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SYNOP SIS

The physical properties of a erystel are governed
by the low=lying elementary exciteti ns in the system,
In insuleting crystals the most important elementary
excitations are lattice vibretionasl modes. The scoustic
modes are particularly important in low temperature
regions. In the quantal description of lattice waves
the cerystal contains an assembly of independent harmonic
oscilletors which exist in certain quantum states of
excitations, These excitations are likened to quasi-
perticles and are referred to as phonons characterised
by a definite energy and a definite direction of prope-

gation,

1f the crystel is ma/netically ordered also i.e.
it conteins an essembly of parsmegnetic ions with their
megnetic moments coupled in & particular fashion we heve
some additional collective modes, These are called
magnons, the quanta associsted with spin wave rodes, At
very low temperatures, magnons too have well-defined
energy and definite direction of propagetion, However,
there are various interaction processes involving these
elementary excitations, They cen be broadly represented
by phonon-phonon, megnon-magnon and megnon-phonon inter-
action terms in the Hemiltonian, The interaction mecha-

nisms for these processes have applicetion to low



temperesture trensport properties of magnetically ordered

solids, These processes involve collective modes.

In the present work, the effect of magnon-phonon
in eractions on the energy spectrum of the collective
modes has been studied using the Green Function Technique.

In chepter 1 the fundemental concepts of quasi-
particles in magnetically ordered solids such as magnons
and phonons and their intersctions have been discussed,

Then the powerful methedof Green's function is reviewed.

In chapter 2 starting with appropriste Hamiltonian
involving pure phonon, pure magnon and magnon-phonon
interaction terms for ferromagnet, expressions have been
obtained for the renormalised phonon end megnon mode
energies as poles of respective Green's furctions on
decoupling the Green function hierarchy at appropriste
stages, Expressions have also been derived for life time

of corresponding quasi-particles,

In chapter 3, expressions for renomalised mode
energies and life-time of quasi-j.articles in the case of

antiferromegnets have been derived using the seme methods.

In chapter 4, the renormalised energics have been
estimated for typical ferromagnetic (Ni) and antiferro-
magnetic (MnF2 ) systems and results compared with ex. eri-
mentel evidence. This comparison vindicates Heisenberg-
Bloch model for ferromegnetism end shows thet two magnon-

modes are dynamically different for antiferromagnets.



Chapter 5 comprises appendices giving mathematical
details of methods of integration required for solution
of decoupled Green's function equations of chapters 2
and 3,



Yo MAGHETIC QU&ks

Ordered mecnotie Leheviour is now known %o be e
widely occurring "co=oporstive” phenomenon cherecteri-
ging en intersct . ng system of indistinguisheble particles
obeying Termie iree stetistice, @9 required by Pauli's
exclusion principle, TFor understending the boheviour
o’ megnotic Eaterh‘-.o, geverel theoreticrl models heve
been surgested, e.g. moleculsr fiel’, [simg chein,
offective exchenge, snisotroyic exchenge, ctc, Atten ts
heve been mede, 07 late, t0o sdvamse en itinerent model
for the so-¢nlled bend megnetisetion in macnetic metels,
However, the mo@t frequently used model ia besed on
Heisenberg “mchonre Hemiltonien fo- localized mesnetic
moments ( opins ) in megnetic insulstors end metels,

The fundementel conceyt 0 8. in exchange emsnetes
from vlhiunccrs's tbcory' propounded in 1323, This
extension of Heitler-london's theory of chem.cel bond
proved to be @ remarkeble oo ntribution towerd undere
stending ferromegnetism, In this model, @ cortsin numbe:
of unpeired electrons ere mssumed to be prevent in ench
gtom, regulr-ly speced in a cryvstal, The electronic
gpins are e sumed to be locel ised ot their respective



sites, Hoilé?erg showed that an exchange effect
leading to & strong-spin dependent coupling between the
electrons ( of spin 1/2 ) cen be cesused by ordinary
Coulomb interection, if one takes into account the
exclusion principle end the quantum mechanical indis-
tinguishability of identical particles in question, The
spineorderin~ is thus e dynemical consequence of this

spinecorre lated Coulomb interaction,

For the methematicel trestment of the above meny-
electron problem, two methods were suggested in 1929 -
(1) the determineantel method of Slater,2 and (ii) the
spin-operetor method of Dirac.3 Direc exemined closely
the concept of permutetion or exchange (Pij ) of
indistinguisheble perticles as a dynamical verisble end
the associested operstor,

A
(1+4§1.s:j )s

o=

A

Eij = -
which commutes with the Hamiltonien ( i.e. & Q-mumber ).
His studies>~> led %0 & term in the Hamiltonien

n A
H, = - ZJIJ 5, ._s_:l : (1.1)
ij

where §1,‘§3 are the spin operators for the eleetrons in
the orbitaels i, j end JiJ is the effective exchenge
integral for the peir of orbitsls, The above is strictly
true for the spin 1/2 case only and is the most general

expression for the isotropic exchanre, This has,



however, been extended kinemetically for arbitrary spin
values, A rigorous generalisation of the above exchange

operator for arbitrery spin S wes given by Schrodinger,

Let " and \Yb be the localised atomic orbitels
being the solutions of

2 2
P Ze
(—g,;,-;i—‘-w,(i) = By (1) )
) (1.2)
P2 ze? )
(5 -;;;)Y o) = BpY (), )

where Pi/?m, P§/2n ere the kinetic energy operators

for the electrons i and j, m is the mess of the electron,
Ze is the charge of the ion core and - 202/1‘1‘. - l’oe‘?/rjb
ere the potential energies; Tia end rjb being the
distances of the electron i from the ion a and the
electron j from the ion b respectively. E. end Rb are

the corresponding energies,

In terms of these wave-functions, the excheange
int egral Jij’ in the general case, is given by

2
Jyg= C 8d \ —;1—3\ vay - 25, (a|Vv| by, (1.3)

where



and
ﬁ.* N
Sy = (b= Jwa vy 47

If the orbitels are orthogonal, the overlap
integral Sab is zero and only the fi st term in tre
equation (1,3) survives. This term is alweys positive
being the self enerzy of the overlap charge e [ gi) ¥b(1).
This favours ferrome-netism, In cese the orbitsls are
non-orthogonal, the sign of Jij would depend on whether
the first or the second term would dominate. When the
second term dominetes the antiferromagnetic coupling is
favoured., In this type of crystal the total magnetic
moment is Zero due to enti-parallel alignment. There
also exist systems in nature in which sub-lettices with
antiperallel spins have a finite rcsultent megnetic
moment due to one or more of the following foctors
vig, - (i) unequal spins, (ii) unequal g-factors or
(1ii) unequal number of sites in different sub-lattices.
These masnetic systems are clessified as ferrimagnets.
In the present work, however, our attention is directed

only towards ferromagnetic end entiferromagnetic systems.

These magnetic materiels have e definite s in-
ordering in the ground stete which is realised only at
the Absolute Zero of temperature. If the temperature is
8lighly increesed, excitetions in the S in system will



be produced over the ground state, The physical
properties of the system are governed by these low-lying
excitations, A knowledge of the energy spectrum of the
elementary excitations of a particular system cen give us
a clear idea of its physicel behaviour, To understand
this physical behaviour, one of the most powerful physical
t00 s is the Green's function method used in conjunction

with the spinewave concept outlined below,

B, MAGNONS:

Blooh6 conceived of a spin wave as a single spin
reversal in an otherwise ordered system which, due to
strong exchenge interactions, does not remain localised
but gets coherently distribuked over the crystal lattice.
Bloch showed that the low energy excited stetes of a
ferromagnet wouldieof' this nature, »Sloch did not consider
interaction between various spin waves or with lattice

waves,

An altogether new technique was suggested by
Holstein and Primakoff7 (HP ) to include the spin wave
interactions which was followed by a rigorous and satis-

fying treetment by Dyaon.8

They defined a set of
co-ordinates which have the appearance of spin wave
amplitudes and which accurately describe the quantum

state of the systenm,



§)

Let us consider a body centred ferromagnet, DLet o5
be the mesnitude of the spin and S, the spin operator for
the site 1, Thus it is convenient to introduce the e w
operators in terms of x, y and g components of the

operators S1 by

8 =5] 2 19 )
(1'4)
Z
nl 2 S - 31 )
The eigenstete: of the operators n, and S: is
written as
\‘rn.‘...nlo..nn = .\{/nl (105)
The corresponding eigenvalues being n, and m,

respectively m, tekes the values S, S-1 , ., . . - &,
n, takes integral velues 0, 1, . . . . 23, and obviously
represents the diffe -ence between the z-component of the

th

spin at the 1 site and its meximum velue. This is

known as spin deviation,

The operstors defined in (1.,4) have the properties:
n,=1

S a, " (28)V/2(1. —}-—_3 y1/2 (n1)1/2 U("l“ g

)

)(1.6)

)

)

n
5TV, = (292 42 (1- )12 ny+



N
n = n
1Y¥n, 1Y n,

and satisfy the commutation relations:

