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Abstract 

 

The inherent non-linearity, complexity and uncertainty in chemical processes 

make it difficult to develop a compact mathematical model to represent the system 

over a wide range of governing parameters. This provides a continuing driving 

force to explore alternative means to achieve the objectives. Data-driven models, 

which do not require substantial understanding of the phenomenology involved 

and are more robust to presence of noise and relatively scarce measurements, are 

thus becoming more attractive. 

 

In the last decade, there has been considerable growth in the development 

and application of artificial intelligence (AI) tools — in particular artificial neural 

networks — to build data-driven models for process engineering applications. 

Hybrid combinations of AI  tools and newer algorithms are also being developed 

with a view to increasing robustness and prediction capabilities. In recent years, a 

new approach called support vector machines (SVM) has been proposed. SVM are 

universal feed-forward networks firmly based on the rigorous statistical learning 

theory developed by Vapnik. The simplicity of implementation, excellent 

generalization ability and remarkable performance on difficult tasks have made 

SVM one of the most popular tools in various disciplines. For binary classification 

problems, given a set of nonlinearly separable input vectors belonging to two 

distinct classes, SVM finds an optimal linear separating hyperplane in a high 

dimensional feature space. SVM use a convex quadratic optimization algorithm to 

find a unique globally optimal decision surface. This decision surface can be 

represented by a subset of training data lying on the margin. These data, known as 

support vectors, carry all the relevant information about the classification 

problem. The algorithm is rigorous, but very compact as the optimization problem 

and the decision surface depends only on the dot product between the training data 

in feature space. SVM handles the computational intractability arising out of high 

dimensionality of the feature space by computing the dot product of transformed 

data in the input space itself by employing a kernel trick. Inspired from SVM, a 

number of easy and elegant non-linear versions of classical linear algorithms have 

been developed by the use of kernel functions. 
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The general class of algorithms resulting from notion of implementing 

kernel trick is known as kernel methods or kernel machines. A family of kernel 

methods mainly includes support vector machines (SVM), kernel principal 

component analysis (kernel PCA), support vector regression (SVR), support 

vector domain distribution (SVDD) etc. The present thesis is devoted for the 

application of these kernel methods for solving various kinds of process 

engineering problems.  In first chapter deal with the brief review on conventional 

methods for classification and regression and an introduction on kernel based 

learning algorithms.  

  

In Chapter 2, detailed derivation of SVM for classification and regression 

has been explained. Chapter 2 also includes applications of SVM to fault 

diagnosis, a well-known pattern recognition problem in process engineering and 

to quantitative structure property relationships (QSPRs) problem.  

              

In Chapter 3, kernel PCA methodology, an elegant nonlinear 

generalization of the linear PCA, is illustrated by considering the examples of (i) 

denoising chaotic time series and, (ii) prediction of properties of polymer 

nanocomposites. Kernel PCA captures the dominant nonlinear features of the 

original data by transforming it to a high dimensional feature space. An 

appropriately defined kernel function allows the computations to be performed in 

the original input space and facilitates extraction of substantially higher number of 

principal components enabling excellent denoising and feature extraction 

capabilities. In comparison to other nonlinear principal component analysis (PCA) 

techniques, kernel PCA requires only the solution of an eigenvalue problem and 

does not involve any nonlinear optimization. In addition, the number of principal 

components need not be specified prior to modeling. This makes the kernel PCA 

algorithm very attractive tool for modeling of nonlinear process engineering 

systems. 

   

In chapter 4, a hybrid strategy of using (i) locally linear embedding (LLE) 

for nonlinear dimensionality reduction of high dimensional data and (ii) support 

vector domain distribution (SVDD) for classification of the resultant features, is 

proposed as a robust methodology for process monitoring. The method of online 
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abnormality detection in a process plant has been described with the two case 

studies viz. acetone-butanol fermentation and a benchmark semi-batch reactor 

problem.  Illustrative examples substantiate the methodology vis-à-vis current 

practice. 

 

A novel method for characterization of time series employing a unique 

combination of wavelet based local singularity analysis and support vector 

machines (SVM) classification is developed in chapter 5.  The method is 

illustrated by considering the case example of flow regime identification in gas-

liquid stirred tank equipped with Rushton turbine. Pressure fluctuations time 

series data obtained at different operating conditions were first analyzed to obtain 

the distribution of local Hölder exponents’ estimates. The relevant features from 

this distribution were then used as input data to the SVM classifier.  Employing 

this method we could classify flow regimes with 98% accuracy. The results 

highlight the fact that the local scaling behavior of a given regime follows a 

distinct pattern.  Further, the singularity features can be employed by intelligent 

machine learning based algorithms like SVM for successful online regime 

identification. The method can be readily applied to the other multiphase systems 

like bubble column, fluidized bed etc.  

  

Chapter 6 comprises a new method for selection of model parameters in 

prediction of time series.  Apart from the conventional criterion of minimizing 

RMS error, the method also minimizes the error on the distribution of 

singularities, evaluated through the local Hölder estimates and its probability 

density spectrum. Predictions of two simulated and one real time series have been 

done using kernel principal component regression (KPCR) and model parameters 

of KPCR have been selected employing the proposed as well as the conventional 

method. Results obtained demonstrate that the proposed method takes into 

account the sharp changes in a time series and improves the generalization 

capability of the KPCR model in better prediction of the unseen test data.  

In chapter 7, salient conclusions from results obtained for the case studies 

of chapters 2-7 are described.  
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Chapter 1 

INTRODUCTION 

 

1.1 Motivation  

The inherent non-linearity, complexity and uncertainty in chemical processes 

make it difficult to develop a compact mathematical model to represent the system 

over a wide range of governing parameters. This provides a continuing driving 

force to explore alternative means to achieve the objectives. Data-driven models, 

which do not require substantial understanding of the phenomenology involved 

and are more robust to presence of noise and relatively scarce measurements, are 

thus becoming more attractive. 

In the last decade, there has been considerable growth in the development 

and application of artificial intelligence (AI) tools — in particular artificial neural 

networks — to build data-driven models for process engineering applications. 

Neural networks with different architectures (such as feedforward (Hoskins et al. 

1991), recurrent (Karjala & Himmelblau, 1994), and multiple network 

architectures (Watanabe et al. 1994)) and different basis functions (such as 

sigmoidal (Venkatasubramanian et al. 1990), radial (Leonard and Kramer, 1991), 

wavelet (Bhakshi and  Stephanopoulos,  1993), and ellipsoidal basis functions 

(Girosi, 1992)) have been explored. These neural networks have been exploited 

for several types of applications including fault diagnosis (Venkatasubramanian et 

al 1990, Ungar et al. 1990, Hoskins et al. 1991), dimensionality reduction (Tan 

and  Mavrovouniotes, 1995), modeling (Thompson and Kramer, 1994), data 

rectification (Karjala and . Himmelblau, 1994), dynamic optimization (Chen and 

Weigand, 1994), experimental design (Glassey et al. 1994). Hybrid combinations 

of AI  tools and newer algorithms are also being developed with a view to 

increasing robustness and prediction capabilities. In recent years, a new approach 

called support vector machines (SVM) has been proposed. SVM are universal 

feed-forward networks firmly based on the rigorous statistical learning theory 

developed by Vapnik (1995, 1998). The simplicity of implementation, excellent 

generalization ability and remarkable performance on difficult tasks have made 

SVM one of the most popular tools in various disciplines (Burges, 1998; 

Christianini and Shawe-Taylor, 2000).  For binary classification problems, given a 
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set of nonlinearly separable input vectors belonging to two distinct classes, SVM 

finds an optimal linear separating hyperplane in a high dimensional feature space. 

SVM use a convex quadratic optimization algorithm to find a unique globally 

optimal decision surface. This decision surface can be represented by a subset of 

training data lying on the margin. These data, known as support vectors, carry all 

the relevant information about the classification problem. The algorithm is 

rigorous, but very compact as the optimization problem and the decision surface 

depends only on the dot product between the training data in feature space. SVM 

handles the computational intractability arising out of high dimensionality of the 

feature space by computing the dot product of transformed data in the input space 

itself by employing a kernel trick. Inspired from SVM, a number of easy and 

elegant non-linear versions of classical linear algorithms have been developed by 

the use of kernel functions. (Muller et al. 2001). 

  The general class of algorithms resulting from notion of implementing 

kernel trick is known as kernel methods or kernel machines. A family of kernel 

methods mainly includes support vector machines (SVM), kernel principal 

component analysis (kernel PCA), support vector regression (SVR), support 

vector domain distribution (SVDD) etc. They utilize the techniques from 

optimization, statistics, and functional analysis to achieve the maximal flexibility, 

and performance, both in terms of generalization and in terms of computational 

cost. Support vector machines (SVM) and other kernel based methods differs from 

the conventional machine learning tools in following ways: i) They are explicitly 

based on a theoretical model of learning rather than on loose analogies with 

natural learning systems or other heuristics. ii) The formulation of these methods 

emerges with theoretical guarantees about their performance and has a modular 

design that makes it possible to separately implement and analyze its components. 

iii) They are not affected by the problem of local minima because their training 

leads to convex optimization. The simplicity of their implementation, remarkable 

performance on difficult tasks is attracting further attention. Hence, the present 

thesis is devoted for the application of these kernel methods for solving various 

kinds of process engineering problems.  The applications considered will include 

fault detection/diagnosis, nonlinear modeling of chemical engineering systems, 

time series prediction, etc.  These methods can be combined with wavelet-fractal 

theory for analysis, characterization and prediction of chaotic time series.  
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1.2 Organization of the Thesis 

Subsequent sections of this chapter deals with brief review on conventional 

methods for classification and regression and an introduction on kernel based 

learning algorithms. In Chapter 2, detailed derivation of SVM for classification 

and regression has been explained. Chapter 2 also includes applications of SVM 

to fault diagnosis, a well-known pattern recognition problem in process 

engineering and to quantitative structure property relationships (QSPRs) problem. 

In Chapter 3, kernel PCA methodology, an elegant nonlinear generalization of the 

linear PCA, is illustrated by considering the examples of (i) denoising chaotic 

time series and, (ii) prediction of properties of polymer nanocomposites. In 

chapter 4, a hybrid strategy of using (i) locally linear embedding (LLE) for 

nonlinear dimensionality reduction of high dimensional data and (ii) support 

vector domain distribution (SVDD) for classification of the resultant features, is 

proposed as a robust methodology for process monitoring. The method of online 

abnormality detection in a process plant has been described with the two case 

studies viz. acetone-butanol fermentation and a benchmark semi-batch reactor 

problem.  A novel method for characterization of time series employing a unique 

combination of wavelet based local singularity analysis and support vector 

machines (SVM) classification is developed in chapter 5.  The method is 

illustrated by considering the case example of flow regime identification in gas-

liquid stirred tank equipped with Rushton turbine. Chapter 6 comprises a new 

singularity distribution based method for selection of model parameters in 

prediction of time series.  In chapter 7, salient conclusions are drawn.  

 

1.3 Review of Conventional Classification and Regression Methods 

Several conventional methods for classification and regression with their 

applications to process engineering are described below: 

1.3.1 Classification methods  

The task of pattern classification is to find a rule to assign an object to one of 

several classes using features of that object. Classification can be done in 

supervised as well as unsupervised manner. In the supervised classification the 

class labels of data are known, a priori, and the new object is assigned to one of 
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the several classes using the rules generating from the already available data 

(known as training data). In unsupervised classification the class labels are 

missing and problem is solved using clustering, density estimation and data 

description methods. Few important methods for supervised classification with 

their basic principles are described below and for details of these methods one 

may refer to the references cited therein. 

 
1.3.1.1 Bayesian classifiers  

The fundamental principle of a Bayesian classifier is a combination of Bayes' 

theorem and Bayes' rule. The practical use of Bayes' theorem is to turn 

probabilities that can be estimated from a training set into those required for 

classification.  A naive Bayes classifier is a simple probabilistic classifier (Hand 

and Yu, 2001). It is based on probability models that incorporate strong 

independence assumptions which often have no bearing in reality, hence are 

naive. Depending on the precise nature of the probability model, naive Bayes 

classifiers can be trained very efficiently in a supervised manner. In many 

practical applications, parameter estimation for naive Bayes models uses the 

method of maximum likelihood. In spite of their very simple design and 

apparently over-simplified assumptions, naive Bayes classifiers often work well in 

many complex real-world situations (Kim et al. 2000, Yamashita, 2000).   

1.3.1.2 Discriminant analysis 

Linear discriminant analysis (LDA) is a classification procedure in which the 

classes are considered to have normal distribution and equal dispersion 

(covariance matrix). It owes its success to its wide applicability in the most 

general classification problems, to its scaling invariance, and to the ready 

interpretability of the discriminant functions obtained. (Wu et al. 1996; Martin et 

al. 1999) Additionally, LDA is particularly robust and effective, even if the 

theoretical statistical requirements of multivariate normal distributions, equal class 

variance/ covariance matrices and large object/variable ratio are not fulfilled. 

However, discriminant functions obtained for LDA are not orthogonal to each 

other and their graphical projections are often unsatisfactory for checking an 
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effective separation of objects. Furthermore, for non-linearly separable data sets 

some limitation also occurs in the results of the classification.  

In Quadratic discriminant analysis (QDA), it is assumed that each class has 

normal distribution and that dispersion is different for each class and that the 

hypersurfaces separating the class are therefore quadratic. (Wu et al. 1996) The 

use of quadratic discriminant analysis (QDA)  is limited to cases where all the 

classes are well represented; otherwise the class covariance matrix is a near 

singular matrix. However, QDA does not improve LDA results, except in those 

cases where there is a significant departure from linear separability between the 

classes. A trade-off can be performed between LDA and QDA and a bias based on 

the training set can be properly introduced in regularized discriminant analysis 

(RDA) (Wu et al. 1996).  However, RDA is a two parameter method which is not 

invariant to scaling, and the ready interpretability of the discriminant functions is 

lost. 

1.3.1.3 Classification trees 

Classification tree methods are a form of knowledge representation based on a 

decision tree. (Breiman et al. 1984; Mulholland et al. 1995) In a binary tree 

classifier a decision is made at each non-terminal node of the tree based upon the 

value of one of many possible attributes or features. If the feature value is less 

than some threshold then the left branch of the tree is taken, otherwise the right 

branch is taken. The leaves, or terminal nodes, of the tree represent the classes to 

be identified. CTs are very popular in machine learning applications because they 

provide a symbolic representation that lends itself to easy interpretation. The 

representation can also be extended or easily modified when a tree is translated 

into convenient If–Then rules. 

 

1.3.1.4 Nearest neighbor 

The k-nearest neighbor classifier is a conventional nonparametric classifier. The 

principle of the method is that the test object is assigned to the class according to 

the majority vote procedure, i.e. to the class which is most represented in the set of 

k nearest training objects (Tominaga, 1999, Wu and Massart, 1997). It can be 

shown that the k-nearest neighbor rule becomes the Bayes optimal decision rule as 

k goes to infinity. The simplest case of the k-NN method is 1NN classification. 
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The idea in 1NN  is extremely simple: to classify x find its closest neighbor 

among the training points (say x’,) and assign to x the class of x’. The Euclidean 

distance or the Mahalanobis distance is commonly used as the measurement of 

similarity of two objects. It should be noted that this paradigm does not provide an 

explicit model of the data. Hence it is said that instead of an induction process, the 

nearest-neighbor method is based on a transduction process that avoids the 

specification of the model. 

 

1.3.1.5 Neural networks 

Artificial neural networks (ANNs) are connectionist models from the field of 

artificial intelligence applying non-linear analytical processes to solve pattern 

recognition problems. ANN consists of a network of interconnected processing 

units, the structure of which is based on the structure of the human brain. For 

classification purposes, the network builds a model based on a set of input objects 

(the training set) with known outputs, adjusting the weights associated with each 

connection so that output values as similar as possible to the real values are 

generated. These weights contain information about the relationships between the 

input variable set (inputs) and the categories studied (outputs). The most simple 

neural network, called perceptron, is a one-neuron classifier. By connecting 

perceptrons one can design a neural network structure called multilayer perceptron 

(MLP). In the MLP, training is achieved by minimising the square mean output 

error by backpropagation and using the generalised delta rule. Neural networks 

with different structures have been successfully applied to various fault detection 

and diagnosis problems in process engineering (Hoskins et al. 1991; 

Venkatasubramanian et al. 1990). 

 

1.3.1.6 Logistic regression 

Logistic regression function is analogous to linear regression; however, it 

classifies the input data into output categories, rather than generating the numeric 

outputs. A logistic regression model is a parametric model that specifies the 

probability of a dichotomous variable Y({0,1}) to have the value 1 given the 

values of the features of an instance. (Hosmer & Lemeshow, 2000). The logistic 

model has the following form ]1/[1)|1( 1
0 


n

i
ii x

eYp


x  where x represents an 
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instance to be classified and    βi (i=0,1,…,n) denotes the coefficients of the n 

predictors. The logistic regression model is very simple to develop, and the 

independent variables do not need to be pre-processed, viz., standardized, 

normalized, etc.  In order to avoid misinterpretations of the results it can also be 

used as a tool for screening.  

 

1.3.2 Regression methods 

In regression, the dependent variable has real value, instead of label as in case of 

classification. The task is to map the input (explanatory) variables to the output 

variables.  

 
1.3.2.1 Multiple Linear Regression  

The goal of multiple linear regression (MLR) is to establish a linear relationship 

between input (independent) and output variables as follows: 

 





n

i

ii exby
1

       (1)  

          

the coefficients b1,……,bn are least square estimates.  

 

Ridge regression (RR), partial least squares (PLS), and principal components 

regression (PCR) are three of the more familiar alternatives to MLR when one is 

concerned with the problem of estimating the regression coefficients of the 

standard linear model in the presence of highly correlated predictor variables. 

 

1.3.2.2 Principal component regression (PCR) and partial least squares (PLS) 

Principal component analysis (PCA) and partial least squares (PLS) are the well-

known chemometric techniques. PCA and PLS have been applied with a great 

success to a wide variety of problems in analytical chemistry, biological and 

medicinal chemistry and chemical engineering. These statistical methods help in 

denoising, dimensionality reduction, feature extraction and regression. PLS and 

principal component regression (PCR) found to be useful in situations when the 

collinearity among the variables exists. (Hoskuldsson, 1988, Wold et al. 2001). In 

PCR, principal components are solely determined from explanatory variables and 
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uncorrelated input variables are used in a regression model, whereas PLS creates 

orthogonal components by using the existing correlations between explanatory 

variables and corresponding outputs while also keeping most of the variance of 

explanatory variables. It is well known that PCR and PLS extracts the linear 

relations among the variables only. To capture the correct phase details of the data 

set and to identify the dominant features existing between variables, various 

nonlinear versions of PCA and PLS have been proposed. Thus for instance, 

Nonlinear PLS with inner spline and quadratic functions have been used by Wold 

(Wold et al., 1989; Wold, 1992). Kramer (1991) presented a method based on 

autoassociative neural network topology for nonlinear PCA. Dong and McAvoy 

(1996) combined the principal curves algorithm (Hastie & Stuezle, 1989) and the 

autoassociative network (Kramer, 1991) to provide an effective algorithm for 

nonlinear PCA. Nonlinear PCA and PLS based upon the concept of the input 

training network have been successfully employed for process engineering 

applications (Tan & Mavrouvouniotis (1995), Malthouse et al 1997). 

 

1.3.2.3 Ridge regression 

Ridge regression (RR) is a commonly used statistical technique (Hoerl and 

Kennard, 1970) that is based on correlations within the data rather than generating 

latent variables, as in the case of PLS. RR technique has a ability to overcome the 

type of ‘ill-conditioned’ situation that is when X′X matrix tends to be very near to 

singular. The method takes its name from the fact that the procedure adds a value 

(θ) to the ridge or diagonal of the correlation matrix. In this way, the rank of the 

data matrix can be improved by exaggerating the orthoganality or unique features 

in the data. Thus, the coefficients are computed as follows: 

YXIXXB ')'()( 1       (2) 

Where θ is a positive number between 0 and 1 (the ridge constant) and  I is the 

identity matrix. If θ = 0, i.e. no value added, then the result will be the same as the 

least squares result (i.e. as in the case of MLR). The addition of the constant to the 

ridge has the effect of stabilising the coefficients obtained from regression by 

reducing the magnitude of the regression coefficients.  
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1.3.2.4 Neural networks 

Neural networks as described in section 1.3.1.5 can also be used for nonlinear 

regression. Neural networks have been widely used for various nonlinear function 

approximation problems like identification, control etc. in process engineering 

(Thompson and Kramer, 1994). 

 

After reviewing the classical methods for classification and regression, an 

introduction to statistical learning theory and kernel methods is given in the next 

section.  

