## The Surface Oxidation of Metals.

## By <br> K. W. Leu.

## OMPUTEAKE

A Thesis Submitted for the Diploma of the Imperial College.


Applied Physical Chemistry Laboratories,
Imperial College of Science and Technology,
London, S.W.7.
June, 1951.

## COMPUTEASTRO

## Contents.

Page
INTRODUCTION ..... 1.
PART I.
I. The Nature of the Metallic Corrosion ..... 4

1. The Thermodynamic Properties of the Metal Surface ..... 4
2. The Chemical and Thermodynamic Properties of the Attacking Substances and of the Corrosion Products ..... 11
3. Electrochemical Processes ..... 12
4. The Influence of the Distribution, Structure and Orientation of the Initial Corrosion Product ..... 13
II. The Mechanism of Oxidation of Copper ..... 15
PART II
The Dry and tret Corrosion of Copper Single Crystals.
I. Experimental Details ..... 18
II. Experiments on the Thermal Oxidation ..... 22
5. The Thermal Oxidation of Electrolyticaliy Polished Copper Single Crystal Paces. ..... 22
6. The Thermal Oxidation of Etched Copper Single Crystal Paces. ..... 26
7. Thermal Oxidation of a Mechanically Polished Single Crystal Face. ..... 29
8. Thermal Oxidation of Electropolished Single Crystal Paces in Presence of HC1 Vapour. ..... 31.

## Page

5. Thermal Oxidation of a Deformed Copper single Crystal ..... 31
III. Wet Corrosion of Electropolished Copper Single Crystals. ..... 34
6. Introduction ..... 34
7. Results. ..... 35
a. Corro6ion in distilled water. ..... 35
b. Corrosion in 0.5 n . and 1 n . solutions of sodium hydroxide. ..... 37
C. Corrosion in dilute solutions of sodium chloride. ..... 38
d. Corrosion in 0.001 m . solution of potassium bichromate. ..... 39
e. Corrosion in hydrogen peroxide. ..... 39.
PART III.
General discussion.
I. On the Mechanism of Dry Oxidation of Copper ..... 40
8. Structure and Orientation of the Initiol Film. ..... 40
A. Experimental Results on Polycrystalline Copper. ..... 41
B. Experimental Results on Single Crystal Faces. ..... 42
9. The Rate of Oxidation. ..... 44
II. On the Growth of the Initial Oxide Film. ..... 47
III. The Growth of Thicker Oxide Films. ..... 49
IV. On the Vet Oxidation of Copper. ..... 51
V. The Influence of Distribution, Structure, and Orientation of the Initial Film on the Further Attack of Copper. ..... 53

## IMTRODUCTION.

A metallic surface exposed to chemical attack in dry or wet conditions soon becomes covered by a film formed by the chemical reaction. The initial film may be an oxide, or a hydroxide, or a basie or a nomal salt.

The observed phenomena of the surface reactions eaused by the attack are so varied that in order to consider them all adequately more than one point of view must be taken into account. If, however, the problem to be investigated is defined clearly enough all the phenomena may be considered easily from the aspect of this problem. The fundamental question may be asked: aphat is the origin and nsture of the reactions tnking place on the metallic surface during the course of the chemical attrack?"

In order to be able to nnawer this question, the influence of the following points must be considered during the corrosion experiments:

1. The the modynamie properties of the metal surface depending on the crystallographic nature and the condition of the surface;
2. The chemical and themodynamic properties of the attacking substance and of the initial corrosion products;
3. The electrochemieal processes involved;
4. The influence of the structure and orientation of the initial corrosion products on the further course of the attack.

All the above points are connected so closely with the chemical attack on metals that all of them have to be considered for the investigation to be successful.

The influences of the above points 1,2 and 3 have been investigated several times and are well recognised, but the influence of the nature of the initial film on the further courge of the attack is less well known.

The development of the nem research techniques such as electron diffraction and electron mieroscopy has now given the opportunity to determine the nature of the initial renctions which occur during a chemical or electrochemical attack on the metal surface. In particular electron diffraction (see, for example, Finch and co-workers $[1-4]$ ) is facilitating the identification of the initial reactions.

In the present investigation the influence of the structure and orientation of the initial oxide film on the further course of the corrosion has been examined. During the investigation, the other effects (thermodynamic properties of the surface and the reaction products, the electrochemical processes, etc.) have been considered in a broad sense.

The problem to be solved in the present work will be
defined as: "Of what kind are the origins and nature of the initial reactions taking place on a metal surface".

To answer this question it is clear that a study of the chemical reactions occurring on single erystal surfaces must be investigated.

PART I.

## THP MATURE OF THE MBSALLIC CORROSION.

Considering that in a corrosive attack the driving force is the change of the iree energy between the initial and rinal states it is necessary to know the energy conditions before and during the attack in order to understand the course of the renction. At the moment these demands are only partially fulfilled.

These energy conditions are determined by the nature of the metal, its structure and erystallographic nature, the surface ifinish, the nature and properties of the attacking compounds, the fom and structure of the initial film, etc. The most important points are considered in the following sections.

1. The The rmodymanic Properties of the Metal Surfince.

During a corrosion reaction the metal suffers a coraplete chnge of state. To explain theoretically the detaile of that reaction, it is neceasary to define the initial state of the attacked surface as precisely as possible. starting from the atomic arrangement, other effects such as those due to the texture, surface condition, and the influence of impurities have also to be considered. Until now these
high demends have been realised only pertinlly. It is the refore necessary to carry out the investigation under conditions such that the number of variables is at a minimum. Hence single crystal surfaces must be our starting point. Polyerystalife material with its grain boundaries, deformed erystals, variable surface structure, etc. must exhibit a wide range of themodynamic properties which will vary from place to place on the surface in an unknown manne $r$.

Single erystals, too, show various effects depending mainly on their crystallographic nature and on the surface conditions; but such variations can largely be controlled.

## a. The Metal and its Imperfections of Structure.

Metal physics relies upon the fact that the metal atom consists of a positive nucleus nad a specific number of eircuranuelear electrons arranged in characteristic envelopes. The outer electrons of the atoms provide not only the electric conductivity, etc., but also the binding of the atoms in the crystal lattice or in the molten state. In the metallic state there is no binding of the valency electrons; there is a lower Velency 11 ice that of the $V$ an der Vasls', but with larger binding energy. For the metallic state the valency electrons are freely mobile between the atoms whence according to modern views the metal surface has associated with it "free" electrons.

The evidence of the regular distribution of the velency electrons as the "electron gas" throughout the whole erystal proved to be not quite right. Brill, Grimm, Hermenn and Peters $[5,6]$ carried out a Pourier anslysis of X -ray patterns obtained from magnesium single cyystals. Their results revenl the fact that a comparatively gmooth electronic underground exists corresponding to a regular smearing-out of 1.75 electrons per Mg atom over the lattice. There are, however, in addition in the lattice discrete regions with accumulations of electrons, and in the neighbourhood of these regions a deficiency of electrons. More detailed evidence could not be obtained.

Brindley [7] obtnined similar results on ruthenium. According to Griffith and Harris [8] the re ere eccumulations of electrons on the cube edge of the lithium lattice. These experimentel results proved the correctness of the previous theoreticnl conclusions arrived at by Sommerfeld [9].

This evidence of accumulations of electrons in the crystal lattice may now result in a different behaviour of different atoms during a chemical reaction. These properties are for the present purpose not very important, because they are outweighed by other more prominent effects.

Besides these irregularities on the atomic scale, a
real metal crystal has other irregularities, the so-called structure errors. These structure faults of a real erystal are associated with structure sensitive properties, that is, a metel single crystal shows a chemical behaviour which depends on the development of the structure. A single erystel is not in fact in a state of ideal the rnodynamic equilibrium. In these places of structure errors corrosion occurs first, on the modynamic grounds.

According to Renninger [10] the se structure errors may be classified as follows:

1. Macroscopic defects of a size order $1-10^{-3} \mathrm{~mm}$.
2. Hosate or block structure of dimensions $10^{-3}-10^{-5} \mathrm{~mm}$.
3. Lattice faults (Smekel, Toylor) of dimensions

$$
10^{-5}-10^{-6} \mathrm{~mm}
$$

A characteristic difference has to be recognised between a single crystal grown from the molten metal and a single crystal obtained through recrystallisation. The erystals obteined through recrystallisation show more structure errors.
b. The Influence of the Crystellographic Mature.

