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Abstract

Title: Study of Molecular Vibration Using Coupled Cluster Theory.

The main objective of this thesis is to develop accurate method for the description

of molecular vibration using coupled cluster theory. Accurate description of molecular

vibration is often necessary to account the experimental results obtained in the modern

highly accurate techniques in molecular spectroscopy.

The coupled cluster method has been established as one of the most accurate tech-

nique for the description of quantum many body systems[1–3]. In particular this method

has immense success over last few decades in the field of electronic structure of atoms

and molecules[4]. In this approach the ground state wave function of a many body sys-

tem is decomposed into a reference function and an exponential wave operator. There

are two advantages in the coupled cluster approach. First, by virtue of its exponential

ansatz, the method satisfies one of the most demanding criteria of proper separation of

fragments in zero interaction limit namely ‘the size consistency’. Second, again due to

the exponential structure of wave operator, the resulting wave function and energy are

highly accurate in an approximate calculation.

Recently several attempts have been made to describe molecular anharmonic vibra-

tions by coupled cluster method[5–11]. There are two representation possible for the

vibrational coupled cluster formalism. These two approaches differ in the construction

of the Fock space. The first method is the basis set representation[8–11], in which the

Fock space is constructed as a union of all k-particle Hilbert spaces constructed as the

tensor products of basis functions of the appropriate degrees of freedom. The second

approach is to construct the Fock space using harmonic oscillator (HO) ladder opera-

tors acting on an appropriate vacuum state. This representation is termed as bosonic

representation[5–7]. The presented work in this thesis focuses on the implementation

of coupled cluster method in bosonic representation to calculate vibrational transition

energies, expectation values, transition intensities.

There are mainly two approaches to study the excited states within coupled cluster

xi



framework. The first one is the coupled cluster linear response theory[12–15], where the

excited state wave function is obtained by the action of a linear operator on the ground

state coupled cluster wave function. Here, a similarity transformed Hamiltonian is gen-

erated and diagonalized within excited states manifold to get excited states energies and

eigenvectors. All vibrational calculations till date used this approach. In this thesis, we

study the convergence pattern of state energies with respect to the rank of the cluster oper-

ator at ground state level as well as the excitation operator at CCLRT level. However, the

main drawback of the CCLRT approach is that, here, the similarity transformed Hamil-

tonian is manifestly non-Hermitian. Because of non-hermicity, it generates complex

eigenvalues in diagonalization. One approximate way to overcome the problem of com-

plex eigenvalues is to use a second similarity transformation with de-excitation operator

in the spirit of extended coupled cluster approach (ECCM) formulated by Arponen[16].

The second similarity transformation reduces the loss of hermicity of the Hamiltonian

up to second order. In this thesis, we highlight the significance of ECCM approach over

normal coupled cluster (NCCM) approach.

The second approach of calculating the excited state is the multi-reference coupled

cluster method[17, 18] (MRCCM) based on effective Hamiltonian theory that acts in a

model space. The valance universal version of MRCCM has been used very successfully

for excitation energies and response properties of electronic structure problems. An-

other goal of the thesis is to develop the multi-reference coupled cluster method for the

description of anharmonic molecular vibrations.

Parallel to energy calculations spectacular developments have been made to calcu-

late non-energetic properties within coupled cluster framework. The drawback of using

CCM wave function to calculate expectation values is that, it leads to a non-terminating

series[19] making it impractical for the numerical work. Calculation of transition matrix

elements between two states also suffer from same problem. Prasad[20] proposed an

alternate approach within CCM framework to calculate expectation values and transition

matrix elements that bypasses the need to evaluate such infinite series. This approach is

xii



termed as effective operator approach. Here, an effective operator is formed in the same

fashion of effective Hamiltonian formed in CCLRT. The expectation values of operators

are calculated using this effective operator with the eigenvectors obtained in CCLRT.

The other goal of the thesis is to use the effective operator formalism to calculate the

expectation values and transition intensities.

The thesis is organized as follows:

In the first chapter, we briefly describe the earlier developments of ab initio meth-

ods for the description of anharmonic molecular vibrations. We review different kind

of coordinate systems usually used to express the vibrational Hamiltonian and the jus-

tification of choosing normal coordinate over others in our work. Variational principle

based methods e.g. vibrational self consistent field (VSCF) method and its generalization

to multi-reference functions, vibrational configuration interaction (VCI) are reviewed

briefly here. We discuss certain aspects of perturbative approaches for vibrational analy-

sis. A detail discussion is given on the two kind of representations of vibrational coupled

cluster formalism. Finally, the scope of the thesis is discussed at the end of the chapter.

In the second chapter, we discuss the vibrational coupled cluster formulation in

bosonic representation. We discuss extended coupled cluster methodology and its signif-

icance over normal coupled cluster method (NCCM). The methodologies are applied to

some tri-atomic molecules e.g. H2O, F2O, O3 etc. and tetra-atomic molecule H2CO to

calculate vibrational state energies. The convergence studies of vibrational state energies

with respect to the rank of cluster operator of the ground state as well as excitation oper-

ator at CCLRT level of these molecules are presented here. We discuss the significance

of ECCM approach over NCCM approach in terms of convergence pattern of state ener-

getics with respect to the rank of both cluster operator as well as excitation operator. The

chapter highlights the computational efficiency of CCM over converged full CI in terms

of CPU time.

The third chapter of the thesis is devoted to the formulation of effective operator ap-

proach based on coupled cluster method to calculate expectation values of operators and

xiii



transition matrix elements. The proposed methodology is applied to water molecule and

its isotopic variants to calculate dipole moment expectation values and transition matrix

elements. Detail studies are presented on the convergence pattern of these quantities with

respect to excitation operator at CCLRT level. The ECCM based approach is also imple-

mented to calculate these quantities. Discussion is made on the significance of ECCM

over NCCM in calculating in quantities.

In the fourth chapter, we discuss the development of multi-reference coupled cluster

theory for anharmonic molecular vibrations. We use the Fock space version of multi-

reference coupled cluster method in the same spirit of electronic structure theory. The

model space used here is inherently complete. A detail discussion is made on the solution

of FSMRCC equation in bosonic representation.

In the last chapter, we discuss about some future aspect of the vibrational coupled

cluster method in bosonic representation. In particular, we highlight the possibilities

of inclusion of rotational contributions to vibrational Hamiltonian. We further point that

the expectation values of operator and transition matrix elements can be calculated within

FSMRCCM approach in a highly accurate manner.
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Chapter 1

————————————————————

General introduction and the scope of the thesis

————————————————————

1.1 Introduction

Vibrational spectra of polyatomic molecules[1–6] contain enormous amount of infor-

mation about molecular structures and chemical compositions. Over last few decades,

there have been spectacular developments on high resolution molecular spectroscopy

which has provided more and more accurate and precise information about gas phase

molecules. This has been a driving force for the advancement of chemical physics to

develop advanced methods to describe the vibrational structure in more and more accu-

rate manner. Like other branches of chemistry, the quantum mechanical techniques [7–

9] have been applied over the years for the proper description of molecular vibrations.

The Born-Oppenheimer approximation [10–14] provides the platform to apply quantum

mechanics to the molecular systems. Within this approximation, the electronic energy

provides the potential for the motion of nuclei. Once this potential energy function is

known, the rovibrational energy levels of the molecules can be calculated by solving
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Schrödinger equation for nuclear motion. However, writing the ro-vibrational Hamilto-

nian is not straight forward. It depends on the coordinate system used to describe the

nuclear motion. The correct quantum mechanical Hamiltonian was obtained for general-

ized coordinate system by Podolsky[15]. Eckart [16] has developed a coordinate system

based on molecule-fixed rotating axis to study the vibrations around equilibrium. For

semi-rigid molecules around equilibrium the vibrational coordinates can be written as

linear combination of nuclear Cartesian coordinates. One defines the normal coordinate

system as linear transformation of nuclear Cartesian coordinates in which the Hessian

matrix i.e. the second derivative matrix of electronic energy with respect to the these

coordinates is diagonal. Watson [20] has derived the most simple form of vibrational

Hamiltonian in the normal mode basis in the Eckart frame [3, 16–18].

Several quantum mechanical methods have been developed to study the molecular

vibrations using the Watson Hamiltonian. There are mainly two approach to deal with

solution of many-body Schroödinger equation. One is the variational approach [24] and

the other one is the perturbative approach [21–23]. Within variational approach, methods

like vibrational self consistence field (VSCF) [25–32] method, vibrational multireference

self consistence field method (VMCSCF) [34–36], vibrational configuration interaction

method (VCI) [32, 38–42] have been evolved and applied extensively over years. Within

perturbative approach both Van Vleck [47–52] and Møller-Plesset perturbation method

[53–59] have been applied to study the molecular vibrations. Each of these methods has

its advantages and drawbacks.

The third approach, known as coupled cluster method [60–64], is neither variational

nor perturbative. This method has been established as the state-of-the-art method for the

description of many body system in general and electronic structure theory in particular.

It has immense success in calculating electronic state energies, potential energy surfaces

and other non-energetic properties.

There were some attempts to apply coupled cluster method to describe one dimen-

sional anharmonic vibration [65–67]. The first implication to molecular anharmonic
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vibrations was made by Prasad and co-workers [68]. There are two different represen-

tations possible for coupled cluster description [69] of anharmonic molecular vibrations.

The first one is the bosonic representation [68–71]. Here, the Fock space is constructed

using harmonic oscillator (HO) ladder operators acting on an appropriate vacuum state.

Prasad and co-workers used this representation. The second approach is termed as ba-

sis set representation [75–82] in which the Fock space is constructed as a union of all

k-mode Hilbert spaces constructed as the tensor products of basis functions of the ap-

propriate degrees of freedom. This is the route followed mainly by Christiansen and

co-workers.

The implementation of vibrational coupled cluster method in bosonic representation

is still limited. In this thesis we aimed to make a systematic study of vibrational coupled

cluster method in bosonic representation in terms of the convergence of cluster operator.

We analyze the implications of coupled cluster linear response theory for the description

of vibrational excited states and their convergence patterns in terms of the rank of the

excitation operators.

To start with, we give a brief overview of different representation of molecular vibra-

tional Hamiltonian and the ab initio methods to solve the vibrational Schrödinger equa-

tion. This helps in placing the relevance of the proposed work. Since the formulation of

coupled cluster method is based on second quantization and diagrammatic techniques,

we give a briefly review these techniques. In the subsequent subsections, we discuss ba-

sic coupled cluster methodology and the developments of various methods to calculate

excited states, non-energetic properties within coupled cluster framework. A brief re-

view of some earlier work on vibrational coupled cluster method is given after that. The

objective and scope of the thesis are discussed at the end.
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1.2 Full Molecular Hamiltonian

Let us consider a molecule consisting of N nuclei with masses mα and charges Zαe, α =

1, 2, .., N and n electrons, each of having mass me and charge −e. The nuclei and elec-

trons are described by (Xα, Yα, Zα) and (xi, yi, zi) respectively in a Cartesian system of

coordinates rigidly attached to the laboratory [Laboratory axis system (LAS)]. Let us

denote Rn as the set of Cartesian coordinates of nuclei and re as the set of all Cartesian

coordinates of electrons. Assuming that the molecule is not influenced by any external

field, the non-relativistic Hamiltonian of the molecule can be written as [3, 5, 14, 18]

Ĥ = T̂n + T̂e + V (Rn, re). (1.1)

Here, T̂n is the kinetic energy operator of nuclei and is given by

T̂n =
~2

2

N∑
α=1

1

mα

[
∂2

∂X2
α

+
∂2

∂Y 2
α

+
∂2

∂Z2
α

], (1.2)

T̂e is the kinetic energy operator of electrons is given by

T̂e =
~2

2

n∑
i=1

1

Mi

[
∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

], (1.3)

and the V (Rn, re) is the Coulomb potential energy function is given by

V (Rn, re) = −
N∑
α=1

n∑
i=1

Zαe
2√

(Xα − xi)2 + (Yα − yi)2 + (Zα − zi)2

+
∑
i<i′

e2√
(xi − xi′)2 + (yi − yi′)2 + (zi − zi′)2

+
∑
α<α′

ZαZα′e
2√

(Xα −Xα′)2 + (Yα − Yα′)2 + (Zα − Zα′)2
.

(1.4)

1.3 The Born-Oppenheimer Separation:

The Schrödinger equation associated with the Hamiltonian in Eq.1.1 is written as

Ĥψne(Rn, re) = Eneψne(Rn, re). (1.5)
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The first simplification is the separation of nuclear and electronic motion due to Born-

Oppenheimer (BO) approximation [10–13]. Born and Oppenheimer in 1927 [10] showed

that if the rovibroinc Hamiltonian described in eq (1.1) is expanded in power of a param-

eter κ, defined as the fourth root of the ratio of mass of electron and mean mass of

nucleus,

κ = (
me∑

αmα/N
)

1
4 = (

me

M
)

1
4 , (1.6)

the electronic energy appears in the zeroth order, vibrational energy appears in second

order and rotational energy appears in the fourth order in the expression while the first

order and third order terms disappear. The BO approximation leads to the well-known

separated equations,

(T̂e + V̂e(Rn, re))ψe(Rn, re) = Ee(Rn)ψe(Rn, re) (1.7)

(T̂N + Êe + V̂N)φN(Rn, re) = ENφN(Rn, re), (1.8)

where, V̂e(Rn, re)) is the potential energy function for electronic motion which con-

tain electron-electron repulsion and nuclear-electron attraction term. V̂N is the nuclear-

nuclear repulsion term. Eq. (1.18) is the Schrödinger equation for electronic motion

where the electronic wave function is parametrically dependent on the nuclear coordi-

nate. The defined electronic Hamiltonian is known as clamped nucleus Hamiltonian

[11, 12], which means that all nuclei have a fixed geometry defined by the coordinates

RN . The electronic energy obtain under clamped nucleus approximation together with

the nuclear-nuclear repulsion term V̂N is the potential for the nuclear Schrödinger equa-

tion.

1.4 Translation free Hamiltonian

We obviously need 3N degrees of freedom to describe nuclear motion. Among these

three degrees of freedom are needed to describe the translational motion of molecule.

During translation of molecule, all nuclei move uniformly along a straight line without
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changing their relative positions. One can eliminate translational degrees of freedom by

simply choosing the Cartesian coordinates of the nuclear center of mass as three trans-

lational coordinates in the laboratory-fixed axis. The remaining (3N − 3) coordinates,

known as translation free coordinates [19] account for rotational and vibrational motions

and are defined by N − 1 equations,
tiX

tiY

tiZ

 =
N∑
α=1

Vαi


Xα

Yα

Zα

 , i = 1, 2, . . . , N − 1. (1.9)

These coordinates are invariant under translational motion due to the condition,

N∑
α=i

Vαi = 0. (1.10)

Now, the kinetic energy operator in eq (1.8) can be factored into two parts, one transla-

tional kinetic energy operator and other is ro-vibrational kinetic energy operator,

T̂N = T̂tr + T̂rv. (1.11)

Dropping out the translational part, the nuclear Schrödinger equation becomes,

(T̂rv + Êe + V̂N)φN(Rn, re) = ENφN(Rn, re). (1.12)

1.5 Separation of rotational and vibrational motion

The 3N − 3 translation free coordinates corresponds to two kind of molecular motion.

One is the uniform rotation of molecule as whole and other is the relative displacement

of the nuclei from each other, that is vibration. It is convenient to define a new Cartesian

coordinate axis that is attached to molecule to separate the uniform rotation of molecule

from the vibrational motion. This coordinate system is commonly known as molecular

axis system[MAS] [5, 16, 20]. The origin in MAS is placed at the center of mass of the
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molecule. The relative orientation of MAS with respect to LAS is defined by three Euler

angle (θ, φ, χ) 
x

y

z

 =


λxX λxY λxZ

λyX λyY λyZ

λzX λzY λzZ



X

Y

Z

 . (1.13)

Here, the rotational matrix λ is called the direction cosine matrix. The rotational co-

ordinates of a nonlinear polyatomic molecule are defined by these three Euler angles.

However, for linear molecule having all nuclei lying along Z axis only two angle (θ, φ)

are considered as rotational coordinates. A new set of 3N−6 coordinates (3n−5 in case

of linear molecule) are defined as vibrational coordinates. These coordinates are invariant

under translation as well as uniform rotation of the molecule. So, the potential function

only depends on the vibrational coordinates. However, due to vibrational angular mo-

mentum terms that arise because of bending motions, the vibrational kinetic energy term

is dependent on the rotational coordinates ( θ, φ, χ). As a consequence, complete decou-

pling of rotational and vibrational degrees of freedom in any case is impossible. Eckart

[16] has prescribed two conditions to minimize this rotational and vibrational coupling

for semi-rigid molecules in MAS around equilibrium. If we define mi as the mass of

i′th nucleus and zi as its Cartesian coordinates, z0
i as the coordinates at equilibrium and

ρi as the displacement coordinates (defined as zi − z0
i ). Then the first Eckart condition

[16, 17, 20] is due to separation of the motion of center of nuclear mass (translational

motion),
N∑
i=1

mizi = 0. (1.14)

The second Eckart condition [16, 17, 20] is for the cancellation of angular momentum at

reference geometry, that is to separate the rotations and vibrations for small amplitudes

of motion around equilibrium,

N∑
i=1

miz
0
i × ρi = 0. (1.15)
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The Eckart’s frame is the natural choice for normal coordinates to study vibrations of

semi-rigid molecules around equilibrium.

1.6 The vibrational coordinates

The first problem that one encounters to solve the vibrational Schrödinger equations is

to choose a proper coordinate system to define the vibrational Hamiltonian in Eq. 1.12

in terms of these coordinates. There are two fundamental classes [5] of vibrational co-

ordinate systems emerge from the literature, namely the rectilinear and the curvilinear

coordinates. The most conventional coordinate system is the rectilinear normal coordi-

nate based of Eckart frame. It provides excellent description for vibrations of semi-rigid

molecules at low level excitations around equilibrium geometry. However, for floppy

molecules or highly excited vibrational states, one has to go for curvilinear coordinates.

Depending on the context several kinds of curvilinear coordinates are defined in the lit-

erature. These are mainly internal bond angle, bond length [18, 41, 50, 97–102], local

mode [50, 103–111] Jacobi coordinates [47, 50, 112–116, 127] etc. We will briefly

review some of the vibrational coordinates usually used in the rovibrational studies.

1.6.1 The Internal bond angle coordinate

Changes of bond length and bond angles are among most convenient choice to define

3N − 6 internal coordinates which are invariant under molecular translational and rota-

tional motions. Extensive work has been reported in the literature to study vibrational

spectra of triatomic and tetra atomic [18, 41, 50, 97–102] in this coordinate system.

These internal coordinates follow, almost exactly, the way a molecule vibrates, i.e. elon-

gations of bond lengths (stretching) and angular motion between them (bending). As a

consequence, even a lower order Taylor expansion in potential energy is adequate for the

description of molecular vibrations in comparison to Cartesian coordinates. However,

the kinetic energy term is very complicated in these coordinates. Handy and Sutcliffe
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[99] proposed a straightforward way to write the kinetic energy terms. They started from

the kinetic energy expressed in the Cartesian coordinates and transformed it into internal

coordinates by using chain rules. This transformation is carried out by expressing the

Euler angles and internal coordinates as functions of the Cartesian coordinates. How-

ever, these algebraic transformations are cubersome and are restricted to only tri-atomic

and tetra-atomic molecules.

1.6.2 The Local-mode coordinates

A more accurate coordinate system to describe the high energy vibrations is the local

mode coordinates [50, 103–111]. The highly excited vibrational states, particularly over-

tones of OH and CH stretching can be treated as localized oscillators. This means that the

diagonal anharmonic terms exceeds the non-diagonal inter-mode coupling strengths. In

the normal mode description, the non-diagonal coupling terms prevail in the high excited

range and as a result it gives poor description in this region. In local mode description

one uses the Morse potential as potential energy function. The resultant Hamiltonian in

this coordinate system is simpler and describes specific mode of vibrations ensuring that

the diagonal anharmonic terms exceed over non-diagonal terms. The local-mode coordi-

nates are well suited for overtones spectroscopy, in particularly, the stretching overtones.

1.6.3 The Jacobi coordinates

The Jacobi coordinate system [47, 50, 112–116, 127] was originally developed in the

context of scattering theory [50]. In this coordinate system, the coordinates of all nuclei

are defined with respect to a single central nucleus. A Jacobi vector describes the position

of a given nucleus with respect to center of mass of a set of nuclei. The coordinate system

is an obvious choice for studying large-amplitude vibrations, especially when there is

more than one minimum in the potential energy surface.
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1.6.4 The rectilinear Normal coordinates

Although the curvilinear coordinates offer the advantage to describe the molecular vibra-

tions accurately over wide range of spectrum, their applications are still limited to small

molecules, in particular tri-atomic and tetra atomic molecules. The main difficulty with

these coordinates is that writing a generalized vibrational Hamiltonian is not possible.

On the other hand this advantage is offered by rectilinear coordinates.

The definition of the normal coordinates [2–6, 16, 17, 50, 117–123] is based on the

Eckart’s frame. These coordinates are the linear combinations of displacement coordi-

nates (ρi defined in the Eckart’s frame)

Qk =
N∑
i=1

√
milkiρi i = 1, 2, . . . , N and k = 1, 2, . . . , 3N − 6. (1.16)

lik are the elements of transformation matrix. The transformation matrix is defined in

such a manner that the Hessian matrix of the molecule in these transformed coordinates

is diagonal. The transformation is orthogonal by virtue of the relation

N∑
i=1

lTijlik = δjk j, k = 1, 2, . . . , 3N − 6. (1.17)

Following the Eckart’s conditions, the transformation matrix satisfies the relations,

N∑
i=1

√
milik = 0 and

N∑
i=1

√
miz

0
i × lik = 0. (1.18)

Watson [20, 122] derived a simple form of vibrational Hamiltonian in normal coordinates

following the work of Eckart [16], Wilson and Howard [117, 122], Darling and Dennison

[123], Amat and co-workers [119, 120]. The Watsonian Hamiltonian is written as,

Ĥ =
∑
α,β

1

2
~(Ĵα − π̂α)µαβ(Ĵβ − π̂β) +

1

2

∑
i

P̂ 2
i + V (Q) + U. (1.19)

Here, α and β denote the x, y and z components of the Cartesian coordinates and Ĵα

is the αth component of total angular momentum in ~ unit. µ denotes the reciprocal of
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effective moment of inertia. V (Q) is the potential energy function. It can be written as a

Taylor series expansion in normal coordinates,

V (Q) =
∑
i

fiiQ
2
i +

∑
i<j<k

fijkQiQjQk +
∑

i<j<k<l

fijklQiQjQkQl + . . . , (1.20)

where, π̂α is the component of the vibrational angular momentum operator along the

rotating direction α. The expression of π̂α is given by,

π̂α =
∑
i<j

ξ
(α)
ij (QiPj − PiQj), (1.21)

where, ξij’s Coriolis coupling terms [5, 9] which are obtained from the normal mode

eigenvectors of the potential energy function. U is a mass dependent term known as

Watson term and is given by

U = −(
~2

8
)
∑
α

µαα (1.22)

If the Taylor series expansion of Eq. 1.20 is truncated after quadratic term and Coriolis

coupling and Watson terms are neglected then the vibrational Hamiltonian in Eq. 1.19

becomes the sum of one mode harmonic oscillator Hamiltonians

H0 =
1

2

∑
i

P̂ 2
i +

∑
i

ωiQ
2
i =

∑
i

h(i) (1.23)

where, ωi is the harmonic frequency of ith mode. Since Schrödinger equation associated

with harmonic oscillator is exactly solvable, the Eq. 1.23 provides a good zeroth or-

der Hamiltonian to apply variational or perturbative methods for anharmonic vibrational

studies.

1.7 Methods to solve Vibrational Schrödinger Equation:

Like other branches of quantum many-body systems, mainly two different type of ap-

proaches are evolved to solve the Schrödinger equation associated with molecular vi-

brations. One is based on variational principle [7, 9, 21, 24] and other one is based on

perturbation theory [7, 9, 22]. The vibrational configuration interaction method (VCI)
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[32, 38–42, 126, 127, 130], vibrational self consistence field theory (VSCF) [25–32]

etc belong to the formal class. On the other hand within perturbative approach, Moller-

Plesset (VMP) [53–59] and canonical van Vleck perturbation (CVPT) [47–52] methods

are developed and applied extensively.