.- X
Z "5 3
[ S5 S5 = = S, é]

[ s, £1 = 28§

where élm is the Kronecker é - function,

In handling problems concerning spin wave inter-

actions,it is expedient to work in the second quanti-

N P P

(1.7

setion formalism i,e. the number operstor formalism. This

le ads to the concept of quasi-particles associsted with

the spin waves, Iet us denote by aI and 8 , the

creation and the annihilation operators respectively which

creete and destroy spin deviati n gt site 1

operetors are defined by

1/2
.I‘fnl = (n1+1)/ Yn1+1

172
a1‘fn1 " (“1)/ Y -1

Comperin: (1,6) end (1.,8) we have
(23)1/2 (1 ..._..__L.)Vz

w
-+
(]

+
& = (29)V2 el (1- 2 y1/2

A + 2
nl = .1 al = S - Sl

R NN

Nt Nt S N o NN NN

(1.8)

(1.9)



The commutation relations for these operstors are:
+
Lepa 1 = & (1.10)

The exchange Hemiltonim for the ferromegnet given by
(1.1) em thus be written in terms of the new operators

end assuming that a;_ 8 { 28, we can expand the brackets
in terms of the equation (1.9). Thus

(ot ks + +
H . = Const, + ; "13%“‘1‘1” ejay - a8l - aiaj)}
’
+ higher order temrms (1.11)

Now, a spin devietion or disturbance will not
remain localised at a particuler site _131, but will move
throughout the crystel, like a weve due to the strong

9 If there is only one spin wave present,

exchanve forces,
it would be an exact eigenstate of the Hamiltonian,

However, if there are more then one s in waves present
in the lattice, interaction between them will come into

play and the Hemiltonian will no longer be diagonal, The



Hemiltonian in this case is split up into two parts -
a) quedratic end b) the other containing higher order

terms of the operstors a and a',

Let us introduce Fourier transforms in the

reciprocal space defined as

1 —— =1
.i = = Z e ‘;\
'/N - A

(1.12)

N N o e S i P N

i
‘I - : Ri ‘ ’
kS

where I is the number of sites in the erystal end A
the wave vector of the quasi-particle ( called Magnon).
By using the periodic boundary condition

i
Zo’R‘ = Ka(}) (1.13)

where A(X) = 0 for A % 0 end A (2) = 1 for A = 0O,

we obtain the inverse transformetions

1 ’1L31
) = = e a )
PN i
S g
; (1.14)
iMLR ’
SUEE S e
A
L B o §
The operestors .‘A’ a; setisfy the commutation rules

which can be found from (1.10).
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+ \
[a el = § 2 (1.15)
all other commutators being zero,

From these commutetion reletions it is evident
that Magnons are bosons, In terms of these operators,

the diesgonal part of the Hamiltonian tekes the form
< + 1
H = 2 ‘K'?:_( a,ax+t 3 ) (1.16)

where iw, 1is the energy of the magnon with the wave
vector N and tekes different expressions for different

systens,

For a ferromagnet, the dispersion relation i.e.
the dependence of w, on '\ takes a simple form in the
long wave length limit nemely '\, R, L1

MW, = 2052 ( 1-¥, ) = 2J57 % A° (1.17)

for a cubic crystal where J is the exchenre integral

for nearest neighbours end z their number and

ilR
o= %Z" & H (1.18)

- h

Bh is the neerest neighbour distance.



C. ALTIFE! (OMAGNETIC MAGNONS

Let two interpenetrating cubic lattices of a
simple enti-ferromagnet together form a body centred
cubic lattice. The spin of one sub-lattice points up
and that of the second points down, In an externsl field
the spins line wp antiferromagnetically in a plane
perpendicular to the applied field. The degeneracy
associated with the orientetion in the same plane would
remain, The degeneracy is reroved by invoking an
anisotropy field5 in the +z direction so thet the spins
of the sub-lattice 1 are elirned in z-direetion and those

of the sub-lettice 2 in -z direction,
The Hamiltonim of the sys'em is expre osed as

AF = Hex+uz+ﬂam

= 2J {\‘: S13, = Hiny Z sg - H,guy Z(s{.s:),
l,n
Pp—— L))

where 1 spans the sublettice 1 and m spans the sublettice
23 HA is the enisotropy field and J is the exchange
constant., The magnitude of the spin quantum number

at each sub-lettice is the same.

The spin deviation operators for the two sub-=-lettices
heve to be defined somewhat differently, These are:
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n
st=(29%2 (1-22)24) 2
n

57 = (292 o} (12 )12 § (1.20)
3

S - S: = .I‘l -nl )

likewise for the other sub-lattice

$ = 2928 (1. 22 )
)

$ = (2)V/2 (1 . ;g y1/2 a % (1.21)
)

9 + i = (\:d- = nm )

These operators also satisfy the commutation relations
+
[ ey ooy ) = 411'

(1.22)

[ 4 d;' ] = c‘mm'

the other commutation brackets being zero, Neglecting
the terms involving interasctions among magnons, the

Hemiltonian can be transformed to

N 2 +at, _+ +
HAF = constant + 2J3 S (aldm+ aldm+alal+dmdm )
1,m

*y an(g aje - "Z‘: drd ) + H A ZI_“I"I* Z_d;dm)}
m m

LU A IR ) ,\1.23)
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As before we use the spin wave fourier trensformetions

on the spin deviation operators, which are given by

p = (52 2-*
~

-

-i)R

s, = (§)V? Z'}Rl‘& !

. )

1AR )

aI:(%)VQ zo'—la"}: §
N g (1.24)

-1AR )

A = (2 g

)

)

)

)

)

i)R
- 2 \1/2 z; S=m .+
where a., and dx are the spin wave operestors, Here
the propegetion vectors }\_ span the 1/2 points of the

first Prillouin Zone on the mqiprocal space of the
lattice.,

Thus we get

- X +a+ + +
HAE = 2J5 E )’E (.}_dxfa}_dl*' a}a 2t d}d})
by

+ gup(HeH,) Z a:a\ + (H -H ) d;‘dE (1.25)
= 3

where Y = 1/z Z .1.}.5” 0 I& = RL_RE (1.26)
h

The summetion over h extends to the nearest neighbour

interactions, The Hemiltoniem (1.25) is not diegonal,
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To achieve this we introduce the new creet.on
end annihilation o.erators ( a;_ v oy ) and(ﬁz, s})

given by

& = « cosh @ a’;sinho,\

}.-0'

»

osh 6 + B, sinh O,

(1.27
dl- [+9 )

”
o Pt

sinh Oh-r ﬁhooﬂh 0}_

+ +
dy= u’:sinh 07;+ ﬂlconh O1

In order that the Hemiltonian be in the diagonal form end
the new operators satisfy the Boson commutetion relations,
the paremeter @ must satisfy the relation

w )’\
tanhZO); = (':ﬁr-a) , (1.28)

where

LA 2zSJﬂ(

(1.29)

N N N N N

w, = g/‘JBHA/’K

1 -
H) p(Mognon) ™ 'Zm-;(a:u; 2+ v (BB, 1)
S - X
- e o« (1.30)

with

)
) (1.31)



In the long wavelength limit, we find the dispersion
relation for antiferromegnet to be linear in weve=vector
as distinguished from the parsbolic relationship in the

cese of ferromesrnets,

D, PHONONS

The spin system et finite temperastures can be
described as an amsembly of spin waves end the elementery
excitetions of such a system are described as quasi-
perticles called magnons, In e crystal, there exists
another elementaery excitetion namely the lattice waves.
The ions in & crystal are never quiécent, they execute
small oscillations about their equilibrium positions., But
since an ion is strongly coupled to its neighbouring ions
by elastic end other interionic forces, the small o.cillae-
tion spreads in the form of e disturbance through the
crystal, This leads to & collective motion of the ions
which gives rise to very important thermodynemic effects
and produces interections with other entities such as

electrons end spin waves.

Thus when considering sll the interactions, we
should consider the totel Hamiltonien as

H = HL + Hol (1.32)

where HL is the lattice Hemiltonian and Hel is the
electron Hamiltonian including the two body interactions
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of all types. Let us denote by gl’b and hl,b the
momentum end the displacement of the bth ion in the 1th
unit cell ( here 1 also denotes the vector to the unit
cel' from a fixed origin and b the vector to the ion
from a fixed ion in the cell ). Thus HL is explicitly
given by

Hom 5 5 ( ‘t N (1.32)
1,b

h ion in the unit cell,

where my is the mass of the b
The two terms in (1.33) represent the kinetic and the

potential energies of the ions respectively.