 

1.4 Introduction to Statistical Leaning Theory and Kernel Methods 

1.4.1 Statistical learning theory 

Let us start with a general idea of learning pattern classification problem. The task 

of classification is to find rule to assign an object to one of several classes using 

features of that object. In the simplest case there are two different classes. For this 

binary classification now the task is to estimate a function f using input-output 

training data pairs generated i.i.d. according to an unknown probability 

distribution P(x,y) 

 

           1,1,,,,.....,, 11  yyy
n

mm xxx    (3) 

 

such that f will correctly classify the unseen examples (x,y). An example is 

assigned to the class +1 if 0f and to the class -1 otherwise. The test data are 

assumed to be generated from the same distribution as training data. The best 

function f can be obtained by  minimizing expected error (risk) ( Vapnik 1995; 

Muller et al. 2001) 

 

 ),()),((][ ydPyflfR xx      (4) 

where l denotes suitably chosen loss function. e.g. 0/1 loss function which is 

defined as  

 








)(1

)(0
),(

x

x
x

fyif

fyif
yfl                   (5) 
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The risk cannot be minimized directly as the underlying probability distribution is 

unknown. Therefore, one has to try to estimate a function that is close to the 

optimal based on the available information, i.e. the training data  and properties of 

the function class F  the solution f is chosen from.  

 A simple induction principle will approximate the minimum of the 

expected risk to the minimum of the empirical risk, (Vapnik 1995; Muller et al. 

2001) 

 

            



m

i

iiemp yfl
m

fR
1

)),((
1

][ x      (6) 

The empirical risk will converge towards the expected risk asymptotically (as 

n ).  However, for small sample sizes large deviations are possible and 

overfitting might occur. Then a small generelisation error cannot be obtained by 

simply minimizing the training error. One way to avoid overfitting problem is to 

restrict the complexity of the function class F that one chooses the function f from. 

Simple function that explains most of the data is preferable to the complex one. 

For instance, it is always possible to interpolate 5 points in the plane with a 

polynomial of, say, degree 25, but the resulting function may not have any 

predictive power. However, predictions of a linear function interpolating them are 

more reliable. Therefore, a regularization term can be added to limit complexity of 

the function class F from which the learning machine can choose the function. 

The problem of the selection of optimal model complexity of the function can be 

addressed by VC theory and structural risk minimization (SRM) principle. VC 

dimension h of function class F is a measure of complexity i.e. it measures how 

many training points can be shattered (separated) for all possible labelings using 

the functions of the class. The SRM principle proceeds as follows: Let  f1,…, fk  be 

the solutions of the empirical risk minimization in the function classes Fi , SRM 

chooses the function class Fi (and the function fi) such that upper bound on the 

generalization error is minimized which can be computed as following: ( Vapnik 

1995; Muller et al. 2001) 
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n

hmh
fmpfR

)4/ln()1)/2(ln(
][Re][


     (7) 

where   is a number lying between 0 and 1. For example if   = 0.95, the above 

error bound, known as the risk bound, holds with a probability of 95%. m denotes 

the number of training samples and h is the Vapnik-Chervonenkis dimension. 

 The above risk bound clearly brings out the trade-off between the 

structural complexity of the hypothesis space and the training error. A simple 

hypothesis space with a small VC dimension may lead to a high training error. On 

the other hand a structurally rich hypothesis function having a large VC dimension 

may work well on training phase but generalizes poorly on unseen test examples. 

The task, therefore, is to find the optimal hypothesis space with maximal 

generalizing capability that neither overfits nor leads to a high training error.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Margin of linear classifier: minimal distance between any 

training point to the hyperplane. (in this case, it is the distance between the 

dotted lines and solid line) 

 

W 



 12 

 It was shown that for the class of hyperplanes of the form   bf  xwx)( , 

separating the training samples (Figure 1.1), the VC dimension itself can be 

bounded by another quantity known as margin. The margin is defined as minimal 

distance of a sample to the decision surface. The margin can be measured by the 

length of the weight vector w. The weight vector w and b can be rescaled such 

that the points closest to the hyperplanes satisfy 1)(  bixw . Using the samples 

from different classes 1)( 1  bxw  and 1)( 2  bxw , the margin can be 

given by the distance between the two points, measured perpendicular to the 

hyperplane, i.e.  
w

xx
w

w 2
)( 21     (Vapnik 1995; Muller et al. 2001). 

 

VC-dimension of the class of separating hyperplanes can be linked to the margin 

or the length of the weight vector w as follows: 

122  ARh    and   A
2

w     (8) 

where R is the radius of the smallest ball around the data. Thus, if we bound the 

margin of a function class from below, say by 2/A, its VC-dimension can be 

controlled. Support vector machines, which is described in detail in chapter 2, 

implements this principle.  

 

As we are dealing with linear separating hyperplanes, this choice of linear 

functions may pose limitations i.e. we may likely underfit instead of overfitting. 

This problem can be tackled my mapping the data to a feature space which is 

nonlinearly related to the input space and then building the linear decision surface 

in the feature space. This is equivalent of building the nonlinear decision surface 

in the input space. 

   

1.4.2 Building algorithms in feature space 

Algorithms in feature space make use of the following idea: via a nonlinear 

mapping  

 
)(

:

xx

R


 F

n

 

the data N
m Rxx ,.......,1 is mapped into potentially much richer feature space F. 
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Now, for a given learning problem one now considers the same algorithm in F 

instead of N
R , i.e. one works with sample 

    YFyy mm  ,),(,.....,),( 11 xx    (9) 

Statistical learning theory tells us that learning in feature space can be simplified 

by using a simple class of decision rules (e.g. linear classifiers). The variability 

and richness to the classifier can be accomplished by introducing the mapping .  

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The idea can be explained through an example shown in Figure 1.2. In the two 

dimensional space a nonlinear decision surface is required to separate the data 

belonging to two classes, whereas projecting the data to three dimensional space 

with a mapping  

),2,(:),,(),(

:
2

221

2

132121

32

xxxxuuuxx

RR




 

The data now is linearly separable by a hyperplane. In this problem the 

algorithmic complexity is not much as we are dealing with only three dimensional 

feature space, but most of the real life problems need to be dealing with a very 

large dimensional feature space. This intractability can be handled by employing a 

kernel trick which is explained in subsequent section.  

 x1 
 

x2 

u3 

u1 

u2 

 
Figure 1.2:  Mapping of data from low (2-d) dimension to high dimension (3-d) 

                                 (Muller et al. 2001)  
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1.4.3 Kernel functions  

 For certain features spaces F and corresponding mappings  there is highly 

effective way of computing dot products in feature spaces using kernel functions. 

For instance for the above problem (Figure 1.2), the two feature space vectors, can 

be formulated in terms of the kernel function 

),(:

)(

)),(),((

),2,(),2,())()((

2

2
2121

2
221

2
1

2
221

2
1

yx

yx

yx

k

yyxx

yyyyxxxx

T








 

                                                                             (10) 

For any Nd , kernel function can be generalized as  

         d
k )(),( yxyx            (11)  

 

Equation (11) does not however, hold for all possible features spaces. In fact, one 

specifies the kernel k at priori,  that satisfies Mercer’s condition as well as 

possesses some desired property (e.g. useful measure of similarity or 

dissimilarity). A Mercer kernel is a function ),( yxk  which for all data sets  ix  

gives rise to a positive matrix K with elements ),( jiij kK xx . ( Vapnik 1995; 

Muller et al. 2001). Most popular examples of Mercer kernel are the polynomial 

and radial basis function (RBF) kernel.  

 

1.4.4 Brief description of some kernel based algorithms 

A family of kernel methods includes support vector for classification and 

regression,  kernel PCA,  kernel PLS,  Support vector domain distribution  

(SVDD). The methods are described here in brief and their detailed description 

with applications have been explained in subsequent chapters.  

 

1.4.4.1 Support vector classification  

Support vector machines like any other kernel method rely on pre-processing the 

data to represent patterns in a high dimension — typically much higher than the 

original feature space (Vapnik 1995, 1998). With an appropriate non-linear 

mapping to a sufficiently high dimension, data belonging two classes can always 
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be separated by a hyperplane. Defining the margin as any positive distance from 

the decision hyperplane, support vector machines finds the separating hyperplane 

with the largest margin anticipating the better the generalization of the classifier. 

The support vectors are the closest (transformed) training patterns to the 

hyperplane. The support vectors are the training samples that define the optimal 

separating hyperplane and are the most informative patterns for the classification 

task. By employing statistical learning theory, it can be shown that the optimal 

decision surface is the one, which minimizes Euclidean norm 
2

w . The problem 

of minimizing the magnitude of the weight vector constrained by the separation 

can be reformulated into an unconstrained problem by the method of Lagrange 

undetermined multipliers. Using the Kuhn–Tucker construction, this optimization 

can be rewritten as a maximizing problem that can be solved using quadratic 

programming. 

 

1.4.4.2 Support vector regression  

SVMs have originally been developed  for classification purposes but their 

principles can be extended easily to the task of regression. A generalization to 

regression estimation with Ry , can be given in similar way to support vector 

classification. (Smola, A. and Schölkopf, 1998) and a quadratic programming 

problem in terms of kernels can be formulated.  

 

1.4.4.3 Kernel PCA  

Kernel PCA corresponds to linear PCA in a higher dimensional feature space, 

which is nonlinearly related to the input space.( Schölkopf, et al. 2001) The input 

data x are first mapped through some appropriate nonlinear function Ф(x). Then 

an a priori defined kernel function is used to deal with the possibly very high 

dimensional space. In other words, in kernel PCA the original problem, 

reformulated in the form of a dot product of the nonlinear function in the feature 

space, can be substituted by a kernel function. This simplifies the calculation 

procedure because the dot product can be computed  in the input space itself. 

      In the instance of noisy data, linear PCA discards the finite variance 

due to noise by projection of data onto the main principal components. The same 

holds true for kernel PCA in feature space by using nonlinear principal 
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components. Kernel PCA, however, extracts a substantially larger number of 

nonlinear principal components and therefore allows spreading the information 

regarding the data structure more widely giving a better opportunity to discard 

some of the eigen directions where the noisy part of data resides. In comparison to 

other nonlinear principal component analysis (PCA) techniques, kernel PCA 

requires only the solution of an eigenvalue problem and does not involve any 

nonlinear optimization. In addition, the number of principal components need not 

be specified prior to modeling.  

 

1.4.4.4 Kernel PLS 

In kernel PLS, the original input data are nonlinearly mapped to a feature space F 

where a linear PLS model is created. (Rosipal and Trejo, 2001) Good 

generalization properties of the corresponding nonlinear PLS model are then 

achieved by appropriate estimation of regression coefficients in F and by the 

selection of an appropriate kernel function. Moreover, utilizing the kernel function 

corresponding to the canonical dot product in feature space allows us to avoid the 

nonlinear optimization, which is the characteristic of most of nonlinear PLS 

algorithms. In fact only linear algebra as simple as in a linear PLS regression is 

required. 

 

1.4.4.5 Support vector domain distribution (SVDD) 

For many real-world problems the task is not to classify but to detect novel or 

abnormal instances. The method of SVDD use the principle of SVM for 

novelty/abnormality detection.  SVDD (Tax and Duin, 1999) avoids solving the 

harder density estimation problem and uses the simple task of finding the support 

vectors of the multivariate distribution. The objective of classification of data 

domain is that the given set of data in should be represented in a unique minimal 

volume spherical domain enclosing all or nearly all the training points a feature 

space. The effect of outliers is reduced by using slack variables to allow for data 

points outside the sphere and task is to minimize the volume of the sphere and 

number of data points outside the sphere.  Having completed the training process a 

test point is declared as an outlier, if the distance of the point to the center of the 

sphere is larger than the radius.  
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 In the subsequent chapters the applications of the above methods to solve 

process engineering have been described in detail.  
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Chapter 2 

SUPPORT VECTOR MACHINES AND ITS APPLICATIONS 

TO PROCESS ENGINEERING 

 

2.1 Introduction 

Support Vector machine (SVM), a recently developed tool, is increasingly gaining 

popularity as the preferred tool for classification, regression and novelty detection 

type of applications. Among the many attractive features, a rigorous basis on 

statistical learning theory, nominal increase in computational cost for nonlinear 

learning and excellent generalization performance are worthy of mentioning. In 

their present form, Support vector machines were first developed at AT&T Bell 

laboratories by Vapnik and co-workers (Vapnik, 1995, 1998; Cortes and Vapnik, 

1995). Initially developed for optical character recognition, they have since been 

applied in a variety of fields for solving important classes of problems. 

Conventional tools like artificial neural networks are based on empirical risk 

minimization methodology that minimizes the mean square error over the training 

set (Lapedes and Farber, 1987; Wasserman, 1993).  This hypothesis would 

perform poorly on unseen data unless some sort of capacity control is introduced. 

Thus in spite of being very accurate, an artificial neural network may suffer from 

overfitting the training data. Other difficulties with the use of neural networks 

concern the reproducibility of results due to the largely random initialization of 

the networks, convergence to local minimum and the lack of information 

regarding the classification produced. SVMs on the other hand are based on 

structural risk minimization principle that aims at minimizing a bound on the 

generalization error of a model.  

 

The number of free parameters in SVMs does not depend explicitly on the 

input dimensionality, unlike other machine learning methods. This property is 

highly desirable and useful for problems with large dimensions. The basic idea of 

SVM to handle non-linearly separable data is to transform the input space into a 

higher dimensional feature space, nonlinearly related to the input space. This 

induces a computational problem of having to work with very large vectors. This 

problem can be tackled by using appropriate kernels, whereby all the 
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computations can be done in the input space itself, thus greatly simplifying the 

learning task. SVM has been applied to a variety of pattern recognition 

applications such as handwritten digit recognition, object recognition, speaker 

identification, face detection in image, text categorization, microarray data 

classification etc. (Cortes and Vapnik, 1995; Osuna et al. 1997; Schmidt,  1996).  

SVM has also been applied to a various regression estimation problems like time 

series prediction (Muller et al. 1997). In most of these applications generalization 

performance of SVM has been found to be as good or better than that of the 

competing methods.  

 The potential of SVMs for process engineering applications has not yet 

been utilized. In the present work we highlight the usefulness of SVMs in both 

classification and regression applications for problems important to process 

engineering. SVM methodology is derived for both classification and regression 

problems and one case study each for SVM classification and regression are then 

described. Finally, the significance of the performance of SVMs and conclusions 

derived from the present study are discussed.  

 

2.2 Support Vector Classification 

 
2.2.1 Classifier for linearly separable patterns 

 

Consider separation of the set of training vectors belonging to two classes,  

 

     1,1,,,,.....,, 11  yyy
n

NN xxx     (1) 

 

 

with a hyperplane defined by 

 

  0 bxw       (2) 

 

For a linear classification problem, the optimal values of w and b  are those for 

which the hyperplane separates both the classes perfectly and the distance 

between the nearest data point belonging to different classes is maximum (Burges, 
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1998; Christianini and Shawe-Taylor, 2001; Gunn, 1997; Osuna et al., 1997). 

Defining canonical hyperplanes to remove the redundancy in the above equation, 

the equation for canonical hyperplane is 

 

1min  bi
i

xw     (3) 

So, for the correctly classified data set 

1 bixw                     yi = +1  (4)              

  and   1 bixw                     yi = -1            

 

The above constraint can also be written in a compact form as:  

 

   Niby ii ,.....,1,1 xw     (5) 

 

A set of hyperplanes satisfying the above constraints are known as canonical 

hyperplanes. The statistical learning theory by Vapnik (1995, 1998) shows that if 

all the points lie in the unit n-dimensional sphere, the set 

 

         })({ , Absignf b  wxww       (6) 

 

has a VC dimension d  that satisfies 

 

  1},{min 22  nARd      (7) 

 

where R  is the radius of the hypersphere enclosing all the data points. From the 

above equation, it is obvious that we can exert control over the VC dimension of 

the canonical hyperplanes independently of the number of data points by properly 

choosing the quantity A . Further, it can also be shown that the distance from a 

point x to the hyperplane associated with the pair ),( bw  can be given by 

 

 
w

xw
wx

b
bD


,;             (8) 
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and as per normalization given by equation (3), the distance between the canonical 

hyperplane and the closest point becomes 
w

1  and the margin between the closest 

points of the two data sets of different classes is given by 
w

2 . Thus, the VC 

dimension and the complexity of the canonical hyperplane structures can be 

controlled by constraining w  and the hyperplane that optimally separates the 

data is the one that minimizes 
2

2

1
w . If Aw  then the distance of a canonical 

hyperplane to the closest data point, due to equation (8), has to be larger than 
A

1 . 

Such a constraint reduces the set of possible canonical hyperplanes and thereby 

reducing the capacity of the classifier. Thus by maximizing the margin between 

the closest points belonging to the two classes the VC dimension can be controlled 

and hence the true error can be minimized.  Thus SVM obtains the optimal 

hyperplane by minimizing the Euclidean norm, 
2

w . 

So, a linear support vector machine minimizes the function 

 

  2

2

1
ww g      (9) 

 

subject to the constraints: 

 

 

     iby ii  1xw                                         (10)  

 

The solution of this problem is equivalent to determining the saddle point of the 

Lagrangian 

 

   



N

i

iiip ybL
1

1)(
2

1
xwww               (11) 

 

with  ,,bLLp w , and i s are the nonnegative Lagrangian multipliers.  
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At saddle point, the primal problem has minimum for ww   and bb  . 

Differentiating the Lagrangian with respect to w  and b  and setting to zero, we 

get the following 

 

  




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L
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0                                                          (12) 
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The primal problem, formulated as above, deals with a convex cost function 

containing linear constraints. It would thus be possible to construct the Wolfe dual 

Lagrangian. For this, we first expand the primal formulation term by term 

 





N

i

ii

N

i

i

N

i

iiiP ybyL
1112

1  xwww                            (14) 

 

The last term on the right hand side is zero due to the optimality condition of 

equation (12). Also, we know that 

 


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N

i

N

j

jijiji

N
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iii yyy
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xxxwww                                    (15)  

With these simplifications, the dual problem can now be stated as 

 

      



N
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jijiji

N

i

iD yyL
1,1 2

1
xx                                     (16) 

 

Subject to  

N

i iiy
1

  

       0   

 

Or, in the typical format of a constrained quadratic optimization problem, as 
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Maximize   


N

i i

T
Q

12

1   

 

where Q  is an NN   matrix such that 

 

  jijiij yyQ xx                (17) 

 

For the solution at the saddle point  b,w , it follows that  

 

   



N

i

iii y
1

xw                 (18) 

b  can be determined from  , which is a solution of the dual problem, and from 

the Kuhn-Tucker conditions, which state that for each Lagrangian multiplier, the 

product of the multiplier with its corresponding constraint vanishes: 

 

   Niby iii ,......,1,01 xw              (19) 

 

It must be noted that only those values of i  can be nonzero for which the 

constraints equation 

 

       Niby ii ,.......,2,1,1 xw                                   (20) 

 

is satisfied with equality sign. This restriction reduces the number of Lagrangian 

multipliers with finite values, meaning that the solution vector w  is a linear 

combination of a small percentage of the points ix . So, these are the points closest 

to the optimal separating hyperplane and are known as the support vectors. 

(Figure 2.1) 
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1 bxw                          1 bxw  

0 bxw        

 

Figure 2.1: Diagram of linear SVM classifier showing Support Vectors  

 

The problem of classifying a new data point x  is now simply solved by looking at 

the  

 

 bxwsgn                                          (21) 

 

2.2.2 Classifier for linearly non-separable patterns 

 

For a linearly non-separable data set, it is not possible to construct a hyperplane 

without a certain amount of classification error. It would, however, be possible to 

find an optimal hyperplane that minimizes the probability of occurrence of 

classification errors, averaged over the training set.  This is done by introducing 

N  nonnegative slack variables such that 

 

Niby iii .....,,2,11)(  xw              (22) 

 

Support 
vectors 
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where 0i . The generalized optimal separating hyperplane is determined by 

finding the vector w , that minimizes the functional, 

 

       



N

i

iCg
1

2||||)2/1(,  ww                         (23) 

 

(where, C , is a given value) subject to the constraints in equation (22). 

 

The saddle point of the Lagrangian corresponds to the solution to the optimization 

problem of equation (23) under the constraints of equation (22). It can be shown 

by using methods described above that the dual solution can be obtained as:  

 
  


N

i

N

j
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ijijiji yyW
1 1 1
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xx
        (24) 

with the constraints, 

 

NiCi ,......,10               (25) 

 



N

i

ii y
1

0                                                                       (26) 

 

Thus the problem for the case of linearly non-separable patterns is again a 

problem of solution of a quadratic optimization problem exactly similar to that of 

the simple case of linearly separable patterns excepting that the constraints 0i  

are now replaced by a new set of constraints Ci  0 . The parameter C  

controls the tradeoff between complexity of the support vector machine and the 

number of non-separable points. This can be viewed as a regularization parameter 

while obtaining the optimal hyperplane and can be determined by experimental 

cross validation. Alternatively, it can be obtained by analytically estimating the 

VC dimension and then by using bounds on the generalization performance of the 

machine based on the VC dimension. 
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2.2.3 Non-linear support vector machines 

The methods developed in the above sections are for linear classifiers and as such 

cannot deal with non-linearly separable data. SVM handles non-linearly separable 

data by mapping the data into a richer higher dimensional feature space, which is 

nonlinearly related to the input space and by subsequently using a linear classifier. 

