Synthetic Studies Toward the Total Synthesis of Eunicin, Palau'amide and Asimitrin

A THESIS

SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (IN CHEMISTRY)

TO
UNIVERSITY OF PUNE

BY
SABITA NAYAK

UNDER THE GUIDANCE OF DR MK GURJAR

ORGANIC CHEMISTRY:DIVISION
NATIONAL CHEMICAL LABORATORY
PUNE-411008, INDIA
DECEMBER-2007

Synthetic Studies Toward the Total Synthesis of Eunicin, Palau'amide and Asimitrin

A THESIS
SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY (IN CHEMISTRY)

TO
UNIVERSITY OF PUNE

BY
SABITA NAYAK

UNDER THE GUIDANCE OF
DR. M. K. GURJAR

ORGANIC CHEMISTRY: TECHNOLOGY NATIONAL CHEMICAL LABORATORY

PUNE-411 008, INDIA
DECEMBER 2007

DEDICATED
 DEDICATED

TO MY BELOVED

PARENTS

DECLARATION

I here by declare that the research work presented in this thesis was carried out by me at the National Chemical Laboratory, Pune, India, under the guidance of Dr. M. K. Gurjar, Head and Deputy Director, Division of Organic Chemistry, National Chemical Laboratory, Pune411008, submitted for the degree of Doctor of Philosophy in Chemistry to the University of Pune. This work is original and has not been submitted in part or full by me for any degree or diploma of this or any other university.

Organic Chemistry:Division
National Chemical Laboratory
Pune-411008
December 2007

Telephone and Fax: + 91-20-25902627

+ 91-20-25902629
E-mail: mk.gurjar@ncl.res.in
Website: http://www.ncl-india.org

CERTIFICATE

This is to certify that the work presented in this thesis entitled "Synthetic Studies Toward the Total Synthesis of Eunicin, Palau’amide and Asimitrin" Submitted by Miss Sabita Nayak, has been carried out by the candidate at National Chemical Laboratory, Pune, under my supervision. Such materials as obtained from other sources have been duly acknowledged in the thesis. This work is original and has not been submitted for any other degree or diploma of this or any other university.

Acknowledgements

It gives me immense pleasure to express my deep sense of esteem and gratitude to my mentor, research guide Dr. M. K. Gurjar, FNASc, Deputy Director and Head of Division of Organic Chemistry, National Chemical Laboratory, Pune for his excellent and inspiring guidance, never diminishing encouragement, sincere advice and unstinted support during all the times of my Ph.D. work. Working with him was a great pleasure and learning experience.

I am grateful to Dr. C.V. Ramana and Dr. D. K. Mohapatra for their guidance and help.

I would like to thank all of those who supported me along the way: I wish to thank Mr. I. Shivkumar, Dr. R. A. Joshi, Dr. Pradeep Kumar, Dr. Mrs. Bhanu Chanda, Dr. Mrs. R. D. Wakharkar, Dr. S. P. Chavan, Dr. Mrs. R. R. Joshi, Dr. M. N. Deshmukh, Dr. U. R.Kalkote, Dr. Borate, Dr. Krishnan, Dr. Gajbhiye, Dr. Vincent, Dr. Ramlingam and all other scientists of Organic Chemistry Division for their kind help.

I gratefully acknowledge the training and support extended by my senior colleagues Dr. Sridhar Reddy, Dr. Sankar, Tushar, Dr. Sukhen, Dr. Dhananjoy Mondal, Dr. Manjusha, Bhagwat, Dr. K. K. Reddy, Dr. DPS, Dr. Ekambram, Dr. Joseph, Dr. Nagprasad, Dr. Sankar, Dr. Smirti, Dr. Arindam, Dr. Siddhartha, Mahesh, Ramdas for their co-operation and extended support. I would like to thank all my colleagues Seetaram, Indu, Kulu, Gorakha, Debu, Gokarneswar, Rosy, Bhaskar, Chinmoy, Rahaman, Pradip, Ramesh, Rita, Anand, Ankush, Anuj, Kiran, Sharad, Rambabu, Srinivas, Nageswar, Sumantha, Giri, Pandey, Raghu, Soumitra, Abhijit, Ravi, Ganesh, Alam, and Pitambar for their co-operation and friendly attitude.

I would like to express my sincere gratitude to my present and past friends of NCL Sashi, Shivsankar, Victor, Govind, Debasish, Shivram, Subash, Manaswini, Suman, Tini, Dibya, Ramakant, Bhuban, Sonu, Smita, Panchami, and Manoj.

Help from the spectroscopy, mass and X-ray crystallographic groups is gratefully acknowledged. I sincerely thank Dr. Rajmohanan, Mr. Sathe and Mrs. Kavita for their helpful discussions and co-operation. My sincere thanks to Mrs. Catherin, Mrs. P. Kulkarni and all other office staffs.

It is impossible to express my sense of gratitude for my parents in mere words. Whatever I am and whatever I will be in future is because of their commitments to my ambitions and selfless sacrifices. I am indeed indebted to my sister, brothers and brother in law for their love and support at tough time.

Finally, I thank the Director, National Chemical Laboratory, Pune for providing infrastructural facilities to complete my work successfully. I am also thankful to CSIR, New Delhi for the financial assistance in the form of fellowship.

ABBREVIATIONS

Ac	-	Acetyl
AcOH	-	Acetic acid
AIBN	-	$2,2^{\prime}-$ Azobisisobutyronitrile
Bn	-	Benzyl
BnBr	-	Benzyl bromide
$\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$	-	Boron dimethyl sulfide complex
BuLi	-	Butyl Lithium
COSY	-	Correlation spectroscopy
DCM	-	Dichloromethane
DDQ	-	$2,3-$ Dichloro-5,6-dicyano-1,4-benzoquinone
DIBAL	-	Diisobutylaluminiumhydride
DMP	-	Dess-Martin periodinane
DMP	-	$2,2-$ Dimethoxypropane
DMF	-	N, N^{\prime}-Dimethylformamide
DMAP	-	N, N^{\prime}-Dimethylaminopyridine
DMSO	-	Dimethyl sulfoxide
EtOH	-	Ethanol
Et	-	Ethyl
$\mathrm{Et} \mathrm{t}_{2} \mathrm{O}$	-	Diethyl ether
EtOAc	-	Ethyl acetate
Et N	-	Triethylamine
IBX	-	Iodoxybenzoic Acid
Im	-	Imidazole
LDA	-	Lithium diisopropylamide
MeOH	Methanol	
MsCl	Methanesulfonyl chloride	
Ms	-	Methanesulfonyl
	-	

Me	-	Methyl
MeI	-	Methyl iodide
MPM	-	p-Methoxyphenylmethyl
NaBH_{4}	-	Sodiumborohydride
NaH	-	Sodium hydride
NMR	-	Nuclear magnetic resonance
nOe	-	Nuclear Overhauser Effect
NOESY	-	Nuclear Overhauser Effect Spectroscopy
Ph	-	Phenyl
Py	-	Pyridine
PDC	-	Pyridiniumdichromate
RCM	-	Ring closing metathesis
TEA	-	Triethylamine
TBAI	-	Tetra-n-butylammonium iodide
TBAF	-	Tetra-n-butylammonium fluoride
TBDMSCl	-	tert-Butyldimethyl chlorosilane
THF	-	Tetrahydrofuran
TPP	-	Triphenylphosphine
p-TSA	-	p-Toluenesulphonic acid
TsCl	-	p-Toluenesulphonyl chloride

> $\quad{ }^{1} \mathrm{H}$ NMR spectra were recorded on AC-200 MHz, MSL-300 MHz, and DRX-500 MHz spectrometer using tetramethylsilane (TMS) as an internal standard. Chemical shifts have been expressed in ppm units downfield from TMS.
$>\quad{ }^{13} \mathrm{C}$ NMR spectra were recorded on AC-50 MHz, MSL-75 MHz, and DRX-125 MHz spectrometer

EI Mass spectra were recorded on Finngan MAT-1020 spectrometer at 70 eV using a direct inlet system.
> The X-Ray Crystal data were collected on Bruker SMART APEX CCD diffractometer using Mo K radiation with fine focus tube with 50 kV and 30 mA .
> Infrared spectra were scanned on Shimadzu IR 470 and Perkin-Elmer 683 or 1310 spectrometers with sodium chloride optics and are measured in cm^{-1}.

Optical rotations were measured with a JASCO DIP 370 digital polarimeter.
Melting points were recorded on Buchi 535 melting point apparatus and are uncorrected.
> All reactions are monitored by Thin Layer chromatography (TLC) carried out on 0.25 mm E-Merck silica gel plates (60F-254) with UV light, I_{2} and anisaldehyde in ethanol as development reagents.
> All solvents and reagents were purified and dried by according to procedures given in Vogel's Text Book of Practical Organic Chemistry. All reactions were carried out under nitrogen or argon atmosphere with dry, freshly distilled solvents under anhydrous conditions unless otherwise specified. Yields refer to chromatographically and spectroscopically homogeneous materials unless otherwise stated.
All evaporations were carried out under reduced pressure on Buchi rotary evaporator below $40^{\circ} \mathrm{C}$.
> Silica gel (60-120) used for column chromatography was purchased from ACME Chemical Company, Mumbai, India.

Page No.

Abstract

i-xvi

CHAPTER I: Synthetic studies toward tricyclic cembranoids: a modular approach
for the construction of the tricyclic framework of eunicin.
Introduction 1-13
Present work 14-38
Experimental 39-60
References 61-64
Chapter II: Synthetic studies toward Palau'amide
Introduction 65-73
Present work 74-96
Experimental 97-127
References 128-131
Chapter III: Synthetic studies toward Asimitrin
Introduction 132-146
Present work 147-163
Experimental 164-185
References 186-191
LIST OF PUBLICATIONS 192

ABSTRACT

```
Research Student : Sabita Nayak
Research Guide : Dr. Mukund K.Gurjar
Title of Thesis : "Synthetic Studies Toward the Total Synthesis of Eunicin,
Palau'amide and Asimitrin"
Registration no. : E1/87/Ph.D/2005
Date of registration : 5-05-2004
Place of work : Division of Organic Chemistry: Technology, National Chemical
Laboratory, Pune
```


Abstract

The thesis entitled "Synthetic Studies Toward the Total Synthesis of Eunicin, Palau'amide and Asimitrin" has been divided into three chapters and each chapter subdivided into following sections: Introduction, Experimental, Spectroscopic data and References. Chapter I describes the synthetic studies toward tricyclic cembranoids: a modular approach for the construction of the tricyclic, framework of eunicin. Chapter II deals with studies toward biologically active Palauamide. The final chapter III discusses synthetic studies toward Asimitrin using chiral pool strategy.

Chapter I: Synthetic studies toward tricyclic cembranoids: a modular approach for the construction of the tricyclic framework of eunicin

Cembranoids belongs to a class of diterpenoids possessing a 14 -membered ring. Cembrane A forms the basic skeleton of these macrocyclic diterpenoids. Numerous cembranoids have been isolated from corals and other marine sources as well as from tobacco and other plants. Eunicin, Cuenicin, Eunicenolide and Uproeunicin (Figure 1) belong to the category of cembranes containing an oxa-bridged bicyclic ring. Basically these are potent cytotoxic
and antineoplastic agents. Recent studies shows that they are strong nicotine acetylcholine receptors (nAChR) and active against several human tumor cells. Literature survey reveals

Figure 1
that though Eunicin was isolated in 1960's till now a single synthesis isn't reported. The interesting architectural features and promising biological activities attracted us to undertake its synthesis. In the beginning of our synthetic endeavor we planned to synthesize the tricyclic framework of Eunicin and its analogues.

Figure 2. Retrosynthetic analysis

The retrosynthetic analysis of $\mathbf{5}$ is depicted in Figure 2. The key allene intermediate $\mathbf{3}$ can be synthesized from the known sugar alkyne moiety 2 , which can be prepared easily from 1,2:5,6-di- O-isopropylidene- α-D-glucofuranose 1.

Our synthesis commenced from the commercially available 1,2:5,6-di-O-isopropylidene- α -D-glucofuranose. The alkyne group was stereoselectively introduced by oxidizing 3hydroxyl group of $\mathbf{1}$ to its keto compound on treatment with PDC followed by Grignard reaction using acetylene magnesium chloride to provide 3-propargyl alcohol 2 exclusively. The tertiary alcohol of $\mathbf{2}$ was acylated by using $\mathrm{Ac}_{2} \mathrm{O}$, Py and DMAP (catalytic) to yield 6, which was exposed to pentenyl magnesiumbromide in presence of CuBr (stochiometric) to furnish the allene 7 exclusively. Acidolytic cleavage of 5,6 isopropylidene of 7 gave diol 8, which on cycloetherification with AgNO_{3} afforded dihydropyran 9 in good yield (Scheme 1).

Scheme 1

The stereochemistry of the substituted dihydropyran ring $\mathbf{9}$ was assigned as trans with the help of NOESY study. This observation indirectly justified the stereochemistry of the allene 7 which was shown in Scheme 1.

nOe of compound- $\mathbf{9}$
Having established the stereochemistry of allene 7, a model study was conducted to test the feasibility of RCM reaction to construct the requisite 12-membered ring (Scheme 2).

Scheme 2

13

Oxidative cleavage of diol $\mathbf{8}$ with sodium metaperiodate resulted in aldehyde $\mathbf{1 0}$ which on subsequent Grignard reaction with 5-hexenylmagnesium bromide in ether at $0{ }^{\circ} \mathrm{C}$ gave the dienes $\mathbf{3}$ and $\mathbf{1 1}$ in 7:3 ratio which were separated by simple column chromatography.

The silver nitrate mediated cyclo-etherification of dienes resulted in the bicyclic derivatives 12 and 13 exclusively. The stereochemistry of the newly formed dihydropyran rings in the bicyclic derivatives $\mathbf{1 2}$ and $\mathbf{1 3}$ were established as cis and trans respectively,

Scheme 3

with the help of NOESY experiments. The RCM of $\mathbf{1 2}$ proceeded efficiently with the $1^{\text {st }}$ generation Grubbs' catalyst in refluxing benzene gave the requisite E isomer 5. However, the RCM of $\mathbf{1 3}$ was found to be sluggish and resulted in an intractable polymeric mixture (Scheme 2).

After establishing a strategy for the construction of the core structure of the Eunicin-like cembranoids, we next focused our attention on the generalization of our strategy for the synthesis of various analogues of Eunicin where the size of ring C could be modified.

Accordingly, treatment of suitable alkenyl Grignard reagent like pentenyl, butenyl and methallyl magnesium bromide, on 10 followed by cyclo-etherification resulted in 2,6dihydropyran derivatives $\mathbf{2 0} \mathbf{- 2 5}$. The RCM reaction was successful only for the 2,6-cisdihydropyrans 20 and 24 and the corresponding tricyclic compounds 26 and 27 were obtained. RCM of 21 and 23 gave some intractable polymeric mixture. Surprisingly the RCM of $\mathbf{2 5}$ with $2^{\text {nd }}$ generation Grubbs' catalyst gave a dimeric product $\mathbf{2 8}$ in good yield (Scheme 3).

In conclusion, we have accomplished the proposed core skeleton of Eunicin and its analogues starting from 1,2;5,6-di-O-isopropylidene glucofuranose employing silvernitrate mediated cycloetherification and RCM as the key reactions.

Chapter II: Synthetic Studies Toward Palau'amide

Palau'amide (29)
Palau'amide (29), a cyclic depsipeptide was isolated by Moore and co-workers in 2000 from a species of the marine cyanobacterium lyngbya, which showed potent cytotoxicity to KB cells $\left(\mathrm{IC}_{50}=13 \mathrm{nM}\right)$. From this source, several potent antitumour agents such as lyngbyabellins and aparatoxins have been discovered. These compounds have become the focus of recent synthetic endeavors. The interesting structural features, and impressive biological activity of Palau'amide identified an appropriate target for total synthesis.Our retrosynthetic analysis for the synthesis of Palau'amide is depicted in Figure 3.

Figure 3. Retrosynthetic analysis
In the beginning of our synthetic endeavor we planned to synthesize the C33-C44 segment of Palauamide.Synthesis of the C33 - C44 Fragment of Palauamide (31)

We initiated our synthesis from commercially available 1,3 propane diol (32), which was transformed into key epoxide intermediate 33 in five steps synthesis, (i) mono-PMBprotection (ii) Swern oxidation (iii) twocarbon stable Wittig olefination (iv) reduction of ester using DIBAL-H and (iv) Sharpless asymmetric epoxidation using L-diethyltartrate. Epoxide 33 was subjected to $\mathrm{Me}_{2} \mathrm{CuCNLi}_{2}$ furnishing an inseperable mixture of 34 and in7:1 ratio, which on treatment with NaIO_{4} resulted in an aldehyde and 1,3 diol. Both were separated easily by silicagel chromatography (Scheme 4).

Scheme 4

In order to get compound 36, the diol 34 was subjected to a sequence of reactions, benzoylation of primary alcohol, TBS protection of secondary hydroxyl group and hydrolysis of benzoate ester. The primary alcohol 36 underwent swernoxidation to give aldehyde, which on subsequent treatment with allylmagnesium bromide furnished diastereomeric mixture of homoallylic alcohols 37 . Further oxidation of secondary alcohol 37 in swern condition and Luche's stereoselective reduction at $-100{ }^{\circ} \mathrm{C}$ to give 38 exclusively. The compound 38 underwent a sequence of simple and straightforward reactions involving TIPS protection of secondary hydroxyl group, hydroboration-oxidation of terminal olefin, bromination of primary alcohol and conversion of bromo to alkyne by Lithiumacetylide:EDTA complex to provide pentynyl appended product 39. DDQ mediated PMB deprotection, oxidation of primary alcohol with IBX followed by 3C-wittig olefination with $\mathrm{PPh}_{3}=\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COOAllyl}$ in refluxing THF gave α, β unsaturated ester 40 . Selective deprotection of TBS ether in $\mathbf{4 0}$ with various reagents failed to give 31 (Scheme 5).

Scheme 5

Methoxymethylether group was replaced by TIPS group in 38 and the same series of reaction was carried out as shown in (Scheme 6).

Scheme 6

Compound 38 was treated with MOMCl , DIPEA in presence of catalytic AgNO_{3} furnished 42, which followed same sequence of reaction conditions as that for 38 to 39 to yield 43. Having 43 in hand, a scalable approach was devised following a sequence of reactions, involving Grignard reaction by using TMS-pentynylmagnesiumbromide on aldehyde 41, deprotection of TMS group and MOM-protection to provide 43 in good yield (Scheme 6). The α, β-unsaturated-Allylester 45 was obtained by DDQ mediated PMB-ether deprotection of 43, followed by oxidation and subsequent Wittig reaction. Finally TBS ether deprotection was accomplished with TBAF, THF and AcOH (catalytic) furnished 46 in good yield (Scheme 7).

Scheme 7

Having free hydroxyl polyketide chain in hand, we focussed our attention for coupling with the necessary pentapeptide acid 30, which was already synthesized in our group. EDCI, DMAP mediated coupling of pentapeptide acid and polyketide alcohol to give the ester unit 47. Further TBS-ether deprotection with TBAF, THF, AcOH (catalytic) and allyl deprotection by $\operatorname{Pd}(0)$, Morpholine to give the hydroxy acid 48. Finally intramolecular Yamaguchi lactonization of 48 resulted in MOM-protected palauamide 49, which was assigned by LC-MS and ${ }^{1} \mathrm{H}$ NMR study to be a mixture of two diastereomers (Scheme 8). Since the adjacent position of acid group in 48 was not occupied by chiral centre, so we assumed that racemisation might have occurred during esterification step rather than lactonisation step. Seperation of mixture compound and analyzing the requisite isomer is currently undergoing in our laboratory.

Scheme 8

In conclusion, a fragment corresponding to C33-C44 fragment of Palau'amide has been successfully synthesized using SAE, regioselective epoxide opening by Gillmann reagent, Luche's stereoselective reduction and Grignard reaction as our key reactions. In addition, we attempted the synthesis of MOM-protected Palau'amide 49, following ECDI esterification and Yamaguchi lactonization.

Chapter III: Synthetic Studies Toward Asimitrin

Asimitrin (50) a ring hydroxylated unsymmetrical bis-tetrahydrofuran acetogenin was isolated from the seeds of Asimina triloba by Mi Hee Woo in 2005. This novel type of acetogenin was found to be cytotoxic selectively against prostate carcinoma (PC-3) at about 10,000 times and colon adenocarcinoma (HT-29) at about 100 times the potency of adriamycin. Such powerful antitumor activity and the unique structure of $\mathbf{5 0}$ attracted us to undertake its total synthesis.

Figure 4. Retrosynthetic analysis of Asimitrin 50

After a thorough literature study we realized a chiral pool approach will be the suitable one to fix the desired stereocentres of Asimitrin and 3-deoxy-1,2:5,6-di-O-isopropylidene xylofuranose will be a suitable precursor. The retrosynthetic analysis of $\mathbf{5 0}$ was discussed in Figure 4.

According to retrosynthetic analysis our synthetic strategy directed toward 50 was based on a convergent approach involving cross metathesis of the bis-THF core 51 with γ-lactone segment 52. We planned to made bis-THF core in a systematic manner from a chiral pool, like glucosediacetonide 1, which is a source of chiral centers like C17, C19 and C20 and also a setting stage for introducing C16 and C23 stereocentres through stereoselective intramolecular oxymercuration and chelation controlled Grignard reaction.

Scheme 9

The synthetic endeavor commenced from commercially available 1,2:5,6-di-O-isopropylidene- α-D-glucofuranose 1, which underwent a sequence of simple and straightforward reactions, includes tosylation of secondary hydroxyl group, elimination of tosyl group to form olefin, double bond reduction, regioselective 5,6 isopropylidene
cleavage and insitu formation of epoxide 55. Allylmagnesium bromide and CuCN mediated epoxide opening resulted in homoallylic alcohol 56. Intramolecular oxymercuration of 56 using $\mathrm{Hg}(\mathrm{OAc})_{2}$ in dichloromethane resulted in diastereomeric mixture of chloromercurated compound 54 and 57 in $8: 2$ ratio. The stereochemistry around the tetrahydrofuran ring was assigned by nOe study and further confirmed by X-ray crystallography. Demercuration of desired isomer 54 resulted in primary alcohol 58. Ten carbon appendages was incorporated in 58 by two step synthesis i,e. oxidation of primary alcohol and subsequent treatment of decylmagnesiumbromide in presence of CuBr .DMS to give diastereomeric mixture of 59 and $\mathbf{6 0}$ in 7:3 ratio. Both the alcohols were separated by flash silicagel chromatography and the major isomer formed was expected due to chelation-controlled product (Scheme 9).

Scheme 10

The stereochemistry of the newly generated center in 59 was assigned by modified Mosher's method which clearly indicates that it was the required one. The minor isomer was oxidized and reduced by L-selectride provides 59 and $\mathbf{6 0}$ in 9:1 ratio (Scheme 10).

The secondary hydroxyl group of 59 was protected as benzylether using NaH and benzylbromide to furnish 61. Acid hydrolysis of 1,2 isopropylidene in $\mathbf{6 1}$ by p-TSA, THF: $\mathrm{H}_{2} \mathrm{O}$ in refluxing condition gave lactol, which was subjected to one carbon wittig olefination resulted in α-hydroxy homoallylic alcohol 62. Oxymercuration of $\mathbf{6 2}$ by using $\mathrm{Hg}(\mathrm{OAc})_{2}$ in dichloromethane yielded a mixture of chloromercurated bis-THF compound 63 and 64 in 9:1 ratio.

Scheme 11

The major isomer 63 was demercurated by NaBH_{4}-DMF in the presence of O_{2} to give 65. In order to get TBS-protected bis-THF alcohol 66, the diol 65 underwent three steps of reactions like (i) primary alcohol.acylation (ii) deprotection of acetate by $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$ (iii) TBS protection of secondary hydroxyl group giving poor yield of 66 (Scheme 10).

To overcome this difficulty, the allylic alcohol of $\mathbf{6 2}$ was selectively protected as TBS ether using TBSCl, imidazole and DMAP (catalytic) to give 53. Oxymercuration of 53 with mercuric acetate gave single chloromercurated compound 67, which was demercuration with NaBH_{4}, DMF in presence of O_{2} furnished the bis-THF alcohol 66 in good yield. Finally Swern oxidation of primary alcohol of 66 and subsequent Grignard reaction of aldehyde 68 using hexenylmagnesium bromide in the presence of $\mathrm{CuBr} . \mathrm{DMS}$ at $-100{ }^{\circ} \mathrm{C}$ gave secondary alcohol 69 as a single product. The newly generated stereo center was assigned by modified Mosher's method (Scheme 11).

In conclusion, we have developed a systematic straightforward route for the stereoselective synthesis of C10-C34 segment 69 of Asimitrin following a chiral pool approach. Here in the double intramolecular oxymercuration reaction was explored as a key reaction, stereochemically chelation controlled Grignard reaction also assisted us to achieve the target.
Note: Compound numbers in the abstract are different from those in thesis.

CHAPTER -I

Synthetic studies toward tricyclic cembranoids: a modular approach for the construction of the tricyclic framework of eunicin

INTRODUCTION

Introduction

Natural products are the most consistently successful source of drug leads and continue to provide greater structural diversity than standard combinatorial chemistry. Current commercial evidence also supports this statement. More than 60% of the available anticancer drugs were either directly based on or developed from natural products. Early history reveal that five decades back most of the terrestrial plants and organisms were the sources of the inspiration of pharmaceutical drugs, which indirectly meant that peoples were less aware about the ocean waters which contains 70% inhabitats of our biosphere. The historical paradigm of the deep ocean as a biological 'desert' has shifted to one of a 'rainforest' owing to the isolation of many novel bioactive compounds. Although deep ocean exploration is still in its infancy, many scientists now believe that it is a inexhaustible source of complex natural products, which will be a tremendous potential for human benefit. Marine natural products chemistry is essentially a child of the 1970's that developed rapidly during the 1980's and matured in the last decade. During1975, there were already three parallel tracks in marine natural products chemistry: marine toxins, marine biomedicinals and marine chemical ecology has developed. Due to the integration of the three fields of study marine natural products chemistry proceed in vigour. Initially Japanese researchers have started studies on marine natural products. The isolation of 'ladder-like' skeleton of the polyether toxins Brevetoxin B (1), ${ }^{1}$ Maitotoxin (2), ${ }^{2}$ Palytoxin, ${ }^{3}$ from the dinoflagellate Gymnodinium breve and their interesting biological

activities fascinated the world wide chemists and elicited their interest for further exploration of marine organisms from different areas.

Currently more than 15,000 natural products have been discovered from marine microbes, algae, and invertebrates, and the number continues to grow. Most of the drugs are in different phages of clinical trials. ${ }^{3}$ For example Omuralide (3, $\mathrm{IC}_{50} \frac{1}{4}=49 \mathrm{~nm}$), ${ }^{4}$ Salinosporamide A (4, proteasomal chymotrypsin-like proteolytic activity with an IC_{50} value of 1.3 nm), ${ }^{5}$ Spongothymidine (5, Caribbean sponge Cryptotheca crypta, an antiviral drug), ${ }^{6}$ spongouridine (6, anticancer drug), ${ }^{6}$ Dictyostatin (7, anticancer agent similar activity to taxol), ${ }^{7}$ Prostaglandins $\mathbf{8},{ }^{8 \mathrm{a}}$ Peluroside (9, anti cancer drug) ${ }^{8 \mathrm{~b}}$ Eleutherobin (10, anti cancer agent), ${ }^{9}$ Discodermolide (11, Sponge Discodermia dissolute, anti cancer drug, more potent than Taxol), ${ }^{7}$ Norzoanthamine (12, an alkaloid isolated from Zoanthus sp., can suppress the loss of bone weight and strength in ovariectomized mice and has been considered a promising candidate for an antiosteoporotic drug), ${ }^{10}$ Sarcodictyin (13, a rare natural substances originally found by Pietra and his group in the mediterranean stoloniferan coral Sarcodictyon roseum showed potent antitumor activity), ${ }^{11}$ and Bryostatin (14) ${ }^{12}$ are some of the natural products which were in advanced clinical trials for the above mentioned medicinal applications.
Soft corals are a largest producer of steroid, diterpene and sesquiterpenes. Day by day isolation of diterpene class of compound is growing on increasing. Though the isolation, characterization and biological study of these classes of compounds is tedious but its complex artechitectural features attracted several groups to isolate and study their structure and activity in details.

Bioactive metabolites from marine resources

Omuralide (3)

Salinosporamide (4)

OH

Spongouridine (6)

Peloruside (9)

Norzoanthamine (12)

Sarcodictyn (13)
Discodermolide (11)

Cembranoids belong to a structurally unique family of diterpene natural products characterized by the presence of a 14-membered ring, and have been isolated from various marine sources as well as some terrestrial organisms since the 1960 's. ${ }^{13}$ These diterpenoids have become of great interest to synthetic chemists and biologists because of their unusual structural features and remarkably wide range of biological activities. ${ }^{14}$
According to their structural features they have categorized into three diffent groups like:

1. Monocyclic 14-membered-ring diterpenes (Simple cembrane)
2. Bicyclic 14-membered-ring diterpenes (γ-lactone cembranoid)
3. Fused tricyclic cembranoids

Monocyclic 14-membered-ring diterpenes (Simple cembrane)

The first member of this class of compounds, cembrene A (15) was initially isolated from terrestrial plant pine oleoresins and termites of the species Nasutitermes exitiosus by Schmidt et al in 1970 and latter on by same group it was also isolated from marine soft coral, Nephthea species in 1978. ${ }^{15,16}$ Basically this class of compounds contains a single cyclic ring hence considered as simple cembrane. Some of these compounds are highly oxygenated and functionalized on the periphery. Asperdiol 16, ${ }^{17}$ a potent anticancer compound, was isolated from several marine coral sources like gorgonian coral Eunicea knighti, Eunicea asperula and Eunicea tourneforti in the Caribbean region. It was the first non lactonic cembrane isolated from gorgonians and displayed in vitro anticancer activity against PS, KB and LE cell lines. The promising antitumor actvity displayed by asperdiol has culminated in its total synthesis as well as its derivatives for detailed structure activity studies. ${ }^{18}$ Eunicenone 19, a rare cembranoid diterpene having the uncommon 11-cis double bond, was found to be the (-)-antipode of a known cembranoid isolated from a South Pacific soft coral. Both 19 and 20 showed significant cytotoxicity against CHO-K1 cells. Nephthenol 21 was isolated from soft coral Nephthea species by Schmitz et al in 1974 shows antitumor activity. ${ }^{19,} 20$ Sarcophytol A 22, its antipode (-)-Sarcophytol 23 and its congenor epoxy Sarcophytol 24 was isolated by Bowden and co-workers in 1983 from australian soft coral Lobophytum species. ${ }^{21}$ Biological study reveals that 22 is a potent anticarcinogen. Pseudoplexaurol 26, was isolated from a specimen of P. porosa collected in Puerto Rico, displayed a potent antitumor activity when screened against a small panel of five human tumor cell lines. ${ }^{22}$

Figures of monocyclic diterpene cembranes

Cembrane-A (15)

18

Napthenol (21)

(+)-(11, 12)-Epoxysarcophytol-A

Asperdiol (16)

Eunicinone (19)

Sarcophytol A (22)

25

17

23

26

Figure 2

Bicyclic14-membered-ring diterpenes ($\boldsymbol{\gamma}$-lactone cembranoid)

Bicyclic cembranes are structurally more complex than simple cembrane and shows potent cytotoxic activity by virtue of the presence of a γ-lactone ring. Sinulariolide 27 is a lactone cembranoid was isolated from the soft corals alcyonarian Sinularia flexibilis exhibited remarkable antineoplastic activity in vitro PS and KB tests. ${ }^{23}$ Eupalmerin 28 and its acetate 29 have been isolated from E. mammosa from Puerto Rico. The acetate derivative 29 showed in vitro cytotoxicity against CHO-K1 cells and antimicrobial activity against

Shigella flexneri and Proteus vulgaris (MIC $=1 \sim \operatorname{tg} / \mathrm{mL}$) while Eupalmerin 28 inhibits a similar potency to the muscle $\left(\mathrm{IC}_{50}=6.4 \sim \mathrm{tM}\right)$ and electric organ $\left(\mathrm{IC}_{50}=4.9 \mathrm{IxM}\right)$ acetylcholine receptors (AChR's) expressed in Xenopus laevis oocytes. ${ }^{24,25,26}$ Euniolide 30 has been found in significant amounts in specimens of E. mammosa collected off the west coast of Puerto Rico, which showed significant cytotoxicity against CHO-K1 cells. ${ }^{27}$

Bicyclic diterpene cembranolides

Sinulariolide (27)

14-deoxycrassin (34)

Crassin acetate (37)

Eupalmerin $\mathrm{R}=\mathrm{H}(\mathbf{2 8)}$
Eupalmerin acetate $\mathrm{R}=\mathrm{Ac}$ (29)

12,13-bisepieupalmerin (35)

Euniolide (30)

(+) Marsol (36)

Figure 3

Eupalmerone 31 having keto functionality in peripherry, isolated from E. mammosa collected in Desecheo Island near Puerto Rico. Uprolides 32 and its derivative isolated from E. mammosa near Puerto Rico show in vitro toxicity to several human tumor cell lines. ${ }^{28,29}$ The cembranolide 12,13-bisepieupalmerin 35 was isolated from specimens of E. succinea collected in St.Croix, U.S. Virgin Islands, and a biosynthetic precursor for the related cembranolides eunicin 38 and jeunicin 41 displayed strong in vitro cytotoxicity against CHO-KI cells and a very good nicotinic acetylcholine receptor (AChR). ${ }^{30}$ Succinolide 33 isolated from E. succinea from Puerto Rico a potent antitumor promoter.

Fused tricyclic cembranoids

$\begin{array}{ll}\text { Eunicin } & \mathrm{R}=\mathrm{H}(38) \\ \mathrm{R}=\mathrm{Ac}(38 \mathrm{a})\end{array}$

Jeunicin (41)

Cueunicin $\begin{aligned} & \mathrm{R}=\mathrm{H}(39) \\ & \mathrm{R}=\mathrm{Ac} \text { (39a) }\end{aligned}$

42

Eunicenolide (40)

43

Uproeunicin (44) $\mathrm{R}_{1}=\mathrm{Ac}, \mathrm{R}_{2}=\mathrm{H}$

Figure 4
The bicyclic oxa-bridged 2,5-dihydrofuran-containing cembranoid diterpene (+)-marasol 36 was isolated from the gorgonian Plexauraflexuosa from Puerto Rico, showed strong
cytotoxicity against CHO-K1 and HeLa cells. 14-deoxy crassin 34 and Crassin acetate 37 are the major constituent of the Caribbean gorgonian Pseudoplexaura porosa, were the first cembranolide possesses a α-methylene- δ - lactone ring to be isolated from marine sources shows cytotoxic activity.

The tricyclic cembranoids are most complex one having fused lactone ring with oxabridged bicyclic skeleton and the periphery is highly functionalized. Cembranoids belonging to these categories are eunicin 38, cuenicin 39, eunicenolide 40 , jeunicin 41, 42, 43 and uproeunicin 44 etc. Cembranoids belonging to this class contains a fused tricyclic core having 14-membered macrocyclic ring, an internal tetrahydropyran ring with fused tetrahydrofuran lactone and a highly functionalized peripherry. The cembranolides cueunicin 39 and cueunicin acetate 39a were isolated from the hexane extract of the Caribbean gorgonians, eunicea mammosa lamouroux collected in Bahamas. ${ }^{31}$

Cueunicin acetate 39a was a crystalline solid and its structure was unambiguously confirmed by the crystallographic study (Gupta etal, 1986). ${ }^{32}$ This study also reveals that Cueunicin is the only example where the cis fused γ-lactone assumes a planar geometry. Epipeunicin is an unstable 7-1actonic-cembranolide diterpene isolated from the same specimen of E. succinea, and its proposed structure is based on spectral data. 12,13Bisepieupalmerin possesses the correct stereochemistry to be a biosynthetic precursor for the related cembranolides eunicin 38 and jeunicin 41.

Eunicenolide 40, an epoxy cembranoid containing oxabridged bicyclic skeleton has been isolated from Caribbean gorgonian Eunicea succinea (phylum Coelenterate, class Anthozoa, subclass Octocorallia, order Gorgonacea, familyPlexauridae) collected near Mona Island off the westcoast of Puerto Rico (Abimael D. Rodrı'guez and Ana L. Acosta in 1998). A structure of 40 was carefully established by a combination of chemical and spectroscopic methods in addition to detailed NMR spectral comparisons with known cembranolide models. The biological study reveals that eunicenolide was the least toxic, displaying moderate cytotoxicity against only one ovarian (IGROV1), one nonsmall celllung (NCI-H522), and two leukemia (CCRF-CEM and RPMI-8226) cancer cell lines at concentrations of $10^{-5} \mathrm{M}$. Eunicin 38, an oxabridged bicyclic type cembranoid diterpene, was first isolated by Ciereszko and Weinheimer in 1960 from a marine soft coral Eunicea mammosa. ${ }^{33}$ The 3,13-oxabridged γ-lactone structure was proposed initially on
chemical and spectral grounds. Later on, the structural confirmation has been carried out by X-ray crystallographic analysis of the corresponding acetate. ${ }^{34}$ Biological study reveals that it is a potent cytotoxic and antineoplastic agent. Recent study shows that it is a strong nicotine acetylcholine receptor (nAChR) and active against several human tumor cells. ${ }^{35}$

After a thorough literature study of cembranoids, we noticed that though the tricyclic cembranoids like Eunicin and its analogues isolated in early 1960's but a single synthesis hasn't been reported till date, only few partial syntheses from known cembranolides has been reported. Many synthetic studies have been addressed for the synthesis of simple cembrane or epoxy cembrane, which contains only macrocyclic ring, but semi synthesis of fused tricyclic cembranoid has been reported by simple conversion of naturally isolated cembranes. The semi synthesis has been explained as follows: Rodriguez et al in 1995,

Scheme 1

have reported the semi synthesis of Eunicin and Jeunicin from 12,13-bisepieupalmerin via transannular back-side attack of the C13 hydroxyl group at C-3 of the epoxide and epimer of cueunicin 39 and epijeunicin $\mathbf{4 2}$ from eupalmerin $28 .{ }^{36}$

Scheme 2

Rodriguez et al in 2001 synthesized compound 45 and 46 from 35 by treatment of m CPBA as acid catalyst in benzene.

Scheme 3

Rodriguez et al in 2001 reported the acidolytic cleavage of the epoxide $\mathbf{3 5}$ using perchloric acid in chloroform at ambient temperature in 2 h resulted in a mixture of complex products like 38, 47, 48, 49, 50, 51 and 52.

Short review on oxa/aza bridged bicyclic systems using RCM reaction:

RCM reaction has been found a wide use in the construction of medium ring-sized carboand heterocycles, its use in the construction of medium sized bridged compound is scare. The review of the literature for making medium sized (7-9) ring-bridged oxa/aza bicycles by ring closing metathesis are mentioned below:

Scheme 4

Pedro de Armas et al ${ }^{37}$ synthesized the oxa bridged bicycles [4.2.1], [5.2.1] and [6.2.1] using a ring closing metathesis reaction of the suitably substituted 2,5-cis-dialkenyl tetrahydrofuran derivatives $\mathbf{5 3}$. The dienes $\mathbf{5 3}$ was easily synthesized in a stereospecific fashion from inexpensive, commercially available carbohydrates D-mannose using straightforward procedure. Upon treatment with Grubbs' catalyst (2 ${ }^{\text {nd }}$ generation) in refluxing benzene, underwent metathesis to afford the bicyclic products $\mathbf{5 4}$ in good yields.

Scheme 5

Tadano and co-workers ${ }^{38}$ prepared the core of Mycoepoxydiene, which was isolated from a fungal metabolite by fermentation of a fungus in the year1999. ${ }^{39}$ The synthesis of the 2,5diallyl tetrahydrofuran precursors 56 involved nine steps synthesis from the Diels-Alder adduct of furan and maleic anhydride 55. Treatment of Grubbs' $1^{\text {st }}$ generation catalyst in refluxing benzene resulted in the formation of bicyclic compound 57.

Scheme 6

Grubbs et al ${ }^{40}$ reported a synthesis of the bicyclic ether (-)-frontalin 62 employing an approach that featured a RCM reaction. The metathesis substrate $\mathbf{5 9}$ was prepared as a mixture of C-5 epimer, stereochemistry at C-1 was set by an asymmetric Mukaiyama allylation. When this mixture was treated with Grubbs' $1^{\text {st }}$ generation catalyst in benzene at room temperature, $(1 S, 5 S) 60$ and the cyclized product 61 were obtained.The uncyclized $(1 S, 5 S) 60$ was equilibrated under acidic conditions to provide a mixture of $(1 S, 5 S) 60$ and $(1 S, 5 R) \mathbf{6 0}$ that was resubjected to RCM conditions synthesizes 61. Hydrogenation of the double bond resuled in compound 62.

Scheme 7

Kigoshi et al ${ }^{41}$ reported an attempt to synthesize a trans bicycle [4.4.1] undecanone by means of ring closing metathesis. Trans 2,7-diallyl cycloheptanone was subjected to RCM
reaction by using $2^{\text {nd }}$ generation Grubbs' catalyst in refluxing toluene failed to provide the bicyclic enone 64 This led to the hypothesis that the intramolecular distance between the terminal double bonds is a key feature. Where as reducing bond distance $3.8 \mathrm{~A}^{\circ}$ to $3.6 \mathrm{~A}^{\circ}$ by some structural modification, the substrate $\mathbf{6 5}$ underwent ring-closing metathesis at a high temperature to yield compound 66 in 20\% yield.

