SYNTHETIC STUDIES TOWARD SUPERSTOLIDE A, CENTROLOBINE AND SOME RADICAL REARRANGEMENT

BY
RITA PAL

DIVISION OF ORGANIC CHEMISTRY NATIONAL CHEMICAL LABORATORY
PUNE-411008
JUNE 2008

Synthetic Studies Toward Superstolide A, Centrolobine and Some Radical Rearrangement

A THESIS
SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (IN CHEMISTRY)

TO PUNE UNIVERSITY

BY
RITA PAL

DIVISION OF ORGANIC CHEMISTRY NATIONAL CHEMICAL LABORATORY

PUNE-411008
JUNE 2008

DEDICATED

TO $\mathcal{M Y B E L O V E D ~}$

PARENTSS

DECLARATION

The research work embodied in this thesis has been carried out at National Chemical Laboratory, Pune under the supervision of Dr. M. K. Gurjar, Deputy director, and Head, Division of Organic Chemistry: Technology, National Chemical Laboratory, Pune - 411008 . This work is original and has not been submitted part or full, for any degree or diploma of this or any other University.

NATIONAL CHEMICAL
 LABORATORY

Dr. Homi Bhabha Road, PUNE - 411008 (INDIA)

Dr. M. K. Gurjar
Telephone and Fax: + 91-20-25902627
Former Head \& Deputy Director
+91-20-25902629
Division of Organic Chemistry: Technology
E-mail: mk.gurjar@ncl.res.in
Website: http://www.ncl-india.org

CERTIFICATE

The research work presented in thesis entitled "Synthetic Studies Toward Superstolide A, Centrolobine and Some Radical Rearrangement" has been carried out under my supervision and is a bonafide work of Ms. Rita Pal. This work is original and has not been submitted for any other degree or diploma of this or any other University.

Pune-411008
June 2008
(Dr. M. K. Gurjar)
Research Guide

Acknowledgements

In all sincerity I acknowledge the dept of gratitude I owe to my mentor and supervisor Dr. M. K. Gurjar, former Deputy Director and Head of Organic Chemistry Division, National Chemical Laboratory, Pune for his unstinted support and inspiring guidance.

I am also extremely grateful to have benefited from the support, supervision, guidance and patience of Dr. D. K. Mohapatra. I thank Dr. A. Murugan, Dr. C. V. Ramana, Mr. I. Shivkumar, Dr. Hotha for helpful suggestion. I wish to thank Dr. Mrs. S. P. Joshi, Dr. R. A. Joshi, Dr. Mrs. R. R. Joshi, Dr. Mrs. R. D. Wakharkar, Dr. M. N. Deshmukh, and all other scientists of Organic Chemistry Division for their kind help.

I greatfully acknowledge my seniors for all that I have learned with Dr. Arindam, Dr. Sridhar Reddy, Dr. Sankar, Dr. Joseph, Dr. Siddhartha, Dr. Mahesh, Dr. Smirti, Dr. DPS, Dr. Ekambram, Dr. Nagprasad, Dr. Sukhen, Dr. Dhananjoy, Dr. Manjusha, Tushar, Bhagwat, and Dr. Ramdas .

I deeply cherish the moment I shared with my past and present colleagues Hasibur, Bhargav, Sahoo, Kulu, Gorakha, Seetaram, Ramesh, Raghu, Indu, Susheel, Sumantha, Kiran, Nageshar, Anuj, Soumitra, Pradip, Chinmoy, Bhaskar, Abhijit, Srinivas, Sarad, Rosy, Ganesh, Debu, Alam, Rambabu, Ankush and Anand.

I would like to express my sincere gratitude to my present and past friends of NCL
Help from the spectroscopy, mass and analytical group is gratefully acknowledged. I sincerely thank Dr. Rajmohanan, Jogdand and Mrs. Kavita for their helpful discussions and cooperation. My sincere thanks to Mrs. Catherin, Mrs. P. Kulkarni and all other office staffs.

Special thanks to my teachers late Ravindranath Dutta who introduced me with the fascinating field of chemistry.

Mare words are not enough to thanks my parents who stood by me during all days of difficulties. Special mention to my brother Chandan, sister and brother in law, whose support made me achieve the goal.

Finally, I thank the Director, National Chemical Laboratory, Pune for providing infrastructural facilities to complete my work successfully. I am also thankful to CSIR, New Delhi for the financial assistance in the form of fellowship.

ABBREVIATIONS		
Ac	-	Acetyl
AcOH	-	Acetic acid
$\mathrm{Ac}_{2} \mathrm{O}$	-	Acetic anhydride
AIBN	-	Azaisobutyronitrile
BF3:OEt2	-	Boron trifluoride diethyl ether complex
Bn	-	Benzyl
BnBr	-	Benzyl bromide
BzCl	-	Benzoyl chloride
BuLi	-	Butyl Lithium
DBTO	-	Di-tert-butyltin oxide
DBU	-	1,8-Diazabicyclo [5.4.0]undec-7-ene
DCM	-	Dichloromethane
DDQ	-	2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
DET	-	Diethyltartrate
DIAD	-	Diisopropylazodicarboxylate
DIBAL-H	-	Diisobutylaluminiumhydride
DMP	-	2,2-Dimethoxypropane
DMF	-	N, N^{\prime}-Dimethylformamide
DMAP	-	N, N^{\prime}-Dimethylaminopyridine
DMSO	-	Dimethyl sulfoxide
CuCN	-	Copper (I) Cyanide
EtOH	-	Ethanol
Et	-	Ethyl
$\mathrm{Et}_{2} \mathrm{O}$	-	Diethyl ether
EtOAc	-	Ethyl acetate
$\mathrm{Et}_{3} \mathrm{~N}$	-	Triethylamine
IBX	-	Iodoxybenzoic acid
Im	-	Imidazole

LAH	-	Lithium Aluminium Hydride
MeOH	-	Methanol
MsCl	-	Methanesulfonyl chloride
Ms	-	Methanesulfonyl
Me	-	Methyl
MeI	-	Methyl iodide
Ms	-	Mesityl
NaH	-	Sodium hydride
Ph	-	Phenyl
PMB	-	p-Methoxybenzyl
PPTS	-	Pyridinium p-toluenesulfonate
PCC	-	Pyridinium chlorochromate
Pd/C	-	Palladium on Carbon
Py	-	Pyridine
PDC	-	Pyridiniumdichromate
p-TSA	-	para-Toluenesulfonic acid
RCM	-	Ring closing metathesis
TBAF	-	Tetra-n-butylammonium fluoride
TBDMSCl	-	tert-Butyldimethyl chlorosilane
TBDMS	-	tert-Butyldimethyl silyl
TBDPSCl	-	tert-Butyldiphenyl chlorosilane
TBDPS	-	tert-Butyldiphenyl silyl
TBHP	-	tert-Butylhydroperoxide
TBTH	-	Tri-n-butyltin hydride
TEA	-	Triethylamine
THF	-	Tetrahydrofuran
TPP	-	Triphenylphosphine
TsCl	-	p-Toluenesulphonyl chloride

GENERAL REMARKS

* ${ }^{1} \mathrm{H}$ NMR spectra were recorded on AC-200 MHz, MSL-300 MHz, and DRX-500 MHz spectrometer using tetramethylsilane (TMS) as an internal standard. Chemical shifts have been expressed in ppm units downfield from TMS.
粦 ${ }^{13} \mathrm{C}$ NMR spectra were recorded on AC- 50 MHz , MSL- 75 MHz , and DRX- 125 MHz spectrometer
* EI Mass spectra were recorded on Finngan MAT-1020 spectrometer at 70 eV using a direct inlet system.
* Infrared spectra were scanned on Shimadzu IR 470 and Perkin-Elmer 683 or 1310 spectrometers with sodium chloride optics and are measured in cm^{-1}.

摂 Optical rotations were measured with a JASCO DIP 370 digital polarimeter.

* Melting points were recorded on Buchi 535 melting point apparatus and are uncorrected.
* All reactions are monitored by Thin Layer chromatography (TLC) carried out on 0.25 mm E-Merck silica gel plates ($60 \mathrm{~F}-254$) with UV light, I_{2} and anisaldehyde in ethanol as development reagents.
** All solvents and reagents were purified and dried by according to procedures given in Vogel's Text Book of Practical Organic Chemistry. All reactions were carried out under nitrogen or argon atmosphere with dry, freshly distilled solvents under anhydrous conditions unless otherwise specified. Yields refer to chromatographically and spectroscopically homogeneous materials unless otherwise stated.
* All evaporations were carried out under reduced pressure on Buchi rotary evaporator below $40^{\circ} \mathrm{C}$.
* Silica gel (60-120) used for column chromatography was purchased from ACME

Chemical Company, Mumbai, India.

CONTENTS

Page
No.
Abstract 1
Chapter I: Synthetic studies toward (-)-centrolobine
Introduction 12
Present work 30
Experimental 47
References 67
Chapter II: Towards the synthesis of superstolide A
Section I: A chiral pool approach for the synthesis of C21-C26 segment ofsuperstolide A:
Introduction 71
Present Work 88
Experimental 105
Section II: Stereoselective synthesis of C21-C26 fragment of superstolide A
Present Work 138
Experimental 147
References 166
Chapter III: Studies of Some Useful Radical Rearrangement, Extensive Ueno Reaction
Introduction 169
Present Work 179
Experimental 187
References 197
LIST OF PUBLICATIONS 200

ABSTRACT

Research Student	Rita Pal
Research Guide	Dr. Mukund K. Gurjar
Title of Thesis	"Synthetic Studies Toward Superstolide A, Centrolobine and Some Radical Rearrangement"
Registration no	E1/83/Ph.D/2005
Date of registration	$05-05-2004$
Place of work	Division of Organic Chemistry: Technology, National Chemical Laboratory, Pune

Abstract

The thesis entitled "Synthetic Studies Toward Superstolide A, Centrolobine and Some Radical Rearrangement" consists of three chapters and each chapter is further subdivided into following sections: Introduction, Present work, Experimental, Spectroscopic data and References. Chapter 1 describes the synthesis of (-)centrolobine. Chapter 2, section I, deals with synthesis of C21-C26 fragment of superstolide A using chiral pool strategy, whereas section II involves stereoselective synthesis of C21-C26 fragment of superstolide A. The final chapter 3 highlights some radical rearrangements deals with extensive Ueno reaction.

Chapter 1: Synthetic studies toward (-)-centrolobine

$(-)$-Centrolobine $\mathbf{1}$ is a crystalline substance isolated from the heartwood of Centrolobium robustum and from the stem of Brosinum potabile in the Amazon forest. Although the basic structure was elucidated in 1964 by total synthesis of the racemic methyl ether, its absolute configuration has been unequivocally established in 2002.

(-)-Centrolobine 1
Figure 1
(-)-Centrolobine 1, an antibiotic showed strong antilesmanial activity with calculated $\mathrm{LD}_{50}=77 \mathrm{~nm}$. Our synthetic strategy for the construction of the crucial syn-
disubstituted tetrahydropyran ring of (-)-Centrolobine 1 was based on the ring closing metathesis as the key step.

The synthetic strategy towards the total synthesis of (-)-centrolobine $\mathbf{1}$ relies on the enantioselective preparation of the key fragment 6 via a Sharpless asymmetric dihydroxylation and D-mannitol as a chiral pool source for the preparation of other coupling partner.

Synthesis of the olefinic alcohol 6 (Scheme 1) was initiated by the Sharpless asymmetric dihydroxylation of the unsaturated ester $\mathbf{2}$ with (DHQ) $)_{2} \mathrm{PHAL}$ as ligand. Isopropylidenation of the resulting diol $\mathbf{3}$ and subsequent reduction using DIBAL-H provided the alcohol 4. Primary alcohol 4 was converted to its iodo derivative 5. A facile elimination of $\mathbf{5}$ using freshly activated Zn in refluxing ethanol accomplished the corresponding substituted allylic alcohol 6 .

Scheme 1

The synthesis of the other component 11 commenced with 7 , which was synthesized according to the literature procedure from D-mannitol (Scheme 2). Hydrogenation using $10 \% \mathrm{Pd} /$ carbon followed by acid catalyzed deisopropylidenation gave the diol 8. On selective mono tosylation, followed by substitution reaction, diol $\mathbf{8}$ was converted to epoxide 9 . Opening of the epoxide 9 with an excess of lithium acetylide and partial hydrogenation of the resulting acetylene $\mathbf{1 0}$ with Lindlar catalyst achieved the olefinic alcohol $\mathbf{1 1}$. The attempted coupling reactions between fragment $\mathbf{6}$ and $\mathbf{1 1}$ were unsuccessful in our hand. So, we planned an alternative route to construct the pyran ring by coupling alcohol and vinyl epoxide, followed by RCM cyclization in a tandem fashion.

Scheme 2
In the revised route one of the stereogenic centers was established in a reagentcontrolled fashion, whereas the other capitalized on a stereo-controlled asymmetric allylation. For synthesizing fragment 15, we followed Keck allylation on 4tosyloxybenzaldehyde 12. Detosylation followed by selective methylation of phenolic hydroxy group accomplished the fragment 15.

Scheme 3

The other fragment 18 was synthesized starting from cis-2-butene-1,4-diol. Accordingly, the alcohol $\mathbf{1 6}$ was mono protected as its benzyl ether followed by Sharpless asymmetric epoxidation with L-(+)-DET afforded the epoxy alcohol 17.

Scheme 4
IBX oxidation of the primary hydroxyl group to the corresponding aldehyde and Wittig reaction using methyltriphenylphosphonium bromide afforded vinyl substituted epoxide 18.

After having enantiomerically pure homoallylic alcohol $\mathbf{1 5}$ and the vinyl epoxide derivative $\mathbf{1 8}$ in hand, we proceeded further for the Mioskowski's Lewis acid $\left(\mathrm{BF}_{3} \mathrm{OEt}_{2}\right)$ mediated epoxide opening reaction to afford 19. On exposure of $\mathbf{1 9}$ to Grubbs' second generation catalyst furnished the pyran ring 20. Double bond reduction as well as benzyl ether cleavage was accomplished in one pot by exposure of $\mathbf{2 0}$ to Pd / C catalyst under hydrogen atmosphere to afford the diol 21. Compound 21 was then treated with NaIO_{4} impregnated over silica gel in dichloromethane to afford the aldehyde, which on Wittig reaction between the 4-benzyloxybenzyl triphenylphosphonium bromide furnished 22. Reduction of the double bond and cleavage of the benzyl ether by catalytic hydrogenation gave (-)-centrolobine $\mathbf{1}$.

Scheme 5

In summary, a new synthetic approach has been designed for the stereoselective synthesis of (-)-centrolobine $\mathbf{1}$ following Lewis acid mediated epoxide opening followed by ring-closing metathesis reaction for the first time.

CHAPTER 2: Towards the synthesis of superstolide A (23)

Section I: A chiral pool approach for the synthesis of C21-C26 segment of superstolide A (23)

Superstolide A (23) is a member of a structurally unique family of cytotoxic macrolide, isolated by Minale and co-worker from the new Caledonian deep-water sponge Neosiphonia superstes. This structurally novel macrolide shows nM activity against murine and human leukemia, colon, and nasopharyngeal cells.

Superstolide A (23)
Figure 2
Our synthetic strategy commenced with $\mathbf{2 4}$, which was easily obtained from D-(+)-glucose. The diol 24, by a sequence of protection deprotection protocol, converted to the epoxide 25, which on LAH treatment furnished alcohol 26. Hydroxyl group of 26 was transformed to phthalimide derivative 27 following standard Mitsunobu reaction conditions.

Scheme 6

Deprotection of the 1,2-isopropylidene group and concomitant methyl glycosidation of 27 was accomplishd using conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (cat.) to obtain methyl acetal 28. Derivatisation of newly generated hydroxyl group as its tosyl ester furnished 29.

Scheme 7

Cleavage of benzyl ether of $\mathbf{2 9}$ by TiCl_{4} afforded compound 30. Treatment of potassium carbonate in methanol to obtain epoxide 31 resulted in decomposition of starting material.

Having encountered the failure at this stage of our synthetic strategy, we decided to modify our synthetic pathway. We started with the known diol 32, which was easily obtained from D-(+)-glucose. Following the standard synthetic sequence compound $\mathbf{3 3}$ was synthesized from 32. The hydroxyl group of $\mathbf{3 3}$ was converted as its benzyl ether to obtain compound $\mathbf{3 4}$. Cleavage of the 1,2-O-isopropylidene group of compound 34 and concomitant methyl glycosidation was achieved by methanolic HCl . The newly generated hydroxyl group was converted to its tosyl derivative $\mathbf{3 6}$.

Scheme 8

The cleavage of PMB ether by DDQ afforded alcohol, which on potassium carbonate treatment converted to epoxide 37. On treatment of excess MeMgCl , epoxide $\mathbf{3 7}$ was transformed to alcohol 38. The free hydroxyl group was protected as its benzyl ether.

Scheme 9

Hydrolysis of methyl furanoside afforded the lactol, which was oxidized to lactone 39 by PDC. Treatment of excess methyl magnesium chloride on lactone 39 produced the diol 40. The secondary alcohol was selectively protected as its methoxy methyl ether by MOMCl, whereas the tertiary alcohol was eliminated in basic medium to generate the exo-methylene moiety 41.

Scheme 10
Both the benzyl ether was cleaved by Na-Napthaline treatment, and the hydroxyl group at allyl position was selectively protected as benzyl ether (Scheme 10). Regeioselective hydroboration of $\mathbf{4 2}$ was performed with $9-\mathrm{BBN}$ to get the diol 43. The primary hydroxyl group was selectively protected as its PMB ether 44. For the introduction of amine functionality at this stage, we tried for Mitsunobu reaction, however only starting material was recovered. Being unsuccessful in the installation of the amine functionality in a single step, we opted for a stepwise procedure, mesylation followed by substitution. Unfortunately, the product obtained was not the desired azide 45.

Scheme 11

So, we planed to change our protecting groups to overcome the aforesaid failure (Scheme 11). A series of protection deprotection afforded compound 47. Finally, a two-step sequence based on the deprotection of the acetate group, mesylation of the resulting alcohol, and introduction of the azido group with NaN_{3} through an $\mathrm{S}_{\mathrm{N}} 2$ process readily afforded the desired azido polyol 48 without the need for purification of either intermediate.

In conclusion, a segment corresponding to C21-C26 (48) of superstolide A (23) has been successfully synthesized using chiron approach from D-(+)-glucose.

Section II: Stereoselective synthesis of C21-C26 fragment of superstolide A(23)
The synthesis of the targeted segment was initiated with the epoxide $\mathbf{5 0}$, readily obtained from (R)-2,3-O-isopropylidene-D-glyceraldehydes 49. Upon treatment of $\mathbf{5 0}$ with excess of MeMgCl in presence of CuCN at $0{ }^{\circ} \mathrm{C}$, methylation took place at the α position of the hydroxyl group with complete regio and stereo-selectivity to afford the 1,3-diol 51 as the sole product. By some protection deprotection strategy, $\mathbf{5 1}$ was converted to compound 52. The alcohol thus obtained was transformed into the unsaturated ester 53 by IBX oxidation followed by direct Wadsworth-HornerEmmons reaction with exclusive trans isomer. Reduction of the ester with DIBAL-H, afforded the unsaturated alcohol 54.

Scheme 12
The exposure of the ensuing allylic alcohol $\mathbf{5 4}$ to sharpless asymmetric epoxidation afforded the required epoxide 55 . The epoxide 55 by the same reaction condition, that is, regioselective ring opening with MeMgCl provided diol 56. Primary alcohol selectively protected as its PMB ether, whereas the secondary hydroxyl group as benzyl ether to obtain 57 .

Scheme 13
Our next concern was to introduce the amide functionality. After deprotection of isopropylidene group of compound 57, the secondary hydroxyl group was inverted following a standard protocol to afford 58. Mitsunobu reaction was effectively carried out on the alcohol 58 in presence of phthalimide to afford 59. Phthalimide moiety was reduced to amine by hydrazine hydrate and direct protection with acetate provided compound 60. Finally, PMB ether cleavage with DDQ afforded the target fragment 61.

Scheme 14

In conclusion, we have accomplished a stereoselective synthesis of C21-C26 (61) segment of superstolide A (23) in a linear fashion via shorter synthetic sequence starting from 2,3-O-isopropylidene-D-gleceraldehyde 49.

Chapter-3: Studies of Some Useful Radical Rearrangement, Extensive Ueno Reaction

Scheme 15

Stork and Ueno have demonstrated that mixed bromo acetal derived from the allylic alcohols undergo stereoselective radical cyclization to form the transtetrahydrofuran derivative. This cyclization method is particularly useful for $\mathrm{C}-\mathrm{C}$ bond formation at the sterically bulky carbon.

Scheme 16
A novel methodology has been developed in our group for the installation of gem-diallyl functionality by trapping the homoallyl radical generated in situ with allyltri- n-butylstannane.

Ueno reaction is very useful for construction of those rings especially sterically hindered systems. Unfortunately, in Ueno substrates there were no such functional groups for further manipulation to the natural products.

Figure 3
In our laboratory cyclopropyl methyl radical was utilized to generate diallyl compounds, which was very constructive to incorporate allyl group where active methylene group was not present. Based on Ueno reaction and our approach, we intended to utilize and couple these two approaches as a radical mediated domino reaction wherein the rearrangement is triggered by allyltri- n-butylstannane.

These reactions were conducted using azobisisobutyronitrile (AIBN) as initiator in refluxing toluene. In case of bromo acetal derived from primary alcohol, we obtained the expected product, however with bromo acetal derived from secondary alcohol there was no reaction with allyltri- n-butylstannane, only starting material was
recovered. Surprisingly, on treatment of tri- n-butyltin hydride, we obtained the furan derivative as well as cyclopropyl ring opening product with excellent yield.

74

Scheme 17

In conclusion, a useful extension of Ueno reaction has been developed as an alternative for the incorporation of allyl units in systems where active methylene group are not present. Unfortunately, the scope of the reaction with respect to substitution patterns of the stannane is much more restricted, as mentioned above.

CHAPTER1

Synthetic Studies Toward (-)-centrolobine

INTRODUCTION

\longrightarrow

Introduction

The search for biologically active natural products for the development of new drugs has a long tradition ${ }^{1}$. Most of such compounds were isolated from plants, animals, fungi, and microorganisms like bacteria, which exist in great variety on earth. Total synthesis is playing a major role in the drug discovery process since it allows exploration in chemical biology through molecular design and mechanistic study. ${ }^{2}$

2,6-Disubstituted tetrahydropyran scaffolds have gained prominence recently owing to their excellent biological properties. This unit is also present in several natural products with cis stereo connectivity at the 2,6 -positions. Some recent examples which fall into this class, include leucascandrolides 1, phorboxazoles 2, (+)-SCH 351448 (3), dactylolide 4 etc. There are some diarylheptanoid natural products containing a tetrahydropyran ring with 2,6-disubstitution, as for examples, calyxin (8a-12), diospongins (6,7), (-)-centrolobine ${ }^{1} 14,(-)$-de- O-methylcentrolobine 13 and others.

Leucascandrolide A (1) ${ }^{3}$ (Figure 1) was isolated from the sponge Leucascandra caVeolata by Pietra and co-workers in 1996. The natural product displays strong in vitro cytotoxicity against KB and P388 cancer cell lines and is also a potent antifungal inhibiting the growth of Candida albicans.

Figure 1

Phorboxazole A (2) (Figure 2) and its C13 epimer phorboxazole B are remarkable natural products isolated recently from an Indian Ocean sponge Phorbas sp. Bioassays against the National Cancer Institute panel of 60 human solid tumor cell lines revealed extraordinary activity against the entire panel; the mean GI_{50} value was $1.5810^{-9} \mathrm{M}$ for both 1 and 2. Some cell lines were completely inhibited at the lowest level tested.

Particularly noteworthy, phorboxazole A (2) inhibited the human colon tumor cell line HCT-116 and the breast cancer cell line MCF7 with GI_{50} values of $4.3610^{-10} \mathrm{M}$ and 5.62 $10^{-10} \mathrm{M}$, respectively.

Figure 2

SCH $351448(\mathbf{3})^{5}$ is a novel activator of low-density lipoprotein receptor (LDL-R) promoter with an IC_{50} of 25 m , which was discovered from the organic extract of the fermentation groth of a Micromonospora microorganism (Figure 3).

Figure 3

Dactylolide 4 (Figure 4$)^{6}$ is a bicyclic macrolactone that was isolated from the Vanuatu sponge Dactylospongia in 2001 by Riccio and co-workers. While dactylolide is moderately cytotoxic toward L1210 (lymphatic leukemia) and SK-OV-3 (ovarian cancer) cells, causing 63% and 40% growth inhibition, respectively, at $3.2 \mu \mathrm{gmL}^{-1}(8.3 \mu \mathrm{M})$, the
structurally related natural product zampanolide ${ }^{7} 5$ shows significantly greater cytotoxic activity, with IC_{50} values of $1-5 \mathrm{nM}$ against several cell lines.

Figure 4

Diospongin A (6) and $\mathrm{B}(7)^{8}$ (Figure 5) possess six-membered cyclic ether cores with aromatic side chains, isolated from the rhizomes of Dioscorea spongiosa via bioassay-guided fraction. These are exhibited potent inhibitory activity of ${ }^{45} \mathrm{Ca}$ release at $200 \mathrm{M}(30.5 \%)$ and $20 \mathrm{M}(18.2 \%)$, respectively.

(-)-Diospongin B (7)

(-)-Diospongin A (6)

Figure 5

Calyxin $\mathrm{F}(\mathbf{8 b}),{ }^{9}$ calyxin $G(9 a)$ calyxin $\mathrm{K}(\mathbf{1 0 a})$ and calyxin I (11) are novel diarylheptanoids, were isolated from the seed of Alpinia blepharocalyx seeds, which are used for the treatment of stomach disorders in Chinese medicine. Calyxins were showed interesting antiproliferative activity against carcinoma cells especially epicalyxin F is most potent membeb of the calss and possessed potent antiproliferative activity toward HT-1080 fibrosacoma which is stronger than that of 5-fluorouracil, a clinically used drug for the treatment of human tumor and it is also active towards colon 26-L5 carcinoma with ED_{50} values of 1.71 and 0.89 m, respectively (Figure 6).

Calyxin I(11)

Figure 6

There was another calyxin named as belpharocalyxin A (12) ${ }^{10}$ isolated from the same seed Alpinia blepharocalyx, possessing the diarylheptanoied structure (Figure 7).

Belpharocalyxin A (12)

Figure 7

(-)-Centrolobine $\mathbf{1 4}^{11}$ (Figure 8) was isolated from the heartwood of Centrolobium robustum and from the stem of Brosinum potabile. ${ }^{1,2}$ Recently, (-)-centrolobine 14 and related natural products (-)-de- O-methylcentrolobine $\mathbf{1 3}$ have been shown to be active against Leishmania amazonensis promastigotes; a parasite associated with leishmaniasis (Figure 8).

(-)-De-O-methylcentrolobine 13

(-)-Centrolobine 14

Figure 8

What is leishmaniasis?

Leishmaniasis ${ }^{12}$ is a major health problem in Brazil. This is a parasitic disease transmitted by the sand fly and is related to Indian dum dum fever (or Kalaazar). There is an important incidence of Leishmania co-infection in HIV patients, due to the opportunistic character of parasite. There are several different forms of leishmaniasis e.g. Cutaneosu, Mucocutaneous, and Visceral Leismania. The most common forms are cutaneous leishmaniasis, which causes skin sores and visceral leishmaniasis, which affects some of the internal organs of the body (for example, spleen, liver, and bone marrow). Mucocutaneous leishmaniasis begins just like the cutaneous form with dermal
lesions. Visceral leishmaniasis, the most fatal form is also the form of leishmaniasis least likely to be clinically apparent. Visceral Leishmania, or kala-azar, is primarily cause by L. donovani on the Indian subcontinent and in Africa. Once in its human host; the parasite attacks the spungiform organs of the body, especially the liver and spleen, where the initial symptoms include a high fever, meaning that the disease is often mistaken for malaria. If the parasite attacks the skin, similar symptoms to leprosy arise, often leading to the wrong treatment being given to the patient.

What are the signs and symptoms of leishmaniasis?

People who have cutaneous leishmaniasis have one or more sores on their skin. The sores can change in size and appearance over time. They often end up looking somewhat like a volcano, with a raised edge and central crater. Some sores are covered by a scab. The sores can be painless or painful. Some people have swollen glands near the sores (for example, under the arm if the sores are on the arm or hand). People who have visceral leishmaniasis usually have fever, weight loss, and an enlarged spleen and liver (usually the spleen is bigger than the liver). Some patients have swollen glands. Certain blood tests are abnormal. For example, patients usually have low blood counts, including a low red blood cell count (anemia), low white blood cell count, and low platelet count.

In what parts of the world is leishmaniasis found?

Leshmaniasis is found in parts of about 88 countries. Approximately, 350 million people live in these areas. Most of the affected countries are in the tropics and subtropics. The settings in which leishmaniasis is found range from rain forests in Central and South America to deserts in West Asia. More than 90% of the world's cases of visceral leishmaniasis are in India, Bangladesh, Nepal, Sudan, and Brazil. The number of new cases of cutaneous leishmaniasis each year in the world is thought to be about 1.5 million. The number of new cases of visceral leishmaniasis is thought to be about 500,000.

How is leishmaniasis spread?

Leishmaniasis is spread by the bite of some types of phlebotomine sand flies. Sand flies become infected by biting an infected animal (for example, a rodent or dog) or person. Since sand flies do not make noise when they fly, people may not realize they are present. Sand flies are very small and may be hard to see; they are only about one-third
the size of typical mosquitoes. Sand flies usually are most active in twilight, evening, and night-time hours (from dusk to dawn). Sand flies are less active during the hottest time of the day. However, they will bite if they are disturbed such as when a person brushes up against the trunk of a tree where sand flies are resting. Rarely, leishmaniasis is spread from a pregnant woman to her baby. Leishmaniasis also can be spread by blood transfusions or contaminated needles.

People of all ages are at risk for leishmaniasis if they live or travel where leishmaniasis is found. Leishmaniasis usually is more common in rural than urban areas; but it is found in the outskirts of some cities. The risk for leishmaniasis is highest from dusk to dawn because this is when sand flies are the most active. All it takes to get infected is to be bitten by one infected sand fly. Adventure travelers, Peace Corps volunteers, missionaries, ornithologists (people who study birds), other people who do research outdoors at night, and soldiers are examples of people who may have an increased risk for leishmaniasis (especially cutaneous leishmaniasis).

Anti-Leishmania drugs

Co-infection with HIV, now quite common in many of the endemic areas, accounts for new challenges to the effective treatment of leishmaniasis. Immunocompromised patients need to be given a suppressive regimen in order to minimize the chance of recurrence. For the past 80 years, the only available drug for this distressing disease has been the pentavalent antimonials, which have been recently linked to cardiac and renal toxicity and are expensive. Besides, the precise chemical structure and mechanism of action of these drugs are unknown up to date. The second choice for the treatment of the disease is a diamidine (pentamidine isethionate), which also cause serious side effects. One alternative therapy is based on amphotericin B(15) (AmB), ${ }^{13}$ an antifungal polyenic antibiotic that can be nephrotoxic. Liposome formulations of AmB showed fewer side effects, but are unaffordable in the areas of high prevalence. Other compounds [Paramomycin $\mathbf{1 6}^{14}$, Miltefosine $\mathbf{1 8}^{15}$, Azithromycin $\mathbf{1 7}^{16}$, Fluconazole ${ }^{17}$ etc] are being used now but the same problems of toxicity, difficulty in route of administration, and cost are great obstacles in their effective delivery.

Paramomycin 16

Azithromycin 17

Figure 9
It is for this reason that Leon and co-workers conducted a screen of traditional remedies from the Amazon rainforest to find new antileishmanial compounds. Interestingly, (-)-centrolobine $\mathbf{1 4}$ had already been shown to be one of the active ingredients in a herbal tea made from the wood of Centrolobum robustum that is used by the native peoples of the Amazon as a tonic cure for a variety of ailments. Guided fractionation of a chloroform extract of the wood of Centrolobium sclerophyllum led to the isolation of two diarylheptanoids. Samples of those classes of compounds, extracted and characterized from other plant species, had been shown to have some antiinflammatory and anti-bacterial, activity and highly effective against the extracellular form (promastigotes) of L. amazonensis.

Both (-)-centrolobine 14 and de-OMe-(-)-centrolobine 13 showed a good antileishmanial activity ${ }^{18}$ with calculated $\mathrm{LD}_{50}=77 \mathrm{nM}$ and $\mathrm{LD}_{50}=86 \mathrm{~nm}$, respectively. These compounds showed a high activity when compared with glucantime, which is a drug used in clinical practice.

Previous work

Various approaches leading to (-)-centrolobine 14 have been reported. Solladie and co-workers accomplished the first asymmetric total synthesis of (-)-centrolobine $\mathbf{1 4}$ in 2002, which also established the absolute configuration of $\mathbf{1 4}$. Since then, a number of groups have achieved the synthesis of $\mathbf{1 4}$ in both racemic and optically active forms. A variety of approaches starting with optically active building blocks, obtained by wellestablished asymmetric reactions or the chiral pool method, have been devised to provide access to the cis-2,6-disubstituted tetrahydropyran rings. These include the Prins and related cyclizations, reductive etherification, one-pot cross metathesis-hydrogenationlactonization procedure, radical cyclization, nucleophilic addition-stereoselective reduction protocol, intramolecular oxy-Michael reaction, diastereoselective ring rearrangement metathesis-isomerization sequence, FeCl_{3}-mediated cyclization of 1,5diol, and hetero-Diels-Alder reaction.

1. Solladie's approach ${ }^{19}$ (2002):

Solladie et al reported the first enantioselective total synthesis of (-)-centrolobine 14 (Scheme 1). The key reaction was the synthesis of the cis-disubstituted tetrahydropyran framework by intramolecular cyclization of the enantiopure hydroxyketone 22 with $\mathrm{Et}_{3} \mathrm{SiH}$ and TMSOTf. The stereoselective reduction of the β ketosulfoxide 21 was the

Scheme 1: Reagents and conditions: (a) i) LDA, THF, $-78{ }^{\circ} \mathrm{C}$; ii) $\mathrm{K}_{2} \mathrm{CO}_{3}$, rt, acetone; iii) $\mathrm{Me}_{2} \mathrm{SO}_{4}$, reflux, 82%; (b) i) DIBAL-H/ ZnBr_{2}, THF; ii) $\mathrm{HCl} \mathrm{HN}(\mathrm{OMe})_{2}, \mathrm{AlMe}_{3}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 93%; iii) p-(MeO) $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{MgBr}$, ether/THF, reflux, 71%; (c) TMSOTf, $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 81 \%$; (d) i) TFAA, 2,4,6-collidine, MeCN, $0{ }^{\circ} \mathrm{C}, \mathrm{NaHCO}_{3}$; ii) 4benzyloxybenzyltriphenylphosphonium salt, n - $\mathrm{BuLi}, 0^{\circ} \mathrm{C}, 96 \%$; iii) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{Al}_{2} \mathrm{O}_{3}, 50$ bar, rt, 93%.
source of chirality. β-Ketosulfoxide (+)-(R) 21 was prepared by condensation of glutaric anhydride 20 and the carbanion of (+)-(R)-methyl p-tolyl sulfoxide 19. The sulfoxide 23 was converted to aldehyde, followed by Wittig reaction and subsequent hydrogenation provided (-)-centrolobine 14.

2. Rychnovsky's approach ${ }^{20}$ (2002):

The synthesis of (-)-centrolobine $\mathbf{1 4}$ commenced with a Keck enantioselective allylation of aldehyde 24 to give the homoallylic alcohol (Scheme 2), followed by esterification and reductive acetylation led to the (R)-acetoxy ether 25. Cyclization, promoted by SnBr_{4}, generated the all-equatorial tetrahydropyran 26. The tosylate protecting group was replaced with methyl ether by basic hydrolysis and alkylation. The synthesis was completed by radical reduction to cleavage of the bromide and hydrogenation to remove the benzyl ether.

Scheme 2: Reagents and conditions: (a) i) (S)-BINOL, $\mathrm{Ti}\left(\mathrm{O}^{i}{ }^{\mathrm{Pr}}\right)_{4}$, allylSnBu $_{3}, 79 \%, 94 \%$ ee.; ii) DCC, DMAP, 4-(BnO)C $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}, 94 \%$; iii) (1) DIBAL-H, $-78{ }^{\circ} \mathrm{C}$; (2) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, pyridine, 93%; (b) $\mathrm{SnBr}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 84 \%$; (c) i) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$,
reflux; ii) MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, rt, 85%; iii) $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN (cat.), PhCH_{3}, reflux, 86%; iv) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, 72 \%$.

3. Evans's approach ${ }^{21}$ (2003):

The stereoselective intramolecular reductive etherification of δ-trialkylsilyloxy substituted ketones with catalytic bismuth tribromide and triethylsilane was the key step for the synthesis of (-)-centrolobine 14 (Scheme 3). Enantioselective allylation of aldehyde 27 and protection of the resulting secondary alcohol furnished the triethysilyl ether 28. The alkene 28 was then subjected to cross-metathesis by using the Grubbs' $2^{\text {nd }}$ generation catalyst to afford the corresponding α, β-unsaturated ketone. Selective hydrogenation of the alkene with Wilkinson's catalyst furnished the aryl ketone 29. Treatment of the δ-triethylsilyloxy aryl ketone 29 with bismuth tribromide and triethylsilane at room temperature followed by in situ removal of the tertbutyldimethylsilyl group afforded (-)-centrolobine 14.

Scheme 3: Reagents and conditions: (a) i) (R)-BINOL, $\mathrm{Ti}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{4}$, Allyltri- n-butyltin; ii) TESOTf, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2,6$-Lutidine, 77%; (b) i) Grubbs' cat, $\mathrm{ArCOHC}=\mathrm{CH}_{2}$; ii) $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$, $\mathrm{H}_{2}, \mathrm{PhH}, 74 \%$; (c) $10 \mathrm{~mol} \% \mathrm{BiBr}_{3}, \mathrm{Et}_{3} \mathrm{SiH}, \mathrm{MeCN}, \mathrm{rt}, \mathrm{TBAF}, 93 \%$.
4. Boulard's approach ${ }^{22}$ (2004):
L. Boulard et al employed asymmetric allylation on aldehyde derived from compound 30 by PCC oxidation (Scheme 4). The homoallylic alcohol 31 was converted to lactone 32 by one-pot four reactions, cross metathesis (CM), hydrogenation, lactonization and debenzylation. On treatment of 32 with 4-methoxyphenylmagnesium bromide, lactol 33 was obtained. The addition of $\mathrm{Et}_{3} \mathrm{SiH}$ in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ to
the crude lactol 33 offered (-)-centrolobine 14. A one-pot transformation from $\mathbf{3 2}$ to $\mathbf{1 4}$ also achieved by addition of 4-methoxyphenylmagnesium bromide followed by TMSOTf and $\mathrm{Et}_{3} \mathrm{SiH}$.

Scheme 4: Reagents and conditions: (a) $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{DMF}, 50^{\circ} \mathrm{C}, 90 \%$; (b) i) PCC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$, quantitative; ii) (S, S)-I, ether, $-78{ }^{\circ} \mathrm{C}, 61 \%$; (iii) Acrylic acid (4.2 equiv), Grubbs' II ($3.7 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, two days then $\mathrm{Pd} / \mathrm{C}(2.2 \mathrm{~mol} \%), \mathrm{H}_{2}$, four days, 56%; (c) i) 4-methoxyphenylmagnesium bromide (4 equiv) THF, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii) TMSOTf (4 equiv) and $\mathrm{Et}_{3} \mathrm{SiH}$ (4 equiv), $-78{ }^{\circ} \mathrm{C}$ then $\mathrm{rt}, 1 \mathrm{~h}, 23 \%$; (d) 4-methoxyphenylmagnesium bromide (3 equiv) THF, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (e) $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}$ (3equiv) and $\mathrm{Et}_{3} \mathrm{SiH}$ (4 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ then $\mathrm{rt}, 1 \mathrm{~h}, 40 \%$.

5. Clark's approach ${ }^{23}$ (2004):

In the synthesis of centrolobine $\mathbf{1 4}$ (Scheme 5), Clark et al utilized the one pot three-component revisited Maitland-Japp reaction of Chan's diene 34, followed by the addition of anisaldehyde furnished tetrahydropyran-4-ones $\mathbf{3 5}$ and $\mathbf{3 6}$ with an equilibrium ratio of $2: 1$. Decarboxylation of $\mathbf{3 5}$ provided $\mathbf{3 7}$. Finally, reduction of keto afforded (-)centrolobine 14.

Scheme 5: Reagents and conditions: (a) $\mathrm{Yb}(\mathrm{OTf})_{3}, \mathrm{TFA}$, anisaldehyde, 92%; (b) LiOH , $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 100{ }^{\circ} \mathrm{C}, 60 \%$; (c) i) $\left(\mathrm{CH}_{2} \mathrm{SH}\right)_{2}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, 100 \%$; ii) Raney $\mathrm{Ni}, \mathrm{H}_{2}$, $\mathrm{Et}_{2} \mathrm{O}, 100 \%$.

6. Loh's approach ${ }^{24}$ (2005):

In Loh's approach, the synthesis based on an asymmetric allylation of aldehyde 38 using (R)-BINOL indium complex and allyltri- n-butyltin as allylating agent to install one of the chiral center. The formation of 4-Bromo THP ring 40 was accomplished via catalytic Prince cyclization using InBr_{3} in presence of TMSBr . Finally, dehalogenation and catalytic hydrogenation provided (-)-centrolobine 14 (Scheme 6).

Scheme 6: Reagents and conditions: (a) $\mathrm{InCl}_{3},(R)-\mathrm{BINOL}$, allylSnBu H_{3}, molecular sieves $4 \AA, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 24 \mathrm{~h}, 68 \%$; (b) $\mathrm{InBr}_{3}, \mathrm{TMSBr}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 83 \%$;
(c) i) $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{ABCCN}, \mathrm{PhH}$, reflux, $24 \mathrm{~h}, 98 \%$; ii) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH} / \mathrm{EtOAc}, 7 \mathrm{~h}$, 71%.

The same group published one more similar synthetic approach, ${ }^{25}$ where InCl_{3} was used for the Prince cyclisation step, keeping all other synthetic sequence as before (Scheme 7).

Scheme 7: Reagents and conditions: (a) i) $\mathrm{BnBr}, \mathrm{Ag}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 80 \%$; ii) DessMartin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 76 \%$; (b) camphor-derived homoallylic alcohol, CSA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 15{ }^{\circ} \mathrm{C}, 68 \%, 90 \%$ ee; (c) i) $\mathrm{InCl}_{3}, 0{ }^{\circ} \mathrm{C}, 70 \%, 90 \%$ ee; ii) $\mathrm{ABCCN}, \mathrm{Bu}_{3} \mathrm{SnH}$, $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux, 94%; iii) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, 86 \%, \mathrm{MeOH} / E t O A c, 7 \mathrm{~h}$.
7. Chandarshekhar's approach ${ }^{26}$ (2005):

Scheme 8: Reagents and conditions: (a) i) (S)-BINOL, $\mathrm{Ti}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{4}$, allyltributyltin, $4 \AA$ MS, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20{ }^{\circ} \mathrm{C}, 70 \mathrm{~h}, 73 \%$; ii) TBDMSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 87 \%$; iii)
$\mathrm{Mg} / \mathrm{MeOH}, \mathrm{rt}, 3 \mathrm{~h}, 85 \%$; iv) $\mathrm{K}_{2} \mathrm{CO}_{3}$, Mel, acetone, $0{ }^{\circ} \mathrm{C}$ to reflux, $4 \mathrm{~h}, 73 \%$; v) O_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then TPP; vi) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 2 \mathrm{~h}, 84 \%$ (for two steps); vii) $\mathrm{Mg} / \mathrm{MeOH}$, rt, $3 \mathrm{~h}, 81 \%$; viii) LAH, THF, $0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 3 \mathrm{~h}, 76 \%$; ix) IBX, DMSO, rt, 4 h, 80%; (b) $\mathrm{Ba}(\mathrm{OH})_{2} / 8 \mathrm{H}_{2} \mathrm{O}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(4: 1)$, rt, $5 \mathrm{~h}, 81 \%$; (c) HF-Py, THF, $0{ }^{\circ} \mathrm{C}$ to reflux, 4 h, 80\%; (d) Pd/C, H_{2} atm., $\mathrm{HCl}, \mathrm{EtOH} / \mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}(5: 1: 1), 10 \mathrm{~h}, 70 \%$.

