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CHAPTER 1

INTRODUCTION



1.1  Introduction

Research endeavors aimed at constructing a rational basis for understanding how living
organisms function and interact have a long history (Hinshelwood, 1946). However, the
complexity of living systems with their multitude of hierarchies in time, space as well as
structures, makes the task of understanding biological processes in terms of physico-chemical
principles, a formidable one. Nevertheless, interdisciplinary areas aimed at such studies are
by now well established and the importance of the contribution from these fields to biology
cannot be emphasized enough. Mathematical models in particular have produced spectacular
and exciting results. Several treatises, on the application of mathematical models in biology

are found in literature (Gold, 1977, Segel, 1981).

One of the most striking and intriguing aspects of natural phenomena is that, complex
systems involving a large number of units can interact in a cooperative way to form and
maintain spatio-temporal structures and can show self-organization at various levels (Eigen,
1971, Peacocke, 1983). This observation was seen to be at variance with the second law of
thermodynamics, which states that all natural process should evolve with a net increase in
entropy. Hence the need arose for new conceptual tools and ways of analyzing and modelling
biological complexity. In the beginning of this century, attempts were made to extend the
principles of thermodynamics to irreversible processes. A striking result of these attempts,
pioneered by Ilya Prigogine of the Brussels School, was to prove that transition to ordered
behavior can occur in systems far from equilibrium and which are open to exchange of matter
and energy (Nicolis and Prigogine, 1977). Systems which can give rise to and maintain order
at the cost of constant flow of matter and energy are known as dissipative systems and the
ordered structures so formed, as dissipative structures. It is easy to see that biological systems
are indeed dissipative systems, since they consist of a large number of interacting subunits,

each operating far from equilibrium. The patterns observed in these dissipative systems



generally arise due to the fact that natural laws are inherently nonlinear. The study of these
systems takes us from the classical thermodynamic approach to another universal discipline,

synergetics. A brief overview of this newly emerging field is given in the next section.

Another major contribution to understanding biological organization has come from
the field of chemical kinetics. In particular reactions involving feedback and autocatalysis
are found to be prevalent in many biological systems. To explain the origin of oscillations in
biological systems, many mechanisms have been proposed and modelled in terms of first
order nonlinear ordinary differential equations (Peacocke, 1983). Beginning with Turing’s
classical work which includes diffusional effects, many reaction-diffusion models have also
been proposed and described by partial differential equations. An important feature of these
models is that, their solutions are capable of showing great sensitivities to variations in
parameters, implying that for a small change in one of the parameters, the system loses its

stability and evolves to a new state,

Thus bifurcation, and the behavior of the system near the instability point, are of prime
importance to any system showing self-organization. In the present thesis, we study both these
aspects for two systems of biological interest, namely, the exponential autocatalysis model
and the substrate-inhibition kinetic model. The exponential autocatalysis model takes into
account the exponential dependance of the rate constant on one of the reaction intermediates.
This model is helpful in understanding many biological processes, significantly, the allosteric
enzymatic reaction mechanisms. The substrate-inhibition kinetic model, is also known as the
Seelig’s oscillator. It is shown to produce oscillatory solutions and wave patterns in realistic
parameter regimes. In order to obtain the bifurcation maps of these systems we resort to the
well established linear stability analysis and for the second aspect we turn to synergetics.

1.2 From Thermodynamics to Synergetics
By definition synergetics means a study of the cooperation of subsystems of a larger

system which produces macroscopicspatial, temporal and functional structures (Haken, 1989).



Such systems are found in diverse fields of science and they all show similar behavior, especially
near the instability points in the system, irrespective of the field to which they belong. Thus
we find typical examples of synergetic systems in lasers, hydrodynamics, solid state physics,
neural networks, mechanical engineering, certain chemical reactions, morphogenesis,
behavioral biology, evolution of living systems, population dynamics and even economics and

sociology.

One of the major concepts underlying synergetics is the application of the slaving
principle near the bifurcation points, This principle basically claims the responsibility of
eliminating a large number of rapidly decaying modes. Further the decaying modes which can
be eliminated are known as the slaved parameters and the linearly growing modes as the order
parameters. Having eliminated the fast modes, we can now describe the system behavior in
terms of a simple evolution equation, known as the Ginzburg-Landau equation. Much of the
work presented in this thesis involves this equation with a view to apply it to biologically
relevant schemes. The two models referred to earlier have been investigated for their
bifurcation behavior, the possible dynamic features that can arise in these systems and the
stability of these dynamic features. The mathematical methods employed in this study are the
linear stability analysis, the multi-time scale theory, the reductive and singular perturbation
techniques. Extensive numerical analysis has also been carried out wherever necessary. Inthe
next section we give a more detailed outline of the contents of the present thesis.

1.3 Contents

In Chapter II an extensive bifurcation analysis of the exponential autocatalysis model
has been carried out, with a view to obtain its rich bifurcation behavior. In this chapter, the
linear stability analysis of this model is carried out in the absence of diffusion. Further on the
basis of the properties of the Jacobian matrix of the system, the equations for the locus of two
types of instabilities have been derived. A thorough numerical analysis has been carried out

to scan the different parameter regimes for the possible behavior. The results for the global



stability behavior based on these conditions have also been presented and discussed.

Biological processes are known to involve a vast number of reactions which evolve on
widely different time scales. In such situations one can obtain an approximation of the
asymptotic behavior by eliminating the fast reactions. The principles of the multi-time scale
theory presented in Chapter III allow us to separate the fast and slow variables and further
to construct the asymptotic behavior of the system and analyze the stability of the evolving
structures. In the third chapter we apply the two-time scales (singular perturbation) to the
exponentially autocatalyzed reaction-diffusion model, for a defined set of initial and boundary
conditions. The global nonuniform steady patterns and limit cycle behavior are obtained and

the stability of these structures is analyzed.

In Chapter IV we make use of the principles of synergetics with view to obtaining a
simplified description of reaction-diffusion system near the Hopf-bifurcation point, with the
help of the Ginzburg-Landau equation. The method of deducing this equation form is
presented and demonstrated for the specific case of exponential autocatalysis. This chapter

serves as the beginning point for the analysis carried out in the rest of the chapters.

In the Chapter V the possibility of the application of the GL equation to the Seelig's
oscillator, in the realistic parameter regimes is explored. The instability conditions for two
well known types of instabilities are derived. Further we derive the GL equation for this
model and analyze the system behavior near the two instability points, mentioned above. To
this end, an extensive numerical analysis of the GL equation is carried out in these two

regions. Some interesting results of this analysis are presented and discussed in detail.

[t is well recognized that in systems operating far from equilibrium fluctuations play an
important role in bringing about order. In particular, the fluctuations are seen to amplify near
the critical points in the system. Therefore it becomes necessary to investigate effect of
fluctuations near these points. In the Chapter VI we obtain an equation of the form of the

GL equation for systems evolving in presence of external noise. Here, we make use of the



Langevin-equation approach to include the effect of noise. This equation can be easily
extended to a general class of fluctuations and is crucial to the analysis of a variety of interesting
situations. The point of importance of the present chapter is that, here we extend the principles
of derivation of the GL equation to stochastic systems in a simple way. This method is

demonstrated for the case of substrate-inhibition kinetics.

Another application of the reduction principles of the previous chapters is seen in the
case of weakly coupled oscillators. When the coupling is in the form of diffusion then it is seen
that the behavior of the coupled system can be obtained in terms of a non-linear phase diffusion
equation. In Chapter VII we aim at deducing this equation and extending it to the case of
Ginzburg-Landau oscillators. The condition for the stability of the limit cycle solutions against
diffusional effects is obtained in terms of the constants of the GL equation. In this chapter,
the stability of the limit cycle solutions to the substrate-inhibition model is investigated, with

the help of the non-linear phase diffusion equation.

Chapter VIII while does not prevent any new result, takes a global view of the GL
equation, with a view to critically analyzing its content and meaning. The physical relevance
of the constants of the GL equation is also discussed in detail. A brief account of the
applications of the GL equation to various other fields is presented with a view to bring forth
the universality of this equation and its capacity to show a rich and varied behavior in different
regimes. Finally the scope for the application of this equation to some biological problems is

discussed.

Chapter IX concludes the thesis giving a brief summary of the work presented, and the

results obtained.
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CHAPTER II

CHEMICAL INSTABILITIES AND BIFURCATIONS IN

EXPONENTIAL AUTOCATALYSIS MODEL



The linear stability analysis of an autocatalytic model, termed as
exponential autocatalysis has been carried out, with a view to obtain
its rich bifurcation behavior. Further on the basis of the properties of
the Jacobian matrix of the system, the equations for the locus of two
types of instabilities have been derived. The numerical results for the
global stability behavior based on these conditions have also been

presented and discussed.



2.1 Introduction

Bifurcation implies, a qualitative change in the behavior of the system, as a consequence
ofasmall change in some parameter. In systems undergoing bifurcations, we find that successive
instabilities lead to highly ordered structures. A significant example is found in the field of
developmental biology (Bonner, 1974); here the central problem is, how do cells differentiate
from a single cell type to form tissues, organs, and patterns and eventually form the highly
ordered structures that living beings are. Population dynamics, one of the oldest branches of
mathematical biology also deals with various bifurcation phenomena (May, 1974). Other
important examples are found in the study of metabolic processes. Among these, glycolytic
oscillations, oscillations in photosynthesis, circadian rhythms and oscillating membrane
phenomena are some well studied examples (Hess and Boiteux, 1971). For an useful review
of bifurcations in chemically and biochemically reacting systems, one can refer to Peacocke
(1983), and the references cited therein. Thus we find that bifurcation phenomena are found
in a variety of biological systems, and their implications are profound and interesting. The
bifurcation theories for systems showing temporal organization (ODEs) are relatively well

established (Minorsky, 1962, Murray, 1977, Segel, 1981, Eckmann, 1981, Hofstadter, 1981).

Turing in his seminal paper had suggested that morphogenesis can be understood as a
reaction diffusion process (Turing, 1952), which forms the basis of the present day theories of
self-organization and pattern formation. His theory leads to the formulation of the problem in
terms of partial differential equations (PDEs). The questions regarding existence, and stability
of solutions to such systems, and hence a need for renewed mathematical analysis arise naturally.
The application of bifurcation theories to such systems have been reported by various authors
(Joseph and Sattinger, 1972, Auchmuty and Nicolis, 1975, 1976, and Herchkowitz-Kaufmann,
1975). Owing to the advances in the systematic formulation of bifurcation theories, studies in
instabilities and spatio temporal patterns in chemical and biological systems has emerged as
an active area of research. We find numerous examples of applications of bifurcation theories

to ODEs and PDEs (Nicolis, 1971, 1975, Ortoleva and Ross, 1975, Hess et al, 1975, Higgins, -
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1976, Fairen and Velarde, 1979, Schiffmann, 1980, Murray, 1981, Devreotes et al, 1983, Muller
et al, 1985, Tyson and Keener, 1987 and Luo and Epstein, 1991). Recently, Turing patterns
have been shown to occur in a chemical reactor (Castets et al, 1990), the theoretical framework
for which has also been given (Lengyel and Epstein, 1991). Application of bifurcation theories
in the analysis of models for pattern formation during cellular development and differentiation

have also becone popular (Gerhardt et al, 1990a,b,c).

As already discussed, bifurcation analyses of various models for many physical, chemical,
and biological systems have been attempted in the past. In the present chapter, we undertake
the bifurcation analysis of an alternate form of autocatalysis, the exponential autocatalysis. This
model will be discussed in detail in the following section. The linear stability analysis of this
model has been carried out in absence of diffusion, to bring out its rich bifurcation behavior
and identify the regions for the occurence of the chemical instabilities. The stability analysis of

this model will be presented in Chapter IV.

2.2 The Model

Kinetic coupling between reactions can give various forms of feedback, leading to the
appearance of a variety of dynamical features in chemically reacting systems (Frank, 1978). In
open systems, autocatalysis and autoinhibition can produce positive or negative feedback
effects. A systemic feedback is said to occur when a reaction product influences the rate
constants of one of the steps leading to its own formation. When the rate constant increases
under the influence of the product, then it is known as systemic autocatalysis. Such a mechanism
is seen to be operating in reactions involving allosteric enzymes, or in the binding of O, to

heamoglobin.

The exponential autocatalysis model originally proposed by RaviKumar et a/ (1984) is

given as,

X = Y = Z



where the product Y shows a systemic autocatalytic effect on the rate constant &, such
that k increases exponentially with Y. Thus it is also refered to as the exponential autocatalytic
scheme. This rate form was proposed mainly to explain the strong nonlinearity, resemblance
to Semenov type of law, and analogy to Arrhenius type of rate constant dependance found in
certain systems. This rate form has wide applications in several biochemical systems as also in
explaining the phenomena in diverse chemical and combustion type of reactions. The
exponential autocatalysis has revealed the existence of multiplicity and oscillatory behavior
under homogeneous conditions (RaviKumar et al, 1984). The exponential autocatalysis has
received acceptance as a general model for class of reaction - diffusion systems (Bar Eli, 1984)
and results obtained by using conventional autocatalysis such as the one used in Brusselator
type models compare well with this model system. More recently the scheme in presence of
diffusion was analysed with a view to establish bounds on the steady state solutions (Inamdar,
1990). The conditions for the existence of nonuniform solutions in the form of dissipative
structures have also been derived analytically (Inamdar, 1990). In the following chapter, the
global nonuniform patterns and .limit cycle have been constructed for this model using
multi-time scale analysis. In Chapter IV, the behavior near the Hopf bifurcation point has been
derived using the reductive perturbation to obtain the description in terms of Ginzburg-Landau

equation.

2.3 Linear Stability Analysis

The temporal kinetic scheme of the exponential autocatalysis is governed by the following

equations,
c;—'f = x,-x-Da,xexp(ay) (2.3.1a)
dy
g7 = y,~y+Da,xexp(ay)-Da,y (2.3.1b)

10



The steady state solutions of these equations are represented as ( x,,0) and can be

obtained as,

( e) (xo_xs) Xo*+* Yo~ X5
ex a e s S Y W e
P x,Dal l1+Da,

D
I

(23:2)
Using Eq. (2.3.2), the steady state equation in terms of © can be expressed in the form of

a transcendental equation as,

af _ Xo "’].
xa*’Yoge(l*DaZ)

Da e = 0 (2:3:3)

To obtain the conditions for the occurrence of chemical instabilities we write, the Jacobian

matrix of the system in Eq. (2.3.1) as,

(—l—Dalecla -ax,Da,e® )
1]

A =
Da e -(l+Day)+ax,Da,e”

(2:3:4)

where the steady state relations given by Eq. (2.3.2) are used. The trace (7) and
determinant (D) of this matrix are identified as,

T = (Da,e®®)’+(Da,+3-ax,)e* +(Da,+2) (2.3.5)

D = [(1+Da,)(l+ad)-a(x,+y,)]1Da,e**+(1+Da,) (2.3.6)

The characteristic polynomial for determining the eigenvalues for this two dimensional

system is obtained from Eq. (2.3.4) as,
A2 - TN + D =0 (2.3.7)

We choose Da, asthe bifurcation parameter, since it contains externally controlled flow

term and we express all our results in terms of this parameter. The critical value of Da, can

be obtained by putting trace T equal to zero.
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The condition for the secondary bifurcation (Kubicek and Marek, 1983) to occur is given

as Det(A)=0.This is stated as,

o 2,

= ox dDa, -1-Da,e*® -x,e*® (58
ofz. 9fa Doga®™ 20,08 o
20X c)Da]

and gives us the limit point for the bifurcation curve inthe Da, - Da, plot. One solution

to Eq. (2.3.8) results in e®® = Q giving 8 = - =, which is unrealistic. Another solution yields,
q giving y

x0+y0

e =
1+ Da,

(2.3.9)

Here we would like to give the definitions of some terms based on the maginitudes and
signs of T and D appearing in Eq. (2.3.7) and which are useful in the characterization of the

regions we shall obtain later.

Saddle point: If D < 0, then, regardless of the sign of 7, real parts of two eigen values
have opposite signs. This means the eigenfunction associated with the positive eigen value grows
exponentially in time, while the eigenfunction associated with the negative eigenvalue decays

exponentially to zero. In this case, the steady state point is called saddle point.

Nodes: IfA (=T?-4D) > 0,with D > 0, then both eigenvalues have the same sign, the
g g

sign of T. The steady state point then is called a node. A node can be stable or unstable. If T
> 0, all nonzero solutions grow exponentially with time, so the steady state point is called
unstable node.If T < 0, then both eigen values are negative. All the solutions the decay

exponentially to steady state point. In this case steady state point is called stable node.



X _1-2
D=+T? X) p=iT
f b
Stable
spiral
X
X
Unstable
Stable node node
Saddle point —
Y, e 1\{
» X

Fig. 2.1 : Diagram summarizing the various possible behaviors for a second order ODE
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Spirals: If A < 0, then the eigenvalues occur as a complex conjugate pair and the genaral

solution oscillates with an amplitude envelopethat grows or decays as does exp (7¢/2). Unless
T = 0, the solution trajectories are spirals. If T < 0, the trajectories spiral to the steady state
point, which is then called a stable spiral ( or stable focus). If 7> 0, then steady state is called

an unstable spiral (or focus) because trajectories spiral out from it.

