Studies Towards Total Synthesis of Pachastrissamine, Cephalosporolide E/F and Their Analogs and Some Metal Mediated Reactions on Sugar Templates

A THESIS
SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (IN CHEMISTRY)

TO
UNIVERSITY OF PUNE

BY
Mr. Sharad B. Suryawanshi

Dr. C. V. Ramana
(Research Guide)

ORGANIC CHEMISTRY DIVISION
NATIONAL CHEMICAL LABORATORY
PUNE-411008
April-2009
$\mathscr{D E D I C A T E D}$
TO
$\mathcal{M Y}$ FAMILY

DECLARATION

The research work embodied in this thesis has been carried out at National Chemical Laboratory, Pune under the supervision of Dr. C. V. Ramana, Organic Chemistry Division, National Chemical Laboratory, Pune - 411 008. This work is original and has not been submitted in part or full, for any degree or diploma of this or any other University.

Organic Chemistry Division
National Chemical Laboratory
Pune - 411008
April 2009
(Sharad B. Suryawanshi)

राष्ट्रीय रासायनिक प्रयोगशाला
(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद)

Dr. C. V. Ramana

Phone: +91-20-25902577
+91-20-25902455
E-mail: vr.chepuri@ncl.res.in

CERTIIFICATE

The research work presented in thesis entitled "Studies Towárds Total Synthesis of Pachastrissamine, Cephalosporolide E/F and Their Analogs and Some Metal Mediated Reactions on Sugar Templates" has been carried out under my supervision and is a bonafide work of Mr. Sharad B. Suryawanshi. This work is original and has not been submitted for any other degree or diploma of this or any other University.

Pune - 411008
April 2009

Dr. C. V. Ramana
(Research Guide)

Acknowledgements

It gives me immense pleasure to express my deep sense of gratitude to my teacher and research guide $\mathcal{D r}$. C. V. Ramana, who has helped me a lot to learn and think more about chemistry. I thank fim for an excellent and inspiring guidance, constant encouragement, sincere advice and unstinted support during all the times of my Ph.D. work. Working with him was a great pleasure and learning experience.

I would like to thank Dr. S. Hotha, $\mathcal{D r}$. HV Thulasiram, M Mr. I. Shivakumar, Dr. M. \mathcal{N}. DeshmußЋ, Dr. S. P. Chavan, Dr. V. R. Kalkote, Dr. Wadgawkar, Dr. A S Patil, Dr. Gajbhiye, $\mathcal{M r}$. Sonawane and Dr. Vincent throughout my stay at $\mathcal{N C L}$. I am thankful to my mentors at my school, college and University for their inspirational teaching, ethics and discipline. My warm thanks are due to late Prof. R. B. Mane who introduced me to this fascinating field of synthetic organic chemistry.

I gratefully acknowledge the training and support extended by my senior colleagues Dr. \mathcal{N}. Raghupathi, Dr. Soumitra, Dr. Ramdas, Dr. Bhargava, Dr. Nageswar, Dr. Sumantha, Dr. Srinivas, Dr. Induvadna, Dr. Anuj, Dr. D K Ramesh, Dr. Tushar, Dr. Bagawat, Dr. Yekku and Dr. sidharth during the tenure of my Ph.D life. I would like to thank, all my colleagues Rahul, Pitambar, Kullu, Girimaharaj, Pandeyji, Mondal, Rosy, Mangesh, shyam, chandrababu, Sacfin, Ajay, Suneel, yogesh, Vilas, Sridhar, Yadagiri and Senthil for their cooperation and friendly attitude.

I am also thankful to my friends Abhijit Purude, Shailesh, Sanjay, Anil Thorat, \mathcal{N} ilesh, Borikar, Suresh, Vikas, Raju, Vijay Patil, Bhusnur, Panchgalle, Chopu, Sulake, Gorakh, Ganesh, Dr. Varsha, Jayashri, Sonali, Shu6hangi and Reshma for their continuous encouragement, help and whose companionship afways kept my mood cheerful and with whom I shared golden moments.
$\mathcal{H e l p}$ from the spectroscopy, mass and X-ray crystallographic groups is gratefully acknowledged. I sincerely thank Dr. Rajmohan, $\mathcal{D r}$. Gonnade and Mrs. Shanthakumari their heโpful discussions and cooperation. My sincere thanks to $\mathcal{D r}$. G. Pandey, Head, Division of Organic Chemistry for his cooperation and support. My honest thanks to M Mrs. Raphel, MMr. Kulkarni, and all other OCD office staff for their cooperation.

It is impossible to express my sense of gratitude for my parents in mere words. Whatever I am and whatever I will be in future is because of their enormous blessings, commitments to my ambitions and their selfless sacrifices. Words fall short to thank my 6rothers Sachin and Sandip for their love and support at tough time.

Finally I thank Director, National Chemical Laboratory, Pune for providing infrastructural facilities to complete my work successfully. Financial assistance from CSIR $\mathcal{N e w}$ Delfi in the form of fellowship is gratefully acknowledged.

DEFINATIONS AND ABBREVIATIONS

Ac	-	Acetyl
$\mathrm{Ac}_{2} \mathrm{O}$	-	Acetic anhydride
AIBN	-	2,2'-Azobisisobutyronitrile
aq.	-	Aqueous
Bn	-	Benzyl
BnBr	-	Benzyl bromide
$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	-	Boron trifluoride diethyl ether complex
Boc	-	Tert-Butoxy carbonyl
BSA	-	N,O-bis(trimethylsilyl)acetamide
$n-\mathrm{BuLi}$	-	n-Butyl lithium
$\mathrm{Bu}_{3} \mathrm{SnH}$	-	Tributyltin hydride
Cat.	-	Catalytic/catalyst
Cbz	-	Benzyloxycarbonyl
Conc.	-	Concentrated
m-CPBA	-	m-Chloroperbenzoic acid
DMF	-	N, N-Dimethylformamide
DMAP	-	$N, N{ }^{\prime}$-Dimethylaminopyridine
DMSO	-	Dimethyl sulfoxide
EtOH	-	Ethanol
$\mathrm{Et}_{2} \mathrm{O}$	-	Diethyl ether
EtOAc	-	Ethyl acetate
$\mathrm{Et}_{3} \mathrm{~N}$	-	Triethylamine
HMPA	-	Hexamethylphosphoramide
Im	-	Imidazole
LAH	-	Lithium aluminium hydride
LiN_{3}	-	Lithium azide
Ms/Mesyl	-	Methanesulfonyl
Me	-	Methyl
MTPA	-	α-Methoxytrifluorophenylacetic acid
NOESY	-	Nuclear overhauser effect spectroscopy

ORTEP	-	Oak Ridge Thermal Ellipsoid Plot
Pd / C	-	Palladium on Carbon
Ph	-	Phenyl
Py	-	Pyridine
PTSA	-	Para-Toluenesulfonic acid
rt.	-	Room temperature
sat.	-	Saturated
TBAF	-	Tetra- n-butylammonium fluoride
TBSCl	-	Tert-Butyldimethylsilyl chloride
TFA	-	Trifluoro acetic acid
Tf 2 O	-	Trifluoromethanesulphonic anhydride
THF	-	Trimethylsilyl trifluoromethanesulphonate
TMSOTf	Para-Toluenesulphonyl chloride	
$\mathrm{TPP} / \mathrm{PPh}_{3}$		
TsCl		

GENERAL REMARKS

- ${ }^{1} \mathrm{H}$ NMR spectra were recorded on AV- $200 \mathrm{MHz}, \mathrm{AV}-400 \mathrm{MHz}$, and DRX500 MHz spectrometer using tetramethylsilane (TMS) as an internal standard. Chemical shifts have been expressed in ppm units downfield from TMS.
- ${ }^{13} \mathrm{C}$ NMR spectra were recorded on AV-50 MHz, AV-100 MHz, and DRX125 MHz spectrometer.
- EI Mass spectra were recorded on Finngan MAT-1020 spectrometer at 70 eV using a direct inlet system.
- The X-Ray Crystal data were collected on Bruker SMART APEX CCD diffractometer using Mo K_{α} radiation with fine focus tube with 50 kV and 30 mA .
- Infrared spectra were scanned on Shimadzu IR 470 and Perkin-Elmer 683 or 1310 spectrometers with sodium chloride optics and are measured in cm^{-1}.
- Optical rotations were measured with a JASCO DIP 370 digital polarimeter.
- Melting points were recorded on Buchi 535 melting point apparatus and are uncorrected.
- All reactions are monitored by Thin Layer Chromatography (TLC) carried out on 0.25 mm E-Merck silica gel plates ($60 \mathrm{~F}-254$) with UV light, I_{2}, and anisaldehyde in ethanol as developing agents.
- All reactions were carried out under nitrogen or argon atmosphere with dry, freshly distilled solvents under anhydrous conditions unless otherwise specified. Yields refer to chromatographically and spectroscopically homogeneous materials unless otherwise stated.
- All evaporations were carried out under reduced pressure on Buchi rotary evaporator below $45^{\circ} \mathrm{C}$ unless otherwise specified.
- Silica gel (60-120), (100-200), and (230-400) mesh were used for column chromatography.
Page No.
Abstracti-xii
Chapter I:
Section I: Total Synthesis of (-)-Pachastrissamine (Jaspine B) from D-glucose
Introduction 1
Present work 9
Experimental 17
Spectra 25
References 33
Section II: Pd(II)-Mediated Alkynediol Spiroketalization: First Total Synthesisof (-)-Cephalosporolide E and (+)-Cephalosporolide FIntroduction35
Present work 40
Experimental 54
Spectra 67
References 80
Chapter II:
Section I: [2+2+2]-cyclotrimerization approach for the synthesis ofenantiopure isochromans and spiroannulation of dihydroisobenzofuran
Introduction 84
Present Work 93
Experimental 106
Spectra 137
References 169
Section II: Synthesis of modified tricyclic Nucleosides
Introduction 173
Present Work 179
Experimental 188
Spectra 202
References 221
List of Publications 224

ABSTRACT

The thesis entitled "Studies Towards Total Synthesis of Pachastrissamine, Cephalosporolide E/F and Their Analogs and Some Metal Mediated Reactions on Sugar Templates" has been divided into two chapters. Each chapter again subdivided into two sections. Chapter I, Section I describes the total synthesis of (-)Pachastrissamine (Jaspine B) from D-glucose. Section II describes the total synthesis of Cephalosporolides E \& F. Chapter II, Section I deals with the [2+2+2]cyclotrimerization approach for the synthesis of enantiopure isochromans and spiroannulation of dihydroisobenzofuran on carbohydrate templates. A facile synthesis of modified nucleosides from the above [2+2+2]-cyclotrimerization products form the Section II of chapter II.

Chapter 1

Section I: Total synthesis of (-)-pachastrissamine (jaspine B) from D-glucose

Pachastrissamine ($\mathbf{1 A . 1}$, Fig. 1), isolated and characterized by Higa and coworkers in 2002 from the Okinawa marine sponge Pachastrissa sp. (family Calthropellidae) is a novel anhydrophytosphingosine with important bioactivity. It was later (in 2003) isolated from another marine sponge, genus Jaspis by Debitus and co-workers and named as jaspine B. The structure of $\mathbf{1 A .} 1$ and the all cis geometry of the THF ring was assigned by spectroscopy, largely NMR, and the $(2 S, 3 S, 4 S)$ configuration of the ring carbon atoms was determined on the basis of (S) - and (R) MTPA derivatization on the N-monoacetylated pachastrissamine. This was reported to exhibit promising cytotoxic activity in the submicromolar range against P388, A549, HT29, and MEL28 ($\mathrm{IC}_{50}=0.001 \mu \mathrm{~g} / \mathrm{mL}$) cell lines. Its simple structure and this promising biological activity have stimulated substantial synthetic work, culminating in several total syntheses. We wish to synthesize both of $\mathbf{1 A .} 1$ and its antipode 1A. 54 starting from D-glucose with enough flexibility to synthesize their analogues.

(+)-Pachastrissamine (1A.1)

(-)-Pachastrissamine (1A.54)

Figure 1

Retro Synthetic Strategy:

As shown in figure 2, our intended strategy exploit the pseudosymmetry present in pentodialdo-1,4-furanose $\mathbf{1 A . 5 6}$ to derive enantiomeric azidoalkynes $\mathbf{1 A . 6 2}$ and 1A.58, which upon alkylation and hydrogenation should result in the synthesis of 1A. 1 and 1A.54, respectively. We synthesized tetrahydrofuran system $\mathbf{1 A . 5 7}$ by employing Ohira-Bestmann alkynylation at $\mathrm{C}(5)$ of $\mathbf{1 A . 5 6}$.

Figure 2

Free hydroxyl group of 1,2;5,6-Di-O-isopropylidine- α-D-glucofuranose (prepared from D-glucose) was protected as its benzyl ether and by selective deprotection of 5,6 -acetonide using $0.8 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in methanol at room temperature gave diol 1A.65. Diol 1A. 65 was oxidatively cleaved with sodium periodate to obtain the aldehyde 1A.56 which upon reaction with Ohira Bestman reagent afforded the alkyne 1A.66. Reductive deketalization of alkyne 1A. 66 using excess triethylsilane in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ gave alkynol 1 A .57 . Compound 1 A .57 was transformed to the corresponding azidoalkyne $\mathbf{1 A . 5 8}$ by treatment with $\mathrm{Tf}_{2} \mathrm{O}$ in pyridine followed by reacting the intermediate triflate with LiN_{3} in DMF. The alkylation of azidoalkyne 1A.58 with 1-bromododecane was facile using n-BuLi in THF-HMPA and the alkylated product $\mathbf{1 A . 6 7}$ was obtained in good yields. Transfer hydrogenolysis of 1A. 67 with catalytic $10 \% \mathrm{Pd} / \mathrm{C}$ and excess ammonium formate in refluxing methanol
furnished the target compound 1A.54. Further (-)-pachastrissamine $\mathbf{1 A . 5 4}$ was characterized as its diacetate derivative 1A.55.

Scheme 1
In summary we have executed a simple chiral pool strategy for the first total synthesis of pachastrissamine enantiomer starting with D-glucose. The synthesis is sufficiently flexible to allow substitution or variation in the length of the side chain for accessing related analogues.

Section II: Pd(II)-Mediated alkynediol spiroketalization: First total synthesis of (-)-cephalosporolide E and (+)-cephalosporolide F

Cephalosporolides E (1B.09) and F (1B.10) were first isolated in 1985, by Hanson and co-workers from industrial fermentation of the fungus Cephalosporium aphidcola grown under sulfur limiting conditions. Later in 2004, by Rakachaisirikul and co-workers from the entomopathogenic fungus Cordyceps militaris BCC 2816. The relative configuration of $\mathbf{1 B} .09$ and $\mathbf{1 B} .10$ were elucidated by the extensive NMR studies and by single crystal X-ray analysis of 1B.09. Cephalosporolides E and F are characterized by a 1,6 -dioxaspiro[4.4]nonane in which one of the furan ring is fused with a γ-lactone ring. During their isolation of bassianolone (1B.11), Oltra and co-
workers noticed that compound 1B. 11 can be transformed into a mixture of 1B. 09 and 1B. 10 by a silica gel promoted spirocyclization and concluded that 1B. 09 and 1B. 10 are artifacts during the isolation procedures. However, the recent isolation of several other natural products like ascospiroketals A (1B.12) and B (1B.13), cephalosporolides H (1B.14) and I (1B.15) having the central tricyclic core of 1B. $\mathbf{0 9}$ and 1B.10, establish this tricyclic structural core as unprecedented and of natural origin (Figure 3).

Cephalosporolide E (1B.09)

Cephalosporolide F (1B.10)

Bassianolone (1B.11)

Ascospiroketal B (1B.13)

Cephalosporolide H (1B.14) $\mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}$
Cephalosporolide I (1B.15)
$R=-\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2} \mathrm{H}$

Figure 3

Despite the fact that the absolute configuration of all the natural products isolated unsettled, however not synthetic efforts were documented and this promoted us to undertake the synthesis of 1B. 09 and 1B. 10 .

Retro Synthetic Strategy:

As out lined in the Figure 4, considering the alkynol cycloisomerization as the key reaction and our earlier studies on influence of the electronic factors over the Pdmediated cycloisomerization reactions, the alkyne unit has been placed between $\mathrm{C}(5)-$ $\mathrm{C}(6)$ and the central carbon chain of $\mathbf{1 B} .09$ and 1B. 10 has been disconnected between $\mathrm{C}(6)-\mathrm{C}(7)$ (Figure 4).

Figure 4
Synthesis of alkyne 1B. 20 (Scheme 2): The 6-chloro compound 1B. 25 was prepared by treating glucose diacetonide with mesyl chloride in DMF at $90^{\circ} \mathrm{C}$, which on reaction with excess of n - BuLi at $-78{ }^{\circ} \mathrm{C}$ gave the alkynol 1B.26. Free hydroxyl group of 1 B. 26 was protected as its TBS ether to afford the alkyne fragment 1B.20.

Scheme 2

Synthesis of iodo compound 1B. 21 (Scheme 3): Synthesis was started with dimethyl ester $\mathbf{1 B} .37$ of L-malic acid prepared by addition of thionyl chloride at $0{ }^{\circ} \mathrm{C}$ to malic acid 1B. 36 in methanol and stirred at room temperature for 24 hours. Free hydroxyl was converted to its tosylate 1B. 38 by treating it with tosyl chloride in pyridine and DCM at rt. Tosylate 1B.38 on reduction with 5 equivalents of LAH at $55^{\circ} \mathrm{C}$ gave (S)-butane-1,3-diol (1B.23) in 47\% yield. Primary hydroxyl group of 1B. 23 was converted to its tosylate and then the secondary hydroxyl as its TBS ether to afford
compound 1B.40. Compound 1B. 40 on refluxing with sodium iodide in acetone gave the iodo compound 1B.21.

Synthesis of alkynediol 1B. 19 and its cycloisomerization (Scheme 4): The alkyne 1B. 20 synthesized from D-glucose and the iodo compound 1B. 21 from L-malic acid were coupled by employing n-BuLi and HMPA in THF at $-40^{\circ} \mathrm{C}$ to afford 1B.41. On TBS deprotection of 1B. 41 by tetra-n-butyl ammonium fluoride afforded the key alkynediol 1B.19. Alkynediol 1B. 19 was subjected to the key palladium catalyzed cycloisomarization reaction to afford a $1: 1$ mixture of spiro tricyclic compounds 1B. 18 .

Scheme 4

Synthesis of (-)-cephalosporolide E and (+)-cephalosporolide F (Scheme 5): The 1,2-acetonide deprotection of 1B. 18 was achieved by heating it in 40% acetic acid at $80^{\circ} \mathrm{C}$ (oil bath temperature) for 4 to 5 hours to get a mixture of four lactols 1B.42. The lactols 1B.42 were subjected for chemoselective oxidation employing either $\mathrm{Br}_{2} / \mathrm{Ba}\left(\mathrm{CO}_{3}\right)$ or under Fetizon's conditions to afford the corresponding lactones $\mathbf{1 B} .43$ and 1B.44. The resulting lactones 1B. 43 and 1B. 44 were separated by silica gel column chromatography and characterized by NMR studies and by single crystal Xray analysis of 1B.43.

$1 B .18$

Scheme 5

Treatment of Lactones 1B. 43 and 1B. 44 with phenyl chlorothinoformate and DMAP in acetonitrile gave the corresponding xanthates, which were transferred to cephalosporolides E and F on radical deoxygenation by tributyl tin hydride and AIBN in toluene at reflux. Correlating the X-ray, NMR analysis spectrums of reported compounds and optical rotation, we have successfully determined absolute configuration of cephalosporolide E , cephalosporolide F and bassianolone.

In conclusion first total synthesis of cephalsporolides E and F were achieved using palladium catalyzed cycloisomarization reaction as the key step and successfully determined their absolute configuration.

Chapter 2

Section I: $[2+2+2]$-Cyclotrimerization approach for the synthesis of enantiopure isochromans and spiroannulation of dihydroisobenzofuran

Designing effective routes to construct complex cyclic structures through organo transition-metal catalyzed reactions have been recognized as an attractive strategy for delivering molecular diversity. Integrated with transition metal catalyzed reactions, sugar templates have been well deployed to address the synthesis of a variety of complex natural product skeletons. Amongst the many other metal catalyzed reactions which have been explored on sugar templates, catalytic [2+2+2]alkyne cyclotrimerization is important as it delivers highly functionalized aromatic rings appended with a sugar ring. Herein, we describe the synthesis of enantomeric tricyclic molecular skeletons consisting of isochroman unit (Figure 5) and also the spiroannulation of dihydroisobenzofuran ring on carbohydrate templates (Figure 6) by employing cyclotrimerization as the key reaction.

Figure 5: Key $[2+2+2]$-Cyclotrimerization approach for enantiopure isochromans

Figure 6: key $[2+2+2]$-Cyclotrimerization approach for spiroannulation of dihydroisobenzofuran and selected sugar diynes

The synthesis of the key diyne $\mathbf{2 A} .43$ started with the propargylation of D glucose diacetonide to procure the propargyl ether 2A.45. Selective monoacetonide hydrolysis of $\mathbf{2 A .} 45$ followed by sodium periodate mediated cleavage and subsequent Ohira-Bestmann alkynylation of the intermediate aldehyde gave the diyne 2A.43 in 40% overall yield. Cyclotrimerization of $\mathbf{2 A . 4 3}$ was optimized with 2-butyne-1,4-diol using Wilkinson's catalyst and afforded the tricyclic derivative 2A. 49 in good yield (Scheme 6). To illustrate the flexibility of our strategy, various symmetrical and unsymmetrical alkynes were employed. With unsymmetrical alkynes, the $[2+2+2]-$ cyclotrimerization gave inseparable regiomeric mixtures in moderate to good yields.

Scheme 6

The synthesis of the key diyne substrates (2A.63-2A.65) of spiro-annulation protocols were started with addition of ethynylmagnesium bromide to the ketones 2A.66-2A.68. Subsequent propargylation of 3°-hydroxyl of the resulting alkynes gave key diyne intermediates 2A.63-2A.65 (Scheme 7). Cyclotrimerization was carried out with diacetate of 2-butyne-1,4-diol using Wilkinson's catalyst to afford the tricyclic derivatives 2A.77, 2A.86, 2A.90 in good yields to optimize the reaction.

Scheme 7

With symmetrical alkyne substrates acetylene and dimethyl acetylene dicarboxylate the cyclotrimerization reaction proceeded effectively at $80^{\circ} \mathrm{C}$ in a sealed tube to afford the corresponding spirocyclic products. The cyclotrimerization reactions of 2A.63-2A.65 with phenyl acetylene and of 2A.64 with propargyl alcohol, 1-hexadecyne, and N-propargyl phthalimide were executed under similar conditions. However, the trimerization with these substrates are not regioselective and gave inseparable regiomeric mixtures.

In summary, a general synthesis of enantiomeric tricyclic molecular skeletons consisting chiral isochroman \& spirodihydroisobenzofuran units has been achieved via $[2+2+2]$-cyclotrimerization reaction on sugar templates.

Section II: Synthesis of modified tricyclic nucleosides

Having provided an easy access to tricyclic sugar scaffolds herein, we extend their application in the synthesis of modified nucleosides by employing the two tricyclic compounds 2B. 21 and 2B.22. Compound 2B. 21 was subjected to acid catalysed acetonide hydrolysis using 60% acetic acid followed by acetylation in $\mathrm{Et}_{3} \mathrm{~N}$, acetic anhydride and dichloromethane to afford a $1: 1$ anomeric mixture of 2B.25. Treatment of 2B. 25 with pyrimidine bases such as uracil, thymine, 5-flurouracil and Cbz-cytosine under modified Vorbrüggen conditions afforded the respective protected nucleosides 2B.27-2B.30. Compounds 2B.27-2B. 29 upon Zemplen's deacetylation gave the tricyclic nucleosides 2B.31-2B. 33 (Scheme 8). The structures of 2B. $27 \&$ 2B. 32 were established with the help of X-ray crystallography that confirmed the assigned β-configuration.

Scheme 8

In a similar fashion, 2B. 22 was subjected for acid catalysed acetonide hydrolysis followed by acetylation to afford a anomeric mixture of 2B. 26 as its pyranoside of ribose core (Scheme 9).

Scheme 9

Treating the anomeric mixture 2B. 26 with uracil, thymine and 5-flurouracil under modified Vorbrüggen conditions afforded the protected nucleosides 2B.342B.36, respectively. Subjecting 2B.34-2B.36 to Zemplen's deacetylation afforded the tricyclic nucleosides 2B.37-2B.39 (scheme 9). The structural integrity of compound 2B. 34 was established with the help of X-ray crystallography.

CHAPTER-I

Section I: Total synthesis of (-)-pachastrissamine (jaspine B) from D-glucose

1A.1. Introduction:

Phytosphingosines 1A.03-1A.06 are a sub-class of the sphingoid bases and consist of a 1,3,4-trihydroxy-2-amino unit at the head of a long hydrocarbon chain. By far, the most abundant phytosphingosine is D-ribo-phytosphingosine 1A.03, with 18 carbon atoms in the hydrocarbon chain. Sphingolipids are essential components of eukaryotic cells ${ }^{1}$ and phytosphingolipids exhibit important physiological properties. ${ }^{2}$ Pachastrissamine 1A.01, also known as Jaspine B was the first naturally occurring anhydrophytosphingosine isolated, ${ }^{2,3}$ which also displays potent biological activity. Since its isolation in 2002, there has been a great deal of interest from synthetic chemists concerning the total synthesis of Pachastrissamine 1A.01, its C(2)-epimer (2-epi-jaspine B 1A.02) and their analogues (Figure 1A.1).

D-ribo-phytosphingosine 1A. 03

D-arabino-phytosphingosine $1 \mathrm{A.06}$

D-lyxo-phytosphingosine
1A. 04

Pachastrissamine (Jaspine B) 1A. 01

D-xylo-phytosphingosine
1A. 05

2-epi-Jaspine B 1A. 02

Figure 1A.1: Structures of C_{18} phytosphingosines 1A.03-1A.06 and anhydrophytosphingosine jaspine B (1A.01) and 2-epi-jaspine B (1A.02).

1A.1.1 Synthesis of anhydrophytosphingosines prior to the isolation of jaspine B :

In 1959 the first report of an anhydrophytosphingosine $\mathbf{1 A .} 07$ appeared, although a stereochemical assignment was not given. ${ }^{4}$ Subsequently, its structure and relative configuration were assigned by analogy with the 'truncated' analogue $\mathbf{1 A . 1 4}$, bearing a $\mathrm{C}_{12} \mathrm{H}_{25}$ side chain. In this synthesis, allylic alcohol $\mathbf{1 A . 0 8}$ was kinetically resolved under Sharpless asymmetric epoxidation conditions with (+)-DIPT to afford an enantioenriched sample, ${ }^{5}$ which upon O-silylation afforded (R)- $\mathbf{1 A . 0 9}$ of 97% ee. Ozonolysis of (R)- 1A. 09 followed by Horner-Wadsworth-Emmons olefination gave 1A.10. Reduction of the ester functionality of $\mathbf{1 A . 1 0}$ was achieved with DIBAL-H,
which was oxidised under Sharpless asymmetric epoxidation conditions with (-)DIPT to give epoxide 1A.11. Treatment of $\mathbf{1 A . 1 1}$ with benzylisocyanate gave urethane 1A.12, and subsequent base-mediated epoxide opening gave tetrahydrofuran derivative 1A.13. The configuration of $\mathbf{1 A .} 15(2 R, 3 S, 4 S)$ was determined by ${ }^{1} \mathrm{H}$ NMR NOE studies on N, O-diacetyl derivative 1A. 15 (Scheme 1A.1). ${ }^{6}$

(R)-1A.09, 97\% ee

1 A. 10

(ix)

$$
\begin{aligned}
& \text { 1A.13 } \mathrm{R}=\mathrm{Bn}, \mathrm{R}^{\prime}=\mathrm{TBS} \\
& \square \mathbf{1 A . 1 4} \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H} \\
& \square \\
& \mathbf{1 A . 1 5} \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Ac}
\end{aligned}
$$

1A. 12
$\mathrm{R}=\mathrm{CONHBn}$
(x)

Scheme 1A.1: Reagents and conditions: (i) $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$, (+)-DIPT, ${ }^{t} \mathrm{BuO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20{ }^{\circ} \mathrm{C}, 15 \mathrm{~h}$; (ii) TBDMSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 12 \mathrm{~h}, 41 \%$ for two steps; (iii) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ then $\mathrm{Me}_{2} \mathrm{~S}$, $-78{ }^{\circ} \mathrm{C}$ to rt; (iv) $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{NaH}, \mathrm{C}_{6} \mathrm{H}_{6}, 60{ }^{\circ} \mathrm{C}$ to rt, $15 \mathrm{~min}, 60 \%$ for two steps; (v) DIBAL-H, hexane, $0{ }^{\circ} \mathrm{C}$ to rt, $12 \mathrm{~h}, 90 \%$; (vi) $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$, (-)-DIPT, ${ }^{t} \mathrm{BuO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20{ }^{\circ} \mathrm{C}, 21 \mathrm{~h}$, 97%; (vii) $\mathrm{BnNCO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $12 \mathrm{~h}, 98 \%$; (viii) $\mathrm{NaH}, \mathrm{THF}, \mathrm{rt}, 12 \mathrm{~h}, 67 \%$; (ix) $\mathrm{HF}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeCN}$, $70^{\circ} \mathrm{C}$, 2 h then Pd / C, cyclohexene, aq $1 \mathrm{M} \mathrm{HCl}, \mathrm{MeOH}$, reflux, $2 \mathrm{~h}, 78 \%$; (x) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, $70^{\circ} \mathrm{C}$, $1.5 \mathrm{~h}, 96 \%$.

Recently (in 2001), the synthesis of an authentic sample of 2-epi-jaspine B 1A. 02 was reported by Kim et al., starting from D-ribo-phytosphingosine 1A.03. Initial treatment of $\mathbf{1 A . 0 3}$ with 3-nitrophthalic acid at reflux under Dean-Stark conditions is reported to give tetrahydrofuran derivative $\mathbf{1 A . 1 6}$, which on hydrazinemediated N-deprotection afforded $\mathbf{1 A . 0 2}$. Kim et al. also report that treatment of N trifluoroacetyl D-ribo-phytosphingosine $\mathbf{1 A .} 17$ with TsCl in pyridine effected cyclisation to tetrahydrofuran derivative $\mathbf{1 A . 1 8}$, which upon deprotection also gave 1A.02, with identical spectroscopic data (Scheme 1A.2). ${ }^{7}$

Scheme 1A.2: Reagents and conditions: (i) 3-nitrophthalic acid, PhMe, reflux, $3 \mathrm{~h}, 67 \%$; (ii) $\mathrm{NH}_{2} \mathrm{NH}_{2}$, $\mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$ reflux, $2 \mathrm{~h}, 62 \%$; (iii) $\mathrm{F}_{3} \mathrm{CCO}_{2} \mathrm{Et}, \mathrm{EtOH}, 25^{\circ} \mathrm{C}, 16 \mathrm{~h}$; (iv) TsCl , pyridine, $25^{\circ} \mathrm{C}, 16 \mathrm{~h}, 75 \%$; (v) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 16 \mathrm{~h}, 67 \%$.

1A.1.2. Isolation of pachastrissamine (jaspine B):

In 2002, studies on the marine sponge Pachastrissa sp. by Higa and coworkers ${ }^{2}$ led to the isolation of an anhydrophytosphingosine derivative which they named pachastrissamine (1A.01) (Figure 1A.2). Shortly after, in an independent study, Debitus and co-workers reported the isolation of two anhydrophytosphingosines from the marine sponge Jaspis sp., ${ }^{3}$ which they named jaspines A (1A.19) and B (1A.01); pachastrissamine and jaspine B being identical (Figure 1A.2). Both jaspines A (1A.19) and B (1A.01) display biological activity; ${ }^{2}$ jaspine $\mathrm{B}(\mathbf{1 A . 0 1)}$ in particular being the most potent compound isolated from the Jaspis genus to date against the A549 human lung carcinoma cell line.

Stereochemical assignment:

Higa et al. determined the relative configuration of pachastrissamine ($\mathbf{1 A . 0 1)}$ after the conversion of $\mathbf{1 A . 0 1}$ to the corresponding N -acetyl and N, O-diacetyl derivatives $1 \mathbf{A . 2 0}$ and $\mathbf{1 A . 2 1}$, by ${ }^{1} \mathrm{H}$ NMR NOE analysis of the N, O-diacetyl derivative 1A.21, which indicated the all-cis relationship of the substituents around the tetrahydrofuran ring. The $(2 S, 3 S, 4 S)$-absolute configuration of the natural product was then established using the Mosher method, by conversion of N-acetyl pachastrissamine ($\mathbf{1 A . 2 0}$) to the corresponding (R)- and (S)-2-methoxy-2trifluoromethylphenyl acetyl (MTPA) derivatives. ${ }^{8}$ In their independent study, Debitus et al. also converted jaspine $\mathrm{B}(\mathbf{1 A . 0 1})$ to the corresponding N-acetyl and N, O-diacetyl derivatives $\mathbf{1 A . 2 0}$ and $\mathbf{1 A . 2 1}$, and compared the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data
with that of the known $\mathrm{C}_{12} \mathrm{H}_{25}$ side-chain N, O-diacetyl derivative $\mathbf{1 A . 1 5},{ }^{7}$ which also indicated an all-cis relationship of the substituents around the tetrahydrofuran ring. The absolute configuration of the natural product was then determined, also by the Mosher method, as $(2 S, 3 S, 4 S)$ (Figure 1A.2).

Figure 1A.2: Structures of jaspines A (1A.19)/B (1A.01), the 'truncated' $\mathrm{C}_{12} \mathrm{H}_{25}$ sidechain analogue 1A. 14 and their corresponding acetate derivatives

1A.1.3. Synthesis of pachastrissamine (jaspine B)

1A.1.3.1. B. Venkateswara Rao et al. ${ }^{9}$

The first total synthesis of pachastrissamine $\mathbf{1 A . 0 1}$ reported by Rao and coworkers used L-serine derived Garner's aldehyde 1A.22. Addition of vinylmagnesium bromide to 1A.22 gave a separable 86:14 mixture of diastereoisomeric alcohols in accordance with the well-known modified Felkin-Ahn selectivity for addition. ${ }^{10}$ The major diastereoisomer was protected as the corresponding benzyl ether to give 1A.23. Ozonolysis of $\mathbf{1 A . 2 3}$ was followed by addition of tetradecylmagnesium bromide to give an inseparable 70:30 mixture of the diastereoisomeric alcohols 1A.24. Protection and deprotection manipulations follwed by mesylation and treatment of the mesylates with TBAF promoted desilylation and concomitant cyc1isation to a separable 70:30 mixture of tetrahydrofurans, from which the all-cis diastereoisomer 1A. 25 and its C(2)-epimer 1A. 26 was isolated. Subsequent debenzylation and diacetylation of 1 A .25 and 1 A .26 gave N, O-diacetyl jaspine B (1A.21) and N,O-diacetyl 2-epi-jaspine B (1A.29) respectively (Scheme 1A.3).

Scheme1A.3: Reagents and conditions: (i) viny1magnesiumbromide, THF, $0^{\circ} \mathrm{C}$ to rt , 12 h ; (ii) BnBr , THF, $\mathrm{NaH}, 0{ }^{\circ} \mathrm{C}$ to rt, $12 \mathrm{~h}, 92 \%$; (iii) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, \mathrm{Me}_{2} \mathrm{~S}$; (iv) $\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{MgBr}$, THF, 12 h , rt, 83% for two steps; (v) $80 \% \mathrm{AcOH}, 0^{\circ} \mathrm{C}$ to rt, $12 \mathrm{~h}, 91 \%$; (vi) TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DMAP, $0^{\circ} \mathrm{C}$ to rt, $12 \mathrm{~h}, 86 \%$; (vii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt 2 h ; (viii) TBAF, THF, rt, $2 \mathrm{~h}, 88 \%$ for two steps; (ix) $\mathrm{Na}, \mathrm{NH}_{3}$, THF, $-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 96 \%$; (x) TFA: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1), rt, $6 \mathrm{~h}, 87 \%$; (xi) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{AC}_{2} \mathrm{O}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, $4 \mathrm{~h}, 94 \%$.

1A.1.3.2. Apurba Datta et al. ${ }^{11}$

They have communicated their purported synthesis of jaspine B (1A.01), in this synthesis, L-serine was converted into butenolide 1A.31. Treatment of 1A. 31 with formic acid enabled deprotection of the acetonide, with subsequent Michael addition of the free hydroxyl group giving cis-fused bicycle 1A.32. Subsequent reduction of $\mathbf{1 A .} 32$ with DIBAL-H and Wittig olefination gave 1A.33. Hydrogenation and cleavage of the resultant oxazolidinone of $\mathbf{1 A . 3 3}$ afforded jaspine B ($\mathbf{1 A . 0 1}$) (Scheme 1A.4).

Scheme 1A.4: Reagents and conditions: (i) $\mathrm{HCO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ then EtOAc , satd aq $\mathrm{NaHCO}_{3}, 79 \%$; (ii) DIBAL-H, $-78{ }^{\circ} \mathrm{C}$, 83%; (iii) $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{Br}^{-}$, n-BuLi, THF, $-78{ }^{\circ} \mathrm{C}$ to rt, 81%; (iv) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, EtOAc, rt, 90%; (v) aq KOH, EtOH, reflux, 77%.

1A.1.3.3. Herman S. Overkleeft et al. ${ }^{12}$

Synthesis of pachastrissamine ($\mathbf{1 A . 0 1)}$ and 2-epi-pachastrissamine ($\mathbf{1 A . 0 2 \text {), }}$ have reported by Overkleeft et al. by employing manipulation of D-ribophytosphingosine. Treatment of $\mathbf{1 A . 0 3}$ with TfN_{3} resulted in azide 1A.34. Subsequent Lewis acid-promoted cyclisation upon treatment with $\mathrm{BF}_{3} \cdot \mathrm{EtO}_{2}$ and trimethylorthoacetate (TMOA) gave tetrahydrofuran derivative 1A.35. Removal of the acetate group followed by Staudinger reduction of the azide group gave pachastrissamine ($\mathbf{1 A . 0 1)}$ (Scheme 1A.5). The synthesis of 2-epi-pachastrissmine (1A.02) from 1A. 03 was achieved via initial N-Boc protection, followed by selective tosylation of the primary hydroxyl and concomitant cyclisation to give $\mathbf{1 A . 3 7}$, which on N-Boc deprotection gave 2-epi-jaspine B 1A. 02 (Scheme 1A.5).

Scheme 1A.5: Reagents and conditions: (i) $\mathrm{TfN}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CuSO}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 16 \mathrm{~h}$, 96%; (ii) TMOA, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, $16 \mathrm{~h}, 92 \%$; (iii) $\mathrm{KO}{ }^{t} \mathrm{Bu}, \mathrm{MeOH}$; (iv) $\mathrm{Me}_{3} \mathrm{P}$, $\mathrm{PhMe} / \mathrm{H}_{2} \mathrm{O}$ (24:1), rt, $16 \mathrm{~h}, 82 \%$ for two steps; (v) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}$, rt, $30 \mathrm{~min}, 92 \%$; (vi) TsCl , pyridine $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1), rt, $16 \mathrm{~h}, 83 \%$; (vii) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $3 \mathrm{~h}, 95 \%$.

1A.1.3.4. Yuguo Du et al. ${ }^{13}$

Tosylate 1A. 38 was prepared from D-xylose in three steps. Subsequent treatment with HCl in EtOH gave 1A.39, then mesylation and exposure to NaN_{3} generated azide derivative 1A.40. Hydrolysis of $\mathbf{1 A . 4 0}$ with aqueous TFA afforded
aldehyde 1 A .41 , which was then subjected to Wittig olefination giving an inseparable mixture (E) - and (Z)-isomers of olefin $\mathbf{1 A . 4 2}$. Finally, 1 A .42 was hydrogenated to give pachastrissamine (1A.01) (Scheme 1A.6).

Scheme 1A.6: Reagents and conditions: (i) $5 \% \mathrm{HCl}$ in EtOH (v/v), reflux, $3 \mathrm{~h}, 89 \%$; (ii) MsCl , pyridine, rt, 4 h ; (iii) $\mathrm{NaN}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{DMF}, 120^{\circ} \mathrm{C}, 20 \mathrm{~h}, 71 \%$ for two steps; (iv) TFA ($50 \% \mathrm{aq}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $30 \mathrm{~min}, 90 \%$; (v) $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{Br}^{-}, n-\mathrm{BuLi}, \mathrm{THF},-40{ }^{\circ} \mathrm{C}, 86 \%$; (vi) $\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$, $\mathrm{MeOH} / \mathrm{EtOAc}, 5 \mathrm{~h}, 92 \%$.

Subsequently, an improved and scaleable synthesis was reported by Du et al., ${ }^{13 b}$ and it was also starting from D-xylose. In this approach, protected D-xylose derivative 1 A .43 was treated with NaIO_{4} followed by Wittig reaction gave 1A.44. Iodine-promoted cyclofunctionalisation/debenzylation of 1A. 44 afforded iodide 1A.45, and subsequent oxidation of the iodomethyl group followed by treatment with MsCl gave mesylate $\mathbf{1 A} .46$. Wittig olefination of $\mathbf{1 A . 4 6}$, followed by treatment of NaN_{3} gave 1A.42. Hydrogenation of 1A.42 in MeOH containing 1\% TFA furnished target molecule, pachastrissamine 1A.27, in a salt form (Scheme 1A.7).

Scheme 1A.7: Reagents and conditions: (i) $\mathrm{NaIO}_{4}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}$; (ii) $\mathrm{CH}_{3} \mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{Br}^{-}$, n - BuLi , THF, -40 ${ }^{\circ} \mathrm{C}$ to rt, 82% for two steps; (iii) $\mathrm{I}_{2}, \mathrm{NaHCO}_{3}, \mathrm{CH}_{3} \mathrm{CN}, 80 \%$; (iv) $\mathrm{NaHCO}_{3}, \mathrm{DMSO}, 150{ }^{\circ} \mathrm{C}, 6 \mathrm{~min}$; (v) MsCl , pyridine, rt, $30 \mathrm{~min}, 74 \%$ for two steps; (vi) $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{Br}^{-}, n$ - BuLi , THF, $-40{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 90 \%$, Z/E ratio $10 / 1$; (vii) $\mathrm{NaN}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{DMF}, 120^{\circ} \mathrm{C}, 20 \mathrm{~h}, 80 \%$; (viii) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{TFA}, 5 \mathrm{~h}, 95 \%$.

1A.1.3.5. J. A. Marco et al. ${ }^{14}$

Marco and co-workers reported an enantiospecific synthesis of jaspine B (1A.01) from (R)-glycidol. O-TBDPS protected (R)-glycidol 1A. 47 was initially treated with tridecylmagnesium bromide in the presence of CuI to afford the corresponding alcohol, which was then protected as its O-MOM derivative followed by desilylation, Swern oxidation, olefination and ester reduction gave allylic alcohol 1A.48. Allylic alcohol 1A. 48 was treated under Sharpless asymmetric epoxidation conditions, with (-)-DET, and then with trichloroacetonitrile in the presence of DBU to give imino ester derivative $\mathbf{1 A . 4 9}$. Compound $\mathbf{1 A . 4 9}$ was then reacted with $\mathrm{Et}_{2} \mathrm{AlCl}$ to generate oxazoline $\mathbf{1 A . 5 0}$, subsequent hydrolysis, N-Boc protection and MOM deprotection gave triol 1A.51. Triol 1A. 51 was treated with TsCl , followed by $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH to induce cyclisation to give tetrahydrofuran derivative which on N-Boc deprotection gave pachastrissamine 1A. 01 (Scheme 1A.8).