The mapping of the input data x  in the feature space )(xx  where they are 

linearly separable is shown schematically in Figure 2.2.  Working in higher 

dimensional feature space induces an intractable computational problem of having 

to deal with very large vectors. This problem can be solved by introduction of 

implicit mapping by kernels. Any function that returns the value of the dot product 

between the images of two arguments can be used as a kernel:  

)()(),( jijiK xxxx                (27)                                 

        
                              
        a   b                                                                (a)  (b) 
 
           a                     b                                                 (a)                        (b) 
         
  a              b                                                            (a)                (b) 
                                                                                          
                 a                     b                                                        (a)               (b) 
 
       a                  b                                                      (a)                         b) 
                           a          b                                                                    (a)   b) 
                
 
Figure 2.2: Mapping of data into feature space where it is linearly separable         

 

The idea of kernel functions is to perform operations in input space rather than the 

very high dimensional feature space. In other words, an inner product in the 

feature space has an equivalent kernel in the input space. A kernel function can be 

selected by using the Mercer’s theorem. The kernel matrix contains all the 

necessary information for the support vector machine learning algorithm and is 

generally known as the information bottleneck. A kernel matrix is a symmetric 

positive definite matrix. A list of popular kernels (Gunn, 1997) is shown in Table 

2.1.  
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Table 2.1: A list of some popular kernel functions 
 

Sr.No. Name of the Kernel Expression 

1 Polynomial      ,....2,11,  pK
p

jiji xxxx  

2 Gaussian Radial Basis Function  



















2

2

2
exp,


ji

jiK
xx

xx  

3 Exponential Radial Basis Function  



















22
exp,


ji

jiK
xx

xx  

4 Multi-layer Perceptron     cbK jiji  xxxx tanh,  

 
 

 

Thus equation (24) can be written in the form of kernel functions in the low 

dimensional input space itself as: 
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subject to the constraints 

 

NiCi ,......,10                              (29) 
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After the optimal values of i  have been found, the decision function is based on 

the sign of: 
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The bias can be found from the primal constraints: 

)32()]()([
2

1
srb xxw 
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where 
rx and sx  are any support vectors from each class.                

                                                                                                                     

Thus SVM can transform the problem of finding an optimal hyperplane to deal 

with nonlinearly separable data into a compact QP formalism having a unique 

solution that can be solved with standard QP solvers.  

 

2.3 Support Vector Regression 

 

Similar to classification problems many of the real life problems require a 

nonlinear model to adequately regress the data. The methodology described in the 

previous sections can be easily extended to employ SVMs to handle nonlinear 

regression (Drucker et al., 1997, Schölkopf et al. 1999, Smola and Schölkopf, 

1998).  A nonlinear mapping can be used in a similar fashion to map the data into 

a high dimensional feature space and perform the linear regression. Kernel 

functions can again be used to do this linear regression in the input space.  

 

2.3.1 Linear Regression 

Consider the problem of approximating the training data-set, 

 

       yyyy
n

NN ,,,,.......,,,, 2211 xxxx           (33) 

 

with a linear function, 

 

  bf  xwx                (34) 

 

The minimum of the functional, 
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iiCg
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1
,  ww              (35) 

 

gives the optimal regression function. In equation (35) C  is a pre-specified value 

and   , are slack variables representing upper and lower constraints on the 

outputs of the system. 
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We can use -insensitive loss function in the form, 
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So, the solution is given by, 
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or alternatively, 
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with constraints, 
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Solving equation (37) with constraints from equation (39) determines the 

Lagrange multipliers, *, ii  , and the regression function is given by equation 

(34), where, 
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The Karush-Kuhn-Tucker (KKT) conditions that are satisfied by the solution are 
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l,......,i,*ii 10                (41) 

 

Therefore, the support vectors are points where exactly one of the Lagrange 

multipliers is greater than zero.  

 

2.3.2 Non-linear Regression 

The idea here again is to employ a non-linear mapping to map the data into a 

higher dimensional feature space, where linear regression is performed. The 

kernel trick as explained in the classification section comes to the rescue to 

address this ‘curse of dimensionality’. The dot product is replaced by a suitable 

kernel function K  Thus, the optimization problem becomes, 
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with constraints 
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Solving equation (42) with constraints equation (43) determines the Lagrange 

multipliers, *, ii  , and the regression function is given by, 
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where, 
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SVM methodology described above is applied to fault diagnosis and QSPR 

problem in next subsequent sections.  

 

2.4 Application of SVM to Fault Diagnosis  

 
The case study is the reactor example given in Luyben (1990) and worked out by 

Venkatsubramanian, et. al. (1990) by using back-propagation neural networks. 

The faults (F1 through F6) occur due to malfunctions in: high inlet flowrate, F1; 

low inlet flowrate, F2; high inlet reactant concentration, F3; low inlet reactant 

concentration, F4; high inlet temperature of reactant stream, F5; and low inlet 

temperature of reactant stream, F6. Table 2.2 shows the twelve measured patterns 

of the reactor output data corresponding to faults F1–F6. The data belonging to 

normal operation is also shown in the table. Table 2.3 shows twelve measured 

output data corresponding to double faults. All the double-faults involved the 

simultaneous occurrence of faults due to high inlet temperature of the reactor 

input stream along with other faults; for example, the first data in the table shows 

the case of simultaneous occurrence of malfunctioning due to high inlet flowrate 

and high temperature of the inlet stream.   

Table 2.2: Single-fault training data 

 
No. Fault C T V F Tj Fj 

1 F1 (+15%) 0.2575 600.66 48.6 46.0 595.0 52.5 
2 F1 (+5%) 0.2494 600.24 48.2 42.0 594.8 50.8 
3 F2 (-15%) 0.2307 599.17 47.4 34.0 594.2 46.6 
4 F1 (-5%) 0.2405 599.73 47.8 38.0 594.5 48.8 
5 F3 (+15%) 0.2520 602.82 47.6 36.3 596.1 61.2 
6 F3 (+5%) 0.2480 600.99 47.9 38.8 595.5 53.9 
7 F4 (-15%) 0.2315 596.74 48.4 43.7 592.9 36.9 
8 F4 (-5%) 0.2414 598.94 48.1 41.2 594.1 45.7 
9 F5 (+15%) 0.2020 608.44 48.0 40.0 598.9 83.7 

10 F5 (+5%) 0.2296 602.96 48.0 40.0 596.2 61.8 
11 F6 (-15%) 0.2991 589.73 48.0 40.0 588.9 8.8 
12 F6 (-5%)_ 0.2617 596.83 48.0 40.0 592.9 37.2 

 



 36 

For classifying these patterns we adopted a procedure somewhat different 

from the one adopted in the earlier studies by Venkatasubramanian, et al. (1990). 

First, we used a classifier to separate the single and double-faults. This involves 

combining all the data in Table 2.2 comprising of single faults in one group and 

data in Table 2.3 comprising of double faults in another group and using SVM to 

classify them into two different classes. An SVM with an RBF kernel was able to 

classify the single faults and double faults into separate classes with 100% success 

rate. Test-data shown in Table 2.4 were also employed to test the robustness of the 

machine in generalizing the machine capability for classifying untrained data.  

 

Further, we used multiclass SVMs to identify and sub-classify different 

types of faults in both Table 2.2 and Table 2.3. For both the single-faults and 

double-faults cases, our aim was to train the SVM to correctly classify the faults 

belonging to a particular fault, irrespective of the percentage deviation. Thus for 

the single fault patterns, the measurement patterns with 15% increase and 5% 

increase in inlet flowrate were put into class 1 (i.e., the F1 Class), 15% and 5% 

decrease was put in class 2 and so on. There are various algorithms in vogue for 

multi-class classification. We have used the simplest method, viz. the one-against-

all (Weston & Watkin, 1999) method to classify the different classes of faults. In 

this method the k class problem is converted into a problem of solving  k binary 

classifiers problems. The kth classifier constructs a hyperplane between class n and 

k–1 other classes. A majority vote across the classifiers is applied to classify the 

new test point. Newer methods for multi-class pattern recognition problem solving 

have recently been described, but these methods do not out-perform the one-

against-all method as described above. The multiclass pattern recognition problem 

of separating the data in Table 2.2 into six separate classes can thus be solved by 

considering it as a collection of binary classification problems. 
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Table 2.3: Double faults training data 
 

 
 

 The above-mentioned problem of separating the single fault data into six 

different classes was solved as an SVM multi-class problem employing one- 

against- all method.  Both polynomial and RBF kernels were able to classify the 

data into seven different classes without any misclassifications. We used a similar 

methodology for sub-classifying the double faults data into four different classes, 

i.e., data belonging to F1 and F5 class; F2 and F5 class; F3 and F5 class and F4 and 

F5 class.  We then expanded the dataset in Tables 2.2 and 2.3 to include errors 

ranging between –25 and +25%. Again, SVM successfully classified the faults 

belonging to separate classes perfectly. The trained classifiers were also tested 

with test data. All the fault-patterns of these test-data were again successfully 

classified by SVM without any errors.  Finally, we included data in which three 

faults occur simultaneously. The data are shown in the Table 2.5.  

 

 

No. FAULT C T V F Tj Fj 

1 
F1 (+10%) 
F5 (+10%) 

0.2201 606.9540 48.4 44 598.5400 77.7193 

2 
F1 (5%) 

F5 (10%) 
0.2178 606.3732 48.2 42 597.8720 75.3920 

3 
F1 (10%) 
F5 (5%) 

0.2361 603.8100 48.4 44 596.6025 65.1414 

4 
F2 (-10%) 
F5 (+10%) 

0.2095 604.5757 47.6 36 596.9857 68.2029 

5 
 

F2 (-5%) 
F5 (10%) 

0.2125 605.1800 47.8 38 597.2882 70.6393 

6 
 

F2 (-10%) 
F5 (5%) 

0.2221 602.0900 47.6 36 595.7284 58.2613 

7 
 

F2 (-5%) 
F5 (5%) 

0.226 602.5300 47.8 38 595.9500 60.0570 

8 
 

F3 (10%) 
F5 (10%) 

0.2237 608.1700 48.0 40 598.7400 82.6100 

9 
F3 (15%) 
F5 (10%) 

0.2269 609.4000 48.0 40 599.3200 87.5333 

10 
F3 (15%) 
F5 (5%) 

0.2427 606.6200 48.0 40 597.9900 76.3800 

11 
 

F4 (-10%) 
F5 (10%) 

0.2043 603.4797 48.0 40 596.4350 63.8189 

12 
F4 (-5%) 
F5 (10%) 0.2101 604.6200 48.0 40 597.0070 68.3792 

13 
F4 (-10%) 
F5 (5%) 

0.2174 600.6700 48.0 40 594.9930 52.5800 

14 
F4  (-5%) 
F5  (5%) 

0.2238 601.8100 48.0 40 595.5830 57.1370 
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Table 2.4: Single and double faults test data  
 

Class No. Fault C T V F Tj Fj 

Single 

Faults 

1 F1(+10%) 0.2535 600.53 48.4 44 594.53 51.9141 

2 F1(20%) 0.2613 600.21 48.8 48 595.41 53.1704 

Double 

Faults 

1 
F1(5%) 

F5(5%) 
0.2329 603.39 48.2 42 596.394 63.4925 

2 
F3(10%) 

F5(5%) 
0.239 605.38 48.0 40 597.38 71.425 

 
 
Table 2.5: Triple faults training data 
    
No. Fault C T V F Tj Fj 

1 
F1 (+10%) 
F2 (+10%) 
F3 (+10%) 

0.2450 600.000 48.40 44.0 594.590 49.9 

2 
F1 (+5%) 
F2 (+5%) 
F3 (+5%) 

0.2379 604.640 48.20 42.0 597.080 68.46 

3 
F1 (+15%) 
F2 (+15%) 
F3 (+15%) 

0.2147 614.770 48.60 46.0 602.040 108.98 

4 
F2 (-5%) 
F4 (-5%) 
F6 (-5%) 

0.2488 595.720 47.80 38.0 591.907 32.78 

5 
F1 (+8%) 
F2 (+8%) 
F3 (+8%) 

0.2321 607.600 48.32 43.2 598.240 80.30 

6 
F1 (12%) 
F2 (12%) 
F3 (12%) 

0.2227 611.675 48.48 44.8 600.110 96.60 

 

 

All these data represent cases in which there is a simultaneous malfunctioning in 

the inlet flowrate, inlet concentration and the inlet temperature. We employed an 

SVM with a RBF kernel to separate data belonging to single fault, double fault 

and triple faults into different groups. The three-class classifier classified all the 

data into different classes without any errors.  

 

 

 

 



 39 

2.5 Application of SVM to Quantitative Structure Property Relationships 

(QSPR)  

 

In the case of regression, we have taken a case study of development of 

Quantitative Structure Property Relationships (QSPRs) for the correlation and 

estimation of physical properties of organic compounds. The fact that the physico-

chemical properties can be successfully correlated with molecular-structural 

characteristics expressed in terms of appropriate molecular descriptors has been 

amply revealed in various recent studies. Different investigators have 

demonstrated the usefulness of AI (Artificial Intelligence) methods as effective 

tools for the development of QSPRs. The main advantage of AI techniques like 

neural networks and SVM is that the QSPRs can be developed directly from the 

input-output data without a priori specification of the analytical form of the 

particular correlation model. Recently, Cohen and coworkers have developed 

neural network based QSPRs for predicting boiling points (Espinosa et al., 2000), 

aqueous solubility (Yaffe et al., 2001b) and vapor pressure (Yaffe et al., 2001a) of 

different hydrocarbons. They have employed the Back-propagation neural 

networks architecture. The QSPRs were obtained from the knowledge of four 

valance molecular connectivity indices, a second order Kappa shape index, the 

dipole moment and the molecular weight (Espinosa et al., 2000). In all, seven 

input parameters were used to predict the output, viz. the boiling point of the 

alkenes. 

 

2.5.1 Prediction of boiling points of alkenes 

In the present study the support vector machine with a radial basis function kernel 

was trained to predict the boiling points of various alkenes. The total data set for 

alkenes (144 examples) was split into two sets, 26 for testing, and the remaining 

118 were further split into 97 training examples and 21 validation examples. The 

SVM was trained with the 97 examples. Several combinations of the parameters 

C,  and  were used and the parameter combination that gave the lowest error on 

the validation set of 21 alkenes was chosen. The corresponding error on the test 

set of 26 alkenes was then found out. The accuracy of the results was the best for  

= 0.1,  = 0.54 and C = 2985. The errors obtained using SVM are compared with 
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the errors obtained by back propagation neural network in Table 2.6. It can be 

seen from the table that SVM obtains a regression function having lower error in 

all the three phases, viz., testing, validation and training.  

 

Table 2.6: Results for Boiling point prediction 
 
 

Error BPNN SVR 
Training 0.93 % 0.68 % 
Testing 1.96 % 1.78 % 

Validation 1.83 % 1.46 % 

 
 
2.6 Summary  

The working of support vector machines based on structural risk minimization 

principle in learning tasks involving linear and nonlinear classification and 

regression has been highlighted. For binary classification tasks, the support vector 

machine obtains the optimal decision surface by maximizing the margin between 

the closet data points belonging to the two classes. Such a large margin classifier 

minimizes both the VC dimension and the training error. This facilitates in 

controlling the capacity of the classifier and in exhibiting good generalization 

capabilities. SVMs first transform the input space into a higher dimensional 

feature space, nonlinearly related to the input space. Further, by using the kernels 

functions it enables computations to be done in the input space itself. The convex 

quadratic optimization of the learning problem enables us to use standard QP 

solvers and get the unique global minimum. There are relatively few free 

parameters and cross validation and generalization becomes easy and simple. The 

SVM methodology was applied to classification and regression problems. The 

case studies considered are the fault detection in CSTR and quantitative structure 

property relations (QSPR) problem dealing with prediction of boiling points of 

aliphatic hydrocarbons from molecular descriptors data. SVM successfully 

classifies and sub-classifies various types of faults occurring in simulated CSTR 

using one against all multi-class strategy. For the QSPR problem, SVM obtains 

smaller errors for training, validating and testing sets than the ones obtained by 

using back propagation networks. The examples clearly demonstrate the ease, 

elegance and superiority of this new tool over the other conventional tools and 

should prove useful in a number of other process engineering applications. 
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Notation  

 
b =  bias  

b = optimal bias 
C  = Upper bound for Lagrange multipliers 
d  = Vapnik-Chervonenkis dimension 
D  = Distance of a point from the hyperplane 

 kxf = functional relationship describing the dynamics of the time series 

 kxf̂ =estimate of  kxf  

 zf = decision function for the vector z  

 wg = objective function 

k = number of classes in multiclass problem 
K  = kernel matrix 
 

jiK xx ,  = kernel function 

DP LL ,  = Lagrangian functions for primal and dual formulations respectively 

m  = number of support vectors 
N  = Number of training set 
R = radius of hypersphere 
r = desired response in regression 
SVs  = support vectors 
t =time 
w  = weight vector  
w  = optimal weight vector  

ix  = ith  vector of input pattern 

sr xx ,  = Support vectors 
Tx  = transpose of matrix x  

iy
  = Target output corresponding to the th

i  vector 

 
Greek symbols 

 
*, = Lagrange multipliers 
*, = Optimal Lagrange multipliers 

*   
*   

 = insensitivity 
 ix  = feature space for the ith  input vector  
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 = width of the Gaussian RBF kernel  

, 
ii  , = scalar slack variables 
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Chapter 3 

KERNEL PCA FOR FEATURE EXTRACTION AND 

DENOISING  

 
3.1 Introduction 

Principal component analysis, or PCA (Geladi et al., 1989), is currently used in 

many areas for several different applications related to detecting the underlying 

structure in a given data set. It provides analysis of correlations between the 

variables and data dimension reduction that has important benefits. First, the 

computational overhead of the subsequent processing stages is reduced. Second, 

the superimposed noise can be reduced, as the data in the last few components 

may be mostly due to noise. Third, a projection onto a subspace of a very low 

dimension is useful for easy visualization of the data.  PCA has also been used in 

process engineering applications for data reduction, validation and visualization, 

fault identification, outlier detection and quality control (Kramer, 1991; Dong & 

McAvoy, 1996; Hiden et al., 1999; Jia et al, 2000; Nomikos & MacGregor, 1994; 

Wise & Gallagher, 1996). 

           It is well known that linear PCA utilizes second order statistics  (Doymaz et 

al., 2001) and can extract only the linear features of the data. To capture the 

correct phase details of the data set and to identify the dominant features existing 

between variables, a nonlinear version of the PCA should be employed (Kramer, 

1991). A number of methods for nonlinear generalization of linear PCA are 

reported in literature. Thus for instance, Kramer (1991) presented a method based 

on autoassociative neural network topology. Dong and McAvoy (1996) 

judiciously combined the principal curves algorithm (Hastie & Stuezle, 1989) and 

the autoassociative network (Kramer, 1991) to provide an effective algorithm for 

nonlinear PCA.  Tan and Mavrouvouniotis (1995) proposed a nonlinear PCA 

method based upon the concept of the input training network.  In the work of 

Hiden et al. (1999) genetic programming technique was used for feature 

extraction. Recently a novel method of performing nonlinear form of principal 

component analysis using integral operator kernel functions has been described 

(Rosipal et al., 2001; Schölkopf, et al., 1998). 

            Kernel PCA corresponds to linear PCA in a higher dimensional feature 

space, which is nonlinearly related to the input space. The input data x are first 
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mapped through some appropriate nonlinear function Ф(x). Then an a priori 

defined kernel function is used to deal with the possibly very high dimensional 

space. In other words, in kernel PCA the original problem, reformulated in the 

form of a dot product of the nonlinear function in the feature space, can be 

substituted by a kernel function, K(x,x’)=Ф(x). Ф(x’). This simplifies the 

calculation procedure because the dot product can be computed  in the input space 

itself. The general question of choice of different kernel functions has been 

discussed by Vapnik (1998). In particular, Mercer’s theorem of functional analysis 

can be used for finding whether a function is indeed a kernel function or not. 

(Schölkopf, et al., 1998). Different researchers have used different kernels, the 

most common ones being polynomial kernels of different orders, Gaussian  kernel 

and spline kernel. The kernel trick allows employment of algorithms such as 

support vector regression, kernel ridge regression etc. that can handle the dot 

products in the feature space for establishing the input output mapping. 

    

            In the instance of noisy data, linear PCA discards the finite variance due to 

noise by projection of data onto the main principal components. The same holds 

true for kernel PCA in feature space by using nonlinear principal components. 

