200 \mathrm{MHz}) \quad: \quad \delta 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 3.97$ $(\mathrm{s}, 1 \mathrm{H}), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}), 5.01(\mathrm{t}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz})$, $6.06(\mathrm{~d}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}), 6.88-6.93(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, 1 \mathrm{H}, J$ $=1.6 \mathrm{~Hz}), 7.09-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.57(\mathrm{~m}, 2 \mathrm{H}), 8.12-8.21$ (m, 2H)
${ }^{13} \mathbf{C}$ NMR (50 MHz) $\quad: \quad 26.1,26.8,29.7,74.1,83.1,84.7,104.5,112.1,122.9$,
$124.0,127.6,128.3,128.7,129.3,130.0,130.6,133.1$, 135.0, 139.8, 218.4 ppm.
+TOF MS $m / z \quad: \quad 406[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis
Calcd: C, 65.80; H, 5.48\%
Found: C, 65.95; H, 4.87\%

5-C-(4-Chlorophenyl)-5,6-dideoxy-6-C-phenyl-1,2-O-isopropylidene- α-d-xylo-5-en-

 hexofuranoside (33).

$$
\text { Yield } \quad: 35 \%
$$

Mol. Formula
$[\alpha]_{D}{ }^{25}$
: $-42.9\left(c=1, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}) \quad: \quad \delta 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.96(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=1.8 \mathrm{~Hz}), 4.61(\mathrm{~d}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.13(\mathrm{~m}$, $3 \mathrm{H}), 7.16(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.32(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz})$
${ }^{13} \mathbf{C}$ NMR (125 MHz) : $\quad 26.2,26.8,74.0,83.6,84.7,104.6,112.0,127.3,128.1$, 129.2, 129.3, 129.4, 129.5, 130.2, 130.5, 134.0, 135.6, 136.4 ppm .
+TOF MS m/z : $395[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis
Calcd: C, 67.74; H, 5.65\%
Found: C, 68.13; H, 6.34\%

5-C-(3,4-Dichlorophenyl)-5,6-dideoxy-6-C-phenyl-1,2-O-isopropylidene- α-d-xylo-5-enhexofuranoside (34).

Yield
Mol. Formula
M. P.
$[\alpha]_{D}{ }^{25}$
IR $\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$
${ }^{1} \mathbf{H}$ NMR (200 MHz) : $\delta 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 1 \mathrm{H})$, $4.63(\mathrm{~d}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}), 4.97(\mathrm{t}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}), 6.07(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=3.8 \mathrm{~Hz}), 6.95-7.00(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{dd}, 1 \mathrm{H}, J=8.2$, $2.0 \mathrm{~Hz}), 7.12-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.44(\mathrm{~m}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz) $\quad: \quad 26.1,26.7,74.0,83.2,84.6,104.5,112.0,127.6,128.2$, $128.5,129.3,130.0,131.1,132.2,132.7,133.2,135.1$, 138.0 ppm .

ESI MS m / z

5,6-Dideoxy-5-C-(3,4-dimethoxyphenyl)-1,2-O-isopropylidene-6-C-phenyl- α-D-xylo-

 hex-5-enofuranoside (35).

$$
\text { Yield } \quad: 43 \%
$$

Mol. Formula $\quad: \quad \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}) \quad: \quad \delta 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, 380-3.88 (m, 1H), $3.89(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz})$, $4.63(\mathrm{~d}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}), 5.04(\mathrm{t}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 6.07(\mathrm{~d}$, $1 \mathrm{H}, J=3.8 \mathrm{~Hz}), 6.69-6.90(\mathrm{~m}, 3 \mathrm{H}), 6.98-7.05(\mathrm{~m}, 2 \mathrm{H})$, 7.08-7.16 (m, 3H)
${ }^{13} \mathbf{C}$ NMR (125 MHz) : $\quad 26.2,26.8,55.85,55.88,73.9,83.9,84.6,104.6,111.7$, 111.9, 112.0, 120.8, 127.1, 128.0, 128.8, 129.3, 130.2, 134.7, 136.0, 148.8, 149.3 ppm

ESI MS $m / z \quad: \quad 399[\mathrm{M}+\mathrm{H}]^{+}$
Elemental Analysis
Calcd: C, 69.35; H, 6.53\%
Found: C, 69.65; H, 6.96\%

5-C-(3-Acetylphenyl)-5,6-dideoxy-6-C-phenyl-1,2-O-isopropylidene- α-d-xylo-hex-5-

 enofuranoside (36).

Yield
Mol. Formula
$[\alpha]_{D}{ }^{25}$
IR $\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz})$
${ }^{13} \mathbf{C}$ NMR (50 MHz) : 26.1, 26.6, 26.7, 73.9, 83.5, 84.6, 104.5, 112.0, 127.3, 127.8, 128.1, 128.1, 128.8, 129.3, 129.3, 129.4, 129.6, $133.6,134.2,135.5,137.8,138.5,197.8 \mathrm{ppm}$
+TOF MS m/z
Elemental Analysis.
: $403[\mathrm{M}+\mathrm{Na}]^{+}$
Calcd: C, 72.61; H, 6.36\%
Found: C, 72.80; H, 6.17\%

SPECTRA

${ }^{1} \mathbf{H}$ NMR spectrum of compound 11 in $\mathbf{C D C l}_{3}$

| 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{13} \mathrm{C}$ NMR spectrum of compound 11 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 10 b in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 10 c in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 10 d in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 10 e in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 10e in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR spectrum of compound 23 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathbf{H}$ NMR spectrum of compound 7 b in $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 7 d in $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 12a in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 32 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR spectrum of compound 33 in $\mathbf{C D C l}_{\mathbf{3}}$