Scheme 1A.8: Reagents and conditions: (i) $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{MgBr}$, CuI, THF, -10 to $0^{\circ} \mathrm{C}, 82 \%$; (ii) MOMCl , $\mathrm{EtN}^{i} \mathrm{Pr}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $24 \mathrm{~h}, 94 \%$; (iii) TBAF, THF, rt, $3 \mathrm{~h}, 94 \%$; (iv) $\mathrm{COCl}_{2}, \mathrm{DMSO}^{2} \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78$ to $-46{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (v) ($\left.{ }^{i} \mathrm{PrO}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{LiBr}, \mathrm{Et}_{3} \mathrm{~N}$, THF, rt; (vi) DIBAL-H, hexane, $0{ }^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$, 81% for three steps; (vii) (-)-DET, $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}_{4},{ }^{t} \mathrm{BuO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2} 0\right.$ to $20^{\circ} \mathrm{C}, 24 \mathrm{~h}, 89 \%$; (viii) $\mathrm{Cl}_{3} \mathrm{CCN}$, DBD, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (ix) $\mathrm{Et}_{2} \mathrm{AlCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 5 \mathrm{~h}, 72 \%$ for two steps; (x) aq 1 M HCl , THF, rt, 5 h ; (xi) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{NaHCO}_{3}$, THF, rt, $16 \mathrm{~h}, 96 \%$ for two steps; (xii) $\mathrm{TMSBr}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 30$ min, 75%; (xiii) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 20 min ; (xiv) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{rt}, 16 \mathrm{~h}, 70 \%$ for two steps; (xv) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, 45 min , then $\mathrm{NaOH}, \mathrm{MeOH}, 5 \mathrm{~min}, 75 \%$.

1A.2. Present Work:

Spingolipids are ubiquitous as components of cell membranes. Some unusual spingolipids have been described from marine organisms. An example is a series of α galactoceramides, agelasphins (e.g. 1A.52), exhibiting potent in vivo antitumor activity but no in vitro cytotoxicity, from the sponge Agelas mauritianus. ${ }^{15}$ This discovery led Natori and co-workers to the development of a synthetic anticancer agent (coded KRN7000, 1A.53), which is now under clinical trial. ${ }^{16}$ Studies on the marine sponge Pachastrissa sp. by Higa and co-workers in 2002, led to the isolation of a cyclic anhydrophytosphingosine, which they named as pachastrissamine (1A.01). ${ }^{2}$ Shortly after (in 2003), Debitus and co-workers ${ }^{3}$ reported the isolation of two anhydrophytosphighosines from the marine sponge Jaspis sp. and named as jaspine A (1A.19) and jaspine $\mathrm{B}(\mathbf{1 A . 0 1})$; pachastrissamine and jaspine B being identical. Jaspine B was reported to exhibit promising cytotoxic activity in the submicromolar range against P388, A549, HT29 and MEL28 (IC $_{50}=0.001 \mu \mathrm{~g} / \mathrm{mL}$) cancer cell lines. An analogous anhydrophytosphingosine 2-epi-jaspine B (1A.02) has been reported without stereochemistry as derivative of a plant metabolite. ${ }^{4}$ Later its absolute structure was assigned by asymmetric synthesis of a compound 1A. 14 having a shorter side chain. ${ }^{6}$ In a recent report on the early synthesis of jaspine B has indeed revealed that the synthetic samples data given was matching with $\mathbf{1 A . 0 2}$. This proposed an unwarranted synthesis of anhydrosphytosphingosine $\mathbf{1 A . 0 2}{ }^{7}$

1A. 52 Agelasphin 9a

1A.02 $\mathrm{R}=\mathrm{C}_{14} \mathrm{H}_{29}$
1A. $14 \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$

1A. 53 KRN7000

1A. $54 \mathrm{R}=\mathrm{H}$
1A. $55 \mathrm{R}=\mathrm{Ac}$

Figure 1A. 3

The promising biological activity and novel structural features of jaspine B (1A.01) have encouraged us to undertake a synthetic work. In order to gain rapid access to products of biological interests, we have initiated a program to synthesize the jaspine enantiomer (1A.54) with a flexibility in placing the side chain, so as to synthesize a collection of the jaspine like small molecules (Figure 1A.3).

1A.2.1. Retrosynthesis

Our intended strategy (Figure 1A.4), exploit the pseudosymmetry present in pentodialdo-1,4-furanose $\mathbf{1 A . 5 6}$ to derive enantiomeric azidoalkynes $\mathbf{1 A .} 62$ and 1A.58, which upon alkylation and hydrogenation should result in the synthesis of 1A. 01 and 1A.54, respectively. Alkyne functionality of azidoalkyne could be used for coupling reactions, and substitution of various alkyl halides to synthesize different analogues of pachastrissamine.

Figure 1A.4: Pseododesymmetrization strategy for (+)- and (-)-pachastrissamine

Azidoalkyne 1A. 58 could be prepared from the alkynol 1A. 57 with inversion of configuration at $\mathrm{C}(2)$ by azide displacement. We anticipated that the two enantiomeric furan systems 1A. 57 and 1A. 61 could be fashioned efficiently by employing selective Ohira-Bestmann alkynylation at either end of 1A.56. The Bestmann alkynylation at $\mathrm{C}(5)$ is a direct proposition. Whereas for the Ohira-

Bestmann alkynylation at $\mathrm{C}(1)$, we are interested to bring the acid mediated ring isomerisation of 1A.59.

1A.2.2. Synthesis of Azidoalkyne 1A. 58

As intended, the synthesis of azidoalkyne 1A. 58 was initiated from D-glucose diacetonide 1A. 63 (prepared from D-glucose by treating it with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, anhydrous CuSO_{4}, in acetone.) Free hydroxyl ($\mathrm{C} 3-\mathrm{OH}$), was protected as its benzyl ether by treating it with benzyl bromide and sodium hydride as base in DMF to obtain compound $\mathbf{1 A . 6 4}$. Selective deprotection of 5,6 -isopropylidene group by using 0.8% $\mathrm{H}_{2} \mathrm{SO}_{4}$ in methanol gave diol 1A. 65 (Scheme 1A.9).

Scheme 1A.9: Synthesis of diol 1A. 65

Diol 1 A .65 on oxidative cleavage by NaIO_{4} adsorbed on silica gel, in DCM afforded the aldehyde $\mathbf{1 A . 5 6}$, which was advanced to the next step without any purification/characterization. Treatment of 1A.56 with Ohira-Bestman reagent ${ }^{17}$ in $\mathrm{MeOH} / \mathrm{K}_{2} \mathrm{CO}_{3}$ gave the alkyne $\mathbf{1 A . 6 6}$ (Scheme 1A.10). In the ${ }^{1} \mathrm{H}$ spectum of alkyne 1A.66, the acetylenic proton resonated at $\delta 2.61$ as a doublet with $J=2.3 \mathrm{~Hz}$. The ${ }^{13} \mathrm{C}$ spectrum revealed alkyne functionality at 76.5 ppm , (d) and 77.6 ppm , (s) and the IR spectrum showed acetylenic $\mathrm{C}-\mathrm{H}$ stretching at $3305 \mathrm{~cm}^{-1}$ and alkyne $\mathrm{C} \equiv \mathrm{C}$ stretching at $2135 \mathrm{~cm}^{-1}$.

Scheme 1A.10: Synthesis of alkyne 1A. 66

Reductive deketalization of the alkyne 1A. 66 using excess triethylsilane in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in DCM afforded the alkynol $\mathbf{1 A . 5 7} .{ }^{18}$ The structure of compound 1 A .57 was established with the help of spectral and analytical data. In the ${ }^{1} \mathrm{H}$ NMR spectrum of alkynol $\mathbf{1 A . 5 7}$, the signal corresponding to the anomeric- H (doublet at $\delta 5.96$ of $\mathbf{1 A . 6 6}$) was absent. Two new dds corresponding to the $\mathrm{C}(1)-\mathrm{H}_{2}$ were resonated at $\delta 3.69(J=2.2,9.7 \mathrm{~Hz}, 1 \mathrm{H})$, and at $\delta 4.20(J=4.7,9.8 \mathrm{~Hz}, 1 \mathrm{H})$. This was further substantiated by the appearance of $\mathrm{O}-\mathrm{CH}_{2}$ resonance at 73.1(t) ppm, in the ${ }^{13} \mathrm{C}$ NMR specrum of $\mathbf{1 A . 5 7}$. IR spectrum showed $\mathrm{O}-\mathrm{H}$ stretching at $3424 \mathrm{~cm}^{-1}$ and the mass spectrum, elemental analysis further confirmed the assigned structure.

Scheme 1A.11: Synthesis of azidoalkyne 1A. 58

After having established an easy protocol for the preparation of the alkynol 1A.57, our next concern was the synthesis of the advanced azidoalkyne 1A.58 and its further elaboration into enatiomer of pachastrissamine. Various leaving groups at $\mathrm{C}(3)-\mathrm{O}$ such as mesyl, tosyl, and triflyl have been explored for the azide displacment reaction, amongst which, the reaction with triflate was found to be proceeding at rt . Thus the alkynol 1A. 57 was transformed to the corresponding azidoalkyne 1A. 58 by treatment with $\mathrm{Tf}_{2} \mathrm{O}$ in pyridine followed by reacting the intermediate triflate with LiN_{3} in DMF at room temperature (Scheme 1A.11). The spectral and analytical data of $\mathbf{1 A . 5 8}$ were in well agreement with the proposed structure. In the ${ }^{1} H$ NMR spectrum, acetylenic proton showed doublet at 2.65 with $J=2.3 \mathrm{~Hz}$ and The ${ }^{13} \mathrm{C}$ NMR spectrum showed doublet at 59.9 ppm for $\mathrm{C}(2)$ carbon atom, alkyne carbon showed peaks at 78.8 ppm as singlet and 79.4 ppm as doublet. In the IR spectrum absorption peaks at 2109 and $2401 \mathrm{~cm}^{-1}$ indicated presence of alkyne and azide functionality respectively.

1A.2.3. Synthesis of (-)-pachastrissamine

After examining a set of bases and reaction conditions, we concluded that the alkylation of azidoalkyne $\mathbf{1 A . 5 8}$ with 1-bromododecane was facile using n-BuLi in THF-HMPA and the alkylated product $\mathbf{1 A .} 67$ was obtained in 57% yield. ${ }^{19}$ The structural integrity of the alkylated product $\mathbf{1 A . 6 7}$ was established with the help of NMR and mass spectral analyses. In the ${ }^{1} \mathrm{H}$ NMR spectrum, nine long chain methylene protons showed broad singlet at $\delta 1.23$, terminal methyl group showed triplet at $\delta 0.87$ with coupling constant 6.7 Hz , mass spectrum showed peaks at 429.3 $\left(100 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 434.3\left(39 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$. Hydrogenolysis of $\mathbf{1 A . 6 7}$ was effected by refluxing in methanol in the presence of ammonium formate and cat. $10 \% \mathrm{Pd} / \mathrm{C}$ to afford (-)-pachastrissamine $\mathbf{1 A . 5 4}$ as a white powder. The requisite (-)pachastrissamine 1A. 54 was characterized after chromatographic purification. The spectral and analytical data of synthetic $\mathbf{1 A . 5 4}$ were in agreement with the data reported for the natural pachastrissamine (1A.01) (Table1A.1). Specific rotation of the synthesized (-)-pachastrissamine $\mathbf{1 A . 5 4}$ was $[\alpha]_{\mathrm{D}}{ }^{25}-8.61^{\circ}(c 0.6, \mathrm{MeOH})\left[\right.$ lit. $[\alpha]_{\mathrm{D}}{ }^{25}$ $+18^{\circ}(c 0.1, \mathrm{EtOH}),{ }^{2}$ and $\left.[\alpha]_{\mathrm{D}}{ }^{20}+7^{\circ}\left(c 0.1, \mathrm{CHCl}_{3}\right)^{3}\right]$. In IR spectrum, broad peak at $3341 \mathrm{~cm}^{-1}$ indicated presence of free hydroxyl and amine groups. Further it was characterized by N, O-diacetate derivative $1 \mathbf{A . 5 5}$ prepared by treatment of (-)pachastrissamine 1A. 54 with acetic anhydride and triethyl amine in DCM (Scheme

1A.12). The ${ }^{1} \mathrm{H}$ NMR spectrum showed two singlets at $\delta 1.97$ and 2.15 , revealed the presence of two acetate groups, and other peaks in ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR were well comparable with reported data. The ${ }^{13} \mathrm{C}$ NMR spectrum showed two singlets at 169.6 and 169.7 ppm for carbonyl carbons of two acetates. Other analytical data such as IR $\left(1741 \mathrm{~cm}^{-1}\right)$, mass $\left(\mathrm{m} / \mathrm{z} 384.4\left(24 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 406.5\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 422.3(14 \%\right.$, $\left.[\mathrm{M}+\mathrm{K}]^{+}\right)$, and microanalysis were in well agreement with the assigned diacetate derivative 1A.55.

Scheme 1A.12: Synthesis of (-)-pachastrissamine (1A.54)

Alternatively by changing the series of reaction sequence we have synthesized our target (-)-pachastrissamine (1A.54). Alkyne 1A.66 was alkylated under standard alkylation condition with 1 -bromododecane using n - BuLi in THF-HMPA to get alkylated compound $\mathbf{1 A . 6 8}$. Compound $\mathbf{1 A . 6 8}$ under reductive deketalization using excess triethylsilane in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in DCM gave alkynol 1 A .69 in 75% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 A . 6 9}$ two singlets of acetonide protection in 1A.68 at $\delta 1.28$ and 1.45 were disappeared. In the ${ }^{13} \mathrm{C}$ NMR spectrum two triplets were appeared at 72.4 and 72.8 ppm for $\mathrm{C}(1)$ and benzylic methylene carbons and IR spectrum showed absorption at $3429 \mathrm{~cm}^{-1}$ of free hydroxyl group. Alkynol 1A. 69 was transformed to the azidoalkyne 1 A .67 by treatment with $\mathrm{Tf}_{2} \mathrm{O}$ in pyridine followed by reacting the intermediate triflate with LiN_{3} in DMF at room temperature in good yield. Hydrogenolysis of $\mathbf{1 A . 6 7}$ was effected by refluxing in methanol in the presence of ammonium formate and cat. $10 \% \mathrm{Pd} / \mathrm{C}$ to afford (- -pachastrissamine $\mathbf{1 A . 5 4}$ (Scheme 1A.13).

Scheme 1A.13: Synthesis of (-)-pachastrisamine (1A.54).

Table 1A.1: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ data of natural jaspine B (1A.01) and ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}, 50 \mathrm{MHz}\right)$ data of synthetic ()-jaspine B (1A.54).

	Natural pachastrissamine		(-)-pachastrissamine	
	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$
1a	72.2	$\begin{aligned} & 3.51(1 \mathrm{H}, \mathrm{dd}, J=7.0, \\ & 8.5 \mathrm{~Hz}) \end{aligned}$	70.4	$\begin{aligned} & 3.51(1 \mathrm{H}, \mathrm{dd}, J=7.3, \\ & 8.3 \mathrm{~Hz},) \end{aligned}$
1b	72.2	$\begin{aligned} & 3.95(1 \mathrm{H}, \mathrm{dd}, J=7.0, \\ & 8.5 \mathrm{~Hz}) \end{aligned}$	70.4	$\begin{aligned} & 3.91(1 \mathrm{H}, \mathrm{dd}, J=7.3, \\ & 8.5 \mathrm{~Hz}) \end{aligned}$
2	54.2	$\begin{aligned} & 3.68(1 \mathrm{H}, \mathrm{dt}, J=5.0, \\ & 7.0 \mathrm{~Hz}) \end{aligned}$	54.3	$3.61-3.66$ (m, 1H)
3	71.6	$\begin{aligned} & 3.88(1 \mathrm{H}, \mathrm{dd}, J=3.5, \\ & 5.0 \mathrm{~Hz}) \end{aligned}$	71.0	$\begin{aligned} & 3.86(1 \mathrm{H}, \mathrm{dd}, J=3.6, \\ & 4.3 \mathrm{~Hz}) \end{aligned}$
4	83.1	$\begin{aligned} & 3.75(1 \mathrm{H}, \operatorname{ddd}, J=3.5, \\ & 7.0,7.5 \mathrm{~Hz}) \end{aligned}$	82.5	$3.70-3.74$ (m, 1H)
5	29.3	1.71 (2H, m)	29.4	1.61-1.68(2H, m)
6-17	22.0-31.0	1.20-1.70 ($24 \mathrm{H}, \mathrm{m}$)	22.2-31.4	1.24 (24H, m)
CH_{3}	14.0	$0.87(3 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz})$	13.8	$0.87(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz})$
OH ,		2.10 (bs)		1.79 (bs)
NH_{2}		2.10 (bs)		1.79 (bs)

Conclusion

A simple chiral pool strategy for the synthesis of pachastrissamine has been developed. Starting from the known and easily available glucose diacetonide, pachastrissamine enantiomer has been synthesized in six linear steps with an overall yield of 13.2%. As we have added the side chain at the penultimate step, our strategy is endowed with sufficient flexibility for the synthesis of pachastrissamine analogues with variation of side chain or alteration of its length.

1A.3. Experimental:

1,2-O-Isopropylidene-5,5,6,6-tetradehydro-5,6-dideoxy-3-O-benzyl- α-D-xylo-hexofuranose (1A.66)

To a solution of the diol $\mathbf{1 A . 6 5}(856 \mathrm{mg}, 2.76 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$ and water $(1.5 \mathrm{~mL}), \mathrm{NaIO}_{4}(708 \mathrm{mg}, 3.31 \mathrm{mmol})$ was added and stirred for 30 min at rt . The mixture was filtered through Celite and the Celite pad was washed with methanol. The combined filtrates were concentrated under reduced pressure in order to remove methanol. The residue was extracted in ethyl acetate, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to afford the aldehyde 1A.56 (690 $\mathrm{mg}, 90 \%$) as a colorless oil.

A suspension of aldehyde $\mathbf{1 A . 5 6}(690 \mathrm{mg}, 2.48 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(411 \mathrm{mg}, 2.99$ mmol) in methanol (12 mL) was treated with Ohira-Bestmann reagent ($572 \mathrm{mg}, 2.99$ mmol) and stirred for 8 h at rt . The reaction mixture was concentrated under reduced pressure and the residue was partitioned in water and ethyl acetate. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification of the residue by silica gel column chromatography (5% ethyl acetate in petroleum ether) gave the alkyne 1A. 66 ($553 \mathrm{mg}, 79 \%$ yield) as a colorless oil.

Mol. Formula	: $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4}$
$[\alpha]_{\mathrm{D}}{ }^{25}$: +3.1 (c 1.1, CHCl_{3}).
IR ($\left.\mathbf{C H C l}_{3}\right) \widetilde{v}$	$\begin{aligned} & : 3307,3063,2985,2864,2135,1605,1497,1455,1360, \\ & 1248,1217,1162,1078 \mathrm{~cm}^{-1} . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$: \delta 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=$ $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, 1 H), 5.96 (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.28-7.41 (m, 5H).
${ }^{13}$ C NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$: 26.1 \text { (q), } 26.7 \text { (q), } 70.6 \text { (d), } 72.6 \text { (t), } 76.5 \text { (d), } 77.6 \text { (s), } 82.4$ (d), 82.8 (d), 104.7 (d), 111.9 (s), 127.7 (d, 2C), 127.9 (d), 128.4 (d, 2C), 137.3 (s) ppm.
ESI-MS (m / z)	: $275.5\left(2 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 292.6\left(17 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 297.6$

($100 \%,[\mathrm{M}+\mathrm{Na}]^{+}$).
$\begin{array}{ll}\text { Elemental } & \text { Calcd.: C, 70.06; H, 6.61\%. } \\ \text { Analysis } & \text { Found: C, 70.17; H, } 6.49 \% .\end{array}$

1,4-Anhydro-3-O-benzyl-5,5,6,6-tetradehydro-5,6-dideoxy-xylo-hexitol (1A.57)

To a solution of $\mathbf{1 A .} 66(800 \mathrm{mg}, 2.92 \mathrm{mmol})$ in DCM $(20 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ was added triethylsilane ($2.8 \mathrm{~mL}, 17.51 \mathrm{mmol}$) followed by freshly distilled $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.1$ $\mathrm{mL}, 8.75 \mathrm{mmol}$). The reaction mixture was slowly brought to rt and stirred for 6 h . The reaction mixture was cooled and saturated solution of NaHCO_{3} was added until it reached to neutral pH . The reaction mixture was partitioned between water and DCM. The organic phase was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by silica gel chromatography (25% ethyl acetate in petroleum ether) to procure the alcohol $\mathbf{1 A . 5 7}$ ($485 \mathrm{mg}, 76 \%$ yield) as a colorless oil.

Mol. Formula	: $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}$
$[\alpha]_{\text {D }}{ }^{25}$	$:+50.02$ ($\left.\mathrm{c}_{0} 0.9, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{I R}\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$	$\begin{aligned} & : 3424,3305,3016,2939,2124,1604,1398,1216,1097 \\ & 1047,970,923 \mathrm{~cm}^{-1} . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 1.99(\mathrm{bs}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=2.2 \text {, } \\ & 9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=2.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=4.7, \\ & 9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 4.79(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=2.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 7.29-7.41(\mathrm{~m}, 5 \mathrm{H}) . \end{aligned}$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	70.5 (d), 72.5 (t), 73.1 (t), 75.1 (d), 76.4 (d), 78.8 (s), 84.8 (d), 127.7 (d, 2C), 127.8 (d), 128.3 (d, 2C), 137.5 (s) ppm.
ESI-MS (m / z)	: $241.34\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 257.28\left(25 \%,[\mathrm{M}+\mathrm{K}]^{+}\right)$.
Elemental	Calcd.: C, 71.54; H, 6.47\%.
Analysis	Found: C, 71.40; H, 6.53\%.

1,4-Anhydro-2-azido-3-O-benzyl-5,5,6,6-tetradehydro-2,5,6-trideoxy-lyxo-hexitol (1A.58)

At $-20^{\circ} \mathrm{C}$, a solution of $\mathbf{1 A . 5 7}(1.56 \mathrm{~g}, 7.15 \mathrm{mmol})$ and pyridine (1.7 mL , $21.46 \mathrm{mmol})$ in DCM $(15 \mathrm{~mL})$ was treated with triflic anhydride ($1.4 \mathrm{~mL}, 8.58 \mathrm{mmol}$) and the reaction mixture was stirred for 30 min at rt . The mixture was neutralized with 1 N HCl and extracted with DCM. The combined organic phase was washed with saturated NaHCO_{3} and water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to obtain the intermediate triflate product as a colorless liquid (2.3 g).

The above triflate (2.3 g) was dissolved in DMF $(10 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Lithium azide ($1.67 \mathrm{~g}, 34.2 \mathrm{mmol}$) was slowly added and stirred at rt for 12 h . The reaction mixture was diluted with ethyl acetate and washed with water ($3 \times 25 \mathrm{~mL}$). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification of the residue by silica gel column chromatography (8% ethyl acetate in petroleum ether) gave azido alkyne $\mathbf{1 A . 5 8}(1.08 \mathrm{~g}, 62.3 \%$ yield) as a colorless oil.

Mol. Formula	$: \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}$	$:+70.1\left(\mathrm{c} 1.3, \mathrm{CHCl}_{3}\right)$.
$\mathbf{I R}\left(\mathbf{C H C l}_{3}\right) \widetilde{v}$	$: 3306,3019,2401,2109,1728,1608,1455,1385,1215$,
	$1127,1068,928 \mathrm{~cm}^{-1}$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$	$: \delta 2.65(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.95-4.04$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$(\mathrm{m}, 2 \mathrm{H}), 4.16(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, \mathrm{J}=2.3,6.0 \mathrm{~Hz}$,
	$1 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H})$,
	$7.33-7.41(\mathrm{~m}, 5 \mathrm{H})$.

Elemental
Analysis

Calcd.: C, 64.19; H, 5.39; N, 17.27\%.
Found: C, 64.03; H, 5.51; N, 17.19\%.

6-C-Dodecyl-1,4-Anhydro-2-azido-3-O-benzyl-5,5,6,6-tetradehydro-2,5,6-trideoxy-lyxo-hexitol (1A.67)

A solution of $\mathbf{1 A . 5 8}(0.5 \mathrm{~g}, 2.06 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ and HMPA (3 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ and treated with $n-\mathrm{BuLi}(1.4 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes, 2.62 mmol$)$ was added drop-wise and stirred for 20 min . To this, dodecyl bromide $(0.75 \mathrm{~mL}, 3.09$ mmol) was introduced slowly and the reaction mixture was warmed to $-30^{\circ} \mathrm{C}$ and allowed to stirr for 1 h at this temperature. The reaction mixture was quenched by saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate. The combined organic extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (7% ethyl acetate in petroleum ether) to produce 1A. 67 ($0.48 \mathrm{~g}, 57 \%$ yield) as a colorless oil.

Mol. Formula	: $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{2}$
$[\alpha]_{0}{ }^{25}$	$:+59.8$ (c 1.3, CHCl_{3}).
IR ($\mathbf{C H C l}_{3}$) \widetilde{v}	$\begin{aligned} & : 3018,2928,2856,2237,2108,1725,1456,1350,1216 \\ & 1126,1057,927 \mathrm{~cm}^{-1} \end{aligned}$
${ }^{1} \mathrm{H}$ NMR	$: \delta 0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.23$ (bs, 18H), $1.51(\mathrm{q}, ~ J=7.1$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	Hz, 2H), 2.25 (dt, $J=2.0,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.86$ (dt, $J=1.5,5.7$
	$\mathrm{Hz}, 1 \mathrm{H}), 3.90-4.01(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.68-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=$
	$11.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.45$ (m, 5H).
${ }^{13} \mathrm{C}$ NMR	: 14.0 (q), $18.9(\mathrm{t}), 22.6$ (t), 28.4 (t), $28.8(\mathrm{t}), 29.1$ (t), 29.3
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	(t), 29.4 (t), 29.6 (t, 3C), 31.8 (t), 60.0 (d), $68.8(\mathrm{t}), 70.5$ (d),
	73.0 (t), 74.6 (s), 79.6 (d), 89.9 (s), 127.7 (d, 2C), 127.8 (d),
	128.3 (d, 2C), 137.3 (s) ppm.
ESI-MS (m / z)	: $429.32\left(100 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 434.27\left(39 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$.

Elemental
Analysis

Calcd.: C, 72.95; H, 9.06; N, 10.21\%.
Found: C, 73.11; H, 9.20; N, 10.01\%.

6-C-dodecyl-1,2-O-Isopropylidene-3-O-benzyl-5,5,6,6-tetradehydro-2,5,-dideoxy- α-D-xylohexofuranose (1 A .68)

A solution of $\mathbf{1 A . 6 6}(0.5 \mathrm{~g}, 2.06 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ and HMPA (3 mL) was cooled to $-78^{\circ} \mathrm{C}$ and treated with $n-\mathrm{BuLi}(1.4 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes, 2.62 mmol$)$ and stirred for 20 min . To this, dodecyl bromide ($0.75 \mathrm{~mL}, 3.085 \mathrm{mmol}$) was added dropwise and the reaction mixture was warmed to $-30^{\circ} \mathrm{C}$ and allowed to stirr for 1 h at this temperature. The reaction mixture was quenched by saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate. The combined organic extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (4% ethyl acetate in petroleum ether) to produce $\mathbf{1 A . 6 8}(0.5 \mathrm{~g}, 62 \%$ yield $)$ as a colorless oil.

$$
\begin{aligned}
& \text { Mol. Formula : } \mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{4} \\
& {[\alpha]_{\mathbf{D}}{ }^{25} \quad:+10.1\left(c 1.0, \mathrm{CHCl}_{3}\right) \text {. }} \\
& \operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v}: 3019,2927,2855,2244,1609,1497,1251,1165,1076 \text {, } \\
& 1023 \mathrm{~cm}^{-1} \text {. } \\
& { }^{1} \text { H NMR } \quad: \delta 0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{bs}, 18 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.45 \\
& \left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad(\mathrm{s}, 3 \mathrm{H}), 1.49-1.58(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{dt}, J=2.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}) \text {, } \\
& 3.92(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J \\
& =12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.81-4.83(\mathrm{~m}, \\
& 1 \mathrm{H}), 5.95(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.37(\mathrm{~m}, 5 \mathrm{H}) \text {. } \\
& { }^{13} \mathbf{C} \text { NMR } \quad: 14.0(q), 18.9(\mathrm{t}), 22.6(\mathrm{t}), 26.1(\mathrm{q}), 26.7(\mathrm{q}), 28.4(\mathrm{t}), 28.9 \\
& \left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad(\mathrm{t}), 29.1(\mathrm{t}), 29.3(\mathrm{t}), 29.5(\mathrm{t}), 29.6(\mathrm{t}, 3 \mathrm{C}), 31.9(\mathrm{t}), 71.1(\mathrm{~d}) \text {, } \\
& 72.5 \text { (t), } 73.7 \text { (} \mathrm{s} \text {), } 82.7 \text { (d), } 83.0 \text { (d), } 89.3 \text { (} \mathrm{s}), 104.5 \text { (d), } 111.7 \\
& \text { (s), } 127.6 \text { (d, 2C), } 127.7 \text { (d), } 128.3 \text { (d, 2C), } 137.7 \text { (s) ppm. }
\end{aligned}
$$

ESI-MS (m / z)

$$
: 460.44\left(48 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 465.37\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right) .
$$

Elemental
Calcd.: C, 75.98; H, 9.56\%.
Analysis
Found: C, 75.82; H, 9.61\%.

6-C-dodecyl-1,4-Anhydro-3-O-benzyl-5,5,6,6-tetradehydro-5,6-dideoxy-xylo-hexitol (1A.69)

To a solution of $\mathbf{1 A . 6 8 (7 0 0 ~ m g , ~} 1.58 \mathrm{mmol})$, in $\mathrm{DCM}(18 \mathrm{ml})$, at $-20^{\circ} \mathrm{C}$ was added triethylsilane ($1.5 \mathrm{~mL}, 9.49 \mathrm{mmol}$), followed by freshly distilled $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.6$ $\mathrm{mL}, 4.76 \mathrm{mmol}$). Reaction mixture was slowly brought to room temperature and stirred for 6 h . Reaction mixture was cooled and saturated solution of NaHCO_{3} was added until neutral pH . Aqueous phase was extracted with DCM. The combined extracts were washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The purification of residue by silica gel chromatography (25% ethyl acetate in petroleum ether) gave 1A.69 ($458 \mathrm{mg}, 75 \%$ yield) as a colorless oil.

$$
\begin{aligned}
& \text { Mol. Formula }: \mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{3} \\
& {[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad:+58.59\left(c \quad 1.2, \mathrm{CHCl}_{3}\right) \text {. }} \\
& \operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \widetilde{v} \quad: 3429,3014,2927,2855,2234,1604,1497,1455,1216 \text {, } \\
& \text { 1158, 1098, 1029, } 973 \mathrm{~cm}^{-1} \text {. } \\
& { }^{1} \text { H NMR } \quad: \delta 0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{bs}, 18 \mathrm{H}), 1.48-1.58(\mathrm{~m} \text {, } \\
& \left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 2 \mathrm{H}\right), 1.89(\mathrm{bs}, 1 \mathrm{H}), 2.25(\mathrm{dt}, J=2.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{dd}, J \\
& =2.3,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{q}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J= \\
& 4.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=12.1 \mathrm{~Hz} \text {, } \\
& 1 \mathrm{H}), 4.76-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.41 \\
& \text { (} \mathrm{m}, 5 \mathrm{H} \text {). } \\
& { }^{13} \text { C NMR }: 14.0(\mathrm{q}), 18.9(\mathrm{t}), 22.6(\mathrm{t}), 28.4(\mathrm{t}), 28.9(\mathrm{t}), 29.1(\mathrm{t}), 29.3 \\
& \left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad(\mathrm{t}), 29.4(\mathrm{t}), 29.6(\mathrm{t}, 3 \mathrm{C}), 31.8(\mathrm{t}), 71.0(\mathrm{~d}), 72.4(\mathrm{t}), 72.8(\mathrm{t}), \\
& 74.7 \text { (s), } 75.5 \text { (d), } 85.1 \text { (d), } 89.1 \text { (s), } 127.6 \text { (d, 2C), } 127.7 \text { (d), } \\
& 128.3 \text { (d, 2C), } 137.8 \text { (s) ppm. } \\
& \text { ESI-MS }(\mathrm{m} / \mathrm{z}) \quad: 387.5\left(4 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 404.5\left(29 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 409.4 \\
& \left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right) \text {. }
\end{aligned}
$$

Elemental
Calcd.: C, 77.68; H, 9.91\%.
Analysis
Found: C, 77.53; H, 9.84\%.

(-)-Pachastrissamine (1A.54)

To a suspension of $\mathbf{1 A . 6 7}(150 \mathrm{mg}, 0.36 \mathrm{mmol})$ and ammonium formate $\mathrm{HCOONH}_{4}(250 \mathrm{mg}, 3.96 \mathrm{mmol})$ in methanol (4 mL), was added $\mathrm{Pd} / \mathrm{C}(10 \%$ content, 15 mg) and refluxed for 10 h . The reaction mixture was cooled and filtered through celite and celite pad was washed with methanol. The combined filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (1:4:95, aq ammonium hydroxide/methanol/chloroform) to obtain (-)- pachastrissamine (jaspine B) $\mathbf{1 A . 5 4}$ ($75 \mathrm{mg}, 69 \%$ yield) as white solid.

Mol. Formula	: $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{NO}_{2}$
M. P.	: $95.8-96.6{ }^{\circ} \mathrm{C}$
$[\alpha]_{\text {D }}{ }^{25}$: -8.6 (c 0.6, MeOH).
IR ($\mathbf{C H C l}_{3}$) \widetilde{v}	: 3341, 2923, 2850, 1470, 1216, 1070, 1036, $988 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$: \delta 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~m}, 24 \mathrm{H}), 1.61-1.68(\mathrm{~m}$, 2 H), 1.79 (bs, 3H), 3.51 (dd, $J=7.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.66$ (m, 1H), 3.70-3.74 (m, 1H), 3.86 (dd, $J=3.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.91 (dd, $J=7.3,8.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR	: $13.8(\mathrm{q}), 22.2(\mathrm{t}, 2 \mathrm{C}), 25.7(\mathrm{t}), 28.8(\mathrm{t}), 28.9(\mathrm{t}), 29.1(\mathrm{t}, 2 \mathrm{C})$,
$\left(\mathrm{CDCl}_{3}, \mathrm{DMSO}-\mathrm{D}_{6}\right.$,	29.2 (t, 3C), 29.4 (t), 29.5 (t), 31.4 (t), 54.3 (d), $70.4(\mathrm{t}), 71.0$
50 MHz)	(d), 82.5 (d) ppm.
ESI-MS (m / z)	: $300.0\left(100 \%,[\mathrm{M}+1]^{+}\right), 322.0\left(10 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
Elemental	Calcd.: C, 72.19 ; H, 12.45; N, 4.68\%.
Analysis	Found: C, 72.10 , H, 12.51; N, 4.73\%.

N,O-Diacetyl pachastrissamine (1A.55)

To a solution of $\mathbf{1 A . 5 4}(30 \mathrm{mg}, 0.1 \mathrm{mmol})$ in pyridine $(1.5 \mathrm{~mL})$ was added acetic anhydride ($0.5 \mathrm{ml}, 5 \mathrm{mmol}$). The reaction mixture was stirred for 7 h at rt . Pyridine was removed under reduced pressure and the crude was purified by silica gel chromatography (40% ethyl acetate in petroleum ether) to produce diacetate of $(-)$ pachastrissmine 1A.55 ($36 \mathrm{mg}, 94 \%$) as a white crystalline solid.

$$
\begin{aligned}
& \text { Mol. Formula }: \mathrm{C}_{22} \mathrm{H}_{41} \mathrm{NO}_{4} \\
& \text { M. P. } \quad: 93-96^{\circ} \mathrm{C} \\
& {[\alpha]_{\mathbf{D}}{ }^{25} \quad:+27.6\left(c 0.8, \mathrm{CHCl}_{3}\right) .} \\
& \text { IR (} \left.\mathbf{C H C l}_{\mathbf{3}}\right) \widetilde{v} \quad: 2927,2855,1741,1671,1512,1466,1216,1051 \mathrm{~cm}^{-1} . \\
& { }^{1} \text { H NMR } \quad: \delta 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{bs}, 26 \mathrm{H}), 1.58(\mathrm{bs}, 1 \mathrm{H}), 1.97 \\
& \left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad(\mathrm{s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{dd}, J=7.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J \\
& =8.2,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.86(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{dd}, ~ J=3.4,5.3 \\
& \mathrm{Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}) \text {. } \\
& { }^{13} \mathbf{C} \text { NMR }: 14.2(\mathrm{q}), 20.7(\mathrm{q}), 22.7(\mathrm{t}), 23.2(\mathrm{q}), 26.1(\mathrm{t}), 29.4(\mathrm{t}), 29.4(\mathrm{t}), \\
& \left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad 29.5(\mathrm{t}), 29.6(\mathrm{t}), 29.6(\mathrm{t}), 29.8(\mathrm{t}, 5 \mathrm{C}), 32.0(\mathrm{t}), 51.4(\mathrm{~d}), 70.1 \\
& \text { (t), } 73.7 \text { (d), } 81.2 \text { (d), } 169.6 \text { (s), } 169.7 \text { (s) ppm. } \\
& \text { ESI-MS }(\mathrm{m} / \mathrm{z}) \quad: 384.4\left(24 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 406.5\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 422.3(14 \%, \\
& \left.[\mathrm{M}+\mathrm{K}]^{+}\right) \text {. }
\end{aligned}
$$

Elemental Analysis Calcd.: C, 68.89; H, 10.77; N, 3.65\%.
Found: C, 68.74; H, 10.87; N, 3.78\%.

${ }^{1} \mathrm{H}$ NMR Spectrum of 1 A .66 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 1 A .66 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 1 A .57 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 1 A .57 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 1 A .58 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 1 A .58 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 1 A .67 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 1 A .67 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 1 A .68 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 1 A .68 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 1 A .69 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 1 A .69 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 1 A .54 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 1 A .54 in $\mathrm{CDCl}_{3}+\mathrm{DMSO}_{-} \mathrm{D}_{6}$

${ }^{1} \mathrm{H}$ NMR Spectrum of 1 A .55 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 1 A .55 in CDCl_{3}

References:

1 Cinque, B.; Di Marzio, L; Centi, c.; Di Rocco, c.; Riccardi, c.; Cifone, M. G. Pharmacol. Res. 2003, 47, 421.

2 Kuroda, I.; Musman, M.; Ohtani, I. I.; Ichiba, T.; Tanaka, J.; Gravalos, D. G.; Higa, T. J. Nat. Prod. 2002, 65, 1505-1506.
3 Ledroit, V.; Debitus, C.; Lavaud, C.; Massiot, G. Tetrahedron Lett. 2003, 44, 225-228.

4 O'Connell, P. W.; Tsien, S. H. Arch. Biochem. Biophys. 1959, 80, 289-294.
5 (a) Dale, J. A.; Dull, D. L; Mosher, H. S. J. org. Chem. 1966, 34, 2543. (b) Pfenninger, A. Synthesis 1986, 89.

6 (a) Sugiyama, S.; Honda, M.; Komori, T. Liebigs Ann. Chem. 1988, 619-625.
(b) Sugiyama, S.; Honda, M.; Komori, T. Liebigs Ann. Chem. 1990, 1069-1078. Birk, R.; Sandhoff, K.; Schmidt, R. R. Liebigs Ann. Chem. 1993, 71-75.

7 Jo, S. Y.; Kim, H. C.; Jeon, D. J.; Kim, H. R. Heterocycles 2001,55, 1127.
8 (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512. (b) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092.

9 Sudhakar, N.; Ravi Kumar, A.; Prabhakar, A.; Jagdeesh B.; Rao, B. V. Tetrahedron Lett. 2005, 46, 325-327.
10 Garner, P.; Park, J. M. J. Org. Chem. 1988, 53, 2979.
11 Bhaket, P.; Stauffer, C. S.; Datta, A. J. Org. Chem. 2004, 69, 8594-.
12 Van den Berg, R. J. B. H. N.; Boltje, T. J.; Verhagen, C. P.; Litjens, R. E. J. N.; Van der Marel, G. A.; Overkleeft, H. S. J. Org. Chem. 2006, 71, 836-839.

13 (a) Du, Y.; Liu, J.; Linhardt, R. J. J. Org. Chem. 2006, 71, 1251-1253. (b) Liu, J.; Du, Y.; Dong, X.; Meng, S.; Xiao, J.; Cheng, L. Carbohydr. Res. 2006, 341, 2653-2657.

14 Ribes, C.; Falomir, E.; Carda, M.; Marco, J. A. Tetrahedron 2006, 62, 5421-5425.

15 Natori, T.; Morita, M.; Akimoto, K.; Koezuka, Y. Tetrahedron 1994, 50, 2771-2784.
16 Sakai, T.; Koezuka, Y. Exp. Opin. Ther. Patents 1999, 9, 917-930.

17 (a) Ohira, S. Synth. Commun. 1989, 19, 561-564. (b) Roth, G. J.; Liepold, B.; Muller, S. G.; Bestmann, H. J. Synlett 1996, 521-522.

18 (a) Bennek, J. A.; Gray, G. R. J. Org. Chem. 1987, 52, 892-897. (b) Murty, K. V. S. N.; Vasella, A. Helv. Chim. Acta 2001, 84, 939-963.

19 Weaving, R.; Roulland, E.; Monneret, C.; Florent, J.-C. Tetrahedron Lett. 2003, 44, 2579-2581.

CHAPTER-I

Section II: Pd(II)-Mediated alkynediol spiroketalization: First total synthesis of (-)cephalosporolide E and (+)-cephalosporolide F

1B.1. Introduction:

The characterization of many important natural products which exhibit a spiroacetal ring system in their structures has stimulated the development of several methodologies for the synthesis of this substructural unit. ${ }^{1}$ The 1,6dioxaspiro[4.4]nonane type of heterocyclic moiety is present in many natural products from different sources including insects, microbes, plants, fungi and marine organisms. ${ }^{1,2}$ Among them, one can find simple structures, such as the volatile insect pheromone chalcogran (1B.01), an aggregation pheromone of Pityiogenes chalcographus ${ }^{3}$ or more complex molecules, such as hippurin-1 (1B.02), isolated from the gorgonian Isis hippuris, ${ }^{4}$ obtusin (1B.03), isolated from the red seaweed Laurrecia obtusa, ${ }^{5}$ asperketal D (1B.04), isolated from the Caribbean sea whip Eunicea asperula ${ }^{6}$ and chrisothane (1B.05), isolated from the Compositae Crisothamnus paniculatus ${ }^{7}$ (Figure 1B.1).

1B. 03

Figure 1B.1: 1,6-dioxaspiro[4.4]nonane moiety in natural products

The synthesis of several of these natural products and analogues have been achieved and during these studies very interesting methodologies have been brought to light. ${ }^{8}$ Some research groups have developed preparation of substituted 1,6dioxaspiro[4.4]nonane units in order to apply the same to synthesize complex natural products. ${ }^{9}$

In 1985, Hanson and co-workers isolated and characterized cephalosporolides E (1B.09) and F (1B.10) containing 1,6-dioxaspiro[4.4]nonane unit in which one of the furan rings is fused with a γ-lactone ring along with cephalosporolides $\mathrm{B}-\mathrm{D},{ }^{10}$ (1B.06-1B.08) (Figure 1B.2). Later in 2004, Rakachaisirikul and co-workers ${ }^{11}$ isolated 1B. 09 and 1B. 10 from the entomopathogenic fungus Cordyceps militaris BCC 2816.