Center: In the case T = 0, and D > 0, the eigenvalues are purely imaginary and the
solution of the dynamic equation becomes periodic int. Such a steady state point is an imporatnt
one and is termed as center. It is neutrally stable, and the solutions neither run away from, nor

approach such a point.
Fig. 2.1 summarizes all the possible situations discussed above.

2.4 Chemical Instability results
Eq. (2.3.5) and (2.3.6) define the trace and determinant which help us to obtain the
eigenvalues by solving Eq. (2.3.7). We choose to keep Da, fixed while varying Da, and
observe that for certain values of Da , the system would have real negative eigenvalues which
coalesce as Da, is increased. They then depart into a pair of eigenvalues which start moving
in the complex plane, and for Da,=Da,,(Da,) they cross the imaginary axis which means
that the steady state becomes unstable marking the onset of instability. Hard instability occurs
when the real part of two complex eigenvalues becomes zero. On the other hand soft instability
occurs when the imaginary part of a critical eigenvalue becomes zero. Thus for soft instability
the circle traced out by the eigenvalues in the complex plane, lies entirely on the left of the
imaginary axis. Along the instability line, for hard instability Da,,=Da,y(Daz) in the
Da, - Da, plane, the relaxation rate is purely imaginary (Daido and Tomita, 1979, Richter
et al, 1980 and Richter et al, 1981). Equivalently one may state the condition for the occurrence

of such instability as trace of the Jacobian matrix becoming zero with positive determinant.
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This condition, valid for subcritical Hopf, also holds good for supercritical Hopf. Now, if the
eigenvalues are given by A" = £iw ,, then the finite amplitude oscillation is characterized by

a frequency w 4, given by,

w, = {0,0,e%-1 (2.4.1)

where (1, isobtained by eliminating Da, from the steady state Eq. (2.3.3) and vanishing

trace Eq. (2.3.5), while Q, is extracted from the same equations by eliminating Da, . These
results are represented by two quadratic equations as below and 0, and Q, are the roots of

these equations respectively.

Da30(1-a8)+{26-(x,+y,)+ad(x,+3y,)-2a6%}Da,

t{lalx, *y. )+ 1J0=ay (x;+y,+1)=2x,}=0 (2.4.2)
a(x,+y,)0e*°Dai+{e*’[0a(x,*Y,)
—0(1+y,)-1]-(xa*¥)}Ragm(di*¥,)=0 (2.4.3)
The curve characterized by the vanishing trace condition starts at Da, =0, where 6,

and Da, 4 using Eq. (2.3.3) and (2.3.5) are given by,

e_yo -a@
Daig mposerm—aiogit 2.4.4
= Xo+Y¥,—6 ¢ )

l+ax,+2ay,)sya?x2-6ax,+1
TR y )Za\/ ; .

This curve ends at a limit point in the Da,-Da, plane at Da,=Da, m... The

corresponding expressions for 0 ,

a(1+0,)%05-0,{a(x,+y,)+ay,+(1+Q,)}

Hlalx*¥.) = Ly~ i+ 23 (X, *¥,)}=0 (2.4.6)
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where 0, is the root of Eq. (2.4.2), and Da,, .y is obtained from Eq. (2.4.3).

2.5 Numerical Method

To obtain the bifurcation diagram we have simultaneously solved Eq. (2.3.3), and steady
state equation in terms of 6, along with one of the three conditions viz. 7 = 0,D = 0 and A =
0, making use of Eq. (2.3.2) to reduce the equations into a single variable form. For this purpose
the parameter Da, was expressed as,

D = il
% = \x,*y.-0(1+Day)

l}exp(—ae) (2.5.1)

using Eq. (2.3.3). For T = 0 and A = 0, © was kept as the single variable, whereas for the

case D = 0, the equations were reduced in terms of x, to avoid numerical instability. To obtain
the roots of the function (7, D and A equal to zero), the bisection method was employed. The
condition stated in Eq. (2.3.9) obtained from Eq.(2.3.8) for secondary bifurcation is the limit
point of the curve D = 0 in the bifurcation diagram. This condition has been made use of in
avoiding the numerical overflow while reaching the limit point in the numerical solution for

obtaining curve D = 0.

2.6 Results and Discussion

The linear stability analysis of the exponential autocatalysis reveals many interesting
features, which are elucidated in the following. Fig. 2.2a shows in the Da, - Da, plane the
various curves which satisfy 7=0, D=0 and A=T?-4D=0. For the sake of clarity some
portions of this figure have been magnified and shown as Fig. 2.2b and 2.2c. It is interesting to
note that the transcendental nature of A = 0 gives rise to four real roots in certain region of
Da,-Da, phase plane while T = 0 and D = 0 give rise to two distinct roots. The curves
representing the three conditions intersect each other at various points, enclosing certain regions

in the parameter space. These various regions formed in the bifurcation diagram are discussed
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below and their classification is presented in Table 1. Referring to Fig. 2.2a, 2.2b and 2.2¢, we
notice that in all there are four different basic types of regions observed within the boundaries

described by three conditions mentioned above.

Region I, essentially a region of stability consists of a stable node (two real negative
eigenvalues), and/or a stable focus (or spiral, two complex eigenvalues with negative real part).
On the other hand, region II consists of an unstable node and unstable spiral (or focus, real
part of complex eigenvalues being positive). Region III consists of multiplicity (three) solutions
with the middle solution always being a saddle point with upper and lower steady states as
either a stable or unstable focus (spiral) or node. All such eight combinations have been found
to exist in the bifurcation diagram. Region IV contains multiplicity of two solutions given by

an unstable focus and an unstable solution.

The boundary line with D = 0is characterized by a pair of real eigenvalues with one being
equal to trace and the other a simple zero eigenvalue. So the stability of the solution is
determined by the sign of trace. The line characterized by T = 0 with D < 0 possesses two pure
imaginary complex eigenvalues, and each such steady state solution represents a center point.
These solutions can be called as neutrally stable solutions with nonvanishing finite imaginary
parts. The curve having the discriminant A = 0 and nonzero trace, is a locus of solutions with
onlyeigenvalue equal to half the trace. So it follows that the stability of such solutions is governed
by the sign of trace. We may add to our discussion that when the curves T = 0 and D = 0 cross

each other, the intersection point is where homoclinic bifurcation can occur.

The stability exchange takes place when the trace and determinant change signs. For T<0
and D >0 the solution is termed as stable. As trace changes sign from negative to positive, the
system crosses through the Hopf bifurcation point at 7 = 0 and later goes into the limit cycle
region. Another possible bifurcation occurs as trace remains negative and determinant changes
sign from positive to negative. The system with T>0 and D >0 can also bifurcate to a state where

determinant changes sign, with trace remaining positive. The last two states give rise to unstable

-y 1T TH-O43
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states and no further possibility of exchange exists between them. The two types.of chemical
instabilities ™ occur when following conditions are met: when a stable steady state solution
identified by the condition T < 0and D > 0, changes as, T -> -0 with determinant sign remaining
unchanged, one type of instability sets in, whereas the other type of instability occurs when D
-> +0 and trace remains negative. In other words this also implies that the circle traced out
by the eigenvalues in the Iml -Re 1 plane as the bifurcating parameter changes, lies entirely to
the left half of the imaginary axis. A typical solution diagram ( x, versus Da, ) obtained using
the DERPAR routine (Kubicek and Marek,1983) is shown in Fig. 2.3. It is seen that bistability
is predominant, in the parameter region where a solution for the condition determinant equal

1o zero, exists.
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Table 1

Classification of Regions obtained in the Bifurcation Diagram

Type of | Region| Sub- Condition Remarks

Region region

Unique I a T<0 D>0 A>0 Stable node with two negative
stable real eigenvalues.

state.

I b T<0 D>0 A<0 Two complex eigenvalues with
real negative part. A stable
focus.

Unique I1 a T>0 D>0 A>0 Unstable node with two
unstable positive real
state. eigenvalues.

II b T>0 D>0 A<0 Two complex eigenvalues with
real positive part. An unstable
focus.

Region of I11 a T<0 D>0 A>0 Stable node - saddle point -
multipli- T<0 D<0 A>0  stable node.
city. T<0 D>0 A>0
Three
solutions
I1 b T<0 D>0 A>(0 Stable node - saddle point -
T<0 D<0 A>0  stable focus.
T<0 D>0 A<
II1 c T<0 D>0 A<0 Stable focus - saddle point -
T>0 D<0 A>0 stable node.
T<0 D>0 A>0
II d T<0 D>0 A<0 Stable focus - saddle point -
T<0 D<0 A>0 stable focus.
T<0 D>0 A<0
M1 e T>0 D>0 A>(  Unstable node - saddle point -
T>0 D<0 A>0 stable focus.
T<0 D>0 A<Q
11 f T>0 D>0 A<0 Unstable focus - saddle point -
T>0 D<0 A>0  stable focus.
T<0 D>0 A<(
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Type of | Region| Sub- Condition Remarks
Region region
I g T>0 D>0 A<0  Unstable focus - saddle point -
T>0 D<0 A>0 stable node.
T<0 D>0 A>0
1 h T>0 D>0 A>0 Unstable node - saddle point -
T>0 D<0 A>0 unstable focus.
T>0 D>0 A<0
Regionof IV - T>0 D>0 A<0  Unstable focus - saddle point.
multipli- T<0 D<0 A>0
city. Two
solutions
Curve - T<0 D>0 A=0 Negative eigenvalues equal to
withA=0 T>0 D>0 A=0 half the trace.
Positive eigenvalues equal to
half the trace.
Curve - T=0 D<0 A>0  Saddle point.
with =0 T=0 D>0 A<0 Two pure complex
eigenavlues, existence of a
center.
Curve - - T>0 D=0 A>0  One positive eigenvalue equal
with D=0 T<0 D=0 A>0 to trace and one simple zero

eigenvalue.
One negative eigenvalue equal
to trace and one simple zero
eigenvalue.
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CHAPTER III

MULTI-TIME SCALE ANALYSIS OF

EXPONENTIAL AUTOCATALYSIS



In this chapter we employ the two-time scales (singular perturbation)
method to construct the limit cycle and global nonuniform steady
patterns for the exponential autocatalysis model, for a defined set of
initial and boundary conditions. Here the analysis is carmed out in
presence of diffusion. The stability of the nonlinear structures that

appear, is also analyzed.
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3.1 Introduction

Scientists and engineers are often faced with problems which cannot be solved exactly
and hence resort to approximate methods becomes necessary. One such problem is that of the
interplay between mechanisms evolving on vastly different time scales, which is a commonly
occurring phenomenon in nature. Often insuch situations, the equations governing the dynamics
of the system can be considerably simplified by eliminating the fast variables, and obtaining an
approximate description, entirely in terms of the slow variables. The simplified slow description
isusually the one we know from classical macroscopic laws of the concerned field. For example
the hydrodynamic equations are obtained from the Boltzmann equation by eliminating all the
variables except the local density, momentum and energy; Ohm’s laws are derived based on
the fact that the field varies much slowly compared with the rapid motion of the electrons;

kinetic laws are obtained after the elimination of short lived intermediates in the reaction.

In biological systems, there is a definite hierarchy of processes, occurring in widely
different time scales. At the lower end are the elementary life supporting reactions, while at
the other end are genetic regulations and evolutionary processes. For a useful account of
biological significance of time hierarchies and some methods of approximating their behavior,

one can see the review by Heinrich et al (1977).

The approximations, leading to the description of the system in terms of the slow variables
is conventionally called ‘adiabatic elimination of fast variables’, ‘perfect delay convention’, or

the ‘slaving principle’. We shall discuss this principle a little more in detail in Chapter IV.

The first task one needs to perform before systematically eliminating the fast variables
is the identification of the fast and slow variables. Unfortunately there is no rigorous theory for
this purpose. However, after having acquired some fundamental understanding about the
system in question, one can obtain a set of differential equations involving a small parameter,
€ . Having obtained such a set of equations, we aim to find an expansion in successive powers

of €, known as the perturbation expansion. In a perturbation series, successive terms of higher
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order ¢ account successively for more details of the influence of the fast variables on the
system dynamics. The lowest order equation in € represents the behavior of the system in

absence of the influence from the fast variables.

Multi-time scale theory is a term applied to a class of methods which introduce in a
systematic way, several time scales into the original equations. The simplest way of doing this
is, to assume that the system variables, u vary not only with ¢, but also with ¢,, where t, are

defined as, t,=€"¢t, i.e.,

Thus 1, represent different time scales, and since € is a small parameter, we can

immediately see that ¢ is a fast scale where as 1y, f,,..... represent successively slower scales.

Using the chain rule, the time derivative in the original equations becomes,

d 2 2 o
€ — + 2 4

2 g
dt af “dby = Bl

In the present chapter, we exploit the fact that around some critical value of a control
parameter, y., where there is a qualitative change in the stability of system, the deviations
from the original state vary on a slow scale, and that the slowness parameter is derived based
on the distance from the critical value. Thus different time scales are inherent in the system.
Here we employ the two-time scales (singular perturbation) method to construct the limit cycle
and global nonuniformsteady patterns that appear in this reaction-diffusion system for a defined

setofinitial and boundary conditions. The stability of these nonlinear structures is also analyzed.

32 The Model
The reaction-diffusion system representing the exponential autocatalysis model discussed

in the last chapter is given by the following set of equations.
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e X

5 = D, AX+x,-X-Da,Xexp(aY) (3:2:1a)

oY :

7y DAY +y,-Y +Da, Xexp(aY)-Da,Y (3.2.1b)
where the operator A = 02%/or?

The steady state homogeneous solution to system in Eq. (3.2.1) is given as,

_ (Xo—X5) _ XotYoT X,
exp(ab) = -m. 6 = W (3.2.2)

where x, and 6 are the steady state values of X, ¥ respectively.

The existence of this solution in Eq. (3.2.2) depends upon the boundary conditions. In
the present case, we assume the concentrations to be fixed at the boundaries i.e. Dirichlet

condition. This boundary condition is given as,

X(0,1t)

X(1.,t) = x,

(53.2.5)

Y (0,t) Y(1.t) e, for ! > 0

All the calculations have been carried out for a one-dimensional system. To make this a

well-posed problem, we add the following initial conditions,
X(r.0) = X,r) = x,, (3.2.4a)
Y{r.0) = ¥Y,(ry = ¥, (3.2.4b)
Assuming the initial conditions x , and v, tobe non-negative, there exists a non-negative

pair (X(r,t).Y(r,t)) ofsolutions of the system definedfor 0 =r <1 and 0 <t < These

solutions are infinitely differentiable functions of bothrandton (0.1)X (0,«).

Defining deviations from steady state as
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X =x + x

which obey homogeneous boundary conditions, and using the linearization of the

exponential term

exp(ay) = l+ay,

results in following evolution equations,

a a a

a—’f D,Ax-(1+Da,e*)x-(aDa,x,e*®)y-aDa,e®xy  (3.2.5a)
a a a a

a—i’ = D,Ay+Da,e*x+(ax,Da,e*-Da,-1)y+aDa,e®xy (3.2.5b)

The boundary and initial conditions, in terms of the deviation variables, are,

x(0,t) = x(1,8) = y(0.t) = y(l.t) = O, t > (3.2.6)
and,
x(r,0) = X, (r)-x,. 3.2.9)
y(r.0) = Y. (r)-6, 0 £ r < 1 (3.2.8)
Introducing n=0,/D,, ; and D=D, for any

parameter y=(a, xX¢, Yo, Da,.Da,, D, n), the linear differential operator can be written

as’

nDA-(1+Da,e*) -ax,Da, e*
L(y) = b s (3.2.9)
Da e DA+ax,Da,e " -(1+Da,)

The nonlinear function, N (y,u) isrepresented as,

-aDa,e*’xy
N(y.u) = s (3240
aDa,e” " xy

So, the original Eq. (3.2.5) becomes,
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u, = L(y)u + N(y.u) . (3.2.11)

We are now interested in finding out the asymptotic solutions of Eq. (3.2.11) for ¢t -«

which are nontrivial solutions u # O with a boundary condition described in Eq. (3.2.6).

The sufficient condition for instability with respect to boundary condition (3.2.6) is that

the solutionu = 0 be unstable to small disturbances. Hence, the linearized form of Eq. (3.2.11),

E)
[5 - L(v)] u = 0, (3.2.12)

would have a nontrivial solution for the specified boundary condition.

The solution to Eq. (3.2.12) can be given as,
u(r,t) = E(r)e™ (3.2.13)

where Z(r) = (&(r).x(r))’ corresponds to a solution to space dependent part,

and A is the eigenvalue for the time-dependent part. Then the eigenvalue problem to steady

state version of Eq. (3.2.11) can be written as,
[L(y) - AI] =(r) = O (3.2.14)

The solution to Eq. (3.2.12) then becomes,
u(r,t) = Y eI (r) (3.2.15)
n=1
The eigenfunctions for any wavenumber n, can be written for the Dirichlet problem as,

2(r) = (E"(r)),where,

Xa(r)
E.(r) = sinnur, k. (r) = M,sinnnr (3.2.16)

32



Using Egs. (3.2.9) and (3.2.14), we can write the characteristic equation in terms of trace

Tr(y,n)and determinant Det(y, n)as,
A2 - Tr(y.,n)\, + Det(y,n) = O, (3217
The trace and determinant expressions are given as,
Tr(y.n) = (ax,Da,e**-Da,-1)-(1+Da,e**)-n*n*D(1+nX3.2.18)

Det(y.n) = (r?n?D)’n-n?n?D(n(ax,Da,e®**-Da,-1)-(1+Da,e)]
-[ax,Da,e**-Da,-1](1+Da,e**)+ax,(Da,e*®’* (3.2.19)
The eigenvalues are then obtained from Eq. (3.2.17) as,
2h, = [[Da,e**(ax,-1)-(Da,+2)]-n*n®D(1+n)] = {(n*n?D)*(1-n)
+2(1-n)n’n®D[Da,- Da,e®’(ax,+ 1))+ Da?