Expanding the potential energy in Taylor series,

we have,

V-V+—>_EZ;_lb[ ‘i" g, 1 Burpet o

secesces (1.34)

Substituting this in (1.33) we have

1
Ry = Cap ) P s Piyp

o

% h LN ]
1'25‘ Be LR, o8 lb\ By oBp 1 Pirger *

eessscee (1,35)

1
*+2

]

Ly

o’

Here it is convenient to introduce second quantisation

by defining1°
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Z -1/2 (b+ b ) -iql

= - i(z—
—1 b 2Nm1
q

)
)
)
d (1.36)
)
)

P

=1,b ab 'q

} ’EL y1/2 Z_._' 1/2(!q+b ) olal,

where q represents the wave vector and the branch

index of the lattice wave, e the po arisetion vector

. ab
and wﬂ the mode branch frequency of the lattice wave.
In terms of the new operators, the lattice Hemiltonian

becomes

Zﬁ (b;bq+ 5) + higher order terms (1,37)
with Nq = bqbq » the occupation number operstor which

hes only positive integers as its eigenvalues,

From the enalogy of 1,37 with 1,16 and 1.30 we
can interpret the lattice vibrational field as consisting
of a system of non-interacting perticles ealled phonons,
each having an ener(ry‘h"q. The operator b; creetes a
phonon of wave vector g"in e given branch _and bq destroys

—_—

such a phonon,

The eigenfunctions of the Hamiltonian (1.37) ecan
be denoted in the occupation number representation by
| «+ ¢« N, « ... > and the above operators have

q
then the properties
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O S S i IS % ROt §
% (1.38)

y1/2
by | oo o By = (W)

. . oNq-1 oo >

They also satisfy the Boson commutaetion relation

[bp bl 1 =34 (1.39)

qq’

E, PHONON=MAGNON INTERACTION

A precise knowledge of the energy spectrum of
excitations is essential in the study of the properties
of a magnetiecally ordered system, While the dispersion
reletions of pure phonor and megnon modes are already
known, the modification introduced by their'mutual inter-
actions hes not been the subject of detailed study.
Verious workers' =1’ have studied the various mechenisms
of megnon-phonon interaction and their effect on the

transport and relaxation phenomena has been delinecated.

However, there are experimental indicetions thet
megnon-phonon interaction terms would influence the energy
spectrum of magnon end phonon modes, In fact, in the
famous quadretic dispersion relations of Acoustic magnons,
relation of energy Ex with its propagetion veector \
nemely Em. .D(T))?,‘;he coefficient I(T) is & function

=
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of temperature, This tempersture dependence cannot be
explained on the harmonic model and one has to invoke
renormalisetion of these modes according to their inter-
action with other modes, [Iikewise, phonon modes are
also expected to be influenced by such interactions in
the form of chenges in dispersion reletions or the

Debye temperature.

F, THE GRESH'S TUNCTIOL METHOD

The spin-weve concept hes proved to be of great
utility in describing the behaviour of magnetically
ordered systems, The low temperature excitetions are
very well explained on this concept and expressions for
magnétisation derived from it seem to be in accord with
experimental evidence, However, to obtain a more complete
theory, Green's function method initially developed for
problems in field theory, has been applied to statisticel

mechenics and magnetism,

The method is simple in its formulation end inter-
pretetion, VWhen combined with the spcetrel rej resenta-
tion, it becomes a powerful tool for ettacking various
types of problems, The first applicetion of the Green's
function method to non-relativistic solid state theory
wes mede by Bonch Bruevich14 in 1955 end therefere it has
been used by verious workers in connection with a wide
15 tried to
formulate a method to suit finite temperatures but his

veriety of etetistical problems, Matsubara

Green's functions were time independent, A complete

generalisation of this method wes achieved by several

Russian workers, cited in rofbrvncon.16°19
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Let A(x) end B(x') be any two operators in the

Heisenberg representetion, where x cortains the spatial

coordinates x and the time co-ordinete t., We can

define the Crecn's functions as follows:

Gr(x,x')

Gg(Xyx")

Gc(x,x')

where W\

+1 or =1

20,21, 22

K AR)3B(X") 7, = = 10(t=t') < [A(x),E(x')]':

- 10(t=t') < A(X)B(x')?+ 1 S(t=t")<B(x')A(x)>

“e e ve e (1.4')\‘

< A(x) 3B(x")V a= 10(1'=t) < [A(x),E(x")]

=

10(t'=t) A(X)B(x')) = in@(t'=t)<(B(x")A(X)>

in

ser-eee (1.41)

<<A(x);B(x')ﬁc = = 1 {TA(X)B(x')>

- 10(t=t') (A(X)B(x'))= 170(t'=t) <(B(x')A(x)>

ececes (1.42)

is & disposable constsnt end is teken to be

eccording to A end B are ¥ermi or Bose operastors.

Generally speeking, A end B are neither Termion nor

Boson operators, for products of operestors cean satisfy

compliceted commutetion reletions,

The sign of v\ for multiple time CGreen's functions

is uniquely determined depending on whether en od: or even



O

b~

permutetion of parity 'p' fo- the Termi operators in
t1ese functions is invo ved in going ovcr to the

chronologicel order i.e. m = (=1)F.

T is Dyson's chronologica! operetor and arranges
Heisenberg overstors occuring in e given product from
right to left in the increesing order of their time
arguments and multiplies the chronologicel products thus
obteined by w = (=1)P, where p is the parity of the
permutetion of the ¥ermion opeiretor when we chaenge f om
the given order to chronological order i.c,.

T(A1(x1), « o o An(xn)) = \\Aj1(xj1) « o Ajn(xjn)’

t, v t. S t. .

31 Jo
Here ©(t) is the Heaviside step function de“ined
by

t) = 0 if t < o0
ond 1 if t 7 0.

For eny operator ., (Y ) denotes the average over

a grand cennonicel assemble

. -4 r
{P ?:: - ("e ) = Z-.1 Tr (l"e"m) (1 43)
-3./1;}371t ’ .
Tr (e )

The opecrator N includes a term with the chemical

potentiel A H = H-JL N, where i is the numuer



e
operator, Tor interactions in which the ereation end
the annihilation operators alweys occur in peir, so that
the number operator ! is & q-number, there is no essentisl
distinction between ¥ and H, Of course, for Bosons u = 0

eand again 1l = H,

Z is the grend pertition function, H is the
Hemiltonian, ky the Boltzmenn's constant and T the
temperature. The different ‘reen's functions <Gy Ga
end G, are known as retarded, advanced eand cew$afGrecn's
functions respectively. The function of ph sicel interest
is the reterded commutator type Green's funetion Gr end

we shall denote it only by G,

et us introduce the spectral funetion JBA(E) which
is Fourier trensform of the correlation funetion of two

operators A(t) and B(o) by

L Blo)A(ty e=a\t! | (YQ:IBA(E) o1F/M gy

00

= 2= Tr (e'BH ﬂoiﬁ7%Ae'i%zS e'at,

See e (1.44)

where we have introduced an infinitesimal convergence

-t |\

factor e in order to ensure the convergence of the

Tourier transfom, In Heisenberg re . resentetion,

At) = oMfIE/M yg-illtar (1.45)
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The inwerse trensform of Lgqn (1,44) is

@

IgplB) = 5o (B(o)A(t)) olBt/M-a t] 4y (1.46)

Now, we change the order of operetion as follows:
(B(o)A(t)) = 2= 1r ( o7l poilit/N , ~1Ht/M
= 271 op ( GIHWM po-ifit/n Pl p)
=21 or ( oPH +H(t/H-1B) , ~iH(t/B-ip)
= ( A(t/B-1B) B(0))
Then

Igp(®) = 5 g CA(t/n=1B) B(o) 7 oV WMa 1t lyy

-ca

Distorting the path of integration in the complex
t-plene by the anelyticdltay condition, we obtein

-f3 oo + 1§
TpalE) = S (A(8)B(o)) oifs/Ma|8l 4
- LB

-f 5 ® a
I wa  A(3)B(o)) eiftATE |t 44
2 4

J_ s
Hence



g
S

of% I5p(8) = 1 CM)Blo)y oEVIlH gy (4 4o,

-0

Combining equations (1.46) end (1.47) we have

(P2 1)3y,(8) = ﬁf-g JM) B0y oiFW/B-altlyy
eeeees (1.48)

Since t varies from -co to o the integral splits
up into two parts in the following form
o

(ePPat)a,(B) = Qﬁ” CM(t)3B(0)y oM EMHI)t,,

- o

- &u« () 3E(0) 7 | oi(E/M-da)t dt\

-0

1
- -
= TN B, KA3BY i ?

Soreenae (1049)

where the Fourier trensforms are defined by

2@ i(B+da)t _
<<A;B7>E+i“ = =m j_m«A(t)’B(")»r’ dt (1-59)

Cr)
« A'B»E-ia - ?}ﬁ' S & A(t) 3B(0) >7a ei(c‘i“)t at .

