TOWARDS THE TOTAL SYNTHESIS OF MULTIPLOLIDE A, FEIGRISOLIDE B \& PANDANGOLIDE 1 USING CHIRON APPROACH AND EXPLORATION OF CLICK REACTION IN CRYSTAL ENGINEERING

A Thesis
Submitted by Soumitra Chatterjee

To
Jadavpur University

For
The degree of Doctor of Philosophy
(in Chemistry)

Organic Chemistry Division
National Chemical Laboratory
Pune - 411008
INDIA
April 2008

Dedicated to $\mathcal{M} y$ Beloved Parents

DECLARATION

The research work embodied in this thesis submitted for Ph.D. degree to Jadavpur University has been carried out at National Chemical Laboratory, Pune and Jadavpur University, Kolkata under the supervisions of Dr. Mukund K. Gurjar, Ex-Deputy Director and Head, Organic Chemistry: Technology, National Chemical Laboratory, Pune - 411008 and Prof. S. R. RayChaudhury, Ex-Head, Department of Chemistry, Jadavpur University, Kolkata - 700 032. This work is original and has not been submitted in part or full, for any degree or diploma to this or any other University.

Date:
Organic Chemistry Division
National Chemical Laboratory
Pune - 411008.

CERTIFICATE

This is to certify that the thesis entitled "Towards the Total Synthesis of Multiplolide A, Feigrisolide B \& Pandangolide 1 using Chiron Approach and Exploration of Click Reaction in Crystal Engineering" submitted by Mr. Soumitra Chatterjee, who got his name registered on 25.06.2004 for the award of Ph.D. (science) degree of Jadavpur University, is absolutely based upon his own work under our supervisions and that neither this thesis nor any part of its has been submitted for any degree/diploma or any other academic award anywhere before.

NCL, Pune
Date:
Dr. Mukund K. Gurjar
(Research Guide)

Jadavpur, Kolkata
Date:

Prof. S. R. Raychaudhuri
(Research Guide)

Acknowledgement

It gives me immense pleasure to express my deep sense of gratitude to my research guide $\mathcal{D r}$. M. \mathcal{K}. Gurjar, Ex-Head, Division of Organic Chemistry (Tech.) and my teacher and guide Prof. S. R. RayChaudhuri, Ex-Fead, Department of Chemistry, Jadavpur University, who have helped me a lot to Cearn and think more about chemistry. Their inspiring guidance, unending encouragement and patience helped me to complete this investigation.

I thank $\mathcal{D r}$. C. V. Ramana for his excellent guidance, constant encouragement, sincere advice and ample support during all the times of my $\mathcal{P h} . \mathcal{D}$. tenure. Without him it was impossible to finish my work. Working with him was an immense pleasure and indeed a learning experience.

I take this opportunity to thank $\mathcal{D r}$. D. K. MoЋapatra, $\mathcal{D} r$. S. Hotha, $\mathcal{D} r$. $\mathcal{R} . \mathcal{A}$. Joshí, Dr. R. R. Joshí, M r. I. Shivakumar, $\mathcal{D} r . \mathcal{M} . \mathcal{N} . \operatorname{Des\hbar mикh,~Dr.~S.~P.~}$ Chavan, Dr. U. R. Kalkote and $\mathcal{D r}$. S. Sengupta. I gratefully acknowledge the training and support extended by my senior colleagues $\mathcal{D r}$. \mathcal{K}. \mathcal{K}. Reddy, $\mathcal{D} r$. \mathcal{A} rindam, $\mathcal{D} r$. Mahesh, $\mathcal{D r}$. $\mathcal{D P S}, \mathcal{D} r$. $\operatorname{Nagaprasad,~} \mathcal{D} r$. Sridhar, $\mathcal{D} r$. Joseph, $\mathcal{D} r$. SiddЋharth, Dr. ManjusЋa, Dr. Ramdas, Dr. Smrití, Dr. Dhananjoy, Dr. Sukhen, $\mathcal{D r}$. Bhagwat, Sankar, Eku, and Tushar during the tenure of my Ph.D work. I would like to thank all my colleagues Bhargav, Sahoo, 火иlfu, GorakЋ, Anuj, Sabita, Dr. Seetaram, Raghupathí, Dr. Sumanth, Kiran, Nageshwar, Indu, Ramesh, Pradipda, Chínmoy, Bhaskar, Hasíbur, Rita, Susheel, Abhij̄it, Srínivas, Sharad, Ganesh, Rosy, Deбu, Alam, Rambabu, Gíri, Pandey, Pitambar, Rahul, Vifas, Yadagiri and Sridhar for their cooperation and friendly attitude.
$\mathcal{H e l p}$ from the $\mathcal{N} \mathcal{M R}$ division, mass, microanalysis and X-ray crystallographic groups is gratefully acknowledged. I sincerely thank $\mathcal{D r}$. Rajmohanan, and $\mathcal{D r}$. R. Gonnade for their helpful discussions and cooperation. $\mathcal{M y}$ sincere thanks to $\mathcal{M r s .}$. Raphel, $\mathcal{M r s}$. P. Kulkarní, and all other office staff for their cooperation.

I whoteheartedly thank my friends at $\mathcal{N C L}$ and GJ hostel and "Bong Group" Praбhas, Biбhasda, Debuda, Ramuda, Kaushikda, Saptarshida,

Deбasisda, Somnathda and Sujatadi, Nimuda and Boudi, Tiklada, Mикиlda, Kartickda, Chanchal, Anada, Pallavidi, Tarunda, Anuradhadi, Ghotada, Ambarish, Tanusree, Maitrí, Arijit, Roopa, Rahuf, Debasis, Sujit, Sumantra, Debasis Pati, Sumanta, Partha, Anal, Mrityunjoy, Binoy and Sanjuda, for their cheerful company, which made my stay at $\mathcal{N C L}$ a memorable one. Especially I would like to thank my close friend and like my big brother $\mathcal{D} r$. Satyajyoti Senapati for his valuable help throughout my $\mathcal{N C L}$ career.

It is impossible to express my sense of gratitude to my parents. What I am today is because of their commitments to my ambitions and their selfless sacrifices. I would also express my gratitude to my family members, Father-inlaw and Mother-in-faw. I am also thankful to my Grother-in-laws Sandip and Shubhankar for their constant support and encouragement.

Wherever I am and whatever I am, I am indeed indebted to my wife Susmita for her love and encouragement, which enables me to pursue my goal wholeheartedly. She has been a constant support in my life. I never felt depressed even when the time became very tough.

Finally I thank Director, National Chemical Laboratory, Pune for providing infrastructural facilities to complete my work successfully. I am also thankful to CSIR, $\mathcal{N e w} \mathcal{D e l h i}$ for the financial assistance in the form of fellowship.

General Remarks

> Melting points were recorded on Buchi 535 melting point apparatus and are uncorrected.
$>$ Optical rotations were measured with a JASCO DIP 370 digital polarimeter.
> Infrared spectra were scanned on Shimadzu IR 470 and Perkin-Elmer 683 or 1310 spectrometers with sodium chloride optics and are measured in cm^{-1}.

1
$>$ H Nuclear Magnetic Resonance spectra were recorded on Varian FT-200 MHz (Gemini), AC-200 MHz, MSL-300 MHz, AV-400 MHz and Bruker-500 MHz spectrometers using tetramethylsilane (TMS) as an internal standard. Chemical shifts have been expressed in ppm units downfield from TMS.
$>{ }^{13} \mathrm{C}$ Nuclear Magnetic Resonance spectra were recorded on AC-50 MHz, MSL-75 $\mathrm{MHz}, \mathrm{AV}-100 \mathrm{MHz}$ and Bruker- 125 MHz spectrometers.
> Mass spectra were recorded on a CEC-21-110B, AP-1 QSTAR PULSAR, Finnigan Mat 1210 or MICRO MASS 7070 spectrometers at 70 eV using a direct inlet system.
$>$ All reactions were monitored by Thin Layer chromatography (TLC) carried out on 0.25 mm E-Merck silica gel plates (60F-254) with UV, I_{2} and anisaldehyde reagent in ethanol as development reagents.
> All evaporations were carried out under reduced pressure on Buchi rotary evaporator below $50^{\circ} \mathrm{C}$.
$>$ All solvents and reagents were purified and dried according to procedures given in Vogel's Text Book of Practical Organic Chemistry.
> Silica gel (60-120) used for column chromatography was purchased from ACME Chemical Company, Mumbai, India.

NaH	-	Sodium hydride
NEt_{3}	-	Triethyl amine
Pd / C	-	Palladium on carbon
PDC	-	Pyridiniumdichromate
$\mathrm{Pd}(\mathrm{OH})_{2}$	-	Palladium hydroxide
Piv	-	Pivaloyl
PMB	-	para-Methoxybenzyl
pTSA	-	para-Toluenesulfonic acid
Py	-	Pyridine
TBAF	-	Tetrabutylammonium fluoride
TBDPS (TPS)	-	tert-Butyldiphenylsilyl
TBS	-	tert-Butyldimethylsilyl
TFA	-	Trifluoroacetic acid
THF	-	Tetrahydrofuran
TMS	-	Trimethylsilyl
TPP	-	Triphenylphosphine

Contents

Abstract
Introduction 1
Chapter 1: Towards the Total Synthesis of Multiplolide A Present Work 19
Experimental 35
Spectroscopic Data 59
References 78
Chapter 2: Section 1: Towards the Total Synthesis of Feigrisolide B
Present Work 82
Experimental 101
Spectroscopic Data 127
Chapter 2: Section 2: Towards the Total Synthesis of Pandangolide 1
Present Work 147
Experimental 157
Spectroscopic Data 170
References 179
Chapter 3: Exploration of Click Reaction in Crystal Engineering Introduction 184
Present Work 204
Experimental 221
Spectroscopic Data 239
References 248
List of Publications 253
Page no.

Abstract

Towards the Total Synthesis of Multiplolide A, Feigrisolide B \& Pandangolide 1 using Chiron Approach and Exploration of Click Reaction in Crystal Engineering

Chapter 1: Towards the Total Synthesis of Multiplolide A

In 2001, Kittakoop and co-workers reported the isolation of two new antifungal 10-membered lactones, multiplolides A (1) and B (2), from the crude ethyl acetate extract of the culture broth of Xylaria Multiplex. Multiplolides A (1) and B (2) exhibited antifungal activity against Candida albicans with IC_{50} values of 7 and 2 $\mu \mathrm{g} / \mathrm{mL}$, respectively. Multiplolides belong to the nonenolide group and are characterized by an epoxide functionality positioned in between the lactone carbonyl and ring olefin. The absolute configuration at C-7 of $\mathbf{2}$ was determined as S by the application of the Mosher method which indirectly established the absolute configurations of both $\mathrm{C}-8$ and $\mathrm{C}-10$ centers as R, R. By taking into account the positive optical rotation shown by both $\mathbf{1}$ and $\mathbf{2}$, similar absolute configurations of C 7, C-8 and C-10 were proposed for multiplolide A (1).

As the complete stereochemical characterization is hampered by the lack of any spacial coupling between the hydrogens around the internal olefin in the NMR experiments, a total synthesis was deemed necessary to determine both the relative and absolute configuration of multiplolides.

Figure 1: Chemical structures of multiplolide A, B and both possible diastereomers of multiplolide A

Natural Products:

Multiplolide A (1) stereostructure for multiplolides A and B
(2001)

Synthetic Targets:

Figure 2: Retrosynthetic strategy

A retrosynthetic strategy for the synthesis of multiplolide A is depicted above. The basic premise is to utilize ring closing metathesis (RCM) reaction on the diene to install the macrocyclic framework. In addition, the vicinal diol unit situated between carbonyl and olefin not only forms the surrogate for the epoxide but more importantly depending upon the regiochemistry of the leaving group, the required stereochemistry of the epoxide can be ensured. After stereochemical comparisons, the requisite coupling partners were planned from easily available derivatives of L-rhamnose and D-mannitol, respectively.

The synthesis of alcohol 6 started with the known allyl 4-deoxy-2,3-O-isopropylidine-L-rhamnopyranoside (Scheme 1). The removal of the allyl group at the anomeric oxygen was effected first by isomerization of the double bond with potassium t-butoxide-DMSO followed by treatment with Hg^{2+} salts to give delallylated product 9. One carbon homologation of $\mathbf{9}$ with $\mathrm{Ph}_{3}=\mathrm{CH}_{2}$ completed the synthesis of the alcohol 6.

Synthesis of another key intermediate (Scheme 1) 7 was initiated from the known di-O-isopropylidine-D-mannitol derivative. The controlled hydrolysis of C2symmetric derivative was efficiently dealt by employing PPTS in methanol. In order to derive the olefin from the resulting diol, it was first mesylated and then the resulting dimesylate compound was treated with $\mathrm{NaI}, \mathrm{Zn}$, in DMF at $150^{\circ} \mathrm{C}$ to yield the olefin 12. The acid catalyzed hydrolysis of that 12 with PPTS in methanol followed by sodium periodate cleavage and oxidation of the resulting aldehyde with sodium chlorite afforded acid 7.

Scheme 1: Synthesis of coupling partners 6 \& 7

Reagents and conditions: a) i. $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}, \mathrm{DMSO}, 100{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii. $\mathrm{HgO}, \mathrm{HgCl}_{2}$, Acetone- $\mathrm{H}_{2} \mathrm{O} \mathrm{rt}, 8 \mathrm{~h}$, 64%; b) $\mathrm{Ph}_{3}=\mathrm{CH}_{2}$, THF, DMSO, rt, $24 \mathrm{~h}, 64 \%$; c) PPTS, MeOH, $0{ }^{\circ} \mathrm{C}-\mathrm{rt}, 12 \mathrm{~h}, 66 \%$; d) i. MsCl, $\mathrm{Et}_{3} \mathrm{~N}, 0{ }^{\circ} \mathrm{C}-\mathrm{rt}, 1 \mathrm{~h}$; ii. NaI, Zn, DMF, $150{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 70 \%$; e) PPTS, MeOH, rt, $36 \mathrm{~h}, 79 \%$; f) i. $\mathrm{NaIO}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 1 h ; ii. $\mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{NaClO}_{2}, \mathrm{rt}, 1 \mathrm{~h}, 73 \%$.

The Mitsunobu reaction between alcohol 6 and acid 7 proceeded smoothly to afford the diene-ester 5 (Scheme 2). However, attempts for ring closure with compound 5 under various reaction conditions resulted in failures. Attributing this failure to the crowding around the reaction centers because of protecting groups, the deprotection of -OPMB ethers was attempted. Treatment of 5 with DDQ at pH 7 under buffer conditions, afforded 13. The RCM reaction of 13 was successfully conducted at the reflux temperature of benzene using Grubbs' $2^{\text {nd }}$ generation catalyst.

Scheme 2: Coupling, PMB deprotection and RCM

Reagent and conditions: a) PPh_{3}, DEAD, THF, $0^{\circ} \mathrm{C}-\mathrm{rt}, 3 \mathrm{~h}$; b) $\mathrm{DDQ}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, buffer, $0^{\circ} \mathrm{C}$-rt, $4 \mathrm{~h}, \mathrm{c})$ Grubbs' $2^{\text {nd }}$ gen catalyst, benzene, reflux, 6 h .

To set the oxirane ring formation as required in isomer 3, the free allylic-OH in 14 was protected as its TBDPS ether using tert-butyldiphenylsilyl chloride and imidazole. Then the remaining PMB was deprotected using DDQ in DCM-water solvent mixture and transformed to the corresponding mesylate 17. TBDPS ether was cleaved using TBAF solution in THF. Under this highly basic condition oxirane ring was formed. Finally acetonide was cleaved using TFA in dry DCM condition to afford the one of multiplolide A isomer 3. As the spectral and analytical data of $\mathbf{3}$ was not in agreement with the natural multiplolide A, we concluded that isomer 4 represents the absolute structure of multiplolide A and this has been confirmed by its synthesis from our group.

Scheme 3: Total synthesis of Multiplolide A isomer 3

Reagents and conditions: a) TBDPS-Cl, Imidazole, DCM, reflux, $10 \mathrm{~h}, 84 \%$; b) $\mathrm{DDQ}, \mathrm{CH}_{2} \mathrm{Cl}_{2^{-}}$ $\mathrm{H}_{2} \mathrm{O}(18: 1)$, rt, $3 \mathrm{~h}, 71 \%$; c) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 2 \mathrm{~h}, 82 \%$; d) 1 M TBAF in THF, THF, $0^{\circ} \mathrm{C}-\mathrm{rt}, 8 \mathrm{~h}, 63 \%$; e) TFA, DCM, $0^{\circ} \mathrm{C}-\mathrm{rt}, 4 \mathrm{~h}, 60 \%$.

Chapter 2: Section 1: Towards the total synthesis of feigrisolide B

Recently Thiericke and co-workers isolated feigrisolides A-D (19-22, Figure 3) from the fermentation brothes Strptomyces Griseus (Strain GT 051922) and showed that these compounds possess strong antibacterial, as well as medium cycotoxic and antiviral activities. After extensive structural investigations, the constitution and relative configuration of Feigrisolides A and B was determined as indicated in figure 3. In light of their promising biological activity we initiated our total synthesis program choosing feigrisolide B as the appropriate target and RCM as the key reaction. As outlined in the figure 3, considering RCM as the key reaction, the
retrosynthetic disconnection has led to identify two key coupling fragments 24 and 25 and are planned to synthesize from D-glucose and D-phenyl alanine respectively.

Figure 3: Structures of Feigrisolides A - D (19-22) and retrosynthetic strategy

Synthesis of fragment A was started with the preparation of D-Phenyl alanine derived Evans' oxazolidinone. Reduction of D-phenyl alanine with sodium borohydride/iodine followed by treatment of resulting amino alcohol with dimethyl carbonate gave the oxazolidinone. This was treated with propionic anhydride in presence of triethyl amine and lithium chloride to obtain the key intermediate 26.

Scheme 4: Synthesis of fragment A

Reagents and conditions: a) $\mathrm{TiCl}_{4}, \mathrm{iPr}_{2} \mathrm{EtN}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 73 \%$; b) $\mathrm{BnBr}, \mathrm{Ag}_{2} \mathrm{O}, \mathrm{PhCH}_{3}$, rt , $10 \mathrm{~h}, 64 \%$; c) $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}_{2}$, THF- $\mathrm{H}_{2} \mathrm{O}(4: 1)$, rt, $4 \mathrm{~h}, 58 \%$.

Evans' aldolization of 26 with acrolein was carried out with TiCl_{4} and resulting aldol product 27 was benzylaed by using silver oxide and benzyl bromide to
afford the benzyl ether 28. Chiral auxiliary was removed by using LiOH, hydrogen peroxide in THF- $\mathrm{H}_{2} \mathrm{O}$ to furnish fragment A .

Scheme 5: Synthesis of fragment B

Reagents and conditions: a) $\mathrm{NaH}, \mathrm{CS}_{2}$, MeI, $0^{\circ} \mathrm{C}-\mathrm{rt}, 1 \mathrm{~h}, 89 \%$; b) TBTH, AIBN, PhCH_{3}, reflux, 6 $\mathrm{h}, 68 \%$; c) $0.8 \% \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}, \mathrm{rt}, 12 \mathrm{~h}, 60 \%$; d) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 90 \%$; e) NaI , Zn, DMF, $150{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 72 \%$; f) $10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOAc}, \mathrm{rt}, 8 \mathrm{~h}, 67 \%$; g) $30 \% \mathrm{AcOH}, \mathrm{H}_{2} \mathrm{SO}_{4}, 60^{\circ} \mathrm{C}$, $4 \mathrm{~h}, 55 \%$; h) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}, \mathrm{THF}, \mathrm{rt}, 6 \mathrm{~h}, 65 \%$.

Synthesis of fragment B started with glucose diacetonide (GDA). Deoxygenation followed by selective 5,6-acetonide deprotection, dimesylation and double elimination gave the olefin intermediate which on hydrogenation followed by hydrolysis and one carbon Wittig homologation provided the required coupling partner B.

Scheme 6: Coupling of two fragments and attempted RCM

Reagents and conditions: a) DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 12 \mathrm{~h}, 60 \%$; b) i. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt-reflux, ii. $\mathrm{C}_{6} \mathrm{H}_{6}$, rt-reflux, iii. PhCH_{3}, rt- reflux, Grubbs' $1^{\text {st }}$ or $2^{\text {nd }}$ gen. Catalyst.

The coupling of two fragments 24 and 25 was facile by using DCC and the key RCM reaction was attempted with the available $1^{\text {st }}$ and $2^{\text {nd }}$ generation Grubbs' catalysts in different solvents and at different temperatures. However, in all the cases the reaction led to either complex mixture or the recovery of starting diene. As the key RCM reaction was found to be unsuccessful, we have revised our strategy by identifying the macrolactonization as the key reaction. The revised strategy is linear in
nature and employs Evans' aldol reaction of the advanced aldehyde 33 to address the induction of the key stereogenic centers of lactone ring.

Figure 4: Revised retrosynthetic strategy for Feigrisolide B

As outlined in Scheme 7, synthesis of the key aldehyde 33 was started with the methanolysis of known acetonide 29 followed by benzylation to afford the methyl furanosides 34. Hydrolysis of the anomeric methyl ether followed two carbon Wittig homologation gave the diene ester 37 exclusive as E - isomer. Treatment of 37 with DIBAL-H followed by selective $1^{\circ}-\mathrm{OH}$ tritylation and protection of $2^{\circ}-\mathrm{OH}$ as its TBDPS ether gave $\mathbf{4 0}$. Compound $\mathbf{4 0}$ was advanced to the key aldehyde intermediate 33 by a sequence of trityl deprotection and controlled oxidation reactions.

Scheme 7: Synthesis of fragment 33

Reagents and conditions: a) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}, 60^{\circ} \mathrm{C}, 12 \mathrm{~h}, 60 \%$; b) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{THF}, \mathrm{rt}, 6 \mathrm{~h}, 78 \%$; c) aq. AcOH, $\mathrm{H}_{2} \mathrm{SO}_{4}, 60^{\circ} \mathrm{C}, 12 \mathrm{~h}, 55 \%$; d) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}, \mathrm{C}_{6} \mathrm{H}_{6}, 80^{\circ} \mathrm{C}, 1 \mathrm{~h}, 74 \%$; e) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 68 \%$; f) $\mathrm{TrCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $4 \mathrm{~h}, 72 \%$; g) TBDPS-Cl, Imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $4 \mathrm{~h}, 87 \%$; h) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 65 \%$; I) PDC, $\mathrm{Ac}_{2} \mathrm{O}, 4 \AA \mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 4 \mathrm{~h}, 60 \%$.

After having an easy access to the aldehyde 33, it was subjected for the key Evans' aldol reaction by employing oxazolidinone 26 and TiCl_{4} as Lewis acid. The resulting aldol 42 [the unwanted anti-configuration of the aldol product 42 was confirmed at the end of the synthesis] was converted to the TBS ether 43 and the oxazolidinone auxiliary was removed by employing LiOH and $\mathrm{H}_{2} \mathrm{O}_{2}$ to afford the acid 44. Hydrogenolysis of acid $\mathbf{4 4}$ followed by lactonization using EDCI agent gave the protected feigrisolide B 45. The global deprotection of $\mathbf{4 5}$ completed the synthesis of putative structure of 3-epi feigrisolide B.

Scheme 8: Total synthesis of putative structure of Feigrisolide B

Reagents and conditions: j) $\mathrm{TiCl}_{4},{ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{EtN}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 63 \%$; $)$ TBDMS-OTf, 2,6Lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $0.5 \mathrm{~h}, 80 \%$; 1) LiOH, $\mathrm{H}_{2} \mathrm{O}_{2}$, THF- $\mathrm{H}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}-\mathrm{rt}, 4 \mathrm{~h}, 55 \%$; m) $\mathrm{Pd}(\mathrm{OH})_{2}$, EtOAc, rt, 6 h, 62%; n) EDCI, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 12 \mathrm{~h}, 67 \%$; o) HF-Pyridine complex, Pyridine, THF, $48 \mathrm{~h}, 45 \%$.

Chapter 2: Section 2: Towards the Total Synthesis of Pandangolide 1

A new hexaketide lactone, pandangolide 1a (46) and known pandangolide 1 (47) were isolated recently from the ethyl acetate crude extract of a Cladosporium sp . that was isolated from the Red Sea sponge Niphates rowi.

Figure 5: Structures of Pandangolides 1 \& 1a, and the intended RCM approach

The absolute configuration of these compounds is proposed on the basis of chemical, spectroscopic, and biosynthetic arguments. In continuation of our constant interest in the area of total synthesis of macrolactones, padangolide 1 was selected as a particular target. As outlined in Figure employing RCM as the key reaction, the olefins 49 and 50 were identified as the key fragments.

Synthesis of fragment A was started with the regioselective hydroboration/oxidation of the known olefin 51. The resulting alcohol 52 was protected as its pivaloyl ester 53 and subjected for the acetonide hydrolysis to afford lactol 54. One carbon Wittig homologation of 54 followed by TBS protection of resulting diol 55 gave 56. Deprotection of pivaloyl ester in 56 was carried out using LiOH in ethanol-water. Subsequent two stage oxidation of alcohol 57 via aldehyde 58 afforded the acid fragment 49 and this was coupled with the alcohol 50 (prepared according to the literature procedure from R-epichlorohydrin) under Yamaguchi conditions. Once again, the RCM of the diene-ester 48 to form 12-membered lactone 59 employing both Grubbs' $1^{\text {st }}$ gen and $2^{\text {nd }}$ gen. catalysts in different solvents and at different temperatures was found to be futile.

Scheme 8: Attempted synthesis of Pandangolide 1

Reagents and condition: a) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 70 \%$; b) $0.8 \% \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}, \mathrm{rt}, 12 \mathrm{~h}$, 60% c) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, 0^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 75 \%$; d) $\mathrm{Zn}, \mathrm{NaI}, \mathrm{DMF}, 150^{\circ} \mathrm{C}, 2 \mathrm{~h}, 65 \%$ e) $\mathrm{BH}_{3} . \mathrm{DMS}, \mathrm{THF}, 0$ ${ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$ then $30 \% \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}, 60 \%$; f) Piv-Cl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0{ }^{\circ} \mathrm{C}-\mathrm{rt}, 4 \mathrm{~h}, 68 \%$; g) $60 \% \mathrm{AcOH}$, $\mathrm{H}_{2} \mathrm{SO}_{4}, 60^{\circ} \mathrm{C}, 7 \mathrm{~h}, 55 \%$; h) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}, \mathrm{THF}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 2 \mathrm{~h}, 58 \%$; i) TBS-Cl, Imidazole, DMF, rt, 12 $\mathrm{h}, 84 \% ; \mathrm{j}) \mathrm{LiOH}, \mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}, 40^{\circ} \mathrm{C}, 2 \mathrm{~h}, 65 \%$ (with respect to starting material recovered); k) IBX, DMSO, 6 h, rt, 65%; l) $\mathrm{NaClO}_{2}, \mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{DMSO}_{-\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 6 \mathrm{~h}, 55 \% \text {; m) Yamaguchi reagent, 7-C }}$ chiral alcohol, $\mathrm{Et}_{3} \mathrm{~N}, 0{ }^{\circ} \mathrm{C}-\mathrm{rt}, 12 \mathrm{~h}, 67 \%$; n) Grubbs' $1^{\text {st }}$ Gen $\& 2^{\text {nd }}$ Gen catalyst, $\mathrm{DCM}, \mathrm{PhCH}_{3}$, reflux, 6 h .

Chapter 3: Exploration of Click Reaction in Crystal Engineering

Unlike in organic synthesis, the connectivity in supramolecular synthesis extends over a larger range and encompasses a wide variety of intermolecular weak interactions. Considering its similarity in action to synthon, the phrase 'supramolecular synthon' has been coined by Desiraju to describe a set of noncovalent interactions that form and modulate recognition patterns in the solid state. Understanding how these supramolecular synthons operate/exist across a set of related molecules that yield a set of related crystal structures is a critical exercise to ensure three-dimensional structure control in molecular design for crystal engineering. However, reports documenting such a structural investigation of a group of isomers are very few because of the complexity involved in synthesizing the systems with architectural control and flexibility in the incorporation of functional groups and a deliberate suspicion about the crystallinity of the all isomers. In this context, developing simple and efficient protocols for generation of isomeric compound libraries (devoid of polar functional units) with sufficient flexibility in placing
complimentary functional groups will be instrumental for crystal engineers to understand these weak non-covalent interactions, the topological constraints for intermolecular connectivity and to examine the predictability of corresponding weak synthons.

Figure 6: Click chemistry approach for synthesis of isomers for examining the predictability of a projected synthon

Herein, we document a simple protocol employing azide-alkyne "Click Reaction" for the synthesis of a collection of isomeric compounds ($66-74$) with modular positioning of Br and NO_{2} on a flexible tricyclic template and examination of the occurrence of bifurcated $\mathrm{Br} . . \mathrm{NO}_{2}$ synthon with respect to their relative disposition. Apart from the projected $\mathrm{Br} \cdots \mathrm{NO}_{2}$ and competing $\mathrm{Br} \cdots \mathrm{Br}$ interactions, absence of any other stronger interactions in this system provided the necessary criteria for existence of weak interactions like $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{N}, \mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ and their influence on the overall packing of the crystal.

Table 1: Hüisgen [3+2] cycloaddition reaction between alkynes $\mathbf{6 0}-\mathbf{6 2}$ and azides or azide precursors $63-65$, product distribution and compound identification number

	 63	 64	 65
 60	 66	 67	 68

 61	 69	 70	 71
 62	 72	 73	 74

All of the above 9 compounds were isolated as crystalline solids and were characterized with the single crystal X-ray structural studies (Table 1). It was quite interesting to notice that none of the isomers have displayed the bifurcated $\mathrm{Br} . . . \mathrm{O}_{2} \mathrm{~N}$ synthon in their solid structures, though the experimental and $a b$ initio calculations reveal that this three-center interactions in the bromine-containing systems are relatively stronger and can be regarded as a 'discriminator synthon' even in the presence of strong N-H/O hydrogen bonds. Triazoles bearing 2-nitrophenyl ring (66 and 67) formed helical assembly of molecules through $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, and the self-complimentary patterns noticed in the crystal structures of 3-nitrophenyl substituted triazole derivatives.

Figure 7: C-H...O mediated helical assembly in compounds a) 63 b) 64 and c) self complimentary patterns noticed in compound 70

INTRODUCTION

INTRODUCTION

Natural products remain an important source of lead compounds for drug development. ${ }^{1}$ However, while these compounds often exhibit great potency when tested against specific targets, other properties of these compounds, such as solubility, bioavailability, exposure, stability, and metabolism can require improvement. The application of synthetic chemistry to modify natural product drug leads has long been used to generate compounds with improved pharmacological properties. With the origin and development of modern science our understanding about the constitution of any given material has improved immensely, natural products not being an exception. With the advancements in the area of natural product isolation and characterization, it has become possible to isolate and identify the active compound responsible for the observed biological activity. As they are contained in very small quantities, often it is not practicable to isolate these natural products form their original resources for the commercial purposes. The solution for this problem is to synthesize them in laboratory by means of chemical synthesis. Accurate knowledge of the structure of the natural product is a prerequisite for its synthesis. It is common for natural product scientists to claim that natural products form the basis for many of the drugs currently in commercial use or in development, little comprehensive data have been presented to support such claims since Farnsworth and Morris reported their analysis of National Prescription Audit data for the 15-year period 1959-1973. ${ }^{2}$ The role of natural products from all sources in drug discovery has been reviewed recently. ${ }^{3}$ Further evidence of the importance of natural products is provided by the fact that close to half of the best selling pharmaceuticals in 1991 were either natural products or their derivatives. ${ }^{4}$ Over the past 10 years, there has been a resurgence of interest in the investigation of natural materials as a source of potential, new chemotherapeutic agents.

Marine organisms, particularly sponge invertebrates and associated bacteria, are enormously rich sources of structurally diverse secondary metabolites with unique molecular architectures. ${ }^{5}$ These marine natural products often possess unusual and sometimes unexpected biological activities, making them valuable molecular probes for the investigation of biochemical pathways. Among these fascinating and eye-catching
structures, a prominent class is the marine macrolides, which are highly oxygenated and stereochemically elaborated polyketides having a macrocyclic lactone as a conformational constraint. ${ }^{6}$ Many marine macrolides demonstrate potent cell growth antiproliferative properties and offer considerable promise as lead structures for the development of new anti-cancer chemotherapeutic agents, provided the supply issue can be resolved. Ever since the first isolation of Exaltolide $\mathbf{1}$ in 1927 by Kerschbaum, ${ }^{7}$ interest in macrocyclic lactones, defined as lactones with more than 8 atoms in the ring, has been increasing. Indeed, natural macrocyclic lactones present a large spectrum of interesting properties from perfumery, to phytotoxicity, to pheromone or insecticide activity, to medicinal (antibiotic, cytotoxic, antiangiogenesis) properties and a wide range of structures from 8-membered ones such as octalactins ${ }^{8} 2$ to the 60 -membered quinolidomicins 3 . From their first isolation in the 50 s, macrolide antibiotics, such as erythromycin 4, ${ }^{9}$ were widely used to treat bacterial infections, and because of their safety and efficacy, they are still the preferred therapeutic agents for treatment of respiratory infections. Another important class of macrolactones with a wide range of biological activities is the cyclodepsipeptides ${ }^{10}$ such as, for example, FK228 (5), which is currently in phase II clinical trials as an anticancer drug and which acts as a prodrug that undergoes disulfide reduction within the cell to release a zincbinding thiol. The biopesticide Spinosad, a mixture of Spinosyn A and D (6), is currently marketed for use against a wide variety of insects. Of the more than 200 polyene macrolactones known, some, such as roxaticine 7 , is currently used in the treatment of systemic fungal infections. ${ }^{11}$ Epothilones 8, with a mode of action similar to that of taxol and the potential to overcome known mechanisms of drug resistance, are considered to be promising anticancer drugs. ${ }^{12}$ Even though many other efficient macrocyclization methods such as the intramolecular cross-coupling, Noxaki-Hiyama-Kishi, and HWE methods and lactonization of seco acids have been developed over the years, but the bond formation through ring-closing metathesis (RCM) method has found to be the most dramatic invention for the preparation of macrolactones. This approach appears to be one of the more frequently used approaches to obtain macrocyclic lactones in recent years.

Figure 1

7 Roxaticine

8 Epothilone

As part of long standing program in our group, three newly isolated natural products having medium sized lactones namely, multiplolide A , feigrisolide B and pandangolide 1 were selected as the targets for our total synthesis program. The basic premise of our synthesis is to use RCM as the key reaction and adopting a chiral pool approach for the key intermediates.

Figure 2

9 Multiplolide A

10 Feigrisolide B

11 Pandangolide 1

Considering the common feature of our intended synthesis of $\mathbf{9 - 1 1}$, i.e RCM for key macrolactone construction, some of the recent developments in the area of RCM based macrolactone synthesis will be discussed here in brief.

A brief overview of factors affecting the stereochemical outcome of RCM in case of medium size rings:

Ever since the birth of the art of organic synthesis, as marked by Wöhler's synthesis of urea in 1828, progress in this field has, to a large degree, been dependent on our ability to construct carbon frameworks through carbon-carbon bond forming reactions. The Grignard, ${ }^{13}$ Diels-Alder, ${ }^{14}$ and Wittig reactions ${ }^{15}$ are three of the most prominent such processes that played decisive roles in shaping the science of chemical synthesis as we know it today. During the last quarter of the previous century, two more such reactions emerged as rivals to the aforementioned carbon-carbon bond forming processes: the palladium-catalyzed cross-coupling reactions and those collectively known as metathesis reactions. As the most stringent test, total synthesis often serves as a measure of the power of a given reaction. Surveys of relevant applications of enabling reactions are, therefore, of importance in that they not only help to underscore the scope and generality of such processes in chemical synthesis, but they also serve to place into perspective that particular reaction within the field, and to inspire future improvements and new applications. The fact that the Nobel Prize for the year 2005 was awarded to Grubbs’, Chauvin and Schrock for their contributions in the area of metathesis, explains by itself the utility of the transformation and hence its wide applicability towards the synthesis of materials which are used in different walks of life. The awesome impact of this transformation in the area of total synthesis of natural products is clearly evident from the literature. This
transformation offers various merits such as tolerance to various functional and protecting groups, easy and non-hazardous experimental procedures and reproducibility, which are of the particular interest to synthetic organic chemist. The development of new catalysts, which make previously impossible transformations possible and in some cases complement each other in stereochemical outcome, has made this tool even more effective and attractive.

Coupled with all these advantages this transformation still possesses considerable challenges, still holds areas to be conquered and that are what fascinates synthetic chemists to employ it in their synthetic endeavors. One of such areas is synthesis of medium sized rings (6-12-membered) using RCM and the prediction of the stereochemical outcome for the same. Strain predisposes cycloalkenes of 6- to 12-membered ring atoms for the reverse process, that is, for ring-opening metathesis (ROM) or ring-opening metathesis polymerization (ROMP). Therefore, the number of successful applications of RCM to this series is still rather limited.

One approach to circumvent this problem is to incorporate control elements that force the cyclization precursors to adopt conformations suitable for ring closure. ${ }^{16}$ Hydroxyl protecting groups are sometimes employed spanning hydroxyl groups in vicinity of the olefin with the anticipation that they should exert this function by aligning the olefinic side chains in a cyclization-friendly conformation. The extent of bias, if any, conferred by such a group on the stereochemistry of the newly formed double bond is much less understandable and cannot be predicted with certainty. In general, RCM reactions in the macrocyclic series tend to give mixtures of the (E) and (Z)-configured cyclic olefins, and a reliable and general method of controlling the geometry of the newly formed double bond has yet to be found. ${ }^{17,18}$

The olefin metathesis reaction has been known since the 1960s, but it was not until the early 1990s that this transformation became an important tool in synthetic organic chemistry. It was thus in 1992 that Grubbs and Fu published two seminal papers ${ }^{19,20}$ describing the application of ring-closing metathesis to the synthesis of simple five-, six-, and seven-membered monocyclic systems containing oxygen and nitrogen atoms using a molybdenum catalyst that had been first prepared by Schrock. ${ }^{21}$ Progress in the development of the metathesis reaction has been directly correlated to improvements in the
functional group compatibility and the reactivity of the catalysts. There are two main types of catalysts in use today. The first group contains ruthenium-complexes such as $\mathbf{A}, \mathbf{A}^{\prime}, \mathbf{B}$, and \mathbf{B}^{\prime} and related catalysts such as \mathbf{E} and \mathbf{F}, whereas the second group is comprised of molybdenum complexes such as \mathbf{C} and \mathbf{D}.

Figure 3

A

A^{\prime}

B

B'

The catalysts \mathbf{A}, \mathbf{B}, and \mathbf{C} are most commonly used for the RCM reactions. Those designated with a prime are closely related in structure to their parent complexes and show a similar reactivity pattern. The functional group tolerance of the ruthenium and the molybdenum catalysts can vary somewhat, but the Mo-based complexes suffer the potential disadvantage of being more air and moisture sensitive. The high selectivity and reactivity of A-F for carbon-carbon σ-bonds minimizes protecting group manipulations while enabling the use of RCM as an excellent alternative to other ring-forming reactions for the efficient construction of complex cyclic targets having a variety of ring sizes.

Figure 4

C

D

E

F

General mechanism:

The generally accepted mechanism of RCM reactions ("Chauvin's mechanism") ${ }^{22}$ consists of a sequence of formal [2+2] cycloadditions/cycloreversions involving alkene, metal carbenes and metallacyclobutane intermediates. Since all individual steps of the catalytic cycle are reversible, an equilibrium mixture of olefins is obtained. Therefore it is
necessary to shift this equilibrium in one direction in order to make metathesis productive in preparative terms. The major ways to do this are depicted in scheme 1 and the mechanism of one such application, the ring closing metathesis (RCM) of a diene is shown in scheme 2. In this particular case, the forward process is entropically driven because the RCM cuts one substrate molecule into two products. If one of them is volatile (ethene, propene etc.) the desired cylcoalkene will accumulate into the reaction mixture.

Scheme 1

Another important factor for productive RCM is the sensitivity of the most metathesis catalysts to the substitution pattern of the olefin as this constitutes a kinetic obstacle for the retro-reaction. This argument, however, does not apply to strained cycloalkenes because the release of the ring strain provides the formidable driving force for ring opening metathesis (ROM) or ring opening metathesis polymerization (ROMP). Finally it should be mentioned that the intrinsic competition between RCM and acyclic diene metathesis polymerization (ADMET) can be controlled to some extend by adjusting the dilution of the reaction mixture and is also strongly influenced by preexisting conformational constraints in the substrate.

Scheme 2

Different sizes of lactones formed using RCM reaction:

Five and six membered lactones:
In contrast to the numerous applications of RCM to the synthesis of dihydrofurans and dihydropyrans, there are fewer reports of forming five- and six membered lactones via RCM reactions. Hoye reported a nice example of a tandem enyne metathesis/Diels- Alder reaction as the key step in the synthesis of the butenolide natural product differolide $14 .{ }^{23}$ When the Grubbs’ catalyst A was added slowly to allyl propynoate 12, enyne metathesis ensued to generate the diene 13, which underwent spontaneous dimerization via a [4 + 2]cycloaddition to give differolide $\mathbf{1 4}$ (Scheme 3). The Diels-Alder reaction proceeded with complete stereoselectivity and 9:1 regioselectivity. Investigation of the enyne RCM reaction by ${ }^{1} \mathrm{H}$ NMR suggested that the benzylidenecarbene \mathbf{A} initially reacted with the double bond in 12 to give 15 that then underwent RCM to give 16. This "ene-then-yne" mechanism was supported by the finding that a high substrate concentration was necessary to achieve high conversion rates.

Scheme 3

Six-membered lactone rings constitute a structural feature common to numerous biologically active natural products, ${ }^{24}$ many of which exhibit antitumor properties. Members of this class of compounds that have been synthesized using RCM include laulimalide (17), ${ }^{25}$ callystatin A (18), ${ }^{26}$ umuravumbolide (19), ${ }^{27}$ tarchonanthuslactone (20), ${ }^{28}$ malyngolide (21), ${ }^{29}$ boronolide (22), ${ }^{30}$ fostriecin (23), ${ }^{31,32}$ and spicigerolide (24). ${ }^{33}$

Figure 5

17

18

19

20

21

22

23

24

The strategies that were developed for preparing all of these natural products featured RCM reactions wherein allyl acrylates 25 were treated with either Grubbs’ catalyst \mathbf{A} or \mathbf{B}, sometimes in the presence of a Lewis acid such as titanium tetraisopropoxide, to yield 26 (Scheme 4). Hydroxyl groups have typically been protected during the RCM step, although this tactic was more frequently a consequence of the synthetic pathway rather than because of problems with the ruthenium catalysts.

Scheme 4

An illustrative example of using a RCM in the synthesis of valerolactone-derived natural products is found in Honda’s synthesis of malyngolide 21 (Scheme 5). ${ }^{29}$ The RCM substrate 27 was first prepared by a sequence that featured a Sharpless epoxidation to generate the first stereocenter. When 27 was treated with Grubbs’ catalyst A, the lactone 28 was obtained in low yield. However, use of $5 \mathrm{~mol} \%$ of the more reactive and recyclable Hoveyda catalyst \mathbf{E}^{34} afforded 28 in very good yield, and the synthesis of $\mathbf{2 1}$ was then completed in two steps.

Scheme 5

Although seven and eight-membered cyclic ethers can be constructed through RCM reaction but reports for the preparation of seven and eight-membered lactones using RCM method have hardly been found in the literature.

Nine and ten membered lactones:

The formation of medium-sized lactones by RCM constitutes a considerable challenge, since the inherent ring strain predisposes cycloalkenes containing 8-11 atoms toward ring-opening metathesis or ring opening metathesis polymerization. A rare example of preparing the nine-membered lactone moiety of a natural product by RCM was reported by Takemoto in a synthesis of halicholactone 31 (Scheme 6). After considerable experimentation, it was discovered that 29 at high dilution underwent efficient RCM using the binary catalyst system of \mathbf{A} and $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}$, which was first reported by Fürstner, ${ }^{35}$ to give the desired Z-isomer $\mathbf{3 0}$ as the major product together with 11% of the corresponding dimer. The synthesis of $\mathbf{3 1}$ was completed by methanolysis of the two acetyl groups. When these hydroxy groups were protected as their corresponding SEM or MOM ethers, the yield of the RCM reaction was only 19\%; 45\% of the starting material was recovered as was 8% of a dimer.

Scheme 6

The first construction of a 10 -membered lactone using a RCM was reported by Fürstner and Müller in 1997 in their synthesis of the jasmine ketolactone (Z)-35, a minor component of the essential oil of jasmine. ${ }^{35}$ The first step in the diastereoselective synthesis of the RCM substrate 32 involved an efficient three-component reaction with the lithium enolate derived from 33, cyclopentenone, and allyl iodide (Scheme 7). The methyldiphenylsilyl group, which was required for the selective 1,4-addition of the enolate to cyclopentenone, was removed by reacting 33 with KF in aqueous methanol to give 34 . Heating a dilute solution of $\mathbf{3 4}$ in the presence of \mathbf{A}^{\prime} then furnished $\mathbf{3 5}$ as a mixture (1.4:1) of E / Z isomers in 88% combined yield. The natural product (Z)- 35 was separated by chromatography.

Scheme 7

Marco recently reported a total synthesis of microcarpalide 38, a naturally occurring nonenolide with cytotoxic and antimicrofilament activity, ${ }^{36}$ by an approach that featured the RCM of 36, which was prepared from (S, S)-tartaric acid and (R)-glycidol. When the RCM was catalyzed by \mathbf{A}, a mixture ($E / Z=2: 1$) of macrocyclic lactones 37 was obtained from which the E-isomer was isolated by chromatography (Scheme 8). Alternatively, treatment of $\mathbf{3 6}$ with the $2^{\text {nd }}$ generation catalyst \mathbf{B} furnished almost exclusively the thermodynamically more stable (Z)-37. This observation is in agreement with those of Grubbs, who found that the E/Z-ratio in ring-closures using \mathbf{B} is not kinetically controlled but is rather the result of an equilibration of the products (Scheme 8). ${ }^{37}$ The synthesis of $\mathbf{3 8}$ was then completed by global deprotection of $\mathbf{3 7}$ in two steps.

Scheme 8

Fürstner reported the first total syntheses of the phytotoxic agents herbarumin I 39 and II 40 and of the closely related pinolidoxine $41 .{ }^{38}$ All possible stereoisomers of 41 were prepared, and the spectra and analytical data of each were compared with those reported for the natural product, thereby unambiguously establishing the structure of this promising herbicidal agent and correcting a previous assignment. The nonenolides 39-41 each contain a carbon-carbon double bond, so RCM clearly emerged as an attractive reaction that could provide a convergent approach to these targets.

Figure 6

39

40

41

The salient features of using RCM in these syntheses are illustrated in the steps leading to herbarumin I 39 (Scheme 9). The diene 42 was prepared from D-ribose in a few steps by standard methods. The isopropylidene protecting group spanning the oxygen atoms at C-7 and C-8 was expected to stabilize a conformation of 42 that would be predisposed toward ring closure. Semiempirical calculations for 43 revealed that the Z -
isomer is about $3.5 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than the E-isomer. Hence, conducting the RCM of 42 and related dienes under conditions of thermodynamic control would be expected to be counterproductive for obtaining the E-alkenes found in 39-41.

Scheme 9

This prediction then suggested that RCM catalysts known to equilibrate the initial products should not be employed, ${ }^{37}$ and it is gratifying that the results obtained using two different RCM catalysts were fully consistent with this hypothesis. Namely, cyclization of 42 with the $2^{\text {nd }}$ generation catalyst \mathbf{B} ', which was known to provide mixtures enriched with the thermodynamically favored product, led to the selective formation of (Z)-43. In contrast, exposure of the diene $\mathbf{4 2}$ to catalytic amounts of the ruthenium indenylidene complex \mathbf{F}, which has properties very similar to those of \mathbf{A}, afforded the desired lactone (E)-43 as the major product, but the Z-isomer (9\% yield) was also isolated. The E/Z-ratio in this reaction did not evolve over time, suggesting that product formation occurs under kinetic control. Hydrolysis of the acetal moiety in (E)-43 then afforded natural 39.

