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ABSTRACT 

 

During the past decade, factors such as global competition, stringent 

environment protection laws, emphasis on high and consistent product quality and 

greater product variation have created a challenging environment for process 

manufacturing. Some of these challenges include fast technical innovation, 

demand for reduction of design and production of lead times, etc. To this end, in 

recent years, modeling, simulation and optimization of chemical processes have 

been employed rigorously both in academia and industry. Conventionally, 

modeling is conducted using phenomenological approach. This method works 

very well for processes wherein underlying phenomena are fully understood and 

measurements thereof are available. Such an approach however can fail miserably 

for those processes in which the complex nonlinear interactions of different 

competing mechanisms make it impossible to build even a rudimentary model. 

Thus, for instance, in microbial fermentations, it is impossible to measure the 

intracellular variables accurately and hence phenomenological descriptions may 

fail to capture the underlying features over the ranges of governing parameters. 

The above discussion highlights the need for a paradigm shift in the approach to 

modeling of chemical processes.  

To address the issue alluded to above, in the present thesis, artificial 

intelligence and machine learning formalisms are adopted and suitably tailored to 

build data-driven models that are employed successfully for tasks such as steady 

state and dynamic modeling, process identification, fault detection diagnosis and 

dimensionality reduction. This thesis is structured as follows.   

 Chapter 1 provides a brief overview of various artificial intelligence (AI) 

and machine learning (ML) formalisms, viz. neural networks, expert systems, 

fuzzy logic, tabu search and evolutionary algorithms such as genetic algorithms, 

memetic algorithms and genetic programming. The application domain of these 

formalisms has also been clearly spelt out. 

The second chapter described in detail the AI and ML based algorithms 

used in the thesis along with the pertinent literature survey. Depending upon their 

applications, these are classified into four categories namely modeling, 



(xvi) 

classification, optimization and data reduction/projection formalisms. A number 

of formalisms covered under modeling category are error back propagation neural 

networks, resilient-back propagation neural network, general regression neural 

network, radial basis function neural network, support vector regression and 

genetic programming. The formalisms covered under classification are K-means 

clustering and self-organizing maps. The formalisms detailed under optimization 

are simultaneous perturbation stochastic approximation, tabu search, genetic 

algorithms and memetic algorithms. Finally, the formalisms considered for 

dimensionality reduction and data projection are principle component analysis, 

curvilinear component analysis, auto associative neural networks, locally linear 

embedding, Sammons mapping and artificial neural network-based Sammon’s 

mapping and fuzzy curves and surfaces. 

The third chapter provides details of a number of AI and ML based 

modeling studies. In the first study, ANN based softsensors are developed for 

monitoring the polyethylene manufacturing process. A recently proposed 

algorithm of noise superimposition based data enlargement has been shown to be 

useful in accurately predicting the magnitudes of process variables. In the next 

study, the same algorithm has been used for a chemical process to demonstrate the 

algorithm’s effectiveness in a number of systems. Next, an ANN based model is 

constructed for the improved evaluation of Indian coals. Also, SVR models are 

proposed as softsensors for the prediction of biochemical batch process variables. 

In the subsequent section, SVR is once again employed for the identification of 

the biochemical treatment of polluted waste water process. In the last section of 

chapter 2, a novel AI-based formalism, namely genetic programming, has been 

used for the prediction of selectivity and yield of a cumene production process. 

Specifically, a modified GP algorithm augmented with local search is used in this 

study. 

Chapter 4 focuses on the classification/clustering studies. It deals with the 

cluster analysis of a number of process faults that can occur in batch fermentation 

processes namely, protein synthesis and citric acid production. Also demonstrated 

is an application of an artificial intelligence based clustering method, namely, self-

organizing map (SOM) for the classification of biochemical batch process data. 

The said study aims at exploring the efficacy of SOM for classification 
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applications involving nonlinear projection of a high dimensional input space onto 

a low, i.e. two dimensional (2-D) projected space to diagnose faulty batches. Here, 

a case study involving the biosynthesis of protein has been conducted to illustrate 

SOM’s efficacy in process monitoring and fault detection and diagnosis 

applications. 

The fifth chapter deals with process optimization studies. An artificial 

neural network based process model is developed first from the process data of 

protein synthesis and citric acid production. The input space of this ANN model 

representing process operating variables is then optimized using the memetic 

algorithm formalism with a view of simultaneously optimizing multiple process 

output variables and thereby improving the process performance. Also, the results 

of the memetic algorithm-based optimization have been compared with those 

obtained in an earlier study using the genetic algorithm formalism. 

Chapter 6 comprises case studies demonstrating the effectiveness of AI-

based novel algorithms for low-dimensional projection of process data, feature 

extraction and dimensionality reduction. In the first section of the chapter, a 

recently proposed neural network based Sammon’s mapping is utilized for the 

dimensionality reduction of glass data and fault detection and diagnosis of a 

continuous stirred tank reactor (CSTR). In the second section, locally linear 

embedding formalism is demonstrated for the fault detection and diagnosis of the 

invertase production process. Further, curvilinear component analysis method is 

utilized for the fault detection and diagnosis of a CSTR and invertase production 

process. In the last study of this chapter, fuzzy curves and surfaces approach is 

used for the selection of important model inputs of heat exchanger and pH control 

processes. 

Finally, the seventh chapter of this thesis provides a summary of important 

results and conclusions drawn from the case studies performed in chapters 3 to 6. 

Also, this chapter highlights the guidelines on the deployment of AI-based 

formalisms. 



 18

CHAPTER 1.  INTRODUCTION TO ARTIFICIAL 
INTELLIGENCE AND MACHINE LEARNING 

FORMALISMS 

 

 

 

CHAPTER 1 
 
 

INTRODUCTION TO ARTIFICIAL 
INTELLIGENCE AND MACHINE 

LEARNING FORMALISMS 



 19

 
1.1 WHAT IS ARTIFICIAL INTELLIGENCE AND MACHINE 

LEARNING? 

Artificial intelligence (AI) is a branch of computational science, which 

develops mathematical algorithms mimicking various kinds of intelligent 

behaviour exhibited by biologically evolving species, with the aim of providing 

novel and efficient solutions to complex modeling, classification and optimization 

problems. However, the AI does not have to confine itself to methods that are 

observed only in the nature. Accordingly, machine learning algorithms are also 

considered to be part of the AI. The intelligent behaviour exhibited by biologically 

evolving species involves perception, reasoning, learning, communication, 

decision making and acting in complex environments.  

 AI has been one of the most controversial domains of inquiry in computer 

science since it was first proposed in the 1950s. Defined as the part of computer 

science concerned with designing systems that exhibit the characteristics 

associated with human intelligence, the field has attracted researchers owing to its 

ambitious goals and enormous underlying intellectual challenges [National 

Research Council (NRC), 1999]. The ultimate aim of AI is to make computer 

programs that are capable of solving real-world problems and achieving goals as 

done by humans – the pursuit of so called ‘strong AI’. This goal has caught the 

attention of the media, but by no means do all AI researchers view strong AI as 

worth investigating; an excessive optimism in the 1950s and 1960s concerning 

strong AI has given way to an appreciation of the extreme difficulty of the 

problem [Copeland, 2000]. To date, progress in this direction has been meagre. 

Because 50 years of failure eventually starts affecting funding, the AI field has 

diversified and experts have established themselves in other areas where they can 

be said to have had some success. These new areas are less concerned with the 

business of making computers “think”, focusing instead on what can be referred to 

as ‘weak AI’ – the development of practical technology for modeling aspects of 

human behaviour [Goodwins, 2001]. In this way, AI research has produced an 

extensive body of principles, representations, and algorithms. Today, successful 
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AI applications range from custom-built expert systems to mass-produced 

software and consumer electronics.  

The number of applications for weak AI is growing. AI-related patents in 

the US increased from 100 to 1700 between 1989 and 1999, with a total of 3900 

patents mentioning AI related terms. AI systems are generally embedded within 

larger systems – applications can be found in video games, speech recognition, 

and in the commercial ‘data mining’ sector. Full speech recognition, leading to 

voice-led internet access or recognition in security applications, is anticipated 

relatively soon. However, the ability to extract meaning from the natural language 

recognition still remains way off. The data mining market uses software to extract 

general regularities from online data, dealing in particular with large volumes or 

patterns humans may not look for or incapable of their capture. Such systems 

could be used to predict consumer preferences or extract trends from market data 

such as patents and news articles. Sales already have reached US$3.5 billion and 

were anticipated to be US$8.8 billion in 2004. Weak AI is already behind systems 

that detect ‘deviant’ behaviour in credit card use, which has lead to improved 

credit card fraud detection. Potential applications of these techniques to state-

security situations are likely to be controversial [Arnall, 2003].  
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The architecture of a typical AI agent is shown in Figure 1.1. This agent 

perceives and models its environment and computes appropriate actions perhaps 

by anticipating their effects. Changes made to any of the components shown in 

Figure 1.1 might count as “learning”. Different learning mechanisms may be 

employed depending on which subsystem is being changed. 

As a broad subfield of AI, machine learning (ML) is concerned with the 

development of algorithms and techniques, which allow computers to “learn”. 

Learning, like intelligence, covers such a broad range of processes that it is 

difficult to define precisely. A dictionary definition includes phrases such as “to 

gain knowledge or understanding of or skill in, by study, instruction or experience 

and modification of a behavioural tendency by experience.” Zoologists and 

psychologists study learning in animals and humans. In this thesis, we focus on 

learning in machines, specifically computing machines that learn relationships in a 

given data set using AI-based algorithm; the knowledge gained via learning is 

subsequently utilized to solve real-world problems such as process modelling, 

classification and optimization. There are several parallels between animal and 

machine learning. Certainly, many techniques in machine learning derive from the 

efforts of psychologists to make more precise their theories of animal and human 

learning through computational models. It seems likely also that the concepts and 

techniques being explored by researchers in machine learning may illuminate 

certain aspects of biological learning. 

In ML, a machine learns whenever it changes its structure, program or data 

based on its inputs or in response to external information in such a manner that its 

expected future performance improves. Some of these changes, such as the 

addition of a record to a data base, fall comfortably within the province of other 

disciplines and are not necessarily better understood for being called learning. 

But, for instance, when the performance of a speech recognition machine 

improves after hearing several samples of a person’s speech, we feel quite 

justified saying that the machine has “learned”. Machine learning usually refers to 

the changes in systems that perform tasks associated with AI. Such tasks involve 

recognition, diagnosis, planning, process control, prediction, etc. The changes 

might be either enhancements to already performing systems or synthesis of new 

systems. 
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Table 1.1: Well-known artificial intelligence based algorithms and there applications [Tambe et al, 1996] 

AI Areas AI Formalism Applications References 

Perceptron Speech and image processing, pattern recognition Rosenblatt [1958, 
1962] 

Multilayer 
perceptron 

Function approximation, signal processing, signal 
filtering, data compression and reduction, time series 
modeling, noise reduction, pattern recognition and 
classification, image and speech processing, process 
control 

Rumelhart et al. 
[1986a, b], Werbos 
[1974], Parkar [1985], 
Le Cun [1985] 

Radial basis 
function neural 
networks 

Function approximation, process control, process 
modeling, pattern recognition and classification. 

Moody and Darken 
[1989] 

Kohonen self-
organizing map 

Data compression, clustering, classification and 
mapping. 

Kohonen [1988, 1989] 

Counterpropogation 
network 

Function approximation, lookup table, statistical 
analysis, pattern recognition and classification. 

Hecht-Nielsen [1987, 
1988] 

SAMANN Dimensionality reduction, data projection, classification Mao and Jain [1995] 

Artificial 
neural 
networks 

Auto-associative 
neural network 

Dimensionality reduction, data projection Kramer, 1991, 1992; 
Leonard and Kramer, 
1993; Kuespert and 
McAvoy, 1994 
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AI Areas AI Formalism Applications References 

Genetic algorithms Process optimization and modeling Davis [1991], 

 Goldburg[1989] 

Genetic 
programming 

Function approximation, process modeling, pattern 
recognition 

Koza[1992] 

Evolutionary 
methods 

Tabu search Process optimization Glover [1989, 1990] 

Nero-fuzzy 
networks 

Modeling and pattern recognition, classification, rule 
extraction 

Zhang [1997], Conde 
[2000] 

Fuzzy logic 

Fuzzy curves and 
surfaces 

Input selection, data mining, dimensionality reduction Lin et al., [1996, 1998] 

Support vector 
machines 

Support vector 
classification and 
regression 

Classification, pattern recognition, function 
approximation, process modeling and control. 
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1.2 VARIOUS AI FORMALISMS 

In the quest to create intelligent machines, the field of Artificial 

Intelligence has split into several different approaches based on the most 

promising theories, methods and applications. These rivalling theories have lead 

researchers to one of two basic approaches; bottom-up and top-down. Bottom-up 

theorists believe the best way to achieve artificial intelligence is to build electronic 

replicas of the human brain's complex network of neurons, while the top-down 

approach attempts to mimic the brain's behaviour with computer programs. This 

thesis focuses on the top-down approach. Ever since the path-breaking publication 

of the error-back-propagation algorithm to train multi-layer perceptron neural 

networks [Rumelhart et al., 1989] the field of AI has witnessed an explosive 

growth in related theories and applications. There is hardly any scientific and 

technology field wherein AI has not found applications. Accordingly, this thesis is 

concerned with the applications of AI to chemical engineering and technology 

processes. The major AI paradigms and their applications are listed in Table 1.1. 

In what follows an overview of major AI formalisms is provided. 

 

1.2.1 Artificial Neural Networks 

Artificial neural networks (ANNs) is an information-processing paradigm 

founded on the mechanisms followed by the highly interconnected cellular 

structure of the human brain. The human brain is made up of a network of billions 

of cells called neurons, and understanding its complexities is seen as one of the 

last frontiers in scientific research. It is the aim of AI researchers who prefer the 

bottom-up approach to construct electronic circuits that act similar to neurons in 

the human brain. Although much of the working of the brain remains unknown, 

the complex network of neurons is what gives humans intelligent characteristics. 

By itself, a neuron is not intelligent, but when grouped together, neurons are able 

to pass electrical signals through networks. Research has shown that a signal 

received by a neuron travels through the dendrite region, and down the axon (see 

Figure 1.2). Separating nerve cells is a gap called the synapse. In order for the 

signal to be transferred to the next neuron, the signal must be converted from 
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electrical to chemical energy. The signal can then be received by the next neuron 

and processed.  

 

 

 

 

 

 

 

 

Figure 1.2:  A biological neuron 

In modern software implementations of ANNs the approach inspired by 

biology has more or less been abandoned for a more practical approach based on 

statistics and signal processing. In some of these systems neural networks or parts 

of neural networks (such as “artificial” neurons) are used as components in larger 

systems that combine both adaptive and non-adaptive elements. While the more 

general approach of such adaptive systems is more suitable for real-world problem 

solving, it has far less to do with the traditional artificial intelligence connectionist 

models. What they do however have in common is the principle of non-linear, 

distributed, parallel and local processing and adaptation. The various types of 

ANNs and their applications are tabulated in Table 1.1. 

 

1.2.2 Evolutionary Algorithms 

In artificial intelligence, an evolutionary algorithm (EA) is a subset of 

evolutionary computation, a generic population-based metaheuristic optimization 

algorithm. An EA uses some mechanisms inspired by the biological evolution 

namely reproduction, mutation, recombination, natural selection and survival of 

the fittest. Candidate solutions to the optimization problem play the role of 

individuals in a population, and the cost function determines the environment 

Synapse 
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within which the solutions "live". Evolution of the population then takes place 

after the repeated application of the above operators (See Figure 1.3). 

Evolutionary algorithms became widely recognized as search and optimization 

methods as a result of the work of Ingo Rechenberg in the 1960s and early 1970s - 

his group was able to solve complex engineering problems through evolution 

strategies (1971 PhD thesis and the resulting 1973 book) [Rechenberg, 1971]. 

Also highly influential was the work of John Holland in the early 1970s, and 

particularly his 1975 book [Holland, 1975]. 

EAs are often viewed as a global optimization method although 

convergence to a global optimum is only guaranteed in a weak probabilistic sense. 

However, one of the strengths of EAs is that they perform well on "noisy" 

functions where there may be multiple local optima. EAs tend not to get "stuck" in 

local minima and can often find globally optimal solutions. EAs are well suited 

for a wide range of combinatorial and continuous problems, though their 

variations are tailored towards specific domains. In the following, a brief 

overview of a few important evolutionary algorithms is provided. 

 

 

Figure 1.3: Schematic of Evolutionary Algorithms 
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A. Genetic algorithms 

A genetic algorithm (GA) [Holland, 1975; Goldberg, 1989] is a stochastic 

search and optimization technique used in computing the true or approximate 

solutions to function maximization/minimization problems. The term “stochastic” 

indicates a random element in their implementation procedure. Genetic algorithms 

are categorized as global search heuristics. They are a particular class of 

evolutionary algorithms that use techniques inspired by evolutionary biology such 

as inheritance, mutation, selection, and crossover (also called “recombination”). 

Genetic algorithms are implemented as a computer simulation in which a 

population of abstract representations (called chromosomes or the genotype or the 

genome) of candidate solutions (called individuals, creatures, or phenotypes) to an 

optimization problem are created. Thereafter, GA, while performing simplified 

genetic operations, evolves toward better solutions. Traditionally, solutions are 

represented in binary as strings of “0s” (zeros) and “1s” (ones), but other 

encodings are also possible. The evolution usually starts from a population of 

randomly generated individuals and proceeds over a number of generations. In 

each generation, the fitness of every individual in the population is evaluated, 

multiple individuals are selected stochastically from the current population (based 

on their fitness), and modified (recombined and possibly mutated) to form a new 

population of candidate solutions. The new population is then acted upon similarly 

in the next iteration of the algorithm. Commonly, the algorithm terminates when 

either a maximum number of generations has been evolved, or a satisfactory 

fitness level has been reached for the population. If the algorithm has terminated 

due to a maximum number of generations, a satisfactory solution may or may not 

have been reached. 

 

B. Genetic programming 

Genetic programming (GP) is an evolutionary algorithm based 

methodology inspired by the biological evolution to search and develop computer 

programs performing a user-defined task. Thus it is a technique used to optimize a 

population of computer programs according to a fitness landscape determined by 

the program's ability to perform a given computational task. The GP has roots in 



 28

the evolutionary algorithms first utilized by Nils Barricelli in 1954. Stephen Smith 

[1980] and Nichael Cramer [1985] reported the first results on the GP 

methodology. In 1981 Forsyth reported the evolution of small programs in 

forensic science for the UK police. John Koza is the principal proponent of the 

modern day GP and has pioneered the application of genetic programming in 

various complex optimization and search problems. 

GP is a computationally intensive procedure and therefore in the 1990s it 

was mainly used to solve relatively simple problems. However, more recently, 

thanks to improvements in the GP technology and to the exponential growth in the 

CPU power, GP produced many novel and outstanding results in areas such as 

quantum computing, electronic design, game playing, sorting, searching and many 

more. These results include the replication or development of several post-year-

2000 inventions. GP has also been applied to evolvable hardware as well as 

computer programs. There are several GP patents listed in the web site 

[http://www.genetic-programming.com/patents.html]. In recent years, the GP has 

been utilized in performing “symbolic regression”. Given input-output data for a 

model, the GP can search and optimize the functional form and its parameters 

automatically to arrive at a best fitting linear/nonlinear data fitting function. In the 

present thesis, the said symbolic regression characteristic of the GP has been 

explored for process modeling. 

 

C. Ant colony optimization 

The ant colony optimization algorithm (ACO), introduced by Marco 

Dorigo [Dorigo et al., 1996, 1999], is a probabilistic technique for solving 

computational problems that can be reduced to searching good paths through 

graphs. The algorithm is inspired by the behaviour of ants in finding paths from 

the colony to food. 

In the real world, ants (initially) wander randomly, and upon finding a 

food source return to their colony while laying down pheromone trails. If other 

ants find such a path, they are likely not to keep travelling at random, but instead 

to follow the trail, returning and reinforcing it if they eventually find food. Over 

time, however, the pheromone trail starts to evaporate, thus reducing its attractive 
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strength. The more time it takes for an ant to travel down the path and back again, 

the pheromones have more time to evaporate. A short path, by comparison, gets 

marched over faster, and thus the pheromone concentration remains high as it is 

laid on the path as fast as it can evaporate. Pheromone evaporation has also the 

advantage of avoiding the convergence to a locally optimal solution. If there was 

no evaporation at all, the paths chosen by the first ants would tend to be 

excessively attractive to the following ones. In that case, the exploration of the 

solution space would be constrained. Thus, when one ant finds a good (short, in 

other words) path from the colony to a food source, other ants are more likely to 

follow that path, and positive feedback eventually leaves all the ants following a 

single “short” path. The idea of the ant colony algorithm is to mimic this 

behaviour with "simulated ants" walking around the graph representing the 

optimization problem needing a solution.  

Ant colony optimization algorithms have been used to produce near-

optimal solutions to the Travelling Salesman Problem [Dorigo and Gambardella, 

1997]. They have an advantage over simulated annealing and genetic algorithm 

approaches when the graph may change dynamically; the ant colony algorithm 

can be run continuously and adapt to changes in real time.  

 

1.2.3 Tabu Search 

Tabu search [Glover, 1989 and 1990] is a mathematical optimization 

method, belonging to the class of local search techniques. Tabu search enhances 

the performance of a local search method by using memory structures. Tabu 

search method generally attributed to Fred Glover [Glover, 1989, 1990] uses a 

local or neighbourhood search procedure to iteratively move from a solution x to a 

solution x' in the neighbourhood of x, until some stopping criterion has been 

satisfied. To explore regions of the search space that would be left unexplored by 

the local search procedure and—by doing this—escape local optimality, tabu 

search modifies the neighbourhood structure of each solution as the search 

progresses. The solutions admitted to N*(x), the new neighbourhood, are 

determined through the use of special memory structures. The search now 

progresses by iteratively moving from a solution x to a solution x' in N*(x). 
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Perhaps the most important type of short-term memory to determine the 

solutions in N*(x)–also the one that gives its name to tabu search–is the use of a 

“tabu list”. In its simplest form, a tabu list contains the solutions that have been 

visited in the recent past (less than n moves ago, where n is the tabu tenure). 

Solutions in the tabu list are excluded from N*(x). Selected attributes in solutions 

recently visited are labelled tabu-active. Solutions that contain tabu-active 

elements are taboo. This type of short-term memory is also called “recency-based 

memory”. 

Tabu lists containing attributes are much more effective, although they 

raise a new problem. When a single attribute is forbidden as tabu, typically more 

than one solution ends up being taboo. Some of these solutions that must now be 

avoided might be of excellent quality and might not have been visited. To 

overcome this problem, aspiration criteria are introduced which allow overriding 

the tabu state of a solution to include it in the allowed set. A commonly used 

aspiration criterion is to allow solutions that are better than the currently best 

known solution. 

 

1.2.4 Expert Systems 

An expert system, also known as a “knowledge based system”, is a 

computer program that contains a part of the subject-specific knowledge, and 

knowledge and analytical skills of one or more domain experts in that subject. 

This class of program was first developed by researchers in artificial intelligence 

during the 1960s and 1970s and applied commercially throughout the 1980s. The 

most common form of expert systems is a program made up of a set of rules that 

analyze information (usually supplied by the user of the system) about a specific 

class of problems, as well as providing mathematical analysis of the problem(s), 

and, depending upon their design, recommend a course of user action in order to 

implement appropriate corrections. It is a system that utilizes what appear to be 

reasoning capabilities to reach conclusions. 

Expert systems are most valuable to organizations that have a high-level of 

know-how experience and expertise that cannot be easily transferred to other 

members. They are designed to carry the intelligence and information found in the 
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intellect of domain experts and provide this knowledge to other members of the 

organization for problem-solving purposes. 

Table 1.2: Examples of expert systems in chemical engineering and technology 

No. Expert systems Application details 

1 FALCON Fault Analyzer Consultant for Chemical 
plant, Du Pont 

2 CATDEX Catalytic Cracking Unit Diagnostic Expert, 
Columbia University 

3 BIOEXPERT Fault diagnosis extert system for waste-
water treatment, Lepoint et al., 1989 

4 EXACT Expert for Adaptive PID Controller 
Tuning, Foxboro 

5 ASPEN PLUS, DESIGN II, 
PRO II 

 Computer aided process design 

6 EXSEP Multi-component separation design 

7 HENS, HEATEX Heat Exchanger Network Synthesis 

8 CONPHYDE Consultant for physical property decision, 
Carnegie-Mellon 

9 BATCHKIT Batch process planning 

10 MIN-CYANIDE System for minimizing cyanide wastes in 
electroplating plants 

11 CAPS System for plastics selection for the final 
product  

12 PASS Pump Application Selection System 

13 DECADE Design Expert for Catalyst Development, 
Carnegie Mellon Univ. 

 

Typically, the problems to be solved by an expert system are of the type 

that would normally be tackled by a professional. Real experts in the problem 

domain (which will typically be very narrow, for instance, "selection of a pump") 

are asked to provide "rules of thumb" on how they evaluate the problems, either 

explicitly with the aid of experienced systems developers, or sometimes 
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implicitly, by getting such experts to evaluate test cases and using computer 

programs to examine the test data. Generally, expert systems are used for 

problems for which there is no single "correct" solution, which can be encoded, in 

a conventional algorithm — one would not write an expert system to find shortest 

paths through graphs, or sort data, as there are simply easier ways to do these 

tasks. A list of notable expert systems in the area of process systems engineering 

and control is given in Table 1.2. 

 

1.2.5 Fuzzy Logic 

Fuzzy logic [Zadeh, 1965] is derived from the fuzzy set theory dealing 

with the reasoning that is approximate rather than precisely deduced from the 

classical predicate logic. It can be thought of as the application side of the fuzzy 

set theory with well-thought out real world expert values for a complex problem 

[Klir, 1997]. 

Degrees of truth are often confused with probabilities. However, they are 

conceptually distinct; fuzzy truth represents a membership in vaguely defined sets, 

not likelihood of some event or condition. To illustrate the difference, consider 

this scenario: Bob is in a house with two adjacent rooms, the kitchen and the 

dining room. In many cases, Bob's status within the set of things "in the kitchen" 

is completely plain; he is either "in the kitchen" or "not in the kitchen". What 

about when Bob stands in the doorway? He may be considered "partially in the 

kitchen". Quantifying this partial state yields “fuzzy set membership”. With only 

his big toe in the dining room, we might say Bob is 99% "in the kitchen" and 1% 

"in the dining room", for instance. No event (like a coin toss) will resolve Bob to 

being completely "in the kitchen" or "not in the kitchen", as long as he is standing 

in that doorway. Fuzzy sets are based on vague definitions of sets, not 

randomness. 

Fuzzy logic allows for set membership values to range (inclusively) 

between 0 and 1, and in its linguistic form represents, imprecise concepts like 

"slightly", "quite" and "very". Specifically, it allows partial membership in a set.  

A typical fuzzy logic system is shown in Figure 1.4. 
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Figure 1.4: Schematic of fuzzy logic systems 

 

1.3 THESIS OUTLINE 

The aim of this thesis is design and develop applications of AI and ML 

based formalisms for chemical and biochemical engineering/technology systems. 

The second chapter of this thesis contains a detailed overview along with the 

corresponding literature survey of the major AI and ML based formalisms used in 

the thesis. Depending upon their applications, the formalisms are classified into 

four categories namely modeling, classification, optimization and data 

reduction/projection. The third chapter details various AI and ML based process 

modeling studies. Chapter 4 describes applications of the clustering/classification 

formalisms and chapter 5 deals with various process optimization studies. Chapter 

6 reports case studies demonstrating the effectiveness of the AI-based novel 

algorithms for low-dimensional projection, feature extraction, dimensionality 

reduction and input selection of process data. Finally, chapter 7 provides the 

concluding remarks on the work presented in the thesis.  
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2.1 BACKGROUND 

The past decade has created a challenging environment for process 

manufacturing. Some of these challenges include rapid technological innovations, 

stiff competition, complex process designs, huge capital investment, stringent 

product quality specifications, large product volumes, tight delivery schedules and 

stiff environmental regulations. To overcome these challenges, in recent years, 

process modeling, monitoring, control, fault detection and diagnosis, simulation 

and optimization are being increasingly and extensively employed in chemical 

engineering and technology. Accordingly, researchers in these fields are 

constantly striving to develop new and efficient methodologies to perform the 

stated tasks. The most striking outcome of these efforts is utilization of artificial 

intelligence and machine learning formalisms as an alternative to the conventional 

phenomenological and empirical modeling and optimization strategies.  

Artificial intelligence (AI) is a branch of computational science, which 

develops algorithms mimicking various kinds of intelligent behavior exhibited by 

biologically evolving species, to provide novel and efficient solutions to complex 

modeling, classification and optimization problems. As a broad subfield of AI, 

machine learning (ML) is concerned with the development of algorithms and 

techniques, which allow computers to “learn” relationships in a given data set. 

Unlike AI, the ML algorithms are not based on the intelligent behaviour observed 

in nature but they are based on rigorous mathematical and statistical foundations. 

Both AI and ML-based modeling and classification formalisms are exclusively 

data-driven and aim at learning (capturing) linear/nonlinear correlations and 

trends/patterns in available data sets.  

The AI and ML formalisms possess a number of attractive properties vis a 

vis conventional modeling and optimization strategies and therefore this thesis 

aims at developing AI and ML-based applications for a variety of process 

engineering tasks such as steady-state and dynamic modeling, soft-sensor 

development, fault detection and diagnosis, data reduction/projection, process 

monitoring, clustering/classification and optimization. The specific AI and ML 

formalisms developed, utilized and further improvised in the thesis are artificial 
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neural networks, genetic programming, fuzzy logic, genetic algorithms, tabu 

search, memetic algorithms, Sammon’s mapping based neural network, auto-

associative neural networks, self organizing maps, etc. 

 

2.2 MODELING FORMALISMS 

In a number of real world chemical processes, phenomenological models 

are either unavailable or difficult to construct. This happens since the physico-

chemical phenomena underlying a chemical process is usually not fully 

understood. Also, obtaining the kinetic, thermodynamic and heat and mass 

transfer information that is needed to construct a phenomenological process model 

is a cumbersome, time consuming and expensive task. Notwithstanding these 

difficulties, models are necessary for predicting the process performance under 

varying operating conditions and also in improving the process efficiency. In the 

absence of phenomenological models, real-life process input-output data can be 

used to construct an empirical or a “black box” process model. These models, 

similar to the phenomenological ones may then be used for predicting the process 

performance and a variety of other tasks such as control, fault detection and 

diagnosis and process optimization. A significant advantage of the empirical or 

black box models vis-à-vis the phenomenological ones is that these can be 

developed relatively easily. Conventionally, linear or nonlinear regression 

methods are used in developing empirical models. A major drawback of these 

methods is that the mathematical structure (form) of the data-fitting model must 

be specified a priori before an estimation of model parameters could be 

attempted. This is a significant difficulty since most of the chemical processes 

exhibit nonlinear behaviour and therefore it is not known a priori which nonlinear 

model is appropriate for fitting the process data. Furthermore, for processes with 

multiple operating variables (inputs) and output variables (such as conversion, 

yield, etc.), it is necessary to select multiple nonlinear functions for fitting the 

process data which becomes even more tedious and in most cases an impossible 

task. How AI and ML based formalisms overcome these difficulties is described 

in the following sections. 
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2.2.1 Artificial Neural Networks  

Artificial neural networks (ANNs) are an artificial intelligence based 

information-processing paradigm founded on the mechanisms followed by the 

highly interconnected neuronal structure of the human brain. The ANNs mimic 

some of the observed properties, such as the pattern recognition (classification) 

possessed by the human brain. These mathematical models also exhibit a 

similarity with the “learning-by-experience” principle followed by the biological 

species. The ANNs are based on the concept that a highly interconnected system 

of simple processing elements (also called “nodes”) can learn (model) complex 

nonlinear interrelationships existing between independent and dependant variables 

of a data set [Freeman et al., 1991; Bishop, 1994; Bulsari, 1995; Tambe et al., 

1996; Nandi et al., 2002]. Neural networks have attracted much interest lately for 

their use as predictive models as well as for pattern recognition. They have been 

used successfully to model dynamic and nonlinear systems such as deterministic 

chaos [Lapedes and Farber, 1987; Ydstie, 1990; Levin, 1990], chaotic chemical 

systems [Admoaitis et al., 1989] and other chemical reactions [Bhat et al., 1990]. 

Neural networks have been used for system identification and control by a number 

of researchers [Donat et al., 1990; Hemandez and Arkun, 1990; Narendra and 

Parthasarathy, 1990; Psichogios and Ungar, 1991; Haesloop and Holt, 1990; 

Willis et al., 1991] as also for process fault diagnosis by Hoskins and Himmelblau 

[1988], Watanabe et al. [1989], Venkatasubramanian et al. [1990] among others. 

ANNs owing to there architecture are well-suited for parallel competition and thus 

they allow a speedier solution to a large-dimensional modeling and prediction 

problem. They also have a powerful representational capability. Cybenko [1989] 

has shown that given enough nodes in the hidden layer, the multi-layer perceptron 

network with a single hidden layer is sufficient to approximate any function. The 

radial basis function network (RBFN) has also been shown to have a similar 

capability to represent arbitrary functions [Park and Sandberg, 1991].  

The function approximated by an ANN is defined by many factors, for 

example by the number and arrangement of neurons, their interconnections, etc. 

For developing a nonlinear model, a feed-forward ANN architecture namely 

“multilayer perceptron (MLP)” is most commonly used; the MLP is also known as 

“Back-propagation” neural network. The MLP network approximates nonlinear 
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input-output relationships as defined by, ( ) Nnf nn ...,2,,1 ,, == wxy , where x is 

an I-dimensional vector of inputs, y refers to an L-dimensional output vector and 

w is the vector defining network weights. The MLP network usually consists of 

three layers. The layers described as input, hidden, and output layers comprise I, J, 

and L number of processing nodes, respectively.  There may be more than one 

hidden layers in the ANN architecture, such as, Figure 2.1 depicting the MLP 

architecture with two hidden layers. Each node in the input (hidden) layer is 

linked to all the nodes in the hidden (output) layer using weighted connections. 

The MLP architecture also houses a bias node (with a fixed input, e.g., ±1) in its 

input and hidden layers; the bias nodes are also connected to all the nodes in the 

next layer. Usage of bias nodes helps the MLP-approximated function to be 

positioned anywhere in the M-dimensional input space; in their absence, the 

function is forced to pass through the origin of the I-dimensional space. The I 

number of nodes in the input layer is equal to the number of independent 

variables, whereas the number of output nodes (L) equals the number of process 

outputs. However, the number of hidden nodes is an adjustable parameter whose 

magnitude is determined by issues such as the desired approximation and 

generalization performance of the network model.  In order that the MLP network 

accurately approximates the nonlinear relationship existing between its inputs and 

outputs, it needs to be trained in a manner such that a pre-specified error function 

is minimized. In essence, the MLP training procedure aims at obtaining an optimal 

weight set w that minimizes a pre-specified error function. The commonly 

employed error function is the root-mean-squared error (RMSE) defined as: 

  
( )

LN

yy
RMSE

N

n

L

l
lnln

×

−
=

∑∑
= =1 1

,, ˆ
      (2.1) 

where N refers to the number of input-output data pairs available for training, lny ,  

and lny ,ˆ  are the desired (target) and MLP predicted values of the lth output node, 

respectively. The widely used formalism for the RMSE minimization is the error-

back-propagation (EBP) algorithm [Rumelhart et al., 1986] utilizing a gradient-

descent technique known as the generalized delta rule (GDR) for iterative 

updation of weights as given by.  
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where E refers to an error measure. This gradient-decent technique poses two 

major limitations on the use of activation function for the hidden and output layer 

neurons: 

1. First derivative of the activation function must be feasible. 

2. Activation function must be a bounded one. 

The functions satisfying these limitations are: 

1. Linear:   cmxy +=     (2.3) 

2. Step:   
⎩
⎨
⎧

≥
<

=
0if1
0if0
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y    (2.4) 

3. Logistic sigmoid:  xy −+
=

e1
1     (2.5) 

4. Hyperbolic tangent: ( ) xx

xx

ee
eexy −

−

+
−

== tanh   (2.6) 

5. Radial basis:  
σ2

xey
−

=     (2.7) 

The details of the heuristic procedure involved in obtaining an optimal 

network model possessing good prediction and generalization capabilities can be 

found in e.g., Freeman and Skapura [1991], Bishop [1994], Tambe et al. [1996] 

and Nandi et al. [2002]. The EBP training algorithm makes use of two adjustable 

(free) parameters namely, the learning rate, η (0 < η ≤ 1) and the momentum 

coefficient, α (0 < α ≤ 1). The magnitudes of both these parameters need to be 

optimized heuristically. 

 

The advantages of an MLP-based model are: 

(i) They are constructed exclusively from the data (example set) comprising 

independent (causal) and dependant (response) variables of a system. 

(ii) The detailed knowledge of the fundamental mechanisms underlying the 

system behaviour is unnecessary for the model development. 



 43

Input layer Hidden layer-1 Hidden layer-2 Output layer 

1 

l 

2 

1 

2

1 

2 

1 

i 

2 

I L 

NHJ NHK 

Bias-2 Bias-3 Bias-1 

x1 

x2 

xi 

xI 

Output Input Variables 

y1 

y2 

yl 

yL 

1 1 1 

(iii) An MLP model with properly fitted weight coefficients possesses the much 

desired “generalization” ability owing to which it can accurately predict 

outputs for a new set of inputs. 

(iv) Even multiple input-multiple output (MIMO) nonlinear relationships can be 

fitted simultaneously. 

(v) Since an MLP network uses a generic nonlinear function for fitting data, it is 

not necessary to pre-specify the form of the data-fitting function explicitly; 

this feature is greatly advantageous in modeling nonlinear systems where 

guessing an appropriate form of the nonlinear data fitting function is a 

cumbersome, difficult and time-consuming task. 

 

 

 

 

 

 

 

 

 

Figure 2.1: Architecture of Multilayer Perceptron Network Model 

 

The MLP-based models also possess a few drawbacks:  

(i) Fitting of weight coefficients of the network model is usually an ill-posed 

problem. 

(ii) Adjusting the weight coefficients of the model iteratively is a time 

consuming process. 
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(iii) MLP networks are known as ‘black-box’ models since the model 

coefficients can not be explained (interpreted) in terms of the data used for 

fitting the model. 

(iv) To build an MLP model with good prediction accuracy and generalization 

capability, it is necessary that the data should be statistically well-distributed 

and preferably large-sized as also free of noise and errors.  

 

To be useful, an MLP model must not only possess a good output 

prediction accuracy but also good generalization ability so that the model captures 

the underlying trends existing in the example input-output data. The phenomenon, 

which adversely affects the MLP model’s generalization performance is known as 

“overfitting”. It occurs when the network model, in an attempt to increase its 

prediction accuracy, also learns the noise in the example data (known as “over-

training”) and/or when the model architecture houses more hidden nodes than 

necessary (known as “over-parameterization”). An over-trained and/or over-

parameterized MLP model makes poor predictions for a new set of inputs. To 

prevent an occurrence of over-fitting, it is necessary to monitor the generalization 

performance of the MLP model continuously while it undergoes training (e.g., at 

the end of each training iteration). The step-wise procedure for avoiding an 

occurrence of over-fitting and thereby obtaining an optimal MLP model 

architecture and weight coefficients is given below [Nandi et al., 2004]. This 

procedure though meant for training a single hidden-layer MLP network, can be 

easily extended to two-hidden layer MLP networks. 

Step 1. Partition the available set of example data comprising model inputs and 

outputs into two sets, namely training and validation sets; the ratio for 

this partitioning could be 4:1 or 3:2. Assume a small number of nodes 

(e.g., one or two) in the network has hidden layer and initialize the 

network weights randomly. Select the values of the EBP algorithm 

parameters, namely, learning rate η (0 < η < 1.0) and momentum 

coefficient, µ (0 < µ < 1.0); fix the maximum number of iterations (tmax) 

over which the model is trained. 

Step 2. Adjust the network weights iteratively using the EBP algorithm and 

training set data over tmax number of iterations. The weights resulting in 
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the least RMSE for the validation set (Eval) are considered to be optimal 

for the chosen number of hidden nodes and the particular set of 

randomized weights used for the network initialization. Such weights 

could be obtained in any one of the tmax number of training iterations. 

Step 3. Repeat step 2, a number of times using a different random number 

sequence each time for initializing the network weights. This is 

performed for exploring the weight-space rigorously and locating the 

deepest minimum on the network’s error surface. Record the weights 

leading to the smallest Eval. 

Step 4. Repeat steps (2) and (3) by varying the number of hidden nodes 

systematically till Eval attains its smallest possible magnitude; the EBP 

parameters η and µ can also be optimized in a manner similar to the 

number of hidden nodes. 

 

There are a number of algorithms for the training of MLP neural networks, for 

example,  

• Error-back-propagation (EBP)    [Rumelhart et al., 1986] 

• Conjugate Gradient [Reifman et al., 1994] 

• Genetic Algorithms [Holland 1975; Goldberg, 1989] 

• Quickprop [Fahlman, 1988] 

• Resilient Back–propagation [Riedmiller et al., 1993] 

• Levenberg – Marquardt’s algorithm [Levenberg, 1944; Marquardt, 

1963] 

• Bayesien Learning [Neal, 1996] 

A few of these algorithms, which are relevant to the work presented in this 

thesis, are explained below. 

A. Error-back propagation 

The Error Back Propagation (EBP) [Rumelhart et al., 1986] is the most 

widely used algorithm for supervised training of a multilayer perceptron network. 

Owing to its extensive use in the training of MLP networks, the network itself is 

often referred to as an EBP or BP network. The EBP algorithm employees a 

special kind of error-correction strategy, which can be viewed as a generalization 



 46

of the “least-mean-squared (LMS)” error minimization technique. The LMS 

learning rule as proposed by Widrow and Hoff [1960] is targeted at single linearly 

processing unit, whereas the EBP algorithm trains the weights associated with the 

feed forward network comprising elements that perform nonlinear processing.  

An MLP network can be viewed as a set of algebraic equations arranged in 

an hierarchical order to form an input-output mapping. Changing the structure of 

the MLP is akin to changing the hierarchical order of algebraic equations and 

network training is another way of estimating the parameters of the complex 

input-output transformation carried out by network's activation and transfer 

functions. MLP network’s training begins by applying the I-dimensional input 

vector xn, to the input layer having I number of nodes. 

Since the input layer nodes just serve as distribution points and perform no 

information processing, their input becomes input to the hidden layer nodes. 

When an input vector xn is applied to the input layer, each hidden layer neuron 

computes the activation according to the weighted sum of its input as given by  

j

I

i
iijj θα += ∑

=1
.xw        (2.8) 

Where, αj represents the activation of first hidden layer neurons. The vector Wij 

denotes the weights of the connection between input layer nodes and jth hidden 

node and θj refers to the strength of the connection that the bias neuron makes 

with jth hidden node.  

The output of jth hidden unit is, 

( )jj f α1=x         (2.9) 

The output of kth hidden unit is,  

( )kk f α2=x         (2.10) 

The output of lth output layer unit is,  

( )ll f α3=y         (2.11) 

where, mf is known as the activation function. 
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An approach used for the adjustment of weights in the EBP algorithm is 

known as “generalized delta rule (GDR)”. The GDR approach for weight 

adaptation is based on the principle of minimizing an error function. Starting from 

an arbitrary point in the weight space the GDR adapts the network weights in the 

stepwise manner so that the error function, which measures the learning 

performance of an MLP network, is minimized. A commonly assumed error 

function is the “sum–of–squares” (see Eq. 2.12) of the individual errors over all 

the output layer units, and over the entire pattern in the training set. It is referred 

to as the cumulative sum-squared- error (SSE) by symbol E. 

( )∑∑
= =

−=
n

n

L

l
nlnl yyE

1 1

2ˆ
2
1        (2.12) 

The weight adaption rules for various layers are given below. 

 

1. Weight updation for output layer nodes 

( ) ( ) llklkl ytwtw ..1 δη+=+       (2.13) 

 

2. Weight updation in the first and second hidden layer nodes 

( ) ( ) kkjkjk xtwtw ηδ+=+1       (2.14) 

 

3. Weight updation for nodes in between 1st hidden and input layer 

( ) ( ) ijijij xtwtw ηδ+=+1       (2.15) 

 

4. For Output Layer bias node 

( ) ( ) lll tt ηδθθ +=+1        (2.16) 
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5. For 2nd hidden layer bias node 

( ) ( ) ktt ηδθθ +=+ kk 1        (2.17) 

 

6. For 1st hidden layer bias node 

( ) ( ) jtt ηδθθ +=+ jj 1        (2.18) 

The weight adaptation can be carried out either after each pattern-

application (pattern mode), or after all training patterns have been applied once to 

the network (batch mode). In the pattern mode, the error with respect to an 

individual input pattern, Ek, is minimized, while in the batch mode, the cumulative 

error, E, representing the sum of the pattern-wise errors, is minimized. In both the 

weight adaptation modes, the network training continues until the network outputs 

satisfy a certain pre-selected convergence criterion. 

B. Resilient-back propagation 

Gradient descent techniques are the most widely used class of algorithms 

for supervised learning in neural networks. Adaptive gradient based algorithms 

with variable step-sizes try to overcome the inherent difficulty of the choice of the 

right learning rates. This is done by controlling the weight update for every single 

connection during the learning process in order to minimize oscillations and to 

maximize the update step-size. The best of these techniques known in terms of 

convergence speed, accuracy and robustness with respect to its parameters is the 

“resilient backpropagation (Rprop)” algorithm [Riedmiller et al., 1993] also refer 

to Schimann et al., [1993]; Riedmiller,[1994]; Joost et al., [1998] for comparisons 

of Resilient-Back Propagation with other supervised learning techniques. 

Resilient-Back Propagation (Rprop) performs a direct adaptation of the 

weight step based on local gradient information. In crucial difference to the 

previously developed adaptation techniques, the efforts of adaptation are not 

blurred by the gradient behaviour. Individual update-value, ijΔ , which solely 

determines the size of the weight-update, is introduced. This adaptive update-

value evolves during the learning process based on its local sight on the error 
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function E (see Eq. 2.12) according to the following learning rule [Riedmiller et 

al., 1993]. 
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Verbalized, the adaption-rule works as follows: Every time the partial derivative 

of the corresponding weight wij changes its sign, which indicates that the last 

update was too big and the algorithm has jumped over a local minimum, the 

update-value, Δij, is decreased by the factor η–. If the derivative retains its sign, the 

update-value is slightly increased in order to accelerate convergence in a shallow 

region. 

Once the update-value for each weight is adapted, the weight-update itself 

follows a very simple rule: if the derivative is positive (increasing error), the 

weight is decreased by its update-value, if the derivative is negative, the update-

value is added: 
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( ) ( ) ( )t
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However, there is one exception: if the partial derivative changes sign i.e. the 

previous step was too large and the minimum was missed, the previous weight 

update is reverted: 
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Due to this ‘backtracking’ weight-step, the derivative is supposed to change its 

sign once again in the following step. In order to avoid a double punishment of the 

update-value, there should be no adoption of the update-value in the succeeding 

step. In practice, this can be done by setting 
( )

0
1

=
∂

∂ −

ij

t

w
E  in the Δij adaption-rule 

given above. The update-value and the weights are changed every time the whole 

pattern set has been presented once to the network (learning by epoch). 

At the beginning, all update-values, Δij, are set to initial value, Δ0. Since Δ0 

directly determines the size of the first weight-step. It is preferably chosen in a 

reasonable proportion to the size of the initial weights. A good choice may be Δ0 = 

0.1. However, the choice of this parameter is not at all critical. Even for much 

larger or much smaller values of Δ0 fast convergence is reached. 

The choice of decrease factor η– and increase factor η+ can be laid by 

following considerations: if a jump over a minimum occurred, the previous 

update-value was too large, for it is not known from the gradient information how 

far the minimum was missed; in average it will be a good guess to halve the 

update-value, i.e., η– = 0.5. The increase factor η+ has to be large enough to allow 

fast growth of the update-value in shallow regions of the error function. On the 

other hand the learning process can be considerably disturbed, if a too large 

increase factor leads to persistent changes of the direction of the weight step. The 

choice of η+ = 1.2 is commonly used for good results independent of examined 

problem [Riedmiller, 1993]. A slight variation of this value does neither improve 

nor deteriorate convergence time.  

One of the main advantages of Rprop lies in the fact that for many 

algorithms, problems of choice of parameter is not needed at all to obtain an 

optimal or at least nearly optimal convergence times. The main reason for the 

success of the Rprop algorithm roots in the concept of ‘direct adoption’ of the size 

of the weight-update. In contrast to all other algorithms, only the sign of the 

partial derivatives is used to perform both learning and adaptation. This leads to a 

transparent yet powerful adaptation process, that can be straight forward and very 

efficiently computed with respect to both time and storage consumption. Another 

aspect of common gradient descend is that the size of the derivative decreases 
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exponentially with the distance between the weight and the output-layer due to the 

limiting influence of the slope of the sigmoid activation function. Consequently, 

weights far away from the output-layer are less modified and do learn much 

slower. Using Rprop, the size of the weight-step is only dependent on the 

sequence of the signs, not on the magnitude of the derivative. For that reason, 

learning is spread equally all over the entire network; weights near the input layer 

have the equal chance to grow and learn as weights near the output layer. 