-
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The reletion (1.49) is very important for the
celculation of many properties. The equation of Motion

for the Green's functions are:

iﬁa% «A(t);B(o)»T'a = R 3(t)< [A,B]z>+ « [A(%),H] 3B(0)

r,a’

where é(t) is Dirac's Uelte function.
The fourier transform of this equation yields

1 (= I
f BBl = = 5 € [A,B]{ +C[AH]_ B77E (1.51)

Since the spectral func*ions are related to
(C Ay B'?E T io * it is required to know only tle Fourier
trensform of the Green's function, It may be pointed out
thet the Fourier trensformed equetion of motion is the
seme whether we start from the advenced or retarded

Green's function,

In the present work, the effect of Magnon-‘honon
interection on the renormalisetion of the quasi-, article
energies is studied, The Hamiltonisns for the Yerro-marnctic
and Antiferromesnetic systems are formulated in the second
quentisation representetion, Then we introduce double time
temperature Green's functions for megnons end phonons, A
set of coupled equations of motion are derived end solved
after suitable decoupling approximations, Also, the lifec-
time of each quasi-particle is derived from the relstion
between relaxation frequency end the imeginary part of

self-energy.



26

CHALTER=2

I E RROMAGNGSTS

Let us consider a ferromegnetic system crystellising
in & body-centred cubic structure fo convenience. The
treetment, is, however appliceble to any general exchange
coupled ferromagnetic system, The Hemiltonien in the

spin operator revresentation is given by

H = constent + Ha - E 2 J‘ff(le) §l'§m
1im

-epp B 5 of

1

+8 5[ ®J(R,) « OR ] (§.8) (2.1
5&15 :Z;: - 1m Rh 1°=m

where HL is the lettice Hamiltonian, the third and the
fourth terms are isotropic exchange and zeeman energies
end the lest term represents the interaction between the
exchenge coupled spins end the lattice. We have neglected
the anisotropy energy end dipole-dipole interaction terms,
3,» 3, in the above equation ere the spin operators for
the spins at sites 1 and m res.ectively. Jeff is the
isotropic exchenge integral., H the external magnetic
field along the z-direction and &gh is the relative dis-

placement of the two atomsat 1. end m, .J(Blm) represents



the modification of the effective exchange integral
owing to crystal field oscilletions and is given by

Uy = T gt Ri < | W] pofesy, (2.2)
x

’?\Jeff refers to those effective exchange integrals

which involve one excited orbitsl, which connects it with
<¢)\\vh\ ¢17 " 4%\"h‘ g, » 1is the matrix
element of the opera*tc;r_VLh (=72 _V/a_% y» V being the
crystel field ) connecting the orbital states ¢1 and @3

AR is the energy denominator,

I

in order to go over to the second quantised
representetion, we make use of the following transforme-
tions

ig. iq.
ﬂng(b; ) (egﬁ_egﬁ) (2.3)

g = (-1 E /)2, 2.4)

where b; and bq are the phonon creation end annihiletion

operators res;:e;ti\rely correspondins to the wave-vector
Q, &_g is the polarisation veetor, Yo the mode-branch

frequenecy, M the atomic mess,

The spin operators are relsted to the s in wave

operetors by the following transformations
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17\.R1

+ (28 —O=

bl = T E e a);
RS

-iAR N
S /3T Ty
A

%-S-%ZO
NN

Making use of these transformetions, the Hemiltonian

(2.5)

-1(2=2)ER
- Rl a; a'l_

(2.1)cen be recast into the fomm

H = ﬂm + Hp - Hpm ’ (2.6)
where
By o= 5 fiw, (sha,+3) (2.7)
'),
Ho= 5w (0] b + 4 (2.9)
) = = 2
e 7 L e 2% 5
with ‘
ﬁ}’. 2J Sz (1-{&) + g pH (2,10)
YL = % }h: eﬂ'ﬂh (2.11)
¢m% is the megnon-phonon coupling coefficient and is

given by
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N

- ( .‘jef‘f(% ) . gq){)./}- y)\_q— + yg -‘] (2.1:)

In order to study the effect of -honon-megnon
interactions on the energy s.ectrum of collective modes
in the case of ferromagnct, we stert with the single

perticle megnon end phonon Grecn's functionss

MEC IR

\ + e \
<<a1(t,; a)éo' )Y and ((bg_(t); bg

Taking first the case of megnon Green’s function
end noting thet megnons w.e bosons, the equation of motion

is
i -% 4 a}(t); a}(t')}? = m;(-b-t') { [al,az]_y
+<4[aL(t);H(k)]; a;(t’) 7 (2.13)

congide tot ilt 2
Now congidering the total Hemiltoniar er = Hpmm*ﬂmp

rro
as determined in equetions (¢.7), (2,8) end (2.9) and

noting thet verious commutators ere as unders

: %’ a;] = 1 2.14)
: ;;’ Bl = 0 (2.15)
( a;, H ] = h a): (2.16)
[ eyl = Z&: Frrag & aq Py 2.17)

The equetion of motion becomes:
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S «a (t), 8l ()= Hd(ttr) + a,(8)5 &£y

+ '
Z Pr+0),0% B g (B (Bg(0)=b_g (£)3a(£1)7
...... . (2.18)

Likewise, the equation of motion for phonon Green's

function will be
e d +
Iﬁ.dt K« bg(t); bg(t') 7

=f(é(t-t')([bg,b;| y + «lbg(®), Hegp o (9]0

ferro

eeeees (2.19)

Noting that the various commutstors are:

[y b;] = 1 (2.20)

[by Hy ] = 0 (2.21)

[bgs H) ] = h’wq.b (2.22)

[bg_’ Hnp) =) 7 2a 1—-q S L B
RN

The equation of motion for phonon becomes



31

g5 (By(t)3 BI(E)y =

= WO(t=t") + Mg &b ()5 BI(E)Y
+ ) Fg €8 (D), ()5 bt ) (2.24)
RS

In order to solve the coupled ecuations in (2.18)
and (2,24) we require the equations of motion of the
higher order Green's functions on the right hand side

of these equations,

The verious comrutetors required for the purpose

are:
[a4qPa? 831 = wpd ., (2.25)
( \ﬁqb;’np ] = trq \ +q b; (2.26)
[al+q a'"n ] = Mg Beq B o, (2.27)

+
[‘quq’ﬁmp] = 77 (xa+qq)q, ‘x+q+q1 q,‘bq
.7

+
* g(l) »(=9) a’).". z_—?(lﬂ‘"h)o‘h a)“"Q“‘(h bq hq1
b

+
Z g(‘)ﬂ’-q) .'1'0'(1 ‘H'Hl 3L1 (2028)



end

l-q ""\’ bq ]
+
[ ‘1‘q al, Hm ]

H
r=q .m’ P ]

& b
v+q % +q P-q

- g

hY) (=q) s S %

* Zg (M+araq)a, % +qrq, )

9
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(2.29)
(2.30)

(2.31)

b+
-q Q1

+ E:Eﬁ(11_q) P 8+ .

9,
= 0

A <A i
= (A-A 9 o2,
= 0

+ ) 9
L (earag)ay 8 g, P-q’~q,

(2.,32)

(2,33)

(2.34)

(2.35)
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+
+ +
* ; iarag)a, B-a ®araq Cq,
1

+
- Z g(l-q).q1 X ~a-q, ® %bq1
44

" 29

+
a a b
q1 (\-Q) B q4| A=A=qy "Q1

(2.36)

The equations of motion of tie higher order Green's
functions are:

S AR RO LT a¥(t)) =

= (=t )G, Lo wA ot ), ()5 B8
¥ *ra Foar
+¥¢7\+qﬂ1'q1«.}*q’*q1(t) bq1(t)bq(t )3 n}\(t W7
1 |

(%)

& .
-9 "\( -q) «a’)} )3 a'). S L Zg')\ +q4‘Q1,Q1 5 a)\+q+q1
Y

+ + 4
bq(t)l_)qft) e (t')y

* 0y
+;¢“1(_q)«a&ﬂ(t) aM+q(t)- au(t); a)\(t )7

| secee (2,37)
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iR -a:g &« an(t)b_q(t); ‘;(t')»
= ﬁé(t-t')&kﬂ’ A®_g> W «a (4)b_ (t)3a% (£7)Y
+ A?.«t-q«ax-rq(t)b-q(t);a;(t')>)" ﬂ;\’ (-q)«ak(t)’ a;(‘l:')77

, + 4,
I

+ Zx': gH('Q)« qu(t) a; 1+q(t) aﬁ(t): a&(t') ”

() g
- ;g}&qﬂlm <“x+q+q1 b_q1(t)b_q1_(t); e (t')7
|

secees (2.38)

and

a e
i gy Ca_q(Ha (1), NSO
+ +
= (A -4 _)«e’y () 8, (%); b ()%

+ + Wik % i
. ;”m,.qf“‘x _q(t).Mh(t){bq1(t)-b_q1(t)).bq(t )y
" .