Eleven and Twelve membered ring lactones:
Recently Fürstner et al. have synthesized eleven-membered lactone aspercyclide C 46 using kinetic controlled RCM method. ${ }^{39}$

Scheme 10

Fürstner’s synthesis of (+)-lasiodiplodin 49 represents one of the early applications of RCM to the preparation of 12-membered macrolide natural products. ${ }^{40}$ Cyclization of 47 using \mathbf{A}^{\prime} as the catalyst gave 48 as a mixture of double bond isomers $(E / Z=2.3: 1)$ in excellent yield (Scheme 11). Hydrogenation of this mixture and cleavage of one phenolic methyl ether then completed the synthesis of (+)-49. Because the double bond formed by the RCM was reduced, the purist may question this approach to saturated, naturally occurring macrocycles based upon its inefficient use of functionality.

Scheme 11

Salicylihalamides A and B (50 and 51) comprise a novel class of secondary metabolites isolated from the marine sponge Haliclona by Boyd in $1997 .{ }^{41}$ Salicylihalamide A 50, which displays potent cytotoxicity in the NCI 60-cell line human tumor assay and appears to have a novel mechanism of action, possesses a 12 -membered salicylate macrolide and a novel dienyl enamide side chain.

Figure 7

50: 17E
51: $17 Z$

The correct absolute stereochemistry of salicylihalamide A was established by De Brabander, who first synthesized both (+)-50 and (-)-50. ${ }^{42}$ In all of the total syntheses of salicylihalamide A reported to date, the C9-C10 E-double bond, and hence the macrocycle, was generated by a RCM reaction. The stereogenic centers in 52, which was the RCM substrate in De Brabander's synthesis, ${ }^{42}$ were constructed by an asymmetric Brown allylation (C15) and an asymmetric aldol reaction employing Oppolzer's sultam (C-12 and C-13) (Scheme 12). Exposure of 52 to Grubbs’ catalyst A produced 53 with good E/Zselectivity. The synthesis of (+)-50 was then completed in 10 steps, wherein the $17 E$ enamide moiety was established by addition of a vinyllithium reagent to an isocyanate.

Scheme 12

Shortly after De Brabander's initial account was published, Fürstner reported a very similar approach to the macrolide core of 50 (Scheme 13). ${ }^{43}$ The stereocenter at C-12 in the RCM substrates 54a-d was generated by an Evans asymmetric alkylation, while the centers at C-13 and C-15 were formed by an enantioselective hydrogenation.

Scheme 13

Because one of the double bonds in 54a-d was trisubstituted, the $1^{\text {st }}$ generation Grubbs’ catalyst A, which is known to be sensitive to double bond substitution, was ineffective, and the more reactive Grubbs' catalyst B had to be employed. The stereochemical course of the RCM of 54a-d was found to be highly dependent upon whether the phenolic hydroxy group was free or protected. Thus, the diene 54a ($\mathrm{R}=\mathrm{H}$) was cleanly converted into (Z)-55a upon treatment with catalytic amounts of \mathbf{B}. That the Z double bond was formed exclusively was unexpected, because \mathbf{B} had been shown to favor formation of the more stable E-configured products via isomerization. ${ }^{37}$ Fürstner speculated that conformational factors, such as a constraining hydrogen bond between the phenolic hydroxyl and the carbonyl group in 54a, were responsible for the stereochemical outcome of the RCM cyclization. Fürstner's findings together with those of De Brabander ${ }^{42}$ illustrate that the stereochemistry of the double bond formed upon the RCM of even very closely related substrates is not always predictable, even when a $2^{\text {nd }}$ generation Ru-catalyst is employed. The findings of De Brabander and Fürstner have been mirrored in subsequent syntheses of (-)-salicylihalamide A 47. For example, Snider cyclized dienes very similar to 54a and $\mathbf{5 4 d}$ using \mathbf{A} as the catalyst to obtain primarily a Z-olefin when the phenolic hydroxyl group was free and a mixture (4: 1) of E / Z-isomers when it was protected as a TBDMS ether. ${ }^{44}$ In Smith's synthesis of $(-)-\mathbf{5 0},{ }^{45}$ a diene closely related to 52 was cyclized with $\mathbf{A}(10 \mathrm{~mol} \%)$ to give a mixture (10:1) of E - and Z-lactones, a result identical to that of De Brabander. Porco recently reported the total synthesis of oximidine II, another salicylate enamide macrolide closely related to $\mathbf{5 0}$, by a strategy in which a macrocyclic conjugated triene was formed by RCM.

Sporiolide A 56 and Sporiolide B 57 are the macrolides from marine-derived fungus cladospolides species.

Figure 8

56

57

Recently Du et al., have synthesized both sporiolide A^{46} and sporiolide B^{47} respectively using RCM as key reaction with Grubbs’ $1^{\text {st }}$ generation catalyst.

Scheme 14

Scheme 15

In view of interesting results obtained for different sized lactone ring formation we have planned to synthesize molecules of different ring-size using RCM as the key reaction. Our first two chapters deal with few molecules which are medium-sized ring lactones as well as stereochemically promising. All these compounds are biologically active too. So we will concentrate on the synthesis of these molecules using chiron approach and keeping RCM as a mandatory tool for all molecules.

CHAPTER 1

Towards the Total Synthesis of Multiplolide A

PRESENT WORK

PRESENT WORK

Though the modern day analytical techniques have bestowed the isolation chemists with deeper insights to understand the structures of natural products isolated, the opportunities for synthetic chemists to contribute in the area of natural product structure elucidation are not totally exhausted. ${ }^{48}$ Nature sometime tests even teases the awesome influence of the analytical techniques by presenting simple looking structures out of its bag. Those compounds, after isolation, can be identified structurally using spectroscopic analysis. Relative as well as absolute stereochemistry can also be determined through spectroscopy as well as different chemical studies. Few compounds are there in nature where stereochemistry cannot be determined through spectroscopic analysis as well as chemical analysis. So for the determination of relative as well as absolute stereochemistry, syntheses of different diastereomers are very necessary. Similar was the case with tonantzitlolone (Figure 1), which was isolated in 1997 and the relative stereochemistry was proposed as represented by structure 1. However, the absolute stereostructure could not be determined at that time. This was achieved by the synthesis of the enantiomer 2 in the year 2005. All the spectral and analytical data for 2 was in excellent agreement with natural product, except for optical rotation (authentic natural product, $[\alpha]^{20}{ }_{\mathrm{D}}=+134^{\circ}\left(c \quad 0.25, \mathrm{CHCl}_{3}\right)$; found, $\left.[\alpha]^{20}{ }_{\mathrm{D}}=-119^{\circ}\left(c \quad 0.06, \mathrm{CHCl}_{3}\right)\right)$. This clearly established $\mathbf{1}$ as the correct absolute stereostructure for tonantzitlolone. ${ }^{49}$

Figure 1: Partial and total stereostructure for tonantzitlolone-1

1 tonantzitlolonone-1
proposed relative stereostructure (1997)

2 tonantzitlolonone-1
1 was proved to be relative and absolute stereostructure by sythesis of enantiomer 2 (2005).

The case of multiplolides A 3 and B 4 was another story of partial structure elucidation. ${ }^{50}$ The most striking feature of multiplolides from structural elucidation point
of view is the epoxide functionality set in between lactone carbonyl and olefin, and the epoxide protons are spatially isolated from the protons on other chiral centers resulting in partial structural elucidation, leaving the two possible diastereomeric structures $\mathbf{5} \& 6$ for the central core of multiplolides.

Figure 2: Chemical structures of multiplolide A, B and both possible diastereomers of multiplolide A

Natural Products:

Multiplolide A (3)
proposed partial stereostructures for multiplolides A and B (2001)

Synthetic Targets:

structures of possible diastereomers of multiplolide A

As is the case with every natural product, the structures of multiplolides A and B were elucidated on the basis of their spectral data. The ESI-TOF mass spectrum of multiplolide A 3 gave an accurate mass of $m / z 215.0923\left[(\mathrm{M}+\mathrm{H})^{+}, \Delta+0.5 \mathrm{mmu}\right]$, establishing the molecular formula of $\mathbf{3}$ as $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{5}$. The IR spectrum of multiplolide A 3 exhibited an absorption peak at $1721 \mathrm{~cm}^{-1}$, characteristic of an ester carbonyl. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of multiplolide A 3 showed a methyl doublet at $\delta 1.30$, a nonequivalent methylene (at $\delta 1.21$ and 2.21), five oxy protons (at $\delta 3.60,3.75,3.95,4.50$, and 5.25), and two olefinic protons (at $\delta 5.72$ and 5.88). The $J_{\mathrm{H}-5, \mathrm{H}-6}$ value of 15.0 Hz revealed a trans-configuration of the olefinic protons in 3 . The ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of multiplolide A 3 showed 10 signals, attributable to one methyl, one methylene, seven methine, and one quaternary carbon, as determined by DEPT experiments. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of multiplolide A 3 conclusively demonstrated the connectivity from $\mathrm{H}-3$ to $\mathrm{H}-11$. The epoxide moiety at carbons 3 and 4 in 3 was evident from the HMBC spectrum, in which the ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ one-bond coupling constant $\left({ }^{1} J_{\mathrm{C}-\mathrm{H}}\right)$ of 167 Hz (for $\mathrm{C}-3$ and C-4) was observed. The HMBC spectrum also showed the correlation of both $\mathrm{H}-3$ and $\mathrm{H}-10$ to the carbonyl carbon (C-2), H-4 to C-6, H-5 to C-7, and H-9 to both C-7 and C-11. The NOESY spectrum of 3 revealed correlations of the methyl group to $\mathrm{H}-9_{\mathrm{ax}}$, and $\mathrm{H}-9_{\mathrm{ax}}$ to both $\mathrm{H}-8$
and $\mathrm{H}-7$, suggesting that the methyl, $\mathrm{H}-9_{\mathrm{ax}}, \mathrm{H}-7$, and $\mathrm{H}-8$ were coplanar. Owing to the trans-configurated $\mathrm{C}_{5}-\mathrm{C}_{6}$ double bond, a cis-configuration of $\mathrm{H}-3$ and $\mathrm{H}-4$ of the oxirane moiety is a prerequisite for the formation of the 10 -membered lactone ring in 3 . The $J_{\mathrm{H}-}$ ${ }_{3, \mathrm{H}-4}$ of 4.5 Hz also suggested a cis-relationship of the epoxide protons in 3.

Similarly the structure of multiplolide B was elucidated on the basis of its spectral data. The absolute configuration at C-7 of 4 was determined as S by the application of the Mosher method which indirectly established the absolute configurations of both C-8 and C-10 centers as R, R. By taking into account the positive optical rotation shown by both 3 and 4 , similar absolute configurations at $\mathrm{C}-7, \mathrm{C}-8$ and $\mathrm{C}-10$ were proposed for multiplolide A 3. The relative configuration of epoxide moiety could not be assigned for both 3 and 4, from the available spectral data. This was another classic case illustrating the limitations of the modern analytical techniques. This clearly demonstrates derivatization of any of -OH is not going to provide any sort of help in the complete structure elucidation of multiplolide A and its derivatives. Total synthesis deemed necessary for the establishment of the relative stereochemistry of the oxirane ring. The fact that the absolute configurations at $\mathrm{C}-7, \mathrm{C}-8$ and $\mathrm{C}-10$ for 3 were proposed on the basis of similar sign of rotation as that of $\mathbf{4}$ and were not directly determined by Mosher method, naturally made 3 even more attractive synthetic targets as compared to 4 . It was planned to synthesize both possible diastereomers (5 and 6) of multiplolide A to unambiguously establish the relative stereochemistry of oxirane ring.

Figure 3

Synthetic Targets:

5

Recently isolated multipolide A derivative

During the synthesis of multiplolide A 3, a derivative of multiplolide A 7 was isolated. ${ }^{51}$ By its extensive 2D NMR analysis it has been found that it is 8 -acetyl multiplolide A , however, the relative configuration of oxirane ring was still in dilemma. So to establish the absolute and relative stereochemistry of the oxirane ring beyond
ambiguity it was decided to synthesize both the possible diastereomers of multiplolide A [3-R, 4-R 5 and 3-S, 4-S 6]. Comparison of the analytical data for both the isomers with that of natural product would enable us to determine the stereochemistry at C-3 and C-4 for multiplolide A. Success in synthesizing multiplolide A would leave synthesis of multiplolide B as a matter of few straight forward potection-deprotections. Retrosynthetic strategy of making α-oxirane ring of multiplolide A is depicted below.

Scheme 1: Retrosynthetic strategy

Three major disconnections were visualized; one at the oxirane ring, other at ring olefin and the final one at the ester linkage. Since the oxirane functionality is positioned alpha to carbonyl it would be wise to install it in the end, therefore priority was given to the disconnection at the oxirane ring. It would require a leaving group on one of the carbons and the free hydroxyl on the other to install the oxirane. The leaving group was envisaged at homoallylic position. As the epoxide is alpha so attack of free hydroxyl group should come from alpha side. The knowledge of the position of leaving group (C4) and the absolute stereochemistry at that center would enable us to state the absolute stereochemistry of the oxirane ring beyond any ambiguity and hence fix the missing link in its structure elucidation.

In line with the practice of our group to use the RCM reaction for the synthesis of various natural products and synthetically important intermediates, ${ }^{52,53}$ the construction of the ring olefin of multiplolide A and consequently the macrocycle formation was planned
by employing the RCM reaction on a suitable diene-ester. It is observed that the outcome of the RCM reaction is highly dependent on substrate and reaction conditions. The situation becomes complex and the prediction difficult when the olefins involved in the ring closure reaction are surrounded by multiple chiral centers. Oxygen functions on these centers, their stereochemistry and nature of the protections all contribute towards the stereochemical outcome of reaction leaving behind very less space for prediction. Keeping this in mind the path was chosen so as to offer enough flexibility with the substrates for RCM.

In view of the chances of epimerization at C-3 under the reaction conditions where base needs to be employed for ester formation (eg. DCC or Yamaguchi), the diPMB ester 9 was visualized from the Mitsunobu reaction between the alcohol 10 and acid 11. Remaining pertinent to the practice of using cheaply available sugars for total synthesis, D-mannitol and L-rhamnose were chosen as precursors for acid $\mathbf{1 1}$ and alcohol 10 respectively after careful stereochemical investigations for the synthesis of both the diastereomers of multiplolide A .

Synthesis of fragment 10

Synthesis of the alcohol 10 (Scheme 2) began with the preparation of the known ${ }^{54}$ deoxy derivative 15 from L-rhamnose in four steps. L-Rhamnose was converted into its allyl glycoside 12 by treatment with allyl alcohol in presence of acid and sodium sulfate at $80{ }^{\circ} \mathrm{C}$. The crude glycoside was then converted into the 2,3-O-isopropylidene derivative 13 using 2,2-dimethoxypropane in acetone and in the presence of catalytic acid. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 3}$ revealed the presence of only one anomer. The anomeric proton appeared as a singlet at 4.99 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum whereas the $\mathrm{C}-1$ resonated at $\delta 96.1$ in the ${ }^{13} \mathrm{C}$ NMR spectrum indicating α-configuration. Two singlets at $\delta 1.35$ and 1.52 in the ${ }^{1} \mathrm{H}$ NMR spectrum integrating for three protons each were assigned to methyl groups of isopropylidene protection, which was further supported by presence of a peak for quaternary carbon at 109.3 ppm in the ${ }^{13} \mathrm{C}$ NMR spectrum. Results from mass spectrum, IR, and elemental analysis were in accordance with the structure 13.

Scheme 2

The free hydroxyl at C-4 was deoxygenated using the Barton's protocol. ${ }^{54 \mathrm{c}}$ The xanthate derivative 14 was prepared by treating 13 with $\mathrm{NaH}, \mathrm{CS}_{2}$ and MeI. Subsequently the xanthate derivative 14 was treated with $n-\mathrm{Bu}_{3} \mathrm{SnH}$ and catalytic AIBN in refluxing toluene to obtain the deoxy derivative 15. The structure 15 was well supported by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, mass spectrum and elemental analysis. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 5}$, two signals for C-4 methylene protons were located in the upfield region (1.35-1.42 ppm as a multiplet and at $\delta 1.80 \mathrm{ppm}$ as a doublet of a double doublet). In the partially decoupled ${ }^{13} \mathrm{C}$ NMR spectrum C-4 resonated at $\delta 36.1$ as a triplet confirming the presence of methylene group.

Scheme 3

Deallylation of 15 was carried out in a two step sequence (Scheme 3), ${ }^{55}$ first step being the isomerisation to the vinyl ether $\mathbf{1 6}$ by treatment with $\mathrm{KO}^{t} \mathrm{Bu}$ in DMSO at 100 ${ }^{\circ} \mathrm{C}$. The crude vinyl ether 16 was treated with HgO to afford the lactol 17 as an inseparable anomeric mixture. Signals for the anomeric protons of the two anomers appeared at $\delta 4.89$ and 5.42 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum whereas the anomeric carbons resonated at $\delta 92.5$ and 93.0 ppm in the ${ }^{13} \mathrm{C}$ NMR spectrum. One carbon Wittig homologation of 17 by treatment with methyltriphenylphosphorane in THF:DMSO mixture furnished the required alcohol fragment 10. The three signals for the olefinic protons integrating for one proton each, appeared at $\delta 5.23,5.30,5.78 \mathrm{ppm}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum. The presence of two olefinic carbons at $\delta 117.9$ (triplet) and $\delta 134.2$ (doublet) in the DEPT spectrum along with other analytical data such as mass spectrum, elemental analysis and IR spectrum supported the proposed structure 10.

Synthesis of fragment 11

The preparation of 1,2:5,6-di- O-isopropylidene-D-mannitol 18 was carried out employing literature procedure (Scheme 4). ${ }^{56}$ The free hydroxyl functions at C-3 and C-4 in the isopropylidene derivative $\mathbf{1 8}$ were protected as PMB-ethers by treatment with NaH and PMB- Br^{57} in DMF to afford the di-PMB derivative 19. The isoproylidene groups of 19 resonated at $\delta 1.33$ and 1.41 in the ${ }^{1} \mathrm{H}$ NMR spectrum. The benzylic methylene groups appeared as a singlet at $\delta 4.60$ and the aromatic protons at $\delta 6.83$ and 7.22 . In the ${ }^{13} \mathrm{C}$ NMR spectrum and the DEPT spectrum the benzylic methylenes were observed at $\delta 66.7$ and 74.0 ppm . The highest peak at $m / z 525[\mathrm{M}+\mathrm{Na}]^{+}$in the mass spectrum and the elemental analysis supported the structure 19. The next job was to remove one of the isopropylidene groups of C_{2}-symmetric 19 keeping the other one intact. This was achieved employing PPTS ${ }^{58}$ in MeOH at room temperature. After running the reaction for various time intervals it was noted that 12 h was the optimum reaction time. At this time even though some starting material remained unreacted, the yield of the required diol 20 was maximum. The starting material could be easily separated on a silica gel column and recycled. The loss of one of the isopropylidene groups was evident from the ${ }^{1} \mathrm{H}$ NMR spectrum where signals due to isopropylidene group at $\delta 1.34$ and 1.43 integrated for three protons each as compared to the signals due to benzylic protons at δ
$4.50,4.57,4.60$, and 4.67 which integrated for four protons. In the mass spectrum the peak was seen at $m / z 485[\mathrm{M}+\mathrm{Na}]^{+}$confirming proposed structure. The ${ }^{13} \mathrm{C}$ NMR spectrum and elemental analysis were also found to match the proposed structure $\mathbf{2 0}$.

Scheme 4

Conversion of the vicinal diol unit in $\mathbf{2 0}$ into the terminal olefin 22 was effected using a two step procedure (Scheme 5). ${ }^{59}$ In the first step the diol 20 was converted to its dimesyl derivative 21 by treatment with MsCl in presence of triethylamine in DCM. The crude dimesylate was treated with $\mathrm{NaI}, \mathrm{Zn}$ in DMF at $150^{\circ} \mathrm{C}$ to procure the olefin 22. The terminal olefinic protons were seen between $\delta 5.13-5.38$ as a multiplet and the internal proton as a doublet of a double doublet at $\delta 5.85$ in the ${ }^{1} \mathrm{H}$ NMR spectrum. A triplet in the partially decoupled ${ }^{13} \mathrm{C}$ NMR spectrum at $\delta 118.1 \mathrm{ppm}$ confirmed the presence of $S P^{2}$ methylene in the compound. Other analytical data was found in accordance with the structure.

Scheme 5

The isopropylidene protection in 22 was cleaved using PPTS in methanol to furnish the diol 23. The absence of peaks due to isopropylidene group in the ${ }^{1} \mathrm{H}$ and the ${ }^{13} \mathrm{C}$ NMR spectra was evident for the successful removal of the protecting group. The structure was further supported by the IR spectrum with absorption corresponding to free hydroxyl at $3436 \mathrm{~cm}^{-1}$ and elemental analysis (Scheme 6).

Scheme 6

The diol 23 was cleaved by using sodium metaperiodate adsorbed on silica gel ${ }^{60}$ to afford the aldehyde 24 , which was oxidized to the acid 11 on treatment with NaClO_{2} and $\mathrm{NaH}_{2} \mathrm{PO}_{4} .2 \mathrm{H}_{2} \mathrm{O}$ in the presence of 2-methyl-2-butene. ${ }^{61}$ In the IR spectrum the O-H stretching was observed at $3394 \mathrm{~cm}^{-1}$ and the $\mathrm{C}=\mathrm{O}$ stretching at $1724 \mathrm{~cm}^{-1}$. The carbonyl carbon was observed at $\delta 173.4 \mathrm{ppm}$ in the ${ }^{13} \mathrm{C}$ NMR spectrum. Other analytical data such as the ${ }^{1} \mathrm{H}$ NMR spectrum, mass spectrum, and elemental analysis of $\mathbf{1 1}$ were in accordance with the proposed structure.

Thus the alcohol 10 was synthesized from L-rhamnose and the acid $\mathbf{1 1}$ was synthesized from D-mannitol. Having successfully prepared the requisite coupling partners for the synthesis of multiplolide A isomer, the next step was to proceed further sequence of reactions as per the retrosynthetic plan. The fact that there was no clue whatsoever to speculate which of the isomers of multiplolide A (5 or 6) was more plausible to be a natural product, had made the choice entirely capricious. The literature survey revealed that the prediction of the stereochemical outcome of the RCM reaction, particularly for the medium ($8-12$ membered) ring size was far from straight forward.

Keeping this in mind, the strategy was designed in such a way to offer at least three diene substrates to suit the requirement of E configured olefin.

So after Mitsunobu coupling of alcohol 10 and acid 11, our main aim was to construct the 10 -member core through ring closing metathesis.

Scheme 7

The Mitsunobu ${ }^{62}$ reaction between alcohol 10 and acid $\mathbf{1 1}$ proceeded smoothly to procure the diene-ester 9 (Scheme 7). In the ${ }^{1} \mathrm{H}$ NMR spectrum the isopropylidene signals were observed at $\delta 1.32$ and 1.47 as singlets whereas the signals due to PMB-methoxyl groups were observed at $\delta 3.77$ and 3.78 as singlets, each integrating for three protons. The H-10 was observed at $\delta 5.10$ as a quartet with $J=6.3 \mathrm{~Hz}$. The structure was further supported by IR spectrum, which revealed ester carbonyl at $1736 \mathrm{~cm}^{-1}$. The ester carbonyl appeared at $\delta 169.6$ in the ${ }^{13} \mathrm{C}$ NMR spectrum. The highest mass peak $\mathrm{m} / \mathrm{z} 563$ $[\mathrm{M}+\mathrm{Na}]^{+}$and elemental analysis served as supporting evidences for structure 9. The inversion of configuration at the alcohol center during the Mitsunobu reaction was confirmed by hydrolyzing the ester formed 9 . However attempts for ring closure with compound $\mathbf{9}$ under various reaction conditions resulted in failures. Attributing this failure to the crowding around the reaction centers because of protecting groups, therefore the deprotection of -OPMB ether was attempted.

Compound 9 on treatment with DDQ under pH 7 buffer condition, afforded compound 25 (Scheme 8). Cleavage of one of the PMB-ethers was evident from the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. In the ${ }^{1} \mathrm{H}$ NMR spectrum the presence of only one singlet at $\delta 3.79$ integrating for three protons, two doublets at $\delta 4.39$ and 4.69 integrating for two protons
and aromatic protons integrating for four protons clearly established that one of the PMB groups was cleaved. The presence of only one benzylic carbon at $\delta 72.5$ and only one quaternary carbon at $\delta 159.6$ in the ${ }^{13} \mathrm{C}$ NMR spectrum further cemented the conclusion. All other analytical data was also found in accordance. Without entirely depending on precedence, the acetate 26 was prepared from compound 25.

At this stage the RCM reaction of $\mathbf{2 5}$ was attempted in DCM with Grubbs' $2^{\text {nd }}$ generation catalyst at reflux temperature but reaction was sluggish even after 36 h and the conversion rate also slow. So benzene was substituted as a solvent and the reaction was conducted at the reflux temperature of benzene using Grubbs' $2^{\text {nd }}$ generation catalyst. This proved to be extremely rewarding and complete conversion into the product 27 was achieved within 6 h . Product was purified by column chromatography and to our delight the product showed the peak at $415[\mathrm{M}+\mathrm{Na}]^{+}$in the mass spectrum corresponding to the ring closed product 27.

Scheme 8

The geometry of the newly formed double bond was trans as established by the coupling constant 16.5 Hz . Structure of 27 was further supported by the absence of signals for olefinic methylenes in the ${ }^{13} \mathrm{C}$ NMR spectrum.

As our target was to synthesize compound 5 so we focused our attention to tune the position of leaving group starting from the E-macrocyle 27, in our hands. As outlined in Scheme 9, first the allylic free hydroxyl group was protected to its TBDPS ether 28.

Presence of this compound was confirmed by ${ }^{1} \mathrm{H}$ NMR where 9 H singlet signal indicated the presence of ${ }^{\text {t Butyl group of TBDPS protection. Then the homoallylic PMB ether was }}$ deprotected using DDQ. Absence of methyl group of PMB in both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra indicated that the deprotection reaction was successfully done.

Scheme 9

Free hydroxyl group in scheme 10 , was subsequently transformed to a good leaving group -OMs (30). After the mesylation reaction, H-3 that resonated at $\delta 3.97$ in the starting material was changed to $\delta 4.55$ in ${ }^{1} \mathrm{H}$ spectra. Presence of methyl group at δ 2.51 also indicated the presence of mesyl group in the product. TBDPS deprotection followed by epoxide (31) formation was achieved in the same pot using TBAF solution. Absence of both mesyl group and TBDPS group indicated the formation of epoxide. Presence of two protons at $\delta 3.75$ and $\delta 3.78$ respectively supported that the epoxide was formed. This was further confirmed by mass spectroscopy.

Scheme 10

Final acetonide deprotection using TFA gave the compound 5. Interestingly, compound 5 was found to exist as an equilibrating mixture of conformational isomers (3:1, at $25^{\circ} \mathrm{C}$) in solution.

Scheme 11

The major:minor ratio was observed to be temperature dependent to some extent. Maximum separation in the signals due to each isomers was observed when the ${ }^{1} \mathrm{H}$ NMR was recorded at $0{ }^{\circ} \mathrm{C}$ in CDCl_{3}. Whereas a substantial increment in the ratio of major isomer was noticed when the NMR was recorded at high temperatures in DMSOD_{6}. When the NMR was recorded at $80^{\circ} \mathrm{C}$ the peaks due to major and minor isomer merged into each other at the expense of the multiplicity of the peaks. From the comparison of the data from natural product and $\mathbf{6}$ with the $\mathbf{5}_{\text {major }}$ and $\mathbf{5}_{\text {minor }}$ it is evident that both the components represent the same constitution and configuration and presumably are conformational isomers.

Table 1: ${ }^{1} \mathrm{H}$ NMR in CDCl_{3} at $0{ }^{\circ} \mathrm{C}(400 \mathrm{MHz})$

\mathbf{H}	Major Conformer $\boldsymbol{\delta}(\boldsymbol{J}=\mathbf{H z})$		Minor Conformer $\boldsymbol{\delta}(\boldsymbol{J}=\mathbf{H z})$	
$\mathbf{1 1}$	d	$1.37(6.8)$	d	$1.41(6.9)$
$\mathbf{9}$	dd	$1.51(6.0,16.2)$	merged	$1.37-1.42$
$\mathbf{9}$	ddd	$2.31(2.3,7.8,16.2)$	ddd	$2.51(2.3,7.8,16.1)$
$\mathbf{4}$	ddd	$3.74(0.8,1.9,4.0)$	m	$3.93-3.95$
$\mathbf{3}$	d	$3.76(4.0)$	d	$3.79(4.5)$
$\mathbf{8}$	dd	$3.87(2.8,7.3)$	dd	$3.98(2.9,8.2)$
$\mathbf{7}$	dd	$4.24(2.8,8.4)$	m	$4.49-4.51$
$\mathbf{1 0}$	m	$5.20-5.24$	merged	$5.18-5.25$
$\mathbf{6}$	dd	$5.58(8.4,16.2)$	merged	$5.80-5.84$
$\mathbf{5}$	ddd	$5.82(0.8,1.9,16.2)$	dt	$5.71(2.0,16.8)$

Table 2: ${ }^{13} \mathrm{C}$ NMR in CDCl_{3} at $25{ }^{\circ} \mathrm{C}(100 \mathrm{MHz})$

Major	19.7 (q)	35.7 (t)	53.0 (d)	58.0 (d)	69.7 (d)	72.1 (d)	75.6 (d)	125.9 (d)	129.3 (d)	166.7 (s)
Minor	17.9	34.9	53.03	55.2	68.9	70.3	72.5	121.3	137.4	167.6
	(q)	(t) (d)	(s)							

Table 3: Comparitative ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of compounds 5 and $\mathbf{6}$ with data reported for natural multiplolide A 3 in CDCl_{3} at $25^{\circ} \mathrm{C}(400 \mathrm{MHz})$

${ }^{1} \mathrm{H}$ NMR						${ }^{13} \mathrm{C}$ NMR			
$3 \delta(\mathrm{~Hz})$	(m)	$4 \delta(\mathrm{~Hz})$	(m)	H	Nat. δ (Hz)	3	4	Nat.	C
$\begin{aligned} & 1.28 \\ & (4.0,16.0) \end{aligned}$	dd	$\begin{aligned} & 1.53 \\ & (6.3,16.1) \end{aligned}$	dd	$\mathbf{9}_{\text {eq }}$	$\begin{aligned} & 1.21 \\ & (3.7,16.0) \end{aligned}$	19.7	17.8	17.6	11
$\begin{aligned} & 1.36 \\ & (6.7) \\ & \hline \end{aligned}$	d	$\begin{aligned} & 1.38 \\ & (6.7) \\ & \hline \end{aligned}$	d	11	$\begin{aligned} & 1.30 \\ & (6.8) \\ & \hline \end{aligned}$	35.7	35.4	35.2	9
$\begin{aligned} & 2.24 \\ & (3.4,8.5,16.0) \end{aligned}$	ddd	$\begin{aligned} & 2.28 \\ & (2.3,7.7,16.1) \end{aligned}$	ddd	9 ax	$\begin{aligned} & 2.21 \\ & (3.4,8.3,16.0) \end{aligned}$	52.9	54.5	54.5	4
$\begin{aligned} & 3.65 \\ & (4.6) \\ & \hline \end{aligned}$	d	3.68-3.73	m	3	$\begin{aligned} & 3.60 \\ & (4.5) \end{aligned}$	58.0	55.1	54.9	3
3.80	m	3.79-3.81	m	4	3.75	69.6	67.9	68.1	8
$\begin{aligned} & 4.05 \\ & (3.0,8.4) \end{aligned}$	dd	$\begin{aligned} & \hline 3.90 \\ & (3.1,7.4) \end{aligned}$	dd	8	$\begin{aligned} & 3.95 \\ & (2.7,8.2) \end{aligned}$	72.0	68.3	68.2	10
4.55	m	$\begin{aligned} & 4.19 \\ & (3.1,8.3) \\ & \hline \end{aligned}$	dd	7	4.50	75.6	72.4	72.2	7
5.30	m	5.18-5.25	m	10	5.25	125.9	117.7	117.2	5
$\begin{aligned} & 5.76 \\ & (1.4,2.1,15.6) \end{aligned}$	ddd	$\begin{aligned} & 5.64 \\ & (8.3,16.1) \end{aligned}$	dd	5	$\begin{aligned} & 5.72 \\ & (1.2,1.2,15.4) \end{aligned}$	129.1	133.3	133.6	6
$\begin{aligned} & 5.93 \\ & (1.1,2.5,15.6) \end{aligned}$	ddd	$\begin{aligned} & 5.80 \\ & (2.2,16.1) \\ & \hline \end{aligned}$	dd	6	$\begin{aligned} & 5.88 \\ & (0.9,2.2,15.4) \end{aligned}$	166.6	167.2	167.2	2

The fact that the natural product did not exist as the mixture of conformational isomers and no correlation of the data of any of the conformers of 5 with natural multiplolide A unequivocally designated $\mathbf{6}$ as the natural product and compound $\mathbf{5}$ was the diastereomer of the natural product. Absolute stereochemistries of both the diastereomers were confirmed. Natural product stereochemistry was $3 S, 4 S, 7 S, 8 R$, and $10 R$ and diastereomeric compound was having stereochemistry $3 R, 4 R, 7 S, 8 R$, and $10 R$.

In conclusion, after synthesizing both the diastereomers and examining all the data obtained from both the isomers, it was found that the orientation of the oxirane ring in the natural product is β and the actual structure of Multiplolide A is given below.

Multiplolide A

Low Temperature ${ }^{\mathbf{1}} \mathbf{H}$ NMR of Compound 5 in CDCl_{3}

High Temperature ${ }^{1} \mathbf{H}$ NMR of Compound 5 in DMSO-D 6

EXPERIMENTAL

EXPERIMENTAL

Allyl 6-deoxy-2,3- O-isopropylidene- α-L-mannopyranoside (13)

A mixture of $\mathrm{L}(-)$ rhamnose ($10.0 \mathrm{~g}, 60.97 \mathrm{mmol}$), anhydrous sodium sulfate $(20.0 \mathrm{~g}, 140.84 \mathrm{mmol})$, freshly distilled allyl alcohol (100 mL) and concentrated sulfuric acid (1 mL) was heated at $80^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was filtered through Celite, the filtrate passed through a bed of IR-400 resin and concentrated to afford the allyl pyranoside ($11.2 \mathrm{~g}, 90 \%$) as a viscous oil (used for next step without further purification). The above product ($11.2 \mathrm{~g}, 54.9 \mathrm{mmol}$), acetone (110 mL), 2,2dimethoxypropane ($22 \mathrm{~mL}, 179.38 \mathrm{mmol}$) and p-TSA $(150 \mathrm{mg})$ were stirred at rt for 10 h , and triethylamine (4 mL) was introduced followed by concentration. The crude residue was purified on silica gel by eluting with ethyl acetate-light petroleum (1:5) to give $\mathbf{1 3}$ as colorless oil.

Yield $\quad: \quad 12.48 \mathrm{~g}, 84 \%$ over two steps

Mol. Formula $\quad: \quad \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{5}$

Mol. Weight : 244

ESI-MS $m / z \quad: \quad 267[\mathrm{M}+\mathrm{Na}]^{+}$
: Calcd: C, 59.01; H, 8.20 \%
Found: C, 59.24; H, 8.05\%
$[\alpha]_{D}{ }^{25}$
$\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$
: $-34.2\left(c 1.3, \mathrm{CHCl}_{3}\right)$; literature $[\alpha]_{\mathrm{D}}=-32$
: $3453,2936,1520,1384,1140,1079,1051 \mathrm{~cm}^{-1}$

$$
\begin{aligned}
& { }^{1} \mathbf{H} \quad \text { NMR }(200 \mathrm{MHz}, \quad: \quad \delta 1.29(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 3.38 \\
& \mathrm{CDCl}_{3} \text {) } \\
& \text { (dd, } J=6.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dq}, J=6.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}) \text {, } \\
& 4.0 \text { (ddt, } J=1.4,6.2,12.8 \mathrm{~Hz}, 1 \mathrm{H} \text {), } 4.07 \text { (br.d, } J=6.2 \mathrm{~Hz} \text {, } \\
& 1 \mathrm{H} \text {), } 4.14 \text { (br. t, } J=5.6 \mathrm{~Hz}, 1 \mathrm{H} \text {), } 4.19 \text { (ddt, } J=1.4,5.2 \text {, } \\
& 12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 5.21 \text { (ddd, } J=1.4,3.0,10.3 \\
& \mathrm{~Hz}, 1 \mathrm{H}), 5.30 \text { (ddd, } J=1.4,3.0,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.90 \text { (dddd, } \\
& J=5.2,6.2,10.3,17.2 \mathrm{~Hz}, 1 \mathrm{H}) \\
& { }^{13} \text { C NMR (50 MHz, : } \quad 17.3 \text { (q), } 26.1 \text { (q), } 27.9 \text { (q), } 65.7 \text { (d), } 67.8(\mathrm{t}), 74.3 \text { (d), } 75.8 \\
& \mathrm{CDCl}_{3} \text {) } \\
& \text { (d), } 78.5 \text { (d), } 96.1 \text { (d), } 109.3 \text { (} \mathrm{s}), 117.6 \text { (t), } 133.6 \text { (d) ppm }
\end{aligned}
$$

Allyl 4,6-dideoxy-2,3-O-isopropylidene- α-L-lyxo-hexo-pyranoside (15)

To a solution of $13(5.0 \mathrm{~g}, 20.49 \mathrm{mmol})$ in dry THF $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added sodium hydride (60% dispersion in mineral oil, $1.0 \mathrm{~g}, 25.0 \mathrm{mmol}$) followed by carbon disulfide ($1.9 \mathrm{~mL}, 31.65 \mathrm{mmol}$) after 30 min . The stirring continued for 30 min and then methyl iodide ($2.0 \mathrm{~mL}, 32.08 \mathrm{mmol}$) was introduced. After 2 h , reaction mixture was quenched by the addition of ice-water and repeatedly extracted with ethyl acetate. The combined organic extract was washed with water, dried over sodium sulfate and concentrated. The crude xanthate $14(6.5 \mathrm{~g}, 19.46 \mathrm{mmol})$ was dissolved in toluene (75 mL), degassed with Argon, AIBN (50 mg) and tri- n-butyltinhydirde ($7.7 \mathrm{~mL}, 29.05$ $\mathrm{mmol})$ were added. The contents were heated under reflux for 10 h and concentrated. The residue was purified on silica gel by eluting with ethyl acetate-light petroleum (1:9) to afford 15 as colorless oil.
Yield
: $3.8 \mathrm{~g}, 81 \%$, over two steps
Mol. Formula

$$
: \quad \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{4}
$$

Mol. Weight	: 228
ESI-MS m / z	: $251[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis	: Calcd: C, 63.16; H, 8.77\%
	Found: C, 62.92; H, 8.49\%
$[\alpha]_{D}{ }^{25}$: $\quad-56.2\left(c 1.2, \mathrm{CHCl}_{3}\right)$
$\mathbf{I R}\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$	$\begin{aligned} & 3083,2934,1647,1457,1382,1373,1244,1146,1082 \\ & \mathrm{~cm}^{-1} \end{aligned}$
${ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right)$	$\delta 1.16(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.42(\mathrm{~m}, 1 \mathrm{H})$, $1.46(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{ddd}, J=2.3,6.8,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-$ $3.82(\mathrm{~m}, 1 \mathrm{H}), 3.88$ (br.d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ (ddt, $J=$ $1.4,6.2,12.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.13 (ddt, $J=1.4,5.2,12.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.25$ (ddd, $J=5.5,6.7,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H})$, 5.14 (ddd, $J=1.4,3.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ (ddd, $J=1.6$, $3.0,17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.85 (dddd, $J=5.3,6.2,10.3,17.2 \mathrm{~Hz}$, 1H)
$\begin{aligned} & { }^{13} \mathbf{C} \quad \text { NMR } \quad(50 \mathrm{MHz}, \\ & \left.\mathrm{CDCl}_{3}\right) \end{aligned}$	21.2 (q), 26.3 (q), 28.2 (q), 36.1 (t), 62.1 (d), $67.8(t), 70.9$ (d), 72.7 (d), 96.8 (d), 108.6 (s$), 117.3$ (t), 134.0 (d) ppm

4,6-Dideoxy-2,3- O-isopropylidene- α, β-L-lyxo-hexo-pyranose (17)

A mixture of $15(2.5 \mathrm{~g}, 10.96 \mathrm{mmol})$, potassium tert-butoxide $(1.6 \mathrm{~g}, 14.29 \mathrm{mmol})$ and DMSO (40 mL) was heated at $100{ }^{\circ} \mathrm{C}$ for 1 h , diluted with brine and repeatedly extracted with diethyl ether. The combined ether layer was washed with water, dried over sodium sulfate and concentrated. The residue $16(2.42 \mathrm{~g}, 10.61 \mathrm{mmol})$ was taken in acetone:water (9:1) mixture (50 mL) at $0^{\circ} \mathrm{C}$, yellow mercuric oxide ($3.0 \mathrm{~g}, 13.89 \mathrm{mmol}$)
and mercuric chloride $(3.0 \mathrm{~g}, 11.07 \mathrm{mmol})$ were added over a period of 30 minutes. The stirring was continued for 8 h at room temperature, filtered through Celite and the filtrate was concentrated. The residue was partitioned between water and ethyl acetate and the organic layer was washed with saturated potassium iodide solution, brine, dried over sodium sulfate, filtered and concentrated. Purification of the crude on silica gel by eluting with ethyl acetate-light petroleum (1:6) furnished 17.

(2S,4R,5S)-4,5-O-Isopropylidene-hept-6-ene-2-ol (10)

To a solution of $\mathbf{1 7}(1.0 \mathrm{~g}, 5.32 \mathrm{mmol})$ in THF: DMSO (4:1, 15 mL$)$ at $0{ }^{\circ} \mathrm{C}$ was added methyltriphenylphosphorane ylide [generated by the action of n-butyllithium (8.49 $\mathrm{mL}, 20.21 \mathrm{mmol})$ with $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{3} \mathrm{I}^{-}(8.60 \mathrm{~g}, 21.29 \mathrm{mmol})$ in anhydrous THF $(40 \mathrm{~mL})$ at 0 $\left.{ }^{\circ} \mathrm{C}\right]$. The reaction mixture was stirred at rt for 24 h , quenched with saturated ammonium chloride and filtered. The organic layer was separated and aqueous layer extracted with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate and concentrated. The residue was purified on silica gel by eluting with ethyl acetate-light petroleum (1:6) to furnish 10.

Yield	:	$0.63 \mathrm{~g}, 64 \%$
Mol. Formula	:	$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3}$
Mol. Weight	:	186
ESI-MS m / z	:	$209[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis	:	Calcd: C, 64.52; H, 9.68\%
		Found: C, 64.64; H, 9.82\%
$[\alpha]_{\text {D }}{ }^{25}$:	$+17.7\left(c 0.8, \mathrm{CHCl}_{3}\right)$
$\mathbf{I R}\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$:	$\begin{aligned} & 3436,2988,2935,1645,1456,1381,1372,1166,1040 \\ & 667 \mathrm{~cm}^{-1} \end{aligned}$
${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3})	:	$\begin{aligned} & \delta 1.23(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{ddd}, J=3.0, \\ & 8.6,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{ddd}, J=3.3,9.8 \end{aligned}$

$14.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.08 (br. s, 1H), 3.93-4.12 (m, 1H), 4.43 (ddd, $J=3.3,6.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.58(\mathrm{~m}, 1 \mathrm{H}), 5.23$ (ddd, $J=0.8,1.7,10.3 \mathrm{~Hz}, 1 \mathrm{H}$), $5.30(\mathrm{ddd}, J=1.0,1.7$, $17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.78 (ddd, $J=7.3,10.3,17.2 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13}$ C NMR (50 MHz, : 23.9 (q), 25.5 (q), 28.0 (q), 39.1 (t), 64.6 (d), 74.8 (d), 79.4
CDCl_{3}) (d), 108.1 (s), 117.9 (t), 134.2 (d) ppm

1,2:5,6-Di-O-isopropylidene-3,4-di-O-(4-methoxybenzyl)-d-mannitol (19)

To a solution of 1,2:5,6-Di- O-isopropylidene-D-mannitol 18 (15.0 g, 57.25 mmol) in DMF $(150 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added sodium hydride (60% dispersion in mineral oil, 6.87 $\mathrm{g}, 171.75 \mathrm{mmol}$). After 1 h , 4-methoxybenzyl bromide ($19.9 \mathrm{~mL}, 137.21 \mathrm{mmol}$) was added and stirring was continued for 36 h at room temperature. The reaction mixture was decomposed with ice-water and repeatedly extracted with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate and concentrated to a syrup, which was purified on silica gel by eluting with ethyl acetate-light petroleum (1:9) to furnish 19.

Yield	$: 25.3 \mathrm{~g}, 88 \%$
Mol. Formula	$: \mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{8}$
Mol. Weight	$: 502$
ESI-MS m / z	$: 525[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis	$: \quad$ Calcd: C, 66.93; H, 7.57%

Found: C, 67.12; H, 7.47 \%

1,2-O-Isopropylidene-3,4-di-O-(4-methoxybenzyl)-d-mannitol (20)

A solution of $19(10.0 \mathrm{~g}, 19.92 \mathrm{mmol})$, PPTS $(0.5 \mathrm{~g})$ and methanol $(100 \mathrm{~mL})$ was stirred at room temperature for 12 h , basified with triethylamine and concentrated. The crude residue was purified on silica gel by eluting with ethyl acetate-light petroleum (1:2) to afford $\mathbf{2 0}$ and some of starting material 19 being recovered (3.2 g).

Yield	$: 4.15 \mathrm{~g}, 66 \%$ based on recovered starting material
Mol. Formula	$: \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{8}$
Mol. Weight	$: 462$
ESI-MS m / z	$: 485[\mathrm{M}+\mathrm{Na}]^{+}$

(3R,4S,5R)-2,3-bis(4-Methoxybenzyloxy)-5,6-O-isopropylidene-hex-1-ene (22)

To a solution of $20(5.0 \mathrm{~g}, 10.82 \mathrm{mmol})$ in $\mathrm{DCM}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}$ $(4.5 \mathrm{~mL}, 32.34 \mathrm{mmol})$ followed by methanesulfonyl chloride ($2.1 \mathrm{~mL}, 27.20 \mathrm{mmol}$). After 1 h at room temperature, the reaction mixture was partitioned between water and DCM. The organic layer was dried over sodium sulfate and concentrated. The crude dimesylate $21(5.81 \mathrm{~g}, 9.40 \mathrm{mmol}), \mathrm{Zn}(2.98 \mathrm{~g}, 47 \mathrm{mmol})$ and $\mathrm{NaI}(14.10 \mathrm{~g}, 94.0 \mathrm{mmol})$ were heated at $150{ }^{\circ} \mathrm{C}$ in DMF. After 2 h , the solvent was removed by washing the reaction mixture with water for several times and extracted with ethyl acetate. The organic layer was washed with saturated sodium thiosulfate, water, dried over sodium
sulphate, evaporated and the residue purified on silica gel by eluting with ethyl acetatelight petroleum (1:9) to afford 22.

$$
\text { Yield } \quad: 3.15 \mathrm{~g}, 68 \% \text {, over two steps }
$$

Mol. Formula	$: \mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{6}$
Mol. Weight	$: 428$
ESI-MS m / z	$: 451[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis	$: \quad$ Calcd: C, $70.09 ; \mathrm{H}, 7.48 \%$

Found: C, 70.31; H, 7.20\%
$[\alpha]_{\mathbf{D}}{ }^{25} \quad: \quad+7.7\left(c 1.3, \mathrm{CHCl}_{3}\right)$
$\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \widetilde{v} \quad: \quad 2987,2935,1612,1586,1464,1442,1380,1370,1302$, $1218,1173,1036,848,823 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}, \quad: \quad \delta 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.79(2 \mathrm{~s}$, CDCl_{3}) $6 \mathrm{H}), 3.80-3.93$ (m, 3H), 4.18 (ddd, $J=3.8,6.3,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.27$ (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.69$ (m, 3H), 5.135.38 (m, 2H), 5.85 (ddd, $J=7.2,9.9,17.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ (d, $J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.20,7.23(2 \mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (50 MHz, : $\quad 25.3(\mathrm{q}), 26.5(\mathrm{q}), 55.1(\mathrm{q}), 65.4(\mathrm{t}), 70.2(\mathrm{t}), 74.5(\mathrm{t}), 76.4$ CDCl_{3}) (d), 80.1 (d), 80.8 (d), 108.0 (s), 113.5 (d), 113.6 (d), 118.1 (t), 129.4 (d), 129.5 (d), 130.2 (s), 130.6 (s), 135.7 (d), 159.09 (s), 159.13 (s) ppm

(2R,3R,4R)-3,4-bis(4-Methoxybenzyloxy)hex-5-ene-1,2-diol (23)

23
Compound $22(3.5 \mathrm{~g}, 8.18 \mathrm{mmol})$, PPTS (0.2 g) and methanol (35 mL) were stirred for 36 h at room temperature and worked up as described above (see preparation of compound 20) to give 23.