1.7.1 Vibrational self-consistent field theory

The most common approximation to solve the quantum many-body problem is based on

mean field approach. In this approach the many-body problem is decomposed to a set

of coupled one body problem. The well known Hartree-Fock method or Self-consistent

field method (SCF) [21, 92] is widely applied for the description of atomic and molec-

ular electronic structure and nuclear structure. The SCF method was first introduced to

calculate vibrational energy levels by Carney et.al. [25] followed by many other authors

[26–33]. In this method, each mode of vibration is considered within a effective mean

field potential generated by other modes.

In VSCF, a product of single-mode wave functions (conventionally called modal)

Ψn1,n2,...nm =
m∏
j=1

φ
(nj)
j (Qj) (1.24)

is taken as trial function and the energy expectation value is minimized with respect to

these single-mode functions.

δ
〈Ψn|H|Ψn〉
φ
nj

j (Qj)
= 0. (1.25)

In this way, one obtains a set of integro-differential equations

[h(i) + 〈
m∏
j 6=i

φ
nj

j |Vc|
m∏
j 6=i

φ
nj

j 〉]φ
ni
i = εni

φni
i . (1.26)

These coupled equations are solved iteratively to get optimized single-mode function and

energies. The total energy is given by,

En =
m∑
j=1

ε
(n)
j − (N − 1)× [〈

m∏
j 6=i

φ
nj

j |Vc|
m∏
j 6=i

φ
nj

j 〉]]. (1.27)
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The last term is due to double counting on off-diagonal interaction in the potential. Eq.

1.26 can be solved both numerically and algebraically. In algebraic solutions, one ex-

pands each single-mode function in terms of linear combination of di orthogonal har-

monic oscillator or non-orthogonal distributed Gaussian basis functions

|φni
i 〉 =

di∑
ν

Cni
νi |χν〉. (1.28)

Each equation in Eq. 1.26 takes a matrix form. These matrices are iteratively diagonal-

ized until converged. Finally, one gets di solutions {φni
i } for each of 3N − 6 modes.

Among these di modals, the lowest energy modal is called occupied and rest are called

virtual modals.

The VSCF method involves replacement of the complicated many-body problem by

an effective one body problem in which the interactions of vibrational modes are taken in

an average manner. Due to single-mode nature of the effective potential, the VSCF does

not account the correlation effects, i.e. nonseparability of true vibrational wave functions.

This correlation error can be very large when the mode couplings are strong. This leads to

the formulation of methodologies like VSCF-CI, vibrational multi-configurational self-

consistent field method.

1.7.2 Vibrational Configuration Interaction method

The vibrational configuration interaction (VCI) method is conceptually the simplest

method to solve vibrational eigenvalue equation. It requires formation and diagonal-

ization of the vibrational Hamiltonian matrix in a configurational space. There are two

ways to construct the vibrational Hamitonian matrix. One uses the optimized VSCF basis

functions to generate the configurations and the Hamiltonian matrix is generated using

these configurations. This is similar to CI method in electronic structure theory [21, 93]

and referred as VSCF-CI method [32, 38–42]. The second method uses the values of

the wave function at N discrete grid points using continuous polynomial functions. The
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Hamiltonian matrix is constructed in these grid points. This method is referred as the

discrete variable representation (DVR)[126, 127, 130–133, 138] method.

The algebraic solution of the VSCF equations provides a basis set {φi} to perform

VCI calculation. The configurations are generated by replacing the occupied modals

with the virtual modals of same mode. The VCI wave function is written as a linear

combination of these configurations.

ΨV CI
n =

∑
m

CmnΨV SCF
m . (1.29)

The linear variation principle is used to determine the co-efficientCmn. This is equivalent

to diagonalize the VCI matrix

Hmn = 〈ΨV SCF
m |H|ΨV SCF

n 〉, (1.30)

to obtain eigenvectors and eigenvalues.

Romanowski et. al. [28] explored the idea of using basis set of eigenfunctions of the

uncoupled anharmonic oscillator (UAO) Hamiltonian

h0
k =

1

2
P̂k + ωkQ

2
k + fkkkQ

3
k + fkkkkQ

4
k (1.31)

to construct configurations in VCI calculation. It is found that both UAO-CI and SCF-CI

energies are roughly equal for a given basis set.

The VCI is in principle an exact method. However, the dimension of VCI matrix

increases exponentially with the number of vibrational degrees of freedom which makes

full VCI practically inapplicable for large molecules. So, for practical purpose one has

to truncate the expansion of the VCI wave function. This truncation is not straight for-

ward as in case of electronic structure theory. The two body nature of the electronic

Hamiltonian ensures that CISD is the best truncation scheme in terms of accuracy. In

case of molecular vibration, since the Hamiltonian contains more than two body terms,

the triple and quadruple excitations are also significant in terms of accuracy. Several

authors used the Davidson’s iterative diagonalization scheme [96] to compute few lower

14



lying eigenvalues and eigenvectors of VCI matrix [43, 45]. This method bypasses the

need of complete diagonalization of full VCI matrix by using matrix-vector product of

the Hamiltonian with a trial vector.

Apart from the large configurational space problem, truncated VCI is not able to

satisfy two most important criterias namely the size consistency and the size extensivity

[93].The size consistency signifies the proper description at dissociation limit and size-

extensivity is related to the proper scaling of energy with respect to the size of the system.

These two concepts are discussed in details in the next section.

1.7.3 Vibrational multi-configurational SCF method

The multi-configurational self consistent field theory (MCSCF) [94] is a more accurate

alternative to the traditional truncated CI method. The basic idea of this approach is to

use the variation principle to determine the single particle functions that are used in the CI

expansion. Following its wide implementations to molecular electronic structure theory,

Culot and Liévin introduced [34, 35] the method to molecular vibrational calculations.

The vibrational wave function in this case is written as

ΨVMCSCF =
∑
i

CiΨi, (1.32)

where, Ψi is a single-product of one mode harmonic oscillator functions represent a vi-

brational configuration which can be obtained from a VSCF calculation. In VMCSCF

procedure, both the expansion coefficient Ci and one mode basis functions in Ψi are opti-

mized. Culot and Liévin proposed a solution based on the generalized Brillouin theorem

(GBT) which states that the Hamiltonian matrix elements between a self-consistent wave

function and single excitations are zero.

〈ΨVMCSCF |Hvib|Ψν
kl〉 = 0. (1.33)

Here, Ψν
kl denotes a single excited multiconfigurational function obtain by replacing the

state k by state l of the mode ν. Thus the VMCSCF method involves two step solutions.
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In the first step, one solves the linear variational problem with the wave function in Eq.

1.32 to get the configuration functions and in the second step one solves Eq. 1.33 to

ensure that the configuration functions satisfy the GBT.

The MCSCF method, however, involves the manual choice of the configurations

space for the wave function expansion which requires a prior knowledge about the sys-

tem. Essentially, a SCF calculation decides which configurations to be used for the MC-

SCF wave function. A more general extension to MCSCF methodology is the complete

active space SCF method [95]. Here, a set of single space functions (modals in case of

molecular vibrations) determine so-called active space. The multi-configurational wave

function is expanded as linear combination of all the configurations generated out of

these active space. The vibrational complete active space SCF method (VCASCF) has

been formulated by Culot and Liévin [35]. They defined the active space in terms of all

functions in a given mode up to a specific vibrational quantum number. It is found that

VCASSCF provides better convergence in comparison to VMCSCF.

Recently Rauhut and co-workers proposed a different methodology to solve the VM-

CSCF problem based on Hermicity condition to optimize the modals [36]. Both a poly-

nomial or a grid representation of the Hamiltonian are used by the authors. This method

is very much like Fourier grid Hamiltonian multiconfiguration method [37] developed

by Webb and Hammes-Schiffer in order to calculate hydrogen nuclear wave functions in

quantum/classical molecular dynamics simulations of hydrogen transfer reactions.

1.7.4 DVR approach

One of the most elegant and powerful variational method to solve the vibrational eigen-

value equation is discrete variable representation (DVR) method [125–143]. In the gen-

eral variational methods in quantum problem the trial wave function of any bound system

is written as a linear combination of known complete set (infinite) of orthogonal discrete

basis functions. This basis set is truncated up to a finite limit and the eigenvalues of the

Hamiltonian is variationally optimized in this truncated basis set representation. In DVR
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this truncated basis set representation is transformed into a representation of continuous

functions that are localized (in a limited sense) on a grid in coordinate space. This trans-

formation can be obtained using appropriate numerical quadrature (for example Gaussian

quadrature).

The DVR is introduced to chemical physics literature by Harris et. al [124]. These

authors showed that the eigenvalues of the coordinate matrix generates the transforma-

tion for DVR. They used harmonic oscillator basis functions to construct the matrix for

coordinates. Dickinson and Certain [126] showed that these eigenvalues are equivalent

to Gaussian quadrature points for Hermite polynomial.

The DVR is extensively used in the rotation-vibration literature by many authors

[133–143]. In this method, one generates the ro-vibrational Hamiltonian matrix by us-

ing appropriate polynomial function and numeric quadrature. This Hamiltonian matrix

is diagonalized to obtain the vibrational energy and eigenvectors. There are many pos-

sibilities to construct the DVR Hamiltonian depending on the choice of the polynomial

and numerical quadratures. Bačič, Light [130] and many other authors used a distributed

Gaussian basis to generate the DVR which is referred as DGB-DVR. Among others,

Manolopoulos and Wyatt used Lobatto quadrature and functions (Lobatto DVR) [131],

Colbert and Miller used Chebyshev polynomial and Gaussian quadrature to construct the

DVR (Sinc DVR) [132].

Using the same transformation one can obtain an orthogonal discrete basis set to rep-

resent the Hamiltonian matrix that contain exactly same approximation as the DVR. This

representation is referred as finite basis representation (FBR) [125, 137]. The kinetic en-

ergy becomes simpler in this representation and is determined by numerical quadrature

over the DVR points.

There are mainly two advantages of using DVR. First, in this representation the co-

ordinate operator is diagonal and consequently it bypasses the evaluations of integrals

which is essential for general variational methods. Secondly, the Hamiltonian matrix
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generated in DVR is a sparse matrix and can be efficiently diagonalized. Several diag-

onalization methods e.g. the Lanczos algorithm[134], the recursive residue generation

method [129], Fourier-Lanczos method [135] have been used by different authors. It is

found that among these method the most efficient is the Lanczos method [134]. It allows

diagonalization of very large matrix without storing the matrix as a whole.

Carrington and coworkers introduce an efficient and accurate DVR approach called

potential optimized DVR (PODVR) [136]. Here, the DVR is obtained from the basis set

of eigenfunctions of one dimensional Hamiltonian. The kinetic energy term becomes

simpler in the PODVR. Obviously the PODVR is well suited for the system where the

inter-mode coupling strength is week.

1.7.5 Vibrational Perturbation Method

The perturbation theory has been one of the most powerful method to solve quantum

many body problem. It has wide range of applications in calculating anharmonic molec-

ular spectra over the years. Among many different types of perturbative approaches

developed in the literature of quantum many body theory (e.g. Rayleigh-Schrödinger

(RSPT) [21, 83], Brillouins-Wigner (BWPT) [83], Van Vleck (CVPT) [86]), the RSPT is

conceptually the simplest one. Here, the Hamiltonian is divided into two parts: a zeroth

order Hamiltonian, H0, and small perturbation V . The complete set of eigenfunctions

{Ψ0
i } and eigenvalues E0

i of H0 are known from a previous calculation. One improves

these eigenfunctions and eigenvalues systematically to eigenfunctions and eigenvalues

of original Hamiltonian. So, the exact Hamiltonian is written as,

H = H0 + λV, (1.34)

where, λ is a parameter that takes the zeroth order Hamiltonian to the exact Hamiltonian.

In other words, λ = 0 corresponds to zeroth order Hamiltonian and λ = 1 corresponds

to exact Hamiltonian. Since Hamiltonian is dependent of λ, both eigenfunctions and
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eigenvalues are also dependent on λ

Ψn = Ψn(λ,Q) and En = En(λ,Q)

The exact eigenfunctions and eigenvalues of a non-degenerate state are expanded as Tay-

lor series expansions around λ=0

Ψi = Ψ0
i + λΨ1

i +
λ2

2!
Ψ2
i +

λ3

3!
Ψ3
i + . . . (1.35)

Ei = E0
i + λE1

i +
λ2

2!
E2
i +

λ3

3!
E3
i + . . . (1.36)

Substituting the expressions of H , Ψi and Ei in the corresponding Schrödinger equation

and equating the co-efficients of λ one gets the perturbation corrections to energy order

by order as

E1
i = 〈Ψ0

i |V |Ψ0
i 〉, (1.37)

E2
i =

∑
n6=i

〈Ψ0
i |V |Ψ0

n〉〈Ψ0
n|V |Ψ0

i 〉
E

(0)
i − E

(0)
n

. (1.38)

The efficiency and convergence of the perturbation series depends on the choice of zeroth

order HamiltonianH0. IfH0 is chosen wisely and V is very small then perturbation series

converges quickly. One choice of zeroth order Hamiltonian is sum of one mode harmonic

oscillator Hamiltonians. In this case the anharmonic force field is perturbation. There

are some earlier studies based on this kind of partitioning.

Norris et. al. [58] and Gerber and coworkers [53–55] introduced Møller-Plesset

partitioning scheme [23] in the same spirit of electronic structure theory [21]. In this

scheme, the zeroth order Hamiltonian is the sum of effective one mode Hamiltonian

from VSCF calculation, i.e. the perturbation operator is V = H −
∑

i h
vscf
i . It is well

known that the first order correction to correlation energy is zero as a consequence of

Brillouin’s theorem. The vibrational second order Møller-Plesset (VMP2) correction is

obtained from Eq. 1.38. The second order corrections to VSCF is termed as correlation-

corrected VSCF (cc-VSCF) by Gerber and co-workers [53–55] and successfully applied

to several systems.
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The VMP2 expression in Eq. 1.38 assumes that the zeroth order energies are well

separated. In case of degeneracy or near degeneracy in the eigen spectrum of zeroth order

Hamiltonian, the second order energy expression blows up because of very small value of

the denominator. This kind of situation is very common in case of molecular vibrations.

For example, frequency of bending mode involving H atoms is about half of its stretching

mode. These two modes can strongly mix with each other through 2:1 resonance (so-

called Fermi resonance). Like these, other kind of resonances e.g. Darling-Dennison

resonance (2:2) are also very frequent. These lead to instability of perturbative solutions.

Matsunaga et.al [59] proposed vibrational degenerate perturbation theory to handle this

near degeneracy problem. They expanded the k-fold degenerate wave function as linear

combination of the degenerate zeroth order functions obtained from VSCF calculation,

Ψ0
i =

k∑
j=1

Cijφj. (1.39)

Substitution of this Ψ0
i to the first order energy expression results a set of k simultaneous

linear equations. This is equivalent to a CI problem in the space spanned by k degenerate

subspaces. The eigenvalues obtain by diagonalizing the perturbation Hamiltonian V in

this space are referred to as DPT1-VSCF. Similar way one can obtain the second order

energy expression as

E2
i =

∑
n6=n′

〈φn′ |V |Ψ0
n〉〈Ψ0

n|V |φn′〉
E0
i − E0

n

. (1.40)

The VSCF energy corrected up to second order using the degenerate perturbation theory

is referred as DPT2-VSCF.

1.7.6 Canonical Van Vleck Perturbation Theory:

The canonical Van Vleck perturbation theory (CVPT) [84–90] is an attractive alternative

for the description of quantum many body systems. It was first formulated by Shavitt

and Redmon [84] in the context of degenerate perturbation theory in electronic structure

calculation. The idea of Van Vleck perturbation perturbation theory is to transform the

20



Hamiltonian in to a effective Hamiltonian via unitary transformation

K = U−1HU. (1.41)

The solutions of the effective Hamiltonian can be obtained using a significantly smaller

basis set (model space) than is needed to obtain the solutions of the original Hamiltonian.

Shavitt and Redmon used exponential form of the operator U as

U = eG, (1.42)

where, G is an anti-Hermitian operator, i.e. G = −G and has no diagonal component.

They used super-operator framework developed by Primas [85] in their CVPT formalism.

The advantage of this approach is that the theory can be completely formulated in the

domain of Lie algebra.

Following the sucess of CVPT in electronic structure theory, Sibert and co-workers

[47–51, 112] introduced the methodology to describe molecular vibrational spectra. Sib-

ert started from the Nielson Hamiltonian

H = H(0) + λH(1) + λ2H(2) + . . . (1.43)

as the starting point of CVPT formulation. Here λ is the perturbation parameter. The

zeroth order Hamiltonian H(0) is the sum of the Harmonic oscillator Hamiltonian corre-

sponds to different modes of vibrations:

H(0) =
1

2

N∑
i=1

P 2
i + ω2

i q
2
i . (1.44)

where, ωi is the harmonic frequency and qi is the vibrational coordinate (say, normal

coordinate) of the i’th mode.

While Shavitt and Redmon determined the effective Hamiltonian K order by order,

Sibert used a series of unitary transformations to the original Hamiltonian to obtain the
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effective Hamiltonian,

K1 = exp(iλ1S(1))Hexp(−iλ1S(1)) (1.45a)

K2 = exp(iλ1S(2)K1exp(−iλ1S(2)) (1.45b)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K = exp(iλ1S(n)Knexp(−iλ1S(n)). (1.45c)

One first calculates K1, then K2 and so forth. The computational procedures to obtain

these transformations are same. K1 is determined by using the well known Hausdorff

formula,

K1 = H + iλ[S(1), H]− λ2

2!
[S(1), [S(1), H]] + . . . . (1.46)

and expanding H and K in terms of powers of λ. Equating the powers of λ one gets the

expressions of each order as K1

K
(0)
1 = H(0), (1.47)

K
(1)
1 = H(1) + i[S(1), H(0)],

K
(2)
1 = H(2) + i[S(1), H(1)]− 1

2!
[S(1)[S(1), H(0)],

and so on.

The perturbative Hamiltonian H(1), H(2) etc are rewritten in terms of harmonic os-

cillator ladder operators. For example,

H(1) =
∑
m

∑
n

N∏
j=1

(a†j)
mj (aj)

mj . (1.48)

The choice of the canonical operator S determines the form of the effective Hamiltonian.

For example, a choice of

S(1) =
∑
m

′∑
n

′
N∏
j=1

(a†j)
mj (aj)

mj (1.49)

22



leads to

K
(1)
1 =

∑
m

′′∑
n

′′
N∏
j=1

(a†j)
mj (aj)

mj , (1.50)

where,
∑

=
∑′+∑′′.

The most attractive feature of the CVPT is that it gives the flexibility in choosing S.

For a given choice of S(1) the perturbation corrections to the effective Hamiltonian can

be defined from Eq. 1.47. K2 , K3 etc are also determined order by order in the same

manner.

As stated earlier, the occurrence of degeneracy or near-degeneracy in the vibrational

eigenvalue spectroscopy is very frequent due to large mismatch between zeroth order

energies of the stretching and bending mode. This leads to divergence in the perturbation

expansion. Sibert and co-workers used almost degenerate perturbation theory [48] to

account this problem. Here, one chooses S(i) in such a way that it includes all terms

except those which satisfy the relation
N∑
i=1

ci(mi − ni) = 0. (1.51)

The value of ci is decided from the previous knowledge of the molecule. For example,

in case of H2CO, ci = 2 for all four stretching modes and ci = 1 for the bending

modes. The effective Hamiltonian K generated this way is block diagonal within a given

symmetry block. The solution of the effective Hamiltonian can be obtained with greatly

reduced basis sets.

Sibert’s CVPT formalism has been used extensively to describe the molecular vibra-

tions in both curvilinear and rectilinear normal coordinate systems. The results are found

to be highly accurate. Recently, Dawes and Carrington [52] used second order CVPT to

obtain effective one-dimensional basis functions in multi-dimensional vibrational prob-

lems.

Recently, Yagi et.al. [91] developed quasi-degenerate perturbation theory (QDTP)

based on Shavitt and Redmon formalism of Van Vleck perturbation theory. The quasi-

degenerate functions in model space are obtained from VSCF calculation. In this respect
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this approach is similar to degenerate perturbation theory by Matsunaga et.al. [59] de-

scribed in the earlier subsection. While Sibert’s approach uses a previous knowledge

of the system to treat the degeneracy, the QDTP is based on automatic generation of

quasi-degenerate model space.

1.8 Size consistency and size extensivity

As stated earlier, any approximate many body method should satisfy two important cri-

teria, namely size consistency and size extensivity [21, 144–146]. As defined by Pople

and co-workers [144], a method is size consistent if energy of a molecule is the sum

of energies of its fragments at non-interacting limit. In other words, if a system has N

non-interacting monomers with energy ei, its total energy will be Nei. This means, if a

system consists of two non-interacting fragment A and B, (or if AB molecule dissociates

in to A and B at infinite separation) then the energy should be additively separable

EAB = EA + EB, (1.52)

and the wave function should be multiplicatively separable

ΨAB = ΨAΨB. (1.53)

The concept of size extensivity is related to size consistency. It accounts proper scaling

of the energy with the number of particle i.e. with the size of the system. Unlike size

consistency, which is a property of infinite separation of the fragments of the system,

size extensivity is a more general mathematical concept that hold at any situation. If a

method is not size extensive, the error in calculated energy will scale as Nm, where m is

either less than 1 or greater than 1 and N is the number of particles present in the system.

In the former case, the correlation energy per particle decreases as the number of particle

N increases and becomes zero as N → ∞. In the later case, the correlation energy

per particle becomes infinity as N → ∞. Therefore, it results unphysical behavior in

energy calculations. It is well studied in the context of electronic structure theory that any
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truncated CI calculation does not satisfy these two properties. It can be easily shown that

the wave functions obtained from any truncated CI calculations are not multiplicatively

separable and hence the energies of the fragments are not additively separable. It holds

in the case of vibrational calculations also.

1.9 The method of second quantization and the Diagrammatic tech-

niques:

The method of second quantization and diagrammatic techniques [147–153] of quantum

field theory offers more simpler formulation of quantum many body theories than the

traditional route. Historically, the second quantization was first introduced by Dirac in

his treatment of quantization of radiation field [148]. The idea is extended to many

body methods like Green function theory[21, 151, 152], Many body perturbation theory

[21, 151, 152], Coupled cluster method [60–64, 189, 190] for the description of fermion

and bosonic systems over last few decades.

In the second quantization, many particle wave function and operators are represented

in terms of creation and annihilation operators. A creation operator a†i creates a particle

on single particle state |i〉 and an annihilation operator ai annihilates a particle from the

single particle state |i〉. So, if a creation operator acts on a N particle symmetric (in case

of bosons) or anti-symmetric (in case of fermions) function it generates a (N+1) particle

symmetric or anti-symmetric function respectively

a†i |jk...l〉 = |jk..li〉p. (1.54)

Here p is the phase acquired by the wave function during this process. Similarly one

annihilation operator generates (N-1) particle function from N particle function by its

action

ai|ijk...l〉 = |jk..l〉p. (1.55)

In the case of fermion systems, since one orbital cannot be occupied by more than one
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particle, the action of a creation operator on a many particle system is zero if the orbital

is already present in the many particle function. If the one particle basis set is chosen to

be orthogonal then the creation and annihilation operators are adjoint to each other, i.e.

(a†i )
† = ai. The symmetry requirements of many body functions for indistinguishable

particles is inherently built in the commutation/anti-commutation relations of the creation

and annihilation operators,

[a†i , a
†
j]± = 0 (1.56a)

[ai, aj]± = 0 (1.56b)

[ai, a
†
j]± = δij (1.56c)

where, ‘−’ sign signifies commutation relation applicable for boson particles and ‘+’

signifies anti-commutation relation applicable for fermion system.

In addition to these creation and annihilation operators, it is necessary to define a

vacuum state for the formulation of second quantization. A vacuum |0〉 is a normalized

state with no particle in it. The vacuum state is purely a mathematical concept having

following properties.

a†i |0〉 = |i〉 (1.57)

ai|0〉 = 0 = 〈0|a†i (1.58)

〈0|0〉 = 1 (1.59)

The first equation signifies that the creation operator acting on zero particle Hilbert space

generates one particle Hilbert space. Similarly, the many body function of any number

of particle can be generated by the successive operation of the creation operators on the

vacuum state

a†ia
†
j.....a

†
l |0〉 = |ij...l〉. (1.60)

So, the creation operators a†i do not operate only on a single Hilbert space, rather it

operates on one Hilbert space and generates another Hilbert space. The direct sum of all
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these Hilbert spaces form another linear vector space called the Fock space [151, 152]

B = B0 +B1 +B2 + . . . ... = ⊕∞n=0Bn for bosons. (1.61a)

F = F0 + F1 + F2 + . . . ... = ⊕∞n=0Fn for fermions. (1.61b)

An operator expressed in the second quantization notations does not depend on the

number of particle of the system. The expectation values of such operator between two

functions of a Fock space are easily determined by applying the concept of normal order-

ing and generalized Wick’s theorem [152, 155]. The generalized Wick’s theorem states

that any time order operator string can be written as normal ordered form plus sum of

all possible contractions. A sequence of creation and annihilation operator is said to be

normal ordered if all annihilation operators are placed at the right of the creation opera-

tors. When a commutation/anti-commutation is performed between a pair of creation and

annihilation operators, two terms arise. One that does not contain the pair of creation-

annihilation operators is known as contraction term. In the second term the creation and

annihilation operator pair is commuted/anti-commuted. The states of the many parti-

cle system between which the expectation values to be calculated are written as a string

of annihilation/creation operators acting on the vacuum. By applying the generalized

Wick’s theorem, this sequence of operator is written as normal ordered form and sum

of all possible pair of contractions. Since the expectation values of the normal ordered

operators over the vacuum state are zero, the matrix elements will survive only when the

creation and annihilation operators are fully contracted.