+Da,e" " [(ax,~1)*Da,e*~2Da,(ax, +1)]}"? (3.2.20)

Substituting for = from Eq. (3.2.16) in (3.2.14), the eigenfunctions can be obtained in

terms of the eigenvalues as,
Ao+ (l+Da,e*®)+n?n®nD+ax,Da,e®M; = 0 (32.21)
From Eq. (3.2.14) and (3.2.16), we also obtain
M M,=1/ax, (3.2.22)

Note that, the eigenvalues have negative real part if and only if Tr(L(y)) < 0 and
Det(L(y)) > 0, in which case the solution is linearly stable. If either Tr(L(y)) > 0 or
Det(L(y)) < 0,thenthe solutionis linearly unstable. If Det(L(y))changessign, anexchange
of stability takes place as one eigenvalue of L(y) changes sign. This results in bifurcation of

steady state solution branches. If Det(L(y)) > 0and Tr(L(v)) changes sign, exchange of
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stability occurs as the real part of the eigenpair of 7 (y) changes sign. This corresponds to
Hopf bifurcation, which generates a nontrivial branch of periodic solutions. However, if
Det(L(y)) < 0when Tr(L(y))changes sign, no bifurcation occurs, and hence there is no

exchange of stability. This is depicted in Fig. (3.1).

In this present study, we are interested in analyzing the possible modes through which

instability sets in ending up with Hopf bifurcation. This can happen in two ways.

(i)At some y=Y,, an eigenvalue A} crosses the imaginary axis with nonvanishing

imaginary part. This case is inaccordance with the conditions, that for critical value of parameter
v.,and for any wave number # if trace is negative and determinant is nonnegative, the solution
is stable. For the critical value of wave number n, we may have a vanishing trace condition,
leading to Hopf bifurcation which is the onset of instability. To find the critical value n. we
then put the trace derivative dTr(y.nr)/dn|,., equal to zero. This yields the result n.
= 1. Substituting for this critical value of n inthe Tr(y, n) = 0condition we obtain the locus

of points corresponding to neutral stability (ReX; =0) in the plane Da, , Da, as,
Da,e**(ax,-1)-(Da,+2) = n°D(1+7) (3.2.33)

(ii)At y = v, the only value of n. that crosses the imaginary axis from negative to

positive has vanishing imaginary part. This means that at critical value of wave number n.
trace is negative and determinant is zero, while for other values of n the solution is stable as
trace is again negative and determinant is non-negative. Then the critical value of wave number
is obtained by putting determinant derivative =~ dDet(y,n)/dn|,.,, equal to zero. This

gives,

n, = |1n'D V20 41+ Da,)+ Da,e®*[(1+ Da,)-ax,]} " 1(3.2.24)
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Det [L (¥)]>0 vopt | Dt [Lan]>o

>

Tr [Lan]<o Tr [Lan]>o
SS SS
!} ‘L
Det [L(¥)]<0O Det [L(1)]<0
—————— >
T [Lan]<o Tr [L(n]>o0

Fig.3.1: Stability Exchange Diagram; If Det(L(y))>0 when Tr (L(v))changessign Hopf
bifurcation occurs; However if Det(L(y))<0 when Tr(L(y))changes sign, there is no

exchange of stability and no bifurcation, which is depicted by the broken line; SS denotes
bifurcation from one steady state to another.

35



The locus of neutrally stable states obtained by substituting the value of n. from Eq.

(3.2.24) inthe Det(v,n)=Ocondition,

(n[(1+Da,)+Da,e®[(1+Da,)-ax,]]} "

ax,Da,e*®-(1+Da,)]-(1+Da,e**
_ n[ 1 ( = 2)]-( 1 ) (3.2.25)

Inserting Eq. (3.2.25) into the condition Tr(L(y..r.)) < 0, we obtain an inequality

(1-1) [nlax,Da,e*®-(1+Da,)]+(1+Da,e*®)] < 0 (3.2.26)
and from the sufficiency condition of minimum Det(y, n) one obtains,
1 < n, or D, > D, (3.2.27)

Fig. (3.2) depicts for some specific values of Da, the linear stability diagram in the

neighborhood of u = 0. It should be noted that in this work the diffusion plays the destabilizing

role, where the mixing in a stirred vessel is very poor.

33 Multiple time scale analysis

In this section, we would apply the technique of multiple time scale to obtain the global
nonuniform steady patterns. The multiple time scale analysis takes advantage of the existence
of slow and fast time scales, inherent in the system to construct an asymptotic solution. The
method has been extensively employed and illustrated in the literature (Newell and Whitehead,
1969; Nayfeh, 1973; Ortelova and Ross, 1974; Bender and Orszag, 1978; Bonilla and Velarde,
1979; Keener, 1982; Ramakrishna and Amundson, 1985; van Kampen, 1985).

To construct the nonuniform steady solution that branches at Da, = Da ., in region

I1I-b of Fig.(3.2), we see that in terms of a small expansion parameter € the perturbations upon

the trivial fixed point x =y =0 can be arbitrarily written as,
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Fig.3.2: Stability diagram in the neighborhood of the homogeneous steady state [Eq. (3.2.2)].
Region Iis of stability. Region I1I-a [Eq. (3.2.22)] and I1I-b [Eq. (3.2.24)] contains the unstable
zone between the solid line and dotted line. In region I1I-a along a there is bifurcation to limit

cycle behavior. In region III-b, along b spatial dissipative structures can occur. In region IV
limit cycle behavior is expected.
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X(r.0) = h(r.e); h((r.0)=(£l-—(‘;—e)) , (3.3.1a)
€=0
P)
y(r,0) = g(r,e); g.(r,0) = (ﬁ) R (3.3.1b)
h(r,0) = g(r.0)/'=_Q (3.3.1¢)

The two time scales used in the asymptotic analysis are defined as, a fast time scale ¢t =t

andaslowscale t=[Da,(e)- Da,.]t. Nowwe define following expansions for the variables

xandy,
x(rt,T)=Y €'x,(r 6. 1), y(r.t.T)=) €'y, (r.t,7) (33.2)
i=1 =1

Note that the equation is exact as the series expands to all powers of € and the

corresponding expansions for initial and boundary conditions as,

initial condition:

19'h(r,0)

x,(r.0,0) j—]a—g’ (3338)
_ 1#%g(r;0)

y’(r.0.0) = ]—'a_e’ (3.3.3b)

boundary condition:

x,;(0,t,t) = x,(1l,t,Tt) = y;(0.t,tr) = y,;(l.t.t) = O (3:3i3¢)

Also the expansion for the bifurcation parameter Da ,, assuming it to be analytic in €

neighborhood of Da . can be written as,

Da,(e) = Da,+Da, (0)e+ %Da L(0)e2+0(e?) (3.3.4)
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In terms of these expansions, L(y) and N(y,u) become,

nDA-(1+Da,.e*) -ax,Da,.e"
L(Da,) = a8 ab
Da,.e DA+ax,Da,.e” -Da,-1
-Da,’(0)e*® -ax,Da,’(0)e**
+ €
Da,’(0)e*® ax,Da, (0)e**
-Da,”"(0)e** -ax,Da, "(0)e*®
. lez 1 ( )“ 1 ( )me (3.3.5)
2 Da,”"(0)e ax,Da,”"(0)e
and,

—ae™Da.x,y,
o™ Davp iy

N(Da,,u) = ek (

5 f~ee™ D%y %)= Doy (0% ¥y]
+ € o ) .3.6)
ae [Da, (x,¥y,+x,y,)+*Da, (0)x,y,]

and the derivative term becomes,

2 ) 1 -
— = 5—F+|:Da, (0)5+§Da1 (0)62+O(E3)} (3.3.7)

2
ot

Here onwards, the tilde ~ on  will be dropped.

From Egs. (3.2.12) and (3.3.5), collecting terms of equal powers of € we obtain following

linear equations,

5
) =-[nDA~(1+Da,e™)] ax,Da,.e" :
Y ot A
4 - Da,.e® =-[D8+ax,Da e~ (1+Da,)] 4
(3.3.8)

39



dx '
s —Dal‘(O)a—Tl-i- x,(=Da,’ (0)e*)+y ,(-ax,Da, (0)e**) - x,y,ae*Da,,

oy (3.3.9)
-Da,"(0)5+ x,(Da, (0)e™) +y,(ax,Da, (0)e*)+ x,y,ae* Da,

. ax? 1 ve axl P ad H a®
-Da, (O)F_éba' (O)F*'xz(-Dal (0)e™ )+ y,(-ax,Da,’(0)e"")

+ 3%1(-Da,"*(0)e™) + 3y,(~ax,Da, "(0)e™)

_ae‘.[Dalc(IIYZ+x.‘!yl)+Dal‘(O)XIYI}

L)

: Y2 s 9y, . as P ab
- Da, (0)37-50a,” (0) 53+ x,(Da,"(0)e™) + y,(ax,Da, (0)e™)

+ Ex,(Da,"(O)e")+%y.(a.\:,Da,"(O)e")

+CIE“[DCI“(1")'2+ x,¥,)+ Da,"(0)x,y,]

(3.3.10)
The solution of Eq. (3.3.8) is,

xq bt = . T i} i P

(yl(r.t‘r)) - Red (e zinemezm) @310

Here the dominant eigenvalue is A; =0, while the eigenmodes corresponding to all

other eigenvalues decay exponentially with ¢. Eq. (3.3.11) therefore reduces to,

(x‘(r’m)) S (DE(r)+ (e.d.t) (3.3.12)
= ¢, (T)Z. (r)+(e.d. 3.
v, (r.t,t) fe e

where (e.d.t.) denotes exponentially decaying terms.

The coefficients ¢, _(0) can be obtained using Egs. (3.3.1), (3.3.2),
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au [ Re(ri0)
<:;|( r 0)))
cn(0) = T s (3.3.13)

(l-ax,M3?)<Z:|Z2>

Here we have made use of the fact that if an orthogonal set = (r) is defined in F, then

for any arbitrary function f(r) belonging to F we have an expansion,

F(r)y = Zl(ﬁ;z;(r)ﬁa,:s;(r)) (3.3.14)
where,
R W (3.3.15)

(l-ax M9

In Eq. (3.3.13) Z;(r) is the eigen vector of the adjoint operator L(y) of L(y)
sinnur
E(r) = (N:Sinrmr) (3.3.16)
Solving the corresponding eigenvalue problem,
Ny = —ax,M; {3.3. 773

In this derivation we have made use of the linear operator property that if the eigenvalues
A, of a given linear operator are complex, then the eigenvector M, = M ", where * denotes
complex conjugation.

x(r)

such that
y(r) )

If F is the space of analytic functions u(r)= (

u(0) = u(l) = O, then, the inner product is defined

as,
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1
<ulu> = f{x'(r)E(r}+y'(r)§(r)}dr (3.3.18)
]

This gives,
<21%> = S(l-ax,MAMDY, ,
<ELIEL> = . (3:3:19)
2
and,
CEES = O (3.3.20)
Making use of Eq. (3.3.14) - (3.3.20) in evaluating (3.3.13), we obtain,
(3.3.21)

1
c.(0) = 2[{s;nnnr(hg(r,O)—ax,Mn'gi(r.O))dr}
0

Thus, constants c , are directly expressed in terms of the initial condition (3.3.1). Using

the definition of Fredholm alternative the coefficient c;_(T) can be obtained from the €?

equation in the set of Egs. (3.3.8-3.3.10). It is convenient to introduce the following average

which is useful when we take the limit ¢ = «

T
<<EZI | f>> = lim;—_f‘ii; | £>dt (3.3.22)
€ Tom €
4]

where f is some arbitrary function in this equation. All products of Z;_with e.d.t. then

vanish according to this definition.

Applying the average introduced in Eq. (3.3.22) to Eq. (3.3.21) we obtain,
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(v

T

1 -
f{sinzncﬂr{~oal‘(0)ac"; (1 - ax,M; *)+Da, “(0Ye**c; (0)(-(1 +crx,M;‘)Z]}
[

vc: 2sin’n nr(ae™Da, )(-M; - ax,M; *}ydr=0 (3.3.23)

Ae

Note that !
fsin“ncnrdr= (4/3n.1)

o]

when n.is odd

when n.is even

Da, ’(O)C-ij'%?( 1-ax,M;?) -Da, (0)ec; (1) {-(1+ ax,M; )%

+(4/3n,n)c; ‘ae**Da, (-M; - ax,M;’) (3.3.24)

We obtain the value of M;_from Eq. (3.2.21) and the fact that at the critical point, the

eigenvalue is real and zero.

o 2ax Ll)a e“{ﬂ[a"‘sDaleﬂ‘(l*Daz)]+(l+Dale°‘°)13.3,25)
s 1

n o= ax,M, (3.3.26)

From Eq. (3.3.9) and Eq. (3.3.24) - (3.3.26) we obtain,

O L' L P Da,"(0) 4 -
5Da, " (0)——(1-m) i T

{Z[n(ax,Da,e“e—(l+Da2))+(l +Da,e*®)]-2Da,e**(1 +o:x,n)}
X D ab
ae

i B e 1 07 y
+ ¢ %<2l z=N(y.u > (3327
=|{2aez (y )1_0 ( )

where,
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<=

1 32 " ae®Da . [n(ax.Da,e**-(1+Da,))+(l+Da,e*®)-2ax,nDa,e]
=—N(y.u > -
2¢? A¥ail) s 2ax.Dale“2n,r(
whenn_ is odd
whenn_ is even

(3.3.28)

2
When n. is odd and<3,’,‘ I[;—;—ZN(v.u)] 0> # 0, then we have,

€=

dec, (1) cx (T) | ,
— = v|1l-— ¢, (1) (3.3.29a)
dt cn=(m) €
where,
l1-n(l+D
M (3.3.29b)
Da,(1-n)
C fo) = 32008y (0% iy 1-n(1+Da.) —£3-3-30)

4 Da,[1+Da,e**(l-ax,n)-n(l+Day)]
Integrating Eq. (3.3.29a) we obtain,

ety - ¢n (0)cp (@)™ (@.3.31)
. cr(®)=cn (0)(1-e") o

From Egs. (3.3.11) and (3.3.31) and after substituting for, AM; from Eq. (3.3.25), we

obtain to first order in €.
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-xy(Da , - Da )t
e(x) = ec; (w)c, (0)exp| . . =
¥ £ ‘ Ca (®)=Co (0)| 1 —exp[-v(Da, - Da,)t] M- sinn nr

B x;=¢ 1 . i - At 1 @ 2
+ec, (0)e M;, sinn_nr +eRe ‘c,,(O)e M- sinnnr+0(€°)

LT n

(3:3.32)

if the trivial solution is to be asymptotically stable for Da, > Da,.. To have such a

case ¢, (T)=0 for t- « Thisis obtained by imposing a condition,

=n,

vt = v(Da,-Da, ) < O at L=, (3.3.33)

It follows from above that,

1-n(l1+Da,)
- - % 2P 3.3.34
Da,(1-mn) ( )

Since 1 > 1, we have, n(l+Da,) < 1.

Eq. (3.3.34) can also be stated as follows :

oLy, -Da, (0)e*® -ax,Da, (0)e®
(ve) _ 1 (0) : 1 ( )aa (3.3.35a)
o€ Da,’(0)e*® ax,Da, (0)e
Then, using Eq. (3.3.5), it can be shown that,
oL =
<%; I[ (Y‘)] Py = G0N (3.3.35b)
€ o€ . 2
Hence, equivalently Eq. (3.3.34) can be stated as,
oL
<=z |[ (Y‘)} . > < 0. (3.3.36)
‘ o€ e

In Eq. (3.3.35b) and (3.3.36) we have on the left hand side, an inner product between

. . aL(v) N
and the vector obtained by the operation of ——].., over =, .
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For the sake of simplicity, we choose Da,"(0)=lin Eq. (3.3.4). This gives,
Da,-Da,, = e+0(e?) (3.3.372a)
To first order in €, we then have the solutions x and y as,

x = ¢, (t)(Da,-Da,)sinn nr

el
R

c..(TIM; (Da,-Da,)sinn.nr (3.3:37b)

If ¢, (0) and c; (=) have the same sign, with Da, < Da,., then as t - =, the

following asymptotic state will be reached.