Yield	: $2.52 \mathrm{~g}, 79 \%$
Mol. Formula	: $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{6}$
Mol. Weight	: 388
Elemental Analysis	: Calcd: C, 68.04; H, 7.22\%
	Found: C, 67.77; H, 7.40\%
$[\alpha]_{\text {D }}{ }^{25}$	$: \quad+9.5\left(c 0.7, \mathrm{CHCl}_{3}\right)$
$\mathbf{I R}\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$	$\begin{aligned} : & 3436,3007,2932,1612,1586,1514,1464,1302,1248, \\ & 1174,1035,823 \mathrm{~cm}^{-1} \end{aligned}$
${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3})	$\begin{aligned} & \delta 3.57-3.79(\mathrm{~m}, 5 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.97-4.17 \\ & (\mathrm{~m}, 2 \mathrm{H}), 4.30,4.59(2 \mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.50,4.60(2 \mathrm{~d}, J \\ & =11.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.30-5.45(\mathrm{~m}, 2 \mathrm{H}), 5.93(\mathrm{ddd}, J=7.1, \\ & 10.9,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84,6.86,7.20,7.21(4 \mathrm{~d}, J=8.7 \mathrm{~Hz}, \\ & 8 \mathrm{H}) \end{aligned}$
$\begin{aligned} & { }^{13} \mathbf{C} \quad \text { NMR } \quad(50 \mathrm{MHz}, \\ & \left.\mathrm{CDCl}_{3}\right) \end{aligned}$	$: \quad 55.0(\mathrm{q}), 63.1(\mathrm{t}), 70.3(\mathrm{t}), 71.1(\mathrm{~d}), 73.4(\mathrm{t}), 79.6(\mathrm{~d}), 79.8$ (d), 113.6 (d), 113.7 (d), 118.8 (t , , 129.4 (d), 129.6 (d), 129.9 (s), 134.5 (d), 159.2 (s) ppm

(2S,3R)-2,3-bis(4-Methoxybenzyloxy)pent-4-enoic acid (11)

11

A solution of 23 ($1.4 \mathrm{~g}, 3.61 \mathrm{mmol}$), sodium metaperiodate adsorbed on silica gel (12 g containing 2.45 g of NaIO_{4}) in $\mathrm{DCM}(25 \mathrm{~mL})$ was stirred at rt for 1 h , filtered and concentrated to afford aldehyde $24(1.21 \mathrm{~g}, 3.4 \mathrm{mmol})$, which was dissolved in ${ }^{t} \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(3: 1,30 \mathrm{~mL})$. To this solution were successively added $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ $(1.59 \mathrm{~g}, 10.19 \mathrm{mmol})$, 2-methy-2-butene (7 mL) and sodium chlorite ($918 \mathrm{mg}, 10.2$ mmol). The reaction was stirred for 1 h at rt and was diluted with ethyl acetate. The aqueous layer was extracted with ethyl acetate. The combined extract was dried over sodium sulfate and concentrated to afford a crude product, which was purified on silica gel by eluting with ethyl acetate-light petroleum (1:1.5) to afford $\mathbf{1 1}$ as colorless oil.

Yield	: $974 \mathrm{mg}, 73 \%$, over two steps
Mol. Formula	: $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{6}$
Mol. Weight	: 372
ESI-MS m / z	: $395[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis	: Calcd: C, 67.74; H, 6.45\%
	Found: C, 67.89; H, 6.51\%
$[\alpha]_{\mathrm{D}}{ }^{25}$: $\quad-46.8\left(\right.$ c $\left.0.9, \mathrm{CHCl}_{3}\right)$
$\mathbf{I R}\left(\mathrm{CHCl}_{3}\right) \widetilde{\nu}$: $3394,1724,1612,1514,1249,1174,1036,668 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3})	$\begin{aligned} : & \delta 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11- \\ & 4.16(\mathrm{~m}, 1 \mathrm{H}), 4.30,4.56(2 \mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.49,4.67 \end{aligned}$

($2 \mathrm{~d}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}$), 5.29-5.38 (m, 2H), 5.79-5.96 (m, $1 \mathrm{H}), 6.82,6.85,7.17,7.23(4 \mathrm{~d}, J=8.7 \mathrm{~Hz}, 8 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (50 MHz, : 55.11 (q), 55.14 (q), 70.5 (t), 73.2 (t), 79.7 (d), 80.1 (d), CDCl_{3}) 113.7 (d), 113.8 (d), 119.8 (t), 128.7 ($s), 129.4$ ($s), 129.5$ (d), 129.9 (d), 134.0 (d), 159.3 (s), 159.6 (s), 173.4 (s) ppm
(2S,3R)-((R)-1-((4R,5S)-2,2-Dimethyl-5-vinyl-1,3-dioxolan-4-yl)propan-2-yl) 2,3-bis(4-methoxybenzyloxy)pent-4-enoate (9)

To a solution of $\mathbf{1 0}(200 \mathrm{mg}, 1.07 \mathrm{mmol}), \mathbf{1 1}(500 \mathrm{mg}, 1.34 \mathrm{mmol})$ and TPP (563 $\mathrm{mg}, 2.15 \mathrm{mmol})$ in THF $(8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added DEAD ($\left.0.34 \mathrm{~mL}, 2.16 \mathrm{mmol}\right)$. Stirring was continued at $0{ }^{\circ} \mathrm{C}$ for 1 h and then at room temperature for next 2 h at which time it was concentrated and the crude residue was purified on silica gel by eluting with ethyl acetate-light petroleum (1:9) to afford 9.

Yield	$: \quad 467 \mathrm{mg}, 80 \%$	
Mol. Formula	$:$	$\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{8}$
Mol. Weight	$:$	540
ESI-MS m / z	$:$	$563[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis	$:$	Calcd: $\mathrm{C}, 68.89 ; \mathrm{H}, 7.41 \%$
		Found: C, $69.02 ; \mathrm{H}, 7.54 \%$
$[\alpha]_{\mathrm{D}}{ }^{25}$	$:$	$-38.9\left(c \mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$

```
IR (CHCl3) \widetilde{v}}:= 2934, 1736, 1612, 1513,1464, 1381, 1249, 1173, 1037 \(667 \mathrm{~cm}^{-1}\)
```

${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}, \quad: \quad \delta 1.20(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.54$
(ddd, $J=4.9,6.6,14.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.86 (ddd, $J=6.6,9.1$, $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (s, 3H), 3.78 (s, 3H), 3.92 (d, $J=4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.09$ (br. dd, $J=4.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (ddd, $J=$ $5.0,6.0,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.31,4.40,4.54,4.69$ (4d, $J=11.7$ $\mathrm{Hz}, 4 \mathrm{H}$), 4.48 (br. dd, $J=6.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.10 (q, $J=6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.20-5.36(\mathrm{~m}, 4 \mathrm{H}), 5.66-5.96(\mathrm{~m}, 2 \mathrm{H}), 6.81,6.83$, $7.19,7.24(4 \mathrm{~d}, J=8.7 \mathrm{~Hz}, 8 \mathrm{H})$
${ }^{13}$ C NMR (100 MHz, : 19.7 (q), 25.7 (q), 28.3 (q), 36.5 (t), 55.2 (q), 69.5 (d), 70.4 CDCl_{3}) (t), 72.6 (t), 74.9 (d), 79.6 (d), 80.5 (d), 80.8 (d), 108.5 (s$),$ 113.6 (d), 113.7 (d), 118.7 (t), 119.4 (t), 129.4 (d), 129.5 (s), 129.7 (d), 130.1 (s), 134.0 (d), 134.6 (d), 159.1 (s), 159.4 (s), 169.6 (s) ppm
(2R,4R,5S)-4,5-O-Isopropylidene-hept-6-ene-2-ol (epi-10)

To a solution of $9(50 \mathrm{mg}, 0.092 \mathrm{mmol})$ in moist EtOH (2 mL) was added LiOH. $\mathrm{H}_{2} \mathrm{O}(7 \mathrm{mg}, 0.17 \mathrm{mmol})$ and the reaction mixture was stirred at room temperature for 0.5 h and concentrated. The residue was purified on silica gel by eluting with ethyl acetate- light petroleum (1:6) to furnish epi-10 as colorless oil.

Yield : $18 \mathrm{mg}, 81 \%$

(2S,3R)-((R)-1-((4R,5S)-2,2-Dimethyl-5-vinyl-1,3-dioxolan-4-yl)propan-2-yl)

3-hydroxy-2-(4-methoxybenzyloxy)pent-4-enoate (25)

To a solution of $9(400 \mathrm{mg}, 0.74 \mathrm{mmol})$ in $\mathrm{DCM}(35 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added aqueous $\mathrm{NaH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}(\mathrm{pH} 7)$ buffer (15 mL) and DDQ ($800 \mathrm{mg}, 3.52 \mathrm{mmol}$). The reaction was allowed to warm to room temperature. After 4 h at rt , it was filtered through Celite and layers separated. The aqueous layer was extracted with DCM and the combined organic layer was dried over sodium sulphate and concentrated. The residue was purified on silica gel by eluting with ethyl acetate-light petroleum (1:6) to afford unreacted 9 (94 mg) and 25.

Yield $: 162 \mathrm{mg}, 68 \%$, based on recovered starting material

Mol. Formula	$: \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{7}$
Mol. Weight	$: 420$

ESI-MS $m / z \quad: \quad 443[\mathrm{M}+\mathrm{Na}]^{+}$

Elemental Analysis : Calcd: C, 65.71; H, 7.62\%
Found: C, 65.95; H, 7.80\%
$[\alpha]_{\mathbf{D}}{ }^{25} \quad: \quad+4.3\left(c 1.2, \mathrm{CHCl}_{3}\right)$
$\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \widetilde{v} \quad: \quad 3436,2925,2854,1744,1615,1518,1459,1379,1250$, 1171, 1097, $1037 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}, \quad: \quad \delta 1.27(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.58$ CDCl_{3}) (ddd, $J=4.6,5.8,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.88$ (ddd, $J=7.2,9.0$, $14.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (br. s, 1H), 3.79 (s, 3H), 3.87 (d, $J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.22 (ddd, $J=4.6,6.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-$ 4.36 (m, 1H), 4.39 (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ (br. dd, $J=$ 6.2, 7.6 Hz, 1H), 4.69 (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.12-5.39 (m, $5 \mathrm{H}), 5.69-5.94(\mathrm{~m}, 2 \mathrm{H}), 6.86,7.25(2 \mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \quad: \quad 20.0$ (q), 25.6 (q), 28.2 (q), 36.6 (t), 55.2 (q), 70.0 (d), 72.5 CDCl_{3}) (t), 73.4 (d), 75.1 (d), 79.7 (d), 80.7 (d), 108.6 ($s), 113.9$ (d), 117.2 (t$), 118.7$ (t$), 128.9$ (s$), 129.9$ (d), 134.0 (d), 136.0 (d), 159.6 (s), 169.9 (s) ppm
(2S,3R)-((R)-1-((4R,5S)-2,2-Dimethyl-5-vinyl-1,3-dioxolan-4-yl)propan-2-yl) 3-acetoxy-2-(4-methoxybenzyloxy)pent-4-enoate (26)

To a solution of $25(20 \mathrm{mg}, 47.6 \mu \mathrm{~mol})$ and pyridine $(15.4 \mu \mathrm{~L}, 0.19 \mathrm{mmol})$ in dry DCM $(2 \mathrm{~mL})$ was added acetic anhydride $(6.7 \mu \mathrm{~L}, 71.4 \mu \mathrm{~mol})$ at $0{ }^{0} \mathrm{C}$ and then the reaction mixture was stirred at room temperature for 3 h . Water was added to the reaction mixture and aqueous layer was extracted with DCM. Combined organic layer was thoroughly washed with water, dried over sodium sulfate and concentrated. The residue was purified on silica gel by eluting with ethyl acetate-light petroleum (1:9) to furnish the acetate derivative 26.

Yield $: 19 \mathrm{mg}, 86 \%$

Mol. Formula $\quad: \quad \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{8}$

Mol. Weight : 462

Elemental Analysis : Calcd: C, 64.92; H, 7.41\%
Found: C, 64.59; H, 7.14\%
$[\alpha]_{\mathbf{D}}{ }^{25} \quad: \quad-14.47\left(c 1.3, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}, \quad: \quad \delta 1.25(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.58$
CDCl_{3})
(ddd, $J=4.8,6.6,14.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.81 (ddd, $J=6.7,9.1$, $14.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.07 (s, 3H), 3.81 (s, 3H), 4.01 (d, $J=4.2$ Hz, 1H), 4.19 (ddd, $J=4.6,6.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42$ (d, $J=$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=6.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-5.19(\mathrm{~m}, 1 \mathrm{H}), 5.24-5.30(\mathrm{~m}, 3 \mathrm{H}), 5.37-$
$5.39(\mathrm{~m}, 1 \mathrm{H}), 5.58-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.79(\mathrm{ddd}, J=7.7,10.2$, $17.1 \mathrm{~Hz}, 1 \mathrm{H}) 5.87$ (ddd, $J=6.6,10.4,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$, $7.26(2 \mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \quad: \quad 19.6$ (q), 20.9 (q), 25.7 (q), 28.2 (q), 36.5 (t), 55.2 (q), 70.0 CDCl_{3}) (d), 72.5 (t$), 74.3$ (d), 74.9 (d), 78.4 (d), 79.6 (d), 108.6 (s), 113.8 (d), 118.8 (t), 119.1 (t), 128.9 (s$), 129.8$ (d), 132.1 (d), 133.9 (d), 159.5 (s), 168.8 (s), 169.7 (s) ppm;
(3aR,5R,8S,9R,11aS,E)-9-Hydroxy-8-(4-methoxybenzyloxy)-2,2,5-trimethyl-4,5,8,9-tetrahydro-3aH-[1,3]dioxolo[4,5-d]oxecin-7(11aH)-one (27)

A degassed solution of $25(124 \mathrm{mg}, 0.3 \mathrm{mmol})$ and Grubbs' $2^{\text {nd }}$ Generation catalyst ($7 \mathrm{mg}, 8 \mu \mathrm{~mol}$) in dry benzene $(150 \mathrm{~mL})$ was heated to reflux under argon atmosphere for 6 h and then concentrated. The residue was purified on silica gel by eluting with ethyl acetate-light petroleum (1:4) to furnish compound 27.

Yield $: 74 \mathrm{mg}, 64 \%$
Mol. Formula $\quad: \quad \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{7}$

Mol. Weight : 392

ESI-MS m/z : $415[\mathrm{M}+\mathrm{Na}]^{+}$

Elemental Analysis : Calcd: C, 64.29; H, 7.14\%
Found: C, 64.44; H, 7.07\%
$[\alpha]_{D}{ }^{25}$
$: \quad+36.4\left(c 1.1, \mathrm{CHCl}_{3}\right)$
$\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \widetilde{v} \quad: \quad 3448,2983,2934,1719,1607,1514,1458,1381,1253$, $1170,1103 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}, \quad: \quad \delta 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.49-$ $\left.\mathrm{CDCl}_{3}\right)$
1.51 (m, 1H), 2.31 (br. s, 1H), 2.52 (ddd, $J=4.3,9.8,15.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.33$ (d, J $=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=6.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.55(\mathrm{~m}$, overlapped, 1 H$), 4.78(\mathrm{dd}, J=$ $6.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-5.19(\mathrm{~m}, 1 \mathrm{H}), 5.72$ (ddd, $J=1.2$, $8.0,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{dd}, J=3.0,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$, $7.22(2 \mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H})$
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \quad: \quad 18.2$ (q), 25.2 (q), 28.0 (q), 35.2 (t), 55.2 (q), 69.3 (d), 70.0 CDCl_{3}) (d), 72.4 (t), 75.3 (d), 78.5 (d), 83.2 (d), 108.5 (s), 114.0
(d), 126.1 (d), 128.8 (s), 129.8 (d), 133.3 (d), 159.7 (s), 170.7 (s) ppm
(3aR,5R,8S,9R,11aS,E)-9-(tert-Butyldiphenylsilyloxy)-8-(4-methoxybenzyloxy)-2,2,5-trimethyl-4,5,8,9-tetrahydro-3aH-[1,3]dioxolo[4,5-d]oxecin-7(11aH)-one (28)

To a solution of $27(150 \mathrm{mg}, 0.38 \mathrm{mmol})$ in dry DCM (10 mL) and imidazole (39 $\mathrm{mg}, 0.57 \mathrm{mmol}$) was added tert-butyldiphenylchloro silane ($126 \mu \mathrm{~L}, 0.49 \mathrm{mmol}$) and the reaction mixture was refluxed for 10 h and then concentrated. The residue was purified on silica gel column by eluting with ethyl acetate-light petroleum (1:9) to afford 28.

Yield	: $203 \mathrm{mg}, 84 \%$
Mol. Formula	: $\mathrm{C}_{37} \mathrm{H}_{46} \mathrm{O}_{7} \mathrm{Si}$
Mol. Weight	: 630
ESI-MS m / z	: $653[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis	Calcd: C, 70.48; H, 7.30 Found: C, 70.73; H, 7.17\%
$[\alpha]_{\text {D }}{ }^{25}$: $+2.9\left(c 3.3, \mathrm{CHCl}_{3}\right)$
$\mathbf{I R}\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$	$\begin{aligned} & 3018,2929,2856,2742,1725,1701,1685,1601,1578 \text {, } \\ & 1501 \mathrm{~cm}^{-1} \end{aligned}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl_{3})	$\delta 1.11(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.47$ $(\mathrm{s}, 3 \mathrm{H}), 1.44-1.52$ (m, overlapped, 1 H), 2.50 (ddd, $J=3.9$, $9.9,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, 3.93, 4.11 ($2 \mathrm{~d}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}$), 4.44-4.51 (m, 2H), 4.83 (dd, $J=6.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.21(\mathrm{~m}, 1 \mathrm{H}), 5.93(\mathrm{dd}, J=$ $2.4,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=7.0,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$, $6.96(2 \mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.32-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.57-7.61$ (m, 2H), 7.76-7.81 (m, 2H)
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3})	18.2 (q), 19.3 (s), 25.3 (q), 26.9 (q), 28.0 (q), 35.3 (t$), 55.2$ (q), 67.8 (d), 71.1 (d), 72.1 (t), 75.5 (d), 78.9 (d), 83.6 (d), 108.3 (s), 113.7 (d), 127.1 (d), 127.68 (d), 127.73 (d), 129.0 (d), 129.6 (d), 129.8 (d), 129.9 (s), 132.9 (s), 133.3 (d), 133.6 (d), 134.8 (d), 135.7 (d), 136.1 (d), 159.4 ($s)$, 168.7 (s) ppm

(3aR,5R,8S,9R,11aS,E)-9-(tert-Butyldiphenylsilyloxy)-8-hydroxy-2,2,5-trimethyl-

4,5,8,9-tetrahydro-3aH-[1,3]dioxolo[4,5-d]oxecin-7(11aH)-one (29)

29
At room temperature, a solution of $28(190 \mathrm{mg}, 0.30 \mathrm{mmol}) \mathrm{DDQ}(170 \mathrm{mg}, 0.75$ mmol) in DCM-Water (6 mL , 18:1), was stirred for 3 h . To this aqueous sodiumbicarbonate solution was added and the contents were partitioned between water and DCM. The aqueous layer was extracted with DCM and the combined organic layer was dried over sodium sulphate and concentrated. The residue was purified on silica gel column by eluting with ethyl acetate-light petroleum (1:6) gave 29.

Yield	$: 110 \mathrm{mg}, 71 \%$	
Mol. Formula	$:$	$\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{Si}$
Mol. Weight	$: 510$	
ESI-MS m / z	$:$	$533[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis	$:$	Calcd: $\mathrm{C}, 68.23 ; \mathrm{H}, 7.45$
	Found: C, 68.38; H, 7.67	
	$: \quad+1.43\left(c 2.6, \mathrm{CHCl}_{3}\right)$	
$[\alpha]_{\mathbf{D}}{ }^{25}$	$: \quad 3448,3072,3015,2984,2931,2858,1735,1680,1599$,	
IR $\left(\mathrm{CHCl}_{3}\right) \tilde{v}$	$1578,1511 \mathrm{~cm}^{-1}$	

${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}, \quad: \quad \delta 1.12(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.48$ $\left.\mathrm{CDCl}_{3}\right) \quad(\mathrm{s}, 3 \mathrm{H}), 1.57(\mathrm{br} . \mathrm{dd}, J=5.2,7.12 \mathrm{H}), 2.56(\mathrm{ddd}, J=4.2$, $9.9,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.45(\mathrm{~m}$, 2 H), 4.80 (dd, $J=6.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.26(\mathrm{~m}, 1 \mathrm{H})$, 5.95 (dd, $J=3.0,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.14$ (ddd, $J=1.0,8.1$,
$16.1 \mathrm{~Hz}), 7.37-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.60-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.79-$
7.84 (m, 2H)
 132.8 (s), 133.4 (s), 135.7 (d), 136.0 (d), 167.7 (s) ppm
(3aR,5R,8S,9R,11 α S,E)-9-(tert-Butyldiphenylsilyloxy)-2,2,5-trimethyl-7-oxo-

4,5,7,8,9,11a-hexahydro-3aH-[1,3]dioxolo[4,5-d]oxecin-8-yl methanesulfonate (30)

At $0{ }^{\circ} \mathrm{C}$, a solution of $29(100 \mathrm{mg}, 0.19 \mathrm{mmol})$, triethylamine ($66 \mu \mathrm{~L}, 0.475$ mmol), DMAP (catalytic) was treated with methanesulfonyl chloride ($34 \mu \mathrm{~L}, 0.437$ mmol) and the reaction mixture was warmed to rt and stirred for 2 h . The reaction was portioned between water and DCM and the aqueous layer was extracted with DCM. Combined organic layer was dried over sodium sulphate and concentrated. Purification of the resulting crude product by column chromatography (1:6 ethyl acetate- light petroleum) afforded $30(95 \mathrm{mg}, 82 \%)$ as a sticky white solid.

Yield	$: 95 \mathrm{mg}, 82 \%$
Mol. Formula	$: \mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{8} \mathrm{SSi}$
Mol. Weight	$: 588$
ESI-MS m / z	$: 611[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis	$:$Calcd: $\mathrm{C}, 61.22 ; \mathrm{H}, 6.80$

(1aR,4R,5aR,8aS,10aR,E)-4,7,7-Trimethyl-5,5a,8a,10a-tetrahydro-1aH-[1,3]dioxolo[4,5-g]oxireno[2,3-c]oxecin-2(4H)-one (31)

To a solution of $\mathbf{3 0}(90 \mathrm{mg}, 0.15 \mathrm{mmol})$ in dry THF (2 mL), 1M solution of TBAF in THF ($0.36 \mathrm{~mL}, 0.36 \mathrm{mmol}$) was added at $0{ }^{0} \mathrm{C}$ and the contents were stirred at rt for 8 h. To this was added satd. ammonium chloride and the aqueous layer was extracted with ethyl acetate and the combined organic layer was dried with sodium sulphate and concentrated. The residue was purified on silica gel column by eluting with ethyl acetatelight petroleum (1:9) to afford 31.

Yield	$24 \mathrm{mg}, 63 \%$
Mol. Formula	: $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5}$
Mol. Weight	: 254
ESI-MS m / z	: 277 [M+Na] ${ }^{+}$
Elemental Analysis	Calcd: C, 61.42; H, 7.09 Found: C, 61.63; H, 7.26
$[\alpha]_{\text {D }}{ }^{25}$	$:+3.62\left(c 1.7, \mathrm{CHCl}_{3}\right)$
$\mathbf{I R}\left(\mathrm{CHCl}_{3}\right) \widetilde{\nu}$	$\begin{aligned} & \text { 2986, 2927, 2855, 1737, 1456, 1371, 1221, 1167, } 1080 \\ & \mathrm{~cm}^{-1} \end{aligned}$
${ }^{1} \mathbf{H}$ NMR (400 MHz, Acetone d_{6})	$\delta 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$, $1.65-1.71(\mathrm{~m}, 1 \mathrm{H}), 2.25$ (ddd, $J=1.7,9.8,15.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.75 (ddd , $J=0.7,2.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.39$ (dd, $J=6.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ (dd, $J=7.1,8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.93-4.99(\mathrm{~m}, 1 \mathrm{H}), 5.58(\mathrm{dd}, J=9.0,16.2 \mathrm{~Hz}$, 1H), 5.95 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (100 MHz, Acetone d_{6})	$24.6(\mathrm{q}), 27.4(\mathrm{q}), 29.4(\mathrm{t}), 52.7$ (d), 57.3 (d), $69.8(\mathrm{~d}), 75.4$ (d), 77.9 (d), 107.9 (s), 127.4 (d), 128.0 (d), 166.3 (s) ppm

(1R,4R,6R,7S,10R,E)-6,7-Dihydroxy-4-methyl-3,11-dioxabicyclo[8.1.0]undec-8-en-2one (5)

At $0^{\circ} \mathrm{C}$, a solution of $31(20 \mathrm{mg}, 78.7 \mu \mathrm{~mol})$ in dry $\mathrm{DCM}(1 \mathrm{~mL})$ was treated with TFA $(10 \mu \mathrm{l})$ and stirred for 4 h at rt . The reaction mixture was concentrated under reduced pressure and the resulting residue was purified on silica gel column by eluting with ethyl acetate- light petroleum (1:1) to furnish 5.

Yield	: $10 \mathrm{mg}, 60 \%$
Mol. Formula	: $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{5}$
Mol. Weight	: 214
ESI-MS m / z	: $237[\mathrm{M}+\mathrm{Na}]^{+}, 254[\mathrm{M}+\mathrm{H}+\mathrm{K}]^{+}$
Elemental Analysis	Calcd: C, 56.07; H, 6.54 Found: C, 55.79; H, 6.27
$[\alpha]_{\text {D }}{ }^{25}$: $-11.78\left(c 0.5, \mathrm{CHCl}_{3}\right)$
$\mathbf{I R}\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$	$\begin{aligned} & 3401,2926,2854,1731,1648,1460,1369,1221,1103, \\ & 1065 \mathrm{~cm}^{-1} \end{aligned}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3})	$\begin{aligned} & \delta 1.38(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.53(\mathrm{dd}, J=6.3,16.1 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 2.28(\mathrm{ddd}, J=2.3,7.7,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.73(\mathrm{~m}, 2 \mathrm{H}), \\ & 3.90(\mathrm{dd}, J=3.1,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=3.1,8.3 \mathrm{~Hz}, \\ & 1 \mathrm{H}), 5.18-5.25(\mathrm{~m}, 1 \mathrm{H}), 5.64(\mathrm{dd}, J=8.3,16.1 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 5.80(\mathrm{dd}, J=1.8,16.1 \mathrm{~Hz}, 1 \mathrm{H}) \end{aligned}$
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3})	$19.7 \text { (q), } 35.7 \text { (t), } 53.0 \text { (d), } 58.0 \text { (d), } 69.7 \text { (d), } 72.1 \text { (d), } 75.6$ (d), 125.9 (d), 129.3 (d), 166.7 (s) ppm.

SPECTROSCOPIC DATA

${ }^{1} \mathrm{H}$ NMR spectra of compound 23

${ }^{13} \mathrm{C}$ NMR spectra of compound 23

${ }^{1} \mathrm{H}$ NMR spectra of compound 25

${ }^{13} \mathrm{C}$ NMR spectra of compound 25

${ }^{1} H$ NMR spectra of compound 10

${ }^{13} \mathrm{C}$ NMR spectra of compound 10

${ }^{1} \mathrm{H}$ NMR spectra of compound 19

${ }^{13} \mathrm{C}$ NMR spectra of compound 19

${ }^{1} \mathrm{H}$ NMR spectra of compound 22

${ }^{13} \mathrm{C}$ NMR spectra of compound 22

${ }^{1} \mathbf{H}$ NMR spectra of compound 11

${ }^{13} \mathrm{C}$ NMR spectra of compound 11

${ }^{1} \mathrm{H}$ NMR spectra of compound 9

${ }^{13} \mathrm{C}$ NMR spectra of compound 9

${ }^{1} \mathrm{H}$ NMR spectra of compound 25

${ }^{13} \mathrm{C}$ NMR spectra of compound 25

${ }^{1} \mathrm{H}$ NMR spectra of compound 27

${ }^{13} \mathrm{C}$ NMR spectra of compound 27

${ }^{1} \mathrm{H}$ COSY spectra of compound 27

${ }^{1}$ H NOESY spectra of compound 27

${ }^{1} \mathrm{H}$ NMR spectra of compound epi-10

${ }^{13} \mathrm{C}$ NMR spectra of compound epi-10

${ }^{1} \mathrm{H}$ NMR spectra of compound 28

${ }^{13} \mathrm{C}$ NMR spectra of compound 28

${ }^{1}$ H NMR spectra of compound 29

${ }^{13} \mathrm{C}$ NMR spectra of compound 29

${ }^{1} \mathrm{H}$ NMR spectra of compound 30

${ }^{13} \mathrm{C}$ NMR spectra of compound 30

${ }^{1} \mathrm{H}$ NMR spectra of compound 31

${ }^{13} \mathrm{C}$ NMR spectra of compound 31

${ }^{1} \mathrm{H}$ NMR spectra of compound 5

${ }^{13} \mathrm{C}$ NMR spectra of compound 5

${ }^{1} \mathrm{H}$ COSY spectra of compound 5

${ }^{1} \mathrm{H}$ NOESY spectra of compound 5

REFERENCES

REFERENCES

1) Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2007, 70, 461.
2) Farnsworth, N. R.; Morris, R. W. Am. J. Pharm. 1976, 148, 46.
3) Gullo, V. P., Ed.; The Discovery of Natural Products with Therapeutic Potential; Butterworth-Heinemann: Boston, 1994.
4) O’Neill, M. J.; Lewis, J. A. Human Medicinal Agents from Plants; Kinghorn, A. D.; Balandrin, M. F., Eds.; ACS Symposium Series 534; American Chemical Society: Washington, D. C., 1993; pp 48-53.
5) For comprehensive annual reports on marine natural products, see: a) Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. Nat. Prod. Rep. 2005, 22, 15. b) Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. Nat. Prod. Rep. 2003, 20, 1. c) Faulkner, D. J. Nat. Prod. Rep. 2002, 19, 1. d) Faulkner, D. J. Nat. Prod. Rep. 2001, 18, 1. e) For a collection of reviews on marine natural products, see: Fenical, M. Chem. Rev. 1993, 93, 1673.
6) For recent reviews on marine macrolides, see: a) Ishibashi, M. Macrolide Antibiotics; Omura, S., Ed.; Academic Press: San Diego, 2002; pp 57-98. b) For an extensive review on the total synthesis of bioactive marine macrolides, see: Norcross, R. D.; Paterson, I. Chem. Rev. 1995, 95, 2041.
7) Kerschbaum, M. Chem. Ber. 1927, 60, 907.
8) Tapiolas, D. M.; Roman, M.; Fenical, W.; Stout, T. J.; Clardy, J. J. Am. Chem. Soc. 1991, 113, 4682.
9) Henninger, T. C. Expert Opin. Ther. Pat. 2003, 13, 787.
10) Davies, J. S. J. Peptide Sci. 2003, 9, 471.
11) Rychnovsky, S. D. Chem. Rev. 1995, 95, 2021.
12) Nicolaou, K. C.; Ritzen, A.; Namoto, K. Chem. Commun. 2001, 1523.
13) Grignard Reagents: New Developments (Ed.: H. G. Richey), Wiley, Chichester, 2000, p. 418.
14) For an overview of the utility of the Diels-Alder reaction in total synthesis, see: Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem. Int. Ed. 2002, 41, 1668.
15) Nicolaou, K. C.; Härter, M.W.; Gunzner, J. L.; Nadin, A. Liebigs Ann./Recl. 1997, 1283.
16) Fürstner, A.; Radkowski, K.; Wirtz, C.; Goddard, R.; Lehmann, C. W.; Mynott R. J. Am. Chem. Soc. 2002, 124, 7061.
17) a) Bourgeois, D.; Pancrazi, A.; Ricard, L.; Prunet, J. Angew. Chem. Int. Ed. 2000, 39, 725. b) Bourgeois, D.; Mahuteau, J.; Pancrazi, A.; Nolan, S. P.; Prunet, J. Synthesis 2000, 869.
18) a) Fürstner, A.; Seidel, G. Angew. Chem. Int. Ed. 1998, 37, 1734. b) Fürstner, A.; Guth, O.; Rumbo, A.; Seidel, G. J. Am. Chem. Soc. 1999, 121, 11108. c) Fürstner, A.; Mathes, C.; Lehmann, C. W. Chem. Eur. J. 2001, 7, 5299.
19) Fu, G. C.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 114, 5426.
20) Fu, G. C.; Nguyen, S T.; Grubbs, R. H. J. Am. Chem. Soc. 1993, 115,9856
21) a) Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.; Robbins, J.; DiMare, M.; Regan, M. O. J. Am. Chem. Soc. 1990, 112, 3875. b) For reviews of the use of molybdenum imido alkylidene catalysts in alkene metathesis, see: Schrock, R. R.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2003, 42, 4592. c) Schrock, R. R. Tetrahedron, 1999, 55, 8141. d) Schrock, R. R. Top. Organomet. Chem. 1998, 1, 1.
22) Hérisson, J. - L.; Chauvin, Y. Makromol. Chem. 1971, 141, 161.
23) Hoye, T. R.; Donaldson, S. M.; Vos, T. J. Org. Lett. 1999, 1, 277.
24) a) Hoffmann, H. M. R.; Rabe, J. Angew. Chem. Int. Ed. Engl. 1985, 24, 94. b) Negishi, E.; Kotora, M. Tetrahedron 1997, 53, 6707. c) Collins, I. J. Chem. Soc., Perkin Trans. 1 1999, 1377. d) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199.
25) a) Ghosh, A. K.; Wang, Y. J. Am. Chem. Soc. 2000, 122, 11027. b) Ghosh, A. K.; Wang, Y.; Kim, J. T. J. Org. Chem. 2001, 66, 8973.
26) Crimmins, M. T.; King, B. W. J. Am. Chem. Soc. 1998, 120, 9084.
27) Reddy, M. V. R.; Rearick, J. P.; Hoch, N.; Ramachandran, P. V. Org. Lett. 2001, 3, 19.
28) Reddy, M. V. R.; Yucel, A. J.; Ramachandran, P. V. J. Org. Chem. 2001, 66, 2512.
29) Mizutani, H.; Watanabe, M.; Honda, T. Tetrahedron 2002, 58, 8929.
30) Trost, B. M.; Yeh, V. S. C. Org. Lett. 2002, 4, 3513.
31) Cossy, J.; Pradaux, F.; BouzBouz, S. Org. Lett. 2001, 3, 2233.
32) Wang, Y. - G.; Kobayashi, Y. Org. Lett. 2002, 4, 4615.
33) Falomir, E.; Murga, J.; Carda, M.; Marco, J. A. Tetrahedron Lett. 2003, 44, 539.
34) a) Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, Jr. P. J.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 791. b) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168.
35) Früstner, A.; Müller, T. Synlett 1997, 1010.
36) Murga, J.; Falomir, E.; Garcia-Fortanet, J.; Carda, M.; Marco, J. A. Org. Lett. 2002, 4, 3447.
37) Lee, C. W.; Grubbs, R. H. Org. Lett. 2000, 2, 2145.
38) Früstner, A.; Radkowski, K.; Wirtz, C.; Goddard, R.; Lehmann, C. W.; Mynott, R. J. Am. Chem. Soc. 2002, 124, 7061.
39) Früstner, A.; Müller, C. Chem. Commun. 2005, 5583.
40) Früstner, A.; Kindler, N. Tetrahedron Lett. 1996, 37, 7005.
41) a) Erickson, K. L.; Beutler J. A.; Cardellina II, J. A.; Boyd M. R. J. Org. Chem. 1997, 62, 8188. b) Erickson, K. L.; Beutler J. A.; Cardellina II, J. A.; Boyd M. R. J. Org. Chem. 2001, 66, 1532.
42) a) Wu, Y.; Esser, L.; De Brabander, J. K. Angew. Chem., Int. Ed. 2000, 39, 4308. b) Wu, Y.; Seguil, O. R.; De Brabander, J. K. Org. Lett. 2000, 2, 4241. c) Wu, Y.; Liao, X.; Wang, R.; Xie, X.; De Brabander, J. K. J. Am. Chem. Soc. 2002, 124, 3245.
43) Fürstner, A.; Thiel, O. R.; Blanda, G. Org. Lett. 2000, 2, 3731.
44) Snider, B. B.; Song, F. Org. Lett. 2001, 3, 1817.
45) a) Smith, A. B.; Zheng, J. Synlett 2001, 1019. b) Smith, A. B.; Zheng, J. Tetrahedron 2002, 58, 6455.
46) Du, Y.; Chen, Q.; Linhardt R. J. J. Org. Chem. 2006, 71, 8446.
47) Chen Q.; Du, Y. Tetrahedron Lett. 2006, 47, 8489.
48) Nicolaou, K. C.; Snyder, S. A. Angew. Chem. Int. Ed. 2005, 44, 1012.
49) Jasper, C.; Wittenberg, R.; Quitschalle, M.; Jakupovic, J.; Kirschning, A. Org. Lett. 2005, 7, 479.
50) Boonphong, S.; Kittakoop, P.; Isaka, M.; Pittayakhajonwut, D.; Tanticharoen, M.;Thebtaranonth, Y. J. Nat. Prod. 2001, 64, 965.
51) Tan, Q.; Yan, X.; Lin, X.; Huang, Y.; Zheng, Z.; Song, S.; Lu, C.; Shen, Y. Helv. Chim. Acta 2007, 90, 1811.
52) a) Ramana, C. V.; Salian, S. R.; Gurjar, M. K. Tetrahedron Lett. 2007, 48, 1013. b) Ramana, C. V.; Mondal, M. A.; Puranik, V. G.; Gurjar, M. K. Tetrahedron Lett. 2006, 47, 4061.
53) a) Gurjar, M. K.; Nayak, S.; Ramana, C. V. Tetrahedron Lett. 2005, 46, 1881. b) Ramana, C. V.; Reddy, B. S.; Gurjar, M. K. Tetrahedron Lett. 2004, 45, 2817.
54) a) Valente, L.; Olesker, A.; Rabanal, R.; Barata, L. E. S.; Lukacs, G.; Thang, T. Tetrahedron Lett. 1979, 20, 1153. b) Mitsunobu, O.; Ebina, M.; Ogihara, T. Chem. Lett. 1982, 373. c) Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans. 1 1975, 1574.
55) a) Gigg, J.; Gigg, R. J. Chem. Soc. C 1966, 82. b) Gigg, R.; Warren, C. D. J. Chem. Soc. C 1968, 1903.
56) Bozó, E.; Medgyes, A.; Boros, S.; Kuszmann, J. Carbohydrate Research 2000, 329, 25.
57) a) Takaku, H.; Kamaike, K. Chem. Lett. 1982, 189. b) Takaku, H.; Kamaike, K.; Tsuchiya, H. J. Org. Chem. 1984, 49, 51.
58) Miyashita, M.; Yoshikoshi, A.; Griecolb, P. A. J. Org. Chem. 1977, 42, 3372.
59) a) Gurjar, M. K.; Khaladkar, T. P.; Borhade, R. G.; Murugan, A. Tetrahedron Lett. 2003, 44, 5183. b) Gurjar, M. K.; Patil, V. J.; Pawar, M. Carbohydrate Research 1987, 165, 313.
60) Zhong, Y. L.; Shing, T. K. M. J. Org. Chem. 1997, 62, 2622.
61) Wakabayashi, T.; Mori, K.; Kobayashi, S. J. Am. Chem. Soc. 2001, 123, 1372.
62) a) Mitsunobu, O. Synthesis 1981, 1. b) Hughes, D. L. Organic reactions 1992, 42, 335. c) Hughes, D. L.; Reamer, R. A. J. Org. Chem. 1996, 61, 2967. d) Hughes, D. L.; Reamer, R. A.; Bergan, J. J.; Grabowski, E. J. J. J. Am. Chem. Soc. 1988, 110, 6487.

CHAPTER 2: Section 1

Towards the Total Synthesis of Feigrisolide B

PRESENT WORK

PRESENT WORK

Two groups of medium diolides have been isolated from fungi Streptomyces: unsymmetrical 14 -membered macrolides such as grahamimycin $\mathrm{A}_{1}{ }^{1}$ and colletodiol, ${ }^{2}$ and C_{2}-symmetric 16-membered lactones, like pyrenophorin, ${ }^{3}$ vermiculine, ${ }^{4}$ conglobatin, ${ }^{5}$ and elaiophylin. ${ }^{6}$ A number of these secondary metabolites and their analogues showed promising antibiotic activity. ${ }^{7}$ Recently Thiericke and co-workers isolated four new secondary metabolites named as feigrisolides A-D (Figure 1) from the fermentation brothes Strptomyces Griseus (Strain GT 051922) and revealed that these compounds possess strong antibacterial, as well as medium cycotoxic and antiviral activities. It has been found that feigrisolides $\mathrm{A}(\mathbf{1})$ and $\mathrm{B}(\mathbf{2})$ belong to hepta-lactones, and the other two compounds, feigrisolide C (3) and D (4) belong to 16 -membered non symmetric macrolides. ${ }^{8}$

Figure 1: Structures of feigrisolides A-D

1
Feigrisolide A

2
Feigrisolide B

Feigrisolide C

Feigrisolide D

After extensive NMR studies for the determination of their constitution and the comparison NMR data of feigrisolides A and B , it is clearly seen that one extra methylene group is present in feigrisolide B compared to feigrisolide A. IR and UV studies are almost same for the two compounds. The HRFAB-MS ($\mathrm{m} / \mathrm{z}=217.1469$ [M + $\mathrm{H}]^{+}, \mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}_{4}$) for feigrisolide B and HRFAB-MS ($\mathrm{m} / \mathrm{z}=203.1314[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{4}$) for feigrisolide A clearly supported the presence of an extra methylene group in feigrisolide B .

Table 1: NMR comparison data of feigrisolides A and B

Position	$\begin{aligned} & \text { Feigrisolide } \mathrm{A}(\mathbf{1}) \\ & \delta{ }^{1} \mathrm{H}(\text { multi. } \mathrm{J}=\mathrm{Hz}) \end{aligned}$	$\delta{ }^{13} \mathrm{C}$	Feigrisolide B (2) $\delta{ }^{1} \mathrm{H}$ (multi. $\mathrm{J}=\mathrm{Hz}$)	$\delta{ }^{13} \mathrm{C}$
1		177.5(s)		177.6 (s)
2	2.50 (dq, 8.3, 7.2)	45.3 (d)	2.50 (dq, 8.3, 7.0)	45.3 (d)
3	3.98 (q, 8.3)	81.1 (d)	3.98 (bq, 8.3)	81.0 (d)
4	2.03 (α, m)	29.1 (t)	2.03 (α, m)	29.1 (t)
	1.67 (β, m)		1.68 (β, m)	
5	1.66 (α, m)	35.3 (t)	1.65 (α, m)	30.6 (t)
	2.01 (β, m)		2.01 (β, m)	
6	4.19 (m)	77.1 (d)	4.21 (m)	77.3 (d)
7	1.68 (m)	42.9 (t)	1.70 (m)	40.7 (t)
8	4.08 (m)	65.2 (d)	3.78 (m)	70.4 (d)
9	1.21 (d, 6.3)	23.1 (q)	1.51 (m)	29.9 (q)
10	-	-	0.92 (t, 7.5)	10.0 (q)
1 ,	1.16 (d, 7.2)	13.7 (q)	1.16 (d, 7.2)	13.7 (q)
OH x 2	4.35 (2H, br. s)		4.75 (2H, br. s)	

From the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR comparison studies it is clear that feigrisolide A and B are having common structural features. For the determination of the $8-\mathrm{OH}$ stereochemistry of feigrisolide A, Helmchen's method of esterification was applied. ${ }^{9}$ Where the compound was reacted with each one of the enantiomers of 2-phenylbutyric acid resulted in the (2R)-2-phenylbutyrate derivative and (2S)-2-phenylbutyrate derivative, respectively and from that S-configuration of C-8 was found for feigrisolide A. From the NMR comparison it is evident that methyl group at $\mathrm{C}-8$ in feigrisolide A is replaced by an ethyl group in feigrisolide B. Acylation of feigrisolide B with acetic anhydride and pyridine also yields a mono-acetate derivative. A comparison of the ${ }^{1} \mathrm{H}$ spectra of parent compound and derivative indicates that acylation of the hydroxyl group at C-8 is due to the downfield shift of the signals for $\mathrm{H}-8(\Delta \delta=1.14 \mathrm{ppm})$. The relative stereochemistry of feigrisolide B seems to be identical to feigrisolide A based on both,
identical coupling constants in the ${ }^{1} \mathrm{H}$ NMR spectra, and NOESY NMR experiments. Determining the absolute stereochemistry of the C-8 center of feigrisolide B , the same method was applied here. From the comparison study of the $(2 R)$-ester derivative and (2S)-ester derivative, a significant low-field shift for $10-\mathrm{H}$ signal $(\Delta \delta=0.22)$ and significant high-field shifts for 3-H $(\Delta \delta=0.04), 6-H(\Delta \delta=0.14)$, and $2-H(\Delta \delta=0.10)$ signals of (2R)-derivative with regard to those of (2S)-derivative clearly indicate the R configuration of C-8. Also in the case of feigrisolide B , the absolute stereochemistry at C8 did not allow to predict the absolute stereochemistry of the ring. Therefore, feigrisolide B was (2R, 3S, 6S, 2’R)-3-hydroxy-6-(2-hydroxybutylmethyl-hepta-lactone).

Figure 2: Relative stereochemistry of feigrisolides A and B

1

2

Out of all these four compounds feigrisolide B (2) was found to be the most promising compound in terms of biological activity. In the light of inherent interest generated by the promising biological activity, and with necessity of determining the absolute stereochemistry, feigrisolide B has been identified as the appropriate target for total synthesis.

The basic disconnection of the feigrisolide B skeleton between $\mathrm{C}(4)-\mathrm{C}(5)$ identifies ring closing metathesis as the key transformation and the acid and 6 alcohol 7 as appropriate synthons. As the complete information about the stereochemistry of all the centers is not available, in pursuit of confirming its relative and absolute stereochemistry, we have opted for a combination of catalytic asymmetric transformation and selection of appropriate chiral pool intermediates. We anticipated that this approach would add the flexibility to our strategy that can address the synthesis of possible diastereomers if required. For acquiring possible epimers at $\mathrm{C}(5)$ center, two different approaches for coupling 6 and 7 were selected: (a) coupling under classical acid activation conditions and (b) coupling with net $\mathrm{C}(5)$ inversion under Mitsunobu conditions. In order to address the stereochemical diversity at $\mathrm{C}(2)$ and $\mathrm{C}(3)$ centers of the acid $\mathbf{6}$, Evans' aldol reaction
of acrolein with D/L-phenyl alanine derived oxazolidinones was selected as an appropriate stereochemical transformation as it can address the synthesis of either of the syn/anti-aldol products by changing the reaction conditions appropriately. A representative retrosynthetic disconnections and the corresponding intermediate has been given in Scheme 1 by selecting the stereochemical information that was given for the feigrosolide B .

Scheme 1: Retrosynthetic strategy

Synthesis of Fragment A:

From the retrosynthetic strategy of fragment A, it is clear that Evans' aldol reaction is the key reaction for the synthesis of this fragment. Therefore a brief account on Evans' aldol reaction is discussed below.