Kernel PCA, however, extracts a substantially larger number of nonlinear 

principal components and therefore allows spreading the information regarding 

the data structure more widely giving a better opportunity to discard some of the 

eigen directions where the noisy part of data resides. The kernel-based treatment 

thus provides an attractive alternative for feature extraction and denoising. In the 

present work we shall illustrate these features by considering two case studies, 

namely (i) model noisy time series data generated using the well known Rössler 

and Lorenz models and  (ii) prediction of dynamic mechanical properties of 

polymer nanocomposites.  The chapter is organized as follows. Section 3.2 

provides the basic framework for extracting nonlinear principal components and 

denoising the data set. The extracted features are then correlated to the outputs 

using kernel principal component regression in section 3.3. Finally section 3.4 

describes the results for the case studies with comparative advantages of this 

methodology vis-à-vis other techniques. 



 47 

3.2 Kernel Principal Component Analysis 

Let us first start with a set of M centered data, kx , in the input space, k=1,….,M, 

N

k Rx  .  Linear principal component analysis requires the diagonalization of M-

sample estimate of the   covariance matrix 

 





M

i

T

ii
M 1

)1(
1

xxC  

 

with an intent to find eigenvalues )0(   and the associated eigenvectors v 

satisfying,  

 

)2(Cvv   

                                                                                                                                      

Linear PCA is well known and the details can be found in standard works 

(Anderson, 1984; Jolliffe, 1986; Wold et al., 1987). It would be useful to note that 

for non-negative eigenvalues, all solutions must lie in the span of the input data. 

Thus the eigenvalue equation can be written as: 

            

).().( Cvxvx kk  for all k=1,…….,M.                 (3) 

 

For the kernelized version of PCA we first define a nonlinear mapping of the 

centered input data in the feature space as:   

 ,: F
N  R  

The problem can now be formulated as the diagonalization of the M- sample 

estimate of the covariance matrix in the high dimensional feature spaces: 

 

)4()()(
1ˆ

1




M

i

T

ii
M

xxC  

 

where )( ix  are centered nonlinear mapping of the input variables.  
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 Here, we need to find the nonnegative eigenvalues and eigenvectors V, 

satisfying the equation, 

 

  VCV ˆ                                                                (5) 

  

Noting that all the eigenvalues lie in the span of the transformed data in the high 

dimensional space, the equivalent relation can be written as:  

 

   VCxVx ˆ).().( kk   for all k=1,…..,M.        (6) 

 

Also, the coefficients ‘s can be related to V as: 

 





M

i

ii

1

)(xV                                           (7) 

 

Combination of equations (4), (6) and  (7) yields 
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       k=1,…..,M. 

                               

(8) 

Further we define an MM kernel matrix K such that  

 

 ).().(: jiijK xx                                                   (9)            

 

The idea of introduction of kernel functions is now clear. It makes use of the fact 

that an inner product in the feature space has an equivalent kernel in the input 

space (Vapnik, 1998).  Thus it is neither necessary to know the form of the 

function, )(x  nor we need to calculate the dot product in the (possibly) very 

high dimensional space.  We can thus employ appropriate kernels to evaluate this 

in the input space itself. Equation (8) can now be expressed as 
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 αα 2KK M                                                           (10) 

 

By definition K is a symmetric matrix and thus it has a set of eigenvectors which 

span the whole space and thus  

 

αα KM                                                                 (11) 

 

By definition K is positive semi definite, with nonnegative eigenvalues. We 

therefore only need to diagonalise K. Let M  ......21  denote the 

eigenvalues, and Mααα ,....., 21 the corresponding complete set of eigenvectors, 

with λp being the first nonzero eigenvalue. We normalize Mp αα ,...., by requiring 

that the corresponding vectors in F be normalized, i.e.  

 

  Mpk
kk ,.....,1. VV  

 

From equations (7) and (11), we have the normalization condition for Mp αα ,...., : 
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For the purpose of principal component extraction, we need to compute the 

projections on the eigenvectors Vk  in F (k=p,….,M):  
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          It is evident from equation (12) that by using the kernel trick the 

eigenvalues are now characterized by the corresponding  vectors, which can be 
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used to find the principal components. We then select the first p<M nonlinear 

principal components, e.g. the directions that describe a desired percentage of data 

variance, and thus work in the p-dimensional sub-space of feature space.  An 

inspection of equation (12) further reveals that in kernel PCA the number of 

principal components extracted can exceed the input dimensionality. Thus for a 

system with M data observations and N input dimensionality (N variables), the 

kernel PCA can find up to M nonzero eigenvalues. This is in contrast to linear 

PCA in which we can extract only N nonzero eigenvalues. 

              

          It must be mentioned here that in linear PCA it is possible to recover 

original input data from complete set of extracted principal components. In kernel 

PCA this may not be possible because the eigenvectors V in feature space do not 

have a preimage in input space. So for the purpose of data reconstruction we may 

have to perform a regression connecting the projected data in the feature space to 

the vector of M observations y. This can be done by various methods like SVM 

regression, kernel ridge regression and kernel principal component regression 

(Rosipal, et al 2001; Schölkopf, Smola, & Müller, 1998). For the purpose of 

denoising the time series in this work we have employed the kernel principal 

component regression.  

  The key difference between kernel PCA and linear PCA is in the 

extraction of principal components.  For a data consisting of M test examples with 

input dimensionality N the linear PCA can extract a maximum of N principal 

components while the kernel PCA can extract up to M principal components.   

This may indeed be a limitation for some dimensionality reduction problems.  On 

the other hand in certain classification problems it has also been found that after 

the initial kernel PCA preprocessing even a computationally cheap linear classifier 

could work quite efficiently (Schölkopf, Smola, & Müller, 1998). Kernel PCA can 

also have a definite advantage in dealing with multi-collinearity and noise. While 

dealing with multi-collinearity kernel PCA also allows us more flexibility in 

retaining principal components to capture the underlying nonlinear features.  

 

           Finally, a word about the computational complexity involved is in order. It 

is clear that the search for the principal components in the high dimensional 

feature space may not lead to computational problems because we do not need to 
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look for eigenvectors in the full space, but only in the subspace spanned by the 

images of observations. Also, the computation of dot products can be performed 

in the input space using kernel function. Thus in practice the computational loads 

for kernel PCA and linear PCA are of the same order of magnitude.   For 

extracting principal components, however, we need to evaluate kernel function M 

times over each extracted principal component. The kernel principal component 

extraction is thus computationally more involved than its linear counterpart, but 

the efforts could be compensated, as even in nonlinear cases, construction of 

simple linear regression may be sufficient. Also, the complexity involved while 

dealing with larger dimensions can be solved by introducing different sparse 

approximations (Schölkopf, Smola, & Müller, 1998).    

 

3.3 Kernel Principal Component Regression 

Consider the standard regression model in feature space F, 

 

 ,εΦξy                                                        (13) 

 

where y is a vector of M observations of the dependent variable, Φ is an nM   

matrix ( n ) of regressors whose ith row is the vector  ix   of the mapped ix  

observation into the high dimensional feature space F and , ξ is a vector of 

regression coefficients and  ε  is the  vector of error terms. The fact that ΦΦT  is 

proportional to the sample covariance matrix can be exploited to extract upto n 

eigenvalues  n

jj 1
  and corresponding eigenvectors  n

j

J

1V . The projection 

)(x Φ  onto the k-th nonlinear principal component was given in equation 12. 

Projection of all regressors on to the principal components yield 

 

Bwy ε ,                                                        (14) 

 

where B= VΦ  is now a matrix of transformed regressors and V  is an  nn  

matrix whose k-th column is the eigenvector Vk . The columns of the matrix are 

orthogonal and least squares estimate of the coefficients w becomes 
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   yBBBw TT 1
                                                (15) 

 

The kernel matrix should be centralized before it is used to find the principal 

components:   
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where K is the kernel of the input data (training) matrix, tK  is the kernel of the 

input data (testing) matrix, I  the identity matrix of order M, and M1 , 
tM1   are the 

vectors whose elements are the ones with length M, Mt respectively.  To avoid the 

problem of multi-collinearity we employ only the first p principal components. 

The linear kernel principal component regression model using the first p ( Mp  ) 

nonlinear principal components in terms of the kernel matrix can finally be 

expressed as :  
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where  
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



     and b is bias term.. For the centralized regression 

model bias is zero.  

 

3.4 Case Studies 

The denoising and prediction capabilities of the kernel PCA algorithm have been 

tested by considering two different examples. In one case study chaotic time series 

data (Rössler and Lorenz model) has been used for testing denoising performance. 

The other case study deals with the development of a data driven model 

connecting the important input variables to the mechanical properties of polymeric 

nanocomposites developed in our laboratory. More details about the case studies 
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are given in the following subsections.  For both case studies we have used 

Gaussian kernel, which is defined as 






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ji

ji
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xx

xx where L is the 

width of the Gaussian function.  

 

3.4.1 Denoising of chaotic Time series 

In our simulations we have chosen two important benchmarking time series 

examples, viz., the Rössler system (Killory et al., 1986, 1987) and the Lorenz 

system governed by the following set of equations.   

 

Rössler system 

 cxzb
dt

dz

ayx
dt

dy

yz
dt

dx







  

 

with  10;2.0;15.0  cba .    

Lorenz system 

yxzb
dt

dz

zxyxR
dt

dy

yx
dt

dx





 

  

with 3/8,28,10  bR .  

 

The time series data was generated by integrating both sets of equations 

using a standard Runge-Kutta routine with a step size of 0.01.  The training set 

consisted of 450 delay vectors, formed by using an embedding dimension of 3 and 

a time delay of 23 for Rössler series (Casdagli,1989 ; Fraser & Swinney ,1986) 

and  16 for Lorenz series.  The test set consisted of similarly embedded 200 sets.  

             Gaussian noise with three different noise to signal ratio was added to the 

samples of Rössler and Lorenz series. Kernel PCA preprocessing followed by 
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kernel principal component regression for data reconstruction was carried out with 

a view to minimizing the RMS error in retrieving the clean data. The results for 

the two cases are shown in Tables 3.1a and Table 3.1b. It can be seen that for a 

noise to signal ratio of 5% the best results were obtained by retaining the first 152 

principal components and the optimal width of Gaussian function was 1.84 for 

Rössler series where as for Lorenz series best results were obtained by retaining 

the first 65 principal components and the optimal width of Gaussian function was 

1.1. The optimal number of principal components to be retained reduced with 

increase in noise as observed for both the cases. It can also be observed that there 

is a gradual increase in both the test and training errors with the increase in noise. 

The influence of retaining different number of principal components is shown in 

Figure 3.1 for a noise to signal ratio of 10% for Rössler series. Similar trend was 

observed for the other cases. Figure 3.1 indicates that there exist an optimal 

number of principal components to be retained. If more number of components is 

retained than the optimal number the noise elimination capability is reduced. On 

the other hand retaining lesser number of components leads to loss of information.  
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Figure 3.1: Effect of number of principal components on RMS test error for 
case study 1 (n/s = 10 %, =2.0). 
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For the sake of comparison, denoising was also carried out using linear PCA, 

wavelets (Daubechies, 1992) and moving median filter denoising techniques.  The 

Daubechies wavelet technique is extensively used in engineering applications. 

(Doymaz et al., 2001).  In the moving median (MM) filter technique the median of 

a window containing odd number of observations is found by sliding the window 

over the entire one-dimensional signal. The details of this method can be found in 

(Turkey, 1970;  Davies, 1992; Doymaz et al., 2001). Linear PCA did not show 

any improvement with reduction in number of principal components. The results 

using wavelets (db4) and   MM filter are marginally better than kernel PCA for 

Rössler time series (Table 3.2a), while for Lorenz time series (Table 3.2b) kernel 

PCA outperforms the other methods for low noise to signal ratio. For higher noise 

to signal ratio, the results of wavelet and kernel PCA are almost the same.   For 

this time series kernel PCA does better than MM filters for both high and low 

noise to signal ratios. 

Table 3.1a: Best results for Rössler time series 
 

Level of noise 
Width of 
Gaussian  
function 

Number of 
Principal 

components 
retained 

Training error 
(RMS) 

Testing error 
(RMS) 

n/s=0% 
(Clean time 

series) 
1.0 136 0.001396 0.002317 

n/s = 5% 1.3 50 0.553745 0.586854 

n/s = 10% 2.0 23 1.063071 1.057948 

n/s=15% 5.0 19 1.497384 1.581846 

 

Table 3.1b: Best results for Lorenz time series 
 

Level of noise 
Width of 
Gaussian  
function 

Number of 
Principal 

components 
retained 

Training error 
(RMS) 

Testing error 
(RMS) 

n/s=0% 
(Clean time 

series) 
1.0 164 0.019843 

0.054608 
 

n/s = 5% 1.1 65 0.696934 0.866639 

n/s = 10% 1.2 31 1.393587 1.542977 

n/s=15% 2.0 30 1.867302 1.865162 
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Kernel PCA’s ability to extract up to M principal components indeed 

offers greater maneuverability in optimizing the denoising capability. Although a 

direct comparison with neural network based PCA is not possible it can be said 

that the neural networks based nonlinear PCA requires solution of a nonlinear 

optimization problem and can possibly get stuck in a local optima. Kernel PCA on 

the other hand is essentially a simple linear PCA in high dimensional feature 

space and does not require solution of a nonlinear optimization problem.  In neural 

networks based PCA additional efforts have to be taken to orthogonalize the 

principal components (Doymaz et al., 2001), whereas kernel PCA is an orthogonal 

basis transformation in high dimensional feature space and the first q principal 

components carry more variance and more information content than any other q 

orthogonal directions (Rosipal, et al 2001; Schölkopf, Smola, & Müller, 1998). 

 

Table 3.2a: Comparison with other denoising methods: Rössler series 
 

 

Noise/signal ratio 
RMS error 

Kernel PCA Wavelets (db4) MM filter 

5 % 0.586854 0.3439 0.3788 

10 % 1.051539 0.5873 0.6319 

15 % 1.577870 0.8812 0.8835 

 
 
 
Table 3.2b: Comparison with other denoising methods: Lorenz series 
 
 

Noise/signal ratio RMS error 

Kernel PCA Wavelets (db4) MM filter 
5% 0.8623 1.426158 2.5833 

10% 1.542977 1.44277 2.6614 

15% 1.865162 1.723761 2.7159 
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3.4.2    Prediction of dynamic mechanical properties of polyvinyledene 

fluoride (PVDF)/Clay Nanocomposites 

 

 Polymer/clay nanocomposites represent a new class of materials with many 

desirable attributes and enhanced performance such as higher modulus, improved 

dimensional stability, decreased thermal expansion coefficient, increased solvent 

resistance, enhance ionic conductivity, and reduced gas permeability. In particular 

(PVDF)/clay nanocomposites prepared by melt intercalation with organophilic 

clay exhibits highly improved thermo-mechanical properties. Dynamic 

Mechanical properties such as storage modulus, loss modulus, and tan δ of 

organophilic clays with different compositions and particle sizes were measured at 

constant frequency over a wide spectrum of temperatures.  A data driven model 

connecting the various inputs to the mechanical properties would be very useful in 

selecting the composites for various end uses. It is with this aim kernel PCA was 

employed to suitably arrive at a highly accurate input output mapping. The 

experimental procedure is as follows: 

  

              PVDF grade SOLEF 1008 supplied by solvay (Belgium) (Mw=100x103 

g/mol and Mw/Mn = 2.5) was used. Organically modified clay, Cloisite 20A 

(Ditallowdimethylammonium salts with Bentonite), was generously supplied by 

Southern Clay Products, Texas. The clay was dried in an air circulatory oven at 

600C. Four compositions containing 1.5, 3, 5, and 7% (wt/wt) of clay were 

prepared using melt mixing in Brabender Plasicorder mixer at 2000C and 60 rpm. 

The corresponding particle size for the above compositions are measured 

experimentally and found to be 10.5, 12.31, 13.52 and 12.31 nm.  The films used 

for mechanical analysis were prepared by compression molding at a temperature 

of 2000C using Caver press model F-15181. The structure of the polymer/clay 

composite was evaluated using Rigaku model Dmax 2500 X-ray Diffractometer 

with Cu-Kα radiation of wavelength 0.1514 nm. The basel spacing of the clay was 

estimated from the d(001) peaks in the XRD pattern. Particle size measurement is 

carried out for the polymer clay nanocomposites using Scherrer equation.  
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Figure 3.2: Variation of mechanical properties of polymer nanocomposites with 
temperature and composition. 
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               The dynamic Mechanical properties of the samples were studied on 

compression-molded films using a dynamic mechanical analyzer Rheometrics 

model DMTA IIIE in the tensile mode. The samples were analyzed from –100 to 

1500C at a heating rate of 50C/min and frequency of 10 rad/s. The temperature 

sweep was carried out at 0.1 % strain. The storage modulus, loss modulus, and tan 

Figure 3.3: Effect of number of principal components retained on test 
error in predicting storage modulus of polymer nanocomposites ( = 
2.75) 
 

Figure 3.4: Effect of width of Gaussian  function on test error in predicting storage 
modulus of polymer nanocomposites (number of principal components retained = 535) 
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δ were measured at constant frequency over the entire temperature range and the 

experimental data are presented in Figure 3.2.  

The organically modified clays exhibit significant variations in their 

surface properties, which in turn affect the size, size distribution, and mechanical 

properties of the nanocomposites. In this case study, the composition of clay, size 

of clay particles and the temperature at which the mechanical tests were conducted 

provides the input variables space. The output variables are the storage modulus, 

loss modulus, and tan δ, representing the ratio of the two modulli. Only the first 

and third variables were therefore considered for the simulations. The input-output 

mapping was done separately with each of the two outputs. Out of a total number 

of 1167 data points 900 were taken for training and the remaining were employed 

for testing. The highly nonlinear interactions coupled with inevitable instrumental 

measurement errors make the data very difficult to analyze using linear methods. 

Preliminary analysis using linear PCA show the training and test errors to be in 

the range of 30-35 % for predicting tan δ and more than 130% for predicting 

storage modulus. The detailed results using linear principal component regression 

are shown in Table 3.3.  

Table 3.3: Results for predicting properties of polymer nanocomposites using 

principal component regression 

 
 

 
 
 

 

 

 

Property 

of polymer 

nanocomposite 

Principal 

components 

retained 

Test error  

(%) 

Training error 

(%) 

Storage 

modulus 

1 254.681358 237.988341 

2 123.155203 128.387774 

3 127.638248 131.061781 

tan  

1 30.758271 29.124107 

2 30.833133 32.658523 

3 30.906240 32.404219 
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Table 3.4: Best results for predicting properties of polymer nanocomposites using 

kernel principal component regression 

 

 

Property 
of polymer 

nanocomposite 
 

Width of 
Guassian 

kernel 

Number of 
Principal 

components 
retained 

Training error Testing error 

Storage 
modulus 

2.75 535 0.366 % 1.338 % 

tan δ 1.63 801 0.119 % 2.330 % 

 

 

              Extensive simulations were carried out for various values of the two 

parameters, viz., number of principal components to be retained and the Gaussian 

function width. The best results obtained are shown in Table 3.4.  For mapping the 

input variables with the storage modulus we found that optimal results were 

obtained by retaining the first 535 principal components and employing a value of 

2.75 for the kernel width.  For relating the tan  with the input variables the 

optimal kernel width and the number of principal components were found to be 

1.63 and 801 respectively. The effect of number of principal components retained 

on test error in predicting storage modulus is shown in Figure 3.3. The effect of 

Gaussian function width on the test error is depicted in Figure 3.4. The results 

indicate similar trends with those exhibited in previous case study.  

 

3.5 Summary  

Kernel PCA, a new method for performing nonlinear principal component 

analysis has been illustrated by considering the examples of (i) denoising of 

chaotic time series and, (ii) development of an input-output model for the case of 

polymer nanocomposites. In this method the original problem is first nonlinearly 

transformed to a higher dimensional space. The kernel function simplifies the 

computational complexities by performing the dot product of the transformed data 

in the input space itself. The capability of the method to extract a large number of 

principal components is very useful for feature extraction and denoising. For the 

chaotic time series the kernel PCA successfully denoises and recovers the original 

data with substantial accuracy. Similarly for the polymer nanocomposite example 
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the kernel PCA preprocessing followed by kernel regression is able to extract the 

dominant features and map the input output data very well. The fact that the 

method does not require solution of any hard nonlinear optimization problems 

makes the method very attractive for use in various process engineering 

applications.  
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Chapter 4 

A METHODOLOGY FOR PROCESS MONITORING USING  

LLE-SVDD 

 
4. 1. Introduction 

Last few years have experienced an explosive growth in the amount of data 

collected on different experimental systems due to availability of sophisticated 

instrumentation. New applications that require the storage and retrieval of huge 

amounts of data are emerging. They include examples such as protein matching in 

biomedical applications, fingerprint recognition, meteorological predictions, 

satellite image repositories, genomic data, text categorization etc. Most problems 

of interest in practice involve data with a large number of measurements (or 

dimensions). For example in many chemical process plants, sensors provide a 

large amount of measurements (features). This information overload can be a 

significant problem for plant operators responsible for insuring the safety and 

economic operation of the plant, particularly during abnormal situations resulting 

from disturbances, faults (sensor, equipment failure etc), human error, and/or 

unanticipated operating conditions. Thus abnormality detection in process plant 

constitutes a very vital aspect of safe and optimal operation of complex chemical 

plants.  A number of methods have been proposed for batch process monitoring. 