< 1
(;E:g) N (xe;) + C;c(“’)(fu;r)(DaH_Dal)sm”c“r+O{(Da|c—Da,)2]

(3:3:38)
In more explicit terms, this becomes,
(x(r)] ~ [XJ
y(r) )
{3nanal'(0)x,x 1-n(1+Da,) }
+
4 Da,[1+Da,e*®(1-ax,n)-n(l+Da,)]

1
x(M‘ )(Dalc—Da,)sinncnr+O[(Da1c—Da,)2] (3.3.39)

€

The derivation assumes that the signs of ¢, (0)andc (=) are similar. In the instance the

signs of these differ, the denominator in Eq. (3.3.31) vanishes for a time interval of the order
of[v(Da,.- Da,)] . The solution after this time goes out of the € region. Also, when Da

is slightly larger than Da,. we would obtain the same equation for x and y; however, the
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solution is now unstable and the neighboring concentration profiles diverge with time. The
initial perturbation for this case with the signs of c;_(0) and c; () different, will decay and

the solution will culminate into the trivial asymptotically stable point.

The calculation of c; () for the case when n. is even requires us to consider the next

higher order Eq. (3.3.10). After some algebraic manipulations we then have,

[a X, -ae*®Da , M, 5y
——L(yc)} = . len “sin®n.nr+(e.d.t. 3.3.40)
ot Y2 ae“Dachn‘ . £ > ¢

Knowing that,
LNaEr) = B lh) (3.3.41)
the particular solution to Eq. (3.3.40) is written as,

uf® = ) Bi(TIZI(r) (3.3.42)
the Egs. (3.3.40) and (3.3.41) give,
Y Bi(ONLEL(r) = (_11)M;‘ae"eDal:c;‘zsinzncnr+(e.d.£.)(3.3.43)

nen,.

Using Eq. (3.3.15), we get the result,

2
e for odd n
Bi(t) = {pncn,( ) } (3.3.44)
0 for even n
where,
. 8n? Da, (1 +ax,M;){n[ax,Da,e® -(1+Da,)]+(1+Da,e*)}
3 : ¢ (3.3.45)
n(n®-4n2)nb, 2x,Da, (1 -ax,M;

The general solution of Eq. (3.3.40) then reduces to,
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u; = b; (DI, (r)+c2(1)Qr)+(e.d.t.) (3.3.46)

where,
Q) = (w(r)) = ) PUENR) (3.3.47)
£(r) & P o

Substituting Egs. (3.3.46) and (3.3.47) into Eq. (3.3.10) we obtain,
2 1 .. ou,
a_z_L(Y“) Uz = _EDal (O)g.?‘*[-u(Yc)ul"Nut(Yc-ulruz) (3.3.48)

where,

. 12ty _ [l -ax,\Da, "(0)
Ly = [§ el = 1 ————0(8.3.492a)

ax, 2

and

: =il a
Nu(Ye .ty up) = ( 1 )ae *Da, (x,y.*x;¥,) (3.3.49h)

Multiplying Eq. (3.3.48) with =7 (r) and applying Fredholm alternative with Eq.(3.3.22),

the result is,

Da, " (0)dc,, Da, "(0)
- v

. -3
= = ca ~Bve (3.3.50)
where,
l-n(l+Da,)
Sl 3.3.91) -
Da,(1-m) ¢ )
and,
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-Da, {ax,§(r)[Da,e®(ax,n-1)-n(1+Da,)+1])
2(1-n(1+Daz))

,~Dai{w(r)[1+Da,e*-n[(l+Da,)+ax,Da,e™]]}

2(1-n(1+Daz)) R
In the limit T = « one notices that,
c, () = =[Da, "(0)/2p]"? (3.3.53)
Therefore Eq. (3.3.50) using Eq. (3.3.53) becomes,
dc, cai(t)
cir= = vc;c{l-—cé(m)} (3.3.54)
Integrating Eq. (3.3.54) we obtain,
cn (1) = les (@) lch (0)e  [ea2(0)(e™ = 1)+ c;2(=)] """ (3.3.55)

It is interesting to note that depending on the positive or negative sign of ¢, (0), the

solution ¢, (T) goesto | c,(®) | or - |c,(=)|.The dissipative structure at t = « therefore
depends only on the sign of the initial conditions. The asymptotic expansion of the solution in

this case gives,

x(ritye)y [ x, : 1 ) ’
() Jecommsor

1 . - f 1
+ec;c(0)(M‘ )ek"'sinncnr+e Z c;ek"'(M_)sin nnr (3.3.56)

n nen, n

As t >
= 1
(;E;;]E(?)*[MI {sDalc)x(M;)Sim‘“”O“ Da,-Da,l) (3.3.57)
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Conclusively, we can say in the end that, when Da, > Da,., then the trivial solution
is asymptotically stable, and vice-versa in the case of odd ..

3.4 Stability Analysis of Limit Cycle

We shall begin with the neutral stability curve given by Eq. (3.2.23),
Da,e®(ax,-1)-(Da,+2) = n?D(1+n) (3.4.1)
and note that the critical eigenvalue from Eq. (3.2.20) is,
Ay = =i{(Da,e*®) ax,-(n2Dn+1)?})"" (3.4.2)
From Eq. (3.2.21), we have,

. -[2iw+(1+Da,e**)+n?*D
e = : : B) i (3.4.3)
ax,Da,e"®

We assume the solution to Eq. (3.3.8) with n, = 1, as,

w,(r.t,t) = Re{ci(r)e''Zi(r)+ci(t)e”™Z((r)}+(e.d.t) (3.4.4)

The above equation contains two coefficients, which are unknown. It would be appropriate

to define a new coefficient as follows,
| e
cy(t) = E[CI(T)*’C] (t)] (3.4.5)
In addition, we have, M7 =M  and e I (r)=[e"'Z7(r)] we can then write,

u,(r,t,t) = ¢, (t)e''z(r)+c.c.+(e.d.t.) (3.4.6)
where c.c. stands for complex conjugate

The initial condition for ¢, (T) just as in Eq. (3.3.21) is given by,
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1
2 f {he(r,0)-ax,Mig.(r,0))sinnrdr

0

c,(0) =
1(0) (1-ax,M;?

(3.4.7)

Substitution of Eq. (3.4.4) into Eq. (3.3.9) gives,
|:a%+ (1+ Dale“)—nDA]xz—astalce“ayz

{(-Da,"(0)sinnr(c, e +c.c.)+(c,e* +c.c.)sinnr[-Da, (0)e*’]

+(c, e M]+c.c.)sinnr(-ax,Da, (0)e**)+sin’nr[(M;+M;)]|c,|?

+cie®™Mi+c.c.](-ae** Da, )} + (e.d.t)
(3.4.8)

and,

ot

2
[——{a_\',Da,cle“—( 1 +Daz)]—DA]y2+ Da,e"x, =
{-Da,"(0)sinnr(c,"Mje " +c.c.)+(c,e' +c.c.)sinnr(Da, (0)e**)

(c,e''M+c.c.)sinnr(ax,Da, (0)e**)

+sin®nr[(M7+M] ) lc, 12+cie® ™M +c.c.](ae** Da, )} +(e.d.t.)
(3.4.9)

Now, defining an average,

T
. g 1 A iwt
K[Z1f> = 1Tlm77f<;,1f>e dt (3.4.10)
0

and using Fredholm alternative one sees that Da, "(0) = 0, if ¢, is nonvanishing. Now,

for the eigenvalue problem for the operator L(u>) we have,
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Y Bi(TAENT)
( @e®*Da, [(Mi+M)]c, |2+c2e?™ Mi+c.c.]
—ae®Da, [(Mi+Mi)lc, 1P+cie® ' Mi+c.c.]

)sinznr+(e.d.t.(‘,(3.4.1 1)

Applying Eq. (3.3.15) we obtain,

8- <E If(r)>
n = - —a
<zNlEN>
sinnr ae™Da, [(M;+M )¢, |2+cie® ' M}+c.c.]
2< i g . i 5 . sin’nr>
—ax,M; sinnnr —ae®Da, [(M;+ M) |c, |?+cie®™' M +c.c.]

(l-ax,M}®)

(3.4.12)
Integration of the system in Eq. (34.8) and (349) and the relation

1
[sinanrsin®mnrdr=-4m?/n?(n?-4m?) yields,
0

U, (r.t,t) = b,(t)e'Ei(r)+c.c.+ci(r)e®*'n(r)+c.c.

+ e, (D)2 [Q(r)+c.c.lyo* (e.d.t.) (3:4.13)

where,

giERy = (‘”(”) - Y R M rax MIENR)  (3.4.14)

E(r) a3 2iw-Ah
and,
o oZ2T8 0 -k, M2 (3.4.15)
Pa n(n?-4) S 2 o .
(Ao = —fﬁ{n't:(1+ax,M;>}3;(r> (3.4.16)
n=3 n
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To obtainc, (t), we substitute for «, and u, from Eq. (3.4.6) and (3.4.13) respectively

into Eq. (3.3.10),with Da, “(0) = 0. Multiplication of the result with = | ( r )and using the identity

in Eq. (3.4.10) as before, yields following differential equation,

Da,”"(0)oc} Da,”"(0)

= = 2 ve,+le, |Peqx (3.4.17)
where,
-e®(l+ax,M;")?
= — (3.4.18)
(1-ax,Mi™%)
and,

x =
'

—2fssn’nrdrue"Da“[E,'(r)‘[E(r]-r.c.]_,o- Miw'(r)= M [w(r)+c.c.luo]x{l+ax,M;")

°

(l-ax,Mi"®)

(3.4.19)

Writing, ¢,(t)=c(t)e ™ where c(t)and B(T)are yet to be specified, and then

separating the real and imaginary parts in Eq. (3.4.17) gives us,

%_2&% 2 Daél”cRev+c3Rex (3.4.20a)
wg = Mlmwczlmx (3.4.20Db)

From Eq. (3.4.20a), as T - «®we can write,
c(w) = [FMEZ—:}W (3.4.21)

Using Eq. (3.4.21), Eq. (3.4.20b) can be rewritten as,
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dc gF
a = REV[]. C(w)2:|c (3422)
The solution to this equation is,

c(0)c(®)ef"
= 3.4.23
o {C(W)z"c(o)z[e“’"‘1]}”2 | )

The solution to unknown phase can be written using Egs. (3.4.20b) and (3.4.23),
B(T) = B(O)+T]mv+w—j‘cz(s)d5 (3.4.24)
Da,""(0)J o

which for large values of time becomes,

{ Imeev}
B(t) = t{Ilmv-—Y

v (3.4.25)
Finally, to first order in €, the following result is obtained

. 2c(0)c(=)exp[-(Da, .- Da,)Revt]
{c(®)2+c(0)*{exp[-2(Da,.- Da,)Revt]-1}}'"?

u(r.,t,e) =

1
x| 2[1+Da,e*®+n%Dn] |xcos[wt-BR(Da,-Da,)t]

ax,Da;e**

+eRe Y ci(0)xe ™ z5(r)+0(e?) (3.4.26)

n=2
Eq. (3.4.26) reduces to following form as ¢ = =

1

x(r.t) X Rev 12 . |
(?(F.!))E( 0 )*2[R9K(Da'°_Da‘)] _2[1+Da,e**+n’Dn] |xsinnr

ax,Da,e®®

ImxRev

X + - Imwv-
cos[m (Da,, Dal)( v PP

)]t*-O(lDal—Dalcl) (3.4.27)
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3.5 Results and Discussion

The present study employs the two-time scale method to obtain the limit cycle and global
nonuniform solutions for an exponentially autocatalyzed reaction-diffusion system. Sufficient
condition for the steady uniform distribution of reactants in the presence of diffusion is
established and stability of such states are examined. Global nonuniform solutions depending
on whether n., the critical wave number, is even or odd, are then constructed and given
respectively by Eqs. (3.3.32) and (3.3.56). Conditions under which the dissipative structures are
asymptotically stable or when the inhomogeneous steady state solutions lose their stability are
also identified. In a similar fashion Eq. (3.4.26) describe the limit cycle solution, the stability
of which depends on whether Da, exceeds Da,. or not. In addition, we observe that, for

sufficiently large values of diffusion parameters the limit cycle may not exist.

The important feature of the method of multiple time scales is that in addition to allowing
us to construct the nonuniform and limit cycle solutions, it affords information on their stability.
The detailed account of the evolution of initial disturbances upon the trivial steady state of the

system is thus possible.
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CHAPTER IV

ANALYSIS OF A REACTION-DIFFUSION SYSTEM

NEAR HOPF BIFURCATION POINT



The formation of complex spatio-temporal structures in
reaction-diffusion systems, can be attributed to the existence of many
degrees of freedom simultaneously. Studies reveal that near the critical
points, like the Hopf bifurcation point, the system possesses only a few
variables that vary on slow time scales while the others varying on fast
time scales get eliminated in a projected description. Small amplitude
oscillations near the Hopf bifurcation point can then be described in
terms of simple evolution equation which acquires a universal form,
known as Ginzburg-Landau equation. In the present chapter we aim
at deducing this equation form and showing that it is a special case of

the more general Schrodinger’s equation.
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4.1 Introduction

In the last chapter we saw the usefulness of the multi-time scale theory and the redutive
perturbation techniques in obtaining the limit cycle and global nonuniform steady
patterns in a reaction-diffusion system. In the present chapter we demonstrate yet another
application of these, in deducing the behavior near the Hopf bifurcation point. The Hopf
bifurcation point is a point at which the original steady state turns unstable and starts
performing periodic motion. For various mathematical aspects of Hopf bifurcation one may
refer to the book by Marsden and McCracken (1976). Closer to the onset of the periodic

behavior all systems, despite their grossly manifested behavior exhibit similar manners.

Reaction-diffusion equations have often been likened to thermodynamic cooperative
fields, which are composed of a large number of subfields such as atoms, molecules and
magnetic spins. In this context we can look upon reaction-diffusion systems as being
composed of a number of local reacting units, which are coupled diffusionally. The local
systems are defined as those in which there are no diffusional constraints. It is important to
note that in the reaction-diffusion system, each sub-unit can operate in far-from equilibrium
conditions, and thus is capable of showing a rich variety of features. In the study of such
systems which are composed of a large number of interacting units, we expect to find an
equally large number of degrees of freedom coming into play. This is where the slaving
principle comes to our rescue. Basically,the slaving priciple claims the possibilty of
eliminating a large number of rapidly decaying degrees of freedom. This principle becomes
all the more important near the bifurcation points where the system experiences a qualitative
change in dynamical behavior. The usefulness of the slaving principle has been rightly

emphasized and amply demonstrated by Haken (1983a,b, 1989).

To clarify some basic ideas, let us consider a set of first order differential equations,

depicting a reaction scheme. Using the vector notation,

aXx
—_—=F X.
at (Xin)

The steady state solution to such a sytem5f§ an exponential function given as,



x, () i o el
=b, . exp(A, t)+b, . lexp(At)+....b, ’ exp(A,t)
Xn(f) Cl C2 Cn

where (b,...b,) are known as the eigenmodes. Close to the instability point, certain

eigenmodes are stable and grow in the linear stability analysis, while the others tend to
become unstable and decay. The stable modes are known as the order parameters of the
system, and the unstable ones as slaved ones. The slaved parametes can be eliminated and
explicitly expressed in terms of the order parameters. In a geometrical sense, the decay of
all but the stable eigenmodes means that, according to linear approximation, any trajectory
starting near the critical point, is led to a few dimensional surface in the phase space. This
surface, known as the center manifold, contains the steady state point, and is specified by
the stable eigenmodes. Note that at points other than the critical ones, the trajectories are
led to an n dimensional space, spanned by all the eigenvectors. In case of a Hopf bifurcation

point, the center manifold is two dimensional.

Thus small amplitude oscillations near the Hopf bifurcation point, allow us to describe
the behavior of the system in terms of a simple evolution equation, which acquires a universal
form. This form known as the Ginzburg-Landau equation (GL equation), is a well-studied
equation in physics and mathematics literature (Newell, 1988, Doering et. al., 1988,
Ghidaglia and Heron, 1987, Stuart and Diprima, 1978, Hocking and Stewartson, 1972,
Kramer and Zimmerman, 1985, Holmes, 1986 Landman, 1987 and Doelman 1989).

In the present chapter we deduce the GL equation for the exponential autocatalysis
model. The mathematical tools employed in the derivation of the GL equation are the
reductive perturbation methods (Tanuiti, 1968, Newell and Whitehead, 1969, Kuramoto,

1984).
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4.2 Derivation of the Ginzburg Landau Equation

For a general homogeneous equation such as,

ax
5 " F(X,p) (4.2.1)

where X is a vector representing concentration of chemical species and | is some

control paramter, we shall begin by expressing Eq.(4.2.1) in a deviational form u=X-X,,

where X, is a steady state solution of Eq.(4.2.1), and expanding it in a Taylor series as,

du

T = Lu + Muu + Nuuu =+ ... (4.2.2)
where,
oF (X,)
Lijj = ‘To“— (4.2.3a)
M = L F i 4.2.3b
(Muu), = l.k2!a)(("‘;‘x%t.l,u,i (4.2.3b)
1 3°Fi(X,)
N = R L i L 4.2,
(Nuuu), ,-;.3!3XOIBX,,16X‘,,U"U*U! (4.2.3¢)

At criticality condition, when a pair of eigenvalue crosses the imaginary axis, Hopf

bifurcation occurs.

