SYNTHESIS OF BIOLOGICALLY ACTIVE MULTICYCLIC FRAMEWORKS VIA [3+2] CYCLOADDITION AND STUDIES TOWARD THE TOTAL SYNTHESIS OF PALAU'AMIDE

TO

KALYANI UNIVERSITY

DR. MUKUND K. GURJAR (RESEARCH DUIDE)

DIVISION OF ORGANIC CHEMISTRY
NATIONAL CHEMICAL LABORATORY PUNE-411008, INDIA

JULY 2008

Synthesis of Biologically Active Multicyclic Frameworks via [3+2] Cycloaddition and Studies Toward the Total Synthesis of Palau'amide

A THESIS

SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (IN CHEMISTRY)

KALYANI UNIVERSITY

BY

PRADIP KUMAR MAITY

Dr. Mukund K. Gurjar
(Research Guide)
DIVISION OF ORGANIC CHEMISTRY
NATIONAL CHEMICAL LABORATORY PUNE-411008, INDIA
JULY 2008

DEDICATED TO MY

BELOVED PARENTS AND LATE

GRANDFATHER

DECLARATION

The research work embodied in this thesis has been carried out at National Chemical Laboratory, Pune under the supervision of Dr. M. K. Gurjar, Division of Organic Chemistry, National Chemical Laboratory, Pune- 411008. This work is original and has not been submitted in part or full, for any degree or diploma of this or any other University.

Division of Organic Chemistry
National Chemical Laboratory
Pune-411008
July 2008

CERTIFICATE

The research work presented in thesis entitled "Synthesis of Biologically Active Multicyclic Frameworks via [3+2] Cycloaddition and Studies Toward the Total Synthesis of Palau'amide" has been carried out under my supervision and is a bonafide work of Mr. Pradip Kumar Maity. This work is original and has not been submitted for any other degree or diploma of this or any other University.

Pune-411008
July 2008
(Dr. M. K. Gurjar)
Research Guide

It gives me great pleasure to express my deep sense of esteem and gratitude to my mentor and research guide, Dr. M. K. Gurjar, Division of Organic Chemistry, NCL, Pune for his inspiring guidance, never diminishing encouragement, sincere advice, unstinted support and his complete dedication during the progress of my Ph.D work.

I owe my most sincere gratitude to Dr. D. K. Mohapatra for his guidance and suggestions. I would like to thank Dr. Sayam Sen Gupta for his helpful suggestions and discussion. The help of Dr. Hotha Srinivas, Mr. I. Shivakumar, Dr. C. V. Ramana, Dr. R. A. Joshi, Dr. R. R. Joshi, Dr. D. D. Sawaikar, Dr. M. N. Deshmukh, Dr. S. P. Chavan, Dr. Muthukrishnan, Dr. M. S. Chorghade and Dr. M. I. Khan are greatly acknowledged.

I gratefully acknowledge the training and support extended by my senior colleagues Dr. K. K. Reddy, Dr. Arindam, Dr. Joseph, Dr. Sridhar, Dr. Sankar, Dr Nagaprasad, Dr. Ekambram, Dr. DPS Reddy, Dr. Mahesh, Dr. Siddharth, Dr. Manjusha during the tenure of my Ph.D life. I would like to thank all my colleagues Smritidi, Dhanada, Sukhenda, Tushar, Bhagwat, Ramdas, Bhargav, Sahoo, Rosy, Kulbhushan, Gorakh, Anuj, Sabita, Seetaram, Hasibur, Rita, Ramesh, Raghupathi, Sumanth, Kiran, Nageshwar, Soumitra, Chinmoy, Bhaskar, Indu, Susheel, Abhijit, Srinivas, Sharad, Ganesh, Debu, Alam, Rambabu, Ankush, Harbindu, Ravi, Apeksha and Mangesh for their cooperation and friendly attitude.

Help from the spectroscopy, mass and X-ray crystallographic groups is gratefully acknowledged. I sincerely thank Dr. Rajmohan, Dr. R. Gonnade, Mr. Sathe and Mrs. Kavita for their helpful discussions and cooperation. My sincere thanks to Mrs. C. Raphel, Mrs. P. Kulkarni and all other office staff for their cooperation.

I greatly acknowledged Dr. Ganesh P. Pandey, HOD, DOC, NCL for his cooperation.
It's a pleasure to thank all my colleagues and friends at NCL and GJ hostel for their warm company, especially Prabalda, Dinuda, Tarunda, Anamitrada, Mukul, Chanchal, Bibhas, Rupa, Prabhas, Science, Sumantra, Debasish, Rahul, Kaushik, Sugata, Sujit, Maitri, Partha, Sumanta, Pati, Suman, Sanjuda, Subrata, Himadri, Mritunjoy, Anal, Binoy, Sunil, Patil, Pitambar, Nishant, Rabi, Srikant, Swarup, Debsish G, Joyprakash, Abhisekh D, Amit C, and Bhaiya for their cheerful company, which made my stay at NCL memorable one.

Special thanks to my teachers Prof. Subhagata Chatterjee, Prof. L. N. Dutta, Prof, S. Ghosh, Dr. S. K. Chattopadhyay, Dr. Anup Bhattacharya and Dr B.P.Ghosh for their constant encouragement and inspiration. It gives me great pleasure to thank my friends Subirda, Bidyut, Saptarshi, Nirmalda, Uday, Mithu and Padma for their love and moral support.

It is impossible to express my sense of gratitude for my parents, in mere words. Whatever I am and whatever I will be in future is because of their commitments to my ambitions and their selfless sacrifices. I am indeed indebted to my sister, uncle, brother-inlaw and aunty for their love and support at tough times. I would like to thank my dearest Kalyani, Sanu and Subho for their love.

I thank all my relatives and friends for their support.
Finally, I thank Director, National Chemical Laboratory, Pune for providing infrastructural facilities to complete my work successfully. I acknowledged all teachers and staffs of Kalyani University for their help and cooperation. Financial assistance from CSIR, New Delhi in the form of fellowship is gratefully acknowledged.

Pradip Kumar Maity

ABBREVIATIONS		
Ac	-	Acetyl
AcOH	-	Acetic acid
$\mathrm{Ac}_{2} \mathrm{O}$	-	Acetic anhydride
aq.	-	Aqueous
Bn	-	Benzyl
BnBr	-	Benzyl bromide
$\mathrm{BH}_{3} \cdot \mathrm{DMS}$	-	Boron dimethylsulfide complex
$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	-	Boron trifluoride diethyl ether complex
Boc	-	tert-Butoxy carbonyl
$(\mathrm{Boc})_{2} \mathrm{O}$	-	Di-tert-butyl dicarbonate
DCC	-	Dicyclohexylcarbodiimide
DDQ	-	2,3-Dichloro-5,6-dicyanobenzoquinone
DIBAL-H	-	Diisobutylaluminium hydride
DIPEA	-	Diisopropylethylamine
DET	-	Diethyl tartrate
DMF	-	N, N '-Dimethylformamide
DMAP	-	N, N-Dimethylaminopyridine
DMSO	-	Dimethyl sulfoxide
DMP	-	Dess-Martin periodinane
DMP	-	2, 2-Dimethoxy propane
EDCI	-	1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
Et	-	Ethyl
EtOAc	-	Ethyl acetate
$\mathrm{Et}_{3} \mathrm{~N}$	-	Triethyl amine
$\mathrm{Et}_{2} \mathrm{O}$	-	Diethyl ether
Fmoc	-	9-Fluorenylmethoxycarbonyl
Fmoccl	-	9-Fluorenylmethyl chloroformate
HOBt	-	1-Hydroxybenzotriazole hydrate

Im	-	Imidazole
IBX	-	Iodoxybenzoic acid
MeOH	-	Methanol
MsCl	-	Methanesulfonyl chloride
Me	-	Methyl
Pd/C	-	Palladium on Carbon
Ph	-	Phenyl
Py	-	Pyridine
p-TSA	-	para-Toluenesulfonic acid
PMB	-	para-methoxybenzyl
rt	-	Room temperature
TBAF	-	Tetra-n-butylammonium fluoride
TBS-Cl	-	tert-Butyldimethyl silyl chloride
TBS	-	tert-Butyldimethyl silyl
TBDPS-Cl	-	tert-Butyldiphenyl silyl chloride
TBDPS	-	tert-Butyldiphenyl silyl
TBS-OTf	-	tert-Butyldiphenyl silyl trifluromethane sulphonate
TBHP	-	tert-Butylhydroperoxide
$\mathrm{Ti}\left(\mathrm{O}^{\mathbf{i}} \mathrm{Pr}\right) 4$	-	Titanium (IV) isopropoxide
THF	-	Tetrahydrofuran
TPP	-	Triphenyl phosphine
Ts	-	Tosyl
TsCl	-	para-Toluenesulphonyl chloride

GENERAL REMARKS

$>{ }^{1} \mathrm{H}$ NMR spectra were recorded on AV-200 MHz, MSL-300 MHz, AV-400 MHz and DRX-500 MHz spectrometer using tetramethylsilane (TMS) as an internal standard. Chemical shifts have been expressed in ppm units downfield from TMS.
$>{ }^{13} \mathrm{C}$ NMR spectra were recorded on AV-50 MHz, MSL- $75 \mathrm{MHz}, \mathrm{AV}-100 \mathrm{MHz}$ and DRX-125 MHz spectrometer.
$>$ EI Mass spectra were recorded on Finngan MAT-1020 spectrometer at 70 eV using a direct inlet system.
$>$ The X-Ray Crystal data were collected on Bruker SMART APEX CCD diffractometer using Mo $\mathrm{K} \alpha$ radiation with fine focus tube with 50 kV and 30 mA .
$>$ Infrared spectra were scanned on Shimadzu IR 470 and Perkin-Elmer 683 or 1310 spectrometers with sodium chloride optics and are measured in cm^{-1}.
$>$ Optical rotations were measured with a JASCO DIP 370 digital polarimeter.
$>$ Melting points were recorded on Buchi 535 melting point apparatus and are uncorrected.
$>$ All reactions are monitored by Thin Layer chromatography (TLC) carried out on 0.25 mm E-Merck silica gel plates (60F-254) with UV light, I_{2} and anisaldehyde in ethanol as development reagents.
$>$ All solvents and reagents were purified and dried by according to procedures given in Vogel's Text Book of Practical Organic Chemistry. All reactions were carried out under nitrogen or argon atmosphere with dry, freshly distilled solvents under anhydrous conditions unless otherwise specified. Yields refer to chromatographically and spectroscopically homogeneous materials unless otherwise stated.
$>$ All evaporations were carried out under reduced pressure on Buchi rotary evaporator below $40^{\circ} \mathrm{C}$ unless otherwise specified
$>$ Silica gel $(60-120),(100-200)$ and (230-400) were used for column chromatography purchased from ACME Chemical Company, Bombay, India.
$>$ Different numbers were assigned for compounds in Abstract and Chapters.

Page No.
Abstract 1
CHAPTER-I: Synthesis of New Chiral 1,2,3-Triazole Derivatives by "Click" Chemistry
Introduction 12
Section I: Synthesis of New Chiral 4,5,6,7-Tetrahydo[1,2,3]triazolo[1,5-a]pyrazinesfrom α-Amino Acids
Present work 28
Experimental 38
Section II: Synthesis of Expedient Tricyclic Ring Systems of Biological Interest
Present work 47
Experimental 54
Section III: Synthesis of New Chiral Biologically Active Tetracyclic Triazole Derivatives using "Click" Chemistry
Present work 61
Experimental 76
References 97
CHAPTER-II: Synthesis of New Chiral Tetrazole Derivatives
Introduction103
Section I: Synthesis of New Chiral 5,6,7,8 Tetrahydro tetrazolo[1,5-a]pyrazinesfrom α-Amino Acid Derivatives

$$
\text { Experimental } 118
$$

Section II: Synthesis of New Chiral Tetracyclic Tetrazole Derivatives by 1,3-DipolarCycloaddition and their Biological Activities129
Experimental 138
References 154
CHAPTER-III: Synthetic Studies Toward the Total Synthesis of Palau'amide
Introduction 157
Present work 174
Experimental 194
References 219
LIST OF PUBLICATIONS 224

Abstract

The Thesis entitled "Synthesis of Biologically Active Multicyclic Frameworks via [3+2] Cycloaddition and Studies Toward the Total Synthesis of Palau'amide" consists of three chapters. Chapter I is divided into three sections and Chapter II is divided into two sections. Chapter I, Section I describes the synthesis of new chiral 4,5,6,7-tetrahydro[1,2,3]triazolo[1,5-a]pyrazines from α-amino acids. Section II describes the synthesis of expedient tricyclic ring systems of biological interest and Section III describes the synthesis of new chiral biologically active tetracyclic triazole derivatives using "Click" chemistry. Chapter II, Section I deals with the synthesis of new chiral 5,6,7,8 tetrahydro tetrazolo[1,5-a]pyrazines from α-amino acid derivatives, whereas Section II describes the synthesis of new chiral tetracyclic tetrazole derivatives via 1,3dipolar cycloaddition and their biological activities. The final Chapter III discusses studies toward the total synthesis of Palau'amide.

Chapter I

Section I: Synthesis of New Chiral 4,5,6,7-tetrahydo[1,2,3]triazolo[1,5-a]pyrazines

 from α-Amino AcidsSecondary metabolites produced in the nature contain diverse architectures with complex structure and possess important biological activities. 1,2,3-Triazole compounds are synthesized by 1,3-dipolar cycloaddition of the corresponding azide and alkyne, a procedure known as the Huisgen reaction. Furthermore, 1,2,3-triazole formation is a highly efficient reaction without any significant side products and is currently reffered to as a "click" reaction. Incorporation of amino acids in synthetic biologically useful molecules can enhance the target protein binding of that molecule, so that to elicit the biological activity. We have successfully utilized the Huisgen's 1,3-dipolar cycloaddition between azides and alkynes for synthesis of 4,5,6,7-tetrahydro[1,2,3]triazolo[1,5-a] pyrazines from naturally occurring α-amino acids. We first devoted our efforts toward the synthesis of azido-alkyne 5 , for which synthesis of azide $\mathbf{4}$ was planned from naturally occurring L-Valine (1). Boc-L-Valinol (2) was prepared from L-valine by standard
literature procedure. L-Valine (1) was treatrd with I_{2} and NaBH_{4} in THF under refluxing condition followed by Boc-protection to afford compound 2. Tosylate $\mathbf{3}$ was obtained from alcohol 2 by treatment with $p-\mathrm{TsCl}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. It was then converted to azide $\mathbf{4}$ by treatment with NaN_{3} in DMF at $60^{\circ} \mathrm{C}$. The alkyne functionality was then introduced by treatment of $\mathbf{4}$ with NaH and propargyl bromide in dry DMF to yield azido-alkyne 5. Compound 5 was refluxed in CHCl_{3} to afford bicyclic 1,2,3-triazole compound $\mathbf{6}$ in 95% yield (Scheme 1). Compound 6 was fully characterized by NMR spectra, mass spectra and elemental analysis.

Scheme 1

This result encouraged us to verify the feasibility of the cycloaddition reaction using other azido-alkyne derivatives derived from different natural amino acids (e.g Phenylalanine, Alanine, Leucine, Isoleucine, Threonine, Serine, Methionine etc.) under identical reaction conditions. The reaction proceeded smoothly to completion, and the corresponding 1,2,3-triazole-fused 4,5,6,7-tetrahydropyrazine products were obtained in $3-4 \mathrm{~h}$ with excellent yields ($92-96 \%$) and high purity.

We then decided to extend these reaction conditions to proline derivative in order to obtain tricyclic compound 11. The azido-alkyne (10) obtained from L-proline (7) was heated under reflux to afford $\mathbf{1 1}$ in 94% yield as a single product (Scheme 2). The NMR and mass spectrometry were used to establish the structure.

Scheme 2

Section II: Synthesis of expedient tricyclic ring systems of biological interest

Among the drugs used during the last 40 years, for treatment of central nervous system (CNS) disorders, 1,4-benzodiazepines have occupied a prominent place. 1,4benzodiazepine compound such as, triazolam and midazolam act as anti-anxiety drugs, flumazenil act as an anti-depressant and tarpane exhibit antihistaminic properties. For excellent biological activity of the 1,4-benzodiazepine derivatives, we planned to synthesize various benzodiazepine derivatives. We report herein a synthesis of nitrogenrich polycyclic hetero-systems starting from 2 -aminobenzoic acid(s) and its derivatives utilizing intramolecular 1,3-dipolar cycloaddition. For that we first synthesized the key intermediate 14, starting from anthranilic acid (12). Azide 13 was obtained from 12 in four steps: reduction, Boc-protection, mesyl protection followed by NaN_{3} reaction. Alkyne 14 was obtained from 13 using propargyl bromide and NaH in DMF. Alkyne 14 was heated under reflux in CHCl_{3} to afford triazole derivative $\mathbf{1 5}$ as a single product (Scheme 3).

Scheme 3
Encouraged with these results, we extended our studies to other azido-alkynes obtained from the corresponding 2 -aminobenzoic acid derivatives. The reaction
proceeded smoothly to completion, and the corresponding 1,2,3-triazole fused benzodiazepines were obtained in 12-16 h with excellent yields and high purity.

Section III: Synthesis of New Chiral Biologically Active Tetracyclic Triazole Derivatives using "Click" Chemistry

Pyrrolo[2,1-c][1,4]-benzodiazepines (PBD's) are potential antitumor and gene targeted drugs. The PBD class of antitumor antibiotics exert their biological activity by covalently binding to the $\mathrm{N}-2$ of guanine in the minor groove of DNA through the imine or imine equivalent functionality at N10-C11 of the PBD's. Anthramycin, DC-81 and Neothramycin are well-known and promising members of the PBD's. Since part of our research programme is directed towards the synthesis of 1,4-benzodiazepine derivatives of pharmacological interest, we turned our attention to new classes of tetracyclic compounds, namely benzo[e]pyrrolo[1,2-a][1,2,3]triazolo[5,1-c][1,4]diazepin-8(4H)-one (16), 5-(Benzyloxy)-benzo[e]pyrrolo[1,2 a][1,2,3] triazolo[5,1-c][1,4]diazepine (17) and their derivatives (Figure 1).

16

17

Figure 1

Alkyne 18 was prepared from L-proline (7) using the literature procedure. Aromatic azido acid 21 was obtained by diazotization of anthranilic acid using NaNO_{2} in dil $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $0{ }^{\circ} \mathrm{C}$. Boc-deprotection of $\mathbf{1 8}$ followed by coupling with azido acid $\mathbf{2 1}$ in presence of EDCI and HOBt in DMF afforded compound 22, which underwent in-situ 1,3-dipolar cycloaddition to afford 16 in good yield (Scheme 4). We then extended these results to other azido acid derivatives under identical reaction condition. We have synthesized libraries of triazole compounds and analysed their efficacy as enzymetic protease inhibitors like serine protease, cystein protease and aspartase protease. None of the compound shows aspartase protease inhibition activity.

Scheme 4
Then we extended our studies to naturally occurring trans-4-hydroxy-L-proline (24). TBDPS ether 25 was prepared from 24 following usual procedure. Boc protection, esterification, LiBH_{4} reduction followed by TBDPS protection afforded 25. Benzyl protection of $\mathbf{2 5}$ followed by TBDPS deprotection using TBAF in THF yielded 27. Compound 27 was converted to alkyne 28 by Dess-Martin oxidation followed by treatment with Ohira-Bestmann reagent. Boc deprotection of alkyne 28 followed by coupling with azido acid 21 to afford tetracyclic compound 17 (Scheme 5). We then verify these results to other azido acid derivatives under identical reaction condition. The reaction proceeded smoothly to completion, and the corresponding 1,2,3-triazole derivatives were obtained in excellent yields and high purity.

Scheme 5

Chapter II

Section 1: Synthesis of New Chiral 5,6,7,8 Tetrahydro tetrazolo[1,5-a]pyrazines

from α-AminoAcid Derivatives

Tetrazole derivatives are well known for their high level of biological activity. Tetrazoles are a class of heterocycles with a wide range of applications in medicinal chemistry, material science including photography. Tetrazole-fused bicyclic pyrazine derivative (34) was prepared by intramolecular1,3-dipoar cycloaddition of azido-nitrile (33) in DMF or DMSO at $130-140{ }^{\circ} \mathrm{C}$. Azide 32 was prepared from L-Phenylalanine (30) in four linear steps. Boc deprotection of azide $\mathbf{3 2}$ followed by reaction with bromoacetonitrile afforded the key intermediate 33 . When 33 was heated to $140{ }^{\circ} \mathrm{C}$ in DMF for 8 h afforded tetrazole-fused pyrazine derivative (34) (Scheme 6). These results prompted us to verify the feasibility of this cycladdition reaction using other azido-alkyne derivatives derived from different natural amino acids (e.g Valine, Alanine, Leucine, Isoleucine, Phenyl glycine, Glycine etc.) under identical reaction conditions.

33
34

Scheme 6
We then decided to extend these reaction conditions to a proline derivative in order to obtain tricyclic tetrazole compound (36). The azido-nitrile (35) obtained from Lproline (7) in an analogous manner, was heated at $140^{\circ} \mathrm{C}$ in DMF to afford 36 as a single product (Scheme 7).

Section II: Synthesis of New Chiral Tetracyclic Tetrazole Derivatives by 1,3-Dipolar Cycloaddition and their Biological Activities

The imidazole ring system is an important structural feature in biological systems, natural products and drugs. Tetrazoles have also been used as precursors to other heterocycles. Fmoc-L-Proline (37) was converted to nitrile amine 39 with sequence of steps: amide formation followed by dehydration afforded protected nitrile 38. Fmoc deprotection of 38 using $\mathrm{Et}_{2} \mathrm{NH}$ provided amine 39 in good yield which was coupled with azido acid 40 in the presence of EDCI and HOBt in DMF afforded azido-nitrile 41. This was heated in DMF at $140^{\circ} \mathrm{C}$ to afford tetrazole-fused cyclic product 42 (Scheme 8). We then verify these results to other azido acid derivatives under identical reaction condition.

Scheme 8

Then we extended our studies to naturally occurring trans-4-hydroxy-L-proline. Compound 43 was first converted to nitrile 44 using similar procedure: amide formation, dehydration of amide with cyanuric chloride. Azido-nitrile 47 was prepared by the coupling between amine 45 and acid 46 in presence of EDCI and HOBt in DMF. It was then heated at $140{ }^{\circ} \mathrm{C}$ in DMF to afford terazole-fused tetracyclic compound (48) (Scheme 9). We then verify these results to other azido acid derivatives under identical reaction condition. Biological activity (serine protease, aspartase protease and cystein protease inhibitor) was analyzed of all the derivatives against protease inhibitor. None of the compound shows aspartase protease inhibition activity.

Scheme 9

Chapter III

Chapter III: Synthetic Studies Toward the Total Synthesis of Palau'amide

Palau'amide is a cyclic depsipeptide was isolated by Moore and co-workers from a species of the marine cyanobacterium Lyngbya in 2003 from Ulong Channel, Palau. It was found to be cytotoxic to KB cells $\left(\mathrm{IC}_{50}=13 \mathrm{nM}\right)$. The structure of Palau'amide was characterized by five amino acids peptide backbone fused with a polyketide chain in a 24 membered macrocyclic structure. In view of the interesting structural features, potent biological activity and limited availability makes Palau'amide an ideal target for total synthesis. The retrosynthetic analysis for the synthesis of Palau'amide is outlined in Scheme 10.

Scheme 10: Retrosynthetic analysis of Palau'amide (49)

Synthesis of peptide fragment (50)

Peptide fragment 50 was obtained by coupling between two tripeptides $\mathbf{6 3}$ and $\mathbf{6 4}$. First, dipeptide 55 was prepared by coupling between L-ala-OBn (53) and Boc-L-Ile-OH (54) with DCC and HOBt in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Similarly Dipeptide $\mathbf{6 0}$ was synthesized from D-Phala-OBn (58) and Boc-L-ala-OH (59) in presence of DCC and HOBt (Scheme 11).

Scheme 11
Dipeptide 55 was coupled with 61 in presence of EDCI and HOBt to get tripeptide 63. Similarly, the coupling between dipeptide 60 and D-leucic acid (62) in presence of EDCI and HOBt afforded tripeptide 64 in good yield. Peptide fragment (50) was obtained in excellent yield from coupling between tripeptide 63 and tripeptide $\mathbf{6 4}$ in presence of EDCI and HOBt in DMF (Scheme 12).

Scheme 12

Synthesis of polyketide fragment (51)

Our next synthetic endeavor was to synthesize the Polyketide fragment 51. We initiated our synthesis from PMB-protected 1,3 propane diol (65), which was transformed into key epoxide intermediate 68 in four steps synthesis (i) IBX oxidation (iii) Wittig olefination (iv) DIBAL-H reduction (iv) Sharpless asymmetric epoxidation using L-diethyltartrate. Epoxide 68 was subjected to $\mathrm{Me}_{2} \mathrm{CuCNLi}_{2}$ furnishing 69 in good yield (Scheme 13).

Scheme 13
In order to get compound 71, the diol 70 was subjected to a sequence of reactions, benzoyl protection, TBS protection and hydrolysis of benzoate ester. The alcohol 71 underwent swern oxidation to give aldehyde, which on subsequent treatment with allylmagnesium bromide furnished diastereomeric mixture of alcohol. Further oxidation followed by Luche's stereoselective reduction at $-100{ }^{\circ} \mathrm{C}$ gave alcohol 72 exclusively. Compound 72 was treated with MOMCl , DIPEA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by hydroborationoxidation of terminal olefin to afford alcohol 73, bromination of primary alcohol and conversion of bromo to alkyne by Lithiumacetylide:EDA complex to provide product 74.

Scheme 14

DDQ mediated PMB deprotection, oxidation of primary alcohol with IBX followed by 3 C -wittig olefination with $\mathrm{PPh}_{3}=\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COOAllyl}$ in THF gave α, β unsaturated ester 75. Finally, TBS deprotection of $\mathbf{7 5}$ with TBAF in THF afforded polyketide fragment $\mathbf{5 1}$ (Scheme 14).

Coupling between peptide fragment (50) and polyketide fragment (51)

Having peptide fragment 50 and polyketide fragment 51 in hand, we focussed our attention for EDCI, DMAP mediated coupling of this two fragments to give the ester unit 76. Further TBS deprotection with TBAF in THF and allyl deprotection by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and morpholine was carried out to give the hydroxy acid 78. Finally, Yamaguchi lactonization of $\mathbf{7 8}$ resulted in MOM-protected Palau'amide 79, which was assigned by LC-MS study to be a mixture of two diastereomers (Scheme 15). Separation of mixture compound and analyzing the requisite isomer is currently undergoing in our laboratory.

Scheme 15
In conclusion, we have successfully synthesized peptide fragment (50) and polyketide fragment (51). We have coupled these two fragments to afford lactone 79. According to LC-MS compound 79 was a mixture of two isomers with same molecular mass which are very difficult to isolate.

Click chemistry is a chemical philosophy introduced by Sharpless in 2001 and describes chemistry tailored to generate substances quickly and reliably by joining small units together. This is inspired by the fact that nature also generates substances by joining small modular units. ${ }^{1}$ Click chemistry (CC) can be summarized neatly in one sentence: "all searches must be restricted to molecules that are easy to make". ${ }^{2}$ A set of stringent criteria that a process must meet to be useful in the context of CC has been defined by Sharpless et al, as reactions that: "are modular, wide in scope, high yielding, create only inoffensive by-products (that can be removed without chromatography), are stereospecific, simple to perform and that require benign or easily removed solvent". Although meeting the requirements of a click reaction is a tall order, several processes have been identified which step up to the mark (Figure 1): nucleophilic ring opening reactions; non-aldol carbonyl chemistry; additions to carbon-carbon multiple bonds; and cycloaddition reactions.

Figure 1: Click Chemistry Reaction Types

Azide-alkyne Cycloaddition Reaction

Among these carefully selected reactions, CuI-catalyzed variant of the Huisgen 1,3-dipolar cycloaddition of azides and alkynes to afford 1,2,3-triazoles (Figure 2) ${ }^{3}$ become the gold standard of click chemistry due to its reliability, specificity and biocompatibility, this reaction has also been termed the "cream of the crop" of click reactions. Further interest in this reaction stems from the interesting biological activity of 1,2,3-triazoles. These heterocycles function as rigid linking units that can mimic the atom

Figure 2: Topological and electronic similarities of amides and 1,2,3-triazoles placement and electronic properties of a peptide bond without the same susceptibility to hydrolytic cleavage. ${ }^{4}$ Since the foundations of click reactions were laid, there has been an explosive growth in publications describing a wealth of applications of this practical and sensible chemical approach. Its applications are separated into the three most relevant categories: (i) bioconjugation ${ }^{5}$ (ii) polymer and materials science ${ }^{6}$ (iii) drug discovery. ${ }^{7}$ Some structural differences between triazoles and amide bonds of course exist; most notably, the extra atom in the triazole backbone leads to a calculated increase in $\mathrm{R}^{1}-\mathrm{R}^{2}$ distance of $1.1 \AA$ over the typical amide bond (Figure 2). Triazoles also possess a much stronger dipole moment than an amide bond, but this may actually enhance peptide bond mimicry by increasing the hydrogen bond donor and acceptor properties of the triazole. In addition to the possibility of both the $\mathrm{N}(2)$ and $\mathrm{N}(3)$ triazole atoms acting as hydrogen bond acceptors, the strong dipole may polarize the $\mathrm{C}(5)$ proton to such a degree that it
can function as a hydrogen-bond donor, like the amide proton. Perhaps due in part to their ability to mimic certain aspects of a peptide bond, many known 1,2,3-triazoles possess varied biological activity, including anti-HIV activity, ${ }^{8}$ selective β_{3} adrenergic receptor inhibition, ${ }^{9}$ anti-bacterial activity, ${ }^{10}$ potent anti-histamine activity, ${ }^{11}$ and more.

Regiospecificity

Thermal 1,3-dipolar cycloaddition of alkynes to azides is not a regiospecific reaction. The analogous copper (I)-catalyzed reaction gave only one regioisomer, the 1,4substituted [1,2,3] triazole. In a similar 1,4- and 1,5-substituted [1,2,3]- triazole system, it was concluded that the triazole proton in 1,4-substituted triazoles was always shifted considerably downfield compared to 1,5 -substituted triazoles. This supports the evidence that the copper (I)-catalyzed reaction only gives the 1,4 -substituted triazole and is in full agreement with HPLC data from coinjection of reaction mixtures from the thermal and the copper (I)-catalyzed 1,3-dipolar cycloaddition. In contrast, the uncatalyzed thermal reaction of 2-azido- 2 methylpropanoic acid (a tertiary alkyl azide) with resin $\mathbf{1}$ afforded only one regioisomer, the 1,4 -substituted triazole 2, probably due to steric effects (Scheme 1). ${ }^{12}$

1

Compatibility

To test the generality of the copper (I)-catalyzed reaction, protected tripeptides acylated with propargylic acid at the N-terminus were synthesized and subjected to the reaction conditions for the copper (I)-catalyzed 1,3-dipolar cycloaddition with 2-azido-2 methylpropanoic acid. Alanine, proline, tert-butyl-protected threonine/tyrosine/aspartic acid, trityl-protected cysteine, methionine, Boc-protected lysine/tryptophan were used and all showed conversions above 95% and $80-95 \%$ purity of the resulting peptidotriazoles (Scheme 1). ${ }^{12}$ Since all peptides gave the expected products without side
reactions, the copper (I)-catalyzed 1,3-dipolar cycloaddition was fully compatible with solid-phase peptide synthesis. ${ }^{13}$

Solid/Solution Phase

Both solution- and solid-phase chemistry have their respective advantages and disadvantages. In the case of the copper (I) catalyzed 1,3-dipolar cycloaddition, the solution phase reaction is complicated by cross-coupling products between two terminal alkynes such as the Glaser coupling and Straus coupling. ${ }^{14}$ Furthermore, PEGA resin acylated with 2-azido-2-methylpropionic acid subjected to the reaction conditions with the modification that the reactants were inversely immobilized, ${ }^{12}$ i.e, the terminal alkyne in solution and the azide on the resin. Prolonged reaction time, elevated temperature, and a large excess of alkyne gave only starting material because of alkyne cross coupling. The advantage of solid-phase reactions is the highly solvated state of the PEG-resinbound intermediates such as the copper acetylide and that cross couplings do not occur, thereby allowing the copper (I)-catalyzed reaction to proceed smoothly when the alkyne is attached to the resin.

Role of Copper (I)

The catalytic mechanism has not been investigated, but it is known that copper (I) readily inserts into terminal alkynes in the presence of base, e.g. the Sonogashira coupling. ${ }^{15}$ The polarization of the terminal triple bond by the covalently bound copper (I) catalyzes the cycloaddition, which probably changes from a concerted reaction into a stepwise addition. The present experiments showed that the 1,3-dipolar cycloaddition was catalyzed (0.01 equiv was the lowest stoichiometry) by copper (I) chloride, copper (I) bromide-dimethyl sulfide complex, and copper (I) iodide but not by copper (II) salts. The copper (I) catalysis does not work on internal alkynes, as was tested on resin-bound 2octynoic acid with an azide, giving no trace of the cycloaddition product, and only the starting material was recovered. ${ }^{12}$ This suggested a reaction intermediate in which copper (I) was terminally bound to the alkyne, since copper (I) does not catalyze reactions with internal triple bonds. It may therefore be concluded that the 1,3-dipolar cycloaddition of
terminal alkynes to azides is catalyzed by copper (I) salts through a preformed copperacetylide complex followed by a stepwise or concerted addition to an azide.

Mechanism of CuI-Catalyzed Alkyne-Azide Coupling

The mechanism for CuI-catalyzed alkyne-azide coupling tolerates most organic functional groups and shows a wide scope with respect to both alkyne and azide reactants. The reaction proceeds in a variety of solvents, tolerates a wide range of pH values, and performs well over a broad temperature range. To this end, researchers at The Scripps Institute in La Jolla, California, USA have proposed a stepwise mechanism on the basis of calculations and kinetic studies. ${ }^{15}$ Although the thermal dipolar cycloaddition of azides and alkynes occurs through a concerted mechanism, DFT calculations on monomeric copper acetylide complexes indicate that the concerted mechanism is strongly disfavored relative to a stepwise mechanism (Scheme 2). Although one can imagine, for example, direct, concerted cycloaddition of a copper-acetylene π complex with the appropriate azide, the calculated activation barrier for this process exceeds that of the uncatalyzed process, and the lowest barrier found for any concerted process is $23.7 \mathrm{kcal} /$ $\mathrm{mol},{ }^{15 \mathrm{a}}$ too high to be responsible for significant rate effect of CuI catalysis. Stepwise

Scheme 2: Proposed catalytic cycle for the Cu (1)-catalysed ligation.
cycloaddition catalyzed by a monomeric CuI species lowers the activation barrier relative to the uncatalyzed process by $11 \mathrm{Kcal} / \mathrm{mol}$, which is sufficient to explain the incredible rate enhancement observed under Cu (1) catalysis. ${ }^{15 \mathrm{a}}$ Our mechanistic proposal for the catalytic cycle is shown in Scheme 3. It begins unexceptionally with formation of the copper (1) acetylide I, but then gets interesting. Extensive density functional theory calculations ${ }^{15 \mathrm{a}}$ offer compelling evidence which strongly disfavors by about $12 \pm 15 \mathrm{kcal}$, the concerted [3+2] cycloaddition (B-direct) and points to a stepwise, annealing sequence (B-1 B-2 B-3, hence the term "ligation"), which proceeds via the intriguing six membered copper containing intermediate III. ${ }^{16}$ The CuI-catalyzed transformation is a high-yielding and simple to perform "fusion" process leading to a thermally and hydrolytically stable triazole connection-an ideal click reactions. The process exhibits broad scope and provides 1,4-disubstituted 1,2,3-triazole products in excellent yields and near perfect regioselectivity.

Reaction of diazide $\mathbf{3}$ with phenylacetylene affords the ditriazole 5 as the major product. Kinetic studies indicate that during the cycloaddition of the diazide 3, a low level of monotriazole 4 forms and remains constant throughout the reaction. ${ }^{15}$ Reaction of diazide 3 show no evidence of autocatalysis, and no rate acceleration was observed in the coupling of phenylacetylene and benzyl azide upon addition of the ditriazole 5 . These results suggest that the formation of the first triazole catalyzes the subsequent cycloaddition to give the ditriazole 5 . Based on these findings and results indicating that the conversion of diazide $\mathbf{3}$ into ditriazole 5 occurs via some intermediate other than monotriazole 4. Finn and co-workers propose a mechanism based on capture of intermediate 6 before protonation that would yield free ditriazole 5 (Scheme 3). Initial cycloaddition yields the copper triazole intermediate 6. This intermediate can either undergo protonation to afford monotriazole 4 or can associate with another terminal alkyne or a copper acetylide species to give intermediates 7 and $\mathbf{8}$, respectively. ${ }^{15}$

Scheme 3: Proposed mechanism to account for diazide reactivity

Recent Applications of the CuI Catalysed Huisgen Azide-alkyne 1,3Dipolar Cycloaddition Reaction

1,3-Dipolar cycloaddition reactions in general have long been popular in the generation of carbohydrate mimetics. Huisgen azide-alkyne cross-coupling ${ }^{17}$ being used for the synthesis of N-glycosyl triazoles, ${ }^{18}$ as a means of effecting conversion of anomeric azides to glycosyl fluorides, for the preparation of cyclodextrin mimetics and S neoglyconjugates ${ }^{19}$. This class of reaction has attracted substantial attention following the independent identification by Meldal 3 and Sharpless ${ }^{1}$ that the classical 1,3-dipolar cycloaddition of azides and terminal alkynes can be catalysed by CuI salts. CuI-catalysed azide-alkyne 1,3-dipolar cycloaddition reaction has been used for the synthesis of simple glycoside and oligosaccharide mimetics, glyco-macrocycles, glycopeptides, glycoclusters and carbohydrate arrays.

Glycosides

Naturally occurring and synthetic analogs of nucleosides have been the high potential value as therapeutic agents, biochemical probes and and as building blocks in artificial nucleic acid syntheses. Bredinin (10) is an imidazole nucleoside clinically used
as immunosuppressant and Ribavirin (11), a triazole nucleoside, ${ }^{20}$ used for the treatment against hepatitis C virus, in combination with interferon- α-peg (Figure 3).

Bredinin (10)

Ribavirin (11)

Figure 3
Triazole substituted sugars ($\mathbf{1 2}$ and 13, Figure 4) have been explored as potential monovalent and multivalent galectin ligand. ${ }^{21}$ Galectin are a family of cytosolic β-Dgalactoside binding proteins. Galectin-1 acts as an insoluble host factor that promotes HIV-1 infectivity through stabilization of virus attachment to host cells. Galectin-3 is involved in colon cancer metastasis, brain tumor progression.

Figure 4
Water-soluble ferrocenes (14 and 15) have biological applications in the development of biosensors, ferrocene-containing drugs and some ferrocenyl sugars possess antimalarial activity (Figure 5). ${ }^{22}$

14

15

Figure 5

Oligosaccharides

Carbohydrate-active enzymes, triazole-linked pseudo-starch fragments have been prepared from protected sugar building blocks. The efficiency and simplicity of azide-
alkyne dipolar cycloaddition for coupling organic fragments has proved attractive. Neoglycotrimer 19 have been derived from protected glucopyranosyl azide 16 and N propargyl glucuronamide 17 , with subsequent manipulation of the reducing terminus of the neoglycodimer 18 to install an azide group, thus permitting iteration of the coupling procedure (Scheme 4). ${ }^{23}$

Scheme 4

Glyco-polycycles and Macrocycles

Macrocycles are important building blocks in supramolecular chemistry, exemplified in their diverse applications as molecular pores, artificial receptors, and components in complex supramolecular architectures. The synthesis of a cyclodextrine

analogue 21 derived from trisaccharide 20 that displayed an anomeric azide and 4propargyl ether at the opposing terminus (Scheme 5). Upon exposure of this intermediate to conditions for $\mathrm{Cu}(\mathrm{I})$-catalyzed Huisgen cycloaddition ${ }^{3}$ and subsequent deprotection, a cyclodimer 21 was isolated that complexed 8-anilino-1 naphthalene sulfonate with an association constant similar to that of β-cyclodextrin.

Exposer of monosaccharide 22 and disaccharide 24 to CuI and DBU afforded cyclotrimer 23 and cyclodimer 25 with good yield. ${ }^{24}$ Cyclotrimer 23 possesses C_{3} symmetry, in contrast to the pseudo C_{2} symmetry of trisaccharide based cyclodimer 25. Cyclodimer 25 was shown to bind a functionalized naphthalene fluorophore. However, for applications such as molecular pores, the binding of small organic molecules to macrocycle cavities can be a deleterious property. Macrocycles 23 and 25 form hostguest complexes (Scheme 6).

22

23

24

25

Scheme 6

Glycopeptide

Glycopeptides constitute a class of natural compounds, involved in a number of important biological functions. By far the most commonly encountered members of this family are N - and O-linked glycopeptides. Synthesis of such glycopeptides is complicated by the sensitivity of the glycosidic linkage between the (oligo) saccharide and the peptide toward chemical and enzymatic hydrolysis. ${ }^{25}$ Synthesis of (unnatural) amino acids, with the amino acid side chain connected to the sugar unit via an isosteric linkage, may lead to chemically and metabolically more stable analogues with potential biological activity (e.g., inhibitory activity toward glycosidases). ${ }^{26}$ Triazole-linked glycopeptides such as 28, 31 were synthesized by Cu-catalyzed [3+2] cycloaddition between azidoglycosides (27 and 30) and acetylenic amino acids (26 and 29) (Scheme 7).

Scheme 7

Glycopeptide 34 was synthesized by the reaction between acetylenic glycoside 32 and azide-containing amino acid 33 (Scheme 8).

Scheme 8

Glyco-clusters

Multivalent display of neoglycoconjugate 37, to mimic natural carbohydrate structures ${ }^{27}$ has been demonstrated as the use of glycosyl azide $\mathbf{3 6}$ with core containing multiple propargyl ether group 35. Calixarene derived azide 39 have also been coupled with glycosyl acetylene $\mathbf{3 8}$ to give multivalent constructs $\mathbf{4 0}$ (Scheme 9). ${ }^{28}$

Scheme 9

Dendrictic and polymeric materials

Due to the reliability of CuI-catalyzed click chemistry, a wide range of complex dendrimers and polymeric materials can be obtained with incredible efficiency, for applications in nanotechnology and homogeneous catalysis. ${ }^{29}$ Interesting highly branched polymers (41) ${ }^{30}$ and novel conjugated polymers (42) (Figure 6) obtaineded from the corresponding monomers, under $\mathrm{CuSO}_{4} / \mathrm{Na}$-ascorbate and $\mathrm{Cu}(\mathrm{OAc})_{2} / \mathrm{CuO}$ conditions, respectively. Coupling of terminal azide-functionalized polystyrene with alkynes also proved successful under conditions of $\mathrm{CuBr} /($ pentamethyl)diethylenetriamine (PMDETA) in THF at $35^{\circ} \mathrm{C} .{ }^{31}$

Figure 6
Dendronized linear polymers
45, potential new materials for nanoscale applications, are also rapidly accessible via click chemistry (Scheme 10). ${ }^{29 \mathrm{a}}$ Dendrimers as large as third generation underwent facile cycloaddition to poly(vinylacetylene) under $\mathrm{CuSO}_{4} / \mathrm{Na}$ ascorbate conditions.

Scheme 10

Bioconjugation

Inhibitors of HIV-1 Protease: ${ }^{32}$ The global AIDS epidemic has claimed the lives of more than 20 million people since 1981. In spite of the various treatment protocols available, including the mainstream highly active antiretroviral therapy (HAART), ${ }^{33}$ the number of people infected with HIV continues to rise. HIV-1 protease (HIV-1-Pr) ${ }^{34}$ has been recognized as an important target for inhibition of viral replication. Although seven inhibitors have been approved by the food and drug association since 1995 and a number more are currently undergoing clinical evaluation, their success has been undermined by rapid mutation of the virus. ${ }^{35}$ ThE highly exergonic reaction produces five-membered nitrogen heterocycles, 1,2,3-triazoles, which are exceedingly stable to acidic and basic hydrolysis as well as severe reductive/oxidative conditions. At the same time, the triazoles produced are capable of active participation in hydrogen bonding as well as dipole-dipole and π-stacking interactions. To probe the protease-templated reaction, alkyne $46\left(500 \mu \mathrm{~m}, \mathrm{IC}_{50}>100 \mu \mathrm{~m}\right)$ and azide $47\left(100 \mu \mathrm{~m}, \mathrm{IC}_{50}=4.6 \mu \mathrm{~m}\right)$ were incubated in the presence of enzyme $\operatorname{SF}-2-\operatorname{Pr}(15 \mu \mathrm{~m})^{36}$ in 2 -morpholinomethanesulfonic acid (MES; 0.1 m$) / \mathrm{NaCl}(0.2 \mathrm{~m})$ buffer solution at $23^{\circ} \mathrm{C}$ for 24 h to afford the triazole anti-48, which has been shown to be an inhibitor of the wild-type $\mathrm{HIV}-1-\operatorname{Pr}\left(\mathrm{IC}_{50}=6.0 \mathrm{~nm}, \mathrm{~K}_{\mathrm{i}}=\right.$ 1.7 nm) and also of several mutant strains (Scheme 11). ${ }^{37}$

Scheme 11: SF-2-Pr templated click-chemistry formation of protease inhibitor anti-48

Perspective of Click Reaction

The [1,2,3]-triazole can be viewed as a peptide isoster, that is when incorporated into a peptide, display hydrogen-bonding capability, aromaticity, and backbone restriction. Compound 50 (Scheme 2) is an example where peptide synthesis has been continued in the normal direction (C- to N-direction) with high conversions and purities ($>95 \%$). In compound 52, the direction of the peptide has been reversed after the [1,2,3] triazole (N - to C-direction), showing the versatility of the construction depending on which azide is used in the cycloaddition.