           

The early work, based on multiway principal component analysis (MPCA) 

(Wold et. al., 1987), was developed for batch process monitoring by Nomikos and 

MacGregor (1994). Multiway partial least square (MPLS) was then developed to 

correlate the process data and the product quality data (Nomikos & MacGregor, 

1995). Various researchers have proposed several variants to the original 

methodology based on MPCA (e.g. Rannar et al. 1998). Louwerse and Smilde 

(2000) used PARAllel FACtor analysis (PARAFAC) and Tucker three-way 

models for monitoring batch processes. Boque and Smilde (1999) used 

multivariate statistical procedures based on multiway covariates regression 

models. Nonlinear principal component analysis (NLPCA) based on principal 

curves and neural networks produced independent principal components to unfold 

batch process data and get the nonlinear batch trajectory (Dong &  McAvoy, 

1996b).  Martin and Morris (1996) and Martin et al. (1996) introduced a control 
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chart based on a non-parametric method. Wise et al. (1999), Westerhuis et al. 

(1999) and Dahl et al. (1999) applied and compared several alternatives for 

multivariate statistical analysis of batch process data. Combination of the 

orthonormal function approximation and the MPCA is proposed to analyze and 

monitor batch processes at the different operating time (Chen & Liu, 2000). 

Dynamic PCA and dynamic PLS models have also been used for on-line batch 

process monitoring (Chen & Liu, 2002). The performance of statistical process 

monitoring of batch processes can be enhanced by incorporating external 

information in model development (Ramaker et al., 2002). Some of these 

approaches have been evaluated by Van Sprang et al. (2002). Also there are 

number of approaches, which has been used for fault detection and diagnosis of 

the batch as well as continuous process using artificial neural networks (ANN) 

and combination of ANN with fuzzy and wavelets (Chen et. al. 1999; Dong & 

McAvoy, 1996a; Dong & McAvoy, 1996b; Fan et. al., 1993; Farell & Roat, 1994; 

Hoskins et. al. 1991; Kavuri & Venkatasubramanian ,1993, 1994; Rengaswamy & 

Venkatasubramanian, 2000; Ruiz et. al. 2000,2001; Scenna, 2000;  Ungar et. al.  

1990; Venkatasubramanian & Chan, 1989; Venkatasubramanian, et. al.,  1990; 

Wang et. al., 1999;  Watanabe et. al. 1989; Zhao et. al., 1997). 

 

Many of the techniques elaborated above are based on the use of  

clustering and dimensionality reduction valid for linear structures (Devijver and 

Kittler, 1982; Duda et al., 2001; Jain et al. 2000; Mardia et al. 1979).   Many real 

life data sets however contain essential nonlinear structures that are imperceptible 

to linear methods (Bailer-Jones et al. 1998; McClurkin et al. 1991; Murase & 

Nayar, 1995). A number of techniques to perform nonlinear mappings have been 

proposed in literature. They include: non-linear PCA (Malthouse, 1998), multi-

dimensional scaling (MDS) (Borg and Groenen,1997), Sammon mapping 

(Sammon, 1969), singular value decomposition (SVD), self-organizing map 

(SOM) (Kohonen, 1995), generative topographic mapping (Bishop et al.,1998), 

principal curves and surfaces (Hastie and Stuetzle, 1989), auto-encoder neural 

networks (DeMers & Cottrell, 1993), mixtures of linear models (Tipping & 

Bishop 1999) etc. All of these methods while extremely useful in general, have 

some or the other specific limitation. Thus for instance: there is no single and 

unique solution to nonlinear PCA while MDS and Sammon mapping give a point-
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to-point mapping but cannot provide the underlying mapping function. 

Consequently they cannot accommodate new data points (Sammon, 1969; Mao & 

Jain, 1995) and the entire procedure has to be repeated from start using all data 

points. Multi-dimensional scaling and neural networks are hard to train and time-

consuming, as are principal curves and surfaces. The latter, as well as the 

generative topographic mapping, need large data sets to estimate their many 

parameters. Mixtures of localized linear models require the user to set a number of 

parameters, which are highly specific to each data set and determine how well the 

model fits the data. 

 

Recently, several entirely new approaches have been devised to address 

these problems. These methods combine the advantages of PCA and MDS viz. 

computational efficiency; few free parameters; non-iterative global optimization 

of a natural cost function—with the ability to recover the intrinsic geometric 

structure of a broad class of nonlinear data manifolds. These algorithms can be 

local or global. Local approaches such as locally linear embedding (LLE) (Roweis 

& Saul, 2000), Laplacian eigenmaps (Belkin & Niyogi, 2002) attempt to preserve 

the local geometry of the data; essentially, they seek to map nearby points on the 

manifold to nearby points in the low-dimensional representation. Global 

approaches such as Isomap (Tenenbaum et al., 2000) attempts to preserve 

geometry at all scales, mapping nearby points on the manifold to nearby points in 

low-dimensional space, and faraway points to faraway points. Thus isomap 

preserves the neighborhood of each object, as well as the 'geodesic' distances 

between all pairs of objects. The global approach tends to give a more faithful 

representation of the data’s global structure, and its metric-preserving properties 

are better understood theoretically. The local approaches have two principal 

advantages: (1) computational efficiency: they involve only sparse matrix 

computations which may yield a polynomial speedup; (2) representational 

capacity: they may give useful results on a broader range of manifolds, whose 

local geometry is close to Euclidean, but whose global geometry may not be.  

 

LLE recovers global nonlinear structure from locally linear fits. Unlike 

clustering methods for local dimensionality reduction, LLE maps its inputs into a 

single global coordinate system of lower dimensionality, and its optimizations 
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does not involve local minima. LLE is based upon reconstruction of data, 

preserving local neighborhoods, and thus also the clusters which may be present 

in the database. Therefore algorithms such as Support Vector Domain Distribution 

(SVDD)  (Tax and Duin, 1999) should show superior performance  for LLE data 

representation than other representations like PCA. In the present work, we 

illustrate these advantages of LLE combined with SVDD to make the abnormality 

detection scheme more robust. 

 

4.2. Locally Linear Embedding (LLE) Algorithm  

The LLE algorithm is based on simple geometry. Consider the data set 

D
X  P1,2.......i}{


, sampled from some smooth underlying manifold. For a well 

sampled (i.e. there is enough data) manifold, we expect each data point and its 

neighbors to lie on or close to a locally linear patch of the manifold. We can thus 

approximate the non-linear manifold in the vicinity of iX


by a linear hyperplane 

passing through its nearest neighbors. In the simplest formulation of LLE, one 

identifies N nearest neighbors for every data point, as measured by Euclidean 

distance (Other notions of “closeness” are also possible, such as all points within a 

certain radius, or by using more sophisticated rules based on local metrics.) and 

then minimize the reconstruction error as measured by a cost function 

 

 
i

j
jiji XWXW

2

)(


       (1) 

 

subject to two constraints:  

a) Each data point iX


 is reconstructed only from its neighbors, enforcing 

0ijW  if jX


does not belong to this set and  

b)  
j ijW 1 for every i. 

The weights ijW  signify the contribution of the j
th data point to the i

th 

reconstruction.  The optimal weights ijW  subject to these constraints are found by 

solving a least squares problem. The constrained weights that minimize these 

reconstruction errors characterize intrinsic geometric properties of each 
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neighborhood, as opposed to properties that depend on a particular frame of 

reference. This is due to the fact that for any particular data point, the weights are 

invariant to rotations, rescalings, and translations of that data point and its 

neighbors. The invariance to rotations and rescalings results from the form of 

Equation (1); the invariance to translations is imposed by the sum-to-one 

constraint (b). Since the data lie on or near a smooth nonlinear manifold of 

dimensionality d<<D, there exists a linear mapping— comprising a translation, 

rotation, and rescaling—that maps the high dimensional coordinates of each 

neighborhood to global internal coordinates on the manifold. Thus reconstruction 

weights ijW , invariant to such transformations, should characterize the local 

geometry, both in the original data space and local patches on the manifold. In 

particular, the same weights ijW  that reconstruct the ith data point in D dimensions 

should also reconstruct its embedded manifold coordinates in d dimensions. Based 

on this idea each high dimensional observation iX


 is mapped to a low 

dimensional vector iY


 representing global internal coordinates on the manifold. 

This is accomplished by choosing d dimensional coordinates iY


 to minimize the 

reconstruction errors as measured by embedding cost function:  

 

2

)(  
i

j jiji YWYY


       (2) 

The embedding cost defines a quadratic form in the vectors iY


. 

 
ij

jiij YYMY ).()(


        (3)  

Here M is PP matrix: 


k

kjkijiijijij WWWWM                     (4)  

where  ij  is 1 if ji   and 0 otherwise. 

To ensure the uniqueness of the solution the following two constraints are 

imposed: translation invariance by requiring the coordinates to be centered on the 

origin i.e. 0
i

iY


 and we constrain the embedding vectors to have unit 

covariance,  
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 T

i

i

i YY
P


.

1
                                                 (5)   

     

where I is the dd  identity matrix.  

These constraints do not affect the generality of the solutions as )(Y  is invariant 

to translation, rotations and homogeneous rescalings. The additional constraint 

that the covariance is equal to the identity matrix expresses an assumption that 

reconstruction errors for different coordinates in the embedding space should be 

measured on the same scale. 

The optimal embedding d

Pi RY  ......2,1


 is given by eigenvectors associated 

with the smallest d+1 eigenvalues of the matrix M (Horn & Johnson, 1990). The 

bottom eigenvector of this matrix is discarded, as it is a vector composed of all 

ones, with zero as eigenvalue. Discarding this eigenvector enforces the constraint 

that the embeddings have zero mean, as the components of other eigenvectors 

must sum to zero, by virtue of orthogonality.  

 

The bottom d+1 eigenvectors (corresponding to smallest d+1 eigenvalues) 

of the matrix M can be determined without performing a full matrix 

diagonalization (Bai et al., 2000). Moreover, the matrix M can be stored and 

manipulated as the sparse symmetric matrix 

 

)()( WWM
T                   (6) 

giving substantial computational savings for large values of P.  

 

Although the reconstruction weights for each data point are computed 

from its local neighborhood independently, the embedding coordinates are 

computed by an PP  eigensolver, a global operation that couples all data points 

in connected components of the graph defined by the weight matrix. The different 

dimensions in the embedding space can be computed successively; this is done 

simply by computing the bottom eigenvectors from Equation (2) one at a time.  

 

The nearest neighbor parameter N is a measure of the “quality” of input-

output mapping (i.e. how well the high-dimensional structure is represented in the 
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embedded space). If N is set too small, the mapping will not reflect any global 

properties; if it is too high, the mapping will lose its nonlinear character and 

behave like traditional PCA, as the entire data set is seen as local neighborhood. N 

is selected based on the residual variance (Kouropteva et al., 2002). It is defined 

as 21
yxEE  where   is the standard linear correlation coefficient, computed over 

all entries of Ex and Ey; Ex and EY are the matrices of Euclidean distances 

(between pairs of points) in X and Y (as computed above), respectively. The lower 

the residual variance is, the better the high-dimensional data are represented in the 

embedded space. Hence, the optimal value for optNN , can be determined as 

  

)1(minarg 2

yxEE
N

optN       (7)  

A few techniques like linear interpolations and training a neural network 

or RBF network (Vlachos et al., 2002) are available for mapping a new 

(previously unseen) sample. In the present work we have however preferred a 

simple strategy of concatenating the new sample with given samples and repeating 

the whole LLE procedure for on-line implementation. This preference is based on 

our observation that the LLE algorithm takes only few seconds of time to run (as 

LLE only involves sparse matrix computations), retaining non-linear mapping 

even for query point. Approaches like Neural or RBF networks are hard to train 

and linear interpolations may lose the non- linearity of data.  

 

The procedure as described above leads to nonlinear dimensionality 

reduction of data. We shall now briefly describe the classification using SVDD. 

 

4.3. Support Vector Domain Distribution  

Support vector domain distribution (Tax and Duin, 1999) avoids solving the 

harder density estimation problem and uses the simple task of finding the support 

vectors of the multivariate distribution. The objective of classification of data 

domain is that the given set of data should be represented in a unique minimal 

volume spherical domain enclosing all or nearly all the training points. The effect 

of outliers is reduced by using slack variables i to allow for data points outside 
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the sphere and task is to minimize the volume of the sphere and number of data 

points outside the sphere. 

 

PiCRaRF
i

ii ........2,1),,( 2           

    (8) 

with constraints  

0)()( 2  iii

T
Raxax 


i

 (9) 

 P is the number of objects in training set and a


is the center of the sphere. The 

parameter C characterizes the trade off between the volume of sphere and number 

of data points that lie outside. 

Combining (7) & (8), we formulate the Lagrangian as, 

 

 
i

iii

i

iiii

i

iii aaxaxxRCRaRL )10())2((),,,( 22  

 

with Lagrange multipliers .0&0  ii   

 

After replacing dot products by kernel, the dual formulation amounts to the 

maximization of  

 

 
i ji

jijiiii xxKxxKL
,

),(),(
    (11) 

with constraints 

Ci 0                                                   (12)  

   
i

i 1                                                                (13) 

Only for some set of points the equality in Equation (9) is satisfied. These 

points lie on the boundary of sphere and are called as support vectors for which 

the coefficients i  are non-zero. These points completely describe the sphere. The 

radius of the sphere is calculated as the distance of support vector for which i < C 

from the center of the sphere. The outliers or abnormal points are the bound 

objects for which Ci  .   Having completed the training process a test point z


is 
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declared as an outlier, if the distance of the point to the center of the sphere is 

larger than the radius:  

 

 
ji,

2

jiji

i

ii R)x,xK(αα)x,zK(α2)z,zK(


                      (14) 

Different kernel functions can be used to get different domain description 

boundaries. The most popular kernels are polynomial kernel and Gaussian RBF 

kernel.  

 

Polynomial kernel                      n

jiji )xx(1)x,xK(

                 (15) 

Gaussian RBF kernel                
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       (16) 

 

4.4. Case Studies 

 

We have illustrated the method of online abnormality detection in a process plant 

using LLE-SVDD method in the following sub-sections with the two case studies 

viz. acetone-butanol fermentation and a benchmark semi-batch reactor problem.   

 

4.4.1 Case study 1: Batch Acetone-Butanol Fermentation  

 

Acetone-butanol fermentation is considered here as a case study. The 

mathematical model is taken from Vortruba et al. (1986).  The model for the batch 

culture of clostridium acetobutylicum has been formulated using experimental 

data for anaerobic solvent production. The model takes into account biochemical 

as well as physiological aspects of growth and metabolite synthesis. The same 

example has been considered by Singhal (2002) for evaluating different pattern 

matching techniques. In this example we use the model 
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Figure 4.1: Abnormality detection in acetone-butanol fermentation using LLE-

SVDD  (showing abnormal batches A &B) 

        

for online abnormality detection using SVDD along with nonlinear dimensionality 

reduction technique, LLE.  The model consists of ten nonlinear differential 

equations. The parameters are the same as in Vortruba et al. (1986) and Singhal 

(2002). 55 normal batches were simulated by giving some variations in reactor 

cell concentration, substrate concentration and dimensionless cellular RNA 

concentration. This forms the historical database for the training of LLE-SVDD. 

In addition to this, two normal and six abnormal batches were simulated as test 

batches. Out of the six abnormal batches the first two correspond to abnormality 

due to slow substrate utilization, the next two correspond to abnormality due to 

dead inoculum and the remaining two correspond to abnormality due to increased 

cell sensitivity to butanol.  The nine process variables used for monitoring are: 

reactor cell concentration, substrate concentration, butyric acid concentration, 

acetic acid concentration, butanol concentration, acetone concentration, ethanol 

concentration, CO2 concentration and H2 concentration. All the variables are 

measured after every 10 minutes. The total time required for a single batch is 30 

hr. 
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 Figure 4.2: Abnormality detection in acetone-butanol fermentation using LLE-

SVDD (showing abnormal batch C) 

 

For this analysis, each nominal batch is unfolded, and can be represented 

as a data vector. For instance, at time τ, a batch can be written as, 

      [ ))1((....)2()()( twQtQtQQ
TTTT  


] 

where  

 TJqqqQ ....)( ,2,1


 

is the J-dimensional variables vector at time point τ. For this problem the number 

of monitoring variables J=9 and the length of moving window is w=20.  

 

The training data for LLE-SVDD analysis consists of 55 normal batches 

with values of all the 9 selected variables at 20 consecutive sampling times. Thus 

data for LLE is a matrix of 18055 . We fix the dimensionality of reduced space 

(d) into which LLE is projecting to 15. The nearest neighbor parameter N  (as 

obtained from the residual variance criterion) changes very slightly while moving 

from one window to another; thus for sake of computational simplicity the value 

of N was fixed at an average value of 12.  The reduced matrix with dimension of 
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1555  is then used to train SVDD for novelty detection. The testing data with 

reduced dimension is obtained using on-line LLE as described in section 2.                                                                             
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               Figure 4.3: Number of support vectors obtained for Acetone-butanol  

                 fermentation problem  

 

SVDD is carried out on this dataset by selecting an appropriate kernel, which is 

able to give the best description of the data domain. This classification is done by 

the following steps: (i) The quadratic optimization problem represented by 

Equation (11) is solved to get the support vectors and the corresponding Lagrange 

multipliers, (ii) These values are used to calculate the value of R2 using Equation 

(14), (iii) The window is moved further by 10 minutes interval and the SVDD as 

described above is again carried out for the set of data vectors belonging to the 

new window. The procedure is repeated until the analysis covers the variables at 

the final time. Value of R2 for support vectors act as the control limit for online 

testing of a new batch. The R2 values are unique for each window and thus there 

exists a profile of R2 for the nominal batches.  As long as the R2 value of the test 

batch lies below the SV line (solid line shown in Figure 4.1 & 4.2), the batch is 

normal. LLE-SVDD identifies all the six abnormal test batches. In Figures 4.1 and 

4.2, one test batch belonging to each case i.e. slow substrate utilization (abnormal 

batch A), dead inoculum (abnormal batch B), increased cell sensitivity to butanol 
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(abnormal batch C) is shown. Test batches A & B are detected as abnormal batch 

from the beginning of the batch, whereas batch C is detected as abnormal 240 

minutes after the start of the batch.  The polynomial kernel of order 2 is used with 

parameter, C= 1. SVDD parameters were obtained heuristically. The number of 

support vectors obtained throughout the batch duration is shown in Figure 4.3 and 

on an average constitutes 9.24 % of total data.  The number of outliers obtained 

for each window is zero.  Computational requirement for SVDD algorithm is very 

low as it works on a fraction of data (support vectors) in training set.  

Dimensionality reduction with LLE requires more computations than that required 

by the conventional methods like PCA, but with an advantage of keeping the 

nonlinear features of the data intact.  

 

An alternative way is to consider the data from the initial time point to 

current time point. Although this increases the computational load on SVDD, it is 

still manageable due to dimensionality reduction ability of LLE. The analysis was 

carried out by considering the following matrix for a batch at any given time 

instant  :  

      [ )0(....)2()()( TTTT
QtQtQQ


  ] 

 

The data fed to LLE consists of variables from initial time point to the current 

time point. The data was first reduced by LLE before being processed by the 

classification algorithm.  SVDD with polynomial kernel of order 2 along with 

parameter C=1 successfully identifies the normal and abnormal test batches as 

shown in Figure 4.4. (To avoid complexity, only two of the abnormal batches are 

shown in the figure).               
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Figure 4.4: Abnormality detection in acetone-butanol fermentation using 

LLE-   SVDD (Considering data from initial time point to the current one) 

 

For testing the efficacy of the SVDD abnormality detection algorithm, we 

have compared the results with the recently proposed dynamic PCA (Chen and 

Liu, 2002). The criterion used for comparison of performance is time required by 

the method to detect the fault after it occurs.  Q-chart for dynamic PCA with three 

principal components (capturing 97% variance) with 95% confidence limit with 

two time lag windows is shown in Figure 4.5.  As shown in the figure the dynamic 

PCA identifies the normal batch. But it detects the abnormality of the batches 

(abnormal A, B & C) at much latter stages of the process, whereas LLE-SVDD 

identifies the abnormality of the batches from the beginning of the process 

(Figures 4.1 & 4.2).  
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Figure 4.5: Q-chart for abnormality detection in acetone-butanol fermentation 

using dynamic PCA 

 

4.4.2 Case Study 2: Semi-Batch Reactor for SBR production  

This example is a simulated study of a semi batch reactor for the production of 

styrene-butadiene rubber (SBR) (Nomikos & MacGregor, 1994). This problem 

has been used as benchmark for evaluating the performance of various process 

monitoring methods (Nomikos & MacGregor, 1994; Chen & Liu, 2002). The 

reference data set contains 50 normal batches with some variations in the base 

conditions like impurities in the initial charge of organic phase and in the 

butadiene monomer feed to the reactor. The batch is divided into 200 time 

intervals and nine different variables were chosen for the purpose of monitoring. 

