
(i)

PROCESS MODELING

AND OPTIMIZATION USING

ARTIFICIAL INTELLIGENCE AND

MACHINE LEARNING FORMALISMS

THESIS SUBMITTED TO THE

UNIVERSITY OF PUNE

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

CHEMICAL ENGINEERING

BY

Yogesh Pandurang Badhe

UNDER THE GUIDANCE OF

Dr. B. D. Kulkarni

Chemical Engineering and Process Development Division

National Chemical Laboratory

Dr. Homi Bhabha Road

Pune 411008

India

January 2008

(ii)

CERTIFICATE

This is to certify that the work incorporated in the thesis,

“PROCESS MODELING AND OPTIMIZATION USING ARTIFICIAL

INTELLIGENCE AND MACHINE LEARNING FORMALISMS”

submitted by Mr. Badhe Yogesh Pandurang, for the Degree of

Doctor of Philosophy, was carried out by the candidate under my

supervision in the Chemical Engineering and Process Development

Division, National Chemical Laboratory, Pune – 411 008, India.

Such material as has been obtained from other sources has been

duly acknowledged in the thesis.

Dr. B. D. Kulkarni

(Research Advisor)

(iii)

DECLARATION

I hereby declare that the thesis “PROCESS MODELING AND

OPTIMIZATION USING ARTIFICIAL INTELLIGENCE AND MACHINE

LEARNING FORMALISMS” submitted for the degree of Doctor of Philosophy

to the University of Pune has not been submitted by me for a degree to any other

University.

Badhe Yogesh Pandurang

(iv)

Dedicated to
AISG, NCL, Pune.

(v)

ACKNOWLEDGEMENT

I take this opportunity with deep sense of gratitude to record my sincere

thanks to my research supervisor Dr. B. D. Kulkarni for introducing me to a

fascinating and challenging frontier of artificial intelligence and machine

learning that has brought a positive turning point in my career. I remain deeply

indebted to him for his precious advice, his caring attention, for helping me out in

most stressful situations, for giving me the edge to meet future challenges...

My heartfelt thanks are due to Dr. S. S. Tambe for his keen interest,

valuable suggestions, personal care and for helping me in all possible ways to

comprehend my work in its present form. I will be grateful to him also for giving

me exposure to the exciting field of time series analysis.

Colleagues and Staff at National Chemical Laboratory (NCL), Pune were

quite supportive throughout my stay. Particularly I am indebted to Kiran, Vinay,

Uttam, Jeevan, Ravikumar, Jayaram, Savita, Somanath, Avinash, Prakash,

Abhijeet, Nilesh, Sudheerkumar, Kalpendra, for making my stay at NCL pleasant

and memorable. Technical discussions with Kiran, Vinay, Uttam were really

useful.

I am thankful to the teachers at M. J. College and SMIT Polytechnic,

Jalgaon for orienting my mind towards research during the school and

undergraduate days itself. I am also grateful to Mr. S. L. Pandharipande, Dr. R.

L. Sonolikar at LIT, Nagpur for their valuable guidance and encouragement

during my career development.

 I would also like to express my sincere thanks to the numerous anonymous

referees who have reviewed parts of this work prior to publication in journals and

whose valuable comments have contributed to the clarification of many of the

ideas presented in this thesis.

Whatever I am and whatever I will be in future is because of the goodwill

and unstinted support that I have received from my parents. Their constant

encouragement, sacrifice and support made me achieve the goal. I owe them a lot

(vi)

for which mere words are insufficient. In addition, I will be thankful to my loving

wife for putting up with having a ‘student’ husband.

I would also like to thank Council for Scientific and Industrial Research

(CSIR), New Delhi for granting me Senior Research Fellowship.

Badhe Yogesh Pandurang

(vii)

TABLE OF CONTENTS

ACKNOWLEDGEMENT.. v
TABLE OF CONTENTS ... vii
LIST OF FIGURES ... xi
LIST of TABLES ... xiv
ABSTRACT... xv

Chapter 1. INTRODUCTION TO ARTIFICIAL INTELLIGENCE AND
MACHINE LEARNING FORMALISMS..................................... 18

1.1 WHAT IS ARTIFICIAL INTELLIGENCE AND MACHINE
LEARNING? ... 19

1.2 VARIOUS AI FORMALISMS ... 24
1.2.1 Artificial Neural Networks ... 24
1.2.2 Evolutionary Algorithms .. 25
1.2.3 Tabu Search .. 29
1.2.4 Expert Systems.. 30
1.2.5 Fuzzy Logic .. 32

1.3 THESIS OUTLINE.. 33
1.4 REFERENCES .. 34

Chapter 2. OVERVIEW OF ARTIFICIAL INTELLIGENCE AND
MACHINE LEARNING FORMALISMS..................................... 37

2.1 BACKGROUND ... 38
2.2 MODELING FORMALISMS ... 39

2.2.1 Artificial Neural Networks ... 40
2.2.2 Support Vector Regression ... 56
2.2.3 Genetic Programming ... 66

2.3 CLASSIFICATION/CLUSTER ANALYSIS 78
2.3.1 K-Means Clustering.. 79
2.3.2 Self Organizing Map... 80

2.4 OPTIMIZATION FORMALISMS.. 82
2.4.1 Simultaneous Perturbation Stochastic Approximation 84
2.4.2 Tabu Search .. 86
2.4.3 Genetic Algorithms... 90
2.4.4 Memetic Algorithm... 101

2.5 DIMENSIONALITY REDUCTION FORMALISMS........................ 103
2.5.1 Principle Component Analysis ... 104
2.5.2 Curvilinear Component Analysis.. 105
2.5.3 Autoassociative Neural Networks 109
2.5.4 Locally Linear Embedding ... 112
2.5.5 Sammon’s Mapping and ANN-based Sammon’s Mapping 114
2.5.6 Fuzzy Curves and Surfaces... 120

(viii)

2.6 CONCLUSION.. 125
2.7 REFERENCES .. 126

Chapter 3. PROCESS MODELING ... 139
3.1 INTRODUCTION ... 140
3.2 ARTIFICIAL INTELLIGENCE BASED SOFT-SENSORS FOR

MONITORING PRODUCT PROPERTIES IN POLYETHYLENE
PROCESS .. 141
3.2.1 Monitoring of Polyethylene Process................................... 142
3.2.2 Suggested Approaches.. 143
3.2.3 What is the Solution? .. 143
3.2.4 Softsensors for Process Monitoring.................................... 144
3.2.5 ANN-Based Softsensor Development 145
3.2.6 Development of Softsensors Using the Proposed Approach147
3.2.7 Benefits of the Soft-sensor Models..................................... 154

3.3 PERFORMANCE ENHANCEMENT OF ARTIFICIAL NEURAL
NETWORK BASED MODELS IN PRESENCE OF NOISY DATA 156
3.3.1 Introduction... 157
3.3.2 GA-Based Generation of Enlarged Noise Superimposed

Data ... 158
3.3.3 Case Study – I: Steady-State Modeling of A CSTR........... 160
3.3.4 Case Study – II: Modeling of Benzene Isopropylation over

Hbeta Catalyst... 162
3.3.5 Concluding Remarks... 165

3.4 ESTIMATION OF GROSS CALORIFIC VALUE OF COALS
USING ARTIFICIAL NEURAL NETWORKS.................................. 168
3.4.1 Introduction... 168
3.4.2 Survey of GCV Correlations and Need for ANN-Based

Models .. 170
3.4.3 ANN-Based Models for GCV Estimation 174
3.4.4 Collection of Data ... 176
3.4.5 Results and Discussion ... 178
3.4.6 Identifying Important Inputs of ANN Models 182
3.4.7 Sensitivity Analysis (SA) of ANN Models......................... 183
3.4.8 Conclusion .. 185

3.5 SOFT-SENSOR DEVELOPMENT FOR FED BATCH
BIOREACTORS USING SUPPORT VECTOR REGRESSION 193
3.5.1 Introduction... 194
3.5.2 Invertase Production Model.. 196
3.5.3 Softsensor for Invertase Process ... 197
3.5.4 Softsensor for Streptokinase Process 203
3.5.5 Details of Softsensor Development 204
3.5.6 Conclusion .. 211

(ix)

3.6 SUPPORT VECTOR REGRESSION FOR BIOPROCESS
IDENTIFICATION ... 213
3.6.1 Introduction... 213
3.6.2 Biological Treatment of Polluted Waters by Mixed

Continuous Culture ... 214
3.6.3 Results and Discussion ... 217
3.6.4 Conclusion .. 220

3.7 GENETIC PROGRAMMING FOR DATA-DRIVEN MODELING
OF NON-LINEAR CHEMICAL PROCESSES.................................. 221
3.7.1 Modeling of Benzene Isopropylation Over Hbeta Catalyst

Process .. 221
3.7.2 Results and Discussion ... 221
3.7.3 Conclusion .. 224

3.8 REFERENCES .. 226
Chapter 4. APPLICATIONS OF AI-BASED

CLASSIFICATION/CLUSTER ANALYSIS 233
4.1 INTRODUCTION ... 234
4.2 MONITORING AND FAULT DETECTION OF A BATCH

FERMENTATION PROCESS USING SELF ORGANIZING
MAPS... 236
4.2.1 Case Study-I: Fed-Batch Fermenter for Protein Synthesis . 237
4.2.2 Case Study-II: Fault Detection/Diagnosis of Batch

Fermentation Process of Citric Acid Production 241
4.2.3 Conclusion .. 249

4.3 References.. 251
Chapter 5. PROCESS OPTIMIZATION... 252

5.1 PROCESS OPTIMIZATION USING MEMETIC ALGORITHMS:
A CASE STUDY OF BENZENE HYDROXYLATION TO
PHENOL PROCESS ... 253
5.1.1 Introduction... 253
5.1.2 Modeling and Optimization of Benzene Hydroxylation

Reaction .. 254
5.1.3 Development and Optimization of ANN-based Process

Model .. 254
5.1.4 Results and Discussion ... 256
5.1.5 Conclusion .. 259

5.2 REFERENCES .. 260
Chapter 6. DATA PROJECTION, DIMENSIONALITY REDUCTION

AND INPUT SELECTION ... 261
6.1 INTRODUCTION ... 262
6.2 NONLINEAR FEATURE EXTRACTION USING SAMMON’S

MAPPING AND SAMANN ... 263
6.2.1 Introduction... 263

(x)

6.2.2 Case Studies .. 264
6.2.3 Conclusion .. 267

6.3 MONITORING AND FAULT DETECTION OF BIOCHEMICAL
SYSTEMS USING LOCALLY LINEAR EMBEDDING.................. 269
6.3.1 Introduction... 269
6.3.2 Case Study: Monitoring Fermentative Production of

Invertase.. 271
6.3.3 Results and Discussions.. 275
6.3.4 Conclusion .. 277

6.4 PROCESS MONITORING AND FAULT DETECTION USING
CURVILINEAR COMPONENT ANALYSIS.................................... 278
6.4.1 Introduction... 278
6.4.2 Case Study – I (Non-isothermal CSTR) 280
6.4.3 Fermentative Production of Invertase................................. 283
6.4.4 Conclusion .. 286

6.5 SELECTION OF MODEL INPUTS USING FUZZY CURVE AND
FUZZY SURFACE METHODS ... 288
6.5.1 Preamble ... 288
6.5.2 Introduction... 289
6.5.3 Case Studies .. 290
6.5.4 Conclusion .. 297

6.6 REFERENCES .. 298
Chapter 7. CONCLUSION .. 301

7.1 CONCLUSIONS ... 302
7.2 GUIDELINES FOR DEPLOYMENT OF AI FOMALISMS 304

7.2.1 Thumb-rules for the Development and Deployment of
ANN models ... 304

7.2.2 Guidelines for Using Other AI Formalisms........................ 305
Appendix A. List of Publications.. 307

(xi)

LIST OF FIGURES

Figure 1.1: An AI system.. 20
Figure 1.2: A biological neuron ... 25
Figure 1.3: Schematic of Evolutionary Algorithms.. 26
Figure 1.4: Schematic of fuzzy logic systems .. 33
Figure 2.1: Architecture of Multilayer Perceptron Network Model 43
Figure 2.2: The schematic of multi-input multi-output GRNN 52
Figure 2.3: The schematic of Radial Basis Function Neural Network 55
Figure 2.4: A schematic representation of the SVR using ε-insensitive loss

function .. 62
Figure 2.5: A simple equation tree.. 69
Figure 2.6: Parents selected for crossover and randomly selected crossover

nodes. ... 72
Figure 2.7: Offspring produced after the crossover operation.............................. 72
Figure 2.8: Example trees showing mutation operation 73
Figure 2.9: A candidate solution tree with nodes selected for local search

operation... 75
Figure 2.10: A candidate solution tree with nodes selected for SPSA-based

parameter estimation .. 76
Figure 2.11: Flow chart of genetic programming ... 77
Figure 2.12: Simple graphical clustering example ... 78
Figure 2.13: Schematic of Self-organizing Map... 81
Figure 2.14: Flow chart of TS algorithm .. 89
Figure 2.15: A schematic of the CCA network... 106
Figure 2.16: The schematic representation of architecture of AANN................ 110
Figure 2.17: Compression and decompression networks performing: (a)

mapping, and (b) de-mapping of the input data 111
Figure 2.18: SAMANN Architecture.. 117
Figure 3.1: (Panel a) Comparison of RMSE values corresponding to the soft-

sensor models based on noise-superimposed and non-
superimposed training data sets. (Panel b) same as panel (a) but
for validation set data ... 149

Figure 3.2: (Panel a) Comparison of average percentage error values
corresponding to the softsensor models based on noise-
superimposed and non-superimposed training data sets. (Panel
b) same as panel (a) but for validation sets 150

(xii)

Figure 3.3: (Panel a) Comparison of the squared of correlation coefficient
(R2) values corresponding to the soft-sensor models based on
noise-superimposed and non-superimposed training sets. (Panel
b) for validation data sets ... 151

Figure 3.4: Cross-plots of GCV verses individual constituents of proximate
and ultimate analyses ... 175

Figure 3.5: Graphical comparison of experimental GCVs with those
estimated by ANN model-II and Eq. (3.13) 179

Figure 3.6: Graphical comparison of experimental GCVs with those
estimated by ANN model-VI and Eq. (3.14) 181

Figure 3.7: Graphical comparison of experimental GCVs with those
estimated by and ANN model-VII and Eq. (3.15) 182

Figure 3.8: Invertase activity at two, seven and 13 hour time duration as
predicted by the SVR-based softsensor.. 202

Figure 3.9: Invertase activity at two, seven and 13 hour time duration as
predicted by the ANN-based softsensor... 202

Figure 3.10: Streptokinase concentration at two, five, seven and twelve hour
time duration as predicted by the SVR-based softsensor............... 208

Figure 3.11: Streptokinase concentration at two, five, seven and twelve hour
time duration as predicted by the ANN-based softsensor 209

Figure 3.12: Active biomass concentration at two, five, seven and twelve hr.
time duration as predicted by the SVR-based softsensor............... 210

Figure 3.13: Active biomass concentration at two, five, seven and twelve hr.
time duration as predicted by the ANN-based softsensor 210

Figure 3.14: Random variations in the manipulated variable, D 216
Figure 3.15: Response of S to random variations in D 216
Figure 3.16: SVR predicted and desired Sk+1 values for (a) training, (b) test

and (c) validation data sets ... 218
Figure 3.17: SVR predicted and actual Sk+1 values for noisy (a) training, (b)

test & (c) validation data set... 219
Figure 3.18: GP model predictions of cumene selectivity: (a) Plot of training

data (b) Plot of test data ... 222
Figure 3.19: GP model predictions for cumene yield. (a) Plot of training data

(b) Plot of test data ... 225
Figure 4.1: U-matrix visualization of self-organizing maps at 3rd hr of the

process operation showing the faulty as well as normal batch 240
Figure 4.2: U-matrix visualization of SOM at 7th hr of the process operation

showing the faulty as well as normal batches 240

(xiii)

Figure 4.3: U-matrix visualization of self-organizing maps at 12th hr of
process operation showing the faulty as well as normal batches ... 241

Figure 4.4: Visualization of SOM for citric acid production for a batch with
initial conditions given in Table 4.1 Batch No. 17......................... 245

Figure 4.5: U-matrix with the distribution of the batches, along with labels(at
30th Hrs)... 246

Figure 4.6: U-matrix with the distribution of the batches, along with labels
(at 100 Hrs) .. 247

Figure 4.7: U-matrix with the distribution of the batches, along with labels
(at 170 Hrs) .. 247

Figure 4.8: Trajectories of the normal (green) and abnormal (red) batches on
the top of U-matrix... 248

Figure 4.9: Trajectories of the normal (green) and abnormal (red) batches on
the top of U-matrix... 248

Figure 5.1: Plots showing the generation-wise evolution of the solutions
given by MA and GA formalisms .. 257

Figure 6.1: 2D projection of CSTR data by the multi dimensional scaling
based Sammon’s algorithm .. 266

Figure 6.2: 2D projection of CSTR data by SAMANN...................................... 266
Figure 6.3: Two-dimensional Projection using LLE with K = 12 276
Figure 6.4: Two-dimensional Projection using AANN 276
Figure 6.5: Two-dimensional Projection using LLE at the end of 10th hr for

each batch... 276
Figure 6.6: Nonlinear Projection of 6-dimensional steady-state CSTR data in

2-dimensions .. 282
Figure 6.7 Nonlinear Projection of 4-dimensional invertase process data in

two-dimensions .. 286
Figure 6.8: Heater voltage is the manipulated variable and exchanger outlet

temperature is the controlled variable .. 292
Figure 6.9: Sensitivity of lagged variables of Heat Exchanger system 294
Figure 6.10: Schematic of a pH neutralization CSTR .. 295
Figure 6.11: ANN model sensitivity for pH system ... 296

(xiv)

LIST OF TABLES
Table 1.1: Well-known artificial intelligence based algorithms and there

applications [Tambe et al, 1996] .. 22
Table 1.2: Examples of expert systems in chemical engineering and

technology .. 31
Table 2.1: List of possible kernel functions [Dibike, 2000] 64
Table 3.1: Prediction and generalization performance of soft-sensor models

for stress exponent.. 152
Table 3.2: Prediction and generalization performance of soft-sensor models

for density... 153
Table 3.3: Prediction and generalization performance of soft-sensor models

for MFI ... 154
Table 3.4: Comparison of predictions and generalization performance of

ANN-models using noise-superimposed and non-noise-
superimposed data .. 166

Table 3.5: Optimal noise tolerance (%) values for CSTR variables................... 167
Table 3.6: Optimal noise tolerance (%) values for benzene isopropylation

process variables .. 167
Table 3.7: Proximate and ultimate analysis data of Indian coals along with

experimental GCV values .. 186
Table 3.8: Details of ANN-based GCV models*.. 190
Table 3.9: Statistical analysis of GCV prediction and generalization

performance of ANN-based and linear models*............................ 191
Table 3.10: Results of sensitivity analysis (SA) of ANN model-I 192
Table 3.11: Comparison of invertase activity prediction performance of SVR

and ANN-based softsensor models .. 203
Table 3.12: Comparison of prediction performance of SVR and ANN based

softsensors .. 209
Table 3.13: Steady-state values of variables and parameters 215
Table 3.14: Prediction results from ε- SVR based models 217
Table 3.15: Benzene isopropylation over Hbeta catalyst process data............... 223
Table 3.16: Perfromance of the GP-based models.. 224
Table 4.1: Initial concentrations and labels for all batches................................. 244
Table 5.1: Optimized Operating Conditions Obtained Using MA and GA

formalisms.. 258
Table 6.1: Results of Sammon’s Mapping and SAMANN................................. 268
Table 6.2: Nature and magnitudes of seven CSTR faults 283
Table 6.3: Performances of ANN models... 297

(xv)

ABSTRACT

During the past decade, factors such as global competition, stringent

environment protection laws, emphasis on high and consistent product quality and

greater product variation have created a challenging environment for process

manufacturing. Some of these challenges include fast technical innovation,

demand for reduction of design and production of lead times, etc. To this end, in

recent years, modeling, simulation and optimization of chemical processes have

been employed rigorously both in academia and industry. Conventionally,

modeling is conducted using phenomenological approach. This method works

very well for processes wherein underlying phenomena are fully understood and

measurements thereof are available. Such an approach however can fail miserably

for those processes in which the complex nonlinear interactions of different

competing mechanisms make it impossible to build even a rudimentary model.

Thus, for instance, in microbial fermentations, it is impossible to measure the

intracellular variables accurately and hence phenomenological descriptions may

fail to capture the underlying features over the ranges of governing parameters.

The above discussion highlights the need for a paradigm shift in the approach to

modeling of chemical processes.

To address the issue alluded to above, in the present thesis, artificial

intelligence and machine learning formalisms are adopted and suitably tailored to

build data-driven models that are employed successfully for tasks such as steady

state and dynamic modeling, process identification, fault detection diagnosis and

dimensionality reduction. This thesis is structured as follows.

 Chapter 1 provides a brief overview of various artificial intelligence (AI)

and machine learning (ML) formalisms, viz. neural networks, expert systems,

fuzzy logic, tabu search and evolutionary algorithms such as genetic algorithms,

memetic algorithms and genetic programming. The application domain of these

formalisms has also been clearly spelt out.

The second chapter described in detail the AI and ML based algorithms

used in the thesis along with the pertinent literature survey. Depending upon their

applications, these are classified into four categories namely modeling,

(xvi)

classification, optimization and data reduction/projection formalisms. A number

of formalisms covered under modeling category are error back propagation neural

networks, resilient-back propagation neural network, general regression neural

network, radial basis function neural network, support vector regression and

genetic programming. The formalisms covered under classification are K-means

clustering and self-organizing maps. The formalisms detailed under optimization

are simultaneous perturbation stochastic approximation, tabu search, genetic

algorithms and memetic algorithms. Finally, the formalisms considered for

dimensionality reduction and data projection are principle component analysis,

curvilinear component analysis, auto associative neural networks, locally linear

embedding, Sammons mapping and artificial neural network-based Sammon’s

mapping and fuzzy curves and surfaces.

The third chapter provides details of a number of AI and ML based

modeling studies. In the first study, ANN based softsensors are developed for

monitoring the polyethylene manufacturing process. A recently proposed

algorithm of noise superimposition based data enlargement has been shown to be

useful in accurately predicting the magnitudes of process variables. In the next

study, the same algorithm has been used for a chemical process to demonstrate the

algorithm’s effectiveness in a number of systems. Next, an ANN based model is

constructed for the improved evaluation of Indian coals. Also, SVR models are

proposed as softsensors for the prediction of biochemical batch process variables.

In the subsequent section, SVR is once again employed for the identification of

the biochemical treatment of polluted waste water process. In the last section of

chapter 2, a novel AI-based formalism, namely genetic programming, has been

used for the prediction of selectivity and yield of a cumene production process.

Specifically, a modified GP algorithm augmented with local search is used in this

study.

Chapter 4 focuses on the classification/clustering studies. It deals with the

cluster analysis of a number of process faults that can occur in batch fermentation

processes namely, protein synthesis and citric acid production. Also demonstrated

is an application of an artificial intelligence based clustering method, namely, self-

organizing map (SOM) for the classification of biochemical batch process data.

The said study aims at exploring the efficacy of SOM for classification

(xvii)

applications involving nonlinear projection of a high dimensional input space onto

a low, i.e. two dimensional (2-D) projected space to diagnose faulty batches. Here,

a case study involving the biosynthesis of protein has been conducted to illustrate

SOM’s efficacy in process monitoring and fault detection and diagnosis

applications.

The fifth chapter deals with process optimization studies. An artificial

neural network based process model is developed first from the process data of

protein synthesis and citric acid production. The input space of this ANN model

representing process operating variables is then optimized using the memetic

algorithm formalism with a view of simultaneously optimizing multiple process

output variables and thereby improving the process performance. Also, the results

of the memetic algorithm-based optimization have been compared with those

obtained in an earlier study using the genetic algorithm formalism.

Chapter 6 comprises case studies demonstrating the effectiveness of AI-

based novel algorithms for low-dimensional projection of process data, feature

extraction and dimensionality reduction. In the first section of the chapter, a

recently proposed neural network based Sammon’s mapping is utilized for the

dimensionality reduction of glass data and fault detection and diagnosis of a

continuous stirred tank reactor (CSTR). In the second section, locally linear

embedding formalism is demonstrated for the fault detection and diagnosis of the

invertase production process. Further, curvilinear component analysis method is

utilized for the fault detection and diagnosis of a CSTR and invertase production

process. In the last study of this chapter, fuzzy curves and surfaces approach is

used for the selection of important model inputs of heat exchanger and pH control

processes.

Finally, the seventh chapter of this thesis provides a summary of important

results and conclusions drawn from the case studies performed in chapters 3 to 6.

Also, this chapter highlights the guidelines on the deployment of AI-based

formalisms.

 18

CHAPTER 1. INTRODUCTION TO ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING

FORMALISMS

CHAPTER 1

INTRODUCTION TO ARTIFICIAL
INTELLIGENCE AND MACHINE

LEARNING FORMALISMS

 19

1.1 WHAT IS ARTIFICIAL INTELLIGENCE AND MACHINE

LEARNING?

Artificial intelligence (AI) is a branch of computational science, which

develops mathematical algorithms mimicking various kinds of intelligent

behaviour exhibited by biologically evolving species, with the aim of providing

novel and efficient solutions to complex modeling, classification and optimization

problems. However, the AI does not have to confine itself to methods that are

observed only in the nature. Accordingly, machine learning algorithms are also

considered to be part of the AI. The intelligent behaviour exhibited by biologically

evolving species involves perception, reasoning, learning, communication,

decision making and acting in complex environments.

 AI has been one of the most controversial domains of inquiry in computer

science since it was first proposed in the 1950s. Defined as the part of computer

science concerned with designing systems that exhibit the characteristics

associated with human intelligence, the field has attracted researchers owing to its

ambitious goals and enormous underlying intellectual challenges [National

Research Council (NRC), 1999]. The ultimate aim of AI is to make computer

programs that are capable of solving real-world problems and achieving goals as

done by humans – the pursuit of so called ‘strong AI’. This goal has caught the

attention of the media, but by no means do all AI researchers view strong AI as

worth investigating; an excessive optimism in the 1950s and 1960s concerning

strong AI has given way to an appreciation of the extreme difficulty of the

problem [Copeland, 2000]. To date, progress in this direction has been meagre.

Because 50 years of failure eventually starts affecting funding, the AI field has

diversified and experts have established themselves in other areas where they can

be said to have had some success. These new areas are less concerned with the

business of making computers “think”, focusing instead on what can be referred to

as ‘weak AI’ – the development of practical technology for modeling aspects of

human behaviour [Goodwins, 2001]. In this way, AI research has produced an

extensive body of principles, representations, and algorithms. Today, successful

 20

AI applications range from custom-built expert systems to mass-produced

software and consumer electronics.

The number of applications for weak AI is growing. AI-related patents in

the US increased from 100 to 1700 between 1989 and 1999, with a total of 3900

patents mentioning AI related terms. AI systems are generally embedded within

larger systems – applications can be found in video games, speech recognition,

and in the commercial ‘data mining’ sector. Full speech recognition, leading to

voice-led internet access or recognition in security applications, is anticipated

relatively soon. However, the ability to extract meaning from the natural language

recognition still remains way off. The data mining market uses software to extract

general regularities from online data, dealing in particular with large volumes or

patterns humans may not look for or incapable of their capture. Such systems

could be used to predict consumer preferences or extract trends from market data

such as patents and news articles. Sales already have reached US$3.5 billion and

were anticipated to be US$8.8 billion in 2004. Weak AI is already behind systems

that detect ‘deviant’ behaviour in credit card use, which has lead to improved

credit card fraud detection. Potential applications of these techniques to state-

security situations are likely to be controversial [Arnall, 2003].

Figure 1.1: An AI system

Actions

Sensory signals

Perception

Model

Action
computation

Planning and
reasoning

Goals

 21

The architecture of a typical AI agent is shown in Figure 1.1. This agent

perceives and models its environment and computes appropriate actions perhaps

by anticipating their effects. Changes made to any of the components shown in

Figure 1.1 might count as “learning”. Different learning mechanisms may be

employed depending on which subsystem is being changed.

As a broad subfield of AI, machine learning (ML) is concerned with the

development of algorithms and techniques, which allow computers to “learn”.

Learning, like intelligence, covers such a broad range of processes that it is

difficult to define precisely. A dictionary definition includes phrases such as “to

gain knowledge or understanding of or skill in, by study, instruction or experience

and modification of a behavioural tendency by experience.” Zoologists and

psychologists study learning in animals and humans. In this thesis, we focus on

learning in machines, specifically computing machines that learn relationships in a

given data set using AI-based algorithm; the knowledge gained via learning is

subsequently utilized to solve real-world problems such as process modelling,

classification and optimization. There are several parallels between animal and

machine learning. Certainly, many techniques in machine learning derive from the

efforts of psychologists to make more precise their theories of animal and human

learning through computational models. It seems likely also that the concepts and

techniques being explored by researchers in machine learning may illuminate

certain aspects of biological learning.

In ML, a machine learns whenever it changes its structure, program or data

based on its inputs or in response to external information in such a manner that its

expected future performance improves. Some of these changes, such as the

addition of a record to a data base, fall comfortably within the province of other

disciplines and are not necessarily better understood for being called learning.

But, for instance, when the performance of a speech recognition machine

improves after hearing several samples of a person’s speech, we feel quite

justified saying that the machine has “learned”. Machine learning usually refers to

the changes in systems that perform tasks associated with AI. Such tasks involve

recognition, diagnosis, planning, process control, prediction, etc. The changes

might be either enhancements to already performing systems or synthesis of new

systems.

 22

Table 1.1: Well-known artificial intelligence based algorithms and there applications [Tambe et al, 1996]

AI Areas AI Formalism Applications References

Perceptron Speech and image processing, pattern recognition Rosenblatt [1958,
1962]

Multilayer
perceptron

Function approximation, signal processing, signal
filtering, data compression and reduction, time series
modeling, noise reduction, pattern recognition and
classification, image and speech processing, process
control

Rumelhart et al.
[1986a, b], Werbos
[1974], Parkar [1985],
Le Cun [1985]

Radial basis
function neural
networks

Function approximation, process control, process
modeling, pattern recognition and classification.

Moody and Darken
[1989]

Kohonen self-
organizing map

Data compression, clustering, classification and
mapping.

Kohonen [1988, 1989]

Counterpropogation
network

Function approximation, lookup table, statistical
analysis, pattern recognition and classification.

Hecht-Nielsen [1987,
1988]

SAMANN Dimensionality reduction, data projection, classification Mao and Jain [1995]

Artificial
neural
networks

Auto-associative
neural network

Dimensionality reduction, data projection Kramer, 1991, 1992;
Leonard and Kramer,
1993; Kuespert and
McAvoy, 1994

 23

AI Areas AI Formalism Applications References

Genetic algorithms Process optimization and modeling Davis [1991],

 Goldburg[1989]

Genetic
programming

Function approximation, process modeling, pattern
recognition

Koza[1992]

Evolutionary
methods

Tabu search Process optimization Glover [1989, 1990]

Nero-fuzzy
networks

Modeling and pattern recognition, classification, rule
extraction

Zhang [1997], Conde
[2000]

Fuzzy logic

Fuzzy curves and
surfaces

Input selection, data mining, dimensionality reduction Lin et al., [1996, 1998]

Support vector
machines

Support vector
classification and
regression

Classification, pattern recognition, function
approximation, process modeling and control.

 24

1.2 VARIOUS AI FORMALISMS

In the quest to create intelligent machines, the field of Artificial

Intelligence has split into several different approaches based on the most

promising theories, methods and applications. These rivalling theories have lead

researchers to one of two basic approaches; bottom-up and top-down. Bottom-up

theorists believe the best way to achieve artificial intelligence is to build electronic

replicas of the human brain's complex network of neurons, while the top-down

approach attempts to mimic the brain's behaviour with computer programs. This

thesis focuses on the top-down approach. Ever since the path-breaking publication

of the error-back-propagation algorithm to train multi-layer perceptron neural

networks [Rumelhart et al., 1989] the field of AI has witnessed an explosive

growth in related theories and applications. There is hardly any scientific and

technology field wherein AI has not found applications. Accordingly, this thesis is

concerned with the applications of AI to chemical engineering and technology

processes. The major AI paradigms and their applications are listed in Table 1.1.

In what follows an overview of major AI formalisms is provided.

1.2.1 Artificial Neural Networks

Artificial neural networks (ANNs) is an information-processing paradigm

founded on the mechanisms followed by the highly interconnected cellular

structure of the human brain. The human brain is made up of a network of billions

of cells called neurons, and understanding its complexities is seen as one of the

last frontiers in scientific research. It is the aim of AI researchers who prefer the

bottom-up approach to construct electronic circuits that act similar to neurons in

the human brain. Although much of the working of the brain remains unknown,

the complex network of neurons is what gives humans intelligent characteristics.

By itself, a neuron is not intelligent, but when grouped together, neurons are able

to pass electrical signals through networks. Research has shown that a signal

received by a neuron travels through the dendrite region, and down the axon (see

Figure 1.2). Separating nerve cells is a gap called the synapse. In order for the

signal to be transferred to the next neuron, the signal must be converted from

 25

electrical to chemical energy. The signal can then be received by the next neuron

and processed.

Figure 1.2: A biological neuron

In modern software implementations of ANNs the approach inspired by

biology has more or less been abandoned for a more practical approach based on

statistics and signal processing. In some of these systems neural networks or parts

of neural networks (such as “artificial” neurons) are used as components in larger

systems that combine both adaptive and non-adaptive elements. While the more

general approach of such adaptive systems is more suitable for real-world problem

solving, it has far less to do with the traditional artificial intelligence connectionist

models. What they do however have in common is the principle of non-linear,

distributed, parallel and local processing and adaptation. The various types of

ANNs and their applications are tabulated in Table 1.1.

1.2.2 Evolutionary Algorithms

In artificial intelligence, an evolutionary algorithm (EA) is a subset of

evolutionary computation, a generic population-based metaheuristic optimization

algorithm. An EA uses some mechanisms inspired by the biological evolution

namely reproduction, mutation, recombination, natural selection and survival of

the fittest. Candidate solutions to the optimization problem play the role of

individuals in a population, and the cost function determines the environment

Synapse

 26

within which the solutions "live". Evolution of the population then takes place

after the repeated application of the above operators (See Figure 1.3).

Evolutionary algorithms became widely recognized as search and optimization

methods as a result of the work of Ingo Rechenberg in the 1960s and early 1970s -

his group was able to solve complex engineering problems through evolution

strategies (1971 PhD thesis and the resulting 1973 book) [Rechenberg, 1971].

Also highly influential was the work of John Holland in the early 1970s, and

particularly his 1975 book [Holland, 1975].

EAs are often viewed as a global optimization method although

convergence to a global optimum is only guaranteed in a weak probabilistic sense.

However, one of the strengths of EAs is that they perform well on "noisy"

functions where there may be multiple local optima. EAs tend not to get "stuck" in

local minima and can often find globally optimal solutions. EAs are well suited

for a wide range of combinatorial and continuous problems, though their

variations are tailored towards specific domains. In the following, a brief

overview of a few important evolutionary algorithms is provided.

Figure 1.3: Schematic of Evolutionary Algorithms

Optimization

Problem

Coding of solutions
objective function
evolutionary
operators specific
knowledge

Fitness
assignment

Recombination

Evolutionary
algorithm Mutation Selection Solution

 27

A. Genetic algorithms

A genetic algorithm (GA) [Holland, 1975; Goldberg, 1989] is a stochastic

search and optimization technique used in computing the true or approximate

solutions to function maximization/minimization problems. The term “stochastic”

indicates a random element in their implementation procedure. Genetic algorithms

are categorized as global search heuristics. They are a particular class of

evolutionary algorithms that use techniques inspired by evolutionary biology such

as inheritance, mutation, selection, and crossover (also called “recombination”).

Genetic algorithms are implemented as a computer simulation in which a

population of abstract representations (called chromosomes or the genotype or the

genome) of candidate solutions (called individuals, creatures, or phenotypes) to an

optimization problem are created. Thereafter, GA, while performing simplified

genetic operations, evolves toward better solutions. Traditionally, solutions are

represented in binary as strings of “0s” (zeros) and “1s” (ones), but other

encodings are also possible. The evolution usually starts from a population of

randomly generated individuals and proceeds over a number of generations. In

each generation, the fitness of every individual in the population is evaluated,

multiple individuals are selected stochastically from the current population (based

on their fitness), and modified (recombined and possibly mutated) to form a new

population of candidate solutions. The new population is then acted upon similarly

in the next iteration of the algorithm. Commonly, the algorithm terminates when

either a maximum number of generations has been evolved, or a satisfactory

fitness level has been reached for the population. If the algorithm has terminated

due to a maximum number of generations, a satisfactory solution may or may not

have been reached.

B. Genetic programming

Genetic programming (GP) is an evolutionary algorithm based

methodology inspired by the biological evolution to search and develop computer

programs performing a user-defined task. Thus it is a technique used to optimize a

population of computer programs according to a fitness landscape determined by

the program's ability to perform a given computational task. The GP has roots in

 28

the evolutionary algorithms first utilized by Nils Barricelli in 1954. Stephen Smith

[1980] and Nichael Cramer [1985] reported the first results on the GP

methodology. In 1981 Forsyth reported the evolution of small programs in

forensic science for the UK police. John Koza is the principal proponent of the

modern day GP and has pioneered the application of genetic programming in

various complex optimization and search problems.

GP is a computationally intensive procedure and therefore in the 1990s it

was mainly used to solve relatively simple problems. However, more recently,

thanks to improvements in the GP technology and to the exponential growth in the

CPU power, GP produced many novel and outstanding results in areas such as

quantum computing, electronic design, game playing, sorting, searching and many

more. These results include the replication or development of several post-year-

2000 inventions. GP has also been applied to evolvable hardware as well as

computer programs. There are several GP patents listed in the web site

[http://www.genetic-programming.com/patents.html]. In recent years, the GP has

been utilized in performing “symbolic regression”. Given input-output data for a

model, the GP can search and optimize the functional form and its parameters

automatically to arrive at a best fitting linear/nonlinear data fitting function. In the

present thesis, the said symbolic regression characteristic of the GP has been

explored for process modeling.

C. Ant colony optimization

The ant colony optimization algorithm (ACO), introduced by Marco

Dorigo [Dorigo et al., 1996, 1999], is a probabilistic technique for solving

computational problems that can be reduced to searching good paths through

graphs. The algorithm is inspired by the behaviour of ants in finding paths from

the colony to food.

In the real world, ants (initially) wander randomly, and upon finding a

food source return to their colony while laying down pheromone trails. If other

ants find such a path, they are likely not to keep travelling at random, but instead

to follow the trail, returning and reinforcing it if they eventually find food. Over

time, however, the pheromone trail starts to evaporate, thus reducing its attractive

 29

strength. The more time it takes for an ant to travel down the path and back again,

the pheromones have more time to evaporate. A short path, by comparison, gets

marched over faster, and thus the pheromone concentration remains high as it is

laid on the path as fast as it can evaporate. Pheromone evaporation has also the

advantage of avoiding the convergence to a locally optimal solution. If there was

no evaporation at all, the paths chosen by the first ants would tend to be

excessively attractive to the following ones. In that case, the exploration of the

solution space would be constrained. Thus, when one ant finds a good (short, in

other words) path from the colony to a food source, other ants are more likely to

follow that path, and positive feedback eventually leaves all the ants following a

single “short” path. The idea of the ant colony algorithm is to mimic this

behaviour with "simulated ants" walking around the graph representing the

optimization problem needing a solution.

Ant colony optimization algorithms have been used to produce near-

optimal solutions to the Travelling Salesman Problem [Dorigo and Gambardella,

1997]. They have an advantage over simulated annealing and genetic algorithm

approaches when the graph may change dynamically; the ant colony algorithm

can be run continuously and adapt to changes in real time.

1.2.3 Tabu Search

Tabu search [Glover, 1989 and 1990] is a mathematical optimization

method, belonging to the class of local search techniques. Tabu search enhances

the performance of a local search method by using memory structures. Tabu

search method generally attributed to Fred Glover [Glover, 1989, 1990] uses a

local or neighbourhood search procedure to iteratively move from a solution x to a

solution x' in the neighbourhood of x, until some stopping criterion has been

satisfied. To explore regions of the search space that would be left unexplored by

the local search procedure and—by doing this—escape local optimality, tabu

search modifies the neighbourhood structure of each solution as the search

progresses. The solutions admitted to N*(x), the new neighbourhood, are

determined through the use of special memory structures. The search now

progresses by iteratively moving from a solution x to a solution x' in N*(x).

 30

Perhaps the most important type of short-term memory to determine the

solutions in N*(x)–also the one that gives its name to tabu search–is the use of a

“tabu list”. In its simplest form, a tabu list contains the solutions that have been

visited in the recent past (less than n moves ago, where n is the tabu tenure).

Solutions in the tabu list are excluded from N*(x). Selected attributes in solutions

recently visited are labelled tabu-active. Solutions that contain tabu-active

elements are taboo. This type of short-term memory is also called “recency-based

memory”.

Tabu lists containing attributes are much more effective, although they

raise a new problem. When a single attribute is forbidden as tabu, typically more

than one solution ends up being taboo. Some of these solutions that must now be

avoided might be of excellent quality and might not have been visited. To

overcome this problem, aspiration criteria are introduced which allow overriding

the tabu state of a solution to include it in the allowed set. A commonly used

aspiration criterion is to allow solutions that are better than the currently best

known solution.

1.2.4 Expert Systems

An expert system, also known as a “knowledge based system”, is a

computer program that contains a part of the subject-specific knowledge, and

knowledge and analytical skills of one or more domain experts in that subject.

This class of program was first developed by researchers in artificial intelligence

during the 1960s and 1970s and applied commercially throughout the 1980s. The

most common form of expert systems is a program made up of a set of rules that

analyze information (usually supplied by the user of the system) about a specific

class of problems, as well as providing mathematical analysis of the problem(s),

and, depending upon their design, recommend a course of user action in order to

implement appropriate corrections. It is a system that utilizes what appear to be

reasoning capabilities to reach conclusions.

Expert systems are most valuable to organizations that have a high-level of

know-how experience and expertise that cannot be easily transferred to other

members. They are designed to carry the intelligence and information found in the

 31

intellect of domain experts and provide this knowledge to other members of the

organization for problem-solving purposes.

Table 1.2: Examples of expert systems in chemical engineering and technology

No. Expert systems Application details

1 FALCON Fault Analyzer Consultant for Chemical
plant, Du Pont

2 CATDEX Catalytic Cracking Unit Diagnostic Expert,
Columbia University

3 BIOEXPERT Fault diagnosis extert system for waste-
water treatment, Lepoint et al., 1989

4 EXACT Expert for Adaptive PID Controller
Tuning, Foxboro

5 ASPEN PLUS, DESIGN II,
PRO II

 Computer aided process design

6 EXSEP Multi-component separation design

7 HENS, HEATEX Heat Exchanger Network Synthesis

8 CONPHYDE Consultant for physical property decision,
Carnegie-Mellon

9 BATCHKIT Batch process planning

10 MIN-CYANIDE System for minimizing cyanide wastes in
electroplating plants

11 CAPS System for plastics selection for the final
product

12 PASS Pump Application Selection System

13 DECADE Design Expert for Catalyst Development,
Carnegie Mellon Univ.

Typically, the problems to be solved by an expert system are of the type

that would normally be tackled by a professional. Real experts in the problem

domain (which will typically be very narrow, for instance, "selection of a pump")

are asked to provide "rules of thumb" on how they evaluate the problems, either

explicitly with the aid of experienced systems developers, or sometimes

 32

implicitly, by getting such experts to evaluate test cases and using computer

programs to examine the test data. Generally, expert systems are used for

problems for which there is no single "correct" solution, which can be encoded, in

a conventional algorithm — one would not write an expert system to find shortest

paths through graphs, or sort data, as there are simply easier ways to do these

tasks. A list of notable expert systems in the area of process systems engineering

and control is given in Table 1.2.

1.2.5 Fuzzy Logic

Fuzzy logic [Zadeh, 1965] is derived from the fuzzy set theory dealing

with the reasoning that is approximate rather than precisely deduced from the

classical predicate logic. It can be thought of as the application side of the fuzzy

set theory with well-thought out real world expert values for a complex problem

[Klir, 1997].

Degrees of truth are often confused with probabilities. However, they are

conceptually distinct; fuzzy truth represents a membership in vaguely defined sets,

not likelihood of some event or condition. To illustrate the difference, consider

this scenario: Bob is in a house with two adjacent rooms, the kitchen and the

dining room. In many cases, Bob's status within the set of things "in the kitchen"

is completely plain; he is either "in the kitchen" or "not in the kitchen". What

about when Bob stands in the doorway? He may be considered "partially in the

kitchen". Quantifying this partial state yields “fuzzy set membership”. With only

his big toe in the dining room, we might say Bob is 99% "in the kitchen" and 1%

"in the dining room", for instance. No event (like a coin toss) will resolve Bob to

being completely "in the kitchen" or "not in the kitchen", as long as he is standing

in that doorway. Fuzzy sets are based on vague definitions of sets, not

randomness.

Fuzzy logic allows for set membership values to range (inclusively)

between 0 and 1, and in its linguistic form represents, imprecise concepts like

"slightly", "quite" and "very". Specifically, it allows partial membership in a set.

A typical fuzzy logic system is shown in Figure 1.4.

 33

Figure 1.4: Schematic of fuzzy logic systems

1.3 THESIS OUTLINE

The aim of this thesis is design and develop applications of AI and ML

based formalisms for chemical and biochemical engineering/technology systems.

The second chapter of this thesis contains a detailed overview along with the

corresponding literature survey of the major AI and ML based formalisms used in

the thesis. Depending upon their applications, the formalisms are classified into

four categories namely modeling, classification, optimization and data

reduction/projection. The third chapter details various AI and ML based process

modeling studies. Chapter 4 describes applications of the clustering/classification

formalisms and chapter 5 deals with various process optimization studies. Chapter

6 reports case studies demonstrating the effectiveness of the AI-based novel

algorithms for low-dimensional projection, feature extraction, dimensionality

reduction and input selection of process data. Finally, chapter 7 provides the

concluding remarks on the work presented in the thesis.

I
N
P
U
T

Crisp-to-Fuzzy

Inference

Fuzzy-to-Crisp

O
U
T
P
U
T

 34

1.4 REFERENCES

1. Arnall, H. (2003), Future Technologies, Today’s Choices, A report for the

Greenpeace Environmental Trust, Canonbury Villas, London N1 2PN, ISBN

1-903907-05-5. www.greenpeace.org.uk.

2. Barricelli, Nils Aall (1954), Esempi numerici di processi di evoluzione,

Methodos, 45–68.

3. Conde, G.A.; Ramos, P.G.; Vasconcelos, G.C. (2000), Neuro-fuzzy networks

for pattern classification and rule extraction Neural Networks. Proceedings.

Sixth Brazilian Symposium, Page(s):289.

4. Copeland, B.J. (2000). What is Artificial Intelligence? AlanTuring.net;

Reference Articles: May 2000 [online].

5. Cun, Le, Y. (1985), Une Procedure d’Atprentissage pour reseau a ceuil

assymetrique. Incognitiva 85: A la frontiere de l’Intlligence artificielle des

sciences de la connaissance des neuron sciences, CESTA, Parris, 599–604.

6. Davis L. (1991), Handbook of GAs, New York: Van Nostrand Reinhold.

7. Dorigo, M. and L. M. Gambardella (1997), Ant Colony System: A

Cooperative Learning Approach to the Traveling Salesman Problem. IEEE

Transactions on Evolutionary Computation, 1 (1), 53–66.

8. Dorigo, M., G. Di Caro and L. M. Gambardella (1999), Ant Algorithms for

Discrete Optimization. Artificial Life, 5 (2), 137–172.

9. Dorigo, M., V. Maniezzo and A. Colorni (1996), Ant System: Optimization by

a Colony of Cooperating Agents, IEEE Transactions on Systems, Man, and

Cybernetics–Part B, 26 (1), 29–41.

10. Glover, F. (1989), Tabu Search-Part I. ORSA J. Comput. 1, 190–206.

11. Glover, F. (1990), Tabu Search-Part II. ORSA J. Comput. 2, 4–32.

12. Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization and

Machine Learning, Addison-Wesley, Reading, MA.

 35

13. Goodwins, R. (2001). The Machine that Wanted to be a Mind. ZDNet UK;

News: 23 Jan 2001 [online].

http://news.zdnet.co.uk/story/0,,s2083911,00.html

14. Hecht-Nielsen, R. (1988), Applications of counterpropagation networks.

Neural Networks, 1, 131–139.

15. Hecht-Nielsen, R. (1987). Counterpropagation networks. Appl. Optics., 26,

4979–4984.

16. Holland, John H (1975), Adaptation in Natural and Artificial Systems,

University of Michigan Press, Ann Arbor.

http://www.alanturing.net/turing_archive/pages/Reference%20Articles/what_i

s_AI/What%20is%20AI02.html.

17. Klir G., UTE H. St. Clair and Bo Yuan (1997), Fuzzy Set Theory Foundations

and Applications.

18. Kohonen, T. (1982), Self-Organized formation of topologically correct feature

maps. Biol. Cybern. 43, 59–69.

19. Kosko, B. (1992), Fuzzy cognitive maps. Int. J. Man-Machine Stud., 24, 1986,

65–75.

20. Koza, J., Genetic programming, The MIT Press Cambridge, MA.

21. Moody, T. and C. Darken (1989). Fast learning in networks of locally tuned

processing units. Neural computation, 1, 281–294.

22. National Research Council (1999). Funding a Revolution: Government

Support for Computing Research. Washington, DC, USA: National Academy

Press. http://www.nap.edu/readingroom/books/far/notice.html.

23. Parkar, D. (1985), Learning logic, Technical report TR-47, center for

computational research in economics and management science, MIT,

Cambridge, MA.

24. Rechenberg, I. (1971): Evolutionsstrategie - Optimierung technischer Systeme

nach Prinzipien der biologischen Evolution (PhD thesis). Reprinted by

Fromman-Holzboog (1973).

25. Rosenbaltt, F. (1962), Principles of neorodynamics . Spartan, New York.

26. Rosenbaltt, F. (1958), The perceptron: A probabilistic model for information

storage and organization in the brain. Psycho. Rev., 65, 386–408.

 36

27. Rumehart, D., G. Hinton, and R. Williams (1986b), Learning internal

representations by error back propagation. In Parallel distributed processing:

Explorations in microstructure of cognition, vol.1: Foundations, MIT Press,

Cambridge, MA.

28. Rumehart, D., G. Hinton, and R. Williams (1986a), Learning representations

by back propagating errors. Nature, 323, 533–536.

29. Tambe, S. S., B. D. Kulkarni and P. B. Deshpande (1996), Elements of

Artificial Neural Networks with selected applications in Chemical

Engineering, and Chemical and Biological Sciences, Simulations & Advanced

Controls, Louisville, KY.

30. Werbos, P. (1974), Beyond regression: New tool prediction and analysis in the

behavioral sciences. Ph. D. Thesis, Harvard University.

31. Zadeh, L. A. (1965), Fuzzy Sets, Information and Control, Vol. 8, 338–353.

32. Zhang; Jie, Morris, J. (1997), Neuro-fuzzy networks for process modelling and

model-based control Neural and Fuzzy Systems: Design, Hardware and

Applications (Digest No: 1997/133), IEE Colloquium, 9, 6/1–6/4.

 37

CHAPTER 2. OVERVIEW OF ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING

FORMALISMS

CHAPTER 2

OVERVIEW OF ARTIFICIAL
INTELLIGENCE AND MACHINE

LEARNING FORMALISMS

 38

2.1 BACKGROUND

The past decade has created a challenging environment for process

manufacturing. Some of these challenges include rapid technological innovations,

stiff competition, complex process designs, huge capital investment, stringent

product quality specifications, large product volumes, tight delivery schedules and

stiff environmental regulations. To overcome these challenges, in recent years,

process modeling, monitoring, control, fault detection and diagnosis, simulation

and optimization are being increasingly and extensively employed in chemical

engineering and technology. Accordingly, researchers in these fields are

constantly striving to develop new and efficient methodologies to perform the

stated tasks. The most striking outcome of these efforts is utilization of artificial

intelligence and machine learning formalisms as an alternative to the conventional

phenomenological and empirical modeling and optimization strategies.

Artificial intelligence (AI) is a branch of computational science, which

develops algorithms mimicking various kinds of intelligent behavior exhibited by

biologically evolving species, to provide novel and efficient solutions to complex

modeling, classification and optimization problems. As a broad subfield of AI,

machine learning (ML) is concerned with the development of algorithms and

techniques, which allow computers to “learn” relationships in a given data set.

Unlike AI, the ML algorithms are not based on the intelligent behaviour observed

in nature but they are based on rigorous mathematical and statistical foundations.

Both AI and ML-based modeling and classification formalisms are exclusively

data-driven and aim at learning (capturing) linear/nonlinear correlations and

trends/patterns in available data sets.

The AI and ML formalisms possess a number of attractive properties vis a

vis conventional modeling and optimization strategies and therefore this thesis

aims at developing AI and ML-based applications for a variety of process

engineering tasks such as steady-state and dynamic modeling, soft-sensor

development, fault detection and diagnosis, data reduction/projection, process

monitoring, clustering/classification and optimization. The specific AI and ML

formalisms developed, utilized and further improvised in the thesis are artificial

 39

neural networks, genetic programming, fuzzy logic, genetic algorithms, tabu

search, memetic algorithms, Sammon’s mapping based neural network, auto-

associative neural networks, self organizing maps, etc.

2.2 MODELING FORMALISMS

In a number of real world chemical processes, phenomenological models

are either unavailable or difficult to construct. This happens since the physico-

chemical phenomena underlying a chemical process is usually not fully

understood. Also, obtaining the kinetic, thermodynamic and heat and mass

transfer information that is needed to construct a phenomenological process model

is a cumbersome, time consuming and expensive task. Notwithstanding these

difficulties, models are necessary for predicting the process performance under

varying operating conditions and also in improving the process efficiency. In the

absence of phenomenological models, real-life process input-output data can be

used to construct an empirical or a “black box” process model. These models,

similar to the phenomenological ones may then be used for predicting the process

performance and a variety of other tasks such as control, fault detection and

diagnosis and process optimization. A significant advantage of the empirical or

black box models vis-à-vis the phenomenological ones is that these can be

developed relatively easily. Conventionally, linear or nonlinear regression

methods are used in developing empirical models. A major drawback of these

methods is that the mathematical structure (form) of the data-fitting model must

be specified a priori before an estimation of model parameters could be

attempted. This is a significant difficulty since most of the chemical processes

exhibit nonlinear behaviour and therefore it is not known a priori which nonlinear

model is appropriate for fitting the process data. Furthermore, for processes with

multiple operating variables (inputs) and output variables (such as conversion,

yield, etc.), it is necessary to select multiple nonlinear functions for fitting the

process data which becomes even more tedious and in most cases an impossible

task. How AI and ML based formalisms overcome these difficulties is described

in the following sections.

 40

2.2.1 Artificial Neural Networks

Artificial neural networks (ANNs) are an artificial intelligence based

information-processing paradigm founded on the mechanisms followed by the

highly interconnected neuronal structure of the human brain. The ANNs mimic

some of the observed properties, such as the pattern recognition (classification)

possessed by the human brain. These mathematical models also exhibit a

similarity with the “learning-by-experience” principle followed by the biological

species. The ANNs are based on the concept that a highly interconnected system

of simple processing elements (also called “nodes”) can learn (model) complex

nonlinear interrelationships existing between independent and dependant variables

of a data set [Freeman et al., 1991; Bishop, 1994; Bulsari, 1995; Tambe et al.,

1996; Nandi et al., 2002]. Neural networks have attracted much interest lately for

their use as predictive models as well as for pattern recognition. They have been

used successfully to model dynamic and nonlinear systems such as deterministic

chaos [Lapedes and Farber, 1987; Ydstie, 1990; Levin, 1990], chaotic chemical

systems [Admoaitis et al., 1989] and other chemical reactions [Bhat et al., 1990].

Neural networks have been used for system identification and control by a number

of researchers [Donat et al., 1990; Hemandez and Arkun, 1990; Narendra and

Parthasarathy, 1990; Psichogios and Ungar, 1991; Haesloop and Holt, 1990;

Willis et al., 1991] as also for process fault diagnosis by Hoskins and Himmelblau

[1988], Watanabe et al. [1989], Venkatasubramanian et al. [1990] among others.

ANNs owing to there architecture are well-suited for parallel competition and thus

they allow a speedier solution to a large-dimensional modeling and prediction

problem. They also have a powerful representational capability. Cybenko [1989]

has shown that given enough nodes in the hidden layer, the multi-layer perceptron

network with a single hidden layer is sufficient to approximate any function. The

radial basis function network (RBFN) has also been shown to have a similar

capability to represent arbitrary functions [Park and Sandberg, 1991].

The function approximated by an ANN is defined by many factors, for

example by the number and arrangement of neurons, their interconnections, etc.

For developing a nonlinear model, a feed-forward ANN architecture namely

“multilayer perceptron (MLP)” is most commonly used; the MLP is also known as

“Back-propagation” neural network. The MLP network approximates nonlinear

 41

input-output relationships as defined by, () Nnf nn ...,2,,1 ,, == wxy , where x is

an I-dimensional vector of inputs, y refers to an L-dimensional output vector and

w is the vector defining network weights. The MLP network usually consists of

three layers. The layers described as input, hidden, and output layers comprise I, J,

and L number of processing nodes, respectively. There may be more than one

hidden layers in the ANN architecture, such as, Figure 2.1 depicting the MLP

architecture with two hidden layers. Each node in the input (hidden) layer is

linked to all the nodes in the hidden (output) layer using weighted connections.

The MLP architecture also houses a bias node (with a fixed input, e.g., ±1) in its

input and hidden layers; the bias nodes are also connected to all the nodes in the

next layer. Usage of bias nodes helps the MLP-approximated function to be

positioned anywhere in the M-dimensional input space; in their absence, the

function is forced to pass through the origin of the I-dimensional space. The I

number of nodes in the input layer is equal to the number of independent

variables, whereas the number of output nodes (L) equals the number of process

outputs. However, the number of hidden nodes is an adjustable parameter whose

magnitude is determined by issues such as the desired approximation and

generalization performance of the network model. In order that the MLP network

accurately approximates the nonlinear relationship existing between its inputs and

outputs, it needs to be trained in a manner such that a pre-specified error function

is minimized. In essence, the MLP training procedure aims at obtaining an optimal

weight set w that minimizes a pre-specified error function. The commonly

employed error function is the root-mean-squared error (RMSE) defined as:

()

LN

yy
RMSE

N

n

L

l
lnln

×

−
=

∑∑
= =1 1

,, ˆ
 (2.1)

where N refers to the number of input-output data pairs available for training, lny ,

and lny ,ˆ are the desired (target) and MLP predicted values of the lth output node,

respectively. The widely used formalism for the RMSE minimization is the error-

back-propagation (EBP) algorithm [Rumelhart et al., 1986] utilizing a gradient-

descent technique known as the generalized delta rule (GDR) for iterative

updation of weights as given by.

 42

w
w

∂
∂

−=+
Etwt η)()1((2.2)

where E refers to an error measure. This gradient-decent technique poses two

major limitations on the use of activation function for the hidden and output layer

neurons:

1. First derivative of the activation function must be feasible.

2. Activation function must be a bounded one.

The functions satisfying these limitations are:

1. Linear: cmxy += (2.3)

2. Step:
⎩
⎨
⎧

≥
<

=
0if1
0if0

x
x

y (2.4)

3. Logistic sigmoid: xy −+
=

e1
1 (2.5)

4. Hyperbolic tangent: () xx

xx

ee
eexy −

−

+
−

== tanh (2.6)

5. Radial basis:
σ2

xey
−

= (2.7)

The details of the heuristic procedure involved in obtaining an optimal

network model possessing good prediction and generalization capabilities can be

found in e.g., Freeman and Skapura [1991], Bishop [1994], Tambe et al. [1996]

and Nandi et al. [2002]. The EBP training algorithm makes use of two adjustable

(free) parameters namely, the learning rate, η (0 < η ≤ 1) and the momentum

coefficient, α (0 < α ≤ 1). The magnitudes of both these parameters need to be

optimized heuristically.

The advantages of an MLP-based model are:

(i) They are constructed exclusively from the data (example set) comprising

independent (causal) and dependant (response) variables of a system.

(ii) The detailed knowledge of the fundamental mechanisms underlying the

system behaviour is unnecessary for the model development.