C. Generalized regression neural network 

 The generalized regression neural network (GRNN) was introduced by 

Nadaraya [1964] and Watson [1964] and rediscovered by Specht [1991] to 

perform general (linear or nonlinear) regressions. The GRNN has been applied to 

solve a variety of problems such as prediction, control, plant modeling or general 

mapping problems [Rutkowski et al., 2003]. GRNNs are memory based 

feedforward networks that were introduced as a generalization of both the radial 

basis function networks (RBFNs) and probabilistic neural networks (PNNs) 

[Specht, 1991]. With increasing number of training samples, the GRNN 

asymptotically converges to the optimal regression surface. In addition to having a 

sound statistical basis, the GRNNs possess a special property in that the networks 

do not require iterative training. In Figure 2.2, GRNNs multiinput–multioutput 

(MIMO) architecture comprising four layers, namely, the input, hidden, 

summation and output layers is depicted. Unlike the most popular error-back-

propagation algorithm [Rumelhart et al., 1986] that trains multilayer feedforward 

networks iteratively, the GRNN training is a single pass procedure. Also, GRNNs 

formulation comprises only one free parameter that can be optimized easily.  

The principal advantages of the GRNN-based models [Kulkarni, et al., 2004] 

are that these models can efficiently and simultaneously approximate nonlinear 

multiinput–multioutput (MIMO) relationships and models can be developed in a 

significantly shorter time in comparison with the MLP or RBFN-based process 

models since the training of the model which is a one step procedure involves 

fixing a value of only a single free parameter. In what follows, the mathematical 

formulation of a GRNN described. 
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Figure 2.2: The schematic of multi-input multi-output GRNN 

 

Consider a N-dimensional vector, x = [x1, x2,..., xN]T, describing process 

input variables and the corresponding scalar output, y, representing the dependent 

(output) variable. GRNN performs regression by computing the conditional 

expectation of y given x. Specifically, the GRNN estimates the joint probability 

density function (PDF) of x and y, i.e. f(x, y), to create a probabilistic model for 

predicting y. The PDF estimator model is constructed from the training input–

output data set {xi, yi}; i = 1, 2,..., I, via nonparametric density estimation (NDE). 

Given x and assuming that the function being approximated is continuous and 

smooth, the expected value of y, (E[y|x]) can be estimated as  
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Using the training set and assuming Gaussian PDF, the function f(x, y) can 

be defined as  
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where xi and y respectively denote the ith training input vector and the 

corresponding output, and σ denotes the width (smoothing parameter or spreading 

factor) of the Gaussian PDF. Given x, the corresponding regression estimate, 

( )xŷ  can be determined as a conditional mean by substituting Eq. (2.23) in Eq. 

(2.22). 
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where hi denotes the Gaussian radial basis function and 2
id  represents the squared 

Euclidean distance between vectors x and xi defined as 

( ) ( )i
T

iid xxxx −−=2      (2.26) 

Given a test input vector, x, the GRNN procedure for predicting the value of an 

mth output variable, ym (m = 1, 2, . . ., M), can be viewed as computing the 

weighted average of all the target values of that variable, wherein weights are 

taken proportional to the Euclidean distances between the training input vectors 

and the test input vector. GRNN’s input layer houses N nodes to serve as ‘fan-out’ 

units. The hidden layer contains J number of nodes, such that each hidden node 

represents a different training input vector. When an input vector is applied to the 

input nodes, its distance (di) from each of the I training vectors stored in the 

hidden nodes is computed, which is then transformed using the Gaussian RBF to 

compute the hidden unit output, hj (j = 1, 2, . . . , J). GRNN’s third layer consists 

of two types (I and II) of summation units. An mth type-I unit (indexed as Nm and 

shown in dark border), computes the summation (∑
=

J

j
jjhy

1
) defined in the 

numerator of Eq. (2.24), by utilizing the hidden unit outputs, hj, and the mth 

elements of all the M-dimensional target output vectors, ym. The single type-2 unit 

in the third layer performs summation of all hidden node outputs (see denominator 

of Eq. 2.24). Finally, the mth output layer node performs the normalization step 
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defined in Eq. (2.24) to compute the GRNN-predicted value of the mth output 

variable, ( )xmŷ . GRNN’s training algorithm uses only one adjustable (free) 

parameter namely the width (σ) of the Gaussian RBF. Significance of the width 

parameter is that as the value of this parameter becomes smaller (larger), the 

regression performed by the GRNN becomes more local (global). Hence, the 

magnitude of σ needs to be chosen judiciously as it significantly affects the 

accuracy of GRNN's predictions. The commonly employed technique for 

automatically selecting the optimal σ value is the ‘leave-one-out’ cross-validation 

method. In this technique, a single input–output vector is removed from the 

training set of I vectors and a GRNN model is built using the remaining I-1 

vectors for predicting the outputs corresponding to the removed pattern. This 

procedure is repeated I times, by keeping aside each time a different training 

pattern, and the mean-squared-error (MSE) is evaluated by comparing the GRNN-

predicted and the corresponding target output values. This procedure is repeated 

by varying the σ value systematically and the value that minimizes the MSE is 

chosen to be optimal. 

 

D. Radial basis function neural network 

 The architecture (as shown in the Figure 2.3) of a radial basis function 

neural network (RBFN) [Tambe et al., 1996; Haykins, 1999] comprises three 

layers of nodes namely input, hidden and output layers. The input layer nodes, 

similar to an EBP network, serve only as “fan-out” units to distribute the inputs to 

the J number of hidden layer nodes. Each hidden node represents a kernel function 

that implements a non-linear transformation of an N-dimensional input vector. 

The commonly used kernel is the Gaussian RBF whose response is typically 

limited only to a small region of the input space where the function is centred. The 

Gaussian RBF is characterized by two parameters, namely center (Cj) and the 

peak width ( jσ ). While Cj represents an N-dimensional vector, jσ is a scalar 

determining the portion of the input space where the jth (j = 1, 2,…, J) RBF has a 

significant non-zero response. The centers are adjustable parameters and the 

nonlinear approximation and generalization characteristics of an RBFN depend 

critically on their magnitudes. Thus, centers must be selected judiciously. On the 
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other hand, the peak width parameter does not affect an RBFN's approximation 

and generalization performance significantly and thus these can be fixed 

heuristically.  

For a given input vector, xi, the output of the jth Gaussian hidden node can 

be calculated as:  

 ( )22
2exp jjijijj CCO σ−−=−⋅Φ= xx   (2.27) 

where, ji C−x denotes the Euclidian distance between xi and Cj. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: The schematic of Radial Basis Function Neural Network 

 

The outputs of the Gaussian hidden nodes serve as inputs to the output nodes and 

the output of each output node is computed using a linear function of its inputs as 

given below: 
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where,  mŷ refers to the output of the mth output layer node; M denotes the number 

of output nodes and wjm refers to the weight of the connection between jth hidden 

node and mth output layer node. 

 Development of an RBFN based model involves selecting the centers, 

peak widths, the number of hidden layer nodes (J) and the weights, wjm. The 

centers can be selected using a number of methods [see e.g. Bishop, 1994] such as 

the random subset selection, K–means clustering [Moody et al., 1989]], 

orthogonal least-square learning algorithm [Chen et al., 1991] and rival penalizing 

competitive learning [Xu et al., 1993]. The width parameter can either be chosen 

same for all the hidden units or can be different for each unit. The width parameter 

can be set equal for all the hidden nodes. Once the centers and the widths of the 

RBFs are chosen, the weights, wjm, on the connections between the hidden and 

output nodes are adjusted using a standard least-squares procedure with the 

objective of minimizing a pre-specified error function such as the sum-squared-

error. Once trained, the magnitude of the response of each of the RBFs is a 

function of the distance between the network input (xi) and the RBF center, Cj. 

Finally, the output layer node combines these signals to produce the network 

output, mŷ . 

 

2.2.2 Support Vector Regression 

The support vector regression (SVR) is an adaptation of a recently 

introduced statistical/machine learning theory based classification paradigm 

namely, support vector machines [Vapnik, 1995; Vapnik et al., 1996; Burges, 

1998; Smola, et al., 1998; Schölkopf, 2001]. In SVR, the inputs are first 

nonlinearly mapped into a high dimensional “feature” space (Φ) wherein they are 

correlated linearly with the outputs. This SVR characteristic distinguishes it from 

the common ANNs such as MLP that approximate the nonlinear input-output 

relationships directly. Other distinguishing features of the SVR vis-à-vis MLP are: 

(i) while the parameters of an SVR model are obtained by solving a quadratic 

optimization problem, the parameters (weights) of an ANN model are commonly 

estimated using a least-squares error minimization method such as the generalized 

delta rule based error back propagation (EBP) algorithm [Rumelhart et al., 1986], 
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(ii) in SVR, the objective function is of quadratic form, and thus it possesses a 

single minimum, which unlike an MLP network avoids the heuristic procedure 

involved in locating the global or the deepest minimum on the objective function 

surface, (iii) commonly, the SVR builds a multiple input-single output (MISO) 

model while MLP network are capable of simultaneously approximating multiple 

input – multiple output (MIMO) relationships, and (iv) in contrast to an MLP 

network, the SVR model and its parameters are amenable to interpretation in 

terms of training data. 

The SVR formulation follows the structural risk minimization (SRM) 

principle, as opposed to the empirical risk minimization (ERM) approach 

commonly employed by the conventional statistical/machine learning methods, 

and also in developing the MLP models. In the ERM, a suitable measure of the 

prediction error such as the root-mean-square-error (RMSE), pertaining to the 

training data is minimized. Since the ERM formulation is based exclusively on the 

training set error, it does not guarantee a good generalization performance by the 

resultant model. On the other hand, the SRM feature equips the SVR model with a 

greater potential to generalize the input-output relationship learnt during its 

training phase. The improved generalization performance by the SRM strategy 

stems from creating an optimized model such that the prediction error and model 

complexity are concurrently minimized. 

 

A. Regression formulation 

To understand the working principles of the SVR formalism, we first 

formulate a general problem of regression estimate in the framework of the 

statistical learning theory. Consider a set of measurements (training data), D̂  

= i 1{( , )}p
i iy =x , where xi ∈ Nℜ  is a vector of model inputs and yi ∈ ℜ , represents 

the corresponding scalar output. The objective of the regression analysis is to 

determine a function, f(x), so as to predict accurately the desired (target) outputs, 

{y}, corresponding to a new set of input-output examples, {(x, y)}, that are drawn 

from the same underlying joint probability distribution, P(x, y), as the training set, 

D̂ . In essence, the task is to find a function, f, that minimizes the expected risk, 

R[f], defined as: 
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 [ ] ( )( ) ( ),x xR f L f y dP y= −∫    (2.29) 

where L denotes a loss function. For a given function, f(x), the expected risk (test 

error) is the possible average error committed by the function on an unknown 

example drawn randomly from the sample probability distribution, P(x, y); the 

loss function, L, indicates how this error is penalized. In practice, the true 

distribution, P(x, y), is unknown and, therefore, Eq. 2.29 can not be evaluated. 

Thus, an inductive principle is used to minimize the expected risk. Here, a 

stochastic approximation to the R[f], called empirical risk (Remp) (see Eq. 2.29) is 

computed by sampling the data following which Remp minimization is performed. 

 ( )( )
1

1 x
p

emp i i
i

R L f y
p =

= −∑     (2.30) 

The empirical risk is a measure of the prediction error with respect to the training 

set, i.e., the difference between the outputs predicted by the function, f(xi) and the 

corresponding target outputs, yi (i = 1,2,…, p). It approaches the expected risk as 

the number of training samples goes to infinity, i.e., 

 [ ] [ ]emp p
R f R f

→∞
=      (2.31) 

This however implies that for a small-sized training set, minimization of Remp does 

not ensure minimization of R[f]. As a result, a selection of f(x) based solely on the 

empirical risk minimization does not guarantee a good generalization performance 

(ability to predict accurately outputs of the test set) by the regression function. The 

inability to generalize originates from a phenomenon known as ‘over-fitting’. It 

occurs when the regression function—by way of higher model complexity—fits 

not only the mechanism underlying the training data but also the noise contained 

therein.  

 For overcoming the problem of over-fitting and thereby enhancing the 

generalization ability of the fitting function, f(x), it is necessary to implement what 

is known as “capacity control”. The capacity of a regression model is a measure of 

its complexity. For instance, a very high-degree polynomial assuming a wiggly 

shape, which fits the training set exactly but does not generalize well outside the 

training data, has a high capacity [Vapnik, 1998]. In the SVR formalism described 
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below, a capacity control term is included to overcome the problem of function 

overfitting. The underlying idea is if we could choose a function (hypothesis)—

from a low capacity function space—yielding a small empirical risk, then the true 

risk, R[f], is also likely to be small. 

To solve a nonlinear regression problem, the SVR formalism considers the 

following linear estimation function:  

         ( ) ( ( ))x xf b= ⋅Φ +w                (2.32) 

where, w  denotes the weight (parameter) vector; b is a constant; Φ(x) denotes a 

function termed feature, and ( ( ))x⋅Φw describes the dot product in the feature 

space, Φ, such that Φ: x → Φ, w ∈ Φ.  In SVR, the input data vector, x, is first 

nonlinearly mapped into a high-dimensional feature space, Φ, and a linear 

regression is performed in this space for predicting the output, y. Thus, the 

problem of nonlinear regression in the lower dimensional input space is 

transformed into a linear regression problem into a high dimensional feature 

space. In essence, the original optimization problem involving a nonlinear 

regression is recasted as searching the flattest function in the feature space, Φ, and 

not in the input space, x. 

 To avoid over-fitting of the regression model and thereby improving its 

generalization capability, the SVR formalism minimizes the following regularized 

risk functional comprising the empirical risk and a complexity term, 2w :  

                                     [ ] [ ] 21
2reg empR f R f= + w                   (2.33) 

where regR  denotes the regression risk and .  is the Euclidean norm. The 

minimization of the regression risk Rreg leads to penalization of the model 

complexity while simultaneously keeping the empirical risk small. The 

regularization term, 21
2

w , in Eq. 2.33 controls the trade-off between the 

complexity and approximation accuracy of the regression model to ensure that it 

possesses an improved generalization performance. Specifically, the complexity 

of the linear function is controlled by keeping w as small as possible. 
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 Equation 2.33 is similar to the cost function augmented with a standard 

weight-decay term used in developing the ANN models possessing good 

generalization ability.  This approach decreases the complexity of an ANN model 

by limiting the growth of the network weights via a kind of weight-decay. 

Specifically, the weight-decay method prevents the weights from growing too 

large unless it is really necessary [Krogh, 1995]. This is achieved by adding a term 

to the cost function that penalizes the large weights. The resultant form of the cost 

function is [Krogh, 1995; Hertz, 1991], 

  ∑+=
ji

ijwEE
,

2
0 2

1 γ       (2.34) 

where, E and E0 denote the modified and original cost functions, respectively, γ  

is a parameter governing how strongly the large weights are penalized and wij are 

the weights on the connections between ith and jth network nodes. The commonly 

used procedure for (such as the error-back-propagation (EBP) algorithm) 

minimizes only the E0, which in most cases represents the sum-squared-error 

(SSE) with respect to the training set. The EBP updates the weights using the 

following equation: 

ij

old
ij

new
ij w

E
ww

∂
∂

−= 0η       (2.35) 

where η  denotes the learning rate. A comparison of the respective terms of Eqs 

2.33 and 2.34 indicates that minimization of the regression risk attempted by the 

SVR is similar to the minimization conducted by the ANNs of a cost function 

comprising a weight decay (penalty) term. However, the SVR and ANNs use 

conceptually different approaches for minimizing the respective cost functions. 

A number of cost functions such as the Laplacian, Huber’s, Gaussian and 

ε-insensitive can be used in the SVR formulation. Among these, the robust ε-

insensitive loss function (Lε) [Vapnik, 1998] (see Figure 2.4), given below is 

commonly used. 
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( )( )
( ) ( )for

0 otherwise

x  x

x

f y f y

L f yε

ε ε⎧ − − − ≥
⎪⎪− = ⎨
⎪
⎪⎩

                     (2.36) 

where ε is a precision parameter representing the radius of the tube located around 

the regression function, f(x) (see Figure 2.4). The region enclosed by the tube is 

known as ‘ε-insensitive zone, since the loss function assumes a zero value in this 

region and as a result it does not penalize the prediction error with magnitudes 

smaller than ε.  

The minimization of the empirical risk using the symmetric loss function 

(defined in Eq. 2.36) is equivalent to adding the slack variables, iξ  and *
iξ , i = 1, 

2, …p, into the functional, R[f], with a set of linear constraints. The slack 

variables iξ and *
iξ measure the deviation  ( )( )ii fy x−  from the boundaries of the 

ε-insensitive zone. Thus, using the ε-insensitive loss function and introducing the 

regularization constant, C, the optimization problem in Eq. 2.33 can be written as, 

Minimize:  ( )2 *

1

1
2

p

i i
i

C ξ ξ
=

+ +∑w       (2.37) 

subject to,  

( )
( )( )

*

*

( )

, 0 for 1

x

x
i i i

i i i

i i

b y

y w b

i = ,..., p

ε ξ

ε ξ

ξ ξ

⎧ ⎫⋅Φ + − ≤ +
⎪ ⎪⎪ ⎪− ⋅Φ − ≤ +⎨ ⎬
⎪ ⎪

≥⎪ ⎪⎩ ⎭

w

   (2.38) 

While conducting this minimization, the SVR optimizes the position of the ε-tube 

around the data as shown in Figure 2.4. Specifically, the optimization criterion in 

Eq. 2.38 penalizes those training data points whose y values lie more than ε 

distance away from the fitted function, f(x). In Figure 2.4, the stated excess 

positive and negative deviations are illustrated in terms of the slack variables, ξ 

and ξ*, respectively. These variables assume non-zero values outside the [ε, -ε] 

region. While fitting f(x) to the training data, the SVR minimizes the training set 

error by minimizing not only ξi and *
iξ , but also 2w  with the objective of 

increasing the flatness of the function or penalizing its over-complexity. This 

serves to avoid an under-fitting as also over-fitting of the training data. 
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Figure 2.4: A schematic representation of the SVR using ε-insensitive loss function
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 It was demonstrated by Vapnik [1998] that the function defined below 

possessing a finite number of parameters can minimize the regularized risk 

functional in Eq. 2.37. 

( ) ( ) ( ) ( )( )* *

1
, , α αx α α x x

p

i i i
i

f b
=

= − Φ ⋅Φ +∑                                        (2.39) 

where, αi and αi
* (both ≥ 0) are the coefficients (known as “Lagrange 

multipliers”) pertaining to the input data vector xi and satisfying  

αiαi
* = 0, i = 1, 2, …, p.  

 It can be noticed noted that both the optimization problem (Eq. 2.37 and 

Eq. 1.38), and its solution (Eq. 1.39) involves a computation of the dot product in 

the feature space, Φ. These computations become time consuming and 

cumbersome when Φ is high-dimensional. It is however possible to use, what is 

known as the “kernel trick” to avoid computations in the feature space. This trick 

uses the Mercer’s condition, which states that any positive semi-definite, 

symmetric kernel function, K, can be expressed as a dot product in the high-

dimensional space. The advantage of using a kernel function is that the dot 

product in the feature space can now be computed without actually mapping the 

vectors, x and xi into that space. That is, using a kernel function all the necessary 

computations can be performed implicitly in the input space instead of the feature 

space.  

Although several choices for the kernel function K are available, the most 

widely used kernel function is the radial basis function (RBF) defined as, 

 ( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

σ

−
= 2

2

2
-

exp, ji
jiK

xx
xx                                                (2.40) 

where, σ denotes the width of the RBF. A list of other possible kernel functions is 

given in Table 2.1.  
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Table 2.1: List of possible kernel functions [Dibike, 2000] 

1. Simple dot product ( )( , )i j i jK x x x x= ⋅  

2. 
Simple polynomial kernel: 

d, degree of polynomial 
( )( )( , ) 1

d

i j i jK x x x x= ⋅ +  

3. Vovk’s real polynomial: 
1 ( )

( , )
1 ( )

d
i j

i j
i j

x x
K x x

x x
− ⋅

=
− ⋅

 

4. 
Radial basis function: 

λ  is user defined 

2
( , ) exp ( )i j i jK x x x xλ= − −  

5. 
Two layer neural network: 

b and c are user defined 
( )( )( , ) tanhi j i jK x x b x x c= ⋅ −  

6. Linear splines: ( )
1

( , )
j

n
k k

i j i
k

K x x x x
=

= ⋅∏  

7. 
Semi local kernel: 

d and σ  are user defined 
( ) ( )2

2

exp
( , ) 1

i jd

i j i j

x x
K x x x x

σ

− −
⎡ ⎤= ⋅ +⎣ ⎦  

 

We can now replace the dot product in Eq. 2.39 with a kernel function (Eq. 2.40) 

and write the general form of the SVR-based regression function as, 

( ) ( ) ( ) ( )∑
=

+−==
p

i
i bKff

1

** ,,,, xxααααxx w                          (2.41) 

where, the weight vector w is expressed in terms of the Lagrange multipliers α and 

α*. The values of these multipliers are obtained by solving the following convex 

quadratic programming (QP) problem. 

Maximize: 

( ) ( )( ) ( ) ( ) ( )* * * *

, 1 1 1

1, α α α α , α α α α
2

p p p

i i j j i j i i i i i
i j i i

R * K yε
= = =

= − − − − + + −∑ ∑ ∑α α x x    

(2.42) 
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subject to constraints: 0 ≤ αi , αi
* ≤ C, ∀i, and ( )*

1
α α 0

p

i i
i =

− =∑ . The bias parameter 

b in Eq. 2.41 can be computed as  

( )
( )

0

*
0

for (0, )

for α (0, )

x

x

i i ib

i i ib

y f C
b

y f C

ε α

ε
=

=

⎧ − − ∈⎪= ⎨
− + ∈⎪⎩

                          (2.43) 

B. Interpreting the structure and coefficients of SVR model 

A significant feature of the SVR is that the regression model and its 

parameters can be interpreted geometrically. In SVR, each training point is 

associated with it a pair (αi and αi
*) of parameters values. The αi and αi

* values 

have an intuitive explanation as forces pushing and pulling the regression 

function, f(xi), towards the desired output, yi [Muller et al., 1997]. Owing to the 

specific character of the QP problem defined in Eq. (2.42), only some of the 

regression coefficients, (αi – αi
*), assume non-zero values. The training input 

vectors, xi, with non-zero coefficients are termed “support vectors (SVs)”. 

Alternatively, SVs are those training input-output data (xi, yi) for which 

( ) ε≥− ii yf x . Since they are the only points that determine the SVR-

approximated function, the SVs are crucial data examples. In Figure 2.4, the SVs 

are depicted as the points lying on the surface and outside of the ε-tube. As the 

percentage of SVs decreases a more general regression solution is obtained. Also, 

a lesser number of computations are necessary to evaluate the output of a new and 

unknown input vectors when the percentage of SVs becomes smaller. The data 

points lying inside the tube are considered to be correctly approximated by the 

regression function. The training points with the corresponding αi and αi
* equal to 

zero have no influence on the solution to the regression task. If these points are 

removed from the training set, the solution obtained would still be same [Thissen 

et al., 2003]. This characteristic, owing to which the final regression model can be 

defined as a combination of a relatively small number of input vectors is known as 

“sparseness” of solution.  

C. Tuning of SVR’s algorithmic parameters 

 The prediction accuracy and generalization performance of an SVR-based 

model is controlled by two free parameters namely, C and ε.  These parameters 
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therefore should be selected judiciously. Among two parameters, the former 

dictates a trade-off between the model complexity and the approximation error, 

while the latter determines the width of the ε-insensitive zone used for fitting the 

training data (see Fig. 2.4). The parameter C in essence determines the amount up 

to which the prediction errors beyond the magnitudes ε± are tolerated. If the 

magnitude of C is too large (infinity), then the SVR minimizes only the empirical 

risk without regard to the model complexity. On the other hand, for a too small 

value of C, the SVR algorithm assigns an insufficient weightage to fitting the 

training data thereby improving the chances of a better generalization performance 

by the model [Drucker et al., 1997]. The tube width parameter ε can inversely 

affect the number of support vectors used to construct the regression function. As 

ε decreases, the percentage of training points marked as SVs (hereafter denoted as 

%SV) increases which in turn also enhance the complexity of the SVR model. 

With complex models there always exists a risk of over-fitting the training data 

and consequently a poor generalization performance by the model. On the other 

hand, a relatively better generalization performance is realized for large ε 

magnitudes at the risk of obtaining a high training set error. It may be noted that in 

ANNs and traditional regression, ε is always zero and the data set is not mapped 

into higher dimensional spaces. Thus, the SVR is a more general and flexible 

treatment of the regression problems [Chen et al., 2001]. A number of guidelines 

for the judicious selection of C and ε are provided by Cherkassky and Ma [2004]. 

 

2.2.3 Genetic Programming 

 An important AI based modeling technique known as Genetic 

Programming (GP) was proposed by Koza [1992, 1994]. Originally, the GP 

formalism was developed for generating automatically task-specific computer 

programs without manually coding them rigorously. The GP concept was later 

extended to automatically obtain a mathematical model that fits a given set of 

model’s input-output data. It is closely related to an AI-based stochastic search 

and function optimization method viz. genetic algorithms (GA) which is described 

in another section 2.4.3. Both GP and GA are founded on the principles of natural 

selection and genetics followed by biologically evolving species. However, they 

differ in their applications. While the GA methodology is used for function 
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maximization/minimization, the GP technique discovers a system-specific form of 

a data fitting function and all of its necessary parameters or at least an 

approximation of these. The GP technique performs what is known as ‘symbolic 

regression’ to search and optimize the form and parameters of an appropriate data 

fitting function. Although conceptually attractive, the GP is relatively less 

explored AI-based modeling formalism as compared to the ANNs. The GP has 

been used in the steady-state modeling [McKay et al., 1997; Willis et al., 1997; 

Grosman, et al., 2004], dynamic modeling and time series prediction [Iba et al., 

1993; Gray et al., 1996] process identification [Kulkarni et al., 1999] and process 

design [Lakshminarayanan et al., 2000]. In a novel application, the GP has been 

used to obtain the mechanistic map equations of simple chaotic systems such as 

logistic, Henon and Universal maps [Yadavalli et al., 1998]. In another 

contribution, Zhang and Muhlenbein [1993] used GP to optimize both the 

architecture and the connection weights of a feedforward artificial neural network. 

Their results indicated that given enough resources the GP methodology could 

determine minimal complexity networks. While this is an interesting result in 

itself, it fails to fully exploit the power of GP. Rather than manipulating neural 

network structures, there is potential to discover significantly more information 

about the underlying process characteristics by the direct use of symbolic 

regression.  

Similar to GAs, that performs function minimization/maximization, the GP 

formalism uses selection, crossover and mutation operators to obtain the structure 

(form) and all the necessary parameters of a best-fitting linear/nonlinear function. 

Accordingly, the solution given by the two formalisms also differ. That is, while 

the GP searches, a model as a solution to a given data-fitting problem, GA 

searches and optimizes the decision variables that minimize/maximize a pre-

specified objective function. In its procedure, the GAs manipulate only the 

numbers while GP manipulates symbols (structure of the data-fitting model) as 

also numbers (for obtaining parameters of the fitting function). The sequence of 

steps that the GP [Nandi, 2005] follows for obtaining a best-fitting model is given 

below (also refer Fig 2.10). 
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Begin  

Initialize a random population of candidate solutions (models) 

Fitness evaluation of individual models 

Repeat 

Genetic Operations 

 Selection  

   Reproduction 

   Crossover 

   Mutation 

   Fitness evaluation 

Until the terminating criterion 

Return results 

End 

 

Step 1: Initialization of population 

GP paradigm first creates a random initial population of a number of 

potential candidate solutions to a given MISO modeling problem. Each candidate 

solution is represented using a tree like structure (see Fig. 2.5) that consists of two 

types of elements namely, the “functional” and the “terminal” elements [McKay, 

1997]. A terminal represents operands of a model. These are leaves (nodes 

without branches) describing input variables or parameters of the data-fitting 

model. The functional elements are nodes (with branches) representing 

mathematical operators. A single tree represents the right hand side (RHS) of a 

data fitting function, y = f(X, α), where X is a vector of input variables and α 

denotes parameters of the function, f. Initialization of the population of candidate 

solutions to the problem is done as follows. 
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• Starting from its root, every node of a tree is chosen randomly either as a 

functional or a terminal element. Accordingly, the initial population is a 

blind random search of the solution space of an MISO modeling problem 

comprising function and parameter spaces. 

• If a randomly chosen node is a terminal one, then a parameter or an input 

variable is randomly assigned to it. 

• If the node chosen randomly comes out to be a functional one, i.e., an 

intermediate node, then a mathematical operator is chosen randomly, and 

that node is assigned a number of branches depending upon weather the 

operator is unary or binary. If the selected operator is a unary (e.g., sine, 

cosine, tangent, exponential, log, ln, etc) then the node is assigned a single 

branch in the level below the node. In the case of a binary operator (e.g., 

addition, subtraction, multiplication, division, etc.) the node fans out into 

two branches in the next level. When the depth of the tree reaches the pre-

specified maximum depth dmax, then a terminal element is selected in that 

node. This way the initial individual candidate solutions are generated 

subject to a pre-specified maximum depth dmax. 

• In Figure 2.5, a tree of depth equal to two is shown. It consists of three 

functional elements describing as many mathematical operators and three 

terminals (2.5, x1 and x2) representing function operands. This candidate 

solution can be interpreted as, 

 )*5.1()sin( 21 xxy +=      (2.44) 

 

 

 

 

 

 

 

 

Figure 2.5: A simple equation tree 
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A candidate solution population is generated in a manner similar to Eq. 

(2.44). All the individual solutions in the population are syntactically consistent, 

valid and executable functions. Also, these solutions upon undergoing the genetic 

operations produce syntactically consistent, valid and executable candidate 

solutions. 

 

Step 2: Fitness evaluation 

 Having created the initial population, each candidate solution thereof is 

assessed for its data-fitting ability. This is done using a “fitness” function and 

thereby evaluating the goodness of each candidate solution in approximating the 

relationship existing between the given set of inputs and the corresponding output. 

Fitness is a numeric value assigned to each member of a population to provide a 

measure of the goodness of a solution to the MISO modeling problem under 

study. Fitness functions are generally based upon the error between the actual and 

model predicted outputs (e.g., RMSE function). The error-based measures possess 

lower magnitudes for better solutions. In GP, it is desired to obtain fitness values 

that exhibit high magnitudes for better solutions during the evolutionary process. 

In order to modify the error-based performance index, a scaled inverse 

transformation is generally used. For symbolic regression problems, South et al. 

[1995] proposed the use of the correlation coefficient (CC) between the actual and 

model predicted outputs as an alternative to error-based fitness functions. Once 

fitness scores of all the candidate solutions in the current population are evaluated, 

the solutions are sorted in the decreasing order of fitness scores. The CC ranges 

between -1 (poor fit) to +1 (best fit). Accordingly, the solutions providing better 

approximations to the underlying MISO relationship are ranked higher in the 

fitness hierarchy.   

 

Step 3: Selection 

 A number of selection methods have been suggested in the literature. 

These include elitist strategy, Roulette Wheel (RW) selection, Tournament 

selection and fitness proportionate selection [Deb, 2001; Deb et al., 2002; 
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Goldberg, 1989]. With the elitist scheme, the population is sorted into descending 

order according individual fitness values. The fittest M (M ≤ N) individuals then 

undergo reproduction. Tournament selection involves random sampling (with 

replacement) of a fixed number of individuals from the parent population to form 

a subset. The fittest member of this relatively small subset is then chosen to 

reproduce, and the process is repeated as required. With fitness proportionate 

selection, an individual is sampled from the parent population (again with 

replacement) with a probability proportional to its fitness. Thus, if the ith 

individual in the parent population has a fitness f, the probability of this individual 

being chosen is, 

    Probability (selection) =
∑ if

f ,  where i = 1,...,N.    (2.45) 

Among the above-described techniques, the fitness proportionate selection 

appears to be a favored selection technique within the GA literature. The 

population that results upon selection is termed “mating” or “parent” pool 

 

Step 4: Genetic operators 

 There exist two major genetic operators, namely crossover and mutation 

that are used frequently. These operators are implemented as given below. 

Implementation of steps 4(a) to 4(c) creates a new population of candidate 

solution that replaces the current one. 

 

Step 4(a): Crossover 

 In this step, a crossover operation is conducted between pairs of candidate 

solutions from the current mating pool to produce two new candidate solutions 

termed as “offspring”. In crossover, the genetic material (content of functional and 

terminal nodes) of a pair of parents is interchanged to produce offspring. Figure 

2.6 and Figure 2.7 illustrate the crossover operation on a pair of parents. Here, the 

crossover nodes from the individual parents are selected randomly and the sub-

trees originating from these nodes are mutually exchanged to form two new 
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candidate solutions (offspring). The two offspring created thereby replace the 

parents in the new generation. 

 

 

 

 

 

 

 

 

 

 
  

Figure 2.6: Parents selected for crossover and randomly selected crossover nodes. 

 

 

 

 

 

 

 

 

Figure 2.7: Offspring produced after the crossover operation. 
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their contents are subjected to mutation. If a node happens to be an operator, then 

another randomly selected operator replaces it. If the chosen node contains an 

operand (i.e., a variable or a model parameter or a constant), then it is replaced by 

another randomly chosen operand. The principal aim of the mutation is to 

introduce a small change in the selected candidate solution. The new offspring 

created by the mutation operation replaces the candidate solution that has 

undergone mutation in the next generation. The mutation operation is illustrated in 

Figure 2.8.    

 

 

 

 

 

 

 

Figure 2.8: Example trees showing mutation operation 

 

Upon executing the above-described three genetic operations on the 

current population, the resulting new generation population of offspring replaces 

the current one. Steps 2 to 4 are repeated over a large number of generations till a 

convergence criterion is satisfied. The commonly used criteria are, the GP has 

evolved over a pre-specified number of generations or the fitness value of the best 

candidate solution either remains constant or nearly constant over a pre-specified 

number of generations. The candidate solution tree with highest fitness at the 

convergence represents the best solution to the given modeling problem. 

A significant drawback of the GP formalism is that in order to arrive at an 

appropriate fitting function it performs a global search of the function and the 

corresponding parameter space. Invariably, this search becomes time-consuming 

and numerically expensive. Also, the algorithm has a tendency to get stuck into a 

local minimum in the function and parameter spaces leading to a sub-optimal 
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convergence to a poorly performing fitting function. This happens as there is no 

mechanism for a candidate solution to escape once it gets stuck into a locally 

optimal solution. As a result, a good solution even if located in the neighborhood 

of a candidate solution remains unexplored. One remedy to overcome this 

problem is to subject the converged candidate solution to a nonlinear regression 

(NLR) method such as the Marquardt’s algorithm with a view of fine-tuning. This 

however requires additional numerical effort. Also, the NLR approach does not 

fine-tune the structure of the candidate solution as it optimizes only its parameters. 

Another approach that is conceptually similar to that employed by the memetic 

algorithms (see Section 2.4.4) is to perform a local search in the neighborhood of 

each candidate solution or a number of high fitness scoring candidate solutions. 

This type of local search in both the functional and parameter space is expected to 

locate a better solution and/or speed-up the convergence. The AI Systems Group 

(AISG) at National Chemical Laboratory (NCL), Pune, India, has augmented the 

global search of the GP with a local search element to introduce an efficient 

symbolic regression formalism. The salient features of this method are described 

below. 

 

Step 5: Local search 

 This is an advanced operator which essentially searches the solution tree’s 

local neighborhood area to ultimately locate a better solution. The search could be 

applied at two tree locations namely function and parameter nodes. The details of 

these steps are as follows. 

 

Step 5(a): Local search in function space 

Each candidate solution of the population following the mutation operation 

is subjected to the local search in the function space. Here, a local search for an 

improved solution in the neighborhood of the candidate solution is carried out by 

slightly altering the functional form of that solution. In this step, the functional 

nodes of individual solutions are perturbed a specified number of times. This 

perturbation operation is conducted only on a specific number of functional nodes 
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which are selected according to some constraint. For example, the nodes in the 

maximum tree-depth and the ones in the depth equal to (maximum depth – 1) are 

selected to undergo the perturbation operation. Application of such a constraint on 

the selection of perturbation-undergoing nodes is done in order to bring out minor 

changes in the functional form of the tree which is akin to the local search in the 

function space of the candidate solution. The selected nodes are then subjected to 

perturbation operation for a fixed number of times and each time a new 

neighborhood solution with a slightly different functional form is generated. The 

resultant solution trees are then evaluated for their fitness and using Tabu search 

method (refer to Section 2.4.2), the best neighbor of the candidate solution is 

determined. This new solution tree then replaces the original un-perturbed 

solution tree in the next generation. Let us consider an example tree undergoing a 

local search in the functional space. The nodes selected for local search operation 

are shown in the Figure 2.9. Following a local search in the function space, the 

modified candidate solution population is subjected to the local search in 

parameter space.  

 

 

 

 

 

 

 

Figure 2.9: A candidate solution tree with nodes selected for local search 
operation 

 

Step 5(b): Local search in the parameter space 

 Here, initially the set of parameters occurring in the maximum depth and 

one prior to that of each candidate solution tree selected and placed in an array. 
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Simultaneous Perturbation Stochastic Approximation (SPSA) [Spall, 1987, 1998a, 

b] (refer to Section 2.4.1) which is a simple yet numerically efficient stochastic 

parameter estimation formalism that mostly finds a locally optimal solution. Next, 

the fitness of the candidate solution with SPSA-optimized parameter is evaluated. 

If this fitness is higher than the fitness of the original-perturbed solution then the 

SPSA-optimized parameters replace the parameters in the original tree. The local 

search in the parameter space is illustrated in Figure 2.10. The stated search in the 

parameter space of a candidate solution is performed for a fixed number of times 

which equals that for the local search in the function space. The number of 

neighbors to be generated is a user-defined quantity.  

 

 

 

 

 

 

 

Figure 2.10: A candidate solution tree with nodes selected for SPSA-based 
parameter estimation 
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Figure 2.11: Flow chart of genetic programming 

 

Thus in the new GP variant, the population of candidate solutions is refined each 

time before it enters the new generation. This saves the evolution from getting 

saturated (local minima entrapment) after a few generations (refer flow chart in 

Figure 2.11 for the complete operational flow designed for the GP with the local 

search). 
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2.3 CLASSIFICATION/CLUSTER ANALYSIS 

Clustering is the classification of similar objects into different groups, or 

more precisely, the partitioning of a data set into subsets (called as “clusters”), so 

that the data in each subset (ideally) share some common trait - often “proximity” 

according to some defined distance measure. Clustering can be considered the 

most important unsupervised learning problem. As every other problem of this 

kind, it deals with finding a structure in a collection of unlabeled data. Data 

clustering is a common technique for statistical data analysis, which is used in 

many fields, including machine learning, data mining, pattern recognition, image 

analysis, chemo informatics and bioinformatics. 

A cluster is a collection of objects which are “similar” between them and 

“dissimilar” to the objects belonging to other clusters.  

We can illustrate this with a simple graphical example described in the following 

figure (Figure 2.12). 

 

Figure 2.12: Simple graphical clustering example 

 

From the example depicted in Figure 2.12, we can easily identify 4 clusters into 

which the data can be divided; the similarity criterion for defining a cluster is 

distance: two or more objects belong to the same cluster if they are “close” 

according to a given distance criterion (in this case Euclidean/geometrical 

distance). 
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2.3.1 K-Means Clustering 

K-means is one of the simplest unsupervised learning algorithms that solve 

a clustering problem [MacQueen, 1967]. It follows a simple and easy procedure to 

classify a given data set into a certain number of clusters (assume k clusters) fixed 

a priori. The main idea is to define k centroids, one for each cluster. These 

centroids should be placed in an intelligent way since variability in their locations 

causes different results. Thus, the better choice is to place them as much as 

possible far away from each other. The next step is to take each point belonging to 

a given data set and associate it to the nearest centroid. When no point is pending, 

the first step is complete and an early grouping is done. At this point it is 

necessary to re-calculate k new centroids as barley centers of the clusters resulting 

from the previous step. Having obtained these k new centroids, a new binding has 

to be done between the same data-set points and the nearest new centroid. 

Accordingly, a loop is generated as a result of which the k centroids change their 

location step by step until no more changes occur. In other words, centroids do not 

move any more. 

Finally, this algorithm aims at minimizing an objective function; in this 

case a squared error function defined as 

   ∑∑
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j
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2)(      (2.46) 

where 
2)(

j
j

i cx −  is a chosen distance measure between a data point )( j
ix  and the 

cluster centre, jc , which indicates the distance of n data points from their 

respective cluster centers. 

The K-means algorithm is composed of the following steps: 

1. Place k points into the space represented by the objects that are being 

clustered. These points represent initial group centroids. 

2. Assign each object to the group that has the closest centroid. 

3. When all objects have been assigned, recalculate the positions of the k 

centroids. 

4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a 

separation of the objects into groups from which the metric to be minimized 

can be calculated. 
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Although it can be proved that the procedure will always terminate, the K-

means algorithm does not necessarily find the most optimal configuration, 

corresponding to the global objective function minimum. The algorithm is also 

significantly sensitive to the initial randomly selected cluster centers. The K-

means algorithm can be run multiple times to reduce this effect. The K-means is a 

simple clustering algorithm that has been adapted to many problem domains.  

 

2.3.2 Self Organizing Map 

The self organizing map (SOM) [Kohonen, 1990] is a neural network that 

undergoes unsupervised learning (i.e., identifying classes in the absence of prior 

knowledge) and apart from nonlinear classification it is useful in 

projecting/visualizing high-dimensional data on to a low dimensional (i.e., 2-D or 

3-D) space. The SOM possesses several attractive properties [Vasanto, 2000]: (i) 

it performs an ordered dimensionality-reducing mapping of the training data, (ii) 

the created map follows the probability density function of the data and is also 

robust to missing data, and (iii) the map is readily explainable, simple and easy for 

visualization. SOM has been successfully applied in various engineering 

applications [Kohonen et al., 1998] involving pattern recognition, image analysis, 

exploratory data analysis [Ultsch, 1993; Mao et al., 1995], process monitoring and 

control [Simula et al., 1995, Tryba et al., 1991] and fault diagnosis [Chan et al., 

1999; Kang et al., 1999]. The other important application of SOM namely, 

classification (clustering), has been exemplified in a number of recent studies in 

genomics [Schneider, 1999; Wang et al., 2001; et al., 2002; Kasturi et al., 2003].  

The SOM network architecture, as shown in Figure 2.13, consists of a two-

dimensional array of units each of which is connected to all the p input nodes. It is 

also possible to use a grid of higher dimensions although such a grid is difficult to 

visualize conveniently. The SOM neural network architecture and its training 

method possess following properties: (i) an array of neurons, which as a function 

of its input of arbitrary dimensionality, calculates the outputs using a simple 

output function, (ii) a criteria to determine the “winner” neuron possessing the 

largest output, and (iii) an adaptive rule for updating the weights of the chosen 

neuron and its neighbors. The SOM training algorithm proposed by Kohonen 

[1990] has a very desirable property of topology preserving.  
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Figure 2.13: Schematic of Self-organizing Map 

 

 

A. SOM training algorithm 

             Let xk, k = 1,2,…,N be the p-dimensional patterns (vectors) and wij be the 

p-dimensional weight vector associated with the processing element at the 

location (i, j) of the 2-D array. The stepwise procedure for training the SOM 

network is given below. 

Step 1 (Initialization): Choose small random values for the initial weights, wij(0), 

and fix the initial learning rate ( Oα̂ ) and the neighbourhood. 

Step 2 (Determining the winner): Select a sample pattern, xk, from the data set and 

determine the winner neuron (Ci, Cj) at time (iteration) t, using the minimum-

distance Euclidean criterion. 
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where ||.|| refers to the Euclidean norm and L denotes the number of rows (as also 

columns) in the square 2D array. 

Step 3 (Weight updation): Update all the weights according to the kernel-based 

learning rule; 

 

                = ( )tijw        otherwise  (2.48) 

where t denotes training iteration index; ( )tN
jiCC

 is the neighbourhood function of 

the winner unit (Ci, Cj) at iteration t, and )(ˆ tα = 0α̂ /(1+t) is the learning rate. 

Step 4: Decrease the value of the learning rate, )(ˆ tα , by incrementing the 

iteration index, t, by unity and shrink the neighbourhood, ( )tN
jiCC

. 

Step 5: Repeat steps 2 – 4 until the change in the weight values is less than the 

specified threshold, or the maximum number of iterations ( maxt̂ ) is reached.  

It should be emphasized that the success of SOM training depends 

critically on the judicious selection of the main algorithm-specific parameters (i.e., 

)(ˆ tα and NCiCj(t)), initial values of the weight vectors, and the number of pre-

specified training iterations, maxt̂ ). These are commonly optimized using a 

heuristic procedure.  

 

2.4 OPTIMIZATION FORMALISMS 

The search for optimal and near-optimal solutions is an important problem in 

different areas of human activities including engineering, technology, 

manufacturing, business and finance. In chemical engineering/technology, the 

goal of process optimization is to obtain optimal process operating conditions, 

which lead to improved process performance, e.g., maximization of conversion, 

selectivity, etc., or minimization of reactor temperature, selectivity of an undesired 

product, operating cost, etc. Broadly, there are two different classes of 

optimization methods: deterministic and stochastic. Deterministic methods aim to 

( ) ( ) ( ) ( ) ( ) ( )tNjittttt
jiijkijij CC  ),( if ||||ˆ1 ∈−+=+ www xα
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arrive at the optimum by approximating the local neighborhood of a given 

solution in the search space and moving to a better solution whenever possible. 

All gradient based methods and some line-search methods fall under this class. 

Gradient-based methods encompass math-programming formulations including 

linear, non-linear and discrete optimization models and their associated solution 

strategies. Heuristic methods such as tabu-search that allow for non-improving 

moves have been used with a great success, not so much as models in themselves 

but as alternative solution strategies under a deterministic framework. 

Enumerative methods that involve listing the entire solution space or a relevant 

neighborhood also fall under the category of the deterministic methods. These 

methods typically use a priori information about the solution space based on the 

past experience. The point of departure of stochastic methods from deterministic 

ones is that the former contain a random component in them. Here, solutions may 

be manipulated at random and the emphasis is on sampling the search space as 

widely as possible while at the same time trying to locate promising regions for 

further exploration. Simulated annealing, simultaneous perturbation stochastic 

approximation, random search and genetic algorithms fall under this broad class 

of methods.  

Both deterministic and stochastic approaches [Vaidyanathan and El-

Halwagi, 1994; Adjiman et al., 2000, Jayaraman et al., 2000, Yu et al., 2000] have 

been developed to address optimization problems in chemical engineering. 

Although a few deterministic approaches guarantee the global optimality of the 

final solution, they require specific formulations. On the other hand, stochastic 

algorithms cannot guarantee global optimality, but they can be readily and easily 

applied to many optimization problems. With appropriate parameters, they have a 

high probability of locating the globally optimal solution. Most of these existing 

stochastic approaches are only suitable for solving small to medium scale 

problems [Pörn et al., 1999]. 

Conventionally, gradient-based deterministic methods are used for process 

optimization. Most of these methods require that the objective function (to be 

minimized or maximized) should be smooth, differentiable and continuous. Many 

commonly used deterministic optimization formalism do not satisfy these criteria 

and therefore alternative optimization techniques need to be employed. AI-based 
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stochastic optimization techniques such as genetic algorithms and tabu search, 

overcome the above-stated drawbacks, and therefore are ideal for the optimization 

of chemical processes. 

 

2.4.1 Simultaneous Perturbation Stochastic Approximation 

Multivariate stochastic optimization plays a major role in the analysis and 

control of many real-world systems. In almost all large-scale practical 

optimization problems, it is necessary to use a mathematical algorithm that 

iteratively seeks out the solution because an analytical (closed-form) solution is 

rarely available. In the above spirit, the “simultaneous perturbation stochastic 

approximation (SPSA)” method [Spall, 1987, 1998a,b] has been developed for 

attacking difficult multivariate optimization problems. The SPSA has recently 

attracted considerable attention in areas such as statistical parameter estimation, 

feedback control, simulation-based optimization, signal and image processing, and 

experimental design. The essential feature of SPSA–which accounts for its power 

and relative ease of implementation–is the underlying gradient approximation that 

requires only two measurements of the objective function regardless of the 

dimension of the optimization problem. This feature allows for a significant 

decrease in the cost of optimization, especially in problems with a large number of 

variables to be optimized.  