It is well known that certain physical properties (hardness, friction, electric conductivity, the rmionic and photo-electric emission, ete.) are due to the erystellographic
nature of the surfece.
Several investigators have studied the chemical properties of single crystel faces, and the results obtained have an important bearing on the phenomena of the corrosion of metals. According to Fricke and Wagner [11], Haul [12], and Smoluchowsici [13] the amount of the free surface energy of non-polar crystals (metals, rare gases) varies from one face to another with change in atom population density. According to Pricke [14] the iree surface energy ealculated from the heat of sublimation is as follows

|  | (100)-face |  |  | (111)-face |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Al | 1909 |  |  | 1618 |  |  |
| Cu | 2892 | " | ${ }^{4}$ | 2499 | " | " |
| Ag | 1920 | n | $\cdots$ | 1650 | a | 1 |
| Pb | 871 | " | " | 745 | " | \% |

The difference between total and free energy is small. These differences in the free surface energy may result in different electrode potentials of the distinguished Paces. Indeed, Sato and Maruyama [15], Druet and Jacquet [16] have shown that the standard potential of zinc and aluminium single crystal faces proved these suppositions. According to Sato and Maruyama [15] the standard potentials of zine single crystal faces relative to the standard hydrogen electrode are as follows:

| Paces | mV |
| :--- | :--- |
| (0001) | 870 |
| $(1010)$ | 851 |
| $(1121)$ | 809 |

and for aluminium single crystal faces according to Druet and Jncquet [16]

Braces
(100)
(111)

Potential in V.

- 1.15
- 1.20

Gwathmey and Benton [17] showed the difference in the solution potential in the case of electrolytic etching of copper single crystals. The distances between the opposite poles of the faces decreased in the following order: (Electrolytic etching in a solution of phosphoric acid. Time: $47-3 / 4 \mathrm{hrs}$. Current density: 0.006 amp. $/ \mathrm{em}_{0}{ }^{2}$ ).

Poles of the faces (100)

Decrease in man. 1st Exp.
0.63
0.91
0.95
and Exp.
0.63
0.88 0.88

It was also observed that the rate of a chemical attack depends on the crystallographic nature of the surface. Tammany
oxidised copper single crystal. faces in air at a temperature of $260^{\circ} \mathrm{C}$, and observed that the (110)- and (111)-
faces oxidised much faster than the (100)-face. Similar results were obtained by Benard and Talbot [20] heating copper single crystals at $900^{\circ} \mathrm{C}$.

Leidheiser and Gwathmey [18] have shown not only that during a chemical attack the differently orientated faces have a different rate of attack, but also that the speed of a catalytic reaction depends on the crystallographic nature of the surface. They examined the catalytic properties of well defined copper single crystal faces on the reaction between $\mathrm{H}_{2}$ and $\mathrm{O}_{2}$ at a temperature of $400^{\circ} \mathrm{C}$. According to the se investigators the rate of the reaction on the (111)-face is much higher than on the (100)-face.

From the above results the important effect of the crystallographic nature of a surface on the rate of a chemical or electrochemical attack is shown clearly.

## c. The Influence of the Previous Surface Treatment.

Besides the crystallographic nature and the texture the conditions of a metal surface have an important effect on a reaction taking place on it. The condensation of water vapour, the adsorption of gases, dust particles, etc. are facilitated at regions of higher free energy (edges, crystal boundaries, distorted areas, etc.).

On these points of higher activity the first reaction
tnkes place due to the themodynamie irregularities. Very important information has been given by Erbacher [19]. He examined the effect of heating a catalygt. After heating the erystals in vacuo they showed, et a temperature of $2 / 3 \mathrm{~F}$ ( $F^{=}=$melting point), a remarkable decrease in catalytic effect. The results obtained were explained by Erbacher in such a way that at a temperature above $2 / 3 \mathrm{~F}$ the structure fauls have been healed. Ftching resulted in an inerease of catalytic properties. The etching evidently exposed extensive structural faults at the surface again.

The surface structure depends on the finishing of the metel. A mechanically polished surface is covered with the morphous Beilby layer, whilst an electropolished surface shows an atomically smooth surfince exposing the crystelline metal and an etched one is relntively rough.

It has frequently been noted $[16-20]$ that the rate of nn attack is much nffected by the finish of an exposed metal surface.
2. The Chemical and Themodynamical Properties of the Attacking

Substances and of the Corrosion Products.

The application of themodynamics in experimental chemistry as a helpful instrument has been limited too often to the study of reactions in the gaseous phase. Thermodynamies
can, however, also be applied with advantage to the congideration of heterogeneous reactions.

Pourbaix [25] has shown in an excellent way the applieation of the rmodynomies in corrosion research. His book entitled "The modynamics of Dilute Aqueous Solutions" is a great help in examining the corrosion of metals. In particular, the diggrams in which the equilibrium potential is plotted against the pll show the domains representing "corrosion", "eathodic protection", or "passivation". He also has shown under what conditions in a complicated system the different corrosion products may be formed.

Feitknedht [26] showed that the formation of the different corrosion products during an attack on zine in dilute solutions of sodium chloride obeys well-recognised the rmodynamic prineiples.

## 3. Ylectrochemical Processes.

A metal surface exposed to a corrosive attack is actually a poly-electrode system caused by physical or chemical differences at different points on the surface. The differences are not only due to the properties of the metal but also to a different rate of supply of oxygen.

For example, consider the corrosion of zinc in a dilute solution of sodium chloride. On the anodic points zinc goes
as zinc ions into solution, on the cathodic points oxygen is depolarised and on a third set of points the corrosion product, zine oxide in hydrated form, is precipitated. zine is consumed at one point, oxygen at a second and the product appears at a third one. The result is still the same, the combination of zinc and oxygen (and water). As the oxidation takes place in the indirect electrochemical way the corrosion product is not protective against a further attack because it is not precipitated where the attack is carried out.

These electrochemicel processes during the corrosion of metals have been studied in detail by Evans and co-workers at Cmbridge (see U.R.Evans: Metellic Corrosion, Passivity and Protection, 2nd Fd., 1946). These electrochemical processes not only occur in aqueous solutions but elso in air contrining water vapour, ns has been shown by Feitknecht [27] and Leu [28].

## 4. The Influence of the Distribution, Structure and Orientation of the Initial Corrosion Product.

It is obvious that the distribution, structure and orientation of the initial corrosion product are very important for the further course of the attack. Amorphous or close packed crystalline material shows a good protection against a
further attack while a coarsely erystalline film shows less protection.

Despite the great volume of work devoted in the past to the study of corrosion little is know about the influence of the structure and orientation of the initial film on the further attack.

The following facts may be noted here:

1. A zinc cleavage face shows an excellent resistance against oxidation. After a long exposure to air at room temperature the metallic brightness is still visible. If a ginc cleavage face is heated up to a few hundred ${ }^{\circ} \mathrm{C}$. the protection disappears.
2. Up to a temperature of about $680^{\circ} \mathrm{C}$. the formation of an amorphous oxide film is observed on aluminium, showing on exeellent protection. Above $680^{\circ} \mathrm{C}$. the oxide becomes polyerystalline and the protection against a further attack has disappeared.
3. Lustman and Mehl [31] examining the oxidation of copper single crystal faces at temperatures between $105^{\circ} \mathrm{C}$. and $118^{\circ} \mathrm{C}$. observed that the rate of oxidation varied according to the different orientated faces. They suggested that the observed phenomena are due to the different orientations of the initial oxide iflm crystals. As the relations seem to be dependent on the oxidation temperature and other conditions,
they could not give more exact conclusions.
Other similar evidence has been observed. The reason for these uncertainties in formulating a theory of the influence of the structure and orientation of the initial film on the further attack may lie in the fact that insupficient experimental data has so far been obtained about the mechanigm of the surface oxidation of metals.
II. The Mechanism of Oxidation of Copper.

In the present investigation the mechanism of dry and wet oxidation of metals was studied in the light of the theoretical considerations outlined in Chapter I. The experimentel. work has been limited to the system $\mathrm{Cu} / \mathrm{O}_{2}$ in dry and wet conditions.

## The Mechanism of the Thermal Oxidation of Copper.

The oxidation of copper in air or oxygen at room or elevated temperature has been often investigated [20, 30-65]. Recently, Tylecote [66] has published a review entitled "Review of Published Information on the Oxidation and Scaling of Copper and Copper-Base Alloys". In that review an excellent summary is given and the problems concerning oxidation so that ve may limit ourgelves here to the main problem, that of the mechanism of oxidation.

The first investigators [ $30,32,37,39,40$ ] suggested that the active part of the oxidation was due to the migration of oxygen along the grain boundaries or through the oxide erystals and that the reaction then occurs at the interface copper/cuprous oxide. The views of these investigators attributing the active role to the oxygen differ only in the interpretation of the diffusion relationship. They suggest a diffusion through the grain bounderies of the oxide or at high temperature also a diffusion of oxygen through the crystals.

The evidence that the active part of the oxidation is due to the migration of oxygen along the boundaries or through the oxide crystals could not hitherto be proved.

Wagner and Grunewald [54] examined the electrie conductivity of the system $\mathrm{Cu} / \mathrm{Cu}_{2} \mathrm{O} / \mathrm{O}_{2}$ and from the results obtained they concluded that the active role during the oxidation is due to the migration of cuprous-ion through the oxide film , the reaction taking place on the oxide surface. Attempts were made to support this view by experiments in [55,56] which radionctive copper surfaces were oxidised. $\ell$ The results, however, were indeterminate. Mott's [67] view that oxygen gains access to the metal only by the migration of copper ions through the oxide film is of doubtful velidity.

From the formation of the initial oxide film up to the
complete oxidation of a piece of metal, so many different reactions are taking place side by side that in the writer's opinion it is impossible to come to a result with such a simple formulation of the question.

