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Abstract

Pulse-based diagnosis is a prominently explored methodology in traditional medicine.

Our work is inspired by Ayurveda. The Ayurvedic practitioner diagnoses subjects by

feeling their pulse on wrist, and it is the belief that this information is useful in detect-

ing imbalance or disorders in the entire body. This notion has not been fully accepted;

one reason could be the absence of quantitative and objective characterization.

We develop a portable, and inexpensive system Nadi Tarangini to acquire noise-free

pulse signals. As the study of pulse signals is in the nascent stage, we develop

seven broad approaches (individually and in symbiosis) to study two characteristic

properties of the pulse signal, namely nonlinear dynamics and period-to-period

variability. Each approach helps revealing different ‘property’ of the pulse signal.

Many important biomedical signals originating from the self-regulating, and rhythmic

heart action contain a pseudo-periodic nature, where the nature of shrinking and

stretching is an indication of the information content. Though adjacent pulse beats

look similar in shape, they show different patterns, and these evolutionary (period-to-

period) changes in the behavior are medically significant. We show that different parts

of the pulse signals have different scaling properties, and thus it is natural to expect

the need for many exponents to characterize them.

Using the pseudo-periodic nature, we further propose a novel approach to compute

the useful time domain parameters of a pulse signal, based on the pitch synchronous

wavelet transform, and dynamic time warping. The approach is particularly useful in

ill-behaved signals when the required parameters have either missing or confusing

values. Further, we propose a novel Hybrid Support Vector Machine approach to

reduce the false negatives in the classification. The improvements in the results show

the efficacy of both the novel approaches.



In summary, the properties, and the progress of pulse analysis confirms the importance

of its consideration for diagnosis. Years of development in the analysis of ECG-based

methodologies has resulted in advanced automated tools. We establish the efficacy

of the pulse-based methodology in this thesis with a positive note that it will receive

appropriate recognition in future.
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Hölder exponents are used as features. . . . . . . . . . . . . . . . . . . . . 223

xxiii



B.5 Receiver operating curves for the considered seven classes (N, P, AFIB,

NOD, VF, BI and B) in our database. The abscissa in the subfigures are

different for better clarity. The curve for the Hybrid-SVM case (with

threshold 0.1) is above all others, and hence significantly better. . . . . . 230

xxiv



C h a p t e r 1

Introduction

Analysis and use of the electrocardiogram (ECG) in personal medicine is a well

established technique in the world. In contrast, pulse-based diagnosis, a promi-

nently explored methodology in alternative medicine such as Ayurveda [104, 225] and

Traditional Chinese Medicine (TCM) [50], has not yet received sufficient scientific

recognition due to the lack of quantitative basis.

1.1 Motivation

Our work is inspired by the healing treatment in Ayurveda. The Ayurvedic practitioner

diagnoses a subject by feeling the pulse at three predefined locations on wrist. There

are differences between pulse signals of any two persons, varying with rhythm and

patterns. The meaning of these differences is what Ayurveda has refined over 5000 years

of its existence. The main aim of the traditional pulse-based diagnosis has always been

to obtain useful information about what goes on inside the ‘entire’ body, what should

have caused the disorder in the body, what might be done to rectify the problem, and

to know what are the chances of success.

Even though the pulse-based methodology is very effective in the detection of

symptoms and disorders in the entire body, there is still no quantitative information
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available. Also, the methodology is person driven and requires high levels of

concentration, and skill of “feeling” the pulse. Further, the information available

in the form of books, lessons from Ayurvedic teachers, and our own experiences are

qualitative.

In modern medicine, the examination of the pulse signal has only been used for com-

puting the heart rate and blood pressure measurements. Further development of the

quantitative analysis of pulse signals has many challenges such as heterogeneity of the

data, volume and complexity, importance of the Ayurvedic practitioner’s interpretation,

and most importantly, mathematical characterization of the pulse signals. As effective

models of the automatic classification using pulse signals have not been reported,

practical applications of the pulse-based methodology are severely limited.

1.2 Problem Definition

The focus of this thesis is to introduce and establish the importance and efficacy of the

pulse signals through a scientific basis.

We wish to develop

• A portable and inexpensive acquisition system for recording noise-free pulse

signals

• A variety of approaches to systematically study the variations in the pulse signals

considering different dimensions such as age, gender, and disorders.

1.2.1 Methodology

We wish to extract meaningful patterns from the pulse signals that are of interest, and

hence useful to the user. For this purpose, we use visualization and analysis methods

from the fields of pattern recognition, dynamical systems, and chaotic attractors. As

the analysis of pulse signals is in the nascent stage, we follow the established procedure

of the data analysis, as summarized in Figure 1.1.
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Figure 1.1: Summarized in this figure is a typical data analysis procedure which involves

problem definition, data acquisition and understanding, and finally data analysis. The other

important blocks in the procedure of database, visualization, and storage are not displayed here.

In passing we note that, though the origin of the arterial pulse is in the rhythmic heart

action, it is believed that the pulse also provides [54, 236] information about other

organs. In other words, it is a complex system to understand.

1. Acquisition of the pulse signals. One of the most important requisites of any

data analysis procedure is to acquire the noise-free, and complete data. A well

understood acquisition (e.g. an electrocardiogram, X-ray machine) helps to know

exactly what is wrong in a particular section of the body (which has caused the

disorder). Similarly, it is critical that the information and structure of the pulse

signal be faithfully preserved. The design should also consider important aspects

such as the isolation of the subject, range of operation, sensitivity, signal-to-noise

ratio, stability, and reproducibility.

Our goal is to develop a portable and inexpensive acquisition system to record

noise-free pulse signals, considering all the above aspects. Also, we wish to

mimic the measurement methodology of Ayurveda – ‘feeling’ the pressure values

on wrist. At this stage, the pulse signals will be available in a quantitative form

for visualization, and subsequent rigorous analysis.

2. Analysis of the pulse signals. Pulse signals vary in rhythm, amplitude,

frequency, slopes and so on. A pulse signal with healthy behavior shows a typical
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nature with regular rhythm, stable amplitude, and balanced shape. A disorder

will cause alterations in the physiological processes and thus in the acquired

pulse signals, leading to different patterns in one or several respects.

Our goal is to develop a variety of pattern recognition and data analysis

methodologies, to extract useful features from the pulse signals, and to study

variations with disorders (imbalance) in the body. Furthermore, the developed

methodologies should be generic and conveniently usable in other disciplines.

1.3 Related Work

The beginnings of the noninvasive arterial pulse signal recording can be traced to 1555,

where Strus [201] had proposed that the arterial pulse possesses a waveform. Although

the instrumentation that he used was simple, he suggested that the changes in the

arterial pulse shape and strength may be related to disorder conditions. However not

much attention has been given so far, in this useful domain. Also, most of this research

has been done based in Traditional Chinese Medicine (TCM).

In acquisition, photoelectric sensors [6, 10, 19, 71, 108, 114, 131, 170, 179] have been

widely used to obtain signals from fingertips; this differs from the method adopted in

Nadi Vigyana [104] in Ayurveda. Mechanical (pressure) sensors [2, 10, 35, 54, 105, 191,

263] are also popular due to their size, and their response to low frequency movements.

The remaining blocks in the acquisition systems have usually been the same.

For analysis, different pattern recognition and data analysis algorithms have been

applied to extract useful features (or hidden patterns) in the pulse signals. Examples

include Lempel-Ziv complexity-based parameters, [262], Lyapunov exponents [265],

approximate entropy (ApEn) [235], and fuzzy theory [107]. All such approaches study

the correlation between the computed features and some ‘property’ of the pulse signal.

We now turn towards work explicitly based on Ayurveda. Examples include computing

[183] the pulse rate , detecting [168] peaks and other significant feature points, studying

[208] the position specific nature, and studying [160] blood flow in various subjects.
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However, the accurate and clean quantitative acquisition of the pulse signal based on

Nadi Vigyana, followed by its extensive analysis to completely “understand” the pulse

is still in the initial stages.

1.4 Our Contributions

The specific accomplishments are summarized in Figure 1.2. The work flow is

spanned over all important steps of a typical data analysis procedure of Figure 1.1,

including understanding, acquisition, preparation, and analysis of the data, followed

by visualization of the results.

Fig. 1.2 is presented in the specific context of Nadi Vigyana. The techniques and

methods are quite generic and can be potentially considered for other signals viewed

as mathematical time series data. For example, the idea of the combinations of

pitch synchronous wavelet transform and dynamic time warping (PSWT-DTW), in

Section 5.4, is applicable to any pseudo-periodic signal. We now briefly provide more

details of the various components of this thesis.

1.4.1 Acquisition of the Pulse Signals

The index, middle and ring fingers are used by the Ayurvedic practitioners to sense the

arterial pulse, respectively at vata (V), pitta (P) and kapha (K) locations, as shown in

Figure 1.3(a). To mimic this methodology, we have developed ‘Nadi Tarangini’, a data

acquisition system using pressure sensors as shown in Figure 1.3(b).

The three pressure sensors are placed at the VPK locations instead of the fingertips.

They pick-up the pressure values at the respective locations and generate proportional

electrical signals. The digitizer converts the analog values into discrete numbers.

Finally the signals are stored on the computer in the time series format.

Very high attention was given to the significant blocks of the data acquisition process,

comprising of sensors, the signal conditioning unit, digitizer, and storage. The size
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Figure 1.2: Summary of work in this thesis. Top Row: Based on understanding the domain,

we design an acquisition system, and provide a corpus of data. Middle Row: The pulse signal

is complex and can be studied using a variety of known mathematical techniques. Examples of

these include multifractals, and topological invariants. Bottom Row: Based on these techniques,

features can be obtained as output for a plethora of purposes including classification, and can

also be suitably visualized.

(9×7 mm), and the pressure range (0–4 inch H2O) of each of our strain gauge sensors

is optimized, to replace the Ayurvedic practitioner’s fingertip, to sense very minute

pressure details (which otherwise requires high concentration and experience). In the

signal conditioning unit, filtering and amplification is employed for the removal of

the obvious noise, and providing strength to the signal respectively. Then the analog
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(a) Positioning of the practitioner’s fingers

for sensing the arterial pulse

(b) Nadi Tarangini comprising of three pressure

sensors, three signal conditioning units, a digitizer

and computer

Figure 1.3: Pulse-based acquisition: Pictorial comparison of the traditional methodology with

our system.

signal is converted into discrete values, using a digitizer of 16-bit resolution and 500 Hz

sampling rate. In addition, to increase the accuracy of the data, we use the differential

mode of acquisition with two inputs as the consecutive pressure values at each dosha

location.

The three colors indicate three separate time series simultaneously obtained from VPK

locations (refer Figure 2.13)

Important properties of our data. We have collected pulse signals of 612 subjects of

varying age-groups (from 4 months to 75 years), gender, and disorders (such as high

BP, slipped disk and diabetes). We have also stored the analysis and diagnosis details

by our domain experts Dr. Ashok Bhat and Dr. Jategaonkar (these serve as the ground

truth for our further analysis). The three colors in Figure 1.4 indicate three separate

time series obtained simultaneously from VPK locations. Figure 1.5 shows a typical

behavior of a pulse signal (vata location), comprised of a rhythmic pattern. As shown,

this pattern is usually composed of the subwaves [272] a percussion subwave (P), a

tidal subwave (T), a valley (V), and a dicrotic subwave (D).
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Figure 1.4: Sample VPK pulse signal

from a subject’s left hand. We can observe

the difference between the amplitudes and

patterns of the three dosha.

Figure 1.5: Typical behavior of a pulse signal.

A continuous, rhythmic P-T-V-D pattern is

observed. Even though the pulse cycles look

similar, they vary in amplitude and pseudo-

period.

Our acquired signals are rich in harmonics. All the important properties including

rhythm, rate, stability (amplitude and intensity), reproducibility and repleteness are

captured in our pulse signals. There are distinctly observable patterns for different

disorders which we consider for analysis in order to establish significant conclusions.

1.4.2 Analysis of the Pulse Signals

In this thesis, we have particularly examined two characteristic properties of the pulse

signals, namely period-to-period variability and nonlinear dynamics. Figure 1.6 shows

various aspects of our methodology.

In the figure, these two characteristic properties are shown in red text. Further, we

have adopted two different ways (text in brown) of providing data for understanding:

(i) the complete pulse signal and (ii) the sequence of arterial pulse intervals (API)

(sequence of peak-to-peak distances 696–678–700–718–724 milliseconds and so on).

We have analyzed the pulse signals in each of the combinations of the characteristic

properties, and ways of input. For example, for studying the nonlinear dynamics in

the pulse signal, we study its inherent topological structures.

We have developed a variety of approaches (text in blue), individually and in

symbiosis, to make the pulse-based analysis useful and effective. Each method reveals
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Figure 1.6: A global snapshot of the analysis portion of the thesis. Our work involves

development of a variety of approaches to study different properties and patterns of the pulse

signals. For example, multifractal analysis can eventually help understand variations with

disorder. Details of this figure appear in the text.

a different ‘property’ (brown boxes) of the pulse, such as the pulse rate through Fourier

spectrum, rhythm (Figure 1.6(c)) through pitch synchronous wavelet transform, inher-

ent structures (Figure 1.6(d)) (through topological invariants), chaotic nature through

recurrence plot based descriptors, period-to-period variability (Figure 1.6(e)) through

various pulse rate variability (PRV) measures, and self-similar nature (Figure 1.6(f))

through multifractal spectrum. Each of these is now described in the subsequent

chapters of this thesis. The outputs and progresses of the analysis, on the pulse signals,

confirm its importance in the diagnosis.

1.4.2.1 Property: Nonlinear Dynamics

Intuitively the pulse signals display nonlinear dynamics due to the constant interaction

between the sympathetic & parasympathetic systems [214], along with effect of other
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physiological components. We quantitatively confirmed this with the Lyapunov

exponents which are positive.

We showed that pulse signal exhibits a (chaotic) self-similar nature, and thus requires

a large number of exponents to characterize their scaling properties. We showed

the hierarchical organization of the singularities through the branching structure of

the wavelet transform modulus maxima (WTMM) skeleton in the (scale,time) plane.

We proposed a combination of wavelet scales in the computation of local Hölder

exponents, resulting in better capture of the strength of singularities. In Appendix A,

we show similar ideas applied for ECG signals. To extract the self-similar nature of the

API signals, we computed the h versus D multifractal spectra. Significantly, we showed

that as the age of subjects increases, the spectrum drifts to higher values of h. Furthermore,

the spectra also vary for different disorders, and hence there is an opportunity for

classification.

A century earlier Poincaré had observed that the key to understand a dynamical

system, like an arterial pulse signal, lay in identifying its unstable periodic orbits.

We established the pseudo-periodic P-T-V-D rhythm of the pulse signals, in terms of

clusters of points on the Poincaré section. We further studied the intersections and

crossings of orbits, of different pseudo-periods, through two topological invariants,

namely linking numbers (LN) and relative rotation rates (RRR). In terms of techniques

we proposed novel ‘minimum distance’ and ‘big orbit’ paradigms for selecting the

representative pulse orbit of each pseudo-period. They help in improving the

classification performance. We have also introduced ‘contour diagrams’ for the

topological invariants to further help in their visualization, and to study their varying

and intersecting patterns.

1.4.2.2 Property: Period-to-Period Variability

The pulse signal in Figure 1.5 seems to repeat the P-T-V-D pattern in each pulse cycle,

but actually the signal contains some variations due to its pseudo-periodicity. These

variations in the pulse cycles (and thus the peak-to-peak distances) are related to health

[104], and a lot of information is conveyed in such pseudo-periodic patterns.
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To obtain individual pulse cycles, we have developed the complex frequency B-spline

wavelet (ψ) based methodology, which exploits the relatively high amplitudes and

steep slopes. Our methodology has achieved 100% detection accuracy. In terms of

techniques this method could well be applied to other types of bio-medical signals.

We have established the period-to-period variability to study the nonlinearly variable

API signal by computing several PRV measures. Time-domain measures (such as mean

and standard deviation) are computed directly from the raw API, and the differences

between API. Frequency-domain measures (such as peak frequencies and normalized

power) consider the thermoregulatory, vasomotor as well as respiratory activities in

three frequency bands. Finally, the nonlinear Poincaré-based measures graphically

capture the correlation between the consecutive API to summarize the entire (short

or long) nonlinear signal. We showed that these PRV measures indicate the presence

and absence of the arrhythmic patterns, and various disorders (such as diabetes and

fever). We further showed that the measures have different ranges for age-groups of

‘below 25 years’, ‘25–50 years’, and ‘above 50 years’. Our results showed the efficacy of

the PRV analysis akin to the heart rate variability in clinical use.

1.4.2.3 Novel PSWT-DTW Approach

A novel PSWT-DTW approach is established to compute various time-axis related

parameters of a pseudo-periodic signal. We explain its effectiveness with an example

of computing the useful time domain parameters (TDP) [257, 272] of a pulse signal

shown in Figure 1.7. TDP are the amplitudes and widths at certain important locations,

and are useful for diagnosis [153].

Providing more details of our novel approach, the pitch synchronous wavelet trans-

form (PSWT) helps in representing such signals better in terms of a periodic trend plus

period-to-period fluctuations. The dynamic time warping (DTW) enables a nonlinear

mapping of one signal to another, even if they are out of phase in the time axis, by

minimizing the distance between the two. The steps of our novel approach are shown

in Figure 1.8. First, the PSWT cycle (essence) of the complete pulse signal is extracted

using the PSWT. Then, trend TDP locations are computed on this smooth cycle, and
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Figure 1.7: Time domain parameters of a cycle in the pseudo-periodic pulse signal. w refers to

the width of the P-subwave at 80% of its height). Significant locations termed TDP locations

are marked on the X-axis.

finally are transferred back on each of the pulse cycles using the nonlinear DTW map.

Specifically, the advantage of our novel approach is in reducing the tedious efforts

of searching the parameters (especially in the ill-behaved cases) at two stages. In

the computation of TDP, we have developed a maxima-minima based approach to

avoid the searching of pseudo parameters arising due to the false negatives of missing

zeros. Furthermore, our novel PSWT-DTW approach helps for two reasons. First, the

resulting trend (PSWT) cycle is smooth in nature and second, the efforts (if any) of

tuning the TDP are only for one PSWT cycle.

Our results show that the novel approach is feasible and effective. Its applications can

be extended to other signals with pseudo-periodic behavior, to study both average values as well

as period-to-period variations.
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Figure 1.8: The steps in our novel PSWT-DTW approach to compute time-axis related

parameters on individual pulse cycles. The dotted, black path displays the conventional

approach.

1.4.3 Novel Hybrid Support Vector Machine

We observe that biomedical signals of normal behavior are more common, and thus are

widely available as compared to signals with abnormalities. Thus, in the multiclass

classification, the classifier usually gets trained with more bias towards the huge

Normal class.

We have introduced the notion of Hybrid Support Vector Machine – a combination

of binary and multiclass SVM – to increase the testing accuracy for such imbalanced

datasets. When all the abnormal (say n) classes are combined into one class (say

Abnormal class), the Normal–Abnormal (binary) classification is unbiased when com-

pared to the individual (multiclass) classification. Our novel approach is explained in

Figure 1.9.

When a test case enters the system, we first compare opM and opB coming from the

above mentioned two sub-systems. If the predicted outputs are consistent, then we use

opM as the final predicted output. On the other hand, if they are not consistent, then

we assume that the incompatibility is due to the bias in the trained SVMs. Therefore,
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Figure 1.9: The method of our Hybrid-SVM approach. The outputs of SVM blocks (opM,

opB, and opN) are suitably compared to increase the overall efficacy.

we devote more care to the n abnormal classes by inserting a threshold value R in the

decision box. We present a detailed description of selecting R in Appendix B.

Our Hybrid-SVM approach particularly reduces the false negatives (situations in

which abnormal signals are erroneously classified as normal).

1.4.4 Classification

We performed the classification of the pulse signals of various subjects, with TDP as

input vectors to two classifiers (conventional SVM and our Hybrid-SVM). To illustrate

our approach, we used the TDP computed using our PSWT-DTW approach. Our

dataset contains a total 4987 pulse cycles of 10 different behaviors including normal,

diabetes, high BP, and skin disorder. We first showed that the feature sets perform well

in classification. Further the Hybrid-SVM improves the performance, by reducing the

false negatives.

Our investigations show the immense potential benefit of both the novel PSWT-DTW

and Hybrid-SVM approaches, respectively for the pseudo-periodic signals, and the

imbalanced datasets. We believe the two approaches can be suitably extended to other

biomedical as well as non-biomedical applications.

14



In this thesis, we have combined both the traditional and modern approaches – by

modeling the pulse-based approach into the developed hardware (Nadi Tarangini),

and by developing algorithms to extract useful patterns. Thus, we have brought the

subjective experience (of “feeling” the pulse) to the objective level (analysis of the

quantitative data).

As a matter of fact, years of development in the analysis of the ECG-based method-

ologies has resulted in advanced automated tools. In the future, pulse signals can be

equally effective for diagnosis. Further attention is required to achieve high respect for

the automated pulse-based analysis.

1.5 Organization of Thesis

In Chapter 1, we introduced the pulse-based methodology in Indian traditional

medicine, provided the problem definition, and the goals of this thesis, and summa-

rized the contributions of our work.

In Chapter 2, we briefly explain a cardiac cycle, and different theories dictating the

formation of the pulse signals. We provide some of the domain knowledge of Indian

traditional medicine, pulse-based diagnosis (PBD), and the importance of PBD in

medicine. The purpose of this chapter is to elaborate the basic concepts to a novice

– to understand the complexity involved in PBD, the need of quantitative analysis,

and also to understand the efficacy of our system explained in the following chapters.

In Chapter 3, we first describe the steps and salient features of a typical data acquisition

assembly. Then we elaborate on our system Nadi Tarangini, to acquire noise-free pulse

signals, enabling it to reflect the “feeling” information used in the Ayurveda. Finally,

we provide the details of our pulse database.

In Chapter 4, we provide the important properties of our pulse signals such as rate,

rhythm and frequency. We compare our pulse signals with those of prior approaches

to show that our data contains high details. This chapter prepares the background of

possible distinguishing patterns for the subsequent chapters of the data analysis. We list
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out the important prior works in this domain.

In Chapter 5, we study the physiologically important period-to-period variability of

the pulse signals. We present our novel PSWT-DTW approach to compute the time-

axis related parameters, taking advantage of the pseudo-periodicity of the signals. We

explain its efficacy with an example of computing useful time domain parameters of

the pulse signal. Next, we explore the variability by computing various time-domain,

frequency-domain and nonlinear Poincaré based measures. We further give evidence

for the classification of disorders in subjects using these PRV measures.

In Chapter 6, we study the inherent nonlinear dynamics of the arterial pulse signals.

We systematically study the chaotic properties, fractal nature, and structures of the

pulse signals, respectively through the recurrence plot-based analysis, local Hölder

exponents & multifractal spectrum-based analysis, and the topological analysis. We

also analyze their variations for different subjects.

In Chapter 7, we show the efficacy of our novel PSWT-DTW and Hybrid-SVM

approaches through the improvements in the classification.

In Chapter 8, we present the pictorial summary of our work. We describe applications

and future directions of our work. We conclude the thesis on a positive note that we

have successfully established the methodology of acquisition and quantitative analysis

of the pulse signals.

In Appendix A, the approach of multiclass classification of arrhythmia signals is

presented using the idea of the local Hölder exponents. In Appendix B, we present

our novel Hybrid-SVM approach to reduce the false negatives in the classification of

imbalanced arrhythmia datasets. We also show that the combination of wavelet scales

for the computation of Hölder exponents increases the classification accuracy. Finally

in Appendix C, we provide a few examples of the Tridosha (VPK) pulse signals from

our database.

An organizational chart is given in Figure 1.10 and is repeated at the beginning of each

chapter to highlight the contents.
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Figure 1.10: Organization chart for the thesis.
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C h a p t e r 2

Pulse Signals in Medicine

The circulatory system of a human body (a) carries nutrients, gases, and

wastes to and from cells, (b) helps fight disorders, and (c) helps [68] stabilize

the body temperature and pH.

In this chapter, first we briefly explain a cardiac cycle, an electrocardiogram

(ECG) that quantitatively captures the heart actions, blood flow, and

different theories dictating the formation of the pulse. Then we provide the

required domain knowledge about the Indian traditional medicine, pulse-

based diagnosis (PBD), Tridosha theory, and the importance of PBD in

Ayurveda.

The purpose of this chapter is to elaborate the basic concepts to a novice, to

understand the complexity involved in PBD, the need of the quantification,

and also to understand the efficacy of our system explained in the subsequent

chapters.
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The circulatory system is composed of the heart and blood vessels, including arteries,

veins, and capillaries. The human body has two circulatory systems [68, 149] as:

• The pulmonary circulation is a short loop from the heart to the lungs and back

again.

• The systemic circulation, usually described as the circulatory system that sends

blood from the heart to all other parts of the body and back again.

The function of the circulatory system is to carry blood throughout the body. To

achieve this goal, the heart muscle contracts rhythmically and systematically.

2.1 A Cardiac Cycle

Cardiac cycle is the term referring to all events related to the flow of blood that occurs

from the beginning of one heartbeat to the beginning of the next. Each of these beats

takes approximately 0.8 seconds and the same sequence of events occurs in every beat.

A cross-section of the heart is shown in Figure 2.1.

There are four chambers in the heart – two atria and two ventricles [68]. A cardiac

cycle can be divided into three separate segments: a diastole (relaxation), an atrial

systole (contraction of atria), and a ventricular systole (contraction of ventricles).

• Diastole: During this segment, blood flows into the heart. Blood comes into

the atria through the pulmonary veins (left atrium) and the superior and inferior

vena cava (right atrium). From the left and right atria the blood flows directly

into both ventricles because both the mitral and tricuspid valves are open. The

ventricles accept this blood and passively dilate (expand). By the end of the

diastole, the ventricles are filled to about 80%. The cardiac muscle is relaxed

throughout this segment. The aortic and pulmonary valves are closed during

this segment to prevent the reverse flow of blood from the aorta and pulmonary

artery.

• Atrial Systole: This is a relatively short segment. Atrial systole is the contraction
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Figure 2.1: A cross-section of the heart showing its important portions [250].

of the heart muscle (myocardia) of the left and right atria. Normally, both atria

contract at the same time. As the atria contract, the blood pressure in each atrium

increases, forcing additional blood into the ventricles.

• Ventricular Systole: During this segment the ventricles contract. As they begin

to contract, the mitral and tricuspid valves close to prevent any back flow into

the atria. At the end of this segment the pulmonary and aortic valves close and

diastole begins again.

2.1.1 Modeling the Pumping Action of the Heart

Figure 2.2 shows the modeling of one complete cardiac cycle.

The four phases are [68]:

1. Isovolumic contraction phase: In this phase, the mitral and aortic valves are

closed. Pressure is being built up in this phase, until the left ventricular pressure
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Figure 2.2: The pressure-volume loop [31] explaining the four phases in a cardiac cycle. The

first two phases are known as diastole and the last two phases are known as systole.

rises sufficiently above the aortic pressure to open the aortic valve.

2. Ejection phase: In this phase, the mitral valve is closed and the aortic valve is

open. Blood flows out of the chamber into the aorta.

3. Isovolumic relaxation phase: In this phase, the mitral and aortic valves are

closed. Pressure in the chamber decreases until it is so low that the mitral valve

opens.

4. Filling phase: In this phase, the mitral valve is open and the aortic valve is closed.

Blood flows into the chamber, and the cycle then repeats itself.

The first two phases are known as diastole and the last two phases are known as systole.
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2.1.2 Acquisition of the Heart Action: An Electrocardiogram

The electrical waves in both the systole and diastole can be measured at selectively

placed electrodes (electrical contacts) on the skin. Electrodes on different sides of the

heart measure the activity of different parts of the heart muscle. An ECG displays the

voltage values between pairs of these electrodes [68]. The ECG waveform indicates

the overall rhythm of the heart, and weaknesses in different parts of the heart muscle.

Figure 2.3 explains how a cardiac cycle is recorded in one particular ECG lead.

Figure 2.3: Recording of one cardiac cycle using an ECG lead [118]. The left subfigure

denotes different parts in a human heart. Different color codings are used in the right subfigure

to indicate the location and strength of the cardiac action in a particular heart portion. Finally,

all these activities sum up to provide complete ECG cycle at the right bottom subfigure.

The P-wave is the result of the atrial depolarization. The QRS-complex is the average of

the depolarization waves of the inner (endocardial) and outer (epicardial) cardiomy-

ocytes. The T-wave represents the repolarization of the ventricles. U-waves are thought
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to represent the repolarization of the papillary muscles or Purkinje fibers.

Therefore, one complete heart beat is consisted of an atrial depolarization → atrial

contraction → P-wave, ventricular depolarization → ventricular contraction → QRS-

complex→ the resting phase (including the repolarization during the T-wave) between

two heart beats.

Cardiac muscle has automaticity, which means that it is self-exciting. The heart’s

rhythmic contractions occur spontaneously. An important thing to note that the rate of

contraction can be changed by nervous or hormonal influences, exercise and emotions

and is responsible for the heart rate variability (HRV – explained in Chapter 5).

Figure 2.4 provides an example of the ECG signal composed of several cardiac cycles

one after the other. The frequency of such cardiac cycles is the heart rate.

Figure 2.4: Sample electrocardiogram composed of 5 cardiac cycles. This is signal number

‘100’ from the arrhythmia database of NIH [63]).

Currently, ECG acquisition and its analysis is in the advanced stage. In this thesis, we

introduce and establish the arterial pulse-based analysis.

2.1.3 Cardiac Output

Cardiac output (CO) is the amount of blood ejected from the ventricles and is a measure

of the pumping ability of the heart [251]. It is determined by the cardiac rate and stroke

volume.

cardiac output = cardiac rate × stroke volume

(ml/min) (beats/min) (ml/beats)
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where,

• Cardiac rate is based on the natural rhythm of the SA node [120]. Sympathetic

and parasympathetic stimulation continuously modify the cardiac rate by in-

creasing or decreasing the rate of depolarization.

• Stroke volume is the amount of blood pumped per beat by each ventricle. It is

regulated by three parameters

� End-diastolic volume (EDV): An increase in the volume of blood in the

ventricles prior to contraction, results in an increase in the ejection volume.

� Contractility: A more forceful ejection results in a more complete emptying

of the ventricles.

� Total peripheral resistance: A higher resistance, or increase in arterial

pressure, results in less blood entering the aorta.

Thus, stroke volume is directly proportional to EDV, contractility, and inversely

proportional to total peripheral resistance.

2.1.4 Blood Flow

The pumping action of the heart (refer to Figures 2.3 and 2.2) generates blood flow

that passes through the arteries and veins. The blood flow (mainly) depends directly

on the pressure difference between two ends of the blood vessel, and indirectly on the

resistance to the blood movement.

Blood Pressure (BP) is the force produced on the walls of the blood vessels as a result

of the blood flow. The pressure gradient (difference in pressure) is what keeps blood

flowing, always from high to low pressure. The term blood pressure used by common

man refers to the arterial pressure (the pressure in the larger arteries) measured via a

sphygmomanometer [249].

For each heartbeat, blood pressure varies between systolic and diastolic pressures.

Systolic pressure is the peak pressure in the arteries, which occurs near the beginning
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of the cardiac cycle when the ventricles are contracting. Diastolic pressure is the

minimum pressure in the arteries, which occurs near the end of the cardiac cycle when

the ventricles are filled with blood. Actually, the pressure is generated when the flow

is opposed by some resistance.

Peripheral Resistance is the total resistance to the flow of blood in the systemic circuit

[68]. It is a measure of the amount of friction, blood encounters as it passes in the blood

vessels. The resistance depends on:

• Blood viscosity: Internal resistance to the flow is related to the thickness of blood.

As the blood viscosity increases, the peripheral resistance increases and thus the

blood flow decreases.

• Blood vessel length: As the length of the travel of blood in a vessel decreases, its

resistance decreases and thus the blood flow increases.

• Blood vessel diameter: Smaller diameter results in more friction because more

fluid is in contact with the blood vessel wall, which increases the resistance and

thus decreases the blood flow.

It is assumed in the Indian traditional medicine that all such factors (and many others

including blockage) are generated due to the malfunction of different organs or the

unbalanced dosha. They are ultimately sensed using the arterial pulse on wrist.

2.2 Formation of the Pulse Signal

As explained earlier, the maintenance of the blood flow and pressure gradients in

the arterial circulation is managed from the energy transfer between the heart and

arteries [133, 195]. There are many ways to explain the complex behavior of the pulse

(i.e. throbbing of the arteries). These theories have different approaches with their own

assumptions and explanations.
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2.2.1 Elastic Property of the Arterial Wall

Consider an arrangement of Figure 2.5 [225], where a tube (T ) is fastened with the

piston (P) and further tied into an artery.

Figure 2.5: The effect of pressure from the piston P on the elastic arterial walls. This resembles

the actions in the human circulatory system.

If the piston is pushed forward towards the right into the tube, the vessel distends

locally. This occurs simply because the blood is incompressible. This immediate

incompressible column of blood produces a local increase in pressure that has a little

effect on the advancing piston, which in fact is a mass of incompressible blood. Instead,

the next section of the artery is stretched so that a wave of pressure travels along the

vessel wall without involving actual transmission of the blood.

This means that the pulse is actually a wave set-up in the walls of the vessels by the

systole of the ventricles and it is not only due to the passage of blood along the arteries.

As shown in Figure 2.6, the sudden ejection of the large quantity of fluid into a

distensible tube (point A) causes bulging of the tube at the point of ejection, and the

pressure in the area of the tube rises.