+ + +74 01\
- iq:’x-q1.q1<“x-q-q1m‘;\(")“’01(")"’-11(”)’bq(" »
1

seeee (2,39)
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Before taking the energy Fourier trensforms of
the equations of motion noted sbove, the higher order
Green's functions may be decoupled by making the
following epproximations:

« ‘1+q+q1(t) b;(t)b.q1(t)i ‘;(1’-') »

+ + ; .
= q,-q1<bq b-q1 7«‘)&”1(1:); 8’ (t) ) (2.40)

+ Fras
e, (thea . 1(t) a)1(t); a7 (t") 7
+ , -
= JM' 1f+q1(1+<aM+q1an7 )«ah(t); a%(t D)

ete. (2.41)

Terms involving factors like b'b’ and b b may be
a'q, qq4

neglected, Thus the fourier energy transfo ms of the

various equetions of motion will be as follows:

: + - + +
(Shy) o s a0g = 3 + ) Phiq, d®raqlPabag)t 81D
q
sreen (2042)

+y - 1 * + o
(E.qu) ((bq; bq7E a0t E‘}\ ¢1q«'1-q a)\; quE (2.,43)
+ o+
(E.Ahq‘m"q IS LWL &\ g

= P (-0 Mg~ Vg Y By s 8]y (2.44)
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(B4 A g =By )8 Pgd 800 5

= B (wq) (1HigR ) €85 0% g (2.45)

and
+ +

+ ~
=D0eq),(=q) (BB _qXPgt Dy g (2.46)

where Nq and n, are the phonon and megnon occupation

numbers respectively.

On solving the coupled systems of equations (2.42)
to (2.46) single perticle Green's functions reduce to

2
+ 1 . g (r-q)g (N =R g )
«a 3 a Vo= - [b-A + E O
')\ ). n ’A. —\-
q B A}_q +‘h’wq

2 -1
(4,0 (+lg + )
+ Z - - (2.47)
q * A»-q - 'q

2
Pra'Beg = By )
E - A.)L + A)‘.q

eseee (2.,48)

_ i =
«ogs by 7 = g [E-Bmr 5 R

Equations (2.47) and (2.48) can be re-expressed as
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1 +)y =1 i -
LY e =5, AA-Zm(ER) 2.49)
A + 3 -1 . - 5
5w & by 3 by 7" =B T Z (W) (2.50)

where E (8,) eand (wq) are Self-energy marts,
P

complex in genersl,

The principal parts give the renormslisation of
the respective single particle energies whereas the
imeginary parts are related to the life-times of the
quasi-particles. The explicit forms of the self-energy

perts are

(ﬂmi ° = g * )

Zm(wj)z B § E - A +"!ﬁvq

A=q

148 +n
(el s o )

2 a A
* E |# 2.51)
A -
3 E + A,x_q fqu

and

”’xqt ° (B g = 1)

x -
Zp('q) 'Z (BeA 44 _o ) o8

P |

In the long wavelength spproximeti.n the coupling

cocfficient can be approximated as
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2 1 n 2 2 2 4 2
\Zrql .—%.i;;q[s'.r(a)] [2a"a’ cos®e, ]
Q0000(2.53)

The megnon concept being valid only in the low
temperature limit, the expreasions for selfw-energy parts
worked out in this limit are given below, JUetailed
integration has been shown in Appendices A end £, It will
be noted thet in the expression for self-energy parts,
energy velues E and occupation number are revleced by
the unperturbed values for the magnon and phonon cascts,

Thus we get after integration over /- and gq

2
0 [8 %(R) ] 4 55T 3/0 0
Y me - et G

3nl Mv©

w =02/ 2 (2.54)

where [ (3/2) is the Gamma function,

Thus for a cubic system, the renormalised megnon

energy becomes
'KX = ( 2038° -cr/2y) 2
= D (1= b2%/? )2 (2.55)

where

D = 2J85a° and b = C/2J58° (2.56)
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iikewise

3/2 2 4.2
[ kg’ [s ®3(R)]
16 372
e (')'3: 2. (351”7 w?
- F/2 2 (2.57)

and the renormalised accoustic mode phonon dispersion
reletion becomes

Twg = Bvgg + F1/2 ¢ (2.58)
Thus there is modification only in the second order of
the propagetion vector, This does not seem to be as
strong as in the case of magnons, Of course, the yro=
dominant renormalisetion effeects on the phonon modes
will arise from phonon-magnon intersctions in the high

temperature region i,e. &bove 20°K.

Next we celculate the life-time of magnon and

phonon modes, ihese are

1
——-—(—-- = - "' Im (2, 9) (2059)
Tm’p }'g) Z m, p

__.— -—

IR - § }alz (1 -n _ )(‘(D—A +iw )
Ta(® = :.éjzg A =g " Mg

+ (1algn,_0) d(ea+ by q =g )} (2.60)
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which on integration over q ( aeppendix C ) gives in
P aad
the low tem.ersture approximation

2
1 [s ®3(R)? k5.0, -o3/6,r
To * Mo Kk Rl ] a2
(2 ¢ 3

secsees (2,61)

where we heve used the notation

OD = ’Kvs/kBu and °° u2J5/kB

In obteining (2.60) from (2.59) end (2,51), the
use has been mode of the Dirac identity

Lem 1 = £ -11d(x (2.62)
€*o ¥ + 1§ »

Likewise the phonon life-time is given by inte-

gration over A (Appendix D ) es

) (s %R 1° Kyt o
p(a M(k 1) (kgdg ) c
-9 /T @
x [1=-e¢ ¢ ( '5(2, +qa )’ 1 x

o /T ( e o
E 5® {(qa+a§ 2-(-9-3)2-1} (2.63)
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CHAPTER-3

ANT I¥ERROMACNETS

In this chapter, we consider the cese of a simple
two sub-lettice antiferromagnet, one of 'up' spin (S )

and the other of 'down' spin (sm ).

Before writing the Hamiltonien for this cese, a
few words about the structure will be relevant. The
possible orientetional degeneracy of a ferromagnetic
state could be removed by an externsl magnetic field.
This cennot be done for an antiferroma 'netic system in
that there will beexchange altcrnation between two
equivalent cenonical states in the ebsence of anisotropy
field, Hence it is essential to include the effective
anisotropy field in the Hamiltonien, Thus we express

the Hamiltonian for an entiferromegnetic system “10

Z2J(Rl’ ) 8,.8 -%HZ

=1l,m

'HA%(;S:'ZS;)
m
+H, +8 ( ®J(R, ). dR ) (8.8
L g ; B+ 9Ky 1°5p

o ceee (3.1)
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Here 1 spens the sub-lettice one and m spans the

sublettice two, each having N megnetic atoms; HA is the

enisotropy field,

Index j runs over both sub-lattice

points, Other symbols heve the seme significence es in

chepters 1 and 2,

The megnitude of the spin is assumed to be the

seme on all marnetic sites i.e. \31\ = \Sml = 3,

Let us now introduce the fol owing s in-wave

transformations

s+

1 =
Si =
5—3: =
and
+
Sm =
q; =
S+s; -
where a

S

—

operators,

. <17,
N ;e L5

-110
(& 172 T LR
A

~i(p= '
RECSTRL

(>
»

Ty

i
(b
I

3
-i).
(%%)1/2 Ze R N
A
PTRY
P T aey
AN o

N " e e e S S

N e N S N S e Nl o

(3.2)

(3.3)
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However, we have to introduce a further canonical
transformation to make the magnon part diagonal and to
write the interasction terms in the seme representation,

These are:

a, = nmcoah 0’: + B";;sinh O,;

Rad

(3.4)

a = u';;sinh o, + B,cosh 0,
alon: with their Hermitian conjugates, where (a y @)
and IB s B ) ere the new megnon ( creation and anni-

hilation ) operators, The angle persmeter is given by

w )’&
tanh 201 = - "‘-9'_+ P (3.5)
— e A
where
v, = 228J/*h (3.6)
'A = Q‘B!{A /h (3:7)

Thus our Hamiltonian (3.1) cen be re-expressed as

H H + H + H

ar = Hy b int (3.8)

where

= Z'ﬁ' (‘ a + ,.) +Zh' (B B + 2) (3.9)



1
Hp = Z:K'ﬂ. (bi.’hq + > ) (3.10)
and
b* +
z:[ Aﬂg(“%ax -g% “aa}"‘_lbﬂ )
+
* B (%P gPg = @) Big B )

o . [(we+wA)?-wz

%
[R— )
I+

4
=

(3.12)

N e N o S N

Wy o= gugl /A
end Alq and B eare the coupling coefficicnte

hswing the_ form

hq=43( .'_I(R!L) .gg)[();}_g-y);) sinh (9}-9'01_)

+ ( 1-)’q) cosh ( Qk-q- 01) ]

Bpg =45 ( P3(R) g [(_ ) com (8 _g=8,)

et

+ ( 1-y3) sinh (g _-6) ] (3.13)



As in the ferromsgnetic cese, we again follow

the method of double-time temperature Green's functions
nd
for the two magnon modes?for the phonons,

These ®reen's functions are defined by

«“);(t)! “z(t')» y &K B ét); B;(t')>7 for megnons

and

<<bq(t); b;(t')7) for the phonons,

Their equations of motion are given as

iA él.((u)\(t)' a+(t'))7 ='ﬂé(t‘t') ¢ [“k’a;] >

t fa (1), H()]p «l(8) ¥ (3.14)

g By (01BN = met) ([B,8% ]

+ & [B(1)y H(D)];s B;(t')» (3.15)
and
5 €83 BI(+) )= M(1=t1)< [b b 1>

+« [by(®), H(t)]5 bI(') > (3.16)