The oxide formed shows many variations in chemical nature, structure, orientation to the substrate, crystal size, etc. depending all on the experimental conditions. The following statement of the problem is much clearer and more real in investigating the mechanism of oxidation:Where are the sites of chemical reactions in the system $\mathrm{Cu} / \mathrm{Cu}_{2} \mathrm{O} / \mathrm{CuO} / \mathrm{O}_{2}$ and how do the reactions proceed?


$$
\begin{aligned}
& 539.232: 620 \cdot 193(043) \\
& \text { LEW }
\end{aligned}
$$

[^0]
## THE DRY AND WET CORROSION OP COPPER SITGLE CRYSTALS.

I. Experimentel Details.

1. Preparation of the Copper Single Crystal Paces.

The copper single crystel faces used in the present work were cut from a copper single-crystel rod, about 1 cm . in dismeter. The erystal was carefully cut with a jeweller's saw Lubricated with watch oil so as to avoid much distortion of the crystal. The cut pieces were ground carefully with emery paper of different grades so as to develop a face. This face was then etched deeply with $\mathrm{HiNO}_{8} 1: 1$ to remove the distorted layers and then electropolished in a solution of phosphoric acid. After electropolishing the crystals were washed with distilled water and transferred under propyl alcohol into the electron diffraction camera. From the pattern obtained the crystallographic nature of the face was identified relative to the copper lattice. The faces were then ground on the crystals in the desired (110)-, (111)and (100)-directions. The faces obtained were within about 2-3 ${ }^{\circ}$ from the desired net-plane of the copper lattice.


## 2. The Anodic Polishing of Copper Single Crystals.

Before carrying out any experimental work, the prepared copper single erystal faces were etched in $\mathrm{H}_{\mathrm{N}}^{2} \mathrm{O}_{8}$ 1:1 so as to remove the distorted surface layer and then electropolished in an aqueous solution of phosphoric acid as recomended by Jacquet [68]. The conditions for the anodic polishing were as follows:

Bath: 2 parts phosphoric acid (S.G. 1.75) and 1 part distilled water.

Voltage: $2-2.2$ volts.
Curent Density: $0.05-0.1 \mathrm{mmp} / \mathrm{cm}^{2}$.
Time: $20-30$ minutes.
After electropolishing, the copper crystals were taken out, thoroughly washed with a dilute solution of phosphroic acid followed by distilled water. To remove any traces of oxide formed on the surface during electropolishing or afterwards, the crystals were dipped for one minute into 2\% KCN solution, then washed with alcohol followed by acetone. The faces were then transferred under propyl alcohol into the electron diffraction camera to avoid oxidation by exposure to air. The faces treated in this wry yielded the patterns show in Tig.1, Fig. 2 and Pig.3. The sharp elongated spots
together with the sharp Kikuchi-lines show the atomically smooth nature of the surface and high lattice perfection of the crystal.
3. Etching of Copper Single Crystals.

Elect ropolished copper single-crystal faces were etched in $\mathrm{HNO}_{8} 1: 1$ at room temperature (time: 30 sec.). After etching the faces were washed with distilled water. To remove any traces of oxide formed on the surface after the etching the crystals were dipped for one minute in a 2\% KCN solution, then washed with alcohol followed by acetone. In that way the faces were etched equally and had a not too rough surface.

Fig. 4 shows the diffraction patterns obtained from an etched (110)-face, Fig. 5 from an etched (111)-face, and Pig. 6 from an etched (100)-face. These patterns reveal the comparative roughness of the etched faces.
4. Oxidation Txperiments.
a. Dxy Corrosion.

The experiments were carried out in laboratory air containing traces of impurities and water vapour. According to Dunn [60] and Pilling and Bedworth [32] traces of water vapour or carbon dioxide have little effect on the oxidation

of copper up to a temperature of about $800^{\circ} \mathrm{C}$. On the other hand Hudson and co-workers [64] have shown that traces of hydrochloric acid increase the attack noticeably.

The experiments were carried out in a furnace which was heated up to the degired temperature before ingerting the copper single crystal. After heating the specimen for a certain time, the specimen was taken out and allowed to cool to room temperature.

The experiments were carried out within the temperature range between $0^{\circ}$ and $250^{\circ} \mathrm{C}$.
b. Vet Corrosion.

The experiments in distilled water, in dilute solutions of sodium hydroxide, sodium chloride, potassium bichromate or hydrogen peroxide were carried out at room temperature. The solutions contnined dissolved oxygen.

Before examination in the electron diffraction camera the specimens were washed carefully with distilled water and acetone.

## 5. Measurement of the Film Thickness.

The thickness of the initial oxide films was estimated from the interference colours of these thin films. According to EVans [69] and Constable [43] the film thickness may be determined approximately in this way. Por the present work that method has proved to be sufficient.

## II. Experiments on the Thermal Oxidation.

## 1. The Thexmal Oxidation of Flectrolytically Polished Copper Single Crystal Faces.

Electropolished copper single crystal faces were oxidised in air at different temperatures. The faces used for the experiments were examined by electron diffraction before and after exposure to air. The results obteined are shown in Table 1.

Oxidation temperature $20^{\circ} \mathrm{C}$. Anodically polishod copper (110)-, (111)-, and (100)- Paces showing a bright surface were exposed to nir at room temperature. After a few hours the surfaces had become less bright and after an exposure of about 24 hourg they were brownish in colour, not chenging much during a further prolonged exposure (longest time: 40 days). Inmediately after the exposure the initial film grew very quickly but after it reached a certain thickness ( a few hundred Angstrom) growth ceased nearly completely. The re was no noticeable difference observed in the rate of attenck of the different orientated faces. The cuprous oxide film formed wan amorphous (Fig.7).

Oxidation temperature $100^{\circ} \mathrm{C}$. At about $100^{\circ} \mathrm{C}$. , immediately after exposure the single crystal faces became less bright.

Table 1．

Thermal Oxidation of Flectrolytically Polished Copper Single Cyystal Paces．

Nature of the Initiol Oxide 13ilm。
Product： $\mathrm{Cu}_{2} 0$ Thickness of the Pilm： $168 s$ then 600 A ．

| Temperature | Nature of the oxide film formedon（110）－fnce （111）－face $(100)$－face |  |  |
| :---: | :---: | :---: | :---: |
| $20^{\circ} \mathrm{C}$ 。 | amorphous | smorphous | nmorphous |
| $100^{\circ} \mathrm{C}$ ． | do． | do． | do． |
| $130^{\circ} \mathrm{C}$ ． | do． | do． | do． |
| $135^{\circ} \mathrm{C}$ 。 | very smell <br> crystals <br> randon <br> orientation． | do． | do． |
| $140^{\circ} \mathrm{C}$ | do． | very amell． <br> crystals random <br> orientation． | do． |
| $145^{\circ} \mathrm{C}$ | do． showing one－ degree orient． | do． showing one－ degree orient． | very small cryst als shoving one－ degree orient |
| $150^{\circ} \mathrm{C}$ | $\begin{aligned} & \text { small erystals } \\ & 2^{\circ}-0 \text { rientation } \\ & \{110) / /(110) \\ & [100] / / 100\} \end{aligned}$ | $\begin{aligned} & \text { small erystals } \\ & 2^{\circ}-\text { orientation } \\ & \{111) / /(111) \\ & \{110] / /[110\} \end{aligned}$ | ```small crystal various orientations mostly (111)+(110)// (100)``` |
| $160^{\circ} \mathrm{C}$ ． | ©0． | do． | do． |
| $180^{\circ} \mathrm{C}$ 。 | do． | do． | do． |
| $200^{\circ} \mathrm{C}$ | do． | do． | do． |
| $250{ }^{\circ} \mathrm{C}$ ． | do． | do． | do． |

After one hour they showed a brownish interference colour. After the oxide illm had reached about 450 A. thickness, its growth apparently ceased. The cuprous oxide formed was nrao rphous.

Qxidation temperature: $130^{\circ} \mathrm{C}$. Inmediately after the exposure the electropolished aingle crystal faces lost their brightness. After 30 minutes exposure to air the first interference colours appeared. The purple and blue colours vere only observed after a prolonged exposure to air at $130^{\circ} \mathrm{C}$. There was no noticeable difference in the rate of oxidation of the different faces. The oxide film formed at this temperature on electropolished surffaces whs still morphous. Oxidation tempergture: $135^{\circ} \mathrm{C}$. Vio noticeable difference Prom the experiments carried out at $130^{\circ} \mathrm{C}$. was observed, exeept that the (110)-fnce seemed to oxidige a little faster than the (111)- and (100)- fnces. On the (110)-face a polyerystalline film of cuprous oxide was formed, having random orientation (Fig.8). The oxide Pilm formed on the (111)- and the (100)- Pace at this temperature was still amorphous.

Oxidation tempernture: $140^{\circ} \mathrm{C}$. At this temperature only a small difference in the rate of oxidation of the three faces wns observed. The (110)- and the (111)- faces were oxidised
$\mp 4525$


Fig. 7. (110)face; 1 day at room temperature. Amorphous $\mathrm{Cu}_{2} 0-\mathrm{fllm}$.