The diagrammatic representation of the Wick theorem bypasses the cubersome al-

gebraic formulations of the many body methods. The diagrammatic techniques was

first introduced by Feynman [154] in the context of quantum field theory and later on

successfully applied to many electron problem [149, 150, 190]. The above described

correlation methods e.g. configurational interaction, many body perturbation theory etc

are re-expressed in terms of second quantization. The diagrammatic representations of
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the corresponding energy terms and amplitude equations not only simplify the formula-

tion but monitor the size extensivity. For example, in second quantization, the CI wave

function can be rewritten by a wave operator operating on a vacuum defined by a non-

interacting many body function

|Ψ〉 = (1 + Ĉ)|Φ0〉, (1.62)

with,

Ĉ = Ĉ1 + Ĉ2 + Ĉ3 + . . . . (1.63)

Here, Ĉ1, Ĉ2 etc are the one body, two body excitation operators that generate the

configurations by their action on the vacuum. Substituting this wave function ansatz in

the Schrödinger equations followed by projecting various configuration functions, one

gets the following equations for CI

〈Φ0|ĤN(1 + Ĉ)|Φ0〉 = Ecorr (1.64a)

〈Φ∗|ĤN(1 + Ĉ)|Φ0〉 = Ecorr〈Φ∗|Ĉ|Φ0〉 (1.64b)

where, ĤN is the normal ordered form of the Hamiltonian and 〈Φ∗| are the excited config-

urations. All these matrix elements in these equations can be evaluated using generalized

Wick’s theorem. The correlation energy Ecorr is size extensive if its diagrammatic repre-

sentation contains only connected closed diagrams. Due to presence of the Ecorr term at

the right hand side of the amplitude equations, it generates some disconnected diagrams.

Such disconnected diagrams have parts which are closed and connected. This type of

diagrams are referred as unlinked diagrams. These unlinked diagrams are responsible

for the size-inextensivity.

In case of RSPT, these unlinked terms appear beyond second order in the energy

expression. Bruckner algebraically [156] and Goldstone and Hugenholtz diagrammat-

ically [157] showed that these unlinked terms in RSPT cancel each other within each

perturbative order. This result is known as linked cluster theorem (LCT).
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1.10 The Coupled Cluster theory

The coupled cluster method has been established as one of the most accurate techniques

for the description of quantum many body system [60–67, 189, 190]. In particular, it has

immense success in the description of electronic structures of atoms and molecules over

last few decades. Using MBPT, Hubbard [158] showed that the exact ground state wave

function of many particle system can be parametrized by an exponential wave operator

operating on the zeroth order wave function. Coester and Kümmel [159] formally intro-

duced the exponential S method or later on known as coupled cluster method by using

this exponential parametrization of ground state many particle wave function in the con-

text of nuclear physics. Later on, the idea was introduced in quantum chemistry by Cizek

and Paldus [60]. However, the relevance of the cluster expansion of the wave function in

electronic structures of atoms and molecules was studied by Sinanoglu [160] and Nesbet

[161] from a different perspective.

The coupled cluster wave function for ground state of many body system is written

as,

|Ψgr〉 = eT̂ |φ0〉 = Ω|φ0〉. (1.65)

The operator T̂ , known as the correlation cluster operator, is the sum of connected sin-

gles, doubles, triples, up to n-truple excitation operators

T̂ = T̂1 + T̂2 + T̂3 + . . . , (1.66)

and φ0 is the reference function. The action of T̂1, T̂2 etc on the reference function

generates singly excited, doubly excited and so on configurations just like Ĉ1, Ĉ2 in

CI method. One can easily view the relation between CI wave function and CC wave
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function through following equations,

C1 = T1

C2 = T2 +
1

2!
T 2

1

C3 = T3 + T1T2 +
1

3!
T 3

1

C4 = T4 + T1T3 +
1

2!
T 2

1 T2 +
1

2!
T 2

2 +
1

4!
T 4

1 .

(1.67)

and so on.

This correspondence holds only in the exact limit. In practice, the exact CCM is

never pursued simply because its nonlinear structure is much more complicated than lin-

ear expansion in full CI. However, the most attractive feature of CC wave functions is

that it contains all the excited configurations in an approximate manner even at a lower

order truncation of the wave operator. For example, if T̂ contains only singly and dou-

bly excitation operators then because of the exponential nature of the wave operator,

the resultant wave function contains some of the triply excited configurations generated

by T1T2, quartic excited configurations generated by T 2
2 and T 4

1 and so on. As a con-

sequence, it is much more accurate that the truncated CI wave function. Again due to

exponential nature of the wave operator, the resultant function is multiplicatively sepa-

rable at any level of truncation and hence the method is size consistent. In diagrammatic

language, one can say that the higher order clusters appear in the wave function as lower

order linked diagrams. This makes the CCM size extensive at any level of approximation.

The ground state energy can be obtained by projecting the reference state to the cor-

responding Schrödinger equation,

〈φ0|ĤeT̂ |φ0〉 = Egr〈φ0|eT̂ |φ0〉 = Egr. (1.68)

Here, intermediate normalization 〈φ0|Ψgr〉 = 1 is assumed. The equations for the cluster

amplitudes are obtained by projecting the excited configurations 〈φ∗|

〈φ∗|ĤeT̂ |φ0〉 = Egr〈φ∗|eT̂ |φ0〉. (1.69)
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The diagrammatic representation of Eq. 1.69 is unlinked due to presence of Egr. How-

ever, the diagrammatic analysis of left hand side shows that it also contains some un-

linked terms due to presence of the exponential operator. The unlinked terms of both

sides exactly cancel each others.

The coupled cluster equations 1.69 and 1.68 are not amenable to the practical com-

puter implementations. The most convenient way is the use of similarity transformation

technique. Pre-multiplying the corresponding Schrödinger equation by e−T̂one obtain

the following equation

e−T̂HeT̂ |φ0〉 = Egr|φ0〉. (1.70)

Upon subsequent projection of the reference 〈φ0| state and excited configurations one

can easily obtain the modified formula for energy and cluster amplitudes,

〈φ0|e−T̂HeT̂ |φ0〉 = Egr, (1.71)

〈φ∗|e−T̂HeT̂ |φ0〉 = 0. (1.72)

The advantage of using the similarity transformation is two fold. One, the resulting

amplitude equations (1.72) are completely decoupled from the energy equation (1.71).

The other is that the similarity transformation transformed Hamiltonian now can be ex-

panded as a linear combination of nested commutators of Ĥ and cluster operator T̂ via

well known Champbell-Baker-Hausdorff (CBH) formula,

e−T̂ ĤeT̂ = Ĥ + [Ĥ, T̂ ] + [[Ĥ, T̂ ], T̂ ] + [[[Ĥ, T̂ ], T̂ ], T̂ ] + . . . (1.73)

This infinite series expansion truncates naturally depending on the nature of the Hamil-

tonian. For example, in case of electronic structures of atoms and molecules, because

of having two creation and two annihilation operators in second quantized form of the

Hamiltonian, the CBH expansion truncates after the first five terms. This truncation is

independent of the approximation used in T̂ operator. The commutator structure of the

equations ensure the connectedness of the diagrams.
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1.10.1 Stationary Coupled Cluster Methods:

The traditional CCM, just discussed, is manifestly non-variational. However, there are

some stationary approaches have been developed to solve the CC wave functions. The

advantages of using the variational ansatz are on one hand, the resultant energy is upper

bound and on the other hand, one can use the Hellmann-Feynman theorem and (2n+1)

rule to calculate the response properties. The CC wave function eT̂ |φ0〉 naturally leads to

the energy functional

E =
〈φ0|eT

†
H̄eT |φ0〉

〈φ0|eT †eT |φ0〉
. (1.74)

This functional referred to as XCC [162–165] (expectation value coupled cluster) as it

is the expectation value of the Hamiltonian. Here, T † is adjoint of cluster operator T .

It is the sum of one body, two body, etc de-excitation operators. However, the practical

implementation of this functional is impossible because both the numerator and denomi-

nators are infinite series in T † and T . Moreover, this type of functional does not explicitly

exhibit the connected nature of energy as in the standard coupled cluster theory. Using

linked cluster theorem, Pal et. al. [162, 163] showed that the numerator can be decom-

posed into a connected term multiplying by a disconnected term. The disconnected term

exactly cancels the denominator. Therefore, the connected form of the functional,

E = 〈0|eT †H̄eT |0〉conn (1.75)

is suitable for carrying out variation. Unfortunately, this is still a infinite series even with

truncations in T and T † and one has to truncate for practical implementation. Various

truncation schemes have been used in literature to truncate this functional. Pal et. al.

[162, 163] used polynomial truncation based on fixed power of T † and T . Bartlett and

co-workers [166] used perturbative arguments for the truncation.

Alternatively, Kutzelnigg and coworkers proposed an unitary exponential ansatz of

wave function for variational CCM [167],

|Ψ〉 = eσ|0〉, (1.76)

32



where, σ = −σ†. A special choice of σ may be σ = T − T †. With this wave function

the energy functional becomes,

E = 〈0|e−σH̄eσ|0〉. (1.77)

This method is referred to as unitary coupled cluster method (UCCM). This functional

is connected due to BCH expansion of e−σH̄eσ as shown in Eq. 1.73. However, the ex-

pansion leads to an infinite series and need to be truncated for practical implementations.

Pal et. al. [162] showed that variational UCCM functional of Eq. 1.77 is identical with

the connected form of the XCC functional of Eq. 1.75.

These stationary CC methods, however, were not pursued extensively due to some

inherent drawbacks. One, unlike the standard variational methods, these truncated energy

functional does not lead to any upper bound of calculated energy. Secondly, although

the energy functional is connected, the differentiations of this functional with respect to

cluster amplitudes lead to disconnected terms in the amplitude equations. Consequently,

the calculated energies may not be size-extensive for specific approximations.

Arponen [168] proposed an alternate stationary coupled cluster method that uses a

double similarity transformation in the energy functional

E = 〈φ0|eΣe−T H̄eT e−Σ|φ0〉. (1.78)

Here, Σ is a de-excitation operator. This method is referred as extended coupled clus-

ter method (ECCM) [168–170]. Basically, like ground state bra state in the traditional

coupled cluster method, here ket state is also parametrized with an exponential operator,

〈Ψ′0| = 〈φ0|eΣe−T , (1.79a)

|Ψ0〉 = eT e−Σ|φ0〉. (1.79b)

These states satisfy the bi-orthogonal relations,

〈φ0|Ψ0〉 = 1, (1.80a)

〈Ψ′0|Ψ0〉 = 1. (1.80b)
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The ECCM energy functional terminates naturally depending on the rank of the exci-

tation and de-excitation operators. Arponen showed that this functional can be vari-

ationally optimized with respect to cluster operators σ and T . However, it generates

some disconnected terms in the amplitude equations while differentiations leading to

size-inextensivity in the energy value. Arponen [168] suggested an equivalent ansatz of

type

E = [〈φ0|eΣe−
eT H̄eeT e−Σ|φ0〉]DL, (1.81)

for the variational calculation. Here, DL referred as double linking which means that

while T̃ is linked to the Hamiltonian (due to CBH expansion of e−eTHeeT ), the Σ operator

is connected to either at least one Hamiltonian vertex or with two separate T̃ vertex. The

amplitudes of T and Σ are obtain by solving the following equations respectively,

∂E

∂Σ
=

[〈φ0|eΣe−
eT H̄eeT e−Σ|φ0〉]DL
∂Σ

= 0, (1.82a)

∂E

∂T
=

[〈φ0|eΣe−
eT H̄eeT e−Σ|φ0〉]DL
∂T

= 0 (1.82b)

The DL ensures the connectedness in the T and Σ amplitudes equations.

The ECCM approach is widely used in the literature. Pal and co-workers used its

double-linked variant to study the molecular properties [172, 173]. Piecuch [171] and

Gordon and co-workers [174] used the method to study the molecular bond breaking.

Unlike Pal and co-workers they did not use double-linked functional and instead used

method of moment approach to solve Eq. 1.78. In this approach T and Σ amplitudes are

decoupled from each other and their solutions are obtained sequentially.

1.10.2 Coupled cluster linear response theory:

Monkhorst [175, 176] first showed that the excitation energies can be obtained from the

poles of the time-dependent coupled cluster response functions. This method is referred

as the coupled cluster linear response theory (CCLRT). Later on, the idea was extended

by many others [177–181] in several contexts. The time-independent version of linear
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response theory was formulated by Mukherjee and co-workers [182]. A related time

independent approach to calculate coupled cluster excited states was developed by Harris

[183] using the equation of motion (EOM) formalism of Rowe [184]. Harris used an

exponential operator acting on the CC ground state wave function to get the excited state

wave functions,

Ψk = eŜeT̂Ψ0, (1.83)

where, Ŝ is the excitation operator like T̂ . Later on, Bartlett and co-workers [185, 186]

used a linear operator Ω instead of eŜ to parametrize the excited states.

Ψk = ΩΨ0 = Ωke
T̂Ψ0, (1.84)

Ωk = Rk0 +Rk1 +Rk2 + . . . , (1.85)

where, Rk0, Rk1, etc are CI like excitation operators. This approach is conceptually

equivalent to CCLRT approach and provides same eigenvalue equations to obtain the

excitation energies,

[H̄,Ωk]c|0〉 = ωkΩk|0〉. (1.86)

Here, H̄ = e−T̂HeT̂ and ωk = Ek − E0 is the excitation energy for k’th state. This

method is known as the coupled cluster equation of motion (EOMCC) method from its

analogy with Heisenberg equation of motion that relates a commutator to a time deriva-

tive. Solving this equation is equivalent to solving the eigenvalue equation of H̄ (i.e.

diagonalization of H̄ in the excited manifold generated by Ωk)

H̄Rk = ωkRk. (1.87)

The eigenvalues ωk are the corresponding excitation energies and Rk are the correspond-

ing eigenvectors of the transformed Hamiltonian. The eigenvectors Rk’s are connected

to H̄ because of commutator structure of Eq. 1.86. One can view the EOMCC or the

CCLRT as modified CI calculation that uses a similarity transformed Hamiltonian H̄ in-

stead of original Hamiltonian. The similarity transformed Hamiltonian H̄ is manifestly
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a non-Hermitian operator. So, its left eigenvectors LkH̄ = ωkLk are different from the

right one and not necessarily connected to H̄ . The left and the right eigenvectors follow

the bi-orthogonal relation RkLl = δkl. Note that similar kind of parametrization for the

excited states description within coupled cluster framework was used by Emrich [187]

in nuclear physics. Another method proposed by Nakatsuji and Hirao [188] known as

SAC-CI which is a hybrid of CC and CI method is closely related to EOMCC/CCLRT.

The CCLRT/EOMCC method is conceptually very simple and it provides a direct

way to calculate the excitation energies. However, since the equations are not fully

linked, the corresponding excitation energies are not size extensive. The second draw-

back of EOMCC method is that since it diagonalizes a non-Hermitian Hamiltonian H̄ ,

one may encounter complex eigenvalues in the eigenvalue spectrum. The Fock space

multi-reference coupled cluster method based on effective Hamiltonian theory formu-

lated by Mukherjee and co-workers [190, 199, 200, 202] uses a exponential ansatz to

describe the excited states. It generates only the connected terms leading to size exten-

sivity of the excited states.

1.10.3 Multi-reference coupled cluster theory:

The ground state coupled cluster is based on a single reference function. It accounts for

the so-called dynamic correlations that arise due to mean field nature of the reference

state in very accurate manner. However, in the cases where the reference function is

degenerate or quasi-degenerate another type of correlation effect appears due to strong

interactions between the reference functions. This is known as non-dynamic correla-

tion. The multi-reference coupled cluster method (MRCCM) [202] has been formulated

to account this non-dynamic correlation along with the dynamic correlation. The devel-

opment of the MRCCM is based on the effective Hamiltonian approach [191–195] that

provides a simultaneous description of a manifold of quasi-degenerate states. In this ap-

proach, the N particle Hilbert space is divided into two part: a smaller M dimensional
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model space defined by the projection operator P

P =
∑
m

|φm〉〈φm|, (1.88)

and its complimentary subspace defined by the projection operator Q. The exact target

function Ψk assume to have a significant component Ψ0
k(defined by the linear combina-

tion of the reference functions of the model space) in the model space,

Ψ0
k = PΨk. (1.89)

The target exact functions are obtained by the action of a wave operator operating on the

model space function

Ψk = ΩΨ0
k. (1.90)

Now, the next task of the effective operator based approach is to define the effec-

tive Hamiltonian that operates on the model space functions and give the exact energy

of the target space. Two related approaches to construct the effective Hamiltonian has

been widely used in the literature. In the first approach, the effective Hamiltonian is

constructed by the similarity transformation of Hamiltonian through the wave operator

Ω [191–195],

Heff = Ω−1HΩ. (1.91)

This form of the effective Hamiltonian is applicable only when the inverse of the wave

operator is exists. The second approach uses generalized Bloch equation [196]. The

Bloch equation is the generalization of Schrödinger equation in the multi-dimensional

space obtained by pre-multiplying the effective operator in Eq. 1.91 by wave operator Ω,

HΩP = ΩPHeffP. (1.92)

The use of generalized Bloch equation bypasses the need of evaluation of inverse of the

wave operator.

There are two kind of MRCC approaches that have been discussed in the literature

depending on the choice of the wave operator Ω. In the first approach, the wave operator
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is a sum of SRCC like operators defined independently for each model space function,

Ω =
∑
I

eTI |φI〉〈φI |. (1.93)

This means each function in the model space acts as vacuum and the operator TI gener-

ates the exited configuration from the corresponding vacuum state I . This approach is

first proposed by Jeziorski and Monkhorst [197] and is known as the Hilbert-space multi-

refernece coupled cluster method (HS-MRCCM) or state-universal multi-reference cou-

pled cluster method (SU-MRCCM). This approach is found to be suitable to calculate

the potential energy surface of molecules.

The second approach, known as valence universal multi-reference coupled cluster

method (VU-MRCCM), has been invoked by Mukherjee and co-workers [199–206],

Lindgren [198] and Offerman and co-workers [207]. Unlike the HS-MRCC, this ap-

proach uses a common vacuum for all the reference functions in the model space. The

vacuum function may correspond to a optimized state with different particle than the

system of interest. The wave operator is defined as,

Ω = eT

T =
M∑
i=1

T i, (1.94)

is valence universal in the sense that it maps model space functions in all sectors into the

exact functions. For example, in the case of calculations of electronic excitation energies

of atoms and molecule, the model space is termed (1,1) sector because of having one

hole and one particle in hole-particle language. The excitation operator in this case is

written as,

T = T (0,0) + T (0,1) + T (1,0) + T (1,1). (1.95)

The excitation operator T (0,0) corresponds to (0,0) sector i.e. for vacuum, T (1,0) for

(1,0) sector i.e. corresponds to ionized state and so on. One note that the excitation

operators T (0,0), T (1,0) etc belongs to different number of particle. This approach is

the Fock-space multi-reference coupled cluster method (FS-MRCCM). This method is
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suitable to calculate excitation energies, ionization potentials and electron affinities of

atoms and molecules. The details of this method will be discussed in chapter four in the

context of vibrations of molecules.

1.10.4 Coupled cluster methods for property calculation:

Parallel to the calculations of energy, extensive works have been devoted to calculate

the non-energetic properties within coupled cluster framework. One can categorize these

properties into three classes [179]; expectation values, transition properties and response

properties. In this thesis, our concern is to calculate the expectation values and transition

properties. However, one can easily show that if the method is stationary then the expec-

tation values of the operators like dipole moment etc are equal to the first order response

properties [9].

Using coupled cluster wave function one can write the expectation value of any op-

erator Ô as

〈Ô〉 = [〈0|eT †ÔeT |0〉]L. (1.96)

Unfortunately, this equation leads to a non-terminating series making the ansatz inap-

plicable for practical implementation. Pal and co-workers [172, 173] extensively used

double linked structure of extended coupled cluster method to calculate the expectation

values of molecular properties. The ECCM is a stationary approach and the correspond-

ing expectation value ansatz terminates naturally due to its double linked nature. Many

authors used the response approach to calculate the expectation values within coupled

cluster framework. The traditional CCM is non-variational and hence the Hellmann-

Feynman theorem does not hold here. There are mainly two related approaches have

been developed to eliminate the non-Hellmann-Feynman term that appear in the first

order coupled cluster response. The first one is the coupled cluster Z-vector approach

based on Dalgarno’s interchange theorem [208]. This method was introduced by Bartlett

and co-workers [209–211] following the idea of Handy and Schaefer [212] who used
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the technique for analytical derivatives in CI. The second one is the constrained varia-

tional approach (CVA) [179, 181, 213, 214] based on the use of Lagrange undermined

multipliers. For the calculations of first order response properties these two methods are

identical.

The effective operator approach based on coupled cluster linear response theory was

introduced by Prasad [215]. Here, the expectation values of the operator is calculated by

using an effective operator which is a similarity transformation of the original operator

e−T ÔeT . The various features of this method will be discussed in chapter three.

1.11 Vibrational Coupled Cluster Method

The coupled cluster method is particularly well suited to the electronic structure theory.

Here, the residual interaction is coulombic interaction which is strictly a two body opera-

tor. Second, due to Pauli’s exclusion principle, the probability of three or more electrons

encountering each other in a small region of space is small. These ensure that the vital

part of the correlation energy comes from the two body excitation operator. Third, the

energy spectrum of the unperturbed Hamiltonian is such that the n-particle excitation

energy scales almost linearly with n. From perturbative arguments, this implies that the

matrix elements for the n-particle cluster operator would be smaller than lower particle

cluster operator because of the larger energy defects that go into the denominator. None

of these conditions hold in the case of molecular vibrational problem. The residual inter-

action is a many body function. For semi-rigid molecules, the vibrational modes may be

treated as distinguishable particles, and hence no statistics induced effects appear. Lastly,

the zeroth order spectrum of the molecular vibrations corresponds to the harmonic oscil-

lator. The energy levels of the individual modes are evenly spaced. Hence, the excitation

energy for one, two. . . n-body excitation operators could be nearly equal. For example,

the two stretching modes in H2O molecule have similar energies (around 3000cm−1)

which are almost double of its bending mode energy. As a result, the excitation energy
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of two body excitation operator corresponding to the bending mode is nearly equal to

one body stretching mode excitation operator. Under these conditions, it is desirable to

test the applicability of the CCM to the molecular vibrations.

The construction of the Fock space is the heart of coupled cluster formalism. There

are two representations possible for the construction of Fock space of vibrational coupled

cluster method. The first one is the basis set method which use single mode creation and

annihilation operator to construct the elements of the Fock space. This route is mainly

followed by Christiansen and co-workers [72, 75–82]. The second one is the bosonic

representation where simple harmonic ladder operators are used to construct the elements

for Fock space [68–74]. This approach is followed by Bishop and co-workers [66], Hsue

and Chern [65] and Kaulfuss and Attenbokum [67] for coupled cluster description of one

dimensional anharmonic oscillators and later on by Prasad and co-workers [68–71] for

the description of molecular vibrations.