The SPSA optimization methodology differs from the commonly 

employed deterministic gradient based techniques in the following aspects. 

Instead of directly evaluating the gradient with respect to each decision variable 

by perturbing it separately (as done in the standard two-sided finite difference 

approximation), the SPSA methodology approximates the gradient by perturbing 

all the decision variables simultaneously. Thus, irrespective of the number (K) of 

decision variables to be optimized, only two objective function measurements are 

necessary for the gradient approximation; this is in contrast to the finite-difference 

approximation, where 2K function measurements are necessary for the gradient 

evaluation. The implementation procedure of SPSA is an iterative that begins with 

a randomly initialized (guess) solution vector, x̂ . The SPSA technique stipulates 

the cost function, Cyr(x), to be differentiable, since it searches for the minimum 
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point, x*, at which the gradient of the objective function, g(x*), attains zero 

magnitude.  

 ( ) ( )
0

*

* =
∂

∂
=

=xx

yr

x
xC

xg       (2.49) 

That is, at each SPSA iteration, the gradient is approximated by utilizing the 

numerically efficient simultaneous perturbation technique alluded to earlier. With 

these preliminaries, the stepwise procedure for SPSA implementation can be 

given as [Nandi et al., 2004]:  

Step 1. Set the iteration index, t to zero and choose randomly a K-dimensional 

guess solution vector, 
0

ˆ
=ttx  

Step 2. Compute the t-dependent values, At and Zt, termed “gain sequences” using, 

( )η1++
=

tr
AAt        (2.50) 

( )
,

1 β+
=

t
ZZt        (2.51) 

where constants, A, Z, r, η and β assume nonnegative values. The optimal 

values of η and β are either 0.602 and 0.101 or 1.0 and 0.1667, respectively 

[Spall, 1998a].  

Step 3.  Generate a K-dimensional perturbation vector, Δt, using Bernoulli ±1 

distribution, where probability of occurrence of either + 1 or - 1 is 0.5; next, 

perturb all the K elements of the vector tx̂  simultaneously, as given by  

   tttt Zxx Δ+=+ ˆˆ       (2.52) 

   tttt Zxx Δ−=− ˆˆ        (2.53) 

Step 4. Using +
tx̂  and −

tx̂  as arguments, compute two measurements, that is, 

Cyr( +
tx̂ ) and Cyr( −

tx̂ ), of the objective function defined in Eq. 2.49.  

Step 5. Generate the simultaneous perturbation approximation of the unknown 

gradient, ( )tt xg ˆˆ , using  
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where ( )tt xg ˆˆ  is k-dimensional and tKΔ  refers to the kth element ( +1 or -1) of 

the perturbation vector, tΔ . 

Step 6. Update estimate of the decision vector according to 

   ( )ttttt xgAxx ˆˆˆˆ 1 −=+       (2.55) 

Step 7. Increment the iteration counter t to t + 1 (1 ≤ t ≤ tmax) and repeat steps 2-6 

until convergence; the criterion for convergence could be that in successive 

iterations the decision variable values exhibit very little or no change. 

 

2.4.2 Tabu Search 

Tabu Search (TS) is a memory-based stochastic optimization strategy 

[Glover, 1986]. By considering historical information during the search process, 

TS has been reported to have a more flexible and effective search behaviour than 

other stochastic methods [Glover, 1986].  

TS is a meta-heuristic approach that guides a neighborhood search 

procedure to explore the solution space in a way that facilitates escaping from 

local optima. Figure 2.14 shows a schematic of the algorithm. TS starts from an 

initial randomly generated solution. A set of neighbor solutions, N(x), are 

constructed by modifying the current solution, x. The best one among them, x, is 

selected as the new starting point, and the next iteration begins. Memory, 

implemented with tabu lists, is employed to escape from locally optimal solutions 

and to prevent cycling. At each iteration, the tabu lists are updated to keep track of 

the search process. This memory allows the algorithm to adapt to the current 

status of the search, so as to ensure that the entire search space is adequately 

explored and to recognize when the search has got stuck in a local region. 

Intensification strategies are employed to search promising areas more thoroughly, 

while at the same time diversification strategies are employed to broadly search 

the entire feasible region, thus helping to avoid becoming stuck in local optima. 
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Finally, aspiration criteria is employed to override the tabu lists in certain cases. 

The details of each of the elements will be discussed in the following sub-sections. 

A. Neighborhood search 

TS explores the search space of feasible solutions by a sequence of moves 

[Glover and Laguna, 1997]. A move is an operation that changes the current 

solution to another solution. TS starts with an initial solution, say A0. The initial 

objective function value, f(x1, x2,…,xN), is initialized. A random change that is the 

product of a random number (between −1 and 1) and the magnitude of the search 

space along a dimension, say x1, is added to the current solution. To ensure that 

the move does not cause the point to lie outside of the specified bounds for this 

dimension, a check is performed. If the move would exceed the bounds, the move 

is altered, so that it either is on the bound or remains at the location of the current 

solution. A similar random change for all remaining dimensions is then added. In 

this way, a neighbor solution, A1, is determined. Similarly, a set of other neighbor 

solutions, A2 to AM, can be generated. 

B. Tabu lists 

When the best neighbor is not better than the current solution, it is 

classified as “tabu” and added to a recency-based tabu list. The tabu property 

remains active throughout a time period, called the “tabu tenure”. As new 

solutions are added to the tabu list, older solutions will be released from the 

bottom. Thus, the recency-based tabu list stores the most recently visited solutions 

and forbids revisiting unpromising solutions for a specified number of iterations. 

In continuous solution space, the probability of visiting the same solution twice is 

very small. Although tabu lists only record specific solutions, the areas 

surrounding each of them are classified as tabu. The tabu area is empirically 

classified as 20% of the search range (centered at the current solution) along each 

dimension. The recency-based tabu list records solutions for a short time period; it 

is often called the short-term memory. Long-term memory is dependent on the 

frequency that a solution has been visited. The areas cover more solutions than 

other parts of the search space will be added to the frequency-based tabu list, 

which records solutions that have been searched around most often. The location 

of these frequency-based tabu regions are defined by the best neighbor solutions 

as they are determined. Once the maximum number of elements in the frequency-
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based tabu list has been attained, the solution with the smallest frequency index 

will be replaced. 

C. Aspiration criterion 

In some cases, the best neighbor solution may appear in a tabu area. If so, 

the aspiration criterion will be checked to determine whether the best neighbor 

should be accepted despite being in a tabu area. When the best neighbor solution 

is at the some point, which is not as good as the best solution so far, it cannot be 

accepted as the starting point for the next iteration. Instead, the best non-tabu 

neighbor is used. The appropriate use of such criteria can be very important for TS 

to achieve its best performance. 

Lin et. al. [2004], have designed an additional aspiration criterion which 

achieves a balance between intensified and diversified search. The aspiration 

criterion is based on a sigmoid function: 

 ( ) ( )Mkk center
ks ×−−+

= σe1
1       (2.56) 

where k is the current iteration number and kcenter determines at which point, s(k) = 

0.5. A random number, 0 ≤ P ≤ 1, is generated from a uniform distribution at each 

iteration. If P is greater than s(k), the tabu property is active and the best non-tabu 

neighbor is used as a new starting point; if P is less than or equal to s(k), the 

aspiration criterion overrides the tabu property. Thus, a restart operation (resulting 

from a frequency-based tabu list) will be canceled, or a neighbor solution which 

would otherwise be tabu (because of a recency-based tabu list) will be used to 

generate the new neighbor solutions.  
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Figure 2.14: Flow chart of TS algorithm 

  

D. Termination criterion 

Because TS is a stochastic optimization approach, global optimality of the 

final solution cannot be guaranteed. In general, the longer the search process, the 

higher the probability of finding good solutions. The maximum time termination 

criteria has been widely used due to the ease of implementation [Patel et al., 1991; 

Tayal and Fu, 1999; Wang et al., 1999]. In most cases, this criterion is considered 

effective and practical; however, it risks wasting time in an unproductive search. 

Two primary conditions may cause this behavior. First, a solution very close to 

the global optimum may have already been located. Second, the algorithm may 
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have become trapped in a local solution. Thus, termination-on-convergence 

criteria have been implemented so that the search ceases at an “appropriate” time 

[Jain et al., 2001]. 

If the improvement over Γ generations is no larger than a threshold, δ, 

continued iterations are considered to be ineffective, and the search should be 

stopped. The termination criterion is mathematically expressed as follows:  

     
( )

( ) δ<
− −

xf
fxf

Γ-k

Γkk       (2.57) 

where Γ = ηM, δ is the ratio of the change in the value of the objective function, 

and η is the fraction of the maximum iterations possible over which the change in 

the objective function is compared. 

 

2.4.3 Genetic Algorithms 

 Genetic a1gorithms (GAs) [Holland 1975; Goldberg, 1989] are artificial 

intelligence based stochastic methods which enforce the “survival of the fittest” 

paradigm of evolution along with the genetic propagation of characteristics 

principle followed by biological species. This brings to bear a balanced tradeoff 

between exploitation and exploration. Unlike traditional methods which move 

from point to point, an initial population of solutions constantly refined in a 

manner imitating selection and biological evolution, while discovering expectedly 

better solutions. GAs have been used with a great success in solving problems 

involving very large search spaces [Goldberg, 1989]. Owing to there attractive 

features, GAs are being increasingly used for solving diverse optimization 

problems in chemical engineering and technology [Nandi et al., 2002, Garcia et 

al., 1998]. The process of evolution involves the survival of the most adapted 

organism to the environment and the propagation of its characteristics to the next 

generation by reproduction. This phenomenon is referred to as “natural selection” 

and is primarily responsible for the evolution and modification of different species 

to suit the environment. The propagation of characteristics is brought forth by 

information carried in the genetic material of the species. In addition, gene-level 

operations such as recombination and mutation that occur during reproduction 
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lead to combinatorial diverse characteristics in the subsequent generations. By 

this, we imply the discovery of new characteristics that arise as a combination of 

different ones present in different individuals in the population. Recombination 

involves the exchange of parts of two parent chromosomes producing two 

different combinations. Mutation involves random changes at different loci in the 

gene, leading to inclusion of characteristics not present in the parent(s). The 

combined effects of selection, recombination and mutation not only produce fitter 

individuals but also lead to diversification of the population characteristics. This 

diversification leads to a state of perpetual novelty during evolution, where the 

evolving species is able to combat the changing environment successfully. One 

can immediately see how such a framework would be useful from an optimization 

viewpoint. If one were to treat the environment as an objective to be optimized 

and the individual in the environment as a point in the search space, evolution 

would become analogous to searching through a landscape of solutions. 

 In nature, the complete representation of any organism lies in its genetic 

code, which is a sequence of alphabets of amino acids. In a similar fashion, GAs 

model potential solutions as bit strings of alphabets that completely represent all 

the characteristics of the solution relevant to the optimization or search. The 

scheme of encrypting individuals as sequences of alphabets is referred to as the 

representation or “encoding” scheme. Different techniques are utilized for 

encoding a candidate solution as binary, gray and real. The decoded value of the 

solution is just the coordinate of the solution in the domain of the objective 

function. In nature, the fitness of an individual is its fitness or competitive edge in 

the environment. In the same way, in a GA the fitness of a solution is indicative of 

the value of the objective function, when it is evaluated at the decoded coordinate 

of the solution. In GA, natural selection occurs by choosing solutions with a 

probability proportional to their relative fitness values by some scheme. 

Recombination and mutation are performed on the encoded representation of the 

selected solutions in a manner analogous to chromosomal crossover and mutation. 

This process of selection and genetic operation is iterated until termination 

criterions are met. In the following, principle components and operators of a 

typical genetic algorithm is described. 
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A. Representation 

The most important component in the GA procedure is the representation 

scheme for coding candidate solutions to a given optimization problem. All the 

solutions need to be represented in some form of genetic code. The most common 

encoding is a string representation where each solution is represented as a one-

dimensional string of numbers or alphabets while other variations are also 

possible [Venkatasubramanian, 1994]. In a string representation, each coordinate 

or element of the string typically represents a component or piece of the candidate 

solution. Most problems in the GA literature use the binary encoding scheme 

where each loci of the string is drawn from a binary alphabet of “0” or “1”. For 

function optimization where the solution space contains real numbers, the 

decoding scheme is generally binary to decimal conversion followed by mapping 

the resulting number into an appropriate domain. Once again, the mapping could 

be linear or exponential depending on scaling. For example, a binary string of the 

form (a0, a1, a2,…,aN-1) of length N is converted to its equivalent real value in its 

domain as follows. 

i
N

i
iaD 2

1

0

×= ∑
−

=

     (2.58) 

For instance, for N = 4 and a binary string (0 1 0 1), the solution is D = 5. 

For multivariate domains, the complete binary representation of a point in 

the domain is obtained by placing the binary encoded string for each of 

coordinates/variables end to end in some predefined order. For example, a three 

dimensional coordinate (x1, x2 x3) with N = 3 for each coordinate could be 

represented (1 0 1 1 1 0 0 0 1) where the first three bits encode x1, the next three 

bits encode x2, and the last three encode x3. One of the drawbacks of the binary 

representation is that the number of bits used scales with the number of variables 

and precision of each variable. A floating point representation overcomes this by 

representing each variable in its negative real coded form. For function 

optimization problems, this gives a transparent and compact representation and 

can be utilized with special operator to handle constraints, [Michalewicz, 1995]. 

However, the drawback here is that specialized operators need to develop for the 

GA to exploit the solution space effectively. 
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B. Initialization 

Initialization refers to the generation of the initial population of candidate 

solutions as well as the choice of some parameters of the population, such as its 

size. The preferred characteristics of an initial population are diversity and 

reasonable levels of fitness values. However, in practice, depending upon the 

application, generating an initial population varies from a random generation to 

careful choosing of candidates based on user’s experience. Sometimes a few 

distinct and diverse solutions are chosen and assigning copies based on their 

fitness values to provide a good string population. In choosing the population size, 

a large population is normally preferred. But this leads to a large computation 

burden. Syswerda [1989] performed experiments with different control parameters 

including population size for the scheduling problem. The essential result is that 

an optimal choice of the population size tends to depend upon the nature of the 

domain, the representation, the evaluation and the genetic operators used. A re-

initialization procedure was used by Goldberg [1989] wherein the GA was 

restarted every few generations with a new population containing the best 

solutions found so far and the remaining, if any, generated randomly. A variation 

of the fixed population size GA is the GA with varying population size (GAVaPS) 

[Arabas, 1994]. In this algorithm, the population is continuously augmented by the 

newly created products of recombination. However, the algorithm has a measure 

of age or lifetime of an individual beyond which the individual “dies’ or is 

removed from the population. This lifetime, instead of the selection probability, is 

set proportional to the fitness of the individual. This means that fitter individuals 

live longer than the rest and the population is controlled by the death rate of the 

individuals. 

C. Fitness evaluation 

Once a population of candidate solutions has been created, it needs to be 

evaluated to determine its fitness in the environment. For an optimization 

problem, the environment is the objective function. Depending on how low (for 

minimization problems) or how high (for maximization problems) the objective 

function value for an individual is, its fitness should have a proportionally low or 

high value. The fitness evaluation procedure normally includes in itself the 

decoding scheme to map the individual from its stream based representation to its 



 94

domain of definition. In cases where the characteristics or a property of interest of 

the optimum is known, the fitness could be a scaled distance of the individual’s 

property from that of the optimum. In some problems, one does not have a single 

objective but several to be optimized simultaneously as well as constraints to be 

satisfied by the solutions. One way of handling multiple objectives is to define a 

new objective function that is a “weighted” sum of all the objectives. Here, the 

choice of the weights can reflect the relative importance of optimizing different 

objectives. To handle constraints in a genetic algorithm, the objective function is 

usually augmented with a penalty term that “weighs” in the feasibility of the 

solution, i.e., if it satisfies all the imposed constrains. This is similar to a 

Lagrangian multiplier often used in nonlinear programming. 

D. Selection 

After all the candidates have been evaluated for their fitness values, the 

next step in the GA is the selection procedure. This involves algorithmic 

imposition of natural selection which enforces the survival of the fittest. The 

selection scheme has to make sure that the fitter individuals in the population are 

allotted more opportunities to reproduce and recombine to produce offspring. To 

this end, two different schemes are normally used.  

a. Roulette Wheel (RW) Selection: In this scheme, once the fitness evaluation 

is completed, the population is sorted (ranked in the ascending order of fitness 

scores) and a running sum of the fitness is calculated for each member starting 

from the first one in the sorted list. The running fitnesses are normalized using 

the cumulative fitness of the entire population. A random number between 0 

and 1 is drawn. The first member of the sorted list (beginning with the 

member with the lowest fitness) whose cumulative fitness is greater than the 

random number is selected. The RW selection scheme with a variable 

probability of selection across generations can also be used [Back, 1993]. 

b. Tournament Selection: In this scheme, a specified number, called the 

“tournament size”, of members are chosen from the parent population and 

these enter competition for selection. The winner is decided based on the best 

fitness and allowed to enter the reproductive phase. This process is repeated 

sufficiently, along with recombination and mutation, to produce the offspring 
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population. This method slightly offsets the effects of a few large fitness 

solutions in the population biasing the selection scheme towards above-

average solutions in general [Goldberg, 1989]. As opposed to the RW 

selection procedure, this is a static selection scheme where the probability of 

selection of a candidate remains fairly constant across generations. 

E. Reproduction  

Once an individual candidate solution has been selected from the current 

population, three basic genetic operators (direct reproduction, crossover and 

mutation) may be applied. The direct reproduction operator directly copies a 

member from the parent population to the next generation. In order to ensure that 

the survival of the fittest principle performs well, a member amongst the better 

fitness values is selected using the selection operator and is copied to some 

member having an inferior fitness value. In the process, the member having an 

inferior fitness value dies in order to make place for the member having a better 

fitness. 

F. Crossover 

Chromosomal crossover refers to the random recombination of parts of 

two chromosomes (the parents) to produce two new chromosomes (the offspring). 

This is a large-scale operator in the sense that it significantly perturbs the 

genotype of the parents. From an optimization viewpoint, the recombination 

operator tends to improve the combinatorial diversity by using the building blocks 

present in the population. In this manner, novel combinations of existing parts are 

discovered that could potentially lead to fitter individuals. The simplest 

abstraction of chromosomal crossover in genetic algorithms is the one point 

crossover. Here, a random cut-point is chosen along the length of the coded 

solution and the two parent chromosomes are split at this point. The tail portion 

(i.e., all the bit positions following the cut-point) of the two parents are exchanged 

to create two offspring chromosomes. Consider a string representation in which a 

“1” at the first position and a “0” at the last position is necessary for good solution 

quality. Consider a string of length L which possesses this feature. One-point 

crossover selects the cut-point with uniform probability. This implies that the 

probability that this feature will be lost is 1.0 when the other parent in question 

does not posses a “1” in the first position or a “0” in the last. Strings with certain 
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positions fixed at certain values (0s or 1s in the binary case) and the rest arbitrarily 

assigned are called schemas and these form the basic building blocks that the GA 

manipulations. The order of the schema refers to the distance or length (in bits) 

between fixed positions in the schema. It is clear from the above example that 

one-point crossover is biased toward lower-order schema, i.e., when the fixed 

positions are closer together. This implies that beneficial characteristics brought 

forth by high order schema are lost more regularly. This characteristic of one-

point crossover is called positional bias [Eshelman et al., 1989]. To overcome this 

drawback, variations of crossover exist in the literature [Syswerda, 1989] and two 

of the common ones are two-point crossover and uniform crossover. In two-point 

crossover, two random cut-points are chosen and the portions of the encoded 

representations of the parents between these cut-points are mutually exchanged. A 

uniform crossover is the generalized form of crossover where chromosomal 

exchanges happen between parents, across multiple (the number chosen 

randomly) cut-points. The recombination operator has a probability associated 

with it which dictates how often it is used. The probability of crossover is 

typically set to a high value (around 99%) for binary coded representation. A 

random number is drawn and whenever it falls below the crossover probability, 

two individuals (selected using one of the selection schemes described in the 

previous section) are allowed to undergo crossover. If the random number test 

fails, the chosen individuals are duplicated and placed in the offspring population. 

G. Mutation 

The recombination operator is handicapped by the fact that it combines 

only what is already present in the population. For instance, let us suppose that all 

individuals in the initial population contain zero in the second bit position of their 

genotype and that any reasonably good genotype should have the value of “1” at 

that position. Applying recombination alone on this population will not lead to 

any genotype with “1” in the second position (assuming we use the above-

mentioned crossover operators). This would eventually lead to convergence of the 

algorithm to a poor local optimum. Hence, to be effective, the GA needs an influx 

of characteristics extraneous to the population. This is provided by the mutation 

operator.  
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Mutation is applied by randomly flipping the bits from zero to one or vice 

versa with a certain probability. For a simple GA using binary encoding, mutation 

is normally applied after crossover and with a low probability (around 1%). This 

is since with high probabilities mutation tends to destroy the good features 

(schema) brought forth by recombination and selection. Mutation is implemented 

by drawing out successive random numbers (corresponding to each bit) and 

flipping the bit whenever the number falls below the mutation probability. 

However, this method offers uniform mutation where there is no distinction 

between the positions of the bits. When applying GAs to optimization in the 

domain of real numbers coded in binary format, non-uniform mutation may 

sometimes be preferred. Under non-uniform mutation, the more significant bits of 

the solution (that cause large changes in the decoded value of the solution) are 

mutated at different probabilities compared to the less significant ones.  

This section describes the implementation and properties of recombination 

and mutation operators. However, the nature and probabilities of the operators 

discussed above is generally valid only for a simple genetic algorithm with binary 

representation. A lot of research has been undertaken to find optimal settings for 

operator probabilities [Grefenstette, 1986] including different adaptive schemes 

[Fogarty, 1989; Srinivas and Patnaik, 1994]. Evolutionary strategies typically use 

several operators and in competition with one another, as opposed to the use of 

mutation after crossover in classical GAs. They may also contain modules to tune 

the operator probabilities dynamically [Davis, 1989; Schwefel, 1984]. The nature 

of these specialized operators is domain dependent and dependent also on the 

representation used. For instance, constrained optimization with real coded 

representation uses specialized operators to ensure that the generated offspring 

satisfy the imposed constraints. Other specialized operators have also been 

constructed depending on the application domain [Syswerda, 1989]. When 

appropriate knowledge is available, heuristic hill-climbing and gradient based 

operators have been used in conjunction with purely stochastic ones [Wright, 

1991; Bhandari, 1994]. 

H. Pros and cons of genetic algorithms 

In contrast to more traditional numerical techniques, which iteratively 

refine a single solution vector as they search for optima in a multi-dimensional 
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landscape, genetic algorithms operate on entire populations of candidate solutions 

in parallel. In fact, the parallel nature of a GA’s stochastic search is one of the 

main strengths of the genetic approach. This parallel nature implies that GAs are 

much more likely to locate a global peak than traditional techniques, because they 

are much less likely to get stuck at local optima. In addition, due to the parallel 

nature of the stochastic search, the performance is much less sensitive to initial 

conditions, and hence and GA’s convergence time is rather predictable. In fact, 

the problem of finding a local optimum is greatly minimized because GAs, in 

effect, make hundreds, or even thousands, of initial guesses. This implies that a 

GA’s performance is at least as good as a purely random search. In fact, by simply 

seeding an initial population and stopping there, a GA without any evolutionary 

progression is essentially a Monte Carlo simulation.  

As appealing as a GA may seem, the parallel nature of the stochastic 

search is not without consequences. Although the prospects of finding global 

optima make it robust, the convergence of a GA is usually slower than traditional 

optimization techniques. In fact, with a good initial guess close to the global 

optimum, a numerical technique will likely be much faster, and more accurate, 

than a genetic search because, in essence, the GA will be wasting time testing the 

fitness of sub-optimal solutions. Furthermore, due to the stochastic nature of GAs, 

the solution, although more likely to estimate the global optimum, will only be an 

estimate. It must be realized that GAs will only by chance find an exact optimum, 

whereas traditional gradient methods will find it exactly, assuming, of course, they 

find it at all. The user must then determine whether the solution found by a GA is 

close enough. In many cases, it will be, but the question of ‘How close is close 

enough?’ is somewhat arbitrary and application-dependent. 

I. Real coded genetic algorithm 

 Binary coded strings for the representation solution have dominated GA 

research since there are theoretical results that show them to be the most 

appropriate ones [Goldberg, 1991a], and as they are amenable to simple 

implementation. However, the GA’s good properties do not stem from the use of a 

bit string [Antonisse, 1989]. For this reason, the path has been laid toward the use 

of non-binary representations more adequate for each particular application 

problem. One of the most important representation is real number representations, 
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which would seem particularly natural when optimization problems with variables 

in continuous search space are tackled. Therefore, a chromosome is a vector of 

floating point numbers whose size is kept the same as the length of the vector, 

which is the solution to the problem. GAs based on the real number representation 

is called real-coded GAs (RCGAs). The use of real coding initially appears in 

specific applications, such as in [Lucasius et al., 1989] for chemometric problems, 

and in Davis [1989] for the use of meta operators in order to find the most 

adequate parameters for a standard GA. Subsequently, RCGAs have been mainly 

used for numerical optimization on continuous domains [Write, 1991; 

Michalewicz, 1992].  

 The use of real parameters makes it possible to use large domains (even 

unknown domains) for the decision variables, which is difficult to achieve in 

binary implementations where increasing the domain would mean sacrificing 

precision, assuming a fixed length for the chromosomes. Also, when using real 

parameters, the capacity to exploit the graduality of the function with continuous 

variables, where the concept of graduality refers to the fact that, slight changes in 

the objective the variables correspond to a slight change in the objective function. 

Using real coding the representation of the solutions is very close to the natural 

formulation of many problems. Most real-world problems may not be handled 

using binary representations and an operator set consisting only of binary 

crossover and binary mutation  [Davis, 1989]. The reason is that nearly every real-

world domain has associated domain knowledge that is of use when one is 

considering a transformation of a solution in the domain. Davis [1989] believes 

that the real-world knowledge should be incorporated into the GA, by adding it to 

the decoding process or expanding the operator set. Real coding allows the 

domain knowledge to be easily integrated into the RCGA for the case of problem 

with non-trivial restrictions. 

 Since the basic string of GA is coded in real numbers in RCGAs, crossover 

and mutation operators need to be reformulated. Few of them are listed below. 
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J. Crossover operators for RCGAs 

 Let us assume that C1 = (c1,1,c2,1,…,cn,1) and C2 = (c1,2,c2,2,…,cn,2) are two 

chromosomes that have been selected to apply the crossover operator. 

(i) Simple crossover [Write, 1991; Michalewicz, 1992]: 

A position { }1,...,2,1 −∈ ni  is randomly chosen and the two new 

chromosomes (offsprings) are build as shown below. 

C1
new = (c1,1,c2,1,…,ci,1, ci+1,2,…, cn,2)     (2.59) 

C2
new = (c1,2,c2,2,…, ci,2, ci+1,1,…,cn,1)    (2.60) 

(ii) Arithmetic crossover [Michalewicz, 1992]: 

Two offspring, Ck
new = (c1,k,…, ci,k,…,cn,k) k = 1,2, are generated, where ci,1 

= λ ci,1 + (1 - λ) ci,2 and ci,2 = λ ci,2 + (1 - λ) ci,1. λ is a constant (uniform 

arithmetical crossover) or varies with regard to the number of generations 

made (non-uniform arithmetic crossover). 

K. Mutation operators for RCGAs 

Let us suppose C = (c1, c2,…, cn) is a chromosome and [ ]iii bac ,∈  a gene 

to be mutated. Next, the gene, ci
new, resulting from the application of different 

mutation operator is shown below. 

(i) Random mutation [Michalewicz, 1992]: 

ci
new is a random (uniform) number from the domain [ ]ii ba , . 

(ii) Non-uniform mutation [Michalewicz, 1992]: 

If this operator is applied in a generation t, and gmax is the maximum number 

of generations then 

  ci
new = 
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where r is a random number from the interval [0,1] and b is a parameter 

chosen by the user, which determines the degree of dependency on the 

number of iterations. This function gives a value in the range [0, y] such that 

the probability of returning a number close to zero increases as the algorithm 

advances. The size of the gene generation be lower with the passing of 

generations. This property causes this operator to make a uniform search in 

the initial space when t is small, and very locally at a later stage, favoring 

local tuning. 

 

In short, the principle features possessed by GAs are as follows: 

(i) They require only scalar values and not the second and/or first order 

derivatives of the objective functions, thus they are not numerically 

expensive; 

(ii) GAs are capable of handling nonlinear and noisy objective functions; 

(iii) GAs perform global searches and thus are more likely to arrive at or near 

the global optimum; 

(iv)  They do not impose preconditions, such as smoothness, differentiability and 

continuity on the form of the objective functions. 

 

2.4.4 Memetic Algorithm 

Although used widely, the principle drawback of GAs is that since the 

formalism performs a global search of the solution space, it can take a long time to 

converge even if the optimal solution lies in the neighborhood of a candidate 

solution. A genetic algorithm related methodology that overcomes the stated 

problem is known as “Memetic algorithms (MAs)” [Moscato, 1992, 1999]. The 

most attractive feature of MA, which makes it efficient nonlinear optimization 

formalism, is that it combines a local search heuristics with the population-based 

global search conducted by the GAs. This feature helps in significantly speeding 

up the convergence to the optimal solution. 

The MA likewise, GA based on the concept of evolution. However, 

whereas the GA models the biological evolution, the MA models the cultural 
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evolution or the evolution of ideas [Moscato, 1999]. The principle difference 

between this model and the biological model is that an idea can be improved upon 

or modified by its owner. This improvement is obtained by incorporating a local 

search mechanism into the global search conducted by the genetic algorithm. A 

unit of chromosome in the memetic approach is referred to as a meme rather than 

a gene, as referred to in the GA approach. For searching the solution space locally, 

the Tabu search algorithm has been employed and thereby assisting in escaping 

local minima and visiting promising neighborhood solutions. The basic concept of 

Tabu Search as described by Glover [Glover, 1989, 1990] is “a meta-heuristic 

superimposed on another heuristic”. It aims at avoiding entrainment in cycles by 

forbidding or penalizing those moves, which in the subsequent iteration explore 

those points (solutions) in the solution space that were visited previously (hence 

the name "Tabu"). A stepwise procedure for the MA is described as follows: 

1. Initialize candidate solution population randomly (Generation index, Gen = 0) 

2. Perform the global search (as in GAs) as follows. 

(a) Evaluate fitness of all the solutions using a fitness function and rank the 

solutions in the decreasing order of the fitness scores. 

(b) Select pairs of parent solutions with high fitness randomly. 

(c) Perform crossover between parents strings. 

(d) Perform mutation over crossed-over strings. 

3. Perform a local search on the candidate solution population obtained from the 

global search as follows. 

(a) Perturb each candidate solution to obtain a pre-specified number of 

neighborhood solutions. 

(b) Select the best solution in the neighborhood.  

(c) Discard the best solution if already present in the Tabu list (this list 

contains a fraction of the candidate solutions visited in the past). 

(d) Apply the aspiration criterion to the discarded solution, and accept the 

solution if it obeys the aspiration criterion. 
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(e)  GOTO (a) until the termination criteria is not satisfied for local search. 

4. Increase generation index: Gen = Gen + 1. 

5. Check for convergence. 

(i) If converged (that is fitness score of the best solution no longer increases 

substantially or the algorithm has performed a fixed number of iterations), 

then stop. 

(ii) If not then go to step 2. 

6. Solution with the highest fitness score is the optimal solution. 

Applying a local search in the vicinity of a candidate solution assists in 

locating promising solutions in the neighborhood and thereby substantially 

improving the convergence speed of an MA for multimodal problems. To design 

an efficient search algorithm, the application of Tabu should be carefully 

considered [Lin et al., 2004]. If we want to efficiently utilize the global search 

ability of an MA, then we must reduce the computation time spent in the Tabu-

based local search. This can be realized by restricting the number of neighborhood 

solutions examined by the local search procedure. 

 

2.5 DIMENSIONALITY REDUCTION FORMALISMS 

 Huge amounts of data comprising values of operating and output variables 

is generated and archived continuously during a typical process operation. These 

data inherently contain instrumental and measurement noise. Thus, it becomes 

necessary to treat/preprocess the data with a view to reducing their dimensionality. 

Dimensionality reduction, apart from generating noise-free data also helps in 

constructing parsimonious process models possessing an excellent generalization 

capability.  

 The most widely used dimensionality reduction technique is Principle 

Component Analysis (PCA). Being a linear technique, PCA fails to capture 

nonlinear correlations that are frequently present among real life process data. To 

overcome this problem a number of novel nonlinear dimensionality reduction 

techniques have been recently introduced [Tenenbaum et. al., 2000]; these are: 
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• AANN (Auto-associative Neural Network) 

• SAMMANS Mapping and SAM-ANN 

• CCA (Curvilinear Component Analysis) 

• LLE (locally linear embedding) 
 

2.5.1 Principle Component Analysis 

The PCA method [Geladi and Kowalski, 1986] extracts linear relationships 

existing among the variables of a data set. PCA was first introduced in statistics 

by Pearson [1986], who formulated the analysis as finding “lines and planes of 

closest fit to systems of points in space”. PCA was briefly mentioned by Fisher 

and MacKenzie [Fisher and MacKenzie, 1923] as more suitable than analysis of 

variance for the modeling of response data. Fisher and MacKenzie also outlined 

the nonlinear iterative partial least squares (NIPALS) algorithm, later rediscovered 

by Wold [Wold, 1966]. Hotelling [Hotelling, 1933] further developed PCA to its 

present stage. The PCA decomposes a single data set comprising measurements of 

linearly correlated variables into a transformed variable set defining the 

eigenvectors of the covariance of the data and the associated parameters. In 

essence, PCA generates a set of pseudo-measurements (called ‘scores’ or ‘latent 

variables’), which are linearly independent (uncorrelated). The important feature 

of the PCA is that successive latent variables capture decreasing amount of 

variability in the data.  

 To illustrate the PCA method, consider a two dimensional matrix, X(I,J), 

defining I measurements of J variables. The PCA decomposes, X, into matrices of 

latent variables and the corresponding parameters (known also as “loadings”) as 

given by: 

X = TP’ + E     (2.63) 

where, matrix X is assumed to be mean-centered (mean = 0) and variance-scaled 

(i.e. the standard deviation of elements of each column is unity); T (I,J) denotes 

the matrix of J principal component (PC) scores (each column of matrix T 

signifies a principal component); P’ refers to the transpose of the loading matrix, 

P(J,J), and E denotes the residuals. In the event of linearly correlated variables, 
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first R principle component scores capture a large amount of variance in the data, 

and thus Eq. (1.63) can be rewritten as  

    
1

 = ( ) ' '
R

r r
r

X t p E
=

+∑                                          (2.64) 

where, tr denotes the I-dimensional rth score vector; pr refers to the transpose of 

the rth J- dimensional loading vector, pr, and E′  denotes the residual matrix. It 

can be seen from Eq. (2.64) that the original (I×J) dimensional data matrix, X, can 

now be represented in terms of R number of I-dimensional score vectors. Since R 

is smaller than J, the original data can be represented in terms of a smaller matrix. 

The sum of squares of elements of a score vector (tr) is related to the eigenvalue 

(also known as “trace”) of that vector and it serves as a measure of the variance 

captured by the rth principle component. It thus follows that larger the magnitude 

of trace, more significant is the respective principal component. 

 

2.5.2 Curvilinear Component Analysis 

Curvilinear component analysis (CCA) was proposed by Demartines and 

Herault [1995] as an improvement to the Kohonen self-organizing maps 

[Kohonen, 1989] (also see Section 2.3.2); the output is not a fixed lattice but a 

continuous space able to take the shape of the submanifold. As it turns out, the 

projection part of CCA is similar in its goal to other nonlinear mapping methods, 

such as multidimensional scaling (MDS) [Shepard et al., 1965] and Sammon’s 

nonlinear mapping (NLM) [Sammon, 1969], in that it minimizes a cost function 

based on the inter-point distances in both input and output spaces. The primary 

objective of CCA is to generate a revealing representation of the original data in a 

lower dimensional feature space so as to prepare a foundation for the further 

clustering of the input data [Demartines et al., 1997]. The CCA operates on the 

principle of preserving distances in its input and output (projected) spaces. That is, 

all the possible distances between points in the input space are expected to match 

the corresponding distances between the points in the reduced dimensional 

projected space. However, in the case of nonlinearly correlated input data, it may 

not be possible to preserve distances of large magnitudes since the task 

necessitates unfolding of the manifold to effect dimensionality reduction in the 
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projected space. This difficulty can be addressed by preserving at least smaller 

(i.e. local) distances, which then leads to stretching of the larger distances (known 

as “global unfolding”). For achieving the preservation of local distances, the CCA 

employs a neighborhood function, which fulfills the condition of preservation of 

smaller distances, while relaxing the condition for larger distances [Buchala et al., 

2004].  

 

 

Figure 2.15: A schematic of the CCA network 

 

The CCA can be considered as a self-organizing neural network (see Figure 

2.15) that performs two tasks: (i) vector quantization (VQ) of the submanifold in 

the data set (input space), and (ii) nonlinearly projecting the quantized vectors 

onto the output space. A vector quantizer maps n-dimensional vectors in the 

vector space, nℜ , into a finite set of vectors thereby reducing the original data set 

to a smaller but still representative set to work with. After training, the CCA 

network has the ability of generalization owing to which it can continuously map 

any new point in the forward or backward direction. The CCA as shown in Figure 

2.15 performs the VQ and nonlinear projection tasks separately using two layers 

of connections. The first network layer performs vector quantization on the data 

set and the second layer (known as the “projection layer”) conducts topographic 

mapping of the quantized vectors. The projection layer is a free space, which takes 

x1, x2,…, xn y1, y2,…, yp

 

High-dimensional 
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feature space 
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the shape of the submanifold of the data [Buchala et al., 2004]. The principal 

advantages of the CCA method over other dimensionality reduction algorithms are 

as follows [Demartines et al., 1997]: 

(i) It uses a new cost function that enables unfolding of strongly nonlinear or 

even closed structures.  

(ii) The cost function allows selection of the scale at which the unfolding of 

the submanifold is performed. 

(iii) Significantly faster as compared to other nonlinear feature extraction 

formalisms owing to a new implementation method that necessitates 

computation of only a few distances. 

(iv) It allows interactivity whereby the user has control over the minimized 

function itself – specifically on the scale at which the distances have to be 

preferably respected.  

 

  The training algorithm for the CCA network was proposed as an 

improvement to the Kohonen’s self-organizing map (refer Section 2.3.2) wherein 

the output is not a fixed lattice but a continuous space capable of taking the shape 

of the manifolds of the input data. In what follows the procedural details of CCA 

training are described. 

Let {xi}; i = 1, 2,…, N, be the set of data vectors (xi = [xi1, xi2,..., xin]T) in 

an n-dimensional input space, and {yi} be the corresponding vectors (yi = [yi1, 

yi2,..., yip]T) in the p-dimensional (p < n) feature space. Accordingly, each of the n 

neurons (processing elements) in the CCA network has two weight vectors xi and 

yi associated with it. During training of the network, the processing elements 

(PEs) in the first layer force the input vectors to become the prototypes of the 

distribution using any standard vector quantization methods [Ahalt et al., 1990]. 

The output layer PEs are required to construct a nonlinear mapping of the input 

vectors. This objective is fulfilled by minimizing the structure differences between 

the quantized and output spaces. The structure differences can be described in 

terms of the Euclidean distances and the corresponding quadratic cost function (E) 

to be minimized for reducing the data dimensionality from n to p is given as,  

[ ] ( )∑∑
≠

−=
i ij

yijijij YFYXE λ,
2
1 2                                               (2.65) 
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where, Xij = d(xi, xj) describes the Euclidean distance between vectors xi and xj, 

and Yij = d(yi, yj) refers to the corresponding distance in the output space. The 

objective of minimizing E is to force Yij to match Xij for each possible vector pair 

(i, j). Since, a perfect match between Xij and Yij is not possible while mapping to a 

lower dimensional space, a weighting function ( )yijYF λ, is used to favor the 

conservation of the local topology. For preserving this topology, a bounded and 

monotonically decreasing weighting function such as the decreasing exponential 

or sigmoid function is commonly chosen. The weighting function assigns greater 

weightage to points lying closer in the output space. 

In the beginning, the set of p-dimensional output vectors, {yi}, are 

initialized randomly to small magnitudes. The minimization of E with respect to 

the vectors, yi, is performed by following the procedure outlined by Demartines et 

al. [1997]. This procedure temporarily fixes one of the yi vectors and moves all the 

other yj vectors around it without a concern to the interactions among the yi 

vectors. The updating rule for a yj vector to effect minimization of E is given as 

[for the detailed discussion see Demartines et al., 1997]: 

( ) ( ) ( ) ( ) ( )( ) ij
Y

YXYFtEtEti
ij

ij
ijijyijijjijij ≠∀

−
−=∇−=∇=Δ ,,

yy
y λααα   (2.66) 

where, i refers to the index of a randomly chosen vector; iji E∇  represents the 

gradient of E with respect to yi, and ( )
)1(

0

t
t

+
=

α
α  denotes the learning rate that 

decreases with time and yλ  is a constant that signifies the neighborhood criteria. 

The optimized yj-updation rule in Eq. (2.66) is numerically efficient, and its 

implementation results in the output vectors eventually converging to L number of 

prototypes ( ∗i
y , i = 1, 2,…, L) in a certain number (<100) of training iterations. 

The CCA training algorithm can now be briefly summarized as: 

Step 1: Initialize Yij in the projected space by using the linear PCA. 

Step 2: Compute Euclidean distances d(xi, xj) in the input space. 

Step 3: Compute distances d(yi, yj) in the projected space. 
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Step 4: Update all the projected vectors according to the equation (Eq. 

2.66). 

Step 5: Decrease the value of λy with the iteration index, t. 

Step 6: Repeat steps 3-5 until the change, Δyj(i), in the projected space is 

less than a pre-specified threshold or the maximum number of 

iterations (tmax) is reached.  

The CCA is an efficient nonlinear dimensionality reduction technique 

although other formalisms such as the SOM are necessary for classification and 

projection if the dimensionality of the projected space is very high (>3).  

 

2.5.3 Autoassociative Neural Networks 

The autoassociative neural network (AANN) is an efficient nonlinear 

principle component analysis formalism [Kramer, 1991, 1992; Leonard and 

Kramer, 1993; Kuespert and McAvoy, 1994]. It performs auto-association and in 

this process also conducts nonlinear feature extraction and dimensionality 

reduction of a multivariable data set. In auto-association, an input-output 

nonlinear mapping is performed in a manner such that the desired output of the 

network is same as its input. The AANN conducts the auto-association in a novel 

manner whereby the input information is initially compressed using a small 

number of hidden layer neurons, following which decompression of the 

compressed information is effected. This way, an AANN yields as its output, an 

approximation of its input. Unlike the widely employed three-layered MLP neural 

network, an AANN (see Figure 2.16) comprises five layers namely input, 

mapping, bottleneck, demapping and output layers. This network architecture 

performing nonlinear identity mapping from a J-dimensional input space to the J-

dimensional output space can also be viewed as a hybrid of two MLP networks, 

each with a single hidden layer. The first MLP network (known as “compression” 

network) (Figure 2.17a) consists of the input, mapping and bottleneck layers, 

respectively, while the second network (known as “decompression” network) 

(Figure 2.17b) consists of input, demapping and output layers. The input to the 

first network (rows of matrix, X) is known, whereas its output is unknown. In 
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contrast, for the second network, the input is unknown but the output is known. 

These two networks are combined in a manner such that the output of the first 

network is the input to the second one. Typically, the number of nodes (NH2) in 

the bottleneck layer is much smaller than the number of input and mapping layer 

nodes. In an AANN, the outputs of nodes in the bottleneck layer represent the 

nonlinear principal components. As its name signifies, the compression network 

performs compression of an input vector, x, and this compressed version forms the 

output of the bottleneck layer nodes. The second network accepts (as its input) the 

output from the bottleneck layer and decompresses it so as to produce an 

approximation of the vector, x, at the output layer nodes.  

The commonly utilized method for training an AANN is the error-back-

propagation algorithm [Rumelhart et al., 1986]. The AANN is trained to obtain an 

identity mapping, which involves adjusting the network weights in a manner such 

that the network outputs become identical to the inputs. A small error between the 

input and its reconstruction (AANN output) ensures that the output from the 

bottleneck layer contains a compact representation of the input data set. In order to 

uncover nonlinearities between the input data variables, the neurons in the 

mapping and demapping layers should use a nonlinear transfer function such as 

the logistic sigmoid.  

 

 

 

 

 

 

 

 

  

Figure 2.16: The schematic representation of architecture of AANN 
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The number of nodes in the mapping and demapping layers of an AANN 

are problem-dependent and require a heuristic optimization. However, too many 

nodes in these layers may lead to an over-fitted network owing to which it may 

not generalize well. Thus, the same precautions as outlined for the three-layered 

MLP network (see Section 2.2.1) must be exercised while creating an optimal 

AANN. Apart from their use in dimensionality reduction and extraction of non-

linear principal components, the AANNs can also be utilized for denoising of 

input vectors [Kuespert and McAvoy, 1994]. 

 

Figure 2.17: Compression and decompression networks performing: (a) mapping, 
and (b) de-mapping of the input data 

 

Two approaches are possible for extracting the nonlinear principal 

components (PCs) using an AANN. In the first approach, known as “simultaneous 

extraction,” the AANN training is conducted by taking as many nodes in the 

bottle-neck layer as the desired number of nonlinear PCs. Thus, a single AANN 

extracts all the desired number of nonlinear PCs. However, this method though 

effective for dimensionality reduction, the nonlinear PCs that it extracts could still 

be correlated. To minimize the correlation existing between the nonlinear PCs, the 

second approach known as “sequential extraction” is used. In this approach, the 
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number of nodes in the bottleneck layer always equals one. The corresponding 

NLPCA procedure involves sequential training of several AANNs (each with a 

single bottle-neck node) extracting only one nonlinear PC at a time. Here, the first 

AANN is trained to obtain the first nonlinear PC; the residual matrix, formed by 

the difference between the input and the output of the first AANN is then used to 

train the second AANN to obtain the second nonlinear PC and so on. Thus, the 

sequential extraction approach requires training a number of AANNs equal to the 

desired number of nonlinear principal components. In this method, each AANN 

extracts a different feature in the input data. As a result, nonlinear PCs obtained by 

this method are expected to be less correlated and more orthogonal to each other 

than the PCs given by the simultaneous extraction method.  

 

2.5.4 Locally Linear Embedding 

Dimensionality reduction by locally linear embedding (LLE) [Roweis and 

Saul, 2000] involves identifying the underlying structure of the manifold, while 

projections of the data by PCA map faraway data points to nearby points in the 

plane. Similar to PCA, the LLE algorithm is simple to implement, and its 

optimization does not involve local minima while at the same time it is capable of 

generating highly nonlinear embeddings. The LLE algorithm is based on simple 

geometric intuitions. Consider a dataset consisting of N real-valued vectors Xi, 

each of dimensionality D, sampled from some smooth underlying manifold. 

Provided that there exist sufficient data so that the manifold is well-sampled, it is 

expected that each data point and its neighbors lie on or close to a locally linear 

patch of the manifold. Thus, it is possible to characterize the local geometry of 

these patches by linear coefficients that reconstruct each data point from its 

neighbors. The simplest LLE formulation identifies K nearest neighbors per data 

point, as measured by the Euclidean distance; neighbors are identified by choosing 

all points within a ball of fixed radius. Reconstruction errors are then measured by 

the cost function:  

                                   2||)( ∑∑ −=
j

jij
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i XWXWC                      (2.67) 
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This adds up the squared distances between all the data points and their 

reconstructions. The weights Wij represent the contribution of the jth data point to 

the ith reconstruction. To compute the weights Wij, the cost function  C(W), is 

minimized subject to two constraints: (i) that each data point Xi is reconstructed 

only from its neighbors, which forces Wij  = 0 if Xj does not belong to this set and,  

( ii ) that the rows of the weight matrix sum to one i.e. ,  ΣWij =1. The optimal 

weights Wij subject to these constraints are found by solving a least squares 

minimization problem. 

Consider that the data lie on or near a smooth nonlinear manifold of 

dimensionality d << D. Then, assuming good approximation, there exists a linear 

mapping—comprising a translation, rotation, and rescaling—that maps the high 

dimensional coordinates of each neighborhood to global internal coordinates on 

the manifold. According to the design reconstruction, weights Wij, reflect intrinsic 

geometric properties of the data that are invariant exactly to such transformations. 