1B. 06

Cephalosporolide C
1B. 07

Cephalosporolide D
1B. 08

Cephalosporolide E
1B. 09

Cephalosporolide F
1B. 10

Figure 1B.2: Structures of cephalosporolides B-F, (1B.6-1B.10)

Hanson and co-workers established the chemical structure and relative configurations of 1B. 09 and 1B. 10 by extensive NMR studies and by single crystal Xray analysis of $\mathbf{1 B} .09$. The authors suggested that cephalosporolides E (1B.09) and F (1B.10) might arise from cephalosporolide C (1B.07), via a process involving hydrolysis, relactonization and acetal formation (Scheme 1B.1). ${ }^{10}$ Nevertheless, they could not mimic this process in the laboratory.

Oltra and co-workers (in 2004), isolated bassianolone 1B. 11 from the entomoparastic fungus Beauveria bassiana. ${ }^{12}$ Among the products, extracted from this fungus to the broth culture of a low-nitrogen medium, they unexpectedly found cephalosporolides E (1B.09) and F (1B.10). When they passed bassianolone (1B.11) through a pad of silica gel, they obtained a mixture of spiroketals 1B. 09 and 1B.10. In contrast with Hanson's proposal, Oltra stated that the bassianolone 1B. 11 is the true chemical parent of cephalosporolides E (1B.09) and F (1B.10), which are possibly simple artifacts formed during the isolation process (Scheme 1B.2). ${ }^{12}$

$1 B .09$
1 B .10

Scheme 1B.1: Hanson's proposal of formation of cephalosporolides E (1B.09), and F
(1B.10) from cephalosporolode C (1B.07)

Scheme 1B.2: Silica gel promoted spirocyclization of 1B. 11

In 2007, ascospiroketals A (1B.12) and B (1B.13) were isolated by Gabriele and co-workers from marine derived fungus Ascochta salicorniae. ${ }^{13}$ Tricyclic core of ascospirokerals A (1B.12) and B (1B.13) bears some resemblance to cephalosporolides E (1B.09) and F (1B.10) (Figure 1B.3).

1B. 12

Ascospiroketal B
1B. 13

Figure 1B.3: Ascospiroketals A (1B.12) and B (1B.13)

Very recently, Xiang Li and co-workers isolated four lactone compounds, cephalosporolides H (1B.14), I (1B.15) from a lyophilized culture broth of the fungus Penicillium sp. ${ }^{14 \mathrm{a}}$ and penisporolides A (1B.16), B (1B.17) from the marine-derived fungus penicillium sp. ${ }^{14 \mathrm{~b}}$ which bear the same tricyclic structural core of cephalosporolides E (1B.09) and F (1B.10) (Figure 1B.4). Structures of compounds 1B.12-1B.17 were elucidated on the basis of their HRESI-MS, ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$, together with 2D-NMR spectroscopic analyses. Their relative stereochemistries were mainly accessed by NOESY analysis. ${ }^{10-14}$

Cephalosporolide H 1B. 14

Cephalosporolide I
1B. 15

Penisporolide B
1B. 17

Figure 1B.4: Cephalosporolides H (1B.14)/ I (1B.15) and Penisporolides A (1B.16)/ B (1B.17)

Even with the aid of all the modern spectroscopic techniques, the isolation chemists find themselves in a position where they are unable to propose the complete structure. In most of the cases, absolute and relative stereochemistry for one or more chiral centers cannot be assigned. In case of all above natural compounds 1B.091B.17, the relative configurations have been elucidated with the help of spectroscopic techniques and X-ray analysis of 1B.09. ${ }^{10}$

Transition metal mediated cycloisomerization reaction is projected as a tool to synthesize oxygen containing heterocycles encompassing functionalized furan, pyran, benzopyran and bicyclicketal skeletons. ${ }^{15-19}$ Various transition metals like palladium, platinum, tungsten, ruthenium, rhodium, gold and iridium have been explored as catalysts for cycloisomerization reactions. ${ }^{16}$ Utimoto et al. have reported the first example for the construction of a spiro acetal unit through Pd-mediated alkyne diol spiro ketalization. This approach has seen little attention in total synthesis. Only recently, Trost group has accomplished the total synthesis of a couple of natural products having this structural unit. Our group has been currently engaged in finding out the mechanistic details of the Pd-mediated alkynol cycloisomerizations and its application in the total synthesis of small molecules and natural products having bridged bicyclic ketal unit. Considering the availability of various cephalosporolides E \& F and related natural products with a common tricyclic core, we have interested to deliver a common strategy for the synthesis of these natural products by employing a Pd-mediated alkyne diol spiroketalization which forms the main content of the present chapter.

1B.2. Present Work:

The fungus, Cephalosprium aphidicola is a rich source of natural compounds especially containing macrolactones. ${ }^{20}$ Hanson and co-workers were isolated and elucidated structures of a group of lactones cephalosporolide B-D, (1B.06)-(1B.08), thiobiscephalosporolide A produced by an industrial fermentation of the fungus C. aphidicola ACC 3490. Cephalosporolides E (1B.09) and F (1B.10) were first isolated in 1985, by the same group ${ }^{10}$ from industrial fermentation of the same fungus Cephalosporium aphidcola grown under sulfur limiting conditions. The relative configuration of 1B. 09 and 1B. 10 were elucidated by extensive NMR studies and by single crystal X-ray analysis of 1B.09. ${ }^{10}$ Cephalosporolide E (1B.09) and cephalosporolide $\mathrm{F}(\mathbf{1 B} \mathbf{1 0})$ are epimeric at spiro center $\mathrm{C}(6)$.

1B.2.1. Retrosynthesis:

The $\mathrm{C}(6)$-epimeric tricyclic spiroketals $\mathbf{1 B} .18$ were assumed to arise from cycloisomerization of alkyne diol 1B.19. The spiroketals 1B. 18 could be advanced to cephalosporolides E (1B.09) and F (1B.10) by oxidation of the $\mathrm{C}(1)$ lactol unit to lactone and the subsequent deoxygenation at $\mathrm{C}(2)$. By selecting a tentative $3 R, 4 R, 9 S$ configuration for the targeted 1B. 09 and 1B.10, 3-alkyne-1,7-diol 1B. 19 was identified as an advanced intermediate. The central carbon chain of 1B. 18 has been disconnected between $\mathrm{C}(6)-\mathrm{C}(7)$, identifying the alkyne $\mathbf{1 B} .20$ and iodo compound 1B. 21 or methyl vinyl ketone 1B. 22 as the coupling units (Figure 1B.5).

Keeping the requisite absolute configurations at $\mathrm{C}(3), \mathrm{C}(4)$ of alkyne $\mathbf{1 B} .20$, D-glucose was identified as an suitable chiral pool precursor. Configuration at $\mathrm{C}(9)$ could be generated by asymmetric reduction of ketone functionality after 1,4 -addition of 1B.22 at terminal alkyne function of 1B.20. Iodo compound 1B.21 could be elaborated from known (3S)-butane-1,3-diol 1B.23 by selective functional group manipulations, which in turn can readily be obtained from L-malic acid (see Figure 1B.5).

Figure 1B.5: Retrosynthetic strategy for cephalosporolides E (1B.09) and F (1B.10)

1B.2.2. Synthesis of Alkyne 1B. 20

Synthesis was initiated with D-glucose diacetonide 1B.24. According to the reported procedure, 1B.24 was treated with methanesulfonyl chloride (MsCl) in dry DMF at $90^{\circ} \mathrm{C}$ to afford $\mathbf{1 B} .25$ by a one-pot $\mathrm{C}(6)$-chlorination and terminal acetonide migration. ${ }^{22}$ The compound 1B.25 was then subjected to n-BuLi mediated double elimination ${ }^{23}$ in THF at $-78^{\circ} \mathrm{C}$ to furnish the alkyne $\mathbf{1 B} .26$. The $\mathrm{C}(3)$-hydroxyl group of 1B. 26 was protected as its TBS ether by treating it with TBSCl and imidazole in DCM at rt to get the alkyne partener 1B. 20 for the coupling reaction (Scheme 1B.3). The spectral and analytical data of alkyne 1B. 20 were in accordance with the assigned structure. For example, the characteristic alkyne-H resonated as a doublet at $\delta 2.50$ (J $=2.2 \mathrm{~Hz}$) in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 B} \mathbf{8} \mathbf{2 0}$. The dioxolane ring protons i.e. $\mathrm{H}-1$ and $\mathrm{H}-2$ resonated as doublets at $\delta 5.95$ and 4.39 ppm with a coupling of 3.6 Hz . In the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 B} .20$, the alkyne carbons resonated at 76.1 (s), 85.1 (d) ppm and of the anomeric carbon at 104.7 ppm as a doublet. The resonances of the rest of the carbons are as expected. Mass spectrum showed peak at $299.1[M+H]^{+}$and the IR
spectrum showed acetylinic $\mathrm{C}-\mathrm{H}$ stretching frequency at $3313 \mathrm{~cm}^{-1}$ and $\mathrm{C} \equiv \mathrm{C}$ stretching frequency at $2132 \mathrm{~cm}^{-1}$.

Scheme 1B.3: Synthesis of alkyne 1B. 20

1B.2.3. Attempted Coupling of alkyne 1 B .20 with enones

1B.2.3.1. 1,4-Addition of alkyne 1B. 20 to MVK 1B. 22

As given in figure 1B.5, we intended to synthesize the alkynediol intermediate 1B. 19 by a conjugate addition of terminal alkyne 1B. 20 with methyl vinyl ketone (MVK) 1B. 22 followed by asymmetric reduction of resulting product. In order to get 1,4-addition product of alkyne 1B.20 and 1B.22, we explored different protocols such as the addition of either the alkynyl lithium intermediate ${ }^{24}$ (generated from the alkyne 1B. 20 and $n-B u L i$ in THF) or the alkynyl magnesium bromide ${ }^{25}$ (prepared from 1B. 20 by Grignard exchange with EtMgBr) to enone 1B.22 in different sovents and at different temperatures. Unfortunately in any of the attempted conditions, expected alkynone compound 1B. 27 (Scheme 1B.4) was not obtained.

Scheme 1B. 4

As our intended conjugate addition reaction has turned out to be a failure, we next explored a $\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}$ complex catalyzed addition of alkynes to enones. ${ }^{26}$ After exposing 1B. 20 and 1B. 22 for 2 days to catalytic $\left[\mathrm{RuCl}_{2}(p \text {-cymene) }]_{2}\right.$, we could be able to procure the conjugate addition product 1B. 27 in 14% yield (Scheme 1B.5). The structure of the compound 1B. 27 was confirmed by spectroscopic and analytical data. In the ${ }^{1} \mathrm{H}$ NMR spectrum of the $\mathbf{1 B} .27$ terminal acetylinic proton at $\delta 2.50$ were disappeared and $\mathrm{C}(10)$ methyl proton showed singlet at $\delta 2.12$ and four methylene protons showed peaks between $\delta 2.47$ to 2.70 . In the ${ }^{13} \mathrm{C}$ NMR spectrum, three tripets were appeared at $13.3,42.0$ and 72.4 ppm corresponding to $\mathrm{C}(7), \mathrm{C}(8)$, and benzylic methylene carbon and three singlets were appeared at 206.0 ppm (carbonyl carbon) and at $74.2,87.5 \mathrm{ppm}$ (two alkyne carbons). In the IR spectrum, carbonyl stretching frequency observed at $1717 \mathrm{~cm}^{-1}$. Mass and elemental analysis further assured the structure of the expected 1,4 -addition product. However the yield 14% and the duration of conjugate reaction were not encouraging.

Scheme 1B.5: Ruthenium catalyzed 1,4-addition

1B.2.4. SN_{2} reactions with alkyne 1 B .20

As the $\mathrm{Ru}(\mathrm{II})$-mediated conjugate addition reaction also did not afford reasonable amounts of the requisite product, we have turned our attention to a nucleophilic substitution reaction ${ }^{27}$ with 1B. 20 employing tosylate 1B.28, triflate 1B.29, bromo 1B. 30 and iodo 1B. 31 derivatives to procure a masked ketone 1B.32, which upon hydrolysis should provide the alkynone 1B. 27 (Scheme 1B.6).

Scheme 1B.6: Displacement reaction of 1B. 20 with 1B.28-1B. 31

Compounds 1B.28-1B. 31 were prepared from ethyl aceto acetate by following the established sequence of reactions. However, all our attempts to bring the substitution reaction of 1B.28-1B.31 with alkyne 1B. 20 were unsuccessful under various reaction conditions (Scheme 1B.6). In order to check feasibility, the alkylation of alkyne 1B. 20 was attempted with the simple bromo compound (dodecyl bromide). Under optimized reaction conditions (Section 1, Scheme 1A.12, at $-40^{\circ} \mathrm{C}$, using n BuLi in THF/HMPA), the alkylated product 1B. 34 was obtained in 67% yield.

Scheme 1B.7: Feasibility of 1 B. 20 towards SN_{2} reaction

However, under similar reaction conditions, the alkylation of alkyne 1B. 33 with 1B. 30 was not facile, where as alkylated product 1 B .35 when dodecyl bromide was employed as an electrophile (Scheme 1B.7).

1B.2.5. Synthesis of iodo compound 1B. 21

After successfully conducting the substitution reaction of alkyne 1B. 20 with simple alkyl halide, we have turned our strategy by identifying the iodo compound 1B.21 having the requisite $\mathrm{C}(10)$ stereochemistry of the cephalosporolides E and F . Iodo compound 1B.21 was synthesized from (S)-butane-1,3-diol (1B.23), which in turn was prepared from L-malic acid ${ }^{28}$ 1B.36, (Scheme 1B.8). The synthesis of 1B. 23 was started with the conversion of (S)-malic acid (1B.36) to the corresponding dimethyl ester 1B. 37 by employing thionyl chloride in methanol at $0{ }^{\circ} \mathrm{C} .{ }^{29}$ The resulting dimethyl ester 1B. 37 was treated with tosyl chloride in pyridine to afford the tosylate 1B. 38 in 96% yield. Heating a suspension of tosylate 1B. 38 with 5 equiv of lithium aluminum hydride (LAH) in THF at $55{ }^{\circ} \mathrm{C}$ for 4 h afforded the (+)-1,3butanediol (1B.23) in 47\% yield along with 1,4-butanediol (yield 10\%). Comparison of the optical rotation of the obtained diol 1B.23 $\left\{[\alpha]^{25}{ }_{\mathrm{D}}+26.2\left(c 1.2 \mathrm{CHCl}_{3}\right)\right\}$ with that of known $(+)-\mathbf{1 B} .23\left\{[\alpha]^{20}{ }_{\mathrm{D}}+30.0(c 1.0 \mathrm{EtOH})\right\}^{28}$ confirmed its configuration as expected $3 S$.

Scheme 1B.8: Synthesis of (+)-1,3-butanediol 1B. 23

Selective monotosylation of 1,3-butanediol 1B.23 by addition of tosyl chloride to a solution of $\mathbf{1 B} .23$ and triethyl amine in DCM at $-20^{\circ} \mathrm{C}$ over a period of 3 h , and stirring further for 36 h at rt to gave the tosylate $\mathbf{1 B} .39$ in 72% yield. The ${ }^{1} \mathrm{H}$ NMR spectrum of 1B. 39 showed doublet at $\delta 1.18$ and one singlet at $\delta 2.44$ for methyl
protons. In the ${ }^{13} \mathrm{C}$ NMR spectrum, two quartets were appeared at 21.4 and 23.3 ppm and two triplets at 37.6 and 67.8 ppm . The IR spectrum showed $\mathrm{O}-\mathrm{H}$ stretching frequency at $3401 \mathrm{~cm}^{-1}$. The secondory hydroxyl group of $\mathbf{1 B} .39$ was protected as its TBS ether to get compound 1B. 40 in 91% yield. Nucleophilic substitution of tosylate group of 1B. 40 with sodium iodide ${ }^{30}$ (acetone under reflux for 3 h) gave the iodo compound 1B. 21 in 87% yield (Scheme 1B.9). In the ${ }^{1} \mathrm{H}$ NMR spectrum of 1B.21, singlet of tosylate 1B.40 at $\delta 2.43$ was disappeared and the ${ }^{13} \mathrm{C}$ spectrum showed two triplets at 3.4 and 43.2 ppm . Further mass spectrum and elemental analysis confirmed the proposed constitution of 1B.21.

Scheme 1B.9: Synthesis of iodo compound 1B. 21

1B.2.6. Synthesis of Cephalosporolides E (1B.09) and F (1B.10)

Having synthesized the alkyne 1B. 20 and the iodo compound 1B.21, our next concern was the synthesis of the key cycloisomerization substrate 1B.19. Using n BuLi as base, several combinations of THF-HMPA were explored to bring about the alkylation of compound 1B. 20 with iodo derivative 1B. 21 and under optimized conditions the di-TBS protected alkynediol 1B. 41 was obtained in 68% yield. ${ }^{31}$ Spectral and analytical data of di-TBS compound 1B. 41 were in well agreement with the proposed structure. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 B} .41,24$ protons of two TBS groups were resonated between $\delta 0.03$ to 0.91 ppm . The $\mathrm{C}(10)-$ methyl group showed a doublet at $\delta 1.10$ with $J=6.1 \mathrm{~Hz}$ and four methylene protons showed peaks at δ 1.60 (dd), 1.62 (d), 2.22 (ddt), 2.31 (ddt). The $\mathrm{C}(1)-\mathrm{H}$ and $\mathrm{C}(2)-\mathrm{H}$ resonated as doublets at $\delta 5.93$ and 4.37 respectively with $J_{1,2}=3.6 \mathrm{~Hz}$. The ${ }^{13} \mathrm{C}$ NMR spectrum showed two methylene carbon atoms at 15.2 and 38.0 ppm and two acetylinic carbons
resonated as singlets at 74.1 and 88.7 ppm . Mass spectrum was in accordance with the proposed coupling product.

Scheme 1B.10: Synthesis of key alkynediol 1B. 19

The desilylation of the compound 1B. 41 was carried out by employing TBAF in THF to arrive at the key alkynediol 1B.19 (Scheme 1B.10). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 B} .19$ showed doublet at $\delta 1.15(J=6.2 \mathrm{~Hz})$, two singlets at $\delta 1.24$ and 1.42 for the three methyl groups. In the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 B} \mathbf{1 9}$, two singlets were appeared at 73.5 and 89.8 ppm corresponding to the alkyne carbon atoms, and the triplets of the two methylene carbons appeared at 15.3 and 36.7 ppm . The IR spectrum of 1B. 19 showed $\mathrm{C} \equiv \mathrm{C}$ stretching frequency at $2244 \mathrm{~cm}^{-1}$.

The key cycloisomerization reaction of 1B. 19 could be conducted smoothly with $10 \mathrm{~mol} \%$ of $\mathrm{Pd}\left[\mathrm{CH}_{3} \mathrm{CN}\right]_{2} \mathrm{Cl}_{2}$ complex in acetonitrile at room temperature and the $\mathrm{C}(6)$ epimeric (1:1) spirocyclic ketals $\mathbf{1 B} .18$ were obtained in 62% yield (Scheme 1B.11) as an inseparable mixture. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 B} .18$ showed two doublets at $\delta 1.19$ and $1.26(J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$ ppm, two singlets at $\delta 1.29$ and $1.32(3 \mathrm{H})$ ppm, and two singlets at $\delta 1.45$ and $1.46(3 \mathrm{H}) \mathrm{ppm}$. In the ${ }^{13} \mathrm{C}$ NMR spectrum of 1B.18, two singlets were appeared at 115.5 and 116.5 ppm for the spiroketal $\mathrm{C}(6)$. Mass spectrum and elemental analysis were in good agreement with proposed constitution.

1B. 18 (1:1) inseparable mixture
Scheme 1B.11: Pd(II) catalyzed cyclisomarization of key alkynediol 1B. 19

The deprotection of 1,2-acetonide of 1B. 18 without affecting spiroketal unit, was turned out to be a critical reaction as in majority of the conditions attempted (Scheme 1B.12), the reactions led to a complex mixture, characterization of which was found to be a difficult task by spectroscopic analysis.

Scheme 1B.12: Attempts to 1,2-acetonide deprotection of 1B. 18

After a lot of experimentation, the deprotection of 1,2-acetonide of 1B. 18 could be conducted successfully using 40% acetic acid at $80^{\circ} \mathrm{C}$ (oil bath temperature) for 4 h to obtain a mixture of lactols 1B. $\mathbf{4 2}$ in 65% yield along with recovery of 20% unreacted compound 1B. 18 (Scheme 1B.13). Prolonged heating or increasing
temperature higher than $80^{\circ} \mathrm{C}$ lead to the opening of spiroketals resulting in a change of the ratio of the lactols. The constitution of the lactols 1B. 42 was mainly checked by mass spectrum analysis.

Scheme 1B.13: 1,2-acetonide deprotection of 1B. 18

Selective oxidation of lactols 1B. 42 under Fétizon's reaction conditions ${ }^{32}$ employing $\mathrm{Ag}_{2} \mathrm{CO}_{3} /$ Celite gave the lactones 1B.43 and 1B.44. The epimeric lactones 1B. 43 and 1B. 44 were separated in 53% yield as white crystalline solid and 24% yield as colorless oil respectively. The selective anomeric oxidation of 1B. 42 was also facile with bromine and barium carbonate ${ }^{33}$ and gave the lactones 1B. 43 and 1B. 44 in a similar ratios as in Fétizon's reaction conditions (Scheme 1B.14). The relative configuration of the newly created spiro center in compounds 1B. 43 and 1B. 44 was assigned by comparing the multiplicity and coupling constants of $\mathrm{H}-\mathrm{C}(4)$ and $\mathrm{H}-\mathrm{C}(5)$ with the reported values of 1B.09, 1B. 10 and 1B. 12 - 1B. 15 (Table 1B.1).

Scheme 1B.14: Selective oxidation of lactols 1B. 42 to lactones 1B. 43 and 1B. 44

Table 1B.1: Chemical shift and coupling constants reported for $\mathrm{H}-\mathrm{C}(4)$ and $\mathrm{H}-\mathrm{C}(5)$ of $\mathbf{1 B} .09,1 \mathrm{~B} .10$, 1B.12-1B.15, 1B.18a, 1B.18b, 1B. 47 and 1B. 48 .

Entry	H-C(4)	Entry	H-C(4)
1B. 09	5.09 (t, $J=6.0 \mathrm{~Hz})$	1B. 10	5.05 (ddd, $J=2.0,5.0,7.0 \mathrm{~Hz})$
1B. 43	$5.23(\mathrm{t}, J=6.2 \mathrm{~Hz})$	1B. 44	5.26 (ddd, $J=2.8,4.7,6.7 \mathrm{~Hz}$)
1B.18a	5.00 (t, $J=5.2 \mathrm{~Hz})$	1B.18b	4.87 (ddd, $J=1.5,3.3,5.2 \mathrm{~Hz})$
1B. 47	5.09 (t, $J=5.8 \mathrm{~Hz})$	1B. 48	5.02 (ddd, $J=2.1,4.4,6.6 \mathrm{~Hz})$
1B. 12	4.73 (q, $J=3.5 \mathrm{~Hz})$	1B. 13	5.10 (ddd, $J=2.2,4.4,6.9 \mathrm{~Hz})$
		1B. 14	5.01 (m)
		1B. 15	5.05 (dt, $J=5.4,3.6 \mathrm{~Hz})$
Entry	H-C(5)	Entry	$\mathbf{H - C (5) ~}$
1B. 09	$\begin{aligned} & 2.04(\mathrm{dd}, J=6.0,14 \mathrm{~Hz}) \\ & 2.33(\mathrm{~d}, J=14 \mathrm{~Hz}) \\ & \hline \end{aligned}$	1B.10	$\begin{aligned} & 2.27(\mathrm{dd}, J=2.0,15.0 \mathrm{~Hz}) \\ & 2.46(\mathrm{dd}, J=7.0,15.0 \mathrm{~Hz}) \\ & \hline \end{aligned}$
1B. 43	$\begin{aligned} & 2.12(\mathrm{dd}, J=6.5,14.3 \mathrm{~Hz}) \\ & 2.39(J=14.3 \mathrm{~Hz}) \\ & \hline \end{aligned}$	1B. 44	$\begin{aligned} & 2.27(\mathrm{dd}, J=2.7,14.8 \mathrm{~Hz}) \\ & 2.50(\mathrm{dd}, J=6.8,14.8 \mathrm{~Hz}) \\ & \hline \end{aligned}$
1B. 47	$\begin{aligned} & 2.06(\mathrm{dd}, J=6.1,14.1 \mathrm{~Hz}) \\ & 2.38(\mathrm{~d}, J=14.3 \mathrm{~Hz}) \\ & \hline \end{aligned}$	1B. 48	$\begin{aligned} & 2.27(\mathrm{dd}, J=1.8,14.9 \mathrm{~Hz}) \\ & 2.45(\mathrm{dd}, J=6.8,15.0 \mathrm{~Hz}) \\ & \hline \end{aligned}$
1B. 12	2.16 (d, J=3.5 Hz)	1B. 13	$\begin{aligned} & 2.27(\mathrm{dd}, J=2.2,14.8 \mathrm{~Hz}) \\ & 2.58(\mathrm{dd}, J=6.9,14.8 \mathrm{~Hz}) \end{aligned}$
		1B. 14	$\begin{aligned} & 2.35(\mathrm{~d}, J=2.5 \mathrm{~Hz}) \\ & 2.52(\mathrm{~d}, J=6.3 \mathrm{~Hz}) \end{aligned}$
		1B. 15	$\begin{aligned} & 2.33(\mathrm{~d}, J=2.8) \\ & 2.50(\mathrm{~d}, J=6.0) \\ & \hline \end{aligned}$

The assigned configuration of compound 1B. 43 was further confirmed with the help of a single crystal X-ray analysis (Figure 1B.6).

Figure 1B.6: ORTEP diagram of 1B. 43

After having the complete frame work of cephalosporolides E and F, the task was set now for the deoxygenation at $\mathrm{C}(2)$. The α-hydroxy function of $\mathbf{1 B} .43$ was subjected for deoxygenation under various reaction conditions. Initially, the deoxygenation was planned through the hydrogenolysis of the corresponding chloro-
and iodo-derivatives 1B.45, 1B. 46 respectively. The halogenations of 1B. 43 was attempted under standard conditions and the resulting products were subjected for the dehalogenation (without any purification) under catalytic hydrogenolysis. However, isolation of the starting compound 1B. 43 from these reactions has indicated that the halogenation of the lactones was not happened (Scheme 1B.15). This might be due to the steric hindrance for the halonucleophiles to displace the corresponding activated intermediates.

Scheme 1B. 15

In similar lines, the attempted deoxygenation of 1B. 43 under BartonMcCombie conditions by employing thiocarbony diimidazole, tributyl tin hydride (TBTH) and AIBN in toluene at reflux condition led exclusively (Scheme 1B.16) in recovering the starting material.

Scheme 1B. 16

Finally, the Barton-McCombie deoxygenation ${ }^{34}$ of 1B. 43 and 1B. 44 could be conducted successfully by employing the corresponding phenylthionocarbonate intermediates. Thus, the treatment of $\mathbf{1 B} .43$ and $\mathbf{1 B} .44$ with $\mathrm{PhOC}(=\mathrm{S}) \mathrm{Cl}$ in presence of DMAP followed by usual workup, quick chromatographic purification and
deoxygenation (AIBN, $\mathrm{Bu}_{3} \mathrm{SnH}$) gave 1B. 47 in 88% yield as viscous oil and 1B. 48 in 85% yield as colorless crystalline solid (Scheme 1B.17).

Scheme 1B.17: Synthesis of (-)-cephalosporolides E (1B.47) and (+)-cephalosporolides F (1B.48)

The spectral data of synthetic cephalosporolide E (1B.47) were in agreement with the reported data (Table 2) and the observed optical rotation $\left\{[\alpha]_{\mathrm{D}}{ }^{25}=-48.2(c=\right.$ $\left.\left.0.50, \mathrm{CHCl}_{3}\right),{ }^{\text {Lit. }}[\alpha]_{\mathrm{D}}{ }^{30}=+51.3(c=0.42)^{1}\right\}$ indicated that enantiomer of the cephalosporolide E has been synthesized. Mass spectrum of 1B. 47 showed m/z 199 $\left(13 \%,[M+H]^{+}\right), 221\left(100 \%,[M+N a]^{+}\right), 237\left(44 \%,[M+K]^{+}\right)$, IR spectrum showed absorption peak at $1780 \mathrm{~cm}^{-1}$ for the lactone carbonyl.

Whilst the spectral data for 1B. 48 was found to be in excellent agreement with that for cephalosporolide F (Table 2B.1), the opposite sign and a large deviation in the magnitude of specific rotation $\left\{[\alpha]_{\mathrm{D}}{ }^{25}\right.$ Synthetic $+95.2\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right),[\alpha]_{\mathrm{D}}{ }^{25}$ Lit $=-33.3$ (c $\left.\left.0.79, \mathrm{CHCl}_{3}\right)^{2}\right\}$ was noticed. The constitution and the relative stereochemistry of compound 1B. 48 were further established by single crystal X-ray analysis (Figure 1B.7), which, along with the observed opposite sign of specific rotation, confirmed that it was the enantiomer of the natural cephalosporolide F .

Figure 1B.7: ORTEP diagram of cephalosporlide F 1B. 48

Conclusion:

Herein we document the first total synthesis of the cephalosporolides E and F, the simplest members of the natural products having an unprecedent tricyclic core. A Pd-mediated alkynediol cycloisomerization has been executed to construct the central tricyclic core of cephalosporolides E / F. A concise synthesis of cephalosporolide E (1B.47) and cephalosporolide F (1B.48) has been executed, which established their absolute configurations as $(3 S, 4 S, 6 S, 9 R)$ and $(3 S, 4 S, 6 R, 9 R)$ respectively. As a result of convergence at an advanced stage and the late stage installation of the key spirocyclic core, the present approach leaves ample room for the synthesis of related natural products which is in progress.

1B.3. Experimental:

(S)-Butane-1,3-diol (1B.23)

To a suspension of lithium aluminum hydride (LAH) ($14.5 \mathrm{~g}, 0.38 \mathrm{~mol}$) in anhydrous THF (700 mL) was added dropwise a solution of 1B. $38(20 \mathrm{~g}, 63.3 \mathrm{mmol})$ in THF (50 mL). The reaction mixture was stirred at $55^{\circ} \mathrm{C}$ for 4 h and then re-cooled to $-10{ }^{\circ} \mathrm{C}$. To the resultant mixture were added successively saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL})$, ethyl acetate. The mixture was filtered though celite and the celite pad was washed with ethyl acetate. the combined filtrate was concentrated under reduced pressure. The residue was purifed by silica gel column chromatography (80% ethyl acetate in petroleum ether) to produce the diol 1B. 23 ($2.68 \mathrm{~g}, 47 \%$ yield) as a colorless oil.

Mol. Formula	$: \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}$
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}$	$:+26.2\left(c 1.2, \mathrm{CHCl}_{3}\right)$.
IR (CHCl $\left.{ }_{3}\right) \widetilde{v}$	$: 3412,2932,1585,1337,1170,1250,942,893 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H} \mathbf{~ N M R ~}$	$: 1.20(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.60-1.69(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{brs}, 2 \mathrm{H})$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$3.70-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.94-4.10(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{~ N M R ~}$	$: 23.5(\mathrm{q}), 40.1(\mathrm{t}), 60.6(\mathrm{t}), 67.1(\mathrm{~d}) \mathrm{ppm}$.

($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$
ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 91.2\left(13 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 113.2\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
Elemental Calcd.: C, 53.31; H, 11.18\%.
Analysis
Found: C, 53.24; H, 11.32\%.
(S)-3-Hydroxybutyl 4-methylbenzenesulfonate (1B.39)

A solution of 1B.23 ($3.3 \mathrm{~g}, 36.6 \mathrm{mmol}$) in $\mathrm{DCM}(40 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(6.6 \mathrm{~mL}$, 47.7 mmol) was cooled to $-20^{\circ} \mathrm{C}$. A Solution of tosyl chloride ($6.99 \mathrm{~g}, 36.6 \mathrm{mmol}$) in DCM (40 mL) was added to the reaction mixture over the period of 2 h . After being stirred at $-20^{\circ} \mathrm{C}$ for 3 h , the mixture was allowed to warm and stirred for additional 36 h at rt . The reaction mixture was poured into 70 mL of water and extracted with DCM. The combined organic layers was washed successively with an aqueous solution of $2 \mathrm{~N} \mathrm{HCl}(40 \mathrm{~mL})$, a saturated aqueous solution of $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and brine (40 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The purification of residue by silica gel column chromatography (40% ethyl acetate in petroleum ether) gave monotosylate 1B. 39 ($6.4 \mathrm{~g}, 72 \%$ yield) as a colorless oil.

Mol. Formula	: $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}$
$[\alpha]_{\text {D }}{ }^{25}$: -23.3 (c 1.4, CHCl_{3}).
IR ($\left.\mathbf{C H C l}_{3}\right) \widetilde{v}$: 3401, 3009, 2970, 2928, 1599, 1455, 1355, $1097 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	$: \delta 1.18$ (d, J=6.2 Hz, 3H), 1.66-1.83 (m, 3H), 2.44 (s, 3H),
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & 3.85-3.99(\mathrm{~m}, 1 \mathrm{H}), 4.05-4.29(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.3 \mathrm{~Hz} \text {, } \\ & 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) . \end{aligned}$
$\begin{aligned} & { }^{13} \mathbf{C} \text { NMR } \\ & \left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \end{aligned}$	$\begin{aligned} & : 21.4(\mathrm{q}), 23.3(\mathrm{q}), 37.6(\mathrm{t}), 63.7(\mathrm{~d}), 67.8(\mathrm{t}), 127.6(\mathrm{~d}, 2 \mathrm{C}), \\ & 129.8(\mathrm{~d}, 2 \mathrm{C}), 132.5(\mathrm{~s}), 144.8(\mathrm{~s}) \mathrm{ppm} . \end{aligned}$
ESI-MS (m / z)	$\begin{aligned} & : 245.2\left(17 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 267.2\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 283.2 \\ & \left(18 \%,[\mathrm{M}+\mathrm{K}]^{+}\right) \end{aligned}$
Elemental	Calcd.: C, 54.08; H, 6.60\%.
Analysis	Found: C, 53.92; H, 6.72\%.

(S)-3-(tert-Butyldimethylsilyloxy)butyl 4methylbenzenesulfonate (1B.40)

$\mathrm{TBSCl}(1.21 \mathrm{~g}, 8.04 \mathrm{mmol})$ was added to a cooled solution of tosylate 1B. 39 $(1.636 \mathrm{~g}, 6.68 \mathrm{mmol})$, imidazole $(1.2 \mathrm{~g}, 16.72 \mathrm{mmol})$ and catalytic DMAP in anhydrous DCM (20 mL), portionwise and stirred for 8 h at rt . The reaction mixture was partionised in water and DCM. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by silica
gel column chromatography (15% ethyl acetate in petroleum ether) to obtain 1B. 40 $(2.18 \mathrm{~g}, 91 \%$ yield) as a colorless oil.

Mol. Formula	: $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{SSi}$
$[\alpha]_{\mathrm{D}}{ }^{25}$: -33.3 (c 1.5, CHCl_{3}).
IR (CHCl_{3}) \widetilde{v}	: 3012, 2956, 2930, 2895, 1599, 1462, 1256, $1047 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	$: \delta-0.05(\mathrm{~s}, 3 \mathrm{H}), 0.00$ (s, 3H), 0.79 (s, 9H), 1.09 (d, $J=6.1$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\mathrm{Hz}, 3 \mathrm{H}), 1.61-1.77(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.81-3.93(\mathrm{~m}, 1 \mathrm{H})$, $4.08(\mathrm{dd}, J=6.2,7.2, \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.77$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR	$:-5.2(\mathrm{q}),-4.5(\mathrm{q}), 17.8(\mathrm{~s}), 21.5(\mathrm{q}), 23.6(\mathrm{q}), 25.6(\mathrm{q}, 3 \mathrm{C}),$
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & 38.4(\mathrm{t}), 64.5(\mathrm{~d}), 67.7(\mathrm{t}), 127.8(\mathrm{~d}, 2 \mathrm{C}), 129.7(\mathrm{~d}, 2 \mathrm{C}), 133.0 \\ & (\mathrm{~s}), 144.6(\mathrm{~s}) \mathrm{ppm} . \end{aligned}$
ESI-MS (m / z)	$\begin{aligned} & : 359.5\left(9 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 381.6\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 397.5(19 \%, \\ & \left.[\mathrm{M}+\mathrm{K}]^{+}\right) . \end{aligned}$
Elemental	Calcd.: C, 56.94; H, 8.43\%.
Analysis	Found: C, 56.79; H, 8.58\%.

(S)-3-(tert-Butyldimethylsilyloxy)-1-iodo-butane (1B.21)

A suspension of tosylate $\mathbf{1 B} .40(2.47 \mathrm{~g}, 6.89 \mathrm{mmol})$, $\mathrm{NaI}(10.32 \mathrm{~g}, 68.96$ mmol) in anhydrous acetone (60 mL) was refluxed under nitrogen atmosphere for 3 h . Reaction mixture was filtered through Celite and concentrated under reduced pressure. The purification of residue by silica gel column chromatography (8% ethyl acetate in petroleum ether) gave iodo compound $\mathbf{1 B} .21$ ($1.88 \mathrm{~g}, 87 \%$ yield) as a colorless oil.

Mol. Formula	$: \mathrm{C}_{10} \mathrm{H}_{23} \mathrm{IOSi}$
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}$	$:-9.3\left(c 1.2, \mathrm{CHCl}_{3}\right)$.
$\mathbf{I R}\left(\mathbf{C H C l}_{3}\right) \widetilde{v}$	$: 2957,2894,2858,1463,1472,1362,1148,967 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H} \mathbf{~ N M R ~}$	$: \delta 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{~d}, J=6.1$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\mathrm{Hz}, 3 \mathrm{H}), 1.84-1.95(\mathrm{~m}, 2 \mathrm{H}), 3.217-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.90$

(Sextet, $J=6.2,1 \mathrm{H}$).
$\begin{array}{ll}{ }^{13} \text { C NMR } & :-4.6(\mathrm{q}),-4.2(\mathrm{q}), 3.4(\mathrm{t}), 17.8(\mathrm{~s}), 23.4(\mathrm{q}), 25.8(\mathrm{q}, 3 \mathrm{C}), \\ \left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) & 43.2(\mathrm{t}), 68.2(\mathrm{~d}) \mathrm{ppm} . \\ \text { ESI-MS }(\mathrm{m} / \mathrm{z}) & : 315.3\left(29 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 337.4\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right) . \\ \text {Elemental } & \text { Calcd.: C, 38.22; H, } 7.38 \% . \\ \text { Analysis } & \text { Found: C, 38.09; H, } 7.50 \% .\end{array}$

5,5,6,6-Tetradehydro-5,6-dideoxi-3-O-(tert-butyldimethylsilyl)-1,2-isopropyledene- α-D-xylohexofuranose (1B.20)

TBSCl ($2.94 \mathrm{~g}, 19.57 \mathrm{mmol}$) was added to a cooled solution of $\mathbf{1 B} .26(3.0 \mathrm{~g}$, 16.3 mmol) and imidazole ($2.22 \mathrm{~g}, 32.59 \mathrm{mmol}$) and catalytic DMAP in anhydrous DCM (20 mL), in portionwise and stirred for 6 h at rt . The reaction mixture was partitioned in water and DCM. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10% ethyl acetate in petroleum ether) to give TBS protected alkynol 1B. 20 ($4.3 \mathrm{~g}, 90 \%$ yield) as a colorless oil.

Mol. Formula	: $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Si}$
$[\alpha]_{\text {D }}{ }^{25}$: -50.3 (c 1.6, CHCl_{3}).
$\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$	$\begin{aligned} & : 3313,3275,2954,2932,2887,2132,1473,1464,1375,1256, \\ & 1218,1137,1016 \mathrm{~cm}^{-1} . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 0.13,0.14(2 \mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), \\ & 2.50(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J= \\ & 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) . \end{aligned}$
$\begin{aligned} & { }^{13} \mathbf{C} \text { NMR } \\ & \left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \end{aligned}$	$:-5.0(\mathrm{q}),-4.8(\mathrm{q}), 18.2(\mathrm{~s}), 25.7(\mathrm{q}, 3 \mathrm{C}), 26.2(\mathrm{q}), 26.8(\mathrm{q}),$ 72.1 (d), 76.1 (s$), 77.2$ (d), 78.1 (s), 85.1 (d), 104.7 (d), 111.8 (s) ppm .
ESI-MS (m / z)	$\begin{aligned} & : 299.1\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 316.1\left(84 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 321.1(95 \%, \\ & \left.[\mathrm{M}+\mathrm{Na}]^{+}\right), 337.1\left(9 \%,[\mathrm{M}+\mathrm{K}]^{+}\right) . \end{aligned}$

Elemental Analysis Calcd.: C, 60.37; H, 8.78\%.
Found: C, 60.25; H, 8.91\%.

6-C-(3'(S)-O-(tert-Butyldimethylsily)-5,5,6,6-tetradehydro-5,6-dideoxi-3-O-(tert-butyldimethylsilyl)-1,2-isopropyledene- α -D-xylo-hexofuranose (1B.41)

A solution of $\mathbf{1 B} .20(1.6 \mathrm{~g}, 5.37 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ and HMPA (5 mL) was cooled to $-40^{\circ} \mathrm{C}$ and treated with drop wise addition of $n-\mathrm{BuLi}(4 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes, 6.44 mmol$)$ and stirred for 20 min . To this, iodo compound 1B.21 (2.0 g , 6.44 mmol , was added dropwise, and stirred for 1 h at $-40^{\circ} \mathrm{C}$. The reaction mixture was quenched by saturate aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate. The combined organic extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (7% ethyl acetate in petroleum ether) to produce 1B.41 (1.77 g, 68% yield) as a colorless oil.

$$
\begin{array}{ll}
\text { Mol. Formula } & : \mathrm{C}_{25} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si}_{2} \\
{\left[{ }_{[\alpha]_{\mathbf{D}}{ }^{25}}\right.} & :+15.3\left(c 1.7, \mathrm{CHCl}_{3}\right) . \\
\text { IR (CHCl } \left.{ }_{3}\right) \widetilde{v} & : 2956,2931,2828,2238,1472,1376,1256,1218,1131, \\
& 1082,1018,838 \mathrm{~cm}^{-1} . \\
{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R} & : \delta 0.03(2 \mathrm{~s}, 6 \mathrm{H}), 0.12,0.13(2 \mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, \\
\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) & 9 \mathrm{H}), 1.10(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.60 \\
& (\mathrm{dd}, J=1.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{ddt}, \\
& J=2.0,8.0,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{ddt}, J=2.0,7.2,16.8 \mathrm{~Hz}, \\
& 1 \mathrm{H}), 3.86(\mathrm{sextet}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), \\
& 4.37(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{dd}, J=2.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.93 \\
& (\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) .
\end{array}
$$

${ }^{13} \mathbf{C}$ NMR $:-5.0(q),-4.9$ (q), -4.8 (q), -4.4 (q), 15.2 (t), 18.0 (s), 18.3
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad(\mathrm{s}), 23.5(\mathrm{q}), 25.7(\mathrm{q}, 3 \mathrm{C}), 25.8(\mathrm{q}, 3 \mathrm{C}), 26.2(\mathrm{q}), 26.8(\mathrm{q})$, 38.0 (t), 67.1 (d), 72.5 (d), 74.1 (s$), 77.3$ (d), 85.2 (d), 88.7
(s), 104.5 (d), 111.6 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z})$	$\left.: 485.5\left(6 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 502.6\left(21 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]\right]^{+}\right), 507.6$
	$\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 523.6\left(13 \%,[\mathrm{M}+\mathrm{K}]^{+}\right)$.
Elemental	Calcd.: C, 61.93; H, 9.98%.
Analysis	Found: C, 61.84; H, 10.03%.