Scheme 8

The bicyclic nitrogen heterocycles (-)-adaline70 is a major defensive alkaloid of the European ladybug Adalia bipunctata. Kibayashi et al ${ }^{42}$ synthesized compound 70 following RCM from the diene precursor 67. Where as 67 didn't undergo RCM in the presence of the Grubbs' $1^{\text {st }}$ generation catalyst. This failure was attributed to the diequatorial arrangement of the two alkenyl side chain. Converting $\mathrm{R}=\mathrm{H}$ to formyl derivative 67a underwent facile RCM with Grubbs’ $1^{\text {st }}$ generation catalyst results 69, which was subsequently transformed into the natural product 70.

PRESENT WORK

Present Work

Presence of syn- or anti-oxa brigded bicyclic ring in a tricyclic core is an important feature of the Cembranoid class of compounds. It is an intriguing unit present in many natural products such as eunicin, cueunicin, epieunicin and eunicenolide etc, and have attracted immense attention of organic chemists because of their complex architectural features and promising biological activities. ${ }^{43}$

Eunicin (38)

Cueunicin (39)

Eunicenolide (40)

Figure 5

As a part of our ongoing efforts directed towards the synthesis of natural products containing oxabridged bicyclic ring system, we envisioned that a furo [2,3-c] pyran diene linked to carbohydrate backbone would be a potential precursor. There are several protocols available in literature for the cyclisation. One of the preferred methods to prepare oxa-bridged bicyclic ring exploits a ring closing metathesis reaction using Grubbs'catalysts. As the literature study accounted us higher membered (>10 membered ring) heteroatom containg bridged bicycles synthesis, using RCM condition wasn't reported till date, so we thought of making a 14-membered cyclic ring of eunicin and its analogues employing RCM reaction (Figure 6).

Figure 6

In the beginning of our synthetic endeavor, we planned to synthesize the tricyclic core skeleton of Eunicin like cembranoid and its analogues (Figure 6) using RCM as the key reaction. Here a retrosynthetic analysis was planned, which was depicted in Figure 7.
Retrosynthetic analysis:

75

Figure 7
According to retrosynthetic analysis it was envisaged to cleave the double bond of ring C in 71 led to the furo [2,3-c] pyran diene 72. The dihydropyran ring 72 can be synthesized by silver(I) mediated cycloetherification of β-allenic alcohol 73, where as 73 could be obtained from allenenic precursor 74 by regular transansformations. Compound 74 can be synthesized by organocuprate mediated $\mathrm{S}_{\mathrm{N}} 2$ reaction of propargyl acetate 75 , which inturn synthesized from known propargyl alcohol 76. Propargyl alcohol 76 can be synthesized from 1,2:5,6-di-O-isopropylidine-D(+)-glucose 77.

According to retrosynthetic analysis our synthesis started from alkyne precursor 76, which was synthesized from glucosediacetonide in a two step synthesis following known literature procedure. ${ }^{44}$

Scheme 9

The commercially available diacetonide glucofuranose (77) was oxidized using Pyridiniumdichromate in presence of $4 \mathrm{~A}^{\circ}$ molecular sieves powder and $\mathrm{Ac}_{2} \mathrm{O}$ (cat) in anhydrous dichloromethane to give 1,2:5,6-di-o-isopropylidiene- α-D-ribo-hexofuranose-3ulose 78, which was treated with acetylene magnesium chloride (prepared by the exchange of butylmagnesium chloride and acetylene gas) in tetrahydrofuran at $0{ }^{\circ} \mathrm{C}$ to room temperature for 1 h afforded propargyl alcohol 76 in good yield. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR, melting point and optical rotation of 76 were identical to the reported values (Scheme 9).

Scheme 10

The tertiaryalcohol of 76 was acylated by using $\mathrm{Ac}_{2} \mathrm{O}$, pyridine and DMAP (catalytic) in dichloromethane to yield 75. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 75 , the characteristic methyl proton signal of acetate group was appeared as a singlet at $\delta 2.12 \mathrm{ppm}$ and the acetylinic proton signal observed at $\delta 2.72 \mathrm{ppm}$ as a singlet. The other proton resonances of 75 were in accordance with the assigned structure. In the ${ }^{13} \mathrm{C}$ NMR spectrum resonances
due to distinguishing carbonyl carbon signal of acetate group was observed at $\delta 168.4 \mathrm{ppm}$ confirmed the assigned structure (Scheme 10).
Scheme 11

75

Having compound 75 in hand, our immediate concern was to carryout organocuprateinduced 1, 3 -substitution reaction to result in allenic moiety 74 . Thus acetate 75 was subjected with Pentenylmagnesiumbromide ${ }^{45}$ inpresence of CuBr (cat) at $-10^{\circ} \mathrm{C}$ furnished 3-allenic moiety 74 in moderate yield, where as using CuBr stochiometrically, 74 was obtained with good yield as a single product. ${ }^{46}$ In the ${ }^{1} \mathrm{H}$ NMR spectrum of 74 resonances corresponding to the allenic proton was apparent at $\delta 5.78 \mathrm{ppm}$ as a multiplet. In addition, the olefinic methine proton signal was observed at $\delta 5.52 \mathrm{ppm}$ as a multiplet integrating to one proton whilst terminal methylene protons of alkene was found at $\delta 5.04-4.94 \mathrm{ppm}$. In the ${ }^{13} \mathrm{C}$ NMR spectrum three allenic carbons signals were resonated at $198.5,101.9,96.2$ ppm whilst in the DEPT spectrum the disappearance of signal at $\delta 198.5$, 101.9 indicating quaternary carbon of allene. In the ${ }^{13} \mathrm{C}$ NMR spectrum the -CH and $-\mathrm{CH}_{2}$ carbons of olefin was resonated at $\delta 138.1$ and 115.1 ppm , where the $-\mathrm{CH}_{2}$ carbon signals was unambiguously identified at 115.1 ppm in the DEPT spectrum. The structure was further confirmed by elemental and mass analysis (Scheme 11).

Stereochemical Rationale: The $\mathrm{S}_{\mathrm{N}} 2$ substitution of progargyl derivatives by organocuprates was proposed to proceed through a copper(III) intermediate 75a (Figure 8). ${ }^{47}$ The in situ generated organocuprate coordinated with the acetylenic moiety of the propargyl derivative to form a copper(III) π-complexes 75a, which underwent subsequent elimination of the leaving group when the copper and the leaving group possessed an antiperiplanar disposition. Besides the interaction between the copper p, d orbitals and acetylenic π, π^{*} orbitals, the electron donation from a copper d orbital to the antibonding orbital of the $\mathrm{C}-\mathrm{O} \sigma^{*}$ bond is also conceivable. It was proposed that this latter interaction
initiated the dissociation of the leaving group. The resulting allenic cuprate $75 \mathbf{b}$ collapsed by reductive elimination, regenerating the halocopper and giving the allene product 74 with an overall anti-SN2 stereochemistry. In some special cases an overall syn $\mathrm{S}_{\mathrm{N}} 2$ 'stereochemistry was observed, probably due to syn elimination of the Π-complex.

Mechanistic explanation on stereochemistry

Figure 8
From the mechanistic study it was concluded that allene 74 was formed as a single product because of exclusive anti $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ mechanism, ${ }^{48}$ where the pentenyl anion attacked on the β face resulting acetate departure from α face. The exclusive transannular departure was also assisted by the constrained structure of sugar substrate.

Scheme 12

In order to continue our synthetic endeavour the 5,6 -isopropylidine group of 74 was selectively cleaved using 0.8% aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in methanol to give diol 79 as a syrup. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 79, the signals for isopropylidene protons were disappeared and the methylene protons and methine protons linked to -OH group were appeared at δ $3.74-3.67 \mathrm{ppm}$ as a multiplet in addition, two hydroxyl proton signals resonated as two broad singlet at $\delta 2.95$ (brs, 1H) and 2.60 (brs, 1H) ppm integrating for one proton each along with all other resonances according to the assigned structure. In the ${ }^{13} \mathrm{C}$ NMR spectrum the $-\mathrm{CH}_{2}$ and -CH carbons linked to hydroxyl group were observed at $\delta 62.6$ and 73.5 ppm , which were further confirmed from DEPT spectrum. IR ($3600 \mathrm{~cm}^{-1}$) and elemental analysis data also supported the formation of 79 (Scheme 12).
After synthesizing allenic alcohol it was worth to mention about the superb ability of allenes. Methods for transforming allenes into various other functionalities, in a stereoselective manner, have attracted more attention. Furthermore, the superb ability of allenes to transfer axial chirality to new stereogenic centers is being increasingly exploited in synthetic applications. The ability of allenic alcohols to enter into reactions in an inter or intramolecular fashion makes them valuable intermediate for the preparation of synthetically useful substances. Generally in the presence of mercury(II) or silver(I) ions, the β, γ allenic alcohol cyclizes to give six membered or seven membered cyclic ring. Here, we can also exploit allene 79 for metal mediated cycloetherification reaction for our synthesis. Before going to the synthetic point, it is very much essential to know about the mode of cyclisation and also the nomenclature of the cyclic compounds, which was well documented from Baldwin's rule.

Short account of Baldwin rules for ringclosure

Baldwin suggested a set of empirical rules for the prediction of ring closure, outcome of the intramolecular addition of nucleophiles or radicals to electrophilic center. The nomenclature of these rules is written as e.g. 4-Exo-Trig 4-indicate the ring size being formed. Exo-indicate where displaced electron end up (if it ends up out side the ring being formed; then exo and if it ends up within the ring being formed; then Endo)

Trig- indicates the geometry of electrophilic atom on which attack takes place. \{if it is sp^{3}; then Tet (tetrahedral), if it is sp^{2}; then Trig (trigonal) and if it is sp: then Dig (diagonal) \}.
The Baldwin rules are listed in the tabulated form below. These rules suggest wheather the ring closure is favored $(\sqrt{ })$ or disfavored (x).

Ring size Being formed	Exo			Endo		
	Dig	Trig	Tet	Dig	Trig	Tet
3	X	\checkmark	\checkmark	\checkmark	x	\checkmark
4	x	\checkmark	\checkmark	\checkmark	X	\checkmark
5	\checkmark	\checkmark	\checkmark	\checkmark	X	X
6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	x
7	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Possible mode of cyclisation

Figure 9

According to Baldwin's rule we can expect compound $\mathbf{8 0}$ and $\mathbf{8 1}$ will be formed from $\mathbf{7 9}$ by $\operatorname{Ag}(\mathrm{I})$ mediated cyclization due to 6-endo-trig and 7-endo-trig mode of cyclisation.

Scheme 13

To check the practical regioselective mode of cyclisation we planned to employ $\operatorname{Ag}(\mathrm{I})$ mediated cycloetherification reaction. ${ }^{49}$ Accordingly allenediol 79 was treated to AgNO_{3} in anhydrous acetone at ambient temperature in 12 h afforded cyclic ether $\mathbf{8 0}$ as a single product. To study the mode of cyclisation in high temperature we have carried out same sort of reaction in refluxing acetone also found product $\mathbf{8 0}$ exclusively. Formation of $\mathbf{8 0}$ as a single product, indicating 6 -endo-trig mode of cyclisation is the favoured one, and the ring formation was independent upon kinetic and thermodynamic factor. Resulted compound was confirmed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, DEPT and elemental analysis. In the ${ }^{1} \mathrm{H}$ NMR
spectrum of the compound $\mathbf{8 0}$, the allenic proton signal was dissappeared and the resonances corresponding to ring alkene -CH signal was apparent at $\delta 5.86 \mathrm{ppm}$ as a triplet integrating for one proton. The methine protons linked to oxygenatom of dihydropyran ring were observed at $\delta 3.23$ (ddd, $J=2.8,6.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}$) and $\delta 4.30$ (ddd, $J=1.8,4.3$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$ respectively. In the ${ }^{13} \mathrm{C}$ NMR spectrum the ring olefinic carbon signals were resonated at $\delta 136.4$ and 126.3 ppm . In the DEPT spectrum disappearance of signal at $\delta 136.4 \mathrm{ppm}$ indicating quaternary carbon of olefin, inaddition the negative resonances for $\mathrm{CH}_{2} \mathrm{OH}$ carbon was observed at $\delta 63.2 \mathrm{ppm}$ and all other carbon resonated at their expected positions assigned the structure of $\mathbf{8 0}$. Elemental analysis data also supported the formation of $\mathbf{8 0}$ (Scheme 13).

Figure 10
Stereochemistry of the substituted dihydro Pyran ring 80 was assigned by the help of NOESY study, where the targeted H5 and H8 protons weren't showing any nOe interactions assigning to anti conformation (Figure 10).

The presence of primary hydroxyl group in $\mathbf{8 0}$ was further confirmed by converting to acetate derivative 82 .
Scheme 14

Compound 80 on treatment with $\mathrm{Ac}_{2} \mathrm{O}$, pyridine in dichloromethane resulted in acetate derivative 82. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 2}$ methylene protons linked to acetate group was observed at $\delta 4.15-4.10(\mathrm{~m}, 2 \mathrm{H})$, where as in $\mathbf{8 0}$ the corresponding protons appeared at $\delta 3.87(\mathrm{dd}, J=2.8,11.8 \mathrm{~Hz}, 1 \mathrm{H})$ and $3.70(\mathrm{dd}, J=6.1,11.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$ respectively.

Shifting of $\delta 0.40 \mathrm{ppm}$ by acetate conversion confirmed the presence of primary hydroxyl group in 80. This information also concluded the formation of six membered ring instead of seven membered ring in AgNO_{3} mediated cycloetherification reaction (Scheme14).
Since our retrosynthetic approach requires a syn-dihydropyran-ring, the prime concern was to establish the requisite stereogenic center at C-5 position.

Scheme 15

Accordingly diol 79 was oxidatively cleaved with silicagel supported sodium metaperiodate to give aldehyde 83, subsequent treatment with hexenyl magnesium bromide in $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ resulted in diastereomeric mixture $\mathbf{7 3}$ and $\mathbf{8 4}$ in 7:3 ratio, expected due to chelation controlled method (anti crams product, Figure 11) and the newly generated stereogenic center of major isomer was assumed as S, on the basis of previous report. ${ }^{50}$

Figure 11
The diene moiety 73 and $\mathbf{8 4}$ were confirmed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and DEPT NMR study.
In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 3}$, the aldehyde proton signal of 83 was absent and new distinguished resonances were apparent at $\delta 5.75-5.67$ and $4.95-4.84 \mathrm{ppm}$ integrating to two and four protons corresponding to methine and methylene protons of two alkene groups. A similar changes was observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 4}$. In addition methine proton linked to -OH group in 73 was observed at $\delta 3.43(\mathrm{~m}, 1 \mathrm{H})$ while the same proton in 84 was appeared at $\delta 3.46(\mathrm{~m}, 1 \mathrm{H})$. Additionally, appearance of five new $-\mathrm{CH}_{2}$ signals in DEPT spectrum unambiguously determined the clean conversion of 83 to 73 (scheme-8). Compound 84 was confirmed in similar manner. Further confirmation was carried out by elemental analysis (Scheme 15).

Scheme 16

72
Cyclo-etherification of 73 was performed with AgNO_{3} in dry acetone at room temperature for 36 h afforded the bicyclic derivatives 72 exclusively. The longer duration of reaction was expected due to more substituted allene. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 72 the allenic proton signal was absent at $\delta 5.46 \mathrm{ppm}$, the- CH proton signal of ring olefin observed at δ 5.99 ppm and the methine protons linked to oxygen atom of dihydropyran ring was apparent at $\delta 3.63$ and 3.72 ppm integrating one proton for each. In the ${ }^{13} \mathrm{C}$ NMR spectrum, the ring olefinic carbon signals were resonated at $\delta 136.1$ and 130.6 ppm whilst the
oxymethine carbon signals of dihydropyran ring was observed at $\delta 73.1$ and 70.6 ppm . The stereochemistry of the dihydropyran rings in 72 was assigned as cis with the help of NOESY studies, where the targeted H5 and H7 protons showed strong nOe interactions. Elemental and mass analysis data also confirmed the assigned structure (Figure 12).

After synthesizing syn dihydropyran diene we planned to synthesize anti dihydropyran diene from compound $\mathbf{8 4}$. Thus, compound $\mathbf{8 4}$ was subjected with AgNO_{3} in dry acetone at

Scheme 17

room temperature for 36 h afforded the bicyclic derivatives 85 exclusively. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 85 the methine protons linked to oxygen atom of dihydropyran ring were identified at $\delta 3.00$ and $4.16-4.11 \mathrm{ppm}$ respectively and the corresponding carbons were resonated at $\delta 73.0$ and 71.4 ppm in the ${ }^{13} \mathrm{C}$ NMR spectrum. The -CH carbon of ring olefin was observed at $\delta 126.9 \mathrm{ppm}$ (Scheme 17). The stereochemistry of the dihydropyran rings in 85 was assigned as trans with the help of NOESY experiments, where the ringadjoined protons didn't show any nOe interactions (Figure 12).

Compound-72

Figure 12 nOe studies on 72 and 85

Having syn and anti dihydropyran diene we planned to do RCM reaction. The ring closing metathesis of the diene 72 was performed with $10 \mathrm{~mol} \%$ of Grubbs' $1^{\text {st }}$ generation catalyst $\left[(\mathrm{Pcy})_{3} \mathrm{Cl}_{2} \mathrm{Ru}=\mathrm{CHPh}\right]$ in dichloromethane at room temperature and continued to reflux condition failed to give the desired cyclic product 71, but resulted in noncharacterizable polymeric mixture. Where as, carrying out same reaction in refluxing benzene proceeded efficiently to give the requisite E isomer 71. ${ }^{51}$

Scheme 18

Grubbs1st generation catalyst

In the ${ }^{1} \mathrm{H}$ NMR spectrum of 71 resonances due to characteristic olefinic proton appeared at $\delta 5.33(\mathrm{dt}, J=7.5,15.3 \mathrm{~Hz}, 1 \mathrm{H})$ and $5.11(\mathrm{dt}, J=6.9,15.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. The $E-$ configuration for the olefinic protons were evident from the large coupling constant ($J=$ 15.3 Hz). In the ${ }^{13} \mathrm{C}$ NMR spectrum of 71 the olefinic carbon signals were resonated at δ 129.4 and 129.0 ppm , and the olefinic carbon signals of dihydropyran ring was shifted to downfield and observed at $\delta 135.1$ and 133.7 ppm . All other carbons resonated at their expected chemical shift assigned the structure of 71 (Scheme 18).
Scheme 19

However, the RCM of $\mathbf{8 5}$ with Grubbs' $1^{\text {st }}$ generation catalyst found to be sluggish and resulted in an intractable polymeric mixture. Further carrying out same reaction with Grubbs' $2^{\text {nd }}$ generation catalyst in different solvents (dichloroethane/benzene/toluene) with different concentrations, didn't give any fruitful result, in all cases noncharacterizable polymeric mixture was obtained (Scheme 19).
The proposed mechanism for the ring closing metathesis is outlined in Figure 13.

Mechanism of ring closing metathesis

Figure 13

After establishing a strategy for the construction of twelve membered oxabridged bicyclic ring similar to the eunicin-like cembranoids, we next focussed our attention for the
generalization of our strategies. Thus we planned to synthesize eleven membered cyclic ring.

Scheme 20

Accordingly, aldehyde 83 on treatment with pentenyl magnesium bromide in anhydrous $\mathrm{Et}_{2} \mathrm{O}$ at $0{ }^{\circ} \mathrm{C}$, resulted in diastereomeric mixture 87 and 88 in 7:3 ratio. The major isomer was fast moving and minor one slower moving in TLC. Both the compounds were seperarated by flash silica gel chromatography. The ${ }^{1}$ H NMR spectrum of 87 showed the methine proton signal of olefin resonated at $\delta 5.82-5.74 \mathrm{ppm}$ as a multiplet and the terminal methylene protons of olefin at $\delta 5.03-4.93 \mathrm{ppm}$ as multiplet. Again the methine proton linked to -OH group appeared at $\delta 3.52(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$. Similarly in compound $\mathbf{8 8}$, the olefinic methine and methylene proton signals were resonated at $\delta 5.81-5.74$ and 5.065.01 ppm as multiplet respectively. The methine proton linked to -OH group was apparent at $\delta 3.53(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$. Further structural confirmation was carried out by ${ }^{13} \mathrm{C}$ and elemental analysis data (Scheme 20).

Scheme 21

Cycloetherification of 87 was accomplished with AgNO_{3} in anhydrous acetone at room temperature for $\mathbf{3 6 h}$ afforded $\mathbf{8 9}$ in good yield. The structure of $\mathbf{8 9}$ was characterized by its ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and elemental analysis. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 9}$ the allenic proton of 87 was absent at $\delta 5.55 \mathrm{ppm}$ and the methine proton of ring olefin was observed at $\delta 6.02$ ppm as a singlet The methine proton linked to oxygen atom of dihydropyran ring was apparent at $\delta 3.74$ and 3.66 ppm . In the ${ }^{13} \mathrm{C}$ NMR spectrum the -CH carbon linked to oxygen atom of dihydropyran ring was identified at $\delta 73.3,70.8 \mathrm{ppm}$ while the ring olefinic carbons were observed at $\delta 136.3$ and 130.6 ppm . In the DEPT spectrum, disappearance of signal at $\delta 136.3 \mathrm{ppm}$ indicating to olefinic quaternary carbon. Further confirmation was carried out by elemental analysis. Stereochemistry around the dihydropyran ring was assigned as syn by NOESY spectrum, where the targeted protons at $5^{\text {th }}$ and $7^{\text {th }}$ position showed strong nOe interactions.

Figure 14 nOe studies on 89
Compound 88 was exposed to AgNO_{3} in anhydrous acetone gave dihydropyrandiene $\mathbf{9 0}$ exclusively. The ${ }^{1} \mathrm{H}$ NMR spectrum of 90 the ring olefinic methine proton signal was apparent at $\delta 5.83 \mathrm{ppm}$ as a singlet. The allylic methine protons linked to oxygen atom of dihydropyran ring was observed at $\delta 4.18 \mathrm{ppm}$ while other methine proton linked to ring oxygen appeared at $\delta 3.06 \mathrm{ppm}$. In the ${ }^{13} \mathrm{C}$ NMR spectrum the ring olefinic carbon signals observed at $\delta 134.1$ and 126.4 ppm while -CH carbons linked to oxygen atom of dihydropyran ring was observed at $\delta 72.3$ and 67.9 ppm respectively. Elemental analysis

Scheme 22

data also supported the formation of $\mathbf{9 0}$. The stereochemistry around the dihydropyran ring was assigned by NOESY spectrum, where the H-5 proton was not showing nOe interaction with H-7 indicating they have anti conformation (Scheme 22).

Scheme 23

Having syndiene 89 in hand, we carried out ring closing metathesis reaction following earlier conditions. Accordingly $10 \mathrm{~mol} \%$ of Grubbs' $1^{\text {st }}$ generation catalyst was treated to 89 in degassed benzene under argon atmosphere. The reaction mixture was refluxed for 12 h furnished cyclic compound $\mathbf{9 1}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9 1}$ the characteristic olefinic protons signals were identified at $\delta 5.31-5.21(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR spectrum showed a peak at $\delta 130.5 \mathrm{ppm}$ corresponding to olefinic carbons. Although, we obtained only single isomer but the geometry wasn't determined as the olefinic protons appeared as a complex multiplet (Scheme 23).

Scheme 24

Treatment of Grubbs' $1^{\text {st }}$ generation catalyst on anti dihydropyran diene 90 in degassed benzene under argon atmosphere refluxed for 12-48 h turned out to be unsuccessful. Here we have examined various conditions but in all cases we failed to achieve compound 92
(Scheme 24). After the successful synthesis of eleven membered cyclic ring 91 we envisaged of making ten and nine membered cyclic ring following same strategies.
Scheme 25

Accordingly, treatment of butenyl magnesium bromide on aldehyde 83, at $0{ }^{\circ} \mathrm{C}$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}$ resulted in diastereomeric mixture $\mathbf{9 3}$ and $\mathbf{9 4}$ in 7:3 ratio. The structural features of $\mathbf{9 3}$ and $\mathbf{9 4}$ were deduced from ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and elemental analysis (Scheme 25).

Scheme 26

The β-allenic alcohol 93 subjected with $\operatorname{Ag}(\mathrm{I})$, in anhydrous acetone at room temperature for 36 h resulted in $\mathbf{9 5} .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{9 5}$ showed the methine proton signal of ring olefin at $\delta 6.0 \mathrm{ppm}$ while the allylic methine proton linked to oxygen atom of dihydropyran ring resonated at $\delta 3.73 \mathrm{ppm}$ and other oxymethine proton observed at $\delta 3.68$ ppm . In the ${ }^{13} \mathrm{C}$ NMR spectrum the -CH carbon of ring olefin observed at $\delta 130.3 \mathrm{ppm}$ and the quaternary carbon of olefin observed at $\delta 136.3 \mathrm{ppm}$. The -CH carbons linked to oxygen atom of dihydropyran ring was resonated at $\delta 72.9$ and 70.4 ppm . The stereochemistry around the dihydropyran ring was assigned as syn with respect to C5
proton by NOESY study, where the targeted oxymethine protons showed strong nOe interactions. The elemental analysis data also supported the formation of $\mathbf{9 5}$ (Scheme 26).
Scheme 27

Cycloetherification of 94 was carried out with AgNO_{3} in anhydrous acetone at room temperature in 36 h gave $\mathbf{9 6}$ exclusively. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9 6}$ the methine proton of ring olefin resonated at $\delta 5.78-5.70 \mathrm{ppm}$ while the allylic methine proton linked to oxygen atom of dihydropyran ring resonated at $\delta 4.20-4.15 \mathrm{ppm}$ and other oxymethine proton observed at $\delta 3.03 \mathrm{ppm}$. In the ${ }^{13} \mathrm{C}$ NMR spectrum the -CH carbon of ring olefin observed at $\delta 126.7 \mathrm{ppm}$ while the quaternary carbon at $\delta 136.2 \mathrm{ppm}$. The -CH carbons linked to oxygen atom of dihydropyran ring was resonated at $\delta 72.9$ and 70.6 ppm (Scheme 27). As above mentioned the stereochemistry of the substituted dihydropyran ring 95 was syn as the oxymethine protons showed strong interactions. But in the NOESY spectrum of $\mathbf{9 6}$ the oxymethine protons linked to oxygen atom of dihydropyran ring wasn't

Figure 15. nOe studies on 95 and 96
showing any interaction assigning anti confirmation (Figure 15). Now both the diene moiety were ready for ring closing metathesis. We have first attempted on the syndiene 95.

Scheme 28

Compound 95 was subjected with Grubbs $1^{\text {st }}$ generation catalyst ($20 \mathrm{~mol} \%$) in degassed benzene under argon atmosphere didn't give 97. Here, we have repeated same sort of reaction by using Grubbs' 2 nd generation catalyst in different solvent also failed to achieve 97 (Scheme 28).

Scheme 29

96

98

Being failed to achieve ten membered cyclic ring 97 from 95, we planned to do same reaction in anti diene substrate $\mathbf{9 6}$ to check the feasibility of RCM reaction. Treatment of Grubbs' $1^{\text {st }}$ generation $/ 2^{\text {nd }}$ catalyst on 96 in degassed benzene $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ under argon atmosphere also failed to achieve the cyclic compound 98, but some complex reaction mixture was obtained (Scheme 29).

As we becames unsuccessful to achieve the ten-membered cyclic ring in both syn and anti dihydropyran diene, we selected a suitable substrate to examine the feasibility of 9membered cyclic ring. Accordingly, treatment of methallyl magnesium chloride at $0{ }^{\circ} \mathrm{C}$ on aldehyde $\mathbf{8 3}$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}$, resulted in diastereomeric mixture $\mathbf{9 9}$ and $\mathbf{1 0 0}$ in 7:3 ratio. Both the diastereomer were seperated by flash silica gel chromatography (Scheme-30). Newly generated stereogenic center at C5 in 99 and 100 was assumed as S and R by previous report. ${ }^{50}$ Compound 99 and 100 were confirmed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and elemental analysis. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9 9}$ due to methallyl group one new methyl signal appeared at $\delta 1.77 \mathrm{ppm}$ integrating for three protons and the terminal methylene protons of olefin resonated at $\delta 4.86-4.82 \mathrm{ppm}$ integrating to two protons. The methine proton linked to -OH group observed at $\delta 3.73 \mathrm{ppm}$. In the ${ }^{13} \mathrm{C}$ NMR spectrum the $-\mathrm{CH}_{2}$ carbon of olefin
resonated at $\delta 113.2 \mathrm{ppm}$. Similarly in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 0}$ the methyl proton signals appeared at $\delta 1.77 \mathrm{ppm}$ integrating for three protons and the methylene protons observed at

Scheme 30

$\delta 4.99-4.91 \mathrm{ppm}$ due to methallyl olefin. Elemental analysis data also supported the formation of $\mathbf{9 9}$ and 100 (Scheme 30).
Having β-allenic alcohols $\mathbf{9 9}$ and $\mathbf{1 0 0}$ we planned to carryout cycloetherification to prepare the precursor for ring closing metathesis reaction. Accordingly compound 99 was subjected with AgNO_{3} in anhydrous acetone in room temperature stirring for 36 h resulted in 101. ${ }^{1} \mathrm{H}$ NMR spectrum of 101 the allenic proton signal was disappeared and the ring olefinic

Scheme 31

proton signal was observed at $\delta 6.04 \mathrm{ppm}$ as a triplet integrating to one proton. The allylic oxymethine proton of dihydropyran ring was identified at $\delta 3.85 \mathrm{ppm}$ while other oxymethine proton resonated at $\delta 3.76 \mathrm{ppm}$. The methine proton corresponding to ring olefin was apparent at $\delta 6.04 \mathrm{ppm}$ appeared as a triplet. In the ${ }^{13} \mathrm{C}$ NMR spectrum the -CH
carbons linked to oxygen atom of dihydropyran ring was identified at $\delta 73.4$ and 70.8 ppm respectively while -CH and the quaternary carbon signals of ring olefin was observed at δ 130.8 and 136.2 ppm.(Scheme 31).

Scheme 32

Having syn dihydropyran 101 in hand, we planned to synthesize the anti dihydropyran diene 102 from 100. Accordingly, compound 100 was subjected with $\operatorname{Ag}(\mathrm{I})$ in anhydrous acetone furnished $\mathbf{1 0 2}$ in good yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 2}$ the allenic proton signal was absent and the ring olefinic proton was resonated at $\delta 5.85 \mathrm{ppm}$. Further confirmation was carried out by ${ }^{13} \mathrm{C}$ and DEPT NMR study. The stereochemistry around the dihydropyran ring of $\mathbf{1 0 1}$ and $\mathbf{1 0 2}$ was assigned as syn and anti by NOESY studies.

Compound-101

Figure 16. nOe studies on 101 and 102

To check the feasibility of 9-membered-cyclic-ring formation, Compound 101 was subjected with Grubbs $1^{\text {st }}$ generation catalyst in degassed benzene refluxed for 12-36 h , afforded desired cyclic compound 103. The resulted compound was confirmed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and elemental analysis (Scheme 33).

Scheme 33

In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 3}$ the olefinic protons of the 9-membered-ring was appeared at $\delta 5.53 \mathrm{ppm}$ as a triplet. Similarly, in the ${ }^{13} \mathrm{C}$ NMR spectrum the -CH carbon of olefin was apparent at $\delta 127.2 \mathrm{ppm}$ while the quaternary carbon was observed at $\delta 135.7 \mathrm{ppm}$ and all other carbons resonated at their expected position confirming the assigned structure. Although, we got only single isomer but the geometry wasn't determined as the olefinic protons were appeared as complex multiplet. In addition the elemental and mass analysis data also supported the formation of $\mathbf{1 0 3}$ (Scheme 33).

Scheme 34

Successful synthesis of 103 inspired us to carryout RCM reaction on anti dihydropyran diene 102. Accordingly, treatment of Grubbs' $1^{\text {st }}$ generation catalyst in degassed benzene at reflux condition afforded some polymeric mixture but failed to give desired cyclic product. But treatment of Grubbs' $2^{\text {nd }}$ generation catalyst on 102 at refluxing benzene surprisingly, furnished a dimeric product 104 in 76% yield. After a thorough analysis of ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 4}$, we found nine protons observed at $\delta 5.83$ to 3.25 ppm while in the nine membered cyclic product 103 seven protons observed in that region. Presence of two additional proton signals indicating the formation of dimeric structure $\mathbf{1 0 4}$. In the ${ }^{13} \mathrm{C}$

NMR spectrum the C11 and C12 olefinic carbon signals were resonated at $\delta 130.2$ and 129.7 ppm , all other signals appeared at their respective values. Elemental analysis and mass spectrometry data also supported the formation of dimeric structure of $\mathbf{1 0 4}$ (Scheme 34).

Summary:

We have synthesized stereoselectively the sugar allene and explored its synthetic potential by regioselective mode of cycloetherification. RCM approach for the synthesis of oxa-bridged-bicyclic-ring with different ring sizes was studied and observed that only syn diene substrates underwent ring closing metathesis whereas the anti dienes yielded dimeric and polymeric components. When the ring size was 12,11 , and 9 the RCM of syn diene gave single cyclic product.

EXPERIMENTAL

3-C-Ethynyl-3-O-acetyl-1,2:5,6-di-O-isopropylidene- α-D-allofuranose (75)

To a solution of compound $76(20 \mathrm{~g}, 79.3 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$, pyridine $(4.5 \mathrm{~mL}, 158.6 \mathrm{mmol})$ were added $\mathrm{Ac}_{2} \mathrm{O}(11.24 \mathrm{~mL}, 119.0 \mathrm{mmol})$ and cat.DMAP (0.960 g , 0.793 mmol) and stirred at room temperature for 30 min . The reaction mixture was diluted with water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with saturated aq. NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and Concentrated. The residue purified by silica gel column chromatography (30% EtOAc/light petroleum) to give $75(19.05 \mathrm{~g})$ as a yellow solid. $\mathrm{R}_{f}=0.5(60 \% \mathrm{EtOAc} /$ light petroleum)

Yield
Mol.Formula
$[\alpha]_{D}{ }^{25}$
IR $\left(\mathbf{C H C l}_{3}\right) \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
$\left.{ }^{13} \mathbf{C ~ N M R ~ (C D C l} 3, \mathbf{5 0 M H z}\right) \quad 168.4,113.2,109.4,104.1,82.8,80.3,77.9,77.8,77.7$,

Elemental Analysis
74.5, 66.4, 26.8, 26.7, 26.5, 25.3, 20.8

83\%
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{7}$

29.3 (c 1.1, CHCl_{3})

3304, 3019, 2991, 2936, 2119, 1751, 1642, 1559, $1455,1383,1374,1217,1166,1078,668,512$
$\delta 5.84(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.40(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.06(\mathrm{~m}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 1 \mathrm{H}), 2.12$. $(\mathrm{s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.33$ (s, 3H).

Calcd: C, 58.8; H, 6.74
Found: C, 58.53; H, 6.87

1,2:5,6-di- O-isopropylidene-3-deoxy-3-C-(3-octa-1,7-dienylidene)- α-D-ribo-

 hexofuranose (74)

To a suspension of magnesium ($4.65 \mathrm{~g}, 194 \mathrm{mmol})$ in anhydrous THF $(250 \mathrm{~mL})$, pentenyl bromide ($19.3 \mathrm{~mL}, 129.4 \mathrm{mmol}$) was added dropwise at $0{ }^{\circ} \mathrm{C}$ and stirred for 45 min . The resulted Grignard solution was added dropwise to the premixed solution of $\mathbf{7 5}(18.2 \mathrm{~g}, 64.7$ mmol) and $\mathrm{CuBr}(18.6 \mathrm{~g}, 129.4 \mathrm{mmol})$ in THF $(150 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ and the resulting solution was stirred for another 1 h at same temperature. Reaction mixture was poured into the cold saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and stirred for 30 min . The resulting suspension was filtered, and washed with ethylacetate. Organic layer was seperated and the aqueous layer was extracted with ethylacetate (5 x 100 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silicagel column chromatography (30% EtOAc:light petroleum) to afford 74 (13.31 g) as a colorless liquid. $\mathrm{R}_{f}=0.5$ (30\% Ethylacetate/light petroleum)

Yield

Mol.Formula
$[0]{ }_{D}{ }^{25}$
IR ($\left.\mathbf{C H C l}_{3}\right)_{\mathrm{cm}^{-1}}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right)$
71%
$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5}$

$$
164.8\left(c \quad 2.7, \mathrm{CHCl}_{3}\right)
$$

3017, 2988, 2936, 1977, 1640, 1064, 1045
$\delta 5.84(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H}), 5.52(\mathrm{~m}, 1 \mathrm{H})$, $5.04-4.94(\mathrm{~m}, 3 \mathrm{H}), 4.83(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dt}, J$ $=4.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{ddd}, J=2.5,6.8,8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84$ (ddd, $J=2.4,6.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.06(\mathrm{~m}$, $4 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$, $1.36(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5} \mathbf{~ M H z}\right) \quad 198.5,138.1,115.1,112.4,109.62,105.2,101.9,96.2$, 82.1, 78.4, 77.5, 65.4, 33.1, 28.1, 28.0, 27.4, 26.4, 25.4 .

Elemental Analysis
Calcd: C, 67.85; H, 8.33
Found: C, 67.77; H, 8.61.

1, 2- O-isopropylidene-3-deoxy-3-C-(3-octa-1,7-dienylidene)- α-d-ribo-hexofuranose

 (79)

A solution of $74(15.8 \mathrm{~g})$ in $\mathrm{MeOH}(150 \mathrm{~mL})$ was stirred with $0.8 \% \mathrm{H}_{2} \mathrm{SO}_{4}(75 \mathrm{~mL})$ at room temperature for 8 h . Reaction mixture was neutralized by adding saturated NaHCO_{3} solution portion wise, concentrated, diluted with water and extracted with ethylacetate (3 x 100 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (60% EtOAc:light petroleum) to afford $79(10.5 \mathrm{~g})$ as a colourless oil. $\mathrm{R}_{f}=0.3(50 \% \mathrm{EtOAc} /$ light petroleum)

Yield
Mol.Formula
$[\alpha]_{D}{ }^{25}$
IR $\left(\mathbf{C H C l}_{3}\right) \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

$$
76 \%
$$

$$
\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{5}
$$

159.2 (c 5.8, CHCl_{3})

3600, 2988, 2936, 1977, 1640, 1064, $1045 \mathrm{~cm}^{-1}$
$\delta 5.84(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{~m}, 1 \mathrm{H})$, $5.06(\mathrm{~m}, 1 \mathrm{H}), 4.96(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74-3.67(\mathrm{~m}, 4 \mathrm{H}), 2.95$ (brs, 1 H), 2.60 (brs, 1 H), 2.14-2.07 (m, 4H), 1.67-1.56 (m, 2H), $1.52(\mathrm{~s}, 3 \mathrm{H})$,

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$
 Elemental Analysis
 197.9, 137.9, 114.9, 112.2, 104.8, 101.7, 96.5, 82.0, $79.6,73.5,62.6,32.9,28.1,27.9,27.1$
 Calcd: C, 64.86; H, 8.10
 Found: C, 65.07; H, 8.30.

Compound 80

To a solution of β-allenic alcohol 79 ($14.5 \mathrm{~g}, 48.9 \mathrm{mmol}$) in anhydrous acetone (100 mL), $\mathrm{AgNO}_{3}(4.15 \mathrm{~g}, 24.49 \mathrm{mmol})$ was added and stirred for 12 h at rt . Reaction mixture was concentrated and purified by flash silica gel chromatography (15% EtOAc:light petroleum), to give dihydropyran $80(11.16 \mathrm{~g})$ as a colourless liquid. $\mathrm{R}_{f}=0.5(20 \%$ EtOAc/lightpetroleum)

Yield
Mol.Formula
$[\alpha]_{D}{ }^{25}$
IR $\left(\mathbf{C H C l}_{3}\right) \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

77 \%
$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{5}$
33.8 (c 2.4, CHCl_{3})
$3400,2900 \mathrm{~cm}^{-1}$
$\delta 5.86(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.78 (ddt, $J=6.8,10.2,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.02$ (ddd, $J=$ $1.4,3.2,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=3.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.38$ (dt, $J=1.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{ddd}, J=$ $1.8,4.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.87 (dd, $J=2.8,11.8 \mathrm{~Hz}, 1 \mathrm{H}$),
$3.70(\mathrm{dd}, J=6.1,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ (ddd, $J=2.8,6.1$,
$8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (dt, $J=1.8,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.58$ $(\mathrm{m}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$

$$
\begin{aligned}
{ }^{13} \mathbf{C} \text { NMR }\left(\mathbf{C D C l}_{3}, \mathbf{1 2 5} \mathbf{~ M H z}\right) \quad & 138.1,136.4,126.3,115.1,113.0,105.5,79.9,73.1, \\
& 72.0,71.2,63.2,33.4,32.5,27.1,26.8,25.7 .
\end{aligned}
$$

Elemental Analysis
Calcd: C, 64.84; H, 8.16
Found: C, 65.07; H, 7.98.

Compound-82

To a solution of $\mathbf{8 0}(100 \mathrm{mg}, 0.41 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added pyridine $(24 \mu \mathrm{~L}, 0.83 \mathrm{mmol}), \mathrm{Ac}_{2} \mathrm{O}(59 \mu \mathrm{~L}, 0.622 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred for 30 min . The reaction mixture was diluted with water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with saturated aq. NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by silica gel column chromatography ($5 \% \mathrm{EtOAc} /$ lightpetroleum) to give 82 ($108 \mathrm{mg}, 95 \%$).