1.11.1 Basis set approach in vibrational coupled cluster method

As described earlier that the coupled cluster method is a Fock space approach. It re-

quires the construction of a Fock space and the associated operators that connect the

different functions in the Fock space. In the basis set representation, one defines a sin-

gle particle Hilbert space Hα
1 for each mode α. All possible k particle Hilbert spaces

Hk are formed as the tensor product of these single particle Hilbert spaces associated

set of k modes. The Fock space is defined as the union of all such k particle Hilbert

spaces. This approach was used by Latha and Prasad to describe intramolecular vibra-

tional relaxation dynamics, and more recently, by Christiansen and co-workers to de-

scribe molecular vibrational eigenstates. The associated operator is constructed using

creation/annihilation operators corresponding to each mode. For example, the creation

operator am†rm creates a modal of corresponding mth mode in the energy level rm and amrm
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annihilates the same. The creation/annihilation operators corresponding to one partic-

ular mode can not create/annihilate any modal of other mode. Again, since the vibra-

tions in semi-rigid molecules can be treated as distinguishable particles, the order of cre-

ations or annihilation operators corresponds to different modes is irrelevant, that means

a1†
r a

1†
s |vac〉 = a1†

s a
1†
r |vac〉. Keeping these facts in mind one can write the commutation

relations of the creation and annihilation operators as

[amrm , am
′†

sm′ ] = δm,m′δrm,sm , (1.97)

[amrm , am
′

sm′ ] = 0, (1.98)

and

[am
†

rm , am
′†

sm′ ] = 0. (1.99)

Following Christiansen, the vibrational Hamiltonian is rewritten in terms of these opera-

tor as,

Hvib =
N∑
t=1

ct

M∏
m=1

hm,t. (1.100)

Here,

hm,t =
∑
rm,sm

hm,trm,smam
†

rm , amsm , (1.101)

and

hm,trm,sm = 〈φmrm(qm)|hm,t|φmsm(qm)〉. (1.102)

The vibrational ground state function is parametrized with exponential operator in

usual coupled cluster fashion

Ψgr = exp(T )|Φi〉, (1.103)

with |Φi〉 a reference Hartree product function. Usually a converged VSCF function is

taken as reference function for better convergence. T is the cluster operator that contains

one body, two body etc excitation operators.

T = T1 + T2 + T3 + · · ·+ TM =
M∑
j=1

∑
µj

tµj
τµj
. (1.104)
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Here, tµj
denotes the cluster amplitudes and τµj

denotes excitation operator. The ex-

pression of these excitation operator is not as straightforward as in electronic structure

theory. Here each excitation operator should specify both the excitation level as well as

the mode in which the excitation is taking place. Note that each mode has one and only

one occupied modal. So, for example, one body operator will annihilate any of these

occupied level (im1) and create a vibration to the virtual level of the same mode. So, the

expression for T1 is given by

T1 =
M∑
m1

∑
am1

tm1
am1a

m1
†

am1a
m1
im1 . (1.105)

Similarly,

T2 =
M∑

m1<m2

∑
am1

∑
am2

tm1
am1a

m1
†

am1a
m1
im1a

m2
†

am2a
m2
im2 , (1.106)

and so on.

The Schrödinger equation using coupled cluster wave function of Eq. (1.103) be-

comes,

Hexp(T )|Φi〉 = Egrexp(T )|Φi〉. (1.107)

The working equations for ground state vibrational CC are obtained in usual fashion; i.e.

pre-multiplying by exp(−T ) and projecting with reference function to get ground state

energy and with excited states to get cluster amplitudes,

〈φi|exp(−T )Hvibexp(T )|φi〉 = Egr (1.108)

〈µ|exp(−T )Hvibexp(T )|φi〉 = 0. (1.109)

.

The Eq.(1.109) is a set of coupled nonlinear equations and has to be solved iteratively.

Once the values of the amplitudes are known, the coupled cluster ground state energy can

be obtained from Eq.(1.108).

As stated before, unlike electronic coupled cluster method where double excitation

is the most important one for the calculation of correlation energy of the ground state,
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there is no such natural choice for vibrational coupled cluster method. Christiansen has

pointed that there are several ways to approximate the vibrational coupled cluster equa-

tions. These different approaches are explained extensively in the reference [75]. For

example, One way is to truncate the cluster expansion in Eq. 1.104 and the excitation

manifold up to certain maximum excitation level, say nmax. T1 operator will excite one

modal from each mode, T2 will excite from two modes at a time and so on. So, when

nmax = M the vibrational wave function corresponds to exact ground state functions.

Another choice of approximating the VCC is based on the importance of the excitation

level defined by the Hamiltonian. For example, if the Hamiltonian contains term operat-

ing in mode m1 and mode m2, then the single excitations within m1 and m2 are included

within the first order interaction space, while the excitations including both mode, m1m2

are included in the second order space. If the Hamiltonian contains the term m1m2 then

the first interaction space contains both double excitations m1m2 as well as single exci-

tations within m1 and m2 modes.

For calculations of excited states energies coupled cluster linear response theory is

used so far in basis set representation. The linear response function describing the linear

response of the expectation value of X to the perturbation Y at frequency ωY is given by

〈〈X, Y 〉〉ωY
= PXY

∑
k 6=0

〈Ψ0|X|Ψk〉〈Ψk|Y |Ψ0〉
ωY − ωk

. (1.110)

The index k runs over all unperturbed states except the ground state. ωk = Ek − E0 is

the difference between the energies of the unperturbed excited state and the ground state

and PXY is a permutation operator. The linear response function has poles at energies

ωY corresponding excitation energies of the system.

1.11.2 One dimensional anharmonic oscillator in bosonic representation:

In 80’s there were a few studies on one dimensional anharmonic oscillators based on cou-

pled cluster method in bosonic representation [65–67]. Historically, the first application

was done using a pure quartic term in the anharmonic potential [65]
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H =
1

2
p2 +

1

2
x2 + λx4, λ > 0. (1.111)

Later on the methodology was extended to an anharmonic oscillator with equally

weighted cubic and quartic anharmonic potential terms and to standard symmetric double

well oscillator [66]. The Hamiltonian in Eq. 1.111 is expressed in terms of the Harmonic

oscillator ladder operators a and a†

H =
1

2
+ a†a+

1

4
λ(a+ a†)4. (1.112)

The expressions for a and a† are given by,

a = 2−
1
2 (x+ ip) (1.113)

a† = 2−
1
2 (x− ip) (1.114)

A “generalized coherent function” of the type

|φ〉 = e[ t
2
a†

2
]|0〉 (1.115)

is variationally optimized with respect to variational parameter t to get optimized ground

state energy. Although the HO creation operator a† can be used for the construction of

the rest of the elements of Fock space, however, it is more convenient to use new set of

creation and annihilation operators defined via the Bogoliubov transformations of a and

a†

b = (1− t2)−
1
2 (a− ta†), (1.116)

b† = (1− t2)−
1
2 (a† − ta). (1.117)

The optimized function |φ〉 acts as a physical vacuum for the operator b, i.e.

b|φ〉 = 0. (1.118)
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With these new set of creation and annihilation operator the expression of Hamiltonian

becomes,

H = E0 + [
t

1− t2
+

3λ

2
[
1 + t

1− t
]2](b2 + b†

2

)

+ [
1 + t2

1− t2
+ 3λ[

1 + t

1− t
]2]bb†

+
λ

4
[
1 + t

1− t
]2{(b+ b†)4}

(1.119)

where, the curly bracket represents normal ordering of the operator and

E0 =
1

2
+

t2

1− t2
+

3λ

4
[
1 + t

1− t
]2. (1.120)

Introducing a new parameter ω = 1−t
1+t
, this expression is rewritten as,

E0 =
1 + ω2

4ω
+

3λ

4ω2
, (1.121)

Applying the variation principle to optimize E0 one gets,

ω − ω3 + 6λ = 0. (1.122)

The Eq.(1.122) guarantees that the coefficients of b2 and b†2 are zero which is the condi-

tion for b and b† operators corresponds to the normal mode. The Hamiltonian now takes

the form,

H = E0 + ωb†b+
λ

4ω2
{(b+ b†)4}, (1.123)

with

E0 =
1 + 3ω2

8ω
. (1.124)

It is found that the Hartree approximation gives the ground state energy with error less

than 2% for all values of the coupling strength. Next, the coupled cluster wave function

for the ground state is parametrized as

|ψ〉 = eŜ|φ〉, (1.125)

where, the expression of the operator Ŝ is given by

S =
∞∑
n=1

Ŝn (1.126)
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and

Ŝn = Sn(b†)n. (1.127)

Note that neither the state |φ〉 nor |ψ〉 is normalized but they follow the relation,

〈φ|ψ〉 = 〈φ|φ〉 (1.128)

The exact ground state Schrödinger equation,

H|ψ〉 = Egr|ψ〉 (1.129)

is now decomposed in the standard coupled cluster fashion, i.e. by pre-multiplying with

e−Ŝ and then projecting with 〈φ| and 〈φ|bn to get respectively the expression for ground

state energy and cluster amplitudes {Sn} as,

Egr = 〈φ|e−ŜHeŜ|φ〉 (1.130)

〈φ|bn(e−ŜHeŜ)|φ〉 = 0, n = 1, 2, . . . . (1.131)

The Eq. 1.131 is a set of infinite number of coupled nonlinear equations and hence to be

truncated for practical implementation. The simplest and most natural truncation scheme

is so-called SUB(n) approximation. In this approximation scheme, all Si with i > n are

set to zero and all lower n equations are solved consistently. Once the amplitudes {Sn}

are determined, the ground state energy is obtained from Eq. 1.130.

Due to nonlinear nature of Eq. 1.131 one gets multiple solutions with any level

of truncation or may be with the untruncated series. Kaulfuss and Attenbokum [67]

performed a stability analysis on the solutions by introducing temperature dependence

and requiring stability against thermal fluctuations to get the desired solution for the

ground state. Bishop and co-workers [66] proposed a numerical solution using hybrid

Powell method.

Emrich parametrization [187] is used to describe the excited states. Here, the excited

states are parametrized with a linear excitation operator operating on CCM ground state

wave function

ψ′ = Ŝ ′e−Ŝ|φ〉 = Ŝ ′|ψ〉. (1.132)
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The excitation correlation operator Ŝ ′ is defined in similar way of ground state correlation

operator, i.e.

Ŝ ′ =
∞∑
n=1

Ŝ ′n (1.133)

and,

Ŝ ′n = S ′n(b†)n. (1.134)

With a little algebraic manipulation one can easily get the expression for the working

equations for the excited states as,

[H, Ŝ ′]|ψ〉 = (E ′ − Egr)Ŝ ′|ψ〉. (1.135)

The excitation energies are calculated directly from this equation. The set of coefficients

{S ′n, n = 1, 2, . . . } is obtained from the equation

(n!)−1〈φ|bn(e−Ŝ[H, Ŝ ′]eŜ|φ〉 = (E ′ − E)S ′n, n = 1, 2, . . . . (1.136)

This is a set of linear equations for the unknown set of coefficient S ′n solely depends

on the prior knowledge of ground state correlation parameters Sn. Just like the ground

state correlation operator, the infinite expansion of S ′n in Eq (1.134) is also truncated up

to a finite approximation for practical applicability. The SUB(m,n) truncation scheme

means that the S operator of ground state wave function expansion is truncated at ‘n’

level and all S ′j with j > m are set to zero. The lower m linear equations are solved by

diagonalizing the transformed Hamiltonian e−ŜHeŜ in the excited manifold defined by

the approximation in Ŝ ′.

Bishop and co-workers studied the convergence pattern of the coupled cluster state

energies with respect to the rank of both ground state cluster operator Ŝ as well as excited

state correlation operator Ŝ ′ [66]. It is found that the ground state and lower lying excited

states of the anharmonic oscillator are well represented even with low rank of operators.

However, for higher excitation operator one should go for higher rank of Ŝ ′. The ground

state Ŝ does not have significant role to improve the excited states energies. In other

words, the excitation energies are converged with the rank of Ŝ operator.
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One notes that the transformed Hamiltonian is manifestly non-Hermitian. It causes

no problem in the exact limit i.e. when m,n → ∞. However, in the practical imple-

mentation of the Emrich formalism, i.e. at finite SUB(m,n) approximation, one may get

complex eigenvalues in the excited state spectrum. Bishop and co-workers extensively

studied the nature of the complex eigenvalues appear in the spectrum by varying m,n

values and the perturbation parameter λ. It is found that at a fixed SUB(m,n) approxi-

mation, complex eigenvalues appear beyond certain value of λ. The number of complex

pair increases with the increase of λ. This indicates that as anharmonicity increases, the

approximation for both ground and excited states becomes inadequate. Again if one in-

creases the value of m keeping n and λ fixed, the complex eigenvalues arise after some

point in the higher energy region. Increasing in the value m generates more complex

states. This behavior of energy spectrum is quite expected since the Emrich parametriza-

tion of the excited states is solely dependent on the correlation of the ground state, the

lower lying states are well described but the higher states are not. The failure of the

approximation results complex eigenvalues in the higher energy regime.

1.11.3 Bosonic representation for molecular vibrations

The representation described in the previous subsection is implemented to study the na-

ture of anharmonic molecular vibrations. In the bosonic representation for molecular

vibrational study [68–71], a multi-dimensional Gaussian of the type

ψt = exp[
∑
i

−ωi(Qi −Q0
i )] (1.137)

is variationally optimized with respect to ωi and Q0
i . This optimized Hartree product acts

as vacuum for the HO annihilation operator a

a|ψt〉 = 0 (1.138)

The HO ladder operators are used to construct the rest of the elements of the Fock space.

The vibrational Hamiltonian for molecular system in terms of HO ladder operator is
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a bosonic Hamiltonian that does not commute with number operator because the HO

ladder operators create/annihilate quanta of energy rather than physical particles.

This approach has the advantage of treating overtone and multi-mode combination

states of similar energy on equal footing. For example, a third overtone state of mode

1 and a three mode combination state with one quantum of energy in each of the three

modes 1, 2, 3 are reached from the vacuum state by a three boson creation operator.

In the basis set representation these two excitations are represented by a single particle

excitation operator and a three particle excitation operator respectively. Since the inter-

action terms that couple these two states to the ground state come at the same order of

anharmonic potential (cubic term) and for a class of equivalent vibrational modes that

have similar zeroth order frequencies, it would be more appropriate to treat these terms

on equal footing in the cluster operator. This is possible only in the boson representa-

tion. Representing the vibrational wave function by an exponential ansatz in terms of

ladder operator has another feature. The resulting functions are parametrized in terms of

the complete set of harmonic oscillator eigenfunctions, making the result (to a limited

extent) independent of the basis set used.

The first molecular application was reported by Prasad and co-workers [68]. Cou-

pled cluster linear response theory (CCLRT) is used for the description of excited states.

These authors truncated the cluster operator at four bosons and showed that the approx-

imation is fairly good. In a later work Prasad [70] showed that expectation values and

transition matrix elements could also be obtained reliably at this level of approximation.

1.12 Objective and scope of the thesis

The vibrational coupled cluster study in bosonic representation is still limited. In this the-

sis, we planned to undertake a systematic study on the convergence pattern of vibrational

state energies with respect to the rank of cluster operator at ground state level as well as

excitation operator at CCLRT level. The results are compared with the converged full CI
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results. A systematic comparison between CCM and full CI method is made based on

CPU time required in the calculations. As has been seen in the one dimensional anhar-

monic oscillator study, the CCLRT method generates complex eigenvalues as a result of

diagonalization of non-Hermitian transformed Hamiltonian. To eliminate these complex

eigenvalues in an approximate manner we apply extended coupled cluster approach in

the same spirit of Arponen. A convergence study is made on the rank of different type of

operators after Arponen type of double similarity transformation in the ECCM approach.

In the third chapter we use the effective operator approach based on CCLRT to cal-

culate the expectation values and transition matrix elements. The convergence studies of

these non-energetic properties are done with respect to different level of approximation

of excitation operator at CCLRT level. The ECCM method is also used to calculate these

properties and its significance over NCCM approach is analyzed extensively.

The coupled cluster linear response theory works extremely well in the lower en-

ergy region of vibrational spectra. However it fails to describe the energetically higher

states due to linear nature of the excitation operator. In the fourth chapter we formulate

the multi-reference coupled cluster method in bosonic representation. Unlike electronic

structure theory, we used non-normal ordering of the excited state cluster operator. This

gives state specific description of the excited states.

In the last chapter, we explore the possibility of the calculation of non-energetic prop-

erties within multi-reference coupled cluster framework. We also highlight the possi-

bility of introducing the rotational contribution to the vibrational energy levels in the

framework of coupled cluster method in bosonic representation.
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Chapter 2

————————————————————

Vibrational Coupled Cluster Method in bosonic

representation: Convergence studies

————————————————————

2.1 Introduction

The coupled cluster method [1–5] has been established as the-state-of-the-art method for

describing quantum many body method in general and electronic structures of atoms and

molecules in particular. Recently, there have been few attempt to describe molecular an-

harmonic vibrational spectra by coupled cluster method[6–18]. As mentioned in the first

chapter, there are two different representations possible for vibrational coupled cluster

formalism. The first one is the basis set representation [6–12] where single mode cre-

ation/annihilation operators are used to define excitations and the second approach is the

bosonic representation [13–18] where simple harmonic oscillator ladder operators are

used as the excitation operators. The bosonic representation of coupled cluster method

to describe the molecular vibrational spectra offers some advantages over the basis set

representation. As described in the first chapter, different class of vibrational modes have
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similar range of frequencies. Consequently, an overtone band and a combination band

can have similar energy. The bosonic approach has the advantages of treating overtone

and combination states of similar energy on equal footing. Secondly, unlike basis set

approach, this approach is invariant under any arbitrary rotation in the coordinate space.

In the bosonic approach the ground state function for coupled cluster method is de-

composed in to a variationally optimized Gaussian product function |Φref〉 (Hartree prod-

uct) and an exponential wave operator operating on it

|Ψg〉 = e(S)|Φref〉. (2.1)

The cluster operator (S) consists of connected singles, doubles, triples up to n-truple

excitation operators. The cluster matrix elements are determined from the equation,

〈Φe|e−SHeS|Φref〉, (2.2)

where, |Φe〉 are excited states. The coupled cluster linear response theory [19–22] is used

to obtain the excited states. In this method, the excited state energies are obtained as the

eigenvalues of the similarity transformed effective Hamiltonian Heff ,

Heff = exp(−S)Hexp(S), (2.3)

HeffR = RE. (2.4)

The effective Hamiltonian matrix is constructed in a suitably truncated basis defined

by a linear excitation operator and diagonalized to obtain the transition energies. The

vibrational coupled cluster method in bosonic representation was introduced by Prasad

and co-workers [17]. These authors truncated the cluster operator at four bosons and

showed that the approximation is fairly good. In this chapter we study the convergence

pattern of vibrational ground state and excited state energies with respect to the rank of

cluster operator. We truncate the cluster operator up to six boson level and study the

effect of those truncations on the ground state energy and the excited state spectrum. The

72



effect of different level of truncations of the excitation operator in the CCLRT level on

the energy spectrum is also analyzed.

The effective Hamiltonian defined in Eq. 2.3 is manifestly non-hermitian. This poses

no problem in the exact calculation. However, in the practical implementation due to

truncation of the S operator at some finite level, the effective Hamiltonian can and does

on occasion, develop complex eigenvalues in the energy spectra [23]. One way of elim-

inating such complex eigenvalues is to use a unitary transformation. Such an approach,

as we have seen in the first chapter, leads to infinite order polynomial equations for the

cluster matrix elements even when it is truncated at some level, introducing uncontrolled

approximations. An in between way out is to carry out a second similarity transforma-

tion in the spirit of extended coupled cluster method (ECCM) formulated by Arponen

[24]. In this study we applied this approach to eliminate the complex eigenvalues. As

discussed in the first chapter, the second similarity transformation is generated using a

de-excitation operator σ,

Heff = eσe−SHeSe−σ. (2.5)

The effect of double similarity transformation on the energy spectrum is also analyzed

with respect to the truncation in the σ operator.

This chapter is organized as follows. First we give a brief description of vibrational

coupled cluster method in bosonic representation followed by description of ECCM

based approach. Next, we present some results of the implementation of vibrational

coupled cluster theory. Finally some concluding remarks are given.

2.2 The vibrational coupled cluster method in bosonic representa-

tion:

At the outset, the formulation of vibrational coupled cluster method assumes the Watson

Hamiltonian [25] in normal coordinates described in the first chapter. Within the Born-

Oppenheimer approximation, the expression of Watson Hamiltonian for non-rotating
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molecules is given by,

H =
1

2

∑
k

P 2
k + V (Q) + Vc + VW . (2.6)

Here, Qi and Pi represent the mass weighted normal coordinates and their conjugate

momenta. V (Q) is the potential energy function. This is often approximated by a quartic

potential in the Taylor series expansion,

V =
1

2

∑
i

ω2
iQ

2
i +

∑
i≤j≤k

fijkQiQjQk +
∑

i≤j≤k≤l

fijklQiQjQkQl. (2.7)

Vc and VW are the Coriolis coupling and the Watson’s mass term respectively.

The coupled cluster approach to molecular anharmonic vibration consists of three

steps. In the first step, as mentioned in introduction, we need a vacuum state to construct

the Fock space. We used Hartree approximation to construct the vacuum state. A multi-

dimensional Gaussian ansatz

ψ = Nexp
[
(
∑
i

ωi(Qi −Q0
i )

2/2)
]
, (2.8)

is optimized with respect to variational parameters ωi and Q0
i and to get the vacuum

state. Since the Coriolis coupling is relatively week we have ignored it in the Hartree

approximation. The equations for the variational parameters ωi and Q0
i are [17],

2fiiQ
0
i +

∑
j≤k

fijkQ
0
jQ

0
k +

∑
j≤k≤l

fijklQ
0
jQ

0
kQ

0
l +

∑
j

fijj
2ωj

+
∑
jl

fijjlQ
0
l

2ωj
= 0, (2.9)

ω0
i = 2(fii +

∑
j

fiijQ
0
j +

∑
j

fiijj
2ωj

+
∑
j≤k

fiijkQ
0
jQ

0
k). (2.10)

The Hartree product is not essential for the formulation of coupled cluster method. How-

ever, it is found that it improves the convergence of CCM equations especially for excited

states.

Now, we define the harmonic oscillator ladder operator in usual fashion,

ai =

√
ωi
2

(Qi −Q0
i +

1

ωi

d

d(Qi −Q0
i )

) (2.11)

a†i =

√
ωi
2

(Qi −Q0
i −

1

ωi

d

d(Qi −Q0
i )

). (2.12)
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The optimized Hartree state is the vacuum state |0〉 for the operator ai

ai|0〉 = 0. (2.13)

The ground state wave function is now parametrized as,

Ψg = eS|0〉. (2.14)

The cluster operator is given by

S =
∞∑
n=1

Sn, (2.15)

where, Sn consists of n quanta excitation operators. Since the wave operator operates

on the physical vacuum, the excitation operators contain only creation operators (a†).

Generally a k-body excitation operator Sk has k creation operators and contains Θ(Nk)

terms in it. Here, N is the number of vibrational modes in the molecule. For example,

S3 is given by

S3 =
∑
i≤j≤k

Sijka
†
ia
†
ja
†
k. (2.16)

The number of such three quantum excitation operators is N(N + 1)(5N + 1)/6, in the

absence of any symmetry.

The working equations for the cluster elements and ground state energy are given by

〈e|HN
eff |0〉 = 0, (2.17)

Egs = 〈0|HN
eff |0〉. (2.18)

Here,

HN
eff = e−SHeS. (2.19)

The effective HamiltonianHN
eff may be evaluated either by Hausdorff multi-commutator

expansion or by usual diagrammatic techniques. We note here that the Hamiltonian in

Eq. 2.19 includes the Coriolis interaction also.

The solution of Eq. 2.18 gives the coefficients of the cluster operators. Since the

potential energy function in the Hamiltonian is approximated at quartic level, the equa-

tions terminate after the fourth commutator in the Hausdorff expansion. These equations
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are coupled nonlinear equations and have to be solved iteratively. They can be written

compactly as

A+BS + CS2 +DS3 + ES4 = 0. (2.20)

With a little algebraic manipulation, the Eq. 2.20 can be written as,

S = B−1
0 [A+ (B −B0)S + CS2 +DS3 + ES4]. (2.21)

Starting from a guess S-vector, the equations are iterated until the input and output S-

vectors are within a preset threshold. Since the Hartree approximation is close to exact

ground state, the cluster elements are generally small. Once the cluster matrix elements

are obtained, the ground state energy is calculated from Eq. 2.18.

In the last step, excited state energies are obtained from the CCLRT. In this method,

the excited states are parametrized as

|Ψex〉 = eSΩ|0〉. (2.22)

Here, Ω is a linear excitation operator contains only the creation operators,

Ω =
∑
i

Ωia
†
i +
∑
i≤j

Ωija
†
ia
†
i + . . . . (2.23)

The transition energies ∆E and the matrix elements of Ω are obtained from,

[HN
eff ,Ω]|0〉 = ∆EΩ|0〉. (2.24)

Solving this equation is equivalent to diagonalization ofHN
eff in the exited state manifold

defined by the approximation in Ω.