Chandarshekhar et al. efficiently utilized the Keck allylation on 21 (Scheme 8), which was processed forward through some functional group manipulations: oxidation, Wittig olefination, reduction of ester as well as double bond, followed by oxidation to obtain aldehyde 42. Wittig-Horner olefination with phosphonate 43 provided the key intermediate 44, which on exposure to HF-pyridine triggered in situ silyl cleavage followed by intramolecular oxy-anion Michael addition to provide substituted pyran 45. Benzyl ether cleavage and keto reduction by hydrogenation provided (-)-centrolobine 14. 8. M. P. Jennings's approach ${ }^{27}$ (2005):

The synthesis was initiated with the asymmetric allylation of aldehyde $\mathbf{3 8}$ to get homoallylic alcohol 31. Esterification of $\mathbf{3 1}$ with acryloyl chloride and subsequent ring closing olefin metathesis with Grubbs’ second-generation catalyst provided lactenone 46. $(\rightarrow$-Centrolobine $\mathbf{1 4}$ had been achieved from lactone $\mathbf{4 7}$ by two steps, Grignard reaction followed by dehydration (Scheme 9).

Scheme 9: Reagents and conditions: (a) allylMgBr (2.0 equiv), $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 1 \mathrm{~h}, 84 \%$; (b) i) acryloyl chloride (5.0 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (10 equiv), DMAP ($5 \% \mathrm{~mol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$, 86%; ii) Grubbs'-II, (5\% mol), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, $5 \mathrm{~h}, 87 \%$; (c) i) Pd / C ($3 \% \mathrm{~mol}$), $\mathrm{EtOH}, \mathrm{rt}$, $40 \mathrm{~h}, 84 \%$; ii) TESCl (12 equiv), imidazole (5 equiv), DMF, rt, 87%; (d) $4-\mathrm{MeOPhMgBr}$ (1.0 equiv) THF, $-78^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$; then $\mathrm{Et}_{3} \mathrm{SiH}$ (10.0 equiv), $\mathrm{CH}_{3} \mathrm{CN},-40^{\circ} \mathrm{C}, 96 \%$.

9. Blechert's approach (2006): ${ }^{28}$

In Blechert's approach, reductive opening of epoxide 48 with LiAlH_{4} (Scheme 10) afforded the alcohol 49. Transition metal catalysed asymmetric allylation on 49 provided compound 51. On exposure of 51 to Grubbs' catalyst, it rearranged into 52. Cross metathesis with styrene derivative followed by hydrogenation completed the synthesis.

Scheme 10: Reagents and conditions: (a) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 98 \%$; (b) n - $\mathrm{BuLi}, \mathrm{CuI}$; then $[\mathrm{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}$-rt, 87%; (c) i) $2 \times 5 \%\left[\mathrm{Ru}\left(\mathrm{IH}_{2} \mathrm{Mes}\right) \mathrm{PCy}_{3}(=\mathrm{CHPh}) \mathrm{Cl}_{2}\right]$, benzene/ethylene, $50{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (ii) 0.4 equiv. $\mathrm{NaBH}_{4}, 55 \%$; (d) 10% ($\mathrm{IH}_{2} \mathrm{Mes}^{2}$) RuCl_{2} $\mathrm{PCy}_{3}\left(\left(O^{\mathrm{i}} \mathrm{Pr}\right) \mathrm{CHPh}\right)$, toluene, rt then $5 \% \mathrm{Pd} / \mathrm{C}(50 \mathrm{wt} \%$ water $), \mathrm{H}_{2}(1 \mathrm{~atm}), 50 \%$.
10. Prasad's approach ${ }^{29}$ (2007):

Scheme 11: Reagents and conditions: (a) $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgBr}$, THF, $0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 96 \%$; (b) i) LSelectride, THF $-78{ }^{\circ} \mathrm{C}, 2.5 \mathrm{~h}, 94 \%$; ii) TBSCl, imidazole, DMAP, DMF, $80{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$, 94%; (c) i) $\mathrm{O}_{3} / \mathrm{O}_{2}, \mathrm{Me}_{2} \mathrm{~S}, \mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}$, 5 h ; ii) $p-\mathrm{OMeC}_{6} \mathrm{H}_{4} \mathrm{MgBr}$,

THF, $0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 90 \%$ for 2 steps; iii) TBAF, THF, rt, $8 \mathrm{~h}, 89 \%$; (d) FeCl_{3}, rt, 30 min , 70%; (e) $\mathrm{Pb}(\mathrm{OAc})_{4}$, benzene, rt, 1.5 h .

Prasad et al. started with bis-Weinreb amide 53 derived from L-(+)-tartaric acid (Scheme 11). With the controlled addition of 4-pentenylmagnesium bromide to the bisWeinreb amide 53 furnished 1,4-diketone 54. Stereoselective reduction of diketo with Lselectride, followed by protection with sillyl group provided diene 55. Ozonolysis followed by Grignard reaction afforded racemic diol, which on desilylation provided compound 56. FeCl_{3} mediated cyclisation provided 57, which on oxidative cleavage converted to aldehyde 58, thus completed the formal synthesis of (-)-centrolobine 14.

11. Hasimoto's approach (2007): ${ }^{30}$

In this synthetic approach hetero-Diels-Alder (HDA) reaction between 4-aryl-2-silyloxy-1,3-butadienes $\mathbf{5 9}$ and phenylpropargyl aldehyde $\mathbf{6 0}$ derivatives played as a key step (Scheme 12).

Scheme 12: Reagents and conditions: (a) $\mathrm{Rh}_{2}\left(R\right.$-BPTPI) ${ }_{4}$ ($1 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2} 87 \%$; (b) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$, EtOAc, 2 h ; (c) i) $\mathrm{TsNHNH}_{2}, \mathrm{MeOH}$, reflux, 2 h ; ii) $\mathrm{NaBH}_{3} \mathrm{CN}$, TsOH, DMF-sulfolane (1:1), $110^{\circ} \mathrm{C}, 1 \mathrm{~h}$; iii) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH , reflux, 3 h . The HAD reaction between $\mathbf{5 9}$ and $\mathbf{6 0}$ occurred in presence of $\mathrm{Rh}_{2}\left(R-\right.$ BPTPI $_{4}$, as a chiral Lewis acid catalyst to provides exclusively cis-2,6-disubstituted tetrahydropyran-4-ones 61. The triple bond was reduced by catalytic hydrogenation. Keto group reduction and some protecting group manipulation provided (-)-centrolobine 14.

12. Furman's approach ${ }^{31}$ (2008):

The stereoselective construction of 2,6-disubstituted dihydropyrans following Lewis acid catalyzed intramolecular reactions of oxocarbenium ions with vinylstannanes was used as the key reaction (Scheme 13). The starting epoxide $\mathbf{6 4}$ was synthesized from the corresponding olefin 63 via Sharpless asymmetric dihydroxylation followed by tosylation of the primary hydroxyl group and NaOH treatment. The ring opening of epoxide 64 with lithium acetylide-ethylenediamine complex and subsequent hydrostannylation afforded alcohol 65. The Prins cyclization of 65 with 4tosyloxybenzaldehyde in presence of TMSOTf yielded dihydropyran 66, which on some synthetic sequence of reactions provided (-)-centrolobine 14.

Scheme-13: Reagents and conditions: (a) (i) AD-mix- $\alpha, t-\mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}, 80 \%, 90 \%$ ee; (ii) TsCl , pyridine, $0^{\circ} \mathrm{C}, 88 \%$; (iii) $\mathrm{NaOH}, \mathrm{Et}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}, 93 \%$; (b) (i) lithium acetylideEDTA, DMSO, $0{ }^{\circ} \mathrm{C}, 83 \%, 87 \%$ ee; (ii) $\mathrm{Bu}_{2} \mathrm{Sn}(\mathrm{OTf}) \mathrm{H}$ then n - $\mathrm{BuLi}, 72 \%$; (c) benzaldehyde, TMSOTf (2.0 equiv), $\mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}, 87 \%$; (d) (i) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOAc}, 78 \%$; (ii) TBSCl, imidazole, 95%; (iii) Mg (10 equiv), $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 50 \%$; (iv) NaH , MeI, THF then $\mathrm{Bu}_{4} \mathrm{NF}$, THF, $0^{\circ} \mathrm{C}, 73 \%$ (over two steps).

PRESENT WORK

Present Work

(-)-Centrolobine, $\quad 6[\beta(p$-hydroxyphenyl)ethyl]-2-(p-methoxyphenyl) tetrahydropyran 14, is a crystalline substance isolated from the heartwood of Centrolobium robustum and from the stem of Brosinum potabile in the amazon forest. Although the basic structure ${ }^{11}$ was elucidated in 1964 by total synthesis of the racemic methyl ether, its absolute configuration has been unequivocally established by Francoise Colobert ${ }^{19}$ et al in 2002. Unique structural feature and potential biological activity received increasing attention from chemist interested in the total synthesis of biologically active natural products.

Scheme 14

Keeping in mind, the biological activity and its structural similarity with the other natural products prompted us to take up the synthesis of (-)-centrolobine 14 . Our own interest in the synthesis of enantiopure bioactive natural products ${ }^{32}$ directed us to explore
the possibility of synthesizing (-)-centrolobine 14. Flexible scheme was devised and is outlined in retrosynthetic plan (Scheme 14).
(-)-Centrolobine $\mathbf{1 4}$ was retrosynthetically disassembled into fragments $\mathbf{7 2}$ and $\mathbf{8 3}$ by means of two key disconnections, namely ring-closing metathesis reaction (RCM) ${ }^{33}$ for the construction of the pyran ring and an etherification reaction for assembling the two alkene fragments. Both fragments contain one stereogenic carbon atom and bear a terminal alkene group, which is required for the key RCM reaction. Fragment $\mathbf{7 2}$ could be obtained from Zn mediated elimination reaction ${ }^{34}$ of halide 71, which in turn could be obtained by asymmetric dihydroxylation ${ }^{35}$ on compound 67 . Olefinic compound 67 could be synthesized from anisaldehyde 39 following two carbon homologation using Wittig reaction. Other fragment 83 could be obtained by opening of epoxide $\mathbf{8 0}$ with vinyl Grignard reagent. The epoxide $\mathbf{8 0}$ could be obtained from D-mannitol by a sequence of standard reactions.

Scheme 15

The journey towards the synthesis of fragment 72 began with commercially available p-anisaldehyde 39, which was subjected to Wadsworth-Horner-Emmons olefination ${ }^{36}$ using triethylphosphonoacetate in presence of sodium hydride in anhydrous tetrahydrofuran at $0{ }^{\circ} \mathrm{C}$ to give 67 with 100% trans-selectivity (by ${ }^{1} \mathrm{H}$ NMR). The next task was to generate the requisite stereocenters, which was accomplished by employing Sharpless asymmetric dihydroxylation protocol. Thus, compound 67 was treated with
ligand $(\mathrm{DHQ})_{2}$ PHAL, $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{MeSONH}_{2}$ and OsO_{4} in t - $\mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}$ (1:1) at $0{ }^{\circ} \mathrm{C}$ to afford the diol 68 . The compound 68 was thoroughly investigated by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and elemental analysis. Enantioselectivity was determined by HPLC using CHIRACEL OD column to be 90%. The diol $\mathbf{6 8}$ was then ketalised under acidic condition (catalytic p-TSA) using 2,2-dimethoxypropane in N, N-dimethylformamide to furnish 69. The structure was assigned by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra.

69 91\%

71

Scheme 16

Reduction of carboxylate group of 69 was performed using lithium aluminium hydride in anhydrous THF to obtain 70. The structure was suggested by the ${ }^{1} \mathrm{H}$ NMR spectrum in which resonance at $\delta 3.81-3.88 \mathrm{ppm}$ as a multiplet due to the $-\mathrm{CH}_{2} \mathrm{OH}$ group and the acetonide methyl peaks at $\delta 1.52$ and 1.58 ppm were observed.

Having in hand the alcohol 70, our next concern was to transform it to the corresponding iodo derivative 71. Thus, 70 was subjected to Corey's ${ }^{37}$ deoxyhalogenation protocol by treating with iodine, TPP, imidazole and pyridine in toluene at $100{ }^{\circ} \mathrm{C}$ to furnish 71 in 87% yield. Fragment 72 was accomplished from compound 71 through zinc mediated facile elimination reaction in refluxing ethanol. In ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 2}$, peaks owing to $-\mathrm{CH}_{2} \mathrm{I}$ and isopropylidene group were absent, whereas Peaks at $\delta 5.0-5.26$ and $5.84-6.01 \mathrm{ppm}$ as two multiplets characteristic of terminal olefinic group were observed. All the other protons were resonated at their expected chemical shift. The ${ }^{13} \mathrm{C}$ NMR spectrum displayed signal at $\delta 114.46,134.86$ ppm corresponding to olefinic carbons.

For the synthesis of fragment 83, we started from D-mannitol 73, which was ketalised as 1,$2 ; 5,6$-di- O-isopropylidene-D-mannitol, followed by oxidative cleavage to provide (R)-2,3-O-isopropylidene-D-glyceraldehyde synthon 75. ${ }^{38}$ The cheap and easy availability, high enantiomeric purity and equivalence to double unit of chiral building block because of C2 symmetry were the strong incentives for our interest to start with Dmannitol 73.

Scheme 17

Thus, aldehyde $\mathbf{7 5}$ was reacted with Wittig salt 75a (which was accomplished from p-methoxybenzyl chloride using TPP in refluxing benzene according to reported procedure ${ }^{39}$) in presence of n-BuLi in THF to obtain the olefinic compound 76 with a 2:3 ratio of cis, trans mixture, which was ascertained by NMR analysis. In ${ }^{1} \mathrm{H}$ NMR spectrum, the olefinic proton signals were observed at $\delta 5.61(\mathrm{dd}, J=11.5,8.9 \mathrm{~Hz}), 5.01$ (dd, $J=15.8,7.8 \mathrm{~Hz}), 6.66(\mathrm{~d}, J=11.5 \mathrm{~Hz})$ and $6.61(\mathrm{~d}, J=15.7 \mathrm{~Hz}) \mathrm{ppm}$. All the other protons were resonated at their respective values confirming the structure of 76. The olefin 76 was hydrogenated with $10 \% \mathrm{Pd} / \mathrm{C}$ in ethyl acetate at 60 psi to obtain the saturated compound 77 with excellent yield. Absence of signals due to olefinic protons in ${ }^{1} \mathrm{H}$ NMR was in accordance with the transformation. Deketalisation was performed by treating 77 with catalytic amount of p-TSA in methanol for 4 h to provide 78. The structure was supported by the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral analysis. The peaks owing to isopropylidene group were disappeared in the ${ }^{1} \mathrm{H}$ NMR spectrum. The structure was further confirmed by mass and elemental analysis. The primary hydroxyl group of $\mathbf{7 8}$ was selectively converted to the sulphonate derivative 79 using tosyl chloride, triethylamine in presence of dibutyltin oxide ${ }^{40}$ at room temperature.

76

Scheme 18

In the ${ }^{1} \mathrm{H}$ NMR spectrum of 79, additional characteristic resonance for the tosyl group were observed as two dublets at $\delta 7.34$ and $7.79(J=8.4 \mathrm{~Hz}) \mathrm{ppm}$, while the aromatic methyl group appeared as a singlet at $\delta 2.44 \mathrm{ppm}$. Rest of the spectral data was in full agreement with the assigned structure. The next step involved the oxirane derivatisation for which compound 79 was treated with potassium carbonate in methanol to furnish the terminal epoxide $\mathbf{8 0}$. While the protons specifying -OTs group were no more, the characteristic signals due to typical epoxide at the region of $\delta 2.51-2.88 \mathrm{ppm}$ were observed in the ${ }^{1} \mathrm{H}$ NMR spectrum. Rest of the protons was observed in their expected position. Other spectral data was in full agreement with the assigned structure.

Scheme 19

The ring opening reaction of the oxirane $\mathbf{8 0}$ with vinyl magnesium bromide was our next job to get the intermediate $\mathbf{8 1}$. Thus, on exposure of compound $\mathbf{8 0}$ to vinyl magnesium bromide in tetrahydrofuran at $-40^{\circ} \mathrm{C}$ led to a mixture of products in which the required product was minor. This was partly attributed to many side reactions particularly opening of the oxirane ring with halide (halohydrin formation).

80

1 h, 86\%

82
$\mathrm{CuI} / \mathrm{CuCN}$
vinyl magnesium
bromide, THF
$-40^{\circ} \mathrm{C}$$\Varangle$ OH

Scheme 20

Based on aforesaid failure, we decided to make $\mathbf{8 1}$ by two step protocol in which $\mathbf{8 0}$ was treated with lithium acetylide-EDTA ${ }^{41}$ complex in DMSO at $4{ }^{\circ} \mathrm{C}$ to afford $\mathbf{8 2}$ in 86% yield. In ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 2}$, a triplet at $\delta 1.95(J=2.6 \mathrm{~Hz})$ was attributed to acetylenic proton. Partial reduction of the triple bond of $\mathbf{8 2}$ was carried out by hydrogenation over Lindlar's catalyst ${ }^{42}$ at normal temperature and pressure for 4.5 h to release the key intermediate $\mathbf{8 1}$ in excellent yield. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 1}$ showed resonance for olefin protons at $\delta 5.00-5.08$ and $5.62-5.83 \mathrm{ppm}$ as sets of multiplets, whereas ${ }^{13} \mathrm{C}$ NMR spectrum indicated olefinic carbons at $\delta 118.05$, and 134.6 ppm .

Scheme 21

With the key intermediate $\mathbf{8 1}$ and $\mathbf{7 2}$ in hand, our next target was to couple both the olefinic partner. Thus, the hydroxyl compounds $\mathbf{8 1}$ and $\mathbf{7 2}$ were treated with $\mathrm{ZnCl}_{2}{ }^{43}$ in 1,2-ethylenedichloride, unfortunately decomposition of starting material was observed within shorter period of addition. Since our initial attempt to couple both the fragment was failed, we opted for other alternatives such as Mitsunobu, ${ }^{44}$ cross metathesis, ${ }^{45}$ which were also unsuccessful in our hands.

Based on the abovesaid failure, an alternative yet simplified approach to reach the target molecule was planned. After getting the experience in aforementioned etherification reaction, we planned to construct the pyran ring before chain elongation. While searching for potential routes for the construction of the pyran ring, which could be conveniently adapted and amplified towards target molecule, it occurred to us that a short access to the required pyran ring system could be devised by coupling alcohol and vinyl epoxide, followed by RCM cyclization in a tandem fashion. The stereogenic center could be generated via Keck asymmetric allylation ${ }^{47}$ and Sharpless asymmetric epoxidation ${ }^{48}$ as depicted in scheme 22.

The retrosynthetic analysis reveals that the key steps in the construction of pyran ring are the $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ mediated coupling of alcohol 94 and vinyl substituted epoxide $\mathbf{8 9}$, followed by ring closing metathesis reaction. Starting materials were identified as anisaldehyde 39 and cis-2-butene-1,4-diol 85. The homoallylic alcohol 94 could be generated by Keck allylation on anisaldehyde 39, whereas epoxide 89 from cis-2-butene-1,4-diol 85 through some functional group manipulations. The double bond reduction as well as deprotection of benzyl ether could be achieved by hydrogenation on 96. For the chain extension, Wittig reaction with p-benzyloxybenzyltriphenylphosphonium bromide 104 on aldehyde 99 could be opted.

Scheme 23: Retrosynthetic analysis of (\rightarrow-centrolobine 14
In the revised strategy, the synthesis started with a readily available cis-2-butene-1,4-diol 85, which was converted to the chiral intermediate, the ($2 S, 3 R$)-epoxy alcohol 87 by a two step protocol already reported in the literature ${ }^{49}$ (Scheme 23). The mono protection of cis-2-butene-1,4-diol $\mathbf{8 5}$ was achieved by treating with benzyl bromide and sodium hydride in N, N-dimethylformamide at $0{ }^{\circ} \mathrm{C}$ with 87% yields. The ${ }^{1} \mathrm{H}$ NMR spectrum showed the appearance of the multiplets at $\delta 7.23-7.36 \mathrm{ppm}$ corresponding to aromatic protons. All the other protons were resonated at their expected chemical shift values.

Scheme 23

INTRODUCTION OF CHIRALITY:

The Sharpless asymmetric epoxidation (SAE) is one of the most useful reaction used in organic synthesis today. When a prochiral Z or E-allyl alcohol is treated with dialkyl tartarate (generally Et or ${ }^{i} \mathrm{Pr}$), titanium(IV) isopropoxide and tert-butylhydroperoxide, produces the corresponding chiral epoxy alcohol.

The salient features of SAE are:

(i) high yield; (ii) very high enantioselectivity; (iii) reagents are cheap, easily available and safe to handle; (iv) the dialkyl tartrate (6.5 mole percent) and titanium(IV) isopropoxide (5.0 mole percent) are used in catalytic amount; (v) the ease and accuracy of the prediction of the streochemical outcome irrespective of the substitution on the allylic alcohol.

Stereoselectivity:

The stereochemical outcome of the asymmetric epoxidation is consistent with (S,S)-$(-)-D E T$ inducing the epoxide formation on the Si face and the $(R, R)-(+)-D E T$ inducing the epoxide formation on the Re face of the substituted allylic alcohol as illustrated in Figure 10.

Figure 10

Accordingly, the Z-allyl alcohol 86 was treated with L-(+)-diethyltartrate, titanium tetraisopropoxide and tert-butylhydroperoxide in presence of $4 \AA$ molecular sieves in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20{ }^{\circ} \mathrm{C}$ to give the $(2 S, 3 R)$-epoxy alcohol 87 (Scheme 23) in 84% yield. The ${ }^{1} \mathrm{H}$ NMR spectrum of 87 showed the epoxy protons as two multiplets at $\delta 3.14-3.29(1 \mathrm{H})$ ppm and $3.63-3.70(1 \mathrm{H}) \mathrm{ppm}$. All the other protons were resonated at their expected chemical shifts. Enantioselectivity was determined by HPLC using R.R. Whelk-01 column to be 85%.

Scheme 24

Consequently, $\mathbf{8 7}$ was oxidized to the corresponding aldehyde $\mathbf{8 8}$ by IBX, followed by one carbon Wittig extension with methyltriphenylphosphonium bomide and NaHMDS ${ }^{50}$ in tetrahydrofuran to provide 89 in 86% overall yield in two steps. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 9}$, the olefinic proton signals appeared as two multiplets at δ 5.22$5.44(2 \mathrm{H})$ and $5.51-5.68(1 \mathrm{H}) \mathrm{ppm}$.

Scheme 25

For the synthesis of other coupling partner, we performed the Keck allylation on anisaldehyde 39 in presence of $S-(-)-\mathrm{BINOL}$, titanium(IV) isopropoxide and allyltri- n butylstannane, unfortunately the reaction failed in our hand (Scheme 25). Other asymmetric allylating agents like tin catalyzed allylation in presence of allyl bromide provided very poor ennantioselectivity. When we gone through literature, ${ }^{51}$ it was learnt that aromatic aldehyde containing para substitution with an electron withdrawing group (such as nitro, tosyl) undergoes the Keck allylation with excellent stereoselectivity.

Scheme 26

Accordingly, phenolic hydroxyl group of $\mathbf{9 0}$ was converted to its tosyl derivative by treating with p-tolunesulphonyl chloride, triethylamine in dichloromethane. The spectral data was in full agreement with the desired compound. Aldehyde 91 was treated with S -(-)-BINOL, titanium(IV) isopropoxide and allyltri-n-butylstannane at $-78^{\circ} \mathrm{C}$ and stirred for 3 days at $-20{ }^{\circ} \mathrm{C}$ to obtain homoallylic alcohol 92. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the olefinic protons appeared at $\delta 5.03-5.12(\mathrm{~m}, 2 \mathrm{H})$ and $5.59-5.80(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$. All the other protons resonated at their expected value confirming the structure of compound $\mathbf{9 2}$.

Scheme 27
Since, we required p-methyl ether substitution at the aromatic ring, some protection deprotection strategy was needed. Thus, the tosyl group was deprotected by treatment of compound 92 with magnesium in methanol at room temperature. In ${ }^{1} \mathrm{H}$ NMR spectrum of 93, the disappearance of the singlet at $\delta 2.39 \mathrm{ppm}$ and aromatic protons corresponding to the tosyl moiety were noted, and all other protons resonated at their expected chemical shift. Selective methylation of phenolic hydroxyl group of $\mathbf{9 3}$ was performed by treating with methyl iodide in presence of potassium carbonate in acetone at room temperature. In ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{9 4}$, singlet at $\delta 3.71 \mathrm{ppm}$ showed the presence of phenolic -OMe group. Other spectral data was in accordance with the structure. The
rotation value of this compound was $\left\{[\alpha]_{\mathrm{D}}{ }^{25}-56\right.$ (c 1.0, benzene) $\}$, which was agreeable with reported value $\left\{[\alpha]_{D}{ }^{25}-66\right.$ (c 1.0, benzene) $\} .{ }^{52}$

The homoallyl alcohol 94 and the vinyl substituted epoxide 89, precursors to the pyran skeleton were then ready to be coupled and further elaborated toward the target molecule.

Scheme 28

The two segments were engaged by standard epoxide ring opening condition using $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ as catalyst in dichloromethane at room temperature to obtain diene 95 with 67% yield. In ${ }^{1} \mathrm{H}$ NMR spectrum, the protons appeared as multiplets at $\delta 4.88-5.25(4 \mathrm{H})$ and 5.40-5.76 $(2 \mathrm{H}) \mathrm{ppm}$ indicated the presence of two olefins. Other spectral data was in accordance with the structure.

Ring Closing Metathesis: a brief view

Olefin metathesis is a unique carbon skeleton redistribution in which unsaturated $C-C$ bonds are rearranged in the presence of metal carbine complexes. This can be utilized in three closely related type of reactions such as ring-opening metathesis polymerization (ROMP), ring-closing metathesis ($R C M$) and acyclic cross metathesis (CM). Ring closing metathesis, in which two un-substituted (or substituted) olefins undergo ring closure with formal loss of ethylene, is one of the most popular methods of present time. It has received a great deal of attention in recent years for the synthesis of medium or large size ring systems from acyclic diene precursors. The reasons being:

1) Well designed, stable and highly active catalysts.
2) Very high turnover number was observed in the catalytic process.
3) Its efficiency in medium to macro-ring cyclization.
4) Its superiority over other cyclization method like macrocyclisation, Diels-Alder etc., because of favourable thermodynamic profile.
5) Adaptable for both solution and solid phase reactions.
6) Water solubility enabling the metathesis in water and methanol.
7) Design of recyclable and polymer bound catalysts.
8) Applicability to broad scope of substrates like ene -yne and yne-yne metathesis, in addition to tri and tetra-substituted systems.
9) Combinatorial RCM libraries.
10) Eco-friendly profile, including viability in solvents like super critical CO_{2}.
11) Compatible with various functional groups.

Although a number of titanium and tungsten catalyst have been developed for metathesis and related reaction the Schrock's catalyst (107), Grubbs' $1^{\text {st }}$ (108) and $2^{\text {nd }}$ generation catalysts (109) have greatly attracted the attention of synthetic chemists because of their high reactivity and commercial availability. This reaction has changed the strategy of synthetic chemist and it is very common to find $R C M$ as key transformation in the recent total synthesis of natural products.

Schrock's catalyst 107

Grubbs' 1st generation
catalyst
108

Grubbs' 2nd generation catalyst

109

Figure 11

The two alkenyl side arms in 95 were in well position for effecting the RCM reaction. On exposure of $\mathbf{9 5}$ to Grubbs' second generation catalyst 109 in toluene heating at $70{ }^{\circ} \mathrm{C}$ for overnight furnished the pyran ring. In ${ }^{1} \mathrm{H}$ NMR spectra of compound 96 , mutiplets at $\delta 5.74-5.80(1 \mathrm{H})$ and $5.94-6.04(1 \mathrm{H}) \mathrm{ppm}$ corresponding to olefinic protons were present, whereas terminal olefinic protons were disappeared.

Scheme 29

Compound 96 on treatment with $10 \% \mathrm{Pd} / \mathrm{C}$ under hydrogen atmosphere in ethyl acetate converted to ring opening product 97 . Finally, hydrogenation of the double bond as well as benzyl ether deprotection of $\mathbf{9 6}$ was accomplished with $10 \% \mathrm{Pd} / \mathrm{C}$ in a solvent system $\mathrm{EtOH}: \mathrm{EtOAc}: \mathrm{H}_{2} \mathrm{O}$ (5:1:1) in presence of conc. HCl (catalytic) to obtain diol 98. Disappearance of olefinic as well as aromatic proton due to benzene ring was observed in accordance with the assigned structure.

Scheme 30
Aldehyde 99 was obtained by oxidative cleavage of diol 98 with NaIO_{4} impregnated silica [prepared by mixing 2.58 g sodium meta periodate with 10 g silica gel (200-400 mesh) in 5 mL water] in dichloromethane at room temperature. The crude aldehyde 99 was immediately used for the next reaction without further purification. Compound 99 was then subjected to a Wittig olefination enroute to (-)-Centrolobine 14. The required 4-benzyloxybenzyltriphenylphosphonium bromide ${ }^{19} \mathbf{1 0 4}$ (Wittig salt) was synthesized from the commercially available 4-hydroxybenzaldehyde $\mathbf{9 0}$ by a reported procedure (Scheme 31).

Scheme 31

The Wittig olefination between the salt 104 and the aldehyde 99 was carried out in the presence of n-BuLi in THF at $0{ }^{\circ} \mathrm{C}$ to generate the olefin $\mathbf{1 0 0}$ as cis:trans (3:7) (by ${ }^{1} \mathrm{H}$ NMR) mixture. All the other spectral data were in good agreement with the reported ${ }^{19}$ one. Though this constitute a formal synthesis of (- -centrolobine, we were interested to complete its synthesis and compare the data with the natural product.

Scheme 32

Simultaneous reduction of double bond and deprotection of benzyl ether of $\mathbf{1 0 0}$ by catalytic hydrogenation [in the same solvent system as mentioned for the transformation from 96 to 98] afforded (-)-centrolobine 14 in 89% yield. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and IR spectra were in good agreement with the natural product. The rotation value of this compound $\left\{[\alpha]_{\mathrm{D}}{ }^{25}-91\left(c 1.2, \mathrm{CHCl}_{3}\right)\right\}$, which was agreeable with reported value $\left\{\left([\alpha]_{\mathrm{D}}-93(c 1.0\right.\right.$, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$. The peak at 344.4 for $[\mathrm{M}+\mathrm{Na}]^{+}$in the ESI MS spectrum was an additional support.

Scheme 33
Table 1: Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of $\mathbf{1 4}$ with reported one ${ }^{30}$

${ }^{1}$ H NMR (200 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) compound 14	$\begin{gathered} { }^{1} \mathrm{H} \text { NMR }(400 \\ \left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \\ \text { reported } \end{gathered}$	${ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\begin{array}{c}100 \mathrm{MHz}, \mathrm{CDCl} \\ 3\end{array}\right.$) compound 14	$\begin{gathered} { }^{13} \mathrm{C} \mathrm{NMR} \\ \left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \\ \text { reported } \end{gathered}$
$1.42-1.58$ $(\mathrm{~m}$, $4 \mathrm{H})$, $1.61-1.69$ $(\mathrm{~m}$, $2 \mathrm{H})$, $1.78-1.89$ $(\mathrm{~m}$, $2 \mathrm{H})$, $2.54-2.69$ $(\mathrm{~m}$, $2 \mathrm{H})$, $3.34-3.39$ $(\mathrm{~m}, 1 \mathrm{H})$	$1.25-137$ $(\mathrm{~m}$, $1 \mathrm{H}), 1.45-1.55$ $(\mathrm{~m}$, $1 \mathrm{H})$, $1.61-1.66(\mathrm{~m}$, $2 \mathrm{H})$, $1.67-1.76(\mathrm{~m}$, $1 \mathrm{H})$, $1.80-1.95(\mathrm{~m}$, $3 \mathrm{H})$, $2.61-2.76(\mathrm{~m}$, $2 \mathrm{H})$, $3.41-3.46(\mathrm{~m}$, $1 \mathrm{H})$	24.04	23.9
3.73 (s, 3H)	3.80 (s, 3H)	30.74	30.6
$\begin{aligned} & 4.22(\mathrm{dd}, J=1.9,11.1 \\ & \mathrm{Hz}, 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & \hline 4.29(\mathrm{dd}, J=2.1, \\ & 9.0 \mathrm{~Hz}, 1 \mathrm{H}) \\ & \hline \end{aligned}$	31.25	31.1
$\begin{aligned} & 6.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, \\ & 2 \mathrm{H}) \end{aligned}$	6.71-6.75 (m, 2H)	33.31	33.1
$\begin{aligned} & 6.81(\mathrm{~d}, J=8.6 \mathrm{~Hz}, \\ & 2 \mathrm{H}) \end{aligned}$	6.86-6.90 (m, 2H)	38.28	38.1
$\begin{aligned} & 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, \\ & 2 \mathrm{H}) \end{aligned}$	7.03-7.07 (m, 2H)	55.27	55.1
$\begin{aligned} & 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, \\ & 2 \mathrm{H}) \end{aligned}$	7.29-7.33 (m, 2H)	76.12	76.9
		79.05	78.9
		113.6	113.4
		115.07	114.8

In conclusion, a convergent stereoselective total synthesis of (-)-centrolobine 14 has been achieved. For the construction of pyran ring, Mioskowski's protocol of Lewis acid catalyzed regiospecific opening of vinyl epoxide by alcohol, followed by RCM reaction was adapted. This general strategy for synthesizing the pyran skeleton should allow the preparation of structurally related targets.

EXPERIMENTAL

Experimental

(2R,3S)-ethyl 2,3-dihydroxy-3-(4-methoxyphenyl)propanoate (68):

A mixture of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(24.0 \mathrm{~g}, 72.8 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(10.0 \mathrm{~g}, 72.8 \mathrm{mmol})$, methane sulphonamide ($2.3 \mathrm{~g}, 24.17 \mathrm{mmol}$), (DHQ) ${ }_{2} \mathrm{PHAL}\left(170 \mathrm{mg}, 0.22 \mathrm{mmol}\right.$) in ${ }^{t} \mathrm{BuOH}$ (200 mL) and water (100 mL) was stirred vigorously for 30 min . To this reaction mixture, was added OsO_{4} solution (0.1 M solution in toluene, 1.0 ml) and stirred for additional 30 min before the addition of olefin $67(5 \mathrm{~g}, 24.27 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred for 12 h . Excess OsO_{4} was quenched with $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution. ${ }^{t} \mathrm{BuOH}$ was evaporated, residue was extracted with ethyl acetate, dried organic fraction over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated. The residue was purified on silica gel column with petroleum ether: ethyl acetate (1:1) to afford 68 (15.7 g) as a white solid (Melting point: 88.0-91.2 ${ }^{\circ} \mathrm{C}$).
Yield : 98\%

Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}} \mathrm{cm}^{-1}$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.22-4.32$
(m, 3H), $4.93(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}$
$2 \mathrm{H}) 7.34(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z)} \quad: \delta 13.96,55.08,61.76,74.25,74.94,113.62,127.60$, 132.05, 159.05, 172.69 ppm .

Elemental Analysis
Calcd: C, 59.99; H, 6.71.
Found: C, 59.84; H, 6.59.
(4R,5R)-ethyl 5-(4-methoxyphenyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (69):

A solution of $\mathbf{6 8}(5.3 \mathrm{~g}, 22.08 \mathrm{mmol})$, 2,2-dimethoxypropane ($4.0 \mathrm{~mL}, 33.12 \mathrm{mmol}$) and p-TSA (catalytic) in DMF (50 mL) was stirred at room temperature for 3 h , neutralized with $\mathrm{Et}_{3} \mathrm{~N}$ and concentrated. The residue partitioned between EtOAc and water. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and the residue purified on silica gel using EtOAc:light petroleum ether (1:4) to obtain 69 (4.15 g).

Yield
: 67\%
Mol. Formula
: $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5}$
Optical Rotation $[\alpha]_{D}{ }^{25}$
: - 23.0 (c 1.22, CHCl_{3})
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}^{-1}} \quad: 2989,2937,1754,1615,1515,1464,1381,1301$, 1215, 1193, 1098, 1033, 896, 830, 756.
${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 4.19-4.31(\mathrm{~m}, 3 \mathrm{H}), 5.09(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 14.06,25.68,25.89,55.05,61.16,80.50,81.21$, $111.13,113.83,127.78,129.44,159.69,170.12 \mathrm{ppm}$.

Elemental Analysis
Calcd: C, 64.27; H, 7.19.
Found: C, 64.10; H, 7.09.
((4S,5R)-5-(4-methoxyphenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol (70):

A suspension of LAH ($977 \mathrm{mg}, 25.7 \mathrm{mmol}$), $69(3.6 \mathrm{~g}, 12.85 \mathrm{mmol})$ in THF (50 mL) was stirred at room temperature for 12 h . The excess LAH was quenched with ice pieces and saturated solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered and the residue thoroughly washed with EtOAc. The filtrate was concentrated and purified on silica gel using EtOAc:light petroleum ether (1:3) to afford $70(2.9 \mathrm{~g})$ as thick oil.

Yield

Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR ($\mathbf{C H C l}_{\mathbf{3}}$) cm^{-1}
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis
: 91\%

$$
: \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5}
$$

$$
:+32.6\left(c 1.35, \mathrm{CHCl}_{3}\right)
$$

: 3436, 2986, 2934, 1614, 1515, 1461, 1371, 1245, 1171, 1059, 1033, 828, 771.
$: \delta 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{bs}, 1 \mathrm{H}), 3.60(\mathrm{dt}, J$ $=4.4 \mathrm{~Hz}, 13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}) 4.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.32 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$) ppm. : $\delta 26.95,27.09,55.05,60.19,78.33,83.50,108.86$, 113.89, 127.79, 129.37, 159.53.

Calcd: C, 65.53; H, 7.61.
Found: C, 65.44; H, 7.49.
(4R,5R)-4-(iodomethyl)-5-(4-methoxyphenyl)-2,2-dimethyl-1,3-dioxolane (71):

A mixture of compound $70(0.5 \mathrm{~g}, 2.02 \mathrm{mmol}), \mathrm{Ph}_{3} \mathrm{P}(1.08 \mathrm{~g}, 4.04 \mathrm{mmol})$, iodine $(1.04 \mathrm{~g}, 4.04 \mathrm{mmol})$ and imidazole $(413 \mathrm{mg}, 6.07 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ were heated
at $100{ }^{\circ} \mathrm{C}$ for 4 h and cooled to $0^{\circ} \mathrm{C}$. The reaction mixture was diluted with diethyl ether and saturated aq. NaHCO_{3} solution was added and the organic layer separated, washed with water, aq. sodium thiosulphate, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was purified by silica gel column chromatography with light petroleum: EtOAc (97:3) as an eluent to afford 71 (630 mg).

Yield : 87\%
Mol. Formula $: \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{I}$
Optical Rotation $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad:-27.1\left(c\right.$ 1.6, $\left.\mathrm{CHCl}_{3}\right)$
IR $\left(\mathbf{C H C l}_{3}\right) \mathrm{cm}^{-1} \quad: 2986,2933,2836,1614,1515,1372,1248$, 1171, 1105, 1047, 830, 758.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 200 \mathbf{~ M H z}\right) \quad: \delta 1.56(\mathrm{~s}, 6 \mathrm{H}), 3.20(\mathrm{dd}, J=4.9 \mathrm{~Hz}, 11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.36(\mathrm{dd}, J=3.8,11.0 \mathrm{~Hz}, 1 \mathrm{H}) 3.52-3.60(\mathrm{~m}, 1 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}) 4.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7$, 2 H), 7.30 (d, $J=8.7,2 \mathrm{H}$) ppm.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 4.52,27.33,55.19,81.16,82.98,109.15,114.06$, 127.97, 128.77, 159.84 ppm .

Elemental Analysis
Calcd: C, 44.84; H, 4.92.
Found: C, 44.75; H, 4.86.
(R)-1-(4-methoxyphenyl)prop-2-en-1-ol (72):

A mixture of $71(630 \mathrm{mg}, 1.76 \mathrm{mmol}), \mathrm{Zn}(231 \mathrm{mg}, 3.53 \mathrm{mmol})$ was refluxed in ethanol (10 mL) under nitrogen for 1.5 h . The zinc was filtered off, filtrate concentrated, and the residue purified by silica gel column chromatography by using light petroleum: EtOAc (7:3) to obtain 72 (250 mg).

Yield : 86\%

Mol. Formula
: $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$
Optical Rotation $[\alpha]_{D}{ }^{25}$
$:+7.0\left(c 1.15, \mathrm{CHCl}_{3}\right)$

IR ($\mathbf{C H C l}_{\mathbf{3}} \mathrm{cm}^{-1}$	$\begin{aligned} & : 3400,2932,2836,1611,1586,1511,1464, \\ & 1248,1174,1034,830,758 . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$: ס. $3.70(\mathrm{~s}, 3 \mathrm{H}), 5.0-5.26(\mathrm{~m}, 3 \mathrm{H}), 5.84-6.01(\mathrm{~m}, 1 \mathrm{H})$, 6.77 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 55.05,74.57,113.73,114.46,127.58,134.86 \\ & 140.42,158.95 \mathrm{ppm} . \end{aligned}$
Elemental Analysis	Calcd: C, 73.15; H, 7.37.
	Found: C, 73.04; H, 7.29.
(S,E)-4-(4-methoxystyryl)-2,2-dimethyl-1,3-diooxolane (76):	

To a stirred solution of p-methoxybenzyltriphenylphosphonium chloride 75a (64.38 $\mathrm{g}, 153.84 \mathrm{mmol}$) in THF under nitrogen atm. was added n-butyllithium ($72.1 \mathrm{~mL}, 115.38$ mmole). After stirring for 2 h , aldehyde 75 ($10.0 \mathrm{~g}, 76.92 \mathrm{mmol}$) was added and the reaction mixture stirred for an additional 4 h . The reaction was quenched with saturated ammonium chloride and then diluted with ether. The combined organic layers were washed with brine, dried $\left(\mathrm{NaSO}_{4}\right)$, concentrated and the residue was subjected to column chromatography using EtOAc:light petroleum (1: 10) to obtain 76 (10.68 g).