Referring to Eq. 2, near criticality, the operators and variables involved can be
expanded using the Poincére-Linstédt series, in powers of p where p is defined as

(1n-u.)/ 1. Howeveritis more convenient to define a small parameter € ase 2y =11, where

X =SgniL.
L = L, + xe’L, + €'L, + ... (4.2.4a)
A= ANy + XEIN, + €N, + ... (4.2.4b)
u = eu, + €Zu, + ... (4.2.4¢c)
M = M, + xe’M, + e*M, + ... (4.2.4d)

N = N, + xe?N, + €'N, + ... (4.2.4e)



Notice that the eigenvalues are also expanded in power series and the A, in general
are complex, and can be represented as, A, =0, +w, .
We shall now define the left and right eigenvectors of L, corresponding to the

eigenvalue Ay(==iwy), as

Right eigenvectorL,U=»A,U Left eigenvector U'Ly=A,U" (4.2.5a)

LoU=2,U U'Ly=A,U (4.2.5b)

The right and left eigenvectors Uand U " satisfy a relation, U'U=U"U=0,
and are normalized as, U'U=U U= 1.

Note that the eigenvalues Ao, A are given as,
Ao=iwg=U'LoU, A,=0,+iw,=U"L,U.

The value of w, is given as

{( 1 +Daz)2—czx,}“2
W=

(ax,-1)

Introducing scaling for the time via,

T = €’t, (4.2.6a)
d P 3D

& s B g g3 4.2.6b
dt ot - € a7 ( )

and substituting Eq. (4.2.6b) into Eq. (4.2.2) gives,
2 )
(a—tﬂzzﬁ- Lo-€?xL,- ) (eu,+€%u,+...)
= e?Myu,u,+€*(2Mgu,u,+Nou,u,u,)+0(e*) (4.2.7)

Equating coefficients of equal powers of € in Eq. (4.2.7), we obtain,
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2
(a_z - Lo) u, = B, v = 1,2,... (4.2.8)

The first few B are,

B, = 0, (4.2.9a)

B, = Myu,u,, (4.2.9b)
0

B, = —(a—T——xLl)ul+2M°u1u2+N°u]u,ul (4.2.9¢)

For the system of linear homogeneous Egs. (4.2.8) we can write a solvability condition,

2n/w,

f U'.B,e “'dt = 0 (4.2.10)

0

Since, u, are 2 1t -periodic functions of w ¢, the solvability condition in Eq. (4.2.10)

finally reduces to,
u".B" ) = 0 (4.2.11)

Then, for v =1, we have a neutral solution as,

u,(t.T) = W(DUe™ + c.c. (4.2.12)

where c.c. stands for complex conjugate and W () is some complex amplitude yet
to be specified.
Using the solvability condition and neutral solution, for v =2, we obtain an expression

fOr u-,

u, = V‘w292lw,f+v-w29—2:w,1+VG1\\.|2+VGUI (4'213)

V. = V. = —(Lo-2iw,) 'M,UU (4.2.14a)

V, = -2L;'M,UU 62 (4.2.14b)



The constant v, cannot be determined at this stage, but is not required in the present

analysis. Now writing the solvability condition for v =3, and knowing u., we obtain
following form,

oW

= = XA W-glW[*W (4.2.19)

where the complex variable g is given as,
g = g'+ig’”” = -2U'M,UV4-2U'M,UV,-3U N,UUU (4.2.16)

Equation (4.2.15) is known as Stuart Landau equation and effectively describes a

nonlinear oscillator.

Defining the amplitude Rand the phase © via W =Rexp(i©),we obtainanon-trivial

solution,

R = R ® = wt+const. (4.2.17a)

s

R, = Jo,/1g"1. w = x(w,-g""R?) (4.2.17b)

which appears only in the supercritical region (soft excitation) ( x > O ) for positive g~
and the subcritical region (hard excitation) for negative g *. The bifurcating solution shows

a perfectly smooth circular motion in the complex W plane. Hence, in the end, one can write

an expression for the original vector X approximately as,

X = = Xy+€u, = Xfe{UR,exp[i(mN52(:0)1]41.(:.} (4.2.18)

which describes a finite amplitude elliptic orbital motion in the critical eigenplane.

Now extending the above analysis for the reaction-diffusion system, we have an

additional term accounting for the diffusion as,

Jdu

il (L+DY%)u + Muu + Nuuu + ... (4.2.19)
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Allowing for slowly varying space coordinate apart from two time scales t and T

characterized by the slowness parameter (€ = | p |?), the extra space dependence of € is
embedded in a scaled coordinate defined by, s = er. Also, transforming the Laplacian as,

V = €V, we have,

2 2
(E-reza—T--ezDVf—Lo—szLlﬂ...) oL S o PRECR,

= e2Mgu,u,+€’(2Myu,u,+Nou,u,u,)+0(e*) (4.2.20)

With the additional term for the transformed Laplacian and s dependence, the

remaining conditions can be rewritten, and we finally obtain the reduced equation as,

oW
oT

= A, W+dViW-g|W[|*W (4.2.21)
where d is generally a complex number defined as,

d = d + id”” = U'DU (4.2.22)

Further using the transformation,

(t,s,W) = (o7't.Jd"/o,5.J0,71g" IW) (4.2.23)

and rewriting s and t as r and ¢, Eq. (4.2.21) reduces to a more convenient form,

oW
ot

= (l+icg)W+(l+ic,)V?W-(l+ic,)IWI*W (4.2.24)
where,

Cg = w,/dg,, c, = d"/d’, c, = g '/g° (4.2.25)
and the bifurcation has been assumed to be supercritical. Subsequently, the

transformation W = Wexp(icgt) eliminates ¢, and reduces Eq. (4.2.24) to the form,

oW

T = W+ (l+ic )V3W=(1+ic,) | WI*W (4.2.26)
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This form can be identified as a special case of the more general Schrodinger’s
equation. In the next section we shall apply this technique to the case of reaction-diffusion

scheme representing exponential autocatalysis.

4.3 GL equation for exponential autocatalysis model
Following the general procedure outlined in section 4.2, we obtain the following
specific results for a case of exponential autocatalysis. Beginning with Egs. (4.2.3) and (4.2.4)

the operators L, and L, can be identified as,

1 -(ax,+Da,+1) -ax,(Da,+2)
Lo = (ax,-1) [ Da,+2 ax,+Da,+1 (1)
o e L0 [ 3.1b
b ax,- 1 1 ax, (4.3.1b)
Further defining A and B as,
-(ax;+Da,+1) ax,-(1+Da,)?
A = ; B = 3.
ax,(Da,+2) weax,(Daz+2) (58
we obtain the eigenvectors as solutions to Eqgs. (4.2.5a) and (4.2.5b),
u = ( : ) U = ( : ) (4.3.3a)
(A + iB) (A - iB) o
U = = (B + id, -0) a1 (B - iA, iX4.3.3b)
2B ‘ 28 ' o

The eigenvalue A, defined as, A, =0, +iw , gives us,

- o2 (s 4.3.4
o 2B(ax,-1) [B(Y=ox,)] (4.3.4a)
= —'———-(Daz+2) 2, 4%+ + +
By = oy IS T JRAleR 107 L] (4.3.4b)

Also, the parameter d defined in Eq. (4.2.22) is given by,

) 1 » A
d* = 5 (D*+Dy) d” = = (D,=Dy) (4.3.5)
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The vectors M and N are given as :

_ a(Da,+2) (o -1 - 1 o)
Mo = Stax,-1) (6 1 1 @ (o)
and N = 0,
while the vectors V, and V_, given by Eq. (4.2.14a), are,
— a(Da,+2)(A+iB ax,+Da,+1)-2iw,-ax,(Da,+2
A s DT X 2+ 1) (Ddgt (4.3.72)
1 ~(Da,+2)+(ax,+Da,+1)+2iw,
where
n = {ax,(Da,+2)*-[(ax,+Da,+1)*+4w?]} (4.3.7b)
The vector V, given in Eq. (4.2.14b) becomes,
- 2Aa(Da,+?2) ((ax,+Da2+l)—ax,(Da2+2)) 435
* ((ax,-1)[(1+Daz)?-ax,}\ -(Da,+2)+(ax,+Da,+1) L
The term g in Eq. (4.2.16), can now be written as,
’ [a(Daz*2)k (BQ,-Q,(A+1)) (4.3.9
- 2.7a
& 2B(ax,-1)(02-4Q,w?2) e )
-t [ Dt +2)]° (Q,(A+1)+BQ,) (4.3.9b
= + - 3.
. 2B(ax,-1)(0%2-4Q,w?2)" 2 3 )
where,
Q, = (ax,-1)[(1+Da,)’-ax,] (4.3.10a)
Q, = (Q,-4w?)(24(ax,-1)-2A%(ax,-1)(1+Da,))
+Q,[A((ax,-1)- A(ax,- 1)?(1+Da,)-2Bw,) - w,
+B(ax,-1)*(1+Da,)-2Aw,)] (4.3.10b)

Q; = -(Q,-4wd)(-24B(1-ax,)*(1+Da,))

+Q,[B((ax,-1)-A(ax,~-1)?(1+Da,)-2Bw,)
66
+A(2wy+B(ax,-1)3(1+Da,)-2Aw,)] (4.3.10c)



ax (B?+A?)+ A(ax,+1)+1

c, = YA (4.3.11a)

_ B(y*-1)
¢, P ITET (4.3.11b)

oy = LEnol) e ds (4.3.11c)
# BQ,-Q3(A+1) -

where,

vD,/D; (4.3.12)

v

4.4 Results and Discussion

The constants co,c, and c, as obtained above define the Ginzburg-Landau Eq.

(4.2.24) for the exponentially autocatalysed reaction-diffusion system. Evaluation of these
constants and therefore that of the Ginzburg-Landau equation is central to the any further
development such as obtaining the plane waves, rotating waves, turbulence and entrainment
phenomena in discrete oscillators. The GL equation is capable of showing a variety of
solutions, and is shown to be of great practical importance in the self organization
phenomena. Having derived the GL equation for the exponential autocatalysis model (or
for any other system of interest), the conditions for the occurrence of the various types of
solutions, to the GL equation, in the realistic parameter regimes can also be easily derived.
However, we will not elaborate upon this point, here. The central point of importance of
the work presented in this chapter is the derivation of the GL equation and the evaluation

of the constants c,,c, and c,.
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CHAPTER V

ANALYSIS OF SUBSTRATE-INHIBITION KINETIC MODEL

WITH THE HELP OF GINZBURG LANDAU EQUATION



A simple  biochemically feasible mechanism which relies on
substrate-inhibition kinetics, also known as Seelig’s is analysed near
the points of instability, with the help of the GL equation. To this end
the instability conditions for two well known types of instabilities are
derived. Further we derive the GL equation for this model and obtain
the numerical solutions to this equation in the realistic parameter

regimes.
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5.1 Introduction

The spontaneous formation of well organized structures is a commonly observed
phenomenon in all fields of science. In biology, origin of information, formation of patterns
during the development of embryo, well developed coat marks in mammals, regeneration of
organs, patterning during cellular aggregation are some well studied problems (Melton 1991,
Davidenko et al, 1991, Hanyu and Matsumoto, 1991, Shapiro and Trubatch, 1991, Siegert and
Weijer, 1991, Steinbock et al, 1991 and Lechleiter, 1991). Following Turing’s classical work,
reaction-diffusion mechanisms have been widély claimed to be active in pattern generation
(Meinhardt, 1982). A simple oscillatory mechanism which relies on substrate-inhibition
kinetics was proposed by Seelig (1976a,b). This model is claimed to be chemically more
feasible and realistic than the Brusselator and the Oregonator models. Murray and Mimura
(1978) have studied this model in presence of diffusion, with a view to analyze the diffusional
instabilities. This model has also been studied in the context of transmission of chemical
signals from one part of an organism to another (Britton and Murray, 1979). Mimura and
Murray pointed out that beyond the diffusional instability point, the mode of the finite
amplitude spatial structure is equal to the mode of the linearly growing mode in the stability
analysis. This shows that near the instability points the system behavior can be described in
terms of the linearly growing modes, or in other words the order parameters. Thus we can
analyze the present model with the help of the GL equation. In the present chapter we study
two types of instabilities that can arise in the system and derive the conditions for their
occurrence. Further we derive the GL equation for this model with a view to study the evolution
of the system near these instability points and obtain the numerical solutions to this equation
in the realistic parameter regimes.
5.2 The Model

The overall reaction described by X +Y =P+ Qis effected by an enzyme M. The

substrates X and Y are supplied to the cell by constant fluxes J, and J . respectively and
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X is constantly removed by a first order reaction efflux. The enzyme substrate complex M X
further combines with ¥ to give the final products. At high concentrations the substrate X

inhibits the enzyme by forming an inert complex M X . The governing equations for this
reaction mechanism are given as,

%wl—kox—kcx,)f) (5.2.1)
£Z=J2-R(X'Y) (5.2.2)
dt
where,
RS i (koy Mo .(k X7K_,).(kaY 7k-y))
' {1+ (k1 X7k )+ (kaY 7koy)+ (kakoy Tkok ). (k. X7k2))?)
After appropriate non dimensionalization Eq. (5.2.1) and (5.2.2) can be written as
dx
1 X Br(xy)= £ (5.2.3)
dy .
df=fz-v.r(x.y)=fz (5.2.4)
where,
P M
ey l+x+y+kx?
The steady state solutions for this system are
_Y/1—BJ2 J2(l+x,+kx?)
x:——— ys= i
Y YXs—J2
After substituting for the value of x. in the expression for v, we further get,
s=jz{k\(22]?""lea:|+a4} (5.2.5)
Yo (vjii+az)
where,
a,=-fB/,

a;= y+2ka,
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a,=-(B+1)j;=a,-j, a,=(kai+vya,+y?)
In order to get realistic solutions for x, and ¥ s, we impose the condition, v/, + a,; >0 on
the parameter values.

Defining the deviations as u = x - x, yand v=1y -y, the deviation equations can be written

as,

du {(j,—x,)(u+u+ku2+2kux,)—[5(x,v+y,u+uu)}
—_=—y+

S.2.6
dt (I+xs+y,+kx?)+(u+v+ku?+2kux,) ( )
dv _ jz(u+v+ku?‘+2kux,)—y(x,u+y,u+uu) (5.2.7)
dt |\ (l+x,+y+kx2)+(u+v+ku®+2kux,) o
The reaction-diffusion equations corresponding to (5.2.3), and (5.2.4) are,

dx ’x . '
o Dy TS (BRY ] * Syt k) (528
at ar?
3y o’y B

*Do—S+is-(yxy/lvx+y+ikx?) (5.2.9)
ot or

where D,,and D, are the diffusivities of the species x and y respectively. The

corresponding deviation equations are,

ou azu_u+{(jl—x,)(u+u+ku2+2kux,)-f3(x,u+y,u+uu)}

5.2.10
ot Yor? (1+x,+y,+kx?)+(u+v+ku?+2kux,) ( )
P) 92 2(U+ v+ ku®+2kux,)-y(x,v+y,u+uy
—U=Dz—ug+ J2( : )~ ¥( 2y ) 5.2.11)
ot or (I+x,+y, +kx2)+(u+v+ku +2kux,)

The deviations are assumed to be proportional to e “** where q represents a wave
number, and A, the eigenvalue.

The Jacobian of the system can then be written as,

J_( l ) ~(1+x,+y, +kx?) =By, + (1+2kx,)(j,-x,) -Bx,+j, -x,
l+x,+y,+kx? =Y. & (b+x2kx,)j, SN+

(5.2.12)
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At this point we define the following terms for convenience

Fi= Y2(vji+as) E =¥ ]i+a3)
Vvt a) (kY3 R+ jivastay)
Eomir. P =(“asf?+aef?+a7f1*as)
’ Y2F4
Y+2k(yj1+a,)
Fy=
Y
where,
as=ky® a;=-y(a,(az+2kaz)+a,)
as=-(2ky’a,+v?a,) ag=-a,a,a,

we can now write Eq. (5.2.12) as

B, 1 B ...
j,Fy-RBF,-— =E +a,)
JaF,| ¥ 23 2" F Y(Yfl 2

J2F3-vF; -(vj,+ay)

(5.2.13)

We now analyze the stability of the steady state ( x,, v, ) by linearizing Eq. (5.2.10)

and (5.2.11) in u and v.

A2-NA(q)+B(g)=0 (5.2.14)
where,

AQ)={q*(D,+D;)-(Fs—F,)} (S.2.15a)
B(q)={q*D,D,-q*(D, Fs-D, F,+(Fs/F )} (5.2.156)

In the analysis that follows we chose j, as the control parameter, since it can be

externally controlled and we express the conditions for occurrence of instability in terms of
this parameter. Two types of instability, and the conditions for their occurrence have been
discussed by Kuramoto (1984). Type I instability is a kinetic instability, which occurs when
A(q.)=0 alongwith g .= 0. The subscript ‘c’ denotes the critical condition as usual. This

condition can be stated in terms of j,. as

74



Asile=asjie= @01y =0 (5.2.16)
where,

a,=a,-vy* a,=a,-2vy%a, a, =ag-y2al

The condition stated in Eq. (5.2.16) implies that for all j, > j,. the system evolves to an
oscillatory state.