Hence, their characterization of local geometry in the original data space should 

be equally valid for local patches on the manifold. Specifically, the same weights 

Wij that reconstruct the ith data point in D dimensions should also reconstruct its 

embedded manifold coordinates in d dimensions. The LLE essentially constructs a 

neighborhood-preserving mapping based on the above idea. In the final step of the 

algorithm, each high dimensional observation Xi is mapped to a low dimensional 

vector Yi representing global internal coordinates on the manifold. This is done by 

choosing d-dimensional coordinates Yi to minimize the embedding cost function: 

                                             2||)( ∑∑ −=φ
j

jij
i

i YWYY                          (2.68) 

Similar to the cost function in Eq. (2.67), this cost function is based on locally 

linear reconstruction errors, however here the weights, Wij are fixed while 

optimizing the coordinates Yi. The embedding cost in Eq. (2.68) defines a 

quadratic form involving vectors Yi. Subject to the constraints which make the 

problem well- posed, the cost function can be minimized by solving a sparse (N ×  

N) eigenvector problem, whose bottom d non-zero eigenvectors provide an 

ordered set of orthogonal coordinates centered on the origin. While the 

reconstruction weights for each data point are computed from its local 

neighborhood—independent of the weights for other data points—the embedding 
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coordinates are computed by an (N × N) eigen solver, which is a global operation 

that couples all data points in connected components of the graph defined by the 

weight matrix. The different dimensions in the embedding space can be computed 

successively which is performed simply by computing the bottom eigenvectors 

from Eq. (2.68) one at a time. However, the computation is always coupled across 

data points. In this manner, the algorithm leverages overlapping local information 

to discover the underlying global structure.  

Implementation of the LLE algorithm is fairly straightforward, since the 

algorithm has only one free parameter namely the number of neighbors per data 

point (K). Once neighbors are chosen, the optimal weights Wij and coordinates Yi 

are computed by the standard linear algebra methods. The algorithm involves a 

single pass through the three steps detailed below and finds the global minima of 

the reconstruction and embedding costs in Eqs. (2.67) and (2.68). In an event 

when the neighbors outnumber the input dimensionality (K>D), the least squares 

problem for finding the weights does not possess a unique solution. In such cases, 

a regularization term—for instance, one that penalizes the squared magnitudes of 

the weights—must be added to the reconstruction cost. This is done by adding 

regularization parameter to the algorithm to break the degeneracy. For simplicity 

of the algorithm, the parameter is set to a constant value or it is set automatically. 

LLE algorithm: 

(1) Compute the neighbors of each data point, Xi;  

(2) Compute the weights Wij that best reconstruct each data point Xi from its 

neighbors, minimizing the cost in Eq. (2.67) by constrained linear fits;  

(3) Compute the vectors Yi that best reconstructed by the weights Wij, 

minimizing the quadratic form in Eq. (2.68) by its bottom nonzero 

eigenvectors.  

 

2.5.5 Sammon’s Mapping and ANN-based Sammon’s Mapping 

 The Sammon’s mapping (SM) is a multidimensional-scaling (MDS) based 

useful tool in nonlinear pattern recognition practice [Sammon, 1969]. It maps a 

dataset of dimensionality D, onto a non-linear subspace of d dimensions (where d 
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< D), preserving as well as possible the inter-pattern distances. The SM is often 

used to visualize high-dimensional data in two or three dimensions although it can 

be used to map a high-dimensional dataset to any low-dimensional space, i.e. the 

output is not restricted to only two or three dimensions. The SM algorithm 

performs a mapping to a d-dimensional space by minimizing the following error 

function (also known as “Sammon’s stress”, ESAM): 
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where, dij (Dij) refers to the distance between two points xi and xj (i ≠ j) in the low 

(high) dimensional space.  

Equation (2.69) expresses how well the distances in the output space (i.e., 

d-dimensional) fit the distances in the original D-dimensional input space, giving 

more weightage to the small distances. Minimization of ESAM is performed by 

using a classical gradient descent technique, in which a search is conducted in the 

direction opposite of the gradient of ESAM(X).  

A. Gradient decent algorithm of Sammon’s Mapping 

1. Define an initial configuration X(0). at iteration t: 

2. Compute the distances dij for the current configuration X(t), one such 

refinement will be required. 

3. ∇ ESAM : gradient vector of function ESAM(X), evaluated at X: 
( )( ) , ( 1)k r

E XE k d r
xμ

μ∂
∇ = = − +

∂
; k = 1,2,…,Nd     (2.70)  

4. X(t+1) is obtained by:  ( ) ( ) ( ) ( )1 ,t t tX X t Eα+ = − ∇     (2.71) 

5. STOP if ESAM has converged, else GOTO step 2.  

 

A significant disadvantage of Sammon’s mapping algorithm is that it can 

not be generalized to yield a mapping of new or previously unseen data points. 

That is, when a new point has to be mapped, the entire mapping exercise must be 

repeated. To overcome this drawback, Mao and Jain [1995] proposed the artificial 

neural network (ANN) based algorithm known as SAMANN for Sammon’s 

mapping. In this paradigm, a feed-forward neural network such as the multi-layer 
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perceptron (see Section 2.2.1) with an unsupervised learning rule is utilized to 

minimize the Sammon’s stress. Once trained properly, the SAMANN weight 

parameters can be used to perform dimensionality reduction and feature extraction 

of newer/unseen data. 

B. ANN-based implementation of Sammon’s mapping (SAMANN) 

The basic principle underlying SAMANN is the usage of a feed-forward 

artificial neural network (FFNN) to interpolate and extrapolate the Sammon’s 

mapping, for overcoming the associated generalization problem. In the study by 

Mao and Jain [1995], a specific back-propagation like learning algorithm 

(SAMANN) is developed to allow a standard FFNN to learn the Sammon’s 

mapping in an unsupervised way (see Figure 2.18). In each learning step, two 

points (xi, xj) are presented to the SAMANN and the outputs of each neuron are 

stored for both points. The distance between SAMANN’s output vectors is 

evaluated and an error measure can be defined in terms of this distance and the 

distance between the points in the original D-dimensional input space. From this 

error measure, a weight update rule can be derived for its minimization. Since no 

output examples are necessary, this is an unsupervised training algorithm. 

Let x = (x1, x2,…,xD) be a D-dimensional input vector. We denote the 

output of the jth unit in SAMANN’s layer, l, by yj
(l), j =1, 2,….nl, l = 1, 2,…,L, 

where nl is the number of units in layer l, L is the number of layers, and yj
(0) = xj, j 

=1, 2,…D. The weight on connection between unit i in SAMANN’s layer l -1, and 

unit j in layer l, is represented by wij
(l). We denote w0j

(l) as the bias for the jth unit 

in the lth layer and y0
(l) = 1.0. The sigmoid activation function, g(h), whose range is 

(0.0,1.0) is used for each unit, where h is the weighted sum of all the inputs to the 

units. Thus, the output of the jth unit in layer l can be written as 

( ) ( ) ( )1
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l l l
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i
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where i and j are the two pattern indices. For simplicity we denote input 

vectors xi and xj as μ and ν, respectively. 
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Figure 2.18: SAMANN Architecture 
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where, λ̂  is independent of the network and can be computed before hand. The 

error function is defined as, 
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Note that the Eµν is proportional to the interpattern distance changes between the 

patterns µ and ν, due to the projection from the D-dimensional feature space to the 

d-dimensional projected space. Therefore, Eµν is more appropriate for the pattern-

by-pattern based weight updating rules. The updating rule has been derived for the 

multilayer feed-forward neural network, which minimizes the Sammon’s stress 

based on the gradient descent method. For the output layer (l = L): 

( ) ( )
( )

( ) ( ) ( )
( ) ( )

( )
,

.
,

jk

L L
k k

L LL L
jkk k

y yE E d
dw wy y

μν μν μ νμ ν
μ ν μ ν
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   (2.77) 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ), ,
, 2

, ,
L L L

k k k

D d
y y

D d
μ ν μ ν

δ μ ν λ μ ν
μ ν μ ν

− ⎡ ⎤= − −⎣ ⎦
    (2.78) 

and, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), 1
k

L L L L
jk k ky yμ δ μ ν μ μ⎡ ⎤Δ = −⎣ ⎦       (2.79) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), 1
k

L L L L
jk k ky yν δ μ ν ν ν⎡ ⎤Δ = −⎣ ⎦

      (2.80) 

where ( ) ( ),L
kδ μ ν  is the change in the output scales by the normalized interpattern 

distance change when patterns µ and ν are presented to network. As will be seen 

later, ( )L
jk μΔ  and  ( )L

jk νΔ  are back-propagated to the layer (L-1). 

 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 .L L L L
jk j jk jL

jk

E
y y

w
μν μ ν ν ν− −∂

= Δ − Δ
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     (2.81) 

The updating rule for the output layer is  

( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )11L L L LL
jk jk j jk jL

jk

E
w y y

w
μνη η μ μ ν ν−−∂

Δ = − = − Δ − Δ
∂

    (2.82) 

where η is the learning rate. Similarly, we can obtain the general weight updating 

rules for all the hidden layers, 1, , 1l L= −L   
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where,  ( ) ( ) ( ) ( ) ( ) ( )1l ll l
ij j j jy yμ δ μ μ μ⎡ ⎤Δ = −⎣ ⎦

                   (2.84) 

  ( ) ( ) ( ) ( ) ( ) ( )1l ll l
ij j j jy yν δ ν ν ν⎡ ⎤Δ = −⎣ ⎦                 (2. 85) 

and,            ( ) ( ) ( ) ( ) ( )1 1

1

m
l l l

j jk jk
k

wδ μ μ+ +

=

= Δ∑                 (2.86) 

            ( ) ( ) ( ) ( ) ( )1 1

1

m
l l l

j jk jk
k

wδ ν ν+ +

=

= Δ∑                 (2.87) 

Analogous to the standard back-propagation learning algorithm, ( ) ( )l
jδ μ  and ( ) ( )l

jδ ν  

are changes in layer l back-propagated from its successive layer, l +1, for patterns 

µ and pattern ν, respectively. As can be seen from equations (2.82) and (2.83), to 

update weights, we need to present a pair of patterns to the network instead of one 

pattern at a time as in the standard back-propagation learning algorithm. To do 

this, we can either build two identical networks or just store all the outputs of the 

first pattern before we store the second pattern. In order to improve the 

convergence speed and to reduce the possibility of entrapment into a local 

minimum, a momentum term similar to the standard back-propagation algorithm 

[Rumelhart et al., 1986] can be added to the weight updation equations (2.82) and 

(2.83). 

 

SAMANN unsupervised back propagation algorithm 

1. Initialize weights randomly in the SAMANN network 

2. Select a pair of input pattern randomly and present them to the network 

one at a time; evaluate the network in a feed-forward fashion. 

3. Updates weights using (1.86) and (1.87) in the usual back-propagation 

fashion beginning with the output layer weights. 

4. Repeat steps (2) - (3) a large number of times. 

5. Present  all the patterns in the training set and evaluate the output of the 

network; compute Sammon’s stress and check convergence; if the value of 

Sammon’s stress is below a pre-specified threshold or the number of 
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iterations (over steps 2-5) exceeds the prespecified maximum number, then 

STOP; else go to step 2.    

 

The number of hidden layers and the number of neurons in each hidden 

layer in the multilayer SAMANN should be chosen heuristically albeit 

judiciously. To achieve the representation power of the Sammon’s algorithm, a 

network with at least d×N free parameters should be used, where d×N is the 

number of variables in Sammon’s algorithm. Thus, d×N becomes a lower bound 

for the total number of free parameters. This lower bound becomes very large 

when the number of patterns is large. Random initialization of SAMANN is 

preferred here [Lerner et al., 1999] as the PCA based initialization – which was 

used in the classification experiments by Mao and Jain [1995] – was found to 

yield very similar maps to those of the PCA based feature extractor. 

 

2.5.6 Fuzzy Curves and Surfaces 

Modern day chemical processes are complex entities with a diverse set of 

equipment. Thus, a large number of factors influence the reaction and mass and 

heat transfer phenomena in these processes. As a result, the corresponding 

mathematical models also comprise a large number of input variables. All the 

input variables are not equally important since their influence on the model 

outputs (response/dependant variables) vary significantly with some of these 

showing only negligible effects. Thus, identifying the important (influential) 

variables from among a number of input variables becomes necessary for securing 

a parsimonious yet accurate and reliable process model.  

A. Review of prior input selection techniques 

The most commonly used input selection and dimensionality reduction 

techniques are those that perform linear transformations, such as principal 

component analysis (PCA) [Ramos et al., 1986]. The major advantage of linear 

transformations is that they are computationally efficient, easy to design, and 

typically possess closed-form solutions [Wold et al,. 1987]. However, the PCA 

and other similar methods extract only linear relationships among the input data 
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variables and thus they do not perform satisfactorily when input variables are 

nonlinearly correlated, which is a common feature of high-dimensional data sets. 

There exist two general methods namely sensitivity analysis (SA) and 

mean square error (MSE), for ranking and selecting the important, nonlinearly 

correlated inputs of an ANN model. In the SA methodology, sensitivity 

coefficient matrix (SCM) is computed based on the partial derivatives of ANN 

outputs with respect to each input. The procedure for computing the sensitivity 

coefficient matrix for a single hidden layer is outlined by Zurada et al. [1994] and 

Engelbrecht et al. [1995], while that for a two hidden layer network can be found 

in Sung [1998]. The MSE methodology can be implemented using either the 

forward selection (FS) or backward elimination (BE) methods. In the first stage of 

the forward implementation [Lin and Cunningham, 1996, 1998; Sugeno and 

Yasukawa, 1993] a separate single input–single output (SISO) ANN model is 

employed for approximating the nonlinear relationship existing between each of 

the input variables and an output variable. Thus, for a system comprising N inputs, 

as many ANN models are developed following that the MSE between the desired 

(target) and the model predicted output is evaluated. The particular input whose 

model yields the smallest MSE magnitude is then selected as the most significant 

input. Next, this input is used along with each of the remaining inputs to construct 

(N-1) number of two input–single output models. Here, the specific pair of inputs 

leading to the smallest MSE magnitude is chosen to be the two most important 

inputs. This input pair is then utilized in combination with each of the remaining 

(N-2) inputs, to construct (N-2) number of three input–single output models and 

thereby determining the three most important inputs. The said procedure is 

repeated till one of the two criteria gets satisfied: (i) the MSE has reached the pre-

specified threshold, and (ii) the MSE does not decrease with the addition of a new 

input. In the worst case scenario, identification of important inputs requires a total 

of (N(N+1)/2) models [Lin et al., 1996]. 

In the BE method for input identification [Takagi and Hayashai, 1991] all 

the N inputs are first employed to construct an N input–single output ANN model 

using an appropriate training algorithm such as the error back-propagation 

[Rummelheart et al., 1986]. Next, each of the N inputs is ignored in turn to 

develop N number of (N-1) input–single output models. The specific input whose 
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exclusion does not lead to an increase in the MSE is eliminated as an unimportant 

input. This input elimination procedure is continued till all the unimportant inputs 

are removed. Likewise in the forward selection method, the BE approach needs 

development of at most N(N+1)/2 models.  

Among the above-stated three commonly employed input selection 

methods; the sensitivity analysis is computationally least costly since the 

sensitivity matrix with respect to all the inputs can be evaluated by constructing a 

single ANN model that uses all available inputs. In contrast the FS and BE 

methods are computationally expensive since the other two techniques (FS and 

BE) require development of up to N(N+1)/2 models. This is due to the fact that the 

overall computational effort in developing ANN models by taking even a single 

input at a time increases dramatically with increasing number of inputs and the 

size of the training data set. The large number of models that needs to be 

developed for identifying important inputs makes FS and BE methods practically 

unattractive.  

B. Fuzzy curves and surfaces 

A fuzzy logic based method that overcomes the problems of a large 

computational effort and local minima associated with the MSE approach has 

been introduced by Lin et al. [1996, 1998]. This method comprising the 

computation of fuzzy curves and surfaces avoids the process of ANN-based 

modeling completely and it automatically and quickly isolates the significant 

independent input variables for use in the development an entire gamut of non-

linear models. The fuzzy curve and fuzzy surface techniques allow a rapid 

development of accurate nonlinear models for large, complex, poorly defined 

systems [Lin et al., 1996]. 

The fuzzy logic based method for ranking the inputs comprises two stages. 

In the first stage, fuzzy curves are computed followed by the evaluation of fuzzy 

surfaces. Lin et al. [1995, 1996] have developed a fuzzy curve method for 

establishing the relationship between inputs and the output and thereby identifying 

the most important inputs.  

Consider an input-output data set D, comprising P training patterns of N 

dimensional inputs x = (x1, x2,…, xk,…, xP) and the corresponding output y. Let xik 
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and yk denote the ith variable in the kth (k ≤ P) pattern and the corresponding 

output, respectively. The fuzzy curves algorithm can be briefly described as given 

below. 

1.  For each input xi in the kth pattern in the data set D, compute the fuzzy 

membership function (FMF), µi,k. 

( )
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xx
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ikiμ     (2.88) 

The FMF can be interpreted as fuzzy rules for the output y with respect to 

each input xi [Lin et. al., 1996): 

   IF xi is µi,k(xi) THEN y is yk     (2.89) 

Thus, for P training patterns, we get P fuzzy rules for each input variable. 

The parameter b, in the Eq. (2.88), controls the width of the membership 

function and its magnitude is chosen arbitrarily between 10% and 20% of 

the range of the specific (i.e., ith) input variable [Lin et al., 1995]. 

2.  Defuzzify the fuzzy membership functions µi,k(xi), using the center of area 

method to produce a fuzzy curve, Ci, for each input variable xi. 

( ) ( )

( )
∑

∑=

=

=
p

k
p

k
iki

kiki
ii

x

yx
xC

1

1
,

,

μ

μ
     (2.90) 

3.  Rank the importance of input variables on the basis of the range covered by 

their individual fuzzy curves. The range (
iCR ) of fuzzy curve is calculated as  

minmax
iiC CCR

i
−=       (2.91) 

where, max
iC  and min

iC  respectively refers to the maximum and minimum of 

the fuzzy curve (Ci) for the ith input. Next, the input variables are ranked 

according to the decreasing 
iCR  values i.e., the input variable with the height 

(lowest) 
iCR  representing the most (least) important input. Ranking can also 

be done by visual inspection of fuzzy curves in the ( )iii xCx −  space. An 
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input variable with a flat fuzzy curve is identified as less important since it 

has little influence on the output. 

4.  Generate the first stage fuzzy surfaces (i.e., 2-D fuzzy curves) according to: 

( )
( ) ( )

( ) ( )∑

∑

=

== p

k
ikjiki

p

k
kikjiki

jiI

xx

yxx
xxS

1
,,
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,,
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μμ
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    (2.92) 

where, ix  and jx  are any two input variables. Evaluate importance of a 

combination of value of the corresponding performance index ji
SR ,  which is 

defined as, 

     ( )( )∑ −= 2, ,1
kjiI

y

ji
I yxxS

P
R

σ
    (2.93) 

where yσ refers to the variance of the p number of outputs evaluated as 
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σ       (2.94) 

A smaller magnitude of ji
SR ,  indicates that the input variable ix  and jx  are 

more independent. 

5.  Generate second stage fuzzy surface using following equation 

           ( ) ( )( ) ( ) ( )∑ −= jkjikikjiIjiII xxyxxSxxS ,,
2,, μμ   (2.95) 

The performance index for the IInd stage fuzzy surface is given as: 

      ( )( )∑ −= 2
2

, ,1
yjiII

y

ji
II xxS

P
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    (2.96) 

The single performance index combining the performance indexes of the Ist 

and IInd stage fuzzy surfaces is identified as 

      ji
II

ji
Iji

R
RR ,

,
,

1+
=        (2.97) 
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The second stage fuzzy surfaces use a different principle than the first stage 

surfaces. These are based on the idea that if the relationship between an 

input xi and the output y is random then a local estimate of the variance of y 

in xi-y space will be nearly equal to the global value yσ . On the other hand, if 

xi is indeed related to y, then the local variance estimate is expected to differ 

significantly from the global variance [Lin et al., 1998]. 

C. Advantages of the fuzzy curves and surfaces 

 The fuzzy curves and surfaces (FCS) method for identifying significant 

inputs has following advantages:  

(i) Unlike the commonly used forward selection and backward elimination 

methods that use ANNs, the FCS method does not use a complex 

nonlinear formalism for modeling a system. 

(ii) There exists only one free parameter namely width that needs tuning.  

(iii) Unlike ANN-based input identification, the FCS does not suffer from local 

minima problems.  

(iv) The maximum number of models to be developed in the FCS-based input 

identification is far less than the forward selection and backward 

elimination methods which makes it numerically efficient. 

 

2.6 CONCLUSION 

To summarize, this chapter provides an overview of artificial intelligence 

based formalisms used in modeling, optimization, classification, dimensionality 

reduction and input selection. The formalisms and the corresponding algorithm 

described here have been extensively utilized in the subsequent chapters for 

conducting several studies involving modeling, classification, optimization, fault 

detection and diagnosis, monitoring, dimensionality reduction, input selection, etc. 

of several chemical engineering/technology systems. In some studies, the 

algorithms presented in this chapter are improvised in the sense to make it 

applicable for chemical and biochemical systems.  
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3.1 INTRODUCTION 

 In this chapter, we have designed, developed or improvised some of the AI 

and ML based algorithms for building chemical/biochemical process models used 

in process monitoring, performance enhancement, output predictions, softsensors 

and model input identification. In the first study, optimal noise superimposition 

strategy is presented for building more accurate and generalized process models 

for Reliance Ind. Ltd. To show the generic nature of the suggested strategy 

(optimal noise superimposition), in another study, the strategy is used for a few 

more chemical processes. In the third study, the ANN model is developed for the 

estimation of the gross calorific value of Indian coals. In the next study, a novel 

ML-based formalism, known as support vector regrssion, is explored to develop 

softsensors for biochemical processes. The SVR is also utilized for modeling of 

biochemical systems. 
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3.2 ARTIFICIAL INTELLIGENCE BASED SOFT-SENSORS FOR 

MONITORING PRODUCT PROPERTIES IN POLYETHYLENE 

PROCESS∗ 

 

Properly designed artificial intelligence based soft-sensors for the quality 

control variables has helped in improving the performance of the polyethelene 

(PE) plants while cutting down the need for frequent laboratory analyses of the PE 

product. Deployment of softsensors has also reduced the extent of an off-spec 

product and aided better and faster process related decision-making. 

Introduction 

Sharp excursions in the natural gas prices and an increasing trend of 

feedstock prices in the last few years have led to almost flat and even negative 

margins for the global polyolefin industry. Unstable and decreasing end-product 

selling prices resulting from overcapacities have compounded the problem further. 

A welcome respite from the severe downturn in margins and financial 

performance has been offered to the polyolefin industry by a forecast, which 

anticipates a supply-demand imbalance favoring demand over the next few years 

[Nahas et al., 1992]. Accordingly, polyolefin manufacturers are gearing up for the 

impending significant upturn in the polyolefin business by raising the production 

rates of existing plants, reducing transition time between product changes and 

minimizing off-spec production. 
 The Reliance Industries Limited (RIL) (a “Fortune Global 500” company) 

has two plants at Hajira, India, that produce polyethylene (PE) using the solution 

polymerization of ethylene technology wherein α-olefins are utilized as the co-

monomers. The plants are capable of producing various PE grades comprising 

homo-polymers, co-polymers and ter-polymers, for meeting the requirements of a 

wide spectrum of consumer applications. Depending upon the resin to be 

                                                 
∗ Badhe, Y. P., J. Lonari, S. S. Tambe, B. D. Kulkarni, Neelamkumar Valecha, S. 

V. Deshmukh, B. Shenoy and S. Ravichandran, Hydrocarbon Processing, 
March-2007. 
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manufactured, process conditions are specified and these are controlled using a 

sophisticated distributed control system (DCS).  The quality of the final 

polyethylene product is measured in terms of three quality control (QC) variables, 

namely, stress exponent, density and melt flow index (MFI). 

  

3.2.1 Monitoring of Polyethylene Process 

Frequent monitoring of the properties of a PE product is a prerequisite for 

ensuring consistent and reliable production of a high quality product. For 

polyethylene, various product grades have closely matching values of properties 

such as density. It is therefore necessary that quality monitoring mechanisms are 

accurate, reliable, robust and capable of fast response. Often, on-line hardware 

sensors are not available for monitoring the product properties and thus these have 

to be determined using time consuming laboratory analyses. In the event of a 

process malfunction or an operation under sub-optimal process conditions, the 

plant continues to produce – till the results of the laboratory tests become 

available to the operator – a product of an off-spec quality. 

What are the problems? 

Determination of PE’s three QC variables namely, stress exponent, density 

and melt flow index, involves an analytical laboratory procedure that takes 30 to 

45 minutes. This means that a confirmation that the product of a desired quality is 

being produced comes only after the stated time period. If the laboratory 

measurements of the three QC variables indicate any deviation from their desired 

magnitudes, then process conditions need a readjustment. A significant amount of 

off-spec product may be generated during the course of the laboratory analysis 

and fine-tuning of process conditions. This is clearly undesired since it has 

adverse economical implications. The stated difficulty can be overcome by 

implementing a technological solution in the form of an accurate and robust 

mathematical model capable of real-time predictions of the three QC variables. In 

recent years, software based sensors (soft-sensors) that satisfy these requirements 

have been recommended for monitoring the QC variables. 
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3.2.2 Suggested Approaches 

There exist two approaches namely phenomenological and empirical, for 

developing process models. The PE process has complexities such as the 

relationships between process variables are highly nonlinear and interactive, 

process dynamics can last for many hours and is through-put dependent, and 

control variables are often measured in laboratory which is a time consuming 

process. Also, the involved product grade transitions represent some of the most 

safety, reliability and cost-critical procedures done in the manufacturing 

environment [Karagoz et al., 1990]. Being inherently complex and nonlinear, the 

PE process is difficult to model phenomenologically, which involves development 

of a “first-principles” model expressed in terms of mass, momentum and energy 

balance equations. Specific difficulties encountered in the phenomenological 

modeling of the PE process are: (i) the large number of costly experiments 

required for studying the effect of influential process variables and parameters on 

the QC variables, (ii) insufficient knowledge of the underlying physico-chemical 

phenomena (e.g. reaction kinetics and, heat and mass transport mechanisms), and 

(iii) stupendous amount of time intensive simulation effort to arrive at a 

reasonable model.  

The second approach to modeling of the PE process is to utilize classical 

regression methods to formulate empirical models representing the dependency of 

the QC variables on the key process operating variables. This approach however 

suffers from that the form of the data-fitting needs to be specified a priori before 

estimation of the function parameter. This is a difficult task since in the PE 

process multiple variables influence the polymerization phenomenon nonlinearly 

and the precise nature of their interactions is not fully known. 

 

3.2.3 What is the Solution? 

The above-stated difficulties associated with the regression based 

empirical modeling can be overcome by utilizing an artificial intelligence based 

modeling formalism known as Artificial Neural Networks (see Section 2.2.1). In 

process engineering, ANNs have been used in diverse applications such as steady-

state and dynamic modeling, fault detection and diagnosis, process identification, 

nonlinear model based control and process optimization (see e.g., Bhat and 
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McAvoy [1990]; Hernandez and Arkun [1992]; Nahas et al., [1992]; Ramasamy et 

al., [1995]; Tendulkar et al., [1998]; Nandi et al., [2001] and reviews by Narendra 

and Parthasarathy [1990]; Hunt et al., [1992]; Agarwal [1997]). Owing to their 

significant nonlinear function approximation property, ANNs have also been used 

to develop soft-sensor models [Desai et al., 2005]. 

 

3.2.4 Softsensors for Process Monitoring 

Soft-sensors are software based sophisticated monitoring systems, which 

can relate less accessible and infrequently measured process variables with those 

measured easily and frequently. Once developed, a softsensor model can be 

readily used for predicting in real-time, the values of less accessible and difficult-

to-measure process variables. Softsensors are useful in control and monitoring of 

chemical processes where owing to the unavailability of appropriate hardware 

sensors, the values of important QC variables are not available continuously. 

Availability of accurate, reliable and robust softsensor models assist in reducing 

product variability and sampling frequency,  minimizing an off-spec product 

formation and enabling process operators and engineers in running the process 

optimally. Accordingly, Reliance Industries Ltd., decided to explore the 

possibility of developing ANN-based softsensors for predicting the values of three 

polyethylene QC variables in real-time and this section details the case history of 

the development and deployment of these softsensors.  

The performance of soft-sensors in accurately predicting the magnitudes of 

the QC variables depends upon the availability of reliable hardware sensors for 

monitoring the easily accessible process variables and also on the mathematical 

and/or statistical techniques used in the correlation and interpretation of process 

data. The advantages of using ANNs for the development of soft-sensor models 

for the PE process are: (i) the ANNs are capable of efficient approximation of the 

nonlinear relationship(s) existing between the operating and the QC variables 

exclusively from the corresponding historic process data, (ii) for model fitting, a 

priori knowledge of the data-fitting function is not unnecessary since ANNs use a 

generic nonlinear function for approximating the relationships between the model 

inputs and outputs, and (iii) models can be built without considering the detailed 

phenomenological knowledge (kinetics, heat and mass transport mechanisms, etc.) 
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underlying the process. In essence, given historic process data, an ANN-based 

soft-sensor model is capable of identifying and capturing the “cause-effect” 

relationship between PE plant’s operating variables (model inputs) and the QC 

variables (model outputs). Subsequently, given new operating conditions, the soft-

sensor models can be used for predicting in real-time the values of the three QC 

variables. 

 

3.2.5 ANN-Based Softsensor Development 

In any set of real-world process data, presence of instrumental noise and/or 

measurement errors is unavoidable. Thus, the data in their raw noisy form must be 

used for building the softsensor models. Presence of noise and/or errors in the data 

creates a threshold limit for the prediction accuracy and generalization 

performance of the ANN-based softsensor model. Inaccuracies in model 

predictions, if significant, cannot be tolerated since a number of process control 

and policy decisions are based on the model predictions. Thus, it is critically 

important that an ANN model possesses not only excellent prediction accuracy, 

but also a good generalization property. This property enables an ANN model to 

predict accurately the outputs corresponding to a new set of model inputs. 

The input-output example data set used for training (i.e., fitting) an ANN 

model is only a finite subset of samples selected from a population of a large 

number of input-output patterns that can be monitored. Conventionally, ANN 

models are trained using a suitable parameter (weight) adjustment algorithm that 

minimizes a pre-specified cost (error) function. For instance, the most widely used 

error-back-propagation (EBP) algorithm [Rumelhart et al., 1986] (refer to Section 

2.2.1A) conducts minimization of the root-mean-squared error (RMSE) function. 

Often, an ANN model constructed solely on the basis of minimization of the 

RMSE with respect to the example set outputs is incapable of generalization. Such 

an inability to generalize arises from an over-fitting of the model. This happens 

when: (i) the ANN is trained over an excessively large number of training 

iterations (known as over-fitting), and (ii) the number of parameters (weights) to 

be fitted by an ANN are too high when compared to the number of input-output 

example samples available for network training (over-parameterization). There 

exist a number of approaches to avoid over-fitting and thereby improving the 
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generalization performance of an ANN model. The commonly used method to 

avoid over-fitting is to partition the example input-output dataset into two subsets, 

namely training and validation sets. While the ANN weights are adjusted based 

on the training set error, the validation set is used to continuously monitor the 

generalization performance of the ANN model undergoing training. Here, the 

prediction error with respect to the validation set outputs is utilized for selecting 

the optimal model. A shortcoming of the validation set approach is that it is 

effective when both the training and validation sets are large and representative 

[An, 1996]. Else, the chosen ANN model is likely to be biased towards the 

validation set. Another approach for improving the generalization performance of 

an ANN model is to superimpose noise (also known as “jitter”) on the inputs and 

outputs of the example set. The assumption underlying the noise-superimposition 

strategy is that for a well-posed modeling problem a precise solution exists and a 

small noise addition to the data should produce only small variations in the 

solution. Thus, for a given example data set, additional network training patterns 

can be generated by superimposing noise to the input-output elements of the 

example set patterns. With addition of noise, the resultant ANN-approximated 

function is defined over continuous ranges of the input plane which assists in 

increasing the smoothness of the ANN fitted function and thereby improving the 

generalization ability of the ANN model. 

 While creating an enlarged noise-superimposed dataset, the noise 

magnitude must be small since a large amount of noise would clearly distort the 

intrinsic relationship between the inputs and outputs, while a too small noise 

amount will lead to insignificant changes of no consequence. It may also be noted 

that in a nonlinearly behaving system, such as the PE process, the sensitivity with 

which changes in an input variable affect the output variable, differs significantly. 

Owing to these factors, it becomes necessary to add varying extent of noise to 

each input and output data element of the example set. Determining the exact 

amount of noise to be added to each input-output variable is a tricky issue, which 

has been successfully addressed by a methodology proposed by Kulkarni et al. 

[2002]. Specifically, this method generates an enlarged noise-superimposed data 

set wherein multiple patterns are synthesized by adding an optimal amount of 

noise to variables of each input-output pattern of the example set. The 

distinguishing feature of the proposed scheme is that it determines the optimal 
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amount of noise to be superimposed on each input and output variable of the 

example set. Here, the task of determining the optimal magnitude of variable-

specific noise to be superimposed has been addressed by using a novel 

optimization formalism known as Genetic Algorithms (GA) [Holland, 1975, 

Davis, 1987, Goldberg, 1989] (refer Section 2.4.3). The GA is an efficient method 

for searching optimal solutions pertaining to noisy, multi-modal and non-convex 

objective functions. 

 

3.2.6 Development of Softsensors Using the Proposed Approach 

Consider an example process input-output data matrix, Z(I, J), comprising 

elements, zij, (i = 1, 2,…, I; j = 1, 2,…, J), wherein first N elements of an ith row 

(i.e., zij; i = 1,2,…,I; j = 1,2,…,N) represent model inputs and the next K (K = J – 

N) elements (i.e., zij; i = 1,2,…,I; j = N+1, N+2,…, N+K) represent the desired 

(target) model outputs. For the PE process, model inputs describe the process 

operating variables and parameters while outputs describe the QC variables. The 

objective of the GA-based optimization is to create an enlarged noise-

superimposed data set, Ẑ , such that when it is used for training an ANN, it yields 

a model possessing improved prediction accuracy and generalization performance.  

 The J-dimensional decision vector to be optimized by the GA comprises 

noise tolerances defined as: [ ]Τ= Jεεεε ,...,, 21 . The first N elements of this vector 

describe the noise tolerance (%) values for the model inputs and the next K 

elements (N+1 to N+K) represent the noise tolerances for the model outputs (J = N 

+ K). These variable-specific tolerances are used to characterize a set of 

probability density functions (PDF), which are utilized to sample noisy copies of 

the input-output measurements of the example set, Z. The type of noise to be 

superimposed on the example data elements is considered to be Gaussian. The 

procedure of developing an optimal ANN-model using an enlarged noise-

superimposed input-output example set is described in Kulkarni et al. [2003]. 

Soft-sensors for the PE plants 

For affording a comparison, the softsensor models were developed using 

both the original (i.e., non-noise-superimposed) historic example process data sets 

and their noise-superimposed enlarged versions obtained using the GA formalism. 

Specifically, sixteen models were developed depending upon the PE plant (I or II), 
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catalyst operating mode and the co-monomer species used in the PE production. 

All these models were of multiple input – single output (MISO) type (i.e., K = 1). 

The break-up of the softsensor models and the corresponding output QC variable 

is given below. 

• Models 1 to 5: Stress exponent 

• Models 6 to 10: Density 

• Models 11 to 16: MFI  

For softsensor development, steady-state process data collected over a 

number of months of PE process operation were utilized. Depending upon the 

model, the number of model inputs varied between 12 and 14; these comprised 

various reaction dependent variables and parameters such as ethylene conversion, 

temperatures at different reactor locations, flow rates, concentrations of reactants 

and temperature differences within the reactor.  

 The GA-based optimization of noise tolerances was conducted using 

following GA-specific parameter values. 

• Precision for binary coding of a tolerance variable: 10 bits 

• Maximum number of generations over which GA was evolved: 50 

• Crossover probability: 0.9 

• Mutation probability: 0.05 

• Population size: 15 

All soft-sensor models were developed using a two hidden layer multi-

layer perceptron (MLP) network (see Figure 2.1) and its training was performed 

using the error-back-propagation (EBP) algorithm with the momentum term 

[Rumelhart et al., 1986]. To create an optimal soft-sensor model, the effect of 

MLP’s structural parameters (number of nodes in each hidden layer) and EBP-

algorithm specific parameters (i.e., learning rate, η, and momentum coefficient, α) 

was rigorously studied. Also, the effect of random weight initialization on the 

root-mean-squared error (RMSE) minimization was examined by performing 

multiple training runs with different seed values of the pseudo-random number 

generator. The magnitude of the enlargement factor (M) used in creating the 

enlarged noise-superimposed data sets varied between 10 and 50. Prior to MLP 

training, the data sets (non-noise-superimposed and noise-superimposed enlarged 

ones) were partitioned into training and validations sets in 80:20 ratio randomly. 



 149

(a)

0.001

0.010

0.100

1.000

10.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Model No.

E t
rn

Non-Noise-Superimposed Data
Noise-superimposed data

(b)

0.000

0.001

0.010

0.100

1.000

10.000

1 3 5 7 9 11 13 15
Model No.

E v
al

Non-Noise-Superimposed Data
Noise-Superimposed Data

The detailed procedure for obtaining an optimal MLP model can be found, for 

instance, in Bishop [1994], Freeman and Skapura [1991], Tambe et al. [1996] and 

Nandi et al. [2001]. 

Softsensor performance 

The prediction and generalization performance of the softsensor  models 

for the three QC variables namely stress exponent, density and MFI, was 

evaluated in terms of  two statistical measures  namely RMSE, and the squared 

coefficient of correlation (R2) between the model predicted and the corresponding 

desired outputs. These quantities were evaluated for both training and validation 

sets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: (Panel a) Comparison of RMSE values corresponding to the soft-
sensor models based on noise-superimposed and non-superimposed training data 

sets. (Panel b) same as panel (a) but for validation set data  
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As can be noticed, the RMSE values pertaining to the models trained on 

the noise-superimposed enlarged data sets are consistently smaller when 

compared with those obtained using the original non-noise-superimposed data 

sets. The extent of RMSE reduction is in general significant; in some cases it is as 

high as 99% (see Table 3.1 to Table 3.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: (Panel a) Comparison of average percentage error values 
corresponding to the softsensor models based on noise-superimposed and non-

superimposed training data sets. (Panel b) same as panel (a) but for validation sets 

 

Similar results are also observed with average percentage error for training 

and validation sets (see Figure 3.2a and Figure 3.2b). The bar chart comparing the 

R2 values corresponding to the predictions of all sixteen softsensor models using 

noise-superimposed and non-noise-superimposed data are portrayed in 
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magnitudes when compared with the R2 values pertaining to the non-noise-

superimposed data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: (Panel a) Comparison of the squared of correlation coefficient (R2) 
values corresponding to the soft-sensor models based on noise-superimposed and 

non-superimposed training sets. (Panel b) for validation data sets 

 

From the R2 magnitudes listed in Table 3.1 to Table 3.3, it is seen that the 

usage of noise-superimposed data has consistently yielded R2 values greater than 

0.9. High and comparable values of R2 and low and comparable values of RMSE 

for both the training and validation sets indicate that the models trained on the 

noise-superimposed data possess excellent prediction accuracy and generalization 

performance. The above–described softsensor models have been installed on the 
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distributed control systems (DCS) of RIL’s two PE plants and are yielding 

satisfactory real-time predictions of the three QC variables. 

 

Table 3.1: Prediction and generalization performance of soft-sensor models for 
stress exponent 

Training data set Validation data set 

Data Set* RMSE 

(% Reduction) 

R2 

(% Improvement) 

RMSE 

(% Reduction) 

R2 

(% Improvement) 

1Z  0.010 0.845 0.832 0.613 

1Ẑ  0.009 (12.34) 0.879 (4.15) 0.008 (99.07) 0.904 (47.50) 

2Z  0.016 0.438 0.015 0.46 

2Ẑ  0.007 (55.12) 0.888 (102) 0.005 (64.74) 0.935 (102) 

3Z  0.029 0.967 0.033 0.96 

3Ẑ  0.025 (14.25) 0.976 (0.92) 0.025 (24.04) 0.976 (1.64) 

4Z  0.707 0.753 0.016 0.494 

4Ẑ  0.046 (93.45) 0.828 (9.912) 0.015 (4.75) 0.904 (82.9) 

5Z  0.029 0.972 0.028 0.968 

5Ẑ  0.028 (5.15) 0.974 (0.228) 0.027 (2.17) 0.975 (0.65) 
*  

iZ : Non-noise-superimposed data set for ith stress exponent model;   

  iẐ : Noise superimposed enlarged set for ith stress exponent model 
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Table 3.2: Prediction and generalization performance of soft-sensor models for 
density  

Training data set Validation data set 

Data Set* RMSE 

(% Reduction) 

R2 

(% Improvement) 

RMSE 

(% Reduction) 

R2 

(% Improvement) 

1Z  0.068 0.891 0.100 0.769 

1Ẑ  0.052 (22.94) 0.922 (3.42) 0.046 (53.70) 0.952 (23.85) 

2Z  0.043 0.927 0.009 0.99 

2Ẑ  0.002 (94.59) 0.969 (4.53) 0.001 (93.36) 0.998 (0.834) 

3Z  0.100 0.964 0.061 0.95 

3Ẑ  0.003 (97.10) 0.987 (2.35) 0.001 (98.41) 0.956 (0.53) 

4Z  0.060 0.908 0.042 0.98 

4Ẑ  0.003 (95.26) 0.948 (4.36) 0.001 (96.90) 0.989 (0.89) 

5Z  0.050 0.931 0.082 0.90 

5Ẑ  0.041 (17.05) 0.951 (2.08) 0.0206 (74.88) 0.937 (4.04) 

 

*  
iZ : Non-noise-superimposed data set for ith density model;  

  iẐ : Noise superimposed enlarged set for ith density model 
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Table 3.3: Prediction and generalization performance of soft-sensor models for 
MFI  

Training data set Validation data set 

Data Set* RMSE 

(% Reduction) 

R2 

(% Improvement) 

RMSE 

(% Reduction) 

R2 

(% Improvement) 

1Z  0.109 0.988 0.493 0.801 

1Ẑ  0.036 (66.64) 0.999 (1.07) 0.033 (93.39) 0.998 (24.7) 

2Z  1.524 0.99 2.320 0.972 

2Ẑ  0.005 (99.70) 0.994 (0.40) 0.004 (99.84) 0.998 (2.65) 

3Z  0.041 0.98 0.117 0.895 

3Ẑ  0.017 (58.04) 0.997 (1.71) 0.016 (86.37) 0.997 (11.45) 

4Z  0.173 0.939 0.290 0.856 

4Ẑ  0.021 (87.86) 0.972 (3.54) 0.020 (92.97) 0.976 (14.08) 

5Z  1.954 0.988 4.142 0.944 

5Ẑ  1.316 (32.63) 0.995 (0.65) 1.222 (70.49) 0.995 (5.34) 

6Z  0.037 0.98 0.032 0.943 

6Ẑ  0.018 (51.05) 0.982 (0.20) 0.031 (4.19) 0.98 (3.96) 

 

*  
iZ : Non-noise-superimposed data set for ith MFI model;  

  iẐ : Noise superimposed enlarged set for ith MFI model. 

 

3.2.7 Benefits of the Soft-sensor Models 

The model-based real-time knowledge of the three product quality 

variables has served following important purposes, namely: (i) assistance in 

reducing product variability, (ii) reduction in the frequency of product sampling 

and thereby lab analyses, and (iii) the plant management no longer has to wait for 

lab results while making a switch from an off-spec to prime quality production 

and vice versa.  
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To summarize, this study presents a case history of the development of 

ANN-based softsensor models for predicting the three critical QC variables 

namely stress exponent, density and melt flow index, of Reliance Industries 

Limited’s two polyethylene plants at Hajira, India. A new generic strategy capable 

of substantially improving the prediction accuracy and generalization performance 

of the ANN models was specially designed and implemented for the development 

of the above-stated softsensors. This strategy envisages creation of optimal noise-

superimposed data sets for training and validation of the softsensor models. The 

softsensors developed thereby are capable of predicting the values of the three QC 

variables with satisfactory accuracy. This has resulted in the reduction of product 

sampling frequency and consequent laboratory analyses, and also allowed the 

plant management in taking “informed” decisions while switching from an off-

spec to prime production and vice-versa. 
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3.3 PERFORMANCE ENHANCEMENT OF ARTIFICIAL NEURAL 

NETWORK BASED MODELS IN PRESENCE OF NOISY DATA∗ 

 

Owing to their significant nonlinear function approximation capability, 

ANNs have been widely used for developing nonlinear empirical process models. 

The major advantage of ANN-based models is that multiple input—multiple 

output (MIMO) nonlinear relationships can be developed easily and exclusively 

from the historic process data (known as “example set”). A significant difficulty 

arises in ANN-based modeling when the example input-output data contain 

unavoidable instrumental noise and/or measurement errors. In such situations, the 

resultant ANN model exhibits suboptimal prediction accuracy and poor 

generalization performance. Accordingly, a generic method [Kulkarni et al., 2002] 

is used in this section for improving the prediction accuracy and generalization 

performance of ANN models. The methodology envisages creation of an enlarged 

noise-superimposed data-set from the example set, which is then utilized in 

training the ANN model. In this “noise-superimposition” methodology, the 

Gaussian noise of a specific tolerance is added to each input-output element of the 

example data set. Typically, a large number of input-output patterns are sampled 

in this manner from the Gaussian probability distribution function. The underlying 

principle in the presented methodology is that the super-imposed noise in the data 

constrains the ANN to be less sensitive to variations in the input data and the 

resultant smoothing effect is beneficial in improving the ANN’s generalization 

performance. It is necessary that the strength of the variable-specific 

superimposed noise is optimal. This issue has been addressed by using an 

optimization strategy that optimizes the input-output variable-specific tolerance 

values of the Gaussian super-imposed noise. The efficacy of the noise-

superimposition formalism in developing optimal ANN models has been 

                                                 
∗  Badhe Y. P, S. S. Tambe and B. D. Kulkarni, Presented in the "First Indo-US 

Joint Meeting in a Global Environment," organized by Indian Institute of 
Chemical Engineers and American Institute of Chemical Engineers held at The 
Grand Hyatt, Mumbai, during 28-30 Dec. 2004. 
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successfully established by conducting two case studies involving modeling of a 

catalytic and CSTR process. 

 

3.3.1 Introduction 

Any real-world process data sets are always associated with instrumental 

noise and/or measurement errors. There exists a number of efficient 

methodologies for removing noise from the raw process data; these methodologies 

though effective for denoising dynamic data with non-varying statistical 

properties, they are not effective – owing to their varying statistical properties – 

for denoising, for instance, steady-state process data. Thus, the data in their raw 

noisy form must be used for building ANN models. The presence of noise and/or 

errors in the data used for training a steady-state ANN model creates a threshold 

limit for the prediction accuracy and generalization performance of the model. 

Also, the noise present in the desired (target) output values increases the danger of 

over-fitting of ANN models. This effect is more pronounced in regions where the 

function to be learned by the ANN model is steep. The inaccuracies in model 

predictions, if significant, cannot be tolerated since a significant number of control 

and policy decisions regarding the process operation are based on the predictions 

made by the model. Thus, it is critically important that an ANN model possesses 

not only excellent prediction accuracy, but also a good generalization property. 

In one of the established methods for improving the generalization 

performance of an ANN model, noise is added to the inputs and outputs of the 

example set [Sietsma et al., 1991, Holmstorm et al., 1992, An, 1996]. Addition of 

noise serves the purpose of enlarging the size of the training set and is akin to 

minimizing the true error function. Sietsma and Dow [1991] showed that training 

with Gaussian noise-added data improves the classification ability of multi-layer 

perceptron (MLP) networks. In another exhaustive study, An [1996] studied the 

effect of noise in the inputs and weights and demonstrated that noise-addition is 

helpful in improving the generalization performance of an ANN model. A 

significant difficulty in this approach is determining the strength of the noise to be 

added to the individual elements of the example set. This difficulty arises from the 

fact that addition of very small noise amount results in changes of no consequence 

whereas high amount of noise clearly distorts the intrinsic relationship among the 
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input-output variables. Thus, it is absolutely essential to devise a formalism that 

fixes the amount of noise to be added while creating a noise-superimposed 

enlarged example set. Accordingly, the method presented in the following section 

utilizes a novel approach for improving the prediction accuracy and generalization 

performance of an ANN model when the example data contain instrumental noise 

and measurement errors. To be specific, the approach generates an enlarged 

example data set wherein multiple patterns are synthesized by adding an optimal 

amount of Gaussian noise to the elements of each input-output example pattern. 

The important issue of determining the optimal magnitude of the superimposed 

noise has been addressed by using the genetic algorithm-based nonlinear 

optimization strategy. The said method describedbriefly in section 3.2.6 is 

elabroted in the following section. The efficacy of the optimal noise 

superimposition technique has been validated by conducting two case studies, 

namely: (i) ANN-based steady-state modeling of a non-isothermal continuous 

stirred tank reactor (CSTR) wherein a consecutive CBA →→  reaction occurs, 

and (ii) ANN based modeling of benzene isopropylation reaction on Hbeta 

catalyst. 