2.2.1 ECCM based approach:

As mentioned earlier, an approximate HN
eff can lead to complex eigenvalues for the ex-

cited state energies due to the loss of hermiticity in the effective Hamiltonian. We apply

ECCM approach to eliminate the complex eigenvalues of the effective Hamiltonian in
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approximate manner. In this approach the effective Hamiltonian is generated using a

second similarity transformation,

HE
eff = eσe−SHeSe−σ = eσHN

effe
−σ. (2.25)

Here, σ is composed of only de-excitation operators,

σ =
∑
i

σiai +
∑
i≤j

σijaiaj + . . . . (2.26)

The matrix elements for σ are obtained from

〈0|HE
eff |e〉 = 0. (2.27)

The matrix elements ofHN
eff between the vacuum state and the excited states are zero

due to Eq. 2.18 .This must be taken in to account while constructing HN
eff in Eq. 2.25.

While the original ECCM formulation by Arponen requires a variational solution to

the cluster matrix elements, we prefer a method of moment approach based on Eq. 2.27

in the spirit of conventional CCM. According to Lie algebraic theorem, the equations for

the S matrix elements are decoupled from the σ matrix elements in the exact limit [23].

We assume that this holds even in approximate calculations. The Eq. 2.18 and Eq. 2.27

are solved sequentially to obtain the S and σ matrix elements.

The ECCM approach eliminates the loss of hermiticity up to second order, because

the matrix elements S and σ are identical up to first order in the perturbation V. The

second similarity transformation does not affect the ground state energy. However, since

the effective Hamiltonian matrix elements change, the transition energies change.

2.3 Results and Discussion

The formulation developed in previous sections are applied to few tri-atomic and tetra

atomic molecules. Our primary goal in these calculations is to analyze the convergence

properties of the cluster operator and its effects on the ground and excited state energies.

The cluster operators S and σ and the excitation operator Ω were truncated at different

levels up to a maximum of six bosons. The results are presented below.
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2.3.1 Formaldehyde:

Recently, there have been several studies on the vibrational spectrum of formaldehyde

using different ab initio methods [26–31]. Accordingly, we have applied our method

to study the vibrational spectrum of this molecule at different level of approximations.

Although, there are many force fields of formaldehyde available in the literature, we

have taken the force field and the Coriolis coupling data from Romanowski et. al [26]

and compared our results with the full CI results presented there.

We have studied the convergence pattern of vibrational excited state energies with

the rank of both the cluster operator S and excitation operators Ω of NCCM and CCLRT

method respectively. The variations of the energy levels with different approximations to

the cluster operator are presented in table 2.1. In all these calculations Ω was expanded

up to six boson level. As can be seen, the state energies have converged within 1cm−1

respect to cluster operator by about S4. In table 2.2, we present the convergence pattern

of the vibrational levels by varying the truncation level of Ω keeping cluster operator S

fixed at six boson level. In about half of the states, the state energies have converged

by Ω6. While for the remaining states the state energies are not converged even at this

level. This indicates that a relatively higher order approximation is warranted for the

linear excitation operator.

The best agreements with CI results were found for the fundamental excited states.

Except 51 state all other fundamental states energies are within 1cm−1 with respect to full

CI results with four boson operator in both cluster operator S and excitation operator Ω.

Although in most of the cases, the energies of the overtones as well as the combinations

levels are found to be converging with increase of excitation operator, for some states,

especially when the fifth mode is involved, we got large deviations.

The results with different level of truncation of Ω operator have been compared after

double similarity transformation in table 2.3. The results are also compared with full CI
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Table 2.1: Variation of vibrational energies of formaldehyde with varying the cluster
operators S from four boson to six boson.

States Symmetry Four boson Five boson Six boson CIa

000 000 A1 5777.20 5777.14 5777.17 5777.2
001 000 A1 7278.03 7277.97 7278.00 7277.5
010 000 A1 7524.57 7524.51 7524.54 7524.5
000 200 A1 8093.26 8093.23 8093.28 8092.3
000 002 A1 8265.46 8265.40 8265.43 8266.4
100 000 A1 8558.87 8558.66 8558.77 8558.8
002 000 A1 8776.15 8776.08 8776.11 8774.8
011 000 A1 9017.87 9017.81 9017.84 9017.3
020 000 A1 9256.41 9256.35 9256.38 9256.2
000 011 A1 9854.99 9854.87 9854.94 9864.1
101 000 A1 10024.47 10024.24 10024.34 10048.2
110 000 A1 10305.40 10305.18 10305.29 10306.7
200 000 A1 11279.59 11278.90 11279.13 11274.9
000 020 A1 11420.31 11419.87 11420.00 11476.6
000 101 A2 8190.54 8190.52 8190.56 8193.0
000 110 A2 9754.88 9754.73 9754.81 9777.5
000 100 B1 6937.75 6937.71 6937.75 6937.8
001 100 B1 8432.93 8432.89 8432.92 8432.6
010 100 B1 8676.43 8676.38 8676.41 8676.5
100 100 B1 9692.85 9692.73 9692.85 9692.0
000 001 B2 7023.16 7023.11 7023.14 7022.9
001 001 B2 8497.52 8497.38 8497.43 8478.3
000 010 B2 8620.72 8620.52 8620.61 8635.0
010 001 B2 8773.06 8773.01 8773.04 8780.5
100 001 B2 9780.73 9780.53 9780.64 9783.7
001 010 B2 10104.19 10104.01 10104.09 10128.9
010 010 B2 10351.57 10351.36 10351.44 10362.2
100 010 B2 11306.34 11305.70 11305.90 11366.8

aSee [26].
The excitation operator in these cases is truncated at six boson.
All results are in cm−1 units.
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Table 2.2: Variation of vibrational energies of formaldehyde with varying the excitation
operators Ω from four boson to six boson.

States Symmetry Four boson Five boson Six boson CIa

000 000 A1 5777.20 5777.14 5777.17 5777.2
001 000 A1 7278.07 7278.01 7278.00 7277.5
010 000 A1 7524.56 7524.54 7524.54 7524.5
000 200 A1 8094.94 8093.32 8093.28 8092.3
000 002 A1 8267.04 8265.56 8265.43 8266.4
100 000 A1 8559.13 8558.83 8558.77 8558.8
002 000 A1 8777.97 8776.30 8776.11 8774.8
011 000 A1 9019.20 9017.96 9017.84 9017.3
020 000 A1 9257.46 9256.42 9256.38 9256.2
000 011 A1 9860.61 9856.66 9854.94 9864.1
101 000 A1 10026.96 10024.99 10024.34 10048.2
110 000 A1 10305.15 10305.55 10305.29 10306.7
200 000 A1 11286.73 11280.45 11279.13 11274.9
000 020 A1 11431.31 11423.71 11420.00 11476.6
000 101 A2 8192.41 8190.65 8190.56 8193.0
000 110 A2 9760.81 9756.35 9754.81 9777.5
000 100 B1 6937.78 6937.75 6937.75 6937.8
001 100 B1 8435.07 8433.09 8432.92 8432.6
010 100 B1 8678.11 8676.53 8676.41 8676.5
100 100 B1 9696.86 9693.90 9692.85 9692.0
000 001 B2 7023.19 7023.14 7023.14 7022.9
001 001 B2 8498.70 8497.57 8497.43 8478.3
000 010 B2 8621.41 8620.71 8620.61 8635.0
010 001 B2 8774.46 8773.16 8773.04 8780.5
100 001 B2 9784.08 9781.62 9780.64 9783.7
001 010 B2 10110.30 10105.85 10104.09 10128.9
010 010 B2 10353.98 10352.36 10351.44 10362.2
100 010 B2 11317.75 11308.73 11305.90 11366.8

aSee [26].
The cluster operator S in these cases is truncated at six boson.
All results are in cm−1 unit.
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Table 2.3: Variation of vibrational energies of formaldehyde after Arponen type of double
similarity transformation with varying the excitation operators Ω from four boson to six
boson.

States Symmetry Four boson Five boson Six boson CIa

000 000 A1 5777.20 5777.14 5777.17 5777.2
001 000 A1 7278.85 7278.85 7278.85 7277.5
010 000 A1 7524.72 7524.72 7524.72 7524.5
000 200 A1 8095.42 8096.35 8096.35 8092.3
000 002 A1 8267.44 8267.34 8268.33 8266.4
100 000 A1 8557.40 8557.33 8557.87 8558.8
002 000 A1 8777.98 8777.88 8777.87 8774.8
011 000 A1 9019.12 9019.04 9019.03 9017.3
020 000 A1 9256.81 9256.75 9256.74 9256.2
000 011 A1 9860.62 9856.42 9856.19 9864.1
101 000 A1 10026.88 10025.49 10025.37 10048.2
110 000 A1 10304.94 10304.10 10304.01 10306.7
200 000 A1 11281.05 11276.32 11275.22 11274.9
000 020 A1 11429.75 11421.12 11418.82 11476.6
000 101 A2 8192.64 8192.55 8193.55 8193.0
000 110 A2 9760.61 9756.77 9754.62 9777.5
000 100 B1 6938.94 6938.94 6938.94 6937.8
001 100 B1 8435.21 8435.10 8435.09 8432.6
010 100 B1 8678.15 8678.05 8678.04 8676.5
100 100 B1 9697.15 9695.32 9695.23 9692.0
000 001 B2 7024.06 7024.06 7024.06 7022.9
001 001 B2 8499.48 8499.36 8499.35 8478.3
000 010 B2 8619.84 8619.74 8619.73 8635.0
010 001 B2 8773.91 8773.82 8773.81 8780.5
100 001 B2 9784.28 9782.53 9782.41 9783.7
001 010 B2 10110.26 10106.25 10105.99 10128.9
010 010 B2 10353.84 10351.49 10351.35 10362.2
100 010 B2 11317.37 11301.86 11300.11 11366.8

aSee [26].
The cluster operator S in these cases is truncated at six boson.
All results are in cm−1 unit.
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Table 2.4: Comparison between the basis set approach and the bosonic approach.
States VCC(2) VCC(3) VCC(4) VCC(5) Our resultsa

100 000 1.0118 0.3518 0.0106 0.0001 -0.10
010 000 1.0262 0.1275 0.0072 0.0001 0.00
001 000 2.2399 0.3806 0.0109 0.0001 -0.50
000 100 1.3572 0.0123 0.0159 0.0003 -0.10
000 001 5.2697 1.4940 0.0114 0.0000 -14.39
000 010 2.7320 0.4775 0.0045 0.0000 0.20
200 000 11.6249 4.4018 1.3348 0.0835 4.23
020 000 4.6568 0.4866 0.0282 0.0007 0.20
002 000 8.1959 1.8346 0.0763 0.0010 1.80
000 200 3.2624 0.3050 0.0492 0.0014 1.00
000 020 -4.1974 31.6393 0.5399 0.0046 56.4
000 002 10.4645 2.2359 0.0273 0.0002 -1.00

aThe results are with six boson rank of the excitation operator.
The error with respect to full CI are presented here. The Basis set approach results are
taken from reference [10]

results. We found that, the improvement of the results due to double similarity transfor-

mation over the NCCM is marginal. However, the purpose of doing similarity transfor-

mation was to recover the complex eigenvalues. We have found that some of states e.g.

13 have complex eigenvalues in the NCCM based calculation. After the double similarity

transformation the state energy becomes real.

As mentioned earlier, there are large errors in CCM calculation in the excited states

where the fifth mode is excited. The deviation exists even in the case of the fundamental

51. We have compared our results with the results obtained by Seidler and Christiansen

[10] using coupled cluster response theory in basis set approach. In table 2.4, we present

the relative errors found in these two different approaches with respect to full CI. It is

found that even in basis set approach, VCC3 approximation gives similar errors, e.g.

31.64cm−1 in 52 state. The improvements of results were found in VCC4 and VCC5 ap-

proximations. Since these states have large contributions from higher quanta excitations

(e.g. the 52 state has 0.31 weights from 315161), they can not be described by low level

excitations [10]. Four body and five body terms in VCC4 and VCC5 provide such higher
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excitations to describe these states correctly. Because we truncate the excitation operator

based on the number of quanta it generates, it misses out several states that are ener-

getically closed to those that are already included in it due to large mismatch between

the stretching and bending mode. The absence of these states affects the movement of

the zeroth order states significantly. For example the 52 state is energetically close to 45

and 2361 states. The later states are represented by four and five boson operators in Ω.

However, there are very few terms in Ω that generate states which can push these states

down. Because of this, the high energy states are pushed up and down unevenly. This

does not affect the fundamental states significantly because to describe the fundamentals

we have sufficient numbers of excited levels in six quanta level of excitations.

2.3.2 Water

The water molecule has long been a benchmark molecule for the study of ab inito vi-

brational spectra [32–36]. It is a highly anharmonic molecule due to its low barrier of

inversion. In addition, it is an archetypical local mode molecule due to large dispar-

ity between masses of oxygen and hydrogen. Consequently a description of its energy

spectrum is a good test for any theoretical method based on normal mode representation.

There have been extensive studies on the potential energy surface of water molecule in

the literature using very accurate methods of electronic structure. We have taken the PES

from the work of Császár et al [35]. This PES is highly accurate calculated by using

CCSD(T) method with aug-cc-pVQZ basis set. The Coriolis coupling terms were not

included in this potential energy data. We have compared the CCM results with full CI

results calculated by us. We present CCM results of all states with three quanta excita-

tions and some of the relatively lower lying four quantum excited states. For full CI we

have used 8-16-8 harmonic oscillator basis set and have verified that these numbers are

converged with respect to basis set.

The energies of the excited states for different levels of truncations in S are given

in table 2.5. In all these calculations the excitation operator was truncated at Ω6 level.
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Like formaldehyde, here also the state energies are converged with as low as four boson

operator in S. For the lower lying states e.g for the fundamentals and two quanta excited

states the energies reached the converged full CI values. However, for higher excited

states the results are still away from full CI. The convergence trends of results in table

2.5 also support the speculation that errors in the state energies of the higher states are

due to inadequacy of the excitation operator.

The convergence trends of the state energies with respect to the rank of the excitation

operator Ω are presented in table 2.6. The CCM description is excellent for the funda-

mentals i.e. 11, 21 and 31. The maximum deviation in these cases is only 1.2 cm−1 for 31

state. The CCM gives a fairly good description for the overtones states 12, 22 and 32 and

the combination states where only two quanta are excited, i.e. 1121, 1131 and 2131. The

maximum deviation in these cases is 4.4 cm−1 (for 32 state) with six bosons at both the

NCCM and CCLRT levels.

The higher energy three quanta and four quanta excited states are not well described

at six boson approximation of the excitation operator. In some cases the relative errors

between the converged full CI and NCCM method is quite large. It can be seen that

these states are not converged with respect to Ω at the six boson level. We find dramatic

improvements in these states on increasing the rank of excitation operator from four

boson to five boson to six boson rank of the excitation operator. For example, the energy

of 23 state changes from 9307.92 cm−1 to 9276.88 cm−1 from four boson to six boson

rank of the excitation operator. The converged CI energy of this state is 9265.47 cm−1.

Since for higher states we need larger effective Hamiltonian matrix, these states are not

properly described by six boson approximation in the excitation operator.

In table 2.7 we present the comparisons between the state energies obtained from

converged full CI and ECCM results with four, five and six bosons excitation operators.

Like the case of formaldehyde, here also the improvement in energies due to double

similarity transformation in ECCM is marginal.
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Table 2.5: Variation of vibrational energies of water with varying the cluster operators S
from four boson to six boson.

States Symmetry Four boson Five boson Six boson CI results
000 A1 4660.80 4660.75 4660.78 4660.91
010 A1 6233.51 6233.43 6233.47 6233.56
020 A1 7776.29 7776.11 7776.13 7774.57
100 A1 8366.27 8366.11 8366.21 8366.80
030 A1 9277.33 9276.91 9276.88 9265.47
110 A1 9894.53 9894.40 9894.52 9894.28
040 A1 10731.63 10730.95 10730.92 10655.35
120 A1 11408.67 11408.61 11408.78 11403.33
200 A1 12043.82 12043.40 12043.62 12042.01
002 A1 12212.98 12212.55 12212.72 12208.33
130 A1 12924.39 12924.42 12924.52 12885.89
210 A1 13511.63 13511.30 13511.51 13491.68
012 A1 13664.45 13664.01 13664.17 13624.47
220 A1 15161.33 15161.00 15161.11 14909.26
022 A1 15405.97 15405.36 15405.49 15044.02
300 A1 15707.04 15705.98 15706.19 15729.50
102 A1 16064.46 16064.19 16064.39 15883.60
310 A1 17190.66 17190.04 17190.17 17097.84
112 A1 17493.25 17492.42 17492.47 17192.20
001 B1 8448.54 8448.38 8448.48 8449.69
011 B1 9949.15 9948.94 9949.06 9948.84
021 B1 11436.34 11436.06 11436.18 11424.67
101 B1 12105.98 12105.79 12106.01 12110.22
031 B1 12911.27 12910.75 12910.78 12866.91
111 B1 13530.73 13530.40 13530.59 13526.79
121 B1 14985.74 14985.33 14985.42 14914.91
201 B1 15734.13 15733.93 15734.07 15803.25
003 B1 15965.42 15964.37 15964.70 15949.27
211 B1 17083.12 17082.56 17082.55 17125.70
013 B1 17311.74 17310.57 17310.65 17252.42

The excitation operator in these cases is truncated at six boson.
All results are in cm−1 unit.

85



Table 2.6: Variation of vibrational energies of water with varying the excitation operator
Ω from four boson to six boson.

States Symmetry Four boson Five boson Six boson CI results
000 A1 4660.80 4660.75 4660.78 4660.91
010 A1 6233.56 6233.47 6233.47 6233.56
020 A1 7779.94 7776.66 7776.13 7774.57
100 A1 8366.21 8366.25 8366.21 8366.80
030 A1 9307.92 9288.40 9276.88 9265.47
110 A1 9896.61 9895.02 9894.52 9894.28
040 A1 10954.31 10789.58 10730.92 10655.35
120 A1 11423.30 11417.42 11408.78 11403.33
200 A1 12039.43 12041.30 12043.62 12042.01
002 A1 12210.46 12211.86 12212.72 12208.33
130 A1 12931.11 12937.96 12924.52 12885.89
210 A1 13530.06 13515.64 13511.51 13491.68
012 A1 13672.83 13665.29 13664.17 13624.47
220 A1 15252.29 15151.29 15161.11 14909.26
022 A1 15551.34 15410.31 15405.49 15044.02
300 A1 15763.84 15713.95 15706.19 15729.50
102 A1 16193.99 16089.85 16064.39 15883.60
310 A1 17660.42 17157.39 17190.17 17097.84
112 A1 18361.71 17630.27 17492.47 17192.20
001 B1 8448.47 8448.51 8448.48 8449.69
011 B1 9951.22 9949.19 9949.06 9948.84
021 B1 11454.03 11442.44 11436.18 11424.67
101 B1 12102.97 12103.96 12106.01 12110.22
031 B1 12959.79 12934.88 12910.78 12866.91
111 B1 13577.31 13538.37 13530.59 13526.79
121 B1 15313.33 15019.90 14985.42 14914.91
201 B1 15872.82 15744.71 15734.07 15803.25
003 B1 15998.52 15964.48 15964.70 15949.27
211 B1 18360.87 17280.53 17082.55 17125.70
013 B1 17719.39 17346.89 17310.65 17252.42

The cluster operator in these cases is truncated at six boson.
All results are in cm−1 unit.
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Table 2.7: Variation of vibrational energies of water after Arponen type double similarity
with varying the excitation operator Ω from four boson to six boson.

States Symmetry Four boson Five boson Six boson CI results
000 A1 4660.91 4660.91 4660.91 4660.91
010 A1 6234.04 6234.04 6234.04 6233.56
020 A1 7777.97 7777.55 7777.48 7774.57
100 A1 8365.18 8365.14 8365.14 8366.80
030 A1 9303.48 9284.60 9281.30 9265.47
110 A1 9896.74 9895.80 9895.74 9894.28
040 A1 10947.99 10781.78 10719.21 10655.35
120 A1 11421.80 11416.71 11413.74 11403.33
200 A1 12040.11 12038.37 12037.87 12042.01
002 A1 12211.90 12210.81 12210.45 12208.33
130 A1 12924.67 12934.12 12922.66 12885.89
210 A1 13531.42 13512.37 13509.71 13491.68
012 A1 13672.55 13662.82 13661.72 13624.47
220 A1 15250.98 15151.38 15154.88 14909.26
022 A1 15551.72 15406.90 15400.26 15044.02
300 A1 15774.90 15705.15 15700.57 15729.50
102 A1 16210.96 16075.89 16067.61 15883.60
310 A1 17662.74 17159.70 17185.61 17097.84
112 A1 18366.82 17641.21 17467.13 17192.20
001 B1 8447.48 8447.43 8447.43 8449.69
011 B1 9950.28 9949.89 9949.82 9948.84
021 B1 11450.92 11439.33 11439.00 11424.67
101 B1 12102.75 12100.46 12099.72 12110.22
031 B1 12954.41 12928.99 12904.99 12866.91
111 B1 13580.11 13534.26 13530.18 13526.79
121 B1 15312.23 15020.57 14978.72 14914.91
201 B1 15885.64 15738.81 15727.71 15803.25
003 B1 16014.10 15968.91 15963.80 15949.27
211 B1 18365.32 17288.67 17067.91 17125.70
013 B1 17721.51 17352.46 17306.87 17252.42

The cluster operator in these cases is truncated at six boson.
The energies are in cm−1 unit.
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2.3.3 Oxygen difluoride

Our third test case is the oxygen difluoride molecule (F2O). The anharmonic vibrational

spectra and the quartic PES of this molecule is calculated by several authors [37–39]. We

have taken the quartic force field data from the work of Breidung et al [39]. These authors

made extensive calculations on the quartic PES using both MP2 method and CCSD(T)

method and cc-pVTZ and cc-pVQZ basis set. We choose the PES based on CCSD(T)

calculation using cc-pVQZ basis set to apply our methodology. The PES does not include

Coriolis coupling terms. In table 2.8, we present the comparisons of state energies with

different levels of truncations in excitation operator Ω in CCLRT and converged full CI.

The cluster operator is fixed at S6 level in all these calculations. We compare our results

with converged full CI values. 8-16-8 harmonic oscillator basis functions are used for

the CI calculation.

The NCCM provides excellent account of the vibrational energy spectrum of oxygen

di-fluoride molecule for lower energy states. This molecule is less anharmonic compared

to water molecule due to less mass disparity between fluorine and oxygen as compared to

that between hydrogen and oxygen in water molecule. Consequently, for this molecule

the CCM provides a better description for state energies than water. For the fundamen-

tals and two quanta excited states, the state energies are converged with as low as four

boson rank of the excitation operator and they reached the converged full CI values. The

maximum error with respect to full CI in these cases is less than 1 cm−1. Except 1132

state, all other three quanta excited states are described fairly well with six boson rank

in cluster operator in NCCM as well as excitation operator in CCLRT. In case of 1132

state we find large deviation between full CI result and CCM result (35 cm−1) with six

boson excitation operator in both NCCM and CCLRT. Even some of the lower lying four

quanta excited states e.g. 1123, 1222, 2331 are also reasonably well represented by Ω6.

The other higher energy four quanta excited states are quite away from the converged

full CI. These states are not converged with the Ω6 excitation operator. We find dramatic
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Table 2.8: Variation of vibrational energies of oxygen di-fluoride with varying the exci-
tation operators Ω from four boson to six boson.

States Symmetry Four boson Five boson Six boson CI results
000 A1 1140.57 1140.57 1140.57 1140.58
010 A1 1605.81 1605.81 1605.81 1605.81
020 A1 2066.54 2066.48 2066.48 2066.43
100 A1 2077.69 2077.67 2077.67 2077.71
030 A1 2525.89 2525.48 2525.31 2525.13
110 A1 2542.59 2542.24 2542.15 2542.21
002 A1 2826.67 2826.28 2826.27 2825.35
120 A1 2989.98 2983.16 2982.17 2981.34
200 A1 3004.92 2999.23 2998.64 2998.25
012 A1 3280.97 3279.29 3278.06 3271.08
130 A1 3503.49 3444.19 3436.37 3435.56
210 A1 3458.39 3468.31 3459.64 3455.56
102 A1 3780.61 3770.81 3767.44 3732.10
220 A1 3976.79 3927.03 3902.54 3908.86
300 A1 3921.92 3910.53 3918.51 3921.86
112 A1 4338.04 4235.84 4223.26 4176.64
310 A1 4477.68 4378.49 4362.45 4379.12
004 A1 4629.56 4447.42 4423.14 4484.07
202 A1 4864.29 4673.07 4652.39 4636.15
400 A1 5014.24 4844.99 4825.46 4845.55
001 B1 1986.84 1986.85 1986.85 1986.88
011 B1 2442.80 2442.46 2442.45 2442.40
021 B1 2896.55 2894.77 2894.18 2893.62
101 B1 2908.89 2908.18 2908.11 2907.86
031 A1 3407.09 3345.71 3340.06 3342.43
111 B1 3361.53 3363.30 3360.89 3362.46
003 B1 3665.24 3661.68 3659.54 3657.03
121 A1 3899.21 3825.93 3794.20 3788.95
201 B1 3830.88 3812.68 3823.86 3823.40
013 A1 4203.50 4115.33 4109.29 4092.94
103 A1 4799.79 4661.39 4637.68 4552.11
301 A1 5003.17 4722.23 4670.35 4734.22

The cluster operator S in these cases is truncated at six boson.
All results are in cm−1 unit.
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improvements of these energies on increasing the rank of the excitation operator from

four boson to five boson to six boson level. These results suggest that one need a higher

order truncation in Ω to describe higher energy states accurately.