REFERENCES

References

1. Beletskaya, I. P.; Cheprakov, A.V. Chem. Rev. 2000, 100, 3009.
2. (a) Maitlis, P. M. The Organic Chemistry of Palladium, Academic Press: New York 1971, Vol. 1. (b) Maitlis, P. M. The Organic Chemistry of Palladium, Academic Press: New York 1971, Vol. 2.
3. Gibson, S. E., Ed. Transition Metals in Organic Synthesis: A Practical Approach; Oxford University press: Oxford, 1997.
4. Bellar, M.; Bolm, C. Eds. Transition Metals for Organic Synthesis: Wiley-VCH; Weinheim, 1998, Vol. 1.
5. Diederich, F.; Stang, P. J. Eds. Metal-Catalysed Cross-Coupling Reactions; Wiley-VCH; Weinheim, 1998.
6. Sanforth, S.P. Tetrahedron 1998, 54, 263.
7. Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 6, 4387.
8. (a) Dieck, H. A.; Heck, R. F. J. Org. Chem. 1975, 40, 1083. (b) Daves, G, D.; Hallberg, A. Chem Rev. 1989, 89, 1433. (c) Meijere, A. D.; Meyer, F. E. Angew. Chem. Int. Ed. Engl. 1995, 33, 2379.
9. (a) Miyaura, N.; Suzuki, A. J. Chem. Soc. Chem. Commun. 1979, 19, 866. (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (c) Miyaura, N.; Yanagi, T.; Suzuki, A. synth. Commun. 1981, 11, 513.
10. (a) Organic Reactions JHON- Wiley \& SONS, 1997, 50, 1. (b) Meilsten, D.; Stille, J. K. J. Am. Chem. Soc. 1979, 101, 4948. (c) Meilsten, D.; Stille, J. K. J. Am. Chem. Soc. 1979, 101, 4992. (d) Handey, S. T.; Zhang, X. Org. Lett. 2001, 3, 233. (e) Farina, V.; Krishnan, B. J. Am. Chem. Soc. 1991, 113, 9585. (f) Scott, W. J.; Stille, J. K. J. Am. Chem. Soc. 1986, 108, 3033. (g) Labadie, J.W.; Stille, J. K. J. Am. Chem. Soc. 1983, 105, 6129.
11. (a) Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C.; Liebeskind, L. S. J. Org. Chem. 1994, 59, 5905. (b) Johnson C. R.; Adams, J. P.; Braun, M. P.; Sennayke, C. B. W. Tetrahedron Lett. 1992, 33, 919. (c) Farina, V.; Krishnan, B.; Marshall, D. R.; Roth, G. P. J. Org. Chem. 1993, 58, 5434.
12. (a) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed. Engl. 2005, 44, 4442. (b) Trost, B. M. Acc. Chem. Res. 1980, 13, 385. (c) Tsuji, J. Tetrahedron 1986, 42, 4361. (d) Bellefon, C. D.; Pollet, E.; Grenouillet, P. J. Mol. Catal. A: Chemical 1999, 145, 121. (e) Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 6, 4387. (f) Trost, B. M.; Fullerton, T. J. J. Am. Chem. Soc. 1973, 95, 292. (g) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
13. (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467. (b) Sonogashira, K. Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I. Eds; Pergamon

Press: Oxford, 1991, Vol. 3, Chapter 2.4, pp 521-549 and references herein. (c) Erdelyi, M.; Gogoll, A. J. Org. Chem. 2001, 66, 4165. (d). Herrmann, W. A.; Bohm Volker, P. W. Eur. J. Org. Chem. 2000, 22, 3679. (e) Fukuyama, T.; Shinmen, M.; Nishitani, S.; Sato, M.; Ryu, I. Org. Lett. 2002, 4, 1691.
14. (a) Ma, Y.; Song, C.; Jiang, W.; Wu, Q.; Wang, Y.; Liu, X.;. Andrus, M. B. Org. Lett. 2003, 5, 3317. (b). Soheili, A.; Albaneze-Walker, J.; Murry, J. A.; Dormer, P. G.; Hughes, D. L. Org. Lett. 2003, 5, 4191. (c) Liang, B.; Dai, M.; Chen, J.; Yang, Z; J. Org. Chem. 2005, 70, 391.
15. (a) Negishi, E.; King, A. O.; Okukado, N. J. Org. Chem. 1977, 42, 1821. (b) Negishi, E.-I.; Metal-Catalyzed Cross-Coupling Reactions (Eds.: Diederich, F.; Stang, P. J.), Wiley-VCH, New York, 1998, chapter 1. (c) Erdik, E. Tetrahedron 1992, 48, 9577.
16. (a) Karabelas, K.; Hallberg, A. Tetrahedron Lett. 1985, 26, 3131. (b) Karabelas, K.; Hallberg, A. J. Org. Chem. 1986, 5, 5286. (c) Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 918. (d) Hatanaka, Y.; Hiyama, T. Synlett 1991, 845. (e) Hatanaka, Y.; Hiyama, T. Pure. Appl. Chem. 1994, 66, 1471. (f) Littke, A. F.; Fu, G. C. Angew. Chem. 2002, 114, 4350.
17. (a) Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374. (b) Kumada, M. Pure Appl. Chem. 1980, 52, 669. (c) Fu, G. C.; Littke, A. F. Angew. Chem. 2002, 114, 4363. (d) Furstner, A.; Leitner, A.; Mendez, M.; Krause, H. J. Am. Chem. Soc. 2002, 124, 13856. (e) Furstner, A.; Leitner, A. Angew. Chem. Int. Ed. 2002, 41, 609.
18. (a) Mann, G.; Hartwig, J. J. Am. Chem. Soc. 1996, 118, 13109. (b) Palucki, M.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 10333. (c) Mann, G.; Hartwig, J. F. J. Org. Chem. 1997, 62, 5413. (d) Mann, G.; Hartwig, J. F. Tetrahedron Lett. 1997, 38, 8005. (e) Palucki, M.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 3395.
19. Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581.
20. a) Heck, R. F. Acc. Chem. Res. 1979, 12, 146. b) Heck, R. F. Org. React. 1982, 27, 345. c) Negishi, E.; Coperet, C.; Ma, S.; Liou, S.-Y.; Liu, F. Chem. Rev. 1996, 96, 365. d) Link, J. T. Org. React. 2002, 60, 157. e) Organic Reactions JHON- Wiley \& SONS, 2002, 60, 157.
21. (a) Stille, J. K.; Tanaka, M. J. Am. Chem. Soc. 1987, 109, 3785. (b) Duncton, M. A. J.; Pattenden, G. J. Chem. Soc. Perkin 1 1999, 1235.
22. Azarian, D.; Dua, S. S.; Eaborn, C.; Walton, D. R. M. J. Organomet. Chem. 1976, 117, C55.
23. (a) Nguyen, H. N.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11818. (b) Yin, J.; Rainka, M. P.; Zhang, X.-X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 1162. (c) Barder, T. E.; Buchwald, S. L. Org. Lett. 2004, 6, 2649.
24. (a) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 1340. (b) Netherton, M. R.; Dai, C.; Neuschutz, K.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 10099. (c) Gonzalez-Bobes, F.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 5360.
25. Zhang, C.; Huang, J.; Trudell, M. L.; Nolan, S. P. J. Org. Chem. 1999, 64, 3804.
26. King, A. O.; Okukado, N.; Negishi, E. J. Chem. Soc., Chem. Commun. 1977, 683.
27. Hadei, N.; Kantchev, E. A. B.; O'Brien, C. J.; Organ, M. G. Org. Lett. 2005, 7, 3805.
28. Cai, M.; Xu, Q.; Sha, J. J. Mol. Catal. A: Chemical 2007, Available online.
29. Eckhardt, M.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 13642.
30. Murahashi, S.; Yamamura, M.; Yanagisawa, K.; Mita, N.; Kondo, K. J. Org. Chem. 1979, 44, 2408.
31. Martin, R.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3844.
32. Ullmann, F. Bielecki, J. Ber. Dtsch. Chem. Ges 1901, 34, 2174.
33. Shekhar, S.; Ryberg, P.; Hartwig, J. F.; Mathew, J. S.; Blackmond, D. G.; Strieter, E. R.; Buchwald, S. L. J. Am. Chem. Soc. 2006; 128, 3584.
34. Kumagai, N.; Muncipinto, G.; Schreiber, S. L. Angew. Chem. Int. Ed. Engl. 2006, 45, 3635.
35. a) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734. (b) Baldwin, J. E.; Cutting, J.; Dupont, W.; Kruse, L.; Silberman, L.; Thomas, R. C. J. Chem. Soc., Chem. Commun. 1976, 736.
36. Ramana, C. V.; Mallik, R.; Gonnade, R. G.; Gurjar, M. K. Tetrahedron Lett. 2006, 47, 3649.
37. Kakinuma, K.; Imamura, N.; Saba, Y. Tetrahedron Lett. 1982, 23, 1697.
38. Ramarao, A. V.; Yadav, J. S.; Srinivas, B. S.; Chandrasekhar, S. J. Chem. Soc. Perkin 1, 1990 , 1211.
39. Gurjar, M. K.; Khaladkar, T. P.; Borhade, R. G.; Murugan, A. Tetrahedron Lett. 2003, 44, 5183.
40. Robins, M. J.; Wnuk, S. F.; Yang, X.; Yuan, C.; Borchardt, R. T.; Balzarini, J.; Clercq, E. D. J. Med. Chem. 1998, 41, 3857.
41. Pettit, G. R.; Rhodes, M. R.; Herald, D. L.; Hamel, E.; Schmidt, J. M.; Pettit, R. K. J. Med. Chem. 2005, 48, 4087.
42. Mannila, E.; Talvitie, A.; Kolehmainen, E. Phytochemistry 1993, 33, 813.
43. Padwa, A.; Sheehan, S. M.; Straub, C. S. J. Org. Chem. 1999, 64, 8648.
44. Zhou, C.; Emrich, D. E.; Larock, R. C. Org. Lett. 2003, 5, 1579.