6-C-(3'(S)-Butynol)- 5,5,6,6-tetradehydro-5,6-dideoxi-1,2-isopropyledene- α-D-xylohexofuranose (1B.19)

To a cooled solution of $\mathbf{1 B} .41(1.22 \mathrm{~g}, 2.52 \mathrm{mmol})$ in THF (25 mL) was added tetra-butyl ammonium fluoride ($1.65 \mathrm{~g}, 6.3 \mathrm{mmol}$) and stirred at rt for 2 h . The reaction mixture was partionized in water and ethyl acetate, aqueous layer was extracted with ethyl acetate. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The purification of residue by silica gel column chromatography (45% ethyl acetate in petroleum ether) afforded alkyne diol 1B.19 ($570 \mathrm{mg}, 89 \%$ yield) as a colorless oil.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 274.1\left(19 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 279.1\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 295.0$ $\left(4 \%,[\mathrm{M}+\mathrm{K}]^{+}\right)$.

Elemental
Analysis

Calcd.: C, 60.92; H, 7.87\%.
Found: C, 60.79; H, 8.98\%.

Tricyclic spiroketal (1B.18)

A solution of $\mathbf{1 B} .19(200 \mathrm{mg}, 0.78 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}(10.0 \mathrm{mg}, 0.03$ mmol) in dry $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was flushed with argon for 10 min and stirred at rt for 4 h under argon atmosphere. The reaction mixture was concentrated under reduced pressure and crude residue was purified by silica gel column chromatography (10% ethyl acetate in petroleum ether) to give mixture spiroketals 1B. 18 ($124 \mathrm{mg}, 62 \%$ yield) as a viscous, colorless oil.

Mol. Formula $: \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{5}$
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \widetilde{v} \quad: 2980,1458,1383,1218,1164,1058,891 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 1.19(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.26(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1.5 \mathrm{H})$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 1.29(\mathrm{~s}, 1.5 \mathrm{H}), 1.32(\mathrm{~s}, 1.5 \mathrm{H}), 1.45,1.46(2 \mathrm{~s}, 3 \mathrm{H}), 1.66-1.76$ $(\mathrm{m}, 0.5 \mathrm{H}), 1.84-2.16(\mathrm{~m}, 4 \mathrm{H}), 2.22-2.37(\mathrm{~m}, 1.5 \mathrm{H}), 4.05-$ $4.21(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~m}, J=3.6,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{ddd}, J=$ $1.5,3.3,4.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.00(\mathrm{t}, J=5.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.88(\mathrm{~d}, J$ $=3.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.02(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 0.5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\quad: 21.0(\mathrm{q}), 22.7(\mathrm{q}), 26.6(\mathrm{q}), 27.1(\mathrm{q}, 2 \mathrm{C}), 27.7(\mathrm{q}), 31.1(\mathrm{t})$, $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad 32.5(\mathrm{t}), 35.0(\mathrm{t}), 38.0(\mathrm{t}), 42.3(\mathrm{t}), 43.0(\mathrm{t}), 74.9(\mathrm{~d}), 76.2(\mathrm{~d})$, 83.1 (d), 83.2 (d), 83.7 (d), 85.3 (d), 86.2 (d), 86.4 (d), 106.7 (d), 106.8 (d), 111.6 (s), 112.3 (s), 115.5 (s), 116.5 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 257.3\left(19 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 279.1\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 295.1$ $\left(18 \%,[M+K]^{+}\right)$.
Elemental Calcd.: C, 60.92; H, 7.87\%.
Analysis Found: C, 60.84; H, 7.94\%.

Mixture of lactols (1B.42)

A solution of 1B. 18 ($200 \mathrm{mg}, 0.78 \mathrm{mmol}$) and 40% acetic acid (10 mL) was heated at $80^{\circ} \mathrm{C}$ (oil bath) for 3 to 4 h . The reaction mixture was neutralized with solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ and evaporated to dryness under reduced pressure. The residue was extracted with ethyl acetate, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and purified by silica gel column chromatography (50% ethyl acetate in petroleum ether) to afford mixture of lactols 1B. 42 ($110 \mathrm{mg}, 65 \%$ yield) as a colorless oil.

Mol. Formula	: $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{5}$
IR ($\mathbf{C H C l}_{3}$) \widetilde{v}	: 3391, 2980, 2855, 1457, 1345, 1303, 1145, $954 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	: $\delta 1.18-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.37-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.284 .51$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	(m, 4H), 2.48-2.56 (m, 1H), $2.24(\mathrm{bs}, 1 \mathrm{H}), 4.12-4.37(\mathrm{~m}$, 2H), 4.48 (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.96(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~s}$, 0.60 H), 5.43 (d, $J=3.9 \mathrm{~Hz}, 0.20 \mathrm{H}$), $5.63(\mathrm{~d}, J=3.9 \mathrm{~Hz}$, 0.20 H).
	$: 21.0(\mathrm{q}, 3 \mathrm{C}), 21.1(\mathrm{q}), 30.8(\mathrm{t}), 31.1(\mathrm{t}), 32.3(\mathrm{t}), 32.4(\mathrm{t})$,
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & 36.0(\mathrm{t}, 2 \mathrm{C}), 36.7 \text { (t), } 37.1 \text { (t), } 42.4 \text { (t), } 42.6 \text { (t), } 43.8 \text { (t, 2C), } \\ & 74.9 \text { (d), } 75.6 \text { (d), } 75.7 \text { (d), } 76.5 \text { (d), } 78.5 \text { (d), } 80.3 \text { (d), } 80.6 \end{aligned}$ (d), 81.3 (d, 2C), 83.6 (d), 84.1 (d), 85.9 (d), 86.5 (d), 88.5 (d), 89.1 (d, 2C), 104.7 (d), 106.8 (d, 3C), 116.0 (s), 116.6 (s , 3C) ppm.
ESI-MS (m / z)	$\begin{aligned} & : 217.5\left(4 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 239.5\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 255.5(6 \%, \\ & \left.[\mathrm{M}+\mathrm{K}]^{+}\right) . \end{aligned}$
Elemental	Calcd.: C, 55.55; H, 7.46\%.
Analysis	Found: C, 55.41; H, 7.58\%.

2-C-(R)-Hydroxy cephalosporolide E (1B.43)

$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ impregnated on Celite $(1.19 \mathrm{~g}, 2.08 \mathrm{mmol}$, contains 1 mmol of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ per 0.57 g of prepared reagent) was added to a solution of mixtures of lactols 1B. $42(150 \mathrm{mg}, 0.69 \mathrm{mmol})$ in toluene $(15 \mathrm{~mL})$ under argon atmosphere and heated at reflux for 2 h . The reaction mixture was then cooled to room temperature and filtered through a pad of Celite and the Celite pad was washed with ethyl acetate. Combined filtrate was concentrated under reduced pressure and purified by silica gel column chromatography (25% ethyl acetate in petroleum ether) to give $\mathbf{1 B} .43(78 \mathrm{mg}, 53 \%$) as white crystalline solid and 1B. 44 ($36 \mathrm{mg}, 24 \%$ yield) as a colorless viscous oil . (yields are with respect to starting mixture of lactols).

Mol. Formula	: $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{5}$
M. P.	: $85-87{ }^{\circ} \mathrm{C}$
$[\alpha]^{25}$	$:+5.2\left(c 0.5, \mathrm{CHCl}_{3}\right)$
$\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \widetilde{\nu}$: 3430, 2929, 1774, 1403, 1216, 1050, $970 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	$: \delta 1.17$ (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.41-1.47$ (m, 1H), 2.05-2.14
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & (\mathrm{m}, 4 \mathrm{H}), 2.39(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{bs}, 1 \mathrm{H}), 4.14 \\ & (\text { sextet, } J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=6.2 \mathrm{~Hz}, \\ & 1 \mathrm{H}), 5.23(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}) . \end{aligned}$
${ }^{13} \mathrm{C}$ NMR	$: 20.8(\mathrm{q}), 31.3(\mathrm{t}), 33.8(\mathrm{t}), 41.2(\mathrm{t}), 74.3$ (d), $75.3(\mathrm{~d}), 82.2$
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	(d), 83.6 (d), 115.2 (s), 176.5 (s) ppm.
ESI-MS (m / z)	$\begin{aligned} & : 215.2\left(40 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 237.2\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 253.2 \\ & \left(13 \%,[\mathrm{M}+\mathrm{K}]^{+}\right) \end{aligned}$
Elemental	Calcd.: C, 56.07; H, 6.59\%.
Analysis	Found: C, 55.92; H, 6.70\%.

2-C-(R)-Hydroxy cephalosporolide F (1B.44)


```
Mol. Formula : C }\mp@subsup{\textrm{C}}{0}{}\mp@subsup{\textrm{H}}{14}{}\mp@subsup{\textrm{O}}{5}{
[\alpha]|D}\mp@subsup{}{}{25
IR (CHCl 3) \widetilde{v}}:
'1
(CDCl , 200 MHz) (m, 1H), 2.05-2.12 (m, 2H), 2.27(dd, J=2.6, 14.7 Hz, 1H),
    2.50 (dd, J = 6.7, 14.7 Hz, 1H), 3.28 (bs, 1H), 4.16-4.23 (m,
    1H), 4.31 (s, 1H), 4.63 (d, J = 4.7 Hz, 1H), 5.25-5.28 (m,
    1H).
\mp@subsup{}{}{13}\mathbf{C NMR :22.7 (q), 32.3 (t), 36.9 (t), 41. 5 (t), 72.8 (d), 77.1 (d), 81.9}
(CDCl },50\textrm{MHz}
    (d), 83.0 (d), 115.7 (s), 176.2 (s) ppm.
ESI-MS (m/z) :215.2(34%,[M+H\mp@subsup{]}{}{+}),237.2(100%,[M+Na]
(30%,[M+K]+})
Elemental Calcd.: C, 56.07; H, 6.59%.
Analysis Found: C, 56.13; H, 6.67%.
```


(-)-Cephalosporolide E (1B.47)

Phenyl chlorothionoformate ($50 \mu \mathrm{~L}, 0.35 \mathrm{mmol}$) was added to a cooled solution of α-hydroxy lactone 1B. 43 ($50 \mathrm{mg}, 0.23 \mathrm{mmol}$) and DMAP ($57 \mathrm{mg}, 0.47$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ and stirred for 1 h at rt . The reaction mixture was concentrated under reduced pressure and purified by silica gel column chromatography (10% ethyl acetate in petroleum ether) to obtain phenylthiocarbonate intermediate (77 mg). A solution of thiocarbonate intermediate ($77 \mathrm{mg}, 0.22 \mathrm{mmol}$), tri-butyl tinhydride ($87 \mu \mathrm{~L}, 0.33 \mathrm{mmol}$) and AIBN $(0.7 \mathrm{mg})$ in toluene (10 mL) was deoxygenated by purging argon for 20 min and refluxed for 3 h under argon atmosphere. Then the mixture was cooled to rt, concentrated under reduced pressure and purified by silica gel column chromatography (25% ethyl acetate in petroleum ether) to afford (-)-cephalosporolide E 1B. 47 ($41 \mathrm{mg}, 88 \%$) as colorless needles.

Mol. Formula	: $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}$
M. P.	: $96-98{ }^{\circ} \mathrm{C}$
$[\alpha]_{\text {D }}{ }^{25}$	$:-48.2\left(c 0.5, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. $\left.[\alpha]_{\mathrm{D}}{ }^{30}+51.3\left(c 0.42, \mathrm{CHCl}_{3}\right)\right\}$
IR ($\left.\mathbf{C H C l}_{3}\right) \widetilde{v}$: 2969, 1780, 1402, 1303, 1157, 1098, 1056, 918, $825 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	$: \delta 1.13$ (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.08$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & (\mathrm{m}, 4 \mathrm{H}), 2.38(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~d}, J=18.8 \mathrm{~Hz}, \\ & 1 \mathrm{H}), 2.68(\mathrm{dd}, J=7.5,18.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.14(\mathrm{~m}, 1 \mathrm{H}), \\ & 4.82(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}) . \end{aligned}$
${ }^{13} \mathrm{C}$ NMR	: 20.9 (q), 31.3 (t), 34.2 (t), 37.6 (t), 41.6 (t), 75.1 (d), 77.2
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	(d), 83.4 (d), 115.1 (s), 175.8 (s) ppm.
ESI-MS (m / z)	:199(13\%, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right), 221\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 237$ (44\%,
	$\left.[\mathrm{M}+\mathrm{K}]^{+}\right)$.
Elemental	Calcd.: C, 60.59; H, 7.12\%.
Analysis	Found: C, 60.45; H, 7.19\%.

(+)-Cephalosporolide F (1B.48)

Phenyl chlorothionoformate ($30 \mu \mathrm{~L}, 0.21 \mathrm{mmol}$) was added to a cooled solution of α-hydroxy lactone 1B. 44 ($30 \mathrm{mg}, 0.14 \mathrm{mmol}$) and DMAP ($34 \mathrm{mg}, 0.28$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ and stirred for 1 h at rt . The reaction mixture was concentrated under reduced pressure and purified by silica gel column chromatography (10% ethyl acetate in petroleum ether) to give phenylthiocarbonate intermediate (47 mg). A solution of thiocarbonate intermediate ($47 \mathrm{mg}, 0.134 \mathrm{mmol}$) tri-butyl tinhydride ($53 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) and AIBN (0.3 mg) in toluene was deoxygenated by purging argon for 20 min and refluxed for 3 h under argon atmosphere. Then the mixture was cooled to rt, concentrated under reduced pressure and purified by silica gel column chromatography (25% ethyl acetate in petroleum ether) to afford (+)-cephalosporolide F 1B. $48(24 \mathrm{mg}, 85 \%)$ as crystalline solid.

Mol. Formula	: $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}$
M. P.	: $62-64{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{25}$: $+95.2\left(c 0.9, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. $\left.[\alpha]_{\mathrm{D}}{ }^{25}-33.3\left(c 0.79, \mathrm{CHCl}_{3}\right)\right\}$
IR (CHCl_{3}) \widetilde{v}	: 3020, 1781, 1403, 1216, 1167, 1096, 1061, $927 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	: $\delta 1.22(\mathrm{~d}, ~ J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.64-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.93$ (dd, $J=$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$7.8,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.11(\mathrm{~m}, 1 \mathrm{H})$, 2.27 (dd, $J=1.8,14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=6.8,15.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.62(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=5.3,18.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.09-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.02$ (ddd, J $=2.1,4.4,6.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR	: 22.8 (q), 32.4 (t), 36.0 (t), 36.9 (t), 42.1 (t), $76.5(\mathrm{~d}), 76.9$
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	(d), 83.8 (d), 115.5 (s), 175.6 (s) ppm.
ESI-MS (m / z)	$\begin{aligned} & : 199\left(16 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 221\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 237(46 \%, \\ & \left.[\mathrm{M}+\mathrm{K}]^{+}\right) . \end{aligned}$
Elemental	Calcd.: C, 60.59; H, 7.12\%.
Analysis	Found: C, 60.51; H, 7.07\%.

6-C-(3'Butynone)- 5,5,6,6-tetradehydro-5,6-dideoxi-3-O-benzyl-1,2-isopropyledene- α-D-xylohexofuranose (1B.27)

To a stirred solution of $\left[\mathrm{RuCl}_{2}-(p-\mathrm{cymene})\right]_{2}(16 \mathrm{mg}, 0.027 \mathrm{mmol})$ in benzene $(5 \mathrm{~mL})$ was added pyrrolidine $(0.01 \mathrm{~mL}, 0.11 \mathrm{mmol})$, and the mixture was stirred for 15 min at room temperature followed by the addition of alkyne $\mathbf{1 B} \mathbf{. 2 0}$ ($150 \mathrm{mg}, 0.55$ mmol) and methyl vinyl ketone $\mathbf{1 B} .22(0.14 \mathrm{mg}, 1.64 \mathrm{mmol})$. Then after reaction mixture was stirred for 24 h at $60^{\circ} \mathrm{C}$, re-cooled to rt and concentrated under reduced pressure. The crude was purified by silica gel column chromatography (12% ethyl acetate in petroleum ether) to afford 1,4-addition product 1B. 27 ($25 \mathrm{mg}, 14.5 \%$ yield) as colorless oil.

${ }^{1} \mathrm{H}$ NMR Spectrum of 1 B .20 in CDCl_{3}

${ }^{13}$ C NMR Spectrum of 1 B .20 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 1 B .39 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 1 B .39 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 1 B .40 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 1 B .40 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 1 B .21 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 1 B .21 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 1 B .41 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 1 B .41 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 1 B .19 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 1 B .19 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 1 B .18 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 1 B .18 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 1 B .42 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 1 B .43 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 1 B .43 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 1 B .44 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 1 B .44 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 1 B .47 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 1 B .47 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 1 B .48 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 1 B .48 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 1 B .27 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 1 B .27 in CDCl_{3}

References:

1. For reviews of spiroacetals see: (a) Perron, F.; Albizati, K. F. Chem. Rev. 1989, 89, 1617-1661. (b) Boivin, T. L. B. Tetrahedron 1987, 43, 3309. (c) Kluge, A. F. Heterocycles 1986, 24, 1699-1740.
2. (a) Fletcher, M. T.; Kitching, W. Chem. Rev. 1995, 95, 789-828; (b) Brimble, M. A.; Fares, F. A. Tetrahedron 1999, 55, 7661-7706; (c) Mead, K. T.; Brewer, B. N. Curr. Org. Chem. 2003, 7, 227-256.
3. Mori, K. Tetrahedron 1989, 45, 3233-3298.
4. Higa, T.; Tanaka, J.-L.; Tsukitani, Y.; Kikiuchi, H. Chem. Lett. 1981, 16471650.
5. Gonzalez, A. G.; Martin, J. D.; Norte, M.; Perez, R.; Rivera, P.; Ruano, J. Z.; Rodriguez, M. L.; Fayos, J.; Perales, A. Tetrahedron Lett. 1983, 24, 41434146.
6. Shin, J.; Fenical, W. J. Org. Chem 1988, 53, 3271-3276.
7. Hoffmann, J. J.; McLaughlin, S. P.; Jolad, S. D.; Schram, K. H.; Tempesta, M. S.; Bates, R. B. J. Org. Chem. 1982, 47, 1725-1727.
8. (a) Li, W.; Fuchs, P. L. Org. Lett. 2003, 5, 2853-2856. (b) Lee, J. S.; Fuchs, P. L. Org. Lett. 2003, 5, 3619-3622. (c) Lee, J. S.; Fuchs, P. L. J. Am. Chem. Soc. 2002, 124, 13978-13979. (d) Flessner, T.; Ludwing, V.; Siebeneicher, H.; Winterfeldt, E. Synthesis 2002, 1373-1378. (e) Li, W.; LaCour, T. G.; Fuchs, P. L. J. Am. Chem. Soc. 2002, 124, 4548-4549. (f) LaCour, T. G.; Tong, Z.; Fuchs, P. L. Org. Lett. 1999, 1, 1815-1818.
9. (a) Melendez, J.; Alonso, F.; Yus, M. Tetrahedron Lett. 2006, 47, 1187-1191.
(b) Betancor, C.; Freire, R.; Perez-Martin, I.; Prange, T.; Suarez, E. Tetrahedron 2005, 61, 2803-2814. (c) Sartillo-Piscil, F.; Vargas, M.; Parrodi, C. A. d.; Quintero L. Tetrahedron Lett. 2003, 44, 3919-3921. (d) Martin, A.; Salazar, J. A.; Suarez E. J. Org. Chem. 1996, 61, 3999-4006.
10. Ackland, M. J.; Hanson, J. R.; Hitchcock, P. B.; Ratcliffe, A. H. J. Chem. Soc. Perkin Trans. 1 1985, 843-847.
11. Rukachaisirikul, V.; Pramjit, S.; Pakawatchai, C.; Isaka, M.; Supothina, S. J. Nat. Prod. 2004, 67, 1953--1955.
12. Oller-López, J. L.; Iranzo, M.; Mormeneo, S.; Oliver, E.; Cuerva, J. M.; Oltra, J. E. Org. Biomol. Chem. 2005, 3, 1172-1173.
13. Seibert, S. F.; Krick, A.; Eguereva, E.; Kehraus, S.; König, G. M. Org. Lett 2007, 9, 239-242.
14. (a) Li, X.; Yao, Y.; Zheng, Y.; Sattler, I.; Lin, W. Arch. Pharm. Res. 2007, 30, 812-815. (b) Li, X.; Sattler, I.; Lin, W. J. Antibiot. 2007, 60, 191-195.
15. (a) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285-2309; (b) Alonso, F.; Yus, M.; Beletskaya, I. P. Chem. Rev. 2004, 104, 3079-3159; (c) Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Angew. Chem., Int. Ed. 2004, 43, 3368-3398; (d) Li, J. J.; Gribble, G. W. Palladium in Heterocyclic Chemistry; Pergamon: Oxford, UK, 2000; (e) Poli, G.; Giambastiani, G.; Heumann, A. Tetrahedron 2000, 56, 5959-5989; (f) Cacchi, S. J. Organomet. Chem. 1999, 576, 42-64; (g) Utimoto, K. Pure Appl. Chem. 1983, 55, 1845-1853.
16. (a) Pt: Qian, H.; Han, X.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 9536-9537; (b) Au: Antoniotti, S.; Genin, E.; Michelet, V.; Genet, J.-P. J. Am. Chem. Soc. 2005, 127, 9976-9977; (c) Rh/Ru: Trost, B. M.; Rudd, M. T. J. Am. Chem. Soc. 2005, 127, 4763-4776; (d) Trost, B. M.; Rhee, Y. H. J. Am. Chem. Soc. 2003, 125, 7482-7483; (e) Trost, B. M.; Rhee, Y. H. J. Am. Chem. Soc. 2002, 124, 2528-2533; (f) W: Wipf, P.; Graham, T. H. J. Org. Chem. 2003, 68, 8798-8807; (g) Mo: McDonald, F. E. Chem. -Eur. J. 1999, 5, 3103-3106; (h) Ir: Genin, E.; Antoniotti, S.; Michelet, V.; Genet, J.-P. Angew. Chem., Int. Ed. 2005, 44, 4949-4953.
17. For selected papers on transition metal mediated alkynediol cycloisomerizations see: (a) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem. Int. Ed. 2002, 41, 4563-4565. (b) Hartman, J. W.; Sperry, L. Tetrahedron Lett. 2004, 45, 3787-3788. (c) Antoniotti, S.; Genin, E.; Michelet, V.; Genet, J.-P. J. Am. Chem.Soc. 2005, 127, 9976-9977. (d) Liu, B.; De Brabander, J. K. Org. Lett. 2006, 8, 4907-4910. (e) Messerle, B. A.; Vuong, K. Q. Pure Appl. Chem. 2006, 78, 385-390. (f) Oh, C. H.; Yi, H. J.; Lee, J. H. New J. Chem. 2007, 31, 835-837. (g) Ramana, C. V.; Patel, P.; Gonnade, R. G. Tetrahedron Lett. 2007, 48, 4771-4774. (h) DiéguezVázquez, A.; Tzschucke, C. C.; Lam, W. Y.; Ley, S. V. Angew. Chem. Int. Ed. 2008, 47, 209-212. (i) Ramana, C. V.; Mallik, R.; Gonnade, R. G. Tetrahedron 2008, 64, 219-233. (j) Zhang, Y.; Xue, J.; Xin, Z.; Xie, Z.; Li, Y. Synlett 2008, 940-944.
18. For representative total synthesis employing alkynediol cycloisomerizations see: (a) Utimoto, K. Pure Appl. Chem. 1983, 55, 1845-1852. (b) Trost, B. M.; Horne, D. B.; Woltering, M. J. Angew. Chem. Int. Ed. 2003, 42, 5987-5990. (c) Trost, B. M.; Weiss, A. H. Angew. Chem. Int. Ed. 2007, 46, 7664-7666. (d) Ramana, C. V.; Induvadana, B. Tetrahedron Lett. 2008, 50, 271-273.
19. (a) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079-3159. (b) Muzart, J. Tetrahedron 2005, 61, 5955-6008. (c) Hintermann, L.; Labonne, A. Synthesis 2007, 1121-1150.
20. (a) Dalziel, W.; Hesp, B.; Stevenson, K. M.; Jarvis, J. A. J. J. Chem. Soc., Perkin Trans. 1 1973, 2841. (b) Ackland, M. J.; Hanson, J. R.; Ratcliffe, A. H.; Sadler, I. H. Chem. Commun. 1982, 165. (c) Mabelis, R. P.; Ratcliffe, A. H.; Ackland, M. J.; Hanson, J. R.; Hitchcock, P. B. Chem. Commun, 1981, 1006.
21. Suzuki, M.; Kawamoto, T.; Vairappan, C. S.; Ishii, T.; Abe, T.; Masuda, M. Phytochemistry 2005, 66, 2787-2793.
22. Clode, D. M. Chem. Rev. 1979, 79, 491-512.
23. Yadav, J. S.; Chander, M. C.; Rao, C. S. Tetrahedron Lett. 1989, 30, 5455-5458.
24. (a) Caddick, S,; Delisser, V. M. Tetrahedron Lett. 1997, 38, 2355-2358. (b) Sibi, M. P.; Manyem, S. Tetrahedron 2000, 56, 8033-8061. (c) Caddick, S.; Cheung, S.; Doyle, V. E.; Frost, L. M.; Soscia, M. G.; Delisser, V. M.; Williams, M. R. V.; Etheridge, Z. C.; Khan, S.; Hitchcock, P. B.; Pairaudeau, G.; Vile, S. Tetrahedron 2001, 57, 6295-6303.
25. Gaunt, M. J.; Hook, D. F.; Tanner, H. R.; Ley, S. V. Org. Lett. 2003, 5, 48154818.
26. Chang, S.; Na, Y.; Choi, E.; Kim, S. Org. Lett. 2001, 3, 2089-2091.
27. (a) Moman, E.; Nicoletti, D.; Mourino, A. J. Org. Chem. 2004, 69, 4615-4625. (b) Takahashi, S.; Kubota, A.; Nakata, T. Org. Lett. 2003, 5, 1353-1356. (c) Kotsuki, H.; Kadota, I.; Ochi, M. Tetrahedron Lett. 1990, 31, 4609-4612.
28. Huang, P.-Q.; Lan, H.-Q.; Zheng, X.; Ruan, Y.-P. J. Org. Chem. 2004, 69, 3964-3967.
29. Borjesson, L.; Welch, C. J. Tetrahedon 1992, 48, 6325-6334.
30. Hindupur, R. M.; Panicker, B.; Valluri, M.; Avery, M. A. Tetrahedron Lett. 2001, 42, 7341-7344.
31. (a) Weaving, R.; Roulland, E.; Monneret, C.; Florent, J.-C. (b) Tetrahedron Lett. 2003, 44, 2579-2581. Ramana, C. V.; Giri, A. G.; Suryawanshi, S. B.; Gonnade, R. G. Tetrahedron Lett. 2007, 48, 265-268.
32. (a) Balogh, V.; Fétizon, M.; Golfier, M. J. Org. Chem. 1971, 36, 1339-1341. (b) Zelle, R. E.; DeNinno, M. P.; Selnick, H. G.; Danishefsky, S. J. J. Org. Chem. 1986, 51, 5032-5036. (c) Prasad, K. R.; Gholap S. L. J. Org. Chem. 2008, 73, 2916-2919.
33. (a) Soengas, R. G.; Estevez, J. C.; Estevez, R. J. Org. Lett. 2003, 5, 14231425. (b) Gumina, G.; Chu, C. K. Org. Lett. 2002, 4, 1147-1149. (c) Fleet, G. W. J.; Ramsden, N. G.; Witty, D. R. Tetrahedron 1989, 45, 327.
34. (a) matsuura, D.; Takabe, K.; Yoda, H. Tetrahedron Lett. 2006, 47, 1371-1374. (b) Robins, M. J.; Wilson, J. S. J. Am. Chem. Soc. 1981, 103, 932-933. (c) Barton, D. H. R.; McCombie, W. W. J. Chem. Soc. Perkin Trans. 1 1975, 1574.

CHAPTER-II

Section I: $[2+2+2]$-cyclotrimerization approach for the synthesis of enantiopure isochromans and spiroannulation of dihydroisobenzofuran

2A.1. Introduction to Cyclotrimerization:

Designing effective routes to construct complex cyclic structures through organo transition-metal catalyzed reactions has been recognized as an attractive strategy for delivering molecular diversity. ${ }^{1}$ More specifically, the use of carboncarbon bond formation reactions to generate new ring systems is an ever demanding task in organic synthesis. In this respect, cycloaddition reactions are considered to be strategically useful where more than one carbon-carbon or carbon-heteroatom bonds are formed. With this as a goal, several researchers have developed new reaction pathways aimed towards the synthesis of complex organic molecules with cycloaddition reaction as the key skeletal construct. Novel catalysts and new reaction conditions addressing the chemo- and regioselectivity aspects of various types cycloaddition reactions have been disclosed.

The [2+2+2]-cycloaddition involving alkynes to generate annulated benzene derivatives is one of the more elegant methods for the construction of aromatic ring. The transition metal catalyzed cyclotrimerization of acetylenes to benzene derivatives was first reported by Reppe et al. employing Ni catalyst. ${ }^{2}$ Since then, cyclotrimerization reaction has attracted considerable attention by virtue of its intrinsic atom economy, as well as the importance of substituted and annulated benzenes as synthetic intermediates. Various transition metal catalysts based on Ni , $\mathrm{Co}, \mathrm{Pd}, \mathrm{Cr}, \mathrm{Rh}, \mathrm{Fe}, \mathrm{Zr}, \mathrm{Nb}$, Ir , and Ta have been developed for the trimerization reaction involving alkynes. In addition to the alkynes, other unsaturated functional groups such as nitriles, isocyanates, olefins, carbonyl compounds, imines, and diimides have been shown to participate in cyclotrimerizations with alkynes to deliver useful heterocyclic end-products. ${ }^{3,4}$

Cyclotrimerization of alkynes can be classified into three types, i.e., two intermolecular reactions (types I and II) and an intramolecular reaction (type III, Scheme 2A.1), giving substituted benzene derivatives 2A.1-2A. 3 respectively.

Figure 2A.1: Cyclotrimerization of alkynes

In general, these reactions can be performed in common organic solvents at temperatures ranging from room temperature upwards. Due to its operational simplicity, and ability to provide complex molecular structures, the transition metal catalyzed $[2+2+2]$-alkyne cyclotrimerization has become an integral component in the armory of organic synthetic methods. ${ }^{3,5}$ For a long time, the regioselectivity was a primary concern for this type of reactions, ${ }^{4}$ but little success was achieved despite enormous efforts to control regioselectivity.

[2+2+2]-Cyclotrimerization for bridged bicyclic systems

Our group has reported for the first time, a new entry to benzannulated 8oxabicylo[3.2.1] systems by cross alkyne cyclotrimerization (Scheme 2A.1). ${ }^{6}$ Dialkyne 2A.04 (synthesized from geraniol diacetate) subjected to [2+2+2]cyclotrimerisation with symmetrical and unsymmetrical alkynes using different metal catalysts and concluded that the Wilkinson's catalyst $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ bring the cyclotrimerization reaction effectively above $80^{\circ} \mathrm{C}$ yielding good yields.

Scheme 2A.1: construction of benzannulated-8-oxa-bicyclo[3.2.1]octane

After complete standardization of $[2+2+2]$-cyclotrimerisation reaction towards benzannulated-8-oxa-bicyclo[3.2.1]octanes, we applied it to the first total synthesis of (-)-bruguierol-A (Scheme 2A.2). Oxidation of mixture of compounds 2A.06/2A. 07 (prepared by employing trimerization reaction between diyne 2A. 4 and propargyl alcohol) with MnO_{2} followed by treatment with m-CPBA provided bruguierol A (2A.08) and and its regioisomer 2A.09.

Scheme 2A.2: reagents and reaction conditions: (i) propargyl alcohol, $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$, Toluene, $80^{\circ} \mathrm{C}$, 67%. (ii) $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 5 h . (iii) m - $\mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, 4 h . (iiv) aq. NaOH , THF, $2 \mathrm{~h}(33 \%$ yield for three steps).

Groth and co-workers reported the stereoselective total synthesis of the natural antibiotic (-)-8-O-methyltetrangomycin (MM 47755) (2A.12). ${ }^{7}$ The cobalt-mediated [2+2+2]-cyclotrimerization reaction of the triyne 2A. 10 led to a benz[a]anthracene system 2A. 11 (Scheme 2A.3), which was oxidized with $\mathrm{Ag}(\mathrm{Py})_{2} \mathrm{MnO}_{4}$ to a benz[a]anthraquinone. Deprotection with aq. HF in acetonitrile and photooxidation afforded the desired natural product 2A.12.

Scheme 2A.3: Reagents and conditions: (i) n - $\mathrm{BuLi}, \mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$, 70%. (ii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, rt., $6 \mathrm{~h}, 90 \%$. (iii) $\mathrm{CpCo}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}, \mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}$ to rt., 4 h , then cat. AcOH , 80%. (iv) $\mathrm{Ag}(\mathrm{Py})_{2} \mathrm{MnO}_{4}, \mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt., $7 \mathrm{~h}, 65 \%$. (v) aq. $\mathrm{HF}, \mathrm{CH}_{3} \mathrm{CN}, 50^{\circ} \mathrm{C}, 5 \mathrm{~h}, 98 \%$. (vi) hv, air, CHCl_{3}, rt., $1 \mathrm{~h}, 58 \%$.

The first synthesis of the marine illudalane sesquiterpenoid alcyopterosin E (2A.17) was reported by Witulski and co-workers through a concise ABC ringformation using an intramolecular alkyne cyclotrimerisation. ${ }^{8}$ The DCC mediated coupling of 2A. 13 and 2A. 14 provided the triyne ester 2A.15. Treatment of 2A. 15 with $10 \mathrm{~mol} \% \mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ in DCM at $40{ }^{\circ} \mathrm{C}$ gave 2 A .16 as a single product in 72% yield. Finally, the first synthesis of alcyopterosin E (2A.17) was completed by nucleophilic displacement of the tosyl protective group to provide the nitrate ester functionality of 2A. 17 (Scheme 2A.4).

Scheme 2A.4: Reagents and conditions: i) DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ to r.t., 70%. ii) $10 \mathrm{~mol} \%$ $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}, 72 \%$. iii) NaNO_{3} (10 equiv.), $\mathrm{Bu}_{4} \mathrm{NNO}_{3}$, toluene, $110{ }^{\circ} \mathrm{C}, 69 \%$.

Vollhardt and co-workers reported total syntheses and structures of angular [6]- and [7]-phenylene (heliphenes). ${ }^{9}$ The synthesis started with Pd-catalyzed alkynylation of readily available dibromo compound 2A. 18 with alkyne 2A. 19 followed by replacement of bromo with iodo to furnish 2A.20. A second alkynylation with 1-ethynyl-2-(2-DMTS-ethynyl)biphenylene followed by global silyl deprotection gave hexayne 2A.21. Finally, cobalt-catalyzed intramolecular cyclotrimerization of 2A. 21 in refluxing xylene photochemical irradiation furnished 2A. 22 (Scheme 2A.5).

Scheme 2A.5: Reagents and conditions: (a) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}, \mathrm{CuI}, \mathrm{Et}_{3} \mathrm{~N}, 70-85^{\circ} \mathrm{C}, 14 \mathrm{~h}$. (b) i. n - BuLi , $\mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}$; ii. $\mathrm{I}_{2}, \mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}$, 54%; iii. 1-ethynyl-2-(2-DMTS-ethynyl)biphenylene, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$, CuI, $\mathrm{Et}_{3} \mathrm{~N}, 85{ }^{\circ} \mathrm{C}$, 22 h ; iv. $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{F}^{-}$, THF, $23{ }^{\circ} \mathrm{C}, 40 \mathrm{~min}, 58 \%$. (c) $\mathrm{CpCo}(\mathrm{CO})_{2}, m$-xylene, hv, $\Delta, 30$ $\min , 12 \%$.

Frechet and co-workers reported synthesis of novel benzene-core dendrimers via alkyne cyclotrimerization. ${ }^{10}$ The substituted alkynes 2A.23a-2A.23d were synthesized by the Williamson ether coupling of 2-butyne-1,4-diol with appropriate polybenzyl ether-type dendritic bromides. The trimerization reaction of 2A.23a2A.23d was carried out in refluxing toluene using dicobalt octacarbonyl as the catalyst to afford novel structures 2A.24a-2A.24d (Scheme 2A.6).

Scheme 2A.6: Synthesis of dendritric assemblies

Nierengarten and co-workers ${ }^{11 a}$ recently reported an efficient synthesis of fullerodendrimers 2A.27a-2A.27c with hexaphenylbenzene cores and peripheral C_{60} units were prepared by metal-catalyzed cyclotrimerization of the corresponding dendritic bis-(aryl)alkyne. The alkyne precursors 2A.26a-2A.26c were obtained by reaction of diol 2A. 25 with fullerodendron $\mathrm{G1CO}_{2} \mathrm{H}, \mathrm{G} 2 \mathrm{CO}_{2} \mathrm{H}$, and $\mathrm{G} 3 \mathrm{CO}_{2} \mathrm{H}$, respectively under esterification condition. ${ }^{11 \mathrm{~b}}$ Treatment of 2A.26a with catalytic amount of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ in dioxane at rt . for 24 h afforded 2A.27a in 93% yield (Scheme 2A.7).

Scheme 2A.7: Synthesis of fullerodendrimers

The reaction of the second-generation derivative 2A.26b was finished after one day and compound 2A.27b was isolated in 62% yield. In contrast, the reaction of the higher generation precursor 2A.26c was very slow, most probably as a result of steric crowding and the product 2A.27c was isolated in 24% yield after 5 days (Scheme 2A.7).

Only the first occurrence by Soto and Mori et al. developed a novel method for the construction of arylnaphthalene skeletons through a Pd°-catalyzed $[2+2+2]$ cocyclization of diynes and arynes. ${ }^{12}$ The cocyclization was the key step in the total synthesis of taiwanin C (2A.28) (Scheme 2A.8).

Scheme 2A.8: Synthesis of taiwanin C (2A.28)

2A.1.1. [2+2+2]-Cyclotrimerozation on sugar templates:

Besides the above selected examples, cyclotrimerizations on sugar derived templates deserves a special mention, which is rather a remote area. Integrated with the transition metal catalyzed reactions, the sugar templates have been well deployed to address the synthesis of a variety of complex natural products skeletons. ${ }^{13}$ Amongst the many other metal catalyzed reactions which have been explored on the sugar templates, catalytic $[2+2+2]$ alkyne cyclotrimerization occupies a special mention because it delivers highly functionalized aromatic rings appended with sugar rings.

2A.1.1.1. [2+2+2]-Cyclotrimerozation in Synthesis of C-arylglycosides:

The synthesis of C-glycosides, in which the glycosidic oxygen is replaced by a carbon atom, has been an area of intense study in bioorganic and synthetic chemistry. This is because C-glycosides are stable toward enzymatic and chemical hydrolysis, and therefore, they are potent inhibitors for glycosidases and glycosyltransferases. ${ }^{14}$ Frequently encountered C-glycoside motifs in nature are C-arylglycosides. C Arylglycoside frameworks are generally obtained by the direct arylation of appropriate carbohydrate precursors. ${ }^{15}$ However, the control of regiochemistry is a crucial problem when a highly substituted aromatic precursor is employed for this purpose. The $[2+2+2]$-cycloaddition of α, ω-diynes with C-alkynylglycosides is a convergent and atom economical approach.

McDonald and co-workers have realized this method for the first time in the synthesis of anthraquinone C-glycosides 2A.29 (Scheme 2A.9) and C-aryl spiroglycosides 2A. 30 (Scheme 2A.10). ${ }^{16}$ They used Wilkinson catalyst, $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$,
in EtOH at $78{ }^{\circ} \mathrm{C}$ to achieve the cycloaddition of a diketodiynewith protected alkynylglycals.

Scheme 2A.9: Synthesis of anthraquinone C-glycosides

Scheme 2A.10: Reagents and conditions: (i) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, $20 \mathrm{~mol} \% \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 57% (2.6:1 mixture). (ii) $\mathrm{TMSOCH}_{2} \mathrm{C} \equiv \mathrm{CH}, 10 \mathrm{~mol} \% \mathrm{SnCl}_{4}, 10 \mathrm{~mol} \% \mathrm{AgClO}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$. (iii) 50% aqueous $\mathrm{NaOH}, 20 \mathrm{~mol} \% \mathrm{BnNEt}_{3} \mathrm{Cl}, \mathrm{CH}_{3} \mathrm{CN}, 67 \%$ (two steps, 2.2: 1 mixture). (iv) saturated $\mathrm{HC} \equiv \mathrm{CH}$ in EtOH , $10 \mathrm{~mol} \% \mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}, 0^{\circ} \mathrm{C}, 89 \%$.

Yamamoto et al. synthesized the C-arylglycosides 2A.31 by employing ruthenium-catalyzed cycloaddition reaction on C-alkynylglycoside of different sugar derivatives with diynes having hetero atoms ${ }^{17}$ (Scheme 2A.11).

Scheme 2A. 11
Later in 2006, Yamamoto and co-workers synthesized spirocyclic C-ribosides 2A. 32 from the known γ-ribonolactone derivative. ${ }^{18}$ The lithium acetalide addition followed by glycosylation with 3-(trimethylsilyl)propargyl alcohol converted the ribonolactone to silylated diynes. After desilylation or iodination, subsequent ruthenium catalyzed cyclotrimerization of resultant diynes with alkynes or chloroacetonitrile gave spirocyclic C-arylribosides (Scheme 2A.12).

Scheme 2A. 12
Martin Kotora et al. employed various transition metal complexes (Rh, Ir, Co, Ru , and Ni) for the $[2+2+2]$-cyclotrimerozation reaction of C-alkynyldeoxiriboside 2A. 33 with a variety of substituted 1,6-heptadiynes 2A. 34 to the corresponding C aryldeoxyribosides 2A. 35 (Scheme 2.13). ${ }^{19}$ They concluded that the Wikinson's catalyst $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ could catalyze most of the cyclotrimerizations in high yields (52-95\%).

$\mathrm{X}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}, \mathrm{C}\left(\mathrm{COCH}_{3}\right)_{2}, \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right) \mathrm{COCH}_{3}, \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right) \mathrm{CN}$, NTs, O .
Cat. Used: $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3},\left[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}_{2}, \mathrm{NiBr}_{2}\right.$ (dppe),
$\mathrm{Ni}(\mathrm{cod})_{2} / 2 \mathrm{PPh}_{3}, \mathrm{CpRuCl}(\mathrm{cod}), \mathrm{Co}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Br}$
Scheme 2A. 13

2A.2. Present Work:

The isochroman 2A.36, isobenzofuran 2A. 37 and 1,3-dihydro-isobenzofuran 2A. 38 are integral part of many naturally occurring substances, commercially available drugs and cosmetics 20 (Figure 2A.2). Several synthetic 6,7dimethoxyisochromans and their 1-arylated analogues have been disclosed as new investigational drugs with a wide range of activities such as analgesic, muscle relaxant, antidepressant, antiinflammatory, antihistaminic, anticoagulant and antihypertensive. ${ }^{21}$

Isochroman 2A. 36

Isobenzofuran 2A. 37

1,3-Dihydro-isobenzofuran 2A. 38

Figure 2A. 2

For example, a series of tricyclic isochroman derivatives 2A. 39 have been prepared from D-glucose and evaluated for their herbicidal activities (Figure 2A.3). ${ }^{22}$ The papulacandins 2A.40, are a group of antifungal agents from Papularia Spherosperma which exhibit potent in vitro activity against Candida albicans and related microorganisms, ${ }^{23}$ and the 1,3-dihydrospiro-isobenzofuran is the core part of these molecules (Figure 2A.3).