 

3.3.2 GA-Based Generation of Enlarged Noise Superimposed Data 

The enlarged noise superimposed input-output data set to be used in the 

ANN modeling possesses following characteristics: (i) it is created by generating 

multiple noise-superimposed samples from each input-output pattern of the 

example input-output set, (ii) the superimposed noise is normally distributed and 

the magnitude of noise is specific to individual input-output variables of the 

example set data, (iii) the optimal magnitude of the variable-specific noise is 

determined by the genetic algorithm (GA) method, and (iv) the enlarged data set 

after appropriate partitioning into the training and validation sets yields an ANN 

model possessing improved prediction and generalization performance. 

 Consider an example data set, D, comprising input-output vector pairs, (x1, 

y1), (x2, y2),…,(xp, yp),…,(xP, yP) such that xp ∈ Nℜ ; p = 1,2,…, P is a vector of 

model’s input variables and yp ∈ Kℜ is a vector of the corresponding model 

output variables. The relationships between input vectors, xp; p = 1, 2,…, P, and 

the corresponding output vector, yp, are governed by a K-dimensional nonlinear 
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function vector, f. A feed-forward neural network, such as the most widely 

employed three-layered multilayer perceptron (MLP), approximates the nonlinear 

relationships between xp and yp as given by: 

    yp = f ( xp , WH, WO  )     (3.1) 

where, matrices WH and WO, represent the weights on connections between MLP’s 

input and hidden layer nodes and, hidden and output layer nodes, respectively. For 

improving the prediction accuracy and generalization performance of the ANN 

model, we create noise-superimposed enlarged version, D̂ , of the data matrix D 

according to the method proposed by Kulkarni et al. [2002]. In a system where the 

relationship between its inputs and outputs is nonlinear, the dependent (output) 

variables exhibit varying extents of sensitivity to the changes in the causal (input) 

variables. Thus it is advisable to add varying extent of noise to each individual 

input-output variable rather than keeping the noise magnitude same for all the 

stated variables. In the present study, Gaussian noise has been considered for 

generating the enlarged data set. The amount of Gaussian noise to be 

superimposed is specific to an input-output variable and is characterized in terms 

of the tolerance percentage. The genetic algorithms formalism is used to search 

for the optimal input and output noise tolerance vectors, *Iε =[ *
1
Iε , 

*I
2ε ,…, *I

nε ,…, *I
Nε ]T and *Oε = [ *O

1ε , *O
2ε ,…, *O

kε ,…, *O
Kε ]T, where the input and 

output noise tolerances are defined in terms of the Gaussian probability density 

function (PDF) as given below in Eqs. (3.2) and (3.3), respectively. 

   ( ) ( )pnpnn x/10009.3 II σε ××=  , n = 1, 2, 3…,N  (3.2) 

where, pnx  denotes nth element of the pth row of the input variable matrix, X: I
nε  

represents the noise tolerance for pnx  and I
pnσ  refers to the standard deviation of 

the Gaussian PDF. 

   ( ) ( )pkknk y/10009.3 OO σε ××=  , k = 1, 2, 3…,K  (3.3) 

where, pky  denotes the kth element of the pth row of output variable matrix, Y, 

O
kε  represents the noise tolerance for the output element, pky  and O

pkσ  refers to 

the standard deviation of the Gaussian PDF. The genetic algorithm steps involved 
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in searching the optimal values of the input-output noise tolerances ( *Iε , *Oε ) are 

as given below: 

Step 1: Initialize a random population of noise tolerance vectors ( *Iε , *Oε ) 

representing candidate solutions to the nonlinear optimization problem 

wherein individual elements of a solution vector describe the extent of noise to 

be added to each input-output element of the example set.  

Step 2:  Utilize the input-output variable-specific noise tolerance values contained 

in a candidate solution vector to define the respective Gaussian probability 

distribution (PDF) and use the random numbers sampled from each PDF to 

generate multiple noise-superimposed sample input-output patterns 

corresponding to each input-output data pattern in the example set. 

Step 3:  Repeat step (2) with all candidate solution vectors and generate noise-

superimposed enlarged sample input-output data sets equaling the number of 

candidate solutions. 

Step 4:  Develop ANN models using the noise-superimposed enlarged data sets 

created in step 3.  

Step 5:  Calculate fitness values of the candidate solutions describing noise 

tolerances and rank the solutions in the decreasing order of their fitness values. 

Step 6:  Perform GA operations, namely, selection, crossover and mutation on the 

ranked solution population to obtain a new population of candidate solutions 

representing noise tolerances. 

Step 7: Repeat steps (2) to (6) till an optimal solution representing optimum values 

of the input-output variable specific noise tolerances leading to the ANN model 

with improved prediction and generalization performance is obtained. 

 

3.3.3 Case Study – I: Steady-State Modeling of A CSTR 

This case study considers an ANN-based steady-state modeling of a 

jacketed non-isothermal CSTR wherein two first order reactions in 

series, CBA →→ , take place. The phenomenological model defining the CSTR 

dynamics represented in terms of three state variables, T (temperature), AĈ  
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(concentration of species, A) and BĈ  (concentration of species, B) is as given in 

Nandi et al., [2001]. The phenomenological model was used to generate the 

steady-state process data under varying values of six process parameters, viz., V 

(volume, m3), F (inlet flow rate, m3/min), Q (heat removal rate, KJ/min), 0
AC  

(inlet concentration of species, A), 0
BC  (inlet concentration of species, B) and T0 

(inlet temperature, oC). The values of these parameters were respectively varied in 

the following ranges: [0.1-0.5], [0.5-1.0], [20000-200000], [600-4000], [6-550] 

and [295-305] to create an example data set of 50 patterns. These values form the 

six-dimensional input space of the ANN model, and the corresponding steady-

state concentration of the desired product, B (CB, mol/lit), forms the model output. 

To mimic real-world data comprising process noise, the Gaussian noise of 

strengths 5%, 10%, and 15% was added to each element of the simulated process 

data set. The three data sets thus formed are defined as 1D , 2D  and 3D , 

respectively. For comparing the performance of the optimal noise-superimposition 

strategy, ANN models were constructed using the data sets 1D , 2D  and 3D  

directly (i.e., without employing optimal noise-superimposition strategy). The 

details of the network architecture and EBP-specific parameter values resulting in 

the optimal MLP models created using the three data sets are listed in Table 3.4. 

Also listed in the table are the values of the coefficient of correlation (CC) 

between the ANN model-predicted and target network outputs, average prediction 

error (%) and the RMSE corresponding to the training (80% data) and validation 

(20% data) sets. 

 In the next set of modeling simulations, the three data sets, 1D , 2D  and 

3D , were enlarged ten times using the optimal noise superimposition formalism 

described earlier. The optimal noise tolerance values corresponding to the CSTR 

input-output variables obtained using the GA formalism, are listed in Table 3.5. 

The prediction and generalization performance of the three optimal MLP models 

constructed using as many noise-superimposed enlarged data sets (referred to as 

1D̂ , 2D̂  and 3D̂ , respectively) separately, was evaluated in terms of correlation 

coefficient, average error (%) and RMSE values and these are listed in Table 3.4. 

This table also gives architectural details of the optimal MLP models and the 

values of the EBP-specific parameters used in creating the models. It is clearly 
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observed from the comparison of the statistical values listed in Table 3.4 that the 

MLP models trained on the noise-superimposed CSTR data have consistently 

resulted in lower RMSE values for both the training and validation data. Using 

noise-superimposed training data sets, the training set RMSE (Etrn) values have 

decreased substantially i.e., by 86.1% to 96.6%. Similar reduction was also 

observed in the validation set RMSE values (Eval). Additionally the average error 

(%) values exhibit a significant reduction ranging between 78.5% and 97.7%, for 

the training sets and 94.4% to 97.9% for the validation sets. It is noticed that the 

correlation coefficient values pertaining to the output predictions made by the 

optimal MLP models using the noise-superimposed data are very high (≥ 0.999). 

It can thus be seen that the usage of noise-superimposed data for training an MLP 

model has led to smaller RMSE and average error (%) values, and higher CC 

values (indicating better prediction accuracy and generalization performance) 

when compared with the MLP models trained on the non-noise-superimposed 

data. 

 

3.3.4 Case Study – II: Modeling of Benzene Isopropylation over Hbeta 
Catalyst 

This case study considers ANN-based steady-state modeling of the pilot-

plant scale reactor for the Hbeta catalyzed benzene isopropylation process. In this 

process, though the formation of cumene via isopropylation of benzene is the 

main reaction, a series of other components are also produced via side reactions.  

Isopropylation of benzene is an important alkylation reaction in the 

petrochemical industry for the synthesis of cumene, which is the chief starting 

material in phenol production.  In the last decade, several modifications of the 

zeolite beta were explored as potential catalysts in cumene synthesis [Perego, et 

al., 1994; Cavani, et al., 1997; Geatti, et al., 1997; Meima, 1998]. More recently, 

Sridevi et al. [2001] investigated isopropylation of benzene over Hbeta (protonic 

form of beta catalyst). Beta is a crystalline alumino-silicate catalyst with high 

silica content and its important characteristic is that it is the only large pore zeolite 

with chiral pore intersections. It consists of 12-membered rings interconnected by 

cages formed by intersecting channels. The linear channels have pore opening 

dimensions of 5.7 
0
A × 7.5 

0
A , whereas the tortuous channels with intersections of 
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two linear channels have approximate dimensions of 5.6 
0
A  × 6.5 

0
A . The catalyst 

has a pore volume of ≈ 0.2 cm3/g. In the study by Sridevi et al. [2001], a 

phenomenological model for benzene isopropylation reaction was developed 

based on the isopropyl alcohol conversion in a continuous down-flow differential 

packed bed reactor taking into account the secondary reactions such as the 

dehydration of alcohol. This model however was restricted to the lower 

conversion (< 30%) of the limiting reactant, i.e., isopropyl alcohol, wherein heat 

and mass transfer resistances in the differential bed were assumed to be negligible. 

For maximizing yield and selectivity of cumene in the vapor phase alkylation of 

benzene with isopropyl alcohol over Hbeta catalyst, experiments were also 

conducted in a pilot plant scale reactor. Isopropylation of benzene involves a main 

reaction producing cumene and multiple side reactions as described below: 

Main reaction :  

Benzene + Isopropyl Alcohol → Cumene + Water                (benzene 

alkylation) 

Secondary reactions : 

Cumene + Isopropyl Alcohol → p-Di-isopropyl Benzene + Water  (cumene 

alkylation) 

p-Di-isopropyl Benzene → m-Di-isopropyl Benzene             (isomerization) 

2 Isopropyl alcohol  → Di-isopropyl ether + Water         (alcohol 

dehydration) 

 

Owing to the complex nonlinear nature of the benzene isopropylation 

process, an ANN was chosen for developing the steady-state process model. 

Accordingly, four reactor operating variables namely, reaction temperature (x1), 

pressure (x2), benzene to isopropyl alcohol mole ratio (x3) and weight hourly space 

velocity (WHSV) (x4), form the input space of the ANN-based model. The 

Cumene yield and selectivity defined as y1 and y2, respectively, are the model 

outputs and these are evaluated as:  
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unit timeper  fed alcohol isopropyl ofweight 
unit timeper  formed cumene ofweight 100 1

×
=y          (3.4) 

       
unit timeper  produced aromatics  totalofweight 

unit timeper  formed cumene ofweight 100 2
×

=y         (3.5) 

The experimental data pertaining to the 42 pilot plant experiments [Nandi et al., 

2004] were considered in the ANN modeling. The experiments studied the effect 

of varying values of the four operating variables (x1 to x4) on the cumene yield and 

selectivity. The experimental data sets comprising values of operating variables 

and the corresponding values of cumene yield and selectivity are designated as D4, 

respectively. First, two optimal ANN models were developed using these data 

sets. The details of the network architectures, EBP-specific parameter values 

resulting in the optimal MLP models and the results in terms of coefficient of 

correlation (CC) between the model predicted and target network outputs, average 

prediction error (%) and the RMSE corresponding to the training and validation 

sets are listed in Table 3.4. Next, the data sets D4 were enlarged using the optimal 

noise-superimposition strategy and the respective enlarged data sets ( 4D̂ ) were 

used to create two ANN models. The optimal noise tolerance values ( ∗Iε  

and ∗Oε ), corresponding to the four input and two output variables obtained using 

the GA formalism are listed in Table 3.6.  

A comparison of the prediction and generalization performance of the 

yield and selectivity models trained using noise-superimposed and non-noise-

superimposed data sets reveals that the usage of noise-superimposed enlarged 

training data sets has resulted in decreasing the training set RMSE (Etrn) values by 

16.3% and 39.6%. A similar significant reduction was also observed in the 

validation set RMSE values (Eval). Also, the average error (%) values exhibit a 

significant reduction of nearly 55% for the training sets and 48.5% to 57.2% for 

the validation sets. Likewise case study-I, the smaller and comparable values of 

RMSE and average error (%) and high values of CC for both training and 

validation sets clearly indicate enhanced prediction accuracy and improved 

generalization performance of the MLP models trained on the optimal noise-

superimposed data. 

 



 165

3.3.5 Concluding Remarks 

The case studies described above present results of a generic methodology 

to develop artificial neural network based process models possessing excellent 

prediction accuracy and generalization performance. The method creates an 

enlarged noise-superimposed data set from the original noisy process data set, 

wherein the optimal magnitude of the input-output variable-specific superimposed 

noise is determined using a stochastic optimization strategy namely, genetic 

algorithm. Utilization of noise-superimposed data helps in fitting a smooth 

function leading to an improved prediction accuracy and generalization 

performance of the ANN model. The efficacy of the optimal noise-

superimposition methodology has been demonstrated successfully by conducting 

ANN-based modeling of two chemical processes. 
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Table 3.4: Comparison of predictions and generalization performance of ANN-models using noise-superimposed and non-
noise-superimposed data 

# NH1 = number of neurons in the first hidden layer; NH2 = number of neurons in the second hidden layer; η = learning rate. 
* iD̂ , i = 1, 2, 3 represents noise-superimposed enlarged data set. 

Training Data Set Validation Data Set 

Data Set* 

MLP 

Parameters 

(NH1,NH2,η)# 

Correl. 

Coef. 

RMSE (Etrn) 

(%improvement) 

Average % Error 

(%improvement) 

Correl. 

Coef. 

RMSE (Eval) 

(%improvement) 

Average % Error 

(%improvement) 

1D  6:4:0.25 0.999 10.93 3.93 0.999 11.02 10.58 

1D̂  6:5:0.5 0.999 1.51 (86.1) 0.84 (78.5) 0.999 1.43 (87.0) 0.59 (94.4) 

2D  6:5:0.31 0.998 12.91 4.89 0.996 15.89 11.73 

2D̂  6:6:0.7 0.999 1.22 (90.5) 0.36 (92.7) 0.999 1.738(89.1) 0.43 (96.3) 

3D  6:5:0.53 0.986 28.81 15.87 0.956 55.73 11.16 

3D̂  6:6:0.7 0.999 0.98 (96.6) 0.36 (97.7) 0.999 1.40 (97.5) 0.23 (97.9) 

4D (yield) 0.998 0.49 41.81 0.999 0.44 36.34 

4D (select.) 
5:0:0.7 

0.974 4.64 4.63 0.976 4.68 4.67 

4D̂ (yield) 0.999 0.41(16.3) 18.73(55.2) 0.999 0.31(29.5) 18.71(48.5) 

4D̂ (select.) 
5:4:0.7 

0.999 2.80(39.6) 2.05(55.7) 0.999 2.79(40.4) 2.0(57.2) 
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Table 3.5: Optimal noise tolerance (%) values for CSTR variables 

Optimal Noise Tolerances Data 

Set *I
1ε  *I

2ε  *I
3ε  *I

4ε  *I
5ε  *I

6ε  O*
1ε  

1D̂  0.679 0.592 0.324 0.263 0.489 0.109 0.678 

2D̂  0.593 0.78 0.566 0.283 0.656 0.542 0.998 

3D̂  0.607 0.395 0.169 0.001 0.947 0.615 0.458 

 

 

 

 

Table 3.6: Optimal noise tolerance (%) values for benzene isopropylation process 
variables 

Optimal Noise Tolerances 
Data Set 

*I
1ε  *I

2ε  *I
3ε  *I

4ε  O*
1ε  O*

2ε  

4D̂   & 5D̂  0.026 0.634 0.034 0.537 
0.521 

( 4D̂ ) 

0.982 

( 5D̂ ) 
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3.4  ESTIMATION OF GROSS CALORIFIC VALUE OF COALS USING 

ARTIFICIAL NEURAL NETWORKS∗ 

The gross calorific value (GCV) is an important property defining the energy 

content and thereby efficiency of fuels, such as coals. There exists a number of 

correlations for estimating the GCV of a coal sample based upon its proximate and/or 

ultimate analyses. These correlations are mainly linear in character although there are 

indications that the relationship between the GCV and a few constituents of the 

proximate and ultimate analyses could be nonlinear. Accordingly, in this study a total 

of seven nonlinear models have been developed using the artificial neural networks 

methodology for the estimation of GCV with a special focus on Indian coals. The 

comprehensive ANN model developed here uses all the major constituents of the 

proximate and ultimate analyses as inputs while the remaining six sub-models use 

different combinations of the constituents of the stated analyses. It has been found 

that the GCV prediction accuracy of all the models is excellent with the 

comprehensive model being the most accurate GCV predictor. Also, the performance 

of the ANN models has been found to be consistently better than that of their linear 

counterparts. Additionally, a sensitivity analysis of the comprehensive ANN model 

has been performed to identify the important model inputs, which significantly affect 

the GCV. The ANN-based modeling approach illustrated in this study is sufficiently 

general and thus can be gainfully extended for estimating the GCV of a wide 

spectrum of solid, liquid and gaseous fuels. 

 

3.4.1 Introduction 

The abundance and versatility of coals makes them an important source of 

energy for the present and future. The chemical composition of coals is characterized 

                                                 
∗ Patel S. U., B. Jeevan Kumar, Y. P. Badhe, B. K. Sharma, S. Saha, S. Biswas, A. 
Chaudhury, S. S. Tambe and B. D. Kulkarni, Fuel, 86 (3), February 2007, 334–344. 
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in terms of their proximate and ultimate analyses. While the proximate analysis 

determines the contents of moisture, volatile matter, ash, and fixed carbon, the 

ultimate analysis measures the content of various elements, namely carbon, hydrogen, 

nitrogen, sulphur, and oxygen. An important property, which indicates the useful 

energy content of a coal and thereby its value as a fuel, is its calorific value (also 

known as heat of combustion), which is defined as the amount of heat evolved when a 

unit weight of the fuel is burnt completely and the combustion products cooled to a 

standard temperature of 2980 K. It is usually expressed as the GCV (also termed 

Higher Heating Value, HHV). The magnitude of GCV varies significantly depending 

on the ash and moisture contents and the type of coal. It is determined using various 

basis, such as “dry mineral matter free (DMF)”, “as received”, and “dry” basis. 

Among these, the DMF basis is useful for scientific evaluation and classification of 

coals while in commercial applications calorific values are commonly determined 

using as received or dry basis. The GCV of a coal sample is measured experimentally 

using a Bomb calorimeter. Since GCV is a major indicator of the quality of coal, a 

number of linear correlations have been developed for its prediction on the basis of 

proximate and/or ultimate analyses. The advantages of the GCV correlations are 

[Parikh et al., 2005]: (i) they provide an easy and quick means for estimating the 

GCV thus saving the efforts involved in its experimental determination, (ii) 

application in the performance modeling exercise of combustion, gasification and 

pyrolysis processes involving coal, and (iii) facility of using the GCV as an algebraic 

expression in terms of fuel constituents, which in turn is useful in studying the 

influence of the proximate as well as ultimate analysis of a fuel on the process 

performance. Accordingly, this study first reviews various linear correlations 

proposed for the GCV estimation of coals and discusses the need of developing their 

nonlinear counterparts. Next, a number of nonlinear correlations (models) based on 

ANNs have been introduced in this study for the estimation of GCV with a special 

focus on Indian coals. The ANN-based GCV models presented here are found to 

possess an excellent GCV prediction accuracy and outperform the existing linear 

models. 
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3.4.2 Survey of GCV Correlations and Need for ANN-Based Models 

There essentially exist two types of correlations for estimating the GCV of 

coals. The type–I correlations are meant exclusively for coals, while type-II 

correlations additionally cover a number of solid, liquid and gaseous fuels.  Both 

types of correlations are based on the proximate and/or ultimate analyses. An 

important coal-specific correlation was proposed by Goutal et al., [1902] that 

correlated the calorific value ( )Q   with the volatiles   and fixed carbon as given by: 

mC VkFQ ×+×= 82                                                              (3.6) 

where, CF  and mV  denote the percentages of fixed carbon and volatiles, respectively 

(on the “dry ash free”, DAF, basis), and k  is a constant that depends on the mV . 

Subsequently, a widely used GCV correlation as given below was proposed by 

Schuster et al. [1951],   

( )mm VVQ ×−×+= 65.1708000 ,  (cal/gm)                    (3.7) 

where, Q  and mV  are determined on the DAF basis.  Another correlation for the 

GCV, proposed by Spooner [1951], is given as: 

     Om CVQ ×−×+= 144198781 , (cal/gm)                 (3.8) 

where, OC  refers to the oxygen content in coal. For estimating the GCV of Indian 

coals, Mazumdar [1954] proposed following expression,  

( )MMm CCVQ ×−××−×−= 001.0160169170 ,  (cal/gm)      (3.9)   

where, MC  denotes the percentage of moisture. More recently, Mazumdar [2000] 

proposed an expression for the determination of calorific value of coal (MJ/kg) as 

given by:   

( ) A
C

H
MMO C

C
C

CCQ ×−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

×
×−+×= 007.0

0065.0
238.0

10003.13 ,  (MJ/kg)          (3.10) 
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where, MMC  is the mineral matter on dry basis and HC , CC  and OC  respectively 

refer to the percentages of hydrogen and carbon, and the theoretical oxygen 

requirement for the complete coal combustion on the dry basis. The MMC  value is 

calculated using the Parr formula i.e., SAMM CCC ×+×= 558.008.1 , where AC  

and SC  refer to the percentages of ash and sulphur, respectively. For low sulfur coals, 

SAMM CCC ×+×= 55.01.1 .  

The energy content of an Indian coal (non-coking) is commonly expressed in 

terms of "Useful Heating Value (UHV)”. In industrial applications, UHV ( )UQ  is 

used for grading and pricing of coals and a simple empirical equation as given below 

was developed for its estimation by the Central Fuel Research Institute (CFRI), 

Dhanbad, India;  

( )MAU CCQ +×−= 1388900 ,  (kcal/kg)                             (3.11) 

where AC  and MC  refer to the percentages of ash and moisture at 60% relative 

humidity at 400 C. The usage of Eq. (3.11) began in 1979 and is still in vogue for 

grading non-coking Indian coals. An improvement in Eq. (3.11) has become 

necessary owing to its suboptimal performance in predicting the UHV values since 

the ash content in the coal being mined currently in India has increased significantly. 

Prior to 1979, approximately 85% of Indian coal was mined via underground mining 

operations and the average ash percentage in the coal was in the range of    25 % to 30 

%. In contrast, a major portion (≈ 70 %) of the coal being mined presently (mainly via 

open-cast mining) has an average ash percentage of 45% or more. In Eq. (3.11), the 

same weightage of 138 is assigned to the moisture and ash contents and thus it is not 

valid for currently mined coals comprising high ash. For instance, according to Eq. 

(3.11), the UHV when ( AC + MC ) equals 64.5% is zero, while the actual GCV value is 

of the order of 2300 kcal/kg. In view of this fact, the applicability of Eq. (3.11) for the 

currently mined Indian coals has become questionable. It may also be noted that 

internationally, grading and pricing of coals is done in terms of their GCV and not 
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UHV. Thus, Chaudhury and Biswas [Choudhary and Biswas, 2002-03] proposed a 

correlation, which is a modified form of Eq. (3.11), for the estimation of GCV: 

( )UQbaQ ×+= ,    (kcal/kg)                                         (3.12)                               

where,   a  and b  are constants whose magnitudes vary depending upon the 

geographical origin of the coal. The magnitudes of a  and b  for computing the GCV 

of coals from six prominent regions in India are: (i) MCL: 2043, 0.673, (ii) CCL: 

2062, 0.6913, (iii) NCL: 2227, 0.6326, (iv) WCL: 2557, 0.55, (v) SECL: 2173, 0.69, 

and (vi) SCCL: 2290, 0.639, where MCL, CCL, NCL, WCL, SECL, and SCCL, 

respectively refer to Mahanadi, Central, Northern, Western, South-eastern, and 

Singareni coalfields.  

Channiwala et al. [2002] have reviewed a large number of type-II correlations 

for estimating GCV of a number of solid, liquid and gaseous fuels and also proposed 

a unified correlation from the elemental analysis of fuels as given by: 

ANO

SHC

CCC
CCCQ
×−×−×−

×+×+×=
0211.00151.01034.0

1055.01783.13491.0
 (MJ/kg)       (3.13)                                 

where CC , HC , NC , and SC   denote the percentages of carbon, hydrogen, nitrogen 

and sulphur, respectively. The ranges of the mass percentage values (on dry basis) 

over which the correlation is valid are: %29.92%0 ≤≤ CC , %15.25%43.0 ≤≤ HC , 

%50%0 ≤≤ OC , %6.5%0 ≤≤ NC , %08.94%0 ≤≤ SC , %49.71%0 ≤≤ AC , and 

4.475 MJ/kg ≤ Q  ≤ 55.345 MJ/kg. Equation (3.13) could predict the GCV of various 

types of fuels with an average absolute error of 1.45%. Although useful, a major 

difficulty with this correlation is that it requires values from the elemental analysis of 

coals that needs a costly equipment. Thus, Parikh et al. [2005] developed a proximate 

analysis based correlation for predicting the GCV of an entire spectrum of solid 

carbonaceous materials such as coals, lignite, all types of biomass materials, and char 

to residue-derived fuels. Their correlation is given as:  

AmC CVFQ ×−×+×= 0078.01559.03536.0 , (MJ/kg) (3.14) 
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  In addition to above-described type I and II correlations, relationships have 

also been proposed for computing the GCV exclusively of solid fuels [Kucukbayrak 

et al.,1991; Cordero et al., 2001; Fernandez et al., 1997; Demirbas, 1997; Jimenez, et 

al., 1991; Raveendran, 1996]. These correlations have restricted applicability since 

they are limited to a type or region of a fuel. 

 All the correlations discussed above assume linear relationships between the 

GCV and the constituents of the proximate and/or ultimate analyses. In order to verify 

the appropriateness of the linear relationships, we considered data from the proximate 

and ultimate analyses of a large number of coals (see Table 3.7) mined from different 

regions in India. Using these data, cross-plots were generated by plotting the 

individual constituents of the proximate and ultimate analyses against the 

corresponding GCVs. These plots are shown in Figure 3.4 wherein the eight panels (a 

to h) show the plots of GCV versus the percentages of ash, fixed carbon, hydrogen, 

carbon, oxygen, volatile matter, moisture and nitrogen, respectively. It is seen in these 

plots that there exists a clear linear dependence between the GCV and percentages of 

ash, fixed carbon, hydrogen, carbon, oxygen and volatile matter. However, a 

significant scatter is seen in the cross-plots of GCV versus percentages of sulphur, 

moisture and nitrogen. Thus, there exists a strong possibility that the GCV is 

nonlinearly correlated with SC , MC  and NC .  

If such nonlinear relationships indeed exist, then these can be captured 

effectively by developing nonlinear models for the GCV estimation, which are likely 

to be more accurate than the linear correlations described earlier. Owing to the 

multiple causal factors (constituents of proximate and/or ultimate analyses), these 

nonlinear correlations would have a multiple input-single output (MISO) structure. 

There exist powerful nonlinear function optimization methods such as Marquardt’s 

algorithm [Marquardt, 1963], to fit nonlinear relationships existing between MISO 

data. Given a nonlinear fitting function, the Marquardt’s algorithm can efficiently 

estimate the parameters of a data-fitting function. However, a significant difficulty in 

this approach is choosing an appropriate MISO type nonlinear data-fitting function 

from an infinite number of functions that form the solution space of the MISO data-
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fitting problem. Thus, an exhaustive trial-and-error procedure would be necessary to 

arrive at the correct nonlinear MISO model for the estimation of GCV. The artificial 

intelligence (AI) based nonlinear modeling formalism, namely ANNs overcomes the 

stated difficulty of choosing the correct form of the nonlinear data-fitting function. 

Specifically, in the ANN-based modeling it is not necessary to exclusively specify a 

system-specific nonlinear form of the data-fitting function and thus the exhaustive 

heuristic involved in choosing an appropriate data-fitting function is completely 

avoided. Accordingly, in this study, a number of ANN-based nonlinear models have 

been developed for the estimation of GCV of Indian coals. The main ANN-model in 

this study uses all the major constituents of the proximate and ultimate analyses as 

model inputs.  In real practice, information on all the constituents of the said analyses 

may not be available and therefore a number of sub-models have also been developed 

using ANNs by considering various combinations of the constituents of the proximate 

and / or ultimate analysis as model inputs. 

 

3.4.3 ANN-Based Models for GCV Estimation 

The inputs used in developing the seven ANN-based models for estimating 

the GCV of Indian coals are listed in Table 3.8. Currently, there does not exist a 

comprehensive GCV model that uses information of all the major constituents of 

proximate and ultimate analyses. Thus, a comprehensive ANN model (I) has been 

developed that uses a total of ten inputs comprising major constituents of the 

proximate and ultimate analyses as also the He-density. Wherever feasible, the GCV 

estimation performance of an ANN model has been compared with its linear 

counterpart. Accordingly, prediction and generalization performance of ANN models 

II, VI and VII was compared with that of Eqs. (3.12), (3.13) and (3.14), respectively. 
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Figure 3.4: Cross-plots of GCV verses individual constituents of proximate and 
ultimate analyses 

(g) 
(h) 
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The justification for various combinations of inputs used in the six ANN-

based sub-models is given below. 

 Conducting proximate and ultimate analyses on “as received” basis is easier 

since it requires no preprocessing of the coal sample. Thus, a majority of 

ANN-based models employ data on as received basis. 

 Since proximate analysis is easier to perform than the ultimate analysis, four 

models (II, III, IV and VII) have been developed using various constituents of 

the proximate analysis. 

 Unavoidable presence of ash adversely affects the GCV of coals and, 

therefore, the ash percentage has been considered as an input in five out of the 

six sub-models. 

  Similar to ash, presence of moisture acts as a diluent of the heating value of 

coals and therefore models II to IV use moisture as one of their inputs. 

 Percentage of carbon has a direct effect on the GCV, i.e. an higher carbon 

content results in an higher heating value. Thus, models V and VI use carbon 

percentage in their input space.  

 The organic and inorganic matter in the coal influences the Helium (He) 

density of coal. The density is an important indicator of coal’s open pore 

structure that determines the extent to which reactants diffuse inside the coal’s 

interiors thereby affecting its heating value. Thus, He-density has been 

considered as an input to model-III.  

 The percentages of the proximate analysis constituents such as ash and 

moisture, are in turn dependent (albeit in a complex manner) upon the 

elemental composition of coals. Thus, the input space of models V and VI 

comprise constituents of the elemental analysis. 

 

3.4.4 Collection of Data 

The data set (see Table 3.7) comprising constituents of the proximate and ultimate 

analyses as also the corresponding experimentally determined GCVs (Kcal/kg) of 79 
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coal samples obtained from the mines located in the six prominent coal producing 

regions in India and supplied by the CFRI, Dhanbad, India, has been used for the 

purpose of developing ANN-based models. The data consists of values of ten 

constituents of the coal analysis namely, moisture ( )MC , ash ( )AC , volatile matter 

( )mV , fixed carbon ( )CF , carbon ( )CC , hydrogen ( )HC , sulphur ( )SC , nitrogen 

( )NC , oxygen ( )OC  and He-density ( )Heρ . These values were determined on “as 

received” basis, which can be converted to the “dry basis” by using the following 

expression. 

Value(“dry” basis) = Value(“as received” basis) / (100- MC ))×100               (3.15) 

Among the seven ANN-based models, the first five use data on “as received” basis 

while the remaining two (VI and VII) use data on the “dry basis”. 

 In this study, all ANN models have been developed by considering two 

hidden layers in the MLP architecture and these were trained using the EBP 

algorithm. In order to ensure that the ANN models possess the much desired 

generalization ability, the data on coal analysis and the corresponding GCVs were 

partitioned into two sets namely training and test sets. While the training set was used 

in the EBP algorithm-based iterative minimization of RMSE, the test set was used 

after each training iteration for assessing the generalization ability of the MLP model. 

The network weights that resulted in the least RMSE for the test set (Etst) were 

considered to be the optimal weights. Before partitioning the available data into the 

stated two sets, the values of individual inputs and the output (GCV) were scaled to 

lie between 0.05 and 0.95. All ANN models use the logistic sigmoid transfer function 

for computing the outputs of the hidden and output layer nodes. It may be noted that 

the nonlinear function approximation capability of ANNs stems from the usage of 

nonlinear transfer function such as the logistic sigmoid. For constructing an MLP 

model with optimal prediction accuracy and generalization performance, it is 

necessary to rigorously study the effect of MLP’s structural parameters namely, the 

number of nodes in the first and second hidden layers (J, K) as also two EBP-specific 

parameters viz. η  and μ . Accordingly, the values of J, K, η  and μ  were varied 
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systematically and those leading to the minimum test set error were considered 

optimal. In addition, the effect of random weight initialization in the EBP algorithm 

was studied by varying the seed values of the pseudo-random number generator to 

obtain an MLP model that corresponds to the global or the deepest local minimum on 

the model’s nonlinear error surface. The details of the training and test sets along with 

the optimized values of the MLP’s architecture and EBP parameters for the seven 

ANN models are given in Table 3.8. 

 

3.4.5 Results and Discussion 

The GCV prediction and generalization performance of ANN-based models is 

given in Table 3.9. Their performance is evaluated in terms of: (i) coefficient of 

correlation (CC) between the model predicted and the corresponding experimental 

(target) GCVs, (ii) RMSE, and (iii) average percent error (APE) in the GCV 

prediction. These quantities have been evaluated separately for the training and test 

sets. While the values of CC, RMSE and APE pertaining to the training set data are 

indicators of the GCV prediction accuracy of the models, the values in respect of the 

test set data indicate the generalization ability of the models. It is seen from the CC 

values in respect of the training set outputs of all the seven ANN models (see Table 

3.9) that the respective magnitudes are high (>= 0.984). This indicates that the models 

possess excellent GCV prediction accuracy. The CC magnitudes in respect of the test 

set outputs are also high and comparable with those corresponding to the training sets 

thus indicating that the models possess excellent generalization ability as well.   

Among the seven ANN-based models, the most comprehensive one (model-I) 

using all major constituents of the proximate and ultimate analyses as also the He-

density as inputs has yielded the best overall GCV prediction accuracy and 

generalization performance. The corresponding values of the CC for both the training 

and test sets (0.996 and 0.997) are highest among the seven models. This result 

suggests that the most accurate estimation of GCV can be made from the major 

constituents of the proximate and ultimate analyses.  
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Figure 3.5: Graphical comparison of experimental GCVs with those estimated by 
ANN model-II and Eq. (3.13) 

 

A comparison of the performance of the ANN model-II with its linear 

counterpart (Eq. 3.12) reveals that the ANN model possesses far superior prediction 

accuracy and generalization ability (i.e., higher CC and significantly lower RMSE 

and APE values).  Figure 3.5 shows comparative plots of the GCVs determined 

experimentally and those estimated by the ANN model-II and Eq. (3.12). A close 

match between the experimental and model predicted GCVs indicates that the ANN 

model-II is capable of reasonably accurate GCV estimation from the knowledge of 

just two proximate analysis constituents, namely ash and moisture contents.  

 The ANN model-III considers He-density as an additional input to those 

considered by the model-II. The prediction and generalization performance of this 

model shows no significant improvement over the performance of the ANN model-II 

using ash and moisture as inputs. This suggests that inclusion of He-density does not 

provide any additional information useful in improving the model’s GCV prediction 

accuracy over that provided by ash and moisture contents. The prediction results from 

ANN model-IV wherein He-density is replaced by the percentage of fixed carbon are 

very similar to those of models II and III. This can be judged by the close match 
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between the CC, RMSE and APE magnitudes in respect of the training and test sets of 

model-IV and models II and III. 

The ANN model-V considers the elemental composition of coals as model 

inputs. Among the five prominant elements present in the coal namely carbon, 

hydrogen, sulphur, nitrogen and oxygen, only the first four are included in the input 

space since oxygen content is a derived quantity and can be calculated by subtracting 

the summation of the weight percentages of CC , HC , SC , and NC  from 100. In this 

case too the ANN model could predict and generalize the GCV of Indian coals with 

excellent precision as indicated by the high CC magnitudes (≈ 0.984) for the training 

as well as test data sets. 

The ANN model-VI is a coal-specific nonlinear counterpart of the linear 

correlation     (Eq. 3.13) proposed by Channiwala et al. [2002]. Thus a comparison 

was made of the GCV predictions by model-VI and Eq. (3.13). This comparison 

reveals that the correlation coefficient values in respect of the GCV predictions made 

by both the models match very closely (i.e. CC ≈ 0.99). However, there exists a 

significant difference in the RMSE as well as APE values in respect of the predictions 

made by the ANN-based and linear models. Specifically, the ANN model could 

predict the GCVs with better accuracy and generalization performance (RMSEtrn = 

0.516, RMSEtst = 0.688, APEtrn = 2.215, APEtst = 2.625) when compared to that of the 

linear Eq. 2.13 (RMSEtrn = 4.352, RMSEtst = 4.515, APEtrn = 22.93, APEtst = 21.484). 

Figure 3.6 shows comparative plots of the GCVs determined experimentally and 

those estimated by the ANN model-VI and Eq. (3.13). It is seen in this figure that the 

ANN model is able to predict the GCV with much higher accuracy when compared 

with Eq. (3.13). 

The ANN-based model-VII uses percentages of fixed carbon, volatile matter 

and ash as model inputs. Parikh et al. [2005] earlier used these inputs in developing a 

correlation (Eq. 3.14) to overcome the experimental procedure involved in the 

determination of the elemental composition used in Eq. (3.13). A comparison of the 

GCV prediction and generalization performance of model-VII and Eq. (3.14) reveals 

(see Table 3.10) that similar to model-VI, the model-VII shows a better GCV 
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prediction accuracy and improved generalization performance when compared with 

that of Eq. (3.14). Figure 3.7 shows comparative plots of the GCVs determined 

experimentally and those estimated by model-VII and Eq. (3.14). As can be seen in 

this figure, there exist an excellent match between the ANN predicted and 

experimental GCVs. 
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Figure 3.6: Graphical comparison of experimental GCVs with those estimated by 
ANN model-VI and Eq. (3.14) 

 

 The above-described results suggest that ANNs owing to their 

excellent nonlinear modeling ability are a better alternative to the linear models for 

the prediction of GCV of coals. The ANN weights can be used to predict the GCV 

magnitudes of new coal samples of Indian origin; the weight parameters of the ANN 

models can be obtained from the author.  

 



 

 182

0

10

20

30

0 10 20 30

Experimental GCV (MJ/kg)

M
od

el
 P

re
di

ct
ed

 G
C

V 
(M

J/
kg

)

ANN Predicted

Linear Correlation

 

Figure 3.7: Graphical comparison of experimental GCVs with those estimated by and 
ANN model-VII and Eq. (3.15) 

 

3.4.6 Identifying Important Inputs of ANN Models 

There exist a number of methods for identifying important inputs of a 

nonlinear model and these have been reviewed by Sung [1998]. The important inputs 

are those, which even when perturbed by a small amount cause a relatively large 

change in the model output. In the case of ANN models, two methods namely 

sensitivity analysis (SA) and change of mean-square-error (MSE) have been proposed 

for identifying the hierarchy of model inputs in the order of their influence on the 

model output (see Section 3.4.7). In SA, the important inputs can be identified 

directly from an optimally trained ANN model whereas in the MSE methodology a 

number of ANN models need to be developed for identifying the significant inputs. 

An additional input identification method, known as “Fuzzy Curves” (see Section 

2.5.6) has been proposed by Lin and Cunningham [1994, 1995]. In this method, a 

separate fuzzy curve model (FCM) is created for each input variable from the 

example input-output data. Next, the inputs are ranked depending upon how well a 

fuzzy curve model captures the relationship between an input and the output variable. 

In this study, we have chosen SA for identifying the important constituents of the 
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proximate and ultimate analysis that affect the GCV since the necessary optimal ANN 

models for the GCV prediction are already available.  

The sensitivity analysis of an ANN model is performed by computing the 

sensitivity coefficient matrix (SCM). The numerical procedure for SCM for a single 

hidden layer MLP network was proposed by Englebrecht et al. [Engelbrecht, 1995] 

and Zurada et al. [1994]. This procedure was subsequently modified by Sung [1998] 

for computing the SCM of a two hidden layer MLP network. Both these procedures 

use the optimal weight parameters of an MLP model for identifying the hierarchy of 

significant network inputs. The MLP models that have been developed in this study 

use two hidden layers and, therefore, the SCM  procedure of Sung [1998] has been 

used for conducting SA; this procedure has been appropriately modified as given 

below for computing the percentage of sensitivity ( )Ŝ  that an input variable exhibits 

towards an output variable. 

 

3.4.7 Sensitivity Analysis (SA) of ANN Models 

This section describes the procedure for computing the sensitivity coefficient 

matrix (SCM) and the percentage of sensitivity ( )eS  exhibited by an input variable 

towards an output of a two-hidden layer MLP model. Consider an MLP neural 

network (see Figure 2.1) housing I, J, K and L number of nodes in its input, hidden-I, 

hidden II and output layers, respectively. The nodes in the input, hidden-I, hidden-II 

and output layers are described by X, V, Z and Y, respectively, 

where ( )Ii xxxxX ,...,,...,, 21= ,  ( )Jj vvvvV ...,,...,, 21= , ( )Kk zzzzZ ,...,,...,, 21=  and 

( )Ll yyyyY ,...,,..., 21= .  

For a training set pattern p , the sensitivity of the lth output ( ly ) with respect 

to the input ix  is defined as: 
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where '' , zy  and 'v  are the respective derivative values of the activation function used 

in the computation of y , z  and v ; the weight on connection between ith and jth 

nodes is denoted as ijw . Equation (3.16) can be recasted to define the sensitivity of 

any output with respect to any input pattern p  in the training set as follows: 

         JKJKKL
p WVWZWYS '''=                                                           (3.17) 

where, KLW , JKW  and IJW  are the weight matrices in respect of connections between 

output and hidden layer-II nodes, hidden layer-II and hidden layer-I nodes, and 

hidden layer-I and input layer nodes respectively; ( )LLY ×' , ( )KKZ ×'  and 

( )JJV ×'  are the diagonal matrices defined as: 

( )''
1

' ,..., LyydiagY =                                                            (3.18) 

( )''
1

' ,..., KzzdiagZ =                                                           (3.19) 

( )''
1

' ,..., JvvdiagV =                                                           (3.20) 

 Equation 3.17 defines sensitivity with respect to a single input-output pattern. To 

calculate the sensitivity with respect to each input variable in the training set, 

following equation can be used [Zurada et al., 1994]: 

∑
=

=
P

p

p
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S
S

1
,

~ ||
                                                                   (3.21) 

where 
~

,ilS  denotes the sensitivity of ith input variable towards lth output. Finally, the 

sensitivity values can be normalized as given below to obtain the percent sensitivity 

value for an lth output with respect to an ith input.  
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 The results of the sensitivity analysis of the comprehensive ANN model-I are 

presented in Table 3.10. It can be observed from the tabulated values of Ŝ  that the 

GCV exhibits highest sensitivity of 25 % towards oxygen content. The other 

significant inputs with sensitivity values higher than 10 % are, carbon ( Ŝ  = 20.4 %), 

ash ( Ŝ  = 15.9 %), fixed carbon ( Ŝ  = 12.3 %) and moisture ( Ŝ  = 10.4 %); in 

comparison, the GCV magnitude exhibits relatively lower sensitivity ( Ŝ  < 5 %) 

towards volatile matter, He-density, nitrogen, hydrogen and sulphur. 

 

3.4.8 Conclusion 

 The existing models for estimating the GCV of coals from the constituents of 

the proximate and/or ultimate analyses are linear in character. It is observed that 

while the GCV exhibits a linear dependence on a number of constituents of the 

proximate and ultimate analyses, there exists a strong possibility that the GCV is 

nonlinearly dependent on some constituents of the stated analyses. Accordingly, 

seven nonlinear artificial neural network models of varying rigor have been 

developed in this study for the estimation of GCV with a special focus on Indian 

coals. The results of the GCV estimation clearly suggest that all the ANN models 

possess an excellent prediction accuracy and generalization performance with the 

comprehensive model (I) that uses all the major constituents of proximate and 

ultimate analyses as inputs, yielding the best prediction and generalization accuracy. 

More significantly, the ANN models are found to estimate the GCV magnitudes with 

better accuracy when compared to the three linear models using same inputs. 