Yield
Mol. Formula
Optical Rotation $\left[\alpha_{\mathbf{d}} \mathbf{D}^{\mathbf{2 5}} \quad:-37.4\left(c 3.05, \mathrm{CHCl}_{3}\right)\right.$
IR ($\mathbf{C H C l}_{\mathbf{3}}$) cm^{-1}
: 2985, 2935, 2836, 1607, 1511, 1370, 1252, 1210, 1190, 1177, 1059, 1034, 843, 756.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 1.41(\mathrm{~s}, 2.39 \mathrm{H}), 1.43(\mathrm{~s}, 0.61 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 3.67$ (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 0.64 \mathrm{H}), 3.83(\mathrm{~s}, 2.26 \mathrm{H})$, $4.15(\mathrm{dt}, J=6.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.71(\mathrm{~m}, 0.21 \mathrm{H})$, 4.86-4.98 (m, 0.79H), 5.61 (dd, $J=11.5 \mathrm{~Hz}, 8.86 \mathrm{~Hz}$, $0.8 \mathrm{H}), 6.01(\mathrm{dd}, J=15.8,7.8 \mathrm{~Hz}, 0.2 \mathrm{H}), 6.57-6.74(\mathrm{~m}$,

	$1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.8 \mathrm{~Hz}$,
	$1.65 \mathrm{H}), 7.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 0.37 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 ~ M H z}\right)$	$: \delta 25.90,25.94,26.75,26.86,55.10,69.50,69.69$,
	$72.45,77.44,109.19,113.65,113.89,124.24,127.49$,
	$127.79,128.67,128.92,129.96,133.06,133.60$,
	$159.01,159.45 \mathrm{ppm}$.
Elemental Analysis	Calcd: C, 71.77; H, 7.74.
	Found: C,71.61; H,7.69.

(S)-4-(4-methoxyphenethyl)-2,2-dimethyl-1,3-dioxolane (77):

A solution of 76 ($10.68 \mathrm{~g}, 45.64 \mathrm{mmol}$) in EtOAc (5 mL) was hydrogenated in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(400 \mathrm{mg})$ at rt . After 1 h , the reaction mixture was filtered through a pad of celite, concentrated and the residue purified on silica gel using EtOAc:light petroleum ether (1:10) to afford $77(10.6 \mathrm{~g})$ as colorless syrup.

Yield	: 98\%
Mol. Formula	: $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}$
Optical Rotation [$\alpha]_{\text {D }}{ }^{25}$	$:+5.1\left(c 1.95, \mathrm{CHCl}_{3}\right)$
$\mathbf{I R}\left(\mathbf{C H C l}_{\mathbf{3}} \mathrm{cm}^{-1}\right.$	$\begin{aligned} & : 2986,2935,1513,1369,1244,1209 \text {, } \\ & 1189,1059,756 . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$: $\delta 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.72-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.52-$ $2.83(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, 3.97-4.15 (m, 2H), 6.83 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) 7.11$ (d, J $=8.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$: $\delta 25.70,26.96,31.06,35.51,55.05,69.26,75.23$, 108.58, 113.74, 129.16, 133.43, 157.80 ppm .
Elemental Analysis	Calcd: C, 71.16; H, 8.53.
	Found: C, 71.00; H, 8.44.

(S)-4-(4-methoxyphenyl)butane-1,2-diol (78):

A solution of $77(10.6 \mathrm{~g}, 44.91 \mathrm{mmol})$ and p-TSA ($20 \mathrm{mg}, 0.08 \mathrm{mmol}$) in MeOH $(60 \mathrm{~mL})$ was stirred for 2 h . The reaction mixture was neutralized with $\mathrm{Et}_{3} \mathrm{~N}$, concentrated and the residue purified on silica gel using EtOAc:light petroleum ether (7:3) as an eluent to obtain $78(4.1 \mathrm{~g})$.

Yield	: 70\%
Mol. Formula	: $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}$
Optical Rotation [$\alpha]_{\text {D }}{ }^{25}$: $-12.90\left(c 3.1, \mathrm{CHCl}_{3}\right)$
IR ($\mathbf{C H C l}_{\mathbf{3}} \mathrm{cm}^{-1}$: 3401, 2931, 2849 1609, 1514, 1446, 1253, 1177, 1087, 1026, 872, 814, 773.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$: $\delta 1.64-1.75(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.82(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{bs}$, $2 \mathrm{H}), 3.42$ (dd, $J=7.7,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.72$ (m, $2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) 7.10(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$: \delta 30.83,34.78,55.07,66.62,71.47,113.74,129.20$ 133.66, 157.71 ppm .
Elemental Analysis	Calcd: C, 67.32; H, 8.22
	Found: C, 67.10; H, 8.04.

(S)-2-hydroxy-4-(4-methoxyphenyl)but 4-methoxybenzenesulfonate (79):

To a solution of $78(2.5 \mathrm{~g}, 12.24 \mathrm{mmol}), \mathrm{Bu}_{2} \mathrm{SnO}(60 \mathrm{mg}, 0.24 \mathrm{mmol})$ and $p-\mathrm{TsCl}$ ($2.5 \mathrm{~g}, 13.11 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(1.8 \mathrm{~mL}, 12.91 \mathrm{mmol})$ was added slowly at room temperature. After stirring for 20 min , reaction mixture was filtered through a plug
of Celite, concentrated and the residue purified on silica gel using EtOAc:light petroleum ether (1:4) to give $79(4.30 \mathrm{~g})$.

Yield	: 80\%
Mol. Formula	: $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~S}$
Optical Rotation [$\alpha]_{\text {D }}{ }^{25}$	$:+2.6\left(c 2.3, \mathrm{CHCl}_{3}\right)$
IR ($\mathbf{C H C l}_{\mathbf{3}} \mathrm{cm}^{-1}$	$\begin{aligned} & : 3401,2931,1611,1513,1359,1246,1189, \\ & 1175,1096,1035,815,771 . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 1.64-1.76(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.76(\mathrm{~m}, 2 \mathrm{H}), \\ & 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.70-4.03(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{~d}, J=8.7 \mathrm{~Hz}, \\ & 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) \\ & 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} . \end{aligned}$
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 21.47,30.24,34.24,55.05,68.29,73.80,113.66, \\ & 127.76, \quad 129.15, \quad 129.81, \quad 132.29,133.04, \quad 144.93, \\ & 157.65 \mathrm{ppm} . \end{aligned}$
Elemental Analysis	Calcd: C, 61.69; H, 6.33. Found: C, 61.56; H, 6.21.

(S)-2-(4-methoxyphenethyl)oxirane (80):

Compound $79(4.3 \mathrm{~g}, 16.7 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(50 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.6$ $\mathrm{g}, 33.4 \mathrm{mmol}$) was added. The mixture was stirred at room temperature for 1 h and concentrated. The residue was dissolved in water and extracted with ethyl acetate, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Purification on silica gel using light petroleum: EtOAc (4:1) as an eluent afforded pure epoxide $\mathbf{8 0}(1.9 \mathrm{~g})$.

Yield
: 65\%

Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR $\left(\mathbf{C H C l}_{\mathbf{3}}\right) \mathrm{cm}^{-1}$
: $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$
: -11.8 (c 0.85, CHCl_{3})
: 3018, 2934, 1612, 1513, 1409, 1247, 1217, 1178, 1037, 830, 769.

(S)-1-(4-methoxyphenyl)hex-5-yn-3-ol (82):

To a solution of $\mathbf{8 0}(1.732 \mathrm{~g}, 9.71 \mathrm{mmol})$ in DMSO (20 mL) at $4{ }^{\circ} \mathrm{C}$ was added lithium acetylide-EDA complex ($1.344 \mathrm{~g}, 14.6 \mathrm{mmol}$) in one portion. The reaction mixture was stirred at $4{ }^{\circ} \mathrm{C}$ for 1 h . The excess of reagent was quenched with saturated aq. ammonium chloride and extracted with diethyl ether, washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated. The residue was purified by silica gel column chromatography by eluting with light petroleum ether: EtOAc (7:3) to afford $82(1.42 \mathrm{~g})$.

Yield
Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR $\left(\mathbf{C H C l}_{3}\right) \mathrm{cm}^{-1} \quad: 3429,3294,2934,2836,2118,1611,1583,1455$,
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 1.67-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.09$
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 27.43,30.89,37.94,55.08,68.92,70.97,80.72$,

Elemental Analysis
$1464,1300,1246,1177,1060,1035,827,757,353$. (bs, 1H), 2.28 (dt, $J=2.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.62(\mathrm{~m}$, $3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.72(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.64$ $\mathrm{Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.64 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$. 113.77, 129.23, 133.55, 157.72 ppm
: 86\%
: $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$
: - $14.3\left(c 0.7, \mathrm{CHCl}_{3}\right)$ Calcd: C, 76.44; H, 7.90

Found: C, 76.23; H, 7.80.

(S)-1-(4-methoxyphenyl)hex-5-en-3-ol (81):

Compound 82 ($230 \mathrm{mg}, 1.13 \mathrm{mmol}$), Lindlar catalyst (20 mg) and quinoline (5 mg) in benzene (10 mL) were stirred under hydrogen atmosphere at rt for 3.5 h . The catalyst was filtered, concentrated and the residue extracted with ethyl acetate, it was washed with 1 N HCl , water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and purified by silica gel column chromatography eluting with light petroleum: EtOAc (8:2) to give 81 (0.93 g).

Yield
Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$ IR ($\mathbf{C H C l}_{\mathbf{3}}$) cm^{-1}
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 1.60-1.71(\mathrm{~m}, 2 \mathrm{H}), 2.01-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.74$ $(\mathrm{m}, 2 \mathrm{H}), 3.50-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 5.00-5.08$ (m, 2H), 5.62-5.83 (m, 1H), 6.73 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.03 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis
: 91\%
: $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$
: -9.1 (c 1.92, CHCl_{3})
: 3412, 2930, 1612, 1512, 1441, 1246, 1177, 1037, 758. : $\delta 30.97,38.53,41.94,55.09,69.79,113.66,118.05$, 129.20, 133.98, 134.60, 157.58 ppm .

Calcd: C, 75.69; H, 8.80

Found: C, 75.55; H, 8.65.
((2S,3R)-3-(benzyloxymethyl)oxiran-2-yl)methanol (87):

To a solution of L-(+)-DET ($1.3 \mathrm{~mL}, 6.45 \mathrm{mmol}$) and $4 \AA$ molecular sieves powder $(10 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(280 \mathrm{~mL})$ was added titanium(IV) isopropoxide $(1.3 \mathrm{~mL}, 4.61 \mathrm{mmol})$ at
$-20^{\circ} \mathrm{C}$. After 30 minutes, a solution of allylic alcohol 86 ($8.2 \mathrm{~g}, 46.06 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$ was introduced and stirred for 45 min . Then reaction mixture was charged with TBHP (5M solution in toluene, $27.6 \mathrm{~mL}, 138.20 \mathrm{mmol}$) slowly over period of 15 min at the same. After 24 h , the reaction was quenched with 10% aq. tartaric acid and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Combined organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and the residue purified on silica gel using EtOAc:light petroleum ether (1:5) as an eluent to obtain 87.

Yield
 : 84 \%

Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
: $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$

IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}^{-1}}$
$-22.4\left(c 1.5, \mathrm{CHCl}_{3}\right)$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 200 \mathbf{~ M H z}\right) \quad: \delta 2.60(\mathrm{bs}, 1 \mathrm{H}), 3.14-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.70(\mathrm{~m}$,
$4 \mathrm{H}), 4.49(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=11.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.24-7.37(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 54.74,55.69,60.54,67.99,73.35,127.79,127.89$, 128.45, 137.38 ppm .

Elemental Analysis
Calcd: C, 68.02; H, 7.27.
Found: C, 67.84; H, 7.29.

(2R,3S)-2-(benzyloxymethyl)-3-vinyloxirane (89):

To a solution of IBX ($6.5 \mathrm{~g}, 23.19 \mathrm{mmol}$) in DMSO $(14 \mathrm{~mL})$ at room temperature, was added pyridine (5 mL) followed by epoxy alcohol $87(3.0 \mathrm{~g}, 15.46 \mathrm{mmol})$ in dry THF (10 mL). After 4 h of stirring water $\left(\mathrm{H}_{2} \mathrm{O}\right)(30 \mathrm{~mL})$ was added, and diluted with ether (100 mL) and stirred it for additional 30 min . The solid was filtered off and from the filtrate organic layer was isolated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to give aldehyde 88 (2.9 g , crude product) the crude aldehyde was used immediately for the next reaction.

To a suspension of salt $(16.56 \mathrm{~g}, 46.39 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added NaHMDS ($31 \mathrm{~mL}, 1 \mathrm{M}$ solution in toluene) dropwise. After 1 h stirring at the same temperature, the crude aldehyde $\mathbf{8 8}$ in THF was added slowly. After 2 h reaction was
quenched with saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with ether. The organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. Purification was done by silica gel (60-120 mesh) column chromatography to afford vinyl epoxide $\mathbf{8 9}$ as yellow colour liquid.

Yield $: 86 \%$ over two steps.
Mol. Formula
Optical Rotation $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{25} \quad:-1.95\left(c 1.65, \mathrm{CHCl}_{3}\right)$
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}} \mathrm{cm}^{-1} \quad: 3030,2989,2920,2860,1639,1496,1453,1387$, 1148, 1096, 1028, 929, 739.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 200 \mathbf{~ M H z}\right) \quad: \delta 3.24(\mathrm{dt}, J=4.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=6.7,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.45-3.62(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.53 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.22-5.44 (m, 2H), 5.51$5.68(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.27(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 56.02,56.69,67.80,73.18,120.76,127.73,128.38$, 131.85, 137.78 ppm

ESI MS (m/z)
: $213[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis
Calcd: C, 75.76; H, 7.42.
Found: C, 75.59; H, 7.35.

(S)-4-(1-hydroxybut-3-enyl)phenyl 4-methoxybenzenesulfonate (92):

A mixture of $(S)-(-)$-BINOL ($52 \mathrm{mg}, 0.18 \mathrm{mmol}$), 1 M titanium tetraisopropoxide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.05 \mathrm{~mL}, 0.18 \mathrm{mmol})$, and oven-dried powdered $4 \AA$ sieves (700 mg) in $\mathrm{CH}_{2} \mathrm{C1}_{2}(4 \mathrm{~mL})$ was heated at reflux for 1 h . The red-brown mixture was cooled to room temperature and benzaldehyde 91 ($500 \mathrm{mg}, 1.81 \mathrm{mmol}$) was added. After being stirred for 10 min , the contents were cooled to $-78^{\circ} \mathrm{C}$, and allyltri-n-butylstannane ($0.6 \mathrm{~mL}, 1.99$ mmol) was added. The reaction was stirred for 10 min and then placed in a $-20{ }^{\circ} \mathrm{C}$ freezer for 70 h . Saturated $\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL})$ was added, and the contents were stirred for 1 h and then poured over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a plug of Celite. The crude
material was purified by flash chromatography, eluting with hexanes/acetone (17:3) to give 92 as colourless oil (403 mg).

Yield	: 70\%
Mol. Formula	: $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}$
Optical Rotation [$\alpha]_{\text {D }}{ }^{25}$: -6.1 (c 0.95, CHCl_{3})
IR ($\mathbf{C H C l}_{\mathbf{3}} \mathrm{cm}^{-1}$: 3546, 3074, 2980, 2927, 1640, 1598, 1501, 1373, 1215, 1197, 1175, 1154, 1093, 867.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.47(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{dd}, J=5.3, \\ & 7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-5.12(\mathrm{~m}, 2 \mathrm{H}), 5.59-5.80(\mathrm{~m}, 1 \mathrm{H}), \\ & 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.63(\mathrm{~d}, J \\ & =8.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} . \end{aligned}$
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 21.74,43.98,72.38,119.00, \\ & 128.53,122.30, \\ & 126.71,132.40,133.92, \\ & 148.76 \text { ppm. } \end{aligned}$
Elemental Analysis	Calcd: C, 64.13; H, 5.70.
	Found: C, 64.34; H, 5.79.

(S)-4-(1-hydroxybut-3-enyl)phenol (93):

A mixture of Mg turnings ($264 \mathrm{mg}, 11.0 \mathrm{mmol}$) and distilled $\mathrm{MeOH}(25 \mathrm{~mL}$) was stirred at room temperature for 5 min under argon, before the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of $\mathbf{9 2}(700 \mathrm{mg}, 2.2 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added. The resulting mixture was warmed to room temperature and vigorously stirred for 30 min . The reaction was quenched by saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with saturated NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to provide $93(75 \mathrm{mg})$ as a yellow colour liquid.

Yield
Mol. Formula
: 94%
: $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$

IR ($\mathbf{C H C l}_{\mathbf{3}} \mathrm{cm}^{-1}$: 3451, 3077, 3025, 2909, 1641, 1614 1599, 1515 1448, 1372, 1238, 1172, 1046, 834.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 2.42(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 5.02-5.12(\mathrm{~m}, 2 \mathrm{H}), 5.60-5.81(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.5 \\ & \mathrm{Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} . \end{aligned}$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\text { : } \delta 43.16,73.47,115.40,118.27,127.40,134.29$ 134.96, 155.29 ppm
ESI MS (m/z)	: $187.2[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis	Calcd: C, 73.15; H, 7.37
	Found: C, 73.55; H, 7.20.

(S)-1-(4-methoxyphenyl)but-3-en-1-ol (94):

A 25 mL flask was charged with the phenol $93(460 \mathrm{mg}, 2.8 \mathrm{mmol})$, acetone (15 $\mathrm{mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(774 \mathrm{mg}, 5.61 \mathrm{mmol})$ and MeI $(0.2 \mathrm{~mL}, 3.36 \mathrm{mmol})$ and stirred for 12 h . The reaction was judged complete by TLC analysis, whereupon the reaction mixture was filtered (removal of $\mathrm{K}_{2} \mathrm{CO}_{3}$) and concentrated in vacuo. The resulting crude oil was purified by flash chromatography on silica gel eluting with (1:19 EtOAc/hexanes) to afford 440 mg of $\mathbf{9 4}$.

$$
\text { Yield } \quad: 88 \%
$$

Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR ($\mathbf{C H C l}_{\mathbf{3}}$) cm^{-1}
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 1.91(\mathrm{bs}, 1 \mathrm{H}), 2.40(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, $4.58(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-5.11(\mathrm{~m}, 2 \mathrm{H}), 5.60-5.80$ $(\mathrm{m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 2H) ppm.

${ }^{13} \mathbf{C ~ N M R ~}\left(\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right)$	$: \delta 43.64,55.08,72.91,113.63,118.00,126.99$,
	$134.59,136.04,158.86 \mathrm{ppm}$
ESI MS (\boldsymbol{m} / z)	$: 201.2[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis	Calcd: $\mathrm{C}, 74.13 ; \mathrm{H}, 7.92$
	Found: $\mathrm{C}, 74.00 ; \mathrm{H}, 7.87$.

(2S,3R)-1-(benzyloxy)-3-((S)-1-(4-methoxyphenyl)but-3-enyloxy)pent-4-en-2-ol (95):

To a mixture of epoxide $\mathbf{8 9}$ (250 mg 1.31 mmol) and alcohol $94(350 \mathrm{mg}, 1.97$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise a 19% solution of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.4 \mathrm{~mL}$, $0.065 \mathrm{mmol})$ in freshly dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. After 45 minutes of stirring at room temperature, the solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with a saturated aqueous sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$ solution, followed by brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification by flash column chromatography (Petroleum Ether/Ethyl Acetate: 9/1) afforded diene 95.

Yield

Mol. Formula
Optical Rotation $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad:+3.8\left(c \quad 2.6, \mathrm{CHCl}_{3}\right)$
$\mathbf{I R}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \mathrm{cm}^{-1} \quad: 3436,3009,2906,2862,1639,1611,1512,1496$, 1454, 1302, 1247, 1175, 1035, 923, 832, 755, 698
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 2.24-2.58(\mathrm{~m}, 2 \mathrm{H}), 3.30-3.65(\mathrm{~m}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, 3.84-3.96 (m, 1H), 4.24-4.48 (m, 3H), 4.88-5.25 (m, $4 \mathrm{H}), 5.40-5.76(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.80(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.25$ (m, 7H) ppm.
${ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 43.67,55.08,70.79,72.87,73.21,77.39,77.64$, 113.64, 116.80, 118.03, 126.99, 127.58, 128.19, $133.04,134.58,134.75,135.08,159.08 \mathrm{ppm}$.

ESI MS (m/z) : $391.48[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis
Calcd: C, 74.97; H, 7.66
Found: C, 74.79; H, 7.49.
(S)-2-(benzyloxy)-1-((2R,6S)-6-(4-methoxyphenyl)-5,6-dihydro-2H-pyran-2yl)ethanol (96).

A mixture of compound $95(0.31 \mathrm{~g}, 0.84 \mathrm{mmol})$ and Grubbs' II catalyst $(0.021 \mathrm{~g}$, $0.025 \mathrm{mmol})$ in degassed toluene $(60 \mathrm{~mL})$ was heated at $70{ }^{\circ} \mathrm{C}$ for 12 h . The reaction mixture evaporated and then purified on silica gel by eluting with light petroleum: EtOAc (19:1) to afford $96(0.21 \mathrm{~g})$.

Yield	: 73 \%
Mol. Formula	: $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4}$
Optical Rotation [$\alpha]_{\text {D }}{ }^{25}$: +4.3 (c 1.4, CHCl_{3})
IR ($\mathbf{C H C l}_{\mathbf{3}} \mathrm{cm}^{\mathbf{- 1}}$	$\begin{aligned} & : 3401,2922,2851,1612,1514,1454,1385,1303, \\ & 1247,1174,1085,829,770 . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 2.19-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{bs}, 1 \mathrm{H}), 3.53-3.72(\mathrm{~m}, \\ & 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.90(\mathrm{~m}, 1 \mathrm{H}), 4.48-4.61(\mathrm{~m}, \\ & 4 \mathrm{H}), 5.74-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.94-6.04(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J \\ & =8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.33(\mathrm{~m}, 7 \mathrm{H}) \mathrm{ppm} . \end{aligned}$
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 32.90,55.16,70.86,72.32,73.35,75.16,75.73, \\ & 113.67,126.75,126.83,127.04,127.67,128.35, \\ & 134.47,138.08,158.97 \mathrm{ppm} \end{aligned}$
ESI MS (m/z)	: $363.42\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right.$
Elemental Analysis	Calcd: C, 74.09; H, 7.11.
	Found: C, 73.97; H, 7.00.

(S)-1-((2R,6S)-6-(4-methoxyphenyl)tetrahydro-2H-pyran-2-yl)ethane-1,2-diol (98).

A solution of $96(0.34 \mathrm{~g}, 1.0 \mathrm{mmol})$ in $\mathrm{EtOH}: E t O A c: w a t e r ~(25: 5: 5)$ was hydrogenated in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(20 \mathrm{mg})$ under acidic condition (conc. HCl$)$ at rt . After 1 h , the reaction mixture was filtered through a pad of Celite, concentrated and the residue purified on silica gel using EtOAc:light petroleum ether (1:4) to afford $\mathbf{9 8}$ $(0.19 \mathrm{~g})$ as a liquid.
Yield : 75 \%

Mol. Formula $: \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}$
Optical Rotation $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad:+4.8\left(c \quad 1.25, \mathrm{CHCl}_{3}\right)$
IR $\left(\mathbf{C H C l}_{\mathbf{3}}\right) \mathrm{cm}^{-1} \quad: 3392,2932,1613,1514,1384,1246,1175,1035$, 830, 771
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 1.43-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H})$, $1.70-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.93(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{bs}, 2 \mathrm{H})$, $3.52-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{dd}, J=4.5,11.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.67 (dd, $J=11.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.73 (s, 3H), 4.28 (dd, $J=11.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.18$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 23.34,26.80,33.23,55.22,63.61,74.16,79.06$, $79.70,113.64,127.12,134.94,158.93 \mathrm{ppm}$.

ESI MS ($\boldsymbol{m} / \boldsymbol{z}$)
: $275[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis
Calcd: C, 66.65; H, 7.99
Found: C, 66.54; H, 7.80.
(2R,6S)-2-(4-(benzyloxy)styryl)-6-(4-methoxyphenyl)tetrahydro-2H-pyran (100):

Compound 98 ($0.08 \mathrm{~g}, 0.32 \mathrm{mmol}$) in dichloromethane (5 mL) was stirred with sodium meta periodate impregnated silica gel $(0.64 \mathrm{~g}, 2.0 \mathrm{~g} / \mathrm{mmol})$ for 0.5 h . Silica was separated by filtration, organic layer concentrated under vacuum and crude aldehyde 99 was used for the next reaction.

To a stirred solution of $104(0.41 \mathrm{~g}, 0.95 \mathrm{mmol})$ of p-benzyoxybenzyltriphenyl phosphonium chloride in THF (5 mL) under nitrogen was added $(0.63 \mathrm{~mL}$, of 1.6 M solution in hexane) of n-butyllithium. After stirring for 0.5 h , crude aldehyde 99 was added with THF (3 mL) and the reaction mixture stirred for an additional 1 h . The reaction mixture was quenched with saturated ammonium chloride, diluted with ether. Organic layer washed with water and brine and dried over sodium sulphate. Reaction mixture concentrated and crude product purified by column chromatography, eluting by ethyl acetate:light petroleum ether (3:97) offered product $\mathbf{1 0 0}(0.07 \mathrm{~g})$

Yield
Mol. Formula

Optical Rotation $[\alpha]_{D}{ }^{25}$

IR ($\mathbf{C H C l}_{\mathbf{3}} \mathbf{~ c m}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right): \delta 1.51-2.24(\mathrm{~m}, 6 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 4.03-4.13(\mathrm{~m}$, $0.27 \mathrm{H}), 4.27-4.35(\mathrm{~m}, 1.63 \mathrm{H}), 4.97(\mathrm{~s}, 0.55 \mathrm{H}), 4.99(\mathrm{~s}$, $1.42 \mathrm{H}), 5.58(\mathrm{dd}, J=8.7,11.6 \mathrm{~Hz}, 0.68 \mathrm{H}), 6.06(\mathrm{dd}, J=$ $5.9,16.0 \mathrm{~Hz}, 0.27 \mathrm{H}), 6.41(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 0.8 \mathrm{H}), 6.63$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 0.17 \mathrm{H}), 6.76-7.37(\mathrm{~m}, 13 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 23.90,24.09,31.55,31.77,32.90,33.43,55.18$, 69.94, 74.86, 78.79, 78.95, 79.57, 113.63, 114.54, 114.81, 127.24, 127.28, 127.41, 127.61, 127.90, 127.95, 128.53, 128.57, 128.95, 129.23, 129.90, 130.13, 130.81, $131.54,135.43,135.55,136.95,157.98,158.26,158.85$ ppm.
: $423.5[\mathrm{M}+\mathrm{Na}]^{+}$
Calcd: C; 80.97, H; 7.05.
Found: C; 80.78, H; 6.89.

4-(2-((2R,6S)-6-(4-methoxyphenyl)tetrahydro-2H-pyran-2-yl)ethyl)phenol (14).

Compound $\mathbf{1 0 0}$ was hydrogenated by the same procedure used for the transformation of $\mathbf{9 6}$ to 98 . Product purified by column chromatography eluting at ethyl acetate: light petroleum ether (1:10) to obtain $(-)$-centrolobine $\mathbf{1 4}$.

Yield
Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}} \mathrm{cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, 200 \mathbf{~ M H z}\right) \quad: \delta 1.42-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.89$
$(\mathrm{m}, 2 \mathrm{H}), 2.54-2.69(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.73$
(s, 3H), $4.22(\mathrm{dd}, J=1.9,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=$
$8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.4$
$\mathrm{Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 24.04,30.74,31.25,33.31,38.28,55.27,77.12$, $79.05,113.6,115.07,127.06,129.56,134.70,135.90$, 153.46, 158.71 ppm .
: $344.4[\mathrm{M}+\mathrm{Na}]^{+}$
ESI MS (m/z)
Calcd: C; 76.89, H; 7.74.
Found: C; 76.66, H; 7.67.
(R)-4-(3-hydroxy-7-(4-methoxyphenyl)heptyl)phenol (106).

Yield : 97\%
Mol. Formula : $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{3}$
Optical Rotation $[\alpha]_{D}{ }^{25}$: +3.75 (c 1.6, chloroform)
IR $\left(\mathbf{C H C l}_{\mathbf{3}}\right) \mathrm{cm}^{-1}$: 3369, 2931, 2856, 1612, 1512, 1454, 1244, 1176,1035, 827.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 200 \mathrm{MHz}\right) \quad: \delta 1.36-1.61(\mathrm{~m}, 6 \mathrm{H}), 1.64-1.74(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.72$(m, 4H), 3.58-3.64 (m, 1H), $3.77(\mathrm{~s}, 3 \mathrm{H}), 6.71(\mathrm{~d}, J=$
$8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4$$\mathrm{Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.$\left.{ }^{13} \mathbf{C ~ N M R ~ (C D C l} 3,50 \mathbf{~ M H z}\right) \quad: \delta 25.14,31.08,31.65,34.90,37.24,39.09,55.19$,$71.52,113.71,115.34,129.22,129.38,133.62,134.60$,154.01, 157.56 ppm .
ESI MS (m/z)

REFERESCES

Reference

1. "Moving Beyond Natural Products" C \& E News 2003, 81, 104-107.
2. Nicolaou, K. C., Vourloumis, D.; Winssinger, N.; Baran, P. S. Angew. Chem. Int.Ed. 2000, 39, 44.
3. (a) Hornberger, K. R.; Hamblett, C. L.; Leighton, J. L. J. Am. Chem. Soc. 1998, 122, 12894-12895; (b) Fettes, A.; Carreira, E. M. Angew. Chem.. Int. Ed. 2002, 41, 4098-4101.
4. (a) Forsyth, C. J.; Ahmed, F.; Clink, R. D.; Lee, C. S. J. Am. Chem. Soc. 1998, 120, 5597-5598; (b) Smith, A. B., III; Minbiole, K. P.; Verhoest, P. R.; Schelhass, M. J. Am. Chem. Soc. 2001, 123, 10942-10953.
5. (a) Soltani, O.; Brabander, J. K. D. Org. Lett. 2005, 13, 2791-2793; (b) Kang, E. J.; Cho, E. J.; Lee, Y. E.; Ji, M. K.; Shin, D. M.; Chung, Y. K.; Lee, E. J. Am. Chem. Soc. 2004, 126, 2680-2681.
6. (a) Smith, A. B., III; Safonov, I. G. Org. Lett. 2002, 4, 635-637; (b) Hoye, T. R.; Hu, M. J. Am. Chem. Soc. 2003, 125, 9576-9577; (c) Sanchez, C. C.; Keck, G. E. Org. Lett. 2005, 7, 3053-3056.
7. (a) Louis, I; Hungerford, N. L; Humphries, E. J.; McLeod, M. D. Org. Lett. 2006, 8, 1117-1120; (b) Ding, F.; Jennings, M. P. Org. Lett. 2005, 7, 2321-2324; (c) Smith, A. B., III; Safonov, I. G.; Corbett, R. M. J. Am. Chem. Soc. 2002, 124, 11102-11113.
8. Yin, J.; Kouda, K.; Tezuka, Y.; Tran, Q. L.; Miyahara, T.; Chen, Y.; Kadota, S. Planta Med. 2004, 70, 54-58.
9. (a) Prasain, J. K.; Li, J.-X.; Tezuka, Y.; Tanaka, K.; Basnet, P.; Dong, H.; Namba, T.; Kadota, S. J. Nat. Prod. 1998, 61, 212-216; (b) Gewali, M. B.; Tezuka, Y.; Banskota, A. H.; Ali, M. S.; Saiki, I.; Dong, H.; Kadota, S. Org. Lett. 1999, 1, 1733-1736; (c) Tezuka, Y.; Ali, M. S.; Banskota, A. H.; Kadota, S. Tetrahedron Lett. 2000, 41, 5903-5907; (d) Tezuka, Y.; Gewali, M. B.; Ali, M. S.; Banskota, A. H.; Kadota, S. J. Nat. Prod. 2001, 64, 208-213; (e) Ali, M. S.; Tezuka, Y.; Banskota, A. H.; Kadota, S. J. Nat. Prod. 2001, 64, 491-496; (f) Ali, M. S.;

Banskota, A. H.; Tezuka, Y.; Saiki, I.; Kadota, S. Biol. Pharm. Bull. 2001, 24, 525-528.
10. Ko, H. M.; Lee, D. G.; Kim, M. A.; Kim, H. J.; Park, J.; Lah, M. S.; Lee, E. Org. Lett. 2007, 9, 141-144.
11. (a) De Albuquerque, I. L.; Galeffi, C.; Casinovi, C. G.; Marini-Bettolo, G. B. Gazz. Chim. Ital. 1964, 94, 287-295; (b) Galeffi, C.; Casinovi, C. G.; MariniBettolo, G. B. Gazz. Chim. Ital. 1965, 95, 95-100.
12. Bogitch, Burton J. and Thomas C. Cheng. Human Parasitology. Second Edition. Academic Press, San Diego. 1998 107-112.
13. McGarvey, G. J.; Mathys, J. A.; Wilson, K. J. J. Org. Chem. 1996, 61, 57045705.
14. Hanessian, S.; Szychowski, J.; Adhikari, S. S.; Vasquez, G.; Kandasamy, P.; Swayze, E. E.; Migawa, M. T.; Ranken, R.; Francois, B.; Wirmer-Bartoschek, J.; Konodo, J.; Westhof, E. J. Med. Chem. 2007, 50, 2352-2369.
15. (a) Rey Gomez-Serranillos, I.; Minones, J., Jr.; Dynarowicz-Latka, P.; Minones, J.; Iribarnegaray, E. Langmuir, 2004, 20, 928-933; (b) Sauger, J. M.; Delgado, J.; hornillos, V.; Luque-Ortega, J. R.; Amat-Guerri, F.; Acuna, A. U.; Rivas, L. J. Med. Chem. 2007, 50, 5994-6003.
16. Bayod-Jasanada, M.; Carbajo, R. J.; Lopez-Ortiz, F. J. Org. Chem. 1997, 62, 7479-7481.
17. Jacob, M. R.; Hossain, C. F.; Mohammed, K. A.; Smillie, T. J.; Clark, A. M.; Walker, L. A.; Nagle, D. G. J. Nat. Prod. 2003, 66, 1618-1622.
18. Araujo, C. A. C.; Alegrio, L. V.; Leon, L. L. Phytochemistry 1998, 49, 751-754.
19. (a) Colobert, F.; Mazery, R. D.; Solladie, G.; Carren o, M. C. Org. Lett. 2002, 4, 1723-1725; (b) Carreno, M. C.; Mazery,R. D.; Urbano, A.; Colobert, F.; Solladie, G. J. Org. Chem. 2003, 68, 7779-7787.
20. Marumoto, S.; Jaber, J. J.; Vitale, J. P.; Rychnovsky, S. D. Org. Lett. 2002, 4, 3919-3922.
21. Evans, P. A.; Cui, J.; Gharpure, S. J. Org. Lett. 2003, 5, 3883-3885.
22. Boulard, L.; BouzBouz, S.; Cossy, J.; Franck, X.; Figad_ere, B. Tetrahedron Lett. 2004, 45, 6603-6605.
23. Clarke, P. A.; Martin, W. H. C. Tetrahedron Lett. 2004, 45, 9061-9063.
24. Chan, K.-P.; Loh, T.-P. Org. Lett. 2005, 7, 4491-4494.
25. Lee, C.-H. A.; Loh, T.-P. Tetrahedron Lett. 2006, 47, 1641-1644.
26. Chandrasekhar, S.; Prakash, S. J.; Shyamsunder, T. Tetrahedron Lett. 2005, 46, 6651-6653.
27. Jennings, M. P.; Clemens, R. T. Tetrahedron Lett. 2005, 46, 2021-2024.
28. Böhrsch, V.; Blechert, S. Chem. Commun. 2006, 1968-1970.
29. Prasad, K. R.; Anbarasan, P. Tetrahedron 2007, 63, 1089-1092.
30. Washio, T.; Yamaguchi, R.; Abe, T.; Nambu, H.; Anada, M.; and Shunichi, H. Tetrahedron 2007, 63, 12037-12046.
31. Dziedzic, M.; Furman, B. Tetrahedron Lett. 2008, 49, 678-681.
32. (a) Mohapatra, D. K.; Rahaman, H.; Chorghade, M. S.; Gurjar, M. K. Synlett, 2007, 567-570; (b) Mohapatra, D. K.; Nayak, S.; Mohapatra, S.; Chorghade, M. S.; Gurjar,M. K. Tetrahedron Lett. 2007, 48, 5197-5200; (c) Yakambram, P.; Puranik, V. G.; Gurjar, M. K. Tetrahedron Lett. 2006, 47, 3781-3783.
33. (a) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18; b) F rstner, A. Angew. Chem. 2000, 112, 3140; Angew. Chem., Int. Ed. 2000, 39, 3012; (c) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413; d) Fürstner, A. Top. Catal. 1997, 4, 285; (e) Schuster, M.; Blechert, S. Angew. Chem. 1997, 109, 2124; Angew. Chem., Int. Ed. Engl. 1997, 36, 2037; (f) Schrock, R. R. Top. Organomet. Chem. 1998, 1, 1; (g) Maier, M. E. Angew. Chem. 2000, 112, 2153; Angew. Chem., Int. Ed. 2000, 39, 2073; (h) F rstner, A.; M ller, Synlett 1997, 1010; (i) Chang, S.; Grubbs, R. H. Tetrahedron Lett. 1997, 38, 4757.
34. Rama Rao, A. V.; Reddy, E. R.; Joshi, B. V.; Yadav, J. S. Tetrahedron Lett. 1987, 28, 6497.
35. (a) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K. S.; Kwong, H. L.; Morikawa, K.; Wang, Z. M.; Xu, D.; Zhang, X. L. J. Org. Chem. 1992, 57, 2768; (b) Kolb, H. C.; Van-Nieuwenhze, M. S.; Sharpless, K.B. Chem. Rev. 1994, 94, 2483.
36. Song, F.; Fidanze, S.; Benowitz, A. B.; Kishi, Y. Org. Lett. 2002, 4, 647.
37. Corey, E. J.; Pyne, S. G. Tetrahedron. Lett. 1983, 24, 4833.
38. Schmid, C. R.; Bryant, J. D. Org. Syn. 1995, 72, 6.
39. Roger Ketcham, D. Jambotkar, Louis Martinelli J. Org. Chem. 1962 27, 46664667.
40. Michael J. Martinelli, Naresh K. Nayyar, Eric D. Moher, Ulhas P. Dhokte, Joseph M. Pawlak, and Rajappa Vaidyanathan; Org. Lett. 1999, 1, 447-450.
41. Bonini, C.; Chiummiento, L.; Lopardo, M. T.; Pullez, M.; Colobert, F.; Solladie, G. Tetrahedron Lett. 2003, 44, 2695-2697.
42. Bhatt, M. V.; Kulkarni, S. V. Synthesis 1983, 249.
43. Lindlar, H.; Dubuis, R. Organic Synthesis, Wiley: New York. 1973, Collect. Vol. V, pp 880-883
44. Kim, S.; Chung, K. N.; Yang, S. J. Org. Chem. 1987, 52, 3917-3919.
45. Hughes, D. L. Organic Reactions, Wiley: New York. 1992, Vol. 42 pp 335.
46. (a) Blackwell, H. E.; O’Leary, D. J.; Chatterjee, A. K.; Washenfelder, R. A.; Bussmann, D. A.; Grubbs, R. H. J. Am. Chem. Soc. 2000, 122, 58-71; (b) Grela, K.; Bieniek, M. Tetrahedron Lett. 2001, 42, 6425-6428.
47. Keck, G. E.; Tarbet, K. H.; Geraci, L. S.; J. Am. Chem. Soc. 1993, 115, 84678468.
48. (a) Hanson, R. M.; Sharpless, K. B. J. Org. Chem. 1986, 51, 1922-1925. (b) Pfenninger, A. Synthesis 1986, 89.
49. Schomaker, J. M.; Pulgam, V. R.; Borhan, B. J. Am. Chem. Soc. 2004, 126, 13600-13601.
50. Mukaiyama, T.; Iwasawa, N.; Stevens, R. W.; Haga, T. Tetrahedron 1984, 40, 1381.
51. Doucet, H.; Santelli, M. Tetrahedron Asymmetry 2000, 11, 4163-4169.
52. Minowa, N.; Mukaiyama, T. Bull. Chem. Soc. Jpn., 1987, 60, 3697-3704.

СHAPIER2

Towards the synthesis of superstofide \mathcal{A}

Introduction

Marine natural products chemistry has experienced explosive growth over the past twenty years beginning with Werner Bergmann's ${ }^{1}$ pioneer work in the 1950's. Ocean biodiversity began to be appreciated from the beginning of this century and estimates of the number of species range from 1.5 to 4.5 million species with the majority of these being, to date, undescribed. Thus, the potential of the oceans to provide new bioactive metabolites is enormous. The main interest in marine natural products and especially in sponge metabolites is the high incidence of anticancer and cytotoxic metabolites. Among marine invertebrates, demosponges originated the interest in marine chemistry for discovery of new drugs and remain the most prolific phylum concerning new and pharmacologically active compounds. However, some metabolites ascribed to sponges are now suspected to be actually biosynthesized by micro organisms frequently present in symbiotic association.

Sponges are able to biosynthesize original secondary metabolites, which present promising pharmacological activity especially in cancer chemotherapy. The role played by symbiotic microorganisms in the biosynthesis of sponge secondary metabolites is currently a subject of intensive studies in the hope that these structurally complex metabolites may be obtained by biotechnological processes.

Until the beginning of the century, only terrestrial plants were investigated for drug discovery. Interest in marine chemistry started with the work of W. Bergmann who isolated three nucleosides: spongouridine, spongothymidine and spongosine from the Caribbean sponge Cryptotethya crypta. The two pyrimidine nucleosides contained arabinose instead of the classical ribose and spongosine combined ribose with a novel base, methoxyadenine. Because of widespread interest in nucleosides at that period, due to the discovery of the anticancer activity of 5-fluorouracyl, the biological properties of these new nucleosides were widely studied. Antiviral properties of these nucleosides were demonstrated and initiated the synthesis of analogues which led to the first antiviral compound, Ara-A (Vidarabine) ${ }^{2}$ active against Herpes viruses, and to an antitumor
compound, Ara-C (Cytarabine) effective in acute lymphoid leukemia. Currently these are the only marine related compounds in clinical use.

Since this pioneering work, a number of structurally original and biologically active compounds have been discovered from sponges, most of them with potential application as anticancer agents. The Japanese sponge Halichondria okadai provided the halichondrins, a new class of polyethers. Halichondrin B^{3} (1) (Figure 1), the most potent in the series, are highly cytotoxic in vitro and in vivo towards P388 and B16 melanoma ($\mathrm{ID}_{50} 0.09310^{-3} \mathrm{~g} / \mathrm{mL}$). This is active in vivo against P388 leukemia (T/C: 323% at 10 g / kg) and B16 melanoma (T/C 233 at $60 \mathrm{~g} / \mathrm{kg}$). This is also potently active in vivo against lung tumor. Both inhibit microtubule assembly dependent on microtubuleassociated proteins. Unfortunately, the development of halichondrins is hampered by limited supplies of material. Numerous synthetic approaches have been devoted to this class of compounds. However due to the complexity of the structures; these approaches are not economically profitable. Members of the halichondrins family were subsequently isolated from other sponges: Axinella sp. (Pettit et al. 1991), ${ }^{4}$ Phakellia sp. (Pettit et al. 1993) ${ }^{5}$ and Lissodendoryx sp. in New Zealand (Litaudon et al. 1997). ${ }^{6}$

Figure 1

Alternative routes to obtain enough supply of halichondrins are investigated: the search for another original class of cytotoxic polyether derivatives are spongistatin $\mathbf{2}{ }^{7}$ isolated from Spongia sp. and Spirastrella spinispirulifera. In addition, some presumably identical compounds, the altohyrtins $(\mathbf{4}, \mathbf{5}, \mathbf{6})^{8}$ have been isolated from the Okinawan sponge Hyrtios altum and cinachyrolide $\mathrm{A}^{9}(\mathbf{3})$ (identical to spongistatin $\mathbf{2}$) from a sponge of the genus Cinachyra Sollas.