Investigational herbicide 2A. 39

Populacandins 2A. 40

Figure 2A.3: Biologicaly active compounds containing isochromane and 1,3dihydrospiroisobezofuran core system

A number of synthetic methods involving electrophilic reactions mediated by Lewis acids, radical and carbanion-mediated annulations, and cycloadditions have been reported for the synthesis of isochroman units. ${ }^{24}$ The oxa-Pictet-Spengler condensation is a widely used method for the preparation of isochroman units. ${ }^{23 b}$ An expedient approach for sugar annulated isochromans by Martin et al. using intramolecular Friedel-Craft cyclization has been reported. Recently, Kaliappan and co-workers reported an intramolecular enyne-metathesis and subsequent trapping of the resulting dienes by various quinines for the synthesis of tetracyclic derivatives containing isochroman ring. ${ }^{25}$ Similarly, several excellent protocols for the spiroannulation of furan/isobenzofuran ring on sugar templates have been reported. ${ }^{26,27}$

Amongst the available methods in this context, catalytic [2+2+2]-alkyne cyclotrimerizations are important as they address the substituent flexibility on the appended aromatic ring. An early example in this regard, is the expedient synthesis of the spirocyclic C-arylglycoside framework closely related to the papulacandins by McDonald and co-workers utilizing a rhodium(I)-catalyzed [2+2+2]cyclotrimerization.

The strategy we intended for the synthesis of enantiopure isochromans is described in Figure 2A.4. Tricyclic derivative containing isochroman core 2A. 41 can be easily obtained by using [2+2+2]-cyclotrimerization reaction between dialkyne 2A.43 and alkyne 2A.42.

Figure 2A.4: [2+2+2]-cyclotrimerization approach for enantiopure isochromans

The synthesis of the key diyne 2 A .43 was started with glucose diacetonide 2A. 44 prepared from D-glucose by treating it with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, anhydrous CuSO_{4} in acetone. Propargylation of glucose diacetonide 2A. 44 by using propargyl bromide and sodium hydride in DMF to procure the propargyl ether 2A.45. Selective deprotection of 5,6-isopropylidene by using $0.8 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in methanol gave diol 2A. 46 in 93% yield (Scheme 2A.14).

Scheme 2A.14: Synthesis of diol 2A. 46
Diol 2A. 46 on oxidative cleavage by NaIO_{4} adsorbed on silica gel in DCM afforded the aldehyde 2A.47, which upon treatment with Ohira-Bestman reagent ${ }^{28}$ in presence of potassium carbonate in methanol gave the diyne 2A.43 in 78% yield (Scheme 2A.15). The diyne 2A. 43 was fully characterized by spectroscopic and analytical data. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the two acetylenic protons resonated at δ 2.46 as a triplet $(J=2.4 \mathrm{~Hz})$, and at $\delta 2.55$ as a doublet $(J=2.3 \mathrm{~Hz})$. The ${ }^{13} \mathrm{C}$ NMR spectrum showed peaks at $75.4,76.5,77.1,78.8 \mathrm{ppm}$ for the carbon atoms of the two alkyne units. The IR spectrum showed acetylenic C-H stretching frequency at 3291 cm^{-1} and alkyne $\mathrm{C} \equiv \mathrm{C}$ stretching at $2120 \mathrm{~cm}^{-1}$.

Scheme 2A.15: Synthesis of diyne 2A. 43

With the fully elaborated diyne framework 2A. 43 in place, cyclotrimerization was attempted with 2-butyne-1,4-diol (2A.48) employing some commonly used
trimerization catalysts amongst which, the reactions with Wilkinson's catalyst ${ }^{19}$ are smooth and yielded the tricyclic compound in good yields. The optimized conditions for this reaction involve the heating of the diyne with the diol in toluene/ethanol (4:1) at $80{ }^{\circ} \mathrm{C}$ and resulted with the tricyclic derivative 2A. 49 in 61% yield (Scheme 2A.16). The spectral and analytical data of 2A. 49 were in accordance with the assigned structure. For example, in the ${ }^{1} \mathrm{H}$ NMR spectrum of 2A.49, the two aromatic-H appeared as singlets at $\delta 6.99$ and $\delta 7.24$. The characteristic $\mathrm{C}(1)-\mathrm{H}$ and $\mathrm{C}(2)-\mathrm{H}$ of the furanose ring appeared as doublets at $\delta 5.93$ and $4.70 \mathrm{ppm}\left(J_{1,2}=3.8\right.$ Hz), respectively. The $\mathrm{C}(4)-\mathrm{H}$ appeared downfield ($\delta 4.89$) as a doublet with $J=2.3$ Hz.

Scheme 2A. 16

In the NOESY spectrum, the observed cross peaks between $\mathrm{C}(4)-\mathrm{H}$ and the aromatic ring proton at $\delta 7.24$ were indicative of a possible anisotropic effect of the furanose ring oxygen. This observation has helped in assigning the ratios of the regiomeric compounds resulting from unsymmetric alkynes (Table 2A.1). The presence of two methyleneoxy groups at 62.7 and 67.0 ppm in the ${ }^{13} \mathrm{C}$ NMR further confirmed the assigned structure.
deshielding anisotropic effect because of the ring oxygen proximity

To show the flexibility of our strategy, diyne $2 \mathrm{AA.43}$ was subjected to the $[2+2+2]$-cyclotrimerization employing symmetric and unsymmetric alkynes that are easily available and the results are summarized in Table 2A.1. With acetylene and
dimethyl acetylene dicarboxylate, the cyclotrimerization reaction proceeded effectively at $80{ }^{\circ} \mathrm{C}$ in a sealed tube to afford 2A. 50 and 2A. 52 in 65% and 45% yields respectively. Interestingly, the reaction of $2 A .43$ with dimethyl acetylene dicarboxylate did not proceed at different temperatures under atmospheric pressure. Unsymmetrical alkynes such as phenylacetylene and hexadec-1-yne gave inseparable regiomeric mixtures in moderate to good yields (Table 2A.1). In case of sterically crowded alkynes we did not observe any reaction even in sealed tube at various reaction temperature (Table 2A.1, entry 4-6).

Table 2A.1: $[2+2+2]$-cyclotrimerization reaction between diyne 2A. 43 and various alkynes

Entry	alkyne	Product(s)	Yield(\%)
1	$\mathrm{H}=\mathrm{H}$	2A.50 ($\mathrm{R}=\mathrm{R}=\mathrm{H}$)	65\%
2		2A.51 ($\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{OAc}$)	57\%
3	$\mathrm{MeO}_{2} \mathrm{C}=\mathrm{CO}_{2} \mathrm{Me}$	2A. $52\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{CO}_{2} \mathrm{Me}\right)$	45\%
4	TMS $=$ - TMS	No reaction	-
5	$\mathrm{Ph}-\mathrm{Ph}$	No reaction	-
6	${ }^{n}-\mathrm{C}_{5} \mathrm{H}_{11}={ }^{-} \mathrm{C}_{5} \mathrm{H}_{11}$	No reaction	-
7	$\mathrm{Ph}=\mathrm{H}$	$\begin{gathered} \text { 2A.53a }\left(\mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{H}\right) \\ \text { 2A.53b }\left(\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Ph}\right) \\ (1: 4) \end{gathered}$	72\%
8		$\begin{gathered} \text { 2A.54a }\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{NPhth}, \mathrm{R}^{\prime}=\mathrm{H}\right) \\ \text { 2A.54b }\left(\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{NPhth}\right) \\ (1: 3) \end{gathered}$	67\%
9	${ }^{n-\mathrm{C}_{14} \mathrm{H}_{29}=}=\mathrm{H}$	$\begin{gathered} \text { 2A.55a }\left(\mathrm{R}=n-\mathrm{C}_{4} \mathrm{H}_{29}, \mathrm{R}^{\prime}=\mathrm{H}\right) \\ \text { 2A.55b }\left(\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=n-\mathrm{C}_{4} \mathrm{H}_{29}\right) \\ (1: 1) \end{gathered}$	49\%

To examine the feasibility of the trimerization with anti-oriented diyne, we have synthesized the diyne 2A. 58 with D-ribo-configuration from the glucose diacetonide 2A.44, by following the reaction sequence i. PDC oxidation of free
hydroxyl to ketone, ii. reduction of ketone by sodium borohydride, iii. propargylation of free hydroxyl group of obtained alcohol with propargyl bromide, iv. selective 5,6acetonide deprotection to get 5,6-diol 2A.57. Oxidative cleavage of diol to aldehyde which was immediately subjected to Ohira-Bestman reaction gave diyne 2A. 58 (Scheme 2A.17).

ii) $\mathrm{NaBH}_{4}, \mathrm{CH}_{3} \mathrm{OH}$
$0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 2 \mathrm{~h}$

2A. 58

$$
78 \%
$$

Scheme 2A.17: Synthesis of diyne 2A. 58

Diyne 2A. 58 was subjected to $[2+2+2]$-cyclotrimerization reaction with acetylene in sealed tube at $80{ }^{\circ} \mathrm{C}$ to procure product 2A.59 in 72% yield (Scheme 2A.18). The structure of tricyclic derivative 2A. 59 was confirmed by spectral and analytical data. In the ${ }^{1} \mathrm{H}$ NMR spectrum, $\mathrm{C}(3)-\mathrm{H}$ showed double of doublet at $\delta 3.50$ with $J=9.4$ and $4.0 \mathrm{~Hz}, \mathrm{C}(2)-\mathrm{H}$ showed triplet at $\delta 4.78$ with $(J=3.8 \mathrm{~Hz})$. and benzylic protons showed doublets at $\delta 5.07$ and 5.16 with a geminal coupling $J=$ 14.9 Hz . In the ${ }^{13} \mathrm{C}$ NMR spectrum, triplet for benzylic carbon atom resonated at 70.3 ppm . Further, mass spectrum and elemental analysis were in agreement with proposed structure 2A.59.

2A. 58

72%.

2A. 59

Scheme 2A. 18

After having successfully synthesized tricyclic benzannulated sugar derivatives now we have turned out attention towards the synthesis of spiro tricyclic sugar derivatives through spiro-benzofurannulation by employing cyclotrimerization as the key skeleton construct.

Figure 2A.5: Spirocyclic natural products containing dihydroisibenzofuran subunit

Spirocyclic subunits are present in a diverse range of bioactive natural products, thereby attracting considerable attention from synthetic chemists. Dihydroisobenzofuran is one of the commonly found structural units in many of the naturally occurring substances produced by a wide variety of microbes, insects, plants, fungi and microorganisms. ${ }^{29}$ For example, C-arylglycosyl spiroacetal papulacandins 2A. 40 were found to exhibit potent in vitro activity against Candida albicans and related microorganisms. ${ }^{30}$ Paecilospirone 2A. 60 isolated recently from a marine fungus Paecilomyces sp. was a promising inhibitor of microtubule assembly (Figure 2A.5). ${ }^{31}$ Escitalopram (to treat depression) and isobenzofuran nucleoside (an investigational anti-viral drug) are some of the medicinally important agents containing the isobenzofuran unit.

In view of 1,3-dihydrobenzofuran importance, we have identified [2+2+2]alkyne cyclotrimerization as a flexible skeletol construct for the spiroannulation of
isobenzofuran ring on carbohydrate templates. Our intended strategy is described in figure 2A.6.

Figure 2A.6: Projected dihydroisobenzifuran spiro-annulation through $[2+2+2]$-Trimerization and selected diyne substrates

Ketones 2A.66-2A.68 were prepared from D-xylose, D-glucose and Dfructose respectively. Xylose diacetonide 2A.69 (prepared from D-xylose, under selective 3 ,5-isopropylidine deprotection using $0.8 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in MeOH) followed by selective TBS protectection of pimary hydroxyl group using TBSCl and imidazole in DCM gave compound 2A.70. Swern oxidation of of 2A. 70 afforded ketone 2A. 66 in 76% of yield (Scheme 2A.19).

Scheme 2A.19: Synthesis of ketone 2A. 66

Glucose diacetonide 2A. 44 was subjected under Swern oxidation conditions to afford ketone 2A. 67 in 72\% yield. Ketone 2A. 68 was prepared under Swern oxidation condition of fructose diactetonide 2A. 71 (obtained by treating D-fructose with 2,2dimethoxy propane and 70% perchloric acid in acetone) in 78% yield (Scheme 2A.20).

Scheme 2A.20: Synthesis of ketones 2A. 67 \& 2A. 68

Addition of ethynylmagnesium chloride prepared by Grignard exchange with n-butylmagnesium chloride at $0^{\circ} \mathrm{C}$ to the ketones ${ }^{32}$ 2A.66-2A.68 and consequently propargylation of 3°-hydroxyl of obtained grignard products afforded diynes 2A.632A. 65 respectively (Scheme 2A.21).

Scheme 2A.21: Syntheses of diynes 2A.63-2A. 65

Diynes 2A.63-2A. 65 were fully characterized by spectral and analytical data. Compound 2A. 63 showed alkyne protons at $\delta 2.44$ as a triplet with $J=2.4 \mathrm{~Hz}$ and at δ 2.66 as a singlet in the ${ }^{1} \mathrm{H}$ NMR spectrum. In the ${ }^{13} \mathrm{C}$ NMR spectrum, alkyne carbons and quaternary carbon $\mathrm{C}(3)$ showed singlets at $74.5,77.8,79.4,79.5$ and 80.6 ppm . The acetylenic $\mathrm{C}-\mathrm{H}$ stretching frequency was appeared at $3307 \mathrm{~cm}^{-1}$ and $\mathrm{C} \equiv \mathrm{C}$ stretching frequency at $2110 \mathrm{~cm}^{-1}$ in the IR spectrum of compound 2A.63. Compound 2A. 64 showed alkyne protons at $\delta 2.41$ as a triplet with $J=2.4$ and at $\delta 2.75$ as a singlet in the ${ }^{1} \mathrm{H}$ NMR spectrum. In the ${ }^{13} \mathrm{C}$ NMR spectrum, alkyne carbons and quaternary carbon $\mathrm{C}(3)$ showed singlets at $74.5,78.2,79.7,80.4$ and 81.0 ppm . The acetylenic $\mathrm{C}-\mathrm{H}$ stretching frequency at $3306 \mathrm{~cm}^{-1}$ and $\mathrm{C} \equiv \mathrm{C}$ stretching frequency at $2112 \mathrm{~cm}^{-1}$ were appeared in IR spectrum. Similarly, spectral and analytical data for compound 2A. 65 were in well agreement with proposed structure.

The diyne 2A. 64 was subjected to cyclotrimerization with 2-butyne-1,4-diol (2A.48) using Wilkinson's catalyst in toluene/ethanol (4:1) at $80^{\circ} \mathrm{C}$ giving the spirocyclic 1,3-dihydrobenzofuran derivative 2A. 75 in 68% yield (Scheme 2A.22). The spectral and analytical data of 2A. 75 were in accordance with the assigned structure. For example, in the ${ }^{1} \mathrm{H}$ NMR spectrum of 2A.75, the two aromatic-H appeared as singlets at $\delta 7.09$ and $\delta 7.27$. The characteristic $\mathrm{C}\left(1^{\prime}\right)-\mathrm{H}$ and $\mathrm{C}\left(2^{\prime}\right)-\mathrm{H}$ of the furanose ring appeared as doublets at $\delta 5.99$ and $4.39\left(J_{1,2}=3.5 \mathrm{~Hz}\right)$ respectively. The $\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}$ appeared downfield ($\delta 4.27$) as a doublet with $J=8.5 \mathrm{~Hz}$. The observed cross peaks between benzylic CH_{2} and the aromatic ring proton at $\delta 7.27$ in the NOESY spectrum was helpful in assigning the ratios of the regiomeric compounds resulting from unsymmetric alkynes. The presence of four methyleneoxy groups at 63.4, 63.7, 67.4 and 73.3 ppm in the ${ }^{13} \mathrm{C}$ NMR further confirmed the assigned structure.

Scheme 2A. 22

To illustrate the flexibility of our strategy, $[2+2+2]$-cyclotrimerization reaction of diyne 2A. 64 was carried out with symmetrical alkynes such as acetylene, diacetate of 2-butyne-1,4-diol and with unsymmetrical alkynes like phenyl acetylene, propargyl alcohol, 1-hexadecyne, and N-propargyl phthalimide under similar conditions. With acetylene and dimethyl acetylene dicarboxylate the reaction proceeded effectively at $80^{\circ} \mathrm{C}$ in a sealed tube to afford 2A. 76 and 2A. 78 in 76% and 52% yields respectively.

Table 2A.2: $[2+2+2]$-cyclotrimerization reaction between diyne 2A. 64 and various alkynes

Entry	alkyne		Yield
1	$\mathrm{H}=\mathrm{H}$	2 A .76 ($\mathrm{R}=\mathrm{R}=\mathrm{H}$)	76\%
2		2A.77 ($\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{OAc}$)	65\%
3	$\mathrm{MeO}_{2} \mathrm{C}=\mathrm{CO}_{2} \mathrm{Me}$	2A.78 ($\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{CO}_{2} \mathrm{Me}$)	52\%
4	$n-\mathrm{C}_{5} \mathrm{H}_{11}=n-\mathrm{C}_{5} \mathrm{H}_{11}$	$2 \mathrm{~A} .79\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{C}_{5} \mathrm{H}_{11}\right)$	43\%
5	$\mathrm{Ph}=\mathrm{H}$	$\begin{gathered} \text { 2A.80a }\left(\mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{H}\right) \\ \text { 2A.80b }\left(\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Ph}\right) \\ (1: 3) \end{gathered}$	69 \%
6		$\begin{gathered} \text { 2A.81a }\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{NPhth}, \mathrm{R}^{\prime}=\mathrm{H}\right) \\ \text { 2A.81b }\left(\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{NPhth}\right) \\ (2: 3) \end{gathered}$	72\%
7	$n-\mathrm{C}_{14} \mathrm{H}_{29}=\mathrm{H}$	$\begin{gathered} \text { 2A.82a }\left(\mathrm{R}=n-\mathrm{C}_{4} \mathrm{H}_{29}, \mathrm{R}^{\prime}=\mathrm{H}\right) \\ \text { 2A.82b }\left(\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=n-\mathrm{C}_{4} \mathrm{H}_{29}\right) \\ (1: 1) \end{gathered}$	52\%
8		$\begin{gathered} \text { 2A.83a }\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}^{\prime}=\mathrm{H}\right) \\ \text { 2A.83b }\left(\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{OH}\right) \\ (1: 1) \end{gathered}$	78\%
9	TMS $=$ TMS	2A.84-Dimer of starting dialkyne	40\%
10	$\mathrm{Ph}=\mathrm{Ph}$	2A.84-Dimer of starting dialkyne	

In case of sterically crowded alkynes like diphenyl acetylene and bis(trimethylsilyl)acetylene we observed the dimerised products 2A.84 of diyne 2A.64. Mass spectrum of dimers 2A.84 gave peaks at $m / z 645.1[M+H]^{+}$in 9%, 667.1 $[\mathrm{M}+\mathrm{Na}]^{+}$in 100%, and elemental analysis was in agreement with calculated values for dimers 2A.84. Reactions with unsymmetrical alkynes are not regioselective and gave inseparable regiomeric mixtures in good yields and the results are summarized in table 2A.2.

To generalize the $[2+2+2]$-cyclotrimerization reaction on sugar based diynes, we subjected diynes 2A. 63 and 2A. 65 to trimerization under standardized reaction condition with acetylene, diacetate of 2-butyne-1,4-diol, dimethyl acetylene dicarboxylate and 2,5-dimethylhex-3-yne-2,5-diol as symmetrical alkynes and phenyl acetylene as unsymmetrical alkyne. The obtained results are summarized in table 2A. 3 and table 2A.4.

Table 2A.3: $[2+2+2]$-cyclotrimerization reaction between diyne 2A. 63 and various alkynes

Entry	alkyne		Yield
1	$\mathrm{H}=\mathrm{H}$	2A.85 (R=R'=H)	71\%
2		2A.86 ($\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{OAc}$)	60\%
3	$\mathrm{MeO}_{2} \mathrm{C}=\mathrm{CO}_{2} \mathrm{Me}$	2A.87 ($\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{CO}_{2} \mathrm{Me}$)	67\%
4	$\mathrm{Ph}=\mathrm{H}$	$\begin{gathered} \text { 2A.88a }\left(\mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{H}\right) \\ \text { 2A.88b }\left(\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Ph}\right) \\ (1: 3) \end{gathered}$	78\%
5		No Reaction	

Table 2A.4: $[2+2+2]$-cyclotrimerization reaction between diyne 2A. 65 and various alkynes

Entry	alkyne		Yield
1	$\mathrm{H}=\mathrm{H}$	2A.89 ($\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}$)	73\%
2		2A.90 ($\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{OAc}$)	65\%
3	$\mathrm{MeO}_{2} \mathrm{C}=\mathrm{CO}_{2} \mathrm{Me}$	2A.91 ($\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{CO}_{2} \mathrm{Me}$)	69\%
4	$\mathrm{Ph}=\mathrm{H}$	$\begin{gathered} \text { 2A.92a }\left(\mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{H}\right) \\ \text { 2A.92b }\left(\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Ph}\right) \\ (1: 3) \end{gathered}$	75\%
5		No reaction	

Conclusion: In conclusion, we have developed a simple protocol for the isobenzopyrannulation and spirodihydroisobenzofurannualtion on sugar templates by employing [2+2+2]-cyclotrimerization as the key reaction. Because of the easy availability of alkynes, the present method is characterized by the enormous flexibility to synthesize corresponding tricyclic compound libraries with an ease. Additionally, all these synthesized compounds have the potential to be extended further at the anomeric center either to prepare the oligosaccharides or nucleosides by employing appropriate glycosyl acceptos and suitable glycosidation protocols. To demonostrate this, in the next part of this chapter, we have used a couple of these intermediates to arrive at tricyclic nucleosides.

2A.3. Experimental:

1,2-O-Isopropylidene-5,5,6,6-tetradehydro-5,6-dideoxy-3-O-propargyl- α-D-xylo-hexofuranose (2A.43)

 water (2 mL), $\mathrm{NaIO}_{4}(1.4 \mathrm{~g}, 7.0 \mathrm{mmol})$ was added and stirred for 30 min at rt . The mixture was filtered through celite and concentrated under reduced pressure. The residue was extracted with ethyl acetate, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to afford aldehyde 2A.47 (1.2 g, 90\%).

To a mixture of the aldehyde $\mathbf{2 A} .47(1.2 \mathrm{~g}, 5.3 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(95 \mathrm{mg}, 6.9$ mmol) in methanol (30 mL), Ohira-Bestmann reagent ($1.22 \mathrm{~g}, 6.3 \mathrm{mmol}$) was added and stirred at rt for 6 h . The reaction mixture was concentrated under reduced pressure and the crude material was patronized between water and ethyl acetate. The organic phase was separared, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The purification of residue by silica gel column chromatography (7% ethyl acetate in petroleum ether) gave 2A. 43 ($920 \mathrm{mg}, 78 \%$ yield) as a colorless oil.

Mol. Formula	: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$
$[\alpha]_{\text {D }}{ }^{25}$: +33.7 (c 1.3, CHCl_{3}).
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v}$	$\begin{aligned} & : 3291,2990,2938,2120,1455,1376,1347,1254,1218, \\ & 1164,1078,1028,952,861,758,667 \mathrm{~cm}^{-1} . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$: \delta 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55$ $(\mathrm{d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=2.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.60(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.91(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : 26.1 \text { (q), } 26.7 \text { (q), } 58.0 \text { (t), } 70.2 \text { (d), } 75.4 \text { (d), } 76.5 \text { (d), } 77.1 \\ & \text { (s), } 78.8 \text { (s), } 81.8 \text { (d), } 82.7 \text { (d), } 104.5 \text { (d), } 111.9 \text { (s) ppm. } \end{aligned}$
ESI-MS (m / z)	$\begin{aligned} & : 223.2\left(5 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 240.3 \quad\left(15 \%, \quad\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 245.2 \\ & \left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 261.2\left(6 \%,[\mathrm{M}+\mathrm{K}]^{+}\right) . \end{aligned}$

Elemental
Calcd.: C, 64.85; H, 6.35 \%.
Analysis
Found: C, 64.82; H, 6.38 \%.

Representative procedures for [2+2+2]-cyclotrimerization:

Procedure A: A Solution of diyne 2A. 43 (0.5 mmol) and alkyne (1.5 mmol) in toluene/ethanol ($9 / 3 \mathrm{~mL}$) was degassed with dry argon for 20 minutes, then Wilkinson's catalyst $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right] \quad(0.03 \mathrm{mmol})$ was introduced. The reaction mixture was heated at $80{ }^{\circ} \mathrm{C}$ for 6 hours and then allowed to cool to room temperature. Solvent was evaporated under reduced pressure. The residue was purified by silica gel chromatography (ethyl acetate in petroleum ether) to produce cyclotrimerized product.

Procedure B: A Solution of diyne 2A. 43 (0.5 mmol) and alkyne (1.5 mmol) in toluene/ethanol $(9 / 3 \mathrm{~mL})$ in seal tube was degassed with dry argon for 20 minutes, then Wilkinson's catalyst $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right] \quad(0.03 \mathrm{mmol})$ was introduced. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and sealed by fusion. Sealed tube was transferred into a steel bomb, heated at $80^{\circ} \mathrm{C}$ for 4 hours and then allowed to cool to room temperature. Tube was broken and mixture was transferred into RB and concentrated under reduced pressure. The residue was purified by silica gel chromatography (ethyl acetate in petroleum ether) to give cyclotrimerized product.

Procedure C: A Solution of diyne 2A.43 (0.5 mmol) in toluene (10 mL) was degassed with dry acetylene for 20 minutes, then Wilkinson's catalyst $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ (0.03 mmol) was introduced. The reaction mixture was corked with septum and copper wire, cooled to $-78{ }^{\circ} \mathrm{C}$ and acetylene gas was condensed by continuous bubbling for 25 min . The reaction was transferred into a steel bomb, heated at $80^{\circ} \mathrm{C}$ for 4 hours and then allowed to cool to room temperature. Solvent was evaporated under reduced pressure. The residue was purified by silica gel chromatography (ethyl acetate in petroleum ether) to afford cyclotrimerized product.

Compound (2A.49)

By following the procedure A, reaction mixture of diyne 2A.43 (120 mg, 0.54 $\mathrm{mmol})$, diol 2A. 48 ($140 \mathrm{mg}, 1.6 \mathrm{mmol})$ and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](25 \mathrm{mg}, 0.03 \mathrm{mmol})$ in toluene/ethanol ($9 / 3 \mathrm{~mL}$) was heated at $80{ }^{\circ} \mathrm{C}$ for 8 h . Purification of residue by column chromatography (60% ethyl acetate in petroleum ether) afforded 2A. 49 (102 $\mathrm{mg}, 61 \%$) as viscous oil.

Mol. Formula	: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{6}$
$[\alpha]_{\text {D }}{ }^{25}$: +28.0 (c 1.2, CHCl_{3}).
IR ($\mathbf{C H C l}_{3}$) \widetilde{v}	: 3401, 3016, 2932, 1624, 1438, 1216, 1080, 1017, $898 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	: $\delta 1.35$ (s, 3H), 1.58 (s, 3H), 3.90 (bs, 2H), 4.09 (d, $J=2.3$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	Hz, 1H), 4.48-4.55 (m, $J=12.7 \mathrm{~Hz}, 3 \mathrm{H}), 4.58$ (d, $J=15.1$
	$\mathrm{Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H})$,
	4.70 (d, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.90$ (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.93$ (d, J
	$=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR	: 26.1 (q), 26.7 (q), 62.7 (t, 2C), 67.0 (t), 73.1 (d), 79.8 (d),
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	84.4 (d), 104.9 (d), 111.7 (s), 124.6 (d), 128.4 (s), 130.9 (d),
	134.4 (s), 138.2 (s), 140.2 (s) ppm.
ESI-MS (m / z)	: $309.4\left(3 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 331.3\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 347.3(4 \%$,
	$\left.[\mathrm{M}+\mathrm{K}]^{+}\right)$.
Elemental	Calcd.: C, 62.33; H, 6.54 \%.
Analysis	Found: C, 62.12; H, 6.68 \%.

Compound (2A.51)

By following the procedure A, reaction mixture of diyne $2 \mathrm{~A} .43(100 \mathrm{mg}, 0.45$ $\mathrm{mmol})$, diacetate of 2-butyne-1,4-diol $(230 \mathrm{mg}, 1.4 \mathrm{mmol})$ and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ (21 $\mathrm{mg}, 0.03 \mathrm{mmol})$ in toluene/ethanol $(9 / 3 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 6 h . Purification of residue by column chromatography (30% ethyl acetate in petroleum ether) afforded 2A. 51 ($101 \mathrm{mg}, 57 \%$) as colorless oil.

Mol. Formula	: $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{8}$
$[\alpha]_{\text {D }}{ }^{25}$: +6.8 ($\mathrm{c}_{1.1}, \mathrm{CHCl}_{3}$).
$\boldsymbol{I R}\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$	$\begin{aligned} & : 3020,2932,2854,1740,1614,1454,1244,1064,1118 \text {, } \\ & 1104,1081,1022,896 \mathrm{~cm}^{-1} . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 4.15 \\ & (\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J= \\ & 3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=2.2 \mathrm{~Hz}, \\ & 1 \mathrm{H}), 5.14,5.16(2 \mathrm{~s}, 4 \mathrm{H}), 5.97(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~s}, \\ & 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}) . \end{aligned}$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : 20.8(\mathrm{q}), 20.9(\mathrm{q}), 26.2(\mathrm{q}), 26.8(\mathrm{q}), 63.2(\mathrm{t}), 63.3(\mathrm{t}), 67.0 \\ & (\mathrm{t}), 72.9(\mathrm{~d}), 79.9(\mathrm{~d}), 84.5(\mathrm{~d}), 105.1(\mathrm{~d}), 111.6(\mathrm{~s}), 125.7(\mathrm{~d}) \\ & 129.9(\mathrm{~s}), 131.7(\mathrm{~d}), 133.8(\mathrm{~s}), 134.9(\mathrm{~s}), 135.1(\mathrm{~s}), 170.3(\mathrm{~s}) \\ & 170.4(\mathrm{~s}) \text { ppm. } \end{aligned}$
ESI-MS (m / z)	$\begin{aligned} & : 410.5\left(37 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 415.4\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 431.4 \\ & \left(5 \%,[\mathrm{M}+\mathrm{K}]^{+}\right) . \end{aligned}$
Elemental	Calcd.: C, 61.22; H, 6.16 \%.
Analysis	Found: C, 61.15; H, 6.29 \%.

Compound (2A.50)

By following the procedure C , reaction mixture of diyne $\mathbf{2 A . 4 3}(150 \mathrm{mg}, 0.68$ $\mathrm{mmol})$ in presence of catalyst $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](31 \mathrm{mg}, 0.03 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 4 h . Purification of residue by column chromatography $(20 \%$ ethyl acetate in petroleum ether) gave $\mathbf{2 A . 5 0}$ ($109 \mathrm{mg}, 65 \%$) as viscous oil.

> Mol. Formula $: \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}$
> $[\alpha]_{D}{ }^{25}$ $:+21.6\left(c 1.5, \mathrm{CHCl}_{3}\right)$.
> $\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v} \quad: 3018,2927,1612,1458,1376,1216,1164,1091,1020$, $920 \mathrm{~cm}^{-1}$.
> ${ }^{1}{ }^{1} \mathbf{H}$ NMR $\quad: \delta 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$
> $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$ (d, $J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=$ $14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=3.8 \mathrm{~Hz}$, 1H), 6.94-6.99 (m, 1H), 7.17-7.23 (m, 2H), 7.35-7.42 (m, $1 \mathrm{H})$.
> ${ }^{13}$ C NMR : 26.3 (q), 26.9 (q), 67.4 (t), 73.5 (d), 80.1 (d), 84.7 (d), 105.2
> $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad(\mathrm{d}), 111.6(\mathrm{~s}), 124.2$ (d), 127.4 (d), 128.7 (d), 129.5 (s), 130.7 (d), 134.8 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 266.3\left(36 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 271.3\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
Elemental Calcd.: C, 67.73; H, 6.50 \%.
Analysis Found: C, 67.88; H, 6.59 \%.

Compound (2A.59)

By following the procedure C , reaction mixture of diyne $\mathbf{2 A . 5 8}(130 \mathrm{mg}, 0.59$ $\mathrm{mmol})$ in presence of catalyst $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](27 \mathrm{mg}, 0.03 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 4 h . Purification of residue by column chromatography (20% ethyl acetate in petroleum ether) afforded 2A.59 ($106 \mathrm{mg}, 72 \%$) as viscous oil.

Mol. Formula	$: \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}$
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}$	$:+48.1\left(c 1.2, \mathrm{CHCl}_{3}\right)$.
IR (CHCl $\left.{ }_{3}\right) \widetilde{v}$	$: 3020,2921,1610,1369,1219,1165,1090,922 \mathrm{~cm}^{-1}$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}$	$: \delta 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{dd}, J=4.0,9.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$4.78(\mathrm{t}, \mathrm{J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, \mathrm{~J}=$
	$14.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=3.5 \mathrm{~Hz}$,
	$1 \mathrm{H}), 7.03-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.46(\mathrm{~m}$,
	$1 \mathrm{H})$.

${ }^{13} \mathbf{C}$ NMR $\quad: 26.0(\mathrm{q}), 26.3$ (q), 70.3 (t), 71.8 (d), 76.7 (d), 79.2 (d), 106.4
($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$

ESI-MS (m / z)
Elemental
Analysis
(d), 113.7 (s), 123.9 (d, 2C), 126.8 (d), 127.2 (d), 132.9 (s), 135.5 (s) ppm.
[

$$
: 266.3\left(43 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 271.3\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right) .
$$

Calcd.: C, 67.73; H, 6.50 \%.
Found: C, 67.58; H, 6.71 \%.

Compound (2A.52)

By following the procedure B, reaction mixture of diyne 2A.43 (120 mg, 0.54 $\mathrm{mmol})$, dimethyl acetylene dicaboxylate ($230 \mathrm{mg}, 1.6 \mathrm{mmol}$) and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](25$ $\mathrm{mg}, 0.03 \mathrm{mmol})$ in toluene/ethanol $(9 / 3 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 4 h . Purification of residue by column chromatography (25% ethyl acetate in petroleum ether) afforded 2A. 52 ($89 \mathrm{mg}, 45 \%$) as colorless oil.

Mol. Formula	: $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{8}$
$[\alpha]_{\text {D }}{ }^{25}$: +8.7 (c 1.4, CHCl_{3}).
$\boldsymbol{I R}\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$	$\begin{aligned} & : 3022,2994,2955,2847,1726,1620,1578,1437,1215, \\ & 1163,1093,1045,895 \mathrm{~cm}^{-1} \end{aligned}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$: $\delta 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.16$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=$ $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.94(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : 26.2(\mathrm{q}), 26.8(\mathrm{q}), 52.5(\mathrm{q}), 52.7 \text { (q), } 66.8 \text { (t), } 72.5 \text { (d), } 79.9 \\ & \text { (d), } 84.5(\mathrm{~d}), 105.2(\mathrm{~d}), 111.8(\mathrm{~s}), 124.8(\mathrm{~d}), 130.4(\mathrm{~s}), 131.6 \\ & \text { (d), } 132.5(\mathrm{~s}), 132.6(\mathrm{~s}), 138.3(\mathrm{~s}), 166.8(\mathrm{~s}), 167.6(\mathrm{~s}) \mathrm{ppm} . \end{aligned}$
ESI-MS (m / z)	$\begin{aligned} & : 365.4\left(29 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 387.4\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 403.4 \\ & \left(11 \%,[\mathrm{M}+\mathrm{K}]^{+}\right) . \end{aligned}$

Elemental
Analysis
Calcd.: C, 59.34; H, 5.53 \%.
Found: C, 59.48; H, 5.70 \%.

Compounds (2A.54a,b)

By following the procedure A, reaction mixture of diyne 2A.43 (130 mg, 0.59 $\mathrm{mmol})$, propargyl phthalamide ($325 \mathrm{mg}, 1.8 \mathrm{mmol}$) and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](27 \mathrm{mg}, 0.03$ $\mathrm{mmol})$ in toluene/ethanol $(9 / 3 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 8 h . Purification of residue by column chromatography (30% ethyl acetate in petroleum ether) afforded mixture of 2A.54a and 2A.54b ($160 \mathrm{mg}, 67 \%$) as viscous oil.

Mol. Formula $: \mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{6}$
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \widetilde{v} \quad: 3017,2924,2854,1770,1714,1460,1376,1247,1164$, 1088, 1019, $947 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1} \mathbf{H}$ NMR $\quad: \delta 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.89(\mathrm{~m}$, $J=2.2,15.6 \mathrm{~Hz}, 4 \mathrm{H}), 5.84,5.86(2 \mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-$ $7.05(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.72-$ 7.76 (m, 2H).
${ }^{13}$ C NMR : 26.2 (q), 26.2 (q), 26.9 (q), 41.2 (t$), 41.3$ (t), 67.1 (t$), 67.2$ $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad(\mathrm{t}), 73.2(\mathrm{~d}), 73.3$ (d), $80.0(\mathrm{~d}), 80.0(\mathrm{~d}), 84.6$ (d), 84.6 (d), 105.1 (d), 111.5 (s), 111.6 (s), 123.4 (d), 124.6 (d), 127.8 (d), 128.5 (d), 128.5 (d), 128.9 (d), 129.2 (d), 129.8 (s), 130.7 (d), 131.0 (d), 132.1 (s), 132.2 (s), 133.9 (d), 134.0 (d), 134.4 (s), 135.2 (s), 135.6 (s), 136.9 (s), 167.7 (s), 167.7 (s) ppm.

ESI-MS (m / z) : $425.4\left(15 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 430.5\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$,
Elemental
Analysis
Calcd.: C, 67.80; H, 5.20; N, 3.44 \%.
Found: C, 68.01; H, 5.43; N, 3.28 \%.

Compounds (2A.53a,b)

By following the procedure A, reaction mixture of diyne 2A.43 (120 mg, 0.54 $\mathrm{mmol})$, phenyl acetylene ($0.2 \mathrm{~mL}, 1.6 \mathrm{mmol}$) and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](25 \mathrm{mg}, 0.03 \mathrm{mmol})$ in toluene/ethanol ($9 / 3 \mathrm{~mL}$) was heated at $80^{\circ} \mathrm{C}$ for 6 h . Purification of residue by column chromatography (25% ethyl acetate in petroleum ether) gave mixture of 2A.53a and 2A.53b ($126 \mathrm{mg}, 72 \%$) as redish oil.

Mol. Formula : $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4}$
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v} \quad: 3019,2926,1679,1488,1453,1384,1163,1019 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\quad: \delta 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 4.82(\mathrm{~m}, J=3.8,15.5 \mathrm{~Hz}, 3 \mathrm{H}), 4.94,4.95(2 \mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.88(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 0.20 \mathrm{H}), 5.92(2 \mathrm{~d}, J=3.8 \mathrm{~Hz}$, 0.80 H), 7.18-7.53 (m, 8H).
${ }^{13}$ C NMR
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$: 26.2 (q), 26.8 (q), 67.2 (t), 67.4 (t), 73.3 (d), 73.6 (d), 80.0 (d), 80.1 (d), 84.6 (d), 104.7 (d), 105.1 (d), 111.5 (s$), 111.9$ (s), 122.9 (d), 124.7 (d), 126.2 (d), 127.0 (d), 127.1 (d), 127.4 (d), 127.5 (d), 128.3 (d), 128.4 (s), 128.4 (d) 128.8 (d), 129.2 (d), 129.8 (s), 130.9 (d), 131.6 (d), 133.6 (s), 135.1 (s), 140.3 (s), 140.4 (s), 140.5 (s), 141.7 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 347.4\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 363.4\left(34 \%,[\mathrm{M}+\mathrm{K}]^{+}\right)$.
Elemental
Analysis

Calcd.: C, 74.06; H, 6.21 \%.
Found: C, 73.93; H, 6.38 \%.

Compounds (2A.55a,b)

By following the procedure B, reaction mixture of diyne 2A.43 (100 mg, 0.45 mmol), 1-hexadecyne ($300 \mathrm{mg}, 1.4 \mathrm{mmol}$) and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ ($21 \mathrm{mg}, 0.03 \mathrm{mmol}$) in toluene/ethanol $(9 / 3 \mathrm{~mL})$ was heated at $80{ }^{\circ} \mathrm{C}$ for 6 h . Purification of residue by column chromatography (20% ethyl acetate in petroleum ether) afforded mixture of 2A.55a and 2A.55b ($98 \mathrm{mg}, 49 \%$) as colorless oil.

Mol. Formula	: $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{4}$
IR ($\mathbf{C H C l}_{3}$) \widetilde{v}	: 3017, 2926, 2854, 1619, 1465, 1375, 1245, 1090, $865 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	$: \delta 0.86$ (t, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.25$ (bs, 23H), 1.36 (s, 3H),
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$1.53-1.58(\mathrm{~m}, 4 \mathrm{H}), 2.52-2.61$ (m, $J=3.7,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.13$
	(d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=$
	$3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (d, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ (d, $J=2.3 \mathrm{~Hz}$,
	1H), 5.97 (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.97$ (m, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$,
	$7.09(\mathrm{~d}, ~ J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.39(\mathrm{~m}, ~ J=1.5,7.81 \mathrm{~Hz}$,
	1H).
${ }^{13} \mathrm{C}$ NMR	: 14.2 (q), 22.7 (t), 26.3 (q), 26.9 (q), 29.3 (t), 29.4 (t), 29.4
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	(t), 29.6 (t), 29.6 (t), 29.7 (t), 31.4 (t), 32.0 (t), 35.6 (t), 35.9
	(t), 67.3 (t), 67.5 (t), 73.5 (d), 73.7 (d), 80.1 (d), 80.1 (d),
	84.7 (d), 105.2 (d), 111.5 (s), 111.5 (s), 124.1 (d), 124.1 (d),
	126.6 (s), 127.6 (d), 128.9 (d), 129.1 (s), 130.4 (d), 130.5
	(d), 131.9 (s), 134.5 (s), 142.1 (s), 143.6 (s) ppm.
ESI-MS (m / z)	: $462.7\left(27 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 467.7\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
Elemental	Calcd.: C, 75.63; H, 9.97 \%.
Analysis	Found: C, 75.80; H, 10.12 \%.

1,2;5,6-O-Isopropylidene-3-C-ethynyl- α-Dallofuranose (2A.73)

Grignard reaction (Procedure D):

$\mathrm{Mg}(4.65 \mathrm{~g}, 0.19 \mathrm{~mol})$ was flame dried in a two neck R.B. flask fitted with a reflux condenser and cooled to room temperature in argon atmosphere. Dry THF (100
mL) was introduced followed by a few crystals of iodine. Half of the total volume of $n-\mathrm{BuCl}(20 \mathrm{~mL}, 0.19 \mathrm{~mol})$ was added and the contents were refluxed till the generation of Grignard reagent. Heating was removed and rest of $n-\mathrm{BuCl}$ was added. Stirring was continued at room temperature till all the magnesium was consumed. Then the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and acetylene gas was bubbled into it for 15 min . Ketone 2A. $67(10 \mathrm{~g}, 38.7 \mathrm{mmol})$ in THF (70 mL) was added at $0^{\circ} \mathrm{C}$ and stirred for 30 min . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, diluted with water and extracted with ethyl acetate. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified on silica gel chromatography (15% ethyl acetate in light petroleum) to give the alkynol $\mathbf{2 A} .73(8 \mathrm{~g}, 72 \%)$ as a colorless oil.

Mol. Formula	: $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6}$
$[\alpha]_{\text {d }}{ }^{25}$: +8.0 (c 2.5, CHCl_{3}).
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v}$: 3502, 3236, 2989, 2925, 2855, 2116, 1261, 1212, $1075 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	$: 1.35(\mathrm{~s}, 6 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 1 \mathrm{H}), 3.07$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	(bs, 1 H), $3.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=4.7,8.8 \mathrm{~Hz}$,
	$1 \mathrm{H}), 4.12$ (dd, $J=8.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40$ (ddd, $J=4.8,6.1,8.2$
	$\mathrm{Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$ ppm.
${ }^{13} \mathrm{C}$ NMR	: 25.2 (q), 26.6 (q), 26.7 (q), 26.8 (q), 67.1 (t), 74.8 (d), 75.8
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	(s), 77.0 (s), 80.7 (d), 80.8 (s), 84.1 (d), 104.1 (d), 109.7 (s),
	113.8 (s) ppm.
ESI-MS (m / z)	: 285.36 (11.76\%, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right), 302.39$ (4.41\%, $\left.\left.\mathrm{M}^{+}+\mathrm{NH}_{4}\right]^{+}\right), 307$.
	36 (100\%, [M+Na] ${ }^{+}$).
Elemental	Calcd.: C, 59.14; H, 7.09 \%.
Analysis	Found: C, 59.01; H, 7.21 \%.