Yield
Mol.Formula
 $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.10(\mathrm{~m}, 2 \mathrm{H})$, 3.23 (ddd, $J=3.1,6.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.11-2.07 (m, 2H), $2.1(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.51-$ $1.43(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$

Compound-83

To a solution of $79(10.2 \mathrm{~g}, 34.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ silica gel adsorbed NaIO_{4} $(68.8 \mathrm{~g})$ was added and stirred for 1 h . Reaction mixture was filtered and concentrated to give crude aldehyde $\mathbf{8 3}(6.54 \mathrm{~g})$ as a yellowish liquid. $\mathrm{R}_{f}=0.4(50 \%$ EtOAc/lightpetroleum)

Yield

Mol.Formula

${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right) \quad \delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H})$, $5.56(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.01(\mathrm{~m}, 3 \mathrm{H}), 4.96(\mathrm{~d}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 6 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$

Addition of 5-hexenyl- MgBr to aldehyde 83:

Hexenylmagnesium bromide was prepared by slow addition of hexenyl bromide (19.8 mL , $0.09 \mathrm{~mol})$ to the solution of magnesium turnings $(4.5 \mathrm{~g}, 0.19 \mathrm{~mol})$ in ether $(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and was stirred for 30 min . The resulting Grignard solution was added dropwise to the solution of aldehyde $\mathbf{8 3}(6.54 \mathrm{~g})$ in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and stirred for another 30 min . Reaction mixture was quenched by slow addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and the resulting suspension stirred for another 30 min . The organic layer was separated and the aqueous layer was extracted with ethyl acetate ($2 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude oily material was purified by flash silica gel column chromatography (15-20\% EtOAc/light petroleum), furnish $73(4.69 \mathrm{~g})$ and its diastereomer $84(2.01 \mathrm{~g})$ in 7:3 ratio as colourless liquid having 61% yield over two steps.

1,2-O-isopropylidene-3-deoxy-3-C-(3R-octa-1,7-dienylidene)-6,7,8,9, 10,11 hexadeoxy - β-L-lyxo-undec-10-enofuranose (73)

$\mathrm{R}_{f}=0.42$ (20\% EtOAc/ light petroleum).
Mol.Formula

$$
\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{4}
$$

$[\alpha]_{D}{ }^{25}$
145.9 (с 1.4, CHCl_{3})
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
$\delta 5.78(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.75-5.67(\mathrm{~m}, 2 \mathrm{H}), 5.46$
$(\mathrm{m}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.95-4.84(\mathrm{~m}, 4 \mathrm{H}), 4.56(\mathrm{~m}$, $1 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 8 \mathrm{H}), 1.59-1.47(\mathrm{~m}$, $6 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5} \mathbf{~ M H z}\right) \quad 198.0,138.5,137.9,114.9,114.3,112.1,104.8,102.1$, $96.6,82.2,81.0,72.2,33.6,33.5,33.0,28.8,28.0$, 27.9, 27.2, 27.1, 25.1

Elemental Analysis
Calcd: C, 72.41; H,9.19
Found: C, 72.18; H,9.32

1,2-O-isopropylidene-3-deoxy-3-C-(3R-octa-1,7-dienylidene)-6,7,8,9,10,11hexadeoxy-β-L-ribo-undec-10-enofuranose (84)

Mol.Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

Elemental Analysis
$\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{4}$
149.7 (c 0.8, CHCl_{3})
$\delta 5.78(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.75-5.67(\mathrm{~m}, 2 \mathrm{H}), 5.46(\mathrm{~m}$,
$1 \mathrm{H}), 4.99(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-4.86(\mathrm{~m}, 4 \mathrm{H}), 4.59$
(t, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 8 \mathrm{H})$, $1.59-1.48(\mathrm{~m}, 6 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H})$ 198.0, 138.5, 137.9, 115.0, 114.4 112.2, 105.0, 101.3, $96.2,82.2,81.8,73.3,33.6,33.1,31.5,28.8,28.2$, 27.3, 25.3.

Calcd: C, 72.41 ; H,9.19
Found: C, 72.14; H,9.28

Compound72

To a solution of $73(6.0 \mathrm{~g}, 17.0 \mathrm{mmol})$ in anhydrous acetone $(75 \mathrm{~mL}), \mathrm{AgNO}_{3}(292 \mathrm{mg}$, 1.7 mmol) was added and stirred for 36 h at rt . Reaction mixture was concentrated and purified by silica gel chromatography ($15-20 \% \mathrm{EtOAc} /$ lightpetroleum), to afford the 2,6 syn-dihydropyran diene $72(5.58 \mathrm{~g})$ as a colourless liquid.
$\mathbf{R}_{\boldsymbol{f}}=0.3(20 \% \mathrm{EtOAc} /$ light petroleum $)$

Yield
Mol.Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

$$
93 \%
$$

$$
\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{4}
$$

$70.0\left(c 0.9, \mathrm{CHCl}_{3}\right)$
$\delta 5.99(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.74(\mathrm{~m}, 2 \mathrm{H}), 5.66(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.91(\mathrm{~m}, 4 \mathrm{H}), 4.80(\mathrm{~d}, J=3.6$
$\mathrm{Hz}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~m}, 1), 3.63(\mathrm{dt}, J=10.2$,
$5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.06(\mathrm{~m}, 4 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 2 \mathrm{H})$, $1.64-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.39(\mathrm{~m}, 4 \mathrm{H})$, 1.34 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis
$138.7,138.3,136.1,130.6,114.6,114.1,111.6,103.3$, $79.2,76.3,73.1,70.6,34.2,33.4,33.3,29.9,28.7$,
$26.4,26.0,25.3,24.7$
Calcd: C, 72.41; H,9.19
Found: C, 72.65; H, 9.34

Compound 85

$\mathbf{R}_{\boldsymbol{f}}=0.3(20 \% \mathrm{EtOAc} /$ light petroleum $)$
2,6-anti-dihydropyran diene $\mathbf{8 5}$ was prepared from compound $\mathbf{8 4}$ following the same procedure as that for compound 72.

Yield	91%
Mol.Formula	$\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{4}$

$[\alpha]_{\mathrm{D}}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
70.0 (c $\left.0.9, \mathrm{CHCl}_{3}\right)$
$\delta 5.75(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.74-5.65(\mathrm{~m}, 3 \mathrm{H}), 4.96-$
$4.85(\mathrm{~m}, 4 \mathrm{H}), 4.82(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.11(\mathrm{~m}$, 2 H), 3.0 (dt, $J=2.8,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.96(\mathrm{~m}, 4 \mathrm{H})$,
$1.75(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.49(\mathrm{~m}, 5 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.46-$
$1.40(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 5} \mathbf{~ M H z}\right) \quad 138.9,138.3,136.3,126.9,114.8,114.2,112.7,105.1$, 80.0, 75.4, 73.0, 71.4, 33.6, 33.4, 33.0, 32.4, 28.8,
27.0, 26.6, 25.7, 24.8

Elemental Analysis
Calcd: C, 72.41; H,9.19
Found: C, 72.65; H, 9.34

Compound-71

Grubbs' $1^{\text {st }}$ generation catalyst ($0.0172 \mathrm{mmol}, 20 \mathrm{~mol} \%$) was added to a solution of compound 72 ($300.0 \mathrm{mg}, 0.862 \mathrm{mmol}$) in anhydrous benzene (200 mL) and degassed under argon atmosphere and then refluxed for 12 h . The solvent was evaporated and the residue was purified by flash silica gel chromatography ($10 \% \mathrm{EtOAc} / \mathrm{lightpetroleum}$) furnished the compound $71(129 \mathrm{mg})$ as a froathing solid (minor component) and the major component was the noncharacterisable polymeric mixture. $\mathbf{R}_{\boldsymbol{f}}=0.6$ ($20 \% \mathrm{EtOAc} /$ light petroleum)

Yield

Mol.Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Elemental Analysis

47\%
$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}$
22.6 (c 1, CHCl_{3})
$\delta 5.86(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H})$,
5.33 (dt, $J=7.5,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dt}, J=6.9,15.3$
$\mathrm{Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dt}, J=1.8,5.5$
$\mathrm{Hz}, 1 \mathrm{H}), 3.90$ (ddd, $J=2.0,4.2,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$
(ddd, $J=1.5,5.4,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{dt}, J=6.8,12.1$
$\mathrm{Hz}, 1 \mathrm{H}), 1.96-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.79$ (m, 2H), 1.58-
$1.49(\mathrm{~m}, 8 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.39-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}$, 3H)
135.1, 133.7, 129.4, 129.0, 112.3, 104.4, 79.7, 73.0, $72.5,71.3,33.6,31.5,30.7,28.9,26.9,26.6,26.2$, 25.3, 19.6

Calcd: C, 71.25; H,8.75
Found: C, 71.55.; H,8.80

A solution of aldehyde $\mathbf{8 3}(8 \mathrm{~g})$ in dry $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ was treated with 4-pentenyl magnesium bromide \{prepared from pentenyl bromide (19.8 mL) and $\mathrm{Mg}(4.5 \mathrm{~g}, 190.0$ $\mathrm{mmol}, \mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and stirred for 1 h . Usual workup was followed and purification by chromatography ($15-20 \% \mathrm{EtOAc} / \mathrm{lightpetroleum}$) yielded $87(6.8 \mathrm{~g})$ and $88(2.94 \mathrm{~g})$ as colourless liquid.

1,2- O-isopropylidene-3-deoxy-3- C-(3R-octa-1,7-dienylidene)-6,7,8,9,10, pentadeoxy- β -

 L-lyxo-deca-9-enofuranose (87)

Mol Formula
$[\alpha]_{\mathrm{D}}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathbf{1 2 5 M H z}\right)$

Elemental Analysis
$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}$
158.8 (c $3.3, \mathrm{CHCl}_{3}$)
$\delta 5.85(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82-5.74(\mathrm{~m}, 2 \mathrm{H}), 5.55$
$(\mathrm{m}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-4.93(\mathrm{~m}, 4 \mathrm{H})$, $4.65(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.07(\mathrm{~m}$, $6 \mathrm{H}), 1.59-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$.
198.1, 138.5, 138.1, 115.1, 114.8, 112.4, 105.0, 102.2, $96.9,82.3,81.1,72.3,33.7,33.2,33.1,28.2,28.1$, 27.4, 27.3, 25.1.

Calcd: C, 71.85; H,8.98
Found: C,71.73; H,9.12

1,2-O-isopropylidene-3-deoxy-3- \boldsymbol{C}-(3R-octa-1,7-dienylidene)-6,7,8,9,10, pentadeoxy- $\boldsymbol{\beta}$ -L-ribo-deca-9-enofuranose (88)

$\mathbf{R}_{f}=0.4(20 \% \mathrm{EtOAc} /$ lightpetroleum $)$

Mol.Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
${ }^{13} \mathbf{C ~ N M R ~}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 5 M H z}\right)$

Elemental Analysis

$$
\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}
$$

5.8 (c 1.3, CHCl_{3})
$\delta 5.83(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.74(\mathrm{~m}, 2 \mathrm{H}), 5.52$
$(\mathrm{m}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-5.01(\mathrm{~m}, 2 \mathrm{H})$, 4.99-4.93 (m, 3H), $4.66(\mathrm{t}, \mathrm{J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~m}$, $1 \mathrm{H}), 2.13-2.08(\mathrm{~m}, 6 \mathrm{H}), 1.65-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.53(\mathrm{~s}$, $3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$.
198.0, 138.5, 138.1, 115.0, 114.7, 112.3, 105.0, 102.5, $96.9,82.4,81.0,72.1,33.6,33.2,33.1,28.0,27.8$, 27.5, 27.4, 25.0

Calcd: C, 71.85; H,8.98
Found: C, 71.30; H,8.63

Compound-89

The 2,6 disubstituted cis-dihydro pyran diene $\mathbf{8 9}$ was prepared from compound $\mathbf{8 7}$ following the above mentioned procedure, as for compound 72.
$\mathbf{R}_{f}=0.4$ (20\% EtOAc/ light petroleum)

Yield
Mol.Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

Elemental Analysis

87\%
$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}$
82.4 (c $\left.0.5, \mathrm{CHCl}_{3}\right)$
$\delta 6.02(\mathrm{~s}, 1 \mathrm{H}), 5.87-5.76(\mathrm{~m}, 2 \mathrm{H}), 5.69(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.03-4.94(\mathrm{~m}, 4 \mathrm{H}), 4.83(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$ $(\mathrm{m}, 1 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.04(\mathrm{~m}$, $4 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 6 \mathrm{H}), 1.54(\mathrm{~s}$, $3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$
138.7, 138.4, 136.3, 130.6, 114.6, 114.4, 111.8, 103.5, $79.4,76.3,73.3,70.8,34.4,33.6,33.4,29.7,26.6$, 26.2, 25.3, 24.8

Calcd: C, 71.85; H,8.98
Found: C, 71.65; H,8.59

Compound-90

The 2,6 disubstituted-trans-dihydropyran diene $\mathbf{9 0}$ was prepared from compound $\mathbf{8 8}$ following the same procedure as that for compound 72. $\mathrm{R}_{f}=0.4(20 \%$ EtOAc/lightpetroleum)

Yield

Mol.Formula
$[\alpha]_{D}{ }^{25}$

$$
91 \%
$$

$$
\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}
$$

$$
33.2\left(c 0.7, \mathrm{CHCl}_{3}\right)
$$

${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right) \quad \delta 5.83(\mathrm{~s}, 1 \mathrm{H}), 5.81-5.73(\mathrm{~m}, 3 \mathrm{H}), 5.02-4.82(\mathrm{~m}, 4 \mathrm{H})$, $4.86(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.22(\mathrm{br} \mathrm{d}, 1 \mathrm{H}), 4.18(\mathrm{~d}, \mathrm{~J}=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.06(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 4 \mathrm{H}), 1.82(\mathrm{~m}$, $1 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.46(\mathrm{~m}$, $2 \mathrm{H}), 1.41(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{\mathbf{3}}, \mathbf{1 2 5 M H z}\right) \quad 138.6,138.4,134.1,126.4,114.8,114.7,112.7,104.8$, $79.9,73.1,72.3,67.9,34.5,34.2,33.7,27.2,26.9$, 24.9, 24.4, 24.3

Elemental Analysis
Calcd: C, 71.85; H,8.98
Found: C, 71.62; H,8.90

Compound 91 was prepared from $\mathbf{8 9}$ using $1^{\text {st }}$ generation Grubbs'catalyst following the same procedure as that for compound 71.
$\mathbf{R}_{f}=0.4(10 \% \mathrm{EtOAc} /$ light petroleum $)$

Yield
Mol.Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

46\%
$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4}$
25.2 (c $\left.1, \mathrm{CHCl}_{3}\right)$
$\delta 5.89(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.31-5.21 (m, 2H), $4.85(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~m}$, $1 \mathrm{H}), 3.89(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.13(\mathrm{~m}, 2 \mathrm{H})$, $1.78-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H})$, 1.49-1.39 (m, 2H), 1.34 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5} \mathbf{~ M H z}\right) \quad 135.4,130.5,130.4,112.3,104.3,79.8,75.2,74.0$, $72.3,33.8,28.3,27.8,26.9,26.6,26.0,25.6$

Elemental Analysis
Calcd: C, 70.56; H,8.55
Found: C, 70.24; H,8.75

A solution of aldehyde $\mathbf{8 3}(10 \mathrm{~g}, \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{~mL})$ was treated with 3-butenylmagnesiumbromide \{prepared from butenyl bromide ($19.8 \mathrm{~mL}, 90.0 \mathrm{mmol}$) and $\mathrm{Mg}(4.5 \mathrm{~g}$, $\left.190.0 \mathrm{mmol}, \mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})\right\}$ and stirred for 1 h . Usual workup was followed and purification by chromatography ($15-20 \%$ EtOAc/light petroleum) yielded $93(9.4 \mathrm{~g})$ and its diastereomer $94(2.32 \mathrm{~g})$ in 8:2 ratio with 71% yield from compound $79(15.5 \mathrm{~g})$.
1,2-O-isopropylidene-3-deoxy-3-C-(3R-octa-1,7-dienylidene)-6,7,8,9-tetradeoxy- β-L-lyxo-nona-8-enofuranose (93)

$\mathbf{R}_{f}=0.4(15 \% \mathrm{EtOAc} /$ light petroleum $)$

Mol.Formula
$[\alpha]_{\mathrm{D}}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

Elemental Analysis
$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}$
18.2 (c 1, CHCl_{3})
$5.88(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.69(\mathrm{~m}, 2 \mathrm{H}), 5.55(\mathrm{~m}$, $1 \mathrm{H}), 5.1-5.04(\mathrm{~m}, 2 \mathrm{H}), 5.0-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.97-4.93$ (m, 2H), $4.67(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.05(\mathrm{~m}$, $6 \mathrm{H}), 1.73-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$.
198.1, 138.0, 137.9, 114.8, 114.7, 104.9, 102.1, 96.7, 82.2, 81.1, 71.8, 32.9, 32.7, 29.7, 28.1, 27.9, 27.3, 27.1.

Calcd: C, 71.25 ; H,8.75
Found: C, 71.52; H,8.90

1,2- O-isopropylidene-3-deoxy-3-C-(3R-octa-1,7-dienylidene)-6,7,8,9-tetradeoxy- β-L-ribo-nona-8-enofuranose (94)

$\mathbf{R}_{f}=0.5(20 \% \mathrm{EtOAc} /$ light petroleum $)$

Mol.Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis
Elal

$$
\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}
$$

22.1 (c 1, CHCl_{3}

$\delta 5.86(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.67(\mathrm{~m}, 2 \mathrm{H}), 5.55$ $(\mathrm{m}, 1 \mathrm{H}), 5.08-4.94(\mathrm{~m}, 5 \mathrm{H}), 4.78(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.72(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.01(\mathrm{~m}, 6 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 4 \mathrm{H})$, $1.53(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$
198.0, 138.0, 137.9, 114.9, 112.2, 105.0, 101.3, 96.3, 82.2, 81.7, 72.7, 33.0, 30.8, 29.9, 28.1, 28.0, 27.2.

Found: C, 71.32; H,8.48

Compound-95

Syn dihydropyrandiene $\mathbf{9 5}$ was prepared from the β-hydroxy-allene $\mathbf{9 3}$ following the same procedure as that for 72.

Yield
87\%

Mol.Formula	$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}$
$[\alpha]_{\text {D }}{ }^{25}$	123.6 (c 0.5, CHCl_{3})
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$	$\begin{aligned} & \delta 6.0(\mathrm{~s}, 1 \mathrm{H}), 5.87-5.75(\mathrm{~m}, 2 \mathrm{H}), 5.67(\mathrm{~d}, J=3.6 \mathrm{~Hz} \\ & 1 \mathrm{H}), 5.05-4.94(\mathrm{~m}, 4 \mathrm{H}), 4.80(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19 \\ & (\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{dt}, J=10.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 2.34-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{q}, J=6.8,13.7 \mathrm{~Hz}, 2 \mathrm{H}) \\ & 1.85-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), \\ & 1.35(\mathrm{~s}, 3 \mathrm{H}) \end{aligned}$

${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 50 \mathbf{M H z}\right) \quad 138.1,138.0,136.3,130.3,114.7,111.5,103.3,95.9$, 79.2, 75.2, 72.9, 70.4, 34.2, 33.3, 29.8, 29.1, 26.4, 26.0, 24.6.

Elemental Analysis
Calcd: C, 71.25; H, 8.75
Found: C, 71.62; H, 8.90

2,6 anti dihydropyran diene 96 was prepared from the β-hydroxy allene $\mathbf{9 4}$ following the same procedure as that for compound 72.
$\mathbf{R}_{\boldsymbol{f}}=0.5(20 \% \mathrm{EtOAc} /$ light petroleum $)$

Yield

Mol.Formula
$[\alpha]_{D}{ }^{25}$

91\%

$$
\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}
$$

25.1 (c 1, CHCl_{3})

${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right) \quad \delta 5.78-5.70(\mathrm{~m}, 4 \mathrm{H}), 4.98-4.89(\mathrm{~m}, 4 \mathrm{H}), 4.82(\mathrm{~d}, \mathrm{~J}=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}), 2.24$
 $(\mathrm{m}, 1 \mathrm{H}), 2.12-1.99(\mathrm{~m}, 4 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.50$ (m, 4H), 1.47(s, 3H), $1.29(\mathrm{~s}, 3 \mathrm{H})$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis
138.2, 136.2, 126.7, 114.9, 114.7, 112.6, 105.0, 96.0, $79.9,75.2,72.9,70.6,33.4,32.3,32.1,29.4,27.0$, 26.6, 25.7.

Calcd: C, 71.25; H,8.75
Found: C, 71.62; H,8.90

Methallylmagnesiumchloride was prepared by the treatment of methallyl chloride (19.8 $\mathrm{mL}, 0.09 \mathrm{~mol})$ to the solution of magnesium turnings $(4.5 \mathrm{~g}, 0.19 \mathrm{~mol})$ in THF $(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and was stirred for 30 min . The resulting Grignard solution was added dropwise to the crude solution of aldehyde $\mathbf{8 3}(5 \mathrm{~g})$ in $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{~mL})$ at $-0{ }^{\circ} \mathrm{C}$ and stirred for another 30 min. Reaction mixture was quenched by slow addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and the resulting suspension stirred for another 30 min . The organic layer was separated and the aqueous layer was extracted with ethyl acetate ($2 \times 150 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude oily material was purified by flash silica gel column chromatography (15-20\% EtOAc/light petroleum), furnish $99(5.94 \mathrm{~g})$ and its diastereomer $100(0.59 \mathrm{~g})$ in $9: 1$ ratio with 71% yield from compound 79 (7.75 g).

1,2-O-isopropylidene-3-deoxy-3-C-(3R-octa-1,7-dienylidene)-6,8-dideoxy-7-methyl- β -

 L-lyxo-octa-7-enofuranose (99)

Mol.Formula	$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}$
$[\alpha]_{\mathrm{D}}{ }^{25}$	155.7 (c 1.1, CHCl_{3})
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & \delta 5.89(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{~m}, 1 \mathrm{H}), \\ & 5.11-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.97-4.93(\mathrm{~m}, 2 \mathrm{H}), 4.86-4.82(\mathrm{~m}, \\ & 2 \mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=6.6 \mathrm{~Hz}, \\ & 2 \mathrm{H}), 2.25-1.96(\mathrm{~m}, 6 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), \\ & 1.38(\mathrm{~s}, 3 \mathrm{H}) . \end{aligned}$
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & 197.9,141.8,137.9,114.7,113.2,112.2,104.9,102.1, \\ & 96.7,82.1,80.4,70.0,41.9,32.8,27.9,27.8,27.1, \\ & 27.0,22.3 . \end{aligned}$

Elemental Analysis
Calcd: C,71.25; H,8.75
Found: C, 71.62; H,8.90

1,2-O-isopropylidene-3-deoxy-3-C-(3R-octa-1,7-dienylidene)-6,8-dideoxy-7-methyl- β -

 L-ribo-octa-7-enofuranose (100)

Yield

Mol.Formula
$[\alpha]_{\mathrm{D}}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$
227.4 (c 1.8, CHCl_{3})
$\delta 5.88(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{~m}, 1 \mathrm{H})$, 5.09-5.04 (m, 2H), 4.99-4.91(m, 2H), 4.88-4.81(m, 3 H), $3.88(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=7.04 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-$ $2.06(\mathrm{~m}, 6 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$.
$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}$ 198.1, 141.9, 137.9, 115.0, 113.5, 112.2, 105.0 101.3,
96.0, 82.2, 81.4, 70.8, 40.0, 33.1, 28.2, 27.3, 22.3.

Elemental Analysis
Calcd C,71.25; H,8.75
Found: C, 71.62; H,8.90

Compound-101

2,6 syn dihydropyrandiene 101 was prepared following the same procedure as that for compound 72.

Yield

Mol.Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
78\%
$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}$
82.1 (c 1, CHCl_{3})
$\delta 6.04(\mathrm{t}, J=2.03 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.94(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{~d}, ~ J=3.6 \mathrm{~Hz}$, 1 H), 4.83 (br s, 2H), $4.25(\mathrm{~m}, 1 \mathrm{H}), 3.85$ (quin, $J=4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{q}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.81 (s, 3H), 1.65-1.57 (m, 4H), 1.55 (s , 3 H), 1.36 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5} \mathbf{~ M H z}\right) \quad 142.7,138.5,136.2,130.8,114.6,111.9,103.5,79.4$, $75.2,73.4,70.8,38.0,34.3,33.4,26.5,26.2,24.8$, 23.0.

Elemental Analysis

Calcd: C, 71.85; H,8.98
Found: C, 71.62; H,8.90

Compound-102

2,6 anti dihydropyran diene $\mathbf{1 0 2}$ was prepared from the β-alleneic alcohol $\mathbf{1 0 0}$ following the same procedure as that for compound 72.
Yield
Mol.Formula
$[\alpha]_{\mathrm{D}}{ }^{25}$
${ }^{1} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{1} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

75\%
$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}$
17.1 (c 1.2, CHCl_{3})
$\delta 5.85(\mathrm{t}, ~ J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.70(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{q}, J=1.56 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-4.91(\mathrm{~m}$,
2 H), 4.89 (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.81$ (br s, 1H), 4.30-
$4.21(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.26-1.96$
(m, 4H), 1.77 (s, 3H), 1.66-1.56 (m, 3H), $1.54(\mathrm{~s}, 3 \mathrm{H})$, $1.36(\mathrm{~s}, 3 \mathrm{H})$.
13C NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad 142.0,138.2,136.2,126.6,114.7,112.6,112.3,104.9$ 79.9, 74.9, 72.9, 70.3, 40.9, 33.4, 32.3, 27.0, 26.6, 25.5, 22.8

Elemental Analysis
Calcd: C, 71.85; H,8.98
Found: C, 71.62; H,8.90

Compound-103

Compound 103 was prepared from 2,5 syn dihydro pyran diene 101 using Grubbs $2^{\text {nd }}$ generation catalyst, following the same procedure as that for compound 71.

Yield
Mol.Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

Elemental Analysis

48\%
$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}$

- 8.9 (с $1, \mathrm{CHCl}_{3}$)
$\delta 5.94(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.58(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.90$
(m, 1H), $4.47(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{ddd}, J=4.7,6.4,12.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.22(\mathrm{t}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{dt}, J=7.6,13.8$
Hz, 1H), 1.93-1.85 (m, 4H), 1.72 (s, 3H), 1.66-1.61
(m, 2H), $1.54(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$
135.7, 133.6, 127.2, 127.0, 112.7, 105.2, 79.9, 76.6,
73.1, 71.9, 34.2, 32.4, 29.7, 27.3, 26.9, 23.6, 23.0.

Calcd: C, 69.84; H,8.27
Found: C, 69.65; H,8.14

Compound-104

Dimeric compound $\mathbf{1 0 4}$ was prepared from compound $\mathbf{1 0 2}$ using Grubbs $2^{\text {nd }}$ generation catalyst following same procedure as that for compound 71.

Yield
Mol.Formula
$\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{O}_{8}$
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

Elemental Analysis
Calcd: C, 70.58; H,8.49
Found: C, 70.62; H,8.69

SPECTRA

${ }^{1} \mathbf{H}$ NMR spectrum of compound 75 in $\mathbf{C D C l}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound 75 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR spectrum of compound 74 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 79 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 79 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 80 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 80 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 82 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 73 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 73 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 84 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 84 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 72 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 72 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 85 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 85 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 71 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 87 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 87 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 88 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 89 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 89 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 90 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 90 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 91 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 93 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 93 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 94 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 94 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 95 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 96 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 96 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 99 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 100 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 101 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 102 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 103 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 104 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 104 in CDCl_{3}

REFERENCES

1. Lin,Y.Y.; Risk, M.;.Ray, S.M.; Engen,D.V.; Clardy, J.; Golik,J.; james, J.C.; Nakanishi, K. J.Am.Chem.Soc.,1981, 103, 6773.
2.(a)Moore,R.E.;Barolini,G.J.Am.Chem.Soc1981,103,2491-2494;
(b)Uemura,D.;Ueda,K.;Hirata,Y.;Naoki, H.;Iwashita,T.Tetrahedron Lett.1981, 22, 27812784.
2. Newman, DJ .; Cragg, GM. Marine natural products and related compounds in clinical and advanced preclinical trials. Journal of Natural Products 2004, 67, 1216-1238.
3. (a) Corey, E. J.; Li, W.-D. Z. Chem. Pharm. Bull. 1999, 47, 1-10. (b) Corey, E. J.; Reichard, G. A.; Kania, R. Tetrahedron Lett.1993, 34, 6977-6980. (c) Corey, E. J.; Reichard, G. A. J. Am. Chem.Soc. 1992, 114, 10677-10678. (d) Corey, E. J.; Li, W.; Reichard, G. A.J. Am. Chem. Soc. 1998, 120, 2330-2336. (e) Fenteany, G.; Standaert,R. F.; Reichard, G. A.; Corey, E. J.; Schreiber, S. L. Proc. Natl. Acad.Sci. U.S.A. 1994, 91, 33583362. (f) Fenteany, G.; Standaert, R. F.; Lane,W. S.; Choi, S.; Corey, E. J.; Schreiber, S. L. Science 1995, 268, 726-731.
5.Feling, R.H.; Buchanan, G.O.; Mincer, T.J.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. "Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora". Angew. Chem. Int. Ed. Engl. 2003, 42, (3): 355-7;Chauhan, D.; Catley, L.; Li, G. et al (2005). "A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib". Cancer Cell 8 (5): 407-19.
6.Bergmann, W.;Burke, D.C .J.Org.Chem.1995, 20, 1501-1507.
7.(a)Yeung, K. S.;Paterson.I.Chem.Rev.2005, 105, 4237-4313; (b) Norcross, R.D.; Paterson, I.Chem.Rev.1995, 95, 2041-2114.
8.Weinheimer, A.J.; Spraggins, R.L.Tetrahedron Lett.1969, 10, 5185-5188.
4. Scalabrino, G.; Sun, X. W.; Mann, J.; Baron, A.; Org. Biomol. Chem 1 2003, 2, 318327.
5. S. Fukuzawa et al., Heterocycl. Commun. 1995,1, 207; M. Kuramoto et al., Bull. Chem. Soc. Jpn. 1998, 71, 771; K. Yamaguchi, M. Yada, T. Tsuji, M. Kuramoto, D. Uemura, Biol. Pharm. Bull.1999, 22, 920.

11(a) D’Ambrosio, M.; Guerriero, A.; Pietra, F. HelV. Chim. Acta 1987, 70, 2019-2027.
(b) D’Ambrosio, M.; Guerriero, A.; Pietra, R. HelV. Chim.Acta 1988, 71, 964-976.
12. (a) Bryostatin 1 isolation and structure determination: Pettit, G. R.; Herald, C. L.; Clardy, J.; Arnold, E.; Doubek, D. L. ; Herald, D. L. J. Am. Chem. Soc., 1982, 104, 6848;
(b) Bryostatin 2: Pettit, G. R.; Herald, C. L.; Kamano, Y.; Gust, D.; Aoyagi, R. J. Nat. Prod.,1983, 46, 528; (c) Bryostatins 1-3: Pettit, G. R.; Herald, C. L.; Kamano, Y. J. Org. Chem., 1983, 48, 5354; Bryostatin 3: Schaufelberger, D. E.; Chmurny, G. N.; Beutler, J. A..; Koleck, M. P.; Alvarado, A. B.; Schaufelberger, B. W.; Muschik, G. M. J. Org. Chem., 1991, 56, 2895; Chmurny, G. N.; Koleck, M. P.; Hilton, B. D. J. Org. Chem., 1992, 57, 5260; (d) Bryostatin 4: Pettit, G. R.; Kamano, Y.; Herald, C. L.; Tozawa, M. J. Am. Chem. Soc., 1984,106, 6768; (e) Bryostatins 4-7: Pettit, G. R.; Kamano, Y.; Herald, C. L.; Tozawa, M. Can. J. Chem., 1985, 63, 1204
(13) B. Tursch, J. C. Braeckman, D. Dolaze and M. Kaisin, in MarineNatural Products: Chemical and Biological Perspectives, ed. P. J.Scheuer, Academic Press, New York, 1978, 2, 247-296.
(14) Tius, M. A. Chem. Rev., 1988, 88, 719; (b) Cox, N. J. G.; Mills, S. D.; Pattenden, G. J. Chem. Soc., Perkin Trans. 1, 1992, 1313.
(15) Poet, S. E.; Ravi, B. N. Aust. J. Chem., 1982, 35, 77.
(16).Schmitz, F.J.; Daloze,D. Bull.Soc.Chim.Belg. 1975, 84, 767.
(17) Weinheimer, A.J.; Matson, J.A.; Van der Helm, D.; Poling, M. Tetrahedron Lett. 1977, 1295-1298.
(18) Tius, M.A.; Fauq,A. J. Am. Chem. SOC. 1986, 108, 6389-6391.
(19) Garcez, F.R.; Garceza,W.S.; Silvaa, A. F.G. da.; Bazzoa, R. d. C.; Resendec, U. M. J. Braz. Chem. Soc 2004,. 15, 5, 767-772.
(20)Duh, C Y : Wang, S K : Weng, Y. L.; Chiang, M Y.; Dai, C. F. J-Nat-Prod. 1999, 62(11),1518-21.
(21) Bowden, B.F.; Coll, J.C.; Tapiolas, D.M. Aust.J.Chem.1983, 36, 2289-2295.
(22)(a)Rodriguez,A.D.; Martinez,N.experientia. J.Nat.Prod. 1993, 49, 179; (b) Rodriguez, A.D.; Acosts, A.L.J.Nat.Prod.1997, 60, 1134.
(23) Blunt, J. W.; Copp, B. R.; Munro, M.H. G.; Northcotec, P. T.; Prinsep, M. R. Nat.Prod.Rep, 2005, 22, 15-61.
(24) Fontan, L.A.; Yoshida, W.Y.; Rodriguez, A.D.J. Org. Chem. 1990, 55, 4956-4960.
(25) Perkins, D.L.; Ciereszko, L.S.J. Protozool. Suppl. 1970, 17, 20.
(26) Eterovic', V.A.; Li, L.; Ferchmin, P.A.; Lee, Y.H.; Harm, R.M.; Rodrfguez, A.D.; McNamee, M.G.CelL Mol. Neurobiol. 1993, 13, 111-121.
(27) Morales, J.J.; Espina, J.R.; Rodriguez, A.D. Tetrahedron 1990, 46, 5889-5894.
(28) Rodriguez, A.D.; Pifia, I.C.; Soto, J.J.; Rojas, D.R.; Barnes, C.L. Can. J. Chem. 1995, 58.
(29) Rodriguez, A.D.; Soto, J.J.; Pifia, I.C.J. Nat. Prod 1995.
(30) Helm, D. V. D.; Enwall, E.L.; Weinheimer, A. J.; Karns, T. K. B.; Ciereszko, L. S. Acta Cryst. 1976. B32, 1558.
(31) Nieto, M. I.; Gonz_alez, N.; Rodrı́guez, J.; Kerr, R. G.; Enez, C. Jim. Tetrahedron 2006, 62, 11747-11754.
(32)Hossain, M.B.; Helm,D.V.D.Acta Cryst.1986, 42, 434-436.
(33) Ciereszko, L. S.; Sifford, D. S.;Weinheimer, A. J. Ann.N.Y. Acad. Sci. 1960, 90, 917919.
(34) Khaul, S ; Bilayt, M.H.; Helm, D. V. D .; Alam, M.; Sanduja, R. Acta Cryst. 1996, 52, 1272-1274.
(35) Morales, J.J.; Espina, J.R.; Rodriguez, A.D. Tetrahedron 1990, 46, 5889-5894. Li, L.; Lee, Y.H.; McNamee, M.G.Cell. Mol. Neurobiol. 1993, 13, 99-110.
(36) (a) Rodrıguez, A.;Pina, I. C.;Acosta, A. L.;Barnes, C. L.Tetrahedron 2001, 57, 93107;(b) Rodrıguez, A.;Pin a, I.C. J. Org. Chem. 1995, 60, 8096-8100.
(37) Armas, Pedro de; Tellado, Fernando Garcı.; Marrero-Tellado, José Juan. Eur. J. Org. Chem. 2001, 4423-4429.
(38) Takao, Ken-ichi; Watanabe, G.; Yasui, H.; Tadano, K.i. Org Lett, 2002, 4, 2941-43.
(39) Cai, P.; McPhail, A. T.; Krainer, E.; Katz, B.; Pearce, C.; Boros, C.;Caceres, B.; Smith, D.; Houck, D. R. Tetrahedron Lett. 1999, 40, 1479-1482.
(40) Scholl, M.; Grubbs, R. Tetrahedron Lett. 1999, 40, 1425.
(41) Kigoshi, H.;Suzuki,Y.; Aoki, K.;Uemura,D.Tetrahedron Lett.2000, 41, 3927.
(42) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc.1996, 118, 100.
(43) (a) Tius, M. A. Chem. Rev. 1988, 88, 719-732; (b) Petasis,N. A.;Bzowej, E. I. Tetrahedron Lett. 1993, 34, 1721-1724; (c) Pattenden, G.; Smithies, A. J. J. Chem. Soc., Perkin Trans. 1 1996, 57-61; (d) Paquette, L. A.; Astles, P.C. J. Org. Chem. 1993, 58, 165-169; (e) Marshall, J. A.;van Devender, E. A. J. Org. Chem. 2001, 66, 8037-8041;
(f) Peng, L.;Zhang, F.;Mei, T.;Zhang, T.; Li, Y. TetrahedronLett. 2003, 44, 5921-5923. (44) Kakinuma, K.;Imamura, N.;Saba, Y. Tetrahedron Lett.1982, 23, 1697-1700.
(45) Luche,J. L.;Barreiro, E.;Dollat, J. M.;Crabbe, P. Tetrahedron Lett. 1975, 16, 46154618.
(46)G.Tadema, R.H.Everhardus, H. Westmijze and P.Vermeer, Tetrahedron Lett., 1978, 3935.
(47) a) Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1984, 25, 3063-3066. (b) Elseview, C. J.; Vermeer, P. J. Org. Chem. 1989, 54, 3726-3730. (c) Alexakis, A. Pure \& Appl. Chem. 1992, 64, 387-392.
(48) Alexakis, A.; Marek, I.; Mangeney, P.; Normant, J. F. J. Am. Chem. Soc. 1990, 112, 8042-8047.
(49) Oesson, L.; Claesson, R. Synthesis 1979, 743.
(50)Bertrand, P.;Sukkari, H.E.;Gesson, J.P.; Renoux, B.Synthesis 1999, 2, 330-335.
(51) Deiters, A.;Martin, S.F.Chem.Rev.2004, 104, 2199-2238.

CHAPTER -II

Synthetic studies toward Palau'amide

INTRODUCTION

INTRODUCTION

Introduction

The marine environment has been shown to provide a source of great diversity of chemical structures with promising biological activities. Among them nitrogen containing secondary metabolites are distinctly visible. Marine organism like cyanobacteria, molluskas and sponges are the largest producer of peptides, alkaloids, terpenoids, fatty acids, lipids and steroids. Current review study revealed that till date a total of 128 nitrogen-containing secondary metabolites, belonging mainly to the mixed PKS-NRPS structural class, isolated from filamentous marine cyanobacteria.

Cyanobacteria are an ancient and diverse group of microorganisms. They are able to inhabit and thrive in an incredible variety of environments because of their ability to produce a rich range of secondary metabolites. These metabolites have already been shown to display a wide spectrum of biological activities ranging from antibacterial ${ }^{1}$ to immunosuppressive. ${ }^{2}$ This diversity has generated considerable interest in cyanobacteria, since over half of the new drugs approved from 1983 to 1994 and 60% of the drugs currently approved for the treatment of cancer are still of natural origin ${ }^{3}$ and basically consists of peptides, cyclic peptides and depsipeptides. One compound already in clinical trials for the treatment of cancer is based on the cryptophycins ${ }^{4}$ isolated from terrestrial cyanobacteria. Dolastatin 10, ${ }^{5}$ a modified pentapeptide isolated originally from the sea hare Dolabella auricularia and more recently from a marine cyanobacterium, ${ }^{6}$ is another anti tumor agent being clinically evaluated. ${ }^{7}$

A number of highly potent cyanobacterial natural products have been discovered as potential lead compounds for further drug development basically consists of cyclic peptides and depsipeptides. Cyclic structures reduce peptide conformational freedom and often result in high receptor binding affinities by reducing unfavorable entropic effects. For this reasons the cyclic peptides often make promising lead compounds in drug discovery. ${ }^{8}$ Today, a vast number of challenging complex peptide molecules have been isolated and fully characterized from marine cyanobacteria and this is possible because of the advancement of reverse phase HPLC, chiral chromatography and development of characterization techniques by spectroscopy especially 2D NMR and FAB mass.

Bioactive cyclic depsipeptide

Depsides and depsipeptides are two classes of natural products that have recently received much attention. These polymeric compounds are analogous to peptides. Peptides are composed of amino acids linked by amide bonds; depsides are composed of hydroxy acids linked by ester bonds; and depsipeptides are composed of both hydroxy and amino acids linked by ester and amide bonds. Many depsipeptides exhibit special biological activities. There are several prominent and important depsipeptides that have been extensively well known. These include vancomycin, ${ }^{9}$ valinomycin, ${ }^{10}$ actinomycins, ${ }^{11}$ destruxins, ${ }^{12}$ didemnins, ${ }^{13,14}$ discodermins, discokiolides, theonellapeptolides, polydiscamides, ${ }^{15 a}$ dolastatins, ${ }^{15 \mathrm{~b}}$ FR901228, ${ }^{16}$ arenastatin $\mathrm{A},{ }^{17}$ quinoxaline, ${ }^{18}$ micropeptins, oscillapeptin, microviridin, cryptophycins, and aeruginosins. ${ }^{19,20}$

Depsipeptides have shown the greatest therapeutic potential as anticancer agents. Four depsipeptides have entered clinical trials for cancer treatment. These are didemnin B, dehydrodidemnin B (DDB, aplidine), dolastatin 10, and FR901228. Didemnin B entered Phase II trials where it demonstrated its efficacy against cancer.
Among the antiviral compounds discovered, the callipeltins ${ }^{21,22}$ and quinoxapeptins are particularly promising due to their inhibitory activities against HIV. Possibly these compounds can be developed as anti AIDS drugs. If not possibly synthetic analogs based on their pharmacophores can be developed into clinically useful compounds. Sansalvamide ${ }^{23}$ also shows activity against the poxvirus molluscum contagious virus (MCV) linked with AIDS opportunistic infections.