APPENDIX

ATTEMPTS TOWARDS THE SYNTHESIS OF LEUSTRODUCSIN- B

Leustroducsin B (LSN-B, 1) was isolated from Streptomyces platensis 60192, shown to have potent cytokine-inducing activities in clonal human bone marrow-derived stromal cell line KM-102 and in primary human bone marrow-derived stromal cells. ${ }^{1}$ Leustroducsin B has been identified as a potential candidate for post-cancer chemotherapy treatment bi virtue of its colony-stimulating factor (CSF) inducing activity.

Figure 1: Leustroducsin B (1)

Despite its promising biological activities, the further investigations to develop LSN-B as a new drug substance were hampered by limited supply of the compound. Currently, it is only available as a minor component of a mixture of LSNs. Therefore chemical synthesis seems to be only way to provide large quantity of the material. Fukuyama et al. led to the way with first total synthesis of LSN-B in 2003^{2}. Till date, no other synthesis of Leustroducsin-B has been reported. Considering its important therapeutic potential we have under taken the total synthesis of leustroducsin-B featuring the easily available starting material. A retrosynthetic strategy in this regard is depicted in Figure 2.

Leustroducsin- B (1)

Figure 2: Reterosynthetic plan for Leustroducsin- B
As shown in Figure 2, the central carbon skeleton of Leustroducsin-B was dissected into three fragments, a tetrol unit with an appended vinyliodide (2), C-6 vinyl δ valerolactone (3) and the cyclohexanol unit 4. The Stille coupling and Cross-Metathesis reactions could be envisaged as the key reactions for the coupling of three fragments 2, 3 and 4. The convergent synthesis of Leustroducsin B relies on a late stage Pd-catalyzed cross-coupling event to bring together the C1-13 and C14-21 fragments were envisaged from the sub units 2 and 3 . Each of these fragments should form the basic objective of the total plan of our synthesis. In our laboratory, the total synthesis of Leustroducsin-B has been identified as an overall objective and the investigations related the synthesis of fragment 2 of Leustroducsin-B form this part of the thesis.

The synthesis of key C6-C13 core (fragment 2) was envisaged from easily available starting material vitamin-C after considering the stereochemical comparisons. A retrosynthetic strategy for fragment 2, from L-ascorbic acid was depicted in (Figure 2)
which involves stereoselective alkylation at C-2, installation of anti diol functionality in lactone ring, deoxygenation at $\mathrm{C}-4$ and vinylation at $\mathrm{C}-5$ position on Vitamin-C.

According to the intended strategy, the synthesis of key intermediate 2 began with the formation of β-keto lactone 8 readily prepared in three steps from Vitamin-C by using the method by reported Wimalasena et al ${ }^{3}$. In the first step, the 5,6-diol of L-ascorbic acid was protected as its isopropylidene derivative (6) by using acetyl bromide and acetone at room temperature. The regioselective allylation at C-3 position of compound $\mathbf{6}$ was carried out by using allyl bromide and 2 N NaOH as a base to afford 7. The [3, 3] sigmatropic thermal rearrangement of 3-O-allyl derivative 7 in refluxing toluene furnished the required β-keto derivative 8 as an inseparable diastereomeric mixture (Scheme 1). Scheme 1

Due to the formation of diastereomeric mixture and the labiality of isopropylidene group (even the traces of acetic acid remained is sufficient to deprotection of isopropylidene group), we switched from isopropylidene to more stable cyclohexylidene as a protecting group for 5,6-diol. Accordingly, cyclohexylidene derivative $\mathbf{9}$ was prepared by using the procedure ${ }^{4}$ available for isoascorbic acid. Thus treating L-ascorbic acid with trimethyl orthoformate, cyclohexanone and p-TSA (cat) afforded 9 in excellent yields. The ${ }^{1} H$ NMR spectrum of compound 9 was in full agreement with the reported data. The regioselective allylation at C-3 hydroxyl by using allyl bromide and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{DMSO} / \mathrm{THF}$ afforded a compound $\mathbf{1 0}$, which was directly subjected for the next transformation without further purification. The Claisen rearrangement under thermal condition of $\mathbf{1 0}$ gave 3-keto derivative 11 exclusively (Scheme 2). The preferential migration of the allylic moiety from the bottom face of the cyclic system due to the steric constraints imposed by the bulky C-4 substituent (1,2-O-cyclohexylidene-1,2-ethanediol) on the top face of the lactone. The
steric factor of the C-4 bulky substituent must be even more pronounced for cyclohexylidene moiety than the corresponding isopropylidene group. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR is in accordance with the assigned structure of the compound 11.