[^0]

Propagylation of quaternary alcohol (procedure E):

To a suspension of alkynol $\mathbf{2 A} .73(8.0 \mathrm{~g}, 28 \mathrm{mmol}), \mathrm{NaH}(1.7 \mathrm{~g}, 42 \mathrm{mmol})$ in DMF (60 mL), propargyl bromide ($3 \mathrm{~mL}, 34 \mathrm{mmol}$) was added drop-wise at $0{ }^{\circ} \mathrm{C}$, reaction mixture was allowed to warm to room temperature and stirred for 2 hours. Reaction mixture was quenched with slow addition of cold water at $0{ }^{\circ} \mathrm{C}$ and extracted with ethyl acetate. The combined organic layer was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by silica gel column chromatography (10% ethyl acetate in light petroleum) to give $\mathbf{2 A . 6 4}(8.5 \mathrm{~g}, 95 \%$) as a colorless oil.

Mol. Formula	: $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6}$
$[\alpha]_{\mathrm{D}}{ }^{25}$: +23.2 (c 2.3, CHCl_{3}).
$\boldsymbol{I R}\left(\mathrm{CHCl}_{3}\right) \widetilde{v}$	$\begin{aligned} & : 3306,3018,2991,2937,2112,1456,1384,1309,1217, \\ & 1166,1135,1076,1030,990,844,758 \mathrm{~cm}^{-1} . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$: \delta 1.34(\mathrm{~s}, 6 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{t}, J=2.4 \mathrm{~Hz},$ $1 \mathrm{H}), 2.75(\mathrm{~s}, 1 \mathrm{H}), 4.04-4.11(\mathrm{~m}, 3 \mathrm{H}), 4.31(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.41(\mathrm{dd}, J=2.4,9.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.76$ (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$: 25.4 (q), 26.6 (q), $26.9(q), 26.9(q), 54.7(t), 66.2(t), 74.4$ (d), 74.5 (s), 78.2 (s$), 79.7$ (s$), 80.4$ (s$), 81.0(\mathrm{~s}), 81.2$ (d), 83.4 (d), 104.0 (d), 109.2 (s), 113.8 (s) ppm.
ESI-MS (m / z)	$\begin{aligned} & : 323.3\left(6 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 340.4\left(6 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 335.4(100 \%, \\ & \left.[\mathrm{M}+\mathrm{Na}]^{+}\right) . \end{aligned}$
Elemental	Calcd.: C, 63.34; H, 6.88 \%.
Analysis	Found: C, 63.19; H, 7.01 \%.

[^1]

By following the procedure A, reaction mixture of diyne 2A.64 (100 $\mathrm{mg}, 0.31 \mathrm{mmol}$), 2-butyne-1,4-diol ($80 \mathrm{mg}, 0.93 \mathrm{mmol}$) and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](14 \mathrm{mg}$, $0.02 \mathrm{mmol})$ in toluene/ethanol $(9 / 3 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 8 h . Purification of residue by column chromatography (60% ethyl acetate in petroleum ether) afforded 2A. 75 ($86 \mathrm{mg}, 68 \%$) as colorless oil.

Mol. Formula	: $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{8}$
$[\alpha]_{\text {D }}{ }^{25}$: -4.8 (c 1.2, CHCl_{3}).
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v}$	$\begin{aligned} & : 3412,2989,2935,2875,1438,1374,1330,1217,1123, \\ & 1074,1022,872,842,754,724,695,667 \mathrm{~cm}^{-1} . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$: \delta 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 3.23$ (bs, 2H), 3.55 (dt, $J=5.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=5.9,8.5$
	$\begin{aligned} & \mathrm{Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=4.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=8.5 \mathrm{~Hz} \text {, } \\ & 1 \mathrm{H}), 4.39(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.73 \\ & (\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{~d}, J= \\ & 12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=3.5 \mathrm{~Hz}, \\ & 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}) . \end{aligned}$
${ }^{13}$ C NMR	$: 25.4 \text { (q), } 26.2 \text { (q), } 26.7 \text { (q), } 26.8 \text { (q), } 64.0 \text { (t), } 64.0 \text { (t), } 67.4$
	$109.3 \text { (s), } 113.5 \text { (s), } 122.6 \text { (d), } 122.6 \text { (d), } 137.8 \text { (s), } 139.0 \text { (s), }$ 140.2 (s), 140.9 (s) ppm.
ESI-MS (m / z)	: $431.5\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
Elemental	Calcd.: C, 61.75; H, 6.91 \%.
Analysis	Found: C, 61.87; H, 6.99 \%.

By following the procedure C, reaction mixture of diyne 2A.64 (120 mg, 0.37 $\mathrm{mmol})$ in presence of catalyst $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](17 \mathrm{mg}, 0.02 \mathrm{mmol})$ in toluene $(12 \mathrm{~mL})$
was heated at $80^{\circ} \mathrm{C}$ for 4 h . Purification of residue by column chromatography (20% ethyl acetate in petroleum ether) afforded 2A. 76 ($99 \mathrm{mg}, 76 \%$) as viscous oil.

Mol. Formula	: $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{6}$
$[\alpha]_{\text {D }}{ }^{25}$: +12.9 (c 1.9, CHCl_{3}).
$\boldsymbol{I R}\left(\mathbf{C H C l}_{3}\right) \widetilde{v}$	$\begin{aligned} & : 3019,2939,1461,1375,1216,1165,1074,1034,1017,929 \\ & 845,873,757 \mathrm{~cm}^{-1} . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$: \delta 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 3.47$ (dt, $J=5.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=5.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (dd, $J=5.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=$ $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.88(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$ (dd, $J=1.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.16-733 (m, $J=1.2,7.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$: 25.4 \text { (q), } 26.3 \text { (q), } 26.7 \text { (q), } 26.9 \text { (q), } 67.4 \text { (t), } 73.4 \text { (t), } 73.8$ (d), 79.4 (d), 84.3 (d), 93.7 (s), 103.5 (d), 109.0 (s$), 113.3$ (s$),$ 121.3 (d), 121.4 (d), 127.3 (d), 128.7 (d), 137.4 (s), 140.4 (s) ppm.
ESI-MS (m / z)	: $371.0\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
Elemental	Calcd.: C, 65.50; H, 6.94 \%.
Analysis	Found: C, 65.37; H, 6.69 \%.

1',2';5',6'-Di-O-Isopropylidene-3'-didehydro-3'-deoxy-4,5-di(acetoxymethyl)-7H-
 spiro[isobenzofuran-2,3'-C- α-D-allofuranose] (2A.77)

By following the procedure A, reaction mixture of diyne 2A. 64 ($150 \mathrm{mg}, 0.46$ $\mathrm{mmol})$, diacetate of 2-butyne-1,4-diol ($237 \mathrm{mg}, 1.4 \mathrm{mmol}$) and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ $\mathrm{mg}, 0.03 \mathrm{mmol})$ in toluene/ethanol $(9 / 3 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 8 h . Purification of residue by column chromatography (30% ethyl acetate in petroleum ether) gave 2A. 77 ($129 \mathrm{mg}, 65 \%$) as colorless oil.

$$
\begin{aligned}
& \text { Mol. Formula } \quad: \mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{10} \\
& {[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad:-8.4\left(c 1.3, \mathrm{CHCl}_{3}\right) \text {. }} \\
& \operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v} \quad: 3019,2939,1739,1610,1461,1384,1375,1332,1216, \\
& 1165,1074,1034,1017,929,845,757 \mathrm{~cm}^{-1} \text {. } \\
& { }^{1}{ }^{1} \text { H NMR } \quad: \delta 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 2.08 \text {, } \\
& \left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 2.09(2 \mathrm{~s}, 6 \mathrm{H}), 3.50 \text { (ddd, } J=4.6,5.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.79 \text { (dd, } \\
& J=4.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=4.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J \\
& =8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.24(3 \mathrm{~d}, J= \\
& 12.1 \mathrm{~Hz}, 6 \mathrm{H}), 5.94(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}, \\
& 1 \mathrm{H}) \text {. } \\
& \left.,[\mathrm{M}+\mathrm{Na}]^{+}\right) \text {. }
\end{aligned}
$$

1',2';5',6'-Di-O-Isopropylidene-3'-didehydro-3'-deoxy-4,5-di(methoxycarbonyl)-7H-spiro[isobenzofuran-2,3'-C- α-D-allofuranose] (2A.78)

By following the procedure B, reaction mixture of diyne 2A. 64 ($150 \mathrm{mg}, 0.46$ $\mathrm{mmol})$, dimethyl acetylene dicaboxylate ($0.4 \mathrm{~mL}, 2.7 \mathrm{mmol}$) and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](21$ $\mathrm{mg}, 0.03 \mathrm{mmol})$ in toluene/ethanol $(9 / 3 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 4 h . Purification of residue by column chromatography (30% ethyl acetate in petroleum ether) afforded 2A. 78 ($112 \mathrm{mg}, 52 \%$) as colorless oil.

Mol. Formula $\quad \mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{10}$
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad:-10.2\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right)$.
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \widetilde{v} \quad: 3021,2989,2954,1735,1621,1579,1383,1219,1165$, $1125,1075,1053,985,922,843,755 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1}$ NMR $\quad: \delta 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.34,1.36(2 \mathrm{~s}, 6 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 3.46$ (ddd, J $\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)=4.4,5.5,9.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}), 4.19(\mathrm{~d}, J=$ $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=12.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.24(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ $(\mathrm{s}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}$ C NMR $\quad: 25.2(\mathrm{q}), 26.2(\mathrm{q}), 26.6(\mathrm{q}), 52.6(\mathrm{q}), 53.2(\mathrm{q}, 2 \mathrm{C}), 67.5(\mathrm{t})$, $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad 73.0(\mathrm{t}), 73.6$ (d), 79.3 (d), 84.1 (d), 93.8 (s), 103.3 (d), 109.3 (s), 113.4 (s), 121.9 (d, 2C), 131.6 (s), 133.0 (s), 140.9 (s), 144.1 (s), 167.2 (s), 167.4 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 487.0\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
Elemental Calcd.: C, 59.48; H, 6.08 \%.
Analysis Found: C, 59.59; H, 6.02 \%.

Compounds (2A.83a,b)

By following the procedure A, reaction mixture of diyne 2A. 64 ($100 \mathrm{mg}, 0.31$ $\mathrm{mmol})$, propargyl alcohol $(0.11 \mathrm{~mL}, 0.18 \mathrm{mmol})$ and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](14 \mathrm{mg}, 0.02$ $\mathrm{mmol})$ in toluene/ethanol $(9 / 3 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 8 h . Purification of residue by column chromatography (50% ethyl acetate in petroleum ether) afforded mixture of 2A.83a and 2A.83b ($92 \mathrm{mg}, 78 \%$) as colorless oil.

Mol. Formula $\quad: \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{7}$

$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v}: 3471,3019,2936,1607,1384,1375,1216,1166,1074$, 1023, $873,757 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1} \mathbf{H}$ NMR $: \delta 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.33,1.36(2 \mathrm{~s}, 6 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{bs}$,
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) 1 \mathrm{H}\right), 3.51(\mathrm{ddd}, J=5.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(2 \mathrm{dd}, J=5.6,8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.89$ (2dd, $J=4.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.33,4.36(2 \mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92,5.95(2 \mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(2 \mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.33(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR $\quad: 25.4$ (q), 26.3 (q), 26.6 (q), 26.7 (q), 26.9 (q), 26.9 (q), 64.6
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad(\mathrm{t}), 67.3(\mathrm{t}), 73.2(\mathrm{t}), 73.3(\mathrm{t}), 73.8(\mathrm{~d}), 79.3(\mathrm{~d}), 79.4(\mathrm{~d}), 84.3$ (d), 84.3 (d), 93.6 (s), 93.6 (s), 103.4 (d), 103.5 (d), 109.1 ($s)$, 113.3 (s), 113.3 (s), 119.7 (d), 119.8 (d), 121.3 (d), 121.4 (d), 126.1 (d), 127.5 (d), 136.7 (s), 137.9 (s), 139.7 (s), 140.6 (s), 140.9 (s), 141.9 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 401.2\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
Elemental Calcd: C, 63.48; H, 6.93 \%.
Analysis Found: C, 63.42; H, 7.02 \%.

Compounds (2A.81a,b)

By following the procedure A, reaction mixture of diyne 2A.64 ($130 \mathrm{mg}, 0.4$ mmol), propargyl phthalamide ($224 \mathrm{mg}, 1.2 \mathrm{mmol}$) and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](18 \mathrm{mg}, 0.02$ $\mathrm{mmol})$ in toluene/ethanol ($10 / 3 \mathrm{~mL}$) was heated at $80{ }^{\circ} \mathrm{C}$ for 7 h . Purification of residue by column chromatography (40% ethyl acetate in petroleum ether) afforded mixture of 2A.81a and 2A.81b ($147 \mathrm{mg}, 72 \%$) as viscous oil.

Mol. Formula : $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{8}$
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v} \quad: 3020,2991,2936,1771,1716,1395,1216,1074,1024 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1}$ H NMR $\quad: \delta 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.31,1.35(2 \mathrm{~s}, 6 \mathrm{H}), 1.64,1.66(2 \mathrm{~s}, 3 \mathrm{H})$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 3.45-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.93(\mathrm{~m}, 1 \mathrm{H})$, $4.22(\mathrm{dd}, J=3.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=3.5,9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.85(\mathrm{~s}, 2 \mathrm{H}), 5.09(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=12.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.88,5.98(2 \mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-7.30(\mathrm{~m}, 2 \mathrm{H})$, 7.34-7.42 (m, 1H), 7.68-7.75 (m, 2H), 7.80-7.87 (m, 2H).
${ }^{13} \mathbf{C}$ NMR $\quad: 25.4$ (q), 26.3 (q), 26.4 (q), 26.7 (q), 26.9 (q), 26.9 (q), 41.2 $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad(\mathrm{t}), 41.4(\mathrm{t}), 67.3(\mathrm{t}), 67.4(\mathrm{t}), 73.2(\mathrm{t}), 73.8(\mathrm{~d}), 73.8(\mathrm{~d}), 79.2$ (d), 79.3 (d), 84.3 (d), 93.6 (s$), 93.7$ (s$), 103.4$ (d), 103.5 (d), 109.0 (s), 109.1 (s), 113.3 (s), 121.6 (d), 121.6 (d), 122.1 (d), 123.4 (d), 128.0 (d), 129.2 (d), 132.0 (s), 134.0 (d), 135.8 (s), 137.1 (s), 137.2 (s), 138.1 (s), 140.2 (s), 141.2 (s), 167.7 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 508.4\left(7 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 525.4\left(27 \%,\left[\mathrm{M}^{2}+\mathrm{NH}_{4}\right]^{+}\right), 530.3(100 \%$, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$.

Elemental
Analysis

Calcd.: C, 66.26; H, 5.76; N, 2.76 \%.
Found : C, 66.30; H, 5.82; N, 2.70 \%.

Compounds (2A.80a,b)

By following the procedure A, reaction mixture of diyne 2A. 64 ($110 \mathrm{mg}, 0.33$ $\mathrm{mmol})$, phenyl acetylene $(0.2 \mathrm{~mL}, 1.9 \mathrm{mmol})$ and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](16 \mathrm{mg}, 0.02 \mathrm{mmol})$ in toluene/ethanol $(9 / 3 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 6 h . Purification of residue by column chromatography (20% ethyl acetate in petroleum ether) afforded mixture of 2A.80a and 2A.80b ($100 \mathrm{mg}, 69 \%$) as redish oil.

Mol. Formula $\quad: \mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{6}$
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v}: 3020,2991,2936,1620,1375,1215,1165,1974,1044$, 1028, $873,843 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1} \mathbf{H}$ NMR $: \delta 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$, $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 3.56-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.82(2 \mathrm{dd}, J=5.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}$, $J=8.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(2 \mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(2 \mathrm{~d}, J=$ $3.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=12.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.99(2 \mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29-7.60 (m, 7H).
${ }^{13} \mathbf{C}$ NMR $\quad: 25.5$ (q), 26.3 (q), 26.7 (q), 26.9 (q), 67.3 (t$), 67.4$ (t$), 73.3$ $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad(\mathrm{t}), 73.4(\mathrm{t}), 73.9(\mathrm{~d}), 79.4(\mathrm{~d}), 84.4$ (d), $93.7(\mathrm{~s}), 93.7(\mathrm{~s})$, 103.5 (d), 103.5 (d), 109.1 (s), 113.3 (s), 113.3 (s), 120.0 (d), 120.0 (d), 121.6 (d), 121.7 (d), 126.6 (d), 127.1 (d), 127.6 (d), 127.9 (d), 128.8 (d), 128.8 (d), 136.5 (s), 138.4 (s), 139.5 (s), 140.5 (s), 140.5 (s), 141.0 (s), 141.3 (s), 142.1 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 447.8\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$.

Elemental
Analysis Found: C, 70.79; H, 6.82 \%.

Compounds (2A.82a,b)

By following the procedure A, reaction mixture of diyne 2A. 64 ($120 \mathrm{mg}, 0.37$ $\mathrm{mmol})$, 1-hexadecyne ($248 \mathrm{mg}, 1.1 \mathrm{mmol}$) and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](17 \mathrm{mg}, 0.02 \mathrm{mmol})$ in toluene/ethanol ($9 / 3 \mathrm{~mL}$) was heated at $80^{\circ} \mathrm{C}$ for 4 h . Purification of residue by column chromatography (20% ethyl acetate in petroleum ether) afforded mixture of 2A.82a and 2A.82b ($105 \mathrm{mg}, 52 \%$) as colorless oil.

Mol. Formula	: $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{6}$
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v}$	$\begin{aligned} & : 3019,2987,2927,2855,1618,1458,1373,1249,1217, \\ & 1167,1074,1025,873 \mathrm{~cm}^{-1} . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 0.87(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{bs}, 20 \mathrm{H}), \\ & 1.34-1.36(\mathrm{~m}, 7 \mathrm{H}), 1.53-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{t}, J \\ & =7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(2 \mathrm{~d}, J=5.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(2 \mathrm{dd}, J= \\ & 5.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(2 \mathrm{dd}, J=5.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26,4.27 \\ & (2 \mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.36,4.37(2 \mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, \\ & J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.92,5.95(2 \mathrm{~d}, J \\ & =3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83,7.03(2 \mathrm{~s}, 1 \mathrm{H}), 6.95,7.07(2 \mathrm{~d}, J=7.7 \mathrm{~Hz}, \\ & 1 \mathrm{H}), 7.09-0.13(2 \mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) . \end{aligned}$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$: 14.1 (q) 22.7 (t), 25.5 (q), 26.4 (q), 26.7 (q), 27.0 (q), 29.3 $(\mathrm{t}), 29.4(\mathrm{t}), 29.5(\mathrm{t}), 29.6(\mathrm{t}), 29.7(\mathrm{t}), 31.6(\mathrm{t}), 31.8(\mathrm{t}), 32.0$ $(\mathrm{t}), 35.9(\mathrm{t}), 67.2(\mathrm{t}), 67.3(\mathrm{t}), 73.4(\mathrm{t}), 73.4(\mathrm{t}), 73.9(\mathrm{~d}), 79.5$ (d), 79.5 (d), 84.4 (d), 84.4 (d), 93.6 (s$), 93.6$ (s$), 103.5$ (d), 103.6 (d), 109.0 (s), 113.3 (s), 121.1 (d), 121.2 (d), 121.2 (d), 121.2 (d), 127.7 (d), 129.0 (d), 134.8 (s , 137.7 (s), 137.8 (s , 140.7 (s), 142.4 (s), 143.7 (s) ppm.
ESI-MS (m / z)	: $567.1\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
Elemental	Calcd.: C, 72.76; H, 9.62 \%.
Analysis	Found : C, 72.59; H, 9.78 \%.

Analysis Found : C, 72.59; H, 9.78 \%.

1',2';5',6'-Di-O-Isopropylidene-3'-didehydro-3'-deoxy-4,5-di(n-pentyl)-7H-spiro[isobenzofuran-2,3'-C- α-D-allofuranose] (2A.79)

By following the procedure B , reaction mixture of diyne 2A.64 ($130 \mathrm{mg}, 0.4$ $\mathrm{mmol}), 6$-dodecyne ($0.34 \mathrm{~mL}, 1.6 \mathrm{mmol}$) and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](18 \mathrm{mg}, 0.02 \mathrm{mmol})$ in toluene/ethanol ($9 / 3 \mathrm{~mL}$) was heated at $80^{\circ} \mathrm{C}$ for 4 h . Purification of residue by column chromatography (20% ethyl acetate in petroleum ether) afforded mixture of 2A. 79 ($84 \mathrm{mg}, 43 \%$) as colorless oil.

$$
\begin{aligned}
& \text { Mol. Formula }: \mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{6} \\
& {[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{25} \quad:+18.7\left(c 1.0, \mathrm{CHCl}_{3}\right) \text {. }} \\
& \text { IR (} \mathbf{C H C l}_{3} \text {) } \widetilde{v} \quad: 2986,2930,2859,1620,1331,1249,1218,1075,873 \mathrm{~cm}^{-1} \text {. } \\
& { }^{1} \mathbf{H} \text { NMR } \quad: \delta 0.89(2 \mathrm{t}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.24-1.38(\mathrm{~m} \text {, } \\
& \left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) 15 \mathrm{H}\right), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}) \text {, } \\
& 3.48-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.76 \text { (dd, } J=5.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91 \text { (ddd, } \\
& J=4.6,6.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J= \\
& 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=12.0 \mathrm{~Hz} \text {, } \\
& 1 \mathrm{H}), 5.82(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}) \text {. } \\
& { }^{13} \mathbf{C} \text { NMR } \quad: 14.0(\mathrm{q}, 2 \mathrm{C}), 22.5(\mathrm{t}), 22.5(\mathrm{t}), 25.4(\mathrm{q}), 25.5(\mathrm{q}), 26.6(\mathrm{q}), \\
& \left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad 26.7(\mathrm{q}), 28.0(\mathrm{t}), 28.3(\mathrm{t}), 28.8(\mathrm{t}), 30.3(\mathrm{t}), 31.2(\mathrm{t}), 31.5(\mathrm{t}), \\
& 67.3 \text { (t), } 73.3 \text { (t), } 73.8 \text { (d), } 83.3 \text { (d), } 84.4 \text { (d), } 93.7 \text { (} s), 103.4 \\
& \text { (d), } 109.1 \text { (s), } 113.3 \text { (s), 120.9,(d), } 120.9 \text { (d), } 121.6 \text { (s), } 137.9 \\
& \text { (s), } 139.3 \text { (s), } 139.7 \text { (s) ppm. } \\
& \text { ESI-MS }(\mathrm{m} / \mathrm{z}) \quad: 511.2\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right) \text {. } \\
& \text { Elemental } \\
& \text { Analysis } \\
& \text { Calcd.: C, } 71.28 \text {; H, } 9.08 \text { \%. } \\
& \text { Found : C, 71.40; H, } 9.26 \text { \%. }
\end{aligned}
$$

Dimers
 (2A.84)

$$
\begin{array}{ll}
\text { Mol. Formula } & : \mathrm{C}_{34} \mathrm{H}_{44} \mathrm{O}_{12} \\
\text { IR (CHCl } \\
\text { 3 }) \\
{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R} & : 3302,2989,2934,2109,1619,1455,1074,1025,873 \mathrm{~cm}^{-1} . \\
\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) & : \delta 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.29-1.32(\mathrm{~m}, 15 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, \\
& 3 \mathrm{H}), 2.67(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(2 \mathrm{dd}, J=5.3,8.3 \mathrm{~Hz}, \\
& 1 \mathrm{H}), 3.65-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.88(\mathrm{~m}, 1 \mathrm{H}), 4.02-4.11(\mathrm{~m}, \\
& 3 \mathrm{H}), 4.20(\mathrm{dd}, J=8.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.38(\mathrm{~m}, 2 \mathrm{H}), 4.62 \\
& (\mathrm{dd}, J=3.3,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.79-4.84(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J= \\
& 12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=3.6 \mathrm{~Hz}, \\
& 1 \mathrm{H}), 5.88(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-7.36(\mathrm{~m}, 3 \mathrm{H}) . \\
\text { ESI-MS }(\mathrm{m} / \mathrm{z}) & \left.: 645.1\left(9 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 662.2\left(22 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]\right]^{+}\right), 667.1(100 \\
& \left.\%,[\mathrm{M}+\mathrm{Na}]^{+}\right)
\end{array}
$$

Elemental Analysis Calcd.: C, 63.34; H, 6.88 \%.
Found : C, 63.18; H, 6.97 \%.

1,2-O-Isopropylidene-5-O-(tert-butyldimethylsilyl)-3-C-ethynyl- α-D-ribofuranose (2A.72)

By following the procedures D ketone 2A.66 (4 g, 13.2 mmol) was transformed to diyne 2A.72 (3.2 g, 73\%) as colorless solid.

Mol. Formula	: $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Si}$
M. P.	: $65-67{ }^{\circ} \mathrm{C}$
$[\alpha]_{\text {D }}{ }^{25}$	$:+10.5$ (c 1.0, CHCl_{3}).
IR ($\left.\mathbf{C H C l}_{3}\right) \widetilde{v}$	$\begin{aligned} & : 3306,3019,2958,2930,2882,2401,1519,1376,1255 \\ & 1163,1050,877 \mathrm{~cm}^{-1} \end{aligned}$
${ }^{1} \mathrm{H}$ NMR	$: \delta 0.08,0.09(2 \mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s},$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & 3 \mathrm{H}), 2.57(\mathrm{~s}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 1 \mathrm{H}), 3.93-4.05(\mathrm{~m}, 3 \mathrm{H}), 4.57(\mathrm{~d}, J \\ & =3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}) . \end{aligned}$
${ }^{13} \mathrm{C}$ NMR	-5.6 (q), -5.5 (q), 18.1 (s), 25.8 (q, 3C), 26.5 (q), 26.6 (q),
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	62.7 (t), 75.3 (s), 76.1 (d), 80.4 (s), 80.7 (d), 83.8 (d), 104.1
	(d), 113.4 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 329.5\left(100 \%,[\mathrm{M}+\mathrm{H}]^{\dagger}\right), 389.5\left(42 \%,[\mathrm{M}+\mathrm{Na}]^{\dagger}\right)$.

Elemental Analysis

Calcd.: C, 58.50; H, 8.59\%.
Found: C, 58.67; H, 8.42\%.

1,2-O-Isopropylidene-5-O-(tert-

 butyldimethylsilyl)-3-C-ethynyl-3-O-propargyl- α -D-ribofuranose (2A.63)

By following the procedures E alkynol 2A.72 ($3.2 \mathrm{~g}, 9.7 \mathrm{mmol}$) was transformed to diyne 2A.63 (3.3 g , in 92%) as white solide.

Mol. Formula	: $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si}$
M. P.	: $105-110{ }^{\circ} \mathrm{C}$
$[\alpha]_{\text {D }}{ }^{25}$: +40.6 (c 1.1, CHCl_{3}).
IR ($\left.\mathbf{C H C l}_{3}\right) \widetilde{v}$	$\begin{aligned} & : 3307,2955,2931,2885,2858,2110,1473,1375,1254 \\ & 1132,1047,876 \mathrm{~cm}^{-1} \end{aligned}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 2.44 \\ & (\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~s}, 1 \mathrm{H}), 3.81-3.97(2 \mathrm{dd}, J=3.9, \\ & 11.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{dd}, J=3.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J= \\ & 2.4,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=2.4,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J \\ & =3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) . \end{aligned}$
$\begin{aligned} & { }^{13} \mathbf{C} \text { NMR } \\ & \left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \end{aligned}$	$\begin{aligned} & :-5.4(\mathrm{q}),-5.2(\mathrm{q}), 18.3(\mathrm{~s}), 25.9(\mathrm{q}, 3 \mathrm{C}), 26.8(\mathrm{q}), 26.9(\mathrm{q}), \\ & 54.5(\mathrm{t}), 63.0(\mathrm{t}), 74.5(\mathrm{~d}), 77.8(\mathrm{~d}), 79.4(\mathrm{~s}), 79.5(\mathrm{~s}), 80.6 \\ & (\mathrm{~s}), 81.7(\mathrm{~d}), 82.8(\mathrm{~d}), 104.3(\mathrm{~d}), 113.6(\mathrm{~s}) \mathrm{ppm} . \end{aligned}$
ESI-MS (m / z)	$\begin{aligned} & : 367.5\left(5 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 389.5\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 405.5(67 \%, \\ & \left.[\mathrm{M}+\mathrm{K}]^{+}\right) \end{aligned}$
Elemental Analysis	Calcd.: C, 62.26; H, 8.25\%.

Found: C, 62.12; H, 8.37\%.

1',2'-O-Isopropylidene-5'-O-(tert-
 butyldimethylsilyl)-3'-didehydro-3'-deoxy-7H-spiro[isobenzofuran-2,3'-C- α-D-ribofuranose] (2A.85)

By following the procedure C, reaction mixture of diyne $2 \mathrm{~A} .63(200 \mathrm{mg}, 0.55$ $\mathrm{mmol})$ and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](25 \mathrm{mg}, 0.03 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ was heated at 80 ${ }^{\circ} \mathrm{C}$ for 4 h . Purification of residue by column chromatography (15% ethyl acetate in petroleum ether) afforded $\mathbf{2 A . 8 5}(152 \mathrm{mg}, 71 \%)$ as colorless oil.

Mol. Formula	: $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}$
$[\alpha]_{\mathrm{D}}{ }^{25}$: +36.4 (c 1.1, CHCl_{3}).
$\underline{\operatorname{IR}} \mathbf{(\mathbf { C H C l } _ { 3 })} \widetilde{\nu}$	$\begin{aligned} & : 3077,3019,2955,2930,2858,1608,1462,1383,1255 \\ & 1167,1087,1049,939 \mathrm{~cm}^{-1} \end{aligned}$
${ }^{1} \mathrm{H}$ NMR	$: \delta-0.09,-0.08(2 \mathrm{~s}, 6 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s},$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$3 \mathrm{H}), 3.30$ (dd, $J=5.2,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=6.5,11.1$
	$\mathrm{Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=5.2,6.5 \mathrm{~Hz},$
	$\begin{aligned} & 1 \mathrm{H}), 5.17(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 5.99(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=1.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24 \end{aligned}$
	(d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.40(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR	: -5.9 (q), -5.8 (q), 17.9 (s), 25.5 (q, 3C), 26.1 (q), 26.6 (q),
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	61.9 (t), 73.0 (t), 79.8 (d), 83.6 (d), 93.1 (s), 103.4 (d), 112.9
	(s , , 121.0 (d), 121.4 (d), 127.3 (d), 128.4 (d), 136.9 (s), 139.4
	(s) ppm .
ESI-MS (m / z)	: $410.7\left(47 \%,\left[\mathrm{M}_{+} \mathrm{NH}_{4}\right]^{+}\right), 415.3\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 431.3$
	$\left(67 \%,[\mathrm{M}+\mathrm{K}]^{+}\right)$
Elemental	Calcd.: C, 64.25; H, 8.22 \%.
Analysis	Found: C, 64.32; H, 8.14 \%.

By following the procedure A, reaction mixture of diyne 2A.63 (150 mg, 0.41 mmol), diacetate of 2-butyne-1,4-diol (209 mg, 1.2 mmol$)$ and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](19$ $\mathrm{mg}, 0.02 \mathrm{mmol})$ in toluene/ethanol $(9 / 3 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 7 h . Purification of residue by column chromatography (25% ethyl acetate in petroleum ether) afforded 2A.86 (132 mg, 60\%) as colorless oil.

$$
\begin{aligned}
& \text { Mol. Formula : } \mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{9} \mathrm{Si} \\
& {\left[\alpha_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad:+25.0\left(c 2.6, \mathrm{CHCl}_{3}\right)\right. \text {. }} \\
& \operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v} \quad: 3020,2930,2857,1745,1626,1472,1375,1221,1078 \text {, } \\
& 1023,874,838,756,667 \mathrm{~cm}^{-1} \text {. } \\
& { }^{1} \mathbf{H} \text { NMR } \quad: \delta-0.11,-0.10(2 \mathrm{~s}, 6 \mathrm{H}), 0.76(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, \\
& \left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 3 \mathrm{H}\right), 2.07,2.08(2 \mathrm{~s}, 6 \mathrm{H}), 3.27(\mathrm{dd}, J=5.2,11.0 \mathrm{~Hz}, 1 \mathrm{H}) \text {, } \\
& 3.53(\mathrm{dd}, J=6.6,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) \text {, } \\
& 4.42(\mathrm{dd}, J=5.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.22(\mathrm{~m}, 6 \mathrm{H}), 5.97(\mathrm{~d}, J \\
& =3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}) \text {. } \\
& \left.{ }^{13} \mathbf{C} \text { NMR }:-5.7(q),-5.6(q), 18.2 \text { (} \mathrm{s}\right), 20.8(\mathrm{q}), 25.7 \text { (q, 2C), } 25.8 \text { (q), } \\
& \left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \\
& 26.3(\mathrm{q}), 26.7(\mathrm{q}), 61.9(\mathrm{t}), 63.3(\mathrm{t}), 63.5(\mathrm{t}), 73.0(\mathrm{t}), 79.7(\mathrm{~d}), \\
& 83.6 \text { (d), } 93.3 \text { (} \mathrm{s}), 103.5 \text { (d), } 113.3 \text { (s), } 122.5 \text { (d), } 123.2 \text { (d), } \\
& 134.1 \text { (s), } 135.5 \text { (s), } 137.8 \text { (s), } 140.4 \text { (s), } 170.4 \text { (s), } 170.4 \text { (s) } \\
& \text { ppm. } \\
& \text { ESI-MS }(m / z) \quad: 554.6\left(36 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 559.5\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 575.5 \\
& \left(35 \%,[\mathrm{M}+\mathrm{K}]^{+}\right) . \\
& \text {Elemental } \\
& \text { Analysis } \\
& \text { Calcd.: C, 60.42; H, } 7.51 \text { \%. } \\
& \text { Found: C, 60.29; H, } 7.67 \text { \%. }
\end{aligned}
$$

1',2'-O-Isopropylidene-5'-O-(tert-butyldimethylsilyl)-3'-didehydro-3'-deoxy-4,5-di(methoxycarbonyl)-7H-spiro[isobenzofuran-2,3'-C- α-D-ribofuranose] (2A.87)

By following the procedure B , reaction mixture of diyne $\mathbf{2 A . 6 3}(130 \mathrm{mg}, 0.36$ $\mathrm{mmol})$, dimethyl acetylene dicaboxylate $(0.13 \mathrm{~mL}, 1.1 \mathrm{mmol})$ and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](16$ $\mathrm{mg}, 0.02 \mathrm{mmol})$ in toluene/ethanol $(9 / 3 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 4 h . Purification
of residue by column chromatography (30% ethyl acetate in petroleum ether) afforded 2A. 87 ($121 \mathrm{mg}, 67 \%$) as colorless oil.

Mol. Formula $\quad: \mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{9} \mathrm{Si}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:+6.6\left(c 0.7, \mathrm{CHCl}_{3}\right)$.
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v} \quad: 3021,2955,2858,1730,1621,1271,1216,1022 \mathrm{~cm}^{-1}$.
${ }^{1}$ H NMR $\quad: \delta-0.12,-0.10(2 \mathrm{~s}, 6 \mathrm{H}), 0.76(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}$,
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 3 \mathrm{H}\right), 3.25(\mathrm{dd}, J=5.7,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=6.2,11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.89(2 \mathrm{~s}, 6 \mathrm{H}), 4.33(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{t}, J=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}),(\mathrm{d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H})$, 7.55 ($\mathrm{s}, 1 \mathrm{H}$).
${ }^{13}$ C NMR : -5.7 (q), -5.6 (q), 18.2 (s), 25.7 (q, 2C), 26.3 (q), 26.7 (q),
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad 52.8(\mathrm{q}), 52.9(\mathrm{q}), 61.6$ (t), 72.9 (t), 79.5 (d), 83.5 (d), 93.5
(s), 103.5 (d), 113.5 (s), 121.9 (d), 122.5 (d), 131.7 (s$), 133.2$ (s), 140.6 (s), 143.4 (s), 167.2 (s), 167.7 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 509.5\left(11 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 526.6\left(30 \%,\left[\mathrm{M}^{+} \mathrm{NH}_{4}\right]^{+}\right), 531.5$ $\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 547.5\left(9 \%,[\mathrm{M}+\mathrm{K}]^{+}\right)$.

Elemental Calcd.: C, 59.03; H, 7.13 \%.
Analysis Found: C, 58.91; H, 7.20 \%.

Compounds (2A.88a,b)

By following the procedure A, reaction mixture of diyne 2A.63 (130 mg, 0.36 mmol), phenyl acetylene ($0.2 \mathrm{~mL}, 1.8 \mathrm{mmol}$) and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](16 \mathrm{mg}, 0.02 \mathrm{mmol})$ in toluene/ethanol $(9 / 3 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 8 h . Purification of residue by column chromatography (20% ethyl acetate in petroleum ether) afforded mixture of 2A.88a and 2A.88b ($130 \mathrm{mg}, 78 \%$) as redish viscous oil.

Mol. Formula	: $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Si}$
IR ($\mathbf{C H C l}_{3}$) \widetilde{v}	: 3019, 2955, 2857, 1600, 1472, 1255, 1085, 1016, $837 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$: \delta-0.15,-0.14(2 \mathrm{~s}, 6 \mathrm{H}), 0.72(\mathrm{~s}, 9 \mathrm{H}), 1.29,1.30(2 \mathrm{~s}, 3 \mathrm{H})$ 1.62 (s, 3H), 3.27-3.32 (2dd, $J=5.2,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-$ $3.57(2 \mathrm{dd}, J=6.6,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32,4.33(2 \mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.40-4.43(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.19(\mathrm{~m}, \mathrm{~J}=13 \mathrm{~Hz}, 2 \mathrm{H}), 5.94$, 5.95 ($2 \mathrm{~d}, ~ J=3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.14-7.31 (m, 2H), 7.36-7.50 (m, $6 \mathrm{H})$.
$\begin{aligned} & { }^{13} \mathbf{C} \text { NMR } \\ & \left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \end{aligned}$	$\begin{aligned} & :-5.7 \text { (q), }-5.5 \text { (q), } 18.2 \text { (s), } 25.8 \text { (q), } 26.3 \text { (q), } 26.8 \text { (q), } 62.1 \\ & \text { (t), } 62.1 \text { (d), } 73.1 \text { (t), } 73.2 \text { (t), } 79.9 \text { (d), } 83.8 \text { (d), } 93.3 \text { (s), } \\ & 93.4 \text { (s), } 103.6 \text { (d), } 103.6 \text { (d), } 113.2 \text { (s), } 113.2 \text { (s), } 119.9 \text { (d), } \\ & 120.3 \text { (d), } 121.5 \text { (d), } 121.9 \text { (d), } 126.8 \text { (d), } 127.1 \text { (d), } 127.5 \\ & \text { (d), } 127.9 \text { (d), } 128.8 \text { (d), } 136.2 \text { (s), } 138.0 \text { (s), } 138.8 \text { (s), } 140.5 \\ & \text { (s), } 140.5 \text { (s), } 141.1 \text { (s), } 142.1 \text { (s) ppm. } \end{aligned}$
ESI-MS (m / z)	: $492.0\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 508.0\left(25 \%,[\mathrm{M}+\mathrm{K}]^{+}\right)$.
Elemental	Calcd.: C, 69.20; H, 7.74 \%.
Analysis	Found: C, 69.12; H, 7.81 \%.

1,2;4,5-Di-O-isopropylidene-3-C-ethynyl- α-Dpsicopyranose (2A.74)

By following the procedures D ketone 2A. $\mathbf{6 8}(4 \mathrm{~g}, 15.5 \mathrm{mmol})$ was transformed to alkynol 2A.74 ($3.3 \mathrm{~g}, 76 \%$ yield) as white solid.

Mol. Formula	: $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6}$
M. P.	: $155-157{ }^{\circ} \mathrm{C}$
$[\alpha]_{\text {D }}{ }^{25}$: -184.8 (c 1.6, $^{\text {CHCl }} 3$).
IR ($\left.\mathbf{C H C l}_{3}\right) \widetilde{v}$	$\begin{aligned} & : 3479,3270,2989,2940,2117,1458,1384,1213,1089 \\ & 986, \mathrm{~cm}^{-1} . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 2.49 \\ & (\mathrm{~s}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 1 \mathrm{H}), 4.06-4.11(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.26(\mathrm{~m}, 3 \mathrm{H}), \\ & 4.41-4.46(\mathrm{~m}, 2 \mathrm{H}) . \end{aligned}$
${ }^{13}$ C NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$25.0 \text { (q), } 25.6 \text { (q), } 25.8 \text { (q), } 26.5 \text { (q), } 59.6 \text { (t), } 69.0(\mathrm{~s}), 70.6$ (d), 72.9 (t), 73.2 (d), 76.0 (d), 82.6 (s$), 105.1$ (s$), 109.4$ (s$),$ 113.2 (s) ppm.
ESI-MS (m / z)	: $285.3\left(11 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 307.3\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
Elemental Analysis	Calcd.: C, 59.14; H, 7.09\%.
	Found: C, 58.97; H, 7.28\%.

1,2;4,5-Di-O-isopropylidene-3-C-ethynyl-3-O-propargyl- α-D-psicopyranose (2A.65)

By following the procedures alkynol 2A.74 (3.3 g, 11.6 mmol) was transformed to diyne 2A.65 (3.5 g , in 94%) as a white solid.

Mol. Formula : $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6}$
M. P. $\quad: 104-106{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:-139.5\left(c\right.$ 1.6, $\left.\mathrm{CHCl}_{3}\right)$
$\operatorname{IR}\left(\mathbf{C H C l}_{\mathbf{3}}\right) \widetilde{v} \quad: 3271,2989,2939,2114,1458,1255,1094,1015,981 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1}$ H NMR $\quad: \delta 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 2.41$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~s}, 1 \mathrm{H}), 3.97-4.08(\mathrm{~m}, 2 \mathrm{H})$, 4.19-4.28 (m, 2H), 4.43 (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $: 25.2(\mathrm{q}), 25.9(\mathrm{q}), 26.2(\mathrm{q}), 26.2(\mathrm{q}), 56.3(\mathrm{t}), 61.2(\mathrm{t}), 71.3$
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad(\mathrm{d}), 73.0(\mathrm{t}), 74.5(\mathrm{~d}), 74.9(\mathrm{~s}), 77.6(\mathrm{~d}), 77.6(\mathrm{~s}), 79.0(\mathrm{~d})$, 80.3 (d), 105.5 (s), 109.9 (s), 112.2 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 345.3\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 361.3\left(73 \%,[\mathrm{M}+\mathrm{K}]^{+}\right)$.
Elemental
Calcd.: C, 63.34; H, 6.88 \%.
Analysis
Found: C, 63.19; H, 6.97 \%.

1',2';4',5'-Di-O-isopropylidene-3'-didehydro-3'-deoxy-7H-spiro[isobenzofuran-2,3'-C- α-D-psicopyranoside] (2A.89)

By following the procedure C, reaction mixture of diyne 2A. 65 ($150 \mathrm{mg}, 0.47$ $\mathrm{mmol})$ and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](22 \mathrm{mg}, 0.02 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ was heated at 80 ${ }^{\circ} \mathrm{C}$ for 4 h . Purification of residue by column chromatography (15% ethyl acetate in petroleum ether) afforded $\mathbf{2 A . 8 9}$ ($118 \mathrm{mg}, 73 \%$) as crystalline solid.