Additionally, a sensitivity analysis of the ANN model-I has been performed to 

identify the hierarchy of model inputs in the order of their influence on the GCV 

magnitudes. The results of this analysis indicate that oxygen, carbon, ash, fixed 

carbon, and moisture have a stronger influence on the GCV than volatile matter, He-

density, nitrogen, hydrogen and sulphur. This study clearly shows that ANNs are an 

attractive strategy for the estimation of GCV of coals. The modeling approach 

presented here can also be extended gainfully for an accurate GCV estimation of a 

wide spectrum of solid, liquid and gaseous fuels.   
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Table 3.7: Proximate and ultimate analysis data of Indian coals along with experimental GCV values 

   Sr. 
No. Region MC  AC  mV  CF  CC  HC  SC  NC  OC  Heρ  

GCV     
(experimental) 

(MJ/kg) 

1 MCL 6 38 26.3 29.7 41.9 3.29 0.26 0.89 53.7 1.75 17.17 

2  5.8 41.1 23.9 29.2 40.2 2.87 0.18 0.56 56.2 1.81 15.53 

3  7.5 34 26.2 32.3 45.8 3.26 0.29 0.71 50.0 1.71 17.63 

4  7.6 32.4 22.5 37.5 45.4 2.81 0.26 0.85 50.7 1.75 17.48 

5  8.3 32.5 27 32.2 43.5 3.19 0.87 0.81 51.7 1.66 17.24 

6  5.8 44.7 22.5 27 37.0 2.59 0.24 0.75 59.4 1.85 14.09 

7  5.7 47.8 22.3 24.2 32.9 2.40 0.40 0.80 63.5 1.92 12.56 

8  6.8 41.8 25 26.4 39.2 2.68 0.35 0.83 56.9 1.76 15.13 

9  4.4 35.6 27.6 32.4 45.5 3.25 0.62 0.91 49.7 1.7 18.17 

10  4.6 39.7 25.5 30.2 40.2 3.09 0.62 0.94 55.2 1.74 16.74 

11  5.5 35.5 28.7 30.3 45.4 3.12 0.54 0.92 50.0 1.6 18.02 

12  4.8 35.5 28.4 31.3 46.1 3.23 0.48 0.99 49.2 1.6 18.31 

13  7.1 34.4 27.7 30.8 46.1 3.42 0.62 1.10 48.8 1.71 18.09 

14 NCL 9.5 17.6 29.1 43.8 57.7 3.47 0.29 1.12 37.5 1.47 22.55 

15  7.2 17.4 30.0 45.4 58.8 3.54 0.37 1.10 36.2 1.54 23.29 

16  5.2 36.7 28.2 29.9 43.3 3.31 0.51 0.84 52.0 1.69 17.27 

17  6.7 24.8 26.8 41.7 51.9 3.00 0.40 0.79 43.9 1.77 19.95 

18  6.2 28.1 27.4 38.3 51.0 3.58 0.39 0.95 44.1 1.63 18.28 
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Sr. 
No. Region MC  AC  mV  CF  CC  HC  SC  NC  OC  Heρ  

GCV     
(experimental) 

(MJ/kg) 

19  7.1 33.5 25.5 33.9 46.0 3.28 0.30 0.89 49.5 1.59 16.12 

20  6.4 39.3 22.5 31.8 41.1 2.75 0.44 0.82 54.9 1.7 17.10 

21  5.7 36.6 27.7 30.0 42.6 3.16 0.34 0.77 53.1 1.62 14.87 

22  5.6 42.4 26.1 25.9 38.8 2.98 0.35 0.72 57.1 1.88 15.79 

23  7.0 40.7 24.4 27.9 39.3 3.06 0.43 0.75 56.5 1.75 18.94 

24  9.9 28.2 27.5 34.4 48.5 3.34 0.35 0.97 46.8 1.51 17.98 

25  7.2 34.4 25.3 33.1 45.3 3.12 0.00 0.57 51.0 1.61 15.74 

26  10 34.5 24.7 30.8 41.2 3.02 0.44 0.64 54.7 1.6 20.50 

27  5.4 30.0 29.4 35.2 48.8 3.78 0.37 0.85 46.2 1.55 18.56 

28 WCL 8.2 31.7 27.3 32.8 46.3 2.7 0.4 1.0 49.6 1.64 21.21 

29  6.3 26.2 24.6 42.9 54.1 2.9 1.0 1.2 40.8 1.63 18.13 

30  8.0 32.4 24.4 35.2 45.6 2.6 1.1 1.0 49.7 1.69 16.83 

31  7.6 38.1 24.5 29.8 41.2 2.5 0.4 0.9 55.0 1.7 21.63 

32  9.0 21.4 26.3 43.3 54.6 3.0 0.4 1.2 40.8 1.58 16.30 

33  8.1 35.5 24.5 31.9 41.5 2.3 0.3 1.0 54.9 1.71 8.84 

34  4.9 60.8 17.4 16.9 23.0 1.2 0.5 0.5 74.8 1.82 18.14 

35  8.8 31.8 24.6 34.8 43.8 2.6 2.2 0.9 50.5 1.67 22.59 

36  7.4 22.1 29.2 41.3 54.8 3.5 1.1 1.2 39.4 1.49 18.38 

37  8.3 32.2 25.0 34.5 45.0 2.8 1.9 1.0 49.3 1.61 17.61 

38  7.3 33.4 25.1 34.2 43.5 2.6 1.1 1.0 51.8 1.55 21.85 

39  8.5 18.9 29.7 42.9 55.1 3.3 0.7 1.2 39.7 1.54 18.70 



 

 188

Sr. 
No. Region MC  AC  mV  CF  CC  HC  SC  NC  OC  Heρ  

GCV     
(experimental) 

(MJ/kg) 

40  7.5 30.6 25.4 36.5 46.6 2.7 2.0 1.0 47.7 1.55 17.64 

41  6.9 34.3 24.0 34.8 44.1 2.6 1.4 1.0 50.9 1.57 15.24 

42  5.3 43.2 22.5 29.0 37.8 2.2 2.0 0.8 57.2 1.62 17.93 

43  7.3 33.1 25.8 33.8 44.9 2.7 0.7 0.9 50.8 1.46 16.01 

44  6.3 37.9 24.1 31.7 42.5 2.52 0.46 0.79 53.7 1.78 19.40 

45  8.4 26.8 26.4 38.4 48.4 3.35 0.52 0.00 47.7 1.58 18.21 

46  6.5 33.4 26.2 33.9 45.7 3.00 0.50 1.30 49.5 1.67 22.76 

47  4.3 25.5 28.4 41.8 56.0 3.60 0.60 1.50 38.3 1.58 23.67 

48  3.6 23.5 29.8 43.1 57.7 3.70 0.60 1.60 36.4 1.54 20.98 

49  5.1 29.3 27.3 38.3 51.8 3.30 0.60 1.10 43.2 1.62 19.72 

50  4.3 33.3 26.7 35.7 48.6 3.10 0.60 1.20 46.5 1.65 13.78 

51  5.7 46.3 22.0 26.0 34.8 3.30 0.60 1.30 60.0 1.6 15.65 

52  5.4 40.7 23.9 30.0 40.4 2.60 0.40 1.00 55.6 1.79 16.67 

53  6.0 38.8 23.9 31.3 41.6 2.70 0.50 0.90 54.3 1.69 16.84 

54  6.0 42.8 24 27.2 37.8 2.50 0.40 1.10 58.2 1.74 17.22 

55  0.8 45.7 15.7 37.8 39.1 2.75 0.24 0.79 57.1 1.78 20.08 

56  5.0 31.3 28.9 34.8 48.4 3.09 0.34 0.73 47.4 1.67 22.26 

57 SECL 4.6 29.0 23.3 43.1 53.3 3.0 1.0 1.0 41.7 1.53 25.47 

58  5.5 18.7 25.5 50.3 61.1 3.6 1.2 1.0 33.1 1.45 18.63 

59  8.4 31.1 21.9 38.6 46.5 2.3 1.0 0.7 49.5 1.57 19.07 

60  8.2 30.8 22.0 39.0 47.3 2.4 1.0 0.6 48.7 1.56 21.66 
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Sr. 
No. Region MC  AC  mV  CF  CC  HC  SC  NC  OC  Heρ  

GCV     
(experimental) 

(MJ/kg) 

61  5.6 26.9 24.3 43.2 53.0 3.0 1.1 0.9 42.0 1.52 22.13 

62  6.6 25.3 26.6 41.5 52.7 3.2 1.1 1.2 41.8 1.54 26.29 

63  6.0 15.0 26.9 52.1 62.5 3.7 1.3 0.5 32.0 1.46 20.90 

64  7.2 28.9 26.0 37.9 48.2 3.0 1.0 0.7 47.1 1.52 23.30 

65  9.1 18.2 25.6 47.1 57.5 3.0 1.1 0.8 37.6 1.49 20.40 

66  5.4 32.6 25.9 36.1 49.1 2.9 0.9 0.6 46.5 1.55 23.46 

67  7.1 21.5 24.7 46.7 57.8 3.0 1.2 0.6 37.4 1.46 26.65 

68  3.8 18.4 25.0 52.8 61.9 3.4 1.2 0.4 33.1 1.48 25.05 

69  7.2 16.7 27.8 48.3 61.2 3.4 1.1 0.7 33.6 1.43 25.49 

70  6.7 17.1 26.2 50.0 62.2 3.4 1.2 0.5 32.7 1.45 17.60 

71  6.1 36.4 24.9 32.6 43.9 2.6 0.9 0.2 52.4 1.68 14.93 

72  6.8 43.2 22.2 27.8 36.6 2.2 0.7 0.2 60.3 1.77 23.86 

73 SCFL 7.8 17.1 24.9 50.2 60.5 3.2 0.3 1.1 34.9 1.48 21.40 

74  7.4 24.3 27.1 41.2 53.6 3.2 1.1 1.2 40.9 1.54 20.73 

75  7.1 29.0 28.1 35.8 50.4 3.1 1.5 1.1 43.9 1.52 20.90 

76  5.7 37.5 23.2 33.6 43.1 2.6 1.0 1.1 52.2 1.59 17.33 

77  8.9 35.9 23.2 32.0 42.0 2.3 2.2 1.0 52.5 1.64 16.41 

78  5.5 40.1 24.2 30.2 42.0 2.4 0.7 1.0 53.9 1.68 16.85 

79  5.1 46.5 20.8 27.6 35.6 2.0 0.5 0.8 61.1 1.78 13.91 
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Table 3.8: Details of ANN-based GCV models* 

Model 
No. 

Basis Model Inputs 
Training  set 

size 
Test  set 

size 
I J K 

Learning 
rate ( )η  

Momentum 
coeff. ( )μ  

I As received 
Moisture, ash, volatile matter, fixed 
carbon, carbon, hydrogen, sulphur, 
nitrogen, oxygen and He-density 

63 16 10 5 6 0.2 0.1 

II As received Ash, moisture 64 15 2 5 6 0.2 0.1 

III As received Ash, moisture, He-density 64 15 3 5 6 0.2 0.1 

IV As received Ash, moisture, fixed carbon 64 15 3 5 10 0.2 0.1 

V As received Carbon, hydrogen, sulphur, nitrogen 64 15 6 3 6 0.2 0.1 

VI Dry 
Carbon, hydrogen, sulphur, nitrogen, 

oxygen, ash 
64 15 3 5 6 0.2 0.1 

VII Dry Fixed carbon, volatile matter, ash 64 15 3 5 6 0.2 0.1 

 

* I = No. of input nodes; J = No. of nodes in the first hidden layer; K = No. of nodes in the second hidden layer. 
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Table 3.9: Statistical analysis of GCV prediction and generalization performance of ANN-based and linear models* 

 

Performance of ANN models Performance of linear models* 

Training set Test set Training set Test set Models 

CC RMSE APE CC RMSE APE CC RMSE APE CC RMSE APE 

I 0.996 0.281 1.233 0.997 0.514 2.067 - - - - - - 

II 0.986 0.537 2.433 0.996 0.787 3.062 0.565 3.191 13.957 0.623 3.931 17.412 

III 0.987 0.528 2.443 0.994 0.618 2.205 - - - - - - 

IV 0.988 0.479 2.155 0.995 0.725 2.663 - - - - - - 

V 0.984 0.590 2.701 0.988 0.630 2.405 - - - - - - 

VI 0.989 0.516 2.215 0.989 0.688 2.625 0.983 4.352 22.930 0.991 4.515 21.484 

VII 0.984 0.612 2.574 0.989 0.696 2.485 0.981 2.699 12.893 0.985 3.280 14.146 

 

* The GCV prediction and generalization performance of ANN-models II, VI, and VII have been compared with the linear 

models described by Eqs. 3.12, 3.13 and 3.14, respectively. 
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Table 3.10:  Results of sensitivity analysis (SA) of  ANN model-I      

 

Sr. No. 
SA-based hierarchy of 

inputs 
% sensitivity ( )Ŝ  

1 Oxygen 25.0757 

2 Carbon 20.4558 

3 Ash 15.8912 

4 Fixed carbon 12.2942 

5 Moisture 10.4246 

6 Volatile matter 4.3730 

7 He density 4.1563 

8 Nitrogen 3.6144 

9 Hydrogen 2.7548 

10 Sulphur 0.9599 
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3.5 SOFT-SENSOR DEVELOPMENT FOR FED BATCH 

BIOREACTORS USING SUPPORT VECTOR REGRESSION∗ 

 

Industrial fermentation processes involving a fed-batch operation are 

extensively used for the production of antibiotics, amino acids, microbial cells, 

enzymes and organic acids. Efficient monitoring and control of these systems is 

greatly facilitated if sensor measurements of the process variables or at least their 

reasonably accurate estimates are available continuously in real-time. Often, 

reliable biosensors or robust on-line measurement techniques for the process 

variables such as the concentrations of the active biomass and product species are 

not readily available. To overcome this difficulty, usage of software based sensors 

(known as ‘soft-sensors’ or ‘virtual sensors’) is recommended. Softsensors allow 

an online estimation of the unmeasured or “difficult-to-measure” process variables 

from the values of easily and frequently measured variables. In recent years, 

artificial neural networks owing to their significant ability of nonlinear function 

approximation are widely prescribed for the development of softsensors. 

However, the ANN approach suffers from the drawbacks such as extensive 

numerical effort required to find a globally optimum solution and “black-box” 

nature of the resultant model. In this section, therefore, a state-of-the-art 

statistical/machine learning based formalism known as “support vector regression 

(SVR)” possessing some novel characteristics, has been presented for the soft-

sensor development in fed-batch processes. The efficacy of the SVR formalism 

has been demonstrated by considering two simulated bio-processes namely, 

invertase and streptokinase. Also, the performance of the SVR based soft-sensors 

is compared with those developed using a standard ANN technique. In the case of 

invertase process, the differential utilization rate of ethanol and glucose is used as 

the basis for developing a soft-sensor. For the streptokinase process, soft-sensors 
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for the active biomass and streptokinase concentrations are developed using the 

characteristic that the wild type and its recombinant give rise to different growth 

and substrate utilization profiles. The results presented here clearly indicate that 

the SVR is an attractive alternative to ANNs for the softsensor development. 

 

3.5.1 Introduction 

Industrial applications of enzymes have increased rapidly in the past few 

years. Most enzymes are produced by a submerged, aerobic fermentation 

involving a batch operation. A fed-batch culture is widely used for the production 

of enzymes from a microbial source that suffers catabolic repression. The fed-

batch operation is found to be superior to batch and continuous operations in 

situations of a parallel formation of the desired and undesired products [Ohno et 

al., 1976; Staniskis, 1984].  

The traditional methods of improving the efficiency of a bio-process 

comprise strain modification and development of the media by empirical means. 

Invariably, these approaches are found to be inadequate owing mainly to the 

process variability and operational difficulties. Thus, in recent years a significant 

attention is being paid to monitoring, control and optimization of bio-processes 

with a view to bring about improvements in the process productivity and 

economics. The ability of controlling a bio-process at its optimal state accurately 

and robustly is of immense importance from the view point of reducing the 

production cost, increasing product yield, and maintaining quality of metabolic 

products. An efficient feed-back or the model based control is thus necessary to 

achieve the stated objectives.   

The task of controlling and monitoring a bioprocess efficiently and 

robustly is faced with major difficulties such as the existence of significant 

uncertainties emanating from the complex non-linear dynamics typically exhibited 

by the bioprocesses, and the lack of–in most cases–reliable hardware and/or bio-

sensors for measuring values of the process and/or product quality variables 

[Shimizu, 1996]. The first of these difficulties can be overcome by constructing an 

appropriate phenomenological or an empirical process model capable of 

describing the non-linear process dynamics accurately. The second significant 

difficulty, that is the lack of reliable hardware and/or biosensors, can be addressed 
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by developing softsensors that can accurately estimate values of the process and 

product quality variables in real-time. Softsensors are software based sophisticated 

monitoring systems, which can relate less accessible and infrequently measured 

process variables with those measured easily and frequently. In essence, 

softsensors correlate the unmeasured process and product quality variables with 

the frequently measured process variables and thus assist in making real-time 

predictions of the unmeasured variables. Softsensors are useful in the control and 

monitoring of fermentation processes wherein owing to the unavailability of 

appropriate hardware sensors and/or bio-sensors, the values of important process 

and product quality variables are not continuously available. The predictive 

performance of softsensors depends upon the reliable measurements of easily 

accessible process variables and also on the mathematical and/or statistical 

techniques used in the interpretation and correlation of the process data. A number 

of authors have described different approaches for the soft-sensor development in 

the batch, fed-batch and continuous processes [Bastin 1990; Acha et al., 1999; 

Albert et al., 2001; Linko et al., 1999; James et al., 2002 ; Sachez et al., 1999; 

Adilson et al., 2000; Montague et al., 1986; Pons et al., 1988].  

In the last decade, artificial neural networks, (refer Section 2.2.1) owing to 

their attractive functional approximation properties, have become a powerful 

formalism not only for constructing exclusively data-driven nonlinear process 

models but also for developing soft-sensors [Eerikäinen et al., 1993; Zhu et al., 

1996; Karim et al., 1992]. More recently, support vector regression (refer Section 

2.2.2), which shares many features with ANNs, but has some additional novel 

characteristics, is gaining widespread acceptance for exclusively data-driven 

nonlinear modeling applications [Nandi et al., 2004]. Despite endowed with a 

number of attractive features, the SVR being a new formalism, is yet be explored 

widely in the biochemical/biotechnology applications. Therefore, in the present 

work, the SVR formalism has been introduced for developing soft-sensors for 

bioprocesses. Specifically, two simulated fed-batch processes namely invertase 

and streptokinase, have been considered for the SVR-based softsensor 

development. Also, the performance of the SVR-based softsensors has been 

rigorously compared with those developed using a standard ANN formalism. The 
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results of the two case studies presented here clearly indicate that the SVR is an 

attractive strategy for developing soft-sensors for bioprocesses.  

 

3.5.2 Invertase Production Model 

The phenomenological model for biphasic growth of Saccharomyces 

carlsbergensis and invertase production is given as [Pyun et al., 1989] 

( ) ( )t G A t
d x x
dt

μ μ= +        (3.23) 

( ) t Fsx s Fd s
dt v v

ψ
= − +        (3.24) 

( ) ( )A C t
d e x
dt

π π= −        (3.25) 

( )d v F
dt

=         (3.26) 

  ( ) ( )inv S G A A t
d c x
dt

η μ η μ= +       (3.27) 

where 

 tx , s, and e:  concentrations of cells, glucose, and ethanol, respectively 

μG, μA, ψ: specific growth rates on glucose and ethanol and, specific rate of 

glucose consumption, respectively,  

πA, and πC: specific rates of ethanol production and ethanol consumption, 

respectively, 

ηS and ηA: ratios of the specific invertase synthesis rate to the specific growth rate 

on glucose and on ethanol, respectively, 

cinv: invertase activity, 

q: volumetric feed rate of glucose, 

sF: glucose feed concentration, 

v: fermenter volume. 
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The following nonlinear feed rate profile that maximizes the streptokinase 

production [Toda, et al., 1980] is used for the data generation.  

q = 0.2 l/h for (0 ≤  t ≤  0.58); q = 0 l/h for (0.58 ≤  t ≤  2.28); q = qc l/h  for 

(2.28 ≤  t ≤  12.4); q = 0 l/h for (12.4 ≤  t ≤  13) 

where, 

  (1.2013) ( 0.1046)
cq ( 1.4892)( ) ( )t inv

F

xv x v s c
s s
ψ −= + −

−
   (3.28) 

 

The details of above rate expression and kinetic model can be found in [Pyun, et 

al., 1989]. The following values of model parameters and operating conditions are 

used in SVR simulations: 

max
Gμ  = 0.39 h-1, max

Aμ  = 0.11 h-1, sk  = 0.021 g/l, pk  = 0.014 g/l, /
R

x sY  = 0.52 g/g, 

/
F

x sY  = 0.15 g/g, /
R

x pY  = 0.67, /
R

p sY  = 0.33 g/g, e0 = 0 g, ( invc )0 = 0 KU/g, v0 = 0.6 l, 

vmax = 1.5 l,  

sF = 0.5/[vmax – v0] g/l. 

 

3.5.3 Softsensor for Invertase Process 

Saccharomyces carlsbergensis shows a biphasic nature of growth, i.e., it 

can utilize glucose as well as ethanol in the event of a glucose scarcity [Dedem et 

al., 1975; Beejherk et al., 1977]. This feature is advantageous since among the two 

substrates namely glucose and ethanol, the latter is cheaper. Hence, the 

fermentation is conducted by maintaining the glucose concentration at a level such 

that the yeast is forced to use ethanol. Saccharomyces carlsbergensis and some 

other yeasts exhibit the diauxic type of growth whereby in the first growth phase, 

the glucose is utilized via an aerobic fermentation with carbon dioxide and ethanol 

as the main reaction products. When glucose is completely exhausted, the ethanol 

produced earlier serves as a substrate for the further growth. In a fed-batch 

culture, which is used extensively to suppress the catabolic repression, it is 

necessary to control the concentration of glucose at an optimal level for 
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maximizing the cellular yield and maintaining a high growth rate. When yeasts 

exhibiting the diauxic growth are used for the production of enzymes, the extent 

of cellular growth and enzyme production depends upon the balance between the 

metabolic states of the aerobic fermentation and respiratory growth. Accordingly, 

an estimation of the current metabolic state can be made from the changes in the 

concentrations of glucose and ethanol in the broth. 

The major advantage of a fed-batch bioreactor is during fermentation, the 

feed composition and feed flow rate can be manipulated to maximize the product 

formation. Thus, manipulation of the feed rate is an important aspect of the fed-

batch operation from the view point of process control and optimization. The 

optimal feeding policy depends significantly on the initial feed concentration and 

flow rate and its manipulation is highly sensitive to the changes in the kinetic 

parameters. Modak et al. [1986] have reported that for certain kinetics, glucose-

stat (maintaining the glucose concentration at a constant level) is optimal. 

However, very often the substrate concentration is maintained by regulating the 

feed rate in an optimal manner. Pyun et al. [1989] have reported the results of a 

detailed study on the optimization of the biphasic growth of Saccharomyces 

carlsbergensis in a fed-batch culture. Recently, optimization of the same system 

has been carried out by Sarkar and Modak [2003] using Genetic Algorithms (see 

Section 2.4.3); the optimal feed profiles obtained thereby exhibit an excellent 

match with those obtained by Pyun et al. [1989]. Both these studies have reported 

four different profiles for as many combinations of high and low initial 

concentrations of the substrate and biomass. Since all these feed profiles were 

nearly identical, only one feed profile has been considered as a reference feed 

profile in this study. 

 To generate process data for developing a softsensor for the invertase from 

Saccharomyces carlsbergensis process, the phenomenological model proposed by 

Toda et al. [1980] (also see Pyun et al. [1989] has been used. It may however be 

noted that the model is used only to simulate the process and thereby generating 

the process data. In real practice, data collected by running the process physically, 

are to be used for developing the softsensor. As can be noted from the invertase 

model (see Section 3.5.2), The fed-batch invertase process is described in terms of 

five operating variables namely, glucose concentration (s, g/l), ethanol 
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concentration (e, g/l), bioreactor volume (v, l), biomass concentration (xt, g/l) and 

invertase concentration (cinv, KU/g). This case study aims at developing an SVR-

based softsensor for the prediction of cinv. To generate process data, the set of five 

ordinary differential equations (see Eqs. 3.23 to 3.28) representing the process 

dynamics was simulated under varying initial conditions; the ranges in which the 

initial values were varied are: (0.3 < v0 < 0.6, 0.02 < s0 < 0.1, and 0.03 < xt0 < 

0.06). A total of 33 batches with varying initial conditions were simulated over the 

fermentation duration of 13 hrs. The values of four operating variables, i.e. s, v, xt 

and e, and that of the single product quality variable namely, invertase 

concentration, cinv, computed at 30 minute intervals formed the process data set. 

The real-world process data always contain some instrumental and measurement 

noise and, therefore, 5% Gaussian noise was introduced in each variable of the 

process data for mimicking the real-world process scenario. This set can be 

viewed as a three-way array of size 33 (number of batches) × 5 (process variables) 

× 27 (measurement intervals). Since the concentrations of glucose, biomass and 

ethanol as also the reactor volume significantly influence the activity of the 

invertase, it is necessary to consider the history of these variables along with their 

current values for developing the softsensor model. Thus, the current and lagged 

values of variables s, e, xt and v, were used as inputs to the SVR-based model 

predicting the current value of the invertase concentration (activity). While the 

concentrations of glucose and ethanol can be estimated on-line using biosensors 

[Lui et al., 1998; Folly et al., 1996; Rank et al., 1995], the biomass concentration 

can be estimated from the optical density of the broth. 

An SVR-implementation known as “ε-SVR” in the LIBSVM software 

library [Chang et al., 2002], was used to develop the softsensor model. The 

LIBSVM library utilizes a fast and efficient implementation of the widely used 

method known as sequential minimal optimization (SMO) [Joachims, 1998; Platt, 

1998] for solving large quadratic programming problems and thereby estimating 

parameters, , *α α  and b, of the SVR’s fitting function (see Eq. 2.41). In this 

study, the RBF kernel function was used to avoid the dot product calculations in 

the feature space, Φ. To develop an SVR-based softsensor model possessing good 

prediction and generalization ability, it is necessary to judiciously select the 

number of lagged values of variables s, e, xt and v. Accordingly, multiple 
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softsensor models with varying number of lagged values of the stated variables 

were constructed. The generalization ability of these models was evaluated by 

using a test set that comprised 20% of the available process data; the remaining 

80% data were used as the training set for building the SVR models. The model 

that yielded the least RMSE magnitude for the test set was chosen as the optimal 

model; the RMSE was computed as: 

( )2

1

ˆ( ) ( )
p

i i
inv inv

i
c t c t

RMSE
p

=

−
=

∑
                                   (3.29) 

where, i is the pattern index; t denotes the discrete time (∆t = 30 min) and,  ( )i
invc t  

and  ˆ ( )i
invc t  are the desired and SVR-predicted invertase concentrations 

corresponding to the ith pattern, respectively. The optimal softsensor model 

obtained by following the above-described procedure has ten inputs defining the 

current and lagged values of variables s, e, xt and v, and the model is defined as: 

( ) ( )t tˆ ( ), ( -1), ( ), ( - 2), ( ), ( - 2), ( ), ( -1), ( - 2), ( -3)invc t f s t s t e t e t x t x t v t v t v t v t=  (3.30)  

where, x(t-k) denotes the value of a variable x  lagged by k number of discrete 

time intervals and ˆ ( )invc t  is the SVR-model predicted invertase activity at time, t. 

It can thus be seen that the optimal SVR-based softsensor model has used 1, 1, 1 

and 3 lagged values of the model input variables, s, xt, e and v, respectively. The 

optimal number of support vectors (SVs) used by the SVR algorithm for fitting 

the invertase activity model was 228. The optimal values of the four ε-SVR 

algorithm specific parameters that minimized the RMSE with respect to the test 

set (Etst) are: width of the RBF kernel (σ) = 1, regularization constant (C) = 2, loss 

function parameter (εloss) = 0.00001 and tolerance for the termination criterion 

(εtol) = 0.00001.  

The performance of the SVR based optimal softsensor model in predicting 

the invertase activity was compared with that of the standard MLP-based model. 

Here, a two hidden layer MLP network trained using the EBP algorithm was used; 

the training and test sets used for developing the MLP based softsensor were the 

same as used in the development of the SVR-based softsensor. To construct an 

optimal MLP model, the effects of network's structural parameters (number of 
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hidden layers and the number of nodes in each hidden layer) as also two EBP-

specific parameters, namely, the learning rate and momentum coefficient, were 

studied rigorously. Additionally, the effect of random weight initialization was 

examined to obtain a model that corresponds to the global or the deepest local 

optimum on the nonlinear error surface [Nandi, et al., 2001]. The MLP’s 

architectural details and the EBP-specific parameter values that yielded an optimal 

softsensor model are: number of input nodes = 10, number of neurons in the 

hidden layer-I = 4, number of neurons in the hidden layer-II = 2, number of 

neurons in the output layer = 1, learning rate = 0.6 and momentum coefficient = 

0.05.  

 The values of correlation coefficient (CC), RMSEs and the average error 

(%) pertaining to the invertase activity predictions made by the SVR and ANN 

based softsensors are listed in Table 3.11. As can be seen from the tabulated 

values that the CC magnitudes corresponding to the SVR model predictions are 

very close to unity indicating an excellent match between the desired and model 

predicted invertase activity values. Also, the average error (%) and RMSE values 

in respect of both the training set (Etrn) and the test set (Etst) are sufficiently small. 

A close match between the stated statistical quantities for both the training and 

test sets indicates that the SVR based softsensor has excellent generalization 

ability as well. A comparison of CC, RMSE and average percent error values 

corresponding to the SVR and ANN predictions reveals that the SVR based 

softsensor has consistently outperformed the ANN-based softsensor model. These 

results suggest that the SVR-based softsensor can be effectively used for near-

accurate online estimation of the invertase activity. An illustrative comparison of 

the SVR (see Figure 3.8) and ANN (see Figure 3.9) model predicted values of the 

invertase activity at batch times of 2, 7 and 13 hrs.  
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Figure 3.8: Invertase activity at two, seven and 13 hour time duration as predicted 
by the SVR-based softsensor 
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Figure 3.9: Invertase activity at two, seven and 13 hour time duration as predicted 
by the ANN-based softsensor 
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Table 3.11: Comparison of invertase activity prediction performance of SVR and 
ANN-based softsensor models  

Model Data 
Correlation 

Coefficient 
Average error (%) RMSE 

Training set 0.999 3.306 0.084 SVR 
Test set 0.999 3.764 0.115 

Training set 0.997 12.068 0.266 ANN 
Test set 0.998 5.116 0.270 

    
3.5.4 Softsensor for Streptokinase Process 

 The phenomenological model of streptokinase process using Streptoccus 

sp. in batch fermentation [Patnaik, 1999] is given as: 

 

  t
a t

dx qx x
dt v

μ= −       (3.31) 

  ( )a
d a a

dx qk x x
dt v

μ= − −      (3.32) 

( )a
in

X

xds q s s
dt Y v

μ−
= + −      (3.33) 

a
M a a

dl qY x l
dt v

μ= −       (3.34) 

( )t
P d a P t t

ds qY k x k s s
dt v

μ= − − −     (3.35) 

( )dv q t
dt

=        (3.36) 

b
I

m b b
S I a

Ks
K s K l

μ μ
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠
     (3.37) 

where, 

xt, xa   : concentrations of total and active biomass, respectively, 
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s, st, al  : concentrations of substrate, streptokinase and lactic acid, respectively, 

v  : volume of reactor,   

The following nonlinear feed rate profile that maximizes the streptokinase 

production is used for the data generation [Patnaik, 1995].  

  2 3
0 1 2 3( ) ( / ) ( / ) ( / )q t a a t T a t T a t T= + + +    (3.38) 

The parameter values used to simulate the model are: 

a0 = 0.9959 (l/h), a1 = -0.3037 (l/h),  a2 = -1.3418 (l/h), a3 = 0.6499 (l/h), b = 2.39, 

kd  = 0.020 (l/h), kp = 0.0005 (l/h), KI = 12.66 (g/l), KS = 13.14 (g/l),  Sin = 70.0 (g/l), 

T =12.0 (h), YM = 4.80 (g/g), YP = 0.44 (g/g),  YX = 0.15 (g/g), μm  = 0.74 (l/h) 

 

Initial conditions used in the model simulations are: 

al (0) = 0 g/l, st(0) = 0 g/l, s0 = 70 g/l, xt(0) = 0.7 g/l, xa(0) = 0.7 g/l, v(0) = 51. 

 

3.5.5 Details of Softsensor Development 

Genetically engineered microorganisms have become important vehicles 

for the production of valuable bio-molecules. Owing to the “gene dosage effect,” 

each cell can possess multiple copies of a plasmid up to a certain threshold level. 

This feature results in the increased production of the recombinant product. The 

two major factors affecting the expression of a plasmid bearing gene are 

cultivation conditions [Ryan et al., 1989] and the bioreactor operation mode 

[Georgiou et al., 1985]. Though genetic engineering can also be used in the 

production of metabolites, its main application is in the production of high value 

proteins. 

In the recombinant technology, the host microorganism is infected with 

multiple copies of plasmids. Each plasmid carries the gene responsible for the 

production of the desired product. Thus, during fermentation cells are forced to 

accumulate a very high concentration (in excess of 10% of the cell’s dry weight) 

of the recombinant protein. Such a protein overproduction does not serve the 

microorganism in any useful way. Instead it burdens the cell and hence cells 
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always try to get rid of this burden [Ryan et al., 1991]. Several studies have 

reported a decrease in the specific growth rate of plasmid-bearing cells with an 

increase in the plasmid copy number [Lee et al.,1984; Seo et al., 1985]. Owing to 

their higher growth rate, the plasmid-free cells, once formed, outgrow the 

plasmid-bearing cells and eventually take over the entire population. Also, most 

cells while undergoing a cell division lack the mechanism for the proper 

partitioning of the plasmid copies in an offspring. These factors eventually lead to 

the plasmid instability, owing to which there always remains a fraction of 

plasmid-free cells, which utilizes the fermentation resources without yielding any 

desired product. Thus, it is necessary to ensure that the batch mode fermentation 

does not produce an excess of plasmid-free cells. This can be achieved by strict 

monitoring and control of the plasmid-free cells. Though an estimation of the 

biomass of frequently used host cells—such as the E-coli—is possible by 

measuring the optical density of the broth, online measurement of the plasmid-free 

cell fraction is in general difficult. The stated difficulty, however, can be 

overcome by developing softsensors for the estimation of concentrations of the 

active cell mass and the recombinant protein. It is well-known that there exists a 

substantial difference in the growth rates of the plasmid-free and plasmid-bearing 

cells. As a result, these cells give rise to two distinct biomass and substrate 

profiles [Ryan, et al., 1991]. Accordingly, the substrate and total biomass 

concentrations can be used to develop softsensors (as illustrated using the SVR 

and ANN formalisms) for predicting concentration values of the recombinant 

protein and active cell mass. 

 Similar to the invertase process, the streptokinase fed-batch process data 

were generated using the phenomenological model [Patnaik, 1995; 1999]. This 

model comprises six ordinary differential equations (ODEs) (Eqs. 3.31 to 3.37) 

representing the dynamics of six process variables namely, active biomass 

concentration (xa, g/l), total biomass concentration (xt, g/l), substrate concentration 

(s, g/l), reactor volume (v, l), lactic acid concentration (la, g/l) and streptokinase 

concentration (st, g/l). The data for multiple fed batches were generated by 

integrating the set of six ODEs using the Gear’s algorithm and by varying the 

process initial conditions in the following ranges: 60 ≤  s0 ≤  80 and 0.5 ≤  xa0 ≤  

0.9. A total of 45 batches over 12 hr duration were simulated. The values of six 
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process variables viz., v, xt, s, la, xa and st computed at 30 minute intervals formed 

the process data set. Next, 5% Gaussian noise was introduced in each variable of 

the process data to mimic the real-life process scenario. This data formed a three-

way array of size, 45 (number of batches) × 6 (process variables) × 25 (time 

intervals). Changes in the reactor volume and concentrations of the biomass and 

substrate (i.e. glucose) are the major indicators of a change in the streptokinase 

and active biomass concentrations. Accordingly, the current as also the lagged 

values of variables v, xt, and s were considered as inputs to the two softsensor 

models predicting the current concentrations of streptokinase and the active 

biomass.  

In this case study too, the ε-SVR algorithm from the LIBSVM software 

library was used to develop the two softsensor models. Although not considered 

here, a softsensor for predicting the lactic acid concentration also can be 

developed in a manner similar to the models for the streptokinase and active 

biomass concentrations. The number of lagged values of variables v, s and xt, and 

also the ε-SVR specific parameters were chosen via an heuristic optimization such 

that the RMSE with respect to the test set is minimized. The optimal ε-SVR 

softsensor models that minimized the test set RMSE (Etst) have eight inputs 

defining the current and lagged values of the three operating variables, v, s and xt, 

and the form of the models is as given below. 

( ) ( )1ˆ ( ), ( -1), ( - 2), ( -3), ( ), ( -1), ( ), ( - 2)t t ts t f v t v t v t v t s t s t x t x t=  (3.39) 

( ) ( )2ˆ ( ), ( -1), ( - 2), ( -3), ( ), ( -1), ( ), ( - 2)a t tx t f v t v t v t v t s t s t x t x t=      (3.40) 

where, ( )t̂s t  and ( )ˆax t refer to the concentrations of streptokinase and active 

biomass at a discrete time, t, respectively, and x(t-k), k = 1, 2, 3, denote the lagged 

values of a variable, x. The number of lagged values of each of the process 

variables namely, v, s and xt, in Eqs. 3.39 and 3.40 were determined by varying 

the number systematically and choosing the optimal number that minimized the 

test set RMSE. During the development of two softsensors, a training set of 308 

patterns was used to estimate the SVR model parameters α, α* and b, and a test 

set comprising 70 patterns was used to evaluate the generalization performance of 

the SVR models. These data patterns comprising the current and lagged values of 
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process variables were generated by appropriately arranging the process data from 

45 batches. The optimal number of support vectors (SVs) used by the SVR 

algorithm for fitting the streptokinase and active biomass concentration models 

were 297 and 301, respectively. The values of four ε-SVR algorithm specific 

parameters that minimized the test set RMSE pertaining to the streptokinase 

softsensor are: width of the RBF kernel (σ) = 1, regularization constant (C) = 5, 

loss function parameter (εloss) = 0.00065 and tolerance for termination criterion 

(εtol)= 0.0051. The respective parameter values for the active biomass 

concentration softsensor are: σ = 2.24, C = 11, εloss = 0.00001 and εtol = 0.00001.  

The prediction and generalization performance of the two SVR-based 

softsensors was compared with that of the respective ANN-based softsensors. 

Here, a single hidden layer MLP architecture trained using the EBP algorithm was 

used to construct a multiple input - two output softsensor model. This single MLP 

model predicts the concentration values of both streptokinase and the active 

biomass. The training and test sets used in developing the MLP based softsensors 

were same as used in the development of SVR-based softsensors. The 

architectural details and the EBP specific parameter values that yielded an optimal 

MLP-based softsensor model are: number of input nodes = 8, number of neurons 

in the single hidden layer = 4, number of neurons in the output layer = 2, learning 

rate (η) = 0.5 and momentum coefficient = 0.05. An illustrative graphical 

comparison of the SVR and ANN model predicted values of streptokinase at the 

batch times of 2, 5, 7 and 12 hrs is depicted in Figure 3.10 and Figure 3.11, 

espectively. Similar comparison for the active biomass concentration is depicted 

in Figure 3.12and Figure 3.13, respectively. A comparison of the correlation 

coefficient, RMSE and average error (%) values pertaining to the predictions 

made by the SVR and ANN based softsensor models is given in Figure 3.12. 

It is seen from the tabulated values of correlation coefficient, RMSE and 

average error that the respective magnitudes for the SVR and ANN-based 

streptokinase and active biomass softsensors match very closely with the SVR 

faring slightly better than the ANN. Also, the SVR-based softsensors are able to 

predict the streptokinase and active biomass concentrations with high prediction 

accuracy as indicated by the high  CC magnitudes (≥ 0.998) and low (1.4% to 

1.6%) average error values. Moreover, a close match between the CC, average 
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error and RMSE values for both training and test sets indicates an excellent 

generalization performance by the SVR based softsensors. Thus, the results of 

case study-II also indicate that the SVR is an attractive alternative to ANNs for the 

softsensor development. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Streptokinase concentration at two, five, seven and twelve hour time 
duration as predicted by the SVR-based softsensor 
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Figure 3.11: Streptokinase concentration at two, five, seven and twelve hour time 
duration as predicted by the ANN-based softsensor 

 

Table 3.12: Comparison of prediction performance of SVR and ANN based 
softsensors  

Softsensor Method Data 
Correlation 

Coefficient (CC) 

Average 

error (%) 
RMSE

Training set 0.999 1.592 0.0329 
SVR 

Test set 0.998 1.625 0.0401 

Training set 0.998 1.659 0.0312 
Streptokinase 

ANN 
Test set 0.997 1.726 0.0315 

Training set 0.999 1.385 0.0743 
SVR 

Test set 0.999 1.538 0.0719 

Training set 0.998 1.537 0.0743 

Active 

biomass 
ANN 

Test set 0.997 1.887 0.0779 
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Figure 3.12: Active biomass concentration at two, five, seven and twelve hr. time 
duration as predicted by the SVR-based softsensor 
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Figure 3.13: Active biomass concentration at two, five, seven and twelve hr. time 
duration as predicted by the ANN-based softsensor 
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3.5.6 Conclusion 

The microbial fermentation is used extensively in the production of 

antibiotics, proteins, polysaccharides, amino acids, etc. These fermentation 

systems often exhibit a complex non-linear dynamical behavior, which poses 

significant difficulties for process monitoring and control. An additional problem 

in the efficient monitoring and control of fermentation processes is in most 

situations reliable hardware sensors or biosensors for the product species are not 

available. In such cases, the product concentration/quality is determined using 

time-consuming and tedious instrumental and/or chemical analyses. The usage of 

softsensors overcomes this difficulty. Softsensors are software based sophisticated 

monitoring systems, which can correlate the “difficult-to-measure” or unmeasured 

process variables with those measured easily and frequently. Artificial neural 

networks owing to their significant ability of approximating nonlinear functions 

have been the primary candidates for the development of softsensors. In recent 

years, a novel statistical/machine learning theory based formalism known as 

“support vector regression” has been introduced for performing non-linear 

function approximation. The SVR formalism has many attractive features such as: 

robustness of solution, sparseness of regression, good generalization capability 

and automatic control of solution complexity. Hence, in the present section the 

effectiveness of the SVR formalism for softsensor applications was evaluated by 

considering two simulated fed-batch processes namely, invertase and 

streptokinase. 

  The characteristic feature of the diauxic yeasts that the rate of glucose and 

ethanol assimilation changes with variations in the metabolic state, has been 

exploited for developing the SVR based soft-sensor estimating the invertase 

activity. This softsensor could estimate the invertase activity with accuracies of 

96.7% and 96.3% for the training and test sets, respectively. In the case of 

genetically modified microorganisms, the feature that the plasmid-bearing and 

plasmid-free cells follow different substrate and biomass profiles, has been 

utilized to develop the SVR-based softsensors estimating concentrations of the 

protein (streptokinase) and active biomass. Here again the estimation accuracy of 

the SVR based streptokinase and active biomass softsensors was found to be 
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excellent ranging approximately between 98.4% and 98.6%. In both the case 

studies, the generalization performance of the SVR-based softsensors also was 

excellent. Additionally, the performance of the SVR-based softsensors was 

compared with the ANN-based ones and the results obtained thereby clearly 

indicate that the SVR formalism is an attractive alternative to ANNs for softsensor 

applications. In the SVR-based modeling, the search for the globally optimum 

solution is avoided since—unlike ANNs—the SVR solves a quadratic 

programming problem possessing a single minimum. This feature considerably 

reduces the numerical effort involved in developing an SVR-based softsensor. 

Also, SVR-based models are amenable to interpretation in contrast to the “black 

box” ANN models. Although in this study, the SVR formalism has been explored 

only for softsensor applications, it is a generic nonlinear modeling formalism and 

therefore can also be utilized efficiently for developing steady-state and dynamic 

models of bioprocesses.  
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3.6 SUPPORT VECTOR REGRESSION FOR BIOPROCESS 

IDENTIFICATION∗ 

 
3.6.1 Introduction 

 Majority of biochemical processes are nonlinear in nature. Modeling and 

identifying these processes is one of the important tasks in the industrial practice. 

These tasks are required to build better model–predictive controls (MPC), and 

prediction and optimization of the process behavior for which phenomenological 

as well as empirical techniques are available. However, many times developing a 

phenomenological model for a given nonlinear biochemical process becomes 

tedious and costly because of the process complexity, lack of sufficient 

phenomenological knowledge of the system and huge amount of resources 

required for acquiring the knowledge. Owing to these difficuilties, empirical 

modeling and process identification techniques such as ANNs, nonlinear 

autoregressive moving average and genetic programming need to be used.  

Recently developed nonlinear modeling technique known as “Support 

Vector Regression” (refer Section 2.2.2) provides a promising tool for process 

identification of nonlinear processes. Unlike other data-based modeling methods 

such as ANNs, which approximate nonlinear input-output relationships, the SVR 

method first projects inputs to a high dimensional feature space and then correlate 

them linearly with the target space. Advantages of the SVR technique are: strong 

statistical background, globally optimum solution (via quadratic function 

optimization) and good generalization performance.  

In the present study, SVR formalism has been used to identify the process 

involving biological treatment of polluted water by a mixed continuous culture. A 

culture involving Colipidium campylum (protozoa) and Alcaligenes faecalis 

(bacteria) is used for the biological treatment of the polluted water containing 

Asparagine.  A software library, LIBSVM [Chang et al., 2002] which includes 

                                                 
∗  Badhe Y. P., J. Singh Cheema, M. Potdar, S. S. Tambe  and B. D. Kulkarni, 

BIOHORIZON, held at IIT, New Delhi, 2003. 
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sequential minimal optimization (SMO) algorithm [Platt, 1998] for solving the 

quadratic optimization problem is used for developing the SVR-based model. The 

process input-output data for the SVR-based identification were generated by 

simulating the phenomenological process model and identification was performed 

using both noise-free and noisy process data. The results obtained here show that 

the SVR is a promising technique for process identification in the presence and 

absence of noise in the process data. 

 
3.6.2 Biological Treatment of Polluted Waters by Mixed Continuous 
Culture 

The activated sludge used in the biological treatment of polluted water is a 

typical ecosystem composed of bacteria, protozoa, fungi and metazoa. Interactions 

such as competition, commensalism, mutualism (symbiosis), synergism and 

predation occur amongst the microorganisms in the ecosystem and as a 

consequence, BOD, COD or other nutrients are removed from polluted waters 

[Sudo, 1984].   

Mixed continuous culture involves Colipidium campylum (protozoa) and 

Alcaligenes faecalis (bacteria) to remove the pollutants in polluted waters that 

contained Asparagine. The population densities of Colpidium campylum (P), 

Alcaligenes faecalis (X), and the concentration (S) of residual asparagine in the 

effluent can be ynamically monitored and represented in the following differential 

equations: 

Y
)X,S(F)SS(D

dt
dS

−−= 0                            (3.41) 

W
)P,X(GXD)X,S(F

dt
dX

−−=                   (3.42) 

PD)P,X(G
dt
dP

−=                                       (3.43) 

where, X
SK

S)X,S(F m +
μ=           (3.44) 

P
XK

X)P,X(G
x

max,p +
μ=                (3.45)  

where t refers to the time and S0 , D, Y and W  are the initial asparagine 

concentration,  dilution rate, yield factor of bacterial growth defined by ΔP/ (-ΔX) 
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and the yield factor of protozoan growth defined by ΔP/(-ΔX), respectively. 

Parameters, xpm K,, max,μμ  and K refer to the maximum value of μ , maximum 

value of pμ where pμ  is the specific growth rate of protozoa, saturation constant 

for protozoa and saturation constant for bacteria, respectively [Sudo, 1984]. The 

steady state values of the variables and parameters appearing in Eqs. (3.41) to 

(3.45) are given in Table 3.13. 

 

Table 3.13: Steady-state values of variables and parameters 

Variable/ 
Parameter Unit Value 

X mg/ l 10 
P mg/ l 5 
S mg/ l 5 
Kx mg/ l 5 
K mg/ l 11 
D h-1 0.064 

mμ  h-1 0.1 

max,pμ  h-1 0.1 
Y --- 0.5 
W --- 0.15 
h --- 0.1 

 

For identification, the process at steady-state was perturbed randomly. 

Specifically the manipulated variables representing the dilution rate, D, was 

perturbed as shown in Figure 3.14 and its response on the control variable, S, was 

monitored (see Figure 3.15). The data was generated by simulating (integrating) 

model Eqs. 3.41 – 3.45, using fourth order Runge- Kutta method using the step 

size (h = 0.1) upto the time of 700 hours. After scaling the D and S data between 

upper and lower limits of 0.95 and 0.05 respectively, they were divided into 

training, test and validation sets. The training data were subjected to SVR based 

identification and the optimal model obtained thereby was used to predict the test 

and validation set outputs. The same procedure was repeated for the noise-induced 

data.  
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Figure 3.14: Random variations in the manipulated variable, D 

 

 
 

 
 

 
 

 

 

Figure 3.15: Response of S to random variations in D 
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3.6.3 Results and Discussion 

The ε-SVR formalism was used to develop a “one-step ahead” predictor 

model for the controlled variable, S, using variable time lags for the manipulated 

and the controlled variables. Clean data as well as white-noise induced data were 

used to test the performance of the SVR-based models. The noise-induced data 

contained 5% of white noise in both D and S data. The one step ahead prediction 

results for the training, test and validation data sets pertaining to the noise-free 

(clean) and noisy process data are presented in the graphical form in Figure 3.16 

and Figure 3.17, respectively. 

From these figures it can be seen that the SVR methodology fits the noise-

free and noisy one step ahead control variable data with an excellent precision. 

The correlation coefficient (CC) and the RMSE (Root Mean Square Error) values 

for the predicted results are given in Table 3.14. As can be seen the CC values for 

the desired and model-fitted one-step-ahead concentration of the control variable 

are very close to unity signifying an excellent fit. Also, the RMSE values are very 

low further supporting the excellent fit by the SVR model. 

 

Table 3.14: Prediction results from ε- SVR based models 

Clean Data Noisy Data 
Data Sets 

RMSE CC RMSE CC 

Training data 0.015 0.997 0.063 0.993 

Test data 0.016 0.994 0.059 0.993 

Validation data 0.022 0.992 0.076 0.991 

 

The SVR parameters used in simulations are: Cost (upper bound on Lagrange 

multipliers) = 10, ε (tolerence for the ε insensitive loss function) = 1*10-4, gamma 

(radial basis function’s width factor) = 0.1 and error tolerance criteria = 1*10-4. 
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Figure 3.16: SVR predicted and desired Sk+1 values for (a) training, (b) test and 
(c) validation data sets 
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Figure 3.17: SVR predicted and actual Sk+1 values for noisy (a) training, (b) test & 
(c) validation data set 
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3.6.4 Conclusion 

 In this study, Support Vector Regression has been successfully employed 

for the process identification of biological treatment of polluted waters using 

mixed continuous culture. The results obtained here show that the SVR 

methodology is a promising tool for nonlinear process identification. The SVR 

formalism has been found to perform excellently for clean as well as noisy 

process data.  
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3.7 GENETIC PROGRAMMING FOR DATA-DRIVEN MODELING 

OF NON-LINEAR CHEMICAL PROCESSES∗ 

 

Genetic Programming, described in Section 2.2.3, is an emerging branch 

of artificial intelligence. In recent years, the GP formalism has found a novel 

application; that is, development of data-driven models. Specifically, the 

technique is capable of automatically obtaining the mathematical equation that fits 

a given set of process input-output data. The major advantage of GP is that it does 

not require specification of an exact form of the data-fitting function, as searches 

and optimizes the exact form of the best-fitting functional form and its parameters. 

The present work illustrates the case study involving GP-based modeling of 

benzene isopropylation over Hbeta catalyst process. 

 

3.7.1 Modeling of Benzene Isopropylation Over Hbeta Catalyst Process 

Isopropylation of benzene is an important alkylation reaction in the 

petrochemical industry for the synthesis of cumene, which is the chief starting 

material in phenol production. In the last decade, several modifications of the 

zeolite beta were explored as potential catalysts in cumene synthesis. More 

recently, steady-state modeling of isopropylation of benzene over Hbeta (protonic 

form of beta catalyst) is presented in Nandi et al. [2002]. The details of benzene 

isopropylation over Hbeta catalyst process are elaborated in Section 3.3.4. 