Scheme 2

Our next objective was the stereoselective reduction of compound $\mathbf{1 1}$ to give diol 12a. In this regard, the reported reduction of related compound $\mathbf{8}$ with different H - sources and subsequent analyses of the products formed with the help of theoretical models by Wimalasena et al. is helpful. There are two different models are available for the prediction of stereochemical outcome of the reduction reaction of $\mathbf{1 1}$ by using NaBH_{4}; one of them proceeds via a five-membered ring chelated by sodium ion and furnishes erythro diols ${ }^{5}$ (Figure 3). While the other model affords the threo product through six-membered cyclic transition state chelated by boron atom ${ }^{6}$ (Figure 3).

erythro diastereomer

Si attack

Re attack
threo diastereomer

Figure 3. Metal Co-ordination and inter- (with Na) and intramolecular (with B) delivary of hydride ion

So by considering above facts, we carried out the reaction at $0{ }^{\circ} \mathrm{C}$ and not exceeding the reaction time for more than 30 min . afforded diol 12a as a single diastereoisomer. The crude product obtained was treated with 2,2-dimethoxypropane in acetone and p-TSA (cat) for longer time but failed to give the corresponding isopropylidene derivative, which confirms the presence of single diastereomer in the crude reaction mixture (Scheme 3).

Scheme 3

The structure of the compound 12a was identified from the ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR characteristics. For example, in the ${ }^{1} \mathrm{H}$ NMR the doublet due to $\mathrm{H}-\mathrm{C}(4)$ at 4.64 ppm is shifted at 4.17 ppm (doublet of doublet) after reduction. The new signal also appeared in the ${ }^{1} \mathrm{H}$ NMR at 4.35 ppm due to newly created $\mathrm{H}-\mathrm{C}(3)$ of compound 12a. In addition, ${ }^{13} \mathrm{C}$ NMR shows disappearance of the characteristic peak due to β-carbonyl of the starting material at 201.3 ppm upon reduction. After purification of 12 by silica gel column chromatography and keeping leaving the eluant to evaporate at rt lead to the deposition of fine crystals suitable for single crystal X-ray analysis. The single crystal X-ray structural analyses indeed confirmed the relative stereochemistry proposed for the diol 12a beyond the doubt (Figure 4). The analysis of the crystal structure of 12a needs a mention here.

Figure 4: Molecular Structure of 12a

The diol 12a displays catemeric aggregation along the a-axis, involving hydrogen bonds progressing from the $\mathrm{C} 2-\mathrm{OH}$ of one molecule to the $\mathrm{C} 3-\mathrm{OH}$ of the other molecule initially forming a linear chain and the two progressing adjacent linear chains aggregate in a haid-to-tail fashion thus $\mathrm{C} 2-\mathrm{OH}$ of one chain participating in hydrogen bonding with $\mathrm{C} 3-$ OH of the adjacent chain thus forming a ring. The donor-acceptor distances of these hydrogen bonds are given in table 2.

Figure 5: An infinite tape T6(2) hydrogen bonding pattern diaplayed by compound 12a
(Only the carbons and oxygens of the butyrolactone ring were shown for clarity)

After having the key diol 12a in hand, our next concern was the deoxygenation at C-4. For that we needed to protect the remaining diol at this stage only. Treatment of the diol 12a with $\mathrm{BnBr}(3.5 \mathrm{eq}) \& \mathrm{NaH}$ in THF at $0^{\circ} \mathrm{C}$ afforded the open chain tribenzyl derivative (14) instead of the expected compound 13. The structure of 14 was confirmed by spectroscopic data. In the ${ }^{1} \mathrm{H}$ NMR spectra, the characteristic peaks due to three benzyl groups and two extra peaks due to methylene were observed. In addition the ${ }^{13} \mathrm{C}$ NMR
spectrum reveals the structure of $\mathbf{1 4}$, not showing the lactone peak at 175.7 ppm ; while in DEPT, twelve methylene peaks were observed. On the other hand, reducing the amount of BnBr (1.8 eq) lead to isolation of the monobenzylated product 15 whose structure was confirmed by using ${ }^{1} \mathrm{H}$ NMR and satisfactory elemental analysis (Scheme 4).

Scheme 4

The trouble in getting the dibenzylated product in basic media forced us to use the mild acidic media for the benzylation procedure. Thus the compound 12a was treated with $\mathrm{BnBr}, \mathrm{Ag}_{2} \mathrm{O}$ in DCM to afford dibenzyl derivative 13 in good to moderate yield (Scheme 5). The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of the compound 13 was in accordance with the assigned structure. Due to the known labiality of the substrate, taking the help 2D spectroscopy techniques like COSY, NOSEY and HET-CORE further supported the absolute stereochemistry of the compound 13.

Scheme 5

In the next step, the lactone ring of 13 was reduced to 1,4 -diol derivative (16) by the treatment with LAH in diethyl ether at room temperature. The spectroscopic data coupled with the satisfactory mass and elemental analysis confirmed the structure of $\mathbf{1 6}$. The primary alcohol of $\mathbf{1 6}$ was selectively protected with tert-butyldimethylsilylchloride in the presence of imidazole to give 17 , which was treated with methyl iodide, carbon disulfide and using sodium hydride as a base in dry THF to give dithiocarbonate derivative (18) (Scheme 6).

Scheme 6

The compound 18 was directly used in the next step without any delay. The reductive degradation of dithiocarbonate derivative (18) by TBTH in refluxing toluene for 16 h gave unexpected cyclic compound 19 as a diastereomeric mixture, which was inseparable by routine as well as high pressure column chromatography (Scheme 7). However in the ${ }^{1} \mathrm{H}$ NMR spectrum of the compound 19, the protons in olefin region were completely vanished from the starting material that confirmed the intramolecular free
radical cyclisation to afford the cyclic derivative.

Scheme 7

All other alternatives for deoxygenation ${ }^{7}$ were also not successful on this secondary alcohol. Owing to failure in deoxygenation of secondary alcohol in the presence of allylic olefin, we changed our strategy. The new strategy that involves the deoxygenation at the later stage of the synthesis after ozonolysis of double bond and following the path as shown in (scheme 8), is in progress in our laboratory in order to complete the total synthesis of Leustroducsin-B.

Scheme 8

$\underset{\sim}{\text { deoxygenation }}$ Leustroducsin-B (1)
In conclusion, we have developed a concise route to the C6-C13 fragment of Leustroducsin-B from the Vitamin-C featuring the introduction of the stereocentres at C8 and C 9 , affording the desired C8 quaternary centre with complete stereocontrol.

Experimental:

3-O-Allyl-5,6-O-isopropylidene-L-ascorbic acid (7) ${ }^{3}$.