Antifungal compounds includes jaspamides, ${ }^{24}$ cyclolithistideA, ${ }^{25}$ LI-F antibiotics, ${ }^{26}$ and viscosinamide. ${ }^{27}$
Several depsipeptides, including WAP-8294A2, ${ }^{28,29}$ theonellapeptolides, ${ }^{30}$ fusaricidins, ${ }^{31,32}$ and vinylamycin, ${ }^{33}$ inhibit the growth of several bacteria.

Depsipeptides from cyanobacterial Lyngbya

Apratoxins A-C (1-3) are intriguing marine natural products of mixed biogenetic origin. Isolated from cyanobacterial Lyngbya spp. collected in Guam ${ }^{34}$ and Palau ${ }^{35}$ by Moore, Paul, and co-workers.

1-3 are cyclodepsipeptides that embody both polypeptide and polyketide domains. These include highly methylated amino acids joined via proline ester and thiazoline moieties to a novel 3,7-dihydroxy-2, 5, 8, 8-tetramethylnonanoic acid. The unique structural features of $\mathbf{1}$ are accompanied by high levels of cytotoxicity against KB and LoVo cancer cells, with in vitro IC_{50} values of 0.52 and 0.36 nM , respectively. However, $\mathbf{1}$ was poorly tolerated in vivo in mice. Although the mode of action of $\mathbf{1}$ remains unknown, it appears to effect neither microtubule polymerization dynamics nor topoisomerase I. Apratoxin C displayed an in vitro cytotoxicity profile similar to that of $\mathbf{1}$. These results suggest that in vitro cytotoxicity of the apratoxins is closely related to subtle primary structural variations that are manifested in larger tertiary changes in molecular conformation. The small amounts of the apratoxins available via isolation from natural sources presently limit more in-depth biological studies.

Lyngbyabellin (4)

Dolabellin (5)

LyngbyabellinA (4), a new cytotoxin that is closely related to another compound originally isolated from D. auricularia, dolabellin (5). ${ }^{36}$ Cyanobacterium VP417 was collected at Finger's Reef, Apra Harbor, Guam, and identified as a strain of L. majuscule, ${ }^{37}$ which was first collected on August 4, 1997, and a specimen was preserved in formalin has been deposited at the University of Hawaii. The freeze-dried VP 417, was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - $\mathrm{EtOAc}-\mathrm{MeOH}$ (1:1:1). This lipophilic extract (6.31 g) was partitioned between hexane and 80% aqueous MeOH . The solvent-evaporated methanolic phase (1.73 g) was chromatographed on Si gel, eluting initially with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions containing progressively increasing amounts of $i-\mathrm{PrOH}$, and finally with MeOH . The fraction eluting with $8 \% i$ - $\mathrm{PrOH}(14.3 \mathrm{mg}$) was subjected to semipreparative reversedphase HPLC (flow rate, $2 \mathrm{~mL} / \mathrm{min}$) to afford $4(5.6 \mathrm{mg}, t \mathrm{R} 14.0 \mathrm{~min}$). Compound 4 exhibits moderate cytotoxicity against KB cells (a human nasopharyngeal carcinoma cell line) and LoVo cells (a human colon adenocarcinoma cell line), with IC_{50} values of $0.03 \mu \mathrm{~g} / \mathrm{mL}$ and $0.50 \mu \mathrm{~g} / \mathrm{mL}$, respectively. In vivo trials revealed that 4 is toxic to mice. The lethal dose varied from 2.4 to $8.0 \mathrm{mg} / \mathrm{kg}$. At sublethal doses (i.e., $1.2-1.5 \mathrm{mg} / \mathrm{kg}$), there was no antitumor activity against the murine colon adenocarcinoma C38 or the mammary adenocarcinoma M16.

Obyanamide (6) was isolated from a variety of the marine cyanobacterium Lyngbya confervoides collected in Saipan, Commonwealth of the Northern Mariana Islands. ${ }^{38}$ HRFABMS analysis established the molecular formula for 6 as $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}$. Gross structural elucidation of this novel cyclic depsipeptide relied on extensive application of 2D NMR techniques. Compound 6 exhibited moderate cytotoxicity against KB and LoVo cells with IC_{50} values of 0.58 and $3.14 \mu \mathrm{~g} / \mathrm{mL}$, respectively.

Ulangapeptin (7)
Ulongapeptin (7), a cyclic depsipeptide, was isolated from a Palauan marine cyanobacterium Lyngbya sp. ${ }^{39}$ The gross structure was elucidated through one-dimensional TOCSY experiments and other spectroscopic techniques. The absolute and relative stereochemistry of the α-amino acid, 3-amino-2-methyl-7-octynoic acid (AMO), in 7 was determined by synthesis of the saturated α-alkyl- β-amino acid and Marfey's analysis of the acid hydrolysate of tetrahydro-1. Ulongapeptin (7) was cytotoxic against KB cells at an IC $_{50}$ value of $0.63 \mu \mathrm{M}$.

The malevamides A-C (8-10), ${ }^{40}$ are three structurally unrelated depsipeptides isolated from the cytotoxic extracts of the cyanobacterium Symploca laete-viridis. The organisms were collected off Oahu. The malevamides contain some unusual amino and hydroxy acids,

Malevamide B (9)

Malevamide C (10)

Malevamide A (8)
including several methylated and dimethylated residues. Other unusual moieties include 3-amino-2-methylhexanoic acid (Amh) and 3-amino-2-methyl-7-octynoic acid (Amo). Configurations of most of the residues could be determined by chiral HPLC analysis. However, the stereochemistries of 2-methylhexanoic acid, Amh, Amo, and several
N-methyl amino acids were not determined. The pure malevamides A-C were inactive against P388, A-549, and HT-29 cell lines at concentrations up to $2 \mathrm{mg} / \mathrm{mL}$ (2 mM). In the spring of 2000, Moore and co-workers collected a strain of cyanobacterium from Ulong Channel, palau, belonging to the genus Lyngbya. Bioassay-guided fractionation of the lipophilic extract of the species of Lyngbya from Palau has yielded 24-membered cyclic depsipeptide Palau'amide (9), which had an IC_{50} value of 13 nM against KB cells. ${ }^{41}$

The molecular formula of Palauamide (9) was determined by high-resolution mass spectrometry which produced a $[\mathrm{M}+\mathrm{Na}]^{+}$ion at $m / z 874.5003$ afforded a molecular formula of $\mathrm{C}_{46} \mathrm{H}_{69} \mathrm{O}_{10} \mathrm{~N}_{5}$ (0.1 mDa error). The gross structure analysis was carried out by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, COSY, HMBC and TOCSY experiments.The complex structural feature and interesting biological profile prompted us to undertake its synthesis. Only one synthesis of 9 has been reported by Ma et al. It is worth to mention their synthetic protocol here.

Previous Work

Ma approach: ${ }^{42}$
Scheme 1 Synthesis of Polyketide alcohol following Syn aldolization strategy

Reagent and conditions: a) Et $\mathrm{EOTf} / \mathrm{DIPEA}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-15{ }^{\circ} \mathrm{C}, 5$-hexynal, $\mathrm{TiCl}_{4},-78{ }^{\circ} \mathrm{C}$

Scheme 2: Synthesis of Polyketide Chain

Reagent and conditions: a) Et2BOTf, DIPEA, DCM, $-15{ }^{\circ} \mathrm{C}$, 5-hexynal, $-78{ }^{\circ} \mathrm{C}$ b) i.LAH, THF; ii. TBSCl, imidazole; c) i. $\mathrm{Ph}_{3} \mathrm{P}$, DEAD, p-nitrobenzoic acid; ii.KOH d) i. TBSCl, imidazole; ii.pyridine hydrofluoric salt e) Swern oxidation, 17, $\mathrm{BF}_{3}: \mathrm{Et}_{2} \mathrm{O}, 9: 1 \mathrm{DCM}_{\mathrm{Ct}}^{2} \mathrm{O}$, $-78{ }^{\circ} \mathrm{C}$ f) i. $\mathrm{NaClO}_{2}, \mathrm{NaH}_{2} \mathrm{PO}_{4}, t$ - $\mathrm{BuOH}, 2$-methyl-2-butene; ii. Allylbromide, KHCO_{3}, DMF
Scheme 3 Synthesis of 29

Reagent and conditions: a) 18a, $\mathrm{NaClO}_{2}, \mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathbf{2 0}, \mathrm{EDC}$; b) i. Dess-martin periodinane, DCM, ; ii. NaBH_{4}, $\mathrm{MeOH},-50^{\circ} \mathrm{C}$

Scheme 4 Synthesis of the proposed structure of Palau'amide (9)

Reagent and conditions: a) 2,4,6-trichloro-benzoyl chloride, DIPEA, 22, DMAP; b) i. Pd $\left(\mathrm{PPh}_{3}\right)_{4}$, NMA, THF; ii. $\mathrm{Et}_{2} \mathrm{NH}, \mathrm{CH}_{3} \mathrm{CN}$; iii. HATU, DIPEA; c) i. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{NMA}$; ii. $\mathrm{Et}_{2} \mathrm{NH}, \mathrm{CH}_{3} \mathrm{CN}$; iii. HATU, DIPEA; iv. 5\% HF, $\mathrm{CH}_{3} \mathrm{CN}$.

PRESENT WORK

In 2003, Moore and co-workers reported the isolation, structure elucidation, and biological activity (cytotoxicity to KB cells, $\mathrm{IC}_{50}=13 \mathrm{~nm}$) of palauamide (9), an architecturally novel cyclic depsipeptide from the bioassay-guided fractionation of the extract species of lyngbya from Palau. ${ }^{41}$ Key structural elements include a five aminoacids backbone fused together in a macrocycle and a novel polyketide chain incorporated into the molecule. The molecular architecture of the polyketide comprises three contigious chiral centers having 1,3-syn diol flanked by a methyl group anti to each other, a terminus containing an alkyne moiety and an α, β unsaturated carboxylic acid at the other end. Potent biological activity coupled with unique structural features and limited availability prompted us to explore the synthesis of Palau'amide (9).

Figure 1.
Palau'amide (9)

The first total synthesis of Palau'amide has been reported by Dawei Ma and co-workers in 2005^{42} : the polyketide chain was synthesized by following Oppolzers protocol and utilizing a vinylogous Mukaiyama aldol reaction as the key reactions. The aldolization strategy to build the C38 and C39 stereocentre wasn't successful. "Syn" aldolization and Mitsonobue inversion were required to obtain the requisite stereochemistry. The analytical data of synthesized Palau'amide didn't matched with the natural one. In this context, we planned to synthesize the Palau'amide molecule following an alternative path to correlate the data with the natural one.

Here, we envisaged a retrosynthetic path for the synthesis of Palau'amide $\mathbf{9}$ keeping in mind Yamaguchi Lactonisation and esterification as our key reactions. According to retrosynthetic analysis (Figure 2) cyclic depsipeptide 9 could be obtained from 27 by Yamaguchi lactonisation which in turn can be synthesized by Yamaguchi esterification of pentapeptide acid 28 and polyketide alcohol 29.

Figure 2.Retrosynthetic analysis of Palau'amide 9
Our initial goal was to achieve a convergent protocol for the synthesis of the polyketide alcohol 29 and its retrosynthetic analysis is depicted in Figure 3.

Retrosynthetic analysis of Polyketide alcohol 29 [C33 to C44 fragment of

Palauamide]

Retrosynthetic analysis revealed that olefinic double bond present in alcohol 29 could be synthesized by Wittig reaction of aldehyde 31 with allyloxycarbonylethyledene triphenylphosphorane $\mathbf{3 0}$. The ylide $\mathbf{3 0}$ can be prepared from commercially available 2 bromopropionic acid 32 in two steps synthesis. Aldehyde 31 can be synthesized from 33 by two step synthesis i.e. deprotection of PMB-ether, followed by IBX oxidation.

The alkyne motif 33 was planned to be prepared by displacement of bromo of 34 with lithiumacetylide. Compound 34 can be synthesized from allylderivative $\mathbf{3 5}$ in a two step synthesis. Compound 35 can be synthesized from 36 following sequence of simple transformations. 1,3-dihydroxy-2-methyl motif present in 36 was envisaged to be prepared from epoxide 37 by regioselective ring opening using $\mathrm{Me}_{2} \mathrm{CuCNLi}_{2}$, whereby the methyl group can be selectively introduced at C38 stereogenic centre.

Figure 3. Retrosynthetic analysis of C33-C44 fragment 29
The epoxide 37 can be synthesized by Sharpless asymmetric epoxidation of allylic alcohol 38, which in turn, could be obtained from commercially available 1,3 propane diol 39 by general functional group transformations.

Based on the retrosynthetic analysis, we intended to prepare the chiral key intermediate $(2 S, 3 S)$ epoxyalcohol 37 , from commercially available 1,3 propane diol 39 by a five step synthesis.

Scheme 5

1,3 propanediol 39 was treated with NaH , paramethoxy benzylbromide in THF:DMF mixtures (7:3) at $0{ }^{\circ} \mathrm{C}$ resulted in $3-\mathrm{PMB}-1-$ propanol 40 in 80% yield. The primary alcohol of $\mathbf{4 0}$ was oxidised by Swern oxidation condition using oxallyl chloride, DMSO in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ resulted in aldehyde 41, which on subsequent treatment with ethoxycarbonyl methyledenetriphenylphosphorane in THF at refluxing condition furnished the required trans- α, β-unsaturated ester 42 in good yield. Reduction of α, β-unsaturated ester 42 was carried out by DIBAL-H at $-20^{\circ} \mathrm{C}$ to room temperature in 1 h resulted in allylic alcohol 38 in quantitative yield. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of 38 was in good agreement with the reported values (Scheme 5). ${ }^{43}$

A Short Aaccount on Sharpless Asymmetric Epoxidation

Asymmetry is ubiquitous in every part of nature and has a great impact in many field, not only in chemistry but also even in arts. In the pharmaceuticals area and drug discovery process, asymmetry plays an important role, since both enantiomers of a determinate drug do not necessarily have the same activity. Enantioselective synthesis is defined as the transformation of an achiral substrate into only one of the two possible product enantiomers, mainly through the use of a chiral catalyst, solvents, etc, and avoiding the annoying attachment and detachment of chiral auxiliaries, typical of the related diastereoselective approaches. The last three decades have witnessed tremendious increase in the research in enantioselective synthesis and have undergone a true revolution and one process resulted in the award of the 2001 Nobel prize in chemistry, to professors Sharpless, Knowles and Noyori for their work on enantioselective synthesis. Titanium is seventh most aboundant metal on earth and one of the chiepest transition metal and nontoxic compare to other transition metal such as $\mathrm{Pb}, \mathrm{Hg}, \mathrm{Cr}, \mathrm{Ni}, \mathrm{Mn}$ etc. Its nontoxic and environment friendly nature has permitted its use in medicinal sciences, such as sunscreens, removal of
toxic metals, prostheses and its relative inertness toward the redox processes and the possibility of adjusting its reactivity and selectivity by different ligands make it a preferred candidate for any enantioselective reaction, even employing stoichiometric amount of titanium component. In 1980 a major shift occurred with the introduction of the enantioselective epoxidation of allylic alcohols. Without any doubt this reaction has changed the dimensions of the enantioselective synthesis. ${ }^{44}$
In general, enantioselective epoxidation of allylic alcohols was accomplished by reaction of an alkylhydroperoxide in the presence of Titanium alkoxide and a chiral tartarate ester. The enantioselectivity depends strongly on different variables such as, chiral tartrates, ratio of titanium to tartarate, ratio of catalyst (titanium-tartrate complex) to allylic alcohol etc.

Scheme 6: Sharpless Asymmetric Epoxidation

Mechanism

There are so many reports for the mechanism of SAE reaction, but after so many studies, the mechanism given in Figure 4 is finally accepted. The X-ray crystallography studies revealed that the reaction goes through a bimetallic species which, after a double exchange between two isopropoxide ligands and both the hydroperoxide and the starting olefin gave the real catalytic species denoted as complex. The hydroperoxide must occupy both the equatorial site and one of the two available axial co-ordination site with the allylalcohol in the remaining axial site. To achieve the necessary proximity for transferring the oxygen atom to the olefin, the distal oxygen is placed in the equatorial position. The axial site of lower face of the complex is chosen for the most sterically demanding tertiary butyl moiety, with the allylic alcohol binding to the remaining axial co-ordination site. The enantioselective epoxidation takes place on this intermediate, in which olefin co-ordinates in an appropriate space.

Figure 4. Proposed catalytic cycle for the Sharpless Epoxidation

Stereoselectivity

The stereochemical outcome of the asymmetric epoxidation is consistent with (S,S)-(-)DET inducing the epoxide formation on the Si face and the $(R, R)-(+)$-DET inducing the epoxide formation on the $R e$ face of the allylic alcohol as illustrated in Figure-5. For a given tartrate or tatramide, the system delivers the epoxide oxygen from the same enantioface of the olefin regardless of the olefinic substitution pattern.

Figure 5.Asymmetric epoxidation of primary allylic alcohol
For most allylic alcohols the asymmetric induction is generally high ($>90 \%$ ee) but there have been instances in which this is not the case.

Sharpless Asymmetric Epoxidation on (38)

Allyl alcohol 38 was subjected to Sharpless asymmetric epoxidation reaction using $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$, L-(+)-diethyltartrate and t-butylhydrogenperoxide in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ inpresence of freshly activated $4 \mathrm{~A}^{0}$ MS powder to obtain epoxide $37 .{ }^{45}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of the epoxide 37 showed absence of the resonances corresponding to the methine protons of allylic alcohol at $\delta 5.71-5.67(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$ where as new resonances attributed to methine protons of epoxide were apparent at $\delta 3.08$ and 2.95 ppm as two multiplates along with other proton resonances according to assigned structure of epoxide 37. ${ }^{13} \mathrm{C}$ NMR spectrum showed absence of resonances corresponding to alkene carbons of 38 at $\delta 131.0,130.2 \mathrm{ppm}$ with the appearance of two new resonances at $\delta 58.3$ and 54.8 ppm corresponding to epoxycarbons. In addition the IR (3016, $1270,840 \mathrm{~cm}^{-1}$) spectrum and elemental analysis data also supported the formation of 37 . The enantioselectivity was determined by HPLC on a CHIRALCEL OJ-H column to be 95% (Scheme 7).

Scheme 7

Our next concern was the nucleophilic epoxide opening by Grignard reagent to introduce methyl group regioselectively in 2-position, which correlated with the C38 stereogenic center of polyketide alcohol .

Scheme 8

Accordingly Nucleophilic opening of epoxide 37 with MeMgCl inpresence of CuCN afforded a mixture of desired 1,3 diol 36 and the corresponding 1,2-diol 47 in 2:1 ratio (Scheme 8). ${ }^{46}$

Scheme. 9

Where as using $\mathrm{Me}_{2} \mathrm{CuCNLi}_{2}$ in THF: DMDU (4:1) mixture at $-20^{\circ} \mathrm{C}$, the ratio of 36 and 47 was improved to $7: 1 .{ }^{47}$ Since 1,2 diol 47 was of no consequences to us, was easily removed by treatment of sodiummetaperiodate. ${ }^{48}$ In the ${ }^{1} \mathrm{H}$ NMR spectrum of 36 , the signal due to methyl $\left(\mathrm{CH}_{3}\right)$ group was observed at $\delta 0.85(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. In the ${ }^{13} \mathrm{C}$ NMR spectrum the $-\mathrm{CH}_{3}$ carbon resonated at $\delta 13.8 \mathrm{ppm}$ and the -CH carbon linked to
-OH group observed at $\delta 73.1 \mathrm{ppm}$. The IR $\left(3430,2935 \mathrm{~cm}^{-1}\right)$ and elemental analysis data also supported the formation of compound 36 (Scheme 9).

Scheme 10

Selective benzoylation of alcohol 36 with $\mathrm{BzCl}, \mathrm{Et}_{3} \mathrm{~N}$ in dichloromethane at $0{ }^{\circ} \mathrm{C}$ afforded monobenzoate 48. The structure of 48 was elucidated from the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data. The ${ }^{1} \mathrm{H}$ NMR spectrum displayed three signals at $\delta 8.06-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~m}, 1 \mathrm{H})$ and 7.50-7.42 $(\mathrm{m}, 2 \mathrm{H})$ due to phenyl ring protons. The methylene protons linked to -OBz group appeared at $\delta 4.39(\mathrm{dd}, J=1.5,5.3 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$, which was earlier appeared at δ 3.76-3.55 ppm in compound 36. In the ${ }^{13} \mathrm{C}$ NMR spectrum the diagnostic carbonyl carbon of benzoate group was identified at $\delta 166.5 \mathrm{ppm}$ along with all other carbon resonances at their respective position. The IR ($1715 \mathrm{~cm}^{-1}$) and elemental analysis data also supported the formation of 48 (Scheme 10).

Scheme 11

The secondary hydroxyl of 48 was protected as TBS ether by using TBSCl, Imidazole and catalytic DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ suffers from low conversions even after prolonged reaction times $(48 \mathrm{~h}) .{ }^{49}$ However treatment of TBSOTf, 2,6 Lutidine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ on 48 resulted quick and clean conversion to 49 with good yield $(90 \%) .{ }^{50}$ In the ${ }^{1} \mathrm{H}$ NMR spectrum of 49 two singlets appeared in the upfield region at $\delta 0.8$ and 0.9 ppm integrating for six and nine protons were assigned to TBS group. All other protons resonated at their respective values assigned the structure of 49. Elemental analysis data also supported the assigned structure (Scheme 11).

Scheme 12

The benzoate group of 49 was hydrolysed to alcohol 50 by the combined action of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and MeOH. ${ }^{51}$ Structure of 50 was deduced from ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and elemental analysis data. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 50 disappearance of signals in the down field region at $\delta 8.06$ $8.01(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~m}, 1 \mathrm{H})$ and $7.50-7.42(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$ indicates the deprotection of benzoate group and appearance of a triplet at $\delta 3.50 \mathrm{ppm}$ integrating for three protons indicates the presence of $\mathrm{CH}_{2} \mathrm{OH}$ group as well as of a oxymethine proton. In addition the ${ }^{13} \mathrm{C}$ NMR spectrum showed a signal at $\delta 66.4 \mathrm{ppm}$ corresponding to $\mathrm{CH}_{2} \mathrm{OH}$ group, which was unambiguously confirmed from DEPT spectrum. All other carbon resonances at their expected chemical shift confirmed the structure of 50 (Scheme 2).

Scheme 13

The primary alcohol of 50 was oxidised by Swern oxidation ${ }^{52}$ condition using oxalylchloride, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{3} \mathrm{~N}$ at $-78{ }^{\circ} \mathrm{C}$ furnished aldehyde 51 in quantitative yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum the diagnostic aldehydic proton signal was observed at δ 9.16 ppm . All other protons resonated at their expected chemical shift assigned the structure of 51 (Scheme 13).

Scheme 14

Aldehyde 51 was subjected to Grignard reaction by treatment with allylmagnesiumbromide at $0^{\circ} \mathrm{C}$ furnished the diastereomeric mixture of 52 and 53 in 1:1.5 ratio. ${ }^{53}$ Both the diastereomer were separated by flash silicagel chromatography. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 52 the aldehydic proton signal of was vanished and the methine proton of alkene appeared as multiplet at $\delta 5.85 \mathrm{ppm}$ integrating to one proton, whilest the methylene protons of alkene was observed at $\delta 5.16$ and 5.09 ppm integrating to one proton each. In the ${ }^{13} \mathrm{C}$ NMR spectrum the olefinic carbons were identified at $\delta 135.1$ and 117.8 ppm.IR and elemental analysis data also supported the formation of 52 . In the ${ }^{1} \mathrm{H}$ NMR spectrum of 53 , the methine and methylene protons of alkene resonated at $\delta 5.70(\mathrm{~m}$, $1 \mathrm{H})$ and 5.12-4.99 (m, 2H) ppm. In the ${ }^{13} \mathrm{C}$ NMR spectrum the olefinic carbons were observed at $\delta 135.3$ and 116.8 ppm . All other carbon resonances observed at their expected positions confirmed the structure of 53 (Scheme 14).
As our synthetic strategy required syn 1,3 diol here it was necessary to prove the newly generated stereogenic centre of 52 and 53.

Scheme15

Rychnovsky ${ }^{54}$ has shown that the acetonides of syn and anti 1, 3 diols can be unambiguously distinguished by the ${ }^{13} \mathrm{C}$ chemical shifts of the acetonide methyl groups
and the acetal carbon atom. The ${ }^{13} \mathrm{C}$ NMR spectra of syn 1,3 diol acetonides show an axial methyl group carbon at $\delta \mathrm{c} 19.6$ and the corresponding equatorial one at $\delta \mathrm{c} 30.0$. This is in contrast to the spectra of the anti 1,3 diol acetonides, which shows the methyl resonances at $\delta \mathrm{c} 24.7$. The acetal carbon chemical shifts are also indicative of the stereochemistry $\delta \mathrm{c}$ 98.5 for the syn 1,3 diol acetonides and $\delta \mathrm{c} 100.4$ for the anti stereoisomer.

Accordingly TBS ether of 52 and 53 were deprotected using TBAF ${ }^{55}$ in THF resulted 1,3 diol 54 and 55, which were protected as their dioxalone derivative using dimethoxypropane, catalytic p-TSA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ furnished 56 and 57 respectively. The ${ }^{13} \mathrm{C}$ chemical shifts observed for the methyl groups of 56 at $\delta \mathrm{c} 30.0$ and 19.5 ppm and the acetal carbon at $\delta 97.7 \mathrm{ppm}$ confirmed the syn relationship for the C-4 and C-6 oxygen atoms in 54 whereas in 57 the corresponding carbons resonated at $\delta 24.7,23.6$ and 100.3 respectively confirmed the anti relationship for the C-4 and C-6 oxygen atoms in 55 (Scheme 15).

Our next task was to get the 1,3-syn diol 52, exclusively. For that we followed known oxidation and reduction strategy.

Scheme 16

Accordingly we oxidized the mixture of products 52 and 53 to the keto compound 58, which was stereoselectively reduced by Luche's condition using NaBH_{4} and CeCl_{3} at low temperature $\left(-100{ }^{\circ} \mathrm{C}\right)$ resulted in exclusive formation of compound 52 (Scheme 16). ${ }^{56}$

Scheme 17

The secondary hydroxy group of 52 was protected as TIPS ether using TIPSCl, Py in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ didn't produced the desired TIPS ether 35 even after prolonged reaction time (24 h), but further addition of pyridine and catalytic amount of silvernitrate ${ }^{57}$ to the same reaction mixture complete conversion occurs within 6 h. In the ${ }^{1} \mathrm{H}$ NMR spectrum the signal for three isopropyl group resonated at $\delta 0.95(21 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$ confirmed the formation of TIPS ether 35 (Scheme 17).

Scheme 18

With a views to transform allyl group into corresponding pentynyl, the allylic double bond of 35 was exposed to BH_{3} :DMS in THF followed by oxidative work up with $\mathrm{H}_{2} \mathrm{O}_{2}$ and NaOH produced the desired primary alcohol 59 . In the ${ }^{1} \mathrm{H}$ NMR spectrum of 59 the olefinic protons signals of $\mathbf{3 5}$ were absent and the methylene protons linked to hydroxyl group was observed at $\delta 3.55-3.40 \mathrm{ppm}$. In the ${ }^{13} \mathrm{C}$ NMR spectrum the $-\mathrm{CH}_{2} \mathrm{OH}$ carbon resonated at $\delta 63.3 \mathrm{ppm}$, which was further confirmed by DEPT spectrum. IR and elemental analysis data also confirmed the structure of 59 (Scheme 18).

Scheme 19

Compound 59 on treatment with triphenylphosphine, tetrabromomethane ${ }^{58}$ and imidazole in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ resulted in the formation of corresponding bromide 34 . Transformation of
hydroxyl to bromo was noticed by TLC, which was further confirmed by ${ }^{1} \mathrm{H}$ and mass spectrometric study (Scheme 19).
Scheme 20

Nucleophilic displacement of bromo group of 34 by lithium acetylide in DMSO at $0{ }^{\circ} \mathrm{C}$ room temperature giving rise to alkyne motif $33 .{ }^{59}{ }^{1} \mathrm{H}$ NMR spectrum of 33 displayed a signal at $\delta 1.87(1 \mathrm{H}) \mathrm{ppm}$ characteristic of acetylinic proton. In the ${ }^{13} \mathrm{C}$ NMR spectrum the acetylinic carbons resonated at $\delta 84.3,68.4 \mathrm{ppm}$ and rest of the carbons appeared in their conformity. The IR $\left(3313,2171 \mathrm{~cm}^{-1}\right)$ and elemental analysis data also supported the formation of 33 (Scheme 20).

Scheme 21

After successful installation of all the required stereocentres and pentynyl chain, our next objective was the introduction of E-enoate moiety. Accordingly paramethoxybenzyl ether was deprotected by using DDQ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}(12: 1)$ mixtures in presence of $\mathrm{pH}-7$ buffer yielded primaryalcohol $\mathbf{6 0}$. ${ }^{60}$ In the ${ }^{1} \mathrm{H}$ NMR spectrum disappearance of aromatic signals at $\delta 7.24$ and 6.86 ppm confirmed the assigned structure (Scheme 21).

Scheme 22

Primary alcohol of $\mathbf{6 0}$ was oxidized to the corresponding aldehyde $\mathbf{3 1}$ using iodoxybenzoic acid in DMSO, ${ }^{61}$ followed by addition of allyloxyethyledenetriphenylphosphorane in refluxing THF afforded the α, β unsaturated allyl ester 61. ${ }^{62}$ In the ${ }^{1} \mathrm{H}$ NMR spectrum the trisubstituted olefinic methine signals appeared at $\delta 6.85(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$ and the terminal olefinic methine and methylene proton signals were observed at $5.80(\mathrm{~m}, 1 \mathrm{H})$ and 5.24-5.07 $(\mathrm{m}, 2 \mathrm{H}) \mathrm{ppm}$ indicating the presence of α, β-unsaturated-allylester. All other protons resonated at their respective values, confirming the structure of 61. In addition the elemental analysis data and mass spectrometry value also confirmed the structure of $\mathbf{6 1}$ (Scheme 22).
Having made the compound 61, with all the required stereocentres and ' E ' geometry of the double bond, the only task remained to be done was the selective deprotection of TBS ether in presence of TIPS ether. ${ }^{63}$ Surprisingly all attempts made to transfer compound 61 to 29 failed and in all cases only 1,3 diol 62 was formed (Table-1).

Scheme 23

Table 1. Over view of reaction condition that failed to transform 61 to 62

Solvent	Reagent	Temperature	Time
MeOH	PPTS	$0{ }^{\circ} \mathrm{C}-\mathrm{rt}$	1 h
MeOH	HCl	$0{ }^{\circ} \mathrm{C}-\mathrm{rt}$	30 min
	Acetic acid	$0{ }^{\circ} \mathrm{C}-\mathrm{rt}$	3 h
$\mathrm{CH}_{3} \mathrm{CN}$	HF, Pyridine	$0{ }^{\circ} \mathrm{C}-\mathrm{rt}$	30 min
THF	TBAF	$0{ }^{\circ} \mathrm{C}-\mathrm{rt}$	1 h

Being unsuccessful in selective TBS ether deprotection to achieve the required mono hydroxy compound $\mathbf{2 9}$, we intended to change the protecting group from TIPS to MOM to
satisfy our purpose. Accordingly treatment of MOMCl , diisopropylethylamine (Hunigbase) on 52 in dichloromethane was found very slow conversion to $\mathbf{6 3}$ even after prolonged reaction time $(36 \mathrm{~h}) .{ }^{64}$ However addition of catalytic amount of silvernitrate, reaction proceeded to completion within $6 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 3}$ showed the signals at $\delta 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H})$ corresponding to OCH_{2} and OCH_{3} group of methoxymethylether. In the ${ }^{13} \mathrm{C}$ NMR spectrum the $-\mathrm{OCH}_{2}$ carbon was appeared at $\delta 95.8$ ppm, whilst the $-\mathrm{OCH}_{3}$ carbon signal observed at $\delta 55.1 \mathrm{ppm}$. All other carbons were resonated at their expected chemical shifts (Scheme 23).

Scheme 24

63

Hydroboration oxidation of olefin 63 using BH_{3}. DMS resulted primary alcohol $64 .{ }^{1} \mathrm{H}$

 NMR spectrum of $\mathbf{6 4}$ showed a signal at $\delta 3.65(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H})$ indicating the formation of $-\mathrm{CH}_{2} \mathrm{OH}$ group. In the ${ }^{13} \mathrm{C}$ NMR spectrum the $-\mathrm{CH}_{2} \mathrm{OH}$ carbon was resonated at $\delta 62.9$ ppm which was unambiguously determined by DEPT spectrum. IR ($3444 \mathrm{~cm}^{-1}$) and ESIMS $(\mathrm{M})^{+}=470.96,(\mathrm{M}+\mathrm{Na})^{+}=493.04$ data also supported the formation of 64 (Scheme 24).

Scheme 25

64

66

The primaryalcohol 64 was subjected with TPP, CBr_{4} and imidazole (catalytic) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ resulted in bromo compound 65, which on subsequent treatment with Lithium acetylide in DMSO at $0{ }^{\circ} \mathrm{C}$-room temperature furnished the alkyne moiety 66 . The ${ }^{1} \mathrm{H}$ NMR spectrum showed a signal at $\delta 1.93 \mathrm{ppm}$ as a triplet integrating for one proton characterstics of alkyne proton. ${ }^{13} \mathrm{C}$ NMR spectrum showed the alkyne carbons at $\delta 84.3$ and 68.4 ppm and
rest other carbons resonated at their conformity indicating the formation of 66 (Scheme 25).

As the synthesis of $\mathbf{6 6}$ from 51 required multistep synthesis, so we encounter the stability issues while scaling up the reaction. This warranted an alternative approach; a shorter step introduction of pentynylchain by Grignard reaction.

Scheme 26

Thus, 1-TMS-Pentynylbromide was prepared from 4-pentynyl-1-alcohol following known literature procedure. ${ }^{65}$ which was distilled off in pure form without contamination with alcoholic counterpart. Grignard reaction of pentynylmagnesiumbromide with aldehyde 51 resulted in diastereomeric mixture of 67 and 68 in good yield. Both were seperated by flash silicagel chromatography. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 67 , the aldehydic proton was absent and the signal for -TMS group observed at $\delta 0.88 \mathrm{ppm}$ as a singlet integrating for nine protons. In the ${ }^{13} \mathrm{C}$ NMR spectrum the alkyne carbons were resonated at $\delta 107.1$ and 84.5 ppm , whilest the -CH carbon linked to -OH group appeared at $\delta 76.0 \mathrm{ppm}$. In the DEPT spectrum absence of alkyne carbons and appearance of three additional $-\mathrm{CH}_{2}$ carbons in $\delta 35.0,33.5$ and 16.6 ppm confirmed the incorporation of pentynyl chain. In the ${ }^{1}$ H NMR spectrum of $\mathbf{6 8}$, similar chemical shift was observed. Additionally elemental and MASS spectrometric data also supported the assigned structure (Scheme 26).

To confirm the newly generated stereocenter of 67 and 68, TBS ether was deprotected using TBAF in THF resulted 1,3 diol, which was protected to their oxalone derivatives by using cat p-TSA, dimethoxypropane in dichloromethane produced 69 and 70. Comparison of ${ }^{13} \mathrm{C}$ data confirmed the oxymethine protons of 69 were anti and in 70 syn in nature (Scheme 27).

Scheme 27

Since compound 68 was required exclusively, here we followed known oxidationreduction method as mentioned earlier. Latter on deprotection of TMS group was carried out by $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH resulted in compound 71, which was protected as MOM ether using MOMCl , Diisopropylethylamine, AgNO_{3} (catalytic) in dichloromethane resulted in compound 66 in good yield.

Scheme 28

The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, IR and ESI-MS data of $\mathbf{6 6}$ was tallied with the data reported earlier (Scheme 28).

Scheme 29

PMB-ether of 66 was deprotected using DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}(12: 1)$ mixtures in $\mathrm{pH}-7$ buffer resulted in 72 with good yield. ${ }^{1} \mathrm{H}$ NMR spectrum of 72 showed the disappearance of signals in the down field region and appearance of a triplet at $\delta 3.74 \mathrm{ppm}$ integrating for
two protons indicates the methylene protons linked to -OH group. In the ${ }^{13} \mathrm{C}$ NMR spectrum the $-\mathrm{CH}_{2} \mathrm{OH}$ carbon was appeared at $\delta 60.3 \mathrm{ppm}$, which was further confirmed from DEPT spectrum. IR and elemental analysis data also supported the formation of 72 (Scheme 29).

Scheme 30

Oxidation of 72 using IBX in DMSO resulted aldehyde 73, which on subsequent treatment with allyloxyethyledenetriphenylphosphorane in refluxing THF yielded α, β-unsaturatedester 74 in good yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum the methine proton of trisubstituted olefin was observed at $\delta 6.90 \mathrm{ppm}$ and the substituted methyl proton was at $\delta 1.84 \mathrm{ppm}$, whilest the terminal olefinic protons were observed at $\delta 5.92$ and 5.27 ppm . In the ${ }^{13} \mathrm{C}$ NMR spectrum the diagnostic carbonyl carbon was observed at $\delta 167.8 \mathrm{ppm}$. Additionally, IR and mass spectrometric data also supported the formation of 74 (Scheme 30).

Scheme 31

TBS-ether of 74 was deprotected using TBAF, THF and catalytic AcOH resulted in monohydroxyl compound 75 in good yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum the signal for TBS-group was disappeared, indicating the formation of 75. ESI-MS data also supported the formation of 75 (Scheme 31).

Coupling of pentapeptide acid with polyketide alcohol

Getting free hydroxy polyketide 75 in hand, we focused our attention for coupling with the necessary pentapeptide acid 28 usingYamaguchi esterification method (2,4,6 trichlorobenzoyl chloride, $\mathrm{Et}_{3} \mathrm{~N}$), ${ }^{66}$ but reaction failed to give the desired product 27. However, following standard DCC, DMAP conditions ${ }^{67}$ poor yield (20%) of desired esterified compound 27 was isolated. In contrast, esterification of 75 and 28 using EDCI, DMAP (catalytic) in dichloromethane resulted in ester 27 with good yield. ${ }^{68}$

Scheme 32

${ }^{1} \mathrm{H}$ NMR spectrum of 27 showed the signals at $\delta 0.05(\mathrm{~s}, 3 \mathrm{H})$ and $0.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$ indicating the presence of t-butyldimethylsilyl group. The signal for methoxymethylether group was observed at $\delta 4.62-4.59 \mathrm{ppm}$. All other protons appeared in their respective positions. ESI-MS of 27 showed a signal at 1089.1 corresponding to $(\mathrm{M}+\mathrm{Na})^{+}$confirmed the assigned structure (Scheme32).

The TBS ether in 27 was deprotected easily using TBAF, AcOH (catalytic) in THF resulted alcohol 76 in good yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum the signal for TBS group was absent indicating formation of 76.ESI-MS specrum showed the peaks at $976.83(\mathrm{M}+\mathrm{Na})^{+}$ and $992.7(\mathrm{M}+\mathrm{K})^{+}$confirmed the structure of 76 (Scheme 33).

Scheme 33

27

76

Getting free hydroxyl compound 76, we planned to cleave the allyl ester to get the acid component 77. Several standard reaction conditions has been tried which was mentioned in Table-2. Though here we faced lot of problem in allyl ester deprotection but finally using Pd (0), Morpholine in THF, allylester ${ }^{69}$ was cleaved to give the desired acid 77 in moderate yield (Scheme 34).

Scheme 34

77

Table 2. Catalyst and base used for the transformation of 76 to 77

Solvent + Base	Catalyst	Temperature	Product
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$	$\operatorname{Pd}(0)$	$0{ }^{\circ} \mathrm{C}-\mathrm{rt}$	Complex mixtures
NMA	$\operatorname{Pd}(0)$	$0{ }^{\circ} \mathrm{C}-\mathrm{rt}$	Complex mixtures
$(\mathrm{Et})_{2} \mathrm{NH}$	$\operatorname{Pd}(0)$	$0{ }^{\circ} \mathrm{C}-\mathrm{rt}$	Complex mixtures
$\mathrm{Na}-$ salt of ethylhexanoate	$\operatorname{Pd}(0)$	$0{ }^{\circ} \mathrm{C}-\mathrm{rt}$	Complex mixtures
Morpholine	$\operatorname{Pd}(0)$	$0{ }^{\circ} \mathrm{C}-\mathrm{rt}$	77

In the ${ }^{1} \mathrm{H}$ NMR spectrum the olefinic methine signals for allyl group at $\delta 5.95(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$ was vanished away and the mass spectrometric data confirmed the formation of 77 (Scheme 34).

Scheme 35

Next, intramolecular macrocyclization of 77 was carried out by using 2,4,6trichlorobenzoyl chloride, diisopropylethylamine and DMAP in benzene produced a cyclic peptide 78 in 15% yield. ${ }^{70}$ ESI-MS of 78 showed a peaks at $919(\mathrm{M}+\mathrm{Na})^{+}$and $935(\mathrm{M}+$ $\mathrm{K})^{+}$indicates the formation of lactone ring but the ${ }^{1} \mathrm{H}$ NMR spectrum was so complex it was very difficult to assign. LCMS spectrum of $\mathbf{7 8}$ showed two peaks corresponding to same mass, indicating there was racemisation. It was assumed the racemisation might be happened in esterification step, rather than lactonisation step. So further synthesis of 78, seperation of each components present there and further characterization is going on in our laboratory (Scheme 35).

Conclusion:

Stereoselective synthesis of polyketide chain was carried out by employing Sharpless Asymmetric Epoxidation, regeioselective epoxide opening by $\mathrm{Me}_{2} \mathrm{CuCNLi}_{2}$ and installation of pentyne unit following Grignard reaction as our key reactions. We have studied the coupling of -OH (polyketide) and -COOH (Pentapeptide) groups with different coupling reagents and found that EDCI was the best coupling reagent for this reaction. Deproection of allyl ester with various base and $\operatorname{Pd}(0)$ catalyst was studied and finally the allylester was successfully cleaved by using $\operatorname{Pd}(0)$, Morpholine in THF. Intramolecular lactonization was successfully achieved following Yamaguchi Lactonisation.