A short account on Crimmins' modified Evans' asymmetric aldol reaction:

Over the last decade, the stereochemical attributes of the asymmetric aldol reaction have been improved through the introduction of architecturally refined enolate metal centers and is one of the most important and general methods for asymmetric carbon-carbon bond formation. The utility of the asymmetric aldol addition has been amply demonstrated through a multitude of synthetic applications. ${ }^{10}$ Dibutylboron enolates of N-acyl oxazolidinones, pioneered by Evans, are the most commonly utilized enolates and are ${ }^{11}$ highly effective for the preparation of Evans' syn products in asymmetric aldol additions. ${ }^{12}$ The recently developed titanium (IV) ${ }^{13,14,15}$ enolates of N acyloxazolidinones and oxazolidinethiones, tin (IV) enolates of N -acyl sultams, and tin (II) enolates ${ }^{16}$ of thiazolidinethiones have also been shown to be effective in creating well ordered transition states for aldol reactions. Considerable efforts has been employed to develop stereoregulated variants of this methodology by Evans and Heathcock. ${ }^{12,17}$ It has
been well appreciated that kinetic aldol stereoselection is in part, defined by enolate geometry where two stereocenters are generated. According to the postulate put forward by Evans et. al, most boron mediated aldol reactions are pericyclic in nature and proceed through a chair like transition state proposed by Zimmerman and Traxler, ${ }^{18}$ where (Z)boron enolate (9) gives syn-aldol products and (E)-boron enolate (10) afford anti-aldol products (Figure 1). ${ }^{19}$ Exhaustive studies ${ }^{20}$ on this titanium mediated aldol reaction has done by Crimmins' et. al. This method is operationally simple, and the cost is lower than aldol additions with dibutylboron triflate. The use of 1.05 equiv of titanium tetrachloride, 2.5 equiv of (-)- sparteine or N-ethyldiisopropylamine also proved highly efficient and syn-selective as with the N-acyloxazolidinethiones and N-acyloxazolidinones. The advantage of the use of $\mathrm{TiCl}_{4}(-)$-sparteine or N-ethyldiisopropylamine for the enolization of N-acyloxazolidinones is that the reagents can be used as purchased, the reaction proceeds well even at $0^{\circ} \mathrm{C}$, and no oxidative workup is required. The relative cost is approximately 35-40\% less relative to the dibutylborontriflate procedure. The Crimmins' aldol methodology is logistically easier for the formation of titanium enolates. One particularly attractive attribute is the flexibility imparted by Crimmins' chelated and nonchelated models, which is dependent on the amount of TiCl_{4} and N ethyldiisopropylamine. Modification provided the access to both the Evans' syn product via the nonchelated model (11) and the non-Evans' syn adduct via the chelated model (12) (Figure 2). To proceed via the chelated transition states 11, one of the ligand on titanium (typically chloride) must be displaced by the carbonyl group of oxazolidinone. Although these groups are not sufficiently nucleophilic to completely displace this ligand on their own, the ligand can be easily abstracted with a second equivalent of titanium. A consequence of this is that these substrates will occasionally give mixtures of products resulting from incomplete conversion of 11 to12. Also addition of chelating ligands, extra equivalents of amine bases (sparteine, Hunig's base etc), or even some solvent molecules tend to disfavor the transition state 15, because of their preferential chelation to the titanium enolate. So when the reaction proceeds through the ${ }^{21}$ non-chelated transition state (11) the Evans' syn adduct (13) and when the chelated transition state (12) non Evans' syn adduct (14) forms. The level of syn/anti selectivity is high (normally > 20:1) and comparable to traditional boron-mediated aldol reactions for both the chelated and
nonchelated titanium-mediated conditions. It should be pointed out that Crimmins has shown that the chirality of (-)-sparteine does not influence the stereochemical outcome of the transformation.

Figure 3

Figure 4: Zimmermann-Taxler transition state

Synthesis of fragment A was started with the preparation of D-Phenyl alanine derived Evans' oxazolidinone. Reduction of D-phenyl alanine with sodium borohydride/iodine followed by treatment of resulting amino alcohol with dimethyl carbonate gave the key oxazolidinone, ${ }^{22}$ which was treated with propionic anhydride in presence of triethyl amine and lithium chloride to obtain the known key intermediate 8.

Scheme 2

Initial Evans' aldolisation ${ }^{23}$ of $\mathbf{8}$ with acrolein was carried out with TiCl_{4} and diisopropylethyl amine. From the previously described aldol reaction, in ZimmermannTaxler transition state it was clearly evident that minimum energy conformer is the Zenolate transition state. So when the reaction was carried out then both the newly generated center would be of opposite stereochemistry with the stereochemistry of the benzyl group of chiral auxiliary. Presence of br. s at $\delta 3.12$ and two terminal olefinic proton at $\delta 5.20, \delta 5.33$ and one internal olefinic proton at $\delta 5.85$, respectively in ${ }^{1} \mathrm{H}$ NMR clearly indicated the presence of newly generated hydroxyl group and incorporation of olefin from acrolein.

Scheme 3

Benzylation of $\mathbf{1 6}$ was accomplished by using silver oxide and benzyl bromide in dry toluene to obtain the benzyl ether 17. As it was known that use of strong bases can cause the hydrolysis of chiral auxiliary, we opted for silver oxide as mild base. Conversion of free hydroxyl to its benzyl ether was confirmed by the absence of br. s peak present in the alcohol 16, as well as the chemical shift change of the $\mathrm{C}-\mathrm{H}$ attached to hydroxyl group which was at $\delta 4.69$ in 16 and shifted to $\delta 3.95$ after benzylation. The structure as well as the stereochemistry of the newly generated centers in aldol reaction was further confirmed by the X-ray analysis of this compound. From the single crystal data, the stereochemistry of the -OH group and -Me group was syn.

Scheme 4

Figure 5: ORTEP diagram of benzyl protected compound (17) (displacement ellipsoids are drawn at the 50\% probability level)

Removal of the chiral auxiliary in $\mathbf{1 7}$ was affected by using lithium hydroxide and 30% hydrogen peroxide to afford the acid fragment 6. The characteristic broad singlet of acid -H at $\delta 9.9 \mathrm{ppm}$ and the absence of aromatic protons in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}$ confirmed the removal of chiral auxiliary. In the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6}$, acid carbonyl resonated at $\delta 177$ where in earlier imides carbonyl signals resonated below $\delta 175$. IR spectra of acid compound showed stretching frequency at $1710 \mathrm{~cm}^{-1}$ which was a characteristic peak for acid.

Scheme 5

Synthesis of fragment B started with D-glucose. D-Glucose was converted into glucose diacetonide (GDA) and deoxygenation of free hydroxyl group present at 3position of GDA was affected by employing the Barton-McCombie protocol to procure

3-deoxy compound. Selective 5,6 acetonide deprotection of resulting deoxycompound using $0.8 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in methanol gave the diol. Conversion of the diol to the corresponding dimesylate, followed by $\mathrm{Zn}-\mathrm{NaI}$ mediate double elimination provided the 5,6-olefin $\mathbf{1 8}$. The spectral and analytical data of $\mathbf{1 8}$ were found to be in agreement with the data reported earlier. ${ }^{24}$ Hydrogenation of $\mathbf{1 8}$ lead to the formation of saturated compound 19 which was confirmed by the ${ }^{1} \mathrm{H}$ NMR spectra where the olefinic protons were missing instead of that methyl triplet was observed.

Scheme 6

Reagents and conditions: a) $\mathrm{NaH}, \mathrm{CS}_{2}$, MeI, THF, $0^{\circ} \mathrm{C} \longrightarrow \mathrm{rt}, 1 \mathrm{~h}$. b) TBTH, AIBN (cat), toluene, reflux, 6 h. c) $\left.0.8 \% \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}, 12 \mathrm{~h} . \mathrm{d}\right) \mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$. e) $\mathrm{Zn}, \mathrm{NaI}, \mathrm{DMF}, 150^{\circ} \mathrm{C}, 2 \mathrm{~h}$. f) $10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{H}_{2}$, EtOAc, rt, 8 h .

Acid-mediated deprotection of the acetonide group in 19 and one carbon homologation of the resulting lactol 20 gave the alcohol 7. The structure of 7 was confirmed by the presence of two terminal olefinic protons resonating at δ 5.05-5.27 and the internal olefin at $\delta 5.85$. This structure was devoid of any anomeric proton or carbon in both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR was the further indication of the completion of the reaction.

Scheme 7

After having an easy access for both the fragments, the stage was now set for their coupling and subsequent ring closing metathesis. The coupling reaction of 6 and 7 was carried out at $0{ }^{\circ} \mathrm{C}$ to get the selective esterification of allylic hydroxyl group. After
completion of the reaction, formation of desired product 5 was confirmed by NMR spectrum. In the ${ }^{13} \mathrm{C}$ NMR spectra, carbonyl peak was shifted from $\delta 177.6$ (6) to $\delta 173.2$ (5) which clearly indicated the formation of ester. But our major concern was which free hydroxyl group was coupled with acid. From the reactivity point of view, allylic hydroxyl should be more reactive than the other free secondary hydroxyl groups. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 7, two hydroxyl groups containing C-H were resonated at $\delta 3.73-3.85(\mathrm{H}-7)$ and $\delta 4.30-4.42(\mathrm{H}-5)$. In the coupling product 5 , one of these protons was shifted downfield almost 1.0 ppm and the other shifted little upfield (0.2 ppm). These results provided the sufficient proof for the formation of the desired product. Moreover, the single product in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR confirmed the absence of another possibility of coupling.

Scheme 8

After successful coupling reaction, RCM reaction was carried out in different solvents (DCM, benzene, toluene) using both $1^{\text {st }}$ and $2^{\text {nd }}$ generation Grubbs' catalyst from room temperature to reflux conditions. But unfortunately in all the cases this reaction failed and starting material was recovered. Though, RCM reaction has been used extensively for the construction of medium size lactones, however, an exhaustive search of the available data in this regard has revealed a striking point that there was no single report where the RCM has been used for the 7-membered lactone construction. Attributing the failure of the proposed RCM based strategy for feigrisolide B to our ignorance at this stage, we have revised our strategy by considering the macro lactonization as the key transformation and identifying some of the intermediates of the previous strategy as starting point. As depicted below, the modified strategy is linear in nature and uses the Evans' aldol reaction as one of the key coupling reaction and an intramolecular lactonization at the advanced stage.

Scheme 9: Modified Retrosynthetic Strategy

As indicated in the Scheme 1, Fragment A is one of the intermediate that has been used in the previous approach and synthesis of fragment B was planned from $\mathbf{1 8}$ prepared earlier. To minimize the number of steps, the hydrogenation of the intermediate alkene functional group was planned at a later stage.

Thus the synthesis of feigrisolide B was started from available intermediate 18. ${ }^{24}$ Subjecting compound $\mathbf{1 8}$ for the 1,2-acetonide deprotection using catalytic amount of sulfuric acid in methanol afforded the methylfuranoside 23. Protection of the $\mathrm{C}(2)-\mathrm{OH}$ in $\mathbf{2 3}$ as its benzyl ether $\mathbf{2 4}$ followed by hydrolysis of the anomeric -OMe using acetic acidsulfuric acid combination gave lactol 25.

Scheme 10

Lactol 25 was subjected to two-carbon Wittig homologation reaction. Presence of olefin proton at $\delta 6.9$ clearly indicated the presence of β-proton of α, β-unsaturated ester 26. Value of coupling constant for olefinic proton, 16 Hz , indicated the trans-geometry of the newly formed internal olefin. Subsequently ester 26 was reduced by DIBAL-H to corresponding alcohol 27 followed by the selective protection of primary - OH group to its trityl ether 28. Reduction of ester to alcohol was confirmed by the absence of the triplet and quartet signals seen in ester ${ }^{1} \mathrm{H}$ NMR. This was further confirmed by the absence of ester carbonyl at $\delta 166.2$ in ${ }^{13} \mathrm{C}$ NMR spectrum.

Scheme 11

Protection of the free secondary hydroxyl group in 28 as its TBDPS (TPS) ether 29 by using TBDPS-Cl and imidazole followed by trityl group removal (TFA at $0^{\circ} \mathrm{C}$) of resulting 29 gave $\mathbf{3 0}$. Controlled oxidation of the primary hydroxyl group in 30 was affected by using PDC in presence of acetic anhydride to complete the synthesis of the key aldehyde fragment $\mathbf{2 2}$.

Scheme 12

28

22

30

Fragment A (8) and fragment $\mathrm{B}(\mathbf{2 2})$ were subjected to the Evans' syn-aldol ${ }^{26}$ reaction and from the NMR study it was seen that aldehyde proton of the starting material was absent in the product $\mathbf{3 1}$ and the methyl center generated after the reaction was showing a clear doublet which was a triplet earlier. From the NMR spectra it was clearly evident that only single diastereomer was formed.

Scheme 13

Newly generated hydroxyl group in the aldol reaction was protected as its TBDMS (TBS) ether $\mathbf{3 2}$ using TBS-OTf. Presence of TBS group was confirmed by the two methyl singlet signals around $\delta 0$ in ${ }^{1} \mathrm{H}$ NMR and two carbon signals at -4.0 , and 3.5 , respectively in ${ }^{13} \mathrm{C}$ NMR spectra.

Scheme 14

After the formation of basic structural core, required acid and alcohol functionality have to be demasked. For getting the free acid functionality, chiral auxiliary was removed and the hydrolysis was done such a way that directly acid could be obtained. Lithium hydroxide and 30% hydrogen peroxide method was found to be the best method for the preparation of acid 33. Presence of acid was confirmed by IR spectroscopy, where stretching frequency at $1709 \mathrm{~cm}^{-1}$ was the characteristic peak of acid carbonyl. Two imide carbonyl peaks at $\delta 153$ and 174 were absent in ${ }^{13} \mathrm{C}$ NMR of acid, instead, $\delta 178$ peak was appeared for acid carbonyl.

Scheme 15

For the construction of the seven-membered lactone intramolecularly, we need to deprotect selectively the benzyl ether and also the hydrogenolysis of the two olefin units present in 33. This was achieved by employing $\mathrm{Pd}(\mathrm{OH})_{2}$ as a catalyst under hydrogen atmosphere to obtain compound 21. Absence of all olefinic protons and five aromatic protons in the ${ }^{1} \mathrm{H}$ NMR spectrum of 21 clearly indicated the success of hydrogenation reaction. After having the central carbon unit of feigrisolide B, now the stage was set for the macrolactonization of $\mathbf{3 3}$.

Scheme 16

A brief account on lactonization reaction:

A number of reports and reviews ${ }^{27}$ have been published on macrolactonization methods and synthesis of macrolides. ω-hydroxyalkanoic acid was the first chosen substrate by Stoll et. al. ${ }^{28}$ for the synthesis of medium ring lactones by direct lactonization method. They showed that oligomers were the major product and the yield of the desired monolide was about 1%. An attempt was made to improve the yield using $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in the presence of unfunctionalized polystyrene beads as catalyst failed. ${ }^{29}$ Enzyme catalyzed cyclizations of ω-hydroxyalkanoic acids with Pseudomonas sp. Led to a mixture of two diastereomeric diolides. ${ }^{30}$ Lactonization of racemic methyl 10hydroxyundecanoate (35) with the lipase of Pseudomonas sp. was reported to give mixture of mono- and diolides. ${ }^{31}$ When the compound (36) was subjected to Pseudomonas sp., no reaction observed.

35

36

The lactonization of ω-bromoalkanoic acids by the activation of either of the two or both the interacting centers are well reviewed. ${ }^{32}$ A number of methods are reported in literature, some of them are discussed below:

Corey-Nicolaou method (double activation method): Corey and Nicolaou have discovered a highly efficient method for the synthesis of macrolactones. ${ }^{33}$ Dipyridyl disulphide was treated with hydroxyalkanoic acid (37) to form 2-pyridinethioester (38), which on refluxing in xylene under high dilution condition led to macrolactone (39).

Scheme 17

37

$\mathrm{Ph}_{3} \mathrm{P}$, xylene

38

39

Mukaiyama method: Mukaiyama et al., ${ }^{34}$ introduced a new reagent 1-methyl 2chloropyridinium iodide (41) for effective cyclization. This method is closely related to "double activation" method for the synthesis of macrolactones. A series of hydroxyalkanoic acids (40; $n=5,6,7,10,11$ and 14) were cyclized by slow addition to the reagent 41 in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{CH}_{3} \mathrm{CN}$.

Scheme 18

Yamagychi method: This method ${ }^{35}$ is the most popular and commonly used method in recent times for the synthesis of macrolactones even for esterification reaction. This reaction involves lactonization of mixed anhydride formed by the treatment of ω-hydroxy acid (43) and 2, 4,6-trichlorobenzoyl chloride in the presence of $E t_{3} N$.

Scheme 19

Recently, Mukaiyama and coworkers ${ }^{36}$ have reported a new activation method for lactonization. Silyl ω-siloxyalkanoate (45) was subjected to lactonization using ptrifluoromethylbenzoic anhydride and a catalytic amount of a mixture of TiCl_{4} and AgClO_{4}. For 8- and 9-membered ring lactones yields were 0\% and for decanolide, yield was 33\%. Only in case of undecanolide yield is high (70\%).

Scheme 20

Some other methods are reported for the macrolactonization, in which Masamone method ${ }^{37}$ involves cyclization of S-t-butyl thioesters of hydroxy acids (137) using mercuric trifluoroacetate as an activating agent. The lactonization proceeds rapidly in dilute acetonitrile at room temperature. Good results were observed using the method observed by Gerlach ${ }^{38}$ (50\% yield).

Scheme 21

Now stage was all set for the cyclization reaction. After considering all the above coupling reagents, we decided to choose the reaction to try in simple coupling reagent DCC, DMAP condition which was used in the previous scheme for coupling, but in that condition a complex reaction mixture was resulted. Then we opted for EDCI agent,
which is another simple as well as good coupling reagent used mainly in peptide synthesis. Under high dilution conditions, desired coupling product $\mathbf{3 4}$ was obtained in good yields. Proton adjacent to carbonyl group was shifted downfield from $\delta 2.58$ to δ 3.04 indicated the formation of cyclic system. The δ-shift of free hydroxyl containing CH from $\delta 4.0$ to $\delta 4.5$ in ${ }^{1} \mathrm{H}$ NMR was the strong evidence for the formation of lactone ring. After the formation of seven-membered lactone ring, protecting groups were removed and thus completed the synthesis of our target molecule 2.

Scheme 22

After synthesizing this molecule, the data of this compound was not matching with the natural product. During the course of our synthesis, a similar approach for synthesis of feigrisolide B was published. ${ }^{39}$ Though, the discrepancy in the spectral data of synthetic and natural feigrisolide B was indicated, surprisingly the data of our final compound 2 was not matched with the data of putative feigrisolide B reported. In addition to this another possible diastereomer of feigrisolide B was disclosed very recently and once again its data was also different from the data we obtained.

Figure 6: Structures of recently synthesized products

Table 2: Comparison data for natural and synthetic compounds

Position	${ }^{1} \mathrm{H}$ Natural	${ }^{\text {I }} \mathrm{H} \quad$ GVM Sharma	${ }^{1} \mathrm{H}$ Ours	$\begin{aligned} & { }^{13} \mathrm{C} \\ & \text { Natural } \end{aligned}$		$\begin{aligned} & { }^{13} \mathrm{C} \\ & \text { Ours } \end{aligned}$
1				177.6	176.6	174.6
2	$\begin{aligned} & 2.50 \\ & 7.0,8.3) \end{aligned}(\mathrm{dq},$	$\begin{aligned} & 3.22 \quad(\mathrm{dq}, \\ & 5.22,7.55 \end{aligned}$	$\begin{aligned} & 2.92 \\ & 6.7,8.2) \end{aligned}(\mathrm{dq},$	45.3	46.3	44.9
3	$\begin{aligned} & 3.98 \text { (br q, } \\ & 8.3 \text {) } \end{aligned}$	3.905 (m)	$\begin{aligned} & 3.59-3.76 \\ & (\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	81.0	77.9	77.0
4	$\begin{array}{ll} 1.68, & 2.03 \\ (\mathrm{~m}) & \end{array}$	$\begin{array}{ll} 1.86, & 2.08 \\ (\mathrm{~m}) & \end{array}$	$\begin{aligned} & 1.45-2.08 \\ & (\mathrm{~m}) \end{aligned}$	29.1	29.8	29.7
5	$\begin{array}{ll} 1.65, & 2.01 \\ (\mathrm{~m}) & \end{array}$	$\begin{array}{ll} 1.70, & 1.98 \\ (\mathrm{~m}) & \end{array}$	$\begin{aligned} & 1.45-2.08 \\ & (\mathrm{~m}) \end{aligned}$	30.6	31.8	34.9
6	4.21 (m)	4.65 (m)	4.69 (m)	77.3	72.2	70.9
7	1.70 (m)	1.98 (m)	$\begin{aligned} & 1.45-2.08 \\ & (\mathrm{~m}) \end{aligned}$	40.7	44.4	42.9
8	3.78 (m)	3.72 (m)	$\begin{aligned} & 3.59-3.76 \\ & (\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	70.4	70.9	70.8
9	1.51 (m)	1.52 (m)	$\begin{aligned} & 1.45-2.08 \\ & (\mathrm{~m}) \end{aligned}$	29.9	31.0	30.0
10	0.92 (t, 7.5)	0.96 (t, 7.5)	0.96 (t, 7.3)	10.0	11.1	9.7
1 ,	1.16 (d, 7.0)	1.38 (d, 7.8)	1.29 (d, 6.7)	13.7	14.5	14.2

The structure of two synthesized compounds by Sharma and co-workers were fully resolved with the help of NOE studies. In order to resolve structural ambiguity of our compound we have carried out the COSY and NOESY studies of the cyclized lactone 2. After examining these data, we concluded that the product obtained has cisstereochemistry between lactone substituents at C-2 and C-3. This could be attributed unanticipated stereochemical outcome in Evans' aldol step. Instead of getting the syngeometry of the two newly generated centers anti-product was obtained as an exclusive product at this stage. In that case there were two possible products those could be formed.

Figure 7: Structure of two possible products

From NOE studies of our synthesized compound, we have noticed through space connectivity between C-1' methyl and C-6 (H) as well as $\mathrm{C}-2(\mathrm{H})$ and $\mathrm{C}-3(\mathrm{H})$ and there was no correlation between C-3 (H) and C-6 (H). From the previous analysis it was clear that C-2 (H) and $\mathrm{C}-3(\mathrm{H})$ are in the same side and $\mathrm{C}-1$ methyl was in the same side with C-6 (H). C-3 (H) and C-6 (H) were placed in different sides. As the stereochemistry of C$6(\mathrm{H})$ was carried forward from sugar moiety and there was no chance of epimerization of this center, we concluded that the stereochemistry of the synthesized molecule was ($2 R$, 3R, 6S, 8R)-3-hydroxy-6-(2-hydroxybutylmethyl-hepta-lactone).

Figure 8: NOE studies for compound $\mathbf{3 4}$

After the completion of our synthesis another report was published where the synthesis of feigrisolide A was performed. ${ }^{40}$ In that case also the data of synthesized compound and the data of natural product were not comparable. After the extensive studies, they concluded that the proposed structures of feigrisolide A and feigrisolide B were wrong, and the data of the natural feigrisolide $\mathrm{A}(?)$ was fully matched with the data of (-)-nonactic acid. ${ }^{41}$ They also proposed that the structure of feigrisolide B was not the seven-membered lactone, instead, it was (+)-homononactic acid. ${ }^{42}$ These nonactic acid and homononactic acid were not seven-membered lactones. The basic skeleton of these compounds are tetrahydrofuran ring. This report clearly indicated that our synthesized product was not related to any natural product isolated.

Figure 9

(-)-nonactic acid

(+)-homononactic acid

EXPERIMENTAL

EXPERIMENTAL

(R)-4-Benzyl-3-((2R,3S)-3-hydroxy-2-methylpent-4-enoyl)oxazolidin-2-one (16)

Compound $8(2.5 \mathrm{~g}, 0.011 \mathrm{~mol})$ was taken in dry $\mathrm{DCM}(50 \mathrm{~mL})$ and at $0^{\circ} \mathrm{C}$ freshly distilled $\mathrm{TiCl}_{4}(1.3 \mathrm{~mL}, 0.012 \mathrm{~mol})$ was added and stirred for 15 mins . The reaction mixture became turbid yellow. To this solution dry DIPEA ($4.8 \mathrm{~mL}, 0.028 \mathrm{~mol}$) was added and the reaction mixture became blood red. Temperature was maintained $0{ }^{\circ} \mathrm{C}$ and stirred it again for 15 mins. Then the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and freshly distilled acrolein ($0.8 \mathrm{~mL}, 0.012 \mathrm{~mol}$) solution in dry DCM $(12 \mathrm{~mL})$ was added to the reaction mixture and stirred for 0.5 h . Reaction mixture was quenched with saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and aqueous layer was washed with DCM and combined organic layer was dried over sodium sulphate and concentrated. The crude residue was purified by column chromatography using ethyl acetate in light petroleum (1:6) to obtain white solid 16.

Yield $: \quad 2.26 \mathrm{~g}, 73 \%$
Mol Formula $: \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}$
Mol Weight : 289
Optical rotation $\left[\alpha_{\mathbf{D}} \mathbf{D}^{\mathbf{2 5}} \quad: \quad-39.1\left(c 1.35, \mathrm{CHCl}_{3}\right)\right.$
${ }^{1} \mathbf{H} \quad: \quad \delta 1.26(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.78(\mathrm{dd}, J=9.4,13.3 \mathrm{~Hz}$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

1H), 3.12 (br. s, 1H), 3.24 (dd, $J=3.3,13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.87 (ddd, $J=3.9,7.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (m, 2H), 4.45-4.51 (m, 1H), 4.63-4.75 (m, 1H), $5.19(\mathrm{dt}, J=1.6$, $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33$ (dt, $J=1.6,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.85$ (ddd,

	$J=5.5,10.6,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.33(\mathrm{~m}, 5 \mathrm{H})$
${ }^{13} \mathbf{C}$	$:$
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$11.0(\mathrm{q}), 37.7(\mathrm{t}), 42.4(\mathrm{~d}), 55.1(\mathrm{~d}), 66.1(\mathrm{t}), 72.5(\mathrm{~d})$,
	$116.1(\mathrm{t}), 127.3(\mathrm{~d}), 128.9(\mathrm{~d}), 129.3(\mathrm{~d}), 135.0(\mathrm{~d})$,
	$137.4(\mathrm{~d}), 153.0(\mathrm{~s}), 176.4(\mathrm{~s}) \mathrm{ppm}$

Elemental analysis Cald. : C, 66.42; H, 6.42%
Found : C, 66.63; H, 6.49\%
(R)-4-Benzyl-3-((2R,3S)-3-(benzyloxy)-2-methylpent-4-enoyl)oxazolidin-2-one (17)

Compound 16 ($2 \mathrm{~g}, 0.007 \mathrm{~mol}$) was taken in dry toluene (5 mL) and freshly prepared solid silver oxide $(2.42 \mathrm{~g}, 0.011 \mathrm{~mol})$ was added to it followed by benzyl bromide ($1.6 \mathrm{~mL}, 0.014 \mathrm{~mol}$). Then the reaction mixture was stirred at room temperature for 6 h and the reaction mixture was filtered over Celite bed. Filtrate was concentrated and purified over column chromatography using ethyl acetate in light petroleum to obtained 680 mg of starting material (16) back and white crystalline solid $\mathbf{1 7}$.

Yield
Mol Formula
Mol Weight
Optical rotation $[\alpha]_{D}{ }^{25}$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{1} \mathbf{H} \quad: \quad \delta 1.26(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.71(\mathrm{dd}, J=9.6,13.6 \mathrm{~Hz}$,
: $\quad 1.24 \mathrm{~g}, 64 \%$ with respect to recovered starting material
: $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{4}$
: 366
: $\quad-25.7\left(c 2, \mathrm{CHCl}_{3}\right)$ $1 \mathrm{H}), 3.26(\mathrm{dd}, J=3.3,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{t}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.98(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=1.9,8.3 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.11(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.49(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.28$ (br. d, $J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.33$ (br. s, 1H), 5.89 (ddd, $J=7.3,10.6$, 16.9 Hz, 1H); 7.18-7.34 (m, 10H)
${ }^{13} \mathrm{C}$: $12.5(\mathrm{q}), 37.8(\mathrm{t}), 42.2(\mathrm{~d}), 55.4(\mathrm{~d}), 65.8(\mathrm{t}), 70.2(\mathrm{t})$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$ 80.9 (d), 118.7 (t), 127.2 (d), 127.4 (d), 127.8 (d), 128.2 (d), 128.8 (d), 129.3 (d), 135.4 (s), 136.1 (d), 138.4 (s), 153.0 (s), 174.1 (s) ppm

Elemental analysis Cald. : C, 72.11; H, 6.60\%
Found : C, 72.17; H, 6.59\%

Crystal data	$\mathbf{1 0 7}$
Formula	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{4}$
M_{r}	366
Temp. (K)	$297(2)$
Crystal system	monoclinic
space group	P 21
$\mathrm{~A}[\AA]$	$11.553(4)$
$\mathrm{B}[\AA]$	$7.502(2)$
$\mathrm{C}[\AA]$	$12.142(4)$
$\alpha\left[{ }^{\circ}\right]$	90
$\beta\left[^{\circ}\right]$	$98.138(5)$
$\gamma\left[{ }^{\circ}\right]$	90
$\mathrm{~V}\left[\AA^{3}\right]$	1041.76
Z	4

N1	N	1.05978(14)	H1	H	1.4267	0.3933	C3	C	0.9	128(18)
0.35	(3)	.17890(14)	0.2828				$0.3409(4) 0.30070$ (19)			
O1	O	0.88460(14)	C2	C	C 1.18	36(17)	H3	H	0.8526	0.3728
0.35	(3)	.05615(14)	0.3483(3) 0.16351(18)				0.2307			
C1	C	$1.44751(19)$	H2	H	1.2292	0.2726	O4	O	0.	52(13)
0.44	(4)	2199(2)	0.2199				0.1391(3) 0.32982(16)			

H4	H	0.7045	$045 \quad 0.2301$	C14			1.2	. 23592		C22		C		.9135(2)
	12			0.53	5(4)		0.166	667(2)		0.0147(4) 0.2478(2)				
C5	C	C 1.3	1.36254(17)	H14	H		1.190	050.6		$\begin{array}{llllll}\mathrm{H} 22 & \mathrm{H} & 0.8726 & 0.0155\end{array}$				
	20(3)	3) 0.146	14620(18)	0.11						0.1761				
C6	C	0.50	.5074(3)	H14	H		1.231	130.5		C23		C		.5386(3)
	89(4)	4) 0.289	2897(2)	0.23						0.0723(4) 0.4679(3)				
H6	H	0.5349	349-0.1079	C15		C	0	0.58		H23 H 0.58910 .1142				
0.2					7(4)		0.378	786(3)		0.5288				
C7	C	C 1.0	$1.02865(19)$	O2	O		1.0	. 0557		C24	C	C		744(3)
	78(4)	4) 0.285	28548(19)		8(3))	0.000	030(15)		$0.4676(6) 0.3910(3)$				
C8		C	1.3964(2)	C17		C	0	0.34		H24A H 0.93400 .4576				
	09(4)	4) 0.053	0531(2)		(5)		. 382	824(4)		0.4543				
	H	1.3405	4050.6666	H17	H		0.2678	$78 \quad 0.03$		H24B H 0.79990 .4377				
0.0	018			0.38						0.4125				
C9	C	C	1.5629(2)	C18	C	C	1	1.59		H24C H 0.87220 .5876				
	50(4)	4) 0.201	2017(2)		3(4)) 0	108	086(2)		0.3634				
	H	1.6191	1910.3887	H18	H		1.6717	$17 \quad 0.5$		C25	C	C		742(2)
0.2				0.09						0.2611(5) 0.0500(2)				
O3	O	O 1.1	1.10577(15)	C19	C	C	0	0.42		H25A H 1.22850 .3145				
	09(4)	4) 0.362	36280(14)	0.08	8(5)		0.468	688(3)		0.0057				
C1	C	C	1.5112(2)	H19	H	0	0.3936	360.1		H25B H 1.19030 .1344				
	90(4)	4) 0.034	0346(2)	0.53						0.0571				
	H 1	1.5324	240.6645 -	C20	C		0.38	3886(3)	-	C26	C	C	882	2(3)
0.0	280			0.04	7(4)		0.292	222(3)		0.1006(6) 0.2692(3)				
C1	C	C	0.9880(2)	H20	H	0.	. 3362	$62-0.0$		H26A H 1.0413-0.1057				
	33(4)	4) 0.077	07736(19)	0.23						0.3399				
	C	C 0.8	$0.87711(19)$	C21	C		0.71	7144(3)	-	H26B H 1.0155-0.1777				
	449(4)	4) 0.328	3285(2)	0.01	5(6)) 0	0.379	790(4)		0.2138				
	H	0.917	1740.1171	H21	H	0.	. 7601	-0.1						
0.4	330			0.40										

(2R,3S)-3-(Benzyloxy)-2-methylpent-4-enoic acid (6)

Benzyl protected compound $\mathbf{1 7}(1 \mathrm{~g}, 0.003 \mathrm{~mol})$ was taken in 15 mL THF- $\mathrm{H}_{2} \mathrm{O}$ (4:1) mixture at $0{ }^{\circ} \mathrm{C}$ and $\mathrm{LiOH}(100 \mathrm{mg}, 0.005 \mathrm{mmol})$ was added to it followed by 30% $\mathrm{H}_{2} \mathrm{O}_{2}$ solution (1.2 mL). Then the reaction mixture was stirred for 4 h and bulk of THF was removed under vacuum and resulting mixture was extracted with DCM ($3 \times 50 \mathrm{~mL}$). Combined organic layer was dried over sodium sulfate and concentrated. Crude residue was purified by column chromatography using ethyl acetate in light petroleum (1:9) to procure white solid 6.

Yield	: $338 \mathrm{mg}, 58 \%$
Mol Formula	: $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$
Mol Weight	: 220
Optical rotation [$]_{\text {] }}{ }^{25}$: $-21.6\left(\right.$ c $\left.1, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$: $\delta 1.16(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.60(\mathrm{qu}, J=6.7,13.4 \mathrm{~Hz}$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$1 \mathrm{H}), 3.97(\mathrm{t}, ~ J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, ~ J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$,
	4.54 (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.20 (br.d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$),
	5.27 (br. s, 1H), 5.73 (ddd, $J=7.8,11.3,16.3 \mathrm{~Hz}, 1 \mathrm{H}$),
	7.22 (br. s, 5H)
${ }^{13} \mathrm{C}$	$: 12.1$ (q), 44.6 (d), 70.7 (t), 81.1 (d), 119.7 (t), 127.8 (d),
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	128.4 (d), 135.3 (d), 177.6 (s) ppm
Elemental analysis Cald.	: C, 70.89; H, 7.32\%
Found	: C, 70.72; H, 7.51\%

(3aR,5R,6aR)-5-Ethyl-2,2-dimethyltetrahydrofuro[3,2-d][1,3]dioxole (19)

19
Compound $\mathbf{1 8}(5 \mathrm{~g}, 0.03 \mathrm{~mol})$ was taken in HPLC grade ethyl acetate $(50 \mathrm{~mL})$ and $10 \% \mathrm{Pd}-\mathrm{C}$ was added to the reaction mixture in catalytic amount under hyrdrogen atmosphere. Hydrogen balloon pressure was applied to the reaction medium for 8 h at room temperature and the complete reaction mixture was filtered through Celite pad and washed thoroughly with ethyl acetate. Filtrate was concentrated under vacuum and residue was purified by column chromatography using ethyl acetate in light petroleum (1:9) to obtain colorless liquid 19.

Yield	: $4.14 \mathrm{~g}, 82 \%$
Mol Formula	$\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3}$
Mol Weight	162
Optical rotation [$\alpha]_{\text {D }}{ }^{25}$: $\quad-18.7\left(c 2.5 \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$: $\delta 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.39-1.45(\mathrm{~m}$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$2 \mathrm{H}), 1.47$ (s, 3H) 1.87-2.05 (m, 2H), $3.96(\mathrm{~m}, 1 \mathrm{H}), 4.63$
	(dt, $J=3.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.88$ (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathrm{C}$: 9.3 (q), 24.3 (q), 28.5 (q), 30.5 (t), 40.2 (t), 76.9 (d),

$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$ 80.6 (d), 104.3 (d), 110.7 (s) ppm

Elemental analysis Cald. : C, 58.32; H, 8.39\%
Found
: C, 58.11; H, 8.16\%

(3R,5R)-5-Ethyltetrahydrofuran-2,3-diol (20)

Compound $19(4 \mathrm{~g}, 0.024 \mathrm{~mol})$ was taken in 30% acetic acid solution $(40 \mathrm{~mL})$ in water and few drops of concentrated sulfuric acid was added to it. The reaction mixture was heated at $60{ }^{\circ} \mathrm{C}$ for 4 h and then the reaction mixture was cooled to room temperature. The reaction mixture was neutralized with solid NaHCO_{3} until the effervescence ceased. Then the whole solution was diluted with water and extracted with ethyl acetate for several times (3 x 50 mL). Combined organic layer was dried over sodium sulphate and concentrated under vacuum to get colorless liquid 20 ($1.69 \mathrm{~g}, 55 \%$), which was not purified and directly used for the next reaction.

(3R,5R)-Hept-1-ene-3,5-diol (7)

7
To a solution THF solution (10 mL) of compound $\mathbf{2 0}(1 \mathrm{~g}, 0.008 \mathrm{~mol})$, one carbon Wittig ylide in THF solution (generated by treatment of 16.16 g of triphenylphosphonium methyl iodide salt with $n-B u L i(1.6 \mathrm{M}, 17.6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ for 1 h$)$ was added at $0^{\circ} \mathrm{C}$ and then after 0.5 h the reaction mixture was warmed to room temperature and again stirred for 1 h . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ethyl acetate. Combined organic layer was dried over sodium sulphate and concentrated under reduced pressure. Residue was purified by column chromatography over silica gel using ethyl acetate in light petroleum (1:3) to obtain colorless oil 7.

Yield	$: 640 \mathrm{mg}, 65 \%$
Mol Formula	$: \quad \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$
Mol Weight	$: 130$

Optical rotation [$\alpha]_{\text {D }}{ }^{25}$	-18.6 (c 1.9, MeOH)
${ }^{1} \mathrm{H}$: $\delta 0.92(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.42-1.72(\mathrm{~m}, 4 \mathrm{H}), 3.58(\mathrm{br}$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\mathrm{s}, 2 \mathrm{H}), 3.73-3.85(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.42(\mathrm{~m}, 1 \mathrm{H}), 5.05-$
	5.27 (br. m, 2H), 5.85 (ddd, $J=5.9,10.3,16.7 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathrm{C}$	$: 9.6$ (q), 30.7 (t), 42.5 (t), 73.5 (d), 114.2 (t), 140.9 (d)
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	ppm
Elemental analysis Cald.	: C, 64.58; H, 10.84\%
Found	: C, 64.42; H, 10.93\%

(2R,3S)-((3R,5R)-5-Hydroxyhept-1-en-3-yl) 3-(benzyloxy)-2-methylpent-4-enoate (5)

5
Acid compound $6(338 \mathrm{mg}, 1.54 \mathrm{mmol})$ was taken in dry DCM $(10 \mathrm{~mL})$ and DCC ($349.5 \mathrm{mg}, 1.69 \mathrm{mmol}$) was added to it at $0{ }^{\circ} \mathrm{C}$ and stirred for 2 h , then the mixture of alcohol $7(200 \mathrm{mg}, 1.54 \mathrm{mmol})$ and catalytic amount of DMAP in dry DCM $(10 \mathrm{~mL})$ was added to the previous solution mixture and again stirred for 24 h at $0{ }^{\circ} \mathrm{C}$. Then the reaction mixture was washed thoroughly with water and dried over sodium sulphate and concentrated. Crude residue was purified on column chromatography over silica gel using ethyl acetate in light petroleum (1:19) to obtain colorless liquid 5.

Yield : $306 \mathrm{mg}, 60 \%$
Mol Formula $\quad: \quad \mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{4}$
Mol Weight : 347
Optical rotation $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad \mathbf{:} \quad+9.0\left(c 4.0, \mathrm{CHCl}_{3}\right)$

${ }^{1} \mathrm{H}$	$\delta 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.42-$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	1.50 (m, 2H), 1.75 (dt, $J=1.4,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=$
	$6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.58$ (m, 1H), $4.02(\mathrm{dd}, \mathrm{J}=1.2,6.7 \mathrm{~Hz}$,
	1H), $4.37(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=11.8 \mathrm{~Hz}$,
	$1 \mathrm{H}), 5.15$ (ddd, $J=1.2,2.4,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28$ (ddd, $J=$
	1.2, 2.4, 16.8 Hz, 1H), 5.32-5.49 (m, 3H), 5.69-6.90 (m,
	2H), 7.22-7.32 (m, 5H)
${ }^{13} \mathrm{C}$	$: 9.7(\mathrm{q}), 12.4$ (q), 30.4 (t), 41.2 (t), 45.2 (d), 70.3 (d),
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	70.5 (t), 73.4 (d), 81.4 (d), 117.1 (t), 119.0 (t), 127.5 ($)$,
	127.7 (d), 128.2 (d), 136.1 (d), 136.2 (d), 173.2 (s) ppm

Elemental analysis Cald. : C, 72.59; H, 8.99\%
Found : C, 72.73; H, 8.81\%
(3R)-2-Methoxy-5-vinyl-tetrahydrofuran-3-ol (23)

23
Compound $\mathbf{1 8}(12 \mathrm{~g}, 0.07 \mathrm{~mol})$ was taken in 100 mL MeOH and catalytic amount of sulfuric acid was added to it and the reaction mixture was stirred for 12 h at $60{ }^{\circ} \mathrm{C}$. Then the reaction mixture was cooled to room temperature and solid NaHCO_{3} was added to neutralize the excess acid. MeOH was almost evaporated under vacuum and residue was partitioned between ethyl acetate and water. Ethyl acetate layer was dried over sodium sulphate, concentrated and purified by column chromatography using ethyl acetate in light petroleum (1:3) to procure colorless oil 23.

Yield	: $6.1 \mathrm{~g}, 60 \%$
Mol Formula	: $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{3}$
Mol Weight	: 144
${ }^{1} \mathrm{H}$: $\delta 1.92-2.03(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 4.22(\mathrm{dd}, \mathrm{J}=1.0,4.2$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	Hz, 1H), 4.72 (dt, $J=7.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ (s, 1H),
	$5.09(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{~m}, 1 \mathrm{H}), 5.74$ (ddd, $J=7.4,10.1$,
	17.3 Hz, 1H)
${ }^{13} \mathrm{C}$: 38.4 (t), 54.4 (q), 76.1 (d), 80.6 (d), 109.1 (d), 116.0 (t),
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	139.9 (d) ppm
Elemental analysis Cald.	: C, 58.32, H, 8.39\%
Found	: C, 58.58; H, 8.47\%

(3R)-3-(Benzyloxy)-2-methoxy-5-vinyl-tetrahydrofuran (24)

24
Compound $23(6 \mathrm{~g}, 0.042 \mathrm{~mol})$ was taken in 60 mL of dry THF and cooled to 0 ${ }^{\circ} \mathrm{C}$. At that temperature $\mathrm{NaH}(2 \mathrm{~g}, 0.05 \mathrm{~mol}, 60 \%$ dispersed in oil) was added and stirred for 0.5 h . Then at $0{ }^{\circ} \mathrm{C}, \operatorname{BnBr}(6 \mathrm{~mL}, 0.055 \mathrm{~mol})$ was added dropwise and the reaction mixture was warmed to room temperature and stirred for 6 h . Then the reaction mixture was quenched with ice cold water and the water layer was extracted with ethyl acetate. Combined organic layer was dried over sodium sulphate and concentrated under vacuum. Residue was purified by column chromatography using ethyl acetate in light petroleum (1:6) to obtain colorless oil 24.

Yield	: $7.61 \mathrm{~g}, 78 \%$
Mol Formula	: $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$
Mol Weight	: 234
${ }^{1} \mathrm{H}$: $\delta 1.80-1.94(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{dd}, \mathrm{J}=6.4,13.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$3.35(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.73$
	$(\mathrm{dt}, J=7.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 5.10$ (ddd, $J=1.5$,
	$2.4,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24$ (ddd, $J=1.5,2.6,17.2 \mathrm{~Hz}, 1 \mathrm{H})$,
	5.82 (ddd, $J=7.4,10.1,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ (m, 5H)
${ }^{13} \mathrm{C}$: 36.0 (t), 54.4 (q), 71.2 (t), 80.9 (d), 83.2 (d), 106.9 (d),
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	115.9 (t), 127.6 (d), 127.7 (s), 128.4 (d), 137.8 (s), 139.9
	(d) ppm

Elemental analysis Cald. : C, 71.77; H, 7.74\%
Found : C, 72.00; H, 7.71\%
(3R,5S)-3-(Benzyloxy)-5-vinyltetrahydrofuran-2-ol (25)

OBn
25
Benzyl protected compound $24(7.5 \mathrm{~g}, 0.032 \mathrm{~mol})$ was taken in 75 mL of acetic acid in water and catalytic amount of sulfuric acid was added to it. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 12 h and then cooled to room temperature. Reaction was neutralized with solid NaHCO_{3}, extracted with ethyl acetate for several times and the combined organic layer was dried over sodium sulphate, concentrated. The crude lactol residue $25(3.88 \mathrm{~g})$ was subjected to the next reaction without purification.

(4R,6S,E)-Ethyl 4-(benzyloxy)-6-hydroxyocta-2,7-dienoate (26)

26
Crude compound 25 ($3.8 \mathrm{~g}, 0.017 \mathrm{~mol}$) was taken in 80 mL of benzene and 2carbon Wittig ylide ($7.1 \mathrm{~g}, 0.02 \mathrm{~mol}$) was added to it. Reaction mixture was heated to reflux for 1 h , then cooled it to room temperature and concentrated under vacuum. Residue was purified by column chromatography over silica gel using ethyl acetate in light petroleum (1:4) to obtain colorless oil 26.

Yield	: $3.71 \mathrm{~g}, 74 \%$
Mol Formula	: $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4}$
Mol Weight	: 290
Optical rotation [$\alpha]_{\text {D }}{ }^{25}$: $\quad-2.6\left(c \quad 1.1 \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$: $\delta 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{ddd}, J=4.8,7.3,14.0$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\mathrm{Hz}, 1 \mathrm{H}), 1.87$ (ddd, $J=4.8,8.3,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (br.
	$\mathrm{s}, 1 \mathrm{H}), 4.18$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.20-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.42$,
	4.55 (2d, $J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.52-4.65$ (m, 1H), 5.07 (br.
	$\mathrm{d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.30(\mathrm{~m}, 1 \mathrm{H}), 5.77-6.25(\mathrm{~m}$,
	$2 \mathrm{H}), 6.86$ (dd, $J=6.8,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.32(\mathrm{~m}, 5 \mathrm{H})$
${ }^{13} \mathrm{C}$	$: 14.1(\mathrm{q}), 41.8(\mathrm{t}), 60.6$ (t), 70.6 (d), $71.5(\mathrm{t}), 74.6$ (d),
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	114.2 (t), 121.8 (d), 127.9 (d), 128.4 (d), 140.2 (s), 147.0
	(d), 150.0 (d), 166.2 (s) ppm

Elemental analysis Cald. : C, 70.32; H, 7.64\%
Found
: C, 70.09; H, 7.37\%

(4R,6S,E)-4-(Benzyloxy)octa-2,7-diene-1,6-diol (27)

27
Compound $26(3.5 \mathrm{~g}, 0.012 \mathrm{~mol})$ was taken in dry DCM (35 mL) and cooled to 0 ${ }^{\circ} \mathrm{C}$, then $2.36(\mathrm{M})$ DIBAL-H solution in toluene ($16 \mathrm{~mL}, 0.037 \mathrm{~mol}$) was added to the reaction mixture dropwise and stirred at that temperature for 2 h . Then the mixture was quenched with saturated solution of sodium-potassium tartarate and the aqueous solution was washed several times with DCM (3 x 30 mL) and the combined organic layer was dried over sodium sulphate. After concentration of organic layer, crude residue was purified over silica gel using ethyl acetate in light petroleum (1:1.5) to procure colorless liquid 27.

$$
\text { Yield } \quad: \quad 2.04 \mathrm{~g}, 68 \%
$$

Mol Formula
: $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$
Mol Weight
: 248
Optical rotation $[\alpha]_{D}{ }^{25}$
${ }^{1} \mathbf{H}$
$: \quad \delta 1.66(\mathrm{ddd}, J=3.5,4.1,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{dt}, J=9.1$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$ $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ (ddd, $J=4.2,7.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ $(\mathrm{d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.2(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.33$ $(\mathrm{m}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.07$ (ddd, $J=1.5,3.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ (ddd, $J=$ $1.5,3.0,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{ddt}, J=1.5,7.8,15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.74-5.93(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 5 \mathrm{H})$
${ }^{13} \mathrm{C}$
$: \quad 42.6(\mathrm{t}), 62.5(\mathrm{t}), 70.3(\mathrm{t}), 71.7(\mathrm{~d}), 79.3(\mathrm{~d}), 114.4(\mathrm{t})$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$ 127.8 (d), 127.9 (d), 128.5 (d), 130.8
(d), 132.8 (d),

$$
137.8 \text { (s), } 140.3 \text { (d) ppm }
$$

Elemental analysis Cald. : C, 72.55; H, 8.12\%

Found

ESI-MS (m / z)
: C, 72.32; H, 8.05\%
: $\quad 249[\mathrm{M}+\mathrm{H}]^{+}$
(3S,5R,E)-5-(Benzyloxy)-8-(trityloxy)octa-1,6-dien-3-ol (28)

28
Reduced alcohol 27 ($2 \mathrm{~g}, 0.008 \mathrm{~mol}$) was taken in dry DCM (20 mL) and dry $\mathrm{Et}_{3} \mathrm{~N}(3.9 \mathrm{~mL}, 0.028 \mathrm{~mol})$ was added to it and stirred for 10 mins and solid $\mathrm{Ph}_{3} \mathrm{C}-\mathrm{Cl}(4.26$ $\mathrm{g}, 0.015 \mathrm{~mol}$) was added to the reaction mixture and stirred for 4 h . Reaction mixture was concentrated under reduced pressure and the crude residue was purified by column chromatography over silica gel using ethyl acetate in light petroleum (1:7) to obtain thick yellowish liquid 28.