Mol. Formula	$: \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{6}$
M. P.	$: 91-94{ }^{\circ} \mathrm{C}$
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}$	$:-183.5\left(c \quad 1.3, \mathrm{CHCl}_{3}\right)$

$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v} \quad: 3077,3016,2987,2935,2867,1609,1460,1380,1247$, 1090, 1064, $979,885 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1}$ H NMR $\quad: \delta 1.32(\mathrm{~s}, 6 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}=9.0$
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \mathrm{Hz}, 1 \mathrm{H}\right), 4.08(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.29(\mathrm{~m}, 3 \mathrm{H}), 4.48$ (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=$ $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (dd, $J=7.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.41$ (m, $3 \mathrm{H})$.
${ }^{13}$ C NMR $\quad: 25.6$ (q), 25.7 (q), 26.1 (q), 26.6 (q), 59.8 (t), 71.1 (d), 72.5
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad(\mathrm{t}), 73.7(\mathrm{t}), 76.6(\mathrm{~d}), 86.7(\mathrm{~s}), 106.6(\mathrm{~s}), 109.3(\mathrm{~s}), 112.8(\mathrm{~s})$, 120.5 (d), 123.5 (d), 127.3 (d), 128.7 (d), 138.2 (s), 140.7 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 349.2\left(9 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 366.2\left(100 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 371.2$ $\left(12 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 387.2\left(17 \%,[\mathrm{M}+\mathrm{K}]^{+}\right)$.

Elemental
Analysis

Calcd.: C, 65.50; H, 6.94 \%.
Found: C, 65.62; H, 7.03 \%.

1',2';4',5'-Di-O-isopropylidene-3'-didehydro-3'-deoxy-4,5-di(acetoxymethyl)-7H-spiro[isobenzofuran-2,3'-C- α-Dpsicopyranoside] (2A.90)

By following the procedure A, reaction mixture of diyne 2A.65 (130 mg, 0.4 $\mathrm{mmol})$, diacetate of 2-butyne-1,4-diol ($206 \mathrm{mg}, 1.2 \mathrm{mmol}$) and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right] \quad(19$ $\mathrm{mg}, 0.02 \mathrm{mmol})$ in toluene/ethanol $(9 / 3 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 7 h . Purification of residue by column chromatography (30% ethyl acetate in petroleum ether) afforded 2A.90 (130 mg, 65\%) as viscous oil.

Mol. Formula	: $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{10}$
$[\alpha]_{\mathrm{D}}{ }^{25}$: -111.43 (c 1.4, CHCl_{3}).
IR ($\left.\mathbf{C H C l}_{3}\right) \widetilde{v}$: 3020, 2989, 2937, 1736, 1600, 1381, 1090, $980 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR	: $\delta 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 2.03$
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	(s, 3H), 2.06 (s, 3H), 3.44 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ (d, $J=$
	$9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.26$ (m, 3H), 4.45 (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H})$,
	$5.07-5.21(\mathrm{~m}, ~ J=12.5,12.8 \mathrm{~Hz}, 6 \mathrm{H}), 7.23$ (s, 1H), 7.42 (s ,
	$1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR	: 20.7 (q), 20.8 (q), 25.5 (q), 25.6 (q), 26.0 (q), 26.3 (q), 59.8
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	(t), $63.4(\mathrm{t}), 63.4(\mathrm{t}), 71.0$ (d), 72.6 (t), 73.5 (t), 76.5 (d), 86.7
	(s), 106.5 (s), 109.4 (s), 112.8 (s), 122.1 (d), 124.9 (d), 134.0
	(s), 135.3 (s), 139.1 (s), 141.0 (s), 170.4 (s), 170.5 (s) ppm.
ESI-MS (m/z)	: $510.8\left(43 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 515.7\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 531.7$
	(17\%, [M+K] ${ }^{+}$).
Elemental	Calcd.: C, 60.97; H, 6.55 \%.
Analysis	Found: C, 60.82; H, 6.68 \%.

> 1',2';4',5'-Di-O-isopropylidene-3'-didehydro-3'-deoxy-4,5-di(methoxycarbonyl)-7H-spiro[isobenzofuran-2,3'-C- α-Dpsicopyranoside] (2A.91)

By following the procedure B , reaction mixture of diyne 2A. 65 ($130 \mathrm{mg}, 0.4$ $\mathrm{mmol})$, dimethyl acetylene dicaboxylate ($0.15 \mathrm{~mL}, 1.2 \mathrm{mmol}$) and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](19$ $\mathrm{mg}, 0.02 \mathrm{mmol})$ in toluene/ethanol $(9 / 3 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 4 h . Purification of residue by column chromatography (30% ethyl acetate in petroleum ether) afforded 2A. 91 ($129 \mathrm{mg}, 69 \%$) as white solid.

Mol. Formula	: $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{10}$
M. P.	: $78-81{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{25}$: -136.5 (c 0.8, CHCl_{3}).
IR ($\mathbf{C H C l}_{3}$) \widetilde{v}	$\begin{aligned} & : 3019,2990,2938,2874,1779,1730,1622,1437,1383 \\ & 1216,1091,980,877,667 \mathrm{~cm}^{-1} \end{aligned}$
${ }^{1}$ H NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$\begin{aligned} & : \delta 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}) \\ & 3.41(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{~d}, J \\ & =9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.28(\mathrm{~m}, 3 \mathrm{H}), 4.45(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 5.14(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, \\ & 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}) . \end{aligned}$
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$	$\begin{aligned} & : 25.4(\mathrm{q}), 25.6(\mathrm{q}), 25.8(\mathrm{q}), 26.2(\mathrm{q}), 52.6(\mathrm{q}), 52.7(\mathrm{q}), 59.8 \\ & \text { (t), } 70.8(\mathrm{~d}), 72.5(\mathrm{t}), 73.5(\mathrm{t}), 76.5(\mathrm{~d}), 86.7(\mathrm{~s}), 106.1(\mathrm{~s}), \\ & 109.5(\mathrm{~s}), 113.0(\mathrm{~s}), 121.1(\mathrm{~d}), 124.8(\mathrm{~d}), 130.9(\mathrm{~s}), 133.5(\mathrm{~s}), \\ & 141.6(\mathrm{~s}), 144.0(\mathrm{~s}), 167.1(\mathrm{~s}), 168.0(\mathrm{~s}) \mathrm{ppm} . \end{aligned}$
ESI-MS (m / z)	$\begin{aligned} & : 465.5\left(14 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 487.5\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 503.5(33 \%, \\ & \left.[\mathrm{M}+\mathrm{K}]^{+}\right) . \end{aligned}$
Elemental	Calcd.: C, 59.48; H, 6.08 \%.
Analysis	Found: C, 59.69; H, 6.14 \%.

Compounds (2A.92a,b)

By following the procedure A, reaction mixture of diyne 2A.65 (140 mg, 0.43 $\mathrm{mmol})$, phenyl acetylene ($0.2 \mathrm{~mL}, 1.7 \mathrm{mmol}$) and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](20 \mathrm{mg}, 0.02 \mathrm{mmol})$ in toluene/ethanol $(9 / 3 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 8 h . Purification of residue by column chromatography (20% ethyl acetate in petroleum ether) afforded mixture of 2A.92a and 2A.92b ($138 \mathrm{mg}, 75 \%$) as amorphous solid.

Mol. Formula	: $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{6}$
M. P.	: $71-73{ }^{\circ} \mathrm{C}$
IR ($\mathbf{C H C l}_{3}$) \widetilde{v}	: 3019, 2935, 1601, 1382, 1133, 1091, $879 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	$: \delta 1.27,1.28,1.31(3 \mathrm{~s}, 6 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 3.49$ (2d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(2 \mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.28$ (m, 3H), 4.46, $4.49(2 \mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.10,5.11(2 \mathrm{~d}, J=$ $12.2,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.19,5.24(2 \mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.19-7.39 (m, 5H), 7.44-7.53 (m, 3H).
$\begin{aligned} & { }^{13} \mathbf{C} \mathbf{N M R} \\ & \left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \end{aligned}$	
ESI-MS (m / z)	$: 425.7\left(9 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 442.7\left(53 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 447.7$ $\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 463.7\left(16 \%,[\mathrm{M}+\mathrm{K}]^{+}\right)$.
Elemental	Calcd.: C, 70.74; H, 6.65 \%.
Analysis	Found: C, 70.52; H, 6.79 \%.

${ }^{1} \mathrm{H}$ NMR Spectrum of 2 A .43 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2 A .43 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2 A .49 in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR Spectrum of 2A.49 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2A.51 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2 A .51 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2 A .50 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2 A .50 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2 A .59 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2 A .59 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2A. 52 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2A. 52 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2A.54a/2A.54b in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2A.54a/2A.54b in $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR Spectrum of 2A.53a/2A.53b in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2A.53a/2A.53b in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2A.55a/2A.55b in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2A.55a/2A.55b in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2A. 64 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2A. 64 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2A. 75 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2A. 75 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2A. 76 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2A. 76 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2 A .77 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2A. 77 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2 A .78 in CDCl_{3}
(
${ }^{13} \mathrm{C}$ NMR Spectrum of 2 A .78 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR Spectrum of 2 A .79 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2A. 79 in CDCl_{3}
(
${ }^{1} \mathrm{H}$ NMR Spectrum of 2A.83a/2A.83b in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2A.83a/2A.83b in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2A.81a/2A.81b in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2A.81a/2A.81b in CDCl_{3}
(
${ }^{1} \mathrm{H}$ NMR Spectrum of 2A.80a/2A.80b in CDCl_{3}
(

[^2]
${ }^{1} \mathrm{H}$ NMR Spectrum of 2A.82a/2A.82b in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2A.82a/2A.82b in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2 A .63 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2 A .63 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2 A .85 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2A. 85 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2 A .86 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2A. 86 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2 A .87 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2A. 87 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2A.88a/2A.88b in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2A.88a/2A.88b in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2A. 65 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2 A .65 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2 A .89 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2 A .89 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2 A .90 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2 A .90 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2 A .91 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2A. 91 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2A.92a/2A.92b in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2A.92a/2A.92b in CDCl_{3}

References:

1. (a) Schreiber, S. L. Science 2000, 287, 1964-1969. (b) Schreiber, S. L.; Nicolaou, K. C.; Davies, K. Chem. Biol. 2002, 9, 1-2. (c) Tan, D. S. Nat. Chem. Biol. 2005, 1, 74-84. (d) Walsh, D. P.; Chang, Y.-T. Chem. Rev. 2006, 106, 2476-2530.
2. (a) W. Reppe, O. Schichting, K. Klager, T. Toepel, Justus Liebigs Ann. Chem. 1948, 560, 1-92.
3. (a) Vollhardt, K. P. C. Angew. Chem. Int. Ed. Engl. 1984, 23, 539-556. (b) Schore, N. E. Chem. Rev. 1988, 88, 1081-1119. (c) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49-92. (d) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635-662. (e) Frühauf, H.W. Chem. Rev. 1997, 97, 523-596. (f) Varela, J. A.; Saa, C. Chem. Rev. 2003, 103, 3787-3802.
4. (a) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901-2915. (g) Welker, M. E. Curr. Org. Chem. 2001, 5, 785-807.
5. (a) Schore, N. E. in Comprehensive Organic Synthesis, Vol. 5 (Eds.: B. M. Trost, I. Fleming, L. A. Paquette), Pergamon Press, Oxford, 1991, pp. 1129. (b) Aubert, C.; Buisine, O.; Petit, M.; Slowinski, F.; Malacria, M Pure \& Appl. Chem. 1999, 71, 1463. (c) Rubin, M.; Sromek, A. W.; Gevorgyan, V. Synlett 2003, 2265-2291. (d) Kotha, S.; Brahmachary, E.; Lahiri, K. Eur. J. Org. Chem. 2005, 4741-4767.
6. Ramana C. V.; Salian S. R.; Gonnade R. G. Eur. J. Org. Chem. 2007, 5483-5486.
7. Kesenheimer, C.; Groth, U. Org. Lett. 2006, 8, 2507-2510.
8. Witulski, B.; Zimmermann, A.; Gowans, N. D. Chem. Comm. 2002, 2984-2985.
9. Han, S.; Bond, A. D.; Disch, R. L.; Holmes, D.; Schulman, J. M.; Teat, S. J.; Vollhardt, K. P. C.; Whitener, G. D. Angew. Chem. Int. Ed. 2002, 41, 3223-3227.
10. Hecht, S.; Frechet, J. M. J. J. Am. Chem. Soc. 1999, 121, 4084-4085.
11. (a) Hahn, U.; Maisonhaute, E.; Amatore, C.; Nierengarten, J. -F. Angew. Chem. Int. Ed. 2007, 46, 951-954. (b) Nierengarten, J. -F.; Felder, D.; J. F. Nicoud. Tetrahedron Lett. 1999, 40, 269-272.
12. Sato, Y.; Tamura, T.; Mori, M. Angew. Chem. Int. Ed. 2004, 43, 2436-2440.
13. a) Ramana, C.V.; Mallik, R.; Gonnade, R. G., Gurjar, M. K. Tetrahedron Lett. 2006, 47, 3649-3652 b) Ramana, C. V.; Patel, P.; Gonnade, R. G. Tetrahedron Lett. 2007, 48, 4771-4774. c) Ramana, C.V.; Mallik, R.; Gonnade, R. G. Tetrahedron 2008, 64, 219-233.
14. For reviews see : (a) Daves, G. D., Jr. Acc. Chem. Res. 1990, 23, 201-206. (b) Postema, M. H. Tetrahedron 1992, 48, 8545-8599. (c) Du, Y.; Linhardt, R. J.; Vlahov, I. R. Tetrahedron 1998, 54, 9913-9959. (d) Togo, H.; He, W.; Waki, Y.; Yokoyama, M. Synlett 1998, 700-717. (e) Isobe, M.; Nishizawa, R.; Hosokawa, S.; Nishikawa, T. Chem. Commun. 1998, 2665-2676. (f) Smoliakova, I. P. Curr. Org. Chem. 2000, 4, 589-608. (g) Somsa'k, L. Chem. ReV. 2001, 101, 81-135. (h) Taillefumier, C.; Chapleur, Y. Chem. ReV. 2004, 104, 263-292.
15. Jaramillo, C.; Knapp, S. Synthesis, 1994, 1.
16. McDonald, F. E.; Zhu, H. Y. H.; Holmquist, C. R. J. Am. Chem. Soc., 1995, 117, 6605-6606.
17. (a) Yamamoto, Y.; Saigoku, T.; Nishiyama, H.; Ohgai, T.; Itoh, K. Chem. Commun. 2004, 2702-2703. (b) Yamamoto, Y.; Saigoku, T.; Nishiyama, H.; Ohgai, T.; Itoh, K. Org. Bioorg. Chem. 2005, 3, 1768-1775.
18. Yamamoto, Y.; Hashimoto, T.; Hattori, K.; Nishiyama, H. Org. Lett. 2006, 8, 3565-3568.
19. Novak, P.; Pohl, R.; Kotora, M.; Hocek, M. Org. Lett. 2006, 8, 2051-2054.
20. (a) Markaryan, E. A.; Samodurova, A. G. Russ. Chem. Rev. 1989, 58, 479-493. (b) Larghi, E. L.; Kaufman, T. S. Synthesis 2006, 187-220. (c) Arimitsu, S.; Hammond, G. B. J. Org. Chem. 2006, 71, 8665-8668; (d) Rodrigo, R. Tetrahedron 1988, 44, 2093-2135. (e) Curtis, P. J.; Grove, J.F. Nature 1947, 160, 574-575. (f) Grove, J. F.; Hitchcock, P. B. J. Chem. Soc., Perkin Trans. 1 1986, 1145-1146. (g) Parisot, D.; Devys, D. M.; Ferezou, J. P.; Barbier, M. Phytochemistry 1983, 22, 1301. (h) Pushan, W.; Xuanliang, G.; Yixiong, W.; Fukuyama, Y.; Miura, I.; Sugawara, M. Phytochemistry 1984, 23, 2033-2038.
21. (a) McCall, J. M.; McCall, R. B.; TenBrink, R. E.; Kamdar, B. V.; Humphrey, S. J.; Sethy, V. H.; Harris, D. W.; Daenzer, C. J. Med. Chem. 1982, 25, 75-81. (b) TenBrink, R. E.; Bergh, C. L.; Duncan, J. N.; Harris, D. W.; Huff, R. M.; Lahti, R. A.; Lawson, C. F.; Lutzke, B. S.; Martin, I. J.; Rees, S. A.; Schlachter, S. K.; Sih, J. C.; Smith, M. W. J. Med. Chem. 1996, 39, 2435-2437. (c) Unterhalt, B.; Jo" stingmeier, R.; Sanatgar, A. Pharmazie 1997, 52, 186-189. (d) Bury, P. S.; Christiansen, L. B.; Jacobsen, P.; Jorgensen, A. S.; Kanstrup, A.; Narum, L.; Bain, S.; Fledelius, C.; Gissel, B.; Hansen, B. S.; Korsgaard, N.; Thorpe, S. M.; Wassermann, K. Bioorg. Med. Chem. 2002, 10, 125-145. (e) Liu, J.; Birzin, E. T.; Chan, W.; Yang, Y. T.; Pai, L.-Y.; DaSilva, C.; Hayes, E. C.; Mosley, R. T.; DiNinno, F.; Rohrer, S. P.; Schaeffer, J. M.; Hammond, M. L. Bioorg. Med. Chem Lett. 2005, 15, 715-718. (f) Suzuki, T.; Tanemura, K.; Horaguchi, T.; Kaneko, K. Tetrahedron 2006, 62, 3739-3751. (g) Mohr, P.; Decker, M.; Enzensperger, C.; Lehmann, J. J. Med. Chem. 2006, 49, 2110-2116.
22. Kakimoto, T.; Koizumi, F.; Hirase, K.; Banba, S.; Tanaka, E.; Arai, K. Pest Manag. Sci. 2004, 60, 493-500.
23. (a) Traxler, P.; Gruner, J.; Auden, J. A. L. J. Antibiot. 1977, 30, 289-296.
(b) Rommele, G.; Traxler, P.; Wehrli, W. J. Antibiot. 1983, 36, 1539-1542. (c) Van Middlesworth, F.; Omstead, M. N.; Schmatz, D.; Bartizal, R.; Fromtling, R.; Bills, G.; Nollstadt, K.; Honeycutt, S.; Zweemik, M.; Garrity, G.; Wilson, K. J. Antibiot. 1991, 44, 45-51.
24. (a) Markaryan, E. A.; Samodurova, A. G. Russ. Chem. Rev. 1989; 58, 479-493. (b) Larghi, E. L.; Kaufman, T. S. Synthesis 2006, 187-220.
25. Kaliappan, K. P.; Ravikumar, V. Org. Biomol. Chem. 2005, 3, 848-851.
26. (a) McDonald, F. E.; Zhu, H. Y. H.; Holmquist, C. R. J. Am. Chem. Soc. 1995, 117, 6605-6606. (b) Yamamoto, Y.; Saigoku, T.; Ohgai, T.; Nishiyama, H.; Itoh, K. Chem. Commun. 2004, 2702-2703. (c) Yamamoto, Y.; Saigoku, T. N., H.; Ohgai, T.; Itoh, K. Org. Biomol. Chem. 2005, 3, 1768-1775. (d) Novak, P.; Pohl, R.; Kotora, M.; Hocek, M. Org. Lett. 2006, 8, 2051-2054. (e) Yamamoto, Y.; Hashimoto, T.; Hattori, K.; Kikuchi, M.; Nishiyama, H. Org. Lett. 2006, 8, 3565-3568.
27. (a) Lee, J.; Márquez, V. E.; Lewin, N. E.; Blumberg, P. M. Synlett. 1994, 206. (b) Soler, T.; Bachki, A.; Falvello, L. R.; Foubelo, F.; Yus, M. Tetrahedron Asymm. 2000, 11, 493-517. (c) Marco-Contelles, J.; Dominguez, L.; Anjum, S.; Ballesteros, P.; Sorianob, E. Tetrahedron Asymm. 2003, 14, 2865-2869. (d) Maurya, S. K.; Hotha, S. Tetrahedron Lett. 2006, 47, 3307-3310.
28. (a) Ohira, S. Synth. Commun. 1989, 19, 561-564. (b) Roth, G. J.; Liepold, B.; Müller, S. G.; Bestmann, H. J. Synlett 1996, 521-522.
29. (a) Addadin, M. J. Heterocycles 1978, 9, 865. (b) Friedrichsen, W. Adv. Heterocycl. Chem. 1980, 26, 135. (c) Wiersum, U. E. Aldrichimica Acta 1981, 14, 53. (d) Rodrigo, R. Tetrahedron1988, 44, 2093.
30. (a) Traxler, P.; Gruner, J.; Auden, J. A. L. J. Antibiot. 1977, 30, 289-296. (b) Rommele, G.; Traxler, P.; Wehrli, W. J. Antibiot. 1983, 36, 15391542.
31. Namikoshi, M.; Kobayashi, H.; Yoshimoto, T.; Meguro, S. Chem. Lett. 2000, 29, 308-309.
32. (a) Baker, D. C.; Brown, D. K.; Horton, D.; Nickol, R. G. Carbohydr. Res. 1974, 32, 299-319. (b) Qureshi, S.; Shaw, G. J. Chem. Soc. Perkin Trans. 1 1985, 875-882. (c) Matsuda, A.; Hattori, H.; Tanaka, M.; Sasaki, T. Bioorg. Med. Chem. Lett. 1996, 6, 1887-1892. (d) Dötz, K. H.; Paetsch, D.; Le Bozec, H. J. Organomet. Chem. 1999, 589, 11-20. (e) Ramana, C. V.; Patel, P.; Gonnade, R. G. Tetrahedron Lett. 2007, 48, 4771-4774.

CHAPTER-II

Section II: Synthesis of modified tricyclic nucleosides

2B.1. Introduction:

Nucleosides are glycosylamines consisting of a nucleobase bonded to a ribose or deoxyribose sugar. Nucleosides can be phosphorylated by specific kinases in the cell on the sugar's primary alcohol group, producing nucleotides, which are the molecular building block of DNA and RNA. In medicine several natural nucleosides and their analogs are used as antiviral or anticancer agents.

Natural nucleosides are of great biological importance in metabolic pathways. ${ }^{1}$ For many years, the typical structure of nucleosides was described by scientists as two molecular fragments: D-ribose or D-deoxyribose as the sugar moiety connected by a β-glycosyl linkage to different heterocyclic bases such as thymine, uracil, cytosine, adenine and guanine. This dogma disappeared when different groups reported the isolation of natural nucleosides having D-arabinose instead of the Dribose part (Figure 2B.1). In 1950, Bergmann et al. reported the isolation of spongouridine 2B. 01 and spongothymidine 2B. 02 from marine Caribbean sponges Cryptotheca crypta, which had D-arabinose as the sugar moiety. ${ }^{2}$ In 1958, Y. Yonehara et al. reported the discovery of a metabolite of Streptomyces griseochromogenes, Blasticidin S (2B.03), ${ }^{3}$ which controls rice blast Pyricularia oryzae. ${ }^{4}$ In 1978, K. Suetomi et al. reported the isolation of antifungal mildiomycin from a culture of Streptoverticillium rimofaciens. ${ }^{5}$

2B. 01 R = H
$2 \mathrm{~B} .02 \mathrm{R}=\mathrm{CH}_{3}$

2B. 03

Figure 2B.1: Natural nucleosides having other than ribo sugar part

These discoveries led to a large number of nucleoside analogues that were tested for the treatment of viral diseases. ${ }^{6}$ Among the US FDA approved compounds used in the treatment of acquired immunodeficiency syndrome (AIDS), the $2^{\prime}, 3^{\prime}-$ didehydro-3'-deoxythymidine d4T (2B.04), ${ }^{7-9}$ the carbocyclic 2-amino-6cyclopropylaminopurine analogue abacavir (2B.05) ${ }^{10,11}$ and AZT (2B.06) and showed potent anti-human immunodeficiency virus (HIV) activity (Figure. 2B.2).

2B. 04

2B. 05

2B. 06

Figure 2B.02: Stavudine 2B.04, abacavir 2B. 05 and AZT 2B. 06

However, side effects and drug-resistant variants remained a problem with these antiviral agents. ${ }^{12-14}$ Moreover, the introduction of the $2^{\prime}, 3^{\prime}$-double bond in compound 2B. 04 resulted in an increased lipophilicity compared to the corresponding natural and saturated $2^{\prime}, 3$ '-dideoxynucleoside series but decreased the chemical stability in acidic medium. In the course of the search for new antiviral agents with a higher therapeutic index, the obvious emphasis was on the design of drugs with potent activity, high stability, low cytotoxicity and minimal side effects. Christophe Len and co-workers reported the synthesis of pyrimidine nucleoside analogues of d4T based on the 1,3-dihydrobenzo[c]furan core 2B.07 (Figure 2B.3). ${ }^{1516}$ This class of nucleoside with a modified glycon part was attractive because: (i) it retained the phosphorylation site; (ii) the presence of the benzene ring as electron-withdrawing group stabilized the glycosidic bond compared to the olefinic analogue: $2^{\prime}, 3^{\prime}-$ didehydro-2', 3^{\prime} '-dideoxynucleoside; (iii) the introduction of the aromatic residue increased the lipophilicity compared to d 4 T . ${ }^{17}$ In an attempt to expand the variety of nucleoside antiviral drugs, a novel range of unsaturated nucleoside analogues of d4T 2B. 08 were synthesized to explore their potential as antiviral drugs.

2B. 07

2B. 08

Figure 2B.3: Isobenzofuran and isochroman derivatives 2B. 07 and 2B. 08

The synthesis of structurally modified nucleosides has been emerging as an important area of research because some members show biological activities of medicinal interest. ${ }^{18}$ The term spironucleoside was introduced in 1990 to designate a class of spiranic sugar derivatives in which the anomeric carbon belongs to both the sugar ring and to a heterocyclic base. Data on this type of compound were reported before 1990, but only recently the term spironucleoside has been used. Of the different classes of nucleosides, the spironucleosides are probably the least well known. However, the isolation from Streptomyces hygroscopicus, in 1991, of (+)hydantocidin, ${ }^{19}$ (2B.09) the first natural spironucleoside, and later the discovery of its potent herbicidal and regulatory plant growth activities ${ }^{20}$ and its low mammalian toxicity, have resulted in great interest in the chemistry of spironucleosides (Figure 2B.4). Since then, there have been notable contributions from Miyasaka's and Paquette's groups in addition to others, to synthesize $\mathrm{C}\left(1^{\prime}\right)$-spiro-, $\mathrm{C}\left(2^{\prime}\right)$-spiro-, $\mathrm{C}\left(3^{\prime}\right)$ -spiro- and $\mathrm{C}\left(4^{\prime}\right)$-spironucleoside derivatives as conformationally restricted analogues.

Figure 2B.4: Naturally occurring spironucleoside hydantocidin
The isolation of hydantocidin 2B. 09 stimulated the synthesis of anomeric spiro nucleosides. Hiromichi Tanaka ${ }^{21}$ prepared 6-bromovinyl derivatives of 1-(2-deoxy-D-erythro-pent-1-enofuranosyl)uracils 2B.10 and developed new method for the synthesis of anomeric spiro nucleosides 2B. 11 by vinyl radical-mediated reactions (Scheme 2B.1). Later, various groups have synthesized anomeric spiro nucleosides by using radical intermediate cyclizations. ${ }^{22}$

Scheme 2B.1: Synthesis of anomeric spironucleosides

To impart some degree of conformational restriction to the natural nucleosides, several possibilities have been suggested. These include (i) synthesis of locked bicyclic and tricyclic nucleoside analogues by inserting an extra ring fused to the furanose moiety, (ii) synthesis of spironucleosides and (iii) synthesis of nucleosides of varied ring structures. Mainly researchers have reported the synthesis of fused bicyclic, tricyclic nucleosides and $C\left(4^{\prime}\right)$ - spiroannulated nucleosides, but the synthesis of $\mathrm{C}\left(3^{\prime}\right)$ - spiroannulated nucleosides has attempted only by Nielsen and coworkers in 1996. ${ }^{23}$ We have therefore taken up a project to synthesize new classes of tricyclic nucleosides containing isochroman annulated unit and C-(3') spiroannulated nucleosides.

Paquette and co-workers developed spirocyclic nucleosides with different modifications on sugar ring. In 2001 he reported the synthesis of syn- and antioxaspiro[4.4]nonalyl mimics (2B.12), ${ }^{24}(2$ B.13 $){ }^{25}$ respectively and later in a couple of years he made their carbocyclic analogues (2B.14), ${ }^{26}(\mathbf{2 B . 1 5}){ }^{27}$ (Scheme 2B.2).

Scheme 2B.2: Synthesis of syn-, anti-oxaspiro[4.4]nonalyl mimic and carbaspironucleosides.

Recently, attention has turned towards the synthesis of $C\left(4^{\prime}\right)$-spiroalkylated nucleosides having sulfur and nitrogen incorporated. The rapidity with which $2^{\prime}, 3^{\prime}-$ dideoxy-3'-thiacytidine was adopted for clinical use in the treatment of AIDS, ${ }^{28}$ and the high-level antiviral and anticancer potency of several sulfur mimics having the heteroatom at the apex position ${ }^{29}$ has ignited research in this area from several directions. Paquette's and Mandal's groups reported new sulfur containing derivatives of spironucleosides (Figure 2B.5).

2B. 16

2B. 17

2B. 18

2B. 19

$$
\begin{array}{ll}
\mathrm{R}_{1}=\mathrm{OH} / \mathrm{H}, & \mathrm{X}=\mathrm{O} / \mathrm{S} / \mathrm{CH}_{2} \\
\mathrm{R}_{2}=\mathrm{OH} / \mathrm{H}, & \mathrm{X}=\mathrm{O} / \mathrm{S} / \mathrm{CH}_{2}
\end{array}
$$

(B)

$X=N H / S / O$

Figure 2B.5: Some structurally unique spironucleosides

Jesper Wangel and co-workers in 2003 first time reported the synthesis of bicyclic $\mathrm{C}\left(2^{\prime}\right)$ - spiro ribo and arabinonucleosides via $C\left(2^{\prime}\right)$ - allyl nucleosides as key intermediates. ${ }^{30}$ As per our knowledge, except Nielsen in 1996, no report is available towards the synthesis of $\mathrm{C}\left(3^{\prime}\right)$ - spiro nucleosides. An attempt to expand the variety of nucleoside as an antiviral drugs, a novel range of unsaturated, conformationally restricted, tricyclic nucleosides containing isochroman unit and $\mathrm{C}\left(3^{\prime}\right)$ spironucleosides containing dihydroisobenzofuran system were synthesized to explore their potential as antiviral drugs.

2B.2. Present Work:

We have standardized the $[2+2+2]$-cyclotrimerization reaction on sugar derived dialkynes to synthesize enantiopure isochromans and spiroannulated dihydroisobenzofurans. As reported (in section 1, Scheme 2A.16, table 2A.1, entry 1) tricyclic compounds 2B. 21 having xylo-configuration was synthesized by applying cyclotrimerization reaction on diyne 2B. 23 and acetylene in sealed tube at $80^{\circ} \mathrm{C}$ in 4 to 5 hours. The spirocyclic compound 2B. 22 was synthesized under similar reaction conditions from diyne 2B. 24 (Scheme 2B.3).

Considering the importance of the modified nucleosides in the area of antiviral and anti-cancer drug discovery programs and as a part of our program to provide flexible methods for the synthesis of biologically active small molecules, we have identified that cyclotrimerization on sugar templates and glycosidation could be combined effectively to address the synthesis of either conformationally restricted or spiroannulated nucleosides libraries rapidly. Figure 2B. 6 describes our intended approach.

Figure 2B. 6

As indicated in Figure 2B.6, one could have flexibility in terms of the employing substrates at both the stages i.e., trimerization (in the form commercial availability of hundres of alkynes and through easy synthesis) also at the glycosidation (apart from the 5 parent nucleobases several of their analogues and
various other nitrogen containing hetercycles could be employed as glycosyl acceptors). In order to demonstrate the efficacy of our two stage flexible strategy, we have identified the simple acetylene co-trimerization product 2B. 21 as a precursor for the conformationally restricted tricyclic nucleosides and the spirocyclic sugar 2B. 22 as the starting point precursor for $\mathrm{C}\left(3^{\prime}\right)$-spiroannulated ribofuranosyl or pyranosyl nucleosides.

As described in the previous part, requisite tricyclic precursors 2B. 21 and 2B. 22 were synthesized from the corresponding diynes by following the established trimerization protocol employing acetylene as the partner. The reactions were performed on above 1 g scale to prepare the tricyclic derivatives in good amounts.

Scheme 2B.3: Synthesis of tricyclic compounds 2B.21and 2B. 22 by employing Rhcatalyzed $[2+2+2]$-cyclotrimerization reaction

Synthesis of glycosyl donors

The tricyclic sugar derivative 2B. 21 and 2B. 22 were subjected to acid catalyzed acetonide hydrolysis to deprotect the acetonide and TBS groups. Thus heating compound 2B. 21 or 2B. 22 in 60% acetic acid at reflux temperature for two hours gave the corresponding lactols. Acetylation of these lactols by using acetic anhydride and $\mathrm{Et}_{3} \mathrm{~N}$ in dichloromethane afforded anomeric mixture of diacetates 2B. 25 (inseparable on silica gel column) and the pyranosyl triacetate 2B. 26 (separable
on silica gel column) derivatives in 87% and 83% yields over two steps respectively (Scheme 2B.4).

Scheme 2B. 4

Mixture of diacetate 2B. 25 and triacetate 2B. 26 derivatives were characterized by spectral and analytical data. The ${ }^{1} \mathrm{H}$ NMR spectrum of 2B. 25 showed two peaks for anomeric proton at $\delta 6.16$ as singlet and at $\delta 6.53$ as doublet with 4.7 Hz coupling constant in 3:7 ratio. Two benzylic protons were resonated at $\delta 4.61$ as two doublets and at $\delta 4.79,4.84$ as two doublets with 14.5 Hz coupling constant. By comparing the integrations for two isomers, $\alpha: \beta$ ratio of diacetates is 7:3. In the ${ }^{13} \mathrm{C}$ NMR spectrum of 2B. 25 four carbonyl carbons resonated at 168.9, 169.1, 169.2 and 169.4 ppm and fout methyl carbons resonated at 20.4, 20.7, 20.9 and 2.16 ppm. Carbonyl stretching frequency of acetates gave strong absorption peak at $1751 \mathrm{~cm}^{-1}$ in IR spectrum. The ${ }^{1} H$ NMR spectrum of α isomer of 2B. 26 showed two peaks for anomeric proton at δ 6.04 as a doublet with 8.5 Hz coupling constant, two $\mathrm{C}(5)-\mathrm{H}$ showed two doublets at $\delta 4.01(J=8.1 \mathrm{~Hz})$, two benzylic protons resonated at $\delta 5.19$, 5.22 as doublets with coupling constant $J=12.0 \mathrm{~Hz}$. Observation of large coupling constants indicated the formation of pyranoside framework after hydrolysis of 1,2-acetonide and deprotection of TBS ether of compound 2B.22. Three acetates were showed peaks at 20.1, 20.3 and 20.9 ppm for methyl carbons, and $169.0,169.3$ and 169.4 ppm for carbonyl carbons in the ${ }^{13} \mathrm{C}$ NMR spectrum of α isomer of 2B.26.

Treatment of anomeric mixture of diacetate 2B. 25 with uracil, thymine, 5flurouracil and Cbz protected cytosine under modified Vorbrüggen ${ }^{31}$ conditions
[refluxing the diacetate with BSA N, O-bis(trimethylsilyl)acetamide and base in acetonitrile, then after, adition of TMSOTf and heating at $50^{\circ} \mathrm{C}$ for 2 h$]$ afforded the protected nucleosides 2B.27-2B. 30 respectively (Scheme 2B.5).

Scheme 2B.5: Synthesis of protected nucleosides

Synthesized protected nucleosides 2B.27-2B. 30 were characterized by extensive NMR spectroscopy. The anomeric proton of 2 B .27 resonated at $\delta 6.16$ with coupling constant $J=1.6 \mathrm{~Hz}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum. The $\mathrm{C}(2)-\mathrm{H}$ showed doublet at $5.22(J=1.6 \mathrm{~Hz})$, olefinic 3^{\prime} proton of uracil displayed double of doublet at $\delta 5.60$ with $J=2.1,8.2 \mathrm{~Hz}$ and 2^{\prime} proton resonated at down field $\delta 7.11$ with $J=2.1,8.2 \mathrm{~Hz}$. The amide hydrogen of $2 \mathbf{B} .27$ showed broad singlet at $\delta 9.21$. Olefinic 3^{\prime} carbon resonated at 102.5 ppm and 2^{\prime} carbon resonated at 140.5 ppm in the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 2B.27. β-configuration of glycosidic linkage was further confirmed by single crystal X-ray analysis of 2B. 27 (Figure 2B.7).

Figure 2B.7: ORTEP structure of compound 2B. 27

Subjecting 2B.27-2B. 29 to Zemplen's deacetylation afforded the tricyclic nucleosides 2B.31-2B. 33 (Scheme 2B.6). The structural integrity and β-configuration of compound 2B. 31 was established with the help of COSY and NOESY. For example, in the ${ }^{1} \mathrm{H}$ NMR spectrum of 2B.31, the characteristic $\mathrm{C}(1)-\mathrm{H}$ and $\mathrm{C}(2)-\mathrm{H}$ of the furanose ring appeared at $\delta 5.89$ (s) and 4.52 (s) respectively. The $\mathrm{C}(2)-\mathrm{OH}$ resonated as a broad singlet at $\delta 5.65$ and $\mathrm{C}(4)-\mathrm{H}, \mathrm{C}(3)-\mathrm{H}$ appeared as doublets respectively at $\delta 5.24, \delta 4.22$ with $J=1.9 \mathrm{~Hz}$. The olefinic protons of uracil unit resonated as doublets at $\delta 5.48$ and 7.15 with coupling constant $J=8.0 \mathrm{~Hz}$. In the NOESY spectrum of 2B.31, C(2)-OH showed spatial interaction with $\mathrm{C}(1)-\mathrm{H}$ and $\mathrm{C}(4)-\mathrm{H}$ showed spatial interaction with $\mathrm{C}(3)-\mathrm{H}$ as well as with $\mathrm{C}(1)-\mathrm{H}$. A similar β configuration was assigned for 2B. 32 and 2B. 33 by comparing their chemical shifts and coupling constants with that of 2B. 31 (Table 2B.1). Further it was confirmed with the help of single crystal X-ray analysis of 2B. 32 (Figure 2B.8).

Scheme 2B. 6

Table 2B.1: Chemical Shifts and coupling constants of 2B.31-2B. 33

Entry	H-C(1)	H-C(2)	H-C(3)	H-C(4)	$\begin{gathered} \mathbf{C - 1} \\ (\mathrm{ppm}) \end{gathered}$
2B. 31	5.89 (s)	4.52 (s)	$\begin{gathered} 4.22(\mathrm{~d}, J= \\ 1.9 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 5.24(\mathrm{~d}, J= \\ 1.9 \mathrm{~Hz}) \end{gathered}$	94.2
2B. 32	5.93 (s)	4.52 (s)	$\begin{gathered} 4.25(\mathrm{~d}, J= \\ 2.6 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 5.23(\mathrm{~d}, J= \\ 2.6 \mathrm{~Hz}) \end{gathered}$	93.8
2B. 33	$\begin{aligned} & 5.87(\mathrm{~d}, J \\ = & 1.0 \mathrm{~Hz}) \end{aligned}$	4.52 (s)	$\begin{gathered} 4.26(\mathrm{~d}, J= \\ 2.6 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 5.24(\mathrm{~d}, J= \\ 2.6 \mathrm{~Hz}) \end{gathered}$	92.9

Figure 2B.8: ORTEP structure of compound 2B. 32

Treatment of anomeric mixture of triacetates 2B. 26 with uracil, thymine and 5-flurouracil under modified Vorbrüggen ${ }^{31}$ conditions [refluxing the diacetate with N, O-bis(trimethil silyl)cetamide and base in acetonitrile followed by the addition of TMSOTf and heating at $50{ }^{\circ} \mathrm{C}$ for 2 h] afforded the protected nucleosides 2B.342B. 36 respectively (Scheme 2B.7).

Scheme 2B. 7

Diacetate derivatives of nucleosides 2B.34-2B. 36 were characterized by spectroscopic and analytical data. Methyl protons of thymine resonated at $\delta 2.91$ as a singlet, anomeric proton and $\mathrm{C}(2)-\mathrm{H}$ resonated at $\delta 6.18$ and 5.35 with coupling constant 9.5 Hz in the ${ }^{1} \mathrm{H}$ NMR spectrum of 2B.35. Two benzylic protons of pyranose ring showed two doublet of doublets at $\delta 4.05$ and $5.33(J=7.3,9.1 \mathrm{~Hz})$. The two benzylic protons of isobenzofuran core resonated as doublets at $\delta 5.19$ and 5.25 with coupling constant ($J=12.1 \mathrm{~Hz}$). In ${ }^{13} \mathrm{C}$ NMR spectrum of 2 B .35 , two triplets for methylene carbon atoms were resonated at 64.5 and 74.2 ppm . Mass spectrum and elemental analysis were in well agreement with proposed structure. The β configuration of compound 2B. 34 was further confirmed with the help of single crystal X-ray analysis (Figure 2B.9).

Figure 2B.9: ORTEP structure of compound 2B. 34

Subjecting 2B.34-2B. 36 to Zemplen's deacetylation afforded the tricyclic spironucleosides 2B.37-2B. 39 (Scheme 2B.8). The structural integrity and β -
configuration of compound 2B. 38 was established with the help of COSY and NOESY. For example, in the ${ }^{1} \mathrm{H}$ NMR spectrum of 2B.38, the thymine $\mathrm{C}\left(6^{\prime}\right)-\mathrm{H}$ appeared as a quartet at $\delta 7.63 \mathrm{ppm}(J=1.1 \mathrm{~Hz})$. The characteristic $\mathrm{C}(1)-\mathrm{H}$ and $\mathrm{C}(2)-\mathrm{H}$ of the furanose ring appeared at $\delta 5.90(\mathrm{~d})$ and 4.23 (t$)$ respectively with $J_{1,2}=$ 9.5 Hz . The $\mathrm{C}(2)-\mathrm{OH}$ resonated as a doublet at $4.17 \mathrm{ppm}(J=9.2 \mathrm{~Hz})$ indicating a strong intramolecular hydrogen bonding and $\mathrm{C}(4)-\mathrm{H}$ appeared as a dd ($\delta 4.07 \mathrm{ppm}, J$ $=10.9,5.5 \mathrm{~Hz})$. In the NOESY spectrum of $2 \mathrm{~B} .38, \mathrm{C}(1)-\mathrm{H}$ showed through spatial interaction with $\mathrm{C}(4)-\mathrm{H}$ and $\mathrm{C}(2)-\mathrm{OH}$ thus confirming the assigned β-configuration. A similar β-configuration was assigned for 2B. 37 and 2B. 39 by comparing their chemical shifts and coupling constants with that of 2B. 38 (Table 2B.2).