Figure 2
The most potent is spongistatin 2 (Figure 2), highly cytotoxic ($\left.\mathrm{ID}_{50} 2.5-410^{-11} \mathrm{~m}\right)$ against a subset of highly chemoresistant tumor cells comprising the NCI panel of 60 human cancer cell lines (lung, brain, colon) and B16 melanoma. This is also inhibitor of tubulin polymerization and bind in a distinct region of the vinca domain. Cinchyrolide A
(3) (Figure 2) has been isolated from the marine sponge genous cinachyra in 1993. It was highly cytotoxic against L 1210 murine leukemia cells with an $\mathrm{IC}_{50}<0.6 \mathrm{ng} / \mathrm{mL}$.

Since their isolation and characterization in the mid 1980's and early 1990's, the cytotoxic marine macrocycles tedanolide ${ }^{10} 7$ and 13-deoxitedanolide 8 (Figure 3) have attracted a great deal of synthetic interest due to strong biological activity and structural complexity. Tedanolide 7 has shown ED_{50} 's of $250 \mathrm{~g} / \mathrm{mL}$ (vs the KB human carcinoma cell line) and $16 \mathrm{~g} / \mathrm{mL}$ (vs PS lymphocytic leukemia). Preliminary data also suggest that tedanolide may induce terminal cell differentiation at the S phase at concentrations as low as $10 \mathrm{ng} / \mathrm{mL}$, which offers the possibility of using it as a mechanism-based drug lead. 13Deoxytedanolide 5, on the other hand, has shown a T/C of 189% at a dose of $125 \mathrm{~g} / \mathrm{kg}$ vs P388 cell lines.

Tedanolide 7, $\mathrm{R}=\mathrm{OH}$
Deoxytedanolide 8, R = H

Figure 3

Peteamine ${ }^{11}(\mathbf{9}, \mathbf{1 0}, 11)$ (Figure 4) had been isolated from a New Zealand sponge Mycale sp. (Northcote et al. 1991). Total synthesis of pateamine A (9) (Romo et al. 1998) allowed to evaluate the biological activity of this promising immunosuppressive agent.

Peteamine A (9) $\mathrm{R}=\mathrm{NMe}_{2}$

$$
\begin{aligned}
& B(10) R=N H M e \\
& C(11) R=N(O) \mathrm{Me}_{2}
\end{aligned}
$$

FK 506 (12)

Figure 4

It showed great promise as a biological probe of complex intracellular signalling pathways involved in T-cell activation. Recent studies exhibited that $\mathbf{9}$ inhibits a specific intracellular signalling pathway involving in T-cell receptor-mediated IL-2 production, in addition to its effect on TCR signalling pathway, Pat A was found to induce apoptosis in certain mammalian cell lines. FK 506 (12) ${ }^{12}$ was isolated from Streptomyces tsukubaensis. This unique 23-membered macrolide is an important new lead in the search for effective immunosuppressive agents. The exceptional activity of FK506 (12) is reportedly considerably greater, in several assays, than which is currently the drug of choice in bone marrow and organ transplantations.

Rapamycin ${ }^{13}$ 13, a naturally occurring 31 membered macrolide, was originally isolated from Streptomyces hygroscopicus as an antifungal agent. It shares some structural features with the natural product FK506 (12), an immunosuppressant, and as a result also binds to FKBP12 (FK506 binding protein) with high affinity. Like FK506 (12), rapamycin 13 exhibits potent immunosuppressive activity and has completed Phase III clinical evaluation for the prevention of organ transplant rejection (Figure 5).

Rapamycin 13

Figure 5

Macrolide belongs to a unique class of tris-oxazole containing natural products, display a range of potent biological activities. Foremost among these is mycalolide ${ }^{14} \mathrm{~A}$ (14) (Figure 5), isolated by Fusetani and co-workers from sponge of genus mycale sp.,
which exhibits potent antifungal activity against a wide array of pathogenic fungi and cytotoxicity toward $\mathrm{B}-16$ melanoma cells with IC_{50} values of $0.5-1.0 \mathrm{ng} / \mathrm{mL}$. Mycalolide A (14) also specifically inhibits the actomyosin Mg^{2+}-ATPase, and serves as a novel actin depolymerizing agent which may find eventual applications in the pharmacological area for probing actin-mediated cell functions.

Figure 6
Swinholide ${ }^{15}$ A (15) (Figure 6), a complex polyketide metabolite and 22 membered macrolide has been isolated from a Red Sea sponge Theonella swinhoei, was first reported by Carmely and Kashman in 1985. Swinholide A (15) exhibits potent cytotoxic activity against a variety of human tumor cell lines (e.g., $\mathrm{IC}_{50} 0.03 \mathrm{~g} \mathrm{~mL}^{-1}$ for L1210 cell, $0.04 \mathrm{~g} \mathrm{~mL}^{-1}$ for KB cells). Several other dimeric macrolides have also been obtained from Theonellu, including swinholides B (16) and C (17) and the analogous 40membered dilactone, misakinolide A (18). These marine macrolides have identical stereostructures and differ mainly in the ring size and the nature of the side-chain terminus.

Another promising candidate for immunosuppressive therapy is (+)-discodermolide 19^{16} (Figure 7) isolated from the sponge Discodermia dissolute (Schmidt, 1880) (Gunasekera et al. 1990) which shows cytotoxic and immunosuppressive activities. (+)Discodermolide 19, blocks cellular proliferation in lymphoid and non-lymphoid cells and this blocking action is not due to cytotoxicity (Longley et al. 1993). It also exhibits in vivo immunosuppressive properties, being effective in suppressing (93%) the graft-versus-host splenomegaly response of grafted mice at $1.25 \mathrm{mg} / \mathrm{kg}$. More recently, it was demonstrated that (+)-discodermolide 19 competitively inhibits the binding of paclitaxel (Taxol) to tubulin polymers and inhibits the growth of paclitaxel-resistant cells.

Figure 7

Bioactive natural products isolated from Neosiphonia superstes

The first marine natural product research program in New Caledonia (SNOM, Substances Naturelles d'Origine Marine) was started by Pierre Potier in 1977. Nitrogenous compounds, macrolides, and steroids have been reported from eight lithistid sponges of New Caledonia, mostly from deeper waters ($\geq 400 \mathrm{~m}$ depth), in the families Corallistidae, Phymatellidae, and Pleromidae. Macrolides of two types were isolated from deeper-water Phymatellidae lithistids. 26-membered polyoxygenated macrolides, such as sphinxolide ${ }^{17}$ A (20) and sphinxolide D (23), first isolated from a Hawaiian nudibranch, as well as new sphinxolides B (21) and E (24) from Neosiphonia superstes, constitute one group. The other group comprises decalin-fused 16 membered macrolides, such as superstolide A (26) and B (27) isolated from Neosiphonia superstes. ${ }^{18,19}$ Sphinxolides (20, 21, 22, 23) are the novel $26-$ membered macrolides, isolated from an unidentified Pacific Nudibranch, which, because of the difficulties in defining the source was named sphinxolide from the misterious Egyptian Sphinxg. Latter on from New Caledonian marine living fossil sponge Neosiphonia superstes again it was isolated and showed marked activity in antifungal and cytotoxic assays.

Sphinxolides A
(20) $\mathrm{R}=\mathrm{OMe} \mathrm{R}^{\prime}=\mathrm{H}$
B (21) $\mathrm{R}=\mathrm{H} \quad \mathrm{R}^{\prime}=\mathrm{H}$
C (22) $\mathrm{R}=\mathrm{OMe} \mathrm{R}^{\prime}=\mathrm{Me}$
D (23) $\mathrm{R}=\mathrm{H} \quad \mathrm{R}^{\prime}=\mathrm{Me}$

Sphinxolides E (24)
Neosiphoniamolide A(25)

Figure 8
Sphinxolide A (20) and of three congeneric macrolides sphinxolide B (21), C (22) and $\mathrm{D}(\mathbf{2 3})$ proved to be potent cytotoxins against various human carcinoma cells in vitro, NSCLC-N6: human bronchopulmunary non-small-cell-lungcarcinoma $\left(\mathrm{IC}_{50}=0.027\right.$, $\left.0.016,0.03,0.06 \mathrm{~g} \mathrm{~mL}^{-1}\right)$. P388: murine leukaemia $\left(\mathrm{IC}_{50}=0.3310^{-3}, 0.0210^{-3}, 3010^{-3}\right.$, $810^{-3} \mathrm{~g} \mathrm{~mL}^{-1}$. P388DOX: murine leukaemia $\left(\mathrm{IC}_{50}=4.110^{-3}, 3.110^{-3}, 4010^{-3}, 310^{-3}\right.$ $\mathrm{g} \mathrm{mL}^{-1}$) expressing the multi-drug resistance gene mdr , expecially towards doxorubicine. KB: human nasopharyngeal carcinoma $\left(\mathrm{IC}_{50}=710^{-3}, 0.0310^{-3}, 4010^{-3}, 3\right.$ $10^{-3} \mathrm{~g} \mathrm{~mL}^{-1}$). HT29: human colon carcinoma $\left(\mathrm{IC}_{50}=11510^{-3}, 2.410^{-3}, 3010^{-3}, 22\right.$ $10^{-3} \mathrm{~g} \mathrm{~mL}^{-1}$.

Neosiphoniamolide ${ }^{20} \mathrm{~A}$ (25) (Figure 8) has been isolated from the sponge Neosiphonia superstes. Neosiphoniamolide A (25) inhibited the growth of the fungi Piricularia oryzae and Helminthosporium gramineum with IC_{90}, values of 5 ppm , but exhibited weaker activity against a panel of fungi. More potent activities were exhibited by the co-occurring macrolides, the sphinxolides.

Superstolide B (27)

Figure 9

Isolation, structure elucidation of Superstolide A (26) and Superstolide B (27)
Superstolide A (26) and B (27) are member of a structurally unique family of cytotoxic macrolide, isolated by Minale and co-workers from the new Caledonian deepwater sponge Neosiphonia superstes. Superstolide A (26) and B (27) are highly cytotoxic against human bronchopulmunary non-small cell lung cercinoma NSCLC-N6-L16 cell with IC_{50} value of 0.04 and $0.039 \mu \mathrm{~g} / \mathrm{mL}$, respectively. Both Superstolide A(26) and B (27) exhibited potent cytotoxicity against murine leukemia P388 cells with IC_{50} of 0.03 $\mu \mathrm{g} / \mathrm{mL}$ and human nasopharyngeal carcinoma KB cells with IC_{50} value $0.02 \mathrm{mg} / \mathrm{mL}$ and $0.005 \mu \mathrm{~g} / \mathrm{mL}$, respectively. In addition, superstolide A (26) is also highly cytotoxic against human colon carcinoma HT29 cell with an IC_{50} of $0.04 \mu \mathrm{~g} / \mathrm{mL}$ and murine leukemia cells expressing resistance toward doxorubicine P388 DOX with IC_{50} of 0.02 $\mu \mathrm{g} / \mathrm{mL}$.

The structural novelty of these two molecules are characterized by a unique 16 membered macrolactone attached to a highly functionalized cis-decalin moiety. The gross structure was determined by extensive 2D NMR experiments on the lactone and on its opened-ring-derived methyl esters. The relative stereochemistry of the decaline moiety and the C22-C26 fragment were determined by a combination of NMR data and acetonide analysis. Absolute stereostructure of the decaline portion of $\mathbf{2 6}$ has been determined on the basis of GLC-modified Horeau's methodology, whereas the results of the application of the modified Mosher's method allowed to propose for the C22-C26 fragment the $22 R, 23 R, 24 R, 25 S, 26 R$ configuration for superstolide $\mathrm{A}(\mathbf{2 6})$.

Previous work

Roush and co-worker ${ }^{21}$ published a diastereoselective synthesis of cis-fused decalin using intramolecular Diels-Alder reaction in 1996. D' Auria and co-workers ${ }^{22}$ reported a synthesis of C21-C26 polyketide segment of Superstolide A (26) in which Browns crotylborane reagent played a major part. They have generated four consecutive centers by this reagent. The group of Roush ${ }^{23}$ and Jin^{24} has reported an analogous route to the C20-C26 segment separately. Marshall group ${ }^{25}$ has reported the C20-C26 segment, using chiral allenylmetal reagent. Urpi ${ }^{26}$ et al. used an aldol type reaction to synthesize the polyketide fragment. Paterson group ${ }^{27}$, in addition to C20-C26, reported the C1-C5 segment, where they used their own methodology boron-mediated aldol reaction. Very recently Roush group ${ }^{28}$ have achieved the total synthesis of Superstolide A (26).

1. D Auria's approach (2001):

The dipropionate framework of superstolide A (26) was obtained by Auria's group with high stereoselectivity by two consecutive crotylborations using Brown's procedure starting from D-alanine. N-Boc-D-alaninal obtained by DIBAL-H reduction of the commercially available N-Boc-D-alanine methyl ester 28 was reacted with (E)-crotonyldiisopinocampheylborane derived from (-)- B-methoxydiisopinocampheylborane to give the anti-homoallylic alcohol 29. The concomitant protection of the hydroxyl group and N-Boc as the oxazolidine derivative, followed by oxidative cleavage of the double bond provided the aldehyde $\mathbf{3 0}$ required for the second crotylboration. Addition of the allylborane derived from (+)-B-methoxydiisopinocampheylborane and (E)-butene to
aldehyde $\mathbf{3 0}$ at $-78^{\circ} \mathrm{C}$ afforded the homoallylic alcohol 31. To confirm the configuration of 31, it was converted to acetonide $\mathbf{3 3}$ in four steps.

Scheme 1: Reagents and conditions: (a) i) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; ii) tertBuOK, (E)-but-2-ene, n-BuLi, -78 to $-45{ }^{\circ} \mathrm{C}$, (-)-B-methoxydiisopinocampheylborane, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, then aldehyde, $-78{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 81 \%$, two steps; (b) i) 2,2-dimethoxypropane dry, p-TsOH (cat.), $25{ }^{\circ} \mathrm{C}, 14 \mathrm{~h}, 90 \%$; ii) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, then DMS, 3 days, 90%; (c) tert-BuOK, (E)-but-2-ene, n-BuLi, -78 to $-45{ }^{\circ} \mathrm{C}, \quad(+) \quad \mathrm{B}-$ methoxydiisopinocampheylborane, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, aldehyde 29, $-78{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 80 \%$; (d) i) $\mathrm{MeOH} / \mathrm{HCl}, 25{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$; ii) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Pyr}, \mathrm{Et}_{3} \mathrm{~N}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (e) i) $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeOH}, 12 \mathrm{~h}$; ii) dimethoxypropane dry, $p-\mathrm{TsOH}$ (cat.).

2. Zhendong Jin's approach (2001):

(S)-(-)-Ethyl lactate 34 was the point of departure for the synthesis of the polyketide fragment 40 (Scheme 2). The hydroxyl group was protected as PMB ether under acidic conditions and reduction of ester group with DIBAL-H provided (S)-2-(4-methoxy-benzyloxy)propionaldehyde 35. Reaction of aldehyde 35 with (d)-(E)-crotyldiisopino-campheylborane under Brown's conditions afforded homoallylic alcohol 36. Protection of the secondary alcohol by TBSOTf, followed by oxidative cleavage of the double bond gave the desired aldehyde 37 , which was reacted with $(l)-(E)$ crotyldiisopinocampheyl-borane under Brown's conditions to provide homoallylic alcohol 38. After alcohol 38 was protected by a TES group, the p-methoxybenzyl group
was removed by DDQ. The Mitsunobu reaction provided the desired azide. Reduction of the azide by Staudinger reaction followed by acylation provided amine 39. Oxidative cleavage of the terminal double bond and by employing Takai's reaction, the aldehyde was homologated to the requisite trans vinyl iodide 40.

Scheme 2: Reagents and conditions: (a) i) p-methoxybenzyltrichloroacetimidate, CAS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 91 \%$; ii) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-98{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 89 \%$; (b) i) (d)-(E)crotyldiisopinocampheylborane, $-78{ }^{\circ} \mathrm{C}$, ether; ii) $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$; (c) i) TBSOTf, $\mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-30{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 64 \%$ over two steps; ii) $\mathrm{OsO}_{4}(2 \%), \mathrm{NaIO}_{4}, 2,6$-Lutidine, Dioxane: $\mathrm{H}_{2} \mathrm{O}, 25{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 90 \%$; (d) i) (l)-(E)-crotyldiisopinocampheylborane, $-78{ }^{\circ} \mathrm{C}$, ether; ii) aq. $10 \% \mathrm{NaOH}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 71 \%$; (e) i) $\mathrm{Et}_{3} \mathrm{SiOTf}^{2} \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-30{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, 95%; ii) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, Buffer (pH 7), 94%; iii) DEAD, $\mathrm{PPh}_{3}, \mathrm{HN}_{3}, \mathrm{THF}, 6 \mathrm{~h}, 84 \%$; iv) (v) $\mathrm{PPh}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}$, reflux, 12 h ; (vi) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, 84 \%$ for two steps; (f) i) $\mathrm{OsO}_{4}, \mathrm{NaIO}_{4}$, 2,6-Lutidine, Dioxane: $\mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 71 \%$; ii) $\mathrm{CrCl}_{2}, \mathrm{CHI}_{3}$, THF, 71%.

3. Roush's approach (2003):

The synthesis started with the crotylboration of N-acetyl alaninal in presence of (R, $R)-\mathbf{2}$ to produce compound 42. Acetonide protection, followed by oxidative cleavage of double bond released aldehyde 43 , which was required for $2^{\text {nd }}$ crotylation reaction. In presence of $(S, S)-\mathbf{2}$ the aldehyde underwent to crotylboration reaction to release compound 44. The newly generated hydroxyl group was sillylated by TBS ether and again oxidative cleavage of double bond provided aldehyde, which was converted to
vinyl iodide 46 under Takai olefination condition. The iodo compound 46 was coupled with tin compound 48 in presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ catalyst and the product was immediately converted to iodo compound 47.

Scheme 3: Reagents and conditions: (a) (R, R)-2, $4 \AA$ M.S., tol., $-78^{\circ} \mathrm{C}, 67 \%$; (b) i) 2,2dimethoxypropane, PPTS (cat), tol., 98%; ii) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, then $\mathrm{Me}_{2} \mathrm{~S}, 23{ }^{\circ} \mathrm{C}$; (c) (S,S)-2, $4 \AA$ M.S., tol, $-78{ }^{\circ} \mathrm{C}, 76 \%$ in two step; (d) i) TBS-OTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 86%; ii) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, then $\mathrm{Ph}_{3} \mathrm{P}, 23{ }^{\circ} \mathrm{C}, 86 \%$; iii) $\mathrm{CrCl}_{2}, \mathrm{CHI}_{3}, \mathrm{THF}, 76 \%$; e) (i) 48, n-BuLi, THF, $-78{ }^{\circ} \mathrm{C}$, then ZnCl_{2}, then $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (cat), $-10^{\circ} \mathrm{C}, 87 \%$; (ii) NIS, EtCN, -50 to $0^{\circ} \mathrm{C}, 68 \%$.

4. Urpi's approach (2003):

In their central transformation, titanium enolate of ketone 49 was reacted with aldehyde 50 to provide anti-Felkin adduct $\mathbf{5 1}$ as a single diastereomer. Next, diastereomerically pure anti-diol $\mathbf{5 2}$ was obtained after reduction of $\mathbf{5 1}$ with $\left(\mathrm{Me}_{4} \mathrm{~N}\right)$ $\mathrm{HB}(\mathrm{OAc})_{3}$. Diol 52 was then converted into the corresponding isopropylidene acetal 53. Finally, a three-step sequence based on a DDQ mediated deprotection of the -OPMB
group, mesylation of the resulting alcohol, and introduction of the azido group with NaN_{3} through an $\mathrm{S}_{\mathrm{N}} 2$ protocol readily afforded the desired azido polyol 53.

Scheme 4: Reagents and conditions: (a) (i-PrO) $\mathrm{TiCl}_{3}, i-\mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 3.5 \mathrm{~h}$, 82%; (b) $\left(\mathrm{Me}_{4} \mathrm{~N}\right) \mathrm{HB}(\mathrm{OAc})_{3}, \mathrm{CH}_{3} \mathrm{CN} / \mathrm{AcOH}(65: 35),-40$ to $-25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 94: 6 \mathrm{dr}, 92 \%$; (c) i) $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}(1: 1)$, PPTS cat., rt, $24 \mathrm{~h}, 92 \%$; ii) $\mathrm{DDQ}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ phosphate pH 7 (10:1), $0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; iii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 4 \mathrm{~h}$; vi) $\mathrm{NaN}_{3}, \mathrm{DMF}, 70^{\circ} \mathrm{C}, 2 \mathrm{~h}$, 80%; (d) TBAF. $3 \mathrm{H}_{2} \mathrm{O}$, THF, rt, $30 \mathrm{~h}, 99 \%$; (e) i) $\mathrm{Ph}\left(\mathrm{CN}_{4}\right) \mathrm{SH}, \mathrm{Ph}_{3} \mathrm{P}$, DEAD, THF, rt, 4 h ; (ii) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{MoO}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}$, THF, rt, $24 \mathrm{~h}, 84 \%$; (f) LHMDS, (E)-2-methyl-2-butenal, 1,2dimethoxyethane, $-65{ }^{\circ} \mathrm{C}$ to room temperature, (94:6) EE/ZE, 72%; (g) i) $\mathrm{Me}_{3} \mathrm{P}, \mathrm{H}_{2} \mathrm{O}$, THF, rt, 12 h ; (ii) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 1 \mathrm{~h}, 88 \%$.

After removing the silicon protecting group of $\mathbf{5 3}$, the azido sulfone 55 was obtained through a Mitsunobu reaction, followed by oxidation of the resulting thioether. JuliaKocienski olefination involving tiglic aldehyde was carried out and in a straightforward manner with LHMDS in 1,2-dimethoxyethane, azido diene 56 was obtained. Finally, the azido group was converted into the corresponding acetamide 57 in a one pot reaction.

5. Paterson's approach (2004):

The synthesis of the C20-C26 fragment 65 of superstolide A (26) (Scheme 5) started out from the α-amino ethyl ketone 58. The key syn boron aldol reaction of ketone 58 was carried out by first forming the (Z)-boron enolate 59, followed by addition of the α-chiral aldehyde 60.

Scheme 5: Reagents and conditions: (a) $\mathrm{Bu}_{2} \mathrm{BOTf}, \boldsymbol{i}-\mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 2$ $\mathrm{h} ; \mathbf{6 0},-78{ }^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (b) $\mathrm{Me}_{4} \mathrm{NBH}(\mathrm{OAc})_{3}, \mathrm{MeCN}, \mathrm{HOAc},-40^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}, 2.5$ h; (c) $(\mathrm{MeO})_{2} \mathrm{CMe}_{2}$, PPTS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 18 h ; (d) (i) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, EtOAc, rt, 20 h ; (ii) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 18 \mathrm{~h}$; (e) TBAF, THF, rt, 4 h ; (f) TEMPO, $\mathrm{PhI}(\mathrm{OAc})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt., 2.5 h ; (g)(i) $\mathrm{CrCl}_{2}, \mathrm{CHI}_{3}$, THF/dioxan (1:1), $0{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (ii) PPTS, MeOH , r.t., 20 h ; (iii) EDC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 20 \mathrm{~h}$; (h) $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 20 h .

To install the remaining C25 stereocenter required for the C20-C26 segment, reduction of the β-hydroxy ketone $\mathbf{6 1}$ provided the desired 1, 3-anti diol, which was
subjected to the treatment of PPTS, 2,2-dimethoxypropane in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the corresponding acetonide 62. Compound 62 was exposed to $10 \% \mathrm{Pd} / \mathrm{C}$ under a hydrogen atmosphere leading to debenzylation, followed by acetylation afforded the acetamide $\mathbf{6 3}$. The TBS ether was first removed, followed by oxidation of the resulting alcohol furnished aldehyde, which was immediately subjected to Takai olefination providing the desired E-alkene 64. The removal of acetonide accessesed the diol 65. Finally, esterification of the diol 65 with acid 66 provided the mixture of two esters 67 and 68 . The undesired ester 67 was converted to the desired 68 by treating the mixture with titanium(IV) isopropoxide, which completed the synthesis of fragment.
6. Marshal's approach (2005):

Scheme 6: Reagents and conditions: (a) $\mathrm{Pd}(\mathrm{OAc})_{2} \mathrm{PPh}_{3}, \mathrm{Et}_{2} \mathrm{Zn}, \mathrm{InBr}_{3}, \mathrm{THF}, 78 \%$; (b) $(\mathrm{MeO})_{2} \mathrm{CMe}_{2}, p-\mathrm{TsOH}, 100 \%$; (c) Red-Al, THF, $0{ }^{\circ} \mathrm{C}, 85 \%$; (d) $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}, t-\mathrm{BuOOH}, \mathrm{L}-$ (+)-tartrate, THF, 85\%: (e) i) $\mathrm{Li}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Me}_{2}$, THF, 98%; ii) TBSOTf, 2,6-lutidine, 85%; iii) $\mathrm{HCl}, \mathrm{MeOH}, 94 \%$; iv) Dess-Martin periodinane, 90%; v) (a) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$, (b) TBAF, THF, 67%.

For the construction of C20-C26 polyketide segment of superstolide A (26), chiral allenylmetal reagents played a major role. Allenylindium reagents prepared in situ from propargylic mesylates 69. In presence of Indium catalyst, it reacted with N-Boc alaninal 70 to provide compound 71. Accordingly, acetonide formation followed by reduction with Red-Al afforded the unsaturated alcohol 73. A matched Sharpless asymmetric
epoxidation led to the epoxide 74. Regioselective addition of methyl cyanocuprate reagent provided the diol. Silylation and selective desilyation, followed by Dess-Martin periodinane oxidation afforded aldehyde, which was converted to alkene $\mathbf{7 5}$ on Wittig reaction.

СНАРIER2

SECTIONI

\mathcal{A} chiral pool approach for the synthesis of C21-C26 segment of superstolide \mathcal{A}

Present work

Over the decades, carbohydrates have been recognized as naturally occurring organic compounds endowed with wealth of stereochemical attributes. The bulk scale availability at low cost renders them ideal starting materials for organic preparative purposes. The acquisition of an enantiomerically homogeneous target molecule through sugar-based approach is a most attractive alternative for the construction of enantiopure target molecules by asymmetric synthesis.

The generation of enantiopure non-carbohydrate natural products from readily available sugars is of practical value only, if the individual reactions employed allow simple reagents, proceed uniformly, and avoid complex separations in work-up procedures to ultimately enable favourable overall yields. Such practical criteria entail the transformation of a sugar, over functionalized with chirality and hydroxyl groups, into an enantiopure building block with suitable functionalities.

Glucose, a simple monosaccharide sugar, is one of the most important carbohydrates and is used as a source of energy in animals and plants. The natural form, D-(+)-glucose is also referred as dextrose, especially in the food industry. D-(+)-Glucose has been the most popular starting material, due to its easy availability in large quantities, to the large number of its known derivatives and to the ease with which the trans relationship of its -OH groups can be preparatively exploited. In solutions, D-(+)-glucose exists preferably in pyranose form. The composition of $\mathrm{D}-(+)$-glucose in aqueous solution is, α-pyranose: $38 \%, \beta$-pyranose: $62 \%, \beta$-furanose: 0.14% and acyclic carbonyl form: 0.02%.
$1,2: 5,6-\mathrm{Di}-O$-isopropylidene- α-D-glucofuranose 77 is one of the most important and easily available D-glucose derivatives ${ }^{29}$. Because of the easy preparation from commercially available cheap starting material [(D-(+)-glucose], 1,2:5,6-di-O-isopropylidene- α-D-glucofuranose 77 has been employed as synthon for many synthetic sequences. The utilization of this compound is conditioned by the sequence in which synthetic transformations may most easily be accomplished. The free -OH group at C 3 can immediately be transformed. Mild acid treatment cleaves the less substituted
dioxolane ring selectively exposing the 5,6-glycol group, which can in turn be elaborated in various ways. Further acid treatment cleaves the second dioxolane ring, exposing either both the C 1 and $\mathrm{C} 2-\mathrm{OH}$ groups.

The intriguing structure and biological activity of superstolide A (26) attracted us to develop a flexible strategy for its synthesis. A modern synthetic design demands better yielding sequences coupled with mild reaction conditions, high stereoselectivity and readily available starting materials. Keeping these features in mind, we have chosen D-$(+)$-glucose as starting material for our synthetic endeavour, because of its ready availability in enantiopure form, exceedingly cheap and most importantly, the flexibility of its functional groups for the required organic transformations.

Figure 13

A number of synthetic approaches for the polyketide fragment have been reported in the literature. However, it continues to be a challenging endeavour to synthesize this molecule using inexpensive and readily available raw materials via shorter routes.

Gratifyingly, we adapted a chiral pool approach for the synthesis of the C21-C26 (128) fragment of Superstolide A (26). Our approach to $\mathbf{1 2 8}$ is illustrated in scheme 7 in which the key fragment 83 could be obtained from D-(+)-glucose $\mathbf{7 6}$ plays a central role, serving not only as the source of the C26, C25, C24 and C23 stereocenters (numbering based on 26), but also sets the stage for introducing the C22 stereocenter through regio as well as stereospecific hydroboration oxidation. The olefin 126, the precursor for hydroboration oxidation reaction could be obtained by elimination of the tertiary hydroxyl group of $\mathbf{1 2 5}$, which in turn could be synthesized from 124 by cleavage of methyl glycoside followed by oxidation and Grignard reaction of the resulting lactone. The C24 methyl center and C23 hydroxyl group could be fixed by opening of epoxide $\mathbf{8 9}$ with methyl Grignard reagent. For the introduction of amine group, Mitsunobu reaction over alcohol 83 was envisaged.

Scheme 7
Thus, D-(+)-glucose 76 was transformed into 1,2:5,6-di- O-isopropylidene- α-Dglucofuranose 77 by combined action of acetone and anhydrous CuSO_{4} in the presence of
conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (cat.). Subsequent protection of free hydroxyl group at C 3 of 77 was carried out using benzyl bromide, sodium hydride in DMF to afford 78.

Scheme 8

Selective hydrolysis of the 5,6-O-isopropylidene group of $\mathbf{7 8}$ was carried out by using 0.8% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ in methanol at ambient temperature for 12 h to afford diol ${ }^{30}$ compound 79, whose ${ }^{1} \mathrm{H}$ NMR spectrum indicated the absence of resonances related to 5,6-O-isopropylidene moiety.

Our next endeavor was to apply the Mitsunobu reaction ${ }^{31}$ to incorporate the amine functionality, so inversion of stereochemistry at C5 position of glucose system was required. Thus, diol 79 was selectively converted to its mono benzoate derivative $\mathbf{8 0}$ by treating with benzoyl chloride and triethylamine in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at lower temperature (-10 $\left.{ }^{\circ} \mathrm{C}\right)$. Treatment of $\mathbf{8 0}$ with tosyl chloride in pyridine at room temperature provided the tosyl derivative 81, whose spectral data was in accordance with the assigned structure.

Scheme 9

When tosyl derivative $\mathbf{8 1}$ was subjected to the treatment of potassium carbonate in methanol, deprotection of benzoate group and concomitant substitution reaction afforded epoxide 82 with inverted stereocenter at C5. In the ${ }^{1} \mathrm{H}$ NMR spectrum, resonance due to protons corresponding to the tosyl group as well as benzoate group were absent, whereas the characteristic epoxide protons appeared at $\delta 2.53(\mathrm{dd}, J=2.7,4.9 \mathrm{~Hz} 1 \mathrm{H}), 2.75$ (dd, J $=4.4,4.8 \mathrm{~Hz}, 1 \mathrm{H})$ and at $\delta 3.26(\mathrm{ddd}, J=2.7,4.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. All the other resonances were at their expected chemical shift values. The structure was also supported by ${ }^{13} \mathrm{C}$ NMR and elemental analysis.

The epoxide $\mathbf{8 2}$ on reductive opening by LAH in THF at $0^{\circ} \mathrm{C}$ afforded alcohol $\mathbf{8 3}$ as the only product. In ${ }^{1} \mathrm{H}$ NMR spectrum, the methyl group attached to the newly generated alcohol appeared as doublet at $\delta 1.13(J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, methyl groups corresponding to 1,2 -isopropylidene moiety were at $\delta 1.33(3 \mathrm{H})$ and $1.49(3 \mathrm{H}) \mathrm{ppm}$ as two singlet. ${ }^{13}$ C NMR spectroscopy was also in accordance with the assigned structure. In IR spectrum, the absorbance corresponding to hydroxyl group was observed at 3455 $\mathrm{cm} .{ }^{-1}$ The alcohol 83 was treated with phthalimide in presence of DIAD and TPP in THF at room temperature to afford phthalimide derivative $\mathbf{8 4}$ with 28% yield. ${ }^{1} \mathrm{H}$ NMR spectrum was showing extra protons in aromatic region at $\delta 7.67-7.79(4 \mathrm{H}) \mathrm{ppm}$ as multiplet corresponding to phthalimide group. ${ }^{13} \mathrm{C}$ NMR spectrum was in accordance with the structure, where amide carbonyl of phthalimide appeared at $\delta 167.63 \mathrm{ppm}$. Further confirmation was obtained by IR spectrum, which showed absorbance for phthalimide group at 1775 and $1712 \mathrm{~cm} .^{-1}$

Scheme 10

Deprotection of the 1,2 -acetonide group and concomitant methyl glycosidation of 84 was accomplished using conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (catalytic) in methanol to get a mixture of methyl acetal ($\alpha: \beta=45: 55$) 85 and 86 , which were separated by silica gel column chromatography. The α-isomer (confirmed by the splitting pattern of anomeric proton) was used for next reaction. In ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 5}$, anomeric proton was
appeared at $\delta 5.05(\mathrm{~d}, J=4.7 \mathrm{~Hz}) \mathrm{ppm}$ confirming the α-relationship with C 2 proton, a singlet peak at $\delta 3.52(3 \mathrm{H}) \mathrm{ppm}$ was confirming the presence of methyl glycosidic linkage. In the ${ }^{13} \mathrm{C}$ NMR spectrum, the anomeric carbon resonated at $\delta 101.59 \mathrm{ppm}$ confirming the α-isomer, peak at $\delta 167.65 \mathrm{ppm}$ corresponded to amide carbonyl. IR spectrum showed absorbance for hydroxyl group and phthalimide group at 3436, 1774 and $1709 \mathrm{~cm},{ }^{-1}$ respectively.

Scheme 11

For achieving the appropriate functionality at C 3 and C 2 position with required streocenters, C2-C3 epoxide formation was needed. To fulfill this requirement, the hydroxyl group of compound $\mathbf{8 5}$ was treated with tosyl chloride in pyridine at room temperature to furnish the tosyl derivative 87 . In the ${ }^{1} \mathrm{H}$ NMR spectrum, resonance at δ $2.44(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$ characteristic for tosyl group was appeared, and all the other protons were resonated at their expected position.

Scheme 12

The cleavage of the benzyl ether ($-O B n$) present in 87 was found to be problematic. Catalytic hydrogenation of $\mathbf{8 7}$ was unsuccessful even at high pressure, and the system was not suitable for Birch reduction. However, the cleavage of benzyl ether proceeded smoothly with high yield (88\%) using titanium tetrachloride ${ }^{32}$ in dichloromethane at -78 ${ }^{\circ} \mathrm{C}$ to produce the alcohol $\mathbf{8 8}$. The disappearance of resonance due to benzyl group was conspicuous in its ${ }^{1} \mathrm{H}$ NMR spectrum. In IR spectrum, absorbance at $3436 \mathrm{~cm}^{-1}$ was in accordance with the presence of hydroxyl group. Our next endeavor was to accomplish the epoxide 89. Accordingly, the tosyl derivative 88 was treated with potassium
carbonate in methanol, unfortunately decomposition of starting material took place rapidly without getting traces of desired product.

Scheme 13

Having encountered the failure at this stage of our synthetic strategy, we decided to modify our synthetic pathway. Our explanation for this phenomenon was due to the presence of phthalimide group, which is highly base sensitive. Accordingly, instead of introducing phthalimide in the initial stage of our synthetic endeavor, we planned to install it in the later stage of synthetic sequence, there by avoiding the problem of epoxide formation.

Thus, we started with 1,2:5,6-Di- O-isopropylidene- α-D-glucofuranose 77, which was converted to diol $\mathbf{9 1}$ following literature procedure. ${ }^{33}$ The free hydroxyl group of $\mathbf{7 7}$ was protected as p-methoxybenzyl ether using sodium hydride, PMBCl in DMF to obtain compound 90. The 5,6-O-isopropyledene group of 90 was deketalised by catalytic p-TSA in methanol at room temperature to obtain compound 91 with 93% yield. Spectral and elemental data was in accordance with the reported value.

Scheme 14

Since, we planned to perform Mitsunobu reaction for the introduction of amine functionality; inversion of stereocenter at C5 was required. Thus, compound 91 was
processed forward through benzyolation, tosylation, epoxidation and reduction to alcohol 95. In ${ }^{1} \mathrm{H}$ NMR spectrum, newly generated methyl group appeared at $\delta 1.03(J=6.3 \mathrm{~Hz})$ ppm as a doublet, methyl groups of acetonide moiety were at $\delta 1.25(3 \mathrm{H})$ and $1.40(3 \mathrm{H})$ ppm as two singlet. All the other protons were at their expected position. In IR spectrum, absorption due to hydroxyl group at $3403 \mathrm{~cm}^{-1}$ was observed.

Scheme 15

The secondary hydroxyl group in 95 was protected as its benzyl ether 96 (Scheme 16). In the ${ }^{1} \mathrm{H}$ NMR spectrum, peaks at aromatic region due to benzyl group were appeared at $\delta 7.11-7.30 \mathrm{ppm}$ as multiplet, whereas benzylic $-\mathrm{CH}_{2}$ was observed at $\delta 4.25$ $(1 \mathrm{H})$ and $4.69(1 \mathrm{H}) \mathrm{ppm}$ as two doublets with coupling constant 11.4 Hz . The product was further confirmed by other spectral data and elemental analysis.

Scheme 16

Compound 96 on treatment with 1% methanolic HCl resulted in the cleavage ${ }^{34}$ of isopropylidene moiety to furnish α and β-isomer 97 and 98 in $45: 55$ ratios, which were
separated by silica gel column chromatography. For the sake of selectivity in the epoxide opening reaction only α-isomer (confirmed by anomeric proton splitting in ${ }^{1} \mathrm{H}$ NMR) was taken for the next reaction. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 97 , anomeric $-O M e$ moiety resonated as a sharp singlet for three protons at $\delta 3.51 \mathrm{ppm}$. Anomeric proton resonated as a doublet at $\delta 5.05 \mathrm{ppm}$ with coupling constant 4.8 Hz in evidence of the α linkage of -OMe moiety. ${ }^{13} \mathrm{C}$ NMR spectrum and analytical data were in accordance with the assigned structure of compound 97 . In the IR spectrum, characteristic absorption for hydroxyl group was observed at $3422 \mathrm{~cm} .^{-1}$

Alcohol 97 was treated with tosyl chloride in pyridine at room temperature to provide 99 in good yield. ${ }^{1} \mathrm{H}$ NMR spectrum showed three protons at $\delta 2.45$ (s) ppm, which were the characteristic peak of tosyl group. The PMB ether was cleaved by DDQ ${ }^{35}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}$ (19:1) to obtain hydroxyl compound $\mathbf{1 0 0}$. Disappearance of signal due to the PMB group was observed in ${ }^{1} \mathrm{H}$ NMR spectrum. In IR spectrum, absorption at 3468 cm^{-1} showed the presence of hydroxyl group. All the other spectral data and elemental analysis were in accordance with the assigned structure.

Scheme 17
The hydroxyl compound $\mathbf{1 0 0}$ was subjected to the treatment of potassium carbonate in methanol at ambient temperature to obtain epoxide 101. In ${ }^{1} \mathrm{H}$ NMR spectrum, disappearance of signal due to tosyl group was noted. Considering the stereochemistry of the epoxide (above the plane) and the $-O M e$ group of glycoside (down the plane), we anticipated that the Grignard reaction would deliver the product with good regioselectivity. On treatment of MeMgCl and CuCN^{36} in THF at $0{ }^{\circ} \mathrm{C}$, epoxide $\mathbf{1 0 1}$ was converted to alcohol 102. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 2}$ revealed one additional doublet at $\delta 1.36(J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$ in accordance with the introduction of the methyl group at C3. The anomeric proton was resonated as singlet at $\delta 4.81 \mathrm{ppm}$ in evidence of trans
relationship with C 2 proton. It was further supported by ${ }^{13} \mathrm{C}$ NMR information, mass and elemental analysis studies.

Scheme 18

The newly generated hydroxyl group of $\mathbf{1 0 2}$ was protected as its benzyl ether $\mathbf{1 0 3}$ on treatment of benzyl bromide in presence of NaH in DMF. The compound 104 was thoroughly investigated with the spectral and analytical data.

Having the compound $\mathbf{1 0 3}$ in hand, our immediate concern was its transformation into the corresponding lactone derivative 105 . Thus, 103 was subjected to acidic hydrolysis using aq. $0.4 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in dioxane ${ }^{37}$ at $70{ }^{\circ} \mathrm{C}$ to afford the lactol 104, which was oxidized to lactone $\mathbf{1 0 5}$ with PDC in dichloromethane without any further purification. The structure of lactone 105 was well supported by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR studies together with elemental analysis. In ${ }^{13} \mathrm{C}$ NMR spectrum, characteristic resonance due to carbonyl carbon of lactone moiety appeared at $\delta 174.37 \mathrm{ppm}$. It was further supported by IR absorbance at $1783 \mathrm{~cm}^{-1}$ characteristic for lactone group.

Scheme 19

Our next endeavor was the introduction of exo-methylene moiety in 108. Accordingly, lactone $\mathbf{1 0 5}$ was treated with excess of MeMgCl in THF at $0^{\circ} \mathrm{C}$ to obtain diol compound 106. In ${ }^{1} \mathrm{H}$ NMR spectrum, two methyl groups attached with the tertiary carbon appeared at $\delta 1.19$ (s) and 1.22 (s) ppm. The structure was further supported by ${ }^{13} \mathrm{C}$ NMR spectrum (the tertiary carbon at $\delta 73.58 \mathrm{ppm}$).

Scheme 20

The secondary hydroxyl group of $\mathbf{1 0 6}$ was selectively protected as its methoxy methyl ether by treating it with MOMCl in presence of sodium hydride in DMF. In the ${ }^{1}$ H NMR spectrum, the -OMe moiety of MOM ether appeared as a sharp singlet at $\delta 3.34$ ppm , whereas rest of the protons were appeared at their expected resonance position. Other spectral data as well as elemental analysis of $\mathbf{1 0 7}$ were in close agreement with the assigned structure.