The critical value j, = j,.’, for the occurrence of type I instability can be obtained
from the set of conditions B(g).)=0 and dB(q.)/dq.=0 in Eq. (5.2.14). We find that
this set of conditions gives type II instability condition as,

(DaF 4 )2+ (D \Fs.")?=2D,D,F4, =0 (5.2.17)
where,

Fe=(asji*aiji+anji+a)/(v2F,)

and,

a,,=va, a,=yv(a,a;+a,-2ka,a,) a,,=a,(2a,-a,a;)

This further leads to the statement of the type II instability condition as,
flclb(ngl)*’flc’s(ngz_ZDl Dzba)*'flc'4(D§b4+bes_2D1Dzbo)

+j1e (D36, + D3bg=2D  Dybg)+ j,."2(D3b o+ D2b,,-2D,D,b,,)

+flc'(D§b13+beu‘ZD:Dzbls)*'(ng15+be17'ZD|Dzb1a) =0 (5.2.18)
where,

b,=ai bo=a’i+2a.ag

b,=-2asa, by =6v°aj

by=v'a b12‘YZ(YZGH“EYGzala*agan)
b,=al-2asa, biz=2a,ag

bs=vy?® bH=4(yaz):i

be=v'(v?a,;+2a,as) bis=v’a(2va,+a,a,;)
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b;=2(asa;-asas) bs=as;
ba'4Y7az b]?'(Yaz)4

bo=v3(v?a,3+2va,a,,+a,as) bw"au(Yaz)z

Equation (5.2.4) denotes the diffusive instability condition , which is better known in
literature as the Turing instability condition. Beyond j,.", the system can show interesting
spatio-temporal patterns. Some interesting results obtained for the present model are
discussed in Section.5.5. The conditions for the two types of instabilities discussed above are
shown in Fig. 5.1 - 5.4 where j,.,and j,.” are mapped against /., for a fixed set of the
other parameters. In the regions where type I instability sets in before type I, the predominant
feature of the system is spatially uniform oscillations, which however, can become unstable
due to the diffusional effects, depending upon the magnitudes of D, and D, . This in turn
is reflected in the magnitudes of ¢, and c; of the GL equation. This point has been further

elaborated in Chapter VII.

The characteristic frequency of the system, w, is obtained from Eq. (5.2.14), noting
that at the onset of oscillations , A becomes purely imaginary and A =£iw,
s 5 £ 172
wO:{(a51?+a1515+a161|+al?) ’ }‘fY (5.2.19)

where, as=y(ka,+a;) a=v(a,az+ay) a,,=0a,a,
5.3 Derivation of GL equation for the substrate inhibition kinetic model

Following the procedure outlined in the previous chapter we shall now define the GL
equation for the present model. We define the parameterpas, L= (/- jic/j1e) ,and €as
€y = 1 Using these definitions in developing the perturbation series in powers of | , we

obtain the operators Lo and L, .
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oy "[3[02:|
Lo = F 5.3.1
’ ’ |:l03 ~ Yoz ( )
Ell _|3£12
= F . mi - -

L, 7]1;{ |:£13 -viy Fgl, (5.3.2)
where
F7=(1/YU)0)2 FI-(3a5j$l+2ﬂ'I§jI:+als)

[ ‘('ﬂsf?r."‘ﬂsflze“ﬂrfu"ﬂn)lll = (—3&1,]?‘* 2a.j,.+va;)

[oz'Y(Yzjfc*'Ian:"'(s) tlz'Y(zYzjlc"'t4)

L=l fTe* Lafia* Is) Lia=(lijic+ L)

and

L= kv, Ly=2kqy*j.o. ly=vjz(a,az-a,) l4=2ya, ls=aj

Note that according to Eq.(5.2.14) we have

Loy~ Vlp2=0 (5.3:3)

Defining M and N according to Eq. (4.2.3), we obtain

M°=1F9|:Bm°l Bmo, Bmg, Bmoa] (5.3.4)
2 YT, YMlga YMgz YMgg
where,
Fo=(— - Y‘:(Yszcl*; 54}'1:"'-:5) :
JieMu* JicMa* JicMa* ficMa* jicMs* jicMg+My)
Mo1=(2j2/ Y F ){2as i+ Mgjic+ msji .+ myg)
Mop = {k(¥?jlc+2va, ji.+ai)-v}/y
Mo3=2F,
and,
m,=a2 T ST I, O me=2ky(yaz+a,)
m,=2asa,s Me=20,,a,; Myp=0a30a,
my=als+asa,, m,-laf7
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" 2
m,=2(a,5a,6*asay7) mg=kasy

Note that in the derivation of M, the (1/(1+x,+y,+kx?2))* terms have been

neglected, assuming that their contribution, compared to the other terms is negligible. Arguing
on the same lines, N, can shown to reduce to zero. The left and right eigenvectors

corresponding to the eigenvalue A, (==iw,) are,

1 1
v ((Pl * IQ)) ((Pl _ -’-Q)) (5.3.5a)

c_ 1 . | RS URSU
U = éE (Q — Pzs =i) U = 20 (Q iP,, iJS5.3.5b)

where P o =y/B P,=-(lo/Blyy) and, Q= (ylo ~Ble)/Byiw]
Note that P, + P, =0 following Eq.(5.3.3)

cl
I

The vectors V. and V_, given by Eq.(4.2.14a) are

_ ~B(Ylop*2iw,)+ Byl
V. = V. = ﬁz—) ( ?;‘[;imm"_)&ﬁ,"ﬂ)"*) (5.3.6)
where,
N = Loa(Ylo =B lo2)
Uy =M, +2Me (P +iQ)+ Mgy (P, +iQ)?
The vector V', given in Eq.(4.2.14b) is
Fs (0
Vo = 2 (Uzva) (5.3.7)

where,
U= (vlg = Blgs)
Uz =(mg, +2mozP1+moa(P?+Q2))

The complex variable g in Eq.(4.2.16), can now be written as
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g=9g +g " =(-FoR/2Q){(BAR,+I;(Yy*BP))*+i(BQI;~R,(Y+BP;)))}

(5.3.8)
where,
e L= va- R (2000B))
Riy=mg +2MgaP i+ Me(Pi-0%) Rs=1,(2woB(-R,Q+1,P)))
1,=2Q(Mga* Moz P ) Is=—-1(2w,B(/,Q+R,P,))
_ Re=n,(R\(Pv2-2w,YQ)
o +1,(Qua+ 206Y9,)) * P ouam,
Ry=21n,/,w,B To=(1,(P,u,-2w,yQ)
"R (Qua*2woYuz))+ Quausm,
I3==21,R,w,R Ry=(mg Ry+mo(Ry+Rs)+my3Ry)
Ri=m (R u+1,(2w,R))+vyusn, Io=(mog la+mo(Iy+1g)+mgly)

The eigenvalue A | gives us the values of 0, and w, as,

F?j]c

YT S0 (QCL3=BLpCP i+ P3) ~¥liz)) (5.3.9a)
Fojie
wl - 2101 (Pz(BLIEPI_Lll)_(QZBL12+L33+YL|2P1)) (5391))

where,

Lyy=Fa(l\y = F;Fgly) Lia=F,(lLya=F;Fglo) Liz=F;(l;3=F;Fglys)
The parameter d defined in Eq. (4.2.22) is

. 1 » 1
d” = 3Q (D,+D,) a’ = 56 (D BBl (5.3.10)

Finally the constants in the GL equation ¢,, ¢, and c¢,, defined in Eq. (4.2.25) are found

to be
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(Pl =BLi2P 1)+ Q(BL12Q)+(Liz— YL 12Py))

= 9.3
0 (QL-BLiaP)-L12Q(BP2+Y)) ( =
DlP2+DZPl)
= - — S5.3.11b
© (Q(D.+Dﬂ ¢ )
I;-R;(y+PP
_(BQ/, (vy+BP32)) (5.3.11¢)

2 TBQR, +1,(Y-BP2))

5.4 Numerical Solution to the GL equation

In the present study we make use of the method of lines after discretizing the space
dimension using orthogonal collocation. The original equation is split in to its real and
imaginary components and solved simultaneously with the appropriate initial and boundary
conditions. Hence, the original infinite dimensional system is replaced by a 2 N dimensional
system where N is the number of space discretization points in [0,1]. No appreciable change
was noted using orthogonal collocation on two finite elements. Hence, we confine our study
to the method of lines with twelve-point collocation.

Equations (5.2.16) and (5.2.18) are solved in order to demarcate the regions of
occurrence of type I and type II instabilities. We find that the solution to the GL equation
shows a remarkable difference in its behavior in these two regimes. We have chosen
representative parameters for these two zones and computed the corresponding values of GL
constants namely, co,c,andc, from Eq. (5.3.11). Having obtained the values of
Co.cyandc, wegoontosolve the transformed GL equation (4.2.26). Some of the interesting
results obtained are discussed in the next section. The parameter values are chosen based on
the analysis carried out by Mimura and Murray (1978).

5.5 Results and Discussion

Figure 5.1 and 5.2 show that a multiplicity of the instability conditions can exist in certain

parameter regimes. Figure 5.1 shows the results for 3 = 4+4.0 whereas Fig. 5.2 presents the

results for 3 =20.0. The other parameters are y=0.984,D,=0.005,D,=1.5. In Fig.
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5.1and 5.2 (a) and (b) the value of k=0.1 while for (c) and (d) k= 0.5 and for (e) and
(f) k=1.0. The figures clearly indicate that for certain parameter values type I instability
occurs before type Il and vice versa. In the regions where type I instability occurs before type
II the possibility of diffusion driven instabilities is eliminated.

Fig.5.3 depicts the behavior of the solution in the region in which type I precedes type
II. The three-dimensional plot shows that the solution is stable in time as well as in space.
The values of ¢, andc, for this case are 0.78361 and 0.02367 respectively. The stability of
the solution over long time periods was investigated by studying the evolution of the real part
of the solution (Re(W)) for short as well as long time periods (Fig. 5.3 (a) and 5.3 (b)). In
order to project the features appearing in three dimensions, on a two-dimensional plane,
constant amplitude lines are projected in the time-space plane. Such a plot referred to as the
contour plot, is shown in Fig. 5.3 (¢) for the case 5.3 (b). In this region the most predominant
feature of the system is spatially homogeneous oscillations, which can however become
unstable due to the diffusional effects. This type of diffusional instability is known as phase
instability (Kuramoto, 1984) and is different from the type Il instability studied in this chapter.
The condition for the phase instabilty is studied in more detail in Chapter VII.

Figure 5.4 depicts the short time behavior of the amplitude in the multiplicity regime
referred to earlier. By multiplicity of the instability condition we mean that for a particular
set of the other parameter values, there are multiple values of j, for which an instability
can occur. In the region chosen here, the type Il instability has already set in so that we see a
distinct spatial inhomogenity. Figure 5.4 (a) and (b) show the evolution of the Re(W) and
Im(W) for the «case ,=39.8. The other parameter values are
J2=0.99;3=44.0;y=0.984;k=0.1;D,=0.005;and D,=1.5;. The values of
cyandc, computed from this set of parameter values are 7.7 x10° and 1.07x10°?
respectively. Figures 5.4 (c) and (d) depict the case j, =57.2, for the same values of the
other parameters. The values of ¢, andc, change to 6328.0 and 14.08 respectively. In Fig.

5.4 (d) and (e) the values of /,.c,andc, are 60.1, 4652.0 and -4.1828 respectively. Over
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short time periods we see a structure similar to that of a roll-type pattern (Haken and Olbrich,
1978) which is not significantly different for different values of ¢, and c, . From the relatively
highvalue of ¢, we caninfer that we are operating in reaction controlled regime and although
the diffusional instabilities give rise to spatial inhomogenities the evolution of structures is
not significantly different for different values of ¢, and c,. The behavior for long time is
however, quite different. This is evident from Fig. 5.5 (a) - (f) which represent the long time
evolution of the cases corresponding to Fig. 5.4 (a) - (f). In the long time behavior we see that
a wave starting at one position in space slowly shifts to another position as time evolves. This
feature is known as space-time dislocation and has been shown to have important implications
for the origin of defects in crystal formations and evolution of geological structures. Figures
5.6 (a) - (c) show the contour plots corresponding to the cases shown in Fig. 5.5 (a), (¢) and
(e). These plots show flow patterns which seem to be shifting in time for different values of
c,andc,.

In conclusion, the present chapter analyses a class of reaction-diffusion systems typical
of those found in enzyme catalyzed substrate inhibition processes. Employing the normal
ranges of parameter values that are likely to be encountered in the realistic systems the
behavioral features of such reaction-diffusion systems have been investigated. The numerical
computations clearly indicate that spatially uniform states can become unstable due to
diffusion influence leading to spatial-temporal behavior.
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CHAPTER VI

DERIVATION OF GINZBURG LANDAU EQUATION

IN THE PRESENCE OF EXTERNAL NOISE



Fluctuations are inherent to natural systems and it is seen that they can
amplify at critical points, leading the system to a state of higher order.
In the present chapter we obtain an equation of the form of the GL
equation to describe the evolution of the system in presence of external
fluctuations. This equation can be easily extended to a general class of
fluctuations and is crucial to the analysis of a variety of interesting
situations. The point of importance of the present chapter is that, here
we extend the principles of derivation of the GL equation to stochastic

systems in a simple way.

90



6.1 Introduction

Fluctuations are inherent in all natural systems and they are known to bring about
evolution of order in many systems. Typical examples include lasers, hydrodynamics and
mutations in living organisms. It is seen that fluctuations can amplify at critical points, allowing
a new structure to supercede the old. The concept of order through fluctuations was well
demonstrated by Nicolis and Prigogine (1977). Many attempts have been made in the past
to analyze the transition from one state to another within the framework of the stochastic
theory. Two types of stochastic approaches are generally followed in the analysis of
fluctuations, leading to two types of equations viz., Fokker-Planck equation and the other to
Langevin equation. A given Langevin equation can always be converted into an equivalent
Fokker-Planck equation.

Many authors have studied the evolution of nonequilibrium systems, near the critical
points in presence of fluctuations (Graham and Haken, 1970, Haken, 1983,1975, Nitzan et al,
1974a,b, Gardiner er al, 1976 and Wunderlin and Haken,1975). In such systems, the various
features can be attributed to the existence of slow modes near the transition points. Thus we
come back to the slaving principle and principles of synergetics (Haken, 1989). Most of the
studies outlined here make use of the master equation and the non-linear Fokker-Planck

equation.

In the present chapter we analyze the substrate-inhibition kinetic model, near its critical
points, in the presence of fluctuations, with a view to obtain an evolution equation in the form
of a GL equation. The fluctuations are taken into account, using a Langevin-equation
approach. The point of importance of the present chapter is that, here we extend the principles
of derivation of the GL equation to stochastic systems in a simple way. The final equation

obtained is qualitatively similar to the case without fluctuations, but is quantitatively different.
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6.2 Substrate-Inhibition Kinetic Model with External Fluctuations

In the present study we incorporate external fluctuations into the governing equations
by assuming that the parameter j, fluctuates accordingto j, +&(t).Here, j, is the mean
value of j,,and ¢ (t) represents the external noise, described by an Ornstein-Uhlenbeck

process with zero mean and finite correlation given by
. D » .
<g(HHe(t )>=(;)exp—{t—-t 7T} t>t (6.2.1)

The Langevin equations corresponding to the model equations Eq. (5.2.3) and (5.2.4) become

i+t -x-Br(x.y)=f, (6.2.2a)
dn
df=jz-v-r(x-y)=fz (6.2.2b)

The steady state solutions can then be written as

L YTt -BJe , 2 J28kV2 G+ 8) - Gist)vas+ay)

x, . E (6.2.3)
Y Y2(v(ji+g)+az)

where, the definitions of the terms a, — @, remain the same as in Chapter V. The deviation

equations change accordingly to

du ((Ji+8)-x)(u+v+ku®+2kux,)-B(x,v+y,u+uv)
—=—l+ (6.2.43a)
dt (l+x,+y,+kx2)+(u+rv+ku®+2kux,)

i (u+u+ku®+2kux,)-v(x,u+y . u+uy
du_ | ja( . )~ Y( zy ) (6.2.4b)
dt | (1+x,+y,+kx2)+(u+v+ku?+2kux,)
The corresponding reaction-diffusion equations are
3; a%x :
X D, S X (T +E)-x—(Bxy/1+x+y+kx?) (6.2.5a)
at ar?



3y 2’y . 2
3?=Dz;;+fffvxy/l+x+y+kx) (6.2.5b)

In the analysis presented in this chapter we conform to the assumption that the order
of magnitudes of the macroscopic variables of the systems and the noise variable are widely
different. In other words & is of the order O(e?), where € is an arbitrary small parameter.

The Jacobian of the system can then be expressed as

B 1 B
EjFa=BF,=~— =-F
J=F,|y'?? G T (6.2.6)
Jj2F3-YF, =y

where the definitions of the terms F, - Fg are
Fr=v*(v(h+8)+a)/ (Y + &)+ a ) (kvZ], 2+ (2kv2t + va,) T, + (vast +a,))
Fa=¥,

Fa=(y+2k(v(Ji+8)+a))/y

Fo=(v(ii+8)+ay)

Fs=(-asi, +(-3ast+ae) ), +(2ast+a,) ], +(at+ag))/v2F, (6.2.7)
and the terms as - ag are defined according to Chapter V.