Apart from this reference set, three test batches were simulated: first is the normal 

batch (test batch A), second an abnormal batch with an initial organic impurity 

contamination in the butadiene feed, 30% above that of the base case (test batch 

B); and the third with the same problem, but this batch having contamination, 50 

% above the normal level, started halfway through the operation (test batch C). 

The numerical data sets for all the variable measurements for the 50 nominal and 

three test batches (one normal and two abnormal) were obtained from Nomikos 

and MacGregor (1994). The three test batches are presented in the form of figures 
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in their paper. It can be clearly seen from these trajectories that it would be 

difficult to differentiate normal and abnormal batches by visual observations 

alone, requiring a rational abnormality detection methodology.  
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       Figure 4.6: Number of support vectors obtained for Semi-batch reactor  

 

LLE-SVDD analysis is done for SBR data using moving window of length 

25.  Thus training data for LLE-SVDD analysis consists of 50 normal batches 

with values of all the 9 selected variables at 25 consecutive sampling times. LLE 

reduces dimensionality of training data from 225 to 15 using the nearest neighbor 

parameter N equal to 12.  The reduced matrix with dimension of 1550  is then 

used to train SVDD. Thus LLE-SVDD analysis is done for each time-point and 

the window is moved after each time-point till the completion of the batch. 

Polynomial kernel of order 7 was used with parameter, C=0.5.  The number of 

support vectors along the batch duration is shown in Figure 4.6 and on an average 

constitutes 9.63 % of total data. For this problem too, we obtained zero outlier for 

each window during the complete batch duration.  The support vectors along with 

their Lagrange multipliers are used to calculate the value of R2 for the test batch. 

The R
2 values for support vectors on boundary of the hypersphere is calculated 

and shown in Figure 4.7 as solid line, which acts as the control limit for the online 

test batch. It is clear from the figure,  LLE-SVDD hybridization works well for all 
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the test batches i.e. it successfully identifies the normality and abnormality of the 

test batches for online monitoring. For instance, R
2 value of test batch A lies 

below the control-limit throughout the batch, hence it is a normal batch (Figure 

4.7). The test batch B on the other hand crosses the control-limit at the 29th time 

point and is classified as abnormal from 30th time point to the end of batch.  

Similarly from figure 4.7, it is clear that the test batch C is normal up to 108th time 

point, but at the 109th time point it shows abnormality as it crosses the control 

limit and remains abnormal up to the end of the batch. The example clearly brings 

out the simplicity and usefulness of the method.  This example has been studied 

by various methods in the literature and the performance of the proposed hybrid 

method for the SBR data is compared to that of benchmark MPCA method 

(Nomikos and MacGregor, 1994). Again the criterion used for comparison of 

performance is time required by the method to detect the fault after it occurs. 

MPCA method detect abnormality of test batch A within first 15 time points, 

while it detect the test batch C as abnormal before 110th time point (Nomikos and 

MacGregor, 1994). The results of both the methods are found to be comparable 

i.e. there is not significant difference between times taken by the hybrid method 

and the conventional MPCA method to detect the fault after its occurrence 

(Nomikos and MacGregor, 1994).  

 

 Figure 4.7: Abnormality detection in semi-batch reactor using LLE-SVDD         
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  In working plants it may be very difficult to obtain large number of data 

pertaining to abnormal process conditions. As SVDD-LLE methodology requires 

only data belonging to normal conditions, the   SVDD-LLE methodology is 

particularly advantageous as compared to many other existing techniques 

requiring large number of abnormal data.  The trained SVDD algorithm can be 

completely characterized by a very small fraction (less than 10 %) of the total 

training data (i.e. support vectors) to define the distribution. This greatly reduces 

computational load during online testing. Another desirable feature of SVDD is 

that it requires solution of a quadratic optimization problem always leading to the 

unique global solution.  On the other hand, some AI based methodologies solve a 

hard nonconvex optimization problem with the possibility of converging to one of 

the local minima. Additionally, the number of free parameters in SVDD does not 

depend explicitly on the input dimensionality, unlike other machine learning 

methods.  The LLE part of the algorithm retains the relevant nonlinear features 

while reducing the input dimension rendering the hybrid methodology very 

attractive compared to the existing methods.  

 

4. 5. Summary  

The hybrid method using LLE and SVDD is illustrated with two case studies of 

acetone butanol fermentation and a benchmark SBR problem. The results show 

that LLE along with SVDD can be a very powerful tool for online process 

monitoring. As most of the industrial processes are nonlinear in nature, nonlinear 

dimensionality reduction using LLE can be very useful in reducing the features of 

the data, which in turn reduces the time for abnormality detection technique like 

SVDD.  
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Notation  

 

a


 center of hypersphere 

C regularization parameter in SVM   

jkC        local covariance matrix 

D original dimension  

d reduced dimension 

YX EE ,  matrix of Euclidean distances in X, Y  

F optimization function in single class SVM 

I identity matrix 

J number of monitoring variables 

K kernel function 

L Lagrangian function  

M sparse matrix  

N number of nearest neighbors 

n order of polynomial kernel 

P number of data points 

Q


 vector of monitoring variables  

q monitoring variable 

R radius of the hypersphere  

t time 

w length of moving window 

W weights for reconstruction   

X


 original dataset   

x


 datapoint  

Y


 reduced dataset 

z


 test point 
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Greek letters 

 

 ,  Lagarange multipliers 

  parameter in Equation (4) 

  reconstruction error 

 width of Gaussian RBF kernel 

  embedding cost function  

  reconstruction weight 




 nearest neighbors 

  standard linear correlation coefficient 

           slack variables 

  time point 

   

 

Superscripts 

 

T transpose of matrix 

-1 inverse of matrix 

 

Subscripts 

opt optimal 
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Chapter 5 

A NOVEL SINGULARITY BASED METHOD FOR TIME 

SERIES CHARACTERIZATION: AN APPLICATION TO 

FLOW REGIME IDENTIFICATION IN STIRRED REACTOR 

 

5. 1 Introduction 

Gas-liquid flows in stirred reactor depend on the operating conditions and the 

impeller design and can be classified into different regimes. These flow regimes in 

turn manifest different fluid dynamic characteristics (see Figure 5.1) and 

demonstrate complex interaction of transport and mixing processes. Significant 

research efforts have been undertaken in the recent past for developing regime 

maps and the corresponding design correlations (see the excellent review of 

Nienow, 1998 and the references cited therein). However, the universal 

applicability of the regime maps and the correlations to design, scale-up and for 

setting up of operating protocols for industrial systems is not yet well established. 

Therefore, the need to develop a new robust experimental methodology based on a 

simple and non-intrusive measurement technique continues to exist. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Different flow regimes in stirred reactor equipped with Rushton 

turbine (Nienow et al., 1985) 

 

Warmoeskerken and Smith (1985);  Sutter et al., (1987) and Bombac et al. 

(1997) used intrusive techniques such as micro-impeller, hydrophones and 

Flooding Loading Fully dispersed 
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resistivity probes respectively to extract the information of cavity structure present 

behind the impeller blades and develop flow regime map. All the techniques so far 

suggested are reliable for laboratory scale reactor and are difficult to use with 

industrial reactors. In order to overcome some of these limitations, Pagalianti et al. 

(2000) made an attempt to characterize the gas-liquid flows in stirred vessel by 

means of statistical methods such as nonlinear time series analysis from the output 

signal of the non-intrusive probes. Pagalianti et al. (2000) identified the 

flooding/loading transition by using time series analysis of the measured 

impedance. The proposed technique was limited only to identify flooding/loading 

transition, which is clearer and sharper than the other regime transitions.  

Various authors have also identified regimes of operation by analyzing the 

extracted nonlinear dynamical, fractal and statistical features from pressure 

fluctuation measurements. (Bai et al. 1996; Bai et al. 1997 ; Johnsson et al. 2000; 

Letzel et al. 1997; Lin et al. 2001; Wu et al. 2001; Xie et al. 2003; Xie et al. 

2004).  These studies were mainly restricted to fluidized bed and bubble column. 

Recently, Khopkar et al. (2005) characterized the gas-liquid flows in stirred 

reactor employing wall pressure and torque fluctuations and used non-linear time 

series analysis to set up robust criteria for the identification of the prevailing flow 

regimes. They differentiated the flow regimes based on the cavity structure 

present behind the impeller blades and also estimated the key time scale of the 

fluid dynamics. In the present study, we have proposed a novel methodology for 

characterization of time series based on the combination of wavelet based local 

singularity distribution analysis and support vector machines (SVM), a newly 

developed pattern classification method. The method developed is subsequently 

applied for characterization of flow regimes in stirred tank vessel with Rushton 

turbine.  While wavelet techniques have been extensively used in several 

engineering applications including chemical engineering (Chen et al. 2004; Ellis 

et al. 2003; Kulkarni et al. 2001; Park, et al. 2001; Roy et al. 1999; Zhao & Yang 

2003), the use of local singularity distribution analysis is relatively new and finds 

recent applications in biomedical engineering; stock market etc. for analyzing and 

charactering time series. (Scafetta et al. 2003; Struzik & Siebes, 2002; West et al. 

2004).  Support vector machines (SVM), a novel tool for classification, is firmly 

based on rigorous statistical learning theory (Burges, 1998; Vapnik, 1995, 1998). 

http://www.cwi.nl/htbin/ins1/publications?request=intauthorsearch&name=Z.+R.+Struzik
http://www.cwi.nl/htbin/ins1/publications?request=intauthorsearch&name=A.+P.+J.+M.+Siebes
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SVM also has found wide spread use including applications in process 

engineering (Agarwal et al. 2003; Chiang et al. 2004; Kulkarni et al. 2004).  

In the present work, wall pressure fluctuations were measured in a gas-

liquid stirred reactor equipped with Rushton turbine. The time series of the 

pressure fluctuations were first subjected to singularity analysis based on wavelet 

transform modulus maxima (WTMM) method. The relevant features extracted 

from this analysis were employed as input data by SVM for identifying the 

operating regimes. The remaining part of the chapter is organized as follows: 

section 5.2 provides a detailed description of the proposed method for time series 

characterization, Section 5.3 provides a brief description of the experimental set 

up of stirred vessel and in section 5.4 we discuss the results of flow regime 

identification in a stirred vessel. The salient conclusions are highlighted in section 

5.5.  

 

5.2. Time Series Characterization using Singularity Distribution and SVM  

The methodology proposed for characterization of time series is a novel 

combination of singularity analysis and SVM classification.  The time series under 

consideration is first subjected to wavelet transform modulus maxima (WTMM) 

method and the most informative features from the singularity distribution are 

extracted. These features are then used as input to SVM for intelligent 

discrimination of the time series. SVM being a supervised learning method, data is 

divided into training and test sets.  The model is built using the features extracted 

from the training set of time series. The trained model can then be readily 

employed for online characterization and identification of unseen test data. The 

algorithmic steps involved in the proposed methodology are shown Figure 5.2, 

while the details of method are explained in the subsequent sections. 
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Figure 5.2: Proposed methodology for time series characterization 

 

 

5.2.1 Characterization of Singularities       

Many experimental or empirical time series have fractal features i.e., for some 

instances, the series f(x) displays singular behavior.   By this, we mean that at 

those instances, the signal can not be described solely by Taylor series and has 

components with non-integer powers of time which appear as step-like or cusp-

like features, the so-called singularities, in the signal. (Figure 5.3) Such signals 

need to be represented as:   

h

h xxaxxaxxaxxaaxf )-(.........)-()-()-()( 0
3

03
2

02010         (1) 

          Obtain training set of time series data 

     Perform wavelet transform of the time series  

Estimate local Hölder exponents and their density spectrum via singularity 
analysis 

Select relevant features from the density spectrum   

Pass the selected features along with class labels to the SVM classifier 

            Optimize SVM parameters using cross validation  

Employ trained SVM classifier for identification of a class label of unseen time series using its 
singularity distribution 
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If a polynomial, Pn(x) of the degree n corresponding to the Taylor series 

expansion exists such that: 

h

n xxCxxPxf 010 -)-(-)(                              (2) 

then h is said be the local Hölder exponent of the function and it characterizes the 

scaling of the function locally and h lies within the bounds .1+<< nhn  

 

Figure 5.3: A real life human gait time series (available on public archive at   

www.physionet.org)   

It must now be emphasized that if )( 0xh is equal to a positive integer n, the 

function f is n times continuously differentiable in 0x .  If on the other hand 

1+<)(< 0 nxhn  the function f is continuous and singular in 0x . In this case f is n 

times differentiable, but its n
th derivative is singular in 0x and the exponent h 

characterizes this singularity and hence the regularity of the function f in 0x .  The 

higher the h, the more regular is the local behaviour of the function f.  

The distinct behavior of dynamical systems can be rigorously 

characterized by singularity analysis. The distribution of local singularities of a 
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fractal time series can serve as its unique signature. Hence, the features of the 

singularity distribution of different time series can be employed for identifying the 

class of a time series. Recently, Muzy et al. (1991, 1993, and 1994) have 

introduced a novel wavelet transform based approach for direct determination of 

the singularity spectrum. Wavelet transform fundamentally differs from global 

transforms like the Fourier transformation in a way that in addition to locality, it 

possesses very desirable ability of filtering the polynomial behavior to some 

predefined degree. Therefore, rigorous characterization of time series is possible, 

in particular in the presence of non-stationarities. The ability of wavelet transform 

to reveal the hierarchy of singular features is particularly advantageous to tackle 

the problem at hand. Mathematically, the wavelet transform (WT) is a convolution 

product of the time series with a characteristic wavelet. The wavelet transform can 

be formally written as:   

 

                          dx
s

xx
xf

s
sxfT 







 





)-(
)(

1
),]([ 0

0               (3) 

 

The scale parameter “s” modulates the width of the wavelet kernel to the desired 

level of resolution and the parameter x0 determines the location of the governing 

wavelet.  

By virtue of the scale parameter, wavelet transform can reveal even the 

weaker singularities within the time series, which facilitates the complete 

spectrum available for rigorous analysis. The wavelet function  (x) is chosen to 

be well localized both in space and frequency. Usually,   is only required to be 

of zero mean but for the purpose of singularity tracking   is further required to 

be orthogonal to some low-order polynomials. (Arneodo et al. 1995 ; Muzy et al. 

1991, 1993)                                       

     





 nmmdxxx
m 0,0)(                                    (4) 

Wavelets given by the successive derivatives of the Gaussian function satisfy the 

above condition:  
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exp)( x

M

M
M

dx

d
x

  ,   where Mn  .                                             (5) 

In our work, we have chosen the 2nd derivative of Gaussian function, i.e. Mexican 

hat wavelet as the analyzing wavelet function. 

                    )2/exp()1()( 22
xxx                                                         (6) 

A wavelet that has the number of vanishing moments greater than or equal to the 

degree of polynomial f(x), will filter out the polynomial trends and focus only on 

the singularities in the time series. It can be proven that a local singular behavior 

of )(xf  around 0= xx  can be characterized by )( 0xh ,  (Arneodo et al. 1995 ; 

Muzy et al. 1991, 1993)  


  0,~),]([ )(

0
0 sssxfT

xh                                                                 (7)  

 

The distribution of singularities and the singularity spectrum can be 

obtained from a partition function based multifractal formalism. Continuous 

wavelet transform (CWT) in its original form is an extremely redundant 

representation; however, Mallat and Hwang (1992) have shown that a 

representation consisting of only (the modulus of) the maxima lines of the CWT, 

the wavelet transform modulus maxima (WTMM) can detect all the singularities 

of a large class of signals.  Thus the hierarchical distribution of singularities in the 

time series can be computed by employing the space-scale partitioning provided 

by the maxima representation. Partition function, ),( qs  can be calculated as the 

sum of the q
th powers of the local maxima of ),]([ 0 sxfT  at the scale s. The 

partition function ),( qs reflects the large fluctuations and strong singularities in 

time series for positive q and emphasizes small fluctuations and weak singularities 

for negative q. 

At small values of s partition function will follow the power law behavior 

(Muzy et al. 1991, 1993, 1994, Arneodo et al. 1995), 

 

       )(~),( q
sqs
                                                                                                  (8) 

where, scaling exponents, )(q , can be  numerically estimated from a plot of 

log( ),( qs ) against log(s) for any real number q.  The usefulness of the above 

approach is that local maxima of the wavelet coefficients alone carry all the 
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information content.  After computing the scaling exponents the singularity 

strength can be obtained by using the formula, dqdh /=  . The singularity 

spectrum D(h) can be estimated from the Legendre transform (Arneodo et al. 

1995; Muzy et al.1991, 1993, 1994).  

                    )(-)(=)( qqqhhD                                                            (9) 

 

 

5.2.2 Estimation of Local Hölder exponents 

The Wavelet transform modulus maxima (WTMM) based formalism developed 

by Muzy et al. (1991, 1993, and 1994) as described above provides global 

estimates of scaling properties of the time series. Recently it has been found that 

though the global estimates of scaling is often a required property, the estimation 

of the singularity spectrum poses certain problems. It is now well known that the 

D(h) spectrum can be corrupted by  divergences of negative moments of the 

partition function (Struzik, 1998). Various methods have been proposed in the 

literature to overcome the difficulties (Mallat, 1999; Struzik, 1998) Recently, 

several  problems have been solved taking advantage of the fact that the local 

information about scaling provides more relevant information than the global 

spectrum.(Struzik, 2000).  In a traditional form, the estimation of local singularity 

strengths and their spectra may not be possible due to instability and may lead to 

gross numerical errors. This is due to the fact that in real life data the singularities 

are not isolated but densely packed. This causes the logarithmic rate of increase or 

decrease of the corresponding wavelet transform maximum line to fluctuate. Very 

recently, Struzik (2000) has provided a stable method for evaluating the local 

Hölder exponents. In his methodology for estimating the local exponents, he has 

modeled the singularities as if they were created through a multiplicative 

cascading process. This method has been successfully applied to localize outliers 

(Struzik & Siebes, 2002), for classification of human gait (Scafetta et al., 2003) 

and to study the influence of progressive central hypovolemia on cardiac interbeat 

intervals (West et al., 2004). We describe here the method in brief and more 

details can be found in Scafetta et al.(2003), Struzik (2000).  

 

http://www.cwi.nl/htbin/ins1/publications?request=intauthorsearch&name=Z.+R.+Struzik
http://www.cwi.nl/htbin/ins1/publications?request=intauthorsearch&name=A.+P.+J.+M.+Siebes
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The mean Hölder exponent h  can be estimated as a linear fit of the following 

equation, 

 

 

[ ] cshsM +)log(=)(log                                                                               (10) 

 

where function M(s) is obtained from the partition functions, 

 

)0,(

)2,(
=)(

sZ

sZ
sM .                                                                                             (11) 

 

where partition function )2,(s  can be calculated as the sum of squares of the 

maxima of  ),]([ 0 sxfT  at the scale s and )0,(sZ  is the number of maxima at 

scale s. 

It can be shown that by employing the multiplicative cascade model the estimate 

of local Hölder exponent, ),(ˆ 0 sxh  at the singularity 0x  and scale s can be 

determined as (Scafetta et al.2003; Struzik, 2000 ) 

 

 
)log(-)log(

))log((-),]([log
),(ˆ 0

0

Nss

cshsxfT
sxh


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                                          (12) 

 

where Ns   is the maximum available scale that coincides with the sample length 

and ),]([ 0 sxfT is the maxima at location 0x and at scale s.   

Thus the methodology as explained above can be employed to obtain the 

profiles of local Hölder exponents for any given time series. Our contention is that 

the density spectrum of these profiles in conjunction with SVM classification can 

be used to characterize the time series.  

 

5.2.3 Support Vector Machines  

Support vector machines (SVM), a machine learning algorithm based rigorously 

on statistical learning theory, was originally developed by Vapnik (1995) for 

solving pattern recognition problems. The simplicity of implementation, excellent 
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generalization ability and remarkable performance on difficult tasks have made 

SVM one of the most popular tools in various disciplines including process 

engineering (Agarwal et al. 2003;  Chiang et al. 2004; Kulkarni et al. 2004).  For 

binary classification problems, given a set of nonlinearly separable input vectors 

belonging to two distinct classes, SVM finds an optimal linear separating 

hyperplane in a high dimensional feature space. SVM handles the computational 

intractability issues arising out of high dimensionality of the feature space by 

defining an equivalent kernel function in the input space itself. We provide a 

detailed account of binary SVM classification methodology below:  

 

5.2.3.1 SVM Classification  

Starting with the binary classification problem with N instances (An instance 

corresponds to the vector of features extracted from a given time series) 

( ) ( ) ,,,,.....,, 11 NN xyxy


 x


n  }1,1-{ y    (13) 

 

where ix


 is a vector of input features of the ith instance  and yi corresponds to the 

target class to which the ith instance belongs to.  