F4813


Fig. 9. (118)-face;
3 min. at $160^{\circ} \mathrm{C}$.
Crystalline film; two degree orientation.
$72 \quad 179$


Fig. 8. (110)-face;
30 min. at $135^{\circ} \mathrm{C}$. Crystalline film; random orientation.

74896


Fig. 10. (110)-face. 2 min. at $200^{\circ} \mathrm{C}$.
Crystalline film; two degree oreintation.

Structure of the initial cuprous oxide film formed on anodically polished copper single crystal faces.
a little Paster than the (100)-1ace. After 45 minutes henting in air the purple interference colours appeared on the (110)and (111)- frees (thickness of the film: 450 A.) while the (100)-face showed a red-brown interference colour (thickness of the oxide film: 420 A .). The initial oxide film formed on the (110)-and (111)- faces was polyerystaline with random orientation. On the (100)-face the oxide film was still nomorphous.

Oxidation temperature: $145^{\circ} \mathrm{C}$. All the oxide films, including that formed at $145^{\circ} \mathrm{C}$. on the (100)-face proved to be erystalline, with a slight preferred orientation relative to the substrate.

0xidation termernture: $150^{\circ} \mathrm{C}$. At this temperature the rate of oxidation was much higher on the (110)- and on the (111)face than on the (100)-face. On the (110)- and on the (111)face the initial cuprous oxide crygtals had developed in a two degree orientation while on the (100)-face different orientations (mostly (111) and (110) parallel to the (100)Pace) were observed.

0xidation temperature: $160^{\circ}-250^{\circ} \mathrm{C}$. The initial film at temperatures between $160^{\circ}-250^{\circ} \mathrm{C}$. consisted of small cuprous oxide crystals, having on the (110) - and (111)- face an epitaxial relationship to the substrate (two-degree

orientation). On the (100)-face different orientations were obse rved, mainly the (111)- and (110)-Pace of the cuprous oxide parallel to the copper (100)-face. (Figs. 9, 10, 11 and 12). Increasing the thickness of the film resulted in formation of larger oxide crystals.

The (110)- and the (111)-face became oxidised faster than the (100)-face. Up to a film thickness of about 800 A . the oxide film quickly grew in thickness but then growth practically ceased.

At about $200^{\circ} \mathrm{C}$. after reaching a certain thickness the curpous oxide on the surface was oxidised to cupric oxide. It is remarkable that on the (100)-sace the formation of cupric oxide appeared on thinner cuprous oxide films than on the (110)- nad (111)-faces. The thin cupric oxide film on the (100)-face sometimes showed interference colours and thus suggested that the rate of oxidation was higher than was actually the case.

The upper layers of thick cuprous oxide films (more than 1000 A.) were slightly less strongly orientated than the initial film (Tig.13).
2. The Thermal Oxidation of Ftched Copper Single Crystal Faces.

During the therial oxidation in air copper single

## F2 126



Fig. 13. $\quad \mathrm{Cu}(110)$-face; anodically polished. 2 h at $180^{\circ} \mathrm{C}$. Decrease in orientation.
crystal faces were analogous in behaviour to the anodiealiy polished faces, except for two differences:

1. The rate of oxidation on etched faces was a little higher then on electropolished faces.
2. Only at room temperature was the initial oxide film mainly amorphous (see Table 2).

Oxidation temperature: $20^{\circ} \mathrm{C}$. At room temperature on etched copper (110)-, (111) - and (100)-single crystal faces there was a formation of mainly amorphous oxide film. A small part was crystalline in (110) and (111) one-degree orientation relative to the underlying metal (19g.14). The erystalline part of the initial film wes very small.

Oxidation tampernture: $100^{\circ} \mathrm{C}$. The initial oxide film formed at a temperature of $100^{\circ} \mathrm{C}$. wes polyerystelline on all three faces and showed one-degree orinatation (Fig.15).

Oxidation temperature: $125^{\circ} \mathrm{C}$. The results obtrined at this temperature are similar to those obtained at $100^{\circ} \mathrm{C}$. The cuprous oxide erystals on the (110) - and (111)- face had developed in one degree (110) and (111) orientation respectively。 (Fig.16).

Oxidation teraperature: $140^{\circ} \mathrm{C}$. Similar results were obtained to those at $125^{\circ} \mathrm{C}$.

## Table 2.

Thermal Oxidation of Ftched Copper Single Grystal Paces.

Inture of the Initial oxide Film.
Product: $\mathrm{Cu}_{2} \mathrm{O} \quad$ Thickness of the Film: less than 600 A .

| Tempersture | Nature of the oxide film formed on(110)-frec $(111)$-face $(100)$-face. |  |  |
| :---: | :---: | :---: | :---: |
| $20^{\circ} \mathrm{C}$ 。 | mostly smorphous, small part crystalline, showing one-degree orientation. |  |  |
| $100{ }^{\circ} \mathrm{C}$. | polycryst alline <br> showing one-degree orientation. |  |  |
| $125^{\circ} \mathrm{C}$ | do. | do. | do. |
| $150^{\circ} \mathrm{C}$ | small erystals $2^{\circ}$-orientation <br> (110)// (110) <br> [100] //[100] | small crystals <br> $2^{\circ}$-orientation <br> (111)// (111) <br> [110] //[110) | ```small crystals various orientations. mostly (111) + (110) // (100)``` |
| $200^{\circ} \mathrm{C}$. | do. | do. | do. |
| $250^{\circ} \mathrm{C}$. | do. | do. | do. |



Fig. 14. (110)-face. $I$ day at room temperature. Film mostly amorphous.


Fig. 16. (110)-face. 20 min. at $140^{\circ} \mathrm{C}$. Crystalline film; one degree orientation.


Fig. 15. (111)-face. 1 h at $100^{\circ} \mathrm{C}$. Crystalline film; one degree orientation.
$F 4997$


Fig. 17. (117)-face. 3 min. at $200^{\circ} \mathrm{C}$.
Crystalline film; two degree orientation. Deformation
through rotational slip.

Structure of the initial cuprous oxide film formed

Oxidation temperature: $150^{\circ} \mathrm{C}$. The (110)- and the (111)face oxidised much faster then the (100)-fface. The cuprous oxide iflm formed an epitaxial overgrovth (two degree orientation with $\mathrm{Cu}_{2} 0(110) / / \mathrm{Cu}(110) \quad[100] / /[100] \mathrm{Cu} ;$ $\mathrm{Cu}_{2} \mathrm{O}$ (111)// Cu (111) and $\mathrm{Cu}_{2} \mathrm{O}[101] / / \mathrm{Cu}[101]$ respectively) on the (110)- and (111)- Pace while on the (100)-face various orientations of the oxide were observec.

Oxidation temperatures $200^{\circ} \mathrm{C}$. The faces became oxidised much Paster than at $150^{\circ} \mathrm{C}$. but the other results obteined (rate of oxidation, nature of the initisl film) were similar to those at $150^{\circ} \mathrm{C}$.

On etched surfaces the initial cuprous oxide film sonetimes showed a deformation. The reason for this deforation is that a state of strain exists at the cuprous oxide-metel interface due to lattice misfit. Mechanisms for the relief of this strain, which are now well-recognised in this laboratory, are twinning and rotational slip. [71-75].
3. Thermal Oxidation of a Mechnnically Polished Single Crystal Ence.

Mechanically polished copper single erystal (110) faces yielded quite different results from those obtafned with electropolished or etched singie crystal faces. This is due to the different surface condition (ataorphous Beilby layer

## Table 3.

The manl Oxidntion of a Mechanically Polished (110)-face
Metal Surface shoving on amorphous Bellby-layer before Oxidntion.

Nature of the Initial Oxide Film.
Product: $\mathrm{Cu}_{2} 0 \quad$ Thicknegs of the Pilm: less then 600 A.

| Temperature | Wrature of the oxide Film. |
| :---: | :---: |
| $20^{\circ} \mathrm{C}$. | morphous |
| $100^{\circ} \mathrm{C}$. | very smorphous erystals <br> random orientation. |
| $150^{\circ} \mathrm{C}$. | small erystsls <br> random orientation. |
| $200^{\circ} \mathrm{C}$. |  |

$\mp 5060$


Fig. 18. 1 h at $100^{\circ} \mathrm{C}$. Amorphous film
$F 5070$


Fig. 19. 10 min. at $200^{\circ} \mathrm{C}$. Polyerystalline film; random orientation.

Structure of the initial cuprous oxide film formed on mechanically polished copper (110)-faces.
and its underlying work hardened crystaline layer).
The rate of attack was not so high as on slectropolished surfaces.

At $20^{\circ} \mathrm{C}$. and at $100^{\circ} \mathrm{C}$. the smorphous Beilby 1 syer was oxidised to an morphous cuprous oxide film (ifg.18) while at $150^{\circ} \mathrm{C}$. and above the cuprous oxide formed was polycrystalline with randon orientation (Pie.19) (See Trble 3).
4. The rmal Oxidation of Plectropolished Single Cyystal Faces in Presence of Traces of HCl Vnpour.
, Adding traces of hydrochloric acid vapour to the oxidising air had a remarkable effect. The attack at a temperature of $100^{\circ} \mathrm{C}$, was much more rapid than usual.