To a solution of L-ascorbic acid $5(10.0 \mathrm{~g}, 57.0 \mathrm{mmol})$ in acetone $(40 \mathrm{~mL})$ was added acetyl bromide ($1 \mathrm{~mL}, 13.5 \mathrm{mmol}$), a calcium chloride drying tube was placed on the flask and the slurry stirred at room temperature for $2-3 \mathrm{~h}$. Then the reaction mixture was allowed to cool in the refrigerator for $4-8 \mathrm{~h}$. The solid obtained was filtered off and washed with a small amount of cold acetone to afford compound 6 (9.7 g, 80%) \{M. P. $221-225{ }^{\circ} \mathrm{C}$; lit. $\left.{ }^{3} 218-219{ }^{\circ} \mathrm{C}\right\}$. The aqueous 2 N NaOH was added at room temperature to a stirred solution of $6(2.0 \mathrm{~g}, 9.26 \mathrm{mmol})$ in 10 mL of THF maintaining the pH at around neutral. Allyl bromide ($1 \mathrm{~mL}, 11.11 \mathrm{mmol}$) was then added dropwise and stirring was continued at the same temperature while TLC monitored the progress of the reaction. After completion ($4-8 \mathrm{~h}$), the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted by using EtOAc. The combined organic extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude residue was purified on neutral silica gel using ethyl acetate-light petroleum ether (1:5) to afford 7 as light greenish oil.

Yield $\quad: \quad 11.6 \mathrm{~g}, 80 \%$ (after two step)

Mol. Formula	$: \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6}$
${ }^{\mathbf{1}} \mathrm{H}$ NMR $(300 \mathrm{MHz}):$	$\delta 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.04(\mathrm{dd}, 1 \mathrm{H}$,
	$J=8.8,6.6 \mathrm{~Hz}), 4.14(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.8,6.6 \mathrm{~Hz}), 4.30(\mathrm{dd}$,
	$1 \mathrm{H}, \mathrm{J}=6.6,3.2 \mathrm{~Hz}), 4.54-4.68(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$
	$5.9 \mathrm{~Hz}), 5.34(\mathrm{~m}, 2 \mathrm{H}), 5.98(\mathrm{~m}, 1 \mathrm{H})$

5,6-O-Isopropylidene-3-keto-2-C-(1-prop-2-enyl)-L-galactono- $\boldsymbol{\gamma}$-lactone (8).

The compound 7 ($10.0 \mathrm{~g}, 39.1 \mathrm{mmol}$) was dissolved in toluene $(50 \mathrm{~mL})$ and heated to reflux for 8 h after which time the solvent was removed in vacuo to obtain the crude $C-2$ allyl compound $\mathbf{8}$ as a diastereomeric mixture.

Yield $: \quad 9.1 \mathrm{~g}, 91 \%$

```
Mol. Formula
    : C }\mp@subsup{1}{12}{}\mp@subsup{\textrm{H}}{16}{}\mp@subsup{\textrm{O}}{6}{
```



```
+TOF MS m/z : 279[M +Na]
```


5,6-O-Cyclohexylidene-L-ascorbic acid (9) ${ }^{4}$.

A mixture of trimethyl orthoformate ($13.0 \mathrm{~mL}, 119.3 \mathrm{mmol}$), cyclohexanone (11.8 $\mathrm{mL}, 113.6 \mathrm{mmol})$ and p-TSA $(100 \mathrm{mg})$ in EtOAc $(300 \mathrm{~mL})$ was stirred under reflux for 1 h. Then Vitamin-C ($10.0 \mathrm{~g}, 56.8 \mathrm{mmol}$) was added and reflux was continued for 6 h . Distillation of EtOAc (200 mL) at atmospheric pressure gave the residue solution which was filtered through the bed of neutral alumina in order to remove the acid catalyst. The crude white crystalline product was deposited by the addition of light petroleum ether, which was filtered, dried at room temperature to afford $\mathbf{9}$ as a pure white crystalline solid.

$$
\begin{aligned}
& \text { Yield } \quad: \quad 11.9 \mathrm{~g}, 82 \% \\
& \text { Mol. Formula } \quad: \quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6} \\
& \text { M.P. } \quad: \quad 179-182{ }^{\circ} \mathrm{C} \text {; Lit }{ }^{4} .184-185^{\circ} \mathrm{C} \\
& {[\alpha]_{\mathbf{D}}{ }^{25}: \quad 45.2(c=1.0, \mathrm{MeOH}) ;\left\{\operatorname{Lit}^{3} 46.3(c=1.08, \mathrm{MeOH})\right\}} \\
& \mathbf{I R}\left(\mathrm{CHCl}_{3}\right) \widetilde{v} \quad: \quad 3347,1740,1365,1305,1172,1111,938,910,698 \mathrm{~cm}^{-1} \\
& { }^{1} \mathbf{H} \quad \text { NMR }\left(D^{2} M S O-d^{6}, \quad: \quad \delta 1.78-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.94-2.04(\mathrm{~m}, 8 \mathrm{H}), 4.45(\mathrm{dd}, 1 \mathrm{H}, \mathrm{~J}=\right. \\
& 500 \mathrm{MHz}) \quad 8.4,6.8 \mathrm{~Hz}), 4.62(\mathrm{dd}, 1 \mathrm{H}, J=8.4,7.2 \mathrm{~Hz}), 4.80(\mathrm{ddd}, 1 \mathrm{H} \text {, } \\
& J=9.9,6.8,3.2 \mathrm{~Hz}), 5.15(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz})
\end{aligned}
$$

5,6-O-Cyclohexylidene-3-keto-2-C-(1-prop-2-enyl)-L-galactono- $\boldsymbol{\gamma}$-lactone (11).

A mixture of $9(2.0 \mathrm{~g}, 7.8 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.4 \mathrm{~g}, 9.4 \mathrm{mmol})$ in 10 mL DMSO/THF (5:4) was stirred for 1 h at room temperature. The allyl bromide $(0.8 \mathrm{~mL}, 9.4$ mmol) in the same solvent was added dropwise, and the mixture was vigorously stirred for 6 h at room temperature. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude orange color oil obtained was subjected to the next step without purification. The compound $10(1.7 \mathrm{~g}, 5.4 \mathrm{mmol})$ was dissolved in toluene $(25 \mathrm{~mL})$ and heated to reflux for 6 h after which time the solvent was removed in vacuo to obtain the crude C-2 allyl compound which was purified on silica gel using ethyl acetate-light petroleum ether (1:3) to furnish $\mathbf{1 1}$ as a dark orange oil.

Yield	$1.2 \mathrm{~g}, 71 \%$
Mol. Formula	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{6}$
$\mathbf{I R}\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$	$3341,1743,1770,1315,1172,1115,947,911,699 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR (500 MHz)	$\begin{aligned} : & \delta 1.34-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.68(\mathrm{~m}, 8 \mathrm{H}), 2.67(\mathrm{~m}, 2 \mathrm{H}), \\ & 4.06(\mathrm{dd}, 1 \mathrm{H}, J=8.6,7.2 \mathrm{~Hz}), 4.18(\mathrm{dd}, 1 \mathrm{H}, J=8.6,6.8 \\ & \mathrm{Hz}), 4.52(\mathrm{dt}, 1 \mathrm{H}, J=8.7,1.6 \mathrm{~Hz}), 4.64(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \\ & \mathrm{Hz}), 5.26(\mathrm{~m}, 2 \mathrm{H}), 5.69(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$
${ }^{13} \mathbf{C}$ NMR (125 MHz)	$: \quad 23.8,24.0,25.1,34.9,36.6,37.2,64.9,75.0,75.1,85.0$ 110.7, 123.4, 126.6, 172.0, 201.3 ppm
+TOF MS m/z	: $319[\mathrm{M}+\mathrm{Na}]^{+}$

5,6-O-Cyclohexylidene-2-C-(1-prop-2-enyl)-L-gulono- $\boldsymbol{\gamma}$-lactone (12a).