Scheme 21

Our next job was to generate the remaining stereocenter at C22 [numbering based on Superstolide A (26)] by employing regio and streoselective hydroboration oxidation reaction. Thus, the required double bond was generated by base catalyzed elimination of tertiary hydroxyl group. Accordingly, compound 107 was treated with excess triethylamine, methanesulphonyl chloride and DMAP in dichloromethane to obtain the substituted olefin ${ }^{38} \mathbf{1 0 8}$. In ${ }^{1} \mathrm{H}$ NMR spectrum, two singlet at $\delta 4.86$ and 4.94 ppm due to the exo-methylene moiety were observed. In addition, disappearance of two tertiary methyls and introduction of vinylic methyl at $\delta 1.64$ (s) ppm was further secured the assigned structure. In the ${ }^{13} \mathrm{C}$ NMR spectrum, the two double bonded carbons appeared at
$\delta 142.79$ and 112.31 ppm , respectively. In the following synthetic sequence, installation of ammine functionality was planned at C26 [numbering based on Superstolide A (26)]. For this endeavor, cleavage of benzyl ether was needed. Hence, $\mathbf{1 0 8}$ was treated with Na /naphthalene ${ }^{39}$ in THF at $0{ }^{\circ} \mathrm{C}$ to produce diol $\mathbf{1 0 9}$ with 96% yield. Disappearance of aromatic protons corresponding to benzyl ring was observed in ${ }^{1} \mathrm{H}$ NMR spectrum, whereas rest of the protons resonated at their expected position. ${ }^{13} \mathrm{C}$ NMR spectrum was also in support of the structure. In IR spectrum, characteristic broad absorption peak due to hydroxyl group was appeared at $3439 \mathrm{~cm} .^{-1}$

Keeping in mind, the higher reactivity of the allylic hydroxyl group, diol $\mathbf{1 0 9}$ was treated with 1 eq of benzyl bromide in presence of sodium hydride at $0^{\circ} \mathrm{C}$ to accomplish the selective protection of the hydroxyl group at allylic position to provide compound 110. In ${ }^{1} \mathrm{H}$ NMR spectrum, appearance of protons corresponding to benzylic $-\mathrm{CH}_{2}$ moiety as two doublet at $\delta 4.45$ and $4.67(J=11.8 \mathrm{~Hz}) \mathrm{ppm}$ and aromatic protons as multiplets in the region of $\delta 7.27-7.34(5 \mathrm{H}) \mathrm{ppm}$ were traced. The structure was also supported by ${ }^{13} \mathrm{C}$ and elemental analysis.

Scheme 22
We next envisaged to perform the sequential hydroboration oxidation reaction to generate the remaining stereocenter at C22 (numbering based on 26). Thus, the olefin $\mathbf{1 1 0}$ was treated with $9-\mathrm{BBN}^{40}$ under refluxing condition in THF, followed by oxidation with hydrogen peroxide to obtain diol $\mathbf{1 1 1}$ with 91% yield. All spectral and analytical data were supported the assigned structure. The newly generated hydroxyl group was
selectively protected as PMB ether by using PMBCl in presence of sodium hydride in DMF. In the ${ }^{1} \mathrm{H}$ NMR spectrum, characteristic resonance due to PMB group appeared as sharp singlet at $\delta 3.79(3 \mathrm{H}) \mathrm{ppm}$, whereas rest of the protons were resonated at their expected position.

After successful installation of all the required streocenters, our next job was to introduce amine functionallty. Accordingly, 112 were treated with TPP, DIAD and phthalimide at room temperature, unfortunately only starting material was recovered. Same result was obtained when DPPA 41 was used instead of phthalimide under same reaction condition.

Scheme 23

Being unsuccessful in the introduction of the amine functionality in a single step, we opted for a two step sequence. Thus, the free hydroxyl group of compound $\mathbf{1 1 2}$ was converted to corresponding mesylate derivative $\mathbf{1 1 5}$ using MsCl and triethylamine in dichloromethane at $0{ }^{\circ} \mathrm{C}$. The purpose behind the introduction of mesyl group at this stage was to use the leaving group character of mesyl group. In the ${ }^{1} \mathrm{H}$ NMR spectrum, methyl group characteristic of mesyl moiety appeared at $\delta 2.90 \mathrm{ppm}$ as sharp singlet, whereas all other protons were well corresponding to the assigned structure. For the intended introduction of the azide group, $\mathbf{1 1 5}$ were treated with sodium azide in DMF at $70{ }^{\circ} \mathrm{C}$ to furnish 114. However to our surprise, the product formed was not the desired azide derivative $\mathbf{1 1 4}$, but the cyclized product $\mathbf{1 1 6}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1 6}$, the aromatic protons due to benzene ring and the benzylic $-\mathrm{CH}_{2}$ moiety were absent, and there was some downfield shift of the methylene protons of the chain. In addition, mass
spectral analysis showed the peak at $m / z 361$ corresponds to $[\mathrm{M}+\mathrm{Na}]^{+}$further secured the structure of 116.

Scheme 24
Since all the methods known to introduce amine functionality remained futile, because of undesired side reaction that is cyclization with benzyl ether cleavage, we thought of changing the protecting group from benzyl and MOM to isopropylidene derivative, thereby avoiding the cyclization problem. Thus, free hydroxyl group of $\mathbf{1 1 2}$ was converted to its acetate ester $\mathbf{1 1 7}$ by treatment with acetic anhydride, triethyl amine and DMAP in dichloromethane with quantitative yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the characteristic methyl group of acetate moiety appeared at $\delta 2.05 \mathrm{ppm}$ as sharp singlet and downfield migration of proton correspond to C26 [numbering based on 26] at $\delta 5.08 \mathrm{ppm}$ were observed. In ${ }^{13} \mathrm{C}$ NMR spectrum, carbonyl carbon corresponding to acetate moiety was appeared at $\delta 170.29 \mathrm{ppm}$. Absorption at $1733 \mathrm{~cm}^{-1}$ in IR spectrum was in evidence of ester moiety in the compound 117. For the cleavage of PMB and benzyl ether, we followed cat. hydrogenation method, but only starting material was recovered, whereas Birch reduction with sodium or lithium in liquid ammonia or naphthalene provided decomposed starting material. Finally, we circumvented the aforesaid failure by treatment of acetate derivative 117 with titanium(IV) chloride at $0{ }^{\circ} \mathrm{C}$ for the cleavage of benzyl ether resulting in the simultaneous removal of all the ether linkage (benzyl, pmethoxybenzyl and methoxy methyl) affording 118. The achievement of spectral data of compound $\mathbf{1 1 8}$ was a difficult tusk because of the acetate migration among the free
hydroxyl group on standing for a few second in spectroscopic solvent in NMR tube. So we proceeded further without taking any spectral characterization.

118

Scheme 25

Selectively, the primary hydroxyl group of $\mathbf{1 1 8}$ was protected as TBDPS ether by treating it with TBDPSCl in presence of triethylamine and DMAP (cat) in dichloromethane at ambient temperature, followed by ketalisation of both the secondary hydroxyl group using 2,2-dimethoxypropane in presence of catalytic amount of PPTS in dichloromethane to afford $\mathbf{1 2 0}$.

Scheme 26

In ${ }^{1} \mathrm{H}$ NMR spectrum, one sharp singlet at $\delta 1.08(9 \mathrm{H}) \mathrm{ppm}$ corresponding to three methyl group and at $\delta 7.37-7.70(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm}$ for the aromatic moiety were secured the presence of TBDPS ether. Two singlet at $\delta 1.26(3 \mathrm{H})$ and $1.29(3 \mathrm{H}) \mathrm{ppm}$ corresponding to isopropylidene group and a sharp singlet at $\delta 2.10(3 \mathrm{H}) \mathrm{ppm}$ due to acetate methyl
were also indicated the product formation. The assigned structure was further supported by ${ }^{13} \mathrm{C}$ NMR spectrum, where carbonyl carbon of acetate at $\delta 170.95 \mathrm{ppm}$, methyl group of TBDPS at $\delta 27.0 \mathrm{ppm}$ were present. IR spectrum showed a strong absorbance at 1739 cm^{-1} corresponding to acetate ester. Elemental analysis was also in support of the structure of $\mathbf{1 2 0}$. Hydrolysis of the acetate ester of $\mathbf{1 2 0}$ was performed by using potassium carbonate in methanol to get alcohol 121. Disappearance of signal due to acetate group was observed in ${ }^{1} \mathrm{H}$ NMR spectrum, whereas all other protons were at their expected chemical shift value. The structure was also supported by ${ }^{13} \mathrm{C}$ NMR and elemental analysis. In IR spectrum, absorbance due to ester group was absent and a broad brand for hydroxyl group appeared at $3447 \mathrm{~cm} .^{-1}$

123
Scheme 27
The hydroxyl compound $\mathbf{1 2 1}$ was treated with MsCl in presence of triethylamine and catalytic amount of DMAP in dichloromethane at $0{ }^{\circ} \mathrm{C}$ to obtain mesyl derivative 122, which was used for next reaction without further purification. So the crude mesylate derivative $\mathbf{1 2 2}$ was heated at $70{ }^{\circ} \mathrm{C}$ in DMF with sodium azide for 22 h to get compound 123, whose spectral data was well corresponded with the reported ${ }^{27}$ value (Table 1).
Table 1: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of Urpi's intermediate 53^{27} and compound 123

${ }^{1}$ H NMR (400 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) Urpi's intermediate 53	${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) compound 123	${ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Urpi's intermediate 53	${ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ compound 123
$\begin{gathered} 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, \\ 3 \mathrm{H}) \end{gathered}$	$\begin{gathered} 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, \\ 3 \mathrm{H}) \end{gathered}$	12.7	12.71
0.94 (d, J = 6.7 Hz ,	0.95 (d, $J=6.7 \mathrm{~Hz}$,	13.0	13.00

3H)	3H)		
1.07 (s 9H)	1.08 (s, 9H)	14.6	14.58
1.24 (s 3H)	1.24 (s, 3H)	19.4	19.37
$\begin{gathered} 1.25(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \\ 3 \mathrm{H}) \end{gathered}$	$\begin{gathered} 1.26(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \\ 3 \mathrm{H}) \end{gathered}$	23.6	23.63
1.30 (s, 3H)	1.31 (s, 3H)	25.3	25.34
1.76-1.62 (m, 1H)	$1.74-1.67$ (m, 1H)	27.0	26.99
$\begin{gathered} 1.89 \text { (quinted, } J=6.6, \\ 3.9 \mathrm{~Hz} \text {) } \\ \hline \end{gathered}$	1.86-1.90 (m, 1H)	34.0	33.97
$\begin{gathered} 3.35(\mathrm{dd}, J=6.6,4.2 \\ \mathrm{Hz}, 1 \mathrm{H}) \\ \hline \end{gathered}$	$\begin{gathered} 3.36(\mathrm{dd}, J=6.6, \\ 4.2 \mathrm{~Hz}, 1 \mathrm{H}) \\ \hline \end{gathered}$	35.4	35.46
$\begin{gathered} 3.50(\mathrm{dq}, J=6.7,4.2 \\ \mathrm{Hz}, 1 \mathrm{H}) \\ \hline \end{gathered}$	$\begin{gathered} 3.51(\mathrm{dq}, J=6.7 \\ 4.2 \mathrm{~Hz}, \mathrm{H}) \\ \hline \end{gathered}$	59.6	59.65
3.77-3.65 (m, 3H)	$3.75-3.66$ (m, 3H)	65.0	65.03
7.45-7.33 (m, 6H)	7.44-7.36 (m, 6H)	69.5	69.51
7.70-7.63 (m, 4H)	7.69-7.65 (m, 4H)	78.1	78.07
		100.7	100.74
		127.5	127.49
		129.4	129.46
		129.5	129.50
		133.9	133.90
		134.0	134.00
		135.7	135.70
		135.8	135.78

In conclusion, we have developed a novel route for the synthesis of C21-C26 fragment of Superstolide A (26) starting from readily available starting material D-(+)glucose. The study involves CuCN coordinated regeioselective opening of $\mathrm{C} 2-\mathrm{C} 3$ (Numbering, according to 76) epoxide $\mathbf{1 0 1}$ by MeMgCl . We have also demonstrated highly stereospecific hydroboration-oxidation of the exo-methylenic group.

EXPERIMENTAL

Experimental

1,2-O-isopropylidene-3-O-Benzyl-6-O-benzoyl- α-D-glucofuranose (80):

To a solution of $79(15.5 \mathrm{~g}, 50.0 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(10.5 \mathrm{~mL}, 75.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400$ mL) was added benzoyl chloride $(6.44 \mathrm{~mL}, 55.0 \mathrm{mmol})$ at $-10^{\circ} \mathrm{C}$. The reaction mixture was stirred for 4 h at $0{ }^{\circ} \mathrm{C}$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, brine, dried (over $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated. The residue was purified on silica gel by using EtOAc:hexane (1:4) to give $\mathbf{8 0}(19.01 \mathrm{~g})$ as a yellow color liquid.

Yield	: 92%
Mol. Formula	: $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{7}$
Optical Rotation [$\alpha]_{\text {D }}{ }^{25}$: -30.0 (c 1.8, CHCl_{3})
IR ($\mathbf{C H C l}_{\mathbf{3}} \mathrm{Cm}^{\mathbf{- 1}}$: 3437, 2988, 2933, 1720, 1602, 1453, 1375, 1315, 1277, 1218, 1164, 1073, 1026, 769, 712.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$: $\delta 1.32(\mathrm{~s}, 3 \mathrm{H}) 1.47(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{bs}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=8.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.34$ $(\mathrm{m}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=5.8,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.68(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.95(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.60(\mathrm{~m}, 8 \mathrm{H}), 8.03-$ 8.07 (m, 2H) ppm.
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 26.32,26.79,67.17,67.91,72.19,79.49,81.62, \\ & 82.11,105.21,111.81,127.82,128.16,128.30,128.64, \\ & 129.71,129.86,133.05,137.16,166.96 \mathrm{ppm} . \end{aligned}$
ESI MS (m / z)	: $437.4\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right.$
Elemental Analysis	Calcd: C, 66.65; H, 6.32.
	Found: C, 66.55; H, 6.20.

1,2-O-isopropylidene-3-O-Benzyl-6-O-benzoyl-5-O-p-toluene sulphonyl- α-Dglucofuranose (81):

Compound $80(18.0 \mathrm{~g}, 43.47 \mathrm{mmol}), \mathrm{TsCl}(20.7 \mathrm{~g}, 108.69 \mathrm{mmol})$ and pyridine (100 mL) were stirred at room temperature for 24 h . Pyridine was removed under vacuo and the residue extracted with EtOAc, washed with 1 N HCl , water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was purified by silica gel column chromatography by eluting with light petroleum: EtOAc (10:1) to give 81 (23.2 g).

Yield	: 94\%
Mol. Formula	: $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{9} \mathrm{~S}$
Optical Rotation [$\alpha]_{\text {D }}{ }^{25}$	$:+1.8\left(c 1.1, \mathrm{CHCl}_{3}\right)$
IR ($\mathbf{C H C l}_{\mathbf{3}} \mathrm{cm}^{-1}$: 3021, 1723, 1600, 1453, 1374, 1274, 1216, 1116, 1177, 1026, 1076, 921, 757, 712.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$: \delta 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~d}, J=$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.39(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=3.7 \mathrm{~Hz}$, 1 H), 4.52-4.60 (m, 3H), 5.23 (ddd, $J=2.1,6.0,7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.22-7.46(\mathrm{~m}, 8 \mathrm{H}), 7.58$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.797.84 (m, 2H) ppm.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$: $\delta 21.30,26.05,26.56,63.37,71.87,75.84,78.48$, 80.88, 81.24, 104.97, 111.93, 127.29, 127.73, 128.01, 128.27, 129.45, 129.50, 132.83, 133.81, 137.09, 144.50, 165.45 ppm .
ESI MS (m/z)	$591[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis	Calcd: C, 63.37; H, 5.67.
	Found: C, 63.22; H, 5.59.

1,2-O-isopropylidene-3-O-Benzyl-5,6-anhydro- α-L-idofuranose (82):

Compound 81 ($23.0 \mathrm{~g}, 40.49 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(150 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(11.17 \mathrm{~g}, 80.98 \mathrm{mmol})$ was added. The mixture was stirred at room temperature for 4 h and concentrated. The residue was dissolved in water and extracted with ethyl acetate, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Purification on silica gel using light petroleum: EtOAc (10:1) as an eluent afforded pure epoxide $82(11.0 \mathrm{~g})$.

Yield
Mol. Formula
Optical Rotation [$\alpha]_{\text {D }}{ }^{25}$
IR ($\mathbf{C H C l}_{\mathbf{3}}$) cm^{-1}
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

Elemental Analysis
: 93\%
: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5}$
: -71.1 (c 2.25, CHCl_{3}).
: 2988, 2933, 1598, 1454, 1383, 1216, 1164, 1075, 1027, 896, 856, 741, 699.
: $\delta 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{dd}, J=2.7,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.75$ (dd, $J=4.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (ddd, $J=2.7$, $4.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.79 (dd, $J=3.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$ (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}$, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=$ $3.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29-7.35 (m, 5H) ppm.
: $\delta 26.27,26.80,43.01,50.07,71.79,81.97,82.30$, $82.58,105.36,111.80,127.61,127.99,128.45,137.17$ ppm.
Calcd: C, 65.74; H, 6.90.
Found: C, 65.54; H, 6.79.

1,2-O-isopropylidene3-O-Benzyl-6-deoxy- α-L-idofuranose (83):

A suspension of LAH ($1.95 \mathrm{~g}, 51.37 \mathrm{mmol})$, and $\mathbf{8 2}(10.0 \mathrm{~g}, 34.25 \mathrm{mmol})$ in THF (200 mL) was stirred at rt for 2 h at $0^{\circ} \mathrm{C}$. The excess LAH was quenched with saturated aq. solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the residue thoroughly washed with EtOAc . The filtrate was concentrated and purified on silica gel using EtOAc:light petroleum ether (1:4) to afford $83(10.0 \mathrm{~g})$ as a white solid.
Yield :99\%
Mol. Formula $: \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5}$

Optical Rotation $\left[\alpha_{\mathbf{D}}{ }_{\mathbf{D}}^{\mathbf{2 5}}\right.$	$:-61.4\left(c \operatorname{li.4}, \mathrm{CHCl}_{3}\right)$
$\mathbf{I R}\left(\mathbf{C H C l}_{3}\right) \mathrm{cm}^{-1}$	$: 3455,2979,2931,1602,1454,1384,1217,1165$,
	$1075,1028,756,697$.

${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 200 \mathbf{~ M H z}\right) \quad: \delta 1.13(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H})$, 2.67 (bs, 1H), 3.91-3.98(m, 2H), 4.12 (quin, $J=6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.45$ (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.71(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26-7.41(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 18.44,26.30,26.77,66.13,71.79,82.25,84.24$, 104.88, 111.75, 127.87, 128.19, 128.57, 136.77 ppm.

ESI MS ($\boldsymbol{m} / \boldsymbol{z}$) : $317.3[\mathrm{M}+\mathrm{Na}]^{+}$

Elemental Analysis
Calcd: C, 65.29; H, 7.53.
Found: C, 65.01; H, 7.34.

1,2-O-isopropylidene-3-O-Benzyl-5,6-di-deoxy-5-phthalimido- α-D-glucofuranose (84):

A 50 mL three necked round bottom flask charged with TPP ($4.45 \mathrm{~g}, 17.0 \mathrm{mmol}$) phthalimide ($2.5 \mathrm{~g}, 17.0 \mathrm{mmol}$) and THF (50 mL). The alcohol $83(5.0 \mathrm{~g}, 17.0 \mathrm{mmol})$ in 2 mL THF and DIAD ($2.9 \mathrm{~mL}, 18.7 \mathrm{mmol}$) in 2 mL THF was added to the flask simultaneously dropwise slowly over a period of 5 min , with stirring, the solution turned yellow. The reaction permitted to proceed at room temperature for 24 h , the solution then concentrated and product purified by column chromatography eluting with ethyl acetate:
hexane (1:4) to obtain compound $\mathbf{8 4}(2.0 \mathrm{~g})$ as yellow color solid (Melting point: 104.5 $107.1^{\circ} \mathrm{C}$).

Yield	: 28%
Mol. Formula	: $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{6}$
Optical Rotation [$\alpha]_{\text {D }}{ }^{25}$: -25.2 (c 3.25, CHCl_{3})
IR ($\mathbf{C H C l}_{\mathbf{3}} \mathrm{cm}^{\mathbf{- 1}}$	$\begin{aligned} & : 2987,2935,1775,1712,1455,1384,1210,1190, \\ & 1072,1060,712 . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$: \delta 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H})$ $3.73(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.45(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.61-4.73 (m, 1H), 5.02 (dd, $J=3.2,10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.94(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.67-7.79$ (m, 4H) ppm.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 17.05,26.37,26.84,45.30,71.45,79.82,80.26, \\ & 81.86,105.03,111.71,123.11,127.71,128.16,128.37, \\ & 131.89,133.73,136.40,167.63 \mathrm{ppm} . \end{aligned}$
ESI MS (m/z)	: $426\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right.$
Elemental Analysis	$\begin{aligned} & \text { Calcd: C, } 68.07 ; \text { H, } 5.95 . \\ & \text { Found: C, } 67.84 ; \text { H, } 5.69 . \end{aligned}$

Methyl 5,6-di-deoxy-3-O-Benzyl-5-phthalimido- α-D-glucofuranoside (85):

A solution of $\mathbf{8 4}(2.0 \mathrm{~g}, 4.73 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.5 \mathrm{~mL})$ was refluxed for 4 h . The reaction mixture was cooled to rt and neutralized with triethylamine, solvent evaporated and the residue was purified on silica gel using ethyl acetate and light petroleum (3:10) as eluent to provide $\mathbf{8 5}(0.68 \mathrm{~g}, 40 \%)$ and $\mathbf{8 6}(1.02 \mathrm{~g}$, 60%) as pale yellow solid ($\mathrm{mp} ; 117.6^{\circ} \mathrm{C}-119.2{ }^{\circ} \mathrm{C}$).

Yield
: 91%

Mol. Formula	: $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{6}$
Optical Rotation [$\alpha]_{\text {D }}{ }^{25}$: +56.0 (c 1.0, CHCl_{3})
IR ($\mathbf{C H C l}_{\mathbf{3}} \mathrm{cm}^{-1}$	$\begin{aligned} & : 3436,2934,1774,1709,1454,1387,1358,1190 \text {, } \\ & 1119,1034,721 . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$: \delta 1.48(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.86(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}),$ $3.52(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{dd}, J=2.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$ (bs, $1 \mathrm{H}), 4.26(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.67(\mathrm{~m}, 2 \mathrm{H})$, $4.94(\mathrm{dd}, \quad J=4.8,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=4.7 \mathrm{~Hz}$, $1 \mathrm{H}), ~ 6.96-7.08(\mathrm{~m}, 5 \mathrm{H}), 7.66-7.77(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 16.79,45.67,55.53,71.04,76.78,77.65,82.53, \\ & 101.59,122.98,127.43,127.95,128.29,131.90, \\ & 133.58,136.72,167.65 \mathrm{ppm} . \end{aligned}$
ESI MS (m/z)	: $420[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis	Calcd: C, 66.49; H, 5.38.
	Found: C, 66.54; H, 5.49.

Methyl 5,6-di-deoxy-3-O-Benzyl-5-phthalimido-2-O-p-toluene sulphonyl- α-Dglucofuranoside (86):

Compound 85 ($2.0 \mathrm{~g}, 5.03 \mathrm{mmol}$), $\mathrm{TsCl}(2.4 \mathrm{~g}, 12.59 \mathrm{mmol})$ and pyridine (15 mL) were stirred at room temperature for 24 h . Pyridine was removed under vacuo and the residue extracted with EtOAc , washed with 1 N HCl , water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was purified by silica gel column chromatography by eluting with light petroleum: EtOAc (17:3) to give 87 (2.6 g).

Yield
: 94\%
Mol. Formula
: $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{8} \mathrm{~S}$
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}^{-1}} \quad: 3022,2936,1775,1711,1597,1454,1386,1217$, 1190, 1047, 770, 720.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$: $\delta 1.42(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H})$, $4.07(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=3.1,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.33(\mathrm{~d}, ~ J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.58(\mathrm{~m}, 1 \mathrm{H})$, 4.81-4.87 (m, 2H), 4.94 (dd, $J=6.1,9.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.81-7.04 (m, 5H), 7.34 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.63-7.72 (m, 4H), 7.84 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 16.61,21.48,45.67,55.19,71.25,75.65,79.25, \\ & 83.13,99.80,122.87,127.47,127.84,127.98,128.10, \\ & 129.62,131.73,133.21,133.54,135.84,144.92, \\ & 167.42 \mathrm{ppm} . \end{aligned}$
Elemental Analysis	Calcd: C, 63.15; H, 5.30. Found: C, 62.92; H, 5.11.

Methyl 5,6-di-deoxy-5-phthalimido-2-O-p-toluene sulphonyl- α-D-glucofuranoside (88):

To a solution of $87(1.1 \mathrm{~g}, 1.99 \mathrm{mmol})$, in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ under nitrogen atmosphere at $-78{ }^{\circ} \mathrm{C}, \mathrm{TiCl}_{4}(0.44 \mathrm{~mL}, 3.99 \mathrm{mmol})$ was added. The reaction mixture stirred for 8 h , at the same temperature. Excess reagent was quenched by saturated aq. sodium bicarbonate, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over sodium sulphate, evaporated. The reaction mixture was purified on silica gel column chromatography by eluting with light petroleum: ethyl acetate (4:1) to obtain $\mathbf{8 8}(0.8 \mathrm{~g})$ as colourless liquid.

Yield
Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}}{ }^{-1}$
: 88\%
: $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{8} \mathrm{~S}$
: $-7.4\left(c 2.45, \mathrm{CHCl}_{3}\right)$
: 3436, 2930, 1775, 1709, 1598, 1451, 1385, 1191, 1178, 1094, 1052, 979, 722.

${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$: \delta 1.57(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.87-2.96(\mathrm{~m},$ $1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.50$ (m, 1H), $4.65(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=10.3,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.97(\mathrm{~s}, 1 \mathrm{H}) 7.34(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.82(\mathrm{~m}$, $6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 16.69,21.63,46.46,55.57,73.35,82.73,84.96, \\ & 106.22,123.22,127.94,130.02,131.78,132.82, \\ & 133.92,133.99,145.30,167.85 \mathrm{ppm} . \end{aligned}$
ESI MS (m/z)	: $484.2[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis	Calcd: C, 57.26; H, 5.02.
	Found: C, 57.12; H, 5.10.

1,2-O-isopropylidene-3-O-(4-methoxybenzyl)-6-O-benzoyl- α-D-glucofuranose (92):

To a solution of $91(15.0 \mathrm{~g}, 44.12 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(12.3 \mathrm{~mL}, 88.23 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(400 \mathrm{~mL})$ was added benzoyl chloride $(5.68 \mathrm{~mL}, 48.53 \mathrm{mmol})$ at $-10{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 4 h at $0{ }^{\circ} \mathrm{C}$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified on silica gel by using EtOAchexane (1:4) to give $92(17.5 \mathrm{~g})$, as a yellow color liquid.

Yield

Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}^{-1}}$
: 89\%
: $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{8}$
: -29.7 (c 0.9, CHCl_{3})
: 3498, 2989, 2936, 1720, 1612, 1585, 1514, 1452, 1315, 1277, 1250, 1217, 1113, 1073, 1027, 831, 755, 712.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 200 \mathbf{~ M H z}\right) \quad: \delta 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~d}, \mathrm{~J}=$ 3.0 Hz, 1H), 4.07-4.22 (m, 2H), 4.28-4.43 (m, 2H), 4.43-4.61 (m, 3H), $5.85(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J$

$$
=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.46(\mathrm{~m}, 3 \mathrm{H}),
$$ 7.93-7.98 (m, 2H) ppm.

1,2-O-isopropylidene-3-O-(4-methoxybenzyl)-6-O-benzoyl-5-O-p-toluene sulphonyl-α-D-glucofuranose (93):

Compound 92 ($17.0 \mathrm{~g}, 38.28 \mathrm{mmol}$), $\mathrm{TsCl}(14.6 \mathrm{~g}, 76.57 \mathrm{mmol})$ and pyridine (50 mL) were stirred at room temperature for 24 h . Pyridine was removed under vacuo and the residue extracted with EtOAc , washed with 1 N HCl , water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was purified by silica gel column chromatography by eluting with light petroleum: EtOAc (17:3) to give 93 (17.0 g).

Yield
Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}}{ }^{-1}$
: 74\%
: $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{O}_{10} \mathrm{~S}$
: - 4.4 (c 1.0, CHCl_{3})
: 3022, 2990, 2935, 2837, 1724, 1612, 1601, 1514, 1452, 1373, 1217, 1190, 1114, 1075, 1027, 918, 815, 712, 667.

$$
\begin{array}{ll}
{ }^{1} \mathbf{H} \text { NMR }\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) & : \delta 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, \\
& 3 \mathrm{H}), 4.10(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=12.7,6.1 \\
& \mathrm{Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=7.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J= \\
& 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J= \\
& 10.8,1 \mathrm{H}), 4.65(\mathrm{dd}, J=12.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dt}, J= \\
& 2.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J= \\
& 8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \\
& \mathrm{Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.4 \mathrm{~Hz}, \\
& 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.90-7.92(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} . \\
& : \delta 21.50,26.28,26.77,55.13,63.47,71.95,75.95, \\
& 78.64,80.77,81.60,105.17,112.07,113.83,127.49, \\
\left.{ }^{13} \mathbf{C} \text { NMR (CDCl }{ }_{3}, 5 \mathbf{5 0} \mathbf{~ M H z}\right) & 128.13,129.32,129.61,129.65,129.71,132.89, \\
& 134.24,144.49,159.42,165.52 \mathrm{ppm} . \\
\text { ESI MS (m/z) } & : 612[\mathrm{M}+\mathrm{Na}]^{+} \\
\text {Elemental Analysis } & \text { Calcd: C, } 62.19 ; \mathrm{H}, 5.72 . \\
& \text { Found: C, } 61.98 ; \mathrm{H}, 5.69 .
\end{array}
$$

1,2-O-isopropylidene-3-O-(4-methoxybenzyl)-5,6-anhydro- α-L-idofuranose (94):

Compound 93 (16.0 g , 26.75 mmol) was dissolved in $\mathrm{MeOH}(80 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($7.4 \mathrm{~g}, 53.5 \mathrm{mmol}$) was added. The mixture was stirred at room temperature for 4 h and then concentrated. The residue was dissolved in water and extracted with ethyl acetate, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Purification on silica gel using light petroleum: EtOAc (17:3) as an eluent afforded pure epoxide $94(8.0 \mathrm{~g})$.

Yield
Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR ($\left.\mathbf{C H C l}_{3}\right) \mathrm{cm}^{-1}$
: 93\%
: $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6}$
: -65.4 (c 1.65, CHCl_{3})
: 2991, 2936, 2838, 1721, 1612, 1513, 1455, 1374,

1280, 1250, 1217, 1110, 1030, 891, 833, 755, 715.

```
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)\)
\({ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 26.27,26.80,42.97,50.09,55.11,71.47,82.00\),
Elemental Analysis
: \(\delta 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{dd}, J=4.9,2.7 \mathrm{~Hz}\),
\(1 \mathrm{H}), 2.72(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dq}, J=4.3,2.7 \mathrm{~Hz}\),
1H), 3.75 (dd, \(J=3.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.79 ( \(\mathrm{s}, 3 \mathrm{H}\) ), 3.91
(d, \(J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.59\) (d,
\(J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=\)
\(3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85\) (d, \(J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22\) (d, \(J=8.4\)
\(\mathrm{Hz}, 2 \mathrm{H}) \mathrm{ppm}\).
82.11, 83.37, 105.36, 111.74, 113.80, 128.24, 129.28,
159.42 ppm
Elemental Analysis
Calcd: C, 63.34; H, 6.88.
Found: C, 63.50; H, 6.90.
```


1,2- O-isopropylidene-6-deoxy-3-O-(4-methoxybenzyl)- α-L-idofuranose (95):

A suspension of LAH ($1.88 \mathrm{~g}, 49.68 \mathrm{mmol}$), and $94(8.0 \mathrm{~g}, 24.84 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ was stirred for 2 h at $0{ }^{\circ} \mathrm{C}$. The excess reagent was quenched with saturated solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered and the residue thoroughly washed with EtOAc. The filtrate was concentrated and purified on silica gel using EtOAc-light petroleum ether (3:7) to afford $95(8.0 \mathrm{~g})$ as a colourless liquid.

Yield
: 99\%
Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR ($\mathbf{C H C l}_{\mathbf{3}}$) cm^{-1}
: $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{6}$
: - 55.9 (c 0.8, CHCl_{3})
: 3403, 2982, 2935, 2838, 1613, 1586, 1513, 1457, 1375, 1247, 1169, 964, 832, 755, 638.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$: $\delta 1.03(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$, $2.67(\mathrm{bs}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.99$ (quin, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ (d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.55(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}$, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 18.41,26.26,26.72,55.12,66.06,71.35,81.72 \\ & \text { 82.19, 84.13, 104.84, 111.64, 113.87, 128.72, 129.57, } \\ & 159.50 \mathrm{ppm} . \end{aligned}$
ESI MS (m/z)	: 347 [M+Na] ${ }^{+}$
Elemental Analysis	Calcd: C, 62.95; H, 7.46.
	Found: C, 62.74; H, 7.31.

1,2-O-isopropylidene-5-O-Benzyl-6-deoxy-3-O-(4-methoxybenzyl)- α-L-idofuranose (96):

To a solution of $95(8.0 \mathrm{~g}, 24.69 \mathrm{mmol})$ in DMF $(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added NaH (60% dispersion in mineral oil, $1.97 \mathrm{~g}, 49.38 \mathrm{mmol}$). After 15 min , benzyl bromide (4.4 $\mathrm{mL}, 37.03 \mathrm{mmol}$) was introduced and the reaction further stirred for 1 h at room temperature. Water was carefully added to the reaction mixture, extracted with ether, washed with water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. On evaporation of solvent, the residue was purified by silica gel chromatography by eluting with light petroleum: EtOAc (1:19) to afford $96(10.0 \mathrm{~g})$.

Yield
Mol. Formula
Optical Rotation $[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad:-38.1\left(c 2.0, \mathrm{CHCl}_{3}\right)$.
$\mathbf{I R}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \mathrm{cm}^{-1} \quad: 2990,2935,1613,1586,1514,1454,1374,1251$, 1216, 1171, 1074, 1028, 830, 698, 666.

[^0]
$\left.{ }^{13} \mathbf{C ~ N M R ~ (} \mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 16.57,55.08,55.64,71.23,71.84,73.85,75.57$, 82.60, 83.65, 101.79, 113.69, 127.17, 127.61, 128.10, $129.48,129.69,139.17,159.24 \mathrm{ppm}$.
 ESI MS (m / z)
 Elemental Analysis
 : $411[\mathrm{M}+\mathrm{Na}]^{+}$
 Calcd: C, 68.02; H, 7.27.
 Found: C, 67.84; H, 7.11.

Methyl 6-deoxy-5-O-Benzyl-3-O-(4-methoxybenzyl)-2-O-p-toluene sulphonyl- α-Lidofuranoside (99):

Compound $97(4.0 \mathrm{~g}, 10.3 \mathrm{mmol})$, $\mathrm{TsCl}(4.9 \mathrm{~g}, 25.77 \mathrm{mmol})$ and pyridine (20 mL) were stirred at room temperature for 24 h . Pyridine was removed under vacuo and the residue extracted with EtOAc , washed with 1 N HCl , water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was purified by silica gel column chromatography by eluting with light petroleum: EtOAc (17:1) to give $99(4.8 \mathrm{~g})$.

Yield

Mol. Formula
Optical Rotation [$\alpha]_{D}{ }^{25}$
IR $\left(\mathbf{C H C l}_{\mathbf{3}}\right) \mathrm{cm}^{-1} \quad: 2932,2837,1613,1598,1514,1455,1370,1303$, 1249, 1190, 1177, 1127, 1097, 1027, 851, 756, 668.
${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 1.18(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H})$, 3.71 (dq, $J=6.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.98$ (dd, J $=3.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J$
$=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.61(\mathrm{~m}, 3 \mathrm{H}), 4.71(\mathrm{~d}, J=4.67 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.27 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.76(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
$\left.{ }^{13} \mathbf{C ~ N M R ~ (C D C l} 3, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: 16.10,21.59,55.11,55.43,71.46,72.16,72.70,79.01$ $79.55,82.15,99.59,113.64,127.33,127.92,128.08$,
128.18, 129.40, 129.50, 129.60, 133.37, 138.71, 144.68, 159.25 ppm .

Elemental Analysis
Calcd: C, 64.19; H, 6.32.
Found: C, 63.94; H, 6.19.

Methyl 6-deoxy-5-O-Benzyl-2-O-p-toluene sulphonyl- α-L-idofuranoside (100):

DDQ ($1.36 \mathrm{~g}, 5.99 \mathrm{mmol}$) was added to a solution of $99(2.5 \mathrm{~g}, 4.61 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}(19: 1)$, $(40 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture stirred for 2 h at room temperature, diluted with excess $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed by saturated sodium bicarbonate. Organic layer dried, concentrated under vacuum and purified on silica gel by eluting with ethyl acetate: light petroleum ether (1:4) to get alcohol $\mathbf{1 0 0}(1.6 \mathrm{~g})$.

Yield
Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$ IR $\left(\mathbf{C H C l}_{\mathbf{3}}\right) \mathrm{cm}^{-1}$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 200 \mathbf{M H z}\right) \quad: \delta 1.22(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.64(\mathrm{bs}, 1 \mathrm{H}), 2.33(\mathrm{~s}$,
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 15.11,21.57,55.38,70.44,72.80,73.59,78.61$,

Elemental Analysis
$3 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{dq}, J=6.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (dd, $J=2.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.61(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{~d}, J$ $=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}) \mathrm{ppm}$. 83.60, 99.34, 127.84, 127.91, 128.02, 128.50, 129.58, 133.17, $137.59,144.65 \mathrm{ppm}$.
: 82\%
: $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{7} \mathrm{~S}$
$:+231.1\left(c 0.7, \mathrm{CHCl}_{3}\right)$
: 3468, 2931, 1597, 1454, 1364, 1190, 1124, 1097, 1013, 855, 814, 756, 669.

$$
5
$$

$$
: \delta 15.11,21.57,55.38,70.44,72.80,73.59,78.61,
$$

$$
83.60,99.34,127.84,127.91,128.02,128.50,129.58,
$$

Calcd: C, 61.93; H, 7.09.
Found: C, 61.54; H, 7.29.

Methyl 6-deoxy-5-O-Benzyl-2,3-anhydro- α-D-gulofuranoside (101):

Compound 100 (1.5 g , 3.55 mmol) was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(0.981 \mathrm{~g} 7.11 \mathrm{mmol})$ was added. The mixture was stirred at room temperature for 2.5 h and concentrated. To the reaction mixture, water was added and extracted with ethyl acetate, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Purification on silica gel using light petroleum: $\operatorname{EtOAc}(10: 1)$ as an eluent afforded pure epoxide $101(0.89 \mathrm{~g})$.

Yield	: 95%
Mol. Formula	: $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$
Optical Rotation [$\alpha]_{\text {D }}{ }^{25}$: +41.0 (c 1.15, CHCl_{3})
IR ($\left.\mathbf{C H C l}_{3}\right)^{\text {cm }}{ }^{-1}$	$\begin{aligned} & : 2977,2908,1601,1496,1454,1354,1216,1193 \text {, } \\ & 1113,1047,973,879,754,698 . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 1.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~d}, J= \\ & 2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=0.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{quin}, \\ & J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J= \\ & 11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), \end{aligned}$ 7.14-7.30 (m, 5H) ppm.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$: $\delta 16.99,53.78,55.21,55.35,71.73,74.83,79.92$, $102.15,127.38,127.54,128.22,138.77 \mathrm{ppm}$.
ESI MS (m/z)	: 273 [M+Na] ${ }^{+}$
Elemental Analysis	Calcd: C, 67.18; H, 7.25.
	Found: C, 66.94; H, 7.01.

Methyl 5-O-Benzyl-3,6-di-deoxy-3-C-methyl- α-L-galactofuranoside (102):

A solution of $3 \mathrm{M} \mathrm{CH}_{3} \mathrm{MgC1}$ (Aldrich) in THF ($10.6 \mathrm{~mL}, 32.0 \mathrm{mmol}$) was added to a stirred suspension of $\mathrm{CuCN}(0.351 \mathrm{~g}, 3.84 \mathrm{mmol})$ in 10 mL of dry THF under argon at $0{ }^{\circ} \mathrm{C}$. After ca. 10 min a clear yellow solution was observed and a solution of $\mathbf{1 0 1}(0.8 \mathrm{~g}$, 3.2 mmol) in 5 mL of THF was slowly added. The solution was stirred for 1 h , and then quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{C} 1$. The reaction mixture was partitioned between ethyl acetate and water. Organic layer separated, dried over sodium sulphate and purified through column chromatography, eluting by ethyl acetate: pet ether (1:4) to obtain compound $102(0.8 \mathrm{~g})$.

Yield	: 94%
Mol. Formula	: $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}$
Optical Rotation [$\alpha]_{\text {D }}{ }^{25}$: +92.0 (c 0.8, CHCl_{3}).
IR ($\mathbf{C H C l}_{\mathbf{3}}$) cm^{-1}	$\begin{aligned} & : 3436,2963,2930,1496,1455,1375,1191,1106 \text {, } \\ & 1073,1028,962,739,698 . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 1.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) 1.36(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), \\ & 1.95-2.08(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{dq}, J=2.0,6.4 \\ & \mathrm{Hz}, 1 \mathrm{H}), 3.69(\mathrm{bs}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=2.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 4.43(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 4.81(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.37(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} . \end{aligned}$
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$: $\delta 15.62,17.76,43.24,54.64,71.15,74.54,80.89$, $89.05,110.69,128.03,128.28,128.49,137.28 \mathrm{ppm}$.
ESI MS (m/z)	: 289 [M+Na] ${ }^{+}$
Elemental Analysis	Calcd: C, 67.64; H, 8.33.
	Found: C, 67.33; H, 8.12.

Methyl 2,5-di- O-Benzyl-3,6-di-deoxy-3-C-methyl- α-L-galactofuranoside (103):

To a solution of $\mathbf{1 0 2}(0.9 \mathrm{~g}, 3.38 \mathrm{mmol})$ in DMF $(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added NaH (60% dispersion in mineral oil, $0.203 \mathrm{~g}, 5.07 \mathrm{mmol}$). After 15 min , benzyl bromide (0.6
$\mathrm{mL}, 5.07 \mathrm{mmol}$) was introduced and the reaction further stirred for 1 h at room temperature. Water was carefully added to the reaction mixture, extracted with ether, washed with water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. On evaporation of solvent, the residue was purified by silica gel chromatography by eluting with light petroleum: EtOAc (1:19) to afford $103(1.2 \mathrm{~g})$.

Yield	: 90%
Mol. Formula	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{4}$
Optical Rotation [$\alpha]_{\text {D }}{ }^{25}$: +23.2 (c 1.1, CHCl_{3})
IR ($\mathbf{C H C l}_{\mathbf{3}} \mathrm{cm}^{-1}$	$\begin{aligned} & : 2970,2932,2877,1496,1454,1373,1217,1192, \\ & 1108,1027,959,756,698 . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 0.96(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), \\ & 2.03-2.20(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{dd}, J=1.4,4.9 \\ & \mathrm{Hz}, 1 \mathrm{H}), 3.54-3.63(\mathrm{~m}, 2 \mathrm{H}), 4.41-4.53(\mathrm{~m}, 3 \mathrm{H}), 4.61 \\ & (\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14- \\ & 7.29(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm} . \end{aligned}$
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 15.77,16.14,40.21,54.71,71.17,71.76,73.97 \\ & 86.53,90.91,107.50,127.39,127.58,127.62,127.70 \\ & 128.23,128.31,138.06,138.76 \mathrm{ppm} . \end{aligned}$
ESI MS (m/z)	: $379.5\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right.$
Elemental Analysis	Calcd: C, 74.13; H, 7.92.
	Found: C, 73.94; H, 7.79.