Yield $: \quad 3.44 \mathrm{~g}, 87 \%$
Mol Formula $\quad: \quad \mathrm{C}_{34} \mathrm{H}_{34} \mathrm{O}_{3}$
Mol Weight : 490
Optical rotation $\left[\alpha_{\mathbf{D}} \mathbf{D}^{\mathbf{2 5}} \quad \mathbf{:} \quad+29.50\left(c 1.2, \mathrm{CHCl}_{3}\right)\right.$
${ }^{1} \mathbf{H} \quad: \quad \delta 1.63-1.74(\mathrm{dt}, J=3.7,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.96(\mathrm{dt}, J=$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
9.3, $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.03-4.13 (m, 1H), $4.31(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{~d}, ~ J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.64(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ (ddd, $J=1.5,3.0$, $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ (ddd, $J=1.5,3.0,17.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.75-5.91 (m, 3H), 7.18-7.48 (m, 20H)
${ }^{13} \mathbf{C} \quad: \quad 42.8(\mathrm{t}), 63.9(\mathrm{t}), 70.2(\mathrm{t}), 72.0(\mathrm{~d}), 79.8(\mathrm{~d}), 87.0(\mathrm{~s})$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$
114.2 (t), 127.1 (d), 127.8 (d), 128.0 (d), 128.5 (d), 128.6 (d), 130.6 (d), 130.9 (d), 137.8 (s), 140.5 (d), 144.1 (s) ppm
Elemental analysis Cald. : C, 83.23; H, 6.98\%

Found	$:$ C, $83.31 ; \mathrm{H}, 7.19 \%$
ESI-MS $(\mathrm{m} / \mathrm{z})$	$: 513[\mathrm{M}+\mathrm{Na}]^{+}$

((3S,5R,E)-5-(Benzyloxy)-8-(trityloxy)octa-1,6-dien-3-yloxy)(tertbutyl)diphenylsilane (29)

Trityl protected compound $28(3.4 \mathrm{~g}, 0.007 \mathrm{~mol})$ was taken in dry DCM (40 mL) and imidazole ($0.7 \mathrm{~g}, 0.011 \mathrm{~mol}$) followed by TBDPS-Cl ($2.5 \mathrm{~mL}, 0.009 \mathrm{~mol}$) were added to the reaction mixture and stirred for 4 h . Then the mixture was washed several times with water and the water layer was extracted with DCM. Combined organic layer was dried over sodium sulphate and concentrated. Crude residue was purified by column chromatography using ethyl acetate in light petroleum (1:19) to get colorless liquid 29.

Yield	$: \quad 3.44 \mathrm{~g}, 87 \%$	
Mol Formula	$: \mathrm{C}_{50} \mathrm{H}_{52} \mathrm{O}_{3} \mathrm{Si}$	
Mol Weight	$: 728$	
Optical rotation $[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}$	$:$	$+24.5\left(c 3.7, \mathrm{CHCl}_{3}\right)$
${ }^{\mathbf{1}} \mathbf{H}$	$:$	$\delta 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.63(\mathrm{ddd}, J=4.8,7.5,12.5 \mathrm{~Hz}, 1 \mathrm{H})$,

$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$ 2.03 (ddd, $J=5.3,8.2,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=13.4$

```
\(\mathrm{Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.85(\mathrm{~m}, 1 \mathrm{H})\), \(4.20(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=5.6,7.1 \mathrm{~Hz}\), 1H), 4.47 (d, \(J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.89\) (m, 2H), 5.6 (m, 2H), 5.77 (ddd, \(J=7.2,10.4,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-\) 7.46 (m, 25H), 7.60-7.71 (m, 5H)
\({ }^{13} \mathbf{C} \quad: \quad 19.4(\mathrm{~s}), 27.1(\mathrm{q}), 44.1(\mathrm{t}), 64.2(\mathrm{t}), 69.8(\mathrm{t}), 72.4(\mathrm{~d})\),
\(\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)\)
76.4 (d), 86.9 ( \(s\) ), 114.9 (t), 127.0 (d), 127.3 (d), 127.3
(d), 127.5 (d), 127.67 (d), 127.7 (d), 127.73 (d), 127.8
(d), 127.9 (d), 128.2 (s), 128.6 (d), 129.4 (d), 129.5 (d), 129.6 (s), 129.9 (d), 131.5 (d), 134.2 (s), 134.8 (d), 135.5 (d), 135.9 (d), 136.0 (d), 138.8 (s), 140.6 (d), 144.2 (s) ppm
Elemental analysis Cald. : C, 82.37; H, 7.19\%
Found
: C, 82.59; H, 7.40\%
ESI-MS ( \(\mathrm{m} / \mathrm{z}\) )
: \(751[\mathrm{M}+\mathrm{Na}]^{+}\)
```

(4R,6S,E)-4-(Benzyloxy)-6-(tert-butyldiphenylsilyloxy)octa-2,7-dien-1-ol (30)

30
Compound 29 ($4.3 \mathrm{~g}, 0.006 \mathrm{~mol}$) was dissolved in 50 mL of dry DCM and the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and at that temperature neat TFA $(0.53 \mathrm{~mL}, 0.007$ mol) was added dropwise to it. Temperature was maintained $0{ }^{\circ} \mathrm{C}$ for 0.5 h , then the reaction mixture was concentrated and the crude residue was purified by column chromatography using ethyl acetate in light petroleum (1:4) to obtained yellowish oil $\mathbf{3 0}$.

Yield	$1.81 \mathrm{~g}, 63 \%$
Mol Formula	$\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}$
Mol Weight	486
Optical rotation [$\alpha]_{\text {D }}{ }^{25}$	$+34.9\left(c, 0.7, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$	$\delta 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.59(\mathrm{ddd}, J=5.1,7.3,13.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	2.01 (ddd, $J=5.4,8.2,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (ddd, $J=$
	$5.1,7.5,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ (dd, $J=1.1,5.4 \mathrm{~Hz}, 2 \mathrm{H}$),
	4.2, 4.43 (2d, $J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{dd}, J=5.4,10.9$
	Hz, 1H), 4.77 (ddd, $J=1.0,1.6,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.88$
	(ddd, $J=1.0,1.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.41-5.86$ (m, 3H),
	7.13-7.41 (m, 11H), 7.60-7.68 (m, 4H)
${ }^{13} \mathrm{C}$	19.4 (s), 27.1 (q), 44.0 (t), 62.9 (t), 69.9 (t), 72.3 (d),
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	76.0 (d), 114.9 (t), 127.3 (d), 127.4 (d), 127.5 (d),
	127.6 (d), 128.2 (d), 129.5 (d), 129.6 (d), 131.7 (d),
	131.8 (d), 134.2 (s), 135.97 (d), 136.04 (d), 138.7 (s),
	140.6 (d) ppm
Elemental analysis Cald.	C, 76.50; H, 7.87\%
Found	C, 76.32; H, 8.11\%
ESI-MS (m / z)	$509[\mathrm{M}+\mathrm{Na}]^{+}$

(4R,6S,E)-4-(Benzyloxy)-6-(tert-butyldiphenylsilyloxy)octa-2,7-dienal (22)

22

A mixture of alcohol $30(1.7 \mathrm{~g}, 0.003 \mathrm{~mol})$ and $4 \AA$ molecular sieves $(1.7 \mathrm{~g})$ was taken in 40 mL of dry DCM and the mixture was cooled to $0^{\circ} \mathrm{C}$. At that temperature PDC $(6.57 \mathrm{~g}, 0.015 \mathrm{~mol})$ and catalytic amount of acetic anhydride were added to the reaction suspension. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 0.5 h and then at room temperature for 3.5 h , then concentrated. The solid residue was scratched thoroughly and filtered over Celite pad and washed with ethyl acetate for several times. Combined organic layer was concentrated under vacuum and the crude aldehyde was immediately subjected to the next reaction.

Yield	$1 \mathrm{~g}, 60 \%$
Mol Formula	$\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}$
Mol Weight	484
${ }^{1} \mathrm{H}$	$\delta 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.64$ (ddd, $J=5.1,7.2,12.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	1.98 (ddd, $J=4.9,7.8,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-4.12(\mathrm{~m}, 1 \mathrm{H})$,
	4.24, $4.42(2 \mathrm{~d}, ~ J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{dd}, J=6.9,12.4$
	Hz, 1H), 4.84 (dt, $J=1.4,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.94$ (dt, $J=$
	$1.4,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.76$ (ddd, $J=6.7,10.3,17.1 \mathrm{~Hz}, 1 \mathrm{H})$,
	6.11 (ddd, $J=1.0,7.7,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=5.8$,
	15.8 Hz, 1H), 7.12-7.42 (m, 11H), 7.59-7.67 (m, 4H),
	9.45 (d, J=7.8 Hz, 1H)

(R)-4-Benzyl-3-((2R,3S,6R,8S,E)-6-(benzyloxy)-8-(tert-butyldiphenylsilyloxy)-3-hydroxy-2-methyldeca-4,9-dienoyl)oxazolidin-2-one (31)

Compound $8(0.48 \mathrm{~g}, 0.002 \mathrm{~mol})$ was taken in dry DCM (12 mL) and at $0^{\circ} \mathrm{C}$ freshly distilled $\mathrm{TiCl}_{4}(0.24 \mathrm{~mL}, 0.002 \mathrm{~mol})$ was added and stirred for 15 mins . The reaction mixture became turbid yellow. To this solution dry DIPEA ($0.9 \mathrm{~mL}, 0.005 \mathrm{~mol}$) was added and the reaction mixture became blood red. Temperature was maintained $0{ }^{\circ} \mathrm{C}$ and stirred it again for 15 mins. Then the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and aldehyde $22(1 \mathrm{~g}, 0.002 \mathrm{~mol})$ solution in dry DCM $(2 \mathrm{~mL})$ was added to the reaction mixture and stirred for 0.5 h . Reaction mixture was quenched with saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and aqueous layer was washed with DCM and combined organic layer was dried over sodium sulphate and concentrated. The crude residue was purified by column chromatography using ethyl acetate in light petroleum (1:6) to obtain white sticky gel $\mathbf{3 1}$.

Yield	: $931 \mathrm{mg}, 63 \%$
Mol Formula	: $\mathrm{C}_{44} \mathrm{H}_{51} \mathrm{NO}_{6} \mathrm{Si}$
Mol Weight	717
Optical rotation [$\alpha]_{\text {D }}{ }^{25}$	$: \quad+10.6\left(\right.$ c 2.8, CHCl_{3})
${ }^{1} \mathrm{H}$: $\delta 1.03$ (s, 9H), $1.21(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{ddd}, J=$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$4.3,7.9,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.00$ (ddd, $J=5.2,8.7,13.5 \mathrm{~Hz}$,
	$1 \mathrm{H}), 2.77$ (dd, $J=9.4,13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.25$ (dd, $J=3.3$,
	$13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.89(\mathrm{~m}, 2 \mathrm{H}), 4.17,4.44(2 \mathrm{~d}, \mathrm{~J}=$
	$11.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.14-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.34(\mathrm{~m}, 1 \mathrm{H})$,
	4.37-4.45 (m, 1H), 4.59-4.68 (m, 1H), 4.75 (ddd, $J=$
	$1.3,2.7,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87$ (ddd, $J=1.3,2.7,10.5 \mathrm{~Hz}$,
	$1 \mathrm{H}), 5.43-5.84(\mathrm{~m}, 3 \mathrm{H})$, 7.13-7.40 (m, 16H), 7.61-7.68
	(m, 4H)
${ }^{13} \mathrm{C}$: 11.1 (q), 19.3 (s), 27.1 (q), 37.8 (t), 44.2 (t), 55.2 (d),
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	55.6 (d), 66.2 (t), 69.9 (t), 72.1 (d), 72.4 (d), 76.0 (d),

115.0 (t), 127.4 (d), 127.49 (d), 127.54 (d), 128.2 (d),
129.0 (d), 129.41 (s), 129.44 (s), 129.5 (s), 132.5 (d), 135.2 (s$), 135.9$ (d), 136.0 (d), 140.5 (d), 153.5 (s), 176.1 (s) ppm

Elemental analysis Cald. : C, $76.61 \mathrm{H}, 7.16 \%$

Found	$: \mathrm{C}, 76.42 \mathrm{H}, 7.41 \%$
ESI-MS $(\mathrm{m} / \mathrm{z})$	$: 740[\mathrm{M}+\mathrm{Na}]^{+}$

(R)-4-Benzyl-3-((2R,3S,6R,8S,E)-6-(benzyloxy)-3-(tert-butyldimethylsilyloxy)-8-(tert-butyldiphenylsilyloxy)-2-methyldeca-4,9-dienoyl)oxazolidin-2-one (32)

Compound 31 ($900 \mathrm{mg}, 1.26 \mathrm{mmol}$) was taken in dry DCM (25 mL) and dry 2,6 lutidine ($0.22 \mathrm{~mL}, 1.89 \mathrm{mmol}$) was added to it followed by freshly prepared TBDMS-OTf $(0.35 \mathrm{~mL}, 1.51 \mathrm{mmol})$ and the reaction mixture was stirred for 0.5 h . Then the reaction mixture was concentrated and crude product was purified by column chromatography over silica gel using ethyl acetate in light petroleum (1:9) to procure colorless oil 32.

Yield $: \quad 836 \mathrm{mg}, 80 \%$
Mol Formula $\quad: \quad \mathrm{C}_{43} \mathrm{H}_{56} \mathrm{NO}_{6} \mathrm{Si}_{2}$
Mol Weight : 947
Optical rotation $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad \mathbf{:}+19.8\left(c 1.3, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H} \quad: \quad \delta-0.03(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H})$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
$1.19(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{ddd}, J=4.1,8.5,13.8$
$\mathrm{Hz}, 1 \mathrm{H}), 2.0$ (ddd, $J=5.2,9.0,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$ (dd, J $=9.5,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=3.0,13.3 \mathrm{~Hz}, 1 \mathrm{H})$,
3.71-3.81 (m, 1H), 3.96-4.10 (m, 3H), 4.14, 4.44 (2d, J
$=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.25-4.34(\mathrm{~m}, 2 \mathrm{H}), 4.48-4.58(\mathrm{~m}, 1 \mathrm{H})$, 4.73 (ddd, $J=0.9,1.9,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{ddd}, J=0.9$, $1.9,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$ (dd, $J=6.8,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.60$
(dd, $J=5.3,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{ddd}, J=7.3,10.3,17.3$
$\mathrm{Hz}, 1 \mathrm{H}), 7.11-7.40(\mathrm{~m}, 16 \mathrm{H}), 7.60-7.67$ (m, 4H)
${ }^{13} \mathbf{C} \quad: \quad-4.0(\mathrm{q}),-3.5(\mathrm{q}), 13.0(\mathrm{q}), 18.2(\mathrm{~s}), 19.3(\mathrm{~s}), 25.9(\mathrm{q})$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$
27.1 (q), 38.5 (t$), 44.5$ (t$), 55.03$ (d), 55.7 (d), 65.9 ($)$, 72.2 (d), 72.5 (d), 74.2 (d), 75.9 (d), 115.1 (t), 127.2 (d), 127.3 (d), 127.47 (d), 127.52 (d), 127.6 (d), 128.16 (d), 128.22 (d), 128.95 (d), 129.01 (d), 129.3 (s), 129.4 (s), 129.5 (s), 135.9 (d), 136.0 (d), 140.5 (d), 153.0 (s$),$ 174.8 (s) ppm

Elemental analysis Cald. : C, 69.22; H, 8.51\%
Found : C, 68.97; H, 8.42\%
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: \quad 970[\mathrm{M}+\mathrm{Na}]^{+}$
(2R,3S,6R,8S,E)-6-(Benzyloxy)-3-(tert-butyldimethylsilyloxy)-8-(tert-butyldiphenylsilyloxy)-2-methyldeca-4,9-dienoic acid (33)

33

Compound 32 ($800 \mathrm{mg}, 0.96 \mathrm{mmol}$) was taken in 12 mL THF- $\mathrm{H}_{2} \mathrm{O}$ (4:1) mixture at $0{ }^{\circ} \mathrm{C}$ and LiOH. $\mathrm{H}_{2} \mathrm{O}\left(65 \mathrm{mg}, 1.54 \mathrm{mmol}\right.$) was added to it followed by $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution (2.1 mL). Then the reaction mixture was stirred for 4 h and bulk of THF was removed under vacuum and resulting mixture was extracted with DCM. DCM layer was washed with $3(\mathrm{~N}) \mathrm{HCl}(3 \times 15 \mathrm{~mL})$ and organic layer was dried over sodium sulfate and concentrated. Crude residue was purified by column chromatography using 25% ethyl acetate in light petroleum to get colorless oil 33.

Yield	$: 356 \mathrm{mg}, 55 \%$
Mol Formula	$: \mathrm{C}_{40} \mathrm{H}_{56} \mathrm{O}_{5} \mathrm{Si}_{2}$
Mol Weight	$: 672$

Optical rotation $[\alpha]_{D}{ }^{25}$

IR v $\quad: \quad 1253,1362,1427,1462,1495,1709,2856,2927,3072$
${ }^{1} \mathbf{H} \quad: \quad \delta 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H})$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

$$
1.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{ddd}, J=2.7,7.4,13.8
$$

$\mathrm{Hz}, 1 \mathrm{H}), 1.99$ (ddd, $J=5.4,8.5,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}$,
$J=4.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.81(\mathrm{~m}, 1 \mathrm{H}), 4.13,4.41(2 \mathrm{~d}, J$
$=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.22-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.73(\mathrm{ddd}, J=0.9$,
$1.8,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.85$ (ddd, $J=0.9,1.8,10.4 \mathrm{~Hz}, 1 \mathrm{H})$,
5.44-5.48 (m, 2H), 5.75 (ddd, $J=7.2,10.4,17.1 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.10-7.41(\mathrm{~m}, 11 \mathrm{H}), 7.60-7.67(\mathrm{~m}, 4 \mathrm{H})$
${ }^{13} \mathrm{C}$
: $\quad-5.2$ (q), -4.2 (q), 11.2 (q), 18.1 (s), 19.3 (s), 25.7 (q),
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$
75.7 (d), 114.9 (t), 127.3 (d), 127.5 (d), 127.6 (d), 128.2
(d), 129.4 (d), 129.5 (d), 132.4 (d), 132.7 (d), 134.1 ($s)$,
135.9 (d), 136.0 (d), 138.4 (s), 140.5 (d), 178.4 (s) ppm

Elemental analysis Cald. : C, 71.38; H, 8.39\%

Found	$:$ C, $71.51 ; \mathrm{H}, 8.40 \%$
ESI-MS $(\mathrm{m} / \mathrm{z})$	$:$
E	$695[\mathrm{M}+\mathrm{Na}]^{+}$

(2R,3S,6S,8R)-3-(tert-Butyldimethylsilyloxy)-8-(tert-butyldiphenylsilyloxy)-6-

hydroxy-2-methyldecanoic acid (21)

21
Acid compound $\mathbf{3 3}$ ($300 \mathrm{mg}, 0.44 \mathrm{mmol}$) was dissolved in 30 mL of HPLC grade ethyl acetate and $\mathrm{Pd}(\mathrm{OH})_{2}(60 \mathrm{mg})$ was added to it. Hydrogen balloon pressure was applied on reaction mixture for 6 h . Then the mixture was filtered on Celite pad and washed thoroughly with ethyl acetate and filtrate was concentrated and purified on column chromatography using 30% ethyl acetate in light petroleum to get colorless oil 21.

Yield : $162 \mathrm{mg}, 62 \%$
Mol Formula $\quad: \quad \mathrm{C}_{33} \mathrm{H}_{54} \mathrm{O}_{5} \mathrm{Si}_{2}$
Mol Weight : 586
Optical rotation $\left[\alpha_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad \mathbf{:} \quad-5.9\left(c \operatorname{co.8}, \mathrm{CHCl}_{3}\right)\right.$
${ }^{1} \mathbf{H} \quad: \quad \delta 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.65(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$ $1.04(\mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-1.40(\mathrm{~m}$, 4H), 1.52-1.59 (m, 4H), 2.58 (dd, $J=4.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67-3.78 (m, 1H), 3.83-3.99 (m, 2H), 7.36-7.43 (m,
$6 \mathrm{H}), 7.66-7.73(\mathrm{~m}, 4 \mathrm{H})$
${ }^{13} \mathrm{C}$
: -4.7 (q), -4.3 (q), 9.2 (q), 11.4 (q), 18.0 (s), 19.3 (s),
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$
25.8 (q), 27.0 (q), 44.4 (t), 70.5 (d), 73.8 (d), 75.3 (d),
127.5 (d), 127.7 (d), 129.7 (d), 129.9 (s), 135.9 (d), 178.4 (s) ppm

Elemental analysis Cald. : C, 67.53; H, 9.27\%
Found : C, 67.62; H, 9.48\%
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: \quad 609[\mathrm{M}+\mathrm{Na}]^{+}$
(3R,4S,7S)-4-(tert-Butyldimethylsilyloxy)-7-((R)-2-(tert-butyldiphenylsilyloxy)butyl)-3-methyloxepan-2-one (34)

34
Seco acid compound $21(150 \mathrm{mg}, 0.26 \mathrm{mmol})$ was taken in dry DCM $(100 \mathrm{~mL})$. EDCI ($75 \mathrm{mg}, 0.39 \mathrm{mmol}$), HOBt ($53 \mathrm{mg}, 0.39 \mathrm{mmol}$) and DMAP ($48 \mathrm{mg}, 0.39 \mathrm{mmol}$) were added to it at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was warmed to room temperature and stirred for 12 h . Then the solution was washed with water and organic layer was dried over sodium sulfate and concentrated. Crude residue was purified by column chromatography using ethyl acetate in light petroleum (1:4) to obtain colorless oil 34.

Yield : $97 \mathrm{mg}, 67 \%$
Mol Formula $\quad: \quad \mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{Si}_{2}$
Mol Weight : 568
Optical rotation $\left[\alpha_{1}\right]_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad \mathbf{:}+33.2\left(c 1.8, \mathrm{CHCl}_{3}\right)$

${ }^{1} \mathbf{H} \quad: \quad \delta 0.00(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$,
 $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
 ${ }^{13} \mathbf{C} \quad: \quad-5.0(\mathrm{q}),-4.9(\mathrm{q}), 9.2(\mathrm{q}), 12.8(\mathrm{q}), 18.0(\mathrm{~s}), 19.5(\mathrm{~s})$,
 $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$
 25.7 (q), 27.1 (q), 28.0 (t), 30.0 (t), 30.4 (t), $42.4(\mathrm{t})$, 50.2 (d), 70.1 (d), 71.6 (d), 76.0 (d), 127.6 (d), 127.7 (d), 129.7 (d), 134.1 (s), 134.1 (s), 135.8 (d), 135.9 (d), 174.2 (s) ppm

Elemental analysis Cald. : C, 69.67; H; 9.21\%

Found
: C, 69.82; H; 8.96\%
ESI-MS (m / z)
: $591[\mathrm{M}+\mathrm{Na}]^{+}$

(3R,4S,7S)-4-Hydroxy-7-((R)-2-hydroxybutyl)-3-methyloxepan-2-one (2)

7-membered lactone compound $34(90 \mathrm{mg}, 0.16 \mathrm{mmol})$ was taken in THF (2 mL) and HF-pyridine solution in pyridine (0.5 mL) was added and every 6 h reaction was monitored by TLC and 0.5 mL of HF-pyridine solution in pyridine was added to it until the reaction was complete. After 48 h the reaction mixture was quenched with water and THF was evaporated under vacuum and the rest was diluted with ethyl acetate and the organic layer was thoroughly washed with water. Then the organic layer was dried over sodium sulfate and concentrated under reduced pressure and crude residue was purified
by flash column chromatography using 80% ethyl acetate in light petroleum to obtain colorless liquid 2.

Yield : $15 \mathrm{mg}, 45 \%$
Mol Formula $\quad: \quad \mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{4}$

Mol Weight : 216
Optical rotation $[\alpha]_{\mathbf{D}}{ }^{25}$: $\quad-6.9\left(c 0.7, \mathrm{CHCl}_{3}\right)$
IR $v \sim \quad: \quad 1216,1384,1459,1725,2401,2856,2928,3020,3412$ cm^{-1}
${ }^{1} \mathrm{H}$
: $\delta 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.45-$
$\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ 2.08 (m, 8H), 2.92 (dq, $J=6.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.76$ (m, 2H), 4.63-4.74 (m, 1H)
${ }^{13} \mathbf{C} \quad: \quad 9.7(q), 14.2(q), 29.7(t), 30.0(t), 34.9(t), 42.9(t), 44.9$
$\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$
(d), 70.8 (d), 70.9 (d), 77.0 (d), 174.6 (s) ppm

Elemental analysis Cald. : C, 61.09; H, 9.32\%
Found : C, 60.82; H, 9.17\%
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: \quad 239[\mathrm{M}+\mathrm{Na}]^{+}$

SPECTROSCOPIC DATA

${ }^{1}$ H NMR spectra of compound 7

${ }^{13} \mathbf{C}$ NMR spectra of compound 7

${ }^{1}$ H NMR spectra of compound 16

${ }^{13} \mathrm{C}$ NMR spectra of compound 16

${ }^{1}$ H NMR spectra of compound 17

${ }^{13} \mathrm{C}$ NMR spectra of compound 17

${ }^{1}$ H NMR spectra of compound 6

${ }^{13} \mathrm{C}$ NMR spectra of compound 6

${ }^{1}$ H NMR spectra of compound 5

${ }^{13} \mathrm{C}$ NMR spectra of compound 5

${ }^{1}$ H NMR spectra of compound 23

${ }^{13} \mathrm{C}$ NMR spectra of compound 23

${ }^{1}$ H NMR spectra of compound 24

${ }^{13} \mathrm{C}$ NMR spectra of compound 24

${ }^{1}$ H NMR spectra of compound 26

${ }^{13} \mathrm{C}$ NMR spectra of compound 26

${ }^{1}$ H NMR spectra of compound 27

${ }^{13} \mathrm{C}$ NMR spectra of compound 27

${ }^{1}$ H NMR spectra of compound 28

${ }^{13} \mathrm{C}$ NMR spectra of compound 28

${ }^{1}$ H NMR spectra of compound 29

${ }^{13}$ C NMR spectra of compound 29

${ }^{1}$ H NMR spectra of compound 30

${ }^{13} \mathrm{C}$ NMR spectra of compound 30

${ }^{1}$ H NMR spectra of compound 22

${ }^{1}$ H NMR spectra of compound 31

${ }^{13} \mathrm{C}$ NMR spectra of compound 31

${ }^{1}$ H NMR spectra of compound 32

${ }^{13} \mathrm{C}$ NMR spectra of compound 32

${ }^{1}$ H NMR spectra of compound 33

${ }^{13}$ C NMR spectra of compound 33

${ }^{1}$ H NMR spectra of compound 34

${ }^{13} \mathrm{C}$ NMR spectra of compound 34

COSY spectra of compound 34

NOESY spectra of compound 34

${ }^{1}$ H NMR spectra of compound 2

${ }^{13} \mathrm{C}$ NMR spectra of compound 2

CHAPTER 2: Section 2

Towards the Total Synthesis of Pandangolide 1

PRESENT WORK

PRESENT WORK

Marine fungi are attracting increasing attention as a potential source of new pharmaceuticals and pharmaceutical leads. ${ }^{43,44}$ Isolates belonging to cosmopolitan genera, such as Aspergillus, Penicillum, Alternaria, and Cladosporium, are a significant source of new secondary metabolites from marine-derived fungi. ${ }^{45}$ Species belonging to these genera are routinely isolated from the surfaces, inner tissues, and internal spaces of marine algae, ${ }^{46,47}$ sponges, ${ }^{48}$ ascidians, ${ }^{47}$ and other marine invertebrates. ${ }^{49}$ To date, more than 75 metabolites from 25 sponge-derived fungal strains have been described. ${ }^{48,50,51}$ Some of these reported metabolites exhibit bioactive properties and are structurally unique, while many others are structurally related to metabolites produced by fungi isolated from terrestrial habitats. ${ }^{52}$ Recently Carmeli et al. have isolated a new hexaketide lactone, pandangolide 1a ($1,2.4 \mathrm{mg}, 1.6 \%$ of crude extract), along with its known diastereoisomer pandangolide $1(\mathbf{2}, 3.4 \mathrm{mg}, 2.3 \%$ of crude extract) and the known iso-cladospolide B (3, $25.7 \mathrm{mg}, 17.6 \%$ of crude extract), from the ethyl acetate extract of a Cladosporium sp. that was isolated from the Red Sea sponge Niphates rowi. ${ }^{53}$

Figure 1

Pandangolide 1a (1)

Pandangolide 1 (2)

iso-Cladospolide-B (3)

Ireland and co-workers isolated pandangolide 1^{54} (2) along with three other compounds of the same class from the fermentation of a marine fungal species obtained from a tissue sample of a marine sponge collected in Indonesia in October 1996, named iso-cladospolide B (3), seco-patulolide C (4), and pandangolide 2 (5), and the known terrestrial fungal metabolite, cladospolide B(5).

Figure 2

Pandangolide 1 (2)

iso-Cladospolide-B (3)

seco-Patulolide C (4)

Pandangolide 2 (5)

Cladospolide B (6)

Pandangolide 1 was isolated as an oil that showed a protonated molecular ion in the positive ion FAB MS spectrum at $m / z 245(\mathrm{M}+\mathrm{H})^{+}$corresponding to the molecular formula $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{5} .{ }^{13} \mathrm{C}$ NMR spectrum also contained 12 signals. Again, a signal at $\delta 175.27$ indicated the presence of ester functionality plus another signal at $\delta 213.09$ arising from keto-carbonyl functionality. The absorbances at 1732 and $1716 \mathrm{~cm}^{-1}$ noticed in IR spectrum of $\mathbf{1}$ supported the presence of ester and keto-carbonyl groups. A broad absorbance centered at $3444 \mathrm{~cm}^{-1}$ indicated the presence of hydroxyl group(s). The ${ }^{1} \mathrm{H}$ NMR spectrum contained three methine signals at $\delta 4.83,4.40$, and 4.09 , indicating three oxygenated carbons. Also present were two signals at $\delta 3.30$ and 3.15 that coupled to one another with a magnitude of 19.2 Hz and, on analysis of an HMQC experiment, were shown to be attached to the same carbon at $\delta 43.87$. Inspection of a gradient multiple quantum COSY experiment showed the presence of two spin systems. One contained the two geminally coupled signals and the signal at $\delta 4.40$; the second encompassed all the remaining protons. The data also allowed the assignment of a terminal methyl functionality ($\delta 1.19$) adjacent to an oxygen-bearing methine ($\delta 4.83$). This methine could also be assigned as part of a lactone functionality by virtue of its proton and carbon chemical shifts. The observance of a number of key HMBC correlations from H2, H3, H5, and H6
with the keto group (C 4) allowed the assignment of its position between the two spin systems. The rest of the carbons were again assigned to a long methylene chain to complete the macrolide. The HMQC experiment showed that nearly all of the methylene protons had different chemical shifts from their geminal partner, providing further evidence for a macrocycle. This is in contrast to the straight-chain compounds which did not show diastereotopic methylene protons. Further analysis of the COSY and HMBC allowed assignment of structure 1. All these assignments and structural elucidation determined the core structure of the molecule but the absolute configuration of hydroxyl group(s) and the methyl center was unknown till 2005. In 2005 Carmeli group first proposed the absolute configuration on the basis of chemical, spectroscopic, and biosynthetic arguments. Comparison of the NMR data of pure pandangolide 1 and pandangolide 1a suggested that they differed only in the configuration of C-3 since the carbon chemical shift differences peaked for C-3 (3.0 ppm) and declined to both sides of C-11 (0.1 ppm) and C-6 (0.4 ppm). Comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data and optical rotations of both compounds ($\mathbf{1}$ and $\mathbf{2}$) with the NMR data in $\mathrm{CD}_{3} \mathrm{OD}$ and optical rotations in MeOH of pandangolide 1 revealed that compound 1 was identical in all respects to pandangolide $1 .^{54}$

The absolute stereochemistry of compounds $\mathbf{1}$ and 2 was determined using Riguera's method for the determination of the absolute stereochemistry of secondary alcohols ${ }^{56}$ which suggest that the C-3 stereochemistry in $\mathbf{1}$ and $\mathbf{2}$, is reversed and fixed the the stereogenic center at position 5 to be S.

On the basis of biosynthetic considerations, shown in Scheme 1, a common trihydroxydodecanoic acid-polyketide precursor is suggested for compounds $\mathbf{1 , 2 , 3}$. We suggest that the stereochemistry of C-11 in pandangolides 1a (1) and 1 (2) is S, similar to that of iso-cladospolide B (3), considering the function of type I modular PKS in generating a polyketide chain. ${ }^{57}$

Scheme 1: Biosynthesis of compound 1, 2, 3

Considering the structural similarity of pandangolide 1 and pandangolide 1 a , as there was no total synthesis confirming the relative and absolute configurations proposed, pandangolide 1 was selected as the initial synthetic target. The key retrosynthetic disconnections planned for the total synthesis of 2 were given in Scheme 2. The central issue in our retrosynthetic strategy is the formation of macrolactone ring where the RCM has been opted as the key reaction. Keeping the RCM as the key transformation, the central skeleton of $\mathbf{2}$ has been divided into two fragments; (i) acid fragment $\mathbf{1 3}$ and (ii) long chain chiral alcohol 14. D-glucose has been identified as a suitable chiral precursor for the synthesis of fragment 13, after comparing the absolute configuration of the stereogenic centers present. The synthesis of alchol $\mathbf{1 4}$ was planned from easily available R -
epichlorohydrine by treating it with suitable alkenyl Grignard reagent and subsequent two step protocol for the terminal deoxygenations via an oxirane intermediate.

Scheme 2: Retrosynthetic strategy

Preparation of fragment A:

As intended our exercise towards the total synthesis of padangolide 1 started with the synthesis of fragment A from easily available D-glucose. The known benzyl ether $\mathbf{1 5}$ was made from D-glucose by following the established procedures. Thus protection of Dglucose as its diacetonide (acetone in anhydrous CuSO_{4}) followed by benzylation of free 3OH using benzyl bromide gave benzyl ether in 56% overall yield. The 5,6-acetonide group was selectively cleaved using $0.8 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in MeOH . Following the established double elimination procedure in our group, diol was converted to the known olefin $15 .{ }^{58}$

Scheme 3

Reagents and conditions: a) $\left.\mathrm{NaH}, \mathrm{BnBr}, \mathrm{THF}, 0^{\circ} \mathrm{C} \longrightarrow \mathrm{rt}, 1 \mathrm{~h} . \mathrm{b}\right) 0.8 \% \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}, 12$ h. c) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$. e) $\mathrm{Zn}, \mathrm{NaI}, \mathrm{DMF}, 150^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Hydroboration/oxidation of compound 15 by using borane-dimethyl sulfide complex followed by treatment with $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}_{2}$ provided the alchol 16 with complete regioselectivity. The structural identity of alcohol 16 was confirmed with the help of NMR spectroscopy. For example, in the ${ }^{1} \mathrm{H}$ NMR of compound 16, there was no terminal methyl group present in the upfield region. A triplet at $\delta 60.3 \mathrm{ppm}$ in the ${ }^{13} \mathrm{CNMR}$ confirmed the
placement of the newly introduced -OH group at the terminal carbon of the olefin. The other methylene group resonated at $\delta 30.9 \mathrm{ppm}$ in the ${ }^{13} \mathrm{CNMR}$ supported the assigned regiochemistry.

After fixing the regiochemical outcome of the hydroboration reaction, we continued the synthetic sequence with the alcohol 16. The free hydroxyl group was protected as its pivaloyl ester $\mathbf{1 7}$ by treating with pivaloyl chloride and triethyl amine.

Scheme 4

15

16

Treatment of compound 17 with cat. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in acetic acid at $60^{\circ} \mathrm{C}$ brought the 1,2acetonide deprotection to afford the lactol $\mathbf{1 8} .{ }^{25}$ The absence of the two methyl singlet signals of acetonide group and the upfield shift of anomeric proton from $\delta 5.91$ to $\delta 5.46$ in ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 8}$ evidenced the 1,2-acetonide deprotection.

Scheme 5

One-carbon Wittig homologation of lactol $\mathbf{1 8}$ by employing $\mathrm{H}_{2} \mathrm{C}=\mathrm{PPh}_{3}$ (generated in situ using triphenyl phosphonium iodide and n-butyl lithium) afforded the olefin 19 in good yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 9}$, absence of a peak corresponding to anomericH and the presence of three new H's in the downfield region (1 H at $\delta 5.94$ and 2 H at $\delta 5.23$ and 5.37), confirmed the assigned structure. This functional group transformation was further confirmed by ${ }^{13} \mathrm{C}$ NMR spectroscopy where $\delta 116.6$ and 138.0 peaks respectively were the two characteristic signals of terminal and internal olefinic carbons. The two free -OH groups present in 19 were protected as their TBDMS ethers by using

TBDMS-Cl and imidazole as base. Purification of the di-TBS product 20 was complicated by its close polarity with the unreacted TBS-Cl. Considering this difficulty, we have proceeded further with the crude TBS protected product for the deprotection of terminal pivaloyl group.

Scheme 6

The pivaloyl deprotection of $\mathbf{2 0}$ was carried out with DIBAL-H in DCM at -78 ${ }^{\circ} \mathrm{C}$. ${ }^{59}$ Complete disappearance of starting compound was noticed within 5 min . However, after chromatographic purification, we noticed that the major product isolated 21, has only one TBS group and the desired product was obtained only in 5% yield. Even in aprotic solvent like n-hexane, the DIBAL-H reduction resulted with the same result. When LAH was employed as the reducing agent, unrequired product 21 was isolated exclusively. This product formation was indicated from mass spectroscopy where m / z value was observed $390[\mathrm{M}+\mathrm{Na}]^{+}, 406[\mathrm{M}+\mathrm{K}]^{+}$in ESI-MS. From ${ }^{1} \mathrm{H}$ NMR study absence of one TBS group also confirmed the obtained result.

Considering the unanticipated TBS deprotection in the hydride reduction, we next opted for base mediated saponifaction of the pivaloyl group. Our initial experiments by using lithium hydroxide in moist ethanol method at $40{ }^{\circ} \mathrm{C}$, once again afforded the formation of compound 21 in major proportion, however, the proportion of the desired product was increased to certain extent. Encouraged by this, several parameters of this reaction were varied and come up with optimized conditions where the reaction was stopped once the unrequired product started forming.

Scheme 7

Scheme 8

After successful deprotection of pivaloyl group now target was to make the key acid fragment 13. The oxidation of the primary alcohol $\mathbf{2 2}$ to the acid $\mathbf{1 3}$ was carried out by employing two step protocols. Thus the primary hydroxyl group was first oxidized to an aldehyde 23 under IBX-DMSO conditions and further oxidation of the resulting aldehyde to corresponding acid by using sodium chlorite in sodiumdihydrogen phosphate buffer. Considering its decomposition on storage, only ${ }^{1} \mathrm{H}$ NMR of the intermediate aldehyde was taken. The aldehyde-H was appeared at $\delta 9.74$ as a triplet, and the methylene protons adjacent to aldehyde functionality were also deshielded from $\delta 1.77$ and $\delta 1.96$ to $\delta 2.60$ and $\delta 2.77$ respectively in the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 23. Absence of this aldehyde peak in ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 3}$ and appearance of a quaternary carbon singlet at $\delta 175.5$ in the ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 3}$ confirmed the further oxidation of aldehyde unit to acid. Mass spectroscopy and elemental analysis were also in accordance with the formation of the acid product.

Scheme 9

Synthesis of fragment B:

Synthesis of fragment B was straight forward. Thus the treatment of R epichlorohydrin with 3-butenyl magnesium bromide gave the chlorohydrin $\mathbf{2 4}$ in $\mathbf{7 8 \%}$ yield. ${ }^{60}$ The resulting chlorohydrin 24 was subjected to reductive dehalogenation by employing LAH to procure the key alcohol 14 . The spectral and analytical data of 14 was fully in accordance with the reported data. ${ }^{61}$

Scheme 10

After successful preparation of both the fragments, coupling of these two fragments was done by using Yamaguchi reagent. Formation of coupling product $\mathbf{1 2}$ was confirmed by ${ }^{1} \mathrm{H}$ NMR where proton at $\delta 3.70-\delta 3.77$ was deshielded to $\delta 4.80-\delta 4.87$. This coupling product was subjected to the RCM reaction, but unfortunately in both $1^{\text {st }}$ generation and $2^{\text {nd }}$ generation Grubbs' catalyst reaction was failed in DCM, benzene, and toluene solvents.

Scheme 11

In conclusion, we attempted to synthesize the 12-membered lactone, pandangolide 1 by using RCM as the key reaction. Although synthesis of 12-membered ring lactones by RCM protocol are known. However, it was not successful in our case. As we noticed in
chapter 1, by varying the protecting groups, fate of RCM reaction can be changed. So work in this direction is progressing in our group.

EXPERIMENTAL

EXPERIMENTAL

2-((3aR,5R,6S,6aR)-6-(Benzyloxy)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-

 yl)ethanol (16)

16
Olefin compound 15 ($4.5 \mathrm{~g}, 0.016 \mathrm{~mol}$) was taken in 30 mL dry THF and BH_{3}.DMS ($2 \mathrm{~mL}, 0.021 \mathrm{~mol}$) diluted with 15 mL of dry THF was added to it dropwise for 1 h period at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at same temperature for 2 h more. Then the reaction mixture was quenched with 2 mL of water at $0^{\circ} \mathrm{C}$ and stirred for 5 mins . Then $3(\mathrm{~N}) \mathrm{NaOH}$ solution (16 mL) followed by $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution (16 mL) were added to the reaction mixture and stirred for 3 h at room temperature. Then the whole mixture was extracted with ethyl acetate for several times ($3 \times 50 \mathrm{~mL}$). Combined organic layer was dried over sodium sulphate and concentrated under vacuum. The crude residue was purified by column chromatography over silica gel using ethyl acetate in light petroleum (1:2) to obtain yellowish thick liquid 16.

Yield	: $2.88 \mathrm{~g}, 60 \%$
Mol Formula	: $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5}$
Mol Weight	: 294
Optical rotation [$\alpha]_{\text {D }}{ }^{25}$: $\quad-16.8\left(c 0.75, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$: $\delta 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.49$ (s, 3H), 1.80-2.04 (m, 2H), 2.97 (br. s,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$1 \mathrm{H}), 3.72-4.74(\mathrm{~m}, 7 \mathrm{H}), 5.91(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ (br.
	s, 5H)
${ }^{13} \mathrm{C}$	$: 26.2$ (q), 26.7 (q), 30.9 (t), 60.3 (t), 71.7 (t), 78.5 (d), 82.2

$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$
(d), 82.6 (d), 104.7 (d), 111.3 (s), 127.7 (d), 128.0 (d), 128.5 (d), 137.4 (s) ppm

Elemental analysis Cald. : C, 65.29; H, 7.53; O, 27.18\%
Found : C, 65.42; H, 7.61\%
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: \quad 317[\mathrm{M}+\mathrm{Na}]^{+}$

2-((3aR,5R,6S,6aR)-6-(Benzyloxy)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-

 yl)ethyl pivalate (17)

17
Compound $16(2.8 \mathrm{~g}, 0.01 \mathrm{~mol})$ was taken in 30 mL of dry DCM and dry triethylamine ($7.5 \mathrm{~mL}, 0.05 \mathrm{~mol}$) was added to it. Freshly distilled pivaloyl chloride (2.5 $\mathrm{mL}, 0.02 \mathrm{~mol}$) was added to the reaction mixture at room temperature and stirred for 2 h . Then the reaction mixture was quenched with water and the water layer was extracted with DCM (2 x 40 mL). Combined organic layer was dried over sodium sulphate and concentrated. Crude residue was purified by column chromatography over silica gel using ethyl acetate in light petroleum (1:9) to obtain colorless oil 17.

$$
\text { Yield } \quad: \quad 2.45 \mathrm{~g}, 68 \%
$$

Mol Formula

Mol Weight

Optical rotation $\left[\alpha_{\mathbf{D}_{\mathbf{D}}}{ }^{\mathbf{2 5}} \quad: \quad-19.3\left(c 4.65, \mathrm{CHCl}_{3}\right)\right.$
${ }^{1} \mathrm{H}$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
$: \delta 1.19(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{ddd}, J=$
$6.1,12.2,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{ddd}, J=6.1,8.3,14.2 \mathrm{~Hz}$,

Elemental analysis Cald. : C, 66.65; H, 7.99; O, 25.37\%
Found : C, 66.72; H, 8.23\%
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: \quad 401[\mathrm{M}+\mathrm{Na}]^{+}$

2-((2R,3R,4R)-3-(Benzyloxy)-4,5-dihydroxytetrahydrofuran-2-yl)ethyl pivalate (18)

18
Pivaloyl protected compound $155(2.45 \mathrm{~g}, 0.006 \mathrm{~mol})$ was taken in 25 mL of 70% acetic acid solution and catalytic amount of concentrated sulfuric acid was added to it. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 6 h . Then the reaction mixture was cooled to room temperature and solid NaHCO_{3} was added to it portion wise until the effervescence ceased. Then the aqueous layer was extracted with ethyl acetate ($3 \times 75 \mathrm{~mL}$) and the combined organic layer was dried over sodium sulphate and concentrated. Crude residue $\mathbf{1 5 6}$ was not purified and directly used for the next reaction.