Noting thet megnons and phonons are bosons, the

various commutators ere as unders



[ f},a; 1
[ “&’Hm ]
[ "-3 9Hp ]

L az‘ B Hint]

[ 8 38%]
8, )
B, )

( BX‘ ’H:I.nt]

and
+

H

[bq’ m]

I

- 21: Mg Bag®a

16

(3.20)

(3.23)

- B, a,\ b + A
Zq_: (A+g)d"r+a'q zqt (A+a) ¢ ara’q

(3.24)

(3.25)

(3.26
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[ g By 1 =t b (3.27)

+
[ bgsting] '; fa*1%-a * Z;B)q“flﬁx-q

- Z ,lq ,x-q {3ak8)

The equetions of motion become
h = « @ (Bry @ (%)=

= ho(s-t1) +Z:A(1+g)q« qéﬂb;(t); i(t')»
q

M g% % qPq(¥)1 a'(t") 7

q

-) B ha < Boq Pq()s B8N+ Tl ca(v) a(tr) »
i}

15 35 < B(4)1BY(80 )y

+ L
('&M;)q«“mqbq(t)’ Br(t")

= Bé(t-t') - Z B
Y
* '; Arvayg «PBosq Bol)s B;_(t') »

- Z e, - qb;(t)aﬁ "y + K';&«B}(t)' pz(t.)»

susany L5:30)
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and

ik =5 <<b&(t),b;_(t')».

-’ﬁé(t—t')-ﬂ!‘g—«‘bg‘(t) ;b;(t') )+ ;A)‘q((q.ko,A q(t)'b ('t')))

+r4 + +ra
+ Znaq«a}p}_q—(t)bg(t ))}-5{_—1\3%@}5&-‘1—(1:) ;bq_(t )>

® oD (3.31)

The fourier energy transforms of the equetion (3,29),
3.30) and (3.,31) give the following set of coupled

equationss

s et + - M M
(h._'ﬁ',);) «al ;a}ﬁg =55 + 2 A(l+q)q<«u&+gbg; al»E

e + - .
(E".ﬁ'_@) K BL'BL»E on * B( +g)q«a~x‘+g+bq‘ ‘i}»E

q
+ + +
‘L—_-A(Mq) “PrqPqt BVs - ZALq«B}-Sbl' Bow i
q
= smawaa (3.33)

and
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| g gt T o v
(&"‘K'q) & "g_,"’g "g =y + AZ\%« % % g bg» B
- A

* EB}q«“ b =a} by a e = Z BURLN Bx BPELN 773
X

LR L B BN (3.“)

In order to solve these squations, we have to write
the equations of motion for each higher order Green's
function on the right hend side of the above equetions and

to find the Fourier energy trensform in each case,

The verious commutators required for this purpose

ere as under:

+ .+ +
Loy 1 = % (539
+ + a
[auﬂl q’ Hy ] = ’IT'-7&‘,!!(7.1’,‘411%‘L (3.36)
+ +
[“.E’,Sbgvﬂp ] = -‘h'g “A*gb‘!, (3.37)

! . " :

[ agParfimt] = ) Mgvasy) oy wavay o,
g
i

+
Mura)a Z; A(}*ﬂ)v31“7:*9"‘1_1b‘!b‘!1

A . B +
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Noting the sbove commutetors end teking the fourier
energy trensforms of the equations of motion of the
relevant higher order Grecn's functions, we obtain the

gbllowxng sets of coupled equations for thems
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As in the ferromegneticease, the following type

of decoupling cen be used:
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ete,

Furthermore, Breen's functions of the type
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have been neglected as the. e is no direct intersction
between the magnon modes within the Hamiltonien described

in equation (3,1) and (3.8) to (3.12).

Also the velues of ¢ b; yend (b ) hove been

assumed to be zero,

With these approximations end using the occupation

numbe representation i.e.

4“3(1};) = n)\ g
BBy = nﬂl % (3.83)

and %

)

{ by L = N

We obtain the following equetions for the higher
order Green's functions:

+ + a * +
E‘ .ﬁ" b = -
( 17'3“3 g) «“):-q_ %Y AM-( 1 +n):_% qu <<a)\_; «l

veee (3.88)



61

a + - B +
(""‘ﬁ'xrg"r'q) 3 “1+qbq‘ @, = 'A(qu) 99(1+Nq_) &« a&;a x_>7

cee o (3.85)
. + B +
(E+AwW. > q‘ﬁ‘w )<<ﬂ “377 = B{g(nl_-_'uq) <<a£; a?\_»

cesese (3.86)
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Bshw_ N * i p +
(L-mw1 "Sm"i )&« ﬂ}\ﬂl_qzbgﬁ- A q_.n)_q—«bq.; by (3.92)

Using the above to solve the set of coupled
equetions (3,32) to (3.34) we have
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Therefore

12;4%‘1,»,;77-’ = Qe - ; B(q) ] (3.95)

Here Z :E(’/\), E ::E(A)and E E(q) are self-

energy perts of the two © megnon: modes and phonon:
Tesvectively, Their principal perts give the renormali-
setin energies whereas the imeginary parts are releted
to the life-times of corres onding quesi-particles,

For eveluasting the renormalised magnon and phonons
energies from the above expressions, we replece E's

occurring in the integrends by their unje rturbed values,

However, a very importent result follows from the
expressions (3.93) and (3,94)., We note that the two
megnon modes are no longer degeneratec even in the absence
of the external magnetic field, The relative shift will now

become 2 function of temperature.

We shall evaluste the quantities under the long
weve-length apyroximation in the low temperature region,
‘For this purpose, explicit forms of the coupling coeffi-
cients will be required,

We evaluate these coefficients under the long wave
approximatio ignoring the enisotropy energy i.e. we

assume
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tenh 2 @ = - yL (3.96)

4 2
T SN O N v
L ) (3.97)
where 5
p? . 168 (2;;“%) [ (R (3.99)

This is still a fairly compliceted form, One can
simplify this further fo some specific situations such as
ekl s D lal ena [af ~joy

Under these conditions, the coupling coefficients

assume the simplified forms ( See Appendix E )

for™\v7lal  or |N «|q

45 4
2 2 2 a') 2 =
- =D 2 ~q. 3o
4,& BZW— = 9] ( 1+ cos o}q_) (3.99)
end for \X|v (g
2 w st th-afd* ;
A'M = Byq= A (3.100)
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After integration over q as per details shown in
apendices E and T, the real part of the self-

energy for Magnon modes comes out to be

B ST = (A =B ™A (3.101)

Re 2: B(A) = (Ay- 3B 4 ) (3.102)

where Ay, AB are the gero point phonon contributions

and Ba end B arise from themal phonons, Their explicit

B
forms ere
2 e 2 2

b o

N [ "J(R)) 1" Ha 70;2 9;& 5%
Mv kp 2(8°-9,)
. 432[ o [ Ph)]zﬁaa (902+80%+130i0D) * )
o In My Ky oo} (05 - 02)
v seense (3-104)

Ag = 0 (3.105)

. 4570 C(R))ma" [803-80392 + 708t - @7 ) o
= (4
ST NI

LR RIS . (3.106)
where @, -“ﬁv. / kge , the Debye temperature
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and
25d _/2g

: kp
and f’(4) is the gemma function,

Thus the renommalised energies of the magnon

modes are
By = 250./78 Ve +guf +(a-p T )% (3.107)
By = 287 /% Xe - guf - By ado¥ (3.108)

It is seen from the sbove two equations thet even
in the absence of external mernetic field ( H = 0 ) the

two brenches are no longer degenerete.
“he splitting iss
BByg = 8, = Bg = (A =[5, - B ] ™ ) (3.109)
where
R LRI Y _ 30530302 - 0,08 - 07 )
« B 3%° Mk o of (o2 - 8l )

LA LN (3.110)

The shift messured es a fraction of the unperturbed
magnon energy in the esbsence of magnetic field is
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(A, =[ B =3B 1™
ap . 2 —— (3.111)

28J /'2?