Scheme 12: Reagents \& conditions: (i) 20% piperidine, DMF; (ii) Fmoc-Thr($\left.{ }^{(} \mathrm{Bu}\right)-\mathrm{OH}$, PyAOP, HOAt, DIPEA; (iii) 0.1 M NaOH ; (iv) H-Phe-OtBu.HCl, PyAOP, HOAt, DIPEA.

Failure of Alkyne-azide Cycloaddition

Overall, CuI-catalyzed alkyne-azide cycloaddition generates triazoles with outstanding reliability and efficiency, in high yield with no byproduct formation. In the unusual case due to Cu-catalyzed acetylenic homocoupling 55, results low yield of product (Scheme 13). ${ }^{13,38}$

Scheme 13

Since small, unhindered amines, such as pyridine and TMEDA, ${ }^{39}$ mediate this conversion through stabilization of intermediates 53 and 54, low yields reported by Wong and co-workers for alkyne-azide cycloaddition under conditions of $\mathrm{CuI} / \mathrm{Et}_{3} \mathrm{~N}$ (Table 4) likely result from increased alkyne homocoupling. Increasing the steric bulk in a base reduces its ligand donor properties, implying that sterically hindered bases should stabilize copper acetylide intermediates 53 and 54 to a lesser degree and slow this side reaction.

56

58

Scheme 14

Table 4: ${ }^{40}$ Results of cycloaddition of the azide 56 and alkyne 57

Entry	Alkyne (57)	Base (1 eq)	Cul	Solvent	Temp ($\left.{ }^{\circ} \mathrm{C}\right)$	Time	Yield
1	1 eq	$\mathrm{Et}_{3} \mathrm{~N}$	2 eq	MeCN	rt	18 h	trace
2	1 eq	DIPEA	2 eq	MeCN	rt	18 h	48%
3	1 eq	$\mathrm{Et}_{3} \mathrm{~N}$	0.1 eq	Toluene	rt	18 h	55%
4	1 eq	DIPEA	0.1 eq	Toluene	rt	18 h	85%

N-Heterocyclic compounds are broadly distributed in Nature, including amino acids, purines, pyrimidines, and many other natural products. N-Heterocyclic compounds such as $[1,2,3]$ triazoles display important biological activities ${ }^{41}$ such as anti-HIV activity, antimicrobial activity against Gram positive bacteria, selective β_{3} adrenergic receptor agonism, and more. [1,2,3]Triazoles have also found wide usage in industrial applications such as in dyes, corrosion inhibitors (of copper and copper alloys), photostabilizers, photographic materials, and agrochemicals.

Among the large variety of novel nitrogen containing molecules, tetrahydropyrazine derivatives are of particular interest because of their diverse biological activities and potential therapeutic applications. This core ring structure is present in many natural products that elicit a wide array of biological effects. ${ }^{41,42}$ These include antitumor, cytotoxic, antidepressant and HIV protease inhibitor (crixivan) activities. Additionally, piperazinyl linked ciprofloxacin have been reported as potent anti-bacterial agents against resistant strains, dual calcium antagonists, anti-malarial agents, and potent anti-psychotic agents. ${ }^{43}$

The frequent occurrance of triazoles and piperazinones in biologically active compounds, as well as the paucity of the literature for the synthesis of 4,5,6,7tetrahydro [1,2,3]triazolo[1,5-a]pyrazines ${ }^{44}$ stimulated our interest.

Several different methods such as the intramolecular cyclization of bishydrazones or mixed hydrazones, miscellaneous oxidations, 1,3-dipolar cycloaddition between azides and alkynes have been described for synthesis of 1,2,3-triazoles. ${ }^{12,45}$ The 1,3-dipolar cycloaddition reaction is typically carried out in refluxing toluene, but labile groups may not survive in these conditions. ${ }^{46}$ Our group has been involved in the synthesis of natural products and crucial synthetic intermediates from amino acids. ${ }^{47}$ In this respect we wanted to develop a synthetic protocol that would enable the synthesis of a chiral fused polycyclic 1,2,3-triazoles in solution or solid phase. Towards this end, we considered performing intramolecular 1,3-dipolar cycloaddition reactions on α-amino acid derived azido-alkynes. Here, we report an effective integration of "click" chemistry ${ }^{1,3}$ onto α amino acid derivatives for the synthesis of 1,2,3-triazole fused pyrazines.

According to retrosynthetic analysis, chiral triazole compound can be synthesized via intramolecular cycloaddition between azide and alkyne which can be easily derived from chiral amino acid (Figure 7).

Figure 7: Retrosynthetic analysis

We first devoted our efforts toward the synthesis of azido-alkyne 64a for which synthesis of azide 5 was planned from naturally occurring L-Valine (59). Following the literature procedure, ${ }^{48}$ L-valine (59) was treated with I_{2} and NaBH_{4} in THF under refluxing condition to afford L-valinol (60) in good yield. Alcohol 60 was subjected to Boc protection using $\mathrm{Boc}_{2} \mathrm{O}$ and $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give Boc-protected L-valinol (61) in 94% yield. Activation of the hydroxyl group via formation as its tosylate 62 was next achieved, in good yield by treatment of $\mathbf{6 1}$ with p-toluenesulfonyl chloride in pyridine at ambient temperature. ${ }^{49}$ Azide 63 was obtained by $S_{N} 2$ displacement of the corresponding tosylate with NaN_{3} in DMF at $60{ }^{\circ} \mathrm{C}$ in 92% yield (Scheme 15). A characteristic peak at $2104 \mathrm{~cm}^{-1}$ in the IR spectrum confirmed the presence of azide group. In the ${ }^{1} \mathrm{H}$ NMR spectrum methylene protons were resonated as multiplet at $\delta 3.43 \mathrm{ppm}$ where as methylene carbon observed at $\delta 52.8 \mathrm{ppm}$ in the ${ }^{13} \mathrm{C}$ NMR spectrum. Rest of the spectrum is in full agreement with the assigned structure. In addition Mass spectral studies and elemental analysis confirmed the structure of azide 63.

Scheme 15

The alkyne functionality was then introduced by treatment of $\mathbf{6 3}$ with $\mathrm{NaH}(60 \%$ dispersion in oil) and propargyl bromide in dry DMF at $0{ }^{\circ} \mathrm{C}$ to yield azide alkyne 64a in 87% yield. The azido alkyne 64a was not fully characterized, as it was a mixture of azido-alkyne 64a and cyclic product 65a, which was confirmed by ${ }^{1} \mathrm{H}$ NMR. Compound 64a was heated under reflux in toluene without any catalyst to convert it completely to 1,2,3-triazole-fused 4,5,6,7-tetrahydropyrazine moiety 65a. Purification by silica gel column chromatography afforded the desired product 65a in 52\% yield. The low yield was attributed to the harsh conditions which led to the deprotection of the Boc group (\geq $110{ }^{\circ} \mathrm{C}$). We have chosen CHCl_{3} or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the solvent for the 1,3-dipolar cycloaddition reaction and were surprised to see complete consumption of azido-alkyne 64a in 4 h under reflux conditions (Scheme 16). The pure product 65a was obtained in 95% yield by simple evaporation of the solvent. At room temperature, the reaction took 72 h for complete conversion and proceeded with the same yield. The structure of $\mathbf{6 5 a}$ was resolved by NMR spectroscopy, mass spectroscopy and elemental analysis. In ${ }^{1} \mathrm{H}$ NMR spectrum olefinic proton resonated at $\delta 7.53 \mathrm{ppm}$. The characteristic resonance in the ${ }^{13} \mathrm{C}$ NMR spectrum observed at $\delta 128.9,128.6$ and 46.3 ppm were attributed to double bond carbon and methylene carbon adjacent to double bond. Disappearence of characteristic peak for azide group in the IR spectrum ($2104 \mathrm{~cm}^{-1}$) indicates the formation of 65a. The structure was also confirmed by a characteristic ion peak at $m / z=267$, attributed to $[\mathrm{M}+\mathrm{H}]^{+}$in its ESI-Mass spectrum.

63

65a

64a

Scheme 16

These results encouraged us to verify the feasibility of this cycloaddition reaction using other azido-alkyne derivatives derived from different natural amino acids under
identical reaction conditions. As exemplified in Table 5, the reaction proceeded smoothly to completion, and the corresponding 1,2,3-triazole-fused 4,5,6,7-tetrahydropyrazine products were obtained in 3-4 h with excellent yields (92-96\%) and high purity. All products were fully characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, elemental analysis and mass spectral studies.

Table 5: Intramolecular 1,3-dipolar cycloaddition reaction under catalyst free condition in CHCl_{3}
64d

Short account of 1,3-dipolar cycloaddition: azides as an useful dipole

A 1,3-dipole is defined as a structure a-b-c that undergoes 1,3-dipolar cycloaddition reactions with dipolarofiles such as alkene or alkyne (Scheme 17).

Scheme 17

Primarily, 1,3-diploes can be divided into two different types: the allyl anion type and the propargyl or allenyl anion type. In allyl anion type dipole two possible resonance structures in which the centers have an electron octet, and two structures in which a or c

Allyl anion type

Propargyl/allenyl anion type

Figure 8
has an electron sextet, can be drawn (Figure 8). The central atom (b) can be nitrogen (when $b=N$, it would be without charge), oxygen or sulfur. The 1, 3-dipoles consist mainly of elements from main group IV, V and VI. Since parent 1, 3-dipoles consist of elements from the $2^{\text {nd }}$ row, and considering above limitation on the central atom of the dipole, a limited number of structures can be formed by permutations of N, C and O atom. 1, 2-dipoles of allyl anion type and 6 dipoles of propargyl or allenyl type are obtained (Chart 1). The 1,3-dipolar cycloaddition (DC) ${ }^{45}$ reactions of the parent 1,3dipoles, with alkenes, and alkynes involve 4π electrons from the dipole and 2π electrons from the alkene. The 1,3-DC reaction proceeds via a concerted mechanism and it is thermally allowed $\left[4 \pi_{s}+2 \pi_{s}\right]$. Thus three P_{z} orbitals of the 1,3-dipole and two p_{z} orbitals
of the alkene both combine suprafacially. The 1,3-dipolar cycloaddition reaction of an azide 66 with an alkene 67 leads to the formation of triazoline (68).

Allyl anion type

$\mathrm{N}=\stackrel{+}{\mathrm{O}}-\overline{\mathrm{O}} \quad$ Nitroso oxide $\mathrm{O}=\stackrel{+}{\mathrm{O}}-\overline{\mathrm{O}} \quad$ Ozone

Propargyl/allenyl anion type

$\mathrm{N} \equiv \stackrel{+}{\mathrm{N}}-\overline{\mathrm{N}}$	Azide
$=\stackrel{+}{\mathrm{N}}-\overline{\mathrm{N}}$	Nitrile imine
$\overline{=} \stackrel{+}{\mathrm{N}}-\overline{\mathrm{O}}$	Nitrile oxide

Chart 1
Intramolecular 1,3-DC reactions of an azide and olefin are very facile at rt in most of the cases or under heating conditions and resulting trizolines (70) on heating eliminates nitrogen to provide nitrogen heterocycle (71) (Scheme 18).

Scheme 18

Kinetic stability of alkynes and azides is directly responsible for their slow cycloaddition, which generally requires elevated temperatures and long reaction times. Good regioselectivity in the uncatalyzed Huisgen type cycloaddition is observed for coupling reactions involving highly electron-deficient terminal alkynes, but reactions with other alkynes usually afford mixtures of the 1,4- and 1,5-regioisomers (72 and 73, Scheme 19). Sharpless and Meldal groups reported CuI-catalyzed alkyne-azide coupling, dramatically improves regioselectivity to afford the 1,4-regioisomer exclusively (73, Scheme 19) and increases the reaction rate up to 10^{7} times. ${ }^{3}$ This high-yielding reaction tolerates a variety of functional groups and affords the 1,2,3-triazole product with minimal work-up and purification, an ideal click reaction. ${ }^{50}$

Scheme 19
In particular, the generally efficient $C u(I)$-catalyzed azide-alkyne cycloaddition affording 1,4-disubstituted-1,2,3-triazoles as the exclusive products has made this cycloaddition an invaluable tool in click chemistry. Intramolecular uncatalyzed cycloaddition of an azido-alkyne resulting in five- to seven-membered rings fused to a triazole ring is a well known process. Cyclodimerization of peptides and glycopeptides involving $\mathrm{Cu}(I)$-catalyzed azide-alkyne cycloadditions leading to relatively strain-free rings has been reported. A suitable sized azido-alkyne 74 can lead to the bicyclic triazoles $\mathbf{7 5}$ or $\mathbf{7 6}$ or both depending on the regioselectivity of the reaction (Scheme 20). ${ }^{51}$ The 1,4-disubstituted triazole 76 is particularly interesting, because relatively small sized rings having this structural type would represent strained triazolophanes.

Scheme 20: Intramolecular azide-alkyne cycloaddition

Once we were successful in synthesizing the library of chiral triazoles starting from chiral amino acids, we then focused to extend this strategy with proline derived azido-alkyne to get tricyclic triazole compound 83. Thus, Boc-L-prolinol 79 was prepared by reduction from L-proline (77) with usual procedure followed by Boc protection using $\mathrm{Boc}_{2} \mathrm{O}$ in 1,4-dioxane: $\mathrm{H}_{2} \mathrm{O}$ (1:1). Tosyl protection of 79 was carried out with $p-\mathrm{TsCl}$ and pyridine at ambient temperature to afford tosylate $\mathbf{8 0}$ with 89% yield. The azide $\mathbf{8 1}$ was obtained in 90% yield by $\mathrm{S}_{\mathrm{N}} 2$ displacement of the tosyl group of $\mathbf{8 0}$ with NaN_{3} in DMF at $60{ }^{\circ} \mathrm{C}$ (Scheme 21). In the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum methylene protons attached with azide group resonated at $\delta 3.37 \mathrm{ppm}$ as multiplet and methylene carbon observed at $\delta 52.5$ and 53.5 ppm due to rotational isomers. In the IR spectrum a characteristic peak at $2105 \mathrm{~cm}^{-1}$ confirmed the presence of azide group. Elemental analysis and mass spectral studies confirmed the assigned structure.

Scheme 21

The azido-alkyne 82 was obtained by Boc deprotection of $\mathbf{8 1}$ with TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and followed by treatment with propargyl bromide and NaH at $0{ }^{\circ} \mathrm{C}$ in 84% yield over two steps. The azido-alkyne $\mathbf{8 2}$ when heated under reflux in CHCl_{3} furnished 1,2,3-triazole-4,5,6,7-tetrahydropyrazine in 94% yield as a single product (Scheme 22). In the ${ }^{1} \mathrm{H}$ NMR spectrum of 83 olefinic proton resonated at $\delta 7.42 \mathrm{ppm}$. In the ${ }^{13} \mathrm{C}$ NMR spectrum the characteristic resonance at $\delta=128.4,131.8$ and 53.3 ppm were attributed to double bond carbon and methylene carbon adjacent to double bond respectively.

Elemental analysis and characteristic ion-peaks at $m / z=165[\mathrm{M}+\mathrm{H}]^{+}$and $187[\mathrm{M}+\mathrm{Na}]^{+}$ in its ESI-mass spectrum confirmed the structure of 83.

Scheme 22
In addition, the X-ray crystallographic analysis unambiguously confirmed the structure of 83 (Figure 9). The details of crystal data and structure refinement (Table 6) are given below.

Figure 9: ORTEP diagram of Compound 83

In conclusion, we have achieved the regioselective synthesis of several new chiral 1,2,3-triazole-fused 4,5,6,7-tetrahydropyrazine bicyclic and tricyclic compounds in excellent yields and high purity. The method obviates product purification and only needs evaporation of solvent to provide the pure triazole products thereby rendering the process an ideal intramolecular "click" reaction.

Table 6: Crystal data and structure refinement for 83

Empirical formula	$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{4}$
Formula weight	164.22
Temperature	297(2) K
Wavelength	0.71073 Å
Crystal system, space group	MONOCLINIC, P2
Unit cell dimensions	$\begin{aligned} & \mathrm{a}=8.158(8) \AA \quad \alpha=90^{\circ} . \\ & \mathrm{b}=11.142(11) \AA \quad \beta=113.482(13)^{\circ} . \\ & \mathrm{c}=10.169(10) \AA \quad \gamma=90^{\circ} \end{aligned}$
Volume	847.7(14) \AA^{3}
Z, Calculated density	$4,1.287 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.084 \mathrm{~mm}^{-1}$
F (000)	352
Crystal size	$0.82 \times 0.49 \times 0.39 \mathrm{~mm}$
Theta range for data collection	2.72 to 25.00°.
Limiting indices	$-9<=\mathrm{h}<=9,-12<=\mathrm{k}<=13,-12<=1<=11$
Reflections collected / unique	$4539 / 2529[\mathrm{R}(\mathrm{int})=0.0320]$
Completeness to theta $=25.00$	95.6 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9680 and 0.9344
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2529 / 1/218
Goodness-of-fit on F^{2}	1.588
Final R indices [$\mathrm{I}>2$ sigma (I)]	$\mathrm{R} 1=0.1188, \mathrm{wR} 2=0.3452$
R indices (all data)	$\mathrm{R} 1=0.1342, \mathrm{wR} 2=0.3621$
Absolute structure parameter	-5(8)
Extinction coefficient	0.04(2)
Largest diff. peak and hole	0.570 and -0.282 e. \AA^{-3}

(S)-tert-Butyl 1-hydroxy-3-methylbutan-2-ylcarbamate (61):

A 500-mL two-neck round-bottom flask was fitted with a reflux condenser, and an addition funnel and charged with $\mathrm{NaBH}_{4}(7.8 \mathrm{~g}, 204.9 \mathrm{mmol})$ and 250 mL of THF. LValine (59) (10.0 g, 85.5 mmol) was added in one portion at $0^{\circ} \mathrm{C}$. A solution of iodine ($21.7 \mathrm{~g}, 85.5 \mathrm{mmol}$) in THF (50 mL) was poured into the addition funnel and added slowly over 45 min resulting in vigorous evolution of hydrogen. After addition of the iodine was complete, the flask was heated to reflux for 18 h and then cooled to room temperature, and methanol was added cautiously until the mixture became clear. After stirring 30 min , the solvent was removed by rotary evaporation leaving a white paste which was dissolved by addition of 150 mL of 20% aqueous KOH . The solution was stirred for 3 h and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 200 \mathrm{~mL}$). The organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo, to afford alcohol $\mathbf{6 0}$ as white semi-solid.

The crude alcohol $\mathbf{6 0}$ ($5.0 \mathrm{~g}, 48.5 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) and cooled at $0{ }^{\circ} \mathrm{C}$ in an ice bath. Dry $\mathrm{Et}_{3} \mathrm{~N}(16.9 \mathrm{~mL}, 121.3 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(13.3 \mathrm{~mL}$, 58.2 mmol) were added to the reaction mixture and stirred at room temperature for 6 h . The reaction mixture was concentrated and purified by silica gel column chromatography using 50% EtOAc-light petroleum ether to give 61 ($9.2 \mathrm{~g}, 94 \%$) as a sticky liquid.

Mol. Formula	$: \mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{3}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR	$: \delta 0.87(\mathrm{~d}, 6 \mathrm{H}, J=6.5 \mathrm{~Hz}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.55-1.68(\mathrm{~m}$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$1 \mathrm{H}), 3.41-3.64(\mathrm{~m}, 4 \mathrm{H}), 4.82(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{13} \mathbf{C} \mathbf{~ N M R ~}$	$: \delta 18.3,19.4,28.2,29.0,57.7,63.3,79.1,156.6 \mathrm{ppm}$.
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	

To a solution of $\mathbf{6 1}\left(6.0 \mathrm{~g}, 29.5 \mathrm{mmol}\right.$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL), dry Py (6.0 mL , 73.8 mmol) was added followed by catalytic DMAP. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and $p-\mathrm{TsCl}(7.8 \mathrm{~g}, 41.3 \mathrm{mmol})$ was added and stirred at rt for 6 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and water (30 mL). The organic phase was washed with $10 \% \mathrm{NaHCO}_{3}$ solution, water, brine solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification of the crude residue on silica gel chromatography by eluting with 15% EtOAc-light petroleum ether gave 62 ($7.9 \mathrm{~g}, 76 \%$) as a white solid.

Mol. Formula	: $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}$
$[\alpha]^{25}$: -20.0 (c 1.5, CHCl_{3}).
IR ($\mathbf{C H C l}_{3}$) \tilde{v}	: 3393, 2971, 1702, 1514, 1365, $1176 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	$: \delta 0.89(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.73-1.90$ (m,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$1 \mathrm{H}), 2.46$ (s, 3H), 3.43-3.55 (m, 1H), 3.97-4.10 (m, 2H),
	4.59 (d, 1H, $J=9.4 \mathrm{~Hz}$), 7.35 (d, 2H, $J=8.3 \mathrm{~Hz}$), 7.78 (d,
	$2 \mathrm{H}, ~ J=8.3 \mathrm{~Hz}$) ppm.
${ }^{13} \mathrm{C}$ NMR	: $\delta 18.6,19.2,21.6,28.2,28.9,54.7,69.9,79.4,127.9$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	129.8, 132.7, 144.8, 155.3 ppm.

(S)-tert-Butyl 1-azido-3-methylbutan-2-ylcarbamate (63):

To the tosylate $62(5.4 \mathrm{~g}, 15.1 \mathrm{mmol})$ in dry DMF, $\mathrm{NaN}_{3}(4.9 \mathrm{~g}, 75.5 \mathrm{mmol})$ was added and heated at $60{ }^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was poured into ice-cold water and extracted the aqueous layer with EtOAc (3 x 60 mL). The combined organic extract was washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified on silica gel column chromatography eluting with 10% EtOAc-light petroleum ether to give 63 ($3.1 \mathrm{~g}, 92 \%$) as a colourless syrup.

Mol. Formula	: $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$
$[\alpha]^{25}$ D	: -44.2 ($\mathrm{c}^{1.9}, \mathrm{CHCl}_{3}$).
$\mathbf{I R}\left(\mathbf{C H C l}_{3}\right) \tilde{v}$: 3441, 3019, 2104, 1707, 1583, 1507, $1215 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	$: \delta 0.93$ (d, 3H, $J=3.6 \mathrm{~Hz}$), 0.96 (d, 3H, $J=3.6 \mathrm{~Hz}), 1.45$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	(s, 9H), 1.75-1.85 (m, 1H), 3.43 (m, 2H), 3.46-3.58 (m, $1 \mathrm{H}), ~ 4.56-4.60(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$: $\delta 18.1,19.2,28.1,29.6,52.8,55.4,79.2,155.5$ ppm.
ESI-MS (m / z)	: $251[\mathrm{M}+\mathrm{Na}]^{+}$.

Elemental Analysis Calcd.: C, 52.61; H, 8.83; N, 24.54.
Found: C, 52.78; H, 8.64; N, 24.63.

(S)-tert-Butyl 6-isopropyl-6,7-dihydro-[1,2,3]triazolo[1,5-a]pyrazine-5(4H)carboxylate (65a):

To an ice cooled solution of $\mathbf{6 3}(1.5 \mathrm{~g}, 6.57 \mathrm{mmol})$ in dry DMF (10 mL) was added 60% dispersion of NaH in liquid paraffin ($0.4 \mathrm{~g}, 9.85 \mathrm{mmol}$) under N_{2} atmosphere and stirred for 30 min at same temperature. To the resulting solution, propargyl bromide ($0.82 \mathrm{~mL}, 9.2 \mathrm{mmol}$) was introduced dropwise and stirred the reaction mixture at room temperature for 4 h . The reaction mixture was quenched with ice-cold water and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined extract was washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a residue, which on silica gel column chromatography using 8\% EtOAc-light petroleum ether afforded 64a (1.35 g, 87\%) as a yellowish liquid.

Azido-alkyne 64a ($1.0 \mathrm{~g}, 3.75 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(12 \mathrm{~mL})$ was refluxed under argon for 4 h . After completion of the reaction solvent was evaporated and on filter cromatographed using 45\% EtOAc-light petroleum ether as eluent to afford $\mathbf{6 5 a}$ (0.95 g , 95\%) as a sticky liquid.

Mol. Formula $: \mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$
$[\alpha]^{\mathbf{2 5}}{ }_{\mathbf{D}} \quad:-47.8\left(c 1.2, \mathrm{CHCl}_{3}\right)$.
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \tilde{v} \quad: 3018,2974,1692,1406,1216 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR
: $\delta 0.92(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.99(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 1.50$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$ (s, 9H), 1.53-1.65 (m, 1H), 4.22 (dd, 1H, $J=14.0,4.5 \mathrm{~Hz}$), 4.33 (m, 2H), 4.76 (d, 1H, $J=12.5 \mathrm{~Hz}$), 5.13 (m, 1H), 7.53 ($\mathrm{s}, 1 \mathrm{H}$) ppm.
${ }^{13}$ C NMR $\quad: \delta 18.7,19.5,26.6,27.8,36.1,46.3,54.3,55.6,80.6$, $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \quad 128.6,128.9,153.8 \mathrm{ppm}$.
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 267[\mathrm{M}+\mathrm{H}]^{+}$.
Elemental Analysis Calcd.: C, 58.62; H, 8.33; N, 21.04.
Found: C, 58.51; H, 8.47; N, 20.88.

(S)-tert-Butyl 6-benzyl-6,7-dihydro-[1,2,3]triazolo[1,5-a]pyrazine-5(4H)-carboxylate

 (65b):

Compound 65b was prepared from 64b using the procedure similar to that of $\mathbf{6 5 a}$.

Mol. Formula	: $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$
$[\alpha]^{25}{ }_{\text {D }}$: -51.6 (c 1.4, CHCl_{3}).
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \tilde{v}$: 3018, 1694, 1394, 1216, $1165 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	: $\delta 1.41$ (s, 9H), 2.56 (dd, 1H, $J=8.4,13.6 \mathrm{~Hz}$), 2.75 (dd,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	
	(d, 1H, $J=17.4 \mathrm{~Hz}$), 4.58 (d, 1H, $J=13.2 \mathrm{~Hz}$), 4.85-5.10 (m,
	$2 \mathrm{H}), 7.12$ (m, 2H), 7.24-7.31 (m, 3H), 7.61 (s, 1H) ppm.
${ }^{13} \mathrm{C}$ NMR	: $\delta 28.2,29.7,36.5,47.7,62.5,81.3,127.1,128.8,129.2$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	136.4, 153.8 ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 315[\mathrm{M}+\mathrm{Na}]^{+}, 337[\mathrm{M}+\mathrm{Na}]^{+}$.

Elemental Analysis Calcd.: C, 64.95; H, 7.05; N, 17.82.
Found: C, 64.73; H, 7.31; N, 17.96.
(S)-tert-Butyl 6-methyl-6,7-dihydro-[1,2,3]triazolo[1,5-a]pyrazine-5(4H)-carboxylate (65c)

Compound 65 c was prepared from 64 c using the procedure similar to that of $\mathbf{6 5 a}$.

Mol. Formula	: $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$
$[\alpha]^{25}{ }_{\text {D }}$: - 40.2 (c 1.1, CHCl_{3}).
IR ($\mathbf{C H C l}_{3}$) \tilde{v}	: 2980, 1697, 1395, 1218, $1167 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR	: $\delta 1.16$ (d, 3H, $J=7.3 \mathrm{~Hz}$), 1.51 (s, 9H), 4.32-4.37 (m,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$2 \mathrm{H}), 4.47$ (d, 1H, $J=13.2 \mathrm{~Hz}$), 4.92 (m, 1H), 5.07 (d, 1H, J
	$=17.4 \mathrm{~Hz}), 7.56$ (s, 1H) ppm.
$\begin{aligned} & { }^{13} \mathbf{C} \mathbf{N M R} \\ & \left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \end{aligned}$: $\delta 15.7,28.1,36.1,45.0,50.1,81.0,128.9,129.1,153.7$.
ESI-MS (m / z)	: $239[\mathrm{M}+\mathrm{H}]^{+}, 261[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis	Calcd.: C, 55.44; H, 7.61; N, 23.51.
	Found: C, 55.67; H, 7.69; N, 23.42.

(S)-tert-Butyl 6-isobutyl-6,7-dihydro-[1,2,3]triazolo[1,5-a]pyrazine-5(4H)carboxylate

 (65d):

Compound 65d was prepared from 64d using the procedure similar to that of $\mathbf{6 5 a}$.
Mol. Formula $: \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}} \quad:-30.7\left(c\right.$ 0.95, $\left.\mathrm{CHCl}_{3}\right)$.
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \tilde{v} \quad: 3020,1703,1584,1508,1407,1215 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 0.84(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 0.87(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.06-$
$\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
$1.12(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.43-1.48$ (m, 1H), 4.12 (d, 1H, $J=17.6 \mathrm{~Hz}$), 4.21 (dd, 1H, $J=4.8$
$12.8 \mathrm{~Hz}), 4.36(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 4.72(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=17.6 \mathrm{~Hz}$), $7.41(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR $\quad: \delta$ 21.9, 22.6, 24.7, 28.1, 35.9, 38.6, 47.3, 49.1, 80.9,
$\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \quad 128.7,128.9,153.7 \mathrm{ppm}$.
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 281[\mathrm{M}+\mathrm{H}]^{+}, 303[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis Calcd.: C, 59.98; H, 8.63; N, 19.98.
Found: C, 59.87; H, 8.71; N, 19.76.
(6S)-tert-Butyl 6-sec-butyl-6,7-dihydro-[1,2,3]triazolo[1,5-a]pyrazine-5(4H)carboxylate (65e):

Compound 65 e was prepared from $\mathbf{6 4 e}$ using the procedure similar to that of $\mathbf{6 5 a}$.

Mol. Formula	$: \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}$	$:-48.7\left(c 2.0, \mathrm{CHCl}_{3}\right)$.

IR (CHCl3) $\tilde{v} \quad: 3408,3019,1693,1406,1215 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 0.83-0.93(\mathrm{~m}, 6 \mathrm{H}), 1.07-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 4.22$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad(\mathrm{dd}, 2 \mathrm{H}, J=4.7,13.2 \mathrm{~Hz}), 4.40(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~d}, 1 \mathrm{H}, J=$ 13.2 Hz), 5.09-5.17 (m, 1H), 7.51 (s, 1H) ppm.
${ }^{13} \mathbf{C}$ NMR $\quad: \delta 10.4,15.6,24.7,27.9,32.4,36.3,46.5,53.7,80.8,128.7$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad 129.0,153.9 \mathrm{ppm}$.
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 281[\mathrm{M}+\mathrm{H}]^{+}$.
Elemental Analysis Calcd.: C, 59.98; H, 8.63; N, 19.98.
Found: C, 59.87; H, 8.71; N, 19.76.
(R)-tert-Butyl 6-((S)-1-(tert-butyldimethylsilyloxy)ethyl)-6,7-dihydro-[1,2,3]triazolo [1,5-a]pyrazine-5(4H)-carboxylate (65f):

Compound $\mathbf{6 5 f}$ was prepared from $\mathbf{6 4 f}$ using the procedure similar to that of $\mathbf{6 5 a}$.

Mol. Formula	$: \mathrm{C}_{18} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Si}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{\mathbf { D }}$	$:-4.5\left(c 1.2, \mathrm{CHCl}_{3}\right)$.
$\mathbf{I R}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \tilde{v}$	$: 3393,3019,1692,1410,1215 \mathrm{~cm}^{-1}$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$	$: \delta-0.15(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}), 0.68(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$=6.3 \mathrm{~Hz}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 4.00(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.4,6.3 \mathrm{~Hz}), 4.39$
	$(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=6.4,13.3 \mathrm{~Hz}), 4.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.3 \mathrm{~Hz}), 4.66-$
	$4.75(\mathrm{~m}, 1 \mathrm{H}), 5.04-5.29(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}$	$: \delta-5.2,-4.9,17.4,20.1,25.4,28.2,38.5,46.4,52.2,71.0$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$81.1,128.5,130.2,154.3 \mathrm{ppm}$.
$\mathbf{E S I - M S}(\mathrm{m} / \mathrm{z})$	$: 405[\mathrm{M}+\mathrm{Na}]^{+}$.

Elemental Analysis Calcd.: C, 56.51; H, 8.96; N, 14.64.
Found: C, 56.74; H, 8.77; N, 14.41.
tert-Butyl 2-(tosyloxymethyl)pyrrolidine-1-carboxylate (80):

To a solution of alcohol $79(4.4 \mathrm{~g}, 21.9 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, Py (3.5 $\mathrm{mL}, 43.7 \mathrm{mmol})$ and $p-\mathrm{TsCl}(5.4 \mathrm{~g}, 28.4 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$ and stirred at rt for 6 h. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic phase was washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification of crude residue by silica gel chromatography eluting with 10% EtOAc-light petroleum ether gave 80 ($6.9 \mathrm{~g}, 89 \%$) as a white solid.

$$
\begin{array}{ll}
\text { Mol. Formula } & : \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S} \\
{[\boldsymbol{\alpha}]^{\mathbf{2 5}}} & :-36.0\left(c 1.5, \mathrm{CHCl}_{3}\right) . \\
\mathbf{I R}\left(\mathbf{C H C l}_{3}\right) \tilde{v} & : 3436,2976,1693,1394,1365,1189,1097 \mathrm{~cm}^{-1} . \\
{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R} & : \delta 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.81-1.93(\mathrm{~m}, 4 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~m}, \\
\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) & 2 \mathrm{H}), 3.89-4.05(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \\
& \mathrm{Hz}), 7.76(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}) \mathrm{ppm} .
\end{array}
$$

${ }^{13}$ C NMR
: $\delta 21.5,22.7$ and 23.6, 28.2, 46.4 and 55.4, 69.7, 79.6,

Elemental Analysis 127.7, 129.7, 132.9, 144.5, 153.8 and 154.1 ppm. (Rotamer)

Calcd.: C, 57.44; H, 7.09; N, 3.94.
Found: C, 57.71; H, 7.28; N, 3.73.
tert-Butyl 2-(azidomethyl)pyrrolidine-1-carboxylate (81):

A mixture of $\mathbf{8 0}(5.5 \mathrm{~g}, 15.5 \mathrm{mmol})$) and $\mathrm{NaN}_{3}(5.0 \mathrm{~g}, 77.5 \mathrm{mmol})$ in dry DMF $(35 \mathrm{~mL})$ were heated at $60^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was diluted with water and extracted with ether. The combined organic layer was washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography eluting with 8% EtOAc-petroleum ether to afford $81(3.1 \mathrm{~g}, 90 \%)$ as a colourless liquid.

Mol. Formula	$: \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}$	$:-49.7\left(c 1.4, \mathrm{CHCl}_{3}\right)$.
$\mathbf{I R}\left(\mathbf{C H C l}_{3}\right) \tilde{v}$	$: 3373,3020,2105,1683,1401,1215 \mathrm{~cm}^{-1}$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}$	$: \delta 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.79-2.04(\mathrm{~m}, 4 \mathrm{H}), 3.34-3.63(\mathrm{~m}, 4 \mathrm{H}), 3.91$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$(\mathrm{m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{\mathbf{1 3}} \mathbf{C ~ N M R}$	$: \delta 22.8$ and $23.6,28.3,29.2,46.8,52.5$ and $53.5,56.3,79.3$,
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	154.1 ppm.
ESI-MS $(\mathrm{m} / \mathrm{z})$	$: 249[\mathrm{M}+\mathrm{Na}]^{+}$.

Elemental Analysis Calcd.: C, 53.08; H, 8.02; N, 24.76.
Found: C, 52.82; H, 8.29; N, 24.95.

(S)-4,6,7,8,8a,9-Hexahydropyrrolo[1,2-d][1,2,3]triazolo[1,5-a]pyrazine (83):

To a stirred solution of $\mathbf{8 1}(1.6 \mathrm{~g}, 7.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ TFA (2 mL) was added. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ to rt for 4 h . After this period the solution was concentrated and azeotropically dried with dry benzene to give crude amine. To this amine in dry DMF (10 mL), $\mathrm{NaH}(0.43 \mathrm{~g}, 60 \%$ dispersion in oil, 10.6 mmol) was added. After 15 min propargyl bromide ($0.82 \mathrm{~mL}, 9.2 \mathrm{mmol}$) was added dropwise and stirred for 6 h at rt. The reaction mixture was quenched with ice-cold water, extracted with ether ($3 \times 30 \mathrm{~mL}$), washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give azido-alkyne 82 ($1.0 \mathrm{~g}, 84 \%$) as yellow oil.
Azido-alkyne $82(1.0 \mathrm{~g}, 6.1 \mathrm{mmol})$ was dissolved in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ and refluxed for 4 h . The solvent was evaporated and the residue was purified on silica gel column chromatography by using 40% EtOAc-light petroleum ether as an eluent to afford $\mathbf{8 3}$ ($0.94 \mathrm{~g}, 94 \%$) as a crystalline solid.

Mol. Formula	: $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{4}$
M. P.	: 99-100 ${ }^{\circ} \mathrm{C}$
$[\alpha]^{25}{ }_{\text {D }}$: +98.5 (c 1.1, CHCl_{3}).
$\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \tilde{v}$: 3020, 1508, 1409, $1215 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	: $\delta 1.61-1.69$ (m, 1H), 1.92-2.05 (m, 2H), 2.10-2.17 (m,
$\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$	$1 \mathrm{H}), 2.36(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}), 2.68(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.27$ (ddd, $1 \mathrm{H}, J=2.8,7.5,8.8 \mathrm{~Hz}$), $3.38(\mathrm{~d}, 1 \mathrm{H}, J=14.6 \mathrm{~Hz}$), 3.95 (dd, 1H, $J=10.6,12.5 \mathrm{~Hz}$), 4.29 (d, 1H, $J=14.6 \mathrm{~Hz}$), 4.68 (dd, 1H, $J=3.9,12.5 \mathrm{~Hz}$), 7.42 (s, 1H) ppm.
${ }^{13} \mathrm{C}$ NMR	: $\delta 22.2,27.5,46.8,51.2,53.3,59.6,128.4,131.8$ ppm.
$\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$	
ESI-MS (m / z)	: $165[\mathrm{M}+\mathrm{H}]^{+}, 187[\mathrm{M}+\mathrm{Na}]^{+}$.

Elemental Analysis Calcd.: C, 58.51; H, 7.37; N, 34.12.
Found: C, 58.37; H, 7.11; N, 33.98.

PRESENT WORK

The biological activity and the pharmaceutical importance of 1,4-benzodiazepines are well established for few decades. The array of the therapeutic applications of this class of compounds has been impressively widened upon annulation of the benzodiazepine skeleton to another carbocyclic or heterocyclic ring. [1,2,4]Triazolo[4,3a] and imidazo[3,4-a][1,4]benzodiazepines, exemplified by triazolam 84 and midazolam 85, respectively, ${ }^{52}$ usually possessess an improved efficacy as anti-anxiety drugs. However the structurally related compound $\mathbf{8 6}$ known as flumazenil, belongs better to the class of anti-depressants and cognition enhancers. From the class of 3-hydroxy-1,4benzodiazepines, ${ }^{53}$ oxazepam 87, lorazepam 88 and also diazepam 89 (Figure 10) are important pharmaceutically active substances that are widely used for the treatment of anxiety. ${ }^{54}$

Triazolam (84)

Oxazepam (87)

Midazolam (85)

Lorazepam (88)

Flumazenil (86)

Diazepam (89)

Figure 10
1,4-Benzodiazepines constitute an important class of compounds due to their biological activities mostly based on their special affinity for serotonin $\left(5-\mathrm{HT}_{2}\right)$ and acetylcholine receptors. In fact, these compounds play a crucial role as anti-anxiety and antihistaminic agents. In particular the dibenzo[b,e][1,4]diazepin-11-ones may be active as antidepressants (dibenzepine 90). On the other hand, dibenzoannulated 1,4 benzodiazepines, so called tarpane 91 (Figure 11) ${ }^{55}$ exhibit antihistaminic properties.

Pyrido[2,3-b]benzodiazepinones have been screened as cardio selective muscarinic receptor antagonists (pirenzepine 92) and explored as potential HIV-1 reverse transcriptase (RT) inhibitors as isomeric structures of the potent RT inhibitor nevirapine, a dipiridodiazepinone.

Dibenzepine (90)

Tarpane (91)

Pirenzepine (92)

Figure 11
Among the drugs used in the treatment of central nervous system (CNS) disorders, 1,4 benzodiazepines have occupied a prominent place during the last 40 years. ${ }^{56}$ Consequently, elegant and practical syntheses of these heterocyclic systems have been developed. ${ }^{57}$ Benzodiazepines have been the first class of molecules recognized as privileged structures introduced by Evans et al. as a descriptor that mirrors the recognition that minor changes in the structures of benzodiazepine scaffold can produce a host of different biological activities and responses, which bind G-protein-coupled receptors and in several drugs used for central nervous system diseases. Alprazolam (93) and Estazolam (94) belongs to this family of compounds which possesses a 1,2,4-triazole ring fused to the 1,2 position of the diazepine (Figure 12). Both are common anxiolytic agents and have found both clinical and commercial success. 4H-[1,2,3]Triazolo [1,5][1,4]benzodiazepines (95) (Figure 12) was reported by Alajarin et al. utilizing a modular and flexible approach. ${ }^{58}$

Alprazolam (93)

Estazolam (94)

4H-[1,2,3]Triazolo[1,5-a][1,4] benzodiazepine (95)

Figure 12

As described in the section I, we exemplified an application of "click" chemistry to different azido alkynes derived from α-amino acids, resulting in the synthesis of new chiral $4,5,6,7$ tetrahydro $[1,2,3]$ triazolo[1,5-a]pyrazines. ${ }^{59}$ Though, the first synthesis of this type of ring system was reported utilizing intermolecular 1,3-dipolar cycloaddition reaction leading to two isomeric triazoles which on separation by silica gel column chromatography and subsequent cyclization afforded the required triazole fused benzodiazepine analogue. ${ }^{60}$ We report herein a synthesis of nitrogen-rich polycyclic hetero-systems starting from 2-aminobenzoic acid(s) and its derivatives utilizing intramolecular 1,3-dipolar cycloaddition of benzyl azides to alkynes (Huisgen dipolar cycloaddition) as a pivotal reaction to obtain the single isomer.

At first we devoted our efforts to synthesize azide 100 from anthranilic acid (96) by following standard procedure. Reduction of $\mathbf{9 6}$ with I_{2} and NaBH_{4} in THF under refluxing condition followed by Boc protection using $\mathrm{Boc}_{2} \mathrm{O}$ and TEA in THF afforded alcohol 98 in good yield. ${ }^{48}$ Activation of the benzylic hydroxyl group was achieved by treatment of 98 with methanesulfonyl chloride in TEA at ambient temperature. ${ }^{61}$ Subsequent introduction of azide group was achieved by $\mathrm{S}_{\mathrm{N}} 2$ displacement of the corresponding mesylate 99 with sodium azide in DMF at $70{ }^{\circ} \mathrm{C}$ in 82% yield over two steps (Scheme 23). The IR spectrum of $\mathbf{1 0 0}$ showed the absorption at $2100 \mathrm{~cm}^{-1}$ pertaining to the azide functionality. In the ${ }^{1} \mathrm{H}$ NMR spectrum methylene proton resonated as singlet at $\delta 4.32$ while the methylene carbon at $\delta 52.3 \mathrm{ppm}$ in the ${ }^{13} \mathrm{C}$ NMR spectrum. In addition ESI-Mass and elemental analysis confirmed the assigned structure of 100 .

Scheme 23

The alkyne functionality was then introduced by treatment of $\mathbf{1 0 0}$ with NaH and propargyl bromide in DMF at $0{ }^{\circ} \mathrm{C}$ to obtain azido-alkyne 101 in good yield. ${ }^{62}$ The structure of 101 was confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, mass spectroscopy and elemental analysis. Azido-alkyne 101 was refluxed in CHCl_{3} for 12 h under N_{2} to afford bicyclic 1,4-benzodiazepines with 92% yield. Disappearence of azide peak in IR spectrum and alkyne proton in ${ }^{1} \mathrm{H}$ NMR spectrum proved azido-alkyne $\mathbf{1 0 1}$ underwent intramolecular 1,3-dipolar cycloaddition between azide and alkyne to afford 1,5-disubstituted benzodiazepine 102 (Scheme 24). At room temperature, the reaction took 5 days for complete conversion and proceded with identical yield. The ${ }^{1} \mathrm{H}$ NMR spectrum showed the disappearance of acetylinic proton and a single olefinic proton was observed at $\delta 7.48$ ppm as singlet. Two methylene protons were resonated as singlet at $\delta 5.02$ and $\delta 5.54$ ppm. In the ${ }^{13} \mathrm{C}$ NMR spectrum resonances at $\delta=141.6,128.4$ and 81.5 ppm were attributed to the double bond carbon and methylene carbon adjacent to double bond. In the ESI-Mass spectra peaks at $m / z=287[M+H]^{+}, 309[M+N a]^{+}$confirmed the assigned structure. Triazole 102 was well supported by NMR spectrum and mass spectral studies together with elemental analysis. Boc-deprotection of $\mathbf{1 0 2}$ was carried out using $4 \mathrm{~N} \mathrm{HCl}-$ EtOAc to afford compound $\mathbf{1 0 3}$ in 84% yield. The structure was confirmed by NMR spectroscopy and elemental analysis.

Scheme 24

Encouraged with these results, we extended our studies to other azido-alkynes obtained from the corresponding 2 -aminobenzoic acid derivatives. As exemplified in

Table 7, the reaction proceeded smoothly to completion, and the corresponding 1,2,3triazole fused benzodiazepines were obtained in 12-16 h with excellent yields and high purity. All 1,2,3-triazole fused benzodiazepine compounds were fully characterized by their corresponding NMR spectroscopy, mass spectroscopy and elemental analysis.

Table 7: Intramolecular 1,3-dipolar cycloaddition reaction under catalyst free condition in CHCl_{3}
Entry

Compound 102c furnished a crystalline solid and its single crystal X-ray crystallography studies unambiguously confirmed the assigned structure (Figure 13). The details of crystal data and structure refinement (Table 8) are given below.