After one hour's exposure at this temperature an electropolished (110)-face showed the interference colour blue 1st order. No cessation of the attack was observed during prolonged exposure. The cuprous oxide film formed in presence of traces of HCl vapour at $100^{\circ} \mathrm{C}$. was polyerystalline showing a two degree orientation relative to the underiying metal ( $\mathrm{Cu}_{2} \mathrm{O}$ (110)// Cu (110); $\left.\mathrm{Cu}_{2} \mathrm{O}[100] / / \mathrm{Cu}[100]\right)$. No euprous chloride could be identified (Fig. 20).
5. Thermal Oxidation of a Deformed Copper Singie Cyystal.

Fvans, Linyton and wilman [74] heve shown clearly that


Fig. 20. $\mathrm{Cu}(111)$-face: anodically polished.
Oxidised 2 h in air at $100^{\circ} \mathrm{C}$
in presence of traces of
HCl-vapour; polyerystalline euprous oxide film showing two degree orientation. Azimuth [2̃11].
if a single crystal surface is nbraded unidirectionally the immediate surface region is heavily disorientated but those slightly below had mostly slipped rotationally about a welldefined exis $[71,72,73]$. The electron diferaction patterms obtnined from such abraded crystins show at certain azimuths an arcing of the diffraction spots.

If such a unidirectionally abraded copper single crystal Pace is oxidised, the oxide film formed should show a change in the exystrl orientation according to the nature of the mechanism of oxidation, 2.e. migration of copper ions occurs through the oxide or oxygen diffuses through the oxide crystal boundaries.

To examine the nature and extent of lattice deformation caused by the abrasion, a copper (110) single crystal face was unidirectionally abraded with 0000 emery paper along $\langle\overline{1} 0\rangle$, etched carefully in $\mathrm{HHO}_{3} 1: 1$ and examined by electron diffraction. A sinilar (110)-face abraded along $\langle 1 \overline{10}\rangle$ was oxidised in air at $180^{\circ} \mathrm{C}$. for four hourg. To examine the structure at different levels below the surface, the cuprous oxide iflm whs etched progressively in a $2 \% \mathrm{KON}$ solution, with electron-diffraction examination at suitable stages. In Table 4, column 1, a section through an abraded copper single crystal face is shown. Column 2 a shows the theoretical
Table 4.



Thermal oxidation of an unidirectional abraded (110)-face.
structure of the oxide formed in the case of a migration of cuprous ion through the oxide film and reaction with the oxygen at the surface; column 2 b represents a theoretical section through the oxide film in the case of migration of oxygen through the crystal boundaries and following reaction with the underlying metal. In Column 3 are set forth the experimental results obtained.
III. Wet Corrosion of Electropolished Copper

1. Int roduction.

The corrosion of polyerystalline copper in aqueous solutions, especislly in dilute solutions of sodium chloride, has been investigated several times $[75-78]$. Polycrystalinè cuprous oxide was observed as initial corrosion product. A thicker film of cuprous oxide often chonges after a further attack into a normal or basic copper salt. That second reaction depends on the concentration of the attacking solution. Purther, it was observed that the rate of the initial attack depends on the surface conditions and on the selt concentration in the dilute solution.

Rauch and Kolb [79] examined the corrosion of copper in dilute solutions of cupric sulphate. They observed
cuprous oxide to be formed as initial corrosion product. According to them the rate of attack is not so high in a solution of cupric sulphate as in one of sodium chloride. In the present investigation the formation of the initial film only vas exomined. The nppearance of other corrosion products as the second stage of the corrosion was not investigated.

The experimentnl conditions were kept such that according to Pourbsix [25] and Feitknecht [26] an oxide was formed as initial corrosion product.

## 2. Results.

The results obtained are shown in Table 5 .

## a. Corrosion in distilled water.

The attack in distilied wnter (containing dissolved oxygen in equilibrium with the atmosphere) wes very slow. The first interference colour (brown 1st order) appeared after several hours. The attack was continuous and after several days thick film of cuprous oxide was formed showing the typical bromishered colour of this oxide. The rate of attack was different for the three faces. The (110)- and (111)- faces became rach more heavily oxidised than the (100)sace.

The cuprous oxide was crystaliine and on the (110)-

## Table 5.

Wet Oxidation of Electrolyticaliy Polished Copper Single Crystal Faces at Roor Temperature.

Inture of the Initinl Fi2ms.
Thicknegs of the Films: less then 1000 A .

| Solution | Reaction Produet. | $(110)-\text { face }$ | of the Bilm on (111)-Ince | $(100) \text {-f ace }$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{H}_{2} \mathrm{O}$ | $\mathrm{Cu}_{2} \mathrm{O}$ | $\begin{aligned} & \text { small eryst als } \\ & \text { two-degree } \\ & \text { orientation } \\ & (110) / /(110) \\ & {[100] / /[100]} \end{aligned}$ | small erystals two-degree orientation (111)//(111) <br> $[110] / /[110]$ | small crystals various orientations. mostly (111) (110) / $(100)$ |
| 0.5 n NaOH | $\mathrm{Cu}_{2} \mathrm{O}$ | do. | do. | do. |
| $1 \mathrm{n} . \mathrm{NaOH}$ | $\mathrm{Cu}_{2} \mathrm{O}$ | do. | do. | do. |
| 0.01 n NaOH | $\mathrm{Cu}_{2} \mathrm{O}$ | do. | do. | do. |
| 0.1 n NaCl | $\mathrm{Cu}_{2} \mathrm{O}$ | do. | do. | do. |
| $\begin{aligned} & 0.001 \mathrm{~m} \\ & \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \end{aligned}$ | $\mathrm{Cu}_{2}$ O(?) | nmorphous | amorphous | smo rphous |
| $\begin{aligned} & \mathrm{H}_{2} \mathrm{O}_{2} \\ & (20 \text { Vol \%) } \end{aligned}$ | $\begin{gathered} \text { Ono } \\ ? \end{gathered}$ | amorphous | amorphous | amorphous |

F2 140


Fig. 23. Corroded in distilled water for 1 day. $\mathrm{Cu}_{2} 0$ in two degree orientation. Beam along [100].
$F_{2} 61$


Fig. 24. Corraded in distilled water for 3 min . Kikuchi-lines of the copper substrate. Spot patterns of the formed cuprous oxide. Beam along [100].

Corrosion of electropolished (110)-faces in distilled water.
and (111)- Pace was formed in a two-degree orientation. $\left(\mathrm{Cu}_{2} 0(110) / / \mathrm{Cu}(110), \quad \mathrm{Cu}_{2} 0[100] / / \mathrm{Cu}[100]\right.$; $\mathrm{Cu}_{2} 0$ (111)// Cu (111), $\mathrm{Cu}_{2} 0[101] / / \mathrm{Cu}[101]$ ( 182 g .23 ). On the (100)-face the polycrystalline oxide shows various orientations, mainly (111) and (110) parallel to the (100)face of the copper. The elongation of the diffraction spotes show that the surface of the oxide film was virtually atomically smooth.

An electropolished (110)-face was expoged to the attack of distilled water for only 3 minutes, washed with acetone nat transferred under propyl alcohol to the electron diffraction eamerr. The pattern obtained (Pig.24) shows clear "Kikuchi-lines" due to the metal surface and a strong spot pattern of the euprous oxide formed. These patterns show clearly that the attack starts only on preferred pointe on the surface and not on the whole surface.
b. Corrosion in 0.5 and 1 n Solutions of Sodium Hydroxide.

In solutions of sodium hydroxide $(0.5 \mathrm{k}$ and 1 w$)$ the attack is analogous to that in distilled wete $r$, but is very rapid. The ifrst interference colours appeared during the first hour of the exposure and after 24 hours the oxide film had become very thick and showed the typical colour of cuprous oxide. The structure and orientation relative to the
substrate are analogous to those found in the experiments on oxidation in distilled wnter (Figs. 25 and 26).

After the second day of corrosion in the 1 whedium hydroxide solution a thin black film of cupric oxide was on the (100)-face Pormed $d_{\gamma}$. The solution turned blue but remained clear. On the (110)- and the (111)- face the cupric oxide film was formed after the third day.

The formation of the eupric oxide was independent of the thickness of the Pilm. As the (100)-face was attacked more slowly than the (110)- and (111)- Pace, it is shown that the nature of the euprous oxide film is responsible for the beginning of the second reaction.
c. Corrosion in dilute Solutions of Sodium Chloride.

In $0.01 \times$ and 0.1 nolutions of sodium chloride a polyerystalline film of euprous oxide was the initial corrosion product. The properties concerning the structure orientation and rate of attack are similar to thoge obtained in the experiments carried out in distilied water or in a solution of sodium hydroxide.

The attack in the 0.1 normal solution was faster than the attack in the 0.01 solution.

Before asecondary reaction such as the formation of a basic or normal selt occurred, the cuprous oxide film had


Fig. 25. (111)-face corroded 3 days in in NaOH. Crystalline cuppous oxide: two degree opientation. Azimuth [101].

74498


Fig. 27. (210)-face corpoded 1 day in 0,02m NaCL. Grystelline euprous oxides two degree orientation. Aasmuth [2i0].