The zero-field contribution to this splitting is:

A

Byp(?=0) A
23Jd /22 , a

(R HE o, - 9,
T2 /7 kgiv, | 2(85 - 00)

JA

(3.112)

In the same manner, we obtain the renormalised
phonon energy, The form of the couplinr coefficients,
being the seme @s indicated in (3,99 ) and (3.100). After

integretion over megnon wave vectors as shown in appendix H

we have
1 sq Jug]? Yo
Re B(a) = 2 q
Zp 3 ‘ﬁskB a
= kg (3.113)

Thus the renormalised phonon energy becomes

A
2
B, = v (1 + —:{’ﬁ: ‘) (2.114)

The correction comes in a higher order term
inveolving the wave vector, Also upto this order, the

correction is temperature indevendent,
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A3 in the case of ferromermets, the phonon
renormalisation due to magnon-phonon intereetion is

weaker than the magnon renommelisation,

The life times of the specific magnon and phonon

modes are celailated from the formula

1 2 +
h"fmzi('Hio) (3.115)

In perticular

1 on 2 "
6 - & zA(&’fS)o‘l}“ﬂq) é(x;.zrwzﬂ1 v am )

2 (4
+ A)Lq“*n}-q -Nq ) é (B -ﬁ}_q: ﬁiq_)

2 .. B -
* }3%1‘1(1:%_.q - Nq—) t‘ (B + Kv}_q - 'hwq)

scssen (3'116)

2 -

+ A(—ﬂ}).g.ﬂq_é (B = h’i)u‘q_-‘hwq )
2 B

N AR $ (Bt o+ 1)

Ses v 00 (3.117 )
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and
=

2n 2
= - T;[ - A?_lq,_(“)-g «n® ) s (B-‘E' +‘h'w)\_

—

B q_( 1+ rgf_g + no.;i) o (E-‘Kw};-‘l‘fw&_&)
* qu_ng_g $(es o =T o) ) (3.118)

Converting the summetion into integration and
evaluating the integrals under the long wavelength and

low temperature apyxoximation, as shown in detail in

apprendix 8, we have

*(Ph)] % _21. 5 =B a/k,T

3.11
Tm nv MK 0 OD ) 5 2
S l[ J(%)] -0 ﬁ/kBT
1 6 m
(1 3.120
'Tmﬁ =T kag [ OTD + e ) ] ( )
and

a [J(Rh)] o -E/kT
A% Wt E Hg e

seeese (3,121)
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CHAPTER-A4

DISCUSSION AND CONCLUDING REMARKS

In chepters 2 and 3, the renormalisation energies
of magnon and phonon modes have been calculeted for
ferro- end entiferromernetic systems owing to magnon-
phonon interaction, The magnon-megnon end phonon-phonon

interaction effects have, however, been neglected,

The results show thet the renormaslisation effects
on phonon modes due to magnon-phonon interaction is
quite feeble, However the magnon modes asre influenced

apprecieably,

In the ferromarnetic cese, the renormalised magnon

energy has the form

o= xmp° | (4.1)

with

X1) = D, (1-b272) (4.2)

The temperature variestion of the spin-wave coupling
parameters D(T) as given in (4.2) is in close accord with
the experimental results on thin films of cobalt and
nickel as obtained by Phillips and Rosenberg,
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In order to compeio our peremeters with their
experimentsl recults, we estimete the quentity b which
is given by

£s .J(Y‘h)]z 0’

b —-:———-»--(§°>3/2r(§.\.

Hvekn®e
Fron en eeriier u‘tim'tion,g ve heve the velues

-

‘:(nh) “ 10™° aynos

GoiL) 630%

e = 3.5 x 107 ons
v, = 9 x10° cug/sec.
8 s 0,5

M = 50 x 104 ons

Moking use of theoe values, the megiitude o7 b is

b = 2x 107 ( % )=/? (4.4)

This is feirly close to the velue obteined from the
8pin wove resonance 6s well o8 from the second order temm
in mametisation,

The percertage chen~e in the spin weve coupling
varemetor [ Dy = D(T)]/D, x 100 from 0° to 300°K 1s



72

found to be of the order of 10 %, This correction elso
is of the right order a&s compared to the experimental
velues of Phillips and Ronenbergjg on nickel films,

This suggests thet phonone-magnon renormelisation
effects make the coupling paremeter D tempereture dependent
in the right menner, Also as the derivetion is based on
the locelised spin model, this calculetion would thus
vindicate the Heisenberg-Bloch model of ferromagnetism
in nickel,

Let us now consider the renommalisetion effects
in 2 suiteble antiferromarnect e.8. Mnl"z. The various

vaelues of parameters required arem

S - 2.5
®J(R) 107 4

% = ynes

0. [+]

oy " 250°k, o, = 30°k.
v, - 5 x 10° oms/sec.
. - 2,57 x 10~° cnm,
M = 50 x 10~24 gms,

A

o Ba end B, respectively denote the Zero-point

B

phonon contribution for a-magnons, and thermal phonon
contributions to a« and B megnons, as defined by equations
(3.103), (3.104) end (3.106 ), Their estimeted values

are as unders
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A = 0,14 x 104 erg x cm

6,0 x 10~32 erg. (°K)4 X em

B =
* 4
BB = 18 x 10722 erg. (°K)4 x cm,

Furthemore the gzero-point contribution to
percentage splitting in the absence of external magnetiec
field AEaﬂ/E(T=O) x 100 comes out of the order of 17,
The temperature dependent correction ( Eqn, 3,710 ) at
50°K is of the order of 0.8 x 10’24 erg, x cm, and is

additive to 2z ero-point contribution,

It is thercfore ressonable to conclude thet two
magnon modes are no loncer degenerate and it is desireble
to look for splitting carefully, Thet they are not
degencrate is not surprising in that the two modes are
dynemically different, The splitting caused by magnon-
phonon interaction can be explained by the following
argument, In the second order, the spin phonon effects
after elimination of phonon coordinates lead to effective
spin-spin interaction, Thus each sub-lattice sees an
effective magnetic field, Inasmuch as each sub-laottice
interacts diffeently, the two modes get split up,
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ENDIX =

Magnon self-energy for ferrome ncts under
low temperature approximetion,

By equetion (2,51), the Self-fnergy for ferromegnetic

magnons is given by the expression

2
)
Z m(E}.) - z: [glql A_‘q 3 .\
. B - A&_q_ ‘ﬂii
(1+H +n )
. q " h-q
Z oy (5.1)

Now by Eqn, (2055)

2
9,4 = 8 X s ®3(R12 (\%%* cos %, (5.2

energy
Assuming A « q, the expression for self/in (5,1)

reduces to:

[ s 'J(R)]

EEAD S

2 2
xa %% 9q 3q%0% /1 |

. e
( #v,q - 208q°a° )

(5.3)
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A

Transforming summation into integretion, we have,

e 2 4
1 Hs "J3(R)]° = v
2 e VW . |

] A

qQ 2.2
mex 2 =295q"a"/kyT
qQ e
X 2n dg

(fivg - 2J3q 8’ )

2
x cos qu sin OM . doM. (5.4)

Taking the uiperturbed value sf the phonon energy
in the denominetor and noting thatn-s-‘ﬁﬁé}‘ﬂ}:he resl part

of the self-energy,

2 [s®5r)° T N

3n I

DR (505)
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Phonon selfeenergy for ferromegnets under
low temperature approximation,

By equation (2,52), the self-energy of the phonons
is given by the expression,

2
Zp(wq) - ? MM'I (og =) (5.6)
by + Mg

P

gubstituting the velue of | gm\2 end notin: that

qQ & A , the expression becomes

2 4 2 2
_ 128 E[ 5°%(R))% 2J8¢%a
Z p(wq) N v, % 1};}—-
Z X “cos %, © (5.7)
X
Converting summetion into integretion,
2 4 2.2 3
128 A S ®J(R) 18" 208q°e° Na
p('q) = N Vv _'Fs% -y X

8 B 8n”

ax

X
max v
«2J5 T
xh{ -)fo l‘/kB

n
x J ct:n2 olQ' sin qu . “,\q (5.8)
o



Hoting that

"2 2
208 )ty 8
” 1,
kyT

the phonon selfeenergy is given by

kT 3/2 [ %5(r)]%?

L (509)
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Life-time for ferromagnetic magnons

By equetion (2.59), the life-time of magnons is
given by

1 2
= - Im B (\ 1
T % Z . 9] (5.10)

This reduces to
2
sity) = ?Z |2 q\ (5g8, _g) J(E.A ")

* (1engon ). 4(3%-(!_-1!'(1 ) (5.11)

Substituting the velues of | . [2 Amq® ™

and taking the unperturbed velue of E, the expression

becomes

'ﬁ(.)) - Z Ex [s ‘J(R)] at.022 cos? 05 *
2.2

-2d " o

x é[fv'q - 2J8q212] x [1+2¢ Sae /kg ]

o vaeee (5.12)

Treansformin~ the sum into ¢t e integral we have,



AL

ﬁé‘[ s ®3(n)) %t 0

X 2n Sin OM cosQo,lq . “m x

o

7max -2J3q2n2/kBT
x qdg (1 +2e ) x

0o

x & (M - 2 %%’ )} ‘ (5.13)

On integration, we obtain

2
B[ s *a(r))°.kp.0p -03/0.T 5,
1+2e
™ zi)) M.OZ g3 [ 1+ ] e
..... . (5.14)
whe re

oy = h/v'/kBa and O, = 2J5/ky (5.15)
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APLBEDIX = D
life-time of phonons for ferromsgnetic cese

The life-time of phonons is given by the expression
1 2 - - - .
1 - DAL [8,oq" 8] (s hythag)  (5.96)

Substitutins the velues of \am\ v Ay Al_q. A-q and
n end taking the unperturbed velue of B, the sbove

expression becomes

TP.Z? ‘iﬁx 'J(R)] qucooo

: 238(2%0%+q%8%=2 08" c09, ) /keyT —?-JSA e /kBT
X'le

x4 [ Hvga + 233q%a? 2J8>q0” cosd, | ] (5.17)