EXPERIMENTAL

3-(4-methoxybenzyloxy)propan-1-ol

$\mathrm{PMBO}_{40} \mathrm{\sim OH}_{\mathrm{OH}}$

A solution of 1,3 propanediol $(50.0 \mathrm{~g}, 0.657 \mathrm{~mol})$ in THF $(400 \mathrm{~mL})$ was added to a suspension of $\mathrm{NaH}(31.5 \mathrm{~g}, 0.789 \mathrm{~mol}, 60 \%)$ in DMF (100 mL) at $0{ }^{\circ} \mathrm{C}$. After stirring for 30 min , paramethoxybenzyl bromide ($110.1 \mathrm{~mL}, 0.657 \mathrm{~mol}$) was added over a period of 1 h and further stirred for 1 h . Then the reaction mixture was quenched by water, organic layer was seperated and the aqueous layer was extracted with ethylacetate (3 x 100 mL).Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the residue by silica gel chromatography (40 \% EtOAc/light petroleum) resulted 3-O-PMB-1-propanol $40(103.0 \mathrm{~g})$ as a colorless liquid.

Yield

Mol.Formula
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$
Elemental Analysis

80\%
$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}$
$\delta 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$,
$4.44(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H})$,
$3.62(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.84$ (quin, J
$=5.6 \mathrm{~Hz}, 2 \mathrm{H})$.
159.1, 130.0, 129.1, 113.7, 72.7, 68.6, 61.3, 55.0, 32.0.

Calcd: C, 67.32; H, 8.22
Found: C, 67.24; H, 8.37

A solution of DMSO ($58 \mathrm{~mL}, 0.765 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ was added dropwise to a solution of oxalyl chloride ($22.08 \mathrm{~mL}, 0.255 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After 30 min , a solution of alcohol $40(50.0 \mathrm{~g}, 0.255 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added to the reaction mixture at same temperature and stirred for additional 30 min . Triethyl amine ($154.53 \mathrm{~mL}, 1.53 \mathrm{~mol}$) was added and the reaction mixture was allowed to warm to room temperature. Reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100$ mL). The organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude aldehyde 41 (49.7 g), which was used for next reaction without purification.

Compound $41(49.7 \mathrm{~g}, 0.256 \mathrm{~mol})$ was dissolved in anhydrous THF (150 mL) and was added to the refluxing solution of carboethoxy methylidenetriphenylphosphorane (266.0 g , 0.764 mol) in THF (400 mL) and refluxed for 45 min . The THF was removed by rotavapour under vaccum and the residue was purified by silica gel chromatography (15% Ethylacetate/light petroleum), provided α, β unsaturated ester $42(53.8 \mathrm{~g})$ as a colourless liquid.

Yield

Mol.Formula

IR ($\left.\mathbf{C H C l}_{3}\right)_{\mathrm{cm}^{-1}}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

80\%
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$

1751
$\delta 7.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=$
$8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{dt}, J=15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43$ (s,
$2 \mathrm{H}), 4.17$ ($\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.53$ (t, J
$=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.42(\mathrm{dq}, J=1.5,6.5 \mathrm{~Hz}, 2 \mathrm{H})$,
$1.28(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$
67.8, 60.0, 55.0, 32.5, 14.2.

Elemental Analysis
Calcd: C, 68.18; H, 7.63
Found: C, 68.20; H, 7.45

(E)-5-(4-methoxybenzyloxy)pent-2-en-1-ol

To a solution of α, β unsaturated ester $42(100.3 \mathrm{~g}, 0.379 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL}), 2.5 \mathrm{M}$ solution of DIBAL-H ($404.6 \mathrm{~mL}, 1.139 \mathrm{~mol}$) in toluene was added at $-20^{\circ} \mathrm{C}$ over a period of 30 mins and stirred for another 30 min . Excess DIBAL-H was quenched at same temperature by saturated aq.Na-Ktartrate solution. The heterogeneous mixture was stirred vigorously till both the layer clearly separates. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated.The crude compound was purified by silicagel chromatography ($25 \% \mathrm{EtOAc} /$ light petroleum) resulting in allylic alcohol $\mathbf{3 8}(75.9 \mathrm{~g})$ as a colourless liquid.

Yield

Mol.Formula

IR $\left(\mathbf{C H C l}_{3}\right) \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis

90\%
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$

3304, 3019, 2991, 2936
$\delta 7.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 5.71-5.67 (m, 2H), 4.42 (s, 2H), 4.09-4.01 (m, 2H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{t}, \quad J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-2.30(\mathrm{~m}$, $3 \mathrm{H})$.
$159.0,131.0,130.2,129.2,128.8,113.6,72.4,69.1$, 63.2, 55.0, 32.5

Calcd: C, 70.24 ; H, 8.16
Found: C, 70.38; H, 8.29

(2S,3S)-5-(4-methoxybenzyloxy)-2,3-Oxiranyl-pentanol

To a stirred and cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of $(+)$ - DET $(12.3 \mathrm{~g}, 72.0 \mathrm{mmol})$ and powdered molecular sieves (40 g) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ under nitrogen was added titaniumtetraisopropoxide $(21.3 \mathrm{~g}, 72.0 \mathrm{mmoL})$ and stirred for 15 min . A solution of allylic alcohol $38(20 \mathrm{~g}, 90.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was introduced and after 45 min TBHP $(81 \mathrm{~mL}, 270 \mathrm{mmol})$ was added slowly maintaining the temperature at $-20^{\circ} \mathrm{C}$. The reaction mixture was stored at $-20^{\circ} \mathrm{C}$ for 24 h , then brought to $0^{\circ} \mathrm{C}$. The tartrate was hydrolysed by adding 1 mL of 30% aq NaOH solution saturated with NaCl and stirred for 30 min . This was filtered through a bed of celite, aq layer was seperated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ concentrated and the residue was purified by silicagel column chromatography (35% EtOAc/light petroleum) afforded epoxy alcohol $37(12.1 \mathrm{~g})$ as an oil.

Yield

Mol.Formula
$[\alpha]_{D}{ }^{25}$
IR ($\mathbf{C H C l}_{3}$) cm^{-1}
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis

70\%
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}$
-20.34 (c 1.7, CHCl_{3})
3016, 1270, 840
$\delta 7.24(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $4.44(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.53$ $(\mathrm{m}, 3 \mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.74(\mathrm{~m}$, $3 \mathrm{H})$.
$158.9,129.9,128.9,113.5,72.3,66.2,61.5,58.3,54.8$, 53.4, 31.7.

Calcd: C, 65.53 ; H, 7.61
Found: C, 65.35; H, 7.66

(2R,3S)-5-(4-methoxybenzyloxy)-2-methylpentane-1,3diol

To a stirred solution of $\mathrm{CuCN}(18 \mathrm{~g}, 103 \mathrm{mmol})$ in THF-DMDU (4:1, 250mL), MeLi (1.5 $\mathrm{M}, 136.3 \mathrm{~mL}, 206.0 \mathrm{mmol}$) was added at $-20{ }^{\circ} \mathrm{C}$ and stirred for 1 h . The epoxyalcohol $(10.0 \mathrm{~g}, 51.5 \mathrm{mmol})$ was added in THF and temperature was maintained for 1 h , then the temperature was raised to $0{ }^{\circ} \mathrm{C}$ in 1 h . The reaction mixture was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the aqueous layer was extracted with ethylacetate ($3 \times 100 \mathrm{~mL}$). The combined organic layers were concentrated and the residue obtained was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and silicagel adsorbed $\mathrm{NaIO}_{4}(45 \mathrm{~g})$ was added, stirred for 2 h . Reaction mixture was filtered and concentrated. The residue was purified by silicagel column chromatography ($40 \% \mathrm{EtOAc} / \mathrm{light}$ petroleum) to afford compound $\mathbf{3 6}(7.5 \mathrm{~g})$ as a colorless liquid.

Yield

Mol.Formula

IR ($\left.\mathbf{C H C l}_{3}\right)_{\mathrm{cm}^{-1}}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis
70%
$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4}$
-0.95 (c 4.2, CHCl_{3})

$$
3430
$$

$\delta 7.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.45(\mathrm{~s}, 2 \mathrm{H}), 4.10$ (brs, 2H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.58$ $(\mathrm{m}, 5 \mathrm{H}), 1.84-1.65(\mathrm{~m}, 3 \mathrm{H}), 0.85(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
$159.3,129.6,129.3,113.8,77.6,73.1,69.1,67.5,55.1$, 40.0, 34.2, 13.8.

Calcd: C, 66.14; H,8.72
Found: C, 66.34; H, 8.53

(2R,3S)-3-hydroxy-5-(4-methoxybenzyloxy)-2-methylpentyl benzoate

To a stirred solution of compound $36(8.0 \mathrm{~g}, 38.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL}) \mathrm{Et}_{3} \mathrm{~N}(8.6 \mathrm{~mL}$, 76.0 mmol), were added benzoylchloride $(5.0 \mathrm{~mL}, 41.9 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred for 30 min . Reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 50$ mL). The combined organic layers were concentrated and purified by silicagel column chromatography ($25 \% \mathrm{EtOAc} /$ light petroleum) afforded monobenzoate compound 48 $(11.60 \mathrm{~g})$ as a colorless liquid.

Yield
Mol.Formula
$[\alpha]_{D}{ }^{25}$
IR $\left(\mathbf{C H C l}_{3}\right) \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis

97 \%
$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{5}$
71.64 (c $0.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}$)

1715
88.06-8.01 (m, 2H), $7.54(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 2 \mathrm{H})$,
7.23 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.44$
($\mathrm{s}, 2 \mathrm{H}$), $4.39(\mathrm{dd}, ~ J=1.5,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, 3.74-3.58 (m, 3H), 2.01 (m, 1H), 1.86-1.76 (m, 2H), $1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
$166.5,159.1,132.7,130.2,129.7,129.4,129.1,128.2$, $113.6,72.8,72.5,68.7,66.5,55.0,38.7,33.2,13.5$.

Calcd: C, 70.37; H, 7.31
Found: C, 70.54; H, 7.60

(2R,3S)-3-(tert-butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-2-methylpentan-1-ol

Compound $48(11.0 \mathrm{~g}, 35.03 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL}), 2$, 6 lutidine ($12.2 \mathrm{~mL}, 105.2 \mathrm{mmol}$) and TBSOTf ($9.6 \mathrm{~mL}, 42.0 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ and stirred for 30 min . Reaction mixture was diluted with water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was separated and concentrated. The residue was purified by silicagel column chromatography (15% EtOAc/light petroleum) to give compound 49 ($11.9 \mathrm{~g}, 80 \%$), which was dissolved in methanol (120 mL) and $\mathrm{K}_{2} \mathrm{CO}_{3}(11.5 \mathrm{~g}$, 83.4 mmol$)$ was added and stirred for 3 h . The reaction mixture was filtered and concentrated. The crude product was purified by silicagel chromatography (20% EtOAc/lightpetroleum) afforded compound $\mathbf{5 0}$ (7.83 g) in excellent yield.

Yield
Mol.Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis
98%
$\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}$
$-1.32\left(\right.$ c $\left.1.7, \mathrm{CHCl}_{3}\right)$
$\delta 7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$,
$4.41(\mathrm{AB} \mathrm{q}, J=11.6,13.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{q}, J=5.9$
$\mathrm{Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{dd}, J=3.9,10.9 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.50(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$), 2.69 (brs, 1H), $1.88-1.74$
(m, 3H), $0.97(\mathrm{~d}, ~ J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.09$
(s, 3H), 0.08 (s, 3H)
159.1, 130.3, 129.2, 113.7, 73.6, 72.7, 66.4, 65.1, 55.1,
$39.1,34.2,25.8,18.0,13.7,-4.4,-4.6$
Calcd: C, 65.17; H, 9.84
Found: C, 65.24; H, 9.69

(2S,3S)-3-(tert-butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-2-methylpentanal

A solution of DMSO ($5.50 \mathrm{~mL}, 72.2 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ was added dropwise to a solution of oxalyl chloride ($2.07 \mathrm{~mL}, 24.0 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After 30 min, a solution of alcohol $50(7.8 \mathrm{~g}, 24.0 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added to the reaction mixture at same temperature and stirred for an additional 30 min. Triethyl amine $(15.39 \mathrm{~mL}, 144.0 \mathrm{~mol})$ was added and reaction mixture was allowed to come to room temperature. Water was added to the reaction mixture and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100$ mL). The organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude aldehyde $\mathbf{5 1}(6.9 \mathrm{~g})$, which was immediatedly used for next reaction without further purification.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{2 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $9.16(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}) 6.68(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.32$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~s}$, $3 \mathrm{H}), 2.97(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.23$ $(\mathrm{m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, ~ J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}),-0.09$ (s, 6H).

To a stirred solution of aldehydic compound $51(6.9 \mathrm{~g}, 21.3 \mathrm{mmol})$ in diethylether (60 mL) under nitrogen at $0{ }^{\circ} \mathrm{C}$ was added a solution of allylmagnesium bromide [prepared from $\mathrm{Mg}(2.5 \mathrm{~g}, 106.8 \mathrm{mmol})$ and allylbromide ($5.42 \mathrm{~mL}, 64.08 \mathrm{mmol}$) in $100 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$] and stirred for 1 h. The reaction mixture was quenched by sat aq $\mathrm{NH}_{4} \mathrm{Cl}$. The ethereal layer was seperated and the aqueous layer was extracted thrice with (3×50 $\mathrm{mL}) \mathrm{Et}_{2} \mathrm{O}$. The combined ethereal layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated on rotavapour. The residue was purified by silicagel chromatography (15%

EtOAc/light petroleum) afforded alcohol $53(3.2 \mathrm{~g})$ and it's diastereomer $52(2.2 \mathrm{~g})$ in 1.5:1 ratio in 70% yield as colourless liquid.

(4S,5R,6S)-6-(tert-butyldimethylsilyloxy)-8-(4-methoxybenzyloxy)-5-methyloct-1-en-4-ol

Mol.Formula
$\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}$
$[\alpha]_{D}{ }^{25}$
$-10.87\left(c 1.4, \mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
$\delta 7.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $5.70(\mathrm{~m}, 1 \mathrm{H}), 5.12-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{ABq}, \quad J=$ $11.6,17.1 \mathrm{~Hz}, 2 \mathrm{H}$), 4.06-3.90 (m, 2H), 3.80 (s, 3H), $3.45-3.34(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}), 1.92$ (q, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, 3H), 0.88 (s, 9H), 0.09 (s, 6H)
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0 M H z}\right) \quad 159.2,135.3,130.2,129.1,116.8,113.7,75.9,72.6$, 69.9, 66.2, 55.1, 39.2, 38.2, 34.9, 25.8, 17.9, 10.9, -4.4, - 4.6

Elemental Analysis
Calcd: C, 67.64; H, 9.85
Found: C, 67.54; H, 9.73
(4R,5R,6S)-6-(tert-butyldimethylsilyloxy)-8-(4-methoxybenzyloxy)-5-methyloct-1-en-4-ol

Mol.Formula	$\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}$
$[\alpha]_{\text {D }}{ }^{25}$	-10.33 (c 1.3, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & \delta 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), \\ & 5.85(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.06 \\ & (\text { quin, } J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.41(\mathrm{~m}, \\ & 3 \mathrm{H}), 2.45-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.60(\mathrm{~m}, \\ & 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.05(\mathrm{~s}, \\ & 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) . \end{aligned}$
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathbf{1 2 5 M H z}\right)$	$\begin{aligned} & 159.1,135.1,130.3,129.2,117.8,113.7,72.6,72.3, \\ & 70.8,67.0,55.1,43.9,39.3,32.6,25.8,18.0,10.9,- \\ & 4.4,-4.6 \end{aligned}$
Elemental Analysis	Calcd: C, 67.64; H, 9.85
	Found: C, 67.54; H, 9.73

To a methanolic (5 mL) solution of compound $53(0.1 \mathrm{~g}, 0.27 \mathrm{mmol})$, p-TSA ($4 \mathrm{mg}, 0.02$ mmol) was added at room temperature and stirred for 30 min . The reaction mixture was neutralized with $\mathrm{Et}_{3} \mathrm{~N}$ (1 mL), concentrated and purified by silicagel chromatography afforded diol 55 ($73.0 \mathrm{mg}, 90 \%$) in very good yield.

Compound 55 was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}), 2,2$-dimethoxypropane ($0.3 \mathrm{~mL}, 0.36$ mmol) and p-TSA ($4.2 \mathrm{mg}, 0.024 \mathrm{mmol}$) were added and stirred at room temperature for 30 min, neutralized with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$, concentrated and purified by silicagel chromatography to afford acetonide $57(57.0 \mathrm{mg})$ in good yield.

Yield

Mol.Formula
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis

70\%
$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}$
$\delta 7.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $5.79(\mathrm{~m}, 1 \mathrm{H}), 5.12-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.86$ (m, 1H), $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{dd}, J=$ $3.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.58$ (m, $3 \mathrm{H}), 1.29$ (s, 6H), 0.84 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$
$158.9,135.1,130.4,129.0,116.2,113.5,100.3,72.5$, $71.4,68.6,66.4,54.9,39.6,34.9,34.6,24.7,23.6,11.4$

Calcd: C, 71.85; H, 8.98
Found: C, 71.74; H, 8.53
(4R,5R,6S)-4-allyl-6-(2-(4-methoxybenzyloxy)ethyl)-2,2,5-trimethyl-1,3-dioxane

Compound 56 was prepared following same procedure as that for compound 54.

Yield
Mol.Formula
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis

70\%
$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}$
$\delta 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $5.87(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.42-4.38(\mathrm{~m}, 2 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.48(\mathrm{~m}, 4 \mathrm{H}), 2.38-1.48(\mathrm{~m}, 4 \mathrm{H})$, $1.40(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 1 \mathrm{H}), 0.79(\mathrm{~d}, \quad J=$ 6.6 Hz, 3H).
$159.0,134.9,130.6,129.1,116.2,113.6,97.7,73.9$, $72.5,71.0,66.2,55.1,37.8,37.3,33.3,30.0,19.5$, 12.0.

Calcd: C, 71.85; H, 8.98
Found: C, 71.74; H, 8.53

A solution of DMSO ($8.0 \mathrm{~mL}, 105 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise to a solution of oxalyl chloride ($3.03 \mathrm{~mL}, 35.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After 30 \min, a solution of mixture of alcohol 52 and $53(14.3 \mathrm{~g}, 35.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added at same temperature and stirred for additional 30 min . Triethyl amine (23.5 mL , 210.0 mmol) was added to the reaction mixture and allowed to come to room temperature. Water was added to the reaction mixture and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude ketone $\mathbf{5 8}(13.3 \mathrm{~g})$, which was immediatedly used for next reaction without further purification.

To a solution of ketone $58(13.3 \mathrm{~g}, 32.7 \mathrm{mmol})$ in methanol $(75 \mathrm{~mL}), \mathrm{NaBH}_{4}(2.42$ $\mathrm{g}, 65.5 \mathrm{mmol})$ and $\mathrm{CeCl}_{2}(5.5 \mathrm{~g}, 16.3 \mathrm{mmol})$ was added at $-100{ }^{\circ} \mathrm{C}$ under nitrogen. The solution was stirred for 1 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silicagel chromatography ($15 \% \mathrm{EtOAc} /$ light petroleum) to give $52(12.8 \mathrm{~g})$ in 90% yield over 2 steps.
(4R, 5R, 6S)- 6-(tert-butyldimethylsilyloxy)-8-(4-methoxybenzyloxy)- 5-methy-4-(tri-isopropylsilyloxy)- oct-1en

To a solution of alcohol $52(8.0 \mathrm{~g}, 21.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ pyridine (3.54 mL , 43.8 mmol), were added triisopropylsilyl chloride ($6.36 \mathrm{~g}, 32.9 \mathrm{mmol}$) and cat $\mathrm{AgNO}_{3}(1.11$ $\mathrm{g}, 6.57 \mathrm{mmol}$) under nitrogen atmosphere and stirred 6 h . Reaction mixture was diluted with water and the organic layer was separated and washed thrice with brine solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silicagel chromatography (10% EtOAc /light petroleum) to give $\mathbf{3 5}(8.67 \mathrm{~g})$ as colorless oil.

Yield

Mol.Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis

70\%
$\mathrm{C}_{32} \mathrm{H}_{60} \mathrm{O}_{4} \mathrm{Si}_{2}$
-10.68 (c 1.2, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)
$\delta 7.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 5.81(m, 1H), 4.98-4.90 (m, 2H), $4.30(\mathrm{~s}, 2 \mathrm{H}), 3.94-$ $3.76(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.34(\mathrm{~m}, 2 \mathrm{H}), 2.12$ $(\mathrm{m}, 1 \mathrm{H}), 1.79-1.60(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{~s}, 24 \mathrm{H}), 0.76(\mathrm{~s}$, 9 H), -0.07 ($\mathrm{s}, 6 \mathrm{H}$)
$159.0,135.5,130.6,129.2,116.5,113.6,72.6,70.4$, $70.1,66.3,55.1,43.8,37.6,32.9,25.8,18.3,17.7$, 12.9, 12.3, -4.3, -4.5

Calcd: C, 68.03; H, 10.73
Found: C, 68.24; H, 11.32
(4R,5R,6S)-6-(tert-butyldimethylsilyloxy)-8-(4-methoxybenzyloxy)-5-methyl-4-(triisopropylsilyloxy)octan-1-ol

To a solution of $\mathbf{3 5}(3.2 \mathrm{~g}, 5.3 \mathrm{mmol})$ in anhydrous THF $(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}, \mathrm{H}_{3} \mathrm{~B}: \mathrm{SMe}_{2}(2.1$ $\mathrm{mL}, 21.2 \mathrm{mmol}$) was added slowly over a period of 10 min . After stirring for $2 \mathrm{~h}, 3 \mathrm{~N}$ aq. NaOH solution $(30 \mathrm{~mL})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution $(30 \mathrm{~mL})$ were introduced in succession at the same temperature. The reaction mixture was diluted with EtOAc, washed with saturated aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified on silica gel chromatography ($30 \% \mathrm{EtOAc} /$ light petroleum) to provide $\mathbf{5 9}(2.34 \mathrm{~g})$ as a liquid.
Yield
Mol.Formula
${ }_{[\alpha]_{\mathrm{D}}}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis

76\%
$\mathrm{C}_{32} \mathrm{H}_{62} \mathrm{O}_{5} \mathrm{Si}_{2}$
2.31 (c 1.2, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)
$\delta 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.31(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{q}, ~ J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.40(\mathrm{~m}, 4 \mathrm{H}), 1.85-1.46(\mathrm{~m}, 5 \mathrm{H})$, $1.42-1.17(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 21 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}), 0.74$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}),-0.06(\mathrm{~s}, 6 \mathrm{H})$.
$159.0,130.6,129.2,113.6,72.7,72.6,70.8,66.1$, $63.3,55.1,43.6,33.0,28.5,25.8,18.3,18.0,17.9$, 13.0, 9.8, -4.4

Calcd: C, 65.92; H, 10.72
Found: C, 65.64; H, 10.53
(4R, 5R, 6S)- 6-(tert-butyldimethylsilyloxy)-8-(4-methoxybenzyloxy)- 5-methy-4-(tri-isopropylsilyloxy)- 1-bromo-octane

To a solution of alcohol $59(5.6 \mathrm{~g}, 9.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$ imidazole ($55 \mathrm{mg}, 0.96$ mmol) was added and cooled to $0^{\circ} \mathrm{C}$. Triphenylphosphine ($5.04 \mathrm{~g}, 19.24 \mathrm{mmol}$) was added under nitrogen, followed by addition of $\mathrm{CBr}_{4}(4.79 \mathrm{~g}, 14.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred at room temperature for 1 h . The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was washed with water dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified quickly by passing through a short bed of silicagel with $6 \% \mathrm{EtOAc} /$ light petroleum to produce the bromo compound 34 ($5.28 \mathrm{~g}, 85 \%$).
${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl $\left.{ }_{3}\right): \quad \delta 7.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $4.37(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.49(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.14$ $(\mathrm{s}, 1 \mathrm{H}), 1.94-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{~s}$, $21 \mathrm{H}), 0.83(\mathrm{~s}, 12 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H})$
($6 R, 7 R, 8 S$)- 8-(tert-butyldimethylsilyloxy)-10-(4-methoxybenzyloxy)- 7-methy-6-(tri-isopropylsilyloxy)- 1-ynyl-decane

To a solution of bromo compound $34(5 \mathrm{~g}, 7.73 \mathrm{mmol})$ in DMSO (30 mL), Lithium acetylide:EDTA complex ($1.42 \mathrm{~g}, 15.4 \mathrm{mmol}$) was added at $4{ }^{\circ} \mathrm{C}$ and stirred for 30 min . Reaction mixture was diluted with water and extracted with EtOAc. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated on rotavapour. The residue was purified by silicagel chromatography ($5 \% \mathrm{EtOAc} /$ light petroleum) afforded alkyne compound 33 (3.2 g) as a brownish liquid.

Yield

Mol.Formula
$[\alpha]_{D}{ }^{25}$
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis
73%

$$
\mathrm{C}_{34} \mathrm{H}_{62} \mathrm{O}_{4} \mathrm{Si}_{2}
$$

$2.62\left(c \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
3313, 2955, 2927, 2171, 1743
$\delta 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.37(\mathrm{~s}, 2 \mathrm{H}), 4.0(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $3.49(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{t}, J$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.41(\mathrm{~m}, 4 \mathrm{H})$, $1.02(\mathrm{~s}, 21 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.77(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 0.00 (s, 6H)
8159.1, 130.7, 129.2, 113.7, 84.3, 72.7, 70.9, 68.4, $66.1,55.1,43.7,33.1,31.6,25.9,24.3,18.9,18.3$, $18.0,17.9,17.9,17.2,13.0,9.9,9.0,-4.3,-4.4$
Calcd: C, 69.15; H, 10.84
Found: C, 69.34; H, 10.43

(5S,6R,7R,E)-allyl 5-(tert-butyldimethylsilyloxy)-2,6-dimethyl-

 7-(triisopropylsilyloxy)dodec-2-en-11-ynoate

To a solution of compound $33(3.2 \mathrm{~g}, 5.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}(48: 12 \mathrm{~mL})$, pH 7 buffer solution (0.08 mL) was added and stirred in room temperature. DDQ ($1.84 \mathrm{~g}, 8.1 \mathrm{mmol}$) was added and the resulting mixture was stirred at rt for 2 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with aq. $\mathrm{NaHCO}_{3}(4 \times 15 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Purification of the residue by flash chromatography ($20 \% \mathrm{EtOAc}$ /lightpetroleum) provided alcohol 60 as a colourless liquid ($2.04 \mathrm{~g}, 91 \%$).

The alcohol 60 was dissolved in DMSO $(15 \mathrm{~mL})$ to it iodoxybenzoic acid (4.1 g , 14.7 mmol) was added at room temperature and stirred for 1 h . Reaction mixture was diluted with 5 mL ice cold water, a white precipitate was formed and filtered. The filtrate was collected and extracted with ether. The ether layer was washed twice with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude aldehyde $\mathbf{3 1}(1.6 \mathrm{~g}, 3.8 \mathrm{mmol})$ was dissolved in anhydrous THF (20 mL) and allyloxyethyledenetriphenyl phosphorane ($4.3 \mathrm{~g}, 11.6 \mathrm{mmol}$) was added and stirred in reflux condition for 1 h . THF was removed by rotavapour under vacuum and the residue was purified by column chromatography with 5\% EtOAc in light petroleum to give the compound $\mathbf{6 1}(2.17 \mathrm{~g})$.

Yield

Mol.Formula
$[\alpha]_{\mathrm{D}}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

80\%
$\mathrm{C}_{32} \mathrm{H}_{60} \mathrm{O}_{4} \mathrm{Si}_{2}$

$$
2.62\left(c \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
$$

$\delta 6.85(\mathrm{~m}, 1 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.24-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.51$
(d, $J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.94-3.69(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.00(\mathrm{~m}$, $4 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.12(\mathrm{~m}, 4 \mathrm{H})$,
$1.14(\mathrm{~s}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 21 \mathrm{H}), 0.76(\mathrm{~s}, 9 \mathrm{H}), 0.68(\mathrm{~d}, J=$

Elemental Analysis

Calcd: C, 69.15; H, 10.84
Found: C, 69.34; H, 10.43
(5S,6R,7R,E)-allyl 5,7-dihydroxy-2,6-dimethyldodec-2-en-11ynoate

Compound $61(0.2 \mathrm{~g}, 0.337 \mathrm{mmol})$ was dissolved in methanol (5 mL) and PPTS (16 mg , 0.067 mmol) was added at $0{ }^{\circ} \mathrm{C}$ and stirred for 30 min . The reaction temperature was increased from $0{ }^{\circ} \mathrm{C}-\mathrm{rt}$ and stirred for 30 min . Reaction mixture was quenched by $\mathrm{Et}_{3} \mathrm{~N}$, concentrated and purified by 20% EtOAc/light petroleum provided diol $62(36 \mathrm{mg})$ as a single product.

Yield

Mol.Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

Elemental Analysis
$\delta 6.94(\mathrm{dt}, J=1.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~m}, 1 \mathrm{H}), 5.39-$
$5.21(\mathrm{~m}, 2 \mathrm{H}), 4.68-4.66(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{t}, J=1.2 \mathrm{~Hz}$,
2 H), 3.79-3.65 (m, 2H), 2.78 (br s, 1H), 2.48-2.30 (m,
$2 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89$
(s, 3 H), 1.76-1.52 (m, 3H), $0.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$
Calcd: C, 69.38; H, 8.84
Found: C, 69.34; H, 8.53
90\%
$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4}$
4.32 (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)
(4R, 5R, 6S)- 6-(tert-butyldimethylsilyloxy)-8-(4-methoxybenzyloxy)- 5-methy-4-(methoxymethyl)- 1-octene

To a solution of alcohol $52(0.8 \mathrm{~g}, 1.96 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ were added diisopropylethylamine ($0.7 \mathrm{~mL}, 5.8 \mathrm{mmol}$), methoxymethyl chloride ($0.3 \mathrm{~mL}, 2.9 \mathrm{mmol}$) and $\mathrm{AgNO}_{3}(6 \mathrm{mg}, 0.392 \mathrm{mmol})$ in $0{ }^{\circ} \mathrm{C}$ under nitrogen. The resulting solution was stirred for 6 h in rt Reaction mixture was diluted with water and the organic layer was separated and washed with brine solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel chromatography eluting with 15% EtOAc/light petroleum to give $\mathbf{6 3}$ $(0.779 \mathrm{~g})$ as colorless oil.

Yield
Mol.Formula
$[\alpha]_{D}{ }^{25}$
IR $\left(\mathbf{C H C l}_{\mathbf{3}}\right) \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

88\%
$\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Si}$
-30.77 (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)
3436, 3075, 2931, 1614
$\delta 7.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $5.83(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{AB} \mathrm{q}, \mathrm{J}=6.8$,
$7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.39 (s, 2H), $4.00(\mathrm{~m}, 1 \mathrm{H}), 3.77$ (s, 3H), 3.55-3.47 (m, 3H), $3.30(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 1 \mathrm{H}), 2.17(\mathrm{~s}$, $1 \mathrm{H}), 1.92-1.62(\mathrm{~m}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~d}, ~ J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.02$ (s, 6H).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5} \mathbf{~ M H z}\right) \quad 159.0,134.7,130.7,129.1,116.8,113.6,95.8,78.2$, $72.5,69.5,67.1,55.7,55.1,41.8,35.6,32.2,25.8$, 17.9, 9.8, -4.4, -4.6.

Calcd: C, 66.50, H, 9.70
Found: C, 66.54; H 9.63

Compound 63 was prepared following same procedure as that for compound 64.

Yield

Mol.Formula
$[\alpha]_{D}{ }^{25}$
IR $\left(\mathbf{C H C l}_{3}\right) \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$
159.0, 130.6, 129.1, 113.6, 95.9, 78.7, 72.5, 69.7, 66.9, $62.9,55.7,55.1,41.5,32.3,27.7,27.1,25.8,17.9,9.9$, $-4.5,-4.6$

Calcd: C, 63.8; H, 9.78
Found: C, 63.74; H 9.53

Compound 65 was prepared following the same procedure as that for compound 64.

Yield
Mol.Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

Elemental Analysis
$\delta 7.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $4.55(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $3.56-3.44(\mathrm{~m}, 3 \mathrm{H}), 3.41(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~s}$, $3 \mathrm{H}), 1.97-1.41(\mathrm{~m}, 7 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~d}, \mathrm{~J}=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H})$.
72 \%
$\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{O}_{5} \mathrm{SiBr}$
-3.42 (c 2.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)

Calcd: C, 56.28; H, 8.44
Found: C, 56.54; H 8.78
(4R,5R,6S)-6-(tert-butyldimethylsiloxy)-8-(4-methoxybenzyloxy)-4-(methoxymethyloxy)-5-methyl-1-alkynyl-decane

Compound 66 was prepared from bromo compound 65 using litium acetylide:EDTA complex following the procedure as that for compound 33 .

Yield

Mol.Formula
$[\alpha]_{D}{ }^{25}$
IR $\left(\mathbf{C H C l}_{3}\right) \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis

$$
74 \%
$$

$$
\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{Si}
$$

$$
-7.49\left(c \quad 3.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
$$

$$
3309,3013,2955,2857,2117,1724
$$

$$
\delta 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}),
$$

$$
4.58(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})
$$

$$
3.56-3.48(\mathrm{~m}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.14(\mathrm{~m}, 2 \mathrm{H}),
$$

$$
1.93(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.60(\mathrm{~m}, 7 \mathrm{H}), 0.87(\mathrm{~s},
$$

$$
9 \mathrm{H}), 0.83(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.03(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 6 \mathrm{H})
$$

159.0, 130.7, 129.1, 113.6, 95.8, 84.3, 78.3, 72.5, 69.9,

$$
68.4,66.9,55.7,55.2,41.6,32.5,29.8,25.8,23.6
$$

$$
18.6,18.0,10.0,-4.5,-4.5
$$

Calcd: C, 67.92; H, 9.64
Found: C, 67.64; H, 9.54

To a stirred solution of aldehydic compound $51(6.9 \mathrm{~g}, 18.8 \mathrm{mmol})$ in THF $(60 \mathrm{~mL})$ under nitrogen at $0{ }^{\circ} \mathrm{C}$ was added a solution of pentynylmagnesium bromide [prepared from $\mathrm{Mg}(2.25 \mathrm{~g}, 94.0 \mathrm{mmol})$ and TMS-pentynylbromide ($8.2 \mathrm{~g}, 37.6 \mathrm{mmol}$) in 60 mL THF] and stirred for 1 h . The reaction mixture was quenched by sat $\mathrm{NH}_{4} \mathrm{Cl}$. The THF layer was seperated and the aqueous layer was extracted thrice with ($3 \times 50 \mathrm{~mL}$) EtOAc. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and
concentrated on rotavapour.The residue was purified by silicagel chromatography afforded alcohol $\mathbf{6 7}(4.8 \mathrm{~g})$ and it's diastereomer $\mathbf{6 8}(3.2 \mathrm{~g})$ in $1 .: 1.5$ ratio in 84% yield over two steps as colourless liquid.
(3S,4R,5S)- 10-(trimethylsilyl)- 4-methyl-3-(tert-butyldimethylsilyloxy)-1-(4-methoxybenzyloxy)-dec-9-yn-5-ol

Mol.Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{3} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis
$\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{Si}_{2} \mathrm{O}_{4}$
$-2.85\left(c \quad 0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
$\delta 7.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$,
$4.39(\mathrm{AB} \mathrm{q}, J=11.6,19.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 3.95$
(dt, $J=2.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H})$,
$3.46-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{q}, J$
$=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.25(\mathrm{~m}, 3 \mathrm{H})$,
0.99 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), \quad 0.13(\mathrm{~s}, 9 \mathrm{H})$,
0.09 (s, 6H)
159.1, 130.2, 129.2, 113.7, 107.1, 84.5, 76.0, 72.6, $69.1,66.2,55.1,38.6,35.0,33.5,25.8,17.9,16.6$,
11.3, 0.19, -4.4, -4.7.

Calcd: C, 66.40; H, 9.88
Found: C, 66.32; H,10.14
(3S,4R,5R)- 10-(trimethylsilyl)- 4-methyl-3-(tert-butyldimethylsilyloxy)-1-(4-methoxybenzyloxy)-dec-9-yn-5-ol

Mol.Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis
$\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{Si}_{2} \mathrm{O}_{4}$
3.05 (c 1.3, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)
$\delta 7.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $4.40(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.44(\mathrm{~m}$, $3 \mathrm{H}), 2.33(\mathrm{dt}, J=2.02,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H})$, $1.94-1.44(\mathrm{~m}, 7 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.12(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H})$.
$159.1,130.2,129.3,113.7,107.5,84.7,72.8,72.7$, 71.5 67.0, 55.1, 44.2, 33.6, 33.3, 25.8, 18.0, 16.2, 11.6, $0.18,-4.4,-4.5$
Calcd: C, 66.40; H,9.88
Found: C, 66.32; H,10.14

Paramethoxybenzyl ether of compound 66 was deprotected by DDQ following same procedure as that for compound 70 resulted in compound 72.

Yield

Mol.Formula
$[\alpha]_{D}{ }^{25}$
IR ($\left.\mathbf{C H C l}_{3}\right)_{\mathrm{cm}^{-1}}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
91\%
$\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}$
-15.73 (c 2.6, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)
3447, 3312, 2953, 2887, 2857, 1472
$\delta 4.60(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$,
$3.49(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.29$ (br s, 1H), 2.25-2.14
(m, 2H), $1.94(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.69(\mathrm{~m}, 2 \mathrm{H})$,
$1.64(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.47(\mathrm{~m}, 2 \mathrm{H}) 0.89(\mathrm{~s}$,
9 H), 0.84 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 0.09 (s, 3H), 0.07 (s, 3H)
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis
95.9, 84.1, 78.8, 71.3, 68.4, 60.3, 55.7, 41.5, 33.9,
$29.9,25.7,23.3,18.5,17.8,9.9,-4.5,-4.5$
Calcd: C, 63.68 ; H,10.60
Found: C, 63.54; H, 10.43

Compound $\mathbf{7 4}$ was prepared from $\mathbf{7 3}$ following same procedure as that for compound $\mathbf{2 3}$.

Yield
Mol.Formula
$[\alpha]_{D}{ }^{25}$
IR $\left(\mathbf{C H C l}_{3}\right) \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis

80\%
$\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Si}$
3.63 (c $5.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}$)

3309, 3018, 2857, 2401, 2117, 1707, 1648, 1462, 1379, 1362, 1252, 1097, 936, 837
$\delta 6.90(\mathrm{dt}, J=1.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~m}, 1 \mathrm{H}), 5.27$ (ddd, $J=1.3,10.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{dt}, J=1.3,5.5 \mathrm{~Hz}$, $2 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{q}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~m}$, $1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.16$ $(\mathrm{m}, 2 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.48$ (m, 4H), $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.04(\mathrm{~s}$, $3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H})$
$167.8,140.1,132.8,128.7,117.8,96.1,84.5,78.6$, $72.3,68.7,65.2,56.0,42.0,32.7,30.0,26.0,24.1$, $18.8,18.2,12.8,10.5,-4.1,-4.3$

Calcd: C, 66.37; H, 9.70.
Found: C, 66.54; H, 10.10

To a solution of compound $74(0.1 \mathrm{~g}, 0.221 \mathrm{mmol})$ in THF (2 mL), TBAF in THF (2.21 $\mathrm{mL}, 0.221 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ and catalytic amount of $\mathrm{AcOH}(0.1 \mathrm{~mL})$ was added and stirred for 2 h . Reaction mixture was concentrated and purified by silicagel chromatography ($15 \% \mathrm{EtOAc} /$ light petroleum) to give compound $75(0.06 \mathrm{~g})$ as colourless liquid.

Yield
Mol.Formula
$[\alpha]_{D}{ }^{25}$
IR ($\mathbf{C H C l}_{3}$) cm^{-1}
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Elemental Analysis

86\%
$\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{5}$
-16.71 (с 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)
3470, 3308, 3019, 2958, 2401, 1706
$\delta 6.94(\mathrm{~m}, 1 \mathrm{H}), 5.97(\mathrm{~m}, 1 \mathrm{H}), 5.39-5.20(\mathrm{~m}, 2 \mathrm{H})$, 4.68-4.66 (m, 3H), $4.64(\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.63$
$(\mathrm{m}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.14(\mathrm{~m}$, 2 H), 1.97 ($\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.89 ($\mathrm{s}, 3 \mathrm{H}$), 1.76-1.55 (m, 5H), $1.20(\mathrm{~s}, 1 \mathrm{H}), 0.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$
$167.5,138.9,132.4,129.5,117.7,95.7,84.1,79.7$, $73.2,68.5,65.1,55.9,41.5,34.1,29.3,23.6,18.3$, 12.6, 12.0.

Calcd: C, 67.40; H, 8.87
Found: C, 67.54; H, 8.53

To a solution of acid $28(0.165 \mathrm{~g}, 0.221 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added EDCI (56 $\mathrm{mg}, 0.295 \mathrm{mmol}$) and DMAP ($0.8 \mathrm{mg}, 0.0073 \mathrm{mmol}$). Alcohol 75 ($0.025 \mathrm{~g}, 0.0739 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added and stirred for 7 h . Reaction mixture was concentrated and purified by silicagel chromatography ($60 \% \mathrm{EtOAc} /$ light petroleum) afforded compound 27 $(63 \mathrm{mg})$ as a liquid.