Gorrosion of electropolished copper single exystal faces In aqueous solutions.
grown several thousand Angstromg thick.
The secondary reactions were not investigated in the present work. The conditions are completely different from thoge of the primary reaction.
d. Corrosion in 0.001 m Solution of Potassium Bichromate.

In a very short time a thin cuprous oxide Iilm had formed. On reaching the thickness of approximately 400 A . the film censed to grow further. The initial film was anorphous and was very paroteetive against further attack in distilled water or solutions of sodium chloride.

- Corrosion in Hydrogen Peroxide (20 Vol \%).

The exposed faces were soon covered with a black, spongy film showing no protection against a further attack. No coherent diffraction pattern could be obtained. The product was presumably cupric oxide and was amorphous.

## PARY III.

## GBNERAL DISCUSSIOR.

I. On the Mechanism of the Dry Oxidation of Copper.

The oxidation of copper has been investigated by many workers who have appronched the problem from many different directions. Nevertheless the fundamental problem of the mechanism of the oxidation of copper still remains to be eiucidated.

Before the fundmental problem is treated in greater detail it is desirable to give a short summaxy of the results obtained so far. Fe can confine ourgelves to the following aspects:

1. Structure and orientation of the initial film.
2. rate of oxidation.

A11 investigators are agreed that cuprous oxide is Invariably formed as the first corrosion product and that the rate of oxidation depends on a number of factors such as, for example, the state of the reacting surface and the temperature.

1. Structure and Oxigatation of the Initial Film.

Several worikers $[31,35,48,53,58,80]$ have
investignted the structure of the initial oxide film and its orientation with respect to the substrate, but the experiments
we re not so detailed as those reported in the present work. If the results reported by other workers are summarised and compared with those obtained by the writer, a clear pieture about the conditions during the oxidation of copper in the temperature range between $0^{\circ} \mathrm{C}$. and $250^{\circ} \mathrm{C}$. can be formed.

If cuprous oxide appears in the crystalinne form it exhibits its nowas structure and, so far, no pseudomorphic oxide has been observed.

It is, however, sienificant that the erysteallographic orientation of the metal surface as well as its state are of considerrble importence.
A. Experimental Results on Single Cyystal. Frees.
2. Meotrolytically Polished Surfeces.

On electropolished single erystal faces an amorphous oxide film is formed between room temperature and a temperature charactoristic of the crystal. face. Above this characteristic temperature the film is no longer amorphous, but is composed of very small exystals. This transition temperature for the different crystal faces was found to be as follows:

$$
\begin{array}{ll}
(110)-\text {-inee } & \text { about } 135^{\circ} \mathrm{C} \\
(111) \text { - fnce } & \text { about } 140^{\circ} \mathrm{C} \\
(100) \text { - ince } & \text { about } 145^{\circ} \mathrm{C}
\end{array}
$$

If the temperature of oxidation is raised by a few degrees above the transition temperature, an orientated film begine to be forred.

At $150^{\circ} \mathrm{C}$. and above, the oxide 1.1 m shows two-degree orientation (0, 0 (110) [100]//(110) [100] of Cu; Cus 0 (111) [101]// (111) [101] of Cu) when growing on the (110)- and (111)- Paces, whereas various oxientations (some of which are epitaxinl) occur in the cose of the (100)-fnce; in mont cages the (111)- and (110)-planes of the oxide are parellel to the (100)-plene of the copper.

No mellable results by other authors exist for the oxidation of copper below $150^{\circ} \mathrm{C}$. but above $150^{\circ} \mathrm{C}$. the experiments campicd out by the nuthor are largely in agreement with previous work. Thomson [35], Moore [58], Yamaguti [53] and Gwathmey [80] found that the oxide grows in twomdegree ( (110) [100] of $\mathrm{Cu}_{2} \mathrm{O} / /(110)$ [100] of Cu$)$ orientation on the (110)-ince. Two degree ( (111) [101] of Cus $/ / /(111)$ [101] of Cu) orientation was also observed on the (111)-plane by Gwathrey [80].

The situation is dieferent on the (100)-plane. Both Yarnguti and Moore were unable to observe any cases in which the (100)-plane of the cuprous oxide was parallel to the (100) - plane of the copper, but a nuber of other orientations (rabinly (111) of $\mathrm{Cu}_{2} \mathrm{O} / /(100)$ of Cu ) occurged. The
phenomenon observed by these workers was confixmed by the Investigations of Gwathmey [80] and the authore In the oniy well developed oxientation which has so far been dofinitely identified the (111) plane of the cuprous oxide is almost parallel to the (001)~plane of the capper substrate, with the oube ince diggonal of the cuprous oxide parallel to the cube edge of copper.
b. Ttched Copper Single Crystal Frees.

A predominantiy amorphous oxide film is formed at room temperature on etched copper single caystal faces, but part of the film is crystaline and orientated. At $100^{\circ} \mathrm{C}$. a film consisting of small erystals showing a not very pronounced one degree ( (110) of $\mathrm{Cu}_{2} \mathrm{O} / /(110)$ of Cu (111) of $\mathrm{Cu}_{2} \mathrm{O} / /$ (111) of Cu ) orientation is formed.

At about $150^{\circ} \mathrm{C}$, and abve, an oxide isilu grown on a (110) $=$ or a (111)-plane shows two degree ( (110) [100] of $\mathrm{Cu}_{2} \mathrm{O}$ $/ /(110)[100]$ of Cus (111) [101] of $\mathrm{Cu}_{2} \mathrm{O} / /(111)[101]$ of Cu) orientation, whereas various orientations occur in films grown on the (100)-plane.

The sesults obtained at temperatures above $150^{\circ} \mathrm{C}$. are in agreoment with those of Thomson [35] and Ymaguti [53].

## B. Mechanically Polished Sinfle Caystal Taces.

Wechanical polishing causes defomation of the single erystal surface and the experiments can no longer be regarded as affording information about single exystals but must be treated as experiments enrried out on polyerystalline material.
B. Experimental. Results on Polyerystalline Copper.
a. Tlectrolytically polished or etched surfiaces.

Woore [58] found that the euprous oxide film formed on electropolished polyerystalline copper at higher temperatures grows with its (110)-plane parallel to the metal substrate. The metal surfnce before oxidation showe (110) orientation. These resulta are in agreement with those obtined by Thomson [35]. The present experiments show that an amorphous oxide film grows on mechanicaliy polished surfaces (exhibiting an morphous Beil by-1 ayer) both at room temperature and at $100^{\circ} \mathrm{C}$., whereas a crystnline film of cuprous oxide in random arientation is formed at $150^{\circ} \mathrm{C}$. and above.
2. The Rate of Oxidation.

Aecording to Evans [69], three 1 aws have been experimentally established expressing the increase of oxide film thickness "y" with time "乇" in different cases:

$$
\begin{array}{ll}
\text { 1. } y=k_{1} t+k_{4} & \text { (The Rectilnear Iquation). } \\
\text { 2. } y=k_{8} \log \left(k_{4} t+k_{5}\right) & \text { (The Logarithmic Iquation). } \\
3 . y=k_{6} t+k_{7} & \text { (The Parabolic Equation). }
\end{array}
$$

Broadly speaking two of these laws have been shown to be important for the growth of oxide filman copper. According to Bunn [60] and Vernon [61] an oxide film below $150^{\circ} \mathrm{C}$. grows according to the Logarithmic lav but above this temperature the parabolic lav is obeyed.

It has been possible on severn occasions to verify the validity of these laws experimentoliy but deviations frequently occurved, parnticularly at the beginning of the oxidation (Teitknecht [37]). Turthemore Dighton and Miley [62] were able to show that in the temperature range of $180^{\circ} \mathrm{C}$. to $288^{\circ} \mathrm{C}$. the oxide illm first grows according to the parabolic law but Inter, i.e. nfter reaching a certain thickness, the iogarithmic Lnw is followed.

During the oxidation of polyerystalline copper, it can be said that at low temperatures the oxide film growa according to the logarithmic law. At intermediate temperatures (rbove $150^{\circ} \mathrm{C}$.) the film grows ifst in accordence with the parabolic haw and after renching a certain thickness according to the logarithmic law, whereas at high tomperatures (above $500^{\circ} \mathrm{C}$.) the parabolic law is approximately obeyed throughout.

Fecise investigations are not available for copper single crystel curfaces but it is to be expected that they W111 beheve in a brondly similar way. The rate of oxidation, however, depends on the cryetallographic orientation.

During the oxidation of copper single crygtal faces Tmmann $\left[\begin{array}{l}30\end{array}\right]$ had arready found that the (110)- and the (111)faces oxidise considerably nore mapidy nt a temperature of $260^{\circ} \mathrm{C}$. than 6.8 . the (100)-fnce.

According to Bénard and Talbot [20] at a temperature of $850^{\circ} \mathrm{C}$. the rate of oxidation of copper single crystal faces decreases in the following order
(123)

These authors considered that the preparation of the surfaces al $\boldsymbol{\text { so }}$ has a considerable efrect on the rate of oxidation. Btched copper surfineen oxidise much faster than electropolished or mechenicelly polished surfaces.