Immediately after the vessel wall is distended at point A, the elevated pressure at this

point forces a small amount of fluid along the vessel, as illustrated by the arrows. This

causes the vessel wall to distend at point B, while at the same time the vessel begins

shrinking at point A (dashed line). After point B is well distended (high pressure), the

elevated pressure at this point causes fluid to flow to point C, distending the vessel at
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Figure 2.6: The effect of sudden ejection of a fluid (blood) into an elastic, distensible tube

(e.g. an artery). The arrows indicate the immediate effect. This resembles the actions in the

human circulatory system.

point C and relaxing the vessel wall at point B.

It means that the elastic property of the arterial wall takes part in the generation and

transmission of the pressure wave of the pulse. Although the pressure wave or the

pulse may reach the vessel of the foot in less than a second, it requires several heart

beats for the blood which enters the ascending aorta to reach the foot vessel. This is

because the speed of the blood depends on factors such as the blood pressure gradient,

viscosity, and cross-sectional area of the blood vessel.

2.2.2 Hemodynamics of Pulsating Stream

Figure 2.7 [134] displays the important points on a pulse cycle.

There occurs a great forward movement of blood [194] together with steep increase

in pressure (a–b). During the next segment (b–c), the pressure mounts with a slower

gradient to a summit but the velocity of flow gradually decreases. During remainder of

the systole (c–d), both the pressure and flow decrease. The time of closure of semilunar

valves decreases the beginning of the diastole as shown at (d–e).

It is quite obvious that the conversion of the potential energy stored during the systole
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Figure 2.7: Important points on a pulse cycle form various segments indicating the stages of

systole and diastole.

into the kinetic energy of the flow during the diastole, increases the continued flow

through the capillaries [152].

Actually, the percussion (P) subwave (refer to Figure 1.5) first rises due to rapidly

transmitted shock of the left ventricular contraction and then falls towards the end

of the systole. It also represents that the escape of blood into the blood vessels. The

fall towards the end of systole is due to the reduced ejection phase of the ventricle

delivering less blood than is passing out of the arterioles. The tidal (T) subwave is

caused [53] due to the summation of the uncompleted P-wave and waves reflected

from the periphery. The descending limb of the pulse is due to a more gradual fall in

the pressure corresponding to the elastic recoil of the arterial walls.

2.2.3 Forward-Backward Wave

The heart generates forward-traveling wave energy [147] that propagates through the

arteries to maintain tissue and organ perfusion for metabolic homeostasis [267].

At the beginning of each cardiac systole, an individual forward-traveling wavefront

initiates the flow and thus increases pressure in the arteries. Although most of the

wave energy in this initial compression wave travels distally into smaller arteries, some

is reflected back toward the heart at sites of impedance mismatch. These include focal

sites such as bifurcations [186] and the blockages in the arteries. Therefore the forward-
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backward combination will depend upon the conditions of the malfunctioning organs that affect

the partial or complete blockage to the blood flow.

These reflected waves can further be re-reflected [97]. At the end of systole, decelera-

tion of left ventricular contraction results in reduction in both pressure and flow in the

ascending aorta mediated by a forward-traveling expansion wave [158]. Interactions

between the forward and backward-traveling waves result in complex patterns of the

blood flow and pressure change at different points in the arterial circulation. These

complex patterns are acquired at the wrist location, and the subsequent analysis

of the forward and backward-traveling wave energy therefore provides important

information [88, 175].

2.2.4 Law of Conservation of Mass

An important hemodynamic concept is the continuity equation, which is derived from

the law of conservation of mass [172]. This equation is based on the principle that the

flow at any given point in a closed hydraulic system will be equal to the flow at any

other point. Thus, since the flow is constant, velocity is inversely proportional to the

cross-sectional area (Figure 2.8).

Q = A1×V 1 = A2×V 2 = A3×V 3 (2.1)

where A is area and V is velocity at any given point within the system.

As velocity increases, its corresponding cross-sectional area decreases (e.g. at the site of

an arterial stenosis). In the human body, the blood velocity decreases as it flows from

the aorta into the capillary system but then increases again as it coalesces from venules

to veins to the vena cava [149, 171]. An average velocity of blood at any given point

within the circulation can be calculated knowing the volume of blood flowing past a

given cross-sectional area of the blood vessel.
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Figure 2.8: Relationship between blood velocity and cross-sectional area of the blood vessels.

Because of the law of conservation of mass, flow at any given point in a closed system will be

equal to flow at any other point. Thus, velocity is inversely proportional to the cross-sectional

area.

2.2.5 Hierarchy of Factors

Blood flow to an organ is controlled by the constriction and dilation of vessel walls.

The changes in the vessel diameter are regulated by the sympathetic interaction, and

by local conditions within the blood vessel and organ. Other than wave energy, area,

arterial thickness, there are many more factors (refer Figure 2.9) [162] responsible in

making the non-dying pulse so complex, including respiratory effect and body size,

which in a way affects the blood or pulse pressure.

There are different locations on the body where the above mentioned pressure

variations can be felt, by pressing the surface of the skin against the underlying bone.

For example, the carotid pulse is located on both sides on the neck, the brachial pulse

is located on the inside of arm and the pedal pulse is located on the top of the foot.

We are interested in the arterial pulse, felt on the wrist near the root of thumb. It is

very convenient to “sense” the pulse at this location and thus is highly appreciated.

Three locations on the wrist are considered in Ayurveda for sensing the pulse, and for

subsequently analyzing unbalanced states of the body.
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Figure 2.9: The pulse signal shows very complex behavior as it depends upon many

interrelated factors. The final outcome depends upon the values of all the factors [162].

2.3 Traditional Pulse-based Methodology

The word Ayurveda is made up of two Sanskrit words Ayur and Veda meaning ‘life’

and ‘knowledge’ respectively. Taken together they mean the science of life [104, 225].

In a more limited sense, the term is used to imply the science of medicine. According

to Ayurveda (Figure 2.10), health is not merely freedom from disease. It is essential

that body, mind and soul are in a excellent state so that the individual can perform the

functions and fulfill his/her role in life.

Figure 2.10: Sanskrit shloka defining Ayurveda as: The science that expounds on – the

supportive of life (hitayu), the non-supportive for life (ahitayu), the happy life (sukhayu), the

unhappy life (dukhayu), the measurement of life (manam), and the quality of life.

There are originally four main books of spirituality, which included, among other

topics, health, astrology, spiritual business, government, army, poetry and ethical

living. These books are known as the Vedas – Rig, Sama, Yajur and Atharva. Ayurveda

was used in conjunction with Vedic astrology. At later dates, Ayurveda was organized
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into its own compact system of the health and considered as an auxiliary branch of the

Vedas, called an Upa-veda (limb of the Veda), because it dealt with the healing aspects

of spirituality, and not directly discussing spiritual development.

2.3.1 Panch Mahabhuta

All of the creations, including humans, are made up of the combination of five elements

[104, 225]. These building blocks of life forms are known as Panch Mahabhuta. They are

ether (akash), air (vayu), fire (agni), water (jal), and earth (prithvi). These elements are

the subtlest aspects of the human life, finer than the molecular, atomic, or subatomic

levels. This is the level that Ayurveda healing works on.

Figure 2.11: Sanskrit shloka explaining Panch Mahabhuta: Earth, water, fire, air and sky

(ether or space). When they are combined in different combinations, make all the conscious or

non-conscious entities of world.

One of the descriptions of Panch Mahabhuta for a complex, multi-cellular organism,

such as human being can be briefly stated as follows. Ether corresponds to spaces

within the body (mouth, nostrils, abdomen); air denotes the movement (essentially

muscular); fire controls the functioning of enzymes (intelligence, digestive system,

metabolism); water is in all body fluids (as plasma, saliva, digestive juices); and finally

earth manifests itself in the solid structure of the body (bones, teeth, flesh, hair).

Focusing on the cause of the grosser levels of life, the denser aspects will be taken care

of since they are made of these five elements. Just as a strong foundation supports

a strong building, the five elements (the foundation of all matter) when strong and

balanced in a person, they will automatically balance the more material levels. Thus,

Ayurveda does not need to look at isolated parts of the human anatomy, or at the

vitamin, chemical, or nutritional level of health. It simply balances the elements, and

this balances the more physical levels.
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2.3.2 Tridosha Theory

Dosha is a Sanskrit word that translates as constitution into English, but actually has

no direct equivalent. A dosha is actually a physical manifestation of more subtle forces

and substances at work in the body. So a dosha is an ‘output’. These outputs enable

us to measure and follow the workings of subtle forces and substances. The Panch

Mahabhuta manifest in human body as the three doshas, collectively known as Tridosha

[104, 192, 225, 230].

Figure 2.12: Sanskrit shloka explaining Tridosha: Vata, Pitta and Kapha are the root for the

origin of the body. When in balanced state they keep the body in its essential or true state. But

when imbalanced, they can even cause death.

From the ether and air elements, the bodily air principle called vata (V) is manifested.

The fire and water elements exist together as the fire principle called pitta (P). The

earth and water elements exhibit as the water principle, kapha (K). The functioning

and existence of the body entirely depends on VPK combined. A dosha is dominant

in a human body individually Vata, Pitta, and Kapha or in combination as Vata-Pitta,

Vata-Kapha, Pitta-Kapha or a combination of all three.

2.3.2.1 Vata Dosha

The combination of air and ether gives us Vata (V) or the kinetic biological mode. Vata

is responsible for all the movements. Vata is cold in nature and causes the diseases

related to cold. Because of its minute nature, it cannot be visualized in any form in the

body, but its presence can be proved by its actions (breathing, urination, defecation,

menstruation). It is the sole power to control all the movements of nerves, tissues, cells

and systems.
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2.3.2.2 Pitta Dosha

The combination of fire and water gives us pitta (P) or the transformative biological

mode. Heat is the active principle whereas liquid acts as a vehicle. Pitta represents

energy or heat (calorie) in the body. Digestion entirely depends on pitta (agni). Pitta

governs the digestion of physical, mental, as well as emotional elements.

2.3.2.3 Kapha Dosha

The combination of earth and water gives us kapha (K) or the structive biological mode.

Kapha molecules are heavy, stable, smooth, soft, viscous, shiny and moist, white in

color, and predominantly have a sweet and slightly salty taste. Kapha constitutes the

main body mass, and is responsible for the shape and form of the body. All the cells,

tissues and organs of the body are predominantly composed of kapha elements. The

biological combination of solid and liquids in varying proportions is responsible for

the varying structure and composition of various tissues like body fluids (rasa), semen,

blood, muscle, fat, bone marrow and brain. Because of its heavy and stable qualities,

it is responsible for strength, stability, and firmness of body and mind. Because of its

oily nature, it prevents friction between the two parts of the body.

2.3.3 Importance of the Pulse-based Diagnosis in Ayurveda

The pulsation of blood carries nutrients to the cellular level (Section 2.1) throughout

the body. There is a continuous flow of communication between cells, and thus this

flow of communication is the intelligence. The pulse signal can reveal this cellular

intelligence through a person’s constitution. The amount of pressure will vary with

the individual, depending upon the constitution and the volume of blood in the radial

artery.

Methodology. As the Figure 2.13 shows, the pulse of a subject is felt by Ayurvedic

practitioner with the first three fingers: the index, middle and ring fingers.
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Figure 2.13: The positioning of Ayurvedic practitioner’s three fingers to sense the pulse of

a subject. Respectively index, middle and ring finger are used to sense vata, pitta and kapha

dosha.

The pulse is sensed on both the hands on wrist near the root of thumb. The positions

of the index, middle and ring fingers denote the locations of the vata, pitta and kapha

doshas respectively.

First, the dominance of the dosha(s) is sensed to know the prakriti (constitution) of

the subject. Then depending upon his/her prakriti and the imbalance in the Tridosha,

the Ayurvedic practitioner determines the diagnosis. The medicines (and sometimes

meditation) are prescribed in such a way that, the dosha will come back to their

(original) balanced state, as stated in Figure 2.14. Thus, the pulse-based methodology

directly finds out the root cause of the disorder (location and extent), and thus is

considered as effective for long-term removal of the cause.

In the subsequent chapters, we present our methodology (comprising both the hard-

ware and software parts) to efficiently capture the pulse signals at three predefined

locations. We will show that pulse signals of our system contain high details. Further,

we analyze these acquired signals for studying distinguishable patterns for identifying

possible disorders.

36



Figure 2.14: Sanskrit shloka explaining a disease: Disease is distribution or imbalance

in dhatus (and doshas) and health is balance between them. Health is defined as sukh

(happiness) and disease as dukha (sorrow). The aim of Ayurveda is to balance the doshas.

Other Active Healing Systems

Our work is inspired by Ayurveda. Similar to Ayurveda, there are other traditional sys-

tems, also known as alternative medicine, complementary medicine, holistic medicine,

and integrative medicine.

The national institutes of health (NIH) Office of alternative medicine adopted the

definition of complementary and alternative medicine (CAM) as follows [151]. A broad

domain of healing resources that encompass all health systems, modalities and practices and

their accompanying theories and beliefs, other than those intrinsic to the politically dominant

health care system of a particular society or culture in a given historical period. CAM includes

all such practices and ideas self-defined by their users as preventing or treating illness or

promoting health and wellbeing. Boundaries within CAM and between the CAM domain and

the domain of the dominant system are not always sharp or fixed.

CAM includes Ayurveda, Traditional Chinese Medicine (TCM) based on yin-yang

theory [39, 50, 69, 145], naturopathy, homeopathy based on principle of similars,

Korean medicine, traditional Tibetan medicine, and samkhya with philosophical base

that underlies yoga.

Even though all these alternative medical systems differ in their geographic locations,

diverse cultures, languages, and philosophical approaches to the prevention and

treatment of disease, they share a number of common elements. They offer patients

a viable alternative to the western medicine.

• These systems are based on the belief that one’s body has the power to heal itself.

Thus, they try to maximize the body’s inherent healing ability.
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• These systems emphasis more on the disease prevention versus disease treat-

ment.

• These systems treat the “whole” patient (physical, mental and spiritual) versus a

single pathology.

• These systems perform the treatment often individualized and dependent on the

presenting symptoms.

Conclusions

This chapter contributed to the first block of Figure 1.2. We dictated the domain

knowledge about the traditional methodology. We explained the importance of the

pulse-based methodology in Ayurveda. We also explained the formation of the pulse

signals through five different theories (in medicine), and the factors affecting its

behavior. We will study the complex behavior of the pulse signals quantitatively in

the subsequent chapters.
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C h a p t e r 3

Acquisition

In the previous chapter, we studied the importance of the pulse signals and

how they are used in detecting the doshic imbalance in the body, for physical

examination.

In this chapter, we first motivate the need for the quantitative study of

the pulse signals. We describe the steps and salient features of a typical

data acquisition assembly. We elaborate on each step for our previous

attempts of acquisition, and then our current system Nadi Tarangini. Our

methodology reflects the “feeling” information. Finally, we provide the

details of our database.

Need of Quantitative Analysis of the Pulse Signals

There are differences between pulse signals of any two persons, varying with rhythm

and patterns. The meaning of these differences is what Ayurveda has refined over

5000 years of its existence. The main aim of the traditional pulse-based diagnosis has

always been to obtain useful information about what goes on inside the ‘entire’ body,

what should have caused the disorder in the body, what might be done to rectify the

problem, and to know what are the chances of success.

The Ayurvedic practitioner “feels” the pulse of a subject to understand the physical
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conditions. However, the main challenge in this traditional pulse-based reading is

that it depends upon the subjective observation and the quality of perception of

the Ayurvedic practitioners. Therefore, many times there is an inconsistency in the

diagnosis process of the two practitioners for the same subject. Furthermore, they treat

the subject depending upon the methodologies learnt from their teachers, and their

own experience. Thus, the whole process of traditional pulse-based diagnosis is very

subjective.

Currently, only qualitative information is available in the form of books, lessons from

the Ayurvedic teachers and own experience. As explained, the methodology requires

very high concentration and skill of “feeling”. Thus, the whole process is too difficult

when practiced by a novice. Due to this difficulty, many people still think of it as a

mystery.

In the modern medicine, the examination of the arterial pulse signals has only been

used for computing the heart rate and blood pressure measurements. As the effective

models of the automatic classification or detection using pulse signals have not been

reported till now, this undoubtedly limits the practical applications of the pulse-based

methodology.

The basic requirement of any data analysis procedure is to collect noise-free data with

very high details. We have developed Nadi Tarangini to acquire pulse signals from the

Tridosha (VPK) locations in the time series format. In subsequent sections, we explain

our system.

3.1 Components in a Typical Data Acquisition System

A data acquisition system is designed to measure and log desired parameters. The

representation of acquired signals in the electronic form facilitates further processing

and analysis of the data with the help of a computer. Figure 3.1 shows essential

components of a typical data acquisition system.
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Figure 3.1: Essential components of a typical data acquisition methodology.

We wish to record the non-dying pulsations of the arterial pulse on wrist. It is

very important to capture the repeatability and consistency of the activity. Now, we

elaborate on the properties of each of these components, and list the prior work in the

advancement of the respective component.

• Sensor: Electrodes, sensors, and transducers are used to transform a physical

activity into the recordable form. In this thesis, we are concerned only with

the sensors which convert the pressure energy into the electrical energy. Also,

we concentrate on the non-invasive type of sensors which minimize risk to the

subject.

The beginnings of the noninvasive arterial pulse can be traced to the year 1555,

when the physician Strus [201] had proposed that the arterial pulse possesses

a waveform. Although instrumentation that he used was simple, he suggested

that changes in the arterial pulse shape and strength may be related to disease

conditions. Till now, there have been various acoustic, photoelectric, and

mechanical sensors proposed for the acquisition of the pulse signals.

� Acoustic Sensors: Usually, a non-contact-type phonic sensor [18, 110, 232]

is attached to the wrist with a coupling chamber, which is to insulate the

interference of muscular activities and outside sounds. Then, the air in that

close chamber is evoked by the sound of pulsatile blood flow signals. Such

vibrations will be converted to the varying electrical signal as the track of

pulsatile blood flow signals. However, these sensors are very rarely used

due to their large size and low efficiency compared to the piezoelectric

sensors.

� Photoelectric Sensors: It has been established that transmission of light in

the living tissue is affected by blood. The optical power reaching to the
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photo-detector is related to blood volume changes in the arterial tree [114].

Such phenomenon has been used to determine the volume of arterial blood

[6, 10, 19, 71, 131, 170, 179]. It provides a feasible way to depict the track of

pulsatile blood flow signals, which can be calibrated for subsequent pulse-

based analysis. It is found that the skin and the vessel wall’s scattering,

reflection, absorption, and movement, all play a role in determining the

signal [19, 108].

� Applanation Tonometry: It measures the force needed to flatten a super-

ficial artery, at the site of the radial artery. When this force is exerted

with a piezoelectric sensor, the recorded track is a representative for arterial

pulsatile blood flow signal [49, 23, 72, 93, 132, 184, 243, 267]. SphygmoCor

system are commercially available for noninvasively recording the arterial

stiffness [55, 243].

� Pressure Sensors: Piezo-film based sensors [2, 10, 35, 54, 99, 105, 112, 115,

191, 193, 256, 259, 263] are used to capture the arterial pulse signals, because

they are very sensitive to the minute mechanical movements, responsive to

low frequency movements of interest [157], and weigh little. Also the size of

such pressure sensors is adequate, and thus are most widely used.

• Signal conditioning unit: Signal conditioning is required to amplify and filter

the signal, in order to remove the noise, and to satisfy the requirements of the

subsequent hardware such as the dynamics of the digitizer. Another important

requirement is to preserve the information contained in the original signal.

• Digitizer: Analog signal from the sensor (and signal conditioning unit) is

converted into discrete values for storage. Though it is possible to deal with

continuous time series signals, it is usually convenient to convert them into a

digital form for easy implementation, even of complex algorithms. As shown in

the Figure 3.2, the complete A/D conversion is implemented in two steps.

Firstly, uniform sampling process converts the continuous signal into a discrete-

time series. Then a quantization procedure assigns the amplitude value of
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Figure 3.2: The steps involved in analog to digital conversion.

each sample within a set of determined discrete values. In this procedure, to

adequately capture the continuous time signal, the sampling instants tk must be

selected carefully so that information is not lost. The minimum sampling rate is

twice the highest frequency content of the signal (based on the sampling theorem

from communication theory) [189].

12-bit of resolution is most popularly used for acquisition of the pulse. Few

systems such as [6, 218] have used 16-bit of resolution, which results in more

data storage.

• Storage: Enormous data coming out of an acquisition system is finally stored on

the computer for visualization and further processing.

Professional softwares are readily available for interface and easy manipulation

of digitized signals, e.g. LabVIEW (National Instruments, TX, USA) and PVX

system software [55]. The accuracy and size of the stored data depends upon

the sampling rate. Sampling rates from 200 Hz [218] to 2500 Hz [6] are used for

digitization, however the rate of 500 Hz is most commonly used. The softwares

also help in easy selection of the data for further analysis.

Other steps or components of a data acquisition system are a display equipment for

visualization, control devices such as power supply and stabilizers, and data cleaning

and processing algorithms.

Though there have been many attempts to capture the useful pulse signals as men-

tioned above, the acquisition of pulse signals of high details, followed by its rigorous

analysis is not reported (or is in the initial stages). In the development of our system,

we have considered important aspects, for the efficient acquisition. We compare our

signals with the previous works later in Section 4.1.
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3.1.1 Design Aspects

As said earlier, we want to establish the Ayurvedic pulse through the patterns &

visualization techniques. Throughout the data acquisition procedure, it is critical that

the information and structure of the pulse be faithfully preserved. While designing

our system, we have considered following aspects:

• Range of operation: The range of the pressure sensors was carefully selected to

detect even the minute details of the pressure values. The Ayurvedic practitioners

can sense very high details due to their experience and high concentration.

Therefore, to mimic their methodology, we should collect all the details hidden

in the pulse signal.

• Sensitivity: To note even the smallest measurable signal variations, we have used

the ‘differential mode’ of acquisition (as explained in Section 4.2.1).

• Signal-to-noise ratio (SNR): The errors from component tolerance, movements

of subject, drift due to changes in temperature, humidity, and reading errors have

been successfully eliminated to achieve high SNR in pulse signals. Furthermore,

due to optimized properties of sensor, signal conditioning unit, and elimination

of most of the error causing components, the accuracy of our system is high.

• Stability and reproducibility: Our system is able to provide stable and repro-

ducible outputs which are essential for accurate analysis.

All the above aspects are further elaborated in Section 3.3, where we discuss Nadi

Tarangini in detail.

The pulse signals may be obtained at other points on the body. Examples include

carotid pulse, brachial pulse, posterior tibial pulse, and dorsalis pedis pulse. But, the

arterial pulse on wrist is the most convenient to read and is more readily available.

Hence it is prominently been studied to reveal the characteristics of doshic imbalance,

the nature of diseases and expected prognosis.
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3.2 Our Previous Systems of Pulse Acquisition

Previous attempt: Using a microphone

In our first attempt, we used the ‘sound’ quality of the pulse for the acquisition. We

enclosed the Tridosha (VPK) locations on the wrist with a cuff for insulating the pulse

from the outside sounds. A microphone was carefully attached inside of the enclosure,

which could pick up the pulse sounds. The sound was converted into the electrical

energy, denoised, digitized, and finally stored on the computer.

The disadvantage of these pulse signals were that they were not clean, and rich in

contents. The signal was mainly consisted of a strong peak, and one or two secondary

peaks; but the high details were missing (refer Chapter 4). Also, there were sometimes

errors occurring due to sounds generated by the patient’s movement. The scope of this

methodology was limited to compute the pulse rate of the subject.

Previous attempt: Using one pressure sensor

Our next system comprised of a pressure sensing element to record the pulsations

(mechanical activity) as shown in Figure 3.3. We used a ‘1 PSI’ pressure sensor from

‘Sensym Products’ [187]. It was coupled with a transmitter to amplify the electrical

signal. This electrical signal was then digitized using a 8-bit digitizer, having an

interface with the personal computer at the LPT1 port (parallel port). The pressure

sensing element was supplied with the excitation voltage by using the DC power

source.

The sensor was circular with a tiny diaphragm at the center. For capturing the three

doshas on the wrist, the sensor (diaphragm) has to be placed at the exact locations one

at a time. The bandwidth of the digitizer was 100 kHz, which was adequate to capture

the rapid changes in the input signal from the transmitter. For interface, we used the

software Picoscope [163], which supported the digitizer, to save the digitized output

for a prefixed time on the computer.
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Figure 3.3: Our previous system to acquire the arterial pulse. It comprised of a pressure sensor

with diaphragm, a transmitter, a digitizer, and an interface to computer at the parallel port.

After recording the pulse signal using this system, we immediately measured the pulse

rate manually. We also computed the pulse rates from the acquired pulse using Fourier

transform (refer Section 4.4). The pulse rates were consistent, which showed successful

acquisition. However, it is clear from the Figure 3.4 that even this accuracy was not

enough for rigorous analysis using modern data analysis tools.

The figure compares the pulse signals from this system with those of our current

system Nadi Tarangini (Section 3.3). Note that the two pulse signals are of the same

subject, but at different locations and at different times. We explain Nadi Tarangini in

the next section, where the acquired signals are replete with all the rich details in the

form of secondary peaks.

3.3 Nadi Tarangini

We now describe our portable and inexpensive system, Nadi Tarangini, which captures

the arterial pulse in the format of time series. Figure 3.5 and Figure 3.6 display the line

diagram and the actual photo of Nadi Tarangini respectively.
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Figure 3.4: The pulse signal on the top is acquired using our previous system comprising a ‘1

PSI’ sensor and digitizer of 100 Hz sampling rate. The pulse signal on the bottom is acquired

using our current system Nadi Tarangini (refer section 3.3). The signal on the bottom is

replete with details and variations.

The important components of Nadi Tarangini are three pressure sensors, three signal

conditioning units, a digitizer, an interface, and a storage. The three sensors are

placed exactly at Tridosha locations on wrist. They pick-up the pressure values and

provide equivalent electrical energy to the signal conditioning units. These energies

are standardized in signal conditioning units, digitized, and finally stored on computer

for the subsequent analysis.

3.3.1 Pressure Sensor

A set of three pressure sensors is mounted on the wrist to sense the pressure values at

three locations (Section 2.3.2), namely vata (V), pitta (P) and kapha (K) [225]. We have

adopted ‘millivolt output medium pressure sensor’ (Mouser Electronics, Inc. [141])

having ‘0–4 inch H2O’ pressure range. The physical dimensions of the strain gauge

element are approximately 9mm×7mm (nearly the size of a fingertip). We have further
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Figure 3.5: This is our setup to mimic the traditional pulse-based methodology. The three tiny

diaphragms are placed exactly at the VPK locations, where the pressure values are captured,

denoised, digitized, and finally stored on the computer.

Figure 3.6: Figure 2.13 shows the positioning of the Ayurvedic practitioner’s fingers on

subject’s wrist. We built Nadi Tarangini to mimic this methodology. The three sensors are

exactly of the size of fingertips. The assembly is properly shielded for the best performance. The

display on computer shows the captured pulse signals.
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used the ‘differential mode’ of acquisition for better resolution of the signals (Please

refer to Section 4.2.1 for more details on the ‘differential mode’).

Each sensor consists of a flexible and tiny diaphragm at the center (as shown in

Figure 3.5), which is a force-gathering element that gets deformed by the arterial

pressure values. A Wheatstone bridge circuit methodology is used as follows. When

the pressure (at a particular location) is exerted across the diaphragm, it will cause

the diaphragm to deflect. Then, two of the fine-wire strain gauges get extended by a

small amount, and the other two contract by the same amount. When this long narrow

electrical conductor (fine gauge wire) is stretched within its elastic limit, it will increase

in length and decrease in cross-sectional area.

R = ρ
l
A

(3.1)

where ρ is the electrical resistivity of the wire material, l is its length, and A is its cross-

sectional area. This stretching results in an increase in the resistance. The change in

the length can only be very small for the foil to remain within its elastic limit, so the

change in electric resistance will also be small. The relative sensitivity of this device is

given by its gauge factor γ , which is defined as

γ =
δR/R
δ l/l

(3.2)

where δR is the change in resistance when the structure is stretched by an amount δ l.

When the strain is applied in the sensitive direction, the direction of the individual

elements of the strain gauge, the length of the gauge will be slightly increased, and

this will result in an increase in the electrical resistance seen between the terminals.

Therefore, the piezoelectric strain gauges are particularly useful as the variations in the pressure

values are of short duration, and rapidly changing in value.

3.3.2 Signal Conditioning Unit

The signal conditioning unit is a standard industrial amplifier with 4–20 mA output,

which is used to linearize and denoise the acquired signal. While connecting to 16-bit

digitizer, the 4–20 mA is converted to 2–10 V through a resistor of 500 Ω.
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We have also provided zero and span adjustments. The zero adjustment is calibrated

to adjust the zero, such that at zero pressure (atmospheric pressure), the output is 4

mA. The span adjusts the degree of amplification for output of the signal.

The data obtained in this way is usually corrupted because of implicit and explicit

electronic and electrical noise. However, in our developed system, the noise level

is negligible, after proper shielding. Furthermore, we have used a battery-powered

equipment to avoid the common problem of interference at 50 Hz from mains wiring.

3.3.3 Digitizer

The digitizer or analog to digital converter (ADC) works as the heart of a data

acquisition system. In Nadi Tarangini, the (amplified and denoised) analog signal is

digitized using a 16-bit multifunction data acquisition card NI USB-6210 (National

Instruments, TX, USA), having an interface with the personal computer at the USB

port. The data is captured at a sampling rate of 500 Hz (which is sufficiently higher

than the Nyquist criteria) for a predetermined length of time.

We have used an external ADC, as it is the least affected by the electrical noise from

the computer. Also it is very useful for the portability, as it can be connected to any

computer for storage.

3.3.4 Storage

We have used the data acquisition software LabVIEW (National Instruments, TX, USA)

to store the pulse signals. LabVIEW provides all the functions needed to build a

complete system, namely control of the analog to digital converter, data collection

and storage, user interface controls, graphical displays, and a good range of advanced

signal processing algorithms. The minimum change in the signal, which can be

measured, depends solely on the resolution of the digitizer.
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3.3.5 Schematic of Nadi Tarangini

In Nadi Tarangini, three pulse signals are recorded, one each from the three sensors at

predefined locations on wrist. They are stored in the time series format, which can be

easily imported into a spreadsheet or a graph-drawing program for easy visualization.

The summary of all the above components is displayed in Figure 3.7.

Figure 3.7: The schematic diagram of Nadi Tarangini displaying important specifications of

the components: Three sensors, three transmitters (or signal conditioning units), a digitizer,

and storage.

The selection and arrangement of all the components result in the best acquisition

of the pulse signals. This is very important for the subsequent analysis. E.g. in

Chapter 6.1.1, we show that the pulse signal contains a self-similar nature, which was

possible due to the high details in our data.
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3.4 Measurement Methodology

Our procedure of acquiring the pulse signals from a subject is as follows. The subject

is asked not to undergo strenuous exercise, for at least two hours before taking the

reading. Also, just before acquiring the pulse signal, the subject is asked to relax in a

room, and clear his/her mind. This is our basic assumption that the pulse signal is not

affected by the psychological thoughts of the subject. The pulse recordings are made

whilst the subject is breathing regularly. The subject is asked to keep his/her hand

(and also all the other body parts) steady and in the comfortable positions.

3.4.1 Deciding VPK Locations

The procedure to decide locations of the VPK dosha is shown in Figure 3.8. The three

locations will be available when both the horizontal and vertical axes on the wrist are

known. The vertical axis is manually decided by sensing the pressure values at the

three locations using the fingertips. Then, we consider the first wrist line (as shown)

as the horizontal axis. Their intersection point (vata location) is where the first sensor

is placed. The other two sensors along the vertical axis pick up the pulse signals of the

pitta and kapha locations.

3.4.2 Placement of the Sensors

Once the three locations (VPK) are properly decided, the sensors are carefully placed

on the wrist, so that the three diaphragms come exactly above those locations. As the

acquisition is real-time, the position of the sensors could be readjusted, if required, by

looking at the computer screen. In such cases, we readjust the sensor positions in the

vicinity to confirm the three locations. If two dosha are correctly captured, while the

third signal does not show the pulse behavior – then either the location is incorrect or

the pulse itself has negligible energy. Once, the VPK locations are correctly picked up

by the sensors (diaphragms), we start the data collection. The pulse signals are usually

recorded on each hand of the subject for at least 1 minute of duration.
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Figure 3.8: Procedure to decide VPK locations. (a) The vertical axis is decided by manually

sensing the pressure values at the three locations. (b) The first wrist line is considered as the

horizontal axis. Their intersection point is the vata location. (c) VPK locations of acquisition.

3.4.3 Deciding the Contact Pressure

In Ayurveda, the pulse is sensed at the VPK locations by the Ayurvedic practitioners on

the wrist at a particular contact pressure. By increasing the contact pressure, the pulse

under that fingertip might get partially blocked [104]. At different contact pressures,

different amplitudes, energies, and patterns are sensed, which are then correlated with

the body conditions.

By adopting the pressure sensors, we have efficiently mimicked the Ayurvedic method-

ology of sensing the pulse on wrist. In our work, we keep the contact pressure constant
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at one particular value. Of course, it is difficult to prove that the applied contact

pressure remains constant throughout the acquisition. But with the visual impression

of a long pulse signal (say 200 pulse cycles) where the overall pattern and amplitude

of the pulse series remains almost the same, we claim that the applied contact pressure

is constant (within manual approximations). The advanced study of varying contact

pressure and observing the effect on pulse signals is beyond the scope of this thesis.

Methodology: As discussed before, we place the sensors exactly at the VPK locations.

We start with the minimum contact pressure, where the acquired pulse signal is

negligible. We increase the contact pressure on the sensors in such a way that, the pulse

behavior is seen on the screen (real-time acquisition) with considerable amplitude. The

contact pressure is not increased too much, which might block the nadi itself.