For locating the linear separating hyperplane,   bxw 


,  SVM maximizes 

the distance (margin) between the closest instances belonging to the two classes. It 

can be proven that such a maximal margin hyperplane can be obtained by 

minimizing the norm of the weight vectors. Further, the classification problem can 

be formulated as the following optimization problem (Vapnik, 1995, 1998; 

Burges, 1998):   

Minimize the function 

 

( ) 2

2

1
= wwg


     (14) 

 

subject to the constraints: 

 

 

     1 bxwy ii


                                        (15)  
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In general, it may not possible to construct a hyperplane without a certain amount 

of classification error. It would, however, be possible to find an optimal 

hyperplane that minimizes the probability of occurrence of classification errors, 

averaged over the training set.  This is done by introducing N  nonnegative slack 

variables such that 

 

Nibxwy iii .....,,2,1-1)( 


             (16) 

 

where 0i . The generalized optimal separating hyperplane is now determined 

by finding the vector w


, that minimizes the function, 

        
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                        (17) 

 

(where, C , is a given value) subject to the constraints in Eq. (16). 

 

 

It can be shown that the above equations can be formulated in terms of the 

following quadratic optimization problem (Burges, 1998) 
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with the constraints, 

 

NiCi ,......,10               (19)  
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Real life problems are too complex to be separated by a simple linear hyperplane. 

SVM handles such non-linearly separable data by mapping the data into a richer 

higher dimensional feature space and by subsequently employing a linear 
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classifier. The mapping of the input data x


 in the feature space )(xx


  leads 

to the optimization problem:  
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                              (21) 

Working in higher dimensional feature space induces an intractable 

computational problem of having to deal with very large vectors. This problem 

can be tackled by introduction of so-called kernel trick. The idea is to replace the 

dot product in feature space by appropriate kernel functions in the original input 

space:  

                      )()(),( jiji xxxxK


                            (22) 

        

 

A kernel function can be selected by using the Mercer’s theorem (Vapnik, 

1995, 1998). In our studies we have used the most popular kernel based on the 

Gaussian function which is defined as ))2/(-xp(-),( 22  yxeyxK


.   With the 

introduction of the kernel function in place of the dot product (Eq.(22)) the 

optimization problem (Eq. (21)) can now be written in terms of features in the low 

dimensional input space itself: 

Maximize          
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Subject to the constraints 

 

NiCi ,......,10                            (24) 
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It can be seen that the set of Eqs. (23-25) represents a convex quadratic 

optimization problem. It is this QP formulation having a unique global minimum 
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has attracted several applications of SVM in diverse fields. This is due to the fact 

that the QP problem can be solved by standard methodologies.  

 

It can be shown that the discriminating hyperplane can be represented by:  
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 where b is the bias term and can be found as, 
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where rx


, sx


 are any support vectors (which have been discussed later in this 

section) from each class.   

The class affiliation of any instance can be identified by the sign of the 

above function with positive values and negative values indicating class 1 and 2 

respectively. The parameter C  controls the tradeoff between complexity of the 

SVM and the number of non-separable points. It can also be shown that only those 

instances which have non- zero   values are the support vectors. Thus the trained 

classifier can therefore be represented by a few support vectors enabling online 

computations very fast.  The overall SVM classification algorithm can be 

compactly written in terms of the following steps: 

a) Maximize the margin of the linear hyperplane for simultaneous optimization of 

training and test accuracy. 

b) Transform the input data into a higher dimensional feature space to enable 

linear classification 

c) Solve the computational problem by defining an appropriate kernel in the input 

space in place of the dot product in the high dimensional feature space 
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d) Solve the dual formulation of the convex quadratic programming problem to 

obtain the unique global solution for the classifier.  

The method presented for characterization of time series will now be 

applied to a case study of identification of flow regimes in stirred vessel with 

Rushton turbine.  The experimental setup is described briefly in the following 

section. 

 

5.3. Experimental Setup 

The measurements were carried out in a fully baffled, flat bottom acrylic vessel 

(of diameter, T = 0.7 m and liquid height, H = 0.7 m). A schematic diagram of the 

experimental setup is shown in Figure 5.4. Four baffles of width T/10 were 

mounted diametrically opposite and perpendicular to the vessel wall. The shaft of 

the impeller (ds = 0.032m) was concentric with the axis of the vessel and was 

extended till the impeller off-bottom clearance. Rushton turbine (of diameter, D = 

0.2 m; impeller blade width, W = D/4 and impeller blade height, B = D/5) was 

used during experiments. The impeller off-bottom clearance was (C = T/3) 

measured from the bottom of the vessel to the center  

of the impeller disc for Rushton turbine. The gas was introduced in the vessel 

through a ring sparger (of diameter, Dsp = 0.16 m, 12 holes with 1 mm diameter) 

and it was located at 0.16 m from the bottom of the vessel. The working fluids 

were water and compressed air in all the experiments. The measurements were 

carried out for three values of Froude number 0.6, 0.85 and 1.03 for Rushton 

turbine (power consumption varied between 0.96 kW/m3 to 2.2 kW/m3 for single-

phase flow) and the gas flow number was varied between 0 and 0.37 for Rushton 

turbine. The operating conditions were selected in such a way so as to adequately 

represent all the key flow regimes occurring in gas-liquid stirred vessels. 
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  Figure 5.4: Schematic diagram of the experimental set-up 

 

Pressure transducer with range of  34.46 kPa, resolution of 0.000482 kPa 

and sensitivity of 72.54 mV/kPa was used (of PCB Piezoelectronics Inc., USA, 

Model 106B50) to measure the wall pressure fluctuations. The pressure sensor 

was flush mounted on vessel wall at a height of impeller off-bottom clearance. 

The transducer was powered by ICP battery unit (PCB Piezoelectronics Inc., 

USA, Model 480E06), which also acted as an amplifier. The pressure fluctuations 

were acquired with a sampling frequency of 400 Hz (around 10 data points for 

blade passage) and the signal was acquired for 25 seconds. In the present study the 

low pass filter was used as per described in Khopkar et al.(2005)  for filtering the 

experimentally measured time series. 

Measurements were always performed in the same manner, starting from 

low to high impeller speeds with stepwise increase in the gas flow rate at a 
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constant impeller speed. The amplified signal from pressure sensor was acquired 

using a laptop computer with 16-bit A/D PCMCIA converter card and data 

acquisition software ‘dAtagate’ (of nCode, UK). The method proposed for 

characterization of time series as described in section 5.2 will be applied for 

analyzing the signals of pressure fluctuations in stirred vessel for identification of 

the flow regime.  

 

5.4. Results and Discussion 

 

5.4.1 Singularity distribution analysis of flow data  

Pressure time series data were recorded with frequency of 400 Hz and the total 

acquisition time duration was 25 sec. Thus each time series consisted of 10,000 

uniformly spaced points. The record consists of a total of 272 time series, which 

includes 152, 32 and 88 belonging to loading, flooding and fully dispersed 

regimes respectively. For each time series we performed the analysis as explained 

in section 5.2.2 to estimate the local Hölder exponents and their probability 

densities using kernel density estimation. The density spectra obtained for one 

illustrative time series data from each regime are shown in Figure 5.5. In the 

figure solid line shows the plot of Hölder exponent h v/s the probability density 

estimates for the fully dispersed regime, whereas the dotted and dashed lines 

highlight the same for loading and flooding regime respectively. We first 

extracted the density estimates corresponding to Hölder exponents in the range {-

0.05, 0.45} with an interval of 0.05. This has resulted in eleven singularity 

features for each time series which were subsequently fed to the SVM classifier as 

inputs.  

Along with these singularity distribution features we have also estimated 

statistical properties of the time series as features (Xie et al., 2003). The selected 

statistical features include standard deviation, coefficient of skewness, coefficient 

of kurtosis and second order correlation terms Co(2), Co(5), Co(10),  Co(20), 

Co(50), Co(100) and Co(200) of the normalized pressure signals.   These 

correlation terms of the normalized pressure signal can be defined as, 

                      )+()(=)( **
ktptpdCo                                                                  (28) 
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 where parameter k is the time shift and defined k=d/R, where the R is the rate at 

which the signal is measured.(for our experiments R=400 Hz).  Normalized 

pressure fluctuation, *
p  is defined as  

                    2* )(/)-(= pp-ppp                                                                     (29)                 

These statistical features were separately employed as inputs to another SVM 

classifier for the purpose of comparison of performance.  

 

5.4.2 Characterization of flow data with SVM 

 

 We have extracted eleven singularity and ten statistical features for each 

time series. First the singularity features were employed as input data to the SVM 

multiclass classifier. The output of the trained SVM classifier would readily 

identify the flow regime of any time-series of the pressure fluctuation data. SVM 

identification of the three flow regimes is essentially a multiclass classification 

problem. This can be solved by one against one method.(Kreßel,1999) This 

method considers the problem as a collection of multiple binary classification 

problems. In general m(m-1)/2 classifiers are needed to solve the m class problem. 

Identifying the three classes corresponding to fully dispersed, loading and 

flooding regimes as I, II and III respectively,   we need to build three binary 

classifiers. The first one classifies I vs  II, the second one classifies I vs III and the 

third one classifies II vs III. Finally, the decision for class affiliation is made 

through a majority vote across the classifiers.   
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Figure 5.5: Local Hölder estimation and its probability densities: fully dispersed 

regime, loading and flooding are denoted by solid line, dotted line and dashed line 

respectively. 

 

SVM being a supervisory method, the classifier is trained with data whose 

class labels are known a priori. In other words for the regime identification 

problem, we must know the corresponding regimes of the pressure fluctuation 

data employed for training the SVM classifier.  In our case study the regime map 

data obtained earlier by visual and power spectrum analysis was used.  Out of a 

total of 272 time series data available from existing regime map, a set of randomly 

chosen 222 time series were treated as the training set and the remaining 50 were 

used as a test set. As explained earlier, the three class regime identification 

problem was converted into three equivalent binary classifier problems.  

Extensive simulations were conducted to train these classifiers with a view to 

obtain maximum discriminatory power.  Conventional five fold cross validation 

methodology was used to obtain optimal SVM model parameters. In this 

methodology, the entire training set was partitioned into five parts. Four parts 

were used as the training set, and the remaining part was used as the validation 

set. This process was repeated until each of the partitioned parts was used as the 

validation set. The model parameters (regularization parameter C and the spread 
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parameter in Gaussian kernel, ) that result in the least average error were chosen 

as the optimal parameters. Employing the multiclass classifier trained as per the 

above methodology, we could correctly classify 49 data-points out of 50 from the 

test data (98% accuracy). The misclassified point is shown in the regime map 

(Figure 5.6). As one can see from the figure, the misclassified point belongs to the 

flow-transition region. The data was also classified into different regimes using 

the statistical features independently and gave the classification accuracy of 92%. 

Thus the performance of the hybrid combination of WTMM-singularity 

distribution density estimation-SVM classification methodology is superior and 

provides better flow regime identification.  

The techniques presented here, although not illustrated for industrial data, 

could be used with commercially available industrial pressure sensors. The 

analysis and detection of flow regimes is fairly straightforward and unambiguous 

and looks promising for applications to industrial gas-liquid stirred vessels. The 

proposed methodology can also be readily applied to other multiphase systems 

like bubble column, fluidized bed etc.  

 

 

5.5. Summary  

A novel method for analysis and characterization of time series is proposed. This 

method is a unique combination of wavelet based singularity analysis and support 

vector machines classification. Proposed methodology was applied to a case study 

of flow regime identification in gas-liquid stirred tank equipped with Rushton 

turbine. Employing our method we could classify flow regimes with 98% 

accuracy. Also from the regime map it is clear that the misclassified data-point 

belongs to the regime transition zone. This proves the effectiveness of this method 

for the identification of the flow regime in gas-liquid stirred tank. The excellent 

classification accuracy brings out the fact that the local scaling behavior of a given 

regime follows a distinct pattern.  Further, the singularity measures can be 

employed by intelligent machine learning based algorithms like SVM for online 

regime identification. The method is simple and can be generalized to the other 

multiphase systems like bubble column, fluidized bed etc.  
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Figure 5.6: Flow regime map for stirred vessel equipped with Rushton turbine  
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Notation 

b  bias term used in SVM classification  

C  Regularization parameter used in SVM classification  

c , C1 constant  

Co  correlation terms  

)(hD  Singularity spectrum 

h     local Hölder exponent  

h  mean Hölder exponent 

),(ˆ 0 sxh  estimate of local Hölder exponent at scale s 

),( ji xxK


 kernel function for the vectors ji xx


,  

M    any integer  

)(sM  function used to evaluate mean Hölder exponent 

N   total instances used in SVM classification.     

NF Critical impeller speed for flooding to loading transition 

NCD Critical impeller speed for loading to fully dispersed regime transition 

p  pressure fluctuation 

*
p  Normalized pressure fluctuation 

p  mean  pressure fluctuation 

Pn  Polynomial of degree n 

q  any real number 

s  scale used in wavelet transform. 

Ns  length of the time series  

),]([ 0 sxfT  Wavelet transform at location 0x and scale s. 

w


 weight vector in SVM classification 

ix


 is a vector of input features of the ith instance in SVM classification    

rx , sx  support vectors in SVM classification 
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iy  target class to which the ith instance belongs to.  

    Partition function in WTMM method 

 

Greek letters and miscellaneous 

 

)( ix  mapping of the input data ix


 in the feature space in SVM classification 

  Lagrange multipliers in SVM classification 

)(q scaling exponents  

  wavelet mother function 

  slack variable used SVM classification  
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Chapter 6 

IMPROVED TIME SERIES PREDICTION USING KERNEL 

METHODS WITH A NEW METHOD FOR SELECTION OF 

MODEL PARAMETERS 
 

6.1. Introduction 

Several methods have been proposed in literature for prediction of time series data 

(Casdagli, 1989,  Farmer & Sidorowich, 1987; Belomestny et al. 2003; Navone & 

Ceccatto, 1995; Ho & Xie, 1998; Zhang et al., 1998; Connor et al., 1994; Rosen-

Zvi et al., 2003; Elsner, 1992; Small & Tse, 2002 ; Freking et al., 2002 ; Müller et 

al., 1997; Mukherjee et al., 1997; Rosipal et al., 2001; Jade et al., 2003). The most 

familiar approaches include the linear methods such as ARX, ARMA, etc. and the 

nonlinear methods such as algorithms based on artificial neural networks ( Zhang 

et al., 1998; Connor et al., 1994; Rosen-Zvi et al., 2003 ; Elsner, 1992; Small & 

Tse, 2002  ; Freking et al., 2002). Recently kernel based machine learning tools 

like support vector regression (SVR) and kernel principal component regression 

(KPCR) have become very popular because of their state-of-the-art performance 

(Müller et al., 1997; Mukherjee et al., 1997; Rosipal et al., 2001; Jade et al., 

2003). All these methods split the data into three disjoint sets, viz., training, 

validation and test sets. Subsequently, the model parameters in the algorithm are 

optimized by minimizing the root mean square error of the predicted validation 

set. Finally, the performance is gauged by the test error.  For time series data 

possessing sharp changes, selection of model parameters based only on the 

criterion of RMS error may produce higher generalization errors.  There is 

therefore a need for a robust measure, which will take account of these sharp 

changes or singularities occurring in a time series. A methodology that picks up 

the local scaling behavior of the time series would be able to readily reveal such 

singularities.  

 In this chapter we present wavelet transform modulus maxima (WTMM) 

based method for characterizing and quantifying the singularities in a chaotic time 

series (Struzik, 2000). The method provides the density estimates of the local 

Hölder exponents that characterize the regular/ irregular local behavior of time 

series. Higher the value of the local Hölder exponent, more regular is the local 

behavior of time series and vice versa. The density estimates of the local Hölder 
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exponents represent the most informative features regarding the singularities in 

the time series. Thus an estimate of the error in the density spectrum of the 

predicted validation set, which we will henceforth denote as, HRSME, can be very 

useful for tuning the model parameters.  For certain time series data it may be 

possible that both RMSE and HRMSE information would be useful for obtaining 

optimal performance. In this work, errors in the density estimates (HRMSE) 

(along with regular RMSE) of the validation set have been employed as an 

additional criterion for selection of optimal model parameters. Thus the problem 

of model selection is formulated in terms of a multiobjective optimization i.e. the 

selection of model parameters has been done by minimizing both criteria viz.  

RMS errors based on the original time series as well as based on the error in the 

singularity distribution. In this problem, we have to find the decision vector 

(parameters of model used for time series prediction), which will minimize RMSE 

as well as HRMSE.  Multi-objective optimization, however, gives rise to a set of 

optimal solutions, instead of a single one (Zitzler et al.). These optimal solutions 

are called as Pareto-optimal solutions. This concept can be illustrated employing 

Figure 6.1, which depicts a plot of RMSE vs. HRMSE.  The point ‘P’ represents 

the solution with minimum RMSE but has higher HRMSE and point ‘Q’ 

represents least HRMSE but high RMSE. Since both objectives are equally 

important one cannot say that solution ‘P’ is better than ‘Q’ or vice versa. All such 

solutions (marked by the dash line) are Pareto-optimal solutions. Also in the 

figure, there are few points (e.g. ‘S’ ) which are not members of the Pareto set. It 

can be seen that solution ‘R’ in the decision space has lower RMS and HRMS 

errors and hence is better than solution ‘S’ considering both the objectives. Thus 

solutions like ‘S’ are known as dominated or inferior solutions and solutions like 

‘R’ belonging to the Pareto-optimal set are often called as non-dominated 

solutions. Also it is clear that no solution in the Pareto-optimal set is better or 

worse than the other considering both the objectives (RMSE and HRMSE). In the 

present study we have used this concept of non-dominated Pareto-optimal 

solutions for finding the optimal parameters of kernel principal component 

regression (KPCR) model to improve the generalization capability of the model. 

Kernel PCA, a nonlinear version of PCA, has recently been extensively used 

because of its computational simplicity and nonlinear feature extraction and 

denoising capabilities (Rosipal et al., 2001 ; Jade et al., 2003; Schölkopf et al. 
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1998 ). We have chosen KPCR because of its excellent performance on time 

series prediction problems (Rosipal et al., 2001 ; Jade et al., 2003). Moreover, 

only two parameters are needed to be tuned for model selection of KPCR. The 

efficacy of the proposed method has been tested on two simulated chaotic time 

series and one time series based on real observations. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Concept of Pareto-optimal solutions in Multi-objective optimization.  

 

The chapter is organized as follows: in the next section (section 6.2), we have 

described the key steps involved in the proposed algorithm. Section 6.3 includes 

the discussion on characterizations of the singularities and their analysis based on 

wavelet transform modulus maxima (WTMM) method. In section 6.4, we have 

illustrated KPCR for time series prediction. Section 6.5 includes the case studies 

used for time series prediction. Section 6.6 comprises the results and discussions 

and section 6.7 provides salient conclusions of the work.  

 

6.2. Proposed Algorithm for KPCR Model Selection  

The key steps involved in the proposed algorithm are described below 

i) Divide the available time series data into three segments namely 

training, validation and test. 

ii) For various model parameters. 

a) Build up the KPCR model using the training data as described in 

section 6.4. 

b) Predict the validation time series using the model.  
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c) Estimate the RMSE and HRMSE for validation time series 

employing the method described in section 6.3. 

iii) Get the Pareto-optimal solutions using RMSE and HRMSE criteria 

iv) Estimate the test error using the Pareto-optimal model parameter set. 

 

 

6.3. Singularity Analysis using WTMM    

 

The distribution of singularities and the singularity spectrum can be obtained from 

the well-known wavelet transform modulus maxima (WTMM) based multifractal 

formalism (Muzy et al. 1991; Muzy et al. 1993 ; Muzy et al. 1994). The method 

offers global estimates of scaling properties for characterization of a multifractal 

time series. The spectrum of the singularities as described in (Muzy et al. 1991; 

Muzy et al. 1993 ; Muzy et al. 1994) poses certain problems of stability when 

applied to observational data (Struzik,  1998 ). Recently, Struzik (2000) has 

presented a stable method for evaluating the estimation of local singularity 

strengths. In his methodology for estimating the local Hölder exponents, he has 

modeled the singularities as if they were created through a multiplicative 

cascading process. The method has been described in brief here and for more 

details readers may refer to (Struzik,  1998 ; Struzik, 2000; Struzik &  Siebes,  

2002; Scafetta et al. 2003 ; West et al. 2004; Jade et al. 2006 ) 

 

 

It can be shown that by employing the multiplicative cascade model the estimate 

of local Hölder exponent, ),(ˆ
0 sxh  at the singularity 0x  and scale s can be 

evaluated as (Struzik, 2000; Struzik &  Siebes,  2002)   

 
)log(-)log(

))log((-),]([log
),(ˆ

0

0
Nss
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
                                       (1) 
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where sN  is the maximum available scale  and ),]([ 0 sxfT is the maxima of 

wavelet coefficient at location 0x and at scale s.  In our work we have used 

Mexican Hat wavelet, which is the second derivative of the Gaussian function.  