(3S, 4R, 5S)-3-(benzyloxy)-5((S)-1-(benzyloxy)ethyl)-4-methyldihydrofuran-2(3H)one (105):

A stirred solution of compound $103(400 \mathrm{mg}, 1.12 \mathrm{mmol})$ and aq. $0.4 \% \mathrm{H}_{2} \mathrm{SO}_{4}(9.7$ mL) in 1,4-dioxane (30 mL) was heated at $70{ }^{\circ} \mathrm{C}$ for 6 h . Reaction mixture was neutralized by addition of solid NaHCO_{3}, filtered, concentrated and the residue partitioned between EtOAc and water. Combined organic layer was washed with brine,
dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and residue purified on silica gel column chromatography using EtOAc:light petroleum ether (6:4) to obtain lactol 104, which was used for the next reaction without further purification.

To a mixture of lactol $\mathbf{1 0 4}$ and $4 \AA$ molecular sieves powder (0.8 g) in anhydrous dichloromethane (10 mL), $\operatorname{PDC}(0.845 \mathrm{~g}, 2.25 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 1 h . Dichloromethane was removed under reduced pressure and ethyl acetate was added. Solid was filtered, the filtrate evaporated and silica gel column chromatography purification using light petroleum: EtOAc (10:1) offered $105(0.3 \mathrm{~g})$.

Yield
Mol. Formula
Optical Rotation [$\alpha]_{\text {D }}{ }^{25}$
IR ($\mathbf{C H C l}_{\mathbf{3}}$) cm^{-1}
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

ESI MS ($\boldsymbol{m} / \boldsymbol{z}$)
Elemental Analysis
: 78\% , in two steps
: $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4}$
$:+14.9\left(c 1.95, \mathrm{CHCl}_{3}\right)$
: 3019, 2975, 2934, 2875, 1783, 1496, 1455, 1378, 1311, 1216, 1142, 1117, 1092, 1065, 698, 667.
: $\delta 1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, $2.44-2.63(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{dq}, J=3.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=3.9,9.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.49(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.76(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.18-7.37 (m, 10H) ppm.
: $\delta 14.90,15.25,37.62,71.16,72.19,72.40,79.47$, 84.32, 127.77, 127.81, 128.08, 128.27, 128.42, 128.48, 137.24, 137.96, 174.37 ppm .
: $363.4[\mathrm{M}+\mathrm{Na}]^{+}$
Calcd: C, 74.09; H, 7.11.
Found: C, 73.84; H, 7.01.
(3S,4R,5S,6S)-3,6-bis(benzyloxy)-2,4-dimethylheptane-2,5-diol (106):

A solution of $\mathrm{MeMgCl}(1.5 \mathrm{~mL}, 4.47 \mathrm{mmol})$ in THF was added to a solution of lactone $105(0.38 \mathrm{~g}, 1.12 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. It was stirred at the same temperature for 4 h , then quenched by saturated aq. ammonium chloride and extracted by ethyl acetate. The reaction mixture concentrated and product purified by column chromatography, eluting with ethyl acetate:light petroleum ether (3:7) to get diol 106 $(0.39 \mathrm{~g})$ as a colourless liquid.
Yield
: 96\%
Mol. Formula
: $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{4}$

Optical Rotation $[\alpha]_{D}{ }^{25}$

$:+46.7\left(c 3.0, \mathrm{CHCl}_{3}\right)$
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}^{-1}}$
: 3563, 3015, 2976, 2934, 1497, 1454, 1386, 1374, 1216, 1090, 1070, 757, 698.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, 200 \mathbf{M H z}\right) \quad: \delta 0.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H})$, $1.28(\mathrm{~d}, J=6.2 \mathrm{~Hz} 3 \mathrm{H}), 1.94-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{bs}$, $2 \mathrm{H}), 3.14(\mathrm{dd}, J=2.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dq}, J=2.4$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 10 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 11.68,16.52,25.89,27.51,36.91,70.62,73.10$, 73.58, 74.87, 77.85, 83.58, 127.37, 127.76, 127.87, 128.23, 128.35, 138.14, 138.99 ppm .
: $395.5[\mathrm{M}+\mathrm{Na}]^{+}$

ESI MS ($\boldsymbol{m} / \boldsymbol{z}$)

Calcd: C, 74.16; H, 8.66.

Elemental Analysis

Found: C, 74.24; H, 8.49.
(3S,4R,5S,6S)-3,6-bis(benzyloxy)-5-(methoxymethoxy)-2,4-dimethylheptan-2-ol (107):

To a solution of $\mathbf{1 0 6}(1.3 \mathrm{~g}, 3.49 \mathrm{mmol})$ in DMF $(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added NaH (60% dispersion in mineral oil, $0.279 \mathrm{~g}, 6.98 \mathrm{mmol}$). After 15 min , methoxymethyl chloride $(0.3 \mathrm{~mL}, 4.19 \mathrm{mmol})$ was introduced and the reaction further stirred for 1 h at same temperature. Water was carefully added to the reaction mixture, extracted with ethyl acetate, washed with water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. On evaporation of solvent, the residue was purified by silica gel column chromatography by eluting with light petroleum: EtOAc (1:17) to afford $107(1.3 \mathrm{~g})$ as a yellow colour liquid.

Yield
Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}}{ }^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 200 \mathbf{~ M H z}\right) \quad: \delta 0.94(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H})$, 1.17 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.06-2.13(\mathrm{~m}, 1 \mathrm{H}), 3.29$ (dd, $J=3.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{dq}, J=3.9$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=11.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.73(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.29(\mathrm{~m}, 10 \mathrm{H})$ ppm.
$\left.{ }^{13} \mathbf{C ~ N M R ~ (} \mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 12.28,15.68,25.97,26.75,35.26,56.33,71.03$, 73.81, 74.48, 75.12, 84.02, 85.51, 98.41, 127.31, $127.43,127.54,127.71,128.32,138.58,139.14 \mathrm{ppm}$.
: $439.5[\mathrm{M}+\mathrm{Na}]^{+}$
Calcd: C, 72.08; H, 8.71.
Found: C, 71.89; H, 8.69.

To a solution of $\mathbf{1 0 7}(1.2 \mathrm{~g}, 2.88 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ DMAP $(1.4 \mathrm{~g}, 11.53$ mmol), triethylamine ($1.6 \mathrm{~mL}, 11.53 \mathrm{mmol}$), and $\mathrm{MsCl}(1.13 \mathrm{~mL}, 11.53 \mathrm{mmol})$ were added and the reaction mixture was stirred for 2 h at room temperature (monitored by TLC). After completion of the reaction, the mixture was partitioned between dichloromethane $(30 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The organic layer was washed with brine and dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure and the crude was purified by silica gel column chromatography using ethyl acetate and light petroleum (1:4) to offer $\mathbf{1 0 8}(1.0 \mathrm{~g})$ as a colorless liquid.

Yield
Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}^{-1}} \quad: 2973,2930,1660,1497,1454,1371,1092,1037$, 907, 734, 697.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 0.81(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.64(\mathrm{~s}, 3 \mathrm{H}), 1.93-2.03(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{dd}$, $J=2.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dq}, J=2.7,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.85(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.35(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.58(\mathrm{~m}, 4 \mathrm{H}), 4.86(\mathrm{~s}$, 1H), 4.94 ($\mathrm{s}, 1 \mathrm{H}$), 7.17-7.26 (m, 10H) ppm.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 9.96,15.83,19.42,37.44,55.88,70.03,70.74$, 74.44, 81.91, 83.26, 98.35, 112.31, 127.17, 127.31, $127.44,127.55,128.01,128.17,138.52,139.07$, 142.79 ppm .
: $421.5[\mathrm{M}+\mathrm{Na}]^{+}$
Calcd: C, 75.34; H, 8.60.
Found: C, 75.14; H, 8.49.
(2S,3S,4S,5S)-3-(methoxymethoxy)-4,6-dimethylhept-6-ene-2,5-diol (109).

To a solution of naphthalene ($530 \mathrm{mg}, 4.14 \mathrm{mmol}$) in THF (15 mL) sodium metal ($95 \mathrm{mg}, 4.14 \mathrm{mmol}$) was added at room temperature under N_{2}. The mixture was stirred at room temperature until a dark green solution was formed. Then it was cooled to $-20^{\circ} \mathrm{C}$ and a solution of olefin $\mathbf{1 0 8}(550 \mathrm{mg}, 1.38 \mathrm{mmol})$ in THF (5 mL) was added. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was then partitioned between ether and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel column (Ethyl acetate:light petroleum ether, 2:3) to give diol 109 as a colorless oil (290 mg).

Yield	: 96\%
Mol. Formula	: $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{4}$
Optical Rotation [$\alpha]_{\text {D }}{ }^{25}$: +4.6 (c 0.6, CHCl_{3})
IR ($\mathbf{C H C l}_{\mathbf{3}} \mathrm{cm}^{-1}$	$\begin{aligned} & : 3439,2925,2853,1714,1463,1455,1378,1182 \text {, } \\ & 1215,1096,698,666 . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$: $\delta 0.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.68(\mathrm{~s}, 3 \mathrm{H}), 1.94-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.19(\mathrm{bs}, 1 \mathrm{H}), 3.32(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~s}$, $3 \mathrm{H}), 3.96(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{bs}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.81(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}$, 1H) ppm.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$: $\delta 9.79,19.92,20.04,36.00,56.36,67.74,72.75$, 90.34, $99.51,110.51,144.88 \mathrm{ppm}$.
ESI MS (m/z)	: $241.3\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right.$
Elemental Analysis	Calcd: C, 60.52; H, 10.16.
	Found: C, 60.37; H, 10.00.

(2S,3S,4S,5S)-5-(benzyloxy)-3-(methoxymethoxy)-4,6-dimethylhept-6-en-2-ol (110).

To a solution of $\mathbf{1 0 9}(0.3 \mathrm{~g}, 1.38 \mathrm{mmol})$ in DMF $(13 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added NaH (60% dispersion in mineral oil, $0.66 \mathrm{~g}, 1.65 \mathrm{mmol}$). After 15 min , benzyl bromide (0.18 $\mathrm{mL}, 1.51 \mathrm{mmol}$) was introduced and the reaction further stirred for 1 h at the same temperature. Water was carefully added to the reaction mixture, extracted with ether, washed with water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. On evaporation of solvent, the residue was purified by silica gel column chromatography by eluting with light petroleum:EtOAc (10:1) to afford $\mathbf{1 1 0}(0.4 \mathrm{~g})$ as yellow colour liquid.

Yield

: 94\%
Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR $\left(\mathbf{C H C l}_{\mathbf{3}}\right) \mathrm{cm}^{-1} \quad: 3435,2925,2854,1619,1454,1377,1218,1028$, 770, 697.
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 0.72(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.67(\mathrm{~s}, 3 \mathrm{H}), 2.00-2.08(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{dq}, J=4.4$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{bs}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.67(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H})$, $5.08(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.34(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 14.10,16.15,22.68,29.35,35.61,45.82,56.53$, 71.17, 72.64, 75.22. 85.92, 99.28, 110.13, 127.65, 127.95, 128.32, 138.40, 145.37 ppm .

ESI MS ($\boldsymbol{m} / \boldsymbol{z}$)

: $331.4[\mathrm{M}+\mathrm{Na}]^{+}$
: $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4}$
: - $13.3\left(c \quad 0.9, \mathrm{CHCl}_{3}\right)$

Calcd: C, 70.10; H, 9.15.
Found: C, 70.02; H, 8.98.

To a solution of $\mathbf{1 1 0}$ ($300 \mathrm{mg}, 0.97 \mathrm{mmol}$) in THF (5 mL) was added 9-BBN (356 mg 2.92 mmol) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed up to room temperature and heated to reflux for 3 h . It was cooled to $0{ }^{\circ} \mathrm{C}, \mathrm{NaOH}(3 \mathrm{M}, 0.7 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 0.2$ mL) were added. After 2.5 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$. The mixture was extracted with diethyl ether, washed with brine. The organic layer dried with anhydrous MgSO_{4} and concentrated under reduced pressure. The residue was purified on a silica gel column chromatography using petroleum ether /EtOAc (1/1) as the eluent to afford $\mathbf{1 1 1}$ as colorless oil (290 mg).

Yield
: 91\%
Mol. Formula

Optical Rotation $[\alpha]_{D}{ }^{25}$

IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}}{ }^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

ESI MS ($\boldsymbol{m} / \boldsymbol{z}$)
Elemental Analysis 768. 5H) ppm.
: $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{5}$
: -3.3 (c 1.2, CHCl_{3}).
: 3435, 2934, 1618, 1454, 1383, 1217, 1144, 1029,
: $\delta 0.74(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.21(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.86-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.02$ (m, 1H), 3.39 (dd, $J=5.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.44 (s, 3H), $3.62(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.75(\mathrm{~m}$, 1 H), 3.84 (d, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.04 (bs, 1H), 4.45 (d, J $=11.8 \mathrm{~Hz} 1 \mathrm{H}), 4.66(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.36(\mathrm{~m}$,
: $\delta 9.74,13.35,16.15,35.22,36.93,56.53,69.66$, $71.28,75.37,77.20,86.42, ~ 99.31,127.72,127.93$, 128.38, 138.32 ppm .
: $349.4[\mathrm{M}+\mathrm{Na}]^{+}$
Calcd: C, 66.23; H, 9.26.

Found: C, 66.04; H, 9.10.
(2S,3S,4S,5R,6R)-5-(benzyloxy)-7-(4-methoxybenzyloxy)-3-(methoxymethoxy)-4,6-dimethylheptan-2-ol (112).

To a solution of $111(0.250 \mathrm{~g}, 0.77 \mathrm{mmol})$ in DMF $(7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added NaH (60% dispersion in mineral oil, $0.37 \mathrm{~g}, 0.92 \mathrm{mmol}$). After $15 \mathrm{~min}, p$-methoxybenzyl chloride ($0.12 \mathrm{~mL}, 0.84 \mathrm{mmol}$) was introduced and the reaction further stirred for 1 h at the same temperature. Water was carefully added to the reaction mixture, extracted with ethyl acetate, washed with water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. On evaporation of solvent, the residue was purified by silica gel column chromatography by eluting with light petroleum: EtOAc (10:1) to afford 112 (0.28 g).

Yield
Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR $\left(\mathbf{C H C l}_{3}\right) \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
: $\delta 0.99$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 1.17 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.95-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~d}, J$ $=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=3.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}$, $3 \mathrm{H}), 3.48-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{dd}, J=1.8,8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{bs}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.51(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.70(\mathrm{~m}, 3 \mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 2 H), 7.22-7.31 (m, 7H) ppm.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 11.21,15.04,20.56,36.52,37.28,55.13,55.89$, $67.26,72.20,72.73,73.37,79.70,87.67,98.15$, 113.64, 127.08, 128.14, 129.18, 130.69, 139.58, 159.04 ppm .

ESI MS (m / z)
Elemental Analysis
: $469[\mathrm{M}+\mathrm{Na}]^{+}$
Calcd: C, 69.93; H, 8.58.
Found: C, 69.74; H, 8.39.
(2S,3S,4S,5R,6R)-5-(benzyloxy)-7-(4-methoxybenzyloxy)-3-(methoxymethoxy)-4,6-dimethylheptan-yl acetate (117).

A mixture of $112(0.25 \mathrm{~g}, 0.56 \mathrm{mmol})$, triethylamine ($0.1 \mathrm{~mL}, 0.84 \mathrm{mmol}$), acetic anhydride $(0.06 \mathrm{~mL}, 0.67 \mathrm{mmol})$ and catalytic amount of DMAP in dichloromethane was stirred for 30 min at $0^{\circ} \mathrm{C}$. The mixture diluted with dichloromethane, washed with brine dried over sodium sulphate. After evaporation under reduced pressure, the residue purified by column chromatography using light petroleum:ethyl acetate (19:1) to obtain 117 (260 mg).
Yield :95\%
Mol. Formula
Optical Rotation $\left[\alpha_{\mathbf{D}}\right]_{\mathbf{D}}{ }^{25} \quad:-1.9,\left(c 0.7, \mathrm{CHCl}_{3}\right)$
IR $\left(\mathbf{C H C l}_{3}\right) \mathrm{cm}^{-1} \quad: 3064,2937,1733,1608,1585,1513,1455,1372$, 1301, 1170, 1093, 1030, 960, 821, 755, 698.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 0.91(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.23(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.86-2.02(\mathrm{~m}, 2 \mathrm{H}) .2 .05(\mathrm{~s}$, 3 H), 3.37 (s, 3H), 3.42 (dd, $J=3.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.503.55 (m, 2H), 3.72 (dd, $J=1.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (s, $3 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J$ $=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 5.08(\mathrm{dq}, J=3.1,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.31(\mathrm{~m}, 7 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 10.22,15.21,16.38,21.33,37.04,37.14,55.17$, 56.09, 70.80, 72.35, 72.78, 73.58, 79.68, 83.17, 98.13, 113.65, 127.09, 128.19, 129.20, 130.77, 139.62,
159.05, 170.29 ppm .

ESI MS ($\boldsymbol{m} / \boldsymbol{z}$)
 Elemental Analysis

: $511[\mathrm{M}+\mathrm{Na}]^{+}$
Calcd: C, 68.83; H, 8.25.
Found: C, 68.64; H, 8.10.

(S)-1-((4S,5S,6R)-6-((R)-1-(tert-butyldiphenylsilyloxy)propan-2-yl)-2,2,5-trimethyl-

 1,3-dioxan-4-yl)ethylacetate (120):

To a solution of $117(250 \mathrm{mg}, 0.5 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ under nitrogen at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{TiCl}_{4}(0.5 \mathrm{~mL}, 5.1 \mathrm{mmol})$. After 30 min , excess of reagent was quenched with saturated aq. NaHCO_{3} solution, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated. The resulting triol 118 was taken on to the next reaction without further purification.

To a solution of 118, $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL}, 0.77 \mathrm{mmol})$ and DMAP $(5.0 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5$ mL) was added TBDPS chloride $(0.1 \mathrm{~mL}, 0.56 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred for overnight, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine, dried (over $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated. The crude mass was eluted through a pad of silica gel (hexanes/EtOAc 1:1) and the colourless liquid remaining after evaporation of the volatiles was taken on to the next reaction without further purification.

A solution of $\mathbf{1 1 9}$ and a catalytic amount of PPTS in 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 2,2$-dimethoxypropane (5 mL) was stirred for one day at rt under N_{2}. It was concentrated in vacuo and the residue was purified by flash column chromatography using hexanes/EtOAc (97:3), which afforded 150 mg of $\mathbf{1 2 0}$ as colourless liquid.

Yield 57% over three steps

Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR $\left(\mathbf{C H C l}_{3}\right) \mathrm{cm}^{-1}$
: $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Si}$
: - $16.7\left(c \quad 0.6, \mathrm{CHCl}_{3}\right)$
: 3049, 2931, 2962, 2857, 1739, 1589, 1472, 1462, 1428, 1377, 1240, 1112, 1048, 999, 823, 702, 690, 667 ppm.

${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), \\ & 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), \\ & 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.84(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{dd}, \\ & J=3.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.72(\mathrm{~m}, 3 \mathrm{H}), 4.94-5.06(\mathrm{~m}, \\ & 1 \mathrm{H}), 7.37-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.63-7.70(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} . \end{aligned}$
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 12.11,13.05,15.98,19.36,23.43,25.23,27.00, \\ & 33.62,35.43,65.06,69.70,70.53,76.56,77.43, \\ & 100.88,127.49,127.89,129.46,129.48,135.70, \\ & 135.78,170.95 \mathrm{ppm} . \end{aligned}$
ESI MS (m/z)	: $535\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right.$
Elemental Analysis	Calcd: C, 70.27; H, 8.65.
	Found: C, 70.09; H, 8.54.

(S)-1-((4S,5S,6R)-6-((R)-1-(tert-butyldiphenylsilyloxy)propan-2-yl)-2,2,5-trimethyl-1,3-dioxan-4-yl)ethanol (121):

Compound 120 ($100 \mathrm{mg}, 0.19 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(40 \mathrm{mg}, 0.29 \mathrm{mmol})$ was added. The mixture was stirred at room temperature for 2 h and concentrated. The residue was dissolved in water and extracted with ethyl acetate, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Purification on silica gel using light petroleum:EtOAc (10:1) as an eluent afforded pure alcohol $121(80 \mathrm{mg})$.

Yield
Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}} \mathrm{cm}^{-1}: 3447,3050,3071,2960,2855,1462,1428,1379$, 1222, 1187, 1112, 1057, 822, 758, 666 ppm.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, 200 \mathrm{MHz}\right) \quad: \delta 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.09(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$, $1.32(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.75(\mathrm{~m}, 1 \mathrm{H}), 1,79-1.87(\mathrm{~m}, 1 \mathrm{H})$,
$3.09(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.77(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.44$ (m, 6H), 7.67-7.70 (m, 4H) ppm.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 12.27,13.00,18.46,19.35,23.76,25.33,27.00$, $34.12,35.42,65.02,69.56,69.61,79.48,100.82$, $127.49,129.45,129.48,133.85,134.00,135.69$, 135.78 ppm .

ESI MS ($\boldsymbol{m} / \boldsymbol{z}$) : $493[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis
Calcd: C, 71.44; H, 8.99.
Found: C, 71.34; H, 8.84.
$((R)-2-((4 R, 5 S, 6 S)-6-((R)-1-a z i d o e t h y l)-2,2,5-t r i m e t h y l-1,3-d i o x a n-4 y l) p r o p o x y)($ tert butyl)diphenylsilane (123).

Compound 121 ($80 \mathrm{mg}, 0.17 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$, cooled to 0 ${ }^{\circ} \mathrm{C}$ under N_{2}, then $\mathrm{Et}_{3} \mathrm{~N}(0.03 \mathrm{~mL}, 0.25 \mathrm{mmol})$ and $\mathrm{MsCl}(0.01 \mathrm{~mL}, 0.2 \mathrm{mmol})$ were added dropwise. The reaction was stirred for 4 h at $0^{\circ} \mathrm{C}$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}$), and washed with $\mathrm{H}_{2} \mathrm{O}$, saturated NaHCO_{3}, and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The resulting liquid was taken on to the next reaction without further purification.

It was diluted with DMF (1 mL) and $\mathrm{NaN}_{3}(77 \mathrm{mg}, 1.19 \mathrm{mmol})$ was added. The resulting suspension was stirred for 22 h at $70^{\circ} \mathrm{C}$. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ (25 mL) and washed with $\mathrm{H}_{2} \mathrm{O}$, brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The residue was purified by flash column chromatography (hexanes/EtOAc 97:3) affording 75 mg of $\mathbf{1 2 3}$ as colorless liquid.
Yield 89%, over two steps.
Mol. Formula
: $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Si}$
Optical Rotation $[\alpha]_{D}{ }^{25}$
: -24.0 (c 1.0, CHCl_{3}).
IR $\left(\mathbf{C H C l}_{\mathbf{3}}\right) \mathrm{cm}^{-1} \quad: 3072,2931,2109,1725,1471,1428,1380,1223$, 1112, 1025, 822, 759, 667.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), \\ & 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), \\ & 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.90(\mathrm{~m}, 1 \mathrm{H}), \\ & 3.36(\mathrm{dd}, J=4.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dq}, J=4.2,6.7 \\ & \mathrm{Hz}, 1 \mathrm{H}), 3.66-3.75(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.65- \\ & 7.69(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} . \end{aligned}$
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 12.71,13.00,14.58,19.37,23.63,25.34,26.99, \\ & 33.97,35.46,59.65,65.03,69.51,78.07,100.74, \\ & 127.49,129.46,133.90,134.00,135.70,135.78 \mathrm{ppm} . \end{aligned}$
ESI MS (m / z)	: $518\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right.$
Elemental Analysis	Calcd: C, 67.84; H, 8.34.
	Found: C, 67.75; H, 8.29.

(2S,3S,4R,5R,6R)-5-(benzyloxy)-3-(methoxymethoxy)-7-(4-methoxybenzyloxy)-4,6-dimethylheptan-2-yl methanesulfonate (115):

Compound 112 ($250 \mathrm{mg}, 0.56 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, cooled to 0 ${ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}, \mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL}, 0.84 \mathrm{mmol}), \mathrm{MsCl}(0.05 \mathrm{~mL}, 0.67 \mathrm{mmol})$ and DMAP (catalytic) were added. The reaction was stirred for 1 h at $0^{\circ} \mathrm{C}$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL), and washed with $\mathrm{H}_{2} \mathrm{O}$, saturated aq. NaHCO_{3}, and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The reaction mixture purified by column chromatography using light petroleum ether:ethyl acetate (6:1) to obtain $\mathbf{1 1 5}$ (250 mg).

Yield
Mol. Formula
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

85\%

$$
\text { : } \mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{8} \mathrm{~S}
$$

$$
: \delta 0.92(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}),
$$ $1.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.67-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.07$ $(\mathrm{m}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.57(\mathrm{~m}, 2 \mathrm{H})$, 3.66-3.79 (m, 2H), 3.79 (s, 3H), 4.42 ($\mathrm{s}, 2 \mathrm{H}$), 4.60-

	$4.74(\mathrm{~m}, 4 \mathrm{H}), 4.95(\mathrm{dq}, J=1.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J$
	$=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.31(\mathrm{~m}, 7 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 ~ M H z}\right)$	$: \delta 10.13,14.68,15.06,36.98,37.88,38.70,55.20$,
	$56.15,72.82,73.84,79.57,80.75,81.94,98.02$,
	$113.70,127.19,127.23,128.27,129.19,139.48$,
	159.12 ppm.
Elemental Analysis	Calcd: C, 61.81; H, 7.68.
	Found: C, 61.62; H, 7.49.

(2R,3S,4S,5R)-2-((R)-1-(4-methoxybenzyloxy)propan-2-yl)-4-(methoxymethoxy)-3,5dimethyltetrahydrofuran (116):

Compound 115 ($100 \mathrm{mg}, 0.2 \mathrm{mmol}$) was dissolved in DMF (2 mL) and NaN_{3} (37 $\mathrm{mg}, 0.6 \mathrm{mmol}$) was added. The resulting suspension was stirred for 5 h at $70^{\circ} \mathrm{C}$. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}$, and brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The reaction mixture was purified by flash column chromatography (hexanes/EtOAc 97:3) affording 50 mg of 116, as yellow colour liquid.

Yield
Mol. Formula
IR $\left(\mathbf{C H C l}_{3}\right) \mathrm{cm}^{-1}$
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, 200 \mathbf{~ M H z}\right) \quad: \delta 0.91(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.18(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.90-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.35$ (m, 1H), 3.38 (s, 3H), 3.30-3.44 (m, 2H), 3.65 (dd, $J=$ $3.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.94-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.40$ $(\mathrm{d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61$ (s, 2H), $6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 2H) ppm.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 8.12,14.21,17.09,34.43,37.92,55.21,55.69$,72.80, 72.86, 75.24, 79.20, 80.57, 96.35, 113.68,$129.08,131.13,159.04 \mathrm{ppm}$.
ESI MS (m / z) $361[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis
Calcd:
C, 67.43; H, 8.93.
Found: C, 67.34; H, 8.79.

СHAPIER2 SECTION II

Stereoselective synthesis of C21-C26 fragment of superstofide \mathcal{A}

Present Work

In the previous section, we have accomplished the synthesis of C21-C26 segment of Superstolide A (26) (Figure 13). While the earlier work was in progress, an alternative stereoselective route leading to C21-C26 segment of superstolide A (26) was also in progress. This section deals with new studies on C21-C26 fragment. We planned a new concise synthetic strategy for polyketide region of 26 with lesser transformations and stereoselective reactions.

Superstolide A (26)
Figure 13
Closely examination of the structure of $\mathbf{2 6}$ revealed that the molecule was comprised of two distinctive trans-hydroxymethyl isoster moieties and one amine moiety with (R)-stereocenter, represented by C23-C22, C25-C24, and C26 segments (Figure 14).

\sqrt{b}

Figure 14

In order to assemble these units, the adaptation of stereocontrolled reactions has been envisaged. We believed that hydroxymethyl units could be furnished by stereospecific epoxide opening with MeMgCl , whereas the remaining center could be obtained from (R)-2,3-O-isopropylidene-D-glyceraldehyde 129.

A linear strategy was opted in which starting material derived from common and inexpensive compound, namely, (R)-2,3- O-isopropylidene-D-glyceraldehyde 129. The retrosynthetic analysis is depicted below (Scheme 28).

132
Scheme 28: Retrosynthetic analysis of C21-C26 segment of 26
The Sharpless asymmetric epoxidation followed by regioselective opening by methyl Grignard reagent was explored to install the required four chiral centers in the targeted segment as depicted in scheme 28 . Alcohol 136 could be obtained by Grignard reaction on $\mathbf{1 3 2}$, followed by some protecting group manipulation. By the same sequence of reactions 143 could be accomplished from epoxide 140. The phthalimide derivative 150 could be furnished by Mitsonobu reaction on alcohol 148. Finally, reduction of phthalimide group would give rise to the target segment 151.

Accordingly, the journey began with (R)-2,3- O-isopropylidene-D-glyceraldehyde 129, which was subjected to Wittig reaction with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOOEt}$ in benzene under
refluxing condition to provide cis:trans (1:9) ${ }^{42}$ mixture of compound. These were separated by column chromatography, and the major trans product $\mathbf{1 3 0}$ (confirmed by coupling constant value of double bond) was used for the next reaction.

Scheme 29
The α, β-unsaturated ester $\mathbf{1 3 0}$ was then reduced with DIBAL-H in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at -78 ${ }^{\circ} \mathrm{C}$ to give the E-allyl alcohol 131 in 88% yield. Our next objective was the diastereoselective epoxidation of 131. Accordingly, the substituted allyl alcohol 131 was treated with D-(-)-diethyltartrate, TBHP, and titanium(IV) isopropoxide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at -23 ${ }^{\circ} \mathrm{C}$ to furnish the epoxy alcohol 132 in 92% yield. The spectral data of $\mathbf{1 3 2}$ was well corresponded with the reported one. Formation of a single diastereomer was adjudged by the analysis of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data. The ${ }^{1} \mathrm{H}$ NMR spectrum displayed characteristic signals due to epoxy protons as multiplet at $\delta 3.05-3.11(2 \mathrm{H})$ and 3.67 (dd, $J=3.3,12.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$, all other protons resonated in accordance with the assigned structure of 132. The structure was further supported by ${ }^{13} \mathrm{C}$ NMR spectrum as well as elemental analysis. The rotation value of this compound was closely coordinated with the reported one $\left\{\mathrm{Lit}^{43}[\alpha]_{\mathrm{D}}{ }^{21}+32.4\right.$ (c, 1.85 ethanol), observed $[\alpha]_{\mathrm{D}}{ }^{25}+30.3$ (c, 1.5 ethanol) $\}$.

Scheme 30

Our next concern was the nucleophilic ring opening of epoxide $\mathbf{1 3 2}$ with Grignard reaction to produce the 1,3 -diol $\mathbf{1 3 3}$, which correlated with the stereogenic centers of C25-C24 of 26. The epoxy alcohol 132 was subjected to the treatment of MeMgCl in presence of CuCN in THF at $0^{\circ} \mathrm{C}$ to accomplish exclusively 1,3-diol $\mathbf{1 3 3}$ in good yield. From ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum, it was confirmed that only one product was formed. For our satisfaction, since 1,2-diol was of no consequence to us, the mixture was subjected to periodate oxidation. This treatment provided no faster moving spot in TLC indicating the absence of 1,2 -diol formation. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the characteristic resonances due to newly added methyl group was located at $\delta 0.96(\mathrm{~d}, J=7.1 \mathrm{~Hz}) \mathrm{ppm}$, two singlet of acetonide methyls appeared at $\delta 1.37$ and 1.42 ppm , and all other protons resonated at their expected chemical shift value. The structure was further supported by ${ }^{13} \mathrm{C}$ NMR spectrum and analytical data. In IR spectrum, absorption at $3433 \mathrm{~cm}^{-1}$ was present in evidence of hydroxyl group.

Scheme 31

With compound 133 in hand, the protection of the secondary hydroxyl group was needed prior to the extension from the primary hydroxyl side. Thus, a straight forward protection-deprotection sequence was planed. Accordingly, the diol $\mathbf{1 3 3}$ was converted to TBS ether ${ }^{44} 134$ using TBDMSCl in presence of triethylamine and catalytic amount of DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature in 89% yield. In ${ }^{1} \mathrm{H}$ NMR spectrum, the characteristic peak appeared at $\delta 0.08(\mathrm{~s}, 6 \mathrm{H}), 0.9(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$ in favor of TBDMS group introduction, whereas isopropylidene methyl groups were at their expected position at δ $1.36(3 \mathrm{H})$ and $1.39(3 \mathrm{H}) \mathrm{ppm}$. The structure was further supported by ${ }^{13} \mathrm{C}$ NMR, where
peaks at $\delta(-) 5.66$, (-) 5.61 ppm corresponding to TBDMS group was noted. The secondary hydroxyl group of $\mathbf{1 3 4}$ was converted to benzyl ether $\mathbf{1 3 5}$ by treatment of benzyl bromide in presence of NaH in DMF. The ${ }^{1} \mathrm{H}$ NMR spectrum showed resonances as two doublet at $\delta 4.59(J=11.3 \mathrm{~Hz}, 1 \mathrm{H})$ and $4.73(J=11.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$ characteristic of benzylic $-\mathrm{CH}_{2}$ group, and multiplets at $\delta 7.29-7.34(5 \mathrm{H}) \mathrm{ppm}$ in evidence of benzyl group introduction. The structure was also supported by ${ }^{13} \mathrm{C}$ NMR and elemental analysis. On exposure of compound $\mathbf{1 3 5}$ to TBAF in anhydrous THF at room temperature offered hydroxyl compound 136 with 89% yield. Disappearance of resonance due to TBDMS group was observed both in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum. In IR spectrum, absorbance at $3463 \mathrm{~cm}^{-1}$ was appeared due to hydroxyl group. Structure was further supported by elemental analysis. Now the primary hydroxyl group was oxidized by using IBX to provide aldehyde 137. The crude aldehyde 137 obtained was used for the next reaction without further purification. The aldehyde 137 was treated with a suspension of triethylphosphonoacetate, sodium hydride in THF at $0{ }^{\circ} \mathrm{C}$ to get selectively trans olefin 138 in 88% yield over two steps. In ${ }^{1} \mathrm{H}$ NMR spectrum, double bonded protons appeared as two double doublet at $\delta 5.73(J=15.8,1.1 \mathrm{~Hz})$ and $6.91(J=8.3,15.8 \mathrm{~Hz}) \mathrm{ppm}$ and all other protons were at their expected resonance position. In the ${ }^{13} \mathrm{C}$ NMR Spectrum, carbonyl carbon of ester moiety resonated at $\delta 166.30 \mathrm{ppm}$ and the double bonded carbons at $\delta 121.62$ and 150.05 ppm were noticed. The assigned structure was also supported by IR spectrum, where the carbonyl stretching at $1712 \mathrm{~cm}^{-1}$ characteristic of α, β unsaturated ester was observed.

Scheme 32

The substituted allyl alcohol $\mathbf{1 3 9}$ was accomplished in excellent yield through the reduction of conjugated ester $\mathbf{1 3 8}$ with DIBAL-H at $-78{ }^{\circ} \mathrm{C}$ in advance of installing the other chiral centres. The structural identity was supported by interpretation of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR, and mass spectral data. Disappearance of resonances due to ethyl moiety of ester $\mathbf{1 3 8}$ in ${ }^{1} \mathrm{H}$ NMR spectrum was observed. The rest of the protons were resonated at the expected chemical shift regions. IR spectrum was showing absorbance at $3434 \mathrm{~cm}^{-1}$ in accordance of the hydroxyl group.

The next phase of endeavor was Sharpless asymmetric epoxidation (SAE) of the unsaturated alcohol 139. The epoxidation was performed by using $\mathrm{Ti}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{4}-(+)-\mathrm{DET}$ chiral complex and tert-butyl hydroperoxide to afford $\mathbf{1 4 0}$ in 80% yield. The spectral information from ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR, and mass spectral studies proved the structure of $\mathbf{1 4 0}$ beyond doubt. In ${ }^{1} \mathrm{H}$ NMR spectrum, disappearance of resonance due to double bonded protons was observed. By ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrums, it was proved to be a single diastereomer. Analytical data was matched with the expected structure of compound 140. No quantitative study was undertaken to estimate the enantioselection in the epoxidation step, as it was thought that the enantiopurity could be determined at later stage.

140
141

Scheme 33

The epoxide 140 was subjected to CuCN coordinated regioselective nucleophilic opening with methylmagnesium chloride to provide the diol 141 in 82% yields, which was adequately substantiated by spectral studies. Though ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy was in favor of single compound, we decided to prove it unambiguously by chemical
modification. Accordingly, compound 141 was treated with sodium metaperiodate but no faster moving spot was observed. In ${ }^{1} \mathrm{H}$ NMR spectroscopy, one additional doublet at δ $0.76(J=6.9 \mathrm{~Hz}) \mathrm{ppm}$ for three protons confirmed the incorporation of methyl group. In IR spectrum, absorption at $3400 \mathrm{~cm}^{-1}$ was in accordance with the presence of hydroxyl group in the system.

After successful installation of all the required stereocenters, our next concern was the introduction of the amine functionality. Before proceeded further, it was necessary to protect the hydroxyl groups. Thus, the primary hydroxyl group was selectively protected as PMB ether by treating the diol $\mathbf{1 4 1}$ with PMBCl in presence of NaH in DMF. In ${ }^{1} \mathrm{H}$ NMR spectrum, characteristic resonance due to PMB group was observed, i.e. the aromatic methyl ether (- OMe) appeared as a sharp singlet at $\delta 3.80 \mathrm{ppm}$. The structure was also supported by ${ }^{13} \mathrm{C}$ NMR spectrum and elemental analysis. The remaining secondary hydroxyl group was converted to its benzyl ether using benzyl bromide in presence of NaH to obtain compound 143. All spectral data were in good agreement with the assigned structure.

Scheme 34

By the treatment of catalytic amount of p-TSA in methanol, compound 143 was deketalised to diol 144. Disappearance of methyl protons due to isopropylidene group was noted in ${ }^{1} \mathrm{H}$ NMR spectrum. The structure was also supported by ${ }^{13} \mathrm{C}$ NMR spectroscopy and elemental analysis. In IR spectrum, absorption due to hydroxyl group at $3411 \mathrm{~cm}^{-1}$ was present. The diol 144 was processed forward through benzoylation, tosylation, epoxidation and LAH reduction to get the required alcohol 148. The product was adequately substantiated by spectral as well as combustion data.

Scheme 35

For the inspection of optical purity, alcohol 148 was converted to intermediate 120, which was already synthesize in previous section (chapter 2; section I), by following standard synthetic sequence. All spectral and analytical data of both the compound was identical, thereby secured the optical purity of compound 148.

(i) $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 10 \mathrm{~min}, 0^{\circ} \mathrm{C}$

120
Scheme 36
According to our plan, hydroxyl compound 148 was treated with phthalimide, DIAD and TPP in THF to obtain the phthalimide derivative 149 in 60% yield. Appearance of extra protons in ${ }^{1} \mathrm{H}$ NMR spectrum in the region $\delta 7.68-7.83(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}$ characteristics for phthalimide group were noted and rest of the protons had the expected chemical shifts. In IR spectrum, characteristic absorptions due to phthalimide group were appeared at $1773 \mathrm{~cm}^{-1}, 1709 \mathrm{~cm} .^{-1}$

Scheme 37

Phthalimide 149 was reduced to amine by refluxing in ethanol in presence of catalytic amount of hydrazine hydrate, ${ }^{45}$ the solid byproduct was separated out by filtration. The crude product was used for immediate protection of amine group without further purification. Thus, the crude amine was subjected to the treatment of acetic anhydride in presence of triethylamine in dichloromethane to get $\mathbf{1 5 0} .{ }^{1} \mathrm{H}$ NMR spectrum showed peak at $\delta 1.59(3 \mathrm{H}) \mathrm{ppm}$ as singlet characteristic for N-acetate, whereas characteristic protons for phthalimide was disappeared. ${ }^{13} \mathrm{C}$ NMR spectrum was also in good agreement with the structure, for example, peak at $\delta 168.8 \mathrm{ppm}$ for amide carbonyl was present. IR spectrum showed absorbance at $1651 \mathrm{~cm}^{-1}$ for amide group. Finally, oxidative cleavage of PMB ether with DDQ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ water at $0{ }^{\circ} \mathrm{C}$ completed the target fragment $\mathbf{1 5 1}$ with 91% yield. In ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum, absence of resonance due to PMB group was observed. IR spectrum showed absorption at $3413 \mathrm{~cm}^{-1}$ in evidence of hydroxyl group. Mass and elemental analysis were also supported the structure.

In conclusion, fragment C21-C26 (151) was successfully synthesized using Sharpless asymmetric epoxidation followed by regeioselective opening with MeMgCl in a linear fashion. Following our developed protocol, it is possible to make other diastereomers of this fragment in gram quantities, which will be helpful during the total synthesis of the target molecule and its isomers.

EXPERIMENTAL

Experimental

((2R,3S)-3-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)oxiran-2-yl)methanol (132).

To a solution of (+)-DET ($1.5 \mathrm{~mL}, 8.85 \mathrm{mmol}$) and $4 \AA$ molecular sieves powder $(10.0 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{~mL})$ was added titanium(IV) isopropoxide ($1.8 \mathrm{~mL}, 6.32 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$. After 15 minutes, a solution of allylic alcohol $131(10.0 \mathrm{~g}, 63.21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was introduced and stirred for 45 min . Then reaction mixture was charged with TBHP (5 M solution in toluene, $37.9 \mathrm{~mL}, 189.64 \mathrm{mmol}$) slowly over period of 15 min at the same. After 24 h , the reaction was quenched with 30% aq. NaOH solution saturated with sodium chloride. After stirring for $1 / 2 \mathrm{~h}$ reaction mixture was filtered through celite, two layers are separated and aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Combined organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and the residue purified on silica gel using EtOAc: light petroleum ether (2:3) as an eluent to obtain $132(10.1 \mathrm{~g})$.
Yield : 92\%

Mol. Formula $\quad: \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4}$
Optical Rotation $[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad:+36.1\left(c\right.$ 1.15, $\left.\mathrm{CHCl}_{3}\right)$
IR ($\mathbf{C H C l}_{\mathbf{3}}$) $\mathrm{cm}^{-1} \quad: 3447,3019,2991,1383,1374,1215,1062,758,668$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{bs}, 1 \mathrm{H}), 3.05-3.11$
(m, 2H), 3.67 (dd, $J=3.3,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.99(\mathrm{~m}$, $3 \mathrm{H})$, 4.07-4.17 (m, 1H) ppm.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 25.16,26.40,55.14,57.20,60.96,66.75,75.28$, 109.77 ppm.

Elemental Analysis
Calcd: C, 55.16; H, 8.10.
Found: C, 55.34; H, 8.29.
(1S,2S)-1-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-methylpropane-1,3-diol (133).

A solution of $3 \mathrm{M} \mathrm{CH}_{3} \mathrm{MgC1}$ (Aldrich) in THF ($76.54 \mathrm{~mL}, 229.63 \mathrm{mmol}$) was added to a stirred suspension of $\mathrm{CuCN}(4.94 \mathrm{~g}, 55.11 \mathrm{mmol})$ in 100 mL of dry THF under argon at $0{ }^{\circ} \mathrm{C}$. After ca. 10 min , a clear yellow solution was obtained. To this reaction mixture a solution of $\mathbf{1 3 2}(8.0 \mathrm{~g}, 45.93 \mathrm{mmol})$ in 100 mL of THF was slowly added. The solution was stirred for 1 h , and then quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{C} 1$. The mixture was partitioned between ethyl acetate and water. Organic layer separated, dried over sodium sulphate and purified through column chromatography, eluting by ethyl acetate: light petroleum ether (1:1) to obtain compound $133(8.4 \mathrm{~g})$.