Following the usual stability analysis procedure, we obtain the conditions for the

occurrence of type I and type II instabilities as

i [l (S e~y ) ) fi= e bra ) f = (B pbva, )= (6.2.8)
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117 (D30,)*+ j1.S(D3b,=2D Dby +68)+ j, . *(D2b,+ D2bs-2D, Db +5SE)
+]1 (D37 + Dibg=2D ,Dybg+48)+ j 1. 2(D2b 1o+ D2b,, =2D, Db p+32)
*J1 (D30 13+ Dby =2D Db s+ 28)+ (D2b g+ D2b,,=2D Db 1g+t)° = O
(6.2.9)
Once again the definitions of the terms as-a 4 and b, - b5 are carried over from

Chapter V. The characteristic frequency of the system w, assumes a

new value in the presence of fluctuations. This is given as
wo={(assy *(3ast+as)Th * (2a,s8+ @, )1 + (At +ayy) 2)/2  (6.2.10)
6.3 Derivation of G-L Equation

For the analysis of the system near the critical points we define the parameter y as,

W=/1=Jjic/Jic,and €as e*x = This definition gives
Ih=Ch*8)=ji(n+1)+g (6.3.1)

As has been already mentioned, ¢ is of order of O(€?). Here we define another

smallness parameter €’, such that =o€ ?x. We further define w by the followin
g

relationship
€ x/e¥x=y (6.3.2)

In addition we assume that the correlation time of the noise is much longer than the
characteristic time of system and that the fluctuations evolve on the time scale <. Although
this assumption for the fluctuations is used somewhat less frequently, it is justified in the
present case. The physical basis for this is as follows : though the supply of the species X and

¥ to the cell are supposed to be externally controlled parameters, this is not strictly so. No

cell can operate in isolation but forms a part of a large network of cells coupled through
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various forms of feedback. Thus the substrates of a reaction in one cell are actually products
of another and any fluctuation in the production of the species X at one point in the network

is reflected in the parameter j, only after a definite time delay.
Using these definitions we obtain Lo, L,, M,, and other quantities required for the

derivation of the G-L equation. We find that L, still subscribes to the relation given in Eq.
(5.3.1), whereas L, changes to

l -B!
L, - Frm(wcuw){ [t“ _E[""]—Faao} (6.3.3)
13 12

with the definitions of all the terms remaining the same as in Chapter V. Similarly, we find
that the equations describing the quantities M, and N, also remain the same as in the case
without fluctuations. Further, this implies that the GL constants c,, ¢, and ¢, can still be
given by Eq. (5.3.11). However, note that the linear operator L, and hence the corresponding
eigenvectors show an explicit dependence on w, , which changes considerably in the presence

of fluctuations (see Eq. (6.2.10)).

The resulting GL equation in presence of fluctuations can now be solved coupled with
the evolution equation for the fluctuations, Eq. (6.2.1). Note that according to our assumption,
both Iv and & evolve on the same time scale, so that we do not need any further assumptions
in solving this coupled set of equations.

6.4 Results and Discussion

In the present chapter, we have developed an evolution equation for the
substrate-inhibition kinetic model in presence of fluctuations, near a critical point, based on
some simple assumptions. Most of the previous studies in this direction, make use of a
Fokker-Planck equation approach to include noise. Here, we approach the probleminasimple
way leading to an equation which is essentially of the same form as the GL equation and can

be solved easily using numerical methods such as the one employed in Chapter V. The method
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presented in this chapter can also be extended to include different types of noise, investigate
the effects of noise on coupled oscillators, changes in the entrainment conditions and so on.
In particular it would be interesting to study the conditions for the stability of limit cycle
solution in presence of external noise and see how the diffusional effects and external noise
cooperate or counter each other and obtain the conditions under which one dominates the

other. The method presented here is crucial to all such analysis.
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CHAPTER VII

ANALYSIS OF DIFFUSIONALLY COUPLED OSCILLATORS



Weakly coupled oscillators can be described in terms of a non-linear
phase diffusion equation. In the present chapter we aim at deducing
this equation and extending it to the case of Ginzburg-Landau
oscillators. The condition for the stability of the orbital shape is also
derived. The stability of the limit cycle solution to the GL equation is
tested for the case of substrate-inhibition kinetics, with the help of this
condition. Numerical analysis of the phase d!ﬁ‘-u.sion equation Is also

presented for the stable oscillatory regime of this model.
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7.1 Introduction

Coupling of nonlinear functional units, such as individual cells following nonlinear
kinetics, can lead to a multitude of dynamic features. Indeed, the study of diffusionally coupled
cells, has served to understand many self-organization phenomena in physical, chemical and
biological systems, in the past (Pavlidis, 1973, Schreiber and Marek 1982, Kubicek and Marek,
1983, Kaneko, 1989, Hadley and Weisenfold, 1989). Study of coupled nonlinear oscillators in
particular, has aroused much interest, because such systems can be envisaged in many
biologically significant phenomena, such as synchronization and onset of collective oscillations
(Aronson er al, 1989, Ermentrout, 1989 and Silva et al, 1991). Analysis of coupled oscillators
can be a formidable task, since the number of degrees of freedom, involved is bound to multiply.
However, for weakly coupled oscillators, the dynamics can be greatly simplified, and by looking
upon diffusion as an external perturbation, they become amenable to simple perturbation
techniques. By weak coupling, we mean that diffusion terms are small compared to the reaction

terms.

For systems, showing strictly periodic behavior, as ¢ = =, one may assign an arbitrary

scalar value to each point associated with the oscillator. This scalar quantity, known as phase
can be used to approximate the state of the oscillator. Thus the dynamics of a system of N
discrete oscillators (of atleast 2N degrees of freedom), can be reduced to N coupled ODEs
for N phase variables. Moreover, it is seen that weak perturbations generally produce a long
time scale in the dynamics compared to the period of the original oscillator. Such a clear
separation in time scales enables us to average the rapidly varying oscillating quantities of the
original equations, for the slowly varying phases. Though phase is anarbitrarily defined quantity,
it can yield important information for the coupled systems. For instance we find that the phase
difference between two coupled oscillators, as a function of t, tells us whether they are mutually
entrained or not; further if the deviation of the oscillator from its natural closed orbit is very
small, then the evolution of various dynamic features can be approximated by the evolution of

phases with ¢.
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A phase description for populations of oscillators was first given by Winfree (1967). This
theory was further developed, and suitably modified for specific cases, by various authors
(Ortoleva and Ross, 1973, 1974, Kuramoto and Tsuzuki, 1976, Kuramoto and Yamada, 1976,
Neu, 19794, b, Neu, 1980, Kuramoto, 1984, Ermentrout and Kopell, 1984, Ermentrout, 1985,
Sakaguchi et al, 1987, Daido, 1988, Strogatz and Mirollo, 1988, Sakaguchi et al, 1988,

Ermentrout, 1989 and Kuramoto, 1991).

In chapter IV we saw that near the Hopf bifurcation point, the GL equation describes
the behavior of a field of oscillators. In the present chapter, we show that when such oscillators
are weakly coupled through diffusion, the system behavior can be described by the phases of

the oscillators, through a non-linear phase diffusion equation.

7.2 Phase description: A case of single oscillator

In this section, we aim to illustrate how the phase can describe the perturbed motion of
asingle oscillator. Once the perturbation method is formulated, it can be extended to the case
where, the perturbation is interpreted in terms of diffusion. This will be done in the following

section with a view to derive the phase diffusion equation.
Let X,(t) denote a stable periodic solution to a system of ODEs, Eq. (4.2.1)

Xo

dl

=F(X,) Xo(t+T)=Xo(!) (7.2.1)

where, T is the time period.

If C represents the closed orbit corresponding to the periodic solution X,(?), then we
canassociate a certain value of phase ¢ toeach X e C,such thatthe motionalong C produces

a constant increase in ¢, or for convenience,

do(X) _

1, Xel 7:2.2
o € ( )
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All the perturbation analysis of the present chapter is carried out around the periodic

solution, X, (¢). Let us introduce a small perturbation as,

ax .
=5 - FOO+ep(X) (7.2.3)

The term ep(X) generally depends on X, and denotes a general class of perturbations.

FromEq. (7.2.2), we see that the quantity ¢ is defined onlyon C.However, for perturbed

systems, we would like to extend this definition to the vicinity of C. Since the limit cycle solution
is a stable one, and since the perturbation is weak, the system still shows a periodic behavior,
but with a different 7. Thus we can imagine a circular tube enveloping C, as denoting the
space in which the perturbed solution can be found. The tube is thin to the extent that the
perturbation is weak. In this circular tube, we find two dimensional surfaces, known as isochrons,
such that all the points lying on a given isochron have the same value of ¢. Thus each point
in C, belongs to asingle two dimensional surface, say G . Thisis depicted in Fig. (7.1). It follows
that, if a given point belongs to G, then its phase will remain the same whether it belongs to
C or not. Thus, we can extend the definition of ¢, beyond C as,

do(X) _

, X =
T et (T2

Using the chain rule, we have,

d9(X) _

.dX
T grad ¢ _dT (7.2.9)

so that using (7.2.4) and (4.2.1), we obtain,
grad 46 F(X)=1 Xen (7.2.6)

It is also clear that for an unperturbed system, any point near C and belonging to an

isochron /(¢), will always be found on the same isochron, but closer and closer to C as time

increases. For the perturbed system,
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do(X)

ot aradysfR{X)Rep(X)]

=1l+egrad, ¢ p(X) (7.2.7)

Although the specification of ¢ is insufficient to describe the position of the state point

X on /(¢), from the above discussion we atleast know thatitis close to X,(¢).Thuswe can

replace X in Eq. (7.2.7) with Xo(9).

ah

T =1+eQ(¢) (7.2.8)

where,

Q($)=2Z(¢) n(9)
Z(9)=(grad, ) =X,(9) (7.2.9)

() =p(Xo(4))

Here, the vector Z )¢ may be called the phase dependent sensitivity, as it measures how

sensitively the oscillator responds to external perturbations. The r.h.s. of Eq. (7.2.8), represents

an instantaneous frequency. Note that Z(¢) and n(¢) ate T-periodic functions of ¢.

Here, we introduce the phase disturbance variable,
b=t+y (7.2.10)

Substituting Eq. (7.2.10) in Eq. (7.2.8), we obtain

dy
e + 7.2.
= eQ(t+w) (7.2.11)

This equation shows that v is a slow variable, and hardly changes during the period 7 .

Then we can use time averaging to obtain a frequency change.

dvw lj’
pdh £ 36 =S 7.2.12
. EW=E¢€ ) Qt)dt ( )
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Using the procedure outlined in this section, we go on to derive the nonlinear phase diffusion

equation.

7.3 Nonlinear phase diffusion equation
Reaction-diffusion equations may be written in the form of Eq. (7.2.2) if p is interpreted

as a Laplacian operator multiplied by the matrix D.
ep=DV? (7.3.1)
Applying Eq. (7.3.1) to Eq. (7.2.8) and setting €= 1, we get

20 _ .,
3t =1+eQ(¢$)

1*’{(gradx¢‘)x-x°“] D(vz)x-xﬂft)} (7-3.2)

We now write,

D

azxm)]:Di(a_gdxo(d:))
or2 or\or dé

2
=D{V2¢’%E%+{v¢)z%} (raay

Substitution of Eq. (7.3.3) in Eq. (7.3.2), alongwith Eq. (7.2.9) gives,

2¢

a—£=1+n“’¢v2¢+n‘2’c¢)(w)2 (7.3.4)
where,
. .dXe(d)
(n _ o
Qo) =z(e) D —=
2
Q®(¢) =Z(¢) D‘%ﬁ:ﬁ (7.3.5)
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- Inorder to obtain the above terms, we need to do the stability analysis around the periodic
solution. For this purpose, we have to consider the Floquet theory for the stability of periodic °

system, in detail. Let us denote a deviation from the periodic solution X,(¢) as,
X(t)=Xo(t)+u(t) (7.3.6)

Linearization about X,(?) leads to,

i—l:=L(£)u (7.3.7)

where, L is a 2x2 T-periodic matrix with its ij th element given by

Ly=0F(Xo(t))/2X,,(t). The general solution to this equation can be expressed as,
u(t)=s(t)e™u(0) (7.3.8)

Here, S(¢) isagaina 2x2 T-periodic matrix with the initial condition S(0)=1, and

A is some time independent matrix. According to the Floquet theory, it is then possible, to
define an eigenvalue problem for Eq. (7.3.7), just as in the steady state case, excepting for the
fact that all the variables and operators are also T-periodic. In this case, the eigenvalues of the
matrix A decide the stability of the solution. Let u,, and u; denote the right and left

eigenvectors, corresponding to the eigenvalues A, of A . Then,
Au,=\,u, u,A=A,u, , [=0,2,....n {7.3.93)

l=m=0,2,..., n and ,

=0, l#m (7.3.9b)

Since X, (t) is assumed to be stable, no eigenvalues have a positive real part, and there

is one special eigenvalue which is identically zero. Let A, denote the zero eigenvalue, and u,

its corresponding eigenvector. Then we have following relation,

Au,=0 (7.3.10)
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ow by differentiating Eq. (7.2.1), we have,

d(dXy(t) d
a(——d[ ) a(F(Xo))
B dX,(t)
-L(t)(T) (7.3.11)

Thus from Eq. (7.3.11) we cansee that (d X, (t)/dt) isaparticularsolution of Eq.(7.3.7).

‘hen using Eq. (7.3.8) we can write,

dXo(t)) _ acf dXo(t)
( = )r-S(t)e ("—""'dz )ho (7.3.12)

“urther, the zero eigenvector of Eq. (7.3.10) can be taken as,

_[dXo(t)
uo—( i )'_0 (7r:3:13)

Substituting in Eq. (7.3.12), we get,

(d?\‘o(r)
dt

) =u,=S(t)eu,

Linearizing e as (/+ At) and making use of Eq. (7.3.10), we obtain,
S(t)u,=u, (7.3.14)

In order to evaluate Z(¢) we imagine a two-dimensional space T (¢) tangent to the

isochron /(¢) at X(¢) such that any small vector u(t) lying on T(¢) and denoting
X(t)=X,(t) reduces to zero as ¢t - <, From Eq. (7.3.8) it is evident that u(t) can reduce
tozeroonlyif u(0) isfree of the zero-eigenvector component. Thus it means that 7 is nothing
but the eigenspace spanned by all the eigenvectors but the zero eigenvector. Further Z(¢) is

normal to /(¢) and hence T (¢). This fact combined with Eq. (7.3.9b), leads to the relation

Z(0)u,=0 , 1#0 (7.3.15)
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Comparing with Eq. (7.3.9b), we see that Z(0) is proportional to u, and for the sake of
convenience, may be taken to be 1. Thus,
ug=27(0) (7.3.16)

From Eq. (7.3.9b) and Eq. (7.3.16), we have,

AR L)
ZO(_(;I ) =1

or more generally,

Z(r)(dx;t(t))=l (7.3.17)

From Eq. (7.3.14) and Eq. (7.3.17) we have,

-1
2¢y=( Ze0) - scouer

dt
Again, using Eq. (7.3.9b), we can write,
Z()=ugS~'(t) (7.3.18)

Obtaining (dX,(t)/dt) from Eq. (7.3.14) and Z(¢) from Eq. (7.3.18), we can express the

terms used in Eq. (7.2.9) and Eq. (7.3.5) as,

Q) =usST'($) () (7.3.19a)
QV(¢) =ugST'(#)DS(d)u, (7.3.19b)
Q@ (4) =uss ' (9)D 28 (7.3.19¢) -

dé
In terms of the slow variable w, Eq. (7.3.4) can be transformed as,

p)
a—“:an“’vzwn‘”(uw)(vw)z (7.3.20)
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Doing the time averaging as in the last section, we obtain,

P

A R 104" S

ot

3¢ _ 2 2

3 = 1TavierB(Ve) (7.3.21)
where,

1 T 1 T
a=?fﬂ“’(t)dt : B=?fﬂ(zl(t)d£ (7.3.22)
0 ]

In the next section we evaluate the quantities S(¢),aandf3 for the case of the GL model.

7.4 The Ginzburg-Landau oscillators.

The GL equation can be expressed as a two component reaction-diffusion system. The

diffusion matrix D is different from the diffusion matrices of ordinary reaction-diffusion

systems, in that it involves an antisymetric part.
1 —igy
D=
c, 1

We start with the Stuart-Landau equation which effectively describes a diffusionless

(7.4.1)

oscillatory system. Then we go on to introduce the diffusion terms as a weak external
perturbation through the matrix D.

C;—t\[=(l+ico)w—-(l+icz)|w BAY (7.4.2)
Separating the real and imaginary parts, we obtain,

%= X=coY'={X=es¥ I X*+Y¥?%)

%Ty=)f’+cox—()/+c2)()()(2+)/2) (7.4.3)
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The periodic solution of Eq. (7.4.2), Wo(t), is expressed in terms of the corresponding real
and imaginary parts as,

Wol(t)=Xo(t)+iY o(t) = Agexp(iwgt) (7.4.4)
Substituting for W4 (t) as Agexp(iwgt), in Eq. (7.4.2), and putting A, = 1, we obtain

Wy=Co—Cy (7.4.5)
Let w(t) denote a disturbance variable defined as follows

W) =W(t)(1+w(t)) (7.4.6)
Substituting Eq. (7.4.6) in Eq. (7.4.2) and linearizing in w({), we obtain

dw

= =-(l+ic,)(w+w) (7.4.7)

Separating w(t) into real and imaginary parts as, w = + in, Eq. (7.4.7) may be expressed as

a(g g ;
2(5)-A(¢) 7.4.8)

where A is yet to be defined. From Eq. (7.4.7) we have

—4j—=-2¢-i(2c,t) (7.4.9)

and from Eq. (7.4.9), we have

ag
dt =A 5+ AT

an
= ~Aat+ AL (7.4.10)

Solving Eq. (7.4.10) and Eq. (7.4.11), together we obtain A as,
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A-—2l 0 7.4.12
N c, 0 il

Equation (7.4.9) can now be integrated as,

)\ _ A, [8(0)
(n(t)) ¢ t(n(O)) (7.4.13)

In order to obtain u,, uy and S(¢) we have to perform the stability analysis of Eq.