Figure 13: ORTEP diagram of compound 102c
In conclusion, our present protocol allows the efficient synthesis of novel polycyclic hetero-systems, from commercially available 2 -aminobenzoic acid derivatives, with excellent yield and high purity under mild reaction conditions. The method obviates product purification; evaporation of solvent is enough to provide the pure benzodiazepine products thereby rendering the process an ideal intramolecular "click" reaction. This, in turn, has set a stage for wider application of this powerful reaction for the synthesis of structurally diverse and novel poly-heterocyclic skeletons.

Table 8: Crystal data and structure refinement for compound 102c.

Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrN}_{4} \mathrm{O}_{2}$
Formula weight	365.24
Temperature	$297(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system, space group	Monoclinic, C 2/c
Unit cell dimensions	$\mathrm{a}=19.726(5) \AA, \alpha=90^{\circ}$ deg.
	$\mathrm{b}=13.549(3) \AA, \quad \beta=91.655(4)^{\circ} \mathrm{deg}$.

	$\mathrm{c}=12.030(3) \AA, \gamma=90^{\circ} \mathrm{deg}$.
Volume	$3213.9(14) \AA^{3}$
Z, Calculated density	$8,1.510 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.570 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	1488
Crystal size	$0.78 \times 0.30 \mathrm{x} 0.05 \mathrm{~mm}$
Theta range for data collection	3.01 to 25.00° deg.
Limiting indices	$-22<=\mathrm{h}<=23,-16<=\mathrm{k}<=16,-14<=\mathrm{l}<=14$
Reflections collected / unique	$12709 / 2828[\mathrm{R}(\mathrm{int})=0.0714]$
Completeness to theta $=25.00$	99.6%
Absorption correction	$\mathrm{Semi-empirical} \mathrm{from} \mathrm{equivalents}$
Max. and min. transmission	0.8887 and 0.2390
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints / parameters	$2828 / 0 / 267$
Goodness-of-fit on F^{2}	1.073
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0464$, wR2 $=0.1216$
R indices (all data)	$\mathrm{R} 1=0.0497$, wR2 $=0.1248$
Largest diff. peak and hole	0.672 and $-0.505 \mathrm{e} . \AA^{-3}$

tert-Butyl 2-(hydroxymethyl)phenylcarbamate (98):

To a solution of alcohol $97(8.0 \mathrm{~g}, 65.0 \mathrm{mmol})$ in THF (50 mL) di-tert-butyl dicarbonate ($17.9 \mathrm{~mL}, 78.0 \mathrm{mmol}$) was added under argon at rt. After refluxing the solution at $70{ }^{\circ} \mathrm{C}$ for 4 h , TLC showed complete conversion. The mixture was cooled to rt , and the solvent was removed in rotavapour. The residue was dissolved in ethyl acetate (150 mL) , and the solution was washed with saturated aqueous ammonium chloride and brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. After evaporation of solvent on a rotary evaporator, the crude product was purified by silica gel column chromatography by eluting with 15% EtOAc-light petroleum ether to provide $\mathbf{9 8}$ (12.4 g, 86%) as a sticky liquid.

Mol. Formula $: \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3}$
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \tilde{v} \quad: 3019,1701,1383,1215 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $: \delta 1.52(\mathrm{~s}, 9 \mathrm{H}), 2.44(\mathrm{brs}, 1 \mathrm{H}), 4.65(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz}), 7.00$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad(\mathrm{dt}, 1 \mathrm{H}, J=1.2,7.5 \mathrm{~Hz}), 7.14(\mathrm{dd}, 1 \mathrm{H}, J=1.7,7.5 \mathrm{~Hz}), 7.28$
(dt, 1H, $J=1.7,7.5 \mathrm{~Hz}$), 7.66 (brs, 1H), 7.87 (d, 1H, $J=8.3$ Hz).
${ }^{13} \mathbf{C}$ NMR $\quad: \delta 28.2,63.2,80.8,120.4,122.6,126.9,129.4,134.3,138.8$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$
Elemental Analysis
153.0 ppm.

Calcd.: C, 64.55; H, 7.67; N, 6.27.
Found: C, 64.76; H, 7.48; N, 6.41.
tert-Butyl 2-(azidomethyl)phenylcarbamate (100):

To a stirred solution of $98(6.0 \mathrm{~g}, 26.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ containing $\mathrm{Et}_{3} \mathrm{~N}$ ($7.5 \mathrm{~mL}, 53.8 \mathrm{mmol}$) was added $\mathrm{MsCl}(2.5 \mathrm{~mL}, 32.3 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2}. The reaction mixture was stirred at room temperature for 4 h . The solution was thoroughly washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Without further purification this was dissolved in DMF (30 mL) and treated with $\mathrm{NaN}_{3}(7.0 \mathrm{~g}, 107.6 \mathrm{mmol}$). The reaction mixture was heated at $70{ }^{\circ} \mathrm{C}$ under N_{2} for 6 h . The reaction mixture was quenched with ice-cold water and extracted with EtOAc (3 X 50 mL). The combined organic layer was washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude residue was purified by silica gel column chromatography by eluting with 6\% EtOAclight petroleum ether to furnish azide 100 ($5.4 \mathrm{~g}, 82 \%$) as white solid.

Mol. Formula $\quad: \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \tilde{v} \quad: 3405,2979,2100,1731,1520,1236,1157 \mathrm{~cm}^{-1}$.
${ }^{1}$ H NMR $: \delta 1.53(\mathrm{~s}, 9 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 6.81(\mathrm{brs}, 1 \mathrm{H}), 7.06(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=$
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 1.2,7.5 \mathrm{~Hz}\right), 7.21(\mathrm{dd}, 1 \mathrm{H}, J=1.7,7.6 \mathrm{~Hz}), 7.35(\mathrm{dt}, 1 \mathrm{H}, J=$ $1.7,7.6 \mathrm{~Hz}$), $7.88(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{13}$ C NMR $\quad: \delta 28.1,52.3,80.4,122.2,123.6,125.2,129.3,129.5,136.8$, $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \quad 152.7 \mathrm{ppm}$.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 271[\mathrm{M}+\mathrm{Na}]^{+}, 287[\mathrm{M}+\mathrm{K}]^{+}$.
Elemental Analysis Calcd.: C, 58.05; H, 6.50; N, 22.57.
Found: C, 58.32; H, 6.31; N, 22.75.
tert-Butyl 4H-benzo[e][1,2,3]triazolo[1,5-a][1,4]diazepine-5(10H)-carboxylate (102):

Azide 100 ($3.0 \mathrm{~g}, 12.1 \mathrm{mmol}$) in 5 mL of DMF was added to a DMF (25 mL) solution of $\mathrm{NaH}\left(0.73 \mathrm{~g}, 18.1 \mathrm{mmol}, 60 \%\right.$ dispersion in paraffin oil) at $0{ }^{\circ} \mathrm{C}$. After stirred under nitrogen for 30 min at same temperature, propargyl bromide ($1.4 \mathrm{ml}, 15.7$ mmol) was added and the mixture was stirred for 2 h at rt . The reaction mixture was
poured slowly into cold brine and the resulting solution was extracted with EtOAc (3 x 40 mL). The combined organic phases were washed with water, brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by silica gel column chromatography using 5% EtOAc-light petroleum ether to afford azido-alkyne $\mathbf{1 0 1}(2.6 \mathrm{~g})$ as yellow oil.

Azido-alkyne 101 ($2.2 \mathrm{~g}, 7.7 \mathrm{mmol}$) was taken in CHCl_{3} and refluxed for 12 h under nitrogen. Evaporated the solvent and the residue was purified by silica gel column chromatography using 40\% EtOAc-petroleum ether to afford 102 ($1.98 \mathrm{~g}, 92 \%$) as yellow solid.

$$
\begin{array}{ll}
\text { Mol. Formula } & : \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \\
\text { M. P. } & : 134-135{ }^{\circ} \mathrm{C} \\
\text { IR }\left(\mathbf{C H C l}_{3}\right) \tilde{v} & : 3019,1701,1383,1215 \mathrm{~cm}^{-1} . \\
{ }^{1} \mathbf{H} \mathbf{~ N M R ~} & : \delta 1.41(\mathrm{~s}, 9 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 5.54(\mathrm{~s}, 2 \mathrm{H}), 7.29-7.48(\mathrm{~m}, \\
\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) & 5 \mathrm{H}) \mathrm{ppm} . \\
{ }^{13} \mathbf{C} \mathbf{N M R}^{2} & : \delta 28.1,42.8,51.5,81.5,128.2,128.4,129.2,130.2,131.3, \\
\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) & 132.1,132.7,141.6,153.7 \mathrm{ppm} . \\
\text { ESI-MS }(\mathrm{m} / \mathrm{z}) & : 287[\mathrm{M}+\mathrm{H}]^{+}, 309[\mathrm{M}+\mathrm{Na}]^{+} .
\end{array}
$$

Elemental Analysis Calcd.: C, 62.92; H, 6.34; N, 19.57.
Found: C, 62.20; H, 6.23; N, 19.43.

5,10-Dihydro-4H-benzo[e][1,2,3]triazolo[1,5-a][1,4]diazepine (103):

Compound $102(0.8 \mathrm{~g}, 2.8 \mathrm{mmol})$ was treated with $4 \mathrm{~N} \mathrm{HCl}-\mathrm{EtOAc}(6 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ and stirred at room temperature for 4 h . The reaction mixture was quenched with sat. NaHCO_{3} solution and extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to afford compound 103 ($0.43 \mathrm{~g}, 84 \%$) as a thick liquid.

Mol. Formula	$: \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{4}$
${ }^{1} \mathbf{H ~ N M R ~}$	$: \delta 3.38(\mathrm{brs}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H}), 6.79-6.95(\mathrm{~m}$,
$\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$	$2 \mathrm{H}), 7.17-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{\mathbf{1}} \mathbf{C ~ N M R ~}$	$: \delta 41.1,51.9,120.1,121.5,123.1,129.8,131.0,133.6$,
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	147.0 ppm.
ESI-MS $(\mathrm{m} / \mathrm{z})$	$: 187[\mathrm{M}+\mathrm{H}]^{+}$.

Elemental Analysis Calcd.: C, 64.50; H, 5.41; N, 30.09.
Found: C, 64.64; H, 5.20; N, 30.27.
tert-Butyl 6-methyl-4H-benzo[e][1,2,3]triazolo[1,5-a][1,4]diazepine-5(10H)carboxylate (102b):

Compound 102b was prepared from 101b using the procedure similar to that of $\mathbf{1 0 2}$.

Mol. Formula	: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$
IR ($\left.\mathrm{CHCl}_{3}\right) \sim$: 3386, 2980, 1703, $1383 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 1.39(\mathrm{~s}, 6.8 \mathrm{H}), 1.53(\mathrm{~s}, 2.2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{~d}, \\ & 0.75 \mathrm{H}, J=17.2 \mathrm{~Hz}), 4.28(\mathrm{~d}, 0.25 \mathrm{H}, J=17.2 \mathrm{~Hz}), 5.41(\mathrm{~d}, \\ & 0.75 \mathrm{H}, J=14.3 \mathrm{~Hz}), 5.46(\mathrm{~d}, 0.25 \mathrm{H}, J=14.3 \mathrm{~Hz}), 5.60- \\ & 5.64(\mathrm{~m}, 1.25 \mathrm{H}), 5.86(\mathrm{~d}, 0.75 \mathrm{H}, J=17.2 \mathrm{~Hz}), 7.23-7.35 \\ & (\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}) \text { (Rotamers). } \end{aligned}$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	$: \delta 17.3,28.1,41.8,51.6,81.2,126.9,128.3,131.3,131.7$ 132.6, 132.7, 136.3, 139.8, 153.4 ppm.
ESI-MS (m / z)	: $301[\mathrm{M}+\mathrm{H}]^{+}, 323[\mathrm{M}+\mathrm{Na}]^{+}, 339[\mathrm{M}+\mathrm{K}]^{+}$.
Elemental Analysis	Calcd.: C, 63.98; H, 6.71; N, 18.65. Found: C, 63.74; H, 6.98; N, 18.32.

tert-Butyl 8-bromo-4H-benzo[e][1,2,3]triazolo[1,5-a][1,4]diazepine-5(10H)carboxylate (102c):

Compound 102c was prepared from 101c using the procedure similar to 102.

Mol. Formula	: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrN}_{4} \mathrm{O}_{2}$
M. P.	: $156-157{ }^{\circ} \mathrm{C}$
IR ($\left.\mathrm{CHCl}_{3}\right) \tilde{\nu}$: 3017, 1704, 1488, $1380 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 1.41(\mathrm{~s}, 9 \mathrm{H}), 5.00(\mathrm{brs}, 2 \mathrm{H}), 5.49(\mathrm{~s}, 2 \mathrm{H}), 7.20(\mathrm{~d}, 1 \mathrm{H}, J \\ & =8.3 \mathrm{~Hz}), 7.55-7.57(\mathrm{dd}, 1 \mathrm{H}, J=2.2,8.3 \mathrm{~Hz}), 7.47(\mathrm{~s}, 1 \mathrm{H}), \\ & 7.62(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}) \mathrm{ppm} . \end{aligned}$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	$: \delta 28.2,42.7,50.9,82.1,121.8,130.2,131.4,132.4,132.5$ 133.3, 134.1, 140.8, 153.4 ppm.
ESI-MS (m / z)	: 365 [M] ${ }^{+}, 388[\mathrm{M}+\mathrm{Na}]^{+}$.

Elemental Analysis Calcd.: C, 49.33; H, 4.69; N, 15.34.
Found: C, 49.56; H, 4.36; N, 15.69.
tert-Butyl 7-chloro-4H-benzo[e][1,2,3]triazolo[1,5-a][1,4]diazepine-5(10H)carboxylate (102d):

Compound 102d was prepared from 101d using the procedure similar to that of $\mathbf{1 0 2}$.
Mol. Formula $\quad: \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{2}$
M. P. $\quad: 152-153{ }^{\circ} \mathrm{C}$
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \tilde{v} \quad: 3361,3019,1704,1215 \mathrm{~cm}^{-1}$.
${ }^{1}$ H NMR
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
: $\delta 1.41(\mathrm{~s}, 9 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 5.49(\mathrm{~s}, 2 \mathrm{H}), 7.29-7.42(\mathrm{~m}$, 3H), 7.47 (s, 1H) ppm.
${ }^{13}$ C NMR $\quad: \delta 28.0,42.8,50.8,82.1,128.4,128.9,130.2,130.6,131.3$,
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \quad 132.3,135.3,142.6,153.2 \mathrm{ppm}$.
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 321[\mathrm{M}+\mathrm{H}]^{+}, 343[\mathrm{M}+\mathrm{Na}]^{+}, 359[\mathrm{M}+\mathrm{K}]^{+}$
Elemental Analysis Calcd.: C, 56.17; H, 5.34; N, 17.47.
Found: C, 56.39; H, 5.16; N, 17.29.
tert-Butyl 9-methyl-4H-benzo[e][1,2,3]triazolo[1,5-a][1,4]diazepine-5(10H)carboxylate (102e):

Compound 102e was prepared from 101e using the procedure similar to 102.
Mol. Formula $\quad: \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$
M. P. $\quad: 165-167^{\circ} \mathrm{C}$
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \tilde{v} \quad: 3376,2989,1707,1382,1219 \mathrm{~cm}^{-1}$.
${ }^{1}$ H NMR $\quad: \delta 1.40(\mathrm{~s}, 9 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 4.10-4.42(\mathrm{~m}, 1 \mathrm{H}), 5.36-5.85$
$\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \quad(\mathrm{m}, 3 \mathrm{H}), 7.13-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.3(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR $\quad: \delta 19.1,27.8,42.4,46.4,80.9,125.6,129.1,129.7,130.7$,
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \quad 130.9,132.2,136.3,141.6,153.4 \mathrm{ppm}$.
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 301[\mathrm{M}+\mathrm{H}]^{+}, 323[\mathrm{M}+\mathrm{Na}]^{+}, 339[\mathrm{M}+\mathrm{K}]^{+}$
Elemental Analysis Calcd.: C, 63.98; H, 6.71; N, 18.65.
Found: C, 63.78; H, 6.62; N, 18.77.
tert-Butyl 7,8-dimethoxy-4H-benzo[e][1,2,3]triazolo[1,5-a][1,4]diazepine-5(10H)carboxylate (102f):

Compound 102 f was prepared from $\mathbf{1 0 1 f}$ using the procedure similar to that of $\mathbf{1 0 2}$.

Mol. Formula $\quad: \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$
IR (CHCl3) $\tilde{v} \quad: 3031,1711,1465,1281,1164 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1}$ H NMR $\quad: \delta 1.48(\mathrm{~s}, 9 \mathrm{H}), 3.54$ (brs, 1 H), 3.85, $3.88(2 \mathrm{~s}, 6 \mathrm{H}), 4.10-$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$ 4.48 (m, 2H), 4.57-5.12 (m, 1H), 6.54-6.81 (m, 2H), 7.34 ($\mathrm{s}, 1 \mathrm{H}$) ppm.
Elemental Analysis Calcd.: C, 58.95; H, 6.40; N, 16.17.
Found: C, 58.67; H, 6.75; N, 16.33.
tert-Butyl 8-fluoro-4H-benzo[e][1,2,3]triazolo[1,5-a][1,4]diazepine-5(10H)carboxylate (102g):

Compound $\mathbf{1 0 2 g}$ was prepared from $\mathbf{1 0 1 g}$ using the procedure similar to that of $\mathbf{1 0 2}$.

Mol. Formula	: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{FN}_{4} \mathrm{O}_{2}$
$\mathbf{I R}\left(\mathbf{C H C l}_{3}\right) \sim$: 3376, 2989, 1707, 1382, $1219 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 1.39(\mathrm{~s}, 9 \mathrm{H}), 4.98(\mathrm{brs}, 2 \mathrm{H}), 5.50(\mathrm{~s}, 2 \mathrm{H}), 7.10(\mathrm{dd}, 1 \mathrm{H}, \\ & J=2.9,8.3 \mathrm{~Hz}), 7.19(\mathrm{dd}, 1 \mathrm{H}, J=2.7,8.3 \mathrm{~Hz}), 7.30(\mathrm{brs}, \\ & 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} . \end{aligned}$
${ }^{13}$ C NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	$: \delta 28.3,46.2,52.1,80.8,115.7,116.0,116.2,116.5,124.9$, 128.1, 132.7, 153.1, 156.5, 161.4 ppm.
ESI-MS (m/z)	: $305[\mathrm{M}+\mathrm{H}]^{+}, 327[\mathrm{M}+\mathrm{Na}]^{+}$.

Elemental Analysis Calcd.: C, 59.20; H, 5.63; N, 18.41.
Found: C, 59.47; H, 5.39; N, 18.65.

PRESENT WORK

Currently there is a considerable interest in the discovery and development of small molecules such as pyrrolo[2,1-c][1,4]-benzodiazepines (PBD's) that have to be used as potential antitumor and gene targeted drugs. ${ }^{63}$ The PBD class of antitumor antibiotics exert their biological activity by covalently binding to the $\mathrm{N}-2$ of guanine in the minor groove of DNA through the imine or imine equivalent functionality at N10C11 of the PBD's. Anthramycin (104), DC-81 (105) and Neothramycin (106) are wellknown and promising members of the PBD class (Figure 14). ${ }^{64}$

Figure 14
A number of pyrrolo[2,1-c][1,4]benzodiazepin-5-ones constitute a new class of anthramycin antibiotics, a typical example of which is abbeymycin (107). Recently, the tetracyclic compound 108 (Figure 15), referred to as bretazenil, ${ }^{52}$ has emerged due to its potential usage against neurodegenerative diseases.

Abbeymycin (107)

Bretazenil (108)

Figure 15
Many groups are currently involved towards the synthesis of PBD's because of its potential to be used as a drug. ${ }^{65}$ Very well known synthetic approaches to PBD's have been documented here (Scheme 25). ${ }^{66,67}$

Scheme 25

Since part of our research programme is directed towards the synthesis of 1,4benzodiazepine derivatives of pharmacological interest, we turned our attention to new classes of tetracyclic compounds, namely benzo[e]pyrrolo[1,2-a][1,2,3]triazolo[5,1-c][1,4]diazepin-8(4H)-one (109), 5-(Benzyloxy)-benzo[e]pyrrolo[1,2-a][1,2,3] triazolo [5,1-c][1,4]diazepine-8(4H)-one (110) and their derivatives (Figure 16). In developing a strategy toward the synthesis of these compounds, we perceived the usefulness of intramolecular azide-alkyne 1,3-dipolar cycloaddition in order to construct simultaneously the seven membered heterocycle, the triazole and pyrazole. ${ }^{52}$ For evaluating the biological activity of this class of compounds, we have synthesized libraries of triazole compounds and analysed their efficacy as enzymetic protease inhibitors like serine protease, cystein protease and aspartase protease. Moreover, keeping in mind the current requisites of synthetic methodologies in the pharmaceutical field, we aimed at optically active targets. To achieve this goal, we utilized the inexpensive L-proline (77) and trans-4-OH-L-proline (119) as starting materials as well as source of chirality.

109

110

Figure 16

Naturally occurring L-proline (77) was converted to its methyl ester derivative 111 under refluxing in MeOH in the presence of thionyl chloride for 6 h . It was then treated with $\mathrm{Boc}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of TEA to yield N -Boc-proline ester (112). LiBH_{4} reduction of $\mathbf{1 1 2}$ in EtOH:THF (2:1) at room temperature provided the N-Bocprolinol (79) in 81% yield. Alcohol 79 on Dess-Martin periodinane oxidation afforded aldehyde 113, which was treated with Ohira-Bestmann reagent ${ }^{68}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH to afford alkyne 114 in 80% yield over two steps (Scheme 26). The ${ }^{1} \mathrm{H}$ NMR spectrum of 114 revealed an acetylinic proton at $\delta 2.20 \mathrm{ppm}$ as singlet and methine proton attached to alkyne moiety at $\delta 4.46 \mathrm{ppm}$ as a multiplet. In the ${ }^{13} \mathrm{C}$ NMR spectrum, characteristic resonances of two acetylinic carbons were observed at 69.4 and 84.1 ppm while the methine carbon was seen at 47.7 ppm . Rest of the spectrum is in complete agreement with the assigned structure. In the ESI-mass spectrum, a base peak at $\mathrm{m} / \mathrm{z}=196$ for $[\mathrm{M}+\mathrm{H}]^{+}$ion confirmed the assigned structure of 114. Boc deprotection of alkyne 114 was carried out with TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by neutralization with $\mathrm{Et}_{3} \mathrm{~N}$ to afford the free amine 115.

Scheme 26
The corresponding aromatic azido acid 117 was prepared from anthranilic acid (116) by diazotization reaction using NaNO_{2} and dil. HCl in $\mathrm{Et}_{2} \mathrm{O}$ at $0{ }^{\circ} \mathrm{C}$ followed by treatment with NaN_{3} at the same temperature in good yield. ${ }^{52,69}$ The characteristic peak at $2131 \mathrm{~cm}^{-1}$ in the IR spectrum confirmed the presence of azide functionality in $\mathbf{1 1 7}$. The coupling between aromatic azido acid 117 and amine 115 was carried out in the presence of EDCI, HOBt and DIPEA in dry DMF to yield azido-alkyne 118 which on in-situ 1,3-
dipolar cycloaddition afforded very interesting tetracyclic compunnd (109) within 6 h in 82% yield (Scheme 27). ${ }^{70}$ Compound 109 was fully characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, mass spectra and elemental analysis. In the ${ }^{1} \mathrm{H}$ NMR spectrum the olefinic proton was observed at $\delta 7.64 \mathrm{ppm}$ while methine proton attached to olefin resonated at $\delta 4.76 \mathrm{ppm}$. In the ${ }^{13} \mathrm{C}$ NMR spectrum resonances at $\delta 128.6,138.8$ and 49.4 ppm were due to olefinic carbons and methine carbon attached to double bond respectively. The characteristic ionpeaks recorded at $m / z=241$ and 263 were attributed to $[\mathrm{M}+\mathrm{H}]^{+}$and $[\mathrm{M}+\mathrm{Na}]^{+}$in its ESIMass spectra.

Scheme 27

Furthermore, the structure of $\mathbf{1 0 9}$ was unambiguously deduced by its X-ray diffraction studies. The ORTEP diagram of $\mathbf{1 0 9}$ confirmed the formation of 1,2,3-triazole (Figure 17). The details of crystal data and structure refinement (Table 12) are given at the end of this section.

These results encouraged us to verify other aromatic azido acid derivatives under identical reaction conditions. As exemplified in Table 9, the reaction proceeded smoothly to completion and the corresponding benzo[e]pyrrolo[1,2-a][1,2,3]triazolo[5,1-c] $[1,4]$ diazepin- $8(4 \mathrm{H})$-one products were obtained in 10 to 12 hours with excellent yields and high purity.

Table 9: Amide coupling and in situ intramolecular 1,3-dipolar cycloaddition under catalyst free condition
(No

Then we extended our studies to naturally occurring trans-4-hydroxy-L-proline (119). Trans-4-hydroxy-L-proline (119) was converted into silyl ether derivative 123 in four steps by employing procedures reported in the literature. Thus, 119 was first treated with $\mathrm{Boc}_{2} \mathrm{O}$ in the presence of $10 \% \mathrm{NaOH}$ in 1,4-dioxane: $\mathrm{H}_{2} \mathrm{O}$ (2:1) at room temperature for 12 h to obtain N -Boc-derivative (120). It was then refluxed in acetone with $\mathrm{Me}_{2} \mathrm{SO}_{4}$ in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ for 8 h to afford the corresponding methyl ester derivative 21. Ester 121 was subjected to reduction using LiBH_{4} in EtOH:THF (2:1) at room temperature to afford the diol derivative 122 in 81% yield. ${ }^{71}$ Primary hydroxyl group of diol 122 was selectively protected as TBDPS ether by treatment with TBDPSCl, and triethylamine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 8 h to afford 123 in 86% yield (Scheme 28). The ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and elemental analysis of 123 were in full agreement with the assigned structure. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the aromatic protons resonated as multiplet at $\delta 7.40-7.61(10 \mathrm{H}) \mathrm{ppm}$.

Scheme 28

The secondary hydroxyl group of compound 123 was then protected as its benzyl ether using NaH and BnBr in DMF at $0^{\circ} \mathrm{C}$ to furnish benzyl derivative 124 in 87% yield. NMR spectroscopy, mass spectroscopy and elemental analysis were in full agreement with the assigned structure of 124. TBDPS deprotection was carried out using 1M TBAF in THF at room temperature to yield primary alcohol 125 in 85% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the methylene protons attached to hydroxyl group were observed at $\delta 4.05 \mathrm{ppm}$ while in the ${ }^{13} \mathrm{C}$ NMR and DEPT spectra the corresponding carbon resonated at $\delta 66.5$
ppm. Oxidation of alcohol 125 was carried out using DMP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford aldehyde 126 in quantitative yield. ${ }^{72}$ Without further purification aldehyde 126 was treated with Ohira-Bestman reagent in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol to furnish alkyne 127 in 91\% yield (Scheme 29). NMR spectroscopy, mass spectral studies and elemental analysis were in full agreement with the assigned structure of 127 . In the ${ }^{1} \mathrm{H}$ NMR spectrum, the characteristic acetylinic proton was observed at $\delta 2.26 \mathrm{ppm}$. In the ${ }^{13} \mathrm{C}$ NMR spectrum, acetylinic carbons were seen at $\delta 70.2$ and 83.8 ppm . Rest of the spectrum is in full agreement with the assigned structure of 127.

123

126

124

127

Scheme 29

Alternatively, aldehyde 126 was also been prepared from ester 121 as follows. First, secondary hydroxyl group of ester 121 was protected as its benzyl ether by treating with BnBr and $\mathrm{Ag}_{2} \mathrm{O}$ in DMF at room temperature for 24 h to yield the benzyl derivative 128 in 78% yield. ${ }^{73}$ The reaction is light sensitive and $\mathrm{Ag}_{2} \mathrm{O}$ was freshly prepared before use. Reduction of $\mathbf{1 2 8}$ with DIBAL-H in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ provided the aldehyde 126 in good yield (Scheme 30). ${ }^{74}$

Scheme 30

Alkyne 127 was subjected to Boc deprotection with TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$. After drying the reaction mixture, the crude material was coupled with azido acid 117 by treatment with EDCI, HOBt and DIPEA in DMF to afford azido-alkyne 129. This underwent in-situ 1,3-dipolar cycloaddition to yield tetracyclic 1,2,3-triazole $\mathbf{1 1 0}$ within 8 h in 84% yield (Scheme 31). Compound 110 was fully characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectroscopy, mass spectroscopy and elemental analysis. The ${ }^{1} \mathrm{H}$ NMR spectrum showed a singlet resonance at $\delta 7.61 \mathrm{ppm}$ and a multiplet at $\delta 4.36 \mathrm{ppm}$ corresponding to olefinic proton and methine proton attached to the olefin respectively. Rest of the spectrum is in full agreement with the assigned structure. Finally, elemental analysis and ESI mass spectrum displaying characteristic ion-peaks at $m / z=347[M+H]^{+}$and 369 $[\mathrm{M}+\mathrm{Na}]^{+}$confirmed the structure of 110. Debenzylation of compound $\mathbf{1 1 0}$ was carried out by using $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$ in EtOAc to afford hydroxy compound 130 in 95% yield.

Scheme 31

These results were then extended to other aromatic azido acid derivatives under identical reaction conditions. As exemplified in Table 10, the reaction proceeded smoothly to completion and the corresponding 5-(Benzyloxy)-benzo[e]pyrrolo[1,2a][1,2,3] triazolo [5,1-c][1,4]diazepine- $8(4 \mathrm{H})$-one products were obtained in 9 to 12 hours with excellent yields and high purity.

Table 10: Amide coupling and intramolecular 1,3-dipolar cycloaddition reaction under catalyst free condition
(2)

These Triazole compounds have analysed their efficacy as enzymetic protease inhibitors like serine protease, cystein protease and aspartase protease.

A Brief Overview of Protease Inhibitor

A number of substances may cause a reduction in the rate of an enzyme catalyzed reaction. Some of these (eg. urea) are non-specific protein denaturants. Others, which generally act in a fairly specific manner, are known as inhibitors. Loss of activity may be either reversible, wherein activity may be restored by the removal of the inhibitor, or irreversible, wherein the loss of activity is time-dependent and cannot be recovered during the time scale of interest. In the case of irreversible inhibition, the inhibitor (I) forms stable covalent bonds with the enzyme (E) (e.g. alkylation or acylation of an active site side chain). More important for most enzyme-catalyzed processes is the effect of reversible inhibitors. In the case of reversible inhibition, the inhibitor binds to an enzyme and prevents the formation of the enzyme-substrate (ES) complex or its breakdown to \mathbf{E} $+\mathbf{P}$.

There are three basic mechanisms of reversible enzyme inhibition:
(a) Competitive (b) Non-competitive (c) Uncompetitive.

The difference between the three is in the nature of the binding of the enzyme and inhibitor and its effect on the enzyme substrate complex.

In competitive inhibition, the inhibitor \mathbf{I}, binds with the enzyme at the enzyme at the active site, thus making some of the enzyme unavailable to the substrate. This is the most common form of inhibition in single substrate enzyme systems.

In non-competitive inhibition, the inhibitor \mathbf{I}, and the substrate \mathbf{S}, bind simultaneously with the enzyme rather than competing for the same site. The resulting complex ESI is unable to form the product.

In the case of uncompetitive inhibition, the substrate binds with the active site to form the ES complex as normal, but the inhibitor \mathbf{I}, then binds to the $\mathbf{E S}$ complex to form an ESI complex, which as with non competitive inhibition, is unable to form the product. This particular form of inhibition is rare with single substrate enzyme systems.

Proteases are enzymes that catalyze hydrolysis of amide bonds of proteins. Although proteins may undergo many reversible posttranslational modifications during
their lifespan, e.g. phosphorylation and allosteric transitions, proteolysis is irreversible. Once proteins are hydrolyzed, the molecule translate more mRNA. Based on the nature of proteolysis, the proteolytic enzymes have evolved through irreversible process: coagulation, digestion, mutaration of cytokines and prohormones, apoptosis, and breakdown of intracellular proteins. ${ }^{75}$ In proteolysis mechanism the cell employs to regulate the function and fate of proteins. Accordingly, the number of proteases identified in and around cells is enormous, and many of them are vital for normal homeostatis. ${ }^{76}$

There are four groups of proteases: serine, cysteine, aspartic and metalloproteases. Reversible proteases react in the absence or above critical concentrations of their inhibitors. Aspertic and metallo-proteases utilize aspartate residues and heavy metals respectively, to immobilize and polarize a water molecule so that the oxygen atom in water becomes the nucleophiles. Serine and cysteine proteases utilize their - OH and SH side chains, respectively, directly as nucleophiles. ${ }^{77}$

Serine proteases include the digestive enzyme trypsin, chymotrypsin, and elastase. Different serine proteases differ in substrate specificity. Chymotrypsin prefers an aromatic side chain on the residue whose carbonyl carbon is part of the peptide bond to be cleaved. Trypsin prefers a positively charged Lys or Arg residue at this position. During catalysis, three is nucleophilic attack of the hydroxyl group of a serine residue of the protease on the carbonyl carbon of the peptide bond that is to be cleaved. ${ }^{78}$ An acylenzyme intermediate is transiently formed. Hydrolysis of the ester linkage yields the second peptide product. The active site in each serine protease includes a serine residue, a histidine residue, and an aspartate residue. During attack of the serine hydroxyl group, a proton is transferred from the serine hydroxyl to the imidazole ring of the histidine (Scheme 32).

Serine (131)

Scheme 32: Mechanism of Serine Protease Inhibitor
Aspartate proteases include the digestive enzyme pepsin, rennin and HIVprotease. Two aspartate residues participate in acid/base catalysis at the active site. In the initial reaction reaction, one aspartate accepts a proton from an active site $\mathrm{H}_{2} \mathrm{O}$, which attacks the carbonyl carbon of the peptide linkage. Simaltaneously, the other aspartate donates a proton to the oxygen of the peptide carbonyl group.

Aspartate (132)
Metalloproteases include the digestive enzymes carboxypeptidase, various matrix metalloproteases (MMPs) that are secreted by cells, and lysosomal protease. Some MMPs (e.g., collagenase) are involved in degradation of the extracellular matrix during tissue remodeling. Some MMPs have roles in cell signaling relating to their ability to release cytokines or growth factors from the cell surface by cleavage of membrane-bound preproteins. A zinc binding motif at the active site of a metalloprotease includes two histidine residues whose imidazole side-chains are ligands to the Zn^{++}. During catalysis, The $\mathrm{Zn}++$ promotes nucleophilic attack on the carbonyl carbon by the oxygen atom of a water molecule at the active site. An active site base (a glutamate residue in Carboxypeptidase) facilitates this reaction by extracting a proton from the attacking water molecule.

Cysteine Proteases include the digestive enzymes papain, caspases, cathepsin a large family of lysosomal cysteine proteases, and calpains. ${ }^{79}$ During catalysis, deprotonation of the cysteine sulfhydryl by an adjacent histidine residue is followed by nucleophilic attack of the cysteine S on the peptide carbonyl carbon. A thioester linking the carboxy-terminus to the reaction (comparable to the acyl-enzyme intermediate of a serine protease.

Cysteine (133)
The similar principle is applied for the inhibition assay. In a typical inhibition assay, the reaction is initiated by addition of appropriately diluted enzyme to a solution of the requisite quantities of substrate and inhibitor in a buffer optimum to the enzyme. The reaction is allowed to incubate at the temperature typical for that particular enzyme and at the end of a fixed reaction time, the reaction is quenched (the enzyme is inactivated) by chemical (aq. acid) or thermal means (heating at high temperature). The optical density of this mixture is read at the spectrometer and the reaction rate determined.

The inhibitors were screened at different level of concentrations. Initially the inhibition at concentration level of 1 mM was determined. The compounds showing no inhibition or inhibition less then 50% were not investigated further. Those showing activities more than 50% were taken and the screening was done at lower level of concentration. Thus optimum range of concentration was found where compound showed activity in the range of 50%. Several assays in a varying range of concentration at that level were performed to determine the IC_{50} (the concentration of inhibitor at which it shows 50% inhibition of enzyme) ${ }^{80}$ and later the experiment was repeated with a different concentration of substrate. The results are summarized in the tabular format in below. None of the compound shows aspartic protease inhibition activity.

Table 11: Data for triazole compounds against protease inhibitor

Inhibitor	Enzyme(Serine/Cysteine protease) (SP/CP)	IC_{50}
	SP	$108.2 \mu \mathrm{M}$
	CP	-
Compound (109b)	SP	$290.2 \mu \mathrm{M}$
	Compound (110d)	CP
Compound (110c)	SP	-
	CP	$535.8 \mu \mathrm{M}$
Compound (109b)	SP	-
	CP	$206.4 \mu \mathrm{M}$
Compound (109f)	CP	-
	SP	$703.9 \mu \mathrm{M}$
	CP	-
	SP	$674.3 \mu \mathrm{M}$

Structure of Compound 109
Figure 17: Ortep Diagram of Compound 109
In conclusion, we have achieved the regioselective synthesis of several new chiral tetracyclic triazole derivatives by in-situ intramolecular 1,3-dipolar cycloaddition reaction between azide and alkyne with excellent yield and high purity.

Table 12: Crystal data and structure refinement for (109)

Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$
Formula weight	240.27
Temperature	297(2) K
Wavelength	0.71073 Å
Crystal system, space group	Orthorhombic, $\mathrm{P} 2_{1}$
Unit cell dimensions	$\begin{aligned} & \mathrm{a}=10.410(3) \AA \quad \text { alpha }=90 \mathrm{deg} . \\ & \mathrm{b}=14.250(4) \AA \quad \text { beta }=90 \mathrm{deg} . \\ & \mathrm{c}=7.612(2) \AA \quad \text { gamma }=90 \mathrm{deg} . \end{aligned}$
Volume	1129.2(6) \AA^{3}
Z, Calculated density	4, $1.413 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.095 \mathrm{~mm}^{-1}$
F (000)	504
Crystal size	$0.66 \times 0.16 \times 0.13 \mathrm{~mm}$
Theta range for data collection	2.86 to 25.00 deg .
Limiting indices	$-12<=\mathrm{h}<=12,-12<=\mathrm{k}<=16,-8<=\mathrm{l}<=9$
Reflections collected / unique	$5630 / 1972[\mathrm{R}(\mathrm{int})=0.0141]$
Completeness to theta $=25.00$	99.6 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9878 and 0.9400
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	1972 / 0 / 211
Goodness-of-fit on F^{2}	1.064
Final R indices [$\mathrm{I}>2$ sigma (I] $]$	$\mathrm{R} 1=0.0258, \mathrm{wR} 2=0.0647$
R indices (all data)	$\mathrm{R} 1=0.0261, \mathrm{wR} 2=0.0649$
Absolute structure parameter	-0.7(13)
Largest diff. peak and hole	0.150 and -0.172 e. \AA^{-3}

(S)-tert-Butyl 2-ethynylpyrrolidine-1-carboxylate (114):

To a suspension of Dess-Martin peridinanien (12.6 g, 29.8 mmol) in $\mathrm{CH}_{2} \mathrm{C1}_{2}$ (30 $\mathrm{mL})$ at $0{ }^{\circ} \mathrm{C}$, ($0.8 \mathrm{~mL}, 9.9 \mathrm{mmol}$) pyridine was added followed by ($4.0 \mathrm{~g}, 9.9 \mathrm{mmol}$) alcohol 79 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The mixture was stirred at ambient temperature for 12 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (60 mL), washed with saturated aqueous NaHCO_{3} solution and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. The combined aqueous layer was back-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL). The combined organic extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in uacuo to give aldehyde 113.

To a solution of crude aldehyde 113 ($3.6 \mathrm{~g}, 18.1 \mathrm{mmol}$) in MeOH at $0{ }^{\circ} \mathrm{C}$ were added anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(3.7 \mathrm{~g}, 27.1 \mathrm{mmol})$ and Ohira-Bestmann reagent (4.2 g, 21.7 mmol) in MeOH under argon atmosphere. Stirred the reaction mixture at rt for 12 h . MeOH was evaporated and extracted with EtOAc. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude residue was purified by silica gel column chromatography by eluting with 15% EtOAc-light petroleum ether to provide 114 ($3.1 \mathrm{~g}, 80 \%$) as a colourless oil.

Mol. Formula $\quad: \mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{2}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5} \mathbf{D}} \quad:-109.1\left(c 1.3, \mathrm{CHCl}_{3}\right)$.
IR ($\mathbf{C H C l}_{3}$) $\tilde{v} \quad: 3309,2977,2930,1698,1393,1366,1167 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.90-2.04(\mathrm{~m}, 4 \mathrm{H}), 2.20(\mathrm{~s}, 1 \mathrm{H}), 3.32-3.45$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
(m, 2H), 4.46 (m, 1H) ppm.
${ }^{13}$ C NMR $\quad: \delta 23.4$ and 24.2, 27.8, 28.3, 32.7 and 33.5, 45.3 and
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad 45.7,47.7,69.4,79.5,84.1,153.7 \mathrm{ppm}$.
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 196[\mathrm{M}+\mathrm{H}]^{+}$

Calcd.: C, 67.66; H, 8.78; N, 7.17.
Found: C, 67.96; H, 8.52; N, 7.51.

2-Azidobenzoic acid (117):

NaNO_{2} ($2.9 \mathrm{~g}, 43.8 \mathrm{mmol}$) was added portion wise to a solution of anthranilic acid (116) ($3.0 \mathrm{~g}, 21.8 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and aq. $10 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$ under stirring and cooling at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 2 h , then $\mathrm{NaN}_{3}(5.7 \mathrm{~g}, 87.2 \mathrm{mmol}$) was added portion wise under vigorous stirring and ice cooling condition. After 2 h water (15 mL) was added and extracted with ether (3 x 40 mL). The combined organic layers were washed with water, brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give azide 117 ($2.8 \mathrm{~g}, 78 \%$) as a crystalline solid.

Mol. Formula $\quad: \mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{2}$
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \tilde{v} \quad: 3399,3020,2131,1698,1599,1215 \mathrm{~cm}^{-1}$.
${ }^{1}$ H NMR $\quad: \delta 7.21-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.65(\mathrm{~m}, 1 \mathrm{H}), 8.10(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 1.6,7.8 \mathrm{~Hz}\right) \mathrm{ppm}$.
Elemental Analysis Calcd.: C, 51.54; H, 3.09; N, 25.76.
Found: C, 51.67; H, 3.24; N, 25.60.

(S)-5,6-Dihydro-3bH-benzo[e]pyrrolo[1,2-a][1,2,3]triazolo[5,1-c][1,4]diazepin-8(4H)-one (109):

To a solution of alkyne $114(0.5 \mathrm{~g}, 2.56 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, TFA (2 mL) was added. The resulting mixture was stirred at rt for 4 h After that the solution was concentrated and titurated with dry $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo to get crude amine salt. The solution of this amine salt in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-DMF (1:1) was treated sequencially at $0{ }^{\circ} \mathrm{C}$ with

DIPEA ($1.3 \mathrm{~mL}, 7.7 \mathrm{mmol}$), azido acid 116 ($459 \mathrm{mg}, 2.8 \mathrm{mmol}$), EDCI ($982 \mathrm{mg}, 5.12$ mmol) and HOBT ($518 \mathrm{mg}, 3.8 \mathrm{mmol}$) in argon atmosphere. The reaction mixture was stirred at rt for 6 h , then quench with ice cold water (10 mL). The aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and the combined EtOAc extract was washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude residue was purified by silica gel column chromatography by eluting with 70% ethyl acetate-light petroleum ether to afford 109 ($500 \mathrm{mg}, 82 \%$) as white solid.

Mol. Formula $\quad: \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$
M. P. $\quad: 195-197{ }^{\circ} \mathrm{C}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{D} \quad:+220.9\left(c\right.$ 1.6, $\left.\mathrm{CHCl}_{3}\right)$.
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \tilde{v} \quad: 3436,2976,1636,1473,1411,1244 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 2.14$ (quin, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}$), 2.51-2.62 (m, 2H), 3.71-
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 3.86(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz}), 7.56(\mathrm{dt}, 1 \mathrm{H}, J=1.4$, 7.7 Hz), 7.64 (s, 1H), 7.69 (dt, 1H, $J=1.6,7.5 \mathrm{~Hz}$), 8.00 (dd, 1H, $J=1.3,8.0 \mathrm{~Hz}$), 8.12 (dd, 1H, $J=1.6,7.7 \mathrm{~Hz}$).
${ }^{13}$ C NMR $\quad: \delta 23.5,29.2,47.5,49.4,122.8,127.1,128.6,128.8,131.6$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad 132.6,132.9,138.8,163.8 \mathrm{ppm}$.
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 241[\mathrm{M}+\mathrm{H}]^{+}, 263[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 64.99; H, 5.03; N, 23.32.
Found: C, 65.23; H, 5.46; N, 23.04.
(S)-11-Chloro-5,6-dihydro-3bH-benzo[e]pyrrolo[1,2-a][1,2,3]triazolo[5,1-c][1,4] diazepin-8(4H)-one (109a):

Mol. Formula	: $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}$
M. P.	: $149{ }^{\circ} \mathrm{C}$
$[\alpha]^{25}{ }_{\text {D }}$: +267.0 (с 1.0, CHCl_{3}).
IR ($\left.\mathbf{C H C l}_{3}\right) \tilde{v}$: 3437, 2978, 1643, 1538, 1432, $1250 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR	: $\delta 2.13$ (quin, 2H, $J=6.8 \mathrm{~Hz}$), 2.51-2.62 (m, 2H), 3.69-
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & 3.82(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{dd}, 1 \mathrm{H}, J=5.4,7.0 \mathrm{~Hz}), 7.52(\mathrm{dd}, 1 \mathrm{H}, \\ & J=2.1,8.6 \mathrm{~Hz}), 8.01(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 8.05(\mathrm{~d}, 1 \mathrm{H}, J= \\ & 8.6 \mathrm{~Hz}), 7.63(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} . \end{aligned}$
${ }^{13} \mathrm{C}$ NMR	: $\delta 23.2,29.0,47.4,49.2,122.4,125.1,128.7,128.8,132.9$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	133.4, 138.2, 138.6, 162.7 ppm.
ESI-MS (m / z)	: $276\left[\mathrm{M}+\mathrm{H}{ }^{+}\right.$.