To a solution of $\mathbf{1 1}(1.1 \mathrm{~g}, 3.7 \mathrm{mmol})$ in dry MeOH was slowly added $\mathrm{NaBH}_{4}(0.2$ $\mathrm{g}, 4.1 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ with stirring. The reaction mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for a period of no more than 30 min ., then diluted with water and extracted by using EtOAc. The combined organic extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified on silica gel using ethyl acetate-light petroleum ether (1:3) to give pure 12a as a white crystalline solid.

Yield	:	$0.8 \mathrm{~g}, 73 \%$
Mol. Formula	:	$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{6}$
M.P.	:	$105{ }^{\circ} \mathrm{C}$
$[\alpha]^{25}$:	$42.8\left(c=1, \mathrm{CHCl}_{3}\right)$
$\boldsymbol{I R}\left(\mathrm{CHCl}_{3}\right) \widetilde{\nu}$:	$3435,3019,1782,1439,1305,1367,1098,1043,926 \mathrm{~cm}^{-1}$
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz})$:	$\delta 1.35-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.66$ (m, 8H), 2.53 (dd, 1H
		$14.6,9.2 \mathrm{~Hz}), 2.58(\mathrm{~d}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}), 2.63$ (dd, 1H, $J=$
		$14.6,5.5 \mathrm{~Hz}$), 3.66 (br. s, 1H), 4.00 (dd, 1H, $J=8.3,7.3$
		$2.8 \mathrm{~Hz}), 4.35$ (dt, 1H, $J=9.6,6.9 \mathrm{~Hz}), 4.43$ (dd, 1H, $J=$
		$5.5,4.1 \mathrm{~Hz}), 5.29(\mathrm{~d}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 5.31(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$
		17.4 Hz), 5.97 (m, 1H)
${ }^{13} \mathbf{C}$ NMR (125 MHz)	:	23.9, 23.9, 25.0, 35.2, 35.4, 36.5, 64.8, 74.1, 75.9, 77.8, $80.0,111.2,121.2,130.9,175.7 \mathrm{ppm}$
EI MS m/z	:	$299[\mathrm{M}+\mathrm{H}]^{+}, 316\left[\mathrm{M}+\mathrm{H}_{2} \mathrm{O}\right]^{+}$
Elemental Analysis		Calcd: C, 60.40; H, 7.38\%
		Found: C, 60.40; H, 7.54\%

5,6-O-Cyclohexylidene-1,2,3-tri-O-benzyl-2-C-(1-prop-2-enyl)-d-iditol (14).

A mixture of 12a ($0.7 \mathrm{~g}, 2.35 \mathrm{mmol}$), benzyl bromide ($0.84 \mathrm{~mL}, 7.05 \mathrm{mmol}$), and $\mathrm{NaH}(60 \%$ dispersion in oil, $2.9 \mathrm{~g}, 9.4 \mathrm{mmol})$ in DMF (70 mL) was stirred for 16 h at $0^{\circ} \mathrm{C}$. The reaction mixture was quenched by ice-cold water and extracted with EtOAc. The combined organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The
residue was purified on silica gel using ethyl acetate-light petroleum ether (1:6) to obtain 14 as a syrupy liquid.

Yield : $1.2 \mathrm{~g}, 89 \%$

Mol. Formula $\quad: \quad \mathrm{C}_{36} \mathrm{H}_{44} \mathrm{O}_{6}$
${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}) \quad: \quad \delta 1.33-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.63(\mathrm{~m}, 8 \mathrm{H}), 2.83(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $15.6,6.4 \mathrm{~Hz}), 2.92(\mathrm{dd}, 1 \mathrm{H}, J=15.6,7.3 \mathrm{~Hz}), 3.56(\mathrm{t}, 1 \mathrm{H}$, $J=7.8), 3.72(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 3.83(\mathrm{t}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz})$, $3.93(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 4.35(\mathrm{q}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 4.49$, $4.54(2 \mathrm{~d}, 2 \mathrm{H}, J=10.5 \mathrm{~Hz}), 4.66(\mathrm{~m}, 3 \mathrm{H}), 4.74(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.5 \mathrm{~Hz}), 4.86,4.92(2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=12.4 \mathrm{~Hz}), 5.07-5.11(\mathrm{~m}$, $2 \mathrm{H}), 5.94(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.27(\mathrm{~m}, 15 \mathrm{H})$
${ }^{13}$ C NMR (125 MHz) : $\quad 24.0,24.1,25.3,35.1,36.3,36.9,66.4,66.8,67.4,74.0$, 74.7, 77.5, 80.0, 83.9, 84.6, 109.0, 118.3, 127.3, 127.5, $128.2,128.5,133.1,135.6,138.2,138.6 \mathrm{ppm}$

Elemental Analysis
Calcd: C, 75.39; H, 7.68\%
Found: C, 75.61; H, 7.23\%

5,6-O-Cyclohexylidene-3-O-benzyl-2-C-(1-prop-2-enyl)-L-gulono- $\boldsymbol{\gamma}$-lactone (15).

A mixture of 12a ($100 \mathrm{mg}, 0.34 \mathrm{mmol}$), benzyl bromide ($50 \mu \mathrm{~L}, 0.39 \mathrm{mmol}$), and freshly prepared $\mathrm{NaH}(60 \%$ dispersion in oil, $24 \mathrm{mg}, 0.61 \mathrm{mmol}$) in DMF (10 mL) was stirred for 8 h at $0^{\circ} \mathrm{C}$. The solids were removed by filtration (Celite bed) and thoroughly washed with DMF and the filtrate and washings were combined and evaporated to dryness. The residue was purified on silica gel using ethyl acetate-light petroleum ether (1:3) to give 15 as a syrupy liquid.

Yield
: $110 \mathrm{mg}, 85 \%$

$$
\begin{array}{ll}
\text { Mol. Formula } & : \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{6} \\
& \\
{ }^{\mathbf{1}} \mathbf{H} \text { NMR }(500 \mathrm{MHz}): & \delta 1.34-1.59(\mathrm{~m}, 10 \mathrm{H}), 2.74(\mathrm{~m}, 2 \mathrm{H}), 3.85-4.22(\mathrm{~m}, 4 \mathrm{H}), \\
& 4.50-4.80(\mathrm{~m}, 4 \mathrm{H}), 4.22(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.35 \\
& (\mathrm{~m}, 5 \mathrm{H})
\end{array}
$$

Elemental Analysis
Calcd: C, 68.04; H, 7.22\%
Found: C, 68.21; H, 7.08\%

5,6-O-Cyclohexylidene-2,3-di-O-benzyl-2-C-(1-prop-2-enyl)-L-gulono- $\boldsymbol{\gamma}$-lactone (13).