Yield
Mol. Formula
: 96\%

IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}^{-1}}$
: $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{4}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

ESI MS ($\boldsymbol{m} / \boldsymbol{z}$)
Elemental Analysis
: 3433, 3019, 2926, 2854, 1465, 1215, 1026, 759, 669.
: $\delta 0.96(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$, 1.68-1.80 (m, 1H), 3.10 (bs, 2H), 3.62-3.78 (m, 3H), 3.89-4.06 (m, 2H), 4.15-4.24 (m, 1H) ppm. : $\delta 13.61,25.31,26.48,36.75,65.08,66.74,75.72$, 76.75, 109.00 ppm .
: $213.2[\mathrm{M}+\mathrm{Na}]^{+}$
Calcd: C, 56.82; H, 9.54.
Found: C, 56.64; H, 9.40.
(1S,2S)-3-(tert-butyldimethylsilyloxy)-1-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-methylpropan-1-ol (134):

To a solution of $\mathbf{1 3 3}(8.0 \mathrm{~g}, 42.05 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(7.04 \mathrm{~mL}, 50.46 \mathrm{mmol})$ and DMAP $(206 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(210 \mathrm{~mL})$ was added $\operatorname{TBDMSCl}(6.9 \mathrm{~g}, 46.26 \mathrm{mmol})$ at room
temperature. The reaction mixture was stirred for over night, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, brine, dried (over $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated. The residue was purified on silica gel column chromatography by using EtOAc:hexane (1:9) to obtain $\mathbf{1 3 4}(11.4 \mathrm{~g})$.

Yield
Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR $\left(\mathbf{C H C l}_{\mathbf{3}}\right) \mathrm{cm}^{-1} \quad: 3480,2956,2931,1463,1471,1381,1371,1216$, 1255, 1070, 1017, 839, 813, 667.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 200 \mathbf{~ M H z}\right) \quad: \delta 0.08(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.07(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.36(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.90(\mathrm{~m}, 1 \mathrm{H}), 3.46-$ $3.54(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{dd}, J=3.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-$ 4.19 ($\mathrm{m}, 4 \mathrm{H}$) ppm.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 50 \mathbf{M H z}\right) \quad: \delta-5.66,-5.61,14.40,18.13,25.52,25.84,26.76$, 35.81, 66.22, 66.83, 76.09, 77.31, 108.99 ppm .

Calcd: C, 59.17; H, 10.59.
Found: C, 59.24; H, 10.50 .
((2S,3S)-3-(benzyloxy)-3-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-ethylpropoxy)(tertbutyl)dimethylsilane (135):

Compound $134(11.0 \mathrm{~g}, 36.12 \mathrm{mmol})$ in DMF $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(60$ $\%$ dispersion in mineral oil, $2.2 \mathrm{~g}, 54.19 \mathrm{mmol}$). After 15 min , benzyl bromide (4.7 mL , 39.74 mmol) was introduced and the reaction further stirred for 1 h at room temperature. Water was carefully added to the reaction mixture, extracted with ethyl acetate, washed with water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. On evaporation of solvent, the residue was purified by silica gel column chromatography by eluting with light petroleum:EtOAc (1:9) to afford $135(13.04 \mathrm{~g})$ as colourless liquid.
Yield
: 91%

Mol. Formula	: $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}$
Optical Rotation [$\alpha]_{\text {D }}{ }^{25}$	$:+8.6$ (c 1.35, $\left.\mathrm{CHCl}_{3}\right)$
IR ($\mathbf{C H C l}_{\mathbf{3}} \mathrm{cm}^{-1}$	$\begin{aligned} & : 3019,2957,2930,1471,1382,1372,1253,1215, \\ & 1071,837,758,668 . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$: $\delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.37(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.90(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~d}$, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{dd}, J=4.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-$ $4.04(\mathrm{~m}, 2 \mathrm{H}), 4.22-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=11.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.73(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.34(\mathrm{~m}, 5 \mathrm{H})$ ppm.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta-5.42,-5.34,13.53,18.30,25.49,25.97,26.53, \\ & 38.49,64.82,65.77,73.97,76.91,79.53,108.55, \\ & 127.47,127.71,128.27,138.83 \mathrm{ppm} . \end{aligned}$
ESI MS (m/z)	: 417 [M+Na] ${ }^{+}$
Elemental Analysis	Calcd: C, 66.69; H, 9.71.
	Found: C, 66.54; H, 9.57.

(2S,3S)-3-(benzyloxy)-3-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-methylpropan-1-ol (136):

A solution of $\mathbf{1 3 5}(12.5 \mathrm{~g}, 31.7 \mathrm{mmol})$ and 1 M solution of $n-\mathrm{Bu}_{4} \mathrm{NF}(47.55 \mathrm{~mL}$, 47.5 mmol) in THF (50 mL) were stirred for 4 h and concentrated. The crude was extracted with EtOAc, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated. The residue was chromatographed on silica gel using EtOAc:light petroleum ether (1:4) to provide $\mathbf{1 3 6}$ as colorless thick syrup (6.5 g).
Yield : 89\%
Mol. Formula

$$
: \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4}
$$

$$
\text { Optical Rotation }[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad:+25.6\left(c 1.0, \mathrm{CHCl}_{3}\right)
$$

IR ($\mathbf{C H C l}_{\mathbf{3}} \mathrm{cm}^{-1}$: 3463, 2935, 2987, 2883, 1455, 1381, 1372, 1216 1158, 1068, 1028, 756, 699, 667.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$: $\delta 0.94(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$, 1.79-1.97 (m, 1H), 2.56 (bs, 1H), 3.46-3.63 (m, 3H), 3.82 (dd, $J=7.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=6.2,8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=6.5,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.27(\mathrm{~m}$, 5H) ppm.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$: $\delta 13.06,25.31,26.51,37.09,65.39,66.55,73.89$, 75.93, 82.75, 109.10, 127.91, 128.48, 137.92 ppm .
ESI MS (m/z)	: $303\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right.$
Elemental Analysis	Calcd: C, 68.54; H, 8.63.
	Found: C, 68.64; H, 8.79.

(4S,5S,E)-ethyl 5-(benzyloxy)-5-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-4-methylpent-2enoate (138).

To a solution of IBX ($15.0 \mathrm{~g}, 53.54 \mathrm{mmol}$) in DMSO (30 mL) at room temperature, was added pyridine (10 mL), followed by alcohol $136(3.0 \mathrm{~g}, 15.46 \mathrm{mmol})$ in dry THF $(25 \mathrm{~mL})$. After 3.5 h of stirring, water $\left(\mathrm{H}_{2} \mathrm{O}\right)(60 \mathrm{~mL})$ was added, diluted with ether (250 mL) and stirred it for additional 30 min . The solid was filtered off and from the filtrate organic layer was isolated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to give aldehyde $\mathbf{1 3 7}$ (2.9 g , crude product) the crude aldehyde was used immediately for the next reaction.

To a solution of phosphonate $(8.5 \mathrm{~mL}, 42.83 \mathrm{mmol})$ in THF $(75 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added $\mathrm{NaH}(1.3 \mathrm{~g}, 60 \%$ dispersion in minerals oil, 32.12 mmol) portion wise. After 1 h stirring at the same temperature, the crude aldehyde in THF was added slowly. After 2 h , reaction was quenched with saturated aq. solution of $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with ethyl
acetate. The organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. Purification was done by silica gel ($60-120$ mesh) column chromatography using ethyl acetate: hexane (1:10) to afford unsaturated ester $\mathbf{1 3 8}$ as colorless oil (6.58 g).

Yield
Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$ IR ($\mathbf{C H C l}_{\mathbf{3}}$) cm^{-1}
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 1.07(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.23(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.67(\mathrm{~m}, 1 \mathrm{H}), 3.44$ (dd, $J=3.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=6.3,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.85-3.99 (m, 2H), $4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{~d}, J$ $=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J$ $=15.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.2,15.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.17-7.26 (m, 5H) ppm.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 14.27,16.08,25.26,26.62,39.15,60.09,66.29$, 74.37, 76.66, 82.85, 108.70, 121.62, 127.71, 128.33, 138.06, 150.05, 166.30 ppm .
: $371[\mathrm{M}=\mathrm{Na}]^{+} ; 387[\mathrm{M}+\mathrm{K}]^{+}$
Calcd: C, 68.94; H, 8.10.
Found: C, 69.04; H, 8.29.
(3S,4S,E)-4-(benzyloxy)-4-(R)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-methylbut-1-en-1-ol (139):

To a solution of $\mathbf{1 3 8}(6.0 \mathrm{~g}, 17.23 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added DIBAL-H (1.46 M solution in toluene, $29.5 \mathrm{~mL}, 43.08 \mathrm{mmol}$) dropwise over a period of 5 min at
$-78{ }^{\circ} \mathrm{C}$. After stirring for 1 h , the reaction was quenched with saturated aq. sodium potassium tartrate solution, stirred for overnight. The organic layer separated, aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified on silica gel column chromatography using EtOAc: light petroleum ether (3:7) as an eluent to afford $\mathbf{1 3 9}(5.0 \mathrm{~g})$.

Yield
Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR ($\mathbf{C H C l}_{\mathbf{3}} \mathbf{~ c m}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathbf{C D C l}_{3}, 50 \mathrm{MHz}\right)$

ESI MS (m/z)
Elemental Analysis
: 95\%
: $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4}$ $:+20.9\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$
: 3434, 3013, 2987, 2935, 1665, 1607, 1454, 1381, 1372, 1216, 1071, 757, 699, 667. : $\delta 1.01(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$, 2.35-2.46 (m, 1H), $3.44(\mathrm{dd}, J=3.7,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.75-3.91 (m, 2H), 3.91-4.03 (m, 3H), $4.52(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.56-5.60(\mathrm{~m}$, $2 \mathrm{H}), 7.17-7.25(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$.
: $\delta 17.30,25.27,26.56,39.16,63.26,65.89,74.50$,
$77.14,83.14,108.31,127.55,127.66,128.23,129.84$, 133.52, 138.42 ppm .
: $329[\mathrm{M}+\mathrm{Na}]^{+}$
Calcd: C, 70.56; H, 8.55.
Found: C, 70.44; H, 8.38.
((2S,3S)-3-((1S,2R)-1-(benzyloxy)-1-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)propan-2-yl)oxiran-2-yl)methanol (140):

To a solution of (+)-DET ($0.3 \mathrm{~mL}, 1.96 \mathrm{mmol}$) and $4 \AA$ molecular sieves powder $(5.0 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added titanium tetraisopropoxide $(0.4 \mathrm{~mL}, 1.4 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$. After 15 minutes, a solution of allylic alcohol $\mathbf{1 3 9}(4.3 \mathrm{~g}, 14.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$(20 \mathrm{~mL})$ was introduced and stirred for 45 min . Then reaction mixture was charged with TBHP [5 M solution in toluene, $8.4 \mathrm{~mL}, 42.10 \mathrm{mmol}$] slowly over period of 15 min at the same temperature. After 24 h , the reaction was quenched with $30 \% \mathrm{aq} . \mathrm{NaOH}$ solution saturated with sodium chloride. After stirring for $1 / 2 \mathrm{~h}$, reaction mixture was filtered through celite, two layers are separated and aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Combined organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and the residue purified on silica gel column chromatography using EtOAc:light petroleum ether (3:7) as an eluent to obtain 140 (3.6 g).
Yield : 80\%

Mol. Formula $\quad: \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{5}$
Optical Rotation $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad:+4.85\left(c \quad 0.55, \mathrm{CHCl}_{3}\right)$
IR $\left(\mathbf{C H C l}_{\mathbf{3}}\right) \mathrm{cm}^{-1} \quad: 3430,2984,2934,2877,1497,1455,1381,1371$, $1252,1212,1028,897,855,749,700$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 1.17(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$, 2.95-3.03 (m, 2H), 3.05-3.18 (m, 1H), 3.49-3.60 (m, 2 H), 3.73-3.89 (m, 2H), 4.05 (dd, $J=6.2,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.19(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.67(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.35(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 13.67,25.22,26.51,38.51,57.57,58.82,61.70$,
$66.53,74.13,76.08,81.78,108.85,127.62,127.72$, 128.32, 137.97 ppm .

Elemental Analysis
Calcd: C, 67.06; H, 8.13.
Found: C, 67.14; H, 8.20.
(2R,3R,4S,5S)-5-(benzyloxy)-5-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,4-dimethylpentane-1,3-diol (141):

A solution of $3 \mathrm{M} \mathrm{CH}_{3} \mathrm{MgC1}$ (Aldrich) in THF (18.1 mL , 54.32 mmol) was added to a stirred suspension of $\mathrm{CuCN}(1.16 \mathrm{~g}, 13.04 \mathrm{mmol})$ in 30 mL of dry THF under argon at $0{ }^{\circ} \mathrm{C}$. After ca. 10 min , a clear yellow solution was obtained. To this reaction mixture, a solution of $140(3.5 \mathrm{~g}, 10.86 \mathrm{mmol})$ in 20 mL of THF was slowly added. The solution was stirred for 1 h , before quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{C} 1$ solution. The mixture was partitioned between water and ethyl acetate. Organic layer washed with brine, concentrated and product $141(3.0 \mathrm{~g})$ was purified by silica gel column chromatography eluting with ethyl acetate:hexane (45:55).
Yield $: 82 \%$

Mol. Formula $\quad: \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{5}$
Optical Rotation $[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad:+8.1\left(c \quad 0.85, \mathrm{CHCl}_{3}\right)$
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}} \mathrm{cm}^{-1} \quad: 3400,2973,2934,1455,1382,1215,1068,1028$, 754, 699, 665.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 200 \mathrm{MHz}\right) \quad: \delta 0.76(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.36(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{bs}, 1 \mathrm{H}), 1.82-1.91(\mathrm{~m}$, 1 H), 2.04-2.17 (m, 1H), 3.47 (dd, $J=2.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.60-3.68 (m, 3H), 3.78-3.88 (m, 1H), $3.95(\mathrm{bs}, 1 \mathrm{H})$, 4.10-4.20 (m, 2H), $4.55(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}$, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.39(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 8.76,13.79,25.29,26.55,36.38,37.45,67.57$, 68.91, 73.95, 75.11, 77.87, 85.11, 109.26, 127.88, 128.09, 128.56, 137.49 ppm .

ESI MS ($\boldsymbol{m} / \boldsymbol{z}$)

: $361[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis
Calcd: C, 67.43; H, 8.93.
Found: C, 67.54; H, 9.15.
(1S,2S,3R,4R)-1-(benzyloxy)-1-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-5-(4-methoxybenzyloxy)-2,4-dimethylpentan-3-ol (142):

The dihydroxy compound $141(2.8 \mathrm{~g}, 8.27 \mathrm{mmol})$ in DMF $(65 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added NaH (60% dispersion in mineral oil, $0.4 \mathrm{~g}, 10.75 \mathrm{mmol}$). After 15 min , paramethoxybenzyl chloride ($1.3 \mathrm{~mL}, 9.1 \mathrm{mmol}$) was introduced and the reaction was further stirred for 3 h at the same temperature. Water was carefully added to the reaction mixture, extracted with ether, washed with water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. On evaporation of solvent, the residue was purified by silica gel chromatography by eluting with light petroleum:EtOAc (1:5) to afford $\mathbf{1 4 2}(3.5 \mathrm{~g})$.

Yield
Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR $\left(\mathbf{C H C l}_{\mathbf{3}}\right) \mathrm{cm}^{-1}$
: 92\%
: $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{6}$
$:+0.5\left(c 1.0, \mathrm{CHCl}_{3}\right)$
: 3492, 2933, 1612, 1513, 1455, 1379, 1248, 1071, 753, 699.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, 200 \mathrm{MHz}\right) \quad: \delta 0.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.37(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.94(\mathrm{~m}, 2 \mathrm{H}), 3.47-$ $3.70(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.03-4.11 (m, 1H), 4.21-4.30 (m, 1H), $4.45(\mathrm{~s}, 2 \mathrm{H})$, $4.63(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.33(\mathrm{~m}, 7 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 8.98,13.80,25.41,26.46,36.35,36.85,55.08$, $66.21,72.89,73.85,74.24,74.37,76.37,82.70$, 108.79, 113.69, 127.65, 127.81, 128.33, 129.12, 130.34, 138.29, 159.09 ppm .

Calcd: C; 70.71, H; 8.35.
Found: C; 70.63, H; 8.25.

To a solution of $\mathbf{1 4 2}(3.5 \mathrm{~g}, 7.63 \mathrm{mmol})$ in DMF $(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added NaH (60% dispersion in mineral oil, $0.458 \mathrm{~g}, 11.45 \mathrm{mmol}$). After 15 min , benzyl bromide $(1.54 \mathrm{~mL}, 12.97 \mathrm{mmol})$ was introduced and the reaction mixture further stirred for 1 h at room temperature. Water was carefully added to the reaction mixture, extracted with ether, washed with water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. On evaporation of solvent, the residue was purified by silica gel column chromatography by eluting with light petroleum:EtOAc (3:97) to afford $\mathbf{1 4 3}(3.76 \mathrm{~g})$ as yellow colour liquid.

Yield

Mol. Formula
Optical Rotation [$\alpha]_{D}{ }^{25}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 1.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.41(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.92-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.09-$ $2.21(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=5.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}$, $J=6.7,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.81(\mathrm{~m}, 2 \mathrm{H})$, 3.96-4.11 (m, 2H), 4.31-4.40 (m, 1H), 4.45-4.59 (m, $5 \mathrm{H}), 4.77(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), ~ 7.26-7.40(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 11.01,15.25,25.34,26.44,36.72,37.99,55.08$, 65.57, 72.03, 72.72, 73.41, 74.13, 76.88, 80.27, 80.98, 108.57, 113.66, 127.12, 127.32, 127.49, 128.20, $128.23,129.17,130.69,138.87,139.24,159.02 \mathrm{ppm}$.
: $607[\mathrm{M}+\mathrm{Na}]^{+} ; 623[\mathrm{M}+\mathrm{K}]^{+}$
Calcd: C, 74.42; H, 8.08.
Found: C, 74.34; H, 8.19.
($2 R, 3 S, 4 S, 5 R, 6 R$)-3,5-bis(benzyloxy)-7-(4-methoxybenzyloxy)-4,6-dimethylheptane-1,2-diol (144).

A mixture of $143(3.5 \mathrm{~g}, 6.38 \mathrm{mmol})$ and p-TSA (0.1 g) in $\mathrm{MeOH}(50 \mathrm{~mL})$ were stirred at rt for 8 h . Solvent was removed in vacuo and the residue extracted with EtOAc, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was purified by silica gel column chromatography with light petroleum: $\operatorname{EtOAc}(1: 1)$ as an eluent to afford diol 144 $(3.0 \mathrm{~g})$.

Yield	: 95%
Mol. Formula	: $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{6}$
Optical Rotation [$\alpha]_{\text {D }}{ }^{25}$: -5.0 (c 1.05, CHCl_{3})
IR ($\left.\mathbf{C H C l}_{3}\right)^{\text {cm }}{ }^{-1}$	$\begin{aligned} & : 3411,2933,1612,1513,1454,1302,1247,1173 \text {, } \\ & 1069,735,697 . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 200 MHz)	: $\delta 1.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.70(\mathrm{bs}, 1 \mathrm{H}), 2.10-2.33(\mathrm{~m}, 3 \mathrm{H}), 3.52-3.60(\mathrm{~m}, 3 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.85(\mathrm{~m}, 4 \mathrm{H}), 4.46-4.65(\mathrm{~m}, 6 \mathrm{H})$, $6.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.37(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 10.72,14.33,36.47,36.70,55.13,63.69,71.48, \\ & 72.30,72.85,72.96,73.65,80.59,83.73,113.77, \\ & 127.37,127.45,127.63,127.71,128.31, \\ & 128.40, \\ & 129.28,130.36,138.41,138.59,159.20 \mathrm{ppm} . \end{aligned}$
ESI MS (m/z)	: $531\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right.$
Elemental Analysis	Calcd: C, 73.20; H, 7.93.
	Found: C, 73.12; H, 7.80.

(2R,3S,4S,5R,6R)-3,5-bis(benzyloxy)-2-hydroxy-7-(4-methoxybenzyloxy)-4,6-
dimethylheptyl benzoate (145):

To a solution of $\mathbf{1 4 4}(2.0 \mathrm{~g}, 3.93 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.8 \mathrm{~mL}, 5.89 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40$ mL) was added benzoyl chloride ($0.5 \mathrm{~mL}, 4.32 \mathrm{mmol}$) at $-10{ }^{\circ} \mathrm{C}$. The reaction mixture
was stirred for 4 h at $0{ }^{\circ} \mathrm{C}$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, brine, dried (over $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated. The residue was purified on silica gel column chromatography by using EtOAc-hexane (1:9) to give 145 (2.23 g), as a colorless liquid.

Yield
Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}^{-1}}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 1.08(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 2.20-2.31 (m, 2H), 3.56 (dd, $J=1.1,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.67$ (t, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, 4.15-4.24 (m, 1H), 4.47-4.73 (m, 8H), $6.87(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.30-7.36(\mathrm{~m}, 12 \mathrm{H}), 7.46-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.60-$ 7.67 (m, 1H), 8.08-8.13 (m, 2H) ppm.
${ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 10.85,14.51,36.55,36.66,55.03,66.82,70.99$, $72.16,72.70,73.21,73.47,80.33,82.63,113.65$, $127.25,127.44,127.61,128.19,128.27,128.30$, 129.19, 129.64, 130.38, 132.98, 129.97, 138.42, $138.79,159.03,166.88 \mathrm{ppm}$.
: $635[\mathrm{M}+\mathrm{Na}]^{+}$
Calcd: C, 74.48; H, 7.24.
Found: C, 74.64; H, 7.35.
(2R,3S,4S,5R,6R)-3,5-bis(benzyloxy)-7-(4-methoxybenzyloxy)-4,6-dimethyl-2(tosyloxy)heptyl benzoate (146):

Compound $145(2.0 \mathrm{~g}, 3.26 \mathrm{mmol})$, $\mathrm{TsCl}(2.18 \mathrm{~g}, 11.42 \mathrm{mmol})$ and pyridine (10 mL) were stirred at room temperature for 24 h . Pyridine was removed under vacuo and the residue extracted with EtOAc , washed with 1 N HCl , water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$
and evaporated. The residue was purified by silica gel column chromatography by eluting with light petroleum: $\operatorname{EtOAc}(19: 5)$ to give $146(1.8 \mathrm{~g})$.

Yield

Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR ($\mathbf{C H C l}_{\mathbf{3}}$) cm^{-1}
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

ESI MS (m/z)
Elemental Analysis
: 72\%
: $\mathrm{C}_{45} \mathrm{H}_{50} \mathrm{O}_{9} \mathrm{~S}$
$:+17.2\left(c 2.25, \mathrm{CHCl}_{3}\right)$
: 3031, 2926, 1718, 1601, 1512, 1453, 1366, 1271, 1189, 1177, 1095, 1069, 913, 815, 754, 698, 668.
: $\delta 0.86(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.73-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H})$, $3.36(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}$, $3 \mathrm{H}), 3.82(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.57(\mathrm{~m}, 8 \mathrm{H}), 4.83$ (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.23(\mathrm{~m}, 12 \mathrm{H})$, $7.26-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.71-7.75(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
: $\delta 10.08,14.83,21.43,36.85,37.93,55.06,62.42$, 72.21, 72.61, 73.67, 73.85, 79.03, 81.86, 82.71, 113.61, 127.14, 127.23, 127.50, 127.60, 127.70, $128.13128 .26,128.27,129.00,129.38,129.69,130.66$, 133.01, 133.55, 138.08, 139.01, 144.54, 158.95, 166.05 ppm .
: $789[\mathrm{M}+\mathrm{Na}]^{+}$
Calcd: C, 70.47; H, 6.57.
Found: C, 70.64; H, 6.69.
(S)-2-((1S,2S,3R,4R)-1,3-bis(benzyloxy)-5-(4-methoxybenzyloxy)-2,4-
dimethylpentyl)oxirane (147).

Compound $146(1.8 \mathrm{~g}, 2.35 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(0.8 \mathrm{~g}, 5.86 \mathrm{mmol})$ was added. The mixture was stirred at room temperature for 4 h before it was concentrated. The residue was dissolved in water and extracted with ethyl acetate, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Purification on silica gel using light petroleum:EtOAc (19:1) as an eluent afforded pure epoxide $147(1.09 \mathrm{~g})$.

Yield
Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}}{ }^{-1}$
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 0.87(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.90-1.97(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{dd}, J=2.4,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.73-2.77 (m, 1H), 2.89-2.93 (m, 2H), $3.42(\mathrm{~d}, J=4.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{dd}, J=1.6,9.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.15-4.39 (m, 5H), 4.86 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J$ $=8.8,2 \mathrm{H}), 7.05-7.33(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 9.85,14.85,36.98,38.42,44.08,54.71,55.18$, $71.55,72.44,72.67,74.08,78.93,82.10,113.69$, 127.13, 127.23, 127.39, 127.68, 128.21, 128.32, $129.09,130.82,138.77,139.26,159.02 \mathrm{ppm}$.

ESI MS (m/z)

Elemental Analysis
: 95\%
: $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{5}$
: -14.5 (c 1.05, CHCl_{3})
: 3063, 2974, 2935, 1612, 1513, 1454, 1248, 1173, 1092, 1071, 821, 755, 698, 666. : $513[\mathrm{M}+\mathrm{Na}]^{+}$
Calcd: C, 75.89; H, 7.81.

Found: C, 75.64; H, 7.79.
(2S,3S,4S,5R,6R)-3,5-bis(benzyloxy)-7-(4-methoxybenzyloxy)-4,6-dimethylheptan-2ol (148):

A suspension of LAH ($1.0 \mathrm{~g}, 4.08 \mathrm{mmol}$), and $147(1.0 \mathrm{~g}, 2.04 \mathrm{mmol})$ in THF (10 mL) was stirred at rt for 3 h at $0^{\circ} \mathrm{C}$. The excess reagent was quenched with saturated aq.
solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the residue thoroughly washed with EtOAc. The filtrate was concentrated and purified on silica gel using EtOAc:light petroleum ether (1:5) to afford $\mathbf{1 4 8}(1.0 \mathrm{~g})$ as thick oil.

Yield
Mol. Formula
Optical Rotation [$\alpha]_{D}{ }^{25}$
IR ($\mathbf{C H C l}_{\mathbf{3}}$) cm^{-1}
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 11.33,14.99,21.33,37.06,55.10,65.13,67.51$,

ESI MS ($\boldsymbol{m} / \boldsymbol{z}$)
Elemental Analysis
$72.30,72.71,73.25,74.46,80.30,85.56,113.68$, 126.89, 127.00, 127.14, 127.50, 127.59, 128.19, 128.37, 128.45, 129.11, 130.70, 138.43, 139.42, 159.04 ppm .
: 99\%
: $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{5}$
: +32.9 (c 0.6, $\left.\mathrm{CHCl}_{3}\right)$
: 3438, 3018, 2975, 2936, 1612, 1513, 1454, 1247, 1215, 1089, 1067, 1036, 758, 699, 668.
: $\delta 1.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, 1.25 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$), 2.02-2.18 (m, 2H), 3.20 (dd, $J=3.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.68$ (dd, $J=2.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.95(\mathrm{~m}$, $1 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 4.48-4.60(\mathrm{~m}, 4 \mathrm{H}), 4.67(\mathrm{bs}, 1 \mathrm{H})$, $6.81(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.36(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm}$.
IJフ.v+ ppin.

$$
: 515[\mathrm{M}+\mathrm{Na}]^{+}
$$

Calcd: C, 75.58; H, 8.18.
Found: C, 75.45; H, 8.19.

2-((2R,3S,4S,5R,6R)-3,5-bis(benzyloxy)-7-(4-methoxybenzyloxy)-4,6-

 dimethylheptan-2-yl)isoindoline-1,3-dione (149):

A 50 mL three necked round bottom flask charged with TPP ($0.532 \mathrm{~g}, 2.03 \mathrm{mmol}$) phthalimide $(0.298 \mathrm{~g}, 2.03 \mathrm{mmol})$ and THF (10 mL). The alcohol $148(1.0 \mathrm{~g}, 2.03 \mathrm{mmol}$,
in 2 mL THF) and DIAD ($0.4 \mathrm{~mL}, 2.03 \mathrm{mmol}$) in 2 mL THF are added to the flask simultaneously dropwise over a period of 5 min with stirring, the solution turned yellow. The reaction permitted to proceed at room temperature for 24 h , the solution then concentrated and purified by silica gel column chromatography eluting with ethyl acetate:hexane (1:10) to obtain $148(402 \mathrm{mg})$.

Yield

Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}}{ }^{-1}$
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, 200 \mathbf{M H z}\right)$
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 12.12,15.18,15.88,37.62,37.92,49.10,55.13$, $72.02,72.52,73.26,75.06,79.94,83.26,113.65$, 123.18, $126.90,127.26,127.38,127.78,128.02$, 128.19, 129.02, 130.88, 131.98, 133.95, 138.55, 139.44, 158.97, 168.17 ppm.
: $644[\mathrm{M}+\mathrm{Na}]^{+}$
Calcd: C, 75.34; H, 6.97.
Found: C, 75.16; H, 7.15.

N-((2R,3S,4S,5R,6R)-3,5-bis(benzyloxy)-7-(4-methoxybenzyloxy)-4,6-

dimethylheptan-2-yl)acetamide (150):

A solution of compound $149(0.45 \mathrm{~g}, 0.724 \mathrm{mmol})$ in ethanol $(5 \mathrm{~mL})$ with catalytic amount (two drops) of hydrazine hydrate was heated to reflux for 4 h . The solid byproduct was filtered off. Organic layer concentrated and directly carried forward to the next reaction.

To a solution of the crude product in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}), \mathrm{Ac}_{2} \mathrm{O}(0.14 \mathrm{~mL}, 1.45 \mathrm{mmol})$ triethylamine $(0.2 \mathrm{~mL}, 1.81 \mathrm{mmol})$ and DMAP $(2 \mathrm{mg}, 0.01 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. After stirring for 8 h at room temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine, dried over sodium sulphate, concentrated and residue purified on silica gel using EtOAc:light petroleum ether (2:3) as an eluent to obtain $\mathbf{1 5 0}(188 \mathrm{mg})$.

Yield
Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right)_{\mathrm{cm}} \mathrm{cm}^{-1} \quad: 3290,3030,2974,2935,1651,1547,1513,1454$, 1372, 1247, 1172, 1091, 754, 698, 666.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, 200 \mathrm{MHz}\right) \quad: \delta 0.94(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.02(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 2.04-2.17(\mathrm{~m}$, 2 H), 3.40-3.47 (m, 3H), 3.73 ($\mathrm{s}, 3 \mathrm{H}$), 3.66-3.73 (m, 1 H), 4.09-4.25 (m, 2H), 4.37 ($\mathrm{s}, 2 \mathrm{H}$), 4.45-4.71 (m, $3 \mathrm{H}), 5.32$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.16-7.30 (m, 12H) ppm.
N-((2R,3S,4S,5R,6R)-3,5-bis(benzyloxy)-7-hydroxy-4,6-dimethylheptan-2yl)acetamide (151):

A mixture of compound $\mathbf{1 5 0}(0.1 \mathrm{~g}, 0.187 \mathrm{mmol})$ and $\mathrm{DDQ}(51 \mathrm{mg}, 0.225 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}$ (9.5:0.5) was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h . After completion of reaction, the reaction mixture was diluted with excess of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated aq. NaHCO_{3} solution followed by brine. The organic layer dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The product was purified by silica gel column chromatography by eluting with ethyl acetate:hexane (1:1) to obtain 151 (77 mg).

Yield
Mol. Formula
Optical Rotation $[\alpha]_{D}{ }^{25}$
IR ($\mathbf{C H C l}_{\mathbf{3}}$) cm^{-1}
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 200 \mathbf{~ M H z}\right) \quad: \delta 0.94(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.89(\mathrm{~m}$, $1 \mathrm{H}), 1.99-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{bs}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=$ $2.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{dd}, J$ $=1.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=$ $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.39(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm}$.
$\left.{ }^{13} \mathbf{C ~ N M R ~ (C D C l} 3,50 \mathbf{~ M H z}\right) \quad: \delta 10.99,14.01,14.47,23.33,38.60,38.77,46.55$, $66.29,73.99,75.18,82.54,85.10,127.28,127.60$, 127.72, 127.89, 128.51, 128.71, 138.45, 138.82, 168.87 ppm .
: $436[\mathrm{M}+\mathrm{Na}]^{+}$
Calcd: C, 72.61; H, 8.53.
Found: C, 72.50; H, 8.49.

REFERESCES

Reference

1. Bergmann, W.; Burke, D. C. J. Org. Chem. 1955, 20, 1501-1507.
2. Fujimoto, H.; Takayanagi, T.; Ajisaka, K. J. Med. Chem. 1994, 37, 3668-3670.
3. Namba, K.; Jun, H-S.; Kishi, Y. J. Am. Chem. Soc. 2004, 126, 7770-7771.
4. Bai, R. L.; Paull, K. D.; Herald, C. L.; Malspeis, L.; Pettit, G. R.; Hamel, E. J. Bio. Chem. 1991, 266, 15882-15889.
5. Litaudon, M.; Hickford, S. J. H.; Lill, R. E.; Lake, R. J.; Blunt, J. W.; Munro, M. H. G. J. Org. Chem. 1997, 62, 1868-1871.
6. Pettit, G. R.; Gao, F.; Doubek, D. L.; Boyd, M. R.; Hamel, E.; Bai, R.; Schmidt, J. M.; Tackett, L. P.; Rutzler, K. Gazz. Chim. Ital. 1993, 123, 371.
7. (a) Bai, R.; Taylor, G. F.; Cichacz, Z. A.; Herald, C. L.; Kepler, J. A.; Pittit, G. R.; Hamel, E. Biochemistry 1995, 34, 9714-9721; (b) Holson, E. B.; Roush, W. R. Org. Lett. 2002, 4, 3723-3725.
8. (a) Carmely, S.; Kashman, Y. Tetrahedron lett. 1985, 26, 511; (b) Swinhinolide : Paterson, I.; Smith, J. D. J. Org. Chem. 1992, 57, 3261.
9. Fusetani, N.; Shinoda, K.; Matsunaga, S. J. Am. Chem. Soc. 1993, 115, 39773981.
10. (a) Schmitz, F. J.; Gunasekera, S. P.; Yalamanchili, G.; Hossain, M. B.; van der Helm, D. J. Am. Chem. Soc. 1984, 106, 7251; (b) Hearn, B. R.; Ciavarri, J. P.; Taylor, R. E. Org. Lett. 2002, 4, 2953-2955.
11. (a) Rzasa, R. M.; Shea, H. A.; Romo, D. J. Am. Chem. Soc. 1998, 120, 591-592;
(b) Romo, D.; Choi, N. S.; Li, S.; Buchler, I.; Shi, Z.; Liu, J. O. J. Am. Chem. Soc. 2004, 126, 10582-10588.
12. (a) Tanaka, H.; Kuroda, A.; Marusawa, H.; Hanataka, H.; Kino, T.; Goto, T.; Hasimoto, M.; Taga, T. J. Am. Chem. Soc. 1987, 109, 5031; (b) Wasserman, H. H.; Rotello, V. M.; Williams, D. R.; Benbow, J. W. J. Org. Chem. 1989, 54, 5406. 13. (a) Vegina, C.; Kudelski, A.; Sehgal, S. N. J. Antibiotic, 1975, 28, 721; (b) Nicolaou, K. C.; Chakraborty, T. K.; Piscopio, A. D.; Minowa, N.; Bertinato, P. J.Am. Chem. Soc. 1993, 115, 4419-4420.
13. (a) Fusetani, N.; Yasumuro, K.; Matsunaga, S.; Hasimoto, K. Tetrahedron Lett. 1989, 30, 2809-2812; (b) Liu, P.; Panek, J. S. J. Am. Chem. Soc. 2000, 122, 12351236.
14. (a) Carmely, S.; Kashman, Y. Tetrahedron Lett. 1985, 26, 511; (b) Nicolaou, K. C.; Ajito, K.; Patron, A. P.; Khatuya, H.; Richter, P. K.; Bertinato, P. J. Am. Chem. Soc. 1996, 118, 3059-3060.
15. (a) Gunasekera, S. P.; Gunasekera, M.; Longley, R. E.; Schulte, G. K. J. Org. Chem. 1990, 55, 4912; (b) Smith, A. B. III; Freeze, B. S.; Brouard, I.; Hirose, T. Org. Lett. 2003, 5, 4405-4408.
16. (a) D'Auria, M. V.; Paloma, L. G.; Minale, L.; Zampella, A. Tetrahedron 1993, 49, 8657-8664; (b) guella, G.; Mancini, G.; Chiasera, G.; Pietra, F. Helv. Chim. Acta. 1989, 72, 237.
17. D’Auria, M. V.; Debitus, C.; Paloma, L. G.; Minale, L.; Zampella, A. J. Am. Chem. Soc. 1994, 116, 6658-6663.
18. D’Auria, M. V.; Paloma, L. G.; Minale, L.; Zampella, A.; Debitus, C. J. Nat. Prod. 1994, 57, 1595-1597.
19. D’Auria, M. V.; Paloma, L. G.; Minale, L.; Zampella, A. J. Nat. Prod. 1995, 58, 121-123.
20. Roush, W. R.; Champoux, J. A.; Peterson, B. C. Tetrahedron Lett. 1996, 37, 8989-8992.
21. Zampella, A.; D’Auria, M. V. Tetrahedron Asymmetry 2001, 12, 1543.
22. Yakelis, N. A.; Roush, W. R. J. Org. Chem. 2003, 68, 3838-3843.
23. Yu, W.; Zhang, Y.; Jin, Z. Org. Chem. 2001, 3, 1447-1450.
24. Marshall, J. A.; Mulhearn, J. J. Org. Lett. 2005, 7, 1593-1596.
25. Solsona, J. G.; Romea, P.; Urpi, F. Org. Lett. 2003, 5, 4681-4684.
26. Paterson, I.; Mackay, A. C. Synlett 2004, 1359-1362.
27. Tortosa, M.; Yakelis, N. A.; Roush, W. R. J. Am. Chem. Soc. 2008, 130, 27222723.
28. Methods Carbohydr. Chem., Vol 1-8, Academic Press, New York.
29. Bertrand, P.; Sukkari, H. E.; Gesson, J. P.; Renoux, B. Synthesis 1999, 330-335.
30. Mitsunobu, O.; Wada, M.; Sano, T. J. Am. Chem. Soc. 1972, 94, 679.
31. Gurjar, M. K.; Nagaprasad, R., Ramana, C. V. Tetrahedron Lett. 2003, 44 28732875
32. Paquette, L. A.; Kim, I. H.; Cuniere, N. Org. Lett. 2003, 5, 221-223.
33. Paquette, L. A.; Bolin, D. G.; Stepanian, M.; Branan, B. M.; Mallavadhani, U. V.; Tae, J.; Eisenberg, S. W. E.; Rogers, R. D. J. Am. Chem. Soc. 1998, 120, 11603.
34. Horita, K.; Yoshioka, T.; Tanaka, T.; Oikawa, Y.; Yonemitsu, O. Tetrahedron 1986, 42, 3021.
35. Webb, T. R.; Mitsuya, H.; Broder, S. J. Med. Chem. 1988, 31, 1475-1479.
36. Anderson, R. C. and Fraser-Reid, B. J. Am. Chem. Soc. 1973, 97, 3870.
37. Hanessian, S.; Claridge, S and Johnstone, S. J. Org. Chem. 2002, 67, 4261-4274.
38. Zhou, Xiao-Ti; Lu, L.; Furkert, D. P.; Wells, C. E.; Carter, R. G. Angew. Chem. Int. Ed. 2006, 45, 7622-7626.
39. (a) Brown, H. C.; Knights, E. F.; Scouten, C. G. J. Am. Chem. Soc. 1974, 96, 7765; (b) Mandal, A. K. Org. Lett. 2002, 4, 2043.
40. Lal, B.; Pramanik, B. N.; Manhas, M. S.; Bose, A. K. Tetrahedron Lett. 1977, 23, 1977.
41. Mohapatra, D. K.; Yellol, G. S. ARKIVOC 2005, iii, 144.
42. Roush, W. R.; Brown, R. J. J. Org. Chem. 1982, 47, 1373.
43. Chaudhary, S. K.; Hernandez, O. Tetrahedron Lett. 1979, 99.
44. . Organic Synthesis, Wiley: New York. 1990, Collect. Vol. 7, pp 501.

CHAPIER 3

Studies of Some Useful Radical Rearrangement, Extensive Veno Reaction

INTRODUCTION

\longrightarrow

Introduction

The use of radicals in organic synthesis has increased dramatically within the last decade. At the beginning of the 1980's, the place of radical reaction in natural products synthesis was limited to a few important functional group transformations (such as the Barton-McCombie reaction ${ }^{1}$). However, during the past decade, radical carbon-carbon bond-forming reactions have grown in importance to the point where they are now routinely considered in strategy level planning of complex targets. ${ }^{2}$

Radical reactions have a number of synthetic advantages, which are:

1. Carbon-centred radicals are extremely reactive. Nevertheless, radical addition reactions proceed under mild, neutral conditions, and the reactivity of radicals does not compromise a high level of chemo-, regio-, and stereoselectivity. Conformational restrictions often increase the rates and intensify the stereoselectivity of radical cyclizations in complex natural product syntheses. By contrast, problems of reactivity and especially chemo selectivity are often magnified by molecular complexity for ionic reactions.
2. Radical additions to $\mathrm{C}=\mathrm{C}$ bonds are usually exothermic and irreversible, with early, reactant-like transition states. Reactions under kinetic control with early transition states often afford unique products that are unavailable by traditional ionic methods.
3. Because radicals are highly reactive and their reactions have early transition states, radical intermediates are ideally suited for the synthesis of crowded bonds.
4. Carbon-centred radicals are inert toward -OH or -NH groups. Radical reactions do not need to be dry, and the protection of alcohols, amines, and related functional groups often unnecessary. The same is rarely true for reactions involving carbanion or carbocations due to their respective basicity and electrophilicity.
5. In contrast to carbanion, carbon radicals are not subjected to β elimination of $-O R$ or $-N R_{2}$ groups. In contrast to carbocations, carbon radicals are subjected neither to capture by $\beta-O R$ or $-N R_{2}$ groups nor migration or elimination of $\beta-H$ or $-C R_{3}$ group.
6. Most alkyl and alkenyl radicals have negligible barriers to inversion, such that radical centeres do not usually retain stereochemistry. Stereochemical lability is not all bad, however, because it simplified the synthesis of radical precursors.
One of the most powerful methods in today's synthetic arsenal is radical cyclization and/or radical rearrangement-cyclization. Tri- n-butyltin hydride is the reagent most commonly used to conduct free radical reaction. Although the tin hydride method was first applied in natural product synthesis to the construction of a 6 -membered ring, radical cyclization reactions ${ }^{3}$ are most often applied to the synthesis of 5-membered rings because; cyclizations are usually faster for the formation of 5membered ring than any other ring size ${ }^{4,5}$ and the regioselectivity ${ }^{4,5,3}$ for 5 -exo cyclization is often outstanding, as well as it is stereoselective ${ }^{4,5,6,7}$ too.

Ueno and Stork Rearrangement

Ueno ${ }^{8}$ had reported a method for preparation of γ-butyrolactone via 2 alkoxytetrahydrofuran (Scheme 1) in which the key step consists of the homolytic carbo-cyclization. The cyclization method was particularly useful for the C-C bond formation at the sterically bulky carbon, since such bond formation in polar reaction involving carbocations or carboanions are often accompanying the elimination reaction or skeletal rearrangement, are well-known to be strongly affected by the steric hindrance and generally gave very poor result.