Yield
: ($1.2 \mathrm{~g}, 55 \%)$
Mol Formula
Mol Weight
: $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{6}$
: 338
${ }^{1} \mathbf{H}$
$\delta 1.18(\mathrm{~s}, 9 \mathrm{H}), 1.94-2.03(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.88(\mathrm{~m}, 1 \mathrm{H})$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

$$
\begin{aligned}
& 4.11-4.38(\mathrm{~m}, 5 \mathrm{H}), 4.52,4.72(2 \mathrm{~d}, J=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.46 \\
& (\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{br} . \mathrm{s}, 5 \mathrm{H})
\end{aligned}
$$

(3R,4S,5S)-4-(Benzyloxy)-3,5-dihydroxyhept-6-enyl pivalate (19)

19
Lactol $\mathbf{1 8}(1.2 \mathrm{~g}, 0.004 \mathrm{~mol})$ was taken in 15 mL of dry THF and 1-carbon Wittig ylide [generated by using triphenylphosphoniun iodide (14.5 g) and 1.6 (M) BuLi solution in n-hexane $(9.7 \mathrm{~mL})$ in 50 mL dry THF for 0.5 h] was added to it at $0^{\circ} \mathrm{C}$. Then the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and then warmed at room temperature and stirring was continued for further 2 h . Again the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added dropwise to quench the reaction. Aqueous layer was extracted with ethyl acetate and the combined organic layer was dried over sodium sulphate and concentrated under reduced pressure. The crude residue was purified by column chromatography over silica gel using ethyl acetate in light petroleum (1:3) to procure colorless oil 19.
Yield
: $0.692 \mathrm{gm}, 58 \%$

Mol Formula
: $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5}$

Mol Weight
Optical rotation $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad \mathbf{:}+2.6\left(c 1.45, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
: 336
$: \delta 1.19(\mathrm{~s}, 9 \mathrm{H}), 1.77,1.83(2 \mathrm{br} . \mathrm{d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.80$
$(\mathrm{dd}, J=3.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{ddd}, J=3.8,6.4,10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.10-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.64,4.78(2 \mathrm{~d}$,

Abstract

$J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.23(\mathrm{dt}, J=1.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dt}$, $J=1.5,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{ddd}, J=5.8,10.3,17.2 \mathrm{~Hz}$, 1H) ${ }^{13} \mathbf{C} \quad: \quad 27.3(q), 33.4(\mathrm{t}), 38.8(\mathrm{~s}), 61.2(\mathrm{t}), 68.7(\mathrm{~d}), 73.3(\mathrm{~d}), 75.4$ $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$ (t), 84.0 (d), 116.6 (t$), 128.2$ (d), 128.6 (d), 137.7 (s$)$, 138.0 (d), 178.5 (s) ppm

Elemental analysis Cald. : C, 67.83; H, 8.39; O, 23.78\% Found $\quad: \quad$ C, 67.92; H, 8.61\% ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: \quad 359[\mathrm{M}+\mathrm{Na}]^{+}$ (3R,4S,5S)-4-(Benzyloxy)-3,5-bis(tert-butyldimethylsilyloxy)hept-6-enyl pivalate (20)

20 Wittig product $19(0.69 \mathrm{~g}, 0.002 \mathrm{~mol})$ was taken in 10 mL of dry DMF and imidazole $(0.68 \mathrm{~g}, 0.01 \mathrm{~mol})$ was added to it followed by TBDMS-Cl $(1 \mathrm{~g}, 0.007 \mathrm{~mol})$ was added and the reaction mixture was stirred for 48 h . After the formation of the di-TBS ether the reaction mixture was diluted with diethyl ether and organic layer was washed with water for several times to remove as much as DMF used in the reaction. Ether layer was dried over sodium sulphate and concentrated. Crude reaction mixture was purified by column chromatography over silica gel using ethyl acetate in light petroleum (1:19) to procure colorless oil $20(1.53 \mathrm{gm})$. If the yield was 100% also then product should be obtained 1.16 g . From NMR spectra it was clear that sufficient amount of TBDMS-Cl was present in the system along with product and the product and TBDMS-Cl ratio is almost 1:1 so we proceeded further for the next reaction. Meanwhile, the presence of the product was further confirmed by mass spectroscopy.

Molecular formula: $\mathrm{C}_{31} \mathrm{H}_{56} \mathrm{O}_{5} \mathrm{Si}_{2}$
ESI-MS (m/z): $588[\mathrm{M}+\mathrm{Na}]^{+}$

(3R,4R,5S)-4-(Benzyloxy)-3-(tert-butyldimethylsilyloxy)hept-6-ene-1,5-diol (21)

21
Di-TBS protected compound $20(50 \mathrm{mg}, 0.089 \mathrm{mmol})$ was taken in 5 mL of dry DCM and reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and 1.679 (M) DIBAL-H solution (0.32 mL) in toluene was added to the reaction mixture dropwise. After 5 mins the reaction mixture was quenched with few drops of MeOH and then the reaction mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and saturated solution of $\mathrm{Na}-\mathrm{K}$ tartarate was added and stirred for 1 h . Then the reaction mixture was extracted with DCM ($2 \times 25 \mathrm{~mL}$) and the combined organic layer was dried over sodium sulphate and concentrated. Crude residue was chromatographed over silica gel using ethyl acetate in light petroleum (1:9) and (1:6) two products respectively to obtain $20 \mathrm{mg}, 60 \%$ of pivaloyl and mono-TBS deprotected product 21 and $2 \mathrm{mg}, 5 \%$ of only pivaloyl deprotected product $\mathbf{2 2}$.

Same di-TBS protected compound $20(50 \mathrm{mg}, 0.089 \mathrm{mmol})$ was taken in 5 mL of dry THF and LAH ($2 \mathrm{mg}, 0.053 \mathrm{mmol}$) was added to it at $0^{\circ} \mathrm{C}$. After 15 mins the reaction was quenched with saturated solution of sodium sulphate and stirred for 2 h . Then the solid residue was filtered off and the filtrate was dried over sodium sulphate and concentrated. Crude residue was purified by column chromatography over silica gel using ethyl acetate in light petroleum (1:6) to obtain colorless liquid $17 \mathrm{mg}, 52 \%$ of pivaloyl and mono-TBS deprotected compound 21 exclusively.

Yield	$:$	$20 \mathrm{mg}, 60 \%$ in DIBAL-H reaction, $17 \mathrm{mg}, 52 \%$ in LAH
	reaction	
Mol Formula	$:$	$\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}$
Mol Weight	$:$	367

${ }^{1} \mathrm{H}$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
$: \delta 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.63-1.87(\mathrm{~m}$, $2 \mathrm{H}), 3.24(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.91(\mathrm{q}, J=4.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{tt}, J=1.5,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.61,4.81(2 \mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{dt}, J=1.7$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dt}, J=1.7,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{ddd}, J$ $=5.3,10.5,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.36$ (br. $\mathrm{m}, 5 \mathrm{H})$
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: \quad 390[\mathrm{M}+\mathrm{Na}]^{+}, 406[\mathrm{M}+\mathrm{K}]^{+}$

(3R,4S,5S)-4-(Benzyloxy)-3,5-bis(tert-butyldimethylsilyloxy)hept-6-en-1-ol (20)

22
Di-TBS protected compound $20(700 \mathrm{~g}, 1.24 \mathrm{mmol})$ was taken in moist EtOH (10 $\mathrm{mL})$ and $\mathrm{LiOH} . \mathrm{H}_{2} \mathrm{O}(156 \mathrm{mg}, 0.006 \mathrm{~mol})$ was added to it. Then the reaction mixture was heated at $40^{\circ} \mathrm{C}$ for 2 h and cooled to room temperature. Then the EtOH was removed as much as possible in rota vapour and the residue was diluted with water and extracted with ethyl acetate. Organic layer was dried over sodium sulphate and concentrated. Crude residue was purified by column chromatography over silica gel using ethyl acetate in light petroleum (1:9) to obtain colorless oil 22 and 136 mg of starting material 20 was recovered.

Yield : $312 \mathrm{mg}, 65 \%$ (with respect to starting materials recovered)

Mol Formula
: $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Si}_{2}$
Mol Weight : 481
Optical rotation $[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad: \quad-5.9\left(c .65, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
: $\delta-0.06(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}), 0.00(2 \mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H})$, 0.89 (s, 9H), 1.77 (ddd, $J=5.1,9.5,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.96$ (ddd, $J=5.2,9.5,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.66-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=5.5$, $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=7.0,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=$ $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.66,4.70(2 \mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{dt}, J$ $=1.7,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dt}, J=1.7,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.99$ (ddd, $J=5.3,10.3,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.34(\mathrm{~m}, 5 \mathrm{H})$
${ }^{13} \mathrm{C}$
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$
$:-4.9$ (q), -4.8 (q), -4.6 (q), -4.4 (q), 18.0 (s), 18.2 (s), 25.89 (q), 25.92 (q), 35.0 (t), 60.4 (t), 72.1 (d), 73.7 (d), 74.2 (t), 84.3 (d), 114.8 (t), 127.5 (d), 127.7 (d), 128.3 (d), 137.9 (d), 138.7 (s) ppm

Elemental analysis Cald. : C , 64.95; H, 10.06; O, 13.31; Si, 11.68\%
Found : C, 64.89; H, 9.83\%
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: \quad 504[\mathrm{M}+\mathrm{Na}]^{+}$
(3R,4S,5S)-4-(Benzyloxy)-3,5-bis(tert-butyldimethylsilyloxy)hept-6-enal (23)

23
Alcohol compound 22 ($300 \mathrm{mg}, 0.624 \mathrm{mmol}$) was taken in 6 mL dry DMSO and IBX ($436 \mathrm{mg}, 1.87 \mathrm{mmol}$) was added to it, then the reaction was stirred at room temperature for 3 h and then saturated solution of NaHCO_{3} was added to the reaction mixture. Reaction mixture was filtered off and filtrate was extracted with diethyl ether. Ether layer was washed with water for several times and organic layer was dried over
sodium sulphate and concentrated. Crude residue 23 was directly used for the next reaction.

Yield	:	$194 \mathrm{mg}, 65 \%$
Mol Formula	:	$\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{Si}_{2}$
Mol Weight	:	479
${ }^{1} \mathrm{H}$:	$\delta 0.00,0.01(2 \mathrm{~s}, 12 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 2.60$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$		(ddd, $J=2.6,6.0,16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (ddd, $J=2.1,4.9$,
		$16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=4.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=$
		$6.0,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.65,4.72(2 \mathrm{~d}$,
		$J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{dt}, J=1.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dt}$,
		$J=1.6,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.03$ (ddd, $J=5.2,10.5,17.2 \mathrm{~Hz}$,
		1H), 7.34 (br. s, 5H), 9.74 (t, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$
ESI-MS (m / z)	:	$502[\mathrm{M}+\mathrm{Na}]^{+}$

(3R,4S,5S)-4-(Benzyloxy)-3,5-bis(tert-butyldimethylsilyloxy)hept-6-enoic acid (13)

13
Crude aldehyde 23 ($194 \mathrm{mg}, 0.41 \mathrm{mmol}$) was taken in 10 mL of 1:1 DMSO- $\mathrm{H}_{2} \mathrm{O}$ mixture solvent, and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(10 \mathrm{mg}, 0.08 \mathrm{mmol})$ was added to it. $80 \% \mathrm{NaClO}_{2}(39 \mathrm{mg}$, 0.53 mmol) was dissolved in 5 mL of water and that solution was added to the reaction mixture dropwise at $0^{\circ} \mathrm{C}$. After 0.5 h of stirring, the reaction mixture was warmed to room temperature and again stirred for 6 h , and then the reaction mixture was extracted with DCM. Water layer was acidified with very dilute HCl and again extracted with DCM thoroughly ($3 \times 50 \mathrm{~mL}$). The combined organic layer was dried over sodium sulphate and concentrated under reduced pressure. The crude residue was purified by column
chromatography over silica gel using ethyl acetate in light petroleum (1:9) to obtain colorless oil 13.

Yield : $110 \mathrm{mg}, 55 \%$
Mol Formula $\quad: \quad \mathrm{C}_{26} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{Si}_{2}$
Mol Weight : 497
Optical rotation $\left[\alpha_{0} \mathbf{D}^{\mathbf{2 5}} \quad: \quad-12.2\left(c 0.6,\left(\mathrm{CHCl}_{3}\right)\right.\right.$
${ }^{1} \mathbf{H} \quad: \quad \delta-0.02,0.00,0.01,0.02(4 \mathrm{~s}, 12 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$ 9H), 2.57 (dd, $J=6.1,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=4.6$, $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=4.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=$ $6.3,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H})$, $5.13(\mathrm{dt}, J=1.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dt}, J=1.6,17.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.99$ (ddd, $J=5.3,10.5,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.33$ (m, 5H)
${ }^{13} \mathbf{C} \quad: \quad-5.00(\mathrm{q}),-4.8(\mathrm{q}),-4.6(\mathrm{q}),-4.4(\mathrm{q}), 18.0(\mathrm{~s}), 18.2(\mathrm{~s})$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$
25.8 (q), 25.9 (q), 38.3 (t), 69.6 (d), 73.2 (d), 73.9 (t$), 83.9$ (d), 115.4 (t), 127.6 (d), 127.7 (d), 128.3 (d), 137.7 (d), 138.4 (s), 175.5 (s) ppm

Elemental analysis Cald. : C, 63.11; H, 9.37; O, 16.17; Si, 11.35\%
Found
: C, 62.89; H, 9.42\%
ESI-MS (m / z)
: $518[\mathrm{M}+\mathrm{Na}]^{+}$

(S)-Hept-6-en-2-ol (14)

14
At $0{ }^{\circ} \mathrm{C}$ butenyl bromide ($5.5 \mathrm{~mL}, 0.055 \mathrm{~mol}$) was added to a suspension of Mg $(1.31 \mathrm{~g}, 0.055 \mathrm{~mol})$ in 5 mL dry THF dropwise. Then the reaction mixture was warmed to room temperature slowly and kept with stirring for 1 h . In another RB flask a suspension of $\mathrm{CuI}(0.63 \mathrm{gm}, 30 \mathrm{~mol} \%)$ in THF (5 mL) was taken and the previously generated Grignard reagent was added to it at $-40^{\circ} \mathrm{C}$ and stirred for 0.5 h . Then R-epichlorohydrin $(1 \mathrm{~g}, 0.011$ mol) was added slowly to the organocuprate reagent generated in situ. The complete reaction mixture was stirred for 2 h at $-40^{\circ} \mathrm{C}$ and then quenched with saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. Then the solid mass was filtered off and the filtrate was extracted with ethyl acetate and dried over sodium sulphate. Dried organic layer was concentrated under vacuum and the crude chlorohydrin compound $24(1.03 \mathrm{~g}, 64 \%)$ was directly used for the next reaction.

Crude chlorohydrin product $24(1.03 \mathrm{~g}, 0.007 \mathrm{~mol})$ was taken in 10 mL of dry THF and at $0^{\circ} \mathrm{C}$ LAH $(1.064 \mathrm{~g}, 0.028 \mathrm{~mol})$ was added to the reaction mixture portionwise. Then the reaction mixture was warmed to room temperature and then refluxed for 6 h . After completion of the reaction, reaction mixture was cooled to room temperature and quenched with saturated solution of sodium sulphate. Solid mass was filtered off and the filtrate was dried over sodium sulphate and concentrated under reduced pressure at low temperature and the crude residue was purified over silica gel using ethyl acetate in light petroleum (1:1) to obtain reddish yellow liquid 14.

Yield $: 451 \mathrm{mg}, 57 \%$
Mol Formula
: $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$
Mol Weight
: 114
Optical rotation $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad: \quad$ Calculated: +10.07 (c 2, MeOH); Reported: +10.4 (c 0.79, CHCl_{3})

$\mathbf{I R} \mathrm{v} \sim$	$:$	$3351,2966,2931,2868,1641,1455,1376,1320,1123$
${ }^{\mathbf{1}} \mathbf{H}$	$:$	$\delta 1.11(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.68(\mathrm{br} . \mathrm{s}$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$		$1 \mathrm{H}), 1.95-2.05(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.77(\mathrm{~m}, 1 \mathrm{H}), 4.84-4.99(2$
	merged dt, 2H), $5.72(\mathrm{ddd}, \mathrm{J}=6.7,10.2,17.1 \mathrm{~Hz}, 1 \mathrm{H})$	
	$:$	$23.6(\mathrm{q}), 25.0(\mathrm{t}), 33.7(\mathrm{t}), 38.8(\mathrm{t}), 67.9(\mathrm{~d}), 114.7(\mathrm{t})$,
${ }^{13} \mathbf{C}$		$138.6(\mathrm{~d}) \mathrm{ppm}$
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$:$	$\mathrm{C}, 73.63 ; \mathrm{H}, 12.36 ; \mathrm{O}, 14.01 \%$
Elemental analysis Cald.	$\mathrm{C}, 73.51 ; \mathrm{H}, 12.42 \%$	
Found	$:$	$115[\mathrm{M}+\mathrm{H}]^{+}, 137[\mathrm{M}+\mathrm{Na}]^{+}$
ESI-MS $(\mathrm{m} / \mathrm{z})$		

(3R,4S,5S)-((S)-Hept-6-en-2-yl)4-(benzyloxy)-3,5-bis(tert-butyldimethylsilyloxy)hept-6-enoate (12)

12
Acid $13(100 \mathrm{mg}, 0.202 \mathrm{mmol})$ was taken in dry DCM (2 mL) and triethylamine $(0.04 \mathrm{~mL}, 0.263 \mathrm{mmol})$ was added to it followed by Yamaguchi reagent $(0.04 \mathrm{~mL}, 0.222$ $\mathrm{mmol})$ and stirred for 2 h at room temperature. Then a mixture of alcohol $14(23 \mathrm{mg}, 0.202$ mmol) and catalytic amount of DMAP in 0.5 mL dry DCM solution was added to the mixed acid andyride and stirred again at room temperature for 12 h . The complete reaction mixture was diluted with DCM and quenched with saturated solution of NaHCO_{3}. Organic layer was separated and the aqueous layer was extracted with DCM and combined organic layer was dried over sodium sulphate and concentrated. Crude residue was purified by flash column chromatography over silica gel using ethyl acetate in light petroleum (1:19) to obtain colorless oil 12.
Yield
: $81 \mathrm{mg}, 67 \%$

Mol Formula
Mol Weight
${ }^{1} \mathrm{H}$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

ESI-MS (m / z)
: $\mathrm{C}_{33} \mathrm{H}_{58} \mathrm{O}_{5} \mathrm{Si}_{2}$
: 591
: $\delta-0.04,-0.02,0.00,0.01(4 \mathrm{~s}, 12 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}$, $9 \mathrm{H}), 1.18(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.40-1.56(\mathrm{~m}, 4 \mathrm{H}), 2.0-2.08$ (m, 2H), 2.46 (dd, $J=7.1,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=4.4$, $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.25(\mathrm{~m}, 1 \mathrm{H})$, 4.34 (t, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61,4.70(2 \mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H})$, 4.80-4.87 (m, 1H), 4.87-5.04 (2dt merged, 2H), 5.09 (dt, J $=1.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dt}, J=1.6,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.75$ (ddd, $J=6.8,10.3,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{ddd}, J=5.8,10.5$, $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 5 \mathrm{H})$
: $614[\mathrm{M}+\mathrm{Na}]^{+}$

SPECTROSCOPIC DATA

${ }^{1}$ H NMR spectra of compound 16

${ }^{13} \mathrm{C}$ NMR spectra of compound 16

${ }^{1}$ H NMR spectra of compound 17

${ }^{13} \mathrm{C}$ NMR spectra of compound 17

${ }^{1}$ H NMR spectra of compound 19

${ }^{13} \mathrm{C}$ NMR spectra of compound 19

${ }^{1}$ H NMR spectra of compound 21

${ }^{1}$ H NMR spectra of compound 22

${ }^{13}$ C NMR spectra of compound 22

${ }^{1}$ H NMR spectra of compound 23

${ }^{1}$ H NMR spectra of 13

${ }^{13} \mathrm{C}$ NMR spectra of compound 13

${ }^{1}$ H NMR spectra of compound 14

${ }^{13}$ C NMR spectra of compound 14

${ }^{1} \mathrm{H}$ NMR spectra of compound 12

REFERENCES

REFERENCES

1) Ronald, R. C.; Gurusuddaiah, S. Tetrahedron Lett. 1980, 21, 680.
2) Grove, J. F.; Speake, R. N.; Ward, G. J. Chem. Soc. C 1966, 230.
3) Ishibashi, K. J. Agr. Chem. Soc. Japan 1961, 35, 257.
4) Furka, J.; Memec, P.; Kuhr, I. J. Antibiot. 1972, 25, 208.
5) Westley, W. J.; Liu, M. C.; Evans, H. R.; Blount, J. F. J. Antibiot. 1979, 32, 874.
6) Arcamone, F. M.; Bertazzoli, C.; Chione, M.; Schotti, T. Microbiol. 1959, 7, 207.
7) Seebach, D.; Chow, H. F.; Jackson, R. F. W.; Sutter, M. A.; Thaisrivongs, S.; Zimmeeermann, J. Liebigs Ann. Chem. 1986, 1281.
8) Tang, Y. - Q.; Sattler, I.; Thiericke, R.; Grabley, S.; Feng, X. - Z. J. Antibiot. 2000, 53, 934.
9) Helmchen, G. Tetrahedron Lett. 1974, 16, 1527.
10) a) Arya, P.; Qin, H. Tetrahedron 2000, 56, 917. b) Ager, D. J.; Prakash, I.; Schaad, D. R. Aldrichimica Acta 1997, 30, 3. c) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835.
11) a) Schuda, P. F.; Cichowicz, M. B.; Heimann, M. R. Tetrahedron Lett. 1983, 24, 3829. b) Takeda, R.; Zask, A.; Nakanishi, K.; Park, M. H. J. Am. Chem. Soc. 1987, 109, 914.
12) For selected examples see: a) Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Clardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990, 112, 7001. b) Evans, D. A.; Gage, J. R.; Leighton, J. L. J. Am. Chem. Soc. 1992, 114, 9434. c) Evans, D. A.; Ng, H. P.; Rieger, D. L. J. Am. Chem. Soc. 1993, 115, 11446. d) Evans, D. A.; Fitch, D. M. J. Org. Chem. 1997, 62, 454. e) Evans, D. A.; Kim, A. S.; Metternich R.; Novack, V. J. J. Am. Chem. Soc. 1998, 120, 5921. f) Walker, M. A.; Heathcock, C. H. J. Org. Chem. 1991, 56, 5747. g) Hsiao, C.; Liu, L.; Miller, M. J. J. Org. Chem. 1987, 52, 2201. h) Oppolzer, W.; Blagg, J.; Rodriguez, I.; Walther, E. J. Am. Chem. Soc. 1990, 112, 2767. i) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127. j) Evans, D. A.; McGee, L. R. J. Am. Chem. Soc. 1981, 103, 2876. k) Palomo, C.; Oiarbide, M.; Garcia, J. M. Chem. Eur. J. 2002, 8, 37. 1) Cowden, C. J.; Paterson, I. Organic Reactions 1997, 51, 1. m) Gage, J. R.; Evans, D. A. Org.

Syn. Coll. Vol. 1993, 8, 339. n) Palomo, C.; Oiarbide, M.; Garcia, J. M. Chem. Soc. Rev. 2004, 33, 65. o) Evans, D. A. Topics in Stereochem. 1982, $13,1$.
13) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127.
14) Evans, D. A.; Rieger, D. L.; Bilodeau, M. T.; Urpi, F. J. Am.Chem. Soc. 1991, 113, 1047.
15) a) Nerz-Stormes, M.; Thornton, E. R. J. Org. Chem. 1991, 56, 2489. b) Bonner, M. P.; Thornton, E. R. J. Am. Chem. Soc. 1991, 113, 1299.
16) a) Yan, T. - H.; Tan, C. - W.; Lee, H. - C.; Lo, H. - C.; Huang, T. - Y. J. Am. Chem. Soc. 1993, 115, 2613 and references therein. b) Yan,T. - H.; Hung, A. - W.; Lee, H. - C.; Chang, C. - S.; Liu, W. - H. J. Org. Chem. 1995, 60, 3301.
17) Heathcock, C. H. In Asymmetric Synthesis, Vol. 3, Ed: Morrison, J. D., Academic Press, New York, 1984, Chapter-2.
18) a) Fenzyl, W.; Koster, R. Liebigs Ann. Chem. 1975, 1322. b) Fenzyl, W.; Koster, R.; Zimmerman, H. - J. Liebigs Ann. Chem. 1975, 2201.
19) Zimmermann, H. E.; Taxler, M. D. J. Am. Chem. Soc. 1957, 79, 1920.
20) Crimmins, M.T.; King. B.W.; Tabet, E. A.; Chaudhury, K. J. Org. Chem. 2001, 66, 894.
21) a) Han, J. - S.; Lowary, T. L. J. Org. Chem. 2003, 68, 4116. b) Bakke, J. M.; Frohaug, A. E. J. Phys. Org. Chem. 1996, 9, 310. c) Bakke, J. M.; Frohaug, A. E. Acta Chem. Scand. 1995, 49, 615.
22) a) McKennon, M. J.; Meyers, A. I. J. Org. Chem. 1993, 58, 3568; b) Ho, G. J.; Mathre, D. J. J. Org. Chem. 1995, 60, 2271. c) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835.
23) Evans, D. A.; Weber, A. E. J. Am. Chem. Soc. 1986, 108, 6757.
24) Haribabu, M.; Goud, P. M.; Reddy, G. R.; Reddy, K. R. J. Carbohydr. Chem. 2000, 19, 1211.
25) George, G. I.; Ahn, Y. M.; Blackman, B.; Farokhi, F.; Flaherty, P. T.; Mossman, C. J.; Roy, S.; Yang, K. L. Chem. Commun. 2001, 255.
26) a) Evans, D. A. Aldrichimica Acta 1982, 15, 23. b) Kim, B. M.; Williams, S. F.; Masamune, S. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I.,

Winterfeldt, E., Eds.; Pergamon Press: Oxford, U.K., 1993; Vol. 2, pp 239-276. See also the following: Cowden, C. J.; Paterson, I. Org. React. 1997, 51, 1-200.
27) a) Masamune, S.; Gates, G. S.; Corcoran, J. W. Angew. Int. Ed. Engl. 1977, 16, 585. b) Nicolaou, K. C. Tetrahedron 1977, 33, 683. c) Back, T. G. Tetrahedron 1977, 33, 3041.
28) Stoll, M.; Rouve, A. Helv. Chim. Acta 1935, 18, 1087.
29) Scott, L. T.; Naples, J. O. Synthesis 1976, 738.
30) Ngooi, T. K.; Scilimati, A.; Fijlling, G.; Sih, C. J. Tetrahedron Lett. 1988, 29, 5583.
31) Makita, A.; Nihira, T.; Yamada, Y.; Tetrahedron Lett. 1987, 28, 805.
32) (a) Masamune, S.; Gates, G. S.; Corcoran, J. W. Angew. Chem. Int. Ed. Engl. 1977, 16, 585. (b) Nicolaou, K. C. Tetrahedron 1977, 33, 683.
33) Corey E. J.; Nicolaou, K. C. J. Am. Chem. Soc. 1974, 96, 5614.
34) Mukaiyama, T.; Usui, M.; Saigo, K. Chem. Lett. 1976, 49.
35) Jnanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989.
36) Mukaiyama, T.; Izumi, J.; Miyashita, M.; Shina, I. Chem. Lett. 1993, 907.
37) a) Masamune, S.; Kim, C. U.; Wilson, K. E.; Spessard, G. O.; Georgiou, P. E.; Bates, G. S. J. Am. Chem. Soc. 1975, 97, 3512. b) Masamune, S.; Yamamoto, H.; Kamata, S.; Fukuzawa, A. Ibid. 1975, 97, 3513.
38) Gerlach, H.; Thalman, A. Helv. Chim. Acta 1974, 57, 2661.
39) Sharma, G. V. M.; Kumar, K. R. Tetrahedron Asymm. 2004, 15, 2323.
40) Álvarez-Bercedo, P.; Murga, J.; Carda, M.; Marco, J. A. J. Org. Chem. 2006, 71, 5766.
41) a) Gerlach, H.; Prelog, V. Justus Liebigs Ann. Chem. 1963, 669, 121. b) Gerlach, H.; Wetter, H. - J. Helv. Chim. Acta 1974. 57, 2306.
42) a) Schmidt, U.; Werner, J. Synthesis 1986, 986. b) Kiyota, H.; Abe, M.; Ono, Y.; Oritani, T. Synlett 1997, 1093. See also the following: Stadler, M.; Bauch, F.; Henkel, T.; Mühlbauer, A.; Müller, H.; Spaltmann, F.; Weber, K. Arch. Pharm. 2001, 334, 143.
43) a) Pietra, F. Nat. Prod. Rep. 1997, 14, 453. b) Cuomo, V.; Palomba, I.; Perretti, A.; Guerriero, A.; D’Ambrosio, M.; Pietra, F. J. Mar. Biotechnol. 1995, 2, 199.
44) Biabani, M. A. F.; Laatsch, H. J. Prakt. Chem. 1998, 340, 589.
45) Jensen, P. R.; Fenical, W. In Fungi in Marine Environments: Secondary Metabolites from Marine Fungi; Hyde, K. D., Ed.; Fungal Diversity Press: Hong Kong, 2002; Fungal Diversity Research Series 9, pp 293-315.
46) Osterhage, C.; Konig, G. M.; Holler, U.; Wright, A. D. J. Nat. Prod. 2002, 65, 306.
47) Garo, E.; Starks, C. M.; Jensen, P. R.; Fenical, W.; Lobkovsky, E.; Clardy, J. J. Nat. Prod. 2003, 66, 423.
48) Bugni, T. S.; Bernan, V. S.; Geenstein, M.; Janso, J. E.; Maiese, W. M.; Mayne, C. L.; Ireland, C. M. J. Org. Chem. 2003, 68, 2014.
49) Tsuda, M.; Mugishima, T.; Komatsu, K.; Sone, T.; Tanaka, M.; Mikami, Y.; Kobayashi, J. J. Nat. Prod. 2003, 66, 412.
50) Holler, U.; Wright, A. D.; Matthee, G. F.; Konig, G. M.; Drager, S.; Aust, H. - J.; Schulz, B. Mycol. Res. 2000, 104, 1354.
51) Porksch, P.; Ebel, R.; Edrada, R. A.; Schupp, P.; Lin, W. H.; Sudarsono, Wary, V., Steube, K. Pure Appl. Chem. 2003, 75, 343.
52) a) Faulkner, D. Nat Prod. Rep. 2002, 19, 1. b) Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. Nat Prod. Rep. 2005, 22, 15 and references therein.
53) Gesner, S.; Cohen, N.; Ilan, M.; Yarden, O.; Carmeli, S. J. Nat. Prod. 2005, 68, 1350.
54) Smith, C. J.; Abbanat, D.; Bernan, V. S.; Maiese, W. M.; Greenstein, M.; Jompa, J.; Tahir, A.; Ireland, C. M. J. Nat. Prod. 2000, 63, 142.
55) a) Rodphaya, D.; Sekiguchi, J.; Yamada, Y. J. Antibiot. 1986, 39, 629. b) Sekiguchi, J.; Kuroda, H.; Yamada, Y.; Okada, H. Tetrahedron Lett. 1985, 26, 2341.
56) Garcia, R.; Seco, J. M.; Vazques, S. A.; Quinoa, E.; Riguera, R. J. Org. Chem. 2002, 67, 4579.
57) Staunton, J.; Weissman K. J. Nat. Prod. Rep. 2001, 18, 380.
58) a) Meyer, A. S.; Reichstein, T. Helv. Chim. Acta, 1946, 29, 152. b) English, J. Jr.;

Levy, M. F. J. Am. Chem. Soc. 1956, 78, 2846. c) Horton, D.; Thomson, J. K.; Tindall, C. G. Methods Carbohydr. Chem. 297, VI. d) Liu, Z.; Classon, B.; Samuelsson, B. J. Org. Chem. 1990, 55, 4273.
59) van Boeckel, C. A. A.; van Boom J. H. Tetrahedron Lett. 1979, $20,3561$.
60) Holub, N.; Neidhöfer, J.; Blechert S. Org. Lett. 2005, 7, 1227.
61) Takahata, H.; Yotsui, Y.; Momose, T. Tetrahedron 1998, 54, 13505.

CHAPTER 3

Exploration of Click Chemistry in Crystal Engineering

INTRODUCTION

INTRODUCTION

The term crystal engineering can be explained as the understanding of intermolecular interactions in the context of crystal packing and in utilization of such understanding in the design of new solids with desired physical and chemical properties. ${ }^{1}$ The importance of crystal engineering lies in the fact that the physical properties of a solid are dictated by the crystal packing of the compound, that is, how the modular components of a compound are oriented with respect to each other in three dimensions. To generate a stable, three-dimensional, predictable architecture, control of the assembly process is crucial and will only be realized by careful choice of suitable intermolecular 'connectors', as intermolecular interactions constitute the supramolecular 'glue'.

While applying crystal engineering into organic synthesis, different strategies will come into consideration where the molecules aggregate to form an assembly. In this aggregation some intermolecular linkers play a major role. In crystal engineering studies this linkers are named as supramoleclar synthons. The term synthon has been used in organic chemistry for many years. Corey's original definition of a synthon is "structural units within molecules which can be formed and/or assembled by known or conceivable synthetic operation. ${ }^{2}$ The concept of synthon revolutionized organic synthesis as it is the basis of retrosynthetic analysis whereby some target molecule is broken down into successively simpler fragments until suitable starting materials are found. The synthon defines the connectivity between two fragments. Desiraju has applied this 'disconnection approach' to supramolecular chemistry. ${ }^{3}$ Any supramolecular network can be broken into nodes (molecules) and node connectors (synthons). If molecules are built by connecting atoms together with covalent bonds, then supramolecular assemblies (crystals) are built by connecting molecules together with intermolecular forces.

Figure 1: Some supramolecular synthons used to generate infinite networks

Schmidt was the first person to coin the term 'crystal engineering' in a study of photochemical reactions of cinnamic acid derivatives in $1964 .{ }^{4}$ Since then the field has greatly expanded to include areas as diverse as coordination polymers, ${ }^{5}$ shape selective catalysis, ${ }^{6}$ chemical sensors, ${ }^{7}$ and non-linear optics. ${ }^{8}$

Although the main concern of crystal engineering is the bond connectivity but the nature of that connection especially in organic chemistry is very important. Organic chemistry is defined in terms of covalent bonding between atoms. Supramolecular chemistry on the other hand is a relatively new scientific discipline and as such can not rely on a similar function. Like organic synthesis, supramolecular chemistry is concerned with connectivity. This connectivity, however, extended over a larger range and encompasses intermolecular forces rather than intramolecular bonds. In supramolecular chemistry, intermolecular forces link molecules together to form three-dimensional solids. Intermolecular forces comprise a number of different interactions including hydrogen bonds, van der waals forces, dipole-dipole interactions and hydrophobic forces.

The fundamental objective of crystal engineering is to design organic solids that can find applications in material chemistry. ${ }^{9}$ This needs to integrate our understanding about the interactions of various types and strengths that glue the molecules in the crystal structures, recognition events of complimentary functional groups, geometrical and topological constraints for intermolecular connectivity. ${ }^{10}$ In this context identifying the
interaction patterns ${ }^{11}$ of supramolecular synthons ${ }^{12}$ and understanding how these operate/exist across a set of related molecules that yield a set of related crystal structures are critical exercises to ensure three-dimensional structure control in molecular design for crystal engineering. Molecular design by employing conventional hydrogen bonding has been extensively practiced. ${ }^{13}$ However, a number of weaker and softer interactions and respective synthons have been identified. The nature of these weak interactions in crystal structures can vary from passive to supportive (structure stabilization) to one that is actually intrusive (structure destabilization). ${ }^{14}$ Attempts to understand how these weak/soft interactions operate/exist across a set of related molecules has been limited to simple aromatic systems or to flexible biaryl systems containing stronger interactions too and this in general resulted with no similarities in the crystal structures of isomeric compounds. ${ }^{15}$ For example, Glidewell and co-workers have examined the occurrence of $\mathrm{I} . . . \mathrm{NO}_{2}$ synthon employing diaryl compounds connected through a variety of polar functional groups and varying the I and NO_{2} groups positions systematically. However, it led to the conclusion that the aggregation pattern for any one compound is not readily predictable from knowledge of the patterns in the other isomers. Apart from this, there are very few investigations that address predictability of weak synthons in isomeric compounds especially in absence of any strong non-covalent interactions. ${ }^{16}$ Partly, this is because of the complexity involved in synthesizing the systems with architectural control and flexibility in the incorporation of functional groups and a deliberate suspicion about the crystallinity of the all isomers. In this context, developing simple and efficient protocols for generation of isomeric compound libraries (devoid of polar functional units) with sufficient flexibility in placing complimentary functional groups will be instrumental for crystal engineers to understand these weak non-covalent interactions, the topological constraints for intermolecular connectivity and to examine the predictability of corresponding weak synthons. To know about crystal engineering in details, all the major interactions associated with the crystal structures are to be discussed. Major interactions those affect/giude the crystal stuctures are divided into mainly two parts, 1) primary strong interactions 2) secondary weak interactions. It is observed that in major cases the stronger interactions guide the crystal orientation/packing but in absence of stronger interactions crystal structures are mainly guided by weaker interactions. Most interestingly, sometimes
it is also seen that in presence of stronger interactions also srtuctural orientations are governed by the weaker interactions. So the role of all major interactions (stronger/weaker) are discussed here in brief.

Hydrogen Bonding:

Amongst the various non-covalent interactions, hydrogen bonding is of major interest in crystal engineering. A formal definition of a hydrogen bond is difficult to express succinctly in words. For many years, hydrogen bonds were thought to obey the definition of Atkins ${ }^{17}$ "a link formed by a hydrogen atom lying between two strongly electrostatic atoms such as oxygen, nitrogen, fluorine". However, it is now widely accepted that a hydrogen atom attached to less electronegative atoms e.g. carbon, sulfur etc., can form a hydrogen bond with a variety of less electronegative acceptors e.g. $\mathrm{S}, \mathrm{Se}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, π. It is primarily electrostatic in nature whereby a small finite positive charge is associated with hydrogen atom. The donor and acceptor atoms have a slightly negative charge associated with them, (at least relative to the hydrogen atom).

Figure 2: Partial charges shown for donor and acceptor atoms in a hydrogen bond.

From the previous description of a hydrogen bond, it is evident that a great variety of donor and acceptor atoms of differing electronegativity can participate in a hydrogen bond. Therefore the strength of any one hydrogen bond can also vary greatly.

C-H...O/N interactions:

In recent years, the weaker hydrogen bonds C-H.....O, X, N (where $\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) have been recognized as viable intermolecular forces for constructing functional solids. ${ }^{3}$ Even though inherently weaker than conventional D-H....A, (where D, A= O, N, F) weaker interactions used in sufficient numbers can generate predictable architectures. In particular, C-H.....O interaction has received significant attention both in terms of understanding their nature and as a directional force in crystal engineering. ${ }^{18}$ Very often CH....O interactions occur in structures where stronger hydrogen bonds also exist.

Obviously, stronger hydrogen bonds donors will compete more effectively for oxygen acceptor sites, relegating $\mathrm{C}-\mathrm{H} . . \mathrm{O}$ interactions to a subservient role in architecture formation. However, there are many examples in the literature, where C-H...O interactions are primary structure forming agents. ${ }^{19}$ In these cases stronger hydrogen bonds interactions are absent.

Desiraju ${ }^{20}$ has recently published a comparative study of C-H...O, C-H...N, interactions involving similar hydrogen bonding patterns in the structures of 1,4benzoquinone, ${ }^{21}$ and 1,4-dicyanobenzene. ${ }^{22}$ In all the structures the same one dimensional chain architectures are formed.

Figure 3: Similar hydrogen bonded patterns are formed in (a) via C-H...O interactions and (b) via C-H...N interactions.

(a)

(b)

While discussing C-H...O interactions, it must be mentioned that in carboxylic acid structures two distinct motifs are displayed. First, the common acid-acid dimer motif in which each acid group links via hydrogen bonds through the carboxylic acid hydrogen to the carbonyl acceptor of the adjacent acid group. Frequently when the acid has a substituent in the para position, the dimers link together using C-H...O interactions to generate two-dimensional sheets. ${ }^{23}$

Figure 4: C-H...O hydrogen bonding in para substituted aromatic compounds

A much less common motif is the hydrogen-bonded catamer pattern. This produces a one-dimensional chain in which each carboxylic acid unit links to two others.

Figure 5: Hydrogen-bonded pattern of a catamer motif

The study shows that weaker hydrogen bond interactions ($\mathrm{C}-\mathrm{H} . \ldots . . \mathrm{O} / \mathrm{N}$) possess directionality and robustness and hence can be used as structure-directing agents. Intermolecular interactions of the type $\mathrm{C}-\mathrm{H} . . \mathrm{X}$ where $\mathrm{X}=\mathrm{F}$, have also received attention in the literature ${ }^{24}$ as viable forces for crystal engineering, although for, $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, I , some questions remain as to whether they are robust enough.

Halogen - Halogen interactions:

Speculation and debate has surrounded X...X interactions for many years. Their strength, nature, directionality are still poorly understood with little literature being published. Research was subdivided into two areas: (a) influence of X...X on molecular hydrogen-bonded crystals and (b) influence of X...X forces on ionic hydrogen-bonded networks. Supramolecular synthon must be robust enough to form in the presence of other
intermolecular interactions such as C-H...O, C-H...X, $\pi-\pi$, hydrophobic forces, etc., if they are to be a structural tool in crystal engineering. The nature of halogen-halogen interactions are still under controversy. Many halogen-containing molecular crystals exhibit $\mathrm{X} . . \mathrm{X}$ contacts (where $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) that are significantly shorter than the sum of the van der Waals radii, ${ }^{1}\left(r_{C l}=1.75 \AA, r_{B r}=1.85 \AA, r_{I}=2.05 \AA\right) .{ }^{25}$

Figure 6: Short $\mathrm{Cl} \ldots \mathrm{Cl}$ contacts seen in the structure of 1,4-dichlorobenzene

These short distances are associated with certain angular geometric preferences defined by the angles θ and ϕ.

Figure 7: (a) Type I contacts where $\theta=\phi$ and (b) Type II contacts where $\theta=180^{\circ}$ and $\phi=90^{\circ}$

(a)

(b)

This observation is not new, but explanations of the nature of these contacts have only been postulated in recent years, with two different hypotheses being proposed. Using the crystallographic structure database (CSD), Desiraju et al., have analyzed 794 crystal structures for short $\mathrm{X} . . \mathrm{X}$ contacts and found that as polarizability of the halogen atom increases, type II contacts become more significant than type I contacts. ${ }^{26}$ They concluded that they are weak, attractive interactions due to induced polarization of the valence electron cloud of each atom.

Stone et al., have proposed a different model where the inherent anisotropy of halogen atoms causes them to pack together in a least repulsive manner resulting in short
X...X distances. ${ }^{27}$ The debate has still not been resolved and indeed it has been noted that it is inherently difficult to distinguish between specific attractive forces i.e, increased attraction and nonspherical atoms packing closely together i.e, decreased repulsion. ${ }^{28}$

However, there is convincing evidence that short F...F contacts are unfavourable. ${ }^{29}$ Theocharis et al., concluded that the small van der Waals radius for fluorine ($1.47 \AA$) coupled with its high electronegativity, has a repulsive effect and causes adjacent molecules to pack in a manner so as to maximize non-bonded F...F distances.

Bifurcated halogen interactions:

This interaction is the extension of halogen-halogen interaction, the only difference here is another interacting atom which is other than halogen (mainly oxygen of nitro group). Bifurcated halogen bonds have attracted a great deal of interest in recent years because these weak three-center interactions play a crucial structural role in crystal architecture. Desiraju and co-workers first described the identification of the I...O mediated, iodo...nitro supramolecular synthon and its use in retrosynthetically guided supramolecular synthesis as well as in the design of organic crystals with the property of second harmonic generation (SHG). ${ }^{3,30}$ Allen et al., examined the geometrical preferences of $\mathrm{X}(\mathrm{Cl}, \mathrm{Br}, \mathrm{I}) \ldots \mathrm{O}$ (nitro) synthons and concluded that the $\mathrm{C}-\mathrm{X} \ldots \mathrm{O}$ angles prone to linearity as the X...O shortens. ${ }^{31}$ More recently Nangia and co-workers have reported that these soft and weak three-center interactions can be regarded as a 'discriminator synthon' even in the presence of strong N-H...O hydrogen bonds. ${ }^{32}$ These $\mathrm{X} . . \mathrm{O}_{2} \mathrm{~N}$ contacts are of three types: a bifurcated contact where both the distances are equal $\left(D_{1} \approx D_{2}\right)$, a more unsymmetrical contact where D1> D2 and finally a contact where only one of the two nitro group O -atoms makes a contact with atom X . Generally the proportion of the first case decreases as one proceeds from $\mathrm{Cl} \rightarrow \mathrm{Br} \rightarrow \mathrm{I}$. These trends have been generally noted in subsequent studies.

Figure 8: Three types of halo...nitro interactions

(a)

(b)

(c)

Out of many other types of chain patterns, infinite ribbons are formed using the I... $\mathrm{O}_{2} \mathrm{~N}$ synthon when 4-iodonittrobenzene crystallizes.

Figure 9: Infinite chains of 4-iodonittrobenzene

The bifurcated halo...nitro synthon, especially the iodo...nitro interaction has been a topic of extensive research in the recent years. Several groups have designated it as a robust synthon and as a predictable interaction that can be extended in the crystal engineering. However, on several occasions, the predictability correlate the interaction patterns intermolecularly between a series of compounds where the nitro-substituted aromatic ring is connected with a halo substituted aromatic ring through a suitable linker. But serious problems often arise in that no correspondence in molecular and crystal structure is easily perceived. This happens for several reasons, out of that the most difficult issue is the presence of polar connectors having stronger interactions, which suppress the weaker interactions present in the molecules. Moreover, a little change in position or functionality in the system may cause a huge change in the intermolecular interactions.

Glidewell and co-workers ${ }^{33}$ have tried with different linkers to find out the correlation but all the linkers were polar enough to dominate within the system.

Figure 10: Series of isomeric compounds with different polar linkers

It is very important to note that, within each series of isomers, no two compounds manifest the same selection of direction-specific intermolecular interactions and, again within each series, no one structure is readily predictable from a knowledge of all the others. With the results obtained in mind they extended their studies towards more rigid isomeric systems N -(iodophenylnitrophthalimides) where polar linkers are excluded so that the hard hydrogen bonding interactions can be eliminated and the molecular frameworks have only a single degree of torsional freedom, about the N -aryl bond, so restraining somewhat the range of possible intermolecular interactions. ${ }^{34}$

Figure 11: Isomeric compounds of somewhat rigid conformation

Although, here the polar linkers were removed and slight rigidity was brought into the system but still from thorough investigation of the different crystallographic data obtained from these isomeric compounds it is noteworthy to mention that, again it is difficult to discern any pattern in the intermolecular interactions which can provide a convincing interpretation of the conformational characteristics.

Recently Nangia and co-workers ${ }^{35}$ also tried to find correlation between isomeric compounds with suitable disposition of nitro and halo group in unsymmetrical urea derivatives but the pattern similarity between the isomeric compounds was still not clearly understood.

Figure 12: Chemical structures of unsymmetrical diaryl urea derivatives

$$
\mathrm{X}=4-\mathrm{F}, 4-\mathrm{Cl}, 4-\mathrm{Br}, 4-\mathrm{I}, 3-\mathrm{Br}, 3-\mathrm{I}
$$

From the examples provided above that deal with the structural analyses of a group of isomeric compounds, it is evident that there is a need for a suitable soft linker with out any functional unit that can form the strong non-covalent interactions without any substantial conformational flexibility. One of fundamental requirement here is the flexibility and practicality in the incorporation of this linker. In this context, we have selected the currently coroneted "triazole-linker" in a variety of applications ranging from medicine, biology, to materials, as a soft linker and intended to introduce it in the area of crystal engineering.

"Click Chemistry" and the Triazole Linker

Following nature's lead, Sharpless and coworkers ${ }^{36}$ endeavor to generate substances by joining small units together with heteroatom links (C-X-C). The goal is to develop an expanding set of powerful, selective, and modular "blocks" that work reliably in both small and large-scale applications. They have termed the foundation of this approach as "Click Chemistry", and have defined a set of stringent criteria that a process must meet to be useful in this context. Carbon-heteroatom bond forming reactions comprise the most common examples, including the following classes of chemical transformations.

- Cycloadditions of unsaturated species, especially 1,3 dipolar cycloaddition reactions, but also Diels-Alder family of transformations;
- Neucleophilic substitution chemistry, particularly ring opening reactions of strained heterocyclic electrophiles such as epoxides, aziridines, aziridinium ions, and episulfonium ions;
- Carbonyl chemistry of the "non-aldol" type, such as formation of ureas, thioureas, aromatic heterocycles, oxime ethers, hydrazones, and amides; and
- Additions to carbon-carbon multiple bonds, especially oxidative cases such as epoxidation, dihydroxylation, aziridination, and sulfonylhalide addition, but also Michael additions to Nu-H reactants.