Our observation is that, this contact pressure depends primarily upon the skin of the

subject, hair on the wrist, and the actual depth of the pulse. Therefore, the contact

pressure is different for each subject, and is decided while acquiring the pulse signal.

Even though the methodology explained above contains manual judgement, we

assume that the collection is adequate due to following observation. We have recorded

the pulse signals of a subject at five different contact pressures. Figure 3.9 provides the

pulse signals at each contact pressure.

As the contact pressure on the sensor increases, the amplitude and the overall shape

of the pulse signal increases. After reaching a maximum (contact pressure 4 in this

case), the amplitude decreases. After a particular threshold value, the pulse dies. Our

observation are consistent with the literature [225]. Both the extreme cases of very little

contact pressure (negligible pulse), and very high contact pressure (where the pulse is

blocked, or dies) are not shown in the figure. At each contact pressure, the acquired

pulse signal gives different insights about the body. The pattern remains almost

the same between consecutive applied contact pressures, even though the amplitude

increases. Thus as said earlier, we consider our data to be adequate for further analysis.

56



Figure 3.9: Changes observed in the pulse signals as the applied contact pressure increases

from Left to Right.

3.5 Pulse Database

Advantages of the established ECG database: Due to very wide variability in

ECG rhythms, and in details of the waveform morphology, it is necessary to collect

huge collection of long-term ECGs for their analysis. But, their acquisition and

characterization is a tedious and expensive process.

Until 1980, it was necessary for the researchers to collect their own data, for study-

ing the abnormalities of cardiac rhythm. For removing this limitation, MIT-BIH

arrhythmia database [63] was generated, and the recordings were made available to

the research community. The most important advantage of this open database is

the reproducible and objectively comparable evaluations of different algorithms on

the same data. It helped in rapid and quantifiable improvements in the technology

of automated arrhythmia analysis [139]. Now, there are many ECG databases

including AHA Database for the evaluation of Ventricular Arrhythmia detectors [73]
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and European ST-T Database [209].

Huge pulse database should be generated in a similar fashion to enable studying

together for better understanding of the pulse signals. We now provide the details

about the important entries in our database.

Important Entries in Our database

There are five major categories of entries.

1. Patient’s information: This category is to know the background of the subject.

This can be further categorized as

• Personal details such as name, age, gender, height, weight, birth date,

marital status, and contact details

• Medical details such as blood group, usual body temperature, and body

structure

• Other personal details such as family background, status, appetite, acidity,

food, sweating, movements, and sleep

• Habits such as smoking, drinking and exercise

• Details noted at the time of acquisition such as medicine or food before

acquisition, blood report, and urine report

2. Analyzer’s entries: This category is to consider various important dimensions

while correlating the pulse signals with the physical condition of the subject. This

can be further categorized as

• Atmospheric details such as room temperature and humidity

• Patient related entries such as skin of the subject at the wrist, contact

pressure applied on the sensors, and time taken to find the pulse
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3. Doctor’s entries: In our work, we have noted down the entries by Dr. Ashok

Bhat and Dr. Jategaonkar. They are the domain experts in our work to provide

information about the traditional methodology. These are the most important

entries, and are considered as the ground truth for the final correlation with the

pulse signals.

These can be further categorized as

• Observations such as condition of tongue, color of eyes, and voice

• Dosha entries

• Analysis and diagnosis entries

4. Pulse data: Finally, the three pulse signals (Tridosha locations) are stored in the

time series format, with three amplitude columns against a single time column.

All the three signals can be visualized on the screen even using simple programs

such as Excel and Matlab.

For subsequent pulse-based analysis (in Chapters 5 and 6), we choose the input

pulse in the following manner. (a) a complete pulse time series or some portion

of it, (b) 3D attractor (e.g. time-delayed embedded format), (c) a sequence of

peak-to-peak distances, and (d) single dosha or all the three combined from the

database.

5. Results: After the application of different methodologies (discussed in subse-

quent chapters), the hidden information is extracted in terms of useful feature

sets or classification numbers. They are stored in the database for visualization,

comparison, and future use.

Pulse Data

Currently our database contains data from 612 subjects. Appendix C displays a few

examples of the signals from our database. Approximately half of the data is from

the male subjects, while remaining is from the female subjects. We have divided the
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subjects into three age groups as ‘below 25 years’, ‘25–50 years’ and ‘above 50 years’.

Respectively 102, 308 and 202 subjects fall into these three age-groups. In our results,

we show that the pulse patterns show variations with these three age-groups. The

pulse signals of our database can also be categorized as those obtained from healthy

subjects (176), and subjects having disorders (436) such as fever, diabetes, fits, cough,

hypertension, acidity, skin and heart related disorders. In Chapters 5 and 6, we apply

various approaches to capture their distinguishable patterns.

Conclusions

This chapter contributed to the second block of Figure 1.2. Though the useful arterial

pulse shows enormous scope in the diagnosis of traditional medicine, it lacks the

quantitative base. Therefore, we have built Nadi Tarangini (NT) to acquire noise-

free pulse signals. We have taken into consideration all the important aspects of the

acquisition process for the best performance.

The design of NT reflects the “feeling” of fingertips. The system is comprised of three

pressure sensors (pressure range of 0–4 inch H2O), three signal conditioning units with

proper shielding, an external digitizer (sampling rate of 500 Hz and 16-bit resolution),

and a storage. We also explained the important steps in the acquisition methodology,

namely deciding the VPK locations, the placement of the sensors, and deciding the

contact pressure. Along with the data in the time series format, we also store the

patient’s information and doctor’s entries (ground truth) in our database.

In modern medicine, there is a range of health care tools which provide a diagnosis for

a wide variety of disorders and injuries, by opening the “inner man” to the medical

inspection, such as x-rays and electrocardiogram (ECG). In this thesis, we analyze

the pulse signals of various behaviors to identify meaningful patterns that can be of

interest and hence useful to the user.
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C h a p t e r 4

The Nature of Pulse Signals

In this chapter, we explain the nature of pulse signals acquired using Nadi

Tarangini. First, we display pulse signals of earlier approaches. We show

that our data contains high details, one reason could be the ‘differential mode’

of acquisition. We compare a pulse signal with simultaneously recorded

ECG. We elaborate on the important properties of the pulse signals including

rate, shape, rhythm and frequency.

This chapter prepares the background of possible distinguishing patterns

for subsequent chapters involving data analysis. We briefly list the

important prior work in this domain Finally we explain the challenges in

the pulse-based analysis, before explaining our approaches in subsequent

chapters.
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4.1 Prior Work in Pulse Acquisition

Figure 4.1 through Figure 4.15 show examples of the pulse signals obtained from

previous publications. We have obtained these examples directly by copying the

figures from the respective publications. These pulse signals are from different subjects

of varying age-groups, using various techniques, and are of different resolutions.

The examples are arranged in the chronological order of dates of the publication. We

also mention the methodology of acquisition, and a one-line description of the way

pulse signals were analyzed and used in the publication.

(1953) Central arterial pressure pulse were recorded in [240] by means of small ra-

diopaque plastic catheters advanced into the left subclavian artery through a

thin-walled 18-gauge needle. The proximal end of the catheter was attached to a

two-way stopcock so that it could be connected interchangeably to either a strain-

gauge manometer or a capacitance manometer. The output of the manometers

was recorded photographically by means of galvanometers of the d’Arsonval

type, using a chart speed of 85 mm/sec.

Figure 4.1: A pulse from [240]. This method was described for beat-to-beat

estimation of changes in stroke volume.

(1956) Pulse were recorded in [178] by strain gauges of sensitivity such that a pressure

change of 100 mm of mercury produced a deflection of about 7 cm on the record.
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Figure 4.2: A pulse from [178]. Difference curves between the

peripheral pulses and the most proximal one in the thoracic were

studied.

(1993) Pressure in the radial artery was recorded in [247] using a standard Hewlett-

Packard 78534A arterial pressure channel with a 15 Hz built in cut-off frequency.

Figure 4.3: A pulse from [247]. Aortic flow pulsations were computed

from arterial pressure by simulating a nonlinear, time-varying three-element

model of aortic input impedance.

(1999) For the noninvasive studies, radial artery pressure pulse waves were recorded

in [127] with an arterial tonometer sensor array (model N-500, Nellcor Inc). An

invasive methodology was also incorporated using an 18-gauge catheter.
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Figure 4.4: A pulse from [127]. Age-related changes were evaluated

in pulsatile arterial function.

(2000) For each subject, the left radial artery pulse was recorded in [266] at each value

of contact pressure with 700 Hz sampling rate. The contact pressure exerted on

the pulse point was increased in increments of 4 kP, going from 4 kP to 136 kP.

At each level of applied pressure, local maxima and local minima amplitudes

were extracted, and the difference between them were calculated to give pulse

amplitude.

Figure 4.5: A pulse from [266]. The variations in pulse with

increasing contact pressure were studied.

(2001) The arterial pressure was measured in [111] using a Baxter 150 cm pressure tube

connection and Baxter Truware PX-600F sensors (Baxter Edwards Critical-Care,

Irvine, CA, USA).
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Figure 4.6: A pulse from [111]. A pulse contour cardiac output algorithm

was developed based on frequency analysis studies of the arterial system.

(2003) Pulse wave was recorded in [6] using a system comprised of photoplethys-

mography (PPG) pulse amplifier channels with bandwidth of 0.15 to 20 Hz.

All responses were recorded on a computer for subsequent off-line pulse wave

analysis with sampling rate of 2500 Hz and 16-bit resolution.

Figure 4.7: A pulse from [6]. The age-related changes were

demonstrated through pulse shape characteristics.

(2004) Carotid femoral pulse wave velocity was calculated in [229] from measurements

of pulse transit time and the distance traveled between two recording sites (pulse

wave velocity = distance [in meters]/transit time [in seconds]) using a validated
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noninvasive device (Complior; Artech Medical, Pantin, France), which allows

online pulse wave recording and automatic calculation of pulse wave velocity.

Figure 4.8: A pulse from [229]. The acute effect of cigar

smoking was investigated on aortic elastic properties and

wave reflection.

(2004) Radial arterial pulse waves were recorded in [41] noninvasively by an acoustic

sensor using the CR-2000 device (HDI Inc.).

Figure 4.9: A pulse from [41]. The indices from systolic and

diastolic pulse contour analysis were compared to correlate with

traditional risk factors in cardiovascular disease.
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(2005) The 4-order Daubechies wavelet was used in [258] for the analysis.

Figure 4.10: A pulse from [258]. A classification approach using

discrete wavelet model was proposed for pulse waveforms.

(2005) Pulse was acquired in [218] using Impedance Plethysmography and Recording

System. Two metallic electrodes (ECG standard type) were placed over the fore-

arm artery line, and impedance was measured with a custom-made laboratory

apparatus. Digital acquisition (sampling frequency of 200 Hz, at 16 bits) was

carried out using a commercial system (BIOPAC System Inc, AcqKnowledge II

for MP100WSW).

Figure 4.11: A pulse from [218]. Detection of pulse cycle’s

onset and end was carried successfully on the data.
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(2005) Pulse signal in [237] was analyzed for detecting arrhythmic patterns.

Figure 4.12: A pulse from [237]. A method was

demonstrated to distinguish rhythmic and arrhythmic pulse

patterns using the Lempel-Ziv decomposition.

(2005) The acquisition system in [233] comprised a pressure-adjusting pulse sensor.

Pressure from 25 ∼ 150 g could be regulated, and the pulse wave was recorded

when the amplitude reaches the maximum.

Figure 4.13: A pulse from [233]. A quantitative system for pulse

diagnosis was constructed based on Bayesian networks to build the

mapping relationships between pulse waves and pulse types.
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(2006) Pulse was recorded in [259] using a typical data acquisition system comprising

a pulse sensor, a strain cantilever beam sensor. The system was tied at wrist

location using a band. The pulse was also recorded after performing progressive

cycle ergometer for five minutes.

Figure 4.14: A pulse from [259]. The comparison was made for

pulse contour variability for before and after exercise conditions.

(2006) Pressure waveforms were recorded in [253] from radial artery using applanation

tonometry, with a probe applied to the wrist. Further, radial waveform was trans-

formed into corresponding aortic waveform, in SphygmoCor system, through

generalized mathematical transfer function.

Figure 4.15: A pulse from [253]. The cardiovascular risk was

investigated using the radial pulse.
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Very preliminary observations have been produced in the prior work (also explained

in Section 4.5). One reason could be the noisy or less accurate data. The data analysis

methods strongly depend not only on the clinician’s experience but also on the quality

of pulse signals.

4.2 Pulse Signals Obtained Using Nadi Tarangini

As explained in Chapter 3, we have used the optimized specifications of the compo-

nents in Nadi Tarangini. In addition, we have used the differential mode of acquisition

which results in the increase of details of the pulse signals.

4.2.1 Differential Mode of Acquisition

There are two different modes of an acquisition methodology. A single-ended input

requires only one input relative to the ground. On the other hand, a differential

mode input requires two inputs that respond to the difference signal between them.

In our system, we have used the differential mode with two inputs as the consecutive

pressure values.

Advantage. The resolution of the digitizer is fixed (16-bit). If we consider just the

single-ended input mode, then the whole 0–10 volts range (of the signal conditioning

unit) will be spanned by the resolution of the digitizer. Instead, we use the difference

between the consecutive numbers, which are smaller values and so now, the difference-

range will get spanned by the digitizer. It helps in increased details of the data.

The actual pulse signal at each dosha can then be obtained by integrating the one

acquired using Nadi Tarangini. Figure 4.16 shows an example of how the acquired

pulse signal looks after integration.

The acquired pulse signal is rhythmic, and shows resemblance with an electrocar-

diogram (which is also a recording of the difference between values recorded by

two electrodes). The figure shows corresponding important time domain properties
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Figure 4.16: The actual pulse signal (bottom) is obtained by integrating the pulse signal (top)

acquired using the differential mode. The dotted lines indicate the corresponding important

locations on both the signals.

(dashed lines) on both the pulse signals. Here onwards, we have used both the

models of pulse signals (acquired differential pulse and the integrated pulse) for the

subsequent analysis. E.g. we use the acquired differential pulse for computing pulse

rate variability measures (Section 5.5) and capturing multifractal nature in arterial

pulse intervals signals (Section 6.1), while we use the integrated pulse for the PSWT-

based analysis (Section 5.2) and topological analysis (Section 6.3).

4.2.2 Tridosha Pulse

Figure 4.17 shows a sample Tridosha pulse from our database. Appendix C displays

many more examples obtained from different subjects. The three colors indicate three

separate time series obtained simultaneously from VPK locations (refer Figure 2.13).

In other words, at each time instant the output is a 3-dimensional vector.

Pulse subwaves. Figure 4.18 shows an example of a pulse signal acquired at the vata

location.
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Figure 4.17: An example of a pulse signal obtained from a subject’s left hand. The three colors

represent VPK locations of acquisition.

Figure 4.18: Typical behavior of a pulse signal. This is a vata pulse from a subject’s left hand.

It continuously and rhythmically follows P-T-V-D pattern.

A pulse cycle is usually composed of the following subwaves [272]:

• A percussion subwave (P)

• A tidal subwave (T)

• A valley (V)
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• A dicrotic subwave (D)

These subwaves have their origin and properties as explained in Chapter 2. The

subwaves should be present in a typical pulse cycle with definite amplitude and

duration to indicate proper functioning of the heart and other body organs.

We now provide 6 more pulse signals (only vata dosha location) from our database in

Figure 4.19. They are from different subjects of different age groups. These examples

exhibit different patterns and nature of different disorders.

Figure 4.19: Vata pulse signals of different disorders acquired using Nadi Tarangini.

Different patterns show possibility of application of the rigorous data analysis algorithms for

the identification.

It can be observed that there are distinctly observable patterns in each of the six pulse
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signals. For these examples, our observations on the visible patterns are:

• A pulse cycle of healthy behavior typically has a strong main peak (at P-subwave)

with high amplitude, and two distinct secondary peaks indicating the presence of

T , V and D-subwaves. The behavior follows a continuous P-T-V-D rhythm (refer

Figure 4.18).

• The pulse cycles showing fever behavior contain many secondary peaks of

varying amplitudes and durations. These differences in such behaviors will be

more clear when we discuss about the frequency spectrum in Section 5.5.2.

• The pulse cycle of high blood pressure behavior does not contain any secondary

peaks (or contains with negligible amplitude). Thus, it shows non-typical

behavior with missing T and/or V-subwaves.

Motivation for rigorous data analysis: We observe variations in various parameters

such as the amplitudes of secondary peaks, rising & falling slopes, systolic & diastolic

energies, and velocities. These variations (visible or hidden) in the patterns of the

pulse signals (or pulse cycles) are sometimes hard to extract. Therefore, an advanced

and rigorous data analysis is required for the efficient identification.

4.3 Comparison of Pulse with Electrocardiogram

As explained in Chapter 2, the pulse is generated due to the continuous and rhythmic

pumping action of the heart. However, it is further transmitted by the blood flow

through arteries, and goes a long way from the heart. It is believed in Ayurveda that

because of many factors affecting the flow (such as Section 2.2), the pulse signal has

more information, and thus is useful in the diagnosis.

An electrocardiogram (ECG) quantitatively captures the heart actions. Currently, this

acquisition and its subsequent analysis is in the advanced stages, such as automatic

detection of various arrhythmias shown in Appendix A.

Studies in [91, 170] have shown the comparison of the heart rate variability (HRV)
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with peak-to-peak variations obtained using photoplethysmography. They indicate

that, the two time series are different in many situations. The comparison of the ECG

signals with the pulse signals is beyond the scope of this thesis. Here, we provide two

examples of simultaneously obtained ECG and pulse signals in Figure 4.20.

Figure 4.20: Two examples of simultaneously obtained ECG and pulse signals. The top row,

middle row and the last row respectively display the ECG, the pulse in differential mode, and

the pulse after integration.

Though the three signals show positive correlation (similar set of actions one after the

other) with each other, their patterns are completely different. In this thesis, we study

the arterial pulse signals to establish its importance and efficacy, through its accurate

acquisition and analysis.
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4.4 Important Properties of the Pulse Signals

In literature, the important properties of the pulse signals are depth, intensity,

amplitude, frequency, rhythm, length, type or shape, temperature, quantity, texture,

and width [104]. Many of them are interrelated, such as intensity and amplitude.

We describe few properties related to the time series format, in which our data is

stored. We also describe other properties essential for the signal processing, namely

completeness and reproducibility.

• Pulse rate: A simple desirable feature in any physiological system is the rate

(heart rate or pulse rate). Pulse rate is the average number of pulse cycles per

minute. We compute it by finding the fundamental frequency in the Fourier

spectrum as shown in Figure 4.21.

Figure 4.21: Fourier spectrum of a pulse signal (healthy behavior). The fundamental frequency

provides the pulse rate. More subtle second order effects are the secondary peaks within each

pulse cycle reflected in the subsequent harmonics.

In modern medicine, doctors sense the pulse on wrist of a subject to check his

or her heart rate (by counting the pulse rate). We want to explore the pulse

signal beyond just the computation of the heart rate, and analyze them to identify
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possible disorders and other important properties. For example, the subsequent

harmonics and other frequencies in the spectrum can be further studied for

correlating with the physiological conditions of the subject. Actually, we have

used wavelets and nonlinear dynamics instead of Fourier spectrum for this

purpose.

• Frequency: We have already used the fundamental frequency of the spectrum for

computing the pulse rate. In Figure 4.22 and 4.23, we provide Fourier coefficients

of pulse signals showing different behaviors.

Figure 4.22: Fourier coefficients for two pulse signals showing different behaviors. The

variations in the two spectrums show possibility of classification.

More subtle second order effects are the secondary peaks within each pulse cycle.

They are primarily reflected in the harmonics H2 through H5 (and sometimes
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Figure 4.23: Fourier spectrums of two different pulse signals showing different coefficient

patterns. The secondary peaks in the pulse signals are usually reflected in the harmonics, and

thus can be further used for the analysis.

more). An effective cross-correlation coefficient was established in [29] with these

harmonics as:

k ratio =

√
(H2)2 +(H3)2 +(H4)2 +(H5)2

H1

We observe that the Fourier spectra vary with respect to the regularity and

nature of secondary peaks. These coefficients can be used as important features

for the classification. The strength of the spectral harmonics accounts for the

morphology of the pulse, and can be used in detection. We have used effective
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wavelet coefficients instead of Fourier, which extract important information at

various frequencies (scales) keeping the time (space) information.

• Rhythm: Due to continuous pumping action of the heart, the pulse signal has a

considerably regular rhythm. Similar set of actions (say P-T-V-Din Figure 4.18)

appear on the time axis, separated by a pseudo-period.

• Shape: The overall shape of a pulse cycle is described by all the above properties

including amplitude, rate, rhythm, and systolic & diastolic energies. Actually,

the Ayurvedic practitioners sense the overall shape of the pulse (cycles) with

high concentration, and relate them graphically to a more concrete images,

such as Sarpa (Cobra) for vata pulse, Manduka (Frog) for pitta pulse and Hamsa

(Swimming Swan) for kapha pulse. Further minute variations then help in

diagnosing the subject. We have quantitatively analyzed the pulse signals in our

database to find impoetant patterns which help to classify.

• Completeness: In order to check the completeness of the acquired time series,

pulse signals were acquired with digitizers having accuracies of 8-bit, 12-bit and

16-bit. The remaining components of the system (subjects, sensors of ‘0–4 inch

H2O’ pressure range, and signal conditioning units) were kept the same. In the

experiments, the details captured by the 12-bit digitizer were more as compared

to the 8-bit digitizer (Observe the slope variations in Figure 3.4). However, there

was no significant new information from 12-bit to 16-bit upgradation, so we say

that all the details have been captured. The said sensor with 16-bit resolution

provides very high details, which are able to capture the self-similarity at various

scales (refer Chapter 6). No other work has still been able to capture such

property due to lack of details. Thus, we say that Nadi Tarangini is replete with

details and variations.

• Reproducibility: Pulse signals of a single healthy subject were recorded at

five different times (10.20 AM, 1.05 PM, 2.45 PM, 4.40 PM, 7.45 PM) for five

consecutive days with the same settings. It was observed that the number of

data points per pulse cycle, and the approximate entropy (ApEn) [165] (ApEn

is a “regularity statistic” that quantifies the unpredictability of fluctuations in

81



a time series) of the complete signals remained almost constant for the same

timings during the five days. Our experiments showed that our system is fairly

reproducible. However, exact reproducibility of the pulse is not possible, as the

pulse is sensitive to the mental status, stresses, and thoughts (and which results

in variability as explained in Section 5.5).

4.5 Prior Work in Pulse Analysis

It is clear that, a pulse signal with healthy behavior will show a typical P-T-V-

D pattern with above characteristics. Disorders or defects in the biological system cause

alterations in its normal physiological processes. This affects the performance, health,

and general well-being of the system, and thus acquired pulse signals. Therefore, the

pulse signals will follow different patterns in one or all respects from the corresponding

healthy signals.

Survey on the pulse-based analysis [113, 260] states that from a pulse signal, various

physiologically, pathologically and psychologically significant parameters can be

extracted. The pulse signal, originated by the pumping actions of the heart, is

transmitted by the blood flow throughout the body. Thus it is affected not only by

the condition of the heart, but also by the condition of other organs. By analyzing the

pressure fluctuation signal of the pulse, we can detect and predict many symptoms to

extract useful information [54, 236].

4.5.1 Circulation Parameters

Heavy contribution of the overall pulse-based analysis has been done in the area

of hemodynamics to study the circulation parameters. Hemodynamics analysis [152]

provides information about the interaction between physical properties of the arterial

circulation and the left ventricle. This is studied by the descriptive and quantitative

analysis of the arterial pressure pulse waveform to compute the risk factors [51, 94, 110,

126, 128] or through the theoretical analysis of the wave propagation [125, 215, 216].
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Cardiac output (CO) is used to evaluate cardiac function in critically ill patients, to

aid in the diagnosis of cardiovascular disease, and to guide therapeutic decisions

in complex clinical situations. Continuous determinations of the cardiac output are

important for monitoring acutely ill patients, since their hemodynamics status may

vary significantly during a short period of time [111, 120]. Augmented pressure (AP) is

defined as the difference between the second and the first systolic peak. Augmentation

index (AIx) is AP expressed as a percentage of the total pressure [41, 154, 221, 243]. AIx

is sensitive to many factors including heart rate [252], carotid atherosclerosis [55], and

blood pressure [132]. AIx depends on ventricular ejection [153], the timing of reflected

waves (determined mainly by pulse wave velocity in the aorta [247] and large arteries

and hence, on the stiffness of these arteries), and the amount of reflection (determined

mainly by arterial tone at the major sites of reflection).

4.5.2 Extraction of Important Features

To diagnose a subject through the quantitative study of pulse signals, important

information (resembling some disorders) is extracted in the form of features. These

features are trained for considered classes and are then used in future for identifying

unclassified samples. Different sets of features are possible depending upon the

property of the pulse signals under consideration for the analysis.

Cleaning of the pulse signals is an essential prerequisite to the analysis, as the pulse

signals suffer from manual, mechanical, and 1/f type noise as well as the subject-

derived distortions known as the baseline drift [197, 261, 263].

Contour analysis is one of the elementary steps in data analysis, which visually displays

different contour characteristics of the pulse [178, 191]. Examples include studying

variations with different age-groups [127], and effect of heavy exercise [259] and heart-

problem [105].

Period-to-period variability. The nonlinear variations in characteristic parameters from

a pulse cycle to the next are endowed with important physiological significance, and

have been studied on the finger pulse [60, 74, 170, 233, 255]. It was further examined in
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[91, 170, 238] whether these intervals can be alternative data to the R-R intervals (ECG)

for the same analysis. It was observed that the respiratory pulse rate variability does

not precisely reflect the respiratory heart rate variability in standing healthy subjects,

and in patients with low HRV.

Different pattern recognition and data mining algorithms have been applied to extract

the hidden patterns of the pulse signals, such as Fourier coefficients [37], wavelet

coefficients [17, 109, 258, 271], Lyapunov exponent-based analysis [265], Lempel-Ziv

complexity-based analysis [237, 262], approximate entropy (ApEn) [235], fuzzy theory

[107, 233]. All the approaches correlate the computed features to some pattern or

‘property’ of the pulse signal.

4.5.3 Problem Specific Observations

It is yet not possible to prove or achieve global rules, as the pulse-based scope is

very wide. Here, a summary of some intermediate results (preliminary observations)

is provided to understand different types of possible outcomes from the pulse-

based analysis. Also, most of this research has been done based upon Traditional

Chinese Medicine (TCM). Ayurveda, Korean medicine, and other alternative medicines,

though started, lack the advanced quantitative research. The spectrums of pulse

signals have been analyzed for patients with liver problems [112], Atherosclerosis [55],

cardiovascular disease [41], and vascular abnormalities [128].

• Variations with age: The older subjects have increasing arterial stiffness resulting

in changes in the propagation of the blood flow to the periphery, and thereby

influencing the peripheral pulse timing and shape characteristics [52, 226]. Thus,

Aging alters arterial pulsatile function and produces consistent changes in the pressure

pulse contours [19, 127].

The analysis of the pulse characteristics with age is important as AIx increases

with age (and blood pressure), and is elevated in subjects with other risk factors

for cardiovascular disease, including diabetes and hypercholesterolemia [132].

The age-related changes in the carotid pulse waveform were explicable by the
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increased pulsatile load and were quantified by AIx, the ratio of the augmented

systolic pressure to the pulse pressure in central arteries [51, 94, 143].

The association between age and changes in pulse shape characteristics was

studied at various pick-up locations including the ears, fingers, and toes in [5]. It

was observed that the oldest subject group of the four groups (subjects younger

than 30 years, 30-39 years, 40-49 years, and 50 years of age or older) was the

most visually distinguishable. The power in the harmonics of the pulse wave

decreases with age [190].

• Variations with gender: There have been many gender specific studies on

the pulse signals, which is another important dimension to be considered in

the analysis [38, 41, 59, 127]. There are gender-related differences on the left

ventricular structure and on symptomatic heart failure [72]. Such differences

were observed also in the pulsatile vascular load as indicated by AIx and other

features of the central arterial pressure waveform. In particular, females differ

significantly from males in central arterial pressure waveforms as assessed by

carotid artery tonometry. The combination of hemodynamic load, higher relative

wall thickness, and lower subendocardial ratio in women may further help to

explain their susceptibility to heart failure in states of cardiac stress.

• Cigar smoking: The effect of cigar smoking was evaluated with carotidfemoral

pulse wave velocity and wave reflection with augmentation index of the aortic

pressure waveform [198, 199]. It was observed that the cigar smoking produces

a significant increase in the pulse wave velocity (by 0.80 m/sec), denoting an

increase in aortic stiffness [182, 229].

Actually, all the above mentioned experiments were carried on the pulse signals

obtained from various locations on the body (forehead, ear, neck, wrist, finger, and toe).

At each location, the shape and the characteristics of the pulse signals are different. In

our studies, we use the pulse signal obtained on wrist, as it is easily available, and thus

is studied traditionally by the experts.
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4.5.4 Pulse Analysis in India

Important works in Indian traditional medicine include computing the pulse rate [183],

detecting peaks and other important points [168] using the wavelet method, studying

the position-specific nature [208] of the pulse wave signal, studying the Siddha-based

disease diagnosis [116], studying of gastric activities [264], and studying effect of upper

arm cuff pressure on the pulse morphology [207]. Accurate and clean quantitative

acquisition of the pulse, followed by its extensive analysis to “understand” the pulse

is still in the initial stages.

A survey driven approach (without actually acquiring the pulse signals) has been im-

plemented in [90], to understand the correlation between Tridosha (refer Section 2.3.2)

and the constitution (prakriti) of a subject. A questionnaire was designed using a

comprehensive list of 28 features for identification of the constitution. Each question

(including general physique, type of skin, style of walking, eating habits, nature of

frequent dreams) had three options for the response. Five different types of prakriti’s

were considered – VP (predominance of V and P is secondary), PV, PK, KP and

VK. By applying algorithmic heuristic approach to the exhaustive list of qualitative

features/factors commonly used by Ayurvedic practitioners, the constitution of the

subject was determined.

Another interesting work at Bhabha Atomic Research Centre (BARC) exploits the

diagnostic utility of the impedance plethysmography (IPG). It is a recording of the

blood volume changes obtained by measurement of the electrical impedance (EI) of

any part of the body [86]. Blood is a good conductor of electricity and so the amount

of blood in any part of the body is inversely proportional to the EI offered by the

body segment. Thus a recording of instantaneous EI and its first time-derivative yields

important information about the circulation. The EI is measured by passing a fixed (1–

10 mA rms) sinusoidal carrier current and recording the voltage developed along the

current path. These voltage signals resemble the pulse if taken from the wrist location.

The technique was used to study the blood flow in patients with (1) arterial occlusive

diseases, (2) valvular heart disease and (3) congenital heart diseases, and to evaluate

myocardial function in coronary artery diseases [159, 160].
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4.6 Challenges in Pulse-based Analysis

In the previous section, we mentioned various methodologies to extract important

properties of the pulse signals. Some of the attempts were successful, and few

presented preliminary observations with the future scope. Actually, the enormous

hidden information in the pulse signal and its complexity itself, though important,

is the largest challenge in the analysis of the pulse signals. Further challenges in the

analysis of the pulse signals are:

Complexity and heterogeneity of the data: This is an important limitation due to

a wide diversity in opinions of the physicians, approaches to diagnose, noting their

respective diagnosis parameters and so on. Same set of rules are sometimes not

applicable. In the acquisition of the pulse signals, data of one of the dosha locations

could be negligible (insignificant as compared to other doshas), and is considered as a

set of missing values.

Size: From each subject, three pulse signals are recorded (each with 500 Hz sampling

rate in our system). Therefore, the size of the data is very huge, especially when the

data is acquired for a longer duration. Nowadays, the memory and processing power

are not much of a concern, although analysis of the huge data could be time consuming.

Special status of medicine: Medicine has a special status in science, philosophy and

daily life. The outcomes of medical care are life or death, and they apply to everybody.

Poor mathematical characterization of the pulse: This is the most important challenge

in our study. In many physical sciences, scientists collect data which they can put

into formulas, equations, and models that reasonably reflect the relationships among

the data. In contrast, the underlying data structures of the pulse signals are poorly

characterized mathematically. The conceptual structures of the pulse consists of only

word-descriptions (and sometimes poor images). Therefore, there is no comparable

formal structure yet, into which an analyzer can organize the information, which might

be modeled by classification, clustering, regression models, or sequence analysis.
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Conclusions

In this chapter, we explained the nature of pulse signals obtained using Nadi Tarangini

through examples (more examples are provided in Appendix C). We showed that

our data has high details with important properties including rate, frequency, rhythm,

shape, reproducibility, and repleteness. Diseases or defects cause alterations in the

pulse patterns from the corresponding typical behavior. We listed out important prior

works to find effective ways of capturing such different behaviors.

The properties, challenges, and progresses of the pulse confirms the importance of

its consideration for the diagnosis. However, a variety of approaches (individually and

clubbed together) are needed to make these computer-based decisions useful and effective. Each

method will reveal different ‘property’ of the pulse. In next two chapters, we present

seven broad approaches to examine the pulse signals considering their characteristic

properties, namely period-to-period variability and nonlinear dynamics.
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C h a p t e r 5

Capturing Pseudo-periodic Behavior

In this chapter, we explain the physiologically important behavior of the

period-to-period variability of the pulse signals. Due to the pseudo-

periodicity, though adjacent pulse cycles look similar in shape, they show

different patterns.

We study the pseudo-periodic nature of a pulse signal by constructing its

pitch synchronous representation, to extract the overall trend. Based on this

trend, we propose our novel PSWT-DTW approach to compute useful time

domain parameters (TDP) of a pulse signal.