 43

Input layer Hidden layer-1 Hidden layer-2 Output layer

1

l

2

1

2

1

2

1

i

2

I L

NHJ NHK

Bias-2 Bias-3 Bias-1

x1

x2

xi

xI

Output Input Variables

y1

y2

yl

yL

1 1 1

(iii) An MLP model with properly fitted weight coefficients possesses the much

desired “generalization” ability owing to which it can accurately predict

outputs for a new set of inputs.

(iv) Even multiple input-multiple output (MIMO) nonlinear relationships can be

fitted simultaneously.

(v) Since an MLP network uses a generic nonlinear function for fitting data, it is

not necessary to pre-specify the form of the data-fitting function explicitly;

this feature is greatly advantageous in modeling nonlinear systems where

guessing an appropriate form of the nonlinear data fitting function is a

cumbersome, difficult and time-consuming task.

Figure 2.1: Architecture of Multilayer Perceptron Network Model

The MLP-based models also possess a few drawbacks:

(i) Fitting of weight coefficients of the network model is usually an ill-posed

problem.

(ii) Adjusting the weight coefficients of the model iteratively is a time

consuming process.

 44

(iii) MLP networks are known as ‘black-box’ models since the model

coefficients can not be explained (interpreted) in terms of the data used for

fitting the model.

(iv) To build an MLP model with good prediction accuracy and generalization

capability, it is necessary that the data should be statistically well-distributed

and preferably large-sized as also free of noise and errors.

To be useful, an MLP model must not only possess a good output

prediction accuracy but also good generalization ability so that the model captures

the underlying trends existing in the example input-output data. The phenomenon,

which adversely affects the MLP model’s generalization performance is known as

“overfitting”. It occurs when the network model, in an attempt to increase its

prediction accuracy, also learns the noise in the example data (known as “over-

training”) and/or when the model architecture houses more hidden nodes than

necessary (known as “over-parameterization”). An over-trained and/or over-

parameterized MLP model makes poor predictions for a new set of inputs. To

prevent an occurrence of over-fitting, it is necessary to monitor the generalization

performance of the MLP model continuously while it undergoes training (e.g., at

the end of each training iteration). The step-wise procedure for avoiding an

occurrence of over-fitting and thereby obtaining an optimal MLP model

architecture and weight coefficients is given below [Nandi et al., 2004]. This

procedure though meant for training a single hidden-layer MLP network, can be

easily extended to two-hidden layer MLP networks.

Step 1. Partition the available set of example data comprising model inputs and

outputs into two sets, namely training and validation sets; the ratio for

this partitioning could be 4:1 or 3:2. Assume a small number of nodes

(e.g., one or two) in the network has hidden layer and initialize the

network weights randomly. Select the values of the EBP algorithm

parameters, namely, learning rate η (0 < η < 1.0) and momentum

coefficient, µ (0 < µ < 1.0); fix the maximum number of iterations (tmax)

over which the model is trained.

Step 2. Adjust the network weights iteratively using the EBP algorithm and

training set data over tmax number of iterations. The weights resulting in

 45

the least RMSE for the validation set (Eval) are considered to be optimal

for the chosen number of hidden nodes and the particular set of

randomized weights used for the network initialization. Such weights

could be obtained in any one of the tmax number of training iterations.

Step 3. Repeat step 2, a number of times using a different random number

sequence each time for initializing the network weights. This is

performed for exploring the weight-space rigorously and locating the

deepest minimum on the network’s error surface. Record the weights

leading to the smallest Eval.

Step 4. Repeat steps (2) and (3) by varying the number of hidden nodes

systematically till Eval attains its smallest possible magnitude; the EBP

parameters η and µ can also be optimized in a manner similar to the

number of hidden nodes.

There are a number of algorithms for the training of MLP neural networks, for

example,

• Error-back-propagation (EBP) [Rumelhart et al., 1986]

• Conjugate Gradient [Reifman et al., 1994]

• Genetic Algorithms [Holland 1975; Goldberg, 1989]

• Quickprop [Fahlman, 1988]

• Resilient Back–propagation [Riedmiller et al., 1993]

• Levenberg – Marquardt’s algorithm [Levenberg, 1944; Marquardt,

1963]

• Bayesien Learning [Neal, 1996]

A few of these algorithms, which are relevant to the work presented in this

thesis, are explained below.

A. Error-back propagation

The Error Back Propagation (EBP) [Rumelhart et al., 1986] is the most

widely used algorithm for supervised training of a multilayer perceptron network.

Owing to its extensive use in the training of MLP networks, the network itself is

often referred to as an EBP or BP network. The EBP algorithm employees a

special kind of error-correction strategy, which can be viewed as a generalization

 46

of the “least-mean-squared (LMS)” error minimization technique. The LMS

learning rule as proposed by Widrow and Hoff [1960] is targeted at single linearly

processing unit, whereas the EBP algorithm trains the weights associated with the

feed forward network comprising elements that perform nonlinear processing.

An MLP network can be viewed as a set of algebraic equations arranged in

an hierarchical order to form an input-output mapping. Changing the structure of

the MLP is akin to changing the hierarchical order of algebraic equations and

network training is another way of estimating the parameters of the complex

input-output transformation carried out by network's activation and transfer

functions. MLP network’s training begins by applying the I-dimensional input

vector xn, to the input layer having I number of nodes.

Since the input layer nodes just serve as distribution points and perform no

information processing, their input becomes input to the hidden layer nodes.

When an input vector xn is applied to the input layer, each hidden layer neuron

computes the activation according to the weighted sum of its input as given by

j

I

i
iijj θα += ∑

=1
.xw (2.8)

Where, αj represents the activation of first hidden layer neurons. The vector Wij

denotes the weights of the connection between input layer nodes and jth hidden

node and θj refers to the strength of the connection that the bias neuron makes

with jth hidden node.

The output of jth hidden unit is,

()jj f α1=x (2.9)

The output of kth hidden unit is,

()kk f α2=x (2.10)

The output of lth output layer unit is,

()ll f α3=y (2.11)

where, mf is known as the activation function.

 47

An approach used for the adjustment of weights in the EBP algorithm is

known as “generalized delta rule (GDR)”. The GDR approach for weight

adaptation is based on the principle of minimizing an error function. Starting from

an arbitrary point in the weight space the GDR adapts the network weights in the

stepwise manner so that the error function, which measures the learning

performance of an MLP network, is minimized. A commonly assumed error

function is the “sum–of–squares” (see Eq. 2.12) of the individual errors over all

the output layer units, and over the entire pattern in the training set. It is referred

to as the cumulative sum-squared- error (SSE) by symbol E.

()∑∑
= =

−=
n

n

L

l
nlnl yyE

1 1

2ˆ
2
1 (2.12)

The weight adaption rules for various layers are given below.

1. Weight updation for output layer nodes

() () llklkl ytwtw ..1 δη+=+ (2.13)

2. Weight updation in the first and second hidden layer nodes

() () kkjkjk xtwtw ηδ+=+1 (2.14)

3. Weight updation for nodes in between 1st hidden and input layer

() () ijijij xtwtw ηδ+=+1 (2.15)

4. For Output Layer bias node

() () lll tt ηδθθ +=+1 (2.16)

 48

5. For 2nd hidden layer bias node

() () ktt ηδθθ +=+ kk 1 (2.17)

6. For 1st hidden layer bias node

() () jtt ηδθθ +=+ jj 1 (2.18)

The weight adaptation can be carried out either after each pattern-

application (pattern mode), or after all training patterns have been applied once to

the network (batch mode). In the pattern mode, the error with respect to an

individual input pattern, Ek, is minimized, while in the batch mode, the cumulative

error, E, representing the sum of the pattern-wise errors, is minimized. In both the

weight adaptation modes, the network training continues until the network outputs

satisfy a certain pre-selected convergence criterion.

B. Resilient-back propagation

Gradient descent techniques are the most widely used class of algorithms

for supervised learning in neural networks. Adaptive gradient based algorithms

with variable step-sizes try to overcome the inherent difficulty of the choice of the

right learning rates. This is done by controlling the weight update for every single

connection during the learning process in order to minimize oscillations and to

maximize the update step-size. The best of these techniques known in terms of

convergence speed, accuracy and robustness with respect to its parameters is the

“resilient backpropagation (Rprop)” algorithm [Riedmiller et al., 1993] also refer

to Schimann et al., [1993]; Riedmiller,[1994]; Joost et al., [1998] for comparisons

of Resilient-Back Propagation with other supervised learning techniques.

Resilient-Back Propagation (Rprop) performs a direct adaptation of the

weight step based on local gradient information. In crucial difference to the

previously developed adaptation techniques, the efforts of adaptation are not

blurred by the gradient behaviour. Individual update-value, ijΔ , which solely

determines the size of the weight-update, is introduced. This adaptive update-

value evolves during the learning process based on its local sight on the error

 49

function E (see Eq. 2.12) according to the following learning rule [Riedmiller et

al., 1993].

()

()
() ()

()
() ()

()

+−

−

−
−−

−
−+

<<<

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

Δ

<
∂
∂

∂
∂

Δ

>
∂
∂

∂
∂

Δ

=Δ

ηη

η

η

10where

else,

0*if,*

0*if,*

1

1
1

1
1

t
ij

ij

t

ij

t
t
ij

ij

t

ij

t
t
ij

t
ij w

E
w

E

w
E

w
E

 (2.19)

Verbalized, the adaption-rule works as follows: Every time the partial derivative

of the corresponding weight wij changes its sign, which indicates that the last

update was too big and the algorithm has jumped over a local minimum, the

update-value, Δij, is decreased by the factor η–. If the derivative retains its sign, the

update-value is slightly increased in order to accelerate convergence in a shallow

region.

Once the update-value for each weight is adapted, the weight-update itself

follows a very simple rule: if the derivative is positive (increasing error), the

weight is decreased by its update-value, if the derivative is negative, the update-

value is added:

()

()
()

()
()

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

<
∂
∂

Δ+

>
∂
∂

Δ−

=Δ

else,0

0if,

0if,

ij

t
t
ij

ij

t
t
ij

t
ij w

E

w
E

w (2.20)

() () ()t
ij

t
ij

t
ij www Δ+=+1 (2.21)

However, there is one exception: if the partial derivative changes sign i.e. the

previous step was too large and the minimum was missed, the previous weight

update is reverted:

 (2.22) () ()
() ()

0*if,
1

1 <
∂
∂

∂
∂

Δ−=Δ
−

−

ij

t

ij

t
t

ij
t

ij w
E

w
Eww

 50

Due to this ‘backtracking’ weight-step, the derivative is supposed to change its

sign once again in the following step. In order to avoid a double punishment of the

update-value, there should be no adoption of the update-value in the succeeding

step. In practice, this can be done by setting
()

0
1

=
∂

∂ −

ij

t

w
E in the Δij adaption-rule

given above. The update-value and the weights are changed every time the whole

pattern set has been presented once to the network (learning by epoch).

At the beginning, all update-values, Δij, are set to initial value, Δ0. Since Δ0

directly determines the size of the first weight-step. It is preferably chosen in a

reasonable proportion to the size of the initial weights. A good choice may be Δ0 =

0.1. However, the choice of this parameter is not at all critical. Even for much

larger or much smaller values of Δ0 fast convergence is reached.

The choice of decrease factor η– and increase factor η+ can be laid by

following considerations: if a jump over a minimum occurred, the previous

update-value was too large, for it is not known from the gradient information how

far the minimum was missed; in average it will be a good guess to halve the

update-value, i.e., η– = 0.5. The increase factor η+ has to be large enough to allow

fast growth of the update-value in shallow regions of the error function. On the

other hand the learning process can be considerably disturbed, if a too large

increase factor leads to persistent changes of the direction of the weight step. The

choice of η+ = 1.2 is commonly used for good results independent of examined

problem [Riedmiller, 1993]. A slight variation of this value does neither improve

nor deteriorate convergence time.

One of the main advantages of Rprop lies in the fact that for many

algorithms, problems of choice of parameter is not needed at all to obtain an

optimal or at least nearly optimal convergence times. The main reason for the

success of the Rprop algorithm roots in the concept of ‘direct adoption’ of the size

of the weight-update. In contrast to all other algorithms, only the sign of the

partial derivatives is used to perform both learning and adaptation. This leads to a

transparent yet powerful adaptation process, that can be straight forward and very

efficiently computed with respect to both time and storage consumption. Another

aspect of common gradient descend is that the size of the derivative decreases

 51

exponentially with the distance between the weight and the output-layer due to the

limiting influence of the slope of the sigmoid activation function. Consequently,

weights far away from the output-layer are less modified and do learn much

slower. Using Rprop, the size of the weight-step is only dependent on the

sequence of the signs, not on the magnitude of the derivative. For that reason,

learning is spread equally all over the entire network; weights near the input layer

have the equal chance to grow and learn as weights near the output layer.

C. Generalized regression neural network

 The generalized regression neural network (GRNN) was introduced by

Nadaraya [1964] and Watson [1964] and rediscovered by Specht [1991] to

perform general (linear or nonlinear) regressions. The GRNN has been applied to

solve a variety of problems such as prediction, control, plant modeling or general

mapping problems [Rutkowski et al., 2003]. GRNNs are memory based

feedforward networks that were introduced as a generalization of both the radial

basis function networks (RBFNs) and probabilistic neural networks (PNNs)

[Specht, 1991]. With increasing number of training samples, the GRNN

asymptotically converges to the optimal regression surface. In addition to having a

sound statistical basis, the GRNNs possess a special property in that the networks

do not require iterative training. In Figure 2.2, GRNNs multiinput–multioutput

(MIMO) architecture comprising four layers, namely, the input, hidden,

summation and output layers is depicted. Unlike the most popular error-back-

propagation algorithm [Rumelhart et al., 1986] that trains multilayer feedforward

networks iteratively, the GRNN training is a single pass procedure. Also, GRNNs

formulation comprises only one free parameter that can be optimized easily.

The principal advantages of the GRNN-based models [Kulkarni, et al., 2004]

are that these models can efficiently and simultaneously approximate nonlinear

multiinput–multioutput (MIMO) relationships and models can be developed in a

significantly shorter time in comparison with the MLP or RBFN-based process

models since the training of the model which is a one step procedure involves

fixing a value of only a single free parameter. In what follows, the mathematical

formulation of a GRNN described.

 52

Figure 2.2: The schematic of multi-input multi-output GRNN

Consider a N-dimensional vector, x = [x1, x2,..., xN]T, describing process

input variables and the corresponding scalar output, y, representing the dependent

(output) variable. GRNN performs regression by computing the conditional

expectation of y given x. Specifically, the GRNN estimates the joint probability

density function (PDF) of x and y, i.e. f(x, y), to create a probabilistic model for

predicting y. The PDF estimator model is constructed from the training input–

output data set {xi, yi}; i = 1, 2,..., I, via nonparametric density estimation (NDE).

Given x and assuming that the function being approximated is continuous and

smooth, the expected value of y, (E[y|x]) can be estimated as

[]
()

()∫

∫
∞

∞−

∞

∞−=
yyf

yyfy
yE

d,

d,
|

x

x
x (2.23)

Using the training set and assuming Gaussian PDF, the function f(x, y) can

be defined as

()() ()12/12
1),(

++=
jjyf

σπ
x

() ()∑
= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−−
×

I

i

i
T

i

I 1
22

exp1
σ

xxxx

x1

x2

xN

1

2

N

1

2

J

N1

Nm

D

1

M

y1

ym

Input layer Hidden
layer

Summation layer Output
layer

 53

()

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−× 2

2

2σ
iyy

 (2.24)

where xi and y respectively denote the ith training input vector and the

corresponding output, and σ denotes the width (smoothing parameter or spreading

factor) of the Gaussian PDF. Given x, the corresponding regression estimate,

()xŷ can be determined as a conditional mean by substituting Eq. (2.23) in Eq.

(2.22).

 () () ⎥
⎦

⎤
⎢
⎣

⎡
−===

∑

∑

=

=
2

2

1

1

2
exp;|ˆ

σ
i

iI

i
i

I

i
ii d

h
h

hy
yEy xx (2.25)

where hi denotes the Gaussian radial basis function and 2
id represents the squared

Euclidean distance between vectors x and xi defined as

() ()i
T

iid xxxx −−=2 (2.26)

Given a test input vector, x, the GRNN procedure for predicting the value of an

mth output variable, ym (m = 1, 2, . . ., M), can be viewed as computing the

weighted average of all the target values of that variable, wherein weights are

taken proportional to the Euclidean distances between the training input vectors

and the test input vector. GRNN’s input layer houses N nodes to serve as ‘fan-out’

units. The hidden layer contains J number of nodes, such that each hidden node

represents a different training input vector. When an input vector is applied to the

input nodes, its distance (di) from each of the I training vectors stored in the

hidden nodes is computed, which is then transformed using the Gaussian RBF to

compute the hidden unit output, hj (j = 1, 2, . . . , J). GRNN’s third layer consists

of two types (I and II) of summation units. An mth type-I unit (indexed as Nm and

shown in dark border), computes the summation (∑
=

J

j
jjhy

1
) defined in the

numerator of Eq. (2.24), by utilizing the hidden unit outputs, hj, and the mth

elements of all the M-dimensional target output vectors, ym. The single type-2 unit

in the third layer performs summation of all hidden node outputs (see denominator

of Eq. 2.24). Finally, the mth output layer node performs the normalization step

 54

defined in Eq. (2.24) to compute the GRNN-predicted value of the mth output

variable, ()xmŷ . GRNN’s training algorithm uses only one adjustable (free)

parameter namely the width (σ) of the Gaussian RBF. Significance of the width

parameter is that as the value of this parameter becomes smaller (larger), the

regression performed by the GRNN becomes more local (global). Hence, the

magnitude of σ needs to be chosen judiciously as it significantly affects the

accuracy of GRNN's predictions. The commonly employed technique for

automatically selecting the optimal σ value is the ‘leave-one-out’ cross-validation

method. In this technique, a single input–output vector is removed from the

training set of I vectors and a GRNN model is built using the remaining I-1

vectors for predicting the outputs corresponding to the removed pattern. This

procedure is repeated I times, by keeping aside each time a different training

pattern, and the mean-squared-error (MSE) is evaluated by comparing the GRNN-

predicted and the corresponding target output values. This procedure is repeated

by varying the σ value systematically and the value that minimizes the MSE is

chosen to be optimal.

D. Radial basis function neural network

 The architecture (as shown in the Figure 2.3) of a radial basis function

neural network (RBFN) [Tambe et al., 1996; Haykins, 1999] comprises three

layers of nodes namely input, hidden and output layers. The input layer nodes,

similar to an EBP network, serve only as “fan-out” units to distribute the inputs to

the J number of hidden layer nodes. Each hidden node represents a kernel function

that implements a non-linear transformation of an N-dimensional input vector.

The commonly used kernel is the Gaussian RBF whose response is typically

limited only to a small region of the input space where the function is centred. The

Gaussian RBF is characterized by two parameters, namely center (Cj) and the

peak width (jσ). While Cj represents an N-dimensional vector, jσ is a scalar

determining the portion of the input space where the jth (j = 1, 2,…, J) RBF has a

significant non-zero response. The centers are adjustable parameters and the

nonlinear approximation and generalization characteristics of an RBFN depend

critically on their magnitudes. Thus, centers must be selected judiciously. On the

 55

other hand, the peak width parameter does not affect an RBFN's approximation

and generalization performance significantly and thus these can be fixed

heuristically.

For a given input vector, xi, the output of the jth Gaussian hidden node can

be calculated as:

 ()22
2exp jjijijj CCO σ−−=−⋅Φ= xx (2.27)

where, ji C−x denotes the Euclidian distance between xi and Cj.

Figure 2.3: The schematic of Radial Basis Function Neural Network

The outputs of the Gaussian hidden nodes serve as inputs to the output nodes and

the output of each output node is computed using a linear function of its inputs as

given below:

 MmOwy
J

j
jjmm ...,,2,1;ˆ

1
== ∑

=

 (2.28)

Mm 1

Jj2 1

Nn 1

x1 xn xN

y1 ym yM

Input
layer

Hidden
(kernel function)
layer

Output
layer

 56

where, mŷ refers to the output of the mth output layer node; M denotes the number

of output nodes and wjm refers to the weight of the connection between jth hidden

node and mth output layer node.

 Development of an RBFN based model involves selecting the centers,

peak widths, the number of hidden layer nodes (J) and the weights, wjm. The

centers can be selected using a number of methods [see e.g. Bishop, 1994] such as

the random subset selection, K–means clustering [Moody et al., 1989]],

orthogonal least-square learning algorithm [Chen et al., 1991] and rival penalizing

competitive learning [Xu et al., 1993]. The width parameter can either be chosen

same for all the hidden units or can be different for each unit. The width parameter

can be set equal for all the hidden nodes. Once the centers and the widths of the

RBFs are chosen, the weights, wjm, on the connections between the hidden and

output nodes are adjusted using a standard least-squares procedure with the

objective of minimizing a pre-specified error function such as the sum-squared-

error. Once trained, the magnitude of the response of each of the RBFs is a

function of the distance between the network input (xi) and the RBF center, Cj.

Finally, the output layer node combines these signals to produce the network

output, mŷ .

2.2.2 Support Vector Regression

The support vector regression (SVR) is an adaptation of a recently

introduced statistical/machine learning theory based classification paradigm

namely, support vector machines [Vapnik, 1995; Vapnik et al., 1996; Burges,

1998; Smola, et al., 1998; Schölkopf, 2001]. In SVR, the inputs are first

nonlinearly mapped into a high dimensional “feature” space (Φ) wherein they are

correlated linearly with the outputs. This SVR characteristic distinguishes it from

the common ANNs such as MLP that approximate the nonlinear input-output

relationships directly. Other distinguishing features of the SVR vis-à-vis MLP are:

(i) while the parameters of an SVR model are obtained by solving a quadratic

optimization problem, the parameters (weights) of an ANN model are commonly

estimated using a least-squares error minimization method such as the generalized

delta rule based error back propagation (EBP) algorithm [Rumelhart et al., 1986],

 57

(ii) in SVR, the objective function is of quadratic form, and thus it possesses a

single minimum, which unlike an MLP network avoids the heuristic procedure

involved in locating the global or the deepest minimum on the objective function

surface, (iii) commonly, the SVR builds a multiple input-single output (MISO)

model while MLP network are capable of simultaneously approximating multiple

input – multiple output (MIMO) relationships, and (iv) in contrast to an MLP

network, the SVR model and its parameters are amenable to interpretation in

terms of training data.

The SVR formulation follows the structural risk minimization (SRM)

principle, as opposed to the empirical risk minimization (ERM) approach

commonly employed by the conventional statistical/machine learning methods,

and also in developing the MLP models. In the ERM, a suitable measure of the

prediction error such as the root-mean-square-error (RMSE), pertaining to the

training data is minimized. Since the ERM formulation is based exclusively on the

training set error, it does not guarantee a good generalization performance by the

resultant model. On the other hand, the SRM feature equips the SVR model with a

greater potential to generalize the input-output relationship learnt during its

training phase. The improved generalization performance by the SRM strategy

stems from creating an optimized model such that the prediction error and model

complexity are concurrently minimized.

A. Regression formulation

To understand the working principles of the SVR formalism, we first

formulate a general problem of regression estimate in the framework of the

statistical learning theory. Consider a set of measurements (training data), D̂

= i 1{(,)}p
i iy =x , where xi ∈ Nℜ is a vector of model inputs and yi ∈ ℜ , represents

the corresponding scalar output. The objective of the regression analysis is to

determine a function, f(x), so as to predict accurately the desired (target) outputs,

{y}, corresponding to a new set of input-output examples, {(x, y)}, that are drawn

from the same underlying joint probability distribution, P(x, y), as the training set,

D̂ . In essence, the task is to find a function, f, that minimizes the expected risk,

R[f], defined as:

 58

 [] ()() (),x xR f L f y dP y= −∫ (2.29)

where L denotes a loss function. For a given function, f(x), the expected risk (test

error) is the possible average error committed by the function on an unknown

example drawn randomly from the sample probability distribution, P(x, y); the

loss function, L, indicates how this error is penalized. In practice, the true

distribution, P(x, y), is unknown and, therefore, Eq. 2.29 can not be evaluated.

Thus, an inductive principle is used to minimize the expected risk. Here, a

stochastic approximation to the R[f], called empirical risk (Remp) (see Eq. 2.29) is

computed by sampling the data following which Remp minimization is performed.

 ()()
1

1 x
p

emp i i
i

R L f y
p =

= −∑ (2.30)

The empirical risk is a measure of the prediction error with respect to the training

set, i.e., the difference between the outputs predicted by the function, f(xi) and the

corresponding target outputs, yi (i = 1,2,…, p). It approaches the expected risk as

the number of training samples goes to infinity, i.e.,

 [] []emp p
R f R f

→∞
= (2.31)

This however implies that for a small-sized training set, minimization of Remp does

not ensure minimization of R[f]. As a result, a selection of f(x) based solely on the

empirical risk minimization does not guarantee a good generalization performance

(ability to predict accurately outputs of the test set) by the regression function. The

inability to generalize originates from a phenomenon known as ‘over-fitting’. It

occurs when the regression function—by way of higher model complexity—fits

not only the mechanism underlying the training data but also the noise contained

therein.

 For overcoming the problem of over-fitting and thereby enhancing the

generalization ability of the fitting function, f(x), it is necessary to implement what

is known as “capacity control”. The capacity of a regression model is a measure of

its complexity. For instance, a very high-degree polynomial assuming a wiggly

shape, which fits the training set exactly but does not generalize well outside the

training data, has a high capacity [Vapnik, 1998]. In the SVR formalism described

 59

below, a capacity control term is included to overcome the problem of function

overfitting. The underlying idea is if we could choose a function (hypothesis)—

from a low capacity function space—yielding a small empirical risk, then the true

risk, R[f], is also likely to be small.

To solve a nonlinear regression problem, the SVR formalism considers the

following linear estimation function:

 () (())x xf b= ⋅Φ +w (2.32)

where, w denotes the weight (parameter) vector; b is a constant; Φ(x) denotes a

function termed feature, and (())x⋅Φw describes the dot product in the feature

space, Φ, such that Φ: x → Φ, w ∈ Φ. In SVR, the input data vector, x, is first

nonlinearly mapped into a high-dimensional feature space, Φ, and a linear

regression is performed in this space for predicting the output, y. Thus, the

problem of nonlinear regression in the lower dimensional input space is

transformed into a linear regression problem into a high dimensional feature

space. In essence, the original optimization problem involving a nonlinear

regression is recasted as searching the flattest function in the feature space, Φ, and

not in the input space, x.

 To avoid over-fitting of the regression model and thereby improving its

generalization capability, the SVR formalism minimizes the following regularized

risk functional comprising the empirical risk and a complexity term, 2w :

 [] [] 21
2reg empR f R f= + w (2.33)

where regR denotes the regression risk and . is the Euclidean norm. The

minimization of the regression risk Rreg leads to penalization of the model

complexity while simultaneously keeping the empirical risk small. The

regularization term, 21
2

w , in Eq. 2.33 controls the trade-off between the

complexity and approximation accuracy of the regression model to ensure that it

possesses an improved generalization performance. Specifically, the complexity

of the linear function is controlled by keeping w as small as possible.

 60

 Equation 2.33 is similar to the cost function augmented with a standard

weight-decay term used in developing the ANN models possessing good

generalization ability. This approach decreases the complexity of an ANN model

by limiting the growth of the network weights via a kind of weight-decay.

Specifically, the weight-decay method prevents the weights from growing too

large unless it is really necessary [Krogh, 1995]. This is achieved by adding a term

to the cost function that penalizes the large weights. The resultant form of the cost

function is [Krogh, 1995; Hertz, 1991],

 ∑+=
ji

ijwEE
,

2
0 2

1 γ (2.34)

where, E and E0 denote the modified and original cost functions, respectively, γ

is a parameter governing how strongly the large weights are penalized and wij are

the weights on the connections between ith and jth network nodes. The commonly

used procedure for (such as the error-back-propagation (EBP) algorithm)

minimizes only the E0, which in most cases represents the sum-squared-error

(SSE) with respect to the training set. The EBP updates the weights using the

following equation:

ij

old
ij

new
ij w

E
ww

∂
∂

−= 0η (2.35)

where η denotes the learning rate. A comparison of the respective terms of Eqs

2.33 and 2.34 indicates that minimization of the regression risk attempted by the

SVR is similar to the minimization conducted by the ANNs of a cost function

comprising a weight decay (penalty) term. However, the SVR and ANNs use

conceptually different approaches for minimizing the respective cost functions.

A number of cost functions such as the Laplacian, Huber’s, Gaussian and

ε-insensitive can be used in the SVR formulation. Among these, the robust ε-

insensitive loss function (Lε) [Vapnik, 1998] (see Figure 2.4), given below is

commonly used.

 61

()()
() ()for

0 otherwise

x x

x

f y f y

L f yε

ε ε⎧ − − − ≥
⎪⎪− = ⎨
⎪
⎪⎩

 (2.36)

where ε is a precision parameter representing the radius of the tube located around

the regression function, f(x) (see Figure 2.4). The region enclosed by the tube is

known as ‘ε-insensitive zone, since the loss function assumes a zero value in this

region and as a result it does not penalize the prediction error with magnitudes

smaller than ε.

The minimization of the empirical risk using the symmetric loss function

(defined in Eq. 2.36) is equivalent to adding the slack variables, iξ and *
iξ , i = 1,

2, …p, into the functional, R[f], with a set of linear constraints. The slack

variables iξ and *
iξ measure the deviation ()()ii fy x− from the boundaries of the

ε-insensitive zone. Thus, using the ε-insensitive loss function and introducing the

regularization constant, C, the optimization problem in Eq. 2.33 can be written as,

Minimize: ()2 *

1

1
2

p

i i
i

C ξ ξ
=

+ +∑w (2.37)

subject to,

()
()()

*

*

()

, 0 for 1

x

x
i i i

i i i

i i

b y

y w b

i = ,..., p

ε ξ

ε ξ

ξ ξ

⎧ ⎫⋅Φ + − ≤ +
⎪ ⎪⎪ ⎪− ⋅Φ − ≤ +⎨ ⎬
⎪ ⎪

≥⎪ ⎪⎩ ⎭

w

 (2.38)

While conducting this minimization, the SVR optimizes the position of the ε-tube

around the data as shown in Figure 2.4. Specifically, the optimization criterion in

Eq. 2.38 penalizes those training data points whose y values lie more than ε

distance away from the fitted function, f(x). In Figure 2.4, the stated excess

positive and negative deviations are illustrated in terms of the slack variables, ξ

and ξ*, respectively. These variables assume non-zero values outside the [ε, -ε]

region. While fitting f(x) to the training data, the SVR minimizes the training set

error by minimizing not only ξi and *
iξ , but also 2w with the objective of

increasing the flatness of the function or penalizing its over-complexity. This

serves to avoid an under-fitting as also over-fitting of the training data.

 62

Figure 2.4: A schematic representation of the SVR using ε-insensitive loss function

x

 y

Data points

Support Vectors

Fitted by SVR

 f(x) + ε

 f(x)

ξξ*

ξ

-ε +ε

Loss

 63

 It was demonstrated by Vapnik [1998] that the function defined below

possessing a finite number of parameters can minimize the regularized risk

functional in Eq. 2.37.

() () () ()()* *

1
, , α αx α α x x

p

i i i
i

f b
=

= − Φ ⋅Φ +∑ (2.39)

where, αi and αi
* (both ≥ 0) are the coefficients (known as “Lagrange

multipliers”) pertaining to the input data vector xi and satisfying

αiαi
* = 0, i = 1, 2, …, p.

 It can be noticed noted that both the optimization problem (Eq. 2.37 and

Eq. 1.38), and its solution (Eq. 1.39) involves a computation of the dot product in

the feature space, Φ. These computations become time consuming and

cumbersome when Φ is high-dimensional. It is however possible to use, what is

known as the “kernel trick” to avoid computations in the feature space. This trick

uses the Mercer’s condition, which states that any positive semi-definite,

symmetric kernel function, K, can be expressed as a dot product in the high-

dimensional space. The advantage of using a kernel function is that the dot

product in the feature space can now be computed without actually mapping the

vectors, x and xi into that space. That is, using a kernel function all the necessary

computations can be performed implicitly in the input space instead of the feature

space.

Although several choices for the kernel function K are available, the most

widely used kernel function is the radial basis function (RBF) defined as,

 ()
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

σ

−
= 2

2

2
-

exp, ji
jiK

xx
xx (2.40)

where, σ denotes the width of the RBF. A list of other possible kernel functions is

given in Table 2.1.

 64

Table 2.1: List of possible kernel functions [Dibike, 2000]

1. Simple dot product ()(,)i j i jK x x x x= ⋅

2.
Simple polynomial kernel:

d, degree of polynomial
()()(,) 1

d

i j i jK x x x x= ⋅ +

3. Vovk’s real polynomial:
1 ()

(,)
1 ()

d
i j

i j
i j

x x
K x x

x x
− ⋅

=
− ⋅

4.
Radial basis function:

λ is user defined

2
(,) exp ()i j i jK x x x xλ= − −

5.
Two layer neural network:

b and c are user defined
()()(,) tanhi j i jK x x b x x c= ⋅ −

6. Linear splines: ()
1

(,)
j

n
k k

i j i
k

K x x x x
=

= ⋅∏

7.
Semi local kernel:

d and σ are user defined
() ()2

2

exp
(,) 1

i jd

i j i j

x x
K x x x x

σ

− −
⎡ ⎤= ⋅ +⎣ ⎦

We can now replace the dot product in Eq. 2.39 with a kernel function (Eq. 2.40)

and write the general form of the SVR-based regression function as,

() () () ()∑
=

+−==
p

i
i bKff

1

** ,,,, xxααααxx w (2.41)

where, the weight vector w is expressed in terms of the Lagrange multipliers α and

α*. The values of these multipliers are obtained by solving the following convex

quadratic programming (QP) problem.

Maximize:

() ()() () () ()* * * *

, 1 1 1

1, α α α α , α α α α
2

p p p

i i j j i j i i i i i
i j i i

R * K yε
= = =

= − − − − + + −∑ ∑ ∑α α x x

(2.42)

 65

subject to constraints: 0 ≤ αi , αi
* ≤ C, ∀i, and ()*

1
α α 0

p

i i
i =

− =∑ . The bias parameter

b in Eq. 2.41 can be computed as

()
()

0

*
0

for (0,)

for α (0,)

x

x

i i ib

i i ib

y f C
b

y f C

ε α

ε
=

=

⎧ − − ∈⎪= ⎨
− + ∈⎪⎩

 (2.43)

B. Interpreting the structure and coefficients of SVR model

A significant feature of the SVR is that the regression model and its

parameters can be interpreted geometrically. In SVR, each training point is

associated with it a pair (αi and αi
*) of parameters values. The αi and αi

* values

have an intuitive explanation as forces pushing and pulling the regression

function, f(xi), towards the desired output, yi [Muller et al., 1997]. Owing to the

specific character of the QP problem defined in Eq. (2.42), only some of the

regression coefficients, (αi – αi
*), assume non-zero values. The training input

vectors, xi, with non-zero coefficients are termed “support vectors (SVs)”.

Alternatively, SVs are those training input-output data (xi, yi) for which

() ε≥− ii yf x . Since they are the only points that determine the SVR-

approximated function, the SVs are crucial data examples. In Figure 2.4, the SVs

are depicted as the points lying on the surface and outside of the ε-tube. As the

percentage of SVs decreases a more general regression solution is obtained. Also,

a lesser number of computations are necessary to evaluate the output of a new and

unknown input vectors when the percentage of SVs becomes smaller. The data

points lying inside the tube are considered to be correctly approximated by the

regression function. The training points with the corresponding αi and αi
* equal to

zero have no influence on the solution to the regression task. If these points are

removed from the training set, the solution obtained would still be same [Thissen

et al., 2003]. This characteristic, owing to which the final regression model can be

defined as a combination of a relatively small number of input vectors is known as

“sparseness” of solution.

C. Tuning of SVR’s algorithmic parameters

 The prediction accuracy and generalization performance of an SVR-based

model is controlled by two free parameters namely, C and ε. These parameters

 66

therefore should be selected judiciously. Among two parameters, the former

dictates a trade-off between the model complexity and the approximation error,

while the latter determines the width of the ε-insensitive zone used for fitting the

training data (see Fig. 2.4). The parameter C in essence determines the amount up

to which the prediction errors beyond the magnitudes ε± are tolerated. If the

magnitude of C is too large (infinity), then the SVR minimizes only the empirical

risk without regard to the model complexity. On the other hand, for a too small

value of C, the SVR algorithm assigns an insufficient weightage to fitting the

training data thereby improving the chances of a better generalization performance

by the model [Drucker et al., 1997]. The tube width parameter ε can inversely

affect the number of support vectors used to construct the regression function. As

ε decreases, the percentage of training points marked as SVs (hereafter denoted as

%SV) increases which in turn also enhance the complexity of the SVR model.

With complex models there always exists a risk of over-fitting the training data

and consequently a poor generalization performance by the model. On the other

hand, a relatively better generalization performance is realized for large ε

magnitudes at the risk of obtaining a high training set error. It may be noted that in

ANNs and traditional regression, ε is always zero and the data set is not mapped

into higher dimensional spaces. Thus, the SVR is a more general and flexible

treatment of the regression problems [Chen et al., 2001]. A number of guidelines

for the judicious selection of C and ε are provided by Cherkassky and Ma [2004].

2.2.3 Genetic Programming

 An important AI based modeling technique known as Genetic

Programming (GP) was proposed by Koza [1992, 1994]. Originally, the GP

formalism was developed for generating automatically task-specific computer

programs without manually coding them rigorously. The GP concept was later

extended to automatically obtain a mathematical model that fits a given set of

model’s input-output data. It is closely related to an AI-based stochastic search

and function optimization method viz. genetic algorithms (GA) which is described

in another section 2.4.3. Both GP and GA are founded on the principles of natural

selection and genetics followed by biologically evolving species. However, they

differ in their applications. While the GA methodology is used for function

 67

maximization/minimization, the GP technique discovers a system-specific form of

a data fitting function and all of its necessary parameters or at least an

approximation of these. The GP technique performs what is known as ‘symbolic

regression’ to search and optimize the form and parameters of an appropriate data

fitting function. Although conceptually attractive, the GP is relatively less

explored AI-based modeling formalism as compared to the ANNs. The GP has

been used in the steady-state modeling [McKay et al., 1997; Willis et al., 1997;

Grosman, et al., 2004], dynamic modeling and time series prediction [Iba et al.,

1993; Gray et al., 1996] process identification [Kulkarni et al., 1999] and process

design [Lakshminarayanan et al., 2000]. In a novel application, the GP has been

used to obtain the mechanistic map equations of simple chaotic systems such as

logistic, Henon and Universal maps [Yadavalli et al., 1998]. In another

contribution, Zhang and Muhlenbein [1993] used GP to optimize both the

architecture and the connection weights of a feedforward artificial neural network.

Their results indicated that given enough resources the GP methodology could

determine minimal complexity networks. While this is an interesting result in

itself, it fails to fully exploit the power of GP. Rather than manipulating neural

network structures, there is potential to discover significantly more information

about the underlying process characteristics by the direct use of symbolic

regression.

Similar to GAs, that performs function minimization/maximization, the GP

formalism uses selection, crossover and mutation operators to obtain the structure

(form) and all the necessary parameters of a best-fitting linear/nonlinear function.

Accordingly, the solution given by the two formalisms also differ. That is, while

the GP searches, a model as a solution to a given data-fitting problem, GA

searches and optimizes the decision variables that minimize/maximize a pre-

specified objective function. In its procedure, the GAs manipulate only the

numbers while GP manipulates symbols (structure of the data-fitting model) as

also numbers (for obtaining parameters of the fitting function). The sequence of

steps that the GP [Nandi, 2005] follows for obtaining a best-fitting model is given

below (also refer Fig 2.10).

 68

Begin

Initialize a random population of candidate solutions (models)

Fitness evaluation of individual models

Repeat

Genetic Operations

 Selection

 Reproduction

 Crossover

 Mutation

 Fitness evaluation

Until the terminating criterion

Return results

End

Step 1: Initialization of population

GP paradigm first creates a random initial population of a number of

potential candidate solutions to a given MISO modeling problem. Each candidate

solution is represented using a tree like structure (see Fig. 2.5) that consists of two

types of elements namely, the “functional” and the “terminal” elements [McKay,

1997]. A terminal represents operands of a model. These are leaves (nodes

without branches) describing input variables or parameters of the data-fitting

model. The functional elements are nodes (with branches) representing

mathematical operators. A single tree represents the right hand side (RHS) of a

data fitting function, y = f(X, α), where X is a vector of input variables and α

denotes parameters of the function, f. Initialization of the population of candidate

solutions to the problem is done as follows.

 69

• Starting from its root, every node of a tree is chosen randomly either as a

functional or a terminal element. Accordingly, the initial population is a

blind random search of the solution space of an MISO modeling problem

comprising function and parameter spaces.

• If a randomly chosen node is a terminal one, then a parameter or an input

variable is randomly assigned to it.

• If the node chosen randomly comes out to be a functional one, i.e., an

intermediate node, then a mathematical operator is chosen randomly, and

that node is assigned a number of branches depending upon weather the

operator is unary or binary. If the selected operator is a unary (e.g., sine,

cosine, tangent, exponential, log, ln, etc) then the node is assigned a single

branch in the level below the node. In the case of a binary operator (e.g.,

addition, subtraction, multiplication, division, etc.) the node fans out into

two branches in the next level. When the depth of the tree reaches the pre-

specified maximum depth dmax, then a terminal element is selected in that

node. This way the initial individual candidate solutions are generated

subject to a pre-specified maximum depth dmax.

• In Figure 2.5, a tree of depth equal to two is shown. It consists of three

functional elements describing as many mathematical operators and three

terminals (2.5, x1 and x2) representing function operands. This candidate

solution can be interpreted as,

)*5.1()sin(21 xxy += (2.44)

Figure 2.5: A simple equation tree

sin *

 x1 1.5 x2

 + Tree Depth 0

Tree Depth 1

Tree Depth 2

Root Node

Leaf Node

 70

A candidate solution population is generated in a manner similar to Eq.

(2.44). All the individual solutions in the population are syntactically consistent,

valid and executable functions. Also, these solutions upon undergoing the genetic

operations produce syntactically consistent, valid and executable candidate

solutions.

Step 2: Fitness evaluation

 Having created the initial population, each candidate solution thereof is

assessed for its data-fitting ability. This is done using a “fitness” function and

thereby evaluating the goodness of each candidate solution in approximating the

relationship existing between the given set of inputs and the corresponding output.

Fitness is a numeric value assigned to each member of a population to provide a

measure of the goodness of a solution to the MISO modeling problem under

study. Fitness functions are generally based upon the error between the actual and

model predicted outputs (e.g., RMSE function). The error-based measures possess

lower magnitudes for better solutions. In GP, it is desired to obtain fitness values

that exhibit high magnitudes for better solutions during the evolutionary process.

In order to modify the error-based performance index, a scaled inverse

transformation is generally used. For symbolic regression problems, South et al.

[1995] proposed the use of the correlation coefficient (CC) between the actual and

model predicted outputs as an alternative to error-based fitness functions. Once

fitness scores of all the candidate solutions in the current population are evaluated,

the solutions are sorted in the decreasing order of fitness scores. The CC ranges

between -1 (poor fit) to +1 (best fit). Accordingly, the solutions providing better

approximations to the underlying MISO relationship are ranked higher in the

fitness hierarchy.

Step 3: Selection

 A number of selection methods have been suggested in the literature.

These include elitist strategy, Roulette Wheel (RW) selection, Tournament

selection and fitness proportionate selection [Deb, 2001; Deb et al., 2002;

 71

Goldberg, 1989]. With the elitist scheme, the population is sorted into descending

order according individual fitness values. The fittest M (M ≤ N) individuals then

undergo reproduction. Tournament selection involves random sampling (with

replacement) of a fixed number of individuals from the parent population to form

a subset. The fittest member of this relatively small subset is then chosen to

reproduce, and the process is repeated as required. With fitness proportionate

selection, an individual is sampled from the parent population (again with

replacement) with a probability proportional to its fitness. Thus, if the ith

individual in the parent population has a fitness f, the probability of this individual

being chosen is,

 Probability (selection) =
∑ if

f , where i = 1,...,N. (2.45)

Among the above-described techniques, the fitness proportionate selection

appears to be a favored selection technique within the GA literature. The

population that results upon selection is termed “mating” or “parent” pool

Step 4: Genetic operators

 There exist two major genetic operators, namely crossover and mutation

that are used frequently. These operators are implemented as given below.

Implementation of steps 4(a) to 4(c) creates a new population of candidate

solution that replaces the current one.

Step 4(a): Crossover

 In this step, a crossover operation is conducted between pairs of candidate

solutions from the current mating pool to produce two new candidate solutions

termed as “offspring”. In crossover, the genetic material (content of functional and

terminal nodes) of a pair of parents is interchanged to produce offspring. Figure

2.6 and Figure 2.7 illustrate the crossover operation on a pair of parents. Here, the

crossover nodes from the individual parents are selected randomly and the sub-

trees originating from these nodes are mutually exchanged to form two new

 72

candidate solutions (offspring). The two offspring created thereby replace the

parents in the new generation.

Figure 2.6: Parents selected for crossover and randomly selected crossover nodes.

Figure 2.7: Offspring produced after the crossover operation.

Step 4(b): Mutation

Mutation operation is performed on post-crossover population. Candidate

solutions of the population are individually subjected to mutation operation.

Specifically, few nodes from a candidate solution tree are chosen randomly and

Nodes selected
for crossover

 –

 x1

 log

 +

 *

 2.5 x1

 x2 2.5 x2

 –

 /

 1.5 x1

 *

 /

 x1 x2

 +

Parent 1 Parent 2

 –

x1

 log

 +

 *

2.5 x1

x2 2.5 x2

 –

 /

 1.5 x1

 *

 /

 x1 x2

 +

Sub trees rooted at
selected points are

swapped in crossover

Child 1 Child 2

 73

their contents are subjected to mutation. If a node happens to be an operator, then

another randomly selected operator replaces it. If the chosen node contains an

operand (i.e., a variable or a model parameter or a constant), then it is replaced by

another randomly chosen operand. The principal aim of the mutation is to

introduce a small change in the selected candidate solution. The new offspring

created by the mutation operation replaces the candidate solution that has

undergone mutation in the next generation. The mutation operation is illustrated in

Figure 2.8.

Figure 2.8: Example trees showing mutation operation

Upon executing the above-described three genetic operations on the

current population, the resulting new generation population of offspring replaces

the current one. Steps 2 to 4 are repeated over a large number of generations till a

convergence criterion is satisfied. The commonly used criteria are, the GP has

evolved over a pre-specified number of generations or the fitness value of the best

candidate solution either remains constant or nearly constant over a pre-specified

number of generations. The candidate solution tree with highest fitness at the

convergence represents the best solution to the given modeling problem.

A significant drawback of the GP formalism is that in order to arrive at an

appropriate fitting function it performs a global search of the function and the

corresponding parameter space. Invariably, this search becomes time-consuming

and numerically expensive. Also, the algorithm has a tendency to get stuck into a

local minimum in the function and parameter spaces leading to a sub-optimal

 /

 x2 x1

 1.3 +

 /

 x2 x1

 / 1.3

node selected for
mutation

Parent Child

node replaced
after mutation

 74

convergence to a poorly performing fitting function. This happens as there is no

mechanism for a candidate solution to escape once it gets stuck into a locally

optimal solution. As a result, a good solution even if located in the neighborhood

of a candidate solution remains unexplored. One remedy to overcome this

problem is to subject the converged candidate solution to a nonlinear regression

(NLR) method such as the Marquardt’s algorithm with a view of fine-tuning. This

however requires additional numerical effort. Also, the NLR approach does not

fine-tune the structure of the candidate solution as it optimizes only its parameters.

Another approach that is conceptually similar to that employed by the memetic

algorithms (see Section 2.4.4) is to perform a local search in the neighborhood of

each candidate solution or a number of high fitness scoring candidate solutions.

This type of local search in both the functional and parameter space is expected to

locate a better solution and/or speed-up the convergence. The AI Systems Group

(AISG) at National Chemical Laboratory (NCL), Pune, India, has augmented the

global search of the GP with a local search element to introduce an efficient

symbolic regression formalism. The salient features of this method are described

below.

Step 5: Local search

 This is an advanced operator which essentially searches the solution tree’s

local neighborhood area to ultimately locate a better solution. The search could be

applied at two tree locations namely function and parameter nodes. The details of

these steps are as follows.

Step 5(a): Local search in function space

Each candidate solution of the population following the mutation operation

is subjected to the local search in the function space. Here, a local search for an

improved solution in the neighborhood of the candidate solution is carried out by

slightly altering the functional form of that solution. In this step, the functional

nodes of individual solutions are perturbed a specified number of times. This

perturbation operation is conducted only on a specific number of functional nodes

 75

which are selected according to some constraint. For example, the nodes in the

maximum tree-depth and the ones in the depth equal to (maximum depth – 1) are

selected to undergo the perturbation operation. Application of such a constraint on

the selection of perturbation-undergoing nodes is done in order to bring out minor

changes in the functional form of the tree which is akin to the local search in the

function space of the candidate solution. The selected nodes are then subjected to

perturbation operation for a fixed number of times and each time a new

neighborhood solution with a slightly different functional form is generated. The

resultant solution trees are then evaluated for their fitness and using Tabu search

method (refer to Section 2.4.2), the best neighbor of the candidate solution is

determined. This new solution tree then replaces the original un-perturbed

solution tree in the next generation. Let us consider an example tree undergoing a

local search in the functional space. The nodes selected for local search operation

are shown in the Figure 2.9. Following a local search in the function space, the

modified candidate solution population is subjected to the local search in

parameter space.

Figure 2.9: A candidate solution tree with nodes selected for local search
operation

Step 5(b): Local search in the parameter space

 Here, initially the set of parameters occurring in the maximum depth and

one prior to that of each candidate solution tree selected and placed in an array.

The individual array element of these parameters is then subjected to

x1 x2

 –

 log

 +

 *

0.7 –

 2.5 x2

The nodes selected for
local search

Depth M

Depth (M-1)

 76

Simultaneous Perturbation Stochastic Approximation (SPSA) [Spall, 1987, 1998a,

b] (refer to Section 2.4.1) which is a simple yet numerically efficient stochastic

parameter estimation formalism that mostly finds a locally optimal solution. Next,

the fitness of the candidate solution with SPSA-optimized parameter is evaluated.

If this fitness is higher than the fitness of the original-perturbed solution then the

SPSA-optimized parameters replace the parameters in the original tree. The local

search in the parameter space is illustrated in Figure 2.10. The stated search in the

parameter space of a candidate solution is performed for a fixed number of times

which equals that for the local search in the function space. The number of

neighbors to be generated is a user-defined quantity.

Figure 2.10: A candidate solution tree with nodes selected for SPSA-based
parameter estimation

Following the local search, a decision must be made as to which members

of the old population should die to make room for the next generation. Several

methods may be adopted. The simplest procedure is to replace the entire old

population so that there is a complete turnover for every cycle of the algorithm.

However, it may be expedient to retain the fittest members of the old population

in order to ensure the survival of structures that perform well. Thus a proportion

Pold, of the original population is preserved, leaving Pgap = (1 - Pold) as a

generation gap (the proportion to be replaced with new individuals). The above-

described procedure is repeated for pre-specified maximum number of generations

or till the fitness value stabilizes.

x1 x2

 -

 log

 +

 *

0.7 -

 2.5 x2

The nodes selected
for SPSA –based
parameter
optimization

(maximum – 1) depth

maximum depth

 77

Figure 2.11: Flow chart of genetic programming

Thus in the new GP variant, the population of candidate solutions is refined each

time before it enters the new generation. This saves the evolution from getting

saturated (local minima entrapment) after a few generations (refer flow chart in

Figure 2.11 for the complete operational flow designed for the GP with the local

search).

Initialize population (Gen = 0)

Selection and Reproduction

Crossover

 Mutation

Gen = Gen + 1

Expression with highest fitness value is the solution

Convergence?

Fitness evaluation

 Begin

Yes

No

 Stop

Local search in function space

Local search in parameter space

 78

2.3 CLASSIFICATION/CLUSTER ANALYSIS

Clustering is the classification of similar objects into different groups, or

more precisely, the partitioning of a data set into subsets (called as “clusters”), so

that the data in each subset (ideally) share some common trait - often “proximity”

according to some defined distance measure. Clustering can be considered the

most important unsupervised learning problem. As every other problem of this

kind, it deals with finding a structure in a collection of unlabeled data. Data

clustering is a common technique for statistical data analysis, which is used in

many fields, including machine learning, data mining, pattern recognition, image

analysis, chemo informatics and bioinformatics.

A cluster is a collection of objects which are “similar” between them and

“dissimilar” to the objects belonging to other clusters.

We can illustrate this with a simple graphical example described in the following

figure (Figure 2.12).

Figure 2.12: Simple graphical clustering example

From the example depicted in Figure 2.12, we can easily identify 4 clusters into

which the data can be divided; the similarity criterion for defining a cluster is

distance: two or more objects belong to the same cluster if they are “close”

according to a given distance criterion (in this case Euclidean/geometrical

distance).

 79

2.3.1 K-Means Clustering

K-means is one of the simplest unsupervised learning algorithms that solve

a clustering problem [MacQueen, 1967]. It follows a simple and easy procedure to

classify a given data set into a certain number of clusters (assume k clusters) fixed

a priori. The main idea is to define k centroids, one for each cluster. These

centroids should be placed in an intelligent way since variability in their locations

causes different results. Thus, the better choice is to place them as much as

possible far away from each other. The next step is to take each point belonging to

a given data set and associate it to the nearest centroid. When no point is pending,

the first step is complete and an early grouping is done. At this point it is

necessary to re-calculate k new centroids as barley centers of the clusters resulting

from the previous step. Having obtained these k new centroids, a new binding has

to be done between the same data-set points and the nearest new centroid.

Accordingly, a loop is generated as a result of which the k centroids change their

location step by step until no more changes occur. In other words, centroids do not

move any more.

Finally, this algorithm aims at minimizing an objective function; in this

case a squared error function defined as

 ∑∑
= =

−=
k

j

n

i
j

j
i cxJ

1 1

2)((2.46)

where
2)(

j
j

i cx − is a chosen distance measure between a data point)(j
ix and the

cluster centre, jc , which indicates the distance of n data points from their

respective cluster centers.

The K-means algorithm is composed of the following steps:

1. Place k points into the space represented by the objects that are being

clustered. These points represent initial group centroids.

2. Assign each object to the group that has the closest centroid.

3. When all objects have been assigned, recalculate the positions of the k

centroids.

4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a

separation of the objects into groups from which the metric to be minimized

can be calculated.

 80

Although it can be proved that the procedure will always terminate, the K-

means algorithm does not necessarily find the most optimal configuration,

corresponding to the global objective function minimum. The algorithm is also

significantly sensitive to the initial randomly selected cluster centers. The K-

means algorithm can be run multiple times to reduce this effect. The K-means is a

simple clustering algorithm that has been adapted to many problem domains.

2.3.2 Self Organizing Map

The self organizing map (SOM) [Kohonen, 1990] is a neural network that

undergoes unsupervised learning (i.e., identifying classes in the absence of prior

knowledge) and apart from nonlinear classification it is useful in

projecting/visualizing high-dimensional data on to a low dimensional (i.e., 2-D or

3-D) space. The SOM possesses several attractive properties [Vasanto, 2000]: (i)

it performs an ordered dimensionality-reducing mapping of the training data, (ii)

the created map follows the probability density function of the data and is also

robust to missing data, and (iii) the map is readily explainable, simple and easy for

visualization. SOM has been successfully applied in various engineering

applications [Kohonen et al., 1998] involving pattern recognition, image analysis,

exploratory data analysis [Ultsch, 1993; Mao et al., 1995], process monitoring and

control [Simula et al., 1995, Tryba et al., 1991] and fault diagnosis [Chan et al.,

1999; Kang et al., 1999]. The other important application of SOM namely,

classification (clustering), has been exemplified in a number of recent studies in

genomics [Schneider, 1999; Wang et al., 2001; et al., 2002; Kasturi et al., 2003].

The SOM network architecture, as shown in Figure 2.13, consists of a two-

dimensional array of units each of which is connected to all the p input nodes. It is

also possible to use a grid of higher dimensions although such a grid is difficult to

visualize conveniently. The SOM neural network architecture and its training

method possess following properties: (i) an array of neurons, which as a function

of its input of arbitrary dimensionality, calculates the outputs using a simple

output function, (ii) a criteria to determine the “winner” neuron possessing the

largest output, and (iii) an adaptive rule for updating the weights of the chosen

neuron and its neighbors. The SOM training algorithm proposed by Kohonen

[1990] has a very desirable property of topology preserving.

 81

Figure 2.13: Schematic of Self-organizing Map

A. SOM training algorithm

 Let xk, k = 1,2,…,N be the p-dimensional patterns (vectors) and wij be the

p-dimensional weight vector associated with the processing element at the

location (i, j) of the 2-D array. The stepwise procedure for training the SOM

network is given below.

Step 1 (Initialization): Choose small random values for the initial weights, wij(0),

and fix the initial learning rate (Oα̂) and the neighbourhood.

Step 2 (Determining the winner): Select a sample pattern, xk, from the data set and

determine the winner neuron (Ci, Cj) at time (iteration) t, using the minimum-

distance Euclidean criterion.

jik
ji

CCk ji ,
,

min ww -x - x = ; i = 1, 2,…., L; j = 1, 2,…, L (2.47)

x1,…, xp

Grid of
Neurons

2-dimensional
(output) / Projected
Space

Input

 82

where ||.|| refers to the Euclidean norm and L denotes the number of rows (as also

columns) in the square 2D array.

Step 3 (Weight updation): Update all the weights according to the kernel-based

learning rule;

 = ()tijw otherwise (2.48)

where t denotes training iteration index; ()tN
jiCC

 is the neighbourhood function of

the winner unit (Ci, Cj) at iteration t, and)(ˆ tα = 0α̂ /(1+t) is the learning rate.

Step 4: Decrease the value of the learning rate,)(ˆ tα , by incrementing the

iteration index, t, by unity and shrink the neighbourhood, ()tN
jiCC

.

Step 5: Repeat steps 2 – 4 until the change in the weight values is less than the

specified threshold, or the maximum number of iterations (maxt̂) is reached.

It should be emphasized that the success of SOM training depends

critically on the judicious selection of the main algorithm-specific parameters (i.e.,

)(ˆ tα and NCiCj(t)), initial values of the weight vectors, and the number of pre-

specified training iterations, maxt̂). These are commonly optimized using a

heuristic procedure.

2.4 OPTIMIZATION FORMALISMS

The search for optimal and near-optimal solutions is an important problem in

different areas of human activities including engineering, technology,

manufacturing, business and finance. In chemical engineering/technology, the

goal of process optimization is to obtain optimal process operating conditions,

which lead to improved process performance, e.g., maximization of conversion,

selectivity, etc., or minimization of reactor temperature, selectivity of an undesired

product, operating cost, etc. Broadly, there are two different classes of

optimization methods: deterministic and stochastic. Deterministic methods aim to

() () () () () ()tNjittttt
jiijkijij CC),(if ||||ˆ1 ∈−+=+ www xα

 83

arrive at the optimum by approximating the local neighborhood of a given

solution in the search space and moving to a better solution whenever possible.

All gradient based methods and some line-search methods fall under this class.

Gradient-based methods encompass math-programming formulations including

linear, non-linear and discrete optimization models and their associated solution

strategies. Heuristic methods such as tabu-search that allow for non-improving

moves have been used with a great success, not so much as models in themselves

but as alternative solution strategies under a deterministic framework.

Enumerative methods that involve listing the entire solution space or a relevant

neighborhood also fall under the category of the deterministic methods. These

methods typically use a priori information about the solution space based on the

past experience. The point of departure of stochastic methods from deterministic

ones is that the former contain a random component in them. Here, solutions may

be manipulated at random and the emphasis is on sampling the search space as

widely as possible while at the same time trying to locate promising regions for

further exploration. Simulated annealing, simultaneous perturbation stochastic

approximation, random search and genetic algorithms fall under this broad class

of methods.

Both deterministic and stochastic approaches [Vaidyanathan and El-

Halwagi, 1994; Adjiman et al., 2000, Jayaraman et al., 2000, Yu et al., 2000] have

been developed to address optimization problems in chemical engineering.

Although a few deterministic approaches guarantee the global optimality of the

final solution, they require specific formulations. On the other hand, stochastic

algorithms cannot guarantee global optimality, but they can be readily and easily

applied to many optimization problems. With appropriate parameters, they have a

high probability of locating the globally optimal solution. Most of these existing

stochastic approaches are only suitable for solving small to medium scale

problems [Pörn et al., 1999].