Elemental Analysis Calcd.: C, 56.84; H, 4.04; N, 20.39.
Found: C, 56.72; H, 4.18; N, 20.47.
(S)-10-Bromo-5,6-dihydro-3bH-benzo[e]pyrrolo[1,2-a][1,2,3]triazolo[5,1-c][1,4] diazepin-8(4H)-one (109b):

Mol. Formula $\quad: \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrN}_{4} \mathrm{O}$
M. P. $\quad: 210-212{ }^{\circ} \mathrm{C}$
$[\alpha]^{25}{ }_{D}$
: +161.6 (с 1.2, CHCl_{3}).
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \tilde{v} \quad: 3437,2921,1637,1430,1251 \mathrm{~cm}^{-1}$.
${ }^{1}$ H NMR $\quad: \delta 2.15$ (quin, $2 \mathrm{H}, J=6.9 \mathrm{~Hz}$), 2.53-2.64 (m, 2H), 3.72-
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$ 3.86 (m, 2H), 4.76 (dd, 1H, $J=5.4,7.0 \mathrm{~Hz}$), 7.65 (s, 1H), 7.81 (dd, 1H, $J=2.2,8.6 \mathrm{~Hz}$), $7.90(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}$), 8.27 (d, 1H, $J=2.2 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR : $\delta 23.6,29.4,47.8,49.6,123.0,124.6,128.5,129.0,131.9$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$ 134.6, 135.8, 138.7, 162.6 ppm.

Elemental Analysis Calcd.: C, 48.92; H, 3.47; N, 17.55.
Found: C, 49.21; H, 3.12; N, 17.82
(S)-9-Methyl-5,6-dihydro-3bH-benzo[e]pyrrolo[1,2-a][1,2,3]triazolo[5,1-c][1,4] diazepin-8(4H)-one (109c):

Mol. Formula	: $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$
M. P.	: $140-141{ }^{\circ} \mathrm{C}$
$[\alpha]^{25}{ }_{\text {D }}$: +266.2 (c 1.0, CHCl_{3}).
IR ($\mathbf{C H C l}_{3}$) \tilde{v}	: 3436, 2978, 1636, 1478, $1410 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	: $\delta 2.17$ (quin, 2H, $J=7.0 \mathrm{~Hz}$), 2.50-2.57 (m, 2H), 2.62 (s,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	3 H), 3.62 (dt, 1H, $J=8.0,12.2 \mathrm{~Hz}$), 3.91 (dt, 1H, $J=5.8$,
	$12.2 \mathrm{~Hz}), 4.75$ (t, 1H, $J=5.3 \mathrm{~Hz}$), 7.39 (d, 1H, $J=7.7 \mathrm{~Hz}$),
	7.51 (t, 1H, $J=7.6 \mathrm{~Hz}$), 7.62 (s, 1H), 7.75 (d, 1H, $J=7.7$
	Hz) ppm.
${ }^{13} \mathrm{C}$ NMR	: $\delta 21.4,23.3,28.8,46.4,49.8,120.9,127.1,128.4,130.9$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	131.7, 133.2, 139.5, 140.5, 163.4 ppm.
ESI-MS (m / z)	: 255 [M+H] ${ }^{+}$

Elemental Analysis Calcd.: C, 66.13; H, 5.55; N, 22.03.
Found: C, 66.33; H, 5.91; N, 21.76.
(S)-10,11-Dimethoxy-5,6-dihydro-3bH-benzo[e]pyrrolo[1,2-a][1,2,3]triazolo[5,1-c][1,4]diazepin-8(4H)-one (109d):

Mol. Formula	$: \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$
M. P.	$: 213-215{ }^{\circ} \mathrm{C}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{D}$	$:+148.0\left(\mathrm{c} 1.3, \mathrm{CHCl}_{3}\right)$.
$\mathbf{I R}\left(\mathbf{C H C l}_{3}\right) \tilde{v}$	$: 3469,3012,2985,1651,1545,1439,1257,1049 \mathrm{~cm}^{-1}$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$	$: \delta 2.14(q u i n, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 2.48-2.60(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{t}$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 4.73(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$
	$5.8 \mathrm{~Hz}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}$	$: \delta 23.7,29.4,47.7,49.7,56.3,56.5,105.5,112.9,119.4$,
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	$127.4,128.6,138.6,149.2,152.3,163.9 \mathrm{ppm}$.
$\mathbf{E S I - M S}(\mathrm{m} / \mathrm{z})$	$: 301[\mathrm{M}+\mathrm{H}]{ }^{+}$.

Elemental Analysis Calcd.: C, 59.99; H, 5.37; N, 18.66.
Found: C, 59.62; H, 5.07; N, 18.97.
(S)-10,11-Diiodo-5,6-dihydro-3bH-benzo[e]pyrrolo[1,2-a][1,2,3]triazolo[5,1-c][1,4] diazepin-8(4H)-one (109e):

Mol. Formula	: $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{O}$
M. P.	: $179-180{ }^{\circ} \mathrm{C}$
$[\alpha]^{25}$	
IR ($\mathbf{C H C l}_{3}$) \tilde{v}	: 3436, 3002, 1632, 1533, 1467, 1430, 1245, $1092 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	: $\delta 2.15$ (quin, $2 \mathrm{H}, J=6.9 \mathrm{~Hz}$), 2.56 (q, 2H, $J=6.5 \mathrm{~Hz}$),
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	3.61 (dt, 1H, $J=7.4,12.3 \mathrm{~Hz}$), 3.80 (dt, 1H, $J=6.1,12.2$
	$\mathrm{Hz}), 4.75$ (t, 1H, $J=5.8 \mathrm{~Hz}), 7.67$ (s, 1H), 8.32 (d, 1H, $J=$
	2.0 Hz), 8.56 (d, 1H, $\mathrm{J}^{\text {a }} 2.0 \mathrm{~Hz}$) ppm.
${ }^{13} \mathrm{C}$ NMR	: $\delta 23.6,28.8,47.4,49.6,91.7,95.4,128.2,132.0,134.2$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	139.7, 140.0, 151.9, 161.6 ppm.

Elemental Analysis Calcd.: C, 31.73; H, 2.05; N, 11.39.
Found: C, 31.67; H, 2.25; N, 11.22.
(3bS)-12-Bromo-10-methyl-5,6-dihydro-3bH-benzo[e]pyrrolo[1,2-a][1,2,3]triazolo [5,1-c][1,4]diazepin-8(4H)-one (109f):

Mol. Formula $\quad: \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrN}_{4} \mathrm{O}$
M. P. $\quad: 193-195{ }^{\circ} \mathrm{C}$
$[\alpha]^{25}{ }_{D}$: +71.9 (c 0.8, CHCl_{3}).
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \tilde{v} \quad: 3436,2925,1632,1433,1250 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\quad: \delta$ 2.08-2.19 (m, 2H), $2.46(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.61(\mathrm{~m}, 2 \mathrm{H}), 3.61$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad(\mathrm{dt}, 1 \mathrm{H}, J=7.5,12.3 \mathrm{~Hz}), 3.82(\mathrm{dt}, 1 \mathrm{H}, J=5.6,12.3 \mathrm{~Hz})$, $4.74(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}), 7.65$ (s, 1H), 7.79 (d, 2H, $J=3.3$ Hz) ppm.
${ }^{13}$ C NMR $\quad: \delta$ 20.6, 23.6, 28.8, 47.1, 49.7, 117.4, 127.5, 129.1, 130.8,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad 131.4,138.1,139.8,140.8,163.2 \mathrm{ppm}$.
Elemental Analysis Calcd.: C, 50.47; H, 3.93; N, 16.82.
Found: C, 50.72; H, 3.81; N, 17.03.
(S)-10-Fluoro-5,6-dihydro-3bH-benzo[e]pyrrolo[1,2-a][1,2,3]triazolo[5,1-c][1,4] diazepin-8(4H)-one (109g):

Mol. Formula	: $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{FN}_{4} \mathrm{O}$
M. P.	: $145{ }^{\circ} \mathrm{C}$
$[\alpha]^{25}{ }_{\text {D }}$	
$\boldsymbol{I R}\left(\mathbf{C H C l}_{3}\right) \tilde{v}$: 3433, 2973, 1647, 1534, 1447, $1251 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	: $\delta 2.13$ (quin, $2 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}$), 2.51-2.62 (m, 2H), 3.69-
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	3.83 (m, 2H), 4.76 (t, 1H, ${ }^{\text {c }}=6.3 \mathrm{~Hz}$), 7.33-7.42 (m, 1H),
	7.62 (s, 1H), 7.78 (dd, 1H, $J=2.9,8.9 \mathrm{~Hz}$), 7.98 (dd, 1H, J
	$=4.9,9.0 \mathrm{~Hz}$) ppm.
${ }^{13} \mathrm{C}$ NMR	: $\delta 23.4,29.1,47.6,49.5,117.8,118.3,119.7,120.1,125.0$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	125.2, 128.7, 129.1, 129.2, 138.5, 159.3, 162.5, 164.3 ppm.
ESI-MS (m / z)	: 259 [M+H] .

Elemental Analysis Calcd.: C, 60.46; H, 4.29; N, 21.69.
Found: C, 60.52; H, 4.12; N, 21.87.
(S)-10-Nitro-5,6-dihydro-3bH-benzo[e]pyrrolo[1,2-a][1,2,3]triazolo[5,1-c][1,4] diazepin-8(4H)-one (109h):

$\begin{array}{ll}\text { Mol. Formula } & : \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{3} \\ {[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}} & :+366.3\left(c \text { 1.4, } \mathrm{CHCl}_{3}\right) .\end{array}$
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right) \tilde{v} \quad: 3467,2985,1643,1530,1346,1262 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 2.18$ (quin, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}$), 2.53-2.71 (m, 2H), $3.83(\mathrm{t}$,
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 2 \mathrm{H}, J=6.8 \mathrm{~Hz}\right), 4.82(\mathrm{dd}, 1 \mathrm{H}, J=5.1,7.3 \mathrm{~Hz}), 7.70(\mathrm{~s}$,
$1 \mathrm{H}), 8.25$ (d, 1H, $J=8.9 \mathrm{~Hz}$), 8.51 (dd, 1H, $J=2.7,8.9$ $\mathrm{Hz}), 9.00(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{13}$ C NMR $\quad: \delta 23.5,29.4,47.9,49.5,124.3,127.1,127.7,128.0,129.5$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad 136.9,136.9,139.0,147.1,161.7 \mathrm{ppm}$.
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 286[\mathrm{M}+\mathrm{H}]^{+}$.

Elemental Analysis Calcd.: C, 54.74; H, 3.89; N, 24.55.
Found: C, 54.69; H, 3.90; N, 24.09.
(2S,4R)-1-tert-Butyl 2-methyl 4-hydroxypyrrolidine-1,2-dicarboxylate (121):

Mol. Formula $\quad: \mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{5}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{D} \quad:-64.7\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \tilde{v} \quad: 3403,2974,1742,1665,1416,1216 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR
: $\delta 1.40(\mathrm{~s}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.96-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.34$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
(m, 1H), 2.59 (s, 1H), 3.40-3.64 (m, 2H), 3.72 (s, 3H), 4.37
(t, 1H, J = 8.2 Hz), $4.46(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\quad: \delta 28.2,38.2$ and 38.6, 51.9, 54.5, 57.4 and $57.9,68.9$ and
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad 69.6,80.2$ and $80.3,154.0$ and 154.5, 173.4 and 173.6 ppm
Elemental Analysis Calcd.: C, 53.87; H, 7.81; N, 5.71.
Found: C, 53.74; H, 7.98; N, 5.78.

(2S,4R)-tert-Butyl 4-hydroxy-2-(hydroxymethyl)pyrrolidine-1-carboxylate (122):

To a solution of ester 121 ($7.5 \mathrm{~g}, 30.6 \mathrm{mmol}$) in EtOH:THF (2:1, 40 mL) was added lithium borohydride ($1.0 \mathrm{~g}, 46.0 \mathrm{mmol}$). The solution was stirred for 15 min and warmed to room temperature for an additional 6 h . The solution was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The organic layers were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Silica gel chromatography using 60% EtOAc-light petroleum ether provided alcohol $\mathbf{1 2 2}(5.4 \mathrm{~g}, 81 \%)$ as a colourless oil.

Mol. Formula	: $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{5}$
$[\alpha]^{25}{ }_{\text {D }}$: -38.6 (c 1.0, CHCl_{3}).
$\boldsymbol{I R}\left(\mathbf{C H C l}_{3}\right) \tilde{v}$: 3401, 2978, 1669, 1414, 1367, $1163 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	: $\delta 1.47$ (s, 9H), 1.61-1.78 (m, 1H), 2.00-2.10 (m, 1H), 2.91
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	(brs, 2H), 3.41 (dd, 1H, $J=3.9,12.1 \mathrm{~Hz}$), 3.55 (dd, 2H, $J=$
	$6.7,11.5 \mathrm{~Hz}), 3.69$ (d, 1H, $J=12.1 \mathrm{~Hz}$), 4.11 (m, 1H), 4.36
	(m, 1H) ppm (Rotamer).
${ }^{13} \mathrm{C}$ NMR	: $\delta 28.3,37.2,55.4,58.4,66.0,68.8,80.4,156.8$ ppm.
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	
Elemental Analysis	Calcd.: C, 55.28; H, 8.81; N, 6.45.
	Found: C, 55.20; H, 8.98; N, 6.20.

(2S, 4R)-1-tert-Butyl 2-methyl 4-(benzyloxy)pyrrolidine-1,2-dicarboxylate (128):

The ester 121 ($5.0 \mathrm{~g}, 20.4 \mathrm{mmol}$) was dissolved in dry DMF (50 mL) and stirred at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. Silver oxide ($14.2 \mathrm{~g}, 61.2 \mathrm{mmol}$) and benzyl bromide $(4.8 \mathrm{~mL}, 40.8 \mathrm{mmol})$ were added. The reaction mixture was stirred for 24 h at room temperature. The solid mass was filtered, washed with EtOAc and the filtrate was extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). The combined organic layer was washed with water (2 x 30 mL), followed by brine (30 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Silica gel chromatography eluting with 30\% Ethyl acetate-light petroleum ether provided benzyl compound $\mathbf{1 2 8}$ ($5.3 \mathrm{~g}, 78 \%$) as a colourless oil.

Mol. Formula	$: \mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{5}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{\mathbf { D }}$	$:-35.6\left(c 1.6, \mathrm{CHCl}_{3}\right)$.
$\mathbf{I R}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \tilde{v}$	$: 2978,1748,1697,1454,1404,1367,1205,1159 \mathrm{~cm}^{-1}$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$	$: \delta 1.42(\mathrm{~s}, 6 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.99-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.48$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$(\mathrm{m}, 1 \mathrm{H}), 3.51-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{~m}, 1 \mathrm{H})$,
	$4.36(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.52(\mathrm{ABq}, 2 \mathrm{H}, J=13.2 \mathrm{~Hz})$,

7.30-7.37 (m, 5H).
${ }^{13} \mathbf{C}$ NMR $\quad: \delta 28.0$ and 28.2, 35.3 and 36.4, 51.1 and 51.6, 51.8 and
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad 52.0,57.4$ and $57.8,70.8$ and $70.9,75.8$ and $76.5,80.0$, 126.7 and 127.1, 127.4, 127.6, 128.3, 137.5, 153.5 and 154.0, 173.1 and 173.4 ppm.

ESI-MS (m / z) : $336[\mathrm{M}+\mathrm{H}]^{+}, 358[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 64.46; H, 7.51; N, 4.18.
Found: C, 64.58; H, 7.42; N, 4.36.
(2S,4R)-tert-Butyl 2-((tert-butyldiphenylsilyloxy)methyl)-4-hydroxypyrrolidine-1carboxylate (123):

TBDPSCl ($7.4 \mathrm{~g}, 26.9 \mathrm{mmol}$) was added to a solution of alcohol $122(4.5 \mathrm{~g}, 20.7$ $\mathrm{mmol})$, dry $\mathrm{Et}_{3} \mathrm{~N}(7.2 \mathrm{~mL}, 51.8 \mathrm{mmol})$ and catalytic amount of DMAP in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ under argon at $0{ }^{\circ} \mathrm{C}$ and stirred at rt for 8 h . The reaction mixture was quenched with NaHCO_{3} solution (20 ml) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL}$). The combined organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by silica gel column chromatography using 40\% EtOAc-light petroleum ether as an eluent to afford 123 ($8.1 \mathrm{~g}, \mathbf{8 6 \%}$) as a viscous liquid.

Mol. Formula $\quad: \mathrm{C}_{26} \mathrm{H}_{37} \mathrm{NO}_{4} \mathrm{Si}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}} \quad:-31.4$ (c 1.1, CHCl_{3}).
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \tilde{v} \quad: 3401,2978,1669,1414,1367,1163 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.41$ (brs, 9 H), 1.83 (brs, 1 H), $2.06(\mathrm{~m}$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13} \mathbf{C}$ NMR $\quad: \delta 19.2,26.8,28.4,36.6,37.3,55.2$ and $55.5,57.3,63.8$
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad$ and 64.8, 69.4 and $70.1,79.3$ and $79.5,127.6,129.6,133.3$, 135.4, 154.8 ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 457[\mathrm{M}+\mathrm{H}]^{+}$.
Elemental Analysis
Calcd.: C, 68.53; H, 8.18; N, 3.07.
Found: C, 68.74; H, 8.39; N, 3.28.

(2S,4R)-tert-Butyl 4-(benzyloxy)-2-((tert-butyldiphenylsilyloxy)methyl)pyrrolidin 1-carboxylate (124):

Compound $\mathbf{1 2 3}$ ($5.5 \mathrm{~g}, 12.1 \mathrm{mmol}$) in DMF was added to a stirred suspension of $\mathrm{NaH}\left(0.73 \mathrm{~g}, 60 \%\right.$ dispersion in oil, 18.1 mmol) in DMF (60 mL) at $0^{\circ} \mathrm{C}$. After 20 min $\mathrm{BnBr}(2.2 \mathrm{~mL}, 18.1 \mathrm{mmol})$ and catalytic amount TBAI were added and the reaction mixture was stirred at rt for 5 h . The reaction was quenched with water and extracted with EtOAc ($3 \times 60 \mathrm{~mL}$). The combined extract was washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified on silica gel column chromatography using 25% EtOAc-light petroleum ether to yield 124 ($5.7 \mathrm{~g}, 87 \%$) as a colourless oil.

Mol. Formula	$: \mathrm{C}_{33} \mathrm{H}_{43} \mathrm{NO}_{4} \mathrm{Si}$
$\left[\boldsymbol{\alpha} \mathbf{}^{\mathbf{2 5}} \mathbf{\mathbf { D }}\right.$	$:-22.5\left(\mathrm{c} 1.2, \mathrm{CHCl}_{3}\right)$.
$\mathbf{I R}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \tilde{v}$	$: 2976,1667,1401,1375,1216 \mathrm{~cm}^{-1}$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}$	$: \delta 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.34,1.39(2 \mathrm{~s}, 9 \mathrm{H}), 2.01-2.38(\mathrm{~m}, 2 \mathrm{H})$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$3.49-3.77(\mathrm{~m}, 3.5 \mathrm{H}), 3.99-4.11(\mathrm{~m}, 1.5 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H})$,
	$4.50(\mathrm{ABq}, 2 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}), 7.33-7.41(\mathrm{~m}, 11 \mathrm{H}), 7.61(\mathrm{~m}$,
	$4 \mathrm{H}) \mathrm{ppm}$.
${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~}$	$: \delta 19.2,26.8,28.4$ and $28.5,34.0-35.2,51.6$ and 52.4,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$57.4,64.3$ and $65.1,71.0,76.2$ and $77.0,79.1$ and 79.3,
	$127.7,128.4,129.7,133.4,133.5,138.1,154.4 \mathrm{ppm}$
$\mathbf{E S I - M S}(\mathrm{m} / \mathrm{z})$	$: 546[\mathrm{M}+\mathrm{H}]^{+}, 568[\mathrm{M}+\mathrm{Na}]^{+}$.

(2S,4R)-tert-Butyl 4-(benzyloxy)-2-(hydroxymethyl)pyrrolidine-1-carboxylate (125):

To the compound 124 ($5.5 \mathrm{~g}, 10.1 \mathrm{mmol}$) in THF (35 mL) at $0{ }^{\circ} \mathrm{C}$ was added 1 M solution TBAF ($14.4 \mathrm{~mL}, 14.4 \mathrm{mmol}$). The resulting mixture was stirred for 2 h at rt . After this period the reaction mixture was quenched with sat $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the mixture was extracted with EtOAc (3 x 40 mL). The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and the residue was purified by silica gel column chromatography by eluting with 50% EtOAc-light petroleum ether to provide $\mathbf{1 2 5}$ ($2.6 \mathrm{~g}, 85 \%$) as a thick liquid.

Mol. Formula	: $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{4}$
$[\alpha]^{25}$ D	: -34.2 (c 1.0, CHCl_{3})
IR ($\left.\mathbf{C H C l}_{3}\right) \tilde{v}$: 3401, 2978, 1669, 1414, 1367, $1163 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.73(\mathrm{~m}, \\ & 4 \mathrm{H}), 4.05(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 5 \mathrm{H}) . \end{aligned}$
${ }^{13} \mathbf{C}$ NMR	$: \delta 28.3,34.3,52.7,58.9,66.5,70.6,75.9,80.2,127.4$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	127.6, 128.3, 137.8, 158.6 ppm.
ESI-MS (m / z)	: $308[\mathrm{M}+\mathrm{H}]^{+}, 330[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis	Calcd.: C, 66.43; H, 8.20; N, 4.56.
	Found: C, 66.67; H, 8.51; N, 4.20.

A solution of $\mathbf{1 2 5}(4.5 \mathrm{~g}, 14.6 \mathrm{mmol})$), pyridine ($1.1 \mathrm{~mL}, 14.6 \mathrm{mmol}$) and DessMartin periodinane ($18.5 \mathrm{~g}, 43.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was stirred at rt for 6 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with saturated solution of NaHCO_{3}, saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give crude aldehyde 126.

A solution of the crude aldehyde (4.3 g) and Ohira-Bestmann reagent ($3.9 \mathrm{~g}, 20.4$ $\mathrm{mmol})$ in $\mathrm{MeOH}(35 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(3.9 \mathrm{~g}, 28.4 \mathrm{mmol})$ and the resulting mixture was stirred for 12 h . The reaction was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Silica gel column chromatography of the residue (20\% EA-PE) gave alkyne 127 ($4.0 \mathrm{~g}, 91 \%$) as a colourless oil.

(3bS,5R)-5-(Benzyloxy)-5,6-dihydro-3bH-benzo[e]pyrrolo[1,2-a][1,2,3]triazolo[5,1-c][1,4]diazepin-8(4H)-one (110):

To a stirred solution of $\mathbf{1 2 7}(0.6 \mathrm{~g}, 1.99 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ TFA (2 mL) was added. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ to rt for 4 h . After this period the solution was concentrated and azeotropically dried with dry benzene to give crude amine. The solution of this amine salt in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-DMF (1:1) was treated sequencially at 0 ${ }^{\circ} \mathrm{C}$ with acid 117 ($357 \mathrm{mg}, 2.19 \mathrm{mmol}$), DIPEA ($1.0 \mathrm{~mL}, 5.97 \mathrm{mmol}$), EDCI ($0.76 \mathrm{~g}, 3.98$ mmol) and HOBt ($485 \mathrm{mg}, 3.58 \mathrm{mmol}$) in argon atmosphere. The reaction mixture was stirred at rt for 6 h , then quench with ice cold water (10 mL). The aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and the combined EtOAc extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude residue was purified by silica gel column chromatography by eluting with 60% ethyl acetate-light petroleum ether to afford 8 ($0.45 \mathrm{~g}, 84 \%$) as white solid.

Mol. Formula	: $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$
M. P.	: $73-75{ }^{\circ} \mathrm{C}$
$[\alpha]^{25}$: +147.5 (c 1.4, CHCl_{3})
IR ($\mathbf{C H C l}_{3}$) \tilde{v}	: 3436, 2925, 1637, 1471, 1409, $1085 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	: δ 2.49-2.62 (ddd, 1H, $J=4.6,8.4,13.2 \mathrm{~Hz}$), 2.79 (ddt,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$1 \mathrm{H}, \mathrm{J}=2.4,7.4,13.2 \mathrm{~Hz}$), 3.68 (dd, $1 \mathrm{H}, J=4.1,13.1 \mathrm{~Hz}$),
	4.19 (dt, 1H, $J=2.0,13.1 \mathrm{~Hz}), 4.36$ (m, 1H), 4.60 (ABq ,
	$2 \mathrm{H}, J=11.8 \mathrm{~Hz}$), 4.94 (t, 1H, $J=7.9 \mathrm{~Hz}$), 7.30-7.38 (m,
	$5 \mathrm{H}), 7.53(\mathrm{dt}, 1 \mathrm{H}, J=1.8,7.6 \mathrm{~Hz}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{dt},$
	$\begin{aligned} & 1 \mathrm{H}, J=1.8,7.6 \mathrm{~Hz}), 8.02(\mathrm{dd}, 1 \mathrm{H}, J=1.4,8.0 \mathrm{~Hz}), 8.1 \\ & (\mathrm{dd}, 1 \mathrm{H}, J=1.7,8.0 \mathrm{~Hz}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR	: $\delta 35.5,48.0,52.1,71.0,74.8,122.7,126.4,127.5,1279$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$128.4,128.8,129.5,131.9,132.6,132.8,137.2,138.2$,
	164.3 ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 347[\mathrm{M}+\mathrm{H}]^{+}, 369[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 69.35; H, 5.24; N, 16.17.
Found: C, 69.22; H, 5.28; N, 16.04.
(3bS,5R)-5-(Benzyloxy)-11-chloro-5,6-dihydro-3bH-benzo[e]pyrrolo[1,2a][1,2,3] triazol[5,1-c][1,4]diazepin-8(4H)-one (110a):

$\begin{array}{ll}\text { Mol. Formula } & : \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{2} \\ {[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}} & :+128.8\left(c 0.9, \mathrm{CHCl}_{3}\right)\end{array}$
IR ($\left.\mathbf{C H C l}_{3}\right) \tilde{v} \quad: 3435,2924,1636,1599,1465,1426,1095 \mathrm{~cm}^{-1}$.
${ }^{1}$ H NMR $\quad: \delta 2.52$ (ddd, $1 \mathrm{H}, J=4.5,8.7,13.3 \mathrm{~Hz}$), 2.80 (ddt, $1 \mathrm{H}, J=$
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 2.1,7.3,13.3 \mathrm{~Hz}\right), 3.64(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.1,13.1 \mathrm{~Hz}), 4.18$ (dt, $1 \mathrm{H}, J=1.8,13.1 \mathrm{~Hz}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{ABq}, 2 \mathrm{H}, J=$ $11.9 \mathrm{~Hz}), 4.92(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.32(\mathrm{~m}, 5 \mathrm{H}), 7.51$ (dd, $1 \mathrm{H}, J=2.1,8.6 \mathrm{~Hz}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz})$.
${ }^{13}$ C NMR $\quad: \delta 35.6,48.0,52.3,71.1,74.7,122.7,124.6,127.6,128.0$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad 128.5,129.0,129.7,133.6,137.1,138.1,138.7,163.5 \mathrm{ppm}$.
ESI-MS (m / z) : $381.5[\mathrm{M}+\mathrm{H}]^{+}, 403.5[\mathrm{M}+\mathrm{Na}]^{+}$.

Elemental Analysis Calcd.: C, 63.08; H, 4.50; N, 14.71.
Found: C, 63.51; H, 4.52; N, 14.78.
(3bS,5R)-5-(Benzyloxy)-10-nitro-5,6-dihydro-3bH-benzo[e]pyrrolo[1,2-a][1,2,3] triazolo [5,1-c][1,4]diazepin-8(4H)-one (110b):

(3bS,5R)-5-(Benzyloxy)-10-bromo-5,6-dihydro-3bH-benzo[e]pyrrolo[1,2 a][1,2,3] triazolo[5,1-c][1,4]diazepin-8(4H)-one (110c):

$\begin{array}{ll}\text { Mol. Formula } & : \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrN}_{4} \mathrm{O}_{2} \\ \text { M. P. } & : 141-142{ }^{\circ} \mathrm{C}\end{array}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{D} \quad:+120.2\left(c\right.$ 1.8, $\left.\mathrm{CHCl}_{3}\right)$
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \tilde{v} \quad: 3435,3016,1638,1431,1216,1087 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\quad: \delta$ 2.47-2.60 (ddd, $\left.1 \mathrm{H}, \mathrm{J}=4.5,8.7,13.2 \mathrm{~Hz}\right), 2.74-2.86$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad(\mathrm{ddt}, 1 \mathrm{H}, J=2.3,7.4,13.2 \mathrm{~Hz}), 3.66(\mathrm{dd}, 1 \mathrm{H}, J=4.0,13.2$

Hz), 4.20 (dt, 1H, $J=1.8,13.2 \mathrm{~Hz}$), 4.35 (m, 1H), 4.51$4.67(\mathrm{ABq}, 2 \mathrm{H}, J=11.8 \mathrm{~Hz}), 4.93(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz})$, 7.31-7.41 (m, 5H), 7.61 (s, 1H), 7.80 (dd, 1H, $J=2.2,8.7$ $\mathrm{Hz}), 7.91$ (d, 1H, $J=8.7 \mathrm{~Hz}$), $8.30(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz})$.
${ }^{13}$ C NMR $\quad: \delta 35.7,48.2,52.4,71.2,74.7,123.0,124.4,127.7,127.9$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad 128.0,128.5,129.8,131.8,134.9,135.8,137.1,138.0$, 163.1 ppm.

ESI-MS (m / z) : $426[\mathrm{M}+\mathrm{H}]^{+}, 448[\mathrm{M}+\mathrm{Na}]^{+}, 464[\mathrm{M}+\mathrm{K}]^{+}$.

Elemental Analysis Calcd.: C, 56.48; H, 4.03; N, 13.17.
Found: C, 56.21; H, 4.42; N, 13.48.
(3bS,5R)-5-(Benzyloxy)-9-methyl-5,6-dihydro-3bH-benzo[e]pyrrolo[1,2-a][1,2,3] triazolo[5,1-c][1,4]diazepin-8(4H)-one (110d):

Mol. Formula	: $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$
$[\alpha]^{25}{ }_{\text {D }}$: +181.1 (с 0.8, $\left.\mathrm{CHCl}_{3}\right)$
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \tilde{v}$: 3436, 2925, 1637, 1479, 1412, $1092 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	$\text { : } \delta 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.63-2.79(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{dd}, 1 \mathrm{H}, \mathrm{~J}=4.8$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	12.9 Hz), 3.95 (dd, 1H, $J=3.2,12.9 \mathrm{~Hz}$), 4.39 (quin, 1H, J
	$=4.3 \mathrm{~Hz}), 4.60$ (ABq, 2H, $J=11.9 \mathrm{~Hz}), 4.87(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$
	$7.0 \mathrm{~Hz}), 7.31-7.37$ (m, 5H), 7.42 (d, 1H, $J=7.9 \mathrm{~Hz}$), 7.50
	(t, 1H, $J=7.9 \mathrm{~Hz}$), 7.58 (s, 1H), 7.74 (d, 1H, $J=7.9 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR	: $\delta 21.5,35.1,48.2,50.9,71.4,74.9,120.9,126.5,127.6$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	127.9, 128.5, 129.1, 130.9, 131.8, 133.1, 137.2, 139.2,
	140.5, 163.7 ppm.
ESI-MS (m / z)	: $361[\mathrm{M}+\mathrm{H}]^{+}, 383[\mathrm{M}+\mathrm{Na}]^{+}$.

Elemental Analysis Calcd.: C, 69.98; H, 5.59; N, 15.54.
Found: C, 69.71; H, 5.62; N, 15.38.
(3bS,5R)-5-(Benzyloxy)-10,12-diiodo-5,6-dihydro-3bH-benzo[e]pyrrolo[1,2-a][1,2,3] triazolo[5,1-c][1,4]diazepin-8(4H)-one (110f):

Mol. Formula $\quad: \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}$
M. P. $\quad: 201-202{ }^{\circ} \mathrm{C}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{D} \quad:+136.0\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}\right)$
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \tilde{v} \quad: 3428,1637,1428,1365,1084 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR
: $\delta 2.48-2.61(d d d, 1 H, J=4.6,8.0,13.0 \mathrm{~Hz}$), 2.72-2.85
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad(\mathrm{m}, 1 \mathrm{H}), 3.63(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.2,13.2 \mathrm{~Hz}), 4.02(\mathrm{dt}, 1 \mathrm{H}, J=$ $1.9,13.2 \mathrm{~Hz}), 4.35(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{ABq}, 2 \mathrm{H}, J=11.9 \mathrm{~Hz})$, $4.92(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.31-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H})$, $8.34(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 8.57(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz})$.
${ }^{13}$ C NMR $\quad: \delta 35.1,48.2,52.0,74.9,76.4,91.5,95.5,127.6,128.0$, $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad 128.5,128.9,131.5,134.2,137.0,139.2,140.3,152.1$, 162.1 ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 621[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 40.16; H, 2.70; N, 9.37.
Found: C, 40.22; H, 2.78; N, 9.68.
(3bS,5R)-5-(Benzyloxy)-12-bromo-10-methyl-5,6-dihydro-3bH-benzo[e]pyrrolo[1,2-a][1,2,3]triazolo[5,1-c][1,4]diazepin-8(4H)-one (110g):

Mol. Formula	: $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{BrN}_{4} \mathrm{O}_{2}$
M. P.	: 117-118 ${ }^{\circ} \mathrm{C}$
$[\alpha]^{25}$: +147.5 (с 1.4, CHCl_{3}).
IR ($\left.\mathbf{C H C l}_{3}\right) \tilde{\nu}$: 3439, 1637, 1598, 1431, 1383, $1087 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	: $\delta 2.46$ (s, 3H), 2.50-2.61 (m, 1H), 2.69-2.80 (m,1H), 3.63
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	(dd, 1H, $J=4.3,13.1 \mathrm{~Hz}$), 4.0 (dt, $1 \mathrm{H}, J=1.8,13.1 \mathrm{~Hz}$),
	4.34 (m, 1H), 4.57 (ABq, 2H, $J=11.9 \mathrm{~Hz}), 4.89$ (t, 1H, $J=$
	$7.8 \mathrm{~Hz}), 7.28-7.39$ (m, 5H), 7.59 (s, 1H), 7.77 (d, 1H, $J=$
	$1.8 \mathrm{~Hz}), 7.81$ (d, 1H, $J=1.8 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR	: $\delta 20.6,35.0,48.2,51.7,71.1,74.9,117.4,127.5,127.9$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	128.1, 128.4, 129.1, 130.9, 131.1, 137.1, 138.1, 139.3,
	140.8, 163.5 ppm.

Elemental Analysis Calcd.: C, 57.42; H, 4.36; N, 12.75.
Found: C, 57.21; H, 4.58; N, 12.96.
(3bS,5R)-5-(Benzyloxy)-10-fluoro-5,6-dihydro-3bH-benzo[e]pyrrolo[1,2-a][1,2,3] triazolo[5,1-c][1,4]diazepin-8(4H)-one (110h):

Mol. Formula	$: \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{FN}_{5} \mathrm{O}_{4}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{D}$	$:+102.5\left(c 0.8, \mathrm{CHCl}_{3}\right)$
$\mathbf{I R}\left(\mathbf{C H C l}_{3}\right) \tilde{v}$	$: 3439,1637,1598,1431,1383,1087 \mathrm{~cm}^{-1}$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}$	$: \delta 2.54(d d d, 1 \mathrm{H}, J=4.5,8.7,13.2 \mathrm{~Hz}), 2.74-2.84(\mathrm{~m}, 1 \mathrm{H})$,

$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 3.65(\mathrm{dd}, 1 \mathrm{H}, J=4.1,13.2 \mathrm{~Hz}), 4.19(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz})$, $4.34(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{ABq}, 2 \mathrm{H}, \mathrm{J}=11.9 \mathrm{~Hz}), 4.93(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ $8.1 \mathrm{~Hz}), 7.33(\mathrm{~m}, 5 \mathrm{H}), 7.38-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H})$, 7.86 (dd, 1H, $J=3.0,9.0 \mathrm{~Hz}$), 8.04 (dd, $1 \mathrm{H}, J=4.8,9.0$ Hz) ppm.
${ }^{13}$ C NMR $\quad: \delta 35.6,48.1,52.3,71.1,74.7,118.4,118.9,119.8,120.3$, $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad 125.0,125.1,127.6,128.0,128.5,128.6,129.2,129.6$, 137.1, 137.9, 159.5, 163.0, 164.5 ppm.

ESI-MS (m / z) : $365[\mathrm{M}+\mathrm{H}]^{+}, 387[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis Calcd.: C, 65.93; H, 4.70; N, 15.38.
Found: C, 65.75; H, 4.52; N, 15.67.
(3bS,5R)-5-Hydroxy-5,6-dihydro-3bH-benzo[e]pyrrolo[1,2-a][1,2,3]triazolo[5,1-c] [1,4]diazepin-8(4H)-one (130):

Mol. Formula	: $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$
$[\alpha]^{25}$: +40.0 (c 0.5, $\left.\mathrm{CHCl}_{3}\right)$
IR ($\left.\mathrm{CHCl}_{3}\right) \tilde{v}$: 3377, 2923, 1630, 1410, 1219, $1080 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	$: \delta 1.88$ (brs, 1H), 2.53-2.76 (m, 2H), 3.75 (dd, 1H, $J=3.9$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$13.1 \mathrm{~Hz}), 4.04-4.11$ (m, 1H), 4.74 (m, 1H), 5.00 (t, 1H, J =
	8.0 Hz), 7.58 (dt, 1H, $J=1.3,7.6 \mathrm{~Hz}$), 7.65 (s, 1H), 7.72
	(dt, 1H, ${ }^{\text {d }}=1.6,7.7 \mathrm{~Hz}$), 8.05 (dd, 1H, $J=1.3,8.0 \mathrm{~Hz}$),
	8.13 (dd, 1H, $J=1.3,8.0 \mathrm{~Hz}$) ppm.
${ }^{13} \mathrm{C}$ NMR	: $\delta 38.0,48.2,55.6,68.6,123.0,129.1,129.6,132.1,132.9$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	133.1, 138.3, 164.7 ppm.
Elemental Analysis	Calcd.: C, 60.93; H, 4.72; N, 21.86.
	Found: C, 61.18; H, 4.56; N, 21.67.