Scheme 1

Stork ${ }^{9}$ had reported a similar type of rearrangement for the construction of cisbicyclic system (Scheme 2).

Scheme 2

Cyclopropylmethyl radicals

From the literature, it is evident that the cyclopropyl ring can undergo several kinds of ring opening reactions like electrophilic, nucleophilic and radical ring opening. ${ }^{10-12}$ Carbon-carbon bond cleavages of strained ring systems like cyclopropane triggered by cyclopropylmethyl radical have been studied as a method for preparing alkenyl compounds ${ }^{13}$ (Figure 1).

Figure 1

The rapidity of the ring opening of cyclopropylmethyl radical has resulted in the widespread use of cyclopropane rings as a probe of reaction mechanism both in chemical and enzyme catalysed reactions. Formation of ring-opened products from substrates containing the cyclopropylmethyl group has been widely used as an indication that a particular reaction proceeds via a radical intermediate. ${ }^{12,14}$

While extensive work on radical rearrangement has focused, a few examples of reactions from the synthetic point of view have thus far been reported. A tandem radical ring closing-radical ring opening strategy has been developed by Clive and coworkers for the synthesis of several benzofuran derivatives 7 for the evaluation of inhibitors of leukotriene biosynthesis, through the intermediate of cyclopropylmethyl radical (Scheme 3). ${ }^{15}$

Scheme 3

Initiation of radical cyclizations by fragmentation of a strained cyclopropyl ring system 8 beginning with the addition of a sulfur centered radical (generated by photolysis of alkyl disulfide) to an alkene was studied by Jung et al. for the synthesis
of linear triquinanes 9 through the radical intermediate using suitably placed intramolecular radical acceptor (Scheme 4). ${ }^{16}$

Scheme 4

Takekawa et al. achieved a regeioselective cleavage of C-C bond of optically active cyclopropanes initiated by cyclopropyl methyl radicals and enantioselective synthesis of suitably functionalized alkenes that would serve as versatile chiral building blocks for the construction of a wide variety of biologically active compounds. Here the optically active bromide $\mathbf{1 1}$ obtained from meso-diol $\mathbf{1 0}$ by enzymatic desymmetrization, was converted to enantiopure homoallylic acetate $\mathbf{1 2}$ using the cyclopropylcarbinyl-homoallylic radical rearrangement. This acetate was converted to a key intermediate $\mathbf{1 3}$ for the synthesis of biologically active lignanes (Scheme 5). ${ }^{17}$

Key intermediate for the synthesis of lignanes

Scheme 5

Recently, Ruedi et al. developed a three-carbon ring expansion strategy for the synthesis of rac-muscone $\mathbf{1 5}$ from inexpensive C12 starting materials, in which cyclopropyl ketone $\mathbf{1 4}$ cleaved homolytically under flash vacuum pyrolysis. Cyclopropylmethyl radical has been proposed as an intermediate in this rearrangement (Scheme 6). ${ }^{18}$

Scheme-6

Pattenden and co-workers have disclosed a new total synthesis of rac-oestrone recently, in which three carbocycles were formed in a single step through a radical cascade. Cyclopropylmethyl radical \mathbf{A} was an intermediate in that synthesis (Scheme 7). ${ }^{19}$

Scheme 7

Radical mediated gem-diallylation

Introduction of gem-diallyl functionality in a molecule is usually achieved either by direct base mediated diallylation using allyl halides ${ }^{20}$ or by Pd-catalyzed allylation using allyl acetates. ${ }^{21}$ But these methods are limited only to compounds having active methylene groups. To overcome this problem a new method has been developed in our laboratory (Gurjar et al.), ${ }^{22}$ in which a aldehyde/ketone carbonyl group was converted to gem-diallyl group. Key transformation in this strategy was trapping the allylcarbinyl radical 21 (formed by the rearrangement of cyclopropylcarbinyl radical 20) with allyltri- n-butylstannane (Keck allylation) ${ }^{23}$ as given in scheme 8 .

Scheme 8

This gem-diallylation method has been successfully used in aliphatic 23, carbohydrate $(\mathbf{2 5}, \mathbf{2 7})$ and amino acid $\mathbf{2 9}$ systems as given below (Scheme 9). ${ }^{22,24}$

Scheme 9

Similarly, methallyltri- n-butylstannane was used to generate differentially substituted gem-diallyl system $\mathbf{3 1}$ as a single diastereomer. Exclusive formation of the compound 32 was a result of steric hindrance from the 1,2- O-isopropylidene group for the approach of methallyl tin reagent (Scheme 10). ${ }^{24}$

Scheme 10

By using this radical mediated gem-diallylation strategy an expedient synthesis of tetrakis(cyclopropylmethyl)methane 35, a symmetric molecule was achieved for its conformational studies in solid and solution phase (Scheme 11). ${ }^{25}$

Spirocycles by gem-diallylation/RCM strategy

Molecules containing spirocycles find innumerable applications particularly in peptides, ${ }^{26}$ nucleosides ${ }^{27}$ and carbohydrates. ${ }^{28}$ Synthesis of spirocycles was difficult until the advent of novel catalysts by Schrock ${ }^{29}$ and Grubbs' used in ring closing olefin metathesis (RCM) though there are a number of methods available like, intramolecular alkylation, cycloaddition and rearrangements. ${ }^{30}$ The RCM based approaches have made the introduction of a spiro group in the structural framework of an organic molecule an easy proposition. ${ }^{31}$ For instance, gem-diallyl containing substrates undergo RCM to produce spirocyclopentenyl derivatives. ${ }^{32}$

A new strategy has been developed in our laboratory by the combination of radical mediated gem-diallylation and RCM to synthesis spirocyclopentenyl derivatives. Accordingly, carbohydrates and amino acids having diallyl functionality were cyclized by RCM to generate spirocyclopentenyl derivatives 37,39 and 41 (Scheme 12). ${ }^{24}$

Scheme 12

Triquinanes from cyclopropylcarbinyl radicals

Angularly fused triquinanes have attracted intense attention of synthetic organic chemists as challenging targets. ${ }^{33}$ Structural complexity associated with significant biological activity has necessitated development of many approaches for their synthesis. ${ }^{34}$ Among them, radical cascade reactions are by far the most elegant and efficient approaches as significantly demonstrated by the work of Curran and others. ${ }^{35}$ Fraser-Reid ${ }^{36}$ and co-workers have performed some novel transformations mediated by serial radical cyclization on carbohydrate substrates to synthesize naturally occurring triquinanes.

A novel approach has been disclosed for the synthesis of carbohydrate based oxa- and dioxa-triquinanes from our group using a radical cascade initiated by the cyclopropylcarbinyl radical. In this approach, the olefin initially formed from the rearrangement of cyclopropylcarbinyl radical acts as an intramolecular radical acceptor to complete the radical cascade with the formation of triquinanes. ${ }^{37}$ Substrate 43 on treatment with $n-\mathrm{Bu}_{3} \mathrm{SnH}$ produced a fused bicyclic compound $\mathbf{4 6}$ instead of the expected angularly fused tricyclic compound 45. This premature termination of radical cascade could be attributed to the poor reactivity of the methyl radical 44 (Scheme 13).

Scheme 13

In order to circumvent this problem a homopropargyl alcohol substrate 47 was used to generate the desired triquinanes ($\mathbf{4 9}$ and $\mathbf{5 0}$) as a mixture of epimers at the newly formed methyl center (Scheme 14).

Scheme 14
Similarly, dioxa-triquinanes were also synthesized by following the same strategy, as a mixture of epimers, 52 and 53 (Scheme 15).

52 (major)
53 (minor)

Scheme 15

PRESENT WORK

Present Work

The usual procedure for the synthesis of organic compounds is the stepwise formation of the individual bonds in the target molecule. However, it would be much more efficient if one could form several bonds in one sequence without isolating the intermediates, changing reaction conditions, or adding reagents. It is obvious that this type of reaction would allow the minimization of waste and thus making the waste management unnecessary since compared to stepwise reactions the amount of solvent reagents, absorbents and energy would be dramatically decreased. Thus, these reactions would allow an ecologically and economically favourable production. This type of reactions is called domino reaction. In particular, the homo radical domino reaction is useful tool for the construction of complex molecules ${ }^{38}$. Ueno reaction is very useful for construction of those rings especially sterically hindered systems. Unfortunately, in Ueno substrates there were no such functional groups for further manipulation to the natural products. In our laboratory cyclopropyl methyl radical was utilized to generate diallyl compounds, which was very constructive to incorporate allyl group where active methylene group was not present. In continuation of our work, based on Ueno reaction and our approach, we intended to utilize and couple these two approaches as a radical mediated domino reaction wherein the rearrangement is triggered by allyltri- n-butylstannane. The radical generated in bromo acetal 76 would form a tetrahydrofuran ring followed by opening of Cyclopropane ring and finally trapping of the radical by allyl functionality would lead to 77. The underlying concept is depicted in scheme 16.

$\mathrm{X}=\mathrm{H}$ or allyl

Scheme 16

In order to establish the versatility of this reaction, a number of mixed bromo acetal derivatives ($\mathbf{5 4}, \mathbf{5 5}, \mathbf{5 6}$ and $\mathbf{5 7}$) were synthesized.

54

56

55

57

Figure 2

Synthesis of radical precursor 54

Accordingly, the journey started with a reported cyclopropyl alcohol 59, which was synthesized from commercially available cinnamyl alcohol 58 by modified Simmons-Smith ${ }^{39}$ method using diethyl zinc and diiodomethane in dichloromethane at $-20{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum of 59 revealed the resonance at $\delta 0.86-0.97(\mathrm{~m}, 2 \mathrm{H})$, 1.35-1.46 $(\mathrm{m}, 1 \mathrm{H})$ and $1.73-1.82(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$ in accordance with the cyclopropyl system. Other spectral data was in good agreement with the reported value.

Scheme 17

On treatment of PCC in dichloromethane at $0{ }^{\circ} \mathrm{C}$, cyclopropyl alcohol 59 was converted to the corresponding aldehyde, which on Wittig reaction with
ethoxycarbonylmethylenetriphenylphosphorane $\left(\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$ in dry benzene provided E-enoate $\mathbf{6 0}$. In ${ }^{1} \mathrm{H}$ NMR spectrum, the double bonded protons resonated at δ $5.88(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$ and $6.58(\mathrm{dd}, J=9.8,15.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$, whereas rest of the protons were resonated at their expected position. IR spectrum showed absorption at $1709 \mathrm{~cm}^{-1}$ corresponding to unsaturated ester. ${ }^{13} \mathrm{C}$ NMR spectrum and all other analytical data were in full agreement with the structure of compound $\mathbf{6 0}$. The ester group of compound $\mathbf{6 0}$ was reduced to unsaturated alcohol 61 with DIBAL-H at -20 ${ }^{\circ} \mathrm{C}$ in dichloromethane. Absence of resonance due to ester moiety was noticed in all the spectral data. Elemental analysis was in good agreement with the structure. In the IR spectrum, absorption at $3402 \mathrm{~cm}^{-1}$ supported the presence of hydroxyl group. Derivatisation to cyclopropyl bromoacetal ${ }^{40} 54$ from 61 was affected with NBS and ethyl vinyl ether in dichloromethane with 89% yield. All the other spectral data was in accordance with the assigned structure.

Synthesis of radical precursor 55

Similarly, unsaturated alcohol 62 was converted to the bromo ether derivative 55 (Scheme 18) following the same sequence of reactions described above. Accordingly, alcohol 62 was subjected to the treatment of diethyl zinc and diiodomethane in dichloromethane to furnish cyclopropyl alcohol 63. Alcohol 63 was transformed into the substituted allyl alcohol $\mathbf{6 5}$ through PCC oxidation, 2-carbon Wittig olefination and subsequent reduction of the ester $\mathbf{6 4}$ using DIBAL-H.

Scheme 18

In the ${ }^{1} \mathrm{H}$ NMR spectrum of unsaturated alcohol $\mathbf{6 5}$, signals at $\delta 5.28(\mathrm{dd}, J=8.6,15.2$ $\mathrm{Hz}, 1 \mathrm{H})$ and $5.68(\mathrm{dt}, J=6.1,15.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$ were confirming the presence of trans double bond in the system, whereas rest of the protons were observed at their expected positions. In the ${ }^{13} \mathrm{C}$ NMR spectrum, the double bonded carbons were resonated at $\delta 125.91$ and 141.17 ppm . All the other spectral data were consistent with the structure of compound 65. Finally, reaction of alcohol 65 with NBS and ethyl vinyl ether in dichloromethane provided the bromoacetal 55 with 69% yield. The assigned structure was substantiated by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectrum and elemental analysis.

Our initial investigation on the viability of free radical rearrangement followed by allyl transfer via reaction of allyltri- n-butylstannane with carbon centred radicals began with very simple bromo-acetals $\mathbf{5 4}$ and 55. These reactions were conducted using azobisisobutyronitrile (AIBN) as initiator in refluxing toluene. It was found that good yields of expected rearrangement products were obtained which are tabulated in Table 1. However, it proved very difficult to initiate the reaction in this case, and a large amount of initiator was required to consume the starting material. Further, isolation of tin containing materials from the desired products was found to be tedious job. A number of procedures such as stirring with aqueous KF , followed by filtration etc. provided the $\mathbf{7 2}$ as a pure compound but the same was unsuccessful with 73. Only by GC-mass, the product formation was confirmed.
Table 1

$\overline{\mathbf{S r}}$	Substrate	Reagents	Time	Product	Yield
1		Allyltri- n - butylstann ane	2 days		50\%
2		Allyltri- n - butylstann ane	4 days		45\%

The plausible mechanism for the rearrangement starting from bromoacetal in presence of allyltri- n-butylstannane has been shown in scheme 19 .

Scheme 19

The rearrangement initiated by the fragmentation of the carbon-halide bond under refluxing condition in toluene in presence of allyltri- n-butylstannane. The radical 78 generated in the reaction from the corresponding bromoacetal derivative, rapidly cyclizes to 79 under Uno cyclization conditions without yielding any appreciable amount of the allyl (or hydride) trapping product 79. The newly generated cyclopropyl methyl radical rapidly isomerises to the corresponding tertiary allyl radical. In the propagation step, the tertiary allyl radical generated adds to the allyl (hydride) tri- n-butyltin leading to adduct radical. Under refluxing condition this undergoes fragmentation reaction releasing the diolefinic compound 77 and tri- n butyltin radical, which propagates the cycle.

Having established that the expected reaction process could be realised in satisfactory yields with such simple substrates, attention was then turned to investigation in more complex system. Of particular interest in this regard, bromoacetal radical precursor derived from secondary alcohol, compound 56 and 57
was chosen whose synthesis from cyclopropyl alcohol $\mathbf{5 8}$ is described in scheme 20 and 21.

Synthesis of radical precursor 56

Accordingly, cyclopropyl alcohol 59 was oxidized to aldehydes $\mathbf{6 6}$ with PCC, followed by Wadsworth Horner Emmons olefination with commercially available dimethyl-2-oxopropyl phosphonate (Scheme 20) provided unsaturated keto compound 67.

Scheme 20
In ${ }^{1} \mathrm{H}$ NMR spectrum, the olefinic protons were appeared at $\delta 6.18(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, 1 H) and 6.44 (dd, $J=9.4,15.7 \mathrm{~Hz} 1 \mathrm{H})$ ppm, confirming the presence of trans olefin in the system, rest of the protons resonated at their expected position. ${ }^{13} \mathrm{C}$ NMR spectrum showed resonance at $\delta 197.03 \mathrm{ppm}$, which indicated the presence of keto moiety in the system. The structure was further supported by IR spectrum where absorption at $1688 \mathrm{~cm},{ }^{-1}$ characteristics of unsaturated keto moiety was noticed. Reduction of keto group was performed using DIBAL-H to obtain secondary alcohol 68. By applying the same protocol (as done for 55), the hydroxyl group of compound 68 was converted to the bromo acetal 56. Structure of $\mathbf{5 6}$ was thoroughly examined by all the spectral and analytical data.

Synthesis of bromoacetal 57 (Scheme 21) was commenced with aldehyde 66 The compound 66 was forwarded to the target bromo acetal 57 following the same synthetic pathway as it was in the previous entry.

Scheme 21

The cyclopropyl aldehyde $\mathbf{6 6}$ was converted to the unsaturated keto compound 70 with trans selectivity under Wadsworth-Horner-Emmons olefination condition in presence of phosphonate $\mathbf{6 9}$. Compound 70 was fully characterized by spectral data. When the keto compound was subjected to reduction with DIBAL-H, it was converted to hydroxyl compound 71. Transformation from alcohol 71 to bromoacetal 57 was accomplished with NBS and ethyl vinyl ether. Spectral and analytical data was in accordance with the assigned structure of 57.

With substrate 56 and 57, no product corresponding to rearrangement and subsequent allylation were obtained using the thermal (toluene, $120{ }^{\circ} \mathrm{C}$ and AIBN initiation) protocol previously described, after several attempts only starting material was recovered. Considerably more forcing conditions e.g. xylene or chlorobenzene at reflux, using di- ${ }^{\text {t }}$ butylperoxide as initiator was used in these cases but, starting materials were decomposed in that condition. Surprisingly, on treatment of tri-nbutyltin hydride, we obtained the furan derivative as well as cyclopropyl ring opening product with excellent yield (Table-2).

The aforesaid failure could be attributed to the steric hindrance posed by the methyl and phenyl ethyl moiety present in $\mathbf{5 6}$ and $\mathbf{5 7}$ or that other effects, presently unknown.

Table-2

$\begin{array}{\|l} \hline \mathbf{S r} \\ \mathbf{N} \\ \mathbf{o} \end{array}$	Substrate	Reagents	Time	Product	Yield
1		Tri- n - butyltin hydride	4 h		90\%
2		Tri-nbutyltin hydride	4 h		87\%

In conclusion, a useful extension of Ueno reaction has been developed as an alternative for the incorporation of allyl units in systems where active methylene group are not present. It is noteworthy that the requisite stannane is readily available from inexpensive starting materials. A good streochemical control could be achieved in the introduction of such substitutions. The observed products may in general be predicted by assuming preferential addition of allyltri- n-butylstannane to the less hindered face of an intermediate radical, and good streoselectivity in such reactions appears to require a significant steric bias in the substrate. Unfortunately, the scope of the reaction with respect to substitution patterns of the stannane is much more restricted, as mentioned above. Further progress quite obviously requires a greater understanding of the factors, which control such rearrangement. Efforts in these regards are in progress in our laboratory.

EXPERIMENTAL

Experimental

HWE reaction. General Procedure:

Anhydrous LiCl (1.2 equiv.), weighed in a glove bag and transferred under a stream of argon to the flask. Acetonitrile and phosphonate (2 equiv.) was added and the mixture stirred for 5 min . DBU (1.2 eq) was added and the mixture stirred an additional 10 min . The carbonyl compound was then added dropwise and the reaction mixture was stirred overnight. After being quenched with dilute aqueous HC 1 , the reaction mixture was extracted with ether. The organic extracts were combined and dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, and the solvent was removed under vacuum. The crude product was purified by silica gel column chromatography.

General procedure for reduction:

To a solution of unsaturated carbonyl compound (1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added DIBAL-H (2.5 eq) dropwise over a period of 5 min at $-20^{\circ} \mathrm{C}$. After completion of reaction, the reaction was quenched with saturated aq. sodium potassium tartrate solution, stirred for overnight. The organic layer separated, aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified on silica gel column chromatography to afford the corresponding alcohol.

General procedure for bromo acetal preparation:

To a solution of alcohol (1 eq) in dichloromethane, NBS (1.1 eq) and ethyl vinyl ether (1.5 eq) was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for overnight at 5 ${ }^{\circ} \mathrm{C}$. It was diluted with dichloromethane and washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified on silica gel column cromatogaphy using EtOAc-light petroleum to afford the corresponding bromo acetals.

General procedure for rearrengement:

A solution of bromo acetal (1 eq), allyltri-n-butylstannane (or tri- n-butyltin hydride) (2 eq), and AIBN (catalytic) in toluene was degassed with argon for 0.5 h and then heated to reflux under argon. TLC analysis revealed complete consumption of the starting material. Toluene was removed and the reaction mixture was stirred with 15% aqueous solution of KF and diethyl ether as solvent at ambient temperature for overnight. Solid was filtered, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and organic layer concentrated. The
mixture was chromatographed over silica gel column using Hexane:EtOAc to obtain the corresponding rearranged products.
(E)-ethyl 3-(2-phenylcyclopropy)acrylate (60):

Yield
: 67\%

Mol. Formula
 IR ($\mathbf{C H C l}_{\mathbf{3}}$) cm^{-1}

${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 1.29(\mathrm{t}, J=7.12 \mathrm{~Hz}, 3 \mathrm{H}), 1.39-1.48(\mathrm{~m}, 2 \mathrm{H})$, 1.74-1.87 (m, 1H), 2.12-2.21 (m, 1H), 4.18 (q, $J=$ $7.15 \mathrm{~Hz}, 2 \mathrm{H}$), 5.88 (d, $J=15.46 \mathrm{~Hz}, 1 \mathrm{H}$), 6.58 (dd, J $=9.83,15.46 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.31$ (m, 3H) ppm.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 14.27,17.65,26.69,26.76,59.96,118.82$, $125.79,126.11,128.39,140.61,151.40,166.39$ ppm.

Elemental Analysis
Calcd: C, 77.75; H, 7.46.
Found: C, 77.59; H, 7.32.

(E)-ethyl 3-(2-phenylcyclopropyl)prop-2-en-1-ol (61):

Yield
Mol. Formula
IR $\left(\mathbf{C H C l}_{\mathbf{3}}\right) \mathrm{cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right): \delta 1.03-1.13(\mathrm{~m}, 1 \mathrm{H}), 1.16-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{bs}$, $1 \mathrm{H}), 1.61-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.96(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~d}$, $J=5.9,2 \mathrm{H}), 5.39(\mathrm{dd}, J=8.5,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.73$

	$(\mathrm{dt}, J=6.9,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.12-$
	$7.29(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right)$	$: \delta 16.67,25.17,26.00,63.26,125.60,127.39$,
	$128.27,134.96,142.01 \mathrm{ppm}$.
Elemental Analysis	Calcd: C, 82.72; H, 8.10.
	Found: C, 82.59; H, 7.90.

(E)-(2-(3-(2-bromo-1-ethoxy)prop-1-enyl)cyclopropyl)benzene (54):

Yield
Mol. Formula
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 1.05-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=6.96 \mathrm{~Hz}, 3 \mathrm{H})$, 1.61-1.75 (m, 1H), 1.88-1.97 (m, 1H), $3.36(\mathrm{~d}, J=$ $5.50 \mathrm{~Hz}, 2 \mathrm{H}), 3.54-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.97-4.17(\mathrm{~m}, 2 \mathrm{H})$, $4.70(\mathrm{t}, J=5.49 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=8.22,15.35$ Hz, 1H) 5.66 (dt, $J=6.05,15.35 \mathrm{~Hz}, 1 \mathrm{H}$), 7.03-7.29 (m, 5H) ppm.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z}\right) \quad: \delta 15.25,16.78,25.29,26.11,31.68,62.19,67.23$, $100.79,124.04,125.71,128.35,136.95,142.01$
ppm.
Elemental Analysis Calcd: C, 59.09; H, 6.51.
Found: C, 58.90; H, 6.38.
(E)-ethyl 3-(2-benzylcyclopropyl)acrylate (64):

Yield
Mol. Formula
: 82\%
: $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}$

Yield	: 69%
Mol. Formula	: $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{BrO}_{2}$
${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 200 MHz)	$\begin{aligned} & : \delta 0.42-0.72(\mathrm{~m}, 2 \mathrm{H}), 1.02-1.09(\mathrm{~m}, 1 \mathrm{H}), 1.17-1.35 \\ & (\mathrm{~m}, 5 \mathrm{H}), 2.50-2.75(\mathrm{~m}, 2 \mathrm{H}) 3.35(\mathrm{~d}, J=5.51 \mathrm{~Hz}, \\ & 1.5 \mathrm{H}), 3.40(\mathrm{~d}, J=5.51 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.52-3.74(\mathrm{~m}, \\ & 2 \mathrm{H}), 3.94-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.56-5.71(\mathrm{~m}, 3 \mathrm{H}), 7.18- \\ & 7.36(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} . \end{aligned}$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 13.86,15.09,21.23,21.44,31.71,39.19,62.09, \\ & 67.35,100.55,123.02,125.86,128.19,137.96, \\ & 141.09 \mathrm{ppm} . \end{aligned}$
Elemental Analysis	$\begin{aligned} & \text { Calcd: C, } 60.18 ; \mathrm{H}, 6.83 . \\ & \text { Found: C, } 60.06 ; \text { H, } 6.71 \text {. } \end{aligned}$
(E)-4-(2-phenylcyclopropyl)but-3-en-2-one (67):	
Yield	: 80\%
Mol. Formula	: $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}$
IR ($\left.\mathbf{C H C l}_{3}\right)^{\text {cm }}{ }^{-1}$	$\begin{aligned} & 3017,1688,1663,1612,1498,1360,1260,1064, \\ & 972,757,667 . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 1.27-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.86 \\ & (\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.22(\mathrm{~m}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J \\ & =15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{dd}, J=9.5,15.7 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 7.05-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.28(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} . \end{aligned}$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$: $\delta 17.91,26.67,27.22,125.89,126.16,128.39$, 140.48, 150.40, 197.03 ppm .
Elemental Analysis	Calcd: C, 83.83; H, 7.58.
	Found: C, 83.66; H, 7.39.
(E)-4-(2-phenylcyclopropyl)but-3-en-2-ol (68):	

Yield	: 85\%
Mol. Formula	: $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}$
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 1.02-1.12(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J} \\ & =6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{bs}, 1 \mathrm{H}), 1.58-1.71(\mathrm{~m}, 1 \mathrm{H}), \\ & 1.85-1.94(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{q}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.33 \\ & (\mathrm{dd}, \mathrm{~J}=8.4,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dd}, \mathrm{~J}=6.5,15.3 \mathrm{~Hz}, \\ & 1 \mathrm{H}), 7.02-7.28(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} . \end{aligned}$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$: \delta 16.78,23.41,25.15,25.98,68.57,125.59$ 128.28, 132.66, 132.78, 142.06 ppm.
Elemental Analysis	Calcd: C, 82.94; H, 8.57 . Found: C, 82.80; H, 8.31.
(E)-(2-(3-(2-bromo-1-ethoxyethoxy)but-1-enyl)cyclopropyl)benzene (56):	
Yield	: 72\%
Mol. Formula	: $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{BrO}_{2}$
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$: $\delta 1.10-1.92(\mathrm{~m}, 8 \mathrm{H}), 1.61-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.97$ $(\mathrm{m}, 1 \mathrm{H}), 3.31-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.71(\mathrm{~m}, 2 \mathrm{H})$, 4.08-4.19 (m, 1H), 4.66-4.73 (m, 1H), 5.28-5.61 (m, 2H), 7.02-7.29 (m, 5H) ppm.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 15.13,15.37,16.88,17.04,21.45,21.99,25.36, \\ & 17.04,21.45,21.99,25.36,25.97,32.12,32.56, \\ & 60.78,62.17,73.74,74.35,98.76,100.05,125.64 \text {, } \\ & 128.35,129.60,130.45,134.28,134.32,135.61, \\ & 135.72,141.99 \mathrm{ppm} . \end{aligned}$
Elemental Analysis	Calcd: C, 60.18; H, 6.83.

Found: C, 60.01; H, 6.70.
(E)-5-phenyl-1-(2-phenylcyclopropyl)pent-1-en-3-one (70):

Yield $: 60 \%$
Mol. Formula
: $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}$
$\mathbf{I R}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \mathrm{cm}^{-1} \quad 3025,3063,1689,1661,1614,1496,1454,1217$, 1191, 1089, 972, 753, 697.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right): \delta 1.25(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H}), 2.15$ $(\mathrm{m}, 1 \mathrm{H}), 2.75-3.0(\mathrm{~m}, 4 \mathrm{H}), 6.22-6.5(\mathrm{~m}, 2 \mathrm{H}), 7.00-$ 7.30 (m, 10H) ppm.
${ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}, 50 \mathbf{M H z}\right): \delta 17.88,26.80,27.16,30.12,42.06,125.86$, 128.30, 128.43, 140.48, 141.24, 149.82, 198.04 ppm.
Elemental Analysis
Calcd: C, 86.92; H, 7.29.
Found: C, 86.74; H, 7.11.

(E)-5-phenyl-1-(2-phenylcyclopropyl)pent-1-en-3-ol (71):

Yield
: 99\%
Mol. Formula
: $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}$
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right): \delta 0.95-1.04(\mathrm{~m}, 1 \mathrm{H}), 1.11-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{bs}$, $1 \mathrm{H}), 1.56-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.86(\mathrm{~m}, 3 \mathrm{H}), 2.59-$ $2.67(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=$ $8.5,15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.53 (dd, $J=6.8,15.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.95-7.29 (m, 10H) ppm.

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 16.87,25.25,26.09,31.76,38.79,72.02,125.60 \\ & \text { 125.77, 128.32, 128.42, 131.27, 134.13, 141.83, } \\ & 142.02 \mathrm{ppm} . \end{aligned}$
Elemental Analysis	$\begin{aligned} & \text { Calcd: } \mathrm{C}, 86.29 ; \mathrm{H}, 7.97 . \\ & \text { Found: } \mathrm{C}, 86.11 ; \mathrm{H}, 7.80 . \end{aligned}$
(E)-(3-(2-bromo-1-ethoxyet (57):	y)-5-(2-phenylcyclopropyl)pent-4-enyl)benzene
Yield	: 70\%
Mol. Formula	: $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{BrO}_{2}$
${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 200 MHz)	$\begin{aligned} & : \delta 1.08-1.11(\mathrm{~m}, 1 \mathrm{H}), 1.14-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.26 \\ & (\mathrm{~m}, 3 \mathrm{H}), 1.66-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.84(\mathrm{~m}, 1 \mathrm{H}), \\ & 1.90-1.97(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.73(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.42(\mathrm{~m}, \\ & 2 \mathrm{H}), 3.46-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.86-4.02(\mathrm{~m}, 1 \mathrm{H}), 4.64- \\ & 4.91(\mathrm{~m}, 1 \mathrm{H}), 5.33-5.56(\mathrm{~m}, 2 \mathrm{H}), 7.03-7.28(\mathrm{~m}, \\ & 10 \mathrm{H}) \mathrm{ppm} . \end{aligned}$
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 15.09,15.37,16.70,16.92,17.11,25.26,25.44, \\ & 25.90,26.01,31.50,31.64,32.20,32.29,32.61, \\ & 37.24,37.41,61.13,61.22,62.58,77.09,78.43, \\ & 78.48, ~ 98.61,100.44,125.67,125.70,125.78, \\ & 125.87,128.16,128.33,128.41,128.47, \\ & 135.72,137.03,137.09,141.87 \mathrm{ppm} . \end{aligned}$
Elemental Analysis	$\begin{aligned} & \text { Calcd: C, } 67.13 ; \text { H, } 6.81 . \\ & \text { Found: C, } 67.01 ; ~ H, ~ 6.70 . ~ \end{aligned}$
() -2-ethoxy-4-(4-phenylhep	1,6-dienyl)tetrahydrofuran(72):

Yield	50\%
Mol. Formula	: $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2}$
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$: $\delta 1.15-1.21(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.65(\mathrm{~m}, 1.6 \mathrm{H}), 1.89-$ $1.96(\mathrm{~m}, 0.4 \mathrm{H}), 2.15-2.40(\mathrm{~m}, 4 \mathrm{H}), 2.61-2.68(\mathrm{~m}$, $1.38 \mathrm{H}), 2.89-2.97(\mathrm{~m}, 0.46 \mathrm{H}), 3.28-3.46(\mathrm{~m}, 2 \mathrm{H})$, 3.65-3.99 (m, 2H), 4.90-5.08 (m, 3H), 5.16-5.35 (m, $2 \mathrm{H}), 5.60-5.67(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.27(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 15.35,15.31,39.03,39.64,39.93,40.23,42.18 \text {, } \\ & 45.89,62.56,63.02,71.14,72.13,103.89,104.38, \\ & 116.18,126.13,127.77,128.22,129.34,132.22, \\ & 132.59,136.77,144.55 \mathrm{ppm} . \end{aligned}$
GC MS ($\boldsymbol{m} / \mathbf{z}$)	: 286 [M] ${ }^{+}$
Elemental Analysis	$\begin{aligned} & \text { Calcd: C, } 79.68 ; \text { H, } 9.15 . \\ & \text { Found: C, } 79.55 ; \text { H, } 9.02 . \end{aligned}$
(E)-5-ethoxy-2-methyl-3-(4	nylbut-1-enyl)tetrahydrofuran(74):
Yield	: 90\%
Mol. Formula	: $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2}$
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$: $\delta 1.13-1.23(\mathrm{~m}, 6 \mathrm{H}), 1.65-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.93-2.03$ $(\mathrm{m}, 0.5 \mathrm{H}), 2.13-2.23(\mathrm{~m}, 0.5 \mathrm{H}), 2.29-2.37(\mathrm{~m}, 2 \mathrm{H})$, 2.39-2.57 (m, 1H), 2.66 (m, 2H), 3.37-3.44 (m, 1H), 3.66-3.76 (m, 2H), 4.97-5.08 (m, 1H), 5.19-5.34 (m, $1 \mathrm{H}), 5.45-5.55(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.26(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$: $\delta 15.35,18.15,18.42,20.68,20.94,34.29,34.39$, 40.46, 40.70, 40.86, 41.16, 48.18, 50.21, 62.24, 63.08, 77.72, 78.11, 80.80, 81.33, 103.04, 103.30, $125.84,125.93,128.27,128.35,128.50,130.62$, $130.73,131.34,141.69,141.72 \mathrm{ppm}$.
GC MS ($\boldsymbol{m} / \boldsymbol{z}$)	$: 260[\mathrm{M}]^{+}$

Elemental Analysis	Calcd: C, 78.42; $\mathrm{H}, 9.29$.
Found: C, 78.35; $\mathrm{H}, 9.20$.	

REFERESCES

References

1. a) Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans. l 1975, 1574; b) Curran, D. P. Synlett, 1991, 63.
2. Surzur, J. M. In Reactive Intermediates; Abramovitch, R. A., Ed.; Plenum Press: New York, 1980; Vol. 2, Chapter 3.
3. a) Houk, K. N.; Paddon-Row, M. N.; Spellmeyer, D. C.; Rondan, N. G.; b) Nagese, S. J. Org. Chem. 1986, 51, 2874.
4. Spellmeyer, D. C.; Houk, K. N. J. Org. Chem. 1987, 52, 959.
5. Beckwith, A. L. J.; Schiesser, C. H. Tetrahedron Lett. 1985, 26, 373; Tetrahedron 1985, 41, 3925.
6. Beckwith, A. L. J.; Easton, C. J.; Lawrence, T.; Serelis, A. K. Aust. J. Chem. 1983, 36, 545.
7. (i) Rajanbabu, T. V. J. Am. Chem. Soc. 1987, 109, 609; (ii) Rajanbabu, T. V. J. Org. Chem. 1988, 53, 4522; (iii) Rajanbabu, T. V. J.; Fukanaga, T. J. Am. Chem. Soc. 1989, 111, 296.
8. Ueno, Y.; Chino, K.; Watanabe, M.; Moriya, O.; Okawara, M. J. Am. Chem. Soc. 1982, 104, 5564-5565.
9. Stork, G.; Sher, P. M. J. Am. Chem. Soc. 1986, 108, 303-304.
10. Salun, J. Chem. Rev. 1989, 89, 1247.
11. Wong, H. N. C.; Hon, H.; Tse, C.; Yip, Y. Chem. Rev. 1989, 89, 165.
12. Beckwith, A. L. J.; Ingold, K. U. Rearrangements in Ground and Excited states; de Mayo, P. Ed.; Academic Press: New York, 1980; Vol. 1, p 161.
13. (i) Dowd, P.; Zhang, W. Chem. Rev. 1993, 93, 2091; (ii) Nonhebel, D. C. Chem. Soc. Rev. 1993, 347.
14. Griller, D.; Ingold, K. U. Acc. Chem. Res. 1980, 13, 317.
15. Clive, D. L. J.; Daigneault, S. J. Org. Chem. 1991, 56, 5285.
16. Jung, M. E.; Rayle, H. L. J. Org. Chem. 1997, 62, 4601.
17. Takekawa, Y.; Shishido, K. J. Org. Chem. 2001, 66, 8490.
18. Ruedi, G.; Hansen, H.-J. Tetrahedron Lett. 2004, 45, 4027.
19. Pattenden, G.; Reddy, L. K.; Walter, A. Tetrahedron Lett. 2004, 45, 5143.
20. (a) Singh, R. K. Synthesis 1985, 54; (b) Kotha, S.; Srinivasachary, N. Bioorg. Med. Chem. Lett. 1998, 8, 257; (c) Kotha, S.; Brahmachary, E. Tetrahedron Lett. 1997, 3, 3561.
21. Nassindale, M. J.; Edwards, A. S.; Hamby, P.; Adams, H.; Harrity, J. P. A. Chem. Commun. 2000, 1035.
22. Gurjar, M. K.; Ravindranadh, S. V.; Karmakar, S. Chem. Commun. 2001, 241.
23. Keck, G. E.; Enholm, E. J.; Yates, J. B.; Wiley, M. R. Tetrahedron 1984, 41, 4079.
24. Gurjar, M. K.; Ravindranadh, S. V.; Sankar, K.; Karmakar, S.; Cherian, J.; Chorghade, M. S. Org. Biomol. Chem. 2003, l, 1366.
25. Ramana, C. V.; Baquer, S. M.; Gonnade, R. G.; Gurjar, M. K. Chem. Commun. 2002, 614.
26. (i) Firour, G.; Cahiez, G.; Normant, J. F. Synthesis 1984, 37; (ii) Manzoni, L.; Colombo, M.; May, E.; Scolastico, C. Tetrahedron 2001, 57, 249.
27. (a) Paquette, L. A.; Bibart, R. T.; Seekamp, C. K.; Kathane, A. L. Org. Lett. 2001, 3, 4039; (b) Paquette, L. A.; Owen, D. R.; Bibart, R. T.; Seekamp, C. K. Org. Lett. 2001, 3, 4043.
28. (i) Tadano, K. K.-I.; Kanazawa, S.; Yamada, H.; Ogawa, S. Carbohydr. Res. 1988, 184, 271; (ii) Chen, G.; Fei, Z. B.; Huang, X.; Xie, Y.; Xu, J.; Gola, J.; Steng, M.; Praly, J. Eur. J. Org. Chem. 2001, 2939.
29. Schrock, R. R.; Murdzek, J. S.; Mazan, G. C.; Robbins, J.; DiMare, M.; O'Regan, M. J. Am. Chem. Soc. 1990, 112, 3875.
30. Sannigrahi, M. Tetrahedron 1999, 55, 9007.
31. (i) Kurosawa, S.; Bando, M.; Mori, K. Eur. J. Org. Chem. 2001, 4395; (ii) Aburel, P. S.; Romming, C.; Ma, K.; Undheim, K. J. Chem. Soc. Perkin Trans. 1 2001, 1458; (iii) Undheim, K.; Efsking, J. Tetrahedron 2000, 56, 4847; (iv) Bassindale, M. J.; Hamely, P.; Leitner, A.; Harrity, J. P. A. Tetrahedron Lett. 1999, 40, 3247; (v) Suga, S.; Watanabe, M.; Yoshida, J. J. Am. Chem. Soc. 2002, 124, 14824.
32. Bassindale, M.; Edwards, A.; Hamley, P.; Adams, H.; Harrity, J. P. Chem. Commun. 2000, 1035.
33. Paquette, L. A.; Doharty, A. M. Polyquinane Chemistry Verlag, New York, 1987.
34. Kaliappan, K. P.; Nandurdikar, R. S.; Shaikh, M. M. Tetrahedron 2006, 62, 5064.
35. Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. 1991, 91, 1237.
36. (a) Dickson, Jr. J. K.; Fraser-Reid, B. J. Chem. Soc. Chem. Commun. 1990, 1440; (b) Pak, H.; Canalda, I. I.; Fraser-Reid, B. J. Org. Chem. 1990, 55, 3009.
37. Gurjar, M. K.; Ravindranadh, S. V.; Kumar, P. Chem. Commun. 2001, 917.
38. (i) Aitken, R. A.; Bradbury, C. K.; Burns, G.; Morrison, J. J. Synlett 1995, 53;
ii) Pak, H.; Canalda, I. I.; Fraser-Reid, B. J. Org. Chem. 1990, 55, 3009.
39. (i) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80, 5323-5324; (ii) Lebel, H.; Marcoux, J.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 977-1050.
40. Rama Rao, A. V.; Gurjar, M. K.; Bose, D. S.; Revathi Devi, R. J. Org. Chem. 1991, 56, 1321-1322.

List of Publications

1. Total Synthesis of (S)-(\rightarrow-Curvularin: A Ring-Closing Metathesis Based Construction of the Macrocyclic Framework. Debendra K. Mohapatra, Hasibur Rahaman, Rita Pal and Mukund K. Gurjar. Synlett 2008 (Accepted).
2. Stereoselective formal synthesis of novel antibiotic (\rightarrow-centrolobine. Debendra K. Mohapatra, Rita Pal and Mukund K. Gurjar, Communicated.
3. Toward a synthesis of the anti cancer macrolide superstolide A: a chiral pool approach for the C21-C26 segment. Mukund K. Gurjar; Rita Pal; Debendra K. Mohapatra, Cmmunicated.
4. A streoselective synthesis of the C21-C26 fragment of superstolide A. Mukund K. Gurjar; Rita Pal; Debendra K. Mohapatra (Under manuscripts).

[^0]: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 0.98(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.83(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{dd}, J=8.2,3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.54(\mathrm{~m}, 3 \mathrm{H})$, $4.69(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.30(\mathrm{~m}, 7 \mathrm{H}) \mathrm{ppm}$.
 ${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{5 0} \mathbf{~ M H z)}: \delta 16.67,26.35,26.74,55.12,71.20,72.11,74.08$, 81.29, 81.87, 84.82, 105.16, 111.45, 113.79, 127.16, 127.60, 128.13, 128.99, 129.61, 139.20, 159.43 ppm .

 ESI MS (m/z)
 : 437 [M+Na] ${ }^{+}$
 Elemental Analysis
 Calcd: C, 69.55; H, 7.30.
 Found: C, 69.34; H, 7.20.

 ## Methyl 6-deoxy-5-O-Benzyl-3-O-(4-methoxybenzyl)- α-L-idofuranoside (97):

 1% methanolic $\mathrm{HCl}(470 \mathrm{~mL})$ was added to $96(10.0 \mathrm{~g}, 24.15 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred it for 8 h at room temperature, cool it to $0{ }^{\circ} \mathrm{C}$, quenched by triethylamine concentrated under reduced pressure. Residue was purified by column chromatography using ethyl acetate: light petroleum ether (3:7) to obtain $97(4.0 \mathrm{~g})$ and $98(5.0 \mathrm{~g})$.

 Yield
 : 96\%
 Mol. Formula
 Optical Rotation $[\alpha]_{D}{ }^{25}$
 : $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{6}$

 IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right) \mathrm{cm}^{-1} \quad: 3422,3004,2933,2837,1613,1514,1464,1455$, 1303, 1249, 1212, 1179, 1111, 821, 755, 697.
 ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{2 0 0} \mathbf{~ M H z}\right) \quad: \delta 1.12(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.86(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.51 (s, 3H), 3.73-3.87 (m, 2H), 3.80 (s, 3H), 4.04 (dd, $J=5.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H})$, 7.22-7.36 (m, 7H) ppm.