Conventionally, gradient-based deterministic methods are used for process

optimization. Most of these methods require that the objective function (to be

minimized or maximized) should be smooth, differentiable and continuous. Many

commonly used deterministic optimization formalism do not satisfy these criteria

and therefore alternative optimization techniques need to be employed. AI-based

 84

stochastic optimization techniques such as genetic algorithms and tabu search,

overcome the above-stated drawbacks, and therefore are ideal for the optimization

of chemical processes.

2.4.1 Simultaneous Perturbation Stochastic Approximation

Multivariate stochastic optimization plays a major role in the analysis and

control of many real-world systems. In almost all large-scale practical

optimization problems, it is necessary to use a mathematical algorithm that

iteratively seeks out the solution because an analytical (closed-form) solution is

rarely available. In the above spirit, the “simultaneous perturbation stochastic

approximation (SPSA)” method [Spall, 1987, 1998a,b] has been developed for

attacking difficult multivariate optimization problems. The SPSA has recently

attracted considerable attention in areas such as statistical parameter estimation,

feedback control, simulation-based optimization, signal and image processing, and

experimental design. The essential feature of SPSA–which accounts for its power

and relative ease of implementation–is the underlying gradient approximation that

requires only two measurements of the objective function regardless of the

dimension of the optimization problem. This feature allows for a significant

decrease in the cost of optimization, especially in problems with a large number of

variables to be optimized.

The SPSA optimization methodology differs from the commonly

employed deterministic gradient based techniques in the following aspects.

Instead of directly evaluating the gradient with respect to each decision variable

by perturbing it separately (as done in the standard two-sided finite difference

approximation), the SPSA methodology approximates the gradient by perturbing

all the decision variables simultaneously. Thus, irrespective of the number (K) of

decision variables to be optimized, only two objective function measurements are

necessary for the gradient approximation; this is in contrast to the finite-difference

approximation, where 2K function measurements are necessary for the gradient

evaluation. The implementation procedure of SPSA is an iterative that begins with

a randomly initialized (guess) solution vector, x̂ . The SPSA technique stipulates

the cost function, Cyr(x), to be differentiable, since it searches for the minimum

 85

point, x*, at which the gradient of the objective function, g(x*), attains zero

magnitude.

 () ()
0

*

* =
∂

∂
=

=xx

yr

x
xC

xg (2.49)

That is, at each SPSA iteration, the gradient is approximated by utilizing the

numerically efficient simultaneous perturbation technique alluded to earlier. With

these preliminaries, the stepwise procedure for SPSA implementation can be

given as [Nandi et al., 2004]:

Step 1. Set the iteration index, t to zero and choose randomly a K-dimensional

guess solution vector,
0

ˆ
=ttx

Step 2. Compute the t-dependent values, At and Zt, termed “gain sequences” using,

()η1++
=

tr
AAt (2.50)

()
,

1 β+
=

t
ZZt (2.51)

where constants, A, Z, r, η and β assume nonnegative values. The optimal

values of η and β are either 0.602 and 0.101 or 1.0 and 0.1667, respectively

[Spall, 1998a].

Step 3. Generate a K-dimensional perturbation vector, Δt, using Bernoulli ±1

distribution, where probability of occurrence of either + 1 or - 1 is 0.5; next,

perturb all the K elements of the vector tx̂ simultaneously, as given by

 tttt Zxx Δ+=+ ˆˆ (2.52)

 tttt Zxx Δ−=− ˆˆ (2.53)

Step 4. Using +
tx̂ and −

tx̂ as arguments, compute two measurements, that is,

Cyr(+
tx̂) and Cyr(−

tx̂), of the objective function defined in Eq. 2.49.

Step 5. Generate the simultaneous perturbation approximation of the unknown

gradient, ()tt xg ˆˆ , using

 86

() () () []TtKtt
t

tyrtyr
tt Z

xCxC
xg 11

2
1
1 ,...,

2
ˆˆ

ˆˆ −−−
−+

ΔΔ−Δ×
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
= (2.54)

where ()tt xg ˆˆ is k-dimensional and tKΔ refers to the kth element (+1 or -1) of

the perturbation vector, tΔ .

Step 6. Update estimate of the decision vector according to

 ()ttttt xgAxx ˆˆˆˆ 1 −=+ (2.55)

Step 7. Increment the iteration counter t to t + 1 (1 ≤ t ≤ tmax) and repeat steps 2-6

until convergence; the criterion for convergence could be that in successive

iterations the decision variable values exhibit very little or no change.

2.4.2 Tabu Search

Tabu Search (TS) is a memory-based stochastic optimization strategy

[Glover, 1986]. By considering historical information during the search process,

TS has been reported to have a more flexible and effective search behaviour than

other stochastic methods [Glover, 1986].

TS is a meta-heuristic approach that guides a neighborhood search

procedure to explore the solution space in a way that facilitates escaping from

local optima. Figure 2.14 shows a schematic of the algorithm. TS starts from an

initial randomly generated solution. A set of neighbor solutions, N(x), are

constructed by modifying the current solution, x. The best one among them, x, is

selected as the new starting point, and the next iteration begins. Memory,

implemented with tabu lists, is employed to escape from locally optimal solutions

and to prevent cycling. At each iteration, the tabu lists are updated to keep track of

the search process. This memory allows the algorithm to adapt to the current

status of the search, so as to ensure that the entire search space is adequately

explored and to recognize when the search has got stuck in a local region.

Intensification strategies are employed to search promising areas more thoroughly,

while at the same time diversification strategies are employed to broadly search

the entire feasible region, thus helping to avoid becoming stuck in local optima.

 87

Finally, aspiration criteria is employed to override the tabu lists in certain cases.

The details of each of the elements will be discussed in the following sub-sections.

A. Neighborhood search

TS explores the search space of feasible solutions by a sequence of moves

[Glover and Laguna, 1997]. A move is an operation that changes the current

solution to another solution. TS starts with an initial solution, say A0. The initial

objective function value, f(x1, x2,…,xN), is initialized. A random change that is the

product of a random number (between −1 and 1) and the magnitude of the search

space along a dimension, say x1, is added to the current solution. To ensure that

the move does not cause the point to lie outside of the specified bounds for this

dimension, a check is performed. If the move would exceed the bounds, the move

is altered, so that it either is on the bound or remains at the location of the current

solution. A similar random change for all remaining dimensions is then added. In

this way, a neighbor solution, A1, is determined. Similarly, a set of other neighbor

solutions, A2 to AM, can be generated.

B. Tabu lists

When the best neighbor is not better than the current solution, it is

classified as “tabu” and added to a recency-based tabu list. The tabu property

remains active throughout a time period, called the “tabu tenure”. As new

solutions are added to the tabu list, older solutions will be released from the

bottom. Thus, the recency-based tabu list stores the most recently visited solutions

and forbids revisiting unpromising solutions for a specified number of iterations.

In continuous solution space, the probability of visiting the same solution twice is

very small. Although tabu lists only record specific solutions, the areas

surrounding each of them are classified as tabu. The tabu area is empirically

classified as 20% of the search range (centered at the current solution) along each

dimension. The recency-based tabu list records solutions for a short time period; it

is often called the short-term memory. Long-term memory is dependent on the

frequency that a solution has been visited. The areas cover more solutions than

other parts of the search space will be added to the frequency-based tabu list,

which records solutions that have been searched around most often. The location

of these frequency-based tabu regions are defined by the best neighbor solutions

as they are determined. Once the maximum number of elements in the frequency-

 88

based tabu list has been attained, the solution with the smallest frequency index

will be replaced.

C. Aspiration criterion

In some cases, the best neighbor solution may appear in a tabu area. If so,

the aspiration criterion will be checked to determine whether the best neighbor

should be accepted despite being in a tabu area. When the best neighbor solution

is at the some point, which is not as good as the best solution so far, it cannot be

accepted as the starting point for the next iteration. Instead, the best non-tabu

neighbor is used. The appropriate use of such criteria can be very important for TS

to achieve its best performance.

Lin et. al. [2004], have designed an additional aspiration criterion which

achieves a balance between intensified and diversified search. The aspiration

criterion is based on a sigmoid function:

 () ()Mkk center
ks ×−−+

= σe1
1 (2.56)

where k is the current iteration number and kcenter determines at which point, s(k) =

0.5. A random number, 0 ≤ P ≤ 1, is generated from a uniform distribution at each

iteration. If P is greater than s(k), the tabu property is active and the best non-tabu

neighbor is used as a new starting point; if P is less than or equal to s(k), the

aspiration criterion overrides the tabu property. Thus, a restart operation (resulting

from a frequency-based tabu list) will be canceled, or a neighbor solution which

would otherwise be tabu (because of a recency-based tabu list) will be used to

generate the new neighbor solutions.

 89

Figure 2.14: Flow chart of TS algorithm

D. Termination criterion

Because TS is a stochastic optimization approach, global optimality of the

final solution cannot be guaranteed. In general, the longer the search process, the

higher the probability of finding good solutions. The maximum time termination

criteria has been widely used due to the ease of implementation [Patel et al., 1991;

Tayal and Fu, 1999; Wang et al., 1999]. In most cases, this criterion is considered

effective and practical; however, it risks wasting time in an unproductive search.

Two primary conditions may cause this behavior. First, a solution very close to

the global optimum may have already been located. Second, the algorithm may

Delete x’ from set of
neighbor solutions

Aspiration Criterion
Satisfied?

Initialization
Initial solution x0. Best solution x* and Tabu list T

Generate set of neighbor solutions

Choose best neighbor x’ from set of
neighbor solution

Is x’ on either Tabu list
Update Tabu

List, T

Is x’ is better than x*?

x* = x’

 x = x’

Output x* Terminate ?

No Yes

No

Yes

No

Yes

YesNo

 90

have become trapped in a local solution. Thus, termination-on-convergence

criteria have been implemented so that the search ceases at an “appropriate” time

[Jain et al., 2001].

If the improvement over Γ generations is no larger than a threshold, δ,

continued iterations are considered to be ineffective, and the search should be

stopped. The termination criterion is mathematically expressed as follows:

()

() δ<
− −

xf
fxf

Γ-k

Γkk (2.57)

where Γ = ηM, δ is the ratio of the change in the value of the objective function,

and η is the fraction of the maximum iterations possible over which the change in

the objective function is compared.

2.4.3 Genetic Algorithms

 Genetic a1gorithms (GAs) [Holland 1975; Goldberg, 1989] are artificial

intelligence based stochastic methods which enforce the “survival of the fittest”

paradigm of evolution along with the genetic propagation of characteristics

principle followed by biological species. This brings to bear a balanced tradeoff

between exploitation and exploration. Unlike traditional methods which move

from point to point, an initial population of solutions constantly refined in a

manner imitating selection and biological evolution, while discovering expectedly

better solutions. GAs have been used with a great success in solving problems

involving very large search spaces [Goldberg, 1989]. Owing to there attractive

features, GAs are being increasingly used for solving diverse optimization

problems in chemical engineering and technology [Nandi et al., 2002, Garcia et

al., 1998]. The process of evolution involves the survival of the most adapted

organism to the environment and the propagation of its characteristics to the next

generation by reproduction. This phenomenon is referred to as “natural selection”

and is primarily responsible for the evolution and modification of different species

to suit the environment. The propagation of characteristics is brought forth by

information carried in the genetic material of the species. In addition, gene-level

operations such as recombination and mutation that occur during reproduction

 91

lead to combinatorial diverse characteristics in the subsequent generations. By

this, we imply the discovery of new characteristics that arise as a combination of

different ones present in different individuals in the population. Recombination

involves the exchange of parts of two parent chromosomes producing two

different combinations. Mutation involves random changes at different loci in the

gene, leading to inclusion of characteristics not present in the parent(s). The

combined effects of selection, recombination and mutation not only produce fitter

individuals but also lead to diversification of the population characteristics. This

diversification leads to a state of perpetual novelty during evolution, where the

evolving species is able to combat the changing environment successfully. One

can immediately see how such a framework would be useful from an optimization

viewpoint. If one were to treat the environment as an objective to be optimized

and the individual in the environment as a point in the search space, evolution

would become analogous to searching through a landscape of solutions.

 In nature, the complete representation of any organism lies in its genetic

code, which is a sequence of alphabets of amino acids. In a similar fashion, GAs

model potential solutions as bit strings of alphabets that completely represent all

the characteristics of the solution relevant to the optimization or search. The

scheme of encrypting individuals as sequences of alphabets is referred to as the

representation or “encoding” scheme. Different techniques are utilized for

encoding a candidate solution as binary, gray and real. The decoded value of the

solution is just the coordinate of the solution in the domain of the objective

function. In nature, the fitness of an individual is its fitness or competitive edge in

the environment. In the same way, in a GA the fitness of a solution is indicative of

the value of the objective function, when it is evaluated at the decoded coordinate

of the solution. In GA, natural selection occurs by choosing solutions with a

probability proportional to their relative fitness values by some scheme.

Recombination and mutation are performed on the encoded representation of the

selected solutions in a manner analogous to chromosomal crossover and mutation.

This process of selection and genetic operation is iterated until termination

criterions are met. In the following, principle components and operators of a

typical genetic algorithm is described.

 92

A. Representation

The most important component in the GA procedure is the representation

scheme for coding candidate solutions to a given optimization problem. All the

solutions need to be represented in some form of genetic code. The most common

encoding is a string representation where each solution is represented as a one-

dimensional string of numbers or alphabets while other variations are also

possible [Venkatasubramanian, 1994]. In a string representation, each coordinate

or element of the string typically represents a component or piece of the candidate

solution. Most problems in the GA literature use the binary encoding scheme

where each loci of the string is drawn from a binary alphabet of “0” or “1”. For

function optimization where the solution space contains real numbers, the

decoding scheme is generally binary to decimal conversion followed by mapping

the resulting number into an appropriate domain. Once again, the mapping could

be linear or exponential depending on scaling. For example, a binary string of the

form (a0, a1, a2,…,aN-1) of length N is converted to its equivalent real value in its

domain as follows.

i
N

i
iaD 2

1

0

×= ∑
−

=

 (2.58)

For instance, for N = 4 and a binary string (0 1 0 1), the solution is D = 5.

For multivariate domains, the complete binary representation of a point in

the domain is obtained by placing the binary encoded string for each of

coordinates/variables end to end in some predefined order. For example, a three

dimensional coordinate (x1, x2 x3) with N = 3 for each coordinate could be

represented (1 0 1 1 1 0 0 0 1) where the first three bits encode x1, the next three

bits encode x2, and the last three encode x3. One of the drawbacks of the binary

representation is that the number of bits used scales with the number of variables

and precision of each variable. A floating point representation overcomes this by

representing each variable in its negative real coded form. For function

optimization problems, this gives a transparent and compact representation and

can be utilized with special operator to handle constraints, [Michalewicz, 1995].

However, the drawback here is that specialized operators need to develop for the

GA to exploit the solution space effectively.

 93

B. Initialization

Initialization refers to the generation of the initial population of candidate

solutions as well as the choice of some parameters of the population, such as its

size. The preferred characteristics of an initial population are diversity and

reasonable levels of fitness values. However, in practice, depending upon the

application, generating an initial population varies from a random generation to

careful choosing of candidates based on user’s experience. Sometimes a few

distinct and diverse solutions are chosen and assigning copies based on their

fitness values to provide a good string population. In choosing the population size,

a large population is normally preferred. But this leads to a large computation

burden. Syswerda [1989] performed experiments with different control parameters

including population size for the scheduling problem. The essential result is that

an optimal choice of the population size tends to depend upon the nature of the

domain, the representation, the evaluation and the genetic operators used. A re-

initialization procedure was used by Goldberg [1989] wherein the GA was

restarted every few generations with a new population containing the best

solutions found so far and the remaining, if any, generated randomly. A variation

of the fixed population size GA is the GA with varying population size (GAVaPS)

[Arabas, 1994]. In this algorithm, the population is continuously augmented by the

newly created products of recombination. However, the algorithm has a measure

of age or lifetime of an individual beyond which the individual “dies’ or is

removed from the population. This lifetime, instead of the selection probability, is

set proportional to the fitness of the individual. This means that fitter individuals

live longer than the rest and the population is controlled by the death rate of the

individuals.

C. Fitness evaluation

Once a population of candidate solutions has been created, it needs to be

evaluated to determine its fitness in the environment. For an optimization

problem, the environment is the objective function. Depending on how low (for

minimization problems) or how high (for maximization problems) the objective

function value for an individual is, its fitness should have a proportionally low or

high value. The fitness evaluation procedure normally includes in itself the

decoding scheme to map the individual from its stream based representation to its

 94

domain of definition. In cases where the characteristics or a property of interest of

the optimum is known, the fitness could be a scaled distance of the individual’s

property from that of the optimum. In some problems, one does not have a single

objective but several to be optimized simultaneously as well as constraints to be

satisfied by the solutions. One way of handling multiple objectives is to define a

new objective function that is a “weighted” sum of all the objectives. Here, the

choice of the weights can reflect the relative importance of optimizing different

objectives. To handle constraints in a genetic algorithm, the objective function is

usually augmented with a penalty term that “weighs” in the feasibility of the

solution, i.e., if it satisfies all the imposed constrains. This is similar to a

Lagrangian multiplier often used in nonlinear programming.

D. Selection

After all the candidates have been evaluated for their fitness values, the

next step in the GA is the selection procedure. This involves algorithmic

imposition of natural selection which enforces the survival of the fittest. The

selection scheme has to make sure that the fitter individuals in the population are

allotted more opportunities to reproduce and recombine to produce offspring. To

this end, two different schemes are normally used.

a. Roulette Wheel (RW) Selection: In this scheme, once the fitness evaluation

is completed, the population is sorted (ranked in the ascending order of fitness

scores) and a running sum of the fitness is calculated for each member starting

from the first one in the sorted list. The running fitnesses are normalized using

the cumulative fitness of the entire population. A random number between 0

and 1 is drawn. The first member of the sorted list (beginning with the

member with the lowest fitness) whose cumulative fitness is greater than the

random number is selected. The RW selection scheme with a variable

probability of selection across generations can also be used [Back, 1993].

b. Tournament Selection: In this scheme, a specified number, called the

“tournament size”, of members are chosen from the parent population and

these enter competition for selection. The winner is decided based on the best

fitness and allowed to enter the reproductive phase. This process is repeated

sufficiently, along with recombination and mutation, to produce the offspring

 95

population. This method slightly offsets the effects of a few large fitness

solutions in the population biasing the selection scheme towards above-

average solutions in general [Goldberg, 1989]. As opposed to the RW

selection procedure, this is a static selection scheme where the probability of

selection of a candidate remains fairly constant across generations.

E. Reproduction

Once an individual candidate solution has been selected from the current

population, three basic genetic operators (direct reproduction, crossover and

mutation) may be applied. The direct reproduction operator directly copies a

member from the parent population to the next generation. In order to ensure that

the survival of the fittest principle performs well, a member amongst the better

fitness values is selected using the selection operator and is copied to some

member having an inferior fitness value. In the process, the member having an

inferior fitness value dies in order to make place for the member having a better

fitness.

F. Crossover

Chromosomal crossover refers to the random recombination of parts of

two chromosomes (the parents) to produce two new chromosomes (the offspring).

This is a large-scale operator in the sense that it significantly perturbs the

genotype of the parents. From an optimization viewpoint, the recombination

operator tends to improve the combinatorial diversity by using the building blocks

present in the population. In this manner, novel combinations of existing parts are

discovered that could potentially lead to fitter individuals. The simplest

abstraction of chromosomal crossover in genetic algorithms is the one point

crossover. Here, a random cut-point is chosen along the length of the coded

solution and the two parent chromosomes are split at this point. The tail portion

(i.e., all the bit positions following the cut-point) of the two parents are exchanged

to create two offspring chromosomes. Consider a string representation in which a

“1” at the first position and a “0” at the last position is necessary for good solution

quality. Consider a string of length L which possesses this feature. One-point

crossover selects the cut-point with uniform probability. This implies that the

probability that this feature will be lost is 1.0 when the other parent in question

does not posses a “1” in the first position or a “0” in the last. Strings with certain

 96

positions fixed at certain values (0s or 1s in the binary case) and the rest arbitrarily

assigned are called schemas and these form the basic building blocks that the GA

manipulations. The order of the schema refers to the distance or length (in bits)

between fixed positions in the schema. It is clear from the above example that

one-point crossover is biased toward lower-order schema, i.e., when the fixed

positions are closer together. This implies that beneficial characteristics brought

forth by high order schema are lost more regularly. This characteristic of one-

point crossover is called positional bias [Eshelman et al., 1989]. To overcome this

drawback, variations of crossover exist in the literature [Syswerda, 1989] and two

of the common ones are two-point crossover and uniform crossover. In two-point

crossover, two random cut-points are chosen and the portions of the encoded

representations of the parents between these cut-points are mutually exchanged. A

uniform crossover is the generalized form of crossover where chromosomal

exchanges happen between parents, across multiple (the number chosen

randomly) cut-points. The recombination operator has a probability associated

with it which dictates how often it is used. The probability of crossover is

typically set to a high value (around 99%) for binary coded representation. A

random number is drawn and whenever it falls below the crossover probability,

two individuals (selected using one of the selection schemes described in the

previous section) are allowed to undergo crossover. If the random number test

fails, the chosen individuals are duplicated and placed in the offspring population.

G. Mutation

The recombination operator is handicapped by the fact that it combines

only what is already present in the population. For instance, let us suppose that all

individuals in the initial population contain zero in the second bit position of their

genotype and that any reasonably good genotype should have the value of “1” at

that position. Applying recombination alone on this population will not lead to

any genotype with “1” in the second position (assuming we use the above-

mentioned crossover operators). This would eventually lead to convergence of the

algorithm to a poor local optimum. Hence, to be effective, the GA needs an influx

of characteristics extraneous to the population. This is provided by the mutation

operator.

 97

Mutation is applied by randomly flipping the bits from zero to one or vice

versa with a certain probability. For a simple GA using binary encoding, mutation

is normally applied after crossover and with a low probability (around 1%). This

is since with high probabilities mutation tends to destroy the good features

(schema) brought forth by recombination and selection. Mutation is implemented

by drawing out successive random numbers (corresponding to each bit) and

flipping the bit whenever the number falls below the mutation probability.

However, this method offers uniform mutation where there is no distinction

between the positions of the bits. When applying GAs to optimization in the

domain of real numbers coded in binary format, non-uniform mutation may

sometimes be preferred. Under non-uniform mutation, the more significant bits of

the solution (that cause large changes in the decoded value of the solution) are

mutated at different probabilities compared to the less significant ones.

This section describes the implementation and properties of recombination

and mutation operators. However, the nature and probabilities of the operators

discussed above is generally valid only for a simple genetic algorithm with binary

representation. A lot of research has been undertaken to find optimal settings for

operator probabilities [Grefenstette, 1986] including different adaptive schemes

[Fogarty, 1989; Srinivas and Patnaik, 1994]. Evolutionary strategies typically use

several operators and in competition with one another, as opposed to the use of

mutation after crossover in classical GAs. They may also contain modules to tune

the operator probabilities dynamically [Davis, 1989; Schwefel, 1984]. The nature

of these specialized operators is domain dependent and dependent also on the

representation used. For instance, constrained optimization with real coded

representation uses specialized operators to ensure that the generated offspring

satisfy the imposed constraints. Other specialized operators have also been

constructed depending on the application domain [Syswerda, 1989]. When

appropriate knowledge is available, heuristic hill-climbing and gradient based

operators have been used in conjunction with purely stochastic ones [Wright,

1991; Bhandari, 1994].

H. Pros and cons of genetic algorithms

In contrast to more traditional numerical techniques, which iteratively

refine a single solution vector as they search for optima in a multi-dimensional

 98

landscape, genetic algorithms operate on entire populations of candidate solutions

in parallel. In fact, the parallel nature of a GA’s stochastic search is one of the

main strengths of the genetic approach. This parallel nature implies that GAs are

much more likely to locate a global peak than traditional techniques, because they

are much less likely to get stuck at local optima. In addition, due to the parallel

nature of the stochastic search, the performance is much less sensitive to initial

conditions, and hence and GA’s convergence time is rather predictable. In fact,

the problem of finding a local optimum is greatly minimized because GAs, in

effect, make hundreds, or even thousands, of initial guesses. This implies that a

GA’s performance is at least as good as a purely random search. In fact, by simply

seeding an initial population and stopping there, a GA without any evolutionary

progression is essentially a Monte Carlo simulation.

As appealing as a GA may seem, the parallel nature of the stochastic

search is not without consequences. Although the prospects of finding global

optima make it robust, the convergence of a GA is usually slower than traditional

optimization techniques. In fact, with a good initial guess close to the global

optimum, a numerical technique will likely be much faster, and more accurate,

than a genetic search because, in essence, the GA will be wasting time testing the

fitness of sub-optimal solutions. Furthermore, due to the stochastic nature of GAs,

the solution, although more likely to estimate the global optimum, will only be an

estimate. It must be realized that GAs will only by chance find an exact optimum,

whereas traditional gradient methods will find it exactly, assuming, of course, they

find it at all. The user must then determine whether the solution found by a GA is

close enough. In many cases, it will be, but the question of ‘How close is close

enough?’ is somewhat arbitrary and application-dependent.

I. Real coded genetic algorithm

 Binary coded strings for the representation solution have dominated GA

research since there are theoretical results that show them to be the most

appropriate ones [Goldberg, 1991a], and as they are amenable to simple

implementation. However, the GA’s good properties do not stem from the use of a

bit string [Antonisse, 1989]. For this reason, the path has been laid toward the use

of non-binary representations more adequate for each particular application

problem. One of the most important representation is real number representations,

 99

which would seem particularly natural when optimization problems with variables

in continuous search space are tackled. Therefore, a chromosome is a vector of

floating point numbers whose size is kept the same as the length of the vector,

which is the solution to the problem. GAs based on the real number representation

is called real-coded GAs (RCGAs). The use of real coding initially appears in

specific applications, such as in [Lucasius et al., 1989] for chemometric problems,

and in Davis [1989] for the use of meta operators in order to find the most

adequate parameters for a standard GA. Subsequently, RCGAs have been mainly

used for numerical optimization on continuous domains [Write, 1991;

Michalewicz, 1992].

 The use of real parameters makes it possible to use large domains (even

unknown domains) for the decision variables, which is difficult to achieve in

binary implementations where increasing the domain would mean sacrificing

precision, assuming a fixed length for the chromosomes. Also, when using real

parameters, the capacity to exploit the graduality of the function with continuous

variables, where the concept of graduality refers to the fact that, slight changes in

the objective the variables correspond to a slight change in the objective function.

Using real coding the representation of the solutions is very close to the natural

formulation of many problems. Most real-world problems may not be handled

using binary representations and an operator set consisting only of binary

crossover and binary mutation [Davis, 1989]. The reason is that nearly every real-

world domain has associated domain knowledge that is of use when one is

considering a transformation of a solution in the domain. Davis [1989] believes

that the real-world knowledge should be incorporated into the GA, by adding it to

the decoding process or expanding the operator set. Real coding allows the

domain knowledge to be easily integrated into the RCGA for the case of problem

with non-trivial restrictions.

 Since the basic string of GA is coded in real numbers in RCGAs, crossover

and mutation operators need to be reformulated. Few of them are listed below.

 100

J. Crossover operators for RCGAs

 Let us assume that C1 = (c1,1,c2,1,…,cn,1) and C2 = (c1,2,c2,2,…,cn,2) are two

chromosomes that have been selected to apply the crossover operator.

(i) Simple crossover [Write, 1991; Michalewicz, 1992]:

A position { }1,...,2,1 −∈ ni is randomly chosen and the two new

chromosomes (offsprings) are build as shown below.

C1
new = (c1,1,c2,1,…,ci,1, ci+1,2,…, cn,2) (2.59)

C2
new = (c1,2,c2,2,…, ci,2, ci+1,1,…,cn,1) (2.60)

(ii) Arithmetic crossover [Michalewicz, 1992]:

Two offspring, Ck
new = (c1,k,…, ci,k,…,cn,k) k = 1,2, are generated, where ci,1

= λ ci,1 + (1 - λ) ci,2 and ci,2 = λ ci,2 + (1 - λ) ci,1. λ is a constant (uniform

arithmetical crossover) or varies with regard to the number of generations

made (non-uniform arithmetic crossover).

K. Mutation operators for RCGAs

Let us suppose C = (c1, c2,…, cn) is a chromosome and []iii bac ,∈ a gene

to be mutated. Next, the gene, ci
new, resulting from the application of different

mutation operator is shown below.

(i) Random mutation [Michalewicz, 1992]:

ci
new is a random (uniform) number from the domain []ii ba , .

(ii) Non-uniform mutation [Michalewicz, 1992]:

If this operator is applied in a generation t, and gmax is the maximum number

of generations then

 ci
new =

()
()⎩

⎨
⎧

=−Δ−
=−Δ+

1 f,
0 f,

τ
τ

iaatc
icbtc

iii

iii (2.61)

with τ being a random number which may have a value of zero or one, and

 () ,1, max
1

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=Δ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

b

g
t

ryyt (2.62)

 101

where r is a random number from the interval [0,1] and b is a parameter

chosen by the user, which determines the degree of dependency on the

number of iterations. This function gives a value in the range [0, y] such that

the probability of returning a number close to zero increases as the algorithm

advances. The size of the gene generation be lower with the passing of

generations. This property causes this operator to make a uniform search in

the initial space when t is small, and very locally at a later stage, favoring

local tuning.

In short, the principle features possessed by GAs are as follows:

(i) They require only scalar values and not the second and/or first order

derivatives of the objective functions, thus they are not numerically

expensive;

(ii) GAs are capable of handling nonlinear and noisy objective functions;

(iii) GAs perform global searches and thus are more likely to arrive at or near

the global optimum;

(iv) They do not impose preconditions, such as smoothness, differentiability and

continuity on the form of the objective functions.

2.4.4 Memetic Algorithm

Although used widely, the principle drawback of GAs is that since the

formalism performs a global search of the solution space, it can take a long time to

converge even if the optimal solution lies in the neighborhood of a candidate

solution. A genetic algorithm related methodology that overcomes the stated

problem is known as “Memetic algorithms (MAs)” [Moscato, 1992, 1999]. The

most attractive feature of MA, which makes it efficient nonlinear optimization

formalism, is that it combines a local search heuristics with the population-based

global search conducted by the GAs. This feature helps in significantly speeding

up the convergence to the optimal solution.

The MA likewise, GA based on the concept of evolution. However,

whereas the GA models the biological evolution, the MA models the cultural

 102

evolution or the evolution of ideas [Moscato, 1999]. The principle difference

between this model and the biological model is that an idea can be improved upon

or modified by its owner. This improvement is obtained by incorporating a local

search mechanism into the global search conducted by the genetic algorithm. A

unit of chromosome in the memetic approach is referred to as a meme rather than

a gene, as referred to in the GA approach. For searching the solution space locally,

the Tabu search algorithm has been employed and thereby assisting in escaping

local minima and visiting promising neighborhood solutions. The basic concept of

Tabu Search as described by Glover [Glover, 1989, 1990] is “a meta-heuristic

superimposed on another heuristic”. It aims at avoiding entrainment in cycles by

forbidding or penalizing those moves, which in the subsequent iteration explore

those points (solutions) in the solution space that were visited previously (hence

the name "Tabu"). A stepwise procedure for the MA is described as follows:

1. Initialize candidate solution population randomly (Generation index, Gen = 0)

2. Perform the global search (as in GAs) as follows.

(a) Evaluate fitness of all the solutions using a fitness function and rank the

solutions in the decreasing order of the fitness scores.

(b) Select pairs of parent solutions with high fitness randomly.

(c) Perform crossover between parents strings.

(d) Perform mutation over crossed-over strings.

3. Perform a local search on the candidate solution population obtained from the

global search as follows.

(a) Perturb each candidate solution to obtain a pre-specified number of

neighborhood solutions.

(b) Select the best solution in the neighborhood.

(c) Discard the best solution if already present in the Tabu list (this list

contains a fraction of the candidate solutions visited in the past).

(d) Apply the aspiration criterion to the discarded solution, and accept the

solution if it obeys the aspiration criterion.

 103

(e) GOTO (a) until the termination criteria is not satisfied for local search.

4. Increase generation index: Gen = Gen + 1.

5. Check for convergence.

(i) If converged (that is fitness score of the best solution no longer increases

substantially or the algorithm has performed a fixed number of iterations),

then stop.

(ii) If not then go to step 2.

6. Solution with the highest fitness score is the optimal solution.

Applying a local search in the vicinity of a candidate solution assists in

locating promising solutions in the neighborhood and thereby substantially

improving the convergence speed of an MA for multimodal problems. To design

an efficient search algorithm, the application of Tabu should be carefully

considered [Lin et al., 2004]. If we want to efficiently utilize the global search

ability of an MA, then we must reduce the computation time spent in the Tabu-

based local search. This can be realized by restricting the number of neighborhood

solutions examined by the local search procedure.

2.5 DIMENSIONALITY REDUCTION FORMALISMS

 Huge amounts of data comprising values of operating and output variables

is generated and archived continuously during a typical process operation. These

data inherently contain instrumental and measurement noise. Thus, it becomes

necessary to treat/preprocess the data with a view to reducing their dimensionality.

Dimensionality reduction, apart from generating noise-free data also helps in

constructing parsimonious process models possessing an excellent generalization

capability.

 The most widely used dimensionality reduction technique is Principle

Component Analysis (PCA). Being a linear technique, PCA fails to capture

nonlinear correlations that are frequently present among real life process data. To

overcome this problem a number of novel nonlinear dimensionality reduction

techniques have been recently introduced [Tenenbaum et. al., 2000]; these are:

 104

• AANN (Auto-associative Neural Network)

• SAMMANS Mapping and SAM-ANN

• CCA (Curvilinear Component Analysis)

• LLE (locally linear embedding)

2.5.1 Principle Component Analysis

The PCA method [Geladi and Kowalski, 1986] extracts linear relationships

existing among the variables of a data set. PCA was first introduced in statistics

by Pearson [1986], who formulated the analysis as finding “lines and planes of

closest fit to systems of points in space”. PCA was briefly mentioned by Fisher

and MacKenzie [Fisher and MacKenzie, 1923] as more suitable than analysis of

variance for the modeling of response data. Fisher and MacKenzie also outlined

the nonlinear iterative partial least squares (NIPALS) algorithm, later rediscovered

by Wold [Wold, 1966]. Hotelling [Hotelling, 1933] further developed PCA to its

present stage. The PCA decomposes a single data set comprising measurements of

linearly correlated variables into a transformed variable set defining the

eigenvectors of the covariance of the data and the associated parameters. In

essence, PCA generates a set of pseudo-measurements (called ‘scores’ or ‘latent

variables’), which are linearly independent (uncorrelated). The important feature

of the PCA is that successive latent variables capture decreasing amount of

variability in the data.

 To illustrate the PCA method, consider a two dimensional matrix, X(I,J),

defining I measurements of J variables. The PCA decomposes, X, into matrices of

latent variables and the corresponding parameters (known also as “loadings”) as

given by:

X = TP’ + E (2.63)

where, matrix X is assumed to be mean-centered (mean = 0) and variance-scaled

(i.e. the standard deviation of elements of each column is unity); T (I,J) denotes

the matrix of J principal component (PC) scores (each column of matrix T

signifies a principal component); P’ refers to the transpose of the loading matrix,

P(J,J), and E denotes the residuals. In the event of linearly correlated variables,

 105

first R principle component scores capture a large amount of variance in the data,

and thus Eq. (1.63) can be rewritten as

1

 = () ' '
R

r r
r

X t p E
=

+∑ (2.64)

where, tr denotes the I-dimensional rth score vector; pr refers to the transpose of

the rth J- dimensional loading vector, pr, and E′ denotes the residual matrix. It

can be seen from Eq. (2.64) that the original (I×J) dimensional data matrix, X, can

now be represented in terms of R number of I-dimensional score vectors. Since R

is smaller than J, the original data can be represented in terms of a smaller matrix.

The sum of squares of elements of a score vector (tr) is related to the eigenvalue

(also known as “trace”) of that vector and it serves as a measure of the variance

captured by the rth principle component. It thus follows that larger the magnitude

of trace, more significant is the respective principal component.

2.5.2 Curvilinear Component Analysis

Curvilinear component analysis (CCA) was proposed by Demartines and

Herault [1995] as an improvement to the Kohonen self-organizing maps

[Kohonen, 1989] (also see Section 2.3.2); the output is not a fixed lattice but a

continuous space able to take the shape of the submanifold. As it turns out, the

projection part of CCA is similar in its goal to other nonlinear mapping methods,

such as multidimensional scaling (MDS) [Shepard et al., 1965] and Sammon’s

nonlinear mapping (NLM) [Sammon, 1969], in that it minimizes a cost function

based on the inter-point distances in both input and output spaces. The primary

objective of CCA is to generate a revealing representation of the original data in a

lower dimensional feature space so as to prepare a foundation for the further

clustering of the input data [Demartines et al., 1997]. The CCA operates on the

principle of preserving distances in its input and output (projected) spaces. That is,

all the possible distances between points in the input space are expected to match

the corresponding distances between the points in the reduced dimensional

projected space. However, in the case of nonlinearly correlated input data, it may

not be possible to preserve distances of large magnitudes since the task

necessitates unfolding of the manifold to effect dimensionality reduction in the

 106

projected space. This difficulty can be addressed by preserving at least smaller

(i.e. local) distances, which then leads to stretching of the larger distances (known

as “global unfolding”). For achieving the preservation of local distances, the CCA

employs a neighborhood function, which fulfills the condition of preservation of

smaller distances, while relaxing the condition for larger distances [Buchala et al.,

2004].

Figure 2.15: A schematic of the CCA network

The CCA can be considered as a self-organizing neural network (see Figure

2.15) that performs two tasks: (i) vector quantization (VQ) of the submanifold in

the data set (input space), and (ii) nonlinearly projecting the quantized vectors

onto the output space. A vector quantizer maps n-dimensional vectors in the

vector space, nℜ , into a finite set of vectors thereby reducing the original data set

to a smaller but still representative set to work with. After training, the CCA

network has the ability of generalization owing to which it can continuously map

any new point in the forward or backward direction. The CCA as shown in Figure

2.15 performs the VQ and nonlinear projection tasks separately using two layers

of connections. The first network layer performs vector quantization on the data

set and the second layer (known as the “projection layer”) conducts topographic

mapping of the quantized vectors. The projection layer is a free space, which takes

x1, x2,…, xn y1, y2,…, yp

High-dimensional
input space

Input Vectors Feature Vectors Low-dimensional
feature space

 107

the shape of the submanifold of the data [Buchala et al., 2004]. The principal

advantages of the CCA method over other dimensionality reduction algorithms are

as follows [Demartines et al., 1997]:

(i) It uses a new cost function that enables unfolding of strongly nonlinear or

even closed structures.

(ii) The cost function allows selection of the scale at which the unfolding of

the submanifold is performed.

(iii) Significantly faster as compared to other nonlinear feature extraction

formalisms owing to a new implementation method that necessitates

computation of only a few distances.

(iv) It allows interactivity whereby the user has control over the minimized

function itself – specifically on the scale at which the distances have to be

preferably respected.

 The training algorithm for the CCA network was proposed as an

improvement to the Kohonen’s self-organizing map (refer Section 2.3.2) wherein

the output is not a fixed lattice but a continuous space capable of taking the shape

of the manifolds of the input data. In what follows the procedural details of CCA

training are described.

Let {xi}; i = 1, 2,…, N, be the set of data vectors (xi = [xi1, xi2,..., xin]T) in

an n-dimensional input space, and {yi} be the corresponding vectors (yi = [yi1,

yi2,..., yip]T) in the p-dimensional (p < n) feature space. Accordingly, each of the n

neurons (processing elements) in the CCA network has two weight vectors xi and

yi associated with it. During training of the network, the processing elements

(PEs) in the first layer force the input vectors to become the prototypes of the

distribution using any standard vector quantization methods [Ahalt et al., 1990].

The output layer PEs are required to construct a nonlinear mapping of the input

vectors. This objective is fulfilled by minimizing the structure differences between

the quantized and output spaces. The structure differences can be described in

terms of the Euclidean distances and the corresponding quadratic cost function (E)

to be minimized for reducing the data dimensionality from n to p is given as,

[] ()∑∑
≠

−=
i ij

yijijij YFYXE λ,
2
1 2 (2.65)

 108

where, Xij = d(xi, xj) describes the Euclidean distance between vectors xi and xj,

and Yij = d(yi, yj) refers to the corresponding distance in the output space. The

objective of minimizing E is to force Yij to match Xij for each possible vector pair

(i, j). Since, a perfect match between Xij and Yij is not possible while mapping to a

lower dimensional space, a weighting function ()yijYF λ, is used to favor the

conservation of the local topology. For preserving this topology, a bounded and

monotonically decreasing weighting function such as the decreasing exponential

or sigmoid function is commonly chosen. The weighting function assigns greater

weightage to points lying closer in the output space.

In the beginning, the set of p-dimensional output vectors, {yi}, are

initialized randomly to small magnitudes. The minimization of E with respect to

the vectors, yi, is performed by following the procedure outlined by Demartines et

al. [1997]. This procedure temporarily fixes one of the yi vectors and moves all the

other yj vectors around it without a concern to the interactions among the yi

vectors. The updating rule for a yj vector to effect minimization of E is given as

[for the detailed discussion see Demartines et al., 1997]:

() () () () ()() ij
Y

YXYFtEtEti
ij

ij
ijijyijijjijij ≠∀

−
−=∇−=∇=Δ ,,

yy
y λααα (2.66)

where, i refers to the index of a randomly chosen vector; iji E∇ represents the

gradient of E with respect to yi, and ()
)1(

0

t
t

+
=

α
α denotes the learning rate that

decreases with time and yλ is a constant that signifies the neighborhood criteria.

The optimized yj-updation rule in Eq. (2.66) is numerically efficient, and its

implementation results in the output vectors eventually converging to L number of

prototypes (∗i
y , i = 1, 2,…, L) in a certain number (<100) of training iterations.

The CCA training algorithm can now be briefly summarized as:

Step 1: Initialize Yij in the projected space by using the linear PCA.

Step 2: Compute Euclidean distances d(xi, xj) in the input space.

Step 3: Compute distances d(yi, yj) in the projected space.

 109

Step 4: Update all the projected vectors according to the equation (Eq.

2.66).

Step 5: Decrease the value of λy with the iteration index, t.

Step 6: Repeat steps 3-5 until the change, Δyj(i), in the projected space is

less than a pre-specified threshold or the maximum number of

iterations (tmax) is reached.

The CCA is an efficient nonlinear dimensionality reduction technique

although other formalisms such as the SOM are necessary for classification and

projection if the dimensionality of the projected space is very high (>3).

2.5.3 Autoassociative Neural Networks

The autoassociative neural network (AANN) is an efficient nonlinear

principle component analysis formalism [Kramer, 1991, 1992; Leonard and

Kramer, 1993; Kuespert and McAvoy, 1994]. It performs auto-association and in

this process also conducts nonlinear feature extraction and dimensionality

reduction of a multivariable data set. In auto-association, an input-output

nonlinear mapping is performed in a manner such that the desired output of the

network is same as its input. The AANN conducts the auto-association in a novel

manner whereby the input information is initially compressed using a small

number of hidden layer neurons, following which decompression of the

compressed information is effected. This way, an AANN yields as its output, an

approximation of its input. Unlike the widely employed three-layered MLP neural

network, an AANN (see Figure 2.16) comprises five layers namely input,

mapping, bottleneck, demapping and output layers. This network architecture

performing nonlinear identity mapping from a J-dimensional input space to the J-

dimensional output space can also be viewed as a hybrid of two MLP networks,

each with a single hidden layer. The first MLP network (known as “compression”

network) (Figure 2.17a) consists of the input, mapping and bottleneck layers,

respectively, while the second network (known as “decompression” network)

(Figure 2.17b) consists of input, demapping and output layers. The input to the

first network (rows of matrix, X) is known, whereas its output is unknown. In

 110

contrast, for the second network, the input is unknown but the output is known.

These two networks are combined in a manner such that the output of the first

network is the input to the second one. Typically, the number of nodes (NH2) in

the bottleneck layer is much smaller than the number of input and mapping layer

nodes. In an AANN, the outputs of nodes in the bottleneck layer represent the

nonlinear principal components. As its name signifies, the compression network

performs compression of an input vector, x, and this compressed version forms the

output of the bottleneck layer nodes. The second network accepts (as its input) the

output from the bottleneck layer and decompresses it so as to produce an

approximation of the vector, x, at the output layer nodes.

The commonly utilized method for training an AANN is the error-back-

propagation algorithm [Rumelhart et al., 1986]. The AANN is trained to obtain an

identity mapping, which involves adjusting the network weights in a manner such

that the network outputs become identical to the inputs. A small error between the

input and its reconstruction (AANN output) ensures that the output from the

bottleneck layer contains a compact representation of the input data set. In order to

uncover nonlinearities between the input data variables, the neurons in the

mapping and demapping layers should use a nonlinear transfer function such as

the logistic sigmoid.

Figure 2.16: The schematic representation of architecture of AANN

Bottleneck
layer

1̂x

2x̂

3x̂

ˆJx

1

2

ND

3

1

2

NM

3

1

2

J

3

1

2

J

3

1

2

NB

x1

x2

x3

xj

Output
layer

Hidden
Layer-II

Input
layer

Hidden
Layer-I

 111

The number of nodes in the mapping and demapping layers of an AANN

are problem-dependent and require a heuristic optimization. However, too many

nodes in these layers may lead to an over-fitted network owing to which it may

not generalize well. Thus, the same precautions as outlined for the three-layered

MLP network (see Section 2.2.1) must be exercised while creating an optimal

AANN. Apart from their use in dimensionality reduction and extraction of non-

linear principal components, the AANNs can also be utilized for denoising of

input vectors [Kuespert and McAvoy, 1994].

Figure 2.17: Compression and decompression networks performing: (a) mapping,
and (b) de-mapping of the input data

Two approaches are possible for extracting the nonlinear principal

components (PCs) using an AANN. In the first approach, known as “simultaneous

extraction,” the AANN training is conducted by taking as many nodes in the

bottle-neck layer as the desired number of nonlinear PCs. Thus, a single AANN

extracts all the desired number of nonlinear PCs. However, this method though

effective for dimensionality reduction, the nonlinear PCs that it extracts could still

be correlated. To minimize the correlation existing between the nonlinear PCs, the

second approach known as “sequential extraction” is used. In this approach, the

Input Mapping Output De-Mapping

x1

x2

x3

xJ Output Input

(a) (b)

1x

2x̂

3x̂

ˆJx

1

2

NB

1

2

NB

1

2

J

3

1

2

J

3

1

2

NM

3

1

2

ND

3

 112

number of nodes in the bottleneck layer always equals one. The corresponding

NLPCA procedure involves sequential training of several AANNs (each with a

single bottle-neck node) extracting only one nonlinear PC at a time. Here, the first

AANN is trained to obtain the first nonlinear PC; the residual matrix, formed by

the difference between the input and the output of the first AANN is then used to

train the second AANN to obtain the second nonlinear PC and so on. Thus, the

sequential extraction approach requires training a number of AANNs equal to the

desired number of nonlinear principal components. In this method, each AANN

extracts a different feature in the input data. As a result, nonlinear PCs obtained by

this method are expected to be less correlated and more orthogonal to each other

than the PCs given by the simultaneous extraction method.

2.5.4 Locally Linear Embedding

Dimensionality reduction by locally linear embedding (LLE) [Roweis and

Saul, 2000] involves identifying the underlying structure of the manifold, while

projections of the data by PCA map faraway data points to nearby points in the

plane. Similar to PCA, the LLE algorithm is simple to implement, and its

optimization does not involve local minima while at the same time it is capable of

generating highly nonlinear embeddings. The LLE algorithm is based on simple

geometric intuitions. Consider a dataset consisting of N real-valued vectors Xi,

each of dimensionality D, sampled from some smooth underlying manifold.

Provided that there exist sufficient data so that the manifold is well-sampled, it is

expected that each data point and its neighbors lie on or close to a locally linear

patch of the manifold. Thus, it is possible to characterize the local geometry of

these patches by linear coefficients that reconstruct each data point from its

neighbors. The simplest LLE formulation identifies K nearest neighbors per data

point, as measured by the Euclidean distance; neighbors are identified by choosing

all points within a ball of fixed radius. Reconstruction errors are then measured by

the cost function:

 2||)(∑∑ −=
j

jij
i

i XWXWC (2.67)

 113

This adds up the squared distances between all the data points and their

reconstructions. The weights Wij represent the contribution of the jth data point to

the ith reconstruction. To compute the weights Wij, the cost function C(W), is

minimized subject to two constraints: (i) that each data point Xi is reconstructed

only from its neighbors, which forces Wij = 0 if Xj does not belong to this set and,

(ii) that the rows of the weight matrix sum to one i.e. , ΣWij =1. The optimal

weights Wij subject to these constraints are found by solving a least squares

minimization problem.

Consider that the data lie on or near a smooth nonlinear manifold of

dimensionality d << D. Then, assuming good approximation, there exists a linear

mapping—comprising a translation, rotation, and rescaling—that maps the high

dimensional coordinates of each neighborhood to global internal coordinates on

the manifold. According to the design reconstruction, weights Wij, reflect intrinsic

geometric properties of the data that are invariant exactly to such transformations.

Hence, their characterization of local geometry in the original data space should

be equally valid for local patches on the manifold. Specifically, the same weights

Wij that reconstruct the ith data point in D dimensions should also reconstruct its

embedded manifold coordinates in d dimensions. The LLE essentially constructs a

neighborhood-preserving mapping based on the above idea. In the final step of the

algorithm, each high dimensional observation Xi is mapped to a low dimensional

vector Yi representing global internal coordinates on the manifold. This is done by

choosing d-dimensional coordinates Yi to minimize the embedding cost function:

 2||)(∑∑ −=φ
j

jij
i

i YWYY (2.68)

Similar to the cost function in Eq. (2.67), this cost function is based on locally

linear reconstruction errors, however here the weights, Wij are fixed while

optimizing the coordinates Yi. The embedding cost in Eq. (2.68) defines a

quadratic form involving vectors Yi. Subject to the constraints which make the

problem well- posed, the cost function can be minimized by solving a sparse (N ×

N) eigenvector problem, whose bottom d non-zero eigenvectors provide an

ordered set of orthogonal coordinates centered on the origin. While the

reconstruction weights for each data point are computed from its local

neighborhood—independent of the weights for other data points—the embedding

 114

coordinates are computed by an (N × N) eigen solver, which is a global operation

that couples all data points in connected components of the graph defined by the

weight matrix. The different dimensions in the embedding space can be computed

successively which is performed simply by computing the bottom eigenvectors

from Eq. (2.68) one at a time. However, the computation is always coupled across

data points. In this manner, the algorithm leverages overlapping local information

to discover the underlying global structure.

Implementation of the LLE algorithm is fairly straightforward, since the

algorithm has only one free parameter namely the number of neighbors per data

point (K). Once neighbors are chosen, the optimal weights Wij and coordinates Yi

are computed by the standard linear algebra methods. The algorithm involves a

single pass through the three steps detailed below and finds the global minima of

the reconstruction and embedding costs in Eqs. (2.67) and (2.68). In an event

when the neighbors outnumber the input dimensionality (K>D), the least squares

problem for finding the weights does not possess a unique solution. In such cases,

a regularization term—for instance, one that penalizes the squared magnitudes of

the weights—must be added to the reconstruction cost. This is done by adding

regularization parameter to the algorithm to break the degeneracy. For simplicity

of the algorithm, the parameter is set to a constant value or it is set automatically.

LLE algorithm:

(1) Compute the neighbors of each data point, Xi;

(2) Compute the weights Wij that best reconstruct each data point Xi from its

neighbors, minimizing the cost in Eq. (2.67) by constrained linear fits;

(3) Compute the vectors Yi that best reconstructed by the weights Wij,

minimizing the quadratic form in Eq. (2.68) by its bottom nonzero

eigenvectors.

2.5.5 Sammon’s Mapping and ANN-based Sammon’s Mapping

 The Sammon’s mapping (SM) is a multidimensional-scaling (MDS) based

useful tool in nonlinear pattern recognition practice [Sammon, 1969]. It maps a

dataset of dimensionality D, onto a non-linear subspace of d dimensions (where d

 115

< D), preserving as well as possible the inter-pattern distances. The SM is often

used to visualize high-dimensional data in two or three dimensions although it can

be used to map a high-dimensional dataset to any low-dimensional space, i.e. the

output is not restricted to only two or three dimensions. The SM algorithm

performs a mapping to a d-dimensional space by minimizing the following error

function (also known as “Sammon’s stress”, ESAM):

()2
1 N

ij ij
SAM N

i j ijiji j

d D
E

DD <
<

−
= ∑

∑
 (2.69)

where, dij (Dij) refers to the distance between two points xi and xj (i ≠ j) in the low

(high) dimensional space.

Equation (2.69) expresses how well the distances in the output space (i.e.,

d-dimensional) fit the distances in the original D-dimensional input space, giving

more weightage to the small distances. Minimization of ESAM is performed by

using a classical gradient descent technique, in which a search is conducted in the

direction opposite of the gradient of ESAM(X).

A. Gradient decent algorithm of Sammon’s Mapping

1. Define an initial configuration X(0). at iteration t:

2. Compute the distances dij for the current configuration X(t), one such

refinement will be required.

3. ∇ ESAM : gradient vector of function ESAM(X), evaluated at X:
()() , (1)k r

E XE k d r
xμ

μ∂
∇ = = − +

∂
; k = 1,2,…,Nd (2.70)

4. X(t+1) is obtained by: () () () ()1 ,t t tX X t Eα+ = − ∇ (2.71)

5. STOP if ESAM has converged, else GOTO step 2.

A significant disadvantage of Sammon’s mapping algorithm is that it can

not be generalized to yield a mapping of new or previously unseen data points.

That is, when a new point has to be mapped, the entire mapping exercise must be

repeated. To overcome this drawback, Mao and Jain [1995] proposed the artificial

neural network (ANN) based algorithm known as SAMANN for Sammon’s

mapping. In this paradigm, a feed-forward neural network such as the multi-layer

 116

perceptron (see Section 2.2.1) with an unsupervised learning rule is utilized to

minimize the Sammon’s stress. Once trained properly, the SAMANN weight

parameters can be used to perform dimensionality reduction and feature extraction

of newer/unseen data.

B. ANN-based implementation of Sammon’s mapping (SAMANN)

The basic principle underlying SAMANN is the usage of a feed-forward

artificial neural network (FFNN) to interpolate and extrapolate the Sammon’s

mapping, for overcoming the associated generalization problem. In the study by

Mao and Jain [1995], a specific back-propagation like learning algorithm

(SAMANN) is developed to allow a standard FFNN to learn the Sammon’s

mapping in an unsupervised way (see Figure 2.18). In each learning step, two

points (xi, xj) are presented to the SAMANN and the outputs of each neuron are

stored for both points. The distance between SAMANN’s output vectors is

evaluated and an error measure can be defined in terms of this distance and the

distance between the points in the original D-dimensional input space. From this

error measure, a weight update rule can be derived for its minimization. Since no

output examples are necessary, this is an unsupervised training algorithm.

Let x = (x1, x2,…,xD) be a D-dimensional input vector. We denote the

output of the jth unit in SAMANN’s layer, l, by yj
(l), j =1, 2,….nl, l = 1, 2,…,L,

where nl is the number of units in layer l, L is the number of layers, and yj
(0) = xj, j

=1, 2,…D. The weight on connection between unit i in SAMANN’s layer l -1, and

unit j in layer l, is represented by wij
(l). We denote w0j

(l) as the bias for the jth unit

in the lth layer and y0
(l) = 1.0. The sigmoid activation function, g(h), whose range is

(0.0,1.0) is used for each unit, where h is the weighted sum of all the inputs to the

units. Thus, the output of the jth unit in layer l can be written as

() () ()1

0

, 1,2, , .
tn

l l l
j ij i

i

y g w y l L−

=

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∑ L (2.72)

where i and j are the two pattern indices. For simplicity we denote input

vectors xi and xj as μ and ν, respectively.

 117

Figure 2.18: SAMANN Architecture

And define distances between the corresponding output vectors as

 () () () () ()
1/ 2

2

1
,

m
L L

k k
k

d y yμ ν ν ν
=

⎧ ⎫⎡ ⎤= −⎨ ⎬⎣ ⎦⎩ ⎭
∑ (2.73)

Let,
()

1

1 1

1ˆ
,

n n

D
μ ν μ

λ
μ ν

−

= = +

=

∑ ∑
 (2.74)

where, λ̂ is independent of the network and can be computed before hand. The

error function is defined as,

() ()
()

2
, ,ˆ

,
D d

E
Dμν

μ ν μ ν
λ

μ ν
−⎡ ⎤⎣ ⎦= (2.75)

1

j21

21

21

d2 D

J

NH1

NH1

Input layer

Hidden layer1

Hidden layer2

Output layer

Bias 2

Bias 3

Bias 1

xμ,1

dJ

xν,1 xμ,2 xν,2 xμ,d xν,d xμ,D xν,D

d1 d2 dj

 118

1

1 1

n n

E Eμν
μ ν μ

−

= = +

= ∑ ∑ (2.76)

Note that the Eµν is proportional to the interpattern distance changes between the

patterns µ and ν, due to the projection from the D-dimensional feature space to the

d-dimensional projected space. Therefore, Eµν is more appropriate for the pattern-

by-pattern based weight updating rules. The updating rule has been derived for the

multilayer feed-forward neural network, which minimizes the Sammon’s stress

based on the gradient descent method. For the output layer (l = L):

() ()
()

() () ()
() ()

()
,

.
,

jk

L L
k k

L LL L
jkk k

y yE E d
dw wy y

μν μν μ νμ ν
μ ν μ ν

⎛ ⎞ ⎛ ⎞⎡ ⎤∂ −⎛ ⎞∂ ∂ ∂ ⎣ ⎦⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ⎡ ⎤∂ ∂∂ −⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠

 (2.77)

() () () ()
() ()

() () () (), ,
, 2

, ,
L L L

k k k

D d
y y

D d
μ ν μ ν

δ μ ν λ μ ν
μ ν μ ν

− ⎡ ⎤= − −⎣ ⎦
 (2.78)

and,

() () () () () () () (), 1
k

L L L L
jk k ky yμ δ μ ν μ μ⎡ ⎤Δ = −⎣ ⎦ (2.79)

() () () () () () () (), 1
k

L L L L
jk k ky yν δ μ ν ν ν⎡ ⎤Δ = −⎣ ⎦

 (2.80)

where () (),L
kδ μ ν is the change in the output scales by the normalized interpattern

distance change when patterns µ and ν are presented to network. As will be seen

later, ()L
jk μΔ and ()L

jk νΔ are back-propagated to the layer (L-1).

()
() () () () () () () ()1 1 .L L L L
jk j jk jL

jk

E
y y

w
μν μ ν ν ν− −∂

= Δ − Δ
∂

 (2.81)

The updating rule for the output layer is

()
()

() () () () () () ()()11L L L LL
jk jk j jk jL

jk

E
w y y

w
μνη η μ μ ν ν−−∂

Δ = − = − Δ − Δ
∂

 (2.82)

where η is the learning rate. Similarly, we can obtain the general weight updating

rules for all the hidden layers, 1, , 1l L= −L

 119

() () () () () () () ()()11l l l ll
ij ij i ij il

ij

E
w y y

w
μνη η μ μ ν ν−−∂

Δ = − = − Δ − Δ
∂

 (2.83)

where, () () () () () ()1l ll l
ij j j jy yμ δ μ μ μ⎡ ⎤Δ = −⎣ ⎦

 (2.84)

 () () () () () ()1l ll l
ij j j jy yν δ ν ν ν⎡ ⎤Δ = −⎣ ⎦ (2. 85)

and, () () () () ()1 1

1

m
l l l

j jk jk
k

wδ μ μ+ +

=

= Δ∑ (2.86)

 () () () () ()1 1

1

m
l l l

j jk jk
k

wδ ν ν+ +

=

= Δ∑ (2.87)

Analogous to the standard back-propagation learning algorithm, () ()l
jδ μ and () ()l

jδ ν

are changes in layer l back-propagated from its successive layer, l +1, for patterns

µ and pattern ν, respectively. As can be seen from equations (2.82) and (2.83), to

update weights, we need to present a pair of patterns to the network instead of one

pattern at a time as in the standard back-propagation learning algorithm. To do

this, we can either build two identical networks or just store all the outputs of the

first pattern before we store the second pattern. In order to improve the

convergence speed and to reduce the possibility of entrapment into a local

minimum, a momentum term similar to the standard back-propagation algorithm

[Rumelhart et al., 1986] can be added to the weight updation equations (2.82) and

(2.83).

SAMANN unsupervised back propagation algorithm

1. Initialize weights randomly in the SAMANN network

2. Select a pair of input pattern randomly and present them to the network

one at a time; evaluate the network in a feed-forward fashion.