2.3.4 Hydrogen Sulphide

The hydrogen sulphide (H2S) is another benchmark tri-atomic molecule for ab initio

vibrational spectra calculations. Like H2O, it is a typical local mode molecule due to

large mass disparity between the central and the terminal atoms. The two near degen-

erate stretching modes are strongly coupled. Moreover due to low inversion barrier, the

bending mode is quite anharmonic. Thus it provides a good testing ground to apply the

CCM method to study its vibrational spectrum.

For PES calculation we have used the GAUSSIAN 03 package [40]. This package

generates quartic force field in normal coordinate using Barone’s algorithm [41]. The

density functional theory (DFT) based method, Becke three-parameter hybrid (B3) func-

tional along with Lee-Yang-Parr (LYP) [43] and aug-cc-pVQZ basis set are used to gen-

erate the anharmonic force field values. Geometry optimization is carried out tightly and

the ultrafine keyword is used in the DFT calculation as recommended by Barone [42].

In table 2.9 we present the vibrational state energies at different levels of truncation

in the excitation operator Ω. The ground state cluster operator is kept fixed at six boson

level following the observation that the state energies are saturated with the rank of the

ground state cluster operator S at six boson level. We compared our results with the full

CI values using 8-16-8 harmonic oscillator basis set. We find that for the ground state

and for the fundamentals, the NCCM results are in agreement with the converged full CI

results and the values are converged with four boson excitation operator. For all the two

quanta excited states, three quanta excited states 23, 1122, 1221, 112131 and 33 and even

four quanta excited state 24, the NCCM results are converged with six boson excitation

operator and they are very close to the full CI results. The maximum deviation in these

cases is only about 4.0 cm−1 for 1221 and 12 states. In the case of 1123, 2231 and 2133
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Table 2.9: Variation of vibrational energies of H2S with varying the excitation operator
Ω from four boson to six boson.

States Symmetry Four boson Five boson Six boson CI results
000 A1 3258.31 3258.31 3258.31 3258.36
010 A1 4430.84 4430.83 4430.83 4430.88
020 A1 5596.17 5595.36 5595.34 5595.25
100 A1 5851.51 5851.54 5851.54 5851.81
030 A1 6754.80 6751.98 6750.75 6750.20
110 A1 6997.74 6996.64 6996.48 6996.57
040 A1 7917.29 7898.93 7893.43 7894.24
120 A1 8141.89 8139.96 8136.00 8135.72
200 A1 8411.32 8410.15 8411.42 8407.27
002 A1 8451.17 8451.64 8451.61 8452.15
130 A1 9289.89 9278.09 9274.47 9268.51
012 A1 9524.86 9516.33 9512.05 9497.63
210 A1 9562.06 9557.46 9556.67 9552.61
022 A1 10926.89 10799.54 10791.43 10572.59
220 A1 10803.93 10741.68 10748.57 10653.86
102 A1 11173.07 11115.50 11098.09 10960.55
300 A1 11017.39 10987.06 10978.77 11001.70
112 A1 12751.32 12239.18 12184.94 11998.49
310 B1 12409.29 12089.54 12005.29 12068.50
001 B1 5857.85 5857.88 5857.87 5858.48
011 B1 6988.82 6987.60 6987.57 6987.79
021 B1 8120.78 8115.72 8112.69 8109.24
101 B1 8407.07 8406.12 8406.90 8408.56
031 B1 9268.52 9245.32 9236.09 9222.11
111 B1 9523.69 9503.08 9498.36 9497.16
121 B1 10835.57 10624.35 10601.97 10575.05
201 B1 11019.41 10940.46 10929.33 10958.65
003 B1 11028.32 11016.65 11016.70 11012.56
211 B1 12751.43 12018.75 11979.47 11997.56
013 B1 12330.88 12067.49 12053.07 12051.01

The cluster operator in these cases is truncated at six boson.
The energies are in cm−1 unit.
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states, we find that the NCCM results with six boson excitation operator are close to the

full CI (maximum deviation is only 6 cm−1 in case of 1123 state), although the values are

not saturated at the six boson rank of the excitation operator. In case of the other higher

energy excited states we find large deviations from the full CI values. However, as can

be seen that these results improve dramatically on increasing the rank of the excitation

operator from Ω4 to Ω5 to Ω6. For example, the full CI energy of 2232 state is 10572.59

cm−1. NCCM value with Ω4 is 10926.89 cm−1 which becomes 10791.43 cm−1 with Ω6.
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Table 2.10: Comparision of CPU time

Molecule Four boson Five boson Six boson converged CI
H2O 0.40s 0.43s 0.44s 3.94s

Table 2.11: Comparison of CPU time required for NCCM calculations with respect to
the degree of freedoms of molecules

Molecule CPU time
Tri-atomic (H2O) 0.44s

Tetra-atomic (H2CO) 9.69s

2.3.5 Computational time

The implicit assumption in the coupled cluster approach is that the higher order cluster

operators converges rapidly. One can obtain the ground and excited state energies com-

parable to converged full CI accuracy with a lower order cluster and excitation operators.

In the table 2.10, we present the comparison of converged full CI and NCCM with dif-

ferent level of truncation in excitation operator in terms of CPU time needed to do the

calculations. All these calculations are done using Linux box (Intel 2.93 GB Core2Due).

We find that the time requirement for the CCM calculation is very little compared to

the full CI calculations. We have seen from the variations of the excited state energies

with respect to different level of approximations in the excitation operator that the most

of the lower lying states are converged with Ω6 and reached the converged full CI values.

We find that our method is very efficient in terms of the CPU time required for the

calculations and so it can be applied to study the vibrational energy spectra of molecules

with higher degrees of freedoms. The CPU time required for tri atomic and tetra atomic

molecules are presented in table 2.11. We used six boson approximation in both the

cluster operator S and excitation operator Ω in this study.
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2.4 Conclusion

In this work we have studied the convergence properties of the CCM/CCLRT approach

in boson representation. In the two illustrative examples that we studied, we found the

energy levels converge rapidly with respect to the cluster operator and they are almost

saturated at S4 level. The convergence for the excitation operator Ω is however slow.

While the fundamentals are fairly well described by an excitation operator truncated as

low as four boson level, the higher excited states have not always converged even at

six boson level. This pattern has been observed earlier in the study of one dimensional

anharmonic oscillator also. There are two possible sources for this inadequacy. As the

level of excitation in a mode increases, the associated wave function samples larger re-

gion of space and hence feels affects of anharmonicity to a greater extent. The effects of

such anharmonicity manifest themselves to first order in a shift of centroid of the wave

function and in spreading of the wave function. Such displacement and/or squeezing

are described exactly by exponential operators, as in the case for the wave function of a

displaced harmonic oscillator. Depending on the magnitude of such effects the number

of terms in the Taylor series expansion in the exponential would have to be large for a

convergent result. It is for this reason that a low order expansion of the excitation opera-

tor is inadequate. This problem can be redressed by the use of a multi-reference coupled

cluster description that can account for state specific displacement and squeezing.

A second source of inadequacy of the excitation operator comes from strong coupling

between near resonance states that differ in the number of quanta of excitation among

them. Since we are truncating the excitation operator based on the total number of quanta

rather than on energetic criteria, the level density in the higher energy regime is under-

estimated, particularly when different groups of modes (such as stretching and bending)

differ from each other significantly in their frequencies. Consequently states which fall

in such regimes are not properly described.

Lastly, we turn to the utility of Arponen type of double similarity transformation. As
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far as state energies are concerned, a second similarity transformation appears to have no

significant advantage. However we found that some of the complex eigenvalues in the

excitation spectrum have become real in the ECCM based calculations as we expected. It

can be hoped that in the calculations of non-energetic properties, e.g. expectation values

and transition matrix elements, this approach would be superior to the NCCM approach.
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Chapter 3

————————————————————

Effective Operator Approach Based on CCLRT

to Calculate Vibrational Expectation Values

and Transition Matrix Elements.

————————————————————

3.1 Introduction

In the second chapter we have discussed the formulation of the coupled cluster

method to study the anharmonic vibrational spectra of polyatomic molecules in bosonic

representation. The vibrational excited states are described using coupled cluster linear

response theory [1–3] in which the excited states are obtained as the eigenvalues of the

similarity transformed effective Hamiltonian HN
eff

HN
eff = e−SHeS. (3.1)

As discussed in the previous chapter, the diagonalization of HN
eff yields the transition

energies as the eigenvalues. We studied the convergence pattern of the state energies

with respect to different rank of cluster operator.
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In this chapter, we turn our attention to the reliability of CCM approach for the cal-

culation of properties other than state energies. Specifically, we study the convergence

pattern of the CCM approach to the calculation of expectation values and transition ma-

trix elements of the dipole moment operator. This is the first implementation of coupled

cluster method to study the expectation values and transition matrix elements in the con-

text of molecular vibrations. To the extent of our knowledge, no calculation on transition

matrix elements is reported in literature using coupled cluster method even in electronic

structure theory.

As discussed in the first chapter, the straight forward approach based on the CCM

ansatz for the expectation is

〈Ô〉 =
〈0|exp(S†)Ôexp(S)|0〉
〈0|exp(S†)exp(S|0〉

(3.2)

= 〈0|exp(S†)Ôexp(S)|0〉L.

The last expression is due to the linked cluster theorem [4, 5]. Unlike the equations for

the cluster matrix elements, this equation is a non-terminating series even at any finite

truncation of S and thus is impractical for the numerical work. Prasad [6] has earlier

suggested an alternative approach for the calculation of expectation values and transition

matrix elements within the CCM framework that bypasses the need to evaluate such

infinite series. In this approach, these properties are calculated using effective operator

which is a similarity transformation of the original operator

Ôeff = exp(−S)Ôexp(S). (3.3)

In this chapter, we use this effective operator approach based on CCLRT to calculate

vibrational expectation values and transition matrix elements. We study the convergence

pattern of the expectation values and the transition matrix elements are studied as a func-

tion of the rank of the excitation operator. Since in the last chapter we have seen that the

ground state cluster operator S converge rapidly, we keep it fixed at S6 level throughout

the study. The convergence pattern of the expectation values and the transition matrix

elements are studied as a function of the rank of the excitation operator in CCLRT.
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The similarity transformation of the Hamiltonian is at the heart of the CCM. Conse-

quently, the HN
eff is not manifestly Hermitian. This non-hermitian effective Hamiltonian

generates on occasion complex eigenvalues. We use a double similarity transformation

in the spirit of extended coupled cluster approach (ECCM) of Arponen [7–9] to recover

the complex eigenvalues in an approximate way. Here, the ground state wave function is

parametrized as

|ψg〉 = eSe−σ|φref〉. (3.4)

Here, the generator of the second similarity transformation σ consists of de-excitation

operator alone. The effective Hamiltonian, Heff is now hermitized up to first order.

We noted in the previous chapter that this modification of the wave operator eliminates

some of the complex eigenvalues. According to the Lie algebraic decoupling theorem,

the equation of motion for S are decoupled from the σ matrix elements in the exact

limit [6, 10]. In the NCCM based approach the ground state ket vector is exponentially

parametrized but the ground state bra vector is linearly parametrized. However, in the

ECCM based approach the ground state bra vector is also exponentially parametrized.

Due to this, the ECCM based approach is expected to provide a better description for the

calculations of these properties. The second goal of this chapter is to study the advantage

of the ECCM over NCCM in calculating these properties.

The chapter is organized as follows. In the next section we describe the essential

aspects of the calculation of expectation values and transition matrix elements from the

CCM perspective. We have applied the formalism to water molecule and its isotopomers

using an ab inito potential energy surface and dipole moment surface to understand the

convergence properties of these quantities with respect to the truncation in the excitation

operators. The results will be discussed in the next section. Finally we put concluding

remarks.
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3.2 Theory

It is recognized that the CCM approach involves the construction and diagonalization of

an effective Hamiltonian after the similarity transformation in Eq. 3.1. It is possible to

relate the left and right eigenvectors of Heff to the eigenvectors of original Hamiltonian.

Heff |Ri〉 = Ei|Ri〉, (3.5a)

〈Li|Heff = 〈Li|Ei, (3.5b)

|ψi〉 = Nie
S|Ri〉, (3.6a)

〈ψi| = 〈Li|e−SMi. (3.6b)

By choosing the normalization constants Mi and Ni such that MiNi〈Li|Ri〉 = 1, the

expectation value of any arbitrary operator O is given by

〈O〉 = 〈ψi|O|ψi〉 = 〈Li|Oeff |Ri〉, (3.7)

where,

Oeff = e−SOeS. (3.8)

These equations are identical to the equations derived by Z-vector[11, 12] or λ-vector[13]

formalisms by earlier workers since all these method use a linearly parametrized left vec-

tor to calculate the expectation values. Similarly, the transition matrix elements between

two states |ψi〉 and |ψj〉 are given by

|〈ψi|O|ψj〉|2 = 〈Li|Oeff |Rj〉〈Lj|Oeff |Ri〉, (3.9)

and the phase of the transition matrix element φ(Oij = |Oij|eiφ) is given by

φ =
1

2
Im
[
ln(〈Li|Oeff |Rj〉/〈Lj|Oeff |Ri〉

]
. (3.10)

We use this approach for the calculation of the expectation values and transition matrix

elements of the dipole operator.
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The structure of the equations remains unchanged in the case of ECCM. The only

difference in the case of the ECCM is that the effective operators defined in Eq. 3.8 are

replaced by

Oeff = eσe−SOeSe−σ. (3.11)

3.3 Results and Discussions:

We have applied the above discussed methodology of previous section to study the vibra-

tional corrections to dipole moments of different vibrational states and transition matrix

elements between ground state and several excited states of water molecule and isotopic

variants HDO and D2O. There are several accurate quartic ab initio potential energy

surface (PES) available for these systems in the literature. However, there are very few

dipole moment surfaces (DMS) reported in the literature. We have taken both PES and

DMS from reference [14]. In addition to the calculation of the potential energy surface

and dipole moment surface, these authors made extensive calculations to the dipole mo-

ment expectation values and transition matrix elements using perturbation theory. We

choose both PES and DMS based on CISD calculations using STO basis for applying

our methodology to H2O, HDO and D2O molecules. Although the potentials presented

here are old, we chose these for consistency between PES and DMS in terms of basis set

and method used in the electronic structure calculations. These potential energy surfaces

do not contain the Coriolis coupling terms.

3.3.1 H2O Molecule:

Over the years there have been extensive studies on the vibrational spectra of water

molecule[15–17]. It is an archetypical local mode molecule because of large mass dispar-

ity between oxygen and hydrogen atoms. Moreover, the low barrier of inversion makes

it highly anharmonic. Consequently, it is a very good test molecule for any theoretical

method based on normal coordinate system. Since the goal of the present work is to
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study the reliability of the effective operator approach based on coupled cluster linear

response theory rather than attaining experimental accuracy, we compared our results

with converged full CI results. As is well known, the quartic force field provides a poor

description for the H2O molecule[18]. Consequently, it does not give numbers that can

be compared with experimental data even with full CI level. A higher order expansion in

the potential is required to match experimental values. The present methodology can be

easily expanded for higher order potential functions.

NCCM Based Calculation:

In the previous chapter we presented extensive calculations on the convergence of state

energies with respect to the variation of the rank of both cluster operator S and excitation

operator Ω from four boson to six boson level in NCCM and CCLRT respectively. We

found that both the ground state and excited state energies have converged with respect to

cluster operator by S4 in NCCM. However, in some cases the results were not converged

even with six boson rank of excitation operator Ω. Based on this, in present work we

study the convergence pattern of the dipole operator expectation values and transition

matrix elements with respect to rank of excitation operator Ω only. In all calculations

we kept the cluster operator of NCCM fixed at six boson level. We compare our results

with converged full CI results. For full CI we used 10-18-10 harmonic oscillator basis.

Comparisons have also been made with the second order perturbation results of reference

[14].

Expectation values of dipole operator

In table 3.1, we present the variation of expectation values of dipole operator with re-

spect to truncation levels of excitation operator Ω keeping the cluster operator fixed at

six boson level. The values presented in the table are vibrational corrections to the dipole

moment. Z axis is taken as the molecular axis. The states with maximum three quanta

excitations are reported here. We find that for the ground state and fundamentals, CCM
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results are in excellent agreement with the converged full CI results. The values are con-

verged even with as low as four boson excitation operator. For all states with two quanta

of excitations, the dipole moment expectation values are very close to full CI values.

In 200, 002 and 011 states the values are nearly converged with the rank of excitation

operator. In case of 020, 030, 003 states, we find that dipole moment is monotonically

converging with respect to excitation operator but have not saturated even at six boson

level. For most of the three quantum states, the error is about 5% except for three states

(120, 210 and 012) for which the maximum error is as high as 50%. As can be seen, the

expectation values are not converged with respect to Ω even at six boson level. We find

dramatic improvements in the dipole moment expectation values on increasing the rank

of excitation operator from four boson to five boson to six boson in some cases. For ex-

ample, dipole moment of 030 state changes from−7.07× 10−2 Debye to−10.36× 10−2

Debye from four boson to six boson rank of excitation operator. The converged full CI

value for this state is −11.43 × 10−2 Debye. As we noted in the previous chapter that

lower lying states like fundamentals, first overtones etc are well represented by CCLRT

method because of its bi-variational nature. However, truncation of the linear excitation

operator at six boson level does not describe the wave functions of higher states ade-

quately. Convergence pattern of states energies also reflects these improper descriptions

of the higher excited state wave functions. In table 3.1, we have compared the CCM

dipole moment values with the second order perturbation theory results presented in ref-

erence [14] also. We found that for almost all states the CCM results are better than the

second order perturbation results.
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Table 3.1: variation of expectation values of dipole moment of H2O with varying exci-
tation operator from four boson to six boson.

State 4 boson 5 boson 6 boson Full CI PT2a

000 0.88 0.88 0.88 0.87 0.90
010 -2.09 -2.10 -2.10 -2.09 -1.93
020 -5.39 -5.62 -5.71 -5.87 4.80
100 2.26 2.26 2.26 2.26 2.32
030 -7.07 -9.17 -10.36 -11.43 -7.71
110 -0.31 -0.28 -0.29 -0.26 -0.47
120 -2.44 -2.81 -2.82 -3.41 -3.30
200 3.24 3.38 3.36 3.42 3.69
002 6.57 6.65 6.65 6.87 7.12
210 0.25 0.54 0.67 1.41 0.95
012 1.70 2.06 2.07 4.53 4.35
300 3.04 4.20 4.58 4.34 5.02
102 4.75 6.98 7.72 7.00 8.38
001 3.93 3.93 3.92 3.93 4.03
011 1.28 1.34 1.34 1.40 1.23
021 -1.72 -1.64 -1.55 -1.66 -1.61
101 4.67 4.84 4.83 4.88 5.37
111 1.32 2.35 2.63 2.60 2.61
201 3.90 5.48 5.87 5.52 6.66
003 6.83 9.13 9.59 9.75 10.17

a see reference [14].
The tabulated values are the vibrational corrections to the dipole moments (µνν − µe).
Units are in 10−2 debye

Transition matrix elements

The absolute values of the transition matrix elements of H2O from the ground state to

different excited states are presented in table 3.2. Like state energies and dipole mo-

ment expectation values, here also we find excellent agreement between converged full

CI and CCM with as low as four boson excitation operator for the fundamentals. Even

for lower lying two quanta excited state 011 and three quanta excited state 111 we find

that converged full CI values are reached by NCCM with four boson excitation operator.

For two quanta states, the results are converged with the truncation of excitation operator

and they are close to converged full CI values except in the cases where the transition
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Table 3.2: Variation of absolute transition matrix elements of H2O with varying excita-
tion operator from four boson to six boson.

State 4 boson 5 boson 6 boson Full CI PT2a

010 14.75 14.75 14.76 14.75 14.6
020 0.58 0.57 0.57 0.73 0.93
100 3.59 3.59 3.59 3.59 3.50
030 0.16 0.18 0.19 0.07 –
110 0.10 0.10 0.10 0.06 0.22
200 0.44 0.44 0.44 0.35 0.44
002 0.08 0.07 0.08 0.01 0.08
012 0.13 0.13 0.13 0.02 –
300 0.02 0.01 0.03 0.09 –
102 0.11 0.11 0.11 0.03 –
001 6.27 6.27 6.27 6.26 6.60
011 1.62 1.62 1.62 1.64 3.10
021 0.06 0.06 0.05 0.07 –
101 0.94 0.94 0.94 0.78 1.10
111 0.34 0.35 0.35 0.32 –
201 0.08 0.10 0.11 0.07 –
003 0.14 0.14 0.13 0.07 –

a reference [14].
Values greater than 0.01 are reported.
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matrix element is very small. In the study on energetics, we found that the ground state

ket vector is well represented by as low as four body cluster operator S4. So the errors

in transition matrix elements must be due to inadequate description of ground state bra

vector within NCCM approach. In NCCM approach the ground state bra vector is lin-

early parametrized. Paramatrizing the ground state bra vector by an exponential ansatz

as is done in the ECCM approach aught to improve the transition matrix elements.

Finally, NCCM generally gives a better description for transition matrix elements

than the second order perturbation theory.

ECCM Based Calculation:

In this section we compare the results of different levels of truncation of Ω operator

after Arponen type of double similarity transformation. In all calculations both cluster

operator S and σ are kept at six boson level.

Dipole Moment expectation values:

We present the variation of dipole moment expectation values for H2O of with dif-

ferent levels of truncation of excitation operator with ECCM in table 3.3. Like energetics

of the states, here also we find the improvement due to double similarity transformation

over NCCM is marginal.

Transition Matrix elements:

Variation of the transition matrix elements with rank of excitation operator for H2O are

given in table 3.4. Here we find significant improvements due to the double similar-

ity transformation of ECCM approach over NCCM. For fundamentals NCCM results

are very close to converged full CI. So improvements due to ECCM over NCCM are

marginal. Beyond the fundamental states, we find dramatic improvements with ECCM

based calculations. For example, with NCCM based method the converged transition

matrix element value for 020 state is 0.57 × 10−2 Debye , whereas the full CI value is
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Table 3.3: varitation of expectation values of dipole moment of H2O with varying exci-
tation operator from four boson to six boson after Arponen type double similarity trans-
formation.

State 4 boson 5 boson 6 boson Full CI PT2a

000 0.88 0.88 0.88 0.87 0.90
010 -2.03 -2.04 -2.04 -2.09 -1.93
020 -5.46 -5.58 -5.60 -5.87 -4.80
100 2.25 2.25 2.25 2.26 2.32
030 -7.10 -9.42 -10.18 -11.43 -7.71
110 -0.28 -0.29 -0.29 -0.26 -0.47
120 -2.44 -2.76 -2.87 -3.41 -3.30
200 3.37 3.37 3.38 3.42 3.69
002 6.62 6.64 6.64 6.87 7.12
210 0.26 0.69 0.73 1.41 0.95
012 1.71 2.11 2.18 4.53 4.35
300 3.03 4.41 4.49 4.34 5.02
102 4.66 7.19 7.69 7.00 8.38
001 3.90 3.90 3.90 3.93 4.03
011 1.32 1.35 1.35 1.40 1.23
021 -1.71 -1.64 -1.62 -1.66 -1.61
101 4.79 4.82 4.83 4.88 5.37
111 1.33 2.51 2.63 2.60 2.61
201 4.04 5.70 6.01 5.52 6.66
003 6.65 9.24 9.44 9.75 10.17

a reference [14].
The tabulated values are the vibrational corrections to the dipole moments (µνν − µe).
Units are in 10−2 debye.
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Table 3.4: Variation of absolute transition matrix elements of H2O after Arponen type
double similarity transformation with varying excitation operator from four boson to six
boson.