Figure 13

Of all the reactions which achieve "click status" the Hüisgen 1,3 dipolar cycloaddiotion ${ }^{37}$ of alkynes and azides to yield 1,2,3 triazoles is undoubtedly the premier example of a click reaction. The each of synthesis of alkyne and azide functionalities, coupled with their kinetic stability and tolerence to a wide variety of functional groups and reaction conditions, make these complementary coupling partners particularly attractive. However, it was the recent discovery of the dramatic rate acceleration of the azide-alkyne coupling event, ${ }^{38,39}$ under copper(I) catalysis and the beneficial effects of water that have
placed this reaction at the 'center-stage' of click chemistry. This new reaction process requires no protecting groups, and proceeds with almost complete conversion and selectivity for the 1,4-disubstituted 1,2,3-triazole (anti-1,2,3-triazole). No purification is generally required. This 'near perfect' reaction has become synonymous with click chemistry, and is often referred as 'The Click Reaction'. ${ }^{40}$

Figure 14

A brief review on 1,3 dipolar cycloaddition:

Around 110 years ago, O. Dimoth discovered the formation of triazoles by addition of organic azides to acetylenes. Of greater mechanistic interest is the closely related reaction of phenyl azide with bicyclo-[2,2,1]hept-2-ene and its derivatives, described by Alder and Stein in 1931. ${ }^{41}$

Scheme 1

Hüisgen ${ }^{42}$ in early 60 's described the plausible mechanism involved in the reaction between azides and carbon-carbon double bond. Phenyl azide has two mesomeric structures with electron octets on all atoms, and both are dipolar in character. Three more canonical forms each having one electron sextet contribute to somewhat less extent. On the basis of all octet structures phenyl azide is a linear tripole: the middle nitrogen holds the formal positive charge while the negative charges shared between the end nitrogen atoms.

In addition of phenyl azide to double bond, three mechanisms are conceivable. (A) The positive end of the dipole may initiate the attack and the negative pole complete the addition; or (B) the negative center may be attached first, and then the positive end; (C) both the charge centers may add at the same time.

Figure 15

Doubts concerning mechanisms A and B are immediately raised because the sluggish organic azide displays neither strong electrophilic nor nucleophilic character. The concerted process C is immune to such objections. Here a synchronous shift of electrons result in the formation of two new s-bonds and allow all three nitrogen atoms to achieve stable octets without having to bear a formal charge.

Azides are essentially inert to most biological and organic conditions, including highly functionalized biological molecules, molecular oxygen, water and majority of common reaction conditions in organic synthesis. ${ }^{39,43}$ For the formation of 1,2,3-triazole using $\mathrm{Cu}(\mathrm{I})$ as catalyst where azides can react with acetylene 10^{7} times faster than the previously described methods. Till date this is probably the most powerful discovery of click reaction.

Despite the thermodynamic favorability of azide decomposition, kinetic factors allow aliphatic azides to remain nearly invisible until presented with a good dipolarophile. This kinetic stability of alkynes and azides is directly responsible for their slow cycloaddition, which generally requires elevated temperatures and long reaction times. ${ }^{44,45}$ Good regioselectivity in the uncatalyzed Hüisgen type cycloaddition is observed for
coupling reactions involving highly electron-deficient terminal alkynes, ${ }^{46}$ but reactions with other terminal alkynes usually afford mixtures of 1,4 - and 1,5 -regioisomers. ${ }^{47}$

Thus only following the recent discovery of the advantages of $\mathrm{Cu}(\mathrm{I})$ catalyzed azide-alkyne coupling, did the main benefits to this cycloaddition, become clear. $\mathrm{Cu}(\mathrm{I})$ catalysis dramatically improves the regioselectivity to afford the 1,4-regioisomer exclusively and increases the reaction rate upto 10^{7} times, ${ }^{48}$ eliminating the need for elevated temperatures. This high yielding reaction tolerates a variety of functional groups and affords the 1,2,3-triazole product with minimal work up and purification, as an ideal click reaction.

Click chemistry was postulated initially as a specific organic reaction but by time it became a very important tool in different fields of chemistry. The major improvement was seen in materials chemistry. ${ }^{49}$ In 2004, Hawker, Fokin, Sharpless, and co-workers have reported the first illustration on this field. Afterwards, the popularity of click chemistry within the materials science grew considerably by the influential works of Hawker, Fréchet, and Finn. Hawker, Fokin, Sharpless, and co-workers explored first the CuAAC of various molecular building blocks for the convergent synthesis of dendrimers. Overall, this method was found to be a straightforward strategy for the large-scale synthesis of triazolebased dendrimers. Shortly after, Finn and co-workers studied the click cycloaddition of azide- and alkyne-functionalized monomers for the preparation of either linear polymer chains or three-dimensional polymer networks. The latter was investigated as novel adhesives for copper surfaces, as triazole rings have a strong ability to coordinate transition metals.

Figure 16: Examples of linear polymer structures

The first important application of CuAAC in polymer chemistry is undeniably the synthesis of functionalized polymers (either end-functionalized or side-functionalized). The post-functionalization of synthetic polymers is an important feature of macromolecular engineering, as many polymerization mechanisms are rather sensitive to bulky or functional groups.

Scheme 2: Variations of simple theme: Examples of macromolecular architectures obtained by Click reaction

Polymers with multiple functional side chains have been prepared by CuAAC using precursors built with alkynefunctionalized monomers. For example, Fréchet and coworkers constructed dendronized polymers (i.e. linear polymer chains with bulky side
dendrons) through cycloaddition of the side chains. Hawker and co-workers explored this concept even further and reported some very elegant examples of cascade side-chain functionalization of macromolecules.

Scheme 3: Examples of cascade functionalization of synthetic macromolecules

Along with that, click reaction with CuAAC was investigated for modifying biological polymers such as nucleic acids or polysaccharides. Moreover, this is very useful for preparing polymer bioconjugates also. Several reports indicated that sequence-defined oligopeptides can be linked to synthetic macromolecules using click ligation. More complex biological entities such as proteins, enzymes, viruses, bacteria, and cells may also be transformed using azide-alkyne chemistry.

The search for very large pores in metal organic frameworks (MOFs) is currently topical, due to the unprecedented properties they generate in adsorption and now in drug delivery. Keeping constant the inorganic part, the size of the pores by acting on the length of the rigid linker can be tuned. Devic and co-workers ${ }^{50}$ recently prepared a porous MOF (denoted MIL-103, MIL = Materials Institut Lavoisier) based on an extended tritopic linker (1,3,5-benzenetrisbenzoate) and lanthanide chains. To investigate the effect of the addition of nitrogen lone pairs and small flexible endings at the periphery of the rigid core they prepared a new trigonal nitrogen-rich linker including 1,2,3-triazole rings [named MIL112, formulated $\mathrm{La}(\mathrm{L})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ from X-ray, and chemical analysis] using click chemistry as the synthetic tool.

Scheme 4: $\{4$-[3,5-Bis-(1-carbonylmethyl-1H-[1,2,3]triazol-4-yl)-phenyl]-[1,2,3]triazol-1$\mathrm{yl}\}$ acetic acid (later denoted $\mathbf{L H}_{3}$) synthesis

A wide range of applications made the click reaction one of the frontier reaction in the all fields of chemistry. Further interest in this reaction stems from the interesting biological activity of 1,2,3-triazoles. These heterocycles function as rigid linking units that can mimic the atom placement and electronic properties of a peptide bond without the same susceptibility to hydrolytic cleavage. Due to their ability to mimic certain aspects of a peptide bond, many known 1,2,3-triazoles possess varied biological activity, including anti-HIV activity, ${ }^{51}$ selective β_{3} adrenergic receptor inhibitor, ${ }^{52}$ anti-bacterial activity, ${ }^{53}$ anti-tuberculosis activity ${ }^{54}$ and more. ${ }^{55}$
[2', 5^{\prime}-bis- O - (tert-butyldimethylsilyl)- β-D-ribofuranosyl]-3'-spiro- $5^{\prime \prime}$ - ($4^{\prime \prime}$-amino$1^{\prime \prime}, 2^{\prime \prime}$-oxathiole- $2^{\prime \prime}, 2^{\prime \prime}$-dioxide) nucleosides (TSAO) was discovered by Velazquez et al. The prototype compound of this family is the thymine derivative, designated as TSAO-T (12). Structure-activity relationship (SAR) studies with the TSAO class of compounds have revealed that stringent requirements exist with regard to the structural determinants for optimum anti-HIV activity in cell culture. Several members of this class of compounds showed potent anti-HIV-1 activity comparable to that of the TSAO prototype derivative. Among these derivatives of TSAO, 1,2,3-triazoles 13, 14 and 15 (Figure 15) were endowed with potent anti-HIV-1 activity. In particular, compound 15 emerged as the most active triazole TSAO derivative and can be considered as a novel lead compound to develop further TSAO derivatives with potent anti-HIV-1 activity.

Figure 17

12 TSAO-T

13 R; R'; H
14 R; H R'; CH_{3}
15 R; R'; CH_{3}

Earlier it was found that that while aryl sulfonamides such as urea $\mathbf{1 6 a}$ and imidazolone 16b are potent and selective β_{3} - AR agonists $\left(\beta_{3} \mathrm{EC}_{50}=6.3\right.$ and 14 nM , respectively), both compounds suffer from poor oral bioavailability in the $\operatorname{dog}(\% \mathrm{~F}=<1$ and 7, respectively). Recent publications from Merck describe the successful substitution of oxazole and oxadiazole functionalities for the urea moiety, resulting in compounds of general structure $\mathbf{1 7 a}$ and $\mathbf{1 7 b}$. These series of compounds were found to be β_{3} - AR agonists with improved pharmacokinetic profiles.

Figure 18

The totally synthetic oxazolidinones typified by eperezolid (19) and linezolid (20) are one such class of antibacterial agents with potent activity against Grampositive organisms. The (azolylphenyl) oxazolidinone subclass has been discovered wherein the morpholine ring of linezolid (20) has been replaced with various five-membered nitrogencontaining heterocycles (azoles). Some of these analogues have interesting levels of antibacterial activity. In particular, the pyrrole 21 and the $1 \mathrm{H}-1,2,3$-triazole 22 analogues have excellent Gram-positive activity (MICs $<0.5-1$ íg $/ \mathrm{mL}$), vide infra.

Figure 19

eperezolid PNU-100592
19

linezolide PNU-100766 20

Azole
21: Pyrrole
22: 1H-1,2,3-Triazole

It is apparent from the above discussion that "Click Reaction" in general and the triazole unit in particular has a great impact on several areas of research in the recent years. Encouraged by the simplicity of this "Click Reaction" and as described in the earlier part that detail the importance of soft linkers in addressing the predictability of a particular weak synthon like halo...nitro, we have initiated a program to employ this simple azidealkyne "Click Reaction" for the synthesis of a collection of isomeric compounds with modular positioning of halo and NO_{2} on a flexible tricyclic template and examination of the occurrence of the bifurcate $\mathrm{X} . . . \mathrm{NO}_{2}$ synthon with respect to their relative disposition. Apart from the projected $\mathrm{X} \cdots \mathrm{NO}_{2}$ and competing $\mathrm{X} \cdots \mathrm{X}$ interactions, absence of any other stronger interactions in this system could provide the necessary criteria for existence of weak interactions like $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}, \mathrm{C}-\mathrm{H}^{\cdots} \mathrm{N}, \mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ and their influence on the overall packing of the crystal.

PRESENT WORK

PRESENT WORK

The current resurgence of classical Hüisgen [3+2] cycloaddition by Sharpless-FinnKolb's "click reaction" has ascertained the triazole ring as an important heterocyclic pharmacophore in general and the overall process for affixation of ligands on to biopolymers by post modification processes in particular. Herein, we describe the potential of azide-alkyne "click reaction" in crystal engineering to synthesize a collection of isomeric compounds with modular positioning of Br and NO_{2} on a flexible tricyclic template and reveal the occurrence and nature of bromo-nitro synthon with respect to their relative disposition.

As it expressed by Dunitz "the crystal is a supramolecule par excellence" that present how intermolecular links operate together. A detailed knowledge of intermolecular interactions and identifying respective molecular functionalities that form defined network structures will help to design the crystals for material applications. In this context, considering its similarity in action to synthon, the phrase 'supramolecular synthon' has been coined by Desiraju to describe a set of noncovalent interactions that form and modulate recognition patterns in the solid state. Various synthons comprising strong conventional hydrogen bonding to weak or unconventional (C-H ...O, C-H ...N, C-H ...X and $\mathrm{C}-\mathrm{H} \ldots \pi$) hydrogen bonding interactions have been identified. Homosynthons comprising conventional hydrogen bonding ($\mathrm{COOH} . . \mathrm{COOH}, \mathrm{OH} . . . \mathrm{OH}$, $\mathrm{CONH}_{2} \ldots \mathrm{CONH}_{2}, \mathrm{X} \ldots \mathrm{X}$) were more reliably employed in crystal engineering because of their directionality and robustness. A recent trend in this regard is investigation of a set of isomeric compounds where the complimentary functional groups that control association are varied systematically on flexible templates, which indeed has provided valuable insight in crystal engineering. In this context, developing a simple synthetic tool that can deliver the medium size crystalline molecular systems with predictable architectural control and flexibility in the incorporation of functional group is warranted.

Inspired with the broad spectrum application of $\mathrm{Cu}(\mathrm{I})$-catalyzed 1,3-cycloaddition between an azide and an alkyne in the discovery of drugs and materials, we have initiated a program to explore its potential in molecular design for crystal engineering. Our initial attempts in this regard are focused on well-established $\mathrm{NO}_{2}-\mathrm{Br}$ heterosynthon and to
evaluate the occurrence of this synthon in a group of isomeric compounds where they are well separated through a flexible template. As shown in figure 20, the tricyclic template comprising the 1,2,3-triazole unit as a linker (ring B) was designed with modular positioning of -Br and $-\mathrm{NO}_{2}$ groups on ring A and ring C, respectively. Apart from the projected $\mathrm{NO}_{2} \ldots \mathrm{Br}$ and competing $\mathrm{Br} . . \mathrm{Br}$ interactions, absence of any other stronger interactions in this system should provide the necessary criteria for existence of weak interactions like C-H...O, C-H...N, C-H...Br and their interplay to influence the overall packing of the crystal.

Figure 20: Key "Click chemistry" protocol, designed isomers and possible N-O...Br synthon geometries

I

II

III

Considering the competitive formation of the regiomeric products in one hand and the known conversion of the α-azido nitrobenzene to benzofuroxan under the thermal Hüisgen [3+2]-azidoalkyne cycloadditions conditions on the other hand, we opted for a $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction of fluoronitrobenzenes with sodium azide as a potential alternative in this regard. ${ }^{56}$ The feasibility of $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ click reaction was examined with simple phenyl acetylene employing three regiomeric fluoronitrobenzenes adopting the conditions developed in general for copper mediated azide cycloadditions earlier. In general, the reactions with 2fluoronitrobenzene (23) are facile, with 4 -isomer (36), prolonged heating is required. As the reactions with 3-fluoronitrobenzene (31) resulted only in the cycloaddition product of NaN_{3} with phenyl acetylene, 3-azidonitrobenzene (32) was employed under similar condition to prepare the $3-\mathrm{NO}_{2}$ isomer. Considering the competitive formation of the regioisomeric products in Hüisgen [3+2] cycloaddition condition by using different
organic solvents, ${ }^{57}$ we opted for a recently developed method of this reaction under aqueous condition. In case of 2 -azidofluorobenzene intramolecular cyclized product (30) of nitroazidobenzene was obtained as side product. Formation of this side product clearly suggests that fluoro group was replaced by azide group first and then the cycloaddition reaction proceeded mechanistically. These compounds were also characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13}$ C NMR's as well as X-ray crystallography.

Scheme 5

Reagents and conditions: L-proline, $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{NaN}_{3}$, sodium ascorbate, $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$, DMSO- $\mathrm{H}_{2} \mathrm{O}$ (9:1), $70^{\circ} \mathrm{C}$, 24 h .

Scheme 6

26

Reagents and conditions: L-proline, $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{NaN}_{3}$, sodium ascorbate, $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$, DMSO- $\mathrm{H}_{2} \mathrm{O}(9: 1), 70^{\circ} \mathrm{C}, 48 \mathrm{~h}$.

Scheme 7

Reagents and conditions: L-proline, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, sodium ascorbate, $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$, DMSO$\mathrm{H}_{2} \mathrm{O}(9: 1), 70{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$

Scheme 8

Reagents and conditions: L-proline, $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{NaN}_{3}$, sodium ascorbate, $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$, DMSO- $\mathrm{H}_{2} \mathrm{O}$ (9:1), $70^{\circ} \mathrm{C}$, 48 h .

From the NMR studies, it has been found that for 1,4 disubstituted 1,2,3-triazole, the only proton present in triazole ring comes as most deshielded proton at above $\delta 8.5$ in all the cases. These structures have further been confirmed by the X-ray studies. Detailed X-Ray crystallographic studies of available 9 compounds have been done and all the inherent structural features present in those 9 compounds are described below.

P2NPT series:

The molecular assembly 28 in its crystal structure was mainly dominated by weak C-H...O interaction. There are two C-H...O interactions present in the assembly, one is aromatic carbon containing hydrogen with one oxygen of nitro group having a bond distance of $2.675 \AA$ and the another one is triazole ring containing hydrogen with another oxygen of nitro group where the bond distance is $2.648 \AA$.

Figure 21: Extended structure of 2BP2PNT (27)

From the structural investigation of compound 28 it has been observed that the main interaction here is $\mathrm{Br} . . \mathrm{Br}$ interaction with a bond length of $3.696 \AA$ which is in very close proximity with the van dar Waals radii between two Br atoms. 2D picture of this compound reveals that it is a kind of dimer of two molecules where the chain propagates through $\mathrm{Br} . . \mathrm{Br}$ interaction. Along with that interaction, another major interaction which governs the structural assembly is the C-H...N interaction where the bond distance is $2.540 \AA$. This is also well fitted in the range of van der Waals radii. So this is also an example of compound where molecular assembly is dictated by weak interactions.

Figure 22: Expanded structure of 3BP2NPT (28)

The main structural feature of the assembly of compound 29 is the zig-zag orientation. The chain propagates through the $\mathrm{Br} \ldots \mathrm{Br}$ interaction. This $\mathrm{Br} . . . \mathrm{Br}$ interaction is $3.473 \AA$ which is also within the range of van der Waals radii of two Br atoms. Another
important feature of this structure is that, although the two molecules are arranged in anti parallel fashion to propagate the chain but the chains which are propagating are parallel. This interesting observation was not found in the earlier two examples.

Figure 23: Expanded structure of 4BP2NPT (29)

Comparative structural analysis of 27 - 29:

The crystal structures of the above three compounds contain one molecule for asymmetric unit. In all the three structures, none of the aromatic ring is coplanar with the triazole ring. The crystal structures of the three compounds in general are dominated by the $\mathrm{C}-\mathrm{H} . . . \mathrm{O}$ and/or $\mathrm{C}-\mathrm{H} . . \mathrm{N}, \mathrm{C}-\mathrm{H} . . \mathrm{Br}$ and $\mathrm{Br} . . \mathrm{Br}$ interactions and do not pack in their crystals via $\mathrm{NO}_{2} \ldots \mathrm{Br}$ synthon. Molecules in first two structures form isostructural helical assemblies along crystallographic 2_{1}-screw axis linked via $\mathrm{C}-\mathrm{H} . . . \mathrm{O}$ interaction involving C1-H1 group of triazole ring and oxygen O1 of nitro group. The helical assembly also brings the unit translated molecules close together via C-H...N interaction along with additional $\mathrm{C}-\mathrm{H} . . . \mathrm{Br}$ contact in the first structure. The neighboring helices are bridged via centrosymmetric $\mathrm{C}-\mathrm{H} . . . \mathrm{O}$ interaction engaging nitro group phenyl ring in the first one whereas in the second they are linked via centrosymmetric $\mathrm{Br} . . . \mathrm{Br}$ short contact.

Figure 24: Secondary structures of 27-29 and helical assemblies in the crystal structure of (d) 27 and (e) 28

In the last structure c-glide related molecules are linked via weak $\mathrm{C}-\mathrm{H} . . . \pi$ interaction between C-H group of phenyl ring bearing nitro group and triazole ring forming a layer. This layer links with another layer in anti-parallel fashion along b-axis via centrosymmetric Br ... Br short contact.

P3NPT series:

In the structure of 33, the basic feature is the one dimensional infinite sheet. Unlike in 2-Nitro series, all three rings in the compound 33 are almost coplanar. Although two kind of C-H...O interactions are present here with a bond length $2.666 \AA$ and $2.717 \AA$, respectively along with two C-H...N interactions with bond lengths of $2.713 \AA$ and 2.727 \AA, respectively, although these interactions are present in the system but the structure is mainly governed by strong $\mathrm{Br} \ldots \mathrm{NO}_{2}$ interaction. This interaction is having a bond length of $3.318 \AA$. No $\mathrm{Br} . . . \mathrm{Br}$ short contacts are visible in this structure.

Figure 25: Expanded structure of 2BP3NPT (33)

In 3BP3NPT, two parallel infinite sheets are organized between themselves. Several C-H...O bondings are seen in the molecule within the range of their van der Waals radii. Total five different C-H...O interactions are present in the molecule having bond lengths of $2.438 \AA, 2.471 \AA, 2.547 \AA, 2.658 \AA$ and $2.671 \AA$ respectively. Two different C$\mathrm{H} . . \mathrm{Br}$ interactions are also found in this structure with the bond length of 2.985 and 3.035 Å respectively.

Figure 26: Expanded structure of 3BP3NPT (34)

The most interesting nature of this structure is that, in spite of having these many bonds in the molecular assembly there is no connectivity between two parallel sheets. Here in this structure also the triazole ring is almost coplanar with the other two aromatic rings attached to it.

Figure 27: Expanded structures of 4BP3NPT (35)

Infinite number of horizontal and vertical ribbons formed via C-H...O and C-H...N interactions are organized between themselves. While considering the two-dimensional picture of this structure it is observed that there has been a crossing between horizontal and vertical sheets but if the three-dimensional picture is observed thoroughly then it has easily been found that there has not been any crossing between horizontal sheets and vertical sheets, instead of that every two horizontal sheet is linked by one vertical sheet and vice versa. Three different C-H...O interactions are observed in the structure with bond lengths of $2.488 \AA, 2.558 \AA$ and $2.700 \AA$, respectively but the most interesting feature of this compound is the interaction between $\mathrm{Br} . . \mathrm{NO}_{2}$ which is having a bond length of $3.169 \AA$. This is the major connector between the horizontal and vertical sheets.

Figure 28: Structures for comparisons

After individual studies of each compound if all the results are summarized together then several similarities as well as differences can be observed. Crystal structures of this series are solely dominated by $\mathrm{C}-\mathrm{H} . . . \mathrm{O}$ and halogen bonding ($\mathrm{Br} . . \mathrm{O}$) interactions. In all three structures, both aromatic rings are nearly coplanar with the triazole ring. Molecules in 34 and 35 form a zero dimensional face-to-face centrosymmetric dimeric assembly via C-H...O interactions except in 33 due to presence of bromine atom at ortho position which prevents face-to-face alliance. The molecular packing in 35 is isostructural. The face-to-face dimers are connected via centrosymmetric $\mathrm{C}-\mathrm{H} \ldots \mathrm{N}$ interaction forming a planar sheet diagonal to ab plane. These successive sheets along the c -axis are perpendicularly stitched through Br ... O contact in 35 forming a square grid type network. In 34, the face-to-face dimers are formed between the two symmetry independent molecules in the asymmetric unit via C-H...O interactions. These dimers are extended in two dimensions forming a sheet pattern through $\mathrm{C}-\mathrm{H} . . \mathrm{Br}$ contact. Along the third dimension these sheets are stacked one over the other with interplanar spacing $\sim 3.5 \AA$. In 33, the nitro group carrying phenyl ring has adapted almost opposite orientation with the respective phenyl ring in 34 and 35 . Due to this change at the single molecular level inhibits the formation of face-to-face dimeric assembly. Instead, the molecular assemblies are 'zig-zag' chains bridged via bifurcated C-H...O and Br...O contact that resemble flat helical ribbons. These flat ribbons stitched together via bifurcated C-H...N interaction forming a planar sheet. Here also the flat ribbons have $\sim 3.5 \AA$ spacing along the third dimension.

P4NPT series:

Figure 29: Expanded structure of 2BP4NPT (37)

In this structure the major feature is that the two molecules are packed together with $\mathrm{Br} . . \mathrm{NO}_{2}$ interaction with bond length of $3.268 \AA$. The structure looks like a dimeric unit of which two monomeric units are attached through $\mathrm{Br} . . . \mathrm{NO}_{2}$ interaction. In this structure the triazole ring is coplanar with one of the aromatic ring but the nitro group containing aromatic ring is out of plane with the other two rings, although the deviation is less. In this structural assembly one $\mathrm{C}-\mathrm{H} . . . \mathrm{O}$ and one $\mathrm{C}-\mathrm{H} . . . \mathrm{N}$ interaction is present having a bond length of $2.623 \AA$ and $2.560 \AA$, respectively. Two C-H... Br interactions are also present in the system with bond length of $2.620 \AA$ and $2.987 \AA$. Due to the orientation of one aromatic ring which is noncoplanar with the other two rings, the total assembly is apparently showing zig-zag kind of structure.

Figure 30: Expanded structure of 3BP4NPT (38)

Secondary structure of 38 is characterized by the one-dimensional infinite sheet having $\mathrm{Br} . . . \mathrm{NO}_{2}$ interaction ($3.292 \AA$) for chain propagation. This structure is very similar to the structure of compound 2BP3NPT. Other than this, three different C-H...O interactions are present with the bond length of $2.329 \AA, 2.561 \AA$ and $2.663 \AA$, respectively and a C-H...N interaction with the bond length of $2.524 \AA$ is also present in the system.

The structural assembly of compound 39 shows infinite number of parallel sheets. Here also all three rings are almost coplanar like the previous structure. Here in this structure two C-H...O interactions are present with the bond length of $2.314 \AA$ and 2.714 \AA respectively, one C-H...N interaction is also present having a bond length of $2.598 \AA$ but unlike the previous structure there is no such $\mathrm{Br} . . \mathrm{NO}_{2}$ interaction present in the system.

Figure 31: Expanded structure of 4BP4NPT (39)

Figure 32: Comparative structural analysis of compounds 38-40

In this series of three structures, both aromatic rings are nearly coplanar with the central triazole ring. In 39, there are two independent molecules in the asymmetric unit that
differ by small dihedral angle difference between the triazole and bromophenyl ring. Crystal structures of compound 38, and 39 forms a 2D-sheet and that of compound 37 displayed a corrugated strand structure. The spacing between the parallel sheets is about $3.9 \AA$. In compound 37 , molecules form centrosymmetric dimers via halogen bonding contacts ($\mathrm{Br} . . . \mathrm{O}$). The halogen bonded dimeric unit is linked via centrosymmetric $\mathrm{C}-\mathrm{H} . . . \mathrm{O}$ interaction with the neighboring dimeric unit along a-axis whereas along c -axis they are associated via $\mathrm{C}-\mathrm{H} . . . \mathrm{N}$ contact having c-glide relation forming corrugated network. The structure of 38 revealed flat helical self-assembly around the crystallographic two-fold screw axis through $\mathrm{C}-\mathrm{H} . . \mathrm{O}$ and $\mathrm{Br} . . . \mathrm{O}$ contacts. These flat helices are bridged along the c -axis via $\mathrm{C}-\mathrm{H} . . \mathrm{N}$ interaction forming 2D sheet. In compound 39 also molecules form 2D sheet network through $\mathrm{C}-\mathrm{H} . . \mathrm{N}$ and bifurcated $\mathrm{C}-\mathrm{H} . . \mathrm{O}$ contacts. Both symmetry independent molecules form centrosymmetric dimers via C-H...N contact with their respective pair. These different dimers are bridged through C-H...O contact forming flat sheet pattern. It is interesting to note here that molecules do not associate via $\mathrm{Br} . . \mathrm{Br}$ contacts in any of the above three cases.

As indicated in the introduction, the prime objective of this investigation is to develop a simple protocol for the synthesis of a group of isomeric compounds having the orthogonal functional groups that form the weaker intermolecular interactions. The copper (I) catalyzed Hüisgen azide-alkyne cycloaddition (CuAAC) has been proven as highly relevant because of selectivity and its operational simplicity. The second objective is to examine the occurrence and geometrical preference of an identified $\mathrm{Br} \cdots \mathrm{NO}_{2}$ weak interaction. Apart from the projected $\mathrm{Br} \cdots \mathrm{NO}_{2}$ interaction, the absence of any strong and direction-specific intermolecular interactions in the present template gave an equal opportunity for the other weaker intermolecular interactions such as $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{N}, \mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Br}$, and, $\mathrm{Br} \cdots \mathrm{Br}$ short contacts to play their role in molecular aggregation. A comprehensive compilation of various weaker interactions observed in crystal structures of all compounds revealed that out of nine compounds, molecules in four compounds have $\mathrm{Br} \cdots \mathrm{NO}_{2}$ association (Type III geometry), in two compounds $\mathrm{Br} \cdots \mathrm{Br}$ short contact and in one compound $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ electrostatic interaction were present. It was quite interesting to notice that none of the isomers have the Type I geometry which has been identified as a
robust synthon. A close look at the secondary structures of a set of isomeric compounds reveal substantial similarity in the patterns of supramolecular aggregation and the nature of the interactions involved. This is quite striking when compared with the earlier reports where it has been observed that projected synthon appears to behave predictably only for specific isomeric forms, but normally to be absent for the remaining isomeric forms and also complexity involved in extrapolating the aggregation patterns from one isomer to others, even in simple isomers. The observed similarities in the 3 different groups of the present investigation is highly remarkable and demonstrates that it is not the weaker interactions that altered the intramolecular association, however, it is the relatively strong interactions which disturb the predictable weaker complimentary interaction patterns. It also indicates that structural analysis of weaker interactions in isolation and then examining the influence of strong interaction over them will give more valuable informations that can be used as the starting premise for crystal structure predictions in general and molecular design for material applications in particular.

Figure 33: (a) Space group, various weak interactions noticed in the crystal structures of all 9 compounds and no. of such interactions in each crystal structure. (b) Relative orientation of nitrophenyl and bromophenyl rings with respect to the aligned triazole in each series.

In conclusion, the potential of $\mathrm{Cu}(\mathrm{I})$ caltalysed azide-alkyne "click reaction" as a simple synthetic tool for crystal engineering to build a collection of isomeric compounds
with modular positioning of complimentary functional groups was demonstrated. The elegancy of this approach is that all the 9 compounds prepared through the [3+2]azidoalkyne cycloaddition are crystalline. The investigation comprising the crystal structural analyses of closely related molecules demonstrate how weaker interactions like $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ could form self-complimentary motifs that are sufficiently strong enough to direct the crystal packing in general and also to block are fine tune the relatively stronger interactions like $\mathrm{Br} \cdots \mathrm{NO}_{2}$ and $\mathrm{Br} \cdots \mathrm{Br}$. The helical assembly of molecules through C-H $\cdots \mathrm{O}$ interactions in P2NPT series, and the self complimentary patterns displayed in the crystal structures of P3NPT series shows that one can design materials that require a reversible alternative for covalent bond by employing exclusively weak hydrogen bonding interactions like $\mathrm{C}-\mathrm{H} \cdots \mathrm{O} / \mathrm{N}$ to form either 2D sheets or 3D-helical networks and work in this direction is progressing in our lab.

EXPERIMENTAL

EXPERIMENTAL

General experimental procedure for $\mathrm{S}_{\mathbf{N}} A r$ reaction:

Fluoronitrobenzene ($100 \mathrm{mg}, 0.71 \mathrm{mmol}$) was mixed with bromophenylacetylene ($128 \mathrm{mg}, 0.71 \mathrm{mmol}$) in 9:1 DMSO: $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. To the mixture were added L-proline ($16 \mathrm{mg}, 0.142 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(15 \mathrm{mg}, 0.142 \mathrm{mmol}), \mathrm{NaN}_{3}(55 \mathrm{mg}, 0.852 \mathrm{mmol})$, sodium ascorbate ($14 \mathrm{mg}, 0.071 \mathrm{mmol}$), and $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(9 \mathrm{mg}, 0.036 \mathrm{mmol})$. The mixture was stirred for $24-48 \mathrm{~h}$ at $70^{\circ} \mathrm{C}$ and then the mixture was poured into 30 mL of ice-cold water. The solid residue was filtered and crystallized in different solvent systems to procure white to yellow crystalline solid in 57-83\% yield.

General procedure for cycloaddition reactions with 3-azidobenzene (32):

A mixture of 3-Azidonitrobenzene ($116 \mathrm{mg}, 0.71 \mathrm{mmol}$), bromophenylactylene ($128 \mathrm{mg}, 0.71 \mathrm{mmol}$) was taken in 9:1 DMSO: $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ in a round bottom flask and Lproline ($16 \mathrm{mg}, 0.142 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(15 \mathrm{mg}, 0.142 \mathrm{mmol})$, sodium ascorbate (14 mg , $0.071 \mathrm{mmol})$, and $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(9 \mathrm{mg}, 0.036 \mathrm{mmol})$ were added to that mixture and the complete reaction mixture was heated at $70{ }^{\circ} \mathrm{C}$ (bath temperature) for 24 h with stirring. The reaction mixture was cooled to room temperature and diluted with 30 mL of water and combined water layer was thoroughly extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). Organic layer was dried over sodium sulphate and concentrated under vacuum. The crude solid was purified by column chromatography over 230-400 silica using ethyl acetate/light petroleum (1:4) to obtain white to yellow solids (65-74\%). This solid was crystallized with different solvent systems.

4-(2-Bromophenyl)-1-(2-nitrophenyl)-1H-1,2,3-triazole (2BP2NPT, 27)

Yield: $169 \mathrm{mg}(65 \%) . \mathrm{MP}: 125{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{dt}, J=1.7,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.46(\mathrm{dt}, J=1.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=1.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ (br. s, 1H), 7.75 (br. s, $1 \mathrm{H}), 7.83(\mathrm{dt}, J=1.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{dd}, J=1.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{dd}, J=1.8,7.8 \mathrm{~Hz}$,

1H), $8.56(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 121.3$ (s), 124.3 (d), 125.7 (d), 127.4 (s), 127.8 (d), 128.1 (s), 129.7 (d), 130.7 (d), 130.9 (d), 133.7 (d), 142.0 (s), 145.9 (s) ppm. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{2}$: C, 48.72; H, 2.63; Br, 23.15; N, 16.23; O, 9.27\%; Found: C, 48.98; H, 2.39; Br, 23.19; N, 16.51\%.

Figure 34: The molecular structure of compound 27 (displacement ellipsoids are drawn at the 50\% probability level)

Bond length and bond angle in \AA and ${ }^{\circ}$

Br $1 \ldots \mathrm{C} 8$	$1.896(4)$		$\mathrm{O} 1 \ldots \mathrm{~N} 4$	$1.209(4)$		C 3 C 8 Br 1
$121.6(3)$						
$\mathrm{N} 1 \ldots \mathrm{~N} 2$	$1.335(5)$		$\mathrm{C} 4 \ldots \mathrm{C} 5$	$1.359(6)$		C 1 C 2 N 3

C4 C5 C6	$119.7(5)$	C9 C10 C11	$120.7(4)$	C11 C12 C13 120.8(5)	
C6 C7 C8	$120.0(4)$	C14 C13 C12	$118.9(4)$		C12 C11 C10

4-(3-Bromophenyl)-1-(2-nitrophenyl)-1H-1,2,3-triazole (3BP2NPT, 28)

Yield: $174 \mathrm{mg}(71 \%)$ MP: $101{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.02-7.44 (m, 3H), 7.58-7.82 (m, 4H), 7.94-8.04 (m, 2H). ${ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 121.4$ (d), 123.1 (s), 124.5 (d), 125.7 (d), 126.9 (d), 127.90 (d), 129.0 (d), 130.5 (d), 130.8 (d), 131.5 (d), 131.8 (s), 133.8 (d), 144.4 (s), 146.9 (s) ppm. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{2}$: C, 48.72; H, 2.63; Br, 23.15; N, 16.23; O, 9.27%; Found: C, 48.76; H, 2.52; Br, 23.42; N, 16.11\%.

Figure 35: The molecular structure of compound 28 (displacement ellipsoids are drawn at the 50\% probability level)

$B o n d$ length and bond angle in \AA and ${ }^{\circ}$

$\mathrm{Br} 1 \ldots \mathrm{C} 3$	$1.893(3)$	$\mathrm{C} 3 \ldots \mathrm{C} 7$	$1.381(4)$	$\mathrm{C} 10 \ldots \mathrm{~N} 1$	$1.465(4)$
$\mathrm{N} 2 \ldots \mathrm{C} 2$	$1.335(4)$	$\mathrm{C} 4 \ldots \mathrm{C} 9$	$1.378(4)$	$\mathrm{C} 11 \ldots \mathrm{C} 12$	$1.374(4)$
$\mathrm{N} 2 \ldots \mathrm{~N} 3$	$1.354(3)$	$\mathrm{C} 4 \ldots \mathrm{C} 10$	$1.389(4)$	$\mathrm{C} 12 \ldots \mathrm{C} 13$	$1.380(5)$
$\mathrm{N} 2 \ldots \mathrm{C} 4$	$1.427(3)$	$\mathrm{C} 5 \ldots \mathrm{C} 14$	$1.389(4)$	$\mathrm{N} 1 \ldots \mathrm{O} 2$	$1.213(4)$
$\mathrm{N} 3 \ldots \mathrm{~N} 4$	$1.306(3)$	$\mathrm{C} 5 \ldots \mathrm{C} 6$	$1.393(4)$	$\mathrm{N} 1 \ldots \mathrm{O} 1$	$1.213(4)$
$\mathrm{C} 1 \ldots \mathrm{~N} 4$	$1.360(3)$	$\mathrm{C} 7 \ldots \mathrm{C} 8$	$1.372(5)$		
$\mathrm{C} 1 \ldots \mathrm{C} 2$	$1.366(4)$	$\mathrm{C} 8 \ldots \mathrm{C} 14$	$1.386(4)$		
$\mathrm{C} 1 \ldots \mathrm{C} 5$	$1.467(4)$	$\mathrm{C} 9 \ldots \mathrm{C} 13$	$1.376(4)$		
$\mathrm{C} 3 \ldots \mathrm{C} 6$	$1.380(4)$	$\mathrm{C} 10 \ldots \mathrm{C} 11$	$1.368(4)$	C 2 N 2 N 3	$110.8(2)$

| C2 N2 C4 | $128.7(2)$ | C9 C4 N2 | $120.2(3)$ | | C11 C10 N1 |
| :--- | :--- | :--- | :--- | :--- | :--- | $117.6(3)$

4-(4-Bromophenyl)-1-(2-nitrophenyl)-1H-1,2,3-triazole (4BP2NPT, 29)

29

Yield: $140 \mathrm{mg}(57 \%) . \mathrm{MP}: 136-137{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.57$ $(\mathrm{dt}, J=2.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.88(\mathrm{~m}, 5 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 8.06-8.22(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 121.0 (d), 122.7 (s , 125.6 (d), 127.5 (d), 127.9 (d), 129.8 (d), 130.8 (d), 132.2 (d), 132.4 (d), 133.8 (d), 144.4 (s), 147.4 (s) ppm. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{2}$: C, 48.72; H, 2.63; Br, 23.15; N, 16.23; O, 9.27; Found: C, 48.44; H, 2.40; Br, 23.11; N, 16.41.

Figure 36: The molecular structure of compound 29 (displacement ellipsoids are drawn at the 50\% probability level)

Bond length and bond angle in \AA and ${ }^{\circ}$

Br1...C1	1.903(3)	C9...C10	$1.369(5)$	C14 C5 C4	118.6(3)
C1...C2	1.375(5)	C10...C13	$1.366(5)$	C14 C5 N3	120.6(3)
C1...C8	$1.376(5)$	C13...C14	1.381(5)	C4 C5 N3	120.7(2)
N3...C6	1.344(4)			N1 C11 C6	107.5(3)
N3...N2	1.352(3)			N1 C11 C3	121.3(2)
N3...C5	1.423(4)			C6 C11 C3	131.1(3)
C2...C7	1.387(4)	C2 C1 C8	121.5(3)	N2 N1 C11	109.8(2)
C3...C7	1.384(4)	C 2 Cl Br 1	118.8(2)	C3 C7 C2	121.0(3)
C3...C12	1.388(4)	C8 C1 Br1	119.7(2)	O2 N4 O1	123.9(3)
C3...C11	1.472(4)	C6 N3 N2	110.4(2)	O2 N4 C4	118.7(3)
C6...C11	1.363(4)	C6 N3 C5	130.8(3)	O1 N4 C4	117.3(3)
C4...C9	$1.376(4)$	N2 N3 C5	118.6(2)	C1 C8 C12	119.0(3)
C4...C5	1.388(4)	C1 C2 C7	118.8(3)	C10 C9 C4	119.4(3)
C4...N4	1.469(4)	C7 C3 C12	118.6(3)	C9 C10 C13	120.2(3)
C5...C14	1.383(4)	C7 C3 C11	119.8(3)	N1 N2 N3	106.7(2)
C11...N1	1.359(4)	C12 C3 C11	121.6(3)	C8 C12 C3	121.1(3)
N1...N2	1.305(3)	N3 C6 C11	105.5(3)	C10 C13 C14	120.9(3)
N4...O2	1.214(4)	C9 C4 C5	121.0(3)	C13 C14 C5	119.6(3)
N4...O1	1.220(3)	C9 C4 N4	117.4(3)		
C8...C12	$1.378(5)$	C5 C4 N4	121.4(3)		

Table 1

Crystal data	27	28	29
Formula	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{2}$
M_{r}	345.16	345.16	345.16
Crystal size, mm	0.77 x 0.68 x 0.5	0.51 x 0.23 x 0.1	0.68x0.25x0.2
	4	3	0
Temp. (K)	297(2)	297(2)	297(2)
Crystal system	monoclinic	monoclinic	monoclinic
space group	P2 ${ }_{1} / \mathrm{n}$	P2 ${ }_{1} / \mathrm{n}$	P21/c
A [\AA]	12.388(13)	9.2835(11)	5.4468(9)
B [\AA]	8.051(9)	7.2943(9)	20.778(3)
$\mathrm{C}[\AA]$	14.256(15)	20.794(2)	12.482(2)
$\beta\left[{ }^{\circ}\right]$	103.305(18)	97.444(2)	102.427(3)
$\mathrm{V}\left[\AA^{3}\right]$	1384(2)	1396.2(3)	1379.6(4)
Z	4	4	4
$\mathrm{F}(000)$	688	688	688
D calc [$\mathrm{g} \mathrm{cm}^{-3}$]	1.657	1.642	1.662
$\mu\left[\mathrm{mm}^{-1}\right]$	2.981	2.954	2.989
Absorp.correction	multi-scan	multi-scan	multi-scan
$\mathrm{T}_{\text {min }}$	0.2074	0.3142	0.2357
$\mathrm{T}_{\text {max }}$	0.2959	0.7001	0.5862
reflns. collected	6344	8147	6843
Unique reflns.	2419	2448	2427
Observed reflns.	1685	1881	1896
$h, k, l(\min , \max)$	$(-12,14)$,	$(-11,10)$,	$(-6,6)$,
	$(-7,9)$	$(-8,8)$	$(-22,24),$
$\mathrm{R}_{\text {int }}$	$(-16,16)$ 0.0517	(-24, 24$)$ 0.0238	$(-9,14)$ 0.0221
No. of parameters	190	190	226
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0466	0.0369	0.0361
$\mathrm{wR}_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.1245	0.0876	0.0823
R_{1} (all data)	0.0699	0.0518	0.0503
WR_{2} (all data)	0.1376	0.0942	0.0889
goodness-of-fit	0.960	1.030	1.045
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$	0.923, -0.280	0.568, -0.389	0.657, -0.506

4-(2-Bromophenyl)-1-(3-nitrophenyl)-1H-1,2,3-triazole (2BP3NPT, 33)

Yield: $173 \mathrm{mg}(71 \%)$. MP: $131-132{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25$ (ddd, $J=1.8,7.4$, $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dt}, J=1.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=1.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.20(\mathrm{dd}, J=1.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{ddd}, J=1.0,2.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.33$ (ddd, J $=1.0,2.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.79(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 115.3 (d), 120.6 (d), 121.3 (s), 123.2 (d), 126.0 (d), 127.9 (d), 129.9 (d), 130.4 (s), 130.8 (d), 131.0 (d), 133.7 (d), 137.8 (s), 146.6 (s), 149.1 (s) ppm. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{2}: \mathrm{C}, 48.72 ; \mathrm{H}, 2.63$; Br, 23.15; N, 16.23; O, 9.27\%; Found: C, 49.00; H, 2.81; Br, 23.42; N, 16.11\%.

Figure 37: The molecular structure of compound 33(displacement ellipsoids are drawn at the 50% probability level)

Bond length and bond angle in \AA and ${ }^{\circ}$

$\mathrm{O} 1 \ldots \mathrm{~N} 4$	$1.20(2)$	$\mathrm{C} 5 \ldots \mathrm{C} 7$	$1.38(2)$	N 2 N 1 C 9	$108.8(12)$
$\mathrm{Br} 1 \ldots \mathrm{C} 10$	$1.914(18)$	$\mathrm{N} 2 \ldots \mathrm{~N} 3$	$1.29(2)$	N 2 N 1 C 3	$119.7(11)$
$\mathrm{N} 1 \ldots \mathrm{~N} 2$	$1.342(18)$	$\mathrm{C} 6 \ldots \mathrm{C} 9$	$1.33(2)$	C 9 N 1 C 3	$131.5(12)$
$\mathrm{N} 1 \ldots \mathrm{C} 9$	$1.343(18)$	$\mathrm{C} 6 \ldots \mathrm{~N} 3$	$1.380(19)$	C 8 C 1 C 3	$117.5(15)$
$\mathrm{N} 1 \ldots \mathrm{C} 3$	$1.442(19)$	$\mathrm{N} 4 \ldots \mathrm{O} 2$	$1.210(19)$	C 12 C 2 C 10	$115.5(15)$
$\mathrm{C} 1 \ldots \mathrm{C} 8$	$1.37(2)$	$\mathrm{N} 4 \ldots \mathrm{C} 8$	$1.492(18)$	C 12 C 2 C 6	$119.0(14)$
$\mathrm{C} 1 \ldots \mathrm{C} 3$	$1.37(2)$	$\mathrm{C} 10 \ldots \mathrm{C} 11$	$1.35(3)$	C 10 C 2 C 6	$125.5(15)$
$\mathrm{C} 2 \ldots \mathrm{C} 12$	$1.38(2)$	$\mathrm{C} 11 \ldots \mathrm{C} 14$	$1.41(3)$	C 1 C 3 C 5	$122.1(15)$
$\mathrm{C} 2 \ldots \mathrm{C} 10$	$1.41(2)$	$\mathrm{C} 12 \ldots \mathrm{C} 13$	$1.41(3)$	C 1 C 3 N 1	$119.0(13)$
$\mathrm{C} 2 \ldots \mathrm{C} 6$	$1.49(2)$	$\mathrm{C} 13 \ldots \mathrm{C} 14$	$1.34(3)$	C 5 C 3 N 1	$118.9(13)$
$\mathrm{C} 3 \ldots \mathrm{C} 5$	$1.39(2)$			C 8 C 4 C 7	$117.0(15)$
$\mathrm{C} 4 \ldots \mathrm{C} 8$	$1.36(2)$			C 7 C 5 C 3	$118.6(14)$
$\mathrm{C} 4 \ldots \mathrm{C} 7$	$1.42(2)$			N 3 N 2 N 1	$107.8(12)$

C9 C6 N3	$106.6(14)$	N2 N3 C6	$109.1(14)$	C2 C10 Br1	$121.4(12)$
C9 C6 C2	$136.4(14)$	C4 C8 C1	$124.0(13)$	C10 C11 C14 119.1(19)	
N3 C6 C2	$117.0(14)$	C4 C8 N4	$119.1(14)$	C2 C12 C13	$121.9(18)$
O1 N4 O2	$123.7(14)$	C1 C8 N4	$116.9(14)$	C14 C13 C12 120(2)	
O1 N4 C8	$117.1(16)$	C6 C9 N1	$107.7(13)$	C13 C14 C11 119.8(19)	
O2 N4 C8	$119.1(14)$	C11 C10 C2	$123.6(18)$		
C5 C7 C4	$120.9(15)$	C11 C10 Br1	$115.0(14)$		

4-(3-Bromophenyl)-1-(3-nitrophenyl)-1H-1,2,3-triazole (3BP3NPT, 34)

Yield: $159 \mathrm{mg}(65 \%)$. MP: $195-196{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 7.37-7.54(\mathrm{~m}, 2 \mathrm{H})$, 7.84-7.99 (m, 2H), $8.14(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.32$ (dd, $J=1.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{dd}, J=$ $1.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.86(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.58(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}\right.$, DMSO-D $\left._{6}\right) 112.7$ (d), 118.5 (d), 120.7 (s), 121.1 (d), 122.4 (d), 123.8 (d), 126.4 (d), 129.1 (d), 129.2 (d), 129.6 (d), 130.6 (s), 135.6 (s), 144.8 (s), 146.9 (s) ppm. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{2}$: C, 48.72; H, 2.63; Br, 23.15; N, 16.23; O, 9.27\%; Found: C, 48.91; H, 2.83; Br, 23.09; N, 16.06\%.