3. Updates weights using (1.86) and (1.87) in the usual back-propagation

fashion beginning with the output layer weights.

4. Repeat steps (2) - (3) a large number of times.

5. Present all the patterns in the training set and evaluate the output of the

network; compute Sammon’s stress and check convergence; if the value of

Sammon’s stress is below a pre-specified threshold or the number of

 120

iterations (over steps 2-5) exceeds the prespecified maximum number, then

STOP; else go to step 2.

The number of hidden layers and the number of neurons in each hidden

layer in the multilayer SAMANN should be chosen heuristically albeit

judiciously. To achieve the representation power of the Sammon’s algorithm, a

network with at least d×N free parameters should be used, where d×N is the

number of variables in Sammon’s algorithm. Thus, d×N becomes a lower bound

for the total number of free parameters. This lower bound becomes very large

when the number of patterns is large. Random initialization of SAMANN is

preferred here [Lerner et al., 1999] as the PCA based initialization – which was

used in the classification experiments by Mao and Jain [1995] – was found to

yield very similar maps to those of the PCA based feature extractor.

2.5.6 Fuzzy Curves and Surfaces

Modern day chemical processes are complex entities with a diverse set of

equipment. Thus, a large number of factors influence the reaction and mass and

heat transfer phenomena in these processes. As a result, the corresponding

mathematical models also comprise a large number of input variables. All the

input variables are not equally important since their influence on the model

outputs (response/dependant variables) vary significantly with some of these

showing only negligible effects. Thus, identifying the important (influential)

variables from among a number of input variables becomes necessary for securing

a parsimonious yet accurate and reliable process model.

A. Review of prior input selection techniques

The most commonly used input selection and dimensionality reduction

techniques are those that perform linear transformations, such as principal

component analysis (PCA) [Ramos et al., 1986]. The major advantage of linear

transformations is that they are computationally efficient, easy to design, and

typically possess closed-form solutions [Wold et al,. 1987]. However, the PCA

and other similar methods extract only linear relationships among the input data

 121

variables and thus they do not perform satisfactorily when input variables are

nonlinearly correlated, which is a common feature of high-dimensional data sets.

There exist two general methods namely sensitivity analysis (SA) and

mean square error (MSE), for ranking and selecting the important, nonlinearly

correlated inputs of an ANN model. In the SA methodology, sensitivity

coefficient matrix (SCM) is computed based on the partial derivatives of ANN

outputs with respect to each input. The procedure for computing the sensitivity

coefficient matrix for a single hidden layer is outlined by Zurada et al. [1994] and

Engelbrecht et al. [1995], while that for a two hidden layer network can be found

in Sung [1998]. The MSE methodology can be implemented using either the

forward selection (FS) or backward elimination (BE) methods. In the first stage of

the forward implementation [Lin and Cunningham, 1996, 1998; Sugeno and

Yasukawa, 1993] a separate single input–single output (SISO) ANN model is

employed for approximating the nonlinear relationship existing between each of

the input variables and an output variable. Thus, for a system comprising N inputs,

as many ANN models are developed following that the MSE between the desired

(target) and the model predicted output is evaluated. The particular input whose

model yields the smallest MSE magnitude is then selected as the most significant

input. Next, this input is used along with each of the remaining inputs to construct

(N-1) number of two input–single output models. Here, the specific pair of inputs

leading to the smallest MSE magnitude is chosen to be the two most important

inputs. This input pair is then utilized in combination with each of the remaining

(N-2) inputs, to construct (N-2) number of three input–single output models and

thereby determining the three most important inputs. The said procedure is

repeated till one of the two criteria gets satisfied: (i) the MSE has reached the pre-

specified threshold, and (ii) the MSE does not decrease with the addition of a new

input. In the worst case scenario, identification of important inputs requires a total

of (N(N+1)/2) models [Lin et al., 1996].

In the BE method for input identification [Takagi and Hayashai, 1991] all

the N inputs are first employed to construct an N input–single output ANN model

using an appropriate training algorithm such as the error back-propagation

[Rummelheart et al., 1986]. Next, each of the N inputs is ignored in turn to

develop N number of (N-1) input–single output models. The specific input whose

 122

exclusion does not lead to an increase in the MSE is eliminated as an unimportant

input. This input elimination procedure is continued till all the unimportant inputs

are removed. Likewise in the forward selection method, the BE approach needs

development of at most N(N+1)/2 models.

Among the above-stated three commonly employed input selection

methods; the sensitivity analysis is computationally least costly since the

sensitivity matrix with respect to all the inputs can be evaluated by constructing a

single ANN model that uses all available inputs. In contrast the FS and BE

methods are computationally expensive since the other two techniques (FS and

BE) require development of up to N(N+1)/2 models. This is due to the fact that the

overall computational effort in developing ANN models by taking even a single

input at a time increases dramatically with increasing number of inputs and the

size of the training data set. The large number of models that needs to be

developed for identifying important inputs makes FS and BE methods practically

unattractive.

B. Fuzzy curves and surfaces

A fuzzy logic based method that overcomes the problems of a large

computational effort and local minima associated with the MSE approach has

been introduced by Lin et al. [1996, 1998]. This method comprising the

computation of fuzzy curves and surfaces avoids the process of ANN-based

modeling completely and it automatically and quickly isolates the significant

independent input variables for use in the development an entire gamut of non-

linear models. The fuzzy curve and fuzzy surface techniques allow a rapid

development of accurate nonlinear models for large, complex, poorly defined

systems [Lin et al., 1996].

The fuzzy logic based method for ranking the inputs comprises two stages.

In the first stage, fuzzy curves are computed followed by the evaluation of fuzzy

surfaces. Lin et al. [1995, 1996] have developed a fuzzy curve method for

establishing the relationship between inputs and the output and thereby identifying

the most important inputs.

Consider an input-output data set D, comprising P training patterns of N

dimensional inputs x = (x1, x2,…, xk,…, xP) and the corresponding output y. Let xik

 123

and yk denote the ith variable in the kth (k ≤ P) pattern and the corresponding

output, respectively. The fuzzy curves algorithm can be briefly described as given

below.

1. For each input xi in the kth pattern in the data set D, compute the fuzzy

membership function (FMF), µi,k.

()
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

2
,

, exp
b

xx
x iki

ikiμ (2.88)

The FMF can be interpreted as fuzzy rules for the output y with respect to

each input xi [Lin et. al., 1996):

 IF xi is µi,k(xi) THEN y is yk (2.89)

Thus, for P training patterns, we get P fuzzy rules for each input variable.

The parameter b, in the Eq. (2.88), controls the width of the membership

function and its magnitude is chosen arbitrarily between 10% and 20% of

the range of the specific (i.e., ith) input variable [Lin et al., 1995].

2. Defuzzify the fuzzy membership functions µi,k(xi), using the center of area

method to produce a fuzzy curve, Ci, for each input variable xi.

() ()

()
∑

∑=

=

=
p

k
p

k
iki

kiki
ii

x

yx
xC

1

1
,

,

μ

μ
 (2.90)

3. Rank the importance of input variables on the basis of the range covered by

their individual fuzzy curves. The range (
iCR) of fuzzy curve is calculated as

minmax
iiC CCR

i
−= (2.91)

where, max
iC and min

iC respectively refers to the maximum and minimum of

the fuzzy curve (Ci) for the ith input. Next, the input variables are ranked

according to the decreasing
iCR values i.e., the input variable with the height

(lowest)
iCR representing the most (least) important input. Ranking can also

be done by visual inspection of fuzzy curves in the ()iii xCx − space. An

 124

input variable with a flat fuzzy curve is identified as less important since it

has little influence on the output.

4. Generate the first stage fuzzy surfaces (i.e., 2-D fuzzy curves) according to:

()
() ()

() ()∑

∑

=

== p

k
ikjiki

p

k
kikjiki

jiI

xx

yxx
xxS

1
,,

1
,,

,
μμ

μμ
 (2.92)

where, ix and jx are any two input variables. Evaluate importance of a

combination of value of the corresponding performance index ji
SR , which is

defined as,

 ()()∑ −= 2, ,1
kjiI

y

ji
I yxxS

P
R

σ
 (2.93)

where yσ refers to the variance of the p number of outputs evaluated as

()

P

yy
p

k
k

y

∑
=

−
= 1

2

σ (2.94)

A smaller magnitude of ji
SR , indicates that the input variable ix and jx are

more independent.

5. Generate second stage fuzzy surface using following equation

 () ()() () ()∑ −= jkjikikjiIjiII xxyxxSxxS ,,
2,, μμ (2.95)

The performance index for the IInd stage fuzzy surface is given as:

 ()()∑ −= 2
2

, ,1
yjiII

y

ji
II xxS

P
R σ

σ
 (2.96)

The single performance index combining the performance indexes of the Ist

and IInd stage fuzzy surfaces is identified as

 ji
II

ji
Iji

R
RR ,

,
,

1+
= (2.97)

 125

The second stage fuzzy surfaces use a different principle than the first stage

surfaces. These are based on the idea that if the relationship between an

input xi and the output y is random then a local estimate of the variance of y

in xi-y space will be nearly equal to the global value yσ . On the other hand, if

xi is indeed related to y, then the local variance estimate is expected to differ

significantly from the global variance [Lin et al., 1998].

C. Advantages of the fuzzy curves and surfaces

 The fuzzy curves and surfaces (FCS) method for identifying significant

inputs has following advantages:

(i) Unlike the commonly used forward selection and backward elimination

methods that use ANNs, the FCS method does not use a complex

nonlinear formalism for modeling a system.

(ii) There exists only one free parameter namely width that needs tuning.

(iii) Unlike ANN-based input identification, the FCS does not suffer from local

minima problems.

(iv) The maximum number of models to be developed in the FCS-based input

identification is far less than the forward selection and backward

elimination methods which makes it numerically efficient.

2.6 CONCLUSION

To summarize, this chapter provides an overview of artificial intelligence

based formalisms used in modeling, optimization, classification, dimensionality

reduction and input selection. The formalisms and the corresponding algorithm

described here have been extensively utilized in the subsequent chapters for

conducting several studies involving modeling, classification, optimization, fault

detection and diagnosis, monitoring, dimensionality reduction, input selection, etc.

of several chemical engineering/technology systems. In some studies, the

algorithms presented in this chapter are improvised in the sense to make it

applicable for chemical and biochemical systems.

 126

2.7 REFERENCES

1. Abe, T., S. Kanaya, M. Kinouchi, Y. Ichiba, T. Kozuki, and T. Ikemura

(2003), Informatics for Unveiling Hidden Genome Signatures, Genome

Research 13(4): 693–702

2. Adjiman, C. S., I. P. Androulakis, and C. A. Floudas (2000), Global

optimization of mixed-integer nonlinear problems. AIChE Journal, 46(9),

1769–1798.

3. Admoaitis R. A., R. M. Farber, J. L. Hudson, I. G. Kevrekidis, M. Kube

and A. S. Lapedes (1990), Application of neural nets to system

identification and bifurcation analysis of real world experimental data. Los

Alamos National Laboratory, Technical Report LA-UR-90-5 15.

4. Ahalt, A., A. K. Krishnamurthy, P. Chen, and D. E. Melton (1990),

Competitive learning algorithms for vector quantization. Neural Networks.

Interactive Pattern Recognition. New York: Marcel Dekker, 1978. 3: 277–

290.

5. Antonisse, J., A new interpretation of schema notation that overturns the

binary encoding constraint. Proc. Of third int. Conf. on genetic

Algorithms, ed. J. David Schaffer, Morgan Kaufmann, San mateo, CA,

1989, 86–91.

6. Arabas, J., Z. Michalewicz, and J. Mulawka (1994), GA Vs PS – A

genetic algorithm with varying population size, Proceedings of the 1st

IEEE International Conference on Evolutionary Computing, eds. Z.

Michatewicz, D. Schaffer, H. P. Schewefel, D. Fogel, and H. Kitano, IEEE

Service Center, Orlando, FL, Vol. 1, 73–78.

7. Back, T. and H.P. Schwefel (1993), An overview of evolutionary

algorithms for. parameter optimization, Evol Comput., 1 (1), 1–23.

8. Bhandari, D., N. R. Pal and S. K. Pal, Directed mutations in genetic

Algorithms, Inf. Sci., 1994, 79, 251–270.

9. Bhat N., P. Minderman, T. McAvoy and N. S. Wang (1990), Modeling

chemical process systems via neural computation. IEEE Control Syst.

Msg., 8, 24–30.

10. Bishop, C. M. (1994), Neural networks and their applications. Rev. Sci.

Instru., 65, 1803.

 127

11. Buchala S., N. Davey, R. J. Frank, T. M. Gale, M. J. Loomes, W.

Kanargard (2004), Gender classification of face images: The role of global

and feature-based information. INCONIP 2004. 763–768.

12. Bulsari, A. B. (Ed.) (1995), Neural Networks for Chemical Engineers,

Elsevier, Amsterdam.

13. Burges, C. (1998), A tutorial on support vector machines for pattern

recognition. Data Mining and Knowledge Discovery, 2, 1–47.

14. Chan, C. W., Cheung, K. C., Jin, H., and Zhang, H. Y. (1999), A

constrained Kohonen network and its application to sensor fault detection.

In Automatic Control in Aerospace 1998. Proceedings volume from the

14th IFAC Symposium. Elsevier Science, Kidlington, UK, 249–54.

15. Chen, B. J., M. W. Chang, C.J. Lin (2001), Load forecasting using support

vector machines: A study of EUNITE competition 2001. Report for

EUNITE competition for smart adaptive systems. Available at

http://www.eunite.org

16. Chen, S., C.F.N. Cowan, P.M. Grant (1991), Orthogonal least-squares

learning algorithm for RBFNs, IEEE Trans. Neural Networks 2 (2), 302–

309.

17. Cherkassky, V., Y. Ma (2004), Practical selection of SVM parameters and

noise estimation for SVM regression, Neural Networks 17 (1) 113–126.

18. Cybenko G. (1989), Approximation by superposition of a sigmoidal

function. Math. Control. Sig. Syst., 2, 303–314.

19. Davis, L. (1989), Adapting Operator Probabilities in Genetic Algorithms,

in Proceedings of the 3rd International Conference on Genetic Algorithms,

eds. J. D. Schaffer and Morgan Kaufmann, San Mateo, CA, , 61–69.

20. Demartines, P. and J. Herault (1995), CCA: Curvilinear component

analysis, in GRETSI’95, Juan-les-pins, France, Sept.

21. Demartines, P., and J. Herault, Curvilinear Component Analysis: A Self-

Organizing Neural Network for Nonlinear Mapping of Data Sets, IEEE

trans. on neural networks, vol. 8(1).

22. Dibike, Y. B., S. Velickov, D. Solomatine (2000), Support vector

machines: Review and applications in civil engineering. Proc. of the 2nd

Joint Workshop on Application of AI in Civil Engineering, Cottbus,

Germany.

 128

23. Donat J. S., N. Bhat and T. J. McAvoy (1990), Optimizing neural net

based predictive control. Proc. Am. Control Conf., 2466–2471.

24. Drucker, H., C.J.C. Burges, L. Kaufman, A. Smola, V. Vapnik (1997),

Support vector regression machines, In: M.C. Mozer, M.I. Jordan, and T.

Petsche (Eds.), Advances in Neural Information Processing Systems 9,

MIT Press, Cambridge, MA, 155–161.

25. Edgar, T. F., Himmelblau, D. M., & Lasdon L. S. (2001), Optimization of

chemical processes. McGraw-Hill.

26. Eshelman, L. J., R. A. Caruana, and J. D. Schaffer (1989), in 'Proceedings

of the 3rd International Conference on Genetic Algorithms’, eds. J. D.

Schaffer and Morgan Kaufmann, San Mateo, CA, 10–19.

27. Fahlman, S. E. (1988), An empirical study of learning speed in

backpropagation networks, Technical Report CMU-CS-88-162, Computer

Science Department, Carnegie-Mellon University, Pittsburgh, PA.

28. Fisher R. and W. MacKenzie (1923), Studies in crop variation. II. The

manurial response of different potato varieties, Journal of Agricultural

Science, 13, 311–320.

29. Fogarty, T. C. (1989), Varying the Probability of Mutation in the Genetic

Algorithm , in Proceedings of the 3rd International Conference on Genetic

Algorithms, eds. J. D. Schaffer and Morgan Kaufmann, San Mateo, CA,

104–109.

30. Freeman, J. A., Skapura, D. M. (1991), Neural networks: algorithms,

applications and programming techniques, Addison-Wesley, Reading,

MA.

31. Garcia, S., E. P. Scott (1998), Numer. Heat Trans. (Part-A), 33, p. 135.

32. Geladi, P., B.R. Kowalski (1986), Partial least-squares regression: a

tutorial, Anal. Chim. Acta, 185, 1–17.

33. Glover, F. (1986), Future paths for integer programming and links to

artificial intelligence. Computers and Operations Research, 5, 533–549.

34. Glover, F., and Laguna M., (1997), Tabu search. Boston: Kluwer

Academic Publishers.

35. Glover, F. (1989), Tabu Search-Part I. ORSA J. Comput. 1, 190–206.

36. Glover, F. (1990), Tabu Search-Part II. ORSA J. Comput. 2, 4–32.

 129

37. Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization and

Machine Learning, Addison-Wesley, Reading, MA.

38. Goldberg, D. E. (1991), Real coded genetic algorithms, alphabets and

blocking, Complex Systems, 5, 139–167.

39. Goldberg, D. E. (1989), Sizing Populations for Serial and Parallel Genetic

Algorithms, in Proceedings of the 3rd International conference on Genetic

Algorithms, eds. J. Schaffer and Mogan Kaufmann, San Mateo, CA, 70–

79.

40. Gray, G. J., Murray-Smith, D. J., Li, Y., and Sharman, K. C. (1996),

Nonlinear model structure identification using genetic programming and a

block diagram oriented simulation tool. Electronic Letters, 32, 1422–1424.

41. Grefenstette, J. J. (1986), Optimization of control parameters for genetic

algorithms, IEEE Trans. Syst. Man. and Cyber., 16, 122–128.

42. Grosman, B., D.R. Lewin (2004), Adaptive genetic programming for

steady-state process modeling, Computers and Chemical Engineering 28,

2779–2790.

43. Haesloop D. and B. R. Holt (1990), A neural network structure for systems

identification. Proc. Am. Control conf., 2460–2465.

44. Haykins, S., (1999), Neural networks: a comprehensive foundation (2nd

edn.): Prentice Hall, New Jersey.

45. Hernandez E. and Y. Arkun (1990), Neural network modeling and an

extended DMC algorithm to control nonlinear systems. Proc. Am. Control

Conf., 2454–2459.

46. Hertz, J., A. Krogh, R.G. Palmer (1991), Introduction to the Theory of

Neural Computation, Addison-Wesley, Redwood City, CA.

47. Holland, J. H. (1975), Adaptation in Natural and Artificial Systems,

University of Michigan Press, Ann Arbor, MI.

48. Hoskins J. C. and D. M. Himmelblau (1988), Artificial neural network

models of knowledge representation in chemical engineering. Computers

and Chem. Engg., 12, 881–890.

49. Hotelling, H. (1933), Analysis of a complex of statistical variables into

principal components, Journal of Educational Psychology, 24, 417–441

and 498–520.

 130

50. Iba H., T. Kurita, H. Garis, and T. Sato (1993), System Identification

Using Structured Genetic Algorithms, Proc. of the 5th Int. Conf. on

Genetic Algorithms, Urbana-Champaign, USA, 276–286.

51. Jain, B. J., Pohlheim, H., & Wegener J. (2001), On termination criteria of

evolutionary algorithms. In Proceedings of the Genetic and Evolutionary

Computation Conference, GECCO-2001, San Francisco, CA: Morgan

Kaufmann Publishers.

52. Jayaraman, V. K., Kulkarni, B. D., Karale, S., and Shelokar, P. (2000), Ant

colony framework for optimal design and scheduling of batch plants.

Computers and Chemical Engineering, 24, 1901–1912.

53. Joost, M., and W. Schimann (1998), Speeding up backpropagation

algorithms by using cross{entropy combined with pattern normalization.

International Journal of Uncertainty, Fuzziness and Knowledge based

Systems (IJUFKS), 6(2):117–126.

54. Kang, P. and Birtwhistle, D. (1999), Self-organizing map for fault

detection. Intelligent engineering systems through artificial neural

networks, 9:685–690.

55. Kasturi, J., R. Acharya, and M. Ramanathan (2003), An information

theoretic approach for analyzing temporal patterns of gene expression,

Bioinformatics. 19(4): 449–458.

56. Kohonen, T. (1990), The self-organizing map. Proceedings of the IEEE

78:1464–1480.

57. Kohonen, T., E. Oja, O. Simula, A. Visa, and J. Kangas (1998),

Engineering applications of the self-organizing map. Proc. IEEE, 84(10)

p.27.

58. Kohonen, T. (1989), Self-Organization and Associative Memory, 3rd ed.

Berlin: Springer-Verlag.

59. Koza J. R. (1994), Genetic Programming II, MIT Press.

60. Koza J. R. (1992), Genetic Programming: On the programming of

computers by means of natural selection, MIT Press,.

61. Kramer, M. A., (1991) Nonlinear principal component analysis using

autoassociative neural networks, AIChE J. 37, 223–243.

62. Kramer, M.A. (1992), Autoassociative neural networks. Comput. Chem.

Eng. 16 (4), 313–328.

 131

63. Krogh, A., J. A. Hertz (1995), A simple weight decay can improve

generalization, in: J.E. Moody, S.J. Hanson, R.P. Lipmann (Eds.),

Advances in Neural Information Processing Systems, Vol. 4, Morgan-

Kauffmann, San Mateo, CA, 950– 957.

64. Kuespert, D. R. and McAvoy, T. J. (1994), Knowledge extraction in

chemical process control. Chem. Eng. Comm. 130, 251–264.

65. Kulkarni, B. D., Tambe, S. S., Dahule, R. K., Yadavalli, V. K. (1999),

Consider Genetic Programming for Process Identification. Hydrocarbon

Processing, 78 (7), 89–97.

66. Kulkarni, S. G., A. K. Chaudhary, S. Nandi, S. S. Tambe and B. D.

Kulkarni (2004), Modeling and monitoring of batch processes using

principal component analysis (PCA) assisted generalized regression neural

networks (GRNN). Biochemical Engineering Journal, 18 (3), 193–210.

67. Lakshminarayanan, S., Fujii, H., Grosman, B., Dassau, E., & Lewin, D. R.

(2000), New product design via analysis of historical databases.

Computers and Chemical Engineering, 24(2–7), 671–676.

68. Lapedes A. and R. Farber (1987), Nonlinear signal processing using neural

networks: prediction and system modeling. Los Alamos National

Laboratory Technical Report LAUR, 87, 2662.

69. Leonard, J. A. and Kramer, M. A. (1993), Diagnosing dynamic faults

using modular neural nets. IEEE Expert 8, 44–53.

70. Lerner, B. (1999), A Comparative Study of Neural Network Based Feature

Extraction Paradigms, Pattern Recognition Letters, vol. 20, 7–14.

71. Levin E. (1990), Modeling time varying systems using a hidden control

neural network architecture. Proc. Sixth Yale Workshop on Adaptive and

Learning Systems, 127–l 32.

72. Lin Y., Cunningham G.A. (1995), A new approach to fuzzy-neural system

modeling, IEEE Transactions on Fuzzy Systems. 3. (2), 190–198.

73. Lin, B., and Miller D. C. (2001), Improvement to the performance of tabu

search. In Proceedings of the AIChE Annual Meeting. Reno, NV.

74. Lin, B., D. C. Miller (2004), Tabu search algorithm for chemical process

optimization, Comps and Chem. Engg., 28, 2287–2306.

 132

75. Lin, Y., G. A. Cunningham III, S. V. Coggeshall (1996), Input variable

identification - fuzzy curves and fuzzy surfaces, Fuzzy Sets and Systems,

82, 65–71.

76. Lin, Y., G. A. Cunningham III, S. V. Coggeshall, R. D. Jones (1998),

Nonlinear system input structure identification: two stage fuzzy curves and

surfaces. IEEE Transactions on Systems, Man, and Cybernetics, Part A

28(5): 678–684.

77. Lucasius, C. B. and Kateman G. (1989), Application of genetic algorithms

in chemometrics, application of genetic algorithms in chemometrics. ed. J.

David Schaffer, Morgan Kaufmann, San mateo, CA, 170–176.

78. MacQueen, J. B. (1967), Some Methods for classification and Analysis of

Multivariate Observations, Proceedings of 5-th Berkeley Symposium on

Mathematical Statistics and Probability, Berkeley, University of

California Press, 1, 281–297.

79. Mao, J. and Jain, A. K. (1995), “Artificial Neural Networks for Feature

Extraction and Multivariate Data Projection”, IEEE Trans. Neural

Networks, vol. 6, 296–317.

80. McKay, B., Willis, M. J., & Barton, G. W. (1997). Steady-state modeling

of chemical processes using genetic programming. Computers and

Chemical Engineering, 21(9), 981–996.

81. Michalewicz, Z. (1995). A survey of constraint handling techniques in

evolutionary computation methods. In Proceedings of the 4th Annual

Conference on Evolutionary Programming. Cambridge, MA: MIT Press.

82. Michalewicz, Z. (1992), Genetic Algorithms + Data Structures =

Evolution programs. Springer-verlag, New York.

83. Michalewicz, Z. (1995), Genetic algorithms numerical optimization and

Constraints, in Proceedings of the 6th International Conference on Genetic

algorithms, cd., L. J. Eshelman and Morgan Kaufmann, San Mateo, CA,

151–158.

84. Moody, J., C. J. Darken (1989), Fast learning in networks of locally-tuned

processing units, Neural Computation, 1, 281–294.

85. Moscato P. (1992), A memetic approach for the traveling salesman

problem implementation of a computational ecology for combinatorial

optimization on message-passing systems, in Parallel Computing and

 133

Transputer Applications, M. Valero, E. Onate, M. Jane, J.L. Larriba, and

B. Suarez, Eds. Amsterdam, The Netherlands: IOS Press, 177–176.

86. Moscato P. and Cotta C. (1999), A gentle Introduction to Memetic

Algorithms, in Handbook of Metaheuristics, ed Glower F. &

Kochenberger G., Kluwer, 1–56.

87. Moscato, P. and C. Cotta (1999), A gentle introduction to memetic

algorithms. Glower and G. Kochenberger, Editors, Handbook of

Metaheuristics, Kluwer, 1–56.

88. Muller, K. R., A. Smola, G. Ratsch, B. Schölkopf, J. Kohlmorgen, V.

Vapnik (1997), Predicting time series with support vector machines. In:

W. Gerstner, A. Germond, M. Hasler, and J.D. Nicoud (Eds.), Artificial

Neural Networks ICANN’97, Berlin. Springer, Lecture Notes in Computer

Science. 1327, 999–1004.

89. Nadaraya, E. A. (1964), On estimating regression, Theory of Probability

and its Application, 9, 141–142.

90. Nandi, A. K. (2005), Fault detection using Genetic Programming,

Mechanical system and signal processing, 19 (2), 271–289.

91. Nandi, S., P. Mukherjee, S. S. Tambe, R. Kumar and B. D. Kulkarni

(2002), Reaction modeling and optimization using neural networks and

genetic algorithms: case study involving TS-1 catalyzed hydroxylation of

benzene, Ind. Engg. Chem. Res., 41, 2159–2169.

92. Narenda K. S. and K. Parthasarathy (1990), Identification and control of

dynamical systems using neural networks. IEEE Trans. Neural Networks,

1, 4–27.

93. Neal R. M. (1996), Bayesian learning for neural networks, New York:

Springer Verlag,.

94. Park J. and I. W. Sandberg (1991), Universal approximation using radial-

basis function networks. Neur. Comput., 3,246–257.

95. Patel, A. N., Mah, R. S. H., & Karimi, I. A. (1991). Preliminary design of

multiproduct noncontinuous plants using simulated annealing. Computers

and Chemical Engineering, 15(7), 451–469.

96. Pearson, K. (1901), On lines and planes of closest fit to systems of points

in space, Philosophical Magazine, (6) 2, 559–572.

 134

97. Pörn, R., Harjunkoski, I., and Westerlund, T. (1999). Convexification of

different classes of non-convex MINLP problems. Computers and

Chemical Engineering, 23, 439–448.

98. Psichogios D. C. and L. H. Ungar (1991), Direct and indirect model based

control using artificial neural networks. Ind. Engg Chem. Res., 30, 2564.

99. Reifman, J., J. Vitela (1994), Accelerating learning of neural networks

with conjugate gradients for nuclear power plant applications, Nucl.

Technol. 106, 225–241.

100. Riedmiller, M. and H. Braun (1993). A direct adaptive method for faster

backpropagation learning: The RPROP algorithm. Proceedings IEEE Int.

Conf. on Neural Networks, IEEE Press, 586–591.

101. Riedmiller, M. (1994), Advanced supervised learning in multi-layer

perceptrons { from backpropagation to adaptive learning algorithms.

Computer Standards and Interfaces, 16, 265–278.

102. Roweis S. T. and Saul L. K. (2000), Nonlinear Dimensionality Reduction

by Locally Linear Embedding , Science, vol 290, pp 2323–2326.

103. Rumelhart, D., Hinton G., Williams, R., 1986. Learning representations by

backpropagating error. Nature, 323, 533–536.

104. Rutkowski, L., and K. Cpałka (2003), Flexible neuro-fuzzy systems, IEEE

Trans. Neural Networks, 14, 554–574.

105. Sammon, J. W. (1969), A nonlinear mapping algorithm for data structure

analysis, IEEE Trans. Comput., C-18, 401–409.

106. Schimann, W., M. Joost, and R. Werner (1993). Comparison of optimized

backpropagation algorithms. In Verleysen, editor, Proceedings European

Symposium on Artificial Neural Networks, ESANN '93, 97–104, Brussels,.

107. Schneider, G., (1999). How many potentially secreted proteins are

contained in bacterial genome. Gene. 237:113–121.

108. Schölkopf, J. C., J. Platt, A. J. Shawe-Taylor, Smola; Williamson R. C.

(2001), Estimating support of a high-dimensional distribution. Neural

Comput., 13, 1443–1471.

109. Schwefel, H. P. (1984), A family of non-linear optimization techniques

based imitating on some principles of organic evolution. Ann. Operations

Res., 1, 165–167.

 135

110. Shepard, R. N. and J. D. Carroll (1965), Parametric representation of

nonlinear data structures, in Proc. Int. Symp. Multivariate Anal., P. R.

Krishnaiah, Ed. New York: Academic, 561–592.

111. Simula, O. and J. Kangas (1995). Neural networks for chemical engineers,

vol-6 of Computer-Aided Chemical Engineering, Chapter 14, Process

Monitoring and visualization using self-organizing maps. Elsevier,

Amsterdam.

112. Smola, A., B. Schölkopf, K. R. Müller (1998), The connection between

regularization operators and support vector kernels. Neural Networks, 11,

637–649.

113. South M. C., S. McConnel, M. T. Tham, M. J. Willis (1995), Data

Analysis Via Symbolic Regression, Trans. IChemE.

114. Spall, J. C. (1987), “A Stochastic Approximation Technique for

Generating Maximum Likelihood Parameter Estimates,” Proc. of the

Amer. Cont. Conf, AACC, Evanston, IL, 1161.

115. Spall, J. C. (1998b), An Overview of the Simultaneous Perturbation

Method for Efficient Optimization, Johns Hopkins APL Tech. Dig., 19,

482.

116. Spall, J. C. (1998a), Implementation of the Simultaneous Perturbation

Algorithm for Stochastic Optimization, IEEE Trans. Aerosp. Electron.

Syst., AES-34, 817.

117. Specht, D. F. (1991), A general regression neural network, IEEE Trans.

Neural Networks, 2, 568–576.

118. Srinivas, M. and L. M, Patnaik (1994), Adaptive probabilities of crossover

and mutation in genetic algorithms, IEEE. Trans. Syst. Man. Cyber., 24

(4), 656–667.

119. Syswerda, G. (1989), Schedule optimization using genetic algorithms, in

Handbook of Genetic Algorithms, ed. L. Davis, Van Nostrand Reinhold,

New York, chapter 21, 332–349.

120. Syswerda, G. (1989), Uniform Crossover in Genetic Algorithms, in

Proceedings of the 3rd International conference on Genetic Algorithms,

eds. J. D. Schaffer and Morgan Kaufmann, San Mateo, CA, 2–9.

121. Tambe, S. S., B. D. Kulkarni and P. B. Deshpande (1996), Elements of

Artificial Neural Networks with selected applications in Chemical

 136

Engineering, and Chemical & Biological Sciences, Simulations &

Advanced Controls, Louisville, KY.

122. Tayal, M. C., and Fu, Y. (1999). Optimal design of heat exchangers: A

genetic algorithm framework. Industrial Engineering and Chemical

Research, 38, 456–467.

123. Tenenbaum, J. B., DeSilva, V. and Langford, J. C. (2000), A global

geometric framework for nonlinear dimensionality reduction, Science, 290,

2319–2323.

124. Thissen, U., R. Van Brakel, A.P. De Weijer, W.J. Melssen, L.M.C.

Buydens (2003), Using support vector machines for time series prediction,

Chemom. Intell. Lab. Syst. (1–2) 35–49.

125. Tryba, V. and K. Goser (1991). Self-organizing feature maps for process

control in chemistry. In T. kohonen, K. Makisara, O. Simula, and J.

kangas, editors, Artificial neural Networks, Amsterdam, Netherlands,

847–852.

126. Ultsch, A. (1993), Self-organizing feature maps for monitoring and

knowledge acquisition of a chemical process. In S. Gielen and B. Kappen,

editors, proc. ICANN’1993, Int. Conf. on Artificial neural networks,

London, UK. Springer 864–867.

127. Vaidyanathan, R., and El-Halwagi, M. (1994). Global optimization of

nonconvex nonlinear programs via interval analysis. Computers and

Chemical Engineering, 18(10), 889–897.

128. Vapnik, V., S. Golowich, A. Smola (1996), Support vector method for

function approximation, regression estimation and signal processing. Adv.

in Neural Inform. Proces. Syst., 9, 281–287.

129. Vapnik, V. (1998), Statistical Learning Theory, John Wiley, New York.

130. Vapnik, V. (1995), The Nature of Statistical Learning Theory, Springer

Verlag, New York.

131. Vasanto, J., E. Alhoniemi, J. Himberg, K. Kiviluto, and J. Parvinainen,

(1999). Self-organizing map for data mining in Matlab: the SOM Toolbox.

Simulation news, Europe, 25–54.

Also see http://www.cis.hut.fi/project/somtoolbox

132. Venkatasubramanian, V., K. M. Chan, and J. M. Caruthers (1994).

Comput. Chem. Eng., 18, 833–844.

 137

133. Venkatasubramanian. V., R. Vaidyanathan and Y. Yamamoto (1990), An

analysis of the learning, recall, and generalization characteristics of neural

networks for process fault diagnosis. Computers chem. Engg., 14, 699–

712.

134. Wah, B. W., and Wang, T. (2000). Tuning strategies of constrained

simulated annealing for nonlinear global optimization. International

Journal of Artificial Intelligence Tools, 9(1), 3–25.

135. Wang, C., Quan, H., & Xu, X. (1999). Optimal design of multiproduct

batch chemical process using tabu search. Computers and Chemical

Engineering, 23, 427–437.

136. Wang, H. C., J. Badger, P. Kearney, and M. Li. (2001). Analysis of Codon

Usage Patterns of Bacterial Genomes Using the Self-Organizing Map.

Molecular Biology and Evolution 18:792–800.

137. Watanabe K., I. Matsuura, M. Abe, M. Kubota and D. M. Himmelblau

(1989), Incipient fault diagnosis of chemical processes via artificial neural

networks, AK’kE JI 35, 1803–1812.

138. Watson, G. S. (1964), Smooth regression analysis, Sankhya Series A, 26,

359–372.

139. Widrow, B., and Hoff, M. E. (1960). Adaptive switching circuits. IRE

WESTCON Connection Record, 4, 96–104. Reprinted in [Anderson 1988],

265.

140. Willis M. J. C. DiMassimo, G. A. Montague, M. T. Tham and A. J. Morris

(1991), Artificial neural networks in process engineering. ZEE Proc.-D.

138, 256–266.

141. Willis, M. J., Hiden, H., Hinchliffe, M., McKay, B., & Barton, G. W.

(1997). Systems modeling using genetic programming. Computers and

Chemical Engineering, 21(1), 1161–1166.

142. Wold, H. (1966), Nonlinear estimation by iterative least squares

procedures, in F. David (Editor), Research Papers in Statistics, Wiley,

New York, 411–444.

143. Wright, A. H. (1991), Genetic Algorithms for Real Parameter

Optimization, in Foundations of Genetic Algorithms, First Workshop on

the Foundations of Genetic Algorithms and Classifier Systems, eds. G.

Rawlins and Morgan Kaufmann, San Mateo, CA, 205–218.

 138

144. Xu, L., A. Krzyzak, E. Oja (1993), Rival penalized competitive learning

for clustering analysis, RBF net, and curve detection, IEEE Trans. Neur.

Networks 4, 636–648.

145. Ydstie B. E. (1990), Forecasting and control using adaptive connectionist

networks. Computers and Chem. Engg., 14,683–599.

146. Yu, H., Fang, H., Yao, P., & Yuan, Y. (2000). A combined genetic

algorithm/simulated annealing algorithm for large scale system energy

integration. Computers and Chemical Engineering, 24, 2023–2035.

147. Zhang B. and H. Muhlenbein (1993), Genetic Programming of Minimal

Neural Nets Using Occam's Razor, Proc. of the 5th Int. Conf. on Genetic

Algorithms, Urbana-Champaign, USA, 342–349.

148. Levenberg, K. (1944), A Method for the Solution of Certain Non-Linear

Problems in Least Squares. Quart. Appl. Math. 2, 164–168.

149. Marquardt, D. (1963), An Algorithm for Least-Squares Estimation of

Nonlinear Parameters. SIAM J. Appl. Math. 11, 431–441.

 139

CHAPTER 3. PROCESS MODELING

`

CHAPTER 3

PROCESS MODELING

 140

3.1 INTRODUCTION

 In this chapter, we have designed, developed or improvised some of the AI

and ML based algorithms for building chemical/biochemical process models used

in process monitoring, performance enhancement, output predictions, softsensors

and model input identification. In the first study, optimal noise superimposition

strategy is presented for building more accurate and generalized process models

for Reliance Ind. Ltd. To show the generic nature of the suggested strategy

(optimal noise superimposition), in another study, the strategy is used for a few

more chemical processes. In the third study, the ANN model is developed for the

estimation of the gross calorific value of Indian coals. In the next study, a novel

ML-based formalism, known as support vector regrssion, is explored to develop

softsensors for biochemical processes. The SVR is also utilized for modeling of

biochemical systems.

 141

3.2 ARTIFICIAL INTELLIGENCE BASED SOFT-SENSORS FOR

MONITORING PRODUCT PROPERTIES IN POLYETHYLENE

PROCESS∗

Properly designed artificial intelligence based soft-sensors for the quality

control variables has helped in improving the performance of the polyethelene

(PE) plants while cutting down the need for frequent laboratory analyses of the PE

product. Deployment of softsensors has also reduced the extent of an off-spec

product and aided better and faster process related decision-making.

Introduction

Sharp excursions in the natural gas prices and an increasing trend of

feedstock prices in the last few years have led to almost flat and even negative

margins for the global polyolefin industry. Unstable and decreasing end-product

selling prices resulting from overcapacities have compounded the problem further.

A welcome respite from the severe downturn in margins and financial

performance has been offered to the polyolefin industry by a forecast, which

anticipates a supply-demand imbalance favoring demand over the next few years

[Nahas et al., 1992]. Accordingly, polyolefin manufacturers are gearing up for the

impending significant upturn in the polyolefin business by raising the production

rates of existing plants, reducing transition time between product changes and

minimizing off-spec production.
 The Reliance Industries Limited (RIL) (a “Fortune Global 500” company)

has two plants at Hajira, India, that produce polyethylene (PE) using the solution

polymerization of ethylene technology wherein α-olefins are utilized as the co-

monomers. The plants are capable of producing various PE grades comprising

homo-polymers, co-polymers and ter-polymers, for meeting the requirements of a

wide spectrum of consumer applications. Depending upon the resin to be

∗ Badhe, Y. P., J. Lonari, S. S. Tambe, B. D. Kulkarni, Neelamkumar Valecha, S.

V. Deshmukh, B. Shenoy and S. Ravichandran, Hydrocarbon Processing,
March-2007.

 142

manufactured, process conditions are specified and these are controlled using a

sophisticated distributed control system (DCS). The quality of the final

polyethylene product is measured in terms of three quality control (QC) variables,

namely, stress exponent, density and melt flow index (MFI).

3.2.1 Monitoring of Polyethylene Process

Frequent monitoring of the properties of a PE product is a prerequisite for

ensuring consistent and reliable production of a high quality product. For

polyethylene, various product grades have closely matching values of properties

such as density. It is therefore necessary that quality monitoring mechanisms are

accurate, reliable, robust and capable of fast response. Often, on-line hardware

sensors are not available for monitoring the product properties and thus these have

to be determined using time consuming laboratory analyses. In the event of a

process malfunction or an operation under sub-optimal process conditions, the

plant continues to produce – till the results of the laboratory tests become

available to the operator – a product of an off-spec quality.

What are the problems?

Determination of PE’s three QC variables namely, stress exponent, density

and melt flow index, involves an analytical laboratory procedure that takes 30 to

45 minutes. This means that a confirmation that the product of a desired quality is

being produced comes only after the stated time period. If the laboratory

measurements of the three QC variables indicate any deviation from their desired

magnitudes, then process conditions need a readjustment. A significant amount of

off-spec product may be generated during the course of the laboratory analysis

and fine-tuning of process conditions. This is clearly undesired since it has

adverse economical implications. The stated difficulty can be overcome by

implementing a technological solution in the form of an accurate and robust

mathematical model capable of real-time predictions of the three QC variables. In

recent years, software based sensors (soft-sensors) that satisfy these requirements

have been recommended for monitoring the QC variables.

 143

3.2.2 Suggested Approaches

There exist two approaches namely phenomenological and empirical, for

developing process models. The PE process has complexities such as the

relationships between process variables are highly nonlinear and interactive,

process dynamics can last for many hours and is through-put dependent, and

control variables are often measured in laboratory which is a time consuming

process. Also, the involved product grade transitions represent some of the most

safety, reliability and cost-critical procedures done in the manufacturing

environment [Karagoz et al., 1990]. Being inherently complex and nonlinear, the

PE process is difficult to model phenomenologically, which involves development

of a “first-principles” model expressed in terms of mass, momentum and energy

balance equations. Specific difficulties encountered in the phenomenological

modeling of the PE process are: (i) the large number of costly experiments

required for studying the effect of influential process variables and parameters on

the QC variables, (ii) insufficient knowledge of the underlying physico-chemical

phenomena (e.g. reaction kinetics and, heat and mass transport mechanisms), and

(iii) stupendous amount of time intensive simulation effort to arrive at a

reasonable model.

The second approach to modeling of the PE process is to utilize classical

regression methods to formulate empirical models representing the dependency of

the QC variables on the key process operating variables. This approach however

suffers from that the form of the data-fitting needs to be specified a priori before

estimation of the function parameter. This is a difficult task since in the PE

process multiple variables influence the polymerization phenomenon nonlinearly

and the precise nature of their interactions is not fully known.

3.2.3 What is the Solution?

The above-stated difficulties associated with the regression based

empirical modeling can be overcome by utilizing an artificial intelligence based

modeling formalism known as Artificial Neural Networks (see Section 2.2.1). In

process engineering, ANNs have been used in diverse applications such as steady-

state and dynamic modeling, fault detection and diagnosis, process identification,

nonlinear model based control and process optimization (see e.g., Bhat and

 144

McAvoy [1990]; Hernandez and Arkun [1992]; Nahas et al., [1992]; Ramasamy et

al., [1995]; Tendulkar et al., [1998]; Nandi et al., [2001] and reviews by Narendra

and Parthasarathy [1990]; Hunt et al., [1992]; Agarwal [1997]). Owing to their

significant nonlinear function approximation property, ANNs have also been used

to develop soft-sensor models [Desai et al., 2005].

3.2.4 Softsensors for Process Monitoring

Soft-sensors are software based sophisticated monitoring systems, which

can relate less accessible and infrequently measured process variables with those

measured easily and frequently. Once developed, a softsensor model can be

readily used for predicting in real-time, the values of less accessible and difficult-

to-measure process variables. Softsensors are useful in control and monitoring of

chemical processes where owing to the unavailability of appropriate hardware

sensors, the values of important QC variables are not available continuously.

Availability of accurate, reliable and robust softsensor models assist in reducing

product variability and sampling frequency, minimizing an off-spec product

formation and enabling process operators and engineers in running the process

optimally. Accordingly, Reliance Industries Ltd., decided to explore the

possibility of developing ANN-based softsensors for predicting the values of three

polyethylene QC variables in real-time and this section details the case history of

the development and deployment of these softsensors.

The performance of soft-sensors in accurately predicting the magnitudes of

the QC variables depends upon the availability of reliable hardware sensors for

monitoring the easily accessible process variables and also on the mathematical

and/or statistical techniques used in the correlation and interpretation of process

data. The advantages of using ANNs for the development of soft-sensor models

for the PE process are: (i) the ANNs are capable of efficient approximation of the

nonlinear relationship(s) existing between the operating and the QC variables

exclusively from the corresponding historic process data, (ii) for model fitting, a

priori knowledge of the data-fitting function is not unnecessary since ANNs use a

generic nonlinear function for approximating the relationships between the model

inputs and outputs, and (iii) models can be built without considering the detailed

phenomenological knowledge (kinetics, heat and mass transport mechanisms, etc.)

 145

underlying the process. In essence, given historic process data, an ANN-based

soft-sensor model is capable of identifying and capturing the “cause-effect”

relationship between PE plant’s operating variables (model inputs) and the QC

variables (model outputs). Subsequently, given new operating conditions, the soft-

sensor models can be used for predicting in real-time the values of the three QC

variables.

3.2.5 ANN-Based Softsensor Development

In any set of real-world process data, presence of instrumental noise and/or

measurement errors is unavoidable. Thus, the data in their raw noisy form must be

used for building the softsensor models. Presence of noise and/or errors in the data

creates a threshold limit for the prediction accuracy and generalization

performance of the ANN-based softsensor model. Inaccuracies in model

predictions, if significant, cannot be tolerated since a number of process control

and policy decisions are based on the model predictions. Thus, it is critically

important that an ANN model possesses not only excellent prediction accuracy,

but also a good generalization property. This property enables an ANN model to

predict accurately the outputs corresponding to a new set of model inputs.

The input-output example data set used for training (i.e., fitting) an ANN

model is only a finite subset of samples selected from a population of a large

number of input-output patterns that can be monitored. Conventionally, ANN

models are trained using a suitable parameter (weight) adjustment algorithm that

minimizes a pre-specified cost (error) function. For instance, the most widely used

error-back-propagation (EBP) algorithm [Rumelhart et al., 1986] (refer to Section

2.2.1A) conducts minimization of the root-mean-squared error (RMSE) function.

Often, an ANN model constructed solely on the basis of minimization of the

RMSE with respect to the example set outputs is incapable of generalization. Such

an inability to generalize arises from an over-fitting of the model. This happens

when: (i) the ANN is trained over an excessively large number of training

iterations (known as over-fitting), and (ii) the number of parameters (weights) to

be fitted by an ANN are too high when compared to the number of input-output

example samples available for network training (over-parameterization). There

exist a number of approaches to avoid over-fitting and thereby improving the

 146

generalization performance of an ANN model. The commonly used method to

avoid over-fitting is to partition the example input-output dataset into two subsets,

namely training and validation sets. While the ANN weights are adjusted based

on the training set error, the validation set is used to continuously monitor the

generalization performance of the ANN model undergoing training. Here, the

prediction error with respect to the validation set outputs is utilized for selecting

the optimal model. A shortcoming of the validation set approach is that it is

effective when both the training and validation sets are large and representative

[An, 1996]. Else, the chosen ANN model is likely to be biased towards the

validation set. Another approach for improving the generalization performance of

an ANN model is to superimpose noise (also known as “jitter”) on the inputs and

outputs of the example set. The assumption underlying the noise-superimposition

strategy is that for a well-posed modeling problem a precise solution exists and a

small noise addition to the data should produce only small variations in the

solution. Thus, for a given example data set, additional network training patterns

can be generated by superimposing noise to the input-output elements of the

example set patterns. With addition of noise, the resultant ANN-approximated

function is defined over continuous ranges of the input plane which assists in

increasing the smoothness of the ANN fitted function and thereby improving the

generalization ability of the ANN model.

 While creating an enlarged noise-superimposed dataset, the noise

magnitude must be small since a large amount of noise would clearly distort the

intrinsic relationship between the inputs and outputs, while a too small noise

amount will lead to insignificant changes of no consequence. It may also be noted

that in a nonlinearly behaving system, such as the PE process, the sensitivity with

which changes in an input variable affect the output variable, differs significantly.

Owing to these factors, it becomes necessary to add varying extent of noise to

each input and output data element of the example set. Determining the exact

amount of noise to be added to each input-output variable is a tricky issue, which

has been successfully addressed by a methodology proposed by Kulkarni et al.

[2002]. Specifically, this method generates an enlarged noise-superimposed data

set wherein multiple patterns are synthesized by adding an optimal amount of

noise to variables of each input-output pattern of the example set. The

distinguishing feature of the proposed scheme is that it determines the optimal

 147

amount of noise to be superimposed on each input and output variable of the

example set. Here, the task of determining the optimal magnitude of variable-

specific noise to be superimposed has been addressed by using a novel

optimization formalism known as Genetic Algorithms (GA) [Holland, 1975,

Davis, 1987, Goldberg, 1989] (refer Section 2.4.3). The GA is an efficient method

for searching optimal solutions pertaining to noisy, multi-modal and non-convex

objective functions.

3.2.6 Development of Softsensors Using the Proposed Approach

Consider an example process input-output data matrix, Z(I, J), comprising

elements, zij, (i = 1, 2,…, I; j = 1, 2,…, J), wherein first N elements of an ith row

(i.e., zij; i = 1,2,…,I; j = 1,2,…,N) represent model inputs and the next K (K = J –

N) elements (i.e., zij; i = 1,2,…,I; j = N+1, N+2,…, N+K) represent the desired

(target) model outputs. For the PE process, model inputs describe the process

operating variables and parameters while outputs describe the QC variables. The

objective of the GA-based optimization is to create an enlarged noise-

superimposed data set, Ẑ , such that when it is used for training an ANN, it yields

a model possessing improved prediction accuracy and generalization performance.

 The J-dimensional decision vector to be optimized by the GA comprises

noise tolerances defined as: []Τ= Jεεεε ,...,, 21 . The first N elements of this vector

describe the noise tolerance (%) values for the model inputs and the next K

elements (N+1 to N+K) represent the noise tolerances for the model outputs (J = N

+ K). These variable-specific tolerances are used to characterize a set of

probability density functions (PDF), which are utilized to sample noisy copies of

the input-output measurements of the example set, Z. The type of noise to be

superimposed on the example data elements is considered to be Gaussian. The

procedure of developing an optimal ANN-model using an enlarged noise-

superimposed input-output example set is described in Kulkarni et al. [2003].

Soft-sensors for the PE plants

For affording a comparison, the softsensor models were developed using

both the original (i.e., non-noise-superimposed) historic example process data sets

and their noise-superimposed enlarged versions obtained using the GA formalism.

Specifically, sixteen models were developed depending upon the PE plant (I or II),

 148

catalyst operating mode and the co-monomer species used in the PE production.

All these models were of multiple input – single output (MISO) type (i.e., K = 1).

The break-up of the softsensor models and the corresponding output QC variable

is given below.

• Models 1 to 5: Stress exponent

• Models 6 to 10: Density

• Models 11 to 16: MFI

For softsensor development, steady-state process data collected over a

number of months of PE process operation were utilized. Depending upon the

model, the number of model inputs varied between 12 and 14; these comprised

various reaction dependent variables and parameters such as ethylene conversion,

temperatures at different reactor locations, flow rates, concentrations of reactants

and temperature differences within the reactor.

 The GA-based optimization of noise tolerances was conducted using

following GA-specific parameter values.

• Precision for binary coding of a tolerance variable: 10 bits

• Maximum number of generations over which GA was evolved: 50

• Crossover probability: 0.9

• Mutation probability: 0.05

• Population size: 15

All soft-sensor models were developed using a two hidden layer multi-

layer perceptron (MLP) network (see Figure 2.1) and its training was performed

using the error-back-propagation (EBP) algorithm with the momentum term

[Rumelhart et al., 1986]. To create an optimal soft-sensor model, the effect of

MLP’s structural parameters (number of nodes in each hidden layer) and EBP-

algorithm specific parameters (i.e., learning rate, η, and momentum coefficient, α)

was rigorously studied. Also, the effect of random weight initialization on the

root-mean-squared error (RMSE) minimization was examined by performing

multiple training runs with different seed values of the pseudo-random number

generator. The magnitude of the enlargement factor (M) used in creating the

enlarged noise-superimposed data sets varied between 10 and 50. Prior to MLP

training, the data sets (non-noise-superimposed and noise-superimposed enlarged

ones) were partitioned into training and validations sets in 80:20 ratio randomly.

 149

(a)

0.001

0.010

0.100

1.000

10.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Model No.

E t
rn

Non-Noise-Superimposed Data
Noise-superimposed data

(b)

0.000

0.001

0.010

0.100

1.000

10.000

1 3 5 7 9 11 13 15
Model No.

E v
al

Non-Noise-Superimposed Data
Noise-Superimposed Data

The detailed procedure for obtaining an optimal MLP model can be found, for

instance, in Bishop [1994], Freeman and Skapura [1991], Tambe et al. [1996] and

Nandi et al. [2001].

Softsensor performance

The prediction and generalization performance of the softsensor models

for the three QC variables namely stress exponent, density and MFI, was

evaluated in terms of two statistical measures namely RMSE, and the squared

coefficient of correlation (R2) between the model predicted and the corresponding

desired outputs. These quantities were evaluated for both training and validation

sets.

Figure 3.1: (Panel a) Comparison of RMSE values corresponding to the soft-
sensor models based on noise-superimposed and non-superimposed training data

sets. (Panel b) same as panel (a) but for validation set data

 150

(a)

0.010

0.100

1.000

10.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Models

A
vg

 %
 E

rr
or

 (t
rn

)

Non-Noise-Superimposed Data

Noise-Superimposed Data

(b)

0.010

0.100

1.000

10.000

100.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Models

A
vg

 %
 E

rr
or

 (v
al

)

Non-Noise-Superimposed Data

Noise-Superimposed Data

As can be noticed, the RMSE values pertaining to the models trained on

the noise-superimposed enlarged data sets are consistently smaller when

compared with those obtained using the original non-noise-superimposed data

sets. The extent of RMSE reduction is in general significant; in some cases it is as

high as 99% (see Table 3.1 to Table 3.3).

Figure 3.2: (Panel a) Comparison of average percentage error values
corresponding to the softsensor models based on noise-superimposed and non-

superimposed training data sets. (Panel b) same as panel (a) but for validation sets

Similar results are also observed with average percentage error for training

and validation sets (see Figure 3.2a and Figure 3.2b). The bar chart comparing the

R2 values corresponding to the predictions of all sixteen softsensor models using

noise-superimposed and non-noise-superimposed data are portrayed in

 151

(a)

0.600

0.700

0.800

0.900

1.000

1 3 5 7 9 11 13 15
Model No.

R
2 (t

rn
)

Noise-Superimposed Data

Non-Noise-Superimposed Data

(b)

0.600

0.700

0.800

0.900

1.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Model No.

R
2 (v

al
)

Noise-Superimposed Data
Non-Noise-Superimposed Data

magnitudes when compared with the R2 values pertaining to the non-noise-

superimposed data.

Figure 3.3: (Panel a) Comparison of the squared of correlation coefficient (R2)
values corresponding to the soft-sensor models based on noise-superimposed and

non-superimposed training sets. (Panel b) for validation data sets

From the R2 magnitudes listed in Table 3.1 to Table 3.3, it is seen that the

usage of noise-superimposed data has consistently yielded R2 values greater than

0.9. High and comparable values of R2 and low and comparable values of RMSE

for both the training and validation sets indicate that the models trained on the

noise-superimposed data possess excellent prediction accuracy and generalization

performance. The above–described softsensor models have been installed on the

 152

distributed control systems (DCS) of RIL’s two PE plants and are yielding

satisfactory real-time predictions of the three QC variables.

Table 3.1: Prediction and generalization performance of soft-sensor models for
stress exponent

Training data set Validation data set

Data Set* RMSE

(% Reduction)

R2

(% Improvement)

RMSE

(% Reduction)

R2

(% Improvement)

1Z 0.010 0.845 0.832 0.613

1Ẑ 0.009 (12.34) 0.879 (4.15) 0.008 (99.07) 0.904 (47.50)

2Z 0.016 0.438 0.015 0.46

2Ẑ 0.007 (55.12) 0.888 (102) 0.005 (64.74) 0.935 (102)

3Z 0.029 0.967 0.033 0.96

3Ẑ 0.025 (14.25) 0.976 (0.92) 0.025 (24.04) 0.976 (1.64)

4Z 0.707 0.753 0.016 0.494

4Ẑ 0.046 (93.45) 0.828 (9.912) 0.015 (4.75) 0.904 (82.9)

5Z 0.029 0.972 0.028 0.968

5Ẑ 0.028 (5.15) 0.974 (0.228) 0.027 (2.17) 0.975 (0.65)
*

iZ : Non-noise-superimposed data set for ith stress exponent model;

 iẐ : Noise superimposed enlarged set for ith stress exponent model

 153

Table 3.2: Prediction and generalization performance of soft-sensor models for
density

Training data set Validation data set

Data Set* RMSE

(% Reduction)

R2

(% Improvement)

RMSE

(% Reduction)

R2

(% Improvement)

1Z 0.068 0.891 0.100 0.769

1Ẑ 0.052 (22.94) 0.922 (3.42) 0.046 (53.70) 0.952 (23.85)

2Z 0.043 0.927 0.009 0.99

2Ẑ 0.002 (94.59) 0.969 (4.53) 0.001 (93.36) 0.998 (0.834)

3Z 0.100 0.964 0.061 0.95

3Ẑ 0.003 (97.10) 0.987 (2.35) 0.001 (98.41) 0.956 (0.53)

4Z 0.060 0.908 0.042 0.98

4Ẑ 0.003 (95.26) 0.948 (4.36) 0.001 (96.90) 0.989 (0.89)

5Z 0.050 0.931 0.082 0.90

5Ẑ 0.041 (17.05) 0.951 (2.08) 0.0206 (74.88) 0.937 (4.04)

*
iZ : Non-noise-superimposed data set for ith density model;

 iẐ : Noise superimposed enlarged set for ith density model

 154

Table 3.3: Prediction and generalization performance of soft-sensor models for
MFI

Training data set Validation data set

Data Set* RMSE

(% Reduction)

R2

(% Improvement)

RMSE

(% Reduction)

R2

(% Improvement)

1Z 0.109 0.988 0.493 0.801

1Ẑ 0.036 (66.64) 0.999 (1.07) 0.033 (93.39) 0.998 (24.7)

2Z 1.524 0.99 2.320 0.972

2Ẑ 0.005 (99.70) 0.994 (0.40) 0.004 (99.84) 0.998 (2.65)

3Z 0.041 0.98 0.117 0.895

3Ẑ 0.017 (58.04) 0.997 (1.71) 0.016 (86.37) 0.997 (11.45)

4Z 0.173 0.939 0.290 0.856

4Ẑ 0.021 (87.86) 0.972 (3.54) 0.020 (92.97) 0.976 (14.08)

5Z 1.954 0.988 4.142 0.944

5Ẑ 1.316 (32.63) 0.995 (0.65) 1.222 (70.49) 0.995 (5.34)

6Z 0.037 0.98 0.032 0.943

6Ẑ 0.018 (51.05) 0.982 (0.20) 0.031 (4.19) 0.98 (3.96)

*
iZ : Non-noise-superimposed data set for ith MFI model;

 iẐ : Noise superimposed enlarged set for ith MFI model.

3.2.7 Benefits of the Soft-sensor Models

The model-based real-time knowledge of the three product quality

variables has served following important purposes, namely: (i) assistance in

reducing product variability, (ii) reduction in the frequency of product sampling

and thereby lab analyses, and (iii) the plant management no longer has to wait for

lab results while making a switch from an off-spec to prime quality production

and vice versa.