Convorting summation into integration, we have
L .2, 2%6, s (m)%
To v,

2 2 2
{a.mm.l d).dOAq. X qeos °>«<l

24 d>?.2/kBT

22
«2J8 -2 8. )
. (¢°a qa cos 9, /knr “1] x

x & [ iv.q + 248q%° - 2J3qla” cos % ] (5.18)

On integretion between proper limits we find;
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a0 s %u(r) 1%kt

A 32 4 ‘B
Te * H(kp 0 (ky0)°
. o
L (2 2
x [-:-P--rqa]Q[‘l-o I (°°+qa)]
[+

_ @ [ [
T q“o‘n"”%)z}
x e ¢ ¢ - 1 (5.19)

where

-~
n
-
n
o

~

OD = 'hVJ kBﬂ and °c = 2J3/kB
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221‘4'“02 - l
fesl part of the solfwenergy for antiferromegnetie
¢ - magnons

By equation, (2,97), the coupling coefficient
° -[g-y.%.-g\ - x| L—gl +|.*.-q] +q \L—g\

4 2
+ ah\eraneal ~2a® i he? Plnea| 7 420e0)

2
1-3\ )/ 2} = et

4 o
& (24-):- \Z\-_q\ + 2%
cscicnnnnven (5.2‘)

where

1 . 192(5,::;—>[f4(a,,z12

For caleculeting the megnon self ene gy, the above
coefficient can be &p, oximeted t0 @ simplified form by
taking the saellest pﬁer of wave vector X in the ebove
expression, Zhe simplified form of this coefficient is
linesr in ) and hes the fol'owing fom

e Dzn‘ ,)ul‘

(19 cooz e _) (5.22)

q

2
Bvea)e
coupling coo’ficient whem A is comperedle to q end cen
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be obtained by teking the smallest power in A in the
expression (5.15) modified by replacing A by A +q

whenever it occurs, Thus the value of

2 | D2.2)‘ q4

2f " e

‘(r +q)q

(5.23)
B(/\+q)q

Now, the self-energy of a-megnons is given by the

expression ( Eqn, 3.93 )i

BA) = Z —Qﬂﬂ..___ (1+N )
E‘ﬁl* -o-‘ﬁ'wR

2

+ Z (1+n* wN)
Ef *a g
M-q = Ty

+Zk9:____(5

- M=q ~
T B+ h/w):_q_- ‘lﬁq o

ceecesnsse  (5.24)

In order to evaluste the above sel f-energy we

e¢100se new co-ordinates, Xy = 2a v X, =qa and

312 = = -ﬂ\ a,

Now the total volume element dx, . dx, is given
in new coordinates es

2
)« 0%, =8%" 2y dx; x, dx, x;, dx,,
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Thus

ax, - ax, ax' (x, - x} )

xQ-con-t ant I?'

dx

hxz x12 o .

) X

dx
12 (5.25)

To facilitete summetion put ( <) for (q) in the
first term of the expression (5,24) and take

), = ‘-ifv SV kgt ) ....’lﬁ'/a . X, /kpT

lo\& ) ..2J§/5E(X-g)a / kgl . ~203/78 .x, /KT

r=q

Also substitute the unperturbed value for B in the

ex ression (5,24)

With the above assumptions end converting the
verious sums into integrals by the expression (5.19), the
reel pert of the self-energy for a-megnons is found to be

( A, =p 1) (5.26)

where
\ S°L S(R)1R® (70~ 90,)
= Z
“ Mv, Ko 2(05 - 07 )




and
) - 432[2'J(3L)]z§-2 96> + 803 + 1364 oDl .
3nMY oi of (05 - 02 )
with =
”
Sy = kg8
andé
" ; 28J 423
e kp
and

"(4) is the Gemme function,
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APFENDIX - F

Real part of the self-energy for antiferromegretic
p -« magnons

By the equation (3,94), the expression for the
real part of the self-energy for B-magnons is:

B ol I maa)
Z A+Q, +u_| a s Z (vg. Q)
5 B +‘hv}+q‘-’ﬁwq L S E.ﬁ'l'*g - hiq

t“:ql_( 'y ™ "E-q )

- Z - — (5.27)
s £ - ﬁ'}"q +'h’wq

Using the values of coupling coefficients deduced
in equations (5,21) and (5,22) and using the volume element
defined by equation (5.25) and generally following the
method of integration for a-megnons as in Appendix E, the
real part of the selfeenergy for P-megnons iss

5

- +8% 3(g)1 st 80780202 + 70.0% 4 o7

" (4)

2 4 4 2 2
My ky 8, 05 (85 -6, )
eessnne (5-28)

where the symbolg e, and 0. have the seme meanings as

defined in Appendix B,

The result can be expressed sos

Re Z:n(}) = (Ag -531'4)1
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where
Aﬂ = 0
and
457 ®3(R)]1%e’ [80) - 80207 + 793_0_4!- ogl
% " e d ot (o2 - 02 ) e

Cecesene (5.29)
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APPENDIX - G

gase

By Bquetion (3.95), the real pert of the phonon
Self-gnergy for anmtiferromagnetic case is

- Z; ‘&jf (a* - n®

E—Kwi+1¥w;\_q A= A )
B
— ) o
+Z 2 (1+n?\_q+n,g)
~ E-‘ﬁ'&-ﬁ' S - -

Pd’

+ - + o na (5030)
L+ﬁw2:-‘ﬁw£+g_ Ll

M

2
The velue of the coupling coefficients 1‘)«;‘ by
B 2
A
teking the smellest power of q in the expression (3.97)
vorks out to be

Dz“ .L Qi 2
——eeee (1 + c02“ @ _ ) (5.31)
| A=q] 21

For trensforming the sum into integral, it is

convenient to choose new coordinetes

Ll = 81

and
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end to use the volume element

2%, , dx, . dx
! !ngz ! y On a basis similer to

the element used in Bquation (5,19)

-2J§/2¢.x1,,/ kT
(] 2 B
Neq = ° ete, (5.32)

end B e¢m be replaced by the unperturbed value of

the energy.

Using the sbove technigue we find

1T %9( )2.4
Re Z E(qQ) = % 2[ EL] . (5.33)
P "'r kB‘ 0‘
3
= AP . q
where
132 e 2 4
A = 8 [ ()] e (5.34)

’ > Mvg . kg 9
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APPENDIX -« H

(1) gfe-!no for a-magnons in entiferromagnetic

case:

By equetion (3,116 ) the life-time n for @-magnons

is given by

'JT‘) ?Z \A(uq)ql(“u) (s-5iw Mq + vy )

+[A§3,(1+nz_g-lg ) é(s-ﬁ'}_g - 1, )

2 B " -
+Iogl (g ) é(mﬁ-} ZamT) (5.35)
For eveluating the nbove, the values of coupling

e 2 B |2
coéfficients IA( Mq)q! , m‘ and I q!
defined by Equations (5,16) and (5.17) are to be used in
conjunction with the velues of Nq n;t_.q under lowe
temperature epproximetion end the unperturbed velue of

the energy E,

Using new co-ordinates X4y X, and X0 and the
volume element defined by Eq‘:ation (5.25) the sum can be

converted into intezrel with several terms,

After integration,

1 s %(r )12 ~tn /kp"
(T;REQ) gv'HkB*Sl $g_ v af% (1+e )
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where
v 205 {2:5:
—
8, = e o, = g and E_ = 205/7z,)a
(ii) Life~time ¢

The life-time for p-magnons is to be calculated

from Bquation ( 3,117)

)

+
R 3 ) IR PELA
2 - .
+IA(%?!)’?}N!T é(Eim'§¢g ;nig_)

(5.37)

[A \(mq @ q) é(s-:uv g )

Proceeding in the same wey as for d-magnons, we

find
2. e 2
8% ®3(R)] 4 " P
51—— - 1% e [ ET (1 +e "B/kn )]
mB HvskB Oa
RN (5.38)

(1ii) Life-time of phonons for anti-ferromecnetic case.

The life-time of phonons is given by the equetion

(3.118) ass
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P

",;—' = % Z?‘ “—A}q_f (n‘}_q_-n“&) t‘( E—ﬁv;—+ ﬁ'y-q )

B (1 +
+ B,—\ (ﬁ(“nx-‘l_m 1) : A(E.mi -‘Ew):_ql

+|Am nz_q é (smix- K';—_q—)] (5.39)

For evalueting the sbove, the values of coupling
coefficients defined by Equaticn (5,31) is to be used
in conjunction with the values of n® and & uging the

unperturbed energy values,

It is elso convenient to use the co-ordinatesx1’12
end x,, for )a, qa end () & q )a and to use the volume
element

2!:1.212.481 d‘tz
X,

for converting the sum
into integral between suiteble limits,
On integration, we find

3.2 @- 2
a3 "9(Ry)] 3 3 -E_/k_T
] i [ £+ 220 (1420 5y/%s )1e°

— +

n 3
(]Jp M'-oknooa -

a ceeee (5.40)

Where Ep is unperturbed phonon energy and other

symbols heve the meanings defined earlier.
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