State 4 boson 5 boson 6 boson Full CI PT2a

010 14.81 14.81 14.81 14.75 14.6
020 0.75 0.75 0.75 0.73 0.93
100 3.63 3.63 3.63 3.59 3.50
030 0.02 0.02 0.02 0.07 –
110 0.04 0.04 0.04 0.06 0.22
200 0.34 0.34 0.34 0.35 0.44
002 0.01 0.01 0.01 0.01 0.08
012 0.03 0.03 0.03 0.02 –
300 0.09 0.09 0.09 0.09 –
102 0.00 0.02 0.02 0.03 –
001 6.32 6.32 6.32 6.26 6.60
011 1.61 1.61 1.61 1.64 3.10
021 0.08 0.08 0.08 0.07 –
101 0.78 0.78 0.78 0.78 1.10
111 0.32 0.32 0.32 0.32 –
201 0.07 0.08 0.09 0.07 –
003 0.10 0.08 0.08 0.07 –

a reference [14].
Values greater than 0.01 are reported.
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0.73 × 10−2 Debye. With ECCM based calculation it improves to 0.75 × 10−2 Debye.

Similarly, for 002 state the full CI value is 0.01× 10−2 Debye. NCCM based calculation

gives 0.08 × 10−2 Debye whereas ECCM gives exact full CI value. Similarly, for 300,

101, 111 states we find exact full CI values with ECCM based method. In all the cases

the errors by the ECCM based method are negligible. As we stated earlier, in the NCCM

based method, the ground state bra vector is not properly described. In the ECCM the

ground state bra vector is parametrized with an exponential operator. This makes ECCM

approach significantly superior over NCCM in calculating transition matrix elements.

3.3.2 HDO molecule:

Our second case study is the HDO molecule. This isotopic variant of H2O belongs to

C1 point group. We consider the molecule is in YZ plane. We have the dipole moment

functions belong to both Y and Z directions. Unlike H2O, here the vibrational modes are

more local in nature. In H2O, the two OH oscillators of same frequency strongly mixed

to form the symmetric and antisymmetric normal modes. But in the case of HDO, the

OD and OH are having different frequencies and consequently the resonance between

the modes are less as comparative to H2O molecule. In other words, the anharmonic

coupling strengths are less in this molecule. For example, the force constant values of

f133 in HDO is −21.6cm−1 as compared to −305.6cm−1 that in water. As a results, the

CCM provides a better description for HDO molecule than for H2O.

NCCM based calculations:

In this subsection we present the dipole moment expectation values and transition matrix

elements of HDO molecule based on NCCM approach. We keep the cluster operator

fixed at S6 level and vary the excitation operator from four boson to six boson level.

The results are compared with the converged full CI values. For CI calculations we use

10-18-10 harmonic oscillator basis set.
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Table 3.5: Variation of expectation values of dipole moment of HDO molecule along Y
direction with varying excitation operator from four boson to six boson.

State 4 boson 5 boson 6 boson Full CI PT2a

000 0.63 0.63 0.63 0.64 0.64
010 1.01 1.01 1.01 0.99 0.93
100 -0.47 -0.47 -0.47 -0.43 -0.51
020 1.44 1.43 1.42 1.36 1.31
001 2.51 2.51 2.51 2.53 2.79
110 -0.16 -0.17 -0.17 -0.15 -0.24
030 2.25 1.88 1.78 1.69 1.78
200 -1.24 -1.34 -1.33 -1.26 -1.62
011 2.99 2.96 2.95 2.96 1.85
120 0.38 0.17 0.12 0.10 0.12
101 1.41 1.42 1.42 1.48 1.64
021 4.68 3.41 3.05 3.14 3.33
210 -0.67 -1.10 -1.16 -1.07 -1.37
002 4.55 4.25 4.23 4.32 4.89
300 -0.63 -1.63 -1.91 -1.85 2.70
111 2.92 1.90 1.81 1.72 1.85
201 1.82 0.70 0.86 0.69 0.53
012 3.78 5.11 3.89 4.18 5.05
102 2.52 3.45 3.12 3.29 3.75

a see reference [14].
The tabulated values are the vibrational corrections to the dipole moments (µνν − µe).
Units are in 10−2 debye.

Dipole Moment expectation values:

In table 3.5 and table 3.6 we present the convergence pattern of dipole moment ex-

pectation values with respect to the different level of truncation of the excitation operator

Ω for different vibrational states of HDO along Y and Z directions respectively. We

find that the CCM dipole moment expectation values are excellent for the ground state

and fundamentals along both Y and Z direction. The full CI values are reached by as

low as four boson rank of the excitation operator. For the two quanta excited states the

expectation values are fairly accurate with respect to converged full CI. In the case of

three quanta excited states, we find deviations in the dipole moment expectation values.

However, in these cases, the values are found to be converging monotonically with the
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rank of the excitation operator. There are dramatic improvements in the dipole moment

expectation values of three quanta excited states on increasing the rank Ω. For example,

for 2231 state, the dipole moment expectation value along Z direction is 1.18 × 10−2

debye with Ω4. With six boson excitation operator, it improves to −2.49 × 10−2 debye.

The converged full CI value in this case is −2.96 × 10−2 debye. Similarly, for 23 state,

dipole moment expectation value along Z direction changes from −4.31 × 10−2 debye

to −6.27× 10−2 debye from four boson to six boson excitation operator. The converged

CI value is −6.64 × 10−2 debye. These results support the speculation that to attain the

accuracy of dipole moment expectation values of higher excited states comparable to the

full CI values, one should go for higher rank of excitation operator. NCCM generally

gives a better description than the second order perturbation theory.
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Table 3.6: Variation of expectation values of dipole moment of HDO molecule along Z
direction with varying excitation operator from four boson to six boson.

State 4 boson 5 boson 6 boson Full CI PT2a

000 0.71 0.71 0.71 0.70 0.75
010 -1.62 -1.63 -1.63 - 1.63 -1.80
100 2.10 2.09 2.09 2.13 2.34
020 -3.42 -3.59 -3.65 -3.77 -4.41
001 2.02 2.03 2.03 2.03 3.17
110 -0.16 -0.18 -0.19 -0.15 -0.21
030 -4.31 -5.54 -6.27 -6.64 -7.09
200 3.21 3.32 3.32 3.39 3.89
011 -0.51 -0.69 -0.83 -0.77 0.73
120 -1.82 -2.13 -2.18 -2.41 -2.82
101 3.55 3.62 3.65 3.64 4.75
021 1.18 -1.24 -2.49 -2.96 -1.77
210 0.44 0.65 0.69 1.15 1.34
002 2.95 3.29 3.52 3.41 5.51
300 2.95 4.16 4.59 4.45 5.39
111 1.87 1.22 1.17 0.44 2.32
201 2.06 4.63 4.39 4.48 6.30
012 0.59 2.78 -1.11 -3.66 3.18
102 4.09 4.45 5.05 5.40 7.09

a see reference [14].
The tabulated values are the vibrational corrections to the dipole moments (µνν − µe).
Units are in 10−2 debye.

Transition matrix elements:

The absolute values of the transition matrix elements of HDO molecule from the

ground state to different excited states along Y and Z directions are presented in table

3.7 and table 3.8 respectively. Along Y axis, for the most of the states up to three quanta

excitations, the transition matrix elements are in excellent agreement with the converged

full CI results. Along Z direction, for the fundamentals and lower lying two quanta

excited states 22, 1121, 1131 and even some of the three quanta excited states e.g. 13,

1231, 1132 the transition matrix elements are very close to the full CI values. However, in

some of the higher energy states, we find the deviations in the transition matrix elements

in comparison to full CI values. Like the case of H2O molecule, here also we observe
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Table 3.7: Variation of absolute transition matrix of HDO molecule with varying exci-
tation operator.

State 4 boson 5 boson 6 boson Full CI
010 3.58 3.58 3.58 3.93
100 3.82 3.82 3.82 3.79
020 1.38 1.35 1.35 1.38
001 4.78 4.79 4.79 4.80
110 0.91 0.91 0.91 0.91
030 0.47 0.46 0.45 0.47
200 0.57 0.57 0.57 0.48
011 0.98 0.99 1.00 1.00
120 0.03 0.03 0.03 0.04
101 0.10 0.10 0.10 0.10
210 0.17 0.17 0.17 0.13
021 0.11 0.41 0.41 0.32
002 0.58 0.66 0.69 0.57
300 0.07 0.07 0.07 0.07
111 0.01 0.01 0.01 0.02
012 0.19 0.19 0.19 0.17
201 0.01 0.03 0.02 0.03
102 0.01 0.01 0.01 0.01

Units are in 10−2 debye:dipole moment along Y direction.
Values greater than 0.01 are reported.
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Table 3.8: Variation of absolute transition matrix of HDO molecule with varying exci-
tation operator.

State 4 boson 5 boson 6 boson Full CI PT2a

010 13.66 13.66 13.66 13.75 13.6
100 2.43 2.43 2.43 2.50 2.50
020 1.34 1.32 1.32 1.42 0.31
001 2.22 2.23 2.23 2.21 2.50
110 0.07 0.07 0.07 0.06 0.14
030 0.14 0.15 0.16 0.02 –
200 0.22 0.22 0.22 0.15 0.19
011 0.12 0.12 0.13 0.05 0.32
120 0.06 0.06 0.06 0.02 –
101 0.11 0.11 0.11 0.13 0.26
210 0.09 0.09 0.09 0.02 –
021 0.04 0.21 0.19 0.13 –
002 0.27 0.22 0.24 0.16 0.23
300 0.04 0.05 0.05 0.05 –
201 0.01 0.01 0.01 0.01 –
102 0.01 0.01 0.01 0.01 –

a see reference [14].
Units are in 10−2 debye:dipole moment along Z direction.
Values greater than 0.01 are reported.

that the transition matrix elements are converged with respect to the rank of the excitation

operator although they did not reach the full CI values for some states. As stated earlier,

since the ground state ket vector is well represented by as low as S4 cluster operator, the

errors in the transition matrix elements are due to linearly parametrization of the ground

state bra vector in NCCM approach.

We note that the NCCM description of the transition matrix element are better than

the second order perturbation values.

ECCM based calculations:

Here we present the results of different levels of truncation of Ω operator based on ECCM

calculations. We compare these values with converged full CI results. In all these calcu-

lations, both the cluster operator S and σ are kept at the six boson level.
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Table 3.9: Variation of expectation values of dipole moment of HDO molecule along
Y direction with varying excitation operator from four boson to six boson after Arponen
type double similarity transformation.

State 4 boson 5 boson 6 boson Full CI PT2a

000 0.63 0.63 0.63 0.64 0.64
010 1.02 1.02 1.02 0.99 0.93
100 -0.46 -0.46 -0.46 -0.43 -0.51
020 1.45 1.45 1.44 1.36 1.31
001 2.49 2.49 2.49 2.53 2.79
110 -0.15 -0.15 -0.15 -0.15 -0.24
030 2.24 1.88 1.82 1.69 1.74
200 -1.31 -1.31 -1.31 -1.26 -1.62
011 3.06 2.96 2.94 2.96 3.02
120 0.39 0.19 0.18 0.10 0.12
101 1.43 1.43 1.43 1.48 1.64
021 4.70 3.52 3.13 3.14 3.33
210 -0.64 -1.16 -1.19 -1.07 -1.37
002 4.65 4.25 4.20 4.32 4.89
300 -0.47 -1.86 -1.88 -1.85 2.70
111 2.96 1.97 1.84 1.72 1.85
201 1.85 0.65 0.72 0.69 0.53
012 3.81 5.25 4.19 4.18 5.05
102 2.52 3.60 3.26 3.29 3.75

a see reference [14].
The tabulated values are the vibrational corrections to the dipole moments (µνν − µe).
Units are in 10−2 debye.

Dipole Moment Expectation values:

The variations of dipole moment expectation values ofHDO molecule with different

levels of truncation of the excitation operator with ECCM along Y and Z direction are

given respectively in table 3.9 and table 3.10. Like H2O molecule, here also we find the

improvement due to double similarity transformation over NCCM is marginal.

Transition Matrix Elements:

The variations of the transition matrix elements from the ground state to different

excited states with the rank of the excitation operator Ω along Y and Z axis are given
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Table 3.10: Variation of expectation values of dipole moment of HDO molecule along
Z direction with varying excitation operator from four boson to six boson after Arponen
type double similarity transformation.

State 4 boson 5 boson 6 boson Full CI PT2a

000 0.71 0.71 0.71 0.70 0.75
010 -1.59 -1.59 -1.59 - 1.63 -1.80
100 2.10 2.10 2.10 2.13 2.34
020 -3.48 -3.55 -3.56 -3.77 -4.41
001 1.99 1.98 1.98 2.03 3.17
110 -0.14 -0.16 -0.16 -0.15 -0.21
030 -4.40 -5.74 -6.14 -6.64 -7.09
200 3.33 3.32 3.31 3.39 3.89
011 -0.48 -0.74 -0.86 -0.77 0.73
120 -1.85 -2.16 -2.24 -2.41 -2.82
101 3.59 3.60 3.60 3.64 4.75
021 1.18 -0.97 -2.31 -2.96 -1.77
210 0.42 0.79 0.82 1.15 1.34
002 3.12 3.10 3.22 3.41 5.51
300 2.90 4.47 4.58 4.45 5.39
111 1.86 1.27 1.15 0.44 2.32
201 2.08 4.73 4.39 4.58 6.30
012 2.2 2.92 -0.74 -3.66 3.18
102 4.12 4.37 4.97 5.40 7.09

a see reference [14].
The tabulated values are the vibrational corrections to the dipole moments (µνν − µe).
Units are in 10−2 debye.
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Table 3.11: Variation of absolute transition matrix ofHDO molecule after Arponen type
of double similarity transformation with varying excitation operator.

State 4 boson 5 boson 6 boson Full CI
010 3.60 3.60 3.60 3.93
100 3.84 3.84 3.84 3.79
020 1.43 1.43 1.43 1.38
001 4.80 4.80 4.80 4.80
110 0.90 0.90 0.90 0.90
030 0.51 0.49 0.48 0.47
200 0.49 0.49 0.49 0.48
011 0.97 0.98 0.98 1.00
120 0.04 0.04 0.04 0.04
101 0.10 0.10 0.10 0.10
210 0.13 0.12 0.12 0.12
021 0.13 0.36 0.33 0.32
002 0.48 0.52 0.54 0.57
300 0.08 0.08 0.08 0.07
111 0.001 0.01 0.01 0.02
012 0.19 0.20 0.18 0.17
201 0.03 0.01 0.04 0.03

Units are in 10−2 debye:dipole moment along Y direction.
Values greater than 0.01 are reported.
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Table 3.12: Variation of absolute transition matrix ofHDO molecule after Arponen type
of double similarity transformation with varying excitation operator.

State 4 boson 5 boson 6 boson Full CI PT2a

010 13.71 13.71 13.71 13.75 13.6
100 2.46 2.46 2.46 2.50 2.50
020 1.47 1.47 1.47 1.42 0.31
001 2.21 2.21 2.21 2.21 2.50
110 0.07 0.07 0.07 0.06 0.14
030 0.01 0.00 0.00 0.02 –
200 0.14 0.14 0.14 0.15 0.19
011 0.04 0.04 0.04 0.05 0.32
120 0.00 0.00 0.00 0.02 –
101 0.13 0.12 0.12 0.13 0.26
210 0.01 0.00 0.01 0.02 –
021 0.08 0.15 0.15 0.13 –
002 0.18 0.14 0.14 0.16 0.23
300 0.06 0.06 0.06 0.05 –
201 0.00 0.01 0.01 0.01 –
102 0.01 0.01 0.01 0.01 –

a see reference [14].
Units are in 10−2 debye.:dipole moment along Z direction.
Values greater than 0.01 are reported.

respectively in table 3.11 and table 3.12. We find significant improvements in the transi-

tion matrix elements due to double similarity transformation of ECCM approach in the

cases where we get deviations with the NCCM based approach. For example, with the

NCCM based calculation the transition matrix element value for the 2131 state along Z

axis is 0.13× 10−2 debye which appears to be converged with the rank of the excitation

operator. The converged full CI value is 0.05 × 10−2 debye. With the ECCM based

calculation this value improves to 0.04× 10−2 debye. The values of the transition matrix

elements support our speculation that due to exponential parametrization of the ground

state bra vector the transition matrix elements are better represented by the ECCM based

approach than by NCCM based approach.
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3.3.3 D2O

Our next case study is theD2O molecule. This isotopic variant of water molecule is com-

paratively less anharmonic than H2O due to the presence of heavier terminal atom and

consequently, the CCM provides more accurate description. We perform both NCCM

based and ECCM based calculations compare the results with the converged full CI. For

full CI calculations we used 10-18-10 harmonic oscillator basis functions. The Z axis

is taken as the molecular axis. The states with maximum three quanta excitations are

reported here.

NCCM Based Calculations:

We present the convergence pattern of the dipole moment expectation values and transi-

tion matrix elements with respect to the rank of the excitation operator Ω in CCLRT. We

kept the ground state cluster operator fixed at S6 level.

Dipole Moment Expectation Values:

The expectation values of dipole moment operator at different levels of approximation

in the excitation operator Ω in CCLRT for D2O molecule are given in table 3.13. We

find that for the ground state and the fundamentals the converged CI values are obtained

with as low as four boson rank of the excitation operator. For the states up to two quanta

excitations, the results attain the full CI accuracy with six boson excitation operator. Even

for some of the lower lying three quanta excited states (23, 13, 1132 and 112131), we find

very accurate results with the six boson operator. For other three quanta excited states,

we get deviation in the dipole moment expectation values in compare to converged full

CI results. However, values are monotonically converging with the rank of the excitation

operator. We find that these deviations are less in comparison to H2O molecule.
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Table 3.13: variation of expectation values of dipole moment of D2O with varying exci-
tation operator from four boson to six boson.

State 4 boson 5 boson 6 boson Full CI PT2a

000 0.71 0.71 0.71 0.70 0.72
010 -1.37 -1.37 -1.37 -1.37 -1.29
020 -3.61 -3.71 -3.74 -3.79 -3.32
100 1.60 1.60 1.60 1.59 1.62
030 -5.07 -6.13 -6.62 -6.76 -5.37
110 -0.32 -0.31 -0.31 -0.30 -0.37
120 -1.73 -2.08 -2.11 -2.52 -2.37
200 2.30 2.40 2.40 2.43 2.49
002 5.34 5.39 5.39 5.53 5.73
210 0.45 0.48 0.56 0.74 0.53
012 1.89 2.15 2.17 3.85 3.76
300 1.25 2.88 3.14 3.14 3.34
102 3.98 5.57 6.04 6.03 6.53
001 3.17 3.17 3.17 3.17 3.24
011 1.28 1.32 1.32 1.35 1.25
021 -0.84 -0.76 -0.72 -0.76 -0.77
101 3.72 3.83 3.84 3.87 4.09
111 1.32 2.04 2.22 2.20 2.12
201 2.81 4.34 4.67 4.42 4.91
003 6.19 7.43 7.67 7.83 8.19

a see reference [14].
Units are in 10−2 debye. The tabulated values are the vibrational corrections to the dipole
moments (µνν − µe).
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Table 3.14: Variation of absolute transition matrix elements of D2O with varying excita-
tion operator from four boson to six boson.

State 4 boson 5 boson 6 boson Full CI PT2a

010 12.53 12.53 12.53 12.53 12.4
020 0.60 0.60 0.60 0.71 0.83
100 3.56 3.56 3.56 3.56 3.50
030 0.10 0.11 0.11 0.04 –
110 0.07 0.07 0.07 0.02 0.15
120 0.02 0.02 0.02 0.02 –
200 0.37 0.37 0.38 0.30 0.35
002 0.04 0.03 0.04 0.02 0.03
012 0.09 0.10 0.10 0.02 –
300 0.05 0.04 0.05 0.06 –
102 0.07 0.07 0.07 0.03 –
001 5.48 5.48 5.48 5.47 5.30
011 1.23 1.23 1.23 1.23 2.30
021 0.09 0.08 0.08 0.09 –
101 0.76 0.76 0.76 0.64 0.82
111 0.22 0.23 0.21 0.20 –
201 0.06 0.07 0.08 0.07 –
003 0.09 0.09 0.09 0.04 –

a see reference [14].
Values greater than 0.01 are reported.
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Transition Matrix Elements:

The transition matrix elements of D2O molecule from the ground state to different ex-

cited states with different truncations of the Ω operator are presented in table 3.14. Like

the case of H2O and HDO, the CCM gives excellent results for the fundamental states.

Even for some two quanta excited states, the CCM results are fairly good in comparison

with converged CI values. However, for higher energy states we find deviations between

CCM values and full CI values although the NCCM values are converged with the rank

of the excitation operator. This is, as we stated earlier, due to improper parametrization

of the ground state bra vector in the NCCM based calculations.

ECCM Based Calculations:

In the ECCM based calculations we kept both the cluster operator S and σ fixed at six

boson level.

Dipole Moment Expectation Values:

We present the convergence pattern of the dipole moment expectation values after Arpo-

nen type double similarity transformation in the ECCM based calculations in table 3.15.

Like the case of the H2O and HDO molecules, here also we find the improvements of

the dipole moment expectation values due to ECCM based approach over NCCM are

marginal.

Transition Matrix Elements:

The variations of the transition matrix elements of D2O molecule with varying excita-

tion operator from four boson to six boson are presented in table 3.16. Since for the

fundamentals the NCCM values are close to the full CI, the improvement due to double

similarity transformation in ECCM is marginal. However, for other states we find that the
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Table 3.15: variation of expectation values of dipole moment of (D2O) after Arponen
type of double similarity transformation with varying excitation operator from four boson
to six boson.

State 4 boson 5 boson 6 boson Full CI PT2a

000 0.71 0.71 0.71 0.70 0.72
010 -1.34 -1.34 -1.34 -1.37 -1.29
020 -3.65 -3.69 -3.69 -3.79 -3.32
100 1.59 1.59 1.59 1.59 1.62
030 -5.09 -6.25 -6.50 -6.76 -5.37
110 -0.30 -0.31 -0.32 -0.30 -0.37
120 -1.73 -2.05 -2.14 -2.52 -2.37
200 2.38 2.39 2.39 2.43 2.49
002 5.37 5.38 5.38 5.53 5.73
210 0.46 0.57 0.58 0.74 0.53
012 1.90 2.18 2.22 3.85 3.76
300 1.32 3.06 3.11 3.14 3.34
102 3.93 5.70 6.00 6.03 6.53
001 3.16 3.16 3.16 3.17 3.24
011 1.30 1.31 1.32 1.35 1.25
021 -0.83 -0.76 -0.75 -0.76 -0.77
101 3.80 3.83 3.83 3.87 4.09
111 1.34 2.14 2.21 2.20 2.12
201 2.81 4.51 4.77 4.42 4.91
003 6.16 7.48 7.58 7.80 8.19

a see reference [14].
The tabulated values are the vibrational corrections to the dipole moments (µνν − µe).
Units are in 10−2 debye
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Table 3.16: Variation of absolute transition matrix elements of D2O after Arponen type
of double similarity transformation with varying excitation operator from four boson to
six boson.

State 4 boson 5 boson 6 boson Full CI PT2a

010 12.56 12.56 12.56 12.53 12.4
020 0.71 0.72 0.72 0.71 0.83
100 3.58 3.59 3.59 3.56 3.50
030 0.01 0.01 0.01 0.04 –
110 0.01 0.01 0.01 0.02 0.15
120 0.04 0.04 0.04 0.02 –
200 0.29 0.29 0.29 0.30 0.35
002 0.02 0.02 0.02 0.02 0.03
012 0.02 0.02 0.02 0.02 –
300 0.05 0.06 0.06 0.06 –
102 0.01 0.01 0.01 0.03 –
001 5.51 5.51 5.51 5.47 5.30
011 1.21 1.21 1.21 1.23 2.30
021 0.09 0.09 0.09 0.09 –
101 0.76 0.76 0.64 0.64 0.82
111 0.21 0.21 0.21 0.20 –
201 0.07 0.08 0.08 0.07 –
003 0.05 0.05 0.05 0.04 –

a see reference [14].
Values greater than 0.01 are reported.
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NCCM values are converged with respect to the rank of the excitation operator, although

they are away from the full CI values. The double similarity transformation in ECCM

approach improves the results significantly. For example, with the NCCM based method,

the converged absolute transition matrix element value from ground state to 1121 state is

0.07 × 10−2 debye, which is quite away from the converged full CI value 0.02 × 10−2

debye. With ECCM based calculation, it improves to 0.01 × 10−2 debye. Similarly, for

the 2132 state the full CI value is 0.02× 10−2 debye. The NCCM based calculation gives

0.10× 10−2 debye, whereas ECCM based calculation gives the exact full CI value.