 155

To summarize, this study presents a case history of the development of

ANN-based softsensor models for predicting the three critical QC variables

namely stress exponent, density and melt flow index, of Reliance Industries

Limited’s two polyethylene plants at Hajira, India. A new generic strategy capable

of substantially improving the prediction accuracy and generalization performance

of the ANN models was specially designed and implemented for the development

of the above-stated softsensors. This strategy envisages creation of optimal noise-

superimposed data sets for training and validation of the softsensor models. The

softsensors developed thereby are capable of predicting the values of the three QC

variables with satisfactory accuracy. This has resulted in the reduction of product

sampling frequency and consequent laboratory analyses, and also allowed the

plant management in taking “informed” decisions while switching from an off-

spec to prime production and vice-versa.

 156

3.3 PERFORMANCE ENHANCEMENT OF ARTIFICIAL NEURAL

NETWORK BASED MODELS IN PRESENCE OF NOISY DATA∗

Owing to their significant nonlinear function approximation capability,

ANNs have been widely used for developing nonlinear empirical process models.

The major advantage of ANN-based models is that multiple input—multiple

output (MIMO) nonlinear relationships can be developed easily and exclusively

from the historic process data (known as “example set”). A significant difficulty

arises in ANN-based modeling when the example input-output data contain

unavoidable instrumental noise and/or measurement errors. In such situations, the

resultant ANN model exhibits suboptimal prediction accuracy and poor

generalization performance. Accordingly, a generic method [Kulkarni et al., 2002]

is used in this section for improving the prediction accuracy and generalization

performance of ANN models. The methodology envisages creation of an enlarged

noise-superimposed data-set from the example set, which is then utilized in

training the ANN model. In this “noise-superimposition” methodology, the

Gaussian noise of a specific tolerance is added to each input-output element of the

example data set. Typically, a large number of input-output patterns are sampled

in this manner from the Gaussian probability distribution function. The underlying

principle in the presented methodology is that the super-imposed noise in the data

constrains the ANN to be less sensitive to variations in the input data and the

resultant smoothing effect is beneficial in improving the ANN’s generalization

performance. It is necessary that the strength of the variable-specific

superimposed noise is optimal. This issue has been addressed by using an

optimization strategy that optimizes the input-output variable-specific tolerance

values of the Gaussian super-imposed noise. The efficacy of the noise-

superimposition formalism in developing optimal ANN models has been

∗ Badhe Y. P, S. S. Tambe and B. D. Kulkarni, Presented in the "First Indo-US

Joint Meeting in a Global Environment," organized by Indian Institute of
Chemical Engineers and American Institute of Chemical Engineers held at The
Grand Hyatt, Mumbai, during 28-30 Dec. 2004.

 157

successfully established by conducting two case studies involving modeling of a

catalytic and CSTR process.

3.3.1 Introduction

Any real-world process data sets are always associated with instrumental

noise and/or measurement errors. There exists a number of efficient

methodologies for removing noise from the raw process data; these methodologies

though effective for denoising dynamic data with non-varying statistical

properties, they are not effective – owing to their varying statistical properties –

for denoising, for instance, steady-state process data. Thus, the data in their raw

noisy form must be used for building ANN models. The presence of noise and/or

errors in the data used for training a steady-state ANN model creates a threshold

limit for the prediction accuracy and generalization performance of the model.

Also, the noise present in the desired (target) output values increases the danger of

over-fitting of ANN models. This effect is more pronounced in regions where the

function to be learned by the ANN model is steep. The inaccuracies in model

predictions, if significant, cannot be tolerated since a significant number of control

and policy decisions regarding the process operation are based on the predictions

made by the model. Thus, it is critically important that an ANN model possesses

not only excellent prediction accuracy, but also a good generalization property.

In one of the established methods for improving the generalization

performance of an ANN model, noise is added to the inputs and outputs of the

example set [Sietsma et al., 1991, Holmstorm et al., 1992, An, 1996]. Addition of

noise serves the purpose of enlarging the size of the training set and is akin to

minimizing the true error function. Sietsma and Dow [1991] showed that training

with Gaussian noise-added data improves the classification ability of multi-layer

perceptron (MLP) networks. In another exhaustive study, An [1996] studied the

effect of noise in the inputs and weights and demonstrated that noise-addition is

helpful in improving the generalization performance of an ANN model. A

significant difficulty in this approach is determining the strength of the noise to be

added to the individual elements of the example set. This difficulty arises from the

fact that addition of very small noise amount results in changes of no consequence

whereas high amount of noise clearly distorts the intrinsic relationship among the

 158

input-output variables. Thus, it is absolutely essential to devise a formalism that

fixes the amount of noise to be added while creating a noise-superimposed

enlarged example set. Accordingly, the method presented in the following section

utilizes a novel approach for improving the prediction accuracy and generalization

performance of an ANN model when the example data contain instrumental noise

and measurement errors. To be specific, the approach generates an enlarged

example data set wherein multiple patterns are synthesized by adding an optimal

amount of Gaussian noise to the elements of each input-output example pattern.

The important issue of determining the optimal magnitude of the superimposed

noise has been addressed by using the genetic algorithm-based nonlinear

optimization strategy. The said method describedbriefly in section 3.2.6 is

elabroted in the following section. The efficacy of the optimal noise

superimposition technique has been validated by conducting two case studies,

namely: (i) ANN-based steady-state modeling of a non-isothermal continuous

stirred tank reactor (CSTR) wherein a consecutive CBA →→ reaction occurs,

and (ii) ANN based modeling of benzene isopropylation reaction on Hbeta

catalyst.

3.3.2 GA-Based Generation of Enlarged Noise Superimposed Data

The enlarged noise superimposed input-output data set to be used in the

ANN modeling possesses following characteristics: (i) it is created by generating

multiple noise-superimposed samples from each input-output pattern of the

example input-output set, (ii) the superimposed noise is normally distributed and

the magnitude of noise is specific to individual input-output variables of the

example set data, (iii) the optimal magnitude of the variable-specific noise is

determined by the genetic algorithm (GA) method, and (iv) the enlarged data set

after appropriate partitioning into the training and validation sets yields an ANN

model possessing improved prediction and generalization performance.

 Consider an example data set, D, comprising input-output vector pairs, (x1,

y1), (x2, y2),…,(xp, yp),…,(xP, yP) such that xp ∈ Nℜ ; p = 1,2,…, P is a vector of

model’s input variables and yp ∈ Kℜ is a vector of the corresponding model

output variables. The relationships between input vectors, xp; p = 1, 2,…, P, and

the corresponding output vector, yp, are governed by a K-dimensional nonlinear

 159

function vector, f. A feed-forward neural network, such as the most widely

employed three-layered multilayer perceptron (MLP), approximates the nonlinear

relationships between xp and yp as given by:

 yp = f (xp , WH, WO) (3.1)

where, matrices WH and WO, represent the weights on connections between MLP’s

input and hidden layer nodes and, hidden and output layer nodes, respectively. For

improving the prediction accuracy and generalization performance of the ANN

model, we create noise-superimposed enlarged version, D̂ , of the data matrix D

according to the method proposed by Kulkarni et al. [2002]. In a system where the

relationship between its inputs and outputs is nonlinear, the dependent (output)

variables exhibit varying extents of sensitivity to the changes in the causal (input)

variables. Thus it is advisable to add varying extent of noise to each individual

input-output variable rather than keeping the noise magnitude same for all the

stated variables. In the present study, Gaussian noise has been considered for

generating the enlarged data set. The amount of Gaussian noise to be

superimposed is specific to an input-output variable and is characterized in terms

of the tolerance percentage. The genetic algorithms formalism is used to search

for the optimal input and output noise tolerance vectors, *Iε =[*
1
Iε ,

*I
2ε ,…, *I

nε ,…, *I
Nε]T and *Oε = [*O

1ε , *O
2ε ,…, *O

kε ,…, *O
Kε]T, where the input and

output noise tolerances are defined in terms of the Gaussian probability density

function (PDF) as given below in Eqs. (3.2) and (3.3), respectively.

 () ()pnpnn x/10009.3 II σε ××= , n = 1, 2, 3…,N (3.2)

where, pnx denotes nth element of the pth row of the input variable matrix, X: I
nε

represents the noise tolerance for pnx and I
pnσ refers to the standard deviation of

the Gaussian PDF.

 () ()pkknk y/10009.3 OO σε ××= , k = 1, 2, 3…,K (3.3)

where, pky denotes the kth element of the pth row of output variable matrix, Y,

O
kε represents the noise tolerance for the output element, pky and O

pkσ refers to

the standard deviation of the Gaussian PDF. The genetic algorithm steps involved

 160

in searching the optimal values of the input-output noise tolerances (*Iε , *Oε) are

as given below:

Step 1: Initialize a random population of noise tolerance vectors (*Iε , *Oε)

representing candidate solutions to the nonlinear optimization problem

wherein individual elements of a solution vector describe the extent of noise to

be added to each input-output element of the example set.

Step 2: Utilize the input-output variable-specific noise tolerance values contained

in a candidate solution vector to define the respective Gaussian probability

distribution (PDF) and use the random numbers sampled from each PDF to

generate multiple noise-superimposed sample input-output patterns

corresponding to each input-output data pattern in the example set.

Step 3: Repeat step (2) with all candidate solution vectors and generate noise-

superimposed enlarged sample input-output data sets equaling the number of

candidate solutions.

Step 4: Develop ANN models using the noise-superimposed enlarged data sets

created in step 3.

Step 5: Calculate fitness values of the candidate solutions describing noise

tolerances and rank the solutions in the decreasing order of their fitness values.

Step 6: Perform GA operations, namely, selection, crossover and mutation on the

ranked solution population to obtain a new population of candidate solutions

representing noise tolerances.

Step 7: Repeat steps (2) to (6) till an optimal solution representing optimum values

of the input-output variable specific noise tolerances leading to the ANN model

with improved prediction and generalization performance is obtained.

3.3.3 Case Study – I: Steady-State Modeling of A CSTR

This case study considers an ANN-based steady-state modeling of a

jacketed non-isothermal CSTR wherein two first order reactions in

series, CBA →→ , take place. The phenomenological model defining the CSTR

dynamics represented in terms of three state variables, T (temperature), AĈ

 161

(concentration of species, A) and BĈ (concentration of species, B) is as given in

Nandi et al., [2001]. The phenomenological model was used to generate the

steady-state process data under varying values of six process parameters, viz., V

(volume, m3), F (inlet flow rate, m3/min), Q (heat removal rate, KJ/min), 0
AC

(inlet concentration of species, A), 0
BC (inlet concentration of species, B) and T0

(inlet temperature, oC). The values of these parameters were respectively varied in

the following ranges: [0.1-0.5], [0.5-1.0], [20000-200000], [600-4000], [6-550]

and [295-305] to create an example data set of 50 patterns. These values form the

six-dimensional input space of the ANN model, and the corresponding steady-

state concentration of the desired product, B (CB, mol/lit), forms the model output.

To mimic real-world data comprising process noise, the Gaussian noise of

strengths 5%, 10%, and 15% was added to each element of the simulated process

data set. The three data sets thus formed are defined as 1D , 2D and 3D ,

respectively. For comparing the performance of the optimal noise-superimposition

strategy, ANN models were constructed using the data sets 1D , 2D and 3D

directly (i.e., without employing optimal noise-superimposition strategy). The

details of the network architecture and EBP-specific parameter values resulting in

the optimal MLP models created using the three data sets are listed in Table 3.4.

Also listed in the table are the values of the coefficient of correlation (CC)

between the ANN model-predicted and target network outputs, average prediction

error (%) and the RMSE corresponding to the training (80% data) and validation

(20% data) sets.

 In the next set of modeling simulations, the three data sets, 1D , 2D and

3D , were enlarged ten times using the optimal noise superimposition formalism

described earlier. The optimal noise tolerance values corresponding to the CSTR

input-output variables obtained using the GA formalism, are listed in Table 3.5.

The prediction and generalization performance of the three optimal MLP models

constructed using as many noise-superimposed enlarged data sets (referred to as

1D̂ , 2D̂ and 3D̂ , respectively) separately, was evaluated in terms of correlation

coefficient, average error (%) and RMSE values and these are listed in Table 3.4.

This table also gives architectural details of the optimal MLP models and the

values of the EBP-specific parameters used in creating the models. It is clearly

 162

observed from the comparison of the statistical values listed in Table 3.4 that the

MLP models trained on the noise-superimposed CSTR data have consistently

resulted in lower RMSE values for both the training and validation data. Using

noise-superimposed training data sets, the training set RMSE (Etrn) values have

decreased substantially i.e., by 86.1% to 96.6%. Similar reduction was also

observed in the validation set RMSE values (Eval). Additionally the average error

(%) values exhibit a significant reduction ranging between 78.5% and 97.7%, for

the training sets and 94.4% to 97.9% for the validation sets. It is noticed that the

correlation coefficient values pertaining to the output predictions made by the

optimal MLP models using the noise-superimposed data are very high (≥ 0.999).

It can thus be seen that the usage of noise-superimposed data for training an MLP

model has led to smaller RMSE and average error (%) values, and higher CC

values (indicating better prediction accuracy and generalization performance)

when compared with the MLP models trained on the non-noise-superimposed

data.

3.3.4 Case Study – II: Modeling of Benzene Isopropylation over Hbeta
Catalyst

This case study considers ANN-based steady-state modeling of the pilot-

plant scale reactor for the Hbeta catalyzed benzene isopropylation process. In this

process, though the formation of cumene via isopropylation of benzene is the

main reaction, a series of other components are also produced via side reactions.

Isopropylation of benzene is an important alkylation reaction in the

petrochemical industry for the synthesis of cumene, which is the chief starting

material in phenol production. In the last decade, several modifications of the

zeolite beta were explored as potential catalysts in cumene synthesis [Perego, et

al., 1994; Cavani, et al., 1997; Geatti, et al., 1997; Meima, 1998]. More recently,

Sridevi et al. [2001] investigated isopropylation of benzene over Hbeta (protonic

form of beta catalyst). Beta is a crystalline alumino-silicate catalyst with high

silica content and its important characteristic is that it is the only large pore zeolite

with chiral pore intersections. It consists of 12-membered rings interconnected by

cages formed by intersecting channels. The linear channels have pore opening

dimensions of 5.7
0
A × 7.5

0
A , whereas the tortuous channels with intersections of

 163

two linear channels have approximate dimensions of 5.6
0
A × 6.5

0
A . The catalyst

has a pore volume of ≈ 0.2 cm3/g. In the study by Sridevi et al. [2001], a

phenomenological model for benzene isopropylation reaction was developed

based on the isopropyl alcohol conversion in a continuous down-flow differential

packed bed reactor taking into account the secondary reactions such as the

dehydration of alcohol. This model however was restricted to the lower

conversion (< 30%) of the limiting reactant, i.e., isopropyl alcohol, wherein heat

and mass transfer resistances in the differential bed were assumed to be negligible.

For maximizing yield and selectivity of cumene in the vapor phase alkylation of

benzene with isopropyl alcohol over Hbeta catalyst, experiments were also

conducted in a pilot plant scale reactor. Isopropylation of benzene involves a main

reaction producing cumene and multiple side reactions as described below:

Main reaction :

Benzene + Isopropyl Alcohol → Cumene + Water (benzene

alkylation)

Secondary reactions :

Cumene + Isopropyl Alcohol → p-Di-isopropyl Benzene + Water (cumene

alkylation)

p-Di-isopropyl Benzene → m-Di-isopropyl Benzene (isomerization)

2 Isopropyl alcohol → Di-isopropyl ether + Water (alcohol

dehydration)

Owing to the complex nonlinear nature of the benzene isopropylation

process, an ANN was chosen for developing the steady-state process model.

Accordingly, four reactor operating variables namely, reaction temperature (x1),

pressure (x2), benzene to isopropyl alcohol mole ratio (x3) and weight hourly space

velocity (WHSV) (x4), form the input space of the ANN-based model. The

Cumene yield and selectivity defined as y1 and y2, respectively, are the model

outputs and these are evaluated as:

 164

unit timeper fed alcohol isopropyl ofweight
unit timeper formed cumene ofweight 100 1

×
=y (3.4)

unit timeper produced aromatics totalofweight

unit timeper formed cumene ofweight 100 2
×

=y (3.5)

The experimental data pertaining to the 42 pilot plant experiments [Nandi et al.,

2004] were considered in the ANN modeling. The experiments studied the effect

of varying values of the four operating variables (x1 to x4) on the cumene yield and

selectivity. The experimental data sets comprising values of operating variables

and the corresponding values of cumene yield and selectivity are designated as D4,

respectively. First, two optimal ANN models were developed using these data

sets. The details of the network architectures, EBP-specific parameter values

resulting in the optimal MLP models and the results in terms of coefficient of

correlation (CC) between the model predicted and target network outputs, average

prediction error (%) and the RMSE corresponding to the training and validation

sets are listed in Table 3.4. Next, the data sets D4 were enlarged using the optimal

noise-superimposition strategy and the respective enlarged data sets (4D̂) were

used to create two ANN models. The optimal noise tolerance values (∗Iε

and ∗Oε), corresponding to the four input and two output variables obtained using

the GA formalism are listed in Table 3.6.

A comparison of the prediction and generalization performance of the

yield and selectivity models trained using noise-superimposed and non-noise-

superimposed data sets reveals that the usage of noise-superimposed enlarged

training data sets has resulted in decreasing the training set RMSE (Etrn) values by

16.3% and 39.6%. A similar significant reduction was also observed in the

validation set RMSE values (Eval). Also, the average error (%) values exhibit a

significant reduction of nearly 55% for the training sets and 48.5% to 57.2% for

the validation sets. Likewise case study-I, the smaller and comparable values of

RMSE and average error (%) and high values of CC for both training and

validation sets clearly indicate enhanced prediction accuracy and improved

generalization performance of the MLP models trained on the optimal noise-

superimposed data.

 165

3.3.5 Concluding Remarks

The case studies described above present results of a generic methodology

to develop artificial neural network based process models possessing excellent

prediction accuracy and generalization performance. The method creates an

enlarged noise-superimposed data set from the original noisy process data set,

wherein the optimal magnitude of the input-output variable-specific superimposed

noise is determined using a stochastic optimization strategy namely, genetic

algorithm. Utilization of noise-superimposed data helps in fitting a smooth

function leading to an improved prediction accuracy and generalization

performance of the ANN model. The efficacy of the optimal noise-

superimposition methodology has been demonstrated successfully by conducting

ANN-based modeling of two chemical processes.

 166

Table 3.4: Comparison of predictions and generalization performance of ANN-models using noise-superimposed and non-
noise-superimposed data

NH1 = number of neurons in the first hidden layer; NH2 = number of neurons in the second hidden layer; η = learning rate.
* iD̂ , i = 1, 2, 3 represents noise-superimposed enlarged data set.

Training Data Set Validation Data Set

Data Set*

MLP

Parameters

(NH1,NH2,η)#

Correl.

Coef.

RMSE (Etrn)

(%improvement)

Average % Error

(%improvement)

Correl.

Coef.

RMSE (Eval)

(%improvement)

Average % Error

(%improvement)

1D 6:4:0.25 0.999 10.93 3.93 0.999 11.02 10.58

1D̂ 6:5:0.5 0.999 1.51 (86.1) 0.84 (78.5) 0.999 1.43 (87.0) 0.59 (94.4)

2D 6:5:0.31 0.998 12.91 4.89 0.996 15.89 11.73

2D̂ 6:6:0.7 0.999 1.22 (90.5) 0.36 (92.7) 0.999 1.738(89.1) 0.43 (96.3)

3D 6:5:0.53 0.986 28.81 15.87 0.956 55.73 11.16

3D̂ 6:6:0.7 0.999 0.98 (96.6) 0.36 (97.7) 0.999 1.40 (97.5) 0.23 (97.9)

4D (yield) 0.998 0.49 41.81 0.999 0.44 36.34

4D (select.)
5:0:0.7

0.974 4.64 4.63 0.976 4.68 4.67

4D̂ (yield) 0.999 0.41(16.3) 18.73(55.2) 0.999 0.31(29.5) 18.71(48.5)

4D̂ (select.)
5:4:0.7

0.999 2.80(39.6) 2.05(55.7) 0.999 2.79(40.4) 2.0(57.2)

 167

Table 3.5: Optimal noise tolerance (%) values for CSTR variables

Optimal Noise Tolerances Data

Set *I
1ε *I

2ε *I
3ε *I

4ε *I
5ε *I

6ε O*
1ε

1D̂ 0.679 0.592 0.324 0.263 0.489 0.109 0.678

2D̂ 0.593 0.78 0.566 0.283 0.656 0.542 0.998

3D̂ 0.607 0.395 0.169 0.001 0.947 0.615 0.458

Table 3.6: Optimal noise tolerance (%) values for benzene isopropylation process
variables

Optimal Noise Tolerances
Data Set

*I
1ε *I

2ε *I
3ε *I

4ε O*
1ε O*

2ε

4D̂ & 5D̂ 0.026 0.634 0.034 0.537
0.521

(4D̂)

0.982

(5D̂)

 168

3.4 ESTIMATION OF GROSS CALORIFIC VALUE OF COALS USING

ARTIFICIAL NEURAL NETWORKS∗

The gross calorific value (GCV) is an important property defining the energy

content and thereby efficiency of fuels, such as coals. There exists a number of

correlations for estimating the GCV of a coal sample based upon its proximate and/or

ultimate analyses. These correlations are mainly linear in character although there are

indications that the relationship between the GCV and a few constituents of the

proximate and ultimate analyses could be nonlinear. Accordingly, in this study a total

of seven nonlinear models have been developed using the artificial neural networks

methodology for the estimation of GCV with a special focus on Indian coals. The

comprehensive ANN model developed here uses all the major constituents of the

proximate and ultimate analyses as inputs while the remaining six sub-models use

different combinations of the constituents of the stated analyses. It has been found

that the GCV prediction accuracy of all the models is excellent with the

comprehensive model being the most accurate GCV predictor. Also, the performance

of the ANN models has been found to be consistently better than that of their linear

counterparts. Additionally, a sensitivity analysis of the comprehensive ANN model

has been performed to identify the important model inputs, which significantly affect

the GCV. The ANN-based modeling approach illustrated in this study is sufficiently

general and thus can be gainfully extended for estimating the GCV of a wide

spectrum of solid, liquid and gaseous fuels.

3.4.1 Introduction

The abundance and versatility of coals makes them an important source of

energy for the present and future. The chemical composition of coals is characterized

∗ Patel S. U., B. Jeevan Kumar, Y. P. Badhe, B. K. Sharma, S. Saha, S. Biswas, A.
Chaudhury, S. S. Tambe and B. D. Kulkarni, Fuel, 86 (3), February 2007, 334–344.

 169

in terms of their proximate and ultimate analyses. While the proximate analysis

determines the contents of moisture, volatile matter, ash, and fixed carbon, the

ultimate analysis measures the content of various elements, namely carbon, hydrogen,

nitrogen, sulphur, and oxygen. An important property, which indicates the useful

energy content of a coal and thereby its value as a fuel, is its calorific value (also

known as heat of combustion), which is defined as the amount of heat evolved when a

unit weight of the fuel is burnt completely and the combustion products cooled to a

standard temperature of 2980 K. It is usually expressed as the GCV (also termed

Higher Heating Value, HHV). The magnitude of GCV varies significantly depending

on the ash and moisture contents and the type of coal. It is determined using various

basis, such as “dry mineral matter free (DMF)”, “as received”, and “dry” basis.

Among these, the DMF basis is useful for scientific evaluation and classification of

coals while in commercial applications calorific values are commonly determined

using as received or dry basis. The GCV of a coal sample is measured experimentally

using a Bomb calorimeter. Since GCV is a major indicator of the quality of coal, a

number of linear correlations have been developed for its prediction on the basis of

proximate and/or ultimate analyses. The advantages of the GCV correlations are

[Parikh et al., 2005]: (i) they provide an easy and quick means for estimating the

GCV thus saving the efforts involved in its experimental determination, (ii)

application in the performance modeling exercise of combustion, gasification and

pyrolysis processes involving coal, and (iii) facility of using the GCV as an algebraic

expression in terms of fuel constituents, which in turn is useful in studying the

influence of the proximate as well as ultimate analysis of a fuel on the process

performance. Accordingly, this study first reviews various linear correlations

proposed for the GCV estimation of coals and discusses the need of developing their

nonlinear counterparts. Next, a number of nonlinear correlations (models) based on

ANNs have been introduced in this study for the estimation of GCV with a special

focus on Indian coals. The ANN-based GCV models presented here are found to

possess an excellent GCV prediction accuracy and outperform the existing linear

models.

 170

3.4.2 Survey of GCV Correlations and Need for ANN-Based Models

There essentially exist two types of correlations for estimating the GCV of

coals. The type–I correlations are meant exclusively for coals, while type-II

correlations additionally cover a number of solid, liquid and gaseous fuels. Both

types of correlations are based on the proximate and/or ultimate analyses. An

important coal-specific correlation was proposed by Goutal et al., [1902] that

correlated the calorific value ()Q with the volatiles and fixed carbon as given by:

mC VkFQ ×+×= 82 (3.6)

where, CF and mV denote the percentages of fixed carbon and volatiles, respectively

(on the “dry ash free”, DAF, basis), and k is a constant that depends on the mV .

Subsequently, a widely used GCV correlation as given below was proposed by

Schuster et al. [1951],

()mm VVQ ×−×+= 65.1708000 , (cal/gm) (3.7)

where, Q and mV are determined on the DAF basis. Another correlation for the

GCV, proposed by Spooner [1951], is given as:

 Om CVQ ×−×+= 144198781 , (cal/gm) (3.8)

where, OC refers to the oxygen content in coal. For estimating the GCV of Indian

coals, Mazumdar [1954] proposed following expression,

()MMm CCVQ ×−××−×−= 001.0160169170 , (cal/gm) (3.9)

where, MC denotes the percentage of moisture. More recently, Mazumdar [2000]

proposed an expression for the determination of calorific value of coal (MJ/kg) as

given by:

() A
C

H
MMO C

C
C

CCQ ×−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

×
×−+×= 007.0

0065.0
238.0

10003.13 , (MJ/kg) (3.10)

 171

where, MMC is the mineral matter on dry basis and HC , CC and OC respectively

refer to the percentages of hydrogen and carbon, and the theoretical oxygen

requirement for the complete coal combustion on the dry basis. The MMC value is

calculated using the Parr formula i.e., SAMM CCC ×+×= 558.008.1 , where AC

and SC refer to the percentages of ash and sulphur, respectively. For low sulfur coals,

SAMM CCC ×+×= 55.01.1 .

The energy content of an Indian coal (non-coking) is commonly expressed in

terms of "Useful Heating Value (UHV)”. In industrial applications, UHV ()UQ is

used for grading and pricing of coals and a simple empirical equation as given below

was developed for its estimation by the Central Fuel Research Institute (CFRI),

Dhanbad, India;

()MAU CCQ +×−= 1388900 , (kcal/kg) (3.11)

where AC and MC refer to the percentages of ash and moisture at 60% relative

humidity at 400 C. The usage of Eq. (3.11) began in 1979 and is still in vogue for

grading non-coking Indian coals. An improvement in Eq. (3.11) has become

necessary owing to its suboptimal performance in predicting the UHV values since

the ash content in the coal being mined currently in India has increased significantly.

Prior to 1979, approximately 85% of Indian coal was mined via underground mining

operations and the average ash percentage in the coal was in the range of 25 % to 30

%. In contrast, a major portion (≈ 70 %) of the coal being mined presently (mainly via

open-cast mining) has an average ash percentage of 45% or more. In Eq. (3.11), the

same weightage of 138 is assigned to the moisture and ash contents and thus it is not

valid for currently mined coals comprising high ash. For instance, according to Eq.

(3.11), the UHV when (AC + MC) equals 64.5% is zero, while the actual GCV value is

of the order of 2300 kcal/kg. In view of this fact, the applicability of Eq. (3.11) for the

currently mined Indian coals has become questionable. It may also be noted that

internationally, grading and pricing of coals is done in terms of their GCV and not

 172

UHV. Thus, Chaudhury and Biswas [Choudhary and Biswas, 2002-03] proposed a

correlation, which is a modified form of Eq. (3.11), for the estimation of GCV:

()UQbaQ ×+= , (kcal/kg) (3.12)

where, a and b are constants whose magnitudes vary depending upon the

geographical origin of the coal. The magnitudes of a and b for computing the GCV

of coals from six prominent regions in India are: (i) MCL: 2043, 0.673, (ii) CCL:

2062, 0.6913, (iii) NCL: 2227, 0.6326, (iv) WCL: 2557, 0.55, (v) SECL: 2173, 0.69,

and (vi) SCCL: 2290, 0.639, where MCL, CCL, NCL, WCL, SECL, and SCCL,

respectively refer to Mahanadi, Central, Northern, Western, South-eastern, and

Singareni coalfields.

Channiwala et al. [2002] have reviewed a large number of type-II correlations

for estimating GCV of a number of solid, liquid and gaseous fuels and also proposed

a unified correlation from the elemental analysis of fuels as given by:

ANO

SHC

CCC
CCCQ
×−×−×−

×+×+×=
0211.00151.01034.0

1055.01783.13491.0
 (MJ/kg) (3.13)

where CC , HC , NC , and SC denote the percentages of carbon, hydrogen, nitrogen

and sulphur, respectively. The ranges of the mass percentage values (on dry basis)

over which the correlation is valid are: %29.92%0 ≤≤ CC , %15.25%43.0 ≤≤ HC ,

%50%0 ≤≤ OC , %6.5%0 ≤≤ NC , %08.94%0 ≤≤ SC , %49.71%0 ≤≤ AC , and

4.475 MJ/kg ≤ Q ≤ 55.345 MJ/kg. Equation (3.13) could predict the GCV of various

types of fuels with an average absolute error of 1.45%. Although useful, a major

difficulty with this correlation is that it requires values from the elemental analysis of

coals that needs a costly equipment. Thus, Parikh et al. [2005] developed a proximate

analysis based correlation for predicting the GCV of an entire spectrum of solid

carbonaceous materials such as coals, lignite, all types of biomass materials, and char

to residue-derived fuels. Their correlation is given as:

AmC CVFQ ×−×+×= 0078.01559.03536.0 , (MJ/kg) (3.14)

 173

 In addition to above-described type I and II correlations, relationships have

also been proposed for computing the GCV exclusively of solid fuels [Kucukbayrak

et al.,1991; Cordero et al., 2001; Fernandez et al., 1997; Demirbas, 1997; Jimenez, et

al., 1991; Raveendran, 1996]. These correlations have restricted applicability since

they are limited to a type or region of a fuel.

 All the correlations discussed above assume linear relationships between the

GCV and the constituents of the proximate and/or ultimate analyses. In order to verify

the appropriateness of the linear relationships, we considered data from the proximate

and ultimate analyses of a large number of coals (see Table 3.7) mined from different

regions in India. Using these data, cross-plots were generated by plotting the

individual constituents of the proximate and ultimate analyses against the

corresponding GCVs. These plots are shown in Figure 3.4 wherein the eight panels (a

to h) show the plots of GCV versus the percentages of ash, fixed carbon, hydrogen,

carbon, oxygen, volatile matter, moisture and nitrogen, respectively. It is seen in these

plots that there exists a clear linear dependence between the GCV and percentages of

ash, fixed carbon, hydrogen, carbon, oxygen and volatile matter. However, a

significant scatter is seen in the cross-plots of GCV versus percentages of sulphur,

moisture and nitrogen. Thus, there exists a strong possibility that the GCV is

nonlinearly correlated with SC , MC and NC .

If such nonlinear relationships indeed exist, then these can be captured

effectively by developing nonlinear models for the GCV estimation, which are likely

to be more accurate than the linear correlations described earlier. Owing to the

multiple causal factors (constituents of proximate and/or ultimate analyses), these

nonlinear correlations would have a multiple input-single output (MISO) structure.

There exist powerful nonlinear function optimization methods such as Marquardt’s

algorithm [Marquardt, 1963], to fit nonlinear relationships existing between MISO

data. Given a nonlinear fitting function, the Marquardt’s algorithm can efficiently

estimate the parameters of a data-fitting function. However, a significant difficulty in

this approach is choosing an appropriate MISO type nonlinear data-fitting function

from an infinite number of functions that form the solution space of the MISO data-

 174

fitting problem. Thus, an exhaustive trial-and-error procedure would be necessary to

arrive at the correct nonlinear MISO model for the estimation of GCV. The artificial

intelligence (AI) based nonlinear modeling formalism, namely ANNs overcomes the

stated difficulty of choosing the correct form of the nonlinear data-fitting function.

Specifically, in the ANN-based modeling it is not necessary to exclusively specify a

system-specific nonlinear form of the data-fitting function and thus the exhaustive

heuristic involved in choosing an appropriate data-fitting function is completely

avoided. Accordingly, in this study, a number of ANN-based nonlinear models have

been developed for the estimation of GCV of Indian coals. The main ANN-model in

this study uses all the major constituents of the proximate and ultimate analyses as

model inputs. In real practice, information on all the constituents of the said analyses

may not be available and therefore a number of sub-models have also been developed

using ANNs by considering various combinations of the constituents of the proximate

and / or ultimate analysis as model inputs.

3.4.3 ANN-Based Models for GCV Estimation

The inputs used in developing the seven ANN-based models for estimating

the GCV of Indian coals are listed in Table 3.8. Currently, there does not exist a

comprehensive GCV model that uses information of all the major constituents of

proximate and ultimate analyses. Thus, a comprehensive ANN model (I) has been

developed that uses a total of ten inputs comprising major constituents of the

proximate and ultimate analyses as also the He-density. Wherever feasible, the GCV

estimation performance of an ANN model has been compared with its linear

counterpart. Accordingly, prediction and generalization performance of ANN models

II, VI and VII was compared with that of Eqs. (3.12), (3.13) and (3.14), respectively.

 175

0
5

10
15
20
25
30

0 20 40 60 80

% Ash ("As received" basis)

G
C

V
(M

J/
kg

) (a)

0

5

10

15

20

25

30

0 20 40 60
% FC ("As received" basis)

G
C

V
(M

J/
kg

) (b)

0

5

10

15

20

25

30

0 1 2 3 4

% Hydrogen("As received" basis)

G
C

V
(M

J/
kg

) (c)

0

5

10

15

20

25

30

0 20 40 60 80

% Carbon("As received" basis)

G
C

V
(M

J/
kg

)

(d)

0

5

10

15

20

25

30

0 20 40 60 80

% Oxygen("As received" basis)

G
C

V
(M

J/
kg

) (e)

0

5

10

15

20

25

30

0 10 20 30 40

% VM ("As received" basis)

G
C

V
(M

J/
kg

) (f)

0

5

10

15

20

25

30

0 5 10 15

% Moisture ("As received" basis)

G
C

V
(M

J/
kg

) (h)

0

5

10

15

20

25

30

0 0.5 1 1.5 2

% Nitrogen ("As received" basis)

G
C

V
(M

J/
kg

)

(i)

Figure 3.4: Cross-plots of GCV verses individual constituents of proximate and
ultimate analyses

(g)
(h)

 176

The justification for various combinations of inputs used in the six ANN-

based sub-models is given below.

 Conducting proximate and ultimate analyses on “as received” basis is easier

since it requires no preprocessing of the coal sample. Thus, a majority of

ANN-based models employ data on as received basis.

 Since proximate analysis is easier to perform than the ultimate analysis, four

models (II, III, IV and VII) have been developed using various constituents of

the proximate analysis.

 Unavoidable presence of ash adversely affects the GCV of coals and,

therefore, the ash percentage has been considered as an input in five out of the

six sub-models.

 Similar to ash, presence of moisture acts as a diluent of the heating value of

coals and therefore models II to IV use moisture as one of their inputs.

 Percentage of carbon has a direct effect on the GCV, i.e. an higher carbon

content results in an higher heating value. Thus, models V and VI use carbon

percentage in their input space.

 The organic and inorganic matter in the coal influences the Helium (He)

density of coal. The density is an important indicator of coal’s open pore

structure that determines the extent to which reactants diffuse inside the coal’s

interiors thereby affecting its heating value. Thus, He-density has been

considered as an input to model-III.

 The percentages of the proximate analysis constituents such as ash and

moisture, are in turn dependent (albeit in a complex manner) upon the

elemental composition of coals. Thus, the input space of models V and VI

comprise constituents of the elemental analysis.

3.4.4 Collection of Data

The data set (see Table 3.7) comprising constituents of the proximate and ultimate

analyses as also the corresponding experimentally determined GCVs (Kcal/kg) of 79

 177

coal samples obtained from the mines located in the six prominent coal producing

regions in India and supplied by the CFRI, Dhanbad, India, has been used for the

purpose of developing ANN-based models. The data consists of values of ten

constituents of the coal analysis namely, moisture ()MC , ash ()AC , volatile matter

()mV , fixed carbon ()CF , carbon ()CC , hydrogen ()HC , sulphur ()SC , nitrogen

()NC , oxygen ()OC and He-density ()Heρ . These values were determined on “as

received” basis, which can be converted to the “dry basis” by using the following

expression.

Value(“dry” basis) = Value(“as received” basis) / (100- MC))×100 (3.15)

Among the seven ANN-based models, the first five use data on “as received” basis

while the remaining two (VI and VII) use data on the “dry basis”.

 In this study, all ANN models have been developed by considering two

hidden layers in the MLP architecture and these were trained using the EBP

algorithm. In order to ensure that the ANN models possess the much desired

generalization ability, the data on coal analysis and the corresponding GCVs were

partitioned into two sets namely training and test sets. While the training set was used

in the EBP algorithm-based iterative minimization of RMSE, the test set was used

after each training iteration for assessing the generalization ability of the MLP model.

The network weights that resulted in the least RMSE for the test set (Etst) were

considered to be the optimal weights. Before partitioning the available data into the

stated two sets, the values of individual inputs and the output (GCV) were scaled to

lie between 0.05 and 0.95. All ANN models use the logistic sigmoid transfer function

for computing the outputs of the hidden and output layer nodes. It may be noted that

the nonlinear function approximation capability of ANNs stems from the usage of

nonlinear transfer function such as the logistic sigmoid. For constructing an MLP

model with optimal prediction accuracy and generalization performance, it is

necessary to rigorously study the effect of MLP’s structural parameters namely, the

number of nodes in the first and second hidden layers (J, K) as also two EBP-specific

parameters viz. η and μ . Accordingly, the values of J, K, η and μ were varied

 178

systematically and those leading to the minimum test set error were considered

optimal. In addition, the effect of random weight initialization in the EBP algorithm

was studied by varying the seed values of the pseudo-random number generator to

obtain an MLP model that corresponds to the global or the deepest local minimum on

the model’s nonlinear error surface. The details of the training and test sets along with

the optimized values of the MLP’s architecture and EBP parameters for the seven

ANN models are given in Table 3.8.

3.4.5 Results and Discussion

The GCV prediction and generalization performance of ANN-based models is

given in Table 3.9. Their performance is evaluated in terms of: (i) coefficient of

correlation (CC) between the model predicted and the corresponding experimental

(target) GCVs, (ii) RMSE, and (iii) average percent error (APE) in the GCV

prediction. These quantities have been evaluated separately for the training and test

sets. While the values of CC, RMSE and APE pertaining to the training set data are

indicators of the GCV prediction accuracy of the models, the values in respect of the

test set data indicate the generalization ability of the models. It is seen from the CC

values in respect of the training set outputs of all the seven ANN models (see Table

3.9) that the respective magnitudes are high (>= 0.984). This indicates that the models

possess excellent GCV prediction accuracy. The CC magnitudes in respect of the test

set outputs are also high and comparable with those corresponding to the training sets

thus indicating that the models possess excellent generalization ability as well.

Among the seven ANN-based models, the most comprehensive one (model-I)

using all major constituents of the proximate and ultimate analyses as also the He-

density as inputs has yielded the best overall GCV prediction accuracy and

generalization performance. The corresponding values of the CC for both the training

and test sets (0.996 and 0.997) are highest among the seven models. This result

suggests that the most accurate estimation of GCV can be made from the major

constituents of the proximate and ultimate analyses.

 179

0

10

20

30

0 10 20 30

Experimental GCV (MJ/kg)

M
od

el
 P

re
di

ct
ed

 G
C

V
(M

J/
kg

)

ANN Predicted

Linear Correlation

Figure 3.5: Graphical comparison of experimental GCVs with those estimated by
ANN model-II and Eq. (3.13)

A comparison of the performance of the ANN model-II with its linear

counterpart (Eq. 3.12) reveals that the ANN model possesses far superior prediction

accuracy and generalization ability (i.e., higher CC and significantly lower RMSE

and APE values). Figure 3.5 shows comparative plots of the GCVs determined

experimentally and those estimated by the ANN model-II and Eq. (3.12). A close

match between the experimental and model predicted GCVs indicates that the ANN

model-II is capable of reasonably accurate GCV estimation from the knowledge of

just two proximate analysis constituents, namely ash and moisture contents.

 The ANN model-III considers He-density as an additional input to those

considered by the model-II. The prediction and generalization performance of this

model shows no significant improvement over the performance of the ANN model-II

using ash and moisture as inputs. This suggests that inclusion of He-density does not

provide any additional information useful in improving the model’s GCV prediction

accuracy over that provided by ash and moisture contents. The prediction results from

ANN model-IV wherein He-density is replaced by the percentage of fixed carbon are

very similar to those of models II and III. This can be judged by the close match

 180

between the CC, RMSE and APE magnitudes in respect of the training and test sets of

model-IV and models II and III.

The ANN model-V considers the elemental composition of coals as model

inputs. Among the five prominant elements present in the coal namely carbon,

hydrogen, sulphur, nitrogen and oxygen, only the first four are included in the input

space since oxygen content is a derived quantity and can be calculated by subtracting

the summation of the weight percentages of CC , HC , SC , and NC from 100. In this

case too the ANN model could predict and generalize the GCV of Indian coals with

excellent precision as indicated by the high CC magnitudes (≈ 0.984) for the training

as well as test data sets.

The ANN model-VI is a coal-specific nonlinear counterpart of the linear

correlation (Eq. 3.13) proposed by Channiwala et al. [2002]. Thus a comparison

was made of the GCV predictions by model-VI and Eq. (3.13). This comparison

reveals that the correlation coefficient values in respect of the GCV predictions made

by both the models match very closely (i.e. CC ≈ 0.99). However, there exists a

significant difference in the RMSE as well as APE values in respect of the predictions

made by the ANN-based and linear models. Specifically, the ANN model could

predict the GCVs with better accuracy and generalization performance (RMSEtrn =

0.516, RMSEtst = 0.688, APEtrn = 2.215, APEtst = 2.625) when compared to that of the

linear Eq. 2.13 (RMSEtrn = 4.352, RMSEtst = 4.515, APEtrn = 22.93, APEtst = 21.484).

Figure 3.6 shows comparative plots of the GCVs determined experimentally and

those estimated by the ANN model-VI and Eq. (3.13). It is seen in this figure that the

ANN model is able to predict the GCV with much higher accuracy when compared

with Eq. (3.13).

The ANN-based model-VII uses percentages of fixed carbon, volatile matter

and ash as model inputs. Parikh et al. [2005] earlier used these inputs in developing a

correlation (Eq. 3.14) to overcome the experimental procedure involved in the

determination of the elemental composition used in Eq. (3.13). A comparison of the

GCV prediction and generalization performance of model-VII and Eq. (3.14) reveals

(see Table 3.10) that similar to model-VI, the model-VII shows a better GCV

 181

prediction accuracy and improved generalization performance when compared with

that of Eq. (3.14). Figure 3.7 shows comparative plots of the GCVs determined

experimentally and those estimated by model-VII and Eq. (3.14). As can be seen in

this figure, there exist an excellent match between the ANN predicted and

experimental GCVs.

0

10

20

30

0 10 20 30

Experimental GCV (MJ/kg)

M
od

el
 P

re
di

ct
ed

 G
C

V
(M

J/
kg

)

ANN Predicted

Linear Correlation

Figure 3.6: Graphical comparison of experimental GCVs with those estimated by
ANN model-VI and Eq. (3.14)

 The above-described results suggest that ANNs owing to their

excellent nonlinear modeling ability are a better alternative to the linear models for

the prediction of GCV of coals. The ANN weights can be used to predict the GCV

magnitudes of new coal samples of Indian origin; the weight parameters of the ANN

models can be obtained from the author.

 182

0

10

20

30

0 10 20 30

Experimental GCV (MJ/kg)

M
od

el
 P

re
di

ct
ed

 G
C

V
(M

J/
kg

)

ANN Predicted

Linear Correlation

Figure 3.7: Graphical comparison of experimental GCVs with those estimated by and
ANN model-VII and Eq. (3.15)

3.4.6 Identifying Important Inputs of ANN Models

There exist a number of methods for identifying important inputs of a

nonlinear model and these have been reviewed by Sung [1998]. The important inputs

are those, which even when perturbed by a small amount cause a relatively large

change in the model output. In the case of ANN models, two methods namely

sensitivity analysis (SA) and change of mean-square-error (MSE) have been proposed

for identifying the hierarchy of model inputs in the order of their influence on the

model output (see Section 3.4.7). In SA, the important inputs can be identified

directly from an optimally trained ANN model whereas in the MSE methodology a

number of ANN models need to be developed for identifying the significant inputs.

An additional input identification method, known as “Fuzzy Curves” (see Section

2.5.6) has been proposed by Lin and Cunningham [1994, 1995]. In this method, a

separate fuzzy curve model (FCM) is created for each input variable from the

example input-output data. Next, the inputs are ranked depending upon how well a

fuzzy curve model captures the relationship between an input and the output variable.

In this study, we have chosen SA for identifying the important constituents of the

 183

proximate and ultimate analysis that affect the GCV since the necessary optimal ANN

models for the GCV prediction are already available.

The sensitivity analysis of an ANN model is performed by computing the

sensitivity coefficient matrix (SCM). The numerical procedure for SCM for a single

hidden layer MLP network was proposed by Englebrecht et al. [Engelbrecht, 1995]

and Zurada et al. [1994]. This procedure was subsequently modified by Sung [1998]

for computing the SCM of a two hidden layer MLP network. Both these procedures

use the optimal weight parameters of an MLP model for identifying the hierarchy of

significant network inputs. The MLP models that have been developed in this study

use two hidden layers and, therefore, the SCM procedure of Sung [1998] has been

used for conducting SA; this procedure has been appropriately modified as given

below for computing the percentage of sensitivity ()Ŝ that an input variable exhibits

towards an output variable.

3.4.7 Sensitivity Analysis (SA) of ANN Models

This section describes the procedure for computing the sensitivity coefficient

matrix (SCM) and the percentage of sensitivity ()eS exhibited by an input variable

towards an output of a two-hidden layer MLP model. Consider an MLP neural

network (see Figure 2.1) housing I, J, K and L number of nodes in its input, hidden-I,

hidden II and output layers, respectively. The nodes in the input, hidden-I, hidden-II

and output layers are described by X, V, Z and Y, respectively,

where ()Ii xxxxX ,...,,...,, 21= , ()Jj vvvvV ...,,...,, 21= , ()Kk zzzzZ ,...,,...,, 21= and

()Ll yyyyY ,...,,..., 21= .

For a training set pattern p , the sensitivity of the lth output (ly) with respect

to the input ix is defined as:

i

lp
il x

y
S

∂
∂

=, ()∑ ∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

K

k

J

j

H
ijj

H
jkk

o
kll wvwzwy

1 1

1'2'' (3.16)

 184

where '' , zy and 'v are the respective derivative values of the activation function used

in the computation of y , z and v ; the weight on connection between ith and jth

nodes is denoted as ijw . Equation (3.16) can be recasted to define the sensitivity of

any output with respect to any input pattern p in the training set as follows:

 JKJKKL
p WVWZWYS '''= (3.17)

where, KLW , JKW and IJW are the weight matrices in respect of connections between

output and hidden layer-II nodes, hidden layer-II and hidden layer-I nodes, and

hidden layer-I and input layer nodes respectively; ()LLY ×' , ()KKZ ×' and

()JJV ×' are the diagonal matrices defined as:

()''
1

' ,..., LyydiagY = (3.18)

()''
1

' ,..., KzzdiagZ = (3.19)

()''
1

' ,..., JvvdiagV = (3.20)

 Equation 3.17 defines sensitivity with respect to a single input-output pattern. To

calculate the sensitivity with respect to each input variable in the training set,

following equation can be used [Zurada et al., 1994]:

∑
=

=
P

p

p
li

il
P

S
S

1
,

~ ||
 (3.21)

where
~

,ilS denotes the sensitivity of ith input variable towards lth output. Finally, the

sensitivity values can be normalized as given below to obtain the percent sensitivity

value for an lth output with respect to an ith input.

∑
=

×= I

i
il

il
il

S

SS

1
,

~

,

~

,

^
100 (3.22)

 185

 The results of the sensitivity analysis of the comprehensive ANN model-I are

presented in Table 3.10. It can be observed from the tabulated values of Ŝ that the

GCV exhibits highest sensitivity of 25 % towards oxygen content. The other

significant inputs with sensitivity values higher than 10 % are, carbon (Ŝ = 20.4 %),

ash (Ŝ = 15.9 %), fixed carbon (Ŝ = 12.3 %) and moisture (Ŝ = 10.4 %); in

comparison, the GCV magnitude exhibits relatively lower sensitivity (Ŝ < 5 %)

towards volatile matter, He-density, nitrogen, hydrogen and sulphur.

3.4.8 Conclusion

 The existing models for estimating the GCV of coals from the constituents of

the proximate and/or ultimate analyses are linear in character. It is observed that

while the GCV exhibits a linear dependence on a number of constituents of the

proximate and ultimate analyses, there exists a strong possibility that the GCV is

nonlinearly dependent on some constituents of the stated analyses. Accordingly,

seven nonlinear artificial neural network models of varying rigor have been

developed in this study for the estimation of GCV with a special focus on Indian

coals. The results of the GCV estimation clearly suggest that all the ANN models

possess an excellent prediction accuracy and generalization performance with the

comprehensive model (I) that uses all the major constituents of proximate and

ultimate analyses as inputs, yielding the best prediction and generalization accuracy.

More significantly, the ANN models are found to estimate the GCV magnitudes with

better accuracy when compared to the three linear models using same inputs.

Additionally, a sensitivity analysis of the ANN model-I has been performed to

identify the hierarchy of model inputs in the order of their influence on the GCV

magnitudes. The results of this analysis indicate that oxygen, carbon, ash, fixed

carbon, and moisture have a stronger influence on the GCV than volatile matter, He-

density, nitrogen, hydrogen and sulphur. This study clearly shows that ANNs are an

attractive strategy for the estimation of GCV of coals. The modeling approach

presented here can also be extended gainfully for an accurate GCV estimation of a

wide spectrum of solid, liquid and gaseous fuels.

 186

Table 3.7: Proximate and ultimate analysis data of Indian coals along with experimental GCV values

 Sr.
No. Region MC AC mV CF CC HC SC NC OC Heρ

GCV
(experimental)

(MJ/kg)

1 MCL 6 38 26.3 29.7 41.9 3.29 0.26 0.89 53.7 1.75 17.17

2 5.8 41.1 23.9 29.2 40.2 2.87 0.18 0.56 56.2 1.81 15.53

3 7.5 34 26.2 32.3 45.8 3.26 0.29 0.71 50.0 1.71 17.63

4 7.6 32.4 22.5 37.5 45.4 2.81 0.26 0.85 50.7 1.75 17.48

5 8.3 32.5 27 32.2 43.5 3.19 0.87 0.81 51.7 1.66 17.24

6 5.8 44.7 22.5 27 37.0 2.59 0.24 0.75 59.4 1.85 14.09

7 5.7 47.8 22.3 24.2 32.9 2.40 0.40 0.80 63.5 1.92 12.56

8 6.8 41.8 25 26.4 39.2 2.68 0.35 0.83 56.9 1.76 15.13

9 4.4 35.6 27.6 32.4 45.5 3.25 0.62 0.91 49.7 1.7 18.17

10 4.6 39.7 25.5 30.2 40.2 3.09 0.62 0.94 55.2 1.74 16.74

11 5.5 35.5 28.7 30.3 45.4 3.12 0.54 0.92 50.0 1.6 18.02

12 4.8 35.5 28.4 31.3 46.1 3.23 0.48 0.99 49.2 1.6 18.31

13 7.1 34.4 27.7 30.8 46.1 3.42 0.62 1.10 48.8 1.71 18.09

14 NCL 9.5 17.6 29.1 43.8 57.7 3.47 0.29 1.12 37.5 1.47 22.55

15 7.2 17.4 30.0 45.4 58.8 3.54 0.37 1.10 36.2 1.54 23.29

16 5.2 36.7 28.2 29.9 43.3 3.31 0.51 0.84 52.0 1.69 17.27

17 6.7 24.8 26.8 41.7 51.9 3.00 0.40 0.79 43.9 1.77 19.95

18 6.2 28.1 27.4 38.3 51.0 3.58 0.39 0.95 44.1 1.63 18.28

 187

Sr.
No. Region MC AC mV CF CC HC SC NC OC Heρ

GCV
(experimental)

(MJ/kg)

19 7.1 33.5 25.5 33.9 46.0 3.28 0.30 0.89 49.5 1.59 16.12

20 6.4 39.3 22.5 31.8 41.1 2.75 0.44 0.82 54.9 1.7 17.10

21 5.7 36.6 27.7 30.0 42.6 3.16 0.34 0.77 53.1 1.62 14.87

22 5.6 42.4 26.1 25.9 38.8 2.98 0.35 0.72 57.1 1.88 15.79

23 7.0 40.7 24.4 27.9 39.3 3.06 0.43 0.75 56.5 1.75 18.94

24 9.9 28.2 27.5 34.4 48.5 3.34 0.35 0.97 46.8 1.51 17.98

25 7.2 34.4 25.3 33.1 45.3 3.12 0.00 0.57 51.0 1.61 15.74

26 10 34.5 24.7 30.8 41.2 3.02 0.44 0.64 54.7 1.6 20.50

27 5.4 30.0 29.4 35.2 48.8 3.78 0.37 0.85 46.2 1.55 18.56

28 WCL 8.2 31.7 27.3 32.8 46.3 2.7 0.4 1.0 49.6 1.64 21.21

29 6.3 26.2 24.6 42.9 54.1 2.9 1.0 1.2 40.8 1.63 18.13

30 8.0 32.4 24.4 35.2 45.6 2.6 1.1 1.0 49.7 1.69 16.83

31 7.6 38.1 24.5 29.8 41.2 2.5 0.4 0.9 55.0 1.7 21.63

32 9.0 21.4 26.3 43.3 54.6 3.0 0.4 1.2 40.8 1.58 16.30

33 8.1 35.5 24.5 31.9 41.5 2.3 0.3 1.0 54.9 1.71 8.84

34 4.9 60.8 17.4 16.9 23.0 1.2 0.5 0.5 74.8 1.82 18.14

35 8.8 31.8 24.6 34.8 43.8 2.6 2.2 0.9 50.5 1.67 22.59

36 7.4 22.1 29.2 41.3 54.8 3.5 1.1 1.2 39.4 1.49 18.38

37 8.3 32.2 25.0 34.5 45.0 2.8 1.9 1.0 49.3 1.61 17.61

38 7.3 33.4 25.1 34.2 43.5 2.6 1.1 1.0 51.8 1.55 21.85

39 8.5 18.9 29.7 42.9 55.1 3.3 0.7 1.2 39.7 1.54 18.70

 188

Sr.
No. Region MC AC mV CF CC HC SC NC OC Heρ

GCV
(experimental)

(MJ/kg)

40 7.5 30.6 25.4 36.5 46.6 2.7 2.0 1.0 47.7 1.55 17.64

41 6.9 34.3 24.0 34.8 44.1 2.6 1.4 1.0 50.9 1.57 15.24

42 5.3 43.2 22.5 29.0 37.8 2.2 2.0 0.8 57.2 1.62 17.93

43 7.3 33.1 25.8 33.8 44.9 2.7 0.7 0.9 50.8 1.46 16.01

44 6.3 37.9 24.1 31.7 42.5 2.52 0.46 0.79 53.7 1.78 19.40

45 8.4 26.8 26.4 38.4 48.4 3.35 0.52 0.00 47.7 1.58 18.21

46 6.5 33.4 26.2 33.9 45.7 3.00 0.50 1.30 49.5 1.67 22.76

47 4.3 25.5 28.4 41.8 56.0 3.60 0.60 1.50 38.3 1.58 23.67

48 3.6 23.5 29.8 43.1 57.7 3.70 0.60 1.60 36.4 1.54 20.98

49 5.1 29.3 27.3 38.3 51.8 3.30 0.60 1.10 43.2 1.62 19.72

50 4.3 33.3 26.7 35.7 48.6 3.10 0.60 1.20 46.5 1.65 13.78

51 5.7 46.3 22.0 26.0 34.8 3.30 0.60 1.30 60.0 1.6 15.65

52 5.4 40.7 23.9 30.0 40.4 2.60 0.40 1.00 55.6 1.79 16.67

53 6.0 38.8 23.9 31.3 41.6 2.70 0.50 0.90 54.3 1.69 16.84

54 6.0 42.8 24 27.2 37.8 2.50 0.40 1.10 58.2 1.74 17.22

55 0.8 45.7 15.7 37.8 39.1 2.75 0.24 0.79 57.1 1.78 20.08

56 5.0 31.3 28.9 34.8 48.4 3.09 0.34 0.73 47.4 1.67 22.26

57 SECL 4.6 29.0 23.3 43.1 53.3 3.0 1.0 1.0 41.7 1.53 25.47

58 5.5 18.7 25.5 50.3 61.1 3.6 1.2 1.0 33.1 1.45 18.63

59 8.4 31.1 21.9 38.6 46.5 2.3 1.0 0.7 49.5 1.57 19.07

60 8.2 30.8 22.0 39.0 47.3 2.4 1.0 0.6 48.7 1.56 21.66

 189

Sr.
No. Region MC AC mV CF CC HC SC NC OC Heρ

GCV
(experimental)

(MJ/kg)

61 5.6 26.9 24.3 43.2 53.0 3.0 1.1 0.9 42.0 1.52 22.13

62 6.6 25.3 26.6 41.5 52.7 3.2 1.1 1.2 41.8 1.54 26.29

63 6.0 15.0 26.9 52.1 62.5 3.7 1.3 0.5 32.0 1.46 20.90

64 7.2 28.9 26.0 37.9 48.2 3.0 1.0 0.7 47.1 1.52 23.30

65 9.1 18.2 25.6 47.1 57.5 3.0 1.1 0.8 37.6 1.49 20.40

66 5.4 32.6 25.9 36.1 49.1 2.9 0.9 0.6 46.5 1.55 23.46

67 7.1 21.5 24.7 46.7 57.8 3.0 1.2 0.6 37.4 1.46 26.65

68 3.8 18.4 25.0 52.8 61.9 3.4 1.2 0.4 33.1 1.48 25.05

69 7.2 16.7 27.8 48.3 61.2 3.4 1.1 0.7 33.6 1.43 25.49

70 6.7 17.1 26.2 50.0 62.2 3.4 1.2 0.5 32.7 1.45 17.60

71 6.1 36.4 24.9 32.6 43.9 2.6 0.9 0.2 52.4 1.68 14.93

72 6.8 43.2 22.2 27.8 36.6 2.2 0.7 0.2 60.3 1.77 23.86

73 SCFL 7.8 17.1 24.9 50.2 60.5 3.2 0.3 1.1 34.9 1.48 21.40

74 7.4 24.3 27.1 41.2 53.6 3.2 1.1 1.2 40.9 1.54 20.73

75 7.1 29.0 28.1 35.8 50.4 3.1 1.5 1.1 43.9 1.52 20.90

76 5.7 37.5 23.2 33.6 43.1 2.6 1.0 1.1 52.2 1.59 17.33

77 8.9 35.9 23.2 32.0 42.0 2.3 2.2 1.0 52.5 1.64 16.41

78 5.5 40.1 24.2 30.2 42.0 2.4 0.7 1.0 53.9 1.68 16.85

79 5.1 46.5 20.8 27.6 35.6 2.0 0.5 0.8 61.1 1.78 13.91

 190

Table 3.8: Details of ANN-based GCV models*

Model
No.

Basis Model Inputs
Training set

size
Test set

size
I J K

Learning
rate ()η

Momentum
coeff. ()μ

I As received
Moisture, ash, volatile matter, fixed
carbon, carbon, hydrogen, sulphur,
nitrogen, oxygen and He-density

63 16 10 5 6 0.2 0.1

II As received Ash, moisture 64 15 2 5 6 0.2 0.1

III As received Ash, moisture, He-density 64 15 3 5 6 0.2 0.1

IV As received Ash, moisture, fixed carbon 64 15 3 5 10 0.2 0.1

V As received Carbon, hydrogen, sulphur, nitrogen 64 15 6 3 6 0.2 0.1

VI Dry
Carbon, hydrogen, sulphur, nitrogen,

oxygen, ash
64 15 3 5 6 0.2 0.1

VII Dry Fixed carbon, volatile matter, ash 64 15 3 5 6 0.2 0.1

* I = No. of input nodes; J = No. of nodes in the first hidden layer; K = No. of nodes in the second hidden layer.