REFERENCES

1. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew, Chem. Int. Ed. 2001, 40, 2004.
2. Kolb, H. C.; Sharpless, K. B. Drug Discovery Today. 2003, 8, 1128.
3. (a) Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057. (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 2596.
4. (a) Horne, W. S.; Stout, C. D.; Ghadiri, M. R. J. Am. Chem. Soc. 2003, 125, 9372.
(b) Horne, W. S.; Yadav, M. K.; Stout, C. D.; Ghadiri, M. R. J. Am. Chem. Soc. 2004, 126, 15366. (c) W. P. Purcell, J. A. Singer, J. Phys. Chem. 1967, 71, 4316.
5. (a) Sun, X. L.; Stabler, C. L.; Cazalis, C. S.; Chaikof, E. L. Bioconjugate Chem. 2006, 17, 52. (b) Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn, M. G. J. Am. Chem. Soc. 2003, 125, 3192.
6. (a) Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Frechet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Angew. Chem. Int. Ed. 2004, 43, 3928. (b) Joralemon, M. J.; OL-Reilly, R. K.; Hawker, C. J.; Wooley, K. L. J. Am. Chem. Soc. 2005, 127, 16892.
7. (a) Lee, V.; Mitchell, M. L.; Huang, S.-J.; Fokin, V. V.; Sharpless, K. B.; Wong, C.-H. J. Am. Chem. Soc. 2003, 125, 9588. (b) Moorhouse, A. D.; Santos, A. M.; Gunaratnam, M.; Moore, M.; Neidle, S.; Moses, J. E. J. Am. Chem. Soc. 2006, 128, 15972.
8. Alvarez, R.; Velazquez, S.; San-Felix, A.; Aquaro, S.; De Clercq, E.; Perno, C.F.; Karlsson, A.; Balzarini, J.; Carmarasa, M. J. J. Med. Chem. 1994, 37, 4185.
9. Brockunier, L. L.; Parmee, E. R.; Ok, H. O.; Candelore, M. R.; Cascieri, M. A.; Tota, L.; Colwell, L. F.; M. H. Fisher, A. E. Weber. Bioorg. Med. Chem. Lett. 2000, 10, 2111.
10. Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.; Hamel, J. C.; Schaadt, R. D.; Stapert, D.; Yagi, B. H. J. Med. Chem. 2000, 43, 953.
11. (a) Buckle, D. R.; Rockell, C. J. M. J. Chem. Soc. Perkin Trans.1. 1982, 627. (b) Buckle, D. R.; Rockell, C. J. M.; Smith, H.; Spicer, B. A. J. Med. Chem. 1986, 29, 2262.
12. Meldal, M. Tetrahedron Lett. 1992, 33, 3077.
13. Cadiot, P.; Chodkiewicz, W. In Chemistry of acetylenes; Viehe, H. G., Ed.; Marcel Dekker: New York, 1969; pp 597.
14. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467.
15. (a) Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. 2005, 127, 210. (b) Rodinov, V. O.; Fokin, V. V.; Finn, M. G. Angew. Chem. Int. Ed. 2005, 44, 2210.
16. Doyle, M. P.; McKervey, M. A.; Ye, T. In Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley, New York, 1997, pp. 163-248.
17. (a) Huisgen, R. Proc. Chem. Soc., 1960, 357. (b) Huisgen, R.; Szemies, G.; Mobius, L. Chem. Ber. 1967, 100, 2494.
18. (a) De Las Heras, F. G.; Alonso, R.; Alonso, G. J. Med. Chem. 1979, 22, 496-501.
(b) Broder, W.; Kunz, H. Bioorg. Med. Chem. 1997, 5, 1-19.
19. (a) Hoffmann, B.; Bernet, B.; Vasella, A. Helv. Chim. Acta. 2002, 85, 265-287.
(b) Zhu, X. M.; Schmidt, R. R. J. Org. Chem. 2004, 69, 1081-1085.
20. Guezguez, R.; Bougrin, K.; Akri, K. E.; Benhida, R.Tetrahedron Lett. 2006, 47, 4807.
21. (a) Giguere, D.; Patnam, R.; Bellefleur, M. A.; St Pierre, C.; Sato, S.; Roy, R. Chem. Commun. 2006, 2379-2381. (b) Tejler, J.; Tullberg, E.; Frejd, T.; Leffler, H.; Nilsson, U. J. Carbohydr. Res. 2006, 341, 1353-1362.
22. Casas-Solvas, J. M.; Vargas-Berenguel, A.; Capitan-Vallvey, L. F.; SantoyoGonzalez, F. Org. Lett. 2004, 6, 3687-3690.
23. (a) Temelkoff, D. P.; Zeller, M.; Norris, P. Carbohydr. Res. 2006, 341, 10811090. (b) Cheskov, P.; Marra, A.; Dondoni, A. Org. Biomol. Chem. 2006, 4, 3225-3227.
24. (a) Bodine, K. D.; Gin, D. Y.; Gin, M. S. J. Am. Chem. Soc. 2004, 126, 16381639. (b) Bodine, K. D.; Gin, D. Y.; Gin, M. S. Org. Lett. 2005, 7, 4479-4482.
25. (a) Kuijpers, B. H. M.; Groothuys, S.; Keereweer, A. R.; Quaedflieg, P. J. L. M.; Blaauw, R. H.; Delft, F. L. V.; Rutjes, F. P. J. T. Org. Lett. 2004, 6, 3123-3126. (b) Dondoni, A.; Giovannini, P. P.; Massi, A. Org. Lett. 2004, 6, 2929-2932.
26. Hotha, S.; Kashyap, S. J. Org. Chem., 2006, 71, 364-367.
27. (a) Chittaboina, S.; Xie, F.; Wang, Q. Tetrahedron Lett. 2005, 46, 2331-2336. (b) Chen, Q.; Yang, F.; Du, Y.G. Carbohydr. Res. 2005, 340, 2476-2482.
28. Dondoni, A.; Marra, A. J. Org. Chem. 2006, 71, 7546-7557.
29. Helms, B.; Mynar, J. L.; Hawker, C. J.; Frechet, J. M. J. J. Am. Chem. Soc. 2004, 126, 15020-15021.
30. Scheel, A. J.; Komber, H.; Voit, B. I. Macromol. Rapid Commun. 2004, 25, 1175.
31. Dirks, A. J.; Van Berkel, S. S.; Hatzakis, N. S.; Opsteen, J. A.; Delft, F. L. V.; Rutjes, F. P. J. T.; Cornelissen, J. J. L. M.; Nolte, R. J. M. Chem. Commun. 2005, 33, 4172.
32. Whiting, M.; Muldoon, J.; Lin, Y.-C.; Silverman, S. M.; Lindstrom, W.; Olson, A. J.; Kolb, H. C.; Finn, M. G., Sharpless, K. B.; Elder, J. H.; Fokin, V. V. Angew. Chem. Int. Ed. 2006, 45, 1435.
33. Bartlett, J. A.; Demasi, R.; Quinn, J.; Moxham, C.; Rousseau, F. AIDS 2001, 15, 1369
34. Kohl, N. E.; Emini, E. A.; Schleif, W. A.; Davis, L. J.; Davis, J. C.; Heimbach, J. C.; Dixon, R. A. F.; Scolnick, E. M.; Sigal, I. S. Proc. Natl. Acad. Sci. USA 1988, 85, 4686.
35. Condra, J. H.; Schleif, W. A.; Blahy, O. M.; Gabryelski, L. J.; Graham, D. J.; Roth, E.; Quintero, J. C.; Rhodes, A.; Robbins, H. L.; Shivaprakash, M. Nature 1995, 374, 569.
36. Sanchez-Pescador, R.; Power, M. D.; Barr, P. J.; Steimer, K. S.; Stempien, M. M.; Brown-Shimer, S. L.; Gee, W.W.; Renard, A.; Randolph, A.; Levy, J. A.; Dina, D.; Luciw, P. A. Science. 1985, 227, 484-492.
37. Brik, A.; Muldoon, J.; Lin, Y-C.; Elder, J. H.; Goodsell, D. S.; Olson, A. J.; Fokin, V. V.; Sharpless, K. B.; Wong, C-H. Chem Bio Chem. 2003, 4, 1246-1248.
38. (a) Cameron, M. D.; Bennett, G. E.; J. Org. Chem. 1957, 22, 557-558; (b) Siemsem, P.; Livingston, R. C.; Diederich, F. Angew. Chem. Int. Ed. 2000, 39, 2632-2657.
39. Bohlmann, F.; Schönowsky, H.; Inhoffen, E.; Grau, G. Chem. Ber. 1964, 97, 794.
40. Fazio, F.; Bryan, M. C.; Blixt, O.; Paulson, J. C.; Wong, C.-H. J. Am. Chem. Soc. 2002, 124, 14397-14402.
41. (a) Dolle, R. E.; Nelson, K. H., Jr. J. Comb. Chem. 1999, 1, 235-282. (b) Dorwald, F. Z. Organic Synthesis on Solid Phase, 2 ${ }^{\text {nd }}$ ed.; Wiley-VCH Verlag GmbH: Weinheim, 2002; pp 1-504. (c) Hanessian, S.; McNaughton-Smith, G.; Lombart, H. -G.; Lubell, W. D. Tetrahedron. 1997, 53, 12789-12854.
42. (a) Askin, D.; Eng, K. K.; Rossen, K.; Purick, R. M.; Wells, K. M.; Volante, R. P.; Reider, P. J. Tetrahedron Lett. 1994, 35, 673. (b) Choudhary, P.; Kumar, R.; Verma, K. Bioorg. Med. Chem. 2006, 14, 1819.
43. (a) Dabak, K.; Seuer, Ö.; Akar, A.; Anac, O. Eur. J. Med. Chem. 2003, 38, 215218; (b) Tornoe, C. W.; Sanderson, S. J.; Mottram, J. C.; Coombs, G. H.; Meldal, M. J. Comb. Chem. 2004, 6, 312-324.
44. (a) Fuks, R.; Viehe, H. G. In Chemistry of Acetylenes; Viehe, H. G., Ed.; Marcel Deker: New York, 1969; pp 425-593; (b) Bastide, J.; Henri-Rousseau, O. In The Chemistry of the Carbon-Carbon Triple Bond; Patai, S. Ed.; Interscience Publishers: London, 1978; pp 447-552.
45. (a) Huisgen, R. In 1, 3-dipolar Cycloaddition Chemistry; Pawda, A. Ed.; Wiley: New York, 1984. (b) Biagi, G.; Giorgi, I.; Livi, O.; Scartoni, V.; Betti, L.; Giannaccini, G.; Trincavelli, M. L. Eur. J. Med. Chem. 2002, 37, 565-571.
46. Rawal, V. H.; Cava, M. P. Tetrahedron Lett. 1985, 26, 6141-6142.
47. (a) Gurjar, M. K.; Pal, S.; Mohapatra, D. K. Heterocycles. 1999, 50, 109-116. (b) Gurjar, M. K.; Karmakar, S.; Mohapatra, D. K.; Phalgune, D. Tetrahedron Lett. 2002, 43, 1897. (c) Mohapatra, D. K.; Mondal, D.; Chorghade, M. S.; Gurjar, M. K. Tetrahedron Lett. 2006, 47, 9215-9219.
48. McKennon, M. J.; Meyers, A. I. J. Org. Chem. 1993, 58, 3568-3571.
49. (a) Hotha, S.; Anegundi, R. I.; Natu, A. V. Tetrahedron Lett. 2005, 46, 4585. (b) Dolhem, F.; Tahli, F. A.; Lievre, C.; Demailly, G. Eur. J. Org. Chem. 2005, 50195023.
50. Bock, V. D.; Hiemstra, H.; Van Maasrseveen, J. H. Eur. J. Org. Chem. 2006, 5168.
51. Ray, A.; Monoj, K.; Bhadbhade, M. M.; Mukhopadhyay, R.; Bhattacharjya, A. Tetrahedron Lett. 2006, 47, 2775-2778.
52. Broggini, G.; Marchi, I. D.; Martinelli, M.; Paladino, G.; Pilati, T.; Terraneo, A. Synthesis. 2005, 2246-2252.
53. Broggini, G.; Molteni, G.; Terraneo, A.; Zecchi, G. Tetrahedron. 1999, 55, 14830.
54. Beccalli, E.; Broggini, G.; Paladino, G.; Pilati, T.; Pontremoli, G. Tetrahedron: Asymmetry 2004, 15, 687.
55. Beccalli, E. M.; Broggini, G.; Paladino, G.; Zoni, C. Tetrahedron. 2005, 61, 61.
56. (a) Franzen, R. G. J. J. Comb. Chem. 2000, 2, 195. (b) Strenbach, L. H. Angew. Chem, Int. Ed. 1971, 10, 34. (c) Lancel, M.; Steiger, A. Angew. Chem, Int. Ed. 1999, 111, 2852.
57. Ellamn, J. A. Acc. Chem. Res. 1996, 29, 132.
58. Alajarin, M.; Cabrera, J.; Pastor, A.; Villalgordo, J. M. Tetrahedron Lett. 2007, 48, 3495.
59. (a) Mohapatra, D. K.; Maity, P. K.; Gonnade, R. G.; Chorghade, M. S.; Gurjar, M. K. Synlett. 2007, 1893. (b) Mohapatra, D. K.; Maity, P. K.; Chorghade, M. S.; Gurjar, M. K. Heterocycles. 2007, 73, 269.
60. Melani, F.; Cecchi, L.; Colotta, V.; Filacchioni. J. Heterocycl. Chem. 1989, 26, 1605.
61. Tripathi, S.; Singha, K.; Achari, B.; Mandal, S. B. Tetrahedron. 2004, 60, 4959.
62. Liu, H.; Ko, S. -B.; Josien, H.; Curran, D. P. Tetrahedron Lett. 1995, 36, 8917.
63. Thurston, D. E. In Molecular Aspects of Anticancer Drug-DNA Interactions; Neidle, S., Waring, M. J., Eds.; Macmillan Press.: London, 1993; Vol.1, pp 54-88.
64. Wang, T.; Lui, A. S.; Cloudsdale, I. S. Org. Lett. 1999, 1, 1835.
65. (a) Thurston, D. E.; Bose D. S. Chem. Rev. 1994, 94, 433 and references cited therein. (b) Kamal, A.; Rao, M. V.; Reddy, B. S. Chem. Heterocycl. Compd. 1999, 34, 1342.
66. (a) O’Neil, I. M.; Murray, C. L.; Hunter, R. C.; Kalindjian, S. B.; Jenkins, T. C. Synlett. 1997, 75. (b) Kamal, A.; Damayanthi, Y.; Reddy, B. S. N.; Lakminarayana, B.; Reddy, B. S. P. Chem. Commun. 1997, 1015.
67. (a) Prabhu, K. R.; Sivanand, P. S.; Chandrsekaran, S. Synlett 1998, 47. (b) Kamal, A.; Howard, P. W.; Reddy, R. S. N.; Reddy, B. S. P.; Thurston, D. E. Tetrahedron 1997, 53, 3223. (c) Kraus, G. A.; Melekhov, A. Tetrahedron. 1998, 54, 11749.
68. (a) Quesada, E.; Taylor, R. J. K., Tetrahedron Lett. 2005, 46, 6473. (b) Müller, S.; Liepold, B.; Roth. G.; Bestmann. H. J. Synlett. 1996, 521.
69. Conte, G.; Cristiano, R.; Ely, F.; Gallardo, H. Synthetic Commun. 2006, 36, 951.
70. Chen, F.; Song, K.-S.; Wu, Y.-D.; Yang, D. J. Am. Chem. Soc. 2008, 130, 743.
71. Brown, H. C.; Narasimhan, S. J. Org. Chem. 1982, 47, 1604.
72. Barrett, A. G. M.; Hamprecht, D.; Ohkubo, M. J. Org. Chem. 1997, 62, 9376.
73. Bach, J.; Blachere, C.; Bull, S. D.; Davies, S. G.; Nicholson, R. L.; Price, P. D.; Sanganee, H. J.; Smith, A. D. Org. Biomol. Chem. 2003, 1, 2001.
74. Ducry, L.; Roberge, D. M. Org. Process Res. Dev. 2008, 12, 163.
75. (a) Neurath, H.; Walsh, K. A. Proc. Natl. Acad. Sci. 1976, 73, 3825. (b) Polgar, L. In Mechanisms of Protease Action, Ed.1989, pp. 43-76.
76. (a) Chapman, H. A.; Jr Stahl. M.; Fair, D. S.; Allen, C. L. Am. Rev. Resp. Dis. 1988, 37, 1417. (b) Nadel, J. A. Eur. Resp. J. 1991, $4,745$.
77. (a) Polgar, L.; Metalloproteases. In Mechanisms of Protease Action, 1989, pp. 208- 210. Boca Ratan, FL: CRC Press.
78. Penacchio, L. A.; Lehesjoki, A. E.; Stone, N. E.; Willour, V. L.; Virtaneva, K. Science. 1996, 271, 1731.
79. (a) Thornberry, N.; Bull, H. G.; Calaycay, J. R.; Chapman, K. T.; Howard, A. D. Nature 1992, 356, 768. (b) Henkart, P. A. Immunity. 1996, 4, 194.
80. (a) Rawal, G. K.; Kumar, A.; Tawar, U.; Vankar, Y. D. Org. Lett. 2007, 9, 5171. (b) Pandey, G.; Dumbre, S. G.; Khan, M. I.; Shabab, M. J. Org. Chem. 2006, 71, 8481.

Tetrazole compounds have been investigated for medicinal applications in diverse areas as neurodegenerative disease, ${ }^{1}$ cancer, antibiotics, heart disease ${ }^{2}$ and others. Tetrazole moiety can serve as a surrogate for terminal carboxylic acid residue as well as for cis amide bonds of peptide. ${ }^{3}$ Tetrazole derivatives are well known with a high level of biological activity.

Neurodegenerative Diseases

Alzheimer's Disease: ${ }^{4}$ This is a common, progressive degenerative disease that usually manifests itself with subtle memory loss and forgetfulness. It frequently progresses to impair an individual's capacity for independent thought and function. It is characterized by abnormal accumulations of amyloid-beta protein.

Parkinson's Disease: ${ }^{5}$ This is a common, progressive neurodegenerative disorder caused by degeneration of neurons that produce the neurotransmitter dopamine. It is characterized by tremor, slowed movement, stiffness and difficulty walking. It is associated with abnormal accumulations of alpha-synuclein protein.

Huntington's Disease: Huntington's disease (HD) is a fatal disease with profound neurological and behavioral features. HD is typically characterized by uncontrollable movements and psychological disturbances. It is caused by a detectable genetic mutation that can be passed from generation to generation. Currently, there are no treatments for HD or ability to slow its progression. ${ }^{1,4}$

Amyotrophic Lateral Sclerosis (ALS/Lou Gehrig's Disease): ALS is a fatal neurodegenerative disease that results from the death of motor neurons. A progressive loss of muscle control impairs the individual's capacity for independent function.

Frontotemporal Dementia (Pick's Disease): It frequently manifests itself as a behavioral disturbance, and can progress to impair an individual's capacity for independent thought and function.

Prion Diseases: These are fatal neurodegenerative diseases caused by an agent known as a "prion". Prions in animals cause diseases such as bovine spongiform encephalopathy (also known as "mad cow disease"). In humans, they cause a rapidly progressive form of dementia known as Creutzfeldt-Jakob Disease (CJD).

Potential therapeutic use for the treatment of such disorders is an N-methyl-Daspartate (NMDA) receptor antagonist. ${ }^{6}$ The NMDA receptor is a macromolecular complex, consisting of a number of neurotransmitter and modulatory sites that gate an ion channel permeable to calcium and sodium ions. The first potent and selective NMDA antagonists were the phosphonic acid substituted acyclic amino acid 1 and 2. Replacement for the phosphonic acid moiety by cyclic tetrazole group as a bioisoster produced new NMDA antagonists (3 and 4) (Figure 1). ${ }^{7}$ These potent NMDA antagonists have relatively better activity compared to $\mathbf{1}$ and $\mathbf{2}$.

1

3

2

4

Figure 1
Tetrazole substituted acyclic α-amino acid (5), 4-(tetrazolylalkyl)piperazine-2carboxylic acid (6) and DL-Tetrazol-5-ylglycine (7) are highly potent NMDA antagonists ${ }^{1}$ (Figure 2).

5

6

7

Figure 2

Cancer

Cancer is not a single disease. It is a large and complex family of malignancies that can affect virtually every organ in the body. Cancer is an uncontrolled cellular growth, which is characterized by the unique property of metastasis. This uncontrolled cell growth rise to cell masses called tumors (neoplasm). There are two types of neoplasm: (a) Benign and (b) Malignant.

Benign Tumor: A benign tumor does not spread, or metastasize, to other parts of the body and so are not cancerous. They can often be removed and are rarely a threat to life. It is a mass of cells with limited growth capacity and remains localized in the tissue of origin. They do not usually kill the host unless they are in locations where they block the flow of blood or lymph or impair vital function, functions by applying pressure, as is the case with benign brain tumors.

Malignant Tumor: A malignant tumor, can spread and is cancerous. When this tumor spreads, its malignant cells break off and travel through the blood lymph system to other parts of the body, resulting in a secondary tumor, or metastasis. They are not encapsulated, almost always kill the host. This is because the cancer cells push out and replaces the normal cells in competition for space and nutrients, with resulting loss of function of the affected tissue.

Both the tumors are classified into 4 categories according to the type of cell from which they arise. They are as follows:

1) Carcinoma: Carcinoma is a malignant neoplasm of epithelial origin. It is a tumor that arises in the tissues of body's organs like the nose, the colon, the penis, breasts, prostrate, urinary bladder, and the ureter. About 80% of all cancer cases are carcinomas.
2) Sarcoma: Sarcomas are tumors that originate in bone, muscle, cartilage, fibrous tissue or fat. Ewing sarcoma (Family of tumors) and Kaposi's sarcoma are the common types of sarcomas.
3) Leukemia: Cancer that starts in blood-forming tissue such as the bone marrow and causes large numbers of blood cells to be produced and enter the bloodstream.
4) Lymphomas: It affects the lymphatic system, a network of vessels and nodes that acts as the body's filter. The lymphatic system distributes nutrients to blood and tissue, and prevents bacteria and other foreign "invaders" from entering the bloodstream.

Both external and internal factors cause cancer. Factors such as chemicals, radiation, viruses, hormones and inherited mutations may act together to start or further cancer. Ten or more years may pass between exposure and detectable cancer. According to World Health Organization cancer is one of the leading causes of death in the world, particularly in developing countries.

Treatment: Today, a remarkable advancement by clinical research is available for the treatment of cancer. The choice of a particular alternative cancer treatment depends on the stage of the cancerous tumor. Traditional or conventional treatment options may include surgery, radiation, chemotherapy, hormone therapy, and immunotherapy. These therapies have all been tested in clinical research trials and proven to be acceptable, safe and effective, although with often unpleasant side effects. Depending on the type of the disease, these cancer cures are used alone or in combination, to either control cancer cell growth or to eliminate the disease entirely. Complete removal of the cancer without damage to the rest of the body is the goal of treatment. As a result, many other drugs have been developed to treat cancer. ${ }^{8 a}$ Antimetabolites, anthracyclines, plant alkaloids, topoisomerase inhibitors, monoclonal antibodies, and other antitumor agents are generally used as chemotherapeutic drugs for the treatment of cancer. The main function of all of these drugs is to affect cell division or DNA synthesis. ${ }^{8 b}$

The tetrazole substituent, in place of the γ-carboxyl group of α-glutamic acid (8) (Figure $3)^{9}$ allows more efficient transport into cells via the reduced folate or MTX carrier ${ }^{10}$ and the resulting greater uptake of the analogues leads to inhibition of DNA synthesis and cell death at lower extra cellular concentrations during long exposures. The mechanism of cell death could involve inhibition at folypolyglutamate synthetase. The low potency of the analogues during short exposure is presumably related to the inability to form the poly-7-glutamyl metabolites required for intra cellular retention.

Figure 3

Antibiotics

The term "antibiotics" arises from the Greek word anti ("against") and bios ("life"). Antibiotics are referred to those drugs, which are used to treat bacterial infections either by destroying bacteria known as "bactericidal", or by preventing their reproduction known as "bacteriostatic". Antibiotics was first discovered by Alexander Fleming ${ }^{11}$ in 1928, from Penicilium notatum and widely used during the Second World War. Since that time, antibiotics have been critical in the fight against many diseases and infection. Their discovery was one of the leading causes for the dramatic rise of average life expectancy in the $20^{\text {th }}$ century and their significance to public health would be impossible to overstate. Up to date, more than 100 antibiotics are available out of which almost 90% are made from living organisms such as bacteria, rest are produced synthetically, either in whole or in part. Antibiotics are the most commonly used drugs.

Penicillins: It is a group of beta-lactam antibiotics used in the treatment of bacterial infections caused by Gram-positive, organisms. "Penicillin" is informal name of a specific member of the penicillin group Penam Skeleton. β-lactam antibiotics work by inhibiting the formation of peptidoglycan cross-links in the bacterial cell wall. There are different types of penicillins: such as penicillin G (9), and ampicillin (10) (Figure 4).

Penicillin G (9)

Ampicillin (10)

Figure 4

Cephalosporins: Cephalosporins are categorized by "generation," a classification that relates to their antimicrobial properties. There are four generations, each newer generation of cephalosporins having greater gram-negative antimicrobial effectiveness than the generation before. The greater the generation, the greater the cephalosporin's effectiveness against resistant bacterial strains; (e.g. Cefixime (11) is a third generation cephalosporin, which has expanded Gram-negative activity and Cefepime (12), a fourth generation cephalosporin) (Figure 5).

Cefixime (11)

Cefepime (12)

Figure 5
Phosphonomycin (13): It inhibits the condensation of uridine diphospho-N-acetylglu cosamine with phosphoenol pyruvate, a reaction mediated by a transferase, therefore blocking the synthesis of murein (Figure 6).

Phosphonomycin (13)
Figure 6
Oxamycin (14): It causes an inhibition of both alanine racemase and D-alanyl-D-alanine synthetase: the two enzymes are both involved in the formation of the specific dipeptide for the completion of the pentapeptide side chain attached to the polysaccharide backbone (Figure 7).

oxamycin (14)

Figure 7

The primary site of action of the penicillins, cephalosporins, phosphonomycin, and oxamycin (cycloserine) is at the genesis of the bacterial cell wall. Tetrazole compounds are also possess significant antibacterial activity e.g. DL-5-[α-(D-alanylamino)ethyl]-1H-tetrazole (15) (Figure 8). ${ }^{12}$

15
Figure 8

Tetrazole ring as a surrogate for the cis amide bond

The replacement of the amide bond by surrogates causes the enhancement of metabolic stability. ${ }^{13}$ Proline occupies a special role among those amino acids incorporated into peptides by normal biochemical pathways as it is the only residue leading to an N -alkylamide bond when incorporated into a peptide. Cis-trans isomerisation of the proline amide bond involving the amino group can readily be observed in the NMR of proline-containing peptides. In the case of angiotensin and thyroliberin (TRH) analogues, the quantity of cis isomer in aqueous solution was correlated with the biological activity. ${ }^{3}$ This suggested that the cis isomer might be bound to the receptor and responsible for the observed biological activity. Marshall et al. proposed the tetrazole ring system as a peptide bond surrogate for the cis amide bond in order to lock the dipeptide analogue into a geometry corresponding to the cis isomer. Zabrocki and Marshall ${ }^{14}$ have incorporated dipeptide analogues with the desired stereochemistry into biologically active peptides such as TRH, enkephalin, and bradykinin. A major concern is the degree of geometrical and steric similarity between the tetrazole ring surrogate and the cis amide bond, which will determine the ability of the surrogate to mimic the conformations available to the cis amide bond. The geometry of the tetrazole ring is analoguous of a cyclic dipeptide, Phe-Ala, as determined by X-ray crystallography with the crystal structures of diketopiperazine rings in which the amide bonds of the cyclic dipeptides are forced to assume the cis conformation because of the cyclic constraint.

Tetrazole Macrocycle

Tetrazole exhibit a strong networking ability acting as mono- or bidentate ligands in most of the reported complexes. ${ }^{15}$ Application of these materials is in generating supramolecular arrays, which are capable of metal complesation. The new functionalised poly-tetrazole macrocycles (16, 17 and 18; Figure 9), ${ }^{16}$ have application as sensors or in molecular recognition.

16

17

18

Figure 9

Now we are planning to synthesize chiral bicyclic, tricyclic and tetracyclic tetrazoles using intramolecular 1,3-dipolar cycloaddition protocol between azide and nitrile derivatives obtained from different amino acids as the chiral precursors.

PRESENT WORK

Tetrazole derivatives are well known for their high level of biological activity. ${ }^{17}$ Tetrazoles are a class of heterocycles with a wide range of applications in medicinal chemistry, material science including photography. ${ }^{18}$ Tetrazoles are frequently used as metabolically stable lipophilic spacers as well as stable surrogates for carboxylic acids. ${ }^{3,13}$ Tetrazole derivatives form stable complexes with metals. ${ }^{19}$ Furthermore, they have been used as ligands for palladium catalyzed reaction. ${ }^{20}$

The first reported method to synthesize tetrazoles was the reaction of hydrazoic acid $\left(\mathrm{HN}_{3}\right)$ with organic cyanides. ${ }^{21}$ However, this procedure has not found practical application on account of the high toxicity, explosive nature and low boiling point (37 ${ }^{\circ} \mathrm{C}$) of hydrazoic acid. Currently tetrazoles can be directly synthesized via a [3+2] dipolar cycloaddition reaction between an azide and a nitrile. ${ }^{22}$ For tetrazole ring construction the synthetic equivalents of synthons I $\left(\mathrm{NaN}_{3}\right.$, organic azide and others) and II (cyanides, isocyanides, isocyanates and others) are used most frequently (Figure 10).

Figure 10
To date only a few highly activated nitriles are known to undergo this cycloaddition in an intramolecular fashion with organic azides. ${ }^{23}$ When the azide and nitrile moieties are in the same molecule, rates of cycloaddition can be greatly enhanced. Hence, when that substrates are heated at $130-140{ }^{\circ} \mathrm{C}$, polycyclic fused tetrazoles are formed very efficiently via $[3+2]$ cycloaddition. The range of the azido-nitrile species which participate in these intramolecular [3+2] cycloaddition is quite broad. The tetrazoles formed can be fused to five or six membered ring systems which can be saturated or unsaturated and the heteroatom can be carbon, nitrogen, oxygen or sulphur (Scheme 1). ${ }^{24}$

$Z=$ carbon, nitrogen, oxygen or sulphur

Scheme 1

Herein, we report an effective integration of Huisgen's 1,3 dipolar cycloaddition reaction (one of the prototype reaction in click chemistry) onto natural α-amino acid derivatives for the synthesis of tetrazole-fused pyrazines.

We first devoted our initial efforts toward the synthesis of the key intermediate 25a from L-phenylalanine (19). ${ }^{25}$ Thus, Boc protected L-phenylalaninol (20) was prepared from 19 by reduction with I_{2} and NaBH_{4} in THF followed by Boc-protection with $\mathrm{Boc}_{2} \mathrm{O}$ and TEA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with the procedure reported in literature. Tosyl protection of 20 was carried out by treatment with $p-\mathrm{TsCl}$ in pyridine at ambient temperature in good yield. Tosylate 21 was converted to azido derivative 22 by $\mathrm{S}_{\mathrm{N}} 2$ displacement with NaN_{3} in DMF at $70^{\circ} \mathrm{C}$ in 92% yield. A characteristic peak at $2098 \mathrm{~cm}^{-}$ ${ }^{1}$ in the IR spectrum indicated the presence of the azide functional group. However the next step, which was to introduce nitrile functionality in azide 22 using bromoacetonitrile was unsuccessful under different conditions (Scheme 2).

Scheme 2

To overcome this failure we at first deprotected the Boc group with $4 \mathrm{~N} \mathrm{HCl}-$ EtOAc at $0{ }^{\circ} \mathrm{C}$ to afford amine 23. Nitrile functionality was then introduced by treatment with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and bromoacetonitrile in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature to afford mono nitrile derivative $\mathbf{2 4}$ in good yield. The structure of $\mathbf{2 4}$ was established by NMR spectroscopy, mass spectrometry and elemental analysis. Subsequent heating of the azido nitrile 24 at $140{ }^{\circ} \mathrm{C}$ in DMF afforded tetrazole-fused pyrazine in very low yield (20\%). The lower yield may be assumed to be the decomposition of the starting material. Then we have planned to protect the nitrile 24 as its benzyl derivative. For that, nitrile derivative $\mathbf{2 4}$ was treated with benzyl bromide and $\mathrm{K}_{2} \mathrm{CO}_{3}$ at $80{ }^{\circ} \mathrm{C}$ in DMF to afford benzyl derivative 25a in 92% yield. Compound 25a was fully characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and DEPT NMR spectroscopy, mass spectra and elemental analysis. In the IR spectrum, a strong peak appearing at $2102 \mathrm{~cm}^{-1}$ indicated the presence of azide and nitrile functional groups. According to ${ }^{13} \mathrm{C}$ NMR and DEPT spectra four methylene groups were observed at δ $35.0,38.3,51.0,54.6 \mathrm{ppm}$ respectively and the characteristic signal observed at 116.7 ppm was due to the presence of nitrile carbon. Elemental analysis and characteristic ion peak at $\mathrm{m} / \mathrm{z}=306$ attributed to $[\mathrm{M}+\mathrm{H}]^{+}$in the ESI-mass spectrum confirmed the structure of 25a. When 25a heated to $140{ }^{\circ} \mathrm{C}$ in DMF for 8 h afforded tetrazole-fused pyrazine derivative (26a). ${ }^{24 \mathrm{c}, 26}$ Simple purification by silica gel chromatography afforded 26a in excellent yield (88%). The structure of bicyclic tetrazole 26a was established by NMR spectroscopy. In the IR spectrum the characteristic peaks for nitrile and azide functionality were absent. The characteristic resonances observed at $\delta 149.7$ and 56.7 ppm were attributed to the double bonded quarternary carbon and methylene carbon adjacent to double bond respectively. In the ESI-MS spectra the presence of peaks at m / z $=306[\mathrm{M}+\mathrm{H}]^{+}$and $328[\mathrm{M}+\mathrm{Na}]^{+}$confirmed the structure of 26a (Scheme 3).

Scheme 3

In addition, the X-ray crystallographic analysis unambiguously confirmed the structure of 26a. The details of crystal data and structure refinement (Table 2) are given at the end of this section.

Figure 11: ORTEP diagram of compound 26a

This result encouraged us to verify the feasibility of using other benzyl protected azido-nitriles obtained from different amino acids under identical reaction conditions. As exemplified in Table 1, the reaction proceeded smoothly to completion, and the corresponding tetrazole-fused 4,5,6,7-tetrahydropyrazine products were obtained in 8 to 12 hours with excellent yield and high purity. All bicyclic tetrazole-fused products were fully characterized by NMR spectroscopy, mass spectroscopy and elemental analysis.

Table 1: Intramolecular 1,3-dipolar cycloaddition reaction under catalyst free condition in DMF at $140^{\circ} \mathrm{C}$
250

We then decided to extend this reaction condition to L-proline (27) in order to obtain tetrazole-fused tricyclic compound. Boc-L-prolinol (28) was prepared by reduction of L-proline (27) following usual procedure followed by Boc protection. ${ }^{25}$ Activation of the hydroxyl group was next achieved by the formation a tosylate. The tosylate was generated by treatment of 28 with p-toluenesulphonyl chloride in TEA at ambient temperature. Azide 29 was obtained by $\mathrm{S}_{\mathrm{N}} 2$ displacement of the corresponding tosylate with NaN_{3} in DMF at $70{ }^{\circ} \mathrm{C}$ in 85% yield in two steps. The azido-nitrile $\mathbf{3 0}$ was obtained from 29 by treating with TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 3 h followed by heating
the reaction mixture with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and bromoacetonitrile in DMF at $80^{\circ} \mathrm{C}$ in 84% yield over two steps. Compound 30 was fully characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, mass spectra and elemental analysis. In the IR spectrum a strong peak appeared at $2101 \mathrm{~cm}^{-1}$ indicating the presence of both nitrile and azide functional groups. In the ${ }^{13} \mathrm{C}$ NMR spectrum characteristic nitrile carbon was observed at $\delta 115.1 \mathrm{ppm}$. Compound 30 was heated in DMF at $140{ }^{\circ} \mathrm{C}$ to afford the corresponding tetrazole-fused 4,5,6,7tetrahydropyrazine in 86% yield (Scheme 4). ${ }^{26}$ NMR spectroscopy and mass spectrometry established the structure of $\mathbf{3 1}$. In the ${ }^{13} \mathrm{C}$ NMR spectrum, the quarternary double bonded carbon and methylene carbon attached to olefin resonated at $\delta 151.2 \mathrm{ppm}$ and 59.5 ppm respectively. The structure was also confirmed by the characteristic ionpeaks at $m / z=166$ and 188 , attributed to $[M+H]^{+}$and $[M+N a]^{+}$in its ESI-mass spectrum.

$\xrightarrow[\text { 2) } \mathrm{BrCH}_{2} \mathrm{CN}, \mathrm{K}_{2} \mathrm{CO}_{3}]{\substack{\text { 1) } \mathrm{TFA}, \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ 0^{\circ} \mathrm{C}-\mathrm{rt}, 4 \mathrm{~h}}}$ DMF, $80^{\circ} \mathrm{C}, 8 \mathrm{~h}$ 84\% (2 steps)

30

31

Scheme 4

In conclusion, we have achieved the regioselective synthesis of several new chiral bicyclic and tricyclic 5,6,7,8-tetrahydrotetrazolo[1,5-a]pyrazines compounds by intramolecular 1,3-dipolar cycloaddition reaction between azide and alkyne with excellent yield and high purity.

Table 2: Crystal data and structure refinement for compound 26a

Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{5}$
Formula weight	305.38
Temperature	297(2) K
Wavelength	0.71073 Å
Crystal system, space group	Orthorhombic, $\mathrm{P}_{2} 1$
Unit cell dimensions	$\begin{aligned} & \mathrm{a}=6.804(3) \AA \quad \text { alpha }=90 \mathrm{deg} . \\ & \mathrm{b}=7.526(3) \AA \quad \text { beta }=90 \mathrm{deg} . \\ & \mathrm{c}=32.449(12) \AA \text { gamma }=90 \mathrm{deg} . \end{aligned}$
Volume	1661.7(11) \AA^{3}
Z, Calculated density	$4,1.221 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.076 \mathrm{~mm}^{-1}$
F (000)	648
Crystal size	$0.31 \times 0.28 \times 0.07 \mathrm{~mm}$
Theta range for data collection	2.78 to 25.99 deg .
Limiting indices	$-8<=\mathrm{h}<=8,-9<=\mathrm{k}<=9,-40<=\mathrm{l}<=40$
Reflections collected / unique	$12986 / 3267$ [$\mathrm{R}(\mathrm{int})=0.0239]$
Completeness to theta $=25.99$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9944 and 0.9764
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3267 / 0 / 208
Goodness-of-fit on F^{2}	1.231
Final R indices [$\mathrm{I}>2 \mathrm{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0494, \mathrm{wR} 2=0.1113$
R indices (all data)	$\mathrm{R} 1=0.0510, \mathrm{wR} 2=0.1121$
Absolute structure parameter	1(3)
Largest diff. peak and hole	0.166 and -0.202 e. \AA^{-3}

EXPERIMENTAL

(S)-tert-Butyl 1-azido-3-phenylpropan-2-ylcarbamate (22):

To the tosylate 21 ($10.0 \mathrm{~g}, 24.6 \mathrm{mmol}$) in dry DMF, $\mathrm{NaN}_{3}(8.0 \mathrm{~g}, 123.4 \mathrm{mmol}$) was added and heated at $70{ }^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was poured into ice-cold water and extracted the aqueous layer with EtOAc ($3 \times 80 \mathrm{~mL}$). The combined organic extracts were washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified on silica gel column chromatography with 10% EtOAc-light petroleum ether to give $\mathbf{2 2}$ ($6.2 \mathrm{~g}, 92 \%$) as a colourless syrup.

$$
\begin{aligned}
& \text { Mol. Formula } \quad: \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \\
& {\left[\boldsymbol{\alpha} \boldsymbol{]}^{\mathbf{2 5}}{ }_{\mathbf{D}} \quad:-11.6\left(c \text { 1.2, } \mathrm{CHCl}_{3}\right) .\right.} \\
& \operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \tilde{v} \quad: 3331,2980,2098,1701,1496,1391,1291,1168 \mathrm{~cm}^{-1} . \\
& { }^{1} \mathbf{H} \text { NMR } \quad: \delta 1.42(\mathrm{~s}, 9 \mathrm{H}), 2.68-2.87(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.91- \\
& \left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 3.99(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.31(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} . \\
& { }^{13} \mathbf{C} \text { NMR } \quad: \delta \text { 28.3, 38.1, 51.3, 53.1, 79.6, 126.7, 128.6, 129.2, 137.1, } \\
& \left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \quad 154.9 \mathrm{ppm} \text {. } \\
& \text { ESI-MS (} \mathrm{m} / \mathrm{z} \text {) : } 277[\mathrm{M}+\mathrm{H}]^{+}, 299[\mathrm{M}+\mathrm{Na}]^{+} \text {. }
\end{aligned}
$$

Elemental Analysis Calcd.: C, 60.85; H, 7.30; N, 20.27.
Found: C, 60.61; H, 7.62; N, 20.02.

(S)-2-(1-Azido-3-phenylpropan-2-ylamino)acetonitrile (24):

To azide $22(6.0 \mathrm{~g}, 21.7 \mathrm{mmol})$, was added $4 \mathrm{~N} \mathrm{HCl}-E t O A c(24 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and stirred at rt for 3 h . The reaction mixture was neutralized with saturated NaHCO_{3} solution. The aqueous layer was extracted with EtOAc and concentrated to afford crude amine 23. To a mixture of amine $\mathbf{5}(3.8 \mathrm{~g}, 21.7 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(5.0 \mathrm{~g}, 36.4 \mathrm{mmol})$ in
$\mathrm{CH}_{3} \mathrm{CN}(25 \mathrm{~mL})$ was added bromoacetonitrile ($1.8 \mathrm{~mL}, 25.0 \mathrm{mmol}$) dropwise. The mixture was stirred at rt for 6 h , then filtered and diluted with EtOAc. The organic layer was successively washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography eluting with 40% ethyl acetate-petroleum ether to afford 24 ($3.8 \mathrm{~g}, 81 \%$) as a colourless oil.

Mol. Formula	: $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{5}$
$[\alpha]^{25}{ }_{\text {D }}$: +28.6 (c 2.1, CHCl_{3}).
$\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \tilde{v}$: 3340, 2927, 2103, 1602, 1454, 1281, $1126 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	: $\delta 1.63$ (brs, 1H), 2.81 (d, 2H, ${ }^{\text {c }}=6.8 \mathrm{~Hz}$), 3.19 (m, 1H),
$\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$	3.25 (dd, 1H, $J=5.8,12.1 \mathrm{~Hz}$), 3.48 (dd, 1H, $J=3.7,12.1$
	$\mathrm{Hz}), 3.64$ (ABq, 2H, $J=17.9 \mathrm{~Hz}$), $7.24(\mathrm{~d}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}$),
	7.29-7.38 (m, 3H) ppm.
${ }^{13} \mathrm{C}$ NMR	$: \delta 35.2,38.3,53.4,57.3,117.3,127.0,128.8,129.1,136.8$
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	ppm.
ESI-MS (m / z)	: $216[\mathrm{M}+\mathrm{H}]^{+}$.
Elemental Analysis	Calcd.: C, 61.38; H, 6.09; N, 32.54.
	Found: C, 61.62; H, 6.23; N, 32.39.

(S)-2-((1-Azido-3-phenylpropan-2-yl)(benzyl)amino)acetonitrile (25a):

To a solution of compound $24(2.0 \mathrm{~g}, 9.3 \mathrm{mmol})$ in dry DMF, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($2.6 \mathrm{~g}, 18.6 \mathrm{mmol}$) followed by $\mathrm{BnBr}(1.8 \mathrm{~mL}, 14.9 \mathrm{mmol})$ were added dropwise to the reaction mixture and was heated at $80{ }^{\circ} \mathrm{C}$ for 8 h . The whole mass was poured into ice cold water and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layer was washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography eluting with 30% ethyl acetate-petroleum ether to afford $\mathbf{2 5 a}(2.6 \mathrm{~g}, 92 \%)$ as a white solid.

Mol. Formula	: $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{5}$
M. P.	: $102{ }^{\circ} \mathrm{C}$
$[\alpha]^{25}{ }_{\text {D }}$: -16.4 (c 1.1, CHCl_{3}).
$\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \tilde{v}$: 3369, 3027, 2928, 2102, 1601, 1454, 1273, $1125 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	$: \delta 2.80(\mathrm{dd}, 1 \mathrm{H}, J=9.3,13.1 \mathrm{~Hz}), 3.18 \text { (dd, } 1 \mathrm{H}, J=5.3$
$\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$	13.1 Hz), 3.25 (m, 1H), 3.46 (m, 2H), 3.60 (s, 2H), 3.99 (s, 2 H), 7.20 (d, 2H, J = 7.3 Hz), 7.34 (m, 8H) ppm.
${ }^{13} \mathrm{C}$ NMR	$: \delta 35.0,38.3,51.0,54.6,63.8,116.7,126.7,127.9,128.8$,
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	129.1, 136.8, 138.1 ppm .
ESI-MS (m / z)	: $306[\mathrm{M}+\mathrm{H}]^{+}$.
Elemental Analysis	Calcd.: C, 70.80; H, 6.27; N, 22.93.
	Found: C, 70.95; H, 6.12; N, 23.18.

(S)-6,7-Dibenzyl-5,6,7,8-tetrahydrotetrazolo[1,5-a]pyrazine (26a):

The compound 25a ($1.2 \mathrm{~g}, 3.9 \mathrm{mmol}$) was taken in dry DMF (10 mL) and heated at $140{ }^{\circ} \mathrm{C}$ under nitrogen for 8 h . The reaction mixture was diluted with EtOAc and washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by silica gel column chromatography eluting with 50% EtOAc-light petroleum ether to afford 26a (1.0 g, 88\%) as white a solid.

$$
\begin{array}{ll}
\text { Mol. Formula } & : \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{5} \\
\text { M. P. } & : 106-108{ }^{\circ} \mathrm{C} \\
{[\boldsymbol{\alpha}]^{\mathbf{2 5}}} & :-6.3\left(c 1.6, \mathrm{DHCl}_{3}\right) . \\
\text { IR (CHCl }) \tilde{v} & : 3401,2924,1601,1454,1118 \mathrm{~cm}^{-1} . \\
{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}^{2} & : \delta 2.52(\mathrm{dd}, 1 \mathrm{H}, J=10.5,13.4 \mathrm{~Hz}), 3.16(\mathrm{dd}, 1 \mathrm{H}, J=4.6, \\
\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) & 13.4 \mathrm{~Hz}), 3.55(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{ABq}, 2 \mathrm{H}, J=13.2 \mathrm{~Hz}), 4.07- \\
& 4.18(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{dd}, 1 \mathrm{H}, J=3.3,13.0 \mathrm{~Hz}), \\
& 7.09(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.29-7.40(\mathrm{~m}, 8 \mathrm{H}) \mathrm{ppm} .
\end{array}
$$

${ }^{13} \mathrm{C}$ NMR $: \delta 31.7,43.6,46.5,56.7,56.9,126.9,127.8,128.5,128.6$, $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \quad 128.8,128.9,136.7,136.9,149.7 \mathrm{ppm}$.
ESI-MS (m/z) : $306[\mathrm{M}+\mathrm{H}]^{+}, 328[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis
Calcd.: C, 70.80; H, 6.27; N, 22.93.
Found: C, 71.03; H, 6.40; N, 22.67.
(S)-2-((1-Azidopropan-2-yl)(benzyl)amino)acetonitrile (25b):

Mol. Formula	: $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{5}$
$[\alpha]^{25}{ }_{\text {D }}$: +30.0 (c 1.2, $^{\text {CHCl }} 3$).
$\boldsymbol{I R}\left(\mathbf{C H C l}_{3}\right) \tilde{\nu}$: 3371, 3020, 2978, 2102, 1601, 1495, 1381, $1217 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	: $\delta 1.30$ (d, 3H, $J=6.7 \mathrm{~Hz}$), 3.13-3.21 (m, 1H), 3.31 (dd, 1H,
$\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$	$J=5.1,12.9 \mathrm{~Hz}), 3.44$ (dd, 1H, $J=7.2,12.9 \mathrm{~Hz}), 3.48$ (d,
	$2 \mathrm{H}, J=2.6 \mathrm{~Hz}$), $3.84(\mathrm{ABq}, 2 \mathrm{H}, J=13.4 \mathrm{~Hz}$, $7.29-7.39(\mathrm{~m}$,
	5H) ppm.
${ }^{13} \mathrm{C}$ NMR	$: \delta 14.1,38.3,53.9,54.0,57.6,116.5,127.9,128.7,128.9$,
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	136.9 ppm.
Elemental Analysis	Calcd.: C, 62.86; H, 6.59; N, 30.54.
	Found: C, 62.67; H, 6.41; N, 30.72.

(S)-7-Benzyl-6-methyl-5,6,7,8-tetrahydrotetrazolo[1,5-a]pyrazine (26b):

Compound 26b was prepared from $\mathbf{2 5 b}$ using the procedure similar to that of 26a.

$$
\begin{array}{ll}
\text { Mol. Formula } & : \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{5} \\
{\left[\boldsymbol{\alpha} \mathbf{~}^{\mathbf{2 5}}{ }_{\mathbf{D}}\right.} & :+4.6\left(c 1.2, \mathrm{CHCl}_{3}\right) . \\
\mathbf{I R}\left(\mathbf{C H C l}_{3}\right) \tilde{v} & : 3369,2972,1600,1448,1219 \mathrm{~cm}^{-1} . \\
{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R} & : \delta 1.25(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}), 3.37-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~d}, 1 \mathrm{H}, J
\end{array}
$$

$\left.\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)=13.0 \mathrm{~Hz}\right), 3.86(\mathrm{~d}, 1 \mathrm{H}, J=13.0 \mathrm{~Hz}), 3.95(\mathrm{ABq}, 2 \mathrm{H}, J=$ $16.7 \mathrm{~Hz}), 4.19$ (dd, $1 \mathrm{H}, J=5.0,12.6 \mathrm{~Hz}$), $4.44(\mathrm{dd}, 1 \mathrm{H}, J=$ $4.6,12.6 \mathrm{~Hz}$), 7.29-7.36 (m, 5H) ppm.
${ }^{13} \mathbf{C}$ NMR $\quad: \delta 12.4,43.9,50.3,51.0,56.8,127.8,128.7,136.8,149.8$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \quad$ ppm.
ESI-MS (m / z) $: 230[\mathrm{M}+\mathrm{H}]^{+}, 252[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 62.86; H, 6.59; N, 30.54.
Found: C, 62.91; H, 6.42; N, 30.78.
(S)-2-((2-Azido-1-phenylethyl)(benzyl)amino)acetonitrile (25c):

$\begin{array}{ll}\text { Mol. Formula } & : \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{5} \\ {[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{D}} & :+3.6\left(\text { c 1.0, } \mathrm{CHCl}_{3}\right) .\end{array}$
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \tilde{v} \quad: 3434,2101,1601,1454,1115,1029 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $: \delta 3.44(\mathrm{ABq}, 2 \mathrm{H}, J=17.7 \mathrm{~Hz}), 3.68-3.84(\mathrm{~m}, 4 \mathrm{H}), 3.93(\mathrm{t}$,
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 1 \mathrm{H}, \mathrm{J}=5.5 \mathrm{~Hz}\right), 7.30-7.50(\mathrm{~m}, 10 \mathrm{H})$.
${ }^{13}$ C NMR $\quad: \delta 38.9,53.9,55.5,65.8,114.9,127.9,128.1,128.6,128.7$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad 128.8,129.0,136.7,138.3 \mathrm{ppm}$.
Elemental Analysis Calcd.: C, 70.08; H, 5.88; N, 24.04.
Found: C, 70.24; H, 5.72; N, 24.31.
(S)-7-Benzyl-6-phenyl-5,6,7,8-tetrahydrotetrazolo[1,5-a]pyrazine (26c):

Compound $\mathbf{2 6} \mathbf{c}$ was prepared from $\mathbf{2 5} \mathbf{c}$ using the procedure similar to that of $\mathbf{2 6 a}$.

Mol. Formula	$: \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{5}$
$\left[\boldsymbol{\alpha} \mathbf{2}^{\mathbf{2 5}}{ }_{\mathbf{D}}\right.$	$:-8.2\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
$\mathbf{I R}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \tilde{v}$	$: 2926,1600,1494,1454,1348,1110 \mathrm{~cm}^{-1}$.

${ }^{1}$ H NMR $\quad: \delta 3.25(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 3.69(\mathrm{~d}, 1 \mathrm{H}, J=16.6 \mathrm{~Hz})$,
$\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \quad 3.87(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 4.10(\mathrm{dd}, 1 \mathrm{H}, J=4.6,8.8 \mathrm{~Hz})$, 4.25 (d, 1H, $J=16.6 \mathrm{~Hz}$), 4.53 (dd, $1 \mathrm{H}, J=8.8,13.2 \mathrm{~Hz}$), 4.72(dd, 1H, $J=4.6,13.2 \mathrm{~Hz}$), 7.29-7.38 (m, 5H), 7.407.49 (m, 5H) ppm.
${ }^{13}$ C NMR $\quad: \delta 46.2,50.3,57.7,62.6,127.8,128.0,128.6,128.7,129.2$, $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \quad 129.4,136.4,136.6,150.4 \mathrm{ppm}$.