Finally, we formalize pulse rate variability (PRV) measures by computing

various time domain, frequency domain and nonlinear Poincaré based

measures. We provide evidence for the detection of disorders in patients

using these measures, paving the way for future clinical use.
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The circulatory system is composed of the heart, and blood vessels including arteries,

veins, and capillaries. To move blood throughout the body, the heart muscle contracts

rhythmically (refer Chapter 2) and systematically. Therefore, most of the signals

that arise from physical systems are oscillatory in nature. However, these signals,

including pulse signal, are not periodic in a strict mathematical sense, but fluctuate

with amplitude, frequency modulations.

The peak-to-peak variations in the ECG signals (also known as R-R intervals) are

termed as heart rate variability (HRV). The clinical relevance of the HRV was first

appreciated [75] in the year 1965, in which it was noted that fetal distress was preceded

by alterations in inter-beat intervals before any appreciable change occurred in the

heart rate itself. The clinical importance of HRV became apparent in the late 1980s

when it was confirmed that the HRV was a strong and independent predictor of

mortality following an acute myocardial infarction [14, 100, 117].

Currently, the analysis of the HRV is in advanced stages to evaluate the equilib-

rium between the sympathetic system (which accelerates the heart rhythm), and

parasympathetic system (which decelerates the heart rhythm) in cardiac pacemaker

cells [3, 30, 78, 214]. It has been shown that the properties of the HRV play an important

role in the better prognosis in patients with diabetes [66], autonomic dysfunction and

heart failure [248].

Related, but inexpensive, physiological signals derived from the finger plethysmo-

gram, and the arterial blood pressure have also been preliminarily studied for the

variability [40, 91]. It was further examined whether these intervals can be alternative

data [91, 170, 238] to the R-R intervals (ECG) for the same analysis. It was observed that

the respiratory pulse rate variability does not precisely reflect the respiratory heart rate

variability in standing healthy subjects, and in patients with low HRV. We establish

the pulse rate variability (PRV) in this chapter to show its efficacy. In future, these

alternative approaches will receive appropriate recognition in the diagnosis.
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5.1 Pseudo-periodicity

As seen in Figure 5.1, a pulse signal usually (but not always) follows a pattern of P-T-

V-D subwaves (refer Section 4.2.2). These evolutionary (period-to-period) changes in

the behavior are medically significant and are explored in this chapter.

Figure 5.1: Typical behavior of a pulse signal. A continuous, rhythmic P-T-V-D pattern is

observed. Even though the pulse cycles look similar, they vary in amplitude and pseudo-period.

The pulse signal in Figure 5.1 seems to repeat the P-T-V-D pattern in each pulse cycle,

but actually the signal contains some variations which are sometimes not visible to the

naked eye. In this example, the consecutive peak-to-peak durations are 696–678–700–

718–724 milliseconds and so are different. The signal is not mathematically periodic;

however, to classify it as non-periodic would do injustice to the systematic rhythm

present.

There are many factors responsible for such pseudo-periodicity in the physiological

signals [166]. The momentary heart rate, and the duration of the peak-to-peak intervals

is a consequence of constant interaction between

• The intrinsic activity of the sinus node

• The influence of the autonomic nervous system, various substances circulating in

the blood and present in the heart tissues
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Breathing also appears to be an important factor modulating the heart rate. It causes

heart rate acceleration during inspiration, and its deceleration during expiration. The

changes in the blood pressure modulated by baroreflex are another example of a

separate system regulating the heart rate. Further, the control of the heart rate is

modulated by both sympathetic and parasympathetic branches of autonomic nervous

system as well as many other autonomic reflexes. All these systems and reflexes are

responsible for the changing of the durations from one cycle to another.

5.1.1 Estimation of Pseudo-periods

As the pulse cycles differ from each other, detection of the start and the end of each

pulse cycle is very important for further analysis. If any one of the peaks is missed,

then the peak-to-peak distance at that missing peak will be approximately twice the

average. Conversely, the secondary peaks (e.g. D-subwave in Figure 5.1) should be

avoided.

For physiological signals, the popular methods of peak detection [13, 45, 48, 65, 146,

218] are based on threshold cutoff, wavelet coefficients, maximum rising phase of

pulse signal, and autocorrelation function. Usually with the autocorrelation function,

pitch period of the signal is computed and then pseudo-periods are searched near the

locations of the pitch period.

In our experiments, we compute the locations (start and end) directly. We make use of

the relatively high amplitudes and the steep slopes of the pulse signal with a wavelet-

based setting.

Wavelet transform (WT) helps in viewing a function at various levels of approximation

or resolution [200]. Using this concept, a complicated function can be divided into

several simpler ones and studied separately. It provides a set of wavelet coefficients

(W ), which indicate how close the signal ( f (x)) is, to a particular mother wavelet (ψ),

which are basically oscillatory functions satisfying certain properties. WT is defined

as:
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Ws,x0( f ) =
∫ +∞

−∞

1
s

ψ(
x− x0

s
) f (x)dx (5.1)

In other words, the wavelet coefficients essentially quantify the strength of contri-

bution of the wavelets at the corresponding locations (x0) and scales (s). In our

experiments, we have used the complex frequency B-spline [87] wavelet as the mother

wavelet ψ . This is defined as:

ψ(t) =
√

fb

(
sinc

(
fbt
m

))m

e2
√
−1π fct

Here, fb is a bandwidth parameter, fc is the wavelet central frequency and m is an

integer order parameter. The complex frequency B-spline wavelet has a good temporal

localization properties. The values we used are (respectively) 1, 1.5, and 1. We

computed the coefficients at scale (s) 1.

The advantage of using this mother wavelet over Haar, Morlet or Daubechies wavelets

is the observation that, whenever there is a strong singularity in the pulse signal, we

get a negative and a positive spike in both the real as well as imaginary parts with high

amplitudes. This increases the robustness of our method.

Specifically, we obtain four different coefficient series – real positive, real negative,

imaginary positive, and imaginary negative. Next, we compute the thresholded

coefficients of these four series, as shown in Figure 5.2. We observe that whenever

there is a peak in the pulse signal with high amplitude, we obtain spikes in more than

two of the coefficient series. Note that, these spikes have a lag due to the action of the

mother wavelet. Finally, we select the common spikes (i.e. peaks) among these four

combinations.

The extra efforts of selection from the four coefficient series increases the computa-

tional cost. Nevertheless, this also increases the precision in detecting peaks correctly.

As the further analysis depends upon the accurate detection of the peaks, we use this

method for better performance.
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Figure 5.2: The top block provides the input pulse signal. Subsequent two blocks are

thresholded values corresponding to positive & negative numbers of respectively real and

imaginary coefficients. We redraw the input again in the last block but also overlay the detected

peaks using our method.

Our methodology has achieved 100% detection accuracy on our database. We

have used the peak detection as a preprocessing step in various methodologies

including computing the essence of the pulse signal (Section 5.2), computing time

domain parameters (Section 5.3), studying the pulse rate variability (Section 5.5), and

quantifying self-similar nature (Section 6.1.4).

5.2 Extracting Essence of the Pulse signal

The pseudo-periodic pulse signals have a lot of redundancy between periods. The

redundancy is due to the same set of points or patterns occurring after each pseudo-

period. Therefore, pulse signals can be better represented in terms of a periodic trend

plus period-to-period fluctuations.

Conventional wavelet model does not take advantage of the pseudo-periodicity of

the signals. Therefore we consider pitch synchronous wavelet transform (PSWT) [48],

where the wavelet transform is taken over samples that are spaced period(s) apart. The

PSWT has been initially used to describe speech and musical sounds, taking advantage

of the pitch of the signal [48, 124], and then also to analyze the ECG signals [45, 46, 101],
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and in coding scheme [27].

5.2.1 Pitch Synchronous Representation

Once all the peaks of a pulse signal are accurately computed, its pitch synchronous

(PS) representation is obtained. The PS representation consists of synchronizing the

pulse segments which are alike. It has a special meaning only when the signal contains

pseudo-periodic segments, otherwise it reduces to the whole signal itself. In our

experiments, we have synchronized pulse segments of one period length. In the rest of

this subsection, we contrast two different methods in computing the PS representation.

5.2.1.1 Conventional PS representation

The conventional way of obtaining the PS representation is to arrange the peak-to-

peak segments in a two dimensional matrix termed as the PS matrix. Visually we see

segments behind other segments as shown in Figure 5.3.

However, as observed earlier in Figure 5.1, these segments do not have the same time

duration. Thus, it is necessary to remove these variations, prior to further processing,

by equalizing the segment lengths. Discretized, this results in a PS matrix; the number

of rows in the matrix is the number of pulse cycles, and the number of columns is the

number of data points in the equalized segments. The difficulty in this conventional

method for arterial signals stems from the equalization. Pre or post zero-padding is

popularly used to equalize all the segments to the maximum period length [46].

Specifically, the post zero-padding method for a pulse signal X with N +1 pulse cycles

is as follows. The pseudo-periods P(r) for r = 0,1,2, . . . ,N vary, resulting in different

lengths for the row vectors in the PS matrix. Let Pmax be the maximum value of P(r).

The PS matrix is obtained by inserting Pmax−P(r) zeroes at the end of each row vector.

Mathematically the new row vectors are defined as the sequences:

v̂q(r) = Xq(r)vq(r) (5.2)
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Figure 5.3: The top row provides the input pulse signal with five pulse cycles. The bottom

figure shows the conventional PS representation using peak-to-peak segments.

where,

Xq(r) = 1, q = 0,1, . . . ,P(r)−1

= 0, otherwise

5.2.1.2 Our PS Representation

There are two drawbacks with the conventional peak-to-peak PS representation. First,

the important P-subwaves get split into two halves at the two extremes, as shown in

Figure 5.3; clearly the computed wavelet transform in Equation 5.3 results in vastly

different approximation coefficients. Second, if the pulse signal has high variability

amongst different cycles, then the resulting PSWT will get distorted at the end with

the zero-padded region.
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To overcome these drawbacks, we place the peak of each P-subwave in the middle and

consider sections of the pulse cycle on two sides of the peak as shown in the bottom of

Figure 5.4. If Pmax is the maximum peak-to-peak distance considering all cycles, then

we use 1
3Pmax of the cycle on one side of each peak, and the remaining 2

3Pmax of the cycle

on the other side of each peak for constructing the PS matrix. While other proportions

of splitting can be chosen, our specific proportion has been chosen with the following

in mind

• All the P-T-V-D-subwaves are included in the resulting PS segments

• The splitting ensures the fidelity of the smoothness of the important P-subwave

• The splitting does not occur at the positive or negative peaks of the pulse cycles,

where the change in slopes is the maximum. Because if there is change in slopes

at locations k of the PS representation, then the wavelet transform in Equation 5.3

will result in incorrect approximation coefficients.

The negative effect due to uneven number of zero-padding is shown in Figure 5.5(b).

As will become clear in the next subsection, the DWT is computed next. Due to the

haphazard zig-zag nature of zero padding, null values will be combined with valid

values resulting in a poor trend (PSWT) signal. The advantage of our method is in

period normalization. Instead of using zero-padding of the conventional approach [26],

we make use of the whole pulse signal.

5.2.2 Computation of the PSWT

After structuring the pulse signal in the PS matrix, the DWT is applied to each of the

column vectors of the PS matrix
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Figure 5.4: The top row provides an input pulse signal with 203 pulse cycles. After peaks

detection, the bottom subfigure shows our PS representation. Unlike Figure 5.3, this method

captures the nature of the systole-diastole process.

V̂j,k,q = ∑
r

v̂q(r)ψ j,k(r) (5.3)

Signal reconstruction is possible using

v̂q(r) = ∑
j,k

V̂j,k,qψ j,k(r) (5.4)

Figure 5.6 shows the PSWT coefficients resulting from Equation 5.3. (In our exper-

iments, we have used Matlab function ‘wavedec’ with ‘db6’ as the mother wavelet.

As our database contains pulse signals with no more than 250 cycles, the DWT was

computed up to 4 scales). In the figure, the detail coefficients (D1–D4) capture the

peak-to-peak variations at the four levels. The detail surfaces are flat and contain very

small amount of energy.

100



(a) Our PS representation. (b) Conventional, zero padded PS representation.

Figure 5.5: Comparison of the PS representations. We show top views of the PS matrix, and

colors represent the amplitudes (green has value zero). Notice the predominant green in the

zero-padded region. (Figure best viewed in color.)

Figure 5.6: The PSWT coefficients of the pulse signal from Figure 5.4. The A4, D4, D3, D2,

D1 are the approximation and detail wavelet coefficients at various scales.

On the other hand, due to the pseudo-periodicity of the pulse signal, most of the energy

appears in the residue or the approximate coefficients (A4). A4 contains the underlying

pulse shape (essence) of the whole pulse signal. This is evident in Figure 5.7, where

only second A4 coefficient vector is displayed.
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Figure 5.7: The PSWT cycle from the second row of the A4 matrix (from Fig. 5.6). We observe

that the signal is smooth, and representative of the entire signal.

The PSWT Intuition

How well does the trend (PSWT) cycle relate to the pseudo-periodic signal? For

validating the computation of the PSWT, we split the pulse signal of Figure 5.4 into

4 parts of 50 cycles each. Then using the above steps, we computed the trend (PSWT)

cycles of each part. Figure 5.8 displays the superimposition of the four trend cycles.

Though the four parts contain different pulse cycles of different amplitudes and

variabilities, the four trend (PSWT) cycles are almost the same. It shows that each

pulse cycle contains the basic structure of the whole pulse signal and is reflected in the

trend (PSWT) cycle.

What happens to the trend (PSWT) cycle if the individual cycles of the pseudo-periodic

signal do not indicate a predominant P-T-V-D pattern? We see, separately, three

cycles of such a signal in Figure 5.9, where the individual pulse cycles show highly

unpredictable and vibrating patterns. However, their trend (PSWT) cycles are, once

again, smooth, and indicative of the overall behavior. Unlike the individual cycles in

the middle row, it is considerably easier to compute the time domain parameters of the

smoothed cycles as we see in the next section.
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Figure 5.8: The signal of Figure 5.4 is split into four parts and the resulting four trend (PSWT)

cycles are superimposed. The four trend cycles appear very similar.

5.3 Time Domain Parameters

The time domain parameters (TDP) [257, 272] of a pulse signal are the amplitudes and

widths at certain important locations. They are marked in Figure 5.10.

• Y-axis related parameters: These parameters are amplitude parameters denoted

by h1 (amplitude at maxima of P), h2 and h3 (amplitudes defined by T), h4

(amplitude at minima of V), and h5 (amplitude at maxima of D).

• X-axis related parameters: These parameters are width parameters denoted by

t2 (systole width), t3 (diastole width), t1 (defined by the maxima of the pseudo-

periodic cycle), and w (width of the pulse cycle at 80% height at the P-subwave

(see Figure 5.10)). In addition, the pseudo-period, WP (peak-to-peak distance

shown in Figure 5.1) is another parameter.

Important locations, on the X-axis, used to compute these parameters are called TDP

locations in this thesis. They are also marked in the figure.
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Figure 5.9: An ill-behaved pulse signal is split into 3 parts. The second row displays three sets

of three randomly selected pulse cycles. Finally, their trend (PSWT) cycles are superimposed.

Though the individual cycles are ill-behaved, their trend cycles appear similar.

The TDP on a pulse signal have been testified to be important for diagnosis [153, 272].

For example, the parameter h1 relates to the peak amplitude of the P-subwave,

reflecting the ejection function of the left ventricle and the resilience of the main artery.

The parameter t1 relates to the left ventricular ejection time [272].

5.3.1 Challenge in Computation

Note that the peak-to-peak distances (696–678–700–718–724 milliseconds) in Figure 5.1

vary due to the pseudo-periodicity of the pulse signal. Therefore, TDP also vary across

different pulse cycles in the signal.
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Figure 5.10: Time domain parameters of a cycle in the pseudo-periodic pulse signal. w refers to

the width of the P-subwave at 80% of its height). Significant locations termed TDP locations

are marked on the X-axis.

To extract the TDP of a pulse signal automatically, one idea is to start with the detection

of the TDP locations. However, often the pulse signals are vibrating in nature. Worse,

in a few cases, one or two subwaves may not be predominantly manifested. Such an

ill-behavior is commonly observed in the pulse signals acquired from elderly subjects,

or subjects with a disorder. Figure 5.11 shows nominal cases.

We emphasize that for generic pseudo-periodic signals, there could be different sets

of axes related parameters for a signal depending upon the property under study.

For example, two different sets of parameters [9] for an electrocardiogram (ECG)

could be (i) Locations and amplitudes of P-wave, QRS-complex and T-wave (for

purposes of segmentation) and (ii) Widths of P-wave, QRS-complex (for studying

blood circulation).
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(a) The pulse cycle is of the vibrat-

ing nature, and therefore multiple

candidates are available for the TDP

locations.

(b) The pulse cycle is atypical; TDP

locations have to be qualitatively

inferred.

Figure 5.11: The computation of the TDP locations becomes non-trivial for ill-behaved pulse

cycles. Manual efforts may be needed.

5.3.2 Related Work

The TDP were obtained by a manual labeling process because of these difficulties. This

becomes a huge obstacle in realizing automated pulse analysis. Recently, frameworks

have been constructed [239, 255, 272] to compute the TDP.

However, along with the pseudo-periodicity (non-stationary characteristics and incon-

sistency in the cycles), the pulse signals also show the baseline wander [263] across the

cycles due to the respiration and other physiological activities.

Therefore, though the methods in [239, 255, 272] can be claimed to be satisfactory on
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a specific data set, it is difficult to use the same method over a long pulse signal. A

primary concern is that, if a pulse signal (and thus its pulse cycles) shows ill-behavior

exemplified in Section 5.3.1, extra efforts in tuning the algorithm is involved.

5.3.3 Prior Zero-crossing Approach for TDP Computation

One of the methods to compute the TDP in [255] is easy to understand and implement.

In this method, the TDP locations (refer Figure 5.10) are obtained using the first

derivative of the pulse cycle, and looking for the zero-crossings.

Consider, however, the example in Figure 5.12 where the pulse cycle and its first

derivative are shown. It can be seen that due to the nature of the T-subwave, the zero

crossing is not obtained. The algorithm therefore tries to search, or guess, for values

by performing an automated moving δ line crossing point search to obtain what may

be called pseudo-locations of h2 and h3 values.

Figure 5.12: Figure from [255] indicating missing zero-crossings. A search is made between

the first and second zero crossing looking for values close to zero to obtain pseudo h2 and h3

parameters.

This situation of missing zero-crossings shown in Figure 5.12 was commonly observed

(refer Table 5.1) for a variety of pulse signals whether ill-behaved, or well-behaved. We
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develop an alternative method that, while not perfect, non-parametrically identifies

TDP locations in a larger number of cases as seen in Table 5.1.

5.3.4 Our Maxima-Minima Approach

In our approach we consider three sequences corresponding to the individual pulse

cycle O, and its first derivative F and second derivative S. Next, we identify the

maxima and minima locations in all three sequences. Following Figure 5.13, a subset

(locations 1 through 6) of these maxima-minima locations correspond to the desired

TDP locations. These locations are computationally identified using the flowchart

shown in Figure 5.14 where it is helpful to think of the sequences stored as arrays.

We briefly describe these steps.

Figure 5.13: Maxima and minima information of a pulse cycle O and its first and second

derivatives are pruned to reveal TDP locations.

• Step 1: Computation of the TDP location corresponding to the P-subwave,

denoted by index 1 in Figure 5.13: This is readily achieved in the peak detection

step (refer Section 5.1.1), and h1 is computed at this location.
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Figure 5.14: Our methodology for identifying TDP locations. Assessment is made in tandem

on O, F and S as described in the text.

• Step 2: Computation of the TDP locations corresponding to the T-subwave,

denoted by indices 2,3,4 in Figure 5.13: We discard items in the 1st derivative

array F if they appear before the index 1. We look for a contiguous combination

of a local minima, a local maxima and a local minima. If successful, h2 and h3 are

computed at the locations denoted by indices 2 and 3 respectively.

• Step 3: Computation of the TDP location corresponding to the V-subwave,

denoted by index 5 in Figure 5.13: Using the information computed in the
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previous step, we discard items on O if they appear before index 4. By

progressively looking for the next local minima, we succeed in identifying h4.

• Step 4: Computation of the TDP location corresponding to the D-subwave,

denoted by index 6 in Figure 5.13: We discard items in O if they appear before

index 5. By progressively looking for the next local maxima, we identify h5.

We have already indicated the potential failure in Step 2. Steps 3 and 4 can also fail if

the input pulse cycle is ill-behaved. We consider these situations below.

5.3.5 Our Approach for Ill-behaved Pulse Cycle

Ill-behaved pulse cycles may produce insufficient, or too many maxima-minimas

thereby confounding any attempt to define the TDP. Multiple (Figure 5.15(a)) local

maxima and minima locations (vibrating nature of the pulse) in the range confuses

the decision for the respective subwave. A similar situation for missing local maxima

or minima locations is shown in Figure 5.15(b). A blind application of the steps

mentioned earlier may result in out of order classification of the subwaves. For

example a V-subwave may be identified as occurring prior to the T-subwave (this

happens because of the negligible strength of the T-subwave).

To reduce incorrect values, we make use of the observation that the pulse signal follows

all the actions in a cardiac cycle (explained in Section 2.1). We postulate the following:

• Postulate 1: Subwaves P-T-V-D come in the sequential fashion.

• Postulate 2: Each subwave has a particular duration in the complete pulse cycle.

The P-subwave cannot exceed 40% of the pseudo-period (WP). The T-subwave

must be within the range of 25% to 45% of WP. Similar ranges of V-subwave and

D-subwave are 35% to 50% and 40% to 55% respectively.
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5.4 Novel PSWT-DTW Approach

Need of the PSWT-DTW Approach

Table 5.1 shows the comparison of the above two approaches for the pulse cycles of

both healthy as well as disordered labels. For each pulse cycle (total 33767) in our

database, we note the number of times the zero-crossings were detected, or missed

and then probed using the moving δ line (refer Section 5.3.3). We also indicate the

Figure 5.15: Pseudo-locations may need to be identified for the ill-behaved pulse cycles depicted

here.
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number of times the local maxima-minima locations were detected, or missed and then

probed (refer subsub:ill-behaved-pulse-cycle). As stated, the two approaches put an

extra effort in computing the pseudo-locations in the ‘missed’ situations. Note also

from the table that such ill-behavior present in pulse cycles (refer Figure 5.11) manifests

in both subjects labeled as healthy, and subjects labeled as disordered.

Healthy Disordered Total

zero-crossing [255] maxima-minima (10942) (22825) (33767)

missed and probed missed and probed 7881 17387 25268

missed and probed detected 3057 5386 8443

detected missed and probed 4 52 56

detected detected 0 0 0

Table 5.1: Comparison of the success or failure of two approaches on individual pulse cycles.

When the zero-crossings are missed, pseudo-location need to be identified. Our maxima-minima

approach reduces manual corrections.

We observe that the zero-crossing are ‘missed and probed’ in almost all the pulse cycles

(especially at the T-subwave). Our maxima-minima based approach was successful to

reduce the efforts of computing pseudo-locations for 8443 cycles of them. However,

there is still need of a robust method to remove the efforts in computing pseudo-

parameters of total 25268 cycles.

The explanation for the 52 cases for which the zero-crossing approach succeeds, but

our approach fails is as follows. In Figure 5.13, we show that our approach detects the

T-subwave, even though there is no zero-crossing. In the 52 cases, consider very same

situation along with a bumpy behavior of the T-subwave. Now, in this case, the zero-

crossing method will detect the T-subwave without the need of delta-parameter, while

our approach will get confused between the two cases (one as shown in Figure 5.13,

and the one due to bumpy behavior).

Our novel PSWT-DTW approach takes care of all ill-behaved situations, by first

computing the essence of the whole signal (Section 5.2), then computing the trend TDP

locations on this essence, and finally transferring them on each of the pulse cycles using
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DTW.

5.4.1 Proposed Method Overview

Our novel PSWT-DTW approach takes care of such situations. The key idea is that even

though each pulse cycle could be different from others, the signal has an overall trend

structure (refer Figures 5.8 and 5.9. This trend is captured in the PSWT computation

and can be exploited. The trend is usually smooth; therefore its TDP can be obtained

with no false negatives. Further, once the trend is obtained, the trend may be “applied”

on a variety of pulse cycles – well-behaved, or ill-behaved – from the same input, to

get individual TDP. Figure 5.16 shows the schematic of our proposed system.

5.4.2 Dynamic Time Warping

For mapping the TDP on PSWT cycle to each of the (subwaves of) pulse cycles in

Figure 5.16, a greedy search algorithm can be applied. However in reality, due to

nonstationarity and variability of the pulse signal, we need a method that allows an

elastic shifting of the time axis. Therefore we have used the dynamic time warping

(DTW) approach [96, 103, 176], as it allows a nonlinear mapping of one signal to

another, even if they are out of phase in the time axis, by minimizing the distance

between the two. It is a very robust distance measure for time series, allowing similar

shapes to match.

Because of this flexibility, DTW was introduced by the speech recognition community

[80] and has spread to other disciplines of application including biomedical data [223],

signature analysis [142], and bioinformatics [1].

5.4.2.1 Computation of Warping Path

The fluctuation in time is modeled approximately by a nonlinear warping function

with some carefully specified properties. Timing difference between two pulse
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Figure 5.16: The novel PSWT-DTW approach. Our approach can be used for analyzing any

pseudo-periodic signals for computing domain-specific parameters; the only change will involve

changing the method used in the lightly shaded brown block on the right. (Figure best viewed

in color.)
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subwaves is minimized by warping the time axis of one frame such that the maximum

coincidence is attained with the other. Then the time-normalization is calculated as the

individual minimized residual distance between them. This minimization process is

carried out efficiently by the DTW technique as follows [95, 180].

Consider two multivariate time series (e.g. pulse cycles) Q and C, of length n and m

respectively,

Q = q1,q2, . . . ,qi, . . . ,qn (5.5)

C = c1,c2, . . . ,c j, . . . ,cm (5.6)

where, qi and c j are both vectors such that, qi,c j ∈ ℜp with p ≥ 1. To align these two

sequences using DTW, a n-by-m matrix is constructed where the (ith, jth) element of the

matrix corresponds to the squared distance

d(i, j) =
r=p

∑
r=1

(qi,r− c j,r)2 (5.7)

To find the best match between these two sequences, one finds a path through the

matrix that minimizes the total cumulative distance between them. Such a path is

called a warping path (W). It is a contiguous set of matrix elements that characterizes

a mapping between Q and C. The kth element of W is defined as W (k) = (i, j)k. The

time-normalized distance [103] between the two time series is defined over the path

as,

DTW (Q,C) = min
W

(√
∑

k=K
k=1 d(W (k)).φ(k)

∑
k=K
k=1 φ(k)

)
(5.8)

where, φ(k) is the non-negative weighting coefficient and K is the length of the warping

path W , which satisfies the condition,

max(m,n)≤ K ≤ m+n−1 (5.9)
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The normalization is done to compensate for K, which can be different for different

cases; i.e. number of steps will be very few if too many diagonal steps are followed

and hence the objective function in Equation 5.8 will prefer such paths. Using path

normalization, the path selection procedure is made independent of number of steps

taken. The symmetric normalization [103] has been used for this purpose.

φ(k) = (i(k) · i(k−1))+( j(k) · j(k−1)) (5.10)

Note that for a horizontal or a vertical step, the value of φ(k) is 1, but for the diagonal

step, it is 2. The path, however, is constrained to the following conditions [103]:

• Boundary conditions: The path must start at W (1) = (1,1) and end at W (K) =

(n,m).

• Continuity and monotonic condition: Every point in the two time-series must

be used in the warping path, and both i and j indexes can only increase by 0 or

1 on each step along the path. In other words, if we take a point (i, j) from the

matrix, the next point must be either of (i, j +1), (i+1, j +1) and (i+1, j).

• Warping Window condition: The path as we know intuitively, should not

wander too far from the diagonal.

The warping path for maximum coincidence between the PSWT cycle (P1) and the

pulse cycles (P2) under consideration is shown in Figure 5.17. The two pulse cycles

P1 and P2 get reorganized for the optimum matching. We utilized the DTW concept

for the purpose of online pattern matching. The result of the algorithm is illustrated in

Figure 5.18 for warping the PSWT cycle (P1) to the sample pulse cycle (P2). Different

colors are used to indicate the corresponding locations of the subwaves.

5.4.3 Observations

Our novel PSWT-DTW approach is summarized in Figure 5.19. We now present the

results of our approach. First, we show that the PSWT cycle captures the trend. Then
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Figure 5.17: The PSWT cycle (P1) is on x-axis, while a sample pulse cycle (P2) is on y-axis.

The warping path indicates the maximum coincidence between the two.

Figure 5.18: Cycle on top is one of the cycles of pulse signal, while PSWT cycle is at bottom.

Using DTW, we achieve nonlinear elastic matching between the two cycles.

we validate our novel PSWT-DTW approach both in a summarized quantitative form,

and in a manual ground truth-based qualitative form.
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The classification results, for detecting 10 different behaviors of the pulse signals,

are presented later in Section 7.3. We use two feature sets as the input vectors

to the classifier, namely (a) TDP individually computed on the pulse cycles using

our maxima-minima based approach, and (b) TDP computed using our PSWT-DTW

approach. We show that the classification performance is improved with the second

feature set.

Figure 5.19: Method overview. We wish to extract the TDP of individual cycles in a pseudo-

periodic signal. The dotted, black path displays the conventional approach which employs a

generic method. On the other hand, we use the PSWT (bold blue arrow) to capture the trend

values (dashed, red arrow). Now this trend information is further used along with the dynamic

time warping (green arrows), to obtain the TDP of all cycles.
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5.4.3.1 Capturing the Trend TDP on the PSWT Cycle

To show that the PSWT cycle captures the overall trend values, we take an example of

a long pulse signal with 197 pulse cycles. First, we compute the TDP on the individual

197 pulse cycles using our maxima-minima based (Section 5.3.4) methodology. Then,

we obtain the PSWT cycle of the signal (Section 5.2.2) and compute the TDP on this

cycle using our maxima-minima based methodology.

The statistics of the TDP of the signal are shown with black values (197 values for each

parameter) in Figure 5.20. The TDP of the PSWT cycle are shown in red circles. It is

clear that the trend TDP is a good approximation to any individual parameter. We

summarize these values in Table 5.2.

Figure 5.20: TDP of a pulse signal with 197 pulse cycles. The black points indicate the TDP

computed from individual pulse cycles. The TDP of the PSWT cycle is indicated by red circles.

(y-axis values are normalized.)
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TDP Individual 197 pulse cycles PSWT cycle

(mean ± std.dev.)

h1 0.10 ± 0.0037 0.0974

h2 0.08 ± 0.0029 0.08

h3 0.058 ± 0.0054 0.06

h4 0.044 ± 0.0036 0.048

h5 0.056 ± 0.0017 0.056

t1 63.48 ± 1.48 62

t2 144.89 ± 4.36 139

t3 204.62 ± 15.63 220

WP 349.51 ± 15.89 359

w 61.27 ± 4.72 66

Table 5.2: Comparison of statistics in the computation of TDP. We observe that the PSWT

cycle captures the trend values.

So far, summary statistics appear meaningful. For further validation, we present the

comparison for randomly chosen 100 subjects (from a total 263) in Figure 5.21. All

the TDP are on the y-axis. For each parameter, we display 100 values of both the

conventional approach and our approach. The black line corresponds to the second

column (conventional approach) in Table 5.2. On the other hand, the red line represents

the TDP computation using our PSWT-based approach.

5.4.3.2 Effectiveness of Our Novel PSWT-DTW Approach

So far we have shown that if the pseudo-periodic signals are well behaved (“typical”)

then both the conventional approach and our PSWT trend approach results in values

that are virtually distinguishable in a macro sense. The advantage of our approach

becomes more clear when we consider poorly behaved signals. We compare the TDP

using two approaches:

• Approach 1: TDP obtained for each pulse cycle using the maxima-minima based

120



Figure 5.21: Comparison between the two approaches of computing TDP. Black points

correspond to the second column (mean values) of Table 5.2 and red points to the third column

(PSWT-based approach). The two colors follow each other, which makes PSWT cycle acceptable

for mapping in the next step. (Figure best viewed in color.)

method (Section 5.3.4).

• Approach 2: TDP obtained for each pulse cycle using our novel approach by first

computing the trend TDP locations on the PSWT cycle, and then transferring

through DTW.

121



We show three examples indicating the comparison in Figure 5.22. To facilitate

comparisons, we also mark the TDP locations manually. In our experiments, the TDP

of a signal computed using Approach 1 requires less than a second, while Approach 2

requires more than 10 seconds due to extra steps (computation of the PSWT and DTW

paths).

Figure 5.22: Comparison showing the effectiveness of our novel PSWT-DTW approach

(Approach 2). The green star, blue filled circles, and red circles (respectively) indicate the

ground truth, results from Approach 1 (black path in Figure 5.19) and Approach 2 (red path in

Figure 5.19) respectively. Approach 2 detects the TDP locations accurately even for ill-behaved

pulse signals.

When the pulse signal shows a typical behavior (example a), both approaches work

equally well in computing the TDP. However, in the case of ill-behaved pulse signals,

122



our novel approach (Approach 2) works better. Specifically,

• In the case of vibrating pulse signal (example b), Approach 1 gets confused

among many maxima and minima points and thus sometimes provides false

TDP locations. On the other hand, in Approach 2, the trend locations are already

computed on the smooth PSWT cycle and then are transferred in their vicinity for

every pulse cycle.

• In the case of the pulse signal with the missing T-subwave (example c), corre-

sponding locations involve a search for h2 and h3 locations for every cycle in

Approach 1. On the other hand, in Approach 2, the search is done only for one

PSWT cycle (assuming that the T-subwave is also negligible in the PSWT cycle)

and are then transferred to each cycle.