 191

Table 3.9: Statistical analysis of GCV prediction and generalization performance of ANN-based and linear models*

Performance of ANN models Performance of linear models*

Training set Test set Training set Test set Models

CC RMSE APE CC RMSE APE CC RMSE APE CC RMSE APE

I 0.996 0.281 1.233 0.997 0.514 2.067 - - - - - -

II 0.986 0.537 2.433 0.996 0.787 3.062 0.565 3.191 13.957 0.623 3.931 17.412

III 0.987 0.528 2.443 0.994 0.618 2.205 - - - - - -

IV 0.988 0.479 2.155 0.995 0.725 2.663 - - - - - -

V 0.984 0.590 2.701 0.988 0.630 2.405 - - - - - -

VI 0.989 0.516 2.215 0.989 0.688 2.625 0.983 4.352 22.930 0.991 4.515 21.484

VII 0.984 0.612 2.574 0.989 0.696 2.485 0.981 2.699 12.893 0.985 3.280 14.146

* The GCV prediction and generalization performance of ANN-models II, VI, and VII have been compared with the linear

models described by Eqs. 3.12, 3.13 and 3.14, respectively.

 192

Table 3.10: Results of sensitivity analysis (SA) of ANN model-I

Sr. No.
SA-based hierarchy of

inputs
% sensitivity ()Ŝ

1 Oxygen 25.0757

2 Carbon 20.4558

3 Ash 15.8912

4 Fixed carbon 12.2942

5 Moisture 10.4246

6 Volatile matter 4.3730

7 He density 4.1563

8 Nitrogen 3.6144

9 Hydrogen 2.7548

10 Sulphur 0.9599

 193

3.5 SOFT-SENSOR DEVELOPMENT FOR FED BATCH

BIOREACTORS USING SUPPORT VECTOR REGRESSION∗

Industrial fermentation processes involving a fed-batch operation are

extensively used for the production of antibiotics, amino acids, microbial cells,

enzymes and organic acids. Efficient monitoring and control of these systems is

greatly facilitated if sensor measurements of the process variables or at least their

reasonably accurate estimates are available continuously in real-time. Often,

reliable biosensors or robust on-line measurement techniques for the process

variables such as the concentrations of the active biomass and product species are

not readily available. To overcome this difficulty, usage of software based sensors

(known as ‘soft-sensors’ or ‘virtual sensors’) is recommended. Softsensors allow

an online estimation of the unmeasured or “difficult-to-measure” process variables

from the values of easily and frequently measured variables. In recent years,

artificial neural networks owing to their significant ability of nonlinear function

approximation are widely prescribed for the development of softsensors.

However, the ANN approach suffers from the drawbacks such as extensive

numerical effort required to find a globally optimum solution and “black-box”

nature of the resultant model. In this section, therefore, a state-of-the-art

statistical/machine learning based formalism known as “support vector regression

(SVR)” possessing some novel characteristics, has been presented for the soft-

sensor development in fed-batch processes. The efficacy of the SVR formalism

has been demonstrated by considering two simulated bio-processes namely,

invertase and streptokinase. Also, the performance of the SVR based soft-sensors

is compared with those developed using a standard ANN technique. In the case of

invertase process, the differential utilization rate of ethanol and glucose is used as

the basis for developing a soft-sensor. For the streptokinase process, soft-sensors

∗ Desai K. M., Y. P. Badhe, S. S. Tambe and B. D. Kulkarni, Biochemical

Engineering Journal, 27, 2006, 225–239.

 194

for the active biomass and streptokinase concentrations are developed using the

characteristic that the wild type and its recombinant give rise to different growth

and substrate utilization profiles. The results presented here clearly indicate that

the SVR is an attractive alternative to ANNs for the softsensor development.

3.5.1 Introduction

Industrial applications of enzymes have increased rapidly in the past few

years. Most enzymes are produced by a submerged, aerobic fermentation

involving a batch operation. A fed-batch culture is widely used for the production

of enzymes from a microbial source that suffers catabolic repression. The fed-

batch operation is found to be superior to batch and continuous operations in

situations of a parallel formation of the desired and undesired products [Ohno et

al., 1976; Staniskis, 1984].

The traditional methods of improving the efficiency of a bio-process

comprise strain modification and development of the media by empirical means.

Invariably, these approaches are found to be inadequate owing mainly to the

process variability and operational difficulties. Thus, in recent years a significant

attention is being paid to monitoring, control and optimization of bio-processes

with a view to bring about improvements in the process productivity and

economics. The ability of controlling a bio-process at its optimal state accurately

and robustly is of immense importance from the view point of reducing the

production cost, increasing product yield, and maintaining quality of metabolic

products. An efficient feed-back or the model based control is thus necessary to

achieve the stated objectives.

The task of controlling and monitoring a bioprocess efficiently and

robustly is faced with major difficulties such as the existence of significant

uncertainties emanating from the complex non-linear dynamics typically exhibited

by the bioprocesses, and the lack of–in most cases–reliable hardware and/or bio-

sensors for measuring values of the process and/or product quality variables

[Shimizu, 1996]. The first of these difficulties can be overcome by constructing an

appropriate phenomenological or an empirical process model capable of

describing the non-linear process dynamics accurately. The second significant

difficulty, that is the lack of reliable hardware and/or biosensors, can be addressed

 195

by developing softsensors that can accurately estimate values of the process and

product quality variables in real-time. Softsensors are software based sophisticated

monitoring systems, which can relate less accessible and infrequently measured

process variables with those measured easily and frequently. In essence,

softsensors correlate the unmeasured process and product quality variables with

the frequently measured process variables and thus assist in making real-time

predictions of the unmeasured variables. Softsensors are useful in the control and

monitoring of fermentation processes wherein owing to the unavailability of

appropriate hardware sensors and/or bio-sensors, the values of important process

and product quality variables are not continuously available. The predictive

performance of softsensors depends upon the reliable measurements of easily

accessible process variables and also on the mathematical and/or statistical

techniques used in the interpretation and correlation of the process data. A number

of authors have described different approaches for the soft-sensor development in

the batch, fed-batch and continuous processes [Bastin 1990; Acha et al., 1999;

Albert et al., 2001; Linko et al., 1999; James et al., 2002 ; Sachez et al., 1999;

Adilson et al., 2000; Montague et al., 1986; Pons et al., 1988].

In the last decade, artificial neural networks, (refer Section 2.2.1) owing to

their attractive functional approximation properties, have become a powerful

formalism not only for constructing exclusively data-driven nonlinear process

models but also for developing soft-sensors [Eerikäinen et al., 1993; Zhu et al.,

1996; Karim et al., 1992]. More recently, support vector regression (refer Section

2.2.2), which shares many features with ANNs, but has some additional novel

characteristics, is gaining widespread acceptance for exclusively data-driven

nonlinear modeling applications [Nandi et al., 2004]. Despite endowed with a

number of attractive features, the SVR being a new formalism, is yet be explored

widely in the biochemical/biotechnology applications. Therefore, in the present

work, the SVR formalism has been introduced for developing soft-sensors for

bioprocesses. Specifically, two simulated fed-batch processes namely invertase

and streptokinase, have been considered for the SVR-based softsensor

development. Also, the performance of the SVR-based softsensors has been

rigorously compared with those developed using a standard ANN formalism. The

 196

results of the two case studies presented here clearly indicate that the SVR is an

attractive strategy for developing soft-sensors for bioprocesses.

3.5.2 Invertase Production Model

The phenomenological model for biphasic growth of Saccharomyces

carlsbergensis and invertase production is given as [Pyun et al., 1989]

() ()t G A t
d x x
dt

μ μ= + (3.23)

() t Fsx s Fd s
dt v v

ψ
= − + (3.24)

() ()A C t
d e x
dt

π π= − (3.25)

()d v F
dt

= (3.26)

 () ()inv S G A A t
d c x
dt

η μ η μ= + (3.27)

where

 tx , s, and e: concentrations of cells, glucose, and ethanol, respectively

μG, μA, ψ: specific growth rates on glucose and ethanol and, specific rate of

glucose consumption, respectively,

πA, and πC: specific rates of ethanol production and ethanol consumption,

respectively,

ηS and ηA: ratios of the specific invertase synthesis rate to the specific growth rate

on glucose and on ethanol, respectively,

cinv: invertase activity,

q: volumetric feed rate of glucose,

sF: glucose feed concentration,

v: fermenter volume.

 197

The following nonlinear feed rate profile that maximizes the streptokinase

production [Toda, et al., 1980] is used for the data generation.

q = 0.2 l/h for (0 ≤ t ≤ 0.58); q = 0 l/h for (0.58 ≤ t ≤ 2.28); q = qc l/h for

(2.28 ≤ t ≤ 12.4); q = 0 l/h for (12.4 ≤ t ≤ 13)

where,

 (1.2013) (0.1046)
cq (1.4892)() ()t inv

F

xv x v s c
s s
ψ −= + −

−
 (3.28)

The details of above rate expression and kinetic model can be found in [Pyun, et

al., 1989]. The following values of model parameters and operating conditions are

used in SVR simulations:

max
Gμ = 0.39 h-1, max

Aμ = 0.11 h-1, sk = 0.021 g/l, pk = 0.014 g/l, /
R

x sY = 0.52 g/g,

/
F

x sY = 0.15 g/g, /
R

x pY = 0.67, /
R

p sY = 0.33 g/g, e0 = 0 g, (invc)0 = 0 KU/g, v0 = 0.6 l,

vmax = 1.5 l,

sF = 0.5/[vmax – v0] g/l.

3.5.3 Softsensor for Invertase Process

Saccharomyces carlsbergensis shows a biphasic nature of growth, i.e., it

can utilize glucose as well as ethanol in the event of a glucose scarcity [Dedem et

al., 1975; Beejherk et al., 1977]. This feature is advantageous since among the two

substrates namely glucose and ethanol, the latter is cheaper. Hence, the

fermentation is conducted by maintaining the glucose concentration at a level such

that the yeast is forced to use ethanol. Saccharomyces carlsbergensis and some

other yeasts exhibit the diauxic type of growth whereby in the first growth phase,

the glucose is utilized via an aerobic fermentation with carbon dioxide and ethanol

as the main reaction products. When glucose is completely exhausted, the ethanol

produced earlier serves as a substrate for the further growth. In a fed-batch

culture, which is used extensively to suppress the catabolic repression, it is

necessary to control the concentration of glucose at an optimal level for

 198

maximizing the cellular yield and maintaining a high growth rate. When yeasts

exhibiting the diauxic growth are used for the production of enzymes, the extent

of cellular growth and enzyme production depends upon the balance between the

metabolic states of the aerobic fermentation and respiratory growth. Accordingly,

an estimation of the current metabolic state can be made from the changes in the

concentrations of glucose and ethanol in the broth.

The major advantage of a fed-batch bioreactor is during fermentation, the

feed composition and feed flow rate can be manipulated to maximize the product

formation. Thus, manipulation of the feed rate is an important aspect of the fed-

batch operation from the view point of process control and optimization. The

optimal feeding policy depends significantly on the initial feed concentration and

flow rate and its manipulation is highly sensitive to the changes in the kinetic

parameters. Modak et al. [1986] have reported that for certain kinetics, glucose-

stat (maintaining the glucose concentration at a constant level) is optimal.

However, very often the substrate concentration is maintained by regulating the

feed rate in an optimal manner. Pyun et al. [1989] have reported the results of a

detailed study on the optimization of the biphasic growth of Saccharomyces

carlsbergensis in a fed-batch culture. Recently, optimization of the same system

has been carried out by Sarkar and Modak [2003] using Genetic Algorithms (see

Section 2.4.3); the optimal feed profiles obtained thereby exhibit an excellent

match with those obtained by Pyun et al. [1989]. Both these studies have reported

four different profiles for as many combinations of high and low initial

concentrations of the substrate and biomass. Since all these feed profiles were

nearly identical, only one feed profile has been considered as a reference feed

profile in this study.

 To generate process data for developing a softsensor for the invertase from

Saccharomyces carlsbergensis process, the phenomenological model proposed by

Toda et al. [1980] (also see Pyun et al. [1989] has been used. It may however be

noted that the model is used only to simulate the process and thereby generating

the process data. In real practice, data collected by running the process physically,

are to be used for developing the softsensor. As can be noted from the invertase

model (see Section 3.5.2), The fed-batch invertase process is described in terms of

five operating variables namely, glucose concentration (s, g/l), ethanol

 199

concentration (e, g/l), bioreactor volume (v, l), biomass concentration (xt, g/l) and

invertase concentration (cinv, KU/g). This case study aims at developing an SVR-

based softsensor for the prediction of cinv. To generate process data, the set of five

ordinary differential equations (see Eqs. 3.23 to 3.28) representing the process

dynamics was simulated under varying initial conditions; the ranges in which the

initial values were varied are: (0.3 < v0 < 0.6, 0.02 < s0 < 0.1, and 0.03 < xt0 <

0.06). A total of 33 batches with varying initial conditions were simulated over the

fermentation duration of 13 hrs. The values of four operating variables, i.e. s, v, xt

and e, and that of the single product quality variable namely, invertase

concentration, cinv, computed at 30 minute intervals formed the process data set.

The real-world process data always contain some instrumental and measurement

noise and, therefore, 5% Gaussian noise was introduced in each variable of the

process data for mimicking the real-world process scenario. This set can be

viewed as a three-way array of size 33 (number of batches) × 5 (process variables)

× 27 (measurement intervals). Since the concentrations of glucose, biomass and

ethanol as also the reactor volume significantly influence the activity of the

invertase, it is necessary to consider the history of these variables along with their

current values for developing the softsensor model. Thus, the current and lagged

values of variables s, e, xt and v, were used as inputs to the SVR-based model

predicting the current value of the invertase concentration (activity). While the

concentrations of glucose and ethanol can be estimated on-line using biosensors

[Lui et al., 1998; Folly et al., 1996; Rank et al., 1995], the biomass concentration

can be estimated from the optical density of the broth.

An SVR-implementation known as “ε-SVR” in the LIBSVM software

library [Chang et al., 2002], was used to develop the softsensor model. The

LIBSVM library utilizes a fast and efficient implementation of the widely used

method known as sequential minimal optimization (SMO) [Joachims, 1998; Platt,

1998] for solving large quadratic programming problems and thereby estimating

parameters, , *α α and b, of the SVR’s fitting function (see Eq. 2.41). In this

study, the RBF kernel function was used to avoid the dot product calculations in

the feature space, Φ. To develop an SVR-based softsensor model possessing good

prediction and generalization ability, it is necessary to judiciously select the

number of lagged values of variables s, e, xt and v. Accordingly, multiple

 200

softsensor models with varying number of lagged values of the stated variables

were constructed. The generalization ability of these models was evaluated by

using a test set that comprised 20% of the available process data; the remaining

80% data were used as the training set for building the SVR models. The model

that yielded the least RMSE magnitude for the test set was chosen as the optimal

model; the RMSE was computed as:

()2

1

ˆ() ()
p

i i
inv inv

i
c t c t

RMSE
p

=

−
=

∑
 (3.29)

where, i is the pattern index; t denotes the discrete time (∆t = 30 min) and, ()i
invc t

and ˆ ()i
invc t are the desired and SVR-predicted invertase concentrations

corresponding to the ith pattern, respectively. The optimal softsensor model

obtained by following the above-described procedure has ten inputs defining the

current and lagged values of variables s, e, xt and v, and the model is defined as:

() ()t tˆ (), (-1), (), (- 2), (), (- 2), (), (-1), (- 2), (-3)invc t f s t s t e t e t x t x t v t v t v t v t= (3.30)

where, x(t-k) denotes the value of a variable x lagged by k number of discrete

time intervals and ˆ ()invc t is the SVR-model predicted invertase activity at time, t.

It can thus be seen that the optimal SVR-based softsensor model has used 1, 1, 1

and 3 lagged values of the model input variables, s, xt, e and v, respectively. The

optimal number of support vectors (SVs) used by the SVR algorithm for fitting

the invertase activity model was 228. The optimal values of the four ε-SVR

algorithm specific parameters that minimized the RMSE with respect to the test

set (Etst) are: width of the RBF kernel (σ) = 1, regularization constant (C) = 2, loss

function parameter (εloss) = 0.00001 and tolerance for the termination criterion

(εtol) = 0.00001.

The performance of the SVR based optimal softsensor model in predicting

the invertase activity was compared with that of the standard MLP-based model.

Here, a two hidden layer MLP network trained using the EBP algorithm was used;

the training and test sets used for developing the MLP based softsensor were the

same as used in the development of the SVR-based softsensor. To construct an

optimal MLP model, the effects of network's structural parameters (number of

 201

hidden layers and the number of nodes in each hidden layer) as also two EBP-

specific parameters, namely, the learning rate and momentum coefficient, were

studied rigorously. Additionally, the effect of random weight initialization was

examined to obtain a model that corresponds to the global or the deepest local

optimum on the nonlinear error surface [Nandi, et al., 2001]. The MLP’s

architectural details and the EBP-specific parameter values that yielded an optimal

softsensor model are: number of input nodes = 10, number of neurons in the

hidden layer-I = 4, number of neurons in the hidden layer-II = 2, number of

neurons in the output layer = 1, learning rate = 0.6 and momentum coefficient =

0.05.

 The values of correlation coefficient (CC), RMSEs and the average error

(%) pertaining to the invertase activity predictions made by the SVR and ANN

based softsensors are listed in Table 3.11. As can be seen from the tabulated

values that the CC magnitudes corresponding to the SVR model predictions are

very close to unity indicating an excellent match between the desired and model

predicted invertase activity values. Also, the average error (%) and RMSE values

in respect of both the training set (Etrn) and the test set (Etst) are sufficiently small.

A close match between the stated statistical quantities for both the training and

test sets indicates that the SVR based softsensor has excellent generalization

ability as well. A comparison of CC, RMSE and average percent error values

corresponding to the SVR and ANN predictions reveals that the SVR based

softsensor has consistently outperformed the ANN-based softsensor model. These

results suggest that the SVR-based softsensor can be effectively used for near-

accurate online estimation of the invertase activity. An illustrative comparison of

the SVR (see Figure 3.8) and ANN (see Figure 3.9) model predicted values of the

invertase activity at batch times of 2, 7 and 13 hrs.

 202

(a)

0

2

4

6

8

10

12

14

16

18

1 6 11 16 21 26

Batch Number

In
ve

rt
as

e
ac

tiv
ity

 (k
U

/g
)

Target at (2hr) SVR predicted (2hr) Target at (7hr)
SVR predicted (7hr) Target at (13hr) SVR predicted (13hr)

Figure 3.8: Invertase activity at two, seven and 13 hour time duration as predicted
by the SVR-based softsensor

(b)

0

2

4

6

8

10

12

14

16

18

1 6 11 16 21 26

Batch Number

In
ve

rt
as

e
ac

tiv
ity

 (k
U/

g)

Target value (2hr) ANN predicted (2hr) Taget value (7hr)
ANN predicted (7hr) Target value (13hr) ANN predicted (13hr)

Figure 3.9: Invertase activity at two, seven and 13 hour time duration as predicted
by the ANN-based softsensor

 203

Table 3.11: Comparison of invertase activity prediction performance of SVR and
ANN-based softsensor models

Model Data
Correlation

Coefficient
Average error (%) RMSE

Training set 0.999 3.306 0.084 SVR
Test set 0.999 3.764 0.115

Training set 0.997 12.068 0.266 ANN
Test set 0.998 5.116 0.270

3.5.4 Softsensor for Streptokinase Process

 The phenomenological model of streptokinase process using Streptoccus

sp. in batch fermentation [Patnaik, 1999] is given as:

 t
a t

dx qx x
dt v

μ= − (3.31)

 ()a
d a a

dx qk x x
dt v

μ= − − (3.32)

()a
in

X

xds q s s
dt Y v

μ−
= + − (3.33)

a
M a a

dl qY x l
dt v

μ= − (3.34)

()t
P d a P t t

ds qY k x k s s
dt v

μ= − − − (3.35)

()dv q t
dt

= (3.36)

b
I

m b b
S I a

Ks
K s K l

μ μ
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠
 (3.37)

where,

xt, xa : concentrations of total and active biomass, respectively,

 204

s, st, al : concentrations of substrate, streptokinase and lactic acid, respectively,

v : volume of reactor,

The following nonlinear feed rate profile that maximizes the streptokinase

production is used for the data generation [Patnaik, 1995].

 2 3
0 1 2 3() (/) (/) (/)q t a a t T a t T a t T= + + + (3.38)

The parameter values used to simulate the model are:

a0 = 0.9959 (l/h), a1 = -0.3037 (l/h), a2 = -1.3418 (l/h), a3 = 0.6499 (l/h), b = 2.39,

kd = 0.020 (l/h), kp = 0.0005 (l/h), KI = 12.66 (g/l), KS = 13.14 (g/l), Sin = 70.0 (g/l),

T =12.0 (h), YM = 4.80 (g/g), YP = 0.44 (g/g), YX = 0.15 (g/g), μm = 0.74 (l/h)

Initial conditions used in the model simulations are:

al (0) = 0 g/l, st(0) = 0 g/l, s0 = 70 g/l, xt(0) = 0.7 g/l, xa(0) = 0.7 g/l, v(0) = 51.

3.5.5 Details of Softsensor Development

Genetically engineered microorganisms have become important vehicles

for the production of valuable bio-molecules. Owing to the “gene dosage effect,”

each cell can possess multiple copies of a plasmid up to a certain threshold level.

This feature results in the increased production of the recombinant product. The

two major factors affecting the expression of a plasmid bearing gene are

cultivation conditions [Ryan et al., 1989] and the bioreactor operation mode

[Georgiou et al., 1985]. Though genetic engineering can also be used in the

production of metabolites, its main application is in the production of high value

proteins.

In the recombinant technology, the host microorganism is infected with

multiple copies of plasmids. Each plasmid carries the gene responsible for the

production of the desired product. Thus, during fermentation cells are forced to

accumulate a very high concentration (in excess of 10% of the cell’s dry weight)

of the recombinant protein. Such a protein overproduction does not serve the

microorganism in any useful way. Instead it burdens the cell and hence cells

 205

always try to get rid of this burden [Ryan et al., 1991]. Several studies have

reported a decrease in the specific growth rate of plasmid-bearing cells with an

increase in the plasmid copy number [Lee et al.,1984; Seo et al., 1985]. Owing to

their higher growth rate, the plasmid-free cells, once formed, outgrow the

plasmid-bearing cells and eventually take over the entire population. Also, most

cells while undergoing a cell division lack the mechanism for the proper

partitioning of the plasmid copies in an offspring. These factors eventually lead to

the plasmid instability, owing to which there always remains a fraction of

plasmid-free cells, which utilizes the fermentation resources without yielding any

desired product. Thus, it is necessary to ensure that the batch mode fermentation

does not produce an excess of plasmid-free cells. This can be achieved by strict

monitoring and control of the plasmid-free cells. Though an estimation of the

biomass of frequently used host cells—such as the E-coli—is possible by

measuring the optical density of the broth, online measurement of the plasmid-free

cell fraction is in general difficult. The stated difficulty, however, can be

overcome by developing softsensors for the estimation of concentrations of the

active cell mass and the recombinant protein. It is well-known that there exists a

substantial difference in the growth rates of the plasmid-free and plasmid-bearing

cells. As a result, these cells give rise to two distinct biomass and substrate

profiles [Ryan, et al., 1991]. Accordingly, the substrate and total biomass

concentrations can be used to develop softsensors (as illustrated using the SVR

and ANN formalisms) for predicting concentration values of the recombinant

protein and active cell mass.

 Similar to the invertase process, the streptokinase fed-batch process data

were generated using the phenomenological model [Patnaik, 1995; 1999]. This

model comprises six ordinary differential equations (ODEs) (Eqs. 3.31 to 3.37)

representing the dynamics of six process variables namely, active biomass

concentration (xa, g/l), total biomass concentration (xt, g/l), substrate concentration

(s, g/l), reactor volume (v, l), lactic acid concentration (la, g/l) and streptokinase

concentration (st, g/l). The data for multiple fed batches were generated by

integrating the set of six ODEs using the Gear’s algorithm and by varying the

process initial conditions in the following ranges: 60 ≤ s0 ≤ 80 and 0.5 ≤ xa0 ≤

0.9. A total of 45 batches over 12 hr duration were simulated. The values of six

 206

process variables viz., v, xt, s, la, xa and st computed at 30 minute intervals formed

the process data set. Next, 5% Gaussian noise was introduced in each variable of

the process data to mimic the real-life process scenario. This data formed a three-

way array of size, 45 (number of batches) × 6 (process variables) × 25 (time

intervals). Changes in the reactor volume and concentrations of the biomass and

substrate (i.e. glucose) are the major indicators of a change in the streptokinase

and active biomass concentrations. Accordingly, the current as also the lagged

values of variables v, xt, and s were considered as inputs to the two softsensor

models predicting the current concentrations of streptokinase and the active

biomass.

In this case study too, the ε-SVR algorithm from the LIBSVM software

library was used to develop the two softsensor models. Although not considered

here, a softsensor for predicting the lactic acid concentration also can be

developed in a manner similar to the models for the streptokinase and active

biomass concentrations. The number of lagged values of variables v, s and xt, and

also the ε-SVR specific parameters were chosen via an heuristic optimization such

that the RMSE with respect to the test set is minimized. The optimal ε-SVR

softsensor models that minimized the test set RMSE (Etst) have eight inputs

defining the current and lagged values of the three operating variables, v, s and xt,

and the form of the models is as given below.

() ()1ˆ (), (-1), (- 2), (-3), (), (-1), (), (- 2)t t ts t f v t v t v t v t s t s t x t x t= (3.39)

() ()2ˆ (), (-1), (- 2), (-3), (), (-1), (), (- 2)a t tx t f v t v t v t v t s t s t x t x t= (3.40)

where, ()t̂s t and ()ˆax t refer to the concentrations of streptokinase and active

biomass at a discrete time, t, respectively, and x(t-k), k = 1, 2, 3, denote the lagged

values of a variable, x. The number of lagged values of each of the process

variables namely, v, s and xt, in Eqs. 3.39 and 3.40 were determined by varying

the number systematically and choosing the optimal number that minimized the

test set RMSE. During the development of two softsensors, a training set of 308

patterns was used to estimate the SVR model parameters α, α* and b, and a test

set comprising 70 patterns was used to evaluate the generalization performance of

the SVR models. These data patterns comprising the current and lagged values of

 207

process variables were generated by appropriately arranging the process data from

45 batches. The optimal number of support vectors (SVs) used by the SVR

algorithm for fitting the streptokinase and active biomass concentration models

were 297 and 301, respectively. The values of four ε-SVR algorithm specific

parameters that minimized the test set RMSE pertaining to the streptokinase

softsensor are: width of the RBF kernel (σ) = 1, regularization constant (C) = 5,

loss function parameter (εloss) = 0.00065 and tolerance for termination criterion

(εtol)= 0.0051. The respective parameter values for the active biomass

concentration softsensor are: σ = 2.24, C = 11, εloss = 0.00001 and εtol = 0.00001.

The prediction and generalization performance of the two SVR-based

softsensors was compared with that of the respective ANN-based softsensors.

Here, a single hidden layer MLP architecture trained using the EBP algorithm was

used to construct a multiple input - two output softsensor model. This single MLP

model predicts the concentration values of both streptokinase and the active

biomass. The training and test sets used in developing the MLP based softsensors

were same as used in the development of SVR-based softsensors. The

architectural details and the EBP specific parameter values that yielded an optimal

MLP-based softsensor model are: number of input nodes = 8, number of neurons

in the single hidden layer = 4, number of neurons in the output layer = 2, learning

rate (η) = 0.5 and momentum coefficient = 0.05. An illustrative graphical

comparison of the SVR and ANN model predicted values of streptokinase at the

batch times of 2, 5, 7 and 12 hrs is depicted in Figure 3.10 and Figure 3.11,

espectively. Similar comparison for the active biomass concentration is depicted

in Figure 3.12and Figure 3.13, respectively. A comparison of the correlation

coefficient, RMSE and average error (%) values pertaining to the predictions

made by the SVR and ANN based softsensor models is given in Figure 3.12.

It is seen from the tabulated values of correlation coefficient, RMSE and

average error that the respective magnitudes for the SVR and ANN-based

streptokinase and active biomass softsensors match very closely with the SVR

faring slightly better than the ANN. Also, the SVR-based softsensors are able to

predict the streptokinase and active biomass concentrations with high prediction

accuracy as indicated by the high CC magnitudes (≥ 0.998) and low (1.4% to

1.6%) average error values. Moreover, a close match between the CC, average

 208

error and RMSE values for both training and test sets indicates an excellent

generalization performance by the SVR based softsensors. Thus, the results of

case study-II also indicate that the SVR is an attractive alternative to ANNs for the

softsensor development.

Figure 3.10: Streptokinase concentration at two, five, seven and twelve hour time
duration as predicted by the SVR-based softsensor

(a)

0

0.5

1

1.5

2

2.5

3

1 6 11 16 21 26 31

Batch Number

St
re

pt
ok

in
as

e
Co

nc
. (

g/
l)

Target value (2hr) SVR prediction (2hr)
Target value (5hr) SVR prediction (5hr)
Target value (7hr) SVR prediction (7hr)
Target value (12hr) SVR prediction (12hr)

 209

(b)

0

0.5

1

1.5

2

2.5

3

1 6 11 16 21 26 31

Batch Number

S
tre

pt
ok

in
as

e
Co

nc
. (

g/
l)

Target value (2hr) ANN prediction (2hr)
Target value (5hr) ANN prediction (5hr)
Target value (7hr) ANN prediction (7hr)
Target value (12hr) ANN prediction (12hr)

Figure 3.11: Streptokinase concentration at two, five, seven and twelve hour time
duration as predicted by the ANN-based softsensor

Table 3.12: Comparison of prediction performance of SVR and ANN based
softsensors

Softsensor Method Data
Correlation

Coefficient (CC)

Average

error (%)
RMSE

Training set 0.999 1.592 0.0329
SVR

Test set 0.998 1.625 0.0401

Training set 0.998 1.659 0.0312
Streptokinase

ANN
Test set 0.997 1.726 0.0315

Training set 0.999 1.385 0.0743
SVR

Test set 0.999 1.538 0.0719

Training set 0.998 1.537 0.0743

Active

biomass
ANN

Test set 0.997 1.887 0.0779

 210

(a)

0

1

2

3

4

5

6

7

1 6 11 16 21 26 31

Batch Number

Ac
tiv

e
Bi

om
as

s
co

nc
. (

g/
l)

Target value (2hr) SVR predicted (2hr)
Target value (5hr) SVR predicted (5hr)
Target value (7hr) SVR predicted (7hr)
Target value (12hr) SVR predicted (12hr)

Figure 3.12: Active biomass concentration at two, five, seven and twelve hr. time
duration as predicted by the SVR-based softsensor

(b)

0

1

2

3

4

5

6

7

1 6 11 16 21 26 31

Batch Number

A
ct

iv
e

B
io

m
as

s
co

nc
. (

g/
l)

Target value (2hr) ANN predicted (2hr)
Target value (5hr) ANN predicted (5hr)
Target value (7hr) ANN predicted (7hr)
Target value (12hr) ANN predicted (12hr)

Figure 3.13: Active biomass concentration at two, five, seven and twelve hr. time
duration as predicted by the ANN-based softsensor

 211

3.5.6 Conclusion

The microbial fermentation is used extensively in the production of

antibiotics, proteins, polysaccharides, amino acids, etc. These fermentation

systems often exhibit a complex non-linear dynamical behavior, which poses

significant difficulties for process monitoring and control. An additional problem

in the efficient monitoring and control of fermentation processes is in most

situations reliable hardware sensors or biosensors for the product species are not

available. In such cases, the product concentration/quality is determined using

time-consuming and tedious instrumental and/or chemical analyses. The usage of

softsensors overcomes this difficulty. Softsensors are software based sophisticated

monitoring systems, which can correlate the “difficult-to-measure” or unmeasured

process variables with those measured easily and frequently. Artificial neural

networks owing to their significant ability of approximating nonlinear functions

have been the primary candidates for the development of softsensors. In recent

years, a novel statistical/machine learning theory based formalism known as

“support vector regression” has been introduced for performing non-linear

function approximation. The SVR formalism has many attractive features such as:

robustness of solution, sparseness of regression, good generalization capability

and automatic control of solution complexity. Hence, in the present section the

effectiveness of the SVR formalism for softsensor applications was evaluated by

considering two simulated fed-batch processes namely, invertase and

streptokinase.

 The characteristic feature of the diauxic yeasts that the rate of glucose and

ethanol assimilation changes with variations in the metabolic state, has been

exploited for developing the SVR based soft-sensor estimating the invertase

activity. This softsensor could estimate the invertase activity with accuracies of

96.7% and 96.3% for the training and test sets, respectively. In the case of

genetically modified microorganisms, the feature that the plasmid-bearing and

plasmid-free cells follow different substrate and biomass profiles, has been

utilized to develop the SVR-based softsensors estimating concentrations of the

protein (streptokinase) and active biomass. Here again the estimation accuracy of

the SVR based streptokinase and active biomass softsensors was found to be

 212

excellent ranging approximately between 98.4% and 98.6%. In both the case

studies, the generalization performance of the SVR-based softsensors also was

excellent. Additionally, the performance of the SVR-based softsensors was

compared with the ANN-based ones and the results obtained thereby clearly

indicate that the SVR formalism is an attractive alternative to ANNs for softsensor

applications. In the SVR-based modeling, the search for the globally optimum

solution is avoided since—unlike ANNs—the SVR solves a quadratic

programming problem possessing a single minimum. This feature considerably

reduces the numerical effort involved in developing an SVR-based softsensor.

Also, SVR-based models are amenable to interpretation in contrast to the “black

box” ANN models. Although in this study, the SVR formalism has been explored

only for softsensor applications, it is a generic nonlinear modeling formalism and

therefore can also be utilized efficiently for developing steady-state and dynamic

models of bioprocesses.

 213

3.6 SUPPORT VECTOR REGRESSION FOR BIOPROCESS

IDENTIFICATION∗

3.6.1 Introduction

 Majority of biochemical processes are nonlinear in nature. Modeling and

identifying these processes is one of the important tasks in the industrial practice.

These tasks are required to build better model–predictive controls (MPC), and

prediction and optimization of the process behavior for which phenomenological

as well as empirical techniques are available. However, many times developing a

phenomenological model for a given nonlinear biochemical process becomes

tedious and costly because of the process complexity, lack of sufficient

phenomenological knowledge of the system and huge amount of resources

required for acquiring the knowledge. Owing to these difficuilties, empirical

modeling and process identification techniques such as ANNs, nonlinear

autoregressive moving average and genetic programming need to be used.

Recently developed nonlinear modeling technique known as “Support

Vector Regression” (refer Section 2.2.2) provides a promising tool for process

identification of nonlinear processes. Unlike other data-based modeling methods

such as ANNs, which approximate nonlinear input-output relationships, the SVR

method first projects inputs to a high dimensional feature space and then correlate

them linearly with the target space. Advantages of the SVR technique are: strong

statistical background, globally optimum solution (via quadratic function

optimization) and good generalization performance.

In the present study, SVR formalism has been used to identify the process

involving biological treatment of polluted water by a mixed continuous culture. A

culture involving Colipidium campylum (protozoa) and Alcaligenes faecalis

(bacteria) is used for the biological treatment of the polluted water containing

Asparagine. A software library, LIBSVM [Chang et al., 2002] which includes

∗ Badhe Y. P., J. Singh Cheema, M. Potdar, S. S. Tambe and B. D. Kulkarni,

BIOHORIZON, held at IIT, New Delhi, 2003.

 214

sequential minimal optimization (SMO) algorithm [Platt, 1998] for solving the

quadratic optimization problem is used for developing the SVR-based model. The

process input-output data for the SVR-based identification were generated by

simulating the phenomenological process model and identification was performed

using both noise-free and noisy process data. The results obtained here show that

the SVR is a promising technique for process identification in the presence and

absence of noise in the process data.

3.6.2 Biological Treatment of Polluted Waters by Mixed Continuous
Culture

The activated sludge used in the biological treatment of polluted water is a

typical ecosystem composed of bacteria, protozoa, fungi and metazoa. Interactions

such as competition, commensalism, mutualism (symbiosis), synergism and

predation occur amongst the microorganisms in the ecosystem and as a

consequence, BOD, COD or other nutrients are removed from polluted waters

[Sudo, 1984].

Mixed continuous culture involves Colipidium campylum (protozoa) and

Alcaligenes faecalis (bacteria) to remove the pollutants in polluted waters that

contained Asparagine. The population densities of Colpidium campylum (P),

Alcaligenes faecalis (X), and the concentration (S) of residual asparagine in the

effluent can be ynamically monitored and represented in the following differential

equations:

Y
)X,S(F)SS(D

dt
dS

−−= 0 (3.41)

W
)P,X(GXD)X,S(F

dt
dX

−−= (3.42)

PD)P,X(G
dt
dP

−= (3.43)

where, X
SK

S)X,S(F m +
μ= (3.44)

P
XK

X)P,X(G
x

max,p +
μ= (3.45)

where t refers to the time and S0 , D, Y and W are the initial asparagine

concentration, dilution rate, yield factor of bacterial growth defined by ΔP/ (-ΔX)

 215

and the yield factor of protozoan growth defined by ΔP/(-ΔX), respectively.

Parameters, xpm K,, max,μμ and K refer to the maximum value of μ , maximum

value of pμ where pμ is the specific growth rate of protozoa, saturation constant

for protozoa and saturation constant for bacteria, respectively [Sudo, 1984]. The

steady state values of the variables and parameters appearing in Eqs. (3.41) to

(3.45) are given in Table 3.13.

Table 3.13: Steady-state values of variables and parameters

Variable/
Parameter Unit Value

X mg/ l 10
P mg/ l 5
S mg/ l 5
Kx mg/ l 5
K mg/ l 11
D h-1 0.064

mμ h-1 0.1

max,pμ h-1 0.1
Y --- 0.5
W --- 0.15
h --- 0.1

For identification, the process at steady-state was perturbed randomly.

Specifically the manipulated variables representing the dilution rate, D, was

perturbed as shown in Figure 3.14 and its response on the control variable, S, was

monitored (see Figure 3.15). The data was generated by simulating (integrating)

model Eqs. 3.41 – 3.45, using fourth order Runge- Kutta method using the step

size (h = 0.1) upto the time of 700 hours. After scaling the D and S data between

upper and lower limits of 0.95 and 0.05 respectively, they were divided into

training, test and validation sets. The training data were subjected to SVR based

identification and the optimal model obtained thereby was used to predict the test

and validation set outputs. The same procedure was repeated for the noise-induced

data.

 216

Figure 3.14: Random variations in the manipulated variable, D

Figure 3.15: Response of S to random variations in D

0

0.02

0.04

0.06

0.08

0.1

0.12

0 100 200 300 400 500 600 700
Time, hr

D
ilu

tio
n

R
at

e,
 m

g/
l

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700
Time, hr

S,
 m

g/
l

 217

3.6.3 Results and Discussion

The ε-SVR formalism was used to develop a “one-step ahead” predictor

model for the controlled variable, S, using variable time lags for the manipulated

and the controlled variables. Clean data as well as white-noise induced data were

used to test the performance of the SVR-based models. The noise-induced data

contained 5% of white noise in both D and S data. The one step ahead prediction

results for the training, test and validation data sets pertaining to the noise-free

(clean) and noisy process data are presented in the graphical form in Figure 3.16

and Figure 3.17, respectively.

From these figures it can be seen that the SVR methodology fits the noise-

free and noisy one step ahead control variable data with an excellent precision.

The correlation coefficient (CC) and the RMSE (Root Mean Square Error) values

for the predicted results are given in Table 3.14. As can be seen the CC values for

the desired and model-fitted one-step-ahead concentration of the control variable

are very close to unity signifying an excellent fit. Also, the RMSE values are very

low further supporting the excellent fit by the SVR model.

Table 3.14: Prediction results from ε- SVR based models

Clean Data Noisy Data
Data Sets

RMSE CC RMSE CC

Training data 0.015 0.997 0.063 0.993

Test data 0.016 0.994 0.059 0.993

Validation data 0.022 0.992 0.076 0.991

The SVR parameters used in simulations are: Cost (upper bound on Lagrange

multipliers) = 10, ε (tolerence for the ε insensitive loss function) = 1*10-4, gamma

(radial basis function’s width factor) = 0.1 and error tolerance criteria = 1*10-4.

 218

Figure 3.16: SVR predicted and desired Sk+1 values for (a) training, (b) test and
(c) validation data sets

0
1
2
3
4
5
6
7
8
9

0 50 100 150 200 250 300

Tim e (hr)

S k
+1

 (m
g/

l)

Actual

Predicted

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

300 350 400 450 500
Time (hr)

S k+
1
(m

g/
l)

Act ual

Predict ed

(b)

0

1

2

3

4

5

6

7

500 550 600 650 700

Time (hr)

S k+
1 (

m
g/

l)

Act ual

Predict ed

(c)

 219

Figure 3.17: SVR predicted and actual Sk+1 values for noisy (a) training, (b) test &
(c) validation data set

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

300 350 400 450 500

Time (hr)

S k
+1

 (m
g/

l)

Act ual

Predict ed

(b)

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300

Tim e (hr)

S k
+1

 (m
g/

l)
Actual

Predicted

 (a)

0

1

2

3

4

5

6

7

500 550 600 650 700

Time (sec)

S k
+1

 (m
g/

l)

Act ual

Predict ed

(c)

 220

3.6.4 Conclusion

 In this study, Support Vector Regression has been successfully employed

for the process identification of biological treatment of polluted waters using

mixed continuous culture. The results obtained here show that the SVR

methodology is a promising tool for nonlinear process identification. The SVR

formalism has been found to perform excellently for clean as well as noisy

process data.

 221

3.7 GENETIC PROGRAMMING FOR DATA-DRIVEN MODELING

OF NON-LINEAR CHEMICAL PROCESSES∗

Genetic Programming, described in Section 2.2.3, is an emerging branch

of artificial intelligence. In recent years, the GP formalism has found a novel

application; that is, development of data-driven models. Specifically, the

technique is capable of automatically obtaining the mathematical equation that fits

a given set of process input-output data. The major advantage of GP is that it does

not require specification of an exact form of the data-fitting function, as searches

and optimizes the exact form of the best-fitting functional form and its parameters.

The present work illustrates the case study involving GP-based modeling of

benzene isopropylation over Hbeta catalyst process.

3.7.1 Modeling of Benzene Isopropylation Over Hbeta Catalyst Process

Isopropylation of benzene is an important alkylation reaction in the

petrochemical industry for the synthesis of cumene, which is the chief starting

material in phenol production. In the last decade, several modifications of the

zeolite beta were explored as potential catalysts in cumene synthesis. More

recently, steady-state modeling of isopropylation of benzene over Hbeta (protonic

form of beta catalyst) is presented in Nandi et al. [2002]. The details of benzene

isopropylation over Hbeta catalyst process are elaborated in Section 3.3.4.

3.7.2 Results and Discussion

The data from 42 experiments comprising selectivity and percentage yield

(see Table 3.15) was randomly split into two sets namely, training and test data

sets in 80:20 ratio, respectively. The training data were used to build the GP

model and the test data were used to evaluate the generalization ability of the

∗ Phulwale U. S., Badhe Y. P., Mandge D. P., Tambe S. S., Kulkarni B. D., Poster

Presented at NCL Day, NCL, Pune, 2005.

 222

(b)

20

40

60

80

100

20 30 40 50 60 70 80 90 100

Actual Selectivity

G
P

M
od

el
 P

re
di

ct
ed

S

el
ec

tiv
ity

(a)

20

40

60

80

100

20 30 40 50 60 70 80 90 100

Actual Selectivity

G
P

 M
od

el
 P

re
di

ct
ed

S

el
ec

tiv
ity

model. The GP software used in this study has been developed in-house at NCL

and utilized to developed two models predicting cumene yield and selectivity,

respectively. The two GP-based non-linear models (expression trees) for the

prediction of cumene yield and selectivity are as given below.

()() ()()()[] ()() 3.0sin*064.0
131

2
1sinsinsinsinsin −+=

xxxxy (3.46)

()() ()()() ()()21.0sincos
1232

24 05.0*sin
+

−++=
xx xexxy (3.47)

where, y1 and y2 refer to selectivity and yield of cumene, respectively and x1, x2, x3

and x4 refer to temperature (oC), pressure (atm), mole ratio of benzene to isopropyl

alcohol (mole ratio) and weight hourly space velocity (hr-1), respectively.

Figure 3.18: GP model predictions of cumene selectivity: (a) Plot of training data
(b) Plot of test data

 223

Table 3.15: Benzene isopropylation over Hbeta catalyst process data

Expt.
No.

Temperature
(0C)

Pressure
(atm.)

Benz/IPA
(mole ratio)

WHSV
(hr-1)

Yield
(wt %)

Selectivity
(wt %)

1 110 1 8 3.3 0.07 77.03
2 145 1 8 3.3 11.6 58.75
3 180 1 8 3.3 15.78 79.93
4 210 1 8 3.3 17.365 90.72
5 215 1 8 3.3 16.09 91.95
6 150 4 8 3.3 12.2 65.74
7 135 4 8 3.3 12.99 74.58
8 110 4 8 3.3 0.71 80.82
9 100 4 8 3.3 0.19 75.02

10 110 1 10 3.3 0.55 67.74
11 110 1 8 3.3 0.24 54.85
12 110 1 6 3.3 0.37 53.63
13 110 1 3 3.3 0.2 32.13
14 110 1 1 3.3 0.14 21.62
15 110 1 8 6.8 0.24 54.85
16 110 1 8 8 0.15 44.64
17 110 1 8 9.5 0.13 37.38
18 110 1 8 10.5 0.08 39.3
19 110 1 8 12 0.09 39.13
20 110 1 8 13 0.07 39.1
21 105 1 8 6.8 0.3 70.38
22 110 1 8 6.8 0.24 54.85
23 115 1 8 6.8 0.35 48.25
24 130 1 8 6.8 4.61 76.68
25 185 1 8 6.8 9.2 59.23
26 210 1 6.5 3.3 20.04 91.8
27 155 1 6.5 3.3 16.93 77.4
28 180 1 6.5 3.3 20.27 90.9
29 210 1 6.5 3.3 19.86 91.9
30 225 1 6.5 3.3 19.1 89.3
31 250 1 6.5 3.3 17.89 85.2
32 275 1 6.5 3.3 17.29 83.1
33 230 1 6.5 2.5 20.33 91.1
34 215 1 7 5 19.86 91.9
35 215 10 7 5 19.54 92
36 215 18 7 5 18.68 89.1
37 215 25 7 5 17.74 86.8
38 195 25 6 5 18.92 85.6
39 210 25 6 5 22.1 93.7
40 230 25 6 5 22.02 93.8
41 250 25 6 5 21.35 90.7
42 280 25 6 5 20.48 86.2

 224

Table 3.16 shows the performance of the two GP models (Eqs. 3.46 and

3.47) in predicting the output in the training and test data sets in terms of the

correlation coefficient and the root mean squared error (RMSE). Also, the plots of

the training and test set output predictions are shown in Figure 3.17 and Figure

3.18, respectively. The GP model for the cumene yield has achieved CC values of

0.98 and higher which shows that the model has good prediction accuracy as also

generalization ability. The GP model for the cumene selectivity possesses

correlation coefficient values of 0.94 and 0.92 for the training and test data sets,

respectively. These values though not excellent, are reasonably good suggesting

average prediction accuracy and generalization performance by the model. These

results are similar to the earlier ANN modeling work conducted by Nandi et al.,

[2002]. The origin of sub-optimally performing selectivity model could be

measurement errors in the experimental data.

Table 3.16: Perfromance of the GP-based models

Models
Correlation
Coefficient

RMSE

Training data 0.94 7.06
Selectivity (y1)

Test data 0.92 7.19

Training data 0.99 1.42
Yield (y2)

Test data 0.98 2.61

3.7.3 Conclusion

This case study explores the GP’s potential in performing exclusively data-

based non-linear process modeling. While the GP has produced an accurate model

for the cumene yield, the model predicting cumene selectivity is an average one

probably due to measurement errors in the experimental data. As can be seen, GP

posses an excellent capacity to provide nonlinear models exclusively from the

process data. The major advantage of GP formalism is that it does not require

guessing in advance the form of the data-fitting function. The method is capable

of searching and optimizing both the fitting function as also its parameters

automatically.

 225

(a)

-10

0

10

20

30

0 5 10 15 20 25 30

Actual Yield

G
P

M
od

el
 P

re
di

ct
ed

 Y
ie

ld

(b)

-10

0

10

20

30

0 5 10 15 20 25 30

Actual Yield

G
P

M
od

el
 P

re
di

ct
ed

 Y
ie

ld

Figure 3.19: GP model predictions for cumene yield. (a) Plot of training data (b)
Plot of test data

 226

3.8 REFERENCES

1. Acha, V., M. Meurens, H. Naveau, D. Dochain, G. Bastin and S. N. Agathos,

Model-based estimation of a reductive dechlorination process via an Fourier

transform infrared sensor, Wat. Sci. Tech. 8 (1999) 33–40.

2. Adilson, J. D. A., M. Rubens, Soft-sensors development for on-line bioreactor

state estimation. Comp. Chem. Eng. 24 (2000) 1099–1103.

3. Agarwal, M. (1997), A Systematic Classification of Neural-Network-Based

Control, IEEE Control Sys., 17(2), 75–93.

4. Albert, S. and R. D. Kinley, Multivariate statistical monitoring of batch

processes: an industrial case study of fermentation supervision. Trends

Biotech., 2 (2001) 53–62.

5. An, G. (1996), The Effects of Adding Noise during Backpropagation Training

on a Generalization Performance, Neural Computation, 8, Issue 3, 643–674,.

6. Bastin, G. and D. Dochain (1990), On-line estimation and Adaptive control of

Bioreactors. Elsevier, Amsterdam.

7. Beejherk, H. E., R. J. A Hall (1977), mechanistic model of aerobic growth of

Saccharomyces cerevisiae. Biotechnol. Bioeng., 19, 267–296

8. Bhat, N., and T. McAvoy (1990), Use of Neural Nets for Modeling and

Control of Chemical Process Systems, Comp. Chem. Eng., 14, 573.

9. Bishop, C. M. (1994), Neural Networks and Their Applications, Rev. of Sci.

Instru., 65, 1803.

10. Cavani, F., G. Girotti, V. Arrigoni and G. Terzoni (1997), Alkylation catalyst

for aromatic compounds for lower olefins, US patent 5650547 A, July 22.

11. Channiwala S. A., Parikh P. P. (2002), A unified correlation for estimating

HHV of solid, liquid and gaseous fuels. Fuel, 81, 1051–1063.

12. Chih-Chung Chang, Chih-Jen Lin (2002), LIBSVM: a Library for Support

Vector Machines. http://www.csie.ntu.edu.tw/~cjlin

13. Choudhary A., Biswas S. (2002–03), CFRI internal report titled Development

of equivalency chart between UHV and GCV, Report No.

TR/CFRI/3.02/2002–03.

 227

14. Cordero T., Marquez F., Rodriquez-Mirasol J., Rodriguez J. J. (2001),

Predicting heating values of lignocellulosic and carbonaceous materials from

proximate analysis. Fuel, 80, 1567–1571.

15. Davis L. (Ed.) (1987), Genetic Algorithms and Simulated Annealing, London:

Pitman.

16. Dedem, G. V., M. A. Moo-Young (1975), Model for diauxic growth.

Biotechnol. Bioeng., 17, 1301–1312.

17. Demirbas A. Calculation of higher heating values of biomass fuels. Fuel 1997;

76(5):431–34.

18. Desai, K., Y. P. Badhe, S. S. Tambe, B. D. Kulkarni (2006), Soft-sensor

Development for Bioreactors Using Support Vector Regression, Biochem.

Engg. J., 27(3), 225–239.

19. Eerikäinen, T., P. Linko, S. Linko, T. Siimes, Y. H. Zhu, Fuzzy logic and

neural network applications in food science and technology. Trends Food Sci.

Technol., 4 (1993) 237–242.

20. Engelbrecht, A. P., Cloete, I., and Zurada, J. M. (1995), Determining the

significance of input parameters using sensitivity analysis, From natural to

artificial neural computation: Proceedings of International Workshop on

Artificial Neural Networks. Malaga-Torremolinos, Spain: Springer, 382–388.

21. Fernandez P, Diaz RM, Xiberta J. (1997), Correlations of properties of

Spanish coals with their natural radionuclides contents Fuel, 76(10), 951–955.

22. Folly, R. O. M., B. Valdman, F. Valero, C. Solá (1996), Potentiometric sensor

for online glucose determination. Biotechnol. Techniques, 11, 867–870.

23. Freeman, J. A., and D. M. Skapura (1991), Neural Networks : Algorithms,

Applications, and Programming Techniques, Addison-Wesley, Reading, MA.

24. Geatti, A., M. Lenarda, L. Storaro, R. Ganzerla and M. Perissinotto (1997),

Solid acid catalysts from clays: cumene synthesis by benzene alkylation with

propene catalyzed by cation exchanged aluminium pillared clays, J. Mol.

Catal A: Chem., 121, 111–118.

25. Georgiou, G., J. J. Chalmers, M. Shuler, D. B. Wilson (1985), Continous

immobilized recombinant protein production from E. coli capable of selective

protein excretion: A feasibility study. Biotechnol. Prog., 1, 75–79.

26. Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization, and

Machine Learning, Addison–Wesley, New York.

 228

27. Goutal, M. (1902), Acad. Sci. Paris, 135: 477–479;

28. Hernandez, E. and Y. Arkun (1992), Study of the Control-Relevant Properties

of Backpropagation Neural Network Models of Nonlinear Dynamical

Systems, Comp. Chem. Eng., 16, Issue 4, 227–240.

29. Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, Ann

Arbor, MI: Univ. Mich. Press.

30. Holmstorm, L. and Koistimen, P. (1992), Using additive noise in back-

propagation training, IEEE transactions on neural networks, 3(1), 24–38.

31. Hunt, K., D. Sbarbaro, R. Zbikowski, and P. Gawthrop (1992), Neural

Networks for Control Systems – A Survey, Automatica, 28, 1083.

32. James, S., R. Legge, H. Buddman (2002), Comparitive study of black box and

hybrid estimation methods in fed batch fermentation. J. Process Control, 12,

113–121.

33. Jimenez L, Gonzalez F. (1991), Study of the physical and chemical properties

of lignocellulosic residues with a view to the production of fuels. Fuel; 70:

947–50.

34. Joachims, T. (1998), Making large-scale SVM learning practical, in: B.

Schölkopf, C.J.C. Burges, A.J. Smola (Eds.), Advances in Kernel Methods—

Support Vector Learning, MIT Press, Cambridge, MA.

35. Karagoz, O., J. Versteeg, M. Mercer and P. Turner (2004), Advanced Control

Methods Improve Polymers' Business Cycle, Hydrocarbon Processing, 83 (4),

45–49.

36. Karim, M. N., S. L. Rivera (1992), Comparison of feed-forward and recurrent

neural networks for bioprocess state estimation. Comp. Chem. Eng., 16, 369–

377.

37. Kucukbayrak S, Durus B, Mericboyu AE, Kadioglu E. (1991), Estimation of

calorific values of Turkish lignites. Fuel, 70, 979–981.

38. Kulkarni, B. D., S. S. Tambe, J. B. Lonari, N. K. Valecha, S. V. Deshmukh, B.

S. Shenoy, and S. Ravichandran (2002), Performance of artificial neural

network models in the presence of instrumental noise and measurement error,

U. S. Patent (USPA 20030191728) filed on March 27, 2002.

39. Kulkarni, B. D., S. S. Tambe, R. K. Dahule, and R. K. Yadavalli (Jul 1999),

National Chemical Laboratory, Pune, India. Hydrocarbon Processing, 89–97.

40. Lee, S. B., J. E. Baily (1984), Analysis of growth rate effects on productivity

 229

of recombinant E. coli populations using molecular mechanisms model.

Biotechnol. Bioeng., 26, 66.

41. Lin Y. and G. Cunningham (1995), A new approach to fuzzy-neural system

modeling, IEEE Trans. Fuzzy Systems 3, 190–198.

42. Lin Y. and G. Cunningham (1994), Building a fuzzy system from input-output

data, J. Intelligent Fuzzy Systems 2, 243–250.

43. Linko, S., Yi-Hong Zhu, P. Linko (1999), Applying neural networks as

software sensors for enzyme engineering. Tibtech, 17, 155–162.

44. Lui, H., H. Li, T. Ying, K. Sun, Y. Qin, D. Qi (1998), Amperometric

biosensor sensitive to glucose and lactose based on co-immobilization of

ferrocene, glucose oxidase, β-galctosidase and mutarotase in β-cyclodextrin

polymer, Annal. Chim. Acta, 358, 137–144.

45. Marquardt, D.W. An algorithm for least squares estimation of nonlinear

parameters. J. Soc. Ind. Appl. Math. 1963; 11: 431–441.

46. Mazumdar B. K. (1954), Coal systematics: Deductions from Proximate

Analysis of Coal Part I. Journal of Scientific & Industrial Research, 13B(12):

8, 57–63.

47. Mazumder B. K. (2000), Theoretical oxygen requirement for coal combustion:

relationship with its calorific value. Fuel, 79(14), 13–19.

48. Meima, G. R. (1998), Advances in cumene production, CATTECH, June, 5–

12.

49. Modak, J. M., H. C. Lim, Y. J. Tayeb (1986), Genral characters of optimal

feed rate profiles for various fed-batch fermentative process, Biotechnol.

Bioeng., 28, 1396–1407.

50. Montague, G. A., A. J. Morris, A. R. Wright, M. Aynsley, A. C. Ward (1986),

Online estimation and adaptive control of penicillin fermentation. IEE

Proceedings, 5, 240–246.

51. Nahas, E. P., M. A. Henson, and D. E. Seborg (1992), Nonlinear Internal

Model Control Strategy for Neural Network Models, Comp. Chem. Eng., 16,

Issue 12, 1039–1057.

52. Nandi, S., S. Ghosh, S. S. Tambe, B. D. Kulkarni (2001), ANN-Assisted

Stochastic Process Optimization Strategies, AIChE J., 47, 126–135.

 230

53. Nandi, S., Y. Badhe, J. Lonari, U. Shridevi, B. S. Rao, S. S. Tambe, B. D.

Kulkarni (2004), Hybrid process modeling and optimization strategies

integrating neural networks/support vector regression and genetic algorithms:

study of benzene isopropylation on Hbeta catalyst. Chem. Eng. J., 97, 115–

129.

54. Narendra, K., and K. Parthasarathy (1990), Identification and Control of

Dynamical Systems Using Neural Networks, IEEE Trans. Neural Networks, 1,

4.

55. Ohno, H., E. Nakanishini, and T. Takamastsu (1976), Optimal control of

semibatch fermentation, Biotechnol. Bioeng. 17, 847–864.

56. Parikh J, Channiwala S. A, Ghosal G. K. (2005), A correlation for calculating

HHV from proximate analysis of solid fuels. Fuel, 84(4), 87–94.

57. Patel, S. U., B. Jeevan Kumar, Y. P. Badhe, B. K. Sharma, S. Saha, S.Biswas,

A. Chaudhury, S. S. Tambe and B. D. Kulkarni (2007), Estimation of gross

calorific value of coals using artificial neural networks, Fuel, 86(3), 334–344.

58. Patnaik, P. R. (1995), A heuristic approach to fed-batch optimization

streptokinase fermentation. Bioprocess Eng, 13, 109–12.

59. Patnaik, P. R. (1999), Improvement of the microbial production of

streptokinase by ccontrolled filtering of process noise. Process Biochemistry,

35, 309–315.

60. Perego, C., G. Pazzuconi, G. Girotti and G. Terzoni (1994), Process for the

preparation of cumene, Eur. Pat. Appl. EP629599 A1, Dec. 21.

61. Platt, J. C. (1998), Fast training of support vector machines using sequential

minimal optimization, in: Advances in Kernel Methods—Support Vector

Learning, B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.), MIT Press,

Cambridge, MA.

62. Pons, M. N., A. Rajab, J. M. Flaus, J. M. Engasser (1988), A. Cheruy,

Comparison of estimation methods for biotechnological processes. Chem.

Eng. Sci., 8, 1909–1914.

63. Pyun, Y. R., J. M. Modak, Y. K. Chang, H. C. Lim (1989), Optimization of

biphasic growth of Saccharomyces carsbergensis in fed-batch culture,

Biotechnol. Bioeng., 33, 1–10.