 

3.7.2 Results and Discussion 

The data from 42 experiments comprising selectivity and percentage yield 

(see Table 3.15) was randomly split into two sets namely, training and test data 

sets in 80:20 ratio, respectively. The training data were used to build the GP 

model and the test data were used to evaluate the generalization ability of the 

                                                 
∗ Phulwale U. S., Badhe Y. P., Mandge D. P., Tambe S. S., Kulkarni B. D., Poster 

Presented at NCL Day, NCL, Pune, 2005. 
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model. The GP software used in this study has been developed in-house at NCL 

and utilized to developed two models predicting cumene yield and selectivity, 

respectively. The two GP-based non-linear models (expression trees) for the 

prediction of cumene yield and selectivity are as given below. 

( )( ) ( )( )( )[ ] ( )( ) 3.0sin*064.0
131

2
1sinsinsinsinsin −+=

xxxxy    (3.46) 

( )( ) ( )( )( ) ( )( )21.0sincos
1232

24 05.0*sin
+

−++=
xx xexxy    (3.47) 

where, y1 and y2 refer to selectivity and yield of cumene, respectively and x1, x2, x3 

and x4 refer to temperature (oC), pressure (atm), mole ratio of benzene to isopropyl 

alcohol (mole ratio) and weight hourly space velocity (hr-1), respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18: GP model predictions of cumene selectivity: (a) Plot of training data 
(b) Plot of test data 
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Table 3.15: Benzene isopropylation over Hbeta catalyst process data 

Expt.  
No. 

Temperature  
( 0C) 

Pressure 
(atm.) 

Benz/IPA 
(mole ratio)

WHSV 
(hr-1) 

Yield 
( wt %) 

Selectivity
( wt %) 

1 110 1 8 3.3 0.07 77.03 
2 145 1 8 3.3 11.6 58.75 
3 180 1 8 3.3 15.78 79.93 
4 210 1 8 3.3 17.365 90.72 
5 215 1 8 3.3 16.09 91.95 
6 150 4 8 3.3 12.2 65.74 
7 135 4 8 3.3 12.99 74.58 
8 110 4 8 3.3 0.71 80.82 
9 100 4 8 3.3 0.19 75.02 

10 110 1 10 3.3 0.55 67.74 
11 110 1 8 3.3 0.24 54.85 
12 110 1 6 3.3 0.37 53.63 
13 110 1 3 3.3 0.2 32.13 
14 110 1 1 3.3 0.14 21.62 
15 110 1 8 6.8 0.24 54.85 
16 110 1 8 8 0.15 44.64 
17 110 1 8 9.5 0.13 37.38 
18 110 1 8 10.5 0.08 39.3 
19 110 1 8 12 0.09 39.13 
20 110 1 8 13 0.07 39.1 
21 105 1 8 6.8 0.3 70.38 
22 110 1 8 6.8 0.24 54.85 
23 115 1 8 6.8 0.35 48.25 
24 130 1 8 6.8 4.61 76.68 
25 185 1 8 6.8 9.2 59.23 
26 210 1 6.5 3.3 20.04 91.8 
27 155 1 6.5 3.3 16.93 77.4 
28 180 1 6.5 3.3 20.27 90.9 
29 210 1 6.5 3.3 19.86 91.9 
30 225 1 6.5 3.3 19.1 89.3 
31 250 1 6.5 3.3 17.89 85.2 
32 275 1 6.5 3.3 17.29 83.1 
33 230 1 6.5 2.5 20.33 91.1 
34 215 1 7 5 19.86 91.9 
35 215 10 7 5 19.54 92 
36 215 18 7 5 18.68 89.1 
37 215 25 7 5 17.74 86.8 
38 195 25 6 5 18.92 85.6 
39 210 25 6 5 22.1 93.7 
40 230 25 6 5 22.02 93.8 
41 250 25 6 5 21.35 90.7 
42 280 25 6 5 20.48 86.2 

 

 



 

 224

Table 3.16 shows the performance of the two GP models (Eqs. 3.46 and 

3.47) in predicting the output in the training and test data sets in terms of the 

correlation coefficient and the root mean squared error (RMSE). Also, the plots of 

the training and test set output predictions are shown in Figure 3.17 and Figure 

3.18, respectively. The GP model for the cumene yield has achieved CC values of 

0.98 and higher which shows that the model has good prediction accuracy as also 

generalization ability. The GP model for the cumene selectivity possesses 

correlation coefficient values of 0.94 and 0.92 for the training and test data sets, 

respectively. These values though not excellent, are reasonably good suggesting 

average prediction accuracy and generalization performance by the model. These 

results are similar to the earlier ANN modeling work conducted by Nandi et al., 

[2002]. The origin of sub-optimally performing selectivity model could be 

measurement errors in the experimental data. 

 

Table 3.16: Perfromance of the GP-based models  

Models 
Correlation 
Coefficient 

RMSE 

Training data 0.94 7.06 
Selectivity (y1) 

Test data 0.92 7.19 

Training data 0.99 1.42 
Yield (y2) 

Test data 0.98 2.61 

 

3.7.3 Conclusion 

This case study explores the GP’s potential in performing exclusively data-

based non-linear process modeling. While the GP has produced an accurate model 

for the cumene yield, the model predicting cumene selectivity is an average one 

probably due to measurement errors in the experimental data. As can be seen, GP 

posses an excellent capacity to provide nonlinear models exclusively from the 

process data. The major advantage of GP formalism is that it does not require 

guessing in advance the form of the data-fitting function. The method is capable 

of searching and optimizing both the fitting function as also its parameters 

automatically. 
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Figure 3.19: GP model predictions for cumene yield. (a) Plot of training data (b) 
Plot of test data 
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4.1 INTRODUCTION 

Cluster analysis is an exploratory data analysis method for solving 

classification problems.  Its object is to sort cases (people, things, events, etc.) into 

groups or clusters, so that the degree of association is strong between members of 

the same cluster and weak between members of different clusters.  Each cluster 

thus describes, in terms of the data collected, the class to which its members 

belong; and this description may be abstracted through use from the particular to 

the general class or type. 

Cluster analysis is thus a tool of discovery.  It may reveal associations and 

structure in a given data set, which though not previously evident, nevertheless are 

sensible and useful once, found.  The results of a cluster analysis may contribute 

to the definition of a formal classification scheme with which to describe 

populations or indicate rules for assigning new cases to classes for identification 

and diagnostic purposes. It can also provide measures of definition, size and 

change in what previously were only broad concepts or find exemplars to 

represent classes. Clustering can be performed in two modes, namely “supervised” 

and “un-supervised” modes. In supervised clustering the classification of the data 

is known a priori and the task of a supervised clustering algorithm is to learn this 

classification and predict the class of a new data. In unsupervised clustering the 

data classes are unknown. Here the task of an unsupervised algorithm is to 

categorize the data into appropriate number of classes as also to correctly identify 

the class of a new data entity. As can be seen, unsupervised clustering is relatively 

difficult task when compared with supervised clustering. 

This chapter deals with the cluster analysis of the different faults that can 

occur in a batch fermentation process involving protein synthesis and citric acid 

production. Also, this chapter illustrates application of an artificial intelligence 

based clustering (classification) method, namely, “self organizing map (SOM)” 

for the classification of  biochemical batch process data. The SOM [Kohonen, 

1990, Abonyi, et al., 2003] is an ANN that undergoes unsupervised learning and it 

is particularly useful in visualizing high dimensional data onto a two-dimensional 

surface. The present study aims at demonstrating the efficacy of SOM for 
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classification applications involving nonlinear projection of a high dimensional 

input space onto a low, i.e., two dimensional (2-D) projected space to diagnose 

faulty batches. Here, a case study involving the biosynthesis of protein has been 

conducted to illustrate SOM’s efficacy in process monitoring and fault detection 

and diagnosis applications. 
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4.2 MONITORING AND FAULT DETECTION OF A BATCH 

FERMENTATION PROCESS USING SELF ORGANIZING MAPS∗ 

 

Batch processes are characterized by flexible, unsteady, and finite-duration 

operation. Also, most of these processes exhibit nonlinear dynamical behavior 

wherein the product is analyzed after the batch completion. The product quality 

measurements, if feasible and economical, are also done at finite time intervals as 

the batch run progresses. In order to obtain high quality products consistently, it is 

necessary that the process operating variables precisely follow their specified 

trajectories. However, often the malfunctions such as deviations in the specified 

trajectories, errors in charging the reactor with materials, and variations in 

impurities, lead to batch-to-batch variations. These affect the product quality 

adversely. Thus it becomes critical to detect and diagnose process faults and 

monitor the process continuously, since the faults can lead to reduced conversion, 

higher operating cost and sometimes even catastrophic failures and accidents. 

Accordingly, developing methodologies for the timely detection and diagnosing of 

faults has been an active area of research in recent years. The present study 

illustrates a Self-Organizing Map (SOM) based method for identifying process 

faults when the input conditions to a batch process are faulty. The proposed 

method can be easily extended to other types of above-stated malfunctions. The 

SOM is ANN-based nonlinear pattern recognition (classification), dimensionality 

reduction, and data projection and visualization formalism and it is described in 

detail in Chapter 2 (Section 2.3.2). The conventional methods for classification 

include, for example, K-means clustering [MacQueen, 1967] and fuzzy C-means 

clustering [Dunn, 1973] which cluster a multivariable data into clusters, without 

losing significantly the information content in the data. A major drawback of these 

conventional methods is that they are supervised clustering techniques and thus 

forcefully classify the data in a pre-specified number of clusters. Thus, when the 

                                                 
∗  Badhe Y. P., V. Wadekar, K. M. Desai, S. S. Tambe and B. D. Kulkarni, Poster 

Presented on NCL Day at NCL Pune, Feb 28, 2004. 
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number of classes in the data is unknown, these methods are not effective. In such 

situations SOM can be seen as a very useful classification method.  

 

4.2.1 Case Study-I: Fed-Batch Fermenter for Protein Synthesis 

This case study considers the fed-batch fermenter system for protein 

synthesis. The input data vectors for the SOM based classification consisted of 

three batch-process variables namely; (i) culture cell density (x1), (ii) substrate 

concentration (x2), and (iii) hold-up volume (x3) [Lim et al., 1977]. The aim of this 

case study is to identify whether a batch has developed a fault at an early stage of 

the batch run. Here, we consider abnormal variations (faults) in the input variables 

(at the start of the batch) as a source of the fault in the batch fermentation process. 

It is assumed that at any given time, only one input variable is outside its normal 

range of its operation (termed single fault).  

 

A. Simulation of the phenomenological model 

To generate the process data for the fed-batch fermenter system for protein 

synthesis, the phenomenological model proposed in Kulkarni et al. [2003] has 

been used (see Eqs. 4.1 to 4.8). Here, the model is used only to simulate the 

process and generation of the process data under normal and faulty process 

operation. The historic experimental data can also be used for the SOM-based 

fault detection and diagnosis. The data set for a total of 39 batches, comprising 

values of the three predictor variables (x1, x2 and x3) measured at one hour time 

intervals, and values of two output variables (y1, y2) measured at the end (15th hr) 

of the batch, was generated by solving the set of five ordinary differential 

equations (Eqs. 4.1 to 4.8) given in section (4.2.1B) below. This set consisted data 

from 27 normal batches with the initial conditions in the “normal” ranges, (0.95 < 

x1 < 1.5, 4.5 < x2 < 5.5, and 0.95 < x3 < 1.5) and 12 faulty batches (numbered 28 to 

39) with initial conditions outside the stated ranges of a normal operation. The 

faulty batches are those wherein the initial conditions of an operating variable has 

deviated by 5% and 10% from its above-stated normal range. The real-life process 

data always contain some measurement noise and therefore 3% Gaussian noise 

was added to all the elements of the simulated data set. This dataset can be viewed 
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as a three-way array of size 39 (number of batches) × 3 (process variables) × 16 

(time intervals). Next, the data set was partitioned on time basis, i.e. the data at the 

same time in different batches were taken together and they were subjected to the 

SOM based classification to find out how early faulty batches can be identified 

from the normal ones. 

 

B. Phenomenological model for protein synthesis 
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where t, x1, x2 and x3 refer to time (min), culture cell density (g l−1), substrate 

concentration (g l−1), and hold up volume (l), respectively; y1 and y2 are the 

concentrations (g l−1) of the secreted protein and the total protein, respectively, 

and u refers to the nutrient (glucose) feed rate (l h−1). The fed-batch culture is fed 

at an exponentially increasing nutrient feed rate, u = u0e0.219t [Abonyi et al., 2003], 

with the constraint, 0 ≤ u ≤ 2.5, where u0 is a constant ( = 0.0926 l h−1).  
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C. Results and Discussion 

The optimum grid size of the 2-D SOM was selected by running the SOM 

algorithm using different grid sizes. The optimum grid size obtained was [15 × 15] 

neurons and the algorithm was run for 2000 training epochs (1000 in rough 

training phase and 1000 in fine training phase) using the SOM Tool box [Vasanto 

et al., 2000]. 

The results of classification are portrayed on two dimensional SOM grids. 

These can be interpreted using the U-matrix plots displaying the relative distance 

between the points using a gray scale, wherein the whiter space between any two 

points indicates that the points are closer than the points having less white space 

between them (see Figure 4.1 – Figure 4.3). The actual distance between the 

points can be obtained from the scale bar shown in the right hand side of the 

figures. In Figure 4.1 to Figure 4.3 the unit lables indicate the fault index (i.e., 

which of the three variables is behaving abnormally). The best matching units 

without any index indicate normal batches. From the SOM grid plots obtained at 

different time intervals (3rd hr, 7th hr, and 12th hr)(see Figure 4.1 – Figure 4.3), it 

is observed that the best matching units corresponding to faulty batches shown on 

the plot move away from the normal batches. These essentially attain the character 

of outliers. The faulty batches in which (x1) or (x3) is outside the normal operating 

range move away from the points representing the normal batches as compared to 

the batches for which (x2) is in abnormal operation range. From this observation 

we can interpret that the system is tolerant in case of deviations in the initial 

substrate concentration (x2) with 5% and 10% variations from the normal 

operating range. Applying SOM, the faulty batches are identified at the 3rd hr 

itself, which is an early stage of the batch run and identification of a faulty batch 

at such an early stage is very useful to avoid further adverse effects. 
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Figure 4.1: U-matrix visualization of self-organizing maps at 3rd hr of the 
process operation showing the faulty as well as normal batch 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: U-matrix visualization of SOM at 7th hr of the process operation 
showing the faulty as well as normal batches 
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Figure 4.3: U-matrix visualization of self-organizing maps at 12th hr of process 
operation showing the faulty as well as normal batches 

 

4.2.2 Case Study-II: Fault Detection/Diagnosis of Batch Fermentation 
Process of Citric Acid Production 

 Despite advanced computer based control systems, process variables 

(reactant concentrations, temperature, pressure, etc.) do fluctuate owing to 

equipment and sensor malfunctions. The faults arising from such fluctuations can 

lead to reduced conversion and selectivity higher operating cost and sometimes 

even catastrophic accidents. Thus it becomes important to detect and diagnose 

process faults in a timely manner so that corrective measures can be taken swiftly. 

Detection and diagnosing of fault requires continuous process monitoring. 

When the number of process variables to be monitored is large, it poses 

significant difficulties in using the conventional “trends and scatter” plot method 

of monitoring. For overcoming these difficulties, linear and nonlinear techniques, 

which reduce the dimensionality of the process data and thereby allow monitoring 

of fewer variables, are often used. In this study, SOM has been illustrated for the 

purpose of monitoring and fault detection in fermentation processes. For 

illustrating SOM-based monitoring and fault detection/diagnosis, a batch 

fermentation process involving biomass growth and citric acid production by 

Aspergillus niger [Bizukojc et al., 2003] is considered. The progress of the 
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fermentation process as it transverses through a number of stages, can be 

effectively visualized with the help of SOM on a two-dimensional map. 

 

A. Batch process of biomass growth and citric acid production 

A morphologically structured model for the batch process of biomass 

growth and citric acid accumulation by Aspergillus niger [Bizukojc et al., 2003] is 

used in this work. The model consists of ten ordinary differential equations, which 

balance biomass and four physiological zones, and includes the most important 

medium components, such as carbon sources, nitrogen source and citric acid. The 

phenomenological model equations are as follows. 
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where, 

AMON:  concentration of ammonium ions (g l−1)  

B:  sucrose hydrolysis rate parameter at linear term (h−1)  

CIT:  concentration of citric acid (g l−1)  

FRU:  concentration of fructose (g l−1)  

GLU:  concentration of glucose (g l−1)  

rCIT/F:  citric acid production rate from fructose (g CIT l−1 h−1)  

rCIT/G:  citric acid production rate from glucose (g CIT l−1 h−1)  

rFRU:  fructose utilization rate (g FRU l−1 h−1)  

rGLU:  glucose utilization rate (g GLU l−1 h−1)  

rH:  rate of sucrose hydrolysis (g SUC l−1 h−1)  

SUC:  concentration of sucrose (g l−1)  

t:  time (hr)  

u1:  metamorphosis reaction zone A into B rate (g A g X−1 h-1)  

u2:  metamorphosis reaction zone A into C rate (g A g X−1 h−1)  

u3:  metamorphosis reaction zone B into C rate (g B g X−1 h−1)  

u4:  metamorphosis reaction zone C into D rate (g C g X−1 h−1)  

X:  concentration of biomass (g l−1)  

ZA:  zone A fraction (g A g X−1)  

ZB:  zone B fraction (g B g X−1)  

ZC:  zone C fraction (g C g X−1)  

ZD:  zone D fraction (g D g X−1) 

μa:  specific growth rate for zone A (h−1)  

νS: stoichiometric coefficient for hydrolysis of sucrose 

(g GLU g SUC−1) or (g FRU g SUC−1) 
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To generate process data pertaining to normal and faulty batches, the 

above-stated 10 ordinary differential equations (Eqs 4.9 to 4.18) were solved by 

the standard Gear’s algorithm. In total, 36 batches were simulated. Batches 1 to 

32 are the normal batches wherein the concentration of citric acid at the end (170 

hrs) of the batch is more than 29 g/l. Batches 33 to 34 are abnormal batches due to 

low initial concentration of NH4
+ ions. Batches 35 to 36 are also abnormal owing 

to low concentration of the biomass. Table 4.1 represents the initial concentrations 

of the variables/parameters used in the simulation of all 36 batches along with the 

labels used to represent these batches on the result plots from SOM. 

 

Table 4.1: Initial concentrations and labels for all batches 

No. Parameters 
Batch No.

1 to 11 

Batch No.

12 to 22 

Batch No.

23 to 32 

Batch No. 

33 & 34 

Batch No.

35 & 36 

1 Sucrose conc. g/l 85-93.95 94.189 94.189 94.189 94.189 

2 Glucose conc. g/l 0 0 0 0 0 

3 Fructose conc. g/l 0 0 0 0 0 

4 
Ammonium ions 

conc. g/l 
0.534 0.50-0.56 0.534 0.4-0.45 0.534 

5 Citric acid conc. g/l 0 0 0 0 0 

6 Biomass conc. g/l 0.024 0.024 
0.023-
0.025 

0.024 
0.008- 

0.01 

7 Number of batches 11 11 10 2 2 

8 Labels 1S to 11S 1A to 11A
1xx to 
10xx 

aA and 
aAA 

ax and axx

 

B. Application to classification of fermentation process into trophophase 

and idiophase phase 

To identify two different phases in the reaction, SOM was applied and 

optimized to get the results presented in the form of the U-matrix and the 

component planes in Figure 4.4. The U-matrix denotes the distances between the 

nodes of the SOM grid. The color of hexagon between nodes indicates the 



 

 245

distance of the nodes from its neighboring nodes [Rantanen et al., 2001]. Dark red 

color represents the area where the elastic SOM nodes are stretched between the 

two data clusters; the dark blue color represents the closest distance. From U-

matrix in the Figure 4.4, it can be seen that six clusters are formed: the top two 

clusters on the left and right sides correspond to Trophophase and remaining four 

clusters to Idiophase. The component planes, Figure 4.4, depict how the SOM 

visualizes the data (inputs) space. Let us first look at the top-left corner cluster in 

Figure 4.4; it has 94.1 g l-1 concentration level (see panel “suc”), a zero value for 

glucose concentration (see panel “glu”) and fructose (see panel “fru”), 0.534 g l-1 

of concentration for ammonium ions (see panel “amon”), zero citric acid 

concentration (see panel “cit”) and 0.0638 g l-1 concentration for biomass. 

Component planes or sections for the four zones (za, zb, zc and zd) represent the 

stretch of each zone individually. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Visualization of SOM for citric acid production for a batch with initial 
conditions given in Table 4.1 Batch No. 17 
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C. Application to fault detection and diagnosis (by cluster method) 

 The simulated data for all 36 batches can be used for classification of the 

normal and abnormal batches. Note that the total batch time is 170 hrs and thus 

the SOM was applied at three times (30th hr, 100th hr and the last at 170th hr). The 

resultant U-matrix and their labels are shown in Figures (Figure 4.5 – Figure 4.7). 

Labels listed in Table 4.1 can be used in the figures (Figure 4.5 – Figure 4.7) to 

identify the batches. In Figure 4.5, abnormal batches (denoted by aA, aAA, ax and 

axx on the left side) are not well separated from some of the normal batches as 

this is a very early phase in the reaction. In other figures (Figure 4.6 and Figure 

4.7), the abnormal batches are well separated from the normal batches (two 

batches on extreme left and another two on the extreme right). Thus, SOM has 

successfully separated the normal and abnormal batches after half the batch time 

is completed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: U-matrix with the distribution of the batches, along with labels(at 
30th Hrs) 
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Figure 4.6: U-matrix with the distribution of the batches, along with labels (at 
100 Hrs) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: U-matrix with the distribution of the batches, along with labels (at 
170 Hrs) 
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Figure 4.8: Trajectories of the normal (green) and abnormal (red) batches on the 
top of U-matrix 

 

 

 

 

 

 

 

 

 

Figure 4.9: Trajectories of the normal (green) and abnormal (red) batches on the 
top of U-matrix 

 

D. Application to fault detection and diagnosis (by trajectory method) 

The SOM can be used to form a 2-dimensional display of the operational 

states of the process. The current process state and its history in time can be 

visualized as a trajectory on the map. This allows efficient tracking of the process 
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dynamics. The SOM facilitates understanding of process dynamics so that several 

variables and their interactions may be inspected simultaneously [Simula et al., 

1999].  

In the present study, the training data from 36 different batches were taken 

with initial values of the process variables described in Table 4.1 (duration of each 

batch is 170 hrs monitors at 1 hr time interval) to form a matrix. Each point is a 

vector comprising values of process variables measured for one batch at a 

particular time. The process starts from the circle at the top left corner of the map, 

proceeds through the map by an individual route, and ends at the other circle. The 

trajectory path can be easily traced by the labels. The red trajectories in Figure 4.8 

and Figure 4.9 represent low production of citric acid (abnormal batch) due to low 

concentration of biomass and ammonium ions, respectively and the green 

trajectories represent the normal batches. In this manner, the progress of a batch 

can be monitored and its normal/abnormal behavior can be identified. 

 

4.2.3 Conclusion 

In the first case study described in this chapter, i.e., protein synthesis, the 

unsteady-state operating variables data from a fed-batch fermenter operating 

under faulty as well as normal operating conditions was explored. The SOM could 

reduce the dimensionality of the data from the 3 -D to 2-D with an excellent 

precision. Also, the reduced dimensioned data formed good clusters clearly 

separating the normal and faulty batches. To summarize, the results of this study 

suggest that the SOM is an attractive strategy for unsupervised classification 

analysis of multidimensional process data. The advantage of the SOM for 

classification analysis is that it allows process engineers and operators a 

convenient single-window view of the behavior of the batch. This feature is very 

advantageous in process monitoring, control and fault detection and diagnosis. It 

is also possible to use the dimensionality reduced data for modeling purposes 

thereby substantially lowering the numerical load. 

In the second case study involving citric acid production, the SOM 

visualizes the dynamics of a multivariable process in the form of a two-

dimensional map and brings out subtle differences between various batches. It has 
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been shown that efficient process monitoring can be performed from the two-

dimensional projection of the process variables. It can thus be seen that SOM is a 

novel tool to monitor and detect faults in a complex batch fermentation process. It 

is very effective in the detection of typical operating regions related to an optimal 

process operation which can also be used to predict whether the batch will end 

normally or abnormally on the basis of the current values of the process variables. 

The proposed method is attractive in comparison with other process monitoring 

schemes, such as linear/nonlinear principle component analysis. 
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CHAPTER 5.  PROCESS OPTIMIZATION 

 

 

 

 

 

 

 

CHAPTER 5 
 
 
 

PROCESS OPTIMIZATION 
 

 

 

 



 

 253

 

5.1 PROCESS OPTIMIZATION USING MEMETIC ALGORITHMS: A 

CASE STUDY OF BENZENE HYDROXYLATION TO PHENOL 

PROCESS∗ 

 

5.1.1 Introduction 

In recent years, Genetic algorithms (see Section 2.4.3), which are 

population-based stochastic optimization methodologies possessing a number of 

attractive properties, have been widely explored in chemical process optimization 

applications. The principle drawback of GA however, is that since the formalism 

performs a global search of the solution space, it can take a long time to converge 

even if the optimal solution lies in the neighborhood of a candidate solution. A 

number of GA-hybrids have been proposed to improve the efficiency of GAs and 

their speed of convergence. A genetic algorithm related methodology that 

overcomes the stated problem is known as “Memetic algorithms (MA)”. The most 

attractive feature of MA (see Section 2.4.4), which makes it a powerful nonlinear 

search and optimization formalism, is that it combines a local search heuristics 

with the population-based global search conducted by the GA. This feature of MA 

greatly helps in speeding up the convergence to an optimal solution for an 

objective function maximization/minimization problem. The said approach has 

proved successful in a variety of problem domains and in particular for solving 

NP Optimization problems (Kollen et al., 1994; Digalakis et al., 2003). 

Accordingly, this section presents a study of a MA-based optimization of the 

zeolite (TS-1) catalyzed benzene hydroxylation to phenol process. Additionally, 

the optimal solutions obtained using the MA formalism are compared with the 

GA-based solutions obtained in an earlier study (Nandi et al., 2002). The results of 
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this comparison indicate that the MA has searched a better solution and that too in 

a shorter time when compared to the GA-based solution. 

In this work, an artificial neural network (ANN) based process model is 

developed first from the steady-state process data [Nandi et al., 2002]. The input 

space of this ANN model representing process operating variables is then 

optimized using the MA formalism with a view of simultaneously optimizing 

multiple process output variables and thereby improving the process performance. 

The results of the MA-based optimization have been compared with those 

obtained in an earlier study by Nandi et al., [2002] using the GA formalism. 

 

5.1.2 Modeling and Optimization of Benzene Hydroxylation Reaction 

 A significant success of the TS-1 based triphasic system was achieved for 

the benzene hydroxylation to phenol reaction wherein a 15 to 20 fold increase (as 

compared to a biphasic system) in the benzene conversion was realized; also, 

selectivity for the desired product (phenol) was significantly higher (Bhaumik et 

al., 1998). The details of the TS-1 catalyzed benzene hydroxylation to phenol 

reaction are described in Nandi et al. [2002]. In this reaction, apart from phenol, 

which is the desired reaction product, small amounts of secondary products such 

as hydroquinone, catechol and para-benzoquinone, are also formed. Phenol being 

a widely consumed industrial chemical, it is economically sensible to optimize the 

TS-1 catalyzed benzene to phenol process. For achieving this objective, the ANN-

GA hybrid modeling and optimization formalism was used by Nandi and co-

workers (Nandi et al., 2002). The specific goal of this process optimization study 

is to develop an ANN-based process model from the reaction data, and to perform 

an MA based optimization of the ANN model with a view to obtain the optimal 

process conditions effecting: (i) higher phenol selectivity, (ii) enhanced H2O2 

utilization, and (iii) increased benzene conversion.  

 

5.1.3 Development and Optimization of ANN-based Process Model 

 A total of 24 experiments were conducted for studying the effects of five 

reaction (model) input variables namely, reaction time (x1), catalyst weight 

percentage (x2), reaction temperature (x3), benzene to peroxide mole ratio (x4) and, 
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water to benzene weight ratio (x5). The catalyst performance was monitored in 

terms of three reaction (model) output variables namely, phenol selectivity (y1) 

(mole %), peroxide utilization (y2) (mole %), and benzene conversion (y3) (mole 

%). This data set was used to develop a feed-forward ANN model; the details of 

the process data and development of the ANN based process model thereby are 

given by Nandi et al. [2002]. 

 The multi-objective (MO) optimization problem involving simultaneous 

maximization of the three reaction output variables is converted into a single 

objective (SO) optimization problem by defining: 

( ) 332211, ˆ Maximize ywywywf ++=Wx ;     →  U
nn

L
n xxx ≤≤              (5.1)   

where f̂  represents the aggregated objective function; W represents the ANN 

model’s weight matrix; the N-dimensional decision vector, x, denotes the reactor 

operating conditions (N = 5); wk (k = 1 to 3) refers to the kth weighting coefficient; 
L
nx  and U

nx  respectively represent the lower and upper bounds on xn; and y1, y2, 

and y3 respectively represent the three reaction output variables (to be 

maximized).  

The five-dimensional input space of the ANN-based process model was 

optimized by the MA method; the values of MA-specific parameters used in the 

optimization simulations were: chromosome length (lchr) = 50, population size 

(Npop) = 30, crossover probability (pcr) = 0.95, mutation probability (pmut) = 0.01, 

and number of generations ( max
gN ) = 250. The Tabu-based local search (see 

Section 2.4.2) was implemented using following values of Tabu parameters: 

number of neighbors (Nneigh) = 20, number of iterations (Niter) = 15, length of the 

Tabu list (TL) = 100, shape coefficient of sigmoid function (σ) = 0.5 and 

intensification coefficient (β) = 0.5. For computing the fitness value (ξj) of the jth 

candidate solution (xj) in a population, following fitness function was employed: 
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The weighting coefficients w1, w2 and w3 represent the relative importance of the 

three objectives, and 1jy , 2jy  and 3jy , respectively represent the ANN model-

predicted values of the three output variables when jth candidate solution is 

applied to the network’s input nodes. Since maximizing percentages of the three 

output variables, namely, phenol selectivity (y1), hydrogen peroxide utilization 

(y2), and benzene conversion (y3), are equally important objectives, the values of 

w1, w2 and w3, were fixed at 0.333. During the implementation of the MA, the 

search for the optimal solution was restricted to the following ranges [ U
n

L
n xx , ] of 

the five process operating variables: (i) reaction time (x1): [0.25, 4.0], (ii) catalyst 

concentration (x2): [5.0, 30.0], (iii) temperature (x3): [323.0, 353.0], (iv) benzene 

to peroxide ratio (x4): [1.0, 8.0], and (v) water to benzene ratio (x5): [1.0, 10.0]. 

 

5.1.4 Results and Discussion 

 The three optimal solutions obtained using the MA formalism are listed in 

Table 5.1. For comparison purposes the table also lists three GA-based optimal 

solutions (as obtained by Nandi et al., 2002). It is seen from the tabulated values 

that the MA formalism has yielded overall best solution with the fitness score of 

88.63. This solution has improved the values of three process outputs namely, 

phenol selectivity, hydrogen peroxide utilization, and benzene conversion by 0.2 

%, 0.7 % and 2.3 %, respectively when compared with the best GA solution. 

Figure 5.1 portrays the generation-wise evolution of the best solution obtained 

using the MA. For comparison, the evolution of the best GA-based solution is also 

shown in Figure 5.1.  It is observed from the figure that the MA has taken lesser 

number of generations (iterations) to reach the overall optimal solution when 

compared to the GA. It may be noted that the inclusion of the local search requires 

more time to complete MA iteration. Specifically, it was observed that the MA 

and GA take approximately 7 and 4 milliseconds, respectively, for completing a 

single iteration (as measured on Windows XP workstation with 2.0 GHz P4 

processor). Despite taking more time to complete an iteration, the MA approached 

the optimal solution faster (CPU time = 20*7 = 140 ms) when compared to the 

GA (time = 70*4 = 280 ms). These results clearly indicate that the local search 

feature of the MA has helped in reaching the optimal solution in half of the time 
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Figure 5.1: Plots showing the generation-wise evolution of the solutions given by 
MA and GA formalisms 
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Table 5.1: Optimized Operating Conditions Obtained Using MA and GA formalisms 

 

Optimized process input variables Maximized output variables Optimal 
solution Time 

(hr) 

(x1) 

Catalyst 

Conc. 

(x2) 

Temp 
(K) 
(x3) 

B to P 
Ratio 

(mol/mol)

(x4) 

W to B 
Ratio 

(wt/wt) 

(x5) 

Phenol 
Selectivity (%)

( py1 ) 

H2O2 
Utilization (%) 

( py2 ) 

Benzene 
Conversion (%) 

( 3
py ) 

Fitness 
Value 

(ξ) 

MA 3.1 24.5 345.0 1.0 8.1 93.5 90.1 81.1 88.23 
1

GA 3.0 25.0 349.0 1.0 8.0 93.3 89.8 80.2 87.13 

MA 2.8 23.4 346.1 1.0 8.2 93.1 90.7 82.1 88.63 
2

GA 2.8 22.5 345.5 1.0 8.6 93.3 90.0 79.8 87.7 

MA 3.3 23.3 346.2 1.0 9.1 92.7 89.5 81.2 87.8 
3

GA 3.4 22.9 348.0 1.0 9.5 92.8 89.3 79.4 87.16 

 

Note:  B: Benzene, P: Hydrogen peroxide and W: Water 
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5.1.5 Conclusion 

 This study presents results of memetic algorithm based MO optimization 

of the zeolite (TS-1) catalyzed benzene hydroxylation to phenol process. 

Additionally, the optimal solutions obtained using MA are compared with the GA-

based solutions obtained in an earlier study. The results of this comparison 

indicate that the MA has captured a better solution and that too in lesser time 

when compared to the GA. It can thus be concluded that the global search 

augmented with a local search performs better than a purely global search for 

securing an optimized solution. 
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6.1 INTRODUCTION 

In this chapter, we have developed/improvised a few AI and ML based 

algorithms for dimensionality reduction, data projection and input selection of 

chemical/biochemical processes. In the first sub-section, a recently proposed 

neural networks based Sammon’s mapping is utilized for the dimensionality 

reduction of glass data and fault detection and diagnosis of a CSTR. In the second 

sub-section locally linear embedding method is proposed for the fault detection 

and diagnosis of invertase production process. The curvilinear component analysis 

is utilized for the fault detection and diagnosis of CSTR and invertase production 

process in the next section. The last sub-section of this chapter presents the fuzzy 

curves and surfaces approach for the input selection of heat exchanger and pH 

control process models.  
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6.2 NONLINEAR FEATURE EXTRACTION USING SAMMON’S 

MAPPING AND SAMANN∗ 

Nonlinear principle component analysis (NLPCA), nonlinear feature 

extraction and nonlinear dimensionality reduction methods are important 

techniques in pattern recognition, exploratory data analysis, data mining, process 

monitoring and fault detection and diagnosis. Sammon’s mapping (refer Section 

2.5.5) is one of the well-known methods to conduct the stated tasks. A major 

drawback of this algorithm is that for the new data the mapping exercise needs to 

be conducted freshly. That is, the formalism is incapable of extending 

(generalizing) the knowledge gained in a mapping exercise to new data. To 

overcome this drawback, an artificial neural network-based formalism known as 

SAMANN (refer Section 2.5.5) has been recently proposed. This section provides 

a comparison of the Sammon’s mapping and SAMANN methods for 

dimensionality reduction and low dimensional projection applications by 

conducting two illustrative case studies. 

 

6.2.1 Introduction 

Monitoring, classification and modeling of high dimensional multivariate 

process data are faced with significant practical difficulties such as inability to 

view high-dimensional data, complex unwieldy nature of the resultant models and 

models incapable of generalization. Feature extraction methods significantly assist 

in overcoming some of the stated difficulties. Feature extraction is essentially a 

dimensionality reduction technique that extracts a subset of new features from the 

original feature (data) set by means of some functional mapping while retaining as 

much information as possible [Fukunaga, 1991]. Feature extraction can avoid the 

“curse of dimensionality”, improve generalization ability of classifiers and reduce 

computational load in modeling and pattern classification efforts. Principle 
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component analysis (PCA) and linear discriminant analysis (LDA) are commonly 

utilized techniques for feature extraction. A significant drawback of these methods 

is that they are linear methods and therefore incapable of extracting nonlinearly 

correlated features. The commonly used nonlinear feature extraction methods 

which overcome the stated difficulty are non-metric multi-dimensional scaling 

(MDS), principle curves, Sammon’s mapping (SM) [Sammon, 1969], isomap and 

locally linear embedding (LLE). In the last two decades, artificial intelligence (AI) 

based methods namely, Kohonen’s self-organizing map (SOM) and auto 

associative neural network (AANN) have also been utilized to perform nonlinear 

feature extraction. More recently, a novel neural network based formalism known 

as “SAMANN” (Mao and Jain, 1994; Ridder et al., 1997) has been introduced for 

nonlinear feature extraction. The present section demonstrates SAMANN efficacy 

by conducting two case studies namely (i) fault classification in a steady-state 

continuous stirred tank reactor (CSTR) and, (ii) dimensionality reduction of a 

glass data set comprising six types of glass compositions. Also, presented here is 

the comparison of the results using Sammon’s mapping and SAMANN. 

 

6.2.2 Case Studies 

Process monitoring, control and predicting process behavior under normal 

and abnormal conditions are major challenges in the chemical industry. The aim 

of fault detection/diagnosis systems is to detect and diagnose process failures at an 

early stage so that corrective measures can be taken swiftly. The fault is defined as 

an abnormal process behavior due to equipment failure, equipment wear, or 

abnormal process disturbances. The task of determining whether a fault has 

occurred is called fault detection and determining the cause of the malfunction is 

termed fault diagnosis. 

In this study, the results obtained using the SAMANN are compared with 

those from the Sammon’s mapping (SM); the measure employed for performance 

comparison of the stated two methods is Sammon’s stressn (ESAM) (see Eq. 2.71). 

In the SAMANN based feature extraction, 80% of the randomly chosen data 

patterns were used for network training and the remaining 20% for testing the 

generalization ability of the network. SAMANN’s architectural parameters and 
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learning rate values are given in Table 6.1; the momentum factor values were kept 

constant (= 0.01) for all SAMANN training experiments. For implementing the 

SM, a Matlab toolbox [Vesanto, 2000] was used while SAMANN code was 

written in VC++, and implemented on a Windows XP workstation. In SM, the 

value of the learning rate (α) was 0.2 for all the mapping simulations. 

 

A. Fault classification in CSTR 

Here, we consider a jacketed nonisothermal CSTR wherein an irreversible 

exothermic first-order reaction, A  B, takes place. The reactor is fitted with 

three proportional control loops that control the outlet temperature, reactor hold-

up, and outlet concentration. The CSTR data of 1050 patterns was generated by 

simulating reactor’s mass and energy balance equations [Vora et al., 1997]. The 

data correspond to the values of six CSTR variables and parameters namely, outlet 

reactor concentration, CSTR temperature, reactor hold-up, reactor output flowrate, 

jacket coolant flowrate and coolant temperature, corresponding to seven types of 

process faults. The faults are classified as: (i) input flow rate high, (ii) input flow 

rate low, (iii) inlet concentration high, (iv) inlet concentration low, (v) inlet 

temperature high, (vi) inlet temperature low, and (vii) decrease in heat transfer 

coefficient due to fouling [Vora et al., 1997]. The objective of Sammon’s mapping 

and SAMANN is to reduce the dimensionality of the CSTR’s six-dimensional 

variable and parameter space and perform feature extraction in a manner such that 

detection and diagnosis of faults is possible by visualizing the lower dimensional 

projection of the original high dimensional data set. Both SM and SAMANN 

methods were used to reduce the six dimensional data to two, three and four 

dimensional feature space and the results obtained thereby are listed in Table 6.1. 

The SM was implemented using all the 1050 patterns. Performance of both 

algorithms was evaluated in terms of the minimum value of Sammon’s stress 

(ESAM) achieved. As illustrative cases, the 2D projection of the original 6-

dimensional data as obtained using SM and SAMANN methods are portrayed in 

Figure 6.1 and Figure 6.2, respectively. It can be seen that both methods have 

classified the seven fault data correctly in as many clusters in the lower (i.e., 2D) 

dimensional space. Subsequently, the low dimensioned mapping can be used 

online with the process to identify and diagnose any occurrence of single faults. 
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Figure 6.1: 2D projection of CSTR data by the multi dimensional scaling based 
Sammon’s algorithm 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: 2D projection of CSTR data by SAMANN 

 

B. Dimensionality reduction of glass data 

In this case study, a benchmark classification problem comprising glass 

data set (Prechelt, 1994) has been considered. The set of nine-dimensional 213 

patterns contains property and composition values of six different types of glasses. 

The nine values correspond to the refractive index and glass composition in terms 

of elements namely Sodium, Magnesium, Aluminum, Silicon, Potassium, 

Calcium, Barium and Ferrous. Both SM and SAMANN algorithms were applied 
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to map the 9-dimensional inputs to lower, i.e., 2 to 5 dimensions and their 

performance is listed in Table 6.1.  

From the stress values (ESAM) listed in Table 6.1, it is seen that the SM has 

achieved lower stress magnitudes as compared to the SAMANN. The lower stress 

values yielded by the SM method in both case studies indicate that SM has 

preserved the inter-pattern distances in low-dimensional projections with higher 

accuracy when compared to the SAMANN. However, almost similar stress values 

for both training and test sets show a good generalization capability of the 

SAMANN. It is also observed that the CPU time requirements to achieve 

convergence are lower for the SM when compared to the SAMANN. The major 

advantage of the SAMANN however is that feature extraction for a new data set 

can be conducted without retraining the network, while in the case of SM, a fresh 

mapping exercise is required for each new data pattern. 

 

6.2.3 Conclusion 

This section illustrates nonlinear feature extraction using two novel 

methodologies namely SM and SAMANN. The efficacy of these methods is 

demonstrated by conducting two case studies where the objective was 

dimensionality reduction and the feature extraction of high dimensional data. In 

the case of CSTR, it was observed that both techniques are capable of efficient 

dimensionality reduction and clustering and therefore these can be utilized for 

process fault detection and diagnosis. Similarly, for glass data the methods 

exhibited excellent dimensionality reduction performance. To summarize SM and 

SAMANN are attractive methods for feature extraction and dimensionality 

reduction and hence can be gainfully employed in process monitoring. 
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Table 6.1: Results of Sammon’s Mapping and SAMANN 

Sammon’s Mapping (MDS based) SAMANN 
Data 
sets Projection 

ESAM Time per 
cycle@ (sec)

No. of 
Iterations Structure# 

ESAM 

 (training data) 

ESAM  

(test data) 
Time per cycle@ 

(sec) 
Number of 
Iterations 

2D 2 × 10 -3 3.531 1000 6,32,10,2,0.5 0.052 0.051 12.6 570 

3D 1.02×10-4 4.284 1000 6,20,8,3,0.65 0.037 0.033 14.3 465 CSTR 

4D 8.0×10 -6 4.765 1000 6,30,12,4,0.45 0.0066 0.006 16.1 5,062 

2D 0.0323 0.227 1000 9,40,17,2,0.5 0.074 0.083 0.75 10,000 

3D 0.0101 0.252 1000 9,34,18,3,0.75 0.047 0.05 0.81 11,811 

4D 0.0025 0.279 1000 9,36,16,4,0.35 0.039 0.04 0.92 5,746 
Glass 

5D 0.0008 0.289 1000 9,28,12,5,0.65 0.0320 0.035 0.98 9,499 
 

# Number of nodes in input, hidden – I, hidden – II, and output layers and η (learning rate) value. 

@ CPU time. 
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6.3 MONITORING AND FAULT DETECTION OF BIOCHEMICAL 

SYSTEMS USING LOCALLY LINEAR EMBEDDING∗ 

 

A non-linear process monitoring technique based on locally linear 

embedding (LLE) formalism (see Section 2.5.4) is developed for a batch 

biochemical process. The LLE is a recently proposed method for non-linear 

mapping of multivariate data to low dimensional space. It is an unsupervised 

learning algorithm that computes low dimensional, neighborhood preserving 

embedding of high dimensional multivariate data. The LLE maps the data into a 

single global coordinate system and its optimizations do not involve local minima, 

which guarantees global optimality of the convergence. The efficacy of LLE in 

monitoring and fault detection is demonstrated for a biochemical process namely 

fermentative production of invertase. The performance of LLE is also compared 

with the well-known neural network based dimensionality reduction technique 

namely, auto associative neural networks (see Section 2.5.3). It is shown that for 

the specific fermentation process, the performance of LLE is better than that of the 

AANN. 

 

6.3.1 Introduction 

Historical data collected during bioprocess control typically includes 

information on high, average and low productive batches. Data also includes 

information on the consequences of performing specific control actions in 

response to problematic situations. Thus it is possible to develop appropriate 

models for evaluating the bioprocess performance and detecting and diagnosing 

faults by utilizing the routinely collected and stored records of process variables. 

In many processes, phenomenological knowledge such as reaction kinetics and 

mass transfer mechanisms underlying the system is obscure. This poses 

                                                 
∗ Phulwale U. S., K. M. Desai, Y. P. Badhe, V. A. Wadekar, S. S. Tambe, B. D. 

Kulkarni, Proceedings of Conference of Research Scholars and Young 
Scientists (CRSYS)," held at IIT, Kharagpur on Sept. 25-26, 2004, 78–84. 
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difficulties in selecting variables that will represent the system adequately and 

hence appropriate monitoring formalisms must be explored.  

Owing to the availability of reliable hardware and biosensors, a large 

number of process variables are monitored during a typical bioprocess operation 

and thus their meaningful interpretation becomes difficult. It therefore becomes 

necessary to interpret the voluminous process data by efficient data reduction and 

projection systems. Such a system greatly simplifies the monitoring task of 

process operators and engineers. For the stated task, linear and nonlinear 

techniques, which reduce the dimensionality of the process data and thereby 

permit projections on a two-dimensional space, are often used. 

There exist a number of methods for reducing the dimensionality of a 

multivariable data space without significantly losing the information content in the 

original data. In the commonly employed methods, new attributes (variables), 

which explain maximum amount of variance in the original data, are obtained by 

performing principal component analysis (see Section 2.5.1). Consequently, fewer 

variables (principal components) are required to represent a high dimensional 

multivariable data set. A significant drawback of the PCA method is that it 

captures only linear relationships between variables and therefore is not suitable if 

the variables are nonlinearly correlated, which is common in most chemical 

processes. 

In the present work, a novel non-linear dimensionality reduction technique 

namely locally linear embedding (see Section 2.5.4) [Roweis and Saul., 2000] is 

successfully applied to a biochemical process. This method can be effectively 

used for monitoring, low dimensional projection and fault detection of 

biochemical processes. The case study utilizing LLE considers a batch 

fermentative production of invertase. The LLE formalism is used for classifying 

the fermentation batches into three classes namely  low, average and high 

productive batches; it is also used for continuous monitoring of a given 

fermentation batch. Specifically, the LLE based two-dimensional projection of the 

original high dimensional process data is used for monitoring and   classification 

of the fermentation process behavior. The results of LLE are also compared with 

those obtained from the auto associative neural network (see Section 2.5.3) 
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[Kramer, 1992; Aldrich, 1998 and Shimizu et al., 1998] based dimensionality 

reduction. The principal difference between an AANN and LLE is that while the 

former obtains new attributes (nonlinear PCs) which capture maximum variance 

in the high dimensional data, the LLE maps the high dimensional data on a low 

dimensional projection using a distance preserving mechanism.  

 

6.3.2 Case Study: Monitoring Fermentative Production of Invertase 

Fermentative production of invertase by Saccharomyces carlsbergensis by 

a fed batch fermentation process is chosen to demonstrate the efficiency of LLE 

formalism for process monitoring and fault detection. Saccharomyces 

carlsbergensis shows a biphasic nature of growth, i.e. it can utilize glucose as well 

as ethanol in the event of glucose scarcity [Dedem and Moo-Young, 2002]. In the 

first growth phase, glucose is utilized via aerobic fermentation with carbon 

dioxide and ethanol as major products. When glucose is completely exhausted, the 

ethanol produced earlier serves as a substrate for the further growth. In such cases, 

the extent of cellular growth and enzyme production depends upon the balance 

between the metabolic states of aerobic fermentation and respiratory growth. 

Thus, estimation of the current metabolic state can be made from the changes in 

the concentrations of glucose and ethanol in the broth. The major advantage of a 

fed batch bioreactor is that during fermentation, the feed composition and feed 

flow rate can be manipulated to maximize product formation. Thus, manipulation 

of the feed rate is an important aspect of the fed-batch operation from the control 

and optimization viewpoint. Recently, while performing feed profile optimization 

of the fed-batch system, Sarkar and Modak, [2003] have reported four different 

profiles for as many combinations of high and low initial substrate and biomass 

concentrations. Since all these feed profiles were nearly identical, only one feed 

profile has been considered as a reference feed profile in this study. 