In terms of limitations, our approach requires accurate computation of the trend TDP

of the PSWT cycle, as an error in this computation will result in replication on all

pulse cycles through the DTW mapping. However, as the computation of the PSWT

always results in a smooth trend cycle as explained in Section 5.2.2, the chances of false

detection in our approach are less.

When a doctor in traditional medicine diagnoses a subject by feeling the pulse, he

or she considers both the average as well as varying values of the pulse parameters

such as amplitude, frequency, energy and so on [104] (which can be easily expressed

in terms of the TDP). We have accomplished both through our PSWT-DTW approach.

The PSWT stage helps to analyze the average behavior (essence) of the entire pulse

signal, and furthermore, final results take account of the period-to-period variabilities

on several scales.

Other Application: Detection of P-wave in the ECG signal

Our novel approach can be suitably applied in other applications whenever we

see signals with pseudo-periodic nature. There could be different sets of X-axis

related parameters for a signal depending upon the property under study. For

example, two different sets of parameters for an electrocardiogram (ECG) [9] signal
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could be (i) Locations and amplitudes of P-wave, QRS-complex and T-wave (for

purposes of segmentation) and (ii) Widths of P-wave, QRS-complex (for studying

blood circulation).

Consider an example of detecting important P-waves [47, 212] in the P-QRS-T patterns

of an ECG (refer Section 2.1). This detection can be tedious due to the varying slopes

and amplitudes of P-waves. Our approach can be suitably used as follows:

• First, peak detection step (Section 5.1.1) will provide the peaks at the QRS-

complex in the ECG signal.

• In obtaining the PS representation, the conventional peak-to-peak segments

will result in splitting the important QRS-complex. Instead, our approach will

consider portions on both sides of the peak, such that the P-wave, QRS-complex

and T-wave will have significant durations in the segments of pseudo-periods.

• The PSWT of the ECG signal is now computed to obtain the trend (ECG) cycle.

• Any preferred algorithm for detecting P-wave locations (such as [47, 212]) is

applied on this trend (ECG) cycle.

• Finally, nonlinear DTW-based mapping is used to transfer these detected P-wave

trend locations back to each of the ECG cycles.

5.5 Pulse Rate Variability Measures

As said earlier, the clinical importance of the heart rate variability became apparent in

the late 1980s, to evaluate the equilibrium between the sympathetic system (which

accelerates the heart rhythm), and parasympathetic system (which decelerates the

heart rhythm). It has been shown that the properties of the HRV play an important

role in the better prognosis in patients. Related, but inexpensive, physiological signals

derived from the finger plethysmogram [40, 91] has also been preliminarily studied for

the variability.

In this section, we establish the efficacy of the pulse rate variability (PRV). We show
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that various time-domain, frequency-domain and nonlinear measures are useful in

studying the variations in the arterial pulse intervals (API) signals. Note the example

of a typical pulse signal in Figure 5.1. The API signal is obtained by computing the

peak-to-peak distances as shown in Figure 5.23.

Figure 5.23: Typical behavior of a pulse signal. The API signal is the sequence of its peak-to-

peak distances (696–678–700–718–724 milliseconds and so on).

5.5.1 Time-domain Measures

These are different than explained in Section 5.3, which were related to the important

locations on a pulse cycle. Time-domain measures (TDM) may be divided into two

classes, (a) those derived from direct measurements of the API (e.g. SDPP), and

(b) those derived from the differences between API (e.g. SDAPP). The time-domain

measures of PRV are summarized in Table 5.3. Each measure extracts particular

significance of the API signal.

Statistical measures: The standard deviation (SDPP) reflects all components respon-

sible for the variability. The measures PP50 and pPP50 estimate high frequency

variations. In the experiments, we standardize the length of the API signal in the

computation of measures which depend upon the length (such as SDPP).

Geometric measures: The API are converted into a geometric pattern, such as the

sample density distribution of API, or the differences between adjacent API. Then, the

measures are computed on these patterns. E.g. the PP triangular index measurement

is the integral of the density distribution (i.e. the number of all API) divided by the

maximum of the density distribution. The major advantage of geometric methods (PP

triangular index & TIPP) lie in their relative insensitivity to the quality of the API signal
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[148].

Variable Units Description

AVPP & SDPP ms Mean and standard deviation of the API

SDAPP Standard deviation of the mean of API in segments

ASDAPP Mean of the standard deviation of API in segments

RMSSD ms The root mean square of differences of

successive API

PP50 count Number of consecutive PP intervals that differ

more than 50 ms

pPP50 % The percentage value of consecutive API that differ

more than 50 ms

PP triangular index The integral of the sample density distribution (SDD) of

API divided by the maximum of the density distribution

TIPP ms Baseline width of the minimum square difference triangular

interpolation of the maximum of the SDD of API

Table 5.3: Time-domain measures of API.

5.5.2 Frequency-domain Measures

It has been widely accepted that the very low frequency oscillations are related to

the thermoregulatory system, the low frequency oscillations to the vasomotor activity,

and the high frequency oscillations to the respiratory activity [189]. We have already

mentioned that the sympathetic and parasympathetic branches of the autonomic

nervous system have differing characteristic time constants. The high frequency power

is a measure of parasympathetic tone, while the low frequency power reflects both

sympathetic and parasympathetic activity [214]. The LF/HF ratio, when high, is

considered to reflect dominance of sympathetic activity, and when low, is thought to

reflect dominance of vagal activity. We consider three frequency bands as very low

frequency (VLF, 0–0.04 Hz), low frequency (LF, 0.04–0.15 Hz), and high frequency (HF,

0.15–0.4 Hz).
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Though the pulse signal is a regularly sampled (at 500Hz) data, the API is inherently

irregularly spaced in time. Therefore in our experiments, we firstly resample this

irregularly time-sampled API signal before the computation of the frequency-domain

measures (FDM).

We compute the power spectral density (PSD) of the API using parametric and

nonparametric approaches and then choose the appropriate powers from the above

mentioned ranges. The PSD analysis provides the basic information of how the power

(i.e. variance) is distributed as a function of frequency. We compute the PSD using

the fast Fourier transform (FFT) [nonparametric] model, and the autoregressive (AR)

[parametric] model. The representation of LF and HF in normalized units emphasizes

the controlled and balanced behavior of the two branches of the autonomic nervous

system [148].

Table 5.4 lists the FDM computed from PSD using both the parametric and nonpara-

metric approaches.

Variable Units Description

Peak frequency Hz Peak frequencies of the PSD estimate for VLF, LF,

and HF frequency bands (see §5.5.2)

Power ms2, % Respectively for VLF, LF, and HF frequency bands

Power n.u. Respectively for LF, and HF frequency bands in

normalized units

LF/HF % Ratio of LF and HF frequency band power

Table 5.4: Frequency-domain measures.

Representative examples of power spectrums of the PRV for various disorders are

shown in Figure 5.24[a-b] and Figure 5.25[a-b]. Only two frequency bands are studied

here, LF and HF. We applied our PRV method, an alternative to the HRV, to many

subjects and observed that most of the results of LF/HF measure are consistent with

the HRV results obtained earlier in the literature.
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(a) No disorder (b) Stress

Figure 5.24: Power Spectrums of pulse signals acquired from different subjects, computed

using the nonparametric FFT spectrum approach.

(a) Diabetes (b) High BP

Figure 5.25: Power Spectrums of pulse signals acquired from different subjects, computed

using the parametric AR spectrum approach.

5.5.3 Nonlinear Poincaré-based Measures

It has been speculated that analysis of the HRV based on methods of nonlinear

dynamics might elicit valuable information for the physiological interpretation of the

HRV and for the assessment of the risk of sudden death [174]. We use the easy to

comprehend nonlinear method of the Poincaré plot. The method summarizes the
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entire recording, at the same time making it possible to extract the information on both

short as well as long time behavior [170] of the system (API in this case). It is both: A

visual technique which can make use of the human eye’s ability to recognize patterns,

and a quantitative one, in the sense that it introduces various measures to quantify the

information contained in the Poincaré plot.

Poincaré plot is a graphical presentation of the correlation between consecutive values

(PP) in API signal. Thus, each PP is plotted against the next one. For an API signal with

healthy behavior, we obtain a comet-like shape, similar to the one shown in Figure 5.26.

The reason is that for healthy behavior, the consecutive PP values usually contain very

close values, even though the overall variability is high.

Figure 5.26: A sample API signal and its Poincaré plot. SD1 and SD2 are the dispersions of

points perpendicular and along the axis of line-of-identity.

As shown, an ellipse is fitted on the line-of-identity at 45o to the normal axis [148] so

that maximum density is achieved. SD2 is defined as the standard deviation of the

projection of the PP on the line of identity (y = x), and SD1 is the standard deviation of

projection of the PP on the line perpendicular to the line of identity (y =−x).
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Observations. In the Poincaré plot, the points towards the top right indicate two

consecutive increasing intervals (implying that the pulse rate is decreasing), while

the bottom-left points indicate two consecutive decreasing intervals (implying that

the pulse rate is increasing). The Poincaré plot summarizes the entire data as SD2

indicates the long-term variability, and SD1 indicates the short-term variability (mainly

caused by respiratory sinus arrhythmia). Table 5.5 lists all the nonlinear Poincaré-

based measures. We observe variations in the plots for different API signals.

Variable Units Description

centroid The centroid of the ellipse (see §5.5.3)

SD1 ms The standard deviation perpendicular to the line-of-identity

SD2 ms The standard deviation along the line-of-identity

SD1/SD2 SD1 to SD2 ratio

Table 5.5: Nonlinear Poincaré-based measures.

Variations with age. As the age increases, the heart rate and the pulse rate decreases.

In other words, it results in increase of the pulse intervals. This can be verified in the

Poincaré representation as shown in Figure 5.27. The elliptical area shifts along the

line-of-identity as the age increases from 2 months to 45 years.

Capturing arrhythmic behavior. In Figure 5.28, we display the Poincaré plot of an API

signal of arrhythmic behavior, where the third beat is missing (every now and then).

The Poincaré plot in this case shows a different coverage of points. The region of the

small durations followed by large durations and that of the large durations followed

by small durations get easily separated. Thus, such abnormality in a pulse signal can

be easily visualized (detected) using this technique.
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Figure 5.27: The elliptical area on the Poincaré plot shifts as age increases.

Figure 5.28: Poincaré plot of an arrhythmic pulse shows two distinct areas instead of a typical

elliptical behavior.
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Conclusions

In this chapter, we explained the physiologically important pseudo-periodic nature

of the pulse signals. Though adjacent pulse cycles look similar in shape (usually

composed of P-T-V-D subwaves), they show different patterns. These evolutionary

(period-to-period) changes in the behavior are medically significant.

A novel PSWT-DTW approach was established to compute various time-axis related

parameters taking advantage of the pseudo-periodicity of the signals. Our novel

approach reduces the efforts of searching the pseudo-locations when they have either

confusing or overlapping values. Specifically, the tedious efforts of searching for the

parameters in the ill-behaviors were reduced at two stages. In the computation of

TDP, we have developed a maxima-minima based approach to avoid the searching of

pseudo parameters arising due to the false negatives of missing zeros. Furthermore,

our novel PSWT-DTW approach helps for two reasons. First, the resulting trend

(PSWT) cycle is smooth in nature and second, the efforts (if any) of tuning the TDP

are only for one PSWT cycle.

We established the pulse rate variability (PRV) by computing various time-domain

(TDM), frequency-domain (FDM), and nonlinear Poincaré based measures. We

showed their efficacy in capturing variations with age, and in detecting various

disorders including high BP, diabetes, skin disorder and arrhythmic behavior. All our

methods find scope in future clinical use.
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C h a p t e r 6

Capturing Nonlinear Dynamics

Extensive research has been done to show that heartbeats are composed of the

interaction of many physiological components operating on different time

scales, with nonlinear and self-regulating nature [8, 62, 64, 70]. The beat-

to-beat variations of the heart are members of a special class of complex

processes – those which are inhomogeneous, non-stationary, and display

chaotic properties [25, 82, 83].

The chaotic behavior is highly sensitive to the initial conditions. So, a small

change in a parameter can lead to sudden and dramatic changes in the

behavior of the system. Nonlinear dynamics is concerned with the study

of such systems whose time evolution equations are nonlinear. Poincaré

showed that no matter how clever we are, we won’t be able to write down

the equations that solve many nonlinear systems.

A chaotic system with strong dependance on the initial conditions is better

visualized through a phase space, whose coordinates describe the dynamical

state at any instant. A dynamical rule is used to specify the immediate future

trend of all state variables, given only the present values of those same state

variables.
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In this chapter, we study the nonlinear dynamics of the arterial pulse signals.

We have shown – for the first time – that the pulse (API signal) exhibits

a chaotic self-similar nature, and requires a large number of exponents to

characterize their scaling properties. We systematically study the chaotic

properties, fractal nature, and structures of the pulse signals, respectively

through the recurrence plot-based analysis, local Hölder exponents &

multifractal spectrum-based analysis, and the topological analysis. We also

analyze their variations for different subjects.

6.1 Fractal Nature

The fractal structures are resulted from an iterative process (at every scale of observa-

tion) such that when their pieces are compared to larger pieces or to those of the whole,

they prove similar to each other. However, in practical applications, such similarity has

some limitations, and minute variations are observed.

The pulse signals show a complex nature as a result of the interaction of many

physiological components operating on different time scales. These interactions

are nonlinear and self-regulating (rhythmic heart action) through feedback control,

leading to the nonlinear character. Due to these actions, the pulse signal is also part

of such complex system. This indicates that different parts of the signal (both pulse

and API) have different scaling properties, and thus it is natural to expect the need for

many exponents to characterize them.

6.1.1 Self Similarity of the API Signal

Detrended fluctuation analysis (DFA) was introduced in [161] to improve on root mean

square analysis of highly non-stationary data, by removing non-stationary trends from

a long-range-correlated time series [43].

Figure 6.1 illustrates the DFA algorithm briefly. A key issue of the DFA-analysis is
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that the extrinsic fluctuations from uncorrelated stimuli can be interpreted as “trends”,

and decomposed (by detrending across time scales) from the intrinsic dynamics of the

system itself [129].

Figure 6.1: (a) An example of an API signal. (b) y(k) (in green), and local trends for n = 20

(in red) and n = 40 (in black). (c) Log-log plot of F(n) versus n shows a linear trend indicating

the presence of self-similar nature.

Consider a peak-to-peak (API) signal f (i) [i = 0, . . . ,N−1] shown in Figure 6.1 (a). First,

f is suitably integrated y(k) = ∑
k−1
i=0 ( f (i)−M) where M is the mean. (Notice that values

of f (i)−M are signed.) y(k) is now divided into boxes of equal width n and the least-

square line fitting the data in each box, yp,n( j), j = 0 . . .(N/n)−1, p = 1 . . .n, is computed.

The integrated time series is then detrended by subtracting the local trend yp,n( j), and

the root-mean square fluctuation of the entire detrended series, F(n) is computed [81]:
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F(n) =

√√√√(
1
N

N

∑
k=0

[y(k)− yp,n(bk/nc)]2) (6.1)

As shown in Figure 6.1 (b), y(k) is the solid green curve and the vertical dotted lines

indicate boxes of width n = 20. The red and black straight line segments represent

the trends estimated in each box of sizes n = 20 & n = 40 respectively by a linear least-

squares-fit. Note that the typical deviations for the two lines is different. F(n) is now

plotted against the box width n for various values in Figure 6.1 (c). The two highlighted

points in red are for n = 20 & n = 40.

Typically, F(n) increases with the box size n. The linear relationship on a log-log graph

(Figure 6.1 (c)) indicates the presence of power-law scaling (self-similarity), such that

fluctuations in small boxes are related to the fluctuations in larger boxes in a power-law

fashion. The slope of the line relating log(F(n)) to log(n) determines the fractal scaling

exponent.

DFA on absolute and signed values: In another experiment, self scaling is observed

if we take absolute values (i.e., | f −M|). A similar nature is found if f −M is

approximated to be a binary number (1 or -1). These situations (Figure 6.2) have been

previously explored for beat-to-beat patterns of ECG [82].

Figure 6.2: Linear DFA plots for absolute and signed values of an API signal.
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6.1.2 Hierarchical Organization of Singularities

6.1.2.1 Wavelet Action

In the early nineties, a statistical approach based on the continuous wavelet transform

was proposed for singular measures and multi-affine functions [11, 144]. The (continu-

ous) wavelet transform, with its ability to remove local trends, and to extract inter-beat

variations on different time scales, enables us to identify fractal patterns in the pulse

fluctuations.

As already explained in Section 5.1.1, the wavelet transform (WT), Ws,x0( f ), provides a

way to analyze the local behavior of a signal f , which is a convolution product of the

signal with the scaled(s) and translated(x0) kernel.

Ws,x0( f ) =
∫ +∞

−∞

1
s

Ψ(
x− x0

s
) f (x)dx (6.2)

where s is the scale parameter and x0 is the translation parameter.

6.1.2.2 Wavelet Transform Modulus Maxima

The continuous wavelet transform (CWT) in Equation 6.2 is an extremely redundant

and a computationally expensive representation. Therefore, we have employed

wavelet transform modulus maxima (WTMM) method [79, 167, 174, 203], which

changes the continuous sum over space into a discrete sum by taking only the local

maxima. Figure 6.3 illustrates the branching structure of the WTMM skeleton in the

(scale,time). It indicates the hierarchical organization of the singularities.

The WTMM particularly takes advantage of the space-scale partitioning given by this

skeleton to define a series of exponents τ(q) through the partition functions Z(s,q) of

qth moment [11, 144]. Z(s,q) is defined as the sum of the qth powers of the local WTMM

coefficients at scale s.
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Figure 6.3: A sample pulse signal, its CWT, and corresponding WTMM tree. The branching

structure of the WTMM tree is useful in extracting the hierarchical organization of the

singularities.

Z(s,q) = ∑
Ω(s)
|W ( f )|q ∝ sτ(q) (6.3)

where Ω(s) is the set of all maxima at the scale s. Here, q has the ability to select a

desired range of values [83]:

• For large negative q, weak exponents are addressed, while strong exponents are

filtered out.

• For large positive q, strong exponents are addressed, while weak exponents are

effectively filtered out.

6.1.3 Local Hölder Exponents

For a time series f , if there exists a polynomial Pn of degree n < h and constant C, such

that
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| f (x)−Pn(x− x0)| ≤C|x− x0|h (6.4)

the supremum of all exponents h(x0) ∈ (n,n+1) is termed the Hölder exponent, which

characterizes the singularity strength. It is evident [185] that the Hölder exponent

describes the local regularity of the function (or distribution) f . The higher the value

of h, more regular is the local behavior the function f . Thus it characterizes the scaling

of the function locally and the distinct scaling behavior of different signals can be

exploited to characterize and classify time series.

The ability of WT (refer Equation 6.2) to reveal even the weaker singularities within

the time series by adjusting s makes it an indispensable tool for singularity analysis.

This is formalized by its relation [144] with the Hölder exponent:

Ws,x0( f ) ∝ |s|h(x0), s→ 0 (6.5)

6.1.3.1 Stable Computation

The WTMM-based formalism (Section 6.1.2.2) provides global estimates of scaling

properties of a time series (pulse signal). Recently, it has been found that even though

such global estimates of scaling is often a required property, local analysis may provide

more useful information.

In the traditional form, the estimation of local singularity strengths and their spectra

may not be possible due to the fact that in real life data, the singularities are not isolated

but densely packed. This causes the logarithmic rate of increase or decrease of the

corresponding wavelet transform maximum line to fluctuate. But very recently, Struzik

[202, 204] has provided a stable methodology for estimating the local exponents, in

which he has modeled the singularities as if they were created through a multiplicative

cascading process. This method has been successfully applied for classification of

human gait [185].
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The method [185, 204] is as explained below. The mean Hölder exponent h is given by

log[M(s)] = h log(s)+C (6.6)

where
M(s) =

√
Z(s,2)
Z(s,0)

(6.7)

Employing the multiplicative cascade model, the approximate local Hölder exponent

ĥ(x0,s) at the singularity x0 can now be evaluated as the slope:

ĥ(x0,s) =
log(|Ws,x0( f )|)− (h log(s)+C)

log(s)− log(sN)
(6.8)

where sN is the length of the entire wavelet maxima line tree, that is, the maximum

available scale that coincides with the sample length sN = N, and x0 belongs to the set

Ω(s) of all wavelet maxima at the scale s that assume the value Ws,x0( f ).

Methodology: Figure 6.4 and 6.5 shows two examples of the computation of the

WT and local Hölder exponents. The procedure is as follows. We first compute the

continuous wavelet transform of a pulse signal. We have used the second derivative

of the Gaussian function, i.e. Mexican hat, as the analyzing wavelet. This wavelet is

extensively used, as it possesses good localization capabilities in both position and

frequency. Then we compute the local Hölder exponents as explained above. We

then compute the probability density of these local Hölder exponents, and then fit

this density with a Gaussian kernel.

The local Hölder exponents capturing the singularity strengths at the peaks of the

signal, e.g. , are highlighted. Note that the exponents are observed in the vicinity of

the peaks on the time-axis. Therefore, it is clear from the examples that, the time-scale

localization properties of the wavelets reveal the underlying hierarchy of exponents

defining the singularities of the pulse signal.
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Figure 6.4: (a) Sample pulse signal of diabetes behavior, (b) Continuous wavelet transform

(CWT), (c) Wavelet transform modulus maxima (WTMM) tree, (d) Local Hölder exponents

(LHE) at scale one, and (e) Probability density of LHE at scale 1. Note that the local Hölder

exponents at red circles capture, e.g. , the singularity strengths at the peaks in the pulse signal.
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Figure 6.5: (a) Sample pulse signal of skin disorder behavior, (b) Continuous wavelet transform

(CWT), (c) Wavelet transform modulus maxima (WTMM) tree, (d) Local Hölder exponents

(LHE) at scale one, and (e) Probability density of LHE at scale 1. Note that the local Hölder

exponents at red circles capture, e.g. , the singularity strengths at the peaks in the pulse signal.
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6.1.3.2 Combination of Wavelet Scales

Prior works, such as [185, 205] have used only the lowest scale in the computation of

LHE, for different applications. But, we make use of the properties of the wavelet

transform that it captures different information at different scales (or resolutions).

Figure 6.4 and 6.5 displays two cases of pulse signals and their local Hölder exponents.

Now, we present more examples, in Figure 6.6, of the computation of local Hölder

exponents at various wavelet scales. This dataset contains pulse signals from 22

subjects of diabetes behavior and 13 subjects of skin abnormalities. The results for

Tridosha locations (refer Section 4.2.2) are provided.

The probability densities of the exponents for the two behaviors in the figure show

different patterns for each of the scales, and hence there is an opportunity of the

classification. Furthermore, the densities show different patterns, for the same

behavior, across different scales. Actually, keeping Equation 6.5 as a reference, the

local Hölder exponents capture different singularity strengths at different wavelet

scales. Therefore in future, selection of lower wavelet scales, computing more and more

informative local singularity features, and selecting the best features would provide

better classification results.

6.1.4 Multifractal Spectrum

The finding of power-law correlations through detrended fluctuation analysis (Sec-

tion 6.1.1) indicates the presence of scale-invariant, fractal structures in the pulse.

Multifractal time series are self-similar only in local ranges of the structure, their fractal

measure does vary in time; hence they can be characterized by a set of local fractal

measures. We used the wavelet transform modulus maxima-based formalism [144] to

capture the spectrum of these fractal measures of the API signals.

In Equation 6.3, we observe that τ(q) is a nonlinear function, which indicates that the

pulse is a multifractal signal. The local tangent slope to τ(q) gives the corresponding

exponent h(q). The related dimensions D(h) for each value of h form the spectrum of
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Figure 6.6: Comparison of probability densities of the local Hölder exponents of various pulse

signals. The blue color is for the skin disorder behavior and the red color is for the diabetes

behavior. Note the differences in the patterns of the densities for different wavelet scales.

singularities of the signal. Formally, the transformation from τ(q) to D(h) is referred to

as the Legendre transformation [11]:

h(q) = dτ(q)/dq (6.9)

D[h(q)] = q h(q)− τ(q) (6.10)
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Observations

In our experiments, we first extracted peaks in a pulse signal using a complex

frequency b-spline wavelet (Section 5.1.1) to obtain the arterial pulse intervals (API)

signal. The length of each API was at least 250. We obtained the multifractal spectra

for all the API signal in the database as explained above.

Variations with Age

Figure 6.7 shows the results of the vata pulse signals from the left hand of the subjects

of normal behavior. The spectra are colored according to the subject’s age as – ‘below

25 years’ (G1), ‘25–50 years’ (G2), and ‘above 50 years’ (G3) respectively. We observe

that the multifractal spectrum drifts to higher values of h, as the age increases.

Figure 6.7: Variations in multifractal spectra for three age-groups with normal behavior.

Variations with Disorder

Figure 6.8 shows the results. In this case, the multifractal spectra of volunteers in the

age group G3 have been chosen. It can be seen that the spectra vary, and hence there

is an opportunity for classification. These spectra were for the pulse signals obtained

from the vata location on the left hand; but again, similar behavior was observed for all

pick-up positions.
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Figure 6.8: Variations in multifractal spectra for subjects in group G3 with normal, diabetes

and skin abnormalities behaviors.

The varying ranges of the D(h) spectrum (Figure 6.7 and Figure 6.8) for various

disorders may be useful in detection of various types of nadi. These results are con-

sistent with the heart-beat results from [234], which state that a person’s multifractal

spectrum is controlled mainly by his/her neurosystem. With advancing age, the

neuroautonomic control of a person’s body on the ECG decreases and tends from

multifractality to monofractality. We provide the ratios of areas under the spectra in

the Table 6.1. We observe that the areas under G2 have higher values as compared

to those under G3. This reinforces the result in [234] that the areas under multifractal

spectrum of young adult subject is larger than the older ones.

Left Hand Right Hand

G1 G2 G3 G1 G2 G3

Normal 14.95 15.23 14.82 15.04 15.40 13.71

Diabetes – – 14.36 – – 15.27

Skin Disorder 13.67 – 14.25 14.82 – 13.47

Table 6.1: Ratios of areas under the multifractal spectra for multiple age groups, and varying

disorders.
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6.2 Chaotic Nature

One of the conventional approaches of studying the complex chaotic system is to

compute its Lyapunov exponents. The computation of Lyapunov exponents on our

pulse signals resulted in positive numbers, which indicates that the pulse signals

contain chaotic properties, such that the behavior depends upon the initial conditions.

However, this computation (or computation of fractal dimensions, correlation dimen-

sions) suffers from the curse of dimensionality, and requires rather a long data series.

Therefore, we have studied the chaotic behavior through the recurrence plot (RP) based

analysis, as RPs make no such demands [122]. We felt that RPs could be useful in the

pulse-based analysis, where the dynamics is changing.

6.2.1 Recurrence plot

Small disturbances in parameters in a dissipative dynamical system causes exponential

divergence of its state, but the system (pulse signal in our case) comes back to a state

that is arbitrarily close to a former state, and passes through a similar evolution. This

property is called recurrence [122].

Recurrence plot (RP) [42] is a graphical tool which helps visualize the recurrent

behavior. RPs have found utility in a wide range of scientific explorations, including

geophysics [121], dynamics [217], neuronal spike trains [92], electromyographic EMG

data [241], and intracranial EEG recordings [164].

The collection of all possible states of a recurrent system is called the phase space

of the system. However, for a chaotic dynamical systems, the phase space, and a

mathematical description of the system are often unknown. Attractor reconstruction

methods have been developed as a means to reconstruct the phase space. One or more

signals from the system must be observed as a function of time.

An embedding procedure is commonly used to obtain the phase space from a one-

dimensional time series (pulse signal in our case). Using the method of time delays,

the points on the attractor are constructed from a time series x as follows:
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~xi = x(i),x(i+ τ),x(i+2τ), ...,x(i+(m−1)τ) (6.11)

where ~xi are the new vector points, x(i) is a sampled data point at time i, τ is a constant

time delay, and m is the embedding dimension. Refer Section 6.3.1.1 for more details

on the embedding procedure, to obtain the phase space of a time series.

6.2.2 Visualization

The recurrence of the embedded time series can be noted by observing all the

situations, where a state at position i is close (recurrent) to that at a later position j. In

the recurrence plot, such situation is represented by a black dot at i versus j location.

Therefore, a high-dimensional phase space trajectory is conveniently visualized in the

recurrence plot as a matrix of black dots (close recurrent situations) and white dots

(apart non-recurrent situations).

Mathematically, whenever the Euclidian distance between these two vectors ~xi and ~x j

is less than a fixed radius ε , the two states are said to be close. It is expressed as:

Ri, j = Θ(ε− ‖ (~xi)− (~x j) ‖); ~xi,~x j ∈ Rm, i, j = 1, . . . ,N (6.12)

where N is the number of states ~xi considered for the analysis, ε is the radius, ‖‖ is the

norm, and Θ is the Heavyside function [122, 242].

The radius ε provides a cut-off limit (for Heavyside function) that transforms the

distance matrix (Euclidian distance) into the recurrence matrix (RM). The points falling

within the circle with radius equal to ε distance units are the nearest neighbors of (and

recurrent with) the reference point.

Proper care is needed in the selection of all the parameters (embedding dimension m,

time delay τ and radius ε) to obtain the best results.
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• Time Delay (τ): Too large time delay results in the loss of information between

axes, while very small values make the axes closely related.

• Embedding Dimension (m): If m is selected too small, the delayed phase space

cannot completely unfold [89] the attractor and thus false nearest neighbors will

occur.

• Radius (ε): As the radius increases, the number of neighbors (and recurrences)

increases; some of which might be the false neighbors.

6.2.3 Observations

In our experiments, to capture the hidden information of the pulse signals, we

performed a careful selection of the parameters, along with grid search for the

optimum values.

By sequentially increasing the embedding dimension m and noting the corresponding

percentage of false neighbors, the minimal m was selected. It ensures that the phase

space is fully unfolded in the state space with no crossing of trajectories of the attractor.

For various pulse signals in our database, embedding dimension of 3 to 7 was decided.

Time delay τ of 8 was decided based on the Takens time delay theorem [211] 1. Finally,

radius ε was selected such that it would not exceed 10% of the mean of the phase space

diameter [270], and such that the informative values of DET (refer Section 6.2.4) would

remain between 1–5%.

Figure 6.9 displays RPs of two different pulse signals. In each plot, as the same pulse

signal is compared to itself, R is a square, symmetrical matrix.

RPs show different patterns and structural changes in the pulse signals. Both the small-

scale and large-scale structures are observed in the plots such as:

• Single dots: They represent the states at which the two pulse signals come closer

than ε , but the next states do not.
1Takens theorem states that in the general case, the dynamics of the system recovered by delay

coordinate embedding are the same as the dynamics of the original system.
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(a) Regular Behavior of pulse (b) Pulse with abnormality after every two cycles

Figure 6.9: Recurrence plots of two pulse signals with different behaviors. We used embedding

dimension 5, time delay 8, and radius 0.3. The structures of black points show the recurrence

in the pulse signal, and is subsequently captured using RQA descriptors.

• Diagonals: They represent the lines parallel to the main diagonal of the square

matrix. They represent similar local evolution of different parts of the trajectory.

Thus, the main diagonal is always black.

• Vertical lines: They represent the states, where the pulse signal on the y-axis

evolves locally along the trajectory, but the signal on the x-axis does not change.

• Horizontal lines: They represent the states, where the pulse signal on x-axis

evolves locally along the trajectory, but the signal on the y-axis does not change.

6.2.4 Recurrence Quantification Analysis

To study the structures in the recurrence plot, various descriptors of quantification of

RPs were introduced in [56, 57, 242]. They make use of the recurrence point density,

and the diagonal structures in the RP. Along with the RP, the recurrence quantification
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analysis (RQA) has been successfully applied in exploring cardiac signals [122, 130,

245, 268, 269]. We make use of these descriptors for our pulse database. A feature

vector is obtained using RQA descriptors that captures the hidden information.

Important descriptors namely recurrence, determinism, entropy, and laminarity are

explained in details below.

• Recurrence (REC): REC is the percentage of recurrent points per total triangular

area, excluding the central diagonal (which represents the distance between each

embedded vector and itself). As mentioned above, single (isolated) points in the

RP signify states that do not fluctuate or persist consistently. However, these

points do not necessarily imply noise in the data. REC is a count of all such

points.

Periodic embedded processes have higher (percent) REC than processes that

exhibit aperiodic dynamics. REC ranges from 0% (no recurrent points) to 100%

(all points recurrent).

• Determinism (DET): DET measures the proportion of recurrent points forming

diagonal line (of length l) structures. The diagonal length measures how long the

time series will be close to each other.

Periodic signals have very long diagonal lines, chaotic signals have short diago-

nal lines, while stochastic signals do not give any diagonal lines (unless radius

is set too high). Diagonal line segments must have a minimum length (usually

lmin = 2) defined by the line parameter.

• Entropy (ENT): ENT is the Shannon information entropy of all diagonal line

lengths distributed over integer bins in a histogram. ENT is a measure of

signal complexity and is calibrated in units of bits/bin. Individual histogram

bin probabilities (p(l)) are computed for each non-zero bin and then summed

according to Shannon’s equation. As the logarithms in the equation are to the

base 2, ENT can be interpreted as number of bits.

For simple periodic systems in which all diagonal lines are of equal length,
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the ENT would be expected to be 0 bits/bin (narrow diversity in diagonal line

lengths), but relatively high within chaotic windows (wide diversity in diagonal

line lengths).

• Laminarity (LAM): LAM measures the percentage of recurrent points compris-

ing vertical line structures. A vertical/horizontal line marks a length in which a

state does not change or changes very slowly, i.e. it represents a state in which

the series is “trapped”. P(v) is the number of vertical lines of length v.