 231

64. Ramasamy, S., S. S. Tambe, B. D. Kulkarni, and P. B. Deshpande (1995),

Robust Nonlinear Control with Neural Networks, Proc. R. Soc. Lond. A., 449,

65.

65. Rank, M. J. Gram, K. S. Nielsen, B. Danielsson (1995), On-line monitoring of

ethanol, accetaldehyde, and glycerol during industrial fermentations with

Saccharomyces cerevisiea. Appl. Microbiol. Biotechnol., 42, 813–817.

66. Raveendran K, Ganesh A. (1996), Heating value of biomass and biomass

pyrolysis products. Fuel, 75(15), 1715–1720.

67. Rumelhart, D., G. Hinton, and R. Williams (1986), Learning Representations

by Backpropagating Errors, Nature, 323, 533–536.

68. Ryan, W., S. J. Parulekar (1991), Recombinant protein synthesis and plasmid

instability in continuous cultures of Escherichia coli JM103 harboring high

copy number plasmid. Biotechnol. Bioeng., 37, 415 –429.

69. Ryan, W., S. J. Parulekar, B. C. Stark (1989), Expression of β-lactamase by

recombinant E-coli strains containing plasmid of different sizes- effect of pH,

phosphate and dissolved oxygen. Biotech. Bioeng., 34, 309–319.

70. Sachez, J. L., W. C. Robinson, H. Budman (1999), Developmental studies of

an adaptive on-line softosensor for biological wastewater treatment. Canadian

J. Chem. Eng., 77, 707–717.

71. Sarkar, D., J. M. Modak (2003), Optimization of fed-batch bioreactor using

genetic algorithm. Chem. Eng. Sci., 58, 2283–2296.

72. Schuster V. F. (1951), Über die Berechnung des Heizwertes von Kohlen aus

der Immediatzusammensetzung. Brennstoff – Chemie, 32, 19–20.

73. Seo, J. H., J. E. Baily (1985), Effects of recombinant plasmid contains on

growth properties and cloned gene product formation in E-coli. Biotechnol.

Bioeng., 27, 1668.

74. Shimizu, K. (1996), A tutorial review on bioprocess systems engineering.

Comp. Chem. Eng., 6/7, 915–941.

75. Sietsma, J., R. J. Dow (1991), Creating artificial neural networks that

generalize, Neural Networks, 4, 67–79.

76. Spooner, C.E. 1951, Swelling power of coal. Fuel, 30:193–202.

77. Sridevi, U., B. K. B. Rao, N. C. Pradhan, S. S. Tambe, C. V. Satyanarayana

and B. S. Rao (2001), Kinetics of isopropylation of benzene over Hbeta

catalyst, Ind. Engg. Chem. Res., 40, 3133–3138.

 232

78. Staniskis, J., D. Levisauskas (1984), An adaptive control algorithm for fed

batch culture. Biotechnol. Bioeng., 26, 419–425.

79. Sudo, R., S. Aiba (1984), Role and Function of Protozoa in the Biological

Treatment of Polluted Waters in Advances in Biochemical Engineering/

Biotechnology Volume 29’ A. Flechter (Ed.), Springer-Verlag, pg. 117–141.

80. Sung A. H. (1998), Ranking importance of input parameters of neural

networks. Expert Systems with Applications, 15, 405–411.

81. Tambe, S. S., B. D. Kulkarni, and P. B. Deshpande (1996), Elements of

Artificial Neural Networks with Selected Applications in Chemical

Engineering, and Chemical & Biological Sciences, Simulation & Advanced

Controls Inc., Louisville, USA.

82. Tendulkar, S. B., S. S. Tambe, I. Chandra, P. V. Rao, R. V. Naik, and B. D.

Kulkarni (1998), Hydroxylation of Phenol to Dihydroxybenzenes:

Development of Artificial Neural–Network-Based Process Identification and

Model Predictive Control Strategies for a Pilot Plant Scale Reactor, Ind. Eng.

Chem. Res., 37, 2081.

83. Toda, K., I. Yabe and T. Yamagata (1980), Kinetics of biphasic growth of

yeast in continuous and fed batch culture. Biotechnol. Bioeng., 22, 1805.

84. Zhu, Y. H., T. Rajalahti, S. Linko (1996), Application of Neural network to

lysine production. Biochem. Eng. J., 62, 207–214.

85. Zurada, J. M., Malinowski, A., and Cloete, I. (1994), Sensitivity analysis for

minimization of input data dimension for feed forward neural network,

Proceedings of IEEE International Symposium on Circuits and Systems,

London: IEEE Press, 4, 47–50.

 233

CHAPTER 4. APPLICATIONS OF AI-BASED
CLASSIFICATION/CLUSTER ANALYSIS

CHAPTER 4

APPLICATIONS OF AI-BASED
CLASSIFICATION/CLUSTER

ANALYSIS

 234

4.1 INTRODUCTION

Cluster analysis is an exploratory data analysis method for solving

classification problems. Its object is to sort cases (people, things, events, etc.) into

groups or clusters, so that the degree of association is strong between members of

the same cluster and weak between members of different clusters. Each cluster

thus describes, in terms of the data collected, the class to which its members

belong; and this description may be abstracted through use from the particular to

the general class or type.

Cluster analysis is thus a tool of discovery. It may reveal associations and

structure in a given data set, which though not previously evident, nevertheless are

sensible and useful once, found. The results of a cluster analysis may contribute

to the definition of a formal classification scheme with which to describe

populations or indicate rules for assigning new cases to classes for identification

and diagnostic purposes. It can also provide measures of definition, size and

change in what previously were only broad concepts or find exemplars to

represent classes. Clustering can be performed in two modes, namely “supervised”

and “un-supervised” modes. In supervised clustering the classification of the data

is known a priori and the task of a supervised clustering algorithm is to learn this

classification and predict the class of a new data. In unsupervised clustering the

data classes are unknown. Here the task of an unsupervised algorithm is to

categorize the data into appropriate number of classes as also to correctly identify

the class of a new data entity. As can be seen, unsupervised clustering is relatively

difficult task when compared with supervised clustering.

This chapter deals with the cluster analysis of the different faults that can

occur in a batch fermentation process involving protein synthesis and citric acid

production. Also, this chapter illustrates application of an artificial intelligence

based clustering (classification) method, namely, “self organizing map (SOM)”

for the classification of biochemical batch process data. The SOM [Kohonen,

1990, Abonyi, et al., 2003] is an ANN that undergoes unsupervised learning and it

is particularly useful in visualizing high dimensional data onto a two-dimensional

surface. The present study aims at demonstrating the efficacy of SOM for

 235

classification applications involving nonlinear projection of a high dimensional

input space onto a low, i.e., two dimensional (2-D) projected space to diagnose

faulty batches. Here, a case study involving the biosynthesis of protein has been

conducted to illustrate SOM’s efficacy in process monitoring and fault detection

and diagnosis applications.

 236

4.2 MONITORING AND FAULT DETECTION OF A BATCH

FERMENTATION PROCESS USING SELF ORGANIZING MAPS∗

Batch processes are characterized by flexible, unsteady, and finite-duration

operation. Also, most of these processes exhibit nonlinear dynamical behavior

wherein the product is analyzed after the batch completion. The product quality

measurements, if feasible and economical, are also done at finite time intervals as

the batch run progresses. In order to obtain high quality products consistently, it is

necessary that the process operating variables precisely follow their specified

trajectories. However, often the malfunctions such as deviations in the specified

trajectories, errors in charging the reactor with materials, and variations in

impurities, lead to batch-to-batch variations. These affect the product quality

adversely. Thus it becomes critical to detect and diagnose process faults and

monitor the process continuously, since the faults can lead to reduced conversion,

higher operating cost and sometimes even catastrophic failures and accidents.

Accordingly, developing methodologies for the timely detection and diagnosing of

faults has been an active area of research in recent years. The present study

illustrates a Self-Organizing Map (SOM) based method for identifying process

faults when the input conditions to a batch process are faulty. The proposed

method can be easily extended to other types of above-stated malfunctions. The

SOM is ANN-based nonlinear pattern recognition (classification), dimensionality

reduction, and data projection and visualization formalism and it is described in

detail in Chapter 2 (Section 2.3.2). The conventional methods for classification

include, for example, K-means clustering [MacQueen, 1967] and fuzzy C-means

clustering [Dunn, 1973] which cluster a multivariable data into clusters, without

losing significantly the information content in the data. A major drawback of these

conventional methods is that they are supervised clustering techniques and thus

forcefully classify the data in a pre-specified number of clusters. Thus, when the

∗ Badhe Y. P., V. Wadekar, K. M. Desai, S. S. Tambe and B. D. Kulkarni, Poster

Presented on NCL Day at NCL Pune, Feb 28, 2004.

 237

number of classes in the data is unknown, these methods are not effective. In such

situations SOM can be seen as a very useful classification method.

4.2.1 Case Study-I: Fed-Batch Fermenter for Protein Synthesis

This case study considers the fed-batch fermenter system for protein

synthesis. The input data vectors for the SOM based classification consisted of

three batch-process variables namely; (i) culture cell density (x1), (ii) substrate

concentration (x2), and (iii) hold-up volume (x3) [Lim et al., 1977]. The aim of this

case study is to identify whether a batch has developed a fault at an early stage of

the batch run. Here, we consider abnormal variations (faults) in the input variables

(at the start of the batch) as a source of the fault in the batch fermentation process.

It is assumed that at any given time, only one input variable is outside its normal

range of its operation (termed single fault).

A. Simulation of the phenomenological model

To generate the process data for the fed-batch fermenter system for protein

synthesis, the phenomenological model proposed in Kulkarni et al. [2003] has

been used (see Eqs. 4.1 to 4.8). Here, the model is used only to simulate the

process and generation of the process data under normal and faulty process

operation. The historic experimental data can also be used for the SOM-based

fault detection and diagnosis. The data set for a total of 39 batches, comprising

values of the three predictor variables (x1, x2 and x3) measured at one hour time

intervals, and values of two output variables (y1, y2) measured at the end (15th hr)

of the batch, was generated by solving the set of five ordinary differential

equations (Eqs. 4.1 to 4.8) given in section (4.2.1B) below. This set consisted data

from 27 normal batches with the initial conditions in the “normal” ranges, (0.95 <

x1 < 1.5, 4.5 < x2 < 5.5, and 0.95 < x3 < 1.5) and 12 faulty batches (numbered 28 to

39) with initial conditions outside the stated ranges of a normal operation. The

faulty batches are those wherein the initial conditions of an operating variable has

deviated by 5% and 10% from its above-stated normal range. The real-life process

data always contain some measurement noise and therefore 3% Gaussian noise

was added to all the elements of the simulated data set. This dataset can be viewed

 238

as a three-way array of size 39 (number of batches) × 3 (process variables) × 16

(time intervals). Next, the data set was partitioned on time basis, i.e. the data at the

same time in different batches were taken together and they were subjected to the

SOM based classification to find out how early faulty batches can be identified

from the normal ones.

B. Phenomenological model for protein synthesis

 () 1
3

121
1 y

x
uyyg

dt
dy

−−= (4.1)

2
3

12
2 y

x
uxg

dt
dy

−= (4.2)

1
3

13
1 x

x
uxg

dt
dx

−= (4.3)

()2
3

13
2 203.7 x

x
uxg

dt
dx

−−−= (4.4)

u
dt

dy
=2 (4.5)

3

3
1 12.0

75.4
g

g
g

+
= (4.6)

()2
2

2
2 5.0exp

1.0
x

x
xg −
+

= (4.7)

()()5.624.0
87.21

22

2
3 ++

=
xx

xg (4.8)

where t, x1, x2 and x3 refer to time (min), culture cell density (g l−1), substrate

concentration (g l−1), and hold up volume (l), respectively; y1 and y2 are the

concentrations (g l−1) of the secreted protein and the total protein, respectively,

and u refers to the nutrient (glucose) feed rate (l h−1). The fed-batch culture is fed

at an exponentially increasing nutrient feed rate, u = u0e0.219t [Abonyi et al., 2003],

with the constraint, 0 ≤ u ≤ 2.5, where u0 is a constant (= 0.0926 l h−1).

 239

C. Results and Discussion

The optimum grid size of the 2-D SOM was selected by running the SOM

algorithm using different grid sizes. The optimum grid size obtained was [15 × 15]

neurons and the algorithm was run for 2000 training epochs (1000 in rough

training phase and 1000 in fine training phase) using the SOM Tool box [Vasanto

et al., 2000].

The results of classification are portrayed on two dimensional SOM grids.

These can be interpreted using the U-matrix plots displaying the relative distance

between the points using a gray scale, wherein the whiter space between any two

points indicates that the points are closer than the points having less white space

between them (see Figure 4.1 – Figure 4.3). The actual distance between the

points can be obtained from the scale bar shown in the right hand side of the

figures. In Figure 4.1 to Figure 4.3 the unit lables indicate the fault index (i.e.,

which of the three variables is behaving abnormally). The best matching units

without any index indicate normal batches. From the SOM grid plots obtained at

different time intervals (3rd hr, 7th hr, and 12th hr)(see Figure 4.1 – Figure 4.3), it

is observed that the best matching units corresponding to faulty batches shown on

the plot move away from the normal batches. These essentially attain the character

of outliers. The faulty batches in which (x1) or (x3) is outside the normal operating

range move away from the points representing the normal batches as compared to

the batches for which (x2) is in abnormal operation range. From this observation

we can interpret that the system is tolerant in case of deviations in the initial

substrate concentration (x2) with 5% and 10% variations from the normal

operating range. Applying SOM, the faulty batches are identified at the 3rd hr

itself, which is an early stage of the batch run and identification of a faulty batch

at such an early stage is very useful to avoid further adverse effects.

 240

Figure 4.1: U-matrix visualization of self-organizing maps at 3rd hr of the
process operation showing the faulty as well as normal batch

Figure 4.2: U-matrix visualization of SOM at 7th hr of the process operation
showing the faulty as well as normal batches

 241

Figure 4.3: U-matrix visualization of self-organizing maps at 12th hr of process
operation showing the faulty as well as normal batches

4.2.2 Case Study-II: Fault Detection/Diagnosis of Batch Fermentation
Process of Citric Acid Production

 Despite advanced computer based control systems, process variables

(reactant concentrations, temperature, pressure, etc.) do fluctuate owing to

equipment and sensor malfunctions. The faults arising from such fluctuations can

lead to reduced conversion and selectivity higher operating cost and sometimes

even catastrophic accidents. Thus it becomes important to detect and diagnose

process faults in a timely manner so that corrective measures can be taken swiftly.

Detection and diagnosing of fault requires continuous process monitoring.

When the number of process variables to be monitored is large, it poses

significant difficulties in using the conventional “trends and scatter” plot method

of monitoring. For overcoming these difficulties, linear and nonlinear techniques,

which reduce the dimensionality of the process data and thereby allow monitoring

of fewer variables, are often used. In this study, SOM has been illustrated for the

purpose of monitoring and fault detection in fermentation processes. For

illustrating SOM-based monitoring and fault detection/diagnosis, a batch

fermentation process involving biomass growth and citric acid production by

Aspergillus niger [Bizukojc et al., 2003] is considered. The progress of the

 242

fermentation process as it transverses through a number of stages, can be

effectively visualized with the help of SOM on a two-dimensional map.

A. Batch process of biomass growth and citric acid production

A morphologically structured model for the batch process of biomass

growth and citric acid accumulation by Aspergillus niger [Bizukojc et al., 2003] is

used in this work. The model consists of ten ordinary differential equations, which

balance biomass and four physiological zones, and includes the most important

medium components, such as carbon sources, nitrogen source and citric acid. The

phenomenological model equations are as follows.

 (4.9)

 (4.10)

 (4.11)

 (4.12)

 (4.13)

 (4.14)

 (4.15)

 (4.16)

 (4.17)

 (4.18)

Hrdt
dSUC

−=

Xrr
dt

dFRU
FRUHS −= υ

Xr
dt

dCIT
CIT=

μB
B Zuu

dt
dZ

−−= 31

μD
D Zu

dt
dZ

−= 4

Xrr
dt

dGLU
GLUHS −= υ

Xr
dt

dAMON
AMON−=

()μμ −+−−= AA
A Zuu

dt
dZ

21

μC
C Zuuu

dt
dZ

−−+= 432

X
dt
dX μ=

 243

where,

AMON: concentration of ammonium ions (g l−1)

B: sucrose hydrolysis rate parameter at linear term (h−1)

CIT: concentration of citric acid (g l−1)

FRU: concentration of fructose (g l−1)

GLU: concentration of glucose (g l−1)

rCIT/F: citric acid production rate from fructose (g CIT l−1 h−1)

rCIT/G: citric acid production rate from glucose (g CIT l−1 h−1)

rFRU: fructose utilization rate (g FRU l−1 h−1)

rGLU: glucose utilization rate (g GLU l−1 h−1)

rH: rate of sucrose hydrolysis (g SUC l−1 h−1)

SUC: concentration of sucrose (g l−1)

t: time (hr)

u1: metamorphosis reaction zone A into B rate (g A g X−1 h-1)

u2: metamorphosis reaction zone A into C rate (g A g X−1 h−1)

u3: metamorphosis reaction zone B into C rate (g B g X−1 h−1)

u4: metamorphosis reaction zone C into D rate (g C g X−1 h−1)

X: concentration of biomass (g l−1)

ZA: zone A fraction (g A g X−1)

ZB: zone B fraction (g B g X−1)

ZC: zone C fraction (g C g X−1)

ZD: zone D fraction (g D g X−1)

μa: specific growth rate for zone A (h−1)

νS: stoichiometric coefficient for hydrolysis of sucrose

(g GLU g SUC−1) or (g FRU g SUC−1)

 244

To generate process data pertaining to normal and faulty batches, the

above-stated 10 ordinary differential equations (Eqs 4.9 to 4.18) were solved by

the standard Gear’s algorithm. In total, 36 batches were simulated. Batches 1 to

32 are the normal batches wherein the concentration of citric acid at the end (170

hrs) of the batch is more than 29 g/l. Batches 33 to 34 are abnormal batches due to

low initial concentration of NH4
+ ions. Batches 35 to 36 are also abnormal owing

to low concentration of the biomass. Table 4.1 represents the initial concentrations

of the variables/parameters used in the simulation of all 36 batches along with the

labels used to represent these batches on the result plots from SOM.

Table 4.1: Initial concentrations and labels for all batches

No. Parameters
Batch No.

1 to 11

Batch No.

12 to 22

Batch No.

23 to 32

Batch No.

33 & 34

Batch No.

35 & 36

1 Sucrose conc. g/l 85-93.95 94.189 94.189 94.189 94.189

2 Glucose conc. g/l 0 0 0 0 0

3 Fructose conc. g/l 0 0 0 0 0

4
Ammonium ions

conc. g/l
0.534 0.50-0.56 0.534 0.4-0.45 0.534

5 Citric acid conc. g/l 0 0 0 0 0

6 Biomass conc. g/l 0.024 0.024
0.023-
0.025

0.024
0.008-

0.01

7 Number of batches 11 11 10 2 2

8 Labels 1S to 11S 1A to 11A
1xx to
10xx

aA and
aAA

ax and axx

B. Application to classification of fermentation process into trophophase

and idiophase phase

To identify two different phases in the reaction, SOM was applied and

optimized to get the results presented in the form of the U-matrix and the

component planes in Figure 4.4. The U-matrix denotes the distances between the

nodes of the SOM grid. The color of hexagon between nodes indicates the

 245

distance of the nodes from its neighboring nodes [Rantanen et al., 2001]. Dark red

color represents the area where the elastic SOM nodes are stretched between the

two data clusters; the dark blue color represents the closest distance. From U-

matrix in the Figure 4.4, it can be seen that six clusters are formed: the top two

clusters on the left and right sides correspond to Trophophase and remaining four

clusters to Idiophase. The component planes, Figure 4.4, depict how the SOM

visualizes the data (inputs) space. Let us first look at the top-left corner cluster in

Figure 4.4; it has 94.1 g l-1 concentration level (see panel “suc”), a zero value for

glucose concentration (see panel “glu”) and fructose (see panel “fru”), 0.534 g l-1

of concentration for ammonium ions (see panel “amon”), zero citric acid

concentration (see panel “cit”) and 0.0638 g l-1 concentration for biomass.

Component planes or sections for the four zones (za, zb, zc and zd) represent the

stretch of each zone individually.

Figure 4.4: Visualization of SOM for citric acid production for a batch with initial
conditions given in Table 4.1 Batch No. 17

 246

C. Application to fault detection and diagnosis (by cluster method)

 The simulated data for all 36 batches can be used for classification of the

normal and abnormal batches. Note that the total batch time is 170 hrs and thus

the SOM was applied at three times (30th hr, 100th hr and the last at 170th hr). The

resultant U-matrix and their labels are shown in Figures (Figure 4.5 – Figure 4.7).

Labels listed in Table 4.1 can be used in the figures (Figure 4.5 – Figure 4.7) to

identify the batches. In Figure 4.5, abnormal batches (denoted by aA, aAA, ax and

axx on the left side) are not well separated from some of the normal batches as

this is a very early phase in the reaction. In other figures (Figure 4.6 and Figure

4.7), the abnormal batches are well separated from the normal batches (two

batches on extreme left and another two on the extreme right). Thus, SOM has

successfully separated the normal and abnormal batches after half the batch time

is completed.

Figure 4.5: U-matrix with the distribution of the batches, along with labels(at
30th Hrs)

 247

Figure 4.6: U-matrix with the distribution of the batches, along with labels (at
100 Hrs)

Figure 4.7: U-matrix with the distribution of the batches, along with labels (at
170 Hrs)

 248

Figure 4.8: Trajectories of the normal (green) and abnormal (red) batches on the
top of U-matrix

Figure 4.9: Trajectories of the normal (green) and abnormal (red) batches on the
top of U-matrix

D. Application to fault detection and diagnosis (by trajectory method)

The SOM can be used to form a 2-dimensional display of the operational

states of the process. The current process state and its history in time can be

visualized as a trajectory on the map. This allows efficient tracking of the process

 249

dynamics. The SOM facilitates understanding of process dynamics so that several

variables and their interactions may be inspected simultaneously [Simula et al.,

1999].

In the present study, the training data from 36 different batches were taken

with initial values of the process variables described in Table 4.1 (duration of each

batch is 170 hrs monitors at 1 hr time interval) to form a matrix. Each point is a

vector comprising values of process variables measured for one batch at a

particular time. The process starts from the circle at the top left corner of the map,

proceeds through the map by an individual route, and ends at the other circle. The

trajectory path can be easily traced by the labels. The red trajectories in Figure 4.8

and Figure 4.9 represent low production of citric acid (abnormal batch) due to low

concentration of biomass and ammonium ions, respectively and the green

trajectories represent the normal batches. In this manner, the progress of a batch

can be monitored and its normal/abnormal behavior can be identified.

4.2.3 Conclusion

In the first case study described in this chapter, i.e., protein synthesis, the

unsteady-state operating variables data from a fed-batch fermenter operating

under faulty as well as normal operating conditions was explored. The SOM could

reduce the dimensionality of the data from the 3 -D to 2-D with an excellent

precision. Also, the reduced dimensioned data formed good clusters clearly

separating the normal and faulty batches. To summarize, the results of this study

suggest that the SOM is an attractive strategy for unsupervised classification

analysis of multidimensional process data. The advantage of the SOM for

classification analysis is that it allows process engineers and operators a

convenient single-window view of the behavior of the batch. This feature is very

advantageous in process monitoring, control and fault detection and diagnosis. It

is also possible to use the dimensionality reduced data for modeling purposes

thereby substantially lowering the numerical load.

In the second case study involving citric acid production, the SOM

visualizes the dynamics of a multivariable process in the form of a two-

dimensional map and brings out subtle differences between various batches. It has

 250

been shown that efficient process monitoring can be performed from the two-

dimensional projection of the process variables. It can thus be seen that SOM is a

novel tool to monitor and detect faults in a complex batch fermentation process. It

is very effective in the detection of typical operating regions related to an optimal

process operation which can also be used to predict whether the batch will end

normally or abnormally on the basis of the current values of the process variables.

The proposed method is attractive in comparison with other process monitoring

schemes, such as linear/nonlinear principle component analysis.

 251

4.3 REFERENCES

1. Abonyi, J., S. Nemeth, C. Vincze and P. Arva, (2003), Process Analysis And

Product Quality Estimation By Self Organizing Maps With An Application To

Polyethylene Production, Computers in Industry, 52(3), Pages 221–234

2. Bizukojc, M. and S. Ledakowicz (2003), Morphologically structured model

for growth and citric acid accumulation by Aspergillus niger, Enz. Microbial

Technol. Vol-32, 268–281.

3. Dunn, J. C. (1973), A Fuzzy Relative of the ISODATA Process and Its Use in

Detecting Compact Well-Separated Clusters, Journal of Cybernetics 3, 32–57.

4. Kohonen, T. (1990), The self-organizing map. Proceedings of the IEEE 78,

1464–1480.

5. Kulkarni, S. G., A. Chaudhary, S. Nandi, S. S. Tambe and B. D. Kulkarni,

(2003), (2004), Modelling And Monitoring Of Batch Processes Using

Principle Component Analysis Assisted Generalized Regression Neural

Networks (GRNN), Biochemical Engineering Journal 18(3), 193–210.

6. Lim, H. C., B. J. Chen and C. C. Creagan (1977), An Analysis Of Extended

And Exponentially-Fed-Batch Cultures, Biotechnol. Bioeng. 14, 425– 433.

7. MacQueen, J. B. (1967), Some Methods for classification and Analysis of

Multivariate Observations, Proceedings of 5-th Berkeley Symposium on

Mathematical Statistics and Probability, Berkeley, University of California

Press, 1, 281–297.

8. Rantanen, J. T., S. J. Laine, O. K. Antikainen, J. Mannermaa, O. E. Simula,

and J. K. Yliruusi (2001), Visualization of fluid-bed granulation with self-

organizing maps, J. Pharm. Biomed. Anal., 24, 343–352.

9. Simula, O., Vesanto, J., Alhoniemi, E., and Hollmn, J. (1999c). Analysis and

modeling of complex systems using the self-organizing map. In Kasabov, N.

and Kozma, R., editors, Neuro-Fuzzy Techniques for Intelligent Information

Systems., Physica-Verlag, 3–22.

10. Vasanto, J., J. Himberg, E. Alhoniemi, K. Kiviluoto and J. Parhankangas

(1999), Self-Organizing Map in Matlab: the SOM Toolbox, Proceedings of the

Matlab DSP Conference, Espoo, Finland, 35–40.

http://lib.tkk.fi/Diss/2002/isbn951226093X/article2.pdf.

 252

CHAPTER 5. PROCESS OPTIMIZATION

CHAPTER 5

PROCESS OPTIMIZATION

 253

5.1 PROCESS OPTIMIZATION USING MEMETIC ALGORITHMS: A

CASE STUDY OF BENZENE HYDROXYLATION TO PHENOL

PROCESS∗

5.1.1 Introduction

In recent years, Genetic algorithms (see Section 2.4.3), which are

population-based stochastic optimization methodologies possessing a number of

attractive properties, have been widely explored in chemical process optimization

applications. The principle drawback of GA however, is that since the formalism

performs a global search of the solution space, it can take a long time to converge

even if the optimal solution lies in the neighborhood of a candidate solution. A

number of GA-hybrids have been proposed to improve the efficiency of GAs and

their speed of convergence. A genetic algorithm related methodology that

overcomes the stated problem is known as “Memetic algorithms (MA)”. The most

attractive feature of MA (see Section 2.4.4), which makes it a powerful nonlinear

search and optimization formalism, is that it combines a local search heuristics

with the population-based global search conducted by the GA. This feature of MA

greatly helps in speeding up the convergence to an optimal solution for an

objective function maximization/minimization problem. The said approach has

proved successful in a variety of problem domains and in particular for solving

NP Optimization problems (Kollen et al., 1994; Digalakis et al., 2003).

Accordingly, this section presents a study of a MA-based optimization of the

zeolite (TS-1) catalyzed benzene hydroxylation to phenol process. Additionally,

the optimal solutions obtained using the MA formalism are compared with the

GA-based solutions obtained in an earlier study (Nandi et al., 2002). The results of

∗ Badhe Y. P., K. M. Desai, V. Wadekar, U. Phulwale, S. S. Tambe and B. D.

Kulkarni, Presented in Indian Chemical Engineering Congress (CHEMCON-
2004), organised by Indian Institute of Chemical Engineers, held at The Grand
Hyatt, Mumbai, during 28-30 Dec. 2004.

 254

this comparison indicate that the MA has searched a better solution and that too in

a shorter time when compared to the GA-based solution.

In this work, an artificial neural network (ANN) based process model is

developed first from the steady-state process data [Nandi et al., 2002]. The input

space of this ANN model representing process operating variables is then

optimized using the MA formalism with a view of simultaneously optimizing

multiple process output variables and thereby improving the process performance.

The results of the MA-based optimization have been compared with those

obtained in an earlier study by Nandi et al., [2002] using the GA formalism.

5.1.2 Modeling and Optimization of Benzene Hydroxylation Reaction

 A significant success of the TS-1 based triphasic system was achieved for

the benzene hydroxylation to phenol reaction wherein a 15 to 20 fold increase (as

compared to a biphasic system) in the benzene conversion was realized; also,

selectivity for the desired product (phenol) was significantly higher (Bhaumik et

al., 1998). The details of the TS-1 catalyzed benzene hydroxylation to phenol

reaction are described in Nandi et al. [2002]. In this reaction, apart from phenol,

which is the desired reaction product, small amounts of secondary products such

as hydroquinone, catechol and para-benzoquinone, are also formed. Phenol being

a widely consumed industrial chemical, it is economically sensible to optimize the

TS-1 catalyzed benzene to phenol process. For achieving this objective, the ANN-

GA hybrid modeling and optimization formalism was used by Nandi and co-

workers (Nandi et al., 2002). The specific goal of this process optimization study

is to develop an ANN-based process model from the reaction data, and to perform

an MA based optimization of the ANN model with a view to obtain the optimal

process conditions effecting: (i) higher phenol selectivity, (ii) enhanced H2O2

utilization, and (iii) increased benzene conversion.

5.1.3 Development and Optimization of ANN-based Process Model

 A total of 24 experiments were conducted for studying the effects of five

reaction (model) input variables namely, reaction time (x1), catalyst weight

percentage (x2), reaction temperature (x3), benzene to peroxide mole ratio (x4) and,

 255

water to benzene weight ratio (x5). The catalyst performance was monitored in

terms of three reaction (model) output variables namely, phenol selectivity (y1)

(mole %), peroxide utilization (y2) (mole %), and benzene conversion (y3) (mole

%). This data set was used to develop a feed-forward ANN model; the details of

the process data and development of the ANN based process model thereby are

given by Nandi et al. [2002].

 The multi-objective (MO) optimization problem involving simultaneous

maximization of the three reaction output variables is converted into a single

objective (SO) optimization problem by defining:

() 332211, ˆ Maximize ywywywf ++=Wx ; → U
nn

L
n xxx ≤≤ (5.1)

where f̂ represents the aggregated objective function; W represents the ANN

model’s weight matrix; the N-dimensional decision vector, x, denotes the reactor

operating conditions (N = 5); wk (k = 1 to 3) refers to the kth weighting coefficient;
L
nx and U

nx respectively represent the lower and upper bounds on xn; and y1, y2,

and y3 respectively represent the three reaction output variables (to be

maximized).

The five-dimensional input space of the ANN-based process model was

optimized by the MA method; the values of MA-specific parameters used in the

optimization simulations were: chromosome length (lchr) = 50, population size

(Npop) = 30, crossover probability (pcr) = 0.95, mutation probability (pmut) = 0.01,

and number of generations (max
gN) = 250. The Tabu-based local search (see

Section 2.4.2) was implemented using following values of Tabu parameters:

number of neighbors (Nneigh) = 20, number of iterations (Niter) = 15, length of the

Tabu list (TL) = 100, shape coefficient of sigmoid function (σ) = 0.5 and

intensification coefficient (β) = 0.5. For computing the fitness value (ξj) of the jth

candidate solution (xj) in a population, following fitness function was employed:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

100100100
3

3
2

2
1

1
jjj

j

y
w

y
w

y
wξ (5.2)

where

pop
k

k Njw ,...,2,1;0.1
3

1

==∑
=

 (5.3)

 256

The weighting coefficients w1, w2 and w3 represent the relative importance of the

three objectives, and 1jy , 2jy and 3jy , respectively represent the ANN model-

predicted values of the three output variables when jth candidate solution is

applied to the network’s input nodes. Since maximizing percentages of the three

output variables, namely, phenol selectivity (y1), hydrogen peroxide utilization

(y2), and benzene conversion (y3), are equally important objectives, the values of

w1, w2 and w3, were fixed at 0.333. During the implementation of the MA, the

search for the optimal solution was restricted to the following ranges [U
n

L
n xx ,] of

the five process operating variables: (i) reaction time (x1): [0.25, 4.0], (ii) catalyst

concentration (x2): [5.0, 30.0], (iii) temperature (x3): [323.0, 353.0], (iv) benzene

to peroxide ratio (x4): [1.0, 8.0], and (v) water to benzene ratio (x5): [1.0, 10.0].

5.1.4 Results and Discussion

 The three optimal solutions obtained using the MA formalism are listed in

Table 5.1. For comparison purposes the table also lists three GA-based optimal

solutions (as obtained by Nandi et al., 2002). It is seen from the tabulated values

that the MA formalism has yielded overall best solution with the fitness score of

88.63. This solution has improved the values of three process outputs namely,

phenol selectivity, hydrogen peroxide utilization, and benzene conversion by 0.2

%, 0.7 % and 2.3 %, respectively when compared with the best GA solution.

Figure 5.1 portrays the generation-wise evolution of the best solution obtained

using the MA. For comparison, the evolution of the best GA-based solution is also

shown in Figure 5.1. It is observed from the figure that the MA has taken lesser

number of generations (iterations) to reach the overall optimal solution when

compared to the GA. It may be noted that the inclusion of the local search requires

more time to complete MA iteration. Specifically, it was observed that the MA

and GA take approximately 7 and 4 milliseconds, respectively, for completing a

single iteration (as measured on Windows XP workstation with 2.0 GHz P4

processor). Despite taking more time to complete an iteration, the MA approached

the optimal solution faster (CPU time = 20*7 = 140 ms) when compared to the

GA (time = 70*4 = 280 ms). These results clearly indicate that the local search

feature of the MA has helped in reaching the optimal solution in half of the time

 257

40

60

80

100

1 10 19 28 37 46 55 64
No. of Generations

P
he

no
l S

el
ec

tiv
ity

 (%
)

MA

GA

0

20

40

60

80

1 10 19 28 37 46 55 64
No. of Generation

B
en

ze
ne

 C
on

ve
rs

io
n

MA
GA

65

75

85

95

1 10 19 28 37 46 55 64
No. of Generations

H
2O

2 U
til

iz
at

io
n

(%
)

MA
GA

taken by the GA. Also, the MA has searched a better solution than the one

obtained by the GA.

Figure 5.1: Plots showing the generation-wise evolution of the solutions given by
MA and GA formalisms

 258

Table 5.1: Optimized Operating Conditions Obtained Using MA and GA formalisms

Optimized process input variables Maximized output variables Optimal
solution Time

(hr)

(x1)

Catalyst

Conc.

(x2)

Temp
(K)
(x3)

B to P
Ratio

(mol/mol)

(x4)

W to B
Ratio

(wt/wt)

(x5)

Phenol
Selectivity (%)

(py1)

H2O2
Utilization (%)

(py2)

Benzene
Conversion (%)

(3
py)

Fitness
Value

(ξ)

MA 3.1 24.5 345.0 1.0 8.1 93.5 90.1 81.1 88.23
1

GA 3.0 25.0 349.0 1.0 8.0 93.3 89.8 80.2 87.13

MA 2.8 23.4 346.1 1.0 8.2 93.1 90.7 82.1 88.63
2

GA 2.8 22.5 345.5 1.0 8.6 93.3 90.0 79.8 87.7

MA 3.3 23.3 346.2 1.0 9.1 92.7 89.5 81.2 87.8
3

GA 3.4 22.9 348.0 1.0 9.5 92.8 89.3 79.4 87.16

Note: B: Benzene, P: Hydrogen peroxide and W: Water

 259

5.1.5 Conclusion

 This study presents results of memetic algorithm based MO optimization

of the zeolite (TS-1) catalyzed benzene hydroxylation to phenol process.

Additionally, the optimal solutions obtained using MA are compared with the GA-

based solutions obtained in an earlier study. The results of this comparison

indicate that the MA has captured a better solution and that too in lesser time

when compared to the GA. It can thus be concluded that the global search

augmented with a local search performs better than a purely global search for

securing an optimized solution.

 260

5.2 REFERENCES

1. Bhaumik, A., P. Mukherjee, R. Kumar (1998), Triphase catalysis over

titanium–silicate molecular sieves under solvent-free conditions: I. Direct

hydroxylation of benzene, J. Catal., 178 (1), 101–107.

2. Digalakis, J., K. Margaritis (2003), Performance comparison of memetic

algorithms, App. math and comp. 158(1), 237–252.

3. Kollen, A., E. Pesch (1994), Genetic local search in combinatorial.

Optimization, Discrete Applied Mathematics and Combinatorial

Operation Research and Computer Science, 48, 273–284.

4. Nandi, S., P. Mukherjee, S. S. Tambe, R. Kumar, and B. D. Kulkarni

(2002), Reaction Modeling and Optimization Using Neural Networks and

Genetic Algorithms: Case Study Involving TS-1-Catalyzed Hydroxylation

of Benzene, Ind. Eng. Chem. Res., 41(9), 2159–2169.

 261

CHAPTER 6. DATA PROJECTION,
DIMENSIONALITY REDUCTION AND INPUT

SELECTION

CHAPTER 6

DATA PROJECTION,
DIMENSIONALITY REDUCTION AND

INPUT SELECTION

 262

6.1 INTRODUCTION

In this chapter, we have developed/improvised a few AI and ML based

algorithms for dimensionality reduction, data projection and input selection of

chemical/biochemical processes. In the first sub-section, a recently proposed

neural networks based Sammon’s mapping is utilized for the dimensionality

reduction of glass data and fault detection and diagnosis of a CSTR. In the second

sub-section locally linear embedding method is proposed for the fault detection

and diagnosis of invertase production process. The curvilinear component analysis

is utilized for the fault detection and diagnosis of CSTR and invertase production

process in the next section. The last sub-section of this chapter presents the fuzzy

curves and surfaces approach for the input selection of heat exchanger and pH

control process models.

 263

6.2 NONLINEAR FEATURE EXTRACTION USING SAMMON’S

MAPPING AND SAMANN∗

Nonlinear principle component analysis (NLPCA), nonlinear feature

extraction and nonlinear dimensionality reduction methods are important

techniques in pattern recognition, exploratory data analysis, data mining, process

monitoring and fault detection and diagnosis. Sammon’s mapping (refer Section

2.5.5) is one of the well-known methods to conduct the stated tasks. A major

drawback of this algorithm is that for the new data the mapping exercise needs to

be conducted freshly. That is, the formalism is incapable of extending

(generalizing) the knowledge gained in a mapping exercise to new data. To

overcome this drawback, an artificial neural network-based formalism known as

SAMANN (refer Section 2.5.5) has been recently proposed. This section provides

a comparison of the Sammon’s mapping and SAMANN methods for

dimensionality reduction and low dimensional projection applications by

conducting two illustrative case studies.

6.2.1 Introduction

Monitoring, classification and modeling of high dimensional multivariate

process data are faced with significant practical difficulties such as inability to

view high-dimensional data, complex unwieldy nature of the resultant models and

models incapable of generalization. Feature extraction methods significantly assist

in overcoming some of the stated difficulties. Feature extraction is essentially a

dimensionality reduction technique that extracts a subset of new features from the

original feature (data) set by means of some functional mapping while retaining as

much information as possible [Fukunaga, 1991]. Feature extraction can avoid the

“curse of dimensionality”, improve generalization ability of classifiers and reduce

computational load in modeling and pattern classification efforts. Principle

∗ Badhe Y. P., V. Wadekar, U. Phulwale, S. S. Tambe and B. D. Kulkarni,

Proceedings of "Conference of Research Scholars and Young Scientists
(CRSYS)," held at IIT, Kharagpur on Sept. 25-26, 2004, 21–27.

 264

component analysis (PCA) and linear discriminant analysis (LDA) are commonly

utilized techniques for feature extraction. A significant drawback of these methods

is that they are linear methods and therefore incapable of extracting nonlinearly

correlated features. The commonly used nonlinear feature extraction methods

which overcome the stated difficulty are non-metric multi-dimensional scaling

(MDS), principle curves, Sammon’s mapping (SM) [Sammon, 1969], isomap and

locally linear embedding (LLE). In the last two decades, artificial intelligence (AI)

based methods namely, Kohonen’s self-organizing map (SOM) and auto

associative neural network (AANN) have also been utilized to perform nonlinear

feature extraction. More recently, a novel neural network based formalism known

as “SAMANN” (Mao and Jain, 1994; Ridder et al., 1997) has been introduced for

nonlinear feature extraction. The present section demonstrates SAMANN efficacy

by conducting two case studies namely (i) fault classification in a steady-state

continuous stirred tank reactor (CSTR) and, (ii) dimensionality reduction of a

glass data set comprising six types of glass compositions. Also, presented here is

the comparison of the results using Sammon’s mapping and SAMANN.

6.2.2 Case Studies

Process monitoring, control and predicting process behavior under normal

and abnormal conditions are major challenges in the chemical industry. The aim

of fault detection/diagnosis systems is to detect and diagnose process failures at an

early stage so that corrective measures can be taken swiftly. The fault is defined as

an abnormal process behavior due to equipment failure, equipment wear, or

abnormal process disturbances. The task of determining whether a fault has

occurred is called fault detection and determining the cause of the malfunction is

termed fault diagnosis.

In this study, the results obtained using the SAMANN are compared with

those from the Sammon’s mapping (SM); the measure employed for performance

comparison of the stated two methods is Sammon’s stressn (ESAM) (see Eq. 2.71).

In the SAMANN based feature extraction, 80% of the randomly chosen data

patterns were used for network training and the remaining 20% for testing the

generalization ability of the network. SAMANN’s architectural parameters and

 265

learning rate values are given in Table 6.1; the momentum factor values were kept

constant (= 0.01) for all SAMANN training experiments. For implementing the

SM, a Matlab toolbox [Vesanto, 2000] was used while SAMANN code was

written in VC++, and implemented on a Windows XP workstation. In SM, the

value of the learning rate (α) was 0.2 for all the mapping simulations.

A. Fault classification in CSTR

Here, we consider a jacketed nonisothermal CSTR wherein an irreversible

exothermic first-order reaction, A B, takes place. The reactor is fitted with

three proportional control loops that control the outlet temperature, reactor hold-

up, and outlet concentration. The CSTR data of 1050 patterns was generated by

simulating reactor’s mass and energy balance equations [Vora et al., 1997]. The

data correspond to the values of six CSTR variables and parameters namely, outlet

reactor concentration, CSTR temperature, reactor hold-up, reactor output flowrate,

jacket coolant flowrate and coolant temperature, corresponding to seven types of

process faults. The faults are classified as: (i) input flow rate high, (ii) input flow

rate low, (iii) inlet concentration high, (iv) inlet concentration low, (v) inlet

temperature high, (vi) inlet temperature low, and (vii) decrease in heat transfer

coefficient due to fouling [Vora et al., 1997]. The objective of Sammon’s mapping

and SAMANN is to reduce the dimensionality of the CSTR’s six-dimensional

variable and parameter space and perform feature extraction in a manner such that

detection and diagnosis of faults is possible by visualizing the lower dimensional

projection of the original high dimensional data set. Both SM and SAMANN

methods were used to reduce the six dimensional data to two, three and four

dimensional feature space and the results obtained thereby are listed in Table 6.1.

The SM was implemented using all the 1050 patterns. Performance of both

algorithms was evaluated in terms of the minimum value of Sammon’s stress

(ESAM) achieved. As illustrative cases, the 2D projection of the original 6-

dimensional data as obtained using SM and SAMANN methods are portrayed in

Figure 6.1 and Figure 6.2, respectively. It can be seen that both methods have

classified the seven fault data correctly in as many clusters in the lower (i.e., 2D)

dimensional space. Subsequently, the low dimensioned mapping can be used

online with the process to identify and diagnose any occurrence of single faults.

 266

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
First Feature

Se
co

nd
 F

ea
tu

re Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6
Fault 7

-5

-3

-1

1

3

-7 -5 -3 -1 1 3 5

First Feature

S
ec

on
d

Fe
at

ur
e

Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6
Fault 7

Figure 6.1: 2D projection of CSTR data by the multi dimensional scaling based
Sammon’s algorithm

Figure 6.2: 2D projection of CSTR data by SAMANN

B. Dimensionality reduction of glass data

In this case study, a benchmark classification problem comprising glass

data set (Prechelt, 1994) has been considered. The set of nine-dimensional 213

patterns contains property and composition values of six different types of glasses.

The nine values correspond to the refractive index and glass composition in terms

of elements namely Sodium, Magnesium, Aluminum, Silicon, Potassium,

Calcium, Barium and Ferrous. Both SM and SAMANN algorithms were applied

F1

F5 F7

F4

F6

F2
F3

F1

F5

F7

F4 F6

F2F3

 267

to map the 9-dimensional inputs to lower, i.e., 2 to 5 dimensions and their

performance is listed in Table 6.1.

From the stress values (ESAM) listed in Table 6.1, it is seen that the SM has

achieved lower stress magnitudes as compared to the SAMANN. The lower stress

values yielded by the SM method in both case studies indicate that SM has

preserved the inter-pattern distances in low-dimensional projections with higher

accuracy when compared to the SAMANN. However, almost similar stress values

for both training and test sets show a good generalization capability of the

SAMANN. It is also observed that the CPU time requirements to achieve

convergence are lower for the SM when compared to the SAMANN. The major

advantage of the SAMANN however is that feature extraction for a new data set

can be conducted without retraining the network, while in the case of SM, a fresh

mapping exercise is required for each new data pattern.

6.2.3 Conclusion

This section illustrates nonlinear feature extraction using two novel

methodologies namely SM and SAMANN. The efficacy of these methods is

demonstrated by conducting two case studies where the objective was

dimensionality reduction and the feature extraction of high dimensional data. In

the case of CSTR, it was observed that both techniques are capable of efficient

dimensionality reduction and clustering and therefore these can be utilized for

process fault detection and diagnosis. Similarly, for glass data the methods

exhibited excellent dimensionality reduction performance. To summarize SM and

SAMANN are attractive methods for feature extraction and dimensionality

reduction and hence can be gainfully employed in process monitoring.

 268

Table 6.1: Results of Sammon’s Mapping and SAMANN

Sammon’s Mapping (MDS based) SAMANN
Data
sets Projection

ESAM Time per
cycle@ (sec)

No. of
Iterations Structure#

ESAM

 (training data)

ESAM

(test data)
Time per cycle@

(sec)
Number of
Iterations

2D 2 × 10 -3 3.531 1000 6,32,10,2,0.5 0.052 0.051 12.6 570

3D 1.02×10-4 4.284 1000 6,20,8,3,0.65 0.037 0.033 14.3 465 CSTR

4D 8.0×10 -6 4.765 1000 6,30,12,4,0.45 0.0066 0.006 16.1 5,062

2D 0.0323 0.227 1000 9,40,17,2,0.5 0.074 0.083 0.75 10,000

3D 0.0101 0.252 1000 9,34,18,3,0.75 0.047 0.05 0.81 11,811

4D 0.0025 0.279 1000 9,36,16,4,0.35 0.039 0.04 0.92 5,746
Glass

5D 0.0008 0.289 1000 9,28,12,5,0.65 0.0320 0.035 0.98 9,499

Number of nodes in input, hidden – I, hidden – II, and output layers and η (learning rate) value.

@ CPU time.

 269

6.3 MONITORING AND FAULT DETECTION OF BIOCHEMICAL

SYSTEMS USING LOCALLY LINEAR EMBEDDING∗

A non-linear process monitoring technique based on locally linear

embedding (LLE) formalism (see Section 2.5.4) is developed for a batch

biochemical process. The LLE is a recently proposed method for non-linear

mapping of multivariate data to low dimensional space. It is an unsupervised

learning algorithm that computes low dimensional, neighborhood preserving

embedding of high dimensional multivariate data. The LLE maps the data into a

single global coordinate system and its optimizations do not involve local minima,

which guarantees global optimality of the convergence. The efficacy of LLE in

monitoring and fault detection is demonstrated for a biochemical process namely

fermentative production of invertase. The performance of LLE is also compared

with the well-known neural network based dimensionality reduction technique

namely, auto associative neural networks (see Section 2.5.3). It is shown that for

the specific fermentation process, the performance of LLE is better than that of the

AANN.

6.3.1 Introduction

Historical data collected during bioprocess control typically includes

information on high, average and low productive batches. Data also includes

information on the consequences of performing specific control actions in

response to problematic situations. Thus it is possible to develop appropriate

models for evaluating the bioprocess performance and detecting and diagnosing

faults by utilizing the routinely collected and stored records of process variables.

In many processes, phenomenological knowledge such as reaction kinetics and

mass transfer mechanisms underlying the system is obscure. This poses

∗ Phulwale U. S., K. M. Desai, Y. P. Badhe, V. A. Wadekar, S. S. Tambe, B. D.

Kulkarni, Proceedings of Conference of Research Scholars and Young
Scientists (CRSYS)," held at IIT, Kharagpur on Sept. 25-26, 2004, 78–84.

 270

difficulties in selecting variables that will represent the system adequately and

hence appropriate monitoring formalisms must be explored.

Owing to the availability of reliable hardware and biosensors, a large

number of process variables are monitored during a typical bioprocess operation

and thus their meaningful interpretation becomes difficult. It therefore becomes

necessary to interpret the voluminous process data by efficient data reduction and

projection systems. Such a system greatly simplifies the monitoring task of

process operators and engineers. For the stated task, linear and nonlinear

techniques, which reduce the dimensionality of the process data and thereby

permit projections on a two-dimensional space, are often used.

There exist a number of methods for reducing the dimensionality of a

multivariable data space without significantly losing the information content in the

original data. In the commonly employed methods, new attributes (variables),

which explain maximum amount of variance in the original data, are obtained by

performing principal component analysis (see Section 2.5.1). Consequently, fewer

variables (principal components) are required to represent a high dimensional

multivariable data set. A significant drawback of the PCA method is that it

captures only linear relationships between variables and therefore is not suitable if

the variables are nonlinearly correlated, which is common in most chemical

processes.

In the present work, a novel non-linear dimensionality reduction technique

namely locally linear embedding (see Section 2.5.4) [Roweis and Saul., 2000] is

successfully applied to a biochemical process. This method can be effectively

used for monitoring, low dimensional projection and fault detection of

biochemical processes. The case study utilizing LLE considers a batch

fermentative production of invertase. The LLE formalism is used for classifying

the fermentation batches into three classes namely low, average and high

productive batches; it is also used for continuous monitoring of a given

fermentation batch. Specifically, the LLE based two-dimensional projection of the

original high dimensional process data is used for monitoring and classification

of the fermentation process behavior. The results of LLE are also compared with

those obtained from the auto associative neural network (see Section 2.5.3)

 271

[Kramer, 1992; Aldrich, 1998 and Shimizu et al., 1998] based dimensionality

reduction. The principal difference between an AANN and LLE is that while the

former obtains new attributes (nonlinear PCs) which capture maximum variance

in the high dimensional data, the LLE maps the high dimensional data on a low

dimensional projection using a distance preserving mechanism.

6.3.2 Case Study: Monitoring Fermentative Production of Invertase

Fermentative production of invertase by Saccharomyces carlsbergensis by

a fed batch fermentation process is chosen to demonstrate the efficiency of LLE

formalism for process monitoring and fault detection. Saccharomyces

carlsbergensis shows a biphasic nature of growth, i.e. it can utilize glucose as well

as ethanol in the event of glucose scarcity [Dedem and Moo-Young, 2002]. In the

first growth phase, glucose is utilized via aerobic fermentation with carbon

dioxide and ethanol as major products. When glucose is completely exhausted, the

ethanol produced earlier serves as a substrate for the further growth. In such cases,

the extent of cellular growth and enzyme production depends upon the balance

between the metabolic states of aerobic fermentation and respiratory growth.

Thus, estimation of the current metabolic state can be made from the changes in

the concentrations of glucose and ethanol in the broth. The major advantage of a

fed batch bioreactor is that during fermentation, the feed composition and feed

flow rate can be manipulated to maximize product formation. Thus, manipulation

of the feed rate is an important aspect of the fed-batch operation from the control

and optimization viewpoint. Recently, while performing feed profile optimization

of the fed-batch system, Sarkar and Modak, [2003] have reported four different

profiles for as many combinations of high and low initial substrate and biomass

concentrations. Since all these feed profiles were nearly identical, only one feed

profile has been considered as a reference feed profile in this study.

A. Invertase production model

The phenomenological model for the biphasic growth of Saccharomyces

carlsbergensis and invertase production is given as [Pyun et al., 1989]

 272

() ()t G A t
d x x
d t

μ μ= + (6.1)

() t Fsx s Fd s
dt v v

ψ
= − + (6.2)

() ()A C t
d e x
dt

π π= − (6.3)

()d v F
dt

= (6.4)

() ()inv S G A A t
d c x
dt

η μ η μ= + (6.5)

The following nonlinear feed rate profile that maximizes the streptokinase

production [Sarkar and Modak, 2003] is used for the data generation.

q = 0.2 l/h for (0 ≤ t ≤ 0.58); q = 0 l/h for (0.58 ≤ t ≤ 2.28); q = qc l/h for (2.28

≤ t ≤ 12.4); q = 0 l/h for (12.4 ≤ t ≤ 13); where,

 (1.2013) (0.1046)
c tq (1.4892)() ()inv

F

xv x v s c
s s
ψ −= + −

−
 (6.6)

The details of rate expression and kinetic model can be found in [Pyun et al.,

1989]. The following values of model parameters and operating conditions are

used in simulations:

 max
Gμ =0.39 h-1, max

Aμ = 0.11 h-1, R
sxY /

= 0.52 g/g , F
sxY /

= 0.15 g/g , R
spY /
= 0.33

g/g , R
pxY /

=0.67 g/g, e0 = 0 g, (invc)0 = 0 kU/g, v0 = 0.6 l, vmax = 1.5 l, sF =

1.5/[vmax – v0] g/l, kp = 0.014 g/L, ks = 0.021 g/L .

where,

xt : Concentrations of cells (g/l)

s : Concentrations of glucose(g/l)

e : Concentrations of ethanol (g/l)

μG : Specific rates of growth on glucose (h-1)

 273

 μA : Specific rates of growth on ethanol (h-1)

 ψ : Specific rates of growth on glucose consumption (g/g h)

πA : Specific rates of ethanol production (g/g h)

πC : Specific rates of ethanol consumption (g/g h)

ηS : Ratios of the specific invertase synthesis rate to the specific growth rate on

glucose (kU/g cells)

 ηA : Ratios of the specific invertase synthesis rate to the specific growth rate on

ethanol (kU/g cells)

 cinv : Invertase activity (g/l)

 q : Volumetric feed rate of glucose (l/ h)

 sF : Glucose feed concentration (g/l)

 v : Fermenter volume (l)

B. Data generation

To generate process data for the invertase from Saccharomyces

carlsbergensis process, the phenomenological model proposed by Pyun et al.,

[1989] has been used. It may however be noted that the model is used only to

simulate the process and thereby generating process data. In real practice, historic

data collected from the actual process runs can also be used for the LLE-based

fault detection and diagnosis. The fed-batch invertase process is described in

terms of five operating variables namely glucose concentration (s, g\l), ethanol

concentration (e, g/l), bioreactor volume (v, l), biomass concentration (xt, g/l) and

invertase concentration (cinv, kU/g). This case study aims at classifying the process

measurements depending upon low, average or high production of invertase (cinv).

To generate process data involving low, average and high productive batches, the

set of five ordinary differential equations (ODEs) representing the process

dynamics (Eqs. 6.1 to 6.6) was simulated under varying sets of operating

conditions. The ranges in which the initial values of the operating variables were

varied are (0.3 < v0 < 0.6, 0.05 < s0 < 0.3333 and 0.03 < xt0 < 0.1). A total of 40

 274

batches with varying initial conditions as described above were simulated over

fermentation duration of 13 hrs. The values of four operating variables, i.e. s, v, xt

and e and the product quality variable cinv computed at one hr intervals formed the

process data set.

The simulated data shows significant batch-to-batch variation in the final

product concentration in the range of 5 kU/g to 13 kU/g. This variation is mainly

due to the differential rate of assimilation of glucose and ethanol by

Saccharomyces carlsbergensis. An abnormal process behavior can occur due to

equipment malfunction or process disturbances, which can affect final product

concentration adversely. Thus, it is necessary to develop a model using historic

values of process variables, which will classify a fermentation batch to be low,

average or high productive batch. In the present case study, depending upon the

final product (invertase) concentration, the batches are classified into low, average

or high productive batches.

The simulated dataset can be viewed as a three-way array of size 40

(number of batches) × 4 (process variables) × 14 (time intervals). This array was

unfolded into a two-way array of dimensions (560 × 4) by row-wise arranging the

time dependent values of process variables from the 40 batches. The batches

producing invertase upto 7 kU/g were considered as low productive batches; those

producing invertase between 7 to 9.5 kU/g were considered as average productive

batches and the batches producing invertase above 9.5 kU/g were high productive

batches. In the data ten batches (140 patterns) belonged to the class low and 15

batches (210 patterns) each belonged to the classes average and high.

The first step in implementing LLE is to identify the neighborhoods of

each data point. The results of LLE depend quite sensitively on the choice of the

number of nearest neighbors. Several criteria, however, should be kept in mind

while choosing this number [Roweis and Saul, 2000]. First, the algorithm can only

be expected to recover embeddings whose dimensionality, d, is strictly less than

the number of neighbors, K, and some margin between d and K is desirable to

improve algorithm's robustness. Second, the algorithm is based on the assumption

that a data point and its nearest neighbors can be modeled as locally linear; for

curved manifolds, choosing too large K value will in general violate this

 275

assumption. In the case where K > D (indicating that the original data is itself low

dimensional), each data point can be reconstructed perfectly from its neighbors,

and the local reconstruction weights are no longer uniquely defined. In this case,

further regularization must be added to break the degeneracy. In the present case

the regularization parameter is taken constant and the only free parameter is, K,

i.e., the number of neighbors.

6.3.3 Results and Discussions

The Figure 6.3 shows the 2D projection of the four dimensional

fermentation operating variable data of all the 40 batches for K = 12 as provided

by the LLE. Different K values were tried to get a more stable 2D projection. The

projections were stable over a wide range of K values. As can be seen in Figure

6.3, the low, average and high productive batches have been collected in three

separate clusters. The classification accuracies of LLE for low, average and high

productive batches were 98.21%, 95.53% and 98.75%, respectively. The results of

similar clustering exercise conducted using five-layered AANN are portrayed in

Figure 6.4, For this analysis, an AANN of architecture 4 (number of neurons in

input layer) × 12 (number of neurons in mapping layer) × 1 (number of neurons in

bottleneck layer) × 12 (number of neurons in demapping layer) × 4 (number of

neurons in output layer) trained using the error back propagation algorithm

[Rumelhart et al., 1986] was used. In Figure 6.4, it is observed that AANN is also

able to classify the data in three clusters. The AANNs classification accuracies for

low, average and high productive batches were 94.82%, 95.18% and 95.00%,

respectively. It may however be noted that AANN training is heuristic and

therefore is much more time consuming as compared to the LLE procedure.

In another set of simulations, the intermediate time process data (4th hr)

was subjected to LLE–based classification and the results obtained thereby are

depicted in Figure 6.5. As can be seen that, here again the LLE has classified the

data in three well-defined clusters clearly indicating whether the current batch will

yield either low, average or high concentration of the invertase. Such an indication

enables the process operator in making a critical decision whether to proceed with

the batch or not.

 276

Figure 6.3: Two-dimensional Projection using LLE with K = 12

Figure 6.4: Two-dimensional Projection using AANN

Figure 6.5: Two-dimensional Projection using LLE at the end of 10th hr for each
batch

 277

In the LLE–based low dimensional projections it was observed that during

initial stages of the batch progress the LLE algorithm could not classify the

batches correctly into low, average and high productive batches. This was

primarily owing to the fact that the respective data did not contain sufficient

variations to permit an accurate classification. However, LLE could classify the

data with high accuracy during the later stages of the batch progression (see

Figure 6.3 and Figure 6.4). It may also be noted that classification of data from

new batches necessitates running the LLE freshly. However, the previously

optimized value of K can be used in the fresh LLE simulations thus reducing the

computational effort. In contrast, the AANN weights once optimized using the

historic process data, can be used for projecting (or dimensionality reduction) the

data from new batches.