ESI-MS (m / z) : $292[\mathrm{M}+\mathrm{H}]^{+}$.
Elemental Analysis Calcd.: C, 70.08; H, 5.88; N, 24.04.
Found: C, 70.18; H, 5.97; N, 23.93.
(S)-2-((1-Azido-3-methylbutan-2-yl)(benzyl)amino)acetonitrile (25d):

Mol. Formula $: \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{5}$
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \tilde{v} \quad: 3367,2978,2104,1603,1497,1375,1219 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 1.00(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.08(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.89-$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 2.07(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.59(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.62-$ 3.73 (m, 2H), 3.80 (d, 1H, $J=13.6 \mathrm{~Hz}$), 4.04 (d, 1H, $J=$ 13.6 Hz), 7.31-7.37 (m, 5H) ppm.
${ }^{13}$ C NMR $\quad: \delta 19.8,20.8,28.5,38.5,49.6,55.4,67.3,116.8,127.8$,
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \quad 128.7,128.8,137.3 \mathrm{ppm}$.
ESI-MS (m/z) : $258[\mathrm{M}+\mathrm{H}]^{+}, 280[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 65.34; H, 7.44; N, 27.21.
Found: C, 65.61; H, 7.27; N, 27.45.
(S)-7-Benzyl-6-isopropyl-5,6,7,8-tetrahydrotetrazolo[1,5-a]pyrazine (26d):

Compound 26d was prepared from 25d using the procedure similar to that of 26a.

Mol. Formula	: $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{5}$
$[\alpha]^{25}{ }_{\text {D }}$: -11.4 (c 1.4, CHCl_{3}).
$\mathbf{I R}\left(\mathbf{C H C l}_{3}\right) \tilde{v}$: 3401, 2965, 1601, 1448, 1369, 1217, $1074 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	$: \delta 1.05$ (d, 3H, $J=6.6 \mathrm{~Hz}), 1.20$ (d, 3H, $J=6.6 \mathrm{~Hz}), 1.91-$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	2.02 (m, 1H), 2.84-2.95 (m,1H), 3.45 (d, 1H, J = 13.3 Hz),
	3.80 (d, 1H, $J=13.3 \mathrm{~Hz}$), 3.94 (d, 1H, $J=17.7 \mathrm{~Hz}$), 4.15
	(d, 1H, $J=17.7 \mathrm{~Hz}$), 4.32 (dd, 1H, ${ }^{\text {d }}=7.5,13.3 \mathrm{~Hz}$), 4.53
	(dd, 1H, $J=7.5,13.3 \mathrm{~Hz}$), 7.29-7.34 (m, 5H) ppm.
${ }^{13} \mathrm{C}$ NMR	: $\delta 19.6,20.2,27.8,43.6,44.2,53.3,62.7,127.7,128.5$,
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	128.7, 137.0, 149.4 ppm.
ESI-MS (m / z)	: $258[\mathrm{M}+\mathrm{H}]^{+}, 280[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis	Calcd.: C, 65.34; H, 7.44; N, 27.21.
	Found: C, 65.47; H, 7.31; N, 27.35.

(S)-2-((1-Azido-4-methylpentan-2-yl)(benzyl)amino)acetonitrile (25e):

Mol. Formula	: $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N} 5$
$[\alpha]^{\mathbf{2 5}}{ }^{\text {D }}$	
$\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \tilde{v}$: 3402, 2957, 2120, 1600, 1453, 1367, 1219, $1074 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	: $\delta 0.95$ (d, 3H, $J=6.6 \mathrm{~Hz}$), 0.97 (d, 3H, $J=6.6 \mathrm{~Hz}$), 1.28-
$\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$	1.36 (m, 1H), 1.59-1.66 (m, 1H), 1.70-1.77 (m, 1H), 3.02-
	$\begin{aligned} & 3.08(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{dd}, 1 \mathrm{H}, J=5.1,12.9 \mathrm{~Hz}), 3.43-3.51 \\ & (\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{dd}, 1 \mathrm{H}, J=7.0,12.9 \mathrm{~Hz}), 3.89(\mathrm{ABq}, 2 \mathrm{H}, J \end{aligned}$
	$=13.5 \mathrm{~Hz})$, 7.30-7.37 (m, 5H) ppm.
${ }^{13} \mathrm{C}$ NMR	$: \delta 22.4,22.7,24.9,37.7,38.2,51.9,54.4,59.9,117.0$,
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	127.8, 128.7, 137.1 ppm.

Elemental Analysis Calcd.: C, 66.39; H, 7.80; N, 25.81.
Found: C, 66.63; H, 8.07; N, 25.69.
(S)-7-Benzyl-6-isobutyl-5,6,7,8-tetrahydrotetrazolo[1,5-a]pyrazine (26e):

Compound $\mathbf{2 6 e}$ was prepared from $\mathbf{2 5 e}$ using the procedure similar to that of $\mathbf{2 6 a}$.

Mol. Formula $\quad: \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{5}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}} \quad:-6.0\left(c 1.1, \mathrm{CHCl}_{3}\right)$.
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right) \tilde{v} \quad: 3402,2957,1600,1453,1367,1219,1074 \mathrm{~cm}^{-1}$.
${ }^{1}$ H NMR $: \delta$ 0.94-0.97 (m, 6H), 1.21-1.29 (m, 1H), 1.57-1.64 (m,
$\left.\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \quad 1 \mathrm{H}\right), 1.73-1.83(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~d}, 1 \mathrm{H}, J=13.2$
Hz), 3.82 (d, 1H, $J=13.2 \mathrm{~Hz}$), 4.05 (ABq, 2H, $J=17.2$
Hz), 4.26 (dd, 1H, $J=4.8,12.9 \mathrm{~Hz}$), 4.44 (dd, 1H, $J=4.8$, 12.9 Hz), 7.28-7.36 (m, 5H) ppm.
${ }^{13} \mathbf{C}$ NMR $\quad: \delta 22.5,22.7,24.9,36.3,43.5,46.9,53.4,55.3,127.9$,
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \quad 128.6,128.7,137.0,149.6 \mathrm{ppm}$.
ESI-MS (m / z) : $272[\mathrm{M}+\mathrm{H}]^{+}, 294[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 66.39; H, 7.80; N, 25.81.
Found: C, 66.18; H, 7.71; N, 25.96.

2-((2-Azidoethyl)(benzyl)amino)acetonitrile (25f):

Mol. Formula $\quad: \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{5}$
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \tilde{v} \quad: 3029,2981,2107,1608,1492,1213 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 2.90(\mathrm{t}, 2 \mathrm{H}, J=5.7 \mathrm{~Hz}), 3.40(\mathrm{t}, 2 \mathrm{H}, J=5.7 \mathrm{~Hz}), 3.53$
$\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \quad(\mathrm{s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 7.30-7.37(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$
Elemental Analysis Calcd.: C, 61.38; H, 6.09; N, 32.53.
Found: C, 61.62; H, 6.36; N, 32.29.

7-Benzyl-5,6,7,8-tetrahydrotetrazolo[1,5-a]pyrazine (26f):

Compound $\mathbf{2 6 f}$ was prepared from $\mathbf{2 5 f}$ using the procedure similar to that of 26a.

Mol. Formula	: $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{5}$
IR ($\left.\mathbf{C H C l}_{3}\right) \tilde{v}$: 3397, 2968, 1609, 1454, 1358, 1217, $1072 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	: $\delta 3.02$ (t, 2H, J = 5.6 Hz), 3.81 (s, 2H), 3.93 (s, 2H), 4.40
$\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$	(t, 2H, J = 5.5 Hz), 7.30-7.37 (m, 5H).
${ }^{13} \mathrm{C}$ NMR	: $\delta 45.1,48.0,48.3,61.3,128.0,128.7,128.9,136.2,150.5$
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	ppm.
ESI-MS (m / z)	: $216[\mathrm{M}+\mathrm{H}]^{+}, 238[\mathrm{M}+\mathrm{Na}]^{+}$.

Elemental Analysis Calcd.: C, 61.38; H, 6.09; N, 32.53.
Found: C, 61.47; H, 6.24; N, 32.35.
(6S)-7-Benzyl-6-sec-butyl-5,6,7,8-tetrahydrotetrazolo[1,5-a]pyrazine (26g):

Compound $\mathbf{2 6} \mathbf{g}$ was prepared from $\mathbf{2 5} \mathbf{g}$ using the procedure similar to that of $\mathbf{2 6 a}$.

Mol. Formula	$: \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{5}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{D}$	$:-3.3\left(c 1.2, \mathrm{CHCl}_{3}\right)$.
$\mathbf{I R}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \tilde{v}$	$: 3400,2957,1600,1454,1367 \mathrm{~cm}^{-1}$.
${ }^{\mathbf{1}} \mathbf{H}^{\mathbf{N}} \mathbf{N M R}$	$: \delta 0.91-0.96(\mathrm{~m}, 6 \mathrm{H}), 1.16-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.66(\mathrm{~m}$,

$\left.\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \quad 1 \mathrm{H}\right), 1.72-1.85(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~d}, 1 \mathrm{H}, J$ $=13.2 \mathrm{~Hz}), 3.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.2 \mathrm{~Hz}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 4.24$ (dd, 1H, $J=4.7,12.9 \mathrm{~Hz}$), 4.42 (dd, $1 \mathrm{H}, J=4.7,12.9 \mathrm{~Hz}$), 7.29-7.35 (m, 5H).
${ }^{13} \mathbf{C}$ NMR $\quad: \delta 22.4,22.5,24.7,36.2,43.4,46.8,53.3,55.1,127.7$,
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \quad 128.5,137.0,149.5 \mathrm{ppm}$.
ESI-MS (m / z) : $272[\mathrm{M}+\mathrm{H}]^{+}$.
Elemental Analysis Calcd.: C, 66.39; H, 7.80; N, 25.81.
Found: C, 66.31; H, 7.65; N, 25.88.

(S)-2-(2-(Azidomethyl)pyrrolidin-1-yl)acetonitrile (30):

To azide 29 ($3.5 \mathrm{~g}, 15.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added TFA (4 mL) at $0{ }^{\circ} \mathrm{C}$ and stirred at rt for 4 h . The reaction mixture was concentrated and dried. Without further purification the compound was dissolved in dry DMF (20 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(4.3 \mathrm{~g}, 30.9 \mathrm{mmol}$) and bromoacetonitrile ($1.4 \mathrm{~mL}, 20.1 \mathrm{mmol}$) were added and stirred at rt for 8 h under N_{2}. The reaction mixture was poured into ice-cold water and extracted with EtOAc (3 x 40 $\mathrm{mL})$. The combined organic extracts were washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by silica gel column chromatography eluting with 25 \% EtOAc-petroleum ether to provide 30 ($2.1 \mathrm{~g}, 84 \%$) as a colourless syrup.

Mol. Formula	$: \mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{5}$
$\left[\boldsymbol{\alpha} \mathbf{]}^{\mathbf{2 5}}{ }_{\mathbf{D}}\right.$	$:-88.2\left(c 1.7, \mathrm{CHCl}_{3}\right)$.
$\mathbf{I R}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \tilde{v}$	$: 3391,2968,2101,1646,1224,1277,1044 \mathrm{~cm}^{-1}$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$	$: \delta 1.58-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.93-2.07(\mathrm{~m}$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$1 \mathrm{H}), 2.70(\mathrm{ABq}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 2.84-2.96(\mathrm{~m}, 1 \mathrm{H}), 3.01-$
	$3.11(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{dd}, 1 \mathrm{H}, J=5.9,12.5 \mathrm{~Hz}), 3.39(\mathrm{dd}, 1 \mathrm{H}$,
	$J=4.6,12.5 \mathrm{~Hz}), 3.76(\mathrm{ABq}, 2 \mathrm{H}, J=17.6 \mathrm{~Hz})$.

[^0]$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 166[\mathrm{M}+\mathrm{H}]^{+}, 188[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 50.89; H, 6.71; N, 42.39.
Found: C, 51.15; H, 6.49; N, 42.50.
(S)-5,5a,6,7,8,10-Hexahydropyrrolo[1,2-d]tetrazolo[1,5-a]pyrazine (31):

The compound 30 ($1.4 \mathrm{~g}, 8.5 \mathrm{mmol}$) was dissolved in dry DMF (15 mL) and heated at $140^{\circ} \mathrm{C}$ under nitrogen for 8 h . The reaction mixture was poured into water and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and was purified by silica gel column chromatography with 50 \% EtOAc-light petroleum ether to afford $31(1.2 \mathrm{~g}, 86 \%)$ as a colourless syrup.

Mol. Formula	: $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{5}$
$[\alpha]^{25}{ }_{\text {D }}$: +60.1 (c 0.6, CHCl_{3}).
IR ($\mathbf{C H C l}_{3}$) \tilde{v}	: 2923, 1654, 1384, 1220, $1074 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	$\delta 1.64-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.08$ (m, 2H), 2.12-2.21 (m,
$\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$	$1 \mathrm{H}), 2.44$ (q, 1H, $J=8.8 \mathrm{~Hz}$), 2.73-2.81 (m, 1H), 3.29-3.34
	(m, 1H), 3.56 (d, 1H, $J=15.7 \mathrm{~Hz}$), 3.99 (t, 1H, $J=11.4$
	Hz), 4.52 (d, 1H, $J=15.5 \mathrm{~Hz}$), 4.68 (dd, 1H, $J=3.9,12.2$
	Hz) ppm.
${ }^{13} \mathrm{C}$ NMR	$: \delta 22.8,27.5,47.3,50.8,53.5,59.5,151.2$ ppm.
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	
ESI-MS (m / z)	: $166[\mathrm{M}+\mathrm{H}]^{+}, 188[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis	Calcd.: C, 50.89; H, 6.71; N, 42.39.
	Found: C, 50.74; H, 6.97; N, 42.42.

PRESENT WORK

The imidazole ring system is an important structural feature in biological systems, natural products and drugs. ${ }^{27}$ On the other hand, the structurally similar tetrazole functional group is much less abundant but the use is increasing due to its excellent properties as a metabolically stable isosteric replacement for the carboxylic acid moiety and as a cis peptide bond mimetic. ${ }^{3,13}$ Tetrazoles have also been used as precursors to other heterocycles. ${ }^{28}$ For instance, Losartan (32) ${ }^{29}$ is a Angiotensin II antagonist and commonly used for treatment of hypertension. Tetrazole 34 has also been found to posses binding affinity to benzodiazepine receptors. ${ }^{30}$ Pentylentetrazole (PTZ) (33) has the opposite effect compared to 34 and is extensively used in models for anxiety, mediated by its unspecific interaction with a number of receptors in the CNS. ${ }^{31}$ Mannose mimetics 35 and $\mathbf{3 6}$ have been reported to be inhibitors of α-mannosidase (Figure 12). ${ }^{32,33}$

Losatan (32)

PTZ (33)

34

$\mathrm{R}=\mathrm{H}$
$\mathrm{R}=\mathrm{OH}(36)$

Figure 12

The synthesis of proline peptidomimetics that mimic natural dipeptides has been very attractive. ${ }^{34}$ The proline residue plays an important role in protein secondary structure, and in many biological processes such as protein folding and protein recognition. ${ }^{35}$ The tetrazole substituted proline such as LY300020 (37) (Figure 13) known for its relatively potent, highly selective systemically-active AMPA receptor agonist has been reported. ${ }^{36}$ Previously in chapter-I we have synthesized libraries of triazole compounds by utilizing "Click" chemistry. Then we turned our attention to new class of tetracyclic compounds, namely 11,12,13,13a-Tetrahydro-9H-benzo[e]pyrrolo [1,2-a]tetrazolo[5,1-c][1,4]diazepin 9 -one (38), (12R,13aS)-9-oxo-11,12,13,13a-
tetrahydro-9H-benzo[e]pyrrolo[1,2-a]tetrazol[5,1-c][1,4]diazepin-12-yl acetate (39) and their derivatives (Figure 13) by intramolecular azide-nitrile 1,3-dipolar cycloaddition in order to construct simultaneously the seven-membered heterocycle, tetrazole and pyrazole. With the objective of evaluating the biological activity of this class of tetrazole compounds we synthesized libraries of tetrazole compounds and analysed their efficacy as enzymatic protease inhibitors like serine protease, cysteine protease and aspartase protease. Moreover, keeping in mind the current requisites of synthetic methodologies in the pharmaceutical field, we aimed at optically active targets which could be achieved by utilizing the inexpensive L-proline and trans-4-OH-L-proline as the sources of chiral starting materials.

LY300020 (37)

(38)

(39)

Figure 13

At first Naturally occurring L-proline (9) was treated with $\mathrm{Fmoc}-\mathrm{Cl}$ and NaHCO_{3} in 1,4-dioxane: $\mathrm{H}_{2} \mathrm{O}$ to afford Fmoc protected L-proline (40). ${ }^{37}$ Fmoc protected amide (41) was obtained in 87% yield from 40 by treatment with $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{NH}_{4} \mathrm{HCO}_{3}$ and catalytic amount of pyridine in DMF at room temperature. ${ }^{38}$ Dehydration of amide 41 using cyanuric chloride in DMF at room temperature for 12 h provided Fmoc protected nitrile 42 in 92% yield (Scheme 5). ${ }^{39,40}$ Nitrile 42 was fully characterized by NMR spectroscopy, mass spectroscopy and elemental analysis. The IR spectrum of 42 showed an absorption band at $2124 \mathrm{~cm}^{-1}$ pertaining to nitrile functionality. In the ${ }^{1} \mathrm{H}$ NMR spectrum methine proton attached to nitrile resonated at $\delta 4.27 \mathrm{ppm}$ as multiplet. In the ${ }^{13} \mathrm{C}$ NMR spectrum resonances at $\delta 46.8,47.0$ and $\delta 118.5,118.7 \mathrm{ppm}$ were attributed to methine carbon and nitrile carbon respectively due to rotamers. Rest of the spectrum is in full agreement with the assigned structure of $\mathbf{4 2}$. Fmoc deprotection of $\mathbf{4 2}$ was carried out with $\mathrm{Et}_{2} \mathrm{NH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature to afford free amine $\mathbf{4 3}$ in good yield. ${ }^{41}$

Scheme 5

The corresponding azido acid 27 was obtained by diazotization of 26 with NaNO_{2}, dil. HCl at $0{ }^{\circ} \mathrm{C}$ for 5 h followed by treatment with NaN_{3} at the same temperature. A characteristic peak at $2103 \mathrm{~cm}^{-1}$ in the IR spectrum confirmed the presence of azide group. Azido acid 27 was coupled with amine 25 in the presence of EDCI, HOBt and DIPEA in DMF at rt to afford compound 28a in 81% yield. NMR spectroscopy, mass spectra and elemental analysis are in full agreement with the assigned structure. Azido-nitrile 28a was heated at $140{ }^{\circ} \mathrm{C}$ in DMF for 6 h to yield tetracyclic tetrazole derivative 29a in 88% yield (Scheme 6). Compound 29a was fully characterized by NMR spectroscopy, mass spectroscopy and elemental analysis. In the ${ }^{1} \mathrm{H}$ NMR spectrum the methine proton adjacent to olefin resonated at $\delta 4.82$ (dd, $1 \mathrm{H}, \mathrm{J}=3.4,8.3$ $\mathrm{Hz}) \mathrm{ppm}$. The ${ }^{13} \mathrm{C}$ NMR spectrum showed resonances at $\delta 49.7$ and 154.3 ppm corresponding to methine carbon and quarternary olefin carbon respectively.

Scheme 6

In addition, X-ray crystallographic analysis unambiguously confirmed the structure of 47a (Figure 14). The details of crystal data and structure refinement (Table 5) are given at the end of this section.

Figure 14: ORTEP diagram of compound 47a
This result encouraged us to verify the feasibility of using other aromatic azidoacids under identical reaction conditions. As exemplified in Table 3, the reaction proceeded smoothly to completion, and the corresponding tetrazole-fused tetracyclic products were obtained in 10 to 12 hours with excellent yields and high purity. All tetrazole-fused products were fully characterized by NMR spectroscopy, mass spectroscopy and elemental analysis.

Table 3: Intramolecular 1,3-dipolar cycloaddition reaction under catalyst free condition in DMF at $140^{\circ} \mathrm{C}$
(46a)

Then we turned our interest to commercially available trans-4-hydroxy-L-proline (48) as the starting material to synthesis allied hydroxy-proline derivatives. First 48 was treated with $\mathrm{Boc}_{2} \mathrm{O}$ and NaOH in 1,4-dioxane: $\mathrm{H}_{2} \mathrm{O}$ at room temperature for 12 h to yield N -Boc-derivative (49). It was then treated with $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{NH}_{4} \mathrm{HCO}_{3}$ and catalytic amount of pyridine in DMF to afford amide 50 in 75% yield. Nitrile 51 was obtained by dehydration of amide $\mathbf{5 0}$ using cyanuric chloride in DMF at room temperature for 8 h in good yield. The secondary hydroxyl group of 51 was then protected as acetyl derivative 52 by treating with $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$ and catalytic DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 6 h. Compound 52 was fully characterized by NMR spectroscopy, mass spectroscopy and elementral analysis. Boc deprotection of 52 was carried out with 4 N HCl in EtOAc at 0 ${ }^{\circ} \mathrm{C}$ for 3 h followed by neutralization with NaHCO_{3} to afford free amine 53 in good yield (Scheme 7).

Scheme 7
The amine 53 was coupled in a similar manner with acid 54 in the presence of EDCI, HOBt and $\mathrm{Et}_{3} \mathrm{~N}$ in DMF at room temperature for 10 h to afford azido-nitrile (55a) in 81% yield. Compound $\mathbf{5 5 a}$ was fully characterized by NMR spectroscopy, mass spectroscopy and elemental analysis. Heating the compound 55a to $140{ }^{\circ} \mathrm{C}$ in DMF yielded tetrazole-fused moiety (38a). Purification by silica gel column chromatography afforded pure product 56 a in 75% yield (Scheme 8). NMR spectroscopy, mass spectra and elemental analysis were in full agreement with the assigned structure 8. In the ${ }^{1} \mathrm{H}$

NMR spectrum all resonances are in expected chemical shift values. The presence of a base peak at $m / z=322[\mathrm{M}+\mathrm{Na}]^{+}$in the ESI-MS spectrum confirmed the structure of 38a.

Scheme 8

This result encouraged us to verify the feasibility of other aromatic azido acid derivatives under identical reaction conditions. As exemplified in Table 4, the reaction proceeded smoothly to completion, and the corresponding pyrrolo tetrazole fused tetracyclic products were obtained in 9 to 12 hours with excellent yield and high purity. All products were fully characterized by NMR spectroscopy, mass spectroscopy and elemental analysis.

Table 4: Intramolecular 1,3-dipolar cycloaddition reaction under catalyst free condition in DMF at $140^{\circ} \mathrm{C}$
(55)

In conclusion, we have achieved the regioselective synthesis of several new chiral tetracyclic tetrazole derivatives by intramolecular 1,3-dipolar cycloaddition reaction between azide and nitrile with excellent yield and high purity using L-proline and trans-4-hydroxy-L-proline as the source of chrality.

Table 5: Crystal data and structure refinement for compound 47a

Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrN}_{5} \mathrm{O}$
Formula weight	320.16
Temperature	297(2) K
Wavelength	0.71073 Å
Crystal system, space group	"Orthorhombic" P 212121
Unit cell dimensions	$\begin{aligned} & \mathrm{a}=7.5350(16) \AA \quad \text { alpha }=90 \mathrm{deg} . \\ & \mathrm{b}=15.025(3) \AA \quad \text { beta }=90 \mathrm{deg} . \\ & \mathrm{c}=21.879(5) \AA \quad \text { gamma }=90 \mathrm{deg} . \end{aligned}$
Volume	2477.0(9) \AA^{3}
Z, Calculated density	8, $1.717 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$3.318 \mathrm{~mm}^{-1}$
F (000)	1280
Crystal size	$0.42 \times 0.40 \times 0.11 \mathrm{~mm}$
Theta range for data collection	1.64 to 25.00 deg .
Limiting indices	$-8<=\mathrm{h}<=8,-17<=\mathrm{k}<=9,-26<=\mathrm{l}<=25$
Reflections collected / unique	$12584 / 4345$ [$\mathrm{R}(\mathrm{int})=0.0444]$
Completeness to theta $=25.00$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7116 and 0.3362
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4345 / 0 / 343
Goodness-of-fit on F^{2}	1.015
Final R indices [$\mathrm{I}>2$ sigma (I)]	$\mathrm{R} 1=0.0467, \mathrm{wR} 2=0.1011$
R indices (all data)	$\mathrm{R} 1=0.0776, \mathrm{wR} 2=0.1144$
Absolute structure parameter	-0.009(14)
Largest diff. peak and hole	0.740 and -0.444 e. \AA^{-3}

EXPERIMENTAL

(S)-(9H-Fluoren-9-yl)methyl 2-carbamoylpyrrolidine-1-carboxylate (41):

To a stirred solution of Fmoc protected amino acid 40 ($10.0 \mathrm{~g}, 29.6 \mathrm{mmol}$), pyridine ($1.2 \mathrm{~mL}, 14.8 \mathrm{mmol}$) and $\mathrm{Boc}_{2} \mathrm{O}(9.5 \mathrm{~mL}, 41.4 \mathrm{mmol})$ in 1,4-dioxane (80 mL), ammonium bicarbonate $(3.1 \mathrm{~g}, 38.5 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 12 h . To the reaction mixture water (60 mL) was added and stirred until crystallization was completed. The solid mass was filtered, washed with water ($3 \times 30 \mathrm{~mL}$) and dried to yield $41(8.6 \mathrm{~g}, 87 \%)$ as a white solid.

Mol. Formula	: $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$
$[\alpha]^{25}$: -17.0 (c 1.0, EtOH)
IR ($\left.\mathbf{C H C l}_{3}\right) \widetilde{v}$: 3401, 2982, 1637, 1409, $1094 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$	$: \delta 1.79-2.10(\mathrm{~m}, 4 \mathrm{H}), 3.42-3.48(\mathrm{~m}, 2 \mathrm{H}), 4.00-4.35(\mathrm{~m}$, $2 \mathrm{H}), 4.43-4.54(\mathrm{~m}, 2 \mathrm{H}), 5.44-5.63(\mathrm{~m}, 1.5 \mathrm{H}), 6.61$ (brs, $0.5 \mathrm{H}), 7.32(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.41(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz})$, $7.59(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.75(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}) \mathrm{ppm}$.
$\begin{aligned} & { }^{13} \mathbf{C ~ N M R ~} \\ & \left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}, 100\right. \end{aligned}$	$: \delta 23.2$ and 24.2, 29.0 and $30.9,47.0,60.0,67.4,119.8$, 124.7, 126.9, 127.5, 141.1, 143.6, 155.1 and 155.7, 175.0
MHz)	and 175.4 ppm .
Elemental Analysis	Calcd.: C, 71.41; H, 5.99; N, 8.33.
	Found: C, 71.28; H, 6.25; N, 8.16.

(S)-(9H-Fluoren-9-yl)methyl 2-cyanopyrrolidine-1-carboxylate (42):

Cyanuric chloride ($3.7 \mathrm{~g}, 20.2 \mathrm{mmol}$) was added in one portion to a stirring solution of amide $41(8.5 \mathrm{~g}, 25.3 \mathrm{mmol})$ in DMF at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 12 h . It was quenched with ice-cold water and the solution was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by silica gel column chromatography using 40% ethyl acetate-light petroleum ether to provide 42 $(7.4 \mathrm{~g}, 92 \%)$ as a white solid.

Mol. Formula	: $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$
M. P.	: $115-117{ }^{\circ} \mathrm{C}$
$[\alpha]^{25}$: -65.5 (c 1.5, CHCl_{3})
IR ($\left.\mathrm{CHCl}_{3}\right) \widetilde{v}$: 3401, 2982, 2124, 1637, 1409, $1094 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	$: \delta 2.06-2.29(\mathrm{~m}, 4 \mathrm{H}), 3.35-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.63(\mathrm{~m}$,
$\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$	$1 \mathrm{H}), 4.24-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.54(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{~m}, 1 \mathrm{H})$,
	$1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.67(\mathrm{t}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}), 7.79(\mathrm{~d}, 2 \mathrm{H}, ~ J=$
	$7.5 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR	$: \delta 23.5$ and 24.5, 30.6 and 31.7, 45.8 and 46.2, 46.8 and
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	47.0, 47.3, 67.7 and 68.0, 118.5 and 118.7, 119.9, 124.9,
	$127.0,127.7,141.2,143.5$ and 143.6, 153.6 and 154.1 ppm
ESI-MS (m / z)	: $319[\mathrm{M}+\mathrm{H}]^{+}, 341[\mathrm{M}+\mathrm{Na}]^{+}, 357[\mathrm{M}+\mathrm{K}]^{+}$.
Elemental Analysis	Calcd.: C, 75.45; H, 5.70; N, 8.80.
	Found: C, 75.22; H, 5.93; N, 8.76.

(S)-1-(2-Azido-5-bromobenzoyl)pyrrolidine-2-carbonitrile (46a):

To a solution of compound $42(1.0 \mathrm{~g}, 3.2 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL}), \mathrm{Et}_{2} \mathrm{NH}(4$ mL) was added. The mixture was stirred at room temperature for 3 h . After completion of
the reaction, solvent was removed in rotavapour, and carefully washed 2-3 times with ether. The crude product 43 was proceeded for next reaction without further purification. The crude amine 43 and azido-acid 45 ($0.8 \mathrm{~g}, 3.3 \mathrm{mmol}$) was dissolved in DMF (15 mL) and stirred at $0{ }^{\circ} \mathrm{C}$. Dry DIPEA ($1.1 \mathrm{~mL}, 6.6 \mathrm{mmol}$), EDCI ($1.3 \mathrm{~g}, 6.6 \mathrm{mmol}$) and HOBt $(0.8 \mathrm{~g}, 6.3 \mathrm{mmol})$ were added sequencially to the reaction mixture at same temperature and stirred at rt for 8 h under N_{2}. Reaction mixture was quenched with ice cold water and extracted with EtOAc (3 x 30 mL), washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by silica gel column chromatography using 50% EtOAc-light petroleum ether to afford $\mathbf{4 6 a}(0.82 \mathrm{~g}, 81 \%)$ as a sticky liquid.

Mol. Formula	: $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrN}_{5} \mathrm{O}$
$[\alpha]^{25}{ }_{\text {D }}$: -41.0 (c 1.0, CHCl_{3}).
IR ($\mathbf{C H C l}_{3}$) \widetilde{v}	: 3361, 2981, 2131, 1629, 1425, 1260, $1154 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	$: \delta 2.10-2.36(\mathrm{~m}, 4 \mathrm{H}), 3.29-3.48$ (m, 1H), 3.62-3.77 (m,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$1 \mathrm{H}), 4.39$ (m, 0.2 H$), 4.77-4.91(\mathrm{~m}, 0.8 \mathrm{H}), 7.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$
	$8.6 \mathrm{~Hz}), 7.48$ (d, 1H, $J=2.4 \mathrm{~Hz}), 7.57(\mathrm{dd}, 1 \mathrm{H}, J=2.4,8.6$
	Hz) ppm.
${ }^{13} \mathrm{C}$ NMR	: $\delta 23.2$ and 24.9, 30.4 and 32.2, 45.8 and 47.5, 46.2 and
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	48.6, 117.9, 118.8, 125.5 and 125.7, 126.3, 128.7 and
	$129.4,136.9,138.0,166.0 \mathrm{ppm}$.
ESI-MS (m / z)	: $321[\mathrm{M}+\mathrm{H}]^{+}$.
Elemental Analysis	Calcd.: C, 45.02; H, 3.15; N, 21.88.
	Found: C, 45.39; H, 3.01, N, 22.07.

7-Bromo-11,12,13,13a-tetrahydro-9H-benzo[e]pyrrolo[1,2-a]tetrazolo[5,1-c][1,4] diazepin-9-one (47a):

The compound 46a ($0.7 \mathrm{~g}, 2.2 \mathrm{mmol}$) was dissolved in DMF (10 mL) and heated at $140{ }^{\circ} \mathrm{C}$ for 8 h under N_{2}. The reaction mixture was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by silica gel column chromatography eluting with 60% EtOAc-light petroleum ether to afford $47 \mathrm{a}(0.62 \mathrm{~g}, 88 \%)$ as a white solid.

Mol. Formula $\quad: \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Br}_{5} \mathrm{O}$
M. P. $\quad: 162-163{ }^{\circ} \mathrm{C}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}} \quad:+178.2\left(\right.$ c 1.1, $\left.\mathrm{CHCl}_{3}\right)$.
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \widetilde{v} \quad: 3351,2978,1640,1488,1431,1218,1093 \mathrm{~cm}^{-1}$.
${ }^{1}$ H NMR $: \delta 2.12-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.68(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.25(\mathrm{~m}$,
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 1 \mathrm{H}\right), 3.64-3.92(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{dd}, 1 \mathrm{H}, J=3.4,8.3 \mathrm{~Hz})$, 7.83-7.85 (m, 2H), $8.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.9 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\quad: \delta 23.5,28.2,48.4,49.7,123.9,124.0,128.6,129.3,135.2$,
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \quad 136.2,154.3,161.9 \mathrm{ppm}$.
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 321[\mathrm{M}+\mathrm{H}]^{+}, 323[\mathrm{M}+\mathrm{Na}]^{+}$
Elemental Analysis Calcd.: C, 45.02; H, 3.15; N, 21.88.
Found: C, 45.11; H, 3.30, N, 21.74.

11,12,13,13a-Tetrahydro-9H-benzo[e]pyrrolo[1,2-a]tetrazolo[5,1-c][1,4]diazepin-9one (47b):

Compound 47b was prepared from 46b using the procedure similar to that of 47 a.

Mol. Formula	$: \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}$
M. P.	$: 165{ }^{\circ} \mathrm{C}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{D}$	$:+208.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$
IR $\left(\mathbf{C H C l}_{3}\right) \tilde{v}$	$: 3401,2982,1637,1409,1094 \mathrm{~cm}^{-1}$.

${ }^{1} \mathbf{H}$ NMR $: \delta$ 2.11-2.25 $(\mathrm{m}, 2 \mathrm{H}), 2.47-2.66(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.24(\mathrm{~m}$, $\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 1 \mathrm{H}\right), 3.64-3.92(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{dd}, 1 \mathrm{H}, J=3.3,8.4 \mathrm{~Hz})$, 7.58-7.78 (m, 2H), 7.92 (dd, 1H, $J=1.3,7.9 \mathrm{~Hz}$), 8.15 (dd, $1 \mathrm{H}, J=1.7,7.9 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{13}$ C NMR $\quad: \delta 23.4,28.2,48.2,49.6,122.4,127.2,129.8,130.3,132.2$,
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \quad 133.1,154.5,163.4 \mathrm{ppm}$.
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 242[\mathrm{M}+\mathrm{H}]^{+}, 264[\mathrm{M}+\mathrm{Na}]^{+}, 280[\mathrm{M}+\mathrm{K}]^{+}$.
Elemental Analysis Calcd.: C, 59.74; H, 4.60; N, 29.03.
Found: C, 59.92; H, 4.67; N, 29.13.

6-Chloro-11,12,13,13a-tetrahydro-9H-benzo[e]pyrrolo[1,2-a]tetrazolo[5,1-c][1,4] diazepin-9-one (47c):

Compound 47c was prepared from 46c using the procedure similar to that of $\mathbf{4 7 a}$.

Mol. Formula	: $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClN}_{5} \mathrm{O}$
M. P.	: 210-211 ${ }^{\circ} \mathrm{C}$
$[\alpha]^{25}{ }_{\text {D }}$	$:+168.7$ (с 1.1, $\left.\mathrm{CHCl}_{3}\right)$.
$\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$: 3436, 2926, 1639, 1599, 1426, $1104 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	: δ 2.12-2.26 (m, 2H), 2.49-2.68 (m, 1H), 3.13-3.26 (m,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$1 \mathrm{H}), 3.71$ (dt, 1H, $J=7.8,12.0 \mathrm{~Hz}$), 3.86 (dt, $1 \mathrm{H}, \mathrm{J}=5.9$,
	$12.0 \mathrm{~Hz}), 4.82(\mathrm{dd}, 1 \mathrm{H}, J=3.2,6.3 \mathrm{~Hz}), 7.60(\mathrm{dd}, 1 \mathrm{H}, J=$
	$2.0,8.5 \mathrm{~Hz}), 7.96(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 8.13(\mathrm{~d}, 1 \mathrm{H}, J=8.5$
	$\mathrm{Hz}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR	: $\delta 23.4,28.3,48.3,49.6,122.5,125.4,130.1,131.1,133.8$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	139.3, 154.5, 163.5 ppm .
ESI-MS (m / z)	: $276[\mathrm{M}+\mathrm{H}]^{+}$.

Elemental Analysis Calcd.: C, 52.28; H, 3.66; N, 25.40.
Found: C, 52.17; H, 3.79; N, 25.25.
(S)-1-(2-Azido-5-nitrobenzoyl)pyrrolidine-2-carbonitrile (46d):

$\begin{array}{ll}\text { Mol. Formula } & : \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{3} \\ {[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{D}} & :-26.7\left(c \text { c 1.6, } \mathrm{CHCl}_{3}\right) .\end{array}$
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v} \quad: 3436,2978,2127,1643,1452,1346,1086 \mathrm{~cm}^{-1}$.
${ }^{1}$ H NMR $: \delta 2.06-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.44(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.52(\mathrm{~m}$,
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 1.5 \mathrm{H}\right), 3.65-3.90(\mathrm{~m}, 0.5 \mathrm{H}), 4.40(\mathrm{t}, 0.2 \mathrm{H}, J=4.7 \mathrm{~Hz}), 4.90$ $(\mathrm{t}, 0.8 \mathrm{H}, J=4.7 \mathrm{~Hz}), 7.36(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 8.24(\mathrm{~d}, 1 \mathrm{H}$, $J=2.5 \mathrm{~Hz}), 8.33(\mathrm{dd}, 1 \mathrm{H}, J=2.5,8.9 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $: \delta 23.1$ and 24.9, 30.2 and 32.2, 46.1 and 47.6, 46.3 and $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \quad 48.4,117.7,119.3,124.1,126.2,128.2,143.2,144.2,164.4$ ppm.

Elemental Analysis Calcd.: C, 50.35; H, 3.52; N, 29.36.
Found: C, 50.52; H, 3.27; N, 29.63.

7-Nitro-11,12,13,13a-tetrahydro-9H-benzo[e]pyrrolo[1,2-a]tetrazolo[5,1-c][1,4] diazepin-9-one (47d):

Compound 47 d was prepared from $46 d$ using the procedure similar to that of $\mathbf{4 7 a}$.

Mol. Formula $: \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{3}$
M. P. $\quad: 203{ }^{\circ} \mathrm{C}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{D} \quad:+75.3\left(c 0.8, \mathrm{CHCl}_{3}\right)$.
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \widetilde{v} \quad: 3436,2978,1643,1452,1346,1086 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 1 \mathrm{H}\right), 3.71-3.98(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{dd}, 1 \mathrm{H}, J=3.4,8.3 \mathrm{~Hz})$,
$: \delta 2.16-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.73(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.31(\mathrm{~m}$, $8.19(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 8.57(\mathrm{dd}, 1 \mathrm{H}, J=2.6,8.9 \mathrm{~Hz})$, $9.05(\mathrm{~d}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $: \delta 21.6,23.3,27.9,47.2,49.9,120.4,127.2,130.8,131.3$,
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \quad 132.6,141.5,155.2,162.9 \mathrm{ppm}$.
ESI-MS (m / z) : $287[\mathrm{M}+\mathrm{H}]^{+}, 309[\mathrm{M}+\mathrm{Na}]^{+}$.

Elemental Analysis Calcd.: C, 50.35; H, 3.52; N, 29.36.
Found: C, 50.27; H, 3.46; N, 29.58.

8-Methyl-11,12,13,13a-tetrahydro-9H-benzo[e]pyrrolo[1,2-a]tetrazolo[5,1-c][1,4] diazepin-9-one (47e):

Compound 47 e was prepared from 46 e using the procedure similar to that of $\mathbf{4 7 a}$.

Mol. Formula	: $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}$
M. P.	: $181-182{ }^{\circ} \mathrm{C}$
$[\alpha]^{\mathbf{2 5}}{ }_{\text {D }}$: +81.8 (c 1.1, CHCl_{3}).
$\mathrm{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v}$: 3391, 2925, 1640, 1477, 1404, 1217, $1080 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	$: \delta 2.16-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H})$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	3.12-3.24 (m, 1H), 3.53-3.67 (m, 1H), 3.89-4.01 (m, 1H),
	4.80 (dd, $1 \mathrm{H}, J=2.2,8.2 \mathrm{~Hz}$), $7.44(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz})$,
	7.55 (t, 1H, $=7.7 \mathrm{~Hz}$), 7.69 (d, 1H, $=7.9 \mathrm{~Hz}$) ppm.
${ }^{13} \mathrm{C}$ NMR	: $\delta 21.6,23.3,27.9,47.2,49.9,120.4,127.2,130.8,131.3$,
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$	

132.6, 141.5, 155.2, 162.9 ppm .

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 256[\mathrm{M}+\mathrm{H}]^{+}, 278[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis Calcd.: C, 61.17; H, 5.13; N, 27.43.
Found: C, 61.02; H, 5.29; N, 27.48.
(S)-1-(2-Azido-3-bromo-5-methylbenzoyl)pyrrolidine-2-carbonitrile (46f):

Mol. Formula $\quad: \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{BrN}_{5} \mathrm{O}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}} \quad:-10.9\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \widetilde{v} \quad: 3419,2131,2104,1646,1449,1039 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$
${ }^{13}$ C NMR
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Elemental Analysis $: \delta 2.04-235(\mathrm{~m}, 4 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 3.25-3.47(\mathrm{~m}, 1.5 \mathrm{H})$, $3.64-3.84(\mathrm{~m}, 0.5 \mathrm{H}), 4.35(\mathrm{~m}, 0.25 \mathrm{H}), 4.90(\mathrm{~m}, 0.75 \mathrm{H})$, $7.10(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
$: \delta 20.5,23.2$ and 24.9, 30.5 and 32.1, 45.7 and $46.2,47.7$ and $48.9,117.7,117.9,127.5,131.4,131.5,135.6$ and 135.8, 137.7, 166.1 ppm .

Calcd.: C, 46.73; H, 3.62; N, 20.96.
Found: C, 46.44; H, 3.90; N, 21.17.

5-Bromo-7-methyl-11,12,13,13a-tetrahydro-9H-benzo[e]pyrrolo[1,2-a]tetrazolo[5,1-c][1,4]diazepin-9-one (47f):

Compound $\mathbf{4 7}$ f was prepared from 46 using the procedure similar to that of 47a.

Mol. Formula	: $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{BrN}_{5} \mathrm{O}$
M. P.	: 182-183 ${ }^{\circ} \mathrm{C}$
$[\alpha]^{\mathbf{2 5}}{ }_{\text {D }}$	$:+68.0$ (c 0.7, CHCl_{3}).
$\mathbf{I R}\left(\mathbf{C H C l}_{3}\right) \widetilde{v}$: 3358, 2927, 1636, 1482, 1473, 1218, $1088 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	$: \delta 2.13-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.52-2.64(\mathrm{~m}, 1 \mathrm{H})$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	3.10-3.24 (m, 1H), $3.60(\mathrm{dt}, 1 \mathrm{H}, J=7.9,12.1 \mathrm{~Hz}), 3.80-$
	3.92 (m, 1H), $4.81(\mathrm{dd}, 1 \mathrm{H}, J=2.9,8.2 \mathrm{~Hz}$), 7.80 (d, 1H, J
	$=2.0 \mathrm{~Hz}), 7.84(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR	$: \delta 20.9,23.5,27.9,47.9,49.7,117.2,131.3,131.4,138.5$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	142.0, 155.4, 162.8 ppm.
ESI-MS (m / z)	: $335[\mathrm{M}+\mathrm{H}]^{+}$.

Elemental Analysis Calcd.: C, 46.73; H, 3.62; N, 20.96.
Found: C, 46.83; H, 3.79; N, 20.77.

(S)-1-(2-Azido-5-fluorobenzoyl)pyrrolidine-2-carbonitrile (46g):

Mol. Formula $: \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{FN}_{5} \mathrm{O}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}} \quad:-30.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \widetilde{v} \quad: 3436,2128,1646,1439,1222,1042 \mathrm{~cm}^{-1}$.
${ }^{1}$ H NMR $: \delta 2.04-2.37(\mathrm{~m}, 4 \mathrm{H}), 3.29-3.50(\mathrm{~m}, 1.5 \mathrm{H}), 3.66-3.84(\mathrm{~m}$, $\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 0.5 \mathrm{H}\right), 4.39(\mathrm{~m}, 0.25 \mathrm{H}), 4.88(\mathrm{~m}, 0.75 \mathrm{H}), 7.06-7.11(\mathrm{~m}$, $1 \mathrm{H}), 7.16-7.22(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\quad: \delta 23.1$ and 24.9, 30.4 and 32.3, 45.9 and 47.5, 46.2 and $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \quad 48.5,115.2$ and $115.5,118.1,118.3,120.2,129.2,132.3$, 158.3, 160.7, 165.4.

Elemental Analysis Calcd.: C, 55.60; H, 3.89; N, 27.01.
Found: C, 55.78; H, 3.94; N, 27.23.

7-Fluoro-11,12,13,13a-tetrahydro-9H-benzo[e]pyrrolo[1,2-a]tetrazolo[5,1-c][1,4] diazepin-9-one (47g):

Compound 47 g was prepared from $\mathbf{4 6 g}$ using the procedure similar to that of $\mathbf{4 7 a}$.
Mol. Formula $: \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{FN}_{5} \mathrm{O}$
M. P. $\quad: 172-174{ }^{\circ} \mathrm{C}$
$[\alpha]^{25}{ }_{D}$
$:+50.0\left(c 0.7, \mathrm{CHCl}_{3}\right)$.
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \widetilde{v} \quad: 3400,2924,1643,1498,1387,1095 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $: \delta$ 2.11-2.25 (m, 2H), 2.49-2.68(m, 1H), 3.10-3.24 (m,
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 1 \mathrm{H}\right), 3.64-3.91(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{~d}, 1 \mathrm{H}, J=3.3,8.3 \mathrm{~Hz}), 7.39-$ $7.49(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.96(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\quad: \delta 23.4,28.2,48.3,49.6,118.6,119.1,120.3,120.8,124.7$,
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \quad 124.9,126.5,126.6,129.3,129.5,154.2,159.9,162.1$, 164.9 ppm .