Figure 38: The molecular structure of compound 34 (displacement ellipsoids are drawn at the 50\% probability level)

$B o n d$ length and bond angle in \AA and ${ }^{\circ}$

$\mathrm{Br} 1 \ldots \mathrm{C} 2$	$1.908(3)$	C 7 C 2 C 4	$121.8(3)$
$\mathrm{C} 1 \ldots \mathrm{~N} 4$	$1.483(4)$	C 7 C 2 Br 1	$118.4(2)$
$\mathrm{C} 2 \ldots \mathrm{C} 7$	$1.377(4)$	C 4 C 2 Br 1	$119.7(2)$
$\mathrm{C} 2 \ldots \mathrm{C} 4$	$1.380(5)$	N 2 N 3 C 13	$109.3(3)$
$\mathrm{N} 3 \ldots \mathrm{~N} 2$	$1.309(4)$	C 7 C 6 C 5	$120.6(3)$
$\mathrm{N} 3 \ldots \mathrm{C} 13$	$1.368(4)$	C 2 C 7 C 6	$119.8(3)$
$\mathrm{C} 5 \ldots \mathrm{C} 6$	$1.464(4)$	C 12 N 1 N 2	$110.4(2)$
$\mathrm{C} 6 \ldots \mathrm{C} 7$	$1.381(4)$	C 12 N 1 C 10	$129.7(3)$
$\mathrm{N} 1 \ldots \mathrm{C} 12$	$1.341(4)$	N 2 N 1 C 10	$119.9(3)$
$\mathrm{N} 1 \ldots \mathrm{~N} 2$	$1.353(3)$	C 9 C 10 N 1	$119.4(3)$
$\mathrm{N} 1 \ldots \mathrm{C} 10$	$1.429(4)$	O 1 C 11 O 2	$123.0(3)$
$\mathrm{C} 9 \ldots \mathrm{C} 10$	$1.376(4)$	N 1 C 12 C 13	$105.8(3)$
$\mathrm{C} 11 \ldots \mathrm{O} 1$	$1.200(4)$	C 12 C 13 N 3	$107.5(3)$
$\mathrm{C} 11 \ldots \mathrm{O} 2$	$1.208(4)$	C 12 C 13 C 14	$130.1(3)$
$\mathrm{C} 12 \ldots \mathrm{C} 13$	$1.362(4)$	N 3 C 13 C 14	$122.4(3)$
$\mathrm{N} 4 \ldots \mathrm{O} 3$	$1.225(4)$	N 3 N 2 N 1	$106.9(2)$
$\mathrm{C} 13 \ldots \mathrm{C} 14$	$1.469(4)$		

4-(4-Bromophenyl)-1-(3-nitrophenyl)-1H-1,2,3-triazole (4BP3NPT, 35)

35

Yield: $181 \mathrm{mg}(74 \%)$ MP: $230-231{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 7.46$ (br. s, 1H), 7.50 (br. s, 1H), 7.71-7.78 (m, 3H), $8.18(\mathrm{dd}, J=2.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{dd}, J=2.5,8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.68(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.35(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}\right.$, DMSO-D $\left._{6}\right) 112.8$ (d), 118.2 (d), 120.0 (s), 121.2 (d), 123.9 (d), 125.1 (d), 125.6 (d), 127.5 (s), 127.7 (d), 129.7 (d), 130.1 (d), 135.7 (s), 145.3 (s), 146.9 (s) ppm. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{2}$: C, 48.72; H, 2.63; Br, 23.15; N, 16.23; O, 9.27\%; Found: C, 48.75; H, 2.81; Br, 23.23; N, 16.30\%.

Figure 39: The molecular structure of compound 35(displacement ellipsoids are drawn at the 50\% probability level)

Bond length and bond angle in $\AA \AA$ and ${ }^{\circ}$

Br1...C1	1.896(4)	C7...C9	1.353(5)	C7 N3 C2	130.7(3)
N4...O1	1.214(4)	C10...C13	1.376(6)	N2 N3 C2	119.6(3)
N4...O2	1.224(4)	C12...C14	1.374(6)	C6 C4 C8	117.5(4)
N4...C8	1.465(4)			N1 N2 N3	107.2(3)
C1...C10	1.353(6)			C2 C5 C8	117.8(3)
C1...C12	$1.363(6)$			C4 C6 C11	121.3(4)
N1...N2	1.307(4)	O1 N4 O2	123.5(3)	N3 C7 C9	106.1(3)
N1...C9	1.362(4)	O1 N4 C8	118.4(3)	C5 C8 C4	123.1(3)
C2...C5	$1.379(5)$	O2 N4 C8	118.1(3)	C5 C8 N4	117.8(3)
C2...C11	$1.389(5)$	C10 C1 C12	119.9(4)	C4 C8 N4	119.0(3)
C2...N3	$1.425(4)$	C10 C1 Br1	119.6(3)	C7 C9 N1	107.9(3)
C3...C13	$1.369(5)$	C12 C1 Br1	120.5(3)	C7 C9 C3	129.8(3)
C3...C14	$1.373(5)$	N2 N1 C9	109.1(3)	N1 C9 C3	122.3(3)
C3...C9	$1.478(5)$	C5 C2 C11	120.7(3)	C1 C10 C1	120.2(4)
N3...C7	1.342(4)	C5 C2 N3	119.4(3)	C6 C11 C2	119.5(4)
N3...N2	1.356(4)	C11 C2 N3	119.9(3)	C1 C12 C1	119.9(4)
C4...C6	$1.374(5)$	C13 C3 C14	117.8(4)	C3 C13 C10	121.1(4)
C4...C8	$1.382(5)$	C13 C3 C9	120.8(3)	C3 C14 C1	121.2(4)
C5...C8	$1.379(5)$	C14 C3 C9	121.4(3)		
C6...C11	$1.380(5)$	C7 N3 N2	109.7(3)		

Table 2

Crystal data	33	34	35
Formula	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{2}$
M_{r}	345.16	266.26	345.16
Crystal size, mm	$0.76 \times 0.07 \times 0.0$	$0.33 \times 0.26 \times 0.0$	0.37x0.32x0.0
	6	9	3
Temp. (K)	297(2)	297(2)	297(2)
Crystal system	monoclinic	triclinic	monoclinic
space group	P2 1_{1} n	P-1	P2 1_{1} n
A [\AA]	7.228(7)	7.4402(6)	8.667(3)
B [\AA]	13.308(13)	12.4535(10)	5.2323(18)
C [\AA]	14.521(15)	14.6016(12)	30.304(11)
$\alpha\left[{ }^{\circ}\right]$	90	91.2720(10)	90
$\beta\left[{ }^{\circ}\right]$	93.675(19)	98.9940(10)	96.248(6)
$\gamma\left[{ }^{\circ}\right]$	90	96.3090(10)	90
$\mathrm{V}\left[\AA^{3}\right]$	1394(2)	1327.14(19)	1366.0(8)
Z	4	4	
F(000)	688	688	688
D calc [$\mathrm{g} \mathrm{cm}^{-3}$]	1.645	1.727	1.678
$\mu\left[\mathrm{mm}^{-1}\right]$	2.959	3.107	3.019
Absorp.correction	multi-scan	multi-scan	multi-scan
$\mathrm{T}_{\text {min }}$	0.2120	0.4270	0.4013
$\mathrm{T}_{\text {max }}$	0.8518	0.7673	0.9149
reflns. collected	9670	12926	6524
Unique reflns.	2455	4654	2403
Observed reflns.	1522	3565	1718
$h, k, l(\min , \max)$	$(-8,8)$,	$(-8,8)$,	$(-9,10)$,
	$(-15,13)$,	$(-14,14)$,	$(-6,5)$,
	$(-17,17)$	$(-17,17)$	$(-36,27)$
$\mathrm{R}_{\text {int }}$	0.0571	0.0269	0.0289
No. of parameters	190	379	226
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.1357	0.0342	0.0459
$\mathrm{wR}_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.3958	0.0785	0.1064
R_{1} (all data)	0.1755	0.0492	0.0675
WR_{2} (all data)	0.4175	0.0847	0.1186
goodness-of-fit	1.141	1.023	1.034
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$	2.445, -0.631	0.436, -0.291	0.645, -0.540

4-(2-Bromophenyl)-1-(4-nitrophenyl)-1H-1,2,3-triazole (2BP4NPT, 37)

Yield: 203 mg (83%). MP: $170-171{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26$ (ddd, $J=1.8,7.4$, $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dt}, J=1.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=1.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{t}, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.09(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.2(\mathrm{dd}, J=1.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.47(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.79(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 120.5(\mathrm{~d}), 121.3$ (s), 124.1 (d), 124.9 (d), 125.6 (d), 127.9 (d), 130.0 (d), 130.2 (d), 130.8 (d), 131.9 (s), 133.8 (d), 141.1 (s), 146.7 (s), 147.3 (s) ppm. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{2}$: C, 48.72; H, 2.63; Br, 23.15; N, 16.23; O, 9.27\%; Found: C, 48.57; H, 2.90; Br, 22.89; N, 16.12\%.

Figure 40: The molecular structure of compound 37(displacement ellipsoids are drawn at the 50\% probability level)

Bond length and bond angle in \AA and ${ }^{\circ}$

Br1...C10	1.897(6)	N4...O2	1.218(7)	C6 C2 C3	121.1(5)
N3...N2	$1.343(5)$	C6...C7	1.374(7)	C6 C2 N3	119.7(4)
N3...C1	1.364(6)	C9...C13	1.382(8)	C3 C2 N3	119.2(4)
N3...C2	1.414(6)	C9...C10	1.391(8)	C8 C3 C2	119.6(5)
C1...C4	1.367(7)	C10...C11	1.387(9)	C1 C4 N1	106.7(4)
C2...C6	1.383(6)	C11...C12	1.368(10)	C1 C4 C9	134.6(5)
C2...C3	1.389(7)	C12...C14	1.373(11)	N1 C4 C9	118.6(4)
C3...C8	1.377(8)	C13...C14	1.376(10)	N1 N2 N3	107.4(4)
C4...N1	1.369(6)			C8 C5 C7	122.2(5)
C4...C9	1.466(7)			C8 C5 N4	119.7(5)
N2...N1	1.303(6)			C7 C5 N4	118.1(5)
C5...C8	1.379(7)	N2 N3 C1	109.8(4)	N2 N1 C4	110.3(4)
C5...C7	1.379(7)	N2 N3 C2	120.4(4)	O1 N4 O2	123.6(5)
C5...N4	1.469(7)	C1 N3 C2	129.8(4)	O1 N4 C5	118.3(5)
N4...O1	1.210(7)	N3 C1 C4	105.8(4)	O2 N4 C5	118.1(5)

C7 C6 C2 119.4(5)
C6 C7 C5 119.1(5)
C3 C8 C5 118.6(5)
C13 C9 C10 116.1(5)
C13 C9 C4 117.7(5)

C10 C9 C4 126.3(5)
C11 C10 C9 122.2(6)
C11 C10 Br1 115.7(5)
C9 C10 Br1 122.0(4)
C12 C11 C10 119.4(7)

4-(3-Bromophenyl)-1-(4-nitrophenyl)-1H-1,2,3-triazole (3BP4NPT, 38)

Yield: $198 \mathrm{mg}(81 \%) . \mathrm{MP}: 217-218{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{D}_{6}\right) \delta 7.36-7.54(\mathrm{~m}, 2 \mathrm{H})$, 7.96 (dt, $J=1.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.26,8.31,8.45,8.51$ (4br. m, 4H), 9.47 ($\mathrm{s}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ (100 MHz, DMSO-D ${ }_{6}$) 118.6 (d), 120.8 (d), 122.6 (s$), 123.8$ (d), 124.1 (d), 126.5 (d), 127.4 (d), 129.1 (d), 129.4 (d), 130.5 (s), 139.3 (s), 145.0 (s), 145.1 (s) ppm. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{2}$: C, 48.72; H, 2.63; Br, 23.15; N, 16.23; O, 9.27\%; Found: C, 48.63; H, 2.88; Br, 23.29; N, 16.48\%.

Figure 41: The molecular structure of compound 38(displacement ellipsoids are drawn at the 50\% probability level)

$B o n d$ length and bond angle in \AA and ${ }^{\circ}$

$\mathrm{Br} 1 \ldots \mathrm{C} 10$	$1.897(3)$	$\mathrm{N} 1 \ldots \mathrm{~N} 2$	$1.303(3)$	$\mathrm{C} 3 \ldots \mathrm{C} 6$	$1.388(4)$
$\mathrm{N} 3 \ldots \mathrm{C} 1$	$1.346(3)$	$\mathrm{N} 1 \ldots \mathrm{C} 7$	$1.368(4)$	$\mathrm{N} 4 \ldots \mathrm{O} 2$	$1.218(4)$
$\mathrm{N} 3 \ldots \mathrm{~N} 2$	$1.353(3)$	$\mathrm{C} 2 \ldots \mathrm{C} 10$	$1.381(4)$	$\mathrm{N} 4 \ldots \mathrm{C} 5$	$1.467(4)$
$\mathrm{N} 3 \ldots \mathrm{C} 3$	$1.418(3)$	$\mathrm{C} 2 \ldots \mathrm{C} 8$	$1.386(4)$	$\mathrm{C} 4 \ldots \mathrm{C} 6$	$1.366(4)$
$\mathrm{O} 1 \ldots \mathrm{~N} 4$	$1.220(3)$	$\mathrm{C} 3 \ldots \mathrm{C} 9$	$1.384(4)$	$\mathrm{C} 4 \ldots \mathrm{C} 5$	$1.378(4)$

C5...C12	1.372(4)	C10 C2 C8	119.9(3)	C1 C7 C8	130.0(2)
C1...C7	1.357(4)	N1 N2 N3	107.3(2)	N1 C7 C8	122.5(2)
C7...C8	1.470(4)	C9 C3 C6	120.5(2)	C2 C8 C11	118.8(3)
C8...C11	1.391(4)	C9 C3 N3	119.8(2)	C2 C8 C7	120.4(2)
C9...C12	1.381(4)	C6 C3 N3	119.8(2)	C11 C8 C7	120.8(3)
C10...C14	1.382(4)	O2 N4 O1	123.6(3)	C12 C9 C3	119.7(3)
C11...C13	1.382(5)	O2 N4 C5	118.3(3)	C2 C10 C14	121.5(3)
C13...C14	1.372(5)	O1 N4 C5	118.1(3)	C2 C10 Br1	118.7(2)
		C6 C4 C5	118.9(3)	C14 C10 Br1	119.8(2)
		C12 C5 C4	122.3(3)	C13 C11 C8	120.2(3)
		C12 C5 N4	118.7(3)	C5 C12 C9	118.7(3)
C1 N3 N2	109.9(2)	C4 C5 N4	119.0(3)	C14 C13 C11	121.3(3)
C1 N3 C3	129.3(2)	C4 C6 C3	119.9(3)	C13 C14 C10	118.3(3)
N2 N3 C3	120.7(2)	N3 C1 C7	105.9(2)		
N2 N1 C7	109.4(2)	C1 C7 N1	107.5(2)		

4-(4-Bromophenyl)-1-(4-nitrophenyl)-1H-1,2,3-triazole (4BP4NPT, 39)

Yield: $198 \mathrm{mg}(81 \%) . \mathrm{MP}: 149-150{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 7.59(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.64(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{t}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.06(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{t}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) 118.2$ (d), 118.5 (d), 119.9 (s), 123.7 (d), 125.5 (d), 127.3 (s), 130.1 (d), 139.1 (s), 144.9 (s), 145.2 (s) ppm. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{2}$: C, 48.72; H, 2.63; Br, 23.15; N, 16.23; O, 9.27\%; Found: C, 48.70; H, 2.40; Br, 23.43; N, 16.01\%.

Figure 42: The molecular structure of compound 39(displacement ellipsoids are drawn at the 50\% probability level)

Bond length and bond angle in \AA and ${ }^{\circ}$

$\mathrm{Br} 1 \ldots \mathrm{C} 14$	$1.899(4)$	C 8 N 1 N 2	$110.4(3)$
$\mathrm{N} 1 \ldots \mathrm{C} 8$	$1.341(4)$	C 8 N 1 C 4	$129.6(3)$
$\mathrm{N} 1 \ldots \mathrm{~N} 2$	$1.363(4)$	N 2 N 1 C 4	$119.8(3)$
$\mathrm{N} 1 \ldots \mathrm{C} 4$	$1.414(5)$	N 2 N 3 C 10	$109.9(3)$
$\mathrm{C} 1 \ldots \mathrm{~N} 4$	$1.380(6)$	N 1 C 8 C 10	$105.9(3)$
$\mathrm{N} 3 \ldots \mathrm{~N} 2$	$1.303(5)$	$\mathrm{C} 8 \mathrm{C} 10 \mathrm{~N} 3107.0(3)$	
$\mathrm{N} 3 \ldots \mathrm{C} 10$	$1.376(5)$	$\mathrm{C} 12 \mathrm{C} 14 \mathrm{Br} 1118.6(3)$	
$\mathrm{C} 8 \ldots \mathrm{C} 10$	$1.370(5)$	$\mathrm{N} 3 \mathrm{~N} 2 \mathrm{~N} 1106.7(3)$	
$\mathrm{C} 12 \ldots \mathrm{C} 14$	$1.376(6)$		

Table 3

Crystal data	37	38	39
Formula	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{2}$
M_{r}	345.16	266.26	345.16
Crystal size, mm	$0.68 \times 0.25 \times 0.2$	0.88x0.13x0.0	$0.82 \times 0.43 \times 0.1$
	0	8	2
Temp. (K)	297(2)	297(2)	297(2)
Crystal system	monoclinic	monoclinic	triclinic
space group	C2/c	$\mathrm{P} 21 / \mathrm{c}$	P-1
A [\AA]	29.52(2)	7.5222(8)	9.6141(15)
B [\AA]	7.057(5)	14.1697(15)	12.0915(19)
C [\AA]	13.022(9)	13.0479(14)	12.900(2)
$\alpha\left[{ }^{\circ}\right]$	90	90	87.535(2)
$\beta\left[{ }^{\circ}\right]$	97.405(12)	90.391(2)	71.407(2)
$\gamma\left[{ }^{\circ}\right]$	90	90	76.183(2)
$\mathrm{V}\left[\AA^{3}\right]$	2690(3)	1390.7(3)	1379.3(4)
Z	8	4	4
F(000)	1376	688	688
D calc [$\mathrm{g} \mathrm{cm}^{-3}$]	1.705	1.649	1.662
$\mu\left[\mathrm{mm}^{-1}\right]$	3.066	2.965	2.990
Absorp.correction	multi-scan	multi-scan	multi-scan
$\mathrm{T}_{\text {min }}$	0.2296	0.1800	0.1930
$\mathrm{T}_{\text {max }}$	0.5791	0.7888	0.7155
reflns. collected	6468	7835	13109
Unique reflns.	2377	2434	4834
Observed reflns.	1764	1859	3401
$h, k, l(\min , \max)$	$(-34,28)$,	$(-8,8)$,	(-11, 11),
	$(-5,8)$,	$(-16,14)$,	$(-14,14)$,
	$(-15,15)$	$(-15,15)$	$(-15,15)$
$\mathrm{R}_{\text {int }}$	0.0378	0.0258	0.0356
No. of parameters	199	190	379
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0385	0.0387	0.0429
$\mathrm{wR}_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0953	0.0958	0.1159
R_{1} (all data)	0.0556	0.0547	0.0674
WR_{2} (all data)	0.1037	0.1033	0.1284
goodness-of-fit	1.010	1.041	1.019
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.314, -0.234	0.489, -0.444	0.856, -0.469

Table 4: Selected torsion angles:

τ_{1} is $\mathrm{C}_{14}-\mathrm{C}_{9}-\mathrm{N}_{1}-\mathrm{N}_{2}, \tau_{2}$ is $\mathrm{N}_{3}-\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}, \tau_{1}{ }^{\prime}$ is $\mathrm{C}_{1}-\mathrm{N}_{1}-\mathrm{C}_{9}-\mathrm{C}_{10}, \tau_{2}{ }^{\prime}$ is $\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{8}, \tau_{3}$ is $\mathrm{O}_{1}-\mathrm{N}-\mathrm{C}-$ C, τ_{3}, is $\mathrm{O}_{2}-\mathrm{N}-\mathrm{C}-\mathrm{C}, \tau$ is the torsion angle between $\mathrm{Br}-\mathrm{C}-\mathrm{C}-\mathrm{N}_{4}$.

Compound	τ_{1}	τ_{2}	τ_{3}	τ_{3},	τ_{1},	τ_{2},	τ
$\mathbf{2 7}$	54.17	-19.43	38.29	37.70	55.06	-23.21	-147.42
$\mathbf{2 8}$	-51.33	15.97	-41.08	-40.67	-52.40	14.72	138.01
$\mathbf{2 9}$	50.46	16.75	35.26	35.86	58.57	15.31	-50.72
$\mathbf{3 3}$	-1.78	2.80	-7.63	-9.79	-1.80	2.13	-179.51
$\mathbf{3 4}$	-5.59	1.03	2.47	3.70	-3.65	0.43	-179.32
$\mathbf{3 5}$	-12.91	8.32	1.33	0.48	-12.55	7.61	4.17
$\mathbf{3 7}$	-24.08	-4.37	-1.20	0.53	-23.78	-2.54	5.01
$\mathbf{3 8}$	-5.93	6.60	-1.96	-1.22	-4.53	6.61	1.53
$\mathbf{3 9}$	-13.05	8.96	10.54	7.85	-16.22	10.97	9.46

Table 5: Geometric parameters of intermolecular interactions

	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H}$ (\AA)	$\mathrm{H} \cdots \mathrm{A}$ (\AA)	$\mathrm{D} \cdots \mathrm{A}$ (\AA)	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$ $\left({ }^{\circ}\right)$
$\mathbf{2 7}$	$\mathrm{C}(1)-\mathrm{H}(1) \cdots \mathrm{O}(1)$	0.93	2.65	$3.451(6)$	141
	$\mathrm{C}(13)-\mathrm{H}(13) \cdots \mathrm{O}(2)$	0.93	2.68	$3.482(6)$	145
	$\mathrm{C}(5)-\mathrm{H}(5) \cdots \mathrm{Br}(1)$	0.93	2.92	$3.690(6)$	145
$\mathbf{2 8}$	$\mathrm{C}(1)-\mathrm{H}(1) \cdots \mathrm{O}(1)$	0.93	2.32	$3.153(4)$	150
	$\mathrm{C}(11)-\mathrm{H}(11) \cdots \mathrm{N}(2)$	0.93	2.54	$3.360(4)$	147
	$\mathrm{C}(7)-\mathrm{Br}(1) \cdots \mathrm{Br}(1)$	$1.893(3)$	$3.696(1)$		$140.5(3)$
$\mathbf{2 9}$	$\mathrm{C}(12)-\mathrm{H}(12) \cdots \mathrm{O}(2)$	$0.95(4)$	$2.82(4)$	$3.715(4)$	$158(3)$
	$\mathrm{C}(12)-\mathrm{H}(12) \cdots \mathrm{O}(1)$	$0.95(4)$	$2.76(4)$	$3.308(4)$	$117(3)$
	$\mathrm{C}(1)-\mathrm{H}(1) \cdots \mathrm{N}(2)$	$0.86(3)$	$2.66(3)$	$3.447(4)$	$152(2)$
	$\mathrm{C}(1)-\mathrm{H}(1) \cdots \mathrm{N}(3)$	$0.86(3)$	$2.82(3)$	$3.530(4)$	$141(2)$
	$\mathrm{C}(6)-\mathrm{Br}(1) \cdots \mathrm{Br}(1)$	$1.903(3)$	$3.473(1)$		$155.5(2)$
$\mathbf{3 3}$	$\mathrm{C}(10)-\mathrm{H}(10) \cdots \mathrm{O}(2)$	0.93	2.67	$3.57(2)$	165
	$\mathrm{C}(10)-\mathrm{H}(10) \cdots \mathrm{O}(1)$	0.93	2.72	$3.336(19)$	125

	$\begin{aligned} & \mathrm{C}(11)-\mathrm{H}(11) \cdots \mathrm{O}(1) \\ & \mathrm{C}(7)-\mathrm{H}(7) \cdots \mathrm{N}(2) \\ & \mathrm{C}(7)-\mathrm{H}(7) \cdots \mathrm{N}(3) \\ & \mathrm{C}(8)-\mathrm{Br}(1) \cdots \mathrm{O}(2) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.93 \\ 0.93 \\ 0.93 \\ 1.913(2) \end{array}$	$\begin{array}{\|l\|} \hline 2.76 \\ 2.73 \\ 2.71 \\ 3.317(17) \\ \hline \end{array}$	$\begin{aligned} & \hline 3.365(19) \\ & 3.45(2) \\ & 3.61(2) \end{aligned}$	$\begin{aligned} & \hline 124 \\ & 135 \\ & 161 \\ & 144.28(3) \\ & \hline \end{aligned}$
34	$\begin{aligned} & \mathrm{C}(1)-\mathrm{H}(1) \cdots \mathrm{O}\left(1^{\prime}\right) \\ & \mathrm{C}(4)-\mathrm{H}(4) \cdots \mathrm{O}\left(2^{\prime}\right) \\ & \mathrm{C}(14)-\mathrm{H}(14) \cdots \mathrm{O}\left(1^{\prime}\right) \\ & \mathrm{C}(8)-\mathrm{H}(8) \cdots \mathrm{Br}\left(1^{\prime}\right) \\ & \mathrm{C}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime}\right) \cdots \mathrm{O}(1) \\ & \mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime}\right) \cdots \mathrm{O}(2) \\ & \mathrm{C}\left(14^{\prime}\right)-\mathrm{H}\left(14^{\prime}\right) \cdots \mathrm{O}(1) \\ & \mathrm{C}\left(8^{\prime}\right)-\mathrm{H}\left(8^{\prime}\right) \cdots \mathrm{Br}(1) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 0.93 \\ 0.93 \\ 0.93 \\ 0.93 \\ 0.93 \\ 0.93 \\ 0.93 \\ 0.93 \end{array}$	$\begin{aligned} & \hline 2.47 \\ & 2.67 \\ & 2.72 \\ & 3.04 \\ & 2.44 \\ & 2.55 \\ & 2.66 \\ & 2.98 \end{aligned}$	$\begin{aligned} & \hline 3.395(3) \\ & 3.478(4) \\ & 3.635(4) \\ & 3.926(3) \\ & 3.351(4) \\ & 3.391(4) \\ & 3.584(4) \\ & 3.908(3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 173 \\ & 146 \\ & 166 \\ & 161 \\ & 167 \\ & 151 \\ & 173 \\ & 172 \end{aligned}$
35	$\begin{aligned} & \mathrm{C}(1)-\mathrm{H}(1) \cdots \mathrm{O}(1) \\ & \mathrm{C}(4)-\mathrm{H}(4) \cdots \mathrm{O}(2) \\ & \mathrm{C}(14)-\mathrm{H}(14) \cdots \mathrm{O}(1) \\ & \mathrm{C}(10)-\mathrm{H}(10) \cdots \mathrm{N}(2) \\ & \mathrm{C}(6)-\mathrm{Br}(1) \cdots \mathrm{O}(2) \end{aligned}$	$\begin{aligned} & \hline 0.89(3) \\ & 0.86(4) \\ & 0.92(3) \\ & 0.93(4) \\ & 1.896(4) \end{aligned}$	$\begin{aligned} & 2.56(3) \\ & 2.70(4) \\ & 2.49(3) \\ & 2.56(4) \\ & 3.169(3) \end{aligned}$	$\begin{aligned} & 3.413(5) \\ & 3.482(5) \\ & 3.404(4) \\ & 3.342(5) \end{aligned}$	$161(3)$ $153(3)$ $177(3)$ $142(3)$ $158.1(4)$
37	$\begin{aligned} & \mathrm{C}(6)-\mathrm{H}(6) \cdots \mathrm{O}(1) \\ & \mathrm{C}(11)-\mathrm{H}(11) \cdots \mathrm{N}(2) \\ & \mathrm{C}(8)-\mathrm{Br}(1) \cdots \mathrm{O}(2) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.93 \\ 0.93 \\ 1.914(4) \\ \hline \end{array}$	$\begin{aligned} & \hline 2.62 \\ & 2.56 \\ & 3.268(4) \end{aligned}$	$\begin{aligned} & 3.321(5) \\ & 3.231(4) \end{aligned}$	$\begin{aligned} & 132 \\ & 130 \\ & 145.2(3) \end{aligned}$
38	$\begin{aligned} & \mathrm{C}(1)-\mathrm{H}(1) \cdots \mathrm{O}(2) \\ & \mathrm{C}(8)-\mathrm{H}(8) \cdots \mathrm{O}(2) \\ & \mathrm{C}(10)-\mathrm{H}(10) \cdots \mathrm{O}(1) \\ & \mathrm{C}(5)-\mathrm{H}(5) \cdots \mathrm{N}(2) \\ & \mathrm{C}(7)-\mathrm{Br}(1) \cdots \mathrm{O}(1) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.93 \\ 0.93 \\ 0.93 \\ 0.93 \\ 1.897(3) \end{array}$	$\begin{aligned} & \hline 2.93 \\ & 2.66 \\ & 2.56 \\ & 2.52 \\ & 3.292(3) \end{aligned}$	$\begin{aligned} & \hline 3.247(3) \\ & 3.556(4) \\ & 3.387(4) \\ & 3.387(4) \end{aligned}$	$\begin{aligned} & 169 \\ & 161 \\ & 148 \\ & 155 \\ & 160.1(3) \end{aligned}$
39	$\begin{aligned} & \mathrm{C}(1)-\mathrm{H}(1) \cdots \mathrm{O}\left(2^{\prime}\right) \\ & \mathrm{C}(10)-\mathrm{H}(10) \cdots \mathrm{O}\left(2^{\prime}\right) \\ & \mathrm{C}(10)-\mathrm{H}(10) \cdots \mathrm{O}\left(1^{\prime}\right) \\ & \mathrm{C}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime}\right) \cdots \mathrm{O}(2) \\ & \mathrm{C}\left(10^{\prime}\right)-\mathrm{H}\left(10^{\prime}\right) \cdots \mathrm{O}(2) \\ & \mathrm{C}\left(10^{\prime}\right)-\mathrm{H}\left(10^{\prime}\right) \cdots \mathrm{O}(1) \\ & \mathrm{C}(4)-\mathrm{H}(4) \cdots \mathrm{N}(3) \\ & \mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime}\right) \cdots \mathrm{N}\left(3^{\prime}\right) \\ & \mathrm{C}\left(13^{\prime}\right)-\mathrm{H}\left(13^{\prime}\right) \cdots \mathrm{Br}\left(1^{\prime}\right) \\ & \hline \end{aligned}$	0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	$\begin{aligned} & 2.36 \\ & 2.60 \\ & 2.80 \\ & 2.31 \\ & 2.71 \\ & 2.80 \\ & 2.65 \\ & 2.60 \\ & 3.10 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.279(5) \\ & 3.523(5) \\ & 3.538(5) \\ & 3.230(5) \\ & 3.620(5) \\ & 3.594(5) \\ & 3.401(5) \\ & 3.334(5) \\ & 3.812(4) \\ & \hline \end{aligned}$	$\begin{aligned} & 171 \\ & 174 \\ & 137 \\ & 168 \\ & 165 \\ & 144 \\ & 139 \\ & 137 \\ & 135 \\ & \hline \end{aligned}$

SPECTROSCOPIC DATA

${ }^{1} \mathrm{H}$ NMR spectra of compound 27

${ }^{13} \mathrm{C}$ NMR spectra of compound 27

${ }^{1} \mathrm{H}$ NMR spectra of compound 28

${ }^{13} \mathrm{C}$ NMR spectra of compound 28

${ }^{1} \mathrm{H}$ NMR spectra of compound 29

${ }^{13} \mathrm{C}$ NMR spectra of compound 29

${ }^{1} \mathrm{H}$ NMR spectra of compound 33

${ }^{13} \mathrm{C}$ NMR spectra of compound 33

${ }^{1} \mathrm{H}$ NMR spectra of compound 34

${ }^{13} \mathrm{C}$ NMR spectra of compound 34

${ }^{1} \mathrm{H}$ NMR spectra of compound 35

${ }^{13} \mathrm{C}$ NMR spectra of compound 35

${ }^{1} \mathrm{H}$ NMR spectra of compound 37

${ }^{13} \mathrm{C}$ NMR spectra of compound 37

${ }^{1} \mathrm{H}$ NMR spectra of compound 38

${ }^{13} \mathrm{C}$ NMR spectra of compound 38

${ }^{1} \mathrm{H}$ NMR spectra of compound 39

${ }^{13} \mathrm{C}$ NMR spectra of compound 39

REFERENCES

REFERENCES

1) Desiraju, G. R. Crystal Engineering: The Design of Organic Solids. Elsevier, Amsterdam, 1989.
2) Corey, E. J. Pure Appl. Chem. 1967, 14, 19.
3) Desiraju, G. R. Angew. Chem. Int. Ed. Engl. 1995, 34, 2311.
4) Cohen, M. D.; Schmidt, G. M. J. Chem. Soc. 1964, 1996.
5) Janiak, C. Angew. Chem. Int. Ed. 1997, 36, 1431.
6) Farrel, R. P. Inorg. Chem. 1995, 34, 757.
7) Beer, P. D. Acc. Che. Res. 1998, 31, 71.
8) Pecaut, J.; Levy, J. P. J. Mater. Chem. 1993, 3, 999.
9) a) Schmidt, G. M. J. Pure Appl. Chem. 1971, 27, 647. b) Lehn, J. - M. Pure Appl. Chem. 1978, 50, 871. c) Lehn, J. - M. Supramolecular Chemistry: Concepts and Perspectives, VCH, Weinheim, 1995. d) Aakeröy, C. B. Acta Crystallogr. B 1997, 53, 569. e) Lehn, J. - M. Proc. Natl. Acad. Sci. USA 2002, 99, 4763. f) Whitesides, G. M.; Boncheva, M. Proc. Natl. Acad. Sci. USA 2002, 99, 4769. g) Desiraju, G. R. Crystal Design: Structure and Function, Wiley: New York, 2003. h) Desiraju, G. R. J. Mol. Struct. 2003, 656, 5. i) Bis, J. A.; Zaworotko, M. J. Cryst. Growth Des. 2005, 5, 1169.
10) a) Kitaigorodsky, A. I. Molecular Crystals and Molecules, Academic Press, New York, London, 1973, chap. 2. b) Dunitz, J. D. X-Ray Analysis and the Structure of Organic Molecules, Cornell University Press. Ithaca, London, 1979, part 2. c) Lehn, J.-M. Angew. Chem. Int. Ed. Engl. 1990, 29, 1304. d) Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, Oxford, 1999. e) Steiner, T. Angew. Chem. Int. Ed. 2002, 41, 48. f) Meyer, E.A.; Castellano, R. K.; Diederich, F. Angew. Chem. Int. Ed. 2003, 42, 1210. g) Dunitz, J. D.; Gavezzootti, A. Angew. Chem. Int. Ed. 2005, 44, 1766.
11) a) Etter, M. C. Acc. Chem. Res. 1990, 23, 120. b) Etter, M. C. J. Phys. Chem. 1991, 95, 4601. c) Bernstein, J. Acta Crystallogr. B 1991, 47, 1004. d) Bernstein, J.; Davis, R. E.; Shimoni, L.; Chang, N. -L. Angew. Chem. Int. Ed. 1995, 34, 1555.
12) a) Desiraju, G. R. Angew. Chem. Int. Ed. 1995, 34, 2311. b) Nangia, A.; Desiraju, G. R. Top. Curr. Chem. 1998, 198, 57.
13) a) Taylor, R.; Kennard, O. J. Am. Chem. Soc. 1982, 104, 5063. b) Aakeröy, C. B.; Seddon, K. R. Chem. Soc. Rev. 1993, 22, 397. c) Desiraju, G. R. Curr. Opin. Solid State Mater. Sci. 1997, 2, 451. d) Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, 1997. e) Hollingsworth, M. D. Science 2002, 295, 2410. f) Prins, L. J.; Hulst, R.; Timmerman, P.; Reinhoudt, D. N. Chem. Eur. J. 2002, 8, 2288.
14) a) Desiraju, G. R. Current Science 2001, 81, 1038. b) Moorthy, J. N.; Natarajan, R.; Mal, P.; Venugopalan, P. J. Am. Chem. Soc. 2002, 124, 6530. c) Adams, H.; Cockroft, S. L.; Guardigli, C.; Hunter, C. A.; Lawson, K. R.; Perkins, J.; Spey, S. E.; Urch, C. J.; Ford, R. Chem. Bio. Chem. 2004, 5, 657. d) Nguyen, H. L.; Horton, P. N.; Hursthouse, M. B.; Legon, A. C.; Bruce, D. W. J. Am. Chem. Soc. 2004, 126, 16. e) Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Acc. Chem. Res. 2005, 38, 386. f) Paulini, R.; Müller, K.; Diederich, F. Angew. Chem. Int. Ed. 2005, 44, 1788. g) Reddy, C. M.; Kirchner, M. T.; Gundakaram, R. C.; Padmanabhan, K. A.; Desiraju, G. R. Chem. Eur. J. 2006, 12, 2222. h) Gonnade, R. G.; Sashidhar, M. S.; Bhadbhade, M. M. J. Ind. Inst. Sci. 2007, 87, 149. i) Politzer, P.; Lane, P.; Concha, M. C.; Ma, Y.; Murray, J. S. J. Mol. Model. 2007, 13, 305.
15) a) Maschiocchi, N.; Bergamo, M.; Sironi, A. Chem. Commun. 1998, 1347. b) Mossakowska, I.; Wojcik, G. Acta. Crystallogr. C 2007, 63, o123. c) Custelcean, R. Chem. Commun. 2008, 295.
16) Navon, O.; Bernstein, J.; Khodorkovsky, V. Angew. Chem. Int. Ed. 1997, 36, 601.
17) Atkins, P. W. Physical Chemistry $5^{\text {th }}$ Ed. Oxford, 1995.
18) Steiner, T. J. Chem. Soc. Chem. Commun. 1997, 727.
19) Desiraju, G. R. Acc. Chem. Res. 1991, 24, 290.
20) Desiraju, G. R. J. Chem. Soc. Chem. Commun. 1997, 1475.
21) Trotter, J. Acta Crystallogr. 1960, 13, 86.
22) Guth, H.; Heger, G.; Druck, U. Z. Kristallog. Kristallg. Kristallp. Kristallch. 1982, 159, 185.
23) Leiserowitz, L. Acta Crystallogr. B 1976, 32, 775.
24) Shimoni, L.; Glusker, J. P. J. Am. Chem. Soc. 1994, 116, 8162.
25) Cerius Molecular Modeling Simulations, Version 2.1.
26) Pedireddi, V. R.; Desiraju, G. R. J. Chem. Soc. Perkin Trans. 2, 1994, 2353.
27) Price, S. L.; Stone, A. J. J. Am. Chem. Soc. 1994, 116, 4910.
28) Williums, D. E.; Hsu, L. - Y. Acta Crystallogr. A 1985, 41, 296.
29) Desiraju, G. R.; Parthasarathy, R. J. Am. Chem. Soc. 1989, 111, 8725.
30) a) Allen, F, H.; Goud, B. S.; Hoy, V. J.; Howard, J. A. K.; Desiraju, G. R. J. Chem. Soc. Chem. Commun. 1994, 2729. b) Thalladi, V. R.; Goud, B. S.; Hoy, V. J.; Allen, F. H.; Howard, J. A. K.; Desiraju, G. R. Chem. Commun. 1996, 401. c) Sarma, J. A. R. P.; Allen, F. H.; Hoy, V. J.; Howard, J. A. K.; Thaimattam, R.; Birandha, K.; Desiraju, G. R. Chem. Commun. 1997, 101. d) Thaimattam, R.; Sharma, C. V. K.; Clearfield, A.; Desiraju, G. R. Cryst. Growth Des. 2001, 1, 103.
31) Allen, F. H.; Lommerse, J. P. M.; Hoy, V. J.; Howard, J. A. K.; Desiraju, G. R. Acta Crystallogr. B 2001, 53, 1006.
32) George, S.; Nangia, A.; Lam, C. - K.; Mak, T. C. W.; Nicoud, J. - F. Chem. Commun. 2004, 1202.
33) a) Garden, S. J.; da Cunha, F. R.; Wardell, J. L.; Skakle, J. M. S.; Low, J. N.; Glidewell, C. Acta Crystallogr. C 2002, 58, o463. b) Garden, S. J.; Fontes, S. P.; Wardell, J. L.; Skakle, J. M. S.; Low, J. N.; Glidewell, C. Acta Crystallogr. B 2002, 58, 701. c) Kelly, C. J.; Skakle, J. M. S.; Wardell, J. L.; Wardell, S. M. S. V.; Low, J. N.; Glidewell, C. Acta Crystallogr. B 2002, 58, 94. d) Glidewell, C.; Low, J. N.; Skakle, J. M. S.; Wardell, S. M. S. V.; Wardell, J. L. Acta. Crystallogr. B 2004, 60, 472. e) Wardell, J. L.; Low, J. N.; Skakle, J. M. S.; Glidewell, C. Acta Crystallogr. B 2006, 62, 931.
34) Glidewell, C.; Low, J. N.; Skakle, J. M. S.; Wardell, S. M. S. V. Wardell, J. L. Acta Crystallogr. B 2005, 61, 227.
35) Reddy, L. S.; Chandran, S. K.; George, S.; Babu, N. J.; Nangia, A. Cryst. Growth Des. 2007, 7, 2675.
36) a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2005. b) Kolb, H. C.; Sharpless, K. B. Drug Discovery Today 2003, 8, 1128. c) Binder, W. H.; Sachsenhofer, R. Macromol. Rapid Commun. 2007, 28, 15. d) Gil, M. V.; Arevalo, M. J.; Lopez, O. Synthesis 2007, 1589. e) Evans, R. A. Aust. J. Chem. 2007, 60, 384. f) Wolfbeis, O. S. Angew. Chem. Int. Ed. 2007, 46, 2980.
37) Hüisgen, R. 1,3-Dipolar Cycloaddition Chemistry (Ed.: A. Padwa), Wiley, New York. 1984.
38) Tornøy, C. W.; Christensen, C.; Mendal, M. J. Org. Chem. 2002, 67, 3057.
39) Rostovtsev, V. V.; Green, L. G., Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 2596.
40) Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem. 2006, 1, 51.
41) Alder, K.; Stein, T.; Finzenhagen, M. Annalen 1931, 485, 211.
42) Hüisgen, R. Proceedings of the Chemical Society, Centinary Lecture, 1961, 357.
43) Saxon, A.; Bertozzi, C. R. Science 2000, 287, 2007.
44) a) Gothelf, K. V.; Jorgensen, K. A. Chem. Rev. 1998, 98, 863. b) Mulzer, J. Org. Synth. Highlights 1991, 77.
45) a) Katritzky, A. R.; Singh, S. K. J. Org. Chem. 2002, 67, 9077. b) Wang, Z. - H.; Qin, H. - L. Chem. Commun. 2003, 2450. c) Harju, K.; Vahermo, M.; Mutikinen, I.; YliKauhaluoma, J. J. Comb. Chem. 2003, 5, 826. d) Molteni, G.; Ponti, A. Chem. Eur. J. 2003, 9, 2770. e) Akritopoulou-Zanze, I.; Gracias, V.; Djuric, S. W. Tettrahedron Lett. 2004, 45, 8439.
46) a) Bastide, J.; Henri-Rousseau, O. Bull. Chim. Soc. Fr. 1973, 2294. b) Stepanova, N. P.; Orlova, N. A.; Galishev, V. A.; Turbanova, E. S.; Petrov, A. A. Zh. Org. Khim. 1985, 21, 979. c) Stepanova, N. P.; Galishev, V. A.; Turbanova, E. S.; Maleev, A. V.; Potekhin, K. A.; Kurtkutova, E. N.; Struchov, Y. T.; Petrov, A. A. Zh. Org. Khim. 1989, 25, 1613. d) Clarke, D.; Mares, R. W.; Mc Nab, H. J. Chem. Soc. Perkin Trans. 1 1997, 1799.
47) a) Feldman, A. K.; Colasson, B.; Fokin, V. V. Org. Lett. 2004, 6, 3897. b) Rodionov, V. O.; Fokin, V. V.; Finn, M. G. Angew. Chem. Int. Ed. 2005, 44, 2210. c) Zhao, Y.B.; Yan, Z.-Y.; Liang, Y.-M. Tetrahedron Lett. 2006, 47, 1545. d) Barral, K.; Moorhouse, A. D.; Moses, J. E. Org. Lett. 2007, 9, 1809. e) Reddy, K. R.; Rajgopal, K.; Kantam, M. L. Synlett 2006, 6, 957.
48) Appukkuttan, P.; Dehaen, W.; Fokin, V. V.; Van der Eycken, E. Org. Lett. 2004, 6, 4223.
49) Lutz, J. - F. Angew. Chem. Int. Ed. 2007, 46, 1018 and references therein.
50) Devic, T.; David, O.; Valls, M.; Marrot, J.; Couty, F.; Ferey, G. J. Am. Chem. Soc. 2007, 129, 12614 and references therein.
51) Velaquez, S.; Alvarez, R.; Perez, C.; Gago, F.; De, C.; Balzarini, J.; Camarasa, M. J. Antiviral Chem. Chemother. 1998, 9, 481.
52) Brockunier, L. L.; Parmee, E. R.; Ok. H. O.; Candelore, M. R.; Cascieri, M. A.; Colwell, L. F.; Deng, L.; Feeeney, W. P.; Forrest, M. J.; Hom, G. J.; MacIntyre, D. E.; Tota, L.; Wyvratt, M. J.; Fisher, M. H.; Weber, A. E. Bioorg. Med. Chem. Lett. 2000, 10, 2111.
53) Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.; Garmon, S. A.; Graber, D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K.; Morris, J.; Reischer, R. J.; Ford, C. W.; Zurenko, G. E.; Hamel, J. C.; Schaadt, R. D.; Stapert, D.; Yagi, B. H. J. Med. Chem. 2000, 43, 953.
54) Dabak, K.; Sezer, O.; Akar, A.; Anac, O. Eur. J. Med. Chem. 2003, 38, 215.
55) For triazole cytokine inhibition, see: Kim, D. K.; Kim. J.; Park, H. - J. Bioorg, Med. Chem. Lett. 2004, 14, 2401. For triazole protozoan protease inhibition, see: Tornøy, C. W.; Sanderson, S. J.; Mottram, J. C.; Coombs, G. H.; Mendal, M. J. Comb. Chem. 2004, 6, 312. For triazole anti-platelet activity, see: Cunha, A. C.; Figueiredo, J. M.; Tributino, J. L. M.; Miranda, A. L. P.; Castro, H. C.; Zingali, R. B.; Fraga, C. A. M.; de Souza, M. C. B. V.; Ferreira, V. F.; Barreiro, E. J. Bioorg. Med. Chem. 2003, 11, 2051.
56) Saha, B.; Sharma, S.; Sawant, D.; Kundu, B. Synlett 2007, 1591.
57) Takayama, T.; Kawano, M.; Uekusa, H.; Ohashi, Y.; Sugawara, T. Helv. Chim. Acta 2003, 86, 1352.
58) CCDC NO. 679557, 679558, 679559, 679561, 679562, 679563, 679565, 679566, 679567 for compounds $27,28,29,33,34,35,37,38,39$ respectively contain the supplementary crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam, ac.uk/data_request/cif.

List of Publications

1. "Total Synthesis and Determination of Relative and Absolute Configuration of Multiplolide A" C. V. Ramana, Tushar. P. Khaladkar, Soumitra Chatterjee and Mukund K. Gurjar, J. Org. Chem. (ASAP article)
2. "Copper Catalyzed Azide-Alkyne Cycloaddition" Approach for Molecular Library Synthesis to Evaluate a Synthon Robustness: A Case Study with Br$\cdots \mathrm{NO}_{2}$ Synthon" C. V. Ramana, Soumitra Chatterjee, Kulbhushan A. Durugkar and Rajesh G. Gonnade, Manuscript communicated for publication.