6.3.4 Conclusion

In this section, a novel and recent non-linear dimensionality reduction

technique namely LLE has been applied for monitoring and fault detection of a

biochemical system. The LLE has efficiently projected the high dimensional data

onto lower dimensions by means of eigen-analysis. The results are compared with

an ANN based non-linear dimensionality reduction method namely AANN.

Though both LLE and AANN have exhibited excellent clustering performance,

the LLE was found to be much faster method than the AANN. Dimensionality

reduction by LLE succeeds in recovering the underlying structure of manifolds,

whereas linear embeddings by methods such as PCA maps faraway data points to

nearby points in the plane, creating distortions in both the local and global

geometry. Similar to PCA, the LLE algorithm is simple to implement, and its

optimizations do not involve local minima. Also, it is capable of generating highly

nonlinear embeddings and its main step involves a sparse eigen value problem that

scales more naturally to large, high dimensional data sets.

 278

6.4 PROCESS MONITORING AND FAULT DETECTION USING

CURVILINEAR COMPONENT ANALYSIS∗

This section demonstrates an application of a new nonlinear

dimensionality reduction method, namely curvilinear component analysis (CCA)

for the classification of chemical and biochemical process data. The CCA projects

high dimensional data on to a low dimensional space by maintaining the distances

between the original input data patterns in the new space. It performs vector

quantization (VQ) followed by the nonlinear mapping of the quantized vectors.

The aim of the present study is to demonstrate how CCA can be effectively used

for the classification applications that involve nonlinear projection of a high

dimensional input space on to a low, i.e. two-dimensional (2D) projected space.

The study reports two case studies comprising a continuous stirred tank reactor

(CSTR) and a batch biochemical (invertase production) process to illustrate the

efficacy of the CCA for the process monitoring and fault detection and diagnosis

applications.

6.4.1 Introduction

The modern day control systems monitor and store a large number of

process variables continuously. Discovering the hidden structure and relationships

among the data variables is facilitated by conducting a dimensionality reduction

(DR) of the data set. The DR aims at reducing the unmanageable dimensions of

data set to the data set that can be clearly and conveniently visualized without

losing significantly the information content in the original data set. There are

several advantages of dimensionality reduction such as compact representation of

the data, ease of data storage and retrieval, filtering of noise, convenience in

viewing the data and reduction in the numerical load during process modeling,

∗ Phulwale, U. S., B. Jeevan kumar, S. U. Patel, Y. P.Badhe, S. S. Tambe and B.

D.Kulkarni. Presented in the "Second Indian International Conference on
Artificial Intelligence", held on Dec 20-22, 2005, at the National Insurance
Academy, Pune, India.

 279

control, optimization, etc. Traditionally, DR is used as a data preprocessing tool

for the subsequent “clustering” and “regression” tasks.

There exists a number of methods for reducing the dimensionality of a

multivariable data space without losing the information content in the data

significantly. In the commonly employed DR methods, new attributes (latent

variables) explaining the maximum amount of variance in the original data, are

obtained by performing the principal component analysis (see Section 2.5.1).

Consequently, fewer latent variables (also known as “principal components”) are

required to represent a high dimensional multivariable data set. A significant

drawback of the PCA method is that it extracts only the linear relationships

between variables and therefore it is not suitable if the variables are correlated

nonlinearly, which is common in most chemical and bio-processes. The nonlinear

characteristics of these processes necessitate the usage of nonlinear dimensionality

reduction techniques. Many techniques for nonlinear dimensionality reduction

have been proposed recently in the literature such as the Nonlinear

Multidimensional Scaling [Shepard et al., 1965] and Sammon’s Nonlinear

Mapping [Sammon, 1969]. However, these methods suffer from huge

computational costs and inability to unfold strongly nonlinear data [Demartines et

al., 1997].

 The curvilinear component analysis (see Section 2.5.2) is a recently

proposed [Demartines et al., 1997] non-linear dimensionality reduction method,

which overcomes some of the major shortcomings of the other DR methods and

also has the ability to reduce the dimensionality of strongly nonlinear data. The

CCA aims exploring hard data structures and finding a revealing representation by

unfolding the manifold spanned by the data. The major advantage of CCA is its

speed of convergence and accuracy.

Process monitoring, control and fault detection/diagnosis (i.e. identifying

the normal and abnormal behavior of a process and causes thereof) are the major

challenges in the chemical and bioprocess industry. The aim of the fault detection/

diagnosis (FDD) systems is to detect and diagnose process failures at an early

stage so that corrective measures can be taken speedily. In a continuous operation,

malfunctions or faults can develop owing to significant deviations in the operating

 280

variables. In most processes, the data pertaining to the normal and abnormal

process behavior are continuously logged and archived. In the other type of

process operation, that is batch mode, the monitored and archived data typically

includes information on high, average and low productive batches. The data also

contain information on the consequences of performing a particular control action

in response to a problematic situation. Thus it is possible to develop appropriate

models for evaluating and classifying the performance of a batch/continuous

chemical or a biochemical process and detect and diagnose faults by utilizing the

routinely collected and stored records of the process variables.

Interpretation of the voluminous data collected during a process operation

can be achieved by using an efficient data reduction and projection system. Such a

system greatly simplifies the monitoring task of process operators and engineers.

Thus, in this study, the CCA is illustrated for addressing the problem of nonlinear

dimensionality reduction and classification of the process data. Specifically, the

CCA is used for the classification of faults in a non-isothermal CSTR and

classification of batches according to the yield of an invertase process.

6.4.2 Case Study – I (Non-isothermal CSTR)

In this case study, the first order irreversible reaction carried out in a

jacketed non-isothermal CSTR has been considered. The input vectors for the

CCA consisted of 6 process variables namely: (i) outlet reactant concentration

(CA), (ii) CSTR temperature (T), (iii) reactor hold up (V), (iv) reactor output flow

rate (F), (v) jacket coolant flow rate (Fj) and (vi) coolant temperature (Tj). The

aim of the present case study is to identify the type and the magnitude of a fault

occurring in a steady-state CSTR operation from the available values of the stated

six variables.

We consider a few but representative single faults that can occur during

the steady-sate operation of a CSTR when process parameters deviate by a fixed

amount from their normal (or set) values. The specific faults which can influence

the steady-state CSTR behavior have been identified as [Vora et al., 1997]: (i)

input flow rate (F0) high, (ii) input flow rate low, (iii) inlet concentration (CA0)

high, (iv) inlet concentration low, (v) inlet temperature (T0) high, (vi) inlet

 281

temperature low, and (vii) decrease in heat transfer coefficient (U) due to fouling.

The inlet concentration can deviate if CSTR happens to be a downstream unit. It is

assumed that these faults occur in a mutually exclusive manner; that is, only one

out of the seven types of fault can occur at any given time. The process data for

the fault classification analysis was generated using the CSTR’s

phenomenological model [Venkatasubramanian et al., 1990]. The historical data

collected from a physically running process can also be used in the classification.

Any deviation in the model parameters would eventually affect the steady-state

values of the above stated six state variables (CA, T, V, F, Fj and Tj) and the

magnitudes of these state variables are usually available as the measured data.

A. Simulation of faults

To generate process data, model equations described in

Venkatasubramanian et al. [1990] were solved to obtain the steady-state values of

the six state variables. The values of the model parameters used in the steady-state

simulations were: F0 = 1.15 m3 hr-1, F = 1.15 m3 hr-1, V = Vset = 1.35 m3, CA0 =

8000 gmol m3, T = Tset = 333 K, Tj0 = T0 = 295 K, Vj = 0.1 m3, α = 7.08×1010 hr-1,

Cj = 4 J(gmol 0K)-1, Fj = 1.4 m3 hr-1, λ = -70000 J(gmol)-1, R = 8.3262 J(gmolhr)-1,

E = 70000 J(gmol)-1, U = 3 × 106, J(hrm2K)-1, ρ = 8 × 105 gmol(m3)-1, ρj = 106

gmol(m3)-1, kc = 0.2 m3(hr K)-1, Cp = 3 J(gmol K)-1, A = 25 m2, kL = 10 hr-1, and

ka = 8.8 × 10-5 m6(gmol hr)-1. All the seven faulty process conditions were

simulated separately. Each of the seven data sets so generated corresponds to

0.1% to 15% deviation (at the interval 0.1%) from the normal value of the

individual process parameter responsible for the malfunction. Thus, each fault is

represented by 150 patterns. Subsequently, all the seven data sets were combined

to form a single input set for the CCA network training and the pattern consisting

of the steady state values of state variables under no fault condition was added to

this cumulative set. The data structure of the resultant set is given in Table 6.2.

This set can be visualized as a matrix of size [1051, 6] consisting of 1050 patterns

representing seven single faults and the remaining one portraying the normal

process behavior.

 282

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5 1 1.5
Reduced Dimension 1

R
ed

uc
ed

 D
im

en
si

on
 2

F1
F2
F3
F4
F5
F6
F7
F8

B. Results and discussion

For reducing CSTR’s six dimensional steady-state data to two dimensions,

the CCA parameters were set as follows. The algorithm (see Section 2.5.2) was

run for 1000 training epochs (t = 1000); the learning rate decreased according to

() ()t
t

+
=

1
0α

α where 5.0=oα and λF was set equal to 1/(1+t). The CCA-based

dimensionality reduction and the classification results are plotted in Figure 6.6. It

can be seen from the figure, that the CCA has correctly classified the process data

into seven faults even in the lower (i.e., 2) dimensional projection.

Figure 6.6: Nonlinear Projection of 6-dimensional steady-state CSTR data in 2-
dimensions

Also, it is seen that the clusters depicting various faults are widely

separated and their boundaries do not overlap. Thus, from the location of the 2-D

projection of the steady-state values of the CSTR variables, it is possible to

identify clearly the occurrence of any one of the seven faults. It is also possible to

identify CSTR’s normal steady-state behavior (the region at the centre of seven

fault clusters).

 283

Table 6.2: Nature and magnitudes of seven CSTR faults

Input Data for CCA
No. Nature of Fault

Fault

code Pattern no(s). Fault magnitude* (%) #

1 Input flow rate high F1 1-150 (+) 0.1-14.9

2 Input flow rate low F2 151-300 (-) 0.1- 14.9

3 Inlet conc. high F3 301-450 (+) 0.1-14.9

4 Inlet conc. low F4 451-600 (-) 0.1- 14.9

5 Input temp. high F5 601-750 (+) 0.1-14.9

6 Input temperature low F6 751-900 (-) 0.1- 14.9

7 Heat transfer coeff. low F7 901-1050 (-) 0.1-14.9

8 Normal operation - 1051 -

* Percent deviation from the normal operating value of the parameter defined in

column 2.

Data generated at the deviation intervals of 0.1 %.

6.4.3 Fermentative Production of Invertase

In this case study, the batch fermentative production of invertase by

Saccharomyces carlsbergensis is chosen to demonstrate the efficacy of the CCA

formalism for the process monitoring and fault detection tasks. Saccharomyces

carlsbergensis shows a biphasic nature of growth, i.e. it can utilize glucose as well

as ethanol in the event of glucose scarcity [Pyun et al., 1989]. The major

advantage of a fed batch bioreactor is that during fermentation, the feed

composition and feed flow rate can be manipulated to maximize the product

formation. Thus, manipulation of the feed rate is an important aspect of the fed-

 284

batch operation from the control and optimization viewpoint. An efficient process

monitoring and fault detection formalism is expected to greatly facilitate the

manipulation of the feed rate.

A. Phenomenological model for invertase production

The phenomenological model for biphasic growth of Saccharomyces

carlsbergensis and invertase production [Pyun et al., 1989] is given in section

6.3.2A. The following nonlinear feed rate profile that maximizes the streptokinase

production [Pyun et al., 1989] is used for the data generation; q = 0.2 l/h for (0 ≤ t

≤ 0.58); q = 0 l/h for (0.58 ≤ t ≤ 2.28); q = qc l/h for (2.28 ≤ t ≤ 12.4); q = 0 l/h

for (12.4 ≤ t ≤ 13), where,

()() () 1.02.149.1 −−+
−

−= invt
F

c csx
ss

sq ννψ (6.7)

The details of the rate expression and kinetic model can be found in Pyun et al.,

[1989]. The following values of model parameters and operating conditions are

used in simulations: max
Gμ = 0.39 h-1, max

Aμ = 0.11 h-1, R
sxY /

= 0.52 g/g , F
sxY / =

0.15 g/g , R
spY / = 0.33 g/g , R

pxY /
= 0.67 g/g, e0 = 0 g, (invc)0 = 0 kU/g, v0 =

0.6 l, vmax = 1.5 l, sF = 1.5/[vmax – v0] g/l, kp = 0.014 g/L, ks = 0.021 g/L .

B. Simulation of phenomenological model

To generate process data for the invertase from Saccharomyces

carlsbergensis process, the phenomenological model proposed by Pyun et al.,

[1989] has been used. The model is used only to simulate the process and thereby

generating the process data. The fed-batch invertase process is modeled in terms

of five operating variables namely glucose concentration (s, g/l), ethanol

concentration (e, g/l), bioreactor volume (v, l), biomass concentration (xt, g/l) and

invertase concentration (cinv, kU/g). This study aims at classifying process

measurements depending upon the low, average or high production of the

invertase (cinv). To generate process data involving low, average and high

productive batches, the set of five ordinary differential equations (ODEs) (Eqs. 6.1

to 6.5 and Eq. 6.7) representing the process dynamics was simulated under

 285

varying sets of operating conditions. The ranges in which the initial values of the

operating variables were varied have been: (0.3 < v0 < 0.6, 0.05 < s0 < 0.3333 and

0.03 < xt0 < 0.1). A total of 40 batches with varying initial conditions as described

above were simulated over fermentation duration of 13 hrs. The values of the four

operating variables i.e. s, v, xt and e and the product quality variable, cinv,

computed at one hr intervals formed the process data set.

The simulated data shows a significant batch-to-batch variation in the final

product concentration in the range of 5 kU/g to 13 kU/g. This variation is mainly

due to the differential rate of assimilation of glucose and ethanol by

Saccharomyces carlsbergensis. An abnormal process behavior can occur due to

the equipment malfunction or process disturbances, which can affect the final

product concentration adversely. Thus, it is necessary to develop a model that will

classify a fermentation batch to be either low, average or high productive batch.

 The simulated data-set can be viewed as a three-way array of size 40

(number of batches) × 4 (process variables) × 14 (time intervals). This array was

unfolded into a two-way array of dimensions (560 × 4) by arranging row-wise the

time dependent values of the four process variables from the 40 batches. The

batches producing invertase upto 7 kU/g were considered as low productive

batches; those producing the invertase between 7 to 9.5 KU/g were considered as

average batches and the batches producing above 9.5 KU/g of invertase were high

productive batches. In the data, 10 batches (140 patterns) belonged to the class

low and 15 batches (210 patterns) each to classes average and high.

C. Results and discussion

The parameter values used in the CCA based classification were t = 3000

and the learning rate decreased according to () ()t
t

+
=

1
0α

α (where 5.0=oα). In the

above-stated classification task, the dimensionality of the four dimensional vectors

of process operating variables was reduced to two. The results of the CCA-based

low-dimensional projection of the process data are depicted in Figure 6.7, where it

is seen that the data have been collected in three clusters describing low, average

and high invertase production batches, respectively. In the region between x =

 286

0.377 and x = 1.67, the points are well separated in three well-defined regions thus

facilitating identification of low, average and high invertase production batches.

The CCA could classify the data with approximately 99% accuracy. We also

conducted dimensionality reduction and classification using the linear PCA.

However, the PCA-based classification results were poor as compared to those

obtained using the CCA. The results of the non-linear dimensionality reduction

depicted in Figure 6.7 indicate that the CCA is an attractive method for viewing

and classifying nonlinearly correlated bioprocess data in lower dimensions.

Figure 6.7 Nonlinear Projection of 4-dimensional invertase process data in two-
dimensions

6.4.4 Conclusion

In this study, a state-of-the-art nonlinear dimensionality reduction method

namely curvilinear component analysis has been employed to obtain low-

dimensional projections of high dimensional chemical process data. In section

6.4.2, the steady-state data from a non-isothermal CSTR operating under faulty

conditions was considered. The CCA could reduce the dimensionality of the data

from 6D to 2D with an excellent precision. Also, the reduced dimensioned data

formed well-defined clusters defining seven fault classes. In the case study

described in section 6.4.3, the CCA could reduce the dimensionality of the

invertase batch process data from four to two. Here, most of the data was

classified in three well-defined clusters defining low, average and high productive

batches. To summarize, the results of this study suggest that the CCA is an

 287

attractive strategy for reducing the dimensionality of high dimensional nonlinearly

correlated data. The advantage of the CCA is that it allows process engineers and

operators a convenient single-window view of the process variables. This feature

is advantageous in process monitoring, control and fault detection and diagnosis in

that the process operator/engineer can view the process operation easily. It is also

possible to use the dimensionality reduced data for modeling purposes thereby

substantially lowering the computational load.

 288

6.5 SELECTION OF MODEL INPUTS USING FUZZY CURVE AND

FUZZY SURFACE METHODS

6.5.1 Preamble

Modern day chemical processes are large and complex entities with a

plethora of equipment and sub-processes. These processes are characterized in

terms of a number of independent and dependent variables as also parameters. A

process model is required in a variety of process engineering tasks such as

prediction of performance in terms of conversion, selectivity, efficiency, etc., and

optimization, control, fault detection and diagnosis and process monitoring.

Among the three approaches that are available for modeling, namely

phenomenological, empirical and black-box, the first one poses significant

difficulties owing to an insufficient knowledge about the physico-chemical

phenomena underlying large chemical processes and therefore empirical and

black-box modeling formalisms are resorted to. The implementation of these

formalisms comprising, for example, linear/nonlinear regression and artificial

intelligence methods becomes tedious and numerically intensive when a process is

monitored in terms of a large number of input-output variables. Also, many a

times the monitored variables are correlated thereby making such variables

redundant. It is therefore advisable to reduce the size of the data-base used in

modeling the process by identifying the influential input variables and ignoring

the unimportant ones. Selection of most important process input variables leads to

several advantages such as reduced numerical effort involved in modeling, faster

model development, ease in process monitoring and an accurate and

generalization capable model. Accordingly, in this section, a novel and recently

proposed fuzzy logic based formalism is illustrated for the input selection. In what

follows, an overview of various dimensionality reduction and input selection

formalisms is presented followed by the results of two case studies wherein the

fuzzy logic based method has been implemented for the selection of important

inputs of two chemical engineering systems.

 289

6.5.2 Introduction

In today’s large and complex commercial chemical processes, a number of

factors influence the reaction and mass and heat transfer phenomena. These

processes are characterized in terms of a number of independent (causal) and

dependent (response) variables such as reactant concentration, temperature,

pressure, conversion and selectivity, as also product quality variables. The

performance of a process model fitted by exclusively data-driven AI and ML

based nonlinear modeling techniques is critically dependent on the dimensionality,

statistical distribution and size of the input-output data set used in constructing the

model. In principle, the AI-based and ML-based nonlinear empirical modeling

techniques do not require to reduce the model’s input space although as size of the

input space increases the solution to a nonlinear modeling problem converges to a

local rather than the global optimum. Also, the AI and ML based modeling

algorithms are iterative in nature and most of the algorithm-specific parameters

are adjusted by heuristic methods. Thus, their implementation is a numerically

intensive task especially while modeling nonlinear systems with a large number of

inputs and outputs. If the input space of an ANN or ML based model has a high

dimensionality then the resulting model becomes complex due to the large number

of terms that it contains. Such a model does not possess the much desired good

generalization performance owing to which it makes poor predictions for a new

set of inputs, which are not part of the data set used in constructing the model.

Often, the causal variables, which form the input space of a process model, are

either linearly or nonlinearly correlated. Such correlated inputs unnecessarily

increase the dimensionality of the model’s input space. Also, the sensitivity with

which an operating condition variable (model input) affects the model output may

vary significantly with some of these variables exhibiting only a negligible effect

on the output. It is therefore essential to identify the influential input variables and

thereby reduce the dimensionality of the input space of a process model since it

leads to several advantages alluded to above. Particularly, identifying a small

number of influential inputs and ignoring the unimportant ones results in a

parsimonious yet accurate and reliable process model with reduced complexity

and improved generalization capability. There exists a number of methods for

 290

input identification (selection) which reduces the dimensionality of the input

space.

To remove nonlinearly correlated input variables, nonlinear dimensionality

reduction techniques such as autoassociative neural networks (AANN) (refer

Section 2.5.3) and Sammon’s mapping based neural network (refer Section 2.5.5)

are commonly used. These neural network based methods are however

computationally expensive. Thus, in this study a new and novel AI-based strategy

known as “fuzzy curves and surfaces (FCS) (refer Section 2.5.6)” has been

presented for identifying important input variables and thereby reducing the

dimensionality of the input space of nonlinear process models. This method

requires lesser computational effort than the other heuristic nonlinear input

selection and dimensionality reduction methods such as AANN. Specifically, the

FCS method has been utilized for identifying important inputs of following

chemical processes: (i) heat exchanger system and (ii) pH control system.

Additionally, the performance of the FCS method is rigorously compared using an

ANN-based sensitivity computation method yielding important inputs of a model

(see Section 3.4.7). This study shows that the FCS is capable of efficiently

identifying the hierarchy of the input variables of a process model according to

their influence on the model output. For comparing the performance of the FCS

method, this study uses ANN-based input sensitivity method (refer Section 3.4.7)

which computes the sensitivity of the output variable towards changes in each

input of an ANN model. Upon computation of sensitivities, only those inputs

exhibiting high sensitivity towards an output can be retained while ignoring less

sensitive inputs. Section 2.5.6 highlights the FCS technique used in the

identification of the important inputs.

6.5.3 Case Studies

Consider a dynamic system described as

()βα −−+−+ = ttttttt uuuyyyfy ,...,,,,...,, 111 (6.8)

where y refers to the control variable, yt+1 describes the one-step-ahead value of

the control variable, y, u represents the manipulated variable, and α and β are the

 291

time lags of the controlled and manipulated variables, respectively. Fitting of Eq.

(6.8) from the process data is known as “process identification.” The identified

model can then be used in the model based controller design. In the above

equation, some of the lagged variables may have more influence on y(t+1) than

others. Thus, in order to accurately fit the system dynamics, the number of lagged

variables (α and β) must be chosen judiciously and heuristically. Also, having

chosen α and β, the most significant individual lagged variables need to be

determined. In the present study, FCS has been employed to determine the most

influential lagged variables of the heat exchanger and pH control systems so that

the resultant models accurately describe the dynamics of these systems.

In order to mimic the real-life scenario, all the simulated data sets of the

stated systems were adulterated with a maximum of 1% Gaussian noise. In order

to find the significant inputs, a large number of inputs (high α and β) have been

subjected to the FCS method. To check the performance of the significant lagged

variables selected by the FCS, two ANN models were built separately; the first of

these models uses all the lagged variables as inputs and the other model uses the

most significant lagged variables determined by the FCS.

A. Nonlinear heat exchanger control system

 This example considers a shell and tube heat exchanger (see Figure 6.8)

wherein process fluid enters the exchanger vessel with inlet temperature, T

(normalized steady-state value, Ts = 0.15 oC), and flow rate, F (Fs = 0.50 l/min).

Using a heater, the fluid temperature is increased to a higher value, Y, at the

exchanger outlet (Ys = 1). The heat exchanger dynamics are described by the

following ordinary differential equation (Kulkarni et al., 1999):

VRC

U
V
FT

V
FY

dt
dY

P

2

++
−

= (6.9)

where U refers to the normalized heater voltage (Us = 0.707) and (RCP = 1) is the

system time constant. For this process, heater voltage input, U, serves as the

manipulated variable and the exchanger outlet temperature, Y, is the controlled

variable. To generate input-output process data, Eq. (6.9) was integrated by

randomly perturbing U between 0.5 and 1.4. Probability of variation in U was

0.15. The dynamics of the heat exchanger system (Eq. 6.9) was simulated till time

equals 5000 minutes. For training the model, the process data set covering 5000

 292

minutes of operation was divided in 80:20 ratio into two sets namely, training and

test sets. Next, ANN model’s architectural parameters (number of nodes in two

hidden layers) were optimized using these training and test sets. A maximum of

six lagged variables of y and u (α, β = 6) were utilized and an ANN model of

following form was constructed using the EBP algorithm.

 ()βα −−−−+ = ttttttt uuuyyyfy ,...,,,,...,, 1111 (6.10)

where f1 refers to the function approximated by the ANN-based model with α=6

and β=6. This model although has 14 inputs, all of them are not influential in

predicting yt+1 and thus ANN-based sensitivity analysis (see Section 3.4.7) was

carried out for the above-stated 14 inputs. The results obtained thereby are plotted

in Figure 6.9 in the decreasing order of the sensitivity values. The first six input

variables from the plot can be identified as the most important model input

variables. The ANN model when these variables are used in its input space can be

written as:

()3632121 ,,,,, −−−−−+ = ttttttt uuyyyyfy (6.11)

It can thus be seen that the ANN-based sensitivity computation method has

reduced the input space from 14 to 6 inputs. Based on these reduced number of

inputs, a new ANN model was built.

Figure 6.8: Heater voltage is the manipulated variable and exchanger outlet
temperature is the controlled variable

 i/p

+

-
U

Process fluid inlet
F (t); T (t)

Process fluid
outletY (t)

Heater
Voltage

 293

Next, FCS was utilized to rank the influential inputs. For this purpose, the

algorithm described in section 2.5.6 was utilized. The number of inputs ranked

was 14. The influential input variables determined by the FCS were yt, yt-2, yt-4, ut,

ut-4 and ut-6. Thus, the one-step-ahead predictor model for the heat exchanger can

be written as:

()644231 ,,,,, −−−−+ = ttttttt uuuyyyfy (6.12)

It can thus been seen that ANN-based sensitivity analysis and FCS have identified

different sets of lagged variables as influential although yt, yt-2 and ut-6 are

common to both these sets.

To gauge the performance of FCS-identified important inputs an ANN

model was constructed using the inputs described in Eq. (6.12). The root-mean-

square-error (RMSE), mean percentage error (%error) and the correlation

coefficient (CC) between the actual one-step-ahead y values and those predicted

by the ANN model with 14 inputs as also FCS identified six significant variables

for the training and test data set are given in Table 6.3. Additionally, listed in the

table are the values corresponding to an ANN model constructed using the

important inputs identified by the sensitivity analysis. In the table, f1 refers to the

ANN model obtained using all 14 inputs (Eq. 6.10), f2 refers to the ANN model

(Eq. 6.11) with reduced numbers of inputs obtained from the sensitivity analysis

of the f1 model, and f3 refers to the ANN model (Eq. 6.12) obtained using the

reduced number of inputs identified by the FCS. As can be noted from Table 6.3,

the RMSE and %error values have decreased for models with reduced input

dimension as compared to the model using all the 14 inputs. It can also be seen

that the FCS reduced input space has imparted maximum improvement in the

ANN model’s predictive and generalization performance. The six important inputs

identified by the sensitivity method also perform better than the 14 inputs in

predicting yt+1 albeit on a lower scale when compared with those identified by the

FCS.

 294

0

0.1

0.2

0.3

0.4

Y(t) Y(t-1) Y(t-2) Y(t-3) U(t-6) U(t-3) Y(t-6) U(t-4) U(t-1) U(t-5) Y(t-4) Y(t-5) U(t-2) U(t)

Input variables

Se
ns

iti
vi

ty
 v

al
ue

s

Figure 6.9: Sensitivity of lagged variables of Heat Exchanger system

B. Nonlinear pH control system

 The process is a continuous stirred tank reactor (CSTR) (see Figure 6.10)

wherein hydrochloric acid and sodium hydroxide streams are mixed and effluent

stream pH is monitored. The objective is to control/maintain the effluent pH at a

given set point by manipulating the NaOH flow rate. Dynamics of the pH control

process assuming perfect mixing, reaction at equilibrium, constant volume and

constant density is described by a single ordinary differential equation (Kulkarni

et al., 1999):

)(60)1(

][][
2

3232

VC
QCCcCPCCcC

dt
dC ba

+
−−+−+

= (6.13)

)10/(log 7
10 CpH −= (6.14)

where C denotes the dimensionless concentration of the hydrogen ions, pH

(control variable) represents the effluent pH, ca and cb refer to dimensionless

concentrations of HCl and NaOH inlet streams, respectively, V is the CSTR

volume and, P and Q (manipulated variable) respectively represent the inlet flow

rates of HCl and NaOH. To obtain the dynamic process input-output data Eq.

(6.13) was integrated using Runge-Kutta method by varying Q randomly between

30 and 70 l min-1; the probability of variation in Q at any instant was 0.25.

 295

Figure 6.10: Schematic of a pH neutralization CSTR

In order to identify the dynamics of the nonlinear pH control system an

ANN model with six lagged variables of the control and manipulated variables (α,

β = 6) was constructed. The model has following form:

()βα −−−−+ = ttttttt uuuyyyfy ,...,,,,...,, 1141 (6.15)

where y is the controlled variable (pH of the system), u is the manipulated variable

(NaOH inlet flow rate, Q) and α, β representing the number of flags have a

magnitude of six. Next, sensitivity analysis of the ANN model (Eq. 6.15) was

conducted and the results are plotted in Figure 6.11 in the decreasing order of the

sensitivities of model inputs. In Figure 6.11, it is seen that apart from yt and ut, six

lagged variables of y, namely yt-1, yt-6, yt-2, yt-3, yt-4 and yt-5 exhibit higher

sensitivity towards yt+1 than the six lagged variables of the manipulated variable u.

Accordingly, another ANN model of the following form was built using yt, ut and

six lagged variables of the control variable, y as model inputs.

 ()65432151 ,,,,,,, −−−−−−+ = ttttttttt yyyyyyuyfy (6.16)

Next, FCS was utilized for the selection of important input variables of the ANN

model (Eq. 6.15) and the equation explaining the dependency of lagged values of

control and manipulated variables on the one-step-ahead values of control variable

(i.e., yt+1) using FCS identified five important inputs is as given below.

 I/ P

CH (t); COH (t)
Neutralized

solution

NaOH
Q (t); CNa2

(t)

HCl
P (t); Ccl1 (t)

 296

0

0.04

0.08

0.12

0.16

Y(t) Y(t-6) Y(t-1) U(t) Y(t-2) Y(t-3) Y(t-4) Y(t-5) U(t-3) U(t-5) U(t-2) U(t-4) U(t-6) U(t-1)

Input variables

S
en

si
tiv

ity
 v

al
ue

s

 ()216361 ,,,, −−−−+ = tttttt uuyyyfy (6.17)
The RMSE, %Error and CC between the actual one-step-ahead pH (yt+1) and those

predicted by the ANN models using all the 14 input variables as also using the

significant variables identified by the sensitivity analysis and FCS for training and

test data sets are given in Table 6.3. In the table, f4 refers to the ANN model built

using all the 14 inputs as described by Eq. 6.15, f5 refers to the ANN model (Eq.

6.16) using the inputs identified by the sensitivity analysis and f6 refers to the

ANN model (Eq. 6.17) constructed using inputs identified by the FCS. Similar to

the heat exchanger control system, in this case study also an improvement is

observed in the prediction and generalization performance of the ANN model

built using the significant inputs identified by the sensitivity analysis and FCS as

compared to the model built using all the 14 inputs. Also, FCS performance in

identifying significant inputs is better as compared to the sensitivity analysis

method which can be validated from the lowest RMSE and %error values and

highest CC values (refer to Table 6.3).

Figure 6.11: ANN model sensitivity for pH system

 297

Table 6.3: Performances of ANN models

Training data set Test data set ANN
Models RMSE % Error CC RMSE % Error CC

f1 0.081 4.065 0.976 0.08 4.125 0.97

f 2 0.075 3.954 0.98 0.078 3.985 0.9758

f 3 0.068 3.59 0.984 0.066 3.45 0.985

f 4 1.054 5.21 0.94 1.65 6.25 0.926

f 5 0.098 5.036 0.956 1.032 5.963 0.954

f 6 0.0865 4.157 0.975 0.095 4.265 0.968

6.5.4 Conclusion

 In this section, fuzzy curves and surfaces method has been explored for the

identification of important inputs of a model that significantly affect the model

output. The results of the FCS have been compared with another input

identification method namely ANN-based sensitivity analysis. From the two case

studies performed in this section it is seen that important inputs identified by both

the methods improve the prediction and generalization performance of the models.

It is also observed that the FCS has fared better than the sensitivity analysis

method in identifying important inputs.

 298

6.6 REFERENCES

1. Aldrich C. (1998), Visualization of Transferred Multivariate Data Sets with

Auto Associative Neural Networks, Pattern Recognition Letters, 749–764.

2. Dedem G. V. (1975), Moo-Young M. A, Model for Diauxic Growth,

Biotechnol. Bioeng., 17, 1301–1312.

3. Demartines, P. and J. Herault (1997), Curvilinear component analysis: A self-

organizing neural network for nonlinear mapping of data sets, IEEE

Transactions on Neural Networks, 8(1), 148–154.

4. Engelbrecht, A. P., Cloete, I., & Zurada, J. M. (1995), Determining the

significance of input parameters using sensitivity analysis, From natural to

artificial neural computation: Proceedings of International Workshop on

Artificial Neural Networks. Malaga-Torremolinos, Spain: Springer, 382–388.

5. Fukunaga, K. (1991), Introduction to Statistical Pattern Recognition,

Academic Press, London.

6. Kramer M. A. (1992), Auto-Associative Neural Networks, Computers and

Chemical Engineering, 16(4), 313–328.

7. Lin, Y., G. Cunningham III, S. V. Coggeshall, (1996), Input variable

identification - fuzzy curves and fuzzy surfaces, Fuzzy Sets and Systems, 82,

65–71.

8. Lin, Y., G. Cunningham III, S. V. Coggeshall, R. D. Jones, (1998), Nonlinear

system input structure identification: two stage fuzzy curves and surfaces.

IEEE Transactions on Systems, Man, and Cybernetics, Part A 28(5), 678–684.

9. Mao, J. and Jain, A. K, Artificial Neural Networks For Feature Extraction And

Multivariate Data Projection, IEEE Trans. Neural Networks, vol. 6, 1995,

296–317.

10. Prechelt, L. (1994), Porben1 – A Set of Neural Network Benchmark Problems

And Benchmarking Rule, Technical Report 21/94, University of Karlsruhe;

Germany. ftp://ftp.ira.uka.de/pub/neuron/

11. Pyun, Y. R., Modak, J. M., Chang, Y. K., Lim, H. C. (1989), Optimization of

Biphasic Growth of Saccharomyces carlsbergensis in Fed-Batch Culture,

Biotechnol. Bioeng., 33, 1–10.

 299

12. Pyun, Y. R., Modak, J. M., Chang, Y. K., Lim, H. C. (1989), Optimization of

Biphasic Growth of Saccharomyces carlsbergensis in Fed-Batch Culture,

Biotechnol. Bioeng., 33, 1–10.

13. Ramos, L. S., K. R. Beebe, W. P. Carey, E. Sanchez, B. C. Erickson, B. E.

Wilson, L. E. Wangen and B. R. Kowalski (1986), Chemometrics, Analytical

Chemistry, 58, 294R-315R.

14. Ridder, D. de. and Duen, R. P. W. (1997), Sammon’s Mapping Using Neural

Networks: A Comparison, Pattern Recognition Letters, 18, 1307–1316.

15. Roweis S. T. and Saul L. K. (2000), Nonlinear Dimensionality Reduction by

Locally Linear Embedding , Science, 290, 2323–2326.

16. Rumelhart D., Hinton G., Williams R. (1986), Learning Representations by

Backpropagating Errors, Nature, 323, 533–536.

17. Sammon, J. W. (1969), A Nonlinear Mapping Algorithm For Data Structure

Analysis, IEEE Trans. Comput., vol.18(5), 401–409.

18. Sammon, J. W. (1969), A nonlinear mapping algorithm for data structure

analysis, IEEE transactions Computers, C-18, no. 5, 401–409.

19. Sarkar, D., Modak, J. M. (2003), Optimization of Fed-Batch Bioreactor using

Genetic Algorithm, Chem. Eng. Sci., 2283–2296.

20. Shepard, R. N. and J. D. (1965), Carroll. Parametric representation of

nonlinear data structures,. in International Symposium on Multivariate

Analysis: Academic Press, New York.

21. Shimizu H., Yasuoka K., Uchiyama K., Shioya, S. (1998), Bioprocess Fault

Detection by Nonlinear Multivariate Analysis: Application of an Artificial

Auto-Associative Neural Network and Wavelet Filter Bank, Biotechnol. Prog.,

79–87.

22. Sugeno, M., T. Yasukawa (1993), A fuzzy-logic-based approach to qualitative

modeling, IEEE Transactions on Fuzzy Systems, 1(1), 7–31.

23. Sung A. H. (1998), Ranking importance of input parameters of neural

networks. Expert Systems with Applications, 15, 405–411.

24. Takagi, H. and I. Hayashi (1991), NN-driven fuzzy reasoning, Internat. J.

Approx. Reason., 5, 191–212.

25. Takagi, T., Sugeno, M. (1985), Fuzzy identification of systems and its

applications to modeling and control, IEEE Trans. Syst. And Man Cybern. 15

(1), 116–132.

 300

26. Venkatasubramanian, V., Vaidyanathan, R. and Yamamoto, Y. (1990),

Process fault detection and diagnosis using neural networks. Comput. Chem.

Engng. 14, 699–712.

27. Vesanto J. (2000), SOM Toolbox, vs. 2, see also,

http://www.cis.hut.fi/projects/somtoolbox.

28. Vora N., Tambe S. S., Kulkarni B. D. (1997), Counterpropagation Neural

Networks for Fault Detection and Diagnosis, Computers Chem. Engg., 21(2),

177–185.

29. Vora, N., Tambe, S., Kulkarni, B. (1997), Counterpropagation Neural

Networks for Fault Detection and Diagnosis, Computers Chem. Eng., 21(2),

177–185.

30. Wold, S., K. Esbensen, and P. Geladi. (1987), Principal component analysis,

Chemo. Intell. Lab. Syst., 2, 37–52.

31. Zurada, J. M., Malinowski, A., and Cloete, I. (1994), Sensitivity analysis for

minimization of input data dimension for feed forward neural network,

Proceedings of IEEE International Symposium on Circuits and Systems,

London: IEEE Press, 6, 447–450.

 301

CHAPTER 7. CONCLUSION

CHAPTER 7

CONCLUSION

 302

In this chapter, we present a summary of contributions made in this thesis

and guidelines for deployment of the AI-based formalisms.

7.1 CONCLUSIONS

Mathematical process models are required for a variety of process

engineering tasks such as steady-state and dynamic modeling, process control,

fault detection diagnosis, classification, optimization, data reduction, low

dimentional projection and process monitoring. Most chemical processes exhibit

complex nonlinear behavior and thus development of phenomenological models,

which require complete understanding of the underlying process phenomenology

(kinetics, thermodynamics, heat and mass transfer mechanisms, etc.) becomes

difficult. An attractive alternative in the form of AI based models has become

available in the last two decades. A significant advantage of the AI based models

is that they can be developed exclusively from the process data without needing

any information about the process phenomenology. Likewise ANNs, a number of

other AI-based formalisms have been proposed for conducting the process

engineering tasks alluded to above. It may be noted that AI formalisms are generic

in nature and can be employed in almost every science and

engineering/technology discipline. The objective of this thesis therefore is to

design, develop and apply various AI formalisms for the important tasks in

chemical engineering/technology. Accordingly, the studies reported in the thesis

and conclusions thereof are described below.

The first chapter provides a brief overview of the artificial intelligence

(AI) and machine learning (ML) domains and highlights the major formalisms

thereof as also their generic applications.

The second chapter provides algorithmic details of a number of AI and ML

based formalisms used in the modeling, optimization, classification,

dimensionality reduction and input selection case studies reported in the thesis.

Chapter 3 focusses on the applications and improvisation of AI and ML

based formalisms for chemical/biochemical process modeling. In the first two

studies, ANNs trained using an optimally noise-superimposed enlarged input-

output data set has been shown to exhibit improved prediction and generalization

 303

performance. In the third case study, ANN-based models have shown better

accuracy for the prediction of gross calorific values of Indian coals over the

conventionally used linear models. Next, the recently proposed ML-based

formalism, namely SVR, has been utilized in a novel application involving

softsensor development for biochemical processes. Also, the SVR has been shown

to possess an excellent accuracy for the prediction of activity of a biochemical

process. In the last study of the chapter, a modified genetic programming

formalism integrating local and global search mechanisms has been explored for

the modeling of the benzene isopropylation over Hbeta catalyst process.

Chapter 4 studies AI-based classification/clustering formalisms. Here, two

case studies have been performed. In the first case study dealing with protein

synthesis, the unsteady-state data from a fed-batch fermenter operating under

faulty as well as normal operating conditions has been considered to successfully

conduct fault classification. In the second case study involving citric acid

production, the SOM neural network visualizes the dynamics of a multivariable

process in the form of a two-dimensional map and brings out subtle differences

between various batches.

In chapter 5, AI-based formalisms have been explored for process

optimization. This chapter presents results of a memetic algorithm (MA) based

multi-objective optimization of the zeolite (TS-1) catalyzed benzene

hydroxylation to phenol process. Additionally, the optimal solutions obtained

using the MA have been compared with the genetic algorithm based solutions

obtained in an earlier study. The results of this comparison indicate that the MA

has captured a better solution and that too in a shorter time when compared to the

GA-based solution. It can thus be concluded that the global search augmented

with a local search (as done by MA) fares better than a pure global search

conducted by the GA.

Chapter 6 demonstrates applications and improvisation of AI and fuzzy

logic based formalisms for data dimensionality reduction/low dimensional

projection and input selection of chemical/biochemical process data. In the first

three sections of this chapter, ANN-based Sammon’s mapping, locally linear

embedding and curvilinear component analysis have been used for the

dimensionality reduction of the process data and fault detection and diagnosis

 304

thereof. In the last section of the chapter, a recently proposed fuzzy logic based

input selection formalism namely, fuzzy curves and surfaces, has been

successfully utilized for the input selection of a pH neutralization process and heat

exchanger control system.

7.2 GUIDELINES FOR DEPLOYMENT OF AI FOMALISMS

7.2.1 Thumb-rules for the Development and Deployment of ANN models

• Never “throw” non-analyzed, non-processed data at an ANN, i.e.,
preprocess the data before subjecting to the ANN for modeling; perform
correlation and trend analysis. Also, remove outliers.

• Make sure that adequate data for training an ANN is available: data
adequacy depends on the input-output dimensionality of the system to be
modeled

• Employ “proper” data representation methods: input encoding, filtering,
etc., should be performed

• Avoid over-training the neural network: use a test set, which is different
from the training set for checking the generalization ability of the network.
Due to this ability, the network model can generalize the information
learned during the training phase to make accurate predictions for new
inputs.

• Use different strategies for scaling the ANN inputs; for instance, simple
normalization, mean centering, and z-score method for input scaling.

• Avoid trying to map multiple functions using a single neural network:
develop a different network for each output.

• Develop parsimonious neural network models: That is use as few hidden
neurons as possible. Generally, one hidden layer is sufficient in the ANN
architecture although two hidden layers are sometimes needed.

Various types of ANNs are highly efficient in approximating nonlinear

relationships existing between variables of two sets of data. These advantages

have been presented in various case studies in Chpter 3. The principle drawback

of ANNs however are as follows.

 305

• Training of a majority of ANN architectures is an iterative procedure and

therefore numerically intensive and time consuming.

• Being a black-box model, the parameters (weights) of the most commonly

used neural network paradigm, namely multilayer perceptron (MLP) can

not interpreted in terms of the training data.

• Irrespective of the system under investigation, the MLP network uses a

generic nonlinear transfer function such as the logistic sigmoid for

approximating nonlinear input-output relationships although the

complexity of the fitted model varies depending upon the number of model

inputs and outputs.

• There do not exist mathematically sound criteria for the number of patterns

essential for training of an ANN model although a few guidelines do exist.

7.2.2 Guidelines for Using Other AI Formalisms

(A) Before exploring neural networks for classification tasks, conventional

clustering algorithms such as K-means should be explored. In general,

feed forward neural networks are suitable for supervised classification

tasks whereas self-organizing neural network outperforms K-means

technique for unsupervised classification tasks.

(B) Most AI based optimization techniques are iterative in nature and

therefore numerically intensive. Thus, they are not ideally suited for

online optimization unless optimization problem is of small size (fewer

decision variables). However, the most significant benefit of AI based

optimization methods is that invariably they find a global or near-global

optimal solution. In addition, they are not constrained by the continuity,

smoothness and differentiability of the objective function criteria required

by the commonly utilized deterministic gradient based methods.

(C) In control applications, ANN should be used with at most care for

following resons.

 306

(i) ANNs are not good at predicting gains, (ii) multistep-ahead

predictions made by an ANN are likely to be erroneous due to

accumulation of approximation errors committed during recycling of

single step-ahead predictions.

(D) Mathematically sound dimensionality reduction techniques such as

principle component analysis are available for decades and extensively

used. A major drawback of these methods is that they are linear in

character. AI-based dimensionality reduction (DR) methods are efficient

in capturing nonlinearities presented in the data. Since they are

computationally more expensive than the PCA and its variants, the usage

of AI-based DR techniques should be attempted only after establishing

unsuitability of linear techniques.

 307

APPENDIX A. LIST OF PUBLICATIONS

Research Papers Included in Thesis

1. “Soft-sensors for Improved Monitoring and Performance of Polyethylene

Plants,” Y. P. Badhe, J. Lonari, S. S. Tambe and B. D. Kulkarni,

Neelamkumar Valecha, Sanjay V. Deshmukh, Bhavanishankar Shenoy and

S. Ravichandran, HP, March 2007.

2. “Soft-sensor development for fed batch bioreactors using support vector

regression,” Kiran Desai, Yogesh P. Badhe, Sanjeev S. Tambe and

Bhaskar D. Kulkarni, Biochemical Engineering Journal, 27, 2006, 225–

239.

3. “Estimation of Gross Calorific Value of Coals using Artificial Neural

Networks,” Shagufta U. Patel, B. Jeevan Kumar, Yogesh P. Badhe, B. K.

Sharma, Sujan Saha, Subhasish Biswas, Asim Chaudhury , Sanjeev S.

Tambe and Bhaskar D. Kulkarni, Fuel, 86 (3), Feb-2007, 334–344.

4. “Support vector regression for bioprocess identification,” Yogesh Badhe,

Jitender Jit Singh Cheema, Manoj Potdar, Sanjeev S. Tambe and B. D.

Kulkarni, BIOHORIZON, IIT New Delhi, 2003.

5. “Monitoring and Fault Detection/Diagnosis of a Batch Fermentation

Process Using Self-organizing Map Neural Networks,” Yogesh Badhe,

Vinay Wadekar, Kiran Desai, S. S. Tambe and B. D. Kulkarni, Poster

Presentation, NCL Day, Feb 28, 2004.

6. “Genetic Programming for Data-Driven Modeling of Non-Linear

Chemical Processes” Phulwale U.S., Badhe Y.P., Mandge D.P., Tambe

S.S., Kulkarni B.D., Poster Presentation, NCL Day, 2005.

7. “Nonlinear feature extraction using Sammon’s mapping and SAMANN,”

Yogesh Badhe, Vinay Wadekar, Uttam Phulwale, S. S. Tambe and B. D.

Kulkarni, Proceedings of "Conference of Research Scholars and Young

Scientists (CRSYS)," held at IIT, Kharagpur on Sept. 25-26, 2004, 21-27.

8. “Monitoring and fault detection of biochemical systems using locally

linear embedding,” Uttam S. Phulwale, Kiran M. Desai ,Yogesh P. Badhe,

Vinay A. Wadekar, Sanjeev S. Tambe, Bhaskar D. Kulkarni, Proceedings

 308

of Conference of Research Scholars and Young Scientists (CRSYS)," held

at IIT, Kharagpur on Sept. 25-26, 2004, 78-84.

9. “Process optimization using memetic algorithms: A case study of benzene

hydroxylation to phenol process,” Yogesh Badhe, Kiran Desai, Vinay

Wadekar, Uttam Phulwale, S. S. Tambe and B. D. Kulkarni, Presented in

Indian Chemical Engineering Congress (CHEMCON-2004), organised by

Indian Institute of Chemical Engineers, held at The Grand Hyatt, Mumbai,

during 28-30 Dec. 2004.

10. “Performance Enhancement of Artificial Neural Network Based Models in

Presence of Noisy Data,” Yogesh P. Badhe, Sanjeev S. Tambe and

Bhaskar D. Kulkarni, Presented in the "First Indo-US Joint Meeting in a

Global Environment," organized by Indian Institute of Chemical Engineers

and American Institute of Chemical Engineers held at The Grand Hyatt,

Mumbai, during 28-30 Dec. 2004.

11. “Process Monitoring and Fault Detection Using Curvilinear Component

Analysis,” U. S. Phulwale, B. Jeevan kumar, S. U. Patel, Y. P.Badhe, S. S.

Tambe and B. D. Kulkarni. Presented in the "Second Indian International

Conference on Artificial Intelligence", held on Dec 20-22, 2005, at the

National Insurance Academy, Pune, India.

Other Research Papers

1. “Hybrid process modeling and optimization strategies interacting neural

networks/support vector regression and genetic algorithms: study of

benzene isopropylation on Hbeta catalyst,” S. Nandi, Y. P. Badhe, Jayaram

Lonari, U.Shridevi, B. S. Rao, S. S. Tambe, B. D. Kulkarni, Chemical

Engineering Journal, 97, 2004, 115–129.

2. “Enhanced exopolysaccharide production from Lactobacillus plantarum by

optimization of media using artificial intelligence techniques,” K. M.

Desai, S. K. Akolkar, Y. P. Badhe, S. S. Tambe, S. S. Lele, B. D.

Kulkarni, Process Biochemistry, 41, 2006, 1842–1848.

3. “Self-Organizing Maps: A tool to explore relatedness of organisms based

on 16S rDNA sequence features,” D. V. Raje, H. J. Purohit, Y. P. Badhe,

 309

V. A. Wadekar, S. S. Tambe, B. D. Kulkarni, communicated to Journal of

Molecular Biology and Evolution.

4. “Density measurements of coal samples by different probe gases and their

interrelation,” Sujan Saha, B. K. Sharma1, Y. P. Badhe, S. S. Tambe, B. D.

Kulkarni, Fuel, 86 (10-11), 2007, 1594–1600.

5. “Predicting yield of Indian cotton using multivariate statistical and

artificial intelligence based techniques,” Kiran Desai, Yogesh badhe,

Sanjeev S. Tambe, D. V. Dev, and Bhaskar D. Kulkarni, communicated to

Electronics and Computers in Agriculture.

6. "Artificial intelligence formalisms for process modeling and optimization,"

Y. Badhe, and S. S. Tambe, Invited lecture presented (Proceedings 11-

18), at the "International Conference on Instrumentation (INCON 2004),"

held at Pune Institute of Engineering and Technology (PIET) during

December 19-21, 2004.

7. “Feature extraction of gene expression data using curvilinear component

analysis (CCA) and self-organizing map (SOM)” Vinay A. Wadekar,

Yogesh P. Badhe, Uttam S. Phulwale, S. S. Tambe, and B. D. Kulkarni.

Presented in "Fourth Indo-US Workshop on Mathematical Chemistry,"

Organized jointly by Natural Resources Research Institute, Univ. of

Minnesota Duluth (USA) and Univ. Of Pune, Pune and held at University

of Pune, Pune during January 8-12, 2005, Paper No. O16.

8. “Monitoring and fault detection of a batch fermentation process using self-

organizing map (SOM) neural networks,” S. U. Patel, B. Jeevan Kumar, U.

S. Phulwale, Y. P. Badhe, S. S. Tambe and B. D. Kulkarni, Presented in

the Indian Chemical Engineering Congress (CHEMCON-2005), organised

by the Indian Institute of Chemical Engineers, held at Indian Institute of

Technology (IIT), New Delhi, during 14-17 Dec. 2005.

9. “Multi-model scheme for prediction of monthly rainfall over India,” J. R.

Kulkarni, Savita G. Kulkarni, Y. Badhe, S. S. Tambe, B. D. Kulkarni and

G. B. Pant, Research Report No. RR-101, ISSN 0252-1075, 1-28, Indian

Institute of Tropical Meteorology, Pune 411 008, India (December 2003).

10. “Artificial Intelligence formalism for process modeling and optimization,”

Y. P. Badhe, S. S. Tambe, International Conference on Instrumentation,

Pune (Dec. 2004).

	Chapter 1. INTRODUCTION TO ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FORMALISMS
	1.1 WHAT IS ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING?
	1.2 VARIOUS AI FORMALISMS
	1.2.1 Artificial Neural Networks
	1.2.2 Evolutionary Algorithms
	A. Genetic algorithms
	B. Genetic programming
	C. Ant colony optimization

	1.2.3 Tabu Search
	1.2.4 Expert Systems
	1.2.5 Fuzzy Logic

	1.3 THESIS OUTLINE
	1.4 REFERENCES

	Chapter 2. OVERVIEW OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FORMALISMS
	2.1 BACKGROUND
	2.2 MODELING FORMALISMS
	2.2.1 Artificial Neural Networks
	A. Error-back propagation
	B. Resilient-back propagation
	C. Generalized regression neural network
	D. Radial basis function neural network

	2.2.2 Support Vector Regression
	A. Regression formulation
	B. Interpreting the structure and coefficients of SVR model
	C. Tuning of SVR’s algorithmic parameters

	2.2.3 Genetic Programming

	2.3 CLASSIFICATION/CLUSTER ANALYSIS
	2.3.1 K-Means Clustering
	2.3.2 Self Organizing Map
	A. SOM training algorithm

	2.4 OPTIMIZATION FORMALISMS
	2.4.1 Simultaneous Perturbation Stochastic Approximation
	2.4.2 Tabu Search
	A. Neighborhood search
	B. Tabu lists
	C. Aspiration criterion
	D. Termination criterion

	2.4.3 Genetic Algorithms
	A. Representation
	B. Initialization
	C. Fitness evaluation
	D. Selection
	E. Reproduction
	F. Crossover
	G. Mutation
	H. Pros and cons of genetic algorithms
	I. Real coded genetic algorithm
	J. Crossover operators for RCGAs
	K. Mutation operators for RCGAs

	2.4.4 Memetic Algorithm

	2.5 DIMENSIONALITY REDUCTION FORMALISMS
	2.5.1 Principle Component Analysis
	2.5.2 Curvilinear Component Analysis
	2.5.3 Autoassociative Neural Networks
	2.5.4 Locally Linear Embedding
	2.5.5 Sammon’s Mapping and ANN-based Sammon’s Mapping
	A. Gradient decent algorithm of Sammon’s Mapping
	B. ANN-based implementation of Sammon’s mapping (SAMANN)

	2.5.6 Fuzzy Curves and Surfaces
	A. Review of prior input selection techniques
	B. Fuzzy curves and surfaces
	C. Advantages of the fuzzy curves and surfaces

	2.6 CONCLUSION
	2.7 REFERENCES

	Chapter 3. PROCESS MODELING
	3.1 INTRODUCTION
	3.2 ARTIFICIAL INTELLIGENCE BASED SOFT-SENSORS FOR MONITORING PRODUCT PROPERTIES IN POLYETHYLENE PROCESS(
	3.2.1 Monitoring of Polyethylene Process
	3.2.2 Suggested Approaches
	3.2.3 What is the Solution?
	3.2.4 Softsensors for Process Monitoring
	3.2.5 ANN-Based Softsensor Development
	3.2.6 Development of Softsensors Using the Proposed Approach
	3.2.7 Benefits of the Soft-sensor Models

	3.3 PERFORMANCE ENHANCEMENT OF ARTIFICIAL NEURAL NETWORK BASED MODELS IN PRESENCE OF NOISY DATA(
	3.3.1 Introduction
	3.3.2 GA-Based Generation of Enlarged Noise Superimposed Data
	3.3.3 Case Study – I: Steady-State Modeling of A CSTR
	3.3.4 Case Study – II: Modeling of Benzene Isopropylation over Hbeta Catalyst
	3.3.5 Concluding Remarks

	3.4 ESTIMATION OF GROSS CALORIFIC VALUE OF COALS USING ARTIFICIAL NEURAL NETWORKS(
	3.4.1 Introduction
	3.4.2 Survey of GCV Correlations and Need for ANN-Based Models
	3.4.3 ANN-Based Models for GCV Estimation
	3.4.4 Collection of Data
	3.4.5 Results and Discussion
	3.4.6 Identifying Important Inputs of ANN Models
	3.4.7 Sensitivity Analysis (SA) of ANN Models
	3.4.8 Conclusion

	3.5 SOFT-SENSOR DEVELOPMENT FOR FED BATCH BIOREACTORS USING SUPPORT VECTOR REGRESSION(
	3.5.1 Introduction
	3.5.2 Invertase Production Model
	3.5.3 Softsensor for Invertase Process
	3.5.4 Softsensor for Streptokinase Process
	3.5.5 Details of Softsensor Development
	3.5.6 Conclusion

	3.6 SUPPORT VECTOR REGRESSION FOR BIOPROCESS IDENTIFICATION(
	3.6.1 Introduction
	3.6.2 Biological Treatment of Polluted Waters by Mixed Continuous Culture
	3.6.3 Results and Discussion
	3.6.4 Conclusion

	3.7 GENETIC PROGRAMMING FOR DATA-DRIVEN MODELING OF NON-LINEAR CHEMICAL PROCESSES(
	3.7.1 Modeling of Benzene Isopropylation Over Hbeta Catalyst Process
	3.7.2 Results and Discussion
	3.7.3 Conclusion

	3.8 REFERENCES

	Chapter 4. APPLICATIONS OF AI-BASED CLASSIFICATION/CLUSTER ANALYSIS
	4.1 INTRODUCTION
	4.2 MONITORING AND FAULT DETECTION OF A BATCH FERMENTATION PROCESS USING SELF ORGANIZING MAPS(
	4.2.1 Case Study-I: Fed-Batch Fermenter for Protein Synthesis
	A. Simulation of the phenomenological model
	B. Phenomenological model for protein synthesis
	C. Results and Discussion

	4.2.2 Case Study-II: Fault Detection/Diagnosis of Batch Fermentation Process of Citric Acid Production
	A. Batch process of biomass growth and citric acid production
	B. Application to classification of fermentation process into trophophase and idiophase phase
	C. Application to fault detection and diagnosis (by cluster method)
	D. Application to fault detection and diagnosis (by trajectory method)

	4.2.3 Conclusion

	4.3 REFERENCES

	Chapter 5. PROCESS OPTIMIZATION
	5.1 PROCESS OPTIMIZATION USING MEMETIC ALGORITHMS: A CASE STUDY OF BENZENE HYDROXYLATION TO PHENOL PROCESS(
	5.1.1 Introduction
	5.1.2 Modeling and Optimization of Benzene Hydroxylation Reaction
	5.1.3 Development and Optimization of ANN-based Process Model
	5.1.4 Results and Discussion
	5.1.5 Conclusion

	5.2 REFERENCES

	Chapter 6. DATA PROJECTION, DIMENSIONALITY REDUCTION AND INPUT SELECTION
	6.1 INTRODUCTION
	6.2 NONLINEAR FEATURE EXTRACTION USING SAMMON’S MAPPING AND SAMANN(
	6.2.1 Introduction
	6.2.2 Case Studies
	A. Fault classification in CSTR
	B. Dimensionality reduction of glass data

	6.2.3 Conclusion

	6.3 MONITORING AND FAULT DETECTION OF BIOCHEMICAL SYSTEMS USING LOCALLY LINEAR EMBEDDING(
	6.3.1 Introduction
	6.3.2 Case Study: Monitoring Fermentative Production of Invertase
	A. Invertase production model
	B. Data generation

	6.3.3 Results and Discussions
	6.3.4 Conclusion

	6.4 PROCESS MONITORING AND FAULT DETECTION USING CURVILINEAR COMPONENT ANALYSIS(
	6.4.1 Introduction
	6.4.2 Case Study – I (Non-isothermal CSTR)
	A. Simulation of faults

	6.4.3 Fermentative Production of Invertase
	6.4.4 Conclusion

	6.5 SELECTION OF MODEL INPUTS USING FUZZY CURVE AND FUZZY SURFACE METHODS
	6.5.1 Preamble
	6.5.2 Introduction
	6.5.3 Case Studies
	6.5.4 Conclusion

	6.6 REFERENCES

	Chapter 7. CONCLUSION
	7.1 CONCLUSIONS
	7.2 GUIDELINES FOR DEPLOYMENT OF AI FOMALISMS
	7.2.1 Thumb-rules for the Development and Deployment of ANN models
	7.2.2 Guidelines for Using Other AI Formalisms