Table 6.2 lists all the descriptors that we have used with their descriptions and

equations used for computation.

For the two cases of pulse with normal (& abnormal) behaviors in Figure 6.9, the RQA

descriptors LMAX, REC, ENT, and TRND vary as 0.062 (& 0.116), 96 (& 179), 3.428

(& 2.330) and -0.059 (& -0.034) respectively. Therefore, the numbers show possibility

of classification using all the descriptors. The quantification converts the pulse signal

into just a 10-dimensional output, resulting in less storage memory as well as effective

feature vector for classification.

6.3 Topological Structures

Many physical phenomenons (such as reactions) and inventions (such as the NMR

laser) have been analyzed using concepts from nonlinear dynamics. The chaotic

behavior inherent in pseudo-periodic time series data consists of stretching (signals

start drifting), and squeezing (signals start coming closer) in a somewhat unpredictable

manner.

As we discussed in the previous chapter, the pulse signal follows a P-T-V-D rhythm in

an pseudo-periodic fashion as shown in Figure 6.10.

There are two broad approaches to study such chaotic behavior in the pulse signal.

First approach is metric-based, where the distances between points in a (strange)

attractor are particularly studied, such as Lyapunov exponents [231, 265]. The second
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Descriptor Description Formula

START First point for each epoch calculation

LMAX The length of the
LMAX = max(li; i = 1, . . . ,Nl)

longest diagonal line

MEAN Mean of input points

Entropy, Shannon’s entropy of distribution
ENT =−∑

N
l=lmin

p(l)ln(p(l))
ENT of the diagonal lines

STDEV Standard deviation of input points

Trend, Paling of the recurrence
T RND = ∑

N−2
i=1 [i−(N−2)(RRi−<RRI>)]

∑
N−2
i=1 [i−(N−2)/2]2TRND plot towards the edges

Recurrence, The percentage of points
REC = 1

N2 ∑
N
i, j=1 Ri, j

REC in the recurrence matrix

Laminarity, The percentage of recurrence
LAM =

∑
N
v=vmin

vP(v)

∑
N
v=1 vP(v)LAM points that form vertical lines

Determinism, The percentage of recurrence
DET =

∑
N
l=lmin

lP(l)

∑
N
i, j=1 Ri, jDET points that form diagonal lines

Trapping time, Average length of
T RAP =

∑
N
v=vmin

vP(V )

∑
N
v=vmin

P(v)TRAPT vertical lines

Table 6.2: RQA descriptors with their meaning and the equations for computation.

and newer approach is studying the topological properties. Not much work has been

done in both the approaches.
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Figure 6.10: Sample pulse with typical behavior. It follows a continuous P-T-V-D rhythm.

6.3.1 Nonlinear Dynamics in Pulse

A century earlier Poincaré had observed that the key to understand a dynamical

system, like arterial pulse, lay in identifying its unstable periodic orbits [136]. These

periodic orbits are formed in the geometric object created as a result of embedding of

the time series in a higher dimension (say 3D), also called as an attractor. It consists

of orbits of different pseudo-periods. Topological invariants quantify the topological

interaction of these orbits with different periods, and thus are useful in capturing the

information about the hidden structures.

The pulse signal, although driven by the heart, is transmitted by blood flow through

arteries and travels a considerable distance from the heart. Due to the momentary heart

rate, and constant interaction between sympathetic and parasympathetic branches of

the autonomic nervous system, nonlinearity [166] is suspected. In Section 6.1 we

successfully establish this self-similar chaotic nature.

We first computed the Lyapunov exponents [265] and Hausdorff dimensions (dH). The

positive Lyapunov exponents (close to 2) indicate the presence of chaotic behavior

(strange attractor) [219], and the value of dH less that 3 makes the use of topological

analysis feasible [136]. However, the geometrical information necessary for computing

the topological invariants is not present in the time series format. Subsequent study

thus requires embedding, most commonly, in three dimensions.
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6.3.1.1 Pulse Embedding

Embeddings are the primary tool used by experimentalists to study scalar time series

generated by chaotic dynamical systems [220]. There are various ways of embedding

a time series into a higher dimensional space, such as time-delay embedding. We have

used the differential phase space (DPS) embedding to embed a pulse signal x(t) into a 3D

space as x(t)→ (y1(t),y2(t),y3(t)) where

y1(t) = x(t), y2(t) = dy1/dt, y3(t) = dy2/dt (6.13)

The advantages of using this embedding over the other embeddings will be clear in

section 6.3.3.2. Explicitly, differential phase space embedding ensures the existence

of a Poincaré section in the resulting attractor [136], and therefore enables easy and

trivial computation of the linking numbers of two orbits. Figure 6.11 shows examples

of embedding of three different pulse signals.

Figure 6.11: Attractors of three different pulse signals using the DPS embedding. The

viewpoint of the 3D rendering is such that the holes in the attractors are clearly visible. Though

all the signals have P-T-V-D nature, the attractors show distinctive patterns. We want to

capture these patterns quantitatively using topological invariants.

The 3D structure, termed attractor, is a set of points in the phase space to which a

dynamical system (the pulse signal in our case) evolves after a long enough time [220].

In Section 6.1, we have already shown that the pulse signal has a fractal nature. Thus,

the attractor of the pulse shows strangeness, and dependance on the initial conditions.
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The key concept here is that an approximate circle in three dimensional space is traced,

possibly after several self intersections.

6.3.1.2 Poincaré Section

Poincaré map is the intersection of a periodic orbit in the state space with a certain

lower dimensional subspace, called the Poincaré section, transversal to the flow of the

system [170]. The intersection defines the period of the orbit (or circle) based on the

number of intersections with the section. In this section, we show how DPS embedding

makes the further computation of the period of the orbit trivial. Consider a projection

of the attractor in Figure 6.12.

In the first quadrant, on the Z axis (where Y is 0), dY/dt = Z > 0. Hence the flow

direction, i.e., the direction with which the orbit is being traced will be towards the

right. Similarly for Z < 0 it will be towards the left. Hence the plane consisting of X

axis and Y = 0 can be considered as a Poincaré section enabling a trivial existence of a

Poincaré section.

Figure 6.12: The projection of the DPS embedding onto the Y –Z plane clearly shows the flow

directions. The plane bounded by X axis with Y = 0 serves as a Poincaré section.

Figure 6.13 clarifies the Poincaré section for a pulse signal through three view points.

We use the Y=0 plane to observe the going in and coming out properties of the orbits.
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The XZ plane shows four clusters of red points (going in) and blue points (coming out)

indicating the pseudo-periodic nature of the pulse signal.

Figure 6.13: A sectional cut on the attractor is shown through three views – XYZ, XY and

XZ. Red dots indicate orbits going into the plane, while blue dots indicate orbits coming out of

the plane.

The Poincaré section helps studying the periodic orbits starting on the subspace flow

through it and not parallel to it [61]. More precisely, one considers a pseudo-periodic

orbit with initial conditions on the Poincaré section and observes the point at which

this orbit first returns to the section. The orbits which comprise the attractor cross the

plane many times. We want to study the structures in the attractor, by taking advantage

of these intersecting locations on the Poincaré section.

Suppose we use an alternate embedding (Figure 6.14) such as the time-delay embed-

ding. We again highlight (in red) the Poincaré sections which has been manually

acquired by laboriously studying the 3D structure using a visualization tool. The

resulting pseudo-periodic patterns are not as clear in these two embeddings when

compared to Figure 6.13.

159



Figure 6.14: Embedding of a pulse using (a) time-delay embedding with delay 6. (b) x(t)→

(
∫

x,x,dx/dt). Refer Figure 6.13 for comparison.

6.3.2 Determining Period of a Pulse cycle

A pulse signal is comprised of many beats one after the other (three such beats are

shown in Figure 6.10). As noted earlier, the period of each beat can be trivially

computed using the Poincaré section. Specifically, we note the number of times the

flow cuts the section before it comes back to the original group of points (one out of

four in the XZ plane in Figure 6.13).

However, this is true if the data capture process is not corrupted by noise. For

example, we observed that some orbits of signal in the database failed to cut the

section (false negative) due to a vibrating behavior around Y=0. Therefore for accurate

computations, we have adopted a slope-based methodology of counting the number

of orbits. In summary, the idea is to decide when the curve folds back on itself in the

projection based on the Poincaré section. Specifically the algorithm is:

1. We first find the start and the end of each pulse beat using the Poincaré points.

This corresponds to the P-subwaves in Figure 6.10 (the extreme right blue points

on X–Z plane in Figure 6.13).

2. We start with this first embedded point and follow to the next point in the time

series and note the angle with which we need to rotate using the tangent at that

point. As we continue through the subsequent points, we note when the flow has

rotated through 180◦, and then later 360◦.
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3. One such complete rotation through 360◦ signifies a loop. The number of loops

in a pulse beat is the period of the orbit.

We catch all the loops in each of the pulse cycles using the above algorithm. It is

observed that a pulse signal contains pulse cycles (or beats) of varying period (pseudo-

period), arising due to inherent nonlinearity and variability of the pulse. Figure 6.15

indicates an example of two different periods (6 & 7) in the attractor of sample pulse

signal in Figure 6.10.

Figure 6.15: Pulse beats with different periods follow different trajectories in the attractor.

Two pulse beats with period of 6 and 7 are highlighted.

We observed that the pulse cycles with different periods follow different trajectories

in the attractor. Furthermore, they interact with each other in a particular fashion as

shown in Figure 6.16.

6.3.3 Topological Invariants

Topological invariants study these interactions in a systematic way to reveal the

underlying stretching and squeezing mechanisms [61, 137, 219]. The stretching

mechanism causes nearby points in the phase space to diverge from each other

and is responsible for “sensitive dependence on initial conditions”. On the other

hand, the squeezing mechanism prevents phase space points from escaping from a
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Figure 6.16: Intersections between pulse beats of period 3 and 4. Systematic study of them

reveals underlying patterns and information.

compact domain and thus is responsible for the “recurrence” characteristics. Both the

mechanisms act to organize the strange attractor in phase space in a unique way. The

next goal is to study these interactions of pulse cycles with different pseudo-periods

taken pairwise.

6.3.3.1 Choosing a Pulse Cycle

It is obvious that there will be many pulse beats with the same value of the period.

Though the basic structure or the properties of each pulse beat are the same, there are

nonlinear variations from one beat to next one, known as pulse rate variability (refer

Chapter 5). Thus there is a conundrum of choosing “the” pulse beat from a long pulse

signal. We have employed four ways to choose a representative beat (of any fixed

period). Similar strategies can be employed for any time series.

1. Random selection: If the modeling assumes that each pulse beat contains the

basic properties of the input one may obviously choose any one.

2. Average beat: Earlier literature [222] has suggested creation of a mean beat from

the average of all beats.
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3. Novel minimum distance paradigm: In this approach, distances of each beat

with all the other beats of the same period is computed. The beat with the least

sum, which indicates that this beat is the closest to all beats, is chosen.

4. Novel big orbit paradigm: In the computation of the period (Section 6.3.2), the

number of holes is available. Each hole, however, covers a different area. In

this min-max approach reminiscent of the Hausdorff distance, the shortest hole

is found in each orbit (of the same period), and then the beat with the largest area

(amongst the minima) is chosen.

As a representative example, we now provide our methodology for computing the

topological invariants for one sample pulse signal using the ‘minimum distance’

paradigm. In our experiments, the same procedure was repeated considering all the

above four ways for all the pulse signals in our database.

6.3.3.2 Linking Numbers

Linking numbers (LN) were introduced in [61] to describe the organization of vortex

tubes in ether. LN describe the interaction between two beats quantitatively by

counting the crossings between them. For a pair of beats of different periods, LN is

the number of times they rotate around each other. If only one beat is considered, then

the self-linking number is computed.

Though the beats deform themselves continuously as the initial conditions are changed,

their intersections (shown in Figure 6.16) and crossing information (as explained in

Section 6.3.3.3) does not vary. Thus the linking information of the unstable periodic

orbits is invariant and useful. It is always an integer, the sign however depends on the

orientation of the flow.

6.3.3.3 Computation of LN

The conventional steps for computing the LN of a time series (pulse signal in this case)

are [61] as follow. The procedure is repeated for (representative beats of) all pairs of
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Figure 6.17: Two possibilities of intersection of the orbits.

differing periods.

1. Initialize a crossing number (CN) variable to 0. Given the periodic beats, project

all the beats onto a two dimensional subspace. Find out all the crossing over

points.

2. Find out tangent vectors at these points. They will be of one of the formats shown

in Figure 6.17.

3. At each of the crossing points, locate the tangent vector with the higher z co-

ordinate. Let this vector be t1 and the lower vector be t2.

4. Compute t1× t2.

5. If this vector has +ve z co-ordinate then CN = CN+ 1 else CN = CN− 1

6. When all the crossing points are over, return CN/2 as the linking number.

Our approach. In our experiments, we used an alternate method for steps 3, 4 and 5

above, by taking the advantage of DPS embedding (Section 6.3.1.1). The slope at any

point is given by

slope =
dẊ
dX

=
dẊ/dt
dX/dt

=
Z
Y

(6.14)

Hence, Z = slope× Y . Now in the Y ≥ 0 upper half plane, the trajectory with greater

slope at the crossing point implies that this trajectory is nearer to the observer than the
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other. In 3D co-ordinates, it resembles the case of positive Z co-ordinate in step 5 of the

above algorithm. And the opposite situation takes place for Y < 0 lower half plane.

The linking numbers between beats with periods 3,4,5 & 6 (derived using methodology

explained in Section 6.3.2) are provided in Figure 6.18.

Figure 6.18: LN matrix for periods 3,4,5,6.

The LN matrix is symmetric. We can also find out the self-linking number of an orbit. It

involves calculating the number of times an orbit winds around itself. More precisely

it is the sum of the signed crossings of an orbit with itself.

6.3.3.4 Relative Rotation Rates

Relative rotation rates (RRR) were originally introduced [196] to help describe periodi-

cally driven two-dimensional systems, such as oscillators. They describe roughly how

often one beat rotates around another on the average in a more fine-grained manner as

compared to LN.

Consider a dynamical system with beats A and B of period pA and pB respectively.

Let A intersect the Poincaré section pA number of times in points a1,a2, . . . ,apA , while

B intersects it at pB points b1,b2, . . . ,bpB . Let (ai,b j) be any pair of points (initial

conditions) on the Poincaré section. Let the vector connecting these points be ∆r. As

the flow is evaluated across time, the vector will come back to its original position

(nearby location) and direction on the section after pA× pB periods. Thus it rotates an
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integer number of 2Π radians in the plane perpendicular to the flow in pA× pB periods.

RRR (Ri j) is the average rotation per period during these pA× pB periods [136]:

Ri j(A,B) =
1

2ΠpA pB

∮ n · (∆r×d(∆r))
∆r ·∆r

(6.15)

This integral depends on the initial points (ai,b j) in the Poincaré section. Thus for the

beats A and B, total pA× pB relative rotation rates can be defined.

6.3.3.5 Computation of RRR

Computation of RRR matrix involves four steps. Consider a case of interactions

between beats with period 4 and period 5.

1. Naming the orbits. The pulse beats of period 4 and 5 contain four and five orbits

respectively. For period 4, the four orbits are named as (a,b,c,d) in temporal

order, assuming the flow direction is anticlockwise. Further, the five orbits for

the period 5 beat are named (e, f ,g,h, i).

2. Permutation matrix (P). For each beat, a permutation matrix P is constructed

which depicts how motion occurs along the beat under forward time evolution

for the orbits (e.g. for period 4, a→ b→ c→ d→ a).

Therefore if the system is in some orbit i, we can find out its next orbit by checking

out which column in the ith row is 1. The direct sum of these matrices gives us

how the nine orbits are permuted under forward time evolution. Concatenating

these matrices, the final P is as shown in Figure 6.19. The permutation matrices

for beats of periods 4 and 5 are highlighted.

3. Crossing matrix (C). The crossing matrix (C) is computed by superimposing the

two beats (of period 4 and 5). The element C(i, j) is the signed number of times

the beat orbit i has crossed orbit j. E.g. if the orbit b crosses in succession orbits

c(-1), d(-1), a(-1), a(+1), and d(+1), then C(b,a)= -1+1= 0, C(b,c)= -1, C(b,d)= -1+1=

0, and for the rest orbits k, C(b,k)= 0. The crossing matrix is symmetric as shown

in Figure 6.20.
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Figure 6.19: Permutation matrix.

Figure 6.20: Crossing matrix.

4. Finally we compute the RRR matrix using above matrices. The initial conditions

residing on beats i and j cross each other C(i, j) times. After one loop (or flow in

an orbit), i→ Pi, j→ Pj, the initial conditions will cross (P−1CP)(i, j) times. The

matrix P is orthogonal. After pA× pB iterations, the total number of crossings

is the sum of such transformations. Thus we compute a symmetric matrix

for relative rotation rates RRR with periods pA and pB, for all possible initial

conditions [61]:

pA× pB×RRR =
pA×pB−1

∑
k=0

(PT )kCPk (6.16)
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RRR for all the pairs of the periodic orbits are computed through the above steps and

the final symmetric RRR matrix is as shown below.

Templates

Templates (also known as knot holders or branched manifolds) were constructed in

[15] to describe the ensemble of unstable periodic orbits in a strange attractor, as well

as the topological organization of those periodic orbits. Templates summarize the

stretching and squeezing mechanisms that generate strange attractors. They contain all

the crossing information required in order to construct the two previously discussed

topological invariants: LN and RRR [16]. Similar to LN and RRR, a template is also

invariant under smooth change of variables and changes in control-parameter.

6.3.4 Observations

From the LN and RRR matrices, it is clear that different pulse signals will have different

periods (LN) and orbits (RRR) (always keeping in mind that these are computed for

the representative beat). Furthermore, they will provide different signed intersections

(amplitudes in the matrix) between these periods and orbits.
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Classification

Figure 6.21 shows how LN are different for pulse signals with normal (black color)

and abnormal (red color) behaviors. We found that the periods (minimum distance way)

were spanning a wide range (approximately up to 40) for pulse with vibrating nature

(e.g. pulse showing fever behavior). Thus, we entered the LN matrix into a 50×50

matrix at appropriate locations for each pulse and finally converted the matrix into a

single vector of length 2500. These vectors were used as inputs to the classifier.

Figure 6.21: Varying LN numbers for pulse signals with normal (black) and abnormal (red)

behaviors indicate possibility for classification.

For each pulse signal, we find the representative beats using the four ways (Sec-

tion 6.3.3.1) including our novel minimum distance and big orbit approaches. Table 6.3

shows the classification results for pulse signals of healthy and disorder behaviors. We

perform the experiments with three sets of features as (i) only linking numbers (ii) only

relative rotation rates and (iii) both LN and RRR numbers combined.

Our ways of selecting the representative beats perform well in the classification.

Currently, we have not considered other dimensions such as age, gender and so on.

169



Selection of representative beat

Features Random Average Minimum distance Big orbit

LN 83.4 84.4 87.6 89

RRR 82.6 76.9 88.4 85.8

LN + RRR 80.8 82.3 85.9 87.2

Table 6.3: Comparison of binary (healthy-disorder) classification accuracies.

In future, such dimensions could be incorporated with larger dataset for multiclass

detection.

6.3.5 Visualization

We observe that the LN and RRR matrices show some patterns, which we visualize as

contours in the form of images. Figure 6.22 and 6.23 provide the contour diagrams and

our observations for four different subjects in our database. The pulse signals number

mentioned correspond to our numbering sequence in database and have no special

significance.

The contour diagrams of LN and RRR for healthy and disorder behaviors show

different patterns. We observed that the LN diagrams for healthy behavior have

fewer number of periods (lower base of triangular contours), and their values are also

lower. Also, the number of contours and colors are fewer in number indicating more

regularity in the intersections between the orbits of different periods. The opposite

observations are noted for the disorder behavior with lesser regularity among the

beats. Similarly in the case of RRR contour diagrams, we observed lesser number of

orbits for healthy behavior. Also, the widths of the contours at the diagonal are smaller

as compared to the disorder behavior.

It is known that the sets of LN & RRR numbers for the periodic beats provide a unique

signature for the underlying structure of the attractor [219]. We captured such patterns

through the contour diagrams of the LN and RRR matrices. The four ways of selecting
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(a) Healthy behavior (pulse signals no. 30 & 135). Usually fewer periods with lower values are

observed. Also the number of colors and contours are fewer.

(b) Disorder behavior (pulse signals no. 71 & 86). Usually more periods with higher values are

observed. Also the number of colors and contours are higher.

Figure 6.22: Contour diagrams indicating LN of pulse signals for respective periods. The

colors in the contours indicate the amplitudes of LN, and the background color depends upon

the range of the amplitudes.

the representative beat for each period provides different contours. The ‘average beat’

(previously considered in the literature) does not work well – random contours are

exhibited in the diagram when the individual beats are vibrating and thus should be

avoided. Our suggested ways of selection perform better.
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(a) Healthy behavior (pulse signals no. 30 & 135). Usually lesser number of orbits are observed. Also

the width of the diagonal is small.

(b) Disorder behavior (pulse signals no. 71 & 86). Usually more orbits are observed. Also the width

of the diagonal (and its parallel contours) is large.

Figure 6.23: Contour diagrams indicating RRR of pulse signals for respective orbits. The

colors in the contours indicate the amplitudes of RRR. The symmetric RRR matrices form

diagonal and parallel contours.
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Conclusions

We showed that the pulse signals has a chaotic nature due to its pseudo-periodic P-

T-V-D rhythm. For extracting hidden patterns, we implemented four useful feature

sets namely, recurrence plot-based descriptors, local Hölder exponents, multifractal

spectrum-based exponents, and topological invariants.

Linear log-log graph of the detrended fluctuation analysis, and the hump-like shape

of the multifractal spectrum confirmed – for the first time – that the pulse signals

has a self-similar nature. We showed that the combination of wavelet scales in

the computation of local Hölder exponents, provides an additional information at

different scales (or resolutions). In the computation of linking numbers and relative

rotation rates, we suggested novel minimum distance paradigm and big orbit paradigm.

Intuitively the selection has the representative behavior of the entire input signal. We

also introduced the contour diagrams for the topological invariants, which help in the

visualization of the invariants.

We showed the efficacy of our approaches in the classification. The results in each case

were visually displayed as well as numbers were provided whenever possible. There

has not been much prior work to extract the nonlinear dynamics of the pulse signals.

Therefore, our results show capability in developing a pulse-based automated tool.

Also in future, the topological analysis shows a wide scope in detecting various types

of the pulse signals using the ‘template’ information.

173



174



C h a p t e r 7

Classification

In Chapters 5 and 6, we have proved the usefulness of the pulse signal

through our observations. To further show its efficacy in a quantitative

form, in this chapter, we present classification results using our PSWT-based

features.

We describe our novel classifier using a hybrid arrangement of binary and

multiclass SVMs, expressly designed to take care of class imbalance rampant

in biomedical signals. As a result, we significantly reduce the number of

false negatives – patients falsely classified as normal.

7.1 Support Vector Machine

Traditional neural network approaches have suffered difficulties with generalization,

thus producing models that can overfit the data. To overcome these drawbacks,

Vapnik (1995) has developed support vector machine (SVM) [227], a classifier that

works well on unseen examples, and converges to a single globally optimal solution.

Because of its advantages and easy implementation, SVM is being extensively used

for several classification and regression applications. In this section, we briefly explain

classification using SVM.
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Consider a 2-class classification model as shown in Figure 7.1. The goal is to produce

a classifier that will work well on unseen examples (generalization). There are many

possible linear classifiers that can separate the data (dashed hyperplanes), but there is

only one that maximizes the margin (bold hyperplane).

Figure 7.1: Possible classifying hyperplanes for a two-class problem. The bold line is the best

hyperplane exactly at the center from both the classes.

The two classes (+1 and -1) are said to be optimally separated by the hyperplane

(Figure 7.2), if the distance between the closest data vector in either of the classes to the

hyperplane is maximal. The data vectors defining these optimum margins are termed

support vectors (SV).

Figure 7.2: Optimal hyperplane for two classes with labels +1 & -1. The two dashed lines are

the margins and the points on them are the support vectors (SV).
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In general, the two classes are not linearly separable. In such situations, the support

vectors will no longer be on the margins, but are in fact on both sides of the classifying

hyperplane. Also, the orientation of the hyperplane and/or the width of the margin

might be different.

A solution to linearly non-separable case is to map the input data vectors into a high

dimensional feature space. By choosing a nonlinear mapping a priori, the SVM can

construct an optimal separating hyperplane in this higher dimensional space.

For constructing the high dimensional feature space, kernel function K is conveniently

used as shown in Figure 7.3. It performs the nonlinear mapping into feature space

with the constraints being unchanged. Among acceptable mappings are polynomials,

radial basis functions, and certain sigmoid functions.

Figure 7.3: Kernel action: Transformation of 2D space into 3D feature space

The idea of the kernel function [227] is to enable operations to be performed in the

input space rather than the potentially high dimensional feature space. Finally, a

classifier implementing the optimal linearly separating hyperplane in the feature space

is achieved.
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7.1.1 Multiclass Support Vector Machine

SVM for pattern classification are particularly based on two-class classification prob-

lems. As said earlier, the generalization ability is maximized while minimizing the

training error. Because of this formulation, extension to multiclass problems is not

unique. The N-class problem is generally solved by considering the problem as a

collection of binary classification problems. The most commonly used multiclass SVMs

are as follows [76, 98]:

• One-Against-All approach: This approach works by constructing a set of N

binary classifiers. The ith classifier is trained with all of the examples in the ith

class with negative labels (-1) and all other examples with positive labels (+1) as

shown in Figure 7.4. The final output is the class that corresponds to the classifier

with the highest output value. An important limitation of this approach is that

some region in space remains unclassified.

Figure 7.4: One-against-all approach for multiclass classification. Here, class with label L4 is

separated from all L1, L2 and L3.

• One-Against-One approach: This approach simply constructs all possible binary

classifiers from a training set of N classes. Each class is trained on only two out

of N classes as shown in Figure 7.5. Thus, there will be N(N-1)/2 classifiers. Now,

In the Max Wins Algorithm, a test example is classified by all of classifiers. Each

classifier provides one vote for its preferred class and the majority vote is used to

make the final output.
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Figure 7.5: One-against-one approach for multiclass classification. All the four classes L1, L2,

L3 and L4 are separable (may not be the best hyperplane shown here for better visibility) from

each other.

• Directed Acyclic Graph: In a problem with N classes, a rooted binary DAG has N

leaves labeled by the classes where each of the N(N-1)/2 internal nodes is labeled

with an element of a boolean function. To evaluate a Decision DAG (DDAG),

starting at the root node, the binary function at a node is evaluated. The node is

then exited via the Left edge, if the binary function is -1; or the Right edge, if the

binary function is +1 as shown in Figure 7.6. The next node’s binary function is

then evaluated. The value of the decision function is the value associated with

the final leaf node [77]. Therefore, we require (N-1) decision nodes in order to

derive the answer.

The DAG-SVM algorithm creates a DDAG whose nodes are maximum margin

classifiers over a kernel-induced feature space. Such a DDAG is obtained by

training each i-j node only on the subset of training points labeled by i or j.

The final class decision is derived by using the DDAG architecture, as described

above. Now, the DAG-SVM separates the individual classes with large margin. It

is safe to discard the losing class at each 1-v-1 decision because all of the examples

of the losing class are far away from the decision surface.
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Figure 7.6: DDAG approach for classification of 4 classes, which are at the leaves. At each

node of SVM binary classification, 2 classes (highlighted bottom numbers of each node) are

selected of all the classes available at that node (top numbers of each node).

7.2 Novel Hybrid Support Vector Machine

In general we observe that biomedical signals of normal behavior are more common

and thus are widely available as compared to signals with abnormalities. Thus, in

the multiclass classification of such unbalanced dataset, the classifier gets trained with

more bias towards huge Normal class. Thus in any diagnostic system, it is critical to

reduce the ‘false negatives;’ that is the decisions predicting Normal when there is some

abnormality present.

7.2.1 Prior Work

The treatment of unbalanced data in the classification process is not new but has been

undertaken at different levels in the machine learning process. For example at the

feature extraction level, skewed datasets are evaluated in [85] for over- and under-

sampling. At the SVM building level, an algorithm is proposed in [32] that changes

the kernel function to modify the bias, while the kernel matrix is adjusted in [32]

to fit the training data. Different penalty constants for different classes of data can
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also be employed [228] making errors on positive instances costlier than errors on

negative instances. At the system building level [4, 213], the penalizing method can

be combined with SMOTE [22] to develop a classifier that performs better than the use

of individual algorithms.

7.2.2 Our Approach

Figure 7.7(a) shows typical blocks in a conventional SVM. The training data is trained

to produce a model, which predicts the outputs for the testing data.

Figure 7.7: Handling imbalanced data in (a) conventional SVM. Prior methods (b) emphasize

the creation of the model while building the SVM. In contrast, our method (c), while compatible

with earlier methods, emphasizes the testing phase.
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Figure 7.7(b) shows prior solutions at various levels for classifying the imbalanced

data. Our solution is shown in Figure 7.7(c), and works independent of, or along with,

prior solutions. Thus, the particular advantage of our method is that it is at a “black

box” level and is generic enough to work with a variety of SVMs, with or without

penalties.

As said earlier, the system usually gets biased toward the larger Normal class in

unbalanced datasets. Our scheme takes advantage of the point that, when all

the abnormal rhythms are combined into one Abnormal class, its number becomes

comparable to that of the Normal class and therefore there is a higher likelihood to

get a system trained without bias as explained in Figure 7.8.

(a) The classifying hyperplanes look biased for

the huge L1 class.

(b) The classifying hyperplane is not biased for

binary.

Figure 7.8: Intuition for Hybrid-SVM. (a) A representation of multiclass classification for

four classes L1, L2, L3 and L4. L1 is huge as compared to the other three classes, and thus the

classifying hyperplanes are biased. (b) When the three smaller classes are combined into one L5

class, the new hyperplane is not biased for L1 class.
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Hybrid-SVM

Our Hybrid-SVM approach1 is as explained in Figure 7.9. Consider that we have a

Normal class and ‘n’ different abnormal classes in the classification system. First, using

a multiclass SVM, we train a system with all (n+1) classes, each class being individually

considered. Let the predicted output coming out of this classifier be opM (here ‘M’

stands for multiclass). Next, we use a binary SVM to train the Normal class versus

the Abnormal class (considering all n abnormal classes put together). Let opB be its

predicted output (here ‘B’ stands for binary). Finally, we use another multiclass SVM

to train only the n-abnormals and let opN be its predicted output (here ‘N’ stands for

the considered n abnormalities). An important point to note is that all the mentioned SVM

blocks are trained offline.

Figure 7.9: Our Hybrid-SVM method. See text for details.

Now, when a test case enters the system, we first compare opM and opB coming from

the above mentioned two sub-systems.

1Our novel Hybrid-SVM approach is different from prior hybrid SVMs, which are hybrid

combinations of a support vector machine with a pattern recognition tool. Alternatively, in our

novel approach, we have used a hybrid combination of three SVM blocks (one binary-SVM and two

multiclass-SVMs) as explained in Figure 7.9, and is unique.
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• If the predicted outputs are consistent (that is both are Normal, or opM declares an

abnormality and opB declares the Abnormal class), then we use opM as the final

predicted output.

• On the other hand, if they are not consistent, then we speculate that the

incompatibility is due to the bias in the trained SVM (conventional multiclass).

Therefore, we devote more care to the n abnormal classes. We choose a random

number between [0,1]. If the random number is below a threshold value (R),

then we consider the Normal class as the final answer; and if the random number

is above threshold, then we consider opN, declared by the n-class SVM block, as

the final predicted output.

Threshold Choice

At first glance, it might look a bit strange to use a random number generator. Indeed,

if we set R = 0, as in our initial experiments, then the random number is essentially

useless, and we will minimize false negatives by pushing the output to an abnormality.

However, this leaves less control for reducing false positives, which is why our Hybrid-

SVM has the random number based “knob” for the control. For concreteness, we

consider the following three cases in the second decision box in Figure 7.9: same

weightage is given to both the Normal & Abnormal classes (R= 0.5), more weightage

to the Normal class (R= 0.9), and more weightage to the Abnormal class (R= 0).

(In the next section, we use our Hybrid-SVM approach for the unbalanced dataset of

pulse signals. Please refer to Appendix B, where we show the efficacy of novel Hybrid-

SVM for a variety of feature vectors, and the effect of different values of threshold R

on classification.)

7.3 Classification Results

In Chapters 5 and 6, our results in each case were visually displayed, and numbers

were provided whenever possible. In Section 6.3.4, we provided the classification
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results for the topological invariants-based features. We showed that our ways

of selecting the representative beats of each pseudo-period perform well in the

classification.

Now we present the results for PSWT-based features. In Section 5.3.4, we showed our

approach of computing the useful time domain parameters (TDP) (Section 5.3) of a

pulse cycle. We further proposed, and proved the improvement of this computation

through our novel PSWT-DTW based approach (Section 5.4). Now, we classify

the pulse signals of various subjects, with TDP as input vectors to the classifiers

(conventional SVM and our Hybrid-SVM).

The steps in the classification procedure are as follow.

• For each pulse signal, we first detect the peaks (Section 5.1.1). Using these peaks,

we segment the pulse signal into individual cycles of different pseudo-periods.

• Feature set 1 (FS1): We compute the TDP on all the cycles individually using our

maxima-minima based approach (Section 5.3.4). We repeat the steps for all the

pulse signals.

• Feature Set 2 (FS2): This feature set is obtained using our novel PSWT-DTW

approach. The cycles of a pulse signal are arranged in our pitch-synchronous

representation (Section 5.2.1.2). Its wavelet transform results in a smooth PSWT

cycle (Section 5.2.2). TDP are computed on this trend cycle and are then

transferred on each of the pulse cycles using nonlinear dynamic time warping

path. We repeat these steps for all the pulse signals.