Scheme 2B. 8

Table 2B.2: Chemical shifts and coupling constants of 2B.37-2B. 39

Entry	$\mathbf{H - C (1)}$	H-C(2)	H-C(3)	H-C(5')
	$5.86(\mathrm{~d}, J=$	$4.06(\mathrm{~d}, J=9.5$	$3.94(\mathrm{dd}, J=5.4$,	$3.85(\mathrm{~d}, J=$
$2 \mathbf{2 B . 3 7}$	$9.5 \mathrm{~Hz})$	$\mathrm{Hz})$	$10.8 \mathrm{~Hz})$	$10.8 \mathrm{~Hz})$
	$5.90(\mathrm{~d}, J=$	$4.23(\mathrm{dd}, J=8.8$,	$3.93(\mathrm{dd}, J=5.5$,	$3.83(\mathrm{~d}, J=$
2	2B.38	$9.5 \mathrm{~Hz})$	$9.5 \mathrm{~Hz})$	$10.7 \mathrm{~Hz})$
	$5.84(\mathrm{dd}, J=$	$4.02(\mathrm{~d}, J=9.5$	$3.95(\mathrm{dd}, J=5.3$,	$3.85(\mathrm{~d}, J=$
2	2B.39	$1.5,9.5 \mathrm{~Hz})$	$\mathrm{Hz})$	$10.7 \mathrm{~Hz})$

Conclusion:

To conclude, a simple approach for the synthesis of linear tricyclic and spirotricyclic nucleosides through the $[2+2+2]$-cyclotrimerization on sugar templates has been developed. When compared with the other protocols available for spironucleosides, our approach is characterized by the enormous flexibility at two stages. Considering the importance of modified nucleosides as antiviral and anticancer agents and as potential antisense therapeutic and diagnostic agents, the results from the present investigation could be further explored for a strategic construction of these molecular skeletons. Work in this direction is ongoing in our laboratory. Also, incorporation of the spirocyclic nucleoside monomers into oligodeoxynucleosides and their biological evaluation is presently progressing in our lab.

2B.3. Experimental:

Diacetetes (2B.25)

Procedure A:

Compound 2B. 21 ($700 \mathrm{mg}, 2.82 \mathrm{mmol}$) in 60% acetic acid (20 mL) was heated under reflux temperature for 2 h . The reaction mixture was neutralized by slow addition of solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted in ethyl acetate. Combined ethyl acetate extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure.

At $0{ }^{\circ} \mathrm{C}$, a solution of above lactols ($570 \mathrm{mg}, 3.5 \mathrm{mmol}$), TEA (5 mL) and catalytic DMAP in dry DCM $(15 \mathrm{~mL})$ was treated with acetic anhydride $(0.77 \mathrm{~mL}$, 8.22 mmol) and stirred at rt for 1 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with 2 N HCl and extracted in DCM. Combined organic phase was washed with sat. NaHCO_{3} and water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification of the residue by silica gel column chromatography (15% ethyl acetate in petroleum ether) gave a mixture of diacetates $\mathbf{2 B . 2 5}$ (717 mg , 87% yield) as colorless oil.

$$
\begin{aligned}
& \text { Mol. Formula } \quad: \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{6} \\
& \operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v}: 3032,2903,1751,1638,1432,1374,1242,1219,1087, \\
& \text { 1012, } 925,909 \mathrm{~cm}^{-1} \text {. } \\
& { }^{1}{ }^{1} \text { NMR } \quad: \delta 1.94,2.12,2.13,2.16(4 \mathrm{~s}, 6 \mathrm{H}), 4.26(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 0.3 \mathrm{H}) \text {, } \\
& \left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 4.42(\mathrm{dd}, J=2.4,4.3 \mathrm{~Hz}, 0.7 \mathrm{H}), 4.61(2 \mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}) \text {, } \\
& 4.79,4.84(2 \mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.30 \\
& \text { (s, 0.3H), } 5.36 \text { (dd, } J=2.4,4.6 \mathrm{~Hz}, 0.7 \mathrm{H}), 6.16(\mathrm{~s}, 0.3 \mathrm{H}), 6.52 \\
& \text { (d, } J=4.7 \mathrm{~Hz}, 0.7 \mathrm{H}), 7.06-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 2 \mathrm{H}) \text {, } \\
& \text { 7.42-7.50 (m, 1H). } \\
& { }^{13} \mathbf{C} \text { NMR : } 20.4 \text { (q), } 20.7 \text { (q), } 20.9 \text { (q), } 21.0 \text { (q), } 66.5 \text { (t), } 66.9 \text { (t), } 72.7 \\
& \left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad \text { (d), } 75.7 \text { (d), } 77.7 \text { (d), } 78.8 \text { (d), } 79.2 \text { (d), } 81.6 \text { (d), } 94.4 \text { (d), } \\
& 99.6 \text { (d), } 124.2 \text { (d), } 124.4 \text { (d), } 127.6 \text { (d), } 128.4 \text { (d), } 128.6 \text { (d), } \\
& 129.5 \text { (} \mathrm{s} \text {), } 129.9 \text { (d, 2C), } 130.0 \text { (d), } 130.3 \text { (s), } 134.3 \text { (s), } 134.8 \\
& \text { (s), } 168.9 \text { (s), } 169.1 \text { (s), } 169.2 \text { (s), } 169.4 \text { (s) ppm. }
\end{aligned}
$$

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 315.0\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$, $331.1\left(10 \%,[\mathrm{M}+\mathrm{K}]^{+}\right)$.
Elemental Calcd.: C, 61.64; H, 5.52\%.
Analysis Found: C, 61.50; H, 5.67\%.
(2R,3R,3aS,9bR)-2-(2,4-Dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,3a,5,9b-tetrahydro-2H-furo[3,2-c]isochromen-3-yl acetate (2B.27)

Procedure B:

A solution of acetates 2B. 25 ($100 \mathrm{mg}, 0.34 \mathrm{mmol}$), uracil ($77 \mathrm{mg}, 0.68 \mathrm{mmol}$) and N, O-bis(trimethylsilyl)acetamide ($0.42 \mathrm{~mL}, 1.71 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(5$ mL) was heated to reflux for 15 min . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and TMSOTf $(0.12 \mathrm{~mL}, 0.68 \mathrm{mmol})$ was added. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h , quenched with cold aq. NaHCO_{3} and extracted with EtOAc. The combined organic layer was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification of the residue by silica gel column chromatography (45% ethyl acetate in petroleum ether) afforded the nuleoside 2B. 27 ($97 \mathrm{mg}, 82 \%$ yield) as crystalline solid.

Mol. Formula $: \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$
M. P.
: $214-216^{\circ} \mathrm{C}$
$[\alpha]_{D}{ }^{25}$
: - 8.6 (c 1.0, CHCl_{3}).
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v}: 3241,3032,2927,2253,1750,1686,1461,1371,1320$, $1268,1225,1108,1066,909 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}^{\prime}$ NMR $\quad \delta 2.17(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, $\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) 1 \mathrm{H}\right), 4.87(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=2.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=2.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.48(\mathrm{~m}$, 4H), 9.21 (bs, 1H).
${ }^{13}$ C NMR : 20.7 (q), 67.3 (t), 75.4 (d), 78.8 (d), 81.7 (d), 89.3 (d), 102.5
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad$ (d), 124.4 (d), 127.8 (d), 127.9 (s), 129.4 (d), 130.6 (d), 134.1
(s), 140.5 (d), 150.2 (s), 163.1 (s), 169.2 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 345.1\left(6 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 367.0\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
Elemental Calcd.: C, 59.30; H, 4.68; N, 8.14 \%.
Analysis Found: C, 59.09; H, 4.80; N, 8.26 \%.

1-((2R,3R,3aR,9bR)-3-Hydroxy-3,3a,5,9b-

 tetrahydro-2H-furo [3,2-c]isochromen-2-yl)pyrimidine-2,4(1H,3H)-dione (2B.31)

Procedure C:

A solution of 2B. 27 ($80 \mathrm{mg}, 0.36 \mathrm{mmol}$) and catalytic NaOMe in methanol (2 mL) was stirred at rt for 20 min . Reaction mixture was concentrated under reduced pressure and the crude was purified by silica gel column chromatography to afford tricyclic nucleoside 2B. 31 ($67 \mathrm{mg}, 96 \%$ yield) as white solid.

Mol. Formula : $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}$
M. P. $\quad: 140-143{ }^{\circ} \mathrm{C}$
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{25} \quad:+60.4\left(\right.$ c $\left.1.9, ~_{\text {CHCl }}^{3}\right)$.
IR ($\left.\mathbf{C H C l}_{\mathbf{3}}\right) \widetilde{v} \quad: 3383,3218,3108,3068,2923,2844,2252,1775,1695$, $1464,1393,1322,1265,1114,1097,1059,999 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1} \mathbf{H}$ NMR $\quad: \delta 4.22(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=15.1 \mathrm{~Hz}$,
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) 1 \mathrm{H}\right), 4.72(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.48$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{bs}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=$ $2.3,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.36(\mathrm{~m}, 2 \mathrm{H})$, 7.51 (dd, $J=2.3,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 10.61$ (bs, 1H).
${ }^{13}$ C NMR : 66.9 (t), 77.1 (d), 80.1 (d), 80.7 (d), 94.2 (d), 101.1 (d),
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad 124.3$ (d), 127.8 (d), 128.8 (s), 129.2 (d), 130.8 (d), 134.3 (s), 140.7 (d), 151.1 (s), 164.2 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 325.0\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 341.0\left(7 \%,[\mathrm{M}+\mathrm{K}]^{+}\right)$.

Elemental
Analysis

Calcd.: C, 59.60; H, 4.67; N, 9.27 \%.
Found: C, 59.52; H, 4.76; N, 9.18 \%.

```
(2R,3R,3aS,9bR)-2-(5-Methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,3a,5,9b-tetrahydro-2H-furo [3,2-c]isochromen-3-yl acetate (2B.28)
```


By following procedure B, acetates 2B. 25 ($100 \mathrm{mg}, 0.34 \mathrm{mmol}$) was subjected to glycosidation under Vorbruggen conditions with thymine ($86 \mathrm{mg}, 0.68$ mmol). After usual workup and purification, the tricyclic nuleoside 2B. 28 (97 mg , 79% yield) was obtained as white solid.

Mol. Formula $: \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$
M. P. $\quad: 192-194{ }^{\circ} \mathrm{C}$
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{25} \quad:-18.9\left(\right.$ c $\left.1.0, \mathrm{CHCl}_{3}\right)$.
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v}: 3196,3019,2927,2851,1752,1697,1466,1372,1270$, $1228,1110,1061,875 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1}$ H NMR $\quad: \delta 1.77(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 4.20(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) 1 \mathrm{H}\right), 4.74(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92$ (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=2.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32-7.38$ (m, 2H), 7.46 (dd, $J=2.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.03$ ($\mathrm{s}, 1 \mathrm{H}$).
${ }^{13}$ C NMR : 12.5 (q), 20.6 (q), 67.2 (t), 74.7 (d), 78.9 (d), 81.6 (d), 88.9
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad(\mathrm{d}), 111.0(\mathrm{~s}), 124.2$ (d), 127.7 (d), 127.9 (s), 129.2 (d), 130.4
(d), 134.1 (s), 136.3 (d), 150.4 (s), 163.9 (s), 169.4 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 359.3\left(19 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 381.2\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
Elemental Calcd.: C, 60.33; H, 5.06; N, 7.82 \%.
Analysis Found: C, 60.26; H, 4.98; N, 7.76 \%.

1-((2R,3R,3aR,9bR)-3-Hydroxy-3,3a,5,9b-tetrahydro-2H-furo 3 3,2-c]isochromen-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (2B.32)

By following procedure C, 2B. 28 ($70 \mathrm{mg}, 0.2 \mathrm{mmol}$) was subjected to Zemplen's deacetylation reaction to give nucleoside 2B. 32 ($57 \mathrm{mg}, 95 \%$ yield) as crystalline solid.

Mol. Formula $: \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$
M. P.
: 177-179 ${ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{25}$
: +40.0 (c 1.0, MeOH).
IR (Nujol) $\tilde{v} \quad: 3392,3220,3065,2924,2854,1668,1462,1377,1270$, 1099, 1062, $916 \mathrm{~cm}^{-1}$.
${ }^{1}$ H NMR $\quad: \delta 1.61(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.25(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}$,
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) 1 \mathrm{H}\right), 4.64(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{bs}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=$ $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.38$ (m, 2H), 7.47$7.54(\mathrm{~m}, 1 \mathrm{H}), 10.62(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}$ C NMR $\quad: 12.4$ (q), 66.8 (t), 76.8 (d), 80.2 (d), 80.8 (d), 93.8 (d), 109.2
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad$ (s), 124.2 (d), 127.8 (d), 128.9 (s$), 129.1$ (d), 130.7 (d), 134.3
(s), 137.0 (d), 151.0 (s), 164.7 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 339.1\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 355.1\left(13 \%,[\mathrm{M}+\mathrm{K}]^{+}\right)$.
Elemental Calcd.: C, 60.75; H, 5.10; N, 8.86 \%.
Analysis Found: C, 60.59; H, 4.97; N, 8.98 \%.
(2R,3R,3aS,9bR)-2-(5-Fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,3a,5,9b-tetrahydro-2H-furo[3,2-c]isochromen-3-yl acetate (2B.29)

By following the procedure B, subjecting acetates 2B. 25 ($100 \mathrm{mg}, 0.34 \mathrm{mmol}$) and 5-flurouracil ($89 \mathrm{mg}, 0.68 \mathrm{mmol}$) to Vorbruggen modified glycosidation conditions gave the nuleoside 2B. 29 ($96 \mathrm{mg}, 78 \%$ yield) as a white solid.

Mol. Formula $\quad: \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}_{6}$

M. \mathbf{P}.
: 194-196 ${ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{25}$
: +2.2 (c 1.1, CHCl_{3}).
IR ($\left.\mathbf{C H C l}_{3}\right) \widetilde{v}: 3239,3109,3078,3024,2925,2894,2853,1752,1715$, $1466,1373,1345,1268,1224,1091,1072,879 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1} \mathbf{H}$ NMR $\quad: \delta 2.17(\mathrm{~s}, 3 \mathrm{H}), 4.20(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=15.2$
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \mathrm{Hz}, 1 \mathrm{H}\right), 4.90(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.22(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J$ $=2.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.46(\mathrm{~m}, 1 \mathrm{H})$, $7.50(\mathrm{~d}, \mathrm{~J}=6.32 \mathrm{~Hz}, 1 \mathrm{H}), 9.65(\mathrm{bs}, 1 \mathrm{H})$.
${ }^{13}$ C NMR : 20.5 (q), 67.1 (t), 75.4 (d), 78.4 (d), 81.5 (d), 89.4 (d), 124.4
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$
(d), 124.5 (d), 125.2 (d), 127.5 (s), 127.7 (d), 129.4 (d), 130.5
(d), 133.9 (s), 137.9 (s), 142.6 (s), 149.0 (s), 156.7 (s), 157.2
(s), 169.4 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 385.2\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
Elemental Calcd.: C, 56.36; H, 4.17; N, 7.73 \%.
Analysis Found: C, 56.25; H, 4.29; N, 7.60 \%.

5-Fluoro-1-((2R,3R,3aR,9bR)-3-hydroxy-3,3a,5,9b-tetrahydro-2H-furo[3,2-c]isochromen-2-yl)pyrimidine-2,4(1H,3H)-dione (2B.33)

By following procedure C, 2B. 29 ($85 \mathrm{mg}, 0.23 \mathrm{mmol}$) was subjected to Zemplen's deacetylation to procure nucleoside 2B.33 ($70 \mathrm{mg}, 92 \%$ yield) as crystalline solid.

Mol. Formula $\quad: \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{O}_{5}$
M. P.
: 142-144 ${ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{25}$
$:+58.5(c 1.3, \mathrm{MeOH})$.
IR (Nujol) $\widetilde{v} \quad: 3400,3217,3067,2924,2854,1712,1461,1377,1256$, $1081,964,909,761 \mathrm{~cm}^{-1}$.
${ }^{1}$ H NMR $\quad: \delta 4.26(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=15.1 \mathrm{~Hz}$,
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) 1 \mathrm{H}\right), 4.76(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.48$ (bs, 1H), $5.87(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=2.2,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22$ (d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.41$ (m, 2H), 7.50 (dd, J $=2.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 10.84(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR $\quad: 66.7$ (t), 76.4 (d), 80.1 (d), 92.9 (d), 124.1 (d), 124.9 (d), $\left(\mathrm{CDCl}_{3}+\right.$ Methanol 125.3 (d), 127.5 (d), 128.1 (s), 129.0 (d), 130.3 (d), 133.9 (s$)$, $\left.-\mathrm{D}_{4}, 50 \mathrm{MHz}\right) \quad 138.4(\mathrm{~s}), 140.7(\mathrm{~s}), 149.1(\mathrm{~s}) \mathrm{ppm}$.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 321.1\left(4 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 343.1\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 359.0(13 \%$, $\left.[\mathrm{M}+\mathrm{K}]^{+}\right)$.
Elemental Calcd.: C, 56.25; H, 4.09; N, 7.75 \%.
Analysis Found: C, 56.37; H, 4.18; N, 7.83 \%.

(2R,3R,3aS,9bR)-2-(4-

(Benzyloxycarbonylamino)-2-oxopyrimidin- $1(2 \mathrm{H})$-yl)-3,3a,5,9b-tetrahydro-2H-furo [3,2-c]isochromen-3-yl acetate (2B.30)

By following procedure B, employing acetates 2B. 25 ($80 \mathrm{mg}, 0.27 \mathrm{mmol}$) and Cbz-cytosine ($134 \mathrm{mg}, 0.55 \mathrm{mmol}$) to Vorbruggen conditions, gave the protected nuleoside 2B. 30 ($99 \mathrm{mg}, 76 \%$ yield) as gummy solid.

Mol. Formula : $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{7}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:+40.4\left(c 1.3, \mathrm{CHCl}_{3}\right)$.
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v}: 3145,3015,2926,2851,1752,1665,1624,1555,1498$, $1373,1328,1268,1219,1105,1073,995,750 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1}$ H NMR $\quad: \delta 2.17(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=15.2 \mathrm{~Hz}$,
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) 1 \mathrm{H}\right), 4.76(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (2s, 2H), $5.34(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 7.00-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.34$ $7.40(\mathrm{~m}, 7 \mathrm{H}), 7.50-7.55(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR : 20.7 (q), 66.9 (t), 67.6 (t), 76.4 (d), 78.2 (d), 81.1 (d), 91.0 $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad(\mathrm{d}), 124.3$ (d), 127.7 (d), 128.0 (d), 128.1 (s), 128.3 (d), 128.4 (d), 129.3 (d), 130.5 (d), 134.0 (s), 135.0 (s), 144.7 (d), 152.3 (s), 154.7 (s), 162.4 (s), 169.1 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 478.3\left(18 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 500.3\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 516.3(14 \%$, $\left.[\mathrm{M}+\mathrm{K}]^{+}\right)$.

Elemental
Analysis

Calcd.: C, 59.79; H, 5.02; N, 13.95 \%.
Found: C, 56.67; H, 4.96; N, 14.04 \%.

Triacetates (2B.26)

By following procedure A, compound 2B. 22 ($600 \mathrm{mg}, 1.53 \mathrm{mmol}$) was hydrolyzed to triol and subsequent acetylation by treating it with acetic anhydride gave triacetates 2B. 26 ($462 \mathrm{mg}, 83 \%$ yield) as colorless oil.

Mol. Formula	$: \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{8}$
IR (CHCl $\left.{ }_{3}\right) \widetilde{v}$	$: 3025,2952,2872,1751,1611,1463,1371,1265,1070$,
	$1039,941,755 \mathrm{~cm}^{-1}$.
	$: 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$,
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$	$2 \mathrm{H}), 5.19(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$	
	$5.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=$

$8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=7.87 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.33(\mathrm{~s}, 3 \mathrm{H})$.

$$
\begin{array}{ll}
{ }^{13} \mathbf{C} \text { NMR } & : 20.1(\mathrm{q}), 20.3(\mathrm{q}), 20.9(\mathrm{q}), 63.1(\mathrm{t}), 70.2(\mathrm{~d}), 71.9(\mathrm{~d}), 74.2 \\
\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) & (\mathrm{t}), 90.0(\mathrm{~s}), 91.8(\mathrm{~d}), 120.3(\mathrm{~d}), 122.0(\mathrm{~d}), 127.7(\mathrm{~d}), 128.9 \\
& \text { (d), 134.7(s),140.6(s),169.0(s),169.3(s),169.4(s)ppm.}
\end{array}
$$

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 387.2\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 403.2\left(12 \%,[\mathrm{M}+\mathrm{K}]^{+}\right)$.
Elemental
Calcd.: C, 59.34; H, 5.53 \%.
Analysis
Found: C, 59.22; H, 5.60 \%.
(2R,2'R,3'R,5'R)-2'-(2,4-Dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2', $\mathbf{3}^{\prime}, 5^{\prime}, 6^{\prime}$ 'tetrahydro-3H-spiro[benzofuran-2,4'-pyran]-3',5'-diyl diacetate (2B.34)

According to procedure B, the glycosidation of triacetates 2B. 26 (120 $\mathrm{mg}, 0.33 \mathrm{mmol}$) with uracil ($74 \mathrm{mg}, 0.66 \mathrm{mmol}$) under Vorbruggen conditions gave the nuleoside 2B. 34 ($115 \mathrm{mg}, 84 \%$ yield) as crystalline solid.

Mol. Formula : $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{8}$
M. P. $\quad: 213-215{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:+52.7\left(c 1.1, \mathrm{CHCl}_{3}\right)$.
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v} \quad: 3214,3021,2962,2928,2873,1754,1695,1634,1456$, 1373, 1219, 1071, 1041, 810, $765 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1}$ H NMR $\quad: \delta 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{~d}$,
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad J=12.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.22(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.33(\mathrm{~m}$, $2 \mathrm{H}), 5.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-$ $7.27(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.10(\mathrm{bs}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\quad: 19.8$ (q), 20.2 (q), 64.4 (t), 69.8 (d), 71.2 (d), 74.2 (t), 79.5
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad(\mathrm{d}), 89.6$ (s), 103.1 (d), 120.5 (d), 121.4 (d), 127.7 (d), 129.0
(d), 134.3 (s), 139.7 (d), 140.6 (s), 150.5 (s), 163.0 (s), 169.3 (s), 169.6 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 417.5\left(40 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 439.5\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 455.5(19 \%$, $\left.[\mathrm{M}+\mathrm{K}]^{+}\right)$.

Elemental Calcd.: C, 57.69; H, 4.84; N, 6.73 \%.
Analysis
Found: C, 57.56; H, 4.94; N, 6.86 \%.

1-((2R,2'R,3'R,5'R)-3',5'-Dihydroxy-2',3',5',6'-tetrahydro-3H-spiro[benzofuran-2,4'-pyran]-2'-yl)pyrimidine-2,4(1H,3H)-dione (2B.37)

By following procedure C, 2B. 34 ($90 \mathrm{mg}, 0.22 \mathrm{mmol}$) was subjected to Zemplen's deacetylation to afford nucleoside 2B. 37 ($68 \mathrm{mg}, 95 \%$ yield) as white solid.

Mol. Formula $: \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$
M. \mathbf{P}
: $138-140{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{25}$
$:+56.5(c 0.4, \mathrm{MeOH})$.
IR (nujol) $\widetilde{v} \quad: 3393,3018,2961,2854,1679,1459,1377,1243,1062 \mathrm{~cm}^{-1}$.
${ }^{1}$ H NMR $\quad: \delta 3.85(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=5.4,10.8 \mathrm{~Hz}, 1 \mathrm{H})$,
(Methanol-D ${ }_{4}$,
4.03 (dd, $J=5.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ $200 \mathrm{MHz})$ (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=6.1,1.55$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30-7.35$ (m, 2H), 7.38-7.40 (m, 1H), 7.79 (d, $J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR : $68.8(\mathrm{t}), 71.4$ (d), 72.7 (d), $75.8(\mathrm{t}), 83.7$ (d), 93.9 (s$), 103.2$
(Methanol-D 4 , 50 (d), 121.8 (d), 122.3 (d), 128.6 (d), 129.4 (d), 139.5 (s), 142.9
MHz)
(d), 143.0 (s), 152.9 (s), 166.1 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 333.60\left(19.12 \%,[\mathrm{M}+1]^{+}\right), 355.60\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 371.57$
($\left.11.03 \%,[\mathrm{M}+\mathrm{K}]^{+}\right)$.

Elemental
Analysis

Calcd.: C, 57.83; H, 4.85; N, 8.43 \%.
Found: C, 57.95; H, 4.98; N, 8.56 \%.
($2 R, 2^{\prime} R, 3^{\prime} R, 5^{\prime} R$)-2'-(5-Methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2', $3^{\prime}, 5^{\prime}, 6^{\prime}$ 'tetrahydro-3H-spiro[benzofuran-2,4'-pyran]-3',5'-diyl diacetate (2B.35)

By following procedure B, glycosidation of triacetates 2B.26 (110 mg, 0.30 mmol) with thymine ($76 \mathrm{mg}, 0.60 \mathrm{mmol}$) under Vorbruggen conditions gave the nuleoside 2B. 35 ($99 \mathrm{mg}, 76 \%$ yield) as crystalline solid.

Mol. Formula : $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8}$
M. P. $\quad: 158-160^{\circ} \mathrm{C}$
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{25} \quad:+20.0\left(c 1.2, \mathrm{CHCl}_{3}\right)$.
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v} \quad: 3389,3020,2874,1745,1686,1461,1373,1216,1150$, 1071, 1042, $985 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1} \mathbf{H}$ NMR $\quad: \delta 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 4.05(\mathrm{dd}, J=7.3$,
$\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad 9.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.19(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=12.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.33(\mathrm{dd}, J=7.3,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.18 (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.32(\mathrm{~m}$, $3 \mathrm{H}), 9.37$ (bs, 1H).
${ }^{13} \mathbf{C}$ NMR $\quad: 12.4$ (q), 19.9 (q), 20.2 (q), 64.5 (t), 69.9 (d), 71.3 (d), 74.2
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right)$
(t), 79.5 (d), 89.7 (s), 111.5 (s$), 120.5$ (d), 121.5 (d), 127.7
(d), 129.1 (d), 134.5 (s), 135.3 (d), 140.7 (s), 150.6 (s), 163.7
(s), 169.3 (s), 169.6 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 431.2\left(10 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 453.3\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 469.3(8 \%$, $\left.[\mathrm{M}+\mathrm{K}]^{+}\right)$.
Elemental Calcd.: C, $58.60 ; \mathrm{H}, 5.15 ; \mathrm{N}, 6.51 \%$.
Analysis Found: C, 58.76; H, 4.99; N, 6.63 \%.

1-((2R,2'R,3'R,5'R)-3',5'-Dihydroxy-2', 3',5',6'-tetrahydro-3H-spiro[benzofuran-2,4'-pyran]-2'-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (2B.38)

By following procedure C, compound 2B. 35 ($80 \mathrm{mg}, 0.19 \mathrm{mmol}$) was subjected to Zemplen's deacetylation to afford nucleoside 3B. 38 ($58 \mathrm{mg}, 90 \%$ yield) as crystalline solid.

$$
\begin{aligned}
& \text { Mol. Formula }: \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \\
& \text { M. P. } \quad: 116-118{ }^{\circ} \mathrm{C} \\
& {[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{25} \quad:+30.0(c 0.8, \mathrm{MeOH}) \text {. }} \\
& \text { IR (nujol) } \tilde{v} \quad: 3371,3017,2925,2855,1653,1463,1377,1064,762 \mathrm{~cm}^{-1} \text {. } \\
& { }^{1} \text { H NMR } \quad: \delta 1.85(\mathrm{~d}, J=1.07 \mathrm{~Hz}, 3 \mathrm{H}), 3.83(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91 \\
& \text { (Acetone- } \mathrm{D}_{6}, 200(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=5.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.11(\mathrm{~m}, 1 \mathrm{H}) \text {, } \\
& \text { MHz) } \\
& 4.17(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=8.8,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24 \\
& \text { (d, } J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J= \\
& 9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.40- \\
& 7.42(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{q}, \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 10.12(\mathrm{bs}, 1 \mathrm{H}) \text {. } \\
& { }^{13} \text { C NMR } \quad: 12.3 \text { (q), } 68.5 \text { (t), } 71.1 \text { (d), } 72.2 \text { (d), } 75.3 \text { (t), } 82.8 \text { (d), } 93.5 \\
& \text { (Acetone- } \mathrm{D}_{6}, 50 \\
& \text { MHz) } \\
& \text { ESI-MS }(\mathrm{m} / \mathrm{z}) \quad: 369.1\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 385.2\left(6 \%,[\mathrm{M}+\mathrm{K}]^{+}\right) \text {. } \\
& \text { Elemental } \\
& \text { Analysis } \\
& \text { Calcd.: C, 58.96; H, 5.24; N, } 8.09 \text { \%. } \\
& \text { Found: C, 59.10; H, 5.06; N, } 7.97 \text { \%. }
\end{aligned}
$$

($2 R, 2^{\prime} R, 3^{\prime} R, 5^{\prime} R$)-2'-(5-Fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2', $\mathbf{3}^{\prime}, 5^{\prime}, 6^{\prime}$ 'tetrahydro-3H-spiro[benzofuran-2,4'-pyran]-3',5'-diyl diacetate (2B.36)

By following procedure B, triacetates 2B. 26 ($120 \mathrm{mg}, 0.33 \mathrm{mmol}$) were subjected to glycosidation with 5 -flurouracil ($86 \mathrm{mg}, 0.66 \mathrm{mmol}$) under Vorbruggen conditions to provide nuleoside 2B. 36 ($110 \mathrm{mg}, 77 \%$ yield) as white solid.

Mol. Formula $\quad: \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}_{8}$
M. P.
: $216-218{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{25} \quad:+38.7\left(c 1.5, \mathrm{CHCl}_{3}\right)$.
$\operatorname{IR}\left(\mathbf{C H C l}_{3}\right) \widetilde{v}: 3217,3084,3023,2930,2874,1732,1673,1463,1373$, 1219, 1072, 1043, $904 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1} \mathbf{H}$ NMR $\quad: \delta 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~d}$, $\left.\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \quad J=12.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.21(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.38(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.12-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, 1H), $9.81(\mathrm{bs}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\quad: 19.8$ (q), 20.2 (q), 64.4 (t$), 69.7$ (d), 71.3 (d), 74.2 (t), 80.0
$\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \quad(\mathrm{d}), 89.6$ (s), 120.5 (d), 121.3 (d), 124.0 (d), 124.4 (d), 127.7 (d), 129.1 (d), 134.3 (s), 139.3 (s), 140.6 (s), 141.6 (s), 149.2 (s), 156.6 (s), 156.9 (s$), 169.5(\mathrm{~s}), 169.8(\mathrm{~s}) \mathrm{ppm}$.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 435.4\left(20 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 452.47\left(35 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 457.44$ $\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
Elemental Calcd.: C, 55.30; H, 4.41; N, 6.45 \%.
Analysis Found: C, $55.21 ;$ H, $4.50 ;$ N, 6.51%.

1-((2R,2'R,3'R,5'R)-3',5'-Dihydroxy-2', 3',5',6'-tetrahydro-3H-spiro[benzofuran-2,4'-pyran]-2'-yl)-5-fluoropyrimidine-2,4(1H,3H)-dione (2B.39)

By following procedure C, 2B. 36 ($90 \mathrm{mg}, 0.21 \mathrm{mmol}$) was subjected to Zemplen's deacetylation to afford nucleoside 2B. 39 ($67 \mathrm{mg}, 93 \%$ yield) as crystalline solid.

Mol. Formula $\quad: \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}_{6}$
M. P. $\quad: 153-155{ }^{\circ} \mathrm{C}$
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}} \quad:+44.0(c 0.7, \mathrm{MeOH})$.
IR (nujol) $\widetilde{v} \quad: 3387,3021,2920,2854,1698,1666,1461,1377,1284$, $1245,1063,914,756 \mathrm{~cm}^{-1}$.
${ }^{1}$ H NMR $\quad: \delta 3.85(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=5.3,10.7 \mathrm{~Hz}, 1 \mathrm{H})$,
(Methanol-D ${ }_{4}, \quad 3.99-4.04(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=$ $200 \mathrm{MHz}) \quad 11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=1.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.25(\mathrm{~m}$, $1 \mathrm{H}), 7.29-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.94(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\quad: 68.5(\mathrm{t}), 71.0(\mathrm{~d}), 72.5$ (d), 75.6 (t), 83.6 (d), 93.5 (s), 121.6
(Methanol-D 4 , 50 (d), 121.9 (d), 126.1 (d), 126.5 (d), 128.4 (d), 129.2 (d), 139.0
MHz)
(s), 142.5 (s), 151.2 (s), 159.0 (s), 159.2 (s) ppm.

ESI-MS $(\mathrm{m} / \mathrm{z}) \quad: 351.5\left(18 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 373.5\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
Elemental Calcd.: C, 54.86; H, 4.32; N, 8.00 \%.
Analysis Found: C, 54.71; H, 4.48; N, 8.13 \%.

${ }^{1} \mathrm{H}$ NMR Spectrum of 2 B .25 in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR Spectrum of 2 B .25 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR Spectrum of 2B. 27 in CDCl_{3}

${ }^{13}$ C NMR Spectrum of 2 B .27 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2 B .31 in CDCl_{3}

${ }^{13}$ C NMR Spectrum of 2B. 31 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2 B .28 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2 B .28 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2B. 32 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2 B .32 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR Spectrum of 2B. 29 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2 B .29 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2 B .33 in $\mathrm{CDCl}_{3}+$ Methanol- \mathbf{D}_{4}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2 B .30 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2 B .30 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2B. 26 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2 B .26 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR Spectrum of 2 B .34 in CDCl_{3}

${ }^{13}$ C NMR Spectrum of 2B. 34 in CDCl $_{3}$

${ }^{1} \mathrm{H}$ NMR Spectrum of 2B. 37 in Methanol-D ${ }_{4}$

${ }^{13}$ C NMR Spectrum of 2B. 37 in Methanol-D ${ }_{4}$

${ }^{1} \mathrm{H}$ NMR Spectrum of 2 B .35 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2 B .35 in CDCl_{3}

${ }^{1}$ H NMR Spectrum of 2 B .38 in Acetone- D_{6}

${ }^{13}$ C NMR Spectrum of 2B. 38 in Acetone- D_{6}

1

${ }^{1} \mathbf{H}$ NMR Spectrum of 2 B .36 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum of 2 B .36 in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR Spectrum of 2 B .39 in $\mathrm{CDCl}_{3}+$ Methanol-D $\mathbf{4}_{4}$

${ }^{13} \mathrm{C}$ NMR Spectrum of 2 B .39 in $\mathrm{CDCl}_{3}+$ Methanol- \mathbf{D}_{4}

References:

1. Nucleosides and Nucleotides as Antitumor and Antiviral Agents; Chu, C. K., Baker, D. C., Eds.; Plenum: New York, 1993. (b) Chemistry of Nucleosides and Nucleotides; Townsend, L. B., Ed.; Plenum: New York, 1988.
2. (a) Bergmann, W.; Feeney, R. J. J. Am. Chem. Soc. 1950, 72, 2809-2810. (b) Bergmann, W.; Feeney, R. J. J. Org. Chem. 1951, 16, 981-987. (c) Bergmann, W.; Burke, D. C. J. Org. Chem. 1955, 20, 1501-1507.
3. (a) Takeuchi, S.; Hirayama, K.; Ueda, K.; Sakai, H.; Yonehara, H. J. Antibiot. 1958, 11, 1-5. (b) Swaminathan, V.; Smith, J. L.; Sundaralingam, M.; Coutsogeorgopoulos, C.; Kartha, G. Biochim. Biophys. Acta 1981, 655, 335341.
4. Yamaguchi, I. Crop Protection Agents from Nature: Natural Products and Analogues. Royal Society of Chemistry; Copping, L. G., Ed.; 1996, 27.
5. Iwasa, T.; Kusuka, T.; Suetomi, K. J. Antibiot. 1978, 31, 511-518.
6. Gumina, G.; Choi, Y.; Chu, C. K. In Antiviral Nucleosides: Chiral Synthesis and Chemotherapy; Chu, C. K., Ed.; Plenum: New York, 2003.
7. Lin, T. S.; Schinazi, R. F.; Prusoff, W. H. Biochem. Pharmacol. 1987, 36, 2713-2718.
8. Balzarini, J.; Van Aerschot, A.; Herdewijn, P.; De Clercq, E. Biochem. Pharmacol. 1989, 38, 869-874.
9. Chu, C. K.; Schinazi, R. F.; Arnold, B. H.; Cannon, D. L.; Doboszewski, B.; Bhadti, V. B.; Gu, Z. Biochem. Pharmacol. 1988, 37, 3543-3548.
10. Tisdale, M.; Alnadaf, T.; Cousens, D. Antimicrob. Agents Chemother. 1997, 41, 1094-1098.
11. Faletto, M. B.; Miller, W. H.; Garvey, E. P.; St Clair, M. H.; Daluge, S. M.; Good, S. S. Antimicrob. Agents Chemother. 1997, 41, 1099-1107.
12. Larder, B. A.; Darby, G.; Richman, D. D. Science 1989, 243, 1731-1734.
13. St Clair, M. H.; Martin, J. L.; Tudor-Williams, G.; Bach, M. C.; Vavro, C. L.; King, D. M.; Kellam, P.; Kemp, S. D.; Larder, B. A. Science 1991, 253, 15571559.
14. Richman, D.; Shih, C. K.; Lowy, I.; Rose, J.; Prodanovich, P.; Goff, S.; Griffin, J. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 11241-11245.
15. Ewing, D. F.; Fahmi, N. E.; Len, C.; Mackenzie, G.; Ronco, G.; Villa, P.; Shaw, G. Nucleosides Nucleotides 1999, 18, 2613-2630.
16. Ewing, D. F.; Fahmi, N. E.; Len, C.; Mackenzie, G.; Pranzo, A. J. Chem. Soc., Perkin Trans. 1 2000, 21, 3561-3565.
17. Egron, D.; Perigaud, C.; Gosselin, G.; Aubertin, A. M.; Faraj, A.; Selouane, A.; Postel, D.; Len, C. Bioorg. Med. Chem. Lett. 2003, 13, 4473-4475.
18. (a) Meier, C.; Habel, C.; Haller-Meier, F.; Lomp, A.; Herderich, M.; Klo"cking, R.; Meerbach, A.; Wultzler, P. Antiviral Chem. Chemother. 1998, 9, 389. (b) Golan-Kiewicz, B.; Ostrowski, T.; Andrei, G.; Snoeck, R.; De Clercq, E. J. Med. Chem. 1994, 37, 3187. (c) Agrofoglio, L.; Suhas, E.; Farese, A.; Condom, R.; Challand, S. R.; Earl, R. A.; Guedj, R. Tetrahedron 1994, 50, 10611. (d) Crimmins, M. T. Tetrahedron 1998, 54, 9229. (g) Nishiyama, Y.; Yamamoto, N.; Yamada, Y.; Daikoku, T.; Ichikawa, Y.-I.; Takahasi, K. J. Antibiot. 1989, 42, 1854;
19. Haruyama, H.; Takayanna, T.; Kinosita, T.; Kondo, M.; Nakajima, M.; Haneishi, T. J. Chem. Soc., Perkin Trans. 1 1991, 1637-1640.
20. Nakajima, N.; Itoi, K.; Takamatsu, Y.; Okasaki, H.; Kinoshita, T.; Shindou, M.; Kawakubo, K.; Honna, T.; Toujigamori, M.; Haneishi, T. J. Antibiot. 1991, 44, 293-300.
21. Kittaka, A.; Tanaka, H.; Odanaka, Y.; Ohnuki, K.; Yamaguchi, K.; Miyasaka T. J. Org. Chem. 1994, 59, 3636-3641.
22. (a) Gimisis, T.; Chatgilialoglu, C. J. Org. Chem. 1996, 61, 1908-1909. (b) Kittaka, A.; Tanaka, H.; Yamada, N.; Miyasaka, T. Tetrahedron Lett. 1996, 37, 2801-2804. (c) Kittaka, A.; Asakura, T.; Kuze, T.; Tanaka, H.; Yamada, N.; Nakamura, K. T.; Miyasaka T. J. Org. Chem. 1999, 64, 7081-7093. (d) Gasch, C.; Pradera, M. A.; Salameh, B. A. B.; Molina, J. L.; Fuentes J. Tetrahedron: Asymmetry 2001, 12, 1267-1277.
23. Nielsen, P.; Larsen, K.; Wengel, J. Acta Chem. Scand. 1996, 50, 1030-1035.
24. Paquette, L. A.; Bibart, R. T.; Seekamp, C. K.; Kahane, A. L. Org. Lett. 2001, 3, 4039-4041.
25. Paquette, L. A.; Owen, D. R.; Bibart, R. T.; C. K.; Kahane, A. L. Org. Lett. 2001, 3, 4043-4045.
26. Paquette, L. A.; Kahane, A. L.; Seekamp C. K. J. Org. Chem. 2004, 69, 55555562.
27. Hartung, R.; Paquette L. A. J. Org. Chem. 2005, 70, 1597-1604.
28. Chao, Q.; Nair, V. Tetrahedron 1997, 53, 1957.
29. (a) Paquette, L. A.; Fabris, F.; Gallou, F.; Dong S. J. Org. Chem. 2003, 68, 8625-8634. (b) Dong, S.; Paquette L. A.; J. Org. Chem. 2005, 70, 1580-1596. (c) Paquette, L. A.; Dong S. J. Org. Chem. 2005, 70, 5655-5664. (d) Roy, A.; Achari, B.; Mandal, S. B. Tetrahedron Lett. 2006, 47, 3875-3879.
30. Ravindra Babu, B.; Keinicke, L.; Petersen, M.; Nielsen C.; Wengel J. Org. Biomol. Chem. 2003, 1, 3514-3526.
31. (a) Niedballa, U.; Vorbrüggen, H. J. Org. Chem. 1974, 39, 3654-3660. (b) Vorbrüggen, H.; Krolikewiez, K.; Bennua, B. Chem. Ber. 1981, 114, 12341255. (c) Vorbrüggen, H.; Höfle, G. Chem. Ber. 1981, 114, 1256-1268.

LIST OF PUBLICATIONS

1. "Total synthesis of pachastrissamine (jaspine B) enantiomers from D-glucose" C. V. Ramana, Awadut G. Giri, Sharad B. Suryawanshi and Rajesh G. Gonnade. Tetrahedron Letters 2007, 48, 265-268.
2. "A $[2+2+2]$-cyclotrimerization approach for the synthesis of enantiopure isochromans using a carbohydrate derived dialkyne template" C. V. Ramana, Sharad B. Suryawanshi Tetrahedron Letters 2008, 49, 445-448.
3. "Pd(II)-Mediated Alkynediol Spiroketalization: First Total Synthesis of (-)Cephalosporolide E and (+)-Cephalosporolide F" C. V. Ramana, Sharad B. Suryawanshi and Rajesh G. Gonnade J. Org. Chem. 2009, 74, 2842-2845.
4. "Flexibility Oriented Synthesis of C-3' Spiroannulated Nucleosides" C. V. Ramana, Mangesh G. Dushing and Sharad B. Suryawanshi (communicated).
5. A $[2+2+2]$-cyclotrimerization approach for spiroannulation of 1,3dihydroisobenzofuran ring on carbohydrate templates C. V. Ramana, and Sharad B. Suryawanshi (to be communicated).

POSTER PRESENTATIONS

1. Total synthesis of pachastrissamine enantiomers (jaspine B) from D-glucose (National Science Day celebration at NCL - 2007).
2. A $[2+2+2]$-cyclotrimerization approach for synthesis of Tri-/Spriocyclic Nucleosides (Best Poster Award on National Science Day celebration at NCL - 2008).
3. First Total Synthesis of Cephalosporolides E \& F (Best Poster Award on National Science Day celebration at NCL - 2009).

Erratum

[^0]: 1,2;5,6-O-Isopropylidene-3-C-ethynyl-3-O-propargyl- α-D-allofuranose (2A.64)

[^1]: 1',2';5',6'-Di-O-Isopropylidene-3'-didehydro-3'-deoxy-4,5-di(hydroxymethyl)-7H-spiro[isobenzofuran-2,3'-C- α-D-allofuranose] (2A.75)

[^2]: ${ }^{13} \mathrm{C}$ NMR Spectrum of 2A.80a/2A.80b in CDCl_{3}