 

A. Invertase production model 

The phenomenological model for the biphasic growth of Saccharomyces 

carlsbergensis and invertase production is given as [Pyun et al., 1989] 
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( ) ( )t G A t
d x x
d t

μ μ= +                (6.1)                 

( ) t Fsx s Fd s
dt v v

ψ
= − +        (6.2) 

( ) ( )A C t
d e x
dt

π π= −           (6.3)                   

( )d v F
dt

=          (6.4) 

( ) ( )inv S G A A t
d c x
dt

η μ η μ= +              (6.5) 

 

The following nonlinear feed rate profile that maximizes the streptokinase 

production [Sarkar and Modak, 2003] is used for the data generation.  

q = 0.2 l/h for (0 ≤  t ≤  0.58); q = 0 l/h for (0.58 ≤  t ≤  2.28); q = qc l/h for (2.28 

≤  t ≤  12.4); q = 0 l/h for (12.4 ≤  t ≤  13); where, 

 (1.2013) ( 0.1046 )
c tq ( 1.4892)( ) ( )inv

F

xv x v s c
s s
ψ −= + −

−
    (6.6) 

The details of rate expression and kinetic model can be found in [Pyun et al., 

1989]. The following values of model parameters and operating conditions are 

used in simulations: 

 max
Gμ  =0.39 h-1,  max

Aμ =  0.11 h-1,    R
sxY /

=  0.52 g/g ,  F
sxY /

= 0.15 g/g ,   R
spY /
= 0.33 

g/g ,  R
pxY /

=0.67 g/g,  e0 =  0 g,  ( invc )0 =  0 kU/g,  v0 = 0.6 l, vmax =  1.5 l,   sF = 

1.5/[vmax – v0] g/l, kp = 0.014 g/L, ks = 0.021 g/L . 

 

where,  

xt     :  Concentrations of cells (g/l) 

s      :  Concentrations of  glucose(g/l) 

e      :  Concentrations of ethanol (g/l) 

μG      :  Specific rates of growth on glucose ( h-1) 
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 μA     : Specific rates of growth on ethanol ( h-1) 

 ψ     : Specific rates of growth on glucose consumption  (g/g h) 

πA    :  Specific rates of ethanol  production (g/g h) 

πC       :   Specific rates of ethanol consumption (g/g h) 

ηS      : Ratios of the specific invertase synthesis rate to the specific growth rate on 

glucose (kU/g cells) 

 ηA     :  Ratios of the specific invertase synthesis rate to the specific growth rate on 

ethanol (kU/g cells) 

 cinv   : Invertase activity (g/l) 

 q     : Volumetric feed rate of glucose (l/ h) 

 sF      : Glucose feed concentration (g/l) 

 v     :  Fermenter volume (l) 

 

B. Data generation 

To generate process data for the invertase from Saccharomyces 

carlsbergensis process, the phenomenological model proposed by Pyun et al., 

[1989] has been used. It may however be noted that the model is used only to 

simulate the process and thereby generating process data. In real practice, historic 

data collected from the actual process runs can also be used for the LLE-based 

fault detection and diagnosis. The fed-batch invertase process is described in 

terms of five operating variables namely glucose concentration (s, g\l), ethanol 

concentration (e, g/l), bioreactor volume (v, l), biomass concentration (xt, g/l) and 

invertase concentration (cinv, kU/g). This case study aims at classifying the process 

measurements depending upon low, average or high production of invertase (cinv). 

To generate process data involving low, average and high productive batches, the 

set of five ordinary differential equations (ODEs) representing the process 

dynamics (Eqs. 6.1 to 6.6) was simulated under varying sets of operating 

conditions. The ranges in which the initial values of the operating variables were 

varied are (0.3 < v0 < 0.6, 0.05 < s0 < 0.3333 and 0.03 < xt0 < 0.1). A total of 40 
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batches with varying initial conditions as described above were simulated over 

fermentation duration of 13 hrs. The values of four operating variables, i.e. s, v, xt 

and e and the product quality variable cinv computed at one hr intervals formed the 

process data set.  

The simulated data shows significant batch-to-batch variation in the final 

product concentration in the range of 5 kU/g to 13 kU/g. This variation is mainly 

due to the differential rate of assimilation of glucose and ethanol by 

Saccharomyces carlsbergensis. An abnormal process behavior can occur due to 

equipment malfunction or process disturbances, which can affect final product 

concentration adversely. Thus, it is necessary to develop a model using historic 

values of process variables, which will classify a fermentation batch to be low, 

average or high productive batch. In the present case study, depending upon the 

final product (invertase) concentration, the batches are classified into low, average 

or high productive batches.  

The simulated dataset can be viewed as a three-way array of size 40 

(number of batches) × 4 (process variables) × 14 (time intervals). This array was 

unfolded into a two-way array of dimensions (560 × 4) by row-wise arranging the 

time dependent values of process variables from the 40 batches. The batches 

producing invertase upto 7 kU/g were considered as low productive batches; those 

producing invertase between 7 to 9.5 kU/g were considered as average productive 

batches and the batches producing invertase above 9.5 kU/g were high productive 

batches. In the data ten batches (140 patterns) belonged to the class low and 15 

batches (210 patterns) each belonged to the classes average and high.   

The first step in implementing LLE is to identify the neighborhoods of 

each data point. The results of LLE depend quite sensitively on the choice of the 

number of nearest neighbors. Several criteria, however, should be kept in mind 

while choosing this number [Roweis and Saul, 2000]. First, the algorithm can only 

be expected to recover embeddings whose dimensionality, d, is strictly less than 

the number of neighbors, K, and some margin between d and K is desirable to 

improve algorithm's robustness. Second, the algorithm is based on the assumption 

that a data point and its nearest neighbors can be modeled as locally linear; for 

curved manifolds, choosing too large K value will in general violate this 
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assumption. In the case where K > D (indicating that the original data is itself low 

dimensional), each data point can be reconstructed perfectly from its neighbors, 

and the local reconstruction weights are no longer uniquely defined. In this case, 

further regularization must be added to break the degeneracy. In the present case 

the regularization parameter is taken constant and the only free parameter is, K, 

i.e., the number of neighbors. 

 

6.3.3 Results and Discussions 

The Figure 6.3 shows the 2D projection of the four dimensional 

fermentation operating variable data of all the 40 batches for K = 12 as provided 

by the LLE. Different K values were tried to get a more stable 2D projection.  The 

projections were stable over a wide range of K values.  As can be seen in Figure 

6.3, the low, average and high productive batches have been collected in three 

separate clusters. The classification accuracies of LLE for low, average and high 

productive batches were 98.21%, 95.53% and 98.75%, respectively. The results of 

similar clustering exercise conducted using five-layered AANN are portrayed in 

Figure 6.4, For this analysis, an AANN of architecture 4 (number of neurons in 

input layer) × 12 (number of neurons in mapping layer) × 1 (number of neurons in 

bottleneck layer) × 12 (number of neurons in demapping layer) × 4 (number of 

neurons in output layer) trained using the error back propagation algorithm 

[Rumelhart et al., 1986] was used. In Figure 6.4, it is observed that AANN is also 

able to classify the data in three clusters. The AANNs classification accuracies for 

low, average and high productive batches were 94.82%, 95.18% and 95.00%, 

respectively. It may however be noted that AANN training is heuristic and 

therefore is much more time consuming as compared to the LLE procedure. 

In another set of simulations, the intermediate time process data (4th hr) 

was subjected to LLE–based classification and the results obtained thereby are 

depicted in Figure 6.5. As can be seen that, here again the LLE has classified the 

data in three well-defined clusters clearly indicating whether the current batch will 

yield either low, average or high concentration of the invertase. Such an indication 

enables the process operator in making a critical decision whether to proceed with 

the batch or not. 
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Figure 6.3: Two-dimensional Projection using LLE with K = 12 

 

 

 

 

 

 

 

 

Figure 6.4: Two-dimensional Projection using AANN 

 

 

 

 

 

 

 

 

 

Figure 6.5: Two-dimensional Projection using LLE at the end of 10th hr for each 
batch 
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In the LLE–based low dimensional projections it was observed that during 

initial stages of the batch progress the LLE algorithm could not classify the 

batches correctly into low, average and high productive batches. This was 

primarily owing to the fact that the respective data did not contain sufficient 

variations to permit an accurate classification. However, LLE could classify the 

data with high accuracy during the later stages of the batch progression (see 

Figure 6.3 and Figure 6.4). It may also be noted that classification of data from 

new batches necessitates running the LLE freshly. However, the previously 

optimized value of K can be used in the fresh LLE simulations thus reducing the 

computational effort. In contrast, the AANN weights once optimized using the 

historic process data, can be used for projecting (or dimensionality reduction) the 

data from new batches.  

 

6.3.4 Conclusion 

In this section, a novel and recent non-linear dimensionality reduction 

technique namely LLE has been applied for monitoring and fault detection of a 

biochemical system. The LLE has efficiently projected the high dimensional data 

onto lower dimensions by means of eigen-analysis.  The results are compared with 

an ANN based non-linear dimensionality reduction method namely AANN. 

Though both LLE and AANN have exhibited excellent clustering performance, 

the LLE was found to be much faster method than the AANN. Dimensionality 

reduction by LLE succeeds in recovering the underlying structure of manifolds, 

whereas linear embeddings by methods such as PCA maps faraway data points to 

nearby points in the plane, creating distortions in both the local and global 

geometry. Similar to PCA, the LLE algorithm is simple to implement, and its 

optimizations do not involve local minima. Also, it is capable of generating highly 

nonlinear embeddings and its main step involves a sparse eigen value problem that 

scales more naturally to large, high dimensional data sets.  
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6.4 PROCESS MONITORING AND FAULT DETECTION USING 

CURVILINEAR COMPONENT ANALYSIS∗ 

 

This section demonstrates an application of a new nonlinear 

dimensionality reduction method, namely curvilinear component analysis (CCA) 

for the classification of chemical and biochemical process data. The CCA projects 

high dimensional data on to a low dimensional space by maintaining the distances 

between the original input data patterns in the new space. It performs vector 

quantization (VQ) followed by the nonlinear mapping of the quantized vectors. 

The aim of the present study is to demonstrate how CCA can be effectively used 

for the classification applications that involve nonlinear projection of a high 

dimensional input space on to a low, i.e. two-dimensional (2D) projected space. 

The study reports two case studies comprising a continuous stirred tank reactor 

(CSTR) and a batch biochemical (invertase production) process to illustrate the 

efficacy of the CCA for the process monitoring and fault detection and diagnosis 

applications.   

 

6.4.1 Introduction 

The modern day control systems monitor and store a large number of 

process variables continuously. Discovering the hidden structure and relationships 

among the data variables is facilitated by conducting a dimensionality reduction 

(DR) of the data set. The DR aims at reducing the unmanageable dimensions of 

data set to the data set that can be clearly and conveniently visualized without 

losing significantly the information content in the original data set. There are 

several advantages of dimensionality reduction such as compact representation of 

the data, ease of data storage and retrieval, filtering of noise, convenience in 

viewing the data and reduction in the numerical load during process modeling, 
                                                 
∗ Phulwale, U. S., B. Jeevan kumar, S. U. Patel, Y. P.Badhe, S. S. Tambe  and B. 

D.Kulkarni. Presented in the "Second Indian International Conference on 
Artificial Intelligence", held on Dec 20-22, 2005, at the National Insurance 
Academy, Pune, India. 
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control, optimization, etc. Traditionally, DR is used as a data preprocessing tool 

for the subsequent “clustering” and “regression” tasks.  

There exists a number of methods for reducing the dimensionality of a 

multivariable data space without losing the information content in the data 

significantly. In the commonly employed DR methods, new attributes (latent 

variables) explaining the maximum amount of variance in the original data, are 

obtained by performing the principal component analysis (see Section 2.5.1). 

Consequently, fewer latent variables (also known as “principal components”) are 

required to represent a high dimensional multivariable data set. A significant 

drawback of the PCA method is that it extracts only the linear relationships 

between variables and therefore it is not suitable if the variables are correlated 

nonlinearly, which is common in most chemical and bio-processes. The nonlinear 

characteristics of these processes necessitate the usage of nonlinear dimensionality 

reduction techniques. Many techniques for nonlinear dimensionality reduction 

have been proposed recently in the literature such as the Nonlinear 

Multidimensional Scaling [Shepard et al., 1965] and Sammon’s Nonlinear 

Mapping [Sammon, 1969]. However, these methods suffer from huge 

computational costs and inability to unfold strongly nonlinear data [Demartines et 

al., 1997].  

 The curvilinear component analysis (see Section 2.5.2) is a recently 

proposed [Demartines et al., 1997] non-linear dimensionality reduction method, 

which overcomes some of the major shortcomings of the other DR methods and 

also has the ability to reduce the dimensionality of strongly nonlinear data. The 

CCA aims exploring hard data structures and finding a revealing representation by 

unfolding the manifold spanned by the data. The major advantage of CCA is its 

speed of convergence and accuracy.  

Process monitoring, control and fault detection/diagnosis (i.e. identifying 

the normal and abnormal behavior of a process and causes thereof) are the major 

challenges in the chemical and bioprocess industry. The aim of the fault detection/ 

diagnosis (FDD) systems is to detect and diagnose process failures at an early 

stage so that corrective measures can be taken speedily. In a continuous operation, 

malfunctions or faults can develop owing to significant deviations in the operating 
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variables. In most processes, the data pertaining to the normal and abnormal 

process behavior are continuously logged and archived. In the other type of 

process operation, that is batch mode, the monitored and archived data typically 

includes information on high, average and low productive batches. The data also 

contain information on the consequences of performing a particular control action 

in response to a problematic situation. Thus it is possible to develop appropriate 

models for evaluating and classifying the performance of a batch/continuous 

chemical or a biochemical process and detect and diagnose faults by utilizing the 

routinely collected and stored records of the process variables.  

Interpretation of the voluminous data collected during a process operation 

can be achieved by using an efficient data reduction and projection system. Such a 

system greatly simplifies the monitoring task of process operators and engineers. 

Thus, in this study, the CCA is illustrated for addressing the problem of nonlinear 

dimensionality reduction and classification of the process data. Specifically, the 

CCA is used for the classification of faults in a non-isothermal CSTR and 

classification of batches according to the yield of an invertase process. 

 

6.4.2 Case Study – I (Non-isothermal CSTR)  

In this case study, the first order irreversible reaction carried out in a 

jacketed non-isothermal CSTR has been considered. The input vectors for the 

CCA consisted of 6 process variables namely: (i) outlet reactant concentration 

(CA), (ii)  CSTR temperature (T), (iii) reactor hold up (V), (iv) reactor output flow 

rate (F), (v) jacket coolant flow rate (Fj) and (vi) coolant temperature (Tj). The 

aim of the present case study is to identify the type and the magnitude of a fault 

occurring in a steady-state CSTR operation from the available values of the stated 

six variables. 

We consider a few but representative single faults that can occur during 

the steady-sate operation of a CSTR when process parameters deviate by a fixed 

amount from their normal (or set) values. The specific faults which can influence 

the steady-state CSTR behavior have been identified as [Vora et al., 1997]: (i) 

input flow rate (F0) high, (ii) input flow rate low, (iii) inlet concentration (CA0) 

high, (iv) inlet concentration low, (v) inlet temperature (T0) high, (vi) inlet 
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temperature low, and (vii) decrease in heat transfer coefficient (U) due to fouling. 

The inlet concentration can deviate if CSTR happens to be a downstream unit. It is 

assumed that these faults occur in a mutually exclusive manner; that is, only one 

out of the seven types of fault can occur at any given time. The process data for 

the fault classification analysis was generated using the CSTR’s 

phenomenological model [Venkatasubramanian et al., 1990]. The historical data 

collected from a physically running process can also be used in the classification. 

Any deviation in the model parameters would eventually affect the steady-state 

values of the above stated six state variables (CA, T, V, F, Fj and Tj) and the 

magnitudes of these state variables are usually available as the measured data.  

 

A. Simulation of faults 

To generate process data, model equations described in 

Venkatasubramanian et al. [1990] were solved to obtain the steady-state values of 

the six state variables. The values of the model parameters used in the steady-state 

simulations were: F0 = 1.15 m3 hr-1, F = 1.15 m3 hr-1, V = Vset = 1.35 m3, CA0 = 

8000 gmol m3, T = Tset = 333 K, Tj0 = T0 = 295 K, Vj = 0.1 m3, α = 7.08×1010 hr-1, 

Cj = 4 J(gmol 0K)-1, Fj = 1.4 m3 hr-1, λ = -70000 J(gmol)-1, R = 8.3262 J(gmolhr)-1, 

E = 70000 J(gmol)-1, U = 3 × 106, J(hrm2K)-1, ρ = 8 × 105 gmol(m3)-1, ρj = 106 

gmol(m3)-1, kc = 0.2 m3(hr K)-1, Cp = 3 J(gmol K)-1, A = 25 m2, kL = 10 hr-1, and  

ka = 8.8 × 10-5 m6(gmol hr)-1. All the seven faulty process conditions were 

simulated separately. Each of the seven data sets so generated corresponds to 

0.1% to 15% deviation (at the interval 0.1%) from the normal value of the 

individual process parameter responsible for the malfunction. Thus, each fault is 

represented by 150 patterns. Subsequently, all the seven data sets were combined 

to form a single input set for the CCA network training and the pattern consisting 

of the steady state values of state variables under no fault condition was added to 

this cumulative set. The data structure of the resultant set is given in Table 6.2. 

This set can be visualized as a matrix of size [1051, 6] consisting of 1050 patterns 

representing seven single faults and the remaining one portraying the normal 

process behavior. 
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B. Results and discussion 

For reducing CSTR’s six dimensional steady-state data to two dimensions, 

the CCA parameters were set as follows. The algorithm (see Section 2.5.2) was 

run for 1000 training epochs (t = 1000); the learning rate decreased according to 

( ) ( )t
t

+
=

1
0α

α  where 5.0=oα  and λF was set equal to 1/(1+t). The CCA-based 

dimensionality reduction and the classification results are plotted in Figure 6.6. It 

can be seen from the figure, that the CCA has correctly classified the process data 

into seven faults even in the lower (i.e., 2) dimensional projection.  

 

 

 

 

 

 

 

 

Figure 6.6: Nonlinear Projection of 6-dimensional steady-state CSTR data in 2-
dimensions 

 

Also, it is seen that the clusters depicting various faults are widely 

separated and their boundaries do not overlap. Thus, from the location of the 2-D 

projection of the steady-state values of the CSTR variables, it is possible to 

identify clearly the occurrence of any one of the seven faults. It is also possible to 

identify CSTR’s normal steady-state behavior (the region at the centre of seven 

fault clusters). 
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Table 6.2: Nature and magnitudes of seven CSTR faults 

Input  Data for CCA 
No. Nature of Fault 

Fault 

code Pattern no(s). Fault magnitude* (%) # 

1 Input flow rate high F1 1-150 (+) 0.1-14.9 

2 Input flow rate low F2 151-300 (-) 0.1- 14.9 

3 Inlet conc. high F3 301-450 (+) 0.1-14.9 

4 Inlet conc. low F4 451-600 (-) 0.1- 14.9 

5 Input temp. high F5 601-750 (+) 0.1-14.9 

6 Input temperature low F6 751-900 (-) 0.1- 14.9 

7 Heat transfer coeff.  low F7 901-1050 (-) 0.1-14.9 

8 Normal operation - 1051 - 

* Percent deviation from the normal operating value of the parameter defined in 

column 2. 

# Data generated at the deviation intervals of 0.1 %.  

 

6.4.3 Fermentative Production of Invertase 

In this case study, the batch fermentative production of invertase by 

Saccharomyces carlsbergensis is chosen to demonstrate the efficacy of the CCA 

formalism for the process monitoring and fault detection tasks.  Saccharomyces 

carlsbergensis shows a biphasic nature of growth, i.e. it can utilize glucose as well 

as ethanol in the event of glucose scarcity [Pyun et al., 1989]. The major 

advantage of a fed batch bioreactor is that during fermentation, the feed 

composition and feed flow rate can be manipulated to maximize the product 

formation. Thus, manipulation of the feed rate is an important aspect of the fed-
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batch operation from the control and optimization viewpoint. An efficient process 

monitoring and fault detection formalism is expected to greatly facilitate the 

manipulation of the feed rate.    

 

A. Phenomenological model for invertase production 

The phenomenological model for biphasic growth of Saccharomyces 

carlsbergensis and invertase production [Pyun et al., 1989] is given in section 

6.3.2A. The following nonlinear feed rate profile that maximizes the streptokinase 

production [Pyun et al., 1989] is used for the data generation; q = 0.2 l/h for (0 ≤  t 

≤  0.58); q = 0 l/h for (0.58 ≤  t ≤  2.28); q = qc l/h for (2.28 ≤  t ≤  12.4); q = 0 l/h 

for (12.4 ≤  t ≤  13), where,  

( )( ) ( ) 1.02.149.1 −−+
−

−= invt
F

c csx
ss

sq ννψ    (6.7) 

The details of the rate expression and kinetic model can be found in Pyun et al., 

[1989]. The following values of model parameters and operating conditions are 

used in simulations: max
Gμ  = 0.39 h-1, max

Aμ  =  0.11 h-1,    R
sxY /

=  0.52 g/g ,  F
sxY / = 

0.15 g/g ,   R
spY / = 0.33 g/g ,   R

pxY /
= 0.67 g/g,  e0 =  0 g,  ( invc )0 =  0 kU/g,  v0 = 

0.6 l, vmax =  1.5 l,  sF = 1.5/[vmax – v0] g/l, kp = 0.014 g/L, ks = 0.021 g/L . 

 

B. Simulation of phenomenological model  

To generate process data for the invertase from Saccharomyces 

carlsbergensis process, the phenomenological model proposed by Pyun et al., 

[1989] has been used. The model is used only to simulate the process and thereby 

generating the process data. The fed-batch invertase process is modeled in terms 

of five operating variables namely glucose concentration (s, g/l), ethanol 

concentration (e, g/l), bioreactor volume (v, l), biomass concentration (xt, g/l) and 

invertase concentration (cinv, kU/g). This study aims at classifying process 

measurements depending upon the low, average or high production of the 

invertase (cinv). To generate process data involving low, average and high 

productive batches, the set of five ordinary differential equations (ODEs) (Eqs. 6.1 

to 6.5 and Eq. 6.7) representing the process dynamics was simulated under 
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varying sets of operating conditions. The ranges in which the initial values of the 

operating variables were varied have been: (0.3 < v0 < 0.6, 0.05 < s0 < 0.3333 and 

0.03 < xt0 < 0.1). A total of 40 batches with varying initial conditions as described 

above were simulated over fermentation duration of 13 hrs. The values of the four 

operating variables i.e. s, v, xt and e and the product quality variable, cinv, 

computed at one hr intervals formed the process data set. 

The simulated data shows a significant batch-to-batch variation in the final 

product concentration in the range of 5 kU/g to 13 kU/g. This variation is mainly 

due to the differential rate of assimilation of glucose and ethanol by 

Saccharomyces carlsbergensis. An abnormal process behavior can occur due to 

the equipment malfunction or process disturbances, which can affect the final 

product concentration adversely. Thus, it is necessary to develop a model that will 

classify a fermentation batch to be either low, average or high productive batch. 

 The simulated data-set can be viewed as a three-way array of size 40 

(number of batches) × 4 (process variables) × 14 (time intervals). This array was 

unfolded into a two-way array of dimensions (560 × 4) by arranging row-wise the 

time dependent values of the four process variables from the 40 batches. The 

batches producing invertase upto 7 kU/g were considered as low productive 

batches; those producing the invertase between 7 to 9.5 KU/g were considered as 

average batches and the batches producing above 9.5 KU/g of invertase were high 

productive batches. In the data, 10 batches (140 patterns) belonged to the class 

low and 15 batches (210 patterns) each to classes average and high. 

  

C. Results and discussion 

The parameter values used in the CCA based classification were  t = 3000 

and the learning rate decreased according to ( ) ( )t
t

+
=

1
0α

α  (where 5.0=oα ). In the 

above-stated classification task, the dimensionality of the four dimensional vectors 

of process operating variables was reduced to two. The results of the CCA-based 

low-dimensional projection of the process data are depicted in Figure 6.7, where it 

is seen that the data have been collected in three clusters describing low, average 

and high invertase production batches, respectively. In the region between x = 
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0.377 and x = 1.67, the points are well separated in three well-defined regions thus 

facilitating identification of low, average and high invertase production batches. 

The CCA could classify the data with approximately 99% accuracy. We also 

conducted dimensionality reduction and classification using the linear PCA. 

However, the PCA-based classification results were poor as compared to those 

obtained using the CCA. The results of the non-linear dimensionality reduction 

depicted in Figure 6.7 indicate that the CCA is an attractive method for viewing 

and classifying nonlinearly correlated bioprocess data in lower dimensions.  

 

 

 

 

 

 

 

 

Figure 6.7 Nonlinear Projection of 4-dimensional invertase process data in two-
dimensions 

 

6.4.4 Conclusion 

In this study, a state-of-the-art nonlinear dimensionality reduction method 

namely curvilinear component analysis has been employed to obtain low-

dimensional projections of high dimensional chemical process data. In section 

6.4.2, the steady-state data from a non-isothermal CSTR operating under faulty 

conditions was considered. The CCA could reduce the dimensionality of the data 

from 6D to 2D with an excellent precision. Also, the reduced dimensioned data 

formed well-defined clusters defining seven fault classes. In the case study 

described in section 6.4.3, the CCA could reduce the dimensionality of the 

invertase batch process data from four to two. Here, most of the data was 

classified in three well-defined clusters defining low, average and high productive 

batches. To summarize, the results of this study suggest that the CCA is an 
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attractive strategy for reducing the dimensionality of high dimensional nonlinearly 

correlated data. The advantage of the CCA is that it allows process engineers and 

operators a convenient single-window view of the process variables. This feature 

is advantageous in process monitoring, control and fault detection and diagnosis in 

that the process operator/engineer can view the process operation easily. It is also 

possible to use the dimensionality reduced data for modeling purposes thereby 

substantially lowering the computational load.      
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6.5 SELECTION OF MODEL INPUTS USING FUZZY CURVE AND 

FUZZY SURFACE METHODS 

 

6.5.1 Preamble 

Modern day chemical processes are large and complex entities with a 

plethora of equipment and sub-processes. These processes are characterized in 

terms of a number of independent and dependent variables as also parameters. A 

process model is required in a variety of process engineering tasks such as 

prediction of performance in terms of conversion, selectivity, efficiency, etc., and 

optimization, control, fault detection and diagnosis and process monitoring. 

Among the three approaches that are available for modeling, namely 

phenomenological, empirical and black-box, the first one poses significant 

difficulties owing to an insufficient knowledge about the physico-chemical 

phenomena underlying large chemical processes and therefore empirical and 

black-box modeling formalisms are resorted to. The implementation of these 

formalisms comprising, for example, linear/nonlinear regression and artificial 

intelligence methods becomes tedious and numerically intensive when a process is 

monitored in terms of a large number of input-output variables. Also, many a 

times the monitored variables are correlated thereby making such variables 

redundant. It is therefore advisable to reduce the size of the data-base used in 

modeling the process by identifying the influential input variables and ignoring 

the unimportant ones. Selection of most important process input variables leads to 

several advantages such as reduced numerical effort involved in modeling, faster 

model development, ease in process monitoring and an accurate and 

generalization capable model. Accordingly, in this section, a novel and recently 

proposed fuzzy logic based formalism is illustrated for the input selection. In what 

follows, an overview of various dimensionality reduction and input selection 

formalisms is presented followed by the results of two case studies wherein the 

fuzzy logic based method has been implemented for the selection of important 

inputs of two chemical engineering systems. 
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6.5.2 Introduction 

In today’s large and complex commercial chemical processes, a number of 

factors influence the reaction and mass and heat transfer phenomena. These 

processes are characterized in terms of a number of independent (causal) and 

dependent (response) variables such as reactant concentration, temperature, 

pressure, conversion and selectivity, as also product quality variables. The 

performance of a process model fitted by exclusively data-driven AI and ML 

based nonlinear modeling techniques is critically dependent on the dimensionality, 

statistical distribution and size of the input-output data set used in constructing the 

model. In principle, the AI-based and ML-based nonlinear empirical modeling 

techniques do not require to reduce the model’s input space although as size of the 

input space increases the solution to a nonlinear modeling problem converges to a 

local rather than the global optimum. Also, the AI and ML based modeling 

algorithms are iterative in nature and most of the algorithm-specific parameters 

are adjusted by heuristic methods. Thus, their implementation is a numerically 

intensive task especially while modeling nonlinear systems with a large number of 

inputs and outputs. If the input space of an ANN or ML based model has a high 

dimensionality then the resulting model becomes complex due to the large number 

of terms that it contains. Such a model does not possess the much desired good 

generalization performance owing to which it makes poor predictions for a new 

set of inputs, which are not part of the data set used in constructing the model. 

Often, the causal variables, which form the input space of a process model, are 

either linearly or nonlinearly correlated. Such correlated inputs unnecessarily 

increase the dimensionality of the model’s input space. Also, the sensitivity with 

which an operating condition variable (model input) affects the model output may 

vary significantly with some of these variables exhibiting only a negligible effect 

on the output. It is therefore essential to identify the influential input variables and 

thereby reduce the dimensionality of the input space of a process model since it 

leads to several advantages alluded to above. Particularly, identifying a small 

number of influential inputs and ignoring the unimportant ones results in a 

parsimonious yet accurate and reliable process model with reduced complexity 

and improved generalization capability. There exists a number of methods for 
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input identification (selection) which reduces the dimensionality of the input 

space.  

To remove nonlinearly correlated input variables, nonlinear dimensionality 

reduction techniques such as autoassociative neural networks (AANN) (refer 

Section 2.5.3) and Sammon’s mapping based neural network (refer Section 2.5.5) 

are commonly used. These neural network based methods are however 

computationally expensive. Thus, in this study a new and novel AI-based strategy 

known as “fuzzy curves and surfaces (FCS) (refer Section 2.5.6)” has been 

presented for identifying important input variables and thereby reducing the 

dimensionality of the input space of nonlinear process models. This method 

requires lesser computational effort than the other heuristic nonlinear input 

selection and dimensionality reduction methods such as AANN. Specifically, the 

FCS method has been utilized for identifying important inputs of following 

chemical processes: (i) heat exchanger system and (ii) pH control system. 

Additionally, the performance of the FCS method is rigorously compared using an 

ANN-based sensitivity computation method yielding important inputs of a model 

(see Section 3.4.7). This study shows that the FCS is capable of efficiently 

identifying the hierarchy of the input variables of a process model according to 

their influence on the model output. For comparing the performance of the FCS 

method, this study uses ANN-based input sensitivity method (refer Section 3.4.7) 

which computes the sensitivity of the output variable towards changes in each 

input of an ANN model. Upon computation of sensitivities, only those inputs 

exhibiting high sensitivity towards an output can be retained while ignoring less 

sensitive inputs. Section 2.5.6 highlights the FCS technique used in the 

identification of the important inputs. 

 

6.5.3 Case Studies 

Consider a dynamic system described as 

( )βα −−+−+ = ttttttt uuuyyyfy ,...,,,,...,, 111     (6.8) 

where y refers to the control variable, yt+1 describes the one-step-ahead value of 

the control variable, y, u represents the manipulated variable, and α and β are the 
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time lags of the controlled and manipulated variables, respectively. Fitting of Eq. 

(6.8) from the process data is known as “process identification.” The identified 

model can then be used in the model based controller design. In the above 

equation, some of the lagged variables may have more influence on y(t+1) than 

others. Thus, in order to accurately fit the system dynamics, the number of lagged 

variables (α and β) must be chosen judiciously and heuristically. Also, having 

chosen α and β, the most significant individual lagged variables need to be 

determined. In the present study, FCS has been employed to determine the most 

influential lagged variables of the heat exchanger and pH control systems so that 

the resultant models accurately describe the dynamics of these systems.   

In order to mimic the real-life scenario, all the simulated data sets of the 

stated systems were adulterated with a maximum of 1% Gaussian noise. In order 

to find the significant inputs, a large number of inputs (high α and β) have been 

subjected to the FCS method.  To check the performance of the significant lagged 

variables selected by the FCS, two ANN models were built separately; the first of 

these models uses all the lagged variables as inputs and the other model uses the 

most significant lagged variables determined by the FCS. 

A. Nonlinear heat exchanger control system 

 This example considers a shell and tube heat exchanger (see Figure 6.8) 

wherein process fluid enters the exchanger vessel with inlet temperature, T 

(normalized steady-state value, Ts = 0.15 oC), and flow rate, F (Fs = 0.50 l/min). 

Using a heater, the fluid temperature is increased to a higher value, Y, at the 

exchanger outlet (Ys = 1). The heat exchanger dynamics are described by the 

following ordinary differential equation (Kulkarni et al., 1999): 

   
VRC

U
V
FT

V
FY

dt
dY

P

2

++
−

=           (6.9) 

where U refers to the normalized heater voltage (Us = 0.707) and (RCP = 1) is the 

system time constant. For this process, heater voltage input, U, serves as the 

manipulated variable and the exchanger outlet temperature, Y, is the controlled 

variable. To generate input-output process data, Eq. (6.9) was integrated by 

randomly perturbing U between 0.5 and 1.4. Probability of variation in U was 

0.15. The dynamics of the heat exchanger system (Eq. 6.9) was simulated till time 

equals 5000 minutes. For training the model, the process data set covering 5000 



 

 292

minutes of operation was divided in 80:20 ratio into two sets namely, training and 

test sets. Next, ANN model’s architectural parameters (number of nodes in two 

hidden layers) were optimized using these training and test sets. A maximum of 

six lagged variables of y and u (α, β = 6) were utilized and an ANN model of 

following form was constructed using the EBP algorithm. 

  ( )βα −−−−+ = ttttttt uuuyyyfy ,...,,,,...,, 1111    (6.10) 

where f1 refers to the function approximated by the ANN-based model with α=6 

and β=6. This model although has 14 inputs, all of them are not influential in 

predicting yt+1 and thus ANN-based sensitivity analysis (see Section 3.4.7) was 

carried out for the above-stated 14 inputs. The results obtained thereby are plotted 

in Figure 6.9 in the decreasing order of the sensitivity values. The first six input 

variables from the plot can be identified as the most important model input 

variables. The ANN model when these variables are used in its input space can be 

written as: 

( )3632121 ,,,,, −−−−−+ = ttttttt uuyyyyfy     (6.11) 

It can thus be seen that the ANN-based sensitivity computation method has 

reduced the input space from 14 to 6 inputs. Based on these reduced number of 

inputs, a new ANN model was built.  

 

 

 

 

 

 

 

Figure 6.8: Heater voltage is the manipulated variable and exchanger outlet 
temperature is the controlled variable 
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Next, FCS was utilized to rank the influential inputs. For this purpose, the 

algorithm described in section 2.5.6 was utilized. The number of inputs ranked 

was 14. The influential input variables determined by the FCS were yt, yt-2, yt-4, ut, 

ut-4 and ut-6. Thus, the one-step-ahead predictor model for the heat exchanger can 

be written as: 

( )644231 ,,,,, −−−−+ = ttttttt uuuyyyfy     (6.12) 

It can thus been seen that ANN-based sensitivity analysis and FCS have identified 

different sets of lagged variables as influential although yt, yt-2 and ut-6 are 

common to both these sets. 

To gauge the performance of FCS-identified important inputs an ANN 

model was constructed using the inputs described in Eq. (6.12). The root-mean-

square-error (RMSE), mean percentage error (%error) and the correlation 

coefficient (CC) between the actual one-step-ahead y values and those predicted 

by the ANN model with 14 inputs as also FCS identified six significant variables 

for the training and test data set are given in Table 6.3. Additionally, listed in the 

table are the values corresponding to an ANN model constructed using the 

important inputs identified by the sensitivity analysis. In the table, f1 refers to the 

ANN model obtained using all 14 inputs (Eq. 6.10), f2 refers to the ANN model 

(Eq. 6.11) with reduced numbers of inputs obtained from the sensitivity analysis 

of the f1 model, and f3 refers to the ANN model (Eq. 6.12) obtained using the 

reduced number of inputs identified by the FCS. As can be noted from Table 6.3, 

the RMSE and %error values have decreased for models with reduced input 

dimension as compared to the model using all the 14 inputs. It can also be seen 

that the FCS reduced input space has imparted maximum improvement in the 

ANN model’s predictive and generalization performance. The six important inputs 

identified by the sensitivity method also perform better than the 14 inputs in 

predicting yt+1 albeit on a lower scale when compared with those identified by the 

FCS. 
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Figure 6.9: Sensitivity of lagged variables of Heat Exchanger system 

 

B. Nonlinear pH control system 

 The process is a continuous stirred tank reactor (CSTR) (see Figure 6.10) 

wherein hydrochloric acid and sodium hydroxide streams are mixed and effluent 

stream pH is monitored. The objective is to control/maintain the effluent pH at a 

given set point by manipulating the NaOH flow rate. Dynamics of the pH control 

process assuming perfect mixing, reaction at equilibrium, constant volume and 

constant density is described by a single ordinary differential equation (Kulkarni 

et al., 1999): 

  
)(60)1(

][][
2

3232

VC
QCCcCPCCcC

dt
dC ba

+
−−+−+

=             (6.13) 

   )10/(log 7
10 CpH −=      (6.14)  

where C denotes the dimensionless concentration of the hydrogen ions, pH 

(control variable) represents the effluent pH, ca and cb refer to dimensionless 

concentrations of  HCl and NaOH inlet streams, respectively, V is the CSTR 

volume and, P and Q (manipulated variable) respectively represent the inlet flow 

rates of HCl and NaOH. To obtain the dynamic process input-output data Eq. 

(6.13) was integrated using Runge-Kutta method by varying Q randomly between 

30 and 70 l min-1; the probability of variation in Q at any instant was 0.25.  
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Figure 6.10: Schematic of a pH neutralization CSTR 

 

In order to identify the dynamics of the nonlinear pH control system an 

ANN model with six lagged variables of the control and manipulated variables (α, 

β = 6) was constructed. The model has following form: 

( )βα −−−−+ = ttttttt uuuyyyfy ,...,,,,...,, 1141     (6.15) 

where y is the controlled variable (pH of the system), u is the manipulated variable 

(NaOH inlet flow rate, Q) and α, β representing the number of flags have a 

magnitude of six. Next, sensitivity analysis of the ANN model (Eq. 6.15) was 

conducted and the results are plotted in Figure 6.11 in the decreasing order of the 

sensitivities of model inputs. In Figure 6.11, it is seen that apart from yt and ut, six 

lagged variables of y, namely yt-1, yt-6, yt-2, yt-3, yt-4 and yt-5 exhibit higher 

sensitivity towards yt+1 than the six lagged variables of the manipulated variable u. 

Accordingly, another ANN model of the following form was built using yt, ut and 

six lagged variables of the control variable, y as model inputs. 

  ( )65432151 ,,,,,,, −−−−−−+ = ttttttttt yyyyyyuyfy   (6.16) 

Next, FCS was utilized for the selection of important input variables of the ANN 

model (Eq. 6.15) and the equation explaining the dependency of lagged values of 

control and manipulated variables on the one-step-ahead values of control variable 

(i.e., yt+1) using FCS identified five important inputs is as given below. 

 I/ P

CH (t); COH (t) 
Neutralized 

solution 

NaOH 
Q (t); CNa2 

(t) 

HCl 
P (t); Ccl1 (t) 
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  ( )216361 ,,,, −−−−+ = tttttt uuyyyfy     (6.17) 
The RMSE, %Error and CC between the actual one-step-ahead pH (yt+1) and those 

predicted by the ANN models using all the 14 input variables as also using the 

significant variables identified by the sensitivity analysis and FCS for training and 

test data sets are given in Table 6.3. In the table, f4 refers to the ANN model built 

using all the 14 inputs as described by Eq. 6.15,  f5 refers to the ANN model (Eq. 

6.16) using the inputs identified by the sensitivity analysis and f6 refers to the 

ANN model (Eq. 6.17) constructed using inputs identified by the FCS. Similar to 

the heat exchanger control system, in this case study also an improvement is 

observed in the prediction and generalization performance of the ANN model 

built using the significant inputs identified by the sensitivity analysis and FCS as 

compared to the model built using all the 14 inputs. Also, FCS performance in 

identifying significant inputs is better as compared to the sensitivity analysis 

method which can be validated from the lowest RMSE and %error values and 

highest CC values (refer to Table 6.3). 

 

 

 

 

 

 

 

 

Figure 6.11: ANN model sensitivity for pH system 
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Table 6.3: Performances of ANN models  

Training data set Test data set ANN 
Models RMSE % Error CC RMSE % Error CC 

f1 0.081 4.065 0.976 0.08 4.125 0.97 

f 2 0.075 3.954 0.98 0.078 3.985 0.9758 

f 3 0.068 3.59 0.984 0.066 3.45 0.985 

f 4 1.054 5.21 0.94 1.65 6.25 0.926 

f 5 0.098 5.036 0.956 1.032 5.963 0.954 

f 6 0.0865 4.157 0.975 0.095 4.265 0.968 

 

6.5.4 Conclusion 

 In this section, fuzzy curves and surfaces method has been explored for the 

identification of important inputs of a model that significantly affect the model 

output. The results of the FCS have been compared with another input 

identification method namely ANN-based sensitivity analysis. From the two case 

studies performed in this section it is seen that important inputs identified by both 

the methods improve the prediction and generalization performance of the models. 

It is also observed that the FCS has fared better than the sensitivity analysis 

method in identifying important inputs. 
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In this chapter, we present a summary of contributions made in this thesis 

and guidelines for deployment of the AI-based formalisms. 

7.1 CONCLUSIONS 

Mathematical process models are required for a variety of process 

engineering tasks such as steady-state and dynamic modeling, process control, 

fault detection diagnosis, classification, optimization, data reduction, low 

dimentional projection and process monitoring. Most chemical processes exhibit 

complex nonlinear behavior and thus development of phenomenological models, 

which require complete understanding of the underlying process phenomenology 

(kinetics, thermodynamics, heat and mass transfer mechanisms, etc.) becomes 

difficult. An attractive alternative in the form of AI based models has become 

available in the last two decades. A significant advantage of the AI based models 

is that they can be developed exclusively from the process data without needing 

any information about the process phenomenology. Likewise ANNs, a number of 

other AI-based formalisms have been proposed for conducting the process 

engineering tasks alluded to above. It may be noted that AI formalisms are generic 

in nature and can be employed in almost every science and 

engineering/technology discipline. The objective of this thesis therefore is to 

design, develop and apply various AI formalisms for the important tasks in 

chemical engineering/technology. Accordingly, the studies reported in the thesis 

and conclusions thereof are described below. 

The first chapter provides a brief overview of the artificial intelligence 

(AI) and machine learning (ML) domains and highlights the major formalisms 

thereof as also their generic applications. 

The second chapter provides algorithmic details of a number of AI and ML 

based formalisms used in the modeling, optimization, classification, 

dimensionality reduction and input selection case studies reported in the thesis.  

Chapter 3 focusses on the applications and improvisation of AI and ML 

based formalisms for chemical/biochemical process modeling. In the first two 

studies, ANNs trained using an optimally noise-superimposed enlarged input-

output data set has been shown to exhibit improved prediction and generalization 
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performance. In the third case study, ANN-based models have shown better 

accuracy for the prediction of gross calorific values of Indian coals over the 

conventionally used linear models. Next, the recently proposed ML-based 

formalism, namely SVR, has been utilized in a novel application involving 

softsensor development for biochemical processes. Also, the SVR has been shown 

to possess an excellent accuracy for the prediction of activity of a biochemical 

process. In the last study of the chapter, a modified genetic programming 

formalism integrating local and global search mechanisms has been explored for 

the modeling of the benzene isopropylation over Hbeta catalyst process. 

Chapter 4 studies AI-based classification/clustering formalisms. Here, two 

case studies have been performed. In the first case study dealing with protein 

synthesis, the unsteady-state data from a fed-batch fermenter operating under 

faulty as well as normal operating conditions has been considered to successfully 

conduct fault classification. In the second case study involving citric acid 

production, the SOM neural network visualizes the dynamics of a multivariable 

process in the form of a two-dimensional map and brings out subtle differences 

between various batches. 

In chapter 5, AI-based formalisms have been explored for process 

optimization. This chapter presents results of a memetic algorithm (MA) based 

multi-objective optimization of the zeolite (TS-1) catalyzed benzene 

hydroxylation to phenol process. Additionally, the optimal solutions obtained 

using the MA have been compared with the genetic algorithm based solutions 

obtained in an earlier study. The results of this comparison indicate that the MA 

has captured a better solution and that too in a shorter time when compared to the 

GA-based solution. It can thus be concluded that the global search augmented 

with a local search (as done by MA) fares better than a pure global search 

conducted by the GA. 

Chapter 6 demonstrates applications and improvisation of AI and fuzzy 

logic based formalisms for data dimensionality reduction/low dimensional 

projection and input selection of chemical/biochemical process data. In the first 

three sections of this chapter, ANN-based Sammon’s mapping, locally linear 

embedding and curvilinear component analysis have been used for the 

dimensionality reduction of the process data and fault detection and diagnosis 
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thereof. In the last section of the chapter, a recently proposed fuzzy logic based 

input selection formalism namely, fuzzy curves and surfaces, has been 

successfully utilized for the input selection of a pH neutralization process and heat 

exchanger control system. 

 

7.2 GUIDELINES FOR DEPLOYMENT OF AI FOMALISMS 

7.2.1 Thumb-rules for the Development and Deployment of ANN models 

• Never “throw” non-analyzed, non-processed data at an ANN, i.e., 
preprocess the data before subjecting to the ANN for modeling; perform 
correlation and trend analysis. Also, remove outliers. 

• Make sure that adequate data for training an ANN is available: data 
adequacy depends on the input-output dimensionality of the system to be 
modeled 

• Employ “proper” data representation methods: input encoding, filtering, 
etc., should be performed 

• Avoid over-training the neural network: use a test set, which is different 
from the training set for checking the generalization ability of the network. 
Due to this ability, the network model can generalize the information 
learned during the training phase to make accurate predictions for new 
inputs.   

• Use different strategies for scaling the ANN inputs; for instance, simple 
normalization, mean centering, and z-score method for input scaling. 

• Avoid trying to map multiple functions using a single neural network: 
develop a different network for each output. 

• Develop parsimonious neural network models: That is use as few hidden 
neurons as possible. Generally, one hidden layer is sufficient in the ANN 
architecture although two hidden layers are sometimes needed. 

 

Various types of ANNs are highly efficient in approximating nonlinear 

relationships existing between variables of two sets of data. These advantages 

have been presented in various case studies in Chpter 3. The principle drawback 

of ANNs however are as follows. 
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• Training of a majority of ANN architectures is an iterative procedure and 

therefore numerically intensive and time consuming. 

• Being a black-box model, the parameters (weights) of the most commonly 

used neural network paradigm, namely multilayer perceptron (MLP) can 

not interpreted in terms of the training data. 

• Irrespective of the system under investigation, the MLP network uses a 

generic nonlinear transfer function such as the logistic sigmoid for 

approximating nonlinear input-output relationships although the 

complexity of the fitted model varies depending upon the number of model 

inputs and outputs. 

• There do not exist mathematically sound criteria for the number of patterns 

essential for training of an ANN model although a few guidelines do exist. 

 

7.2.2 Guidelines for Using Other AI Formalisms 

(A) Before exploring neural networks for classification tasks, conventional 

clustering algorithms such as K-means should be explored. In general, 

feed forward neural networks are suitable for supervised classification 

tasks whereas self-organizing neural network outperforms K-means 

technique for unsupervised classification tasks. 

(B) Most AI based optimization techniques are iterative in nature and 

therefore numerically intensive. Thus, they are not ideally suited for 

online optimization unless optimization problem is of small size (fewer 

decision variables). However, the most significant benefit of AI based 

optimization methods is that invariably they find a global or near-global 

optimal solution. In addition, they are not constrained by the continuity, 

smoothness and differentiability of the objective function criteria required 

by the commonly utilized deterministic gradient based methods. 

(C) In control applications, ANN should be used with at most care for 

following resons. 
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(i) ANNs are not good at predicting gains, (ii) multistep-ahead 

predictions made by an ANN are likely to be erroneous due to 

accumulation of approximation errors committed during recycling of 

single step-ahead predictions. 

(D) Mathematically sound dimensionality reduction techniques such as 

principle component analysis are available for decades and extensively 

used. A major drawback of these methods is that they are linear in 

character. AI-based dimensionality reduction (DR) methods are efficient 

in capturing nonlinearities presented in the data. Since they are 

computationally more expensive than the PCA and its variants, the usage 

of AI-based DR techniques should be attempted only after establishing 

unsuitability of linear techniques. 
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