Dataset. The data was generated using the above mentioned steps. For this

experiment, the complete dataset includes 1264 pulse cycles of normal (N) behavior,

437 pulse cycles of muscular pain (MP) behavior, 397 pulse cycles of high BP (HBP)

behavior, 426 pulse cycles of diabetes (D) behavior, 401 pulse cycles of slipped disk

(SD) behavior, 448 pulse cycles of Fits (F) behavior, 427 pulse cycles of skin disorder

(S) behavior, 421 pulse cycles of cough (C) behavior, 451 pulse cycles of Fever (FV)

behavior, and 315 pulse cycles of other (O) disorders. Note that number of data

instances in N is high as compared to the other abnormal labels. Out of the whole
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dataset, approximately 66% randomly selected data constituted the training set, and

the remaining constituted the testing set.

7.3.1 Efficacy of Our Hybrid-SVM

The classification results for FS1 appear in Table 7.1. It displays confusion matrices

of both the conventional SVM (opM case in Figure 7.9) and the Hybrid-SVM with

threshold R=0.

In a confusion matrix, diagonal elements represent the correct identification of the

respective class. We observe that there are very few non-diagonal entries for both

the confusion matrices. However, in case of the conventional SVM, there were many

misclassification cases for the first row and the first column (which are due to the large

number of ‘N’ class). Our Hybrid-SVM reduces few of these false negatives, by sending

them on the right path of the second decision box in Figure 7.9.

Table 7.2 displays the efficacy of our novel Hybrid-SVM approach using the second

feature set FS2. Note the improvement in the diagonal entries after applying our

Hybrid-SVM approach.

7.3.2 Efficacy of Our PSWT-DTW approach

The results in Table 7.2 (TDP using our novel PSWT-DTW approach) appear better to

those of Table 7.1 (TDP algorithm on individual pulse cycles). Now, we provide the

sensitivity and specificity numbers for all the above cases in Table 7.3.

We observe:

• The sensitivity and specificity numbers indicate that the classification was

successfully achieved in all the cases, regardless of the feature set and the nature

of the SVM.

• The numbers in the diagonal of the confusion matrix (Table 7.1 and Table 7.2)

in the case of the Hybrid-SVM are higher as compared to the corresponding
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Sensitivity Specificity

Conventional SVM Hybrid-SVM Conventional SVM Hybrid-SVM

Classes FS1 FS2 FS1 FS2 FS1 FS2 FS1 FS2

N 66.73 92.47 78.55 95.97 92.74 98.90 93.20 98.92

MP 72.14 90.60 71.33 90.73 97.23 99.52 97.62 99.66

HBP 81.63 96.35 74.77 96.35 95.73 99.12 95.89 99.12

D 53.64 87.59 52.41 86.67 95.31 98.44 95.67 98.64

SD 52.17 92.59 52.42 92.59 94.62 98.92 94.92 98.92

F 73.79 86.30 72.67 86.49 97.70 98.98 97.82 99.12

S 54.69 88.00 53.24 87.30 96.12 98.80 96.36 98.80

C 57.64 92.37 58.22 92.42 96.89 99.46 97.02 99.53

FV 64.81 94.96 64.04 94.21 96.36 99.20 96.55 99.27

O 77.01 98.96 76.09 95.96 97.72 99.54 97.91 99.54

Table 7.3: Comparison of the classification performances of our novel approaches with the

conventional approach.

conventional SVM numbers. This proves the efficacy of our Hybrid-SVM

approach in reducing false negatives.

• If we look at the sensitivity numbers in Table 7.3, we note the Hybrid-SVM

are sometimes lower or comparable to the corresponding conventional SVM

numbers. We clarify that we do not see this as a serious problem because

the purpose of the Hybrid-SVM was to reduce false negatives. If a disorder

is present, then that subject should be treated. Next, the reason for this is as

follows. Consider the MP–HBP combination in Table 7.1. In conventional SVM,

this number was zero; but in Hybrid-SVM, it becomes two due to the application

of the “NO” path in the first decision box of Figure 7.9. This means that, the false

negatives are reduced at the expense of increase in false positives (zero becomes

two). The lower numbers in the table are due to such false positive numbers.

• The numbers for FS2 are much better as compared to those of FS1. This proves

that our novel PSWT-DTW approach helps (Section 5.4.3.2) for two reasons. First,

the resulting trend cycle is smooth in nature and second, the efforts (if any) of

tuning the TDP are only for one PSWT cycle.
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Our investigations show the immense potential benefit of both the novel PSWT-DTW

and Hybrid-SVM approaches respectively for the pseudo-periodic signals, and the

imbalanced datasets. We believe the two methods can be suitably extended to other

biomedical as well as non-biomedical applications.
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C h a p t e r 8

Conclusions

In Chapter 3, we presented Nadi Tarangini a system that acquires noise-

free pulse signals. After understanding the nature of pulse signals in

Chapter 4, we systematically studied the pseudo-periodic nature, and

nonlinear dynamics of pulse signals in Chapters 5 and 6 respectively.

In this chapter, we describe applications and future directions of our

work. Finally, with the pictorial summary of our approaches, we conclude

the thesis on a positive note that we have successfully established the

methodology of acquisition and quantitative analysis of pulse signals.

8.1 Applications

Our system will work as a computer-aided diagnostic system to offer a second opinion

to the doctors. When a patient comes, his or her nadi will be recorded using Nadi

Tarangini, and based on the outputs of our approaches, a decision will be made about

his or her physiological conditions. Our system can never replace a doctor, but will

assist in many ways. Furthermore, Nadi Tarangini will be helpful to the society in

various other ways including:
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• Nadi Tarangini will particularly help when a doctor is not available, or distantly

available. In such situations, professional nurse can record the pulse signal, and

after ‘understanding’ the output of our approaches, a required action could be

taken.

• Our system is portable and inexpensive. A common man can use it at home,

to check the pulse (and thus physiological conditions) on frequent basis. He or

she can observe whether the important parameters (outputs) are in the required

range or not. Thus, this could help to detect deviations, and work as a watchdog

for the continuous monitoring.

• Nadi Tarangini can further be used to reproduce, compress and then transmit the

measured pulse to a student or Ayurvedic practitioner for diagnosis.

• Just as simulators are used to train pilots learning to fly, Nadi Tarangini can be

used for training students or practitioners, which is to be mastered, otherwise,

with actual pulse feeling with concentration and experience.

� The nadi or pulse signal changes from person to person, for different

age-groups, gender, habits, time of acquisition and so on. But with an

assumption of retaining the basic structure in such disorders, different types

of reference-pulse-waveforms can be visualized using Nadi Tarangini.

� In addition, various frequency, amplitude, slope and rhythm features will

be visibly available to understand and learn the patterns in various pulse

types, similar to a reference guide.

� For higher studies, the accuracy of the student’s pulse determinations could

be verified using Nadi Tarangini, which will help in their learning process.

• Pulse-based diagnosis when developed in its finest form will help in reducing the

cost of detecting the disorders (and may be treatments), which involve different

scans and biopsies. We need to prove in future – the point in literature that the

Ayurvedic pulse has all the important information.
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8.2 Limitations and Future Work

In our work, we have established the efficacy of pulse signals through results of various

approaches. However, the domain of the pulse-based methodology (especially in the

traditional medicine) is very huge. The enormous hidden information in pulse signals

and its complexity itself, though important, is the largest limitation in the analysis of

the pulse signal. Very high attention is required to develop the pulse-based analysis,

similar to current status of the advanced automated ECG tools.

There are still a number of ways in which the pulse signals can be further studied

to understand the hidden dynamics. We are currently examining the pulse signals

through its segmentation using hidden Markov models (HMM), and its symbolic

formation (with the known fact that sometimes symbolic representation captures the

dynamics which are invisible to the usual time series format). We provide some

preliminary observations and results here.

1. Segmentation of the Pulse Using Hidden Markov Model

As already explained in Figure 4.18, a typical behavior of an arterial pulse follows a P-

T-V-D rhythm. When such underlying behavior of a given signal is known (or assumed

to be known), an efficient hidden Markov model (HMM) [173] can be formed.

HMM is a statistical model in which a state (e.g. P-subwave) is not directly visible,

but the variables influenced by the state are visible. Each state has a probability

distribution over the possible output tokens (the pulse signal numbers). Also, the

transitions among the states are governed by a set of probabilities called transition

probabilities [28, 224].

After observing the variations of different pulse signals through HMM, we have

introduced a notion of valley-2 (V2) on the pulse cycle. Thus, each pulse cycle is now

divided into five (instead of conventional four) segments as shown in Figure 8.1. The

new set of subwaves (as compared to Section 4.2.2) are percussion subwave (P), tidal

subwave (T), valley-1 (V1), dicrotic subwave (D), and valley-2 (V2).
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Figure 8.1: Our novel approach of splitting a pulse cycle into five subwaves (instead of

conventional four subwaves) for capturing the variations at the V2 location using HMM

segmentation.

The sequence of tokens generated by an HMM gives some information about the

sequence of states as shown in Figure 8.2. The extracted model parameters can

subsequently be used for classification.

Figure 8.2: The top sequence shows HMM model for normal behavior, modeled using 5-state

HMM, while the bottom sequence shows that for a disorder with missing T-subwave, modeled

using 4-state HMM.

The advantage of using HMMs is that they can model the P-T-V1-D-V2 behavior, by

sequentially taking into consideration the intra-individual variability of the pseudo-

period. Furthermore, It is possible to carry out, at the same, time segmentation and

classification [9].
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2. Extraction of Short Patterns Using Symbolic Dynamics

In this work, we focus on dynamic features of short API signals using symbolic

dynamics (SD) based analysis [244]. Our intuition is that the analysis will take

into account the short patterns distributed in the API symbolic signals, and will be

appropriate for studying the instabilities in various disorders. We carry out the

quantitative analysis of the nonlinear behavior of the symbolic API signal using

different measures, namely ‘plvars’ & ‘phvars’ [246], forbidden words [246] and

Shannon & Renyi entropies [33]. We hope that they will quantify different kinds of

regularity (or order) of the signals.

Future Work

We now elaborate the future work in the acquisition and analysis of the pulse signals.

• Tactile sensors: As far as a system with three-sensors (Tridosha locations) is

concerned, then Nadi Tarangini provides noise-free signals with high details.

Ayurvedic practitioners believe that the pulse is available at many minute loca-

tions on each fingertip. Though these locations (on each fingertip) will contain

almost the same information, the practitioners are able to sense the differences

with high concentration.

Currently our system is limited to just one location (center) for each fingertip,

which is a good approximation to start with. But to completely mimic the

Ayurvedic methodology, we will require a data acquisition system to capture the

pulse signals at many more locations.

A tactile-sensing array can be used for this purpose, which is a coordinated group

of touch sensors. It involves the detection and measurement of the spatial

distribution of forces perpendicular to a predetermined sensory area, and the

subsequent interpretation of the spatial information. When this tactile sensor will

be exposed to wrist region (where the pulse is available), it will help to acquire

the pulse signals from many locations.
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• Massive datasets and high dimensionality: As explained, the pulse signal is

very complex, and it depends upon many dimensions such as age, gender, habits,

profession, stress, family background and so on. Therefore, enormous dataset

has to be collected in order to increase the chances that a data mining algorithm

will find the valid patterns. In our study, we have recorded the other dimensions

in our database, but have not used due to high complexity of inter-relations. In

future, all the dimensions have to be taken into consideration before coming to

the conclusion about the subject.

• Nonstandard and incomplete data: As the literature of the quantitative de-

scription of the pulse signals is missing in the traditional methodology, the

standardization of each pulse type is very important. In our work, we have

provided an efficient way to capture the overall essence of the pulse signal using

PSWT (Section 5.2). This essence pulse cycle can further be used, in future, for

standardizing particular pulse types and sub-types.

The other limitation is the outliers in the data due to sudden movements of hand

during the acquisition, or other noise inducing factors. Also in few cases, data

for a particular sensor (dosha location) is missing due to its negligible amplitude,

or an improper placement of the sensor on wrist. Currently, we do not handle

these issues, as our scope was to establish the importance of the pulse signals. In

future, the missing or noisy data should be properly handled with care.

• Mixed data types: Currently our database contains the pulse signals (time series

format), the patient’s information, and the doctor’s diagnosis. We also plan

to incorporate patient’s fingerprints in future. Thus, the database will be a

combination of various media – numeric (data), symbolic (gender, habits), text

(doctor’s diagnosis), and images (fingerprints). The handling of all these data

types should be properly done for better results.

• Compression: Storage of large databases is often required to be in compressed

form [24]. Hence the development of compression technology, particularly

suitable for data mining, is required. The pseudo-periodic pulse signals have

not only a temporal intrabeat correlation between successive samples, but also
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a strong temporal interbeat similarity between successive beats. These facts

could be used in future to compress the huge amount of data based on pattern

matching.

• Hemodynamics: Hemodynamics is the study of physical factors that govern

blood flow. In future, signals can be obtained simultaneously from various body

locations, and studied to understand the hemodynamics. Few examples of these

signals are the electrocardiogram (from the heart), the arterial pulse (on the wrist),

the carotid pulse (on both sides on the neck), the brachial pulse (inside of arm),

and the pedal pulse (on top of the foot). The signal from each body location will

provide different information in terms of patterns, to infer the pressure, resistance

and flow inside human body. Further, correlation between these signals can be

derived, e.g. between the arterial pulse and the ECG to understand whether heart

actions can be captured using just the pulse signal.

• Fuzzyness: Fuzzy logic is a computational method tolerant to sub-optimality and

impreciseness (vagueness) and thus gives quick, simple and sufficiently good

solutions. This is the most important future work to incorporate. This will help

to remove the limitation of inherent subjectiveness in the traditional treatment.

A new database of pulse signals is to be prepared in the following manner. Same

set of patients will go to a number of Ayurvedic practitioners, and their diagnosis

will be noted down. It will consider the diagnosis of all the practitioners in

respective proportions, and will provide the summarized output.

• Networked Multimedia Communications: Wireless networking technology

(WNT) is rapidly coming of age with the recent passage of initial standards,

widespread performance improvements, and the introduction of personal com-

munications networks (PCNs) [254]. Therefore different future directions in

WNT are open such as:

� A pocket-sized portable “smart” terminal combined with wireless commu-

nication will help in long-term monitoring and processing of pulse signals

for timely intervention.
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� Pulse signals can be acquired with Nadi Tarangini at a patient’s home,

and transmitted over internet to a doctor or for further processing and/or

storage. It will also be possible to provide a quick diagnostic feedback if the

patient has an unusual rhythm while at home.

� Problems might arise while handling extremely large heterogeneous databases.

Development of algorithms for mining data from distributed databases will

be helpful in the future.

• Improvement in our PSWT-DTW approach: In the computation of the pitch

synchronous wavelet transform (Section 5.2.2), wavelet packet transform (instead

of the discrete wavelet transform) may provide approximations at various scales,

which can further be utilized as trends of the pulse signal at different scales.

These trends can be individually used to study the overall behavior, or can be

utilized in the searching of TDP in ill-behaved pulse signals.

In our experiments, we have used dynamic time warping in its simplest form,

making use of the warping window constraints. For speeding up the DTW

computations further, advanced approaches of lower bounding measures and

warping windows [177, 180, 181] can be utilized.

• Improvement in our Hybrid-SVM approach: In our novel Hybrid-SVM (Sec-

tion 7.2), we use a threshold parameter (R). For purposes of illustration, we use 3

different values of R in Appendix B to prove its efficacy. A particular value of R

might reduce the number of false negatives at the cost of increasing the number

of false positives, and the balance is best chosen by the user. A systematic way of

building the Hybrid-SVM, in future, would use a feedback system with various

values of R, and pick the value that is most suitable for the problem at hand.

As our Hybrid-SVM is an ensemble kind of arrangement, different classifiers can

be used offline. In the first decision box of Figure 7.9, outputs of two different

classifiers (support vector machine for opM case and a neural network-based

classifier for opB case) can be utilized. The two classifiers will get trained with

different set of rules, and thus could provide better information for checking the
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bias in the unbalanced datasets.

Before we summarize, we would like to mention that – throughout the world, patients

are going outside of modern medicine to look for help. Now, the visits to alternative

practitioners (Ayurveda, TCM, etc.) exceed visits to primary care providers [34]. Many

alternative therapies are even moving to the hospital sector [44]. The review in [12]

suggests that a large number of physicians are either referring to, or practising some

of the more prominent and wellknown forms of the alternative medicine, and that

many physicians believe in these useful therapies such as Yoga [58, 119, 188]. Our

system Nadi Tarangini shows lots of promise in the pulse-based diagnosis (alternative

medicine) such that a patient will get treated just by analyzing the arterial pulse.

8.3 Pictorial Summary of Our Work

In this thesis, we established the efficacy of the pulse signals with a scientific basis.

The experience, knowledge, and vision of the Ayurvedic practitioners were successfully

incorporated with our expertise of visualization and modern pattern recognition

methodologies as shown in Figure 8.3.

With reference to above figure, our approaches can be classified as the combination of:

• Pulse signal and period-to-period variability: PSWT-based analysis

• API signal and period-to-period variability: PRV-based analysis

• Pulse signal and Nonlinear dynamics: Topological invariants-based analysis,

local Hölder exponents-based analysis

• API signal and nonlinear dynamics: Multifractal spectrum-based analysis

We summarize our work in Figure 8.4.

We developed a portable and inexpensive system Nadi Tarangini to acquire noise-

freepulse signals. The design of our system reflects the “feeling” of fingertips. We

showed that our data contains typical physiological properties and patterns, and is
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Figure 8.3: The systematic methodology of our work to study different properties and patterns

of the pulse signals.

consistent with the Ayurvedic literature. We systematically analyzed the pulse signals

to reveal important properties, and hidden information:

• Trend cycle: We used the approximate coefficients in the pitch synchronous

wavelet transform to extract the P-T-V-D rhythm (essence) of the pulse signal.

• Time domain parameters: We utilized the pseudo-periodic nature of the pulse

signal to compute the time domain parameters (TDP) using our novel PSWT-

DTW approach. Our novel approach reduces the efforts of searching the pseudo-

locations; particularly when they have either confusing or overlapping values.

Our approach can be suitably extended to other signals with pseudo-periodic

behavior, to study average values as well as cycle-to-cycle variations.

• Period-to-period variability: This is a characteristic property of the pulse signal.

We studied the variability using various time-domain, frequency-domain, and

nonlinear Poincaré based measures. Our results showed the variations in the
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measures for different age-groups and disorders; akin to the heart rate variability

in clinical use.

Figure 8.4: Summary of our work.
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• Nonlinear dynamics: This is a characteristic property of the pulse signal. We

studied the complex chaotic nature through four approaches, namely multifractal

spectrum based analysis, recurrence plot based analysis, local Hölder exponents

based analysis and topological analysis.

We showed that a combination of wavelet scales in the computation of local

Hölder exponents provides an additional information. Also, in the computation

of topological invariants, we suggested novel ‘minimum distance’ and ‘big orbit’

paradigms for selecting the representative pulse beats of each pseudo-period.

• Structures: We introduced contour diagrams for visualizing the topological

structures in the embedded pulse signals. We showed the varying patterns

for different pulse signals based on the number of contours, base of triangular

contours, and their colors.

• Results: The results in each methodology were visually displayed as well

as numbers were provided whenever possible. We showed the efficacy of

our novel ways of selecting representative beats of each pseudo-period in

the computation of topological invariants through the improvements in the

classification results. Also, the classification of pulse cycles into ten different

behaviors was successfully achieved using the feature sets of our maxima-

minima based time domain parameters.

Further in the classification procedure, we introduced the notion of Hybrid-SVM

– a combination of binary and multiclass SVM – to increase the testing accuracy in

unbalanced datasets. This becomes particularly important in reducing the false

negative (patients falsely classified as normal) predictions.

The classification results with time domain parameters as the input feature

vectors, displayed the improvements due to both novel PSWT-DTW and Hybrid-

SVM approaches. We believe the two methods can suitably be extended to other

biomedical as well as non-biomedical applications.

As a matter of fact, electrocardiogram (ECG) for cardiovascular system witness the

development of home health monitoring. In future, the pulse signals can be equally
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effective in the quantitative study. The large amount of information of the pulse signals

will lead us to an improved understanding of the disease process affecting the patient.

Establishment of this correlation in this thesis is just the beginning . . .
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Appendix A

ECG-based Arrhythmia Classification

We propose a novel Hölder-SVM detection algorithm for arrhythmia

classification. The Hölder exponents are computed efficiently using the

wavelet transform modulus maxima (WTMM)-based method.

A.1 Introduction

Arrhythmia is a common term for any cardiac rhythm which deviates from normal

sinus rhythm. Characterization and classification of such arrhythmia signals is an

important step in developing devices for monitoring the health of individuals. Typical

and abnormal signals are shown in Figure A.1.

Figure A.1: A normal consistent P-QRS-T rhythm is exhibited on the left. Abnormal rhythm

for a patient in every alternate beat appears on the right.
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Arrhythmias are of different kinds, and exhibit long-term non-stationary patterns.

Concepts and techniques including Fourier [140], wavelets [140], chaos parameters

[156] have been employed to extract information present in such physiologic time

series. All these methods exhibit different degrees of advantages and disadvantages,

the main concern being low specificity and accuracy.

Our interest is in the recently developed analytic tools based on nonlinear dynamics

theory and fractals. These are attractive because they have the ability to perform a

reliable local singularity analysis. For example, gait analysis [185] and localization of

outliers [206] have been performed using this approach. This approach offers a new

and potentially promising avenue for quantifying features of a range of physiologic

signals that differ [205] in health and disease.

Features detected using such approaches exhibit local hidden information in time series

and thus are suitable for classification. Support vector machine (SVM) rigorously

based on statistical learning theory simultaneously minimizes the training and test

errors. Apart from that, SVM produces a unique globally optimal solution and hence

is extensively used in diverse applications including medical diagnosis.

A.2 Local Hölder Exponents

For a time series f , if there exists a polynomial Pn of degree n < h and constant C, such

that:

| f (x)−Pn(x− x0)| ≤C|x− x0|h (A.1)

the supremum of all exponents h(x0) ∈ (n,n+1) is termed the Hölder exponent, which

characterizes the singularity strength. It is evident [185] that the Hölder exponent

describes the local regularity of the function (or distribution) f . The higher the value

of h, more regular is the local behavior the function f . Thus it characterizes the scaling

of the function locally and the distinct scaling behavior of different signals can be

exploited to characterize and classify time series.
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The wavelet transformation (WT) i.e. Ws,x0( f ) provides a way to analyze the local

behavior of a signal f , which is a convolution product of the signal with the scaled(s)

and translated(x0) kernel. One of the main aspects of the WT is the ability to reveal the

hierarchy of (singular) features, including the scaling behavior. This is formalized by

its relation [144] with the Hölder exponent:

Ws,x0( f ) ∝ |s|h(x0), s→ 0 (A.2)

Figure A.2 shows an example of the WT and the Hölder exponents. We used the

second derivative of the Gaussian function, i.e. Mexican hat, as the analyzing wavelet.

This wavelet is also extensively used by the other authors, since it possesses good

localization capabilities in both position and frequency.

Figure A.2: Sample ECG waveform, its continuous wavelet transform (CWT) and the

corresponding local Hölder exponents at first scale.

A.2.1 Efficiency Considerations

As continuous WT in its original form is an extremely redundant representation, Mallat

and Hwang [79] have come up with an alternative approach called wavelet transform

modulus maxima (WTMM). Here, the computation of the hierarchical distribution of
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local behavior, as explained above, can be effectively computed by considering the

space-scale partitions. The dependence of the scaling function on the moments q can

be captured using WTMM tree as:

Z(s,q) = ∑
Ω(s)
|Ws,x0( f )|q ∝ sτ(q) (A.3)

where Z(s,q) is the partition function and Ω(s) is the set of all maxima at the scale s.

The computation of singularity strength and the transformation from τ(q) to spectrum

of singularities D(h) is given by the Legendre transformation [11]:

h(q) = dτ(q)/dq; D[h(q)] = qh(q)− τ(q) (A.4)

A.2.2 Stable Computation

The WTMM based formalism developed by Muzy [144] as described above provides

global estimates of scaling properties of time series. Recently, it has been found that

even though such global estimates of scaling is often a required property, local analysis

may provide more useful information.

In the traditional form, the estimation of local singularity strengths and their spectra

may not be possible due to the fact that in real life data, the singularities are not isolated

but densely packed. This causes the logarithmic rate of increase or decrease of the

corresponding wavelet transform maximum line to fluctuate. But very recently, Struzik

[202, 204] has provided a stable methodology for estimating the local exponents, in

which he has modeled the singularities as if they were created through a multiplicative

cascading process. This method has been successfully applied for classification of

human gait [185].

The method [185, 204] is as explained below. The mean Hölder exponent h is given by

log[M(s)] = h log(s) +C, where M(s) =
√

Z(s,2)
Z(s,0) . Employing the multiplicative cascade

model, the approximate local Hölder exponent ĥ(x0,s) at the singularity x0 can now be

evaluated as the slope:
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ĥ(x0,s) =
log(|Ws,x0( f )|)− (h log(s)+C)

log(s)− log(sN)
(A.5)

where sN is the length of the entire wavelet maxima line tree, that is, the maximum

available scale that coincides with the sample length sN = N, and x0 belongs to the

set Ω(s) of all wavelet maxima at the scale s that assume the value Ws,x0( f ). (In our

calculations we used s=1 in the WT.)

Support Vector Machines

The local Hölder exponents are appropriate as the informative features for classifica-

tion using the support vector machines (SVM)[227]. SVM is being extensively used for

several classification and regression applications. As the theory is well developed, we

provide only the basic ideas [102, 138] involved in binary classification.

1. Transform the input data into a higher dimensional feature space to enable linear

classification; specifically define an appropriate kernel in the input space in place

of the dot product in the high dimensional feature space.

2. Maximize the margin of the linear hyperplane separating the instances belonging

to the two classes by solving the dual formulation of the convex quadratic

programming problem to obtain the unique global solution for the classifier.

For multiclass classification, we used popular One-Against-One method [77].

A.3 Results and Discussion

Data Set. The data set used was extracted from ECG recordings of MIT-BIH Arrhyth-

mia Database according to the beat and rhythm annotations. Each record of these

rhythms is at least 10 seconds long. Here, the complete dataset includes 160 of Normal

sinus rhythm (NSR), 25 of Ventricular bigeminy (VB), 155 of Atrial fibrillation (AF) and

146 of Nodal (A-V junctional) rhythm (NR) records. Out of the whole dataset, 2/3rd of
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randomly selected data was used as the training set and the remaining 1/3rd was used

as the testing set.

For each of the extracted rhythms, we computed the features to be used by SVM for

classification in the following manner. First, we de-noised the data series using soft

threshold wavelet method [150]. Then we computed the wavelet coefficients using

WTMM approach, which were subsequently used for the computation of local Hölder

exponents as explained in Section A.2. We then computed the probability density of

these local Hölder exponents and then fitted this density with Gaussian kernel. For

all the rhythms belonging to different classes the local Hölder exponents were in the

range [ -0.5 : 1.5 ]. We divided this range into 12 equal sub-parts and chose 12 points

(as shown in Figure A.3(a)) on the fitted probability density curve corresponding to the

mid-points of the 12 sub-ranges.

A.3.1 Binary Classification

We considered NSR as the ‘normal class’ and all other arrhythmias as ‘arrhythmia

class’. We employed LIBSVM [21] toolbox for the classification purpose and used

radial basis function (RBF) as the kernel. Selection of other SVM parameters was done

using cross-validation on training data. Using multiple runs of 5-fold cross validation

with chosen parameters, the overall accuracy of classifier model combinations ranged

between 96% to 98%, and which show average (and best respectively) classification for

96.3% (and 98.48%) of normal class and 98.25%(and 98.89%) of arrhythmia class on the

test set.

A.3.2 Multiclass Classification

For classification of four types of rhythms (for which the probability densities vary

as shown in Figure A.3(b)), again, the parameters were tuned in the same way as

explained in binary classification. The results show overall 96.94% accuracy, and

average (and best respectively) classification for 95.98% (and 98.89%) of NSR, 82.05%

(and 100%) of VB, 98.51% (and 99.23%) of AF and 98.92% (and 99.20%) of NR rhythms.
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The results for multiclass classification can be summarized as the confusion matrix of

four classes and sensitivity & specificity of each class as given in Table 1.

(a) 12 highlighted points. (b) Densities for four classes.

Figure A.3: probability density of local Hölder exponents.

NSR VB AF NR

NSR 31.93 0.70 0.51 0.11

VB 0.62 3.69 0.18 0

AF 0.84 0 31.75 0

NR 0.48 0 0.15 29.01

Sensitivity
Avg 96.04 82.11 97.42 97.9

Best 98.29 100 99.23 99.20

Specificity
Avg 97.1 99.27 98.75 99.84

Best 98.89 100 99.63 99.64

Table A.1: Confusion matrix (average case).

We also used the features derived from Fourier analysis, as mentioned in introduction,

with SVM classification for comparison with our method. Fourier analysis(by selecting

best 300 features) gives average correct classifications respectively 86.48%, 89.33%,

95.7% and 96.74% for the above four classes. Hölder-SVM methodology was found to

provide superior performance. An interesting point to note is that in both the binary

and multiclass classification, we used data provided by both sensing leads. It was

observed that even if we use just a single lead data, classification gives results with
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comparable accuracy. Arrhythmia being a disorder in the normal rhythm, can thus be

captured in any of the two leads.

Conclusion

In this study, it is demonstrated that support vector machine in conjunction with

wavelet transform modulus maxima based local singularity feature extraction pro-

vides an excellent combination in arrhythmia classification. The recognition of the

normal and different types of rhythms representing the arrhythmias has been done

with a good accuracy. These investigations show that the presented method may find

practical application in the recognition of many more types of arrhythmias.
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Appendix B

Hybrid-SVM for Imbalanced Data

We propose a novel hybrid arrangement of binary and multiclass SVMs

designed to take care of class imbalance rampant in biomedical signals. As

a result, we significantly reduce the number of false negatives – patients

falsely classified as normal. Our concept of Hybrid-SVM is applicable

to a wide variety of multiclass classification problems. We update the

relevant singularity-driven Hölder features proposed earlier, and compare

our Hybrid-SVM with a suitable conventional SVM. While the use of the

updated features results in higher accuracy, using the Hybrid-SVM shows

even more gains.

B.1 Introduction

Changes in the normal rhythm of a human heart may result in different cardiac

arrhythmias which cause damage to the heart when sustained over long periods of

time. The Electrocardiogram (ECG) is an important tool in diagnosing the condition

of the heart. In modern medicine, the ability to automatically classify arrhythmias

from ECG recordings is important for clinical diagnosis and treatment, as well as for

understanding the electrophysiological mechanisms of the arrhythmias.
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Arrhythmias are of different kinds and machine learning methods are frequently

applied with considerable amount of success in their classification [135, 169]. One

major problem for an autonomous system is the seemingly erratic variation of the

ECG signals of different patients and patient groups, leading to a significant risk

of inconsistent classification. Therefore, characterization and classification of such

arrhythmia signals is an important step in developing devices for monitoring the

health of individuals. Our interest is in the recently developed analytic tools based

on nonlinear dynamics theory and fractals. These are attractive because they have the

ability to perform a reliable local singularity analysis. For example, gait analysis [185],

flow regime identification [84], and localization of outliers [206] have been performed

using this approach. We make use of the property of local Hölder exponents in that

they capture the hidden information in a time series [205], and thus are suitable

for classification. In Appendix A, a Hölder-SVM based classification scheme was

presented on a relatively small number of classes. In this chapter, we show the

efficacy of a modified scheme on a larger dataset with an increase in number (seven)

of arrhythmia (abnormal) classes.

Our contributions

Our results show considerable improvements over the previous schemes as can be seen

in Table B.13. Besides the use of the Hölder-SVM scheme, our improvements include

the following.

• Unlike prior methods, we compute local Hölder exponents, using a combination

of wavelet scales. Our results (Section B.4.1) show that additional scales are

significant in classification.

• Further, we observe that ECG recordings of the normal behavior are more

common and thus are widely available as compared to ECG beats with some ab-

normality. But when all the abnormal beats are combined into one ‘Arrhythmia’

class, the Normal-Arrhythmia (binary) classification is unbiased, when compared

to individual (multiclass) classification inherent in the SVM paradigm. We

exploit this observation and introduce a novel Hybrid-SVM approach to consider
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such class imbalance. This combinations reduces the false negatives (situations

in which abnormal ECG signals are erroneously classified as normal), resulting

in increased testing accuracy (Section B.5). Our Hybrid-SVM scheme can be

combined (Section B.5.4) with other class imbalance solution methods.

Prior Work

The treatment of unbalanced data in the classification process is not new but has been

undertaken at different levels in the machine learning process. For example at the

feature extraction level, skewed datasets are evaluated in [85] for over- and under-

sampling. At the SVM building level, an algorithm is proposed in [32] that changes

the kernel function to modify the bias, while the kernel matrix is adjusted in [32]

to fit the training data. Different penalty constants for different classes of data can

also be employed [228] making errors on positive instances costlier than errors on

negative instances. At the system building level [4, 213], the penalizing method can

be combined with SMOTE [22] to develop a classifier that performs better than the use

of individual algorithms.

Figure B.1(a) shows typical blocks in a conventional SVM. The training data is trained

to produce a model, which predicts the outputs for the testing data.

Figure B.1(b) shows prior solutions at various levels for classifying the imbalanced

data. Our solution is shown in Figure B.1(c), and works independent of, or along with,

prior solutions. Thus, the particular advantage of our method is that it is at a “black

box” level and is generic enough to work with a variety of SVMs, with or without

penalties. The details of our enhanced model that feeds into the testing phase appears

in Section B.2.1.