A mixture of 12a ($0.7 \mathrm{~g}, 2.35 \mathrm{mmol}$), benzyl bromide $(0.84 \mathrm{~mL}, 7.05 \mathrm{mmol})$, and freshly prepared $\mathrm{Ag}_{2} \mathrm{O}(2.9 \mathrm{~g}, 9.4 \mathrm{mmol})$ in DMF $(70 \mathrm{~mL})$ was stirred for 16 h at $40{ }^{\circ} \mathrm{C}$. The solids were removed by filtration (Celite bed) and thoroughly washed with DMF and the filtrate and washings were combined and concentrated. The residue was purified on silica gel using ethyl acetate-light petroleum ether (1:9) to give 13 as a syrupy liquid.

$$
\text { Yield } \quad: \quad 1.1 \mathrm{~g}, 94 \%
$$

Mol. Formula $\quad: \quad \mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{6}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad: \quad 54.3\left(c=1, \mathrm{CHCl}_{3}\right)$
$\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \widetilde{v} \quad: \quad 1788,1740,1497,1454,1103,927 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}) \quad: \quad \delta 1.36-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.64(\mathrm{~m}, 8 \mathrm{H}), 2.74(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $14.2,7.8 \mathrm{~Hz}$), $2.78(\mathrm{dd}, 1 \mathrm{H}, J=14.2,7.3 \mathrm{~Hz}), 3.92(\mathrm{dd}$, $1 \mathrm{H}, J=8.3,7.3 \mathrm{~Hz}), 4.01(\mathrm{dd}, 1 \mathrm{H}, J=8.3,6.9 \mathrm{~Hz}), 4.11$ (dd, 1H, $J=7.3,2.8 \mathrm{~Hz}$), $4.19(\mathrm{dt}, 1 \mathrm{H}, J=9.6,6.9 \mathrm{~Hz})$, $4.55-4.64(\mathrm{~m}, 4 \mathrm{H}), 4.79(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 5.20-5.26$ (m, 2H), 5.94-6.02 (m, 1H), 7.30-7.39 (m, 10H)
$\begin{aligned} &{ }^{13} \text { C NMR (125 MHz) } \quad: \quad 23.9,23.9,25.1,35.3,35.6,36.5,64.8,67.4,73.1,74.0, \\ & 77.8,78.3,84.5,110.6,120.1,127.8,127.9,128.0,128.3,\end{aligned}$
$128.4,128.6,130.9,137.0,137.8,172.6 \mathrm{ppm}$
+TOF MS m/z : $502[\mathrm{M}+\mathrm{Na}]^{+}$

Elemental Analysis
Calcd: C, 72.80; H, 7.11\%
Found: C, 72.94; H, 7.28\%

5,6-O-Cyclohexylidene-2,3-di-O-benzyl-2-C-(1-prop-2-enyl)-d-iditol (16).

A solution of $\mathbf{1 3}(1.0 \mathrm{~g}, 2.1 \mathrm{mmol})$ in dry THF $(5 \mathrm{~mL})$ was added to a suspension of LAH ($34 \mathrm{mg}, 0.9 \mathrm{mmol}$) in dry THF. The resulting mixture was stirred at room temperature for 30 min ., then quenched with EtOAc, diluted with water, treated with 5\% aqueous $\mathrm{KOH}(2 \mathrm{~mL})$, and stirred until two layers separated. The water layer was extracted with EtOAc and the combined organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified on silica gel using ethyl acetate-light petroleum ether (1:3) to afford pure $\mathbf{1 6}$ as colorless oil.

$$
\text { Yield } \quad: \quad 0.9 \mathrm{~g}, 90 \%
$$

Mol. Formula	$\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{6}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz)	$\begin{aligned} & \delta 1.29-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.58(\mathrm{~m}, 8 \mathrm{H}), 2.28-2.37(\mathrm{~m}, \\ & 2 \mathrm{H}), 3.25-3.27(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}, \text { overlapped), } 3.26(\mathrm{t}, 1 \mathrm{H}, J=6.9 \\ & \mathrm{Hz}), 3.40(\mathrm{dd}, 1 \mathrm{H}, J=8.3,6.4 \mathrm{~Hz}), 3.49(\mathrm{t}, 1 \mathrm{H}, J=11.9 \\ & \mathrm{Hz}), 3.76(\mathrm{dd}, 1 \mathrm{H}, J=8.3,3.2 \mathrm{~Hz}), 3.86(\mathrm{dd}, 1 \mathrm{H}, J=12.9, \\ & 3.2 \mathrm{~Hz}), 4.27(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 4.45(\mathrm{q}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz} \\ &), 4.59-4.62(\mathrm{~m}, 2 \mathrm{H}), 4.68,4.87(2 \mathrm{~d}, 2 \mathrm{H}, J=11.5 \mathrm{~Hz}), \\ & 4.97(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 5.05(\mathrm{~d}, 1 \mathrm{H}, J=10.1 \mathrm{~Hz}), 5.69- \\ & 5.78(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.47(\mathrm{~m}, 10 \mathrm{H}) \end{aligned}$
${ }^{13} \mathbf{C}$ NMR (125 MHz)	$\begin{aligned} & 23.8,24.2,25.3,34.4,35.8,36.8,61.5,64.0,66.2,75.2, \\ & 78.0,80.2,80.8,81.3,109.1,118.7,127.3,127.7,127.8 \text {, } \\ & 128.3,128.4,128.8,133.1,137.8,137.9,138.1 \mathrm{ppm} \end{aligned}$

+TOF MS m/z : $506[\mathrm{M}+\mathrm{Na}]^{+}$

Elemental Analysis
Calcd: C, 72.19; H, 7.88\%
Found: C,72.46; H, 8.10\%

1-O-tert-Butyldimethylsilane-5,6-O-Cyclohexylidene-2,3-di-O-benzyl-2-C-(1-prop-2-enyl)-d-iditol (17).

To a stirred solution of $16(0.8 \mathrm{~g}, 1.7 \mathrm{mmol})$ in dry DMF $(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added tert-butyldimethylchlorosilane ($0.26 \mathrm{~g}, 1.7 \mathrm{mmol}$), imidazole ($0.13 \mathrm{~g}, 1.9 \mathrm{mmol}$) and the reaction mixture was stirred at room temperature for 2 h . Water was added $(30 \mathrm{~mL})$ and extracted with EtOAc, washed with brine. The combined organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. Purification of the residue on silica gel using ethyl acetate-light petroleum ether (1:4) gave 17 as colorless oil.