Yield
Mol.Formula
$[\alpha]_{\mathrm{D}}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

80 \%
$\mathrm{C}_{57} \mathrm{O}_{12} \mathrm{H}_{93} \mathrm{~N}_{5} \mathrm{Si}$
28.17 (c 0.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)
$\delta 7.22(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.71(\mathrm{~m}$, 1H), $6.53(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=17.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.23-5.18(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~m}, 1 \mathrm{H}), 4.86-4.76(\mathrm{~m}$, $2 \mathrm{H}), 4.68(\mathrm{t}, J=7.34 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.59(\mathrm{~m}, 4 \mathrm{H})$, 4.12-4.03 (m, 3H), 3.50 (brs, 1H), 3.35 (d, $J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}), 3.25-3.17(\mathrm{~m}, 2 \mathrm{H}), 3.07-2.91(\mathrm{~m}, 14 \mathrm{H}), 2.54(\mathrm{~m}$, $1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H})$, $2.02(\mathrm{~s}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 4 \mathrm{H}), 1.81(\mathrm{~s}, 2 \mathrm{H})$, $1.64-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.47(\mathrm{~m}$, $3 \mathrm{H}), 1.43-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{dd}, J=7.3,14.2 \mathrm{~Hz}$, $4 \mathrm{H}), 1.25-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.86-0.82(\mathrm{~m}$, $4 \mathrm{H}), 0.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}$, $3 \mathrm{H})$

ESI Mass(m/e)
$\left[\mathrm{M}^{+}+\mathrm{Na}\right]=1090.66,\left[\mathrm{M}^{+}+\mathrm{K}\right]=1106.66$

Compound-76

To a solution of compound $27(0.1 \mathrm{~g}, 0.093 \mathrm{mmol})$ in THF (5 mL), TBAF in THF (0.02 $\mathrm{mL}, 0.102 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ and catalytic amount of AcOH was added and stirred for 2 h . Reaction mixture was concentrated and purified by silicagel chromatography (70% EtOAc/light petroleum) afforded compound $76(0.06 \mathrm{~g})$ as colourless liquid.

Yield

Mol.Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

ESI Mass (m/e)

71%

$\mathrm{C}_{51} \mathrm{O}_{12} \mathrm{H}_{79} \mathrm{~N}_{5}$
-16.71 (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)
$\delta 7.64(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.72(\mathrm{~m}, 1 \mathrm{H}), 5.93$
$(\mathrm{m}, 1 \mathrm{H}), 5.50(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.24$
$(\mathrm{m}, 1 \mathrm{H}), 5.14(\mathrm{~m}, 1 \mathrm{H}), 4.90-4.71(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{~s}, 3 \mathrm{H})$,
$4.52(\mathrm{t}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.06$
(brs, 1H), $3.46(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.20-2.99(\mathrm{~m}$, $12 \mathrm{H}), 2.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{t}, J=8.5 \mathrm{~Hz}$, $3 H), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H})$,
$2.04(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 4 \mathrm{H}), 1.65-$
$1.50(\mathrm{~m}, 9 \mathrm{H}), 1.34(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.26(\mathrm{~s}, 4 \mathrm{H})$,
0.93 ($\mathrm{s}, 6 \mathrm{H}$)
$\left[\mathrm{M}^{+}+\mathrm{Na}\right]=976.83,\left[\mathrm{M}^{+}+\mathrm{K}\right]=992.79$

Compound-78

Yield

Mol.Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

ESI Mass (m/e)

15\%
$\mathrm{C}_{48} \mathrm{H}_{73} \mathrm{O}_{11} \mathrm{~N}_{5}$
$-1.53\left(c \quad 0.8, \mathrm{CHCl}_{3}\right)$
$7.60(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.78(\mathrm{~m}, 1 \mathrm{H}), 5.48-$
$5.22(\mathrm{~m}, 2 \mathrm{H}), 4.98-4.61(\mathrm{~m}, 5 \mathrm{H}), 4.28-4.04(\mathrm{~m}, 2 \mathrm{H})$,
$3.88(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.63(\mathrm{~m}, 3 \mathrm{H}), 3.41-3.33(\mathrm{~m}, 3 \mathrm{H})$, 3.11-2.94 (m, 13H), 2.46-2.06 (m, 4H), 1.96(m, 1H), 1.88-1.76 (m, 5H), 1.72-1.46 (m, 14H), $1.26(\mathrm{~s}, 6 \mathrm{H})$, 0.90 ($\mathrm{s}, 8 \mathrm{H}$).
$\left[\mathrm{M}^{+}+\mathrm{Na}\right]=919,\left[\mathrm{M}^{+}+\mathrm{K}\right]=935$

SPECTRA

${ }^{1} \mathrm{H}$ NMR spectrum of compound 40 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 40 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 42 in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR spectrum of compound 42 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathbf{H}$ NMR spectrum of compound 37 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 36 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 48 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 48 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 50 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 50 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 51 in CDCl_{3}

${ }^{1} \mathrm{HNMR}$ spectrum of compound 53 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 52 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 52 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 57 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 56 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 56 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 59 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 59 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR spectrum of compound 33 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 61 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 63 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR spectrum of compound 65 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathbf{H}$ NMR spectrum of compound 66 in $\mathbf{C D C l}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound 67 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 68 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR spectrum of compound 72 in $\mathbf{C D C l}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound 72 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR spectrum of compound 74 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathbf{H}$ NMR spectrum of compound 27 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 76 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 78 in CDCl_{3}

REFERENCES

References

(1) Sticher, O.; Heilmann, J.; Jaki, B. J. Nat. Prod. 2000, 63, 1283-1285.
(2) Koehn, F. E.; Longley, R. E.; Reed, J. K. J. Nat. Prod. 1992, 55, 613-619.
(3) Cragg, G. M.; Newman, D. J.; Snader, K. M. J. Nat. Prod. 1997, 60, 52-60.
(4) Trimurtulu, G.; Ohtani, I.; Patterson, G. M. L.; Moore, R. E.; Corbett, T. H.; Valeriote, F. A.; Demchik, L. J. Am. Chem. Soc. 1994, 116, 4729-4737.
(5) Pettit, G. R.; Kamano, Y.; Herald, C. L.; Tuinman, A. A.; Boettner,F. E.; Kizu, H.; Schmidt, J. M.; Baczynskyj, L.; Tomer, K. B.; Bontems,R. J. Am. Chem. Soc. 1987, 109, 6883-6885.
(6) Luesch, H.; Moore, R. E.; Paul, V. J.; Mooberry, S. L.; Corbett, T. H. J.Nat. Prod. Submitted for publication.
(7) Some other lead compounds that have been isolated from marineinvertebrates are suspected to be biosynthesized by symbiotic microorganisms such as cyanobacteria: (a) Moore, R. E.; Banarjee, S.; Bornemann,V.; Caplan, F. R.; Chen, J. L.; Corley, D. G.; Larsen, L. K.; Moore, B. S.;Patterson, G. M. L.; Paul, V. J.; Stewart, J. B.; Williams, D. E. Pure Appl.Chem. 1989, 61, 521-524. (b) Faulkner, D. J.; Harper, M. K.; Haygood, M. G.; Salomon, C. E.; Schmidt, E. W. In Drugs from the Sea; Fusetani, N., Ed.; Karger: Basel, 2000; pp 107-119.
(8) (a)Wipf, P. Chem.Rev. 1995, 95, 2115; b) Spatola, A.F.; Darlak, K.; Ramanovskis, P Tetrahedron Lett. 1996, 37, 591.
(9) Nicolaou, K. C.; Boddy, C. N. C.; Brase, S.; Winssinger, N., Angew. Chem. Int. Ed. 1999, 38, 2097-2152.
(10) Duax, W. L.; Griffin, J. F.; Langs, D. A.; Smith, G. D.; Grochulski, P.; Pletnev, P.; Ivanov, V., Biopolymers 1996, 40, 141-155.
(11) Mauger, A. B., Top. Antibiot. Chem. 1980, 5, 223-306.
(12) Roberts, D. W., In Microbial Control of Pests and Plant Diseases 1970-1980, H. D. Burgess (Ed.); AcademicPress: New York, 1981, pp. 441-464.
(13) Geldof, A. A.; Mastbergen, S. C.; Henrar, R. E. C.; Faircloth, G. T., Cancer Chemother. Pharmacol. 1999,44, 312-318.
(14) Rinehart, K. L., Med. Res. Rev. 2000, 20, 1-27.
(15)a. Bewley, C. A.; Faulkner, D. J. Angew. Chem. Int. Ed. 1998, 37, 2162-2178
b.Yamada, K.; Kigoshi, H., Bull. Chem. Soc. Jpn. 1997, 70, 1479-1489.
(16) Wang, H.-C. R., Drugs Future 1999, 24, 1184-1188.
(17) Kobayashi, M.; Kitigawa, I. J. Nat. Toxins 1999, 8, 249.
(18) Echinomycin and Related Quinoxaline Antibiotics, Waring, M. J., S. Neidle, Macmillan: Basingstroke, UK,1993.
(19) Namikoshi, M.; Rinehart, K. L., J. Ind. Microbiol. 1996, 17, 373-384.
(20) Moore, R. E.; Corbett, T. H.; Patterson, G. M. L.; Valeriote, F. A., Curr. Pharm. Design 1996, 2, 317-330.
(21)] Zampella, A.; d'Auria, M. V.; Paloma, L. G.; Casapullo, A.;Minale, L.; Debitus, C.; Henin, Y. J. Am. Chem. Soc. 1996,118, 6202-6209.
(22) D'Auria, M. V.; Zampella, A.; Paloma, L. G.; Minale, L.;Debitus, C.; Roussakis, C.; le Bert, V. Tetrahedron1996, 52, 9589-9596.
(23) Belofsky, G. N.; Jensen, P. R.; Fenical, W. TetrahedronLett. 1999, 40, 2913-2916.
(24) Zabriskie, T. M.; Klocke, J. A.; Ireland, C. M.; Marcus, A.H.; Molinkski, T. F.;

Faulkner, D. J.; Xu, C.; Clardy, J. C.,J. Am. Chem. Soc. 1986, 108, 3123-3124.
(25) Clark, D. P.; Carroll, J.; Naylor, S.; Crews, P., J. Org. Chem. 1998, 63, 8757-8764.
(26) Kuroda, J.; Fukai, T.; Konishi, M.; Uno, J.; Kurusu, K.; Nomura, T., Heterocycles 2000, 53, 1533-1549.
(27) Nielsen, T. H.; Christophersen, C.; Anthoni, U.; Sorensen, J., J. Appl. Microbiol. 1999, 87, 80-90.
(28) Kato, A.; Nakaya, S.; Ohashi, Y.; Hirata, H.; Fujii, K.;Harada, K., J. Am. Chem. Soc. 1997, 119, 6680-6681.
(29) Kato, A.; Nakaya, S.; Kokubo, N.; Aiba, Y.; Ohashi, Y.;Hirata, H.; Fujii, K.; Harada, K., J. Antibiot. 1998, 51,929-935.
(30) Tsuda, M.; Shimbo, K.; Kubota, T.; Mikami, Y.;.Kobayashi, J., Tetrahedron 1999, 55, 10305-10314.
(31) Kajimura, Y.; Kaneda, M., J. Antibiot. 1997, 50, 220-228.
(32) Kajimura, Y.; Kaneda, M., J. Antibiot. 1996, 49, 129-35.
(33) Igarashi, M.; Shida, T.; Sasaki, Y.; Kinoshita, N.; Naganawa, H.; Hamada, M.; Takeuchi, T., J. Antibiot.1999, 52, 873-879
(34) Luesch, H.; Yoshida, W. Y.; Moore, R. E.; Paul, V. J.; Corbett, T. H. J.Am. Chem. Soc. 2001, 123, 5418.
(35) Luesch, H.; Yoshida, W. Y.; Moore, R. E.; Paul, V. J.; Corbett, T. H. Bioorg. Med. Chem. 2002, 10, 1973.
(36) Sone, H.; Kondo, T.; Kiryu, M.; Ishiwata, H.; Ojika, M.; Yamada, K.J. Org. Chem. 1995, 60, 4774-4781.
(37) Luesch, H.; Yoshida, W. Y.; Moore, R. E.; Paul,V. J. J. Nat. Prod. 1999, 62, 17021706.
(38) Philip G. Williams, Wesley Y. Yoshida, Richard E. Moore, and Valerie J. Paul J. Nat. Prod. 2002, 65, 29-31.
(39) Philip G. Williams, Wesley Y. Yoshida, Michael K. Quon, Richard E. Moore, and Valerie J. Paul J. Nat. Prod. 2003, 66, 651-654.
(40) Horgen, F. D.; Yoshida, W. Y.; Scheuer, P. J., J. Nat. Prod.2000, 63, 461-467.
(41) Philip G. Williams, Wesley Y. Yoshida, Michael K. Quon, Richard E. Moore, and Valerie J. Paul J. Nat. Prod. 2003, 66, 1545-1549.
(42) Zou, B.; Long,K.; Ma, D.Org. Lett., 2005, 7, 4237-4290.
(43) Pandey, S.K.; Kandula, S.R. V.; Tripathy, P. K. Tetrahedron Letters 2004, 45, 5877 5879.
(44) Hanson, Robert M.; Sharpless, K. B. J. Org. Chem. 1986,51, 1922-1925
(45) (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974-5976; (b)

Pfenninger, A. Synthesis 1986, 89-116;(c) Baker, S. R.; Boot, J. R.; Molgan, S. E.;
Osborne, D.T.; Ross, W. J.; Shrubsall, P. R. Tetrahedron Lett. 1983,24, 4469-4472.(d)
Hanson, R.M.; Sharpless, K. B.J.Org.Chem.1986, 51, 1922-1925.
(46) Poppe, L.; Recseg, K.; Novak, L. Syn.Commun.1995, 25 (24), 3993.
(47) (a) Johnson, M. R.;Nakata, T.; Kishi, Y. Tetrahedron Lett.1979, 4343; (b) Chong, J.M; Cyr, D.R;Mar, E.K. Tetrahedron Lett. 1987, 28, 5009-5012.
(48) Ishihara, J; Ishizaka,T; Suzuki,T and Hatakeyama, S. Tetrahedron Letters 2004, 45, 7855-7858.
(49) Niggemann,J; Michaelis,K; Frank,R; Zander,N; Höfle, Gerhard. J. Chem. Soc., Perkin Trans. 2002, 1, 2490-2503.
(50) Magali Defosseux, Nicolas Blanchard, Christophe Meyer, and Janine Cossy Org. Lett. 2003, 5, 4037-4040.
(51) Johnson,C.R; Ple, Patrick A.; and Adams, J. P. J. CHEM. SOC., CHEM. COMMUN., 1991,1006-1007.
(52) Robert K. Boeckman, Andre B. Charette, Theodros Asberom, and Brian H. Johnston J.Am.chem.soc.1987, 109, 7553
(53)Bertrand, P; Sukkari, H.E.; Gesson, J.P.;Renoux, B.Synthesis 1999, 2, 330-335.
(54) Rychnovsky, S. D.; Rogers, B.; Yang, G. J. Org. Chem. 1993, 58, 3511.
(55) Barry M. Trost and Paul E. Harrington J. Am. Chem. SOC. 2004, 126, 5028-5029.
(56) Gemal, A; L. and Luche, J. L. J. Am. Chem. SOC. 1981, 103, 5454-5459.
(57) Nishino,S; Nagato,Y; Yamamoto,H; Ishido,Y.Carbohydr.chem.,1986, 5, 199.
(58) David A. Evans, Jeremy T. Starr Angew.chem.int.ed. 2002, 41,1787-1790
(59) Makabe, H; Okajima,M; Konno,H; Kamo,T; Hirota,M. Biosci.Biotechnol.Biochem, 2003, 67, 2658-2660.
(60) Ian Paterson, Edward A. Anderson, Stephen M. Dalby, Julien Genovino, Jong Ho Lim and Christian Moessner Chem. Commun., 2007, 1852-1854.
(61) Frigerio,M; Santagostino,M; Sputore, S; Palmisanoj,G. J. Org. Chem. 1995, 60, 72727276.
(62) Forbes, J. E.; Pattenden, G.J. CHEM. SOC. PERKIN TRANS. 1991,1959-1966.
(63) Lorenz, M ; Kalesse,M.Tetrahedron Letters 2007, 48, 2905-2907.
(64) Storg, G; Takahasi, T. J.Am.Chem.Soc. 1977, 99, 1275.
(65) Trost, B. M.; Tanoury, G. J.; Lautens, M.; Chan, C.; Macpherson, D. T. J. Am. Chem. Soc. 1994, 116, 4255.
(66) Ghosh, A.K.; Liu, C.J.Am.Chem.Soc.2003, 125, 2374-2375.
(67) Onyango, A. N.; Nitoda,T.; Kaneko,T; Matsuo,M.;Nakajima.S.; Baba.,N. J. Chem. Soc., Perkin Trans. 1, 2002, 1941-1943.
(68) Jiang,W.; Wanner, J.; Lee, R.J.; Bounaud, P.Y.; Boger, D. L. J. AM. CHEM. SOC. 2003, 125, 1877-1887
(69) More, S. S.; Vince,R.Bioorganic \& Medicinal Chemistry Letters 2006, 16, 60396042.
(70) Sawada, D.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2000, 122, 10521-10532

CHAPTER -III

Synthetic studies toward Asimitrin

INTRODUCTION

Introduction

Cancer is a devastating disease for which there is yet no absolute cure. Genetic predisposition and mutations (abnormal changes in the nuclei of cells) caused by chemicals, radiation, hormones, and viruses account $90-95 \%$ of all cancers. Cancer afflicts almost every part of the human body from the skin to the marrows and is indiscriminate of age.

Tumor cells grow and replicate more rapidly than normal cells as they are better equipped to receive glucose, a good source of energy for fast replication. Also, cancer cells quickly develop a network of blood vessels (angiogenesis) to ensure an efficient supply of nutrients and oxygen.
Different approaches are employed in the treatment of cancer among them chemotherapy and radiation therapy are well known. In chemotherapy normally anticancer drugs used to destroy cancer cells by damaging their genetic material, thus stopping their proleferation. Some drugs work better together than alone, hence two or more drugs are often given at the same time. Unfortunately, most anticancer drugs are not selective, thus healthy cells can also be harmed and cancer cells also develop resistance to the drugs, rendering chemotherapy inactive and futile after a period of remmision. The organisms and cancer cells smartly find a way of protecting themselves from damaging effects of drugs. They generate the ABC transporter superfamily, which transports a variety of substrates including aminoacids, sugars, inorganic ions, polysaccharides, peptides, and the multidrug resistant (MDR) proteins, which is overexpressed and helps to pump drugs out of the cancer cells, making the cancer cells simultaneously resistant to a variety of drugs. In radiation therapy, the ionizing radiation especially used for localized solid tumors, such as cancers of the skin, tongue, brain, breast, or uterine cervix. It can also be used to treat leukemia and lymphoma (cancers of the blood-forming cells and lymphatic system) but the ionizing radiation destroys cells in the area being treated by damaging their genetic material, making it impossible for these cells to continue to grow. Newer forms of treatment involve angiogenesis inhibition, stimulating the immune system to fight cancer, bone marrow, and peripheral stem cell transplantation, gene and photodynamic therapy. Possible side effects of cancer treatment include loss of hair, skin irritation,

Transportation and metastasizing of cancer cells in other parts of the body.It restricts abnormal cell division by depleting the DNA and RNA blocks of the cells, and this has been found to be particularly effective against human CEM leukemia cells. The bark of this tree also used for folk medicine because it contains useful alkaloids.

Annonaceous acetogenins:

Studies on several types of annonaceous acetogenins have been compiled since the 1980's. These acetogenins were believed to have characteristics capable of halting the growth of cancerous tumors in animals and humans.

The Annonaceae (custard-apple family), considering its large size (130 genera and 2300 species), is chemically one of the least known of the tropical plant families. ${ }^{4}$ Phytochemical studies and, to a lesser extent, pharmacological studies on Annonaceous species have intensified in the last 15 years; this is largely due to the discovery of the Annonaceous acetogenins, a class of natural compounds with a wide variety of biological activities. ${ }^{5-6}$ Before 1982, most investigations centered upon the many isoquinoline alkaloids in this family. About 320 secondary natural products from 150 species belonging to 41 genera were summarized from 288 publications in 1982 by the group of Professor Andre' Cave' in France. The discovery of uvaricin in 1982, ${ }^{7}$ the first of the Annonaceous acetogenins, as an in vivo active antileukemic (P-388) agent, invigorated wide interest in this family. The Annonaceous acetogenins are now one of the most rapidly growing classes of new natural products and offer exciting anthelminitic, in vivo and cytotoxic antitumor, antimalarial, antimicrobial, antiprotozoal, and pesticidal activities and special promise of becoming new chemotypes for antitumor and pesticidal agents. Structurally, the Annonaceous acetogenins are a series of C35/C37 natural products derived from C32/C34 fatty acids that are combined with a 2-propanol unit. They are usually characterized by a long aliphatic chain bearing a terminal methyl-substituted α, β-unsaturated- γ-lactone ring (sometimes rearranged to a ketolactone), with one, two, or three tetrahydrofuran (THF) rings located along the hydrocarbon chain and a number of oxygenated moieties (hydroxyls, acetoxyls, ketones, epoxides) and/or double bonds being present. To a lesser extent,
tetrahydropyran (THP) ring compounds and acyclic compounds are also found. ${ }^{8-12}$ The Annonaceous acetogenins are the most powerful of the known inhibitors of complex I (NADH:ubiquinone oxidoreductase) in mammalian and insect mitochondrial electron transport systems; ${ }^{13-16}$ in addition,they are potent inhibitors of NADH oxidase of the plasma membranes of cancer cells; ${ }^{17}$ these actions decrease oxidative, as well as, cytosolic ATP production. The consequence of such ATP deprivation is apoptosis (programmed celldeath). ${ }^{18}$ Recently, we have shown that the acetogenins also inhibit cancer cells that are multidrug resistant (MDR), ${ }^{19-21}$ and in addition, they combat pesticide-resistant German cockroaches effectively. ${ }^{22}$ Thus, they thwart biological resistance.

Types of acetogenins

Acetogenins are broadly classified into two categories these are
(i) Classical acetogenins

(ii) Non classical acetogenins

Classical acetogenins Structurally, classical acetogenins contain an array of 2, 5disubstituted tetrahydrofuran (THF) rings. Examples of such are uvaricin, bullatacin, asimicin, annonisim, guanaconne, and rollidecin.

The novel antitumor agent uvaricin (l), a bis(tetrahydrofuranoid) fatty acid lactone isolated from the roots of Uuan'a accuminuta (Annonaceae). ${ }^{8}$

Asimicin(2), ${ }^{23}$ and bullatacin(3) ${ }^{24}$ are two diastereomeric members of the Annonaceous acetogenins, a rapidly growing family of natural products, that are known not only for their antitumor activity but also for being potent antimalarial, immunosuppressive, pesticidal, and antifeedant agents. ${ }^{25}$

Asimicin was isolated from Asimina triloba Dunal, and bullatacene was discovered in Annona bullata using the brine shrimp lethality assay for activity-directed fractionation. High cytotoxicity was exhibited by asimicin in cell lines of human nasophyraneal carcinoma (9KB, ED50, $10-5 \mathrm{mg} / \mathrm{mL}$) and murine lymphocyte leukemia (9BS, ED50, 10-7 $\mathrm{mg} / \mathrm{mL}$). Similarly, bullatacene and its analogues have shown potential in vivo antitumor activity with normal mice bearing L1210 murine leukemia and with mice bearing A2780 conventional ovarian cancer xenografts. ${ }^{25}$ The cytotoxicity of Bullatacene was found to be higher than that of other chemotherapeutic agents in a variety of cancer cell lines, ${ }^{26}$ particularly in HL-60 cells that are resistant to adriamycin. ${ }^{27}$ The structure of 2 and $\mathbf{3}$ was assigned mainly on the basis of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and MS data. Their absolute configurations were determined using ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectral data of both their (R) and (S) Mosher esters in comparison with model compounds. ${ }^{28,}{ }^{29}$ These structures were confirmed via the total syntheses of both 2 and $\mathbf{3},{ }^{30}$ by the Hoye, ${ }^{31}$ Marshall, ${ }^{32}$ and Sasaki groups. ${ }^{33}$

From a Colombian tree known as "guanacona" or "tiotio" an unusual 10keto bis-tetrahydrofuran (THF) acetogenin, guanacone 4, was isolated from the EtOAc extract as a colorless wax. Its molecular weight was determined by peaks at $m / z 643[\mathrm{M}+$ $\mathrm{Na}]^{+}$and $m / z 621[\mathrm{MH}]^{+}$in the FABMS, corresponding to the molecular formula $\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{O}_{7}$. The existence of α, β-unsaturated γ-lactone in 4 was first suggested by a positive Kedde reaction and by a $1751 \mathrm{~cm}^{-1}$ carbonyl absorption band in the IR spectrum and was confirmed by the characteristic signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum, which proved the absence of an OH at the $\mathrm{C}-4$ position typically found in most acetogenins. ${ }^{34}$ The presence of a keto group in 4 was suggested by the existence of a triplet at $\delta 2.39(\mathrm{H}-9,11)$ in the ${ }^{1} \mathrm{H}$ NMR spectrum and ${ }^{13} \mathrm{C}$ NMR resonances at $\delta 211.46$ (C-10) and $\delta 42.70(\mathrm{C}-9,11)$ due to
the keto-bearing carbon and the two flanked methylene carbons, respectively. The location of the keto group was confirmed by the fragments at $m / z 223$ and $m / z 195$ in the EIMS Moreover, two OH groups in 4 could be proposed from the prominent IR absorption at $3416 \mathrm{~cm}^{-1}$, two successive losses of $\mathrm{H}_{2} \mathrm{O}$ from the $[\mathrm{MH}]^{+}$in the FABMS, and the preparation of diacetate and di-TMS derivatives. An adjacent bis-THF system in 4 could be unambiguously assigned by $1 \mathrm{D}\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$, and DEPT) and 2D (COSY and HMQC) NMR experiments, and its placement in the alkyl chain was deduced by the EIMS. The relative stereochemistry across this R, R'-dihydroxylated bis-THF system, was deduced as threo/trans/threo/trans/erythro based on the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, which were consistent with those of model compounds. ${ }^{35}$

The present study has led to the isolation and structure elucidation of spinencin (5), a new C37 bis-tetrahydrofuran acetogenin, together with the known almunequin, ${ }^{36}$ bullatanocin, ${ }^{37}$ isodesacetyluvaricin, ${ }^{38}$ atemoyin or squamocin $\mathrm{K}^{39,40}$ desacetyluvaricin, ${ }^{41}$ and neoannonin. ${ }^{42}$ The structures were determined by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (COSY, HMBC, and HMQC) and MS (ESI-MS/MS) on the native compounds and on the acetonide derivative of spinencin 5 was isolated as a transparent oil from the MeOH extract of the seeds by the usual chromatographic methods followed by preparative HPLC. The electrospray-ionization (ESI) mass spectrum of compound 5 showed only two main ions, corresponding to the cationized species $[\mathrm{M}+\mathrm{Li}]^{+}$and $[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z} 645.6$ and 661.6, respectively). The molecular weight of 638.6 was also confirmed by the presence of two weak ion peaks appearing at $m / z 1284.2$ and 1300.2 , which were attributed to the dimeric ion species $[2 \mathrm{M}+\mathrm{Li}]^{+}$and $[2 \mathrm{M}+\mathrm{Na}]^{+}$. Such a molecular weight is in agreement with a C 37 acetogenin $\left(\mathrm{C}_{37} \mathrm{H}_{66} \mathrm{O}_{8}\right)$ containing two tetrahydrofuran rings and four hydroxy groups. ${ }^{43}$

Non classical acetogenins: More recently, new nonclassical acetogenins containing more complex tetrahydropyran (THP) rings and/or THF rings as the core have been isolated;
examples of such are mucoxin, muconin, pyragonicin, and Jimenezin, all of which are THP-containing acetongenins and have recently succumbed to total synthesis. Mucoxin, a nonclassical acetogenin, is the first of its kind found to contain a trisubstituted hydroxylated THF ring. After isolation of mucoxin, recently two other potent nonclassical acetogenin has been isolated named as salzmanolin and asimitrin, which contains trisubstituted hydroxylated THFring. These acetogenins have strong biological activity than classical acetogenins. ${ }^{44}$

Jimenezin (6)
Jimenezin (6) was isolated from seeds of Rollinia mucosa in 1998. ${ }^{45}$ Its structure consisting of a tetrahydropyran (THP) ring adjacent to a tetrahydrofuran (THF) ring was proposed by spectroscopic techniques and its structure was revised after a total synthesis by Takahashi. ${ }^{46}$ Although most annonaceous acetogenins contain one to three THF rings in the polyether part, jimenezin belongs to the small subgroup with an additional THP ring and is structurally related to mucocin. ${ }^{47,48}$ The stereocontrolled synthesis of this THP ring represents one of the challenges of a total synthesis of jimenezin. Takahashi used a chiral pool approach from galactono-1,5-lactone to solve the THP problem, whereas Lee ${ }^{49}$ applied a Samarium iodide-mediated radical cyclization in his synthesis.

Mucoxin (7) a nonclassical acetogenin, is the first of its kind found to contain a trisubstituted hydroxylated THF ring. ${ }^{50}$ In vitro cytotoxicity assays against a panel of six human tumor cell lines have shown mucoxin to be more potent and selectiveagainst MCF-7 (breast carcinoma) cell lines than adriamycin.

Salzmanolin (8), were isolated from a MeOH extract of the roots of Annona salzmani by Emerson F. Queiroz in 2003. ${ }^{51}$ The structure of 8 was elucidated by spectroscopic methods including LSIMS/MS, on both the natural compounds and their acetonide derivatives. Compounds $\mathbf{8}$ showed significant activity against the KB and Vero cell lines.

Asimitrin (9) a ringhydroxylated unsymmetrical bis-tetrahydrofuran acetogenin was isolated from the seeds of Asimina triloba by Mi Hee Woo in 2005. ${ }^{52}$ This novel type of acetogenin was found to be cytotoxic selectively against prostate carcinoma (PC-3) at about 10,000 times and colon adrenocarcinoma (HT-29) at about 100 times the potency of adriamycin.Compound 9 was isolated by the fractionation of chromatographic treatment of the aqueous MeOH partition (F005) ${ }^{53}$ showed $[\alpha]^{23}{ }_{\mathrm{D}}+20.0^{\circ}\left(c 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, was isolated as a white wax. Its molecular weight was suggested by the mass peak at $m / z 639[\mathrm{M}+\mathrm{H}]^{+}$ in the FABMS. The HRFABMS gave $m / z 639.4821$ for the $[\mathrm{M}+\mathrm{H}]^{+}$ion (calcd 639.4836), corresponding to the molecular formula $\mathrm{C}_{37} \mathrm{H}_{67} \mathrm{O}_{8}$. Compound 9 showed an IR carbonyl absorption at $1763 \mathrm{~cm}-1$, a UV vmax (MeOH) at 228 nm (\log _ 3.06), 1H NMR resonances at $\delta 7.19,5.06,3.84,2.53$, and 2.40 , and ${ }^{13} \mathrm{C}$ NMR resonances at $\delta 174.6,151.7,131.2$, 78.0, 70.0, and 19.1, all of which provided characteristic spectroscopic features for an α, β unsaturated γ-lactone fragment with an OH-4 group. ${ }^{54-56}$ The presence of four hydroxyl functionalities in 9 was evident from the IR absorption at $3367 \mathrm{~cm}-1$ and four successive losses $\left(m / z 926,836,746\right.$, and 656) of TMSiOH ($m / z 90$) from the $[\mathrm{M}]^{+}$in the EIMS.

Furthermore, the ${ }^{13} \mathrm{C}$ NMR spectrum of 9 showed four resonances due to oxygen-bearing carbons at $\delta 70.0,72.0,73.4$, and 73.4 , confirming the presence of four hydroxyl groups. The positions of the unusual adjacent ring-hydroxylated bis-THF and hydroxyl groups on the hydrocarbon chain were determined by careful analysis of the ${ }^{1} \mathrm{H}$ NMR, COSY, ${ }^{13} \mathrm{C}$ NMR, HMQC, and HMBC spectra. The $\mathrm{OH}-17$ position was proposed on a rigid ring system rather than an open-ended hydrocarbon chain because of the large δ value difference of its neighboring methylene protons ($\delta 1.94$ for $\mathrm{H}-18 \mathrm{a}$ and 2.36 for $\mathrm{H}-18 \mathrm{~b}$). In turn, $\mathrm{H}-19$, a methine proton at $\delta 4.14$, was identified by tracing its COSY cross-peaks to both $\mathrm{H}-18 \mathrm{a}$ and $\mathrm{H}-18 \mathrm{~b}$. At this point, a hydroxylated THF ring across $\mathrm{C}-16 / 19$ was established.This inference was supported by the three new peaks at C-19/H-17, C-17/H-15, and C-16/H-18ab in the HMBC spectrum. In addition, the ${ }^{13} \mathrm{C}$ NMR chemical shift of 9 for C-16 shifted downfield to $\delta 91.4$ and C-19 was shifted upfield to $\delta 79.9$ and was also supported by the α, β-effect and a γ-gauche effect ${ }^{57}$ due to the hydroxyl group at $\mathrm{C}-17$. The assignment of the second THF ring at C-20/23 was made possible by the $\mathrm{H}-20 / 23$ crosspeak ($\delta 4.00 / 3.91$) in the double-relayed COSY spectrum. In the $1 \mathrm{H}-1 \mathrm{H}$ COSY spectrum of $\mathbf{9}$, the correlations observed at $\mathrm{H}-23 / 24(\delta 3.91 / 3.43)$ confirmed the placement of the hydroxyl flanking the adjacent bis-THF rings.

Several approaches for the synthesis of bis-THF core of acetogenins:

B.V Rao approach: ${ }^{58}$

Synthesis of Bis-THF ring using cross metathesis
Scheme 1. Cross RCM reaction

Reagents and conditions: (a) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{MgBr}$, CuI , ether, $-20^{\circ} \mathrm{C}, 12 \mathrm{~h}, 85 \%$; (b) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$, TEA,DMAP, DCM, $0{ }^{\circ} \mathrm{C}-\mathrm{rt}, 3 \mathrm{~h}, 90 \%$; (c) p-TsCl, TEA, DMAP, DCM, $0{ }^{\circ} \mathrm{C}$
to $\mathrm{rt}, 24 \mathrm{~h}, 87 \%$; (d) $10 \mathrm{~mol} \%$ Grubbs' $1^{\text {st }}$ generation catalyst, $\mathrm{DCM}, 40^{\circ} \mathrm{C} 12 \mathrm{~h}$; (e) $\mathrm{K}_{2} \mathrm{CO}_{3}$, methanol, ${ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 2 \mathrm{~h}, 85 \%$; (f) $p-\mathrm{TsCl}, \mathrm{TEA}, \mathrm{DMAP}, \mathrm{DCM}, 0{ }^{\circ} \mathrm{C}$ to rt, 36 h , 87%; (g) AD mix- β, $\mathrm{H}_{2} \mathrm{O}: t$ - $\mathrm{BuOH}(1: 1) 0^{\circ} \mathrm{C}, 12 \mathrm{~h}, 85 \%$; (h) NaH, THF, $0^{\circ} \mathrm{C}-\mathrm{rt}, 6 \mathrm{~h}, 80 \%$.

Steven D. Burke approach: ${ }^{59}$

Stereochemical General Approach to Adjacent Bis(tetrahydrofuran) Cores of Annonaceous Acetogenins

Scheme 1: Double etherification

Kang Zhao Approach: ${ }^{60}$

Scheme 2: SN Cyclization of E-Olefin

Vincenzo Piccialli approach: ${ }^{61}$

Scheme 3: RuO4-mediated oxidative bis-cyclization of (E,E,E)-acetic acid henicosa-2,6,10-trienyl ester

26

Babak Borhan approach: ${ }^{62}$ Synthesis of bis-THF core of Mucoxin

Scheme 4: Synthesis of epoxysulfide:

Reagent and conditions: (a) TBSCl, imid., DMF, room temperature (73\%); (b) n - BuLi , $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{I}$, THF/HMPA (3:1), $0^{\circ} \mathrm{C}(80 \%)$; (c) TBAF, THF, $-10^{\circ} \mathrm{C}$ (90\%); (d) LAH, diglyme, $125{ }^{\circ} \mathrm{C}$ (87\%); (e) NaH, PMBCl, TBAI, THF, $60{ }^{\circ} \mathrm{C}$ (91\%); (f) AD-mix-R, $\mathrm{MeSO}_{2} \mathrm{NH}_{2}, \mathrm{~K}_{2} \mathrm{OsO}_{4} 2 \mathrm{H}_{2} \mathrm{O}, t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (1:1), $0{ }^{\circ} \mathrm{C}$ (92\%); (g) TESCl, Et ${ }_{3} \mathrm{~N}$, DMAP, THF, rt, (quantitative); (h) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{pH} 7$ phosphate buffer (10:1), $0{ }^{\circ} \mathrm{C}(78 \%$); (i) $\mathrm{PhI}(\mathrm{OAc})_{2}$, TEMPO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature (96\%); (j) $\mathrm{Ph}_{3} \mathrm{PdCHCO}_{2} \mathrm{Et}$, THF, reflux (91\%); (k) DIBALH, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ (89\%); (1) (D)-DIPT/Ti (OiPr$)_{4}$ (1.2:1.0), t - $\mathrm{BuOOH}, \mathrm{MS} 4$ $\AA, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}(73 \%) ;(\mathrm{m})(\mathrm{PhS})_{2}, \mathrm{Bu}_{3} \mathrm{P}, \mathrm{TEA}, 0^{\circ} \mathrm{C}$ to room temperature (94%).

Scheme 5: Synthesis of Aldehyde (41)

Reagents and conditions: (a) $\mathrm{BF}_{3}: \mathrm{OEt}_{2}$ (6 equiv), $\mathrm{Et}_{2} \mathrm{O}(0.04 \mathrm{M}), 0{ }^{\circ} \mathrm{C}$ to room temperature (56\%); (b) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ (91\%); (c) m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0{ }^{\circ} \mathrm{C}$ (quantitative); (d) (i) TFAA, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (ii) NaHCO_{3} (solid), $\mathrm{CH}_{3} \mathrm{CN}$ (63% over two steps).
Scheme 6: Synthesis of Hydroxyene (45)

Reagent and conditions: (a) $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{TBAI}$, THF, $60^{\circ} \mathrm{C}\left(78 \%\right.$); (b) $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$ (82\%); (c) $\mathrm{Ph}_{3} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OHBr}$, KHMDS, TMSCl, then $\mathrm{AcOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(6: 3: 1), 0{ }^{\circ} \mathrm{C}$ (83\%); (d) (i) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (ii) NaI , acetone, reflux, 77%; (e) t - $\mathrm{BuLi},-100$ ${ }^{\circ} \mathrm{C}, \mathrm{MgBr}_{2}: \mathrm{OEt}_{2}, \mathrm{Et}_{2} \mathrm{O},-95^{\circ} \mathrm{C}$, then 41, $\mathrm{MgBr}_{2}: \mathrm{OEt}_{2},-40^{\circ} \mathrm{C}(88 \%)$.

Scheme 7: Synthesis of Bistetrahydrofuran ${ }^{63}$

Reagent and conditions: (a) AD-mix- $\mathrm{R}, \mathrm{MeSO}_{2} \mathrm{NH}_{2}, \mathrm{~K}_{2} \mathrm{OsO}_{4}: 2 \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}(88 \%$ yield, dr) $5: 1$); (b) $\mathrm{MeC}(\mathrm{OMe})_{3}$, $\mathrm{PPTS}(10 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature, then $\mathrm{BF}_{3}: \mathrm{OEt}_{2}$ (25 mol \%); (c) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH , room temperature; (d) TBSOTf, 2,6-lutidine, $0^{\circ} \mathrm{C}(90 \%$, 3 steps); (e) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc} / i-\mathrm{PrOH}$ (1:1), rt (92\%); (f) PPh_{3}, imid., I_{2}, toluene, rt (87%).

Brian L. Pagenkopf approach: ${ }^{63}$ Synthesis of bis-THF core of Bullatacin

Scheme 8: Synthesis of Bistetrahydrofuran

PRESENT WORK

In recent years the Annonaceous acetogenins have been the focus of extensive synthetic efforts as a result of their remarkable range of biological activities such as antitumor, antifeedant, immunosuppressive, pesticidal, anthelmintic and microbial. Particularly, after identification of Uvaricin, ${ }^{7}$ as an in vivo active antitumor agent, there has been significant interest arises in the isolation and biological evaluation of acetogenins derived from Annonaceous family. ${ }^{63}$ Annonaceous acetogenins are known to be highly potent and selective antitumor agents. More interestingly, some members of this family have been shown to possess the ability to combat resistance in multi drug-resistant cancerous cells. ${ }^{64,65}$ The origin of the selective cytotoxicity of acetogenins is believed to result from their complexation with ubiquinone-linked NADH oxidase present in the plasma membrane of tumor cells. Acetogenins also bind NADH-ubiquinone oxidoreductase (Complex I), which is a membrane protein present in the mitochondrial electron-transport system. ${ }^{6-70}$ Complex I has been implicated in several diseases including idiopathic Parkinson's disease, maturity onset diabetes, stroke-like episodes, and Huntington's disease. ${ }^{71}$ However, the precise mode of complexation of acetogenins with the target proteins has not been delineated. Important characteristic structural features of Annonaceous acetogenins include a butenolide segment, one or more tetrahydrofuran rings, and alkyl chain residues on either side.

Asimitrin (9) a ringhydroxylated unsymmetrical bis-tetrahydrofuran acetogenin was isolated from the seeds of Asimina triloba by Mi Hee Woo in $2005{ }^{52}$ This novel type of acetogenin was found to be cytotoxic selectively against prostate (PC-3) at about 10,000 times and colon adrenocarcinoma (HT-29) at about 100 times the potency of adriamycin. Such powerful antitumor activity and the unique structure of $\mathbf{9}$ attracted us to undertake its total synthesis.