ESI-MS (m / z) $: 260[\mathrm{M}+\mathrm{H}]^{+}$.
Elemental Analysis Calcd.: C, 55.60; H, 3.89; N, 27.01.
Found: C, 55.78; H, 3.94; N, 27.23.
(S)-1-(2-azido-3,5-diiodobenzoyl)pyrrolidine-2-carbonitrile (46h):

Mol. Formula $\quad: \mathrm{C}_{12} \mathrm{H}_{9} \mathrm{I}_{2} \mathrm{~N}_{5} \mathrm{O}$
$\left[\boldsymbol{\alpha} \mathbf{]}^{\mathbf{2 5}}{ }_{\mathbf{D}} \quad:-8.2\left(c \quad 0.5, \mathrm{CHCl}_{3}\right)\right.$.
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \widetilde{v} \quad: 3400,2924,2118,1643,1498,1387,1095 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $: \delta 2.07-2.40(\mathrm{~m}, 4 \mathrm{H}), 3.27-3.54(\mathrm{~m}, 1.6 \mathrm{H}), 3.66-3.84(\mathrm{~m}$, $\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 0.4 \mathrm{H}\right), 4.40(\mathrm{~m}, 0.2 \mathrm{H}), 4.88(\mathrm{~m}, 0.8 \mathrm{H}), 7.61(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0$ $\mathrm{Hz}), 8.18(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $: \delta 23.2$ and 24.9, 30.5 and 32.1, 45.9 and 46.3, 48.0 and $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \quad 49.0,89.9,93.0,117.5,131.6,136.6,137.2,148.9$ and 149.0, 164.1 ppm .

Elemental Analysis Calcd.: C, 29.23; H, 1.84; N, 14.20.
Found: C, 28.97; H, 1.98; N, 14.51.

7-Diiodo-11,12,13,13a-tetrahydro-9H-benzo[e]pyrrolo[1,2-a]tetrazolo[5,1-c][1,4] diazepin-9-one (47h):

Compound 47h was prepared from 46h using the procedure similar to that of 47a.

Mol. Formula	: $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{I}_{2} \mathrm{~N}_{5} \mathrm{O}$
$[\alpha]^{25}{ }_{\text {D }}$: +130.4 (c 0.5, CHCl_{3}).
IR ($\mathbf{C H C l}_{3}$) \widetilde{v}	: 2926, 1649, 1467, 1345, $1195 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	: $\delta 1.98-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.63(\mathrm{~m}$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$2 \mathrm{H}), 3.65-3.88(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 8.35(\mathrm{~d}$,
	$1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 8.38(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz})$.

Elemental Analysis Calcd.: C, 29.23; H, 1.84; N, 14.20.
Found: C, 29.41; H, 1.73; N, 14.37.
(S)-1-(2-azido-4,5-dimethoxybenzoyl)pyrrolidine-2-carbonitrile (46i):

Mol. Formula $\quad: \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{3}$
M. P. $\quad: 145-146{ }^{\circ} \mathrm{C}$
$[\alpha]^{\mathbf{2 5}}{ }_{\mathbf{D}} \quad:-28.6\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$.
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \widetilde{v} \quad: 3351,2936,2112,1606,1515,1421,1247,1114 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $: \delta \operatorname{2.05-2.37}(\mathrm{m}, 4 \mathrm{H}), 3.33-3.52(\mathrm{~m}, 1.5 \mathrm{H}), 3.68-3.78(\mathrm{~m}$,
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 0.5 \mathrm{H}\right), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 4.45(\mathrm{~m}, 0.3 \mathrm{H}), 4.88(\mathrm{~m}$, $0.7 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\quad: \delta 24.9,30.4,46.3,47.6,56.2,56.3,101.6,110.7,118.3$, $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \quad 119.4,128.9,146.6,151.1,166.9 \mathrm{ppm}$.

Elemental Analysis Calcd.: C, 55.81; H, 5.02; N, 23.24.
Found: C, 55.64; H, 5.31; N, 23.05.

6,7-Dimethoxy-11,12,13,13a-tetrahydro-9H-benzo[e]pyrrolo[1,2-a]tetrazolo[5,1-c][1,4]diazepin-9-one (47i):

Mol. Formula $: \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{3}$
M. P. $\quad: 228-230{ }^{\circ} \mathrm{C}$
$[\alpha]^{25}{ }_{D}$
$:+142.4\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \widetilde{v} \quad: 3436,2977,1634,1608,1519,1427,1270,1114 \mathrm{~cm}^{-1}$.
${ }^{1}$ H NMR $\quad: \delta 2.09-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.23(\mathrm{~m}, 1 \mathrm{H})$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 3.63-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 4.77(\mathrm{dd}, 1 \mathrm{H}$, $J=3.3,8.2 \mathrm{~Hz}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.5(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.

13C NMR $: \delta 23.4,28.1,48.2,49.7,56.3,56.6,104.7,112.9,119.5$,
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \quad 124.3,149.6,152.5,154.0,163.3 \mathrm{ppm}$.
ESI-MS (m / z) : $302[\mathrm{M}+\mathrm{H}]^{+}$.
Elemental Analysis Calcd.: C, 55.81; H, 5.02; N, 23.24.
Found: C, 55.76; H, 5.13; N, 23.31.

(2S,4R)-tert-Butyl 2-carbamoyl-4-hydroxypyrrolidine-1-carboxylate (50):

To a stirred solution of Boc protected amino acid $49(6.5 \mathrm{~g}, 28.1 \mathrm{mmol})$, pyridine $(1.1 \mathrm{~mL}, 14.1 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(9.0 \mathrm{~mL}, 39.3 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(60 \mathrm{~mL})$, ammonium bicarbonate ($2.8 \mathrm{~g}, 36.5 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 12 h and then quenched with water $(60 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$), washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to yield 50 ($4.8 \mathrm{~g}, 75 \%$) as a sticky liquid.

Mol. Formula	$: \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$
$\mathbf{I R}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \tilde{v}$	$: 3423,2957,1648,1489,1367,1243 \mathrm{~cm}^{-1}$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}$	$: \delta 1.40(\mathrm{~s}, 9 \mathrm{H}), 2.00-2.23(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.49(\mathrm{~m}, 2 \mathrm{H})$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$4.25-4.35(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}$	$: \delta 28.0,37.6,39.3,54.7,59.2,65.8,68.8,81.0,154.9$,
$\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}, 100\right.$	176.3 ppm.

(2S,4R)-tert-Butyl 4-acetoxy-2-cyanopyrrolidine-1-carboxylate (52):

Cyanuric chloride ($2.9 \mathrm{~g}, 15.6 \mathrm{mmol}$) was added in one portion to a stirring solution of amide $\mathbf{5 0}(4.5 \mathrm{~g}, 19.5 \mathrm{mmol})$ in DMF at $0^{\circ} \mathrm{C}$ and stirred at room temperature for 8 h . The reaction mixture was quenched with ice-cooled water and the solution was extracted with ethyl acetate (3 x 100 mL). The organic layer was washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to yield crude product $51(3.3 \mathrm{~g})$.

To a solution of $\mathbf{5 1}(3.3 \mathrm{~g}, 15.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added $\mathrm{Ac}_{2} \mathrm{O}$ $(2.9 \mathrm{~mL}, 31.0 \mathrm{mmol})$ followed by $\mathrm{Et}_{3} \mathrm{~N}(5.4 \mathrm{~mL}, 38.7 \mathrm{mmol})$ and catalytic amount of

DMAP. The reaction mixture was stirred for 6 h and then quenched with ice-cooled water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue obtained was purified by column chromatography eluting with 35% EtOAc-light petroleum ether to furnish acetate 52 (3.4 g, 73% over two steps) as a colourless oil.

Mol. Formula $\quad: \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \tilde{v} \quad: 3436,2974,2109,1702,1639,1412,1156 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $: \delta 1.53(\mathrm{~s}, 9 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.74(\mathrm{~m}$,
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 2 \mathrm{H}\right), 4.48-4.60(\mathrm{~m}, 1 \mathrm{H}), 5.30($ quin, $1 \mathrm{H}, J=3.5 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\quad: \delta$ 20.7, 28.1, 36.0 and 36.9, 45.2 and 45.4, 51.3, 70.8 and
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \quad 71.6,81.4$ and $81.8,118.1,152.6$ and $153.2,169.7 \mathrm{ppm}$.
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 255[\mathrm{M}+\mathrm{H}]^{+}$.
Elemental Analysis Calcd.: C, 56.68; H, 7.13; N, 11.02.
Found: C, 56.45; H, 7.37; N, 11.28.
(1R,4R)-3-(2-Azidobenzoyl)-4-cyanocyclopentyl acetate (55a):

To a stirred solution of $52(0.5 \mathrm{~g}, 1.96 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL}) \mathrm{TFA}(2 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ to rt for 4 h . After this, the solution was concentrated and azeotropically dried with dry benzene to give crude amine 53. To the stirred solution of amine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-DMF ($1: 1,10 \mathrm{~mL}$) at $0{ }^{\circ} \mathrm{C}$ were added sequencially acid 54 ($320 \mathrm{mg}, 1.96 \mathrm{mmol}$), DIPEA ($1.0 \mathrm{~mL}, 5.97 \mathrm{mmol}$), EDCI (0.75 g , 3.92 mmol) and HOBt ($485 \mathrm{mg}, 3.58 \mathrm{mmol}$) under argon atmosphere. The reaction mixture was stirred at rt for 10 h , then quench with ice cold water $(10 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc (3 x 30 mL) and the combined EtOAc extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude residue was purified by silica gel column chromatography by eluting with 70\% ethyl acetate-light petroleum ether to afford $\mathbf{5 5 a}(475 \mathrm{mg}, 81 \%)$ as a sticky liquid.

Mol. Formula $: \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{3}$
$[\alpha]^{25}{ }_{\mathbf{D}} \quad:+14.7\left(c \quad 0.9, \mathrm{CHCl}_{3}\right)$.
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \widetilde{v} \quad: 3392,2924,2132,1742,1701,1426,1219,1067 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $: \delta 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{q}, 2 \mathrm{H}, J=4.2 \mathrm{~Hz}), 3.38(\mathrm{~d}, 1 \mathrm{H}, J=$
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 12.3 \mathrm{~Hz}\right), 3.75(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.2,12.3 \mathrm{~Hz}), 4.97(\mathrm{t}, 1 \mathrm{H}, J=$
$8.3 \mathrm{~Hz}), 5.27(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 7.8 Hz), 7.49 (m, 1H) ppm.

Elemental Analysis Calcd.: C, 56.18; H, 4.38; N, 23.40.
Found: C, 56.47; H, 4.20; N, 23.59.
(12R,13aS)-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]pyrrolo[1,2-a]tetrazolo[5,1-c][1,4]diazepin-12-yl acetate (56a):

The compound 55a ($400 \mathrm{mg}, 1.33 \mathrm{mmol}$) was dissolved in DMF $(10 \mathrm{~mL})$ and heated at $140^{\circ} \mathrm{C}$ for 10 h under N_{2}. The reaction mixture was extracted with EtOAc (3 x 15 mL), washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by silica gel column chromatography eluting with 75\% EtOAc-light petroleum ether to afford $\mathbf{5 6 a}(330 \mathrm{mg}, 83 \%)$ as a sticky liquid.

Mol. Formula $\quad: \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{3}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{D} \quad:+144.5\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \widetilde{v} \quad: 3370,2925,1698,1434,1358,1186 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR
: $\delta 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{ddt}, 1 \mathrm{H}, J=2.0,7.6,14.5 \mathrm{~Hz}), 3.37$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$ (ddd, $1 \mathrm{H}, J=4.8,8.8,14.1 \mathrm{~Hz}$), $3.81(\mathrm{dd}, 1 \mathrm{H}, J=4.3$, $13.9 \mathrm{~Hz}), 4.17(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 5.02(\mathrm{t}, 1 \mathrm{H}, J=8.1$ $\mathrm{Hz}), 5.54(\mathrm{t}, 1 \mathrm{H}, J=4.3 \mathrm{~Hz}), 7.66(\mathrm{dt}, 1 \mathrm{H}, J=1.3,7.6$ $\mathrm{Hz}), 7.78(\mathrm{dt}, 1 \mathrm{H}, J=1.6,7.9 \mathrm{~Hz}), 7.98(\mathrm{dd}, 1 \mathrm{H}, J=1.3$, $8.0 \mathrm{~Hz}), 8.23(\mathrm{dd}, 1 \mathrm{H}, J=1.6,7.7 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\quad: \delta 21.0,34.6,48.3,53.5,70.8,122.5,126.5,129.9,130.3$,
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$
132.7, 133.4, 153.7, 163.6, 169.9 ppm .

ESI-MS (m / z)
: $300[\mathrm{M}+\mathrm{H}]^{+}, 317\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 322[\mathrm{M}+\mathrm{Na}]^{+}$.
Elemental Analysis
Calcd.: C, 56.18; H, 4.38; N, 23.40.
Found: C, 56.04; H, 4.60; N, 23.33.
(12R,13aS)-7-Bromo-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]pyrrolo[1,2-a]-tetrazolo[5,1-c][1,4]diazepin-12-yl acetate (56c):

Compound 56c was prepared from 55c using the procedure similar to that of $\mathbf{5 6 a}$.
Mol. Formula
$\left[\boldsymbol{\alpha} \boldsymbol{\alpha}^{\mathbf{2 5}} \mathbf{D}\right.$
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

Elemental Analysis Calcd.: C, 44.46; H, 3.20; N, 18.52.
Found: C, 44.31; H, 3.47; N, 18.64.

REFERENCES

1. (a) Lunn, W. H.; Schoepp, D. D.; Calligaro, D. O.; Vasileff, R. T.; Heinz, L. J.; Salhoff, C. R.; O’Malley, P. J. J. Med. Chem. 1992, 35, 4608-4612. (b) Ornstein, P. L.; Arnold, M. B.; Evrard, D.; Leander, J. D.; Lodge, D.; Shoepp, D. D. Bioorg. Med. Chem. Lett. 1993, 3, 43-48.
2. Zablocky, J. A.; Miyano, M.; Sashidhar, N. R.; Panzer-Knodle, S.; Nicholson, N.; Feigen, L. J. Med. Chem. 1992, 35, 4914-4917.
3. (a) Zabrocki, J.; Smith, G. D.; Dunbar, J. B., Jr.; Iijima, H.; Marshall, G. R. J. Am. Chem. Soc. 1988, 110, 5875-5880. (b) Bartlett, P. A.; Acher, F. Bull. Soc. Chim. Fr. 1986, 771-775.
4. (a) Greenamyre, J. T.; Young, A. B. Neurobiol. Aging 1969, 10, 593. (b) Meldrum, B. Cerebrovasc. Brain. Metab. Rev. 1990, 2, 27.
5. Greenamyre, J. T.; O’Brien, C. F. Arch. Neural. 1991, 46, 977.
6. Wong, E. H. F.; Kemp, J.; Annu. A. Rev. Pharmacol. Toxicol. 1991, 31, 491.
7. Schoepp, D. D.; Smith, C. L.; Lodge, D.; Millar, J. D.; Leander, J. D.; Sacaan, A.; Lunn, W. H. W. Eur. J. Pharmacol. 1991, 203, 237-243.
8. (a) Goodman, L. S.; Wintrobe, M. M.; Dameshek, W.; Goodman, M. J.; Gilman, A.; McLennan, M. T. J. Am. Med. Assoc. 1946, 105, 475-476. Reprinted in J. Am. Med. Assoc. 1984, 251, 2255-2261. (b) Silverman, R. B. "The Organic Chemistry of Drug Design and Drug Action". 2004 (2nd edition).
9. (a) McGuire, J. J.; Russell, C. A.; Bolanowska, W. E.; Freitag, C. M.; Jones, C. S.; Kalman, T. I. Cancer Res. 1990, 50, 1726. (b) Itoh, F.; Yukishige, K.; Wajima, M.; Ootsu, K.; Akimoto, H. Chem. Pharm. Bull. 1995, 43, 230-235.
10. Sobrero, A.; Berlino. J. R. Clinical aspects of drug resistance. Cancer Surv. 1986, 5, 93-107.
11. (a) Fleming, A. Brit J Exper Path. 1929, 10, 226 (b) Florey, H. Conquest1953, 41, 4
12. Smissman, E. E.; Terada, A.; Ei-Antably, S. J. Med. Chem. 1976, 19, 165-167.
13. (a) Morley, J. S. J. Chem. Soc. 1969, 809-813. (b) Singh, H.; Chawla, A. S.; Kapoor, V. K.; Paul, D.; Malhotra, R. K. Prog. Med. Chem. 1980, 17, 151-183.
14. Yu, K.-L.; Johnson, R. L. J. Org. Chem. 1987, 52, 2051-2059.
15. (a) Wu, T.; Yi, B.-H.; Li, D. Inorg. Chem. 2005, 44, 4130-4132. (b) Yu, Z.; Wang, X.; Feng, Y.; Zhong, X. Inorg. Chem. Commun. 2004, 7, 492-494.
16. Bond, A. D.; Fleming, A.; Kelleher, F.; McGinley, J.; Prajapati, V.; Skovsgaard, S. Tetrahedron. 2007, 63, 6835-6842.
17. (a) Butler, R. N. In Comprehensive Heterocyclic Chemistry II; Pergammon: Oxford, U.K., 1996, Vol. 4, pp 621-678. (b) Park, H.; Merz, K. M. J. Med. Chem. 2005, 48, 1630.
18. Herr. R. J. Bioorg. Med. Chem. 2002, 10, 3379.
19. (a) Palazzi, A.; Stagni, S.; Selva, S.; Monari, M. J. Organomet. Chem. 2003, 669, 135. (b) Kim, Y.-J.; Kwak, Y.-S.; Lee, S.-W. J. Organomet. Chem. 2000, 603, 152.
20. (a) Gupta, K.; Rim, C. Y.; Oh, C. H. Synlett. 2004, 2227. (b) Gupta, A. K.; Song, C. H.; Oh, C. H. Tetrahedron Lett. 2004, 45, 4113.
21. a) Braun, J. V.; W. Keller. Ber. Dtsch. Chem. Ges. 1932, 65, 1677. (b) Herbst, R. M.; Froberger, C. F. J. Org. Chem. 1957, 22, 1050.
22. (a) Sauer, J.; Huisgen, R.; Strum, H. J. Tetrahedron 1960, 11, 241 (b) Huff, B. E.; Staszak, M. A. Tetrahedron Lett. 1993, 34, 8011. (c) Wittenberger, S. J.; Donner, B. G. J. Org. Chem. 1993, 58, 4139. (d) Bosch, L.; Vilarrasa, J. Angew. Chem. Int. Ed. 2007, 46, 3926.
23. (a) Carpenter, W. R. J. Org. Chem. 1962, 27, 2085-2088. (b) Quast, H.; Bieber, L. Tetrahedron Lett. 1976, 18, 1485-1486.
24. (a) The Chemistry of the Cyano Group; Rappaport, Z., Ed.; Interscience Publish: London, 1970; p 351. (b) Smith, P. A. S.; Clegg, J. M.; Hall, J. H. J. Org. Chem. 1958, 23, 524. (c) Demko, Z. P.; Sharpless, K. B. 2001, 3, 4091-4094.
25. Ager, D. J.; Prakash, I. Org. Process. Res \& Devepl. 2003, 7, 164-167.
26. (a) Demko, Z. P.; Sharpless, K. B. J. Org. Chem. 2001, 66, 7945-7950. (b) Himo, F.; Demko, Z. P.; Noodleman, L. J. Org. Chem. 2003, 68, 9076. (c) Couty, F.; Durrat, F.; Prim, D. Tetrahedron Lett. 2004, 45, 3725-3728.
27. (a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893-930. (b)

Grimmett, M. R. Compr. Heterocycl. Chem. II. 1996, 3, 77-220.
28. Moderhack, D. J. Pract. Chem. 1998, 340, 687-709.
29. (a) Ek, F.; Wistrand, L.-G.; Frejd, T. Tetrahedron 2003, 59, 6759-6769. (b) Aureggi, V.; Sedelmeier, G. Angew. Chem. 2007, 119, 8592-8596.
30. Daya, S.; Kaye, P. T.; Mphahlele, M. J. Med. Sci. Res. 1996, 24, 137-141.
31. Jung, M. E.; Lal, H.; Gatch, M. B. Neurosci. Biobehavioral, Rev. 2002, 26, 429.
32. Devis, B.; Brandstetter, T. W.; Smith, C.; Hackett, L.; Winchester, B. G.; Fleet, G. W. J. Tetrahedron Lett. 1995, 36, 7507-7510.
33. Brandstetter, T. W.; Devis, B.; Hyett, D.; Smith, C.; Hackett, L.; Winchester, B. G.; Fleet, G. W. J. Tetrahedron Lett. 1995, 36, 7511-7514.
34. (a) Hanessian, S.; McNaughton-Smith, G.; Lombart, H. G.; Lubell, W. D. Tetrahedron. 1997, 53, 12789. (b) Vivet, B.; Cavelier, F.; Martinez, J. Eur. J. Org. Chem. 2000, 807-811.
35. Voet, D.; Voet, J.; Pratt, C. Fundamentals of Biochemistry; Wiley: New York, NY, 1999; pp 127-128.
36. (a) Monn, J. A.; Valli, M. V.; True, R. A.; Schoepp, D. D.; Leander, J. D.; Lodge, D. Bioorg. Med. Chem. Lett. 1993, 3, 95-99. (b) Lenda, F.; Guenoun, F.; Martinez, J.; Lamaty, F. Tetrahedron Lett. 2007, 48, 805-808.
37. Carpino, L. A.; Han, G. Y.; J. Org. Chem. 1972, 37, 3404.
38. Pozdnev, V. F. Tetrahedron Lett. 1995, 36, 7115-7118.
39. (a) Spero, D. M.; Kapadia, S. J. Org. Chem. 1996, 61, 7398-7401. (b) Demko, Z. P.; Sharpless, K. B. Org. Lett. 2002, 4, 2525-2527.
40. (a) Iyer, M. S.; Gigstad, K. M.; Namdev, N. D.; Lipton, M. J. Am. Chem. Soc. 1996, 118, 4910-4911. (b) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901-4902. (c) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 53155316. (d) Yet, L. Angew. Chem.,Int. Ed. 2001, 40, 875-877.
41. (a) Sureshbabu, V. V.; Venkataramanarao, R.; Naik, S. A.; Reddy, G. C. Tetrahedron Lett. 2007, 48, 7038-7041. (b) Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.; Gold, J. B.; Ley, S. V. Org. Biomol. Chem. 2005, 3, 84-96.

Since the discovery of penicillin from Penicillium notatum in the 1940s, terrestrial microorganisms have been a key source of many drug candidater in the pharmaceutical industry. These development of drugs from terrestrial microorganisms suggest that their marine counterparts might also be a potentially useful source for new drug leads. Indeed, investigations of marine cyanobacteria, for example, have shown that these organisms are prolific producers of secondary metabolites, many of which possess a wide range of biological activities. ${ }^{1}$ Marine organism like cyanobacteria, molluskas and sponges are the most productive source of peptides, alkaloids, terpenoids, fatty acids, lipids and steroids.

The freshwater cyanobacterium Lyngbya wollei forms dense mats in lentic systems throughout the southeastern United States and produces paralytic shellfish poisons (PSPs), such as saxitoxins, that could provide a chemical defense against herbivory. In addition, Lyngbya filaments are surrounded by a prominent extracellular polysaccharide sheath that might function as a structural defense against herbivory. These marine organisms are rich in bioactive secondary metabolites. Hence their natural products, which constitute the secondary metabolite, are often of novel chemical structure that are usually dissimilar from their terrestrial counterparts. The major classes of marine organisms that have yielded meaningful lead compounds include sponges, ascidians, echinoderms, corals, algae, and bacteria.

The isolation, characterization and evaluation of biological activity of peptides from marine sponges constitute a paramount important area of research for long time. These peptides exhibit pronounced biological activities such as insectidal, antimicrobial, antiviral, antitumor, tumor promotive, anti-inflammatory and immunosuppressive action. Some of these peptides act as effective drugs or as a lead compound in drug discovery while others have proven to be useful in studies directed towards the elucidation of biochemical pathways. ${ }^{2}$ Many of these bioactive compounds exhibit cyclic structure. Cyclic structures reduce peptide conformational freedom and often result in high receptor binding affinities by reducing unfavorable entropic effects. For this reasons the cyclic peptides often make promising lead compounds in drug discovery. ${ }^{3}$ Isolation and characterization of these cyclic peptides remain a challenge to date. However recent
developments in analytical and spectroscopic techniques allow us to characterize these isolated cyclic peptides. These include: (1) Development of reversed-phase HPLC enables the isolation of peptides from a mixture of related metabolites. (2) Advances in spectroscopy, especially 2D NMR and FAB mass spectroscopy allow us to assign the peptide structure, since traditional sequence analysis of unusual peptides cannot be accomplished by Edman degradation due to the presence of blocked N -termini and β - or γ-amino acid residues. (3) Progress in chiral chromatography allows the assignment of absolute configuration of amino acids with small amounts of material. With this techniques many biologically active cyclic depsipeptide have been isolated from different sources like marine sponge, cyanobacteria etc. These include Ramoplanine A2, ${ }^{4}$ Tamandarin, ${ }^{5}$ Wewakpeptins, ${ }^{6}$ LargamidesA-H, ${ }^{7}$ Tasipeptins A and B, ${ }^{8}$ Homodolastatin $16,{ }^{9}$ Symplostatin, ${ }^{10}$ Vancomycin ${ }^{11}$ etc. Sponge peptides appear to be important potential drugs; cyclotheonamides serve as a model compound for antithrombin drugs; discodermins ${ }^{12}$ are potential antitumor promoting drugs; theonellamide F^{13} exhibits an antifungal drug; calyculins are useful biochemical reagents. Here we have discussed some biologically active cyclic and linear depsipeptide extracted from Cyanobacterium Lyngbya. ${ }^{1,14}$

Cyclic Depsipeptide from Cyanobacterium Lyngbya

Marine cyanobacteria was collected from the wild and exceptionally rich sources of structurally unique and biologically-active natural products. In this regard, Antillatoxin (1), ${ }^{15}$ a potent brine shrimp toxin from a marine cyanobacterium, Lyngbya majuscule was isolated as an amorphous powder from the ichthyotoxic crude extract by repetitive chromatography on silica and RP- 18 gels, followed by final purification using RP-18 HPLC. Pure antillatoxin was analyzed for $\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{5}$ by HR FABMS ($\mathrm{m} / \mathrm{z}=504.3436$) and displayed strong amide carbonyl stretching typical of peptides $\left(\gamma_{\mathrm{C}=\mathrm{O}}=1639 \mathrm{~cm}^{-1}\right)$ together with an ester carbonyl $\left(\gamma_{\mathrm{C}=\mathrm{O}}=1731 \mathrm{~cm}^{-1}\right)$ stretch. ${ }^{13} \mathrm{C}$ NMR data indicate the presence of four ester amide carbonyls and six olefinic carbon atoms. The amino acid sequence was determined by NOESY, COSY and HMBC spectra analysis while the absolute stereochemistry was established by acid hydrolysis followed by HPLC
separation of amino acid residue. Antillatoxin (1) $\left(\mathrm{LD}_{50}=0.05 \mu \mathrm{~g} / \mathrm{mL}\right)$ is a strong molluskicidal agent having a novel structure.

Antillatoxin (1)
Emericellamide $A^{16}(2)$ was isolated as a white powder from the co-culture of cyanobacterium marine-derived fungus Emericella sp. in 2006. Elemental analysis indicated a molecular formula of $\mathrm{C}_{31} \mathrm{H}_{55} \mathrm{~N}_{5} \mathrm{O}_{7}$ and ESI mass spectrometry gave a $[\mathrm{M}+\mathrm{H}]^{+}$ ion at $m / z=610.4$. Spectral data from NMR, HSQC, DEPT, COSY, TOCSY, HMBC, ROESY spectrum were used to determine the structure of monocyclic depsipeptide. Hydrolysis of Emericellamide A using 6 N HCl yielded the free amino acid units. The hydrolysis products were derivatized using the Marfey reagent and analyzed by LC/MS. ${ }^{17}$ Comparison with the retention times of authentic Marfey standards of L- and D-Ala, Val, and Leu showed that these amino acids possess L configurations. Emericellamide A (2) displayed moderate antimicrobial activity against methicillin-resistant Staphylococcus aureus (MIC: $3.8 \mu \mathrm{M}$), but weak cytotoxicity against the HCT-116 human colon carcinoma cell line ($\mathrm{IC}_{50}: 23 \mu \mathrm{M}$).

Emiricellamide A (2)
The marine cyanobacterium (blue-green algae) Lyngbya majuscula Gomont (Oscillatoriaceae) is a prolific source of chemically diverse classes of bioactive secondary metabolites. For example, Yanucamide $\mathrm{A}^{18}(\mathbf{3})$ was isolated from the lipid extract of a Lyngbya majuscule in 2000 by Gerwick and co-workers at Yanuca Island, Fiji. The
organic extract was subjected to silica gel vacuum liquid chromatography (VLC) using EtOAc in hexanes. Purification of the fraction containing the yanucamide A was performed on a C_{18} VLC using a stepwise gradient elution from $60 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}$ to $100 \% \mathrm{MeOH}$. Final purification was carried over reversed-phase HPLC (ODS) to afford 3. Yanucamides A (3) exhibited strong brine shrimp toxicity $\left(\mathrm{LD}_{50}, 5 \mathrm{ppm}\right)$. Metabolites Kulolide- $1^{18,19 a, 19 b}$ (4) and Kulokainalide $-1^{18,19 a, 19 \mathrm{c}}$ (5) were isolated from the marine mollusk Philinopsis speciosa by Scheuer and co-workers in 2000. The mollusk Philinopsis speciosa was extracted with EtOH and then with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (1:1). The combined extracts were evaporated and separated by solvent partition, ODS flash chromatography, gel filtration, and repetitive ODS HPLC, which yielded both kulolide-1 and kulokainalide-1. Both compounds contain a unique 2,2-dimethyl-3-hydroxy-7octynoic acid (Dhoya) moiety.

Yanucamide A (3)

Kulokainalide-1 (5)

Kulolide-1 (4)
Jaspamide ${ }^{20 a, 20 c}$ (6) and Geodiamolide (7), ${ }^{20 b, 20 c}$ the first bioactive peptides from sponges of the order Choristida (Jaspls sp), were cyclic depsipeptides sharing similar
structural features. This includes presence of an 11-carbon hydroxy acid and a halogenated aromatic amino

Jaspamide A (6)

Geodiamolide A (7)

Lyngbyabellin $A^{21}(\mathbf{8})$, a significantly cytotoxic compound with unusual structural features, was isolated from a Guamanian strain of the marine cyanobacterium Lyngbya majuscula. in 2000 by Mooberry and co-workers at Guam. This novel peptolide is structurally related to Dolabellin ${ }^{21}$ (9). Both depsipeptides bear a dichlorinated β-hydroxy acid and two functionalized thiazole carboxylic acid units. Its chemical structure has been elucidated by spectral analysis, including 2D NMR techniques. The absolute stereochemistry of $\mathbf{8}$ was determined by chiral HPLC analysis of hydrolysed products and by characterization of its degradation products methyl 7,7-dichloro-3-hydroxy-2,2dimethyloctanoate and the corresponding acid. Molecular modeling was performed to validate the proposed structure.

Lyngbyaline (8)

Dolabellin (9)

Lyngbyabellin A (8) exhibits moderate cytotoxicity against KB cell (a human nasopharyngeal carcinoma cell line) and LoVo cell (a human colon adenocarcinoma cell line), with IC_{50} values of $0.03 \mu \mathrm{~g} / \mathrm{mL}$ and $0.50 \mu \mathrm{~g} / \mathrm{mL}$, respectively. In vivo trials reveal that Lyngbyaline A is toxic to mice.

Linear depsipeptide from Cyanobacterium Lyngbya

Dragomabin ${ }^{22}$ (10) and Dragonamide A^{22} (11), linear alkynoic lipopeptides have been isolated from a Panamanian strain of the marine cyanobacterium Lyngbya majuscule in 2007 by Mc Phail et. al. The planar structure of these two compounds were determined by NMR spectroscopy in combination with mass spectrometry. Their stereo configuration was established by chiral HPLC and by comparison of their optical rotations and NMR data with literature values. Dragomabin (10) and Dragonamide A (11) showed good antimalarial activity of $\mathrm{IC}_{50} 6.0$ and $7.7 \mu \mathrm{M}$ respectively.

Recently, one cyclic depsipeptide, Palau'amide was isolated from cynobacterium Lyngbya, which had an IC_{50} value of 13 nM against KB cells. Palau'amide (12) was characterized by a peptide fragment and a polyketide chain. The complex structural feature and interesting biological profile prompted us to undertake its total synthesis.

Palau'amide (12)

Extraction and Isolation of Palau'amide (12)

In the spring of 2000, Moore and co-workers isolated and established the structure of palau'amide (12), ${ }^{23}$ a 24 -membered cyclic depsipeptide. The dark reddish-black clumps of cyanobacterium were extracted with $1: 1 \mathrm{EtOAc} / \mathrm{MeOH}$. The lipophilic extract was subsequently partitioned between hexane and 80% aqueous MeOH . After drying, the aqueous methanol residue was partitioned between water and n-butanol. Normal-phase flash chromatography of the organic layer with increasing amounts of methanol in dichloromethane was performed to separate various fractions. The fraction containing 5\% methanol primarily exhibited cytotoxicity. This sample was purified twice by RP-HPLC [Ultracarb ODS 30, $250 \times 10 \mathrm{~mm}$, flow rate $3 \mathrm{~mL} / \mathrm{min}$, at 220 nm], first with $70 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$ and then with $80 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}$ afforded palau'amide. High-resolution mass spectrometry produced a $[\mathrm{M}+\mathrm{Na}]^{+}$ion at $m / z 874.5$ that afforded a molecular formula of $\mathrm{C}_{46} \mathrm{H}_{69} \mathrm{O}_{10} \mathrm{~N}_{5}$. The ${ }^{13} \mathrm{C}$ NMR spectrum contained seven carbonyls, five of which were amides based on the presence of two secondary amide ($\delta_{\mathrm{H}} 8.17,8.57$) and three N methylamide proton signals ($\delta_{\mathrm{H}} 2.87,3.01,3.36$). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, COSY, HMBC, TOCSY, ROESY, HETLOC and HSQMBC experiments were performed to determine the polyketide and the sequence of amino acids. The polyketide unit was found to be 5,7-dihydroxy-2,6-dimethyldodec-2-en-11-ynoicacid (Dddd) moiety. The absolute configuration of the amino acid residue was addressed by Marfey's analysis. Chiral HPLC of the acid hydrolyzed amino acid residues on comparison with authentic samples established the presence of L-Ala, L-Ile, N-Me-L-Ala, N-Me-D-Phe, and D
hydroxyisocaproic acid. The relative configuration of the Dddd unit was established by NOE experiments in a variety of solvents.

Previous Work

Dewai Ma Approach: ${ }^{24}$

The first synthesis of palau'amide (12) was described by Ma and co-workers using oppolzers's syn aldolisation ${ }^{25}$ procedure. Reaction of 5-hexynal with (1R)-2,10-camphorsultam-derived N-propionylsultam $\mathbf{1 4}$ provided aldol adduct $\mathbf{1 5}$. Reduction of $\mathbf{1 5}$ with LAH followed by selective protection with TBSCl produced alcohol 16, which was subjected to Mitsunobu inversion ${ }^{26}$ to afford alcohol $\mathbf{1 7}$ with the desired stereochemistry (Scheme 1).

Scheme 1

Treatment of $\mathbf{1 7}$ with TBSCl to protect the secondary hydroxyl group and subsequent selective cleavage of silyl ether of the primary hydroxyl group with pyridine hydrofluoric acid salt afforded alcohol 18. Swern oxidation of alcohol 18 followed by boron trifluoride diethyl etherate reaction with (E)-(2-methylbuta-1,3-dienyloxy)trimethylsilane ${ }^{27} 19$ afforded aldehyde 20. Oxidation of aldehydes 20 with NaClO_{2} provided the corresponding acids, which was further coupled with D-leucine-derived
alcohol 21 was to afford ester 22. Dess-Martin oxidation of 22 followed by reduction with NaBH_{4} produced protected syn-1,3 diol $\mathbf{2 3}$ as a single product (Scheme 2).

23

Scheme 2

Next, coupling of $\mathbf{2 3}$ with the acid $\mathbf{2 4}$ under Yamaguchi condition ${ }^{28}$ resulted ester 25. Ally deprotection of $\mathbf{2 5}$ followed by coupling with the liberated amine from tripeptide 26 afforded amide 27. Finally, sequential liberation of allyl ester and Fmoc-protected amine moieties in 27 with $\operatorname{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} / \mathrm{NMA}$ and diethylamine ${ }^{29}$ followed by macrocyclization with HATU produced a cyclic peptide. This was treated with 5\% HF in acetonitrile to furnish Palau'amide 12 (Scheme 3).

Scheme 3
Many natural cyclic depsipeptide contain N-methyl amino acids and lactone ring. N-methyl amino acid is an important tool in cyclic depsipeptide and macrolaclactonisation is an important key reaction for synthesis of many natural products. Here we have discussed a brief overview about N -Me amino acid and macrolactonisation.

Short Account of the synthesis of \mathbf{N}-Me α-amino acids

Amino acids are incorporated into proteins, peptides, enzymes, hormones, and a wide array of secondary metabolites natural products containing N-methylamino acid (NMA) peptide and depsipeptide have been isolated from a variety of sources, and their secondary metabolites (e.g. vancomycin, cyclosporin, actinomycin D) have found clinical use due to increase proteolytic stability, increase membrane permeability (lipophilicity), and alter the conformational characteristics or properties of the amide bonds. Vitoux et.
$a l .{ }^{30}$ studied the effect of N-methylation on the conformation of amide bonds through the use of dipeptides with internal N-methylated amides. Hetero-dipeptides were largely unaffected by N-methylation, and these materials preferred the trans-amide form. The synthesis of the N-methyl- α-amino acid monomers has been published, ${ }^{31}$ covering the period up until 1985. Various strategies to synthesized N-methyl amino acids are given below.

1. Nucleophilic Substitution of α-Bromo Acids

Izumiya and Nagamatsu ${ }^{32}$ prepared N-methyl-D-tyrosine $\mathbf{3 0}$ by diazotization of O-methyl L-tyrosine 28 to give the optically active α-bromo acid 29 (Scheme 4). Nucleophilic substitution with methylamine at $100{ }^{\circ} \mathrm{C}$ in a sealed tube provided N -methyl-D-tyrosine 30.

Scheme 4

2. Sodium Hydride/Methyl Iodide

Benoiton et al. ${ }^{33}$ attempted N-methylation employing N-carbamoyl- α-amino acids with sodium hydride and methyl iodide in THF/DMF at $80^{\circ} \mathrm{C}$ for 24 h . Under these conditions, a large excess of methyl iodide (8 equiv) was required for optimal yields of the N-methyl methyl ester 32 (Scheme 5). The methyl ester was hydrolysed using warm sodium hydroxide in methanol/THF to give the corresponding N-acyl- N methylamino acids 33. The use of alkaline conditions in the formation of the N-methyl group and removal of the methyl ester causes varying degrees of undesired racemization at the α carbon of the amino acids.

Scheme 5

Prashad et al. ${ }^{34}$ reported the synthesis of N-methylated N-Boc-dipeptides, amino acid amides, and amino acids using a modified version of the Benoiton method (Scheme 5). This involved treatment of the substrates with sodium hydride in THF followed by methylation of the resulting anion with dimethyl sulfate (Scheme 6). It was found that methylation under anhydrous conditions did not provide the corresponding N-methylated derivatives. However addition of catalytic amounts of water afforded products $\mathbf{3 5}$ and $\mathbf{3 7}$ in excellent yields. The authors postulate that the addition of water produces dry sodium hydroxide that has better solubility in THF compared to sodium hydride.

Scheme 6

3. From 5-Oxazolidinones

Reddy et al. ${ }^{35}$ further extended the methodology by preparing 5-oxazolidinones 38 with N-Boc protected amino acid (Scheme 7). In this methodology they converted the N-Boc compounds to NMAs (39) by hydrogenation over palladium catalyst.

Scheme 7
Roger M. Freidinger ${ }^{36}$ reported the synthesis of oxazolidinone 41 by the condensation of Fmoc amino acid 40 with an aldehyde in the presence of p toluenesulfonic acid in refluxing toluene. Treatment of the oxazolidinones 41 with excess
$\mathrm{Et}_{3} \mathrm{SiH}$ in 1:1 TFA- CHCl_{3} resulted in ring opening with reduction to provide Fmoc N alkyl amino acids 42 in good overall yield (Scheme 8).

Scheme 8

A Brief Overview of Macrolactonisation

The lactonization of secoacids still appears to be one of the more frequently used approaches to obtain macrocyclic lactones. Due to entropic and enthalpic factors direct cyclization is generally not possible without activation of either the alcohol or the carboxylic acid terminal group (Scheme 9).

Scheme 9
The main problem arising in the macrolactonization is the competition between intra- and intermolecular reactions leading to the formation of diolide and oligomers (Scheme 10). ${ }^{37}$ The principal method for favoring intramolecular reactions in this competition is to use a "high dilution technique" first introduced by Ruggli and Ziegler where the substrate is slowly added using a syringe pump over many hours to a large volume of solvent. ${ }^{37,38}$ We have discussed below various methods for the synthesis of macrolactone.

Scheme 10

1. Macrolactonizations through Thioester

The reaction involving a thioester is the "double activation" method described in 1974 by Corey and Nicolaou. ${ }^{39}$ The mechanism involves the initial formation of a 2pyridine thioester of the ω-hydroxy acid via a Mukaiyama oxidation-reduction condensation with PyS-SPy and triphenylphosphine. ${ }^{40}$ Internal proton transfer then affords an intermediate in which both the carbonyl and the hydroxyl group have been activated, leading to the "electrostatically driven" macrolactonization (Scheme 11).

Scheme 11

2. Cyanuric Chloride

The use of cyanuric chloride in macrolactonizations was introduced by Venkataraman in 1980. ${ }^{41 \mathrm{a}}$ The mechanism of this reaction, closely related to the mechanism invoked in the Corey-Nicolaou macrolactonizations, involves a doubleactivation pathway (Scheme 12). An alternative pathway through an acyl chloride formation has been ruled out by the same authors. ${ }^{41 b}$

Scheme 12

3. Mukaiyama's Salt and Related Methods

The use of 1-methyl-2-chloropyridinium iodide as an efficient agent for the macrolactonization of ω-hydroxy acids was introduced by Mukaiyama in 1976. ${ }^{42}$ The mechanism involves (Scheme 13) chloride substitution by the carboxylate ion to give a highly activated acyloxypyridinium species which then undergoes macrolactonizaton.

Scheme 13

4. Macrolactonization through the formation of a mixed anhydride intermediate

a) Yamaguchi-Yonemitsu Method:

With more than 200 papers using this methodology, the Yamaguchi reagent, 2,4,6-trichlorobenzoyl chloride, is probably the most popular method for performing macrolactonizations. ${ }^{28,43}$ In the classical procedure (Scheme 14), the mixed anhydride is preformed in THF in the presence of triethylamine. After filtration of the $\mathrm{NEt}_{3}-\mathrm{HCl}$ salt and evaporation, the mixed anhydride is diluted in toluene and slowly added by syringe pump to a highly diluted solution of DMAP (2-5 equiv) at high temperature $\left(80^{\circ} \mathrm{C}\right)$.

Scheme 14

b) Phosphorus-Based Reagents:

Phosphorus-based reagents (Figure 1), widely used in the synthesis of peptides, cyclodepsipeptides, and peptidomimetics, have also found some applications in macrolactonizations. Masamune ${ }^{44}$ and Corey ${ }^{45}$ were the first to recognize the potential of mixed carbon-phosphorus anhydrides in the synthesis of macrolactones (Scheme 15)

Diphenylchloro phosphate

Figure 1

Scheme 15

c) Carbodiimides and Related Reagents

Dicyclohexylcarbodiimide in the presence of pyridine, though long known as an esterification reagent, was first used in a lactonization reaction by Woodward en route to reserpine. ${ }^{46}$ DCC-DMAP protocol has been used rarely in macrolactonizations, mostly because of formation of an unreactive N-acyl urea by-product (Scheme 16).

Scheme 16

5. Trost Vinylic Esters

In the Trost macrolactonization, the vinylic ester is formed through a ruthenium catalyzed reaction ${ }^{47}$ of the carboxylic acid with commercially available ethoxyacetylene (Scheme 17). The vinylic ester, which can be isolated by chromatography, can then be lactonized under acidic conditions ${ }^{48}$ (CSA 10\%). This methodology has been used in the macrolactonizations of various 14-, 15-, 16-, 17-, and 22-membered macrolactones.

Scheme 17

6. Macrolactonizations by "Alcohol" Activation (Mitsunobu Reactions)

In 1976 Mitsunobu described a macrolactonization protocol to obtain medium and large macrolactones. This methodology is based on the activation of the seco-acid alcohol using diethyl azodicarboxylate (DEAD) and triphenyl phosphine. ${ }^{26,49}$ In the reaction mechanism, the key intermediate is an alkoxyphosphonium salt produced in situ, and the macrolactonization proceeds via an intramolecular $\mathrm{S}_{\mathrm{N}} 2$ reaction and with inversion of the alcohol configuration (Scheme 18). This reaction has been used in formation of 11- to 16membered macrolactones ${ }^{50}$ as observed in the total syntheses of natural products such as $(+)$-amphidinolide $\mathrm{K},{ }^{51}$ 19-epi-avermectin $\mathrm{B}_{1},(+)$-brefeldin C.