The mean Hölder exponent h in Eq.(1) can be estimated as a linear fit of the 

following equation, 

 

  cshsM  )log()(log                                                                               (2) 

 

where function M(s) is obtained from the partition functions, 

 

)0,(

)2,(
)(

sZ

sZ
sM  .                                                                                            (3) 

 

Partition function )2,(s  can be calculated as the sum of squares of the maxima 

of  ),]([ 0 sxfT  at the scale s and )0,(sZ  is the number of maxima at scale s. 

The local Hölder estimates (from Eq. (1)) and  their density spectrum can be 

estimated for original and predicted time series. The error on distribution of these 

estimates can be used as criterion for model selection of time series prediction 

problems using KPCR.   

 

6.4. Kernel Principal Component Regression 

KPCR has been chosen as a nonlinear regression method because of its successful 

applications in time series prediction. (Rosipal et al., 2001; Jade et al., 2003 ). 

Moreover, KPCR requires only two parameters to be tuned for its model selection.  

Kernel principal component analysis (kernel PCA) corresponds to linear PCA in a 

higher dimensional feature space, which is nonlinearly related to the input space. 

The input data x are first mapped through some appropriate nonlinear function 

Ф(x). The problem formulation is in terms of dot product of the input data in the 

feature space that can be substituted by a kernel function. Thus a priori defined 

kernel function is used to deal with the very high dimensional space and the dot 

product of transformed input vectors can be computed in the input space itself 

(Vapnik , 1998).  Kernel PCA and PCR has been extensively used for the purpose 
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of nonlinear feature extraction and denoising. (Rosipal et al., 2001 ; Jade et al., 

2003; Schölkopf et al. 1998). KPCR has a definite advantage in dealing with 

multi-collinearity and noise and allows us more flexibility in retaining principal 

components to capture the underlying nonlinear features where data observations 

are more than the dimensionality (Rosipal et al., 2001 ).  The method has been 

described in brief here and for details readers may refer to (Rosipal et al., 2001; 

Jade et al., 2003; Schölkopf et al. 1998). 

    

Consider a set of M centered input variables (regressors),   NM
k Rx 1  and output 

(response) variables   lM
k Ry 1 .  

 

The kernel principal component regression model for the prediction of response 

variable from any input vector, x can be expressed as (Rosipal et al., 2001)  

 

 
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p
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where p is the number of principal components retained in KPCR model ( Mp  )  

and ),( xxiK  can be estimated using the kernel function. The variables k
i are 

computed by diagnolization of kernel matrix of the input variables and kw are the 

least squares estimates of regression coefficients. For the centralized regression 

model bias, b is zero. In our study we have employed Gaussian kernel, which is 

defined as,              















 


L
K

ji

ji

2

exp),(
xx

xx

  

 

where L is the width of the Gaussian function. The number of principal 

components retained, p and the width parameter, L are the two parameters that 

need to be tuned in fixing KPCR model.  

 

6.5. Case Studies   

In our analysis we have considered the three time series, two simulated and one 

based on real observations.        
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6.5.1 Simulated time series 

In our simulations we have chosen two important benchmarking time series 

examples, viz., Lorenz system (Lorenz, 1963) and Mackey-Glass (Mackey & 

Glass, 1977)  governed by the following set of equations.   

 

6.5.1.1.Lorenz system 

yxzb
dt

dz

zxyxR
dt

dy

yx
dt

dx





 

  

with 3/8,28,10  bR .  

The time series data has been generated by integrating sets of equations 

using a standard Runge-Kutta routine with a step size of 0.01.  The training set 

consisted of 500 delay vectors, formed by using an embedding dimension of 3 and 

a time delay of 16 for Lorenz series. The validation and test set consisted of 

similarly embedded 300 and 2000 respectively.  

 

6.5.1.2 Mackey-Glass 

bx(t)-
)-(tx1

)-ax(t

dt

dx(t)
10 


+

=
  

where a=0.2, b=0.1, τ=17.  We predict the x(t+6) using the input variables x(t), 

x(t-6), x(t-12) and x(t-18), respectively (Chen et al. 2006). We have used training, 

validation and test set of size 500 each.  

 

6.5.2 Laser data 

We have studied the prediction of real infrared NH3 laser data (Hübner et al. 

1989), contributed by U. Hübner to the Sante-Fe Institute prediction contest. This 

data set contains two sets, consisting 1000 and 10000 points. (http://www-

psych.stanford.edu/~andreas/Time-Series/SantaFe.html). We have used 

embedding dimension of 4, and chosen the delay of 2 (Bollt, 2000 ). First 1000 

points of first set are used for training and the first 400 points of second set are 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V10-4G05M8H-1&_mathId=mml127&_user=433544&_cdi=5660&_rdoc=1&_ArticleListID=282023940&_acct=C000020739&_version=1&_userid=433544&md5=eb6dcf0f14e548057ad801d91cd476a4
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V10-4G05M8H-1&_mathId=mml128&_user=433544&_cdi=5660&_rdoc=1&_ArticleListID=282023940&_acct=C000020739&_version=1&_userid=433544&md5=435b7ee149342a48b3a0a47e3dd451c5
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V10-4G05M8H-1&_mathId=mml129&_user=433544&_cdi=5660&_rdoc=1&_ArticleListID=282023940&_acct=C000020739&_version=1&_userid=433544&md5=7caf8b4e353a5ba288174d3a2ca2c15f
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V10-4G05M8H-1&_mathId=mml130&_user=433544&_cdi=5660&_rdoc=1&_ArticleListID=282023940&_acct=C000020739&_version=1&_userid=433544&md5=08874b06dcf0067f6466962a3e8e2e64
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V10-4G05M8H-1&_mathId=mml131&_user=433544&_cdi=5660&_rdoc=1&_ArticleListID=282023940&_acct=C000020739&_version=1&_userid=433544&md5=d7d7dee130be21b67641659bf2ad197b
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V10-4G05M8H-1&_mathId=mml132&_user=433544&_cdi=5660&_rdoc=1&_ArticleListID=282023940&_acct=C000020739&_version=1&_userid=433544&md5=8666f6bc6704e80966d9069cee1d5b29


 124 

used for validation and the following 8000 points of the second set are used for 

test.  

 

6.6. Results and Discussions 

We have used KPCR for time series prediction of the case studies described in 

section 6.4.  Different models can be generated using various free parameters of 

KPCR algorithm. For KPCR we need to tune the two parameters viz.: the number 

of principal components retained and width parameter in Gaussian kernel. For 

studying the effect of model selection criteria on the performance of time series 

prediction, we have divided the given time series into three parts viz.: training, 

validation and test.  Simulations can be performed with different model 

parameters employing the training data and the set of parameters that predicts the 

least error on validation data will be selected as the optimal set and further can be 

employed for the prediction of the unseen test data. Generally, the RMS error on 

the validation data is used as an objective for selecting optimal model parameters. 

In other words, the parameters that yield the least RMS error on validation data 

are used for predicting unseen time series. In this study, we have proposed one 

additional criterion for selection of optimal set of parameters based on the 

distribution of the local Hölder estimates. The method of evaluating the proposed 

criterion is as follows: i) For each set of model parameters, estimates of the local 

Hölder exponents are evaluated for both original time series and the predicted 

time series of validation data using the algorithm described in section 6.3. ii) The 

probability density spectrums were then obtained and the root mean square error 

between the densities of the Holder exponents (HRMS error) is found. For the 

least HRMS error, the singularity distribution of predicted time series is closest to 

the singularity distribution of actual time series. Thus HRMS error can be used as 

an objective for optimizing the model parameters of time series with sharp 

changes.  In our study, we have used both criteria of RMS and HRMS error and 

solved the problem of obtaining the optimal parameters as a multiobjective 

optimization. We have varied the two parameters of KPCR viz.: parameter (L) in 

Gaussian kernel and p (the number of principal components retained).  

Simulations were conducted with more than 10000 sets of the model parameters. 

From the solutions thus obtained, we get a set of Pareto-optimal solutions as 
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described in first section (6.1). After getting Pareto set, test error for each set of 

parameters in this set is estimated.  

Pareto sets obtained for Lorenz, Mackey-Glass and laser time series are 

shown in Tables 6.1a, 6.1b and 6.1c respectively.  In tables the results marked by 

bold letters are obtained by using one of the objectives (either RMSE or HRMSE). 

As can be seen from Table 1a, the model parameters (p=193 and L =1.08) has 

produced the least RMS error of 0.0342 on validation data. Using only RMS error 

as a criterion, one may choose these parameters as optimal parameters and directly 

employ it for predicting test data. These parameters lead to a test error of 0.0835. 

For Lorenz series minimum HRMS error for validation data is obtained for the set 

of parameters (p=170 and L =1.32), which  results a test error of 0.0614.  Thus use 

of HRMS error as a criterion has lead to improvement of 26.47% in predicting the 

unseen test data.  A similar trend is observed in case of laser and Mackey-Glass 

time series.  Employing the criterion of RMS error the set of parameters (p=330 

and L = 0.2100) has been selected for laser time series which yields test error of 

10.7952, whereas optimal parameters (p=281 and L = 0.4100) selected on the 

basis of new criterion results in test error of 9.6211. Thus application of HRMS 

error criterion has shown improvement of 10.88% over the conventional criterion 

of RMS error in predicting the test data of laser time series. Similarly an 

improvement of 5.78% is obtained by the application of the proposed criterion in 

predicting unseen Mackey-Glass time series. 

The reason for the superior performance can be better understood from 

Figure 6.2. We have shown in this figure, the distribution of local Hölder 

exponents for the predicted and actual laser time series (validation data) for KPCR 

models selected by conventional and singularity based criterion. As can be seen 

from the figure, the distribution of Hölder exponents for the predicted time series 

is closer to the distribution of the same for the actual time series in case of the 

model selected by the singularity based criterion than the one corresponding to the 

conventional criterion. The superior performance of the proposed method can be 

attributed to the fact that the model selected by minimum HRMS criterion 

perfectly captures local singular behaviour of the time series and thus helps in 

improving the generalization capability of the model. 
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Table 6.1a: Non-dominated solutions for Lorenz time series 

Num of Prin. 

Comp. 

Kernel parameter Validation 

RMSE 

Validation 

HRMSE 

Test error 

180 1.0000 0.0414 0.0237 0.0696 

193 1.0400 0.0357 0.0277 0.0782 

193 1.0800 0.0342 0.0282 0.0835 

193 1.1000 0.0343 0.0279 0.0852 

170 1.3200 0.0439 0.0138 0.0614 

170 1.3400 0.0439 0.0192 0.0623 

 

Though employing HRMSE criterion has lead to better results than the 

conventional criterion of RMSE in all of the present case studies, there is a risk 

involved in choosing the model parameters based only on one of the criteria for 

prediction of any real time series at hand. If the range for the validation errors 

(both RMSE and HRMSE) for the Pareto-optimal set is narrow, then selection of 

parameters using either of the criteria will not make any significant difference. 

      Table 6.1b: Non-dominated solutions for Mackey-Glass time series 

Num of 
Prin.Comp. 

Kernel parameter Validation 
RMSE 

Validation 
HRMSE 

Test error 

343 0.94 0.000473 0.065422 0.00019 

379 0.94 0.000517 0.039667 0.000185 

343 0.96 0.000474 0.062189 0.000188 

378 0.98 0.000532 0.039406 0.000187 

379 1.0 0.000535 0.038293 0.000181 

381 1.0 0.000538 0.032960 0.000182 

381 1.02 0.000538 0.031127 0.000179 

347 1.10 0.000495 0.050874 0.000173 
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 But when the range for one or both of the errors is wide, one should choose the 

model parameters, which are performing better in both criteria. Thus for instance 

for Lorenz series we will choose the parameters p=180 and L=1 as these 

parameters produce lesser RMSE as well as HRMSE.  The point with the optimal 

parameters is marked by the circle in Figure 6.3.  By using these parameters we 

have obtained the test error of 0.0696 which is much lesser than the error given by 

the parameters using conventional criterion. In a similar way the optimal 

parameters performing well in both criteria are found for other case studies and 

are shown in Italic letters in the Tables 1a, 1b and 1c.  One can conclude from 

these tables that the selection of parameters employing both criteria has resulted in 

lesser error on unseen test data than the errors produced by the parameters based 

on conventional criterion alone. 

 

 

 

  Table 6.1c :Non-dominated solutions for Laser time series 

Num of Prin. 

Comp. 

Kernel parameter Validation 

RMSE 

Validation 

HRMSE 

Test error 

330 0.21 8.4848 0.3002 10.7952 

331 0.21 8.4856 0.2891 10.7954 

320 0.25 8.4881 0.2523 10.3709 

316 0.27 8.4912 0.1098 10.1842 

317 0.27 8.4992 0.1025 10.1901 

318 0.27 8.4982 0.1030 10.1890 

261 0.31 8.5920 0.0997 10.0809 

262 0.31 8.6037 0.0758 10.0494 

262 0.33 8.5996 0.0805 9.9509 

263 0.33 8.5962 0.0821 9.9542 

263 0.35 8.5952 0.0840 9.8467 

264 0.35 8.5951 0.0884 9.8450 

281 0.41 8.6717 0.0753 9.6211 
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Figure 6.2: The distribution of the local Hölder exponents for the predicted and 

actual laser time series (validation set) using KPCR models. Distribution of the 

Hölder exponents of the actual time series is denoted by solid line and the 

distribution of predicted time series with a model selected by conventional 

criterion and singularity based criterion alone are denoted by dashed and dotted 

line respectively. 
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Figure 6.3: Non-dominated solutions for Lorenz time series (optimal point  

considering both objectives is marked by circle) 
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6.7 Summary    

A new method for model selection in prediction of time series is proposed. 

Generally, the model parameters are selected for which the minimum RMS error 

is obtained on the predicted time series. This conventional criterion based only on 

RMS error may not take into account of the sharp changes or singularities in a 

time series and may fail in a case where this contribution of singularities is 

significant. Here, we have proposed an additional criterion based on error on the 

distribution of singularities in the predicted and actual time series. The distribution 

of singularities is evaluated through the local Hölder estimates and its probability 

density spectrum. Thus, the problem of model selection is solved by 

simultaneously minimizing both criteria, viz., RMS error based on the original 

time series as well as based on the error in the singularity distribution.  The 

method is tested on three time series: two simulated and one based on real 

observations. Predictions of these time series have been done using kernel 

principal component regression (KPCR) and model parameters of KPCR have 

been selected employing the proposed as well as the conventional method. The 

problem now being a multiobjective optimization problem, we get a set of Pareto 

optimal solutions.  Results obtained demonstrate that the proposed method helps 

in better prediction of the unseen test data and improves the generalization 

capability of the KPCR model. Model selection has produced the results which are 

better than the results yielded by the conventional method in all of the cases of the 

simulated and real time series. In general, we conclude that new method can be 

very useful in prediction of time series data having sharp singularities.  
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Chapter 7 

CONCLUSIONS 

Nonlinear static and dynamic process modeling, fault detection and diagnosis, 

employing artificial intelligence tools like neural networks and fuzzy logic, have 

received considerable importance in recent years. Hybrid combinations of these 

algorithms and newer machine learning tools are also being developed with a view 

to increasing robustness and prediction capabilities. In the past few years, kernel 

methods like support  vector machines (SVM) have become one of the most 

popular approaches within the machine learning community due to the possibility 

of building non-linear versions of classical linear algorithms in an easy and 

elegant way. The basic idea in kernel methods is to map data in the input space to 

higher dimensional feature space using some nonlinear mapping and then apply 

linear algorithm in that space. The computational difficulty arising out of high 

dimensionality of the feature space is handled by defining an equivalent kernel 

function in the input space itself. A family of kernel methods mainly includes 

support vector machines (SVM), kernel principal component analysis (kernel 

PCA), support vector regression (SVR) and support vector domain distribution 

(SVDD). The main objectives of the work were to apply these kernel based 

machine learning tools to solve process engineering problems. The chapters 2 to 4 

dealt with applications of kernel methods for fault detection/ diagnosis and 

nonlinear modeling of chemical engineering systems, while in chapter 5 and 6 

these tools were combined with wavelet-fractal theory for analysis, 

characterization and prediction of chaotic time series. 

 The working of support vector machines based on structural risk 

minimization principle in learning tasks involving linear and nonlinear 

classification and regression has been highlighted in chapter 2. The applications of  

SVM methodology were illustrated  by considering the case studies of fault 

detection in CSTR and quantitative structure property relations (QSPR) problem 

dealing with prediction of boiling points of aliphatic hydrocarbons from molecular 

descriptors data. SVM successfully classifies and sub-classifies various types of 

faults occurring in simulated CSTR using one against all multi-class strategy. For 
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the QSPR problem, SVM obtains smaller errors for training, validating and testing 

sets than the ones obtained by using back propagation networks. The examples 

clearly demonstrate the ease, elegance and superiority of this new tool over the 

other conventional tools and should prove useful in a number of other process 

engineering applications. 

 

In chapter 3, kernel PCA, a new method for performing nonlinear principal 

component analysis has been illustrated by considering the examples of (i) 

denoising of chaotic time series and, (ii) development of an input-output model 

for the case of polymer nanocomposites. In this method the original problem is 

first nonlinearly transformed to a higher dimensional space. The kernel function 

simplifies the computational complexities by performing the dot product of the 

transformed data in the input space itself. The capability of the method to extract a 

large number of principal components is very useful for feature extraction and 

denoising. For the chaotic time series the kernel PCA successfully denoises and 

recovers the original data with substantial accuracy. Similarly for the polymer 

nanocomposite example the kernel PCA preprocessing followed by kernel 

regression is able to extract the dominant features and map the input output data 

very well. The fact that the method does not require solution of any hard nonlinear 

optimization problems makes the method very attractive for use in various process 

engineering applications.  

 

           A hybrid method using locally linear embedding (LLE) and SVDD was 

developed in chapter 4 and applied to the case studies of acetone-butanol 

fermentation and a benchmark SBR problem. The results show that LLE along 

with SVDD can be a very powerful tool for online process monitoring. As most of 

the industrial processes are nonlinear in nature, nonlinear dimensionality reduction 

using LLE can be very useful in reducing the features of the data, which in turn 

reduces the time for abnormality detection technique like SVDD.  

A novel method for analysis and characterization of time series was 

proposed in chapter 5.  This method is a unique combination of wavelet based 

singularity analysis and support vector machines classification. Proposed 

methodology was applied to a case study of flow regime identification in gas-
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liquid stirred tank equipped with Rushton turbine. Employing our method we 

could classify flow regimes with 98% accuracy. Also from the regime map it is 

clear that the misclassified data-point belongs to the regime transition zone. This 

proves the effectiveness of this method for the identification of the flow regime in 

gas-liquid stirred tank. The excellent classification accuracy brings out the fact 

that the local scaling behavior of a given regime follows a distinct pattern.  

Further, the singularity measures can be employed by intelligent machine learning 

based algorithms like SVM for online regime identification. The method is simple 

and can be generalized to the other multiphase systems like bubble column, 

fluidized bed etc. 

A new method for model selection in prediction of time series was 

proposed in chapter 6. Generally, the model parameters are selected for which the 

minimum RMS error is obtained on the predicted time series. This conventional 

criterion based only on RMS error may not take into account of the sharp changes 

or singularities in a time series and may fail in a case where this contribution of 

singularities is significant. Here, we have proposed an additional criterion based 

on error on the distribution of singularities in the predicted and actual time series. 

The distribution of singularities is evaluated through the local Hölder estimates 

and its probability density spectrum. Thus, the problem of model selection is 

solved by simultaneously minimizing both criteria, viz., RMS error based on the 

original time series as well as based on the error in the singularity distribution.  

The method is tested on three time series: two simulated and one based on real 

observations. Predictions of these time series have been done using kernel 

principal component regression (KPCR) and model parameters of KPCR have 

been selected employing the proposed as well as the conventional method. The 

problem now being a multiobjective optimization problem, we get a set of Pareto 

optimal solutions.  Results obtained demonstrate that the proposed method helps 

in better prediction of the unseen test data and improves the generalization 

capability of the KPCR model. Model selection has produced the results which are 

better than the results yielded by the conventional method in all of the cases of the 

simulated and real time series. In general, we conclude that new method can be 

very useful in prediction of time series data having sharp singularities.  
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The results presented and discussed in chapters 2-6 disclose the fact that 

these kernel based machine learning tools viz. SVM, kernel PCA, SVDD are 

really promising for building data driven models of process engineering systems. 

The applications also reveal that these methods are really flexible and simple in 

their implementation and can be combined with other conventional tools to suit 

the necessities of the problem at hand.  
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