A close examination of the structure of Asimitrin 9 revealed that the artechitectural feature contains nine chiral centres, among them eight stereocentres have ' R ' stereochemistry and only one contains ' S ' stereochemistry. After a through literature study we realized a chiral pool approach will be the suitable one to fix the desired stereocentres and 3-deoxy-1,2:5,6-di-O-isopropylidene-xylofuranose was considered as a suitable precursor. On this background we envisaged a retrosynthetic analysis for the synthesis of $\mathbf{9}$, which was illustrated in Figure 1.

Figure1. Retrosynthetic analysis of (9)

Our retrosynthetic strategy towards 9 was based on a convergent approach involving a cross metathesis for coupling the bis-THF core 56 with γ-lactone segment 55 . The bis-THF core would be prepared from 1,2:5,6-di-O-isopropylidene-3-deoxy- α-D-xylofuranose 59, which plays a central role, serving not only as the source of the C17, C19, and C20 stereocenters, but also setting the stage for introducing the C16 and C23 stereocenters through stereoselective intramolecular oxymercuration and chelation-controlled Grignard reactions.

In the beginning of our synthetic approach we planned to synthesize C10-C34 fragment 56 of Asimitrin. According to retrosynthetic analysis our synthetic endeavor commenced from 1,2:5,6-di-O-isopropylidene-3-deoxy- α-D-xylofuranose 59 , which was synthesized from commercially available 1,2:5,6-di-O-isopropylidene- α-D-glucofuranose $\mathbf{6 0}$ in a three step synthesis following known literature procedure. ${ }^{72}$ Thus, the secondary hydroxyl group of 60 was protected as tosyl ether by using $\mathrm{NaH}, \mathrm{TsCl}$ in THF at $0{ }^{\circ} \mathrm{C}$ furnished 61 in 90% yield.

Scheme 1

Elimination of tosyl ether was carried out by treatment of potassium tert-butoxide, in THF at $0{ }^{\circ} \mathrm{C}$ resulted in 3, 4 alkene $\mathbf{6 2}$. The double bond was reduced by Raney-Ni in ethanol at 60 psi H_{2} pressure afforded 3-deoxy xylofuranose 59 in good yield. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and elemental analysis data of 59 was in good agreement with the reported values (Scheme 1). Selective cleavage of the 5 , 6 -isopropylidene group in 59 was accomplished with cat p TSA in MeOH to give 5,6 diol 63. Structure of $\mathbf{6 3}$ was assigned from the relevant chemical shift observed in the ${ }^{1} \mathrm{H}$ NMR spectrum. Dissappearance of 5,6 isopropylidene signals and
appearance of methine and methylene protons linked to hydroxyl group at $\delta 3.87(\mathrm{~m}, 1 \mathrm{H})$, $3.75(\mathrm{dd}, 1 \mathrm{H})$ and $3.55(\mathrm{dd}, 1 \mathrm{H}) \mathrm{ppm}$ indicating the conversion of 59 to 63.

Scheme 2

In the ${ }^{13} \mathrm{C}$ NMR spectrum the $-\mathrm{CH}_{2} \mathrm{OH}$ carbon was identified at $\delta 63.2 \mathrm{ppm}$, which was unambiguously confirmed from DEPT spectrum. IR ($3402 \mathrm{~cm}^{-1}$) and elemental analysis data also supported the formation of 63 (Scheme 2).
Scheme 3

63

$$
\xrightarrow[\substack{\text { THF, } 0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}}]{\mathrm{NaH}, \mathrm{TsCl}}
$$

64

The epoxide 64 was generated in situ by exposure of 2 eq NaH and leq TsCl in THF on 63. ${ }^{73}$ The structure of $\mathbf{6 4}$ was confirmed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, IR and elemental analysis data.In the ${ }^{1} \mathrm{H}$ NMR spectrum the signal due to methine proton of epoxide was identified at $\delta 3.35(\mathrm{~m}$, $1 \mathrm{H}) \mathrm{ppm}$ whilst the methylene proton was observed at $\delta 2.81(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$ and 2.58 (dd, $J=2.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}$) ppm. In the ${ }^{13} \mathrm{C}$ NMR spectrum the epoxy carbons were resonated at $\delta 53.5,44.5 \mathrm{ppm}$ and all other carbons observed at their expected chemical shift. Additionally, IR (1597, 1495 and $1454 \mathrm{~cm}^{-1}$) and elemental analysis data also supported the formation of 64 (Scheme 3).

Scheme 4

After synthesizing epoxide 64 successfully, we planned to open it regioselectively. Treatment of allylcuprousmagnesiumbromide in ether on epoxide 64 furnished 65 as the single product. ${ }^{74}$ In the ${ }^{1} \mathrm{H}$ NMR spectrum the olefinic methine proton signal was observed
at $\delta 5.91-5.71 \mathrm{ppm}$ whilst the methylene protons were resonated at $\delta 5.04-4.87(\mathrm{~m}, 2 \mathrm{H})$ ppm. In the ${ }^{13} \mathrm{C}$ NMR spectrum the diagnostic olefinic carbons were identified at $\delta 138.2$ and 114.7 ppm . EI mass spectrum showed two peaks at 251 and 267 corresponding to (M $+\mathrm{Na})^{+}$and $(\mathrm{M}+\mathrm{K})^{+}$confirming the structure of 65 (Scheme 4).
Synthesizing suitably substituted olefinic alcohol 65, we turned our attention towards the diastereoselective synthesis of 5,8 anti-tetrahydrofuran ring. The conversion of suitablyposed alkenyl alcohols into diastereoselective tetrahydro-furanyl and pyranyl ethers via mercurium ion of alkenes and subsequent capture by the adventurous nucleophile in an intramolecular fashion has been earmarked as one of the main synthetic strategies in the construction of cyclic, polycyclic and fused ether. ${ }^{75} \mathrm{We}$ envisaged that the mercurium ion of terminal alkene and in situ ring closure by intramolecular oxygen nucleophile would be the ideal approach for our purpose since the resulting chloromercurated methyl tetrahydrofuran can be further elaborated to our required destiny following demercuration reaction.

Scheme 5

Accordingly, 65 was exposed to $\mathrm{Hg}(\mathrm{OAc})_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 2 h , followed by further stirring with aq NaCl for 30 min to provide the monoTHF product 58 and 66 in $8: 2$ ratio. The isomers were separated by flash silicagel chromatography and characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and elemental analysis. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 58 the ring junctioned methine protons of tetrahydro furan ring were appeared at $\delta 4.40(\mathrm{~m}, 1 \mathrm{H})$ and $4.32(\mathrm{q}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. The methylene proton linked to HgCl was noticed at δ $2.39(1 \mathrm{H})$ and 2.23-2.07 $(1 \mathrm{H}) \mathrm{ppm}$. In the ${ }^{13} \mathrm{C}$ NMR spectrum $5^{\text {th }}$ and $8^{\text {th }}$ positional carbons
of THF ring resonated at single position and found at $\delta 80.6 \mathrm{ppm}$, whilst the $\mathrm{CH}_{2} \mathrm{HgCl}$ carbon was observed at $\delta 38.0 \mathrm{ppm}$, was further confirmed from DEPT spectrum.
In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 6}$ the ring junctioned methine proton signals of tetrahydro furan ring were appeared at $\delta 4.37$ and 4.12 ppm integrating one proton each. ${ }^{13} \mathrm{C}$ NMR spectrum showed two signals at $\delta 81.4$ and 80.4 ppm corresponding to ring junctioned carbons of THF ring. The carbon linked to -HgCl was identified at $\delta 38.5 \mathrm{ppm}$ (Scheme5).

Figure 2 nOe study of compound 58 and 66
The relative stereochemistry around the THF ring of $\mathbf{5 8}$ and $\mathbf{6 6}$ was assigned by NOESY studies. In the NOESY spectrum of $\mathbf{5 8}$, the $5^{\text {th }}$ positional β-hydrogen wasn't showing any interaction with $8^{\text {th }}$ positional proton indicating there was α-hydrogen, whilst in $\mathbf{6 6}$ the $5^{\text {th }}$ positional β-hydrogen was showing strong nOe interaction with $8^{\text {th }}$ positional hydrogen indicating there was a β-hydrogen.

ORTEP diagram of 58
Further, the relative stereochemistry around the THF ring was unambiguously confirmed by single crystal X-ray crystallographic study.
Assigning syn and anti stereochemistry of tetrahydrofuran ring, the required chloromercurated compound 58 was demercurated using NaBH_{4} in DMF at high O_{2}
pressure resulted in 67 with good yield. The product 67 was confirmed for its structure by the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR, EI-MS and elemental analysis data.

Scheme 6

The chemical shift of methylene protons linked to -OH group shifted downfield and appeared at $\delta 3.71(\mathrm{~m}, 1 \mathrm{H})$ and $3.48(\mathrm{dd}, J=5.1,11.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR spectrum showed the $-\mathrm{CH}_{2} \mathrm{OH}$ carbon at $\delta 64.3 \mathrm{ppm}$, which was further confirmed by DEPT spectrum. In the IR spectrum, one broad peak at $3384 \mathrm{~cm}^{-1}$ characteristic of hydroxyl group was observed. The EI-MS spectrum two ion peaks at 267 and 283 appeared corresponding to $(\mathrm{M}+\mathrm{Na})^{+}$and $(\mathrm{M}+\mathrm{K})^{+}$ion (Scheme 6).
Getting primary alcohol 67 in hand we planned to carry out oxidation and grignard reaction to incorporate ten carbon chain.

Thus, the primary hydroxyl group of 67 was oxidized employing swern oxidation condition furnished aldehyde 68, which on subsequent treatment with decylmagnesiumbromide and CuBr .DMS in $\mathrm{Et}_{2} \mathrm{O}$ at $-78{ }^{\circ} \mathrm{C}$ resulted in $\mathbf{6 9}$ and 70 with 7:3 ratio. ${ }^{76}$

Scheme 7

Both the diastereomers were were separated by flash silicagel chromatography and thoroughly characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, IR, EImass spectrum. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 69
the aldehydic proton signal was absent and the terminal methyl proton of decyl chain was observed at $\delta 0.90 \mathrm{ppm}$ as a triplet integrating to three protons and at $\delta 1.27 \mathrm{ppm}$ a singlet observed integrating for 18 H . In addition, DEPT spectrum showed the twelve $-\mathrm{CH}_{2}$ carbons signals at $\delta 33.9$ to 14.0 ppm indicating incorporation of decyl chain. Similarly in the ${ }^{1} \mathrm{H}$ NMR spectrum of 70 the terminal methyl proton of decyl chain was observed at δ 0.84 ppm . IR, Mass and Elemental analysis data also supported the formation of $\mathbf{6 9}$ and 70 (Scheme 7). The newly generated stereocentre at C9-OH in 69 was confirmed by modified Mosher ester analysis of derived MTPA esters. ${ }^{77}$

Modified Mosher's ester method: Application for stereochemical assignment of $\mathrm{C}_{9}-\mathrm{OH}$ of (69)

Determination of the absolute stereochemistry of organic compounds has become an important aspect for natural product chemistry.The limitations involved in physical methods such as Exciton chirality method and X-ray crystallography method forced synthetic chemists to look for a more reliable alternative.Although there are several chemical methods used to predict the absolute configuration of organic substances, Mosher's method using 2-methoxy-2-phenyl-2-(trifluoromethyl) acetic acid (MTPA) esters has been used most frequently. Mosher proposed that, in solution, the $\beta \mathrm{C}-\mathrm{H}$ bond, ester carbonyl, and trifluoromethyl group of the MTPA derivative lie in the same plane (Figure 3).When the MTPA group is in the hypothesized conformation, Mosher pointed out that the ${ }^{1} \mathrm{H}$ NMR signal of L_{2} of the (R)-MTPA ester will appear upfield relative to that of the (S)-MTPA ester due to the diamagnetic effect of the benzene ring. The lack of reliability associated with Mosher's ${ }^{19} \mathrm{~F}$ method using ${ }^{19} \mathrm{~F}$ NMR motivated Kakisawa et al.to elaborate this concept for more accuracy. The modified Mosher's ester method is one of the simple and efficient methods to determine the absolute stereochemistry of the secondary alcohols.
The basic concept of the modified Mosher's ester method is essentially the same as Mosher proposed. The idealized conformation is depicted in Figure 3. The plane with the hypothesized conformation of MTPA group is as the MTPA plane with ideal conformation.Due to the diamagnetic effect of the benzene ring, the $\mathrm{H}_{\mathrm{A}}, \mathrm{H}_{\mathrm{B}}, \mathrm{H}_{\mathrm{C}} \ldots$. signals of (R)-MTPA ester in the ${ }^{1} \mathrm{H}$ NMR spectrum should appear upfield to those of the (S) MTPA ester. The reverse should hold true for protons, $\mathrm{H}_{\mathrm{X}}, \mathrm{H}_{\mathrm{Y}}, \mathrm{H}_{\mathrm{Z}} \ldots \ldots$. Hence, when $\Delta \delta=$
($\Delta \mathrm{S}-\Delta \mathrm{R}) \times 1000$ protons on the right side of the MTPA plane must have positive values ($\Delta \delta>0$), and the protons on the left side of the MTPA plane must have negative values ($\Delta \delta$ $<0)$ as illustrated in simpler model A (Figure 3).

Figure 3 MTPA plane of a MTPA ester

Thus, modified Mosher's method can be used following the 4 steps:
(i) Assign as many proton signal as possible with respect to each of the (R)-and (S) -MTPA esters
(ii) Obtain $\Delta \delta$ values for the protons
(iii) Arrange the protons with positive $\Delta \delta$ values right side and those with negative $\Delta \delta$ values on the left side of the model
(iv) Construct a molecular model of the compound in question and confirm that all the assigned protons with positive and negative $\Delta \delta$ values are actually found on the right and left sides of the MTPA plane respectively.

In order to assign the absolute stereochemistry of C9-OH in 69, the S-MTPA ester71 and R-MTPA ester 72 were independently prepared from 69 by using corresponding S-MTPA acid and R-MTPA acid in presence of coupling agent DCC and DMAP (cat) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature (Scheme 8).

Scheme 8

The $\Delta \delta=(\Delta \mathrm{S}-\Delta \mathrm{R}) \times 1000$ values were calculated for as many protons as possible from the ${ }^{1} \mathrm{H}$ NMR spectrum of S-MTPA ester 71 and R-MTPA ester 72 (Table-1) The $\Delta \delta=(\Delta \mathrm{S}-$ $\Delta \mathrm{R}) \times 1000$ values were arranged as shown in Table-1. On the basis of the model, (Figure 3) we have assigned the absolute stereochemistry at $C-9$ of $\mathbf{6 9}$ with R configuration

Figure 4

Table-1

Protons	1	2	3	4	5	6	7
$\Delta \mathrm{~s}$	5.73	5.26	4.72	4.11	3.90	1.25	0.88
$\Delta \mathrm{R}$	5.71	5.22	4.70	4.04	3.85	1.25	0.88
$\Delta \delta$	+20	+40	+20	+70	+50	0	0

After assigning stereochemistry at C-9, we planned to convert the minor product 70 into our required isomer 69. Accordingly we oxidised $\mathbf{7 0}$ following Swern oxidation condition to give keto compound73, which was reduced by L-Selectride ${ }^{78}$ at $-100{ }^{\circ} \mathrm{C}$ furnished 69 and 70 in 9:1 ratio (Scheme 9).

Scheme 9

The secondary hydroxyl group of $\mathbf{6 9}$ was protected as benzylether, as it could withstand in the isopropylidine cleavage condition. Thus 69 was subjected with $\mathrm{NaH}, \mathrm{BnBr}$ in THF at $0^{\circ} \mathrm{C}$ resulted in 74.

Scheme 10

In the ${ }^{1} \mathrm{H}$ NMR spectrum two new signals observed at $\delta 7.36-7.22$ and $4.79-4.56 \mathrm{ppm}$ integrating five and two protons indicating the formation of benzyl ether. ${ }^{13} \mathrm{C}$ NMR spectrum showed the signals at $\delta 139.4,128.1,127.6,127.2$ and 73.3 ppm confirmed the formation of 74. In addition IR, mass and elemental analysis data also supported the formation of 74 (Scheme 10).

Now the stage is set for making second tetrahydrofuran ring. Thus 1,2 isopropylidene of 74 was cleaved by treatment of cat $p-T S A$, THF: $\mathrm{H}_{2} \mathrm{O}$ (7:3) in refluxing condition for 1 h afforded diol 75 in good yield (Scheme 11).

Scheme 11

In the ${ }^{1} \mathrm{H}$ NMR spectrum of 75 the signal for isopropylidene group was disappeared indicating the formation of hemiacetal. The acetal 75 was subjected to one carbon wittig olefination at $-10{ }^{\circ} \mathrm{C}$ to room temperature furnished 76. ${ }^{79}$ The structure of 76 was assigned by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, IR and EI spectrum. The olefinic proton signals were observed at $\delta 5.91$ (m, $1 \mathrm{H})$ and 5.35-5.09 (m, 2H) ppm. In the ${ }^{13} \mathrm{C}$ NMR spectrum the olefinic -CH carbon was resonated at $\delta 138.9 \mathrm{ppm}$ whilst the methylene carbon was observed at $\delta 114.1 \mathrm{ppm}$. IR, mass and elemental analysis data also assisted the formation of 76 (Scheme 11).

The next phase of endeavour was chelation controlled intramolecular oxymercuration reaction of α, γ-dihydroxy alkene 76. Here we can generate the second stereogenic center via diastereoselective substrate bias, taking advantage of α-hydroxyl group. The mercuration reaction was performed with $\mathrm{Hg}(\mathrm{OAc})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ resulted in the formation of chloromercurated bis-tetrahydrofuran ring 77 and 78 in 8:2 ratio (scheme-12). Both the diastereomers were separated by flash silicagel chromatography and structural identity was secured from the interpretation of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR and EI-MS spectral data. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 77 the olefinic signals were dissappeared and two new signals observed at $\delta 2.16(\mathrm{dd})$ and 2.05-1.93 (m) ppm consisting methylenechlomercurated protons. The carbon linked to -HgCl appeared at $\delta 38.4 \mathrm{ppm}$.

Scheme 12

In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 8}$ the methylene protons linked to -HgCl was resonated at δ $2.13(\mathrm{~m}, 1 \mathrm{H})$ and $2.05-1.87(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$, whilest the carbon linked to -HgCl was identified at $\delta 37.0 \mathrm{ppm}$ in the ${ }^{13} \mathrm{C}$ NMR spectrum. MASS spectrometric data also supported the formation of 77 and 78 (Scheme 12).

As the α-hydroxyl chelated oxymercuration reaction didn't give exclusive desired product, we planned to protect the α-hydroxyl group as TBS ether and then carrying out oxymercuration to get the desired diastereomer exclusively.

Scheme 13

Thus, vinylic alcohol was selectively protected as TBS-ether 57 by the treatment of TBSCl, imidazole and cat DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient temperature. Appearance of three new singlet at $\delta 0.91,0.10$ and 0.05 ppm integrating to nine, three and three protons assigned to TBS group. Intramolecular oxymercuration reaction of 57 was accomplished
on treatment with $\mathrm{Hg}(\mathrm{OAc})_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford single diastereomer 79 in excellent yield. The product was confirmed by the relevant signals in the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectrum. and the relative stereochemistry around the second THF ring was assigned by NOESY studies, where the H_{2} proton wasn't showing any nOe interaction with $\mathrm{H}-5$ proton indicating anti relationship (Scheme 13).

Figure 5. nOe study of compound 79
Demercuration of 79 was conveniently accomplished with NaBH_{4} in DMF at high O_{2} pressure to obtain bis-tetrahydrofuran methylalcohol $\mathbf{8 0}$. Compound $\mathbf{8 0}$ was characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and elemental analysis (Scheme 14).

Scheme 14

The methylene protons linked to -OH group was resonated at $\delta 4.17-3.91 \mathrm{ppm}$ and the same carbon was observed at $\delta 62.7 \mathrm{ppm}$ in ${ }^{13} \mathrm{C}$ NMR spectrum, which was further confirmed from DEPT spectrum. IR and elemental analysis data also supported the conversion of $\mathbf{7 9}$ to $\mathbf{8 0}$.

Having compound $\mathbf{8 0}$ in hand, we were very nearer to achieve our targeted compound 2, which can be made by two step synthesis following Swern oxidation and Cu^{2+} mediated grignard reaction. Accordingly, primary hydroxyl group was subjected to $(\mathrm{COCl})_{2}, \mathrm{DMSO}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ furnished aldehyde 81, which on subsequent Grignard reaction with hexenylmagnesiumbromide in presence of catalytic CuBr .DMS in $\mathrm{Et}_{2} \mathrm{O}$ at $-100^{\circ} \mathrm{C}$ to give single isomer 56 with good yield. The exclusive formation of 56 was expected due to chelation controlled grignard reaction (Scheme 15). ${ }^{80,81}$

Scheme 15

The salient features of structure $\mathbf{5 6}$ was clearly corborated from the spectral data in ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR and EI-MS.

The olefinic protons were resonated at $\delta 5.79(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{~m}, 1 \mathrm{H})$ and $4.90(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR spectrum showed the olefinic carbons at $\delta 139.0$ and 114.2 ppm and DEPT spectrum showed the presence of twelve $-\mathrm{CH}_{2}$ carbons. In addition the mass spectrum also confirmed the assigned structure of 56 .
The absolute stereochemistry of the newly generated stereogenic centre was assigned by modified Mosher's ester method. The alcohol functionality in 56 was independently coupled with R and S Mosher's acid using DCC, cat DMAP in anhydrous DCM to afford the respective Mosher esters $\mathbf{8 2}$ and $\mathbf{8 3}$ in 80% yields. ${ }^{1}$ H NMR spectrum was recorded for the esters 82 and $\mathbf{8 3}$ and all possible protons were assigned. The difference $\Delta \delta=(\delta S-\delta R) \mathrm{x}$ 1000 was calculated, and it was found that the molecule exactly fits into the Mosher's model satisfying all the conditions (Scheme 16).

Scheme 16

Table-2

Proton	1	2	3	5	6	7
S-MTPA	4.95	5.76	3.82	5.29	4.32	3.98
R-MTPA	4.94	5.71	3.83	5.43	4.36	3.96
$\Delta \delta \times 1000$	+10	+50	-10	-140	-40	-20

From the Mosher's model, the absolute stereochemistry of the hydroxyl centre was found to be (R).

Summary:

Commercially available 1,2:5,6-di-O-isopropylidene-3-deoxy- α-D-xylosefuranose was elaborated via a double stereoselective intramolecular oxymercuration reaction sequence developed in our laboratories, to the C10-C34 fragment of Asimitrin in a simple and efficient stereocontrolled manner. Total synthesis of the target molecule is going on in our laboratory.

EXPERIMENTAL

Experimental Section

1,2,5,6-di-O- isopropylidene-3-tosyl- α-D-gluco-furanose (61)

To a suspension of $\mathrm{NaH}(3.6 \mathrm{~g}, 60 \%)$ in THF $(150 \mathrm{~mL})$ was added $1,2-5,6-\mathrm{di}-\mathrm{O}-$ isopropylidene- α-D-glucofuranose $\mathbf{6 0}(20 \mathrm{~g}, 0.076 \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred for 30 min then tosyl chloride ($17.5 \mathrm{~g}, 0.092 \mathrm{~mol}$) in THF (100 mL) was added to it over a period of 30 min and stirred for another 30 min . Reaction mixture was quenched by slow addition of water, the organic layer was separated and the aqueous layer was extracted with ethylacetate (3 x 100 mL). The combined organic layer were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by silicagel column chromatography ($25 \% \mathrm{EtOAc} /$ light petroleum) to afford $61(28.6 \mathrm{~g})$ as a solid.

Yield
Mol.Formula
$[\alpha]_{D}{ }^{25}$
IR ($\mathbf{C H C l}_{\mathbf{3}}$) $\mathrm{cm}^{-1} \quad 3389,2990,1598 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis
90\%
$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{~S}$
$+28.8\left(\mathrm{c} \mathrm{1.3}, \mathrm{CHCl}_{3}\right)$

Calcd: C,55.06; H, 6.32
$\delta 7.83(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$,
$5.91(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-$
$3.97(\mathrm{~m}, 3 \mathrm{H}), 3.90(\mathrm{dd}, J=3.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$,
$1.47(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H})$
144.8, 132.4, 129.4, 128.1, 112.1, 108.7, 104.8, 83.0,
81.7, 79.6, 71.5, 66.7, 26.2, 25.8, 24.5, 21.2

Found: C,55.32; H, 6.54

1,2,5,6-di-O- isopropylidene-3-deoxy- α-D- erythro-hex-3-enofuranose (62)

To the solution of compound $\mathbf{6 1}(10 \mathrm{~g}, 0.024 \mathrm{~mol})$ in THF (300 mL) at $0{ }^{\circ} \mathrm{C}, \mathrm{K}-$ tert-butoxide ($3.2 \mathrm{~g}, 0.028 \mathrm{~mol}$) was added portion wise in 1 h and further stirred for another 1 h . Then reaction mixture was quenched with water and the organic layer was separated and the aqueous layer was extracted with hexane ($3 \times 100 \mathrm{~mL}$), combined organic layers were washed with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$, saturated NaHCO_{3}, and saturated NaCl and then dried. Purification of the residue by $10 \% \mathrm{EtOAc} /$ light petroleum to give $\mathbf{6 2}(4.8 \mathrm{~g})$ as a white solid (mp 48-50 ${ }^{\circ} \mathrm{C}$).

Yield

Mol. Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

Elemental Analysis

84\%

$$
\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{5}
$$

+25.4 (c 1.5, CHCl_{3})
$\delta{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.00(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.23(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=1.1,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.51(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=6.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, \mathrm{J}$ $=5.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H}), 138(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}$, 3H)
Calcd: C,59.49; H,7.49
Found: C, 59.63 ; H,7.49

Compound 59

The olefinic compound $62(5.0 \mathrm{~g})$ in ethanol (60 mL) was exposed to raney Ni (1 g) in 60 psi hydrogen pressure for 12 h . Reaction mixture was filtered over a celite bed and the filtrate was concentrated and purified by silica gel chromatography resulted in $\mathbf{5 9}$ $(4.5 \mathrm{~g})$ as a solid.

Yield
Mol.Formula
$[\alpha]_{D}{ }^{25}$
IR $\left(\mathbf{C H C l}_{3}\right) \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

$$
90 \%
$$

$$
\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{5}
$$

$$
-28.39\left(\mathrm{c} 0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
$$

$$
3360,2989,1655 \mathrm{~cm}^{-1}
$$

$$
\delta 5.80(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~m}, 1 \mathrm{H})
$$

$$
4.16-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{dd}, J=6.8,8.2 \mathrm{~Hz}, 1 \mathrm{H})
$$

$$
2.21(\mathrm{ddd}, J=6.1,8.3,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{ddd}, J=1.0
$$

$$
3.9,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 157(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s},
$$

$$
3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) .
$$

112.7, 109.8, 106.4, 81.4, 80.4, 77.5, 66.0, 33.5, 27.2, 26.6, 26.2, 25.2

Elemental Analysis

Calcd: C,59.0; H, 8.25
Found: C,59.34; H, 8.10

Compound 63

Compound 59 ($7.0 \mathrm{~g}, \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(\mathrm{mL})$ and catalytic p TSA $(10 \mathrm{mg})$ was added and stirred in $0{ }^{\circ} \mathrm{C}$ for 1 h then quenched by $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$. The reaction mixture was concentrated and purified by silica gel chromatography (60% Ethylacetate/light petroleum) provided diol compound $63(5.3 \mathrm{~g})$ as a syrup.

Yield
Mol.Formula
$[\alpha]_{D}{ }^{25}$
IR $\left(\mathbf{C H C l}_{3}\right) \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$
Elemental Analysis

84\%
$\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{5}$
-22.3 (c 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)
$3402 \mathrm{~cm}^{-1}$
$\delta 5.81(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H})$,
3.87 (m, 1H), 3.75 (dd, $J=3.2,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.55$
(dd, $J=4.6,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.01$ (brs, 1H), 2.40 (brs,
1 H), 2.23 (ddd, $J=6.0,8.2,14.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.10-
$2.01(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$
$112.4,106.1,81.1,80.6,72.9,63.2,33.4,26.8,25.8$
Calcd: C, 52.93; H, 7.90
Found: C, 52.78; H, 7.67

5,6-Anhydro-3-deoxy-1,2-O-isopropylidene- α-D-xylo-hexofuranose (64)

To a slurry of $\mathrm{NaH}(15.6 \mathrm{~g}, 392.1 \mathrm{mmol})$ in THF (200 mL) was added 3-deoxy-1,2-O-isopropylidene- α-D-xylofuranoside 63 ($40.0 \mathrm{~g}, 196.0 \mathrm{mmol}$) in THF (100
mL) at $0{ }^{\circ} \mathrm{C}$. After 15 min , tosyl chloride ($37.2 \mathrm{~g}, 196.0 \mathrm{mmol}$) in THF (100 mL) was added and stirred at $0{ }^{\circ} \mathrm{C}$. After completion of reaction, checked by TLC, reaction mixture was quenched by slow addition of water. The layers were separated and the aqueous layer was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by silicagel column chromatography ($15 \% \mathrm{EtOAc} /$ light petroleum) to afford epoxide 64 (29.0 $\mathrm{g}, 80 \%)$ as a colorless liquid. $R_{f}=0.4$ (30% Ethylacetate/light petroleum)

Yield

Mol. Formula
$[\alpha]_{D}{ }^{25}$
IR $\left(\mathbf{C H C l}_{\mathbf{3}}\right) \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$
Elemental Analysis

90\%
$\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4}$
-37.7 (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)
1597, $1495,1454 \mathrm{~cm}^{-1}$
$\delta 5.83(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{ddd}, J=1.2,3.7,5.3$
$\mathrm{Hz}, 1 \mathrm{H}$), 3.82 (ddd, $J=3.0,7.3,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35$
$(\mathrm{m}, 1 \mathrm{H}), 2.81(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=2.6$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=5.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~m}$, $1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$
112.3, 106.7, 82.3, 80.3, 53.5, 44.5, 34.0, 27.0, 25.9

Calcd: C, 58.06; H, 7.58
Found: C, 58.32; H, 7.74

3-Deoxy-1,2-O-isopropylidene-6,7,8,9- tetradeoxy- α-D-xylo-non-8-enofuranose (65)

A solution of allyl bromide ($26.4 \mathrm{~mL}, 311.8 \mathrm{mmol}$) in ether (50 mL) was added dropwise to a mixture of magnesium ($14.9 \mathrm{~g}, 639.2 \mathrm{mmol}$) and iodine (catalytic amount) in ether (100 mL) and stirred for 30 min at room temperature. Cuprous cyanide $(1.3 \mathrm{~g}, 15.5 \mathrm{mmol})$ was added at once, resulting in immediate colour change to a dark
brown color. After cooling to $-20^{\circ} \mathrm{C}$, epoxide $64(29.0 \mathrm{~g}, 155.9 \mathrm{mmol})$ in ether (100 mL) was added dropwise. The reaction mixture was stirred for 30 min at $-20^{\circ} \mathrm{C}$, quenched by slow addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the resulting suspension stirred for another 30 min . Inorganic solid materials were filtered off and washed with ether. Organic layer was seperated and the aqueous layer extracted with ethylacetate (3 x 100 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude brown colored oily material was purified by flash column chromatography (10% Ethylacetate-light petroleum) to afford homoallylic alcohol $\mathbf{6 5}$ as a colorless liquid (28.9 g).
Yield
Mol.Formula
$[\alpha]_{\mathrm{D}}{ }^{25}$
IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis

$$
\begin{aligned}
& 81 \% \\
& \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{4} \\
& -2.02\left(\mathrm{c} 1.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \\
& 3488,2986,2940,1640,1598 \mathrm{~cm}^{-1} \\
& \delta 5.91-5.71(\mathrm{~m}, 2 \mathrm{H}), 5.04-4.87(\mathrm{~m}, 2 \mathrm{H}), 4.69(\mathrm{ddd}, J \\
& =1.3,4.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dt}, J=3.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), \\
& 3.71(\mathrm{dt}, J=4.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{br} \mathrm{~s}, 1 \mathrm{H}), 2.30- \\
& 1.60(\mathrm{~m}, 6 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}) \\
& 138.2,114.7,112.3,106.1,84.6,80.7,71.9,33.5,32.4, \\
& 29.7,26.8,25.9
\end{aligned}
$$

Calcd: C, 63.15; H, 8.70
Found: C, 63.34; H, 8.58.

To a solution of homoallylic alcohol $\mathbf{6 5}(25.0 \mathrm{~g}, 109.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$, $\mathrm{Hg}(\mathrm{OAc})_{2}(26.1 \mathrm{~g}, 153.5 \mathrm{mmol})$ was added at room temperature. After 2 h stirring, reaction mixture was quenched with brine solution (25 mL) and stirred for 30 min . Organic layer was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the crude compound by flash silica gel column chromatography (20% Ethylacetate/light petroleum) provided the chloromercurated compound $\mathbf{5 8}$ as a major diastereomer (32.6 g) and further elution afforded the minor cis-isomer $\mathbf{6 6}(8 \mathrm{~g})$ in 84% yield

5,8-Anhydro-3,6,7,9-tetradeoxy-9-chloromercuryl-1,2-O-isopropylidene-D-glycero- α -D-xylo-nonanofuranose (58)

$R_{f}=0.4$ (60% Ethylacetate-light petroleum)

Mol.Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

Elemental Analysis
$\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{HgCl}$
-16.5 (c 0.6, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)
$\delta 5.75(\mathrm{~d}, J=3.91 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~m}$, $1 \mathrm{H}), 4.32(\mathrm{q}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{dd}$, $J=5.5,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.07(\mathrm{~m}, 5 \mathrm{H}), 1.88(\mathrm{~m}$, $1 \mathrm{H}), 1.71(\mathrm{~s}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 M H z}\right) \quad 112.8,106.2,82.5,80.6,77.8,38.0,36.6,33.6,29.1$, 27.6, 26.5

Calcd: C, 31.16; H, 4.11
Found: C, 31.38; H, 4.25

Compound-66

$R_{f}=0.45$ (60\% Ethylacetate-light petroleum)
Mol.Formula $\quad \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{HgCl}$
$[\alpha]_{D}{ }^{25}$
-27.13 (с $0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}$)
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad \delta 5.77(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{~m}, 1 \mathrm{H})$,
$4.12(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H})$,
2.25-2.06 (m, 4H), $1.98(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{dd}, \mathrm{J}=4.7$,
$14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H})$

${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 M H z}\right) \quad 112.6,106.3,83.0,81.4,80.4,78.5,38.5,34.8,34.0$, 28.2, 27.4, 26.3

Elemental Analysis
Calcd: C, 31.16; H, 4.11
Found: C, 31.38; H, 4.25

5,8-Anhydro-3,6,7-trideoxy- 1,2-O-isopropylidene-D-glycero- α-D-xylononanofuranose (67)

To a stirred solution of compound $58(32.0 \mathrm{~g}, 69.2 \mathrm{mmol})$ in DMF (492 mL), O_{2} was bubbled through a long syringe needle for 10 min . In an another flask, a suspension of $\mathrm{NaBH}_{4}(3.4 \mathrm{~g}, 90.0 \mathrm{mmol})$ in DMF $(275 \mathrm{~mL})$ was prepared and O_{2} was passed for 20 min , to it the reaction mixture was added dropwise via cannula in 3 h . Reaction mixture was diluted with ethylacetate, filtered and concentrated. DMF was removed under reduced pressure and the crude brown colored oily material was purified by silica gel column chromatography (80% Ethylacetate/lightpetroleum) to afford primary alcohol 67 (14.4 g , 86%) as a colorless liquid.

Mol.Formula

$[\alpha]_{D}{ }^{25}$
IR $\left(\mathbf{C H C l}_{3}\right) \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

$$
\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{5}
$$

- 42.98 (с $0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}$)

3384, $3019 \mathrm{~cm}^{-1}$
$\delta 5.78(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~m}, 1 \mathrm{H}), 4.45-4.10(\mathrm{~m}$, 2H), 3.98 (m, 1H), 3.71 (dd, $J=3.0,11.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.48 (dd, $J=5.1,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.30$ (brs, 1H), 2.28(m, $1 \mathrm{H}), 2.10-1.58(\mathrm{~m}, 5 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$
27.3, 26.3

Elemental Analysis
Calcd: C, 59.01; H, 8.10
Found: C, 59.24; H, 8.10

A solution of DMSO $(25.1 \mathrm{~mL}, 329.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added dropwise to a solution of oxalyl chloride ($14.3 \mathrm{~mL}, 164.7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$. After 30 min , a solution of alcohol $67(13.4 \mathrm{~g}, 54.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, was added dropwise to the reaction mixture at same temperature and stirred for additional 30 min . Triethyl amine ($49.0 \mathrm{~mL}, 490.1 \mathrm{mmol}$) was added to the reaction mixture and allowed to warm to room temperature. Water was added to the reaction mixture and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude oil by silica gel column chromatography (60% Ethylacetate/light petroleum) provided the aldehyde $\mathbf{6 8}$ as ayellowish oil ($9.3 \mathrm{~g}, 70.32 \%$). Decylmagnesiumbromide in THF was \{prepared from decyl bromide ($16.9 \mathrm{~mL}, 76.5 \mathrm{mmol}$), magnesium turnings ($4.5 \mathrm{~g}, 191.3 \mathrm{mmol}$) in THF (50 mL , refluxed for 2 h$\}$ added to the precooled solution of aldehyde $\mathbf{6 8}(9.3 \mathrm{~g}, 38.2 \mathrm{mmol})$ and CuBr.DMS ($0.7 \mathrm{~g}, 3.1 \mathrm{mmol}$) in ether (50 mL) at $-78{ }^{\circ} \mathrm{C}$ and stirred for 1 h . The reaction mixture was then quenched by slow addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and the resulting suspension stirred for another 30 min . The organic layer was separated and the aqueous layer was extracted with ethyl acetate ($2 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude oily material was purified by flash silica gel chromatography (20% Ethylacetate/light petroleum), provided compound $69(7.2 \mathrm{~g})$ and $70(3.0 \mathrm{~g})$ in 7:3 ratio.

Compound-69

$R_{f}=0.5$ (40\% Ethylacetate/light petroleum)

Mol.Formula
$[\alpha]_{D}{ }^{25}$
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}}{ }^{-1}$
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis
$\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{5}$

- $31.2\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

3471, 2925, $2854 \mathrm{~cm}^{-1}$
$\delta 5.79(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (ddd, $J=1.7,3.9$,
$6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 4.03-3.86(\mathrm{~m}, 3 \mathrm{H}), 2.33-$
$1.74(\mathrm{~m}, 6 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 18 \mathrm{H})$, $0.90(\mathrm{t}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H})$
$112.6,106.3,83.0,82.4,81.2,80.5,71.0,33.9,32.2$, $31.8,29.6,29.5,29.4,29.2,29.0,27.3,26.4,25.9$, 24.4, 22.5, 14.0

Calcd: C, 68.75; H, 10.41
Found: C, 68.53, H, 10.68

Compound-70

$R_{f}=0.45$ (40\% Ethylacetate/light petroleum)

Mol. Formula
$[\alpha]_{D}{ }^{25}$
IR ($\mathbf{C H C l}_{\mathbf{3}} \mathrm{Cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

$$
\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{5}
$$

- 23.82 (c 2.7, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)

3486, 2925, 2854
$\delta 5.72(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.6(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H})$, 3.97-3.76 (m, 2H), 3.33 (m, 1H), 2.58 (brs, 1H), 2.23$2.09(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}$,
$3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 18 \mathrm{H}), 0.84(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H})$
$\begin{array}{ll}{ }^{13} \mathbf{C ~ N M R ~}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 M H z}\right) & 112.8,106.3,83.0,82.5,80.6,73.8,34.1,33.3,31.8, \\ & \begin{array}{l}\text { 29.6, 29.5, 29.2, 28.2, 27.4, 26.5, 25.6, 22.6, 14.0 }\end{array} \\ \text { Elemental Analysis } & \text { Calcd: C, 68.75; H, 10.41 } \\ & \text { Found: C, 68.53, H, 10.68 }\end{array}$

Compound71

To a solution of alcohol $69(10 \mathrm{mg}, 0.026 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $S-(-)$ MTPA ($6 \mathrm{mg}, 0.0312$) and the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$. To this, DCC (6 mg , 0.031 mmo) was added in one portion followed by catalytic amount of DMAP and stirred at rt for 12 h . The reaction mixture was quenched with ice the organic phase was separated, washed with water (3 x 5 mL), brine (1 x 5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue obtained was purified by column chromatography (7\% Ethylacetate/light petroleum) to give ester 71 ($12 \mathrm{mg}, 85 \%$) as colorless liquid.

Mol.Formula $\quad \mathrm{C}_{32} \mathrm{H}_{47} \mathrm{~F} 3 \mathrm{O}_{7}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad \delta 7.58-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 3 \mathrm{H}), 5.73(\mathrm{~d}, \mathrm{~J}=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.06(\mathrm{~m}$, $2 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 2.04-$ $1.83(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}$,

$$
3 \mathrm{H}), 1.25(\mathrm{~s}, 16 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H})
$$

Compound72

To a solution of alcohol $69(10 \mathrm{mg}, 0.026 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $R-(-)$ MTPA ($6 \mathrm{mg}, 0.0312$) and the reaction mixture was cooled to $0^{\circ} \mathrm{C}$. To this, DCC $(6 \mathrm{mg}$, 0.031 mmo) was added in one portion followed by catalytic amount of DMAP and stirred at rt for 12 h . The reaction mixture was quenched with ice the organic phase was separated, washed with water ($3 \times 5 \mathrm{~mL}$), brine $(1 \times 5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue obtained was purified by column chromatography (5\% Ethylacetate/lightpetroleum) to give ester $\mathbf{7 2}$ ($10 \mathrm{mg}, 84 \%$) as colorless liquid.