Scheme 18

PRESENT WORK

Palau'amide is a cyclic depsipeptide was isolated by Moore and co-workers from a species of the marine cyanobacterium Lyngbya in 2003 from Ulong Channel, Palau. ${ }^{23}$ It was found to be cytotoxic to KB cells $\left(\mathrm{IC}_{50}=13 \mathrm{nM}\right)$. From this source, several potent antitumor agents such as lyngbyabellins and apratoxins have also been discovered. These compounds have become the focus of recent synthetic endeavors. The structure of Palau'amide was characterized by five amino acids peptide backbone fused with a polyketide chain in a 24 -membered macrocyclic structure. Among the five amino acids L-Ala, L-Ile, N-Me-Gly, N-Me-L-Ala and N-Me-D-Phe, three are N-methylated. The polyketide chain comprises three contiguous chiral centres, a 1,3-syn diol flanking with an anti methyl group, a terminal alkyne and an α, β-unsaturated acid. In view of the interesting structural features, potent biological activity and limited availability makes Palau'amide an ideal target for total synthesis.

Figure 2: Retrosynthetic analysis of Palau'amide (12)

According to retrosynthetic analysis, cyclic depsipeptide Palau'amide (1) could be synthesized from 44 by using Yamaguchi lactonisation as a key step. Compound 44 could be divided into two fragments, peptide fragment 45 and polyketide fragment 46. EDCI mediated esterification between these two fragments will furnish compound 44 (Figure $2)$.

Retrosynthetic Analysis of Peptide Backbone (45)

Synthesis of peptide fragment 45 could be envisaged by coupling of 47 and 48. Tripeptide 47 could be derived by coupling of dipeptide 49 and Boc-N-Me-Gly (50), similarly coupling of dipeptide 51 with D-Leucic acid (52) would provide peptide 48. Dipeptide 49 consists of L-alanine and L-isoleucine where as dipeptide 51 is composed of D-phenylalanine and L-alanine (Figure 3).

Figure 3: Retrosynthetic analysis of peptide fragment (45)

Synthesis of Tripeptide Fragment (47)

The synthesis sequences started with commercially available L-alanine (53) which was treated with $\mathrm{Boc}_{2} \mathrm{O}$ and NaOH in 1,4-dioxane: $\mathrm{H}_{2} \mathrm{O}$ to yield N -Boc derivative 54 in 95% yield. ${ }^{53}$ Compound 54 was then treated with NaH and $\mathrm{Me}_{2} \mathrm{SO}_{4}$ using catalytic amount of water to afford Boc-N-Me derivative 55 in 94% yield. ${ }^{34}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of 55 showed the presence of $\mathrm{N}-\mathrm{Me}$ group as a singlet at $\delta 2.84 \mathrm{ppm}$, the t-butyl of Boc group as a singlet at 1.46 ppm and methine proton as a multiplet at $\delta 4.56 \mathrm{ppm}$. The ${ }^{13} \mathrm{C}$ NMR spectrum showed the $\mathrm{N}-\mathrm{Me}$ resonances at $\delta 30.4$ and 31.1 ppm . The presence of two peaks for N-Me was attributed to the presence of rotamers of 55. The acid 55 was converted into its benzyl ester 56 by treatment with BnBr and NaHCO_{3} in DMF in 92% yield ${ }^{52}$ (Scheme 19). Ester 56 was fully characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum analysis. In the ${ }^{1} \mathrm{H}$ NMR spectrum, benzyl protons resonated at $\delta 5.14 \mathrm{ppm}$ as a singlet, whereas methine proton was observed as a multiplet at $\delta 4.46-4.85 \mathrm{ppm}$. The aromatic protons resonated at $\delta 7.32(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$. Rest of the spectrum was in full accordance with the structure of 56. The ${ }^{13} \mathrm{C}$ NMR spectrum exhibited two resonances at $\delta 171.6$ and 155.2 ppm . This was attributed to carbonyl carbon of benzyl ester and amide functional group respectively. The presence of a base peak at $\mathrm{m} / \mathrm{z}=316$ for $[\mathrm{M}+\mathrm{Na}]^{+}$in the mass spectrum confirmed the structure of 56 .

Scheme 19
Benzyl ester 56 was subjected to Boc deprotection using 4N HCl in EtOAc at rt. ${ }^{53}$ After neutralization with NaHCO_{3}, the resulting crude amine 59 was coupled with Boc-

L-Ile (58) in the presence of DCC and HOBt in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford dipeptide in 81% yield ${ }^{20 \mathrm{c}, 54}$ (Scheme 20). Dipeptide 49 was thoroughly characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and mass spectra followed by elemental analysis. The IR spectrum exhibited three characteristic absorption peaks at 1740,1706 and $1641 \mathrm{~cm}^{-1}$ that was attributed to $\mathrm{C}=\mathrm{O}$ stretching of one ester and two amide functional group of 49 . The ${ }^{1} \mathrm{H}$ NMR spectrum showed resonances at $\delta 3.00(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$ and $\delta 5.12(\mathrm{ABq}, 2 \mathrm{H}, J=12.2 \mathrm{~Hz}) \mathrm{ppm}$ that was attributed to N-Methyl and the benzylic protons respectively. In the ${ }^{13} \mathrm{C}$ NMR spectrum the corresponding carbons resonated at $\delta 30.9$ and 66.5 ppm .

Scheme 20

Boc-N-Me-Gly 50 was prepared from Boc-Gly (60) by treatment with NaH and $\mathrm{Me}_{2} \mathrm{SO}_{4}$ in THF using catalytic amount of water. ${ }^{34}$ Boc deprotection of compound 49 was achieved by using TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 3 h . The reaction mixture was thoroughly dried and the amine salt was coupled with acid 57 using EDCI, HOBt and $\mathrm{Et}_{3} \mathrm{~N}$ in DMF to afford tripeptide 47 in 81% yield (Scheme 21). ${ }^{55}$ Tripeptide 47 was fully characterized by NMR spectroscopy, mass spectrum and elemental analysis. The ${ }^{1} \mathrm{H}$ NMR spectrum showed two singlet N-Me signals at $\delta 2.93$ and 3.01 ppm , where as benzylic protons resonated at δ $5.13(\mathrm{ABq}, 2 \mathrm{H}, J=12.4 \mathrm{~Hz}) \mathrm{ppm}$. In the ${ }^{13} \mathrm{C}$ NMR spectrum two $\mathrm{N}-\mathrm{Me}$ carbon resonated at $\delta 31.1$ and 35.4 ppm . ESI-mass spectrum of 5 displayed peaks at $\mathrm{m} / \mathrm{z}=499.8$ and 515.7 were attributed to $[\mathrm{M}+\mathrm{Na}]^{+}$and $[\mathrm{M}+\mathrm{K}]^{+}$. In addition elemental analysis confirmed the assigned structure of 47.

60

3 h, 91\%

50

49

47

Scheme 25

Synthesis of Tripeptide Fragment (48)

Oxazolidinone 62 was prepared from 61 by refluxing with paraformaldehyde and p-TSA in benzene with Dean-Stark aparatus. Reductive cleavage of oxazolidinone 62 with $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$ in MeOH afforded $\mathrm{N}-\mathrm{Me}-$ acid (63) in good yield. ${ }^{35,36}$ Benzyl protected N -Me-D-Phe (64) was prepared from 63 by reacting with BnBr and NaHCO_{3} in dry DMF at $0{ }^{\circ} \mathrm{C}$ in 86% yield. ${ }^{52}$ All spectral data are in agreement with the assigned structure of 64. Boc group was deprotected with 4 N HCl in EtOAc at room temperature and quenched with NaHCO_{3} to afford crude amine 65, which was directly coupled with Boc-L-alanine (54) in presence of DCC and HOBt to afford dipeptide 51 in 82% yield (Scheme 22). In the ${ }^{1} \mathrm{H}$ NMR spectrum, N -Me resonated at $\delta 2.80 \mathrm{ppm}$ as a singlet and ${ }^{t} \mathrm{Bu}$ group of Boc was observed at $\delta 1.42 \mathrm{ppm}$. The corresponding carbon signals were observed at $\delta 32.5$ and 28.1 ppm . The presence of a base peak at $\mathrm{m} / \mathrm{z}=441$ for $[\mathrm{M}+\mathrm{H}]^{+}$in the ESI-Mass spectrum confirmed the structure of 51.

64

$$
\xrightarrow[\substack{0 \\ \\ \text { then } \mathrm{Cr}, 2 \mathrm{~h} \\ \mathrm{NaHCO}}]{4 \mathrm{~N} \mathrm{HCl}-\mathrm{EtOAc}}
$$

65

Scheme 22

The synthesis of tripeptide 48 was attempted next, dipeptide 51 was subjected to Boc deprotection with TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. After drying the reaction mixture it was coupled with D-Leucic acid (52) (prepared by diazotization reaction of DLeucine (66) with NaNO_{2} and dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $\left.0{ }^{\circ} \mathrm{C}\right)^{56}$ in the presence of DIPEA, EDCI and HOBt in DMF at $0{ }^{\circ} \mathrm{C}$ to give 48 in 81% yield (Scheme 23). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum were in full agreement with the structure of 48. Finally elemental analysis and ESI-mass spectrum peaks at $m / z=477[\mathrm{M}+\mathrm{Na}]^{+}$and $493[\mathrm{M}+\mathrm{K}]^{+}$confirmed the assigned structure of 48.

 HOBt, DMF, rt, 81\%

Scheme 23

Synthesis of Hexapeptide Fragment (45)

Tripeptide 48 was subjected to benzyl deprotection with Pd-C in EtOAc under hydrogen (ballon pressure) to yield acid 67. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra showed the absence of benzyl group. ESI-mass spectrum displayed peaks at $m / z=365[\mathrm{M}+\mathrm{H}]^{+}$and $387[\mathrm{M}+\mathrm{Na}]^{+}$and elemental analysis confirmed the assigned structure of 67 . Tripeptide 67 was subjected to Boc deprotection with TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was thoroughly dried and the tripeptide amine salt was coupled with acid 67 by treatment with EDCI, HOBt and DIPEA in DMF to afford hexapeptide 68 in 20% yield (Scheme 24). The high polarity of the product made it difficult to isolate from the reaction mixture, which was the reason for the comparatively lower yield.

Scheme 24

To overcome the lower yield of coupling reaction, we first protected the hydroxyl group of tripeptide 48 as TBDPS ether. Tripeptide 48 was reacted with TBDPSCl and imidazole in DMF to afford protected tripeptide 69 in 78% yield. ${ }^{57}$ Benzyl group of $\mathbf{6 9}$ was deprotected by $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$ to afford acid 70 in good yield. Coupling of acid 70 and amine 71 was carried out using NaHCO_{3}, EDCI, HOBt in DMF but this was not
successful. The failure of this coupling reaction can be attributed to the presence of bulky TBDPS group (Scheme 25).

Scheme 25

We then attempted the coupling reaction for a comparatively less bulky TBS group as the protecting group. Tripeptide 48 was treated with TBSCl to yield TBS ether 72 in 84% yield. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral study revealed the presence TBS functional group. In the ESI-Mass spectrum peaks at $m / z=569$ for $[\mathrm{M}+\mathrm{H}]^{+}$and 591 for $[\mathrm{M}+\mathrm{Na}]^{+}$confirmed the structure of 72 . Benzyl group of compound 72 was deprotected by $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$ in presence of catalytic amount of $\mathrm{Et}_{3} \mathrm{~N}$ to afford TBS-protected acid 73 in 98% yield. Acid 73 was fully characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, ESI-Mass spectra and elemental analysis. The ESI-mass spectrum displayed peaks at $m / z=480[M+H]^{+}$and $502[\mathrm{M}+\mathrm{Na}]^{+}$confirmed the structure of 73 . Coupling between acid 73 and amine 78 was carried out with EDCI, HOBt and DIPEA in DMF produce peptide fragment 74 in 75% yield. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum confirmed the presence of TBS group in 74 . The presence of the peaks in the ESI-Mass spectrum at $m / z=838[M+H]^{+}$and $860[M+N a]^{+}$ confirmed the formation of peptide fragment 74. By treatment with $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$ compound 74 afforded peptide fragment 45 in 91% yield (Scheme 26). All the spectral and analytical data are in full agreement with the assigned structure of 45.

Scheme 26

Retrosynthetic analysis of polyketide fragment (46)

The retrosynthetic analysis of fragment 46 (Figure 4) revealed that it could be synthesized from intermediate 75 by Wittig olefination which, in turn, could be prepared from fragment 76. Intermediate 76 could be synthesized from diol 77 by oxidation followed by Grignard reaction with allylmagnesium bromide. Synthesis of intermediate 77 was envisaged by regioselective opening of epoxide 78, which in turn could be prepared from commercially available 1,3-propane diol following a known protocol.

79
Figure 4

The synthetic sequences started with mono-PMB protected 1,3-propane diol (79). Alcohol 79 was oxidized using IBX in dry DMSO to furnish aldehyde 80, ${ }^{58}$ which upon Wittig olefination with ethoxycarbonyl methylene triphenylphosphorane in toluene at 80 ${ }^{\circ} \mathrm{C}$ afforded trans- α, β-unsaturated ester 81. ${ }^{59}$ The olefinic protons resonated as doublet of triplet at $\delta 5.82(\mathrm{dt}, 1 \mathrm{H}, J=1.6,15.7 \mathrm{~Hz}) \mathrm{ppm}$ and as muliplet at $6.87-6.98(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$. DIBAL-H reduction of ester $\mathbf{8 1}$ produced allylic alcohol 82 in good yield (Scheme 27). ${ }^{59,60}$ The ${ }^{1} \mathrm{H}$ NMR spectrum showed absence of ethyl functional group of ester and rest of the spectrum is in full agreement with the assigned structure of $\mathbf{8 2}$.

Scheme 27

A brief review on Sharpless asymmetric epoxidation

Epoxides are versatile and important intermediates in organic synthesis. The strain of the three-membered heterocyclic ring makes them accessible to a large variety of reagents. This metal catalyzed epoxidation process was discovered by K. Barry Sharpless in 1980 and allows the transformation of a prochiral substrate into an optically active (or optically pure) product using a chiral catalyst. The asymmetric induction is achieved by adding an enantiomerically enriched tartrate derivative. This epoxidation is arguable one of the most important reaction discovered in the last 30 years. This has been recognized by the award of the 2001 Noble Prize to Professor Barry Sharpless.

Scheme 28

In this epoxidation reaction double bond of allylic alcohols are converted into epoxides using a transition metal catalyst ($\mathrm{Ti}\left(\mathrm{O}_{-}{ }^{i} \mathrm{Pr}\right)_{4}$, titanium tetra-isopropoxide) and a chiral additive (DET, diethyltartrate) (Scheme 32). ${ }^{61}$ The oxidant for the epoxidation is tert-butylhydroperoxide. It is proposed that, co-ordination of the chiral ligand DET and the oxidant source TBHP to the metal center forms the catalytically active species (Figure 5, 86). It is generally belived that this species is dimeric, i. e. two metal centres are bridged via two oxygen ligand giving the overall shape of two edge-fused octahedral. Co-ordination of the substrate can only occur in one orientation without causing severe steric interactions (Figure 5, 87). Co-ordination in the complex on the left brings the double bond over the peroxide oxygen of the TBHP ligand. Oxidation can only occur from the bottom face, leading overall to a highly enantioselective process (Scheme 29).

86
Active species

87
Transition state complex

Figure 5: Putative transition state for the Sharpless asymmetric epoxidation.

The catalytic cycle for the epoxidation process is depicted below.

Scheme 29: The catalytic cycle for Sharpless asymmetric epoxidation.

Sharpless asymmetric epoxidation of allyl alcohol $\mathbf{8 2}$ using $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$, L-(+)-DET and TBHP in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20{ }^{\circ} \mathrm{C}$ afforded epoxide 78 in good yield (Scheme 30). ${ }^{61}$ The ${ }^{1} \mathrm{H}$ NMR spectrum showed the absence of olefinic protons while the corresponding epoxide protons were observed as multiplet at $\delta 2.92-3.11(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$. In the ${ }^{13} \mathrm{C}$ NMR spectrum the epoxy carbons resonated at $\delta 54.8$ and $\delta 58.4 \mathrm{ppm}$.

Scheme 30

Treatment of epoxide 78 with MeMgCl in presence of CuCN afforded a mixture of 1,3 diol 77 and 1,2 diol $\mathbf{8 8}$ in $2: 1$ ratio. ${ }^{62}$ By using $\mathrm{Me}_{2} \mathrm{CuCNLi}_{2}$ in THF:DMDU (4:1) mixture at $-20^{\circ} \mathrm{C}$, the ratio of $\mathbf{7 7}$ and $\mathbf{8 8}$ improved to $7: 1 .{ }^{63}$ The 1,2 diol $\mathbf{8 8}$ was easily removed as aldehyde 89 by treatment with NaIO_{4} in $\mathrm{MeOH} .{ }^{64}$ The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of 77 showed a signal at $\delta 0.85(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) \mathrm{ppm}$ and $\delta 13.9 \mathrm{ppm}$ respectively in concurance to methyl group (Scheme 31).

Scheme 31
Alcohol 77 was subjected to 1° benzoylation using BzCl and $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 0 ${ }^{\circ} \mathrm{C}$ to give monobenzoate 90 in 94% yield. The structure was fully characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral study. In ${ }^{1} \mathrm{H}$ NMR spectrum the methylene proton attached to OBz group resonated as a doublet of doublet at $\delta 4.38(\mathrm{dd}, 2 \mathrm{H}, J=1.6,5.4 \mathrm{~Hz}) \mathrm{ppm}$. The secondary hydroxyl group of $\mathbf{9 0}$ was protected as TBS ether by treatment with TBSOTf and 2,6-lutidine in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ in 86% yield. ${ }^{65}$ The benzoate group of $\mathbf{9 1}$ was hydrolysed by treatment with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH at room temperature to afford alcohol 92. NMR spectroscopy and elemental analysis were in full agreement with the assigned structure. In the ${ }^{1} \mathrm{H}$ NMR spectrum, absence of characteristic aromatic proton indicates the deprotection of benzoyl group. In the ${ }^{13} \mathrm{C}$ NMR spectrum methylene carbon attached to hydroxyl group resonated at $\delta 55.2 \mathrm{ppm}$, which was confirmed by DEPT spectrum (Scheme 32).

Scheme 32
The alcohol 92 was oxidized under Swern oxidation conditions ${ }^{66}$ using $(\mathrm{COCl})_{2}$, DMSO and $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ to afford aldehyde 93 . Without further purification, aldehyde 93 was subjected to Grignard reaction by treatment with allylmagnesium bromide at $0{ }^{\circ} \mathrm{C}$ to give diastereomeric mixture ${ }^{67}$ of alcohol. Without further separation of the mixture, alcohol 94 was oxidized using DMP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to furnish keto compound 95 in good yield (Scheme 33). ${ }^{68}$

Scheme 33
The stereoselective reduction of 95 was carried out under Luche's condition ${ }^{69}$ using NaBH_{4} and CeCl_{3} at $-100{ }^{\circ} \mathrm{C}$ furnished exclusively the one isomeric alcohol 76. In the ${ }^{1} \mathrm{H}$ NMR spectrum, olefin protons resonated at $\delta 5.80(\mathrm{~m}, 1 \mathrm{H})$ and $5.10(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$ as multiplets. Rest of the spectrum was in full agreement with the assigned structure. Configuration of the newly generated hydroxyl centre was confirmed by Rychnovsky method.

Rychnovsky ${ }^{70}$ has shown that the acetonides of syn and anti 1,3 diols can be unambiguously distinguished by the chemical shifts of the acetonide methyl groups and
the acetal carbon atom. The ${ }^{13} \mathrm{C}$ NMR spectra of syn 1,3 diol acetonides show an axial methyl group carbon at $\delta 19.6 \mathrm{ppm}$ and the corresponding equatorial one at $\delta 30.0 \mathrm{ppm}$. This is in contrast to the spectra of the anti 1,3 diol acetonides, which shows the methyl resonances at $\delta 24.7 \mathrm{ppm}$. The acetal carbon chemical shifts are also indicative of the stereochemistry; $\delta 98.5 \mathrm{ppm}$ is observed for the syn 1,3 diol acetonides while $\delta 100.4$ ppm is observed for the anti stereoisomer.

Accordingly, deprotection of TBS group in compound 76 using TBAF in THF at room temperature furnished the 1,3 diol 96 . 71 It was then protected as dioxalane derivative using dimethoxy propane and catalytic p-TSA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford compound 97 in good yield. In the ${ }^{13} \mathrm{C}$ NMR spectrum the two methyl groups resonated at $\delta 30.0$ and 19.5 ppm and the acetal carbon was observed at 97.8 ppm . This experiment confirmed the syn relationship between C-4 and C-6 hydroxy group of 96 (Scheme 34).

Scheme 34
Once the 1,3-syn relationship between the hydroxyl groups were confirmed, we next proceeded by protecting the newly generated OH group in 76 as its MOM ether by using MOMCl, DIPEA and catalytic amount of AgNO_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C} .{ }^{72}$ Compound 98 was fully characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and elemental analysis. ${ }^{1} \mathrm{H}$ NMR spectrum of 98 showed resonances at $\delta 3.76(\mathrm{~s}, 3 \mathrm{H})$ and $\delta 4.42(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$ corresponding to methoxy and methylene group of MOM ether. In the ${ }^{13} \mathrm{C}$ NMR spectrum the corresponding carbons resonated at $\delta 55.1$ and $\delta 95.8 \mathrm{ppm}$ respectively. Rest of the spectrum was in full agreement with the assigned structure. To introduce alkyne functionality, 98 was subjected to hydroboration with BH_{3} :DMS followed by oxidation with $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ and NaOH to produce the desired primary alcohol $99 .{ }^{73}$ The complete conversion of starting
material was confirmed by the absence of olefin group in both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the methylene protons attached to hydroxyl group was observed at $\delta 3.61(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$, where as in the ${ }^{13} \mathrm{C}$ NMR spectrum methylene carbon resonated at $\delta 63.0 \mathrm{ppm}$. This was also unambiguously determined by DEPT spectrum. In addition elemental analysis confirmed the assigned structure of 99 (Scheme 35).

Scheme 35

Alcohol 99 was treated with TPP, CBr_{4} and imidazole in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give bromo derivative $\mathbf{1 0 0}$ in 70% yield. ${ }^{74}$ Without further charaterisation the bromo compound $\mathbf{1 0 0}$ was treated with lithium acetylide:EDA complex in DMSO at $0{ }^{\circ} \mathrm{C}$ to afford alkyne 101 in good yield. ${ }^{75}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 1}$ displayed a characteristic acetylinic signal at $1.91(\mathrm{t}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz})$ as a triplet. In the ${ }^{13} \mathrm{C}$ NMR spectrum the acetylinic carbons resonated at $\delta 68.4$ and $\delta 84.4 \mathrm{ppm}$ while the rest of the other carbons resonated at their conformity indicating the formation of $\mathbf{1 0 1}$ (Scheme 36).

Scheme 36

PMB group of $\mathbf{1 0 1}$ was deprotected using DDQ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}$ (5:1) to furnish alcohol 75 in good yield. ${ }^{76}$ The ${ }^{1} \mathrm{H}$ NMR spectrum shows the absence of aromatic protons and the rest of the spectrum is in full agreement with the assigned structure (Scheme 37).

Scheme 37
The primary alcohol of $\mathbf{8 2}$ was oxidized by IBX in DMSO to give aldehyde 102, which was directly employed for the next Wittig olefination without further purification. Allyloxyethyledenetriphenylphosphorane (103) was treated with aldehyde 102 in refluxing THF to afford α, β-unsaturated allyl ester 104 (Scheme 38). ${ }^{77}$ NMR spectroscopy and elemental analysis are in full agreement with the assigned structure. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the terminal olefin protons resonated at $\delta 5.27(\mathrm{~m}, 1 \mathrm{H})$ and 5.92 $(\mathrm{m}, 2 \mathrm{H}) \mathrm{ppm}$ while internal olefinic proton was observed at $\delta 6.91 \mathrm{ppm}$ as a multiplet.

Scheme 38
Deprotection of TBS ether of $\mathbf{1 0 4}$ using TBAF in THF in the presence of AcOH (catalytic) resulted in mono hydroxyl compound ${ }^{71}$ in 74% yield (Scheme 39). The absence of characteristic signals of TBS group in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra indicated the formation of alcohol 46. Rest of the spectrum is in full agreement with the assigned structure.

Scheme 39

Coupling between peptide fragment (45) and polyketide fragment (46)

After getting the polyketide fragment 46 in hand, we focused our attention for esterification reaction with the peptide fragment 45 under different reaction conditions. Yamaguchi esterification method (2,4,6-trichlorobenzoyl chloride and DIPEA) produced a complex reaction mixture of products that was difficult to isolate completely. Reaction of compound 45 and 46 with DCC, DMAP afforded very poor yield (25%) of coupling product. In contrast, esterification of 45 and 46 using EDCI and DMAP (catalytic) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF (1:1) mixture resulted ester 44 in 62% yield (Scheme 40). The ${ }^{1} \mathrm{H}$ NMR spectrum of 44 showed resonances at $\delta 0.04(\mathrm{~s}, 3 \mathrm{H})$ and $0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$ indicating the presence of TBS group. Rest of the spectrum is in agreement with the assigned structure. In the ESI-MS a base peak at $m / z=1090.7$ corresponding to $[\mathrm{M}+\mathrm{Na}]^{+}$confirmed the assigned structure of 44.

45

Scheme 40

The TBS ether in $\mathbf{4 4}$ was deprotected by using TBAF, AcOH (catalytic) in THF at rt to afford alcohol 105 in 72% yield. The absence of characteristic signals of TBS group in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum indicated the formation of alcohol 105 . The ESI-Mass spectrum showed the peak at $m / z=976.8$ for $[\mathrm{M}+\mathrm{Na}]^{+}$and 992.8 for $[\mathrm{M}+\mathrm{K}]^{+}$confirmed the assigned structure of $\mathbf{1 0 5}$. After getting the free alcohol 105, the allyl ester was deprotected to get the acid component 106. Several standard reaction conditions for deallylation have been tried which was mentioned in Table-1. It was found that by using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and morpholine in THF, allyl ester was cleaved to give the desired acid $\mathbf{1 0 6}$ in
moderate yield (Scheme 41)..78 In the ${ }^{1} \mathrm{H}$ NMR spectrum the olefin signals for allyl group was vanished and the ESI-MS spectrum displayed a peak at $\mathrm{m} / \mathrm{z}=937[\mathrm{M}+\mathrm{Na}]^{+}$ confirmed the formation of $\mathbf{1 1 3}$.

Scheme 41

Table 1: Catalyst and base used for the transformation of $\mathbf{1 0 5}$ to $\mathbf{1 0 6}$

Solvent + Base	Catalyst	Temperature	Product
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$0{ }^{\circ} \mathrm{C}-\mathrm{rt}$	Complex mixtures
NMA	"	"	"
$\mathrm{Et}_{2} \mathrm{NH}$	$"$	$"$	"
Na-2-ethylhexanoate	"	"	"
Morpholine	"	"	106

Next, the crucial intramolecular macrolactonisation of hydroxyl acid 106 was carried out by using 2,4,6-trichlorobenzoyl chloride, DIPEA and DMAP in benzene to afford the cyclic peptide $\mathbf{1 0 7}$ in 27% yield. ${ }^{79}$ ESI-MS of $\mathbf{1 0 7}$ showed peak at $\mathrm{m} / \mathrm{z}=918.6$ for $[\mathrm{M}+\mathrm{Na}]^{+}$and 934.6 for $[\mathrm{M}+\mathrm{K}]^{+}$indicating the formation of lactone ring but the ${ }^{1} \mathrm{H}$ NMR spectrum was so complex it was very difficult to assign. LC-MS spectrum of $\mathbf{1 0 7}$ showed two peaks corresponding to same mass, indicating there was epimerization. So further synthesis of $\mathbf{1 2}$, separation of each component present there and further characterization is going on in our laboratory (Scheme 42).

Scheme 42

In conclusion, peptide synthesis was carried out using different coupling reagent. Stereoselective synthesis of polyketide chain was carried out by employing Sharpless asymmetric epoxidation, regeioselective epoxide opening by $\mathrm{Me}_{2} \mathrm{CuCNLi}_{2}$ and stereoselective reduction by Luche's condition as key reactions. We have studied the coupling of -OH (polyketide) and -COOH (peptide fragment) groups with different coupling reagents and found that EDCI was the best coupling reagent for this reaction. Deprotection of allylester with various base and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ catalyst was studied and finally the allyl ester was successfully cleaved by using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, morpholine in THF. Macrolactonisation was successfully achieved by Yamaguchi Lactonisation protocol.

REFERENCES

1. Gerwick, W. H.; Tan, L. T.; Sitachitta, N. In. The. Alkaloids; Cordell, G. A., Ed.; Academic Press: San Diego, 2001; Vol. 57, pp 75-184.
2. Wipf, P. Chem. Rev. 1995, 95, 2115.
3. Spatola, A. F.; Darlak, K.; Ramanovskis, P Tetrahedron Lett. 1996, 37, 591.
4. (a) Cavalleri, B.; Pagani, H.; Volpe, G.; Selva, E.; Parenti, F. J. Antibiot. 1984, 37, 309. (b) Pallanza, R.; Berti, M.; Scotti, R.; Randisi, E.; Arioli, V. J.Antibiot. 1984, 37, 318. (c) Jiang, W.; Wanner, J.; Lee, R. J.; Bounaud, P. Y.; Boger, D. L. J. Am. Chem. Soc. 2002, 124, 5288-5290.
5. (a) Vervoot, H.; Fenical, W.; Epifanio, R. J. Org. Chem. 2000, 65, 782. (b) Adrio, J.; Cuevas, C.; Manzanares, I.; Joullie, M. M. Org. Lett. 2006, 8, 511-514.
6. Han, B.; Goeger, D.; Maier, C. S.; Gerwick, W. H. J. Org. Chem. 2005, 70, 3133.
7. Plaza, A.; Bewley, C. A. J. Org. Chem. 2006, 71, 6898-6907.
8. Williams, P. G.; Yoshida, W. Y.; Moore, R. E.; Paul, V. J. J. Nat. Prod. 2003, 66, 620-624.
9. Davies-Coleman, M. T.; Dzeha, T. M.; Gray, C. A.; Hess, S.; Pannello, L. K. J. Nat. Prod. 2003, 66, 712-715.
10. Harrigan, G. G.; Luesch, H.; Yoshida, W. Y.; Moore, R. E.; Nagle, D. G.; Paul, V. J. J. Nat. Prod. 1999, 62, 655-658.
11. (a) Rao, A. V. R.; Gurjar, M. K.; Reddy, K. L.; Rao, A. S. Chem. Rev. 1995, 95, 2135. (b) Boger, D. L.; Miyazaki, S.; Kim, S. H.; Wu, J. H.; Loiseleur, O.; Castle, S. L. J. Am. Chem. Soc. 1999, 121, 3226-3227 (c) Nicolaou, K. C.; Boddy, C. N. C.; Brase, S.; Winssinger, N., Angew. Chem. Int. Ed. 1999, 38, 2097-2152.
12. (a) Mataunaga, S.; Fusetani, N.; Konosu, S. J. Nat. Prod. 1985, 48, 236 (b) Mataunaga, S.; Fusetani, N.; Konosu, S. Tetrahedron Lett. 1984, 25, 5165.
13. Kato, Y.; Fusetani, N.; Mataunaga, S.; Hashimoto, K.; Sakai, R.; Higa, T.; Kashman, Y. Tetrahedron Lett. 1987, 28, 6225.
14. Burja, A. M.; Banaigs, B.; Abou-Monsour, E.; Burgess, J. G.; Wright, P. C. Tetrahedron. 2001, 57, 9347-9377.
15. Orjala, J.; Nagle, D. G.; Hsu, V. L.; Gerwick, W. H. J. Am. Chem. Soc. 1995, 117, 8281-8282.
16. Oh, D.-C.; Kauffman, C. A.; Jensen, P. R.; Fenical, W. J. Nat. Prod. 2007, 70, 515.
17. Marfey, P. Carlsberg Res. Commun. 1984, 49, 591-596.
18. Sitachitta, N.; Williamson, R. T.; Gerwick, W. H. J. Nat. Prod. 2000, 63, 197.
19. (a) Nakao, Y.; Yoshida, W. Y.; Szabo, C. M.; Baker, B. J.; Scheuer, P. J. J. Org. Chem. 1998, 63, 3272-3280. (b) Reese, M. T.; Gulavita, N. K.; Nakao, Y.; Hamann, M. T.; Yoshida, W. Y.; Coval, S. J.; Scheuer, P. J. J. Am. Chem. Soc. 1996, 118, 11081-11084. (c) Kaina means younger sibling in Hawaiian.
20. (a) Zampella, A.; Giannini, C.; Debitus, C.; Roussakis, C.; D’Auria, M. V. J. Nat. Prod. 1999, 62, 332-334. (b) DeSilva, E. D.; Anderson, R. J.; Allen, T. M. Tetrahedron Lett. 1990, 31, 489 and references cited therein. (c) Rao, A. V. R.; Gurjar, M. K.; Nallaganchu, B. R.; Bhandari, A. Tetrahedron Lett. 1993, 34, 7085.
21. Luesch, H.; Yoshida, W. Y.; Moore, R. E.; Paul, V. J.; Mooberry, S. L. J. Nat. Prod. 2000, 63, 611-615.
22. (a) McPhail, K. L.; Correa, J.; Linington, R. G.; Gonzalez, J.; Ortega-Barria, E.; Capson, T. L.; Gerwick, W. L. J. Nat. Prod. 2007, 70, 984-988. (b) Gunasekera, S. P.; Ross, C.; Paul, V. J.; Matthew, S.; Luesch, H. J. Nat. Prod. 2008, 71, 887.
23. Williams, P. G.; Yoshida, W. Y.; Quon, M. K.; Moore, R. E.; Paul, V. J. J. Nat. Prod. 2003, 66, 1545-1549.
24. Zou, B.; Long, K.; Ma, D. Org. Lett., 2005, 7, 4237-4290.
25. Oppolzer, W.; Lienard, P. Tetrahedron Lett. 1993, 34, 4321.
26. Mitsunobu, O. Synthesis 1981, 1.
27. Krohn, K.; Tolkiehn, K.; Lehne, V.; Schmalle, H. W.; Grutzmacher, H.-F. Liebigs Ann. Chem. 1985, 1311.
28. (a) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989. (b) Hikota, M.; Sakurai, Y.; Horita, K.; Yonemitsu, O. Tetrahedron Lett. 1990, 31, 6367.
29. Ciommer, M.; Kunz, H. Synlett 1991, 593.
30. Vitoux, B.; Aubry, A.; Cung, M. T.; Marraud, M. Int. J. Pept. Protein Res. 1986, 27, 617.
31. Chipens, G.; Slavinska, V. A.; Sile, Ya. D.; Kreile, D.; Krumina, L.; Krikis, A. Latv. PSR Zinat. Akad. Vestis, Kim. Ser. 1985, 131.
32. Izumiya, N.; Nagamatsu, A. Bull. Chem. Soc. Jpn. 1952, 25, 265.
33. (a) Coggins, J. R.; Benoiton, N. L. Can. J. Chem. 1971, 49, 1968. (b) Cheung, S. T.; Benoiton, N. L. Can. J. Chem. 1977, 55, 906. (c) Benoiton, N. L.; Kuroda, K.; Cheung, S. T.; Chen, F. M. F. Can. J. Biochem. 1979, 57, 776. (d) McDermott, J. R.; Benoiton, N. L. Can. J. Chem. 1973, 51, 2555. (e) McDermott, J. R.; Benoiton, N. L. Can. J. Chem. 1973, 51, 2562.
34. (a) Prashad, M.; Har, D.; Hu, B.; Kim, H.-Y.; Repic, O.; Blacklock, T. J. Org. Lett. 2003, 5, 125. (b) Boger, D. L.; Patane, M. A.; Zhou, J. J. Am. Chem. Soc. 1994, 116, 8544.
35. (a) Reddy, G. V.; Rao, G. V.; Iyengar, D. S. Tetrahedron Lett. 1998, 39, 1985. (b) Reddy, G. V.; Iyengar, D. S. Chem. Lett. 1999, 299.
36. Freidinger, R. M.; Hinkle, J. S.; Perlow, D. S.; Arison, B. H. J. Org. Chem. 1983, 48, 77.
37. Galli, C.; Mandolini, L. J. Chem. Soc., Chem. Commun. 1982, 251.
38. Rossa, L.; Vogtle, F. Top. Curr. Chem. 1983, 113, 1.
39. (a) Corey, E. J.; Nicolaou, K. C. J. Am. Chem. Soc. 1974, 96, 5614. (b) Katz, L. Chem. Rev. 1997, 97, 2557. (c) Khosla, C. Chem. Rev. 1997, 97, 2577.
40. (a) Mukaiyama, T. Angew. Chem. Int. Ed. Engl. 1979, 18, 707. (b) Corey, E. J.; Brunelle, D. J.; Stork, P. J. Tetrahedron Lett. 1976, 17, 3405.
41. (a) Venkataraman, K.; Wagle, D. R. Tetrahedron Lett. 1980, 21, 1893. (b) Venkataraman, K.; Wagle, D. R. Tetrahedron Lett. 1979, 20, 3037.
42. Mukaiyama, T.; Usui, M.; Saigo, K. Chem. Lett. 1976, 49.
43. Makino, K.; Nakajima, N.; Hashimoto, S.-I.; Yonemitsu, O. Tetrahedron Lett. 1996, 37, 9077.
44. Kaiho, T.; Masamune, S.; Toyoda, T. J. Org. Chem. 1982, 47, 1612.
45. Corey, E. J.; Hua, D. H.; Pan, B. C.; Seitz, S. P. J. Am. Chem. Soc. 1982, 104, 6818.
46. (a) Woodward, R. B.; Bader, F. E.; Bickel, H.; Frey, A. J.; Kierstead, R. W. Tetrahedron 1958, 2, 1. (b) Boden, E. P.; Keck, G. E. J. Org. Chem. 1985, 50, 2394.
47. (a) Ruppin, C.; Dixneuf, P. H. Tetrahedron Lett. 1986, 27, 6323. (b) Kita, Y.; Maeda, H.; Omori, K.; Okuno, T.; Tamura, Y. Synlett 1993, 273.
48. Trost, B. M.; Chisholm, J. D. Org. Lett. 2002, $4,3743$.
49. (a) Kurihara, T.; Nakajima, Y.; Mitsunobu, O. Tetrahedron Lett. 1976, 2455. (b) Hughes, D. L. Org. Prep. Proced. Int. 1996, 28, 127.
50. (a) Ghera, E.; Ramesh, N. G.; Laxer, A.; Hassner, A. Tetrahedron Lett. 1995, 36, 1333. (b) Kuwahara, S.; Tsuruta, T.; Leal, W. S.; Kodama, O. Biosci. Biotechnol. Biochem. 1998, 62, 1261. (c) Blizzard, T.; Bostrom, L.; Margiatto, G.; Mrozik, H.; Fisher, M. Tetrahedron Lett. 1991, 32, 2723.
51. Williams, D. R.; Meyer, K. G. J. Am. Chem. Soc. 2001, 123, 765.
52. Boger, D. L.; Lee, R. J.; Bounaud, P.-Y.; Meier, P. J. Org. Chem. 2000, 65, 67706772.
53. Hanessian, S.; Luo, X.; Schaum. R.; Michnick, S. J. Am. Chem. Soc. 1998, 120, 8569.
54. Ghosh, A. K.; Moon, D. K. Org. Lett. 2007, 9, 2425-2427.
55. (a) Desai, P.; Pfeiffer, S. S.; Boger, D. L. Org. Lett. 2003, 5, 5047-5050. (b) Boger, D. L.; Chen, J.-H.; Saionz. J. Am. Chem. Soc. 1996, 118, 1629-1644.
56. (a) Henrot, S.; Larcheveque, M.; Petit, Y. Synth. Commun. 1968, 16, 183-190. (b) Mori, K. Tetrahedron. 1976, 32, 1101-1106.
57. Mehta, G.; Shinde, H. M. Chem. Commun. 2005, 3703-3705.
58. (a) Nicolaou, K. C.; Zhong, Y.-L.; Baran, P. S. J. Am. Chem. Soc. 2000, 122, 7596-7597. (b) Frigerio, M.; Santagostino, M.; Sputore, S.; Palmisanoj, G. J. Org. Chem. 1995, 60, 7272-7276.
59. (a) Yadav, J. S.; Raj Kumar, M.; sabitha, G. Tetrahedron Letters. 2008, 49, 463466. (b) Radha Krishnan, P.; Narashima Reddy, P. V. Tetrahedron Letters. 2006, 47, 6567.
60. (a) Wipf, P.; Kim, Y.; Fritch, P. C. J. Org. Chem. 1993, 58, 7195. (b) Pandey, S. K.; Kandula, S. R. V.; Tripathy, P. K. Tetrahedron Letters. 2004, 45, 5877-5879.
61. (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974. (b) Finn, M. G.; Sharpless, K. B. J. Am. Chem. Soc. 1991, 113, 113-126
62. Poppe, L.; Recseg, K.; Novak, L. Synth. Commun. 1995, 25, 3993.
63. (a) Johnson, M. R.; Nakata, T.; Kishi, Y. Tetrahedron Lett.1979, 4343; (b) Chong, J. M.; Cyr, D. R.; Mar, E. K. Tetrahedron Lett. 1987, 28, 5009-5012.
64. (a) Corey, E. J.; Ensley, H. E. J. Am. Chem. Soc. 1975, 97, 6908. (b) Ishihara, J; Ishizaka, T; Suzuki, T.; Hatakeyama, S. Tetrahedron Letters. 2004, 45, 7855.
65. (a) Ghosh, A. K.; Gong, G. Org. Lett. 2007, 9, 1437-1440. (b) Defosseux, M.; Blanchard, N.; Meyer, C.; Cossy, J. Org. Lett. 2003, 5, 4037-4040.
66. (a) Wipf, P.; Xu, W. J. Org. Chem. 1993, 58, 7195. (b) Boeckman, R. K.; Charette, A. B.; Asberom, T.; Johnston, B. H. J. Am. Chem. Soc. 1987, 109, 7553.
67. Bertrand, P; Sukkari, H. E.; Gesson, J. P.; Renoux, B. Synthesis 1999, 2, 330-335.
68. (a) Dess, D. B.; Martin, J. C.; J. Am. Chem. Soc. 1991, 113, 7277. (b) Mayer, S. D.; Schreiber, S. L. J. Org. Chem. 1994, 59, 7549. (c) Wipf, P.; Lim, S. J. Am. Chem. Soc. 1995, 117, 558.
69. Gemal, A. L.; Luche, J. L. J. Am. Chem. Soc. 1981, 103, 5454-5459.
70. Rychnovsky, S. D.; Rogers, B.; Yang, G. J. Org. Chem. 1993, 58, 3511.
71. Trost. B. M.; Harrington, P. E. J. Am. Chem. Soc. 2004, 126, 5028-5029.
72. Storg, G; Takahasi, T. J. Am. Chem. Soc. 1977, 99, 1275.
73. (a) De Koning, C. B.; Giles, R. G. F.; Green, I. R.; Jahed, N. M. Tetrahedron 2003, 59, 3175-3182. (b) Ihara, M.; Takahashi, T.; Shimizu, N.; Ishida, Y.; Sudow, I.; Fukumoto, K. J. Chem. Soc. Perkin Trans. I. 1989, 529.
74. David, A. E.; Jeremy, T. S. Angew. Chem. Int. Ed. 2002, 41, 1787-1790.
75. Makabe, H.; Okajima, M.; Konno, H.; Kamo, T.; Hirota, M. Biosci. Biotechnol. Biochem, 2003, 67, 2658-2660.
76. Harika, K.; Yoshika, T.; Oikawa, Y.; Yonemistu, O. Tetrahedron Lett. 1986, 42, 3021-3024.
77. Forbes, J. E.; Pattenden, G. J. Chem. Soc. Perkin. Trans. 1991, 1959-1966.
78. Friedrich-Bochnitschk, S.; Waldmann, H.; Kunz, H. J. Org. Chem. 1989, 54, 751.
79. Ghosh, A. K.; Gong, G. J. Am. Chem. Soc. 2004, 126, 3704-3705.
80. Synthesis of New Chiral 4,5,6,7-Tetrahydo[1,2,3]triazolo[1,5-a]pyrazines from α Amino Acid Derivatives under Mild Conditions. Debendra K. Mohapatra*, Pradip K. Maity, Rajesh G. Gonnade, Mukund S. Chorghade, and Mukund K. Gurjar, Synlett. 2007, 1893-1896.
81. Synthesis of Unusual Tricyclic Ring Systems of Biological Interest. Debendra K. Mohapatra,* Pradip K. Maity, Mukund S. Chorghade, and Mukund K. Gurjar. Heterocycles. 2007, 73, 269-274.
82. Synthesis of New Chiral $5,6,7,8$ Tetrahydro tetrazolo[1,5-a]pyrazines from α Amino Acid Derivatives. Debendra K. Mohapatra,* Pradip K. Maity, Ravi V. Ghorpade, and Mukund K. Gurjar (Communicated).
83. Synthetic Studies Toward the Total Synthesis of Palau'amide. Mukund K. Gurjar, Pradip K. Maity, Sabita Nayak, and Debendra K. Mohapatra* (to be Communicated).
84. Synthesis of New Chiral Biologically Active Tetracyclic Triazole Derivatives using "Click" Chemistry. Debendra K. Mohapatra,* Pradip K. Maity, Apeksha Sharma, M. Islam Khan, and Mukund K. Gurjar (to be Communicated).
85. Synthesis of New Chiral Tetracyclic Tetrazole Derivatives by 1,3-dipolar cycloaddition and their Biological Activities. Debendra K. Mohapatra,* Pradip K. Maity, and Mukund K. Gurjar (to be Communicated).

[^0]: ${ }^{13} \mathrm{C}$ NMR
 : $\delta 22.8,28.5,40.8,53.4,54.0,60.2,115.1 \mathrm{ppm}$.