3.4 Conclusion

In this work, we presented an effective operator approach within the framework of CCM

to calculate expectation values of operators and absolute transition matrix elements. We

conclude that these properties can be calculated very accurately using CCLRT. We stud-

ied the convergence pattern of these properties with respect to truncations of excitation

operator in CCLRT. We found that for fundamentals and most of the states with two

quanta excitations these properties are converged with the rank of excitation operator

and reached full CI limit by Ω4. For higher states, the values tend to approach full CI

values on going from four boson to six boson rank of excitation operator.

Next, we turn to the utility of Arponen type of double similarity transformation. We

found that the ECCM does not offer any significant advantage over NCCM as far as state

energies and expectation values are concerned. However, the story is quite different in

case of transition matrix elements. Here, the ECCM fares far better than the NCCM,

particularly when the transition matrix elements are small.

The CCLRT approach with a low rank excitation operator does not appear to be suit-

able for the description of highly excited states. As the number of quanta of excitation

in a molecule increases, the wave function samples larger region of coordinate space,

and consequently, are affected to a greater extent by the anharmonicity. This has some
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intriguing consequences on the wave functions. For example, in a system described by

quartic potential, the centroid of the wave functions would move away from the origin in

the energy regime dominated by cubic terms of the potential, but would return towards

the origin as the quartic term becomes significant at higher energies. Thus a proper de-

scription of the shifting of the wave function centroids and changes in their effective

frequencies is necessary to describe such states. The CCLRT, with its linear structure, is

perhaps not the best way to parametrize such changes. A multi-reference CCM for the

excited states that describe the shifts in the centroids and frequencies in a state specific

manner might provide a better description. The multi-reference coupled cluster formal-

ism in bosonic representation is presented in the next chapter.
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Chapter 4

————————————————————

Formulation of vibrational multi-reference

coupled cluster theory

————————————————————

4.1 Introduction

The coupled cluster studies on vibrational systems discussed so far use coupled cluster

linear response theory (CCLRT) to describe the excited states. In the previous chapters

we have seen that the CCLRT provides fairly good descriptions of the ground state and

lower lying states with six boson rank of the cluster as well as the excitation operator.

However, it is well knowen that the limited CCLRT is not size consistent. In addition,

the CCLRT with its linear structure, coupled to a low rank truncation is not adequate for

the higher excited states. We speculated that the wave functions of the higher excited

states sample larger region of space and hence the effect of anharmonicity is greater in

this region. The effects of such anharmonicity manifest themselves to first order in a

shift of the centroid of the wave functions and in the spreading of the wave functions.

Hence a state selective description of the shifting of centroid of the wave function, i.e.
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the expectation values of the normal coordinates (< Qi >), and spreading of the wave

functions i.e. width of the function is required. The single reference based CCM does

not give state specific displacements. To illustrate, let us consider the unitary operator

U0
q = eS(a†−a). (4.1)

It can be shown easily that U0
q operator displaces the centroid of wave function of all

states by
√

2S,

〈φk|U0−1

q qU0
q |φk〉 =

√
2S, (4.2)

when the harmonic oscillator basis functions φk are centred at the origin. Similarly, it

can be shown that the unitary operator

U0
qq = eS(a†

2−a2) (4.3)

scales the coordinates q. These displacements and/or scaling are independent of φk used

to evaluate the expectation values. The coupled cluster ansatz at two boson level is the

normally ordered form of these unitary operators U0
q and U0

qq. Consequently, the NCCM

ansatz gives the displacements for the ground state correctly. However, it does not re-

flect the state specific displacements present in the molecular vibrational wave functions.

Since for higher energy states the state specific descriptions of the displacements of nor-

mal coordinates becomes more important, the CCLRT with its linear operator is not

adequate to describe these states correctly.

An alternative approach to describe the excited states within coupled cluster frame-

work is the multireference coupled cluster method (MRCCM)[1–11] based on effective

Hamiltonian theory. As mentioned in the first chapter, the valance-universal version

of the MRCCM or variously known as the Fock Space multi-reference coupled cluster

method (FS-MRCCM) [2–11] has been used successfully for the description of the exci-

tation energies of electronic structure theory of atoms and molecules. In the FS-MRCCM

along with the normally ordered U0
q and U0

qq operators, the wave operator includes the

following unitary operator,

U1
q = eS(a†

2
a−a†a2). (4.4)
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The expectation values of q with U1
q operator is,

〈φk|U1−1

q qU1
q |φk〉 = 2

√
2kS +

√
2kS2 + . . . . (4.5)

This expectation value has linearly dependent displacement terms to the leading order

on the wave number k. In other word, it accounts for the displacement of the centroid

of the wave functions depending on the wave number k. Consequently, it is expected to

provide a better description for the higher energy states.

The basic approach of a multi-reference method is to define an effective Hamiltonian

in a low dimensional model space or P space, whose eigenvalues are equal to the some of

the desirable eigenvalues of the physical Hamiltonian. The effect of the complementary

space (Q space) is taken into account in the construction of the effective Hamiltonian

by using a wave operator (Ω). The wave operator, as defined earlier, generates the exact

functions by its action on the model space functions

|Ψk〉 = Ω|Ψ0
k〉. (4.6)

There are two different type of MRCC approaches studied extensively in the literature.

These two approaches differ in the form of the wave operator. One is the Hilbert space

MRCC method (HSMRCCM) [1], where the wave operator contains different cluster

operators for different functions in the model space and each function acts as vacuum.

The second approach is the Fock space MRCC method (FS-MRCCM) which is based on

the concept of common vacuum. In FS-MRCCM, a valence universal wave operator of

the type,

Ω = eS
0

eS
1

eS
2

. . . (4.7)

is used to map the reference state to the corresponding correlated states. Here, the wave

operator includes, in addition to cluster operator S0 which is similar to NCCM cluster

operator, additional Si operators that induces excitations from the model space P i. The

cluster operator Si consists of i number of annihilation operators along with at least i+1

number of creation operators. As a consequence, they do not commute. Due to non-

commuting nature of the cluster operators, the resulting equations to evaluate the cluster
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matrix elements are fully coupled. Mukherjee and co-workers [4, 12] and Lindgren [2]

proposed a de-coupling scheme of the cluster operators which is known as subsystem em-

bedding condition (SEC) to evaluate the cluster matrix elements. According to this, the

cluster operators corresponding to a lower particle system is decoupled from the higher

particle system. Later on, Haque and Mukherjee [13] showed that this decoupling holds

rigorously when the cluster operators are expressed in normal ordered form. However,

using Lie algebraic arguments Sree Latha and Prasad [14] showed that the SEC holds in

general for a complete model space.

Once the wave operator is defined, the effective Hamiltonian is constructed by the

similarity transformation of the Hamiltonian within the model space,

Heff = PΩ−1HΩP. (4.8)

The cluster operators are obtained from the equation

QHeffP = 0. (4.9)

Use of SEC greatly reduces the computational efforts to solve this equation. The exact

energies are obtained by diagonalizing the effective Hamiltonian Heff in the P space.

In this chapter we aim to develop the multireference coupled cluster method in the

line of electronic structure theory to describe the vibrational excited states of molecule in

bosonic representation. This chapter is organized as follows. In the next section we dis-

cuss the formulation and features of the FS-MRCC approach in bosonic representation.

Next, we present some results of the implementation of vibrational FS-MRCC method

for the fundamental states of molecules. Finally some concluding remarks are given.

4.2 Theory

At the out set, we define the notations and certain definitions. We take the optimized

Hartree product as the vacuum. Since in the bosonic representation the excitations are
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defined in terms of quanta of energy rather than the physical particle, we define the model

space accordingly. For example, all the one quanta excited states i.e. the fundamental

states define a model space. We denote the corresponding model space by the notation

M1. Similarly, the states with two quanta excitations from the vacuum define another

model space denoted by M2 and so on. In Fock space notation, we designate by Ψ
0(m)
i

a function from the model space of m quanta excited states. For the fundamentals, the

model space is written as

|Ψ0(1)
i 〉 =

∑
µ

C1
µi|φ1

µ〉. (4.10)

The model space functions are generated by the actions of the creation operators on

the vacuum. For example, action of one creation operator on the vacuum generates a

function in the fundamental model space M1. Similarly, action of two creation operators

generates the function of the M2 model space,

a†µ|0〉 = |φ1
µ〉, (4.11)

a†µa
†
ν |0〉 = |φ11

µν〉, (4.12)

and so on. In such kind of model spaces all the functions are occupied in all possible

manner and hence they are inherently complete. Now, we define the form of the wave

operator Ω. To generate the exact state of m quanta excitations, the wave operator must

generate all possible valid excitations from the model space. For example, the model

space of the fundamentals, in addition to the single reference cluster operators which

contains only the creation operators (designated by S0), the wave operator must contain

the cluster operator that is able to destroy one quantum in the model space. That is in

the diagrammatic representation of these operators, there should be one annihilation line

along with the creation lines. This additional cluster operator is designated by S1. Like

S0, the S1 operator also splits into various n-body excitation operators depending upon

the rank of excitations from the model space

S1 =
∞∑
n=2

S1
n1, (4.13)
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where Sn1 consists of n quanta excitation operators and one de-excitation operator. The

sum in the above expression excludes 1 since such kind of cluster operators generate a

lower or present model space function by its action on the current model space function.

The form of S1
21 operator is given by,

S1
21 =

∑
i≤j

∑
k

S1
ijka

†
ia
†
jak. (4.14)

So, the form of the wave operator for the model space of the fundamentals is given by,

Ω = eS
0

eS
1

. (4.15)

Similarly, for the model space with two quanta excitations, we must have another set

of cluster operator S2 which must contain two annihilation operators and at least three

creation operators to generate a valid excitation,

S2 =
∞∑
n=3

S2
n2. (4.16)

In general, for a problem, for which the model space consists ofm quanta excitations,

the cluster operator must be able to destroym quanta. Hence the wave operator is defined

by

Ω = eS
0

eS
1

eS
2

. . . eS
m

. (4.17)

Now, the Schrödinger equation for the manifold of states is written as,

H|Ψm
i 〉 = Ei|Ψm

i 〉, (4.18)

which leads to

HΩ(
∑
i

Cm
iµφ

m
i ) = EµΩ(

∑
i

Cm
iµφ

m
i ) (4.19)

where, φmi are the functions in the model space.

Now, we define the effective Hamiltonian for the m quanta excited states as

Hm
eff = PmΩ−1HΩPm, (4.20)
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that is

(Hm
eff )ij = 〈φmi |Ω−1HΩ|φmj 〉. (4.21)

Here, Pm is the projection operator onto the model space defined by

Pm =
∑
i

|φmi 〉〈φmi |. (4.22)

The orthogonal component of the model space, i.e. the virtual space is defined as

Qm = 1−
m∑
k=0

P k. (4.23)

The FS-MRCC equations for the cluster amplitudes are obtained by solving the equations

QmΩ−1HΩPm = 0. (4.24)

Introducing the form of Ω in Eq. 4.24 we get,

Qme−S
m

...e−S
2

e−S
1

e−S
0

HeS
0

eS
1

eS
2

..e−S
m

Pm = 0. (4.25)

The Eq. 4.25 represents a set of coupled nonlinear equations for the cluster operators of

different sectors. As mentioned in the introduction, the lower sector cluster amplitudes

are decoupled from the higher sector cluster amplitudes due to subsystem embedding

condition. The equations for the different cluster amplitudes are solved from lower sector

to higher sectors successively. That is, first the equations for the zero valance sector is

solved to obtain S0 cluster amplitudes from

Q0e−S
0

HeS
0

p0 = 0. (4.26)

Using S0, the effective Hamiltonian H1
eff is constructed as

H1
eff = e−S

0

HeS
0

. (4.27)

The matrix elements of the S1 cluster operator are obtained by solving the equations for

the P 1 sector

Q1e−S
1

H1
effe

S1

P 1 = 0. (4.28)

138



In the similar way the effective Hamiltonian for the next sector is constructed using S1

and H1
eff and equations for the corresponding cluster operators are solved. This way the

equations for the higher sector cluster matrix elements are obtained by using the lower

sector cluster operators elements successively.

4.3 Results and Discussions

In this study we have implemented the above discussed methodology to study the funda-

mental vibrational states. The model space consists of one quanta excited states. For the

sake of simplicity of calculations, the S1 cluster is truncated at four boson level. That

is, the S1 operator is having maximum three excitation operators and one de-excitation

operator. The results are presented below.

4.3.1 Truncated Morse Oscillator

Our first case study is one dimensional anharmonic oscillator with truncated Morse po-

tential. The Morse potential is given by

VMorse = D(1− eαx)2. (4.29)

Here, D is the dissociation energy of the Morse oscillator and α is a parameter. Expand-

ing the expression in Eq. 4.29 and truncating the infinite series at fourth order in x one

get the form of the potential,

VT = D(α2x2 − α3x3 +
7

12
α4x4). (4.30)

The relation between α and the dissociation energy D is given by

α =
ωe√
2D

, (4.31)

where, ωe is the frequency of the oscillator at equilibrium.

139



Table 4.1: Energy of truncated Morse Oscillator at different D values.

D value CCLRT MRCC Full CI
15 0.9715 0.9714 0.9715
20 0.9777 0.9776 0.9776
25 0.9817 0.9817 0.9816

Putting the relation of Eq. 4.31 in Eq. 4.30 we get the expression for the truncated

potential

VT =
1

2
ω2
ex

2 − ω3
e√

8D
x3 +

7ω4
e

48D
x4. (4.32)

We have calculated the energy of the truncated Morse oscillator by FS-MRCCM at

different values of D. The comparison of the state energies calculated by FS-MRCCM,

CCLRT and converged full CI is presented in table 4.1. For CCLRT calculations we used

six rank of the cluster operator at ground state as well excitation operator at CCLRT. We

found that these values are converged with the rank of both operators. For converged

full CI calculations we used 10 harmonic oscillator basis functions. It is found that the

FS-MRCC results are very close to converged full CI results. However, we found no

advantage of FS-MRCC approach over CCLRT in the case of the fundamentals. This is

because for the fundamentals, the CCLRT provides very accurate description due to its

bi-variational nature. However, the results showed that similar accuracy in the energies

can be obtained by FS-MRCCM with as low as three body excitation operator.

4.3.2 HDO Molecule

Our second case study is HDO molecule. The potential energy surface data are taken

from reference [15]. The results are presented in table 4.2. The FS-MRCC values are

compared with CCLRT with different rank of excitation operator and with full CI results.

For full CI calculation we used 10-18-10 harmonic oscillator basis set and found that

these numbers are converged with the number of basis functions. We found that the FS-

MRCC results are close to the full CI results. The comparison between the FS-MRCC
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Table 4.2: Energies of the fundamentals of HDO molecule:Units are in cm−1.

State CCLRT
3 boson 4 boson 5 boson MRCC Full CI

100 7154.78 7155.43 7155.52 7154.65 7155.55
010 6184.23 6182.95 6182.88 6184.43 6182.95
001 8211.15 8213.07 8212.55 8213.34 8212.22

results and the CCLRT results signifies that the FS-MRCC results are not converged with

the rank of excitation operator.

4.4 Conclusion

In this work, we presented the general formulation of the Fock space multireference

coupled cluster method in bosonic representation to describe the molecular anharmonic

vibrations. We presented the results for the fundamental states of one dimensional trun-

cated Morse oscillator and HDO molecule with ab initio potential energy surface. In

these illustrative examples, we found that the vibrational energies of molecules can be

obtained by the FS-MRCCM with a low rank of the excitation operator with accuracy

closed to converged full CI. For the fundamental states, however, we do not find any sig-

nificant advantage of FS-MRCCM over CCLRT since the CCLRT describes these states

very accurately. However, since the FS-MRCC describes the shifting of the centroid of

the vibrational wave functions this method is ought to provide a better description for the

higher excited states.
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Chapter 5

————————————————————

Summaries and Future Aspects

————————————————————

The main goal of this thesis was to develop the coupled cluster method to study molec-

ular anharmonic vibration. The most attractive feature of the coupled cluster method

is that it provides accurate results comparable to full CI even at a approximate calcu-

lation. Motivated by the various attractive features of the bosonic representation, we

explored different aspect of the coupled cluster method in this representation. In our first

study, we use the coupled cluster linear response theory (CCLRT) for the excited state

descriptions. A systematic study on the convergence pattern of vibrational energies is

performed with respect to the rank of the both cluster operator at ground state as well

as excitation operator for CCLRT. With illustrative examples of different tri-atomic and

tetra-atomic molecules, our study shows that one can achieve accuracy in the excitation

energies comparable with full CI by coupled cluster method in bosonic representation

with a low rank of excitation operator. In terms of CPU time the performance of the

CCM in this representation is extremely good.

The hierarchical feature of the CCLRT method is that it uses an effective Hamiltonian
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generated by a similimarity transformation with the exponential wave operator to calcu-

late excitation energies. Such an effective Hamiltonian is manifestly nonhermitian. This

may leads to complex eigenvalues in an approximate calculation. We have showed that

the use of a second similarity transformation in the spirit of the extended coupled cluster

method (ECCM) reduces the nonhermicity in an approximate manner and removes some

of the complex eigenvalues.

Having studied the convergence pattern of the vibrational state energies we turned

our attention to calculate the expectation values and transition matrix elements using

effective operator approach based on coupled cluster method. We presented the method-

ology and some pilot results in the third chapter. We performed the convergence pattern

of these quantities with the rank of the excitation operator in CCLRT. A detail analysis is

made on the significance of the ECCM approach over the NCCM approach to calculate

these quantities. It is found that the ECCM approach does not provide any significant

improvement over NCCM approach as far as state energies and expectation values are

concern. However, the ECCM gives a better description of the transition matrix elements

due to its exponentially parametrized bra vector. In summary of the work presented in

second and third chapter we can say that the coupled cluster method with CCLRT pro-

vides accurate descriptions for the lower lying vibration states of molecules.

However, the coupled cluster method with CCLRT does account for the state spe-

cific descriptions of the shifting of the centroid and scaling of wave functions which is

required for the proper description of high energy states. In the fourth chapter, we for-

mulated the Fock space multireference coupled cluster method that provides adequate

description of the shifting of the centroid of the wave function.

In conclusion of the presented studies in this thesis, we can say that the coupled

cluster method in bosonic representation is an attractive alternative to study the molecular

anharmonic vibrational spectra accurately. It provides the full CI accuracy with much

less computational cost. However, the success of the presented methodology motivates

for some other future study:
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a) The solution of the coupled nonlinear equations of the FS-MRCCM presented

in the fourth chapter uses quasi-linearization technique using Jacobi algorithm. In this

method the equations for the cluster amplitudes (e.g. for evaluating S1 matrix elements)

are written compactly as

A+BS1 + CS12

+DS13

+ ES14

= 0. (5.1)

With a little algebraic manipulation this equation is written as

S1 = B−1
0 [A+ (B −B0)S1 + CS12

+DS13

+ ES14

]. (5.2)

The diagonal matrix B0 contains the terms ωi + ωj − ωk. Hence, this method suffers

from convergence problem when the resonance between vibrational modes are strong

i.e. when ωi + ωj ≈ ωk. As discussed before, this kind of situations are very common in

molecular vibration, for example, between stretching and bending motions. Hence, the

solution of the FS-MRCC equations demands a sophisticate numerical solution that can

avoid this resonance problem.

b) The idea of effective operator based approach to calculate the non-energetic prop-

erties or transition matrix elements can be extended for the FS-MRCC approach. In

FS-MRCC, one constructs the effective Hamiltonian via similarity transformation of the

physical Hamiltonian using a valence universal wave operator,

Heff = Ω−1HΩ. (5.3)

Since the Heff is a similarity transformation of H , these properties can be calculated by

obtaining the left and right eigenvectors of Heff .

The effective Hamiltonian in Eq. 5.3 is in block triangular form by virtue of equation,

QHeffP = 0. (5.4)

This effective Hamiltonian is not a convenient choice for calculating the non-energetic

properties or transition matrix elements since the left eigenvectors of such effective
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Hamiltonian span the full Hilbert space. For such calculations it is desirable to con-

struct Heff that is block diagonal. This means, in addition of Eq. 5.4, the effective

Hamiltonian should satisfy

PHeffQ = 0. (5.5)

Sree Latha and Prasad [1] showed that this requirement is satisfied while retaining the

validity of subsystem embedding condition if the wave operator is chosen in the form of

Ω = eS
0

e−σ
0

eS
1

e−σ
1

eS
2

e−σ
2

... (5.6)

The effective Hamiltonian with such a wave operator takes the form,

Heff = eσ
m

e−S
m

..e−S
1

eσ
0

e−S
0

HeS
0

e−σ
0

eS
1

e−σ
1

...eS
m

e−σ
m

(5.7)

It can be easily seen that for zero valence problem, the form of effective Hamiltonian

reduces to the form defined by Arponen [2–4] in extended coupled cluster method,

H00
eff = eσ

0

e−S
0

HeS
0

e−σ
0

. (5.8)

The cluster matrix elements S0 are determined from

Q0e−S
0

HeS
0

P 0 = Q0H1P 0 = 0. (5.9)

Once the S0 matrix elements are determined, the σ0 are obtained from the equation

P 0eσH1e−σQ0 = P 0H1′Q0 = 0. (5.10)

Similarly, S1 matrix elements for one valence sectors are determined from

P 1e−S
1

H1′eS
1

Q1 = P 1H2Q1 = 0, (5.11)

and subsequently, the σ1 matrix elements are obtained from the condition

Q1eσ
1

H2e−σ
1

P 1 = 0. (5.12)

This process can be continued till the effective Hamiltonian is completely block diago-

nal. For the final block diagonal effective Hamiltonian, the eigenvectors are confined to
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the model space. Extending the idea of effective operator approach described in the third

chapter, one can calculate the expectation values of any operator O with these eigenvec-

tors and the effective operator defined as

Oeff = Ω−1OΩ. (5.13)

c) It is well known that the rotational degrees of freedoms are strongly coupled with

the vibrational motions. In the presented work of the thesis we used the Watson Hamilto-

nian [5] in the normal coordinate which decouples the rotational and vibrational degrees

of freedom in most convenient manner

Ĥ =
∑
α,β

1

2
~(Ĵα − π̂α)µαβ(Ĵβ − π̂β) +

1

2

∑
i

P̂ 2
i + V (Q) + U. (5.14)

In this thesis we considered only the case of non-rotating molecules (i.e. only for

J=0 in Eq. 5.14). However, it is desirable to include the rotational contributions to

the molecular vibrational spectra to get the accurate description. For J > 0 rotational

states, the contributions from the component of vibrational angular momentum (πα) can

be easily calculated by the coupled cluster approach in bosonic representation since such

terms is written in terms of Coriolis coupling terms, normal coordinate (Qi) and their

conjugate momenta (Eq. 1.21). However, treatment of the total angular momentum

operator is not straight forward. A linear molecule is having two rotational degrees of

freedom; one is the total angular momentum and the other one is the z-component of the

angular momentum in body fixed coordinate. The corresponding operator are denoted by

J2 and Jz and the corresponding eigenstates |JM〉 are associated Legendre polynomials.

Here, J is the total angular- momentum quantum number and M is its projection on

the body fixed Z axis. For non-linear molecules, there are three rotational degrees of

freedom; the total angular momentum (J), the Z-component on the body fixed axis (K)

and z-component on the space fixed axis (M ).

The angular momentum operator can be represented by bosons. The general idea of

representing many fermion problem by boson operator is well studied in nuclear many
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body physics [6–12] . For example, let us consider, the algebra of angular momentum

operator J± = Jx ± iJy and Jz, which obey the commutation relations

[J+, J−] = Jz, [Jz, J+] = J+. (5.15)

The corresponding Hilbert space is spanned by the eigenvectors |JM〉 of J2 and Jz

operators. This Hilbert space is now mapped onto a space of bosons defined by a vacuum

|0〉 and boson operators B, B+. The boson operators satisfy the commutation relations

[B,B+] = 1, B|0〉 = 0. (5.16)

There are several ways possible to carry out this mapping. For example, the Holstein

Primakoff representation [7–9] , the Dyson representation [10, 11], the Schwinger rep-

resentation [12] etc. With the boson representation of the angular momentum operators

one can persue the coupled cluster method in similar way of vibrational degrees of free-

dom. That is optimizing a product function associated with the rotational degrees of

freedom to get the vacuum and the bosonic operators B and B+ to construct the rest of

the elements of the Fock space required for the coupled cluster formalism.
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