Yield $\quad: \quad 0.8 \mathrm{~g}, 84 \%$

Mol. Formula $\quad: \quad \mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{Si}$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}) \quad: \quad \delta 0.07(\mathrm{~m}, 6 \mathrm{H}), 0.91(\mathrm{~m}, 9 \mathrm{H}), 1.22-1.65(\mathrm{~m}, 10 \mathrm{H}), 2.39-$ $2.83(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.84-$ $3.95(\mathrm{~m}, 3 \mathrm{H}), 4.01-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.29-4.38(\mathrm{~m}, 1 \mathrm{H})$, 4.59-4.85 (m, 3H), 4.98-5.21 (m, 2H), 5.85-6.11 (m, 1H), 7.25-7.36 (m, 10H)

EI MS m/z : $598[\mathrm{M}+\mathrm{H}]^{+}$

Elemental Analysis
Calcd: C, 70.47; H, 8.72\%
Found: C, 70.71; H, 8.43\%
(-/+)-1-[(2R,3S)-2,3-Bis(benzyloxy)-3-(tert-butyloxydimethylsilanehydroxymethyl)-5-methylcyclopentyl]ethane-1,2-cyclohexylidene (19).

To a solution of $\mathbf{1 7}(0.75 \mathrm{~g}, 1.26 \mathrm{mmol})$ in dry THF $(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added sodium hydride (60% dispersion in mineral oil, $0.1 \mathrm{~g}, 1.89 \mathrm{mmol}$) followed by carbon disulfide ($0.25 \mathrm{~mL}, 2.56 \mathrm{mmol}$) after 30 min . The stirring continued for 30 min and then methyl iodide ($0.12 \mathrm{~mL}, 1.89 \mathrm{mmol}$) was introduced. After 2 h , reaction mixture was quenched by the addition of ice-water and repeatedly extracted with EtOAc. The combined organic extract was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude xanthate $(0.9 \mathrm{~g}, 1.31 \mathrm{mmol})$ was dissolved in toluene $(5 \mathrm{~mL}) \&$ this solution was added dropwise under an Argon to a boiling solution of tri-n-butyltinhydride ($0.7 \mathrm{~mL}, 2.41$ $\mathrm{mmol})$ in toluene $(25 \mathrm{~mL})$ containing $\operatorname{AIBN}(10 \mathrm{mg})$ as a free radical initiator. The contents were heated under reflux for 16 h and concentrated. The residue was purified on silica gel using ethyl acetate-light petroleum ether (1:20) to afford 19 as oil.

Yield $\quad: \quad 0.6 \mathrm{~g}, 82 \%$

Mol. Formula $\quad: \quad \mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{5} \mathrm{Si}$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}) \quad: \quad \delta 0.02(\mathrm{~m}, 6 \mathrm{H}), 0.91(\mathrm{~m}, 12 \mathrm{H}), 1.33-1.55(\mathrm{~m}, 10 \mathrm{H}), 2.02-$ $2.06(\mathrm{~m}, 3 \mathrm{H}), 3.54-4.80(\mathrm{~m}, 10 \mathrm{H}), 7.26-7.34(\mathrm{~m}, 10 \mathrm{H})$

EI MS m / z
: $582[\mathrm{M}+\mathrm{H}]^{+}$

Elemental Analysis
Calcd: C, 72.41; H, 8.97\%
Found: C, 72.92; H, 9.12\%

Refrences:

1. (a) Kohama, T.; Enokita, R.; Okazaki, T.; Miyaoka, H.; Torikata, A.; Inukai, M.; Kaneko, I.; Kagasaki, T.; Sakaida, Y.; Satoh, A.; Shiraishi, A. J. Antibiot. 1993, 46, 1503. (b) Kohama, T.; Nakamura, T.; Kinoshita, T.; Kaneko, I.; Shiraishi, A. J. Antibiot. 1993, 46, 1512. (c) Shibata, T.; Kurihara, S.; Yoda, K.; Haruyama, H. Tetrahedron 1995, 51, 11999. (d) Matsuhashi, H.; Shimada, K. Tetrahedron 2002, 58, 5619.
2. Shimada, K.; Kaburagi, Y.; Fukuyama, T. J. Am. Chem. Soc. 2003, 125, 4048.
3. Wimalasena, K.; Mahindaratne, M. P. D. J. Org. Chem. 1994, 59, 3427.
4. Yoshida, J.; Nakagawa, M.; Sekib, H.; Hino, T. J. Chem. Soc. Perkin 1 1992, 343.
5. Glass, R, S.; Deardorff, D. R.; Henegar, K. Tetrahedron Lett. 1980, 21, 2467.
6. (a) Yamada S.; Koga, J. Tetrahedron Lett. 1967, 8, 1711. (b) Koga, J.; Yamada S. Chem. Pharm. Bull. Jap. 1972, 526.
7. (a) Barton, D. H. R.; McCombie, S. W.; J. Chem. Soc. Perkin 1 1975, 1974. (b) Myers, A. G.; Movassaghi, M.; Zheng, B. J. Am. Chem. Soc. 1997, 119, 8572. (c) Gabriel Radivoy, G.; Alonso, F.; Moglie, Y.; Vitalea, C.; Yus, M. Tetrahedron 2005, 61, 3859.

SPECTRA

${ }^{1} \mathrm{H}$ NMR spectrum of compound 7 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 12 a in CDCl_{3}
${ }^{1} \mathrm{H}$ NMR spectrum of compound 14 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 13 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 16 in $\mathbf{C D C l}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound 16 in CDCl_{3}

PUBLICATIONS

1. Mukund K. Gurjar, Tushar P. Khaladkar, Ramdas G. Borhade and A. Murugan Tetrahedron Letters, 2003, 44, 5183-5187 "Carbohydrate-based synthesis of crocacin: stereoselective Heck reaction of carbohydrate 5,6-ene- and 5,6-ynederivatives with aromatic halides ".
2. Mukund K. Gurjar, Ramdas G. Borhade, Vedavati G. Puranik and C.V. Ramana Tetrahedron Letters, 2006, 47, 6979-6981 "Total synthesis of (-)-radicamine B ".
3. Mukund K. Gurjar, Ramdas G. Borhade, Vedavati G. Puranik and C.V. Ramana (communicated to Tetrahedron) "Total synthesis Polyhydroxylated pyrrolidine alkaloids", 2007.
4. C.V. Ramana, Ramdas G. Borhade and Mukund K. Gurjar (To be communicated to Tetrahedron Letters) "Two and three component C-C and C-O bond formation on sugar templates", 2007.

Erratum

[^0]: ${ }^{13} \mathbf{C}$ NMR (50 MHz) $\quad: \quad 26.1,26.8,72.9,76.1,81.6,84.0,89.2,104.8,111.8,121.6$, 128.3, 128.9, 131.9, 159.7 ppm

 ESI MS m/z
 Elemental Analysis
 $260[\mathrm{M}]^{+}$
 Calcd: C, 69.23; H, 6.15\%