The present experiments show thet at low temperature (below $150^{\circ} \mathrm{C}$.) there is no importent difference in the rate of oxidation, but that above $150^{\circ} \mathrm{C}$. the (110) and the (111)planes are oxidised much faster than the (100)-plane.

It appeared here also that the state of the surface has an important effect. The rate of oxidation decreased in the following order for differently prepared surfaces: Ttched surfaces -lectropolished surfaces mechanieally polished surfaces.
It was also found that at $200^{\circ} \mathrm{C}$. the attack became noticeably slower as soon as a thickness of about 800 A. had been reached.
II. On the Growth of the Initiol Oxide Film.

If the copper surface is exposed to oxygen a monomolecular film of oxygen is adsorbed. These adsorbed molecules are dissocieted into atoms (chemisorption) almost imnediately after the adsorption has taken place, provided that the temperature is not too low. The ge atoms gradually penetrate the metal and this penetration occurs above all at faults. The copper reacts with this oxygen and cuprous oxide is formed; according to the energy conditions this becomes smorphous or erystalline.

The attack probably begins at the raults and extends Prom there over the entire metal surface.

On an atomically smooth surface, and the electropolished surface may be considered as such, the mobility of the metal
atoms is too small to pernit the cuprous oxide to form its normal crystal lattice and consequently the film is amorphous.

The mobility of suriace atoms was firgt demonstrated by Volmer and Estermann [81] and 1ater confirmed by Volmer [82], Muler [83] and Benjomin and Jenkins [84] who investisated their nature more closely. It was found that the mobility of the surface atoms depends on the temperature, the erystallographic orientation and the preparation of the surface.

If the temperature of oxidation is raised the mobility of the surface atoms increasen accordingly. Once the transition teraperature and hence suitrble surince mobility is reached (e.g. for the (110)-9nee nbout $135^{\circ} 0$.) the surface energy is suffickent to permit the cuprous oxide to form its nomal small crystals.

If the temperature is raised further. i.e. if there is a Purther increase in the surface energy, the eryataliine oxide may even grow epitaxialiy provided that there existe a suitable relation to the structure of the substrate metal.

The formation of the initial oxide film therefore occurred in all cases in practically the same manner, but its erystalline state (morphous, erystalline either unoritntated or orientated) depends on the mobility of the suriace atoms, and is therefore determined by the temperature, the orientation and the state of the surface.

The oxidation of the copper surface occurs immediately after exposure to an oxygen ntmosphere. Above all, the oxidation begins preferentisliy in certain regions (probably faults in the lattice) and spreads from these regions over the whole surfnee. The formation of the initial oxide isim up to电 thickness of about 30 A. appears to occur in this manner.

This mechanism also explains the deviation from the laws of oxidation. At the start, i.e. until the entire metad surface is covered by on oxide film, the oxidation obeys an almost linear lam and not the logarithmic or parabolic law.
III. The Growth of ghicker Guprous Oxide Films.

When considering the growth of thicker oxide ilims it is necesmary to distinguish clearly between the growth of an smoxphous or a crystalline film.
a. Growth of the Anorphous Oxide Piln.

The initinl amorphous oxide film shows irregularities such as variations in thickness, pores or tears produced by mechanical forces. Fresh copper may be exposed along the tears and porea and may be changed into the amorphous oxide. Ag the thickness increases the faults are covered, it becomes increasingly difficult to expose fresh metal, and the growth of the film practically ceases.

Apart sxom oxidation along the tears or pores, the
attack can presunably oceur in the manner suggested by Mott [67]: A strong field is set up in the oxide film, due to a contact potential difference between metal and adsorbed oxygen, which makes it, possible for copper ions to move through the film without much help from temperature agitation.

## b. Growth of a Crystalline Film.

If the inttial oxide film is exygtaline, i.e. if the surface energy is sufficiently high to permit the cuprous oxide to forn its own crystal lattice, the conditions for further growth differ ontirely from those for amorphous illms.

The oxide film which consists of a large number of Fery small crystals allows oxygen to have access to the copper along the grain bounderies of the oxide. Apmet from this access of oxygen along the boundaries of the oxide, two other mechanisms could cone into play:

1. The assuxption used by Mott [67] that copper ions migrate to the oxide surface and react there with the oxygen, or. (2) that oxygen migrates through the oxide crystals in the form of atoms or ions.

If a perfect cuprous oxide single crystal were to grow on a copper single cxystal face, the mechanism of oxidation would heve to oecur in one of the above mentioned ways. Since however a lerge number of very gmall oxide crystals are formed
on copper single erystal surfaces a close mesh of crystal boundaries is present. These crystal boundaries result in a the modynamically disturbed surface. The adsorption of oxygen is greatly facilitated for thermodynamical reasons, and therefore the oxygen can migrate along the crystal boundaries to the underlying metal. In other words the mechanism of oxidntion during the growth of a crystalline film may be regzrded as "micro intercrygtaline corrosion".

This nssumption has been proved to be correct by the present experiments on deformed single crystel surfaces (see p.31). Copper ions may migrate within the cuprous oxide crystals but this process is presumably of minor importance. A migration of oxygen through the oxide crystal is out of the question in the temperature range examined since this is irapossible for spatinl reasons.
IV. On the Wet oxidntion of Copper.

1. On the Electrochemistry of Copper.

The wet oxidation of copper is an electrochemicel process. The copper goes into solution $25 \mathrm{Cu}^{+}$and $\mathrm{Cu}^{++}$ions at the anodic points. Oxygen is depolarised at the eathodic points and the oxide formed is precipitated at a third point. This oxide is precipitated at definite points and from these nuclei the oxide crystals grow until the entire surface is covered.

Since copper can go into solution at the anodic points as cuprous- or cupric-ions, the following reactions may therefore occur, at these anodic point:s

| 1. Cu | $\mathrm{Cu}^{+}+e$ | $\mathrm{I}_{0}=0.52 \mathrm{~V}$. |  |
| :--- | :--- | :--- | :--- |
| 2 | Cu | $\mathrm{Cu}^{++}+2 e$ | $E_{0}=0.34 \mathrm{~V}$. |

Irom this follows

$$
\text { 3. } \mathrm{Cu}+\mathrm{Cu}^{++} \quad 2 \mathrm{Cu}^{+}
$$

The following equilibrium relation is velid for equation (3)

$$
\frac{\left[\mathrm{Cu}^{+}\right]^{2}}{\left[\mathrm{Cu}^{++}\right]}=\mathrm{K}=1.8 \cdot 10^{-6}
$$

It is possible to deduce from this equilibrium relation that under normal conditions of corrosion (aerated distilled water, dilute solutions of sodium chioride, etc.) in the presence of or in contact with copper the cupric ion concentration is too small to exceed the solubility product of cupric oxide. For this reason either cuprous oxide or at higher concentrations of anions $1 i k e C_{2}^{*}, B r^{\prime \prime}$. etc. the normal cuprous salts are formec.
2. The Structure and Orientation of the Initial Film.

The energy relations are such that the polycrystaline oxide genermlly occurs. This oxide shows how two degree
orientation on the (110) and (111)-faces, whereas various orientations can occur on the (100)-face. Filus as thick as several thousand Angstroms still show these pronounced orientations.

The influence of the oricntation of the initial film and hence also of the substrate is analogous to that during dxy oxidation. Amorphous filus eive good protection against further attack (corrosion in 0.001 m $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ ) while exystellinne films with good orientation afford practically no protection (oxide grown epitexielly on the (110)- and (111)faces).

## V. The Influence of Distribution, Structure and orientation of the Initinl Binm on the Further Attack of Copper.

1. Correlation of oxide structure with its general rate of arowth.

It appeared, both during the dry and the wet oxidation of copper, that the initial film has a very considerable influence on the further course of the attack.

If a closely packed film is formed as the first corrosion product any further attack is largely inhibited or at least greatly reduced, but a loosely packed material is only eble to give little protection.

Even a closely packed film behaves differentiy according to its structure and orientation with respect to the
substrate.
2. Amornhous film: An morphous oxide film affords some protection, although some further attack can take place along teara or pores. If these faults are healed, the growth of the film can be presumed to be almost arrested.
b. Unorientated film consisting of small csystals An oxide Pilm consisting of close packed small erystels in random orientation gives considerable protection against further sttack. Since an attack can only occur along the crystal boundaries both during dry and wet corrosion the further attack is made very difficult in the case of random films. The erystals are mixed up and the access of oxygen to the substrate metal is the refore obstructed.
c Tpitexial rilms consisting of small crystals: An oxide
YIIm showing two degree orientation gives little protection. Small. "chanmels" are formed between the well orientated crystallites and consequently oxygen can easily gein aceess to the surface.

## 2. Correlation of oxide gtructure with the detailed growth rate observations.

The structure of the film can be used to explain the 2aws governing the growth of the oxide film. If the oxide film is morphous or consists of small random crystals the logarithmic law is broady applicable. These filug give some
protection after they have reached a certain thickness.
Ppitaxial silms often give little protection, i.e. oxygen can easily reach the underlying copper and react there. Their growth should then evidently be governed by the parabolic Iaw as, indeed, has been found to be the case.