(7.4.3) around the periodic solution (Xo(t),¥ o(t)).To do this we linearize Eq. (7.4.3) in the
deviational variables (x,y)=(X-Xo(t),Y =Y ,(t)), and find their solutions of the

deviational variables in the form Eq. (7.3.8).

Making use of the relation W= X +iY, Eq. (7.4.6), (7.4.8) and (7.4.14), we obtain the

relation between, (x,y) and (g,n) as

xcz)) (c(t))
=S
(y(r) O nco

where
cos(w,t) -sin(w,t) '
S(z)=(sin(wct) cos(w,t) ) (a4l
g A x(0) £(0)
Making use of the relation, (y(O)) (H(O)) , Eq. (7.4.13)can be shown to be

equivalent to

x(e)]= A(x(O)) oy
(y(r) Se™ y 0y (il
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This is the same form as Eq. (7.3.8). Hence the eigenvalues of A decide the stability of

the periodic solution. The eigenvalues are obtained as A, =0 and A, = -2 .The corresponding

eigenvectors are,

u0=wo(?) : Ug=wyl(-c5.1) (7.4.16)

where w, is needed for consistency with Eq. (7.3.13). From Eq. (7.3.9a,b) we get,

Further, for A=-2,

ul:(lj ; uy;=(1.0) (7.4.17)

€z
We can now calculate the terms defined in Eq. (7.3.3) as follows

cos(w,l) sm(wcf))(l —c,)(cos(wot) —sin(wo.!))
Uy

QY =w ' (-c,. 1
wo (=2 )—sin(wot) cos(w,t) /\ ¢, 1 sin(wgyt) cos(w,t)

=(1+c,c5) (7.4.18a)
Similarly, for Q‘® we get

QP =w,(c,-¢,) (7.4.18b)
Thus the nonlinear phase diffusion equation for the GL model takes the explicit form

oW 2 o 2
57 =(l+c,c,) Vv+w, (c-c )(Vy) (7.3.19)

For the unperturbed GL equation we can define the amplitude R and phase ¢ via the '

relation, W=Rexp(i®) and from Eq. (7.4.4) we have d$/dt=w,. On the other
hand from Eq. (7.4.19) dw/dt=0 for an unperturbed orbit. This implies a relation
V=w,(t+y) for aweak permrbaﬁon. It follows that whenever diffusional coupling is weak,

or the orbital deformation due to diffusion is negligible, the GL equation is contracted to
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2
a—f =w,+(1+c,c;) Vie+w, (c-¢,)(Vd)? (7.4.20)

after putting R=1. Equation (7.4.10) is known as the phase diffusion equation and the

parameter a as the phase diffusion coefficient. Equation (7.4.20) breaks down if a <0. This
condition implies that in an oscillatory system spatially uniform oscillations can become
unstable in presence of diffusion with respect to variations in phase. This is known as phase
instability, and is distinctly different from the Turing type of diffusional instability discussed in

Chapter V.

In the present study the stability of the GL equation has been studied with a >0 as well

as with a < 0. Further the phase diffusion equation has also been studied for the case «>0.
Through out this analysis we are subject to the condition that type I instability precedes type
[I instability, in order to eliminate the possibility of the diffusional instabilities setting in. The
numerical procedure employed is the same as in chapter V. The results obtained are discussed

in the next section.

7.5 Results and Discussion

The parameters in the substrate-inhibition have been investigated for the occurrence of
the condition a < 0. Fig. 7.1 shows the mapping of the parameter a agaihst /1 for fixed values
of other parameters. This figure shows that this condition can occur for a wide range of realistic
parameter values. In order to ensure that type [ instability occurs before type II, we have solved
the conditions for type I and type II instabilities numerically. Fig 7.2 and 7.3 depict the short
and long time behaviors respectively of the GL equation in three distinct regimes
a>0(c,=0.7836,c,=0.0236), a~0(c,;=3.1727 ,¢c,=-0.5167) and ~
a<<0(c,=107.6,c,=-2.3779) . From the figures it is clear that the solution to the GL
equation is unstable even onvery short time scales for the case a <0 .Forthecases a>0 a~0
the solution is considerably stable even for long time periods. The contour maps of the long
time behavior of these three cases, shown if Fig 7.4 clearly indicate that when a <0 a

spatio-temporal chaotic behavior sets in. Further, the phase diffusion equation was integrated
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using the same numerical procedures and periodic conditions. Figure 7.5 shows that the behavior
of the GL equation can be effectively described through the phase diffusion equation, when

a>0. For the case a <0 the equation cannot be integrated due to numerical instabilities.

The phase diffusion equation derived in this equation is central to the study of coupled
oscillators. It has been shown to be useful in the studies of oscillators subject to periodic forcing,
entrainment or synchronization of two or more oscillators, onset of collective oscillations, and
also in the studies of populations of oscillators. The concepts of mutual synchronization and
entrainment have proved to be useful in understanding chemical wave propagation in
reaction-diffusion systems, origin of expanding target patterns and rotating spiral waves. In
addition, chemical turbulence phenomena can also be effectively studied with the help of the

phase diffusion equation.
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CHAPTER VIII

A CRITICAL ANALYSIS OF THE GINZBURG LANDAU EQUATION



The present chapter attempts to give an insight into the GL equation,
in terms of the physical parameters of the reaction-diffusion systems.
The physical relevance of the constants of the GL equation, ¢, and
¢, is discussed in detail. A brief literature survey of the applications
of the GL equation to various fields is presented with a view to bring
forth the universality of this equation and its capacity to show a rich
and varied behavior in different regimes. Finally the scope for the

application of this equation to some biological problems is discussed.



8.1 Introduction

In the introductory remarks of the meeting on ‘Theories of Biological Pattern
Formation’, J. D. Murray had observed that a remark such as "It’s probably a second order
Hopf bifurcation in the p.d.e parameter space” does not have the biologists on the edge of
their seats unless to leave (Murray, 1981). The usefulness of a mathematical theory to biology
orany other field is complete, only when all the quantities involved can be effectively described
in terms of realistic parameters of the system. Although the GL equation has become
increasingly popular in the study of self-organization phenomena, we find that the studies are
as yet, confined mostly to the general area of physics such as, hydrodynamics, binary mixtures
and optics and the discussions given in these studies are somewhat abstract. In the present
chapter we aim to give a critical analysis of the GL equation, its applicability in different
parameter regimes, the physical meaning of the GL constants, and some potential applications
of this equation to some problems of biological interest.
8.2 A critical analysis of the GL equation

In the present thesis we have often referred to the ubiquitous biological oscillations.
Conditions leading to the bifurcation to a limit cycle behavior have been thoroughly studied
by many authors and the further studies on bifurcations from the limit cycles leading to other
dynamical complexities and chaos, is an interesting area of research. A remarkable feature
about the biological systems however, is the stability they show even in face of many degrees
of freedom and their capacity for self-organization through interacting subunits. Thus of
greater importance to biological systems is the understanding of how the limit cycle oscillators
interact with each other in a cooperative way leading to self-organization phenomena. The
GL equation serves this purpose well, since it describes a field of oscillators which are

diffusionally coupled.
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As we have already seen the derivation of the GL equation is based on the slaving
principle, which assumes that at critical points the number of degrees of freedom can be
reduced to just a few. This brings us to the question of the regions of applicability of this
principle. In this context, we see that the system size is a very important criterion. In Chapter
IV we saw that the slaving principle forms the basis for the derivation of the GL equation.
According to this principle, we can eliminate the fast modes, near the critical points, in order
to get a simplified description. We see that for reaction-diffusion systems, wherein the
description comes out in terms of PDEs, the number of degrees of freedom is infinite. In such
cases, the reduction in the number of degrees of freedom depends upon the ratio of the time
scales on which the slow and the fast modes evolve: T, and T, respectively. If ©,/t, <1,
then it implies that the slaving principle can be applied effectively. This condition can be
stated alternately as p << ¢ "%, where ¢ is the system size and |1 is the distance from the
critical value of the bifurcation parameter. Once p and & become comparable then the
number of degrees of freedom coming into play becomes very large, and then the stability of
the bifurcating solution to the homogeneous systems also becomes questionable. The
condition stated above, gives rise to three distinct regions in the parameter space, viz., j1 < ¢, ~*
u~t % and p>¢ 7. In the first two cases, the system size is very large, and the number of
degrees of freedom is finite. In these regions, we find that the interplay of spatial modes can
lead to pattern formation. In the third region, the system size is small and there are a few
effective degrees of freedom, giving rise to a possibility of successive bifurcations, leading to
chaos.

8.3 The Physical Significance of The GL Constants
For a reaction-diffusion system, the diffusion terms are incorporated through the

diffusion matrix D. In a given reaction, if only one of the reacting species is diffusing, then
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D reduces to a scalar quantity then the parameter o defined in Eq. (4.2.22) is a real positive
number, which implies that the constant ¢, becomes zero. Thus, c, is a measure of the
deviation of D from ascalar quantity. Onthe otherhand c» is ameasure of how the frequency
of the individual oscillators depends on their amplitude. This is because, c» is derived from
g (defined in Eq. (4.2.16)), which is a measure of the nonlinearity of the system. A positive
value of g means that the bifurcation is supercritical and the solution is a stable limit cycle,
whereas a negative value of g implies a subcritical bifurcation. A large value of ¢, compared
to that of c» leads us to a reaction controlled regime, whereas the situation with large c»
and small ¢, leads us to a diffusion controlled regime.

When ¢, and c. reduce to zero, then we obtain non oscillatory type of solutions

leading to symmetry breaking instabilities, such as those found in Benard convection and
Taylor vortices. On the other hand very large values of ¢, and c» indicate that the system
is operating in a dissipationless regime. In this regime, the GL equation can be reduced to a
nonlinear Schrodinger equation, which is a well known solition producing system. Solitons
can travel without change of shape and at speeds faster than pure diffusion processes and can
pass through cell walls to give rise to a cascade of reactions. Such a phenomenon clearly
provides a basis for transmission of chemical signals, and cell to cell communication.

Further, we find thatin regions of moderately low values of ¢, and ¢, wefindaplethora

of dynamical features such as traveling waves, periodic wave trains, rotating spiral waves,
kinks and pulses, some of which are discussed in the next section.
8.4 Some Practical Applications of GL equation

In the recent years, the GL equation has become very popular in the studies of

self-organization phenomena in dissipative systems (A. C. Newell, 1988). This is due to the
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fact that this simple equation can show a wide range of dynamical features, ranging from
simple oscillatory behavior to turbulence. Though the GL equation was first derived for
problems arising in hydrodynamics, and optics (Newell and Whitehead, 1969 and Haken 1975)
it has been extended to the general class of reaction-diffusion systems (Kuramoto, 1934).
Physics literature is replete with studies on the GL equation aimed at obtaining different
possible solutions to this equation. For instance, periodic wave solutions, and their stability
investigated by were obtained by Stuart and DiPrima (1978); slowly varying waves were studied
by Bernhoff (1988); Slow time periodic, bursting, quasiperiodic, homoclinic and heteroclinic
solutions were also shown to exist (Doelman, 1989 and the references therein). Moon et al
(1983) have shown transition to chaos in the GL equation, and the dimensions of the chaotic
attractor were estimated by Ghidaglia and Heron (1987) and Doering et al (1988). The GL
equation in the weak-dissipation regime, Le., in the near-nonlinear-Schrodinger regime has
been transiormed 10 a three dimensional model, which, for some parameters coincides with
the famous Lorenz model (Malomed and Nepomnyashchy, 1990a). The latter is an established
chaos generating model.

The GL equation, in its most commonly used form, shows that the supercritical
bifurcating solution is stable and the subcritical one is unstable. However, when higher order
terms are taken into consideration, the subcritical bifurcating solutions become important.
The study of pulses, fronts, and wave trains for the GL equation, in the subcritical regime has
received wide attention, since the discovery of stable pulses by Thual and Fauve (1988).
Subcritical Hopf bifurcations, which generate stable localized waves such as solitary waves,
widely observed in hydrodynamics, were studied by Fauve and Thual (1990). Pulses and wave
fronts which appear in binary-fluid convection, plane Poiseuille flow and Taylor-Couette flow,

were studied effectively by van Saarloos and Hohenberg (1990). Malomed and
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Nepomnyashchy (1990b) have shown that in a subcritical range, a stable trivial solution can
coexist with a stable traveling wave giving rise to the possibility of kinks and solitons for the
GL equation. Small-amplitude periodic, stable quasiperiodic, and chaotic solutions were
obtained in the same range, which can possibly explain the dispersive chaos found in binary
fluid mixtures (Schopf and Kramer, 1991).

In addition, the GL equation can be helpful in understanding the systems of coupled
oscillators and the features arising therein, through the phase diffusion equation.

Finally we would like to comment that the GL equation is a universal equation, and its
field of application is very wide. Indeed it can prove useful for the description of any system
that comes under the perview of synergetics. In biology, it has so far been used only in
morphogenesis and developmental biology. Some of the other fields of potential application
of the GL equation are neural networks, evolution, population dynamics, metabolic processes,
behavioral biology, pattern formation and pattern recognition.
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CHAPTER IX

CONCLUSIONS



Conclusions

The central theme of the present thesis is the application of some advanced analytical
and semi-analytical methods to the analysis of biological systems, with a view to gain an insight
into the processes underlying the complex behavior of these systems. The emphasis has mainly
been on the methods of reducing the number of degrees of freedom near the critical points
in the system. Two specific models of biological significance have been considered, in the
present analysis: the exponential autocatalysis and the Seelig’s oscillator.

In the first chapter an extensive bifurcation analysis of the exponential autocatalysis has
been carried out. The emphasis has been on obtaining the conditions for occurrence of known
bifurcation features like the hard mode instability. A complete bifurcation map has been
drawn for this model in order to characterize the possible behavior for different parameter
regimes. The results obtained indicate that the model is capable of rich dynamic behavior.
A variety of features like multiplicity, unstable and stable oscillatory solutions, unique stable
and unstable states, saddle points and points of homoclinic bifurcation are obtained.

In the next chapter we exploit the presence of two different time scales inherent in this
systemn, to eliminate the fast variables. The system is analyzed in the presence of diffusion.
Global uniform solutions depending on whether the critical wave number is odd or even, are
constructed. Conditions under which these dissipative structures are stable are also obtained.
Further the conditions describing the evolution of a limit cycle and conditions for its stability
are also obtained. Time heirarchies are known to play an important role biological processes
and a method of analysis presented here can prove to be useful in approximating the behavior
of such processes.

Much of the analysis presented in the rest of the thesis concentrates on simplifying the

behavior of complex svstems near bifurcation points, in particular the Hopf bifurcation point.
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Chapter IV deduces a simple universal equation, which serves this purpose. The method of
deduction is illustrated through the example of the exponential autocatalysis. This equation
is central to any further analysis of the spatio-temporal evolution of the reaction-diffusion
systems. The spatio-temporal features arising in the substrate-inhibition kinetic model are
obtained using the GL equation. For this purpose, an extensive numerical analysis of the GL
equation is carried out in the neighborhood of the onset of the kinetic and the diffusional
instabilities. Further, the stability of the structures arising is tested by studying the evolution
of the amplitude of the GL equation for short as well as long times. The results indicate that
the predominant feature in the neighborhood of the first type of instability is spatially uniform
oscillations. However, if the diffusional instabilities set in before the onset of spatially uniform
oscillations, then spatial inhomogenities start appearing. The stabilities of these structures
are also studied with respect to the GL constants. The results obtained indicate that in a
reaction controlled regime the value of the constant ¢, does not affect the system behavior.
Certain interesting features like the space-time dislocation of structures arise for certain
parameter values.

Further, the evolution of the system under the influence of noise is studied for the case
of substrate-inhibition kinetics. A simple equation of the form of the GL equation is obtained.
This method of analysis of fluctuations can easily be extended to a general class of fluctuations,
to analyze a variety of situations.

Next, the perturbation methods have been extended to the analysis of coupled oscillators.
Here, we encounter a second type of diffusional instability, known as the phase instability. A
nonlinear phase description equation is derived for this purpose. With the help of this equation,
the stability of the uniform oscillatory solutions to the GL equation for the substrate-inhibition

case is analyzed. We find that for certain realistic parameter values, the uniform oscillations
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become unstable to due to diffusional effects and spatio-temporal chaos can occur.
Inconclusion the present thesis aims at extending some advanced mathematical methods

to problems of biological interest with a view to investigate the conditions for the occurrence

of various types of dynamical features and the evolution of the system in some asymptotic

regions.
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