Mol. Formula
$\mathrm{C}_{32} \mathrm{H}_{47} \mathrm{~F}_{3} \mathrm{O}_{7}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 200 \mathbf{M H z}\right) \quad \delta 7.66-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 3 \mathrm{H}), 5.71(\mathrm{~d}, J=4.0$ Hz, 1H), $5.22(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{q}, \mathrm{J}=5.4$ Hz, 2H), 3.85 (m, 1H), 3.55(s, 3H), 2.13(m, 1H), 1.94$1.80(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}$, $3 \mathrm{H}), 1.25(\mathrm{~s}, 16 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H})$

Compound-73

To a slurry of $\operatorname{IBX}(14.5 \mathrm{~g}, 52.08 \mathrm{mmol})$ in DMSO (30 mL), diastereomeric mixture of compound $\mathbf{6 9}$ and $70(10.0 \mathrm{~g}, 26.04 \mathrm{mmol})$, in THF (40 mL) was added slowly at $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h . Reaction mixture was quenched by saturated NaHCO_{3} and diluted with ether. Reaction mixture was filtered over a celite bed, the organic layer was separated and the aqueous layer was extracted with ethyl acetate (2 x 50 mL). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude oily material was purified by flash silica gel chromatography (20% Ethylacetate/light petroleum), provided the keto compound 73 ($9.0 \mathrm{~g}, 92 \%$) as an oily liquid. $R_{f}=0.6$ (40% Ethylacetate/light petroleum

$$
\begin{aligned}
& \text { Mol.Formula } \quad \mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{5} \\
& {[\alpha]_{D}{ }^{25}} \\
& \text { IR }\left(\mathbf{C H C l}_{\mathbf{3}}\right) \mathrm{cm}^{-1} \\
& { }^{1} \mathrm{H} \text { NMR }\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \\
& { }^{13} \mathrm{C} \text { NMR }\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \\
& \text { - } 5.87 \text { (c 1, } \mathrm{CH}_{2} \mathrm{Cl}_{2} \text {) } \\
& \text { 1774, 1730, } 1585 \mathrm{~cm}^{-1} \\
& \delta 5.81(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{~m}, 1 \mathrm{H}) \text {, } \\
& 4.01(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.14(\mathrm{~m}, 2 \mathrm{H}) \text {, } \\
& \text { 2.05-1.84 (m, 2H), } 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s} \text {, } \\
& 18 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \\
& 213.0,112.8,83.8,82.5,81.8,80.0,38.0,34.0,31.8 \text {, } \\
& \text { 29.5, 29.4, 29.4, 29.2, 29.2, 28.8, 28.3, 27.3, 26.4, } \\
& \text { 22.9, 22.6, } 14.0
\end{aligned}
$$

To a solution of $73(6.9 \mathrm{~g}, 18.10 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ at $-100^{\circ} \mathrm{C}$ was added LSelectride ($27.16 \mathrm{~mL}, 27.16 \mathrm{mmol}, 1.0 \mathrm{M}$ THF solution) and stirred for 2 h ., than 2 M NaOH (25 mL) and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(18 \mathrm{~mL})$ were added successively via syringe, and the reaction was warmed to room temperature. The resulting mixture was diluted with ether (150 mL) and the organic layer was separated and washed twice with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude reaction mixture was purified by silicagel column chromatography (20% Ethylacetate/lightpetroleum) afforded $69(8.05 \mathrm{~g})$ and 70 $(0.9 \mathrm{~g})$ in $9: 1$ ratio with 89% yield.

Compound74

A solution of alcohol $69(7.2 \mathrm{~g}, 18.7 \mathrm{mmol})$ in THF (40 mL) was added to a suspension of $\mathrm{NaH}(0.9 \mathrm{~g}, 24.3 \mathrm{mmol}, 60 \%)$ in THF $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and stirred for 30 min . Benzyl bromide ($2.4 \mathrm{~mL}, 20.6 \mathrm{mmol}$) was added slowly and stirred for 2 h . The reaction mixture was quenched by water and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The oraganic layer was separated and the aqueous layer was extracted with ether ($3 \times 100 \mathrm{~mL}$). Combined organic layers ware dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the residue by flash silica gel chromatography ($20-30 \%$ Ethylacetate/light petroleum) provided the benzyl ether 74 ($8.1 \mathrm{~g}, 91 \%$) as a colorless liquid . $R_{f}=0.3$ (50% Ethylacetate-lightpetroleum)

Mol.Formula

$[\alpha]_{D}{ }^{25}$
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}^{-1}}$

$$
\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{5}
$$

- 14.37 (c 0.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)

3019, 2400, 1215, 1045, $757 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad \delta 7.36-7.22(\mathrm{~m}, 5 \mathrm{H}), 5.76(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.79-$ $4.56(\mathrm{~m}, 3 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 4.11-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.65$ $(\mathrm{m}, 1 \mathrm{H}), 2.35-1.81(\mathrm{~m}, 6 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H})$, $1.24(\mathrm{~s}, 18 \mathrm{H}), 0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis
139.4, 128.1, 127.6, 127.2, 112.8, 106.4, 82.8, 80.8, 80.8, 73.3, 34.1, 32.1, 31.9, 29.6, 29.3, 29.1, 27.5, $26.6,25.8,22.7,14.1$
Calcd: C, 73.41; H, 9.70
Found: C, 73.68; H, 9.89
(1R)-1-((2R,5R)-5-((R)-1-(benzyloxy)undecyl)-tetrahydrofuran-2-yl)pent-4-ene-1,3diol (76)

The benzyl ether74 (7.0 g, $18.7 \mathrm{mmol})$ was dissolved in THF: $\mathrm{H}_{2} \mathrm{O}(85: 15 \mathrm{~mL})$ and catalytic p-TSA $(10 \mathrm{mg})$ was added and refluxed for 2 h at $60{ }^{\circ} \mathrm{C}$ and then cooled to $0{ }^{\circ} \mathrm{C}$, quenched by $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$. The reaction mixture was concentrated and purified by silica gel chromatography (60% Ethylacetate/light petroleum) provided lactol compound 75 ($5.3 \mathrm{~g}, 84 \%$) as a colorless oil, which was subsequently treated with $\mathrm{PPh}_{3}{ }^{+} \mathrm{CH}_{3} \mathrm{I}^{-}(28.4 \mathrm{~g}, 70.6 \mathrm{mmol})$ and $n-\mathrm{BuLi}(1.6 \mathrm{M}$, $36.8 \mathrm{~mL}, 58.8 \mathrm{mmol})$ in THF (50 mL) at $-10{ }^{\circ} \mathrm{C}$ and stirred for 10 h in room temperature. Reaction mixture was quenched by water and the organic layer was separated and the aqueous layer was extracted with ethylacetate ($2 \times 50 \mathrm{~mL}$). Combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the residue by flash silica gel chromatography (20% Ethylacetate/lightpetroleum) afforded 76 (3.6 g , $72 \%)$ as a colorless liquid. $R_{f}=0.3$ (50\% Ethylacetate/lightpetroleum)

Mol.Formula

$[\alpha]_{D}{ }^{25}$
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \mathrm{cm}^{-1}$

- 2.11 (c $\left.0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
$3425,3030,1650,1720,1455,994,666 \mathrm{~cm}^{-1}$

[^0]To a solution of $76(5.0 \mathrm{~g}, 11.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL}), \mathrm{Hg}(\mathrm{OAc})_{2}(7.3 \mathrm{~g}$, 23.0 mmol) was added at room temperature and stirred for 2 h . The reaction mixture was quenched with brine solution (25 mL) and stirred for 30 min . Organic layer was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the crude compound by flash silica gel column chromatography (40% Ethylacetate/lightpetroleum) provided the chloromercurated compound $77(4.9 \mathrm{~g})$ and $\mathbf{7 8}(1.23 \mathrm{~g})$ in $8: 2$ ratio with 80% yield.
(($\left(2 R, 2^{\prime} R, 4 R, 5 R, 5^{\prime} R\right)-5^{\prime}-((R)-1-(b e n z y l o x y) u n d e c y l)-4-h y d r o x y-o c t a h y d r o-2,2^{\prime}-$ bifuran-5-yl)methyl) mercury(II) chloride (77)

$R_{f}=0.5$ (40\% Ethylacetate/light petroleum)

Mol. Formula
$[\alpha]_{D}{ }^{25}$
$-6.11\left(c 0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad \delta 7.40-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.62(\mathrm{ABq}, J=11.6,16.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.42(\mathrm{~m}, 1 \mathrm{H}), 4.25-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.78(\mathrm{~m}$, $2 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=5.1,12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 6 \mathrm{H}), 1.25(\mathrm{~s}, 18 \mathrm{H}), 0.88(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis
139.1,128.2, 127.7, 127.4, 83.0, 81.9, 81.4, 80.4, 77.4, $73.5,71.0,38.4,31.9,31.5,29.7,29.6,29.4,27.8$, 27.5, 26.1, 25.9, 22.7, 14.2

Calcd: C, 48.60; H, 6.40
Found: C, 48.58; H, 6.24
(((2R,2'R,4R,5R,5'R)-5'-((R)-1-(benzyloxy)undecyl)-4-hydroxy-octahydro-2,2'-bifuran-5-yl)methyl)mercury(II) chloride (78)

$R_{f}=0.45$ (40\% Ethylacetate/light petroleum)

Mol.Formula
$[\alpha]_{D}{ }^{25}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis
$\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{O}_{4} \mathrm{HgCl}$

- 4.11 (c 0.6, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)
$\delta 7.36-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.61(\mathrm{ABq}, J=11.5,29.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.20$ (ddd, $J=2.0,6.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H})$, 4.09-4.04 (m, 2H), $3.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 1 \mathrm{H}), 2.45$ $(\mathrm{m}, 1 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.85-1.79$ $(\mathrm{m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 19 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H})$
$139.0,128.3,127.7,127.4,86.4,83.0,81.8,80.2$, $78.9,77.6,73.3,37.0,36.6,31.9,31.7,29.8,29.7$,
29.7, 29.6, 29.3, 28.0, 26.6, 25.7, 22.7, 14.1

Calcd: C, 48.60; H, 6.40
Found: C, 48.58; H, 6.24
(1R)-1-((2R,5R)-5-((R)-1-(benzyloxy)undecyl)-tetrahydrofuran-2-yl)-3-(tert-butyldimethylsilyloxy)pent-4-en-1-ol (57)

To a solution of alcohol $76(0.9 \mathrm{~g}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added imidazole $(0.4 \mathrm{~g}, 6.2$ $\mathrm{mmol})$, $\mathrm{TBSCl}(0.3 \mathrm{~g}, 2.4 \mathrm{mmol})$ and DMAP (cat) at $0{ }^{\circ} \mathrm{C}$ and stirred for 4 h , the reaction mixture was quenched with saturated NaHCO_{3} solution and the organic layer was separated. Aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$, combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude compound by flash silica gel chromatography (10% Ethylacetate/ light petroleum) furnished 57 as a colorless oil ($1.1 \mathrm{~g}, 94 \%$). $R_{f}=0.6$ (20% Ethylacetate-light petroleum)

Yield
Mol. Formula
$[\alpha]_{D}{ }^{25}$
IR ($\mathbf{C H C l}_{\mathbf{3}} \mathbf{~ c m}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis

$$
94 \%
$$

$\mathrm{C}_{33} \mathrm{H}_{58} \mathrm{O}_{4} \mathrm{Si}$
$+5.94\left(\right.$ c $\left.0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
3584, 2923, 1731, 1644, 1463, 1403, 926, 758, 667 cm^{-1}
$\delta 7.33-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.84(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.05(\mathrm{~m}, 2 \mathrm{H})$, $4.68(\mathrm{ABq}, J=11.6,16.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.44$ (m, 1H), 4.04 (ddd, $J=3.7,6.8,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.72-$ $3.52(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.38(\mathrm{~m}, 6 \mathrm{H})$, $1.25(\mathrm{~s}, 15 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.10(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$
$141.4,139.1,128.2,127.8,127.4,113.8,82.7,82.1$, 80.3, 73.1, 70.8, 70.5, 41.3,31.9, 31.8, 29.7, 29.6, 29.3, 28.3, 26.7, 25.9, 25.7, 22.7, 18.2, 14.1,-4.3, -4.9

Calcd: C, 72.52; H, 10.62
Found: C, 72.32; H, 10.68.
(((2R,2'R,4R,5R,5'R)-5'-((R)-1-(benzyloxy)undecyl)-4-(tert-butyldimethylsilyloxy)-octahydro-2,2'-bifuran-5-yl)methyl) mercury(II)chloride (79)

To a solution of TBS ether $57(1.0 \mathrm{~g}, 1.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathrm{Hg}(\mathrm{OAc})_{2}(0.4$ $\mathrm{g}, 2.5 \mathrm{mmol}$) was added at room temperature. After 1 h stirring, reaction mixture was quenched with brine solution. Organic layer was seperated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. Combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude compound by silica gel chromatography (25% Ethylacetate/light petroleum) resulted in compound 79 (single isomer) as a colorless oil (1.05 g). $R_{f}=0.5$ (50% Ethylacetate/light petroleum)

Yield

Mol.Formula
$[\alpha]_{D}{ }^{25}$
IR ($\left.\mathbf{C H C l}_{3}\right) \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis

82\%
$\mathrm{C}_{33} \mathrm{H}_{57} \mathrm{O}_{4} \mathrm{SiHgCl}$
-8.86, (с 1.3, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)
3059, 3025, , 1869, 1802, 1747, 1668, 1601, 1583, 1492, 979, 964, 748
$\delta 7.25-7.14(\mathrm{~m}, 5 \mathrm{H}), 4.65(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.05-3.89(\mathrm{~m}$, $2 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.03(\mathrm{~m}, 2 \mathrm{H})$, 1.94-1.77 (m, 3H), 1.72-1.51 (m, 3H), 1.27 (brs, 1H), $1.15(\mathrm{~s}, 17 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.79(\mathrm{t}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H})$, 0.03 (s, 6H)
139.3, 128.2, 127.9, 127.3, 82.8, 81.1, 80.8, 80.5, 80.4, 73.6, 73.5, 38.7, 31.9, 29.7, 29.6, 29.4, 28.7, 26.3, $25.9,25.9,22.7,18.5,14.2,-4.4$

Calcd: C, 50.76; H, 7.30

Found: C, 50.82; H, 7.48.
((2R,2'R,4R,5S,5'R)-5'-((R)-1-(benzyloxy)undecyl)-4-(tert-butyldimethylsilyloxy)-octahydro-2,2'-bifuran-5-yl)methanol (80)

To a stirred solution of mercurated compound $79(0.9 \mathrm{~g}, 1.2 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL}), \mathrm{O}_{2}$ was bubbled through a long syringe needle for 10 min . Latter on O_{2} was passed to the suspension of $\mathrm{NaBH}_{4}(0.06 \mathrm{~g}, 1.5 \mathrm{mmol})$ in DMF (5 mL) for 20 min , to it O_{2} dissolved mercurated compound 19 was added dropwise in 30 min with high flow rate of O_{2}. Reaction mixture was diluted with Ethylacetate, filtered and concentrated. DMF was removed by rotavapour in reduced pressure. The crude brown coloured oily material was purified by silica gel column chromatography (30% Ethylacetate/light petroleum) to afford primary alcohol 80 as a colorless liquid (0.8 g). $R_{f}=0.4$ (60% Ethylacetate/lightpetroleum)

Yield

Mol.Formula
$[\alpha]_{D}{ }^{25}$
IR ($\left.\mathbf{C H C l}_{3}\right)_{\mathrm{cm}^{-1}}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

81\%
$\mathrm{C}_{33} \mathrm{H}_{58} \mathrm{O}_{5} \mathrm{Si}$
-6.05 (c 0.3, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
3017, 2400, 1672, 1548
ס 7.37-7.26 (m, 5H), 4.72-4.49 (m, 3H), 4.17-3.91 (m,
3 H), 3.83 (ddd, $J=2.7,6.5,12.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.77 (dd, J
$=7.4,12.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 2.04-$
$1.87(\mathrm{~m}, 3 \mathrm{H}), 1.73(\mathrm{~m}, 1 \mathrm{H}), 1.23$ (brs, 1H), 1.25 (s ,
$18 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}$, $6 \mathrm{H})$
139.3, 128.2, 127.8, 127.3, 82.8, 81.4, 81.1, 80.4, 79.8, 73.4, 62.7, 37.7, 32.0, 31.9, 29.7, 29.6, 29.3, 28.7,
$25.9,25.8,25.7,22.6,17.9,14.1,-4.6,-5.1$
Elemental Analysis
Calcd: C, 70.46; H, 10.32
Found: C, 70.42; H, 10.59.

(R)-1-((2R,2'R,4R,5S,5'R)-5'-((R)-1-(benzyloxy)undecyl)-4-(tert-butyldimethyl silyloxy)-octahydro-2,2'-bifuran-5-yl)hept-6-en-1-ol (56)

The aldehyde compound 81 was prepared from compound $\mathbf{8 0}(0.5 \mathrm{~g})$ following the same procedure mentioned for $69(0.4 \mathrm{~g}, 79 \%)$. Hexenyl magnesium bromide was prepared by slow addition of hexenylbromide $(0.19 \mathrm{~mL}, 1.1 \mathrm{mmol})$ to the mixture of magnesium ($0.6 \mathrm{~g}, 2.3 \mathrm{mmol}$) in ether (5 mL) and stirred for 30 min . A solution of aldehyde $(0.3 \mathrm{~g}, 0.59 \mathrm{mmol})$ in ether $(5 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}, \mathrm{CuBr} . \mathrm{DMS}(0.012 \mathrm{~g}, 0.06 \mathrm{mmol})$ was added to it and stirred for 10 min . To this precomplexed aldehyde, a solution of the above mentioned Grignard reagent was cannulated at $-100^{\circ} \mathrm{C}$ and the mixture was further stirred for 30 min at same temperature. The reaction mixture was then quenched by slow addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the resulting suspension stirred for additional 30 \min. The organic layer was separated and the aqueous layer was extracted with ethylacetate ($2 \times 50 \mathrm{~mL}$). Combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude brown colored oily material was purified by flash column chromatography (15% Ethylacetate-light petroleum) to afford the title compound 56 as a colorless liquid $(0.26 \mathrm{~g}) . R_{f}=0.5(30 \%$ Ethylacetate-light petroleum)

Yield
Mol.Formula
$[\alpha]_{D}{ }^{25}$
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}^{-1}}$

76\%
$\mathrm{C}_{39} \mathrm{H}_{68} \mathrm{O}_{5} \mathrm{Si}$
-10.94 (с 0.4, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)
3480, 2976, 2940,1640, 1598
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 200 \mathbf{M H z}\right) \quad \delta 7.35-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~m}, 1 \mathrm{H}), 5.79(\mathrm{~m}, 1 \mathrm{H}), 4.97$ (m, 1H), $4.90(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58$ (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-$ $4.04(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.62$ (ddd, J $=3.6,6.8,11.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.03(\mathrm{~m}$, $2 \mathrm{H}), 2.0-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H})$, $1.52-1.37(\mathrm{~m}, 7 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 17 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, $0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 M H z}\right) \quad 139.3,139.0,128.2,127.8,127.3,114.2,83.7,82.9$, 81.1, 80.3, 79.5, 73.4, 73.2, 70.4, 38.0, 33.9, 33.5, 32.0, 31.9, 29.7, 29.6, 29.4, 29.2, 28.8, 26.0, 25.9, $25.8,25.5,22.7,18.0,14.1,-4.3,-5.0$

Elemental Analysis
Calcd: C, 72.67; H, 10.55
Found: C, 72.83; H, 10.37.

The Mosher ester $\mathbf{8 2}$ and $\mathbf{8 3}$ were prepared following same procedure as that for $\mathbf{7 1}$ and $\mathbf{7 2}$.
Compound 82

Mol.Formula
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
$\mathrm{C}_{49} \mathrm{H}_{75} \mathrm{~F}_{3} \mathrm{O}_{7} \mathrm{Si}$
$\delta 7.69-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.31(\mathrm{~m}, 7 \mathrm{H}), 5.71(\mathrm{~m}, 1 \mathrm{H})$, $5.43(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~m}$, $1 \mathrm{H}), 3.87-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H})$, 2.08-1.82 (m, 6H), 1.75-1.60(m, 5H), 1.47-1.34 (m, $3 \mathrm{H}), 1.25(\mathrm{~s}, 18 \mathrm{H}), 0.88(\mathrm{~s}, 12 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H})$

Compound 83

Mol. Formula
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 200 \mathrm{MHz}\right) \quad \delta 7.66-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 7 \mathrm{H}), 5.76(\mathrm{~m}, 1 \mathrm{H})$, $5.29(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.57(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 4.00-$ $3.93(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.53$ $(\mathrm{m}, 1 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.73(\mathrm{~m}, 5 \mathrm{H}), 1.46-$ $1.33(\mathrm{~m}, 6 \mathrm{H}), 1.24(\mathrm{~s}, 19 \mathrm{H}), 0.88(\mathrm{~s}, 12 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H})$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 61 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR spectrum of compound 62 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 59 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 59 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 63 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 64 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 65 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 58 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 66 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 69 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 70 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR spectrum of compound 71 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 73 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 73 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 74 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR spectrum of compound 76 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 78 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR spectrum of compound 77 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathbf{H}$ NMR spectrum of compound 57 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 79 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 79 in $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 80 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 56 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of compound 56 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 82 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of compound 83 in $\mathbf{C D C l}_{3}$

REFERENCES

1.Remers, N.A.Antineoplastic agents, 1984.
2.(a)Gunasekhara,S.P.; Gunasekhara,M.;Longley,R.E.J.Org.Chem.1950, 55, 4912.
(b) Gunasekhara,S.P.; Gunasekhara,M.;Longley,R.E.ibid.1991, 56, 1346.
(c)Hofle,G.;Bedorf,N.;Steinmetz,H.;Schomburg,D.;Gurth,K.;Reichenback,H. Angew.Chem. 1996, 35, 1567.
(d)Horton, P.A.;Kohen, F.E.;Longley, R.E.; Mc Connel,O.J.J.Am.Chem.Soc.1994, 116, 6015.
3.(a) Miyoshi, H.; Ohshima, M.; Shimada, H.; Akazi, T.; Iwamura, H.; McLaughlin, J.L. "Essential structural factors of annonaceous acetogenins as potent inhibitors of mitochondrial complex I," Biochimica Biophysica Acta, 1998, 1365, 443-452. (b)Guadano, A.;. Gutierrez, C.; Pena, de la.; Cortes, D.;. Coloma,G. "Insecticidal and mutagenic evaluation of two annonaceous acetogenins", Journal of Natural Products, 2000, 63, 773-776.
4.Leboeuf.M; Cave, A.;Bhaunik.P.K.;Mukherjee, B.; Mukherjee.R.Phytochemistry 1982, 21, 2783-2813.
5.Moore, R.E.,Steglish, W., Tamm.C.,Eds.; Springer-Verlag: New York, 1997:81-87.
6. Zeng, L.;Ye, q.; Oberlies, N. H.; Shi.G.;Gu, Z.M.; He, K.; Mc Laughein, J.L Nat.Prod.Rep.1996, 13, 275-306.
7.Jolad, S. D.;Hoffman.J.J.;Schram.K.H.;Cole.J.R.;Tempesta.M.S.;Kriek.G.R.;Bates.R.B. J.Org.Chem. 1982, 47, 3151-53.
8.Shi,G.E.;Alfonso,D.;Fatope.M.O.;Zeng.L.;Gu.Z.M.;Zhao.G.X.;He.k.;MacDougal.J.M.;

McLaughlin.J.L.J.Am.Chem.Soc 1995, 117, 10409-10410.
9.Shi.G.;Kozlowski.J.F.;Schwedler.J.T.;Wood.K.V.;MacDougal.J.M.;McLaughlin.J.L.J.Or g.Chem.1996, 61, 7988-7989.
10.Alali.F.Q.;Rogers.L.L.;Zhang.Y.;McLaughlin.J.L.Tetrahedron 1998, 54, 5833-5844. 11.Chavez.D.;Acevedo.L.A.;Mata.R.J.Nat.Prod 1998, 61, 419-421.
12.Colman-Saizarbitoria.T.;Johnson,H.A.;Alali.F.Q.;Hopp.D.C.;Rogers.L.L.;McLaughlin J.L.Phytochemistry 1998, 49, 1609-1616.
13.Londershausen.M.;Leicht.W.;Lieb.F.;Moeschler.H.;Weiss.H.Pestic.Sci.1991, 33, 427438.
14.Lewis.M.A.;Arnason.J.T.;Philogene.B.J.;Rupprecht.J.K.;McLaughlin.J.L.Pestic.Bioche m.Physiol.1993, 45, 15-23.
15.Ahammadsahib.K.I.;McLaughlin.J.L.LifeSci.1993, 53, 1113-1120.
16.Hollingworth.R.M.;Ahmmadsahib.K.I.;Gadelhak.G.;McLaughlinJ.L.Biochem.Soc.Tran s.1994, 22, 230-233.
17.Morre.D.J.;deCabo.R.;Farley.C.;Oberlies.N.H..;McLaughlin.J.L.LifeSci.1995,56, 343348.
18.Wolvetang.E.;Johnson.K.L.;Kramer.K.;Ralph.S.J.;Linnane.A.W.FEBSLett.1994, 339, 40-44.
19.Oberlies,N.H.;Jones.J.L.;Corbett.T.H.;Fotopoulos.S.S.;McLaughlin.J.L.;CancerLett. 1995, 96, 55-62.
20. Oberlies, N. H.; Croy.V. L.; Harrison.M.;McLaughlin.J.L. Cancer Lett.1997, 115, 7379.
21.Oberlies, N.H.; Chang.C.J.; McLaughlin.J.L .J.Med.Chem.1997, 40, 2102-2106.
22.Alali.F.Q.; Kaakeh.W.; Bennett.G.W.; Mc Laughlin.J.L.Econ.Entolmol.1998, 91, 641649.
23. (a) Rupprecht, J. K.; Chang, C.-J.; Cassady, M. J.; McLaughlin, J. L. Heterocyclic 1986, 24, 1197. (b) Lewis M. A.; Arnason, J. T.; Philogene, B. J. R.; Rupprecht, J. K.; Mclaughlin J. L. PesticideBiochem. Physiol. 1993, 45, 15. (c) Zhao, G. X.; Miesbauer, L. R.; Smith, D. L.; Mclaughlin J. L. J. Med. Chem. 1994, 37, 1971.
24. (a) Hui, Y. H.; Rupprecht, J. K.; Liu, Y. M.; Anderson, J. E.; Smith, D. L.; Chang, C.J.; McLaughlin, J. L. J. Nat. Prod. 1989, 52, 463. (b) Li, X. H.; Hui, Y. H.; Rupprecht, J. K.; Liu, Y. M.; Wood, K. V.; Smith, D. L.; Chang, C. J.; McLaughlin, J. L. J. Nat. Prod. 1990, 53, 81. (c) Rieser, M. J.; Hui, Y.-H.; Rupprecht, J. K.; Kozlowski, J. F.; Wood, K. V.; McLaughlin, J. L.; Hanson, P. R.; Zhuang, Z.; Hoye, T. R. J. Am. Chem. Soc. 1992, 114, 10203
25. Ahmadsahib K. I.; Hollingworth R. M.; McGovren J. P.; Hui Y.- H.; McLaughlin J. L. Life Sci. 1993, 53, 1113-1120.
26. Chrestine, H.; Johnson, H. M.; Knox, R. M.; Rezai, A.; Ryan, W. J.; Montz F. J. Cancer Chemother. Pharmacol. 1994, 34, 166-170.
27. Morre, D. J.; Cabo, R. D.; Farley, C.; Oberlies, H. N.; McLaughlin, J. L. Life Sci. 1995, 56, 343-348.
28.(a) Rupprecht, J. K.; Chang, C.-J.; Cassady, M. J.; McLaughlin, J. L. Heterocyclic 1986, 24, 1197. (b) Lewis M. A.; Arnason, J. T.; Philogene, B. J. R.; Rupprecht, J. K.; Mclaughlin J. L. PesticideBiochem. Physiol. 1993, 45, 15. (c) Zhao, G. X.; Miesbauer, L. R.; Smith,D. L.; Mclaughlin J. L. J. Med. Chem. 1994, 37, 1971.
29. (a) Hui, Y. H.; Rupprecht, J. K.; Liu, Y. M.; Anderson, J. E.;Smith, D. L.; Chang, C.-J.; McLaughlin, J. L. J. Nat. Prod. 1989, 52, 463. (b) Li, X. H.; Hui, Y. H.; Rupprecht, J. K.; Liu, Y. M.; Wood, K.V.; Smith, D. L.; Chang, C. J.; McLaughlin, J. L. J. Nat. Prod. 1990, 53, 81. (c) Rieser, M. J.; Hui, Y.-H.; Rupprecht, J. K. Kozlowski, J. F.;Wood, K. V.; McLaughlin, J. L.; Hanson, P. R.; Zhuang, Z.; Hoye, T.R. J. Am. Chem. Soc. 1992, 114, 10203.
30. Sinha, S. C.; Sinha-Bagchi, A.; Yazbak, A.; Keinan, E. Tetrahedron Lett. 1995, 36, 9257.
31. (a) Hoye, T. R.; Tan, L. Tetrahedron Lett. 1995, 1981. (b) For the synthesis of (-)bullatacin, see: Hoye, T. R.; Hanson, P. R. Tetrahedron Lett. 1993, 34, 5043.
32. For the synthesis of asimicin, see: Marshall, J. A.; Hinkle, K. W. J. Org. Chem. 1997, 62, 5989.
33. For the synthesis of bullatacin, see: Naito, H.; Kawahara, E.;Maruta, K.; Maeda, M.; Sasaki, S. J. Org. Chem. 1995, 60, 4419.
34. (a) Zafra-Polo, M. C.; Gonzá lez, M. C.; Estornell, E.; Sahpaz, S.; Cortes, D. Phytochemistry 1996, 42, 253-271.(b) Zeng, L.; Ye, Q.; Oberlies, N. H.; Shi, G.; Gu, Z. M.; He, K.;McLaughlin, J. L. Nat. Prod. Rep. 1996, 13, 275-306.
35. Hoye, T.R.; Zhuang, Z.P. J. Org. Chem. 1988, 53, 5578-5580.
36. Cortes, D.; Myint, S. H.; Dupont, B.; Davoust, D. Phytochemistry 1993, 32, 14751482.
37. Gu, Z. M.; Fang, M. P.; Rieser, M. J.; Huy, Y. H.; Miesbauer, L.R.; Smith, D. L.; Wood, K. V.; McLaughlin, J. L. Tetrahedron 1993, 49, 747-754.
38. Hisham, A.; Pieters, L. A. C.; Claeys, M.; van den Heuvel, H.; Esmans, E.; Dommisse, R.; Vlietinck, A. J. Phytochemistry 1991, 30, 2373-2377.
39. Duret, P.; Hocquemiller, R.; Laurens, A.; Cave', A. Nat. Prod. Lett. 1995, 5, 295-302.
40. Sahai, M.; Singh, S.; Singh, M.; Gupta, Y. K.; Akashi, S.; Yuji, R.; Hirayama, K.; Asaki, H.; Araya, H.; Hara, N.; Eguchi, T.;Kakinuma, K.; Fujimoto, Y. Chem. Pharm. Bull. 1994, 42, 1163-1174.
41. Jolad, S. D.; Hoffmann, J. J.; Cole, J. R.; Barry, C. E.; Bates, R.B.; Linz, G. S.; Konig, W. A. J. Nat. Prod. 1985, 48, 644-645.
42. Kawazu, K.; Alcantara, J. P.; Kobayashi, A. Agric. Biol. Chem. 1989, 53, 2719-2722.
43. Tomer, K. B.; Crow, F. W.; Gross, M. L. J. Am. Chem. Soc. 1983, 105, 5487-5488.
44. (a)Bermejo, A.; Figade`re, B.; Zafra-Polo, M.-C.; Barrachina, I.; Estornell, E.; Cortes, D. Nat. Prod. Rep. 2005, 22, 269. (b) Allali, F. Q. Allali, F. Q.; Liu, X.-X.; McLaughlin, J. L. J. Nat. Prod. 1999, 62, 504.(c) Jolad, S. D.; Hoffman, J. J.; Schram, K.H.; Cole, J.R.; Tempesta, M.S.; Kriek, G.R.; Bates, R.B. J. Org. Chem. 1982, 47, 3151-3153.
45. Chavez, D.; Acevedo, L. A.; Mata, R. J. Nat. Prod. 1998, 61, 419.
46. Takahashi, S.; Maeda, K.; Hirota, S.; Nakata, T. Org. Lett. 1999, 1, 2025.
47. For mucocin syntheses, see: (a) Neogi, P.; Doundoulakis, T.; Yazbak, A.; Sinha, Sa. C.; Sinha, Su. C.; Keinan, E. J. Am. Chem. Soc. 1998, 120, 11279. (b) Ba"urle, S.; Hoppen, S.; Koert, U. Angew. Chem., Int. Ed. 1999, 38, 1263. (c) Takahashi, S.; Nakata, T. J. Org. Chem. 2002, 67, 5739 and references therein. (d) Takahashi, S.; Kubota, A.; Nakata, T. Angew. Chem., Int. Ed. 2002, 41, 4751. (e) Evans, P. A.; Cui, J.; Gharpure, S. J.; Polosukhin, A.; Zhang, H. J. Am. Chem. Soc. 2003, 125, 14702. (f) Zhu, L.; Mootoo,D. R. Org. Biomol. Chem. 2005, 3, 2750 (g) Crimmins, M. T.; Zhang, Y.; Diaz, F. A. Org. Lett. 2006, 8, 2369.
48. Hoppen, S.; Ba"urle, S.; Koert, U. Chem.-Eur. J. 2000, 6, 2382.
49. Hwang, C. H.; Keum, G.; Sohn, K. I.; Lee, D. H.; Lee, E. Tetrahedron Lett. 2005, 46, 6621.
50. Shi, G.; Kozlowski, J. F.; Schwedler, J. T.; Wood, K. V.;MacDougal, J. M.; McLaughlin, J. L. J. Org. Chem. 1996, 61, 7988-7989.
51. Queiroz, E.F; Roblot,-F; Laprevote,-O; Paulo,-Mde-Q; Hocquemiller, R. J-Nat-Prod. 2003, 66(6): 755-8.
52. Kim, E. J.; Suh, K. M.; Kim, D. H.; Jung, E. J.; Seo, C. S.;Son, J. K.; Woo, M. H.; McLaughlin, J. L. J. Nat. Prod. 2005, 68, 194-197.
53. Woo, M. H.; Cho, K. Y.; Zhang, Y.; Zeng, L.; Gu, Z.-M.; McLaughlin, J. L. J. Nat. Prod. 1995, 58, 1533-1542.
54. Cave', A.; Figade're, B.; Laurens, A.; Cortes, D. In Progress in the Chemistry of Organic Natural Products; Herz, W., Kirby, G. W., Moore, R. E., Steglich, W., Tamm, C., Eds.; Springer-Verlag: New York, 1997, 70, 81-287.
55. Zeng, L.; Ye, Q.; Oberlies, N. H.; Shi, G.; Gu, Z.-M.; He, K.; McLaughlin, J. L. Nat. Prod. Rep. 1996, 13, 275-306.
56. Gu, Z.-M.; Zhao, G. X.; Oberlies, N. H.; Zeng, L.; McLaughlin, J. L In Recent Advances in Phytochemistry; Arnason, J. T., Mata, R., Romeo, J. T., Eds.; Plenum Press: New York, 1995; 29, 249-310.
57. Eggert, H.; VanAntwerp, C. L.; Bhacca, N. S.; Djerassi, C. J. Org Chem. 1976, 41,7178.
58.Ramu.E.;Bhaskar.G.;Rao B.V.; Ramanjaneyulu.G.S.Tetrahedron Letters, 2006, 47, 3401-3403.
59.Wysocki M.L.;Dodge W.M.;Voight E.A.;Burke S.D. Org letter, 2006, 8, 5637-5640.
60.Li pan.; Yang.J.; Zhao.Kang. J.Org.Chem.1999, 64, 2259-2263.
61.Piccialli.V.;Caserta.T.; Caruso.L.; Paloma.G.L Bifulco.G.Tetrahedron 2006, 62, 1098911007.
62.Narayan S.R.;Borhan B.J.Org.Chem.2006, 71, 1416-1429.
63. Hongda Zhao, Jeffrey S. T. Gorman, and Brian L. Pagenkopf Org Lett 2006, 8, 4379-
82. 63. Bermejo, A.; Figadere, B.; Zafra-Polo, M.-C.; Barrachina,I.; Estornell, E.; Cortes, D. Nat. Prod. Rep. 2005, 22, 269-303.
64. Oberlies, N. H.; Croy, V. L.; Harrison, M. L.; McLaughlin,J. L. Cancer Lett. 1997, 115, 73-79.
65.Oberlies, N. H.; Chang, C. J.; McLaughlin, J. L. J. Med.Chem. 1997, 40, 2102-2106.
66. Ahammadsahib, K. I.; Hollingworth, R. M.; McGovern,J. P.; Hui, Y. H.;McLaughlin, J. L. Life Sci. 1993, 53,1113-1120.
67.He, K.; Zeng, L.; Ye, Q.; Shi, G. E.; Oberlies, N. H.;Zhao, G. X.; Njoku, J.; McLaughlin, J. L. Pestic. Sci.1997, 49, 372-378.
68. Londershausen, M.; Leicht, W.; Lieb, F.; Moeschler, H.;Weiss, H. Pestic. Sci. 1991, 33, 427-438.
69. Lewis, M. A.; Arnason, J. T.; Philogene, B. J. R.;Rupprecht, J. K.; McLaughlin, J. L. Pestic.Biochem.Physiol.1993, 45, 15-23.
70. Morre, D. J.; Decabo, R.; Farley, C.; Oberlies, N. H.;McLaughlin, J. L. Life Sci. 1994, 56, 343-348.
71. Weiss, H.; Friedrich, T.; Hofhaus, G.; Preis, D. Eur. J.Biochem. 1991, 197, 563-576.
72. Horton, D.; Roski, J. P.; Norris, P. J. Org. Chem. 1996,61, 3783-3793.
73.gnhbm,n,. .
74. Reddy, P. P.; Yen, K. F.; Uang, B. J. J. Org. Chem. 2002, 67, 1034-1035.
75. David A. Evans, Steven L. Bender,' and Joel Morris J. Am. Chem. SOC. 1988, 110, 2506-2526; Speziale,V.;Roussel, J.;Lattes,A.J.Heterocycl.Chem.1974, 11, 771;Vincens, M.; Dumont, C.;Vidal, M.Can.J.Chem.,1979, 57, 2314; Garavelas,A; Mavropoulos,I.; Perlmutter,P.; Westman,G Tetrahedron Letters, 1995, 36, 463-466.
76. Mead, K.; Macdonald, T. T. J. Org. Chem. 1985, 50, 422-424.
77.a)Sullivan, G.R.;Dale, J.A.;Mosher, H.S.J.Org.Chem.1973, 38, 2143.b)Dale,J.A.;

Dull, L.;Mosher, H.S.J.Org.Chem.1969, 34, 2543.
78. (a) Wittmann, S.; Schoenecker, B. J. Prakt. Chem./Chem.-Ztg. 1996, 338, 759-762; (b)

Brown, H. C.; Krishnamurthy, S. Tetrahedron 1979, 35, 567-607.
79. Freeman, F.; Robarge, K. D. Carbohydr. Res. 1986, 154, 270-274.
80. Koert, U.; Wagner, H.; Pidun, U. Chem. Ber. 1994, 127, 1447-1457.
(81) Arndt, S.; Emde, U.; Baurle, S.; Friedrich, T.; Grubert, L.; Koert,U. Chem. Eur. J. 2001, 7, 993-1005.

Publication

List of publication

1. 1.Synthetic Studies toward Tricyclic Cembranoids: A modular approach for the constrouction of the tricyclic frame work of Eunicin": Gurjar, M. K.; Nayak, S; Ramana C.V. Tetrahedron Letters 2005,46, 1881-1884.
2. 2.Double intramolecular oxymercuration: the first stereoslective synthesis of C10C34 segment of Asimitrin: Mohapatra D. K.; Nayak S.: Mohapatra S.; Chorghade M.S. and Gurjar M. K Tetrahedron Letter 2007, 48, 5197-5200.
3. 3.Stereoselective synthesis of C-28 to C-33 Fragment of Palau'amide: Nayak, S. ; Mohapatra D. K. Tetrahedron Letter 2007(In press)
4. 4. Synthetic studies towards Salzmanolin Gurjar, M.K.; Nayak S.; Mohapatra, S .; Mohapatra, D. K. (to be Comunicated).
1. one-pot synthesis of unsymmetrical bis-THF ring of nonclassical acetogenins employing intramolecular oxymercuration Gurjar, M.K.; Nayak S.; Mohapatra, S .; Mohapatra, D. K. (to be Comunicated).
2. Synthetic studies towards Palau’amide: Gurjar, M.K.; Nayak S.; Maity, P.; Mohapatra D. K :Tetrahedron 2007(communicated)

[^0]: ${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad \delta 7.31-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.91(\mathrm{~m}, 1 \mathrm{H}), 5.35-5.09(\mathrm{~m}, 2 \mathrm{H})$, $4.62(\mathrm{ABq}, J=11.4,19.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.46$ (br s, 1H), $4.01(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 1.99-$ $1.90(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.36(\mathrm{~m}, 3 \mathrm{H})$, $1.25(\mathrm{~s}, 16 \mathrm{H}), 0.88(\mathrm{t}, J=6.06 \mathrm{~Hz}, 3 \mathrm{H})$
 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

 Elemental Analysis 140.7, 138.9, 128.2, 127.8, 127.4, 114.1, 82.4, 82.0, 82.3, 73.1, 71.3, 69.3., 39.8, 31.6, 29.5, 29.3, 28.3, 26.8, 25.6, 22.6, 14.1

 Calcd: C, 75.00; H, 10.18
 Found: C, 75.18; H, 10.24