Local Hölder Features

In the work of Appendix A, a wavelet-based local Hölder exponents spectrum

approach was applied for feature extraction. In this chapter, we process these spectra
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Figure B.1: Handling imbalanced data in (a) conventional SVM methodology. Prior methods

(b) emphasize the creation of the model while building the SVM. In contrast, our method (c),

while compatible with earlier methods, emphasizes the testing phase.

further so as to feed them into Hybrid-SVM-based classification system.

Many physiological signals contain step or cusp-like singularities, which are the rapid

changes in the variable values for a very small change in time. The strength of such

singularity is usually defined by an exponent called the Hölder exponent [205]. We

use a stable methodology for estimating the local Hölder exponents provided in [204],

where the singularities are modeled as if they were created through a multiplicative

cascading process. Please refer to [204, 205, 185] for further details. Figure B.2

summarizes important steps.
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Figure B.2: Sample ECG waveform, its continuous wavelet transform (CWT) with scales 1 to

20 in which the maxima lines are visible, and corresponding local Hölder exponents at scale 1.

B.2 Classification Method

Support vector machines (SVM) are being used [106, 155] extensively in the classifica-

tion and regression applications in the biomedical area. The advantages of using SVM

are that it produces a classifier that works well on unseen examples and also converges

to a single globally optimal solution [227]. In the classification problem of two classes,

the job is to find an optimal hyperplane that maximizes the distance between itself

and the nearest data points of each class. For linearly non-separable classes, a suitable

kernel (K) is introduced in the feature space. Please refer to [20, 67] for further details.

Multiclass Support Vector Machine

The SVM for pattern classification is based on two-class classification problems. Thus,

the n-class problem is generally solved by considering the problem as a collection of

binary classification problems [7]. One of the most commonly used approaches for

multiclass SVMs is the One-Against-One approach [76]. This approach simply constructs

all possible binary classifiers from a training set of n classes. Each class is trained on

only two out of n classes. Thus, there will be n(n− 1)/2 classifiers. Now, in the Max
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Wins Algorithm [98], a test example is classified by all of classifiers. Each classifier

provides one vote for its preferred class and the majority vote is used to decide the

final winner. Other popular multiclass approaches include one-against-all, and the

directed acyclic graph SVM [77, 210].

Reducing False Abnormality Predictions

In any diagnostic system, it is critical to reduce the ‘false negatives’; that is the decisions

predicting ‘normal’ when there is some abnormality. We now describe an arrangement

of binary and multiclass classifiers so as to improve the final accuracy on testing

data. Our scheme takes advantage of the point that in a diagnostic system, we get an

enormous number of normal signals as compared to the abnormal signals. Thus, when

the system is trained with the data consisting of all the individual classes, it gets biased

toward the larger Normal class. However, when the abnormal rhythms are combined

into one Arrhythmia class, its number becomes comparable to that of the Normal class

and therefore there is a higher likelihood to get a system trained without bias.

B.2.1 Hybrid-SVM

Our approach is as explained in Figure B.3. Consider that we have a Normal class and

‘n’ different abnormal classes (arrhythmias in our case) in the classification system.

First, using a multiclass SVM, we train a system with all (n+1) classes, each class being

individually considered. Let the predicted output coming out of this classifier be opM

(here ‘M’ stands for multiclass). Next, we use a binary SVM to train the Normal class

versus the Arrhythmia class (considering all n abnormal classes put together). Let opB

be its predicted output (here ‘B’ stands for binary). Finally, we use another multiclass

SVM to train only the n-abnormals and let opN be its predicted output (here ‘N’ stands

for the considered n abnormalities). An important point to note is that all the mentioned

SVM blocks are trained offline.

Now, when a test case enters the system, we first compare opM and opB coming from

the above mentioned two sub-systems.

218



Figure B.3: Our Hybrid-SVM method. See text for details.

• If the predicted outputs are consistent (that is both are Normal, or opM declares

an abnormality and opB declares the Arrhythmia class), then we use opM as the

final predicted output.

• On the other hand, if they are not consistent, then we speculate that the

incompatibility is due to the bias in the trained SVM (conventional multiclass).

Therefore, we devote more care to the n abnormal classes. We choose a random

number between [0,1]. If the random number is below a threshold value (R),

then we consider the Normal class as the final answer; and if the random number

is above threshold, then we consider opN, declared by the n-class SVM block, as

the final predicted output.

B.2.1.1 Threshold Choice

At first glance, it might look a bit strange to use a random number generator. Indeed,

if we set R = 0, as in our initial experiments, then the random number is essentially

useless, and we will minimize false negatives by pushing the output to an abnormality

(refer Table B.4). However, this leaves less control for reducing false positives, which

is why our Hybrid-SVM has the random number based “knob” for the control.

For concreteness, we consider the following three cases in the second decision box
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in Figure B.3: same weightage is given to both the Normal & Arrhythmia classes

(R= 0.5), more weightage to the Normal class (R= 0.9), and more weightage to the

Arrhythmia class (R= 0.1). The comparison of the new Hybrid-SVM approach with

the conventional one-against-one multiclass approach is discussed next in Section B.5.

B.3 Experimental Setup

We first explain our arrhythmia dataset and the methodology to extract the local

Hölder features. Next, we show that these features are indeed useful in the multiclass

arrhythmia classification. Further, we show the improvement in the testing accuracy

by employing our Hybrid-SVM approach. We show that our approach is compatible

with other types of features (e.g. Fourier coefficients) also by improving performance.

Finally, we show that Hybrid-SVM can also be used with other prior methods for

imbalanced dataset.

Data Set

The data set used was extracted from the ECG recordings of the ‘MIT-BIH Arrhythmia

Database’ and ‘MIT-BIH Malignant Ventricular Arrhythmia Database’ [63] according

to the beat and rhythm annotations. Each record of these rhythms is 10 seconds long.

The complete dataset includes 1273 Normal sinus (N) rhythms, 91 Paced (P) rhythms,

372 Atrial fibrillation (AFIB) rhythms, 123 Nodal (A-V junctional) rhythms (NOD), 108

Ventricular fibrillation (VF) rhythms, 278 First degree heart block (BI) rhythms and 34

Ventricular bigeminy (B) rhythms. It can be seen that number of data instances in N is

very high as compared to the other abnormals.

The extraction of features from each rhythm, for classification, was done in the

following manner. First, we de-noised the data series using the soft threshold wavelet

method [150]. Then we computed WTMM-based local Hölder exponents as explained

in Section B.1. We then computed the probability density of these local Hölder

exponents and observed that for all considered rhythms (irrespective of the classes),
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the local Hölder exponents were in the range [-0.5,1.5]. We chose 12 equidistant points

(as shown in Figure B.4) on this range.

Figure B.4: Highlighted points on the probability density function of the local Hölder

exponents are used as features.

We employed LIBSVM [21] toolbox for the classification purpose and used the

radial basis functions (RBF) for the kernel. The above-mentioned methodology was

employed for all possible ranges of the other SVM parameters, and the combination

which gives the best 10-fold cross validation accuracy (explained in section B.3) was

selected as the final set of parameters for further classification. Out of the whole

dataset, approximately 66% randomly selected data constituted the training set, and

the remaining constituted the testing set.

Performance Measures

In subsequent sections, we present the implementation of our Hybrid-SVM approach.

For every possibility, we give

• The 10-fold cross validation accuracy as a percentage value, which is calculated as

follows. The training dataset (excluding 30% testing data of the whole data) is

divided into k (k=10 here) subsets. Of the k subsets, a single subset is retained as

the validation data for testing the model, and the remaining k−1 subsets are used

as the training data. Then the average accuracy across all k trials is computed.
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The advantage of this method is that now it does not matter how training and

testing data get divided. Every data point gets to be in a test set exactly once, and

gets to be in a training set k−1 times.

• The confusion matrix of predicted classification values along with their sensitivity-

specificity numbers in the tabular form.

• The Matthews correlation coefficients (MCC) [123], defined as:

MCC =
[(T P)(T N)− (FP)(FN)]√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)

where T P denotes true positives, T N denotes true negatives, FP denotes false

positives, and FN denotes false negatives. If an approach has a higher MCC value

in the range [-1:1], its predictive ability is better. Since MCC takes account of both

over- and under-predictions, it is one robust and frequently used measure.

• The areas under receiver operating curve (ROC plot) for showing the efficacy of

our Hybrid-SVM approach. The ROC plot is a graph of true positive rate (TPR)

versus false positive rate (FPR).

B.4 Validity of Features

Conventional Multiclass Classification

This corresponds to the opM case in Section B.2.1. Here, we consider all the classes

individually. The 10-fold cross validation accuracy is 90.89±2.1%; details of the 7-class

confusion matrix appear in Table B.1. (Notation: The 10-fold cross validation accuracy

is written as [mean±standard deviation]). In such a matrix, diagonal elements

represent the correct identification of the respective rhythm. We observe that there are

very few non-diagonal entries, except for the first row and the first column (which are

due to the large number of rhythms present in the ‘Normal’ class). The high sensitivity
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Predicted classification

Testing Data Classes N P AFIB NOD VF BI B

369 N 348 1 3 8 2 7 0

26 P 5 20 1 0 0 0 0

101 AFIB 5 1 95 0 0 0 0

33 NOD 4 0 1 28 0 0 0

31 VF 5 0 0 0 26 0 0

81 BI 1 0 0 0 0 80 0

11 B 4 0 0 0 1 1 5

Sensitivity 93.55 90.91 95 77.78 89.66 90.91 100

Specificity 92.5 99.05 98.91 99.19 99.2 99.82 99.07

Table B.1: Confusion matrix for the conventional multiclass classification using local Hölder

exponents (opM case in Figure B.3). Six abnormal and one normal class were considered.

and specificity numbers indicate that the classification was successfully achieved in all

the cases.

Binary Classification

An important observation to note is that all the abnormal rhythms (i.e., excluding

numbers in the first row and the first column in Table B.1) are very well separable.

In the right-bottom 6× 6 matrix, all the non-diagonal entries are negligible. As we

have already explained in Section B.2, we take advantage of these observations to increase

the testing-accuracy using our Hybrid-SVM classification approach.

This combination corresponds to the opB case in Section B.2.1. Here, we considered N

as the ‘Normal’ class and all other abnormalities as the ‘Arrhythmia’ class. The 10-fold

cross validation accuracy of the classifier was 91.52±2.3%. It is higher than that of the

conventional multiclass SVM. Table B.2 gives the binary class confusion matrix (one

hopes for small values in the off-diagonal entries).
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Predicted classification

Testing Data Classes Normal Arrhythmia

369 Normal 340 29

283 Arrhythmia 17 266

Table B.2: Confusion matrix for the binary classification using local Hölder exponents (opB

case in Figure B.3).

B.4.1 Combination of Wavelet Scales

Prior work in the computation of local Hölder exponents for different applications

such as [185, 205] have used only the lowest scale (scale 1). Instead, we also make

use of the properties of wavelet transform (WT) that it captures different information

at different scales (or resolutions). Thus, this extra information can also be used in

the process of classification. In fact, selection of other lower wavelet scales, computing

more and more informative local singularity features and selecting the best features

can provide better classification results. For example, we provide the 7-class confusion

matrix in Table B.8, in which the local Hölder exponents were computed using scales

1&2. The 10-fold cross validation accuracy is 93.73±3.3%, which is much higher than

the previous case of computation using only scale 1.

B.4.2 ECG Lead Selection

In an another experiment, we computed the classification results for data of only the

first ECG lead (out of the two). The local Hölder exponents were computed using scale

1 only. The 10-fold cross validation accuracy is 84.44±2.8%. Even though only half the

number of features were considered (coming out of just first lead), the classification

was still successful.
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Summary

We observe that all the confusion matrices for the above approaches are clean and the

MCC values (Table B.9) are higher positive numbers, which indicate that the classifi-

cation was successful. Thus, the probability densities of the local singularity measures

(or patterns) differ in these arrhythmia classes and are useful in the classification.

B.5 Validity of Hybrid-SVM

Table B.3 gives the 6-class confusion matrix (only six abnormalities, excluding N from

Table B.1). This corresponds to the opN case in Section B.2.1. One of the key points to

note is that the confusion matrix of only arrhythmias is very clean. All the classes are

observed to be very well separated from each other.

Predicted classification

Testing Data Classes P AFIB NOD VF BI B

26 P 23 2 0 1 0 0

101 AFIB 2 98 0 0 1 0

33 NOD 2 1 30 0 0 0

31 VF 0 0 0 30 1 0

81 BI 0 0 0 0 81 0

11 B 0 0 0 1 1 9

Sensitivity 85.19 97.03 100 93.75 96.43 100

Specificity 98.83 98.35 98.81 99.6 100 99.27

Table B.3: Confusion matrix for six abnormal classes, using local Hölder exponents (opN case

in Figure B.3). Only abnormal rhythms were considered.

B.5.1 Comparison with Conventional Multiclass SVM

We implement the scheme of Section B.2.1 and establish (Table B.4) the efficacy of the

Hybrid-SVM scheme.
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Predicted classification (threshold 0.1)

Test Data Classes N P AFIB NOD VF BI B

369 N 348 1 3 8 2 7 0

26 P 4 21 1 0 0 0 0

101 AFIB 4 1 96 0 0 0 0

33 NOD 3 0 1 29 0 0 0

31 VF 3 0 0 0 28 0 0

81 BI 1 0 0 0 0 80 0

11 B 1 0 0 0 1 1 8

Sensitivity 95.6 91.3 95.05 78.38 90.32 90.91 100

Specificity 92.71 99.21 99.09 99.35 99.52 99.82 99.53

Table B.4: Confusion matrix for the multiclass classification using local Hölder exponents

with our Hybrid-SVM approach considering threshold 0.1. See Table B.1 to contrast with the

earlier approach.

Recall the issue of threshold in Section B.2.1. To show the effect of the threshold

(Figure B.3), we display the results for two different threshold values (0.5 and 0.9).

The confusion matrices are respectively shown in Tables B.5, and B.6.

Predicted classification (threshold 0.5)

Test Data Classes N P AFIB NOD VF BI B

369 N 350 1 3 7 2 6 0

26 P 4 21 1 0 0 0 0

101 AFIB 5 1 95 0 0 0 0

33 NOD 3 0 1 29 0 0 0

31 VF 4 0 0 0 27 0 0

81 BI 2 0 0 0 0 79 0

11 B 3 0 0 0 1 1 6

Sensitivity 94.34 91.3 95 80.56 90 91.86 100

Specificity 93.24 99.21 98.91 99.35 99.36 99.65 99.23

Table B.5: Confusion matrix for multiclass classification using local Hölder exponents with

our Hybrid-SVM approach considering threshold 0.5. See Table B.1 and Table B.4 to contrast.
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Predicted classification (threshold 0.9)

Test Data Classes N P AFIB NOD VF BI B

369 N 350 1 3 7 2 6 0

26 P 5 20 1 0 0 0 0

101 AFIB 5 1 95 0 0 0 0

33 NOD 4 0 1 28 0 0 0

31 VF 5 0 0 0 26 0 0

81 BI 3 0 0 0 0 78 0

11 B 4 0 0 0 1 1 5

Sensitivity 93.09 90.91 95 80 89.66 91.76 100

Specificity 93.12 99.05 98.91 99.19 99.2 99.47 99.07

Table B.6: Confusion matrix for multiclass classification using local Hölder exponents with

our Hybrid-SVM approach considering threshold 0.9. See Table B.1 and Table B.4 to contrast.

The values in the first column (which are due to the larger Normal class) are smaller

after implementing our Hybrid-SVM approach. Furthermore, as the threshold (R)

reduces, the performance of our approach increases. Reduction in such false negatives

(FN) is very important, especially in medicine, where a subject with an abnormality

should be considered for appropriate the treatment.

The performance of our Hybrid-SVM approach can be further observed in the ROC

plots shown in Figure B.5. The solid lines (our Hybrid-SVM with threshold 0.1) are

above the dashed lines (our Hybrid-SVM with thresholds 0.5 and 0.9), which in turn

are above the dotted lines (conventional multiclass SVM approach). The areas under

the curves are as indicated in Table B.7, where we observe that the areas are higher in

the case of Hybrid-SVM approach (particularly when the threshold value is 0.1).

B.5.2 Performance of Hybrid-SVM for Enhanced Features

In Section B.4.1, we proposed the increased use of wavelet scales for the computation

of the Local Hölder exponents. The 10-fold cross validation accuracy is 93.73±3.3%,

which is much higher than the previous case (Section B.4) of computation using only

scale 1. We provide a 7-class confusion matrix in Table B.8 where we also provide the
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Figure B.5: Receiver operating curves for the considered seven classes (N, P, AFIB, NOD, VF,

BI and B) in our database. The abscissa in the subfigures are different for better clarity. The

curve for the Hybrid-SVM case (with threshold 0.1) is above all others, and hence significantly

better.

conventional Hybrid-SVM with threshold

multiclass SVM 0.1 0.5 0.9

N 0.90 0.86 0.97 0.92

P 0.88 0.97 0.70 0.92

AFIB 0.86 0.98 0.92 0.88

NOD 0.98 0.79 0.92 0.86

VF 0.97 0.93 0.87 0.98

BI 0.79 0.91 0.83 0.97

B 0.91 0.87 0.98 0.70

Table B.7: The comparison of areas under ROC plots for the multiclass classification using

local Hölder exponents.

results for classification using the Hybrid-SVM (numbers given in brackets). This table

can be contrasted with Table B.1. We observe that our Hybrid-SVM approach further
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increases the testing accuracy for the enhanced features. Finally we provide the MCC

values in Table B.9.

Testing Predicted classification

Data Classes N P AFIB NOD VF BI B

369 N 354(354) 1(1) 2(2) 5(5) 2(2) 4(4) 1(1)

26 P 6(5) 20(21) 0(0) 0(0) 0(0) 0(0) 0(0)

101 AFIF 3(2) 0(0) 98(98) 0(0) 0(1) 0(0) 0(0)

33 NOD 4(3) 0(1) 0(0) 29(29) 0(0) 0(0) 0(0)

31 VF 6(5) 0(0) 0(0) 0(0) 25(26) 0(0) 0(0)

81 BI 1(1) 0(0) 0(0) 0(0) 0(0) 80(80) 0(0)

11 B 3(0) 0(0) 0(1) 0(0) 0(1) 1(1) 7(8)

Sensitivity
93.9 95.24 98 85.29 92.59 94.12 87.5

(95.68) (91.3) (97.03) (85.29) (86.67) (94.12) (88.89)

Specificity
94.55 99.05 99.46 99.35 99.04 99.82 99.38

(94.68) (99.21) (99.46) (99.35) (99.2) (99.82) (99.53)

Table B.8: Confusion matrix for the multiclass classification using local Hölder exponents for

scales ‘1 & 2’. Each entry corresponds to the conventional case, and the Hybrid-SVM (R=0.1)

case (in brackets).

The MCC values for our Hybrid-SVM approach are higher as compared to the

corresponding conventional multiclass SVM (column) in all the combinations.

B.5.3 Performance of Hybrid-SVM for Other Features

Using prior published results, we extracted features such as Fourier coefficients [135,

140], wavelet coefficients [140, 169], and auto-regressive (AR) coefficients [36]. These

features were then subsequently used in the conventional multiclass SVM, and our

Hybrid-SVM approach.

With respect to the training process, as mentioned earlier, the 10-fold cross validation

accuracy using local Hölder exponents is 90.89±2.1%. In contrast, the 10-fold cross

validation accuracies for the three methods were found to be 88.93±2.8%, 82.21±2.9%

and 91.07±1.8% respectively. These numbers vary from the ones reported earlier due
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1S2L 2S2L 1S1L

Classes Normal Hybrid Normal Hybrid Normal Hybrid

N 0.86 0.88 0.88 0.91 0.75 0.79

P 0.83 0.85 0.85 0.85 0.76 0.76

AFIB 0.94 0.94 0.97 0.96 0.85 0.88

NOD 0.80 0.82 0.86 0.86 0.76 0.80

VF 0.86 0.90 0.86 0.85 0.87 0.88

BI 0.94 0.94 0.96 0.96 0.84 0.86

B 0.67 0.85 0.74 0.80 0.34 0.34

Table B.9: MCC values for the considered seven classes in different scenarios. ‘S’ indicates

the number of scales used (1 or 2) for the computation of local Hölder exponents ‘L’ indicates

the number of ECG leads used (1 or 2) in the feature extraction. The Hybrid-SVM used the

threshold value of 0.1.

to the overlap between classes as seen in the confusion matrix. With respect to the

testing process, we provide the confusion matrices in Tables B.10, B.11 and B.12.

Testing Predicted classification

Data Classes N P AFIB NOD VF BI B

369 N 358(361) 7(6) 4(2) 0(0) 0(0) 0(0) 0(0)

26 P 6(2) 18(20) 2(4) 0(0) 0(0) 0(0) 0(0)

101 AFIF 13(8) 1(3) 86(87) 1(1) 0(1) 0(1) 0(0)

33 NOD 0(0) 0(0) 1(1) 26(26) 4(4) 2(2) 0(0)

31 VF 1(1) 0(0) 0(0) 2(2) 22(22) 6(6) 0(0)

81 BI 3(2) 0(0) 1(1) 7(7) 1(2) 67(67) 2(2)

11 B 0(0) 0(0) 0(0) 2(2) 0(0) 3(3) 8(8)

Sensitivity
93.96 69.23 91.49 72.22 81.48 85.9 80

(96.52) (68.97) (91.58) (72.22) (75.86) (84.81) (80)

Specificity
95.94 98.72 97.31 98.86 98.56 97.56 99.53

(97.12) (99.04) (97.49) (98.86) (98.56) (97.56) (99.53)

Table B.10: Confusion matrix for the multiclass classification using Fourier coefficients [140].

Each entry corresponds to the conventional case, and the Hybrid-SVM (R=0) case (in brackets).
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Testing Predicted classification

Data Classes N P AFIB NOD VF BI B

369 N 355(355) 5(5) 4(4) 1(1) 1(1) 1(1) 2(2)

26 P 15(13) 10(12) 1(1) 0(0) 0(0) 0(0) 0(0)

101 AFIF 7(3) 0(1) 90(93) 1(1) 0(0) 3(3) 0(0)

33 NOD 0(0) 0(0) 2(2) 24(24) 5(5) 2(2) 0(0)

31 VF 0(0) 0(0) 0(0) 5(3) 22(24) 4(4) 0(0)

81 BI 1(0) 0(0) 1(1) 11(11) 2(2) 64(65) 2(2)

11 B 0(0) 0(0) 0(0) 2(2) 0(0) 4(4) 5(5)

Sensitivity
93.92 66.67 91.84 54.55 73.33 82.05 55.56

(95.69) (66.67) (92.08) (57.14) (75) (82.28) (55.56)

Specificity
94.89 97.49 98.01 98.52 98.55 97.04 99.07

(95.02) (97.79) (98.55) (98.52) (98.87) (97.21) (99.07)

Table B.11: Confusion matrix for the multiclass classification using wavelet coefficients [140].

Each entry corresponds to the conventional case, and the Hybrid-SVM (R=0) case (in brackets).

Testing Predicted classification

Data Classes N P AFIB NOD VF BI B

369 N 339(341) 10(10) 4(4) 0(0) 1(1) 15(13) 0(0)

26 P 2(2) 23(23) 1(1) 0(0) 0(0) 0(0) 0(0)

101 AFIF 3(3) 2(2) 96(96) 0(0) 0(0) 0(0) 0(0)

33 NOD 2(2) 0(0) 0(0) 31(31) 0(0) 0(0) 0(0)

31 VF 1(0) 0(0) 0(0) 0(0) 21(22) 9(9) 0(0)

81 BI 1(0) 0(0) 0(0) 0(0) 0(0) 80(81) 0(0)

11 B 11(2) 0(0) 0(0) 0(0) 0(0) 0(1) 0(8)

Sensitivity
94.43 65.71 95.05 100 95.45 76.92 NaN

(97.43) (65.71) (95.05) (100) (95.65) (77.88) (100)

Specificity
89.76 99.51 99.09 99.68 98.41 99.82 98.31

(90.73) (99.51) (99.09) (99.68) (98.57) (100) (99.53)

Table B.12: Confusion matrix for the multiclass classification using AR coefficients [36]. Each

entry corresponds to the conventional case, and the Hybrid-SVM (R=0) case (in brackets).

Two points are worth observing. First, for each of these methods including the method

with AR coefficients, the results obtained using our Hybrid-SVM approach (given in
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brackets) are superior. Second, the success in our method is independent of which

classes confuse the methods. For example, the classes (N & AFIF) cause confusion

in the Fourier method, and the classes (N & AFIF), (VF & BI) cause confusion in the

Wavelet method.

We also provide the comparison of MCC values in Table B.13 which compares

the classification using all the above mentioned methods. It can be observed that

irrespective of the method, the classification performance further increases when used

with our Hybrid-SVM approach.

Hölder Fourier wavelet AR coeff

Classes Normal Hybrid Normal Hybrid Normal Hybrid Normal Hybrid

N 0.80 0.86 0.89 0.93 0.88 0.89 0.84 0.88

P 0.87 0.85 0.67 0.71 0.49 0.53 0.75 0.75

AFIB 0.91 0.93 0.86 0.86 0.88 0.90 0.94 0.94

NOD 0.78 0.79 0.74 0.74 0.60 0.63 0.96 0.96

VF 0.80 0.80 0.74 0.72 0.70 0.68 0.79 0.81

BI 0.92 0.94 0.82 0.81 0.77 0.77 0.85 0.86

B 0.49 0.67 0.75 0.75 0.49 0.49 NaN 0.85

Table B.13: MCC values for the considered seven classes in different scenarios.

B.5.4 Compatibility of Hybrid-SVM with Prior Solutions

As explained in Figure B.1(b), there are various levels at which the effect of imbalance

in the data can be reduced for better classification. Our solution can be combined with

any of these solutions for even better performance. In Table B.14 and B.15, we provide

the combination of our Hybrid-SVM with one of the commonly used techniques of

under- and over-sampling (respectively). Here, the data is preprocessed by under-

sampling the majority class and over-sampling the minority classes (respectively)

in order to create a balanced dataset (refer Figure B.1(b)). Further, as shown in

Figure B.1(c), our novel Hybrid-SVM methodology can be used to improve the

classification performance.
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Testing Predicted classification

Data Classes N P AFIB NOD VF BI B

171 N 156 (156) 1 (1) 2 (2) 3 (3) 1 (1) 5 (5) 3 (3)

29 P 4 (2) 24 (26) 0 (0) 0 (0) 0 (0) 1 (1) 0 (0)

93 AFIF 4 (4) 0 (0) 89 (89) 0 (0) 0 (0) 0 (0) 0 (0)

51 NOD 7 (5) 0 (1) 3 (3) 41 (42) 0 (0) 0 (0) 0 (0)

21 VF 2 (2) 0 (0) 0 (0) 0 (0) 19 (19) 0 (0) 0 (0)

84 BI 4 (3) 0 (0) 0 (0) 0 (0) 0 (0) 80 (81) 0 (0)

15 B 2 (1) 0 (0) 1 (1) 0 (0) 1 (1) 3 (3) 8 (9)

Table B.14: Confusion matrix using the principle of under-sampling data and then applying

the Hybrid-SVM approach. Each entry corresponds to the conventional case, and the Hybrid-

SVM (R=0) case (in brackets).

Testing Predicted classification

Data Classes N P AFIB NOD VF BI B

363 N 331 ( 331 ) 2 ( 2 ) 8 ( 8 ) 7 ( 7 ) 3 ( 3 ) 9 ( 9 ) 3 ( 3 )

73 P 0 ( 0 ) 73 ( 73 ) 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 0 ( 0 )

105 AFIF 7 ( 6 ) 1 ( 1 ) 97 ( 97 ) 0 ( 1 ) 0 ( 0 ) 0 ( 0 ) 0 ( 0 )

106 NOD 5 ( 5 ) 0 ( 0 ) 0 ( 0 ) 101 ( 101 ) 0 ( 0 ) 0 ( 0 ) 0 ( 0 )

99 VF 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 99 ( 99 ) 0 ( 0 ) 0 ( 0 )

147 BI 2 ( 0 ) 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 145 ( 147 ) 0 ( 0 )

58 B 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 58 ( 58 )

Table B.15: Confusion matrix using the principle of over-sampling data, and then applying

Hybrid-SVM approach. Each entry corresponds to the conventional case, and the Hybrid-SVM

(R=0) case (in brackets).

In both the tables, the classification performance using the sampling technique is better

than Table B.1. By combining it with our Hybrid-SVM approach, the false negatives

further reduce. Therefore, our approach can improve the performance of the multiclass

classifier independent of, or in combination with, other solutions on the imbalanced

data.
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Conclusion

Our experiments show that different arrhythmias inherently carry distinct patterns.

For classification, the method of the wavelet transform modulus maxima based local

singularity features forms a potent combination with SVMs. Further, we showed that

the combination of scales for the computation of local Hölder exponents increases the

classification accuracy.

We have introduced the notion of Hybrid-SVM – a combination of binary and

multiclass SVM – to increase the testing accuracy. This becomes particularly important

in reducing the false negative predictions. Our black box approach is suitable

whenever there is a class imbalance – a phenomenon commonly seen in biomedical

signals, but also found elsewhere. In addition, the approach is also compatible with

other solutions to the imbalanced data problem. Finally, while we have used three

offline SVMs, classifier ensembles with a mix-match approach can also be used.

In building our Hybrid-SVM offline, our method uses a threshold parameter (R). For

purposes of illustration, we use 3 different values of R to prove the efficacy of our

work. A systematic way of building the Hybrid-SVM would use a feedback system

with various values of R, and pick the value that is most suitable for the problem at

hand. We do not describe this here, except to comment that a particular value of R

might reduce the number of false negatives at the cost of increasing the number of false

positives, and the balance is best chosen by the user. In conjunction with R, and during

the online phase, the system we describe uses a “knob” – namely a random number

generator. This conjunction can, for instance, be completely eliminated if the user want

to minimize the false negatives. On the flip side, the random number generator aids

the use of the knob.

These investigations show immense potential benefit of the proposed classifier. We

believe it can be easily extended to other biomedical as well as non-biomedical

applications.
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Appendix C

Example Pulse Waveforms

We present few examples of pulse signals from our database. In each example, we

show the Tridosha pulse of 5 second long. The three dosha, namely vata, pitta, and kapha

are displayed in red, green, and blue colors respectively. If an example shows only two

colors, then it indicates negligible strength of the signal at the third dosha location.

For each pulse signal, we provide the following details of the subject:

• Behavior: Healthy or unhealthy

• Age group: 1 (below 25 years), 2 (25–50 years), and 3 (above 50 years)

• Gender: Male or female

The examples (no specific order) are provided to visualize the varying patterns across

many pulse signals. The variations in these patterns are captured using our approaches

in Chapters 5 and 6.
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Behavior = Unhealthy, Age group = 2, Gender = Female.

Behavior = Healthy, Age group = 2, Gender = Female.

Behavior = Unhealthy, Age group = 2, Gender = Female.
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Behavior = Healthy, Age group = 2, Gender = Male.

Behavior = Unhealthy, Age group = 3, Gender = Male.

Behavior = Healthy, Age group = 2, Gender = Male.
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Behavior = Unhealthy, Age group = 2, Gender = Male.

Behavior = Healthy, Age group = 2, Gender = Male.

Behavior = Healthy, Age group = 2, Gender = Male.

238



Behavior = Unhealthy, Age group = 3, Gender = Female.

Behavior = Unhealthy, Age group = 2, Gender = Male.

Behavior = Unhealthy, Age group = 2, Gender = Male.
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Behavior = Unhealthy, Age group = 3, Gender = Male.

Behavior = Unhealthy, Age group = 3, Gender = Male.

Behavior = Unhealthy, Age group = 1, Gender = Female.
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Behavior = Unhealthy, Age group = 3, Gender = Female.

Behavior = Unhealthy, Age group = 3, Gender = Female.

Behavior = Unhealthy, Age group = 1, Gender = Male.
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Behavior = Unhealthy, Age group = 1, Gender = Male.

Behavior = Unhealthy, Age group = 1, Gender = Female.

Behavior = Unhealthy, Age group = 3, Gender = Female.
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Behavior = Normal, Age group = 1, Gender = Male.

Behavior = Unhealthy, Age group = 3, Gender = Female.

Behavior = Normal, Age group = 2, Gender = Male.
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Behavior = Unhealthy, Age group = 2, Gender = Male.

Behavior = Unhealthy, Age group = 1, Gender = Male.

Behavior = Normal, Age group = 1, Gender = Male.
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Behavior = Unhealthy, Age group = 1, Gender = Male.

Behavior = Unhealthy, Age group = 2, Gender = Female.

Behavior = Unhealthy, Age group = 3, Gender = Male.
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Behavior = Unhealthy, Age group = 3, Gender = Male.

Behavior = Unhealthy, Age group = 1, Gender = Female.

Behavior = Unhealthy, Age group = 2, Gender = Female.
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Behavior = Unhealthy, Age group = 2, Gender = Female.

Behavior = Unhealthy, Age group = 2, Gender = Female.

Behavior = Unhealthy, Age group = 2, Gender = Male.

247



Behavior = Healthy, Age group = 2, Gender = Male.

Behavior = Unhealthy, Age group = 2, Gender = Male.

Behavior = Unhealthy, Age group = 2, Gender = Female.
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Behavior = Unhealthy, Age group = 2, Gender = Female.

Behavior = Unhealthy, Age group = 3, Gender = Female.

Behavior = Unhealthy, Age group = 3, Gender = Female.
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Behavior = Unhealthy, Age group = 3, Gender = Male.

Behavior = Unhealthy, Age group = 3, Gender = Male.

Behavior = Unhealthy, Age group = 2, Gender = Male.
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