It has been shom above that an amorphous or cxystaline but randon film is formed when the logarithmic law applies (below $150^{\circ} \mathrm{C}$ 。) but that an orientated film is fomed when the parpbolic Luw applies (above $150^{\circ} \mathrm{O}$ ).

The effect of orientation becomes important during the oxidation of copper at gbout $200^{\circ} \mathrm{C}$. If the surface film shows pronounced two degree orientation it gives little protection. As soon as the film loses its two degree orientation in the courge of the oxidation the rate of oxidation becones noticeably smalier, $i . e$. In this case the films afford protection.

## Acknowledgements.

The author is indebted to Professor G.I.Pinch, M.B.I., D.se. F.R.s. for his constant interest and velued advice during the progress of the work.

The author al so wishes to thank Dr. H. Villman for many
helgfur discussions.
Pinally, the outhor is indebted to the Trustees of the Ramsw Memorinl Fellowships Trust for avarding him the Smiss Tellowship 1949/50, and to the authorities of the mStiftung fur Stipendien auf dem Gebete der Chemie" for granting him a scholarship, which enabled him to carry out this work.

## References.

1. G.I.Tinch and A.G.OURrell, Proc.Roy.Soc.o A. 141, 398, (1938).
2. G.I.Finch, A.G.Cuarrell and H.Wilman, Trans. Parad.soc., 31. 1051, (1935).
3. G.I.Finch and H.Wilman, Ergebneexakt.Naturwiss., 16, 353, (1937).
4. G.I.Finch, J.Chen.Soc., 1938, 1137.
5. R.Brill, HoG.Grimm, C.Herrmann and A.Peters, AnnoPhysik, 34, 313, (1942).
6. RoBrili, H.G.Grimm, C.Herrmann and A.Peters, AnnoPhysik, 41, 37, (1942).
7. G.W. Brindley, Nature, 140, 461, (1937).
8. RoL.Griffith and P.M.Harxis, Phys.Rev., [2], 59, 110, 1941.
9. G.Somerfeld, Inturwiss., 28, 769, (1940).
10. M.Renninger, Z.Kxist., 89, 344, (1934).
11. R.Fricke and C.Wagner, Faturwisso, 30, 544, (1942).
12. R.Heul, Naturviss., 29, 706, (1941).
13. R.Smoluchowski, Phys.Rev., $[2], 60,661, ~(1941)$.
14. R.Tricke, Z.phys.Chem*, B.52, 284, (1942).
15. M.Sato and K.Maruyama, Sei.Rep.Tohoku Imp.Univ., 28,386 (1940).
16. M.Druet and D.A.Jeçuet, Metaux et Corrosion, 22, 139, 1947.
17. A.T.Gwathmey and A.F.Benton, Trans. Flectrochem.Soc.e Z7, 211. (1940).
18. H.Leidheiser and A.T.Cwathmey, JournoAme r.Chem.Soce, 70, 1200, (1948).
19. 0. Trbacher, zongew, Chemio, 62, 403, (1950).
1. J. Benard and J. Talbot, Rev. Mete, 45, 78, (1948).
2. K.Huber, Chimia, 4, 54, (1950).
3. J. Benard and 0. Gocuelle, Rev.Mete, 44, 82, (1947).
4. U.R.TVans and J.Stockdale, J.Chem.Soc., 1922, 2651.
5. A.Gulbransen, Trans. leotrochem.soces 83, 301, (1943).
6. M. J. T. Pourbnix, "The modynmics of Dilute Aqueous solutions' (London, 1949).
7. W. Feitknecht, Metaux et Corrosion, 22, 192, (1947).
8. W. Teitknecht, Pittsburgh Inte rnat. Conf. on Surface Heractions [Proc.], 1948, 273.
9. K.Leu, Ph.D.Thesis, Univeraity of Berne, (1948).
10. T.R.TVans, Metallie Corrosion, Passivity and Protection"
2nd Fdn., (1946).
11. G.Tammenn, J.Inst.Metels, 44, 39, (1930).
12. B.Lustman and F.F.Mehz, Trans.Ame r. Inst, Min.Met. Whge,
13. N.B.P112ing and R.J.Bedwoxth, J.Inst.1Hetals, 29, 529, (1923)
14. U.ReIvans, J.Chem.Soc. 1925, 2491.
15. W.H.J.Vermon, J.Chem.Soce, 1926, 2273.
16. G.P.2homson, Proc.Roy.Soc. A. 128, 654, (1930): A. 133, 1, (1931).
17. C.2.Hinshelwood, Proc.Roy.Soc., A.102, 318, (1923).
18. Teitknecht, \%.Tlekt rochem. 35, 142, (1929).
19. J.A.Derbyshtre, Trans.Farad. $000.27,675$, (1931).
20. T.J.711kins and T.K.Rideal, Yroc.Roy.Soc., A.128, 394, 1930
21. F.J.Wilkins, Proc, Roy.Soc., A.128, 407, (1930).
22. H.A.15iley, J.Amer.Chem. Soc., 52, 2626, (1937).
23. G.D.Preston and L.L.Bircumsham, Phil.Mage; 20, 706, (1935).
24. F. H.Constable, Proc.Roy.Soc. A. 115, 570, (1927) A.117, 376, (1927).
25. V.G.Palmer, एroe.Roy. Boc., A.103, 444, (1923).

26. A.T.Gwathmey and A.T.Benton, J.Chem. Phys. 8, 431, (1940).
27. L.ezerski, Roczniki Cheme, 17, 436, (1937).
28. S.Miyake, Sci.Pap.Inst.P.C.F.Tokyo, 22, 167
29. C.A.Murison, Phil.Mago, 17, 96, (1934).
30. M. Bound and D.A.Richards, Proc.Phys.Soc. 51, 256, (1939).
31. G.Valensi, Compt. rend., $\frac{203,1252,(1936) \text {. }}{203,1354,(1936) .}$
32. P.Holmesland, Kgl. Horske Videnskal selskal Torh, 12, 129,
$(1939)$.
33. T.Yemaguti, Proc. Phys.Mnth.Soc.Japan, 20, 230, (1938).
34. C.Tagner and K.Grunewald, Z.phys.Cheme, B. 40,455 , (1938).
35. G.V.Castell an and W.J.Hoore, J.chem.phys. . 17, 41, (1949).
36. J.Baxden, F.EH.Brattain and W.Stockley, J.chem.phys., 14.714, (1946).
37. L.Czerski, Roczniki Chem. 22, 83, (1948). $23,19,(1949)$.
38. K.H.Moore, Ann.Physik, 33, 133, (1938).
39. C.G.Cruzan and H.A.Miley, J.Applied Physies, 11, 631, 1940.
40. J.S.Dunn, Proe, Roy.Soc., A.111, 212, (1926).
41. W. H.J.Vernon, Trens.Farad.Soc. 23. 129, (1927).
42. A.L.Dighton and H.A.llley, Trans. Rlectrochem.Soce, 81, 321, (1942).
43. V.R.TVans and H.A.Miley, Noture, 139, 283, (1937).
44. 0. F. Hudson, T. M. He rbert, T. W.Ball and B.H.Bucknell, J.Inst.Metris, 42, 221, (1929).
1. RoFowehl, F.L.McCandess and. F.H.Phines, Mature, 134, 1009,
2. F.F.Tylecote, J.Inst, Metals, 78, 259, (1950).
3. N. FeMott, Trans. Frad.Soc. $43,429, ~(1947)$. J.Chim.physe 44, 172, (1947).
4. P.Jnequet, Trans. Plectrochem.soc. 69, 629, (1935). Bul. Soc.Chime, 3, 705, (1936).
5. W.R.TVans, Metaliic Corrosion, Passivity and Protection" 2nd Pnd., 1946. p.62.
6. H.Cabrera and 11. . Mott, Reports on Progress in Physics, 12, 163, (1949).
7. H. Wilman, Nature, 150, 321, (1950).
8. T. TVi2man, Proe. Phys, Soe., A.64, 329, (1951).
9. D.1.. Tvens and H.Wilman, Proc.Phys.Soc. A. 63, 298, (1950).
10. D.M.EVans, D.N.Layton and H.WILman, Proc.Roy.Soc., A.205, 17. (1951).
11. U.R.RVans, J.Chem.Soc. 1922, 118.
12. G.D.Bengough and R.May, J.Inst. Metals, 32, 115, (1924).
13. R.Dubrismy and G.Chesse, Compt.rend., 220, 707, (1945).
14. M.Asselin and A.Rorhmann, Ind. Eng.Chem., 32, 1015, (1940).
15. A.Reuch and H.Kolb, Korr. Met., 6, 151, (1930).
16. A.T.Gwathmey, Personal interview, 1950.
17. Wolmer and P. Fstemann, Z.Physik, 7, 13, (1931).
18. M.Volmer, Trans. Tarad. 300. , 28, 359, (1932).
19. F.Muller, Z.Physik, 106, 541, (1937). 108, 668, (1938).
20. M.Benjamin and R.O.Jenkins, Phil.Mag., 26, 1049, (1938) Proc.Roy.Soc., A.176, 262, (1940).
Proc.Roy.Soc., A.180, 225, (1942).

[^0]:    PART II.

